-
Notifications
You must be signed in to change notification settings - Fork 3
/
noiseutils.cpp
1299 lines (1139 loc) · 37.9 KB
/
noiseutils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// noiseutils.cpp
//
// Copyright (C) 2003-2005 Jason Bevins
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or (at
// your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License (COPYING.txt) for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this library; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// The developer's email is [email protected] (for great email, take
// off every 'zig'.)
//
#include <fstream>
#include <noise/interp.h>
#include <noise/mathconsts.h>
#include "noiseutils.h"
using namespace noise;
using namespace noise::model;
using namespace noise::module;
// Bitmap header size.
const int BMP_HEADER_SIZE = 54;
// Direction of the light source, in compass degrees (0 = north, 90 = east,
// 180 = south, 270 = east)
const double DEFAULT_LIGHT_AZIMUTH = 45.0;
// Amount of contrast between light and dark areas.
const double DEFAULT_LIGHT_CONTRAST = 1.0;
// Elevation of the light source above the horizon, in degrees (0 = on
// horizon, 90 = directly overhead)
const double DEFAULT_LIGHT_ELEVATION = 45.0;
//////////////////////////////////////////////////////////////////////////////
// Miscellaneous functions
namespace noise
{
namespace utils
{
// Performs linear interpolation between two 8-bit channel values.
inline noise::uint8 BlendChannel (const uint8 channel0,
const uint8 channel1, float alpha)
{
float c0 = (float)channel0 / 255.0;
float c1 = (float)channel1 / 255.0;
return (noise::uint8)(((c1 * alpha) + (c0 * (1.0f - alpha))) * 255.0f);
}
// Performs linear interpolation between two colors and stores the result
// in out.
inline void LinearInterpColor (const Color& color0, const Color& color1,
float alpha, Color& out)
{
out.alpha = BlendChannel (color0.alpha, color1.alpha, alpha);
out.blue = BlendChannel (color0.blue , color1.blue , alpha);
out.green = BlendChannel (color0.green, color1.green, alpha);
out.red = BlendChannel (color0.red , color1.red , alpha);
}
// Unpacks a floating-point value into four bytes. This function is
// specific to Intel machines. A portable version will come soon (I
// hope.)
inline noise::uint8* UnpackFloat (noise::uint8* bytes, float value)
{
noise::uint8* pBytes = (noise::uint8*)(&value);
bytes[0] = *pBytes++;
bytes[1] = *pBytes++;
bytes[2] = *pBytes++;
bytes[3] = *pBytes++;
return bytes;
}
// Unpacks a 16-bit integer value into two bytes in little endian format.
inline noise::uint8* UnpackLittle16 (noise::uint8* bytes,
noise::uint16 integer)
{
bytes[0] = (noise::uint8)((integer & 0x00ff) );
bytes[1] = (noise::uint8)((integer & 0xff00) >> 8 );
return bytes;
}
// Unpacks a 32-bit integer value into four bytes in little endian format.
inline noise::uint8* UnpackLittle32 (noise::uint8* bytes,
noise::uint32 integer)
{
bytes[0] = (noise::uint8)((integer & 0x000000ff) );
bytes[1] = (noise::uint8)((integer & 0x0000ff00) >> 8 );
bytes[2] = (noise::uint8)((integer & 0x00ff0000) >> 16);
bytes[3] = (noise::uint8)((integer & 0xff000000) >> 24);
return bytes;
}
}
}
using namespace noise;
using namespace noise::utils;
//////////////////////////////////////////////////////////////////////////////
// GradientColor class
GradientColor::GradientColor ()
{
m_pGradientPoints = NULL;
}
GradientColor::~GradientColor ()
{
delete[] m_pGradientPoints;
}
void GradientColor::AddGradientPoint (double gradientPos,
const Color& gradientColor)
{
// Find the insertion point for the new gradient point and insert the new
// gradient point at that insertion point. The gradient point array will
// remain sorted by gradient position.
int insertionPos = FindInsertionPos (gradientPos);
InsertAtPos (insertionPos, gradientPos, gradientColor);
}
void GradientColor::Clear ()
{
delete[] m_pGradientPoints;
m_pGradientPoints = NULL;
m_gradientPointCount = 0;
}
int GradientColor::FindInsertionPos (double gradientPos)
{
int insertionPos;
for (insertionPos = 0; insertionPos < m_gradientPointCount;
insertionPos++) {
if (gradientPos < m_pGradientPoints[insertionPos].pos) {
// We found the array index in which to insert the new gradient point.
