forked from gpleiss/efficient_densenet_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
307 lines (256 loc) · 10.6 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import fire
import os
import time
import torch
from torchvision import datasets, transforms
from models import DenseNet
class AverageMeter(object):
"""
Computes and stores the average and current value
Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train_epoch(model, loader, optimizer, epoch, n_epochs, print_freq=1):
batch_time = AverageMeter()
losses = AverageMeter()
error = AverageMeter()
# Model on train mode
model.train()
end = time.time()
for batch_idx, (input, target) in enumerate(loader):
# Create vaiables
if torch.cuda.is_available():
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
loss = torch.nn.functional.cross_entropy(output, target)
# measure accuracy and record loss
batch_size = target.size(0)
_, pred = output.data.cpu().topk(1, dim=1)
error.update(torch.ne(pred.squeeze(), target.cpu()).float().sum().item() / batch_size, batch_size)
losses.update(loss.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print stats
if batch_idx % print_freq == 0:
res = '\t'.join([
'Epoch: [%d/%d]' % (epoch + 1, n_epochs),
'Iter: [%d/%d]' % (batch_idx + 1, len(loader)),
'Time %.3f (%.3f)' % (batch_time.val, batch_time.avg),
'Loss %.4f (%.4f)' % (losses.val, losses.avg),
'Error %.4f (%.4f)' % (error.val, error.avg),
])
print(res)
# Return summary statistics
return batch_time.avg, losses.avg, error.avg
def test_epoch(model, loader, print_freq=1, is_test=True):
batch_time = AverageMeter()
losses = AverageMeter()
error = AverageMeter()
# Model on eval mode
model.eval()
end = time.time()
with torch.no_grad():
for batch_idx, (input, target) in enumerate(loader):
# Create vaiables
if torch.cuda.is_available():
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
loss = torch.nn.functional.cross_entropy(output, target)
# measure accuracy and record loss
batch_size = target.size(0)
_, pred = output.data.cpu().topk(1, dim=1)
error.update(torch.ne(pred.squeeze(), target.cpu()).float().sum().item() / batch_size, batch_size)
losses.update(loss.item(), batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print stats
if batch_idx % print_freq == 0:
res = '\t'.join([
'Test' if is_test else 'Valid',
'Iter: [%d/%d]' % (batch_idx + 1, len(loader)),
'Time %.3f (%.3f)' % (batch_time.val, batch_time.avg),
'Loss %.4f (%.4f)' % (losses.val, losses.avg),
'Error %.4f (%.4f)' % (error.val, error.avg),
])
print(res)
# Return summary statistics
return batch_time.avg, losses.avg, error.avg
def train(model, train_set, valid_set, test_set, save, n_epochs=300,
batch_size=64, lr=0.1, wd=0.0001, momentum=0.9, seed=None):
if seed is not None:
torch.manual_seed(seed)
# Data loaders
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True,
pin_memory=(torch.cuda.is_available()), num_workers=0)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False,
pin_memory=(torch.cuda.is_available()), num_workers=0)
if valid_set is None:
valid_loader = None
else:
valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size, shuffle=False,
pin_memory=(torch.cuda.is_available()), num_workers=0)
# Model on cuda
if torch.cuda.is_available():
model = model.cuda()
# Wrap model for multi-GPUs, if necessary
model_wrapper = model
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
model_wrapper = torch.nn.DataParallel(model).cuda()
# Optimizer
optimizer = torch.optim.SGD(model_wrapper.parameters(), lr=lr, momentum=momentum, nesterov=True, weight_decay=wd)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[0.5 * n_epochs, 0.75 * n_epochs],
gamma=0.1)
# Start log
with open(os.path.join(save, 'results.csv'), 'w') as f:
f.write('epoch,train_loss,train_error,valid_loss,valid_error,test_error\n')
# Train model
best_error = 1
for epoch in range(n_epochs):
_, train_loss, train_error = train_epoch(
model=model_wrapper,
loader=train_loader,
optimizer=optimizer,
epoch=epoch,
n_epochs=n_epochs,
)
scheduler.step()
_, valid_loss, valid_error = test_epoch(
model=model_wrapper,
loader=valid_loader if valid_loader else test_loader,
is_test=(not valid_loader)
)
# Determine if model is the best
if valid_loader:
if valid_error < best_error:
best_error = valid_error
print('New best error: %.4f' % best_error)
torch.save(model.state_dict(), os.path.join(save, 'model.dat'))
else:
torch.save(model.state_dict(), os.path.join(save, 'model.dat'))
# Log results
with open(os.path.join(save, 'results.csv'), 'a') as f:
f.write('%03d,%0.6f,%0.6f,%0.5f,%0.5f,\n' % (
(epoch + 1),
train_loss,
train_error,
valid_loss,
valid_error,
))
# Final test of model on test set
model.load_state_dict(torch.load(os.path.join(save, 'model.dat')))
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model).cuda()
test_results = test_epoch(
model=model,
loader=test_loader,
is_test=True
)
_, _, test_error = test_results
with open(os.path.join(save, 'results.csv'), 'a') as f:
f.write(',,,,,%0.5f\n' % (test_error))
print('Final test error: %.4f' % test_error)
def demo(data, save, depth=100, growth_rate=12, efficient=True, valid_size=5000,
n_epochs=300, batch_size=64, seed=None):
"""
A demo to show off training of efficient DenseNets.
