forked from jackyko1991/vnet-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_inference.cpp
476 lines (389 loc) · 15.4 KB
/
tf_inference.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#include "tf_inference.h"
TF_Inference::TF_Inference()
{
m_inputImage = ImageType::New();
m_outputImage = LabelImageType::New();
// tensorflow session
TF_CHECK_OK(tensorflow::NewSession(m_options, &m_sess));
// tensorflow graph
m_graphDef = new tensorflow::GraphDef();
}
TF_Inference::~TF_Inference()
{
// remove graphDef
delete m_graphDef;
// close tensorflow session
m_sess->Close();
}
void TF_Inference::SetImage(ImageType::Pointer image)
{
m_inputImage->Graft(image);
// create the associate label image
ImageType::RegionType region = m_outputImage->GetLargestPossibleRegion();
m_outputImage->SetRegions(region);
m_outputImage->SetDirection(image->GetDirection());
m_outputImage->SetOrigin(image->GetOrigin());
m_outputImage->SetSpacing(image->GetSpacing());
m_outputImage->Allocate();
m_outputImage->FillBuffer(0);
}
LabelImageType::Pointer TF_Inference::GetOutput()
{
return m_outputImage;
}
void TF_Inference::SetGraphPath(std::string path)
{
m_graphPath = path;
}
void TF_Inference::SetCheckpointPath(std::string path)
{
m_checkpointPath = path;
}
void TF_Inference::SetNumberOfThreads(unsigned int numOfThreads)
{
// if set to 0, the number of threads used will be maximum number of hardware concurrency, default to be 0
if (numOfThreads == 0)
{
m_numberOfThreads = std::thread::hardware_concurrency();
}
else
{
m_numberOfThreads = numOfThreads;
}
}
void TF_Inference::SetBufferPoolSize(unsigned int size)
{
m_bufferPoolSize = size;
}
void extractIntegerWords(std::string str, std::vector<int>& nums)
{
std::stringstream ss;
/* Storing the whole string into string stream */
ss << str;
/* Running loop till the end of the stream */
std::string temp;
int found;
while (!ss.eof()) {
/* extracting word by word from stream */
ss >> temp;
/* Checking the given word is integer or not */
if (std::stringstream(temp) >> found)
{
nums.push_back(found);
}
}
}
void TF_Inference::Inference()
{
// load the graph proto file
TF_CHECK_OK(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), m_graphPath, m_graphDef));
std::cout << "Tensorflow load graph complete" << std::endl;
// add graph to session
TF_CHECK_OK(m_sess->Create(*m_graphDef));
std::cout << "Tensorflow add graph to session complete" << std::endl;
// load weights to the graph
std::vector<tensorflow::Tensor> out;
std::vector<std::string> vNames;
for (int i = 0; i < m_graphDef->node_size(); i++)
{
tensorflow::NodeDef n = m_graphDef->node(i);
std::string placholderStr = "images_placeholder";
if (n.name().find(placholderStr) != std::string::npos)
{
tensorflow::AttrValue value = n.attr().at("shape");
//extract input shape of network, suppose to be work with
//
//auto shape = graph_def.node().Get(0).attr().at("shape").shape();
//for (int i = 0; i < shape.dim_size(); i++) {
// std::cout << shape.dim(i).size() << std::endl;
//}
//
// but tf c++ api seems not containing tensorshapeproto, use string to extract proper input size instead
std::vector<int> shape;
extractIntegerWords(value.DebugString(), shape);
// set patch size fit input placeholder
m_patchSize[0] = shape[1];
m_patchSize[1] = shape[2];
m_patchSize[2] = shape[3];
}
if (n.name().find("nWeights") != std::string::npos) {
vNames.push_back(n.name());
//std::cout << n.name()<<std::endl;
}
}
TF_CHECK_OK(m_sess->Run({}, vNames, {}, &out));
std::cout << "Tensorflow load weight complete" << std::endl;
////tensorflow::TensorShape inputShape;
////inputShape.InsertDim(0, 1);
////inputShape.InsertDim(1, 64);
////inputShape.InsertDim(2, 64);
////inputShape.InsertDim(3, 32);
////inputShape.InsertDim(4, 1);
// preprocess itk image
// clip window level