// Exit now.
break;
} else if (gradientPos == m_pGradientPoints[insertionPos].pos) {
// Each gradient point is required to contain a unique gradient
// position, so throw an exception.
throw noise::ExceptionInvalidParam ();
}
}
return insertionPos;
}
const Color& GradientColor::GetColor (double gradientPos) const
{
assert (m_gradientPointCount >= 2);
// Find the first element in the gradient point array that has a gradient
// position larger than the gradient position passed to this method.
int indexPos;
for (indexPos = 0; indexPos < m_gradientPointCount; indexPos++) {
if (gradientPos < m_pGradientPoints[indexPos].pos) {
break;
}
}
// Find the two nearest gradient points so that we can perform linear
// interpolation on the color.
int index0 = ClampValue (indexPos - 1, 0, m_gradientPointCount - 1);
int index1 = ClampValue (indexPos , 0, m_gradientPointCount - 1);
// If some gradient points are missing (which occurs if the gradient
// position passed to this method is greater than the largest gradient
// position or less than the smallest gradient position in the array), get
// the corresponding gradient color of the nearest gradient point and exit
// now.
if (index0 == index1) {
m_workingColor = m_pGradientPoints[index1].color;
return m_workingColor;
}
// Compute the alpha value used for linear interpolation.
double input0 = m_pGradientPoints[index0].pos;
double input1 = m_pGradientPoints[index1].pos;
double alpha = (gradientPos - input0) / (input1 - input0);
// Now perform the linear interpolation given the alpha value.
const Color& color0 = m_pGradientPoints[index0].color;
const Color& color1 = m_pGradientPoints[index1].color;
LinearInterpColor (color0, color1, (float)alpha, m_workingColor);
return m_workingColor;
}
void GradientColor::InsertAtPos (int insertionPos, double gradientPos,
const Color& gradientColor)
{
// Make room for the new gradient point at the specified insertion position
// within the gradient point array. The insertion position is determined by
// the gradient point's position; the gradient points must be sorted by
// gradient position within that array.
GradientPoint* newGradientPoints;
newGradientPoints = new GradientPoint[m_gradientPointCount + 1];
for (int i = 0; i < m_gradientPointCount; i++) {
if (i < insertionPos) {
newGradientPoints[i] = m_pGradientPoints[i];
} else {
newGradientPoints[i + 1] = m_pGradientPoints[i];
}
}
delete[] m_pGradientPoints;
m_pGradientPoints = newGradientPoints;
++m_gradientPointCount;
// Now that we've made room for the new gradient point within the array, add
// the new gradient point.
m_pGradientPoints[insertionPos].pos = gradientPos ;
m_pGradientPoints[insertionPos].color = gradientColor;
}
//////////////////////////////////////////////////////////////////////////////
// NoiseMap class
NoiseMap::NoiseMap ()
{
InitObj ();
}
NoiseMap::NoiseMap (int width, int height)
{
InitObj ();
SetSize (width, height);
}
NoiseMap::NoiseMap (const NoiseMap& rhs)
{
InitObj ();
CopyNoiseMap (rhs);
}
NoiseMap::~NoiseMap ()
{
delete[] m_pNoiseMap;
}
NoiseMap& NoiseMap::operator= (const NoiseMap& rhs)
{
CopyNoiseMap (rhs);
return *this;
}
void NoiseMap::Clear (float value)
{
if (m_pNoiseMap != NULL) {
for (int y = 0; y < m_height; y++) {
float* pDest = GetSlabPtr (0, y);
for (int x = 0; x < m_width; x++) {
*pDest++ = value;
}
}
}
}
void NoiseMap::CopyNoiseMap (const NoiseMap& source)
{
// Resize the noise map buffer, then copy the slabs from the source noise
// map buffer to this noise map buffer.
