From ab2a1227017572b46c14832e230b6cdbdef00e20 Mon Sep 17 00:00:00 2001 From: Chris Date: Sat, 2 Dec 2023 17:30:10 -0500 Subject: [PATCH 01/10] SMS support --- .gitignore | 1 + src/message/sms_message.py | 24 ++++++++++++++++++++++++ 2 files changed, 25 insertions(+) create mode 100644 src/message/sms_message.py diff --git a/.gitignore b/.gitignore index 3fb453b..4c066e7 100644 --- a/.gitignore +++ b/.gitignore @@ -12,3 +12,4 @@ Images/** *.DS_Store .vscode/ CMakeFiles/** +# src/model/message/.env \ No newline at end of file diff --git a/src/message/sms_message.py b/src/message/sms_message.py new file mode 100644 index 0000000..23dcfab --- /dev/null +++ b/src/message/sms_message.py @@ -0,0 +1,24 @@ +import os +from twilio.rest import Client +from dotenv import load_dotenv + +load_dotenv() + +account_sid = os.getenv('TWILIO_ACCOUNT_SID') +auth_token = os.getenv('TWILIO_AUTH_TOKEN') + +from_number = '+18886815709' +to_number = '+19788814542' + +def send_message(intruder_detected): + msg = "Intruder Alert! 👽" if intruder_detected else "Welcome!" + client = Client(account_sid, auth_token) + message = client.messages \ + .create( + body=msg, + from_=from_number, + to=to_number + ) + # print(message.sid) + +# send_message(True) \ No newline at end of file From bcfe752b54985e49bb392011cde47b49ef6c6371 Mon Sep 17 00:00:00 2001 From: Chris Date: Sat, 2 Dec 2023 17:35:22 -0500 Subject: [PATCH 02/10] Update README.md --- README.md | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/README.md b/README.md index eaa3603..727346d 100644 --- a/README.md +++ b/README.md @@ -15,3 +15,15 @@ To run: `make` `./camera` + +Setting up Twilio: + +- `cd` to `src/message/` + +- Make a `.env` file with `TWILIO_ACCOUNT_SID` and `TWILIO_AUTH_TOKEN` set to your account SID and Auth Token + +- macOS: `brew tap twilio/brew && brew install twilio` + +- `twilio login` + +- `pip install twilio` \ No newline at end of file From 9bdec62811eca66c4b9a885f86f2b70295c1cf4a Mon Sep 17 00:00:00 2001 From: Chris Date: Sat, 2 Dec 2023 17:40:04 -0500 Subject: [PATCH 03/10] fix gitignore to ignore .env correctly --- .gitignore | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitignore b/.gitignore index 4c066e7..189ae88 100644 --- a/.gitignore +++ b/.gitignore @@ -12,4 +12,4 @@ Images/** *.DS_Store .vscode/ CMakeFiles/** -# src/model/message/.env \ No newline at end of file +src/message/.env \ No newline at end of file From ded34244c5ae909535c1578b418217ee0ca6881b Mon Sep 17 00:00:00 2001 From: srishagaur Date: Sat, 2 Dec 2023 22:56:58 -0500 Subject: [PATCH 04/10] Add SMS message sending after model prediction - Co-authored-by: JamesZhang2 - Co-authored-by: lisarli - Co-authored-by: chrisfxu --- src/Makefile | 20 +++++++++--------- src/model/Siamese_Predictor.py | 7 +++++- src/model/__pycache__/utils.cpython-38.pyc | Bin 0 -> 856 bytes src/model/message/.env | 9 ++++++++ src/model/message/__init__.py | 0 .../__pycache__/__init__.cpython-38.pyc | Bin 0 -> 145 bytes .../__pycache__/sms_message.cpython-38.pyc | Bin 0 -> 697 bytes src/{ => model}/message/sms_message.py | 10 +++------ 8 files changed, 28 insertions(+), 18 deletions(-) create mode 100644 src/model/__pycache__/utils.cpython-38.pyc create mode 100644 src/model/message/.env create mode 100644 src/model/message/__init__.py create mode 100644 src/model/message/__pycache__/__init__.cpython-38.pyc create mode 100644 src/model/message/__pycache__/sms_message.cpython-38.pyc rename src/{ => model}/message/sms_message.py (63%) diff --git a/src/Makefile b/src/Makefile index 5a4e0c2..c5430bd 100644 --- a/src/Makefile +++ b/src/Makefile @@ -48,10 +48,10 @@ RM = /usr/local/bin/cmake -E remove -f EQUALS = = # The top-level source directory on which CMake was run. -CMAKE_SOURCE_DIR = /home/cds-nano-3/edge-ml +CMAKE_SOURCE_DIR = /home/cds-nano-3/edge-ml/src # The top-level build directory on which CMake was run. -CMAKE_BINARY_DIR = /home/cds-nano-3/edge-ml +CMAKE_BINARY_DIR = /home/cds-nano-3/edge-ml/src #============================================================================= # Targets provided globally by CMake. @@ -80,14 +80,14 @@ edit_cache/fast: edit_cache # The main all target all: cmake_check_build_system - cd /home/cds-nano-3/edge-ml && $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/CMakeFiles /home/cds-nano-3/edge-ml/src/CMakeFiles/progress.marks - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 src/all - $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/CMakeFiles 0 + $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/src/CMakeFiles /home/cds-nano-3/edge-ml/src/CMakeFiles/progress.marks + $(MAKE) -f CMakeFiles/Makefile2 all + $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/src/CMakeFiles 0 .PHONY : all # The main clean target clean: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 src/clean + $(MAKE) -f CMakeFiles/Makefile2 clean .PHONY : clean # The main clean target @@ -97,17 +97,17 @@ clean/fast: clean # Prepare targets for installation. preinstall: all - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 src/preinstall + $(MAKE) -f CMakeFiles/Makefile2 preinstall .PHONY : preinstall # Prepare targets for installation. preinstall/fast: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 src/preinstall + $(MAKE) -f CMakeFiles/Makefile2 preinstall .PHONY : preinstall/fast # clear depends depend: - cd /home/cds-nano-3/edge-ml && $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 1 + $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 1 .PHONY : depend # Help Target @@ -129,6 +129,6 @@ help: # No rule that depends on this can have commands that come from listfiles # because they might be regenerated. cmake_check_build_system: - cd /home/cds-nano-3/edge-ml && $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 0 + $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 0 .PHONY : cmake_check_build_system diff --git a/src/model/Siamese_Predictor.py b/src/model/Siamese_Predictor.py index 5deb6a4..72c2fbe 100644 --- a/src/model/Siamese_Predictor.py +++ b/src/model/Siamese_Predictor.py @@ -10,6 +10,8 @@ from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler +from message import sms_message + # load the model embedding = tf.keras.models.load_model("siamese_weights.h5", compile=False) print("Model is done loading") @@ -24,7 +26,7 @@ def get_similarity_score(img_path): # add a dimension to the tensor david_1 = tf.expand_dims(david_1, axis=0) - + # get embeddings anchor_embedding, positive_embedding = ( embedding(resnet.preprocess_input(david_1)), @@ -36,6 +38,9 @@ def get_similarity_score(img_path): positive_similarity = cosine_similarity(anchor_embedding, positive_embedding) print(f"Similarity score for {img_path}: ", positive_similarity.numpy()) + threshold = 0.999 + print("Sending message") + sms_message.send_message(positive_similarity.numpy() < threshold) # set up on created def on_created(event): diff --git a/src/model/__pycache__/utils.cpython-38.pyc b/src/model/__pycache__/utils.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..01b377fc957dff7195f65213e1bf2fe3d6a3e7df GIT binary patch literal 856 zcmYjPPiqu06i+g{v(vR}SBsu=9c;T`uTlh&f`|y>We*Nv@^)tGY%(NirDc1nSHDAh z^qYtuAy>WZR}chWGIrZHs5A19MBLD~8J8GbTCeudz^V2-@RWjQKIByGu@ zN;YRQk%O;fp2(q0(GDd2K=RQVPmy;yTmL|7!sU{N)PG6P4sgA~Wsgufazd}!irmmk zihgo3SW$`fzp+ae;_Klm*!1Q$9$}n?XvMH!a#4*r%3CcYcQtU^LD?)CkbKd!z=h?4 zzj^=qm^VvN!5;4nbViq8EpHqbO2+F3Y;yr2<8&QNdwNMIL zn{RpM7M?ZQZy6A>2o3!(_VEuSlv+Y@(m~~SORdhpxFYTq(w%qUM~hYqclg|=eRIFv z_bg)1Jn>nmr^FKG+xg`kf*n7zQ$h4&5P=LBfgA@QE@lA|DGb33nv8xc8Hzx{2;!HSenx(7s(x}x zv2I>sUcRoeerig3s%~zMesNKo=yee)oA4X#H39C2JA z=1x-Jk}!fD_X@A1jAA6{4FW{pYMg$@%-^sYusZiy!0W8R1K#+8Sjh1Sio;*f6OCeQ z{XsDol>rtNGUF+iMpRd9cXB%XFdV1HgTZ(@nxrSgH>`b^n@--Plkxkvqh<4Px7X{v z=yeZ|p7veTKZ3Y>aCq=6$8N;dD4aF$0l0nwutF-}xFVdau|WnKazoZ+MJ~Jxy27Sr zeC~bq)*eTomX4M?!^)@y7wXY*A(ZJXgHuuDvJ{=zv-C{zYg_xMWSLrGWL#IUP-LSl z&*h>rsh)EiW(#wk8hI%y8%A(gPL0Dy24huFu&egD)hWa7vYsaa$`&x^U-S3;Z3jhTP@e9HYh)}Mjk u>PpoiP=SNULDPZjveA1F+K{usOOUuI#4GoF+TAFC`Ay=J5Ql_fO8x`)T(SKC literal 0 HcmV?d00001 diff --git a/src/message/sms_message.py b/src/model/message/sms_message.py similarity index 63% rename from src/message/sms_message.py rename to src/model/message/sms_message.py index 23dcfab..5504b71 100644 --- a/src/message/sms_message.py +++ b/src/model/message/sms_message.py @@ -11,14 +11,10 @@ to_number = '+19788814542' def send_message(intruder_detected): - msg = "Intruder Alert! 👽" if intruder_detected else "Welcome!" + msg = "Intruder Alert!" if intruder_detected else "Welcome!" client = Client(account_sid, auth_token) - message = client.messages \ - .create( + message = client.messages.create( body=msg, from_=from_number, - to=to_number - ) - # print(message.sid) + to=to_number) -# send_message(True) \ No newline at end of file From 6e7610e33d3e2dbd305d920f100a478082b94631 Mon Sep 17 00:00:00 2001 From: srishagaur Date: Sat, 2 Dec 2023 23:00:49 -0500 Subject: [PATCH 05/10] remove .env file --- src/model/message/.env | 9 --------- 1 file changed, 9 deletions(-) delete mode 100644 src/model/message/.env diff --git a/src/model/message/.env b/src/model/message/.env deleted file mode 100644 index 36b9f52..0000000 --- a/src/model/message/.env +++ /dev/null @@ -1,9 +0,0 @@ -TWILIO_ACCOUNT_SID="AC85a8ebaacb946c9ee1b6aed0bf316d2a" -TWILIO_AUTH_TOKEN="43330755723d425da91250cafab9a462" - - - - - - - From aae5be80d49b59c47a582b1d49a5d44ca0a80d7c Mon Sep 17 00:00:00 2001 From: srishagaur Date: Sat, 2 Dec 2023 23:01:32 -0500 Subject: [PATCH 06/10] Add .env to gitignore --- .gitignore | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.gitignore b/.gitignore index 532142b..7aa35da 100644 --- a/.gitignore +++ b/.gitignore @@ -16,5 +16,5 @@ Images/** **/CMakeCache.txt camera CMakeFiles/** -src/message/.env +**/.env From 37e908ea4447e564f453eea5504fdb8072db1f0f Mon Sep 17 00:00:00 2001 From: srishagaur Date: Sat, 2 Dec 2023 23:01:58 -0500 Subject: [PATCH 07/10] remove camera executable --- camera | Bin 118416 -> 0 bytes 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100755 camera diff --git a/camera b/camera deleted file mode 100755 index 982320b5ab54338f2aaea942df81829e251545f3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 118416 zcmeF44R}=5wfFZV0|X5cKGdiv!-q90N&-=WVjaFDC~8Vl8(Z2*NCHU>NlXR|N_A9P zb1Uu5DAu&1P6DlwOWSB^8+xfmUnVkz^(aERE+@$aro4dlL`v)=NANi>5qsUGB9)UG_h0fg z(CwZNbh{Qs=B2s3m8D!q?$LFB4sH~`3TYp7y zacxQY)!A3pRbQFqrkm`O?vh(R=@_8$9_1Xl=O^Nr7@c2mW?rn~JL}Ibxc3*|iHz?r zKf3+W*T>;p4Zf527K?u_da~@$M*qzH{$yxeCgx+Zg$UGuf2WNx`KI|cYWoZv;OnW z!bv}R^N|g=zy0|7Grw@-L(gscmYR1?;Y|w{zkcKk=NI0T@vps$L+h(wdG5|7pSgO+ znAgvIqUPvNBcC|%!f!rx!6k=o-MisP{(<=g*WO>=F{yL%jh{W_#$x|BS)HkRZXSF- zS*4=_O3u6IZ#zpV$|Lhr2RPn@2yagH=G#y|z4WiZHC}uS3eAgGkMZVj!)-79zghI3 zLAt#3$D+b`@q?(JUOd~9534Ql-hYO-oyqV&;E|tg7CU#M;(PgXh9&;7o7( zn=Ez?TFNVg!O6?d8cY7{u-HFjspns`w7Vx^XR1g0{T|B8%b&2t{|_zx&#}Zi%hEsW zw50bgi=F!{`LM}S&qrAFms#rhcTw(M?R2}PUR`c!M>kpWGvAV*uUYDOv!xyV)zZ)Z z-NIMc+KZ(=pKtN!NlQL2u$1q1OF7nB{Jh)J&%9wNudi9k_i5PiD#veG>^x+Ncdf<# zjh6oZLQB8#L!{TspSNJ&i@#$T7v8p%;}e$l_zz2cd(>iQuO+=-wba9(TI%^*mi+vy zr9Pxv>cbd|{{c(Aoowk3H(UIie2!9S>O9qH%qQu#X1qE}O>9o=EYn!O#?W8l~)2@8U7I8SmlC6%uk$6=}lLr z|6f3Qz4Z4&e~KEbj8!}0EvEzx_tH83cBgb#%*8d)3?kjS(me_xGsD{ZCTl3 zW58mDRP2m)~?tekdy|w6v;bZFqidZSi_WvqHD74aZqU1z$O*V$EH(72z^R zD?BF@Dygr}%F3Fxvbe6IBvco!t*BbPv?M>Al~qz+TpJ447FUGpmX<8eFUCKMy`#$y zU%jrZBwSs)v;t}six+cTb8A71t5#RKv4yhcxNho>!TYP0LoGztIftOSJhk5$;sI_ z7l*SlOUsHYE2~S2kqMHYbYju0cyP{LNcBx+>laI|Wo1*rTix@oAxxq)g|z4G&=Wnq*; zV#S+NRqfU&J)0J0A^rK8A;*P*qT`5BZK|un)oW|#*OnD~)s~f_IA>vTT}g3i*}}@= zy1I&06=k)sED>c5KD%hhv)Pr^#igfNFm{i!u6DEK=CzgK3aXY;krUh7K>bgs&1ehx zSBDlaF0H5_o?mfynN!R27lgFDUsq9DR$Wn@nDeL|$iLG~kWo&5!u(&3? zwze#%qV867Gi9X%*_?1*&*6jl@R1I4$bcr6-fan*v#wI@B~B-D8_HqhUcRM(az=INZ`m35^R zt5$jCX8tU zBZ76sp-PNAi`Sst-p!>({cA!s{@^cld?qGnc=enhWO5#-* zi?6CJMQ!sciCHL>x{Cj$!dN(KX9J*Aa& zo8dUO5_9gV5N66H`Tof~Bs(|A|Xl;)m;LvR749Ryq!$Q(9YB7FtzYQWjo%`ePuv*aD1I z@gDp1au+w*H>19BQ=@uhj!0LBLS~aP zg8xnop(2XN`n-dD9xIkich!PYjCUTWIN5|+{q;!(VX%YXLje@X*oyE-10Q$ za#uNvcjz^7m$kYC0lIm>3gRc7u0FK9tZwa^GCJwp%wDb5)m7DCtuG88oPGcWTaV=< zCkN?6|GR1#wkrHYmTc_T)Da$E1Bi!Z&~Bi zOWnCJKOVo$^nk_?9_F7$cZ~SUXjXyzTZuavCtLMnTGMpS&|HU(Swg5K%a$%!7@Bou z)*Q8D;lj}DD>GeGScqe+9?w+^3k&BjSQ^T@a`u&T6VA=b($48;G<@YOUd~oY*j0o_ zD9(rWi6vvV*a-Zaj9px`--wP~;{NMLNGM%LA-anGqjO?w6m}uel~{JihvW$Cfg1(p zhFx7cOIq$#t}VYq+?`Ac*U)*gJ_=f{q-*@@4E!q}I_G*SJ||;0)v5jG+M;V-$Fm4} z{t&?T@#xp^J)Tgcs0G^jJGAre^`o@wN2)YDgOcYP6~`XO zlbF%!M(4Q&_Fld6UDz9`Zs+iw&iN5)6^CE@?j6V`zgo-T@THHyTC$38xYoHoNo_)y zKC)jgnG2@3z~vd;?t=^AJMVCLromfTKWOmYKe^ZE8hpiO*G`_n!^{f}-p;(p;D?!) z8$9hX*M5z`Gnm&KJjgs^@B-!y2Crn^Xz<2OZoEwf?_l0)@Ia57KWzq&vHf;~w=?fB z_;Kc)2G97K>ra=#3z#1;cqQ|0gKuQsWAG;Cy#{Y%e$3#JFT4JzHxlbr8}l@S=W+g| z8~iZa4;cJ7^9+LrA9v%;GF-p2XUWAJje-)ry)^J50z%Um5wthc?)Qw%=o8*X~j44%zA-QdfZ z2Mk`sJj3Ai%rgz1y3vg{$Kdmr=Ni11^C!>XJJ^1q!F!n(8GQN^ZoK6NFJxY0@G$dw zgEumd7<>ow27`AnZ#4J;=1m6AyW90MX7C8}HiHNFIeojqQ@6NwIt*UPywl+On0FaG z`$^Z%0fTQ~-fi$E<~;`A$-LL#oy?CJyrIsGSG}27pMzg&kMk#B@NSMb z!{F1Oa_wgtyoh;@!DGyW2H(#-*WkU(^9-K)v>R`s!2`^T44%jNQ*Q9ghg~~01}|bB zF?fXYr@`Pk9B-q+H!yE9csui$!H+R-HTaB}>t~z6bD6gryp(x|!RwiK8a$ozr_12o zoDT;Kp2qW^9)qWF{}VWD)I*-nWEfoLV|fP8VLJ^5mw8L0!DZgkZt!xp(`#@U-;Wtw z#`nM<68&#tJB0?9aj?kXG7dHvyp!#87+l7SPJ_#M(QEJ&u7??aO!QOw)l7p+zglSU z9JbSFaOr=V3@-gohr!F)&M|{aJ5_w&Aom^8PBRSN#CD1dF7>(G;8LF(4c;dH7`$kk z+l~~MgZLx$HqGD-te3`ex|{teFY7k{*3EquEE8Ap~34}zsTUy?rIF)&ieHR z7yAtcSG?b`(cn!Sju|}2`mF{R`|SpAVEs;m%Rb8k2ABPvJqDNkruFo~6h2apou6~_ zv%%nL%`WdScw@}vDZF1->_|A>;CVdX3K(4OLoy65_ivd7Pv`rP9D~bxLD1j<9$#|} zF7uB(gXi-7d7;5&zT3<8e8|2$Hw&D9k6F0l@zK;zvG6ntPq*+)3oo?rA`36K@EQxR zxA2ICH(7Xxg?CzbmxUj&@NNt5v2exn1hc#{EIiY~b1Xb);kg!`XW``*-e}=X79O+k zRts;l@OBIDvhZUTu6X`q=6{NXr&)Nqg$FD=$HI#&yxhWTEWF;rBNpCZ;V}#EwD2wq zKVaeA7T#mwy%wIr^G35AGc7#F!h;r`YvFkoUTEPp7T#pxF$-_C@HPu?x9|=N@3inP z3qN4ty&As(BbPi+N#Xe(m6y%~7M^3_c@|!7;SmdOvhX$wm-(;hf3HP9h37@4e!#+W zEIiM`%Pl-&;WAG&{pr^Hzd$Q5nJ1FI&bu}HI`7bUNVC&r;Srwi`TU9RuQqD@LTBdV z{?nxK$r_Joe2T_fHGZka+cch~@pg@0qw!9SFVlFJ#&6g70gZoJ^rJ6K8QsXg=kJ5On z#_=FD{%O8&(!$& z8qd-AB#j3(uD8crjbEhc=V?5k@j{JH)p(J{r)j)gqw$M1Ua#?wX*{CwOElh~ z@eGYOYWy;dH)&jNM=_1h(DYk1euc){G=8PV+ciE@;~g5$)Oe@Hdx;4{ChA#&b2kK;wBDU#RgyjW5!8k;WHmyjS>sI_zeVFQjo+&AR*mcH7;PH=gr?uF@#Pxt(0IPaJ2hUQ@h**j zQsW0Sew)U-HU24$_h`IOR;aY?r(8B8wZqdSbBfLio-;3}eE&Kq&N!bJOe+l8KTKLNdFVMnYMR=taegxqM zwD8vuZqdTuKzNT9ehT43TDS$_q^kzv{}#eiweWU?7ii({AiPowKacPOTKESDw`k!X zA-pFZZX5Rk!iTi*9)y#wmiXJo{RH8uTKMM(FVMpOj_^t?{3^l^XyIQW+@ghlgYX_L z{5ymXY2iZ%C(Rj%|Bnby)xv*4c!3uF8^SBK@Vf{5#FPPFGBc`7M_Z5(%gagKZfvB zEqocm3$*Z+2(Q$_vk-nj3tx?Jix$2H;XPXT;|L$p!V3^ix@I8$8xWqVg>OW7ffl|6 z;gwo=Il>QU;oA^y(ZZibc#jtT9KwgR@JfV}t{sSf6~a@s@aGX;poOatUa5s^5q>}m zuS2*+3*U|K9xZ$?!iTi*0|+P08;Ji)2v60*Uq*O=7XB*2E4A<=2tS~OzlLy&7XAjp zd$jOV2p`hIEeI!FHxU1~5T2@qw@jAClGf zHMGc4QwNvyMWE~0_6PeW zz~A5C8&HwuMSFa6-#atdcjBHs&Y0KT-+ylZ!qitz+~a%p#6lH)Z-VNJovZqqAst)C zmh|~lu&?<(A7td!*qcew9^};&*ovJS?2Ex}ti(USCItJQAok{nXvRpjIaV?%`Z366 zTo>Ewiyj(5$0MS#E_UZUF=XjKJ?b{yLUd-3N zk8`B|I_XecINmGAu-#4P7y6F^8u(>3$B!Er_ofob*~b z&F$di6J1CAYa~m~i2f9^8Mf)%gLDi=>3N!tA&Dm;y~*m}t8b3!dAC@teoAGozNnV% zwvZj@JU|k5Zy3!sz^cgx7};9^9-HQizD?#A7Gu44g@*j2J^CVGs%boCu=qe}dkCr;&r07b>?&JxVIeit{ zean6G`=+4n&sV;mqaS-GGFlbj-fyClr|{xi`|S5nzY_Y_-z%qo-G*yp)CWJPoW76xVjt?JLO(_2h`MuG z>}3^QKzdtMGy-`D^(jF8esE-z>Q*=E@UM}EL&-jjX{c+^S3wp1FG?4Vd*I`ja2<_5 z6rRS%S3fG*2Ye>Hk@=QvrGo~DL#+3e-M`Juu32BX8uXZ(G zt9G@_QM&GmaQ(YqHCwQ zV_9rwaMy>)6gQ1Mq(eMu`&79$NPVgwHb*!-x4%{$2j2;(KDT}KRVh8`=g_raB_5n6HbmMJ7M&5PBFr2(8I{9=k+l1>^lfke$_)>j(m07 zU+`J9J*Tg6=XBf#^L@|0Z_ei)a@(4UVH`obRG)@K8+F1M+ng}QlNgONH?h1`?RqgE z$4*;N+rOC~+_mkd;I6G0e`w5XMth|;r!c>9+vXYWJbK@fzFF{-`YF0r`lu8C(E2WQ zW}IIF-Dc>;-b{`ry%AY{CcfiX@zg=7czXg+;EAI~8P{nwrFsOW8I z(~j+;F>%|!gYETnex~Ys5&h|l=vSLj&*{1h>H{Dt&$d7(!FTX0aGrdQiO(Gac00LD zoHS^8cQ@?ZM(IEwgZa-Vnw@^cxBdG`)K`tBylYf}v(R6i;q*D9-9D$$*KwAUPU$Dl zra2UJK14j!7aeCQ{a3Ta9?j{UJP>OOJnEo$ zD39RFG`a@IKLexiui3_0*a+Yon~nRS63iJN^hLMO9H989ciM?P-b+c0Pk^sa`aL#gMK#_UE(Uq_-7%s7K2u zQd>m+)4ceKB-lYeM0q#?`m=G)8E@eKScJ2kFzPSPHy{ntUWzbxyb9;2?>rk4KHN!+ z(*1Q@NA}ZJf5|TZ4TsQCg7i@p~BUJ|=+q|1{(w zwI`=u!0!=AgCBE2x}W+Sr)4kNGWm2p{Co{_e)muk2GaGiC0%RD2b3-KlRcPgHs2KN`v#@Ynb)AN$6V&ySYK~O*eRoq zv6z#%^BEt~?&Ke}XE2!~jd99%RP+O?3%Kqmq|*jMdMOE_jsM zBJ_SudWhS(PeZ>*bFD*;y)&YhI%V&RzK6W|G36KP<8-bM_fXt!|27V7e%BOAANp6i z*ZL!_r~Hb23idvQHdv|dEJnMbc1dlC+8?#uPUzh?(rrU@E*a-&ZsVLsd+p%!bS?2m zv35lL^dsQ!<4f02p7uLwO^P1vgAX{r9p`B5Y=gwOPxokzQ|KP;p~QJocbY2rqRf*} zF593VpC=)Yf=JVy+W9TU`5c_ba~pS_5B(PS0bkuP>^188$h%DlW8X^re1ma*Bf@z8 z7q?eK>4Kem6ZDd!=ObR+W5)F^;<7A-KA!hZd>?&{-d9!O`lHEbZ`b>)3b6N*CvL}c z^0=K^if>wSbUEY{jo*SW_94Xe-bEcaPr|5=x9R?&9xg{Xeh-O!`GDFT?9OxSkBr`! zpnpd6pTTK<=3|@jGC-a+&^73PevdT9IqJ?_-3IE)ReBh8;%;0Q*GK=h26ZDIels~b zB|+aGy%=Hg;ce)(;P}1#`IraNJt^ji@q1Et9Wgc;^M?yiw3j}5f~Y_4!}k%4SMS`9xrTE+ zIOaO9B47FvY!oTz)7W`wbd=Z#SZsiM+K4zdx>ROb^aG^Xi7#le0q$ud#x^3;qkj+^ zMHU<2o;EtzM(~p8ez6g;*Z}vm(akp0Wzm<#M$BRZ+|!1_yu?|Lo)LXsY;;&`fP2~q zu#L#fXtUVpw%7pov=L+*!CBEpv7wSJ^#k?TvwpA*byf5}*r2{s*0AMS?i;A9)K}kx z`ww}h+rLn~g7J;+0s6YJzK<}k#c;hJi}7)6ut{aw_@FZ)?Iu_kyr0WpF-{LCF!dtC$6akF$U~Lyzaf*UU%)}LHG-w z-Z)q7It0JF;oBSM26v&o>~fAr1^aw{)ko>?f6zNEDyX7|5I5Fb(atcQz{X#YCy9AB zkp5;oLm(ZxZa=PT!CKCgK+L)BpmCk#rxU*=FXV9(v|Mx{l4F*z#wGxQ6uJ2(@CEKp%)>^ntESVVN2aJ9#xZ)y=cX zX)GtQOlLXCl}TuWWKRWD{QfqCKR@L%AFchqihUT)TFgNG8z>vn8^ij(=|L_h_qkGp z=Ivw~{BOt1{P?j`hbfO8ok>U&t>K~{mM~rniu#U+8m8iYF6nr3!`A-(tFA}iUktm{ zj%aLAkhsphCqP`8h=;D9%<045TX6G()9;(;`sm|)@uhJX`Sl{&krTHcYXxX0*JE7y zJp1DdKyPMbmpXdyYiL&wBhFp42B&DP9oM~!xtd#lUv}EbiF@4i(ep1_OQm&EdS=yv z@vRxprKsIK`QPsN=e95RI;p=-e}J|`&-_s4ZhPYTZ0h(>cHPwOphuF%HMvg0RKDZn< zH}tGd1(UfBPS`#kcov>_;DuM z@K8QnqxoRVU)?wAHx=bkY=l#$II?AVl7cW7-G!0|GLSHn4>ciz)U7R_1KG2TzxNY($+|LcvIcKcYed2itmDSJ5Hq|?f z-9M${3lJ~r9o561Av{#wdjfGv{g?cawu&^JaPvx?NUS#lekJ6S=F(o1-nc(p?z%rWJN_h&D_pNm zARl?2`7dt0!W#Th8mCZ?nlHyVg?h2|an-l&3Dx(_r&Zs#wyM5oo=BVa@P*#Iq2R*1sOaI{Omz+5X7**rPPZgnS&&>5vz+wpQd1J{$C_XN&yv zA$`wM9&JOteG~1kKFDrEt7{-kR7ZXk9)2+!6X|j{b!0*TC*y@qH0#r2ENpTV^&&~9ii zLNmhT!Ii1Gg#OYyN7UH zV*S(fp{Ls&r`eS{L-k4Ok?GT_L3KOPHm%3&aqBj1bv2&XL$r@7*wx!dHNsRU3OGKm z_95d9`ZcGGAb)nz{kjkL3Y12w|4ulC!?-VV!l@j_{TZdjmKViFT2Ce&HAXt_OKsixoNL5xWQ=^1DXdVHI;_=-8cCx(dc5aN5&i7N@? zLGtzi`#*?}`_%U~Kb-VzOrL+q*o`rb<~pm6y5poDQl87;XK4#wycK)PaQ{O0F!}Jq z>B}*HpuDCsQ$^|(l2nc^^F7==jrPCzw%<$7E^#~?{RYiD==eCrGsLyW-{bM&Ogg@eW?H}ORVcfUANppdRmpqGm{JwL^zlTzu zCI8++oRaZ7maZKa1ZI026 z=X&(a;3)F&J@`j{Jdb>$@#+m+hrVbc)oCqe2GY{NY56&yu;a|T;O9E36Yvkudfw_DWIP1-@*BFHRjo`K?5L)7p~LU!qP>d!;!Lo{>0p0ndgu$LFcg{~Y$@P@QYU zb*`^6=iz>o)7ml?anc&Sv9{cTvXc1={?@qD|BIg2z0qY(o=O}8eH)cc(lB$EkF$Ll zBlN!5ovR>?u%lA2Kc4y-Iz~RDp8P@`U+}1~YhZ`YVNbbr%o)h@!RrZ<-Z^o9r2ZwQ zXKwtwdrzO>FY?kCJSSm}^@7oVC+NdpeU8=su66F#Ag`g|Y8ai>2GsJUKs*3l0H z=ZX&rb{(7O6W}A+wp}mRN?$Bv0riht7vkR2qmO(u*?*bdPkzAtg6Mknlif}`^zJ9y zXpVt=M!KDLg!^dsWmKPVsHm>k(Pxqiwq;`Dr^8#@2Z&qq9;2~wXJo0!liuE#U> z#55)LC3>G&_s$S~q8gcC_f-1C&kkvKLW13!Pr=_ML)k6DdKdEhbo%hDA?=P!uuFR} zPBwop7|Jf5%b%{lBZjgYxFEsq`-7gT+v~&Iy+hQ8NNR%JQ>hRCIh5UwNeOm;b_)K! zJe1u4_Me?*efaiJcCpt@xBKKN`1|-!cCjBrw|gr2d;d^&Bj+X9z4H|Oy<;f5-PnVA zn)&-ln_bxZFU+?S+tQXSHev=NB93<0+;*6_Y9q%LWk;djP}3bKCt*Lp*e%zID z8;Nn#yiM{`kJo9lNH;yVrMju8ej$wgE{~VM79C@a4}GZW`yjptCec5#O>+wkL1^2E#N9)ju_-oc`M3~jc( z6e&~(o#$~f$M)_YK8E^AWjbh$Nvo?gr=Dc!Nt%YM4|MIA|G~8%{>}6+vHyI*7$2Sa zI?Ct`%;^tJQ*+-yd3K}h0=T!6Il1_bz9Hd0$g3?;xly)Bh-%}T~qLk z1oPKjdj2KEKMMD7h@Z-n>IQV(_^>`l@1dTOF1J7OnVz?pb<4)dZ&TN)XI)F;Hf-s} zJ@GEsy^P8*)l!BO@33`%^ALUgtM?Ah!@04J!BK`Jo{pM-*h2*zqJMKBDJaonZs)xl!9-8wAnnTcfBGobU zwFMH!Gp1LQa4m&#&gnM?*7^sJ&(!abKKc)5{ZYmb$zQL2o345Pi2WL~Oq{-3#v>zN zDGg?RQGZY4kJmYCKN*=86+2!&J98_<<)jn&+e-bL$DAbL*%b67kApN3AFRgmfg|_2*Uzb206{M&a5PTu1YJx^E#n-yl1flTASR;rDT! zXO$Ai!#GFJDk=XH=U(o!CTFf^*#9!yr+XYq59I;H6B#0&J2{^J8WhjqIwX1Pr+SBR zn4ZZ~J`BW_wEcdZ)AL*J6KrKYR6U@4lkyf@Xa{X7a*0+C2Ig@z_m(zdwwe1;pRc04 zILS6c;|%HR^D}zh8i= zq0W(ip81ORn}nZiUqt!(`?pRlUrGOT^R;W>+IZglKc26RO6mFPw&A0{_C1TWh{o^Z zyLpd_e*Xa#{owaW&u&gS`xnR1w(&mVW&e%63!6V&_~P;xrncjis%O?;QCoah#+tG< z)wS!dx#hN-Z@zR!;I4|&aQSr^_>1Y6iuD zww9KKR@GKlg^Md!6_=ESO3PLiudNJUS-%Dg9Q0XSTU%WlsH`q7B|k_9aX8nx9xTjX z8d&ILsH>k_5e_WQUq}wo->Mfk)xzSM@Y>q4Ky6uZX`qaZy82c>m#!&ZT~;@*~5S#g&!R5<)fAl@%rHmwtZnVl_x_R#td@O<8FO5tf~S%du#WzAVtSzJ{WDz02zU0V?@UlR(8i-WGW=ig9f2B*`@k6D?nA0=f~ z;j-GgP(@Wmm|Zy)KZY>l;m1`*%Xf<=9-qaSTY6ggdF3IMZ~mzl8`<_1-EQCzO zM$H5vVO%OGQrU66Yrk3jZ77U0FJ)KsM^A*Vxbfy{;MfGmRSf!qigz{^{$kcE)@ zAR8fjA=@CgApbfccS087Me2i)U62a-c?>cgvVLEG|2)VokVTLwzl2@L0Av?r`s zAnPI9AU8pFLhgV(0=W+|Z5+xCG6OP*AIvO(Y=W$WY=_(onSvj#>440D?18L@oH!o- zLgqmBK;}W_?nik;ZiH-tY=>-vJPNrVGW~VL3%Tjn{r!`0qkI@L2pK%k-(L#35pomc z4#;hgdm(p2X8tGQh1?98IuSpd3z-SIAF=>)I$k8-0GR_xKQvhi*$%l8@*w0+NOiVS z2O+0JrsAd1T*z$5O2}NujgTuKw?J-y?10<{*#p@Psm{T5*x)rCat35BQJP5fP zQl%pwA*VxT{vPo|7D84+HbHKL?1XHE?1kJ18Ni0SUdUX?iRYo*AafvNkSid&AR~~+ zAh$tg;APxS$UMj+kP*l<{PCDp$ZW_1kcITeWDdb^$V|u>WFh2U$OgzB$TrB-3y^P+ znUE=OqMRUeAnPHEAh$p^LUus5Lmr0gflQf%za@6Kzkdc~5Hb(495M{q0NDh&7jie` z5y)=H>3`_&_g{#10+|6Bfm{aJ3Rwf$4M{&HqyC6`0XYxyAY>_|!Y{gR`4i%U+y|Kl zc^I-B@)%?UGNT9i0~v(e4Os-)4HW<&0P z+yL1HxdpNZvJFxNp!XN}519+O46+8Y267{01LO|K9grQ6dm(!udmvNZLVly)o&lK) zxd^fdvH@}<3AV?8{|C5-H-*4`ytCAk3dEs{nHRHWCr9u$RK3e-_Xt>=Rt0OEQj0-8G+mZ*#x;4 zatGu=$i0w9A&)|)Pe=R1!_G{|Jjepb4UmE`scUTmg9mG7RZ|2kC^I1i1||6LL3XF64g54UoqmJ0K^04E{j|Av4}Z z`XCoUZh$O;q#w-P0J#IQ5ppkNE961QgOCb;tZ3eQ$S24xkOh!<$D}_3xeRg}WI5z+ z$c>QuA)6qNK(;~pGY~&y24v>@s5g)`kTsCoAR8b%AY+gRA=@E)A-f<`@W8qUav5am zr6_O6Ovp~i0?6Z#m5}M!ytolE8*&R|F62%~`d}DwKEAt`D}Vh(z6(+((~nY6ccrHP z2<1j+=bx3fh{ih{X5vd6&6arJN&i#H^T%Ac=y$)xg>(+z0(>VyX9I!xX9b^3d1@4N z=07^}Gr#-oYpx!}LFa3rm+k5WZsIsLBfLrD9LJ3kM*!#B@!bNQ97xTNn?#4~AH=r} zI&@5FSjhH|BDe#b(xP3vRIUvGr~44cFh1b7sZ=L)NMEzFShrIIoxQ`@*$AEe&}mAv zQzCYpGQc_C-FeHLQX2Kdl}1=||ao8!xv1aE}VuyTdgH8~3 zbe{v@oy=`@nyx(pon^RIFEhH)*Tqr5EXplg`&G>G_9;j3OA)4>awH{lq*6+M~y)S1rJXRMT{oOT<5-UeJ> zxn1&};@AeAPUvv?q*471fbRxB03N}yR$o3V*9L&Qp_BbWyv!vpZ_st{w;&vyO4p8* zZK3Fp5BOUXY6I-(>7=@b-)mJzzXjiLKj*(NUJfgtDn@D-JX*9l^w{T;Hzxh|cdx&; zpL%{OyDnUl3tKhlkNnR$*K{R4dD&B!IvJF)`I00=?W#NJ+=jRtUbNQ-%J1n&=SJ4? z-|5(tw8rZV<=-;sZGc`Lj{P?~dXirBahsF#IA%)oq*0h_LznC$f8%{zHuw(kZ00m> zkrl5ApIL z-Uyv`Tx-)In>(Si6FQVfQZ5-d%s?6`UZ-r=;znj*j2l$8$6(_ybPL%=0heJVY)pU2 zjo*KjV`Gq?6xU|xO@f{i*EoAz3QI6RBH%Ct^^MSeRbKSI_Z)8M!$feo!ff==QqJd5W1x}hHcTi zP5dOCHt0m4L&wmOa!F`I`=PU82pvi(s=?bKxZ-E{iQ+lN> z=YVekr!oVVe9x6@1Hdbwvuy}JNGHPfhw8hwL1zc-aGpz=6Z)=B=(Is+C_6`>vwH|T zl*Tly|8+n|PcI#3fYY@)C;x-s?cj8*KhP_pFpCfGXY5yv+0 z1K=~v8Z*a9h68wE?Wp=0GQi zW7to-1=kSI0WShai*`8O9}~}GZuSr5;58mTM8GS-D_uL%=Hqj(0QffO?1WB^t0VP4 z-q({(Cv-ZY!~M0?k$8ViI!B<>4INuMBLCCUkYCUV;+XQ2(i^~G26*aEhi+fXppy>Pv6j$!Q3GmiFQ?9lU%-NV?SXCs}%*lB>yzG3X_fX;zo z>~ulr;4pTMLZ@dKJL%{QjzEXntkzEBV+HYf&>=fR^*Ke`Wt zhYrPS^JgD)CPHT@e|n)aV;Fz%hdWf}F#hB~XVEbJtbk5%7=I$rDICHdr!R%iE65+Z zUp^Nd^8B;%o;>5J(aw}OB`LlzM|sl)d*wfi_a8D2#QRs6Qb(Z^hK@OQrDAGAoOBRJ ze6B~&%xZ?QNzcT^+6bL`k9fC$lRw-SdZwiVIuVa}4=^7p-s8|A zpUw16#B`Ya87kf!=xp@3HV>Tq$xTe}tuimBxWdrc1|9Y-P1Zs;f$uPE(mZDycq@2~ zYg6V3&borEl#s1`(CdXBkH3;%3G?J$=o}qFhy0s}igC>FgY3@$AMV;b%eCdhTub&h z@wIept1E46hw_DVXx%x0!%pzcPhsr^_l?@MN#Eg&r*s{G&OxLLf^_1~H2k>LCcen! zl5g>~bGkMII>({IbH%_?p6><0(|$gf7lKa**W)5PH5T5$oOH-Hy3eBH7&z@;(Cq}k z+nHzM82aLK{22*ddk{LA9@idaK2&`?Dx2KKl7o|dki{9J<^pn32Pz07+jw-z$bz0eo|V37GB8QOm7W%x?zXP zw}E*!j&1dM2Xrz#uHDOgsPy(gC)Xog3i}9Fc<^-a8Y3=BOQwbAGB?v(1YT*_3BXQ0 zb6a{zXA5*T;95?X-1o)%CDQ4D&KBqlW#=$-b_}6IKBruSc`S60O_cwE#oYe{z&i$b zn(!R(y&jzQUvz?-`9S+INMEl%0YpXnGl<*#pAH?`yRjcSML5>#2G-`VgvaY=H0IIX zk<@*>9&j!e`Ulp~oUxL$=^+H^7C<)$-EtiJ@rQ0rT`amex&fS@j^`E|pqqD!0yonbW_>e_o0t!k#y05Wz~)eC z+z*{R=mZr$17l-C8jnGz5;|rY)25&=0yoPs1ALPQ4}v#>n`ta$eKUbv_hVPB@P%ZQPSmEB}^JCv;r_bM+qP8UYyHiwek{?enb|?EA@i(sh z{P<=heIxMqsr+~X z*^%VmF+%N6@^2ZTjwJavjZnvv{Kx&OG1-5_ueK%o5Bk-Sk#2-9`!?X9(HA^E0ZtSg znLt-Jrm1~N{z#hI2;B*)HQA57jyse6u{714?B6#*HTeAK@z$D#C+eZOsM7f@#quTyfZnu-B;h0oE%9e67i?B z`_&G=f3IJ)`H6JXBYFI3n=epxP%|!Y>O<;uRI)|>Wom_2j89zbJHI9m9e~f@kc7V& z2A#&F6l|l|Mh^NML-+?ZA$1bK4F5dTt$}d1e~~Ig_@mE9Iq*>qe3Szp<-kWd@KFwY zlmj2-z(+aoe=`Sq3*6Xt-r>qt4vP=He{!d?D>l0%%(9*3VU}r+x#u%j23Z!ctYq1^ z$<^y%De(k)+<0QF*Us`d%Z#tNnguK?S#D(6#IlWL zSvIk3W7)~_Aj_jHyZ(tS8}URqp6N~Q`FSiOEO)Rxz_OQR%GX`}Ni4Hj1~{HPiI1ag z<9NzhFT!#!%U+g~zTsYw&2kybB9`?mQ#Z1|EIAsyo8y+x4%X{sIsFM&qmX5oWh2WS zEIU{pV3~KfdtHR3#1r_l8&B#MmsGOc$1?j#mv3O%#BwLgPL>UIu3qpfuB>6{hH#(H z@pQBP^rzf2MJ!`1_p|I}nfkP=7hsvk@nk;C*Rzy(A{u+G$&hi+`88P>YT$ZIQ z>sh9AJl$+R&1gRTs$dU--gpO&ztSkJa2|`PBR{}otk#daQSJ*W42S%t{HAR&3MdqYT7l!ZKoNJ zX=k`_(Kc7Z>=zoCn|`!2H`{l&ML+GEu6?te<}f$ymoqopTcbt4gSpvmdM)~aZzbkP zki%wssAq2a*UsFm*Xhr=c1`_y=4SnDx9F=@*N$1wg3L|(4a_A~ZASQj5kAIYck~=s zfRu1OJ*US|r*EyW(s;Qov-Geb4p4jXj zoX6onx9jNz98P0-KFdr#?>sjEV|Ud1ANE(13cb%pA5MnKWCNTG=ba-uk8Rn`=j-RV z@=Ok=vpk!n2+lUV^XvM@(WrKIfRm|4@df9y%v|gq2ye@9!{T>@6Ed3hCH{*zEPDUw zchiU19rPiGyDxDS`#J3A>+p)MlOI3-m<#$i{1Tu4zb07H+3najMLuQy{| zvT)%wfs9YCTw4`hJ9Ak@RdH=~V9u3SU72~s?6nTex;HE5%FOIbU20yQ5KdM;l_MRj zb|x8*>hQN$2Yr%NvZD8x%ullN$HxQxTrx%ndiT`)B&(6}@j^eBj9y*((L|o2r2kFi zqm}gYiTn&D<3S=nGd?aRa*UeNUuY+i)fm;AuK_+x#*gX9c&eXG#*gM?H0#7YPF86u z^I0!GPBlK~#mB4ZuX*taO2%#dY%+G%$#|W}&sI5HpAz{wO4?B(KQ}(^CUT6HT)z|f zd8)>f%Pe9*n`$}!Bxe5ragW?#dvJZrbxse?e^-BSKHp@qFLp8t5@Y@`XH1$?t}=Ge!js|NqSXoBS>2HHN;MZ|O?n+ z);HHBC!)Z7YM^|n{OIG_8C>6{Ir@Y7jo_5evJUE65j%tH^KFiu!Q72^z#p-*7W!WK zFZCp|Su|bwkYj(W5{{tram!_l>bir0!Fw#+Uzw=i!uIEJyfRPx8S@}>1f9?CnCBW? z{D~O$h3~ZR9t#hwN%T|fWLtQtg*RDvyM-UI@Qqd8{&ZS+t24_UxJLZ%ws3#VfG!=0 z{xS=%wD3(9zSqK!Tln-lz5SVI;RP1H!NOIoxBW>LzR}?LJIZM9V^y9}4^J>JG&udP z3h5UaT=IE~VPE(@3-7gXS(la6i5*!NHo2@z3!m!vd7i50aSF+CKGL5E7yT?wS3RdI zg-_%%kC@y!KSp)%`mxw4V*Lh-{!vT+oMw!tlHP8^zVKrf-WV27Tq*i$tvAoG@Ky`o zXW=>PyzS>%c*kAd`rQ_;>b>>zEIe%CtrlLn-rN383qNMz8OC!L$$xn+Be4iKpVJ6$ zwbtx@zz*)r-k=ec+LiI`-K+XYT?}$p8f@I`}G#S)53c!eEPlK z_HzyH_9x@jyZgQMcSpSW#QVK@jfL;D@Pih9)WVA%@Q!z{g&($X|AXFk3M{ao<{+~qCmBL#sJid>DFB5%b?5hx-Vc~@qF8e{mE3sql4-tOAVkhNcv5=T9dHyeF z#ZHk$zrn)WEnJ@aoA%9p01|J`Cecjvv)saEUyfWQcFcV`!h0-s(!U}W662M97;;wZ znENt>H(BhoTli56pF|5O+DGgcSa{gN+bsNmg{S?q7AX!T-b@RxwD8RqzOT{S{&5SR z81>fAu<$|)ud(n(3*Tnp`z`#4g{MB^?SH_+^DMm7!gpBsJ`3-*@VrO8{j9g}n1%1O z@PiiKYvJjez5U5C_+m$G@OrH9ZeITvYrM&)7F5 z`mztl)HnC#h`#L4G4*AiW+ESpmxhJ7Qv5OZ@rZrd&m&ifzPZ0g^v!)fE>BnK#yXqu zfQ4sRc&3HtSa{IFb1gj2!V5k5c`9Pz4Hn*L;Y}7Ev+!06Z?o`r3-2)aI;^8Q&yUL8 z5_f(N1&1=JT%X<$dm-iq{ zF7G{lu?lgoZ>lgoP+CYSdvOfK(Pm|WhwFuA;kVRCsd z!{qXwhRNl<4U^0MaFfe>9VVCeJWMX{b(mb<^Dw!*_hE8*55(m1UWm!%JrR@3esq(| zdn6{8_eD%D?~j;V-X}4+ykBB+dEdn3^8Sg*WuLpr<^2?s%X=s$m-kXkF7K(BT;5wT z`HYwlSIT&oYvH99UT<)jM|D`{f#&{b(eJY8oBO9lzuTfO`>WklDfKNL_vO90NqoY! zGeKo|-WR8Zhx6Pd-j<%fvZYd?wPb7L$~-?neZjdz?1yq2hcMlwA& zAIwS1E8cYID>Y%z{;o@zoBP4$IriV_uX#K1et9`_bKloz96N*er@84(9keg53i?yA zpGTgb?j`r|`4RXO><5thk=tFYzK{GI4}E#wO@H5lKIi&L|7<1e9_21px!`19=4msS zN5IGNu`ZqmC;PG=l>Tl5eSXMxWL-Ve#p*C~**7ws`7!45+-D;5N$__(AM4@Id~fKztiX+K4;PY0XX?1 z`!Uiv-b+yLh|BmQ{Z%cvSGpcyec8v7!*+hlT%Lmq|Ja$Xec9h7dJf6jzH#VgMN zGdSLRE%tYT2UtfJuUqt|o#nPuS)Y;eT?tO{%04v7{|Iy0ZjJ@z@@?r>JpM5V*WsI+DmqC0gy8^EdGll3=A?{~o|UfDO2$NIl^^v5b$mz&A_ z40QgaFZ=fb%;~qxiOci5Oy=dxWuJ!ZTYrwZtp7{>>18haTf}}k8U@*x`yTy=PQ50`tqDB!2CVtvR|l(c`9BYBl~i{DSqC-T=s>E zoe*=g9c=-pe31S2LrMPJh<-H<`pOvZJ_Szx$n$jZr-`|&CrEvGg}LlQ7C-6F0eO|9I^VS~`y?el zFJhh>a}y->b`5iLe$ot1<8_VU|F>CR);Ews=W~d;?7tO0`2x4RdzNhU+#aU-1jq={brJ%^t-C$kL*Jbf9_>2`>s|AV>g%aV8}Pxj8AtHCK=+3#AzcJ?!u{Unm!NpOJlW&dg=>(?@u{h8wbzc82m zf%90u2b}sJd0ulZ^Gl|<_GN#I*r{eN`xbDy^V!1O9Ip?8Q-31QO(dTuPj&6f{#da? ze;=39CF^ohukHaSKjk^v6&&vl)|Y*flCJle%RYaxf7Uck*AuP*Y44w4F8c?hydGmN z`@N;!zQA1e&*!i|zh*w;OD>Rj&%=e}zpN*qdN`kJnalH|>zUsRj-hlcDky5xD2=P3^KV+V>!Bq^f{#)Rb53(;p`m0Ge@QU{;aEe#<`$;}Tn9DkLF5B;6F8k9Y-lQwJ zUGsW{9uq#l+smwiE!pFdzO>){xVozG<4$WZ&0_0lxv^TEl!JZF)3?_)0e z&?H^YGdI_@e$QO?{|DIq5pb`33&9}8YqsA8=JMW+l-IAoz3lvj_2s=1$%jCeYhTvw zWqer+?q%mO)|cm@+3f#5=JNhXjn6$Xf0k=s_LoY$Rm|mm3gOQ%m-p1f{x6x!K7R}c z&gU3&bDc1CwzvPE0H=AlJeN;lJI{erKFj-D;?JL$%kwWO_W&Go%HfVu3iM)Pq#eay}I#>cMm?#FV#DPDQcQR?mO;8bsAzmWL(Mbz|69O|Bo} z|BS0$JF?HJoc&w}PVuI0Ow|7-b8{Z@0(05tDfMdH9Pe_e1}FRSd|C3X&7%K`g@v zFkvQct|wmy?v>B$S>K$mZf0(d@2@bIeI^obO3>T>3UKmA-aC+f~9o59|iZyhv(Riyl*J=|KFIK^VJWS%f1@1 zf8_#i`}c#>{kZI#N?|{L22S}S?-5A;e861xnMnJcv(VMw{Ge+fz;8`#r|H_m;DctZ=)8w zcFgtm^O^6y+cg|u`oI|+ z^d7z6Rj%Y~9%5elhzoL=|BAWn+n4l?U*g&^??V?cH`h_uF*lz(G=h7T%X1d~bGBpF zxBmvG^vb?&DX*DG2&LDYS1)C5uDh;eF7NZ^aX#DwPS1TBV=jm=e;AzNm3`yo%zy6a zb3haRrLI5ndjj2j?mTd6UlC)Rx((bbe`0K>;6c}bj9;%Ym;E+HY(IFTI}YX=_P^xt z^OWp+Okw@+gHyhl{mIXmoBiQGz`guD_a@hl`P{IGxx9BN_5Xh6vfoDP|101$j^`Qv zf5`gsUaIKdzRbH{)F|-b=ue2zP#@s{-oT>`TtL@KN(!U*D#m& zX9LVX4ek|hnDu2JsnoY`Gne0&5c@|gc1EB+a`{iUlc9+G@ z7jwz};NQvlD%+9wTcy6eXt9&_2{&Hzc~b#%*(WJ>Hi3`hJk-TYtZ%O8j9c#7H`iOT zm~V@^Rx;UG9rJk`T_E|~0#5BB$EfH3!TR!h7h>n{%;on(a@hXFeAgfO-4)Tlg1NjG zCiV97;M5yZvN73}UjV22Ait*} z{{O*ZC+Cx{zU)&K|Erms&$YkIJbkkpU%(aWMR2O0@_vojd5iVs_i(aVfAnqM>ADP@ z{FnD1B_A4?%loR5|KDeB?kn(r%JoOyXAyrg9gg+?XIw|5KdAwycx9iY%!>}NzP!I9 z{`d=Bec3N9>H0stU2lwJSyeAZV963$V380&m$2$4x;x zkjJa4SKV)>s$Nm`s;7Gch7jV48sNif)|C$s6P1J*OpGCZ&^3sO#D4)vBnI6WV}R_3 zH9`17Tz}`@d)~W$t6%l3cBbcbox1nF`_4W8&$;)#OTl@+A>a2V;Dn#MtT@&0s`kIB z=$7&MO~BuvaHU^<`n~eLypNve^Iiq#^MdYGoj#=Cc0B)Cz#1=$^*6^Tm%VxLsH983niL z=Wlo%rH{51-hKeM4-apAzaQQRz?*>6Jb7Q_M2-KHg4^r<6$R(IVqVAB{<0j$&S$j% z_s#RSRQo?sb}ZxV`9S+OeZW6X0yxc|_cidkd=7A07v2}f^K*R{ zaNm6Hiv952w@^L^*iw9Ao^C|;Mp2i(Wk z{|-3GAFkuQM~(m1u7vZxQC^o_1?T;z4F3q=K0JH{aC$B~U;Mp5`?vJ`<6Hv#K1P;y zZ2?Yl=GQDa^CaMOUp_BlsQP>haH>zc%fkP60VlfU{eW**?eFf(aqN8PKHzlUXRQ1F z3gA9Gd`6AK`%{>IzX3SmpZ7oVdc7i%_vN~GrrSLQxBcSxDL9|k#N&JlaNoK=r`p?j z=Wi;wU6=Chz&NiO$a(U4Qy*1$`wa!>{Rm7a-vj&|!2bs=y#3UX9EbO<@bf+jxDTHr z)t=Am`>?w2Qwq-Y_B_rv6x_}Oz8w=II^pv`9#G?K08Z<|`?7id1J$0-VPp8$MElp( zxUT*kYMdVc?wkLcQa`*4IL(L8k>hpzx`Olh3EOJ?civR;0*M|L{rK z{(d#iQ-Blw^Zs9?)x^)2RC_*`>=^~WbW7fs_d&2+dP>20e-_W@FBII)+rFUSb{^*q zU|7Nf?=RzV_5k0QcSZW2(JfAM#ZN z=kr4zPHg7bbN)-S&}R?qt}+3-HqK2mVr_xJM({@V&}*SGwGg7ZEm9{&xQ9G}k% z;&HAjxE;57pMvv#oQKqX{{V2J6W#~Sc)7~^A3hAgzYI9dhtG4nSKar4sehbL z0Z#4h`ka3bwExMOr02F}FMR-TUw!)ka2lV_BVv3$qu_R3-xn3U{Rug7ZvQR7efW7- zF8$>PEV+FQILY&43;uDyX+C!S?H3f>&YS!T;J*7lGM9MZb0Lluo}U7o#^?Q&OwWI= z;Qi0ahWD!W_ngS~d_D=oBfyECd7t}^YXAGHy`5k9HsBODShb$_O}FLvyq|PcjkBxZ zwO^M2#`Bqi^Z6$X|Ga|RarM7ca9jSr{#4%A&bL0K;C9_zU%`359?R9g1>A@K+NJqy zdTE$;FCF!Im*RNZJKkJ>aF~wgrw<;D=a;rFt*oej?w6h3G_S8@wfp3CxrZ<^2Y`CzcptM!vUWE$n8s5i{U$*dMd{VX~fX5Dxg z_48~xi{kldt(T1^!z54oE882ZtNupOARVVsJe|g8Q8Lb_XSKmJ9wkwKJ{p~&i}oo( z%iL%>OX&tt4;`lQN^df$MNf3{-TLK8n)H&}=?vdx<5@nP_i}u-cR7l%7E$l?bhlB* zoRdL3ALh|8>)nbb*)Z*$HPr}fKw#F3@hG_Akpyn0N8@aos1~c}4IEHk1*v29QJ(3b z)wrKcJ=IFq!J0jMaOFlbYVKW&B78Ddt#1M_^C?iFX0`wD!=2_~ba>_JZWBGP zy?5`*jn)o&JhJzmsQGR+?z^uY2wYBv;Yo#`1H-RIhxMr0-0y5hoy)k-6NjAw=Uegk zjEJhf-c65y!ZSq|t?-Cp%!uVYeAF4dQP0mNNk0OD6a5}H&Gj$lvN;xwyt7g(b~$oZ#p4lb(`BqNgmBG6FIfzNw?mJZj=I|)dn@6 z97dh3sFOEVfxFxBv>&CAbV3f~G0B0$R>&ll+XB)ez?VwL=H1k=8?7f3d>#t(|z*i~GsWFrLlQL7Gez zM`=hUjFv0U2wh9S^2D=CV69tO01Z3>Xz%*+6t@Kq?8kZBJTU~pN}~?3-<{216ZA=o z2yASoquFtGTTt5addfqxG%hB+*@IvjXZ6)Qh2=3J+9U>Diym#%8?bcZ{uvoMy<1H{ zxBGL*1L(@uu#<0yKU=%QdK15^`~$5Bg4q9pmkb~7E%l4;%?LG-RiF69cUTGo)-5Vn@Jih>a!L3y2t`;Gh2LoWXS zI}K>NlO~KUXgfTFFd#6_Wr@f%gMH^3e9i4y0zV+mlctc8t!x(ImjL#h`os3gNLN`a zm%-47H+I-8G?oUaf@KXOr(Er}CDlsGS`%co267_BAXb2o06sov_8Zea2+F}<>kuNS zaB46`a%m3Z?l8F^Zq=j=l*o1TsEe=yGZllN=Icu7_lA;ZN~up%#h1c1%aaKZGZM3p zg}yD@5yuFAwnamD9#O!~X|9tMt86cMA6*)-BCmd<0(vxE-L;)zbo$j?7zO51 zlp46S3CNVUP|b?CY@`_u;5D|1EJ9cI(1tMm1a`-_!AXXd93jroi+Z!U@Sd^IOAuD^ z_~*@lO&r%b3L%Pz?!eT8fLJ5p5baNr@hIyj9ihc-YVi13L3%5EiJ@OQLH*R%qyU3Z zBK-js1aGg|*@Q)ZIcm@Ih*WY5;_e*fV6I8C4rgC^HPF52E}83`B@D4zfF{>R*$GA$ z4&BBbBg-`w9Mrq4akJ@ktHx6UKSz0{=4-6s>OOV*Uu9+UlKisXvn)3~%c4!f^6O2}VIi8l zxI)cbz$Mu3#gn*~=4Y0s4ysU(3^4_^V0N3xLPCs|&F7hG+OFzQMfd}>v8**%I7V$V zM4}ABs#EATudNCq@bNL3&3XVz;E8y}5Ny`+lCxecFPR)21e*~SZ1u?;>*I$g*q)z< zX$rFV0%t*%Hme8dkT3M3dmL?8_N#v@M zoU`4s<^iTvcvEPg!bD!P&k0BPiN6d>A-+yg#y&CtF&tY8nt{6O8)cYGhKC{Q>KpxZ zfEal~4zRElAv@_`-q@TXIt@V{_j(DO{IWB}*hD~pg4z@s_K;Flf0=P)(_)D8Q_Gwb z$TeJ5Nlfs@hO=hZvdL7uMn=RmKbduoJqwT23R*rcn*ir*KURpTiFu1~N)W4Iq-cV# zjFl|Vk{kqCg`9xS#tVC;0P@5{T?<4;pgQ?>bd6FM*;&hS1Vw}v83)+Bl?GI?P#gQ9 z$0eb}E9M9se>z4lbbh)@3Z)perTrF?cD4Lw058nQoR*c)#Tg(FvC*Y(7(n zAgsa=0YQ*Qq*Q!U4_gtIk>c~Bh zkn|+A)A}X0t)(cFfnYt@i!d0>aS>D5iCUd&lo#}SG$9@fkrV5n;wekP*|)>TWLMP@ zRffuO1Ih^2(Y#kFtV%wu*TnGX6w?xB=>*a+k~h9!E(v>;wkadIBzLO^1Zci`cEdaA zrBTXZ+bV`C%kt`C!JM(`@39FzxDM)XX;>HNRC**N$32!Qsig%D@DfX+^x={O02#j^ zoNwd>n8a+1d+=qV+RZtHrAkSfmJ%T^KscbmY1mE=Hw3wFr`b&8{5FwkLB2Q^ew6O(ix{vLn!ypEVz)d=+U`hh36a?&nYn6$=BhI z!zM_q{Ss}Zaj)M*-kvk=hFlTUF6LKg;+DK zJ$8kRuhtEv&dWy;#I3YCTMWxsNed;rL!Tb|zzp20lzmmY)@idM`!B_c#5YE{nm@Y{ zVmp}Dp$sHj*Hxbso-iAawrKMD_DX?Y06|5C03P1Mu6OQ!k>@2`Fd}k?9ZdyZXpW+= ziFmJkI5zXok0hx+nnlA^ETPp?HH~0H3PT!+G;csMG|nO_2&A+fu61s)uMYq zr-@&dp&peVdK^`0RauQN-G)0Xl)%CyHjv+jt1PmZHt)PVSaTzm8ghJk$ft-sf=)O> zYp}AY;JKerbvYM9feAK?(o?Qd##&MBo}RxwfK%E|{m<^Rm)PhKL-7Y;Bs#Tu^-Wn# zeFIhHDdj~HS*Kz6+IpE3sJgTjh)pSe(N9x?bM<4hb5+Dx7A~-`j;ixPP@+0c7!~pu z0!+#qRWf&OG@~!#7KfG7**?-(6F|||frtw(=h09rVDqS6f zsFs%@2(BJR?T6Dg0yiTFZPcBk906Hu)N#yEMTP}_vLgK#`8?MuaHEN)f6dC$@82L8 zq34a@45NrwmP?@0U$34(W~Y6BWa#L%sY`7_nk-l&t(L$=IpsR6)5#Wb9HDNhw_d77m_QKrLi!QRik0u+69qlvNdB z-9-#!q*~6M357LeiTnYi6~!TiIDp_Pf?ENvwbYRa0hjv_q%^VVWOJB|kMd*CSq}{~ z&B4}&M>D7r6vq@=I5XWd35DZAD*PgnfbCCD?kaqnps*ImuOQ%v9NB;%?lvP#x^ZK%Eb5HJUZsJy0C}8Dc%;@w$9CSU~yF(dlV4!M=@bj6GAR z*gsjd36lg{I=YR`8B&igFK%S2LC+z>ASe;5oQ_(QP!NT9ftClki*cUKr&mzI=CdEV z)X-k`5czbCGR=ZZE13F{E=Y(+QQYrOk*LoGiy2)AtM*}Z06Ru;cHwdq0U*=hSvI2O zYPleLu)?!Z<*{&sV;Fv`NIQ!qYV@b^?H##HGqpx;%+R-ZsUQihXa-wbK;UHYl^I?? zW4n)TD)_qJF18;(L@6XCtn4Q!Rc(z}R43<4Wc~lt$=Q!)RkP3&X_YIkn_P0DM{DW2 zVL{Bb9OHbRN>4>uwnzF06k6QPrW~-08Y}fJAM1PiBG91@S0y*e$Cv);m{RPxyj z1>zl(rs0Yv_V)@-Xi)K!s^=6nqY=eYD098oh-~`nMu)pyY#r*NR%R0k8!AB^l8r^1 zYDrK~U1*u^U0$DV#uJoZ_sNhlFhD9)MDM8{T76T{moO3Zkm=SGjyB@={v<<4o}kjV z+#n$Inzmbzyfr+ZQKxnp`$H3K@EZ1gf>Wwe!*oHlq1a!D!JV9piqkvhpnsXmP_BrK zg&b+u!svSK{AGjLl+o!y+moF!GK>8K#!d+7@DIh4m&IOk_na*$L;bNN!C&Xg_R7TP(G=`#BP`nTBT|@1@OsE!U z1><_1WlLK)vAs38#tpw~9Htc|<*VssvMMfSpy?q2MFoXkQJYQAu-#Ogs?oc(HpW(0 zQ*o`-v5QVP35BK-f>Z`#eA9Pr#vp%tpDBbhyRyd=^~E-{MzIa8tOKh+FkLfW6xb!Q z#Itz~6^Td=v%>wSP3B_TJ%d54g;Zz+J$nL9dTMgLor!BP8qGljVfOJOjaE+8 z8Oi2yJ0KlFfrg$rRb^x`HHhS`xI3freV-`?0qe8I6iO-2XIP9?^pc4mT^VU=vLaj1 zDmvD#FH6d9#1aKHFAKW|q>)2)cDOqzx;1>AkL;UbN8=@T;o1%x1nRHM? z=%5la;)u=XFhq3j*HdD_QbWUiOj99d>IgNJacBpD?rQnBw_I#NOhlHlZj421Ss{L4=abQj-huGEKzkQFe&lX8F*)ZU#e}3&J+~ zPA00%FOq;_M)1~8Qztk_s`EAuNV}e#p<>KSv)(dLmnq#~17X-rRf~NUsCzR`2rz?f zmeWK;MOi$=m^A6RJTYN;FePz(h;e%rvnVB^efCNz5AB(O;zg|r+i>>!dc5n@<19c@ z=+)2^w40^p7DPK_xNx3Ee7Hz+h^od=@QJOq^828VTR3{3M@!v8O9oD9D8;TX!n?B(=OP-(naO7S8yvdVJLkP;a4;oz4;W|N@aZl zopLvda~v~ybwiw7DC)|@jp4`jtt^d|i-RFz&JRwYX`JBsT;6mx5op_S-6Ol!hgmFR zn#(IC+`hhjBrEK3+~g#kBsf$wQIDF6AMX@h+h_Tk`=rg%qi_sboYdo!6Ao3nlFzJK zSLGC*GiM}m>6YTTEZjV4i}EC&bMH>1EN3)oy4K0@YNqY$g7)Z`9@DYhPG@uuin0`3 zdU{zFE6C;UW3c6J?A-I%p_S}dIH-IIQ#B+?^T$&}>M=ya*5LmU7WE*VAT-}ReHazi zV+C49aLXw-6T)+0kOep+l`TSH9xR9L9x*LPvw8Hcur$4T4CH)yiW3oII>1r|1U%Vp z$jwq~3D-u8VnD8nT#b#O(8P7MMeL-@?O>S35zEq{J!}nZyAgJetcfuM5(&}^nL+!o zT8xpZN9325r}`nGYJY=qF5i+)JWhTo({%Rgcx=nlr3uCc zW1@$8eT+lB`x2Q#j)wE!NSn?Wn*YegufCoZ$k7B>-VK-U#jJ>T0z`~%@oq8>wVcNVR;9j4B{%$T2$3e$kAH`5 zj0W)#r=yW=L`PE1vgjCRR*6GlJ%Us_<$@SQ<6WzY#1vRse1jyG2z@D&<$Np*OdQam zRPBcmqUl7~>TgB^9T^cKzk#L5J+6kws-yJ~c3lOz=NCo#E;}jygvekr^D(fm>{Mr9 zGX#hQ$64ZY9I}rE^`D1OE{zd>7B)78#N}jYi$7i$(mTEt9nJBA0F$h>^K7bA3i_TQ zP$}47rc$uNI$S{G8pY744!HK%$}}0QK*yi=>Itt-bS)Qza$VP$=$eH``I?AQ5MRdb zEV(&L1l%1`_gEW2gT+IJOXCT$L*JP$RgfN%YIE)qSn*g#A=Xq|MhjKuRtym)#F_Ir zxt)qDjRWmbBLq;zYzKnQG`VsQd%(h@btP-vjd^kapT2E863_AWf_Qv&IIsNb2#O|f zZ4MWDmSVtoG&FUQ@v@xN?`XqPMp)JniSKYmfaRFYm!Y*LfvUOX!XeVCXW6R-ywo5H z+RW6$}XU4*1=||Gz(`?XcC~e}W7= zbQHzC<*VAv_n)-(!7zQiL25or{Kqo8yy?dy6GdruRee8P+>zNK!zED_0?_B@M90<# z>2T-?uq;0h5l%pyEmC`neGwga(R2uZ3qt$?B5EJK>YLMqhJbIYPCmv49;N=&VVQVl zEC<}nUXmjUzAY>^Y_=EC!OAP&1Xi)pk}M)w`^BYHXG}hOH%@Va<}|#%vEVyC|KmfwY@2jZq*{oUhnZ2T1gA@`X*e z9*@W)pZ!wGAA@j>uGI6k1A7TVbOqZXWR;q`XMtjbfr_KeQ5&1!MSm#2UvOgjmeZVs zXM^lzkKS4^MXz}y(BrJUNiwBBA&#-sU7C<}WD%no zvr!&*am}alddz>}g>lJrQd=2kd9s4nj6O&&%#@$-(%qHrJRSBQO#8JJ`g9!6j%zFZ zvoXe#*L*6!Il++(c)OnQA;NdqgBnu@_19#W*H*-KhZWRe;%|D7Fuu#gNeU~;v3hgx zaUXs869(q^byS!W5|~Z%Q5(G8i#I*A;kpaQQAZQ47ZZEz}pFHD|E~> z3enU{tnc9RR`mT5{QjsKV_W^fSNdN6p|<+ZJMrPw_~rhG>JPr&r#Hsm{Qh?a*YStm zKUe+vdOtT*SG)f;z`y^}OBvt)8TAKW|4H?GrMljwu6)_UA9v%I`%hjWzv1h1ua%!) zg$sSf{rSDzk19C#U%f}R=j-qMg#66^+xYtczIaKS|5txTw&d$QssqoT@59$yX#PK1 z|L1>J_UG$A%8xagKjDt&ufVk@6`aTWqI%IeUqAXb*^=+i{rUMnuKHh91FkmZAAJ3i z>OlS9j9yb4)*>3)aw7~KbHOZ`t&>GXa3(BuJ#GH?c^u7|99~P-I4omtNz>1%N}2P zjlA;z_IN+Q7eu?<|Hbdf`M>xb+2f$uHS$1g6uzeLH7SN4=g_x^vC18 z(&}G(QTDIBC_7A4KfZ83{(Lu@6O3;&QT->X|Kr?HUG4rPpXiRORy*!*!`19WAL>G% zEfNtUeOBFn@_zBLMq=oX(3tPf@`sj(=Pp~y|L?gW@ARLiI#k|IhrAvieEq-w71{qS L@=|oMKGyyh3Epx= From e24f4b0ec7c92461d95e2a9f8049c96f8a1d373d Mon Sep 17 00:00:00 2001 From: srishagaur Date: Sat, 2 Dec 2023 23:47:46 -0500 Subject: [PATCH 08/10] Integrate new model on nano Co-authored-by: JamesZhang2 Co-authored-by: lisarli --- .gitignore | 6 + src/model/EdgeTraining.py | 47 + src/model/Siamese_Network.ipynb | 1633 ----------------- src/model/Siamese_Network.py | 534 ++++-- src/model/Siamese_Predictor.py | 77 +- src/model/__pycache__/utils.cpython-38.pyc | Bin 856 -> 856 bytes src/model/camera_cap.jpg | Bin 86097 -> 0 bytes src/model/ceiling.jpg | Bin 43414 -> 0 bytes src/model/chris.jpg | Bin 42899 -> 0 bytes src/model/data_loader.py | 118 ++ src/model/experiment.py | 180 ++ .../__pycache__/__init__.cpython-38.pyc | Bin 145 -> 145 bytes .../__pycache__/sms_message.cpython-38.pyc | Bin 697 -> 697 bytes .../lfw2/David_Han/David_Han_0001.jpg | Bin 0 -> 2541 bytes .../lfw2/David_Han/David_Han_0002.jpg | Bin 0 -> 2334 bytes .../lfw2/David_Han/David_Han_0003.jpg | Bin 0 -> 2335 bytes .../lfw2/David_Han/David_Han_0004.jpg | Bin 0 -> 2349 bytes .../lfw2/David_Han/David_Han_0005.jpg | Bin 0 -> 2546 bytes .../lfw2/David_Han/David_Han_0006.jpg | Bin 0 -> 2321 bytes .../lfw2/David_Han/David_Han_0007.jpg | Bin 0 -> 2415 bytes .../lfw2/David_Han/David_Han_0008.jpg | Bin 0 -> 2350 bytes .../lfw2/David_Han/David_Han_0009.jpg | Bin 0 -> 2389 bytes .../lfw2/David_Han/David_Han_0010.jpg | Bin 0 -> 2480 bytes src/model/realtime/splits/train.txt | 5 + src/model/realtime/train.pickle | Bin 0 -> 882730 bytes 25 files changed, 777 insertions(+), 1823 deletions(-) create mode 100644 src/model/EdgeTraining.py delete mode 100644 src/model/Siamese_Network.ipynb delete mode 100644 src/model/camera_cap.jpg delete mode 100644 src/model/ceiling.jpg delete mode 100644 src/model/chris.jpg create mode 100644 src/model/data_loader.py create mode 100644 src/model/experiment.py create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0001.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0002.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0003.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0004.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0005.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0006.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0007.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0008.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0009.jpg create mode 100644 src/model/realtime/lfw2/David_Han/David_Han_0010.jpg create mode 100644 src/model/realtime/splits/train.txt create mode 100644 src/model/realtime/train.pickle diff --git a/.gitignore b/.gitignore index 7aa35da..49276ba 100644 --- a/.gitignore +++ b/.gitignore @@ -17,4 +17,10 @@ Images/** camera CMakeFiles/** **/.env +src/lfwa/** +**/__pycache__/** +src/model/message/__pycache__/** +src/model/__pycache__/utils.cpython-38.pyc +src/model/message/__pycache__/__init__.cpython-38.pyc +src/model/message/__pycache__/sms_message.cpython-38.pyc diff --git a/src/model/EdgeTraining.py b/src/model/EdgeTraining.py new file mode 100644 index 0000000..55ff228 --- /dev/null +++ b/src/model/EdgeTraining.py @@ -0,0 +1,47 @@ +from Siamese_Network import SiameseNetwork +from tensorflow.keras.optimizers import Adam +from data_loader import DataLoader + +import os + +WIDTH = HEIGHT = 105 +CEELS = 1 +seed = 0 +loss_type = "binary_crossentropy" + +data_path = "realtime" + +train_path = os.path.join( + data_path, "train.pickle" + ) # A path for the train file + +siamese = SiameseNetwork( + seed=seed, + width=WIDTH, + height=HEIGHT, + cells=CEELS, + loss=loss_type, + metrics=["accuracy"], + optimizer=Adam(lr=0.00005), + dropout_rate=0.4, +) + +loader = DataLoader( + width=WIDTH, + height=HEIGHT, + cells=CEELS, + data_path=data_path, + output_path=train_path, + ) +loader.load(set_name="train") + +siamese.fit( + weights_file="weights/weights.h5", + train_path=train_path, + validation_size=0.2, + batch_size=32, + epochs=2, + early_stopping=True, + patience=5, + min_delta=0.1, + ) \ No newline at end of file diff --git a/src/model/Siamese_Network.ipynb b/src/model/Siamese_Network.ipynb deleted file mode 100644 index 5ab385b..0000000 --- a/src/model/Siamese_Network.ipynb +++ /dev/null @@ -1,1633 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Defaulting to user installation because normal site-packages is not writeable\n", - "Collecting matplotlib\n", - " Downloading matplotlib-3.7.4-cp38-cp38-macosx_10_12_x86_64.whl (7.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m24.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pillow>=6.2.0 in /Users/emily/Library/Python/3.8/lib/python/site-packages (from matplotlib) (10.1.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /Users/emily/Library/Python/3.8/lib/python/site-packages (from matplotlib) (3.0.8)\n", - "Collecting fonttools>=4.22.0\n", - " Downloading fonttools-4.45.1-cp38-cp38-macosx_10_9_x86_64.whl (2.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m22.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numpy<2,>=1.20 in /Users/emily/Library/Python/3.8/lib/python/site-packages (from matplotlib) (1.23.5)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /Users/emily/Library/Python/3.8/lib/python/site-packages (from matplotlib) (2.8.2)\n", - "Collecting kiwisolver>=1.0.1\n", - " Downloading kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl (68 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m68.0/68.0 KB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting contourpy>=1.0.1\n", - " Downloading contourpy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl (247 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m247.0/247.0 KB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting cycler>=0.10\n", - " Using cached cycler-0.12.1-py3-none-any.whl (8.3 kB)\n", - "Collecting importlib-resources>=3.2.0\n", - " Downloading importlib_resources-6.1.1-py3-none-any.whl (33 kB)\n", - "Requirement already satisfied: packaging>=20.0 in /Users/emily/Library/Python/3.8/lib/python/site-packages (from matplotlib) (21.3)\n", - "Requirement already satisfied: zipp>=3.1.0 in /Users/emily/Library/Python/3.8/lib/python/site-packages (from importlib-resources>=3.2.0->matplotlib) (3.17.0)\n", - "Requirement already satisfied: six>=1.5 in /Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib) (1.15.0)\n", - "Installing collected packages: kiwisolver, importlib-resources, fonttools, cycler, contourpy, matplotlib\n", - "Successfully installed contourpy-1.1.1 cycler-0.12.1 fonttools-4.45.1 importlib-resources-6.1.1 kiwisolver-1.4.5 matplotlib-3.7.4\n", - "\u001b[33mWARNING: You are using pip version 22.0.4; however, version 23.3.1 is available.\n", - "You should consider upgrading via the '/Applications/Xcode.app/Contents/Developer/usr/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n", - "\u001b[0mNote: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "%pip install matplotlib" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-11-27 17:24:21.843454: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", - "To enable the following instructions: SSE4.1 SSE4.2, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", - "/Users/emily/Library/Python/3.8/lib/python/site-packages/urllib3/__init__.py:34: NotOpenSSLWarning: urllib3 v2.0 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n", - " warnings.warn(\n" - ] - } - ], - "source": [ - "# https://keras.io/examples/vision/siamese_network/\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import os\n", - "import random\n", - "import tensorflow as tf\n", - "from pathlib import Path\n", - "from tensorflow.keras import applications\n", - "from tensorflow.keras import layers\n", - "from tensorflow.keras import losses\n", - "from tensorflow.keras import optimizers\n", - "from tensorflow.keras import metrics\n", - "from tensorflow.keras import Model\n", - "from tensorflow.keras.applications import resnet\n", - "\n", - "target_shape = (200, 200)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "cache_dir = Path().resolve() / \"keras\"\n", - "anchor_images_path = cache_dir / \"left\"\n", - "positive_images_path = cache_dir / \"right\"\n", - "\n", - "# TODO: put left and right images in left and right folders" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "def preprocess_image(filename):\n", - " \"\"\"\n", - " Load the specified file as a JPEG image, preprocess it and\n", - " resize it to the target shape.\n", - " \"\"\"\n", - "\n", - " image_string = tf.io.read_file(filename)\n", - " image = tf.image.decode_jpeg(image_string, channels=3)\n", - " image = tf.image.convert_image_dtype(image, tf.float32)\n", - " image = tf.image.resize(image, target_shape)\n", - " return image\n", - "\n", - "\n", - "def preprocess_triplets(anchor, positive, negative):\n", - " \"\"\"\n", - " Given the filenames corresponding to the three images, load and\n", - " preprocess them.\n", - " \"\"\"\n", - "\n", - " return (\n", - " preprocess_image(anchor),\n", - " preprocess_image(positive),\n", - " preprocess_image(negative),\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Bill_Gates_0015.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Leonardo_DiCaprio_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jackie_Chan_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Atal_Bihari_Vajpayee_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Britney_Spears_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Arnold_Schwarzenegger_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Aniston_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Leonardo_DiCaprio_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Serena_Williams_0046.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Queen_Elizabeth_II_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Arnold_Schwarzenegger_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Britney_Spears_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Angelina_Jolie_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Bill_Gates_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Roger_Federer_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Lopez_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jackie_Chan_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Serena_Williams_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Hillary_Clinton_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Keanu_Reeves_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Aniston_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/David_Beckham_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Vladimir_Putin_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Michael_Jackson_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Serena_Williams_0018.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Vladimir_Putin_0020.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Atal_Bihari_Vajpayee_0024.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Atal_Bihari_Vajpayee_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Hillary_Clinton_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Keanu_Reeves_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Hillary_Clinton_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/George_HW_Bush_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Queen_Elizabeth_II_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Angelina_Jolie_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/David_Beckham_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Michael_Jackson_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Roger_Federer_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Bill_Gates_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Roger_Federer_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Leonardo_DiCaprio_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Tiger_Woods_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Michael_Jackson_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Michael_Jackson_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/George_HW_Bush_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Angelina_Jolie_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jackie_Chan_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/David_Beckham_0025.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Angelina_Jolie_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jackie_Chan_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Arnold_Schwarzenegger_0041.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Michael_Jackson_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Leonardo_DiCaprio_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Garner_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Atal_Bihari_Vajpayee_0022.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Britney_Spears_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Bill_Gates_0016.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Garner_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Serena_Williams_0047.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Keanu_Reeves_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Angelina_Jolie_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Bill_Gates_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Vladimir_Putin_0034.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Aniston_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Vladimir_Putin_0036.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Arnold_Schwarzenegger_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Lopez_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Roger_Federer_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/David_Beckham_0027.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/David_Beckham_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Vladimir_Putin_0030.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Arnold_Schwarzenegger_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Hillary_Clinton_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Garner_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Lopez_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Tiger_Woods_0021.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Leonardo_DiCaprio_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/George_HW_Bush_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Queen_Elizabeth_II_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Aniston_0018.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/David_Beckham_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Garner_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Garner_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Serena_Williams_0016.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Britney_Spears_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Tiger_Woods_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jackie_Chan_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/George_HW_Bush_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Queen_Elizabeth_II_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Garner_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Britney_Spears_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/George_HW_Bush_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Angelina_Jolie_0020.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Queen_Elizabeth_II_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Michael_Jackson_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Keanu_Reeves_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Britney_Spears_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Michael_Jackson_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Hillary_Clinton_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Queen_Elizabeth_II_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Serena_Williams_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Aniston_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Bill_Gates_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Roger_Federer_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Britney_Spears_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Angelina_Jolie_0013.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/George_HW_Bush_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Arnold_Schwarzenegger_0013.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Vladimir_Putin_0038.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Angelina_Jolie_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jackie_Chan_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Britney_Spears_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Serena_Williams_0027.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Serena_Williams_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Britney_Spears_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Arnold_Schwarzenegger_0016.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/David_Beckham_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Lopez_0017.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Keanu_Reeves_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Britney_Spears_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/David_Beckham_0024.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Aniston_0016.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Tiger_Woods_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Garner_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Hillary_Clinton_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Hillary_Clinton_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Bill_Gates_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Hillary_Clinton_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Vladimir_Putin_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Leonardo_DiCaprio_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Aniston_0019.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jackie_Chan_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Atal_Bihari_Vajpayee_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Tiger_Woods_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Angelina_Jolie_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jackie_Chan_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/George_HW_Bush_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Serena_Williams_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Tiger_Woods_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Atal_Bihari_Vajpayee_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Keanu_Reeves_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Queen_Elizabeth_II_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Tiger_Woods_0018.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Bill_Gates_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Lopez_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Roger_Federer_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Bill_Gates_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Keanu_Reeves_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Keanu_Reeves_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Garner_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Angelina_Jolie_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Arnold_Schwarzenegger_0039.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Arnold_Schwarzenegger_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Queen_Elizabeth_II_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Michael_Jackson_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Aniston_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Roger_Federer_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/George_HW_Bush_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Keanu_Reeves_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/David_Beckham_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Arnold_Schwarzenegger_0006.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Roger_Federer_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Lopez_0013.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Hillary_Clinton_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Roger_Federer_0003.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Tiger_Woods_0016.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Leonardo_DiCaprio_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Vladimir_Putin_0021.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Lopez_0016.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Leonardo_DiCaprio_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Atal_Bihari_Vajpayee_0018.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Lopez_0015.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/David_Beckham_0030.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Garner_0012.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Bill_Gates_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Atal_Bihari_Vajpayee_0008.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Hillary_Clinton_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Roger_Federer_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Vladimir_Putin_0041.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Michael_Jackson_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Vladimir_Putin_0031.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Leonardo_DiCaprio_0002.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Atal_Bihari_Vajpayee_0014.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Michael_Jackson_0001.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Tiger_Woods_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Atal_Bihari_Vajpayee_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Lopez_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jackie_Chan_0004.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Tiger_Woods_0015.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jackie_Chan_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Garner_0007.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Aniston_0015.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Jennifer_Lopez_0009.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Queen_Elizabeth_II_0011.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Keanu_Reeves_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/George_HW_Bush_0013.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/left/Queen_Elizabeth_II_0005.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Jennifer_Aniston_0013.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Serena_Williams_0051.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/George_HW_Bush_0010.jpg', '/Users/emily/Desktop/CDS Work/edge-ml-pm/edge-ml/src/model/keras/right/Leonardo_DiCaprio_0010.jpg']\n", - "100\n", - "100\n", - "100\n" - ] - } - ], - "source": [ - "import random\n", - "\n", - "# We need to make sure both the anchor and positive images are loaded in\n", - "# sorted order so we can match them together.\n", - "anchor_images = sorted(\n", - " [str(anchor_images_path / f) for f in os.listdir(anchor_images_path)]\n", - ")\n", - "\n", - "positive_images = sorted(\n", - " [str(positive_images_path / f) for f in os.listdir(positive_images_path)]\n", - ")\n", - "\n", - "all_images = anchor_images + positive_images\n", - "random.shuffle(all_images)\n", - "print(all_images)\n", - "\n", - "image_count = len(anchor_images)\n", - "print(image_count)\n", - "\n", - "anchor_dataset = tf.data.Dataset.from_tensor_slices(anchor_images)\n", - "positive_dataset = tf.data.Dataset.from_tensor_slices(positive_images)\n", - "negative_dataset = tf.data.Dataset.from_tensor_slices(all_images[:100])\n", - "\n", - "print(len(negative_dataset))\n", - "print(len(anchor_dataset))\n", - "\n", - "dataset = tf.data.Dataset.zip((anchor_dataset, positive_dataset, negative_dataset))\n", - "dataset = dataset.shuffle(buffer_size=1024)\n", - "dataset = dataset.map(preprocess_triplets)\n", - "\n", - "# Let's now split our dataset in train and validation.