using WindowFilterType = itk::IntensityWindowingImageFilter<ImageType, ImageType>;
WindowFilterType::Pointer windowFilter = WindowFilterType::New();
windowFilter->SetInput(m_inputImage);
windowFilter->SetOutputMaximum(1000);
windowFilter->SetWindowMaximum(1000);
windowFilter->SetOutputMinimum(-1000);
windowFilter->SetWindowMinimum(-1000);
windowFilter->Update();
// normalize image
using RescaleFilterType = itk::RescaleIntensityImageFilter<ImageType, ImageType>;
RescaleFilterType::Pointer rescaleFilter = RescaleFilterType::New();
rescaleFilter->SetInput(windowFilter->GetOutput());
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->Update();
// resample image
using ResampleFilterType = itk::ResampleImageFilter<ImageType, ImageType>;
ImageType::SpacingType outputResampledSpacing;
outputResampledSpacing[0] = 0.2;
outputResampledSpacing[1] = 0.2;
outputResampledSpacing[2] = 0.2;
ImageType::SizeType outputSize;
using BSplineInterpolatorType = itk::BSplineInterpolateImageFunction<ImageType, double>;
BSplineInterpolatorType::Pointer bsInterpolator = BSplineInterpolatorType::New();
ResampleFilterType::Pointer resampleFilter = ResampleFilterType::New();
resampleFilter->SetInput(rescaleFilter->GetOutput());
resampleFilter->SetInterpolator(bsInterpolator);
resampleFilter->SetOutputSpacing(outputResampledSpacing);
if (rescaleFilter->GetOutput()->GetLargestPossibleRegion().GetSize()[0] >= m_patchSize[0] &&
rescaleFilter->GetOutput()->GetLargestPossibleRegion().GetSize()[1] >= m_patchSize[1] &&
rescaleFilter->GetOutput()->GetLargestPossibleRegion().GetSize()[2] >= m_patchSize[2])
{
for (int i = 0; i < 3; i++)
{
outputSize[i] = std::ceil(rescaleFilter->GetOutput()->GetLargestPossibleRegion().GetSize()[i] * rescaleFilter->GetOutput()->GetSpacing()[i] / outputResampledSpacing[i]);
}
}
else
{
// padding on the image if the input is smaller than network input
for (int i = 0; i < 3; i++)
{
outputSize[i] = m_patchSize[i];
}
}
resampleFilter->SetSize(outputSize);
resampleFilter->SetOutputOrigin(rescaleFilter->GetOutput()->GetOrigin());
resampleFilter->SetOutputDirection(rescaleFilter->GetOutput()->GetDirection());
resampleFilter->Update();
std::cout << "Image preprocessing complete" << std::endl;
// prepare image batch indicies
ImageType::SizeType imageSize = resampleFilter->GetOutput()->GetLargestPossibleRegion().GetSize();
std::cout << imageSize << std::endl;
int inum = std::ceil((imageSize[0]-m_patchSize[0])/float(m_stride[0]))+1;
int jnum = std::ceil((imageSize[1] - m_patchSize[1]) / float(m_stride[1])) + 1;
int knum = std::ceil((imageSize[2] - m_patchSize[2]) / float(m_stride[2])) + 1;
std::cout << "ijk num: " << inum << " " << jnum << " " << knum << std::endl;
int patchTotal = 0;
std::vector <std::shared_ptr<int>> ijkPatchIndicies;
for (int i = 0; i < inum; i++)
{
for (int j = 0; j < jnum; j++)
{
for (int k = 0; k < knum; k++)
{
//if (patchTotal%m_batchSize == 0)
//{
std::shared_ptr<int> ijkPatchIndiciesTmp(new int[6], std::default_delete<int[]>());
ijkPatchIndicies.push_back(ijkPatchIndiciesTmp);
//}
// actually calculate patch indicies
int istart = i* m_stride[0];
// for last patch
if (istart + m_patchSize[0] > imageSize[0])
{
istart = imageSize[0] - m_patchSize[0];
}
int iend = istart + m_patchSize[0];
int jstart = j* m_stride[1];
// for last patch
if (jstart + m_patchSize[1] > imageSize[1])
{
jstart = imageSize[1] - m_patchSize[1];
}
int jend = jstart + m_patchSize[1];
int kstart = k* m_stride[2];
// for last patch
if (kstart + m_patchSize[2] > imageSize[2])
{
kstart = imageSize[2] - m_patchSize[2];
}
int kend = kstart + m_patchSize[2];
ijkPatchIndicies.back().get()[0] = istart;
ijkPatchIndicies.back().get()[1] = iend;
ijkPatchIndicies.back().get()[2] = jstart;
ijkPatchIndicies.back().get()[3] = jend;
ijkPatchIndicies.back().get()[4] = kstart;