SetSize (source.GetWidth (), source.GetHeight ());
for (int y = 0; y < source.GetHeight (); y++) {
const float* pSource = source.GetConstSlabPtr (0, y);
float* pDest = GetSlabPtr (0, y);
memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float));
}
// Copy the border value as well.
m_borderValue = source.m_borderValue;
}
void NoiseMap::DeleteNoiseMapAndReset ()
{
delete[] m_pNoiseMap;
InitObj ();
}
float NoiseMap::GetValue (int x, int y) const
{
if (m_pNoiseMap != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
return *(GetConstSlabPtr (x, y));
}
}
// The coordinates specified are outside the noise map. Return the border
// value.
return m_borderValue;
}
void NoiseMap::InitObj ()
{
m_pNoiseMap = NULL;
m_height = 0;
m_width = 0;
m_stride = 0;
m_memUsed = 0;
m_borderValue = 0.0;
}
void NoiseMap::ReclaimMem ()
{
size_t newMemUsage = CalcMinMemUsage (m_width, m_height);
if (m_memUsed > newMemUsage) {
// There is wasted memory. Create the smallest buffer that can fit the
// data and copy the data to it.
float* pNewNoiseMap = NULL;
try {
pNewNoiseMap = new float[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
memcpy (pNewNoiseMap, m_pNoiseMap, newMemUsage * sizeof (float));
delete[] m_pNoiseMap;
m_pNoiseMap = pNewNoiseMap;
m_memUsed = newMemUsage;
}
}
void NoiseMap::SetSize (int width, int height)
{
if (width < 0 || height < 0
|| width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) {
// Invalid width or height.
throw noise::ExceptionInvalidParam ();
} else if (width == 0 || height == 0) {
// An empty noise map was specified. Delete it and zero out the size
// member variables.
DeleteNoiseMapAndReset ();
} else {
// A new noise map size was specified. Allocate a new noise map buffer
// unless the current buffer is large enough for the new noise map (we
// don't want costly reallocations going on.)
size_t newMemUsage = CalcMinMemUsage (width, height);
if (m_memUsed < newMemUsage) {
// The new size is too big for the current noise map buffer. We need to
// reallocate.
DeleteNoiseMapAndReset ();
try {
m_pNoiseMap = new float[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
m_memUsed = newMemUsage;
}
m_stride = (int)CalcStride (width);
m_width = width;
m_height = height;
}
}
void NoiseMap::SetValue (int x, int y, float value)
{
if (m_pNoiseMap != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
*(GetSlabPtr (x, y)) = value;
}
}
}
void NoiseMap::TakeOwnership (NoiseMap& source)
{
// Copy the values and the noise map buffer from the source noise map to
// this noise map. Now this noise map pwnz the source buffer.
delete[] m_pNoiseMap;
m_memUsed = source.m_memUsed;
m_height = source.m_height;
m_pNoiseMap = source.m_pNoiseMap;
m_stride = source.m_stride;
m_width = source.m_width;
// Now that the source buffer is assigned to this noise map, reset the
// source noise map object.
source.InitObj ();
}
//////////////////////////////////////////////////////////////////////////////
// Image class
Image::Image ()
{
InitObj ();
}
Image::Image (int width, int height)
{
InitObj ();
SetSize (width, height);
}
Image::Image (const Image& rhs)
{
InitObj ();
CopyImage (rhs);
}
Image::~Image ()
{
delete[] m_pImage;
}
Image& Image::operator= (const Image& rhs)
{
CopyImage (rhs);
return *this;
}
void Image::Clear (const Color& value)
{
if (m_pImage != NULL) {
for (int y = 0; y < m_height; y++) {
Color* pDest = GetSlabPtr (0, y);
for (int x = 0; x < m_width; x++) {
*pDest++ = value;
}
}
}
}
void Image::CopyImage (const Image& source)
{
// Resize the image buffer, then copy the slabs from the source image
// buffer to this image buffer.
