forked from jackyko1991/vnet-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
83 lines (71 loc) · 1.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
from model import image2label
import tensorflow as tf
import shutil
import json
def str2bool(v):
#susendberg's function
return v.lower() in ("yes", "true", "t", "1")
def get_parser():
# create parser object
parser = argparse.ArgumentParser(description='Tensorflow implementation for segmentation, specialized for medical image purpose.',
epilog='For questions and bug reports, contact Jacky Ko <[email protected]>')
# register type keyword to registries
parser.register('type','bool',str2bool)
# add arguments
parser.add_argument(
'-v', '--verbose',
dest='verbose',
help='Show verbose output',
action='store_true')
parser.add_argument(
'-p','--phase',
dest='phase',
help='Training phase (default= train)',
choices=['train','evaluate'],
default='train',
metavar='[train evaluate]')
parser.add_argument(
'--config_json',
dest='config_json',
help='JSON file for model configuration',
type=str,
default='config.json',
metavar='FILENAME'
)
parser.add_argument(
'--gpu',
dest='gpu',
default='0',
type=str,
help='Select GPU device(s) (default = 0)',
metavar='GPU_IDs')
args = parser.parse_args()
# print arguments if verbose
if args.verbose:
args_dict = vars(args)
for key in sorted(args_dict):
print("{} = {}".format(str(key), str(args_dict[key])))
return args
def main(args):
# select gpu
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) # e.g. "0,1,2", "0,2"
# read configuration file
with open(args.config_json) as config_json:
config = json.load(config_json)
# session config
config_proto = tf.ConfigProto()
config_proto.gpu_options.allow_growth = True
with tf.Session(config=config_proto) as sess:
model = image2label(sess,config)
if args.phase == "train":
model.train()
elif args.phase == "evaluate":
model.evaluate()
else:
sys.exit("Invalid training phase")
if __name__=="__main__":
args = get_parser()
main(args)