\n", - "train_dataset = dataset.take(round(image_count * 0.8))\n", - "val_dataset = dataset.skip(round(image_count * 0.8))\n", - "\n", - "batch_size = 16\n", - "\n", - "train_dataset = train_dataset.batch(batch_size, drop_remainder=False)\n", - "train_dataset = train_dataset.prefetch(8)\n", - "\n", - "val_dataset = val_dataset.batch(batch_size, drop_remainder=False)\n", - "val_dataset = val_dataset.prefetch(8)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-11-27 17:40:40.021157: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype string and shape [100]\n", - "\t [[{{node Placeholder/_4}}]]\n", - "2023-11-27 17:40:40.022191: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype string and shape [100]\n", - "\t [[{{node Placeholder/_4}}]]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAH3CAYAAADNB+fGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ybMkWbLmh/30DGbm051ijowcKiur6r3X771GN4QApJskBAApQAOEQLgAhCBEuCGFOy645j/GBbkgQVCaZAu6+/VQY1blnDHeyScbzjnKxTnm7hEZWZVZlVUVmRmacvPe8OvX3dzs2FHVTz/9VFSV1/baXttre22v7bV9v8z8uQ/gtb221/baXttre21/ensdALy21/baXttre23fQ3sdALy21/baXttre23fQ3sdALy21/baXttre23fQ3sdALy21/baXttre23fQ3sdALy21/baXttre23fQ3O/7Zci8rpH8A81Ab6/Z/Gpqt76cx7AuIZl/JL8Pf8vm2r5Gv/9Jz7G1/ZK2599DcPrvfg5O9hTRQRVzd9fvHMVhHzDq5bnMv6tgiggVFVN08wO/whnHbP5AjGgSTFGEBFm0xnj5qGAUt5bhec3lXGfURKKkN87pZR/rZA0P26sASP5WL/k4+5fU2m3az784DekOPA1dquXruPfGgB8VRN5+YF/m20vj5AXkMjuRyAd/uq5a7BzIpK/dq8SBfSLgEvWYfjOup4P/9wHAOCt4I1QITgBa8g3NkrUREyGEJWQlJggUm5uKVdEZHdDv9bNeN5evPe/g+fnlVjDf1IT8g2ycz1fFh3/rmv9u9eCkGFoBZIcPDg6eM2/N8aiIkTR7OjH5yZF1FD7CnGOPo73quX2nXsYEZJCEoM4y//6v/lv+Zu//Z9gHcTUEoeBGye3eXDvHawYMAMQCNFycnJK6LeIBpwoQ9cya2aErmfoByoGYr+mi4ZAhfoZ08UNXDXh6mrF1fWSIW5phyW+qnC+5tGTJzx6/JQ+RDbbjtniiHd++C533rzPZDoFVYwx5XPL7nSgigUckV/+9J/zf/zf/ddcXz6C1B+c6t+abb50HX8jAcB32kq6mE/rLqzj8ER/afhzEERIXsYvvG5+0mEQ8Ltiqe/gBvvHN1UkkXcTEYzkaF4FNJVwTkqMLqOj//Me8mt7bX82U0p2rM/7ky/cE3/4TaK8kLk/F3cYNAoJISUHxlBPGm6/cQc1moOUkPDi+F/+h/8JikV9wxAV5xv+m//2f8uNW7eJCEETSRQ1HmMmeKNod40OHVYtTjxWDCEkunZDlYTVZx8Tui0SW7TfInHg4cUlGiOb1RrbLXEaadWT6iOqk7vcePNHzI5v88GvP+Lnv3ifrr+mH64QY6jqKU8vzlmutxjv6frAjZu3ODk5YXF2QtM0iCnogiYQ+8LZSiiJs5tn/NXf/A3/9L9/9Aef/9cBQLGXO9YDbyD754nJDxkDpHyvWGtJqjsoWVN2Mogwgncy4s86vrSQNO1ugK8CpIyQ12v7GraD/Pb7mmiB78pTXvz+XFRXTvfr8/7avqt2uK/krDzvZdYKMeafnTXEmDDWklL60iC5bG/5tjEFOh0htfEdxOyQNSRD4NYoWNk9/uZbP+Q/+A/+55AM1nkiymQx5X/2n/7HqEloUmwUJlLxNz/8S/ohIpMpQwIxnqjQqeQA3wlJIyElJlZJmw3d08ek7YraV9SLE8QIlw8/5unDj6FrYeiJ3Zp+eQlDi4SebrNBNRGHQK0Rk2BwU9Z2Sn17SzU9xdkpTx8+4eMPPmYYligrun7A+grjPLfv3sXVDZdX1yzmcxaLBc5ZjDU4a3c+5LCoICKQDBC5ceMmf/03f8M//X/+3/7g6/46APhtJrqr45DKRSlORBS8NRhjSEOisg5jLf0QSICIJUbIt1JCZazX6K72gwhKAvQrOf/dYR08+bVT+t0mY8C1y2zK4yUA2J3P34qgvT7Pr+27aVIQsd3PmnBAVCApzhisEWJKWGPKbbLP3EdntXu9/QsjtsZXDWIsGhPGVVRVzXs/+ou8D0bFWM9/9l/8F/z7/+jfJ2jeP+t6RlU3zOc3McYzxEhygkrEeMGYhPYDbjBUyRGCRUSI0YOxRLVEhCSQSGgMKAlHwmyv6R59ytOf/R3rJ4+Yzua89aOfMD89Yf35h3z+07+jGtaYoSV2G7xGbAy5FKCaAyAVbARwaLKoc5AGvFWcB8NA6NZsNleIdKSYqKuGm7du8YN3fkAbI4jl9OyMs7Mzmmay5yKpYqSc57Q/x0YhKVhyUmmsIYU/7Nq/DgCKvYzHIOhzWLCR/GULMpNCIqZEbS2nRw3NpGG92TBEZbNuCVGxxmVkQLKjz++Vv6cRYfvCW3/1aODPwb/4tgUd8uKX6q6oc/ikHUnw2/XxXttr+4NNRDDGEELAWZPTklw3I6oQkwAe47LzEyNo3HsfRbhx6yY3bmWemSCoCLcfvM2/94/+p4XgZrDGMJmf8E/+s/8VYgQrDk0RS0JSxKSEs5Y+Aramw5KsQ5ri9GOHjT0+JrrrLRdPL+mWPUfTE05v3QFnQW1JrgDNnJ+YBowMeB0Il0+4+vW/4eoX/4r24hntZM7pYsKN4yl1ipi2RYY1TntM7KkFjAhgwTlMVaPGYWM+LzEZ/HzG2Z1bnN0+o55VVLWCbujbFb4y1HXD8dERp6enzBcL7DBw13km8zkJsM7mZLKQBEc0GdXdYyYqKXTE/pqQEloe/0PsdQDwW8wYkATWleVrYdJUhBgIQ0KccDSveXD3FovFlKiBEKccHZ3wySeP+M0HjwhhQASSpj3qtYOUIY1xwSvaLfCyAOPbFAAcMmhfbHp9PjAYmZ66f/5re23fAxvvcWMMzjmSConCTDeGo9ObSFIQi4rD+Yr/8D/5X3DnwRsc1jR/8N57vPvee4U0bUDAVp6zG7dwvqLdDgiGuna0HXjn6SNMbGRYXbF5+oS43kAfcPWUxe17uMWCrSqDSTgX8GmgCi1pec36w0/59FcfcfFsyZ27bzKta+rphP0draA5uLASEDr61TkXH/2Sp+//FC6ecJwSYdjSL68gBCpXMW0W2EpoXEJCYuIrKl+BqZB6gp8dYZsJdui5On/K6uKK5tZtbj64z+LmMUnA1wnvA85FKl9jnQMRlsslq/UKdY6Ts1OSGFabNU03p6rrwkXKHABhX5bRpAzDQN9uIHTEGL6RLeo7FwB8oRUkP7izXOti5xlGZncu1+8bMQTwAtOp4dbtU6bTKcYKpycnpBQBqOuau7fP+OE791gsZgxDx89/8XPmi2N+/N4DfvX+R/zyFx9yfrkiuYoExJhIMZFSIqREjJDiAdBwCFN/2RX+E2b9L3P2v4v5PUKK6RuIUL8x+5JTlrP+fP0LpWPf2fFc9PDaXmbfoljwe2hjeHu4mItzNIamaQCo6pp+6Gmahv/oP/qP6YIy2AaDwTdT/uv/7r/j1q17iHF0Q0DEMpkvoG5e4AjqnsUughFwNtK3gT4J2AZrPZ0mAhCCxYoSY0e7vODxb37F0/c/wAyR01v3qG3NbHbMJkZMnRC2+Njilpdc/eYDnv7bX7B69Iy+jWyrin57TcUdQAuLXkESTgKiPaFbcvnwI64ef4K2S+owUClYsWgyBHWc3HqDH/yFpXKBaW2xCtOmYdIsUFfTSoXWU2wzwbVXVB/9mvWTxxy/8QY333oTqT3dtkMZcC5ijBJjwMuE2XyOrWrEOq5Xa7ZDIAJnznBjRIdV8d5AspCUISkh9MQhsF2tWF9fkIYlp2dnzGZz1tfnf9AK+c4FAC+zvb/6YqVq5OVZUSyKMxnuaSrH6bHn7KTi9u0TTk6Pcd5TVRWTyYx7997gzp17HM+nVBJQTaiA10gIkVt37vH3//In/PN/8S/51a8/YD0k1tuO1XrNtu0Zhkg7BIaQCAFCUFJQUnweDHjx+4uf4o9tX6XN61VuA933V+x/UN3HWLkkkHb1Ndl3eD4XKH57YoCD1iEO2hgPy1kv3ga7kyRffHzsetGXBXOHkMqLleEvO6KR9/Lavq5Zmy9D5iJlJ5sKuS4/lkrwbVAxaDIYW3F28xZvvfUOUQVjKxKWk7NT/vP/6r8ixhLyilDXFf/oH/9j1DiGlIl6MSass8SoOOdZWENKkBDibklpQTbjjjeV7yuQwdHYih6IRhiMkKLiG4PGAU0BpEeHDcvHH9M++xQzQFdNSF2PUZjWno0usXFDtV2jn31G/PUH+IePqDctoWkwp54wB60GrCoSc7ePpojXyNC2tBcXsLzidObg1hHb62uGZQ86IcmCVhZMHpxy88YD5ig+DViNGA1YZ9nGRB+EYGuqZo40E+gSs/kZ8/v34OSMtcJWQV2F2IoUIabISTPl/htvMzk6oZrO+PjhM5afP0acYXF8jEUw5VqaggrHGNCwJfYbtqslF4+f0K6WaOp4+803WSyOWF9fsmtL/z02qT84AHiVN39g7/11zPQFY2TXS+qcQaNSWWE+8cwqz+nxgrfffIN33rrByZFjMq2o6xprDavVGsQzMYn2+hzdXKLDlpQixjmOZxOcr6h9Zq7+w7/9S9595wHX65ZHjx7z+OkzLi+XXFwtWbcdfUjEqPRDoG0TbRsYhlRust2h/9lsPGe/z9+9SqYKap73c2PwN3YeHW5cf0hN5redrW/8rHzhMMcNWPbvN3axjIHAYXSgh6+zf57InoD05UGQlneS5+6zl3/+V3yfeMVNRMBWiLfokAlk9XTG3XtvIJJr3obIyY0z/sl/+V9ifYMxFc7VnN19g/d+nEl3EUfE4r3QNDMUJaVyFUXoBNBMnlNVMEpIIMYQVdC0v86mCGXs4+RMThv5NQZwmv/OSHlNAeMtqgFjAlYHRALOKpUJODqssSTtMa4EixqpNFL1ge7RUy5+9gvWv/kIu22ZiuHo1hk337rH8XHD1EfipkMGpbIVw9CxfnbO9flDrp5+gteWN+/dJFrlo08fsbluISmxlD0ilk0/sLx8xnB9jvYbUrdBU6SLSqsemiNuvfUuZ3fvYs7ucnzjNv54wdYIMQRwE1y9wPo5xq+ICG46Z3Zyk+nxMZ8/fsqT80uul5fM59OcgJYAQBSIoCmShp7Yb+m2Vywvn7K6eEi7XmMMhG6TM5Y/8L76DiIA4zbOQT2lQFNjXcoIxgrGKM4qtjKcHc/58Xtv8Zc/epcfv/cDHty/x/FRTeUTQmK7WbNaXrO8WuUbLhratid2kSGsuby85PzigqppODo6YTKdkhSayYS3H9yjsg3P7tzm888f8+jJUz79/CGPn12wXG3ohkCbBDvxGGPp+oGuC6RwkIn+Ge1Vc+Zf154T6Tok+40/m8ywfdVj2ZfaF7mM5Ut3/4YxUNcvJPKjwJUZz8eOEZ4dw8hBHrkqO8kKye+xBxWeDxa+uGQOI43X9nWtnsz43/zv/08ksRiy8tyte2/wn/6T/xwwJE2ZvKeR2fwI6zzdEDDeM0QQY3FGSKF0IJEXfIrjxZRdOPdCQe8lR/M8UiS7ensJO/VA1a44fyuHyFuCFDFJsSI4hCQCJELswVTgoE8dXVxj3JSpQvvoioe/+ojzTz+H9RqvyvHZGffffMB0Pufqs8+4/Pwh/WZgXs+4c/M23eqaD3/1U548/JChveatt+4ym9wjzqZEBtq4xZsOazp82hDOB57++pc8+vBnhM0lJvaYENAhEtXTywQzOaWRmtnxKXo8p24qqDwpBhTBiMGYGusaqskCrWqqxQm9GLr1hkcX5wSUZjbh7OYZR0cLvAiSElayYoxqwmgixYF+u2W9umK7uWa9uub4aE7TOMQq/IFo2ncwAACwjDpKuQs05RpviWqdAWeFyjvOzma8/eZd/v5f/yV/8/d+zDtv3ePkaEZdeVQjhsjQdaTQMXhHaiq6bUe76QjtQD2pOL55wuJoiq8t5+cXPHnyGZPJbL/lpcDZ4gY3FnNO5jPu3jrjaNrgDXy4XdNvtjAExDQYC87bXedATLqXphu915/Ifpvj/22owKscMOwS4cM9TPZf38Tr/7lMXviCfCdAri0aAXGC927/eSWTXZ0zWJuZyJCvYYyx9HtrLln1qUDOz19/3TGWD9y8vKziMKISvz+68n21+w/e5v/wf/6/oCqkpFjnaNsOX1WkJBhndihnL4YUAetzUcZp7jhK4MRgSyA4oqG/H1UnQz3jNR7hayiompq852p6Dn2KKeVSQQoIEYsiMZLCgKJIlRX/BjMQbY/1A0nXtM8uefbrj/n8Nx/Trzd4A7auuPnGHe7cvsHV9RUfvv8rzjcbVA0P7j/gdm2IFxdcffA+Fw8/ZDJ12HCGxFymikSkiiTTEsI10l9Cl9h+8j6bz36Flx5NAU1KCkLQmuQUWx1hxaDGEV2F9RUJwViPJEOKicZPuHFyC2MmmNmco9NTokLfdVTO8uDeHWbThju3bnLn7JSpt0gKu/a+EHpCt6XbrGk3K7rNinZzRbddUt88wllTQrU/7D76VgcAh45m18eKoGpyjaycHG9zBGpI1LXj9q0b3L9/xltv3uHttx7wxv3bvPPWPW7dOmYxb6hs3hC7Vum7hPOWylucAY09pAFLYmjXXF8/JTwLuMpjrGFxNGW7bUmxRxG6ruezTz6iPVnz4MFb3Ll7l3rqOb9+RvPI4qqE9QkPdENAo0JMeGsQsXRDJKUv1lVfRrx7bV9iLylK71AA9mXuL9o376i+6Vd8sZxv5PmfjZCzCmuovMN5W8hfefPIYkgJY8Fah7UGLfXHEECLfHXvDb4aq/z5PksJYojEmDK5NeUAYef4n08U2ZUM9LX7/7rmq5oYXdacN4YQBVc7QlKsswwx5VKWQNI9nTVFiix5/ndJtEvLmX4pujjuJy/uM2PNv/wr30uqu4hPtKw7ypekHUqARoSQ6/4pZGlbI1hNNE3FvTfvc/Mol1Dd8U1O7xxRN0qvW4gtE+c5Ojlh6xSJPfPjObd+8g5Ht8949psP2Dx7zPb6ClvV6NkCHzdUw5qm3zCPA1NxyNATYw6IcCAVJNOhusamFWm7heUTJt0abyIpDjhfQ1OD1FSLU6a37jG5cxszn6LOoJLvAyOCTYJR4cbxKT959z36oNRHx/i6xjUVIQWGm6c0tWc+aZg0NTEF1hfnxJioKs/R4giJA6nPOgSh29C3a64vn2E0YSUhCkeLOZ/9gevqDwoAXjWnMw5lsCa3T7giamHJBL/5zPHmg7v85U/e4wc/uM+7777J/Xt3ODmZM59W1JUBAn3XsVl1LJcdq+stYehIoWe7XnH+7Cnr5QoNEPrIoIF2aNE2qwGqgsZIGsk1KbLZrHBVxfXmGntd0bYtduI4vnXMneE2PBEuLpb4dSKEzEQLKUN1ViBaiAkyu1X+ZLvnl20C32bbQeFwAGVn22es5T/RPWfga56CLxvs8dIula90zC8J+l74eYTxjeTeZ2fBGYuzDu8d1tqsQZEiIgmk3CuApoFERApmkGIgxYAxGRkAya1MmVuNqpKi0mlWZFPJba6ZvJSPyZjc5prJlOXYi7M4bHF6bV/NbOkjHgX1dgNuUhbukRJcWdED0T0lyYi5jAX7PUZ02HueX/Ogon8gEPSiHVSCyv2RkBIeigpCLJc8AimjTEScJMTm4TpW8mwObyomt29z1oD0G8R5WvEwmxK0wxM4Pp1xKm9yfDZn3a0YYstiPuXo1i1MVaGNwXrBaMA5D2ZAtcPEjir2zMQgw4CGyBAVMQ7rHKoRTT0iARjo2iUaOyoRTEjMmhknt29RHZ8yTE6wt95Cj+/ibt4geUHSgAlKJZKRhX5Ah56JKPfOTpg0c2ZHJ9jas+m3XFyeMxjlbDFj2jQY4NPPH/Hk6pxhCExnUyZvv4M4xYliScS+ZXV1SbdpOT0+Yj6d03Ut77z9Dj/76U//oDX1rUYAXmZC3qKsQO1zzcuQWEwNb75xzD/82x/y7/67f8vduzc5OztlPp9QeUsMPettx2ZzzfXVJcPQYaQhRkOKAzH2hJjwvsJXNckqximOhLcVXdcRY2Toeq6vlxgE7ypSSKgIF5eXBE1crq+Zzuec3ThBPKhT1CYSCRiwGuhE6QJISBnDFSEmJURIRT3oTxl8fd1A4FsROPw2/syLnvUbetk/lgnZ4VubS1veCtZKQQCy+IqRtOPCDCGAJKy1eO8wRogaGYaBFLO6pWpCUyCpYEYHEgcSOQBNqsSQiGEAhcqbrPaGZNW2qIVAqvsgoBzs6wLA1zchq+RCyehVC36zv8/GwPX5nmLFlmg3/8vkEsxzJbCXB2O/zfmPR7WT0xYFiYjGXGvQRCLXqA15HThJGEm7UqwkBQxDUEQjxvlSO3ekCCFsiX1AdCCoxzWe49kZc3NKnwam0waxlm4IuOM5R7dvsG23rFPPdb+mkwGxilXFJuj7wLYb6NXk1j/NcD0aiXFgO3S0kmgttEmZ+prFzRu8+d67HN25xzA7pl/c4tpMab0gtLBpiSh1VaMx8uzhE64eP6G9XKJ94PbZHRoeMDk+ot1es3zyEf3Q4eMGe3zCtJlC3xLWK9q2hdDBcBdvPSEOxG5Lt17RrdcQYD454nRxxqP2EWGIPHc3/R431ncuAABF0oAzAkGpjHJ20vDWgxP+6ifv8Dd/9RZv3VvgvLJdnnN9PtDUFbPphOvraz77/BOePX1Ku91i7IT57JiTkyOEwLbdsFqtWV5fZ21s57E+102NyVmSr4Sm6ilSWsR+YIiJYdOxvF6yXq25efsW3jkW0zk/ePMtTo4W3L5xk88+esbTx5dcLTe0Q2Tb5y8zQMjYHkHGGuqfxg6d+es5BK+WjVm/tZIdvzd4b4qjSJlJrIqGPG/CGoN1BjV5k46aMAnEGjCgKYehplznLFmdpVSTQojpIPvPwagIOCd47zNTPOWRJSKpMMb3SlcjV+Awy3xtX9UElcLPAMYxs2MhJz/jeR2T59kgILpHD77w6jJeH939+6tbLiMJOYu2RrGSQw1nTVE+DZB6NARiCqSY0JjDB42ONkV8ChAHJATamBDrMBqxqWcdFFWHOEeyghohbCNeLI1xzG/c4O0f/5jpbM5ny6fY+ZTUuAyDiUETDEHZDok2CY1YEJsR1SQMIdILxOmEbVOz9kIyiUYHLtslw7Vjvbzk8vPPudYKf3Kb06MTtlfXLK+vuXF2g5OjI9LVY4bLx6R1S7/ZchlbnPQIt6kay6QaaNsljx9v6Nol9++9mcshmqitwQtUNiMj/WbD1cU56+srBGXWLJjVR0zqOSk8JoZRteT335O/VQHA8/DpuLi/UB3HGRBNVFa4c2vOD966xY/fe8CDe6dYOh5/9gEqnrqZ4b0nDZ719TUPHz7k/fff5/LikrppeOvNd7lz6y5nZ8cMw5b1tsZ5j1jHarXm8bNnbDdrjFOsGKx11FVNVTU467AYRIW43pC6QB8GuvWWYdtyNJ3xxpsPuHvjBs8uFjTGM5EpU9/w9PyCq1XL1aolpZYY407ASAvHIdfv9MAh74Ds/Rn6BlGCw7nb8PLs/vD9vs3Bwjd11Pv1+s07u9H5V85S1R5r8zAVa0A1ZrGqcv4jmteLlLnkkmugohkdE81zyrNjyRKuSfNzTGmdjDvJyjH7zAdhXZ6dbowQYqDvM8SaV2qGkL23eZyrKsMQdsNlXttXNwVC6fcfp1qmsRxTrovZBQBjKDCWCwvvXyhZuR4ECM/fq8+3/erB/0d7YS2XYBONObs3CSPl57LOcrQ4kOIWjT0pBFIckSGhHywpJBo7IKkDI/QxoipURLwOoIqKJ0VDFMG4Co2OJAE1gYnz3HnjDU5vnHG8uWKrPXYyYTDXqBgytUqIahiACosxHieeGA1DH1HrkWlNVzm2XgixIyyfsvnNGv9pxTYZltHR2Sln999Bbt7l8vych599TnvvHvU7P2B7+Zju6hm1dVivWBm4uHhIkA0nt04Z4oY+bmn7wLpd0w49y+t1Hi5UNzhj0BgJfWS7XbG6umCzXkJSaj9hNj1m0ixIISMau+vxe24x35oAYLcID32+HEzaA4SUyX4GZo3h7s0ZD+6ecOu0xuqai2ctq2vD2c0zZtMTKleDgc8//ZyPP/qIp0/OQeGNew/40Xs/4b0f/Yj50Zy23fD4aUdMcHW94vHTc66XK84vLrleLun7DiMZ/mzqhvlsSlNVzOoaI1BPp1S10HYtT5895ekwcDyfczSdcPv2TY4qz3YyIcx6NrMJceggBjQYUsytPV3Q3M5jNcOzjC1dfzxOwFgDfDEr+F2O/VXjhhQwBtiHjeYAih6bLEZ6xR96Osdt8+V5rjAOIXrpe4079ThyUnQsm++Y9SPkXxmYeqGuLFBY+zGvj5jyRi7WEEjEBAElmbSToDZGMFhIsmM7Z1XEfQvgGHjGlAoPJZP/xrKxNXkISwiBYYjEmD+bteM6yM7ImMzPQS3GJGKMWQXzpSf7q2Q1369CQgbTx88su1q+fGGVye75X15vkRe+H/xGTA4wTNi/BiVkKITQHeIsCSFiGLAy4KXHasBqyOWi0BP6Fshyp5oGNMbyVbgjCISsxTKYhGrIBG5jMvteNaOfSOaZaCEyEnI5FGgB9ZHKWcxsys35jBgSVVJ6XxOnFb0TCBYfHAyCSINxJ6hcoknQTnCtYrzDB4NLFhcMqe9ZLluSCL31bKWCaiDUF9AcQxvpVi2ryxXtuqdvE+2gOF/jZx7bTFm2LddPLjjfdnRxwE9mTCys1hsul0t8VXN0dsqkmeArj1houzWr6wu2qwu0W6JDR3CCmzr8ZEIfs3aBdZZYlGnzJvf17olvTQDwnI2b5C661V2bk3cwqeDk2HN2NuFo4TF0XJ6vWCymnJyd0g+B7tk5z56cgyaWy0vW6xWLecNbb73LX/z4r7h3903EweeffcQvfvlLHj99xsXVJU+enrPebumGwPVyxXbb0baJpHlbbxpP06zwRphUlknlaCrP6ckNZosjrHes12s++fgTzp895ebZKScnR4SYiJ3mSVxGs/oUgdrDVB0SlEEjIZB7dw/RvT/yPviy6YO/q274KgUB+sL+uHdLY9bzwikcPe4f8p4H319IqNjPUzvo4pWD/mspAUDZ9ou6CmhmVlsDlRcaKzSV4K0SQ2QIoSBEWpw1BSqGOJZ9C4ckpUwqS1hENW+CChoTiCEpuy9NmYSaUgmz0xiU5GNOqoSYyw3G5JKEtRmlGjsEInF3bqwpczYkv27cgwvlmMv/vjTQPHRg348gQBjX0d7By27/++JzX/bA86fz8J5+8a8SyDjox+xQx7xaLfs9N7dJO4lYGbDaI6klhp7Ud4S+JYVNPlpVNKW8vsr3PMxGdkt81CRQspohSJnoN4pN5aADyIvGRjAWay1DDIQixuakwVEhMeAmM5qbp7jra9JywKgnDhCrimjmtDqDFKkGS+gS3hh88rjoqVLCDhYNPeoM4iYoLnPDOkOKltMbd7HVnMl0SrO4gdsqskkMrsJUE3Q6Y3F0g6SK856JKPPFEZPZlL4fQKCZNIgR+r5nOp1gnWFzuebq6hmb1SUSW4x29MmwDRvOry+5XK9opjMmswmrZV8u6W+7Z15u384A4DnLzFNDbvebTT3ziXJ81FBVhr7vcCLcvnHCbNrQtwMfPPkQTcJsOuOtt9/knR+8BarM5wvu3n2DoU/86te/4qOPP+Sjj3/DRx9/QkJZb1uenq8xWaaZ1WYgqdD3ecNVgW0fsaseZ3MAUFvBGeHpxZrbt29yenLMZG5ZLa/4+LOHfP7wMW+//RY3b9zEWIsxEEMgaSRpIhTtbe8slVOi5gxOi1JgdsKjJOufRmL1sBzwbYX5D01k37Ykwg5VAnYJ1zfzRuXbiwHHF55XHP/B8Y2ogbPgnaGuHN7kwCCmQESR51hi2TGLAkZ3LY+gWVti50EylSyR17Qhj4FN5QhyrKnFUefX2Qct5XkxIw7KyEcoo1k17qBe0N0wrNytYLAVuVwwvEAU/A6sqT+2/X5L8quf1xcvgZQoOdf6c+BlUmapj7C/pty7HtoVoe+IQ4doIAtGlal2JfPfXXDdDeU+eDeDMQpqXtqJsEMik0HtfloeAhI8zhgc5AmDkwl3fpBlkB9//ASdTojNlN55tq5hiUeMR8rPR5Mj6lv3cZsWNmsIueXb1hXTk2O8qamnp0wmxzRn97h17x4PrCUpOFdxd3bG7PYaYyzNZIKvamzt8VWFdZa+71GgnuQ5Cl3fE8LA1fUVy+tr7tZ52NzV9TWbzSZPZzQZQRuGjidPH5GS4cmTx0Aezzx+9i+B036rfUsDgINac1k+3sHxomI+bzidC0YG2u2KiZsxm53y1ls/4PzpUx5+9ikiwu07d/nhD9/lrbffZDqdlleCJ0+f8dOf/oJ/+29+upNqnEynWO9xVUsf4fJqzbYLOF8znc7YtMpm2xFSYtv2hBgxwNoFJpWhqRzrbs31uuPmjQ2npydU9ZzZIrea+WbG/OSMusrTrJrpBOsdygVRt5iQta3rCpIkICKqBKUgDweQ358oI/quBAHy0q9SWvpzgRgKo5sVtPTyg5PC8ndC5QwimVAVInm0qrP7vzKlbl8+1H6f0B2AZksWpyNMIVmEhSItK0bLz6B5qvoeNxEy8VWEmGLuOpc8WEVScRCag3LxJWOUsThSSkuUDgONBWHYowHf3hX13TAd74Hxu+5RViNScIEEKevVB90icU3oVwzditT3xDhALIUL1cy4H531YeeCjOF3eWQMlHf3X15Ph/vNGBjEGAkh5MeMwVhhkCGXgkXxznJ0/x7qPTqZY6enyPEJ2z4S56fYm/eoJjX17ZsMi1tw4x73/3rB/MY9dLWkVmXSeGRSY46P2OKwfo6zE+p6QqorjPV5suHQg5+yOLoBCL7yJBJRlC5GYtvnUpomutUzxBiGMLBarnjy5DGxa8EYapNYrlbEFPHOZaTFGFQDQ7/Nie6koa78PgD4PW+Yb2kAkC1vKjmRqbxhMZ8wmzi6dkllI4vJnPl8hrWebduzWm6YVBNu3LzBrTt3qKqKq8tr+j5greP84oJ//W/+Lb/85fu02467d29z89YZMUW23UDbZ2KKcxX3b9zm/v0H+HrGZ48u+OzhE1abFoYVKQ6FfZ3JV8MQ8A7aPoBdElSYTZt88TTx4ScPuVyuuX/vDt5aptOG+/fuMpnMmZxf8fhiSVi2SFExTM5kOC2BqBDiuKmXVfB7LIaXiSq99Jx/B7sCDksCLwsI/tCP+NWZ1c+/0fj+VsAbobJZxtoawWhCjCI+E8FSUkKKpXpgMShqXohhSlBjymdywl7EBYuQMCIIBiNk2dkCxQohK8fJOHgmz48XyBCtkLsMMLsT5q3ZyW5nTfeEUhAslZ2UuXcGEyGOiERGjElfPCWvrdiX3XdfZXjX73xt9mUB0bzHSMpIqyViycEjaSCEltCvicMS4poUtmhsSXFAQ8j8wNy3mCH/F5w4BQ0SeXGw1L4SdzjD5bDEaIwhxlh+P3ZiWVSFQUFMQUwFqhsnvDFdoNURw9EpYRu49e6POLn9gGo+hUmDWyzopwvq6QlnR2foZkOlCWuUwQr2+Jg+QkweoSKII6rSlorJeptJedYLw5D1Adp2w6Zdsd5u6NpMcIwpslqtQCSjviJcX16T+i3OClOnhO0SUtZPGPpIiBFr4fh4zo9//B6I8PNf/KvdDW7k91N0/JYFALIv6Gr5n+bsfzoxNBVZyKHvObs94WgxR8Tw7PyC68trThcLbt28ReUd1xcXuQdaHF2/5JNPP+WnP/s5n33+OYvjI+7cv0Mzabi6vqLtOkQ8xnrefvtd7t5/wMnpDa6XG97/9Uc8fvyMi4trtl2f1fzIetBRU4ZAFUJKVN6w3nSEeMX1as10UuOM0LZbPn/0iIeff8p0UjNpJgWVSJnVHQLEkOU2Y8KJxXiLpDxWc4yE4x/BGb84DOiQLXz4/VW2ER1LCdTobocrvg2DFMe3Tz13LVXf8Of7rSHAAepgJcurGgPegLOKtwbvslMVEsaRs36FkCJWc6ueKZA/cRRcsYjAMMT92xhK9p1JV8kYZCwv6bjBZkg/xkyTdGJw1pTDzOqCKe5bDI0xVGNQkBLGCM4bIKtZpuLckyopBUad+KzUmcOvGJUQIn3U/fkYYxT2jgkOH3v11+Cf00aIfHSah7Z3suXfJdPGZMdvMEhSTAKTEtZEvMnrJvUtqVuR+hVxWBL6JTG0EPsc7MVIDLlEaUQwLpeGUhqnFo5IUAkODmwXYMq+PDB2PY37Ud/3B69DcQelNVJyx0MiEWPAGoNfTKGaEusabybM3zxCgtKp0HlLKxDUYcSgtUXshG23Zbm6pJeErzvWQy65HTc1U4XN5ZLz83O6vmXbtlR1xVhYc87z+MlDNttrJpMJVV2x3mzYtluGGKnrmhgjP/7Re9z0jtX5E0Lo2HYtqVvTdy1d29F2LUPs6YkYiRwdTTk7OaKpfFb+HG+V3yMh+70CgD8rwWv33nnBWGBSG+bTCu8Ei9A0Lm/oIqxWa9bLJU4Mi6K81FSe6XzGbDrl4vKC8/NLfv7LX/P5o0dUdYUYy9VqydXyEivCfH7Evftvcnx6g8XRKdfLll/+6jf86le/4fGTZ5xfbuiGiJpCmBlhUmMgZccsCYYhIfSZpBUGYhio6wpnDCkZ2rZlOqlIKXB5dUnbDqzXHUPfQVE0NClXbEXNTuo1FSTkm8yWXiUS3x9sX+HcjNvMFyYD/u4//eZMyDAmIDHhbCb7OVOU/UyWTvU2b44qRa1PhMqOkHoOArw1mWyouVXQWJtnoseIcYIYKdl9+ZCl6p+pASUgkhHmjTkYkYTdERn2MLBq2iEAzmhWDtTc/y0mE8isywqBwxB3ZMZUdAGEgkSQB6Fk1bh8SKO08LivfafW5Z/IDrPml0333Dl/3XmSouGQ25iNSu7H14RLCUk9GrcwbGFY5gCgXxGHDbGopo6oGkULQsXk+r8pd1XJ7JPuy1LlaA9Is6M7H53/PpB5+TpIWYhIYiEuZuePDnhy90luSVScsQxhIHRK9BV9MnRkZcSu79mu16wunqFDS0w9rUTi9TXX2wHUc++0Z6aORx9/wjAMDGHgenXNZDqhHwZCGFBNtO2aGHpO3j3l/v37PHz0kOVyTVM3LI6OuLy4zEGwN2wJOBGMDgxdS+hb2ral7QeiRnpt6bo1q9U16/WSYeg4OT7i/Pw8d1T8HhvVtw8B2LGjM/QvBqrK0tQOb8E6z7xuqJxls9qyXm+ovWM6nbLerLm4MNy99UOaScPDzx/y7PKKx0+e8ezZOdbmCVrbZ8+wzjCb1pzMjzi7cYO33n4H5xt++vNf8nf/6ud8/MlD+iHXnnTsmdKUo1ZjslJajAiKs4ITwUq5+Qo5K4WI2sji7ITJpGZS5+DFO4cmWK229H3R+E6p9G0XcheKPyBbGTEY9sNaXttXt52zL5mE7JzSn/hAlF2Pfe2gqUyu8wmgEVO+RA1GhaTZQ4pTvHEggsWQhoC1uttIfVH8I8bcZeLsLrtSzTCpqBJLhm404sQW551IqvhC4BOyJkU+P7mGj8kthZUXmtrjrctliTi2qwr9kIVfdnRVhRQgpL3gkEp+D2eyqiAp5e6YPw239TtnX1Z6etkckR2iVxCAcVw65IDUaMJoFllLcUsclkhck/oVqV+T+g0aOnQYSCFk1MkYzC5kHFUK83uksc4g4wjhQ6eeg8HdEakefP/iZxz/zohm7QEMScqcCxOLkmUihYGUWrAdorC8uOTR5+esE4TJBJqGejrh2ZMnLM8v2F5dcDSrcV54vDyHacPpjbtM6wbbDoQ4QFTu3rpN13d07ZbaOpZXF4QYCDEwmzTYpkb7QNh2xC6gfWCyOOLO2U2212sefvwxi4li6ZGkxG7N0K5IocNYg/MeTYKELY8fP+Sf/f/+P5yfX9O2a2bTaYb/2QdLX8e+fQHA4XISpfaW6aTawZneC5X3GITlckVSqJtJgckDZ6fHOGf44INf89mTcxTHo0dPubxaZZEfbzBeaKYTjo7m3L1zlwcPHqDAv/y7f8X/8P/+H3n46BqxhrOzE6bTmr7bsGl71t1AO0RysCtoyhuelSzS4q3Nm69k/W4kTyS8deMGd+/d5tatI4woYRjou56riyUinvVmYNtdE0NPDOygfmMdxpjcBgYgyhBj1gcYSyTPnbvX9jIbN5892/4wH/njoQAvvqYxgtg8dGpawaTyBSGSTNaLZZCKpjzjwijW5b9zRnBVlYV2hpDlVm0mWFU+BwCC5hKCHQMACCFm3X8kq7ar5qEmhT+gpUVCxoAhpR2MnIf/KM4Jk0nDbDalrmsQGIZA1/bEmBhiJoCNbV5jqcWYzEPIZHApfeHlXOxqw+n36W56bQdmzL6mnr6kULwTFSvOdozIhFxfdsZAVNLQkYYtYVij4brU/1tSaElDJv0ZStlJTdZ/2L8JkNUI9UB4SlQRzAslir3Q2f7a70sAh6WMfTkykUrgoCYPp7JFnIikqA45SGGTM/SuY3O95INHT1iqcnTrNvfeesDmasn26Tm0G/rtlmXYsm6XHN25xZs/PONocsL2ckvXD1hVQpc7HrzA6dEcowFxQkqRxWyOxlzzf/rwIVaE9955h5PTU+7eu8vxdMpmdcGkavFpwvbyGevYkoaW0HclSDJgckluu80IwGzacOf2bT77/GNGrQ6T8bivtTa+XQHAiNEW2MgLLGYVs4mncpFJY5k0DmMs7aZFRJhWFcO2w1WeN968R9UseP+DT3j87JxkPNfLJedXa4aUHfWkaVjMG87Ojrl/9xZvPHgDYxt+/ZsP+Rf/4qc8erQkJIDE9WaLqz2T6ZS6mWBWa+L1ihgzlGOzPgumDMPw3lDXDmfy3ztraCqLpkC32bBdCrNZTW0zf4A0YCQynVYchQl9TLQhT2nLG3UCYxBrMSSsFtGWHaR3ePL2/zh8/HsLqZaayciAF0x2gbnwzx8LRtm/stnDmzIiEFkGtPKGxiVqm2gc1FXeTFOSHACGASPgrMX7PIDKWouvK1qUWCB+RfHO58DTGLxzJGfwzufxsZD1/5NFyb38mjRLW2N26ySaIqeqSkoZbVISw5BnVdR1xenpMUfHR6SU2HYtMURE4kEJIc/n0KRFbhjEFjEi67JQUUgMIeWRsZJ1CsRYxCRCfJFzMmaM34/IICfMh0N78vfnb98v3stfuL+FvZPfvZYcZI/FwWou8YxfpIHYbxm2S9KwQsMa0oYwdAX2D2jM6pOmDJTK6OjYpVSEsUwhdpgcCL4oC606ZvXktcN4n35RpvhFbpJo7jxRFJJirMH0ubXEWsWKZIGjFEgKR/OGNx/c5snVJU8ePcFVnrA+hRCYVw3WOK4uz7leragXU1yqePzJIy7dFZNqymw6w3nDs/MnJE1MJw23bt3kzp1bYHKwNZ9N8dayWm8IcWA6m7E4mmPE4JzldDEjDjdo159z+eSTHFCFDWhASxt4QkEUYxyL+Zy//7d/xfHiDCuRn/3s32QeQFHs/Lqd4N+uAGD8dJIvdu2E46njeFZRuUDTCN6VrMUKzllSCBASzeyIplrw2cMLrpZLjJ+x3LR88uiSZTsgRkhdjxHlbN5we7Hg7q0zmqbm4aNzfv7z93n85IIEeF8RJbHtW55eBI4mNXVV40RonGHQUVsub+7O5E18MvVMaod32dkYgaoSNqtrNstLHn2mnB7NOD05JsXI8uKKzfU1XbsmpYjzmVSlITEkMLG0VokpgYbmqWCl9HYIne7u+++76eHWNzqQMiAFQcr40hGh/GOEArojNo3a7EUkRcHogEtCZYTGC7UNua6ZUtZXdwlDhvFndcV00qCqGGOxzrPSSOqzWIsCE++pqxrvPSEGEKjqGuuzNG8/DAQNhDRkwpYI3vjs5IuegMZcJuiHjphiIXLFXNpylsViwXw+xZrE0LfEoUXTgGhAY5n7Loo1WdRlLA2HcYGq5nJYykdtytEbIdeMLejIB3juTH6fgtc9DL6HvV/8/M//e9+x88IzXqhtqabyeCHfIUgik/8kFfSpJQ4rQrdEhzUaN2jIcH8KMQcnmkpEklAiiM1wvIKShUuEEgQUhNKMzny8H0Yvpva548ziU3m9jNn/IRF5DAA0wxwYo3hqjBpMEKxVnIuIG4hhi7MNWntOziacHtdcXFtSt+Hzjz5gCImpeDCO+viM2zdusTg9xtYVfQz0Yji7ecLtWzc5unXMZr3BGGE6m3F6epp5BF0LQFVVQGJyfExMeWx8XfmMeqRE4z2xV/qV0HcbQtwQwibLEA+RFBQxCTF5UqcRw727N7l/5z4fffA+tfdZhTbFzBr+mvbtCgBUM4mj1CCbxjObTZhNGpwNQIYcEwFjLEPsSX1g3kyZLxZcXC95+OghRycnMCgff/qEZxdrElA3ub1qMp1wduOUm7duUjUTPvzkU37+iw/56ONPc01nWjOZzTDOsNou6dqW1SoQqo66qZlOagbX7VTQAJyz1HXFfD6j8lI0sy3O5tnsRsxusEPbR66Wm0wgGSJDgi4kNm2fiYaMtdgi/ZrSrpXE2NL+VVqtRivdhq+h1C+zEZrkBQfzDSWYX0RZvpi+FZQvs/ZtXovOWlKKuaZvSolCFGuFaVNxPJ8zm052r5h5JzVhGLLYj8kcgklTUzcN/TAASj1p8JXPA1WGgaAxi/ZoworFG19uNUXLOg4h4Aa7a7tKpeVwMpkwnU6IMbBZbxhCh8ZY2MlZ7W3cx401eGsxzqLAEMJOYEg1q2tpUCARVVHNbbeQz43C8yJKI4Pwa1yH71bHwPPZ8xd++5LPmteiefGZzz9HCxlT8rQBjQOx29C3K8KwgbgtpYCelEKZIzG29R2OJGJ3DcexRSiMQEbWhTC74GN3HAeIxPN7lim3TG55e272CJm8o2XMNSIk0f1rJYUIIpFIj/ce1bxn3rx9SvIVg3iu24Hp7IgbxyeEYaCqa45PT6ibJs8oSBGxhknT0FSeSV1zcnpSMnqXia3kgNxYg3E2t2l7hzd53W/7jsp5KudQGedsGMIQCUMghpDlfVVLdp9R3r7r2G42rJZLzH3D0dER9+7eZT6fs+3Pv3Qd/Db7FgUAuivI7rL/xYRpkyOsoesz4cNA27X0XaDfdExrz2w+w9c1nz98zLYPNBE+++wxTy/XRM01BcUwX8y5ffs2p6dnBE08fPKMX/z6I37z4Se0w5DrqAKVVxaLhkmduLwc6PtISgHBUVd5yAS6V6jyzjGb1MwmFVlnvR/XKDEG1ID3nqauSZq4XrWEGOmHQJ8c1eSImQxE09KFHkMPWvTZFSQmmqbGO08yQpLcfxtTfO3wv4LlbD/XP//45+vgDUbsv1gOAAoXwJS1odmZOlfhCnLkneX05JhbJ8fMZzMgO9Nt2+FsrvmHkBBjsK7C+Ypm0uCDI8ZIPalpJllsKqXMlA6ag0srkjMK1R2XJIbEMARCjLmmP/SkIlLiK09KkZiUqvJ4L/RdD21fghhDJBFCHgNb1xXO5/5paw1DiEXHQpGYcsCzA9AKkUv3Qexz7Wp8vzCAb8JGeP23W3biuRU1oLFj6Nf07RING4y2xNjt1PyE0lEy8kZUGNu109haOiKiWWk68wueO4791czPjaC2lATSrs9/lARGMyrA4S0kkDthpKikplHIOM+vEEFSIpoOjYKqR9yE+2/e5c5bE5KbsuwSvp7gK0cIWQ7Ze491ubMsI2BZcEhT7mowY3msBCfGmFxuIJdj1Rist4jNxF0prbRDkUJOUpRl12vWm01e7+T5HHlcMaVtNtF1HU+fPKF76wcsZjNu37rNfDbl2cX576UD+60IAJ4TqQEqByfHNceLBiHQbXuEyHw+wVpL2y4Zuh5jhMXiiMlsznq7ZbndErF89vich0+vSWrxlWUyqakrOFrMcc5xfX3N1cUzNimx3vZYXzFfOFIUQp8d8NH0mNtnN5jXwmrTMvQDxpKhpzIeOLdaZZh01jRU3qJpoI+Roe8JCh1bUsobfFM3Rdwisel6tt3AphvAVNTTOccnM8Rs0HSdIaI4QqPKMAwIeQN33iNJGUIq2drXLwG8bPLf1+ELfBszLR0zlHEv+iN9hFLVfK7GOeZllrEFLz+nqiqqKvNGvBOm9ZTZrOHG2Sk3jhcczWYYawkhcr1asdlsCXFOiLmWr8YSUbyvSEDb9ljvmM0mNJMmZ0opEcey1ZhUaybhGcm9/sMQSqCrhDDktj9rGIaeru+ovMnOOxhMSkiMxKGMHk6lndFmideUwg4ylt15KEIzoqgFLYOCyuC7rBNQOiS+LtHp+2Qv3ncvZ85/+b+FouGQNEPKoSN2a1K3JA1rRLcgA6rDntVfOAVZSvsQyj8YXLbL6IuwlEhx6rIL9nK2P6r82YJ0CikZGPkg455USmY71EGEXLcYSbyy2/s05Uw6pRwAhNCTJOH8BGMck8kU28wJMsVHSxeh14A/mmTdi6S7wUQpKZICVVURyMdpnSWGiIpgndlpXuRjSLsZPUPXowJ15QFIMWbybYLNtqPrQ3n9RCoDk2I/EBiIEgjFxT998oT1ap3Rt8kEZ125X7/+lvXKBgAv61c1ktuOZo3leNHgLVl4Ig1UzuGsL6znmlgHmqpicbTAOsuziyvWXU9Q4fJ6SzskJpMJk0lFXVkqlyBGVldXXD1rIQV6sXRqc0aThNo5KixVZVlMPHfv3OJk1nB+ec1qtWIIQ9a5Jgu0OOuyRKsYJrVHRImaFdtC19F1gWGAFAXnTJYCbhpUDOdXKzbdwLaLJFpmi8Ti6Jhp0zBMe7Ztn9nVQNCxv1qpKoc1dgcljxOzfh9//FXaiF6U5nzVTXf/28OL+zn1+5r//iN+k5HAgYPd7Xv5HWWX/edihIjBWkNVV7m1zijzacPJ8Zzjozmnx8csJhWL6ZS6qUlJWcwnrDabDN2L4JwHaxk0IZKJfNfLJSEmZvMFzWSCsZkvEDWAap5DETPHYNpMqCpPGAJt29F1sZS1Sj1flb7bMoRA17W02y2b1SqXFtCsVqh5XVpTRIRSLCQ/BTE4m0Mf1awnYGQ/k8GSMyhTzpcp3IG94KXuMs3vuj3XmfKl99nzmMiXBeFfVhpIxalaAI2kMKDDhn5zxbC9htgCA1G73I0S7S6QU8mOfmzTFjUH5cr8+mIkd5OUSVA7HoOwc/Ywchw4CAjytU5ju7MxWGcRMdRVhfM+BxICUQMpxnITCzEkQh9290SMgUQuPXnxKAN9t8ZKhXpLih5wJJOVKY3JaEjWE8jlt74bML3BuCJUZAwyziTQHKBqUS0UTCbkZvIDGBhi1nSxlFHdOnZnSCm9Zc6PlJK36oBKBCNYa+nbjpQi08mUuqqxdt/S+3XtlQ0AgOccywjROmA28RzNGgwDoe+Y1J7Key4vr1mvOwwwnVQcHR1RNzWrdsPTiwsul1u6KKy3MUd+04bppEaHLRIC7aqljYHj4zlnJzfZhMjnT88JmzaTVdQzayrms5rjWc2ds2OOpw2NM5ybRNf3u8jUeUdT1ziXlaW8yS2AQ+i5FkX7Du3y+FSNGfIK2hOGiBpL1we6LtF10MdI0jVGDE1V4Uv3QD9kHfjS5ZMzubDXdh8d2xgZjlvDWEc7tK/qvL9sob0sYHtV7fDoC2fpS2+eb/oT7a5BKWjrweM58y4oRNF0yLV2R11X3Dg74d7tM+azKfPphIk3zCcTJtMpIsJiPqHrFiiC846qajDeM5TxwKpweb1ks22pfJPnWziPsZaY8sYZQ569Pp00HC0WNHVF3/dsNy19FwkhFsebcq9zaOj7ns3GsnLgNeLJbOwcTESUXAe2rgCyZcRxLnXYggpkzfRxXkApfe6mEe5QEtmdogMkJW/+v20DfFEM59tqX37/wVcJVPPzXgzoDzL3XTAaSN2WsLmkXV8Qt1eYtCVJT0x91nRQU7T9S9isGZ8pF6MccMpIaHH8UsTSxgDgC4z+8jlSyrK6I/TvnM2T/pyjrmucd3jnqetMcLV2fO0Mi8aYGfRxCHTtQN8OhCHRB6HXAY2B2HcYB1iD0KMp6wM4a6mcBTPuoQljwRqHJMVGQyKXJfLkzAz/Zyi/fH7Z6xhI2gcA+R5/HsMyYrC2kPmUwruJaMozZZyMwl/5Yi2XS7pty40bd7h96xZNVZf7xex4Z1/VXukAAPYLY4wEneQpT94o09oTTYUBhr7n8nzNEBNHszlnpzeZTqrcf3l5xdVmy7ZPbANEMVSVoaoswkBKHWggDpHbN0/5h//g3+GNNx7w+PyC//Ff/B1ps0VTZFY5bp0d8+CN+5yenNA4h7jIUVORphNSU+GswzpLXdd5oTqXa2QFko1p4LrxzOua6+Wa1XpL2wZizGSoPgTUCpWr6EyHMRFTRrWlYcgdBjHhreAsuHL/5ZoXDCHiigPIN9h+Q/2mr8loh2zcb0sQ8Oe2Q1xhdGxy4MRSCdyMMVTesZhPuXnzlFs3z2hqz3zSMK0c07qirjOUP0113gCMwTqP9xXG+zzVr8xen08nLJeb0iGSn2etIcQhZx6Vp/aZXDufzai8pet72soR+kgMkRgjQ+gJQYhB6KxSm4bGCvPK085zyW06mXC1WrPZtpnAKjYfX8z6AWNWjzVMJjXeO/yQ8rjuPjFECsEsr+1xIK28cP6+D7aT6P1dz/udzxFefMoOKh/hL4modoRhRd9eE/s1hA7VHqUv9Zns/Hd+/rkLUoIBAZHSjle0JxKSRwFjDhDGfFxZ6z87ciMG7yuc89mxlxqZMQomB6EhRlI30A2mtMQ6vLdYm6WyrVHwjmlTEQehawPbdks7CH2/JfZdLpsaD7HFmAonjqADVnxZewdEVs1y2FVV5euxozrsKI7jKd6fbd2jN2aHVhWVzPKYYjDGZbVOhFCCF425VdyJJ9kyEEgyx2a1XHH3zn3Ozs548OANfv7LX9LH/cjtr2qvfAAwmrWWSW04mztu31iwmE+ZeMVOK1IIrFctVVUxrxv+4r33UI08O3/M9eqK5XJL2ya6AEMUcLZASIGu3WJCS1LlaD7nH/79v8/f/NXfI4TE08fPOKor3rx9CyEhVnhw5y4/+sG71E3N0Pd4MUhoaUx2uk0zoa5zPd/5cnoTaChqaxq5cXLE+mzD5fWKi6sVq2XLtu1ZrteYPtDFclOWG6RywrTxzKYTLIkhRvqQsCZkB7+DRHO2FELCutLPbRKjUOE35ZpfNp7zsD3plQsCXjFPIQffd1vCGACUgE4AX1VMphPmizmnpyecHC+YTidMa8d8OmFWOWpvsSbDrdYYTF3lTKNsuMZmiDIlRYyjMharhrYPaBKMc/nvvWVkHU/qismkpvIuO1oDpnIEhCAQTaIylmCVYBUnjto1TKuKfjKjHyJt1zOfzTlab1iuNizXW7phoOsHul4YYiDGVKB/cNZjjM1CXiFibWDdBrT0Q2sJckdo+A+Ye/WttedKcgcJ8+5cfFUS64GnUnSnzT/+UjWSYksY1vTtCsIW0T63/REY6Zd74SB2G8yur79k8soojJ4DuRTzaOkRFTCl1KXkrD1p3BFQu67PcyH6ni50DKnP4lNF7jTGtCsdZCVKz2RS0dQV3hmmkymTZsJscsykXlB5hzVTmuToOs9mu80E1tCS2GBNjXF1GX5UkIod3DS68fyZxqmbh9flC+zKUoYY+yJGZDaXSAryUXYBKRtAUiUOIWt9aA5sxEEUiCKZjGiERw8f0m56Pv/0M3747rv8P/77/9d3JQA4jArHrFKx1lFVjnri8d4x9D1OYTJtqCZTbt64zf0HYKxHIzx+8pTzy0tCiiy3ke0Afcg1RV8WTIwDEgYkJmaTmr/5ybu89+AN1s/OefT4Ke1mzf2bN5m8/SbzxYyoiflixtnpGaaQQ4au5WjWkGKgaWomTZPFV5wrmui5xzmzOZWkia7vaPuemydbLq9XLJcbNpttnj+w3vD0aoVuI703Oxats2Z3I1WVZWFntDHRxZYy42W3yFLMN5MrwzdCiIThRWjoMP/8w+xFsuCraodR+n7v2iuVvXj0ut/HvvHjkIPXzU4tbwy5Z1qpK8/RYsLpyYKbp0fcOj3heDbjaNIwmzRZJdDmKYEjEQoE4/w+izImk6kK01gkQ5syUWqbIVZjfaljatHjz3MEvAETB1IcMHHAJy1SxFk3wEnCWyWkhDWJaPMGNbiaISiTqqKpaubTGdfTDZfLFZu+Y922bDaO7XbDtusyIpAgDD2IwVif9QWs4K1BUw5eYhEBOEQB9tdNv/Fr9OqZ5tkPY78oJrPFVXd6/TsBUA619fXg/4Dm+vxogkFjyonErgQTCbGna9d02yWm2+BSh6a+wN05ALFFQhqTnkP9tbwW5E4liYVXEEtrtIL3Fm8s1lpiirTbluvrJev1mu12y2q1YrPZsF5t6IeeGHtiGg72GNl1B4y8AStC5S1N5TAWqrpiOp1zND/j6Og2i9kp8/kR02lFM6mwhtJ1ktUBtfNY8Xgr5CMuH0qKSqFkDkMaYXaxpBf3T92vyqKSjSnkVVMuRGYG5HcwIiQVSIYUDTEKfYjEGKiswzgynwCDM7nVMIbAT3/6b+naAeNr3nzrLYx1WJvHg38dewUDgBctT21TjQxRWW97nmqPS4GZtyxrjwgcnyyYHy/YrHrOn16x7QaSWNpo2MSBbczqTymO5CRls9pQa6I2whu3Trl/85Tt5TNW6w2ExLz2VLMT7ty/x9037mErTxe6DAmVY9MhEIcTSJHK+TyEpdyYmUwDweRhESFmqF+cw2rCTydMrGHmhE0tHE3gZO6ZNpbHyy3WK2adkQskR8LWRLy1NJMZs2HCajvQDZlpLbJTAdj1a+8UtL4GZvoc7+Ir2iuZ+Y9W/EMqX0q+6SToro6cYJ+SywvO5RvEm/W5r6yzlmueeeNUcs20mQiLuedkUXF2NOHG0YyTyYRF1TBzNY11WDsebhnhax1WbMlWBEmSsxkExGRVNhGwHl8ZxDqs96gqsUCdqgGrCe23pbU1YlMkxYiJgqQAoS+kqIRLMZfPNLOgRbI+gJGEtSaXwcooWT848Dl91zQQQp/JTjYzoVNKCAlNkRR6NGT1HytkqeASrMlz5/P7MihAURkI1hBtVtqTKPgg+Fh8sBlb8cbuin3IW2gU+e/IQUCeKQHEAklLwtgsCr3ptrTtmjBscaFDtTgWs9MGLJMk2fnJHSQu7GEJU44Vg7ceK5qveYp0y471asXF9TXPzi84Pz9ntVqy3W7ph45h6Ikhz1vx5GDXWos96AZIFIZ+ivQp0UpiSSQRSSahYvF+RlWfMJmcslgcM5t6FkdT5sdTJosZk/kR9eyUKkGNxddKZYtCgSlTKlVIQ0bTcjeCIWgmFiKSuRApd/GM/aqiIz8rfCHYNxS1RRFiUMKgDH0iDEJIkExCfEK8EgOkopdgFEI/cHF9jmJ45wc/4sHbb+O9Z922X3tVvdoBwLiwdASQcoS02QRqARkC7bInJWXbDjSrluv1hrYd8FWFOEfbR/oISSXPRy8Ei6EDI5HKKrNZzenxAlJks1kRQ6CqauYnN7jzxls8ePtN5idHiDds2pZh6HIdK8USAGRFLCNgFTQGiHk8674untXeUoxZfGUICMqkqRE0a7l7cJUD59DKI95jKsf1qmcIlOguol3E4jElIhQZoR9lnGs/ogDP+fDnd84vP+0vEnN+12V6VR3/C1awpQPi+CEM98UT8sdMKvPWvHff4+Q9a6Byhtm0YT6bcDSfsZhNmU4nTOqauvJUNsP+tnyOURvdFJJRbs8y+XVHCLKwlVUMk8ZTQykTWJIm+hiyqltSJO2odbtoxSB5BkXKY15TGKH5MpCoLDRDKkKw+XcpRTyJxglqPWqbIi4TCSEg2ueMh5wZxjiUmnSi7yP9wG4WgTFZVW4M2b7zSf+B5c3fYFO+lqNDV4RoBNUS3O1A95H/kz1zQnNmzkEGWk6gl7xn5D9PxNjTtxv6dguhzJ4odfp9m5+SJL+TKuxGk8o+7FAUiykdIB5rDDEMbNZrrs4vOX/6lCdPnnB5dcXl1SXr9RrVHDhal/+uKgxnB1SStQnsLsAYW0O1jP4FHcsIBJRIJBA6WF31hHhO1igY8JVhfjTj+MYJi9NTjk5vcXR8h9niNovjG9RHpzSLOZPJFOMqHLmlNoktyEPWhMlTNErbruguOdyhepoDlDGxSGMmUpjZIoZh6NhuV3TtNg8YkpQRZtFMzlUDBcnLLYmRMERu37nDj3/8ExYnp7nt/PdI3F7tAODA8sATByoMQ493MARIvTJpPEYmXF8HVttEBIKBMAxs2oEhKCHlulKGXQwa8sKZTDx3bt7k5tkNvHf0Q4dxlrNbN3j73Z9w9/47zE+Ocg+mFeaupu9b0pBvDFIihZ7Q91kLO0bSkG9MU5y+CbLb1GKMewW/MmClrusc2bbCoFf4Lk+COzmaIt6BWbNa93TdQExZL53YMqjLmtpGdu2HO4a/ZJnNvGd/n7bKb4+N9UtrSsZsoK4M81nDydERkybX4SdNQ1MEdJzNU9bG0GUkTpkCpxZXsXf6OddAbJmwZzIhS6zbZS8KmGCJGFIcc8cCHaeyvmQUVFFESiCq6UCcpwigREGMYg1AJOmAYaAygLEk8WiTW7O6LsudMuSeZ1XQqIhk5cyuHxhCYAigknIXwZhhfh9Q/0NTwUaHpBzcKUIo52AwpUyqObMc0ZIxgtNSm9+JJ5VEJZcPFGsSkkJGX+JA165pV9f02zUu5rG2SXOPfUpC1JRFbyRnZ9kV72q2QGnXJKMRta+wxrC8uuLpo8d8/ulnPPzscy7Oz2m327InZm2JyvsyBttl5n8R3JGYcCjGaB7ukz9azvRVy7hsAXVZ9C+Rs3bIs1tSIgwdfRcZ+i1D6Dh/YmgeNTTzGdP5CVVzRN0cc3RyxuLGGcc3Tjk7vcHx2S2m8yPqyZy6nqFiIWXEzRm7G1mdlFIuyFoHqXAZckCwL5Pmn/ZDj4zkoUUaB8LQE1PESVZVCjFP0cxlLkuKYMUyncy5c/set2/dwdYNb735Nk//7l98NQ7Igf1ZAoDfNo7yxWSyJC44Z/GVpzKQUlYiG6LijGE2n1JPZwzbnqq2XG6WxG3I+uVB842S74JMtlCQmKi84ebxCW/ev898PmO7XWO94cHbb/LOD37Irbtv45sjEjlzMsZgUZxVkKwMRYoMfX7NJEOJhh1qS+2nLIrDYRbjZ96NsTSGqvJ0IfdJU2qs08YTEbo+twv2QyClPF+97wN9SqiONeB9y18+yTkCf8XL8q+c/TFO14tru/jLkvWPg08Ua5RJ7VjMJswnExpfURWSXiY6UeqQkh36rpXKFMKnLbmd7DahLEhl9zeS5MeM87ksojnX9wasTXkksABFOS1FUyBlyHojNkOUQBogpaFA/5l06MvfpyR5IptJVDaRTA68g1pakVyvdY6h8lkXQCFELfMBEsZ4rE9YFxjKHAAprYyHLke/4hV71fkpv9sEk1yuTJdsX0gMJqEmTwO10WDU7CbiJcbSyYg2FVKeKDZmlTyritcIscekREg9cbui21wT+xanRZSmUA9knBuguTaddvVtZReWSp4eKCJU1tFvW66vrvjko4/5/NNPefzwEVcXF4QhZDVJK1noyjuqymOd4J2USZeM4hgYLX35432Usq6KKfO7rTGgQogl9Ci8EYkBSVAZg9is0RK7mJEOyVM2h3bA2GvEPuHp5zVu5pkt5izmx5yc3ebk7CZHJzc4ObvNZLKgmUyxkwZxPvNurAMp3f3GktSUlkByyaKUhkfCpRXFaL4P1OV7RFNHCG1GQUpHA1FJJPpBy6AuqJuKW2en3L19j6aeIs7xj//RP+af/8t/wdfdwV5dBECeDwZEch/xfOowU4jtBpOU+aRmftxQTRoGMVy1LX0UhpTbRELMC9SKwUq+NTRE6spwNm+4eXyEFVhdX3FyNOO9n7zHO++9x9HpGZPZCUlrguZNadixTvOGuhMosQ5js/jE2MeJZphTGQlZe4jGGPPcWM5RhCOGXB5IMWBJWCKVgdrnuQFGDDHlyWhtP+SuBrXPQW4CWYsDIZYJasbAVyWIflvg/N/LxkzoIHt8caLYHz2zfLEMIzmFNibhLcyarHExayrm04aj+ZzppMEVSNS63BNtzcgulp3zN2LLOjO7wCDLU2ZVylL9zS1HxjKynEUzzyY5n2FGKQ5GcnvSjjmRFJfAl9a8pJKFelLWaBcjVCav+xgj0SQGCVgiVgyGiJQSAprwzjItszCM6WnbobC8I6Hcvyr5I6REzjyLc/uSqs3LT/nXhEVfRVME1TzSWWLmSrjcH1zA74RNFpMsYhxqpKzzFyb9oVgUo4EKxccB3eb5894avAPTraHfIqkv1f5sIntSW1IlldLCoUiRKXucLQHAsN3y8NPP+OCDD/j4ww9ZXi/pty1xCAXiN9RlbRtj8CaLTFnJwYmUGrAUBz+ipjkAUWzM3yloWoppV41wxmJTRoOtCCTBFkhgUpcJlEPPpm0xfsNkusBXE7p2RbdJtJeWS1fxqJ7STObUkzmzxSmT6Zzj41MmRwuq6YT50TGT+RG+nmBcTTWZ4HyTieu+pvENGM36/pIHaRlVrBoM4F3gdFHx1v3bnB0ZnPQ4m3CSjzUOyjAkxFR4n4m1N2/c4vadO9RVVYS+xhLO11tXr0wA8OJN+tw+WR4e+pbeG26cTJjfuMHJPNdIhyFxterY9C2rtqULiahCCFlMJas5USJeqC1MvFCRaJeXtAvHj//6x7z77tvcvn+X+fEJ4huClmxLzU4KUtPYv8kuq1dArMGW0ykFDlIVkgayqltpyzL7zG383HCgBFXwK6MJoxGL5NHCZM3ppEKIudUvRCGMIi/lPCXR3fuP9iUjwF96Db6LAcDhPTFySjK5T77wvF0vNDy/CL9J26GlafdeRnKgt5hPmE+bzAkRwTubUQCRksQLxhqsyZr9UrJ8axzWOvZSq3mtYS1qStmg/C4X1fN6GvubjTEZXhbJwaIajHooQ4LQlAPTpPiD9ZafX8hgJOxY8zS5Bq0xgOYJgoLJs+JtRrzGlrEYEzEq0WXeypDKQJSxl9ySEQnGLolDxvtLTu93cA0DDAI2ZQduTcJLwqSAiXmaaZWyqFhQAJ8RHMbllp2/EcWmhB06vCbC9SWfv/8L1tfnLGZTbt+7BWGNiR2myENn9nqZDSGKjKXP0m2yawNOCWNdRihCpG07Pv/4I37z/q/59OOPubq8RGPCKHhj8dZSWYs3WdPEGEE0Za4DowDOnqdjiqqelKBGkyJ27zfGuRGZfJcRr0QWj8skRUVtJPlczhiCQsgKg7FPRJsRFkRwSUhDS5QNw3rNxlxgXI11FWIczWSGn9TYytNMZ0xnC+rZjOnimOniiGY6p2mmLOYLjhfHVHWNWIPzPvsCzcO+vLEYn1jcO+Ns8dfE1CIyEEOLVbCYPBYhApLfu3I+DzMC2u2aNoTM19CvuNEf2CsTAMB445aLWXgTScG57Jj6PnAVAhOXuP3gDm++9QbTuuGDDz/l8ZNznl1s2baBIWR2ZioZXW65yKz8SmBWW2a14Xjm+dEP3+Jv//on/PiH7zA/muOqaSbcOUWtYiXDoinTaIgxYHYbdyFBjVDruPmSM6OQEhoPIMuDjenQ2aaUCKGoAqbCHtXsAJwYrNhMopGsYBVi7u2PSQmads5ezBc3xW954vPdNmHXKuQMTJuKo/kky0brON88s+BtGbSC5OtsrMEZl7dFsVib207H6XkjJK/GgssZfx6jWgRYNDv7ETEyaJFqzQFGKi2BWd40E16t2F3NfxcAIITdeNaU4VajeQYAWZpVyYN/nPHYKFS+QjFY64AtfT/gnSFWPrf8hVCQgHxsAqWssM93GWvc35P1rQK9yWWjSnKvfk2kjj2yXjK0LQOWanpMU8/pVIjG5T1BKGWciEsJE3qqoSOurnn8/i/48F//SzbLC05Oj2nkXZg6bBpyqQDN11/L1DoZS5kptx+WjhNNKa9ja0CV66trPv3kU37z/i9z5r9c5sQGKZmxpfKe2ubx6NaO8bhixeBs5gBYZ9j1yhdYeDe4a9e5si8FpXJDGcnlENV962FMiWQTrkqoSWByiSSqEPvI0HZ533W5HdBJRslSTGjKCpkpDiSFYbsEkwMs4xyuiG6J89STKc1kSt00TCYTZtMZzXRCM5nQNA1N01A7z8TXTKqKylVUVY1YxfksdhTiSC8kt08OiW3f0XeBFANhCKw3G67XS67WSz74zfsF3/t6t8QrFwDkTeX52vWYaRtjIAkX5y2VeUJtHfPZnEePrnj0eMlqC+0guf5uwRmTmfkCTlNuJRFYNJ6zo4qfvPcW/8G/9w94+8E9FosZxnqwHkyNasUQE0G7UkfToncdKDpWGZoix9YZds1kpX3MXTatNMprmuc+6/jZsga3ZsQiKCTBG4uIY0iCF/CuwpqBpG3ZCKUs7pzJyriZ75CU55fB60Dg1TURct+7z9r41uSukMo5mqqiqiq88xhboHbY6z/rYa2sDFfB7EpNai3JWszYPoXJgebYP14IflpGp4oRDA5Szvx33S6AmJRvLOswSTFlfkaGaHNrmS290SkNeV2aDHOaqkaNxwaDc7EMVimM74KM7SDeUUf9hZLN7jvfG7+/MwUGB4JBNaApUMXAcH3Jk1/9iqcff4Jpprz547/ixhtvE20mvxnnC4EzYYjYMGD7DtmsePqbX/HRv/mXrB9/jMaeYHu6qwW1O8IbMnF6HP88BgJjOUgoM+11FwR4m4Wmrq+u+PiDD/n1r37FJx9/yNXlJQL599ZSVxWNz1ls1ksxWFdq+wLO5Uw5q/q5QpiXXYk1lTHTOXTO6VlGYiPJlFCgoFkoO9EdK0LyineK2vLnkoPmMCT6rsvPbwwqDlu0XFTII7PDADbuShBonvMiQyQMHbHMXN+Ygso5W5DfXFLzladuakQMlbFU1lG7irqe4ps5aiVzFKqs+WIVJCRSn4hDpBvSbmRwCIEh9LRDTxcH2nZFU1es2v5rratXJgAY1ZJgf3MXhDFnuyFhfAUp0veRp0+3bJYfI5g8Na9NhOgKySlkFrIIzmQHajVDl43JAcDdmye8+4M3uXvnFpV3OfP2GWIfAadU2p6AjACknPGPLa67BTbCyZpVqsayQPll+WnfDgjsmPtZ6Cf/fQxaavU5q3PG7hTi7MFiHbMflX3taxSqyBFJZmuPgQdQNv2Xnffvh+kL37/4wf+MLkXGMlUiDD0aa5xraJqa6WzKZNJQ2ayYtg8ty/1BXltavpuSMo8cgP1stMIJkCIaM9aFSvCoRPYEEkXEYTSRyH39IglJFmMc1iTUaoaedwTEsskqxVEUp24dzgjiPSoeY2I+oqSZXFa05GOMxBAIIZZ1W7oPYiywf0YD0/jJvwN1/a9jCqTcwoSGhIk9/eaS1Scf8PDnP+P844fodM7R0Q1Ozm5hpxbvfO5VRzGZykyDImHg6skjHv3mV2yePsSHLc4oMqwJmyX1UYWaSBoyElPZwjNKRUljHNGYsk6+2Dzp0Qp02w0PP/uUD95/n8ePHrJerdAU8c4zbeqskGoM3uay1jgAa1xDYvL0VGvzULPc5rznr6SUkJTIXSiRsmj3PAc54D2kfZI2Vr6MyeVUSyZTJwWfDNYG+q5jGAKVT6gzGBxGHDH3xyAmBwNZxXCP3qYUEM1dCkr2VZl4ZYkCQxm13VvD1mRUwmLyXAERnJuAm2W1PxLW50RRkiIhIimXP0LMZZgYhrzfW5PTURGshary8G0IAF5Woxvr6mMVY9erXWo6lTis5pqmsZZqNgdjOL+4pOtijrYaiMOAFcXZMhrXCI21zOuGKg04jZxNHXduzLl965imqbDeE9WQtS4SZgggPYItvbWZrYlYRGzu45eMMKjGPLCFUXBHSRqyclXsSWnA2Bw8RAJqM8QfQx7BGlIe3tMPQ27ziwAOsY4+JoaUSEbotSfKgKmF0OfuhqgUNrDk2hvkaWuhyG2KlIBBd22CLz3x3wN7LoMs0HWG8NLOwYwZyPNRwjfjZDK6KTsHbsZBIwXSty5n96nviL0HmWFrS914prMms79TXkdGTG4TQnI53wJGUYkEFCu2zBzPYYGkfadI3iBTKWlBklSyyvJJldKqVFrEcq2ptOmlXT2eovHuK4fEwmcYz63NXQbGVHgz5PZdVxGGgNEBqxHCAKHPgismjxjedj2bNtD1yhBN6W0/qPbvgmnyQXyPSgCiuV7dW6GShO3PWb7/z3j6r37K8oMLYjuhdjVpFTEhYpxAYygUDJwINYrpV6wef8b680+ZdFvuTxxt3zKELS7OoWsx3YD3uXNDnM9M+1j0IXIfWhmgUwLDwifp+5ZHjx7yy/d/xgcfvc9qucRq7maqq4q6djiXu12UPutQ+DxkxwhliqnNTawKgsVKtUOFNEViqYFFEaIIyVhiDAzDQEyCqMUWkuK4qMf++ZTAqCMmxSTJTl0jmoYcwFibJ192A5XP59yV9scx2LaF6yJFNMvtxh1nSyh+lGePB3MXRDBqdoTvw/0o9ANKR5HBKohGDjRs0fwQDCnkKYFowhpDKiOz1Rjo+jyEC/g6gsBfOwD4oxBsdPc/RPbaXuOeZSX3hVbe0w49SaHtI9ZAH/MHds5gLHiyKlYlpZUEOF1MmDiokuB0YDH1nBzPmc8nhSGfMGKJUZEiiZoKGcVI5sGmQqPflSm0nOhxnWlmN2sc8sjJGEip9EoXApVqruqMsD8UnkNKhBDohyxqpGQJV1VlCJFYWLBIzG0xIsSkpd9VC0u6SA3HWEALc5Dxf0+8/JfYvgVq/Pf++3hmRvDkm1jeX/YSO6C+rJ/x/fNQsbzBkVLuWHFS6rdpV+4eD3ok/o3TyIzsW6N2n4eDNylIVipIU9L9JpPLVxR52FKOSnGXV5UaVhFYSfusu5S0rMtyhDGGsq5jZusnBTFY4xHnSMYgmtAh7ISyUqn1U0pgSSnsf2UYlJAycpVVAl+C3nxPnD9k/ZKJgo0KmzXtZ59w8cufsvr0A2xfUbs58/mCG2dnNJUnSmTbb4nJIgksAcKa9dPHPPnsY+oUePfNB2zryIeXH5PigMQBDQPEiFiKnh4ZSdIyuEaz1HjSiLEOX3r8kyauri75+OMP+ezzT1mtr+m6LdOmxntL3VTUlcfK3odkzlICGSV9YbyozxGms7rBDs2iJD07gFVHBHkkCGZ0f0wiZQwEVPJclgiahN0EtRKQO+d2fKxNu6XWRKW+lCcK6qYg5HtBSvfFmDeMx70jhxeyLFqAtSIIZMbIdexmKJiFKceabx2za1lPI/Ki+eBzcF7aCU0OiCrrCsX269kroQMAB7W9sivKfifDiOzmhBOFvh8I/ZrKV2WISO5VJiWcURoLTWXxzuEMLKYVMnR4k6iNYTFruHnjlPl8DuSxpeJczq4O0sSXTbkbf97xEkqdM4vt7IOE3ZKUUpPVDOMYElKEKUpBK0ufxpBREJcvYpIMr6UUMhmqOIGs/mdyz3YJ9UKIpQ1k7CsvGZ3ub6bvQivUH8vk4H6Ug3//MW3UaDAFlszlG8HYrHeRiUiWUflGTGHsj88ryn+Ma0xHkDQHzXkplpqtZkLdON50vLlytaj0/YuQNJP+dAx22atXxlgmo+kY1I6iMoVroGbHZYkxElPEmFz3FOeIJbMjKRoCKWUFzT7keqaMZQty/3bWBMiCLjuxoTFi+h4uY0E5SpEQI8uHj7j6+a9Yf/QZut5gsdTzintv3uH+g7t4C5fXF3SqmGaOBdYXT1g9/pSLzz5kdX7Oj956m7MbpzxZPsmuJwEx98QnzQz/GBMDuWujhJ0olqihbF8RYcBby3a95tNPP+XRo0esVytijCU4yHVwV+rpZrzHYN/TL4cb/v7ianF+WhLBjLYeDi7a73EjZ2SHsUlx/GO9viC043hfHeV6SQV9MHhnMsEuRIZhwJYJg2bXQaPldcbsPQffz1naJ3g7VM3kcsM+yBkXcf5gomZHJs/lN4CUg5SyMe0CIkA05TZgI4gKkdJ++Xusq1eGA7AD+g4cP1q4Tknp2g2xLxFhylGoWqibmqQDaEAkUTnHkTfM6gwdNXWFQ4k6YDUwqytu3zjm1o0z6ropmbMhpogUEdORhGStxTq3zxjL5nbI3jd5F0Ul14gEyax8F8tGF4FcT9KYh/LkOdWxvGZeiJoSasB5V3r9c2khxiz7GIeCKsSYRZF8ZCiwvqacKZqyiRrJXQgv2ne1PeqbsMOA84/6PuW9xk1kfFSM4J3LBKm6ofIVRuwuc7FlbeV6/bh9mF3kPDpkIznziEUeOpU31TKLPRPzxg1TSj93yrlMmcQ2HlieCheJKRFT3Dn/UJx2jAHd37nZxsBT8qRBsVlLQMj3kxOza/8S1YwChFjuw3ywqgXhGp0/L0Nmvl8wgFXluN2wevaMpz//Bd2vP0EutkifqI8r3vrJ29x44xafffhrHj35lM2wpTo74daDtzhezHn6i3/N5z//N2yuL7C+wrz1AKks0UhWh0QwSbO6ExERu5P3zXmKZlGaBGpNLltZgzOWvut48uQJH330EY8ePmS9XoNqHonuPc5lN5Odd85ucyurLSqYB/wv3e+zENhNF8w47C4BG4NNOEAUGJlkZf2K7IKA3SrRfba9Ty5z8GAteOeIMRDCQAiWmFxx3rILUsfjHHG2nSkl69dcetXxPjtEMthl/fvPVWr+OziwTGks97Q1uTwxUi9EKW3AAsYRNDvKo8WUx8vV17olXpkAAA4g2YMUzBqh8YazkwXTuqJrO1brDZttoO+zbKJIpK7IEpJWOWoq5pMGEOra021WOFG8gfms5uaNE+bz6a4OKyXSNGa/oMaIy1hbiB5pJ987wjzATvREU54VnVuszcGnkl1LU0oQ+sgw5L5nY/aeQDVvspGyIWvK7F2hbJIBUipQqxTZ1zx/QEdR+B1qMaIAX0Qwduf6AOE4tO90kHCI1R3++GVZpb74xK/2Fl/FvuDUFKxz1HWNr3L2n2uh+aBNCQAAtOhBJBQzTnYr6YaK5rp+QYESCaQQ78z++HIgIrtTkjO6w+xLS920kF8LYTUHpSUIKPKtOaA5yLAyVlC0MXLmY0tba2UstXVEl5XOTC8ZoYipEFdL1j9GOS87cRRg5Pvh+wGyLsjFEza//jXr939NfHKOj5ZqfsLp22/x4Edvo1Lxy5/+jIcf/YqYema3b3BrUrFo7tOsLqkunqJ9SyIRhhZ1FtM0iHVFMDpL0sLoqEuiU5DKHKiFQvwULHlc7cXFFY8ePWK1XLHdbOm2LZX3NFVD40eJahix8J0gWiF6vhjdjRm0SHHyBQJQHTsQisM/QDX3EzFhzKzHChgjYjUioiI7eeTcGFvaYMnHZA1FW2UcV509025vLPecskP1dzaicDtCthnP476zJRVi4u7lVEozT4G5pcxyGAPp0ikjqlnsC5MDJ1OonQrOe44XRwhP+Do3xqsTABxszvmiFcBJhMV8wt/7yx/x7/zt3+PZ48f80//vP+Ozh+cMKYuQGJMyUzIplRjmTc1i0pQaeo/GgcYbFk3NzZun3LxxymTS7DIgUsSyV+o7DADGn0fbR6fl5xSJodRMnc2Q6ShZqntIM3cXFFU2sVmgzWiZga2EFMoQi9JyI7pjxHpncTYrp3mnRBG8Kt6nrFKoZaQkBU04qKP9Nkf/fSkJPHeDipRySd4wdhH5brPYP++5++grOJyv4vzHqyMHfzDOiLDGUNVV3jAL5X0U+xFM2TAK01j3095Gtn9SchnLmHFeW0mqhVR6ukf9fzGSx4xK6QoYA4hdQLpvT1X2m/LuscMN1WRm4OH9IsYUNar89ymmIsdqCc4SBqFxjnYccz2+vrITthr3UI37gCAfy/i/cdP4HqzjFLn+4H0++9d/x+bh55h+wDRzJnducvNHP2Fy7w6bZx1m2NJsN2hsaVaWenPFdDjlKPZcDz22b+krQxy2uWXOO1QMksCklCWhyUmVSVl3McW0m6K6GzclmVgXhsDFxQWPHz5is16TYt4LnS1zK57bU22W+jVjO+sobpWLoyKHX/u/y2thdMB75z/amOCMJaQX97WxM2u0EWJnF1CU7gApQmrj78vXCM/vg9K89tLBvSwHxzUGAFm3gOc3Bh1h/kNdmHED0gz7y56vJCXTV025K0DyqGxbbg7VhLMOsRZXiMSvPALwxSzzgKAl5AhLxww5C1hoGrh/95QbR56f/fRf8vRZIg75EtnyPKPQeM9sUuOtoW1b1strDIqva46Pj7hz+zanJ6dZmUmyyANqGCfrHTr7fEB7ZwowDEOpWZYSgXWIg93ELMnQVirqa4Rc/0EcWMVVNSqZNAUx935qLHCbAZujPBvBRM1OwXuqQNHXZid+AWWPLZhySrpbb2MZ4zBgeVnt7Ldfl++KlZvuD32V33V+xuDha75uLLVua12Wew5Z6INUNlKTH8dIRoE0y+RiyoTLEY40kDtXTJ7ZPuYju1gm72DWQBpriEayytgor1Oyj33mMyJiGTjN6zZrcli1u3LCiHSJjANYcj15hFdjzARHby21cwzOUntHU3lqX+XShfY5IE56uCc+d273Z3i/032Vdfu71v6rbrHr+PyXP2X1+DNiv2UQy+LGPc5+8pfM3/0J/eKYsHyG91BJQHTADS0SWiR1WVa8IDiZ7Nfn9jSbuy1Iiokpc5QIkPrSAp21V4iKLaUqhbIOE8vNhsePHnN1eclmvSYOQ+73935XH98HhXutEiOj0ywlpJ3DHx207GV/MVg76kI8XwYYUdn8RhSYPAfDSfKaNqaM/x6dZkwwKrpK7hZTyfdPlEIZ1vTcPbBfi6VWL2S55YIkSEETxiBkDG7yH3OwKeg4reMA0WMH+4/llh3KMSK6WrhCjOcwv5p3Ls/KKHoNX9deCQTgC4e9u7f3F+3Zs8f87Gf/ipNFRVVHrEvokAdIjAz9yhkmlcdg6Lqetu0QBO8drvJMZzOOT0+ZLeZ7Z6+ZhDEuojGzOYw+x8cOp/kZY/A+R7MYu2NwqypiPckOWenMJayLDIX4Z3yVI81QPl8Ckyy28rjKkXqlTPyAPkejzlqcy2zTMAS6LnemHtZx99nYyBC3z32W34UCfHed/7fDxk0yxMh2s6VxZbiO9VnVzNqyXQbAkKRonZRN2Y5ywGaU+x2V8wRK8KB5mtCOF2AYywYcbMBjhlLwgzJEK8vyJlLK2X5Gv9hxYsZMLqBZpGQYAMXvULFcRjAIzmRUq648kzhh2ifqVnHdOEUw5FrquOl+6b72Pcn+gaHrePzxh2hswVu0mXHyo7/g9C/+huHkmDURUxm0gSgDTnoSHYP09CYwGCUYEI3YNBBjz5ACanMnieykFiOiAZIghb9EzCRBK7l3PxYn2A8DF+fnXF1e5jkm/cAwDJl8XdqSc5Jk94hBWS+mCOQIpmTocVe6yhP/YES3xmTLGEhpv09l5ctDZCqRKCVbE3flqySGJHH3HLS0mKbRmWYyt7X5Kwe7e87LGDirHiARIlnxMkcLhaiqe1SRPcqnL6zR/Oe6KxOM6KOM1Q52VQYwstP8siJFEnwsIUgpY4yEwG9pALCzw4iJvGDUwGrV8lie8Zv3f8VbD045Pmp48OAWv/7okm0X0KhgoGkqKu9YrtakoUeMsFgcgQbm8zk3b97k9u07TOez3UX03iHsF+m4EY/a/Vn//2CMb1E+s0W5zBkLkseoxtSzy05UGIepiI1gNbcCjtOiyJHeEEOWk/QO41yZv51hq2HoCYNirWNSV0yaGrfuyBPYxiFDSiqMP2tyROi9J6V8g+aeUy0RJgcpVTnlv2cp4GUTHV9d04P/84WfgefLTy/7/e/xPrkl6YXzND7h4HSN0H6IgdV6TWgTdYn2GREcLeWDAsknhD4pRmLeFIzBOEcay1eS9cZVJJO2DmDVcRPGmFwGSCC2OP3yeAa1XG5lLS2roe/zOlJhCJGuG+j6ljAMKPme0JgYhrDDW2LKU8/GD6wpZRazCJXzNI1hGpTJNjEZhE0HxvQlqH3uZJZ9+KVp1XfeQhi4vjjHGOHozn3OfvgTbv/VXyM37nAlkSDCpHEMXum0Q3UgSSJY6C10BnoBqwmTEikEQkqIcVibO8hTyt0bKUUkmRwMkB1mlv0tdWjN620YBs7Pz7m+Xu72RqEglt5nh2XKIDNjEQFv8++ttVmZT2MuD/E8zD92udiiYGmd2XO2DuDzwwAgc6dyJqw+79to5i7EEIgpYq2h72NWdS2PpVI2FWNwNh/jduwUYL8ID8sSYgzJJEQy/yvD9rpLzUsVHygqmwc2omJSdDlAGZsA9u9hdrwAKYmqLcjJSJqUElx45+hiYr5oqLyj64avvK6+VgDwJ9nkxxoJ4+1tGIJi/BHN7C4xJn787o/5B3//jP/r//1/4F///GOSgEqWTvUiXF0tcdZycrwoJ9swnU44OlpQ1TXdEDCiVLVgvc9DIyRnODn6S2XAiWBK5p5CQFIR2QC8VUyIYHLfZkopa/QP+UYYktJHUBWisSQJub4ZAtvNlrbdMISeqAMJpR/yQhyGmIf+RCWGUfJSEE00lTCvHddroU3Qi2UQBQk4yTLHE2/wtWPbDfQpw7XPQ6aHtTB57vt31bLDpJDiRt76Xm9C2YmG7X+GXY3vpa/5MkTlKx9RjtZHCBKFFJVN2+Ml0UriZB4KIa60goYeRRniQOq7HHSKA+vxFUyspynDIJxaGldjM1U7s7wLgqApD4TJwj6CVZvPRu6xzaxoI6VsFFHNTP+I0qvQhkTfK22rbNaR1XJLu90QYgBNVMaUtrFcP60qT+0sY8006EAsA4ayQ7B463IHhI9U3lB5YduBpoJmaNptelmWtcyjfwm59btqGhWxDTJbMH3wI27+xd9iT2/RS75+VeFhqMS8FyTQPqJDQvBYU2HVY6IjBQuDRaLHmynOTmm1QsTQqsVJhabcV25ECSaRnBCMYJLBG4+osN12LFdr+r5nGAZSUryraHxD5apcVzfgiqqpLXC7VXZaKyFFpCRLHIy1dnb8yuvJOIvsygCFZKcZqk8xo2EASUviaMd/J5JLSLQQAoNGYjD0SbPUe1SGlIdQ/f/Z+9MnSZIryxf76WZmvkRERuRSGxpAr9PTy/QbcubNUDhCfiP5H1Dk/bMULh+e8AmfDDk90+huoNGFWrJyiYzF3W3RlR+umrtHZmRVVqHQyMJApbIi08Mj3F1NTfXec889R2SFFYmJXHItR80CV7kezGbPERATwlriZb6fZ5C+5lrqnh1EvfaHu8+T8kE5lFDqxlSnqJZhZnl6xBVRw0cfPWTxDx2b30QA8Ju90eoueEyyKFQNfkMucHUz8Xf/8DmPTwuf/KeP+bOf/jF/9+HP+fu//4JsoG0s3WLBFEZ8KJyendB2C8bhlvMHa05P1iyWC8ZpZHo5YAysVitWy0TTdFjboHRERU9WipATpmhsLUOklIgx7tnQKkXSpCla6q05i1FQitKqN7uZxZQZfaCfBsZx4ObqFS+fP2Mae0FmnSbkSD8MeC/tfo1tRPO5kp9SjKSYMCqzai2t1VyPGV8KiYLOIpbUGlg2GttY/DhBzvvqd1GHOZ6ZqjXk/LWu3H0dBu/bmJfVcTy/TybL0ZI7CgK+CwJwnKyy//vrKIDaX5P5xUoGHxO73mPINCozxUxIhVRrlSF4xmlkNwxMMTKMAV80pl2yXK85OTtltUzVZERhrUIbMSehHsAlF8mkVCaVKO2FSoR8sioUXXXZjaEEj59GfAI/RW53W652V+x2O4be028Hdjs5/KUzJZGil6A4y/pvneHkZMXJasGya2vwlSRLq8SykgSK1VQGtgJnRNqUKPOjOepoqYGbUgfV0Llm/EOs7b/rKIBdn/PgD/+Ex//qr+k++AOi7chF02gFMRHHCRMzXTHYoMhRo5NYBDe6o1EdJTtitMQJYtCgOrLuSLoDFfG5oegl2VhK8kAEFckGApnOORrbMg4Dt7e3jONUSz6yN7bO0bhWkFFEmlojEtG6IMlULpQox23MUtIS6XNNNhZnqYeqIApGg7EG7azcXLMWQCnkJPuZJHqHdsOilcjm5oQvgRQLU0yMITKExBgKJWuKbqQslmJFMTI++jt72jHaMHMUSq3LH6rV6ogDwFHepfalgKNfWP8cP3Z8pWeOQF3bdY/VqpZEtJ4rc4IOaIRIVNGBbzPeixLAfhKPD3/kA8YkWclu6PnnX225bOHJ+T/y+OwxH5ye8+HpiuthZNkt6EMgjgOPHp9xenrC9dUlJXtQa4qCYfK8uLoix4DRpaoLdizXa84eXODaDuda2i6JJGU+qDZJS1QCpWtNU7LrgiKKQguqsO+PTjnhJ892s+XV9RWXmyv6fseLZ8+4vrrEamgXLcYZhmngdrvFTwmKoTUOZxyNa0h5rvErrLa0jWg+q3ESklURtzin68apFXOTyuEwK3cX2+/HvQf8cQz+fQ712u/bXxPmLEEqP33vaU2hWVhiLkwhkQr4VLjZbHh19YrNbkfMMIwTfUigLa5tWaxWrFZrlt2C09Upj84uODs5ZX12ymK9xhpDUQK9F0SUqiTx9lFKMr2cxbUvpcgwDVxdXbHdbLi9veX55TNebi/ph4HdbmToJ7wPGKNoWjEqSsFTRk8YBqZhwKrC6WrJw/MHXJydYk3VwwBK3ZRjlC4WrYyIqCSqaJZiznNslYgNMQo/OB8O/8x/H6MYQ/Pxh3z453/OxU9/QlquiMLSwGAoyWOTZWVXeN2R04gqDpUdORmMXaLcgilrYtFk0xJNQ24MQ7Ngch3kCT0ovNeURUdWYg0tCpAJVGHRNSyt4/b61V7wZ97BlVI4JyJWIAexsdKPEmcN/5xqIFhIqiZTSmGNE+MqZG+NKRCjxzpHEx0uZ0wW1UFr1L4vvqY3QqBG1rDWSpKykgkhMAwDu35gnDzjNBFDwmiHqx03OWd88EzjRN/3QDgypeKQJ9VDWx0d1oWD38r+KUfVqf3PHY09KbI+nktBV3lgeE0F8QilVYo9uXt+sbnjJqUkc/I6if0bxnsRANwZd5MlYhaCn9EapQtDKHz59CW3l9c8aJd8eHrKbtsTveeVDzRN4eTBmuBHhrGn6wy7fsuzF4rJD3StE/tJVUghMHlP2y54+Pgxq/UpJyennJ4+4GR9wsK1Er2ag4qT6PtnSo77SC5XsYxSMrtdzziNDMPA1dU1L19c8tXL5zy/vmQcB6ahxxnN2dlaQNKcGMLEGD07nwg+Y7Ji1S04Wc1qb+L/nmpnhDGVwJUTukBjYdEoFtZirejb32FP//7w/62NN9CRWm+cUQaFlBxSghCkBBQawxQig/f4kLi+2fLV0y/46vkz+mEEbSlakwqElIXrgRCrGtdwtjrl8cUjnjx6zCc/+oSPfvQxZ6dnLNq2cgoyShUSiVIUWls5WEmMMXFzfcOXT5/yxedf8OrqFbc3t2yHLTvf42MkJYXShqZpWKyWaAveT+ziRPaBFCMhRZL39MPAOE5Mw8TJcsFqsRB+DYaSIymBxmBNg8LPPLTKEVCkIAdH5zQnyyWmcWzHke04zl2vv/414f6Szns1nGP9h3/I4kefUE5PmIom1kWkMljVolQHNCTliKZF6ZYxG6bsSM2awS3ZKoNtF6j1KXF1wjh5Nt2CrbI0qtCZJVkvSKYhIW3OyhYsloV1rJYLTCr0/Y7tdoufpip9no/IerV4W9uQY87oDCVFcZYsUnJStjrmOUfrWlyV4g2TZ/QTPUjtWxuadoFtO5wTh8zFoqWxtnay6H1JQZRTpVNm8rEe/iPDOBJiomSFMS3OOZqm2ZO/mybhzEiMMI6RQCBXR0wqPwA4BARHiJNSM2xfr9VRcr8/rI/GMZcAqgxQNVy6wzN4PQDQtcRwZPhVpwhQNE37ZhfbN4z3Qgr4jZ7r+XlUiEPJJumr6sI4JobtgIuJU2dZKNiOI82pY7lybDY3mJS4uDgh+JGYIze3t9zcXNF1LSfrFY1WBD9xdXvL5CPL9WcsF0sW3ZJFu+DJw8d8/OEHnD844+zsjLZpERU0WRTJSZSrjbRdxSgw/tNnz3jx/AWvrq94dXXDZrPhZrNhs9uRc2K9aHnw8IIH6zMWy7bWXkX6dMyRMU2EGEnDSMGy6jqaxmIomCzuWY3TtI2mSYJMdBbWnbhtoQxTVPtDRuZbXuP1ba8cvvnm9XjLdfuht1P9OuN7+bwH5B+QDFYrcE7TLR3KKKYpMnkxxxknz+1Nz6effcHl5SUZTbdcc3Z+zsnpGcYaxuDZ9j232y273cBu0/PyxSVffvmUy6tLbrbXfPzhR3zy0Uc4awVCLYWSY20jlXKVD5G+H/ji6ef88pf/zK8+/5zr6xumacS6BjSsF2suLh7z6NETTs9OabqGKQxcXV/y6uqS7fWGYbOj31nGzQY/jNxud3SuxWlLY1uMsqJvUGYuhJLHqiRtEUEDGiO7rVOKx+drfvLTP0Q3Db96+pR/+uxzkp/1OOC7FW1+OMN2HY///F9jHj5iZwxjKqI8moCYaU1Ltgt2WK6LJipLLhqTDOduhXrssH/wCp0D9mSBevIB4cEDphA4+Vf/ivXDcx46y3rRUZaOaz0yBE9Es+qWLJ1l1Ti6pqW/umW72zAMIz4E2a/yrAOh96iWMUZIfjNJr3aGzAJrtmloOkfTdSy6JdYYpmmqypSF6APeT5QCZgpYN+GspWsbpqnu442VQEBJX39B3CRDDIzjSN9LABpCAmVwzqAQWeKcIPh41Ckl31PKktMkJYbZs+WNPfG4qLgvqN5B9mX13i2z3ldamAnp87jPNv7QXqg54GMVg6gBQNu0PHnymC+ev3r3dfXOz/wNjbfWj+tslj3cAbNi0ugjKWVaVVg0htZqsob1ekm3tDQpcPHgDK01203i9HSNVuC9p+s61icPWFcdgG59w1cvXnKz2XJ1vRVP8gRPV1/y8qMP+OlPfswnn3zCg/NznHMEL3aLRon2uTZi1jOOnsurV3z2q894+vQZLy5fcXO7ISbxb04psV4u+OTxh3z0wRNOT1doo5jCSHAB7zK7ZiJkjc8D0UfGcaCxhq7rai+rrtrxBa2ytBMi8H9jwKhCLJKh5Vr/n/VY5ptyD1EB3wQPHNe+9j+x74s9fH3fOQD7z1zuxjvlayojbxwnv8b5ctxpsW/52dcSK6nJGhaLFa0FFUekpi3tdsMw4L1nuVxxfvGE0wfnPHz8ASdnJ7SLFrSmH0eev7zk1atX9JuesR8IOfHq6hVNa7Fas1x0nKyWEkzWWqpzhhQ9U4qMk2e33dHvbonJ4xrDar1kuV6yWq5YLFacrs/46OMfcXHxkK5rySUyTjserJZcnKzZXGy5vrrm9uqKbdswbXup/xrpfAkxYasiodUGhXgNxBgoWVzOqCQvqxVta1g3jkdnKxa6EFNgYS2tseyqadEh0C37+f5dG7ZtWTz5gNEafMkkLfOji7iCxqKYsITlGvXkA+zpGXl9Qrl4xLg6xa0tJ3+eWT4+Y316gvrkD+DBI1QKPP7Lv2Tlf8qF1riUudpec3n7FdlYmnbJ6qRjYRRNJZ9tB+GizG3GMz9q1XUYI7r2s39J0ewNpqAWC45q4CJFDaFKToeU9t8vWqFmCVwj1rxUeez5dXPWFMQLRRQMRZY95SSt4NNEDOJ4qbTBaEfO4H3ca7oIwU/XNm8ptxZKfc+CKghSJuTWQ8D52qagjjgAHL4975F6jyLcHxB8HR+rlHKQ8lYHTpe879qW3jT8X/7P/yf+v//tH/eByzeuq296wr/UzbQ/bPYPwFH30P7BlDL94Nnsbjm5OKFdapqmYJ3j0XrNhx88ZO0KRhWurq44XS95cHJC0zicc6zXJ5yentK5DmsdP9Lw4dUVn372GZcvX7K73eDHiW3qea5fCpmlKHKG9UraB421e+iUAtM4cPXqimfPnvPi2SXXN1v6fmKaasessqyXK/7g44/54z/8KWcnaxSZYepJfqJETY7gRw9Zap5ZV7/rklC1O8FYhbFgrNT7rRYSjFXSApiTF2ZrNCJwJBMr3gB3p/EbD7TfrU30bR/4HU7172EajoOlY2TmeMSYpWVOO2zTVn91MSuxRnOyWrFYrvjkRz/l7Pwhq5MzcVhbdJjGkYBHH3zI7WbLsO3Z3GwYhwGnYblw5BTotzc0OtPVmr0xtZc6ZUiB5Af8uKOUwGLhePTwHH+WcE3L2ek5y+Upq+UJZw/OWXYLFIUYoBjHqmkpiyWt0Syc5XTRsl0uGLc9YRhRKQt/RknPsi7Sc60oIqcdA7MErVZy/2qg0YVloyEMvPzqM5rlCZ2xNMbw7cDON6/HD2kobUhKLMKj1YI6loLOBQukoshtx9lP/oiTszOcgtytyCcX5NUDsnWs2yXdR0+wTtN3a3ocyWjc6Rk2OUqOTMPINIBpHCt9SmMLTaNRJRJTJIbATb/jZrcjVd2T4D05pzs9/yCQPLPFgzDUgJnIKZoAKWRChmEKKFQ1njqQRKVN0WJ1i9GuCgIJoTXFSGk0Cik75Nk8pwoe5dpBZa0DZShVc8D7UP/M3QsHgyGlRH21ZPFCFE+AUMvAd5Oi2cr7QNZDtAPgQASkPolDIHBvCUqe8FrN/yDmJkOy/4N3QG0XrPLzzjY0Xfet9u7fKgLwej8nsGdM3rlF9yQLcV/qh4mnL7/ig0cdbmVYri0ZxQNn+fH5BRfnS4Z+S2cMKEWMEYqitQ2tayFBUtJ6RWNZrc/54CNQOJIvhKBpjCP5zM31hkX7Cmca8sPC2dkZy3ZJ23XEGNj1A7fXt3z2qy/44sunPH9+yW6ciLGgTUOOmZAzjXJMSXGzGxm9MKb7sWc3bOmnntu+Z+x7UskQM5ZSCTWyUSstNX9ISFtUwRnJHluraYwGXaQuWEl/SomewCz88nsugIxSM4j5vvqXOA7mwx/Yr+8Ce1OSEBP9MPLw7IRG2X2AZzWcrBboJ49ZLNecnaxZdR2tMZAh+khIhWIUKUkg7NqO1Qkslys6p7A1gByGHV2j6Voh5FkNWkcInpJGku/x/ZYw9JQYWHYNK+MwtsE2jlErQhjZvHhO6xpIUVQscyDHkZQDRmVaDdlqzGrJSdvix5E4eLRSLLqOVhdynDBRmM0FWddaFTQZfURodSpjcyD2nqbpOD9ZobtTPv3i+R2y1e/8KIqcirQrF6lx56xwyqCdIcSMV5aTDz9m9cETnFIk27FTLb2yjBlMY2gaTSLjo2G89fgciGVgnK7YxJ62FCKZdrmgKw5dIiWOxFxQqTD0I9fbgcFHYhLXvMl7dJnJa6Yy0Wv7nDqseVXrX7mICVTJCSIi0lPMfGPO21c1vams92pFXLLYFIdQsEbRJHMIqivMF6slO4hQHEXKISEKUuH9tC8PxHgIAJTSdF2LrdwCMZiVIKBpHEqZO5fkOCCY6/57SeD5OXUjvq+uv7+03A0O7vvzZtB6/Lq6Ohc2IsD0QwkAjsfMA9h7OL8lCACFj5HnV1cE9SMWJy0PH52yu+1pKSyVYtU4nFqyXizwMXJ9fSNEpH5k7CdizMSoQFumHNn0Pbf9jrHvGW93uJTJNhAmqe3nKCYly8Waxw9blos1bdsy+YnddmBzu+XLL57y2edfcLsd8ClTtzJCSkwxcrO74vJmy6dffIEzIuCjtCKVRCIRchBHP6Slb9m2rLqO1bKl6yypJEIWNu7snOaMFq9tc/CHhiJwam1Zme+ptyXBb4NNfwjQ/ruP4xIGdwRmym/4EDluX5vH/lLMEYASyDGGxKNHj3EqYvMVTiuRy10tOFks0MZhKPhxEJ0IBWOMTDEwxMCrm1txdY1S/ulcy/nJgs4UStJsSTRWsVq0NKaIZHBWIiwVA/12w+3NK8Z+Rw6J1rUoo4khsAuRvNZMMXFzeUUYJtI00lktAagtNFZx0lpUTmTvMarQdQ3rriUsghhmGY0jkoPAvc4ZjFFyTxj2cG7XWZZtQ0Nh6QyNEqb4owcP0IvTvYravZfu6yK6H+iSVgoabSk6s/Ge3TiilWXVLrEaht2Oq5tLzhYW1VpMyZAcyWmmkLjd7khh4uECOqP47KsrXt0M7MYNyb+iswMPFponD05oWkfW1Rqdst+TU4HtMHKzGwhZFB+naSTFhK0teodDUUhrRVfnvvkQKyJ4FWo3AEaBaolZJLCpnBARvtG0bYtSBdeqaimsMSpLUjSjSVUtL9eughiCtE0bgf1z1tWALe9VKqdpYhwHQgxQyh6el66WBmcdVUn4Dg9gljOWcvRh71TzV6X2JVbZPiWAOT7M75jJ7TekN8cxR6vUumE5iAHXfUzQEIwWKXE9e4a82/itegHciYa+qSBbd8ykCl7BLhSwHY8ePkLnwkv9gvXCsugsi8WC1emaxjWEEFm0C168fMnLFy+5urpitxsoRaOahghcbQfGkDDasuoWnC8XmCSOWShNP4x89dUzLh5e8JOf/oS2a2mcCGe4xhFi4Or6FVfX1ww+kZALVbShXaxYnHVMWTL3rMCXRImCAlCSSLlaoXh0rWW16Dg/W7PsGiEANpYxeHxUgIVi0CrQOs2yaWlLEfXg6lnto0gPJwR9EpPDKmtTZnOXb75OXweVzlHpDyNIuOu+JY/ITby3c37t+b/OSXEcbx0ygaPvl8ODuVQL38rif/zoEZ0uhOuR1XLFerHkZLWg5EwISboD+g2b3XN2w0A/eRZn5zTrM7Z9YtP3UGDRtnQXJzRth8aDSpTs8VPPNDhatRRbWKUpkyf2PdtXr7h69oKQFd3ihK5ZsvPymu3JGY9/9Cdshonb28Cryw39ZsO6dSysQoWR4keWJnO6XNC2LY2zaOfoGseiayhFLDFVgKwLTco4NwkaYaVB0JARPE+0C5QSctNZt8AYx8OLR0ymE3nXo4ThO7UD/IBGKrDLwgPyQ+Tq5RVaaeJy5DYWXj57xvOvnvLw7ITTriVME65d0a3Pudr0fPX8OWPf8+ThCQ/Pz/j0l79iu92Q4oBRI6snp7jlEqWkrGlylHa8XAXQimSzwziy3W3wYSKEET8N0o2krNxfqqCMZPFaK9BiU34QS0tM3jN4T8hZavwqkyKiKFnE8wSqDS4GHOhaCjBGdCyUFl6JUQ6trAQBqZBSz+RFlKhtOhSaYfBMMWKKqOlZZ9BGpHyVAlVVXVHgrKFrGuKyY/L1sKbqZCjpwppteUWnBmb93sIsaDQHBQdVP3lsPpxrpDSfeXtekPAe2P/ew5ko7wGUyhx8QeU1i1ZgRCehaSzLtmUTo2gFVIXBtwXF/2IBwH0HxR1G+fx1XwpQe1SAo2elkkkatOvoujMergyLAjYEtDK41mKbhna5YLFY4Kxl0XVQskiZ5sSya9HWcPLgAQ+efMBmCNz2A85alq7l4ekp42bL5YtnrNcrzk5PmKaRpmux1tC2jfi1a03XthiriCWAzjStQbmm1nIXfPKjH/Ojn/wY07X0fU/wI5oMKXJz+ZIXz79iGnraxtEtFywWDcvOcbpe4KxkRZFMSLUlsDJVW+soSqB/m6vtqrFonUl40vHU1Ui+OmQetQjePcC/6TB//fs/jMOfN87zwqz2N9+I1UXx7cH4d3vJeuMdoMGjzoyj56bCXsdbFTg7OWEMKxZdV9uVHFYrJu8pKrPdjVy++JLr21tOzx/x05/8hNXFh0TzGbx8Rc6ZVdfw8NETLs470ngD2bNoNa3TxDCSvKnOewo/DIybW8bNlmnX07RrTpYndKszPAM0mo9/9Id88OQnPH91xdPFc8azyLJdse4sZ4uGsL3h8unn3FzfYHLBGofpquZ/66SuWkQvPhWFLlUvXkljfwqBnAKmFHQRz4tAJS4uT3lwcgIYlqsTRi+kt1xrKV8XbB1fj/34xie8fyOkxLOrDQq4unzB86++wmrFtTHcXF2xub2h3264et6yWq0hQ98PONeCUjx5/AEPHl7w/IWUTkIcOD+xPLr4CF08Hzw5R2uFdRrKRMkJU22aRYVRGPF+GhnHHj/tmKaRMI3kHAArBGUL2kjWTz2wrBbuh68ywz4EQWRTohhLaxRWOWxVNTTakEIVVWuTGPcohZoVAYtCkeW2TbVtVGsoihRLJZMaWudIqZCCJ8dA17S0raOMhSlaXHAYWyXdq3vhyXrNerXCWcXVzTWRLGqvZLISFU2K8FMoer+HzKI887+F2S8Hf6nBwOy5MWcieyRSqX1gMPPeZgR3fq6o3SKfm2oXUxEGjMW2De1yycOLB/zH//F/y//t//7/IMwI49es7femBAD3ZJxHB5Tc4FX4ANmsrWv48MljTpzBFJjGCWssTSt/XGNYdC3OPEBrODlZMwwDQ9+jlOLs4pyLDz4ioOl9IMeMKVJC8H1P//Hjqha4Yuh7tNb73lFjxOTEWo2xitWy5dHDM9rFirMHDzl78JBusebhw8d8+PHHtMslN7e3DP1OyF0l8ezZKa0pbG9v6LqO84tzlssFbWPonCLnSIiBTb8jx0wMYj1cShGDI+todIPNGo0hO0OeBmLm/sPsayLB34/vcXyHuChncZq8vb3lj//gIy4Wn7Bar7HOYqymcRbXCHnPe8/Z2Zpu0XF68QijFeOwo7Waxw/PhRGsFc6oGvQWFm3HeuFQJZBDJDVBhF5iYRp6hr5nGgdUEdKhNZpl1xKUYecjcRq5ev4VfhhYWUNZrwitpTGZ086CXqN2p4wmc3qyYr1asGhb2qah6zpaZ8klMSnxIkglVOOqWhdOsUKxUvtPqaAVrBcd5w8ecH56xjAFCprJj4SUZOOkbpa86bvwuzRiiPz8Z/9I2zguXzwnjCNDv8MpzQdPHvPwkwf8/Oc/59lXL3HulkePHrPZDmx3Lzk7O+OP/vhPOX9wzqurSyBjNJydrPmjn/6Y7c1zWSvJMw4RRUDjmZn1usLWcZL6eQi+Qugjk5+OIHIqxC2nlUL61q01+xbPGKLIAmuLUxrjHItuSWdbMQuKkZIzscIGxug9xG+0klp8yeQ4VdZ+JCWLMVUUqdbCZzQ0BCEo2louVdawtgsg4WyVzq5y1NYY1us1y8WSUjK3W/E4OGjv13o80uVQZgLP0bhLZq9hac3kj7UDjn7g+Iv81PycI4R8Bg7mrKJUVFPs7EEbi9YGZxvW6/U7JzPvVQAAd4OAO9np/LXIcza3PeMYuHj4hHXTYApsbm6w1ohiH1IvV6qwWLQ4+5D1esE4jGw2G3KKLBaiByAGOlbU/iaP392iSub8wSmL5Yqu7ejadk8cmx2vpmlkGLfEOHJ6umS1WnCyPuPJBx/x8OKxaFQXRd7ekmKgrQqEMQSGcUfxA+dnax6en7BarUSspeuEAGakl3UYB0IqbHYjIWS8FyZuUeDcgs46dBCXrJAKU8iEWJNa7i6s34/3c8xLPoTEq1dXrNcnPGgtzkZRYaMcJHpL4uzsBNtYUgbXrkFBSoEPLs5ol+J0GcYeP/aYHGnbjvWyxahIGAWBSjEQSib6wDTt8H6k5ISzFkUh+hGrFU8uHnAzDEzjjtEn2qbhp48v8PGEGCfC1JPGHUVDc/GA/GDFYlG7GIyibSyLtsW5el/mSJmEwV5Klaqupi2KusnXzfpkteZ0veb8/JwPHj/hZjPQTxPXt7d7gbDjjfV3OQhIIfKPf/t3PLq44GS9wlp49vILVt2CH//Nj1HA38d/xPuMcxZtG5brEy6ePMFayz/84h9x1rFeNDy6eMDFiWPdKlpbiE6TQw8lEP2IHPqVlKmgWFHF837CTyOltv1N00QMcS/8E2OswYDZi/MYa4TMrG11rDRY61gso7QyNo7WLTDKigDQOJJiZNm1lQPQ0Da2ekQYOmcoueCzEqZ+nl3+CtroPWI2H4BaK1brJY1rca6hKFipJWenK0IIYrOrqOhq2SsZjmNH44wQttOhh6oUBehaelJ3OGvylwMRsByw/cNNfgRX7QmC9fHXW6vv/hFhZHVEXhINxOoEah3TFLm52XB7s6kSzFl0Pr5mfGMA8C4tM98XFHzfa90hqdW/G6253fQ8e/aSySfRkbYNWht88Hg/0SRHKeJmpqym6xqRPUU0+/04EoInXF9RtCUpCS6S94RppLWGrmtoO0dbSSE5i/OeLPTEOA1SD/MDJ+sFXbtgtTrh4nTFqrXEkPA+ksYNPozEKK00IQVS9Cxax2r1iNVqxXK1YtF0ooedAiXLjRVjFKU2LCnAOHmCj+hWYGHRXc/EBB4t+vFHUP/3HQD8EFuofghDIR0bu22Pcw1nD1rCdF03DOm31hqa1rFW4mIZYkGZlqQ0OIOyLdoptC7SKtqIvnpnFU5rwjigpN5ACpEpRlKYmPzENE1oBV3jgIwfdvSbK06cZdkYSAlbAq5oFtYStSGbBq8iPntysehmXWFkC0U2Z2u1ZJIpiXpmPfhjCtWJTQJ1o8BqxcI51ErjmpbVcsmy6zhdn/DkyQfoZss/fvEVz19cElI8SosOltf3BQGvSzH/MEdhd33Dw5NTfvLxH/DixXMWzYIUEj//+3/EuYacFBcXj2m7hsl7Vqslf/Knf4Ixmk8/+5S2afjxh4/4+NEZJS4IwzW721ek0BN8j7VQwihda3uMWfriU8pM40iYJumLr9k3HGx5Y4zEGGmcHCuiDGhF9MdYnLG0rmW5WJJKkVKuro6pRRNbx3LR7DN/Z1xFAMQ6urGSGKUiUHyeHfjq9Z/fr6r1dqMlsRNXQYcxlqzEf2DRiuqgnJDiJbAvdygt/hWLjk2/rRoVpbrTCrR/bOW7v0I1Qz+UXhHeANS+/deG+ub9+TgA2J+FcwyAEm5FSFxdb7jejISff8bTL78i5Szt6ikeCMf3jH8xBOCb7GNf//797HS5uVMRG93PvnzO1W3P+dLh2iVt2zNtRIZ3dbpGKTlAW+cw1rC0C5x1dF3H2A9stjuGSWqPIjJYaJxh1a1pG8dqvWZ9sqJkEV5IKUttMsQKLQWGfkOYejpneXC6Zr1a4wxYlVitF/uWs5wg0+JDIKZIUksyGW0Ny/WStm3prCP6ieBFjjKlJFl/LIRYGKaE96J01TmLJh9EfYrCp8wY0v5a73km6lASONT/D/N8rEv9fVzL923seQ/qUILb63Dnt3Xmf09DcSS8dMgNZmBPiEOzuBNobTg5PePhkyWbq7kOWPuIc6axjsY2LLpCiJkpZPEMiCOqZMgepTUNBbtwtFZ6uFP0mAJogy7SKVBITOPANPXE4EWrv5XOAKULw/YW6xynjx7S2SV5ShgNqEIWRJeuach6CYtaA6766YVCip4YPCVGfEXlkp9IwRNjYJpGvB8F+ldiD6wWlvVSYFxnLZ01OGe5ePiIqDp2//gpT58/wwex0T7ege9vl/rdGEZpPvrgMX/yR3/Ihx88kh6jImY719fXhJT4V3/xF1w8ugAFV1cvefTogg8/eAwkPvn4AsjYNFHCjjhtiNMtadqisoci1uOaBEVVgqyBXNs0NcRqEJVCYBoG/OSZN5I9vH1EDtaVla6NlCudMej6vFQyxcjNaLTBKC0HbN2kFFUlUimsMbUPX+D3WN0xJYsuoKFoeW7TtCInHALWaZpG2vpA2r5zkdtJMnmz59TnlChGYbQm5UzbWE5PVry8uqQfR6ZuwrQOrRoUs54F6BqczyOXXOXbDwhAmUtVqqL4eoYNuMP0v48cv//dZV4HouuSj/gHMRf8buDq9gXX1z2Xr65QaFJMd9GHe8Z7JwT0+rjDNK+kh0JhDIlnr655+vIVi48fo1zD+vSMfuqFYDKJ6p81cuGLQYwlmo7VckU4SZyeB4IXBSpRlcqUEoFM10mg4JwhxkJGV3UrMQWappFx3DGNAyWVSkKRCNI5K/wPC9ZIaUEpJ3W0kkhZGKVFieBGW5X+TMkoEjEHfAxs+4HbvmcIkTFmxlikH1cEoaoDoIgSee/xUewtX0ed3mX8uoz+9z0IePv4TR8Yav5PXu3ORamMH/kGKHCu4eTklIuLc0ocCcOWmBBLbETBz1gjrHkDziQalyiVBGobQcKgZlck/DCQ0oRRhbmfPOaM1Zlp8mxuNwz9DoXBKCNubm1LLIkw9hBPWK9PcMulqLEVRarulzEFcjSU0oLKImKVBCGLBqIC7xNT8OQUid6LoEwSfktMUSSJU0SjWLQNTbOgWrlhgK7pePDggl3U7MaRl1fX+BhFGS2/bW5/t4ZrLH/zb/+KH//Bj2nalo/cxzz56AO0NgzDILXvZYttLa0zBP+E1hmMknkkq4pIbpiGa+K0gzigywRZyNGlVMgf0Q5J1PZibVGIK2nwnmkc8cHLHmTMPoEQfpaMvSKeEvEasfi1e4Z/LhmM3teytdZ7roFRes/t0Kg9Qz+liA8RchBnPK3QprYBVhtqo8Q5UwR+ElormsZK0KFrOS3rutfnffCJFkdXo0BFaJ1l2XV0jWPwk6BVWcyGSsXVjTlE9+LSJwfyvjwA+26BPd8Y9t/fjztJwtv3UpmXUkvRmZwVRRm0taSQGH1kGgPLbo3Wt2LRDb9eAPA+DZlQmeCQ4OXNhs+fv+DR+Qk2BS7OTlkNGzaXXzGOE8tlpnFqX7dRGGkZMRrjNO1SkWIm+CALpiQUGeMUzmm0gpRE+rHsPaPZS0amLNa/qigMmpJq9Ko1CTG8cF0DSpGLETisfhalhdVqXIWmUqSkqfbFKkKK7MaB3Tgy+shuiux8wMcEiHoaRaRcY5JdMKaMT3lvlwp3r/2dx2ot6rid77sGAT/cw/+3OdT+z9wtkBLiATBMWNvi7ILAJPU8JYSlkhVkVTMjUdNrcSLAYmzNKvarjBg9lAmrMmgltq0xgRZDH4rGTwE/jhht0bZFW1HiM0ZTcqDf3LDsOprlAqMtFFFUi0ljoiI5yFn86BulSEGUDSVF0iSlSCEQ/EQIgRBD3aQ98Wij1klawIxSlSwmcreLrsW5lpQLN7sdu3FE7gLYF1R/x4dtLH/wRz9isehIqdCedrWDQtGeLNDaoGwhE1Ak2qZglUclT4kjOYykaSBPt+R4SwxbdAyoFCHG6jmvqqseFFXhcUUlZiIBXJS1koI45mnn7hgA7SHr+e8YUEZgc20w9XlWGZSdyzXlcPhrzT6MKFUmA4Xon0RK8igyzkkWJCUC6YG3VlO0wjWWmESRUGkpeWnNwUmvGImJEpRcA4AsAY8mkyv/QdxiHUpJwJKqPXcu7DuqlBb9lbmV9zDKnUz/Dvt/fqwO9Y5xq56R3HzgFqiKAIzek1JBaUfbKYxxEvh9g1/mr40AfJ9R9zeVBVDivBdLRhnF1WbLp1885d/86z+laZe0y5ZutSJ8lfFTksw/y6Yp+s5Sb3KuAWNQxlASBCctJ6UkydobTS6BMA2EcSKEQkmGGDNWidKVruxUo+TwTzW0S1kkLpW1ZK3AaVy3qAGA2y8EXS+eNhZKwRdxgvPRM/iB7TjsXc+248h2GBl8xEc5pIU13dA1jWyypeHZcFMRAiM39JEe9HE5QCaXOwWow+H/rtfz7sarjuqxh68/nPHWd/tdzpd9DeYdn14jMqVgs9nx+edf8q//5BMyhlykICtZVAUsi0IVDepAFtK6oIq4sonqoECZIWwpSYKIlAspBoyS2qg1skFrbcgxkUvCKUOMHhUMjTUoowhjz25zA2icbbFGVNGUUuLRXtd+KUm6CIpBK2Frlxwka8mZFBMpConVB5FijTGIOyGSMxklzpcxZ9qmpXMW5xxXNzf86vPPeXV1TYwJpSEd6Tf8rocAwzDQrht88qjZ/GaW1i0CjaMjlAA5YpUclmnaEfstaeyJfsCnHSH25DhAiKgkPf4io6vRRfreta3CO1ogeKq1bvDSAZBSlKze2n3NXaDvGtjO+5wWPYeSSyW0Ci/FOiEHFl07QGodX1PXc0UBZjt2EfERj4h9OUBxFACYfUbedWLcllKqmXKoIkKCJiilyHkmpcoKyjHK/peprX4ZZw3OVvSg2rzP8sKouSRR79+c96RDoJY2DiJA+73210iWSs5y+OdcEQcN2hBDZhg9MRecbZh8whgL+Jr8vn0//kEhAPuPUiArxdZH/uGXn/LqdsMHP/2IpoGT1RKnDWkK5JApSbL4nErVmY4YXRWklLivuVYkIKGQiBQSKSSB/ivsk1MStnL1onbWoqo8ZU6FECJq8Fg74lxL2y7QtWygK6xqrAM9KzhVn+2cyTHt+16nSTypd7sdu75n249shpHdOBGS9IBapbBa4ypL1i0X3E43cmP6JFH8Gy2Vd4/nWlyWb+0bUt/xOqhZRnf2wj6GGeQCvW+gQDn6Axzqb1DZtPVZMzLyawYw+2lR98/sgaxW64RaEUvh1WbL3/38F/xv/s2f0eoq/5oySpk91Kkrk1psKiRTm2FBctXWL5GUEyUnEWLJwl8BhCltm7oBWqxqAC2QfM51U5DXbRQUrQkhMA4DuSmoFox4stRNnT1PQXq2j+qYM++kVGi5FGISV81YUbWZjCVEq4ifCtM00DhDKhkfA1989QWffvYrbjYbQs6kcpTbHAUC+7n/HRs3V1fkLBleSEky2pLEEIiaKZdEzhM6RVT0xHFHmnb43Q1h2JGTJ+aemIdqzSuHiZ4d5pQSsRmtsbrgjJUeeW2EmzR6wuhJIVFSPYy1qTC6xiixedZFo4tBFWn/00XJAZmyENekMF7BTkXSGrT8Pl33pT0+pmqPfVFiHVwsJdYyp5bAd/5jjEYZA6ohpcg0CcG0FFMJiQZrxYCqlCTlo8o5SMpgKuKbi8ZaaBpD01jIpRq6yXqdyx5oaoN+qahrphS9r/PP/J7Dnlg1/NlX/PYMisNQ3L+ClbT8lVxRmTo3zIZMcsahazBY95ZvKgW/UxfAffrF8/feZRwTGt6GKLxNivZOW2ABqu90RpFK4csXV/zs57/kT370BJxivWg5Xa7Y7XqmfqB1zT5q1DqjVEJTN0Vq5Ko1ygphhSQ1/5I0JWligHH0suBLhe2VpjUNTnc0doEyFr/tCWOArHCmYdWtcNrRqAZXLE0xmCK3aiyZmJNs1CkRJ0/0EzFM+Ekg4GGcmHxg9J5h9Aw+MMVcleMMjXZYpWmbBmUt22nHbpwkmq+Bwv2XZ4adj6/J4UD/5os5X6/jB+X1pP+Xg8D9ezTm2ttxIDB/2plQIzdOFTDh8Am+LcilXvs6v/7h+2pPEJLvFVLWpFK4mTz/8OkXPHt+yR/96DFaa3zye1h/znyUsRhTs5dS9o6PSlUgsnhh1tuGECEmTwoRjZa2V+uIwdA1axbdyLbb4f0N3kfa7oBaWuNQtsHV9WakDiHEMCosqRQaCxRUljWaixi+ZKoKXH0sJgmsfSyEkIk1eMmzs18OxOTJZCIZu2iZsuf5V1/w1eVz+mkglkIqYogjnJ035/1tc/9DHUpBYx39pFDakokYArpEGsCKEogc8kNP6LeEYUsKA37Y4H1PLhGlJhTSQ5/TvGZMDSx1ZcxL+VOj5ZqXalG9HfFbD1NBR6mBW6QDwGCwymGwqGIxxaCzRhcwFFRGAoCanKicRZkPOdiV1Xs53rmt71jOPFGIyD08Ix/aVPKsTmglHBJthMRqZknccjhLZm4MWgmmpjSqSHMd2hCMYgpi4OZixGiRtzZaEUIiTAGlPM45CXwSqKzuJlW1rKqVBD6qgJqFjNS8LtU9e8TbVu/h8Vx7FjXyVSHqiWGS7gsJxgOZSClSCvqmff2dEYC39ed/m/FtVOfuf16pUdN8eMGuH/gv/+1n/Lu//FMe/Pgxy5Mzzi7Oufr0lu1uK1C9UVXcRCLWZOeWjySZTKFCRuwXHkiwNQ4TYz9gTYNSAn06a2nblrZpcU2LUoZh8BilUKoHlFinnh8ud0mZjEBSqW54KSWBQ6eJ4CemMDFOI8M4Mk1TdayKApdW322lNMo1ZGVJyhKKpt8OXN70jF5aAN9+9ooi1TudzcelgnsefuuD+7+/v9vu8Tsr5Wg97eHLcgcxmccd5cp3DX6/5vEDGqHIRTo6Yso8ffaM5y8u+cnHj2i7BWmaiCmTnaFUSFZgT4F/KeVQ3ikSxFgjKmeQ8N4zTYEYk8jz1vKXyRrrGtpuwbJbMu16ckyMvdhRd1mxPjlnuVxhXIupBEMFVGgLrVXN7Kk8GXH2k3px2jvGySFfJPOP0kkz1j7yGW/JQMzyQU7Pzjg7v8A0jsubG5JqCango9w/d8yV3riwav//+6+SuvOlXtB3up6/rVGKZKGNXRCr650poLN0A5iSUWkiDVvG7Qbfb0l+IMaBEHpimsgqY5TA7XvU5KguLTSA6lhZkJKOkg1yHEaGfmC72bLb7ii5YJyu7dH5TgCh9rBXqchOJitxVC1Z0ldVs1mjHM6JjO2skT+z+EstC1B9To5RAUphZguUVPkKRV5PzR9mRsbm79e1pZBuG1tdKVUpVddfS8mtaGgNSvWVt2AJUd4TWuzgrRWuChz2hT3SryQQn/eR/crKWWB7yn7eYQ4e9v+7ZxytV4E+QEnSMoXAZjfgp0AuipQStmovqHH4xl34nXUA3gui19FbmCHPEApfPH3B3/38n/j48Tlm3dGdnKCcZfATXRTP55SEEzAvQo3as1fnHtZZ0Wq/YdUDWnpKRYFZa41tWtFYN6beRFLfn/UCpinQ930tG8hhX7Qi5QPcPEPOqTpqhRiZJi9KhcPAMIxMkxeCopfNVFpYLMW0RG3wxfJyM/DsxSte3gwi/1vvvXcllnzdHN/779+BIftDhRH3GPVv74PO5inzqri5ueGzL7/kz//0xywbg1BT63VVNUChVLhRNpQ5MSrMOgAivxvjKNBlTKIU1rgavC6IJjFOEyiNNY0Q7YInhcw07PBTZrU848GDh7RtR9Zm79U+a5zv66C58mhS2Fuophil7l87bHKaa7mprmup/6MMVPJXKdIJ8fDxE04fnPP02QtoIqppudpsGape/F0M53d/KCX17nHyKN1gdBHHUECFgB8m0rQljBv80JPCSI4TMQykPJEJwrxXQh6WPe7Yna4mPgIfsf+/QoR39g56W6ZpkD59Z2laJ7X2uYWvRs5KHw7qw+0l39dQ1f1El982DdqKc6vA2bUjq5IQy1xi0FrW4Pz+yqGE9Po5NX+unA8GQFqLORA1+7faoLJoCc8yvxq5j8SF1UhAc0zgm8mIpSHDnst1fJ3mM+W+JGEOlr7LbqPQiEORBmUoReNjph8nQkykanestXjUoFSNQX5NBOCbgoB/+SChRncViLy82vL//l//louzU/78T36Kj5Cto/cTqxiYpgFbo9MsfiS4nGlK2feI7vvCawQavSf6ABmcFv1p0YsWlanJB4bgCZV5aWyDcx3LbkHf9/S7kRhERpIiLVOlKEqGrCXj8z4wjj3DuCP4QD/2bHfyZ9cP9MNAPwXGacKHRCoQQyYWT9NYtj7jLzdcXm3ZjIWkhYSoja6Z4N3E5l2uzn2J0NfVkd6HuPDbjGNE7M4NWl5/0vd/vIhQzf1DH03kOHr+6dNfcb35a5ZPTknlQHgraq75RVQxKKUlEFAwC3/PCnxKg/dDrVtaXNvQdku6xYrFckUMmckHzNbhmo6T9RklJ0qKwkHZ7vjq6VecXzzm/OIx2Rip2+e8b0VVlZqcKuEvpUBM0lWTYiRGX4NrQStKkc6blPJerXI+MQryORtjWJ6csDw7pd2NbMbAl5//M58+fcZuCtIBcKdG8+Z8/sCW5TeOlBKbm1ecPnhC8BFTIrZE8D1+u8NvdsThhhx2pDhRciDnQIojiUAkie6ILlKTB/ZISS0Bym6q9nyTObBMKTCOA9vtLX2/I6VE04g0ddM0e3JgznmfRM1teUqVIxd7yb5NJe1prWisaAQoo8nzus4FqzRZ7+taRDUf6uy1BCjlkJRZS9s0QgbUes/ZCiGQUmKaJtHRyA0uG4yzokNQED+B2hUgvADZp61x1U2wKlVWpC7VMpXVRgjX++BgnlM5pEvJd+b5eLzZDvzNe6lGkamlL2UIKbPdTfT9RMJQNPsASl7k6w9/+JYkwPvq8veN31wgcFQA0PVCUeh95me/+Jy2+1+5vNlyuhTdaqcKYwgsk2xEwevDZ6igY04CPRkrrKaUkvhcT5N4RSdR2tOqUJzChch2u2MYd2y2O8bJM0yRYYqUPEEC7z0ohZ+mPUwl8sSKhLSSpFLwYWKaBjHV8J5hnNj1A7u+Z5xqVJcSPiVmwHM3ikOXNdI3O02RyRdCrbEW9J50dbhu34AwoQSy+oaxh5nveXwmpbz2nW/8nf9S4273w9FXjnPJPS1vn7V838jwoVnobjkhczBrSjnx/OUl15stHzw+q3wX9tBsrqQfhaplJzlAJUMApUUSVTIV6YSZ79uUMlMI2CABqdTTFWCxzZLGKCGX2YbJR65eXbG93WCNRXcdPkVZ35ULILumdCCQI6XEuvFl0QKosrE5V7wlH4iNMge6tp5lEpmiLaZtsV1Ls1yzPPP84u/+iX/6/BlX2x5R6eDw+veM1ytS788q/O5jGnr+6e/+C3/z7/4TjTboEkjTlml7zXRzS9oNFL+lJCH45RIp1OuhkvxBescFTj+UJ9Wdm0P2RSktSZ99mDLD0LPbbfHBS2lAS5eAc1YUActcxBFO0Zw06/110ns9f+memgMB4aRkJUz8Q+1fQQ0oYohEH4gpkdMhyMi50GhD2zQsuo7FYoGuhFXpAJBsWMqpnqkiBTlZiBllhfhHKZRUKsmuJmm57OegxhqIdLWqdvIe46T8O49jsv9+RzlOwOYkM2deRw1e35zfyrlTkv2notn1I9t+JKSMqt1kB++AQ3vx143vvQ3wGIL5dcbrP38QluBo6VbpT1V4tfX8f/72F3z65TMuTgw/+egRf/aHfyCHaIzkHAhBfjgmi86QkkxSzqpm6Ac5y5ylJptj4vZ6UyWHLYvlkqZ1GKvY7K757IunfP7ZV2xvbli0DYumQWtY5xV+9BgtMFJWIkKRcyLkRMyJEKsoSpQIe7PbcbvdsdsNhJBqz2mtnSFfQ8pMEQizPkG97Sr8O0Nm7zr78zTPl/H1A29e1HeS5bcEAm+oV/1QxttKAL+Bw/9r30I95HOBTT+wHScSYrGWOW57m6Va5lbA+ktqW6C1FmMNpdbXU0xsbrekmGm6BSkrRh9JsfDy5SteXV6xu7khp4lV1/LwwRknpw2b3cDN9jm32y0pZZx1WCWa79JeJXBaIZFjgBQEQSi1/apI6U1gWglEUsqEEPFTAITPULQRO+ySaNqOkwendOs1xRiGEHl2dc2XL6/YTIGoZj80DnWuvSD7YW+Y///Oa3HeX964Lu/LWi6YPOEQ5dJp3BCHK6bbl4TtljIFiAMlSaZLVUrISrqaisoUPUe180l1OLHUHqLPc/kcKhLgw8Rmc8Nmeyu6Eohpk7UK5wwpGWKQ0lQh1XVYZq4eilnlUoIAdVSyUkhpg3LotNJKi+jPJIJuIcjhT0UBjJJD2Vg5/FfLJSerNW3XopTCz26CIQpSbIUDkHJ1owyJZALZWRojXIBSuLPf5iR9/9IBVtn/KaKsppREjHqvEaDU8TqZCX9vR8WPg5x9l8PX7Kfzz1CQeNlYBp+53gyMPqGUpR75aKP3CMC7LN1v3Qb4XtwQryO3lTxyPXhuv7jkRaPICX708UfktWRUKUo/Mrpgk8FmBTig7CEegYcl3HPW0i4dt5c3PHv6nE9/9TmTDzy4uGB9skIbxc3miq++esGLF9f0my3LpuH89ISm9rjGECgpY5UmGY2vymcxBsmkgsdPE+Modf/NZsNut2MKQYSEak10vmVSqWQrDllqhvkcqBtYqRKab5+ze4e68+X347c8dsPEbpgoRpS+QpoICVK2tS4pm7VSugYDHDJ9FDkLFF+qwpu4twWsj8QsMK/3keubG26ub7m9uiL6iUfnp5ycntAYi7KWbrmS14+RpgZKSlUYPwZhJxSxt54JiHOdNFYOwHHtP4ZYW6qSbIDaEJJkNsoUVienPHz0mOVqze048cXzl3z54pLrfmRM0v7LEQ/idyK9f5dRCrpMaN/T9wPebxi2z5k2r8hDj00KsiQ65GoTowpZZTJZSG5H5z/cPXRm0Rql5uBSDrEQPDc311y+eknf79Baszo94eRkzXK5qMY7meCnqkEhKIDWIlIlhkJqLyaklaoti5K9iD5E3Fs75yQ1e+89fd/ja2mhILyWpm1w1Wsg5SCE2Ipn6HoIqjpfKVahNuq+lgspZ+F2UchWU5qGMhvBFUil+qlUQ5VS5q4EmPGknBPeT4JgzF0T+/mDeaLVfp5f77r69rvsPvmtCMAweXb9RCoa48TXwEiUhTGGrqrLpm9wA/rWJYD3Yxwy3EKFvotsJqlkep/Y9JFhShRlKhwkpkFa1VaJ7MQD4PgiAahC01iapsEWy+nqlLZpGfqBV1fXDNPEcrMkJF+j4p6+j6QEw+hR+ZbzByesV2sUmuADi2UHUK0rg3yNQToA/Mg0jUx+ZBwnYhSmqNTIyh1caYai5k1YzTWsUu0hS3mD/LfP3r9hzak3/vLd4e/5pvn9+G6jAFOIfPnsGbebHWddQw4TKWdiinv4VOrwB65HqWshRcnOQwyUUmibhtPTM5YLUedT1hFirlmVpl0uOEXc1S4uzujWJ4RpQFvLoyePOX1wRkjSjQJVCTMLtK9r66QiYzWEmMkl1aA77qFYyaISMQoaYLQRHkxMTD6SqmLcyekJDx8/xrYdL5++4LMvn3J1u2OKRQ4JwZWB/ObhP//7dzKKLZRxSxhu2F7fMEy3xOmKOG1QcaIUYevnkiXjRnTqpQ2zGufUqct6LtnBof58OLC0VjSuEVfJ4Lm6uuLy8pJhGLDWcHp6ynLZAWofyFlriSUeDjsFKLWX+DXzH62Fo6SqNkUMlFFRlN47DI7DQIhCKtVK1nk8IvqJqI9h8hJwjKM4vE7ThDGGGKPwsPp+Tyic16Gq7bTeB7KfZZJn+2Bd9fprmSpL4FqgCg3JYZ+SlG8VCqttdRC0r8H6x/P6JjL6LkHAjPcdXAPlqw+RXT8Sc0Ebi6r+HkDVDFEsl0uMsYTsv/Y13lshoLdPlizkPWY6Gy/MOsxFETLc9iNXt1v40cOaMWdxAzR6rv6TSkbnhDFaNPuLZN1Nbe8rvnB2fsFf/tVfsjo749XVFf0wcLvdcHn1UlruEP5AYw3rruPxxTmPH17w6NGj2pMqpKmkMrHMUKjAXTlF4QeUjPcijapVwRlNTGr/HnMR4ROJTCsEbySu1Uqet5+bGR09gva/jsR3ePywAcw76Tf93P18gDrb7/H5P6Np+38rDoSdPSHqnvPltTX5LgHxcexVLUHe/N2v/ZqiYDcM/Ozvf84f//QT/urPPqExRvQjUsIoRWOPszX2a1eBtN6lSC4Ja0z1N1dMkyemgmk6rCsobXFtKx1SKZOjxygR3skUVmendF1H07aE5AlxFIUxJbB/zBFSrD3j84F86OtPOZJyIBd5L8IHCOSYMUqTELOuKcBmHAhZ0ZzusM+uGOJL/vPf/T3/+M9f0vuEMlpEV+bC5h4G21+2w7X5xqty/7y/zyPnxP/yP/+/+OjDj9j2PSmNpLihxBEVE0I603tTM42w2suMGu6z/7JfK6VyqArHB1XZB1mpJPqh58XlC66vr8VYrWk4Wa9ZLLqK+Mg1cbbdI1BzKYEiIkOzzK/Sek8OlABA1kMqhZTFZn2cJvw0UagHvZYELgdfS7SBaRKPlZgiIWSmaWLoB6y1FQKfOQs7chZ7ZOeaqjOgUJnafeWrn0XEGYvSFirJO1Qi64xAKGePkJPaYVCSGLvNaJYSsaHvMvbdWwqKmtseFXsD4Fq2KRl2/cim78kolHaVfIkgKkqCc5hLwV9vkf29BwC/OQJgzXLrhpf3cue5LuZMquIkSsPGB653WxHcQdjLMWWBqTKigJXEVMIoi7G2SvVa0A0xWxHdaeH8yWMWD9YMU8+Lly958fKS1fMVT5+94PrqGj8NnCyWPL644NH5OacnK9Zna7rVkqQKU04kXcjKkHMUucmspI6fC6kkxjgBAWfmVC4JP6GIAEZU4HMhK0UpImE8z8sswib/erOuD9+0Kc6HmbrDRp/n+/Wg4s5PquPXqxtCmcGy93DMG2E5uuHIZC1V0+qbsm+7u/Nz3+IlgH1N+hAAcLSC7xl1E8hKMUyBX/zzr/h//s//C01b+OMfP6ExmlRNS2YltwRQpCWo5Kp/PjMFat0TVdBGEVNkmgLERLdY0HUNLouWe0kRP2kxekmB1jV0K2klNE7jw4j1hmbRCau8TCQVEW0VRYmIP3spCN0skYkkJrJKoFNtRUvoknFFM4RICJqdtzy96rnejXyx+4L202t2PvD08orbjScmpK5cCqSjyeIu12U/13XBvhYj/KBHzplPP/sFm6vPIEVUjtiSat1cFPxKnnv7s0D/pUox1ZYJhaGoKttVJHhMEUJMLPQCa/WByV8ixSdeXL7k6fNnXN1cobXi7PSUk/Warm1EaRUlGiU6o3Xdi3Om5IgyQHbi5qf0vhRAXaG5QEiRkpLo2U8ihFZKoW1bmqZFK4MpuSIZEUURbkAZKeWACngdQKl9J0Gs0r2zeqa1NVEstYykNYHaiZU9XbtA64iufJWUM7FEhqknpIRxcrAmL9wKY0SeOwZBLUopexRgTg4OwdAROe/1xKGiJaXet3L4z0GZFoGtIis9Jbl2m2EU1Cwb0IpYFDlXgvt8Tt4hdr59fKsA4Ju0+n+9w//db9M5Ett/nWOc/b/Bp8hlhexT15GLgJWqyIJXOpK0JipRhcopYY1DGyMHbUroCgkVpWi7lqazLBYdpyenPDp/zEcffkK/6ykpsOw6DJBCoGubShZsyRT6aUQ30kOttSi+SXeBLJ5hGJi8QDVz+81ei6DMUJREyYcywGHO5kO7UhmA+w/rrxuHa3d/DeC+oOJt473fdOc3uC/SzS12h2/fOVm+7Ye5L1BC1tHhAt3/1BkxKEVxfbvlP////pbHj5Z89OSMs+WqrvV6wB0Rj+b1UsrcTZD3wjt+CuKQOU4Mk0eZjLENXdfSNKLkFqrbWah1e22tcFdyYYoJ7WSDLtUGOFP2HufHaNAsTHQ80XPHjQSrosrpUyDFDNoR8sTtMHG5mUi7F2T1kikXuQ/n7oFyBIcezepxgHWPNNBRMHYEz9570d7/kWMgTiNWCXIJ0mKXla57wwEOuQdn4vXZm0eqiqQCrVuykqBhtx349NPP+NWvPufq6oala2jbDtc0KER739RWOR8lG561+SUQyxyL4cxiUDkf3meOssf5qoMiJatFZfSLuqQuqur7i3x1CJGUIxR9EJ/KAQp7xNQaw2Kxom1Fn0UpqjaFhN8zB1JKZRnUiDENRqu96VsIgcl7QiySMGbhi8223fPcee/3rYjvMtRra3FGqAty+FNdOym5ortyuKdcuO17bjYbUlEoYwgp1cQ2iakWCZQgEkbrb9y6fi0E4D5ltF/PVvZtb7dui/fslm8s81p7ShkurzfcbHseny4pGLQxGGOklpipUHwm1NoVSuQs89wSQpXVjVI+MNrQLtas2zUX6wn/OIgmu5aYdru55ebqWkzQGiNsf+8hR0ySdpdSe1J3ux3DODBNEzEmqTFZS4qJQiJnDizULP3/tZPwzfk9OvTfdervg6+/V/TmvY4A3v+hjQGd2e4GPv/iKVc3tzw+W+5tWoUPwN7b/OClLgdhzlEgzioVut0MvHp1g9KWduHQWBbtCtc0pJToM0wmUDCEFFA+4RxooyghkdVEUzG2pmmqg2UmB2mVNXu2dKotVDWDUUZawerNK8Ip4lUeUyarwjB5xhAJBXxKxDJz2GuA8fvFJAdFzsQQcI2+mwlk8TwpUKUgqtyYOtodFTCT+6ru/3y/22p4U0qhaRqKgmHqefrlM37+D7/gy8+/IoyehVvQtEusbYne7xn9MWdC1XrQtrajltp+ag6b0hwOiuqlEu2INHdEiSiUiAtZjJ0tgeWwPX6/XXdQCxzHUZwni0Kb2WjI0rYNTdOgjZQ2hRk/ty9q0R7wuq5XkcxtWwtFulaUsQyTZ/KCSKSUyT6AEp2NmeeQa+nQWktK6Z1LAAeuhLw/U1ncqp5fhVJt5IuYdRUYfWCz7ZmmQFJO0O8iyGvOkZITqcj5obVmsVjQ++lr38c7KwF+7Yf4Hsb+Ze7tR/96QHmub81vJedCUELKu970hAylyifqmoE4I0YVpVT3PqXQJlFioBRNSoqUEyqLCpUGwYeLwirNwrW02h1qormglieQCj56xiSuWSpbVAKXxVObGjGO41hrUHUBZjF8UbVVJ2WIs/1kLvL3mpoKYeUwH/lQD/jWQcD31bb55u/+Xn/d7/w4vhYzApFSJsfMixc3XL3aED/+AIy4URaQdZuP0Z/a6x8T4yTk0jAF4pTo+xGFxZqW5eKE1eIEpxtUNlhjaNsV3kcUA+MkpFalJyE+WQPjhOoLy+WC9ematm2ISRjcJQQs0sctNVGBZmeb1mJm6FMJ3yCXKm4kB34/ebGx1hAzhH2ZZmY1vC13fYd5vWee4TdZqvzNjAJQkUmywOzU2q+gLlJjLxXaF/H9QwAwS4DL+VK7BObfXQoliXFUipFUMi9fXPLLX/wTX3z+JbttjzOaUhRN07E+OaPfbvB+xE+e3TDSjxOURGPNPhBlf62lpVoniFo+jbznJMJROVIoe5IdFOmzN1Yke42mFLFyV7WEQCnkrtC2E4sukHJEKYN1VgSIqkBVLhKQivgUUHQl9h0SVmH55wN8r0BpTT9OjD5SFEw+olLBOLHQViWSqwOi1mVvFDSrK1Jn/b4xv86eeD5f4X0AIC2TWUnZRmkJmG+3O7aV/Iepa0BonRSE6E6pmjGl0C0WqJvrrw2fvzcOwK8P/9/N5Y/n8PVJevO17/xLAMdcGHzm1e2OIWRCEd/kVuvqOS41HBFlqFB7SdU/3eBDIvuC0w6tNCFnQiWbBB+qgIUj5YwPnsY6YYjGhPeBKUzSZoKoCZYi0JFFNu5pmvCV2V2KLDhdICYtms65EGLaBwGxWhurOZ86qvGkdHBgk5vrLmT/Gur81vHWOtVbnz//1uO2w/L+Zf/3Ayb3/uu3OY6DgBAjrhI9b24Hrq43IuKiXa21HkSBpO++EGNmmkbGwTMME95PpFAgKRrX8eD0Mdo4Fosly26N1pacBEZubMdqUfArMeuJKbDb1dpmI9lGLoFx8viYWKwWWA0qJ1IIYtFdpOSQszifaW0xVjbfUtShHTBDVJqgCkNM9D4whoxPcvjPnTm61o1TTvsN+9sGArJE3/R2/PWQyt/OePbsGTe3t3QXD5jrgbn2rhcEMi41K5fPd2CbSDCVK2TEvnQyZ6HWSmDpp5GXl6/42d//jL//2T9wefmKubNk1w9MIeKalnaRGP3EbhzlcR+wWpFyhiJyu9KiKmiVml0ik7w/kWSPhDCRSpLOg6aVgy+n+h61oEU5o4olKyWkQm3QRtG5hvXqlBAE7cpFXusgQS0tqbPcug9eWgBTJGfpDpgdApumpW1bStYUsYtjmAJTVWANqaByqrV6kdhFZ6nBRylLWBtpmlxLF3Np7M019mYQWjfpXCg1tytKVfJmIYfAZjtyvenZDROYBmN1tTeYdTcSEPdng5qJl9+wl3/nAOA3efPsS7P3wd13nnj4Uqj/UwVtHKpEBp+5vN5W+VBNzBUAU9XGMgtpRBmBsfI0UvKExlKyQkWFz5Hb2w0vX7zi+vqa6+sbpmlEqYJ1IsAQQ6JrW1bLBYvlgqwyicLibI1uDBgo2RKDxynFNE0ibiEG1xL5ZkPKstnFai88+YgPCR9rAABVrWpeQPM8CblGqbn97nDB56ero/n6+rk/ftLXoT9vog3zOnvfINs9+77cefBA0jkg1L/1sdcQV4qYhMnd9xMvXl4zTomyEhvSXGKtYR5Y95OX0tI0ifKeNg5nHJYGbSxgiD6zCwNTL8JWs4OacbLZLpo16tQwhYl+HIgpoFCEGMilMI6BVLaMwbNcNCyclXsnTDTWglLVMEjVjV4C3GMToCllxlLwwJgyY0xEBPavQrICISOB+bse+m9/3tczoX8o49PPPuf6+obHF2fsAXUlpRIJBEHlQtHSlrmvKVdyy9zidhwAGCNwuKmKeS9fvuS//exn/Nf/+t949vQpwU+0VWVuHAeev3zOxcUDWufY9j3PX77Ah5k/ILbSqjrxzX4rh81C9oZEdY2sgmjSDSCCbKWIl4VSCWsySgVKLji3wNqu8p1E19+bRNO42k4o90FISeTSY6hlhaq74ie22w3b7YZcEqtVx+nZmuXypAYADcY4hj5gDAw+MoYoyFRNzQuiL5Mo0lEGNZAoKOXR2tQgxnAfCnAfh078Eg6qfaXCfxLUGZRy1fBnErVZZdFmFgaTOcwlgYo14JsR4lmw6+vX/XcKAH5TsPExjH8no/wWo9QfLmh8SlzdbrnZ9sT0QCR4U8IZXbkpVWinqJrJBxQaqyQNCTvPq+dX/PM/f8ann37G1fUNISWUUSgjzGpjLTmUiirUSNpoFuslDz94xOJkRbdqUQ/WOGv20ejMut/DTpV5GmKqDoCpiqdkYlUFvH8m5sO/1li1fs0c49tehO8+9hy393mv3e9FxxDT+/eGC/UwzDCMgWfPLrm52fHJwwdoU+Co1l7KkeGJNdjKGQleWqTiNFY+Vu0giNTavMFZh2scxiBBR06EFAlF+v6TPJlCRDca17RiNAKEEGmtkRpr7bbZt1qhK0QZjshfUqqYcmYq4EthSIkhJmKu6nMoDkL/73Ev6W9hZCCUTCgJfYS6yRamKis+o8osyTt38MheU+pBM7fh6WopW3Ji2+949uwZP//5z/nZ3/89X37xBX6asFpXeB6UVlzfvOKLp5/z+OEjduPA9WZLzoX1cgWNQmm59jJUDQiVuOCp2gFTMgZQRuNwxGiIMTEOge1mIEapYTdNh3OOUhRdE2nbfIdpr3XE+1ADzLjHkEX7/8iUKkkSN4sZLRYNJycrlsslbSudLta6femqALthZJg8qUAu9VBVCom+KxG2JlvWWiHb+sA0SSBgjKnvsewzcbh7dt6R7S1qn8mWGhRo3ZCxeO8ZxkjKGts0FG1qOVh4IaVEVBGTJ6ot93zuay0IytvGOwUAx60Nx499r+Pew/+7jZIyqdZXXt30fPX8JT96/IDOLoitpTiJaHOae79FVEcpKDFxe3vD9eU1l09f8sUvv+BXnz3l5atbRp8wnWVx0qGMwjaatVuDgpvtjn6zwxmBhLply9OvvqJdtDz55Amf/PRjLi7OaYzZC0eIaYo4o03TxBQKwzDRDyOTD7UEICxVgXakDvfapz1kjfXf8pH2uIg8+hs8414ng75/x+mbY0aX3gSH348h/gBglKynFy9e8erVNeknH3FHf7zWfZVRGKelRomoAMacGYbA1EdUUTSuxWq7zzpSKpATuhgymclP+BiYoscnzzCNDH5EO0O3bFifL3nQLTk7P6WQoASs1YQUkHWYUboqFTL7hrAXVZk1MUIpTKowlswQA1PKxD0QIxDs7w//N4d0DiemFDE5VwhfVH0UipLYr+fjkuAc7kqALmRiVTIay+gnrq9veP7sGZ9++imff/45V9dXKDLOGciZGEdMIyXOXb/h01/9khcvnnO76dluetquwxhL1zTk3FQOwHz4a7QRyF5QyMoNUZI8ad1KT3dR9P0g3hObgVIKzgW6rqNrO8yiqaz+tu6DBedEyTXGhFJBBKasI8aAVkIkLEX6/YdhRCvL2dk5Dx+dcvHwAev1UtQKqxSw/B6Rhd9st2z7QZQDK59ltsIuJZNjLUtpUErY2TmLV4BSmq7rsPYuefG+xFnNRf99qyYUhDybiqEfItudxwdAW7RppI0xSy/OgehZ5O+l7IM+awzONaRpfOuaemcE4D4pw++u/f5GRe7Owj3++u2HkjpXjZB3vef5y2tubrc8WLq9P/lBZKHsF2wuid12x+2rWzY3G4Z+IMXMerVGm5YpJs4eXrA+XxNKAFs4XZ/gtxNTP5BDhJR5dfkKdIGZN7DtGYZRCDx7lb/aQxpFcCLmzDRFxtqq5UMmZqnr+ph4Ddm/d06Pa/+vX5u3T+eMf795Tb7VrB8FiO87AXC+52R/vO+zHz30WyoNaD3D4KJRfn274eXlFcM4cdK0OMSZjALaaNquo2kduUDTZJYLiCeFcArTTjIllcUGlawx2qK1o3ENzljiNLDdbRm9R3uDSZK1aKOxrWN9uuLs0SkXDy9Yny6rouWESoGp1lNjjFhnUUp8y6TuLwzxEKJ8jYGQE75kxjg7auZqlf0vO+GvVYR+EGOqULYB6a83Bm1rhq4kKNC6ZvdzIl5to5VWGC27XgyBYbfl+vqazz77jC++/IKnXz5l1+8AsEay9ZhnBT3hmqRS2O423N7e4r2Q+XQweO/3xk8pG4oR0jVKUAF9XG4D0MLab5zF6gZrGhaLNW2z5OxsYBzFRdIYw3K5Yn1ywkn90zRN5ZiI6ZXWorg6+UC36ChF7Iu10fT9luvrK6ZppG1bnDOcni3pFsJr0bpgrcFXs6ECjJPnZrOlH8bqrioIwcyzmMtuUNBF12A6k2JGMdG2C9oG4K6VMBwHAfPD81mkj9a/kB5DyFzfbLnd9MSkMNYJB0FJi1/K0lari6IUzaz4VEqubYkG5yzj1zQCvHMA8G3Ys8fPvftzx/jwa5vuDGeVu19fDwiOf2r/myqcP/96raohShFznxeXGy5vBh6enbDqPF3jMDrU7ClWZVEFKdO1LesffYL7acd4O3D7asOwHem3A9u+56OPP+LDH31It2oZwkCKEas0JRRurm64vbrl+upKdNh1YXmywHQOd7JgvV5jSiZMIzkF+qFnmIJ4OvvE7TBx6wO7WBiKZsyGISfpYtjPS9rPo7TIaIw2b6AApZQ7c5jyYVIPil/zE2rksFfBK3fu1fuu+Ou1/5lFe3zt3pchQevd96zmjHWGUuvaufetzz/3PXyuGdx+fY7ewHUqbFdl8rneDvzq6XOutgOrznDaiFFLoaCM6IEbYySc6wolFnLMsCjEZcKHSIyFEAu5aIxtce2Ctl2gFYyDJTYF4y1ttOS8IJVIImIaR7vqWFwsWZ90dJ0jhkScpE3WaU1QMHcgOGtRyqCKI0bNFAp9DGz9wC4MjJMnjFKr9VMipFJVAuZN8Ai5eoc5/abn7Of8ayb8PaKBvHUYrfnFz3+ByROtMywWLV3XYpwciI02OD1L1grsLnXqysWoEs7BezbbDVevrri5veHy8hWbzS3BDxVKLjRWgbH4nEBXM5+a3VqjUVZjCPgQCWNPT2a9cLByZAwFTcwJkxUmA8Ycrf1Sk1ctmbqW9r1m4Vi0rQSNITIMIzEmrHVYq9GmoC10yxbnGiia09MzVsuVJE7jSNs6aWsddvhpZJo0zlkePnrI+cUDSkpYrUCJra/SsjdOQcipIWc2w8DVbsfOe4o2WFtd/0oRVUsySmVZrepw9uSc8b4wTQPLVYfWriozVv5DEU7GrN5aCwpoYzHaVbM3SEURM1xvJ643I2NE+ACFWieTAqHKGV00BSNCUMqgSRhTk4Panv6WFAf4Dm6A9wUA9+kBfP34ht3v+Jnl7sZ9/3NnCGV+QiF5jzGygU6hUJTl+eU1VkndMmUlfflkVCo0jcNZy6JtWSxOaNwCv/ScnZ4z9Z7+tsdPHmcNYTdiFSy7FmUanLZMxZPcgubMsGxaRj+iGsg6U6xifXbKYtmSpoFxECOgEALDODD4xHb0bKfAbvQMPjJFYUX7WIgRUkLsUgv72t4811/Xe7pXpTqaOzkQX3cMnIOBNy/PN4/37MT/mvEGcXH/De558Ht+7aNffc9d9MYbONzq0gP82ZdPefrsBY9OOxbW0hotTrqqbgLVelobyVREKCDSOFnfuWimWAhJoWyLcQ5ltYiNZE33YEGXHCkGyfBzJJGEmWwLKXtCcrgkGf6M2um5fat+uLmvOuZMygUfA8M4CUGr9oyPo8d7+S25Isal6KPPP5e9vmZC92WD7zj+Ba759zlKLvztf/lbztctXWNoGsnwrBMxnkZrrDIVrtaVj8GeHyImOxP9sGO73bLb7ao/gyjmLZcL+l7QAavEZdXaWo9GkAWjNUbLtbZGk7MmVhOolCIhRVLSJGtxmD0vAQStEDtgMGqui8/98JKQGCuZrnGi2xJjBECpQkieyY+4ScxvtLZiUex99RHwjKNwIcZpYBh6pmnAWo1SDZOfqhlbxFotmgc6C+clSql1sxu5utlyvdkxhYjRbo82iPxvFWWrHBx1BM3m2umQ8myJLXdw1UelAKY+Mu9Dc5dEyQG0wzhH8JlNP3K7HRhDJGOqXb0QZUo91HXdIOb7Xu6VhKrwfzpuAXvL+O16AbyWRb7x7bfc2ftNdN4A5gOuRlqaKIus6qD/1d/8Nf/j/+5/zy//7j9zdbtj1bZi06vFVU3aR2QBWiuRs+jvR5FmNNAtOk7Xp5ALwzDQ3/SUDeQU0UXhtMVgaSxMaqqHe08fek4enrJkRUyKVBIhR8YgNdbdONBPkX4KjKEIAdAngs/EACmK/n9OCDlEs7+x53LMsQrcW6f6tey8chDfvnl+p0Dg9+P7GsegwxwEPH/xkk8/+4yffPyQpVuJq1rKYDSqJEwWTwujDarWBuc2IUVGaYd1GpxsDiGODGEEBUYXTKspUQuhzCi0kswsIYI9xihUKaQYKCns7VsF5jXkFEklkHMkJ1F388njQxCHywwpK3zMggIEU7ufXmfp/37h3TeUoiYh0lGUwshubu1TCltE1VSrSrqDvRHObHMeo3iOzAxxrRStc6jaHu3HsTqRiraJngl3cz1fywFLAWfNHcQmzy14yQDSw3+8L4nniiBXmkNyMrfvFajlUYXRllZpTDR7Q56UIuM4AAVnJ5QyjOOAtU60X7yH2v0gFusjkx/2JQHvPUoVWqMwzuBacaKcBhEhykWx2Y68eHHN9nZHigXXCaIiB+ysVWDl+dVueCa4lgLGzHfs4U+pUP18Ru3bAysUmIuU+YySQ30cPdvtjnH08tmVQpdcNZ4KtR+8IipyjfYZnqmBApWY+14HAK+NdwkCXn+KOnqeqoxuV6PMk/WS/+Gv/5L/6//0P/E3f/4n3Fx+xbNf/YKrzQ5tpObvGovWmuLBWtBa+kRLUcQcmKJI9ZaxEFTD6fKU0/UZIQRC8uhGDn+nHTFFLl9dCqnm1XNupmt0pzh9coIPI0oL/yABY/Tc9Dtu+57RJ6aQ2A2Zfoq1J1qRkgIMKGFiK22YafazgMVxr+fX9TaLMMY8z7/fYN/7cXQZZYPIvHx1w8/+4ef88Y8/5OLkpzRaoUjM3utZQSwBdMbIuYyxkqenkkQuRBlBnabE6CMJhbEaa2sVMourn7FKRKnmrE9R214zMXhyDKTg5dCPmVzAR2nm01oIhqOfy1yi5z/5zDBFxikSE1XCNh3Y/8DvD/+3j5RnYx/J7HIS14W5hBeS8IbmUWoJdO4KEp6Gr/tGLREcIYRGa7q2Zb7GJef9wU8RaqYzZm/SE2NCBeF/5CSGZpP3BGfJLVTbxro3zRK8h5a3eeQsvid6ZtoryU600RgUSte6O4VpGokxYI20nDrbYJ0TlcQoEsExCPPfB4/3YvgTQkBrRds6itEkAuRMP07040QqihAlALi5HUhBBOBsdQEspVByQpWC0WJ+hHPkOAdXgnpZK2jYQZNlRgl0XeK6kjFLNbcqKGXQ1lHQ9KPndrtj1/fkXF0Wk1gbz5bNM/RVjoIMVSEAjXgGlCou1zaO3TC+dc9/JyXA34ZgxgyRvF77LzXr1xwFB2WOhkRxygAPz8/58U9+wn/6P/wf+bf/7j+wMJmT84c8+/IzbjY7chwIYcVqtaJxIm3atgrrpDdVaS3OSiWSEeiy70e2Nzsa19I4h2ssymhyzNwOt2x3W756/hVfvviCV5tLSpd59OgRrnVAIsSJlKH3E5txYjt5tsPI4IUkNU6KEETYQ2v53UUFUELgUcrsiSt3lOPeeqAfHn9rQn/PpZUFevh6/OtfL8nM9fXj7/9+HI/yneZkvrXnyc0URp/47OkzfvnZ5/zBh4+wJy3OyEY1d86VPUO48ulNvY4ZOSBiZPQT22FiN0yEVITo5xROK5zRrJYLGteAVuQqnyoBZBKBlUJVjUt1sw174arMhNaQk2L0E/00MvpASJlhCuz6iXGKoC0KK33gpSrDHX3y73vH+SZXtB/C2B+e879rtp8LlDR3BcyB/hEHCA4JAqBrPXrW5J9VG0sRT3lnDGQt/fqA0YqSqpBQyRIM2nqQAd5LwDfD8JO1hK4R50pzkBmejYaEJHqESqoiPAOr7yQ0KLEQ1sXsWfqxkqZT0uRc6Mu8t4kWRohS6tg/lqQ0gRKhIesMRYvGfk4iuBVTYvKFV9c7Xl7eMgwBbRytEZVMTREXRV1r70iw0rQNNEWSwRAqX0GEhXRVPNxbMyv5W8U+mDUuNBq0JSvDNAWurzdc32wYfUEZhzYOyyywVGZ++77EsOdVzH/yHBwImtItOvRmS073r/33CgGAw+Hyeq0WjqB/dTABmWUnVf3URivOT9d88tGH/PSnf8i/+w//kUcffsRwc8ny7AHL01OmmxfcbG5RKgKK1GaatsO5qrsfg0TWumCcwjaW5D0hea5vdgQfgcJiuWDRtZSQ2NxshVhzc8XN7ppkIqcnp5w+WNN0DsiMUyBEuN0NvLoV97Nt76U2GhMhKVKRrL8okdCUDTLXZXSMeLwb7+IA+Zc3DvNvug6vH/z3/e67wcJ3O+x+p0f52n++/UeOi9tKZF0i8PLVhl9+9gV//ed/zGmn0EVIQypHIUbVLENrA7mgtUTE2mi0Ed7LQmmKdei2I0ZRFdQ6Yw04o2laVz3bBUbISpCAkhIhJIE0EYjRx0D00gaYcpF2wiBSwrthYpwCPiT6wbPtJza7UQRNmgWp1o8PVVT5/93WzF8/FJiD5R96EKCU6DhM48iydRLVzQdghZMph8OeUio4IL38qkDJuUqHHw5/4QDI/uKcwZqOYDUhBMnOM3uFOkUV+EFRZhEzY5h9cKbJM2iNX3QEH2mcY267yTUIEC39gx/BHUU8NatIzs+RFse5vg65li9StfINpJiqJr84AYo9bz1o6zw41+AaK0mblRJHiAmfIj5GbvuJZy8uefnqCh8zzrW4RYMxipQ95ITSlapayXVCIlY0jbR1e+9p2mavVTBfM10lg4XvL2ZwVHpeQkEGHwO3t1te3dwyTAGUI6eMIomyYKnyxUWRk5w/2hzmrVAoKVddALlQ4sz4a5YAXtf7/yZE4F1Ig2//2cPXt7H/pUdS+oxLEslIo9jXlM5OVvzBxx9zcX7BX/zFX/JXf/03tMs1we9wi47l2QlWDWxeXnO7uaYUODs9B+1YUsUqqlmFMQrrLKWDHDJu6WBUwpy9uiQmjzWG7COh2lhaa3FLx9nZKecfPuDk9BTnHD5MjKNn8JkXV1uev7rlZjvhYyEn4Wv5IG2CM9RfOO71BLTUk/Jrwg7Hdba7vICjw/kd5v9th/cd3sDRNfn9+M2Oso8EBPrFwFQz6W0/cX1zy4N1g2sbSk61LqjQxmLrYZGUbFhoka42ymBaTbdWnGZRHMslk8JIjh6rasZXMqqSS0P0kDKmKFKU2v+8mYcgxC/F7EpnCDEyjVEO/O3IzabnZjuw6yfpQkCDMtLmmo4jnd+PrxulSLb5+edf8md/9GOsNntRmoO2fa5qoZIN6noI6noAz8fOcUYevGeWjm3bFte1WCstg9F7cQfUIp5mtRZjNCuHWS4F56r0ba3D96Wwaxu6xtJ1zd5mOMWEVmCy6OdDtQdWUHSpzPhSuVhmL6gDClMEzdIGdJCygTYWVc3TShIdSaNKpURU5CyDwtA0TkR/KvEvJvGtGH1g2/e8eHnN02dP2e52KNPQNh2NdSgjpY1UEmSB4TUiBex9QClkzhqDdZ0c/roQk8dkhdW2lit0NZhTNUOvXDMUIWS2/cir6xs2ux6tHc4YEvO8CWFccwjcnDMoZeSzl0JOUurhSDCuFou/9gz+xgBAV6GRf6lxX+a/H3N0q4rUrzTMzEiA1bLlyaNHPDy/oGsW/MVf/DUXF48AhW06XNdhWsPyZEGelkybDZvtFoohhELbdHRdBzi0lsPfaYvRcS9Qrp1Cd6CWhaubS2IMNEvL2q5obEPXdDSdY7FesHqwolk4MpmwEy/2be+5vLrlajPQT8KSLlUhLRWwGpEOTrn2iIjcZy6z4tOMBRxNy2uH/yG65/D1h5v4/Hc7lIKipfxjncbowunZmo8/+QTtGm63W5xqWRsFWpMn0TZ3eq431g2nZh8pZ1E2U1CUWF+XAqYoVDbEKLVeNTtl5ixdAEmIVVqpfc1TJKsTMUTRakf8K2JUTFNhN0Q224nbTc/tZsdms2OcPEpbYY9bR/ahIhDw+yDg3YbW4hJqjUXnyg3KqtrGitf925Ra7yJ6ZW8DnNJdstgMW1utUc7JmkDyEKM1zjVYZwk1KzbGCBGuEge99/S7nmXb0LZWbIOrzblWkLSuhLaMyN3W9ySfgNn+9qD4Jy2EprLxjVHCwi8Jm4oEGEX49dJ1UFGPqqMCeu8OqKwVPkzJhJTxIbIbBm5ub9j1O5SVIMhYC+i9zW4ukVIiRhlKqehYnUfvPdZacR+sSqzCOdBY1VD03HWljta6BMEli7bDrh/Y9SIAJ+WVJMloTsQov08hhk2Cjrh6JkhQMJM9dWUHliLI3d4l9C3jnZUA3zUIeF0tcIYj3rjBX/+nuv/r/OOyfFTt3RdjkbqmUAWWy5Ynjx7y5NEjnHE8efwBP/nxTzGuJZeEdpbT81MRKsmWi4tzblLi5nrHdbxh8hmUoWlbmtZhi8EaS9M2LNpC1yzwq0DOmYcfXfBx+JApTKCgcw1OWZJPxFC9mJ30tU5h4qsXz9hsdvRj4Pp24PLVLeOYSBhivREpQuA0VlUWbhWgcAZjklgDl1SJjmq/v++jvaMggMo0PZ6/dx2/6xB+OfozF8/e+MhvJUx8ixepv+ebfs0x9P36e9BGoazBVMvptjX81d/8Nf/+P/xHzheGeOMZpxG1U5LZUBXLCiIOEiLWaLS15BIJsRAymKZDO40y4mVBroImqYhhSl1cox+IRKwzoApTivhxxAdRqQyVYKar73iMojew3QY224Hbm57bzcB2O9L3gzCdbUvbtCTTQh9rbXO+w++Zn9cW5H1eFW8yBuZt9htW/h3w4QdQvlJy+M+wNszgYKmloPpYnaP5MKo/emc2jrsD5n06pcQ4jpCFC1Bqz7ko99UW09oGqLVG5WrarGf9eXktH0RJzxqFa8R+V3gHpipbylGojcbUkoBAuJlcG+X0bI9r9P71jVPk7EjJkXJEWg8b0VypJQD5KoFDSgcjKtEScKSipLMqF8YpsNsN3Nzecru9BQrdspOAJpUq0DaScmDuLtDVjbAUEVua5zilSM7S/TCXQ3OuZQoVMDjQBoXwCkIuxFjYDQNXN7ds+h0+JpSylAI+BOHSIGJaVCKlECY1IXiIc5A00wFz5dJUgTtUtT82xHQXNZ7HOwUAr9+EX39TvuV37J88/8w3v646HPsCYwlzhLkVopSCAZbLhsePHnBxcUbTaHzoOTs/ZXWyYq4oGuN4cPaQ1XKFjxva5Ypw6tkMkXGM5NGTrzcs16c03QK0xbmCc5qma7ANLJH7Ltd6jDLCzFdoUgj4fiD6iZSEQ6CtZvATt7c7bjcjPsHNzY5+M5FjoWRhbEaE9KcNoGUBpJywTctp6+jDDXEQ4SIjcMDh4Jq91+vEznuDiFPMz7tbxtn/VZU7gcK91+CeQO31IO345997tKHuhLnuOUXVP+92Un+rMZOuZp3LrymccQBxgdp2ZY2TOp/RZK1YXjzkf/j3/54/+/M/ZffVL1EnS+KQGMYRl4VNnHOgJENsoKSEUVL3Tykyei+lrrWRNkJlKcWQiaQS0cqRc6QPIzlHtrtbQvIsVwuUKkLA8l6IVinjYySXgjFG1P18lOx/6+m3su63t7cM/QAl07Udy/UpyTj6pCh5A7ns23jL6/PwTZfjvpyi8MZcHx9+b8R2P6AKxGwCro1U4W3dByOJVINNkeIu+7/LhpUhVUe+DNTa8FwzFnM0aftUFFIKQkauh4bRGmPtHgXwNmKCla6SXBCcKFbCqGifjDGxGXoWw4Km7SS5KnKgqyza9zpHdFaoojHYWi8XkqIQHKXca7SunQdzV4GrZMLZjCfVz11LpvWKl1wttYuQ9kqByQdiGJmq5PrNrufy6pZh9NjGVYU9T0FEk1IKEoxrQTlUVfcToqFBWYcxTrollEMpEcHSSgOWAmQC9ROJC61pSDGwGwaub7ZsNj0+JqxyYGUzyqVAirXFL6O0ZPnKgFISXMzBmQgCALX8I/m2JMpag7UGpnDvmnqnLoDjr9+lI2Av9Lv/0WM2a2E+qypwdfTaIKYI1UoUkaOcGZats5yeLHl88YDz0xOsUaQ4kkqhW1i6RbOvhRvluDh/xPmDR7zcXeG04vTsjJg0V1cbxiESdzuevXiJsYaUc4X0Ic0EGC2nhWzMsmCLMsRUqm2vVNh0VWTrh5HLV1e8urrltrKfLy+vGcZRVNBSIpSMshpVfbSLsmIMVDJL19KtT7m6FbJg9mI/qcvB/lfpaiRR507u94oCHHLdCovN8/5m3jlzBd51zK9/+PlvRzL8lx6l1IOeCoHXr8L5qG/6vs//a36eQp3XI6ThjZdRh8MPJUGlwYofuoGkwDQNf/qv/5K/+pt/i7GQw8D5qmNSgc1uwE+hEqMKftrRO0/JhcYYWivte6lkEY7RGqtkIwYjMtS+Gk/FzGY3EMJI3++IyVctdJgmsa+ejbPGaSJT0NbgQ2AYJsZRMY2Bse/Z7XqGvoeUWK+WrE5OWa5OGIrGbydpUUszkW3+/EfT/q5zr47/cgiOjw/9A4p49Lt/IAf/fhQpB4YYa+lG7+HorIW3VHmB+49WSiGFKETNUuSAS5CClG9yTigjsrHS5lmISer1QryTLgPSEWKAkP/QWsiitWMqFkGcTKNRMTOlyK7vcU1DKkVa8Ko+hdJSqzdFY+f0pcwZfFUNrMTNWYhHvAP0PfvOvFDyngMh0LdwWWKU9+6ngJ9CVQ2cuL3dcnO7ZTuMRApNYyW5yhmlRXxFmyKBUXVbnc8qKS2AUraSIF11VbT18FeUXPk1SngKc6CbQmKcAtvtyK4fSamgK/FbeBk12ydVvhsYXYOY+pllA6aehfP5XPYuoVBVQZXed3vcN94ZATgmlx2P101n6k9w53arxhD7KEAdf18uvESXd+/IUmuR1Ki1cYakEgCrxYIPnzziwycPWXYtJUein8hF6jXt0tE0BqgbjNKcX3zABx/+mJvnT1Fpw6JTfPhkSeuWfPX0Bdtdz4sXz7BOYayiscKkXnRdJaRYGtfKIVuj4zkhz1HaoqZxpJTE5EeeX77ki6dfcXWzYTtFXl3d8uLqFb0PhAw+JorRtM6K0lP0UKQAYDQ0jaXrWtrGCiEnSLaEEpOYt429wcTXXtN6Kb4FIvO7Ouq9tEc3ft0KwP0vUr+W13/33cxfVX13W7MKYxVFQbdc8W/+5m/4sz/7V7z69L8SQ0J3hlXXoTJc327Z7kZCFCqVcS3WNiysY2TENZa2a0lFYMdUDK7JGJ2ZppEpTAz9js12wzj2hCja7qUgzmo54SdPypkpeLbbLf0woK3BNQ0hinTrMGRyzEQ/EoPHaMXqdM3Jgwu6xRq0IU6Jwkio3QJ3AtFfc47fJQA9uhQ/qDF/tpeXV+y2PYvlAngT3qcIk35GS0W1TiByqSnHevjL80w1jbFVGbWUSNKlsunVXm9/Jg6WIslOzhntLG3XsRe2qXfPniQaI957tJLuqhQ9wTuidyyWYpjTOJHBFQi/+g7ow7lz3EaoKxrwOjdt/nwCk2fJ/HMhZ4HIU8xMk6cfR/pp4ma35emL5zx7+ZIpBrRzKGspWQ5aP0lwVKhCPErKCHP3geJw6GotIlnWzu5/8/uVYErn2W5byXuYIrt+Ytf3eC8220rpfYB1h+RtpOwiU1vhSubkb97r8/71jhHyd0nW3wkBeB0FmMchmzx+oXL09QCAquNlWuSwf/P9HVXtJNQR+KdKQioF62XL2dkJH334hIvzM1pn8ePIMI4SMZApKqON2GFSoyiKpmlXfPTxT3n+2a/YvQxoJlzjeHCiCfWC9/2O6+tXGAPRe8Kp58GDB7RthzUFha0M1lm3POFjYux7/Dgy9j3DsONmc8uzly+4vLrmZrvj5WbL5dUtt8NAql7P2hq0sxJ5ayAKwkEtd1ijcFbTNJq2EVa3+BYc3Rz5kN3PCIAc7q9TBe+7uN/8tPc1o/9NjaM97F9klH0EhhhFWYuzFmsbuW90QWvFo0eP+fGPf8JqteayKEBTUqaxBrteEUNks9my3W5F6te1NO2S1Ha0WpOVIqsISlQn2ymxXGasnRh2PSlFdkPP7W5LjB7RLReZ4N57xmHAh1Q12gc22y390KO0punaGihMhEmIYDlOQKHrOk5OTzk7O0O7RsSHcsCHUEsId3eM/Vz8d7bu3mnUpeK9WIXP+6UqFT8pNbdCie5/lQBOKRGqMEzKYsoEIoUrh7+ph6o44R334s+HkbXSzx9j3JMGc/V3nlUF9yZnk6fEiKkHl5AApVY+TSIilWMj5SNdOwhKS9tI5p9VEXOdlCr0Lgf63KoIB/TxuEtNSIX1nFFzIJLr75oRjMRtv+P55Ute3Vyz6XsSita1lGqwg6pFlCqXbqrUta7oibQyihOhtULQlaRRtBGMVkdHXVU5LBIw7fqJ3SBy7z6EGigVIO2Dq1LPTr3PSOZfJo8rxSz+WL+l6s/Ky+b979D7z/C28c4lgPu/dxwEvPn48c/u/6rKPss6flxMWcoeNFBKJl4rhTGw6JacX5zx+IMzHj1+yHLRkVMk1Jo7JRNTQFGwjdhA5uqRrJQhJ4XKmkcf/JhPfvxn/GrYkMdrSik0bceTx4+xxvD85XP6vufzcaDf9uQgUpuLLqK1wbkRYyzWHljU4+QZ+h3BD/TbLdc3V3z17BnPLi+53e14tdnwcrejHz1Fa6xpKEpjlUI7CQRKjiI2MTu8aU3TWNq2oW3Es1qrzCwxfV9wJ4d/zSiPgrZjRu3bxp019g3PufuaRz9wqDj8oMZeV2ImHsFv7hA6msN9WUwJudVYQ9M0uMYBs5xvQlvLR598wk//8I9YLte0rmO0Dc4WrBYHPs5ORaK6H8TSd5rovcC8D1YrVHIknyrMWNiOge0wYFzD1I8YJY5qo5+YppFZrzxEUYQLIeJDZrvbcbvZ0O96fBD2c5fUfnMUOKwayjSO5aLjwfkDutWSKYhuwBhGpmkiprSfh30g9CZEcmfs19u3rVf9DgxdJcoPbb0SCKqKcs4934rZmEbax8ZpFBb5EVpr7f+fvT/7tS1J0juxn7n7Wns6w51vRGRGZkZOVVkDSXW3Wt1sUgLUTUFoAQIE6F0Q+l1600u/6qmf9V8IkASJBFtoNAmyWkUWyapidVVWVQ4RGXPc+d4z7b3X4G56MPe1197n3CEiIzNvZGzLvHHO2XuNvny5mX1m9lkgBOOYN+VmisW8XOi6fsvzBrKxUAEM3AElHl6O6bJRkrKxYM84l1OrIpmAqGmsfa8mozeOBwldmFFibHlp6DC5kc3EiDEOBsfwWQ5PpeGf0nWR1bphnRn/zi6WPHr8lM/uP+B8uaLPmQMRY1bsuh5LrI8Mi22uuzLUwSHic6tfJWTjyXs/GAkFoQAGFGC1XhOj52LZsmp6upiL18ShWC4NmQJZRghACT2UO/dDCCTTNWcUYnAIGXxnyDo1uOfP/y+fCGhjfA2/qyoa+9ENWWxmc10bxqngPc4HZnXFfD5nUtdMJxMODw+5fu2Q2aJYqh2x69DMR97HmDmjE14tBuOc5HMI6jx9J1TVgrff+R1WZ4958Mm7SOwJPlKFOnNoCw8ePeThk8fE7jGiji4mZtOFLcwqhKpiNp1T1+b5XKxWLC/O6doVp6dPefrsKfcfPuLRs2ecXqw4XS9Z9h1RLBRB5pOWHENzoqgIyXmLLWnuYzCfZyrOzEjljE8dMtlbHnDj5y5EGZuI56vmbYy/lhGMepUxsJ34p8N2IkM15mstio1dEnCiA3QpxbLORsAlJfQlGgQiQil+K8rfefP+fbAmKKU8XpzHhcDNW7d4661vEELNfHbAGYHK2/simjhYTLl98zriHJ8+fMrJquN83fB4tSR2LYvFghCM3a+PkT7aIumDJ/Y9JHv/2q5jeXFBlyljywITo9LGyNn5Badn56TevDPEIy7gvLeaazHoMYTAfF5zdHzE4uAAdZ42WR5C23VGt41ab4usyF6lecnLHkqZvwPz+mDc5b8v9R346kjUzARXXEAFh8sIgJjiKKFaEbz3xBhNIfkRJWRhkRNLtCvrhil0+91Y7cIAS3ddl42GMChYKEZJ5vOPEclGgsRMnQuUTqEhBATNRqLxn6xXHSnaPGvbjtl0xuHRIWVdM8QhABPKs7YEQBmUrc8IcR9jppbO8HufaNZrzs4vWC/XnJ2f8+m9z7h3/x6np+f0mfAnAkb9bg2BNCYkGlWwc0JKpnS7rkPVjCTvg3n9uQLCO6sak9yiuKpqAPqY0K63tu6d0rQdXckXK9UvedIWzLx0cYQC9Ts0l9oWg0xyHlxptjSsxXntL0aDauTocMrJxfrKOfW5uwFuy+hF2gmsyZCcYB86X74bhRQweKiqA7PplMODOYcHBywWC+azGXVVIbpp7xu8EVMMsawu1yPnhJXSTazLzUasBMTG1zlPcpYYsbh2kzff+SGn56esz0+QvsOljukMbooltbR94tGjR5ydf8CT0zOOjo6ZTmemjEPFpJ4wmUwR51mu1lycn9Csl5yePOPxsyc8fvqUs3XDsulY9T1d6YgVHM4H6qqy+lZRNHXZss9JhRqZVBMm1cTCBdGSWiwbV+h7zRCgoSQl6W/8KAbA5Yq8jc8rvyUO1CXZjNr22F2WokxG+37BMdXR/C8YnlHxVoSqAu+IanH80jq0nky4fuMmi4NDnK+Yzxc4yd2+JOC90bTeuHbEZDJFxRMfPOFi3bBaX9B3DRfrFdPpgslsZkl8bUfTNtYOtY+kPmboUmiahqZpBq+i73vzIlNivW5o2gbvHLN6wnQ6pQrmFXrvkRgJXqhrz7XjAw4OD3F1oI2ZfpVEyolalixrZWgpjZT/zlryhUS2AoqXv7zisy/j+f4qxTxoS8ozT9sIaSy/PPOi5MQ98aA5dm9IpSUQWswlDVnk5biaO41awx+GunZjAzQF47JyK2MTYzS6YOdwo1BxVVW4BH3XbhxAzTx4YkRC4ss9WcOztoloakkREGE2m9K2lg8zmUywsr5I13Vb3U+rqhoMgK7v6Yv3r9C1ncXcL1acn1/w+PETPvnkMx4+eUzbd1brLy6jBjqss6jpF4fF5g2N9nktNScu+IqQKbKt+VbAkhcdQiB461GQVNG1lRImTWaI9UY179DcIXOElJefeREfkFmx8M6G5dG23k6CZNuAVs3EQFeXAMIvjQBICTptPtl5t8YZ0OLIMW3rZT2ZTlksZhweHXAwnzGd1vZAxQgYYrTe1TEpqoHYS4b0XSYqUVLcdGNK0cpSVBwXFw3tukNwOSM0Ic6jKGE64+Y3v8Nb6yW/+Nsf01+cGcmEwmzmuRNqQjXDVTUffvwR7338EbPZE2N8CvUQbw85Vtu2HcvlOanvuFhdcHZxxtlqRZuULinRGZtVcJ46TKiDxd4KK3TKD6uPlmPgnefo8BqTasbpqiH2St8mUgLvPHUtQ1ysxAL38tUTcVajH3IeiMsLW0yJlBdVAUJdsVgcEKoJwVdM6xmqji4pyXkSEe17Ki8sphV3bl0jOevZ/pm2nF1csD5dE5YrprMD5vNDkIB4penWrFcrghOCBLq2o+86kmRa1/Watmlouw51WGIgybppBgtbqBh8KgLz2YRpFThYzDi+dkQ9qeg1WVwYNYM9RepJza1bN7hon9G3uXORMFrpfqOP5vWUbMyv1mseP37CG4vDnDOUW4KLIyVLIospx5SlVCXZOqmSstdf6vZzw6AIQspQtoWiiqe9Xq+NqwSGEACQkwHjtpOoZhgIZGKczEqaDRMfgvH744aQpfUaspLorutZXizputa6BwZLhO77zsKuozbHhXnVwk82r3o1ZME4DRpW6zXnZ0tOT095+vQZ5xcXxD4aEpTLgjQqKVlTq9gZUu1z98sqBOq6yj0NZOhlUJLCCxWycwHB412FqqPvDa53wTGdClDR9msUU/5eSt5XLKH9TehxeN6bn6bL08DNYNWO4xB7CQFsh353D7krXw4C8Jx4dInjW6anZ7GYcnh4wHQ24WAxZzafUddW924xF2uK0ylWb9y2pD6aRSm1WUopw+iQFX8i9qDJPOGYFJeE5YVR75LhsajFChIi4GcHvPHO91kulzz68Bfo8oyqEmLXUlWea0eeVpUUHJ9++hnPnp7w7PyMupogzhF7i21VdU3fRZpmhXPQ9y3rvqdTpUPpRXBVRRA1GlaXeaLz4o5GtOvR2NO3Rr86qadcu3bDcgVSAypWytsn8NEIiuqaGM2Ti32JVe0NgddZhtdRQHJXtVDbooZkaHrAASGScFJZ2CJ/533g4OCQqp7Qdkt0PkGcUHuQ1CFOOJhPuZNDB1F71CXOzlcs10vaXonJ4Strobpue5arhkllDYWatqFtDepcrddcXCyJfUTFwgVOBFwxWoyoyuayo64qFlXNfFJzdDhnNpvYe6fmKakYvwUKx9eucf3OAeftL1jfe2IhOswLg/gbNwBe3mjrNyMqptxWTWNzJqN/XoxcJ2bnxHs/ePw5SgyShufhHKRU0EFTbIijUuMZ8Hl+llj7GPYvY+O9R4IfMv5Vc9JdH/EptwvO3nRpTesyXF7QGes0uIGwU9KcHJdyToKnzzktVVUPBsq4vbnB3UaX3SVzlPq+N8//4oLz8wsuzpdcLC8sbJI9+ZR/d7iNwZRbIPvMOGjK3Q9jnaLF1TUY74b3hkA4MScvRiPxaZtIP0lU0wpXe0JdMamVpoYudYAfODRc8qTUj0JT2+v4gApoKZPc+nQHBRB2UQH3y+UAbIL5O86+edfEAXYwOMSyIuu6Zj6bsljMOVhMOVjMWCzmA2+0kTckYrseFr6ubQdLs+97Yt8b5WWGabq2yxCSDbbFeYySNOVWmc4FksL5xZLlcgWkXCtf+HOMsMH7wOHxbb77g99H+sSDD96j61aoM56BCs/R0SF+WjGdzvjFu7/g6dMT2q7H+wl9qqz+NXpi6ugVXBKSC0iAkCRbwmbFVt7KSzzGqS35ZQBPl6DvLYQheA4OjljMj2hzLau4bN0raJeQlAhOqENNcIGmaTLrVMrxuNJ5akCKRhOrgN4ZGtK8OOysuOM8gN0cgauTAUfJA6+j7Fxz4QSwPy6HUNAvJ+xfYEP7HeNUz56zxWYdJRkmkUt3nCV2KcbVH6PB9Jp6EGV6fMT02k2e3jthoVMq56gnM/omITFSV4GjaoILNV2yFr2iytP2gtgtSbFGfKKLkRhbEPtdO6FH6LA8gVZBqgrvLEmVlDKxkGNaVywmFYupJX551PJ16orptOZgUeOdo2mj1VUnwSUH0SESmC+OuPXWt3hwuub+yTmxx+LGZWV+AWxZntHm+ZUPxsRWOab62xS/ytCvNfgJuGpO3yspNQSU1PdoHxExPj3Lb4nGY6+Su0ZukgYZJfiZm2nzzVMoeAv1rh+y/0tJoaoi3hlnfYxEyahk36MYd4Wozaum66ibhhAqqlBh9G3mIQfJuQmkgfRHxKoYVCyGHlNL03Q41wyJiENZYkyb8ClK13fWmbDrWC1XrNcNXdtZM5+cOiFi5DmqSp/MA3e4TDSXDQpRFGfhNBUkKjGzzjsn1pTAeyQExAWSCn00JCwmq1iLwMQLQTI/TPBMJtUQqvBRqRzgHY0qmgqau70ebULm2ZTLIZvCnTHOA9gE1+35lsZNz5OXGgBDYUV2ToaDJc2NHCyGP5/NmM4mTKc1R0cHHF87YjadmhXnhCoYr3HTNJZ0JKUutKcc2SgacxmRGlOeqwx6aTtL7ojaF4oDYrTkPyN6yJPSOZw6LpYXnJ6doFqySDNdpVSmULOXcXzzDb7zQ6Xveh5+8j4iyRILJTGd1CSBuzdv46Lwsf+Ezx48ou8ShBlKoEsJUYdzVYbEFMXjXM3UMXRVcz5iallxafPwYu7yUtVzRJTp/JC7d99iMplx+uwk13VbAlCv4KIiMeElEqaeKgSqYLBpjNZvoO2SMXmlkugjOYyiQ7IbZMOCEnvdNB16XhLg85S/hWReP29pLMpI6Ze4GjIkLm5MI7aU/+c3ArYxvPGQiJji95NgJaDOmWcvmU614IBii4FIyMlCnuXFir5pSZrwkwnXv/Vt7j14n2XbsJgtiE4gBFQTVagzxBh4685t5pOKxWTCNDzk5PQcx4rUt+apecd8VtnC5wIkoccR6XHRiIS69Zq26wkC8+mUg/mUxXTCfDZhNqmog7NWwiHgakcIQhVya25JiKoZrp3gNRDcBCTw1jffpvNT3rv3kIuHT1EnkEp81xTZi+bUrhGwu20azODfEtGSjw6ECqoFoh6aZ6i2lrymlhPQpc669TnrIdH1mRjHejkPcLETIWZPFBES0Gd2RmBItANDHtq2zetcsnblOenQF4pgETToAFVHzCO+WK1s/U1Q+54gnrqqCc4b7fA4n8G6V1FsA8UokFPTIdIRQsyJ4CkbJLksUSN9tKoV7XIFQVIqETQ4fJuJeTQZcZuwcZYygmJ5WZiT6YSEzzmTthqEuqaqaurpjFBXSHBEha6L2YlLIOCD0msPnaPLyX6xT6TU2XrdWUfDgLH7pT7Rpx4rvQVyY7qCFm9YRYvjlob8uoIMFBrkTWQ+d1t8wQL2ar0AyiI1/A2hdkynFQcHc46vHXH92nUWiylVbfz53nti39F1LX3X0TfWy7mPhXs60ecuRyWxQjIdZIFjSpZqjLkZgrPEKIuFyGCNFl5rEaFrW+rJhOVyydnp6TBAmysv2ZeOhKMKE67fvsv3fvf3CF64/8l7aKuggrZrKhz1bEZ1+xY+ZUPh6QlJ7V58bkjknFgJCeQSwYrC1BdTD9oatITVlIoKbWvJV5bsYdveuHWTw6Njlm1L23YgYiRB+QVxuTd321qCTVV7vJfc7GJutbZtz9lZw3K5zpURYpUGMNLq5eXNI1Mg6FeU7YSpMravqZRLyxo9Oz8bi3n4TK/U9p//zi7vURbSISPby2Ccbestm6PGwKb4ypT6s2dPWTUrgg94N+HOG2/y2Y2bnD39lOsHM3pRKufwtZWYqjhkOsE5qINjNqk5Pjri0ZNnPH12yrPzC2LbIN7eL0tGrOij0K4bui6Suh4h4TQyqyuuHS24fu2Y44MDqmDVK1U+fu09obIFUcSIqmJvtdtOsqeWIpXzTGtLfPzW229z9+13+Nd//j9y79FTM4Ccs85uZeXfHdkdC3Sc6Pfc2fsaT83PKwUbUfH42QH1dE46T/TNiSlkoimUTuhSj/MVrqpJyTxjjHMOJCuQgt4Wjx/YmZCUEuK+74eyPIvdy/D9+BiDUSBi9L9iGf5n6YLYRSZVTeUDMfcciGJ35Xw2bwSrqS8KrGiwJDns2Q5rvuayQmsO1CNOrW+Ad3hXk9R6VHRtHBpYpew4phzOKmyHdt2OEByh8qgUgp2cZzGU+1lORZ8ifZeMzr1X0NLi2J5Tl5S+6XC5lLxtuoHbwDtHckqSTNFcnm++HyuXt7Xd0N+Y16xR9cAQ7y/gUDER8jPLW7xoVX+pAeAL4UA+aBUchwdTbtw45ubNmxwcHAyZwIrxhff9mrZNuUY/kvpNxz6LNRVGqjhA/nb5eeHLEFPJ9iyKPrhS97m5eUvIAOc23a36GDk5OeHJ0ycW/4/WEcrCY6VRgsP52qwpV3Pz7jeo65pQV9z76AMuzp8hEvGpRTUyrwNv3rlBcODe/5CHz05p+3bwumL2gEOoEO9p2o5129nDcFBnZjdRYw1MfUKjUoUKiYk+JW7cusnNW7eImjg9P4NsiUp+ypLvF5Q+RqRtiWp8AdJYMo3VkU+o6gmzec161dC01tc7RR24sY0kKWe15iGVy+/+b6dsI2wFWR1epC81/pwXxaqynuEueHA226+2N4oBsFkAu77jwcMHPHz4iP6dbyMizBZHfOPt7/Czx/d48vSUcG2BuMR8krO0nTdj00FwiUlwHMzmXD8+5uzigqcnZ5ycnrNcrTk9PaWPPTijIneTCp1UOHFMgmdSBQ4XMw4PFkwntXV0ix0ae4KDyntCzvVJYvFiM2p7BEXUSnUdYtUzRCQE7t6+zdHtN/jed9/hpz9/j6bpcUHok4XT9MVRgK+fFG9YhU8ePOb4zpvcuXGLs9NHPLj3PmePH7I+O7U1xlWAo1eMqlyt+kgA7ZusSOIwDwcoOZVKAI/3m3r6EBjq8m3eqrWIzvH4gl4ZGmC0wpUP+BiNRjizD67Sitj31KEyyDv1OdbuqGtremWQp6GkDsl5oZsy3VKa2PebTnhFr4DpK5ffH59RvqRKHDpZFrTYIM1SwqgZ1R4nGZaFQpyVXTZNw2q1tlK9EHAhIBLwLhCqOjfGsvWclHCSqILdVN/1tI21Xq6qmroKaNaDhXcgPwqsAqisySknspdQa/5JcWIK8C85dJF7K+V8kBe9Ri82AMQ8zukkMJ9Pmc0mXDtecPPGNQ4O5lbviZFTtO3FVoxIBHvosSf1monXTfGLkBstWOy+TDiUge4RtlsRF9KJca978uCI5KQX1XxN9qAePnjIcrWknsztXkriSPknGf5xFeLg6OZdvus9KoEP33+P1EdC6Ih9Q4w9kypw+9Z1+tQhLnH/8RPadm28J2KlXDjHumk5Xa5YrltL1hSLBR3OJiyqGlSQPF8Fsyxnsxl37r6BD4FV01odbxWQ1hIjC8lHzPSsgg2pKBbH6hIRo2ktRlJdO6bTA2KMXGS++LazjF+FTEG5Me6+FsqfHYUP+R3/Mm7+sqvpXS7xy96/eIc662sx7CFy6eyCwakk613+9NlTPvzoQ87/8Pc4nlWEMOXWnbf46OCYRw8/5XgxpZ7IZjHGsoZFlYkP+KktzFVGAw7nC5bX1zRNx3K1pO07ogp9hD6SS1VrZpOK4GBaVyC5JHC9tOSpqqIO5s34bKxGvFUK9NHg1fyyWXOjwKR2TJIl4k6qijffeIPvfOtbLOZz2vbUcnycNzKhvYykeH1muD9+dso7P/w93v7Gt7i4OOHwg5t8+rO/5l7/C1brC/OifcBic32G2h19tFLjpBHFavhNsVjyXFUVBQNGeGONymzdycjpUGWArWVilSDF64wxNxSSjpkPhNzVVH3MxG4WC59MrK1wyHwWVaFEz2RVVkHgBsMHNmiE/V76nliyoPOGLDnE+uMMBn2JzUdS5o0xxNWjzqG5XNx5S1B0zlmHQdJQ9i3izIBZrWia3kh/6hpX10zqKVUNAKpYsgABAABJREFUkhwxV2EgWF+EHOrzPpiujIn1ep2NANOv3pmhY/aINf6SHP8oz2WzOG93ejW0IM8P0YFfRMW4IMyAeP7a9kIDoAqeH3z/WxwczDlYzDhYTKknHif2gFO/ps/Z6aVEISZrWauaPfdcqmYMt4WVzmB8462wto0pWcJcQQB26Sg3BAhuOE5JYBnzRKM2CKvVik8//ZSL8wsm0zkDwaIwxMEHshBnLFUILI5u8f0f/R18Peezn/+Y7qmVFSKOZn1BSpHrx0fGOijw4MEj1rGnqirq2YxVFzk9P+N0uaZNQsR6qFcosUvoLBkzm1jSXhRhcXTEzTt3Obx2jbOLJU20HImNokpD/L3Esc0TyH3Y1WJXSRNdb2Qhmo2wqppQ1zWLxZTptKLrIk3T0jQ9fSyWI7lMZwPtl+Q/1c3v5fPxz7I0bfFXv4YywGEZ8XDOlFJppfm5j7cLRcuOR58zjiRYprR4lw02zYumbIUihn3y1QoWEiry7OQZf/vzn/G/OPvPOF68AeqYH9/ijbe/y+MHD3jw5JT5mzeIaqm5LkOwIpAcOPXD++Wcow6BxXRidcj9odGvJmHdRrqohKrOUK0D7dFk8ct1A6RAzLmLVVVlkqoMQapBp0m7DDPnXBQsRyBpIjiDYJvVitmk5ltvv83BwYInT58i3rguUsLGrOT2jMb7MiX5izB+G+/fijBAuQ8Rkjqu3XmTxc03CYfXiN4j7Zr16VO8F7rY0LQr+t7WqUlwmRmwxweD3yVD/lFj7sNSWtgqpNKJz9vzFzFEIBaf0qFS1u7tzPSSkKwpIrM5B9OKqrbyPy8wqatc9j2lripKN2DnjMvA1rhoId9MfCRAzmwEsZwr62+03ZpXvClTiZiyz1dVQgYxWSfX4Ct8XdPGUY8BH/DkSpfs/I/ZDperFcuLJiMiggOCOHppLFTGJmdFxNEnZ4mzBKZ1xaye4sCSNaP1gam80Duxtu/BWe+AfG5DJopK3yDjDHF/Hc1rW6gtl8M+NsRZB+fxKnmhATCfz/nRj36QMzONsCb2HX3qh3pTO7fmtrTJYn3RLKo0JGnY5LUbKCxUMF55y40VGfeoLmECH7x5zmyyVK0UMA45AFHV4EwRPvvsMx4/fsT1m7dH7Eo2mUogwYbOwCKcQT3zo8C3vxeYT2ruvfe3PLr/CXEtUBmM6WLi+PAIVPDiOD09p+nNpW+aNU3b0yexfwhRhYTAqsWpMq0qAuYxHR4dc+ONt5gfHdO0DctmbfEokcxslTbeOmRWqDIBctwqL+zFnbftbPxKcwmXLdvJxLLPJ1MLlTRNR9f22RhjY2gomdnt8ry49NnrjhzsTrbh8y/vFAbFyTCA4tyQsVwoSwcjITfHGiJ2xTItF1UuVcmQnrJcLvnJT3/K+x98xN2bt5k5j68P+Mb3fsTDBw/48Cd/yfFizvTWMUHsWkQ8IilnWjtEWjRng3sJaJW5JFJPcgYtT7qEVbi6HHJTiErqlSQeqgqvs9G7XCBje6sUU/JEcK7P8y7inS12SGAWYXnR8uThQ5wI3/7W29y6dYOPP/00t9ouI7GJKZecoM8jxcj67ZHR+uiE04sl15OQ/Iz59TeYHt7CTY+Y+4rZYkJKHSdnT3ny+AmrpkOTB1+jrjg9MVeXZOUhJQluQ69bDLgYN3wDhT0zsWnCU7Ytzyol607Y9yUvqjbefCdGbV5X2WO3z1yJ9ztQZ4nU4jLLabn1ZNC4mHazNre5omDojJrDrKgl0urI4ydfr2B5VVZtEHPo1t5XkgzcBj6jdjEm63OREyCLfZBiT2zXdNqhMSDa5oRJcxg1OWKfaFNLXU2o5zUHiwNSSgM1s2o0z1+ty2PJI/PB2gpbgmRJ6M5jqxkdk0SZ4SIbyN8Il0r8IIcvniMvNABKhyOh8CTnrP0yoLmONMVNrMhCGZuaSU0bSGmALCjwTla+V7zXpQRlzELlRHIShfExG01jHKyuwcqLkaiJe/fuce/efb7zvR9Q+6rMaFt8FUu+cEUPuE0sRTyT+SF33n6HUNekesKDj983aDNGlI7gJ1w7DkzqGY+ePubRkxMuGuNSL2RE6pzBoGKQZ5s6ehW6lAghcHT9GjfuvkFYHNCkxKprSSg+VLiopGQsXCn37d5MdAYLVfPTH8IaJWQiJZYl2QMjvyCl9aeFPSaT1vIEmo6+T4MhYFb19jMZIwFfd7kSVnNiJXwuj3EI1sK0LD6MoRQYVpJBZPjc3t0S7op0vfLhhx/ys3ff5Q9+9/eYHR3j/JzF9bt8453f4bOPPuSj+4+ZTmquH8zQqNQTT6hqqzFWxbmKunaZx92qb1JG7ex/DhcsBJBS6ctuaB2SWdxCRSUWbotq3OvFMHUu5BaoPeoT4gLiIt5HoywWh1PPLDnCquPxo4c0qxXXrx1z7fjYEsJSweo2ob/fBLr0+lW06OZHNgqn8wW9Cm2ENnpO+8DKLTi8dYtvffsbzGYVz06e8MH7H3Lv3j3OTs9J7QUpNmasJsvmTzEiyZIHBQtbDZnxGWYXicPaoapI39MP9fsychrSAMsbmpuRIVfcLgZOCBHwwfjvN2WLimaa24IAFIRyjASNkxDJhqJkZj5JOaSRwwU+J6iWhkdOLRxmlculiiFX5WRdJk4GkqH1uqFt29yQyM7oyg3HHhXTCclHovqcP1HjXAVqCHnX9PR1z2RSc3R4aBVwOSRRyIRYllCFLcAuox99Xv+VBFIMmg0SILm7rgIky5wYrzOO58/lFxoAqkosnOAp94iOlrzmnJAidNEy/U3JuAz9Gw9zge+KBzaeLMUQKGJK/XKLx9J5qpSebNr72oMfb2+lIDpAPicnJ3z88cdWGVBP7T7yRMv5H5syoRHkLs4TaiFywOEb3+S78zmzxQGf/uJnPL3/Ma4yDunUd0zrCSE4qsmUzx4+pbv3MGekejR7XorSRWu/6ScTDo6OuHl8xK07t6kWC07WHRetxZUWBwtEPOuut1yYGGm7bnihNL9A44XAqFUlGwnm/aXRmBYOaUuGHHkRXq0/fAjMZol107BetrRdgV3Hc+Fq+B+GMvbfYsnW1hVSYpIiAt5qg0vttFnxkuOslxsymfEGV76f2ZrfJPkIT5494ac/+xkPHz/h5rVrRCpwE9781vf43T98xJ/88/+W1Db84Y9+wOFiAS4QlU3MN8c4yd6SquI0IVHI+Kqx+0Wrvy4QYhJDsJwm1OdObSnhU8o5Ljl0h+QyVctgFkpPDme9NlSgV3z2ApcXF3RNw/HRETdu3LCGMV0PKmjm7hjnAL1+SvnXK5ZeBvaOJ3781z/mH979DiqOTisaf0h189vc/OYb3P3u2ywWU251a669/Yjbn37K/c/us3z0IeePP+H87IR2bRB5jAlSh6oMnrA4GRHuZBfJbfIynHeQuwBCeQ82CIAqqLO535cmO17ACymZIi4eduXNADD7V9GS9Z8NAfJ3BrANrs5wLSIWApCSJ1Zo5zUAlgRYVRV1VVuzoc6SF3sKvbHfCi2XxHKArutypVoaDI4h5CACZOWcG2EldVZ54T2VrxExEjsnQsqJjYcHlpdl/TYiByxou47z83MulitWTUNp1dwNDbMsBGfPwULudiEb5AVVXPREjRuSo5y8+Dx5sQGQlK5pBqtOMqyfonGV97Gniz1dHzNDkiWopGxZWtlJSdjT/ABLYsIGyi+L3bgCIKlZpoURymqj82C4AjkVRbWJXwvGmZ/Uc35xxk9+8jc8fPSA6Wye98lYUq67LlCTTSSrZ7fwgsfXtgjNjh3f/uGEa8c3+Oz9G9z/8H2WJ0/pU0REmc3m3J7MuGgsM7XtIskJZNpNKCQcwsHREXe/8TY3rh0iTlg1Vo89qTyHizmz6Yyuj5xfLKkqz8XSJkrJGNQ8MTbwcaFE3linUZPFmvKEs/pz8v2On4E9U3HWcnk+nVGHmrbtjRI2Z8wWlE9G7yPl9/zSvtayk7Aw+A0FztOdJWWklIepO3bc2SBUJRQlTkgixLJeZgtTpSjxYQXbvggYEJxy6vGJnRpjG5pYL5d8+MGHfHbvM773zndIoua5TOd8+4c/4qP3f87HP/9b5h99yne/ZXF1Kzud4EOCZB0yHRZi0sy5oeIt+x8BcbgIrs+9JhDUVyRXIZm8q+97pI/0xDwWfrQI9Xm8t/x4fLAa8K5rqRxcO5wzqQBtWcyn3L51k0lV07eJ4BzJMyAXZvRaQ5TPYwQY89xlw+1Km0tf+1k8uj4Lx/7Tf/z/5D/5h/8F6g+YHlzj+M43cJMZb751l9n1I5JEXLXg2t0F9eFtbr55yvLBm3z27l/xyYfv8Sx2pNgAaWBo7JPHxZh7C1gegDhPqATnYobHQdQNDkpJxDZU1xOzs5NSIqE0bUsVPFSOyleGLHtPCLkLYVamZkBIaXm/5eCAGLKumyx9e43y/s4Pz9phhoYqFk+Pm1BV5Surz3e2b6g8TjdItog1xSr5J23TEXtrKe9DGXtzgEMmd4NMG5y5FHxuQueIeGcdA6vKuHBCcExqQ+XQyLrvEYRpNaU6nnB8lGi7nuV6xWq1ZrVujA02KYkuLx9Wult4LjRXRqiqERolW9RKQuSL5CUGQKJd52YQo0SC4pmXpgtJJZdWpAGG1mTJeBtawpzYVF7o7A0VTuiUFJ9j1gAuSk7isAYKBvcrhg+NY1QpT8BsCGReaVWlaRrefe9nfPjhe7zxxh2qam7ecfZ4VI2lyeUmQqXxQ5ld3leEKtEnoZpV3P7GgoODG8xm1/jo3Z/y+MEnkBpcMCY0N7HOUim39XVqJVAuKVGt/OP42g0Ort+CILRtgyocTmsODw+5desWk+mUBw8f44FJFUip2zRAyivqpm1tNgNSbhOcO2xoTnTJwRsQQ22GOlGRwTuTJIi9JYDF48K0JlWeru9pc2igzzHAASkpnBM5Fvi6e2c6+mVIN5Ht71ULO/pGT29tJ2WhkkH5l31TStZSVDAefvVGbKOSkaBiZEguA3z+dW6MO8GlrIQB2sinH3/Mz9/9OX/37/1djg4mxg1RVcyv3+KHf+9/ysVqxUcP7jFfHPKNuuZocYTzwVpJuw6NDVaalxE3R4YbDaK1XBNDBgy8s9yYRAWxzW0oAyI9IjEvmptQhaQyOdQWcrFOnM4b06ETJfjI8WzG9aMplVdc7blxdMykmrBM7ZDIlHxRyjkZZQQtf1HZ5AW83vP1KtmyvbWnaU6QkOix53N0/RZHB3OuXT/GB8+6XZkidhOqmWemDmmWHF57k9njp5yfP6PrznE+x/idI5FDlBItEVCNXdX5gPNK6taQnbLS/rbrIs6lrfWz5AYI0HeOlCqEyhR+iU/nNcyh+fMSIsiEQmzyCaIkoqit/E5wW8hDjnuDMa2KECVBVKvlty1xIlShondilMmqOG/haiNIihkdDihC7CF2ltReBcuD81ISDsVKwoWBndaaC2VSo9zoTaTHSZNZZzyeiGiPF4GYWF8sSRGmkznzxQHVpEaco48958slp+dnnJyccnLyjBB1YEHssW361A9IuxczZpxYRcTQke8Fr8sLDYCkStd2w0MYKAl1lISWFWpKMsR+ikIvhsJgqUnxtDc/tehyTZYzkKHS2Mds+aklIg0T/3L2fwknlESIFK0+NMaOTz/9iPfff4+/83f/LnU9MwU6QDmbY+1e2zBAPqDemkS4MOHw2i2++zsVBweH/PRvJzx7/BlN88y4rr2ntUJa0OwV9jl5IybqquLw6IhQ11ZHjdXtv3H7Frdu3eT4+AbrtuEXv/iQuq4I1YR7PLQ6Udk4spfWPy1xulQe3PCClX1SKmxR5XXI5TtONxZ1Fp8NrrqyxkQlaaXrjEwk04/beOd8hK9K0ZaOfg4hjRxSsfmQdVyWwWHP5WnbNcKbOaRqyh+3yccoByjhqi2RS7+MLjIbzMXIy2iAKNy7d4+/+Iu/4D/7h/+AxextAJyrcDW884Mf4VLiT/7ov+f9j+/hfc38WwfUTnPXyLw4iaAup1uTyV9yAmypyok+Df0uwIiJo4ahmQzOgxsl38aIRJDe4TCmTZe50qkjsYso1hU0+EA9n3Ht+nVmszl9NeX42jHTyRQ4xYlHQ0I0IjnMMIQSMwpmD6wM8YsMgstoy6UY1ldNFMhZ8lVVkajoqTg8PoZ+Ck5oo8HAXZ/bpfc9q7VR4yJCNZmYMqxqUuMIVbBSNSkEa4pPisulgJNJacPusyOSctOgir7vhkz6kvg6rBmxz5UkatwAVZUNh5xT4iwR0IeNfvA+hy0xRCAlwSXBq6LqtnQRjNZuBE82HjH3v/zP9IPgvVGotzlxvLxbpXwv4AwZTIYeeDKvgXM4ZwZAVQWqyhAMy/UxannnLZQQk+aW25l0qGsGo8k4a4TZbM5sZsm0wdccLI45ODxivpgzW1jr+XXTcHZ+xrPTUz799BPOnj6mWTesmzWrtfEppE4Bx6SqCT4Yv0yChCF8aYBur5aXEgGVLPLdQS/zMCUGYoZxPGi8MJaHOa7xH8dEywO0BD+Dc4bkPtlkuw+L0cjQ2MSmN3eZNBJTCxK5uDjj3v1PWTcrrl8XNEKKOQzAJsFo7NEVcQiVrVhEcjKGemQy5+Y3vs2PplMePviQzz75KQ8ePcJPZhACUTrqyYQYrb86ajo5VIF6MjFrzQdmk5prR4e89eYbHB0dIuJ4enLCxXLFbLag7SNta2GF5yr/8iyyB2rXPVJ0o8SZ8nc5UAkDlAzr8XMoGeuW+BOGl7vPmaox6s7Yf3UW1fL0Tf3t6INi1IwNwhwSEp/7WJTqjK3QwsarGYvpmytg6JcM13bCU/ZixFr1vvfee/zivfd44/YdDmYTI3hRwddzvvmdH3Bxesqf/qv/gZ++9xGLyYRvv3mH4F0mJilGgMt2Rubc8PkeRfCejMTpQEAiXnDR+hKUcRlzc4B1ChQpyj/gfYJK8L6nF0ASdTTjuKonLA4OCVVF7xz1dIIL1gq59mZEOGc10ZoYvP/yjL5C0+1XJorFqKnNYQrOgw8WNxax8mUsUbrrW5r1movzU5YX58SuBcCLI4Qa7ywzXhH6rrNwq1pDKpBMZFVZl0DdMAKGzI5X1v+BUbCspwNKZouFgUJl3WdLB5R9xu1+wdAEr4Zc7uaFDTpGskFRwpxl3xxOHm8jkknn2BgPmnIvgqH6xd4pCRWgZsRIsjoXcVTOM6nrzGVQ56oCb2OoQpMbGDVNJKZtPQqOyWTC4eEBt2/fZj4/YFJNqCdT6rpmMp0OSICVyyfa9g84e/aMhw8f8uzkhKfPnvLZvXs8ePiAddOa0RzznbsBQySpbr87O/LyHICuG134RrkPD0BNMY4nwMYAGJFM5HCAU/NGKBZejJRSqBRjZkuzxgrG11cW67zAug1to12QNXYoiVYlUTDGHufg7PyE999/j2fPnvDmG28NzSZSPw5PbO5ry8PThDglBM9sPqdZt2huOxnrGde/8W1m1w9ZXJ9x8OA+B3fe5C9+8i4X777PtZs3OTtb0sWUGxYlDg4Pra1rqDg+PuTWjevcuHbM0cEcJ8LyYsWzZ6cALOYLLh4/4fz8Ihs89lBL9cQOIJhhbd3yWEvM30owx0mYxZDauLrbpWpjqFXz9xYSqetA3/e0bUfX9RQncbzf6yybYAfD+FiHBgGneJcLi7KHXGB7JdcV7xhQ8OLwxzgEVuTlCPa2hlPL6LHnFSMffvghf/qnf8a33v4W3//OOyTvcFQkeurZEd//0d9ltWz5q3//Z/zlX/8UH1veeusOk2mFpzL+eHoiWMUOoxJGZ01RPNZUK5X4afYq6Hq07w1Jy5zk1mMjWegtGXmL4E2xiCMmG2kR8kgH6umcg8NjfKhBPVU9wVfBPBafJ3Eyg314cs/x3l8872zsvwpz8/PKRx9+wB/90R/xD/+L/x0iRuIk6klY6WeKaq2c1xcsl2dcnD7j/PQpJ8+esFou83JqyFbC6GpLzoUmJWqXKddtDEt73qQbRQyWYDdWyOVz5xyiea0vpcuUd6I4bwUvG6O4GwRMNb+KWqjKc15ACdZp3NQruzAkHlrOvJIwJFmtA5tVfaXSPRE0ZnQXYVLXVM6684EgPhBqCN4znVSIZG4DUargqWoziEJVD6V2VikTcofAkjehtlZ2kfV6hYiVMNZ1zfX5debzaW5GpPR9S7zoCG1gMplQTybMphNuHh/zzbtv8Ls/+CEqcHGx5LN793n3F+/x6af3ePz4MQ8fPWLZLG1yiIXbndp4PE9ebACgg2IvD3Vcn2/rms8Jf3HLAIhbi6Ulpim2wNpDddkzNijGZYYb5/JgReuohHfDZLGJVFCbDXe9ZRyXUrnyuS1Ibddy//49njx5bK0tg7eYv4NN/GEc1tjcQ/GknThcZSV9y4sVUk/xBPrY8mzdskqON775HW698S3+zk/e59GTM1TNk27aFhHHjRs3+c473+X6jZtcOz7k7u1b3Ll1k2kdSDHSNmvOzs559uwZ3gWquqZZt0Nr1vxKZM9tTLyhBTHeKCQ2vAEgQ7nLJhcjl4boxtMcIzzb3t1GYZXPi9XvfUvbRdatvvYL7JbOVctbKbHGMprjmH6Zc+ZBbBausp01wnKbyosBoNqMG/k4KW3CU8MJuIzODNcqwybDxVvNcqJX5eTkhL/9yd/y7s/f5e7N24TjI1QSlavAKfOjm/zo7/xHrDvlb/7dv+Svf/ozOu359re+yWxW41NJLNRsTJfOg64EBCwxtILoDA5GBK/WGKUYk7YWuOEiFRnKSMEQBVPcCYL97qQGqamncxaHx0gIEB2uCtST6eD1FLpzcYWLPCftvmCejUvERo+ay5DB8EJ9hUVom5azZ8+sU141Ne75tiHk8ujlxTnnJ09p12esLk45e/aE5fkJq+UZbbvO6GzJqZJhHY8xImrVAZZ37YYQYAiTwRAoyG9ZF8YdA4szZbkmUCB4dOOsjHBKu6PR89igAzZXtSSFF/4J3SAKmx1LRVQpXS0Ing7IXgkDpAjEZOV4MWaY3zMJNeAye61S1xOm0wmzaY2BaH02OBJSkhm9z2j4tkMZfECmnqSCcx0xWmvtpmk4PT3Be89sNkWAKlRUVU3JZ9DUkfqOvl3TVRVtqJlOp0wmU6azGUeHR7z15lv88Ac/5PHTZ3z22T1+/OMf89N3f8Kjp0/o+i5zAcjQ2OkqeXkZ4KjhzjjuOVDSOutoV7rxmQedOecLX4ArUJKhE8bL3A/nsfI8wedkqa43iNWa5pBrg81v02TJS2XebKybggxkI0EzRwDw+PETPvvsHn3fE8LUFjPvzYgYLxY7A7WharHM+6quCV2PkuhjYrVqePTshOX5kubBI+7fe8DZ2QVHh8c8fPiQvus4PDzgD//wD/mD3/9D3nrzDSZ1xeF8xo3rx8wmE+vKFhPrpuXZyQnrdWt9r53P9afd+IlcAekXRVIcOPuupAFYs5l8n7KJrSXVoe3n1j3vQHLOF9hMBqQGLA7mvBBqpWmXL5pGr59keDQVOigZI1qaPX4ZKX5sESm5I1h3xk0wQQclZce3/9g4bjCsAV3aCh9cRgcEcsvrkbeUkiUZYYblBx98wN/+5Cd87513OFjM8FUg4ghhAlQsbt7hh3/490jtOR/+9Z/y45++T6fCd779NovZlOCFPntPw1gUGjby/Yq3RVNzDkoxcJzPi69dW8zvmQqDZzZMK7FOcXiPKnjxSDWnms2ZzuaoOHq18rZqOrH+8mgOVdj+MqBeebxeYmxuoVEFOCh763Oy/UeIzlheV8PWUExbQ/vYo9qhajlb6hLrbsmj+59x9uwRqbugW59zfvKE5uwZzeqC2HdlYpsRIA7VaEhttpeKw1DQwbZtcR6mUyunK3qghAx3r09ENgjADgq2O9glNl6M6+KApMHA3lb6JZHQ5VCWCMa3oqX6ICHOmgoNeQaVx1feGl2VsHVMRted83uquqLyNV2baOiogqeuzNOvggNNpNSTYpeTWi1sEMsaTB47y44fooLe2331JLquwTlhubzg2bOnACxmM4REFQK+qvBOEe1InbUX1r6j79Y0q5q2mbE4OGQ6W3B8eMD1a9f45ltv8a233+b7732Pf/Pv/g3vv/8+Z+fnBO8HeuCr5JUNgHGMf2wAqKScOLVN2bnx/vM+1sR62G530gglBkXmmTYihJThE/NwrZe4yOY8Yxi7eGtdl0AF5ypiijx9esr7v/iQ9bqlnliWpIjRI7wogWhAGPIL4gUOFlPW7Zq26fi3/+ZP+OM//iNOzx5z/uyE+59+ysmTp6DWj7p2jv/sH/x9/g//x/+Km7fu4BDaZgWa0NjRrJa0bUMfI6t1w/n5Bah1E4wxcXp6xmq1guytMlBNjj2abQrfPNj5GeSu8nnNLExZxWhwJRY2Vvjj0jYpBlCGeVVHL66FcpzfXNtrK4N3Tibq8Xm8zPsv9eZxKF2SQaFrgVaunCY6hkc2v2sxxoqxap+7UsrG6AmO1sWyeMCu4tl4TS73vHj48CHv/eJdPr33KW+9dZe6PiRiXOgpgfqKm2++zd/7n/0DFrOan/3tj/kff/ILLpqOd97+BtcODpjUU3rtcAgpw5hm6OWQn/ao9Dk5sHg9HpffM8jGTErGN6CgGgFj4nSDAVTZHJaI4PHVgsnsgGoyxYeK1LYkhel8TjWpjaio3LrksXVmyA6fvUAvj9ehX6Zi4HUWVaWeTYl9T/CBNirr1YoH9z4j9Sskrnl07yPOnz0kaIOjo1+e0i5PaZslmrqBlhrxaHJofr6iSuq67ND5Idt/tVrRtCvgiNnM4tUF8i/MdsXI3UKAsxErGdEZKgG2XqpNI54QChuhvRwDwp932Tz6YiRmo89lArpsl5cEQPGbLH3vPdr0A6eNiFUGVKGiDoEqBObTOXECzq1RjaiYQe4rq8dJyZGivScFDXWQ14tcNZHfi67r6FMipoIsk0u5ha7rOD09zWh4xAt4N7X28phOlJST4VPESWUGdy+0a1tzva+ZzRfMJjU//P53+e53v803v/EWf/EXf8G//Xf/jsdPntDmfI+r5KVJgGN2veLRbxIxzOIvHuZuZubGGMgvpSPXlW/a9w6xdxwEixAWJqQCqZQey7agslXzuXEMdANh9bkFrrEksFqu+fjjTzh5dsbBwQ3Eu+Ear5LtxXcDLwkWnpTU8e7P/oZ/8v/5f/BXP/4rzlcXxKbDxURsWirvqSrPG7fv8o/+l/853/vOd3DVFASCu0nftZw+e4LGnvVqRdN1XFwsWa3WFE9x3fWcnZ3TdXF0JTbBtzTF5vbz8yrfu8Hz0UFRafZc2Vogi+IfK/8yDmlICCwe7/b3uonPvLbiXPEYrDxHi2LPsRWhxC8LJA4DIfeWkt858AA+yWiF2sjmHdgYzgVMKLbU6OvNobD3ZJzdrOQOkGp83816zcOHD7h3/zOenbzDbDZhEiqi5nt11v3t+M6b/MF/9PdZXLvBX/zpn/Deh5/Srlu+9eZd3rx1i1k1ocfTuXp0/cY4VrgywOE0ot6Sy0TcgApaY5g09Ga3DnMpxz+NWjUlzYygObkq1BwcHTNbHIJ42q5n3TTU0wn1tKY9awAxYwdyNjMDG+bwLF4y7Ybxf72n5xcTEZrVGpxj3ayJOC4uzvnkk49YXzzjeF7Tri7oVudoWjMJik8tkjqEMTVuIb7xbGLsZEXmqat64Hno+46YG+GADh0uS5LwrqRkpdAqG+SylPsNOV1gIaisQzbOyMZAKOFipbTPtgcaS15a3ka9G0psY0rjZJ+tNbOsdT6XLYas+EGGUPdkMiGp0LUNCaXXhFfrZWC8AwEvmu/dsv9dbnFc1khV2y9FK7VWDZaQ2fXWS6YTui4YfXzt6eqKKji8CA6rwBKstNFKGMF7q/aKsSX2jtT3pBiZLw7w3lGFiv/w7/0HfOONt5hWE/71v/kTHjx6+Nxp9FIEoOvNWuqj1RvaumkQvhmQHtgkj+1a3xa3s/h/Sb02PuZ8jq0SKjKkaN9rSnm1zLXGCCKm3NVtKA6UXInQdXR9n72TYpBYd74PPviAe/fu88ab36QKG0W6bahsIxiaJyd5mgnQNit+/tO/5b/9p/+Yd3/6U9bLJbG19r6xt9jZYrHACSwOFty5fZvpdIKGOnMeRLxWzOYLSMn6ZJ+emKXY9dR1TV1PeXr6hNPTM1PoZWHOMKUbKRrVwqpoA1EoNmWcLKjkMjBjkLKMfrMyC1vUbuYtMJRhgg5WePFGbYIPHBuvr8gGTi+KupSVFeMlf1L8hYwnakavNgvVCxWJWKgEKeVL5V3Iu47Qs8uAQmFo2MDQY+O08OMP9KNYt8t79+/xiw/e553vvsPR0SHTa9eM40EF8XbdSSum12/zvT+YMlvM+Yt/+8d8+MmHnD97xvKtU7791lvMD68TfDVcexrctZy8l8cxOcGJkjInub1rVhES+0iMPRARyTXhDgxaLpMSXDVlcniD23e/yfzwGjEp5xdLTs9OcQL1pMZdWP25L2tKaQueXj7ZxjHYsYOhwzMlvxJXGflfEcnvYewa/vov/pz/+H/+v6E+WCCSaFbnLM9OOZwcUnnFE+m7FdJ1dM2SvjMeCO8dSKDP5aHOWy5A7G0MvTflP6lngKNprY9EHxMXFxbyWywWVq4cqpzvwfBOFR5+M3B1NO9LjoyjcJEkNcdkUEYyMgYKI2F+Lwux1jAMeXvnrCjfeFcdMTl8dKRRcrNtqlQhECsdvPPgLEyV+p62SbR1QzWZ5nLGnq5r6fse70GCrZ1eLGmvoGZOHMGyFenTxtDw3hMo602F95GujUPb5ZQSy+U5wUWmlacKEJySpDYacVdabQuVs5J4R48kIXbgJJBiT+eFFFtUPddu3ODNu3f4R//Ff07wnn/3Z3/KX3764Mqp9FIDYN1YL/lY+OgzjBFLowdNeG8wSIH3izIZ8gbyy6+ZrMeRaWvFIEPBeoo7FE29wVPO5Q5VZkQYGhAHDiCR3PpRZKDL7dpmILSwyZInXUw8efyIjz58nz/8/T+Eako50FYYYvd3LXHgiKYeIfLhBz/nn/6T/xf/+o/+JXHdMlGPJ9GLZ609XYosrl9jtbzg/Y8+4V/96z/huz/4Acc3pyRNxIRBtdWUMIlMp2u8q0i9KaHJdMJiseDxT97l/GJtyVqZmlMxopVd4MIVdH5k0JQmFzrosM1L6EVyC9cNsc2Wwhli1ApSCuZyGGA0ToYMjbuBvY4ipBEhxjiPoSSajYmlrnYsr0Y5tsetGI65K6YkSktTEbZzZNz4kNuITMrXtDUXVYYOZU4EzbwQT05P+fD+fT578Ii37r7F9YNjQu6GZkdWNFR0ThF3wLd+9/cJwfMX/+qPePLJB7z33rvE1QXf/PY7HN2uCPWMHjCoDoiJoA7prVtc74zUp5OchS1q/B99RGKH61ucxhwW8ojzxhEiQgyC8zWLG7e58c3vc/3N7xLdjCQVp+fnnJ+doWqMmMEpHp/5hCyE5XLXt8TGq9edsNNz83mG3I3sjKhuP+Rh26+AITAYo5HUr/j4/Z+wXp7iZjfwTplU0PpIkIhKT/AJJdK1Dc1yReo6quCogif2iq57IsZK58TI2JJCNamZTuc4CbRttKoscYiv6VPiYtVgzQOM+76qKtp1g6plvTslt6PGFqYULSauhX3UqkSc96j0JBwxJ6H6bIg6tfAjYkRvA5F5KRcc0UOXhlQBNdY8iURxlktmRaX52IHaAxW0YnrIp4ThH5E+trRdRVjX1PUE6gpNZtx2bSL4icXpveSkQiiwYew7Q5/F1vhYCJNEzVFKEFyFc6ajJHi61EHbsV4m2tmEOK3QyhtZLRgxm4tUXqjEkredqBEQqYJEhID2F/TJg5/w9Okj6knNnbu3+Af/8O+TiPyTf/tnV06nlyMAORa0G+PfKIltpVm2LX9v5qy9tGmIKVNiA0Nmuap5xNZEKKHO4X0pZcuJbWqIgGqPSy4vrnGgnyyx0nwHGcoSzs7O+OSTj7i4OLOJ7QKFOW/r/RIZ7clAFxs18vjJQ/7Zf//f8cd//D/w9OlTKl8RxGKuqY/0XY86mM5nPDt5xv0Hj/hn//yf8z/5D/8D/uP/9D9FfLCJ1PWWBCkGcwpmTLngmM1mOOd4/PgJTduCGCVlTuW30buirnNsFGyHYjafbcX2tx/dloc6/rmbcCiyyWpXhdW6s5DNayubHtnbULswnp1j2f1kHMscHWAL6bKBHpUq5dCVZka9YbvhqqBEIUaHHB7L5WRP23B4D71jvV7z8NFjnj59xuMnT3jr1m2mi/nAUR4xPa4+mOEXPG9953vQd/ysnnD/w1/w3sf3OeuEt2LF3be+idQVvVr1z/piTXt2Sry4IDhlcW3BZLEg+GCIoG48Prt+Z++oGESaJBCdoxfw8wUHB8fcfPNtrt15i3p+QBJP03WcnJ6xbiwrPXiX55jVS0PJndDcljsNYZvtzhbPF3UjFCe5zEaajYDR9b+uCX9XSlk/U0/sG5pmRduumU1qdLGgripirKh8hVRTi9NLwLuQyWscrUScd5akiSP2PYIymVTU9cTaBvdG5du07UD7G2NH1xlKW1WVdfcLFaEyb9QQw4jGlFMMSvJc4XaRwWsW8YjTUbjSbs7WKFv3DE3KyMLonRuHnYsBoJrw4jId74ZMyz4LBBdIvVWdBRdQD0G8GR3OE2OibVu8W6MIPjjqSUXftXSxJ/SOSgN1NSMEh8acpJfD1S6vA4lMPOTMkO20z8ipNSYq123NlcyBbdt2RKjkCM7QAC+JIAly+FKcszF1OcFSlD4Z4VMQR7vu0FhTB8et68f8nT/40XOn0UsMAKyJg45r5nXkCW4yPMde4O7iJQUa1bHFXqxxGWJQKW2ogMsxS2wpjZIoxomEJZ9gO0lxdJbc4nK5POfDDz/k5PSEmzfvoJoQLhsA2wNgqIfzcH52yp/96b/jH//jf8z7v3iPupoaF7oz8hJr3RuZLRbM5/OM0iUeP3rI3/zVj/n+D3/Ates36btSQ70xsLq+tevxjulsyvmy4dGTx5nf3+Us3+HV4NWWPbZi9QWO2sTqtPz/8m3vwNX2rMy7dTkhbCjz+W2Nsb5MLimLUalgVoxGbJVrioeF64uebrtc0ztH17Q8+Owen3zyMW/cuMnbd+9yMJ/lZ+wQTUjpBSYBFcVPD3nruz8iVHOu332bsyePCfUEOb6NO7qFr43zv3cXNOcrPn74iIcff8S89rz51h3efOst5geHBrLlcEFUSOJRXxFTh/c11HNiFDTUhGnN0fU73Lh5h2s373Bw/RbVYkFyjnbZcHGxpGt7nHjqaoJzwfIdUsoJpgpOcwKZyxDzK46bZKSn5DM4HQwI1exVpDS2vDbz+dVftV+/KJTEW6N2tjlxdHxM7YVpENrY4f0MqZQKh3bQSsK5Du9z0Ekkl2YLBjZ66klNFaq8Hnd0bUvqI5p7SQzd6FRJsUfVE5xx4UfnMiHZxgkrnVw1h2BK2NF5yZ60HxyK4sQN3f0GWmmDv68q9Ry/WyqCRwgp4jpFJOIyWlB5b/B/Z0bhtJ7hnTlixiAo9Gqd+4Q1fVIj+gkZgVUhokYI5xzeB1sGnOYSRSVpJOWqqeACURJN19O2LV1nSbyhCoMxFap6mKQpoyXeO4K3vgGVtVAgeCE5Z2XxXiwsJpYzl1SRGK3xUtfjcFSiXDx7wmy+4O037jx3Gr1CFcCoFGooJyulGMUQsLrL8dpW4tAikkvSNi6ndQ0s0LLmTP8un/PyNWjxNNDMA6Cb3IExB0HOIk1g11gswBwm+Ozepzx8eJ/vfff7L7rtfGL74UVZLc/527/5a/78z/6U09NnnJ6eMptGjo6Oc9apGi9zH6mqitlsRgiBw4M5N6/f4OGDB/zi3Xf5gz88wNoYO4OV+o62Wdu9C9aiNwSenT7kYrm0+8F6FahY6dlGKb9YxnH9Ykjtsh0W1oQCGQ/fCYOlrsjWMykZrJTocA7vvLYLJVx2s7/oMXYmZ0mKLcpZx53KdNQXXTY5Mr+MOOdGJCuCKJydnPLZp5/x6M1v8PDxY27fvmVx0+G5SF7cHZ0qKTqSTLj1rR9y883v0K7XRE346YzpbG5zk8T0uGF+eEwbe56envLk6SPqk1Ou3brF1C7A0CmFHojiUT+h7yNN76i8Q8KUo+t3mB5cY3F0k4Oj64T5ATKZ4auapJH1umG9bnBiCUxVPcGHir7PHHQilhvkSoWDy/k7OSnlFca0oHk6mt/mmkLGaI3GeOzofBXQALWQqhdyRQ9MJ1MCEDTRL5c4qVFtgQrvcqxe29zVNeLFSudQy2h3okOSX9/19F1nxFDeEWM/xMLruqIKOamtbYdwostrlhfLQwki1HXIVMOGNkhplpM9XXHFIMuvWQJyXB7ckFy6m681Tlq2PA9Dl533uX9Mb9eUHUzvPcEHKu8RjWgtOOkyqyeQLH+m8AOoQEodPpjSDiFY0mXf41drRCfUYlUESYU2daReiUSSmLEZUdquY7la03WJqp5QTycEZ2hhacRGzPMz6zAfnFEN5zH0DlwQ1BtXjjWYz9TlFiS3sYvGcdJc9ISqpg6BST157hR6CRGQWH2w5pfItLop3vy0DErdeIqbPa1hgyAZRi8Wp21n0QN72Yzq1pCFMdpgC94ISSBzCAyEEGOP3+pZS5KJnSsN631KiQcP7nP/wT1S6jPv9eV73oQvIMWO2K745MMP+Is//zM++vD9wXotbHjeWZ1lTIk2M6T5XGVw8/oN5rM5n3z0Ef/jn/85d2/f5fbdN6xRgypd29LHnqiRqJFqUqMOnpw8pe07ixMhBMkMafmeS2OmDbTMYOiUF6Qo/EvPdIBrGWLgKZdquuGLzWJ5aRnMHlIVAgkyPfLz59BrJ8Ww2bnoL1QuptupZAXWH6NiZnzZQI8rAmz35w/cbj7K7j+wOvDl6Sn3P/2MR995zL0H9/nWt9+mqqphbgvW3CQmqyrRPjKra6p6Qpg5ZGFzL4nQF5RIoKqm1NMZ73hPEsdf/umf8OTsgjvLNUc3zQuJ4uhw9FKR6oCIY7G4RhsTvqo5vHabN7/5baYH13FhQj07IGRoGe/o257lak2zbgaYNmaa5aFsKt+DOAdekWRUw5q9JfRqr3AwyopHXzzmsRGADD8tNi32ju0849dS8mWdn57w8LNP+MbRm/SddW6dTmdo26Ep4KSiS0Lf9nR9lyFyMhyfrPNdNviDd0YZLZrXt8Y64Tmjz42xp+9avKusT4i3OdinhFTBDAWxbnp4RxJP5VzuAeCt9XgxBPK5fO6gZ3V79qwKClCaC8XMFjsE7UahzPE6V7hmCppaeneU1r1eHMEHqLBuh1ljrBvLHUu5ykbIxn3s6VrruTBbLCyZOBUq8BVt07CoKw5mc/PkxYPr6TJhV0EL2rZntWrp+h6VTHvtPYmeRA95fTfCRW+ltqHGhYAlwFgZI05BTPFnK8lyLJLiXLD8smi5DilFY6FNyRLOnyMvLwPUsRJRtmpxwZR4tqTtXRp5k5L70o8mrL1PhgZYWVvKpYGXm/4IOignIHf62yysu9BqgZDwhXBFEF8UnvD06RM+/eRjmnbNYjEb3US+1x2PLvUdn3z0AX/5F3/OvU8/QmPP8fFxRhTKNZMJKOw+xDlm0xmz6ZSbx8cczGa0q4af//RnfOc773Dj5k07R+pp27W9lMkmuK8r1l3LvQcP6PoeFzw+AioZzs1Ke9QQoyAk27X728YAkEmQwnB/zo/KBDO6cjmUv3mmm2drMLTkSo2+/6q0ARrJ7qL+qspfixFc3oHNfhZTLl4lWwgAuJ3Kjc+nVMbPcYuqOipd0/Lo4UMePXrEoyePefjoIYcHBxZWK/ur0qwbnjx+RhUqFosjg+vFkSSXzqJGqoIniLO+B+KYXrvJN3/4Ix4/e8a9X/yM03XPrSi4EEihJswPOTy4xuLwmOl8QRRPGxOI5/D4OgfHN9CcD+DrKYqjidYboOl71m2LJqhCTQi1JVHlxX9o5Zs0N/Dy1lkzJYuFimQj+epxTTnRGO830L6MnuEY2cq2mY6frY6h7NdPBHhw71N++td/xTd/8B/kUKhS+0DftxZvDjUN0HZrum6NpI4kltSsMSc3CzkpeFNwpCkSu5a+i6Ro650XmFSm/KsQssHWk2ncLLHQW84HudmPNc4xWltjsjP+/LquLNRQ5VbSmeHPlG8JoxUEuLxU+b5l0y9gC9UUw5ljyp518MZY2CeSVwggtUHpXbDKtq4PaIqs1j2iuSJAvLX1ThGNPTFCu1oBig8V4q0db99E2pXQNh2TemL5FqEypSoYk1/XsW47S1KPCdf1tF3HrJoQvCemnj4Z1wHOmjS5usbXE8J0YkiJ9xld7HNAL5fUD826oOs7UoKYKqNuFmfbJ7iIz5/DL+4GmBLL5Wr423tPCNtxczfUCsvwEqGQHKNsZPvvZiEbEUOIN4tRDF4uCW4GqcpmIpRfIE+IDQXpZn3ME0VHEyK/xCLCcrnkw48+5Pz8jPn8eLB8t5K5svR9z9Mnj/npT/6aDz94D4dy5/Zt7t69yyeffMq9zx7aqSBbb5aUlDKUNq0nXDu+xu3r15lNJizXF3z8/vv8/u/9Pjdu3SZm2syUM0yVhPcVZxcXPHj0yNrvjuH3wePZ9iLtubjnKv/d0szxfb5cESlDYW1ZMCWHcBJGcPHa1wF+iXKF8t8kjX6ew4zCBq+IAlz1mSBoTJycnHD/wX1WTcOjx4+5c+cOB7OZlSUB56slJycntE3LtLZmVFGTvZ/O2NpcSoh6pPD5i0cJSD3n6NZdvvOjP2B9ccFZs+bpcs3169eZHk44vrNgfniNyfwQdZ5VmzLXhC1mYTKzUAFCTJHz5TlN3zKdT0l9HEJ/lgScS7NiNMh/qP9Ow7zfBFl0K/S0GxPeJG6yocW0Qdv+PY/jJu6/KcV8fVU/o5U1gia6dkXsekQ8fZeIXcq9OyrWHmJsiHGF0w7obM0pPA59Z/lkCLHv6DqjIEcttyD2PZpgNqmpJ1VWrD6Pc8zb5XWooK9Y0mkInsmkZjabMZ1OqCo/hCdLVz2D/XWoXHKyuUNDATJvANuJzLvNqBDLkPcphwi8rcVaGc9M8kqsFFFH1/a0fZdzx6x8tYrZwVGlz2Wu4py1+O4jzXKFDxFfWXvkJNH4/ZuWSVUzmcyYTqe4qoLg6VVpup7VuqGPFgrs+571es1sMSFUzkjvNBo/hve4YH0yNFREZyhA8h4lUQWl61tiUjyBKELXRbwPPD45QSSwbNeIq/nxj/+an/78/dwP4fkOzkuTAJt2REQj296eiGUxuoFYp3iikrni898KaK41FUXVWiuqbpoMWQ21TeihvWpKQDW80GkoSRu9AjpeFLMhsoPLikDfGxvSJ598wtOnT7h5800Ko+BYQRaF+fTpM37yN3/D+++9S7tec/fObd54801miwU///kvePDgsSk/sQTAkvW5CU8kFvM5v/s7v8O3vvkNPrv/GR9/8gkff/wxB4eHaFb+bc6wtfuDx8+ecHJ+SiQR08YIKuNYSGyGuFcOlTwP7h9n/49zAdAxZL3Z/opZYM81K3/LyjVkJ2aClq+NXOH5f/FDySXD7HNLbvF8cX7Op59+ytNnz3j89ClPnz1jPjWO8a5rOXv2lGa14uhgznxa40iQepv/TvC5vK/UZuelF8XCPFI57nzj2zTnF3zw7s9YdfDW4XUODo+pZgukmrLuYdn2RLE4fhVscfehtJjtaNsVXbOkiREqT+1tW3A48blZSkvXW9hkmJ+SQwCa6659ppgtCWIlbs/VRhMxQ/8Dr4MtCkNIhUzonAEcyrukaiWXr41sG//FCFCN1qAJMQOgjyjGUy91oKoFcR2JFU4iqbf8oxitGin2PRKsrXvsW9brde7saOpBVanqisOjQw4OFoZ65tyrFLuhHLxcX+EZCFVgOjXlP5tNmEzrTB7k8MHnOLeFjlAZyu00I6kiAecy+U0OEXi/SWbezWkyVadGUQ7UE5vPTjyVj0N42ONoGoPkY0qEYK0qutjjgyX2LZcrVqs1fW9wftuX+21JUfGVos5KLDUllus1enpGqCeEuiJMpiRgtVrRtv1mzaZQZydKYi5iIdX5fE41mVg+TZiySnByYecLwdCCZ6cn/Oxnv7Dcm5hQdSxXS/71n/wZ66Yl19jRdYY6pPTCZoAvDwGMZVc/qELbRpC4tSYKDAmAAltcy8XrVtImjqQJzS+p1f9bHCfGhLhkqEOGd1SzxT62/ofzbsx7zRcoObcg5RDTvXuf8fjJY75byImUzTXlvIbz8zPee/dn/OynPyV2PXfv3OXb73yHb37rberJlN/53d/lz//9X2UvikyVHHECs+kU7xzTyZS7d+/wzjvvcP34iHpixA4W++/oo2WGNs2aPkVCXYHzPH78hNVqbf0VVEH9Je+mMLGNPxv08xVKfGClGlVKmA+l4/VkONZYymlK0MaUVjF20pCP8FsvBRK+Ai36nAfaQp5+mcTAsn+zbvjk40/46MMPeevNuzx+/Jg7N24goeL87Jz1es2krrlx7di6l3k/vCVORohRRstKmE+dJwlE7ZjMDvjGt98xo1cT9eKIan6AhJoeRwe4eobgCXUhMcmMbrkeOnjH4cGcmfPEHI89Pr6WS1+99U7v+zzOjj5GvMu0qGLkX+rVurU53YT8hmQYBg9+a26XsOPwkmzAHDcuEYTBMCjj+zqp/10ZLjv1eJeT0ToLTfrCN+GFqnaEoIjrIUYzxrqGrmtom7Vl98ec4d4b7wuavc2ozKZTDg4OOTo+Yjqd5FyAzXYOe7Y+P++qqgjeePWnkwlVVQ1KO4RgfPu1oQMFDTBUMZeA5uoZX5Q8Ob6vyRzLTJBTYvtl7fYoEUdlnineKcEFvOvQKlkZoFjD4LryptAF6trhvXJ+ccF0arkv62XLxcWKi+WKi3WDk46mt9a+scutkn0iivEbpD7T/p6fo+IIkxpfGQV2wiEuoCKWA1FV9OY7Ah7F8+TZGfcfLPnk3gmT6Yx6MuHTTz/jg4/uWU6EgDrHxXLJw4ePB6WeBqvVZyPMOEKcczmnICPzz1mnP5cB8FwZvYP5z3xC+7AjIfSXdnO+y3HHDBl5R13XOF9lCwlicmjcGA/WdjRDRvmNdtkgcDlsYP2eNTcnIccQDW65//A+n3z6Mf9hNgBUE6m3F0g00XVrPvnFT/jpX/0pKTZ873s/4Pbdu9y+c5drN26QnOPG7bdw9YS+62hjR9KelCJ15Tk+XBBEOT5ccPfOLRYHM5x3XLtxk8NrN/B1TRsTfTIkpGl6UoIqTLloIw8ePGG1auzhpphfMrA48iabfEAshKHOXfIC6MTG5LLhMGJrdGZVl5wMY1l0QwjHPCXJjbQKudDG4pLMu/1a46SQIeAxhewIxh8+e8ltyKVfnnOubG4PaJIlWpXmpUWcbo7z6uGYnVNlGL8otouzUz78xft89zvf4ebxDZ7cvstsOuWzz+5Rh8Dx0XXqycwW43L/GbrNj9q8ES1xxfKsE16tfvnw2jW+/3u/l/NJKqJzuFARQs1chT4p4iok82soRnzlBMRXTGeeKRBx9NhCf3R4yPUbNwZOdVGonPWl1xIGFBnyc8QJvgqIE1Jnnq52kSHBr8zL8bO6wljTwkJHCWFucplwI1j5dRIpYY/cz4QI0vPs6T1cUgKBJrZonxBJBAcahNoLkxBoXaDvV/RpRdsuaZuGpCm38+1p1g0pWda/poi2HVWouHY44/jagdXDR2uEg6glj5LwubWtz56s05Qb6FRWRmdt9IwZsKADwZ6h0ZvkZyuF9rcQaGUWQDESNACcQ13If3lj4BMQTUQcpB4FQl0jtdCEjhJqdiIQlVqVaTADExEqBxpbSD2h8hzMJ1xbHNIc95yenPHk5JRl03K+alg1XW6G5Vg3HVE0GzeW4JjUkIVm1aGrlk4D0U9QNVpsaYVHnz0kpjjcM0DXtDRNzOuTrblJNyFWCzVvZGu1UDORxh5x0s3a/iL5cgyAV5CrLiNGK5ko0vVpCDmMIT3LPTA4SDF40DiorcVonxnXSnmiZo/DmvjY6l7q189OL/jbn/yU//xiiffTnAVrxBWknk8++AX//k//LSdPHvF7v/97/M4Pf5eDoyMm0wPq2Zyz5YonT05JCl3sgNzYCOXocMG1I4P3J3U1eEBRE4v5IUfH10kIy6ax9cpn+CsJdT3l/tPHPH58Qp6XRoKUuRIK1FlGMq8D2fiRTLC08XxkZwzH5Exl4uklq80Wzo1DtQ055geTkRjN5BdfbD78WkWuUAZXGAHPFS0e4QtOwWgIGf+yeWYFwYJSRnvZEHiZbG0nhm5574l9z0cffMj7773P9aNrzKYzjo6OOD894XCxMHY2F1AVY3Qrtyxg/dezMSEAG55/YOhtjq+YzD119iws0SiT9QjU3lnnTt28w+XIW/kpQCWO6MHNZty5c4fFYjFQhEsJ62UO+lJrUfg+SGkwSkUcrsr8CCkjUjoyAMpwXWkEMKACG0M4gV4Op/3mpVy/XXBUg7lxyr/64z/iH/2X/xX1/BaVDxajjn1mVTVCHttV6PuWtl3SdUa8VPKH2jbSNGti7CxzXxyHiznzxYIbN25Q1RWrdUvTNAPvvfeeSV3ntdhBUoJziLcOerPplBD8kAhoeQPlHjZ+RplzNq10szbJpu+IJONbKTuJeGIadjZDVo1OuNDyaoIosJhNhy6flQtUBDQlmq5FganzHIoQsXN0ClVdUU/nHC8WhOvXWTUd9ekZJ6cXnC9XnF2s6NTTxIjk9+ViuSbFaN1sc2+Miy6y3MmT+nLXzM368kXO8WszAF5VdmN5Bbq2vtN5+guItKPFsFiVPse6NUNRgaoOg7HQdx19H/n0k3ucnJxweHjdSBTyUR48eMBf/tWPuf/oEd//7nf5/vd/wM1bt/BVDRKsbe96xf3792mahirTRPY5EXI2m3F0fETXdTgnVt6Ur7GqKo6ODmmjWplItPKaYvFVdc3pySmnp2dAoY41Sz/JaGx0QwU8pCtljz+NoJit2Fgew5Q2MbSrPM4Smilx/vFxdttBD9u/7gaAsInpvhaiwyT+vDkAMloQLUdmQ8AVY+Thw4f8/Gc/4+1vfpOjoyMjIiI/u7QhEirlnkUZX2X9lA6gQ7KVkZACMjx3cS53CiyfXe05X5WIWvpSiAjHx8fcuHFj+N55470wnWzonQ/eeg/0PbHN14UVchVkLKpebhj0IslKRgfLLM/rcZXBaywyUBwXI8lIy4KrcH2k7aFpG5YXFzTrJs8Hq68PISC5Emi9spI2c2QY1qODg0NmsxmI0LaddZUTg/jFBeqUIBn3SRU8fdsChkAGH6iqiroydGAyqZnUNVUIBOczbG7tqNOoYqXYoM4VhsLiBAarccchUuF8RYo6cKMQjXa4qhxVVeHE0yZDmMVbuDJUFeBJUhu1sZvQtA310QFtmDHzUy4ulpwvL+iaHl97Pv70Hh9/+piEcrG2MTg7v+DJs3MrSS+8NGqcOTBeHxkcs9dVXjsDoMiLIFHTg9uWT4zR8hFgsOqdSG56Yft4J8wXU979+Qf8s3/2z/nBD34H1cQ73/4WGiP//t//Ge/+/D3euHOHH/7ujzi+cdPoIQuyEmPu2reySRag7wzK8cHi7E4cy+USL8Lp6Slt2zKfLyz2WtVIEBZqFQPWRCMwmc5wTnj4+AnN2ppupMTgYZfGO4PyyAvX7gLlMmw61EeIZJrklKsriodvv++ub+PM6d2Wy7sIwl6+uAyK7QsYAbZrMYotDlsSopqm4eOPP+bx48f84Ac/QESYTupsaG7KXLcuRK5AebKUZx6CdTnT/CKIC8bDjsuNt7JnZwk6l3Icdo3JQiCmyT47PDzk7bffHkpsq6oy7yzPweAtdtuRe4hk4q+IUQ67DBM77w1PLAk/zx9A8oXk64OSPzD+/pclbvpVS0FYYtfZuGjKCXDZ+409y4sLzi/OaRoj/4FsSOY8oq7pWF5coKnPsH2gDoH5bMaktv4lZ2enRLUSuMlkajXseQ2qa0vyc5qsFwCKD8GIgjJN8KSurRSwNiOgriqciLHnxTxXKErfYv8xRvq8VhmBTw14Ig6RmqSeqBvkFwJOItQCVU2flCYpXbTKCJyjaQ1v1lBxcbHi/oOH+OBZNQ1JlWfPnvHf/bN/SRt7VgmiM8On6YzbcBMBLSFTj4gnxWgoYWmZzmZ+DfwGr6kZ8NoaAFfJpfdxjIptictxkHFfAlswuv6Cf/Ev/n/8i3/xx1RVICXl7/+n/wmLxZxHDx+iMfIHf/B7TBdH/Oy9D3I80XF0fI3f+/3f56c/+xmffPKJtWRtloYA9D0heKazCfP5nPXyAk2Ji4sLlssl09kcMNY0FwLT2Zym66knUyazGU4S52dnPHr0hGjk7QiQdEPDPE7Scrm7Wrnt0gLY1jFjmIpbTIkF6tvE1Mqqt1msbUC1wK8vcZ++UkbAVQv5r+H6i2eguj2au2ceo17PG9fyLEsiZ9d1xL7LFKW2fwiBtm158uTJ8PemlauVndZ1ffXF7tgBuwhSGghyXEabSutuUzRkRrPS/2B8X+V4W/N4dK+TyYS33nqL23dujzK7NVO4Wl7AQEk7wKkGEZTrKsiI954k2VB4RSNgyGn5Ck3pIcRnWZzG6R8cfdNysb6gPX/GxbPHrJYXqGYjrs0hmhwu6ZqW9WpFHSom9ZTZrKauwxB/b9rGegAkcMGSOxNGCJRyE7DZZMJsNqNZLYk5aXNSVVRVPbTZDd5vZe4X735Yi2D4u6oqKm8loZJ0hDwKVj1WIRLoEvQJvASq4PGVPb93P/uUi2VDHyNN25IUPvroEz67/8jQYXFECTx6/Jj3P/x46AqbwOZTHtxeoB85kmkcVsJ4+BXQ2A8fAWxxVJe+36+p8oevmAFwSZ47rkWB6fBviKMPKQdKq9bo6F/8yz/ahD+Bv/zx3/JP/7//fYY+TXleu36T3/3d3+Heg3v89d/8NTG1OC8cHxntb9M0HCwOODg4gBhZnluDk+Vyya3bHld4oxW8D0ynM+bzOUdHx6yD495n9zk9OcswUuHe36AdQ8mfbhSFglUi5AmqaulmmtSoPlVzDM7nsMm2gtmsxZLhW4uf5fWZghiMEwi3hv8195AG+bUaK2VMBHKplLhQPslO99XXMw57XbVNCYWlrNx0RDMMMJ1Omc/nPHv2jJOTE46Pj4mxx+FZr9b0vbWb3h6P5z/D3TrrTD6WIf8yb3JL6JSGUt5xWV65r625MkIEUr7Xg4MDbt64SVVVrNuG4AMxdwrVGGnWa/qmJWOuwxCXcTBvcFMfnuDlRsD26L90PF4nGa4y37+V00HXrrk4P2N1dsr64gKN9sydTtG+JnWyySVU62d/OJ9zcDCjrjwiiS52rNcNq9XKSpSdZ+qnIGJ9Scxfx3tvde/OGgmlFAmZ635ohZuz9oPzFrJRc1JcJnpymeXOykatWiA4b2BnisTMEmvUxWbg+XpK7JX/+//7n3CxWmeWP0GC492PP+FiaTz+gtJGZd00NG03jNtu6fI4l3kAWkcf5EJ1Bi8LMFj4ZUbmL/GAf00iLyEieQh88Ou7nL38lsm3VfX2b/IC9nN4L7+k/MbnMOzn8V5+ablyHr/QANjLXvayl73sZS+/nfI6pUfvZS972cte9rKXX5PsDYC97GUve9nLXr6GsjcA9rKXvexlL3v5GsreANjLXvayl73s5WsoewNgL3vZy172spevoewNgL3sZS972ctevoayNwD2spe97GUve/kayt4A2Mte9rKXvezlayh7A2Ave9nLXvayl6+h7A2AvexlL3vZy16+hrI3APayl73sZS97+RrK3gDYy172spe97OVrKHsDYC972cte9rKXr6HsDYC97GUve9nLXr6GsjcA9rKXvexlL3v5GsreANjLXvayl73s5WsoewNgL3vZy172spevoewNgL3sZS972ctevoayNwD2spe97GUve/kayt4A2Mte9rKXvezlayh7A2Ave9nLXvayl6+h7A2AvexlL3vZy16+hrI3APayl73sZS97+RrK3gDYy172spe97OVrKHsDYC972cte9rKXr6HsDYC97GUve9nLXr6GsjcA9rKXvexlL3v5Gkp40ZfHE9G7i5ccQV7po5dvpPkjef4x9BXPIKIv/H5zrO3jqOqlbRSxbYfvZHMdOr6m0XF1+3cd76fP32739+2/FQUSoCJb13rVPuXr7VvSrb813//wmerW/ej2YVHdjNiV973zxTrxSFVv8xuUo6NDvX3n817C5mGICKqgmkgp5XGXrS11POD5OZctROwYNvZpeG4ignOOpErbtnRdS0w9oIizOSx5O0GG44hsnd6uLX+Qop0/uIoQKqoQcM6j8orv5JcgL3/zXvVAiupmvtq9f0k3svvCjD4e5rdCjJGPPvr4Nz6HAeRVFrW9bMnz1qqvqVw5j19oANxdwP/tf/X87xUMQ3A22Ff9g/zLDtZgyl6GAznAI3nRy9sIowUvoUlIOHZXAZHNoqso3ieQZEeTouR0a68kHsSxWbbzCUeLQxK3tQ2Ac57xlFIgORkWqGGRGnSIXZn6q1cuZbzQBVQl/11Wvo2CUZQEICNFrUoyDUXKx1F1JCo7DmVfu6Zy7IQQccP5yoKbhoVXURWS8yQVUkqkVI4vpKTEmEgJonqSuuE+ys//+p+efHDlTf8a5fad2/w3/83/9bnf2ziWyWnzxuZaQnA4V9H3iaZpWK2WtG1H10UUISn0MdH1PV0XiVHpeyVFRdQUfvDCfFEzn1XUtaOqBRdAxCE4Ts9O+fCjD/jswScsVyeI6wk1VJNIqBy1BPsXAqESfCVIUFQSqkIfhaierhPWy0QdDrh17S53b7zFjeObTKYLVNxmbv6KJaX0pR2n6zr6vkdECCFQVdWXcg9b79fos5QSztlc6LqO09NT/s//p//Lb3wO7+XFUozp4D1OHCEEvPeICDHGvHalvL4lkurw+cuO+5uQ3bn5JcmV8/iFBsDLRATzLuQK5a/b21217+YP274o/+3v1M6j9rtTU+yDtS7kv03Bq4BHQWVzHGVkIGR7RDRf5Mh02Bn3oBGnmq/J2XWkcv3FGxO0XDwyKNnNNgIk+i4O97LxCLfHQnwZ1G1PXEY/fYSQNuMkQMzXNPb6VV0em2EIBg8+KYgDgmYjSYcx3BoLxYwExgcZIRv5d5WA4vL5N1f+X/MVFpHB8GnalouLNefna9ZNQ9/1aDYOY0z0MWZDILFuIl3bEftIjB2OxHRWMZ8G5osJ127MOT6eEmoxBact+EgISlVLPrUiTvKc8+AcOEHzQx8bjQJoiiQFnBkI1bSinte4SQCPwUZ7eamU97UYA33f/6YvaS9FRjpB8nsQQmBS1zjvCd7jvUeTbhl43gm+7J4dvLZrabuOru82ynYbGv3ayEsNgBcZQdtgaNlhx/vffLzzt1zaYNf7B91GAwBR3VJV5diD6lLwajuMjZBhsRy2UyBeccNkyFXM2EhZmWsalPPm+mz7pBukwsloXHRz3RMZfZYVbNrB2O0UG8//qhCDiw5JfstQCuOXg6Lsdbh/0w2jCxZDE2K/u1fZemM21BIHA8GQlhJ+KBeg9LomjcfkKyflnjf/VIQYoWs7zs6XPH18ysnJBTEmxDlCVeG8EBO2XVS6COsu0XZK7CJd19P3DXJ+jnORg4MpPbeoJ45Q14RQMZtNOD46IvZrlqtA362IqUPp8QSEgEgAyfiYap6TvU2YCETBE5jPZswX15gtjgiTGeIrzAL4Gq1ov4QUAyClRIyRrut+05f09ZWy7juHE8Fnr945hy/KXnX4G7gU2hl78M45Q3cE1IF4h+/9JYQAsm74mrwyXxgBGOuTsdKXsS7Z3mT4Y6zot7exnSVDCJtNdNjmKiRdhv+MjqVXX8twxMGVH6m7ke6Fy544qsOk0nJwMRhfZHDULp9SxZT2TvDWsUELlAxEX6HMN/tAco7ki3e/OxgbjS9uo9B38wDAXiz82Bi6GnraHRsbXLf5TEEzbDqMiZYrf/1dz/EIDvZYhraiJpo+cn6x5unJkvOzFYgwnc5wlQcCiUjURJ+g6xN9kuFfG6Hvoesa+m7Jql0zm085Opgxm0BdBeaTQ25dh0kILJfnNKsL2q5h2ZyDCE48Ho9TbwZdTDgU5xIikBxULiDVjGpyyGx+ncXiJlV1BDLN9/PleLJXwea/apj0RXPzyz5PUf4FAWjb9ld6zq+rFJRl+8Pt76u6HpS7ywq/hGfG+8ZkkL73npKzIwVF1URZwZMqmqI5hs7hQ7D3yzn6GJEcDkjJwn8aX/+168uQVzIAhlD9CLIu/1R2PoPnW0+jbcRtL76ig9rdSXQaW3RXowvFu99ei8yr2xgH20v9EL4Y39/OQZOUPIB8JAERZ/vjspJNJIlmCIigbpyPYOIUnCS2shAUdoF+zR7280VRF0G6ssvYWd9S9FshmOccbRtt2R2A7X3leRsoJPWAz0Ne0IGvhgGwFd+Qslhs/rVRuVh3XKxa2k5x3qHiQQJJLfwSsQUmKmT1TFJHjNBHMwy6XgldIkYgBrQT+qigiVoqbhzc4Nr0kLZZ0/Yt5xenRLUcCxCcE5wkvCS8hyqUzAWPVFP8ZIGrD6imR8xmx1R+jmpA6XCXTckvPly/JoV81Tl/HVKg/6ZpWC6Xv7bzfp1kbDiKCOIdLgTquiaE8BwDYZN8XRDOXUNARC45VZst8rqUnTolowtAldEEzbkBfd/DTijhN5UP8KuWVwoBlNw4GX222QB2tfJusu7WJtkz360/HFRf8f5faEmYDIhPMUSKQhsOqs/PgB4r/939KLHtTdy17KCUuH7+DkDisF0ccIyNJFFwl5XhpXXtFeaYT/lQcnlSFujqKiNpVwQZjK7nXg9giXGMbmj3yRY0JVJesM3Pr5JsQRyknCjZxUTTdXQxkXB4XyE+IM4TtSeSiJqIJJKmnFTJ5l9KxGghlCpUTKqa2ge071m1K9rmHNWe+aRiPptyWB8SY+RoNqFXHTwcQXFOzQCQRBDF4RCpSL5C/QQNM1yoqVyF4CxpUzQn6f52LmC/Cine/2q1+k1fym+VlPXKe0+dPXwRQYI3RHKUsI1cjW9u+SqjbXTXO6Ws7xsvpyxjWjxGDLb1GbZVVUIVkEbMqO8jMcbh+L+NRsCLDYCR5padz2X03W4VwFXJAZe8zSvOZc+kDPRzIKJd3XJZH9npZfvnlecbFPpmv91rdpK2rNUBWcgTSCQNNy1D0F527vNqZbg7Fvq8sSnbqy3kDreFmAxnyNatbfd8BVywETuGG32il7bTSwM4fhDZ05d+9ODHP7+iIuYd9KmnaVrWbU9UtcXCe5x3JFH6mIgpkjSSUjSFG4XUR1Ls87+Ixoj3jtlsxsFixmwipP6C02f3OT97Cqmlnc+Qo2MW8wXBeQ5nDhVIEkg56c9JwmvEaY+kCDGSEqzajlbXUEdqEQgVEsC58MJ5sJfLUmLFXddxcXHxm76c3wopWfoF0q/rmrquATO24rDE5NJX757rQOgV67mO/pMG1HdjCIy9fkY/BycqJ9ZKriQQEXoRkosDIvDrRKF+nfLqCMBIqY8V16DYGamG5yAAGyW/q/yUrfg/u99vDq671silVPpd7Fu3t9+9qtGF7UT8EUk4YUjMK+OwlZg4vvHBidStywAguau9sI1NsZmIbHSr7myiLtFLzOfftSB09DK8gsj2r7toySWn/znH/eq/G5ulofA+lPr88+WSddugCs57XLC6+qhZ8Y/+xZRIPWjsSf3mn8aeUAUOZlMOFxMq37FePuPi7D7Ls6eIttDVpOYp69mCup4wmQWkckhVgRObg6KoRjS2pL4jtYmug2UbaaioDnqqSYXqBBGP2yyHX3xkXuOH+2Ve25Dbo0rf96zX630I4EsSEcEHT1XVlq2fPX7NidWS196UYXwZlWO+7LhAXvcUVHJV2sZh00H563bYdQdhKLkDMRm8WlUVEipijDRNQ9d1Vm5tJ9zs9yUha7+p9+zlOQDFqS2hXfJNjz0+HfSXxRt3FIkbR7YHPa07+nc0qIPRMUICBsX7HGRgpOhfYe4YpDrcVLY/R86tjG5CseS+7euV7XNvXcsVaAK6bWCMJurGsJJhQpXzDFUHbLbZsrbKZvZlfiy7psxzB2EcGstG0Eu2v/rmdv58icXwGonmUlDzLIo3IMSkdL3SdT0xRlTABYcEAZdQEkoLRNBoCUYxIr1CH5EYLVs/KcTI1AeOZzWzAJpWtO0JsTtD+zPQll4cKz0jxQn1pGbdeXzt8aHCBUcIjuCUoAmNHfQdqYv0TSKmgPoFIseZl0NQSaARwfgGvpSx0vE7+uUsfF/0/F/2cQZloUrXdXRd91obP18ZcYKrAmEyIRQeByfEsqB7GOqJ2aAFRXaV+Thbf8xtUaB65/LfKSGaK5fyYmpLpyNpunR8YOv4lQ+QS8ADNSpC13e2tqbfnnnxQgNgV78N+nI8aAW2wRb+LQU2HCfDyzsKvBgNw99y+efL3sHnrUO7D3b3vjY6dPt6NhbkNnIwTnYsCSmD1/DiSzTlvwMJ2HF2jZntFEAt++7e1xU3ffmT7WNfZRQN791zkPtdo61s8xL9/xWFnfNo5/vru2jwf7b+weNzvFAw5YpGo98bFH3OPE5pqEcGJXjHfFpxMK+ZVELShtiv0dQi9ASXCE4RSfSph64hqRCix1ceHxxUHnFmTJN66Ho0JmKfSDpB/MzIT7xHxAieiv34RXX1byLh7yp5HonRl3ldzrktYpjJZMKNGze+tOP/NsiL1tQrt3eOMKkJdWXKPy9CsZQPPef4l9brkXE2lt1kwnJOyA4mIKP4/jjWu5touGtUJE05n1lyya/HdZ6+7+nb9rcB9gS+AA9AUVzjiPHglGYFvzED8veMEvzG++wofPt92+LbffGvYsR8mTdy1ffl6guEP76Xcn92N9vXWm5iIALavq3nX8Ola7pqYd5ZrccoyQuOtXuMUpb4KvKy7S59PQJlfpnjvm4iiCXwASkpfR9p1mua1ZrYR7wEi2E6h2hmX0ygyZj/NNnjimoLXK+JTiMqSjWtmB8smB/MCLWnX/X0bUfqe5xmshLnjJxKEzG21M7jUVxKePX4lHDFWkuGOMSoxJTjnr4iVDXB14gM1Cdf6DlctTA+b8H/dSMBVymBLyrjay/K3zlHXddcu3ZtiFPv5fOLy6V2dV1bTJ/NGF+ZvJz3eZ6y35UxIrBrBIzLBcdGxfg85bvd85RrIOng3AJDGaKIEPsejVdwyHwF5eUGwBWe40bRM7jS9kMzjG3elFyxz/bfGwU81q8CVyq+4pXvmASX8gmu1JByOVozNkqKEVOYDcu1vgpK8apylRFwWS6P0Yu2ufI8Zb+XKfdXNRJ2zvxKu31FDICCVw1OiYJGpe96mnVL3xkVrfcu8zwIiKJRs/KHFM0ISCpEgQ6l00SfEin1TCaO2WJCqD0ptnTtirZZ0bUNknrEK6SE85YJbaG0iFfF4wia8OoIIrhNeQEpCQmP8xN8mBCqKT7Uma7abd3hF5Gx8n8ebP7rlOcphc9rBFx13THGIVFtMpngvWc+n3+h69wLRt1cV0bYI5s59CJK6qu+G7Mz7pbklZ9j5OYqA/F5++2GtLbO74DEQBJUQhPee3wI9Cn9VqAAL60CeD7EPtom/9zab5Q1+MJj7JxjnHB3ae3a1e2y8eSfe81D2OLqMED5Q0efj6/5+c94pApHRskWpD6+pt3L/MJr5ytOup3jG+Kw+XDcaOWFh7niGbyKTnltEAB9uYIwIy/jVqrEPtI2LW3T0LU9koRQeby4HGMUogIq5vkn0GRGRExCr9Cr0qeIiDKZ1SwOZkymnpTWdM2abr0idg2BXHOc7PzeCc5B5aBySuVKyV/CxWykJs09GKzngwsTwmSODxOcBMhx/wJh/lLD9xtc5MZK40XbfBkyeH7596qqqKrqSzn2102898bHH4JB8Gx741dx8I/HH7aV9YsMhl0Gv6sMhqsU/e5xLq2NyQzt8TFKr4gQQkYBrjY8vkrlgp87BKBZw6mWDmUbL7mgABsdVR7IZUU9Vv4ir2hMyXZM85XGeXSOsQwthWSk0664hsv3v+lNIJn0Zhcx4FXv51Wu/Qvutyuqu5P01cbvCxkJr5m87OW0OnvBO29NaNqGZtnQNj0pKowajGyOJ8RoijhFiD30Uen6REyJqFbDPwnCbFYzm1UEr/RNNgDaFU4jTjQjC+bVOxxOIDijeA5OCKKIpjxHnZ1TQfEgFc5PqCdzQrDsf2VUcfIKBtvL4P3fVA30K8WZv8Tr2vUWv0oL+a9Cvsj9i1gGfV3XBqjlBXusrMdjO4bhX4QyGQrnLyn2Xc+9KOqrjlH2LSGC3f22rmHH+Bzv65yzXAO1aq/fdI7MLyMvTQK8FJIeKV8pnvPIENhyjIviv0qRvVQBXRHH3j32zrWVz8c/r9p2fH/FSSr3NjQ3esncHxCKMWJxxXWU677y/C97v75kA+CqDV90DcXYeaVTvsZr5VWexVg05uY7OIPWYzIEYN1CgqquqHyFF8kvPJZhrLCVD9grMZo3T1ScKnUIHM5nLKY1QRLrbkXfrdAUCV6onCNIwmnEI3hRvFjuvog1trJyvmx0YJRLvQq9OnAVvprhwxRxFeBsEg/8Dq+2OF2VePWysfx1ycue315eLL+uMStKunTiA0alc5ttrvLuX9XIHHv4xajYVejjbYqMY/5XIRC7BsAuYjs2DEs+QOy/vDyAl937r8rI+EK9AExB6uj38kVWqrr9+datfQlzcevYV6AC47F6VU/3SsPiOfvtGkGvdOxXCQHIK2zzBaWUx3weuSpJ5urtvsgV/frkpfdQYv8p0ffWza9tWvq221mYtITf8xwzg0FLKCCWf4rGhBdhEgLzumZaeST2xGZN7DokpYyYmXJ3Gfp3hQjLuY2RSVmcbEHt1dGpENUhoSbUM6p6ijjrykhGAAor8yuHjfYyyKskou1lW0RkCykzB1AGBOB5CMvudyVJb1fGHv94m12Eb2wQPO84V/29/cw3imR3+2LkROm/8nkAn8sA2PWutzxmNvpLRn9I/iDbecOHrzRu423yMbfOMzqf7uYH5M/deIedY+vm1637Gp9yvO8YTb0UGtjaaecYz0UAroA4LhkBvzrt+vJjv/rkfn2NgO2F/JKnoZsXX1OiazvW6zXr9Zq+73Hi8M4bIRTmGXgRnPckl0hOSU6ITnGieIQu2rEqH5hPp8xnE2ovpL6lWa9omjUxRjyWVBicEJwd1643gVT2nhQtrlYOuqk4FCKO4AJVNSGEGpzfKsoFBr6N4VkWyO7Kcdr+ZDNOV1iwzx3tq+VF02OvaL88uZRhz9XP5Jd9Xa9aOzbNe1zZKOuCjVIehwHKcXYh/atk13AoZZu7xsKLFP5uMuDuNsPnOvxna5+yRgzNiUbX/qrO0usmr2wAFGU4DJ2UbGVF0o5xoGx6wpDj7YNVoKMDbjybQUmOfo5nqVzxbxDdbD50ARxvs4MIlLi/XhUfldG9Sslc0OGk2+CRNZPwJFAhiQxUlTIsxeXny11+KTewJc+Pi30euQriFdkegMsvyKsv/Jev8Qvt9muR3bFIme45pUTXr+manKDnlIn3zCcVs2mFC1auJ87YGaZtsHLBpmO1grBOltGvPdq3zILnaFFzMK9xXmnaNavmgqa9AG0JTnEu1/d7rEGWWOMf6y/h8gLuQDGsQN2QcJjwiK9w2etSEomIaI8UTgkZq4DxQxm9RRnSkPF3mtGOsWV76ZmW/UfmvRjnxRXVup9LftOL6WsZatgAUcMHm3VFQLZXp60RvLTvLydbClNAxOG8R7xDRUjokIS6C9vvKvPPm0B3ycgZxevHyXq7cP+lZMC8vlmL8wzraTHCN0pIBy1g74Wt+YITuaqh/FdKXp4EWH6OlbFs/nZFN44U96CMh+3lslLJnojqqN6yhA7KibaUuSksVz6T7Tk9vs7xMXSo60vDad2wwdgyyD/G3nphkiIN24qUBKzN6+cGCkrMCMjelCte2BV69MqJ/gprjuxe9yvKJXTjCuvIkJRtI+BV1+HdsMsvYzx8ufLiZC5VxXlBXCbx0R4kMp14QlhQhwmLxQH1vEaCbCz//IzHjWOWq4bpqaOuIue+pXbCwaJmNg0giS62tLEhaY93Bc50pqzLT2x+CtG8d3UgOQtAJScAmpUpPuDqGS4YUYktugmR3JhpeAZjA2D8r5QK7iBP5fW8hBZcAclt/W7Kf7zbL2sI7GUkVzhGhfDJfoer1rRflTW+UbrZeC3KX0sTNptIbqSIx1wAuwl4z0vWe1k45mVlgM8TGf6rW79ruZYN+GbH0cxxo/aOOucGBsKvqrxyO+BdA4CcpCfFAJCiQDZ/27aXJ9+2stiEB7b329lmvNaUH6PfB29eIIq7YtJ7JHt6KvYQ/WDb5UkGg1dse2+a7sCmt/TgGYkxWQbJHf+y5ajFPBgpwitGYWdsPk/C3ZfzQl9lSe9mP7/KuT5PsuDrJsXjlszw571nNpsiOEKYMJnMmE5nuBpwOiQ4KYoT8zJiH2m6hvW6Y3Gw5OhwzvnpAmLH9esH1NOKvr9g3TS0XYdoGuZNQPEqOdnPcgC8kJMBE77AVQgqjqjQJyVJhatmVJMFvp4jvgYqNBsMMhBwKxvcqrzIwq4u33g8bqRorqIQ3l1Q5Tm/7+VLlzE1ehHZrGGimycOozXxV2iEaV7wS3JcCGGYXkVBljr6l8Hlz83I57LBUP6VkELJzu/7ftiuhAlepQyY/E6bLby5vrL/rpFS7jWlZFThX0H4Hz5HM6Dy+9bnOz+3tilO9hWe5lhjlxiRDbxu7VessqJIpViVW8fd/l1FSOJG1LvFqyqLnBkHfoCoio9ksFW5YSVnYjOmltTNpSuIxjwhNIc5bAGPW/ebCw63oNhsYmytly9/U2V7QH8puRKAyPeyfZ6X8wUUw+9Fx37dxejBhbquOTz0LBZKFWpCqA1edxGVnHEs2egppmsQqtoxm06ZzqZcPzpgfcPCCNOpp6qVi/OWVbOm6zqqaEl/Xlyh7re8AjHUyIyDmD8T0KLMPVGhjQphQghz3OQAV89JriYRSCkfQVx+n2SkyPODGbzIstCW1tbFOBi/vJt5IF/RRe63RzxbiE4pQ2Hzp998uwlzsrOyfMnvp4x4EywUZX70GIYfM/YVGSvyMQvgVdvCZQNht6xw13n5vEpZZHtNLsjCVSGLkvDY9/1XGgV49RyASwgAl5RwWTOGvKOisK+acEUhlocmw58759s2CnbxflPIG3jewglxYygwNmI2LIUqgM8TSuw1imoGRPGSnDXeHf4HEUdiwDWlTOLNOXx+A23uKGwhClvDdWlcrqI5vjRsXxqmKlceawwjlpDAyxS6Klds81VRFkoarZS2kNU5/LOp+9fy3EucNcOcAIgQvCN4gwVndcXBwZTYNTiJpLgmqRITaDLv3LpMugEBs9mmoxBWGlAoxaN4EsFohhMIE7yfImGGuilRKpIGNg2NNve3/ZPRvEvDN1tr5aVnmRkIx6NWXoEvokz06mZVvy4v6qvqrbmxwzJ2KPK66ETwmc66/EtXzITPKy8bL58NgHGdfuJyjT7AVUbA+LuXnWs31r97jl0D4FWT9IbvszdTDJKxETA2Ukoi4u5nX7W59coIwKt02Bsg+bFHTjECZGezzQO7CmEY/23XYAMbR/bEKEXPnJzswYYM5Yx7RwtDvxYERytqpVbBowq9At6jTmyhFkh9Mo/MidVpO8VrwruEk2iNWXJcNjhBJZL6zCmekY2SbKK6naCzqdHa/BycsBfIeOHdiSAMcVt9wVhu7XCFjA0vLQO3s9ulPb+CHv+WaDFiykKy8XrJf5W4/3jR3SAfKf901N6Bd0CAWUC1Z7WK1JMZ9fSA6eyYKs8ncdZh0HlL30MhiKAO1AeSB8UTE/TJ02tFlxzJOer6mMn8Bq6aY/EJT1JHVOMfkKwgJFMVloXMe4cUREDVOqPpiAgpz1MLIShl2trcGntmOozZFx72Haj3l/HefttFgGlOuOpTImLm20D5AEjPFrKoOyGBX4UYFG6MiSmlzRsiDMl4u3Nk15MvclUZ4PMUe/HAx9732CAoMub9Hyt0ynUO8VyKrzk0FCrnLecqf++WLF51jV8VeTkCsHGIy5+7X18ZAthVVM/zXMfw/pXHv+KEG77+zWQbwxKqis9Z1YU0JaknSoVKTdKKDmj7RN8mkjjEedR5Vl3HqmlRMaY3ksH7QWBaOabBMZ965hNnIQBNeCd02uKjEpziXV7YUoboJNd07wReRQq8vlH+VyEDRa72tDfjUmyJkWP64rF8iVx1vjEA89sh5eUdfzb2msdNr2Rnt/EzHH1lsFT+3VGFCYv5MTEqE+fRiwXarqFvSWKlhOIT6iEFBx5a6XApQRL6CDEFcFMIE+pqwnR+nao6wDlr/iN4vPP2nsVkHQNRVE1VlD4dmuJw/YJmwwaM1jiRYsz35QfjdbTDKObqvxC3xK7sFf2rSeUdb1xbsO5aLtZKl1JpRm1rYjJvP+V1RLUgACa/ilEuirF4/zB6njte+ThTf7z/80r4nufVj78bN3C6Kut/fNwvQzmXc+6GHb7K8mq9AHa9zcub2c8XGAFX7iebxfeqFrJjL1fG3vzohJtfN95bTBnOV0sIjC7QUdPGKU0bOF/2PLtYc75uafsE3uPrCb0mTs6WnF6sLVHQ273FXnEJZgHmtXA4d9y5ueDOrWMWtVDTUlEBLU7XCB1O2dSOS+aO37k3+5lDBC8Z491xfd72zzMSvsg83Xi4L/7st0PGvtL4BsuC4kDdzh6GCsjIg9iaqKZ28b5mtjjCh5rZZEa/OKRbLulWFxBblJ4kEXWKOkPbIr0hb14Q53FUiMzwfoavD5gsjqnmB7hqiqglOyWF2Bsy5Uj4bHinGOlTb3kwqCECmlBN+d1zOF8RfAA0h696MwIKxIlY9QHj0q3fDEXw11GOjw74L//RP+Thoyf8/MMP+eT+A04uOoo9V5C5OEIUkyiX1aHJ53lqV3nsY+UfKlMj6TkKfOwx7yYaux1oebc08Kpqgauu72Xz8KoE5y8iY0Nm999X0Zj9nEmAl/Fg2VHyW06SXP351v6yiUU/17kdoQMyeMkywF0DbCsC4ui1oic3ZcHRJM/JUnl23nLRJE4vIudLWLeeLloRtnhHdJ7zZc26d0ymc0Q8MUW6dUNqW2oHi9pRn0ceryMPVw0HdeRatebGoefaPOCrGokJ0Uhwdo2J9FylvIm5X