Trains and evaluates a DenseNet-BC on CIFAR-10.
Args:
data (str) - path to directory where data should be loaded from/downloaded
(default $DATA_DIR)
save (str) - path to save the model to (default /tmp)
depth (int) - depth of the network (number of convolution layers) (default 40)
growth_rate (int) - number of features added per DenseNet layer (default 12)
efficient (bool) - use the memory efficient implementation? (default True)
valid_size (int) - size of validation set
n_epochs (int) - number of epochs for training (default 300)
batch_size (int) - size of minibatch (default 256)
seed (int) - manually set the random seed (default None)
"""
# Get densenet configuration
if (depth - 4) % 3:
raise Exception('Invalid depth')
block_config = [(depth - 4) // 6 for _ in range(3)]
# Data transforms
mean=[0.49139968 0.48215841 0.44653091]
stdv= [0.24703223 0.24348513 0.26158784]
train_transforms = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=stdv),
])
test_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=stdv),
])
# Datasets
train_set = datasets.CIFAR10(data, train=True, transform=train_transforms, download=True)
test_set = datasets.CIFAR10(data, train=False, transform=test_transforms, download=False)
if valid_size:
valid_set = datasets.CIFAR10(data, train=True, transform=test_transforms)
indices = torch.randperm(len(train_set))
train_indices = indices[:len(indices) - valid_size]
valid_indices = indices[len(indices) - valid_size:]
train_set = torch.utils.data.Subset(train_set, train_indices)
valid_set = torch.utils.data.Subset(valid_set, valid_indices)
else:
valid_set = None
# Models
model = DenseNet(
growth_rate=growth_rate,
block_config=block_config,
num_init_features=growth_rate*2,
num_classes=10,
small_inputs=True,
efficient=efficient,
)
print(model)
# Print number of parameters
num_params = sum(p.numel() for p in model.parameters())
print("Total parameters: ", num_params)
# Make save directory
if not os.path.exists(save):
os.makedirs(save)
if not os.path.isdir(save):
raise Exception('%s is not a dir' % save)
# Train the model
train(model=model, train_set=train_set, valid_set=valid_set, test_set=test_set, save=save,
n_epochs=n_epochs, batch_size=batch_size, seed=seed)
print('Done!')
"""
A demo to show off training of efficient DenseNets.
Trains and evaluates a DenseNet-BC on CIFAR-10.
Try out the efficient DenseNet implementation:
python demo.py --efficient True --data <path_to_data_dir> --save <path_to_save_dir>
Try out the naive DenseNet implementation:
python demo.py --efficient False --data <path_to_data_dir> --save <path_to_save_dir>
Other args:
--depth (int) - depth of the network (number of convolution layers) (default 40)
--growth_rate (int) - number of features added per DenseNet layer (default 12)
--n_epochs (int) - number of epochs for training (default 300)
--batch_size (int) - size of minibatch (default 256)
--seed (int) - manually set the random seed (default None)
"""
if __name__ == '__main__':
fire.Fire(demo)