SetSize (source.GetWidth (), source.GetHeight ());
for (int y = 0; y < source.GetHeight (); y++) {
const Color* pSource = source.GetConstSlabPtr (0, y);
Color* pDest = GetSlabPtr (0, y);
memcpy (pDest, pSource, (size_t)source.GetWidth () * sizeof (float));
}
// Copy the border value as well.
m_borderValue = source.m_borderValue;
}
void Image::DeleteImageAndReset ()
{
delete[] m_pImage;
InitObj ();
}
Color Image::GetValue (int x, int y) const
{
if (m_pImage != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
return *(GetConstSlabPtr (x, y));
}
}
// The coordinates specified are outside the image. Return the border
// value.
return m_borderValue;
}
void Image::InitObj ()
{
m_pImage = NULL;
m_height = 0;
m_width = 0;
m_stride = 0;
m_memUsed = 0;
m_borderValue = Color (0, 0, 0, 0);
}
void Image::ReclaimMem ()
{
size_t newMemUsage = CalcMinMemUsage (m_width, m_height);
if (m_memUsed > newMemUsage) {
// There is wasted memory. Create the smallest buffer that can fit the
// data and copy the data to it.
Color* pNewImage = NULL;
try {
pNewImage = new Color[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
memcpy (pNewImage, m_pImage, newMemUsage * sizeof (float));
delete[] m_pImage;
m_pImage = pNewImage;
m_memUsed = newMemUsage;
}
}
void Image::SetSize (int width, int height)
{
if (width < 0 || height < 0
|| width > RASTER_MAX_WIDTH || height > RASTER_MAX_HEIGHT) {
// Invalid width or height.
throw noise::ExceptionInvalidParam ();
} else if (width == 0 || height == 0) {
// An empty image was specified. Delete it and zero out the size member
// variables.
DeleteImageAndReset ();
} else {
// A new image size was specified. Allocate a new image buffer unless
// the current buffer is large enough for the new image (we don't want
// costly reallocations going on.)
size_t newMemUsage = CalcMinMemUsage (width, height);
if (m_memUsed < newMemUsage) {
// The new size is too big for the current image buffer. We need to
// reallocate.
DeleteImageAndReset ();
try {
m_pImage = new Color[newMemUsage];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
m_memUsed = newMemUsage;
}
m_stride = (int)CalcStride (width);
m_width = width;
m_height = height;
}
}
void Image::SetValue (int x, int y, const Color& value)
{
if (m_pImage != NULL) {
if (x >= 0 && x < m_width && y >= 0 && y < m_height) {
*(GetSlabPtr (x, y)) = value;
}
}
}
void Image::TakeOwnership (Image& source)
{
// Copy the values and the image buffer from the source image to this image.
// Now this image pwnz the source buffer.
delete[] m_pImage;
m_memUsed = source.m_memUsed;
m_height = source.m_height;
m_pImage = source.m_pImage;
m_stride = source.m_stride;
m_width = source.m_width;
// Now that the source buffer is assigned to this image, reset the source
// image object.
source.InitObj ();
}
/////////////////////////////////////////////////////////////////////////////
// WriterBMP class
int WriterBMP::CalcWidthByteCount (int width) const
{
return ((width * 3) + 3) & ~0x03;
}
void WriterBMP::WriteDestFile ()
{
if (m_pSourceImage == NULL) {
throw noise::ExceptionInvalidParam ();
}
int width = m_pSourceImage->GetWidth ();
int height = m_pSourceImage->GetHeight ();
// The width of one line in the file must be aligned on a 4-byte boundary.
int bufferSize = CalcWidthByteCount (width);
int destSize = bufferSize * height;
// This buffer holds one horizontal line in the destination file.
noise::uint8* pLineBuffer = NULL;
// File object used to write the file.
std::ofstream os;
os.clear ();
// Allocate a buffer to hold one horizontal line in the bitmap.
try {
pLineBuffer = new noise::uint8[bufferSize];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
// Open the destination file.
os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary);
if (os.fail () || os.bad ()) {
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build the header.