+WJXjFievW47ir+L8sIeN75f7tk5OU+11cawWDDb6OBKO+ByiYBtShM56l9wLsJ3tek6Yx00NCvlsRuTeobNLUkeoxUQ6GyKoPgvNEQuwlOJoib4WvL/Hd1jTqD/VMfAaXyYoo/Kil2rJslJyfPODs7zZ479H1H1zV0XUtMPc4FJvWc+Xwx/JtMpriqxlMWd6t+vpzsOcaEvnoL4FdFblw75n//v/1fc//RU/79X/2YP/mzP+env/iIx6crOmUoVC7195uapSxf4iO65PmrGZZp5PGV0+1myI/j5c9TxuNtioyNiN0kwd1kvfFxxsd7kVxCNvNSMA6DlvBYyf0quuerbAS/vBfA8K9omu3vt7a/QgENIYCrDs7G83fszNGt9Xazd0lGspSp/HDFYH6ViiQ1az+hl8D5uuPxect5BydLeHYR6ZKj7QMdM2JtRC59UryriQgX6lEv1PWC3kFHT6xn9Kn5/7P3X02yJFm2JvYpM+Ik6KFJi3Z1T1+RgQBPeMQ7fjFEIII/gBnMXDJ3brMiyQ6NcGpEGR62modHnDgkM09WZXWXppyMCHdzd3M1Nd1s7bXwKWJsg64Uva152SteXm9w/cjlKXz+dM6nD2c0RuFUh9EJU9K4ZCXRFFN1PTE5LfnIf3nf/fk2Iz85E7fW4n3z/iPHwWmZbOXbfv5VjftO/GjTuvP3dOwxYBJuWj0nGFYu0fXksBqtqVxLNg6qSGqWJO9JcSSlQM5RsAAqoazMtVa66BA4FBal3IH3P6ujlLwCRST5QNd39Lst282KVy+f8e03X7NarXDO4qwl5cjoe7wfyTmhjcU4S1U1zOcLzs8vOT09Y7k4YTab07YzmnaBtQYfPDEmjLGSATks3lK3nRzUfLRO7kzfcWX6vujuY0ZSf41R2X3DWMv5+Sl1W5NzYLdds1mtGIeR3RjxETxHe+chXfrxz+UAgLMGtHRPpZQOwD/9luj/++AB7jWq09qa/lNlLWVh6JuOkddzWI+H2j6CxcrH73/8HofzLy8rGbObzIq8cS7nq9FvAAH/2sYHEAHpG1t8Z8OT5+8i3Kcbm8PP+xyAW7UgZNPU5XpNgL6sFDdQawE2TeehkybmKcpXjNrh9YKRml3IdKPij99u+ebVgG7OSWZOnzOBzJgD0VZEZRjSiA+BhasBRTABqw1JW5IGjEHbipSh3/eYbNF2To6WbQcutMSN5dn1Fa+6QE/Fk4sZp5XF6JGUBiyITGuS76BVJmuJFOXrqQOPwDFU4l7H8t655GDD7kZo6mb6PppdvinBvP3nX9+9cPeE75v8m7U/gf9uvyTfeh91uHPUoc3QaFd69jPJJXKTD5Ml6XnZcoIeS3lBoY1FT9F31qBMadtLaCI6R1LwjN2e9fUVr18+4/XLF6yur1hdvWK/3YBSzGczolYYI6j+GlDags74sGPTrdisXnD18juaZsZyccp8vmQ+X3J6dsH85JTZfC66A2U6clZCjKU02liRSD2K3lJBT9+e3dvzBLf3g+P2sOm5v+Yo62MMpTQYS2Utj85P+MXTh/zLyZzXL18TR6kDSA5oegFHzUrq6J68vwPje5+PFtKfrEsQk4/u+TtG/V1dALe/4+3jbmUOKHwd6gZ9n1IqdLwU52AK26WJW86haG6oiYp48gbKRpplosSogzju4gEcMBXFo1LcHDt9zUkeeGp1/Fh4gz/X+AAHQFL0t79Tvv3rkaG5rwRwvwNw+++MBMqH+VYlkjrq50cBGlJURBxROwYU3ji2UXO9U4xoNj6z2nmeby2hPaOeXzIGzZADwzji8VhtSTkdWP18DFhTUbctzhiMsRirGWIgEXG2IthIN3iaJpNSJAwjjTJY3TL0O/zzjqy2rNaGp2eap2cz5rbBaY9TCZUDkArlayaS3jCe75sndd9j6p4UFrevyX3P/228bXzITN01YHdePjlcR2HwlAlQZZHfJ3oyMWNqo0hMrICSH1MxH71vIqcBkieMA7vthuvXL7h69YL19Wv22w1+9LS1ZTG7FKbAInUs9+sUuWiylo0rZQRMlhJ+HNlut+x3PS94ibZf0cxmLJZL2vmc+eKEk7ML5ssTXN0I2LCU5WJKWGtRShFCuCcyetMBkKm57QT8bdweJokBa13F5ekZZ8sFrbNs8IcM6k3gf0Nsc3hiMsg/8PPfSN8fbUb56Ji7r5nGfRmA+46777FD5P8eZ/B43Uz31xv3GEdzcDRp03y9sfbeEthISU3kjydCoPtAiO8f71/r6s5nf6zxfgdA3xCe3ORXbn5IVF42uKPw9RB9fuhqU8UBKGkefRTtTyMBSSuSqgl5jtczrobIbtC82AVebTOmaaGes6Ynn2isXbDzmnXf048wDgljLVZZVBqxpYYVQkQr2bhMafmo6xqTHeM4ohKkJpFDZLvboVFU1hK0QTc1VfUIrUZebNdcrTd8O4v85rOWLx6fcNbW5LzFGY1RmZwDquACpiSHAu42SrwtA3Dv9KmbEsBxKeCWE/Bn3FM/qG30P8yYtpzbkdG7jFxGHza9jGz8k2qgAPsCadwzdmu22xWrK4n2h36PyiNtrWkqh6IioxjHkRD8gRMopUhKUWq4SqO1xehMzElkTnOAPGKM0BQn71lvV3z73dekrKjblrOLSz757As++fRzlqenGCUR0zHAa+oN/9v4kSNnVIzkUZQkZ1VFW9dU1hb5aOlWumt+7nMwv2+EejcTowpz5t3xPsDej4mOp46UD3n9XaDeh4z7uhQ+4EVQMhKTRPAPcwD+cuO9GADxLI88xzfmp6RH1G2DNRn/g6N491V3MwBKxHSUEppUjg1XOSYBQVuimrEPCzax5bt+5FUfWfsK2gvq2TlJG+xJZKFrhqBQuwHXGIa4JcSMcxYSpBCxhTVwDJ5sKzKZfhzw3nNeCw98XUd2bMgxYyrNfr8npETjKkxdYSoHaYYfBlKqyXnBVVjxX/+0Zu3hH351yaVrifRYMlapm+945AQcJwTeNk9vzQB8gPH/c2am/oqyYO8dP8aA3d48ASZOiNtZtYlQalrtOatD2pKUyCnI/agUKUT63Ra/f8Vm9Zzrq9d0uy3eDygyTkeiTqJuGBP94PHeE0IgpYQxrkRz4viSMqqyaO0QzQzJCIx+RIckWQIyicDoPcPoefHyOf/yb//Cv/zbv/CrX/+W3/zd3/Pg8iFtcwLccKTfl+VI6U3q1I+RNv0YjsbP1VlRgFManxOEQG0ss7qmrhxG65v2Tt5u9D/Gd/shhvjYsL6NmOf9vfTvj/6n8sB99MN33unecz0+5w/6flBavW9/h3s/8z3vd1M+OT7Pn358kBjQTSRf6tS3zuzNmv/06PFhb2RV1PEkSy1pwhMolcTxyDcQgIjIn3pd0zPjOta86h3Pe8WVz3jdoPWSlFt0TGQMIWTGMWCtwTmNTh6VRkxWxFE2SGX17RqsUvgQDv/s6AGo60Z04vsBV1Vy1tagG4tqNDHAfoiopDibn9E2S3z3Ld9uOpbXAXvZMLcWl/fUKLQaC5Xwzfx8SKnkvmPuzv9bcQA/YLzhqN2zh7x5bf99OQAfOqZVdAMVuE0sdGPg798gbq5dyaplEShSKQnPe46E4NnvtmyuXtNtn7PfvCKEEU3E93v6ocNqQ+UsWithjyMR05SKVxhjAUWKEe8jPnvi0BNCJMZIjCVtmnXRPreigKgio/eMPuDHwDh6Xr14gfeBruv5zW9/x5ef/4a2XdxJ39632f+wKPQ/9EgRlRLERFVZZm2D0RpjJmDazX45jeMe/B867hqvKZWv9O3e/7u98cfX/S4Y8H2f9SYnwPvLBHcfuysSNEXqE1jx7muOuwve9h2OXnBo/70LcvxrWqvv5QHQR1EqFENVnpPY/+jwo/v6e93e5eJqpQoXujoI9aQM2TrQjpAtHTOuh4rnO8OrwbBRM5iJHvpscYHKlmFzzTh0hJhBa6wx5LAj+R2WEZ21cLI7BxmqqsJSobT0PacsqcymaVBKjl0sFngf6PuR4KVHG61pbYtqDCYq0l6x3XZgYXl6wtn5r0jjNd9sOnTleLRsOasaVN6i8xarBjSRY8DOrWm541RN8/ohxvVuxP8xDfJ9Bv/uY39F98BHHPfVutWdv4//TUPupHz4f+HhS9LPb5UYf99v2Vy/ZnX1mv12RRx3RN+ji9O632/p+56mbjBG0pH7fmS76xj6Aa0dVVXjx8g4eoZhxPsgNNg6S0dM4TaX9i2hRq6qiqpyGCdKiM7agyphQnH1+orttqPrBrRq+OzTL5jP57c2wh8S8f+5N9IPKc38pYYCiIkcE5mI1kr67zWHfznyk6f6jo28iGjdr4j3QwzhwbFQ6t5U+vTccYR/12DfRzZ0F7uQjxgtP+Qc7wWjHmN7jubkR63rO/u1urt1HB3wsdboux2AKWLJNw8cn5hSN08fHj8yBtNjb5+SfHAkRJNc6pv6aN/MGJKqSbrB54p9nHE9OrZ5hndLMA0+BsIYuKgrMe4bea02UNUOH0a6fgs60c7qA2Cmco4MVHVDBIbRE5Lk4auqYr5Y4MdIjImzs3NhPzOW1fU1o/fSyKctSjuMNcyWC4bBM8TI1W5kNjulaVug51nXMeREXyce1A3GZoxSgEfljCaiVPqecdFfZtyXFfiPGPG/MfJkwKe/77rIZai7DsBt7AwInW9OCaOE1S+OHfv1a65efMN+cw0xYI0oA272W7wPKAzONaSs2O1FebDvBmKCup4DiqEXDoBxCHgfJRtgFCFKZD+OI957YgwHtLUxhrpuMFaEkGJSKDWS8sgYhXjID55vvv6W5eJfaJs51tpDpHcs6yrf8cM3r7sdAT/VuC9S/TmhuXPO+OCFU0RrlFEYK5kZDOIApDdf81MMCdYEQPp95uhtBvK+x+8a6JQKVXYBl04R/d1r9SEdB8dOwTTuOg7HKoDfBxtw33u//0VvyfSqO8eUsmDONyqIP3a8twSQkxj9YyN/HIXm47/vi1gnA39v3nr6mQ+bpc75Js2gNOiKkCx9UnRYdsHSxZqgF2S9wCfY9TtU9oR+S6UdIQZiyvgUwBn64On8gHEOYyxp8DinsNqgjKFyFZGM0hafIllB3TSAou8HIJNSxhrLYrEkxshuv2fWzqibOUYbYspYl2hnc3zXs+8j3WDJxqCwLC/P2Ks9L3Yv0D4zW1Y0NqGVBiIpazTj99oc/xLjQ7MP/5FHPkQHk/M8OQLTz3eVAcpGFhOajFMQwki/XbG5esF+9Qrf7yBF9iEyRqnL+9HjQySmLOs/JonmgzjWKQVyAu8jKSqgUPlmaS9MBWE+lQjqusY5S1VXVFWFMRqSEgyA9/Sjpx88Y0ho4zDW0u06nj17zpMnrzg9PWU+nx/ogm9vth+6jv48xv/48971919y5JzwqThlprRVakVSBRzNraD03vExHBpJ/WuUlgwAHxD1qmIA3tYFMF3j49LAXeyIdKncaFpoow/1/sN5HTkNmaLfcU+6Uh+dw931dZwtmP5+V8ni7jgGAt7+7LslDXX0eH7jut1fRr3JMnwssOG7QYBK0NyTcT/Y66Of6uiPW4b+zmI8lt69/SHTD43GYohoFUBlgtIk07ALFWtvGdwJe33CoC1DruhCpBs95MRyPscoGIeOMUX6GNnvO2ZaCUOVtoDGx0zKirZuiEoJ0r+u0EDjKnb7Dh8yRjm8FwBUVVUEH1FKIqG2nQu2wDnImhgV+64jxYizDjszxGGk6yPZGHb9wFg7TtsZYZjDvmemoDltZH4ZQWcBft30pPyocV/54Kcad0sASk1qiD//8UM3+behnEs8Uh44PMOx8Z8og25ulRsSoam32WogZfwwsHr9khfffsX1q28Zd2t0juScGGMmogkh04+RYfSkeKP/FkMm+Fg00kWFMCZQmLIZG1LMJd2f0CpTVw7nbBF5MbjKiYMbAn0/0PcDY4hicBKonInFAdHW8PrVc54//5ZHDy+YzxsURhyLlA9BxHHt8DBFSh3N0Dtyhn+mTMDPbyhUUqA0KWZCTKIwmYWA53C75cPhd1/+vccdd0g6Ug77vVxINcVqd/5NNk1l4SScyIFuVv5RxuXwERl983Hlh3yu0oIDiDlAziitJYOqIcdCulXgXNP7ZSU8FIWC40ZD5p7EnDp8pxsDfV/9/65RP/TAqcnBunHwD27/nbkXf+JOCXBiwz3at29nQVT5DPmC95Vdf8h4pwOQQejPj6L76fGDU1ACdjI3suMcHV8Wgr57w5vjvxWgUckVEqBI0pmoNZ2qWHPCtVnSqQs2ecbWRPbB0/uOnFLRVHfEaFjvdkJQocDVFU3dkFPm/OSc6D3BB3DQzFpiSqjKoSorC1mXfuukyV6RQpZjtKYfB2kRRAtTqzZkHzEKhjjQ7TeonAt1q0Fbxb7fketAH0e2z16ym7U8sDO6/Q4TdlireXBWYxgxOmMLKcFxYuR4Km8yLR/icb9/fKzNTm4WQbFPb/kfrQ3wxiNX924whwcU5HKjyPYx1dAkygvB44xFxUQYB1bXVzz75lueffsN3e6aHAaszpATY1KEwgEbE8SQGMfxZrNNiaZyZCetfjllYiyEJUkMiNw7Gas1WrdMAD3ZtDMqRWIM9H3PMAaU1tROkzIE0TfGe0+OmRAV3U6zvn7GbvOU/PAMXcmNnnIhZ8mICqeSz7jZ3NRhlnLpzLlbW/2pSVa+T134zz8UKmpy0qQge9M4BoIv0qX3v+TWeJtv8KHjIJuuhPZXT9E4pWNFHXgvIRc+ixzl2hste6c6MpFZ0vq5aE5MTqBgwCjZjSItXLhTUlm3RhmEVQWUQQIoLesyxSyg1SwqmyLhIfel1gLeU8WCTsDzyUUX1o0bSeW7IMq7WQaU4OQ0Cp2V3Iilhf2wVN/YC+/L/t02+vev83S4X5TOb/Z8/oDxQWqAb4T+dx6/+/Ab6YzJY+FmUmTy1JG3mNHlkmaViUrjlWOXDL2ZEewpXWjogiIpK9K7Bd0cfCCGyH7fk7Pi9OIMvd1SVxWnJyfEELm4uGC/27Fercg5087mUq9VkGKAJHzqThvOT07R2uFDYNh3pBCZtS12sQAl+tfWGFKKdPs9fehI3gunQJHATAp2+x3j0KOdISvYbPe4qkLvYdx1WK2o6obTpkIfA2mmbEqZt2OHQE2//Mjxcev2t73X/+hDod64B+DtSR251omUIlYbjNZsVmtePn/G13/6A8+ffUO3WZHigEoelSMxBEJWuLrBGEOMgRQCVoGrDNbIVjyl8GNM7HY7QkyEMRBjRqVE1gqjFPmoTp/LuYSUieWiajKzpiobq5D9hJRw1uCtJpR2qJQC169f8vzZNzy4vMAojXP1nZTubTY1+Vz5Y8qR3Mqk/JnHz6n2Pw1VSjMxx5KSlujblY6OQ8o4H6+zOxv0D902bkJcwRwU523KVh1Hz9O5ilXNokOpcgnK1OF9JgOay7lrLUZfOA0glywXShwAk3MBpKeCQUgQIYaALvcMKaEo5D9RygSTW3nAoRSHeTL2YpduMq+6bLoKfThP+Xr31/Xle5R7RCuM0XLeR6XzD1nGx4b/bY7o1Cp8uNb3Bhrfb3yQGNDxz+l3dbS28q3H1dHtza2D3n2+EVQSL1MZRuXoVMs6VGxVxVjN8dSkGCVuUqL6F0IswAh5/4cPHuANVE3NxcUFpyen+GFkv9+x3WzwITCfz2mblhgDMXqGKD3WpExlNU09Q2HY7qTWultfE8cBZ1RBZkNTOa6vd2w2K5TJzOdzIYNQoqseCcQk6dfWNMzaBj94Nr0n9YlVF0lhwOrEP37Z0jhQaQAdD96jKgHTIXj8+e1LwO1N/Od6jj+vcWzepMNe2vzAOE3wnhcvnvF//Lf/wld/+iP9foeKAaMl6kphJEYP2lCNIvebYqRpHMvFjFlbUVdWMlbGYKwt/f6BECIDkkKWAEwYBye1yoxskkZbqZWqCRsgHQHeB3yIxdFwgCamREwSFfYhsd+s+fbrr7g4O0dlODk9w9Ulu5AVWR1lS6ak8K11cyfl+LchgYcxxCi1b2usdGc4dyv1/lPmLqQebg4OSMpTz8q0T0lkbSYDkWQvT1khfV36zoXWgBh2rZJE0SoXByBBjuX9QOWIzqX1LmcMmpQTJon8uklJsrXKFkr5jCltuCkXYDmZnERHRh/S7qk4nFMau0z2EcDxOPs0ORLHILycpxKHLvNzkwXIb1rDDxr3gVLfvB4/vgzwXiKg6YPu/Vkm8e6tetcIvDUDcHzAdAm0xmvHoGfsWNCbE3rm7KJl6zP9KKCnEBM+BGJK1K5mHEdqLax9q36PqR0oxfX1NVevXnF9dU3XdcQQsNaSY8aPQpyCSjijUTlhlENnMcKVVSyaitXYMe63bLRsgtrIppeShxTQWaFjwhXkc06RFAOKjK0sbV3hEOrfbTcy9gkbGuKrHhPWXNbwiyeWSlsODIHkg0d/mM7pbvsI46cw1McL8m+OwNvG8f2SSwktHzz6MI68evmKP/zx93z99VesViuIAZMzQQkbXBxHWR86i9PqDG3jOF3OWS5nNJXBWEVduVLW0niVia1jHEDjyucrKQnkTNb2jrCJbMLDOAoTJmCMpnFSOgshlKhfkbQp90M+RIe79YpvvvojKQZGP3J+cYmrarQ24gRA2WSPqcY4nNffxj1D63I9ZeSUiSGK/sItIYCfZkwGUBXHcKroZ25KYAYO5yjkbpp0SKzrG5tyeCVi6JM6ZBNk30toEs46MApixnKTKTJGykS1EU4W70eRRrZglS7lrST3SZ7YV2+M/8SzkbKU01TOBzvEUanibofC7exQPgAvBcR4xFfwPSzz2wz8sfGfDrnJABzInn/UeH8J4F1DwYTeP5zUPc77TTr7JjV621tVZJ1Fzco4BjVjr0/p1BkdS3ZpzmpUbDtPt9vR9x1ZK2LKGGPJKIZ+REXY7/d4A2rQ9PuO1dUV69UaP3rqqkIp2KzW6CzpJuc0deWgramritoZjBZ0vm0qGnvKrK54/fo1w25LbmqJeHJCqcSibUjeE/peRH+cE5pW7zEKFrOW1jnS0GFSJEbPmJIoEnYW1Q08mm+5WJzx4KRCqYSQJMUD0cTNTTP5lB9nfB8j/b7o/m+G//1jWvPHjnVOkZwiyhhijGzWK/70pz/wx9//G9vtmhQ9aWLVI2MyAjS1BmsVbVMxnzW0s5rFrKZuDNaA1hkn2WHpCMgRQ0TlQFtJO+vE2x9TRtsKa6SdVbpaIuM4YsjUpRXQWUMGxtETjGyywp1hpFw2juBFXlinwMtn37LbblivV/ziV7/m8sFD6mZ2SAVLlmtCTU+G7U19+J9nTf7POw7I9oP4jrSJCgZKFOzUYT/+icYxJoMbOuAYJ/HhUhooDq2A7gxKZTjQB+cSxScU0umiUkTnhDWG1tU0dcV8MWN5esridIF1jhS8KGeWNH9Tt5yfn5MzbLc7Xrx8yYuXr7ne7IXQKsVCtKaIKSKJei0ZBm1QTFH8tM9KZkFNDHTH855vmBRv4VBuKloCUuSIDKg4Mzm9PwdwvHfeF/HfBVjf/PG9rt69470gwOkEJqfmvg3+zZqZgMIOb3LHW7zv9UlrehRBNYzmhE5f0HPK9d6w8jCgGENmDIHNfkdCcXJySl1VxCGIWl830FQVMUYGP9J1Ha9fvsSPUp8ftfCSpxDIUeqXlTXEtqKxiqppMCR8v2fWzlkuT6lcxWq9Znt1RT8ODH0nm2nRDIg5k4MHFEErJt0zpzVKW2pjyT7AGLAqodJA8AOhT+Rg2QTFn54Fvvw08OC8xugISoQ9b9WP8lF55SNceIWUGI7e/k798Oa4w3VXb0kzfsTMxH+MUcB/SertRssG3u13fPftN/zxD7/n1atX7HY7UgzkGIV0qnE01lEZTdvUtJVjsWhomxpjFM6Ac5r5rEarRIgjKRXq4eDRKdM6izFONkGlSUlEgJQRbXelNVopQsigNclasp7SzqWvPwt41jqHqxustey7gdVqjfcblErUVqFyZH39mq7v0EbjKstFZVHKoK0pRgzAlCiKgyH5SQ3ZX+HIFFVxuGOMKARqMFH0/jkcpkwW6nYUWUNOJd2ugBLzl5AblQpQsBh+jaii5uIEGCKttTw4v+CLzz7li88/55NPnnD56AFVU+HqGqsVYZwcAEXTzjhdnoKS4O9PX33Nf/mv/40//OlrNtst69WK9XotHS5GnBRtFDlK6VXWf8G75OKUaMlUpJQFWMhNdH6XaEiMvBj4gy6CusmSpAkRfWT7bs3fncj+rgm97xK+kVlX9+7G32t8cAngbZHd7WPuP6HjhXlYnPootaIUQRlGO6fLMza+oVMzrr3j5SrQkbCNJvhAPw5sdjva+YJmNpNWqThgULRNQ2Udvt8y7jt2qxVpDJiUySkwxkEuGEpQ0MOAbivcosEoxdh37L0nJ5g3DU6DjpFuvcb3Hdl7trstGEUzm6G1Ep3oJAQ+KUQCftrJ0Drjd3tMVtQolMu41GFCR4yGFGAIihebxLNN4Ne+QucEKqJ10WE4nvujEtVPMtT9b33X+bt7zN/s/4eOKaMjEUcMwihpjGEcBl6+fMEf//gHnj97Rtd1gq7PEaNEv6Jt3WFdLuYzTmYNi1lD5Qw5J6yGpqlYzFuGYY8fenJS5BBJPmJQ2MphtPBhaCV8mzkrsO4mJYpURjXiyGalMFrWs8oK7aT+3LRzqrompkyOkbGytJVjDFJSmy1a9oNn0+34/e//tTDWKc4vL7FGcAk5C6g2/20VvXNMuT+fJLqNMR6UFqc94iPYg/eew7RnT0bzkJE4IJRvn4I6wrhI80rEaCXOpILKVpzNan712ef8w9//jl988QVPnzymnbXUTU1WGVdX1HUtWVkjuBbnqtIRAEYbPnvyiC8//YT1es319Ypvv/uWr776it1uh1KKrutIKXF9veb5q5WowoYo5emcSzuBgiwZKTm/2w7V20iMpvGhftd9af23vfYW3u5O+D+p9P4Yf++9VMDvMv7TGR7qNtMZHy+B4xCzPJXzVDORdEkCPIa9anjdGb696tmkHbuQ2Y6GqBUtnug9u10H2nB+cUHTNAxdf3j/nDKbzYbV+ortfku322GNxVrJCvR+xI8jOWWccygl9SKjlBh4a6ic49Hjxzx+9BSVNC+fv+D1i+fsNmu6kgFQxlDV7kCoAokweoaxF3GhJDeHM5baVZwuTpg3LZg9izqRQ2JMhn7MxKzpcuL1EPFJerO1dmSGW5gJdTN9H2XcXK+j6/OWY24Z/3sW3McAo/zHGULxOyGcFYoYAqvrK7795mu+/eYbtpu1sPGliMoJbcFVmqo2NK2mcZblsuJs0bJoauH8V5qmrqQ7JXqGbiSOURD7Pkprk9LobLDaYrS9EQUClNGSKi2tUUY5nNaEEqkrhYAQlSKjqKqaumnIStN1PU7D6XKOj5GX19cM3Z7FcsFi0RJyZNdt+bd/+2ds5XC1Y6mVlAq0JqfE7R7iv427I4OUa2IkpIQPnnEYib6IOU3l659yHNXD5ZopifDvGMpbGYgU0SlKwJcVRiWMyjTGcfnoAb/55S/54sljfvnJp3z+yaeczOdUlZMMck4YZ+VnjrRNJeBUreV5Y1BKEUKkrRy/+OQJ8fFD+q5j+4sv2O3+kXEcAei6jr7vef7yFX/89jnfPnvON8+e8fp6zbbriUkRfEJbi7U1IJmzd2sYqANe6/tmXT7U+N/8fnfDBq00Sf04RsAPxgC8bZNXd455Y+TjBaLIBXUp2aEiNZohKcc+Wl7vIte95tV+YEgW7eYM/UDOiZA8u92eet7StC0+RkJIQnYyBq5fXdNtt4xjR/AjMUTaZY0zlm70+G7Aj6MQnZBpmppZW9PWNWenC5aLGaenZzx59Jiz0wuST6TR821dE8aBMAxYJV/K5AJ4yanUSwdpJdQWlTIqJkyVsNZxvlhwvlgQkkKrJYuqZl9pXow7ugBBZa62I3vfclKp0sJ103FwmOkpQv+IgdKH1O7fyADck676a6n9fx/u75/yHHJK0qaUYex7rq5f8+rlS/bbDcGHm80UMcjWKIzOOKdZnrScni5YNDWLusEag0I4+mOMYvxDQCstRp+MygLAMloXDIHFGosqZbGsM7q0SImEryUVsF+MwjUnkZshZbDWYIwiJCEQairHbNbiY2K339P7kW6/p5rNca5ipjU+Br777hvmywXGWBbLJeSIVlYCMCTD8LHn+t/DyDmTorSXERPBB8bgCTGSUp6Sjm958Y/+8KP6/835qFwArXdu/kOdPOeSARCGV5UVmsSynfHLLz/jH373O377q1/x8GTJSdOyaFucNYVfQGr1JmVQGadKn32aiK6kjIDSqJSQtviMSp7KKE7mNYvWkbMAJUOUdvGnTx7x+S++FMn2Zy/4wx+/5uvvvuPl1ZrXVyv6MUinTdnnU0pHugOlLWsi7fnAiX47yO+2I3DfuN8JmD59csh+QgfA3E0/c/R5OYPOB5amw9P5wI8kzyUx/gFR9NMqYklyobNC6QatZsShZoiazWjYeIurqoMxDGPPar3B94nLyxP6rSflgd16w26zYdhs6bY7Qj+gc6Kpa2prMRnSONBv1qRxwGlF7RRnJw0PHlzw8MFDHj9+yNMnT5i1LTlljNbyHk3Nr37xJVUBXD1//h3ee+q2PhBNDN4TC9WU0RqVMmEYIScqA5fzisuFYdkmnDlhYQ2bZmC7iPQ5Ea92kDWbdeKb68jJskLnDTMttVmyIuKkkEa41/h/SP3ofeMu0OR2aisf3fhv//z3LeZ/z+M+2dt7x0RHNqG2VGbX7Xj+7BnXV6/wYUCpRDbiIpuUaBtH5RSNNdTG0LqGWd1SGVMyWCWTlhLDMDD6gNIS6ccYISeckQ2scobKapzVWCuUrikrUp56yina5ooQI+MwEnSQKMyW1qsC5vJhIMWMNRlr5X5Ncc7Qn/DyesN61aE7qGYz2tkJVfKM3Y7n335FW1dU1lJVjZxDSoBFGxHoCjkdIrDvI7Ry75T/u1iQCkcFfoA+kX2mHz1DioSciKk4CT/hGeSC9J8Y/XTKZB+lzz9HYrlWlXU4beSaaqTunwK10VycLPjtL7/k//I//8/88ssvmc9m1CpSW8ECqKTF5VUKFTPGKKy2qKTwYyhtdrL+JAUu55Qmp8FCzIkcA8aKwxpDwo+lXdAYmtkZjx+c88vPnvKffvtLXrx+zb/+2+/5l3/7Pf/6+9+z23d0GcYkn+2zoHZCAoOW0mxKhw6AY4bDTLwpk6QJHHnP1Sy3f0q3902tbxyDm+V+lzr48DDaiJ24qwPxoeO9GIB333STVzDVSKZXyWNKHaeuJxrJm5KB1oqsDSEbfLREWsYIXcigayKKMYwEP9CPAz4EThanNK6l2/V0nRD7qCiI5X6/F6lMLb2jVkHyI96PKBJtI/3R5+dnXD644Omnj/n88895cHnJ2ckptauEZ6AIT4CmchWff/EprjK8ePmUzXpdspUZ7z2b3Y4QxTvPPpNCYug7iIHT5YyHl+fMGofVicrWLGYn4EY0iYcqol0krFYEH7jeeIbYsLQGo/w0ixyj9d6Kxbj1xMfd8G7Xwd513F9XNuBd46cxGoqJE3t69xACV9dXPHv2Ldvt5ubzFbKxIpurJlMZQ6WNlNKTKmnfmzDikFlAU1c1IQT8IC182hisldq9c6Z0EUhPd0YJml9JX7YqqP+cMt452cjKJp+KUQ4hkr2nSNChlaWymvmsYT5rWe8GtoPH+44+ZhYKrNNoDd1+z6uXLzlZnlKdVRJETAWuUtdN6U2Fuf/IYxxHxiFAhDBINJtSJmYImSPdqZsb8KPehiUVnpNkiyhrTUFJhaoDIFEpddNqh2SxrIKnDy/5+9/8it/9+pd88eknnMxnaCVGyNwqNU9CQ3qqfUiqm1ycQt5wCuV+FStorQGcZAvKmlVaURXCIB0ha0VtKxp3ynxecbZs+eTxJSdzxx//9BV/eP4KHwMkdcik3YD55PsdbG5xAO7fM26ogt+c0u+/x9wOtG8e+6G71Y9rA7x33DEUCibCBaVKG0bhM05AxBBNSzIn+DBjP/YkZTFVS4hJZH19T8gJV9c01Yyh6+j7jq7bE4aRedMQ6cghYZSQ9Fit6Ls9SsGsqbl4/Ij5fEZlHSenJzx88oDLB5ecnJ7SzmbYygnS2dqSboukCDFH6qbhy1/8gs8+/5T1esW+2xNjwHvPvtvjQ5Boyyf84PFDz9j3WJNp25qsBTGblBAUzZwDFbm0oHNmExJ5t2KzHQixBWXFq8uyUFXxot6GA7jrpP1YJPDboq23E1Kodz7/cxv3nefdjMcPEdt4N41nOaYAa4SEJ9N1Ha9eveLq6lrqlTkLQdVE1VuAPlYbamuptMbEhArSbqfMBALLaJREXlpjtCEoLfeENgU45XDOFZ5/K5wWWvpWRNzFHOZGygBScsjFqwsxkEodmjyIs1wMg1YKYwyVU7RNTdPU6L1n7AeiH4g5MJu3WCsYcWuvubhYs1ycUVtVPq9YgVhqEX8bh7Fab7B1xfWrl/gQ8GOgH0bhY4iZlI6dgJ9gFKzIRB8NSuISo1DGCHVzqUOITxqlpENEqczD81P+4be/5ne//gWPLy+ZVRadA05bMcrGoMyRtrHWoA1ZKUIBmd7FiRzLB08seVPJ2VpH8iNj0cLQasKcKLSWtL40nxo0Ffb8hFlToYmcLGaM/BNfffeSbT+QlUVbw8R7n+XrH03NVB9/Wx7/bVN60y33Q7fOn7wE8EOiueNasQLx8HPGFEpIXXiMA5pR1/RmzmBOGNKC3Zjw2ZK0IwaJ/LXKRcmvQmXYrFYM3rPZrdFKkUJg2PdYbWicwWpNzhHnDA8uL/n8s0/57JNPCgNgzdn5Ga5xUCh9jTF4H8g6y99al6h7Ep2wSLuIpp3PBZiCiKhccAEqM2vmOOsY+4GxH+i7HZvVFbvdmpgCUVnGEGiMw1UWlxTL+QKdQfUjXfDs9ju8N6RsSVmJgMIBXVtuvA8sAfyYKFyVz7sx7B/2fn8tkf9dB+A+B+rPMVIW0OqzZ8+4vr4mBY/RmgSEKNG1MYq6qmiripmraK3DZTAxY7MSZD83jkdlLMpJrZ+qonIVIcaDrO+x8Z8ke3POZJVL1F/aopR0ykhKsrCgFSdAAdk5tBLgYIpFVjiDNYa6qWjaCm0gxpFtP9L7gRiX1E2F8YGYFGcvX3N+/pCqnpW9XTYMfaek+LcBIUWGGJmfLNlurrlerej2XSFy+jA1wB88JF17y+AqK2Q5yujS837ETSAM/NLbT+Ty7ITf/fpLfvXlZ1yczKltRsUePGijsMaKA6DkX05H9W01aUZwk4Uo928s6/q4Lz/nSTo4E2M+yAhPqXqyZBum10WFlB2sxraOX33+lLYyxNJY+advnrPtPShNVu5wb6hSolIlMyAluHumbpq/t05t/hHGnzJPP+z18EEZgMkA3Z9ifntKevolHy6AVrLRaCQKSNrhTctez7jqLS+3ib03jMmgs8J7jw+etqmElzx6CJ5hGOjHkf12x3KxKDdCZDGf01SWvtvibMUnT5/wxRef8+TxYx49fMBiPqeuK+q6Aq0LiFCkg1Npy6KWLEBTyQaXUsKHkb7vCGOUVFItyOsYo4BWlJCzGCOOgtKKurEYB8qCH3tIEMdAAmnp0hanBTcQth1xu2cY9/QjxCyer1FTTa84Au+6Rh913KSUP2T8WC/2zzne9Z3uyoL+FJ8hwUKeyv90fcd6vWYYB1RKRDLjMBC8xxmpp87qmkXbMm8aZpXDKkWlNFabg3bAdL7WGWZNK8YcSn04HaIkiY7swRmYIgilhOlvojidjo8xllomqMLDrlClJUvun6CCbIAxEZEUbF07mtbhOgN9ou97tNYM44i2lmFMvH59zXaz5eT0HF3QzAf66++xpv9aMk8/Zoyj5w/ffMMvHwijIihiiIBCGUUOH28Obs1nCTCP8mPA5KRJiSrlkoGAW8Q3OSdcpXj88IJPnjxmMWuwSngkDBmroTLC6idiQkV5rqQ8Sy4ZpcyhaH4323gD0LtJOecibZ2SgMyNudErmIojqgDRBcwYsWSySlQ6c7Zo+e0vPmO/7wij59tXa/qQiQTIEAWcRc6iX4CS783hfG/P1t2d5F0Z07cv5SNuncNrbxz/H+pIfJgYEPAunfpbe+V9v0+ZgMlRS5CVwuPo1Zx1anmxh+fXPXuv6ENi2F+zWb2kNglSYLPvca7FKcvoPfv9rhCXKEjw+PFjLAo/DCxPz/js80/53e/+jvPTE5aLOfNi/I0WSWByKtrpiXEYhEFwGGmahnk7o66kpUprjXMGU7i3r6+vgYwxGldJStUafUDiNnUDtWSw2nnLbDGTcsW+J+w7Ku2o2wZnNH1KKGWYz07YVVckb9h3mZAsyWpMMf9T3/jbaknTJv59FsCPyex87Pf9c453iXoc//whDsCHdhhkbiLsoR8KRXWEJAIofdejVKZyFcu25XQx58H5GRcnC1ptIUaayol0b1XhrNzGSks0VdUVzjlyhli246mskXMuIL+j9GkqLYllI1Na9CwyNw5AShnjI96Ekgko0Zd8Kdlctdzo7axm7lvm24bVbg9bUQzc7xVmGDHOkbJivV6z3W4Zh4F6JqU38kSn+r2n/0ddu5/7CDHyervll48fYpwlhogfhRI9pY8iDHf/KHZmiryPUfFJpZISV2TMAcdhkMet0VxcnPLgwTlnJ0saZ4tyXsZqhTMaZwyqdKNMhl8raYeenAutbnryjwF291P0FoehnPjERDiVT8XoFxxB2VON0mStSDGjyTgN5/OWL548YLfZMo6B767WhCQRPymTsrSuKmUPVvsW0+0hKzEJ+HxAeVC9ywF4c++60ScofDQ/YHwQBuC9N+TR88fHHV6Xpr+LO5kBDFm3DMx4uTd8t/JsewhRRHg2+w2hW9MsWrrdSI6KqBIxDQzjSFaKR0+esN/vaOqah48f4fc9vTV88tkn/N3f/ZaHDx8ya1uapmLW1MIrTSJ4T0iSyqzruohsSGvNdrul73sW8wWztsU5g49j2TgVZxfnJfoPhCC6BEMfyEnjnMgPC8BKixJb4wjBM44Bv+9QPoCGMYOOCaMdXT3HuRl9b9jsPDE1CA4gcMBP5LfrS0/e37SAPnT/+5j75PHnf+z3/tjjbTfhn80JKBF3iFFQ++N4qKNHgXNTW8uibjhpZzw4PePB2TkXy7loSvggEXzlhNjHuaJENgH9aqrKMe1GkwMQj2r2t2qnJWWqigyvYGFkQ49Gav4xRZQKUq8F1DgSAYwpr1UorfFksIrZrGWxnDHf76k2ln0vmgIog4sZW9WMo2ccfWkznEY6nPf3meu3/f7vZWQy19sNQ4jsu5591zOMXgKPj0AIczzejSEqMrs5C1BzAo4CSmmcrdDZo5JnMZ/x9MkTzs8vqOv6sA6nKHnSnpjE3ZQ26FIGAFHViymRiGhtsNzck1NP/rFTID91KVsZUKl0FNw4AFIDcGU/zQUzIM6wVQanDU5rKgWXJwt++fkn9D6y3nX0246IRk0qg5MzInWHwzmIGmy5vz54zm9+v28PP2AcjubwY4wPwgD8KOM//V4ugQJhjcKSqOijY9UpNn0mJElZej8Sxx5NJPqBMEZmi3Oirth3O8YYOH9wyfnDS3glrH3aWubLJU8+eco//Kd/5PGjR1hjmM1mtG1N5WxJ6QfMOFKlQCYVGk3F2ekZfhzp+wFrDE1T2AGHntX6mu12i1Iwn8+o6wrvR7bbLWEcST5iTYWrasYmUjmHcwZlMjGLb2aqCqMUavRy46RMNpkcA9ZWGFuRkmW786Q8R/TbywI/zGExstwHBHzTCL/vun7MMZ3Xz9juv3PcS2LyE33OxIMxAepu+MXzIUJvneNsPufy5JTL0zMW8xmVtVjFAbeiKwtWS0uh0ShrJJJRmZAnlTWh9j3+fncBjrLGDBPVtEKJsMqU3o1Zas0l6rIl4+C9J4Rw8x5KkVMEJR0Gs1nD8mTOYrtnux8ZhyiyxQnc6AlBetiNKbyralpBmftX+dvn9Pjnv8cMQIyJ/+V//8/8337zazKKYRjFeSrtaAIA/Hjf++AElE1nMmxG68L+l4Vat7SQ5lTofcvrKms5Oz3l9PSMpmlBKWnPQ6OMEZppMjFlAbIep4sRQOqUVQVxLtUdHMJNBDw9RrmvyjpImZSkhRUmrkldJHsRkq0MWkeMTiRTWgpjhOipteLiZMmnTx7xerVlP37HdvCSkeBmD5XM1e121cO/Q0HkXXN9f/B0exnn4mPktzz/w8Z7mQDvnuhbD7uT5r85yWmWjhGcGrTDZ0sXDV2w+JxAJyyKpraE0aC0w1lDbWva2Zy9lwUxWyz49W9/gy3MfUKPqnl4fsHnn37Gk08/paprKueoaiegQDI+xiJcobGuorLSf5xTorINbdNyciKtLOMwsF6v2KxXbLdruq4jBM/Q95ycLiHnwsQVSGNiO64Zx4AxVkoDlcU4QZwaZ3CVpdGGGg7Rli6Lt6oq5osT/H5B17+iHyK5nVCxcLwRZnU010fzP2UG/qIZgKMz/Tltwe8D/b3N+H8fg/L9HIibmRJAnsVaQw4Clq0rx8nsJvI/OzmhqdxBqESbIuZjjSCwdSkSKUVCyHlS8EztWProaqhyjtMjOeUDcyVZgFWTE1AOJsSIj56sp7SrujEKxqCKQ5FLVJgQ52PWNpydnLDe9KxWpZsnCDgresm4Te1sNzNSnIC3lBzfdo3elwH4a3cKMrDabhlCYN/tGcaBECQDEJM0TqSj731vFP+OKVD3/XW0l09ZIWOl7JpVOqDhdanf5yit0ZZI3TacnpxwcnJC07RoU1QgcxY1yZSFf0KB06aAAG+n+gVgJ+VWY8yN46tvY1VuOQFM5YHCmRQh51hS8YL7F51AWWcx58I5QfmnZE6L/HZbWy7OT3n65CGvNhu6V9clcyBCWHAjymS0Lpw4R//yh2n2HRv1+7Kox23Yt/f46eCbX7/P+KASwN308rQHHMAhRyesAPSb8p5Zlf5RBTlbQnZE1TJGSzcm+hhJutRkdOFiNhWqrjHGMSJUvtoYHj18yMPLh+QcaV1FU3Sxnzx5zPnDS3SlMZXCVhqlhbBk6HvGfkABTV1jlMZ7qU2mEAnWEn0gjJ5xGNhttlxfv2KzvSYlSUEFH8jeYxAgn0VTuZaQAuvVjtfX1/R+ACVsflYLh3rbVsxPWk4Wc+Z1izWGrDSx1KFcpannFtdYep+43kUens3RBDR9kapEkKlTG+Xx9blzDabFfOsK3OTAbjtqd94jHx//1gVx+/XTa3L+QWvwJx63kcPHAJzjjeOuvvf3NRjHn/HOoSTlmHKStKeVzU9ryDrROEHyny4a5q1l3lhpk9OgECY4ZYr6m5aylCoRSc43jJsCgopQWNIOdXqk5nlIiBYxoFgyAyFFWQeFW1b41hPKGFI2pCBRfE6JFNMRKlqONwjxiomZVhkWtmbhGuaupdcZT0Arg1UWkw3JCzW2yvKdpjTxfVN5d47/2o369xkZ+G///K98t7rCKM/eb8mEA1Fbnure+cYZuzveFo/encUDx3x5UivQOqFVQguVG2kiHyJBnshvMqQARGpbMasaZq6iseYA/iNDjkFUMLNgXrLWoCxoA1mic1ELnFpgEUK4IlQl51jOWm4EuZcOz2nJIOiIQh/S8xop9abCoEgWSfhuvxdp+JxJaJRx+AxjURGc14rLk4aLRcXrV4EYcyHfkhbadHCo88EmTh0M0z33tnHowsky78fG/a6Rv1nvb8oEGwPxnn3/feODeQBueR3q6CTT/Y7lrdaMKZhQuUSwihQtIRr2XWC7C3RDwmjLMAzstmtiTLjKYesZOWc22x0xJE5Oznj44KFESq6mdSLxe3qy5OTkpMy+8KenHOj3A9vVmrEfWLQz2qZBk/FDLxe/6/DDQIqJbrdjvVqzXq3Y73Z0/ZbgB+rKsVycYI1lyDDYiuwqSYlZQ0oSOQ3jwGq7lm4ChClLNAFgtqxYni44WZ4ym82p61rqZVpT1ZaqsbjaknvDtssM0QkIsTgJcjtYFBER/7474W9er7ceonjTwOdp8/2AzMDdLM89n/lzcgTeFjVOv7/PsLwvE/Chhmk6QkBb+YbrgSROJom2cszbhpNFS+00xmTkessGm3MiJ3O4hloLKj/GXIB5kInkFIhJgIWKQtBS/puYAylI6ZhFiyOkID3mwRfO+SgRfU4SKSWhKTNaiXOrBDSlpx5wMsJeeLM5VVkxM4553bK1gU4Vut+IlBZCLAJdIIECB8a52zXP++f2OBX877kEAPDdy1c8v77i4Uyz7bf4MN5ErlNWhvsd0Rvj+Ob73qW4V3f2B+mdV4VSutARF0sne4awTapMCVoUtXNU1knLHQmVIikHkrKo2qJIItDmR6IeMc5grUi0ayUkV0ZTAIEwrf2JHVWieXVjXBBGS4U6tAHK+eUDXbVWcq4xRUL0+GFku92wur6i2+/IMWGtYRwHrjcbBj9gtKFxjsvTGQ9P53zjNLsxgHKknEoGudASI9dh4s14nwNwe53exnG97fip/p8P99vNNfshWYAfzwMwZQKmE1Afdg5Ka/zg2e127PYRHwy6Ek30oe9IWdrtYgHabbdbZrM5Z2enNHWF915kULWGHLHWMAyDRMiVAEgU0O/3xNEzn82YtTPCOPL6xQvSODB2HdfXV2zWG3b7HZv1ms1myzD0pTYJtTU0dUUKojZotSXHTFKJSCQnxeiDoFWNkUwBQXi7lcYq4UDf7Pb4GBnHxLwfmbUtbdPSNA2VqwWMqC1ZWxGmiLnQY03TWkRbjqLvH3XdPnDc9z63vdQ3WQK/Txnipx6H7MQhbZEP5ZKUE6m4zXfrisff676MwDGY7vufUOaYJw1KilUZ6qpiPpvRNDXO2pLSjISgZG0zbYqanIUeNedI8IlxjKKLETwhjhzkVo2hqhy1q0QFEA7iMTknfFKMWeFDYN91bHdbur6n63tC9OSc8THJPVlVzNqGpnI4q6iNoXKSnpW2MPkuBiBHjEq0tWUxb9j1I/vBH7IKQngkUVa+mZpbk/VjsjL/rkbJUg2jZ6wrRp8IIRGFiBFyLq156qh2Ptmgo6hZ5TfuTa3fPq93a9rTuo85kzQcwHohoVJGp0RdWSpncdZgzIRBSYx+RMVA7YxkXjOkfiTbAVvPaZoZjWuw1hG0ptEObTXZiMNMjof1cSgBZI0qUsRkhJE1TaBIaVP1wZNTJIZA1+3pOgn8dtst281GSry7HSlEXOVQOrPerogpMGtnnJ41LOYzzs5OOT1ZMF6t6YInRATToKZWRX3jjMGPXq93HYEfQk72vvGjHQD1xjEf/qVTSkXMIgKCJk6llqJL5XK/35OKKM58Pmc2a8hZwHupqKVZoxn7HqcNi0WLBoL3Auara6rZHGssm+sVL1+8YLta47dbdtcr1qsVXd/RDQNd3zMGD0iNPoaMipkUMmFMjK2ntjXqVGQpJ5IJHzzd0BNCkG09C4jFaIMzBmMasElEiGxFStD3IyApaKela0CZipgNCU1WlozU1hRx8q0+eHo/5l55q681H4NQjhf6TdT3c9qnU0rs+w7g1iY2tTOBkOZMMqN3W4vSUX37bZmBDx2SBRM+cYnrFTlmKPoTTlkBkFor6U8tRCmKUlvXUnPPSuFjJMXMMI703Ujfe/b7AT96AdrlAGTpRqkcdV2zmM2omxqDRFmyMUPIiiFA1/esNmuurq/ZbLfiUGtV6INrAW8pTYiJrh8YVcZbcQCctWgNldVo51BaYw3UztA0juWiYT+MbLuOwSu0UYcIKuUpMT3NrxiVuxmA+zIt/2GcAvGs+H/9v/8//D//H/93+tET4o0zq49cXbidRr71u34zTLxvDt/WKnvjGGdJ1yep6acQC/VuQiuLqyzW6VK6ykTvGbs9fYqMfcduvwel8SkTraVuFywXZywWJ7TNjLZuyCoTtMUVQatJWVAhafcY4kEJUwCocp9M38YHzzAOEuWvV2w2kt0dhlG6b/qBlAIpinOgyFQpYqwqAkKeYD0KcNZwMm+5PDuRjpZNJ6RY2qJLC2PpK+AmKk4cBxLf63K/5yUfa9l/QAngHXmF4xTw5AmUn/nomKlkPb3T9JxScvGc1cxMizMV283uUEfxw0DMHNrrlvNFMfyJFEOR+9VUzpJT4OL8TCLreSvAEa3p93uCj4zdwPNnz/j6q6/pdzvYD/QbiXQgY5ShcvVBHQ2tyTEQQsaPI9vNjrruUGjOzy9YLBYYI3SV26FnGHq2ux193xNjxGjLSGZMXiRQG4OtHMo0oI2koYJoGNjCJtXOlqy2ltFnUlLkfNsB0G+5DneN7rvSSMevufeSqrt/v5lyvfv37U353Z/75x7jOPLV11+LYa0qFDD6gqCOEaM189mcxXxO27ZFJvp2BiCl9Faxn+OMwfvGrdRglr9DCPhxJIWIdkLsY0trnbWSETDOMuHzYxb0/bjv6Yee3W5H33tiyHifCyFJlkhPC4Pc6CP9KLXLecrMZy3GTkRAQhcc/ch+6Flvt6w3W3wIuLrB1TXWOqyrsM5JWU4rSEnWpVIkMj5EIJGS/K2UIqaM0YbaGWZNxWLeMN84Mh5tNJlEzFEcgDyVByWzceNQ3v/zY4+/htbBTOb3f/yabTfQjaFgiEoTSMlo5ZxLSv846j/8xYfkZ++b66kD5OYxwX2klEghSccSkma31tDWjtpZSJEUPcEL10oaRwZn2XY9KYOPiWg0plpR11c422Ct7PezectiMWMxnzGb1TSF30IpVRD+BSCoJFgUQGsgl3tkvdtwdX3Ft999x/Pnz9nutgQfMNYym804WS5pGwGLpxiIQZwBHwYgMQzS8aIVVNZwupxzcXbCZidB6XYIjFGy2VlJCeJt6+iu43q7DHlc7uLW4/eN463mxy7b768FcCfNq+48cUhVc9vQA7e6VJSSvmVtNHXthP42RKIPhzR3iommbTHWUdcNlbXkFHFW9KC1UsTgyUbTNg3npycsCq9/ShE/jgQfGPYd++2OVy9fsttuaasa3WhaW7OMgb7v2fc9WY2ghTO9bhpJGe07dtsN6+0e2/W4qmbwHtfUVFVFiImsFYP39H1PzpmqqtHaEUJk8CPBR6IxaJ+xgwc0lbWkJDrVBnDW0rRLrpW8/+gz2U3MWNPsyh3/rgXwYwzw2157NwPw9mN+fpto13f89//xf3J+fs7pyQkZWK9WrDcbxnFkNpvx5MFDmf+muZXmhPsxAsBND/NR3fnua++bt6m+TVm/WilCWTu1quW4lLDWUteOqqkON1nKHNq/9v3I4EcB3Nmapm3Q2hFjIoZATJIJyDkQo0SLg49UUXqjXd1QuVJi8AEbMzEnur7Hx0zVzKibhoxmDJ4xjlRZugy8omBbFNpKvTbmJNoASqFSiciysNS5ylFVgaZxtLOaLkYSgi2Q6F9SyiTZTNEIyvyeefypI/6fsyOQUXTDyD/9y7/hC5ma0qCT6PFkkL8PRf03aWLzO1oF3wZkve9eSLmg+EsWdGqnloysoqos1ohTQE5FhtqSyDRtS9POhec/w5gCERiHnuurtWRHlUEbRds2nJwsOFnOeXh5ztmZBHnWirOslTv05Qs+RtL++27P9fVV0dm4EjG5GDHO0s5mzBcL5ssFVivqphZZ7qEXx9tLjs5ZjXMWcukUM5rlrOHsZIZSirqPXG97xiQonZQzIeaSkeEGK3FnHo+ByBMA8O603/fY3X3/7jHqA8vvx+MD1ACn3+6mjW5no9XRg6qAeRRvvOzWNzj0dWpNGCPDvsOPo6RkXSWbQpYUrbHucHxKAT9kgkKyB+0plxfnnJ2e0rYtIYtR7/cdw75jt9ny+tUrtpst56ennJ2coUIi+8h6vab3Ee1Entj3A+v1lqZtaJqWejYXGuL1hr7rWY4jylma+YKqcvjoUVeawReikwQ5KrSBcQwMPmDREDL7zuNsRVNrEXJRieBHvPWQE9Y1uHrOvn/JGBKpJP5zKY5Kwi+9sTDuvXY/0T7515ZyHYeR3//hD6SUDga+63u22620LFkriGA4tBh572+l/KcN9fgGvosBOC4VHI+px/3Qf5+B0vJKziXil7q80ZrKOVAComrqCmuEyMSHSAqRYfR0g9QfTdXgGovWjpw1fozEDDErYlJkZQ7gvxgD+2GknbXYuhY2SmfEATAWPR4ry2myMvRjoOukq+X07IxmNqOua6zW8h1SIPiBwY9AxmhIPoKdMAGly8KAdtIe28xaKh8YBo+2irqtMU7SqJJCFU71qZf77njX+vtYa/PnCibMKPbjyL/96TtOGkHNKxVl251Kc4eyHAfjcjxu9vOj932nU39/RuCQ+k+JnAupjwJnDFVlMEbhrJQAjFJisOdzyImqrpktllhXk1D0vsfHyDAEyAKqXq22hCi07/tuz2pl6fstox84L07Asp2TUywofAVZwK/D0LHfb+n2W1KSuv5cLUhKsV5v2Pcdz148Z7lYcHZ6ilGKylmMlZItOWKdpW1OMBpptwyiyNk4TaU1J7OG5bJB6RUvV1sJBJWVMllxGGAy7rcdq9sO1f3R/821evdjP3aJfv8SgLpdV4LbT3/omLTLY6yxtqVRjjRIGianRF3VpFz6RaO0oOQQIEYR24kRoxUPLi+4vDjn0cOHtG1D8COb/ZbtZst2vWG73tDv96xXK5x1zGdzMaVasel7Xq5XfPfqBX3Xlw24omlgt9nx/MVr5icn1E3N2YMHPHv2HQFY7Xb86x//AGTqtmaz27LrOiknhIzWnpRF0cqnzIura3xMVHXF6WLGZ5884svPntA0FduxKyCvTIqFUlNbtLZIefimxeQIKnX7Cv289qmf1UipgI+0PlDkohXNrCWlxHw25/Liktl8fojop9p/LI7BXSDU8TguE0y/Tw7D3V5lpUobVhayEe89WikqJzoSzso/qzVN01DXFbnoA0ipwDN6YV9zdUU2htEHuu2Wvvf0+0kdLhCCxznDrK6ojNTUnZO1Vde1lEMKQ1rVWGwfiFn6uPuhZwhRokVlqKqKfTeyH0ecsyznc5bzGbaqoNTx/TgwjgHlMtEonLE4V2ONImkhf1HWUjUNrQ8kJDNQ1zXWWUmjlqWd7jFcfxviAKQM2/2e2s4KhW5A51S620vgpW5e8cZ73DOvH5L1EAc2i5Db9HdMKG7IgYzOVFZKss4oTOkcMAoq57BNLS5eqdmPIdANnm6/wQfP69crXry4xoeMj5mTkxM+/eQzqtoRYofSin23FyyV0czqBpsUecI1pCilht2G/U6Mv3WG07NTYoZuGNlsN6Siark8OWF5esJmteLFq1fM5jMenJ8DSOdX20BO7LYbghdCIU1GJY/VmuX5CVU7B/OSb16tRQ9Bl4AtCShyKoa/b44/2nr/nonYDwQBTisqHz122488RPxHx7151HSCBUkaAvtdwOeKqp0T3HjYMOu6EuM3Sk1HIbUlVV4f/IhrWy4uLri4uKCuKoauY991XK9XbLdbVlfXDH1PjolZOyOFyG634+z0jFfX1/zLv/6er/70J65eXzNvG9mAjeXy/IKz03OCWpGUpveepnacnJ8TlWK923FyfspyucBaTdYwhpHRjyybBUY7trsOHwJJGwYf6QdPTNI2dXW95rOnj5nPF+w2V5I6TYlhiDTtHB3XXF9vuZwVJrebmRd8xUdaLfdFA/ePfOvXv6q9WcFsNmM2n1HVtUjgFoZIpRR1VbOYL7DWiPEMIvM8DIMIRcV4KFc55wogzh2chRAC4zgesgaTwh5wYPmbJHjFUPpCgdvjfc92ty31fpFFBSkHVYXe1/tRrn9K+CAZJa0dMXm6rmPfe/p+ZBwj3sfDjTjESOcHvPc0RbmtzRXdOLDrejKJEEZBjhvHZrtnv98zeo8PQZDV2qI0bLZ7Ntst3bhnMZ/x6OEDusWcyhoqK9mAEBNDKbnZsbRPNS3zhQIjypsohbbigISccVV14GGQaGgyYJOj9fMsK/1Fh1K8vFoxrx1KCSmPikfZ2h8AVE3paE+f9vE76VtJxk4slrIPyT1RY61FqQw5YJS0iWpdQNpqEoeqqUrGKcRIiIn9MHC93pLTyHIxp7KWse9BO04WS548fsrf/93vMNaw3r4i5Zt7IQbpdqlMuW+yCLoFPzL0HTlFue+1wbiKup1hrGO1XrParJg5xyeffMLnn3/O6mTJ82fPqOuKk7NTjFE0WtNYQwye6Ee8H0sLZCSFwBgixEBT18xnM/TVFj964cApxt8cIvt8mMNpno+j//syAG8E2fcvhR89vncG4FYdYnr65q+j36ZUVPny5CMMQEIbT2U9jAOhN1RmwRA8QSusq9GuQgfRklZaC+e5VqQwYq1jVlc8ffSITx4/Zjmbk2Oi76W3M3vPsN+z227oh4GmEXDX1dU1Wmm2245//ud/5eWLV2zWa4a+x1lhuprP54SUCIOnrlsWZyeMfmS7XXNxecnyZMGvf/d3PHz0sHiEkKLi8vySftMdDEkm41xFUoa2nQEDRmXausEozddffc3m+iXkkYvTJdYYdts1Jg5sXq8xuz2fnS9RlQE9tYyVCPUtm+Jxr++7bvxpo7i1fn7UPnvjFfzcoAA5g3Mi2jQZ90mZTnjzK7ICf4geduy2O7puz9CLE5BSkva32YzFYsFisaBpGgB2ux3X19fs93uUEsS8aNvng1xp24o6XwhB2o42G7qux4eR7WbF4BPGSuo/5YCxDdY5claEkCEFovdstzu8T9hKwFPX+47Vds9u3zF0AznDYinsa9Za/DgCiSGGQn7iMa8NdeVYzBtSDKJrkRXPXq25en2FVobl4kS0K0LG+1HapnZ7huiZzzTGOGLM7IY9nZ66VTMhZXZ9BypjnWGMAU+mmS8IOTOGnhhGlFW4psI4DVr6uwVdMO2OUs/9WS2kn8WQPTTkJLS6oqpGUpCNLnwKedoAmOYv33qHm38T2HraKoThV5Va8u2sL0grXsiCvMcojFEsljWL+QxiIIwdYegweHT2pDSiNJLyn82oC4AvhMgYAxFF2ziauuXhgwfM5wvROdgNLM+W/ObXX/KbX/+KGCMvrgxj2KNTZux6kh+IY4WqK6xVB8pqncEqmM9qmtkCnzMYy8NHT1ienqG05sXz76ic49Mnj1m0DbU5Z1lXwl45a4TDwGiIgaHrGJ1hUEDwxL4j9p2QYPmBmCO+22LiiA0ejCIeaWu8zXbeN37I8/eVBL5PfPheB+C2V1IMTPlfzvnGCVBwTN+pjo6fltwBpKAiVntmdeDRieN6CHT7DX0/CDNa5Yg5o0JChUzTSP0wJ4+0xikWJ6c8efyY08UJTltpJYwZlTLdZsPq9UvJMOx3vL66FsKTITBr5ly/vmJ1tUZFWMxa6soAiaapePz0EX3v+epP35AUdGNPTIm6cZyenfHgwQWuqlFa0zQzSInlEhbzE6x1NG0DKIyrQVu0a1ienAm4kcTF2ZJZW5FiL4ZIRfZ9z6JtaCvNsB5QKXJ+0lLZisx4cJ7yVOu6M27meYqcEocA6p5xQ1N55J0esjvvXoX5yNi/8b5Hv/xcUrhKQVUizc1mw3a75fr6GmMMy+VSqHitYxhH9jsBil5dXbFdC0gwx3TLkD948ICnT59ydnaGUorXr1/zzTffcHV1RUpJ1CELV36MkaqqDga573tevXxJt9sxeknVpxwJMWOM9DyLylgur8+oLGDYoR8Z+5GUNH7cs+0Grrc7Xq1WbLc7xjEwX8w5Pzlh0TaCUg6SvWjblqHfs9usSSny5NFjmnZGZSSjtt31+H5kfbXi5PSM5fKMfd8zDgGUQZ0bNrstISVOTpc8fPBARLLGvvwbyCmgtaauRABrNm/JKjP4gWEdGH1it93R94GgLTFLGyBEmIhkpqAhC3DsLsDyP/YQytmgs9AB9z0hRhFqUhCNKo5U8cCPM7L5xuBnBUmpG/KlyXEvzsAtSgB1dKsrSCoXmucpva9pW8OTR+fMmopxv+HV82c4myF7NOLEGWdp21bAe0bujQQs+j11W+GsYb6Yszg5wVUV4xg4Obvks8++wBhxGGpXUVdQWccmXxGGkTgM5LZBqSj4EyUp+soaXFszX7Zs+4ExJrpuT1XV/PY3v+WXn3+OIqEVQpmtFfWsRSsO/BtGQ/SQjcJphdWizprGkUorFosTHp2fc7XZ47drjO+ZW4NPnjEWtQ99MIzvAFh/2NV/V0bg+HGthRHwQ33n78EDIAvrrmG5lTq65wxVcUkmFjJUAU8RmTeKTx4tuPaJP6226JSpDcJiNo6YKAASSYlWDGmkGwaCtTx88JD5bIazlqGXHvxxGPjDH37PV1/9gdfXr6maln3fs55YBOdLHj14xOMHD/nVF7+QFsEw0g8d3g80TcP5+SXdXqKprBTbXsiCtFJC0rKY0zQNlxcXLJcLxmEkLc94/eoFz777BoOibWY0TUaZClc3GFNhraMq7TEx9Oy2kd12R86BbptRMaDCQAx7zk4cv/jFBbPZiFLppgCjSk36jmV/A21+T4nmY473LdrjVNdfekwGECRaf/bsGd999x3WWp48ecLZ2RnGGMZx5PmzZ3z7zbds1mtyFGNulBZAad8DsFqtDoA/ySpd8V1pMwpBjOAEJgRRm1wul2it2W63rNdrtDY0dUNVog7f76SvOSZ8AJTGWicAvZTIpU85Z+kO2O56drs1KWUWsxZrNDEmTk5OBRNzfk4IEadFEa2dVeytZrO6IoaANYq2rqmdcFmMY8QZw9B3+Kbl5JM5Z6dnQs2KkA71w0BUmaqumLcNqEwKNeNYs9tuGPqOGD1tVTGbtbRNwxg9fTew3q7p+8i+H+k6z4gmKUNjHH7fEfoBmjkHJTcEUX4P3+V/6DF12owhsetGaqUPjnuK8V7HOwNTV2WeDPpRShpucrzTP3Vjt249fxtbIP1efdcRY+Txo0fU+hF4z/b66kDIkwuGSWtDVdXUVSUOnTFUTV1keEXdcjabM//lAmNqqmaGUobNZi2OOJFZ2zBrWhg8G38t/ftFrloXKWqllID5rKWpa5S1bLuR/W6LcULAppualDzRezwZnZNIYCtFZQsfSI7ElEvXhCLFeBBfOj055fLxU84uH+DjC5rKUjtDGAsJEaI5MHld6qgtU+b9ppT+oXvlh5QEjo/70ADse7QB3qBM74JM7p7cVFue6km61IySUlCMWM4jtel5sJzzyaXiuuu52itc8mAKd3S5IJMT4UfPOHTkQv8Lmc12w3q14vmzZ7x+9Zq+78g5Mp8tcE3Dg0ePcVXFZrOjrRr+8e//gcpYrl9fsVtvGUYR+VGl7SiEhJ63VLW04+WrKyCxXM5ZLhc0zjFv26IuKOjWkBWf/eILXjz/jmdffU3bOMYh4MOICoa2aZkvJOKCxJigdo7oKvwYUDljlSLmQFNlHp63LJcKpToU4agIM11VdWuu79aVFJmfzPp/wPi5GH8ApTR1XaOUKpr0e7bbLW3bHoCoIQSur6/5+quvWF2vqJzj/PSMy4tLnLWsViuePXvGarXi5cuXLBYL2ralrmuur69ZrQRzEmM8YAVsWbchBHa7nURqMdK0My4uH/Dg8gHn56d0+y3//N83bPZrdn6EyhbBnEg39uzXK4a9qE7mnGnbOajAfNZyuVhQNa2kI1PGVTWzdk5dO6gq5k2NDwNdt8X3Hbm0QamccEZLShbp1f/kySO+/tOp0MtGT9O2VFVDjFk4ARYtaVpnIQCStrcq01SGHDR9SDitMSESuo5MYmYMqp3R6IiKme31jt22Q7sKNV+iYjyA2DKUrNStZOLfRhlKSWdZyjD4QDurRJAmR1KS6O9ul9+tlP+dB27NcTH4h9cfG391eztRxb4ppdjvOq6vrqn+7rd8+vgh26sr/rjfMQ6jiKXFIBorpcceZJ9KxVme2FmtsWhlcFWFtTUohQ+ecRBMinVgtWAIBChrhGSovFfWSoTZUixZM8FVOWNwRuN9gJhJPopBLuRbyjlCzqSIZDWURguekBDkPUj5wPb64OFDTs8vOb14RIiZV6+vhRpbCU+LnYx9mbCY34Ru36UAljm5fZ3fPO7m2HeNgwPw3iNlvFcN8K5hV8dp/jc2+nxk/HN5g0mLeXqz6bFIzh2t6XiwbLicRV5cR0adUE5EbzKUtqxA6DOjHxiHnqHv+PqrP4mgRErsdzucq7g8v+Dk5HOqqmL0IyElbF1hXcXnXzh8N2CsqO+JcpPcNNoUhquUyTmW1FpiGAe00Xz+xec8evSA09MTZm2FIrNdrdE5Y6uKrDJNU/PpZ58wdjtMhqauGPog4Khui8oR2kZu0hhwWnN2ukTlGXVtMTrTr3cs5zUPH2Ss6dFqkDhomnI9XZb7QJa3a37vtcEfuELuYgk+NBX7c+mnntQWQ5DWUO89wAGYt9/vGYaBV69e8erVa6wxPHr0iKePn3B5eYmzjtX1denLrw+tg+MobZ+73e7gRCilaJqGk5MTnHMMg1COipJkoKoqzs/P+fzLL3n65CmLecv1q+c8+1PL/lo2rRCE/XKzXmGytIk6Z3C6YhgGUvIYDctFzdnFOa5uShvjzV3f7bbl2yu8H1A5sZzPCKdL5m1D6yyVKexqSH/zYtbw5NFDuq6nMhqTE3HsCUlKEKpwdkh5Q4SAvB8Yh47oR8gRQ8Qpy6yqsc7gU8CrSFvPUCeOxm0Ydh5CxtU1Z7M5rXOF3rgwqeVi5T7S8vm5rMOPMVLKKKvIIbPrB+Z1Jd1GOd4Y/ztbQ1GQvfXc5GTdjT5vov/bFl8d/nfD2KiSKjooie1mR7fb42zF5599Tuh7dpuVqD2OgruJIUDOUlJLEbTGOEtlLTpntNYE7yErlHIlmyHc/NporJM14vtBcF4xApqDFGLW0gqJvC6GQPAjykhXTWWMlJwKAFG0N8SbUoDVGlvI42QKRMlPlQxAzlBVNQ8ff8qnX/4SUzW8ePGa+XxO7Sq00TibCT4dMv9SCMhkpW/tx/drNdz9+76y1+3X3Q8eLLb37lp4y/iAEsBRnog31YqOa0Q3j+fDT8VNvflwHLIInfIkteOsUTw9M3z9bCBZxeLyhF2n2PmB/XbHGDzJZrLNjGNHVQkKWunM6ckJDx9cSC3XWHIGYywzJ/3FVdtgCrhv9fo119evGaqaceyFICV4EQ3qe2IMKLRkAbTj6dPHnF5esFwuaesaUeeN5CDgkL1WNLMZxjm0UlxenKN/9SWbq2v6fYcmM4yRMYyEqNh30u9PClgtQJXKNVij6LstVmVmjaKtPc50GDWip3RR+Sc8KbcXRi4KYErxVq2Ae+k+7zz/IZSgH8rJ/nMhBtJa45wj50zf9wzDgCmyojEKD8Rut+PFixcMw8DJgwc8evSIJ0+f8uDiAq0189L//uDBA9GgaFuUUmy324NTYQu72JMnT3jw4AFaa66urnj+/Dld16G15uTkhMdPn/Dw0SPOzk+prUb5BZdnS1bPlHD5D57tesOVzswby6JtODuZk8LIdrOWDV0bjHEYkyAHDFI+mP6lmA54kcpo2nYJOVJrWMxnLBcLVEqYJHiDEEZInsuzJRtjMCSskPlDKoZ+H8BINkVrqdEnP+L7PX7sUWTmdcViNqephb1w8AMqDYLn0XAym/PZkyc8fZBoZnPmZ2c4jZTwvC8qh/Z2tFnW2p9TC+DnizfI5OLr+ZgJWZWiryD5tb2zL6Bu1/RBIBcC6X8THJiRFLaeXq2mT0VnKcukInyjNEUVT9HtO775+ls+ffSIzz79DJ0z//pP/+NA6hZGX1j2EmmiSy/7WGUdVllSTMQk3P6kjLZgrBWNFa1xTgORfhRl1xQk9R99IPmIcdO2J/inGEb6/Z52vsApg6kdKWtCiETUQVXQWIu2RjABgjCTTEUCZyw+K0w5v6aZ8cmnn3L54CFDiDRtR1XVtLMZzb6nix1pDIJ8KPGYOF75rXvt93NQb++pSh2EDm+uYy7vfxvG+dbx/hLAG57J0U91r625dVw5LZJKJKUlnXQIVhOWnrlzPFwueLRw/PLxL/jyf/q/sukN//xPf+Kf/vu/srva4wrpSdM4fvnLX/Cf/vEfefz4MX4ciT6glcJZhyDlhYYUrQg5EUJgtV4RY8SHwOsXLzBout2OftgzDB2SvVCSSbh8wJMnn3L+8BHZGIL3zErdqN9tZUNHVKWdk40/WcOORGU1lxenxJMFm+2O7a5jt+/xMdCPEilplUEZYrZo6wpjW2bW1pi8IqcdWvdoFdBZlcuUyYSDQ3Vzwe9sjO/Yu24dl+957M7f79p037VJ/pyiLq2EpCSEwH6/L9oSctdMXQGbwgrYNDVnZ2dcXFxycX7ObD6HLK2YzjkePnx44AaYSglTq98U3T99+pRHjx4RQmAYhkO7oDGGxXLJxfkFZ+enLGYtlY6Y0XKxbHlWG8Z1AXwG4QeQUoImJwE5NU0tqVdtUMZiVCb5QTJWQWqWZFH7q5upHFAR4sh+u6WtHctZI2CmMJJUxhktafgUmdWObpvod2usVszmS2mfdJZ919GPI9F3hS9gIIYBkBLArG1ZzGe0dUsIkrY1k/M1hlIe0ZyfntC4mrpp6XKi2+/Yd1uW+SFWIYj2ydv9C4yfr/G/PSLS165VqXtPYf1R8f5t30R09N4sE054gUPGdjpgyhaU9j5VDowhShYgRq5eX9PveypX84vPv8TvO169ek4Mcr9opQ/7/nFsYI3FVBaFFvKncr8KI6QUhoR1U07cgCikpnL+wholokBALpiZlALBe1LwaKNwphJuFetKKVqojY0GnTPRD8QgmYVJMTOjIQmtcIqZ+WLB+fklpkjHZ2UYYiYrQ9aGkDIhy/weeKymutZdnFYZH77e3iz/Huuy3Dx2Y5s/Sgbgvnc5GP8POXd1UwNJJSmCAmeKx4nHMnLSKH796SO+/E//ictf/IY+L7g8e8rl6SO+efYtOE01r9Am8uUvvuCTJ0+x1kCK5ILSbtqapm6xtiVnRVKZ3g90/Z5Xr19y/fIl3W6PH3qcMmy2a3Jpa2mamvl8xvn5Ax4/fkpdtXR+IHrFYj5nNm/ZbaQflCQpJJUyM1cxrxuUH9gag7WGTKJtW84uzuiGgVdXK9bbnr7viN6jig72GD0LM8PYSkhbIugxofKA0UFIJzCQXfFQE/Ch7VF/HRvZTz1UUUjz3jOOQpQz1emVUodUPkBdNywWiyI6NZN0dwZrpI8ZbpyGyREIQZy3uhbn4fLykuVyyW63AzjU/p1zzGczFss5deWwFnSKWJU4X7Z8/uQhNZ6xH7g8O+XhgwfUVqFyIKUg62PWkMllg8nk5NEYamvIRjZQaxxVXTOfLWiblkzm+qpH5cSsbmiqCp0yxAhGoY3DKlBJavFNZQneE8NICiPZGJyGWV2jVGYcB1KKGBJoRV05Zm3DYjajqhwpirODBj/4okwoJENKObQ2aAVjv+fVekOvNKdPnpJULiQqmfhhRawPHh/qkP5VGP+jyNGHSNs4FAFdZu29W8Nx7X9KIZfS4o1sO0wbvCpORcrSYqeVBkXRZCnaEzHT7TuJrmNkOZ/zxeef4/tOMjuH1PwECBQDrwvA27kGayqM0cVWiBWLpRNEOo+COAhFQ1sosyGXjNeNP5OJSbAA0Xv8OFJXVqSGtRE6eWvIqvBO5kSOgeTLeyUBXceQCF5wC2Mv4kGmFmwCWrPvBl5dr3h9vTloM4wxk5QqO3S+bbLvTfv/dOvtQ3EA3wsEOL3x2xyAt91nWRX9cz0llsQ9KdUVVPI0OvHk4pT99Su++V//v6T6ISk1PHn6hAePHzLmQFCefb+maWq8HwlBEh0pRbwfqZylrmq00lRNg3aGuVqAuuDBgwvWjx7S7/f0ux2+H/j006c0tcNYjTFCbJGi4AD6vkNXFbP5gso6QvAMw8h2s8EZzWLWcn52yulyQWU00Rqa2rHTir3vCckzM4p22fLJcs7FOOkcZFLw7HdbovfM2prKWWxOxNd7tBFGLVNaWmSuTPmpEQTO7Qt9//g4i+uvYlN8x1BKH8B+E1lPXYv8srUW7/2BAMiYiYGvPqD4QzH2Ex9ASumAJ9jv93SdKA22bcv5+fmh/g+32QEnzgFnLcYodI7EYc+wW9Naza+/+JRHJ3PW67Wk0duKFEesNtTW0jYOY4TSV+iAxwJyEua1qhKSo6aZ0dQNxlhCCHRdJzzm1tLUrqypJPSshb5VOHrERW+bWjIkSgBN87YGpYkxs1BzYgrkJMI/WmWcESVLUmQMHq2N9GSXjVTpMg8kUKnUZz3dfs9qdY1eLlHWFAdAS0dgvmdz+ZHjfU7AX8U6n04xS2TsU6ZV4vgpYaA9GMHjH7dffFOCnSL+40OnqT+KURGRH9m3cwltlRFHLsUEMbNZb/n2m2/59Rdf8OD8nMePHvPNV3+i328YhkHuv2GgtvZAxpVVIYBKGWWUSFVrwX/FJAT7WWWyysQgnxVHTxz9ASeSYzoA9Q6qgIUjYQIgZhvlOOKN2BtF0yBFkvfF6ZXATGVRGgzeE7zcQ+v1huevrxiyZnlxyfPXV/zzv37FP//b17xebdnuB4aQiBRehjKraqqtHI3bZfQft+7uzwBI6Sd9gAvwgW2AxyiDN59/272ljhbXlPqfRBPT0UFaaSoFduz4r//lf+PbncWdfo6rT5gtTrh89EgEdwrbWbcfqE0FWTy4VOiDx3EgNA2VAmW0eHkKnLNUbs6irUUgaBgERJIS+92GYeioCn95jFk41Yun2V1f02uN0ortZkM/jOim5uT0lMsHD6SVpXC8W20xKFJIJO/Zp4jzI8bVOC3tUU1doXJmPJkX0NcofNZjD2mktoramTJPsjFnonDHF+N/d7rfXELvr+XDzSZwcyneZBl8nxDQDwUJ/rnGROvbdZ3I2wJN0zAv6n8Te18ubXhCASzp+3Ec2W93h1r/1Oefc2a1WomORGkPnM1mAgia2AaLAzG1BU6tgfL+idFnhs2G1csX7F8/w0SPyZnTWYs2wgCYksfUpqRCOQAR6zrRtpEQhIfdFbGsuij3VZVQC08bITFBEp5+n6GparRxaCMtWaSAUSLWEsIg9VElTG4+DFR1Q11ZstZo3YizUFKvQgUs9VijDD4lkpKtx0e5X+Mk06oU1ghtrAZmTUO1WLKYz7BauiYkx3VXHvhmvIun/+dUevpJxp2vF4rTBQJWm/hCVJZa9sFfOCRUDElJv7wEY2WeDfIeU3k2gTE3e7VWhRzoUMvWhXgnYI1BO0vImT9+8y1/+OZb5os586bCVDX71y/Z7wf2u47WifKeOAAaYiTmhE6aiDijWWsSIhOfMygrSqkaBSkeFPtySpL1yoflLQ6ANuKEpgKMiLEABSM5CwV1SLFgEBAJ4wRlYiBKB07yI2Ho6bo9q/WGq9Wa51cr/umrZ2Acq/3Ai+sdq21HVJo+RGK+yc4dj3cUS++k8b/v3nnPzl9KQpNT/75b4oMyAGpaAIfC8c1z97cvHHkmh2yBwmSFntxUNWUGNFo5yInYX7N+8QJln/Dk4hFjSrx8/TXNwmLnZ2hTYXTN2AU6BK3sjEKSYBDGHh8aMII5MLrQ6MZA8HIxx34QFTSl6PodMY5Yldlev2boegpQVFSd0GxXWyKgXAXaYGvLbL7k9OIBrm0lcskFwILGmRqnKoZ+R/ADJmZMlQh5RLmKoe+xVuOEdosUA32/J/kOo3pmjWLWVhjVoVWU7gFGKXzp4jbdAX684ZSV/79LQvX7LLW7gJU35SxvYwVuE0D9ZYdSkoaf0v/WWubzOWdnZzRNc2D5m6h6u65jtVpBEqrqVy9f8erVK4mkc+bs7Azn3CH6n6iCZ7MZs9nsQDpkp0hH68Pn7/d71psdytZsCexfPWPz3TP2r75Fh4FF6Z/PSSJi4RKVdHrIgqFpbQ1GMTtyDCRyMhhji7Mh9dAYYwFgRcIYIBqsrbC2wbkZ1jpAose69nSdR6mANkbYMHMk5IBFtDhSDviQiurbBJbKUnONkZgSQxjwWbA2ow+iWoc5vMaWltdZ00LVUJ2cMqtbKmtv9V2/TTzlhzqYPzfH9AePnA+BQMiZPnihY06JpBVJy7LR0zZb6vcJQCmy0kSjSKRC4SgHTNS1BnEgbJboVWUEs0RpQSytUzGJgqNRGWUt2Vhe7zr+1//jv7Pt9lwsF7x88ZKxG9ntR3b7gabqaeuGykr7aaGQJCUlwkZGk5LCl7WkjUMlBUqjsz6UrlRKpYyhjsrLEv0b57DWSctrUkIm5xPKCDtfVqmUpW84+3PIomCZTAneImEcGYeefbdjvd+wG0f2PvJytWG99+x6zy7BkCEj5YnJ8Oujy3Xfqru9FMWJ/7D1efuYt71EKUCLIF2MvHMb/h5EQD/weaY0UwYVbyN8NZANIWsUjhig7yInn1zw5ee/4Hq3YbW9JidJnTutcfNFqYVP6m2KEL14fMA4DPhxQKHJQaOYJCJHovfoDEPX4WPADz2WDCEQxpFusyWMHqUcKSu67Z7vvvmW682O2ekZn/7ylzx+8oRHjx5ycnJGShQt98DQ96UuLKmycQyMY0cILU2b5fuNnlGDs4bKSTtVt9sy9HuIPXUcqSpLU1doc7eIo279emse77kGx07Avdcov+V1b2R4bhv2KX12eJPpt8PmPIUbf3njL0Md6H9DCDjnWC6XnJ+fH9r6mqYpZEDSDmiN4XU7o+s6Xr14yfX1NQDL5fKgITBhClJKB4rgpmkO2IK6rlksFiyXS1arFcMw8PLVK1zd8vp6jfI9YfMctb+GvsflQAqOGALKgLJlU5A0ECB4gxGPUQbrJNKxzuJchdaiOhi8MEt679ntdmyu1+w2gkeYz+cY43CuRmkjLX4pExKEoERoCCPqgtHjx0QMhZFQSyo2JxHoyikVwFUSGe8QiDEwRs8QR8YQ8EG0CUQpTqMxkDJh9LiqYjFrME0rcsIhkrVBFQXDzP3saT/ECfh3Y/ynUXLIGQgx4bSSYKdE6RPqvNjIQ802pkQqMtQApITWYMjonHFZM3NSyqxbizOG2knKfBwD+8Gz60SGOkdwiLOQUybrTEiJ7168YLtdoVOkNpqHywW7bs++H5gPI9044kYnVMJoydSCCL/FQEbWGwW7o9XkEEJO+QDglb3oUJgWW2AVNllR+BynbFskF11VrZVIKB8CGlm7OUUOMscxHQC8+37PZr9j14s4VsiZMQsTY+cjQQm3TUo3sr5Mc35n3MJf/6Ct8UPX8Pd78++BAfjhQ4G4RTnfIE2geAYassaYWiR/VUVTn1C5ltqNPLy4ZNa0bPc7TL3g/ME5TSUIaGIkjD06a5ypUCYTg2dzfYVze5FWJRO8J8cgkpTWkEMqNZ9At9/h93tCtyeNHhUSWmeij+xXK14/f8Z61/P4yVO++ORTLi4uWcxOUNmw34newNBtyN6TvBdmwJQx2tL3XjZCH6nrmZyPhjF44qggJ4b9nnHoIA2YPKKNtMBMDo0sVivpOCUp1/cthakOOJVv7ltw6h4bfeBuuPexfPRvGnff+E3H4C89FBw2AlWQ9U3TCDXpbIb3nu12y263Y7vZ8OrVK4a+p7KOGCNDP0AWZbLHjx8fOgF2u52o+Wl9K/qf0v2z2YyLiwt2ux273Y6rqytW19cMY6Bu55g4UMcdpy6ztI6ZrWjqWmR0jSEbocq92VwUPgQICWccKIMrkb/WptT7e4ZhJHgBY3VdT9cPeB9LiWIJaLphlIiLAibzgc2mZ78XWlRrG2IyDH6k70YhSSlAqkOWD2HpTEo6bfwohkEUPD0hxoKElg3XGYczjn67Z9cPNElkYTP5RnSJjNYUlPa/M6P9E42JbU/rQmCTb6uHJiUhSUJA0aQsyn2Io1ApaLXm4mzOw7NTHl9ccHp6wvxsLpwRTUWKgd2+Y7Pd84evvuH3f/qG6/WeMRU6qIL3yBmGEMhdxA8dy7bmdN7SeU8/jgxe8CtjCNhk0ZgbUa0YS4ZCFVIjcQS1ulGJnNbrhK1JMQoGgSntXVQntQEUIQa0knKFAF4V2RSGySOHIqd0KD3FnESl0I9sh55t3zGEwJginfcMIeBzLt0q6v699ae/7B9tfBQH4L3eTUn5S9SZJe0zXQBAKYuxLcbVGNvgbANZE8dI9oH1i5esOs/TL3/N2ckSZw0pClI5Ro+01on+dMqZbrth0HucdVLHHEecMcxnM0yuICSGfc96fUUcepT3jNstBk3jakiiGd9txLB/+vgRv/vNb1Ap8+ybZ/TdyH7Xsd1t2K1X7DZXqCyEKuN+R/SjRGRKM/qAc1GQ/RnQYtx9jqiciMNIDoEcPVl7qd0csN7T5E0w3fKYuu0EvHWvLLb73qc/MAMgD+Z7bPrd2v9bzuEvPCZynuVyKa14iwUXF8LtIBGxOXj/L1+8ZL/bMQwjKUSctZwsl5yenvLw4UMePHhA27bsdjv2+z2Xl5d473nw4AHn5+eH9L8x5gAKnByPk5MTVqsV/ejpu45GJ6yzzGeOk1oxs4raGqlx5kxOCm01Shm8jwQ8GgjZoBpNU2sUuvT+C1XxbtcRilxwion9vqPvepyraGYzcUa7nt4H3K47YB6Cj+z3HfvdDm008/kcbQQP0O1HYoAmyyo0Rh8iUFWyDiklEVMKgZgikVgIVkq0VVLJlatQjaz5GKR1MY1eyJlSQpVaNCWq/NDx7772/7Zxx1/XGXSWijkFPZ9LXRqVC8AYTE6oBIu65tHFkt9+/hm//PQTvnj8mMvTU5pFQzVvseV4ZzQ+Rvb9wNffPuP/95//K//Lf/7vfHe1o4+JUJyOUMCyg85olelTZMyJPgS64Nn7gabvcZVFGTH2lYKkpTQhtAYG8k3mUivpQJD1pplkiacMVCzSvgBKGax1GOPkHshZMr1BugJSlgCq9EEeOgpSykVGOzJ6T+9H9uPAtu/Z9QNjivicGWJgiBFPJqibSuyt6P9tl2pyYj7iPvkx1v0HYwCmiPK4zn/354RufCco8OjiZhQ5CvZCFdlGZRxow26z57uvv+Gbr/+Fbbcl64bPPv8l87ohpFCSOqr0DBfkZ5J6fAgSBZnCLhV8YDGf09YNQzew321Zb1eM44AKAR0jlatwStNWNd1+ZLfZ0u33uMrxd7/7HbPZnP/2P/6JV9cbHjx6xGdffE4IntcvnksGIAah+o2ese9YLOdUdUMcOkLM1E4L8lVgzkKFWcA6Ok3AkcJpTSkkTP06B/KE6bn3jKlmOv3/XkN/n6zQVFXj8Ppbtdjy/0NqcXIijqLCn9uwzvL48WNms9mBjW9q1TuO2Kuq4uL8nN12J/3NSgleoJ1xenrK6ekps9nsVgvh1Bq4WCw4Pz+naZqDA6CUYj6fAxw4AtbrNft+IGOYGzirM3PlcWFHRSQHTxfioZ5rCylODJEUg4BnlcVqxzh6Qs6EXSQlAUzFIADDnBN9P7DZbPH9iG4N+24vf4fIfLHAVTXeB0bvCT4x9mPRpkicnZ2wWCyIMRG8gB+bphKQ69H1Jt9kVyTVmksaV/Rlp8NSzsQk92M1m4vRL5Hb5BzATYSnDlXUt4uovG38OQmD/uKjBFIxZVymgOUmsN6U5pagawJguwyVgovzBX//y1/yP/321/z608+4PFlwOpvRWINyllRJ+dRqqGuH0gofE6fLOZrE6+trdv4bwqYjFgOqjSbkyBgizmlsSHil8GT240g3evZDT9VbjLNgNFkL6PlQy88JMNjyQC4tfqSML7LbWovz6cd06MyR+RAJa+sqrHOE0Ui3RPT44OEgRHSziCVDGG+kwGOgG3r6caAfPYP3+JTFwS2R/9SMHdP7yXaOEf/vO+44qPpQkOubRG3S1TNl3t4HBHynA6COTuSY2e2u8X/r69XNSb2Zbi6XQEl7RiKhrKaeNbSzht12zTd/+oqr16/Y7zecPXjK4/NL5k3Lar8RM6QVRQYKUkEte0/f7xmGEa102cxlQxmLXvl+3xEG6U91xggyleJBK8O2X/F6vWLvPd0Y2PY963/9N/63//0/86dvXrA8WfC73/0dn336lPX/n73/fJIkybI9sZ8SM3MWLGmxrq7uHvJ2571dYFcAiKzgAwT44yGLhawsZFhPV3VVF00W1JkRJRcfrpq7R2RUVhab6eppTYmMCA+nZmqq95577jnXVwxdCyninaXbrOnaDb/7m9/wq/c/YLlZ0/e9irpUFdZ4Yi+koUTohWyWU9L+0VxO6iGTZBdr5nuz8ftP8HdOzXIe3nASSy3x1j0OSwd/xhv/OJzTAODhw4e7zWE6nTKdTncqgXVdM5lMOD05JQzDrq3Ie8+kbphOp7tgAfYtfWdnZ8ps935X/x83f2vt7raRdNh1HSGqbGljM3MzEG5e0l52OCDKoOI53iN1RTalpzmpuInFIA6GQcsWxjklS1mHr9QfHoRhGLi5WbJarXHWstluuby+4eLikijCyekZzXTG0AeGmJAsDJ22uKYUGEIgizCfz8g5qxlSW1G7Gl9aJLNk/TowZNllZiVYNXa/yJqyiPti7CWiYkfeud1ybChogdn7iIzjbTb2/3RIgNwO0iXHHbltt25Lpra2dAYIp7Oapw/O+Pvf/oZ/+Nu/4zcffMDJdEbjLJOqoqkr8I5gtcPKOdXBcN7gKwPOcHIy5+R4wWTaYDat9sonlSNWFTzdIgdr6UIkGmjDwHYYmAwVVddT1RXGGXzlSU4JhWb8MgakEBuzFDL/wHqzZrvZ0FQ1k7rBGE2qgF0gYJ1eC7trAiHGQNttwVmMzUo6LKRByVlJsiMCECNd39P1A/0wEGIiZ9VcUAfPrMrDKDIxTrk3Zfh3g4AxSX7zY27P92/b/O8LAFSt0b52//vGT1YCGAOE8cPugwTNXvVt6psaW9wArFMSxRBaxM45e3jK2cMTVpuBdrPCpIDLwuPjU9579GT3wVJWmqu1lmztDsrJIaDMSmUg55SxVUNG6Iae0AeGoUfyQauMCGIMQTLr1YoXV+cECydPnuLWW/7x40+4uFzx6vKS7VYX3267IXYbbQtLSXtHjSHFzGQyZ7445sGjJ5w8esTV1SWh25IQqsoDNSkMSAwI+hkQi0HbEHPeL566Io6U3ly4AD/FWRvHmxfNu8He20a0fy7DWsvJycmt28YNGti1AS4WC2bTqZLRcsYai3faGuqsu9X54IowkPd+pwQ4yntqO+GebzAiDFVVsVgsAEuKUBGZ0bIcVgzOKRpkDE1V0czm5MqzHVpCgcvHXmmDIaXEdtthnC6ATeNL7mdIBfrfbraAYTKZYsTQdQNJhJSEthvoE1oyyBlvPRITznt87fFNjas9i6MZzsB6vWa7XuGlobIWW9dK/CsBwKHeQaHd3mKNWKMkQCm14rqqFeK3ehzrqlajF7NrfuV+fOqv474hAikVflAhB4oYnFGehk2ZibO88/iU/+53v+Y3H7zPr9//gCdnjziezamdEud8XWPrGlN5JX3mhHdCVTvNJHNm6DquVmuW2zUhR5IRguRiQSuq4IctpdfAqt3yIJ/Sp8i275jUVUm6PFhTTLMcGOW8OOPwziBWdgI/KWVCGM2FMlTsCIIqSJSJMWErTX9z2ZxtMQLq+o5Nt8XVNVVlCUFUM+HgelUSoiaQIQa6rqfvehUDKs+fS8ugBuSlmnBPYvs25+v25n9/ln6fDPt9z3X/8+e3Ihu+pRLgt3+q/eZ/GyXY/a5pfvlXJhKjYoXWiiyZRKSaWJ6+94jF0Yz1ds2kqejXGWIibDvW10uNQkWdnBKqHmasVei6qFpYnfnK8DRSPCOUlBSzqpJJSqQciSnQS8IZDSqubpb46YQP332P09NHDEPiH//5X/n82Tm2qvnwo6f0Xcew3fDq1QtOjo6pfK1+0XXN6cPHzOYTfFUzDIGTB2dgLdeX5wzdlj4MkKK2vCQF1K1zGDx64ZS2EByYtJsgqr99AJu+cYF8izP/PZKlu9HrL2kYo8Y/I0x4uPGPC8AuICgsYMml1c2Yne/CoX63tfZWdL6DINlH5eP9x/uOyABYUgKfB9wwaMlglEktw5pSE83jwjC+B7XmNSXLy1mvpRDibhNYr7ds1hvAMJ8tODpaUDnHZDajnk5ph0ASSzcotJlFZ1Ld1MymRzR1zdF8ytHRlPl8Ru0dkNiuV8QQ6LsOU+qy6WDzF33jysY2SjobyVbjZ8xFL6Mu7ZGxqqirmqau8UUYJpWKlf2lTbT/wDHq9+s8Em3NFCl+K5bT+YQP33nEP/z97/hvf/+3PDg5YeIrJq6idr7o4ddI1ZBq9XHQUmTCmow4SJJYtlu+evGST7/8kmfn56y2a6JEMOArV1Q3LUWFBhGh6weCZMQaJdf1PXXlqPse6y11U6mXSvaQdN325drJhaNSRH51JyrTIhX1V1fse73XMh7W0MtBIFkeEMLAEHpcVZfSVUFNDkmFORFzaWHt1YnwsARhcUVyOe0314Pt8YdM2f0m/fY8gu+6bbz9PuT97vh+UsD3cAC+bez+XpD6EeTTnw7LCYKxAWxHPcm8++4ZdjJj3cKjJ09ZL8+xztFut5y/es7JokKqgiQYnXBm7Pe3UjTSM84nYtYCo/FWsxLJhNKTLX0PcdD2wDiAKSQWgXc/+BWPn75LPZkTk8XOFkyOTxjCwMniiPOXLzh/8Yyh23KzvGRSNRzNFzTHM6azGmuh61pW6xVHp8ccHx/jLCyvL2k3GyRnnLNkUxwIc9l4nDJgVZvTKZxnx4BJdlDq3c3/dtj1lsOgF+l9t3/Lz7vX+aUhreVqGDf0kbU8EoxG7ohqg1utJcrrENtd/YNRDvgwOLjdpnRPBG/UgMSkTDIWfI2bzLABbCyEUMlFx7w8v1WNgiyGhOqUswu8NeuHQsDqW2IKzGZTRTXmc6qqpomJajKj6wObtiMtV2qTbD3eGhaTmsVsxmTaMJ82TCcN3nm8dxwfHVM7T+haui7gfI2xpsj8JhXiSvq+vfNkoz3XqQgRjUYrJicMmbqpmLgpW7Q1y5WWLyk96W9nY/KffBxkkILKWJscCP2gHDdrmNY1j89O+O/+5iP+69/9ll+/95RHZydU1pNjxtuKelJjfIWtGmzTYKoacSM8HhlyIGw7rm4u+eNnn/Ev//Z7/vlff8/Xzy9Zh0QSRStHgp4qROq8FBH6EIgpg/dkC9uhw7bgvMFWhkmc0BQeibNawsIUTZ6kZkLWV1S2oa5r2hKwVBPlsGAsCUiiX3EIbPu+EBMtQxSGmAgh0veBplF9AcmqNTCWDlJKujeEgSGEYuAWiyiVKmHGlEpXjh5fk9F1+R6U9LXTJbf/fogAvO3G/jYZ/XifnPdz403jO+2A9bvc2gxufeCSod762+6+ZZPfbflphwhk0Ytf/Zu3ClvlY46O3ofa8fDhIz76+//Cql/zzZ/+yKZf8/z5l8zee8hksiDFsbfTItZp7RwLRp35aidkZxQGqlXEJ8dUFABV6CG2G7q+pQ/qEBey8Pjpezx98j6TyYLsK+Ync3778Iz3fvU+IQyslzfUjaHrV6yWCYk94lqqyYSqTmB6YhJsTITQMfQtTVOxmB5RGcfaV2yWV4R2Q5ZceABgjEO80/5Y22BNTaYnGV3cjRhcOgBWy3E2jJsNry+cby7vv64ndM/9b922B3R+McNgcBmsFPZ6Tnt6Rc5Kwiy1592i+i3khrviNCOaAPsN/zAYuG8IKuBircNVU8z8BLtdQ2eojGBjjyFjUsZbi4gjiJBwIBanbkC6WWZR0RORA7vjgem04eTkiNlsTjOZg3FUAr6eMAsRv1yBSNH3VxnfeeM5ms+KDLLBZEGirlq1m+LnDZ1r6PuOmMCIEIOarpASJkVIkeQgO4vYgg5SSIpGrzsTPbb2mMrhQWWEi8hQTJAKQpiMkgqRt6v//+cbsvs/G0ddz/nt2Zyrr78iZGGymPHr33zI3//d7/i7v/mIdx6dMp+psE4YMniHnTQwrfHNFFwFzhFRbQdJwlB64b959g2f/ekz/u0PH/PpZ59ycXXDpksE1JSIgvxag+LiZfOPKdEPA+u25ZE1SO3pc4LQ4geLDZYmTpjkCbXUYCgokCAxklKmaSZQeUiC9zUZw6YfGIAQlLTXDBNS5QlOTb8uV2tWN0tC12GyKsVOm4bFwjMaHwiK+ApCMkIyEHLSNr+caENHL4FoDG2ItEOiGzJt1M8dRV5bP39IBn/AX/zO+x8GC3e/v/H13pAhvpUb4JuyfvPaD6/ft8SD+qZ27w6UiFHkJiVAXJP6a0RumEze5YMPPyDbxJMnT0l9wDVTNtsNZlLt2P/WGHCuOEm5kl0Zss9UAq7y+KpSH+qoixECKUZWmzXXy+tCRqmomikPHz1hvjhGjMfWNZPplLqqmE2nxKHn7OQYg7DdrFWSMlU8PJ3z5OEjKuvwZi8Bq1Btpu8HKleRUr6lix37AZPVSc6IxVpPzpGcHHhtI6TIqqpxhR43uXd/2vMq3jZ/+s4N/1vO7S9q7BCT2xCbuRvZ3DPMLuJ5+/Em90Q9fVJqneC8o6obfF1DqqjsBBshDgMmqWkUMtZ29cOkFJX8hMEYVzoANIPpOm35Ozs7Y7HQFkdv9fHWWSbewdQz8zDzFBljJdw1dUNTq6CQZNVizzEwIFS+0vfaNEjJzMYUYyT+gbZwidV6rqDciBKZkiWTTJF4HQIihujVq31fUtHjfYvZ/ddx7zicZylnHj95wv/rf/mfefbJv5IEHj19hw9/8xHvvf8OR/MJ1kSqUf7XZTCWyldY57FOJZxTUpGnodca+PX1DZ9/8Tn/+E//zBdffcH55SXrzZaUM1Gl+hVZNehPuxRXN40sQkyZzWZL3/cczafqXpwC7dDRDBVDUGZ/rkYYXudyNlmVLb0Dq91i1mu5YL3Z0G/WDEV7om4aooHTrAHH8xcvWd5cY4VCbKyppzOqukFETYZyKR/HNKpWBkJSy+somXboiVkIKbNpW7b9wJAyKYlKDxf09PBy/6Ec1LdBAb5t87/vcYccvO96T2+tBPh9AvDX73vfuxDGfnYL1BYkt8TuHJEzgq3ZyoR33n+Pv/vv/ivOVNzcrNiEJe16w2Qxx1ceiaKWlMaSTMQ6w9C1uF07lrpOJVCb0qBubtu+Y7nZ0MeIM44YIu98+A5nTx8TDEVNENi25Emidp6qapjMj5j+rmHqG7589JTtZsnJouFoPme9XJEG9YYvWzZDyGTp6RnYblY8f/aczeqK2hkcKBw3Hg48MSZiEHKlCyN2XzwxIrvN/+cYf02yfv6hbOyMkYw3gq09ofKk3lC7iqoyBGvohkEh8xwxkrQgJEaV9zBYUySCk+wMika9gZOTE4wxhdw0MKksTV3vbnMTC9FRGb0+fN3gm5k+J5pxhyLO08eBKInaVFR1jRhhtWwZhq5YtCYlgKEmLhrgaOvfKGSUk5DJuNqTXaW2qSGojoD3GF9p+FpKeiJ7UuFfx/1jtJg+PE4f/ebX/E9/9xG+rlVTpaqYTid4C5IGLbVYobFFzTEZQhdIAYYkJGAIkZvVhi+/ec4fPv6YP3zyMZ9/+RWbriVJ2hndKNV6RBKlSAaP59AowQ9de7uuZb3e8OD0hGnTQIC27ais5XixUBfB4idhjPLBVNba74SCMkI1aTh5+AA/bdi2LZt2S9wI277j+YsXXN+oN8fNzQ3OwMOzMxbTmTpWzucY74locCtS3CczBMn0STP/RKYPKlqUBLb9wHK92XXG5H1M+xOey9fX3rvTf7zPd23+33e8pQ7At//tEGV482Pktd9G+FrnjSDSIemamC6AGSHMoJlgmgmZhumpJ970bG821JNGA4BCCLTeFzvHAvubGrGjpSRak0yjk1vLzXrNcrtVKDVkHj4544PffITxnovra0QsUwz1ZIJ3lVqrFnOJFIX57Jh3nr7PzfUEyQPbbaDvClQ/tqIYT98HVWPrepAIaLfCkCOTqsI4S8yqglbbSlt5slPCpGIj7MD671Hsv69Wf/ecvDUCcPi8v8B1+cdvJt9N0HnbYY2GhhIjYhLeGuq6oneWHDPGGpyzWjOXBDkWgutYTgNE7bSyCFGU05BEmM4XLI6OEWPp+0HLFF4flXImhoGu11ZYEdS+V1RONvQDpngYeKelqJTUspo0ECUyQcm0IUW6oQcEp2s9gimywrpJYEZjFEU+EoZsPdGpqVDCYJ0HXyHWqZFKQQGU7Pg2XmY/3fglBhzOuV3g99lnf+LV+QV/+z/+PQZDLiqr3rgCgxfD4FQ08TMkyUQyQ+oZUmKImfOrK7745jn/8m8f8/Gnn3J+ecGmG9QkwJldH7wUZVeBg1Lx2L1kSncWqg0QE+v1hu1my7ypaZqGLgSGIgKlTpujO19G5aNHTZdCcM2JbAy+aahFwFeYqsLXDavViu22ZbXaEGNiNp2qhftsivOqL4NzDElLa8qnyTjvSaa45lmdyEOMbPueIIaYYbVtWW87QhJilvHwvbYhv23Gfd/4oQjATzG+FwLwg1+4REw768kdsnrwhBKpGEiyIsaXzGYPqI5OyZMpm7bj4uoCK5kq98RByS5JskakB9FwKrrO1pgikapqUQpT6pkLQXs9+5TUHEIMDx8/QTB8/fw51zcb6nrKe9NirYrl8uKSVy9fcvHyFVcXF3TbDiTTtS2SB3JKmJyY1DXT6YST0xOmOELMbLcbQteSQk9MCessOQY1bPAOSfvyyM56VmRHVBOjvtyjE/BPcf7/82T7P/5o/VQXnDn4btA2K2sMk2ZCdJ7YZYLNpFDg8wKvmpEYV7IsW4LIlCO52O8aY6jrhhAz/dAyDAHnLCk5Nn1L3/W0bccwBESgGsVSQqTtemJOOOvxlWM2m5Z2VVTYR3TTDykC6EZiLTlFhfcL6ztlISLkQozS611Jutl4OoEcI65qEK/tldE4krHI2MFTJG2NSfvjds9k/TEb9i9xs79vhBAY3S6HIdAOA8Z7SFltp43H+4oUktqx51TYcomYM11MDDmz6XuWm5YX5+f8/uNP+OPnX/Lli5ds2hYxIN6TdwGdIgWWkdy9T1/z2IGAGghZZ/G+ImdYrdYsl2tO5nOm8ylVpXbXQz8Q416LX0pLoYkGY8KuuyXmSBZV6mu7bmfu5ZxnMT+i8jUxqhdLU9XFEMvhbEVdT7DWMwyBIQyqV5Bz6XZQp1frtHTbD4OK/yRh2weW65ZtFxiSEMrhG+F/+Gmqo3eDiO8aP2ovvjN+vA7AmMrzehS0+/3ObQYtbxcpnF0ZwBLxZouVSyS9Ylo/ggaeXVyzXq04ms+Zz2bc3FwS+0Ed9ZzKnu7au0BZ3Rqnliiy2EfKwSab8k5icjabI8bwyaefsm17fDXj9GzKpGmIQ+BPXz/j337/e7764ksuX12w3WzJIeNtQRsqq85oKdJUFbNZw5Onj8nWcnx6Qt9HNssVOfY4J4pcODDOEsom4KxBjKoYpjwoEcxomQRGtESPoeVgAt7LHnl92/u2yfVGwtq3zLL7yCm/hPHnQCQbFzpnLWSF3OvJFFfV9GKVhNRHbc8zVjXRxej8KiSpLKVlaSRcoahTiJFhWBPjXho1CqzajuXNkrbtSuseiKhOgQbEPdYIrlyTs9mU+WLKdDqhqn054YKPA3VBraq6IaUiXZyzwvwCeVSt1ncApQcgYVlvW+K6o5nOaGYz5s2MbL2SeHfM8fEY3T5fb0Ow/DHn95cYFBx2qfTDwP/6v/8j/8//5f/KbNGoGx5lk3aWXHlMsqQM/RDp+sB2GFj3PS8vr/jy+XM+/vQz/vj551wsVwx5VL2TnT2zruO6gO9SlnHzB5C859KKijypBbZKTS+XS9ZHc6aVKlwOg6KjwxB2apJg1LwtxKJqqchtF3oye8a+qmMqPuqtwzVTpBJUT0XnwmwyZbGYU1WOoe9ptz390IIowdR6R1XVVHWlngE5a4v3MNAOkeWmZ7npGFImpn32b7Tadedc6Pe3mYJvmmq3uHNvQt7vKRu86fm+7TV/FjOg1z7EDu+//XXA+ynQZsKYDuc2dP0r8uaMxp0xdRMeHTecHM+RfmC1XDJJiYfzWWFU293iYK0jFGepjE6eoai7SR5lU1X8ZTZb0ExqTs5OaLctN8s1SSzNxDCZtFycX/Dxqz/wySd/5NWLl1y8Omd9syYHtT81qBe79bbYrkYab5nNapbrDW0IvPv+u0wnjUbGWfthK+/BK0EwZlUqdBiyBLL0CBFsAlMywd0BopQF9Ix+64K3Q1h+nvFDSgd/HYdBmeqeixld7zzG1YjzxBCJWIaU1KUvo+YjUs59MUBPMRfIPKk0sbXacz1Eum5AiuT2us9crztubpb0Xb8XLhGDc15Z0GHAEXDqBYv3jum04fhkwdHRnLquVKHQmV3/NaKcBIy22KYspd1Ln0ODV+1YSMbSR+FitWbdDhyfZB42U05nC5rFAnwFuF22l2LeBew/17x6G1nVX9JIIlxcL1n3kdniiKoCL9r1lGJSpZWcaYeB9WbLum25Wq15fn7BJ59/zufPvuGrFy9Yt62y+52WjcZ1RkraOSZrsFcJHYOBMVUxVl3+jLWFJKparyEkNusts7pm4hWd7fuBMAykGHcIQIy6Zvd92CFW3TAgVgPnnGTU4tXXK9eFFaOiXWhwezw7YtpMVAq4j8Q+EkMkhJacM76qcHOLqSrImRQioesZ2o7VesvVcs267emCkh7HBPIw+x+z8V/q1PlZA4C9QNAe4t5dz4fBAJRaNxgbcbbFyDV5uCBszplXT5nWDSm2fP3NC776/AtOHj3k5NED8KNBhGb0YytcjFHZo6LSqCkEXMkqJpPJTsb16OSIqqm4uLykaztWm46ue8nnf/qSf21+z/LyiuXNCklSSg+xLMKmRIytBiGUdrIMVSVstx3Pn79iiImzs2MWlcE5qCp1VVOJSyniGY5IpHGJ6dxRNxFjovIi7juusv9lb235HzcD/7r5f49hdHEkWxJJESCBaByDWFIQQhTaPgJZyasZGA1eSiUL1OzEmn0AHGOkHwaWyxXbTccQIususdwEtiX73xdtS5cKuXTGRGzxELcW6qblZrNlNm2YziYs5lPm04pJ1G6BqgiwaBuhvtOM2gLvNCusEq2yyQzZ0MdE9p6jBw95+sGvePLue0znR4oBWls0MO6Br/4dxi958x/HsxcveXm95uGjx3ibiTGQcyTkgZATXQgsu5bL9YpnL17x2Vdf8umXX/Knr79h1Xe0IWkbphn1R/RUWLQMxdhpdHCKDsu6eupUb4UEIUaMWCSpzLuzrnQFbDBNo8lZ3zOEYaepIVkFpkII5KwcARF19jPOkItLoDeOyqtugBE0OMDhba1/ryqcGGJRfo1dIA6RoRsIoUcklTUbHGqFPbQd29Wa9XLF9fWSq+WKbdszBLXMzgefe8e0P6xi/4wB6881fnwAcJht3ioHjBvU/m/mYNM3t+6uG/W4r1kCtQuEtKRbPSPZyJA8N6ueP378jMuLC6Ynx4QYsdYXERKjzlBJBV2yCLYEFSNLWkQjRec9i/kCX3lOTk9IOTGbzGiqNVf9kqEbqGpdlKfTKcdHx5hsSCHRrls2qzV9OxAH1U0fUqT2jumk4fT4iNMz/aomNbYEKH0YqMUCNd55xEKIRbHLlk6ISjg+qpnOIqoCKHsynzk82ObNCAA/30S8P/v/thf75S+qP/UYYVTdgi1inPZg24ohCKtVS7tZQhzwXpGCveuYPoHBYJwBySq9avfe6DEltm3Ly/ML+m4giiEEg4mCNzvsFmtHRUOPsYaE1lgNOh9TTHTbjjj0dJ1+r9wps8lEXQ9HRUKDEr8Kg3+/Oew93CMZsRXNfM6Dk4f87u//nnfffR/fTIgyHg9dEQxGGwryndX1pz4Pdzb8v4QA4OXlFV8/f8l///d/C6grZMyZPga2Xc/1zYqX5zd88/wVn3z6GZ/86TOeX1yxCYE+Z5JRe2eRMfNHOR5FjW+UTjeiG36+e9mbUcHR7D1O0Oza4JhOplS+om07XBacEYZBbay7YWCR02691ABA17idimaR7619RdXo8+ZY1AKNmmd5fJHuhrDtCSnQtls27Ya+70oJIKgYVa0KrjlFwtDTbttiC75mvdmy7fod8W8EHaBk/dxainfjbafRn0ug8NYBwK0a/kHNfw8Jsc/mSyQ41opMOZF5F2wAAQAASURBVFKjFbAZN7DxIUWuV0zZCFPGpSXegKHjZvuCl5eGL77c8OzrLdX8lPnJAzZRqL3QSCANkZwArC4qaEaRYy4eOjp9deJarLcqLBEFEjSmohbHzFc8eucBDx4/Yr44JqXM0eIYj2VoO0LXs7y6pl1taTdbtpstISaqyqvgz9GcxfFcFbacFHi0J0sgJQsD2u9v1TzDOMHEnorIvOpZTBKVD1iTsVnJt7mYvASbd3mbGUNxyuJ14P3w/eaWHJyf2xP4bdip43P8vEWH/9hxn6rfjxmx6LY7sVhTYSzUsxPc5IZlf07bZbxzTIyDHJEccVaJVWKy9uILYHRhHOVzjdG6a115jhYzTo8WNPWUyqo5Cli1Si2wKcZq659zJKvsppQL8iQByYEsUcV+yEysoXYWkhL9tL6bS31exX9TzmRTtgrjtP5vHdlW1LOGh0+fMj99iKm1LcuJImGIZmJjxdmY23Kt31X//7bxtuftz4Ef8mOGACFplp+BbddTIfR9YrXuuNlsefb8FX/40xf84bPP+eKrr7hermhDJKJt0hqcFph/tMyVna8gu592ceT+mBkpHo5jt4o12KRqghahbrQj4ez4lM3NFX0/MKkrQkxsuo5Nu+U4HisSZDJDHshB552zrpRtayQltv2ACHjjyEn5IpWvmVUVgrDtNmw3GzabFV2/Yd2u6IYNrrHMj6YcHR2zOJoznU3wtaEPHet2xbrdsFyvWbUtbegYUlK5bAcpHSAA5XobWwIPPvaPO4ffUko43G/v3vZjX/d7IQC3N/8xi3ndnGbXq36I9+8K/q+/YzM+xhY/axEsAWfWiIHaJGy2bJdXhMHipgv6LCTjiDnjYsbkSI66MIaUGWKELIUAqAcql8VmiBFEcNZRxUTfdiyvV4RuoPEVi/mUaVMTw8C27TAI06rBGTiaT5lXHh4JOUS6tqNrB2KOeny8kvna7YpMwleeqrElO4v0bY8TC1Ui2oiVgMuRujIcTWFaZ7zPyoTOpsRGhlQuumykBAHlWMsYVH2/cZe0ct8kuw/S+iXCXD92/NTZoTFlQxNtxQKDm8w5fvQO72ZDGFq86WjXN6yXl+S+x+RcEKHCxsYo1JpVSEvLAwnvLA8enPDowRnTZsq0majZjquoqoa6bgD1oVDinpCNRZwjxsAwdEgKCJEUe2LoFRkwGSGo6NaOra0romS1K1ZvjRKkYBGTyaaIA1nPyekpj548YVJItymDtvztyWw6t/JunfihG/+bxl+qsqAA/+//9f/D/+1//h9YVJ4QAsMQWW97vvjqG/71Dx/zr3/8VBn+21bNoaB0ZekisvO+2EE55tb6cvdKGFeiMXAoGI6u47vnEUzWAHM+nTGtPOcvnxOGgHe2MO8HQoz4qgKj/h3tEFhvVqSgyC5YYlAYXxLUvsabqnBGhMo6bMzkmIoN/EDMA1EGbCPMJ3OOTxacHJ8wnU9wldNgox1YrpZcXl2w2mzYdr1KGGdl/t+F/+89EIfH5CeeWvetuT9VJ8BbtwEe/ry77fBNlf1dbmP7t+sDxtz7fLf4ADKiCrrgeAKLKvNw7plVkSEl+tU104tXHD15oipQqUNC0GjQWGIskH/aK4rlvLduijGSYsQbh6TE6uqa81fn9H1PM5uyODpiNp+xWm/YrFfcXF1CzBgRPBZvDJOqYdZMMFhiDgzDAEbIQyakAaySqZwzJfvyJAaVHS765xnRxVUCduKYNh7vArZ0MGSRXWL/8wKi/3nHvzf0a8g4dOPDFA8IESrvWTx8yPToWM2x2ktefP0ntpsVoQTF46Y4irFYUVGhcb5Yk3HeMG1meOuxRlG3lAMYwYolZgNiC0pnwOoGnCQXX/RAij0pD8TQQ07UjaOup/RR6IegEL2vijtaRmLad9bkhBYSSrBiLEki03nNgwePOT19QF3VeiRy3m3wr6Es3wLR/5wowC99CPCnzz9nuVwhTYWU8s3Xz57x+z98zO8//oSvX75ive0Ku79I0Y67gLn17QdhencfY8s8NwU3d85xdvKAbrtmdX1JTo4wDLRtyzAMTKdTqqpiOp1istAZQzRKsm43WzarNSkkvKmYzDxHiwmShM16iwwDAE3labwjeEsQB66mmjsWZ3Nmi7nyA0qHwiihvV6v2Wy3DMPAEIYdKiW5ZP+AOWy/Gj+r2W/Qv8Rp9sYA4DDjv32b2f28/wO3Z87B77u+/zueArufR8SQsjCiC6UlUJsOWHPazDidZ7wfeLW5JH39JUePnzBffEhSTcoiiKIsUoUm865VJqe9d8D44jFF2s2Gy8tLlqslAPOTIyaTCc57Jfn1LdeXV+QQd18WQ20dk2ZCU9VgnFrAIsWJUBRe8upHnWLEVRaxlhwjIQUk1SrDaSLOJCaVMK0FRwAZkB0oNy7v5V3/AifZL2G8zSbx47PGQqQyapADAtZgnCdhgApxqone2MBkfoSrG9LGItnoTBhXnTHglkSKoVijZipf0TTaAx5DpOs3dH1PGJQDA7ZwCZQCZa0jiyWIeqPHOGBMUh94a6hrRyWNBhDOI0SGGDC5oAdZVQ1l/B0KQlB+NoLxnulkzvHxGXUzK6WLcTU1B4vquIqa/Xz/iRCA+87vXxoKYK1h2/d88qcv+PW7T0hdy/n5K/7pX/+Ff/79H3j26pzNoLbQozWGcby2JpufciezFu8sVV1jjMoAT+pj3nv6hBcS1PQqJ7bbLcvlkqZpmE2nNE1DVWy3YwiYlAnzOdvZjDxoWbd2DQ+Oj5lUDcNx0Lmr2BhDH1ht1vhssY2lXniaSQ0l0MwFbw8xstluWG83bNuWbdcSQlQLb2OIORWU7WDcOTzj5v9LnE5v5QVw8K38cPvTyp3777hGZv9g2d1XbpMBd/fdlw70T2XDlh7PlpkzPDwS5rOE2QZWy3Muzl/ywXvvYQW8rUhRdZ3HAIBxIcqZHfegDOcdYmDbdWy7lpSzerxXFSlnuq5ju1nRrlf07bbYbOrzWGtIObJa33CTBVDP97r2zGYTZvWE6bSmqtT+GBFy1kUtl9Y/suCzw1lLUxlmE2FSJbyJWFKBiW8f2x8Tme/Olbz+u05geT0L+97P/dfo5E1jd/5EKAKqSuIzjiRqkJUAJ2oWVE1n+Gaqf8vqAjgGyQYYvcxlzKSF4qxXYV3GpoyxmSSBbbem60Ix8DGkqIGyCIjxGN/o81uhqR3TaU0zm1BVDiHRh46EkEQYQiKX9y+SseVrR+A3HPxcWgGzyhanZLDO7K1jOajxo9dH6ZFEg6WfZ/P/SxwhC68uLvnf/vf/Hw/+H/93zl884/PP/8S/fvwpX796RRciqbTm5Vw8RuwBuG/MQej15rE/pPcjNTAGb47Ke6oiziPFbvv05Agrjzl/+QJyIgyB1WrFdDrdzefK6roqRedl4j3TqmLoBoZ2gCj07QYZQomtM9lmbaXNEVcZrKnxU0819Rhv1JNC1JOCHNlst2zblpgiQxjoi0V3U9Xa+ZUCLkbtOpSD0LTErndLpm+q4X/3sXzz436OafzdJYDy3y3SwS4IuEMaK99vb/6G4q1663nuQw/2VYBDeeBA5QZMdpwdwcki4c8H2u01V+cv2K5XLKaNOk+FSCq2rvq0+qQpjf30pnQDjKhAUmOeEBSGrRV6wsAQFdbX7EoIw0DlVSmt9toXHYucZYoCNuMqy2RaMZ3V1N7tghhvR0NUFPY1UoBbZT5qAJCZ1AlvAkhk55wo7C7Mw8rKjx2HHIDDIODwb+Pt370G377DLzUa/vcaI8Ylxmj3ilCyZZ0xKUUa66kmM+rpDJwnxYDBlhqtKY9PSv4qc9oWVq6PTtGvUhKoa0/deEIonTBBS0+qmgnGGUUkSnDrvdXSlQNMIsaMEUsUs6sbh6iEv7Fc59Def0UBxveoCn8pZro+0HaBXPQHVMFOEZHb4/WJ87ZBwLdt9D81ifPPdYjAEDNtP/Ds1Tkf/9vH/PGPn/DV8xes+wGxFjFKsivio2VVOljcv9d1e79E9h4hVga/88rMd9aqFLZkGu85O1kwbJas2o6UIpvNhtVyqT4u1iK+oq4qsijK5CoP4pDs8c4TWrWjljSgMzipzS/KnnbOgxFc7XC1R5yQyrwP0TCEXsWJNoqSdUPPECPGGrz3VNbQJEtIhj7mXbmO+6btd5yXH7se/lzT960RgN2vh/v6XfRunEcHtx1m+yMSYA6/HwYF48uZ0mJiwFrBkPA+8eis4b2Hjj89E7bbLdvrVywvLlm8+w59Hwkpq0xpEfvJWaPBvu/JKeELm1TNTgJDP9D1HVmEyXzGoydPePzkMTjHtmt1MbRGJ23JyJ0zYAWsYCtHbQ0GS13XzOdTjhZzJo16rBvGuq1mdNYaRnkuYzzWOKytmE4ci1mmYsDKAEYlV5VtO7ZIGexPFAH8mMl030R+Q+n2FzP+veBgrYKN7XK6SZrxQigRn9ZNPc1sweLojKqZ0fY9IUacKYuoBbHKvE6l5cqakp9Yip+AxRiHqyomsznGVYSQCUOmSRkRNRWyzpOLhF9VOSpvMFaphsNQLH+dJRqn4kQx7wOAMqXRbkRy0ZgX0T8IlhCFro+EoGgZO9MhVX7bOQECGgod+F+U8X2Iez8F3P+LDBiMZql/+OOnSBr4/NOPubi4os8Z8aU7qmT+44UsB//f/fG7Fxtz73qggmwHrqjlTtZa1Zow6iHRTCY8ODsjca2BZUrcLJdMp1Pm8zmU2/SxBlc5MMIQFD9LXgg5klORDM6BbPQ6cMbjjMM5i/NFmMgVhclS+9+2WzbtltV6xfnFOcvlUpkrZvwMnqqy1NmSTQSTyURSTK/Nj8NE6eeYOm96zh+zdP0gHYBb3QC3pD8LWeLgvuOedR+B8HA/O9z8xzuKKe53OQKJ2cTywZMJ7z/qWX2TSN2abrsuTlQWrNMIsMD/O139vLeaHE/caJ86hADA0dER77zzDkcnx/QxkI1wcnKMS4llU7PdbkvJ1uhkdA5fHKtqr/r/k7rBe4N3BleCBkRh0+w82TlEYjGecFhbU1eB2aRi0gQsASNRe3BK9i9jZHUQJP11/FLHuEIUDKCc11stVEYzeRHlBsyOjpnNF2yXN1raMqqGZsSWFlFDzFo+cAbE6kKfYlZSoNHXc85T1xZrM3XFbvN3rsI4r/zYLDhvMCREIoa8s/pNksliiUkIKRGKlLYtCJ/RqkYhtpagd7wmo8HgaJop1lbEmLC79WC/WRwuqgqnyu7rL61e/3MNY+Gb588ZWl0bh5hJTnkZg8geRTLmYDHR4747xG+5gb2+CZrd+dxxN+x+4RpvF8k4Z5jUFceLGeuuY7XpGUXb2ralaRo1i0Klfq3VxxjjMVVgaHu2qVe3yjh2sySMS3hxTLylbibUVYWvHbZ0Z1lR3f8hqKHVdrtltV5zs1wSYmI6myHtQBRK50FBA7Jas2djsSYgKRV3wD0K8nMHAT/H+N4BwK3Nv+zsWq6TnczoLqs3lJRHDnb4ch/2CMDueQV15xulUgtRRUxGhXEG3n044b//nWE5rHi1jUjsyDFS+Yp+SGRJu17NsY9YJU9VBS3lRIxqKtH1PVkyVdNwcnrKZDrFlTpTPZkwqRyPThZsNw/pulbNJkrpIKesPgC+wrsa7z3OgkEXXYvgrO7iQ8oEii62VUkNU7KzqqqpmwprswYHI/nvzkS6A7J/39P27zD+HN+TjvsWqn/HV7/zu2b940+FB1jumlWdzBokGUQs88UxJ2cPuXr1in7b6gbrDFZUXhWk1HQpqnsW47xC+EYV08iqiWEdVDU46xkJgKYQ8ozV4kLOESRirHYYiERSCnQhINHQ56C9/ppKlRqy9u6nkRRY3oO1DpznaLbg0bvvcXr2gKpqkKLF7ooBS9p5eRzChQdH8FZgcDsYuE/Q54cgAH8R0sBlU48pcnWz1G4SUcXciJBEBaD0rqP0Eph9tnFnHN5QEIOD2n++c3+duxbrrAZ/5XV0j9DAwDuHL6WAylnm0ymnJ6e0/Tlt2zKdTlmv13jvmU9nqjhZ6zxLZW1v5hPEW4KF5K12dxkLTrAuUuFoXMOkUpK2dxaRSEgDOWX6AvevVmsur664uroCDKenJ6RswXSELpOGhGDxriLXgk2Z7BzZeaSYE8WUyr5QkuFCfpWxTPBjAoK7j/m2atnrp+mtx/eyA74X/i0BwB7al/3KdvD420ED97PZLYVkkYvFqN5X6/cDuMzcBT58CsstfP6qY5ovsbGlqs+orJo2hBiIIRfTE4sYX9CBTMqZEIU4qOEExjJdzJkeLUjWkK2lmTRgDLNJzcQVmDUmRDKpD2w3G9rNlqHvVeu6EJqtgcY3GKML6U4hjUQKmZwd5AZjG4zxSPG+3g6JPlV0rgKjmusgSv4yCpk6ssqsc2cevOUJP3ycufXLt9z57Z/6Xn7Cn1O+9tNnkHef6+5ZuW9yF7DVQCbv19sxaBZhVPazGLAVyWRMPWN68gg3PyK1W3KOZBKOXJzXVGvdFNRA641W1dIqT2V11mgwbMuG73b3xTgMqNCQNUh2QK3lKgQRRdHoOkIX8aF0I0gs51xVKXJO5f6KKrjibTCZzzh78g7vfvgBR0fzXSlthP1H18M9/0Q1BnbHS8bs1Hznefy2zf/7jl/cxj8OoSgvApLxfkRRS/mQvY7/WFg8XAjkzrx9/UiPc0IflcZNrqhK4jTwM87t2sHFeASn6zAWYx3GVWoTLepgeXbi6YbA8+fPCWGgbS2u8jSTCdZaupRwTYNUXkmnxlJbz7GvmMVEyoLzVlv7nOCwOBxW2BFnRbTsFGOmT4m2H1it11xfX9NuW2bTCfP5CZtuwNjSsj1sGTIYV0q6VsAlxCckqRR3VaSLRz5LzqNhUb7FcRmVbu/bxM1IxHrDeG3dH5/rzqL7fRGIt+MAHDzx7nVvBeoF7jEHq9rhpj/e9fB57gsmKLA5pe4jenAyAibgnGBFOJtb/u5XjmljWA7n+HhFY0/pXU0fMxhPkoQp9UZjVWEspkCIQj8kQtCT5pxjOp3RTGc4r3Co9RXOOxo3YVZ5KueQmEkhEPuBxjfMqil919GHnj4FJCekuA5qNuUQCtHLQkqRFMFJhaHGWo9xwqurKzbXL5jVJzQPGoVkTcAW2YLRI91xpxXlB5QEdgHjwcS5t4b3PZ7z8DF/jsvm+J5+miDgTSHOfc89HujbV+rYI78PAg6gblF4XrBk67EYmsUJ0+MH3KxuiN0GUzZfSucAWXCmEPSyClxNmr1mv6EYu1CyfaOQv1qbarnMkktpSzd/EYpDm8GIwXkppa3iQFgW8FGgSlJhNDiP9w3WV+Brjk5OePT0MacPTtT6WtJuMdCNfgwG9nawb9rI7zuPh8HD/vl+2Pipgoj/kHHwvjNoa6nZr7+udIrcve/rc/cAsT24m0ixwhVFE/YJhdqae6/99aZ4sGigYNA2aZX9TVkQMcoVyeqMOp1WvPfuu4Rh4Pzigr4fwDmOjiOTRaV2wBjEV8Xm1+BrYSITJOkc8k47BkDUewBTDODGbjBbjOAMfQgs1ysuLq5YXi+xwPF8wWQ2BeupagE70PaJ2A6EnBE8GKsdLEaPsK7NSrjNeT9v9kFA8Tco5WgNFPK980vYz+3xesh3IZZ7zzm7RXy/z47Xw3c//K0DgMM5sosyDAWyH1N62b34fTX/NzHK795+73IqBkPFpBLefeCYTWueXQ4Yd4m1j/BuhjG2ZCAq9gMqPqGiF7m0evTqQhViWRDVt7qqa2wxOLHWkXNms2mLGQZ0bUu72ZKGQdtZUkaMxdc1kjIh9Qwh4pxoexfq9pYxxII+OGOxzuHrhmba8PkXHxPW1zx5eMzDsykTVxNiS6WfWOux7NGQv47/qPF98I3DKPdumH6QFWhqsn/USMwqvBEwGOeYzec8ePiQm6sX3HRbyCApYc2ICZUNPgnBKbxunBpMjAKuBi1/5ZTA5l1IqQuVyv2O3BZdSCGGQCgcmhC17t+FgbYfCDGrbKsIRhImJ5w1+MrgnC191lBVDYv5MdPJlCEWit9f6/k/+yiAUuFo7TcI/dt3ZJvj+v7ac+ZCtivT1oJxBud94UM5XffGurhAjInaV4SU2Ladtp6iyU1KGVNbvPMcT2Z89NFHDMPAl18/A2uoam3Lnkxm+u6L/borhkCSMuI0AHBlc86ls0Uka1cAoq1/ITDEgZACm3bL+cUFz58/J4bAw4cPODk+IeRM5SxNU+P9hPW2ZztENbEytqzlWuI1zml5bSTB7Y6dHrxxox8zfyl+NGMgMLZfpqhlhJwSeQx+x8ygBMrmznMfnsMfG6y+OQAYN+w7AcAYVe4kfw8WNcP+vnc7Bg6v+9ej9O/+IIIlJ4ORQOMGHs4y3k3ZsKWzG5ybUDU1iUSMA2EIIEqa2rFRy8RT8sY+Ek1JGGJSlmcWaIEYiO2WGANkYeg6Qq8Sk2TtuaZk+BaDpITJhb+csrYyOAhJM7OUM+IE6yzON4TsuF4L9DPOlzU3nTBtJmDWVCaW7SOWw5lfI1j+dfx7j2/L8u/7u/mWqE3FfEe4dffoA1a2FLKWLi6Zuq45PXvA4uiUzfKGmCMxjQYtBdTN6sZXJ0eISnCKKVAZi7eKAsSUCTGTkwGj5QAxShBLEjV+Ly1QIrJbsHJWK9e2D7RDX2Rb1QsgJattgEaRB20htCC2tDRmwqDaHFpuGMsUP/JU/HW8cYwkytdm39sgHIfo4u4/3YAVmwIxqmFhnVP+U0mcJI+kOM1kc1ZLdmcorXaDolZlQxUKTG/g9OSU3/zmt2zbnsurK5yrmM/nOFcRo2MoYlbeKRHb5FLMKJ9Vy8ZZ53IWRV1TIpVOsL7v2W47Vus1VzfXdH3H8WLOwwdnOF/RrdYYyUwnNd5bFvMp15tOuyiAWLa5MenWjXqPSN3tfhg3cyl/q6TeBQDj/Uai+uH3w+Dh1imR/fn7qVCq70QA5FCLljsb/z0BwK3N39wOCMbxQyE6UyyovBWcKS0fsynELcl3eANWKmp08Rr6UHo3TbFRtbtNP2c1ZckS2Gw7VusNxnt8FRGBIUZS19JvN3RtSw56cpyxhGEgx0zltcXKOIVJVZrVUHmP9V7127MlZAiF25eNgDPY2nO9DVxtDMfT97juTrlqt5wcB5zdgg2KHeSxJHL7+P6Qcd+c+bZ59EMX6F/Cwv6DLp5dmx7sINJ9gYFdrn3QzqdDf9/H8fv2tl18sMdSGaFw4ywGJZxaY5nNjzg6OuWieqHa6DmTk2bfoFr8hoAxgq/Uath7S2M8jatwzis/JmRiUnKYHgbt30tG65bADgGQUsNMKdH1A+u2Z911bIdASqIkVmdxRrDelkU9K5rgJlhXkaLQdYEwZFyjRkRyoNVx93z82J7/HzN+sdD/twwpKJJCy29fFx6zT9lN0L1cs3GmtEJbsIqUOmcPFFb1MbbYnBe3GMDQdj2bzVYzYNNowCB65VRWg84njx5h/+Ef+Kd/+RdWqzWvXr6i8rUKqInQNJnJRE2vcspFM8DhncU4DQAQp9bUBoakXWEhZzZty/nVFV9984wXL16yOFrwwXvvspjP2LYtlkztLbO6ItUVR/Mpk3rNqlM/GGtVkVNKmQ7RYP6w1fFwWKsqC2NboZSN3Vq7WyitVe7CWCYYbe0pHQZ5vC0XHYKDjrZvP+9veZ75HiTA29n7+H3MWvaQxWtkvzfC/t+NAhxelGpLWTzQR3EhiVirtUOdjEoUqaqKSTMpuv/aHZCzKkDpQa+QbIlZWK23XF0vEeNophOyqIlQt16zvr5ivV6TYsIYqJzHWVsmsWEymepkx1AVO1QXElWN9mlXvhAPwSnLEVdb8I5139HJlEX9kJtuwvnK8vSRpbYtMW+p6LWNi4ML+W1O2D3jDfPl3iHCW7/WuLgcLjJ/LoHAT/I29mn6/iY52PzH8hdFXU2r4eV+48/7CyKXAGL3HKY8ZoT8THkmUbJWEvBVzdHxKXUzp287jMmkFMhJW/Ykq6ebMbB2hpAC3jsaVzGrBOekaPWPIj575CsjRJOV6IrgjAYF1ujCFmOkHwbd/LcdISoD3CBahtidf4Vgs0RIEWMhRqHvI0OfaDy42im3JafdwpkPFsbvIvmN9/9Rp/MvgfH/FiMLmCy3rs+3GQfp3K0bjUHR1NLhIZjS22/Lc5vX94as5SlBkanlak3X95jTI6x3YEsQkJISBI3h0aNH/Nd/+Af++Z//lYtXr6h9zYMnjxGnipnW1zsugrUeMbYoaap1bxaLIHQh0w8ByapeuW57Lq5uePXqnGEI/Oq9dzg9Oy2JWlKnS+vwFvXmmE6onZJeDYK3VlOxlLHOapvgnQN1yEPRLwo3p9T+CzKwu6/RYEqydpUZ57B35uKh58YuGDgIBEahO2sNWUbewf7xxtxzPst4Kw7AYcY/JiyHLXx3y5yHm/8PHXc/AICRrFlOaYCKxjPIjGjmRGnAVlS+UtjfVVRVAiySB7JJOKs9+9FFgolgHDknwpDZbHuaWdAe6nKAu7ZnvWlZrTYaOBijgcVkojCpMQw5F9c+QzSCE41+o0SSEVzSQlzOGhz4ylFPPNkkrjcbommgeUBLzTeXPe8+dszmpyTOqd2ATuUClxU3OLvbLN5+4Xqbc3H3qcbT+p1Z2ffNMP6dx0/TATBu5Icfcr/xjz+reiXs+dZ2lykgSkZVSva3Z71jGUBfVS8maz2z+YL54pjNaoV1YCohSiIlnRcpQx4iCegGS+UdTZUZKnAuIlkdCFIUYtaAIMZEzImQy2cwBm/dres5xsgQAn0cGFJWpT+jXgIpa0mLA/LSyOI3BW2LITMMkXpmCgqXikGW7FU6f4oz9D3O85te8y9dc+CNQRaa0ElZ5A2m8KTU1Mz7qjze4r2/FbQdclg0SNPglZQRKkSE9XrDar0lPxZiStTe7coHqn+hhL7Hjx7x29/8hn/+53/h4vycZrEgeUcSmM7nkDV7jklLS2INFGQrFYZixpLEMgwDm23HxfWS5y/PWW02PHn4kAcPHlJ5j8SgdX3JeFdhESpvWcwmzCYNzm4LsfA2JH/fcbybsIo1O2+MQ1+L8RjtJZnHnvfbJNexlIAIuHwreBjLdGPpQCSXsshhF82b58LbKwGOGw77iMLw+sbyNpn/Dxk6ATNWeq3HUNNzRGsec9MuOG8z9VmFt55kYqlHViW6zGSbtF5V1Tg34FyFrxrS0JcNWuj7QIiZYRiIMRL6liGkUsPXmr8Vy5BEqXlGiNmU+r9ALkITBqpa8JNaF7wM4JjWE6bzBl9btnlg1W6I1pPrI4Kbcrne8vXzJQ9/dcKD6RlGBowM7A2ADZiDcsBPPHbkH9lPnL/wtfB7jMMAIJVk/bDGNSIBeVeTFBklrfXcScnoc7lw9hf6HvrfkYZAbzO6aRrrmE2PODk64+LlKyJBUVijVCddTLQMIUNmCBlrM70Xtq5kV1glX2UhJtkp+uXxNWVXyLg9w0TIZLLJiLOQi4ZAmZPqeulL6WAgpYixehxSzLsAoN12NAjWaclgV6c2/zmken8pQ1D0wI51fqt1fu8rnPU6x0SKpLPdBX4wrhvFFyJrQDkGFVmE1WbD1fU1bfcEb2qiTzSU1xoDDlTY7YP3P2C7bfnDx5/w+Rdf8PCddzg7U/TpeHHE0dERISVSCLsOgCiq/ppSou8C7bZnvVpzcX7O559/zcuXFxwfzXn/gw84PTnBodwZ5wyVt0yamqqyVM4ymzRMJ7VeDymBTZiCjt173A7m8G5eY