ijkPatchIndicies.back().get()[5] = kend;
patchTotal++;
}
}
}
// create the output label in same size as resampled image
LabelImageType::Pointer outputLabelResampled = LabelImageType::New();
ImageType::RegionType region = resampleFilter->GetOutput()->GetLargestPossibleRegion();
outputLabelResampled->SetRegions(region);
outputLabelResampled->Allocate();
outputLabelResampled->FillBuffer(0);
outputLabelResampled->SetOrigin(resampleFilter->GetOutput()->GetOrigin());
outputLabelResampled->SetDirection(resampleFilter->GetOutput()->GetDirection());
outputLabelResampled->SetSpacing(resampleFilter->GetOutput()->GetSpacing());
this->BatchInference(resampleFilter->GetOutput(), outputLabelResampled, ijkPatchIndicies);
// reseample the output label back to input space
using NNInterpolatorType = itk::NearestNeighborInterpolateImageFunction<LabelImageType, double>;
NNInterpolatorType::Pointer nnInterpolator = NNInterpolatorType::New();
using ResampleLabelFilterType = itk::ResampleImageFilter<LabelImageType, LabelImageType>;
ResampleLabelFilterType::Pointer resampleLabelFilter = ResampleLabelFilterType::New();
resampleLabelFilter->SetInput(outputLabelResampled);
resampleLabelFilter->SetInterpolator(nnInterpolator);
resampleLabelFilter->SetOutputSpacing(m_inputImage->GetSpacing());
resampleLabelFilter->SetSize(m_inputImage->GetLargestPossibleRegion().GetSize());
resampleLabelFilter->SetOutputOrigin(m_inputImage->GetOrigin());
resampleLabelFilter->SetOutputDirection(m_inputImage->GetDirection());
resampleLabelFilter->Update();
m_outputImage->Graft(resampleLabelFilter->GetOutput());
}
ImageType::Pointer CropWithIndicies(ImageType::Pointer input, int* indicies, std::mutex* mutex)
{
//std::mutex mutex;
mutex->lock();
//std::cout << std::this_thread::get_id() << ": " << indicies[0] << " " << indicies[1] << " " << indicies[2] << " " << indicies[3] << " " << indicies[4] << " " << indicies[5] << std::endl;
// set indicies to itk region
ImageType::IndexType start;
start[0] = indicies[0];
start[1] = indicies[2];
start[2] = indicies[4];
ImageType::SizeType size;
size[0] = indicies[1] - indicies[0];
size[1] = indicies[3] - indicies[2];
size[2] = indicies[5] - indicies[4];
ImageType::RegionType region(start, size);
// extract image
using CropFilter = itk::ExtractImageFilter<ImageType,ImageType>;
CropFilter::Pointer cropFilter = CropFilter::New();
cropFilter->SetInput(input);
cropFilter->SetExtractionRegion(region);
#if ITK_VERSION_MAJOR>=4
cropFilter->SetDirectionCollapseToIdentity();
#endif
cropFilter->Update();
ImageType::Pointer output = ImageType::New();
output->Graft(cropFilter->GetOutput());
mutex->unlock();
return output;
}
void TF_Inference::BatchInference(ImageType::Pointer inputImage, LabelImageType::Pointer outputLabel, std::vector<std::shared_ptr<int>> patchIndicies)
{
// create thread pool
ThreadPool pool(m_numberOfThreads);
// initialize thread pool
pool.init();
// initialize a mutex
std::mutex mutex;
// create a weight label to eliminate overlapping region
LabelImageType::Pointer weightImage = LabelImageType::New();
weightImage->SetRegions(outputLabel->GetLargestPossibleRegion());
weightImage->Allocate();
weightImage->SetDirection(outputLabel->GetDirection());
weightImage->SetOrigin(outputLabel->GetOrigin());
weightImage->SetSpacing(outputLabel->GetSpacing());
weightImage->FillBuffer(0);
std::queue<std::future<ImageType::Pointer>> bufferQueue;
bool Finish = false;
int count = 0;
int count2 = 0;
while (!Finish)
{
while (bufferQueue.size() < m_bufferPoolSize && patchIndicies.size()-count2 > m_bufferPoolSize)
{
//std::cout << "Filling up buffer (" << bufferQueue.size()+1 <<"/" << m_bufferPoolSize <<")" << std::endl;
//std::cout << "count: " << count+1 <<"/" << patchIndicies.size()<< std::endl;