noise::uint8 d[4];
os.write ("BM", 2);
os.write ((char*)UnpackLittle32 (d, destSize + BMP_HEADER_SIZE), 4);
os.write ("\0\0\0\0", 4);
os.write ((char*)UnpackLittle32 (d, (noise::uint32)BMP_HEADER_SIZE), 4);
os.write ((char*)UnpackLittle32 (d, 40), 4); // Palette offset
os.write ((char*)UnpackLittle32 (d, (noise::uint32)width ), 4);
os.write ((char*)UnpackLittle32 (d, (noise::uint32)height), 4);
os.write ((char*)UnpackLittle16 (d, 1 ), 2); // Planes per pixel
os.write ((char*)UnpackLittle16 (d, 24), 2); // Bits per plane
os.write ("\0\0\0\0", 4); // Compression (0 = none)
os.write ((char*)UnpackLittle32 (d, (noise::uint32)destSize), 4);
os.write ((char*)UnpackLittle32 (d, 2834), 4); // X pixels per meter
os.write ((char*)UnpackLittle32 (d, 2834), 4); // Y pixels per meter
os.write ("\0\0\0\0", 4);
os.write ("\0\0\0\0", 4);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build and write each horizontal line to the file.
for (int y = 0; y < height; y++) {
memset (pLineBuffer, 0, bufferSize);
Color* pSource = m_pSourceImage->GetSlabPtr (y);
noise::uint8* pDest = pLineBuffer;
for (int x = 0; x < width; x++) {
*pDest++ = pSource->blue ;
*pDest++ = pSource->green;
*pDest++ = pSource->red ;
++pSource;
}
os.write ((char*)pLineBuffer, (size_t)bufferSize);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
}
os.close ();
os.clear ();
delete[] pLineBuffer;
}
/////////////////////////////////////////////////////////////////////////////
// WriterTER class
int WriterTER::CalcWidthByteCount (int width) const
{
return (width * sizeof (int16));
}
void WriterTER::WriteDestFile ()
{
if (m_pSourceNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
int width = m_pSourceNoiseMap->GetWidth ();
int height = m_pSourceNoiseMap->GetHeight ();
int bufferSize = CalcWidthByteCount (width);
int destSize = bufferSize * height;
// This buffer holds one horizontal line in the destination file.
noise::uint8* pLineBuffer = NULL;
// File object used to write the file.
std::ofstream os;
os.clear ();
// Allocate a buffer to hold one horizontal line in the height map.
try {
pLineBuffer = new noise::uint8[bufferSize];
}
catch (...) {
throw noise::ExceptionOutOfMemory ();
}
// Open the destination file.
os.open (m_destFilename.c_str (), std::ios::out | std::ios::binary);
if (os.fail () || os.bad ()) {
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build the header.
noise::uint8 d[4];
int16 heightScale = (int16)(floor (32768.0 / (double)m_metersPerPoint));
os.write ("TERRAGENTERRAIN ", 16);
os.write ("SIZE", 4);
os.write ((char*)UnpackLittle16 (d, GetMin (width, height) - 1), 2);
os.write ("\0\0", 2);
os.write ("XPTS", 4);
os.write ((char*)UnpackLittle16 (d, width), 2);
os.write ("\0\0", 2);
os.write ("YPTS", 4);
os.write ((char*)UnpackLittle16 (d, height), 2);
os.write ("\0\0", 2);
os.write ("SCAL", 4);
os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4);
os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4);
os.write ((char*)UnpackFloat (d, m_metersPerPoint), 4);
os.write ("ALTW", 4);
os.write ((char*)UnpackLittle16 (d, heightScale), 2);
os.write ("\0\0", 2);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
// Build and write each horizontal line to the file.
for (int y = 0; y < height; y++) {
float* pSource = m_pSourceNoiseMap->GetSlabPtr (y);
noise::uint8* pDest = pLineBuffer;
for (int x = 0; x < width; x++) {
int16 scaledHeight = (int16)(floor (*pSource * 2.0));
UnpackLittle16 (pDest, scaledHeight);
pDest += 2;
++pSource;
}
os.write ((char*)pLineBuffer, (size_t)bufferSize);
if (os.fail () || os.bad ()) {
os.clear ();
os.close ();
os.clear ();
delete[] pLineBuffer;
throw noise::ExceptionUnknown ();
}
}
os.close ();
os.clear ();
delete[] pLineBuffer;
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilder class
NoiseMapBuilder::NoiseMapBuilder ():
m_pCallback (NULL),
m_destHeight (0),
m_destWidth (0),
m_pDestNoiseMap (NULL),
m_pSourceModule (NULL)
{
}
void NoiseMapBuilder::SetCallback (NoiseMapCallback pCallback)
{
m_pCallback = pCallback;
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilderCylinder class
NoiseMapBuilderCylinder::NoiseMapBuilderCylinder ():
m_lowerAngleBound (0.0),
m_lowerHeightBound (0.0),
m_upperAngleBound (0.0),
m_upperHeightBound (0.0)
{
}
void NoiseMapBuilderCylinder::Build ()
{
if ( m_upperAngleBound <= m_lowerAngleBound
|| m_upperHeightBound <= m_lowerHeightBound
|| m_destWidth <= 0
|| m_destHeight <= 0
|| m_pSourceModule == NULL
|| m_pDestNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
// Resize the destination noise map so that it can store the new output
// values from the source model.