/a4oBm9P4Ccd9ePObivKQTK/bpBsbPXDH/k/ID+feTr5BLAxxjIsucSjAF2+pY9440BwLgQ3SpT3rltjITGOtMPy/zffPHv4BRAeZiWRMNgTlgPR3zxouOb6wt+u/g7TK2QlPeVOpRlyD5jo2YddVWTJjPA4rwnxKj2kzPtIMhZ6PqebdsybLekvi8EJkMWQxQhDwFj9ZAaAYuDLOSYqKylqWt8bTHWY12lKm0YJjOLr4yKEUkgW4NtGkw1JdkpXTzm+fkNH5063mumGFMDEcQe7M5ZOy/ugejl4FDe/dtrp+TbzpEcnA15w/3+QsfhTLz3o+9UrtRtUqnWY8SdSoBW/MOzKSUAhy3997ogHiwIu4yAg82/kHx28YFCrFXTMJsvqKsJbd4o50RRS9yoLmhV1CdnIQRhCIGcWl1cjCr5GeO0BJAyIaVdsKf8mD0JadRy91WFr7Q32xmIRhdhb6y2llllQ0tRNhzXAlNQAhHL1eU1Xz9/zsOnD3ny5CEYuVX//PcOAH4KueC/pHFr3htToH5XukKU5W+tejgoUDQKSe3n78Ez6Lk3upFbo6p62UAIgevra1arJYvpo1Ib11lvy1yy1pEk42rPRx99xGbb8o9/+APLviOkyMkwMAyBWNZu71zZQCFklXgfhp71cs1yecPFq3OeffMNF+fnLBZzPvjgVzx48EC7BkJQbpe1TJqGaVPhqgrrLXWlHBfd72VXRxnFjTB5zwo6gP53Wfr4X0kUDtt/GYOrW0eNfbYPh9C3bvaukGgPFunba0jGezXvOmw7TCkRhu7e8/5mO+C3vdHsP7C5e797diJ1BLwjPHEL8z8sO2hkNNZOkwNxniHNCO4hN+2CT76+5vnNwJO/jUzruFu4pHiWx7BfHH1TM7MW6y1NVijf+eogYoOqryC3hJK9pFQiN1ELYV249sIOrmhcG68iGK6Z4JpaW7HQyLL2hqpy2mGQHBlHXU2YTD2pqtngyGbKVVfzbNnz7ukcXy+oJGBMZmRVZ1NprVcbG1/L1sRoOcKMZDQx7D2+Rpg6l0Di9VMkogi15HGevpYP3ividDhnf6m5nOy+H2TBsofh9Wc1JoFEyn2puSmrX0xECIoGpazHMAkGj9gKayudIwaMc5hc2qbK5rkjCpYsyuSDxQaH86pQWTcN1ih7GqdwvTOGaAuBCIVTs8mlfq/cF8mlTFDmQ87aAUA2u/UtF4MfTPETKPwWZ5xKDRtQXTntg5aS0WjwDE5c6XLxGGcRa4gk1psNf/zsU5ovPud//D/9Vz744F3wd7XkD87A9wgI/ooefMso1zHFz2TMWPbHq2wcdzJU6xzWa61fN1e3W6936qpWs39nNagd9SQ0UUq6Xjkho8FhBIIINmfOr9acX6149OABIQmVZCqjyqnWafDhcfTDwMnRgr/7299xfnPDx3/6guXVDe88ecrp2RlXi2OOjo5oJg0pKYk1xEDbbtluNtxcXXJ1ccHlxQXLm2umkykfvP8eT58+pmkqCAM5apeANZaqqWiaWp1irXYbVN4W0rmQim6FGFd6s8x+MSyb3+3V0uwBQl4PMPddA7fPyb6cqk9qrbp0msIxuxV0yH4fVYqBJouuyCjrNZ9Yr35AAHDw3nc/3/79YAs/WLt2gcDug7/+pK+pTh0cvB0EWha/kXAkRgMAjGeQI0J+xLNLx5fngcvOcrnZ8GjiaTA4a5BRtMEIxhmFHY2QxeKpMClRVw3eV/T9sCMXmSL/2FRTCIacBkUTDFjr8darRKXzmnE5h680Oh4JJH5S72Cp2lsmDTivDoASGzINlUtUlaUTIRnANjhZ8MVNx6+6YyZ1y9xsqdigYZDX+xlV9rIUXyIzHrPDvlTdCLQZ3B1kqmmP1sh4Ftk/5gBBMGPka/bfdkj3nTVX7p7jX+hQpb7y+QVGfoMBJCcVzDEBST3kDkkDcSSY5kBOHSkMSAgQyyaOxxiPcw1VMy2oT012HuMqjK93QZqe54MsoCioCQWWtQZfOarKY2MkZ6sd/Xa0eBVyThhTqUW2s1hvIA8MKRBTMYNhhCfHaZFVIwDt41cLV4/3TudXFkhWTbAAsYLzKkCkgUKpDZfSh2CJZIxNBFIh22745I+fYqxhMml49EiRAFcyOHOwXvwQTsnbCgH9Zyo75AzelpZPBJUbP7BkL8mVykF7fKViPriC/viykYzlqXGNdAZfukuMMUVLomxECU0yikRvKiXMKKo+sWwjLy9ueP+dnumk0W59p0CnNQqDW2vwzpJz5MGDE/4v/9P/mUk94x//6Z/5t3/5N+aLIybzGZPpjHoyIaVE23bEMBD6jq7dsl1v6LYbmtrx+NFDPvzgAz549x2mk4qcIrVz2KpCQoWtoK49TUncooCQ8B4qb3BGCDmpOZ31xFyCpt0mNx5xOTimihTerevDfo7u52Henxf2QkqHC60USf39MxUR5/EulrLeHCADjqIpc/94Ox2AuzePkMP45oRbF+9hlHDrdl6/fTcOgtI9ilB2GrNHUjyGIA3ZHXMzNHz2/IaLZWQVhOVyzeOHp9qffKeXcoy2cs6YIngyvp5CnnlHqBiGYXc/69yt3k6thXmFnkqWYwpUZtDuGGcLhGaMqrQ5h3dFOS0bQFsDUwKDIychW8NAQy9H3GzXvLgeeDBZUPk50GIYwMZb2guHARNYjDhEHGIjycbyB8uoViVkRl8Gkw2IH6cQu8qzLcpZo7wxu4cgd77vztsdtOcvIRa4hWYBkEvQFMihJQ1bwrAlxo6UIzEnUhrIoSUOHbnrySFqdp0tKRu8bajnC6r5gmo6x0/muMlU9SScH/NyPU8lONOMrRiP5EhMEVBjFImU0sGeGZxyIoua/lCgWF/VO6Z0yoNm+phd7d+gCoQK61qVEK48dV1hrMGULGcXIBtFvbyxqus+dgygAUqSjMnapRDaLX62xfkZ8/mUbbflDx//gYcPTzg6WjCbT/V4i5ROlbfvc75bc73v5zeN/yyQ/3hed4SzEt2rGI2S+4x1WDeuaboIK9Lp9ZwWOHncWJxVzsfueeWe427UjyJlpaXhtTwV08DLi0vOr644Oz1SRUpRzYBsBGNVtApUxEey4Z0nT/D/rWFS1fwf//hPvDy/4Nnz53QxaRLmrTpiSibHTIqZae1YLKa8+84j/svf/S3vPHmCteoauMuujdUgt7LUtQbWWk2rEQYwlqqusL1AUILrmBzJbgMeM/D7AtD9z/f9/dvue/f3fUK2v22kIoyBggjaIcc+uBgRhW8bP8gN8NY4WCl3aOW3Zf5vGLtA4c7vGc3KTBHbsTJhsGeswgP++FL4w7OOiy0MIbJZbQrBWnbEiHFTH5mScCDSMDIxD+7bdR193ysRMET1onZ2N9lHswts8UAQlSfWXVEY+8D3PZ9lg5UyYWxNpmLdZjZtRkyFw4OpSFITjGEdIt9cCY8WNf5YmHlwZok1PUIubSJj2j/qeus/K+wysLH/dkRTpAjLYEBMCRjG02gKQlCgvt21nAv17WDzH8/TvX4Of6HDGi25kAeGdkW/vqJdXyNpQG1tBSMBEztM1yFdh/QBiUKKEILQ4XDNFDNdUC2OmZ0+YHr2gNqCrWuM3xOmkFxq6GVzFBU2adsNfd8yGupgiywv2s6XChkw4wBDzGgGZj3WZ1w22habs8qyAk4023KlJu/9+DW2+GnLazZjG2ohLo2s5V3So+/DFtShDT39kJkenzGdHzGZNVgLV5cXfPLJJzx9+oRfffgBdV3fKjWNm8zbbuSviab8J9nY33aMG7eK5Wgv/2gAJWMtv9Te9f57lztrE+BL210JKL3HuwqzE4nZJ1i7PncAgWwcIytdS7kWbMVy0/H81RUfvP8eM2Zk7G7zyDkV/RbBe0/MCZMyD46P+R/+4R948OAhXz77hq+fv+BqtWTb94QUQTLzpmIxnzObTnj04IwHZycsZhNOjxZ4Z1mv11gslatIoYeYqaqaqgLvDdYbXOWJNIS0JGbN+CHsEBDn2AU+44L4rXP1YCqO83TfIngYCNjbVfB7km/7WoCwv68+b7k+D7Lu77oSfnQAMKIU35bhf9u1eO9FKsBukdln/fuygCPFGcE/5FW74PfPer65EdaDJQ2RvuvJMWEn9R1yxO3s4FBpKWdBMrsA4DBIGHfHw37lsSZ7WL8x5F3PtHe6mEppAXG2KjKQe5vMNmZuNoEuWMxkgsFDNiRTE+0RHY843yS+vhmwtuZs1jBtljizxuYOlyNWEpbifmgzTkpl1yRstgiT27C8kVIG0O8igpgwVo9uJfFq3IEGUijhy+6rA6+fy2+5/S9piETIgTxs6TfXrK9f0q2uMTniHbqBknCxw/Y9tu/IfSANCROENGRCyAy2IlQTzHTBZrthEXuObKZeHOHEg9PGT48uxsYUBn5OhDCw2Wzoe63nGVvmVDa7FUPFR25nGDp30UXeKyFVYlKEVorFtdz2bt89Xp+kzHt9P5TN3+wer4HD2CNuvKILIUbwNb7yYAXnwTjo255vvvmGz/70J45Pjnj48KEiGgdZ5NsGAPcyr/+KANwa+z7xUt+3ppQuizmU1XY+MZYse5RHOSGFM3RniKD3LX96HdIuScKYhJRzG0XwxhFy5OXlNZfLLSdnJxqwugoBUowqdW2VIOpdBVnn2PF8zt/+9rf86te/5uL6ilXXse06omTlWjnDpPY4a6i9tsJKUp2MGAaQhDMOiynlC9GybcWuO6WeNvQb2HQ9bR8UwShTKmdB5Y32G9whAvBtc+q+eToGSm+TqbM7lm963tfXYuHN8/zNAcBBKfLuH3as/JLx3xex7N74W11nxTKyUJQO4W0xFOWympBO2LjHfPJC+PjZwE1nafuIGTq67abUonx5XbNjGo/CPYfiCSmlXcY+wpsKgdaIQG+Gosl+AH+KFPqdfrlibbkLAgQkJcSA8xXeOxDtubamQvBcbwKvli1B5tS2QSVSLckIA57eHHMVhT++WrNuK05nFfPJGfNZ4MEsM7UD5A5vI962eFqc7XB0WCIuG2y2paWkWAybjDG5VH3Lxj6qzaKxAaWlEdHsURASYV8X39cb9DHlvLq3Ob3/geO7NoRbc63cYA7/CFqvyQM5dAUBWCL9GmsyXiwei5OECx2EHhsHYhwwUbOXnIQUIils6W1H2LZs40CuPP54gZk25AQWhdRjFKqqJiUhhEgOgdVyxc3NNavVmtoIlTUqz2ot5D2Ja+zdFkzRqCibvFVuTHajmU9Z8OX2teK9Q9uS1dPClcwwoQGwyv5CZR11IYp576mcuqjlrISvjOH45ITpfIZ1SqyyzpAlc3l5yR/+7d948OCU2WzGbDYF9sF5jHF3vd7Nll47f/9JNvIfOsZz673H106TLGtL90YpcRZEwOJ367UUQqmIKbLPhQQnKg5FooivHZYC9t0jmjErTyQb5XINIWG8Gl1d3Gz47KvnPHj4gMViQUjq6qdeFkY5KcZgjZbH1HFSyanTyvHuO095ECMhZ6z3xNCTU6+LWU4g+qXX0EAOoSgHei3NWkvlGw3gPRgn+MbjKs+2W7NtB4aQGFLe7UhJBF9E53YowMFxfptxiMhoKXrUWtjD+Xrb7eeTPAbHh7D/7WBfA7PyHOW6fhMO8L0QgH1Wf5AvGrm9wR8snoe333dw9lyCg31lzLoLmq4fRh3MgizY2nd43p7w8Ys1z5fQBsgxYGPH0LekYrpzOBnH1znsi4SxFABhiLsAAZTQMmoBjAHDDpZkD+XknEsrzBjtsis/iC2vFwLJiLpluYplG3h+vWU5WJrFAqmmZPEly8pkZxlMw8aekIeGm6sp1WWDMy2nxxUfPml4fOqwZsBJT+1bPEsq1tR2gzcDte2p8gAETB6AAWsillgCrGLIgR5g1ZRX22OTBSO2dLwL4hyyg5bY1YvhsATw510L+K4L83C+5vGGXX18BL1FN/LQk/qOPHSQBqrK4I1gc4Kskrw5a8aRUyClQEqAGJxRQpbNmTT0pKEn5qjQfUoMXcnsBax4DAPrbUu7bamspdssuby8YbnccDqfUteqpDa2/mnXyViZNGUB0AXYChosOIOyrcZ20qIysRN7Gb+XgMBaCvkYS2FqA5WB2jptBUSDDKUgOlJZkE9PT3j45CnT+ZxuKJyEoh8QY+T5ixd8+umnPHnymOn0PfUQKMfiECZ9EyfgTevKX4cOYwxN02h934Kq3uzPRTZWuR72QNhHQEp5VPKIERoYZdUxJai0t7L+17LgYiAEhU9ldJ4mk2lj4Mtn53zw/jVPnzzGZSEbo10kSJHELclZaanNon4WIUVc1eBQoqOJCY9BrNPuFoodb5HQTTFhRAnaTokAOGPw1tDUnqp2GK9E8W3XcbVcs9y0bDs1jotjECC6EZuxC+zgGH/XOdgdktdQrrGEbPe7+52Nu6Shd17nnmtiVMjd8QDerK75vUmAh0GA7GkQ7Fm8cutx3+daHAOBnf1ARiNTajA1kSO29glf3Xj+9KrncpsJIeJii4Qtfb8l5H1f87igHUL442Y+Rm9hCIQQgDHLvy2vWOY8oASncbcfa7UiWTsExEDW1jq9myWnSBDViqbybEPk+WXLq3UkV2f4akIs0agxGeMSYoRgDa2pCcazTBX91hK6ikfpmOH4EVuOqb2Q05aGjsquqWVFnVd4aanZ0JgN1gx4N+BMj5UWx6AwNYKVIjqRIzZHKpPwJuIIWBMxKNnMjDCPGREAvQjHrHkkCP4l1AEOrpvXhhWQmEj9QOx6UhwwOaIM/0zKsXilqva4apdnYs5FdEdNoeKO1S9aZ29qxBg2bUfXl6AzJsie6+slX3/zjJQSH7z7Ho0zLG82bNYti7qB2pes36gXu1htUZR9YK3WEyooZBh5NEavLTsGALLb8G9/FUShRHrWOIwFJ+CstiG68ryStV1WrEGMp65nnDx4wvHxA7L1pNwVlnm9C6K7tuXzzz/n8eNHTCYTTk9PlIQ1BtEHAfxhhnl3/HXD/+7hvaeq61IyHNexghJZdUS1RfQHKAGwcplSzsp+L+tAznudh70IzeswN0DlrAqpAWDUQRKDZIMRy6urGz7/6hl/+7uPmNQT3VOs1b4Xm4ueRinVoiqtQxjo+oGmqAFqAKrE61g4BzI+LiTCEMhRfQO8c1TeglO0rXZKAnReM/+QE9fLLRdX16w2G7b9oCZxGQyu7M95Vyr5IeOwNK37kSYao0aQ/rZLKXfnY4RrR76M3FN6H5Hb8Y9y93nujO9uA3wtADggMJQFUyfDGHHsCxG3g4Db2LEpWdb+pr3ULbIPZPSg18CUZE+4GU745EXHy1Vm2ydcGrBhiwxbtu2aISXVmE7cWkDuBgOgEqchhjskmbLwlfunsfhjKD2yCp1pxFw2RmP2FqeSdypaYjSCNtbQx8j59SXPrwY6jqiaGck1WOOVWGLLqcuJaAxJZQcQ19B7y3UwXK0mDO1jWn7FoplAGnD01KajyhuqtMYnLQk0tsebQGW3eFpqOip6PJnKZCoJ1NLiTIdzLdFsqFjiZYU3K3LRGsgFAty1u47nbPdNbolZ/LkNgVsw3X1jnOKyC+z0ojlskCQLOURC2xOGnpyS0uysZhup6PBnY1B7HkjGkKwrpZ3IILmQ8jKurmlmM6pJQ8aw3ba8ePWK5cU1m/WW68s1y9Way6tr3nv3Pd578h7ZGPo+0rWBISSV4TX7TETneYESRwSAXDJ8s7s2xWS8BSk9/ohVO9WDzX/HL7iL7hW0a2xBJQvZZEKMmJyxlWMym3Fy9oijk4dgPEMQRHSTMZSJXcoVFxcX/PM//wt1XfPrX/+KBw8e4r27dd0elufuy6R++LiVw/3I5/rzHWNJpa5r9rtMQVbMnuSr5L9ULgJNbEZe1FhCuLVOuj3x79tet0R7QPEEMBZfVSAZI5YQ1f738y++ZPFffkvlDEairqdGg0wRV/YGkEJids4R+76Q8ip9H9YS0E6ZVALpFBM5ChaHd9q91dTKXVDyq3YzVHUD1nG1vOTFi0surpastx1DiIpEWFf2o+JdkVVd88eeF/2+azzetcTeHXuU0tz6ft9zGtgF/PDm9e/tpYDvuW30NN5FLWbM32WXJb+++Y//jW9wH6OMi9YYWBTOOmIaoizozQMu2gnPzi8Z+gFiB7kn5UDOoicrZVwhj9zVqR5rnDtnpZTVitIZUtTHGWuIQTtXi2k1xKxya1azoHGRxIyCKolYFllbWDFibWmDtUQRVpstLy9WrLsau2igmoBrEOcZGd+SS2RnpGz+Bus9k+MJfggstx3PbrbYZeTM11g7wUiidoaKQGUGvA3YNGAGlRG2ssXRYnOLlwFPwlthaiIzs6bxHdO6Z+pvaHhJk18wwVFxg8s9JhWtAc0HSqFASxZWBDWgUc7DiAr8Wa2l8t0bxfieRVQ/XNHystBpSErOkRQHYujIKepRcK4wqAsjnlIaKup3WSxRMkPOdEndzJIzDDioasRWbLYDV8NLzq+XfPPNc64uLtmuN2w3EWMcISWs9dTNDGcU1uyHQNcNpLnH2FwkqGV38Y+Lic5PbXE1shcRGb+s0awJMTs9CXNQ0lPex77bRQUPD+o/Y8CeZZd1NZMJ06MzFiePqaZHbIMQkoDxiJQ6crnMY0oMIfHVN98gwPnlJb/+9a95+vQps+lEyw0H13AqqoVj9mkOoKd9XfRtpoTc+u3w21/iGAOAnDPGO5WXhjIfzL6ePLYJ7nO4W+XTW5m+K8fxIPm7ReIc51+xibYl+9d4ICG5dLEgLFdL/vjpZ7z/9BHNoxNMthijgavzmlyNHism6nPXtTC0PUNf6vxRA+IgWXlgKSBZOwO8s/hK21ub2lE7tKwpBucdztfgatph4PmrK75+ccnNqqfrhD4U1M6Ur5JY3ke4O5yAYwphbi2M4zEdgya9EKQsPmL2pYHdcS6/mzuB1t2uF43ZxlL1bQ0BKQZB9423QAAOIm5kf/GUE292q+ceGr91FGD3waDA+0WpbsdXNrv1RM0jDKMVOpItiTldfszavsvLzZTVOkC7os49mZ7BQDQqsmMZ5Vn3Wca4YVdF5GIYBmIfkSQ4ConP7pdGZ5ySp2LCxlROosWKY1SsEGNLnT9p54Ep/f+mtIjsjr+h7yI36y2bbQA7x9czXDVFXEU2DutGqMaqil+WXX2NlHGVsKihX63I7QVpc0qaerKrSeLoncfaGis15IRJAeKg7Ne0AAKSA0YCkjNVZZnVjomJ1ASO6sSJX7PgBQv5hqP8JdP8gpprJqxpTI/NPU6SZrjG6/skYSXddsq9Owd+CcNo7VGw5AOfcgBE22ty6shhSwxbchw0sy721NZ6jRVjJIdMHoQUIAZDTKqClqwQTKLHss6GoY/w6op4vuK67blarllvNsQY1Lsieaq6wQA5G1UBdNov3fUD27YjpQmVRedLEq1zjo0eVrMAjFNLUUYFQIOgGVUuqnCKEGQMaTdnR/EhjBlDWqpxUqv+NTlnrdsbo7LWrqKaHDFZPMBMjglmQk8imFS4FUZ5EiKItSRjwRk27cDnX33Dxc2K5y8v+O3vfsdHH37Aw9MTrPXACDnvJ9nYIjlCoXrb2wQBJSvd0dfH7EjJWH+pY1f+FKflSrNPwcyI4e2X9tcSp/t4GNko8XlM52REntibQ42KopB1QzZ6bRijMtbGwRADXz97wWeff4XD8vBoTjYG5xTyd143PG8qfOXwRpd4UirnvJRtQ8YGLcV5o0JwIroHeA9VVZT9HCXZ8th6gvE1q27g2ctLPvvmFa+ut1yvEus20w2QxJGdeiCkrB4XY2fUHg0vkWlW6FohfSl7xe15ZbCMEPfBPn1rrz3kvowI9UisBNQ50Kg+w6h5Y63BSOEhlUA7hshqvfrWefH9EADhVmQx3jhGOwgFBTggipkiOrLL7sd7W2UVkzEi+PJlLCRj9aBT0XFKm5+wte+wlodctY5lqyYm5EiOQRdNUXEUU2ruIoIrgj1SVJvAEGPYZULj57E7prMhBBXQuYseqFtVEfcZo+ackRRJOeHLBaXBhOwi4JgC18sV59cb+lRhjxp83eCqGmNdUTk0Kpta5H6tqrLsXs9hqI3FpES/3dCuV0ynC3wD2VRIFCRbjapTKsZEFC16V5jlNa6o+kQMKddsMdTG0AVoTeDIvceW39BxwZxrJvaSmf2cRq5o0g0urRE6DAFnexp6bKnu5Z37nez+/7MY5vaFdXfolNwHf2MnvgOQhJWIyYk8tAzdmtBtIA/FMczhbHmM6KKUMsRsSOJU/tRYepNpjWEzZJZ9x0W3ZTMk+mwZMrRBSwO2lJJESpdGijuSUMoJP5lwfHpCVde0fUff9Ux9Q+1UmSwTNZCVQuzCFpXf0uI6JrsFZRMZUQ89UHYXeZfSgBGQWMSgMl5UXcCXP2Esxnmy0Xk7nc05ffCIo9MHmKqhDYkQM0mUKxN3n2cEAovHuskMIXJ+fsFqteb65obL81f8zW8+4t133+H09HTHNB8h0sN23sOT/XZ0gHE9kJK4vD5b/9JUAlNK6nviK12CDw7B3ZD92z75LSGbO8iujLfL/r76NZ6TIkc8ShHv0BsNvs8vr/n//h//xNXFNf/ld7/h0cNTjo9mWDHkrOu6SQr9Yw1ZIq72qA1LQb+c7soG3SCVq2DVK8Opk2vli29LBrGeZD3rIfHZ1y/4+I+f8eLVOTfLLTfLnnbI9DmRC3JRPvyuqiEUsuzBZi05FTiKA/Tx9Uk5rjSmBA6j6uK4dx0Sz/ePofA1zK5tfSzLpBjpeyUWD11L13WEEL5zHr9FF8DtJ9ihR+MqMs6FEb44fLOMgY7FoO0nChsdypH6ch+FcrI0DHnOIHOSOaE3j9j492jr91kPj9iyJroJCU+MQhgGJEZlWBtldWa0b1MwWOdxXrBRN/acKNnr/iA656l8hTEOiHsIVIoSlYC1eVcrE8mQTGF7p6INr8fKADkZcJoZdn1gs21Zt4nB1lTiMabCuxrrvDLE0RJAGjPPIok5Hk1ThCscjtAF+m1PGhJVVaDRnFQlLsYSBBhyLgu5USlXb2wx9bCIRPoo4BzRVKTsCdHQZXVX7NyvmJuBiV0yNZ8y4ZypPadyF1i5wnFNba4xRIyo2p2MU0lQUSEE+Hbo6c9rHFxkouUOS8ZKxErApEActoR2Tey2mBTxBrzTRW28+GMWhmwYxBIEBoE2wfW253q9Zd0PrPqBVcz0SVQkxVVg7c7vUeE6A5KIKbAj14rQTCecnJ1STWqGbktG8M6DJLzN4CtiVJg8Hezwu7OQpSz+pb2u/D2XYDWjQS7lNXVe67m0CJURvDWl9GFxvsbVE4IY6mbO8dlDFidn1JMpQ0b5NUV6OMVAt22JoXwmuc3uH/k6wzDw7Nlzbq4uuXj1kr/9m7/hd7/7HQ8ePGA6nR6I1WjddK+lPn7IOwve7fjg4IeDhfkva6+/d0g514etleP3uzXi17QgDje48hj/bYjJiHiXY6oB2/g8Yz993ieDpSugHwa+ePaS9WbLcr3hNx9+wG8/+pDTs2NqX+FN2egTuglZp+uxEYxksqRSuiheFhZV4QSVNa5rfF2DscRk2G571u2WTdtzeb3i86+/4fmrKzbbwKob2AyBlBXpNSUoHpGO3e6OBhijlW9OipAezukdJHpwqO7GXwa421ExuiNKCRBGlEHjLt33hr4HY2i3W8IwlNKHlj3e1DlzOH5QG+Drf9h/GwNDO8L646GThJi9k12hISNSIVQEIwTj6cwpnXuH4N8lV09ozWNW5hEr95DnnWGVv4b6mGwbQl4iOeGsfpA49MQQ1LFvPAm7MoDT6Ddlupxpu5b1ek2MiclkohkG+9rMGIWNbWGHhCRJFBgokiWW9qiS9xaVKOssQwis2pY+g50cU/kj/GSBqyY4V4GxKgNb9DTyqD1kjZYXEOUpWEvlGmrfEMVhxGONKnHFGAlJ31eKcbegJwFji7e7Ndi6wlSutJypCJDzEak8gwexjuQ8AxNajqhJVPKAqT1lapYc2QumXNDwikpeMsnPyflrUr6gMmsspVQCWBkr57+QAGC8Tgw78NsjODImRyT2SOhI/ZY0dDhE9e+LelcSYcgQxdKLZxUC6+3Aatuz3PRcLNesu0DE0GcYTLFzykJpxtwJSUkqSXjOOCdY70l5YLW54fGTU+2ZPlpwvl0yDNq94p3X5xIl5DmktHMWSN9qpq4LsJqm3NV0iCUEGZd1OwYAogGxN6Ktf76iqmusq8HXuMmM6WTO7OiM49MH1NMFQ8z0Iaq0rwjWQNd3bNYr+qFn7FxQdvcoPLNfXFKMrFcDf/rsT1xdXvL111/z3nvv8c4777BYLKjrmqZpmEwmu6xpx8sZ0bmDk3p70R5fx5bNbD8FRuj79gL+lzFEhBADvgROY8b+thvF+By3EJx7xqhBMRKpbz+WEnyOqICeryiCWE+MiRdXK1abP/Li8oqX10t+/eEHPH36hJPZjNoYvNdavhh1Y82SdE2TrLomtd9l/hRxqSBCDIZV17Ncb3h1ueLmZsXNasNqs+F6tWG96WiHQD9E2jYguYgklRKY5HEmCWNZLIuqwFqzV1vdzZ8C7xvJGPYqfyM4YOSgnI4iZDlFRvOtcUZq90siBEXPljc3DH2/g/51HzoI6Eq9f+TAfdf5fbMboLl/07+vF/EwADelRjMyTJ3knVxotiNT2pKpyKgxTjAzOv+YoXqPNPstMv0t0T/mqpvybG0533quusCaa5Kfk22tkHnK2JTw3rJeb7lZrnn6K4+tVI0PV8QonMc6R0qZzXrDarliu93ueo6n0+kOlhIpQkHFMe9QQUvQvlhGdAAhiZqdVLWKTPiqIolh2fYsu0yuFtSTh2Q/x8/OtP5fSgrGFaKWIrclKDbaLiNaSskZjLHUfor1FXUzxeBUWS7kouuey4QQ1dx22rNdVQpTe28VCk4RbFat90b/PkodizEMZNVyFwNS4dI7NJxxZB4w5wkT3mNmr1jYl0T5isA3zO0n1PkCS8KJFAuiX8jiKRq47TYANFMZW/ocQkiRFLRdNKaIdZqBZOuJKRESbIbMZjtwve64uF5yvVxzsx3Y9IltyCRx4NTMKZZAWGTU4B9ZBwJGN0XvK+rGF8vqgWfPv2G+mDCdT3j09AnX1+estlu2w4LTxawQ+hTGjzYTUyYm/YAiGpF7o54EklXa2Jqiv47Ou2xkh3o5DM5qMGdL5l9b9R+3VY31U0wzZXp0xvGDx0znx7i6IYlhiJlQym4WJZeFvqNtt4Qw6Dy9J8u8xfbP0HUdQz+wXK74/E9fcHJ6wnw+ZzFfcHp2ytnZGScnJxwfHTObzzQgcCpfnLPWp8cFydgdpbiQsPZ6IBiKd/1+bTtsb/tLGanI646b/yEKANwKfO728x8GC7tsVL8VufODzZ6xPZzXHq/baMG7Rtl0I2TnoVJi6HKIbJ+94OJmxRfPXvD+u+/w7qNHnC7mzOdTptOmlJoTMQ0YowldKh1YbdcV+Xehawc2my1d17Pddlzd3LAdBtp+IITEEJO2KQoMKRKiohOV9Xu1v/HStEZFjURltw9RkfF+h9o2+6OSd+jLuLlLuS702FhMQUVy2uvVhBCIIdAPA33XFbMubm3KY8ufvoWyYZf38zbz93u1Ad6F2cYPNEZFqkm+37AMtjCIc4l4HElqoqkJTElmRvZzspnQuYf0878lzn5Nnn9E8O9yubJ8enHNl+cb1tkxmR7RSUM0FVjP7sXQms962/Hi/JKPUqKu/O79CzqpY0wM/UDf97Rty3a7JcaE9+pk5r0vphey+67iKbbUncbjW/r/ix675Ew2onV2XxOisOp7bnphsAukPgF7jDDB1guMnyDG7ax7Kd7ZI/Vslw3uel8Fg2Mym8NkztHRGdbX9FEnfKLYdBpT3i8YHzFWXQqdM6TUMxZ/67qiqSbYZLW+5hxUhlzeQ7I6mZJ4Eg0+V3TiWZsFE/OIad5wZN5j4D0W5hsyjqn7DJ9b6txi6LE5fOfk+/MYcis5NFYXqJwjNhtl8sdM2wf6kBHjEWcJYhkGYb3pWLUtV8sNN6stN+uO6/WWTT/QJUjGkWylUqfiykarUKVjVGcURqausRoYTidqTYpxhNjz7MU3dP2Gxw/OyBamiwUhtnQxEila/sbr8jKox7mlQImiy44r80wZ3Du+EmAoCdMBh6eoAhpXHC6dSqBWNeIm2MmC+dkjTh89ZXZ0CsaRRElHKZeZLAKSyTHQdy1d2yobHbSd9k6GeKghr1mUPk/fDcSQWK3Wu3a06XTKdDrl+PiYR48e8ejRI548ecLJyQlHR0d478mlLKmOyYZcyg7Wyo7/oK9XFmWRnRT4yJz/SxpqCLbfpO7jxtzNFu/+figWVe6x+znnEaJWmeAR6RkLmWZX1hRGtRdBbatT4a2IE6ytCClxudqybb/i/NUVn0wbpk3FYjFnNp9qQiOREAeapmazWTGEiLU1bdczDIEUha4LOn9SQjL0YSAV2+xU7LEx6pOie7+KFeWyv4xr8q6j3mhztG7hdzPsg9q91gYZu2R0aTbleI3Xn+5dOWW6drubcyEEckrlPedbm3o5Kd92hndqgW87fqQXwHjCVVZUjEVwiPXKjDYOwZCMI7qaZBYEc8pgTsnNY3JzipkcI/WU4B7QT35DXz9mJce8vEl8/eyCr59v2PaZyWKGnxwRsiOJZ744It54NiFQe1V/WreBf/vjF/ztf/tvPGke6UQVfZcpZ0II9H1PX9Sd2rYlxsRiscBax3w+xznHZtOqbGbltRXK2rFHSj91zuQcVVRDMpV3zCYNOSYutiv6BOvkCdUJdvEQmhNybBBTYes5tpqQC3qxE+AwcCCXocMYjHWErH231VSNZFw9RWxFJEJxwUoiakPsLdiEc2rTaqwQUyAMQRXhsMSQIEaIDVkMxmV8pQRMYzNYDXASQvQGJ5k2QsWExi+YVY9Y2ZaNPOSYR/TGcWQe07gLZvYZk/yK2qyB/sdNr3+HMRI3NUgEGZWcrCeWSHzTZ9ZdZBsyQ3Zst4G2a7m8XrLcbLhab1muW9ohMkRhyEK2jlRQAjGle8QUmd5sUZPUUrc0aiYkGHztqetaBUpUdJwoiRATL89fslpe4Z1RBUHJtDHSxsjUWxrv8Ubd+FS2NZNFVdWKn2XpLNHsV4oMqUXU3teCd4IvAejIPPbeKZnWWKhq/OSIk8fv8vDp+zTzY4z3uuCGoATILEVrUsspIUXa7Ya23SA5Y0cnzjedF6Nzd1zrdGHVzD1GtX4VucSYb6iqitlsxoMHD3jvvff48MMPeeedp+oV30wQMTgnuz53aw3O3Wa33050NBDouvs91H9pY99GqWXCajLdEefg9iZ/WAIZxyHhciRijm6qWQST98ZVr4/D5xolqBnTRhR+sQUFNWUPYSdPPMTEzXLN9c1S9Ssqv1OM1IUy0zR1UW01OFeTYt69ztAHYlRejeq6WJ2bRjd7fYsamLgC+RurJmnZFKb/iIiaw8900BNnSl5v9oJVOaWdHfwYFY0Zf19UZodh0M2+3P/1YOvgfPxMgOr3DwDMne8lkhaUcZ5NqelnzXrEerrqIZ1/QrKPie59BvsOoXmP2JwS6znBOaJ4UjyilTk30fH11QUXq5bNMFD5irNFw4PTBevTU742KuBwNF/QXzqdStYRxfL1i3M+/+prTh6cMa0bckilnV+IIRFCIgz7g19VFdPplNlsxmTSEEIo9ZViM1kgw12dUQCUaOWMwVjVQA9DYLNa08dAclNCNUOqY1J1QrZHUFV432CrCUJhMpcDqLrtgisH1QFGCp2llB180zCbzoi2IUph9aak0FUce71NqeOqOpbFkiOEkLDiMEXPu9u25NyBqVQb21tcKKQNBNwocmTIrtUaV5/JyeHrBYv5nLau6SXTASH/NzY8Yma/5NjWHPnERDKw/FGT899n7CN77fU1xflM4fI4JG62PefLLcvLJTc3V6zXK5arNavNljYmuqgcgFxqfdlZxHltdTsAAtVAx2pXhqBEQzTewFrwjrppaKYNPus5zcVTXdCS0LZr8dZgK0dVTQkitKHH25p6RLJSRa7BxKSdIGNGbl3pFR43eIezms/gyuJudSFUnXSv2hjOgasR63DNnMWDp5w9/YCjR08wTomHhEyWSBSImv5rm68IaRhYLW92Usd30OH7z4oUBnl5wKGkqRnTzJK1D0NgGG5Yrze8enXOZ5/9iQ8//JD333+fR48ecXp6ymQyoSqbhynnRMsOsbQz7jPbUQV0RAN+6eNwY0kx4tm72R1u+HdZ54ePH6H/22Jqh8TAsTRwzxsYk37GYERRtrGqnolj9VU3XrQkY0Sz5ySQjH71MULU9zRpJmAc23UpzRmHlU4/l9XzHAr5e2xZV60Wt3sfmINAZKy/G0Mw475W2mQLjH9osLZHuUqZqQQ13vvScls8CHIkhIEYtW1Rg9d9cHsApgBjSWV/3H/O8dYBgMDuw4+1/fGE6cFUQl82UyIzepmQ/RzbLFg2v+HKfkAbz9jEx7TymD4+IcVTcpwQnSnEK0OPZ5Mzy05Yt4GQM0fzisWiZj6tePjoMY+fvscqrUlpy+rlnNjd0DgP1rLdrPnDv/2ejz58H392hkSVaU05qSxrFhJaE6wnDUeLY84ePODo+Ji6asjLFW2r+uvZsGs7ssapFGrZsJ3d9yJ3bc8w9IRsELeA5pj66AksnjDYOYkKZyuqyQwxlWZlzhcMVg/k2Mepo0ymXROtpW4mnDx4yCYImyFChiFloiik6pxmfk4MldXOihzAWUdVhDi0BBIJISsh0/XU3mOrSkktRSAp9kmreNZgvdD4mhwNIST6uCVjMLbGuArsMSHOWKUjFmbKUGeyiwzGAM9/ijn6o0e5Pnc/3x562arMs+rYx5IprW7WXJy/5OsvP+fFF59y8/IZq+UNIWntMGaIGAKWKAdtosaC9aWqoFC2kdKeJKpWMXbk65tSIl8zn+KbppTTUikLlCxCNJSwpaSWs+CssB16ZBXIcQIyZVJ5bOV08zVgo2r26/l0Gmi6jM9KulKPeMHYrHCtUXEj77yWxijBQtVQTRccPXjEOx98xOL0Edl4DahD0GCUXEhZpeRnhJQjq/WSy8tL+mHQ7N+MJNE3DKMB6XivXMoZksfym55U6/ZtUzElNu2Wtu9Yrdd89qc/cfbgjMePHnF8csLZ6Snz+ZymqWkmDZNJTeUrqqZS3oDsn3vnZvgXNlLSVmHndX7KPXXi+1CA+5RUgVJ/loNr7DYfYFdiK5uFBgq3gzBl8ksxVTP7qlzZcDNqRZ324SBiDF3IJbgwYCpiFqwp81k0ScskNaIqoYW+tmPHURjznvJWDVLUW8cAZfw4hzD8GNBz68GSFcnru47NZgMiDKEjpahr+f6QvVZaP/w9f08Y/8eMN5MABVxW0p6U9jpBT9Qom5o1fcJQE/OCXh4S63dpq/foqif0/pSv+TXf9GcsO0MbaiJTjPO4PlA3jqapcVVFrjwxZoYhIYMjxwm+eUBzfEZ1/IDBOexswXu//XsuvOU8Zezsa3IfMDnh8xaTB55/8SmfffIr5v/1v1I5zzB09HFgIBOsITqH+IraWeYnx8yOj2lmM0LIbPugbNCYqK3DicFZR45CkKgLd044Eim0qsyWDZ2dwNEZ/uQdmtN3cM0x0GDaHroA3pOz1TZEY0G8CmFIUXIzKo6ifaUqzWpSkUoyFlfVqhsfB7q+xVhPltKS5R1VXVHVRfHKVZjsGAU+ttstXVDEI5Q2LF9V+MrT1A3WGlKISIxqDpRG1qo62A12wInFRyHnltQtabsGu5ggU8/GQ+NOWaeaPk4I9oi5fwz84888fd9iHNS5gXtIT5phq15/y3q94Wa55Pryhq+++opvvnnG+fkr2uUlOXTEmMFW4KZkpyhBEOWHaBCrAkE2O5zRLCAl5UPowhowNmjWXzZpXzXUTU3lahweRMhSylfGaNZeshc3Mt0tCIE+DoQohBRoY2A2aWiKQ584gxFLJbUuaAVSTE6JntFFrdtaAWKBML1+PuPwvtG55ytmJw+YP3mX44ePmS5OydbTdn0hRgZVSixdMYaMdZph9jFycX3DxfU1IeXSVsV3QppS1hXGuxbympR1OI+wvUGNWnLGOm13xcCq3bDcbnhx8YpPP/8Tk8mExWLBbDajaRrm8znz+Yyjo2MePjxjcTTj9PSkBD6eIWeW2+1POhX/HEaOESsZCkdE84uRxT6iKuOmZHYb/yH8v+NqwOvQ/91zm3KRpdX+eCMqOjVmzBhFwjwH/fVS6uvOkyURcgZrC/RPkeLNGmgeBhtGhbJg5LeMdfqxpGBuBZ8jWXHsTNv9TpG5LtC+PsyRsylIq8PkhLWZFAb1/IiJzXq9Q48ON/z7xt1E5GdO9L91vDEAKMujniSR3bm1RuVDk0CwhdDHEck/ITUfIYvfMUx+xcY84iZOuOzO2Lg5QwUDwhAVinIZJlIis1wTUjFdyMJkMuP45JQYe2bHJ7iqwlSWajrh9MlTGpcxseX5V5+y3Vwx2I4kAWMdV9dLfv/7P/DB+x/y+PFjbYHyWrdy3uK8o2pqJrXn9OyM+XyBYFitV9zcLBlCUBtU76mqGudV6S3HQIqROAw4WxibxpOrGdOjh5y89xGzp78m2AnDIFy+POfV19/grOP44WMa35CNEHMkRt3ovVM5rFEOksJYllx+dU6dV7xVBnmO9H2H8zV1PaVpdPPwtXq9K6Nc618pqTZA27a3RCFG4SPvKgxOORw5FzGhjPYgjrUrS0pCjgGC6gzgHYNNWAdJPHYO0VdgT7EhwdAzmB9JL/kJx+1a737BEBFCCAzDwHK55Pz8ghcvXvDq1TnXVzdcXFyw2ShxzUrEoudARvvmItwkxU3NioBE3aBSLtydkXm+FxkSiWVB09p60zRlYXW7DNdZhzFu9773dtTjmzelxVXrlV1MDKsN226gdo5pU9PUNRNXYYzfeVU4q4uXE8GZYmdqytLnPM5XJNE56eoJ1WRCM5nhZ0c0R8ccnT4gZ/UuCCGSUlQpbillMyNFt13ThSH0LNcrtm2riMiOjQ/3wc36h/8/e3/2JEl2pPeCv7PZ4ktsGblW1gagwQbJZndzrsjce1/mZf7peZuHK0KREV5SmmST3UChgNort8iI8M3MzjYPeszdIzJrSaAAJKpcS7wiMsLD3fyY2VHVTz/9lHGjefXnlOCgOK0oU1qkk6Vktb6MEh5h3q7v6YeBxXIpa1BEV6y10lUwm3J2dsw7jx9xfn7OnTt3JHgZhj/iqns7LSeRQJdRwCJik8YWrX0oWt08PyMfZIcCsMu+9+x2xixJcklxpfgv9+EW/xpbruOuzKDGZJNtZ9R47MBr7+Xdge/ij9fqGYzX1kjAuxWJjsQ8ucTkvpZyUCYEvyXphcGjVSKF4QZx9K/NvnMaYCrOX/IOQ1KWmCo8liE5Npzi3V1y+wB19DPC7G/oqndYmbss84xVsNi2YTZodOcxPhKyZrPp8cPAeuiIOaJjQNU1dd1Q2QpXWbIKxGCZzSYYq7AGjNMEozg6OyW//x7PnvxcntddMnTXpLAhD2t+97uv+L//yz/zf/4f/ztNPcGYiDIbrDM0kwqtWqbthKPjY6q6lhHAfU/f92ilqKsKbR2qcpKpB0/OHu97fEgE25BtS7Yt7ekD7r33Acf338G0c67XHc+/+h0f/8v/4OLJVxilOFs84tF7P+PkzkOS1vgUiNkg3eYWSOjkRcoVgYFiSiidsK7C1DXZSTCQsigPNm1N27YYa9FWk4kCwaZIv+5kjGUZabwP4Y06BaO+9BhRv9LWolTR704ShGRhF5jKgjVEEn2IMBhCVKTsSOkYHx+wTPWf+tr9Xra/B4wZTAiB9XrNxcUFz54948mTJzx58qQo0S1k3Xws0bzasXaBcSJXGvXvS7lm1KYXCHNcy5F1DeOuOrKi952/c64cq9p93avLvnZjUXIsWUlWkrIEIKkPbNLAatPTVBWzJjNrjAQZSnglurQ4WZO2WgTZ1DK3IoGtatrpHFNLt8pq0/Ps6e/RT57zy79NnJ7e2ZYPYkxFLCux2+fl+5Qi19fXXF1dMgz9LVGYb3D+3+ucvv5vb0+l27/u938fY6TvRY9gvV7z5MnX/P4TxUe//Yizs1MeP37M6enZj4YEuG8j09xVTpINtYO59x3nPh9gf1/YrqmRQE7URr/F8eV843X3RYjG1055N759v8ywjz5kvn9b5u3A5cbPRpjh1jFu2yLLc6WNUMh5wzCIvkzZS7cQyV4Z76/R+cP3aQNkZEJa0A0hz9ioOb2eM7gjfPMIPf8Qjt5jXT/iSj9gpc9YpQlDdgSlGbQiZE/MGW0drXMoa+k7S9dv6IOHIdM2DbZyWOfQJlOHGmccbVuhVWDYrPjyk4959sXnzJxic/UctOPuo/eozLssF5dcv3zG5sVXLFYb/tt//w1ndx7yNz//GSFAPwgXwDmNpqUqAkAxRULMpJiwWuOM1NC1syStGHxP7JbEfiD6jLFTopuwyQ22OWP24BecPPwAU1W8uLjgo49+zW/+5X9w+fQLdOwYYuSr/pIcVhgCJ+ePsG6GT9IXHjPkrKitRqWxF1v6s7XWVG1LM5uiqoqqjbRtQ1W1TKdT3DheVQnRMYZICIGuGxiGofSU2y2XYT8QGIlOKZU+VUbER22ncZWKmpQnnEDaaRRd0QZlLGHIbIaeLiVyW5PcXda9+9Neud/TMqUnXItokmT6z/n8888LxP8li4VoQnjvMUakNb2PW6c+koHk9dT230rrwg7OjApk0hLLNgsak1jJErLoLzhDVVXbjGpfkW238abtPvVNm0tmrG2O52sUr4oEHxniwGa4ZjMEpu2EtmmoraO2VvgsWa75RCaqDMbiaoutJ9hmwrIb+PLpVzx9/oKLy2tUVRMj/P3f/0eaeiLX57g+4vHHvG2LrlxevuT6+oqx3PH6zO1V+7YWtW/63f6o79s97befu++IlFKkmLi4uODy8pKnT59xdnaGtW8PivVD2Vhb35GQ2UbJu2W9Sboc94l9YqTJouwqk11ffz73K+b75+5290EqAfN+i+HtqXipjHkfT6XZaxndf0NFvuH0d+8rT9ihcHt/VjgMMUb6Tgh6w9AxjnqX2v64O45IyfgZdgHTX2MQ8O1XeAalDJGKyIw+H7Ox9/HtY8L0IUwfkut3WJtzVuaEBSdc5yO60EpGGCIqBUI2JGVQzpG9jJes6xpXVbihYrlY4kMsM8UjQXvIiaatOJpWVDqhUuTl86f80//1/+Vf/ts/UeuMUwkVB1LomU1amrZlMrtHqw3Llxcs14F/+m+/xpqGe+cnAqkqhaucOEVrxXGmtBV6yWNzdB51A3qS32DH4TrKEXXFJjrs8T0efPBvOH/8IV3KPP30C/7ln/+JTz/5Dd3iReEk9KgUCesNX3+6QRMgB07uvo/WSI1KVwL1p0RmbAdRGGeppxNmx8JRyEZY4tPpBKXsdmxqCJEYEv3QMQy9DILIwkZ93UUpN9kOFhdITtI3rbUwcEEUBLXatjumnDGSvm5niscQWS3WbFYDJhvMyRH6uMKY+Z/ien1jyynTdR1d1/H111/z6aef8umnn/L06dOt0x+dh9ajzjzbrHG8wcG8MgN8bB+T/WAnBz3WUmVjoHxf6v3WCMpVuRsb1X4AMEKkSt383fjc8frY1udKh0AqBMMsE6mIKZNjZNFt6Lyn7jZM6oZ5O6F2lXSdZAnwojJUVU09mRESPLu65vnLa7568oyLq2t670mrDb//3e95790PeHC/ESpjLgIzBVpGjaWPTNdtuLx8yWaz3q6FfNWvOIHxs32X7Tvt/b+/zWC/XerZ//n+muacsVbaIRUSCFxfXbNarf8olOKttZwJ3u9q3iXYHzldYuqV9TTGbJOFlJLMppCZ0ruSAOU1yv+UUmUY0M2s/3YQMN5vt7P/m4c9jr7O2/tj/PnuqMeppdu/2gaoI8qRoqhjxhALOU8CVT8MpXQngfpO93188fL9j2xuxLcGAAnNJp8R9SmDfchQP2aY/Zxw9DPW1T06c0xIc7rYsgo1nWoZTE1MijT0qGGDTZ5sGkKyKK0YBmFFnpyeorRkiX0dyPT4vmedElVV0bSO6aRhNqmImwXJ93z2m3/hs//+X1l/+Sm9SpzMp0yair7vuF5vWLsGV1kam6gnJ2jgybNr/u//+j/5u3/3S+7emdI2E1I0OzgwJ3zwW4hn8KKx7PsBT2ZIEafB2RpUjfeaoBpm54+48+7fUs1P+fzrr/nsk9/zxWe/4+XTL0jDAps36Nyh8wBEiODXnq8//YihH/i5MszuPEZbRdZOnK21GO2E4JIztqqZTGe00znKCE/AVZbpbCJa1ssFVdXKGMwYSn+pBDFG7YanwE049HU31+j0ZTMY/62EC1BurUL9EG2EJBt/v+noLlfghajTbzR+MsW4twMBCCHwm9/8hs8++4zPPvuMi4sLFosFXdfdiNxHlEDkP4F8UyM9j85W7aRm89huNGYEORdi0uigxjU30oJmNXVVUZWplK/TYB+PxxhD00h5YBhEvGp0WFvYttC4tuiEGvUXS2lCQyIRyjr0IbDpBzZdz7RpaeuaytXCr6lqvDZcXy25Xq3pQ2K1GVgPonSIsuQ0cPHiBV9+8SWzyZzJZLq9doQ7kiRTQzQ3Li5ecHn5khA8Ek/dXJfvs3F+Hye8/zr7BLVve+5+8Ot9lkFiW8RHWob/mjf2b7NhGOQaKwkEejfxcQxqtyT5W9ntdgBTHoV/UtFiG8sJNx34FkG7hd7cCC5KMnHb+b8SxJWH3G5F7pcRPSvnELXX2aC2Dn48bj8M5DIDJn5bl8ftakP+hq9/5fatAUCk4tL+Dbl5hzj/JWH6M7rpB6yr+1znCUuvid4So6HPhmC0ZEkpE4eO3G8IKeItBBw5J6Lf0PUdm8ri6pYQRCu5rhrC0NOtlgy9oapOaKoZVsk2d7245pN//WdWz7/AxSWGCP2AsTNs9CQhsDMERTCRpnZUriLj+Ozzp6gMf/fvf8a9e3PIBh+kPh5iROVdNhwGz2a9Yeh6aQOsHM61QvazonNwcu89ju5/wHU38OVn/8zXT7/m+ZMvif0am3pM9lLPz7IZClgrG7LfrHj+9WcYV/OeMpw++JAhbVAWlLUymU4biImQIqtNR768xjQVVVNTWYtz0hr28vKC6eQYbUS0RuqyiPKkvpkZjZLHtzOnMaLPMUq/637AkMQRSWvMOOBnfE0IvWezWJN8xKIwOqO1bP6qfzvukNVqxX/6T/+Jr7/+mtVqdYMTAa9uMuPM+XFgjvyc3XOL85Ue9byXXoAQ/uLeRlZKOJXDOYurLM4WhbFbmf3+sWitmc9nvPfee5ycnBRY+inL5XL7GYwZuwzUDnbnptSroJU7zfuYMskPeD/Q+YF2aET/Qiv8oLherlitNqCtaAxEGHzCh3Hjldroy4sLlsslzlUyDjvGbWbmi7MfhoHLy0tWq1UJrvbXW/HH+NbXZf/j1+9TYrgdDG9H5d7IPL8Z2v4xWAiBytldNj3yVxi/qlec8Y3yyh7XY8d4FzlqY3ZDbfL2frmJ2mxfr7To5b33GJ+zT4BVgFKiiw8UGWv5uTVmG3iPXCaA9XJJ8J5YhHaAV9se345t6i9m344A2BmbB/9v4uQD1tUHrOwDrtUp66GizzD4AH0k+ohPA1FngYZRpVbk0KYWkkfuUSQqBzkqfL9GKYM2jrpqsUoRgIX3dJsN0U9xRqGTSIk+/ewzvvrkY0gLFEty8mzWmThcYF1DVrV0FtiaRGKxDhgGZs2EnC2ffvYVRgUUP+PuvWMyAxkwRezEexEH6rpOnH8INHVD41qSquiTI9oWOz9hQ8vzz77mYrFmCD3D5gL8Apd6tO8gdGgCWckwoVGVihhEjKdf89XnH5OUoWon3HvvF+i6JeqaEdpNPjIMga7rWHU9GE07m9FUFt8PPHv2ks3GY+5VWFcXSYGtp7oBdd5+AFtHcYPgs/eccYO2SstMhCxDb1Ain6m1Yeh6Nqs12Wdy5VDaYGpHwOA3b8edtd6s+f3vf7+F+sfNZx/S3OdFiHNKNxzU6Pj3HStZFNAkAxYYVY3iGEjmY4wS2eW6wjojA4TGHtr91977vq5rjo7m/Pt/+yv+8R//gYcPH3JxccFHH33Eb3/7W7744guur6/xBcYlb78AbFXOGLtBktrKRI9Ty2LK0jWQNqxDwPSeXlv6IaC1xWqL957lumMYAiprKPM8VM50q7UgZF0va4VMxxo7GFKGrl/z8vIFXb+WNkMFqJEj8A2T5P5A25Vr/rBrTkRxYI+8wY/dM6zXa2xdiUNnhMh3nRNjJi8/fk05RUHOkXRLK2kk9I0BQNHs+8Zgagw5tijWLYQGdqJFt4M7XRKboe8ZhgFIpCBEbnJh9OdX3uzHfmrfyL4jAJiyOP7fWNuHXKRzrodjlsHJfO80EIaO1PVS1yeSNWAtpqrRrsW4iZD+dMDSo1JC54QfPH5I+GzJylE3LU5rklVYa1h1K6ZNQ1tZjO9Ybzb8/re/5eXzp1S1EK/iIFK8PgeCD4S4wugJNrcoV6G1I0SZSjafHdGvrvjk0y+AgV+ln3F6doRzMooyJclcum7N0Av5w1lH4xwO8Mqi7ZRgplysIpvFJb2XYUGKAfwKFVbgBwwBVCSnwOiShXkt4yslkw6Efs1Xn/+ObBzN/IjHPzulmp+RlDC0o4/0nSelTMiZPgS0Ndtoer1ZA5YQAspY2FN3k2h5hKt3N9KNCD7flGLR6mb9LRWYL4Yox6zGEZXiDFKMDF3P0PcSyCkj5QNrCRiG4e0YpJJi2jK+99fiNmNc7W1+47/F9HaTFHvN7lEyIol9ZQ2rqhKhmcrinAXydsiHQt2Aqsd1b9uWhw8e8rOffcj/+X/8P/n5z3/GbCZIwHvvvceHH37IP/3TP/Hxx7/l2bNnrFdr4dlkENlfgeCVQuScUdvzOnIc0JSpnIqAtDblDF47UQoMga6PBJ9YrztizFjtUMhUypTSlhU9DCL1rM1I8JP6f9dtuLi44OrqaltaGdc6530hmB/Gvqne/202HssY+I2lsvF3P+bsH7Ujxo5wPjecvdqhAa+px++SCUPSo0yw/C4nQRd2CNiuhHAbuYFyH5YC/YgkjImJUqJ7oZUm7MnlSrlWJH5lBHq57snkXK5/pV69Vd/Y8X/XNfDXH0l8awDQ0fCb8A79MGMVHRvv2fR92WQChoBKMtYkZmToQdJopPcYhDRmtEOj0DqCkklnyXiSh5AyJE9CYVvNtGqYzGtO5zNsUjhteP7V13z8m49IKVNbh3ItPilUaXnzgzhKZTbSIpcnuMaStCEAVDWVnrO8WPHJ7z8n9Bs++Nn7PHr8CFWB9/1WxCSmAaMVta2pjUIrD0bhXcMmWq6GSBcCMQ6QerJfMqwuSf2SHDq0kiEvu8osSLvWqI+eUAR0SoR14qvf/ZoUQEfFz//DEVVbSSvWbIadwFiQi0HIKVorhsHT9ZH1ZgAt+uZC5tHbGzmrTByhtQLxjbrdwPbGV0iUnkYHVYIEyXiFoJOyvK9orAjUnMJA368JacBVNcrIseaUiXkoEflf3m4QHfc2s31S3X6dc7dR7aBgeSFK0DSO75U+fGOkDi91f3m9ylU0TU3T1LIJFu4ACHkKwAfZNJ2VYU3Tdsrjdx7zj//4j/zdv//3fPDh+0ymrajyWcuDB/c5Pp7z4ME9Pv74Z/yX//pf+eyzT7l8ecnQe1KEnDJa2S2ZyRQWuyj8lWJUBpkWxZYulcpsi8xYQtLkkFE5oVXCWoNWFpU0OYVSChgYfEdWGZ0UxspESl86Lb7++ms2m81rs8h9+2Mc7W2H8n2d/+s4MK97rR9nECB4UcpCgtsSgtFbZEoV8u8OqdpHqUb2vaAEOoMqyE4uCOHufeR601vV1JvZ/ZYMmiUIjlHKZ+Qiv6uQvT0n+vWK5eJa3ifK8e+a+vffcSzZ/RDO+a/fwX+XfWsAELLh63XDpo9shiUxGmTggqKuLHXVghLnpFMqo2xFRCQET/aeMPQEbTAKrFVYK1Ckdg6nFSrISY4pknVGG828bZlOKkxOXL+84Le//jUvnj4hhUAMSQKKWpNiIPqhkFgCpED0CZ01URmUa4nJsFgtOT2ecnp+zvXzr/jyi6csVz2bLvD++4+oKyWazdljrCIWqNZaLVBq0XYfBkSOUouYaww9vl8Shw06R4FCcxRpyzEbHGPpXJy/KlAqMhgjbK757Lf/i81yzdViwS///h85vnMPpSxJayFf5YyxIjOrtaWqWs7PA9eLJSlBzMU5i6g8kMumX8oJW/LMzV7aGxnv3k0+ZgYpFCJUqeOJNndE5UjwXsa7hoGqqbcqXd77cjO/JYOA1Js5mXHNtrThre3h7XJCBfJXIw9AggFnZTBNVTuEVFX6m1XJMhXEFLBO5Eitcdw9P+fD9z/kH/7+H/h3/+7fcf/+fYzVhBAxhu1Qkel0ygcffsD53Tvcf3CPjz76iH/913/l008/4/pqIRoWZbDJCMPGVKRO1GvkXeVToLLClo+dlfBHslWo2kj7LxJQpChCQsbqIvzjJbDNiqQUKUlGdnV1xfPnz+m67kb76T57e7vWf0H7pvf/sZL/9i3nhPcDdb3T69gGa6+gYDAOzNmZhlTmsIw0GJWKRvyuKDUiAK8LsPYJrblk+KEw8v0gY6P7ritkPSGZ3voUP8xi/ITt25UAs6LvodtEybi1OG9jNNYajJW5olnvVJtGeGnccFJKhJJVW2uwTomwjhI9fFcJuz2EyDB0VFWFcwatM6Hv+PrLT3n+/EtyHoihJwaP1jLLXBuDxqGVwntFDJ4cI1l5hs0SQkRXkt00TjGfNEzmJywun/Ps4pr80SdoBQ/vn2JGKCxnqspQOVEPDCnjy6RDYwyVVaiYiDHghw2+WxOD30Jir4zcpGSA5OL4QRYtoHIuBJael88+5f/3f/1/WCyf82//4f/Bo/d+QeWmZK2IIn22m9WuNe1kQj8E1l1XFKskkh8RA613tbMUUjmC0v86OvXXZELsHXsu5D9dxuVtb96UtiOVBeYzAusqGTZkjKOumx/i+nwrbLcu49rIBreFLDMYo6lryforZ1GKQljK5KwKO75sjCW4qOuas9M7/Ie/+zv+4T/8PX/7b37FfD4vJYfMMAw4525KoObM0dGcX/3qV9y/f59Hjx7xv/7Xv/Dxb3/HJ598wnK53hI+5Zh3G+9N5v2uICpXV1HhBGRyoZKgs7aAYugDvfdYW+Gck/bQlIg5SpCV5PP2/Yarqyu60k+9X3bacUsyN6+8P+68jN//eLP2H95GwutWIvd1Tv+1NiJiktCwJUsWXYxRVXAMAEo5UbHjaoxdKQrYdB3Re2KQ6YspxcIlKfdY2me4HOyHtu8MAEKoUAqqqkIbC0oU+bRRY+lTHA0755HY1dekZ1RaRWJK9L6w4kc5TiNEFGNF+37S1tSVQRHo+wVffvE7VosX+P6Kbn2JUT0UrXFrDHoUjCiRZIoBTdjWiXQMaFfxbFhh7t3n6PQumz7Qr5Y8f34F8WO6xTmPH5xSG8fRfIpKCqMsWju0qshmyiZqYvTkmAjdmn5zRb+6InQbUgpl9roB0hYGUxRiXRaYlJJtbSPlHIm5Q6uM9x391Yb/+Z+vWVx8yX/83/9fPHj/l7jJCbaZSYkFtqWFpm1wmw76nlcTllxITSNxRoIQrUqbzMgBuBWNjwHbfqvP+PyYYgkqlMiqLhYMw8B0OpHpV2kcZqS2Knc/Nhvrmvu9yGMw7FxF29S4wqwe+4lVQQti2kkCO2eZtDPeffyYv/3bX/GPf/8PfPjBhxzNjnawucrb2Q0heJSSIGN8KKW4e/cuJycnvPPOY377wcf8t//23/nkk095/vwF6/X6hkTptzPkM6RAjuWcK41WhVdii3Su1hhdRhVXsm3EFBm8tJShMzEGLi6ec3l5ub3/X83+thDKD2b73I6DfU/L0hInkxAlyBvLh3zPICqXQG7bcaJed31JL76ULmUM+9D3rNYrQDg6aWzHG7kI23NZCphKM05gPdgPa98RAIAxLdqaMuZTJD8NpUasVfF1uzOjtMIozVB6L5Uq2kslqisuR8gcYQAGrDEYk2hqQ1NXWKuJ/YYvv/iUj37zz1xefEXoF9QW0iAiQTlpUoxYa3cknqoiBw2hx+hMTJ4Y1oQ4kJXh6bPnaG05vfuIlb1gc3XB1csFn/QrwuqSu6dHnMznWFsBCuMmmOaUTa5ZPFkwDBvWqxWr1TV+c4Xya0he6uii6gPZMrb+bdXhtqUxtRdAy2aos5eRsEYRU0dad3z26w3des3Pf/WED//2Hzh79D7Z1mQl9eJMRhuDqyq0MTIMhbyNvtXWobPNwNRYjBjPQc7fqK29HWjBqBhWJmQVaHm1WnN9fU2I0o6mlS7vtRsW8tesorZ/Se/2s7HGOf5MnH9VVdS122bq24CrlGNyEVGiXCN1XXF8eszPPvwF/+Hv/o5f/erf8ujBQ5yx9H2/LaG42uKcK9rjofSpK7SWufbjeW3blncevcPJ8SkPHz7kN7/5iH/5l1/z+9//nhcvXsh9+JpZ46MVFoAMpSJtkSGtMxRSn1EJZRUoGafbDxsury5oJ5OtnDRaEIsXL0RNz3sZgPRtjvn7OO1vIvi9rl3s+77O/r9fFxD9VFCEcX9+1WQfkTVVO4Dg1hKL86cMkxp9t+xr3g/EGEhBJNZjDNuANqdc5p2U1uLR8Y9vLVFoCQTUdr862A9v37FLa7SuiGVTo2xkwgov4xILLDoSzbZ9m+om6/pGnKC06MtkGReacsCkxHw2F0eeM91mze9++2s++fgj8vqSaWtRrcV7cVAxBZQSMZWqKg7burIhBVIMKBn8W44ps1wvefbiJe+//zNOzu4SNmuB80Pg6uKSikR1fsbx0TGurgmqBTdjvY5sNhu6bk2/WTNsVuTQy+Q3nbFWlAVjjAQ/CA8gS/alSrZdimNlLdQ2epbSgJcZ78hxpg6++uQjFsuBxTrwq+w4efAI08jI4yK1QF1XVFVF7Idyr5RXLADDtr2t1LVHwZZR+pe9TXRsjYObYh8C3+6yuL7vWa9XdF1HXRQVUQqjZXys1pb8Sr3wx2Clz75oIwjKYakqJ7K+VshLuySqoAVZkZKQqpyznN054+e/+Dn/8T/+b/zyb37J+dkd2rYlDL7ojwecc9sASinpvZfvYVtE2gvYrLMcHR3RthPu3LnL+fk9Tk9PpW3wyy+5Xiy2zGy4KZazba8iYY0ELTchXEogYLBWShObbs3Tp19zfHJC004EMbCG1WrNcrncSlAbY7b7wc52DPPtyn5P6P7288Y9Znu9srvmx+9fZ9/Ean+1TPIjtlKqDSHgjN1OxLtZphmvg28QV9rVNAX5LbMfYgz03bpwiHZS4/u27cffJvu31nwfBfgJnI6/lKlvu9iVUs+AT/58h3OwH5m9n3O++5c8gMM1fLA/0v7i1zAcruOD/dH22uv4WwOAgx3sYAc72MEO9uO0bxfOPtjBDnawgx3sYD9KOwQABzvYwQ52sIP9BO0QABzsYAc72MEO9hO0QwBwsIMd7GAHO9hP0A4BwMEOdrCDHexgP0E7BAAHO9jBDnawg/0E7RAAHOxgBzvYwQ72E7RDAHCwgx3sYAc72E/QDgHAwQ52sIMd7GA/QTsEAAc72MEOdrCD/QTtEAAc7GAHO9jBDvYTtEMAcLCDHexgBzvYT9AOAcDBDnawgx3sYD9BOwQABzvYwQ52sIP9BO0QABzsYAc72MEO9hO0QwBwsIMd7GAHO9hP0A4BwMEOdrCDHexgP0E7BAAHO9jBDnawg/0E7RAAHOxgBzvYwQ72E7RDAHCwgx3sYAc72E/QDgHAwQ52sIMd7GA/QTsEAAc72MEOdrCD/QTtEAAc7GAHO9jBDvYTtEMAcLCDHexgBzvYT9AOAcDBDnawgx3sYD9BOwQABzvYwQ52sIP9BO0QABzsYAc72MEO9hM0+22/VErlP9eBHOxHac9zznf/kgfwY7+G1d73r35QBao8UPLc8m8FKKXQSr4qpTBKoTVoBVoptFZorVFa3XyDnMkZck7knIEk36dMzrH8rDyn/FnK8sjlsf/9N56gvPcBlSqfSMlH2D5FbQ8sZ3lazvsv8Lr1UbvX3H9KzpDj3isCb8E1DD/+6/hgf3J77XX8rQHAwQ72R9onf+kD+PPb6J1es1+PP9K33Hbxkjd+qvTe34yvqUEblNKo4gWV1ljncHWNq2usq7GuoqpqjHNoazG2fDXyqKsaqzKVVtRGURlFZTWVSTgVsHmAsCHFHq2yBABJHDoJUkykGIkxktNAjD3eb4ihh9hDCkAmpIwPkSEpVj7TRcXGJ7resOmhC4kQwcdMzvJ5NRlFkmXJkBWgNRiJTKzSOKXRSgOKpJQsX/H6SilyzqSUdmekrFPKsq7aWLR1oCxZKTIKlRRxfU1YvkCTyAqirP9P8Bp+O00p9d1P2rOcDzHTnr32Oj4EAAc72A9q35bSjk/Zf4LeOnnJZhVoLU7eOrR1GGtxVYWraprJlMl0SjOd0kyPqNspdV1jqwpjHUobGJ3jmJ2nSEiREBI5BlQM6BxxRKwSh5sIxBRQuYe4Ab8iDkty9OJ7tQZlSTGTYiQn+ZpyIKcBlXosAUUEkwRRiBmVJVCJGHGqMeFVFnShfOrXLSGwTedTzpATJEUElMpoEkppsLY89fXOQQIlg1IGYwxKG4yrMLZCGYcysl4qw2ro8OPr3IIBDnawH6MdAoCDHewHtu/yHbr8MqPIxUGBAW0wrsa4imoyZTqb0U6mTGYzJvM5VdtSNQ1VI1+TcqAt2tidAyzOP6ZI8oEYPDF7ssloqyFFUr9BpYGcFJGAyhmVAykPpNQT/RrlV+CXqLBBGykRxKwJMRFjgoT8HRFFxOqELR8jJcg5CtChMxlFTBBVpiejVS6lhzSGPMizSmmiIB4KRVKjcx8z/UTOmkQGlSGq7Wd/XfYPCq0rtBEURBu3DQC0k6BJawM5EzdLuoUhxfgDXg0HO9jba4cA4GAH+4FsdGaj5W/4jUKK1RkNaFAOTIV2NbaZUDUN7WxOO53RTCfUkymmbUmuwhtHwhCiQhtQMUJMaKVQWqHQKK3JlOxfK7Jy4hizOOY0lhwykmVrJV5biXN2JqNSIusIOqJzgAwpK1RM8kDJ3+eI1hlrFNZoFIoYy8uVo4g5o1VCAybnAvNnlMrCPyhrovI+10COS+VdgDCu4Q1oNyUSNxGAnDM5l9fWGmUc2kgQYF2FrWq0rTCuwroKrS1aK0w+Z3nxFSENP8wFcbA/qx0g/ze3QwBwsIP9gHYz+y+OX42OXpxUIqG0EchfWTA12jW4ZkLVTGnaFjdp0U2DrltU1ZCMZKpJGRSamDMqBYHRFais0LkQ+rIqkHkiZUVWBq01OSWy1hhnUEFg75QTKSeMYgvJayRDxyhICGNPJXROqBxQKaGykaBDZYwGq7TA8pQXypRMv0D9JeDQyN/oAuNrpTBal4I7EsCokUSYd8t4w0qZZa/+f8Pp7wUDWhu0sWAELVHGoa2gLPKo5TlaoZpW1ukHviYOdrC31Q4BwMEO9oOZMOyF2b7n/JXA+2ghumWVUMaiR4fkWlzV4OoJdTOlahuq1uGqCuss2mhxpEptHalKUrtXanwncbQGRc4J8ujINUHlchyAzeXYJJBQUaFzlg4AFFobVBaiIUqTCkoh0HtE5ShdAClLyUIbzPbVIKlSr9+1DDAGQoJCKFRO5dgTCoPw/BRkXTJ+wQ5y+Wy71VX7/5A4IKUbJMD9IECVTga0fBZVyITKGJSx5WEKD0CRlSVjdi9+sL+ovSnp702f/232U0ETDgHAwQ72A5mA7iWDVBqMOHjJPMtDK5TOwtA3Fm0kCxX2fkNVNbi6pmoM1llspUvsIFmzQTJxvYXwKQ40l9p5Ro10/ZywKmFUKlC/pOYhZikfFOeuk8Yqg9MKlxMah4qOrCqy8kQyJGnzA2kRzEqhlJbsWe0n6WmEJBjr9glFTor9sGBs5ZMywK4cMRZLRth/rFJktfusCnn+2GK47/xzzmit0VpjjMFYC8agrUY7i3UO44w8rMU4g9bSHcHgJEg42E/e9K3rYLy2fmx2CACA12CM/LgzgEOG86cwpQxoCyiUtVjXYKoaZSu0dUJEMxoMGGsLPF3q0tahjMMaV7J+JZm/VoWFLy1yOmdMSmhGh7qrlWclTtNZg9UOyBIAFCIeyqC0JlYGUiAHQxgAn6lypjIJmxw6O7A1KQdiitte+xS74vQlmNCqIAUaydZVITbKahTnvBcE5PJV7Xny8sxcUIGtV1ds9Qd2QcEeBrD/EmPz/6h3oDS6OH/rKnRd+BWupqqFQKlthbUVpqrkudqRh0rQmptiAgf7S9uNc3Ej2hwVIMpv1DaI3P/t9u+2L5d53f53ozdniybc/rsfl715ALAVBRkbl/duln3hjv1/f991u+2H/6D1HsHQTCbtXnMM6G6fe2WQZSgbNyDbVNpjVlNSlHzz4+ZxS0p7j3zjgs2lmTmrsd1rDxrd0/ZQClTavV3+vl/LvjcyoEcG9ZgFOVejlEVlRd4lZgzDQIwRRSYRBba9de4ysrHn/V51JXVcbj6VmMZsTf0ob5TX2+18tRD6nAXnUHWDqRshm1lx8tqYbZuf1kqy1OKstDEYpbHGopTFKofKGpJBKy1wu7KYbMhBoXKgqg3OSDjgjKKyhsZZKmtQCgwDxJ6UEtYpjNXkWpOToe8GkjXoVOEiVAZy1IQ+EE0k6USInlBcuM0VKQxkXZy2SiRdPr7Q+uUfI4kv5xtrJMDEXolEaQlaVLnOciirOkYzBii8AXa3y/7Vp3MiZQlwtDIooyUI0xZtakzVoJu2kP4aTD3BVC22dABY51BaoTFyr5RygbAe4RAov302hoV5hIHKD/PYLZLTtuIll2EJEJQRvkkKxLgnITXGj7DlryidZUsUmErQr9vCUd94bdx2gm+vvVkAoEBbaTlKuXirogq2lfUanea4omXR1Hc5he0J3LNX/kbd0C6+TfgZ24UUpjj/RFZRYFGjykuqcmgarR2oGqUblK7Qyso+liPWQFVprJVNUxuF0pDI+JAIIRWmsyrwaCATSHEgRb+tk8aYSSkTysYnqml5R3QqgYZWCpvzjc+XbwQMuzW4EeOOTtkYckri+I1mMplwdHTC+Z0HNPUEo4VEFlNkuVzy7NkTFosFMXpSDigt9WRhe2dpEctJWsi2AUAue73ai10UMcO6G4g32q9+CibB5jb/UAblKnRVoeuaqmmwdYN1jspVOONA6+1GJdl9yVaNwWhb4GgRuqmMwVpdCHMekxOWhEHuQW0808bSVOJ/a6uoLFgT0dkTQyD6NWHYkHLEqJbGNdjKklKi1RnjahgUuQsYBUrVqJlhGCq6tQUD3veETqO6oUj6JYHnC9EQrSVQ2eMo7OHze5w96VQg7gdNck9lpYrjl9q/wApSzxc+w6uZhNweuVyXcn9qbQriYtG2KiUWh6kanGup6gmubgvqYjFWPIVOGjOZMD05pls9L87/YN9l4/77pw36R5e/l5WPjl1ROB7iZ4r/RqlMO6lxzuF9YOgDShms1oUnk/HeE0riojXYSgLxFCPRR6rKUjcNKWfW645MJOdbCe93HPP3eOJf1N4wAJCMRWvpw805Cwkn5b0oS71SLxGneitrHG/u8W/Ud99zCmEb3yb63Gb/ZixZSUaeS4YiyJ4uAYACHEo3aNPKQ1do7bbs5NppJnXCVSVzMjsSUd8Hui4QQoKsiyiKiKCkNBDCQI6RFDMqJGKIKB2BUR51XzJVjljY0OaV4Qy3b6xdlfTmc4zWJJDzYzTOWiZty/HREZPJHLLGWmkHs8bQdWtSSmw2azIarbMETDmRIqRU2rLKZr+v2TqyuscjMtrSD5GY0p94I3j7bJuAKI2xtkD/Du0cVVVhnBUo2thybkxB0VQJ1swWstZaIHqtFZWBSgcqo6kqLaCCTjid0Fp699EdbaWZtDWVNdTOUDkDKeL7jt5vyHlA5Z7Q93jV0TZHpCDXT1NZtEksl9csXr6k69ZYU17PGaq6oW4qrDH06wWXTzJd1oS+h5xQuVwbSboG9PY6kX1BlWsmJbnnUsGb8ngf7EC1beIwOvzXXUWvu7byeF2qEhqrUvs3FqNN2RPk/rJGMkCjJcCSPYMtsmWsZTqZ8uIHJJMd7Ie0W3tfSTAFCZUOlKZcr5tug1EwbStSU9HZAYWc/8bJLjt4jw9BECBjt/BozhliZjab0bYTrq6v2Ww2QFHFHFHOEfR9xfZgibfc3iwAGJ28FsZwSglh194U39jeqHt1uW+KgraOWwlKkG/97sZzv+GwbjxPjdA1QN5CjCqX5ymN8KMrFFUhOlUkVWGUkZ5lIiYLPKmUwPq5ZO46q+LwMymW35QsHyRzTnnsdM7bDY/sgViyFcl7lBpbl0CrtK2XvrKO+z+7tQ63A6lxAw0xEEIgxCjOXEEqDtpaR9u2dF1HCIPA9zmIwhvi/HO+vSHLOXw1/PiOk/MTMIVk8tbaUuu35SFBgXMOay3OOGkzKxuXtJ9Z2cR0eaiM0pG2UjQVTFrN0bxiNqlonMYWJ5tiQGtHVUNdKazOKDw5dfjQEYYNJvTEKMHA1eUlL3zgxbOGSdtSNw1N06C1Zr1YsuoWLK6ugUzlHHVVMWkaZrMJdV3jqsTs6C7GtHTrJb7bkMOA1mnX/lecsUp7KEASpCAmiBFCEvnfmMbtoageZrblK+ECvFYj8JV7Ypt4IGs6omlai4OX+zORUiRFEUbS2pb33d1NMSlU8qQUd4MKfsoX9VtnsqfuUAAhe46RpDEKZw1NZXHWYEwlmhdxYDabcTyf0dZTtFLUzpBSZLFckXNmdjSnaRsWyyXDMMg1hGIYAv2wIQaPcwZtRK0zpUwI4eYl8srFmr/pF2+VvTEHIKcE2ZQofrzLX/fEfPPrK7/e/fxN2jdex8a8/fe5pKepFIHEEavynyYrCziyrqCAqtKOZJGG5ITk6xqdDTprDFpITF6Rg4ZoII1tSvLsmCIxeHISJnbpxtpC/2N7VM6FnzBio4wOdiyo7j7XqwjATXsd4pIpkqveE0IgpYgtyA2AqyQ7dc7hnEPHTD94YlFAy1u0Ro1v8kpwtm8ppbf9Ov+T2bhSwjq3RW2uZPJFs37LSDfSb57JApujtpQaVfoHFAmnYOIyp7OG+dxxNDe0VSbHDcQBlRMxBxHk6RTdOhC8Z+g7Ugz4YcAPPTklhqTYDJHVcsXi+pqUEs45mqZhMpkwnU5RCnzoiQRImeWq5+oq0lYN3eaY4SgRQyAFg2uOqZo5Q7diWF2TfCeEQqQWrwuZL+Ux+JV7NuaEjwkfkQAgQk4FttV6m0nJcugbqMBoN67x2/vKHiI4/rs8ERlUFEkpEmIAP8gxBYGOJUDXGAa8lzkG35KzHGzP/iyI336NXt4U6beR8qyxmqqyNHWFM9A2FXfOH1A5i3WGu3fvcXx8RlO3LK6XbFYr+r7n4999TN8PTJuKdtKQokeR8INnsVjS9x0+RJTSzKZN0e7IDENgtd7gc9xeI6+t1v4VXEB/UBdALjcVSNS+Cwb+cJOk6PsFAurWzb6fBY9185EgcuOosvRki9hIyTZK5iWOOUirlcqibqYsThlyTFjriDnJ90gmllIEDUkFyYS0wiqREk1RSGE5jXubYp9dvI1k91Jq9Yp7f92aqFeuq/0yyHgeQgh4H4gxioM2u6zIJLMt5RhjUMrS9aK5rhjPb1GTG/fRbzwm9U0x3o/O9j/2NkhSJbDcXn+pwJG5nKrdDiE1S73N/lWR09Uqo3LE5IizMG0cd6aG85OGpjaouGZ9uWS1vCIOPZWz5Jjpu0jXDaxXSzabDX4YsFZgTq3luHzW+KQZhoFuk4khss6BpRkwZsV83jGbtaA8m01fylCK1WpDt/GsNwPrzUDtKlIcqKyhbSpMPaVC47sVOQyyC0RPTAPkRCwhbshREKZEKS2V5UhCHI2l5p8LbLe7L16f6d/+Kqdgl/mXpWaL66tyTqIE50pZkjIEMiqW0mPO5KQxuSeGML7qH3/BHOwPtlfQXzUSnJOUlwpSdXIyZzJtsVrhrGY+bTg7PeboeMb5+R2mswnnd+7y8ME79P3Av/7Lb/iyX+P7RF1ZYhgY+g2jxoXvN6w3G5aLBc5ZCWZjhByFgGstTeOI0ZNTkn3+NmD0V7QfvnkAsHW8IzR8K/scV2OE/0d4eu+G2nfY27/ZrwF+k31LBnAzWxZkQu2HZ+NGrVWBFwNGeYxygIciOmJURuUBpx0GRa0rMhqTyyatARVx2qNtJpLIeSClgLWGTMSnADmS0diS2Keoy2FoGJn1Nx7qFXb969eAVzKjm0tUtr+UCCHQdx19PUA2AkM7h9Ea5xx1XTMMHf3gtyiCxE8lICqvN+ITY72Nve9fH/n+9GyrRDeWmkqgllMijQ+VUFmjdHFKEpdhNFQmMW01d05bTo5a7kwcs9aS4sDFxTOeP3/Ker2i32zYrHs26471JrFee7puQKlMVbldkFcQCWVk4l0IEe99uU+STMeLicWiZz5vqRtN328Qcqyh33hUDizp2Kw90+mEqnFMtcGWWmquoHIVldWonOjWKzbLl/h+Q8yaiKILgc4nhiCwP2mvHEchyiKooggOjUHoKCR8c42/6d/b0cQjJ6AEXCM/J+qAUh6FRWG2XJyUk7Q6ZgOxw6f0rffXwf409m3DnMYyqVJSTrUWqsrQ1AZnM9PWcHZ6yvF8wp3TY46PjzAml6+a6Dc8f/oFV1dLXjz/im6zwA8Dk9phzQRnwaiEqy3TtsIaaCpDjIl+GAgh0vtA32+g18znM+7cOWG92nB1taLr4g3u+18TevTGAUBB1bfCHaMz11rveACvpITffkNlJBP6PjfeN5UO9jNg0RUfUYC8JXeopLZkRKUCJivJAqJH2wpnLWRPDGt0bmjcnLZiy5R3Fpq2YtNHQp1BGa6WG4gBU2nIkagimoxPiRQSASEVbnXfcyIXOtTO+Y/r8O2ljfLD7764smTzwzCwXq+pqhayoqoqpIMjY62lqiqRl027zVMmrwmZant0h/3wmy3vAqWU4pb4RnEut6e4y/MyRonTTDFibOZk0vDo7ozTE8ekgioP5K5juVzw8tlTLl+8oOs963XP1fWK5XLDpk90vZA2tVG4KmOMKfdIUQ7U8juthLOTyzGrgv70IdANHdNJQwyBnFIhiwrEmlNi6K/ph57JfEozadFVJU41WZyrMW0jwW81wZPpUQxpQ8yJgCZkXVCAgspl4Znsf5+1unE7iGrgTYbVfpB/O+lIpTvB6FSceiEdRBFRGEsAIxdgDNhCikXrwKJToG5bCZqC53Dhvz2WcxKippFMv2oMVaVoGsWktZyetDy6f5/3Hj/i+HjOanVNP3SEoWfjF3x1veLlyysWizUhJLQ2NG3FRDdbpr8xmtm0xRhD205YrddcXl1xvVhydb2QsoCPWKuZz6dy//Qe7zflGPcOeC8IeJsR0j8MAShw9j7xZrwhRyLZ7ukjS/Pm7XTDueW8awH8Hos1xgrbNpB8c3NQe9wE+bXU1ke0XQFGZ2qbUSZhrKKZ1IWBn0nBUtnAvbMJ909OGIY1PnXUjeHkdI4y8l7aWC4ul1wuO7wfCMETQ2Sz3rBcrOk3gYGIytKamHKWSWllWtrN/UUqpq+r8avba/OdCIDsrCF4Nl1H2/dYU5Xe/9IdkcfOiZEcWOq1KbFrht2hPCPMrfaOYxvtHvZJtlPoYpQ6eJKpecqU7L+UBlJShPJvB9RWczJreXA2Y95k+sUzhtjTFO3+l5eXvLy4YL3uGXxitfZsukQ/aIZQuCpaYOzgIyoUln1SJQDJGAvWyLmWYEBIdxFpHR28KPXlLNmyMxlrlYwR9oEYAz54slUMIRKywPsRJRDoEKjRJFPhZkdMrCGpa/xqRcQQshBRY4QYhAMgEwP3ymD7UNKIQH0P/pA8Dwmsy5pnHUHJACO0QhlBOxSRiIespT2Ywtsp54PYYfQ4TOlgf07bH/a0x4K69RxQOtPUhvlswr27x5wez5m0NUfzlqN5y+nxEWenJ+TY062XkCJVaaVNwQthNWdyitTWUjU1KAgxFc6A48OffciDBw9ZLJZ8+fXXfPHlFzx9+py2bVhvOjJw+fKCYYhyPI0hhEQI+ZWtOSd14/jlmx/u6vqusvl3lebfOAAwRhi0ugjbZL3L+hWUwSFjFqS2QPw+p/cV+J9tkr7dC16HoowqAFmVuqGSPxwdt5YvpfdfgpSE9GejQOuEykKimlSG0+OG09M5d8/PuXN6gh86rEpYFcjRc+d4yt2zGZU7JqtAVkHez5jCrNf8m8enaC0M0k23IabE1XLJi5fXXF13LJc9T55ecLXYgNL0gxeiUSHkle0aMpgtLzCXtVB70qRvUmCSMocQAYctGXAYBoyRvw8xk3IkpUDOHsqWLt0OotGuS1FC7ddmeTWYkyf9FBunc/ncgqqoaMghkHxAa0PWgaQ1QYHOkVRU/XJOaAXNdML58ZT7pxVHMzD0rDcLQr9mkxQ5wcXlNc9fLFh3A92QWPeRwSd8UihtcRpiLC2YMW35JnlEc4DswXvZnConzt0Yg/eREAIyXMhDhug91spmqEgMvSeESDYD1aZn2HR06zW5iEf5nOl7xbqMJJ5UFe2sIkTFqhuI9KQswYqPiiEpQsyElLdkewnYw7iiJBQ35wnsrfgt5z8+cqJoCezKLypBRpGUIaeBbJCSgPbbV06ldBBCJIYNBj96mptBycF+MHuF3DwmEbnUS2GPVyOIqqmgbS1ta7l/7w53z09499F9JpMGZw13z895dP8+987vUFmL5hTSwLNnz7i8XPDixQXr5RLvE/0gEzHrpoEkYlBNLSJQdVPTNg2TSU1dWSAw9GucUZydzlmv11xdXfH06XNUjLRWY7MmWhl5HaKkSzGWz2csMSuijxD3PVvR8Rzv0T/hWsM3BwJvGAAo0cxGY0otMZfNRoZylJq/2ssgv+cByqu//uvWStlBwW4eOHLdyKUji5sKCzmVGeuUiWWVzeQ44FTmZDbh/UdzfvHz93j/8SPmk4bQr3E609YOqxU59CgSVWVxVQU6E6JntRIYKcZE4zQnsylxPmczOJLWKHuPVR9YrD2rtedffv0xH//uc64WK15eDQJDYkhZyFq5EA01psROxcMqtcuStitys2zw+jWU/6eU8MNA121wrsIYi7WSMYU44IdO2N/RE5N0C4wZlaAD+vW8hNtVCFXu3bfUvu3Q3uzG23+lHRQtrZKKlALKD0RVZG9TIsZAGGSDIEfqSjOfNNw9O+Xxw7vcOZkS+yX95iW60jhj6Hxk04vzvbzecL3s2fSBPiQGnxlCxMeRs6JRSvQjIjtNjvF+zxl8OVzhH5YRudoIGhECMSV0lBG4MURMFMa+NZoQMiGCHSJD59ms1hidUSqV23x8L43RljxtmLR1ue8MIUNfjjckTSiiWCmrUgaQAGrkx964utWtFc+3g0wR1JLKYxQUA7UlFI73TlJakAodSabfbYqMx5+JyZPiQMyxzDzQYwRxsD+1bU/yeE/JD4wSsrmzMJvU3L9/wtnZEWdncyqnmbSWR/fPefTwIQ8fPKK2Fmeh22zwQ4/vB4ZuoNtsCL0nxyQcmi4Qc6bve/quZ350RN0ccXbnDkdHR0zampwCzioaZ6gtHE8bGqdxKqLzBJNPWK16+j6wXneEpBhKaSFEEYBT2mDrGqstfT8QupEIM37ovUzqD7zObvPp3tTeGAHQSjYP2Psse7K5kvjfxkG+56f71phBHP54075+V5dFNdpAFpnbnKWuaYB5XXM8m/H44V0+eO8ejx/d486dMzRwefEVQ9+hydTO0TYN09pRWfD9mhgzVW3QSkgnw5B4+fKa1eKC2K+YzmeiuZ4zoc/EIVBrw9n9I86OfsU7D0/54usnfPnVc54+v+LFxZohJhIiWxpiRGlbMm5BObYtSntrIMHyq6WC3bLvlQtUxoeezWaJMRKUWVsJAztK7TcEf0PDQSmFMaOcMoyKhftrvC2/wK0A5e20P/Uevi1FJWnPS1lBjGQvQ2iUho6ANTA7O+LR3XP+5ufv8OjBPaxKfP7pc1aLl3ijCP2Gy5eXrFaBfogs1xuWawkAOp8IMeML81hrTdIi/qSMReUAYwveeEjs2tpVAp0yCV02qYQPBY4PkV3lLONzIvqd4uWgE33nWVyvCuFVYawiRvk7YxzGWFKKDH1Pv1nR9X1pQxWUKySBSdM42WcMHtQO7h8Tim+EgW9wgPKNrWVMRJKKREL5zKX8ohRBjcHybtcdia+ZRIweUiSn+HoI8mA/vO1nezkDUa7nLMlI2xiOjhoe3D3l3Uf3mc4a6kqUWa3StHXLyfEZ8/kxKXjC0NF1wpVZLjfbbpZQ1FtzhqZuWXc9vg80jeLs7IQ75+c8fOcB7aRlsbjm5bMNfd+zWCwIfUftLE3tqIzGaSGFV9ax7nqMVXifWa0H1p0nDEkQN52JuSMpRfqGaynzDa7sz2RvLAUsqkkSAEgHgMDs26cU6D3/SWRhC3SyFfAYIaObhWgZnaqlHpgzVmfOjmr+3S8f88F7D7h/55iTo4raabrlEy4uLnny5JnAQ71nGDzGWKaVo3Ua56BpLPOjhvl8QiaxXCy4XizpB8+X5kvOz+9wfHKM0poQE8vVmhcvLmmbKXfuPuCXH97h3XdOuLx+l49+9zn//Z8/5qsnSzaDCJNYY9FZS+YyZj5bhctCaERIZfqVq6lkUVqVzqcdlJZzZPAbNl0JAJyT+nBK+DCQUtqSOHMeVRbLcFep6dwIQnbQXNk8FYD5E5zrvy4TR5Qg+8LwNxAV2YM2mbaxnM5mPL53zDv3ppwdGRo7MHQdtckkZ+nWa9bLFetlx+VyYAiJfhDHvxkig8+EVER0AFM8tnWiMJiykvdPhYejy7WQRqIipKxEkIdcUCwAKTdkRDEvJy3CPVnErgBiyHT9wHK1Bg11Y9Ex472UEOrK4IPHD4FF8gz9Gq0SVVWTsiHgUYP02MtePwbz27zvVqj76sb42to/+0lD3kOxMipFVPSk+A2iQuXESdJSoqQU2X7og/1J7EYQh5Jpl0Y4LzlmKhuprGEyqbh/95iz0yOOpxNOJg1GQQ6B2tVMqpq2bkkx8/LiEj8MEAPdpqPbeGIAoyuMceSsCCFLtwcaowxHJ3M++PB9fvHLX+Aqg6ssIfS8ePGU1dWCoR9wzmKUJgXplKqsZTaZoMhUtcOtLNZqQlRYO4DaYE1CbTyDj8TBFzUMkBrU25UwvXEJQOr/4uRjVNzug949Vb2S+b+Owb8vIfxdlrc1V8rGoXektO03SfSejSKpzKS13D2b8uF79/i3/+YDapfp18+5HhJGw/VyxdX1mtWyox8S18uOl5drQsg01jJvKiZtxWRimc1rjo5aIdet16QY6YaejR948fKaB/fu07bCIg0+4jcDsYukELir72GrmjvHFfHdu6xXK2LIPLtYEVMmqTK7vHyuTJmyBiSVtrVmlcZwa7eWY8YkjrysaRbHPmY23vfbNkXZ54QkGAuMs0823FcUlGBk/7yVDbdkW/Ir85bzAEeF8NH+sNTu2wk1Y/qcCliVUUkJYlRXvPvoLo8f3efB/TmTScRvLljEFWHwGCLOGgalSSGTsgbtGMKY+UfCWFNU++8o/2mtsNaQkqAPOo8S/QUCZw/NVsLIFzWzDLkEfyB/pBRpzJS396YgPYNPdJ3HWiljKc22ayBZ4ZwMOeKHDdF3VJVI8WpjqWqN7RERnjiiR7szkfc/Ux6D2JthwXdrjYy/F+XBcaBXiq9p7duvkYy1Bj3WIQ6p/5/LlJJlF6KeqMpMW8fZyZx3Hz/g9GRO5QxTV9EoQz9sWHcbooFJ0xCGnt//7ncslhvC4Em+Z7Pp6LpOYPcQISuca2gbUPR0ncdoxXw+4+T4iKau6IeOl5fPGfzAl59/xrAeiCFQ1zWT6ZSmrgXFKp0y07alrqygzCkQoiYn4ZvFpKmWHVeLFd0wyM6Qyv9GbXp2X/6SV9sbSwHv1+GUUntR+JhF7rF39zcRyhb5Gof/JkHAmDFs79Et3wCB/VWisop7d455cO+MX/7Nu9y/Myf6BUdTA3gun12wSR6F4tmLS7o+0gdFH+B6PdAnGHzm6qrnAs+kHZhMHM6tMDrS1BaykK8y0vL38nLJ06c989mco/mcnCJ932E0vLy85np1SdVUTGZHhKz54J1z7p/f47MvLvif/+szlsuNyMjaSmr0iW2zIOMKagl59FjnLHD8/vkAKdMUZXbGwU0pB0KQfnFVRmUpjcw4UBZtIITSKpaRC3VkVe5zDPa6PpSS4S8xqaJpH9/CvVOBMuzw7dsu54c2CVK1UigVsRrunkz52bv3eHj3FFcFVOpQIZJI+G7g+nLFarXh+mrBcrlmudqwGDK9z8Sioy/Zu7y80ZKkqixtUXXjsMYIK1ml7fhgowV6TKUeoLUS7k7MBB9K+b0QlpSIZMUU5fxKV6t8HCOIUsqZTe/RzhCyLcN3NCEnfOxkrXOk73pInpyjqPwpy1ZPQitSuKmSKR9r3DN0CTBfdfjfNWly14stHIVxh1V8w4yK7Y/UNna7+Yu37mL+EZoUG5MPtFPDbNpydjLj3vkpj+6fYbSUdG3OXLx4zqZbcXb3jGZS8/TpEz797DO6PnB1veL68mqr8pdSoqqaosMBk8mU+fyItm2Zz49wztAPPV9//RVtW9FMG148e8FqsyL4wHq9xmhN3w9sNh3zoznWWkLR0qibBuc0ITSEQQSzKqfI2aK0w1UWaxVXiyWrbsBHyh6U+CEQ0z+m7r9vby4FPLY7jSTAUmNL3wL572+733QTv/kHKn31pdJpjLRUVdZyflzzi58/5O//3a/4xYcPCf2CLz67ZL28RCmpRQ59wg+Ry+uezmeGqNgMmXWX6IPGZ0VQhhANQwer4LFG5gRoNYgjVhptZbeVyDAwaWE6CcKBIpYsyLPcrEBHTs9Oadopk/kJ54/uc3Y852Q6EW7AiyvWXcCHIkySDFkJXJWLCIYgMJa0Nzt9P+Aa5x1oY5F+/p340XieBCWQsonWRghdKZNNyZgSjJtn3o9YKZDdyE3Q0k62PfVvZd1UoZUrI49HaDe/gi/fFqr6Q2zXvZHJiKrkpK2ZTiz9+pL1IvHg/gnT2QlGa4Y+cL3pubq84nqxYbnasFl1LDYdfdT40js/FrhUlq1DKUU2YK0IltRWozVURsmsCrUL/kLK28m6Y09OjElkrMfrBySwLz/YSjuXUpMqHQU5y5yLmBSx9PGrGPEhb7NtUiAnGThF0fmPZHwMbEv/3LpM8u7nhYF6+xm78/QdQcAuQRnZMsCNIuX+i+2dufGg3m4o6y9qr0va/lgzWmMKr+p43jCb1pydzLhzOkcT6dcdfdezXqzpNxtc7cgvL+BlYtP1HB0dy1hnnWmbCpUTbdvKIC5jGHovPIBug/e+6J84mtriKkfXL5lMao5PjlktV6y7Toa4GYt1FZXS5JzYdANKeVJMwqdSlsopmqrh9NjQtp7VZmC56lluOnIcqCuYTSp8CEQv49b35fPfhq3yDwoARs34sX82553a2TdeGLfg/z9kFoAqaavw4wyyHYrmuLGG87vHvPPwDu/eO+LBnWPOTiqSX7JevCSnwGK55HqxYLFc0XvNahV4eTnQBWEm9yHjsyJlqacmYyULTx7lIzZB9pKXO21QSLbVtI6cBfYfYmI1dLhKo01A9xmdA43JSEtJ4vhkoG1qdFxx1FT8w799l3//y/f4+PMn/Pf/+RHPnl1DKpl83pGm5D8jjn5LFBjXEMYZ85TZBmPWp0ZEIBXmNamsXy4cA3mtEcWR0zWWAyw3d8a92mv5n9KJt3XnVEpjqgoVg5BWc2TsM9/7SD+YZRJZicKfqy2zectsVlM5qCsJUk02dKuei5eXPHv+kmfPL1mte3qfiCGLil6MY6cQit2YaK3AWiFpulrTtBVNJRMpKytS1CNHQ2D+WBrsdOnFT6SU0SNoVnLvWJQwRx5JLs5fjyUfMkpZjHFobQs50KP0qCEQ5PohY4y8Vp89SsnH8D6iEPEhrcKNIWr7iN6+dDK82VV1WxxIqT9go30bduUfue2XGq0zHM8sp8c1pydzjo+nzCcNzmjiELh+ec3zZy/oB491lipFQvbUTcXde+ecn59zenJK3UzQytL3nvVqjVKKYRhYLgVdW6/WXF5e8+zZEy4uVkynjrOzM7wPfGmNtNL6hO8C7WTCZHok944PRShKOmZSlAQSHTDa0VQtTTWh8R5j1uSMzOkgUtcaYxVdP+D7QRIlrYg5s42Gt1Tdv4y9cQCwVRMr36cct1H3tzn/nfCM2v4t7CDl7xcElFQGUJjtDHHnDNNpzXRaMZ06To4bJg0sr56xvOjpuxUpZTb9wNVizWI1sNworheB1QaGmPExMUQROEkqy5Q2LTKlCdGJ1gmUylgl7UykjNWgIhht8UgbFdHjkkHpgLYJS6YLYMiE0AFwdnrE5fOviSHR1jNm81M+ePcO6/UCnTOff3lNiBmFI0dF0hljBXWJcU+YR+syP75o/Wstzj/rUn8tuvBKRhrLwwAC/Y6IQYw7USCQHm0pHt+s7+f9AKD8whqN1sNbuXkqraiqhhA8Kqqi4T2qvN0+4D/2A5TsVWWSAucM7aRiOq1xTuH9midPesDifWSxELh/ueq5XKwYfEJrt4X6FSWAMwZjM0mLgmPtKhn5XGvqxuGcFQSqttv5DhkIPtAPA7F0DQxDpC+BhWHnXEf1ewkYi/NXUmqwpgw60rqgRaqQBwdCLNLCKQMyW8JZabtNIchaI6+ZlCnJAq/36gWJKAzB/TP4rSv+bYjAN77Xwf5ittvrZZqftYaqMhzNJ5yfn3B2coRR0K1WPP36Gc+fXRB8xDYN1tVMjufcv3fGvbtnfPDeY46P5symM0KIrJYbrq6WdJs1OWeapiHnXHRQLCcnRxgTWa00y9WKly+fkxE0K0ZomikxAFiMbdE2k+jpuw1aaUxl0amoaDpXphGC0hpnpXPMOoerDZdXV8SUaJoWssGoBVfXG2IZs35b9fUvZW8YAAgHIOVSApCf3KgJAze/51Vk7Ubf+i3y2TfbSGjaiQtBQmnprb5zOmE2Uei4pmLKrJlC9FytFiwXCzofWGwGrrvEood1n9kEGLL0KseyOcUiZDTOakeHQiSSzyE1812HgdaaCIQU6ONATNIfnYIQ8nQqimlJyfz0Duwy8ezJFbXTOK3o7Ip+uaI9u8t779yjrWco9SUvLgfWfWLVBXLJXI0qrWVqN09+O2tem6IFr8lFzldrtSWD6RIQWC0oQkyj3GoipkCINSmKjOr282W5YLf1VfZcZ6ZwICKr9aacw1v791/alEJVjUgee5nAJyhcAIIgGKWMsv1cf2gpowT0SoFVGWczjYPKgtGJzaanR6F0zTBErpZrrhYbFpuB3id6KRSKs5VDxxkR7cFINt7UDW3Too2M4TZWroOBhK12o4cz4P3ARmd8jAw+kkMmFMe+uynlw1pT7kWE/jFyDcagUWspM/g44EPaEkAz0vOslcJYxPnnXAZiifOXCYgQAiSfy5jOfGON8x+86G9ycr7N3qaL9u20fa7Wd5ViXmdKybUk+jEZrRNNozk5nnD3zglnR0eonFmvN1y8uOCLr56xuOqYTlrunJxy9527PHh4nwf3zjg9mXN6NCNFz9OnX/P06VP6zmNdLcx9azForK5w5ohlraWubyZY50lErhcrYgS/vKbzkfn8hLqekJYrmiSo8jCMNf+aUTAKJeia9xGVNdZKG2xdgQ6Bs5NTjNJcvHwJVnNyNCOGwGbd0Q0ZrRJxm/3zR2+ar+PKfF/7zgDg1dtSRntSiGQjVHj7AFIetQFuZvc3SIK37LsvqMKOVwpUJONxFtoqczq3nM0s8zrjVCD2K9arFZcXL1ms1lyvexZ94rqLbIZEjBpfJuXlAokaICeBXJ3JmIKyh9LpoJXGZHULscniMEkMRVaULHPPnZb6fQQGRP89K43tLBcXgdbCpDIEE0QkoqqYHN3h0YM7DN6gP33Oi8sNGE/IuWT3MmhIaxnuY63DuQpnpeY1jqIda8B6rG6XoMzsd3EgCnYpJ1Kp/Y7SqDFGckyYmDB7Qdp2aNDYt50zSSepn7FBqQJxvS2mNDQNKji0smTtQHUkvynjnNP25su3/kwChfFGfaVy/aplBUlU/upKcTKtOJ23tM7gtKyvMQafEsu+Y9EPrH2gT5moLIlM9IGsNc5ZnFa0RtM6Q20q2rri5OiY6WxGzuBjTywta4MfyHkibbpa7pG+t6wrTe89i9UKk0Qsy6iiwociZ40j45wEeaH0GI4y0VprGSVtNUklfIikPpVuXE2Kon6GTuisSCSMzUWQCHQUp5+CDEIia3TZ/spKs1OAG2Gn73/9fNeeobbJwsF+aHujIKCUKGGcRQJ1C6dnLe+9e597p8eQM30/8Pz5Sz7//AmLxcDsaM57773L4/cfMjuZSLv18TFaw9X1kr5b062XKA2P3nnAo4fvADD0vQSlZTjW119/xaeffELfX8vwKWtQ1pSg3bDqNgw5c35eQRgIK1/mpMQyOl32277vGYaBwXdS2hqkA2c6nVG5hhg3qKQ5mhwRusBq00HsqAxMJxaUZwgIEZaMMmZHe+GH41Z8X3vjNsCqarBKeoQzMl503Cy207dk1qfAHKkMC9r7/Uj22V5AihskrG+2smEDioRWmcZq2trSOEPrLFYrLi4uuX55yXq9ZrVa0w2eRRdYe+ijIiTIIaFTRBfSklIaazSusOQrVy6QCMRMRMt/Wsl4SFWyL6OJMTPEKHVRxW7UqYpYnbFak4lYJQ1+Xa9Zqp5BZ4ZKYYhMJzXV8YykDHUDk0YznRhWvSIaS8gC1adkIGWMtdRVRVU11HVD5WqstRhjMZLOlXUq6zqWXLYcK1WcQCF4lf9kpkrhdqRE9qHUgWWDzqVgu1dtJeXAi5eX5MvrtwbaGk0phXE1RicMhmQsQYHPieQj4+CcWwPpb78K38cpbQN5BZVzTCcTYcmHWK4VgzaWGERrAqUEMgwZRYSYGEJA54hJUDnLpLacTFvmk4aToyPu3b3LdDYnxsim3xQhJwlk66YhhCCjoEOg7zuW6xWLzRqrYKV7rPbUBlKWYDpjCkokbZ1x2wMvn1kpJdeVNQQSVil8CqRAGXktJMMI6JzJQWYcCJckCcoUCipijHQ0oIgxbAcCjVfpdoW/Y7m/S9709vO+Vz50K2v6c2/Ef632fc+FAD4yE8JomDSOo+OW++d3ODk+oq4dl5eXXDx/ydOnTwk+8uDBOe+/9y53zs+ZHk1pJzUn8xPOz85ROTF0HbPJnOr+I+bzGcfzGbWzDP1AiAFrHSFEnj17zpNnL/jq2QuePn3J1XLFECPGNNR1RVW3rDcdw+AJYcAUBczRP42D7qRkYbf3WIyJEMO2c+rk5ISmblitVpDh+OgY7wOLEDBacTSfEvOKuPEQwVmZPTB4EfACvp1H9yew7wwAboELtJMJ2lWSISqpM+pbtf0QA8GH7UJJr49kWlntlQgUO5bR94EtMjJsRSuMzjinOWprjlqHJYsSW4QhKlZ+oOs8i0XHuvMsu8QQIWnJP2ySD59LH5K0mygwZWxuZclapHmtg6h0OeaMV6lAoqJDIIppUWaeFycwOtpRiS2ljNLgU6YPARus0Bm8CJZgI5v1mpiz6K97w3yuibrF9ZkhaSIaoryo1oaqqmmalrpuqKsGVzmsFQh4nDUwkshy4SzI7PORYDZmvnkLauTtI0POxBAERbiFAIzXg1IyLbH9+imoZ4yjO8cSwV/clMZWjXQ5aEcss+tTDKQwjJCPZKFqy7r7gw59LCM4q2maGmOcqI+hqOsJ5EjfD6zXnRCDhqJOFgNEmRpZaXBaM20MJ/MJd06OOT854vRoxvnZGXfv3qOZTIkx0w2brZgTQNu2BO9Zr9ds1hu6vmOxWjJdXrNpp1wvliyXHT7kIiakt8qeiUiIsWTuo5pg4ZoUDomMAc4oFfE5btsL0SIGlrJCZlwpnCuE1CwDU4xWUrpCk5LC53H2xMF+KqZ1LuiY5uR4ysMHd3l4/y5NVYkUelYsFtc4o3nv8QPu3btPVdf4foPKDZO6RudMv15TVxXz+RxnDXVdc3p6zLRt0CkQnCemzNViwZdfPuHj33/Kb3/3BU+eXnDxcsVm06OUQRtF9B6wOOPINjMMPXVdMSLXWgshd7VaARTU1RZH7aGIql1fX+Oco21brLV0nXC9qqqiaWqZSKkCTe1koFbKuNphbCV7wO2xoX8me2MEoJ3MqCcTaSVSEsmPM8gVMlxjGIYixCBayz5FkRodX2WPbb792+8VAEh6ZY2iqQxtrZm1NZWB7D1GN7R1RYzQrzzrDhbrRD9khkFU1LSTQoLJmUprKqfJNlNXFcba7fEZowgZSBrlDNFJ6SPmiFGJXKb7RZ9JMTO23JGl73SXNevtUJbxI4Sk8FEmJ6YsBBKPZblcY/s1rmqppkfcOZsxOZ5SrxLroAlUqFxBFL0F5yrqUhOuq4aqrqUG7JzwF0ZnXTbynKLU+GMgx4wa5zfIh2ZUWMxbpcVdsLYf4N2oBQI5RX7/6edobYnJvz3OHyHoVM0MnYEqEoYBsipjYAMpKBlRtx1mdFsG9k1gaYUpvfZGei2JIdF1vQRhMdF3HYv1hq73dF2Q4VCDoFAmJ9raMqkd905nPLx7zv3zO5yfHnN6fMzpySlHxye4qiErI/V4320zFWMMCsVmvWKz6QghsN6suLi4YLlccX29YLPp8UXBzw+CHKB1IUPJGoTgy5CgUiqKEhz4rBi0xqVEVxCiIYlW5FhOArUlEVaVBi0BZ4iJzIBWmqyEyDtqFBQwdLeM37DUb5oZvYlO+iHj/xOaKl0xBpxTHM0aHt0/573HD2kbx2a1wncyZEcG+zykrhsygRAyR0fHzKcVVnk2qwuIG8zJCfVRy+npCScnJxwfHRG6nsXLFzx//oJPPvucX3/0O7746gnPL17y7OIly/WGoQsQIYZ+y9eaJyXzAGqFIhH9QMyKum5E1C0ELi8vGYaB+Xy+RQKUUkKqBUIIXF9fA+L0q6pitVqhtWIyaVFa0/uB6bSWSiEdIXlin0gxFG7SN5fH/1T2BgGAbAaz+RxXtwhzPG4zPhCHIIiAJSUhzkULyQpjeN8ybFnr479f4QqMz0E2CgUYa6idpa6gsgqdIypBXVW0dYu1rtRowHsFuiqogy+brPSeTgw01kgfqjE0TYOzTtCL4NFa0weFKRCnNg6fIkOA6KQLoBsGUo6olOVRfOhI4KKQJnMWPoFWY1ue1Fpjyb2T0qg+ovMGZzPzo0w9bcl5UzLWislkhq6PyWMAABhtqKqGpm6oRhTAOayzqML0UqgycUoVYpbMoM8xouJuEAslEMtqlCJWJRPOoncwTi8s7Z773Rs5BCbTI8axy28TC1BrTd3OhOjnA0pZYgy4IlQzDIrsBwi+1AMLWnXDxuvyu+rNGZ0FPlA54wdPGNYMG82kbbDWEGMq7Yiy3kYbMKImZo2irQznxzN+8e4j3nv0kDunJ5weHzGbTqlbaU+qminG1WQSMXko/I0UIilG5u2U4D0hRoah4+zomKurK5aLVRE22dB1PX7wpZW3OODCzvY+EEMop1L+PfhAH+Sa31jF2mmM6cmbAKHwANROdS/n8fXGwBFyTlJqKOV+rUElRcxlYqiijAXPP1gA+UYiYwf7XvamLdxGyzk1Ftracud0zoO7Z8zamr5fs14tWVxeorXi3t1z6c/vOqaTKWdnZxwfHzFpNdMJTKYNd87OuHf/AWd3ztHK0Pcbfve7J3z9+Vd88cnnfPLJZ3zx5Vd88vlXrAfhNC3WPTFJac5hhBmSM1oZ7pyecXrnhMH3+OAF5e18SbIcAMMg9421QrQ1WmPHpLdwprz3rFar7d+N5YLaVeScsSvFoCJNbei9ZbESpGIUyRq5N29VCWDfFIq2nVK3UzIaH0IhmO05BaTf0dqEsQlrM8k6ku9viAVJ6U+VzaLUW9gtgJSab5GzlLQiaSPzna1RwlJPGbJhvRlYrjoWVxvWq44QI8ErgpeN2ZFxOTOvK44bx7yuqJuapq63Er7ed6zWK2JK9D7T+0RIGW0dXVB0g8CXmz4QRv2DErmNo59H7RzJqwT2qoy0VFkj0XAu405jVgxBppHF3jNtNZNpIsae1CeGXkE+Yj6dMz15SMwVKUkAoJXGuYqqqnFW4P+qqrGVlTnoBcYaSYCpQLwpJXKIRVa4zA/QZhe5lMdIoNK6TJAr5yTlkdchrx+7gaqeFAn1EUngB9vE/xhT2tBOj+TzDwFj7HbtVYG/B9aSvY79d7f4AGq8Qb/DBOCGylrqqi6bQk/OlrqusRSCpspkInJHqe2yz5qK8+M5jx/e5efvvcPjB/c5ms+YT2fU7QRXtdSTOXU7w1QNWWcZ55xK/d57khepUgn2MiH0zNspR9M5m9Waoe9Zr9f0XUfwXqYVlomA+2WeWHgFKSVpJ/SB9RDZDD3rrma12TBdbqiuN7xceuIm4VNCLoExeJQAII0rmmSVcgksx8BT56JvqfMWfcopvRqHHewvbm/qoMbnVxZqpyX7f3jO2emUOKzZLK5ZL65pKsfxyTE5J8LQczSbcu/ePabTCW1bc35nwnvvnnPv/n3adorWjuvrS7744mu++Oprnj59xlefPeHrL57z4uIlm03PquuJWYM2GO1QKmO0pXYO09SgZLqr1tDWNaenR/jgWXdrMh1VXTOdTrf3wTAMW2cvXS/iPkfnP37eqqq295K1FhUj00lDN7QMVz1ojSldPcqYolaYt/vNm3dX/OHB7XcHAOrmP7SxuKomJhmzqSktPzmK09BGHqo8yljQXZ1/1Pq+SfrZZgDjv/P4810QYIxBOxnLa6z0WSsGYhJ4vxtk4wtDJPpY5p0nclRYbdAKJs7xzp0z7h5NmU9qJm1LO2lpW5krPfieq6sr+r6j954QE13v6UNmPSgWClZ9Iiqo0KAVziiCziQNPmei2p1MrRROQWOlrUrqqYV5X050LGz0bMBV0PuIXq6IKFa9hnpCY1pmzQlB18SRZwBYKwGA1tIKaKuaqq5QRu+ce1nQFOKOxR8CucBXI3NcmcJz2CvLZKRzYD8A2JYFtIwLzrXH2prvS5b7c5rWhmYyh5SJRpi9oxqXJKhChhzLVON42puf4/WfyRizvVm1khHZJiesMVSVQ2uRRg4xMfiI1pHEODdcWi1jDBCFIDprah4/uMfP33/Mg7vn3Dk9Zj6dCcO4bjF1i2vm2HqKdjVZJ1ISHY4cE9F4kglynsdRnamhMo6mauiajTj+eY8feoIf8MNA8AMxBWLpitkP9FKMQiqMiS7Dpu9YdzXrdcPpfMJ81tE8X6Av1lytA52SMmCIHhMl0xIp41wc+s0WMgkkdRG7KnyVH/4yONhfyKScCnVtmE9rHj28y8P7d9A5sFwt8N0aazRHR3MUma7rOD094f79uyL8UxkePrzHL3/+Du++c5e6bnn67AVffPE5v/7Nx3z88ad89fVTnj+/5MWLBd3a44OUnJRWu3s0CZJptcznQCXatqGqp1ROs1pdU9Wn1FXFar1CIeTXEe6fz+dcXl4SQihdAa6oClZ47/Hes1wuGYYBpRRN0wCy/2clfnM6ael9x7r3OKNo2xqlGhkrPAxvVAL4Q4T0XmdvPA0wZ4hRMtcUMylHYgzEILrfMSXJvPceMUZRUxoPet/Rj85sPwjIu/dKexuFNBVLT7RxMvBHk3BOYUxFTEoY10pj9iBvg2ZSOyZOc/f0iF9++D53j+fMpw3T6YSmaWjbmrpxhOBZXF+z6dYM3ZoYA9fLDZelX/vZ5RqlOknzEwwYsi5MaA19ivgUSSOD2hgqo6hUpLTjC5cgQcxIvz1lDonRxKzZ9B4fB2KGrKfMj6ZMqimVnoB1KC0qjDln0JasLMpYtHUo48DYEgCUOn0uF4yRcoDKMnxImSLyo4sksNUCSetRPEimExq9ax3cDwB0CQAwklmPZaK3KQhQSmGrGmIubWiZGD0peVIORcgqkOJAyKEUpuP3KmOMipgSKI2VbAkugg/kPLBadSKmo4R1r5SmHzyDlzp7DhGLDDY5PT7i4f3z4vxPOZ7PmUymTKYzrGvQVYOpW0zVgK2JBFQKhcuRyUZU+XTWZEoXBxlna1SjsNrijCGFimFwxGEg1p6cAjkL7O9DQRRIW7Qo5UzMmXVKbHpLu4G2UjS1pXIVVjlUtqSwIERPN3bBpIgpLakpQU6CCGRKxsPIGxKFQqUyWactb4XtM978nL9iO94qb9P1+ddvuz39m5a1riva1nLv/jnvvvuItnFcX1wQho7KGtq5tLWu12uqynF0PMdVjvl8yuPH7/D+++9xdjRledXx2yef8s///Gt++/En/PbjT3n6/CXL5YbFwrPppYtp5D9XTpNzJOWEVpp20nByPKeuFOv1kpw9Vd0wm01IObNYLJhMWqyR0nDlHM45vPfb4Pjq6krgfGMEQVUK5xxVVbHZbFgsFvjgOTs9o6oqKEhpylFKXjqTkkcbhTPjnrArm377rAv1nc95U3ujACCT2WxWhJRQ2uKDL84/kFLc9k32/cAwbBj8RjKNMJSMJO9qzWMmuvfBv0kiePc7iEFme6sSgAzeQ1SsNx1ZKYFiup4YPCpFbAxYBafNhPvnp7z/ziN+8cH73Dk94ehozuRoTt1OaNqapqkgebrNNUO3Yli9JAxrri6XPHt+xdWi46hZ8NXzBS/MhqVz9HYgDwO5zGbvvKcPRa1Pg3Oa2lqqQhALWUoLAzBkGBVf0dKTHaJh0ye0D2ilmUxrjmfHTJpWOASqcKezZFYhQs4RsCKygayT0ro4nbKWaTdISNAATVJxS/Qan4/WIjJTsv6cEW15bW5xHMYAAOkJ14otdP4W7a9yg1qySkjvmqZylhwcOcr5Jgaiq0nBF2Gk0pYzVjK+R0wj8ZHGOourqjJvoqcfItFC1w8YV0ia1uCSwygJaFtreHjnhJ9/8JgP331cWqOOaadTqrpB2wqMBWWLzn+pq2dNTBqSIse4HRyE0oUfEAvhM6G0wbpKPkh0WKOJ1pGSBADkWLJ9X2DOQIoi8y1nVlHHSOs0jclUKmNRWGWpXIM1NaSMv7wiF91zpeW6SUAsw3lSmUSY2AkEjeTDTOlW2eMA/LB4wP7rwutii7crfH277RVmzGuoMsZA5RSzac2779zjaNbQrReE0JdWWVHxu7q+omlq7t8/5+TkiNPTYx4/fsz5+TlKab744ilPvviKf/31R/yv//kbvv76ORcXC1adJ4TMEAAZP4G1GmtU4Yo5rFVUdcV0NuX4aE5TGxYLy3K5REXxE0ezGdZVooGiI9OJI4aOoRtnvYggkB88y+sFx7M5yohqbEyFL6Mk6F2uliitODs9o6krfM5Yo5nZCTF6Ysj4vmfovJB4idsprpLc/dlO4fcIALYeJAOR6+sXVHW7HYATvS9jZXcztGOM0gEw9NshOZL+7mnN780O2OnPFzhV6xs/2w4gwqOSaOMnnSFBHDw+wWq9wdQOn6O8XwqoONDmxHHrePd0xoePH/H+++/z3rvvc/fRI5qjE6rZEbppMU1NUxvwS+ivYViwfunoFs84nVruHzUsrzbcn7XMneYTB9ch02164kbgC200/QBDaQtEgXWa2mpqVaE1bHzgWnlWviAcWtoWU9L4QVplolJYo6m0JXsDPtB31yhXg55K0JA0KUk7CpUm6gRVgW5jhGTRTstoV2TmNjFhUKiYiEUMRo2ZvhpnDWhU0ihTJtChSeX3ers9CnSjktpe+FkF0Dcd59tgCjApiD53HtD4IkSTUEoyc6ssVjmcsoSspWM1qe/VmrMrlUhgto6B2CdsLWvonMJYjTKCrBjnpPanIfmIdpF5XXH//Ix37t3l/HjO6WzCZDLB1Q3G1USlBZgIAcuAReOUgmwhu8LBKa19MZGiBDWQ0EaTMKQcZdqvlpkQtqoxRuP9ONbbSjuqAhViEVARPoFWkGKiVgZtKrStSbrDK002GVVDPG7o+gnLsCYvevpCqchZ4xVEpWRmRIoC96syZyODKG+OCo3jpMs//CLaTyJ0Eb7KOX2j4vptwOBGEPAWXctvk430zhvOf6eetf1RZeFoanlwd869sykm98RhTWUNlWtIWbFcb7BVzWw+YzqfcnZ+yuN3HjGfzdmsNjz7+gUf/ea3/PY3H/PZp1/y4ukV3doz9AqdnSBsThj9xilmbUPrDLO2Zj5vaRtHPanRTvYxZ2oap6iUlEWrnGi0FmedIlqLiqcUZj3eQ9/3BB9RSTGsBwgZ11pSDuhKo5OSgW1alFS7YUPnN9hGEOKQMs4Y5u0MTYXTa1Reslj1bFtjh7Rd03R7sdnuvD+ofX8EQFh5eO/LjSvZd/Ie3w8EX0aOaE3KiRgiKQSBU7/PsINC/LshEwzieMYxwykR88AQEt4mVFUxmbZMpjLOMVuNiYOw/5PCopkZx/2zU/7mFz/jV3/7Kx6985h7Dx9xfPc+dnqEbibgapSzkAfoE0oNZHpyU5E3GlcbziZn9EeBZtJiJhXVSctX1ysur5foVBGGAWctlTthvVqQQkCV4KYyGpMiXd+j10HqvykzlDb0MGQSGZnQIi1V0WW0FbLgennFKiuq4KmOzvFBBIFydsSoRD0ueoxKQI1WtUi1Ip0CSqvCy5NZ8SoBxrAdC6zUVo9BjVyNLOCrVkKC06ULY3uDF37Atn3lDRXc/lyWydLfXiA8UT1Mux0M6XPXhSyp8t6sg1yy/297/T0Uq3SBYtuWyaRFZ0NvMsZonHOlzCXPNUZjUTjtOJq2nBzPOT054mg2pW1qnBOBnpSlfZAYSCqTs/BqRNVQQzZFYkM8boxRdB5Iwr4eB/uV36UQpQyEIBZj8CeTDDVgyjATCRaEzpILxyET84gCGazSaJUgJ5racvfsmJebjuvOE4LUYOPWUwinoGhUlvceOUH7D9htc9/vevouaHQUKyrtLTeft1eOfIO3/EnYN9WWxyrfzUBJ3/iFyuAsnJxMePDgnHce3aepHX7TY41GWYtCc/HiJYMfODk9Zn40486dM+7dvUtVNaII+OkX/Pajj/nXf/2I58+vGNYeiyVHJUI6BZK0tcFWGlcrTuYzjmdT7hwfcXI8Yz6f0MxaQg50XYdSjjBELidTrl5eSvIaA5U1TJoJrut49mJJTAltG5Sy5JRYbzbkGMml779qZO6FK3MBpv1U+C8hEGJgsVyAgqatSTFikC45UmY2nbHeeAafyCTRBvCiJaM0N3nU2xLBeO/8cGHAHzQMSEXZQIUdbgSeLO0MusjfmnKDx6CkRYj4na8tG3B5lB9sFyIj2UNKGGdwTiIrYxVN63BOEZANpqrK3DxtmM8m3Ht4nw9+/jM++MUvuHP3HrOTU+r5MaqegG3IxkpmNPTkkCBEYj+gYqIpalJGJdqJ5a6ZM7l7xP3+IU/WGy6uriBnlosFOXhMziwuLSp6nFZYpUh+IHQbFku5KSpnsKtMCInBwyZCyopolSj+AUaZMjnKs1i8oF8vmKpIFQObTuE9kC0+KuqqFXU4fwxpLnXXqhFoWJVzllWRvtVYY7HjcBZUWfgxmy+baTkXNpV2LXbOcBS8SeXCzOOQl7fQcsr4IKOA45Z4WRyQtqUHXrgsEob94aBzzgI/ziYtrbMMXSelFy28ApUTzkptUSHZeq018/mMo/mc6XSKc5axUj7qNiRk/CjagfLEYKSbAV0Qn0CKobTZiSCPIAJjqWiHoqWcMGUzSeXcjRLQkLfS2DknCYZSKtdNGSsNRTtJY7RFqySDsoC2rjieTWgvFwxpwDN2waht2WpMJKS0YMq6/en6n8fzOW6kIzE2b4+lPFHLs7dO7G29oN82y4Aqo6UKgiNse8VsUnP//Iyzk2OOZlNSiCKYljMpifDZixfPOD6dU9eau3fv8OD+A7S2fPXlE37329/zX/7zP/H1V0/wITEMURA7I8JVrsD9pjJM5y2zownHp1Punp1x5+SEu3fuMJs0TCYNVVPTDz2L1UI6uEJkUlU4rXj+7AVXLy8IMXB275y2cZydHHN5dU3Xd9h6yqRtubxalmA6cXn1kulRg6vFhVZVxdnZGblwCUbOwDD0MvDIOSEk9vL7rN32mtySbxVoI/fu6P/GJf5T2RsLAVljRGpWy1jTTCQpgzVu+0FyCWM0mvgmR38L41DITIGt3kDO6JxE+95pYvIywS83svkZhbMalWUwTp01d+6c8OjxA955/A5n5+fMTk5wTQvWkY0r3s0I9Bgy2UfwkdD15MFDTKJSngPWOY4nDcdNy4Om5hd1wyDYP+vVgm6xYPXygmdffo5fLZjVDqfg6uVLuoXiqo1MW5itI3UtwzAgMvSRzgv0HJJk6KnQybwf6IcLvKkw04aNz1xdBzZdgGzoh0zTTjm7cxetEpXV1PWE3IDorpstIVGcvS6dGqBzEob2LQGg0QWqLM8xiS1JcxQQzCWrk7hi3DDfvk1ThtV42HN0cWTOl59JCWuQ6XVZHOE2xfkO2x9kpcg4K+SeoevpNx2Vs7RtIyp4VpfW0CTIjDI0rmI6aWmaGqul/S0GL48kolJZGZROKJMBTdSGaGTiY8pRODgxkAvRNsZECpKZQ9469DHWg12pKIQgff8lAIgxMg5MkvbCTI6xIHsZPz4/JHLM6Fy6H8gYlZlNWo5nFX3wBJ/QRgIAyfTZluH3B8r8sc7/u/4+76erSqGUke6VMRihIFgHFOB72pgkFHgnjxlCKeEqEWs7mk84PZkzaWqc0fihp9/0NHUlk1mvr0g5Mp023LlzxP175zR1zeXLK37/u0/4L//5n/j0ky+IPkGZcOmsRSPcqsZpJpOGyaTm5OyIO3dPefjOPe7dvcvJ0RGnR8c4K9ylmCK9NSIi1w/0/UBttIjBGc3XT59x9fI5Pgwc3znjaDZBKcXLqyWd9+SYqIyh80EUXf3AMAzUrWOsfltrOTo6whjD9fV1aR/M9H0vx62lbVtrzbrvmbQTfIR1N7YQis8zppBmZZH/qMvxu+6NN0cAssi95Bi33xttUE4X3fNQFmSU+725i96Y/LdP8mMPld07aJk6Jg5GKXDGYo0RskaSHs4QAxVmxDqxOlM3jplznN85497dc2bzKVUtmuZKixJcDoOMRtUiVpGGgdQNpPWa0A0wRLJPW0jVh4SxEZ1loIpzmraqoXacHp+i4oxhMeWDexOG5RUmBuLQcdFENkeG5YnletlzuQwcXQYmdcJqT79ekkOkTwrfZzAKVxliVoSY8D5ADcl3+LRk6BP9pseHRNdH+n5D5SxH8yMRcIkZjaEyNaaqiiiQZJwqy1AilUXBTc7UXpbEmKQVNCWV811QAlF9kw1VZI7lShVZWM33QXr+nCZCNqMSXyD6geA7YhiIoSf4Xpx/CqQ8anK/Tgjom2+kcRaGQqB9cha4cBC43bpIpRWhF0KssTInYN5Omc+mHM3nTJoGBcQQCDrjO422DpQmkVC6FNWRckVUCqwiJk0s8wAo5L0YvPBAighVTkLSlZKcZBopRgY/yP0agsz2SFK6s1pKQGNcJ40RsTh/zzAE/BAIPsr46yRzOYxKWB05mjT0PpC6SJ90GTC00/pTZc1Gns+fQvxkn5sxwohK5cL9kLZgpUS6WCYxJBlyNh4g33rKDwZIsrDbx1UR0dIKGqc5nrfMJhXH84bZpOHq5ZK6csxmc168/JzVes2d8zPm85bjoxl1XbFcLvjk95/y3/7r/+DLL54Q+khOElxXzlE7S6VgUllOj+ecnsw5Pp5z/8E97j24y70H58xnM+q6FqerJKgOg8dUGWcEgRsqR6hrplXFpHY0teOrJ0+4XK24eNoThxMmsyNmkwl57RmGDeTIMPQirGY1PvrtnIDRmqaR6ZxFDVcCX9EQcNoU/X9LWPfU1oj+zNVarsWEtLhrUcoS5PxPUfnf2RsHACBKepL1lUyjtE4rYzAotLUweGIGHaOQym71/o4KgFvLrwYAOecywtbIMAYUdSXtZv3Qo7JHKVislmgroyZTDLSNpa0M83bCyfER01YY3r7fEPsGFIScRfFP1WCkXSN1PXHT0S/XxK5H+UD2QTKpPIDO6KTQeUClmtytyNaSraUyEkna4JlXBt/U+LVnSIG2MjhVM20sRxPPySwwazyzFmaTRBgS8fMF0Uf6BDkbgXGzJiRFyharK7R2AoE5sFbhY0SpQMoDIQ4FApbxwLVtRBmxqTGVK05d4FydJdK8Xd8u+eJ4OlBk6ij1/yJwR8wy/TCT8UU1EVVeq9Sc3ybLMdKvFxLEpEiOA9H3xDAQhp7gNyK6VJQBx6z55j337R5hR16liIBovJfzOvhAiJF2VqNsxiqDShpnDLPZlNlswnTSUleOlCLBD/RJBum4WuYJoIzMciojewOFUxtz6QQYp1pK/TGluOWAqFxY91HQDp2FE+H7gaHvSSkWWW/NNtYuS5DGEkLKxBgYwlDOedHY8KkgCAOpbP6GxLSp6HyLVx4GGXM81vv313W/pXR/HffXXd16/ve13SCgcc+BurZU1kl7Y2l3VBqMUUSVZSx4KNlX2YzS2xXPvkVWnD8gyR6gElpDXcHRrOLkqGXSWo6mrUhko6ialsViyf+fvf96kiTL0jyx36VKjLl70Iwk3T07mJWFrACQFQFeFvijgRc8AQ94hWAhu9NDGjPTPcWSR4QTM1PVS/Fwrpp7JKnM6q7qyanam+IZTszNzVQvOec73/m+d+/eo5RiHEe894zjQAyBd2/v+PV//g2f/+4r5lOgFjlvnLU4a7CqMvaOF9cHXj674tmza169esFf/c1fc3V9Tde7ZoomgnHUhmDVimHtyy84DUmLE6YqW2pJEsB88zV3Dw8c7+7o+wFnDN7Kwkit662WjLFS1wea1oG5nHEhBPq+l/nazrp5njEohq5nM264P87M84LzA+Nm5DQFKlF4PLU0Au2KXP3pItE/MABY6/zm4jGfVIaiWt+4auImWdzBqKha0CRqeoyUvreQv/Pl0733qQ69KlUidlVJtZn3KE2ImdPpzHbcsNlsOWwdW2+4GkeuD3t65yjLxPxwJyptNRPtTNYOrXqU9vJqw0JeFtIcSHOQ2n0MqBopZUargraKOp0pRqGMELGqBqMUVitsLaiSSctEXqQdsRaDtx5lC04J7GSqYtM7nt30QjA5zkxvl/ZcAr+GIF7uOSMmMXOFXi6QthpXbTNhaTm8UmjjcK6j8x19N+CHHuudvM5WRnlEROt6kS//1jWVVaCqwuaCXjdEmupVinJohIVaFKlOl9ruLy1rKiUxH2+F1V4L1EyOs4jfhIW8TKQwk3No8H9+PKf+0MBbiepdSIWQKjFKiSeVQjHgB4vvPX3n8U42NN06Pqw1lJJYliQToLUiFltQ2qF0412goUJASUlAWbnkTaEspyTcjjXYroJgSXmuKUHG0O5hRkSpmkpkfWzVE+hfbHxFHyCwpEBYxMkwLOIlUNsGm2qgUNElYVXFG3CqqRxSHw9iHg/ntQvoT4EAPH1epcSA5uXzK55dX6OpnI8PpBgoKRKWBbShKkMImfNUiBlS/sXFs7+YsWpeKHQrL1WMrngHQ2/46PU1r18cBKYfOqbTSWrgpfLVV1/x8HDkcHWg1Iw1lnHYcH/7wG9+9Tv+4e9/zek4YY1uiZ2hcwZnhFfw+vk1L59dcdht+Pjjj3j95iNevRaFQHE5XUm+mkoSdAfhvygydiWbadHO6J1hM/Tkqz1VSfH14XgizDO2l1JAKdIiW6uUEcsT9VtrbVtL8nnXdUzThEjAG6wxhJQvc7LveypwfHhg3FnGcWQcAyFGYszkVJ/wrf5p9+mnCLJ/MAKwRu1WG4yzWAcXIxzWAyIRxS9Usv9i0EVfXsSPvZj1vqyfXyKglQxYwWDpu47KQgyJELPY7VaN1Q5vvMg9dj2H/RXXh2uc1oTpxOlWlNo4XJE7RzYOdCDXjloNhEicZuIcSEu81DtrCdQc0UiUKC1FUo+Vty1KbKWIRKRWdVU+EVKkttKGV6VrwpREbxLZFIyx/M2bLe/fjdxOC7dJektLKgQKcU7SIqgK6lRwusqBohHhnqZAVJUS4SAUWju89XjX0Xcjrvcoay61+pVouXIDnnYBrPD/eofMJRt8tAemKEqK5AhxzsznSUoPT2/kLyQQKDlzPt7ijMEoYTGU2JTwloW4zIQUyCn+iACQbh8/nQrmUpmXhFaZWjWlmkZeLcRU0blSq8YoWQspBmgeFNYYVC2UlIQHooTQJ7BgQRtxS9ON+KeaFgZKCJgreU89IfzV2kp1l8wlokuhNGGT1edBsYoatfJCaWWvhijEEAkxEHKQw799pJhASQCQc6KogqJgFVitUaq0PUBkfVe106eg5p8S/l8/rIGr/cjrF9e8fH7DfjuwGTzOauIyc3/3njAvnKfA/cOZb98deXc3c5wy6ZcykX+BoyI8Jgmcped/Mzr++rOXfPbxS6wp9J3GGcU5R1StPDyceP/uFqqYV5UqpmZxiXz+u6/5h7//Fe/e3mGVYRh6UowoVXEarjcDb16/4NWLa4becnN14ONPPuLm+Qv6YcC5npIVNYvAV6nCpXpENoUMrMhtXmZx4LSasfeUOpApTdZXEZcF6xsK0PQ7Vkh/teEGWTvzPOO9xxhzQQNyzlhrsLYht8YSU0JrR+c9x9PCPE1gukekqy2O7xD//2TjDwsAKtQsRCFjLdY6ilKXPXONthWFqlXrD1dtDxV4uDTCzVOFr8tnTXHlAhdSm2KYXAURThHlpVoKRcmmCSKAknIlhkzqheXtvafzXtzIQmFR8NBuvNqNVNeBSpQaoWhKCMTpJHKpQUhhMQqcWpJMFmqSbKZCrQ1qLfFifWyMRKxaNda0qhhTsTpDDoRplj70WqBlZfuN55PXI//hd3dMp8JSq0D/SskhgkXpHmMG+mGLpWBiIKaMtoVSLL4fsL7Ddh3WO7Q1WGdwnfgDaGdlEZR6CbJkoq2vc+0YEEZ8agcIRQSXUpasMDaNB9GUPzGdjkznB1LTwl53+F9KDFByYrp/T3YOq6WWWHIkLnKPQ1iEAFdaqecHx898Jw2JUVo0AFCxafVDShVCZloCo19rk+ITYZSoVtYmBlJqFf8KE0QYR2eMKZiqmtKZRSuDVuKvHnNqDnxts2ltgaWI01hOSQiOOZFrIYXQ2iIzWOlAkcBRymi5VqiaqgVVqq0MIEZSjx85Z1CNTBijKGI2noLRWuS3tWRJ+lLfe+SeGG0aUYpHiOkDNspjPPZjnU8ftkSpy5zWjZdBhcFbXt5ccbXbQo2kUPA7y/Vhw2a4wpqPUBUe7h64e5j48pv3/OfffsU//PobvrwNP+/e/yWO9Z62Q6rvLc9udrx5/ZzOaVKYeHb9ETnHRpLVvH9/x/k0oZwgV8PY0/c9t+/v+fKLr/n262+pqdD5jqHvOJcANbMZej5785KPXr/EWdhuBj568xGHwwHfdShlqFUBVtBppVs2X1jbndGs4hQC99PWn1b0nUMZhbJKStsV3t0+4K2haEPnHZ1zTSSrEEJkWSIp5bb3Z4bBobUhhNRs2R05F0zjHegK0zSLLXIzoSu1YJSoJTpnRREzPZZhvzt+n2Dej96m3xNk/3QA0Jy75ENjqrD/je4o1aC8RjtNLVU2gfbKtdOYrEktg6woqRM2QtDKwFUXrKPdI7UKALX/qUfEQBmLGzTeKupUMBhyyoIEdImQI6lY2VBUxlhNSIu0X3lHnBJ1mbGlYOKC7keKjSi1UIuW7CvOxBQJIZCXLIp5WVGLQLSS8BeRQS5FNNTL3DKvwmolrJUo0GmtCTmiEYOfGKWckIsIGM1xIuHZbTLPD5r7pUjtv3rmUImxonTFY+j7Pbvtc6ozonedMkLBMFjb02839Lset/XYXYfZeGxnpUfWNaleJCsySkFuNVijQcvGnEsmpIouhRylSyCEhRSWxuI9s0xn5vnEw/0dD/e3zOd3PJweoDy2WZU/clb3jx6lkB/eE4wmr46GLWNNKV3IciKOUFdH5CejPgnFPxzfW3gVVM54VSgqsdQFraSFLqWCzo5aHCEWzqeZThtKlPaoOEeWKsFYMYpRa/KSqDpjjQEnsGYtmWw91jpUKcIpsI5cFUpZtDZQWzATszggpoxu3TQpStYhJDxLqQ5je4pJ8v5boJ6ziAFZL+qB1hjsbNDxLJ4DnQWVmeaJGCO1QgiFpDW5SCsiVVMzlCQbalmzGq1QVot6ZlVP9hgp0Xx4rR+pg4+VKnX5SS1iM16bqiJrO7qS8oa3lqvthrEbiPNEmgNu39O5Pc+uBm4OO7xRDL0hhJFpjpznl/yrL5/x//1f/gP/t//Xf/7Hzrxf3Phjoi1yqMqeSPMw2e09f/1Xr7nej6TzkV3f0zvL3e0DJVViVry7O3OaC9ebAec9wzBgteH+7o53X39LWgKDt+w2A6oGnIqMG8snHx34m79+ydD3pFJ5/uolL169FmvsohoKrcHoJgWvAelukWKaojRdilwlMdVW0DRdK1ZVijKMypPywDlGjvNEqYGx29BbRW9NW0sajWOaItM5iClQtRjtEC0tg/cj3i3UmtBViVusdSJXXwraWIaxZ54jtSx0vcV7S4wJZQzzLNyqC/QNP7QF/eT9/qnxB5cAlBJjA9t53DBgOiV18VKISlFai5IqpX1UlhzaqjSsop+sWfTa71BFLazqx+hH6oWyO4iYh7B1U83SQVyhCdOSW3RFjHR2YB57pnlmXha8d0LoKXIwxRCJpzOEjPUZbTuUcg3yDMQUGmmqklOWlqfW0rGyqXPMDUYtKAtmtUcuwgy1RokxBJLh1ZrJqakmlkgugUxTAVQKTeb59cD7ZSHNmvOiiCUL14EKWjFuNozjlmI0XV0rq5qMbH792GOdxXiD8RZtTUMCXINDRfhFay26+I3xrrRuZjCyYKT/XFjicVpEBSssLNOJ0/GB8+meeTpyf3fH/f0tt2+/5Phwt97SX9SotZDmicSH9bBLUImUBT6E/j9Ep36fMsDjIquNBCgaFUsM1Fwxpv3NIvMvpcK8FAxnBmeZzjPn05mtcXSdxziPNYpcliavzaNpk7EYY8U3oqFt1hm0Ms1p0K0xMyVGipIsW5ty8ZxQiIkRaKx1ON+Jf0SNpJza+zAY62S1Klk4FSXlg+SI0ZLWFlyVGwFQXlNMRdCrJvkrfgJcuglAFDOVaTLTtSIi1ZcV/7PQo9XjQivZU6rSVCXELyP6LFijGDtP1/eczxMpFp7fbHn5/Io3r57x6ZtnbPsOVRI1nTB6QemI62H8+Io3z/8Pf1YBwB9z1JUt2ihD4+D46KPnvHz5jK7xSgbv2z1S5FR4//6B4/EMCpxzOGubVXBhPp2Jy4I3QuDzVhODEKhf3Bz4F3/zGfv9hhQzV1cHXrx4QT+MKG3RxmGNZbUz11rmBQApiWmd1uKi2jqZoFnNGy4BvqFgq8Z7yzh0bLcjS8gi5+5FVrjzjjInQBC8GBOqlfRibM6aT1RxtZLsvxQpByttmluuY+jlzFrCQr89cH19xbJ8yzS351yf5E9IBPz5UsDthdjO48cOP3YMmxHvxDgm50xSIgiUU5LacRPVwXSYXIlKkVn7zNthmiVDWgloRT1ihaVtDTRRIWUNWUGqiBCKtqCUyNZmxRwi1UTyoaciJYFCkz11Tvr7S+U8L5SU0F3GV42vGmuEzFKaalxt8FCqovVccxISY4WSReAopmaXWwEjKMFlI4xFrGBLobMWSpZ2sxQbiUQU/4rSVK0wyrPZGvqxYkpFRSQrVVXqVqrSDx1d15HUWq9XVIwEAGrttBCiF23zpYhdsrj5CTSrGpFM5pR6tHwN4oedSibGwDRPhOnIskyEeeZ8fuDu9j13t+84He+5u33Pw8Md9+/fMU3TZcL8UpL/dVzIpzRBm+9ExnWFrb4z/lDFLaFSPHIpaCUVlAh8AKKemQK1dGzHoaFWBayUa1znsQppUa2PUH7OGbtySoy9SOeWWpuZkxyqpVRqqhQKmaeOh+Via6rUEyTIGJTR5GIwtWBASKNGo0qhqND4LYVqNMZqtFXS8UkFVZ8ol7UyQW0dPusBXz+cE1InFaSu6ibMk/IfHjw2WFlBm/9NrDrLyuh6Ly2Wu81Fkvbjj5/x15+95rM3zzmMHl0jSiVymqlpwcRFUOIM3f/aAvD7h5IWam3gsN/w6cdv2G033H39FTEEun5giYGUM0sIvHv3jvM00fWeoe/QSuGtQdUqpdFacVrJ3pUi5MzV9Y5PP3rD65evyCnivOHm2TN2+wO+68kVjLViq9vq8/VJHVJKD084IW3vk8BFSnWmld2MMpha8b5jGDK77Ybw/k7If6XgrKXvO+bW3isKtYUYA6u4Ua3SiivEwYIxMI4jMSY5n2olhEgpwn1QjXNTLh+i49GUqf7k4w/wApAPN3j5cBbnNZ3z2NYLma2DXFiWhdwlqWcganjJaBalWVguLn1VlUtGipGDUGl9qd3Jxq0uzGHVNNEzUI2lGtNQgcoSMjom+qFDYVGYFh1KhKiNp2apyYYscrDOaGoRlz7nRFhFF0dNDvLSSHJFDBxikBsLlFhJCXKSmqwqVQhQCpyzUEtjSkfhHxDEcCZFaTmrEahUbahGSiOlSEaUW1tWLq3HXgkjtB96NltxLkwXT3UtWv2N6AKVlBMpiUhFWBZci46dk027ZAkS1hqu9IDnJji0MC8zyyLIyTwfCfMdp9MDp+M9D8d7OfDv7rh7/477hzvhS8yBZVlkmhhDTfkXwwGAVab48asPA5SGAPwRRqkwh4idJhSiUpbzGgBYSoXTeUaRsNYQsiA8WT0e2FVVMAqDQRXJslTL+Nfau7ayLrQRGFNpDcagn1x7VHNFK2K28yjSVZtFanv3LUOz1mKtEcnnaiFnVE7EmoktSCxFAuNLgKNBaY2xhqoqKks3kMFgKqhLkMKlQWQtD+mGNFQt7+sfM1fWO1frY6+BqhVrNd50OCPs7LvjA9vR8cmbV/zVZ2/4m09e8GzfM3Yah5M+c7cnxYGhC0xByIBLif/0SfFfwfjHSctWVCvX9N7w8tk1H714gVWJ0/nI6ByHqyuOx3vmJXCazhyPR2rJDMMWYzXGiiVuDoESAk4rIuWy74/e8fGrV3zy0UdopclKc3PzjOfPnguvyVghsaqVGAtQHtEm9TjnBYVavSdoS/6pzwysQbFzls3Yk3JhWhaOZzG1g8zQe47HM6kkYpiZpjPOe+niqVLvn5fU0NBHhdQLN0wr5nkiZ+j64XLw393dcTwuFzth4bX96XfQP9gOuFQhsJUSKNGREVvZVauflnUYZxnGAesspXek2XM+O+xkCTFKHRJBD6y1GOcwzgo8KIV/sVQt5TFgyFm4Wi7L4VcqWYkiGTnTVYXVTkQ+1tygKkoRhjZUMWWpSiRMaUJGSl34LM4ZyA5VHKkspCj1/LRmMkUsfKW3GtFl11qc+nRTPVMJhWRqGE2NsbVHltZnrMilkkqiWAVGEUH6s1MihEyIkHIji1hLP/T0w4Cxrk1u3Yguiqo0qch2GOPCskxM01HIMMLkw7tO+mLRrRacLj7WKcu/yyIT+jydOJ/PLPOReX7Hw/0t9w93HI8PnE5HIf+dT8Qk5Y6+7xrHQCCv/AsTA1qFKtaD9MPx45vfz1mAj33sEvKEWJiXyOA9xjoqqdXyRBAnxIzRcm9XT4hcCqmkC1lWaVDlUchGNinp39cpgcko21r+WC5dAsbS+DWlBQ5r1rOG0Q32bK9Xr3NXG7SVtUiRgx9jIClyjM1VUj05xBXaiGuksQZdZS0ZZ7EKTNHo8ujgedHXaRnZqkBo1/LI2tWA+k4ZqdX6f+SAujABLlUYsX3tvWczOlSOLNMR21uu9gf+5b/4lL/59DVXO0+cHrh9mPDGNDKiERBYDYSqWUoim3+eLOyfa/xTDpTv/u7K7fZWcXPY8tHz52z6juP9CVUrm+0G13nyQ2GJgWmeWaIcbt45Sk54NwjUfz7LfEUIcdZqnNEcdhtev3jOfrOllMJms+Xm2TPG7RZtBP3VWsiEpVSM0xey6Sphvc5ZQaMe+SQ0Eu4aIHww65Qo3nbe0nee93cPxDBRchRel4GSRBQohIVh7PHeoTWUhp6uz6m1eK4IEVK4NZfz44mAUGqcpAtqtgYP6skFv+w1P35vfurn3x0/GQB8mMlVptOJvutQJZPbQV3XjKJKzdAoRLHJGkrfoZIjD46hszx0huk8oVUhJanT+M7T9z3DMOCsE6GhnJmnSer1SyCFKLaLCERudGWp0p9cs2oTp8Nqi1VitKJKhTVwiDyaoKzvqoreei1SmBDyqJCTslKkdi1XdnQpSEdpzZdsxliLsRpvtTBLayKX1AxgeoyGGBaihrjI5pxrJebCHBIlguksSclhUGptCntrdmYZxg39sEE1zW2Nbpr9jfGkmjAMItiyLGfOp3tqkdavUgLO+jYZVfMgEBW4EAPLMrPMM/N85nw+czzeczqemKcj8/SW00k0sUMM5JREYWuzoSqwxqITvO+//snJ9l9uyGL84Zf2x3u9qpW3RFinWSxrLdoAMRLbZtO6iWhmylJ2avV+pWRz0N97WU2pLydqjFQtMKLJFdeLPCo5t7S4XAJbtCG1To8V8pd7JAGqZP4WrNTPVSkoa6k5EVMSQi2CTpWVDdGCUm1sk5XOYg6EwlGZgsgt55Q/qIeucdKHVuBqvXhy/ZT64JY81QH53kZ32Sxrs7MWCVqtCzUv6BLZjo7PPvuI//1//9/yr/7qDbYuvP/6W2qcRKPEWMAQao9xA853nJfM7WzJ1fxxJsaf2WhbDkbDpnd8+voln370CmIknM+M/cBms+E8T8ScCSkyt24ba81FsM07Q62ZZZmhFmpJ+E5DKQze8urVM148v8G2joGr62v2hwPO96C0IACNSLomYnUlzT0N9htBUNACeZxsl0+RP/EwWLklSolAVOcMmtq6eTKdM3hrCDFSyaQG9wuvhsYBaOi3WhOwSkqJJUq3gCABUgrrup6QC+dlar/DZa21N8FlQTw53H8uofOnpLb/MASgFML5xOIcvhQhMliPq7LxrY5ipVZKMwqqtYIuFFXoasHkhE0RWzy5iGZ/Pw5sxpHNdiu9lEpRYmaZJpbzxPl4YlYQYqWqwqDBKzg3CLs2GWLnzUXSV5eCV0hG0uRq1SWDabWikgnLTK0S/YuYj9Q0tW5hQq0Ya/B+QwiG6XSk6HIpSzinsM61bEZEe6gVaw1dbzAarJW/WSjEnKkpi8xvVaSU0SoQtWEOiZQbVIVM5opmt73i+uY51vasptfq6YRQCtW8sGvNItqynFCqgMrkvGBWoowWck1sWvPTPHE+n5nPZ5b5zPksRL9pmsgxUFLAoNn0GzbDVjZbpYUtrpXYrebMV7/9jdSa/4zrpk+j66cqdpd/lewpKYtltdaWatRFGyOVijHgFNIip7TwM0qVORGi1N6NBKiyBcjhba1DOwcocsnonAUBqkFIdzajtBW0ICZ0btaiCiHStpLaKsC5+iCoVp5QxqKNotbU+Cprq9PSPiIpZmIs1CLcE6UsSlmMAVShqozKkVoiMcSLHXijRQhyVSvKmYsM8NPrKeihukC6a3DwVEH0g/ugFEq3LK8mqIqUIjFIEbDvLR+/uuG//5ef8fHNlvjwjskEnEoMvVjRnpdMLJopVZQp7K861LBBBdckwP88xneVWP8xv79+lMbq7DvLftPzyUev+PSj19y+/5IcxO3Pd56UY0tqIEaB44dNj7UajRymqorATohCvh76jpIKw6bj5sU11jtiimx3O26ePWO736OUBaWxVgTcVG3Kso0AKGdOKzuVdpSq9dB1QKSSpJymlIikldIQ6casqgrnDH3f0XeuSXwXjHEMQ0dMiawgxqV5iDhylkBBa0WM6SIQJHoAliVKyUTmvtwDY5oOR8kflMk0+mJc9hgRtx3hyZ7zY/fqx+79d8cfZgesIJ4ngrYo4/BdYnAJrxqMohTaiWmDROSS6mQUCUWnRIPbGSMtUFqjrWXT9wxDzzD2dL5rh3giaJhqxYQFEzQ2S9a7tZaaEqYWvDMUJ5CRNkpISSVjasEqhVei26+q2DFqLUINVauLwUTOiRSX1kqkcCuU/yQSdEZRq6b04oCWk9RVtSmPAYPSDfoXOUrnZEPNGbTXqKTBamoUzgPWSvukkv76eU6EUAihkiLUYjDec/P8JS9evKbvR6rtRQiIVt1W9ZLdCYRB034P5KwIS6HmIL3jRkojMUp2F3Jimiams2gfxCDCONSItwplHLVsoI7CzWjZrNJanquVa0xJdF3f5km9TJe/hPG4EFtWC+1gEkg7h6bwlWRTMkYyDHJFZZq4T9uockJVL8TN9jxaiUqgdR7jHQVLbmJAUhIrZFWASEGLhWmtWK3apoUgXYiUKVS8909ISw0Jq6vkrwQicVmYp5l5nlnm5aIAeClbZEWtBms7lHZCOMwZFcVGdWVDlyfwfwMIL2IptTw5yBssSyvbXZKfH7nm7TPJ2hC+gXUK7zTeVJwVUZrn1zue7zrK6T2zCuxuNnTOoZQhFc2UNdUMaN9Rqqaqjn4Y2VRRb/tfx4dj9XAwqjB0lu1m5MXNDd4aUhDlVN85vHeklNAtMxZiW8V7OUydFai/CcoSYkRZIXR3znP9/JrdYUcmYY1ld3Vgu9vjXEfOkhhpYylFEhLd6uuV9AQqb0E66vI6tBKi+bpL/fDBKEmgs4Zh7NmMI97dUWvGGcU49CwhMqd0CZBdc/tbr4+YcknH2MPDA13XEYJwpWqVQES6ZsSiuORVJVdewYpSVGoTcPvT3M8/WAgoLjNTLSxKkSqwSJ9jrQLDXURovKMb+nZoaCKaRRkG69j6gWOuQppwjtF3uK6j6z1d12GUImvNUjM2WHDSxx5atNiVDEax6ZqQSNtYa80oXRl6R+cMVoGq0o4oGvniy+6ck8yMptaGZlkCJQu/wZtCjrLx5SwZRo6BmBrRTdeW9YCx4kvdOYuxCoVD64IxwpOY50iumULzczcKrEZXi2uZfATKkqUuHGFZmoysdnRu4Pmzl1zfvMD2e7TvWVJqZkiZVLOQFVsvv7DDMzktRC2iN6G1lJRWExOSYWnSroEQZmoWRS/nFM52sqlWWC2EL0CUWuWChfuhFdS8SK96fTy4fpmlgH/qeIpNP3753fcqrWgWVCHVImY4IKUiZ/EG4acUkVk2VaGr/CsxbG18DRpB1eO8R1kPxpGqlra3LPyXXDIxB1ISnonRCqs1VougcFznSpIMxDmBJGvNOLuAaqQ/rUghEKeJZTlxPh2ZTifispBiIoXSAoBCzLUFAAKRWkDnhAsBrYQULK8HnpQ6UVo1CFQIvXXN+i9tgZdCwyOHoD6WcNbLrhrMq1RBG43vLOPYY3VB18Bu43h+s+fZ1Ygn0KvKbtPjlYaiSFlTVI/pPdUMOGWbjHLlfJ6Zp+VyaPw5jKdz9KfXpvrep2tlpjb2e+ctXe94/uyaj968IqfAcj7jjOVwOGCtIdeC63zjKcnveecu5UrVgtIlzExhEY6T0WzGnt1+izKKOQT2u4794UDXdY98EaUExWqvx2hpRRGp3tTEtWQuPZpOtTmk2vostWlUrMH7ox12zqJs6q20/0nLorz+7UbQ2hoWpiYmlpKo+eUiJY2UIypLFHt/f8/h6kqI2SEyzaHtD0YSr6aiusL/6zwXg6B18dQLj+f33ccfEwn6RyMAUi1sN19BqAm3ZNJtxaaC82e8aiZASuOcxTiDGTpc6jHeyY0phVQKU8qcY2RTKrmK4MyGiqWKi5+paC3BRYjQ24rXsBiICpZaBGbsLKkzxDmwpIipFWMsioI1ms4KicNZhzhWGTAduhvx4xbtPbnAEiIxFk6nM8sSiDGw1tJrzLhGLCQX4tJ8GjFCBFFaGM9N5lFkHzu0rqS0kFImBE0IipQE1rHGkm0GAsZV0R9PihAquThqjuIhnyVT9Nqy8RvG/kB2W4zvwEgGb2pBN11qZcxF0U8VRU0CyZYGkZYqJLKUU5vwNAW8jDNGjJxU13rMhW1em5wxqIs5xUqoaeA0SilmLd0Kfa0UKnFFuP5ShNQvJLQGdSfRUVBrBqLAGvCdpusNnZZatSpFCHRFPCJWDwi0BGvaWLQz6G7AdAPKOjBSBqhVoaKQB5coc60W4RMUKrHKhpcqIhFdiwSVVUpOKwnUGYMCUqloY8g5cz49XDblKQVCiZQmZ5xTU4FvFrCrktqqrOasExdDDKpqdBWzsMZZZe0QVG0jxkjnQ8nfUVuownZ5uvFdAoMnF1wjioNGiTy19vD8asNnH13x6asbPnqxYTvA0HVY10E3oLstttvh3EiaCiEj16MU4pTQunA6LtKF8xc4nkzn9o0qiGmtF68Q7yydUXz85gXbbc/x7j2pHfhd51G1MPaeWsRKt6RI3zk6b9Bkak5YrS8dRLVmvB/QwHZzYLc7YK0nxpmud3SdoWRRBRQlTAcpUlNFO2lvzjWROQv3pEJOMq+sNdDke2U9Gum8QlO0oWrhdglyILww8bEv6Cyl5E6B1wpvDKUarHF4a8nJUJMix4xutf4UAiVkRJ2wMpVAt0RyrsSUmZcAKtP1AxWNURajClpFcf2skKsYUawdTD8E9v/Q4f6Hlnl+FgKwkptQ0hcfSyWnGV0M1i0MxtAZh9MGHwzaGVQO6LKg+9aKV0VprzvPuNNEtywUCtp7NlYgoy5lfJIsPufCkjNTzAxZrHhThVlrstXY/RYzw2k+CeypMhqRCd6OI7vtlsPuiu12h6FpnruOcX/N9bMXaNeRcmVeJNpPVTGlzOkscq0pZVRc6FSmMxpbKnGuUKSNSnvVGrekzm+KoiZYYiKnwLyciHFhXgIxREpeGutTt+y5YFyDOs9iIHOeEiFUqDKhjTWMXU/ve3rbkU1PqSKaorVsiAktegm6uV8p6XBwCmnFalnWRYDpSdaFMdAOAL0KLrW6GaYREmtk7X4QM6GmuHXZlCFbi9ISxBUUsc2Vv6jR3q+GFvgFXGP7KQ3agtZiYZ2roihzaS8lJ7omipJSvDRXW2/x3Ygftri+p2rbgk7VlPUquUSxMEB0KrJS1FwuTo0pPUpXh7CQY6QkIR2GsBA7jypF2mit2Gw/PDywJGkLjTkTSuW8LKRUL5rmFSHXGoMIbdVCqRmsxTiPMa5lZgqdK7mulBXpztFNyEopKdsVHmsFIlL1yIH4MMB6quNQME2PIISAror91YE3L254eb3h+dXIfnR0vQS4frvn6tlHFDuwZEcshpDPHKeZ6Xyi1sJ8ngSunZtO+1/oeFp5bow5CfisWIk7q3nx/MBnn74hxoW7hztikUNQqdpgfsOsRIpaK8VmFFJ0WBZ2mw6NYp5EkttZizUW7zo2mx19PwJgrWV/2KGNKJLqVlrWOmCUl31JKXIthDwz5TtSQuZQFfXTGCPLPLX2O3FODWGh1lWErl7aYEWMsjY9myj22Aq8MTijsVrel3cdBZH4rhlSiJQk71uMMSWRzUXWxTQtkoiiSbkKWqwMXTewhEzKAWuhqkJVkBp6gVIY6iOHhg95MD+W2f8+jsDT8QeUAGQhiqBMpSY58FxJDDbTm4pHY1t/iJo1nC3KmXaoALnglsAYFmxKoBXWV3oMvip8BWsn0LKJ+XmhO08Mx4U0ia3qA4lXf/0p/7v/y//IP9x+y//1//n/4KvbO4xzOOsYhpHrq2dcH56x3x8YN1t0a0sbx5HNbqSqwhzOhFanjCWQlRAVs8pUXdBOsrDzMjPNCVMK5IQo82vUUokl03VVJE2TGPOcT+emlHcSud8wU/KCMRGKKGApbUQEotMkNHpKLPPCPGWW2JTUlHQe7A87nu13+JIgSRRZSKg2uVLTd1daocuTlsSCeB6s5DTAVglZQExj9IrrK9Bq7Ylt32yBQm6Q1GU71tJgufbWFgrJglGVJMWIv5j6/wejXUdxwZQv+35AAdN8JldRlFS5kKzIkjY8ktVFzFqLalBpRYN2GD9g/UDVlpALS1pIRbwZQoR5ioQlNFEtgS9jCK1Vc0LnwK6TsldJokWhqphWlZSIQRQLlyBs5pgz59OZEBdO05nT+SztqbVStBH2f8mXLpJ+6Bi1AzSzMSStMN5iO3sRC2qVfTn40RhlpJOlBTK6QlWmHfAVkWX+/ua2Ps/KQr+0HrdY9uqw49n1gf1uy/Vhz367wzuLMp7d9Q2vXn+KHw88nCPnmDieF46nmbfv3/P+3VuG3nM6nRmGnloqd+/f/zNNnl/yeKw/ayP7u6IyDj2ffvox+/2WeZq4vb2Vun8j+1lrWl08ooC+lwM/x0iYF8bn18SYOJ9O1FKw2jCdzxSfub97oHMOrSuHwxZjHdO8UGsQ/ogyKG3obMJog7Q/K2JZWPJCikI6PB8X5jnw8HDk/uGeeToTlomYJkrJUg424ta32QwMQ49rIlsxzSgt5dJaBEWwjWfQO8+4Gckn4aYJoVb2T2NUKzmsRHOx9w0horRI/YqXjmNZFrpuaAlV6zajda+VFe368WTq9zH8P3DR/T2BwM8KANqRIbXdJ7CcyoqeyjaDrxGTqzDuqXKIN3GfWoXwpCq4WhmK1P+LVpgSMfWMCgFzOlIbIUjXiksZGzPdEqgxEckYm/lks+G/ffMRrz77iP/46//M6W//lmIdw9Cz2+457A7sdwe2mz2u63BGIjPfdUzzmd999QUPpzPnRVS/QsrMITLPC/OyNClfQ4oT0+mOHOLF4cxUhS9CHowpMVBZasHGgHeG8ykynaVeWopYpuYU0SpilMZlhe8MvutxvSGhMceJGLNArEWEfWojH97sN9z0jm46QW2Qvs6tna+1W9UmINNIY1pr0LoxwBtzt9Zmz3w5qy5aU0KiWkknjzatssEmOfzrZfuVuVCRiUqhqglSaprbTwq1f86jfudztX5LpEZDiOQQ6Z2lRMMUcsugHoWtnPdsNhv6fsAYCQq9lcBvPfzRjvMSWU4TD9MsoiS5EHMhJJgXcayMTVsjxcj5dOJ8PJFjYlSFQ+/ZbjbSvqlhHDq8dcIViRFSIcyBlAupZMKysMTAw/2Rb96+JeWMGwaqt6RSRMdjnkglM44j3TAgimYZasRYcXLrOot1EZ0rtioKBmM8VlvW1sKVa6JpyFItoKQ97Ls1pHq50I/6CLmK+6BzlsE7nFZ0zjIOA855rPOMu+ds9s9QfkuqmpgRzf/zxDwvxCURlsAyT0zTzDzNaK25fzj+c8ykX+CoXNT0nmScRolwmtGK/XZgv9uQc2Kaz1Qy1jmWOT8mOErY9dYo+q4jx0Ro9e6+7wlTYJkCYQ6EKVByZZkC02nhm6+/wejK649eoLVhd9jhfcc4jgxdj3Oe7TDinW9td5mYF47zkYeHM2/f3vL5777m4eHMw/HIeZpAVYbec321ZbsZ2Ww2dK6papbE6eFIjtL5gqmMmwGtrSDMWkSuQBCvYaicpnCxCbbWYKxqrXy6rYfUSH0Ka6wE7q3XP6UkeKkyrV226cSU2qqureuirntxuzW/J6l/etD/nMMf/hEkQI2QlWzVuAqeQqcqnRKrXVMzulYoSlCCVrHTqhki8Kj1XWqFFCklUhcFJ1akqW0KLRnIReQitfRQ73Pit//2b9EfveDjFzfsNwMPc2TwluvDjqvdnsNuz7gZ6XqLtVKQPp7PfPPtW7744gu+efeWu9MJ7TqM69DWMS+SOaUgkr1xPpHjgjOGoRvEYtdYet9JTz2KYiAtC7Vk+s4R5pmwNJi1VkpS1GLRuooARlVoDGPX4bx0glsrnQJLLKQqylYOxVYrNmkhf/lbYrKY2hFrlropjWXatsVcm0GxUihjqdo8OenVhcPxtIWqqCdLXDekoLZDvNX7H1tR1g+EgFZXGk8ls6CWQFFQnppH/ZmNeoGxHwk7HwzV1CeryEnHecL3Dqeq2DdrcYkE6REWQtGG7WaDb+TU3otro3IDaMt5CdwdT7y/f+D2/oG744lUasueFSElQoycz2dub2+Zz2emhxMlRHrnuRo60jgQ5plxGPDeokqmOI9SldmIUMl0nqXVj0oqmTlGTseJJURCStydzswlEVe2cpt35/OC1nfkKi1VnQffd80bXjzcramitqcMznisstI10EpU8KiJ0HpZJdloP6uXv8gHF702OKBqcF48EgS2jcSYMLbj+tkrtNuS1UDMBlVFrfH+/p73d0fmWZRAN+PA+9tvyXFhTgubccN27P8Es+iXP+qT/4vluRLN/tosz7Wl7y3OGyqZaTrR914kw8Ny0XSZpollmVAKvBPly1oKnetwxjOdH6ipEEOCqnn2/DlGW1IqnM8nzueZ8uU77o8zzhu8d7x69ZpP3rzh6uqAaSeJ1VEC3/nMV2+/4Ysvv+bz337Nb377FSFkEYHTimfPbnj95jM+/vgVNzdXeGuaEmwlzjPLLO3Q6d1b7o533N0/MI5DK0c0DxUFxhqcF/0XrfVFZdNUS4oFbeTwzjkSUyHGymazlwRzmsm5ssQFYzxaxUsWX3J7rTRLYa1Fgj49aaX5PePHCID/ZATgcVpUkZVNmR7oKPhacbXgq0Kr3JTphTkudRhRYHsU4WlZaKtpZB7ry2T5mVECFWpE2nNFoUytWG248p5wvCe91zgqh61oTg9Wsx96tkPPbrPBeTHD0V6Tc+Lt7R2/+/wrvvrqG75+9zXvHx6oxqFMh7KekBIPd3cs5wdqSQL5K+i6js0Y2I5bvHUsGTpj6XxPzLDkQlgW5pBEu2A5k8IMZKyT4AHbUZz0FgcF1Q2UZrdqfQJtCCVJrbRURuA6V8bbO+I//CfyVLB4Ys1ULYStlbUqyMwjm1oZj9JS/1rhf2OMqMy1FrWiZeNcf85KIFzh1fY79lLvF/b/B2hQ+5lWGbsEeZhBqOf1zxUGeNqH+5R0I9dCGYPOBaM0g7N89voVt7dveff+jqJE7VE3WVDJ+h2+GdZYa9vCh6Q0KWemeeHd+/d8+fW3fP32LW9v71hiQmkj8DbSQjotM8f7B+KyoHNlMJZOFQySJS9R3MVKcUAhpog1GozU48/HM9OyULUm5ioEwGWWeaRFtTIFqeCvEGcumRwXQi6EsMj3tpaSB9AeZ1ZxlbWW37QRVNMobuVCrbj4bJAVl3ZArS+ZPpXWKXDBAVotQGG9oRsH+r6XDh9Ep2DYHNgenrEkS8qKaQ5YZ3HOSLeLrhQLVhmc6rH6ijAvPDzc4w3sx91/iQn2CxrSSmqsFXZ9jFjAac1hP7LbjUzTiRBnnDVMZ9GG2W62FzZ7zuJMue7/OUbG7VYE3kKkFoUxnn6z5frZS6zxlAKn04nzdKJSCAUe7ieoR0KiyQAbvHXShWI1taSmZDpxPk3MyyKZuFGCDO/3XF1fsdldof1ILAZVDCXl5u4q1jVoy2Z/jfGO29v3nI5nYhTlynEcKcY1JKA29dc2jbVYcS/LjEVKBaWoDmJHAAD17UlEQVTkZhiUiUHaaENIFBQhJJzXOOeBx4NbtOtKI7TTyrOPHLxLUPwD0P8/pvPqZwQAT6KHWnGqMOjKvsChwhbNgMJVUaXXSlTI9NoStsLF6rEWKFwCOUyydOW0x8lEMbVilNg0wmNCKcYnhv0wcNv6mPfbnhfXO1JcuB49Gwu9U4yjY7MZMF421PkY+Pbdez7/8iuO90eM7Xnxak8omnMs3J8mQqhU7bHdFlUiqkR0FTZ2roqQJWWxBdEyDxmIzDG1mqhhngPTHJkmaQVxzjJuerStaJVRJbPpFdUphlHaJotyVOMIeqGoio6JK+34TDtenyd2c8CGisYSawED2prHLOlJcVRpgY9FLENdDn1tDDQZWKUVWcOs6iOvw0rZAK2lXRGa6UxjnT8JADIgMsQy+1NVjFmMZERiWyFc3z+/PurHaFo2gQ+/VoJWURm94f/8f/of+B//j/8D/+7f/C3/7//pf+L2eOScCsYaqfk71w4kLyQo2yJ/JdcxhsDd3S3v3r7l3bu33N7essyLFLxrIcyzKFlq4XBstyNmu2G0nkGZtqPJy0o1o3OCVMlzZhwHydSdI4comhDLTMqFc0xMITCnBMbix45+e01V5mL7nVOgFvGdSHFhopJyROeMrQLJe7fmaAgvyDowlqoftfvXDUHXKrC/qlBWJUx92dS+t7XJrou2GuM1RQmj2/YDxvX4cYfyI0vWlKoJSyDliHFgraH3sB2ajLGXfvLODpShY/QNutbqu3/1L2poI2hkyY0Z3xCw/a7jzesXdN5ye/cWY1Sz145sNuJXshripLCgEI38NbkY+p4cEymI+mWphqosS4TzEshZOsCy6kBDptCNnaBJznP/MLPbLhy2ArFrbcikJuYje6Kxlpvnz9G6l5KSVtwfJ+IXX/P17T1d5xk6z9A5OqsxqlLSIp0kCoZhg1KaeT6L6l8NWGtISqO1zCFtFKWk1l4rKoOlQIyxedooUo6AIuV8ER6srcQfQkSrhVqb18Z6ZlaRDFZK4ZpC57KE7x3+f4xW65/NAVjTcFMSg4K9LlyVypV27AFV5Y3qRhLRVdi8qmo54Ksok60Sp6uc7Vrpu8gwIsGDbanpCl0XBUlJ6502Guct/WFLNhtevbvi7v07epXpaqR3YLSo4JlGuksVTlPgfA4Mw4HdzYFqLW/vz4TjLEiEthhvGfstuiR0DtiWJYvGQYfzXkQnlJA/wnzmfJ4IKWKsZYnSVjjHypIK8Xyi3h0xnWyGXisOW8cxnHA+sd1tGccb+t2eaM8UVeiB19ryN8bx0XnhKgZ8VaBsI2NxafkDLpnQRRBIyYJaFfvUJTBoddYG96eVCKA1ygpCULVq9qpgtCi9VVTjJbRAQLfPtQYME4YhZkyFWETcxsKf2fH/YRlkZbSvZYFVjKTUgqGw7Xpe3+zZOsV/9y/+ijA98G/+/d/x1d29WDwbw9D39F1P33corUUmtNWzVamEZeLh7paH+1vCMjH2HYfDFd04iJdELDycTiwpUmj6A1VhYsZUQ+cMmUhGNhPTScBhjKIfBw4314xjz+nhiDoemcPCaV44zguhVrAOBZRciWGhqk5ITTGildTeUTAMPb03pDBTyXgtipydMzirxCNDa0zXoV13qfGpqoT0VNtmVox0QBRDa214zBigmQY3xGVFrKzBeIUfHDfPX/D61Q3X+w3j7pqsPXenQO+MSFmHgO8Ufe+gTGhmnCrkHFA5Y8m4zrLxe5Z55nQ8/fNOsV/QEH82wXJzFuU/g9ye6/2GzdhzPN6zzDM319fcvn9HypHr6zd477l/OBNjpOSMdw6MJodM33Vc7Q+EeUYh7XMpw8MUeZi+4eE4EaOY8ORSpITmLNf7kb/55A0vXj7HG02IAq0rjCgCNia/s9L6vd8d6DdX1GK5O545TTPn6cQ//PYLimlyxCmwHXpuDlueXe3ZbwacNRhVGZxY9m63O5YQmGMmBTGD00bRDx5tVNPXkJJT5ztAE1PEe5GGzymRkuZ8Okvnjhi5SNtiFrLiKiMMbV7nKm3ErX9YN17cBQ3jj3P4w89EAJ526Foqg4KNga2CHYZNhUqW3mQtB7euGl2l8Xet1T1unwIJrqaHq+efqrX1RivMk/dXlBw4SUN1kskerq/oXzwnxjOvXz7nqy+/IM8nbE0MXtT6YlwggHEduQp09OLlR3jTMcfAb774ks+/veXt/cT9HBj6gZoWrrcDnYGyJLxWmM7Sdz3DOAo7tWR65/FolmkmLRPzNJGVIqRMUYpUwPoB5XpSyWRdW++1GLjcPpzQOrHdTXz0UU9WhtRgno13PLc9L6riOkQOy4wFqrZiqVyf+NutGXyzgwUQ1yv9weaJgtqke1dUoNerq1sTYlFyuIsrHdJvqz2weq43u2YtGRdKUbQmVYuNiUb6lgDw97FVfulDfVdy4wn09oTDIjoI9fI78gDp6++dpcaZ3/3q77ne7/nk5Qu+/Pxz3t3fU7Wm73sh0HUd3ns67/FO4awYkaRSpJ10OrXNsnJ9deBw9YyqNQ/HE2+nM9/enphikHa9GNmPI13RuFTZOY/vNbiK0QrTebq+E1LWODLsNvR9z7IspJKZ5pnTNDGnTKIZVoVERnF3nFiyFcJSnOm9ZuwMuixsh45N7+jGDp3TxWNg8A7vDXouGGdxXQ+uE90KJZtPaVwGUWwrqGrFbKxKnzZqvc6PCmsX0RZkTvtOM+4GtldX7K9vePHsmn4zoN1Arorz6cQ8n8j5xG7riEthOp+pqWKVdM0UJa21eZl4OB65e3/L8fRfPwnw+9bXP31waC2HXFVimFNLM03Tis5pxrEjxZlapQvEOUOpma7zbLfbS4krhAAIaU4XzdSM33T7mdaGeZqYlsJ0TJxOC/cPS7OnrmhreHW4ZrvbkPJCiAVjPMPYY1TFuq6hZx5Kbh0B8p43my3b/YF5KYSi+fbdHSnDuD2A73jx8gV/+7/8z/z6N7/i5tBztR15fnPgo5fPOWw3qJIZOnu5fsYYfGeoGawxVKObtLCYaOWcLiJDJRdCFLn1VWRonmfxzVCKlEV2WCkp4ZpW+jN5jXjzhQeTUxKnzZW9/TPv4c8dP8sMSCGwMKowFHhe4ZlSbIymo+JzaaQwg6orNLpCPiIeoVY1pva8wkpf7TxB0n3pINDtALnUq5UiKzBUvNLsD1f0H3/KrdZM58i+3/Hx85d8+eUXKFfxncLbSo4TU5zQrifPC9dXV4zdjndv73h/e0tvHC+unqP0RH53R4qZznTsN3tIE3cPkaQKnerp+ibkoxRWaUZr6K2hLom0HDlPM3PWTBlMv6Eoi64K5w1WQ0kJpxU2gc5RSHbxRFCRskR6DVYp+lp4qQ0fO8u2ZGzNKFUxqWKbcEvWwup/DMzyBXKi3S/WXup13rTo66mmN0i9qfKYUVUlLHYJAPQFAYBG/lMKWr27tlqtVxZzPkvGX+T30y9eBUj94KfrN+rT78kFYg1t1sfXD35RYCpTfStZyVqI5zNzTvQUXl5t+fZ+4KQM26GjMwpTMo6Kt5q+d2jz2AZYrcN0PeN2x6g0/bAhLIGvv/mWd+9vuV8Uv/vmvWiZN0OuFy9vuB5Gjl9/w8Oy4Nd5aMFF0cDvh4FxOzCOA13fsYQNw25LMYZQqhhhVcmyslL044a+NywPAlda69hsRsZOMZ8TIUVsEgOwYdjgnUd7z7AUvDZ4U6jdiO4Hsu5YkX/TeCS11UC1EgluySFWjgktOKiSkbbWv7q2tGrFZnD0G0fKlSVlXNehlCaFgNWG27ffEsNELTNpMZQ4Y3VhO4guvbIimX1/fOB4f8/D/QPLeYbGWP/LG7KuS5UaNgqqKmgLu33Hi5fPGIcBRWAYe7mX2tCNYhMvGbQlTQVyxDUGfS0R7zQUsWXvvdS/4xI5HSN3x8iSKoebgWGzAaXYbDe8efOGbe+43oqy7G6zwZvK2HcMXnxYlpqptWCVYdMPDJs92/0z3t2d+PLrd2y3e/63//3fcDfN/ObtW84h8eLVJwzDhnC+4+tv3nH77i1xPvHpm5fc7Hs611+Me7rOCWk1g+5cO6oKWiHEWiUhqbEGnTSlFqpSwkErzYejlQlyDk/2ECl7KeNAFTQKo0srZ4ggXYYL7+gPPfz/yV0AQjUTQRNNYQe8QvNcGQZjMKWgSsv+WDFlmt6NRPW0bPHpTmsusN56IeSCKSWyqHqFVrW+kC6c0gxdz9APRBRffPue93dHVIV/9df/ks12YDyMGFshR0rJZPECpteem/2BB70wT5E3r14zjFtOS+Xb+zOff/ue27s7Sl7YdoZEJA29tBk5j1EGckWnQu80286wHzpsGfgNidPpTNQDCx0lKGIthIcJZwu1JlLM7Po9XfVUFLthg9IJrxNb7+mc4dp75jzx2sDHzrKLC1ZJ5q91pW9ElaBqO6AeyySqLVSlEEe3BjU93n91uQVKCac614LK0q2g9UruYi1vg8pUnVbQtT2H5qkQkK5KOrfyIhlbVVSVRQzoF8MB1D/wvVV/ng8P+x8al6BHX4IkeYbHUYFaNLpKBF+qwljPdnCYtGCt4uYw8vxmj14SXgNhgWXBloIqGa0sykg2avqezdUVz1Nh2B4Axd3tPe++fcd8OnPY7Dg8O6D8huMSKErkt/f7Gza9R4VAnk5oa+k2I51TqCIbz9D37LYbdrstzntSynSbDdp7bOcZ+g1ZGUJWYBzjdscrZQlLaZ4RZ7zXOFOYO0tczmhdsdaBFr5MTRVvHF5bBq9w2wOMO2Y6MLZdSv1BMKqUanbaa4eJSKGKPGuzIW/OiShEqU9JT/o4dtjOty1I4Yzm4f174rJwOh6pJeFM4Xw/UcKZV892jLst3ihOD0dO7x843Z2oKdEbhRk6QvrlSwH/IcY+P+fwWC2oc32UD1v3jK43vH7znJevntP5DlUUnfWcpzMxRDbjgPdGkr4UCfNEiZG+H7DaUNNC58zFWlcpj9EGlYWsOngYtp5nLw9sdzuscQy+53q/45M3L7jZj5Sw8Oxqj6mJvnWZQCalQIwLpWQ248DNzQ2762fEDNdXB66fv+bNx5/x1e0t70Pg7bfvuHn+nFcvnqFz4Nsvfs3d+69Y5iPLMmJtTz94qftnaVmvIVE02N5RQr0QHJ01osNRkuwlWs5BZQwVSfbaMSRWwBmRk7dSMhQfHUE9ai1Psv3SkrfWMtvu9c8NAv4oQkBP/5SusDeGm+q4wjGisUoUj9TKRlPt9FgPI55snr/377SLptrhfwkAjDCVkYuGMcSUOM8zIUa0sbx6/oy/+Ref8dFXv+LufIdRjrgk0GLMQ1V477HWY0ykZM3sT+SUIQfGzvLJy2c8u9oS5hNpOZFMonM3hCJRXWecGA4pGAfPs+sDH724Zpqu+d2XX/Hr373FjlsG2xOUwWiHs5DTxDwF6WqosEwTqUQGZzFGCIb9ODCYnivviSrwkRt4pRxjDPgCtmhcbSQ7RcuQ1rv8+IlaWfyKDzbV9TwH2n16/FWjxHVwrTM95bTJRvBDd6qwnpwacb77oFD09A/+IsYPBwDfLZH84LhckKZlyw8vLNWCo1pk20yl4HzH1dUBPZ+xXrOowrsQSO/v0SVLl4mWtiKlaIZAiqorVWX63vPi1XPG45mH+yMnq3n16gV//dd/hfc9EcfrjwPnGDkviVKl3cpRObiXECOZSjf0eKMoccJbcNbinZc14X0zrnIMXUdMmc3+gHY9qWq08yjjGPsNVM0yLyzziZIXKIFFF86qkOIi1tsqUmrGGuitoXeGsWo2hw2MO6bqKUZQpaeHv24IlghMlYaitK9TptZMzbJ2S5YMy2qDc5px6Om9u7R1hWUiqUKYJ96/fcvx+ICzCu8qui5i9mUkwFhC5XiK3J8i51jRygqaUvJPbVl/vqMpf8rngALnFC9f3PC/+Zf/Dbut9P+PXqDrh+MD5/OJmxvxAEgpsiwzYVmEyOYsZGlb9n0nstVIPbzznnHw9MMobYJWc3XYcP3shpcvXvLi2Que3zzjsB/pnGGZTnQayBVvLVCJMRLjQsoJ4wybrmPcDQxjx831nmHcYtzI0FkOY8+/+Pg1H7+4waKgJMiBm43h9t2Is5kXNwcOVwd2uw3WGkJMVGVILMQgLn+maaUoLeh2TtIpULW4fxqnsdYKua9AzpVcEjnLzJYy7Xq55bCrtZnMNdb7itzWJ4T6nxMEfKiW+fvHzwoARAim4oAb7XhJx03RjCg8VdT/Lptpq5K29p/HoOAnxqqGRDv827MJtK3JrZe6KkNMGW0sXT+w73s+/exTPvr4DYmJ8nUkx0xEejWt9aSiyEngwnHYwLVjMpbTwwMnzpRlIpxFkrKmBcIEKdAZi+sE1nJaY1QWK9HO0fcGRUIjXzujUboyjh3FdvhhxHtDzjPHu1tqyhjlmOtCDplcApWAsSJqYWzHXmvGzchf+S2Hc6afi5iXKOkbr0YmnPmhA+hpFrWSAakXEYnH35Ca3uVat88u1/uDRz4NGJ5MuLp+KUSun06h/0uOD5Gny7eeBgC/5/DXa0TFE+lafjgIEAdJKX+FnKlK0w0jzij6wZEsvF5mplQ43T0Ql5mS80VgJIRAXhLd2GOcWDWXipD5hg798hkK2XRzrmjjuD6IhHXICB8jJvI8U5aO0lr/sApvFYPfYskM3tJ5j7UOax3OeTbDyG63I2bpi/fW4JQRoqeqLNORGsWB0OZILYWcE4OxDPsDqoq5UK3pwvYuKdEbzX5w7HZbUj+iiqUYf1nvj5f68fCXj1bjrwVFoRZNKs3hkIKq4pK43XRc70cO245n+57eZKbjA/H+luPdHXfv3xPjgu+E2X9zNfDi2TW7ccM0B77+4j2f/+4bvnwnWvabccQYTYqiUf+XONaK7LoutILOW66v26FoFL31eCsITQiBWstl36k1N3vbgvciPvVwf8Q5Q9d15FSwxhFDYjOMlFTY7fbiiJoi293IZ29e8sknn7LZbLDGMngjYk9uh62J5RiFs5ETIS1iPV2iWL5YDSpjdOVw2DDEyjQllvM9xJnnG0seRLI3LHB6OLEbe15c/w0vX1wxDA6vC72XAGNZArnCnDMmg/eeOQVWJ03d9oclLCgjBnW6cEFVtQGLpsYKZLQ2xJwhqyf23Ku1OB9ute0+XMrkPzF+SAzo9wULPzsAUFQ64FpZXuC4UQqHCAF970BSH8LPcn1+OpxWEjd8JwhYnezafCwKrQxuGDGI2EpKifPDHRQRYJnmiB2NII1CYBXbVSUa61eHA8/3O6aHB4ZhwL99i6mJY52JJVOtAu3BDVQ/SF1Lg6qRjYcXz3cc9iOqBkpa2G16rg8Dx5gxJKz2eFXwymB9h9/uqSmSlky3gWgT6ABkrFFYo9G1cnCG51vHTTH4eWEsiDGSEoGdtV1SQLan160d2x8QLdshf4FUkci+Pn6u2s8vt29t3r088dOz8RKDorW5HJ6qwvJLp/v/RMAEP7S0mmiVapk96gd/74PnbBdMGU1ImZAztuvZ9pbOG05pZjsMPDscqIuITUm7FBfZUKXEmEaxsBk7EUbJlc1mQy6Qouje394+MD08iARp+/sxZRFVyWJIZJAaqutEYKhzCl0T3iiBZa3YVnvn8c7ROSvSqFpMfKz31OacFpZIysLq1m2R1qox1uMMckjXDCRSiczTDDmx7RzebRnGDYv3pCQBQHkaaK7Evvro9IbKrdbfrrUGe3EM1HSd5+qw4/qwZTMYOltwBpbWl95ryCGgSsQZqCUwDj0vXl5zc31gPkV+9ZvP+Xd/+yu++OKW2/OE8prrqx29d5Sc2vv5ZY/vySX/ASWBHxtP/RdqI0e6hq6cjg9cbW4Yhh5VM/MytTq46FkMQ0dNwpbP5TG4FdnbHmM0MSTR2NeWYRipMfD62Y4lJo7TxDBYbkaPyQtlriRjKLbi+z3eOuJ5Eb6Ilhp6Xg3OBESm1NScWyPOOnIuWF1YphlTEy7PqJwoRUx+zNhxs3vJ1fWO6+stxoBKM4rVQAi6rqdPmVCDCLqVhZRiI6YinSRKN/ljLR4cUjlHKUEDUs7QZIOpTTJYtbKALi1YaD8vT7fi2u71z7x/f1wEYK0AVzzwwvVcLbAvazaq23EkEMYqIvkIQ5fmZ1y+R0Bbx6X23DZAs8L/7a2v3QXVaJYKxjqU0Rxurnn4ZiHXRFhmMVZJiRwrOYpVqrDuFZWIRnqvO+/YuA5XFefpTAg9um4YbCYukkWpCtn2VD8wDB3WaigLo1ccdgO9U5Sm89852I+O5X6ipiO+s6gEMZyl5UtVrCoYXVAq0Y0G53uMrby43mNKIi+Znal8fNhydTYMVmOzFnMIK2x7akEX1erMT65hmxjq6QT57sbwZHLI+hauxff57h8+hdZrKvCIDyi4ZP0SEKg1Ovng9fxihn4SfH6nr/yygTbS6vo9rdf6r7qIz/Ajh/8agCmlmkFPZo5iXjVsthy85vjwlhQDNUX2Q4e+PhCnCecEMgUHtINba8Ztj/UehSEVIRWWqomJJiIyEk5njve3PJxO6FoZtGEcPJ0fcNZjtMV3Hb5zdE6jaiKFCaMK3guDWhuL1harRevcW4tW4lbojcb7jq7vqVtQuTanw4hRUHJAVanNpzQTYyDkgi6a6gzLEthvN5TxCvqegEF7sUFV9YdJTY9fr6u/wf/N78IoQ995nt3c8Prlc3ajw9tCWo6cbr+iLEcGI3VabQQ9CSngneazTz7h+nrL8XTk7/7d3/O3//Pf881XJ06nQlCaw3YA49GuY3fo2W5H+Lfv/klT77/a0W6DZO2GzabHe8t2MzAMntKE0mIMxBS4ubkWTomznOeJXLLs5UajVCHnyDiO4iZZJavutj0pZfbbkedXO+ZlYfSGw80Nr28OGGfRVtMPPZvtQN85NOLP4qy5BCWpSQHLfCqtpTawLDPj6Bl6z2bYsN2MxBhYlhM5J2IUx76+6+iHjmHoMA5SnChYcgqXyyHvQzH0A8ZaMdbKzWJbGXIu9IN0v+QigcG8TO1kFO/4tf8fVktsEQwKKRNzcyrkUTzrUePlsjH99G17WuJtqFrOPx7I/kFSwBbYa8OVgk3NIkurWpbJWrN7lP5dJf/WUoCQfFZCoGSjWrVISPBmEd5Zf/UJr6AqTdWabBy1KpzrePXRc0onNrjHhwdSCAJZl6ar3OBMaWGTPn7vFN5bqFKX0dDcniqD19iiidVAVWRrUJ1h6B197+ndhsHB6CrOFFLUlLigy8xuYzgHmMqE16PorqOliJ4zqiQUBetBm4r3le124Nl2YEDUol54x3XRuGOklCDEEyMfSom2gq1ixvP7xooG/ORjfmJC6cvzPA0AVlin3dP6HRThFzea9kEbP/SOn3ImPvy9p4+Refj0cY+wXW3oi5BXauuiCLlgu46UF5Z5pqSIKomb3Y6PX75kOZ/ZDj21ZmIUSFPVR4lc3dAWow1oB9pTlaUUSKlQDgvLzU3bjBIxCw/AaNdUODXGWax3OKMoaWbK4fJeSpPm1s3kRHaoLOs4Kqzv6K2md0bU11BQCikG0SjPHmoix8A8ZSiJ2FAk1fYFpzVFOyLSQVFWAaknc+9S939SAlix0JXxDxXnDOMwst1seHZzzeFqx8ZB76D2Ch3uCGXClMjD7XvyEnBWM3jDx598xLNnL3j79i1/93f/kX//7/8zX371ANUx7kaeH0Z2hx3jMHB9dcXLF895dnMN//f/zx9lFv7Sx4fzXzUQt16QQqM1fee5udrjjKbmhRgWYgxoreh6z3a7wRg5+JZlxlqNtwOn0wnrZI7NMZBz5XSe2G32xJC4vhIdCY3larvhk8/+iucvX4pOjFYY78VxErHarTlinKGUhNb1ktTUUqlJiKKJRAwRs1P0fY/WXgiv0bHf96LjUlTLzjUVceosJUiWnrMEtCEQUxRXvyLa/V3XoZUmxihnjNEXuD/njEKJaVZqnUOS/+JcB9VyngO5FEIQ86CGl1/ug0KtPEKe9np9d+/58fv3+Jif6hz4eQGAahK9wMZYNrbSldw4imtNul5Kw3LQy0QSSGbdPB9Zv085g5fHqrbp0eL/WlrdVQhYCS0X0nccrq+pV1fo0TPf3fLt57+i5AldCynnZrVqqc3L2uqKtXL41pqY58y8RLFdrLJ5qRKJy8w8RbS2Iv6jhKRyc3PN4A0qLZg8Y1WWzThnFIHtoLk/V073Z3JwDN6wGw84ZYnLTE4TOSuMlehGqYmtN4y64mJEx8w2JbowU6cgGtXWk7XIyuoKvmTJnNZWtB+7r+rptPl99/VnBAkaeII4PIUH5U+JbLP6pfIAnkbQPCIgHzzkO5fq8eEfRADfW2RPYWvg0j6p2qR+mM5MMcIykXPGWcPN1YGPP/0bNuOGd+/eEpaZUgpLWDDNb5yK+GYU6b1WxqK0R9keZbygAbmSXMDYDh9nYUGHpZVxFCVVQGMazG90JeWm627c4xpES5ChNAZZfyULmUmVjFEFVRPedPR9j9GaFBdqzpQUKCmyqEoKmrQG+JfNzGCMpepmhKJoQuHiRlmfmk5956M03flcJYgXidmRZzfXXB0O7Pc7DtuBfa/xOpOjIZ0G7s+3CEcsE+czOM1+f8XV1Z6HuzP/8e9+w3/4/33B27cTaMd2u2+uoT3X1weur695/fo1b9684fr6+p809f5rHU9neS1PAwBp/6zpLH4LKbKstrrAOA5orQkhkJIo58UwS5lAPyLEIo6TmOeAM56+7whhwTvH61cv+ejlc1zf7HYVYA3GKFKMLPMJahJJ6frovVkaa043JFLM59QFaldao12z1kXQrsd1kCkpNuJdkW6TUogxSQAQRWVQa0NVuqn2SZIp10gen1NGGQlidVP1NMZSkyKVzOO6aK85t/NN64tewNoVoI2syVKKeH88STYe5cfV5fv/2NLPH+QFoACvNZ4sqlDNb8asJKkqzE6lVZOWl1NqPcDVkyCgNC/mtfXnUm9tt1Q91hGorUddr2/YWtx2xzf39wTEvezh7p7OSl9mLYWcIilbTC7SXqUqpSSW5cyyBNLsmI4L87Q0K96TyD6GhdLEHpx3bHY9+/3AbtMxdA5TO3RwmBopGs67HadzR1GiuRbqA4VImo9U5+nGHYPxcl0UKKuxNuOMYeMzvS64FDGpsI0Jd5qwIeNaENV0FfG10mdNVpr4tF3vB+9U5btOat8f6mdx99pc5QMUYEUF6uN9UfkXGgDABa34fbWJ79Wgv/+A75UNnkbWK1NXKZn/aMXt7R3TeWE/dPjdHj1ltvstf/XpJ+RUOB3vicuZGBNUQ+c82jqoEOZArYpkKlUVITc5je8c2om8tXbSdqhpC7kWSgyUVblNa7QWR0eQGnrf9dQqJCxjHEZbjDZYa+h8x9h3LEHy9ZJjMyPRxDgzjuLwZ3ShZCXiVoj5idYKvcpmZlnFWktWV5US90JVibqVAxtJrJbVhvpDBKDUTCrSQuW6js1m5Ob6mmfPbri+umK73bAdHBtb0GVhjqemPKhJU+J8PBKnM/vdDZ9+8hFjP/Kv//V/5N/867/n2/cncu3w3uKHjs2+5/WLZ3zy5g2vXr3m+cuX3Nw8Z7v7y/QCWPuGpPwqXztn2WxGrNUsQWR/l3lmms4oDePQs9/vWKaJnEQGuJQizPjGll9mOUzfvb8j58p0nrjaH7DOUWvh+uqK169eMva9HLSrQVlDp1IMhHlCUTGGJvzzZM6kTF7EWMhUK10pzVwHo3HOoIwhp0hhDVZpSEDDVUshh0iKgRTFZCilRIwtIEWhkrhvphSlSNUCmiUs+F4MpFbhKq1U49AsLViSMFsConixs65rSWzl9NTHM3BF57TSl1LH5V79AOlvHT9HN+DnCQE1Gd8E4B3qtFAREodk/C3jLArd1OgusrQ8csxXYR+llNSM1eOxolevAKWaba1afwBKhINsrZiYmN/fsdw98PXpPcFUVAwY14nrWI1o3Zz4SoaC1J2C9KlXIjkpymIJUyBMZ8K0iC3lIhPXebF29F5z2I2MgyenBTrNdhzQXqHiTKqB68OeFK7w7XeU1pwXmCeoKUCKjKNsNsZpTK/wHXR2QMUT+TSJI2KMXNmOLZVBK5wpmFokEwNc1Vi52DTD5d9TvVcIA+WHH7Oe55kPTT+/9+9T9P/yTPXxHFX1covk/n3YcvhLGR/gU/UHsJG2+L77sw8WzyMI8v1F1eZqVU2wRoHKhfPxzDxH/NWebvQknbG+lZdaD3EpmZIDGg/WtvXWgtjYeosR7wdjO8k2UmqVJeG5GAyiQy7dLjkmYspUV7FJdAWK0Tgj5iOlVoztMNqhlcUZx2bccHW1R6nK+XxmCYFaE7UkkfNOkRQXstGX19guJwqNthaTHSYZETNZywxaEVVlqVUUJrNkORRxUKMd/LkI6a80+DUXEUPRRuGsZewHNpuxfQxsdyOb3tHrzPyw8HA88fBwZp4ieRaTmc3+wKuPPmZ/fc2790f+zb//T3z+zR1Gi1CQM4bBiTT3q+c3vHn1itevX3P97Bm7/QHnuz/mNPxnH3+IaMwHWWXbz5+Sg63WeOdYpjMpLHKIFlE3dd6w3Yw4ozkuE9SMNZoUI2vh22pLUIUpZr6+XTDAWAvOVmqacZuBw2FHPwxUZS7eJVZVihKXxxITJSec0gKzm+bEl4sIpJRCSZFSFM53DUVugX3VaO2wzqGxwipHulpqipQ0E+OZFCbKMpOmhRyirKUYWEIixKYDAPL9JQGGWlUzFMpQspS1UY9meC0hyEU0cdZdZg2w2iGKUqKUqGohlUJKVbZyLc6ARulLkPxj9/APVX78yQBAP3nQhGLqjLDfdcHpDZlMUVE2hLVwcWHyNgTgA7i/TawnZWxFgzsvl0U2U6isfhyqVlyuDEvk/OvPOf76c9y+Z9xf0TvLyTjm43tqWXBWMp6cErmVAHJVpAi1aOJSqSETp4VlmUhzIIdKzVJimJYzlROlqzj7mt1mQClwRjH0jjzLAshlwRnF1bglhRPBw/VGjE071ePdQOcMu6Fj02mKS+ixYlzC1IRRhjBrospklemqwaeCR+E0UMqTa6coxjSqRF0v7YcnNk+/90hM+95Yr+nPSNrLDz1GtT9UafhEkiCxatQqXvGLigLkOj4SWp+M+mQRXr7+7otvD1h/8buLbP2fKlSVyFkRS+F8f+Z0XsjGQ99RzkeKgmkOggZpoAqpLqtKSoqcHbVaEcOSYo9IPKsKOVHS0rJnRc0FlWTTYcnkKbFMi6BYqqINzQCqUlUltYhOG48xPUp5KIaaFdY4DofD5e2VRrzLaaE6haqGOC8YNM5aYSnnKsF10Sgc1IjBYCsSbFex8D6ROJdIrA6KIZdMLPkSBEkWJwI/gt6JcJZRFt95TJXD2iqFtRrrNMYotFUo60hK8/7+xOeff8N8/44SJmqc+OTj1+yfvWBO8J9+9Tt+9flbHqbEODpGr9kMlpfXI3/16oZPP3rFq5eveH7zjN3uQN+PT4igf1mjUqiNwU4LRnvv2PYDaQmksJBiupR1h77jar+FFIjzCUvFdB1zziypYJQQWWM2vD8V7qJiMArjLU4HKGc6P9L1nkIlloJW+oKmKRI1JnSqmKzRTngxRjtBumgCXCWT4kQu0JWulYGbCU/VUC1GyfxVNVNKlLVXIiVOlOVMms/EeSLP8rMSEylE0QJo20KKkTgv4neDaZwdkbFndWdNBV116+Ipsis2qpuUD6RsoY0EB40diLEGqqbEJGJMRe6HVs2+/QdIs09LAT+JZH5n/Mw2QC6g8sM84foOFZdL29LaBrj6yQtN7Wn6uNIcpF4M389MW5DEhz8UGElrjRHbKLpaefjd59R/+3ds/rt/yf7qmlISt/cPhDBh/fo3CzElKgW0Fh/zmkmpEqdMXjJhXogpsDQTlGmZOZ6OLHFhGAYO2vPs5iXPbl6KAxTQOcV5eiCEQAgLIQqcFHOWDFArlmUGfLN6dfje43SRHus5k+eZlGY2vkNXT6kJZRSlBFlYTcf/0oNenwDw6oPL853r9eHnv3cSqAu48sG9/l5c8RMHuaLV6dpXv7xCwCMM9qPR8M/JlGp9fNx6E1YyW13xOonMc6nkXDmeJu5PZ0KpjNrR9QM1i1NYyeIillJq9cYoHgA+UZpoijYGZWUelAaB5lJRWrKOkoGcKSkT5onz8URMgVILfvD4rsN5J9A8ihSL6JCrtUdZepaXaSEuQboAnMNo6ZEuKbNME6rWZs9tMVWhvL/8vKZMzaV91GbfLfX9FfVLObOkiblCyolYKrmmpuonJL/SWgxzyZQ1ANBehKZSosRMyZkSBS0rKVGypTqDMpaQCu9u77n7+mtIZ672A7urHcN24Msvv+Dv/u4/8vAwU6ui95ar/Y6Xz3d8+skr/uqzT/jo9Wuur6/ZbDd0nSjA/T6M7c96KCXBaVMBs8Yw9gNDJ1l1DJmcEigpSd1cX3HY71jmidPDg3SRWENQmpIzzjoRkFoy728feDhGzOiodbULrozDeOEPOAxOGzkUdW1oUG1lVI01FmMc3ntKlW4ThfBeVv7oskhpV7oRxHxHBGVrI9sqCWIlwiHFSFgCyzSzzBMpidKf+LdE8cBAkUsko5nnWfZlraHkJ6R1+VfKcFySBdWM2NYd8sJ3UY+oqSheJjJVWgNXsLUU2VlKenKLfnhufq+9+Z+KAKwHf0GxAP/5m7eEzVb0ndthfvGHv2yEPLL9n3zvsQ0Qvru4FB92a333TSmlLj3zp4cH7v/9fyDMM8cvvmbSmd++/wJ73fPs9XOMkpqKbs52KSdShJIjMRSWKZNCYZkDSwwsYeb+/sT7u/eEFDkc9gzbA12/pXdberdBa4ihmaXMgdN5FiOgEImpkDBY37PZdah3gdPxjFIdVVXcGbIukAPWZGoN5BzItgKaKSkMFucVtS6P12MtwCtaRijXuv4BNqU/HgTUn3Vc/zRPQLwbfolHP/CY0a8L4QcXxI9972k4VJ48rAVlen3u9ngFKKnP16I4h8BxnllSBm24vnlOmE9opQkpUUolp9zYxYoUZcNJNjUJbIO1haoypRZSSaCT/A2aTWsulBgJ00wMM7VWXOewxoqRyFLxqsM2tUGtZTPS2lwg1Nw2MF2ka0VXhdUGtNjALvMsZM9qUKUhDyAHdkyUlC7sa+m+KdKlUArWW2w1EiwnSDmTSqEg0G3OEgjkJPXWnFOrqWa0cUBmGDzj2BPjSAgSsHexI2XfrGMzuVRizjycHnAqsrt6wcvXzyg18fnnX/L+3R1WCW/isBt5+fyaNx8955M3b3j54hW73Y6uBT9aP/Ud/EscrdNICWVz6Du22y3WWGKILHNAm0opUYKpqz3eWW7f3ZJSwhlDyUUsro0jloRSwiM5nWZSksO8lEoMkZIr3km5pZRMRUpCggw/nisVOXC1tWhjLzD/2c1S8lQW6/oLfF6a9oskTuI1sYra1dKQtxRJKTTUKRBDIMZICJlYEjEFYhLNAJrKX6pBTHyMBNariuXKY1kzcHG5Vc3iO0mgW8FaITCWXJ7sTWK8lEom18fYQdFMmZ7A+z/XE+DnPOanSYANnSgIBPFQBd5RoVBjkQ2lHVRP/5xe2f7fnVYrgew7qeUKV38PGdCPnuBWa6iZfSo8fPEt9+/uyM+vsK+uCfXEmY79y2tZvKXgjacYxXQ+s8REjhBCJsyVJRZOU+B0PnE6nbi9vyOkKP2sz5+hnOe8FH716y+4u5/QBtJyppYZlSbO998SzncYVYlpYcpQtMV6Qz+MfPv+jnB/RyiZOZ4ZjGLQClsSmgwG5jRhfMcSCj4q/ptxhzJnVC7oKuZA5VJnXYMCdVkMv2+sP/+xAEB0AD60s/khBODn7IKiAPbTj/svMyrU/Phmvvd+6nf+/fGnWYNWiV+l7vcUKaml4fpKUa1iLpWHJaK6nn6zY9sbsu8Iy5lpenuBUWup0lJbweoFjRXtDEDIs4lcpIxVpCiIwlALzZ0vUWISvXwtzOG7uwcShXEzcLAWbz1WSd3UGI0zCqNAt3o8FbQyaAxGGdHxN46UItM8cVqO5FDouoWhHxqMCjUJAlFzFrnXVIir/kYuWK0xRbGcJ07zQi49qSRKSY05nUhZarsxLOQYBQUoFWUdtSb6zjEOnuk8MA3Cp5Es0JBT4jzNwpq2GuMNm95z/fzAuB949/4tv/71bzmfApvRcrU78PGrF3zy5jWffvKKj9+84rDfM3R9QxkLNSdSXRVN/vJGbUrfGoU1tB58f9lXYwg4p8hEnj17zqtXzzG6knOk904ek7IQ1qgXC9zTaSbF9FjWVaudtm4BQkRph27kOmMdulqoRspJIRBiFKdBFzidZrRWnM+BZUnkorGux2lNiJlSQSlx4JM3VQTdosHwRer7YVkIy8wyL9LBEJMQFmsitoOadg7FGClKiHvS818xSqGNIhURjyq1ssr5S83+yUetGNNahWsLTLRCKSuPDflDQPcH9vpL6/EPjD+0G+CnA4DagE2lyUgwIO5+psEqTYGpMcIvL6T97tO+cbWSIxqk+fRvrMSJ746nAYBSFXJlROGywk2J6Tix/ew1Zez40ixoayghwAcRU+sNzbXBroUpZI7LxN3pxP39PUuIbPc7+t2ejMVqRyyKX/3mC/7TP/wGRaHrDNZkLJE036PKgneWeZmYwkQlsYTM7f3E+Rww1lDNTFKexRkWpTBLxKiK6ixzEWJWXBK2OHrjUMZCnKX1Dwl4yno9n4zHcvT3r9nvO8oeuy64BADfhcifVhbWI+8Rufl+ZKmVkB81qjlX/TxU/Z9ttDrzj1+YH/jB996E+uDR6unnLShTQtW/sHaL8xxjxA0bXDeQ0yIdKWhOp4lpmqUfWRtikFbUZBOzmimIjkWMIntNlQBgbYutVYnGeKqXAzinTMqZc1g4zhPGO5TW7PftcLfqAk+GZabm0jIeyXxKztSKrJHcavNV4EhphyrEEKm5XA5MOcAfSxmCahRSyqJ73tZ2mCeOD5mYzsILQ6D/mjMpR2jPIeSy1jJVKyEYpunE+dxzOooIjbUGa0RnXRt4eP+Od2/fcTqd6Lzn+fM9V4c9KQa++OJz3n77npIr1/uBj14/582rZ7x5/YxXz2/Yb3d4J4dbKbkR1xDuxI9Bkn/mQyFtf86IhkLnjPTHq9ZdYixai+DO4bBhu+lbNh0QO3tZNylGpCxeiSEJbN4WTrkgRSLGk3IhhAh6AaPxbU9RRXhPKSXu7u8vvfe5Vjnkc+Hdu/e8f/9AyVk4I8pirBXTHVTr+S+QM1WJdk0tqSnHJqnph0hOiZKknS/GSCSTahZbX22JFaZpoShDKWKgFlNuh/R6yJcL2R2glERKj6S9NSCAVT9H6vzaCgEwJSmlrdeprrtNrU8qkD9+yD/dy/8oCMAlE1S6eXRLX79BYS/1C/0TxeJVQW79j4YtfxgEfBd0exrprBdZaXBF4dEXAaJN36NfHZjKCZR4TY993yI08SevxOZPLRNqWibe3b7n/f09MUSGzYZhu8V1A9p7fD/i+wGVC9N55uF4TyXTOUVNE6QzVmWMVtIPG08iDxkzd/cL05xxXSGdZ5JR9MaRC6iltEWSSbrSq4JfYGs8Zs4YucD4Bl0VVOuy4OJCt2azq2jEk28+XqsfYINeSjBaijeqZbArfPVD9/7SnvkESSj1yWOVQinZDHhS4/pljXXl/NjPf2CjX1mWF3hfPQa5SrcOCdVgdSMwoLEo41oPL6iu55Qy1TnmVJjf3VKmI2F5IKWE1oZcNGtrbC0Ib6XKNU4hEl3EWodWRpC4IrWHXCrCoRNIvuRMTJm7+3vuHo7o3nP17IacMtNpQlWBIlPKTNPUuDWGnDPz+QRNvjXkzGmeOZ7OlJJQbX7nUkhpkdpkKYQY8dZK7TW3DTOl5nhWGxdKSg3eOkqKnB9OpGSlDmFaWaWUCwFQUVvb4tpVFElBcT7dc+dEsEVrRQyRGAK+8zhveP/1F/zqH/6eb776kuf7nsN+z9j13L17z+e/+Zx5inhrGLqO3dBzvR95fr3nsNtId47WlCJiXSVrETNq6+SXPn7fYfBzssEfPCQUsPaja1AqYXShc4q8COFXK+jHjuurHVbDw/FEWCbhiiiEFIe06pWy9tJLa6pzcsBJF4HIPedWQio5kXMUzQqjIRsqmmle+ObttyzzwuFwxSaIVss0Tbx7d8vp9IBWms04inKlUmi7UKvIGOcqbeC1FnRtbeJxuQS/0vaXWsufoFIxR0JJLDGifCXkyjzPVC36L6U27o6VfvhShDdgrbuU11Y5a90skaVDV/ZibbT8TsnU8oRw+jTD+EeMnyMAtI6f1wYI1ComHJINGqTDV4xqVl/4nxq6bXTrofFBVvVD7Vk8XqxapQhedFOfq0WyopKpRrG5vuZQB5acoXmWr1C58w7OE6VUnLXEeOJ4PHI8H8kl0Q0du/1ehE6cw3c9rutwvaif7ZylesvpJL+zTDO6JKwuhGVhWiZKPhPDmd51VMTzPBVNTBUVK3WpKCwqOTCVmCHlgomZ/amw14V6PGNixWmLqxJwaa3I7X2s9XjV4OjHksp6p9o1U9+Hjn6IHHLZINYNTx7wnRtA2wxbAFD5zsa4BiLyef0nTt4/zfgpeH+dv+rxtQvsteL97XPd2KpaZGm1RWmJ3EXa06GUQVuDdeJi+fXtHV+9u2XDAVIR9rJx3Fw/Y+47bt9/w5LXIFXcwGoz24laYULAOSeEvfwo61kKzYXRUXJhnmeOxzO39w9Urbm+2rPb7fC+4/b2ns8//+KisJdbrXLV1cgptX5lwzyfOU4TU+uDziUDBWsMWiliTtQFUskEKzXzWuQ5YoosuQUCKYMxsgEmyaxzDCLgoip5lfetYjtbETMZo3TrQKigBFY+n0+AbK5hWdjtdrz9tmPc9Nzc7Djdv2c63uKU4rDZshtGDIZ333zL7dtbYiiYKsTGzml2m45N7/BWoRoioi2XOSyI0YdqhX9Zo9XI27VwrtB14LzCYphMxVnNYb9hux1IaWGZz2gFzhhSXeeMRSk5WCX5onFb6iWjVVo6r1JqBNBaWnnIyeuotXECCg/HE7/97W/Zbffc3NxgjOd8nnj//pa3337L6TSx22749LPP6PqOJeZG1qvtPkeUgpQCKQTCMhPCQorLY89/jKQoxNYQIksO5FrQxRJClOczjpQlmICC1k7Y+0kkia210rNPvkDhJZdWKm/aCE/368YFWrcbrZ+ouPzIufjHGj+rDbCCkM+aRp9aEQBWec+fEp15rEVflAC/c0CtRIcfO7SUUhTdEIjWf55VJRtF7RxuM9JX8SYft3uMUQIXXQw9Kl3n0UrIUSEu1CqWq13X45y4TRmjxNDBWRFcAZztRa63FJaUKCEQ26Y7TYllSSIgEQu99wz9juPxnljXupFIHBejsdW3A7XiKIwZDqGyWRbUlDG54qrGPIV71vYRJeZGT8sr6sl1WkdR35cB+rFsoLYDbi1xfzeDV+oR4m6slO+DPevPfrTO/ksfCum8+E4g2wIfrTVVGao2H8h+rge/MVZIdlWjtEUZhXEGrQv35zP/4e//nl39K170nv32APTEeCbn5XLGiKiJRmNEzKrWBqPLh0YJzJ5LIx1pCqaR9BaO9w/c3h/JwM2Ll+wPe8Zxw9CP3IdbvvryK7788ktRXPOeYegl4F1bS9u9DUvg4fjA6XRinkXBzXvPZjPgjBJ/jSxs5BUGVaqhADkRGik2VwlWagg8hJllni8iXWhz6TVH1VY6WveD1vpVpHRHqaQQmNWjENgyz1hr2R+27DYGowpaVcbec9hu2XQj08OZd1+9YzlHUUWsFaMVQ+cZvMVbIRUbozGX+6hFefEJgevPa9TvfPZD769l7kZ0UMbRMW48w+BQKmO9ZrPtGUfPixc3eGc4n48sy9xg7ypKks3bPsXIPC/Mc5DDX9oLLpr4zsoRlFISXYumjdG8IC9seNu0KuY58HD/BcfjGe97Uszc3t7x9dffcjpJENyPW7bbDblUjscT0zRRqaSSmn/AKvQTWjeJaE6sin61rGqyqdX/ZX8rRcpU0u5GUxM0bS/QmJbElyoBrdhsV6ZZfANWYbzcgoG1TCDbZnlMnho4dqEd1T/dnvqTAcCT6gUC0lcMBVNF8KSstn2sU2cdTyrIlUd3vwYT5++C15LWPykRPCoCXhaiVuR2zuSqyQqs7+h8L5t0kkx2s91SYpB2lZxJtVBybSWBgnYK12nMuVCVvjCuS4GUm7JUbgYNUhCUjM9JKxc1s6hKyBljMlZFijIY2zNudgzDnnd3M0sIaN1gniimSKKUCDpVequ5UYYXObM/J3zImNKi1fqYyT9N8lVFZGIvV/j73AnpGVWX33m8yPXy6YoQKJD2xRVV+G7p4PKH1SNK8GEF/MIpuPyO4k82Yf9x40l2f7kOa3avEdEkC+2wl+vwaOeptAZjUcYKvN++vy7+lVGv0RjjJGDTFWvF6ONf/7u/YyiV8OoF+bDFu8xyPvH1l2+5f39kGCxaG5SpElg3NzGBRVeIsIq/OtB1nSAGWXE+zdzd3XM8nomlstnvGTYbxu0WP3T044h1Paclcp4D796/4+545OE8YbTMAWMsptXBwzJzPN6zzBNKwXYzYpT0JlelUKYFJzSnvlzawVyEMFWzvH9jiFVzOkd+++0tdw9nqhqkRrpm17U8Bo+tF7oi3gRKSzvlB/LhpRLmRdaAFiJjnCc6q9l0DmdFHMgAD3cP3N0eWeZMLQrrLLvtju1mg7NOHA95hKpVm+PrLncpAf3Cxz/NDXAtbV2yDUAy0KF37LaOm+uOm8OW/Xa8GD9tNj3X1zv2+y1KS5eV0kr0+rMgvdZaqfufhesixjsWozNGJ8iyxxVtyKzs99wsoBtnRRthxNeKdYZXr1/x1w8P3N09YIzlfFoIMYHWvH7zEcMwtATOA/X/z92fPVuSXeed4G+P7n7OuWPEjSFnJEAMJECQFMWWVGZNmUlv1U+ybv0J+r/0pAepzcqaXc0u65JRRVmTLLaVKJXKKAgggJwiImO60xl82FM/rO3n3ohMDCRIMKhtFnkj7xTnuG/fa61vfev78M5JchkDuWTGaSJahVZCPk0lUpQkGzEn+bNPZCeZZEH2mkJ8bkTxU1pV1ht0gKzqCHg9q0sR1z/vPTkrNkp0P+S8KMz6BtrI/FSp5MD9RFFhnwzsb+/f0Hb8mQlAmv/hEuprcFgSLkWKLjLeVh3jCshFmuHS+lDZXA1O6oFbauIwV7XyBoVMaKDqy5c9y/qG+V4oypCcHNi5FBq7xE4KN2XIk5TIiOhDSZo0FbJSdYwjMcaJZCeymSgmEmPBpMJ2F9j2BWMH+nGi7TztwoPWeNfIOEpOOK3BOooxZKPBCKw4TQaq+UUuBVwhh4g1DYnEqEZGoygq4wAbCnd0x52pcDIkjqZMG0GhyaYwVUlIpW7QABDinpj0zC0V/eozjCRi+2Og3P54C3bihnOh92lX+TLoQDZ2qfyNWhVLHK0JoRKdhr0X5JydvBHnpwLVyEdToZRS5KE2eq/vjTY3Ab++51nVUiuNtgLDz1XM7e9RKPldSqp4qlWpQghRj55f8P/Lf8HL65537h6xtIGy3XLx6DFp2PH2O/fxCwM6YSw4I68n1J4lSjPGkX4a6boW03pyKgy7ic31js1mZAyF9uCQ9uAEs1igGodqHLnxKO+48977qOWK04tzXjx/Qb/dsL5es9msSf1IKRFVEuSAKorWtzTO0fkGrx06QlYZ5y05J6Y4obMSMl4lQoUUyASyUQzWcT7Co4stTy5GxuRR1oIR3oEk+5UzUsBgqobYXBVpjDJVCEY83rV1aOckaVeaKQQ2V2vs0uJ1oTEFqwMx9ozjRD9khlHmq52zdIsFTbtAKdFRSFE0B4pJJF1FV+pBbuq9/m96SUV2k7FrEVhqjOZw0bH0hZXX3Ds64GSxxBcx9LFesVh5jBenxZSTTGCgiZVzlY2i7weuzi8ZdxNKNeScpAVGJuXEGAPJO4IpRC2M+5RlL4Rc8EqJ5a8SRcjDk0Pe/8r7hCAjftfXa3Z9j7WGo+NDus5jSqJEUR5cLQ85Wq3Ex8ZolCn0Y4/KQQisORDSxJQDU4lMZIYS2MWBKSdp9aHRVuyrZ+J6IVFURDvAiu2x0lrUC7MSEmLVHcg5QEnCCTKWcUxopcko0eTQ0lYs6YZMuL83X3a/bp2pX0oAf43Q/bPWzzUGWH8jN7G6mnmoGYaurkdUlsBNeSqrqkrNlb5UEqp+aa5Ui5DJMlDSHvWQCl2CazaWYizFODBOsqjVIUlZ4m6k6ISx0m/JWeREU85kzX4GM+ZIyIFSpOdUsAzTxMWLa3y7xLcNF8MW4xTLRUsJCWdkKsAbi0ZohHtIR2mS1hTrsN4RtBCtEgqMkeSjZEqcCNbUxAacViy0Zommi4VF0ThKTYwKWd8YpuxvRanBuo6yzMGq3iD5npmsN7dUfgoZRFX4X93+e91k815T5ibY3SYC3szmljfXCAjkjVm/f0D3gbtW8DN5kdeC//w9QoTSKGVqMjR/jyRns5W1qkiSuF/OkFgGZRhT5rMXL7ne7Pjks4bTpeJu45mu1jD0nNw9xnYdRglJymgFzhFiIpRCKkK600azXK3QxrDdbhj6yDBNxJzRzuPbDus9vmlpmg5nHUUpogLbNRzePcW0De1qyeZ6TXdxjrtsGXYT05gI04hC05iWxmsaY3GmWvdKJ5ZY3c5SysSS0UYquBKi5FpG9AnGUnjy8pLHL3dcjZK4l3Jrc93aS1R4f59sAkWJvLGqI6bGGIyVqnCu1HNtk4yjeAdoXVBkpmmk73ci0lVH0JrG03hBTrSxCL44e7kntElV8lxhtAjZGPOXMkv9O7iUtL72WKBcZ2uNSDXHgDOeZdfgrTDpfeNYHTqWqw7nLf1uAjLOOaZ+JCaB98dh5OL8gn63E4XLkiqyIp4UJSWGEMhotPMUJSPPCZH+Fch91vyX4Nt4x9ndO9WEDU7v3KWUhG9FJ8IZhVUZlTUqy3szRiKMNhrnLVOQWCDtNfE0iDFU0l8kJEECaiFeCXz6FVK18GdmguTNnpYJK713tw2TEAzVPk6W/Xh8zplUsozi1uIj51nk/bVYv2+v7kGaV4L/X1b+9/b6hXe4KroCALNYQdn3rffN4r1w+E19qm852hVVR9JypuSqOWA0WRuitWTvUN5T/IJsF2TryM6SGktcOUzboAo4ZYgxMzIS08QUJ0IKkvFTRBAoBmabYWtbYrb0Y2LMmXv37/Ph13+FxdGSMY6YOHH5+HMuXlzw/PwpRumqay3wrkYco8aQKUXhsma36emHkfWmJ8RIVzRd61ExiMuUUUwp0hWDyQUfMm0sdEmSqKQkUZk3wDwyAvURndsC8EqQeuWezLAqr26GL2yUm9xr//V9MlBe2Xdf/P1/V5bW2K7FaCHnGXlq9zbUuhpV7YNPfW972Hk/PVG/j5tkyZgZ8rv1YHKDjqQCqd7zmBO7q2su1pn1gWX17jvYpmPoN0xxQulWAr+S3mmpLmYiGiJJiHOifhaCQJpJZYLKFKsx3mMbUf9rmharjegLhEBUkqz6xqHUApTodxircI1nu9kx7EQQpeQJckSrXCsSXeeXRSsghIS1hoximkTVsGsaYj0yVZYDN5bI9XbHdgxkHEqbSmqlVj28cq1vJ18gCMCcYAnRUt6/JAN1aqJAP4yoeZzM1nnyaWLoe1IULXqrNY13wvg3N0mHqnuhINwEgbgFfTQKjH4jIKy/vnUbThZcpX6sSUBOlJglHy4y9nx0uOJgJdB6KZm286xWC7quldZPiiy6Dkpm2PY46+jHiecvXvLy5TljCKCENEfVSfGpIeXMMERCKqAdGS2CajHh65kldr9q3zJSSBJgbSNeFtaTqcqWBowqlBhkUqE+szlnwjRgjcMaTdM4QhGxqVJd/1JK+7bv7GxY9ntzf8H2NW3O0vaSNpLA93MbKVfVwlRdZlMdrYVSn+N67pRSJ7zUvojIOb8K1P4Vt98vNwHAVE3kOttbs5ybpv+cSwm8NusFK0qtCBS6CPSNKhSjUNahm5bsPcl5Utuguo7Srgj2gGgs0WtyZwlNJi4arNEo61FToB8GQg6SAOSMUwZUJZrkhDEG5xqcy5RkaKzjqFnRHqw4fvCAs7fvUzQsFYzvXrC53vD0yVPCFPns00+5PH9O0ZrddkuICe0dznn6mLh6ecFmvSbEiDMabRsW2uNtwVjpbeZZJ3pK2FGq/yZDpJAqgj5j+ua1YKu4iTg/yRryle+/XWl98ea92g6va88NmDfurd8lL+02zPRmH5Jaa5rFQmB7M5OQ2LcytFICNd8KRsCr0ydI0Hr1uSqv/L1U5njJlb4kUBZaK4aY0Mg4EkqxSYVoHMuDA9K4qSTPgtI3z06qs8NzAuCcqwFQ7qf3nmEq4DXWGKzzKGfQzkoFNgWpZNwk/AVVx2ZTwmtFsg7VLcRNMGtsmSjZk9JICCMlB+GWlFm7PDOlSM4JNwsgKZH51dbitCKESWBTY5nSRNYW5TUkWw87jTZIC0mp/eEqiaacBbL3agKrFGi1R28EwalWqcYAiXEKLL1jsVjibXWhq69TVZ6SNvKbZU9nQgxC8ioFUwldqohUeMmKkjU5Bd70vf2z1heT/zm5qkG/1I9K7smM7FqtWC0bHpwd8OD+HdrGoJXISx8erjg4XNC0mqHf0XoZeVtfXVePEsV2s+Hi/IJhnDDWgXaUlDHO0Gpbk8eJkCL9EAgJUha+zJQiTZbgWeooYqr27nLeabRydK20dIRMKqQ7ctqjr6UUwiSIhHGKqKK4Z2q1F5AqlV8wJwEppxq4JXbNfKBCte4tN9dVIYZXM49EF/n/iEwsyLSOcL7mRKNwoxSIut16vXV/yqtn8S9yz3+e9ZdPAJQchsJgnBsAep9UVtVi+UxNAGaIuMyPoVLELPA+ykh1ZRTFaYq1FN+QF0vSYsHUNMRFR+k6cndIbI+ZtCY2EFyBJkOnmEqPzSNZKaacmFJiiklgliL/Vspzi0LjrMfZSNEG7xeYYri4uuS/fv/7XGw3HN89RR0dElGs7pxxcv8tGu9Z/Zfvcf7yGd2i4fz8OX3fo5Sm8Q2b9ZrLzZYhiPmMaX2VM4XGe7x3pBSwStEWRTdl+VPh/5gzSs8MkDlRfzWAlxmXunXDbweqeqH3YfvLEoL6LXtITt3a2PvfM2cBSn8hibj977263d487TSlNK7tbqB96lubYX5108T6aesV69/6Mee5b8de+UsVc5OckWv1nOsMcCaQWSlPtp6usSx0pOsMlFlAZE5SIpJA6H0C0FZtC1ODYR8LNiRKENh0SoEpRnbDQChJKjmjheSnhaOQUhKiVsw0xaC0p7gO6xQxwpiq7Gm9IilDCoVhivRxopBpQGRzna8BWd/sJW2lrZYK2XqUhxKFcKeVwlDNUm65onFrT84IilaqQv6VbGm08C0UWGcrtCvOdW23YOU8Pm7RRhOmtA9k1gh5S5Gh2g+naucaQkRbh8lFrGPrFJIo2AVU+tnTTX8X1k2rpf7nlp6F/H9Go/HWYlXGW8XxYcvDB6fcu3tE2xo0mdXBguPjA7qlI+VBpqi8Yxh6xr5HK812u+Xi4opdP5AzNF1LyIo8jhir8d4RC5idI6TEGDLjlIlZMeVMyqWWkXIW5ZSr90CovXxPiQXhmgpClEtiCoME8VhEVCuJ2FAIE+OYUKNCey3EvXoKSOC/QQBSbR1LgNb7Cam5lSwHa6mJElitpB1cX6+t0H9JRQR9yvz75RwopD2RsB5CwO2z5VaxxV8t/fwbTwBmyEJrLUzz2o+WDLJmNJXxt4eQi6o9VE3R1dM+F4q1KOeFZNE4wsKDb8g1AYhdx9C2pIMVyXumpiN0h0Sj0QtNMomDQ49lYLh4ShoGMIoITDETMyjjyMpIGYD8KUUmAhZdh8sK5TwL2zEkzfmTz3n0ySOaxYJ7d08Jw45Ft+Ds7j2axnOx3uC6FQcnh+KFfr0mjEFMVYaRftcTQ6Dxls47utbhrMY3hsY7+n6iVYbDpDkIhUUAU/tBSoEuMxP5Zgso9B5izjM2z5dA+uWmF/VlG+hVeFtaLcDefnafcOx/gP2h+BNRhFL24yxv5FIyp4+6IToKgKJu9ebYJ1U/6QGaNcpf+RyvtgooqRIBFWRRlstFxoiU1RhlURZCFu2M1cGKRavxakATRSVQmZok33gEKKX2CICtY1MFBWZHKpLsaqsxSjGEwObivI4iFaxSOK2qEqq8Tm+8WIwWMVCJIZKmiRQnkeINgYwYB00hsd0OXG/W9KnHOc3J0SG+abDG4FTBeU+cxMMilcKUMgmD9h2NdlJR54wuCV2ieL0z9zxh7jmpWjQolCiNVkEVGdFTWGf2PWpjNFaLyZaxjm7RYEPG6EAfJhGr0QrvDFpZWu+xtcolF0KMhBixonNOIRNTAV0T8RRR+s1PAH5aO+6nkcTkISg36F9JVTEv4rTm9GTFWw/ucHK8pHUKbz1n905YHSwIuWfotzTWMo0DOQRWyyXbTc/l5SXX6zXDOKGMYbFacX69IeSIcwqrjOxVZ4lBTJx2fSAXQyriolnDv+z/nKvZlYg/ldwDW67OtxyfjljnyDmw7TeMw0CJqRLxRLeikElETFY45SglCweh1OczCyFRCqmb+JZzte+tha60DXXVvZB2gyAApVLcFEVrDIpcifCye+QeaKMJobYGbpdJ6oYTMFf/v0zc6a/UApgvlFKAloxNqZueMqq++VcmAhxFG5J1BGuYtKE0Ht116LYldC3DagHOU1xLXiwI3jO1LeXwgOgcwTlG5zCt4+79E05OVpwcODYvHvN4d06ehJE5ValfbQzWGHKpdqWICYPWmrY1ZDQug2tamvYA45ZstoGXl2tCgmWxTNqzfn7J+vkVfT+wXl/jnOH0zjF9v6bfblBZFKyur64Iuy2d0yxaR+stFukrWusxVmNzoc2Fg6RZTYUmyNxpUNIS2Rv+zOQINUtG3qx97/61qvyVHurtQP7KvdvfpBoAb93U/Vdu/jL3t77MhvJ2++HL/7W//aXgBvZH7dsae1rKLcztyxi0899zyfv+4Cu/v163matRitrbg5Zq56WdFZZ7EcGPaYykMNE6x8q0lBDIRbzFUa66bBpAEktr7T7wwwxNijtgjBPU/vrF9SW7z58xVYa1MQZfBUpKLuhi0FqsfJUy2CpLbIymlEiMIzFHEhG0IpbCFDKXuw2fP3/GOA0cH6/oFktWANrItEzbso0TmULMdYLFWPzC0SSPykIg0yVgSiSjSFXo6vZ1foVsqjWqzuZbW9nn1grbvGoxWK1wStja1jkcnjSNlGrU4qwk3d61dG0jAaHOescoyok2ZjAyktZPER1zTYzVfxNTAK+gdbef4dvaLUUI2DM5+c7pAe+/+5D7Z6d4G+hay+nJCXfvnlJUpt9NGCtSwbvNVM2T4PLikuura7bbHSFmlssDtLWMcRRjKSXhOOSIcQZUEVO1UFC2AWRUL0SR+53KhFMQQuby4poXz16w3fQyBZAVRycntF1LSpHrzVU1rYLGtTTW472naRzt0nNwsgKt5TnOMtM/6w68Tpaep3vmthXaoNKNWFYusl+MUjTOUj17SamglRCLi6qmQNpgrUIlGEeRRi55LvLY833kH97nwr+0JOCvmADcPKRFS/YslenN6F+pBAe0IRlPsp7iHKlpmLwndC2xbWDRobqOoevolyuUa8B56Dqi80zew3JJNIbsFNjMw3ce8t7bD9BhoL98Rtzu8IVqM1rhpCQTgTEnjFUi0KIdioRWBeegzYZcFG1jaSpBbNktONELwHJ4ckQqket2w3a748XwEq0C464nsEbngB0jEAi7LWW7YWUUxjgab3AlYIqidR7rqwZByiyL4TgbDqOmTZmiCsGCSaDyrepd3QTX/YOsbyrP+V7MleJMJhGu5U8WVap/ufn9pVBeUz6bIW1dIdvXE4x95UvZE8Z+se7V39zSpV6XMutMqFvXp+yFAF8/KG8fCjJF8moCcPtAnVm9uQi/w6KwSuB8Q0GlRMqRlCdiVhADXmta48jZMsaJHJGJkgo9z9f6NkFuvtelFKwxNN6Tx8S233F+tWXdTywPj+gODzm9e8rR4aEIm4TE+nqDwhAngUpTyGw3W6wqeK9RbYtzmtZb8REwlov1mmHsucgRi6ZbHrA8PKTpFliV6RYL0deogkXKGFICZTyu87joAGGVmzxhawIQq0jWvh0Dtf1Rg7/We9KmsQYzk6eqeI+uY1YqTeQCISYIAaYREMXPxjtA09iWrmnEHXQmeZXMru/ZjRF09aufhZeyEHH1rOzy39BSc+sf9kmANrONMyyXHV95/x3ee+chbQOUxJ07d7lzeooxMEyjcCqUIgwDripBnl9e8eLZc64urxiGkeViydHRMeeXL+n7Ees7UkmEBCFFjLNkCptNzxiSiFopmMLIMI003uFUpijYbUcef/aEzz5+xPp6J5V0LixWK1YHB6Qc6asSYQpZOFYV6DdWc3iy5N5bZ9x9cIfjOwcsOl+rfyHozecrlTuQc8Z4PwN5aG0YJrHZVkqJfHUSXo/VmiGF6oFRoDrQ6kpIneOhKGrKlEVMuRYUiqLLKy6CpYjK55uTALzaWpZ+aZmDgYjapNu9Y2MpVTlNG4u2DtUuUE1Hbjyl6yhtA6sFufXEtiW3DUPb0XcHKOelLdB2ROuYtKY0nqQ12kHbwL3791A588mPf8T1k085aRRL59gUmIIcdjmL3Cip4FDii26sSJEWOahoHRRN4xyNsTTOo6wD54hToWxHhrGnyQWFI9iO5YFhvTVYLVV2r0a0LnSLjs4UpjAS4iBjIjnhDRwcdNjGEbZbmgwnynNUHMtc8KXKKWsF+UaV/nYv6HVnxVkg6PbaTwTUPtVPQgDm761/qQkAX4jd8//uq+dbQehVsmGpbOr6Q0X98nbvz7tuPVwKbq5l5VNU+ZGfmgC8ggBU0sQsrVtKldetilclz2mGpqDJMYIRMy3yxISuBDWFd5ZcPFPoiSGhlajfzQziOegbUx3RQsDUf88ay2qxxPlM08Ly4IQ+ZKZSaBYd9+4/4Pj0FNc0xJi4ulyzXB5gtSXFwjRGzl+8xDpF21limhjDwBQnxhQFzt+u2ZWE6Tx32wWnd05p2xaFoEPGWbIqe5OWbMQhDaPxusVbi8ZBTtissURSkXZhmSdcZi5GtSnWWu2JfvP43+zidrsVoEomR4W1MtJFDKgoqonWWrzzaJVxtsF7X01shD8RY6bfXXO13rEdRsaQ2PUD4zgxxSgWw1+C+Ly56wsNv/3+vUmwlCQAr7TsCioXtALv4d7dAz788F2Oj1co1XN0eMrdu3dovGeawt5DYhjqtVaa6+2aZ8+eV12JHUY7jo6Osc6x2e6YYqZbGBJgbOWhZFDG0o+BzXagHyZUp7AKSYDLzFIqjNPA5cUF5y8vWF9t2e4CMcHZPUXbLtHWYmvFP+nA1e6aNIld+zj12M81T1885YPte3zNfUjjj/bX6/WxX2uFMKucQ1HEFKuKuc0NQzk2yv5sLmX2OFCEKNNmjesw2lCKWA1TFM46iDdnUVGz78WsQFiqxPf+Fv6Nr5+ZANiiSMrWKiliCzSjIQKq9BAtSluR9/QtpVkQrCM2LTQtxTpiuyR1C3LbkBYdU9sQVwsm35DaBnwjcH/jScaBbSi+k5bBTIzSikKgaRvaxYph/ZIff/xDpotn3P/aB5RBYYtDBYMKEZ0SicyURZwEJT3ArKkM6yIzzqrKOVpFVqnCjjJqNPWjwLMUQpgoJZDziNVBlAbHDTZFvAalJmgj2mX0ADprkVBtG4xXbPMOs93wVrB8LTe8vYODPuGigly7SJVBDrwCyRc1k3bqLCm8sjlmToZ8Wip7s//ZWzdTzb+3wv9lDv43CcE++CmBsXVinyTMo1ei1lX2v7soX/taGYWBEn7e/fdLWbHEfbCXtF7t2xqqFDKzV3euPJ8bEpIEqblrV9n+SrTOZcTnxuoTbhKMiCErg0KjtUUXIYPmUhhD4HrXkxB7X2PEtS9Mk6ju5Uyer2GpCKNRFR6NuMZT0Fjf0JqCS4UlDuNarO/oB1H9c0NmPO/JCyHann9+xefxnIODAw4OD4kpsBm36KAIZUGMgd12R5gGrq+vGMeei/OXqOtr3jk84MHpCauFTLTkMoqlsBMoP+YC2hGSJZayd4d0WhQSVVGYAiabqqyq9upn85jjTPgzcxJQ/Rac9fK52naUyY16sY3CWXHNLFlm+WOM1WHN4q2l8St82+GaJca27PrI+eWG3TCSVZ3uCJFxs+biasNmmOgnsQT+u7K+8EoLzBqhMn9ehdeQwLPXEqHQNoqFM3zw9gm/85vf4v13T2iawmp1yMOHd/DOMk1TbQcWwpgo0aALDNsd58+uOH96Sb8JGN3Qdgdo51j3PZsxUjCUrFl0S1COjZvY7ibaxQHPNy95fH7NdoJF16JLoQyB4geUz2SdcE3hwVunDNsd1lhSXFOK4713v8rB6RG7aYdKPU3bYEJhyIY4BEwz0aWJbuG4d/+EsztnLLuF8J9ygixTOsYaGEu1+dDMOOEwRYxrSEqxm8ToCq3kbDSKnBTWdxgXGXcTGS3I2RQFCVRGHAmLwlmzlzs2pghKNvf8cyU8FvZFyhuDAMhRaYCMqqVi0o5eO6wpaNNQfEu2ntx25OWK4Ftit6B0C4r3jO2CqW3JTUPqWqbGE9qO6D2lQv7JGSZryNqQbQOmoWiZKTZa1Qdc07QtvmnRZUG3XBDXCt94srV1hleU8zSZmILYMeos8LqyaKPQGIqVyQOjXTVxqYSRNBGpI10mo72oCLrW0KmGvA2UKZHiSEoTbibQ2UjTaDrTMhhDvxXlRG0MIQZKGDnIcL847kywHBJmiugq68s+yL96/V/t281w1Zfcp1vw/C2e4K0gvf/GPbVQ3dppX04mUiidb2Dz+vMzJ+EmUdW3Nqyes4efuKd+mUuYuNXidUYAKhdgnwAU8fFOsxa4fFFmgyvjVxKvQiECkVLlRGXpOulS74GSHmBSBeG91wQKQVFihn6aGEJgVIqF1fimpR97hqGX1oGuRKgihDS0OABOITKlLCqF2uKcp20txni0aWiaBadHjmGIYn+dNToUrLO8fXyfcZwYw8TFo88Zxh3juMMYhx6yjM+NEw5Fue4Zr87R/ZYTbTg6WLFqGxaNkFqN1Sy7FmsM2/WGKWYyllAsWSmpypTHY0nKSjKZNTqb/Va/3Xud57ZneN/oqtOvDM4Id8EoKQS0mkOZGKiEaaCxicZZUtQVkRTUymgnxl6+QWlNjIkhTISYWC4PWKwOKUqJIqIy4Few2TFcrgnj+Le0a3+Bpeb/1D1O1WFTFV2cUWmg8ZbGKY5XDV/74D7f/dUP+ep7D1kuHIdHLWd3TvBeE8M40/KE8T8GvDZQEn0/cnFxyfXVBqUsbeNZHRwxlcL55QUpg29alosD0A5Mg9EW7zXGtkz5JefXW56+uOLu0QEoVy2ZFc5ZYs4slg1f+eoHHK9O2W0iFy93QMPXv/lruK4hqsSUB7ICpS3DZqBf7+jXGxSRg4OWo+MF7dLiGkUpU33ObxCeXJVXtTKV16ZICYwTxcndIKZAZZ5zU5VnZYwYz5lAigmjnRiBIfoAxogeR8o3Rl7OzhwBXYW0gGq6NfOGflnrZyYAApXKyVkyBK3ZLjqsVjROQbOgdEtJArqOvFgSmpa0WFK6BXhP33YMjSd5T2oakndE35Cso1gnbQNrSVaTlaEoQRWUEvndXGKV4S0slyussyyaI775rW/xKRMpJZyzKF1EelFXdaWcBHZRkFMh67zXbscUtDNY61EYSqmWjikKISsrQi4McSSmLDaOKqFMEVJS6zE6ykiIjjTWo1wSC9W5n2wMWEPqR9ph5E5yHGVNExI6RNSefTpDS18Mwrf7vze8gFe/54v9+dtfrB/060FbMtOfCjMJblj/3VpyvR7b35xY/xNWIaepKkzO+1nIYALf5/3+mvvYc9U/V6hzClxUBhUlEVZZQnudr58DWKkf2ddXMxQrLk5KIyOvtXpV1mCcotEdanvNOASSNlhXk5BSyDFRBIoRK95pwhhD2xm8szRNh7UN2niatsOYhqbJhJAYhyjNiJzplkvM4RGgGMeecey5ur4ghFRbY5mhKNEBaDp8t2SXZR57aT1OVV5DhkZbuqYjTZHtekfKoK0jREvEgHFY0+CURSFwvckJnSubGmqAkpsikr9q7zqpNVhd6rWkJmSpasTXfY4SBcdY5HUZTawHe8kVQbAaaxXGKiFjaXl+u8WC5cERyjSstzuu+8jL7cTVdmQ9Zq6nzHr3ZiFZP3Ptk/x5vE/ObWUUxoDWBaflWp+envDWwzOcLRwuDR++e5933zrjzsmyav0f0TSWGIb9L56miWmaaKygqevNmvOLcy4uLokp07ZLjBOTqauX55SisM5Va/WGYUwiUFWTa2/FgnHXjzx68pR3H9zhsAVbCiEJL8lag7KOogzdYolWiWV3ilGNWKanjDNKijgjCpXGWQ5Oj8gHS0oO2EbjW42yBRlGM6gSSVES+7JHQXUVQRIRL2oyv92KuFvR4JwIikHBGEVKSVpUxpCnSBgGrGsEVagJ/755oGZpY43ek/+kEDN13DfvZ7J/OVvm5zIDmpOAAgRr6c/u4H1Be09sO9JiAW1LbFti1zH6htR20HYU7+ibjsE5snNka0nWitCPNiLzq0RXPyq1L1W1krldRZX41GJJ2i4a0ArjPO99+FXstGX39BHKGYy3oAva2OopkGiMIZNFijIVtJWZaAxVEMijlaEUUTlTRowqUhGhkKyrRWXJxBJIZUJbsRuOyhHjRFARowImR0qKaAV2JlKhMEPg4Wh4pzhOpkI7RnzO2NklaV+Gm1cx+9oXnWH9upP2cL/clld7WfUHJQnhVkFQD81c7+X8xdeZAq9oDlAP6P1v5ZWNqblB1d/UVXIhjUMlNRZpsJXb7l+FUv3o8y0E4PZ1RWm0zhidMbpgrDzIgCiVVVgaLWOu1N5/KZpcZFBI/iiKEh38rApFS3tiShnfNLTLJdN0zRSTyPtWIlFOQEh77Y0YIjlnmrZUdryhaR3ONrjGk3PBA03jaZ2FqOh3E/1uC0VJXz5n7Djhp4DNUCqakabAtNuSdzvUNNJZg1YGpwXOd0oU0BpjMUWx2w30/UQphilCVA3FNjJfbzxWVcX/kveiQ6Zocnl1T3+R05LlDKiVfqk92JwzCYXRAkcbRLffqIwtiml/bwvKOJy1OKdwHpzXtNXiG+XodwPnly95fn7J813P1RjYDhNX/ch2SATlfxlb9K933UYRK09LG411kgQYMq23vPfwjG984ytYkzg+cHzw7j3ee3iHk1VTtSYscRIxJK0V/XZAlcLh6gCjLZfnL3n58iUvXpwTU+Hg8JBucUjBsh1Hrtcbmq5jTIh8tbY4Z7HOk3Jh108cHHtc03J9teXjR095750HNG+d4pRmOwR8G1gs2r12g7KaTMQ7Q+dbcpro/EKCrbK41hHiRDATGsWkEmMsQGQI4jfZWIdRZT/+twdBi7SkUpTpgDFDKjClxMvLK7b9iG89rrFYbYgFrFXEmNGqotQUxnEipsJy6XDeYq1mGiWR1VXSeK9xkKUokLZMPctvPRa/jPVzugHeBKngHeM7D8lOo13H2HjCQoh8obn5k5sWvKcYy2gbovMUY8AKSTBW+dVqByKyqUrLQ11k/lOXhNMiCbneXBMbT9N6fOOBiPEtJ2cPSLsN+foCfINqW3TKWAUmydtTRYiL+7HEqi42B9w5g9M6YIzYrk4qkVJB6SRWvyRinhC16kCKEzGMhDwwscOqiWVjWK2WdNnCleiqqzFyGA3vFs/DYDgKhS4WnJJMfJ565VYWOi8pum+Qgdfn0OV71P7jbRW7eTPNcMB+xrrc9Aduuwh+6fx7hblubwFVD2tBEG5ew5d2EN6AVUomDv2eVKT2TfUb688yC3XM5Jz9/aD2oQ1Ol6rmCM4Ky9caSWB11a0Xm1sjxL86IZyyFrEdRAcjqcRioTh7cI/DwwP0uCWkgMPSdgs2654wDUwx4ZUQ4FQuhCgOZCWrvbjI0A/7uXhrraBdWeBTVfs7ShewGtuoapcdSSmQk4z95RzJURCuEAN9v2Ecd0DCN/L+lCqiY6DlnZna0hj7ge1mR0wF5RpSVhTTokwnFsnVarjUrqokAJX9XG63jQozueomGQaBbWa1NamSlKoT1nV0TRd51q0SFKAxlqggIXtVG/De0DSWpnE0rUNlRT8Ezs+v+fTRc56dX3IeMpss42jKd6wWR1jf8NlHH/3yNusvsNScgKraSIaba1hbt9Y6DtqGB3dP+Mq7D3j7wSkHB56H94+4d7pi2SpKHIkhY43HWUeI4uhXSqH1HopiGgObzZbLq2uGcaJtOxrfoY1l2wc26y3ON2jnWWA4Ojpmve3x9XPGWrz3HBwesVqt2F5veXa+5nt/8WO6xvDW3RV+Kiwi2FQwupBKQVvREOh3W3LMHCwOab3m4HBFqO5+uUR2uzWbzYZcRP3PNFZacjGTxoQzSThdueCMaISknAkhE6ZICJEhF5IyqBK4vNrQhyCeBcg1lumAV03BZFw1MU0B60as8zjnMTYSpljPmPl8qQdMEU7G/LX5yFa8xge4hbS+rvD4lxX/ub1+DjOggi4VB1AQ2obpvXcYUWCWjN4wdp7UWEIjY3u5acE1EuxF4kRkQY2Ye6BU7QmCztJbFXvEglUFkzM6TlAi2sCL8xf84Ed/wbe+9S26zlcCmgLrWZzc5XQauUiJ6C9ITYeaIhZFC8QYSElm7FPMFBVRxmNr8J8heFNHfuabKte0gDKYEDDRoCqpUCWxZiX3qDKBCjiVWHjH4cGSgGeYIG8T3ZR52y14OxpOx8RqgqYIBCR+FbfG716r/m+g9/0nbyD9nxpx5wpW7QP26z+3n93/aZvndrth/ngLsLh5qW9o9AdJ3sZdrdIl2VKVzKQryS+/etnFdKmyKGvOSuOk5WWtwpiCdUrsRrUY1CglBjNZVf18DAVLKlrMS4okvu3igO/+5jf47//JP+FkGrj+7CPyMBKmCWsd3jX0aWBKhaIzJstr0NVzY1YRSzEy9Dus1TSNJ/mJnByxMulLKYQQmUJtX2UJikGlvTJh1ImoE0lLXzPoSHYSchvXYpImppFSBLUwFUJXFHKMDFNkN0wUJQZdWRuK9ShjQQmcaqAeHaq6Rioo+oZIKldd9lCR51Ty4CL1vVKoYlCY+rOSAChVBI1Iis45Om/QYcRZ0Qcoc5IAOO9YLBYsFgsa72uVl4gxMIWB7XbD1W6kOb7Du++9h26XnF9v/k6RAJVSUs8g91pM5lQlVRashdXS8/7D+3zw9kOOjzoaX7h//5g7p0tSHuj7zMJX1MRasfqNMlFhjcZqQ5gClxcXPH/+gvV2VxM9TymKXT8yjBGlDd3Ck4qi6wy+aYlXW1wjNuXSTpVEVlVBue2Y+OjRc46PDlgtW5bLjlw9AkqMhCgcMKUzKQ+sdzt26yuurl7QdUuGaWIKfSXPFkqJtIsGpS0xBWIRe2mnpNWVchJRIiMjp6lQDYKEyT+EwFQCIQ9cb7YUY1hq0ZQBGTUvSdq9TeMIOTOMAVPbUDEFQhyZWzEyPUFt6ZWKzuga5GdNllIlx8u+2Ms/Ywt+qRLsX2L9XG6AsydGLjBZy+bsDll5lF4RLITWEL0jOMvkrBwC1qG1CI2olMWldw44OWMRVz1bwMwVa4yYkjApoFKg5MAuDHz8X/6cjz/5iP/uH/4Oi0VbGZZSQejukIMHhpgK59db0rbHTEG+ljOaOp5VElMIkBSl2tlaK2NBKVUhjNqzMcbgvcUasCbhpolxjOic0EnTKEM2ntQkEoaoDAtXOD1aoXzD+TaKgMk0cTc63i4NJ0NmNUKbMjYXsq7GP2qvzF1H7l6t9ufqCRDkAvYjK/MG+Cm3bv+z0gpQr31N/nZ7rO/1FgCv9aReAQRqXrFvU7yB52UphRKnOmKGBCVd9gTIomu1qG9l3EX+X6tqmGMN3ha8VThvsBacN3gvCYCpCcCcOM4IQMKR5+CvHEVZvvPd7/B/+7/+X/i1tx7y5D/9JxprGYv4QzhnWHYLrtWaMSSmLJMqvrE4Kwmdto62aZnUSEqBcdgRFy3kDlTlrqRpjxLEGOlDFI2BqBh2E3FKsu9zZMgTMUdJkEsk6EgyqWqsl72GuVYKZWdUAUII7HaDJDjeE7Uja4eykuRrpCo3tRelkQTGzJ4f3BxyQO313xACyzxPrTSqWEkgtKntqwQq4UrBY2mtwqmJFBMqZ4xWxArJaqNpm47V6oDFYoGt6FXbeQ4OV5ydnbIbBnTbcvbO2zx46z7Kd7TW0A9vFgfgZybaOe3xw5xAGUXrxADJucLRQcPpyZKzs0MevnXGnftHHB62DOOWHHrOTo45Oj6pMruGGCe5Vs5TcmIcRp4/fcajTx9zcXEuffyuJQyRfjeQi0Fpx8Hhit0YSSGxWi0ZxpGUMsQEJTBNE1fXG5qXLxmnqgypEi+ven7w0WPunB6xXLScnsCiumwqk0Spkgn0RCgjV+uBfAExiuV7t2hwjcZ7i3OaUAamIZMUmLbBuLa20YQH4n2DNUKYHSfxJcgx0Y8j674nFM1QJeW7boFrWkLOeCds/34zVFMtEaxq2oYxZmIa95yVkpUIG2Xhn6lcEEK9nJn7liy8gv2X2+OAFXrdI5Ovrb9xBEBV6DQB0RrG40OS7vB5RTaZ2CqiMyQjf7LSKGWxymLQGC0wlKqjKJSMU6BLxpRSA2vBhIyOAR1HSBMhT1y+eMaP//z/YCxZxHpqI7qgyMrKYdNqFnffYnlxxfl6g9ptBEGYr12pM9m5EHIk99LradsGax05QwxZYNzKYteIUpU1mmwKUSchPhqB0vxCo4sjl0TWmUYnFkvPVUwMcSKFyEHS3I2WO8mwmApN0tgsDO9MFqtgXfbKcRKFqD0ibjXxyytV/M9er1b+aqZdv/49txCFLzUSoh7Y9X9mKGpe87ZT1aL1TV0GsFrYt2IvSmWSy3UOKFSaCX83vt9KCYnMuOpGZzXeGaxX9ZCxdVbdShugXpxcEGlTDAkLpiFmTdOt+J3f+W3ef/ddPv/kY3brNUZpvJEktKSMM57Wt7xcb8gpgxMZUQUYL4qAriaoUxhkPDYLkTFnUbnMSebic5ZqWecoI0hB9oXzRmROC9jGghH+C6VIkC6SDWkytkI+UikVmX4opZq5JBHtMpagFFFrskZMjebGVa10xCxFo4tM1wih8ma6ROkbjfR9AqAEjdBFCgmZuc57mNQVcCqjSmAcBuJuWxXbNFpVKWDraNslXbvCe4cBnHV43+J8Q7tcsDo84PnLa2KBcH3BwanlbNUxNn+H7IAlrtQEV5FKofOaOycHnJ4c0Haad95+yLe+9iHvvf2Qew/usjryGJspaaRrHIeLJSoVhu1ArH4JJWWKkfbQs2dPefzoMdvtbn8Y9P3AsJ1QaHyzQLsW2y4Y0w5TIBfFbtuL8ZLWDMNIP4zs+oGLi0t2fV9tgOX+v7jc8ONPH3F40HDnZMnhsqFrOrrWM5ieHEZyAy0W6xYo7YipYKyn6RoKsRo5JRKBorJMpHiDbzzGiTqs1hrvG0oqtfU1sOt7Ecfqe662W3CeiBJZauNAGWIc8c5iXYPWWyG3Vvjfe4uxah+stVKUCiXOe3Z2/NsLp81I8+vrdSJA+fLg/4uunwsBUKrcML2dJR8fElkwhSVFTWSfSUYTa2+/yONaBVGMBDeyJBI1EVAliURpjKQQMCHTjhE1jeQ4UXJg2K357Aff5/r5c/Jywctnzwljj1sdVCMrIVthLM3RKfe+8itsx5Hz65eoMBL0dNOjqVKiU4hsNztGJxbBzokuOvlWxC2inZ6zoBU5ZEoIqJwwuuA1eA3ETCqRRhusUoRp4nq3Zb3rUarh/Ydv8+4lLJ5t8VFhstrP8Oea9ZZ9ILpV888EEWoFP/f3Z6inlBtVun2S8IXbdusA3uP/r3x9/vnb3IFXNpmqboT1m4WsovZaPzN0nvWNm17ZMxbeDEBAK/BO0zhhzBujZHx1Fu0BxqIw6YY3cbt9YozBGouvwd97IVQ5Z6o2v6lmO1b2dynkIlK3sVhJALRFJcXdO6d85YP30cCjzz5DX15yxyi8cUSEQFSS5mC1YjWOrHdbhmmqI0NWmPHWVGMpi4uGECdySjIpkBMKi9GiJpZJmFJYOofHMpSEcpaUYAxB2gWpkFOqJYf8DpJMqJgiFbzRRhT+lNz/mCNjDHvSYyxU+25dXRDDnF6KXbiSilLokYIcFVP2Ha2ZQ7IvZOrmzUrXk0QLVFNEA0NXXRAH2JLIQyQPA2QhZM3njNYK7xsWixW+abFGpFtnV8Z2seAoF+7fv8f5i0vOz68ZUyENm+oR8Cbs4FtrXyl+8YFXquAMdK3l6PCArm25d+8O7737kK9//Ss8eHiH+/fucP/sLneODzk4XuIaCHFHiiNWaXbXWy6fnzPuely9VlElNusrXr58weNHj7m8vCLFTN/3bMeBnAqLdknXLNGmQbuOoSrdWWvZ7HZMYZpfJVfX12x3u3q/5/l3VZUXFdsh8NGnT1h1lvunB9w/OcAsDM6K+JpRhdBMNeG2knTYBusbSoGUJ8axZxo2wnEpGesbbNuirMd5hzFVlU87dsOO9XrL1fWa7XZHDoXL6zVX/Q68R1kvoHXJDMNATBPOW7wzOO9I04hzliYXhingrMXoSQjk5cZfQGKQjNOXUqoWhq6TRrdvJIKYVR0M8Q7gJ7Zdf5HqH36eBCBDrFl3AZJyZLeg4NnO+s4mkzQkDVmpSrqTQFWqIYpInmR0iZgUsTFgw4SaRphGurFn1a+JUySgWYfA589f8OnjRwLDDD2fPn5E348slgdoBSULlIlSKN+wvHPG21/9Bvn8Oc/HQBoi2UVyyFC0TAckT86RXT+htMU2sRqWZHIsovGSoETxOIglCdlv2kGapNooE1MeyWEgJ7EXbnQhklgPE0PUHJ/e4Vu/8d9x5+mWzR/8Kea8x6CZrByUOWd0Vqg8K0qB2BgJLfCGYScHZlYzbHTzOelz8GoSUKRlY6le50WsV+dv0RXm3ruBZiCXvUlKqZn9nvynowTKW2ZOkugpJqVIxnDlFsTrcwyRoAsqgymK8EakANKrb5yh9QZXe/haycOZkb5gyDdJdsqlkgFUFaexOC3kP2sNziic0TRzb9RobL2wBUUumpANJVsoFmWkVXB2esrDO3c5bJZMfYApYk+PyCmg4gQpkVPAGjheLkkxsN5O7IaBjCcbKFFeSOcarFWkSUk7iZvXb4y0I0y9T6XoeuMzuQjagRZfClFlK+gUCLlgciHoKm6khWtjhOZcYclMiGJAlCval5VB5g5c7buXfcKq5vaBkrKgUHkE+7yyJlvzvlRz20oOSSH7zTa/M5IoI38GCQiJ2cbWYoooDerqq+G8xbdOeuJG45yp3A0R6koV32ycY7Fo2ewGtv0kDPC9zsObsW4XhUrpukULRkPTWI6PWj784B1+7Zvf4Otf+5CvvP8uZ/dOuXfvlNXhAmUEuRJZ5ELOE+OQhW8SI3GcCNMIJSCeeZp+t+Hxo0ecv3jJ+mrNNIzEGNlut0wxc3BwyOmdM6xrialQlGM4vyTGQEEzTiNoSZKHEFlvduSMCDQZTXKGnRICeEYx5cj59cTHnz3nw3cu+OD+GUdtQ2Mctlmh8GSX5Jm0DdZ5jJMAL6O8gRgmpmnFNIm3ha6wXy7gvd0nkyllttuei6trLq63DP3I0E+sN1smFCkGTIMY2OVMP+zIJdJMFqM8zjaUkMQIK0e8EaKwd5ohiIOgtbLnRb5dkC5jBFVQRnhllESttPfcwL2Ek5Lk6MsI4LIP/qZJgGWeBJAtmJWmVJJP0FIFFiOH0Fz7iYJckTn3GFEkgftTxIYJF0aaaaCZRkw/oIaedtrg+wvWUyRox9PrLT9++pzz7ZZRKyYFf/HJxzx6/ITT0ztoMzsoVdxLaZTxHJyc8eF3foNhGDhfb8C6KgSj0EWEL3IqrHcbLi6vmXLh6PgEax0lFIiZMmVKzEw5MqSROA2UOKFLROURVSZKmshxFP4AitaIzGYoGu0a1PIQ/eCMsw+/QXjylM0f/x8UZUhGoYyCIBLFWvCgGtxlI8yafuXWTcg1DdTMQjzziTnnAXM5VcH9IoSbvK/YKxObmwJCYFg5RPQ8J19JbGhN1plJRfl5LW5XyWiC84zGMFpD9C0v/Yrw4om0eExElVkYJ/2VN+Zf11JKiSmI0zRe0XmNlVxGqkwgFtGCz6VOo1RFxqwUSlVLWl2wVmGNwRqFMwarZCzOqYKp44ASjA0lO0r2qOLIReOM5d7du9w5OeX06JCvfOWrfLoTmFEZwzwjHIO41DXGsOo6ck5c9xu2Q09UBWU0ygR8I6I/yllKShQ0IWa0ydUAx1EsBAvDlFAq41qRNPXKQBHHs5ILo2+YnGEcNOOoGU0hRkXOYrWqEBZ2ni1WYyRQmWbOoWyDRjgO1kjiMGsjzJtNgruISu3NrW7BUPN37dtWKHh9TFbXv1ejCkmVBYIt1gjakA3OWGIqaC1oiZCvoiA1tQ2ktcJqC8pQlMZaR7tYsNr1DMNY59DfrLaWVjdOoVoprJVZ9LbRfO1r7/LdX/8W/+gf/Dbf+dY3efv+PVaLFlTGNx7tTW0tilZJGIOQ2EKBkNleX7G7vsKQ6FpLGLY8f3HJ06fPePTZZ2y3PdM4MQ5jbZVpTo+PuXt2n7ZbgDaMIXN5tWGcBow2TDGx2/Z0hyeEpHj54pz1difJC2KlaxVzeKwtK8UUC8OYWK93XF1dc9RaGn+Mazu0aigmiX1xIy1c4xsZuVaQY2DUUvwo43AloYwEyZijtMhCJMbEerPj6dPnPH36nIuLK8Ypsdv19GNAuYZYCl5rXNdgnSGlINLwztE6afs515BipKRREjFnaBvDFAshzD40WhroFW0VInw9t6suTSrSEtsLkXFT3f8kaYC/DhTgL+UFMFeeCUgKstWoIprJzIGMWoHmhI0FHYTUZ2vw90NPMwyshoFu6DHbHey26DgwpZ4pRJ6HyKfX17zot6xL5CoMKNvyo48+4j/+p//IVz/8kIODgz1zf74AxhhU29Dcf4uv/vpvcLFZ8+hH368HXoKSMAhrODpP3++4Pr8kjoFusUShyalQpkROMvcf8kQKEzkGyBO6SGdXlUwKWSRQlVT0xiqythRlwbdc5Eh++4x7//j/xJOnT9k8ecEJii5mTBESYHQS6gsFV/kK8m70fmZ0rolUUftZ8C/cpFqtyjgQhHpLsp5Z7gqtJGHTSEVGhUrFwEIShYzIJcsfTbSeojXZOpL1TM4xNS2Tl3HP0i1IriN91ty0BLidNP7tLqUVvnF4p2gaTeM13qq9JnopkIohJEmychYRklRkn+/l6rWq3hYyiqTNzWFclN4TM1WVly5ZyH8UB0nTNg1vvfUWR0dHNG3DN7/9bUq/QW2uCdahrUfrCa3iPslbtC3Gio7FZtgy9gOq5Op4ZjG2w1pP1plSIKaCrYpmInEthjrKzvwGsSpWSkiL80jh5AzBws5IouKsJsZYFRIjKQlJKgTRgg8pk9BY50XPwzVofA2mGXQVt9K3Bk3VDYH1pvP/hbt1i+siwf320qqOSt1Cu5TS0sZTCwoBYkI7h0o3vg0pBrKrxkJVUtgZizYebS1KG6ZU8O2C1eFxNWuBvUvbG7JmgzWjCsYkvFU8uHfIN7/5Ff7xP/5H/Pp3fpV33n7I4WIpo27TDu8sJBFvKqqQQ6SEiZwCOQZSGFhfvGC3WaNSwKpMv9nw+eNPePrkKdfXG9brDbt+ELObrHC+4fj4gMPjYw6OTigoQipMuy27fkfXLZlC4unzl1xcXrE4usN2u+X585dsNgPTVK2Hy230U5aqhY3WhrZtGIaB66srFosG17aYOj6ulDwjujpGztvGGiNaM0n2LfMorQKdNClFhnFis9ny+dPnfPLpZ3z++VOurmScNVSXyBQTWSu00yybA9qmYb0dGYeR0AVSylWQSvZ507QwjfTjtH9tsToNGmNQKuyDf6nImypaCgxT406ZZcXlbsNN1+eVMHy7rfsLrp+f5SJPb+3NSaVTlMZkGekzFaBSCKnPpoSNER0Tbhrx04Qde/x2S7vb0Ww2NLseu9tQdlv6GLhQmZc58Wm/5ck0sHWGvGjQkyQcz54/54//+E/4rd/4Tb7zne98IfORURiLWiy58+4H/NrfDwzjwOWTR+QpQpSRRpULjXGsfMeUAtura3bbXiQdgXqyU1QiEcklkHOgpCAiPygMhmI8RReSgqRKNS1xGNPguiVbo3kybXnrV99H//bXefHvrjm4LrhYsMCoEtlI+Fd1JPLVeehbUPz8/uoDcLNuZFT3jlZz20Dyzj38n5VAozLvIIpXIDBvMYpklOjTK0PSmmRg8o7kDKVpiU3L6FuGTqSdY9fCckVuOvJ/7W7qfS0ymm/CUgpcM4vBaGEJ2/og1p52Thqdssh1ZkDP7ZmqG1R/T1IKM6v7Kb1HRtCm9sNVRaNEE0AVg8ZgnKdbLjk9u4NvGzCGg9M7fPD1b/Dov/454/qqTs54jMs4VLUb0BhnCGlJIbHebug3E14rBm/QRtF1rYz8JXE2c64hpZuRR63FcKg2gMip7quiqghS1UNIhZLqPiwGoxK6mDqZWiAHcsrkVIgJkd72LTTi8lmQatqUtA/0Wqv9nlQ1Cd1rSHz53ZLvqwjX67Dn7IS4d0nMlbSIjGrmEsmTmLFkRkiJ3XZLv9vROFd1HxJKWzRClrOmtmicYcry/hwCR8u1elOWAmVQRDSFZWv44L27/OZ3v8Fv/dav8tUPH7JoEsP2HB13rBYrvHVklQklEibhDcVpkrNQZVKYGIctYbuhjDuGfsf5y+dcvHzO+YunXF9dM01iX00Cqz3tYsFyseL4zgntUmb/UxGXwHEKtO2CmOHx0+c8e/6C5eqEnOHi4ordrieERAgZcakWDw6tBJkUtz1JCKw1dF2HUopdv2W72+IXCxorbSa0nJs5yzhnyaJ46WYHTm1u5uprIldSYRxG1psdz54+56OPPuHRoydcXF0xjllc+Or+SjGgjcNYRdP6GqSrcE/OjMMEzsnIabmB4q0xOJPRSng5OUUh6u5Z3VQDIMQie1YAnEXJ5oD/es8fbtC0Wx//5jkAr7+KCilLliaZpd5/uTL6c8GkjEkJEwLtKFK4ehiw2x12tyWvrwnjjjzuKHHgumQ+TpnPY+CTNPKEwHUprItkYiVm4jDyZ//hP/AHf/AHvPfeexweHu6r3tkxDaWI2qIPjnjnG79KTIn//Kd/wotPPiLFjEoBpaCxjuQakaPMsBsGxtKDEX1mbTRFJUqJKDLKIn2bXHu9SmN1Uw8s6fKIdrsWGWPnOQ8DP95eYh+ccfCPfpPN5+eM/9uPpcIbe2xzA36aCqupUvtA5bUZ/luQ6heyvxn252ZDzJk1BSFjaiVl/R6WrfPcNQgmbYlak7SpbG5DsIbdwpKahrJYEhcLxsWSabVi6kQBUncLirfE5aJWy4JAlF+mp+VPWUorXONwTuF9HeNzVcmvIh4lK3TUxCzBTdgfuSa19WHTGlQ1vdICG6sqCKSdQRkhu0mVZlE4dHEUJZa0y9UBZ/fugzEUY9EU7rz1Drvra6bdjjFFCBM6RkzOGGthCigSrffkxYKSI9vdlu16U3vxsfYZrfA40ExTEA4AuvYakfl7YyhFE1IUUlOMhFGg0DhFYkjEKRHqn5gjFJm3jzHL10ImFmQGWjvwLdk6StX7KCiskvf2ujw13FQuPy0BuIH/v7h9cp6lvGuTrFQToVwNh4golcUSWGlyTuw2a/rdjsPlijQJ8dErTdEVqbBCdCwVFRAdh5og6S9/lX+byxrFqtW8++CYf/Bb3+Qbv/IOx4vMuH2KZkdrz1CNXItSYLcTBb9SRNJZ5YxKmRQDm/UlV1fnrK8v2KwvWa+vWK8v6zXbyHmJwTvPomtxrmO5OmS5OGB5sEJ5Jf4Uw8gYAiAo2eNHn/Hxx5/SLVccrI64ulzz7Ol5nTS5kWgWcxxBZQ1lT45zRrHoGpSWnr1SgfX6mqZbYJYrIV9HCfghxtquEx1/W3dWSlEEvkohxpGYAtvthourK168fMlnjx7x6aePuL4WH4uZ3Ky1Bi3TT03r6LqGrmv2119XP4lxmsgps1x0FKWYpoA2MlnQVIdKFSZKhfaFB38D7c9nec6ZmOLeWGxer9Z4NYG59alfPgJQX4FC9MCjlJjooqViUcibzUnES1LGROn9uwI+F+lV5kxQUDqxbqQRDfMn2x3fu7riSRo4t5lza1jHyBAjeUrYlDE58/LFC/7dv/t3/OZv/iZ//+//fbz3e/hVLoyQkpR2mIXmvW9+m2kMDP3Ai74n54IpEauhbTv6ocdpTes9U4rEkpniSI5gdEZrUYsTCfc6e680yoqwkVHS0y9ppB8Hxmzo08g4TGyHges08lIlvvYrX+Xhb5+z/YsXhGGD0wqrqhFNkoqzZEuej8ZbgX/+VC5F5qJnffRb62Y/VGueVHXqbfWfrvoHMuCuheBV+/rRaJJriN4yKs2kDcp5StcyHS7Iy47YtYRuQTo4IKxWxLalLBaUphE73eVifpGgkmSFbwAKoFQVMrEKbRGP+Qrhq9rOImu0FUa8ChnRfcw1OZNrpo0TC2ltJYhXTfWiFBldR19rkoihJC2z/1hCKiyPjjk9uyffmwtaGZrlAWfvvEe/vubZbkvsd2ANqlj2Ziij2P92zlG6DkpiNwxsNxtizihrRd62KLS29OMkEwBtEZJbAq0j1kgiIl4CiRgS45gIU4WCp0hM0tKaqmtZIVHKLJiTSDEzpkwfI64zGN+SrIeqhpgL2Eoa3Lv83apW5kPLqJ/cBLh14/by1ftVuRI1rxXBJm9Q2UBWWLWkGFDDDm0t424U85pdL0HKGLyCISVUJ4kxNWHT1ojEuKntsFKflTdoaVVoreLh3SN+/Vsf8v5bp7Q2oNJW9A9oqnaJopTEFBLTGEQp0Yj5j8mw2204f/mcJ08ecXHxgvXVFcPYk1MkxYkwjuR6fjjXoIynbVccndzFuY6uW+yJyUUlhqnuuVL4+NPPePT4Cc57Fosl682W84stwzBJ8KSOZzon1XsIOCNBlXrLNYq2FSVC5zzOKIZp4PmLZ+Qc6WwrFf4wUICQM6lkjLY02qOAkIJYVOfIFKV3f3l1xdPnz3j67DnPnj9nvd4K4bfC+EoJgZac0UbRdg2rgyXOWUKM9etiZxxDJKeMta4S0UXkKlTJYVUVGWUy52aUev8M1KR5nKK0G4pA/18c9LhJl38SEfAXWT9/AlBuPtpcX4zK2Kz28H8ps5Ma1HeLVnI4DkpTjEO1HcZbilqQOGCMO15cveB7Vz3fTwOXZWKnND2aUDMnlTIlREiZ5XLJJ598wu///u9z//59vva1rwHsoRSQ/idKUbDYbsUH3/o2JRf+dBg4f/IIp4AScFrcx6w2Ul04y5hEOTAVsXvNMVJyFTTRGmssuYj/eQhB7o3R5DySS2IqhX6IXF9ecDYFSs6YpsGe3OHom99k8+5/5nz9I3Fgy2PlOFVlw72O/M0lvF0JlX1C8JOPT6WoSne1n5ZLJQhKdZ+0kikErSjeULwneUdaLAjes1OK4Bzat5SuZXe0oCwXpNYTu458sCIvV6imQXUdyjkyCbyTud8MxfCTSrxf+lJKetXGipf8XBVrUw/8UijaiFlUijW5MzglLYBU+3RKV2Grqhwmpj5SLcgghYxjqKRJmOoB4PcBf7k6pm1X1Rq4ABmM4+jsPvd3WzbXVwy7jSBUpVCCmA4ZpSSoGotZLOt+KOyGnr7vyWgWiwVd0+wTQ7G7VpWgOqJQ9fmoPf8xEoIkAmGqs95hYgojMU5MMdWJAmkTTFHEUHKB7W5gRNHYFmUatBG1NtEz0Oic9u5zhXqgKz0X93XvqlsH3HyfXv2EYn4evvDZPXwqaItGTOSl82J1xvimDh0XpjAxjSNhHAnWMmpFsQZdNNnNh66i2IAyVkhlxgqP4697M/5CS0anW+/42gdv8/5b91h6gyWhlSj3HR4ccu/sjNXhCdo05FQI4yQMdVtIYeDq6VM+//QTnjx+zMuXL9jutsQQUUpTEAOpnMCYBm0svpGqf7E6xDcLijIoZ6SdEBP9MJFzYZhGPnv0mKfPntEuFqAMm+2WlFs2m4EYCrbVIuesNcZa0jRVhzw5g9XM+5g5XVaeM+cs2hR2uy3kzPHqCG/Fp0FpQyyFkBOqKIZspfUZE1McmcJEP+yqcdEFnz9/Jtr+217+7dpSNcZglEZpQ8mKRWs4PFyyWi0wRjOMYvFbSiGnLATbmJlCZLnwuByYxl5aGlqmhDTI9TcN1hqmkIjxxvo6lVmtcVaDzfsk4AYMKDcB4NYj8mW6LX+V9XPpANxEIGH3mzi7m2UMMzlHRgIFepabrK3HqMyEVJq6a3DlEKUKQ4n0Ycdnzx/x588v+PTqmouc2BWIQUBYh8EoafKVIir8uhR2ux1/+Id/yPHxMf/iX/wLjo+P9xdEa42liPKS0iQs7eEdvvrt3yCkxP/2x/+eF48/E8g9D5K5GSNwTYpYrei8w5FJAVIoUHL1LKgucsy68VXMJCmSDmSrSIj62rTeMF5eEa8OOWwW+OUJ+t1E/sb7fPb4M+LVyElQuL3ik8LcyHbXBEC9ypABpLT+aTe+9pfkzCWTKcYKxO8MyVqyNQTnSIsOlgtS1xBXSwbv6Y0lNg3Kt5SmYVg0sGzJjae0DWq1QHUdxjmZdnDVgMk1OBSUwsTPeIm/xKVAnMKqCuBMLdPzpIKqIzkKkZzVYItBJU0dfAcMSnsJ3nrmD0jEmY09RN5U7l8shqQsEU0/JVIBpTy5GMgaK5FQ9qjxHN67z9l777O5viBUN0lVe/NWK4ox1bhEs2gbYdlqxXU/cnF1xWaz5fjoGIWRih9RgjN2Eni13osUCzFJ/zIE0T6PIe61JUQedyKmsCeJ5lKIRREL9MPEME74oxOOj++Sq8eBrbbd5Fyvd00/9wSo14L7awnsl5Ka1Bf3+W3Wc1b13hiD0VZaAKmgVML4Fm1EJCyGiX63Y7ve0CiFKRkat9cpKdLPo2iFcWJSZnwj7O03ZA+DXInWwntvnfGtX/mAs5MlC68EpVRWJjaygpqsYhzGapz35DiQpi3PXjzhsx/+OS8ef8LF+QXjGLhxqyzEIEme9R1tt2S5Wop5mmtQxhFVwXojwmgxVXvqiauraz797AmXV1esDg4Zp8T5xSUKS4iKzUaQVxnFFiE1Zy1hGElZtP5ny2fZezJtY4yphjmKtm1JBba7Lf16S9d2osJpHWgtss0JUi9a/DEFxnFgGHuuN9dcX1+z7Xesdzv6MQAG62SarQBzT7AgRMLD4xUnp0d0ywVjTmLpXgrWVH+ZudVQR4bVLPhTA3rbeAYf2OwyWka9CFF8MPa6AGis02hs9SIIkoDN/NXX9t+XeQD8zXMAbicAyAFnckZ0aFIVVMmgleinVyhFF4tRBW0hekdaLVClbpyUuL465+PPX/Cjz57w6fmOTShMJVGiiJbrgkgpJvFJFtU8RUnS87y6uuLf/tt/y3d/47v87v/5d1mtVvvDmJL343XGWlKIuOUh3/yN30I7yx//u3/L5tMfkkIQVrVcXmlR1AAsdusOW0x9DQLriB75PIAkB6ctmmIUUVWXt5JJw8B0tcZOgRaLti369BT/zQ+5/PP/DMM1VimWQVzmi9L4JKTK/ZpNi6gBh5/CTK5JRKl5dKnFU6SAVQLzN5bSttA1lK4jHR6iDw/JXcPYNuy8Y3COUL0cirMk79FdQ2kdNB67XGCaRtoftQ2SAVUdGAswzazDN2LNBMnXP23qtRUhI5TGaiSZKwIrlwRkRSkGENtoQZak3ZVy1Zw3FU6eWzVoCpYpFMYpEQu8PL9iuxvk2QDJ0LQcHK5bcPb22+yuXvAsDqRNwlQ2slbi3heTkJicMSzajpATU9GE1NMPE3ANKJbdksY7YuwBcFWWN+dMSoWcCuMYiHMCEKPA6dpQyMQYgCzxt4i1biyZkDMhCYHuzp17vPX2u1yMgV0IclLN40vmJlDPlc5tstJMmNJfkhS8vn7S0TYn+qIpYGSsthRy1ljj6JYr+q5jGq5JMRGmid12h9OKEgPkReXaiBZ7zkXaeNmhZzZDKVj3ZrkBdt7y1v07HC5adMkM/cTLJ88oprA8OuTheiJmx/LwGtcsaLsOZ4A0cn3xOZ99/AOefvpDwuYKSNLeVBaSkM+cb2i7Bc7LfL11jpAiY4hYbWh9i/GWmKVF1g8Dn332iOv1lpgTy+WKMSR2uzUxRlCKfpiIIdVgLmOss3rmzHXSKEHWCuQke8NZW0dJ5X47azlYrVC58OLzZ5y/fIk1Hm1NbcGByoo8CNEvl8Q4jez6LZvtmn4cpIJPBWOcOMIyT/Hc+K5orWlaz9ndUxYHC7JShGFkmoZ67guJb29fXd9PrKrRpbpRzi6dOQeBRWstJ2ihxA3hriW5nlmku+fgL79r/7dX9sHtoP/LIQEqVaVqCyZPHGy3DMoxaSf+3CixLs0aZW765MnUalQJ/KoV9NvA+eVLvvf9/8Jnjz/j4uqS692OMY5CustySFEisVZBeyEwCs45IZ+kxEeffMy//jf/dx48eMh3v/vdm5eLmCrkSgMtRonoz+qQb/6932HMmf/4bwMvP/oLdArSNdcG4xzjIHKQxjm01eCk31sqrX0mc5YsB3IpmeJVrUCEOU1O7LYD2/WGNE7kcaDEgFp0+K9+wPOHZ3zy4gXr1nI3FNphwmfFQTL4IOOArlAPIum1pZJJWv5hNb+vctNfBbOXPM5akY0RsR5tyG1LqqQ9tVigV0vG1YL1ySH68IDcNuysZfSW4D3Ri5ETMyTaeLR3GO+wjcc4JzBehfNIknbU0CEX6Y2ZA5QeL0oeVl3b+NqImpwEdJnF1YjAjMpaEgCDeEegyFnMo7K6ycxVUZi9BPD8XyELxqLpY6SPogX+yWePePHyBYUPZKwyVcIggGk4vHOf97/+LeI08fLRJ5SsyCGSUxJWtEBrcn9zwrmGVWNRUbEOmdCPnIdzplWgWy0QglHBFLU3EcqpjhnViYcQEjEmOV6MjMdRpD1iUKDkQBqniX6IDDGBcxyenfHw/Q+w1xsePXtGjLHiUpaiC/uJlD1xlX2l9QWTqrq+eJDNqSy1ZTBf9LkNIPdNpjFqEo3BWk9zcIy9eglrT5wEut0NO1Clvl9DLoaYReDFpog3BhUTobpCZgpF/2KH61/nUsCiNbQ+MexeQEhsNpc8evI5bnHA/bc93WKHe/Q5+vMXQkhzlq6xWBO5fPk5L54/Jk0DbSsmObtdICbwxpKLwTUt1jpSzuz6HtUPKGNol0sWyxVN26K0pq+jeU+fPGW9XZMyDOPI9WYgJoRTob20wXLGNxqvrUwYIdMXSuZv6765MbAS+XWFd2rv2WGqZ4tWhkVNUF6+uGAap33glrE8I1MgMVEokrxMEzEl0JJQGJ2x5ebZK0UCcspSxHrvOT455vjOCUXBZrutMUEQgGkMlAxdU1tcxkrLadiKAZiyFIRj1nmPURM5RoyqZkoJQJOSEn7CFOpYLa9MAbx+71/5/79GaOqnJgCKmYA4O6VkbJk4vDjHu4YrLZrIFhmn0VoLo1wpooZoFEErSuzxVrGdRn706Sf86JOPePTkMZvthn4ciDmQSyLU7CmVTIppD3EIIaUqm9V+ZswZZQz/4T/+Gf/D7/0/OLt/j/sPHqCVkt4K80FdKg4sPV9tPb/69/4RK9vxv/w//wc++sF/oVFKNKEHMRQx1mFwUnWbIiNeRYQccgFde55KKXJJogUQhPDUaI9VsJ0i15sNz188Zxh25DyRW8/yw69Qvv2r/PEPfsiPi+E903B3F7iTFcd95CAWFjGzmBJNyviSpcWixJbYlIhOEVQdx6RWqNqRkd6lsp7sNMlZUtcRD5eMqyXTYgHLFXq1pF8tuTxZoVZS0SdrSFas77RI3oHROOWwWmQvrbUyIVGrOl0vb6lqhgPS33qTJFQV8/y+RVkDTqFMEQZ4HVPTRSx8qeqJqnIxqqA1maobUGZz7Er+08I8zrMtKDIempVlSrCbArsgrnyPn37OR5/8mH/w97+L8w1I3iRjbMZRKBzdf5d3QiQrw4sf/4g4yNx9noYaQxVGWQxK3PpyQk0JmpZhmkQGO1xg+y2ubWVOvxhKrM9yKRVylWM3aRn9lEBaX7+VKRjxLEmElBjHzDBlotKYxYLlyQnd0REniwOuQuTq4hyyQldVs9vjqllBQVf9Cl5pcL4+IfDqqtf6Vmtv79JZtTIyM2dGU4pUglOREd9oLMl5ghqYijCyszJkLJmBhGWRpUgw0yT6Hd5LG4RMNhDVG8BirUspcC4Twpr1pqAWlq7RvPfeeyyP3sIvjihJ8+TTx+z6Dd5pOq85OuxYdJZp3NBZxfLsHqpA3wfGOArh1HhSlrn16+0Way1NJVc717A6OKRrF5QCw25kfb3h/NlLQgg0jefpsyc8fX6B8wuUlt8l9tKJ3dBTSLXql+fMWk2aIjmmOr1ROTVJGuDeKVYLT+OsVMpFRmqtddAoTu+cMQwTH/3wR2w2G6yxlJxR2ohYVamaHiD72hi0dfL8UPkjlZSes7SVM4WUE847Do4OcU3DenPNZrNhGkZRia1iaUZbUh3lM9ZhnCdkGCuhMOWCxrBoW5btwHpI5CiouVYWjSHEQqh6EyhdxX7qP/ATNsDfBKj6MxGAVygACmyMNJeX4j2uLaVxKKNwiNq3jM9oJgOpcRTv6NPA1TTw2eeP+f6Pf8iLqwu2fc84SfBPJVQYpFQ2ZCaXdEsYIVcjkEKYwv5AMMaw3W75/d//fR48eMA//+f/nOVyibX2i/0RLdVZyomm6/jqr32baScJyJOPfyA3VxtQhhQjRmusFUlVtCLZgqr+8UbaPvuRvRhlxEYbhbGgyUzjyDCMXF+vWfcDwRmCKpSjJe9899tMf/Tv+d7nz3g8bnhr0XKC4cxm7hvPMsJyO3A0KY6SFuGgWDBJYXJGZQ1VyhalCFoTtWGyDpx4bivfkDpPODwgnBzQrzr65YK8XMJqQeoWqMUKu+iwjcc6i9WabBTZajBy4Frk89aK8c2e0LWv7m7g3MJP3L5/a0tpjWsXQiTSUHSpsso1L6wBilLn+4uMBc55o1JC5pmBDYXC3H7PurYYtK41hRhKpSzuk+ModrrjOPL9H/yAi4tLlvfOkASjQFZi4yrMRO48eBtSZrract4HNDLqRErV5KbgjCZZi86QvJcKRwl7vQ8j282Wst1hvaexHc54eR9VmGfvTKZESEWpWYuN2vtPpJwI48g09IyTHOIY6SkfHByhjWXVttx/8JCh7xl3m1d6+QrhKUhbqMwdqv0117e+93VC0+ufnxGFOcma95gQjFU9JxIpFcgJrYXcpY0XedkYaZsFMSXGKRCm633lp5S4B6KEsGvJuCp9bH9BePWvcykFvvWAMM2HPtE2LTEWnjx+yuXmU0LsSXGHtfDeuw95790HGKMYhx5nNSdHp7Tes9ts2e4CICJKxi9k+mO3wXlH13aC7ilF23Z0bQsopnHk8vyC6/Vmzx149vw55+fnADRNQy6CEKQkY6YpJRHqqSmbMcIXiUEmTawWeWaZpMo4DcvOcrBa0DQOa+u9r4p53mtWqxX3zs5YX12x3W4Zh6HC6WH/DM/FnvMOjGUmT2sKRgk3KmeFru3rkhW5ZNquoWk84yRn93a7JcRUVWepqqDieOlcs59CSykRQkQVEZETxELjnKXsAiEARcvIXxGL7pxvx6ifEt5/QqL8i8L/8HMpAVaSTH3sbD/SPHpEg2HZeEZfUFZhMZgih1/2np2FvrUEb1kPPd9/8piPnzxmFydSDuQS6ixuJpZIzPGm/1FEsCPnsp8ZLaXIbGe+eePzIfby5Uv+1b/6VxwdHfFP/+k/5fj4+ObAmA+aIgeRMcIotMsl3/rt38EvWv6X/+n/xY/+/D+JZaWKqCwTAHqqRESjcWrWk67M/yySmuLEVlBzllsipgTi0DONI0VXRTgMulisVnzl/Q+5/867/OeXz+mt4nna4krmfuu55xVHynLSOc6C4l5QnG4j3RbaMdJphVMWkH5asYbgHUPX0i8E6jftCtcsiV3DuOoYjpb0Rwv6VUdaLWDRYdwCrzu0c+BrZW+qwJNGCJ1KYUplxyqDmgG7/XWdD+ZXD+03aSml0X4JRpGrRqGq3I2iKtcE9gdHnk2g6uiOVkqCSZmFdfQ+eOkaVHVVl1OVWBZTqUpkiZyFPxJi5Pvf/wt++KMfce/4kNY3GK3lFWWwxpJywviOs7ffRwX4flY8++Qjip2kT5oDomaZaTRoZyiNFwEVrdDWYINFjyMhRWIIbPuALmafMOuazM1js3KRqJbApV4JyPXnwzSSsjALcykYJ4p//RhwfsHJnTvsdjuePvoUlUJFheQ969qKe8X8V9d2Wb2GN5M7N7yBed0kALXFosTAYt5iItIkmuspV5Z2SpQykYrCugZjPTGXqtBoibmQY0Rtt8yTTIvGyz0MkaI1mCCjXW+QEJDSCus84xgZhojHMg09P/roKU+e7dhNiW5hWC4t9+6d0jYdy27BMPTk1HPn5ICm8ey2PVdXG8YpVD6G5vDgEOs99tKy2W7qKI9wArxxxCkw9GsuL6+4uLiE2pzZ7XZMw0TjPSvf0bQLrre97NHqHmlMbaGpsjdhSjGSU5R0WUHbWEpJZJU5WGge3D3g+KDDW3m+8q3GuDEG5yzL5ZL79+6zvl5zcX6x94mAObG10sY1VlDpWp1kxc0+r9lozqIrYL3jsCrMvjh/ztXVZS3uZF9O00iMCdMIGrparbDWVvleaitsTqVhChOlFJyzotuRNDkkgfwLIq/N/MT97ZCmfu4EAAAFdgrYx49YhoxqHaNOaKsxSuDnyVimrkEvHIMtPAsDP7ha8/HVmuuhJxnFkAKpJCFQacFBM/kVgps8+DcZkhwG7LOhucIX1qXh0aNH/Ot//a85PDzkd3/3d/He31TwSPCfS4dShPhlDw756q//Bto7rDN8/3//jwxXQXTAMpRJepvG6331lZShlJm0EescqbQEnAZVAo5Emnqurq5QymKMx2aHz07gruaQ947O+POp4LqW6DKXw5YxTzybIgfGceocd43hgbPc15YjpzmKsCwZl5NoK1iH8Z7YNkzLjmm1JKwW0B2g2xW5a5iWLeOyZTrsCIuWsujQiw5lWkzyAndbBVr640ZDUXmf8JmZ46HnKnfeFjcIwBcZdm/QUqJsGIvM3gtKJXvHMItalVqfzPvq5qHcJzp1GkPP3AelUEqy/L1xR4aYE0MIjCHUhDVLopgyn372mD/7s/+db3zwPm8/uC9IkxVr3lhAKYGxldPcffcrpKwYp8jF40+IfcYgKNRs3uS0hsaTchaejXX7fmlWkFJm2I2EKZJS2LuymUrOmx0otVFkJYesrsJBShWMKWQhSotZUlIY6xlCYDcMdO0K17XcObtPv92yuXgpvd15IqgiJdL7zzdEKyWBZ16vJ/Qz1K9U3ieZM3lQ+Ej1/0FGGHPaq6vlXIgxEhNo22BcQxpHYoHGWiGkWUPMiU2/Y/YXcE1LKll4PCEQtASqN2XlXLi62rDQgftHHavVcd0Hz1EoGtdwsOp4772HfPjhe7z99l1KDmzWW+6cLFl0HdM08fLlBdtNj/ddFbXJTNMke0cJuqWUuChqrQlhYr1es9lsefniJRcXl6xWBxweHUor1BjathWemyp4a+i6Fj3JnPw4JqYQwRi8d6A0Q57IOaJVoWkcrTeEEGhd4eR4wQdv3+fkcEnnRVQqRhGsco59wG2ahrt377Lb7QhTYL1ey3OorUzrWIMyTvQKKgfmZv/JnkwlU5IgEZSMd5bGO/p+x+XFBeM4orWpCIAmhIDS0h5pfCOTCMZgrYyTD8PAatHK+VkKJVdlQCd2ymnKe6txqCiikrPmbyvX/KkJQKn/uQ27+Rhxz17Q7XpKq1nWTmnWmtE5htaxXXiuDlue6sjH22ueDJE+Qiqp6i2HWo0VqRaKjBOKxe1M8QFmaG9/0ar9L1+sOJVSfO973+Pf/Jt/w9nZGd/5znduYM65qlAzHCmVSSoKtzzgq7/2HRrvOTg65s/++P/Ly8efYmOmc8hoXhJxDTEcEmJeqhunFMlwnbV4k8h5YuHBm8JuswHl6FbHAkMZDSHSKs13vvZ1/qf/8X9kN2w4enCXmArTsJNDO0fWJvMcxRMMdxvHndZxqj1HSrMocGQ9B02H1ZbiPPrwiHiwYmobQrciL1aoriU4Q2o9uWuwnbhmmaaROd9ieIUhr2e3tdk0SIntZg2Ct6F+KYzr9U03lZvWus72viFLKTCOUrLsubqVUiW4yG6oqEDtRRolaICpoklq7mHrWxCg0pSi99B6riz5IUT6KYg0b2WLlsr0vb5e80d/9Cf8xre+wZ3TOzgrPc6cItpUDgKSXNm24+y9D/h6znyfwrNPfiSGIXESj5zam3NWDiCXRflPG0lQYsoEndAdTEoRwg3BSFpqghrUFqSI7JSC0jeSrDJ4G8lFRpOU9ljfkNGMIWFSwmnD6uiIs3v3CdPItFtXxT4rbTetUSXfllX6AqQ5jwrehjdFRtjsA79SM13sJuFUFdVL1co75SQeBlNkDJk8Jop2THlgM/TilWC8iL1oTciJ7TAIyohIOHttyFMkpyJaEW/IygXWm0CnE+t1j3un5ezuKev1iF9ccXhyxrvvvsW3fu3rvPvOfa4uX/DyxWNWywNOj49pvOXli6eMY6DtlnSLA1JUbLcD5+cX2OsNMQWB45XA8dvtDq0t6/Waq+trrq6uWF9fc7g6xCgJ/NYYUuwZp0i3WLHoWpQ2GBPwzkPRrLc9aCNBXxuMdBj35jmNV6iS6Zzl3QenvPPgDierltZJ+02VmYhbR2NN1S9pIvfv32caRkIIDGPA2AbjnCT+5QbEEfRJiL8pBpl2yWJbbLTCGMfx0SGlZC4vLxiHQfZWSozDiNJOUOE6Ni7FgOxZ6xzeN8QofhmdawlDFOQMRGvGGkBGBRTys8IYKDdFx8+Bns5F71/HCCD8nFMAYlqoyWR0yjSbHYt+RwgRlyxkw85qtp3jZWl4qkYes+ORjnweRq6zYcyKkDNR1XnjWhHkmMWetI5BAPueygz93PQL5XXcRgVSSvuDYxgG/viP/5jj42Occ3z7174tZipVQ3z+3fPvQkHCYLoV737jVzk4OeXeW2/zR3/wP/Po4x+z3l4RQ+bAi/RrIovLXkiEKWKsJUzS77Eq4cgonchOsWodY4J799/CLQ65DANLq0ixZ315jj9a0B4tefzJJ+jDJdp4GlNIYWJKiWgLvTNcqcBTIgsdWNnIsXKcuIazZcvdxYqjbsVqdYTuloyuwSwP0EdH9M6hvEM5i/MO17aUStZ0yopfva7qgMxpV+UW3DpkuQ1PzZ+bZyW5uY5v6pIHSwFzj14Og1wTW4EC60ge4pUg727uPc7BSWBYpefPyZ9cq9GUM2NM9FGSgJhSdWyTIF9q7/b7P/yI3/t//8+8/e77fOX9d6FknDV7xCVXjtyEwi4WvPUrXyenRMiJZx//kFh2GBROG0xV2/HeyrieGBmg8SSTsTEKhzVXImku9VCroVTfBN19j34mG6nZRKqOtRbxiRjGQD9ONDHhovQyXes5PLnDdrPlRRix1gkcrxA9iqqjgZpFgdQXxlm/qBUwf07uxtz/pzrJFaEYYFUmFr3nDIWYCGOkHyNxCKQpEWIkrtcY1XOwOMAdtxjvySmQSmY7CjKSSmFRMm324Dz+DVMC9K0nhMD5+YZhmFgulvz6d7/NrxbLO+9/yHsfvM+dO8eUPPHD0DNsF6jO4WzD5cUlV+cbmqbj5M4ZOSmur3akVPDWSxVfHNM00O96trueaQp03YLPP/+csZrcHB4e7vve3jqRmVZiIuWdE2te5yjs0DpyenqM0oaQczWEB5khzzgnin+N06hYOFg23L9zwNHS0Xkl1XQuVdhKIPacM84KBO+cY7Va8dbbbzOFwOdPn5OL3XOQi9JiEVzEzZIiz1cKE1D2SIBSim614GC1ZBoHdttNJaPPQXZWtZx5YSII55wHJZoFXSc8ib4fWPiOUmSuv1SBMK0V1mlsyqiiiVnOjJvg/+X3/K+T8f9l62eTAFXBFPaVtykFGzNGFaIpTCkTlOXKal54w6NG86nJfBIjz3RmrQ0RQ6AQkYwsF0VNjtBZYYpU48yw/qyMVHIlf1QYcA+1qn1yMF+gaZrw3jOOI3/yJ3/Cw4cPuX/vPg8fPtxnTLc/Uk0ohPKkwXWs7j7gt3/3n3B45y5/+kf/nv/0p3/E+vqCNMlYBzFgS8Ii+ulWA4gTlLcjTo9oVZhU4XDZEvIBDx6+jWs6hjDhW8cPPv4Bzz//HGcMh/dPuf6L7+E3G44OjuicFyQkBqYYiSUQrSFoxYbEi9jT5ZHDFDkoiYNp4DiMPGw995Z3WB7fhXYJyxW29Sgrs/rGVlGNELBQlRCzHPBaQqM8CRL8Z7vOGRqfD+C9PWptxdzUdG9uBlDbfCL8o2QXGyXs/lljSWtVRwL1DeyF2ssuSyJAbQPUKYHZUS+JO944JYaQmFJmikIISinOGQg5Q4yZ88tr/vCP/ld+87f+Hmf3zjhcNJjKRZhV0AqFYgxTybjG8+DDr4AuFBJPPgrEYU3OEw0iveutEzBtHPczykZLRV+MjO5pxb6CSqoSGm8FZBE0EY6DVE6ClshEZ01ySmHbD6w3W9ox0ORcf06zWC45ODrm4uqCaRzlyqsZ2q/Bu8ihqm+jcq+t233/+ey74QDMicBNEaCVFh2OopmC3K+CQhsnbn++kOPINPaEcUApy+ERoluhoeRIorALk/AETCWb2f2Q5huxtDYY0xBDYL3pWa/XOKs5u3PC2YO3eOf9r7BcHaKN5vpyJOdYETxLmBLriy0Kj/cLhimSQhGt/sMTFIqUE5vNNVeXl1xeXrHZ7litViy6BWM/4Jzj4OCQYRgZh4HlcsmiW9A2HXGRiVkq3dWyY73dVTliTYwF5wyNbclKMY6BaRhr4qtxTqNIWJM5Omi5c7Rk4Q1eQ+sMKSM+GcBsmhNTFBSs8lqOj4945513GIbAy6utFJJa5ndkIqDUxLq2z6h6LlnOA+8tR4eHWGu4urxkmoIghrUoVXWEVfgHXqSMGyEY5ixo8nK5pOtatutrxnGUh6tAjEEIf/V5E9U/LYhY5SXAfKS+Gqd+GeunJwC1ENSlPgqlVkkZSgoMKrH1jp3xvFgYPm00H9nEI614ojJXRRG0xSkNKhLq4TbPIusiqDNZIDjJ92VMKSvJ6DXcQM+l7CHE2y5KAM65faJweXnJ7/3e7/HWW2/xz/7ZPxPtgNsIADMTWUaJxHhNUZoObw0f/Np3KE3Dvbcfsjt/zubqgquXL3n+5DPidkOcEs54YpqkUkTvNfCNSSx8w7LT2NV97t69x/HqmDTtePTn3+PJj/+CVBLu8ID33n5IozW7yyuaYtCdxxqF0Q47FcI0EcZIthbthMDVFzGeuIgROww0Q8/3+y0HL15y797bPHz4Dm81LfcOz9DOEOeDQCuUlkM9lUxRMjYjUL++FcNrVlDvxow3749DNZOwbnEA3uA1i4iY2nObtcZvAe4oo+QP83ubMQB942inyj7xqQoNopKXRD61HyeGcWRMiZiz9PyiMMtjFEJrTBmjNS8uN/x//uAP+cavfJXf/PY3KWq20pF/uShIOtfZaIU/OOS9b34T54WE+vijHxCHahpUnxdrTH1uZoe/slfmU0rUzUptVRhjyDPCptjbqmYEKZtdAlMqoi6HqvwPzTBNnJ9f4E6u8UentDHRxEznHAdHR0yx8Ojz5xwfHbLomnrNivAKastvj8DN13/u+1fVN9mv1BziNnJXEzJ05WkIi987W9swNUCECesaSsooo4jBwqQJMbHZ7hinkdVygbUOhXB6Ys5MpTCmhEuJkDPuDRpnLaXQj4G7XcODB6e89dZbnJ2dYpzG+0LXKZyve1SLQJv3DlJiu9mwWfesVkuUchjjuXPnhOXikGE38PmTz1mv16zXl1xdXtDvetG514brqyuuLi+5d+8ezlperF9AgZPjYxarFUeHR6QsSS8l0zaeXAqb7RZjG1KKTNNImUZcuxDoO0cU8vpEMjfStI7ToxVHBwu6xtBYgyoZqx2lMcQQyDlJEq9lbM5oTawtpHtnZwxDYMqPud5uq7OnJKcSw2oSUMnaqsgooK0SyqvlknGaGPseVcotYR4RnoupyKSUFb2Cru1wzkmVnzNt23J4eChcmO2OVbvAWsMQwo2leN3XKcl7MEAmyXig1pRbZkG/rPWzEYBS9tYouhKnsvH0o+a6FF4ctLxoW566widEPlWJCwxrDKMyRJQcRCntIQ+xFa3sysyNc1w9AV+/AHO/I+XCrA8uVZna95y1uWEbD1Wh6l/+y3/JgwcP+If/8B/RNs2+nzjDPjN5aiaHFFXYjSOfvzxnHQJvf/grHP/qr5HCQE6Bq5cv+Oj73+c//+n/ytXTz3HAQesQW4eMMYq28XjTcaw9Z9/8Ju+8+zYlBZ784If///be80vS677z+9zwhEpdHSdjZjADDBLBAEatAkXFlY5WXtvrlX3WPsfn+IX/Hv8Ha53js17tai1LVFolZkIkQREEkYEZADM9sVN1hSfd4Bf3PlXVjQGDREpjcX44jemuDlX1hHt/4Ru48d7bSFehEkWG58KpU6x1utzbGVGIBE+GTjWJVKSJIpEh47fG450BrRGa6AQXOiQTa9mva9g74J27d+lfu8r62jpXrlzh8uOXOHn6FDrV1HWFED5qGgARvCZjm/doJR82fTE/Ie0+LyIm5P01/3FU94MSoVUZwHpKLDb+xYDD41Ws7GMlDnLRHWiTTRHbiK1fgxdhw68tZdUwmRUUVRXahkHlJyRb1s3ne84GjIt0npdefoUvfPXrnDp1grOnNvEtFiYmtokIKoNeSKwUiCTlxIXLPNs0SKW5fvV1qskhcuncKQRehYXEEDjGLlJXBcyVD6UQGAHOtBLe4THlFe7IKCKmShFAKZWmcY6D0SHp7j69tS0Gw7W5wltvZcDK2hrPf/ObXN/eZmXQZ3U4YDDo0O3kpKlGqzQem7afFCV9RBhHeddawsqo0LbUlZonAO2VGTw0UhVwGaFd4XBVhqsqrGpwWLqDIUjJtKgYF1PGxZSNjTW0jlgOK7AiUCmtD7rytXVI9+BgWYSAbjfl8qUz/Nynn+UzH3uKzbUuu/v32L65TZLnnDvzCFon1NMpTVlgqpK6LDg8HCGEYDAYMFhbZbi+Tt7pMhlP2T/Y52B/n8PDEYejfQ4O9jHGkGQdwDPa38dZS5okNHWQVc6znKqqWFlZ4+TWCSbTcfDX0BqEY2NznWlR0FiomgqVaIwN59WZBmdskFzPJFkCqYJeljEc9OhkGd28S6/TRUmFThMSL6mVoGmasB42TejWhUlCEAFSivWtLaZOUN24yaSoIsdeRBlih4z3AlGgSApBp9sJksdSRPOgeL+aUKErodBS44whUQk4j7WOJAlyxhAG00JAlmYolWCq6KeBROsEjQUEWkIjXEhMpSBNFB4b6aihQHHWLZqQtJ06vwBe8eNNEH5gApAAjWhwEhIXXsShzqnyIbup4a1exnsduIfhnrcc4ql9uKkTwoIqfBQI8cENUHgbHwuLqhceJz3CvZ8atFzlL/T3W9z1fJUO8805K0BTVTWvvvo6//7f/y5Z1uHjzz1HlockwFqH0NHSVYj4ejxlNWXn3i32DnYRSqB1h8ZLfKpQmWZ9dZPV05exss/3vv5l7OFt8kzTl6C0QCeavJ8jkwF6ZY0nnn6K4eqA9269y1vbb6G0Q+kkgCFdw8lTJ7n8+GPcvP08RVGgU4H0wS1RZklYBBWxa+KwdZBqVbEVLX2wp7XO4L1gamvKasze6BY3br/NK2+e4pkPPcXTTz/NSuRu+zjOkUiUDPOslsYi2mRAhHPWjmCXRrFh4W0zWt9+7cmyjCzLEEJQluUDkwgIIBMLDf+Wj9xeO4LgUxG2GT8HAUpBcAUTHikDayQKQuO9ovFh5j8tSyazkqKo5tXA/Inn6UaoyNvRk7OGnb1d/urLX+LM+XP8xq99jkEnQzobN0Mi4iY600mJ8SCzLqcuPYmTGbWV3Lv2BmU5iYlwQBwLAC1oPBjhonBV3Pzb1nukegamgI0kn5DchHGQBBta7c4KvJMBJKgk3lqaqqScTJmNxtiNGgYhiUg6GefOP0J/ZcDLL7+MAIbDFVZXV1hfX2dtbchwZUBPp8FBVAoEgSrZvkYf+6JCCmw7khFhHIMXc7oltAth6Hwo74NLY5Jg05QmDfNyYw067aCMwUlFZWbB+Q6LVCmJDEIxzkbfAqXwSuESRdOaKDwAkWjJM09c4Gc/8WE+84lnObM5ZDLapZhV7I32Mc1blAcTup2c6XRCNRlTTseMDg+om4rNzXUGq310kjAZF9y+dY/D0QHj0SGT8SGzyYTR3h7FbApCkGU5WgqcNQxXBmRJQt3UCAJodTaZUfYr1jfX2Npc53B6gNAa6yoG/VOcO3eeO3f32RtXiCwhdcFiF2PQ3pIlkCtLIisyLVjpdRl0O3TSnF6nT5Z1AoJet0brAh80t/FNEEXzUR5bCEXVGGSS0Rmuog4m1HbCzIQqXuJJvQkJXWOD34dM6OSaXreD0oKmqaiaitpYrCNQZz1IqdEyxUtBmqRUTY0QJoiySYnOM4R31HUZgJFZTmF9FAqK+gUYFAIdr1PhPEpBlicIIl3YR2MiJZFxtBgKCTcvuvxikf6xra/fPwGIT9yWfE7CSAreHSRoetzMSt6WltvOMVIwlpLStYtkEFuw3iOsAWPmwD5n7Xze32rqt1X+Mrpxbim6JFrihDzyvdbIBBZVqIvADa01X/ziF0nTlG63w4c//GGECLaNgXHgcRELUBRTtrevc/36ezSmodPJqV0Tnk+AdgKtMobrWzz17MfZu3mDW2/uI2RAkSaJIs0yBsM1OoNNBief4MqHPsRofMjrb75OUxWsrvRDJdkYmrph0O/zS5/7HG+8fpXd3X2U9gjRQakFkj5JkmiuBDZ6t+MdSmmSxKO0iG1fcBgaE1pi02LE3sFdXnv9JV5++Ul+6XO/wuOPP4lAY01Qn8OLqLWgjhz3tjJrOyZtfNBymGUZv/Ebv8Gf//mf89577/19rsOfWLS64kK2rWZiFcn8ZnLez1HqSrSqcyDUYjYntUZ7SWUMxhoa4yjKivFkwmRa0DTBf335WpyDWOOsMiRaQWOiampefuUV/vPv/z6XLp3n2SefIFNRaTJOHCTMO1QiVriq0+H844+Tas3r3Zx3Xn2JyfiQDImWGukFygdHPukdrSy2jOIl7YgBdNjz46xStm+Y0C6VNsgE13UTXn8aDJOcswhnqcuC8cE+4/GIldUBUnZJkpQTW6d4+qlneeP1t7l1e5v9gxHZrZRev8twOGRzc4P1wQqr3R4rK306WaDrOtlKxAbQFC0l0BMpuAG4MIdyipDIehG6AMSZsE40SZ6hqxTKEgsY66NbY3B7K6uSuq6RvR5K6TCvjnr4UkpUEuiUD9J4K0sUzz5+ng8/cYkTq33qyT4H97Ypxwd0tacp9rn27hTnPGmW0TQ1xntmdYW1hklRcu+1N5gWBdNpgTGWlf4AiaCYFRyOxkynJVLq6AWQB68LIen1ewG75QJaflZU5N2K8WTMxok1Ll26yPWb71I1NQ5FmikubV6k21vh3uiQRGl6vS5VUVN6QaYVeaLppBolIEsVq6srrA5XGAz69Hv94NoZR0VKSbQXOBsoy95bcGC8CzLpgEGyP57w3q0d7uyPOShqSiuiRTWkLqzhuUxR1GRZymDQo5OlYUxh6jiyC927RCdYY0O3yQegXxhTeUxjqKoKYw25DprAWmvyPCdN01DFuyCnYK0P9tvGIXU3MHVkGJWsDAdkHYXdPcRGCWMXu13/WNfeD8UCaMEKVsC+ErzVV1jpuJko7lqYSMlMCgrhabwLrU5nsd7S4FHGIZydJwDW2qObvFu0SY8bHbRfB6pQbNnGhdYTkM1tJRd+yUUaUrhQjKn56le/wunTpxiurHD+wvnIYQ+gK4GnNA3vvvcuV69epW4q0jShaUycV4IiDYY+5NRG0+uv0x+uIjKN1h5hbNiQlSRNOww3TnDuyhPoXpftW7domhqtNKZuUDpoWjd1g1Y1H/7Qh/jcL/4Cf/AHf8hkMkYngk6ni0AE1KuFJE2IBRytprv3Fu8N0sa2tAiSrgDWNoGuiGQ2LXnhm99gtD/iv/nt/yEmAUkUVHLzTX4ZI7F8/H+Y8D4kW63AzINFAwx0ozDSiElA1DNoR9HCe9T8ZxfmNUrqKBXoMQhMnOMXZU1RFIwOxxRFNb+eXZwZAnNqYJvALh7zc9qZc44333yLL3zhi5ze3OTMya3gqdGaT82TgNAiRwUhEaUUp86fR6tQwb/98ktMx4dkDjQieGlYg2wapI1zdYit9DahkEidYF1M/sIzRsWz2HGyZt5VkwiwFtsY0HUAqtYVZTELXTkEeEGadnj00cc4feost27dxjQOa0qqumE8nrK3u08v6zDs91jfWGd9bZX19SH9Xoc00cH2WMZrEjdnAM0TNr/o9AmYG7m4tjqKH0IGSWMRO2TOgxfBGrqsamZFiR9GETMdzrMxZv7eG2PmLd4HIfIs47lnnuTs1hrYiiyRrHQzvE1QiUBlKYVTTCtDbRpqW2MleCmZzSp23nmXnZ2dMI/3sLG+QbfbwdSGoiixzqPTDgKBSlKSvENjPWVtcL5iNJ7S76+QdvrsjSbkZcUajqou2Vrb4Oy5c9y+cxulMwSOpik5cWKdSxcuMBsXJEqDckwcJEKRKh2YA1rSy3J6nQ5pkgSOfZbRGq4JxFx7o1Xwsz6A+7wQ0SnT45RgfzLj+p09dsYlNYpJ5SjrBmEtibd0lWAtV3Q7KXmWkSiJkmBsLKoEpDpw8peXMOfDiME5R1mWkeVA7I6G0bOUkjRN50ZHtWliLSDxqCgPHLqBwdNG0e/ndFEUVUl5UKMiBdtaQ4tQ+knHD7zC58chtoAnUnA1U0xcxb1U0ViNQ1EqT+Us1pnQ9rcObGj1uyhc4mK1b+Ny4304uHOVsHjzHRUEiX4A3iF9aKG2Me9OQKxO2gV4sYllWcZ0NuFP/uSP6fd7/M7v/A5nz55FJ8HExRrL9evXef311ymKIowJnECrhKyXYTEImYLO8aKDFzmd/jpbZx7h2lsZniAWkSQpUhicV3SGG8hen5v7exwW04AWrSvq0jJYGTDsr1BUFbOipCpLfvGzP88rL3+PF77zEnVdk2cdhA4Vi3PB29qKhdypd611a1jcpdZBAEapmD1avItApkRhDbz00ksomfHb/yrlySeeJcyxj9Ijl53bflQ0almW8wTvuHrXP2UIIdC61YGIvIX2y1btsL2G4kKDkDhEHJl46sZQNZaiNhRlxWxaMCsKptMyVFquBbbauW+F9zIqCvqIKI7iQypUuK0i5f7BAX/6p3/Gyc0NfuPXfpVT6xthsXQLjTApwLSAvTjjl1nO2tlHePqTkORdrr38Eoe3t9FNgzBBxa+dtzqpokBxpDzScpPbzdNhnMPY8BqNjXz6NrFLkpioW0xVUZoR+WAVb2uauooLoQIv0SrlzOlHuPLE03z3u9+jMTXegykNVdlQlYaJnrE/OuTWzi7dTof1tSEb62sMhyusr62yMuiRpoGpEcYScRYajyU+FiVS4LyMAk5hrbIejPfz8Yl1oYNgnAgVrE6p6pppUcQKksAI0BKLxxlLXdeYpkEnyT/WZfoDI00zTp0+g0wy0lzRFIc4naCyHI+hdg5LAPrOynHwRLEGY2oO9ve4fec2ZVGSdzusDocMVgY0xjCbFTTGYZxAJR2UUnT7PfrDIXVdI5KM0WTG/sGIsypjbW0dvT9if3TIYHXARr1GWVX0+wPWm4CFSbSiKMZo03Dx/CNMRjNuXN+mmhUkQoBOyJSmoxNW+l1WBhm9PKOTpXTzPABGZRDpaoGwkkBhtiIox1rvsQKcUjQYysZw92DE3b0xk8YxMw3jypJ1emxsreGrgr07t5iNx6ydX6XX7ZKmkRnkPVp4EgWJDKD3lnoYOP+hg1c0DWVR0lVBLt65kIw3TaAnCinJsgzTGIpZQVAl1Gjdoaoq6tpEdpALttt1QW8lZ221x3hiaJqQhETcLT6KGPwkh6k/MAEwBHVz4cFbgfGCexJmKMYsZnPWhY1JOUniBMJ6rAnVlSFSMYjyh7Ftv9zGd/7+b3RekS51CEIuskCht/ULrRRonC+axsSKW7C3v8sf/dEfsrG5zr/57/8Nw+EAay03b93m7beuMpnMyPMOWRpugsDfDO0wIVOStEdCl0R2yFPNmQuP0lvfpNzbpqcFMg1MAy9SSDoclDX7DogI7bTfxzcNaZpz+vQjNM5y7dpV7t27y5mzZ/jVX/tlXn/rbYqiIk1qut0EKcMGFDZ6F6t+8F4EECXxmDmLdpYkqh+CD+pzPji+OQtaS178zosMeutsrJ3m5MlTWB8Q4RBGDW3lflxn4YPOybJRS+sVsPz7D0IIQKtW7CjsHEHvPlaWciFiFBT/VMBVEFzmjHVU1jGrGmZFw3Q2oygK6qrBOhuQwnbRjWq7KnPjoKVjOUe/R+neVgzr+vZN/vhP/5wTW1v88i/8AiJJSIj4l/nvuYUvBiJsjHmHU5ceI+/2yfMOLz3/VUa3b0Ygo4jYGoIgSVsZR0eTwLYJMtdSKDyBCuZ8q7wWpFq11milMF4gnQPTUFWGyWiftZOngqU2BBCeCIv16uoazzz9Ib6w+Tdsb28H5LTwIVkyllprauOY1jUHkyl7oxHvbd9k0O+ztbXJ1sYm66t9hoMOnU7oDLQdm8AliImADeMvYqJqnQ8Ooj46vHmP8Y5UaoRIMA6yJLRsJ7OSSVEEJLc1yCTcO8Z76roOnY7Z7B/zUv2+sbN7wP/1+3/B+kqXz3z8Q8zGBxwe3mN1tYNOQGlP04xxrqEsZ/R7feqiCB9lQVNUdLOM4XCVwXAYklwbxj6zosQYR551ybIuOuswGK6ys7uLTjOMn1E1hllVcabfZzBcY/vmdW7eusX65jppJ6Mv+nR7/aiL4elkmslkClJw/sxppnv7jG7fRXlHqhV5ouikwU+i38no5hmr/T7dPIvnWs7N5bwPYyytRDAtU4o6rn9t+Vg1NaNxMO+Z1I5R7RBZj3MXLvGZT34KV874u298nbvXXsc46A5WyFOJbUqapkT6APzVSmKb0NFL0wznW+tpguqgCRv4ZDplUNU4Z3E2dLe1UnNTPOL9S6QMIxR1YzFNGDFUVc1sOqXbVawPB4xGNbPZJPhZ+IhNApY/+ycBATrZCsQF8I1AUQqJ1BkJoc3RKnEpB8oJlHHQOGxjAYsToeq3bWWxVB0uFsj3V4zvq0R9zBLmYIiYBLSjAudi6yjOjnQUYYgl3s1b23z+83/ElSuP88lPfJLRaMztW3epKkO3s4JOgue7dxJ8ihQdEpUE4RcfKGFSS4RIOHPxEs995ud48W//ima0g8oyEpmg8z5WpaF1lnfJtSKRko3IqRVCsXniJMZZDg5HuL0dDg4PePYjT/PR557lq1/5JlNVoFUeL0CLaRqQDiFckLNVYYOy1gQTpbhgt25Weu6PbsPA1wIOytmU57/+NZ547GlO/uqvz+mRyyMZWGzw7Rz7fiOC46Oa4489SKGi81+LpVh0iiPyX7YIRwlS4WWCd4JZVYeqv7LMqoZpWVGUNXVjAtffBMGfBX3HLm384bmPA1mdJYryhNa+x1PVNa+8+hp//Cd/xsVHLvDYo48Gf3QRhVMiRz+MMELnKrS0FVIpBptbPPHR57DG8L1vPc/B7Ruhja48vigxddAk0IJ558EbgyVotiNESNKdx0asTju6aN0fpQsaIEoIbF0x2t/lZDmLxy6+Lh/swJVUPPLIOS5efJQb16/TNI4k0ZCkGNPQWEPj7by1a62lbjRFWTE6nHDr9j1WBl3WVwesDkN3YGXQp5Nngc4Yx3y+BVfKcJ9b2/oCBK31cArCOVVpHgSDqpp+nlHVDYeTGSuDAbUxIRmSCqkVviZ0QaJ08oMQZdPwu//5T+lkmj/+6+cxjSFPJZcfPUOnq/nYRx+nowzYkjTJ0LqL8zOESOl0BiR6xHBlSK87wDlFXVuE0BxOZuzs79PtDuhnGZOywCnYMIbD0ShQkZvgSjmZTPDOs7W1xZ07t9jZO+D6jZt0ez16/QHOe9IkxxiL1gnrqzl7ezMwDae2Nji8t8P0cEymJb1Uk2tJKjz9PKPfCaZDWgaMlpAKlMIRMTEi4LbSNAHvMM5Q1k1Ipn2gw2rhsdWMYmqCEZQJzK2bN65z4fQpHr90meLeLTq9DidPn6OTKQ5HOxjbUFVlGBWkDktDJiRKZ5RVjVaKxlmaug4eB0JEWqKbfxhj0ElClmeUZYlSiqqqsaYOSYSW+NqGdSi2rExTM5tNWV/fYnNtjd3dKWXj55odtIn8chLwY44fDgNAS7wJGVehIbUeZUK70EWZVeccwjh8Y8CEFnRD8LFvPZddvHnDAC/WIp45iv9+MU8CopKZbwcwoTkYRgnxRCyQkou/1c5drXV8+9sv8Lu/+38ynRRsbZ1GkHD+/GWKWYkxds7ZVjJH+S6Z6KA0AVFsZtSAThSDtU0++fO/xnS6x/WXvopXYYPJekNE1qNwoJOUjcGQXEjW11fprwyxxpOkKR548plnKKop29vvMp6O+ewv/hxvvXmVvd0RVdWgdYYgtKCCsEdAii6kUWPiJATOWRoTxGK8StDyKK/dW4tWgt17t/nrv/6vPH7lca488dT8KB0XVmqjreqXk4CjJi0PdggJSarjLJmImF+8HxlxJWF0EvC6jZfUxjAtGsazirJqmJVVrPzrMOv3SyMs7+Kx9hFcuvT8PlyLQRbYz6dTzobEOJjlSA4Ox3z5K1/j0sXL/Ovf/ldcPHcmAhIFzpvw+tvKwMcPLTDCItOM4anTPPuZnyHv9/i7r3+ZO9vX8DJS2+wE0xi09WSSmEAEOpKP+uQOj/MhGRQQjYNAqrhEeAfWBREpaygmh9TljDxJ0KpV8QiALWsMvV6Pxx67xAvf+gYHo308WdBM12H01DQNxnuU0hghMFojCUIxk+mMnV3FdpbS6easrw5ZXR1y8sQmK4MenTwjSWT0NIgFgHMYa2mMxdj2PQmQiv5gjV43Z3w4Zvv6O6z0e8hEMxqPWRn05lVnJ8tRSpFlWaBKPkAYAO+hlmCN59V3biEjNez19+6Ag7/40kt0FAw6GT/7sx/i1ElHqgRFnZIPz3JGr2CbGqlTANI0Ye9gxN3dPTyQdXMab9i+fZOzZ05zsL/H3u5OxEUErQVvLWUx4+TJU5w8eYq3rl7jxvZthqvrpFmPLEsxjYHoI+G9JU8Vo51d8gTOndlkR3q8aejlmjxTdDJJJ9VkiQ7gUwR5lgXpYKC2bu7XoTQkWhM9hXDOUM9qvLOkwnN6Y5XNQc7hwV7k4BfcuXGN8e4dXh8M+Mxzz/HpTzzHahfWtk7TyxXWB8timaY0EVMgtCWxksm0CHghKZlNxlR1Pe82VVVFUcxwbg2tNWUVrkEp5Xzr0TrBWQKjLNFIZZEeUqHD2KZuKAtJWZT0OznDfgdzOMPGBD/8rXaNPdpR/HHFD2EGtJi1ezylMIyo6JgGTKhAG++pYwKgLCg8Tnhq6anbFn0L2iO8p+No//bfI2j0JRxA+Bpa9EXc3gJVLv4niJSteReA+e+ZaOxhreWLX/wik3HF//g7/zPPPPMh+v0VrHUcHIwoZhVVVYPzmFKEdqwSeBoaW1KWFkUHj6ffXeHspSvcu/4SvihI05zBcI2TZx+h1xlCZ8B6b0BXK9JuB6RCKJA6zFQ7/T5pLyXtaW7e2mbz9j3OXzjP7s5LzGYFWmVBLEMnod3sAo3SRHCi92J+HKxzuMbgnMQrj9BpmBfHDUlrhbUenUheeunv+PrzX+H8xUfpdLqB95sk75vbLwPY2vOxaGUvHnuQQxB1ACKx/2jlH/8FBKHNbWrHtKoYz2ompWFWGWZlEyr/qglofxc2w7bNF7T1g/JYe6O24ZZuWKmik2AEqSIEXoRRFd4zGk/4i7/8K7rdLv/tv/4tNtZX4w0aFhdFXFxiLoEP9DsnwXpFZ22dy88+Cxq++23N9WtvBQe/LA0y3N4hvZvbmbbdO+tsHK1FfIDWiKgIGDwPPHiLtw6FIEsUlbE0dUWWhS5S0xjSPIl3ncXahrPnznDqzEn2R7tU5RSXJiSJRkmB1zJqJLigkkhQaMSHtn5jHLX1FLVhPCm4dXeHGzdvsb4WcQLD0C7Os4Q0ioC1fgxNFGNqPds7nS6PPHKe8WjEzevvURQV3SxhOpuys7PD5sbafMyZJAlKK7TuxnP8gEScgbjoN+e8QEmB8R6wjCYV+86hRgVX/8tXwMNjl87QzVPOn1vnxOYaB6M9TqxqTq73cc4ym93FO0HWzVkZrjCeTBnPxji/xeRwxORwFMBtWqP6XaRQHB7sMRwMOLm1xc7uPo2puXnzLk3tuHjxAkKANTXEoqyYFGjp8Ri2NlbJhGd/5x6Zlgx6Gf1eRpqo4L/hbHQJDAVOaKxFTFdMXEObPnY5ncHUFb4ODq1nN9Z56uIjTMYFO5MKSR3ofabi7miXl4Xlox96ijPnLpH2+kxnI4raknX6oXsRW/7GVdHvxQbatjHMZrMw4k5UTMo9s1lBVZUMBn10qZg1TdAHSMM41dqQVHsRO2OJwjhPmmTUtcMZwMJ0PCFJod/LGU9LZk2LYxNzAO98pPBjju+bALRj0wjRwwmohWNqK6xpUDa0PI2zmLgJWRf01F1kADRxNi/inGRZ4x+WEoG23bHU9n9/ArBoQy9/zF+vEPPqhqWD5ePztKYjh4eHfOc7L/L4Y0/z9NPP0u8N8B4SnTMajTk8HNPUBpykKgzg0alCpWHKUJsKISW1Szh7/jK7Fy6z8+YbNCKhO9xg6/QjrA3XsToLrSTvCSykMELxbdLiQ9eg2+ly9swZ9u6NuHz5Mtfevs69ewdolSJklyzXSFrd+TaZChtYohJq24Az2Ni9EM4gvUR7FfilhJtHa0WWJezuHvKFv/lrnn7mI3zmM5+Jm4GPoMCFKuBcf/0+cTwReFAjgABVbP23NMC4mLSPeYlzAmMss6IOm39VM5k1zKqaqgkmH9baKGAVxk1z/IoLinT364q03w+fW5xowXgtHmBxrTfG8Mbbb/F7/+k/sXVqk8/+/L9gddAnaxUbfRhVtDr6YfM0Ef4S0Ozd1XWuPPsR0l4OacbNN18H51HOY5sG6z3K+7n6n/A+SOIScDzWOoR1C7lescTq8B6BCxuCsWANWZJgm4aimNHrDxASZsWU27dvsjLoc+nSo7z1xqtURYMRPlSuSs67BsYYcBEDJBxOBMMVVBKsW/EYG6Sxq6rmYHTI9s3b9PpdBr0uK72ctbVVBoMBWRpU6JwLG2RQawyAzq2tk5w+fY6822NazuiUCXmiuLu7F7ofqwFrk+fB5S1PU8QD1AEIEbI/KcI6AgJjDUrI4K0iExoXJuMCz8tvb4OHl968Tqo13jnOrA+4eGYNgafXFxjZpZv10Z0VpnuHqLRD3u1RVzN0nIlnWUKWZsymM+rpmHo6ot/pc/b0afZHY8qi4dbtXWZFw9mzp+h1UybjafA+a0qapojrsWB9fYDGoIXgxMYag0GfvJPR7XZCpV0UoQOrkwDkFKASHTAmMiD/A+Mqw1mLMQ1plTCZFei+4tmnH6fT7/Pym9e4tn2PadngmoaVQReqMa+8+C2K6R6f/vQn6WQ5TiaIJKd2YxwK76CpGsrazMXlJtMpdRMYXDoJbptSCKqyZDye0O91SXQSEusE+r0+Wu9QljMqC7UDIZNYhIWuVZJqwGBNoAxaa0i0oJNrKlPj4zrlQ+UdknP/42dX/WA3QKKHUdu+dA5R1KGiIBgFCS9R3oENPuKNXcxGALwLiMkA/guqZAEstVhA8QIhVFD1i2j0ZaOfZSrV/ahqy9LAou0oxNRlkXCEWarUkoPDfb745S/w7EeeZXVtlSzr0O13IlfaMZ3MAEHtKnwjyJSm2+uikyBOIRUgLMPBBh96/BN8407B9p27PCJ7yLxPplOMAC/ByyBgMT+onog+Fxjr8MLSzXMeOXOes2fOs7q6xt7eIXVToErQSR7asTKaxkTgU0iOIEUjnA9cZhsqutrVeK+DvL0PSm7EzFprzdWrV/mL//qnPPuhp+l0u0DkoOsIYIlHTCzJoS5v+scTsAcRAAjhJlKpnCczwgcQoIpyouF0pMwqw964YlzWTBvDeFoxiVajeIcwBuoaTEgI25GVRMzNRgL1VMwXuxAyqi22yYDFicAvbqs6EVtsHiiqijevvc1//L3fo9fN+dlPfhqddyJYT2AJwlnhj3qklxEbE0x+lNRk/XUee/LjZL1NXhl+nXde+S7m5k384SHSGqTz5EnoHBkcXgmsUljrqL3DGofzIoAnlaLxoToPTABPqhQreZcUQa4VqRIkWuKFYzqbsb19nd3dHfq9HhceOcegP6AuyiDgIoO/vNQepRWJVAF8aAPrwAmB1qGi96YO3G8CjKUmtFgLrZkcVuzqA/JcMuj3GK4O2dzYoNvrBcMWlYJoMK5kMg2I/6zTxauU2k45nFXIlT51ZTi8cZui9qyvrpFXhm5lGfS6dPL0H/Va/b7hwRsIjiqCsCqHa8C099xyYRX7UQCTwkDQZOVgustrN3YJEtlhcLOx3uGR2w3j0QEntzbxcoVEOQb9IUqAlpKN1RXuVVO8Lcl9RV/32Oh2cI1j10wZTQpu7x5wOCs4fWKVbibJExVMtqTD2gbb1CR5h431Ad20y6kTp+h1euhMkWRJaOtbi7Fxv3Ch0ymMxluFSALbSWhBqhQqTci7XZRKQlVtLf01yfrWBufPnuHtq9fZ2dnHWsvGxpAzp7eYFSVvvX2D57/yNT73L3+FzXMXePe9a5QiY1ZOsNMK2UTROgyzoqK2FpVohApqmFKH9XwymZDs7DDo5GSJJk8SisKQpylZnjMaz8J9G6nvSmt6WYe6bhBOBydXb4IzoZQkGvpdjbENjQ3sLougqoKLLvxTjACWI+YA2gdwknVB7UBECpR3QV+5ncUvOMXhZB5X9Wv/DcmAiD7ffg48W+4UtPSy5Y/5y7rfTNrHnXYpXExitFaYxvPOO1f5L//l91ldXeXZZz9Cvzeg080xdgACilmBsQ3WKxChLZqmCqTD+QaER6c5Zy8+xcU7B1y99SVu7h5SG8iCYOGc/RBmuG1a1wIYgyYAImwSa6urXLx4gZOnTvLuu9dpmgYpQSeQ52m7zsf2/4Ja1qLwA2NgCWQZwOKh+xHR7lJKkiRhMi558cUXee311/jYc8/hvUVrNRdRilp5R+r/H1TxP2ibfxsy+sqHqlbF1xmoRsZYZmXFaNYwmpVMygD8mxYlddPgncFbi2lMAMjFUVJ7jR4dZYl5J6sNQWCkhO/HUVWbI7SdNbvQC5AyVKwvvvgSf/zHf8r6YI1PfOQjEW8Q/6YAH42bfEy0W4huuMQVSd7jkfOXGeQpJ9bX+O63vsm7r79OeTgKm4MzSBxChAS8apqQjDoQUpNIiVKh2vE2dAxagxktNd00YdAf0Mlz+r0eab9HURTcvXObO3duU1UVeZ6zsbHByRMn2NsJGvKmaQIuNXLuW5GkRTHgaJoaaR1CaqRq5X/DvSRluO6NMEjpqWvPdFqwf3DI3t4hKysr846AR+GR7Ozs8sUvfon93Z2A87Ge6axEKUmvk3M4OuD6rTtMy5qVfp9Bvxs0Hx4gL4Cj4Y/9e/zx7/NbQgRqt/eY2oKA5t6E23ffQgvY2Sm4deOQy2e7dPOcpq7ZXOtS+A6NGgAGnw2pbFi7OkmGEgUSyWw642Bvj8SV9DPJoJsF90UfsWHW4pqKzmCFlcGAzkqX/mBImmVBDMq3c3QR9gTrApAZQIWOlffQ1A6hTexQgVSCTpKReI8VQamzl/c4vXmKoigxpiHvJKSpBClZW93k2y+9zPN/+7d88md/hrw/4NbtmwFv4AJzysvAWnHWkqUpUiU0Jlz/vTxHSsn4IIAk81SzvrISru14L6+srDCeziirgKkJVb7FC4nUiqYKXH+dJAgETVODUGSZpmMSZB0stI0NuK6AdftHHgHcNzzQmoVELqQ4tunPXcda5b+Ijj5C+zs+BmjbgEub2HEsQPv58pigfez4z4W/ywKUJaLZiAxVcJpIyrLgq1/5Ep08o/u/dXniiSdJ05xuJyNPE/bEPoeuITKK8d7E9m9gNwTaR0qyusnFpz/KxlvvcmtnRGU8uUrCnBeWjGgFrTxsKPoCYtqLAGbMOx0uXXqUJ5+8wquvvsbOvV2Uim1SUqRQwSHQNEdAe0H+WM27I00TfKe98wttd9d6vAdql1SS27dv8/WvfY1Lly/R6/WjAcvC9c8j7nsOHtSN/n4hhEeJYAoTzkdoCyM1BsFk1rA3nnEwLcP8Lbb/qroO59n7wLZo6sjhXVAl264TfDCI8ninpL3GmYNZw5xdxjGMtQ5vPDNX8YUvfJVMddgcrvPohXOhIpfhPbVPE7oaLbaBcH+K8HrSPGfrzDlWVnqcOHOWF//2b3n1O9/h7s1tpGuQyGj6YzFRnVMJFQBZKtA6JQS3QhFpgwRRpCTNWdvYpNPtI7WmMYb90SEHo4MwB00SjDWsrq5y+bHHePONN6LWukUuJavL+hPLjAnrGoRwSLe4rsNxXyoMvI0SyJqyqJhMCnZ39rjT63HyxAmGw1Wk0Exnh+zv7jCdjELnR0rKukBMoNPJ6fQG7O/vM5pM6WQ5KysDTm+dYHV1+BO6Kv8pw7/vSyFl2Gw97O5P2TuY8t7tUKhIYGOtT7+X0+sknD29RXPHsbEi6aseUgepaGc8idT0spw8SZkd7jO5t4PprzHo9lCJjOPiElb6iMTRyBo90HSyHt4G4zKiDXcLPGup3kGSOxSLTV1TVTXeBYMgqURQ2CMkN94JklzTTbq41RWcNSSppG4KrPc8/vglnFZ89dvfQnYSPvmpT7G7c5ft/X2ch8oYLI6mMuRZRqfXxxjL4WQCSPIkSM07a5mUFdeuXaM6cYJ+rxf2JiHodbtoranHJc4KbOPIkg5CaKqqwhpL1Ri8FnQ6GVK6ON4IuiVNWxT4UMQZ4/hJLLs/cgLgncc1BuuCyEi7SPpjH8tJgPdRAugDEgA4utkExH2otNrNbRmNDhxJAj5IsMazrBsQ272RsijxJFrMlQIvPXqJwaDPubPBUKPTyRgO+3gMTVMR2FNNMIJIw1w5zRKEUOBSVk6c4cpHnuO1N15jWhpW0HNDGWiv5zgTaFfv6FOPl3hCh+TEiS2eeeYZXnjh7zgcHYZjaBx13QQAldI4t6CgtMcj+FSLI7Kz4Ti1HYN24wliFUpVlGXBK6++zK1bt3jqqadojEUEtE08Zj7+/oM/6/+gEIBSzDE1AX+hqC1Mi5K90YT98ZRJUVOUDVXdMkFCZwsXKpdl/MryRnX8uv9BxypUsvHz+4Ap27GOMZ7JuOALX/gSj54/z+/82/+OzbVVlCDKGhOouTICC2F+H4YkLvznpEL3h5x97Al6K2tsnj7Hd7/9LYrJmLoqKYsJs8kEMysQsZPgo+6/VirolosGJaJKIsHPvNPvs7F1gqzTJUkz9sYTDg9GpGmG1oq6CvSxNE159NJlNrZOcPvmraDToZbuTb/QkjgaochwwFwPfZ4otNdz4FT7JGIompq6MkwmBbNpyebmjLXVFdIkpa5moSBwlk6ny2FTUtZNVLjrkfcG7OzuMZocMJoUWC8pzf9/Et1/SHgvcVEULBQMkqlpR4cwuTdG7U4Q3vPdN++gteLC6XVODVfodzXWwbj0dPprDNdO0u8m3BmNOdjfh6mkWXHknQSdS9CeclbQ9Lo0TYG1VRTbUcF/IhYgQqlo5iMjRVPgrUFIj8pTps2IopgSFLIDRTpNExKpEGggRfg0OJ4KENJSVYL9w0PAcOnSeW4f7PDmG2+wdeokV558itHBAdfu3UNaj21qnINBf4VBv8dsNqWcxRGqkMwaEyd4gslkyrg7IY1aKkJrhFR0uz0ORrP52Nfb0N1wxuNMoKw3juAAmxJou06Qaol1illlcHYJ3P4TEFj9kUcAEPiLoa3vIhhqsRAC88VxvmjepwPQxmLzDrNnYClxCD9nrY0CN8wXi+MLxn2ZA0vP4xc/GBYfEUB0SilGox3+7M8/z/r6Kv/yX/4GK4NVpIAs0wyHPepKYX2DwCKFIk00aapQKmzgXuXovuLxZ57FKI1BYr0M7my+NZ5p32PQZAuvo0WSh/mvVIKV4YBLlx7lscuXeefaexwcHGCMpSrr2OpXc8T+8W7J+5Mkx7wkJJwnRBgBpGlK3dS88847vPLKyzz11FPzKjRsIvLIFOV+uIsPwgM8UCHiNSZCH8d5SWk9B4czdvZHjMZTpnVDZSy2Cda93oZ+u7MWbyMv/tjo6shTiMV1216Xc+rqsWPV4jAWYkTL44DF8VQytK/v7u7x+T/7M848coZf/tzPBzATrdJFULlDtImuQOrwBwM1F5xQCK1oLExR9E+f5WOfXcHWVXhvpsFUFeO9Pbbfe48729uYIgLABEhrQSlSGa77xnhU1uXUmXOcf/QyvZVVrPOMx5MwV05TpMhIkjTopdcN589f4Omnn2F0MKKcFfNRSBveB/0B2kRGtNyWgBlyltjOu/91ZkxYGVupZSEEBwejyMNuOLExII3o7KooAnNBauq6ZDSeglRknS5pp6KoR0zKit2DMUJn/8CL7wGPeBiNdeAFLhYk3jNvJ1kE+GANLYDaGURjePXqLd7kFnmWhILDO86d3kSkJf3cIOWQJjOMHDSlJXWO1aRHIjyTSUWv29DLHfVhiU0r8ryPimPfRdIXEpBEKqRMME6Cd2RphuzDbDKODoElWkvSTJNlGiUzBCmCFK1TpBSU1YQiYiE6WQdvHOurKyQ3BF/+4pf4zd/6Lc5fvMR7716nKmY0ZkYiBf1+jyzVVEXQGdCJDBRrsegCpklgCjRNA0JgyjJcU1mKVpqGAGytypJMqPDzTRX3soh1i8x4ax2gSbWmqgPoWAhBkujAFvoxx4/cARDeBZUsArc8bO5HqyBgvvm3gI7jScJ9N4ulzaal9YSZYEPTNFRVyBa11vQi2Ge52/C+Kkws5th+vhiHC1v4drE2pInkvXfe5vN/+P9wYmuTz3z6Z0JWpjS9Tod+t0NjSowpyfKETp6gEwlYvBMY55BJwsaJ03ykGz2viQpQc7ldy9wdzivatNBHkxLvQ/snTTUnTm5x5crjfO97r7K/f0AT9d+dCxu+lGKuu9+CJZc3n+Xj1x73uQ69COcmy1JmpeDw8IBXXvkev/7rv06n240jk2ga4+Owwr9/4zvOxHggN38gvBcNIsE6QdFY9scF9/bHHI5nzMqGyplgGNNYvAkuY8T5o4vy1tbZOeaiPZ7HcSptonr8ceDI1yKOfGCRoy4fXiGiLagPKn6vvPkG/+E//yf6wx6f/bmfIfEidLCkjqVwez/F618KBNF8CMWsLNndG3F794CqakjyLmlvQCJlAEU6z/rJilOPXOLGtau88/qrVKM9lLNI75BKYtKErgdnQPVXufz4Ezxy4VFkmrN7OKZuAhVLSEWWZygdBLQKN6U3SPnkpz7Nnbv3eO21VzF1hVBy/sZFVFqj7da1swwX2qJCRjqra+Ezy9dcK1YVjFeWZ6VNU4M3SF+wOhwEHIMPo0apNI0N9LSyMWQ9ycrqKlXThFn2ZIZIxj+2q/CBiWV8avx60SNdxlC59ptLv7j4rAEaJEUZrHgADq7e4rV3b5EIyfqwhzOGUxsD5LRikMOVjS3WejmzcsatW4d00w2K1LMvxmxu5WR5HqV16zAe8h4R5alVloBK4j5gyLMOGxtb3LmzjXNh46yqmjTL6HQ6aNVBqRylEqqyxJVhlJelCV46DnbvsH/vDqv9Pm+9t81f/eXf8Nlf/CzPPvdJ/u7b32IyOQyaFSJorJimCuwqoQEbE/jQre5kCXmng1SKqiypo52yUjqss5NxuEcR4C1ZmmEbhW1sdB31NJVDKBvHk+Ge6OQ5SBtGktVPxl/lBycAbe88hnexje4d3lhcFGNcntnDQpgn+Bsfbf0vV6uw6AK0l9+yqUy7ubXypE3TkGXZfKM3xhzZ9I+MBnzbCl1sYAtNgqhboBRaS7yDd9+7xpe//AXOnTvL5Ucv43WGkpo0S+n1chpTAQatRQBP2ZbnHZIgnWpW19ZiNRM3+3k/PZjzBEJrdHH3iw6AiNWg1pK11SFXrlzhiSeusL19k8lkEiRUK0OWLzohrfxuewyWVfva+fS89d++Z+8QyPkGVtcVV69e5fbtWzz2+BWaWImFc+iD5bA4mgAcr/yPd3UepPBIrMiwFsazmoPxjJ2DCYeTkrJqaFyA2DjjcLUNPuCtpG/Er9j5COBognn8moel6+wDOgB+Xr23Xy/93/u52JWWCuMarDOYsuYb33qB02dOcfbsaR67cBEtQqMT3+IB2nkp8fkCrqAsK3b3Drh9d4dZ3ZAkOUmeBWxD7OBJJRB5Qj/vcRbF5GDEnWKGaiqkqUEpMq1JXFBtS1dXOXf+AjrrsD+eMjoco1TQQZBSoVRCkmRonaCEoixLzpw7x0efe46bN2+xt3dvfr+3bf12dDE/ht7HTSiCG0UQIWsTnnbWGhIJEbcwMb/d8MFDY3zYcMeXJEocOW9JkqFUSWMMVR2cHPv9PlVVUVUVZVVxMPpnmAAcjzA7OpqBLn9r6V9/7HPmlOFwTpz0NM5Te8ts9xApYHdWgvV0EsH2vmHYyXjywgkGWUJyd0ZvmKNsysxIhNfkOkN4SaodVVkSwM6BNSOlQghDVTVI4Rn0hxyOR9hxKDCbxlE1ho5zJJkmSXI8UBvDrCxxCJIkYXdnh+1rb1NPxnSSLlura1y79g7fXd/k05/5Ge7t7nP39k20c1TWkKg4ohUG6y21qTHOIpUkTRPyLIACd3d3aVoPCaUxLgDOhQDrDDpJkcKhpA8MDB9svL3zUSE0jD+8Cy6tSmiyJKGqZkEN9icQf08MQBMXK4cX7oiwT/uxvHmH1vPR6v/4wihjNt9uKsvV/fH5axo175eTiuXq98jfbjfA+eMtEtvP1bSCXLOmqUu+/rWvcHJri+5v/TYnts4gvApa/jolUUloswZjBIiVGLjg4d7Or2IVGOb9i0U/lkjgI6oZGdmBIkhfEjaNPM+4/NhlPvaxj/HGG2/x6quv0TQm4A68Qko133za49Eep/Z4zj+P93VgZFjatjMo0jShKEpu3b7J1atv8/iVx+M8balDwWLBXaZkLh/n5e7LAxdCUDaSw/GU3YMRo3HBpKhDe80taHu+dvjGI0yQw3E+jAHms/RjM+vjWJb7dUHu1+26r65CSx1c8hGwrgElYh4pmVUlX/zyVxh0e/y7f/tveeqxx0JV0Xa1vI/UwKDpD57aNty+dZvt7VsUVYVMFU5KGhetjwmmVyJq+Ftn6QzXWFnbYOfGdaQ1AQdgJVZJsjQlzfusnTrF6vomRVVTlHUEDAb3TamC6Ekn75AkCVqHcZOSkqeeeoq33nyTF14YYZo6dFK+X+eoPabtteXbitRHeWSHl1H0yy/ud+bJRCgcDg+DcdlwOMT7wOvu9rp0+wN293Ypq4a6aVhZ6TMcrjCbzdivD5jOfgoSgDaWJ6rtzHrpS+7zOWKhDxH+jatcS8kWkio0i2lKx/TmARK4tr2D9JJHzpzglVtTup2UZ56+wpXHHmV9VbOxOsQ1FaQaZxvyuKF6G827lGI6ndHUkvXVTXAwm01CIleUqLQE2cH6mro2HE5nGAcqyxiP9njr9dfYu3uXNO1Ft0DPoDvgpe++TNYZcPnxJ7l96zp7d7cxzlI2DahIkRaBZu3wqCQhyzVNVXGwH+iGpmnQzuEjuDtJVLCbdkAEkksF3V6GtxJvm2Dz7sFHHYLgygnWB5OmQP8Xx4/+jyV+pASgBRqZxsQ2aGyp0TIA/HyTbY1LWs3uFjBxHLS3QPhGqd9jY4DwlC1QSMzbKm07XIiFBkD4vcXfdFGbgLkmweLvt7Ph8DeDX7p3cHCwz1e/+mU2Nzf51V/5TTqdAfgwZ1Q6CHDMbWVVsHck+lOH5w5UlXCuZJxlxjFAC/ojfurn9xoQnAkDCAa2Tmzx1NNP8fiVK7zzzrsUZYlzUFVN1G8Pm5TwsdmAiGCaVjI5VE8LyeD2Po2gEuGjU+KU6XTCG2++zs9/9hdwroUriAiYVIuFIJ6HNhFbdBke0M2f0Ba+tzfmYHTIaDxlVjbUjcW3VFYT2Cy2aXC1Q0Wqpo/Kiw6LbWl2ctHaX+5m3Q8fsXw83jc+CRdf+82j3xGhevcu0OSUUtS2QQrJ3bs7/NHn/4RO2uF//Xf/jvNnTqDiBukIlQRS4gU0pmF3Z5cbN24wHc9QaYJA4qyj9g1aBHqdFUTBHUEiBDrNyHo9RKKRVpOQIr3FmoZUSESec+r0WdIsp3CeJEtRWQoytFidDIYoWZajVOCsa60RCE6ehI9/4pPcuXuHd9+5GgCB8ZqUUkYacbiRpJShExOPnz+uyiciriYCBEMOFNeWyPYJ97ujqQ0HB6NgNTx3b/PoNEXphLoxFLMpdtif+8RPp7OgCPowYtynH3D8uvY+1Dcsydj6uEYgMISW935lkcKx/+5NXry2jRZw8vlvsz4csrW5zmc+8RESAb/yi/+ClV6fOorNCRdcAFs+fl3XqE7GyROnuHnrJtNiQl0bZkUJTFGFxTSOsqpACIqi5I033+Te3TtkSULtHE05QzjL1toGu+Mpf/fCizgv+dS/+Fle/s43MLZA6OARobQK3uLSIxSkMqGpLePDMf1uTifLmFpLU9UIqVBJSppo8jyhqBpa9o4UPozJRIqpCurGoJygqmOhG/eIsL7E9egndFZ/KCngI58KSdFYtJJhXhoEymnVydoNwjmPtR5jYrUdO/6LDWlRSc1nfmLRZHI+up4R6B9SyeC0pCRz0xWxvH0udvZ2ExYiADYkQT4X2iQ18InDCWkh4nGTFp5r77zNX/31n/PEE0+wsbkBMnBUZbyYMW2LVcXRmZsfg1CNHL9ZgtJcWKjaRMTgfI2J1MLQQYjqV4DUmkcuXuSZD3+Y5//2BYr6Ho6Usq5RabBp9YTXI2NHoX3O1knbCYXzmrlDXTg6oWfhg2mK0gmTyYz33nuP27dusbGxEQGYhMpQhdd/PI4j2JummSsttuf3QYi6MWzfO6AoCqq6wRiLPZKkxvm+tzgZ5vyN9/MEIMz+CZcniyS4/RAwF2Bp1fpaF7O2crXWzpksy0elpRTeL6kKSUBQ+pMOhPBYYbl3d5f/+hd/xaOPXuI3f+1zrA27OOxc6tjjsA529/d5b3ubaVGikhSdpCgVNmKJDLK7IiYiApQMcsYqyelsbJKvb1HcroJ3u9bBpMUo0CmDrQ2qROK0ppvkYUMVjkRkwQhGBAvfTp7jnafG0OkPMAiuPP0hrt/cZmfnHpPD8byLoRQt23n+PtrNXwgRxVcW2iIhxFySed4tECBRkWoR1QBxVLXlcDKj1+/jkBRlzWClT7fbZXw4ZjKZMJ0NGAwGdDpdut0epvFA+ZO+RP/x4wfdmvf9/vEH/fse8sQmI7E7A7QCaC3oc86A8QsYqPFw/d4eN+7tId5+hy+/8CKJkvzen3+BXien18353/+X/4musAwHXTqpxvsEJQVF0ZANe5w6cYrtW9tUTYktagozRqoyGDzhmU6nvP32W9y4cRObhmu6ntZURUlH9TAehnmfyeSAr33lm/zyr/4CH/34z/Ha975NWY9A5yR9qMoS6Q0Sw3RSUtehi9jrr4RbqSxxtsaZmizROOPpJBkTWVHVDq0DpVwJhZYgdCjIFJKidpQmmtdZGzR2lGqJYsdVxn8s8SOPAKz3zIqSJEkIi6jFH3ll7aIXZjcB1ejAtpS90A1wPur5y8VjLG0qECt5YkbpwTuLMDYKRsRFPI4iFiHmm/pyNXZ8Q7LWY4VHCEuwSGVu6yil5OVXXubzn/9DiqJifX0day15ni+e5UcGv0Xgl2j14g3OG5xr8ETFK9G2pIOUqbOeRHfo9laot+9gTInSAkSD1kuL4LEro6oaptMi3qNL7/1osYl3i1HN88+/QFH8H6yvbUQp5fge0cD3f49SSu7cucO9e/fmx/tBCWMdh5MisiWCZWy7KS+olKFyET603dx843eREdAuYH7RjhaLZn6bts43LJj/3PfrjhzHUiw/7ttWtg8jCRl/xjnH1Xff5ff/4A9Q0vGvfvPXglS0DIqE3sPewQE3tm+xv38IQkZaUqBTtTTRZdqo1pJEMU/8+htbPPL4E9z1luLmezReYB3UtWG11yPr9/FakfU6JEmHpDY03iCUwJRNYOkISaITdBKUQbXS5F1YWfNcvnKFN15/nTdeew1vIpXPEWiN36faCQWIOPrIQjN18dD7diZBYxyzokTpBATUTUPT2EBbTEqqumQ6nbKyMiRNM7qdHk3tgJ+SMcAPfcv+cD+4uObv//PHxwpziJv3NI2BBl5++10g0E+/8cJL5Dg+9YmPcXJjHVNX/NynPkonlTxy5iSb66v0Vk/CeCe4nAKpVkHHfzLhnXfe4b1r19A6CV0h24BtyKUnyxUiyRhXnkmqmO6M+Ju//CK/+muf49HLT3HtrZcoTUOnG9gjVVlhmoZyVlBUsLW1walTpxmNDiiLWQCtVw2JqhEEr4pOnmJnRfQ7CE6TQnnwFik83U5KQ0JhSrxV1PUMJYOj7VxF9ycQP3ICUJblnKMP7f241O6EsPjFL8Ji+f3/Zrv5Hd9LvRdHfmbx+PHfP/rAvBux9Jo+6Hfe/5zhscPDgv/wf/9HPv/5P5sDFo8b4/xo0f68iwVLO19vkc/vf41SCKqqZmdnL1hMShWlfRdI/fuFs25OjfphQkq4cf022zduzxWLj6J9fsA7W6r6lxkID0K0VMnl19Zu/m0FPm/r07b2j7bvF7S1oxv68db//T7an1sGaR6/6I6PxTyEdjjvBx0C1HXN9773Mr084+KF8zz33EdojEeooKW+s7NHMStJkzxU/WKhpaGUmmNoFoDRQEF1hGOT9wacvXAJOZvyzs496nKGFQpr6ziCy0jSJKK2U6yQCCvDnNS1OJGFJoUQIKQgyzJ63nHy5ElOnDjJW2++OWc7hLfejqxCItOODZePbzxgzA/UfcYvx64AWhJ10zSUZUmWpViIOgWaPM+pZlU0dwnc66AF0vmhrrGH8eOP4+DikuAr8xdf+9ZcnOqr3/keiZJcuniOs6dP8+Sl03ziqfMYHFmaYAUczsbcunWb3Z1dOt0uQnhSJ2iqksZMWclTNjdXMCQUN++R2DHrHUElPC9845t85jPPce7sBba3LcLVQdbY1YFxIqCTa86ePsHG+irFbEIra183FjcpyVKBUilaB9q4Voqqqkh0jpdhrRYyuBx2coVSDXVtqWtLohU6YWmk/OOPv5fbRfMDEImLNU4c2dg+aMv0nmgT/Pd5NT++aAsJEV/TXr3P/t6Ilmp39Gd/tFb3B+YLS9gOf2zTnXc/4jzNRqvN5aRqfnyPVffve7r7PH/wnQ6/r2Qwg5nHj3DBtbS4B2njb+P4Jry8qCyDTOdMifts4MsJwDIG4PjmtAwMXP79Iz4VUobW3tL46zi4sLXkXX4PR2mEQXzk+ee/wamTpzh1+hwnT2xQFxW7uwfUlWPQXwXa52158mKpA5DEhDa+R+Gj3rlDqJSOTnDnL3LnnavsHx6ASsg6kixL6ff7pL0+Ms+wNqKzXZCVTdN0DkBt6aphnBHwDJ28w/raBmfPnmXQHzDa2wcfUM8yqnSGc7EAV86PZdt5OXIzLYmA3e/7sbhobcjrqkLpIHBUVRVJEnQ1fJozOpjQ741YW9sgcK+Tf9C19zD+/tGKmbWaJ411eK2xPgyKBIJr93YBwbV7+3j3Xbqp5uwwwzbwkWcu8cu/9LPs3L1NXUxQsoNIc5q6COMHZ5FoVvp9hv2cg9EU0UzJRIXupQzPXmBndMi3v/l3fOKTH+X0qYvcuX0jovl7CFEhZcXm+pATW+v0uhndTgcpdNAsaAxFUeE6ik5nwXhDCOra0KQNWiqUkiglg7phKbGNoSwbnIW8l3Hi9CnK23eZVA8KC+CH2PAWGf0/fSv4fpX1B4VvkXktJoHFbPaDKv77Pf79j9HxlkM7WfaRFrj0rfi/hQKUjHW/ZY4i5D5v0Idb5Mjxv89LWrTdgsnM8vtZvIf3d2aOx/IGtQzIfFDivvLU8aOll0IcpjgX7HGjLrhvBa/EogPQxvuShGMb+vHj4L1H+DC2Ot41OZIAOIu+z99f7kBZaxnPSr78tW/w6OXH+eVf/kWUAlMbVlfXSVSKMY66qWma+kgCG9h/Pi4+gfFhnAngI6VAhOcabp5keOIUuze3MWWFkGGzTJMkSk+rqFQWKnyEn1N4l30ntNY0TXBXy7Rmc3OLxx9/ghdPf4fJaBzkj10k+be57dKIJR6A+adHOy9Hr/OjqcHxC8HTGIOqK4RoBccC2DKMKDXb23e4fXs3CEI9YMnsT1O060nTNHNsR0s5FwFtjXUB01RaEELSlDXTskIJeOdL3+HzX/4Oeao5f3Yr4FhEECvK8Gys5HSHOf31FUSSYv0EnSgG/S5pb4X1rQ02t07w5ltv8s2//Taf+NRznHvkMV577SWmxQTjBCv9Hie3Nljpd+l2OnTznG7eoa4sTRN8KlJtyfPWLE1Q18HfpaoqtEzoDroIAZNZxWwW1qPgPyBZHfYZDAaU167/hDgAf88OwI8eP2q7/B8ay4v0B/3MB5fkbTtyUVj8ww/94k8s/62F+uEcI3C8lD/yb7shLB5vX+v944c97ssL6vHH/Pc5hu+PB60DAMyr6gUt1R/5HJhX3fOOQIs6bzd2QpdqeaM+/hyw2JyOG1nNk0gh5m6Vy7/bJk5t9exsqHTuF+F1h8XvnXdv8P/+0R+TpAmf+PhHWVsd0s175GngJk+nU2blbN61Oy5fLGWwPJXRXjaajuEQ5P0+5y5c5N5773BvPA7Ji3M471mqacLvSxkAwbQjDTkfpSilopFKSDj6vT4XLlzgypUnuLN9k8P9gwjMDG85jPWD6pv3EePTzuZY6r6I9y+L7zsvzrWZHRAwHVVVIYDSFkwPx+1pDsl2e94erBz2py6Oe8WEx0KZ4oWfA2/naqrxo0ZGgKFDeigqw+jqLQSQSMFr796jKwWn1gd0E8WnPnKJc6c0s9ripKLTX6EzGJIlmkfPP8rJkyf5yy98gVdfe4tPfurjrK6d4O7dOzR1w4mT66z0u+RpgpateJenruv5fWzdwvCqvce1loFKTtvdjeuRCUWHQLC2usLFixeRWYeqbH5il6P4fpubEOIe8O5P6Lkfxj//uOC93/qnfAEPr+GH8Q+Mf/JrGB5exw/jHxz3vY6/bwLwMB7Gw3gYD+NhPIx/nvF+gvfDeBgP42E8jIfxMP7Zx8ME4GE8jIfxMB7Gw/gpjIcJwMN4GA/jYTyMh/FTGA8TgIfxMB7Gw3gYD+OnMB4mAA/jYTyMh/EwHsZPYfx/RWW5jZ7u5DoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def visualize(anchor, positive, negative):\n", - " \"\"\"Visualize a few triplets from the supplied batches.\"\"\"\n", - "\n", - " def show(ax, image):\n", - " ax.imshow(image)\n", - " ax.get_xaxis().set_visible(False)\n", - " ax.get_yaxis().set_visible(False)\n", - "\n", - " fig = plt.figure(figsize=(9, 9))\n", - "\n", - " axs = fig.subplots(3, 3)\n", - " for i in range(3):\n", - " show(axs[i, 0], anchor[i])\n", - " show(axs[i, 1], positive[i])\n", - " show(axs[i, 2], negative[i])\n", - "\n", - "\n", - "visualize(*list(train_dataset.take(1).as_numpy_iterator())[0])" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "base_cnn = resnet.ResNet50(\n", - " weights=\"imagenet\", input_shape=target_shape + (3,), include_top=False\n", - ")\n", - "\n", - "flatten = layers.Flatten()(base_cnn.output)\n", - "dense1 = layers.Dense(512, activation=\"relu\")(flatten)\n", - "dense1 = layers.BatchNormalization()(dense1)\n", - "dense2 = layers.Dense(256, activation=\"relu\")(dense1)\n", - "dense2 = layers.BatchNormalization()(dense2)\n", - "output = layers.Dense(256)(dense2)\n", - "\n", - "embedding = Model(base_cnn.input, output, name=\"Embedding\")\n", - "\n", - "trainable = False\n", - "for layer in base_cnn.layers:\n", - " if layer.name == \"conv5_block1_out\":\n", - " trainable = True\n", - " layer.trainable = trainable\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "class DistanceLayer(layers.Layer):\n", - " \"\"\"\n", - " This layer is responsible for computing the distance between the anchor\n", - " embedding and the positive embedding, and the anchor embedding and the\n", - " negative embedding.\n", - " \"\"\"\n", - "\n", - " def __init__(self, **kwargs):\n", - " super().__init__(**kwargs)\n", - "\n", - " def call(self, anchor, positive, negative):\n", - " ap_distance = tf.reduce_sum(tf.square(anchor - positive), -1)\n", - " an_distance = tf.reduce_sum(tf.square(anchor - negative), -1)\n", - " return (ap_distance, an_distance)\n", - "\n", - "\n", - "anchor_input = layers.Input(name=\"anchor\", shape=target_shape + (3,))\n", - "positive_input = layers.Input(name=\"positive\", shape=target_shape + (3,))\n", - "negative_input = layers.Input(name=\"negative\", shape=target_shape + (3,))\n", - "\n", - "distances = DistanceLayer()(\n", - " embedding(resnet.preprocess_input(anchor_input)),\n", - " embedding(resnet.preprocess_input(positive_input)),\n", - " embedding(resnet.preprocess_input(negative_input)),\n", - ")\n", - "\n", - "siamese_network = Model(\n", - " inputs=[anchor_input, positive_input, negative_input], outputs=distances\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "class SiameseModel(Model):\n", - " \"\"\"The Siamese Network model with a custom training and testing loops.\n", - "\n", - " Computes the triplet loss using the three embeddings produced by the\n", - " Siamese Network.\n", - "\n", - " The triplet loss is defined as:\n", - " L(A, P, N) = max(‖f(A) - f(P)‖² - ‖f(A) - f(N)‖² + margin, 0)\n", - " \"\"\"\n", - "\n", - " def __init__(self, siamese_network, margin=0.5):\n", - " super().__init__()\n", - " self.siamese_network = siamese_network\n", - " self.margin = margin\n", - " self.loss_tracker = metrics.Mean(name=\"loss\")\n", - "\n", - " def call(self, inputs):\n", - " return self.siamese_network(inputs)\n", - "\n", - " def train_step(self, data):\n", - " # GradientTape is a context manager that records every operation that\n", - " # you do inside. We are using it here to compute the loss so we can get\n", - " # the gradients and apply them using the optimizer specified in\n", - " # `compile()`.\n", - " with tf.GradientTape() as tape:\n", - " loss = self._compute_loss(data)\n", - "\n", - " # Storing the gradients of the loss function with respect to the\n", - " # weights/parameters.\n", - " gradients = tape.gradient(loss, self.siamese_network.trainable_weights)\n", - "\n", - " # Applying the gradients on the model using the specified optimizer\n", - " self.optimizer.apply_gradients(\n", - " zip(gradients, self.siamese_network.trainable_weights)\n", - " )\n", - "\n", - " # Let's update and return the training loss metric.\n", - " self.loss_tracker.update_state(loss)\n", - " return {\"loss\": self.loss_tracker.result()}\n", - "\n", - " def test_step(self, data):\n", - " loss = self._compute_loss(data)\n", - "\n", - " # Let's update and return the loss metric.\n", - " self.loss_tracker.update_state(loss)\n", - " return {\"loss\": self.loss_tracker.result()}\n", - "\n", - " def _compute_loss(self, data):\n", - " # The output of the network is a tuple containing the distances\n", - " # between the anchor and the positive example, and the anchor and\n", - " # the negative example.\n", - " ap_distance, an_distance = self.siamese_network(data)\n", - "\n", - " # Computing the Triplet Loss by subtracting both distances and\n", - " # making sure we don't get a negative value.\n", - " loss = ap_distance - an_distance\n", - " loss = tf.maximum(loss + self.margin, 0.0)\n", - " return loss\n", - "\n", - " @property\n", - " def metrics(self):\n", - " # We need to list our metrics here so the `reset_states()` can be\n", - " # called automatically.\n", - " return [self.loss_tracker]\n" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/7\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-11-27 17:41:10.841757: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype string and shape [100]\n", - "\t [[{{node Placeholder/_4}}]]\n", - "2023-11-27 17:41:10.842104: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_4' with dtype string and shape [100]\n", - "\t [[{{node Placeholder/_4}}]]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5/5 [==============================] - ETA: 0s - loss: 0.8211WARNING:tensorflow:`evaluate()` received a value for `sample_weight`, but `weighted_metrics` were not provided. Did you mean to pass metrics to `weighted_metrics` in `compile()`? If this is intentional you can pass `weighted_metrics=[]` to `compile()` in order to silence this warning.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-11-27 17:41:37.711790: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [100]\n", - "\t [[{{node Placeholder/_0}}]]\n", - "2023-11-27 17:41:37.712123: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): INVALID_ARGUMENT: You must feed a value for placeholder tensor 'Placeholder/_0' with dtype string and shape [100]\n", - "\t [[{{node Placeholder/_0}}]]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5/5 [==============================] - 31s 5s/step - loss: 0.8211 - val_loss: 0.5278\n", - "Epoch 2/7\n", - "5/5 [==============================] - ETA: 0s - loss: 0.4452WARNING:tensorflow:`evaluate()` received a value for `sample_weight`, but `weighted_metrics` were not provided. Did you mean to pass metrics to `weighted_metrics` in `compile()`? If this is intentional you can pass `weighted_metrics=[]` to `compile()` in order to silence this warning.\n", - "5/5 [==============================] - 25s 5s/step - loss: 0.4452 - val_loss: 0.0790\n", - "Epoch 3/7\n", - "5/5 [==============================] - ETA: 0s - loss: 0.1798WARNING:tensorflow:`evaluate()` received a value for `sample_weight`, but `weighted_metrics` were not provided. Did you mean to pass metrics to `weighted_metrics` in `compile()`? If this is intentional you can pass `weighted_metrics=[]` to `compile()` in order to silence this warning.\n", - "5/5 [==============================] - 26s 6s/step - loss: 0.1798 - val_loss: 0.0315\n", - "Epoch 4/7\n", - "5/5 [==============================] - ETA: 0s - loss: 0.1286WARNING:tensorflow:`evaluate()` received a value for `sample_weight`, but `weighted_metrics` were not provided. Did you mean to pass metrics to `weighted_metrics` in `compile()`? If this is intentional you can pass `weighted_metrics=[]` to `compile()` in order to silence this warning.\n", - "5/5 [==============================] - 26s 5s/step - loss: 0.1286 - val_loss: 0.0452\n", - "Epoch 5/7\n", - "5/5 [==============================] - ETA: 0s - loss: 0.0432 WARNING:tensorflow:`evaluate()` received a value for `sample_weight`, but `weighted_metrics` were not provided. Did you mean to pass metrics to `weighted_metrics` in `compile()`? If this is intentional you can pass `weighted_metrics=[]` to `compile()` in order to silence this warning.\n", - "5/5 [==============================] - 25s 5s/step - loss: 0.0432 - val_loss: 0.0250\n", - "Epoch 6/7\n", - "5/5 [==============================] - ETA: 0s - loss: 0.0197WARNING:tensorflow:`evaluate()` received a value for `sample_weight`, but `weighted_metrics` were not provided. Did you mean to pass metrics to `weighted_metrics` in `compile()`? If this is intentional you can pass `weighted_metrics=[]` to `compile()` in order to silence this warning.\n", - "5/5 [==============================] - 24s 5s/step - loss: 0.0197 - val_loss: 0.0368\n", - "Epoch 7/7\n", - "5/5 [==============================] - ETA: 0s - loss: 0.0425 WARNING:tensorflow:`evaluate()` received a value for `sample_weight`, but `weighted_metrics` were not provided. Did you mean to pass metrics to `weighted_metrics` in `compile()`? If this is intentional you can pass `weighted_metrics=[]` to `compile()` in order to silence this warning.\n", - "5/5 [==============================] - 24s 5s/step - loss: 0.0425 - val_loss: 0.0000e+00\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Training\n", - "\n", - "siamese_model = SiameseModel(siamese_network)\n", - "siamese_model.compile(optimizer=optimizers.Adam(0.0001)) #0..0001\n", - "siamese_model.fit(train_dataset, epochs=7, validation_data=val_dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n" - ] - } - ], - "source": [ - "embedding.save(\"siamese_feature.h5\")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model: \"Embedding\"\n", - "__________________________________________________________________________________________________\n", - " Layer (type) Output Shape Param # Connected to \n", - "==================================================================================================\n", - " input_1 (InputLayer) [(None, 200, 200, 3 0 [] \n", - " )] \n", - " \n", - " conv1_pad (ZeroPadding2D) (None, 206, 206, 3) 0 ['input_1[0][0]'] \n", - " \n", - " conv1_conv (Conv2D) (None, 100, 100, 64 9472 ['conv1_pad[0][0]'] \n", - " ) \n", - " \n", - " conv1_bn (BatchNormalization) (None, 100, 100, 64 256 ['conv1_conv[0][0]'] \n", - " ) \n", - " \n", - " conv1_relu (Activation) (None, 100, 100, 64 0 ['conv1_bn[0][0]'] \n", - " ) \n", - " \n", - " pool1_pad (ZeroPadding2D) (None, 102, 102, 64 0 ['conv1_relu[0][0]'] \n", - " ) \n", - " \n", - " pool1_pool (MaxPooling2D) (None, 50, 50, 64) 0 ['pool1_pad[0][0]'] \n", - " \n", - " conv2_block1_1_conv (Conv2D) (None, 50, 50, 64) 4160 ['pool1_pool[0][0]'] \n", - " \n", - " conv2_block1_1_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_1_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block1_2_conv (Conv2D) (None, 50, 50, 64) 36928 ['conv2_block1_1_relu[0][0]'] \n", - " \n", - " conv2_block1_2_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_2_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block1_0_conv (Conv2D) (None, 50, 50, 256) 16640 ['pool1_pool[0][0]'] \n", - " \n", - " conv2_block1_3_conv (Conv2D) (None, 50, 50, 256) 16640 ['conv2_block1_2_relu[0][0]'] \n", - " \n", - " conv2_block1_0_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block1_0_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_3_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block1_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_add (Add) (None, 50, 50, 256) 0 ['conv2_block1_0_bn[0][0]', \n", - " 'conv2_block1_3_bn[0][0]'] \n", - " \n", - " conv2_block1_out (Activation) (None, 50, 50, 256) 0 ['conv2_block1_add[0][0]'] \n", - " \n", - " conv2_block2_1_conv (Conv2D) (None, 50, 50, 64) 16448 ['conv2_block1_out[0][0]'] \n", - " \n", - " conv2_block2_1_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block2_1_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block2_2_conv (Conv2D) (None, 50, 50, 64) 36928 ['conv2_block2_1_relu[0][0]'] \n", - " \n", - " conv2_block2_2_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block2_2_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block2_3_conv (Conv2D) (None, 50, 50, 256) 16640 ['conv2_block2_2_relu[0][0]'] \n", - " \n", - " conv2_block2_3_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block2_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block2_add (Add) (None, 50, 50, 256) 0 ['conv2_block1_out[0][0]', \n", - " 'conv2_block2_3_bn[0][0]'] \n", - " \n", - " conv2_block2_out (Activation) (None, 50, 50, 256) 0 ['conv2_block2_add[0][0]'] \n", - " \n", - " conv2_block3_1_conv (Conv2D) (None, 50, 50, 64) 16448 ['conv2_block2_out[0][0]'] \n", - " \n", - " conv2_block3_1_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block3_1_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block3_2_conv (Conv2D) (None, 50, 50, 64) 36928 ['conv2_block3_1_relu[0][0]'] \n", - " \n", - " conv2_block3_2_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block3_2_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block3_3_conv (Conv2D) (None, 50, 50, 256) 16640 ['conv2_block3_2_relu[0][0]'] \n", - " \n", - " conv2_block3_3_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block3_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block3_add (Add) (None, 50, 50, 256) 0 ['conv2_block2_out[0][0]', \n", - " 'conv2_block3_3_bn[0][0]'] \n", - " \n", - " conv2_block3_out (Activation) (None, 50, 50, 256) 0 ['conv2_block3_add[0][0]'] \n", - " \n", - " conv3_block1_1_conv (Conv2D) (None, 25, 25, 128) 32896 ['conv2_block3_out[0][0]'] \n", - " \n", - " conv3_block1_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block1_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block1_1_relu[0][0]'] \n", - " \n", - " conv3_block1_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block1_0_conv (Conv2D) (None, 25, 25, 512) 131584 ['conv2_block3_out[0][0]'] \n", - " \n", - " conv3_block1_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block1_2_relu[0][0]'] \n", - " \n", - " conv3_block1_0_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block1_0_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block1_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_add (Add) (None, 25, 25, 512) 0 ['conv3_block1_0_bn[0][0]', \n", - " 'conv3_block1_3_bn[0][0]'] \n", - " \n", - " conv3_block1_out (Activation) (None, 25, 25, 512) 0 ['conv3_block1_add[0][0]'] \n", - " \n", - " conv3_block2_1_conv (Conv2D) (None, 25, 25, 128) 65664 ['conv3_block1_out[0][0]'] \n", - " \n", - " conv3_block2_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block2_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block2_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block2_1_relu[0][0]'] \n", - " \n", - " conv3_block2_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block2_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block2_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block2_2_relu[0][0]'] \n", - " \n", - " conv3_block2_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block2_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block2_add (Add) (None, 25, 25, 512) 0 ['conv3_block1_out[0][0]', \n", - " 'conv3_block2_3_bn[0][0]'] \n", - " \n", - " conv3_block2_out (Activation) (None, 25, 25, 512) 0 ['conv3_block2_add[0][0]'] \n", - " \n", - " conv3_block3_1_conv (Conv2D) (None, 25, 25, 128) 65664 ['conv3_block2_out[0][0]'] \n", - " \n", - " conv3_block3_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block3_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block3_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block3_1_relu[0][0]'] \n", - " \n", - " conv3_block3_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block3_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block3_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block3_2_relu[0][0]'] \n", - " \n", - " conv3_block3_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block3_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block3_add (Add) (None, 25, 25, 512) 0 ['conv3_block2_out[0][0]', \n", - " 'conv3_block3_3_bn[0][0]'] \n", - " \n", - " conv3_block3_out (Activation) (None, 25, 25, 512) 0 ['conv3_block3_add[0][0]'] \n", - " \n", - " conv3_block4_1_conv (Conv2D) (None, 25, 25, 128) 65664 ['conv3_block3_out[0][0]'] \n", - " \n", - " conv3_block4_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block4_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block4_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block4_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block4_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block4_1_relu[0][0]'] \n", - " \n", - " conv3_block4_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block4_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block4_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block4_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block4_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block4_2_relu[0][0]'] \n", - " \n", - " conv3_block4_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block4_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block4_add (Add) (None, 25, 25, 512) 0 ['conv3_block3_out[0][0]', \n", - " 'conv3_block4_3_bn[0][0]'] \n", - " \n", - " conv3_block4_out (Activation) (None, 25, 25, 512) 0 ['conv3_block4_add[0][0]'] \n", - " \n", - " conv4_block1_1_conv (Conv2D) (None, 13, 13, 256) 131328 ['conv3_block4_out[0][0]'] \n", - " \n", - " conv4_block1_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block1_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block1_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block1_1_relu[0][0]'] \n", - " \n", - " conv4_block1_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block1_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block1_0_conv (Conv2D) (None, 13, 13, 1024 525312 ['conv3_block4_out[0][0]'] \n", - " ) \n", - " \n", - " conv4_block1_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block1_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block1_0_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block1_0_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block1_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block1_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block1_add (Add) (None, 13, 13, 1024 0 ['conv4_block1_0_bn[0][0]', \n", - " ) 'conv4_block1_3_bn[0][0]'] \n", - " \n", - " conv4_block1_out (Activation) (None, 13, 13, 1024 0 ['conv4_block1_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block2_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block1_out[0][0]'] \n", - " \n", - " conv4_block2_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block2_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block2_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block2_1_relu[0][0]'] \n", - " \n", - " conv4_block2_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block2_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block2_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block2_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block2_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block2_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block2_add (Add) (None, 13, 13, 1024 0 ['conv4_block1_out[0][0]', \n", - " ) 'conv4_block2_3_bn[0][0]'] \n", - " \n", - " conv4_block2_out (Activation) (None, 13, 13, 1024 0 ['conv4_block2_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block3_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block2_out[0][0]'] \n", - " \n", - " conv4_block3_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block3_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block3_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block3_1_relu[0][0]'] \n", - " \n", - " conv4_block3_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block3_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block3_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block3_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block3_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block3_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block3_add (Add) (None, 13, 13, 1024 0 ['conv4_block2_out[0][0]', \n", - " ) 'conv4_block3_3_bn[0][0]'] \n", - " \n", - " conv4_block3_out (Activation) (None, 13, 13, 1024 0 ['conv4_block3_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block4_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block3_out[0][0]'] \n", - " \n", - " conv4_block4_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block4_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block4_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block4_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block4_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block4_1_relu[0][0]'] \n", - " \n", - " conv4_block4_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block4_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block4_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block4_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block4_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block4_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block4_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block4_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block4_add (Add) (None, 13, 13, 1024 0 ['conv4_block3_out[0][0]', \n", - " ) 'conv4_block4_3_bn[0][0]'] \n", - " \n", - " conv4_block4_out (Activation) (None, 13, 13, 1024 0 ['conv4_block4_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block5_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block4_out[0][0]'] \n", - " \n", - " conv4_block5_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block5_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block5_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block5_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block5_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block5_1_relu[0][0]'] \n", - " \n", - " conv4_block5_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block5_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block5_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block5_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block5_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block5_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block5_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block5_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block5_add (Add) (None, 13, 13, 1024 0 ['conv4_block4_out[0][0]', \n", - " ) 'conv4_block5_3_bn[0][0]'] \n", - " \n", - " conv4_block5_out (Activation) (None, 13, 13, 1024 0 ['conv4_block5_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block6_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block5_out[0][0]'] \n", - " \n", - " conv4_block6_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block6_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block6_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block6_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block6_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block6_1_relu[0][0]'] \n", - " \n", - " conv4_block6_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block6_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block6_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block6_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block6_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block6_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block6_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block6_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block6_add (Add) (None, 13, 13, 1024 0 ['conv4_block5_out[0][0]', \n", - " ) 'conv4_block6_3_bn[0][0]'] \n", - " \n", - " conv4_block6_out (Activation) (None, 13, 13, 1024 0 ['conv4_block6_add[0][0]'] \n", - " ) \n", - " \n", - " conv5_block1_1_conv (Conv2D) (None, 7, 7, 512) 524800 ['conv4_block6_out[0][0]'] \n", - " \n", - " conv5_block1_1_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_1_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block1_2_conv (Conv2D) (None, 7, 7, 512) 2359808 ['conv5_block1_1_relu[0][0]'] \n", - " \n", - " conv5_block1_2_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_2_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block1_0_conv (Conv2D) (None, 7, 7, 2048) 2099200 ['conv4_block6_out[0][0]'] \n", - " \n", - " conv5_block1_3_conv (Conv2D) (None, 7, 7, 2048) 1050624 ['conv5_block1_2_relu[0][0]'] \n", - " \n", - " conv5_block1_0_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block1_0_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_3_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block1_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_add (Add) (None, 7, 7, 2048) 0 ['conv5_block1_0_bn[0][0]', \n", - " 'conv5_block1_3_bn[0][0]'] \n", - " \n", - " conv5_block1_out (Activation) (None, 7, 7, 2048) 0 ['conv5_block1_add[0][0]'] \n", - " \n", - " conv5_block2_1_conv (Conv2D) (None, 7, 7, 512) 1049088 ['conv5_block1_out[0][0]'] \n", - " \n", - " conv5_block2_1_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block2_1_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block2_2_conv (Conv2D) (None, 7, 7, 512) 2359808 ['conv5_block2_1_relu[0][0]'] \n", - " \n", - " conv5_block2_2_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block2_2_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block2_3_conv (Conv2D) (None, 7, 7, 2048) 1050624 ['conv5_block2_2_relu[0][0]'] \n", - " \n", - " conv5_block2_3_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block2_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block2_add (Add) (None, 7, 7, 2048) 0 ['conv5_block1_out[0][0]', \n", - " 'conv5_block2_3_bn[0][0]'] \n", - " \n", - " conv5_block2_out (Activation) (None, 7, 7, 2048) 0 ['conv5_block2_add[0][0]'] \n", - " \n", - " conv5_block3_1_conv (Conv2D) (None, 7, 7, 512) 1049088 ['conv5_block2_out[0][0]'] \n", - " \n", - " conv5_block3_1_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block3_1_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block3_2_conv (Conv2D) (None, 7, 7, 512) 2359808 ['conv5_block3_1_relu[0][0]'] \n", - " \n", - " conv5_block3_2_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block3_2_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block3_3_conv (Conv2D) (None, 7, 7, 2048) 1050624 ['conv5_block3_2_relu[0][0]'] \n", - " \n", - " conv5_block3_3_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block3_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block3_add (Add) (None, 7, 7, 2048) 0 ['conv5_block2_out[0][0]', \n", - " 'conv5_block3_3_bn[0][0]'] \n", - " \n", - " conv5_block3_out (Activation) (None, 7, 7, 2048) 0 ['conv5_block3_add[0][0]'] \n", - " \n", - " flatten (Flatten) (None, 100352) 0 ['conv5_block3_out[0][0]'] \n", - " \n", - " dense (Dense) (None, 512) 51380736 ['flatten[0][0]'] \n", - " \n", - " batch_normalization (BatchNorm (None, 512) 2048 ['dense[0][0]'] \n", - " alization) \n", - " \n", - " dense_1 (Dense) (None, 256) 131328 ['batch_normalization[0][0]'] \n", - " \n", - " batch_normalization_1 (BatchNo (None, 256) 1024 ['dense_1[0][0]'] \n", - " rmalization) \n", - " \n", - " dense_2 (Dense) (None, 256) 65792 ['batch_normalization_1[0][0]'] \n", - " \n", - "==================================================================================================\n", - "Total params: 75,168,640\n", - "Trainable params: 60,510,720\n", - "Non-trainable params: 14,657,920\n", - "__________________________________________________________________________________________________\n" - ] - } - ], - "source": [ - "embedding.