std::future<ImageType::Pointer> future = pool.submit(&CropWithIndicies, inputImage, patchIndicies[count].get(), &mutex);
bufferQueue.push(std::move(future));
count++;
if (count == patchIndicies.size())
{
break;
}
}
// convert itk image to tensorflow input
tensorflow::Tensor inputTensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({ m_batchSize,m_patchSize[0],m_patchSize[1],m_patchSize[2],1 }));
auto inputTensorMapped = inputTensor.tensor<float, 5>();
ImageType::Pointer croppedImage = bufferQueue.front().get();
bufferQueue.pop();
if (patchIndicies.size() - count2 > m_bufferPoolSize)
{
// immediately insert a new job when queue is empty
std::future<ImageType::Pointer> future = pool.submit(&CropWithIndicies, inputImage, patchIndicies[count].get(), &mutex);
bufferQueue.push(std::move(future));
count++;
}
itk::ImageRegionIteratorWithIndex<ImageType> imageIterator(croppedImage, croppedImage->GetLargestPossibleRegion());
while (!imageIterator.IsAtEnd())
{
inputTensorMapped(0,
imageIterator.GetIndex()[0] - croppedImage->GetLargestPossibleRegion().GetIndex()[0],
imageIterator.GetIndex()[1] - croppedImage->GetLargestPossibleRegion().GetIndex()[1],
imageIterator.GetIndex()[2] - croppedImage->GetLargestPossibleRegion().GetIndex()[2],
0)
= imageIterator.Get();
++imageIterator;
}
std::vector<std::pair<std::string, tensorflow::Tensor>> input;
std::vector<tensorflow::Tensor> predict;
input.emplace_back(std::string("images_placeholder:0"), inputTensor);
auto statusPred = m_sess->Run(input, { "predicted_label/prediction:0" }, {}, &predict);
auto outputTensorMapped = predict[0].tensor<long long int, 4>();
itk::ImageRegionIteratorWithIndex<LabelImageType> labelIterator(outputLabel, croppedImage->GetLargestPossibleRegion());
itk::ImageRegionIteratorWithIndex<LabelImageType> weightIterator(weightImage, croppedImage->GetLargestPossibleRegion());
// iterators need to run separately
while (!labelIterator.IsAtEnd())
{
labelIterator.Set(labelIterator.Get()+
outputTensorMapped(
0,
labelIterator.GetIndex()[0] - croppedImage->GetLargestPossibleRegion().GetIndex()[0],
labelIterator.GetIndex()[1] - croppedImage->GetLargestPossibleRegion().GetIndex()[1],
labelIterator.GetIndex()[2] - croppedImage->GetLargestPossibleRegion().GetIndex()[2]));
++labelIterator;
}
while (!weightIterator.IsAtEnd())
{
weightIterator.Set(weightIterator.Get() + 1);
++weightIterator;
}
if (count2 % int(patchIndicies.size()*0.01) == 0)
{
std::cout << "Progress: " << count2 + 1 << "/" << patchIndicies.size() << std::endl;
}
count2++;
if (count2 == patchIndicies.size())
Finish = true;
}
pool.shutdown();
// cast the label to and weight to float image
itk::CastImageFilter<LabelImageType, ImageType>::Pointer upcaster1 = itk::CastImageFilter<LabelImageType, ImageType>::New();
upcaster1->SetInput(outputLabel);
upcaster1->Update();
itk::CastImageFilter<LabelImageType, ImageType>::Pointer upcaster2 = itk::CastImageFilter<LabelImageType, ImageType>::New();
upcaster2->SetInput(weightImage);
upcaster2->Update();
// divide label by weight
itk::DivideImageFilter<ImageType, ImageType, ImageType>::Pointer divideFilter = itk::DivideImageFilter<ImageType, ImageType, ImageType>::New();
divideFilter->SetInput1(upcaster1->GetOutput());
divideFilter->SetInput2(upcaster2->GetOutput());
divideFilter->Update();
// cast the output label back to short, add 0.5 to each pixel to avoid round down issue
itk::AddImageFilter<ImageType, ImageType>::Pointer addFilter = itk::AddImageFilter<ImageType, ImageType>::New();
addFilter->SetInput1(divideFilter->GetOutput());
addFilter->SetConstant2(0.5);
addFilter->Update();
itk::CastImageFilter<ImageType, LabelImageType>::Pointer downcaster = itk::CastImageFilter<ImageType, LabelImageType>::New();
downcaster->SetInput(addFilter->GetOutput());
downcaster->Update();
outputLabel->Graft(downcaster->GetOutput());
}