m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight);
// Create the cylinder model.
model::Cylinder cylinderModel;
cylinderModel.SetModule (*m_pSourceModule);
double angleExtent = m_upperAngleBound - m_lowerAngleBound ;
double heightExtent = m_upperHeightBound - m_lowerHeightBound;
double xDelta = angleExtent / (double)m_destWidth ;
double yDelta = heightExtent / (double)m_destHeight;
double curAngle = m_lowerAngleBound ;
double curHeight = m_lowerHeightBound;
// Fill every point in the noise map with the output values from the model.
for (int y = 0; y < m_destHeight; y++) {
float* pDest = m_pDestNoiseMap->GetSlabPtr (y);
curAngle = m_lowerAngleBound;
for (int x = 0; x < m_destWidth; x++) {
float curValue = (float)cylinderModel.GetValue (curAngle, curHeight);
*pDest++ = curValue;
curAngle += xDelta;
}
curHeight += yDelta;
if (m_pCallback != NULL) {
m_pCallback (y);
}
}
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilderPlane class
NoiseMapBuilderPlane::NoiseMapBuilderPlane ():
m_isSeamlessEnabled (false),
m_lowerXBound (0.0),
m_lowerZBound (0.0),
m_upperXBound (0.0),
m_upperZBound (0.0)
{
}
void NoiseMapBuilderPlane::Build ()
{
if ( m_upperXBound <= m_lowerXBound
|| m_upperZBound <= m_lowerZBound
|| m_destWidth <= 0
|| m_destHeight <= 0
|| m_pSourceModule == NULL
|| m_pDestNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
// Resize the destination noise map so that it can store the new output
// values from the source model.
m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight);
// Create the plane model.
model::Plane planeModel;
planeModel.SetModule (*m_pSourceModule);
double xExtent = m_upperXBound - m_lowerXBound;
double zExtent = m_upperZBound - m_lowerZBound;
double xDelta = xExtent / (double)m_destWidth ;
double zDelta = zExtent / (double)m_destHeight;
double xCur = m_lowerXBound;
double zCur = m_lowerZBound;
// Fill every point in the noise map with the output values from the model.
for (int z = 0; z < m_destHeight; z++) {
float* pDest = m_pDestNoiseMap->GetSlabPtr (z);
xCur = m_lowerXBound;
for (int x = 0; x < m_destWidth; x++) {
float finalValue;
if (!m_isSeamlessEnabled) {
finalValue = planeModel.GetValue (xCur, zCur);
} else {
double swValue, seValue, nwValue, neValue;
swValue = planeModel.GetValue (xCur , zCur );
seValue = planeModel.GetValue (xCur + xExtent, zCur );
nwValue = planeModel.GetValue (xCur , zCur + zExtent);
neValue = planeModel.GetValue (xCur + xExtent, zCur + zExtent);
double xBlend = 1.0 - ((xCur - m_lowerXBound) / xExtent);
double zBlend = 1.0 - ((zCur - m_lowerZBound) / zExtent);
double z0 = LinearInterp (swValue, seValue, xBlend);
double z1 = LinearInterp (nwValue, neValue, xBlend);
finalValue = (float)LinearInterp (z0, z1, zBlend);
}
*pDest++ = finalValue;
xCur += xDelta;
}
zCur += zDelta;
if (m_pCallback != NULL) {
m_pCallback (z);
}
}
}
/////////////////////////////////////////////////////////////////////////////
// NoiseMapBuilderSphere class
NoiseMapBuilderSphere::NoiseMapBuilderSphere ():
m_eastLonBound (0.0),
m_northLatBound (0.0),
m_southLatBound (0.0),
m_westLonBound (0.0)
{
}
void NoiseMapBuilderSphere::Build ()
{
if ( m_eastLonBound <= m_westLonBound
|| m_northLatBound <= m_southLatBound
|| m_destWidth <= 0
|| m_destHeight <= 0
|| m_pSourceModule == NULL
|| m_pDestNoiseMap == NULL) {
throw noise::ExceptionInvalidParam ();
}
// Resize the destination noise map so that it can store the new output
// values from the source model.
