-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
53 lines (45 loc) · 1.65 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
import pickle
import pandas as pd
import requests
import constants
api_key = constants.key
movies_dict = pickle.load(open('movies_dict.pkl', 'rb'))
similarity = pickle.load(open('similarity.pkl','rb'))
movies = pd.DataFrame(movies_dict)
st.title('Movie Recommender System')
def recommend(movie):
movie_index = movies[movies['title']==movie].index[0]
distances = similarity[movie_index] # vector for this movie
movie_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x:x[1])[1:6] # taking fromindex 1 o 6 because most similar at ind. 0 is the movie itself
recs = []
recposters = []
for i in movie_list:
recs.append(movies.iloc[i[0]].title)
poster = fetchposter(movies.iloc[i[0]].movie_id)
recposters.append(poster)
return recs , recposters
def fetchposter(movieid):
resp = requests.get('https://api.themoviedb.org/3/movie/{}?api_key={}&language=en-US'.format(movieid, api_key))
data = resp.json()
return "https://image.tmdb.org/t/p/w500" + data['poster_path']
selectedMovie = st.selectbox('Name a movie', movies['title'].values)
if st.button("Recommend"):
st.text("Since you like "+ selectedMovie + ", You might also like:")
names, posters= recommend(selectedMovie)
col1, col2,col3, col4, col5 = st.columns(5)
with col1:
st.header(names[0])
st.image(posters[0])
with col1:
st.header(names[1])
st.image(posters[1])
with col1:
st.header(names[2])
st.image(posters[2])
with col1:
st.header(names[3])
st.image(posters[3])
with col1:
st.header(names[4])
st.image(posters[4])