m_pDestNoiseMap->SetSize (m_destWidth, m_destHeight);
// Create the plane model.
model::Sphere sphereModel;
sphereModel.SetModule (*m_pSourceModule);
double lonExtent = m_eastLonBound - m_westLonBound ;
double latExtent = m_northLatBound - m_southLatBound;
double xDelta = lonExtent / (double)m_destWidth ;
double yDelta = latExtent / (double)m_destHeight;
double curLon = m_westLonBound ;
double curLat = m_southLatBound;
// Fill every point in the noise map with the output values from the model.
for (int y = 0; y < m_destHeight; y++) {
float* pDest = m_pDestNoiseMap->GetSlabPtr (y);
curLon = m_westLonBound;
for (int x = 0; x < m_destWidth; x++) {
float curValue = (float)sphereModel.GetValue (curLat, curLon);
*pDest++ = curValue;
curLon += xDelta;
}
curLat += yDelta;
if (m_pCallback != NULL) {
m_pCallback (y);
}
}
}
//////////////////////////////////////////////////////////////////////////////
// RendererImage class
RendererImage::RendererImage ():
m_isLightEnabled (false),
m_isWrapEnabled (false),
m_lightAzimuth (45.0),
m_lightBrightness (1.0),
m_lightColor (255, 255, 255, 255),
m_lightContrast (1.0),
m_lightElev (45.0),
m_lightIntensity (1.0),
m_pBackgroundImage (NULL),
m_pDestImage (NULL),
m_pSourceNoiseMap (NULL),
m_recalcLightValues (true)
{
BuildGrayscaleGradient ();
};
void RendererImage::AddGradientPoint (double gradientPos,
const Color& gradientColor)
{
m_gradient.AddGradientPoint (gradientPos, gradientColor);
}
void RendererImage::BuildGrayscaleGradient ()
{
ClearGradient ();
m_gradient.AddGradientPoint (-1.0, Color ( 0, 0, 0, 255));
m_gradient.AddGradientPoint ( 1.0, Color (255, 255, 255, 255));
}
void RendererImage::BuildTerrainGradient ()
{
ClearGradient ();
m_gradient.AddGradientPoint (-1.00, Color ( 0, 0, 128, 255));
m_gradient.AddGradientPoint (-0.20, Color ( 32, 64, 128, 255));
m_gradient.AddGradientPoint (-0.04, Color ( 64, 96, 192, 255));
m_gradient.AddGradientPoint (-0.02, Color (192, 192, 128, 255));
m_gradient.AddGradientPoint ( 0.00, Color ( 0, 192, 0, 255));
m_gradient.AddGradientPoint ( 0.25, Color (192, 192, 0, 255));
m_gradient.AddGradientPoint ( 0.50, Color (160, 96, 64, 255));
m_gradient.AddGradientPoint ( 0.75, Color (128, 255, 255, 255));
m_gradient.AddGradientPoint ( 1.00, Color (255, 255, 255, 255));
}
Color RendererImage::CalcDestColor (const Color& sourceColor,
const Color& backgroundColor, double lightValue) const
{
double sourceRed = (double)sourceColor.red / 255.0;
double sourceGreen = (double)sourceColor.green / 255.0;
double sourceBlue = (double)sourceColor.blue / 255.0;
double sourceAlpha = (double)sourceColor.alpha / 255.0;
double backgroundRed = (double)backgroundColor.red / 255.0;
double backgroundGreen = (double)backgroundColor.green / 255.0;
double backgroundBlue = (double)backgroundColor.blue / 255.0;