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.\n", - "Model: \"Embedding\"\n", - "__________________________________________________________________________________________________\n", - " Layer (type) Output Shape Param # Connected to \n", - "==================================================================================================\n", - " input_1 (InputLayer) [(None, 200, 200, 3 0 [] \n", - " )] \n", - " \n", - " conv1_pad (ZeroPadding2D) (None, 206, 206, 3) 0 ['input_1[0][0]'] \n", - " \n", - " conv1_conv (Conv2D) (None, 100, 100, 64 9472 ['conv1_pad[0][0]'] \n", - " ) \n", - " \n", - " conv1_bn (BatchNormalization) (None, 100, 100, 64 256 ['conv1_conv[0][0]'] \n", - " ) \n", - " \n", - " conv1_relu (Activation) (None, 100, 100, 64 0 ['conv1_bn[0][0]'] \n", - " ) \n", - " \n", - " pool1_pad (ZeroPadding2D) (None, 102, 102, 64 0 ['conv1_relu[0][0]'] \n", - " ) \n", - " \n", - " pool1_pool (MaxPooling2D) (None, 50, 50, 64) 0 ['pool1_pad[0][0]'] \n", - " \n", - " conv2_block1_1_conv (Conv2D) (None, 50, 50, 64) 4160 ['pool1_pool[0][0]'] \n", - " \n", - " conv2_block1_1_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_1_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block1_2_conv (Conv2D) (None, 50, 50, 64) 36928 ['conv2_block1_1_relu[0][0]'] \n", - " \n", - " conv2_block1_2_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_2_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block1_0_conv (Conv2D) (None, 50, 50, 256) 16640 ['pool1_pool[0][0]'] \n", - " \n", - " conv2_block1_3_conv (Conv2D) (None, 50, 50, 256) 16640 ['conv2_block1_2_relu[0][0]'] \n", - " \n", - " conv2_block1_0_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block1_0_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_3_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block1_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block1_add (Add) (None, 50, 50, 256) 0 ['conv2_block1_0_bn[0][0]', \n", - " 'conv2_block1_3_bn[0][0]'] \n", - " \n", - " conv2_block1_out (Activation) (None, 50, 50, 256) 0 ['conv2_block1_add[0][0]'] \n", - " \n", - " conv2_block2_1_conv (Conv2D) (None, 50, 50, 64) 16448 ['conv2_block1_out[0][0]'] \n", - " \n", - " conv2_block2_1_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block2_1_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block2_2_conv (Conv2D) (None, 50, 50, 64) 36928 ['conv2_block2_1_relu[0][0]'] \n", - " \n", - " conv2_block2_2_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block2_2_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block2_3_conv (Conv2D) (None, 50, 50, 256) 16640 ['conv2_block2_2_relu[0][0]'] \n", - " \n", - " conv2_block2_3_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block2_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block2_add (Add) (None, 50, 50, 256) 0 ['conv2_block1_out[0][0]', \n", - " 'conv2_block2_3_bn[0][0]'] \n", - " \n", - " conv2_block2_out (Activation) (None, 50, 50, 256) 0 ['conv2_block2_add[0][0]'] \n", - " \n", - " conv2_block3_1_conv (Conv2D) (None, 50, 50, 64) 16448 ['conv2_block2_out[0][0]'] \n", - " \n", - " conv2_block3_1_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block3_1_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block3_2_conv (Conv2D) (None, 50, 50, 64) 36928 ['conv2_block3_1_relu[0][0]'] \n", - " \n", - " conv2_block3_2_bn (BatchNormal (None, 50, 50, 64) 256 ['conv2_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block3_2_relu (Activatio (None, 50, 50, 64) 0 ['conv2_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv2_block3_3_conv (Conv2D) (None, 50, 50, 256) 16640 ['conv2_block3_2_relu[0][0]'] \n", - " \n", - " conv2_block3_3_bn (BatchNormal (None, 50, 50, 256) 1024 ['conv2_block3_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv2_block3_add (Add) (None, 50, 50, 256) 0 ['conv2_block2_out[0][0]', \n", - " 'conv2_block3_3_bn[0][0]'] \n", - " \n", - " conv2_block3_out (Activation) (None, 50, 50, 256) 0 ['conv2_block3_add[0][0]'] \n", - " \n", - " conv3_block1_1_conv (Conv2D) (None, 25, 25, 128) 32896 ['conv2_block3_out[0][0]'] \n", - " \n", - " conv3_block1_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block1_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block1_1_relu[0][0]'] \n", - " \n", - " conv3_block1_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block1_0_conv (Conv2D) (None, 25, 25, 512) 131584 ['conv2_block3_out[0][0]'] \n", - " \n", - " conv3_block1_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block1_2_relu[0][0]'] \n", - " \n", - " conv3_block1_0_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block1_0_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block1_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block1_add (Add) (None, 25, 25, 512) 0 ['conv3_block1_0_bn[0][0]', \n", - " 'conv3_block1_3_bn[0][0]'] \n", - " \n", - " conv3_block1_out (Activation) (None, 25, 25, 512) 0 ['conv3_block1_add[0][0]'] \n", - " \n", - " conv3_block2_1_conv (Conv2D) (None, 25, 25, 128) 65664 ['conv3_block1_out[0][0]'] \n", - " \n", - " conv3_block2_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block2_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block2_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block2_1_relu[0][0]'] \n", - " \n", - " conv3_block2_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block2_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block2_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block2_2_relu[0][0]'] \n", - " \n", - " conv3_block2_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block2_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block2_add (Add) (None, 25, 25, 512) 0 ['conv3_block1_out[0][0]', \n", - " 'conv3_block2_3_bn[0][0]'] \n", - " \n", - " conv3_block2_out (Activation) (None, 25, 25, 512) 0 ['conv3_block2_add[0][0]'] \n", - " \n", - " conv3_block3_1_conv (Conv2D) (None, 25, 25, 128) 65664 ['conv3_block2_out[0][0]'] \n", - " \n", - " conv3_block3_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block3_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block3_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block3_1_relu[0][0]'] \n", - " \n", - " conv3_block3_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block3_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block3_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block3_2_relu[0][0]'] \n", - " \n", - " conv3_block3_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block3_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block3_add (Add) (None, 25, 25, 512) 0 ['conv3_block2_out[0][0]', \n", - " 'conv3_block3_3_bn[0][0]'] \n", - " \n", - " conv3_block3_out (Activation) (None, 25, 25, 512) 0 ['conv3_block3_add[0][0]'] \n", - " \n", - " conv3_block4_1_conv (Conv2D) (None, 25, 25, 128) 65664 ['conv3_block3_out[0][0]'] \n", - " \n", - " conv3_block4_1_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block4_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block4_1_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block4_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block4_2_conv (Conv2D) (None, 25, 25, 128) 147584 ['conv3_block4_1_relu[0][0]'] \n", - " \n", - " conv3_block4_2_bn (BatchNormal (None, 25, 25, 128) 512 ['conv3_block4_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block4_2_relu (Activatio (None, 25, 25, 128) 0 ['conv3_block4_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv3_block4_3_conv (Conv2D) (None, 25, 25, 512) 66048 ['conv3_block4_2_relu[0][0]'] \n", - " \n", - " conv3_block4_3_bn (BatchNormal (None, 25, 25, 512) 2048 ['conv3_block4_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv3_block4_add (Add) (None, 25, 25, 512) 0 ['conv3_block3_out[0][0]', \n", - " 'conv3_block4_3_bn[0][0]'] \n", - " \n", - " conv3_block4_out (Activation) (None, 25, 25, 512) 0 ['conv3_block4_add[0][0]'] \n", - " \n", - " conv4_block1_1_conv (Conv2D) (None, 13, 13, 256) 131328 ['conv3_block4_out[0][0]'] \n", - " \n", - " conv4_block1_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block1_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block1_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block1_1_relu[0][0]'] \n", - " \n", - " conv4_block1_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block1_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block1_0_conv (Conv2D) (None, 13, 13, 1024 525312 ['conv3_block4_out[0][0]'] \n", - " ) \n", - " \n", - " conv4_block1_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block1_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block1_0_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block1_0_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block1_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block1_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block1_add (Add) (None, 13, 13, 1024 0 ['conv4_block1_0_bn[0][0]', \n", - " ) 'conv4_block1_3_bn[0][0]'] \n", - " \n", - " conv4_block1_out (Activation) (None, 13, 13, 1024 0 ['conv4_block1_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block2_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block1_out[0][0]'] \n", - " \n", - " conv4_block2_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block2_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block2_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block2_1_relu[0][0]'] \n", - " \n", - " conv4_block2_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block2_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block2_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block2_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block2_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block2_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block2_add (Add) (None, 13, 13, 1024 0 ['conv4_block1_out[0][0]', \n", - " ) 'conv4_block2_3_bn[0][0]'] \n", - " \n", - " conv4_block2_out (Activation) (None, 13, 13, 1024 0 ['conv4_block2_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block3_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block2_out[0][0]'] \n", - " \n", - " conv4_block3_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block3_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block3_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block3_1_relu[0][0]'] \n", - " \n", - " conv4_block3_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block3_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block3_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block3_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block3_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block3_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block3_add (Add) (None, 13, 13, 1024 0 ['conv4_block2_out[0][0]', \n", - " ) 'conv4_block3_3_bn[0][0]'] \n", - " \n", - " conv4_block3_out (Activation) (None, 13, 13, 1024 0 ['conv4_block3_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block4_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block3_out[0][0]'] \n", - " \n", - " conv4_block4_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block4_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block4_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block4_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block4_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block4_1_relu[0][0]'] \n", - " \n", - " conv4_block4_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block4_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block4_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block4_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block4_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block4_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block4_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block4_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block4_add (Add) (None, 13, 13, 1024 0 ['conv4_block3_out[0][0]', \n", - " ) 'conv4_block4_3_bn[0][0]'] \n", - " \n", - " conv4_block4_out (Activation) (None, 13, 13, 1024 0 ['conv4_block4_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block5_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block4_out[0][0]'] \n", - " \n", - " conv4_block5_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block5_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block5_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block5_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block5_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block5_1_relu[0][0]'] \n", - " \n", - " conv4_block5_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block5_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block5_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block5_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block5_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block5_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block5_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block5_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block5_add (Add) (None, 13, 13, 1024 0 ['conv4_block4_out[0][0]', \n", - " ) 'conv4_block5_3_bn[0][0]'] \n", - " \n", - " conv4_block5_out (Activation) (None, 13, 13, 1024 0 ['conv4_block5_add[0][0]'] \n", - " ) \n", - " \n", - " conv4_block6_1_conv (Conv2D) (None, 13, 13, 256) 262400 ['conv4_block5_out[0][0]'] \n", - " \n", - " conv4_block6_1_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block6_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block6_1_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block6_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block6_2_conv (Conv2D) (None, 13, 13, 256) 590080 ['conv4_block6_1_relu[0][0]'] \n", - " \n", - " conv4_block6_2_bn (BatchNormal (None, 13, 13, 256) 1024 ['conv4_block6_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv4_block6_2_relu (Activatio (None, 13, 13, 256) 0 ['conv4_block6_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv4_block6_3_conv (Conv2D) (None, 13, 13, 1024 263168 ['conv4_block6_2_relu[0][0]'] \n", - " ) \n", - " \n", - " conv4_block6_3_bn (BatchNormal (None, 13, 13, 1024 4096 ['conv4_block6_3_conv[0][0]'] \n", - " ization) ) \n", - " \n", - " conv4_block6_add (Add) (None, 13, 13, 1024 0 ['conv4_block5_out[0][0]', \n", - " ) 'conv4_block6_3_bn[0][0]'] \n", - " \n", - " conv4_block6_out (Activation) (None, 13, 13, 1024 0 ['conv4_block6_add[0][0]'] \n", - " ) \n", - " \n", - " conv5_block1_1_conv (Conv2D) (None, 7, 7, 512) 524800 ['conv4_block6_out[0][0]'] \n", - " \n", - " conv5_block1_1_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block1_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_1_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block1_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block1_2_conv (Conv2D) (None, 7, 7, 512) 2359808 ['conv5_block1_1_relu[0][0]'] \n", - " \n", - " conv5_block1_2_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block1_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_2_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block1_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block1_0_conv (Conv2D) (None, 7, 7, 2048) 2099200 ['conv4_block6_out[0][0]'] \n", - " \n", - " conv5_block1_3_conv (Conv2D) (None, 7, 7, 2048) 1050624 ['conv5_block1_2_relu[0][0]'] \n", - " \n", - " conv5_block1_0_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block1_0_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_3_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block1_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block1_add (Add) (None, 7, 7, 2048) 0 ['conv5_block1_0_bn[0][0]', \n", - " 'conv5_block1_3_bn[0][0]'] \n", - " \n", - " conv5_block1_out (Activation) (None, 7, 7, 2048) 0 ['conv5_block1_add[0][0]'] \n", - " \n", - " conv5_block2_1_conv (Conv2D) (None, 7, 7, 512) 1049088 ['conv5_block1_out[0][0]'] \n", - " \n", - " conv5_block2_1_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block2_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block2_1_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block2_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block2_2_conv (Conv2D) (None, 7, 7, 512) 2359808 ['conv5_block2_1_relu[0][0]'] \n", - " \n", - " conv5_block2_2_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block2_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block2_2_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block2_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block2_3_conv (Conv2D) (None, 7, 7, 2048) 1050624 ['conv5_block2_2_relu[0][0]'] \n", - " \n", - " conv5_block2_3_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block2_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block2_add (Add) (None, 7, 7, 2048) 0 ['conv5_block1_out[0][0]', \n", - " 'conv5_block2_3_bn[0][0]'] \n", - " \n", - " conv5_block2_out (Activation) (None, 7, 7, 2048) 0 ['conv5_block2_add[0][0]'] \n", - " \n", - " conv5_block3_1_conv (Conv2D) (None, 7, 7, 512) 1049088 ['conv5_block2_out[0][0]'] \n", - " \n", - " conv5_block3_1_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block3_1_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block3_1_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block3_1_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block3_2_conv (Conv2D) (None, 7, 7, 512) 2359808 ['conv5_block3_1_relu[0][0]'] \n", - " \n", - " conv5_block3_2_bn (BatchNormal (None, 7, 7, 512) 2048 ['conv5_block3_2_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block3_2_relu (Activatio (None, 7, 7, 512) 0 ['conv5_block3_2_bn[0][0]'] \n", - " n) \n", - " \n", - " conv5_block3_3_conv (Conv2D) (None, 7, 7, 2048) 1050624 ['conv5_block3_2_relu[0][0]'] \n", - " \n", - " conv5_block3_3_bn (BatchNormal (None, 7, 7, 2048) 8192 ['conv5_block3_3_conv[0][0]'] \n", - " ization) \n", - " \n", - " conv5_block3_add (Add) (None, 7, 7, 2048) 0 ['conv5_block2_out[0][0]', \n", - " 'conv5_block3_3_bn[0][0]'] \n", - " \n", - " conv5_block3_out (Activation) (None, 7, 7, 2048) 0 ['conv5_block3_add[0][0]'] \n", - " \n", - " flatten (Flatten) (None, 100352) 0 ['conv5_block3_out[0][0]'] \n", - " \n", - " dense (Dense) (None, 512) 51380736 ['flatten[0][0]'] \n", - " \n", - " batch_normalization (BatchNorm (None, 512) 2048 ['dense[0][0]'] \n", - " alization) \n", - " \n", - " dense_1 (Dense) (None, 256) 131328 ['batch_normalization[0][0]'] \n", - " \n", - " batch_normalization_1 (BatchNo (None, 256) 1024 ['dense_1[0][0]'] \n", - " rmalization) \n", - " \n", - " dense_2 (Dense) (None, 256) 65792 ['batch_normalization_1[0][0]'] \n", - " \n", - "==================================================================================================\n", - "Total params: 75,168,640\n", - "Trainable params: 60,510,720\n", - "Non-trainable params: 14,657,920\n", - "__________________________________________________________________________________________________\n" - ] - } - ], - "source": [ - "new_embed = tf.keras.models.load_model(\"siamese_feature.h5\")\n", - "new_embed.summary()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAALJCAYAAACgHHWpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ya8sSZbmif2OiKiqmd3hPX8+hkd4RMaYkdlRWV0Dml3kiiO6AKJrwQUBEhzABXfkf0AQ3BDckP8CGwS5Zq9IAgTBqbsLxaqszMismOfw8PGNd7BBVUXkcHFEVPXau++5e0RmRXjWFYf5tWempqMM3/nOOd8RVVXu2l27a3ftrt21u3bX7tpdu2u3Nvf7PoG7dtfu2l27a3ftrt21u3bX/pDbHWC+a3ftrt21u3bX7tpdu2t37SXtDjDftbt21+7aXbtrd+2u3bW79pJ2B5jv2l27a3ftrt21u3bX7tpde0m7A8x37a7dtbt21+7aXbtrd+2uvaTdAea7dtfu2l27a3ftrt21u3bXXtLuAPNdu2t37a7dtbt21+7aXbtrL2l3gPmu3bW7dtfu2l27a3ftrt21l7TwaTbKOfP+++9zdnaGiPxtn9Ndu2uf66aqXF1d8fbbb+PcH65Nejeu79pd+/Ttblzftbv2d699lnH9qQDz+++/zzvvvPM3cnJ37a79u9LeffddvvSlL/2+T+OF7W5c37W79tnb3bi+a3ft7177NOP6UwHms7Ozz3xw7+Db33qD//if/Tf5Z//sn/LlP/oCbQtJB0BxriOnwAfvP+P/8X//L/hP/9P/Kz/64U954/U3+I/+o/8a/+3/+L/BN//4S7QrBUkowjgKMQaGAf7iz/+K//1/8p/wox/+gP/qf/2/wv/gf/jf5U/++GuIZIRMcEKMitKx28L/6//9r/k//h/+z/z//uX38P4UdWtSNmvCOYfzHlQBBSeICCIgovYxAiqAfQ4srPcXWfG6+Kvojc8VEUE1k3NGNZfjZ9AEORLTwDj2pBin75wIKY2kFFFNQEbwZe96dMzP0OQTflIv8a6Q+qduv824+bfZ/tDP7679XW5/+8znZz2CfsrJ7Q993NTz+1/8r/+XdF134zsRwTlna5tzOOfw3ttn5Y7V+6C28JFzJsZIiomc87Qf1GF3WcoaOf+mvrd1VObjlu3r05F5MX3h9Qjgsq3rtjZ7W+lUSOVn0+ongpZ9B+fwzuG94MTZFppREimOxLEn54T3QhM8wQcCLcG1tE1D07R47xAHti4rmYTmjDJfm+3TjprLNV9dXvGb997j4ccPeePNN3jjjdfp2hU5J1SVISmHYSSNEURw3oE4NCvl4diVS7lXClkTWRXNabp34gpOuXHH1J6DatmHQ1XL89DFb21bewaGc6bt8u1jYemxuOG9EJn+qB7/hqmPWd+TG/1kOp+jPlC3qf3ouWO+pC1/u/ydiPWFeh7Oe/r+wP/sf/o//1Tj+lMB5t/GrRO8IKKsVytONms2mxXd2qE0ADgJjKPQNEqMWw6HS2LqWa8db7xxzhfeus8rr2xwPpZO6nAnK8bRs91GQInjyGaz5vXXXue1V1/l/v1XEBKqIw6IoyJ+Q44jmoTDPuOkI4Q1kRZXQHF9kLXNEwrUrmgd0N3aYV5+f3R+eGXAIrVjZpzzhCClo2UbUDmDZhpOWG/q9JIBJcWxDPaBlKKdfwHeMQ3EFMkpkbOCKFImv6z2+3pOy791TNp1Mn12o08v3i8H2N9++yQk/1n3ddz+9i7iD90d+od+fnft72pbTDh/i+23G9mf/Ks/9HFTz2+1WtGtuuc+XwLY49dyu2PAHGMs5E4BYgiCR8TfOP4SDC0B8wyKZnD+qdZQBdFcgGEBXCJk1FZFnU2dLG76URDBCThx05oFyQBu49EugChNCHRta6+wYt2uWXUrVquOpmnw3oFouXYDvOIKbhAHZFTtGlJKiAj90PPVr3yZq6tL1us16/UG7z0pRcaY6IfEvh/Y7/cMg63bKWViLnjBOXC+nLcZJDFnkmak3H4ngnPlJTLdU1AD3vX53XgmWohAA8z1vT23PG3nFuB5+XpRXzr+fNlu62PL/d3WR44B7yf2kUW7bbtjkF4Bc9M0hOA/9f4/FWD+rM05R9sFUgZFEB9AHDmXk5LMOPb0fSbrgG8ybats1sIrr2x4/bVTzs5amsZYVU2ZlAz8iSqH7Y7HHz/i8tkljW842ZzQhA7NgAiqBiABUswcDgPb3YHtdo9zLRBw4q3TOffcw59e9ikTsHSCFMvvkzqJtZnxvdkBdLFmpEWHFMAD3t5X0JozOUfQhMgK8Q2tX1PBuKjivQHwlGxis6lEgEyMozEEKZIn6xSUjOZYjIGjMz9eN6Ra6dg+DKmXS6zHqj960fvP2mxyff73L9v/8vPbtj1uS0Pirt21u/a335aesD+w9nLu4/PV1CE4DF8t1rMCeDVL9XWiGDta50tb0iqQqiDXGzljn6Ja2Wp3K9C5CZIX4EpvYZi5uRYfAzQ7Bwycl58U6DWx3jAvSQ7wThEF0Wh/pVyXZMQ7mm7Fqmvouo7VqqNtWlZtx7pZ0zYtbWtgWURQcjmO3TEDqr587wouYDoXVeX1B6+Skq3vlclXVWKMjGNiGEZ2h57r62uurq+53m3ZH3rGGNFCdlXnNm5+FhPjKoKU+4/ceMIgauesecJCN8HyDLbtvs73GFUcQs55MpCW11Xb8fM9/vy27W4Dwrf97kWg97dpy/0eX8dt5/Gy9rcGmJu2RbzjMIyMMVtH10wGutCBjiA9zilt51itHefnHW+9dZ8Hr57iQ0bzCJJmKxEH6rm4uOL99z9gt91yfn7GvXv36Var0okUJ+DFXCmHQ6Lv92y312y31zjncc6DeJy7+RCr1Q0yfWdNigVZJobJVaILq+4FTRbhGAUsL609VUFJNpidR8qxcpYZLEtCxcB0VsU5j0g2N00ujLKalQmOEJrCnNu5RT+Qm3Jc0XKdAJmUBoZxYBxHcp4HVM5qrqcK8BVmL40/WvNeFihfwkz+RlabTwO+5Wi73yFM5a7dtbv27047Jr7/jkwXwjGwkRvfwpIg0efAhIHcCjz8tGYaEepxLtxwtc/u/9sAkEyRj7eRThVUHr+krMu6ILNqGITgZpBY2VdViBFbe0C8o3WeEDxN09G1Dat1x3plzHLTNDQh0IjH43ACkse69Nk5MJ04kgUXMg5jqdGEqhipV67FieC7FSlFQAghIALJN9AqcirErBz6+1xtt1zurtnuDzx99owhRoaUiCkRczSy0TmcWsiJKAaipWIRqObOIj6F58m9gnOeY/3NoKg7kgLygYk1Xz6rG2E2LwHMz3sXbhpDt/1+6olHxtdxn3pZOw4NOj7ucp9Lg+uT2u8MmI8B53RSIhz6yAcfPuTjh094+523OGmsw2T1ZBLOOVbrlgcPznjny29y796aP/nTP+KtLzwgBCWloViEDQ6PJkcc4fHDCz58/yHDIXLy9hlnZ6e0bcBcIyPKWDqEQ5wyjDt2uwu220tEVoTgSCJQBn9KNTbLIeKfs5rRYn0tQjQEc9MswfPRnWHRc0tvrq6bCqJzsebc5A6ZLP7aKZyNC+eLhZQSSEIzqGQkeLxzkG1fk1MmZ1Km7K3F+3pWOo0qcYp3DcGvyF09VymAOZNSIsVImuLWbAxmtRiwHNMt131rLwHSFB7yaZpO/78NbP+ODPbfwUXxrt2130v77Uifz0f7XZxjfzDtiN1dfvMZgMdMJtXfzYyvgeYZ+FRW8la2UI3JXt7W4+2OQ0KQEpdc43oXD2ZeG296GY06MvIseE/btqxXKwPIXUvXNDStueN9ubbgHR6Ll1ZNaLbzvMGQYiERgrO/ORlQz0xMsiAT2TSz0pBHC8fMKRfGOdA0gS441l3D+fmGISYePLjHdr/ncrvlertj3x8YY2LEFSxi7NWNZUwVshlHtk35zBnZOMdczyGnyHzPJo+CKirYtR/huttA8HFM8m3hFcu+U/vHi5jkY8b3s8QxL/tNxTAvay8D6y9qfysMM9gD2+4O/Ob9D/nlr9/jq9/4Km13n6bxxJzICdpmxYNXPH/87W8Rx0h/OPC1r36Vt99+i/Vmg/MGZh0eH9bEoeGw7/n4oyf8/Oe/ZrcbaJuO1XqF85B0BEZgMHeRNDifiGnPs8tHZO1xPtC04NSDC8WyFixZ0OPKBCCU0AuYLLiltTY9nPK/qcOVT7V+UQCqfe/mz6jg1UC0ki1WW40lRyjJBTZ4LbEg25yhGZUMlGQDVwB8tslENRerGLTEftU2GwCKlLANcaHa6PP1OcUHRVu7DjMgCszXRMrZYq0XLadU3E0jOcbFQYuLRz/ZkjM2BLs2zZPVe3Mc6XPvnRObjGp4yXJevTE7Hx2vbLPc/3MT9l27a39H2u/at49jAafJZQFu5BP2X6agl4LRGxjrePzq89suWU8Riqt6Bi4vvdwyXxgh4DD085LtPydNxJk3tdw08yDeZJln8HsT+Mz3rHpX5YhFrp95vPczoFwwk/N5LJhFsNDGW+bbug0whQPkbGsZzqCKk+oFnadyqcSK2ksEvID3yrprODk54fTkhPV6w2rVEryBXVUlpRFNCXUONNi5VaKphq4srtU82AUvaOHQSjilR8paV4gljKnV4mGWkrQnatuIGInknNAFR9OuScBq3THmxOX1Nc8ur7i8vuJqu+N636Mp2xon4BG7HwsP6vTcap+2/y3AaxlbNkjJmm88rwn4Hj0/59ytoHi5zYtetX/U/d8GUo/Z3+PPlsd4UVue55JBXh53SvY7Cv/5tO1vFTBfXR1474OP+fkv3+U7D59xfn4PEW8dFgNzTeP5ypf/iAf3H6Aps96sOT1Zl6xKDxpIyZOSI+eGx08e84tfvs9HHz0h42nbNSebU7quw2J4B1QPqFea0DGMiUN/wdX1Y2LaMSbFDWt805ZkAACH9+BdwBIYbk4q1AgwV8HcoqNMjK0cPYD60KY7UlxIdfiUz5YTR/mfxR8nxFlYhEXgZ2RK3MuIlHAJTbM9rfX4i3Ms1vkcecZi4FSrffHcbpzM0cJV/i/O04TC4JdtBeuEWZUcEyknOyvngMS43zKMPcMwUpVBQHEuFHY9T8eYjA1hcrEhlJgrRxzTc/1tAsrLJuCDJRqkkp0sZZ9adrF0D97mMrprd+3vUvukfn0b2/eiGMYQwjSu7Ev73zEYFjcvUBUE2b4XREOZQ3T2gbNM1K/z1fEY1SWbtjxuzvb7Y3CNMZJOXFkvKpip2z5v1Itbzuufn+ac4L0t8ceu5xnQzN5U2+b5BK+6vYFvqCyEAfJPZq6PjaxPwxDWv6paYqszeCZix1ou61/Cl/PyTvHe0XjH6eqEs82as9NTVus1bRNwUsF4IqUEMZl31hXFKlmGXJbzUqaV2+CCs1fO6NRxyn2cwjIq3VZAt13QRMA5sfVck1DFBERKcEkaaUPg3tkJTfBsVg1dG3Duml0/0A8DOSaEjEzqH3YsW89qPLNMhBMLwEwdYy95FrcB1dqHXgSMl9vW8f4iYH3b8ZbPfU4uvb2fvCyW+njuWh7j+Dw/a/tbA8w5Qz8qH3z4lL/8y+/zzjtf4eT0Hl/64pt0TYs4i1HWHDlZB1btBtVMCB7nMAZTHM63OGnpD8Kjh5f89b/5KX/xl9/j4mpPtz5ltTljvTmna05wbsDY5QgykjUiDs7OT/jWt77GP/4Prnj46MDVJewONjk450vsr8VnWXxwAZFTckJFj658NA+FY6vLfqfzq0wuE0iug18nu3MOw6DK8+QysLTG+jPZkQVAzjFVzLO9mc2YFJ5QTOW5TfNA7UTLhLp5cNcj3qRzyoCUcluWLrJyPjHZtj40tK6b7pMInJ6eF1miWRJHVRnHyBhHhr5nGAazwAHnE6oDceypkns5lwFb4tzMhnHTcXKdB3JBxElJWUmSJppqaUtMrFK+A8l37d+NdhxrCjy3qBx/9qKmatn4rpAJToSaN+QWx8iqpJieoyFmG7eyWvMxnRMaP4Ns82gpuYKWsqNQGKWUZ2as8KUE5+YZTGcgqElR7HxCOVcnDnEWU+qdJcrlZB485wPee3aH/ae/0X8ATRbs720g5BjwLMHyy7Y7XvNuY/Pq98t/W7N15bMAtTp3S1ZTstO6WmZEE6KR4ATvhTZ4Vl3Lqm24f75m3XW0bYtzShoPDCmhKc/7rOt0smR255yBZpnzmaYem7IRUBYPadcsGCgVI4AqK0395THhJLU/loQ8oOwEVTGVjzSSs7HPm8bTnp3SNQ2rpuHyesfl9Zbd/kCKCbJJy2ou9794mSmGkHPWr3Wx9k+3eEGc3XgcC+7pWDllGW5T79GxR2EpH7d8lvX5vujzZb+7ra8dH+O4nxwb1Lcd7/i4t+37Ze13Bsy3Tbb1QpvWc+h7vveDH3Nyek7brOE/+Ee88foDTtcdTdOBehyJpluhZGJORE2olqzcHBhHePx4y3f/6if85//Fn/PDH/0SpSE0Hd3qFKEjxYALQnDZgG3eoTkTQuCLX/wi//Sf/lO+8fV/xF/+5c/55//8r/nlr5+hNMZwTuOnSp94lhqTdSqXCTDDBCBnA47q3jLGtHaCXLYzQGtA100gsLLOZS8YNDZd5aqUMa8jMwC3fdxkVZRcQOwMzmUC04tD1DdmLt/gy3nu/fyZLj8TW5bqSBMRvGMaRLPxYOZCP9p14QJeLDDbO0fTQVJFU5pi22woRFI+MA69WdQpTsfWbMofKaZp0Z6o6GpVSCiPrlr1hcWenpNOz0mcTAvqsh1bqHftrn3e22dJcFm2pbuz7iOnVATCdIr3nI7DbHIvQawt0rYi58XKrIB3BdgpkC30yxVjeBYLs7hV7xzOm36+L8BwyvjHkr6Dm+NT55wUJh1Wt1iUxzKfrNenOO9JKbHb7+mH3vJJnDD0PfFThJX9obSa4D5LeWViTNO8N61t0xpmjLF5AG8aLxP4OvZIfsrp8QYIV72JJG/Zdtlsy0SVo7NpXXEkRBPBKW1wdI1n1QbW65ZV17Bpg+GBeGBMpk6hOZs3tAKrktwuIojzZO+MqHOurBXz+jgTVnIDVFpcs6BOMBnlepaLpbuuwdOfjGq01b+ITGkWVBytEw7jQMoWLhFEWAcHpyc03r6/csJ+f2AcTY4uFeuzpkFOGEVAikdfpN7bgkk+4Zm9iEU+Bra1fy1jk297pp+GBT4+9vLfx9J0x+d4/Pvl3+P3y7CNz9L+1lQyLDYmgFOePL3iz//8r9AsPHr4lD/59rf46lfe4a03XmXVmZskpYx4AdeAlFgh3zIOym/ee8z3/s3P+Rf//K/4i7/4Pk+eXROajowjZ49qB7opjHUCGRFaRDKaHV274ZvfeIvXHnyT3bbhX/2rn8w6xWKi4TaGTVNSluzpJF5TJ/tFZ7wVMIPqMtO3xuLaXqybZhSHaYZUi82+t1cobiBF1UIaci1QookyuhAyqs4GX2WY61IlFUSWCX7qF3Wy0sU1foZWgfI0ed00oVVZJAnWSdbjKtNBsVIzZJ07tW86GnETG4QkWjlhvc4cW53OOfq+p+97ckqLhdkRx8h+t6XvD0XgvSRXLu+N8dHmBsHipG+bPu7A8l37u9aWzM0xm7eM/7ut7y8ZSqlAdrGZjcHCVhZgeWyCOxHECd47Qgj28jY/rLoVzjuapmHVrTg52bBer2jbzs4NY30R6NqW9WbNZr1mvdnQdR05Z/b7Pf3hgA4RiXkCzDUZS2Q+q5wt52K/P3B5ecF2u2OzPke8MI4jF1fXXG2v6MeRqJkLcZ8rwOx9KMoM9blKiSSYGcUl4Jif/5w7UreZ5nE3A+yJCOJ24mz5++V3csuac/yb50I4iqFly6/iRPFqIRiNF1aNsGocbRBalwkk4rAnYQZeTgaMZ8BlQLXKvnnnkBCwuA+Hw1vSoCuMeA25EGqKkRFSlfF25f6qFvlVecF1zPcOihKVfVs+MqNGcqb1ltA/xgTjSOfAdS0uJYJmGmDLnl5Hc1pTs5oo2GZWvbLjV9BcybZlQv2SZdYpB+B5L8TNsJ7le+8/nZ7xbcD5+PvbQimWgPmzrs3Hx1mGl/xeY5hn6h6yKN5C4Xn29Io///Pv8v67H/CX73yXb37ja/zJt7/JV975AvfunbJet/jGM2qkH3uGcSCOysXFjp/85F2++xc/5nvf+wXvf/CImAXJQh4iF9c7Hj+6Zn8tnGwaXOiAiIh19qyQk6ft1qxXDpGGvo8Mw1hi0xzeBW52mJkTYZH8p1XGhQqXj1wZy5/XP+IKW23ATQBVMdfN1PfytI2xL2IWa+3+6sGGfhEtr2LpVRkjkYnGok77YwESy9lInsHy0m7+1Ji5Wq9uemlZOJE5PAKYZWucXf84JpyvzHO5p84ZsytCZiEbpBkhPMesmwalAfG2XdM0djgr/hIIzpNi5LDfM44jzkEIDueNNdluL3n29An7/Q7Uit84rzgXSXGYrnIJHO7aXfu71F4UnwoGHm77vL5XVXxRHHAWN8dJt8I7T9OYnm0FuCcnG5qiZdu2HZvNhvPzc05OVrRtQ2gCbdvSdbU4hKdpwgTGmqZhs9lwcnKC946clXEc2W23HPqerms5OzunbRp8CITg6fuBp0+f8uzpU8bdARdNwz+OI+M4MkaT4LQQjqJPP0Y63+AUgngkmXyp90JercmlWAf55eKZf4jNwjGWyU3yHOC4LdwiZwpQnNsMcipR9Dygqe+P2wvDfJbL0Ava1AfL0muSsZbs5gpwDk5ovBC84jQS+xEdhV0a5x3lIoMngncLJSwtjLX3tsKqeWnF5Sn5vxpZ3oeJUHPOiqRIFkuQL2w03FSUuHENR9dj3FVhhhf3KI4DqHlgJSsaRySbvK7PiVYgBU9qAil6I4ZSJmWB6qFZhInMz295DjUiW298V07CsMYRsK2geGk436gUedQHXjTXfFIIxW1gdmnULcH7MVP8or/L98f98bMs838LgLlU/lGH0wBZaFpLsLt41nN18Rs+eP8pP/jhL/j//mf/kvv3Tjg/2/DKK/e4/8o9uk2HeNjvDzx+csGTR5c8enjFxx9d8uTpnpwdznUMw4DzjiePr/nRD3/OV778Fb78zuuc3wuIaxh1RJICnpysYw1j5rAbGIeRJrS4sKYJLRUcW9WiGSTPU2S96W62BoGZEZ4u3v5Uz5Pc3M5AcEk8QxGpBT+qRPm8dxEBdaaGIYLkArrFQ2WZpVilNTRicvfMbk+dBryynPJntmV5PWW7m6TxzX9IuS6pmpj1Y5mZ3jKxZlUoLkAfGis/TnELmxk86W6aIVF+73yx0osRUcItatJfSglfXLFTKEUWkjrErdicru10p8pFinPQru5xfv8LiBT3LxkkktKeZ08ecfX0GTGOdm11RssZiYlApiXjMXfaCMTJX3DzZRf3fGLiXfvDatV0/O1/Xdsn7OUlmx7jhdv2JEf/qIybhRZY+IHF4Zb5x5shO2utzslZzhmDu16v2GxOWK/XBeiu7X3bst5s2Gw2rNdrVl1Ht1rRdV0p8GDvh77n0UcP+dXPfo4ToesMFJ+enrHZrGmapuSD2Em3bcvp6Qln52ecnFrVs7kkM4iTAooHhmFAVY1pXq1Yr9eEEOj7A48ePebp0yeAsFmvpvmjVmtrgmfVtmyfXTJe74j9yFgcbh4hO1vwx3FEE+SkBISVC6TQcr3fIsHOq2sD61XLkAZSn26wrp+H5mQGSvM8WGPYy0YLBvJlyGHJPk7zqi45jcVvKxC5bUclTFDUQiyWiZ0q9aeLNaiAPydi8eaqeFE8GSeJIPZv0QIayYzJinzFGAugK3JseVYKCc4TQkMIjQFTFZOIK+ukOCVLYlLLEmdElgNXPLsifqqwJ4UBvxnPLROIPgafE5SdioPMSMCJI6bEsD9M8q4hBPOKp4TkhFelEWi9J4WAUs49L1CJwORJnTwsxnJLud8iroRK2fb2WG9aMkvQuazUV/9dQfNSQ3tZ8ORFoQ/Hlf/q37r9sUfrRcoWS2B+HK6xZKeXv72RxPz7Y5g9mh1oQ+NX1L6fowcJCKai8OxKud5v+ejR3jq/h1XXsNp0tK3HB0dKynY7cNhHcgqgDTm2WGGOQNNsSDry4XsX/Ks//ytUEt/5e9/k9TfPaVtlvfZsTtYE3xKcp216ri8jV5fXDIcBxOPDCsWRUib4BucbY3pvAN3aBKRhKQ0nN9z8N2Ygqssyq5ZYPbWM2qpqIbUTle3qNjVkwksxEucwDjSDny1SLWElxkIX5heKlA12jKkz6PRnlmorxxeY4pMriUAdOHX/FLDsLHQGIddxVq7DV+uvwnadkw2cS7hS01O8ueVMCS5PAxjquRVjwZkrzL63+6IKoRR4MSZ6+WMH4ouhUhIaqmFQJtwQZsABSnIZJPFa+yZfeJCRDMkLgy/7vd7DR084iwOvirABMpm9z3y0fcpl2tGT6clEhIgykuj5fCUITW1xO+sEeuNr66zzLadOvMXNf8v+lpOvzQnVxKr7lNnwOTpYXXo/cU1XtzjB41NYHE/nzSpgVhG0VMaqI0Hq4pHn7Z0NAEq60dSHzIBdmNLLc13eKDGGK4RA4wLBBRof8M7RNq3F5AaHeI9vjDVtQ6Api74PgabraFerUmihYd21nG5WnJREp9B42s0Jvm1pmpZVAbmrbkVbCjQEX0MhwhT7633AeytA4UMFExYu4YNtZyVkbW67vrri5z/5GT5G9vs9m82GzWbN6ekpm7UB7uWzsPkqE4eefu84PT1l3XX4YCo5YHGzXevJ646YooVfaCSnAXyma4X79zbEcc9uv0d1BFXGYSClgZPNCZt1R44bXNGtPcgOTaYbbxryli9BTsZQoniFxjtWTWDrIKWRWOcuj7nbSWxO1mwvr1/QAf/wWuMFb5yChVKIm5CUVKBCuSdakiGn/Bv71p5gWXtctthxZoWSaqRN+1gAkOeGatln3auWuVoRcBYWOQPokvDuSgKnZgJqc362WgQ+KI0TnGaGw55YwLimTIqRnONUwroyw9VLok1rFkUWFF+S2cuaK8uYeTsJ7wOorQ84k6WbwLKW9WqanNxinqpzBmX82/oprsNZ4AhoIqslxGvOxQ8tk5KHqsVf55QhJ0JJDozeE0qsfvaQNZNyokIIsDyDHDM+BHvmVenLIAhTae2F91zVfOG3JWDGIhf7IgZ3yQrXc6+FT45LZB+z18vj3ZY0OEcvzGEhLwohO2ajX9b+7YVk3KBoKkgJOGkQbCK0oHmPqjHPznliyhyGiIyR4IXQOIYUuTqMeG9LW0pKzh5Hi5OGEFas1i2HfiCr0IQAGtjvIz/7+W+4uL7g33z/h9y7v+bs3ooHD865d++Ms805pyf3WXX32V8nfvHLDzgcMsGv8L6jIgTnKmBeIEaZwbBBvIDe0FKuIQ7L7ONqqrkJGDvRKXxi2VTyvJ5Oaay1M7jFal0oEij70Olzlao9KRNosHXa2GutlY5uPKy6oleblim7fRlfdvPxZiaNaOptqyNz1sZ0C1QymR2F5ahMtx3VWK+bAKaGpXiqUH3t7Mtoa5uo7IlIPevCeM/ssB3JldCRpUuxgmwVQZ2B5laETqySUvQCjcVnboi8kV/jG6z4Ch0nQ8bFEd94PnQPeRwv2RHZSyR6x9nrD9i8dsb/5p//n/g8thtTS3m8E3gsr1onoPbEGfgWL4jqzZ0tUKSUEJyJlaFOWLWH6sSMzq7FsrbBNDy8lxvnVPuRMQzFyCuJaHOOwNwcFkvLFJeq0/WWjxfAoQBd74thXYFrRxM8bRNYtYGm8bRtw3q9LoC3pek6mm5FaBt88LRtYNV0rJoVXejoQkvjG1ZtS2gDobOCCs2qoVs1dE1DECGEhma1pltt8E1T2GWPkAgOOu9oiupXaBrwwRYNcXjnJje0cw6HMdLVOLLbX0AL3DRexAxhy7Z3paqokuNA1zU0jaffFyCjipcSn1wAtvd++t0YI2NK7Ha7wiSfcHp6ymrV4X1DTJFaVCFGxzAMxBjp+z1ZLYRjve44Pz+lEhWV1Tvs9wjCyckJm80al5UBh1NbuGOKFpKRDZjMalvCNCuIIzSe2EdizEhwZW0A7x2nmzUPP0eA2fqvzdu5FsbKALOaiSVZFtBRk6gXz19qiWZX59wy2Cr41RJbvnCPfzIAmfx3IKZKAaYNpWVdqWvFBNaTES7iFNEIOZI1048RTYOpRWTrg3XNGIYDIhTDz0J3nDhwc6VazUZkGQhLOFeu90a57QK2nTc+rY4XWYYzvOCaK7mlxkBnmUkFFYeqnYvYydh2ap7XqvFcw4lcAbFaipQ5ERofLNHQeRDL5yFlkuZicNq6qhHUW7hRLaftnBlO3tXP7LqWLPnxs3TOLWQhb4LSF7G+Uz9b/O44rv229klAt26z/P1x4uExI30M0j/tcWr73QDzjes0F7p3oWg/2vCyspmeXJgZJ54meCQ7lIQPjtAERJSUIzlVhjEQQoeTlpSEfsw0wRIBERgzKA7vO/a98P77Wz768BLfKN1KWK9bmi6w6U7YrM9owileVnzw/mNi7mi6NfimdCDKeTaoVl1DmGXZsl2fhgK2ykCGBZtUEwClUm4G6SYWyhhRCz+oqhkVfC+Li8iMXl9wq3VK6Ft+uwD604nVe3n01dHgfp4JmIFxhaTLVI3lJxNwPXJtzEC2bltKm1NZw8IeuwqIq8FVzV83lUMVEZxOUJcK86d/15snrgjQU8CPPYc5XsrN+y+/MzxdzsublrX6csycaKPnngbe0A1vp47zPrPqE92Y+La8w9go12ngmh5WK9589Uu8+kdvfe4A8xIU1/fA831Hp2Kz5f8yoeo6BmbbsdxzV9THFwi3uv1sTqjstP2wSgvCPNFVyUBx4B2kpGUxWl4EqCYmj0gByuKE4J0xrCHQdh2bwrj6JnDvlfu0XWtVt7qGVdfQtKEwlhvapqVrO1bdmlW3oWk7XDDtdgsFCKy6xnReC9D2TUNoO5rVima1NpDrzXXZhECQBq+OgDeGKGZbwHwxpB34xkIacowkLDE2hJYEpJjpVqY9T07mojbIMeX7ai3AYTbHHL8pS7a9AKZyY4/BDzdvL9T9eE9b4pb3fjctiLkUNEopmjRc09A0DdK2rIGomf2+Z3/Y8ezZM8Zx5Oz8lM3GQkOcq67YPMVL5pwYhh4RKQbJykDEOBZvo7Lf77m6usI5x+nJKX6zQYZM6scb0mrorEp/Y2EtY6AJgUPfE2OkKhFJsZ5mHeLPR5td4kX/GgtJQItHpTzjXEHzGG8CGwwwW6KfzfGa58Q7KKapcsMF/7Im1OVFUInGMiMGisXNig6qmNZb8QZotqp+quQ0klJPTAMp9uQ04J1AVmOWSyy+c2JeETXQG5ASyudmdrisjxU4V6/tjetwgnP5BuCbmZ6XPYBpGirPo4zJErtXJfKsap8QXCCT6IdhIg2c9/iUyZIh5ak4WEoJLV6S4AqG8eYd6mOiHwf6fjDHgG+oRkqBzOX+uLnoTJGfm1CDyHPzgKo+x/zeFlbx3DOX52UNlzHJy20+Ddu7BLrHoPzG7dfjEJn58+Wxnf/02Ql/QyEZswSbVf4JhU1u8KFFnEOjCclnLVaNN1cIQMqC84K4xhhcsfr04lpzlwBZhCiepmlLxrStAt74EsASu2KMxOuR7XVEJdL4BLolJ8d6dZ+cHKG5j3rPqIpJyQXMle8XFhYonhtxa1qLmuQbA2UKsZgM7zLB1I0mgD1DTLtnlQWuFpqBSAPEVdlhPorta35rK6HO/65uaebY6Jmx1vnHKvNWC/ZvarJcTArzVhcZZLonUi5NaonwHKe47enqRbBiMA4oLt16LrKUKSr3pB534UYTLMligu/Traj3d2kpCvPHcjQwFyyzLLQpS7JirsC5xHu24jkV5X6GB2PDq2PDg0E4ycLaB/phYIjKadiwk5FxEJpHkdTt+Ly1auvV9zaJzMzUzW394r3MXWxpUonMC0YqmBpBXK0KNst61bAZe85VE7dSOfZ4msaXeNaW1arj7OycEFratqPr1nRtRwgN9x+c0zTBQG7Xseq68r5lvd4YYA7GVobQWKhDE0oYgqdpPW1jRn2Nk7cQhobGdxa2IK4wUXXlqxKRBnRDaEocsSeLwdiihwPOEVzA4ZEMXgUvDo3VE2VyakpCvOCCJ+XMmBUXGpqmQ0UYY0IVgg8IJcxAkxHFKRcLo47dCpiLpJrcNF2zKhGIxVo6Zn9uW5S896W0cPPcdkvwXGMwK3BuvaNpWpo2cDgcTOnmItH3B+7du1dYaVvIu67De884DqQUGYfR4lBVaZoWVWPenbN9XV1ec8GVMfahpe1a+saeRWVRKTHTegSI6pxnAAJzbcdc5kgx1t59+oX1D6HNjG95JppnzXmZv085T6EqS5a4Aua6vic1ssYV+dC6FFV9/OfZ6duJn1llAtSZYpTd6GzAtyT0iSZSHiHFUuRDGXNkHPb0/ZY4HkDHYihiYDlaSIL3jvXJCXPvl8nj4hbelhtkCvN6tIx/XTKoy3s6Gf+yWIs+7bNJxgDX382Vdi2mWMqE7IDGe4II4zCgKSKa0Bwhm9aWF0t8b3xg4zyjZnb7A9fAoS/KYYB4N8kxKovE/OplWbyv4HgZ63sbk7y8P8u2/PwYDC/jnI/vdf3+07YXsdvL4xwf+zaw/mnb3wBgLiCvAB5TLPBkNcAsYnHH4hSXFdQ6pitW0Wzp2gMV51EVUpGMcy7g24YgAVRImOu9CQ3ihLEfkdzQSEd2ChpBIpBQyQxqEjE5O8bUIQSzuIJAGlF1iG/N2aS+gLh6aYWeQUvIhGOhAF7RFjNjTAEJtdPBjGbludfMdhrTbJI/RUljRt+Lfdz2/rbOJbe811u+q9bkTRpReNke9Ebq47StlgVYK1heDqIl81gnUwqbuYw9XShlLAyhCuqXf+XGWcqNk5ltgPKspDJK82eLIT+x2ypCREjO1cJJhCyss+c0NZz2jvUh06ZMEsWrY+UDZDXjy8HwbM8+f3zLM/kDbnN1HGtSFPfsS5MBq1q33hNcOy06FvtaEj9KrKsPgdAEA6LOAFDbWuhCaBq6tqVtW9oSh7vqOkIIBeCu6DqLv+1WVWUhWHhC19I0dty2bfC+mUBzE1oDO15xHhpfAFrbmDvWW6yfLRJM3oapr0gxZV0tWzvdigIyLWPejGGrtCkkJrZcTdFmykFwHqTyvkosRTfUGe4STWWOsP01obFxpcn0WKlhKZGsVslMssWZIh6nFeTMi4zmNE0ZNiYrq29jMwPe6TQmZLpOLQaMm4bUsiJfTehZLozOOTMiQniOJVqCpxrHOO1LTebMQjFW9IcDwziw3+3IKdN1LZvNmvXa4rTr8xpHGMeRYZjVbOrxQmg4PT2nP4zstjueILxyfs8Su5o5Nvu5SW250C8WaycWoxpjLEUsTPc5fQJ7+ofWZhywAA72zbTNcdzxcdNpG4uRlco23zzA0XE/CYDUeZlpvtYigYaaGoTDPCeSI8SBrJEYI8O4Z7/f0u+vSbE3BlyUFEdSjHgXWK8smV8w6bgK6HPKqJvHxHKtcgVAOZHnrqt6IG/es0zOBeRaoPWLr7YC8kUf08Kh2RyQp32i2cIsshU2cUV+VcTRWGwQmo2wcNmoi6AK3uOaltB24ByHzZqTdcfV9Z7dfrBkR2ytr/HKbnk+GHv/omf324RRVFB6zOjCHDqxrBz4sv3edowlUL7t98dgfwnKf0+A+QZkssWlKBnkJCCBpFWaxVhk66RusvQoagWZ0jGwDG9VsIyLgIoxwFUKRlVJWmKLvMO7FU5bMgnvO3wQ0ETUCAhtuyJnMV3nqHhp8MFNFKvU2OVcY3lmIDxX8BHbZkJeArVQiOYJ+Nd7MfG5R7HLNdEOygNHinpGjd+tneD4xfOfSf3qJuB9vt3WCY8BtB7jzueOX2AlTs19NYVElImHiZWo1rwZGSpKKpPBDeaxgo1icE3se5X6qR15KuBS7ts0gS0nbqHGes9XNk/MU8weOseg2ea4QuZnMNAsBp6Ld46WwIqGVj1tioRoACM5IWcbRI0KJIUIcV+LrHw+2te/8S1WXUdTgKwPgTa0hBCsamPb3UgYa5u1JYUVJjc0wRLSmoambelWK9abNd3KWN/ghRCEJpjmubG2flqgvMyhCk3Zr1/EwIYg+OAKMK94T2Fihfz8rIlQ+2YxrCowrixOZc9sWJrrf/4gz0mzZTtU0RzRRZ9TzZY/MLk7yvHL3DQr5SwZjoTT2S1qk7Z5yUijnXdOoDW8QsipR0i0PiAkNMWJMSSrKUqAGRM+kHLGPNIyTRFzaJL1/1T+1jGrWjId6ry3WOjq/TpebIIPdF3L6ekpV5sNqjrpsNZQieryrftwJbGLAr6bEPCbDU0MxHEkpcRhfyCnSEqRVbdaZN+Hia3OJfE/pUyMmdUqcHJySn8Y2G53PH36FFLmbLWxhCMnhYxxdg+nezLPC7UZYDYmMseRZJlRM5j6XLXKvt34ZO6rzH2DI7BUww4mo0qxuVXLGibz/m0XN8HUbazjfA7l/+V3E0MrdfyBk4wSkTyieaTfXZL6nv1+y253yXDYAbF4pEBTMpZ1FfDlejRllIQ6sep+1euStRQsqQMERC3sr96Xm2oLy3syX2MFZJ/UL+p4WoYuCN5Cl3ImRSXHSEwRtEjUYedTQ2FywRY1HAoneLtbNlN4j29aQtcRmoYz3XDv9JTtWc/l9Y7r7Y5+GKhx6NO15FyS920tq5+/TLLtZddZX7loXt8Wt3wbuD1miX/bttxPfUbHYH3JMH/WQk5/Iwxz13Uc+h5ECQFSHnC+I4u3mGOY4nQsdsgj6tA8B6E7J2QHtdiFlSUFkQAllsyFOnnWTu0JXUBSC9HcDSGUuD/JeE2krKi04N2U+ZwRnAo4j2YhY8mIhmWrRJsNYHHWLVFwWgIUcYWvSWWQ2wC1wThj2IltOpqV7XnWz+sidRNM57IqZE2T5XkTOPPc+wlflmIptl8DvCmZGH0tIDLpHE5AX6e9SXlTk+smK65m2BKnBb9OflMRWrV4ZS+uABclCyienON0fRRPguZUgI2fkbrO1zF/MDPMeQGuKyMgSJHgYwL+S9h/s8uWfYlM4KU4wohS3edSpLksLt8SV62viAOfFUmZMSecg8YpJDUb73Om2Po/+h//Tzg7PzNN3NAiNfY0tKX4QVOYZJNd9K6GXBnzwSRZ5vGNpy0SZKGx8AW7oxFhLo8MtZ9VY6yA2rIf52YGVEqyj3NFksotF7QiGTUVwQFLUJ1NwflvYVuL98aVrmUSV4ttpaafYotq+XyRSA7OkVSMdZy7ftEWN6gxsbsiRdEl03jBUdzGUuQT04DDyjznNCKaGfoDu+01F9snqM+s1ybFpsDQD1zvdzx+/IRnzy7wwfPWW2/xxS++w2q9YUiAbwlNa8xWBU7Ywuud0dymRWxJfJaw56Z4crtEN2XFL9ni6k072ZywOdmU2GPHpgDnnDN93xcWOpTnIqRkpYeFQo4EU7wJ3QptWoZhKHksif12RxojXddNYLfrVqSU6fuBYbAKZ+NoeS/n5+ecn9/j8vKKx48e8eziApeUHNOCGRaSaimzbeuLFsCmYqDaT8WWIKdMJuMamUD056nNAIbJWKlrj5T5DSxQLhdgLQv3tW2p0xqiZU1TzSi+OKaKwgKzYVXbbQUmJkCjWpK0l/i9hBiguFwS8CSx3V9xePaE/fUFu92Wod8XdjkTvCseq462qLqgMI7JtJS9eaZ1KvttjHOKNh6dmDCB+YdszXWlqM4EqFTmcV/aTe/xzIkZ0JxVIbzzBdPc1CqueQYuRXufM8RUgOacDzKtYXlO2JzGNKZJHZzDNYGma/FtUxIAhfVqxdnpGednAxdXV1xeXbM/HKz/F0EBI67E5nCs6m59Tsd/K264eR9ugtLbwPWLCo0sP7tNA/7YgHtZvPLxb4+3Wyp1HH/3WYD63wBgVqz6nD3ophPa1rHfDxBMZEuTPdgutKadi5sso1zYVZEGv1Az8MHYxxpTZskkZi1WQXGEyZrMpeNP8TII4hr7Dj9NGOLESmAC4JnCIqbfglZXy7IsZi7saEnUm3Gd6UlO4Rs1lKJa4JNlrguAXO/cDJiX383umVrGdAFoF/GSqrWwiU6DtG5jjI65X1K279XutF2XK+cqTAv7LHVHMQCYrH5UcGqxm4sLKAB5BjmareRnjjP4wDfmXaBkJ4ufrnxij7HJ2SC2KyzGhE6oW9Rttey7HH2afJE0AevpN/MB5uurVmaZehzzI6h/BUpgiDHgURyjh0bm+5/JJEr2trP+EPznKznoP/wn/4Tze/fmqmC5dGBXyg5JmfRF5j6r83Ix1aoSS1IJrbnqxfvyjBOae8hWLGZhUVor/5YKLgs4qebOpHtSx1VlfsvRZ2Nq3vUtT5+pW+jctWzML7xAi8XIOkGewLUUAzKrmoqPIRFcMeKtKAbT+YjW2HuKSsQeickYdfH4psOpY+wHdvs94+HAYXuNxpFnTx/z6KOPePTsI3wrnJ6dollJaTRAOvT86le/5sMPP0Sc4ytf/iO+8/f+Hm+89Tap3ZCbNT5Y6EzTNJycnFoRkNBY8hdWWdW5xsrSR0WW2qQwAd7bEmeAqfBIXRDX6zUiwuFwmLSOzUMQFjGjjhCKR624cCzZ0eNXK5PGSkXNIiWGYbBQnyYUbWdjl2NMpJjo88hutzcJvdWas7MzLi4uuL6+RoeR4DxjYa9zUTUSJzbHL+cCV/puefnF3G/GjbP42s9RczcMS0CL8oxi8qD1cxEL9zkqVlI9LpM1yLwOTb8TmwuOiz29KK4Vylo+H2QC4Y5sFfykGLFpZNhdcfXsMVePP6LfXnM47ImxJ6cR54X1qqMpfTSlTBwT3lU1Dxb9rhI8NsFXL43FEZdS4VOJ7JsgcXmuyzX6JjAzbeb6funur56WOg7qPdOsxCiTMWp60cu4cyqNAGJJm0nN2KxJipUscjJXzqykXwiWQ7Zabeg6C4F7+uyC3WHPmBLVvzuTC/O1LlnzY+b4RUzzcazw8e+Pt1n+7rb2Mi/Fbcde/j0GzbOH62Yf/ays9t9I0t8YB6rSQ9PC2XnLYbjENRZvJk5YNy3rzlL0coKYMkONvyvA1Tk/LVgVqHmxSm2liI0NqhpgipTP1Ny1RbZOtQ7iYOt+WfArYKoDwjsHWsJDSsesgEDJk66DsVduAWrrwJn/PQFvaixWuTmLBb5K5kxs2LTZ3FGfD8fgxr+rZmllkc29k6dBZi62ouQoJXsWJbvKDEQDpPU8677L+zp4aiGEom9QWIpcmLdcRODtrxcHTSjPT4lxtIlIivtIchnUvoS8KJYIWI2GIq9XwPdknKhf2BeVEamsufURrc+1ItznLNwF/Jl+P79m7Q47C5E5pDeoxYd5LROng9Epe1GaIsYRgSgQPUSvaONw6/YTRswfVju5d8bJ2RlOjMFMqSwgxZyo/by6YnUS4LbfV6apur5xJYGW5WKzhK6Lvl8nMLWtLcfIDE3TyaWAz/q99Ve5UaK48sFwrF4z9YLytdPlp0BZNCqaXo7JusBOkZ9OmD09taNYwY1Kk+WUprGjKXLY7TnsdlxfPmO3fYbmfdE/9bTNihQzu6stjz5+iMZov7m+4sMP3+fq2TN2/RXNumG97tjvtozDgdP1ms1mzbOPPuLio49QIAxbXH/FL07P2dKwyx6cJzQNm80pX3j7i3zlK1/lzbe+wOnZPXxoSFkX6iNzwlNl1qpb9TbmyDlHaBpOTk5omobLy0tijNy/f5+maRiGgZzzFHPcdZ09nbJf4zncTCSIAXARi5WNsYDcbMoANndbzLxtZ56OMVoYx8XFBSBWUfDsnOuLSx5ePqYrXo4xjuU5FXDndRmofwPUVJ1q772RDeV5f/4YZncDuFUdYS2Aef5czTAk3BgZ1VjNuXg58+zOn9aHibm+mVxV932shauq9ptyV3ORSLNnUXx7CuSBfnfN5bPHXD55yNXFE1Lfk1IsRmOk9Q21MEhKuXgwIz5kGhdKOWwt1fwcoraG1/9MsKLIyWW18R3msInnwf/y73SR892atufGZyJFe71trXhXBcwplbhwUwdx2bzpOcc5I1/L2osnSS4gmTIeMLzkPM4HnDP5vOoKs+RZwQeP8ycA5Gxe8cMwMhZGe7reekmL53fcljHJN/va/O/j8tm3hWAc95PjdhvD/TJG+JMY6NuA+hIHfNr2OwJmndhfBN76wmv8l/7DfwQkvvtX34PgOTs7497pOfdOztl0G0Q92+sDT59d8/Riy/UhETWhLlJrsEvt1GLphB7A22IkqqU/FC1BMcBoiUkW6xizQFQosdIT2C2AWSlasizZamEqWlIHRYmPQqQUFpnsVoqZXrZ106JKtdyrZIwCYnG/OZeECakuirLPyaJcdIglcJ4edF1oprFEBbtS4nel/r5qNFPiJIO5omb90rLLYphoSTLIOeMxxgepgQ8VTxfVhBxRtXhC1MJWVBpUfZlIEyqpuHhLwgVASZxyzjS0weOcmsFEncRrfGdN0qkQpsQ5188qO15YcZ3uQ+2ZNyeuxQwzP+Py++kHmqnBGU6VJgttUtoMzSLOOWKx+ibPNHsXhExwgVWz+kyj6PffpLimiwVexkMNLdESvz912dp/yn2c4iCdQEmYTJUVLn14SqQrWFOL0WsMRzHUyuIwuYWrQTf18xlYW+KdnfsxBzRfVfl7C4lQdz0ZWdYB7ay1ZpEX81CrGob9Npdz8eJKzHAyAmAYGA4Hgji64Oh31zz86AMeffgBF0+fcNhfMo5b+sPAGBNOPId+4PLZJfvrLWcnp5yfbHj88CM+/OA9gsX64IKp9VxfPiPFntdeuc+br7+KjHt8tNAH3V/x+P1f0cfMR5d7nu5GYgbnA6HteP3Nt/jq177F177+Ld75o6/yxptvc3bvPt1qjRaAXMMUKkhOKU1hFMukv7o4NSFwdnbGZrPho48+4tmzZ7zyyivcu3ePYRjY7/f0RaJtYteQwuphCglSqpm6AsK8s/lHzGjPZSHPSgkPMfDRtSu8C8SY2F7vuL7eogpnZ+ecnJ7Sth3PHj9mt7WEyuD9NEdMM6suNIiZF9AKnL33SC6gYp5wPz9tCpVarDHcBMw5GwmCW3pWFkAFLfHiYGOxyB/KzdeLFA/q/ZzY5bK22V8zyDSnyUkrmojjSDxcc/3sCZdPH7G7vmC/uyaPQ2EK55hgBWIhbZwzr5aKIymMYySESPCB2SoWao4M5Z7UxaImvtY1dIrFZqFbLDUEZU4SnOa/xX1bNilG2rRtOaT55YuJXwxQDUqKyyp3ucRig2SLryeZR1NLyKgLZhiHEkJneWF2vdU4dWJs/PnZGRlFtnvyvifpOBnNplcykw+3sbU3+sYt17qM7X7ZNp8EVo+NrSXovlGl75b2Igb7NiPoOEzjk9rfSEhGHWXf+NbX+e/99/87vP/Bb0iyx7crK1n9xXd49d4D1s0Gh+fZ0y2/fvdDfvLz3/Cr33zMw6fX7Icec9St8JhWIgI5jeScCF5Mvxkx1nS6gaUaTva4RhBMUUN8wJIOXQn7uDkJCAZ6vAtmRy8Iq3khZnJDi9gkY2t2Blw1FFl0++l3E6grQCBj2bwWK1anpsWr4OLpVT6YLb/KGst8nArswSacKsNVwC+KZfIWQO197YR2kUkjtbqZislSqWZLWsKSnAQ1V2SJzcwa0ZqgVJ9/jqYJGVrapkWaQFaLKQdhGDOjjgVoO3KKWIWaQJAKuC1OmAqWZzRT7mW5p+VOGNyy+NiSekFlRCqIMvAzJ67Yc9QjJK2k6Vps4HhVQnJ0CVZRWEelK6DZ5RI6UKYWJ2bQeclmqCmEw+crmx6wRcTNxpyNh0KjTy7Msm1Rt0Gg2DiTLVIBptmJpZer1qdxK6At09n03fT3eOM6LkSn7+y55ptj4TO26bwmIG8vM3DNI1TVPiCTY2TsD+z2W66vr7m63rK9vubq4pJ+v6MLnpOuob++4oN3f8mjD99jOOyBxDD2XF1ds9v3KMIwJrbbLSfrDYfNhv70hI8+eI/t5QVnZ2dkben7kWG/47C7xEvipG3YrzsDEGMP3pPHnnjwFne7vSJd7RiLlOcQlYsPP+LjX/2GH//193jz7Xf48h99na9/84/56te+wWtvvEnbtgaQF1qpVQfZnsXzC433nvXKqvvFGPnoo484Pz/nzTffZLPZTAte1Y0VESiFqUQsRthJNu30XGOk55jwUNQtVISoSkyJXMofW3VCz2Zzwvl5zzAMBTRboZXVaoUgXG+3iAgn6w1N09wAvnMiMNNcCxS9alNVEcFClD5f5LK15RhRZmKBI2C7YEaX3rjJjlQjPoyAWaoa3Q6Gjv/eAEjLjUWMtbaIA/suZ/bba7aXxixfPH3EYXtFHHrGYUDEElx9iU2OY0Qk0nWOEFpC6BA8KekNUmxKInZVk3sJ+F1RAHLTvboRl+tmTPCiNq/NzwPBGnLhnEOKUZpUiclkcFPRoHbBju+8t/DTXIKnUoLkyDhIGXF5mq+kVAA1HflmysWajEDACDELX12vOsa0YYyJfhyJ2U34hKLkI4Xge1moxPHfpYfhRUC7fvYilnq5zRLM3hbS8UkM9aeJT/6s4RjwNwCYJ8MNuH//Ht/6469x/5WOqNecnG/46h99hS++9Tan3YZAg2igPyQ+/OgZX/vpu3z3ez/lr773U3793seMw0hghRdH8MZyOhGaznFysmazXhcNZw8q9MNIfxjoh0SMitV3t5MKLuDCipgdsVT8mgYECSHhnYVlqAr5SPO4ZpHP8NSUEXQa9DJ1yJl5WwCzCbTZ/oSZ8Z2A9nTI2hlqR795LsZu1dCIZUfQ+fsSmWhjtiYJMoFD54y9qRW+FIsDzDkW61rBFTCo83EEwXsheGOAci7JcBNbZLGGFQyH0NKGBhEm1+lu33O970kJUjYpP9WA+GSFajRYUlSR4jJljVJdaUJl84SkNeaMGVbXLIrKUk6f6/x+8cSmPlv4q7LvkiyWhZCgi7BOjnWCVYLWKrIWEG4VLEWqoWLnmlMiXo2fMGr+0FpBvMtFsN6fWay63CMtsiLMv5GSOFXvnzok6aQ4UwOdprniaJ6yCZf5C1mEKNX/Fa9JNdKWc91yvrRnfjyBViOnbLP8XpmjrRCWgew1Pl6cdcGYE/vdFc+ePebD93/Nu7/6OQ8fPuTy8pKryyu2V9c4TZxtVpx2DXG/5dnDDxl2V6zbQGhaDmPk+vqa7f5g7CqONI74kxU5HtjvM7urC7xkRBP7fuBqzAy7PSRlFRzDaMU/4tjb40AY9gdyTDgX2DghN54BUAnkzhOT0D99xm+eXvHBr9/nJz/4MX/9F3/NN//4T/j7/+Af8tVvfJ2z+/do2qawW0wKFxPYhRsLnYjQtA1nZ2esVis++OAD3n33XVJKvPnmm4QQWK1WU8W+utDlnHH5+cIIBpgLUBNz9zvvp1h4l1JxvVsZbRGhaQLn5+eMY+Tp02dst1tT3/COtmuJTyOHw4GUUilC00xkSw3Pk+LCngGzI/hg+4m+GBEcWXCfg6ZVGtBN68rENFdDqGowq4Uv2BpzPKCYOItpbarPrfzmtmI3xzGtrkjczMBZytCuChaJsT9w8ewJzx5/zPbZI64vnhH7PW6aGiqhMq985TQsZM95xAccUmLsV3RdZzrtRV6yyuJZaEkNW5njmimhEjlniwmuSXHCdOx6Y2p4Sk2cZbE2VSBpCfdxGjuKscsxVQ3ssrbVUArnLOxtuncZnxLO1f5fMIJgsf/B0xQt+YpPCgmO8Y4mHpALZvDOWfGk4HExFWWeytwuPXZHxs6iX7wMpH7SZ59U6GR+zjdB87JPvSxm+bZj38ZU/14AM2oi4SlnnIe283zxS2/Sbf4+Z/c2vP76q5xtTpCUIeWyeHbce+UNXnn9lNP7G8Y8st1vefxwj+SId562dZzfX/P6a/d46+3XeP31V9msTc6qaVoEx37fc3W15epqz8XljsurLReXey4uDgyDotrQ+BU1yTA4hwuK5oEc93gFc9SV0gI3OoUt+E5KjXtRY0JwpQCLuVRtos0l3EFhYo+N8VRZWnq2zWR1LwCvFhcVqkVjNaFqdeapLuHKOi/ivVSTvYqDR7KQNZmSg/d4X9ybZcBrTqRc6tP3e1JOk3XtqaddWFkt/ysqJlUVQbxlI4tzpBgZ+p4YrfiAdyBtpgme4Bra1iPSMMQDg5qwvAkPNCDZspVdwLlsk53ziAuIs+dR3eJTrKMzGb8K+qEMDHXUbG4mzWxgMnuWjIhOm+FygeDT08EphJRpR1gVdrlN4HPF5QUcF+OHOtEWNiOOny9ZuSlZFqjG4jSVlGzIG/ORoxgyMHeUmdUgm4vd5vTZo1EXpSUwpv684nSRG9/pZO1U4K7T+VQ2eHq+U6jT7FascdGL06RcZgEAtt9cQi4mE1lzqQgGKY5cX17x+NHHvP+bX/Pee7/ivV//hPfe/QW77TU5ZYahZ+x7uuDZtw2XwRH3W/rtJSvvCO4UQYmHAR1HNI4lUdXTOCBHQmgRyYxpxAP7vueiVy4GJfY9rbfY/8OQuN4NttCJedIO+4G86+lWa1ZNQ3uy5tCPuGZFtzknZsfVbuT6MNLHzNXjJ1w+veDj99/n/Xd/xXf+/p/x7e/8e3zh7bc5OT3Fh2Byl7nOMUx9JFedmqKmcnZ2xv379/nwww95/PjJpJJxfn7OyclpeUazSkONWUd1znUIUmS+KqAqzz/nAoSsipmIm0Bz7R9N03J2dsYwjFxeXnI49KhisnTO0/c94zgSx5HT0zPappmAoQHyUjqYyoDJlPwXnCdJImmeFFM+Ly1X6bSallsegOEmk9ezyn8GWKvKGhWUHtnPN4aPMoVV3GAX6yyiN8GN8x5f1lRKeELOWopwJPMkj3uunj3h2eOHXDx5xP76gsNui6ZI61tbJ7xD1RGTrefBNXjfgni0SEw2rSUCrtuGddfRNVZ+3osr2sdavMv2cgA52b0oEZw1acohlquejTATV9S9RED9bE8Ug7sqhjB97sEEMJjDyNwE9Kt6WFXwYTIWTYVEKrjMGe9tvFjXz7Ycel8SVmfVk8p/WChOSaItf1OMQKYJjjZ4Bi/EWNUxiuUheaI4prE6TbEFyBdW6phJt2u+/bOXMdM375nc+M1tYP14Hy9jq+vf29jq5d9P035nwOxKMYCMla5sm5bz+6ecna9ou8ayWD2MqQc3FPeGo/WeN9uOIX2BDz76Mu/95iFXT98jjQNnZx1fePseX//m23zjm2/z5a+8xWuvvUITWoI36SvnPGPMbK93XF4cePb0isdPn/Cr997npz97j48/GthuDwgniHZ4AqbPMYCY1FkjEHxCRNFaR16YrELLR7BkASfBOpJ4Yioydw7El7CHEgcsFE1YdRb7VQL1lVw64gxuZ2Y4USOaTIJrxGu/AM017rg+4LEMCEipt6pURR3CJqpI663Mrw9Fxqlkncc4MI6DjY1htAEbAo0z3d1c4jFVq9tHIFrMqAEIi0dNCpKVpEIWTxaL5dwfDqQYab2DPMBmjfOeNmRSjIwylEQMs2yzesiB7IwdEzHArMEqmHnfmMRbBrB7TklOs5sBlsRY4qnLhGRMsz3xSQujKnKITQoCSLKY+CwwOjOMRBUXhTbCKolpLJen5XCzkiA6LywFTIuTzx1gnsJ0ShiP3UOdV8hFspPFOkthnIQb4RHMhqGolJCVEr8HZZWtkm92Ey3+rxqSVsa36p1roUosDWGuslmlwNx0xMoaLaOZ82SQ3kwWrMDdjqMVnBUgYfZiyZVIkdgfePLxR/z6lz/nlz/7Ke+/+yuePvmY7dUj9vtnkBNBBImRJo+EKOaFCB497HBjT9ed0DWBUZVxMOCmKZUzTDRdV/quMIxWLGOMJp+2HYTdkIljJBU3ctsnQjPSeWc69+oYsjD0I1kHuiZwsmkNFHRr1qenjDmAH/Fdoh8zQ4r048hh+5Sf/eivuLr4iCcP3+Xbf/qnfO3r3+T1N99E3Indt5xtXDijO3IuxT2cJRatVivu3bvHarVivz9weXnJMEQuL664/8oDTjYbi7FUgZyQIJZEonOSpPhQnoMUg0ggU2KYc0kXcYgXgvOoeutOydjqtmnYrFYc9gd2w5Y4RpyzqoKa4Xq3JUXT6tXNmqk8+NRJQV2JqRVncl3e0zhPpGjUfs4A88THLMZy0Scphm1RRqmJd3XsOUz1p4wLmw7KuK/hWTAx0jfZ64XxrBaC6LDwCC0z9Vw8w4r/eI2M45bD1TMuHn7I9dPHbC8uOOyuGYeB4BypunmyIVqTR+3wbkUIa4JraXxLG1q6Utlz0zZ0obGCRahVw2Q2ihpnyieqaVLukGJ427SkUzEgmzYSmm3Rd76w5SVxdUqFKbkZk0GXUymWwgx0tcSxqdj9L3PuFJriq+qU9fe6rjsbPuX+60Rm1TUtaymONHkBDExmNZRh82sy6T5RGi80Thgw7fmC+Q1UVu5JLQm3Ak5XxqYrqFwWz/qT2m0xyy8CzcvvK9CdPEAl52IZ3jF1+QV4vi1O+TiJ+bOyzL9z4RKRevL2b+8Cq66z56geyQ5cLtmZEe9Mikudp101vPraGV/64lu8/uqr/DJ8iLrMV7/2Ov/oH3+bP/v3v8qX/+hV7t1bERoDP8G1iIYChoRxaImD0Pevsx/e4oOHr/HlnzzgB9//mB//6JKnT0ZcbBHf4IiQ97Rd5OQ8cLL2bE46ulUwsFyUJMYxst/1XF/t2e0GTE+8JarFPwVnlqyik6KDieIrkqvbuD7gApI1TaCZmqhYQidEy+fEUvJyRPIAGpHCBhtQKO6vNJTwEkEZrXwoaZJIA9OfbFtH0wTiOJDjSI4jcTgwjgNW/9CsXpcg0NB5R9RM0kzKaQJSlq1uTHQo4GccRxuglTbC4Rs/Wdg5JQ67PeRIs2rxAZq2WLMpkWImSzLpP4ngMkksljmLgxSQNhkDURcsn4pMl8V8Walym0iX4TOFKpoZwzLRzzRpAXmiRYlByH42XbxarHIoYNlLCdup2daUySsXQ6aOhhKzHse5GtnnoU0BRJUNAFhOvFN8PlBYnIKYyySrE+kg9fNyb70UPCIC2RdN7jJmyjNTqSFHyxjHunMmxmTpuVmeOWUBMihg40RucGJGnc0MczGeSox2zphno+idOzKaBq6vLnn4/m/46Q++z89+9AMefvgB/fbKSvLmHZ2OE7iOaaTvD8SsrDcrXM5Iiian2VjM5b4f2R8ODGMs+sd2ht16jXOenJXLq2vUBaSBPkZGtT6J90TN9DHRx2Ray1p0lBEQz5gh7Q+IRJATUjFGIvYieBoJ5JDQAfClDLcOPH74Ht8frrl6+pBnjz/mT7/zZ3z5j75GWK3sTuZiflRlELFUXau62HJyckLXrRjHiIhj6AeexUv2+571ejPJ2nVtQ24MxHjnq0qnhfFUwyVrYQvnRc0qlVXVjpJBoJiyd7bQurZtWXUd+92OcRwZx4j3Jkd3fX3N9fU1oQmFGQ8lcde8gKWizLzYUgrqOEtCjNXv/zlqVa/XWh3bMo3s+f8V7Ephm6sheRzGMYNiE3GYWc0lYF6+Js/V5J0oGk1a/L6SyWrycZdPHvL00UdcXzzlcG0ScjklaFqTyPPe5h7nCU3LqtuwWnUl5GJF13YWmuCFIJbz5MWZZF4pLjYBP0oaeQXFVVKOso5TAwLr+lZCJ1ATbyoFRar1sEiNv2E01Fwiss1zllxrqhcVbAMl5GOWnJOS2DiHjAshePNyLwDzFEGGErOFRtaQDas5UUC01rGeQRPkiNNcdJzFZDJrv5kMLcp4LEmvR0C0vtdaEOaofVow+qJY50+KcX5RcaXJq1FDAm9JHjx+Tp+2/c4Ms0kPGf2/WW/QDE+fXXF1eUEclHvnZ7zyyhrTPDa3eY3Zcd6xXq+4d++ck5MN63Xg9HTFn/3Z1/kP/8l3+Po33+T0TICBmAZ8Ab2aMqhZmd6BtsLJSYDmjFffXPHm26/x4NUPQX7KD773lMun1ziJ+BBpVyNvf/GUr7xzxv37LQ8e3Ofs7MQAuULKSn8Yubzc8+TRJQ8fPuPJo0surwYurgb6mBHX0biWMUJWAULBZGLWZAZI1lFzDXxNiOaiFlCmDjUZHIigAzmPpDRCHnB5pCbh5SohN4Vg2PuUzYK1ed/gQvAO71vW645V1+CcMB6SWdeaJ8jhRGmCL7HbGdEI2VOKkqMovhgCOWVSMlDji85jSpkxRVJZRIIr4uw+EJzg1EB230eSgl91BN/StsI47kzmSRNNi7HyGcQ3ZCkFBbK38xBzXasKElpMks4UNmq8s0gFzUU6CApANjZSKliuzEgtSqOU6RFUaoEVDI9nmb73xWtQvVaCra8Ult2YAS1lYyub+flrs3vrZRvNdPLC/pjeiywmtMJATHmWsmAMYAJIZRdUjLucr5H6zG4eU6oRxPySaak7vv8yxyjXEVCzFTGjkaxojGWBGHn26CHv/uwn/PqnP+bdX/yURx+8x7DbIilCHhDt8ZLMyM6ZmCKaTIO7bRu0xBo6bwnIMSnb3YGr7d4A5RhJmeJiNtZ2jInLyy3iPaHx7IaRcUykbIuaVQabZhb6YWQ49OQ207YNLliy0NX+QHZK061wHOjlmqQNUQPqAolMcrageJEiY5XZXV/xy5//lItnT7m8uGAcBr7y9W/Qbk5RmaU9rZCIuZqd87Rty3q9tgJWh0Mpe25KMSklrq6uOBx6+r7ndLMhrVeTYkDXNUeLmPWGKmlX2bWcs4VnFctMkALYjBn2wRtw6jqTg4uJoR8REU42J+z3e4s1v7oyT1rupjLrU7y08yizd6iqgzjvIY6fmY36fTfn/QQqagigcQnFnFyoA6goJnpUQXLx0SzAb86zlOkM9Kqa0csByPQbhZziNM84zYx9z8WzZzx8+DFPnzym324ZBwvzU1VcqYgXGimVSK3PbdYr1uv1pAfetq3FnVewnzJZSkp4YRaXFRst9yaX2F7m+WeacJjuW17kBGl2U4lt665mTD2nYw1TbHdlnKsUqyOUtPESMllIGWN65+cyj42iNuL8TWOnGMW51ASI2WQAs5b1CAPpKVv8s5FViZisQJCgBO+I1cmgupC/vT1e+Pa44SVB8TfTlv3u+LPj+7NkoJfg+Rg0H+/js8Yy/w6AeV4tvXd0q1P+yT/5LzPGxM9/9Qt++MMfsr8e+dY3v86f/dk3eeWVksEqfVnQTHOwyrU4p5ydrfjqV7/Ad77zVb72tTc5O3UoO5QR74qkihrbmDN4SgKH5FI4Qmla5Y03Tvj2t7/ExUXPsyfX7K4fotnx4MEZX/ryK/y9P/sy3/rWPc7OhXv37rFebXA+GIuSPeOg7HeJ3Tby+NEFv/7Ve/z63Y/4xa+e8tHDHfvDHs2CkwalQQlmN4tg1f9sEs85GbejVuXMksvsb9ZEygOax6IEMpKzgWZSj+aRqrWcFtX+Uo40TUBETZA/j0Ws3AZe4z2r1YrTkxPaxkrOmnwPCA4NHk21cyeCq1JeI3FMgBB8BT02exjoycQhGzBsWsB0lbMYMBhHJedolnfwNuSTVW4aE7R4XAimlV3ii1VLGWKxc/HiLRZLLUZc44FUot4Vh9NIzCOh6UBCAcq+gB9XYp8bTG2DxcRTWRA3G8Jaky9s4sll8pkAcwKXLcAmVBdUQXNz1KzFO5MNQEthtufIts9HqwB3aaHXz2/ZeGKWXsYMLCeougoZMy/GUlYXoN7kryfgPBM2hX1eAvkF07F4GvUbXfzU2NAKoqtbuaS9F/epgGkgx5E49Fw8fsgvf/JDfv6j7/P4w/fYXT6FuINo0lZOFB+M8Uk5sTv0HHY7vHhOTzaE0NDngSzWJ8cMw6Hncrfn0EeapmGMaoCZzBgzTVaG/YHL6z1n52d454mpMlQGdYITuuAMkBfuKOZk1cAtgxlEGUdhOw5s2o7xsEfHTKYFZ562XCyPEMxczJEp6Sr2ex59/CGHw57DYc8wjnz9j/+Ezfk9K/gU86waIQ7vuQGY63M/OTlhtbLS1jGmwjwLMUXiOLLb7Uo/W89Axs8L2jLpuFbdNAb05uLmRMhFDqwJgbaw16gaIBDHer3m/Oycw+FAf+i5urwin2RYr+i6thh2snCr25tauGUpi/Z5agtScDI8lgan/btU2S3FrdIEJCwB7CZoOgLPYIz0EfN47BJfglUbdrmiUlKK7K6vefz4EY8ePuLq4pI0HErs/E1g5L0nNKaR3TSNeRRWKwPMrQHm4D2ND3jnrVZASjOUqwZ8uRnLZNZKqKC5pMjIze+mOaco5eSMc3kiSFRz0aevlPDE3TMnqeuUsOophdYo/V78FDZQ2eVpDp3mOYfkmyB1msYKy6u1ip8qqLPzSjNozwU052iElmjGiRC8kU2pzpTyPDBdqls8F/oAC2/G7e22eObl58fbVmOjPqflMY9Lbr8oLKO+Px6/y/1/lvZbAuYKRKplprzyyjn/9J/+txjGLT/9ya/4v/1f/p8MB+Wwi7z9hTc4O3udpnUlv2Bmg1BhGAfGeOD83oqvfe0tvvKV1zg/C4jsSflQAJxjGAdSTGyve/a7gbZbcX5+ShMUcdm89KVizmuvrfj6117j5z9e8d67V6DCN77xBf79f/A1vvP33uHNLySarqcJ4DC2U7QBApoC6awFGr70xXt84a0TvvjOK5y/8h4/+NEH/PrXT9ntD5jQe1MszWq/K7jq3I8QI34CvNEYYiLCCDpAHshpIJXqRWgi60COgyXoVakl5tivtjFGOw2DWZK5xkUD2Rhih1rsYYp0jSc7i2MmR7LDFr004lwt4JLJUTHxc4v5yiUcpDrBs2YD4BlKMLGB8MIA5AyOhMtS3NqlepOHzEBoiu6AeCu7rHO9ebs/sxRdDQOZ4KlzaEzkNKCkSVFDXCiTigNpLc5QPEIoZ92UYVxCaApYqsVjDDBZFSVNpV8nY5h9VkIJyXBlkq0MjSvP2lRFTLe5ss7+OZWGz0f7pASKus3E9BbW1hYknRYZKZq6ddu60E7TBYvf1XWqvOq6VbeUKY6iUD8Tg82thEZltOu/KrNc01hMY7kC5QLcU8LnzNgfePjBb/j5j37Auz//EU8/ep9+e0HcXcFwTUOPbyF4i93N2eLySckSkIo6Q4Y5tl/huh+IKXMYciky0JCJNmaScuhH2jU8u7xm3yc2CsTMmAzkm31hJXu7dUfTNKgaq9quWhSdKnd553CNtyTGEBiGkRgHi0H2CjGCOJq2AZoSh+zRGEn9AbwnNMrFk0f89V/+OeMYiTnx9W/9KecPXsM7x5gzUrSUXVlIu65jtVpR9Zur9vKDBw/ouhU5K8MwoCmhyWTmhmEgBDfNAchNjV2YcFVxE1dEWx9y6UmLzx01Ya/oPit459lsNpydnvLs2TP2u9187mLFHTRTwj5uxkpa4nRhoj+DXusfQqvrRn0th3X1BFVQbAApF29HBRILg5fK2PkJTOfKNpfvJjt3As4lFriwurOkKUCCnIxdvnjGk0ePuHz6lOvrK3Qci6d09gCEYLKO9Zk0TVNeoQDmlratoT4zk1yT+ypItiRSi42vsczV8CaLESiqC09lZVwrmDUsMs1n1ZiYKu/lGVTmPLH4xwAtaynm5RweZ7ns05pVX3YsKWEYJvuWK29T7P0KlLUQUMznVdbVWixIk06qVvWVYiJlW/e9C6YfljI6HX82gqrM5G1Jejaebqpf/DYhD7UtKwrexii/6N/T/V38vnqr6vfHzPlnab8lYF6uVhmrqKcMY8/TJxf84ufv8ctffIDkliePr9ntzLXYJmOJHabBqyrEmNjvdsTY89pr53zlK2/xyr0V6IGce9Bkoumq5Oh4+uSKn/z4V7z77gfcv3efP/nTb/PWW+d0awiuIQQr/7laeV577YTXXuu4d55YrVb8+3//Hf7xP/oqr73R0q4uEBdB9wbCcmMZsxJQX0wCUdoghC9uOL//BdYna0LT0PcDv/nNjjElRFtm2R4PErHYogSM+BwRTaCRXKMJ1UIwRAdSOhDHHcO4AMwpkcbBEn3SaAuhYKVA12vaxhOCo/EnpDwyDj2HwwHxgjpHf9jhUNZdh4jSOGdMlGY89m/nBdcIwZfa9SWTV2pCnJj6CYWJyOJofFvHp7l4TPikxHbN8aRZSwiFOlO+ECGOVvDEeY+XQNe4EgNt7uyUE9UoEOfI0SYGV1yl5o0tCQxDnKob+dCU2LYwx1QTMNRrL6UB14DYhKS5sNblYlIpO6plEZYsuKR49VjwR7WdywIkBpBt3S7MKTolocnnDDC/iCl+8Q/sVXl7KvEnWoDypJBkE2/tNIXlrbPHyyat409VYcrZXJxjvdcyAfObJ1me0hxLOC2IlAUm4/JIGnY8fO/X/PDffJdf/+xHXD76kP76GfFwhY4HVl7ZnKzN+EyJfd+zG3pSHHACXRNQEYYhQoJhTBxitgIlQ0JxjIrpwztf5K/sRsUyji4utmS192lMFleoWGJSLiBf7JqGOLJqG5rVClXzNuUMPgQCQs6JJqwsZCRRQqoiFGlLzQZYuralCw1OYMiRFAfwDi+OiyeP+au/+FcMcSTGxHf+wT9mfXJOdpaajMoU11rZPu+tFPXV1RUAIQRefbXl5OSU+/fvI0Aaena7HTHGCSz3fY9iMl4WpuFLlVCx3I3Z9lr0JQMKuYCDXIqMODH1jrbpGPuRlCLBN5ydnjMMI9fXV2y3u8lANANkjsOvbQLMZQ7yPr14TPwBttuAQR3Xy2INFTDnbEWubo5JuQGabHtfGOkKnnQynu0YlZG0MVgLUbnp+xJeNA5sr6948vgRTx4/4urqkv12h+RE1zY3wHFoQtFKy3gvtG2g7ZrCNAfaJljMclHlEWZAXEGxzQ82rpzLhS12N8BULv1Lyiv7KtG2yLAQy1Wa5rUFcF4CyiUrexzXTZFFzNnZ2pV98Ro5Y37FvO5ZTRO5GjYT7zCNASaWYHpOmPGXazKjGrOcY2GWo6llpHE0yccMvnWExp5RJQDnvvF8/O9xO/ZS1t+ChWUt+9qyH76sfRKwPY5hvu13x7HOt53333LhkuWSZfGbY4xkVWKM7HY9l8/2jL1nszqlbU7wri0WWioMlEdoiNExDCO73ZacR95441Xe+dKbbDYBzSMi2copI2QCw5B599eP+c//s+/y/e/9mFdffR3vz7l//z6rdQPZNBNzcqQEbdtwdtbyyist73zpTb797bf58jv3SOnSCmZIQ1KHEBhG4bo/ICRT42gCzo8gmdUq0a4CoX2dfkx8/OgZT5++x9V1ESGPMEldiYJEREZER0RGHEMByVbSU/NIzj1p3BHjgTjsGPodMQ020FUsziiOxFRCM5yjkWAOypxoQ8P56QYR5eriwtxYmnGa0ZgZDxDIFr6hIDkRBNrVCn96Qtd6ugDCWJhkc8tZxbLEGBOqJqEXx0QGmrYjNK2xZf1AP0QkKrVCn9YM3gxTtju+VEQbSTGBGlvgfECLO9rizSJjTuQ84F0o8cNYAlTb0ogji8nqjGMC5xBt8C6ZvqaDqAY+Jna/GmYuWkIXCcWjOtWPxABUZbgL7E8gSfCpIQBBwKlSyzHXZJjq5rfkwTqdGiP9eWu3scu3TTI3Jzq98b5CYVfcvNMmFeTo7fHRNcTjxvFk/pltU/8xRyhPk+8Moalx+hNzrSXOtYLmrFZBD8sv8KLkYc/jD9/jp9//Lj/7wV9x9eRj0v6K3F/j4oHgEuuu4XQV8E4YSeyzVSSzOMhiyCnkpKQY6VNiN0T6MSKS8aExBksFkhIziAv4EPBNR8yw7xPOe1KGMSXi0aQPVuhgQNEc8d7Tta2BDxXwHgkteRwxZ5IlxuYYySmDs6TZnDNJB3QYaTYQThrLP2kCu+3WiiwEYR0818+e8N1/9S/JObM5OePr3/5TfLfGYRXaqh6yiMWXNk3DOI4cDvupUmDfDzx48CoPHjzg3tkZzWbNer1mHC1pMtdqiTGa5ywtKgu6CoAotk4BySVxeqpQmOf3AMF52qZlCA1xHM2o6VacnpwyDD2H/YHtdkvOmfVqbZUImQECBdTBIpY5fb7Gdc41LLDi2TJDFYnR6d/VeVNC+yUz/aay0FBBkYW1uZIgP80BE0gp95CZRJnDXQr7lyy5fRx6ri4vePrkERcXF2ZEDQe8CFAAcwg0TVvisa0/hBBKnLwxzI33xkjXwmKV8VWdJAkrMzxRH7mo6BTg6aR6o0q4YK4FsaB61MxjodO1VvRaj5ex2OE8KV/UKot27TrdgzJPVdZWnYFlrYwwSEkQlFznRaNlFneRxenZt9U4ADQlk5MrxU+0qGTlaKyygeaROA7myXLeSncXJayktufj9eC2OOF6DseT+3HM8ItCL160zhx/ftu/jwH6EpB/UpzyZwHKtf2OgNliiZtgn6squ93A7joRh0B7esrJ5p7Ft61avD8ASoqJ4E2qbRwH+r4na+S11+7zxpsPaFpjULNmNAG+w8mK/W7HB+9v+fnPn/DhBwPb6y2PH0FKZ0DLOEDMkLE4ZEfD6cmaN964xz/4h3/CW2+eEtxAHHqSCM51kAOiHc8ePeWnP/01KSpvvPkaX/rSm5zfW6EyoPR45zk9O+ftL97jj77yBr/6xWN2u5FcwgpsFpEiEG5AWekRPSBqihekkZwGYuoZxgN9vyVrJKWeOO4Yxx4fjIGt2solWgLIeAdjv6d3mbYR1uenbE5WeFXicODQ7/CirFcrEz+PIzFHNqs13aqjbQPnZ/c4Pz+lawOSD4zjrrBRLU3bolnox8ihH9htD1xd77i6vqbvR5oATSMlPMHjnZBSEWBPxgKZdmkw/ZuiGKLZgErOVi5bk5SMZUsW1Maj2ZUCBz1N09L4YFaymOyfrxNNzkVoHZBkmskiBDHVj1DKgtpzcFgSTyrWtlUgzJh2rYgvY9y+R50xlikjUfC5pRUhqEI2eb8qhxRTsrqEVZaqxIvNbMvnpy1j0Wp70SQ2gQmOJijKI1mwEZVJypXVtR3Pxzja7zTx1f0vDBMtXHFltHKJM3RV53k6C9vxEqfnEo+XSyl3XMnUzxE08vij3/CT7/8lv/zx97h6/AH5cE3IPU2jVnZWhLZxODI5WhhGzkqKyuEQiSlb7XlvUpJRYczCmB1RvYFlaYBETIkxRQ59xIdAFxwutPRjwlnsGTErfUn2kzK3VJd2Spk+m/xkRhizst3tGcZIt1rjIhyue0gJ1WsyQt9HfGhoQwPiGNNoDFNUkhvJIUJoWK82eOfY7bYgwsmmY7VqeXK55c//xT8ntB3des2XvvI1mtWJlarWOfayxpXu93tjtBm5vr7mcOh5+vQZV1dXvPnG69w/O+P09JTT0xNiHC0XI1kVxCXjbHHNHgkegpsUNSiJyiATc5ZKFUCL05yZZu+8VXPNEYdj1XScrk+Jw8hhuyeN0YQnV2vrOjFOLF2Mpl9rLGcwL93nqKU0krIt8SJSpABrmIRMTHAuci0FW6JeZtArFoZh4Alsna9spytaaXrjv1yApFsArtngMSUHJ4kcRy4vnnLx7Cn9YU+K5g1o2m6qWgf2pKtbve3aspa1ZsRUBlspEogzCFZx5q2VEiLmfInXztO8lJPgkrOiXt7jgt2EJVs8yf9rvU95MvIgWrKfs/kpp1ogxO5dCPP9n+bUkqA3i2B4qKBWQAgzYE6VUQYf2uUUB9gaWj0sgnmjBMsniuNAKgpmqubGMnnZwjDHIjU7JjJ7cI6uWxG8J8calFGOVw2Bxb9vEhzVzVj/eXNNeS4kZbGv+v3LWOwXhWXU/d4WvjHFhB+B59v282nb7xCSUQ9aF0rTxOwPke12ICdP06xZr09KMgiU4FDABmnO0PcmNi+i3Lt/xuaks2IbTgsIEdCWlDp224Fnz2C37dD8Cm37Fo7XSPGcMbaWaYqFVTQu0QRhsznlnS9/kS+/8xYnp4GcdxaG4Dty8uQY2G0TP/j+r/jP/j//gsPhwJ/+e39sKhObB7jQ43xvYQH+wMlJ4NXXTrl3f8WjRwPDaJrHJQWnMMI95B7JB8hbSL3FvIrFJ5P2aDqQ454xDYxDT049UrSEzUo1C95NlrHJwQz9SNc4hsOO/rDm/vmG++dnDIdrgsulSqI3q9h7uqbl3r0zgrfqiU3jII1oVNrWsV5tWLUtp2fn3L//Cufn9+lWa1Th+nrH48dPefj4ER9//JCPP37E5dU1HqX1FiYymsCuSfOo0DUm9p+T0oXWYh77fckMLmxuxlQFRI1txsp2+hpzSJn8SkUmjYlRB1Cd5O4QJcdMHp2py5EJfkXrG6RYyEMaGUuMeFZH0oBKg7iSrKnOJOyEYuEbK+5yDcfIeBIuR0vqq+5soQD5OuOVLOWccDjSjQoZfzfa8WQ2szNQWZPJlNalUohOC/NyQq3tOVa5EjCf5pxYTpIlFEQXv13sJGdLZ2m8oGNv81bqefLoI370b/6cX//0B1w8eg/tr2gl0gZl1XgaF6zqXmG2h6yMyTwjBorhMGZT2AimJNFHy1YfYiaquV2dWFhFVCv5jPNkrArpWHCYGQqOmEsWQtEbFy0R2GpzZhJTsBmiFTnZ95EhJtQnVDL7PpPHhEosANmAv/MNwVus4tg70hiJfSS2kdhERoclTzUNu92WOAzcL8VH3vvoIT/8q7/ktVdfo+s6vvjlP0Kz4kNDTspqteLk5GRapJyfgW/fD+z3Vm3vsNtxcX7GK6+8wr1792jbUMoWB5yvoGyhY1uZvFIYSp0uepuiyTSqx3FkGKxE9jiaAgDZ4iq98yQSolX2dMWqXdEfDozDyNAPeOdtjOc8uaVrv0duxlV/XtqN8Sq3JeDNoMZi5EteUQHFUpIpRaqaw/ydVmvUzcoZNVb2tjjTGhIxeWJz5rDfcvnsKddXl4z9wYibxirQiUjxWlusuw/OSA3msK9JqC4nVD3kGktbjOmJ2S2FbkooRI27tpOzbYAyvhTzRJZeVuZ3tOiQqxF+ZPN2OpfNs+ODhRIehWTgSwLq4n64WiyFxbHRxRpUvLs5zQBZMbJIjGyaCAiYr2dBXlAIglphE5jOm1zim3Oy3IVxJGk2Nj801FLi9Qi3xS2/iM09TrZ7UcjEy9pt7PJy37e12/Z/m8f0RQz0p22/Q9JftXGsH37729+gaRr2u579LpKSp+vWnGxOLCatJMK5EmtTQWHfD2x3W9qu4dXX7rE+aXHNaCtfNiZTacna0Q97rq6EcTzBhUDTvsn1tuX9D3p2h1Qs05auCzgXiNGqAH3hrTd47bVzmqCkdKBrAxljRxHH4dDzwfuP+OUv3yfGkddef53Liy2vvr7h5CwTgjLmPciKzekpr752zv17G5rmGWM84KXDkUl5IOuA5h7NB5z2ODG2OecRNOKICH0BzAfieCDGwcTEmzKZqJKd4tUy2R0U7UbFB0/wwtgf2F1doK++wum6oz87JbiMRnMNWVxhw+l6RajMdDIt5bhaISdr1k3Dqmm4d3bKqw9e4dXXXueVB6+yOT0tlmZDypntbst7733AD3/0I37205/z6NFjrq53DGOmaxtiq1xvD+x3PWNvKhoOW5w2qxY6z+Gwo+8PpGyDOOVkLIdFnZlVq5mcaix0nbCtME6ROJ70M+sgjmOP91YdsZFAFywOMqkWCcKRISqIM1UTaVFtgZFcErNUvEUnF1BDUrxCkAKYNZYJyiR/stjiklDqiako6gsVIQ4+X2TUrW0ZpnGDNa4TjHADNJfl1IwiLaBmum+Ub+fFadpFeXMDLH9K0Gy7mvjkyQWMzoxXZV6cCl6sYpbXxNOLR7z7sx/wsx9+l2cP30OHHZs204rgFVpnAFtwJDXZrSFm9kPiMEIkMOYi/5ajFTEisR8TucYma1Fb8VqqnZaS0y5YuFOCMZmRXBVhLKZZjMGbrkCmUC1EkeBIagk6hzExxgzevFLRNWRx9NmUe1K2a++cp1mvWTvPeOjZb7fEmNjtBysZLJmcPetVy3q1pu/3iGZO1yveevUVnlxt+d5f/mvefPMtXnvwgG59jnfG4lV2uT6PJjTG0Bbgm1Jit9uRU2R7dcnFxQVnZ2ecnm44Pz/n9PSUpg1MFUnr4jZ5NIpBVum26kZAC4iJjP3A0FvFxaE34CwqePF4MS1lAZpgISiH/c7k7vYHRKENDV6glj92zpXkLOvLvw0j9fts85i96cWZQXMFRBYu4L25/attK5T8kaLmYKDZ3QDMpg5hDL/ceuw5rraCbhEh5Ux/2HN1ecnu+po4DmiOBtjK/c+qlsQfI2McaZIlu9a6rKo1bt2ZRwV7dg4pa0tZS0tdATO4ajJf6Vr1nKpPK88MsW3nEV9Adl4YriK4lCwWOlgpbrcAaFMYlc6xzVDCOmqMR8kVqomCqjXMZQ7RQItWvKp5bUWmGcEkaut5Fpm+wqbb08poSsSYgVxCYSpg1pL0F8u9N/xUvageX8j6m8AXXgCGJ+/D80njnwWQHrcXeT1vY5Rva0tG+xhI/1timCceafpnyvC/+9/+rwCl70fiCJv1GZv1Cav1ihAclgxnSSfOe9KopJgZ+pFxGDk52XB+/5TQAS6ipBIGa6Uwk3r6QbjaZobYkXJgu2344Y8/ZHvYcXoOpydnnJ6dc+/+GauVYxwveHZxyRuvr+g6j/PZXOuiZI2IbxGEftxxvbtiTCNNLb1dJJoK7UDSkayREGCzblivPU5GyCOIFSaR3NPISHA2oJ0qrjHX2L6/Zoxjsfx6ctqjuS8g2oCwC8UFVZV6gsnESbHMvbMKiW3j6Q97+v2e4bDnfLPm/GQDeeCw2zMMxrBoKQ102F5zdXlJSpHVaoXGiCfRuBayx5NpvE2gcejp1mtWqzWr9dpcY8Hz9hde5WTzHd564xV++Ytf8957H/Dhx4+53h7IqqwbB61njAMaITQN5EjXBl65/4DdbsuzZ0+53l5zOJi6h8cXjV5nrJtCIhVRfIeXBu/D5A4TsxrM6i+JoJojaRRGVTrX4ENDg6MNDi9ATqQ0WMiIC0CHuBFVS+dTDSiB7JxJBZYijB5HkEwoQu9SgB9ihdS1JnOUzHqrzOSLO+/zVenvZe25he8FE9VtE1B1687uXIVcJn+ZZ5Ebrj+ZX58KMU/42xYbv8hgN+BtG4QaojTuWTee3fUzfvXTH/CT7/0lF4/fR4crOq+svBCkGKting9FiNGY5SHCYVD6LKhfoQEikcM4Qs4klMOQwVu88qAWhxh82WcBw7loSKcMYyxleYuCS0xWJEGLygBZJ4WGlCKKsUGKI8VMSjBm0DGZ58M3pGBhR1mzFfdQ8CnhcuZsveHk5IRms2F3dc1hfyBebVnHhlXj0ZzZrBtO1mtiHOh3kVUTOO0CV08f8f3v/msevPIKf/Kdf0hYr6mxmCGEiYWdMvNVi9qBsVZVvWIYBi4uLooh3bPf79mcmKZuZZ2rXndBNnP/moAy1Twi58w4jvQH29d+v2foR+ZiIyVcJlroRtM0bDanpJQZhsGuocbeFzUGp26q7vd59Bl57yxxmwrgbr7q/XTOlKts28JiLhjm4vOz4Iear1IBczbFh2qyiipV4dwv54yFh6n4BojjyGG/ZxwGJonR4kU0AG79Cpg1hI9e2TlTo3Fpko/U8uyqQa+pqGI4j7jKUFvPKUUei1eBomdc+OUbYQVz0l2tROmct0q6KVmSf2Bi7utrCuu4AdIEKUk6VlFxjl/W4lVdEM9UJ0vKiTmfvIRpqUwJ1q7cZz894+rZMvm+XPOhigfQchAKVlAlJyubHZylsKOz2sTLQPBs2M7s7W0g+2WxzMt7/TKQ/KI46OP3x4z38jksj1Of0adtv7tKhkLTwMn5in6vXF/vGUdltx1YbzZsNit8KAhHYvldA9ggOBwODMPAZrNivW4nYK3YAFDxUGzKIcJun0i5QTWw22d+/OPf8Ov3BrpuoFttWK/XnGxWhDaCXPP222u+9M43aFaCcybplvLAkAa836DSEdrEm2894Nvf/ibeBd76wpvcu3fOat2hXDHmA1IYIpM6SyZjJ4NRv0XPUGTA+1QKGYxo7IlxRxqu0XSAbMxqHHrSeEA0ExyW2Fis/ZRt0ARv8m4hBEQTXlrWqxXnp2tyjGy9kMeRy6dPaVwJt3COvoywnBLDYcdVsuD+3X5HEwI5Rva7LWncEw+B8/MVjXdsQ0O/P/CbODLGaFJARdqn7TrWJVFnvVrznT/9Jl/8wpv85Ge/4Ac/+gmPH1/RNh3Br9le7ywEwmSjJ9C87u6XKkQWXziUSRLVSQmj9ifNluwZQoN3HsS0GKt2fBNCSbAoCV45k4aBEc+I0IjStWtWq5bQAteJq92BPo12Dm5AxfSzwVjnTAAscZEkiAZL9kNBR2qxk3KKpYqSmDIJNuuqWFGJkU8/AP9Q221u1ePM+uPtjgH1jUkQCogtTI6+3MX2CWd3E2wvJ1GRyj/Zf+ZcMK3TsnCM+cAHv/4FP/3BX/Pxb35hiX0+EyQVgJSLtGKRhqol1l3ANQ4JSh4jyXloFHV7U8BRZ2rrhaVMFOO3uGS9mILPGK3gj3iDFsNo3ha8n0I/REqiWZn7LLRASMSSaOfJ0Upox8JGxyxQYh7HooGeMRWaMY6kwTE6h7Qtr6zXnKw3hG7F1cUFu6sL4naHrjvzAtJxuu5oQ8kzOfQ4hHXr+ei9d/mLf/kvOD9/lS9+eUXTrQjBT8lYpr08Tn3AOftuterYrDdsSgyqLYCJvu+JKbHb7+i6ltWqnRIIQxNwweLDXVWskBmUTEC6LO5pjAz9UOT04qRBO7mlU7JkQ5Su6xiGFSlFc/uL6dRzozsZCPltGanfZ6vzN8zjtxoiN6X7qpawgWOREpp8q0nLtL/y7gb7fptxPW1bwCKFcY1Dz9Bb7LKIlJCGRIwwuBF/w7tl5zmD5QL0vMnc5ZSNBBOxCsNaxpcCYvkA6qxmBGW9cVMc981rtP5SMifUyCorSlISjo3RwfvCOGerTxC0sfX6aK5c3v+lAVHX/HqPa/y3W4I+rYmUpn8+GSYy30+p+5J5fhWxEvLRe0SMSe77HjOIdCIzXCEzkuYphjznBM4fTasz8FzO8TNY1UV/eX7+f377T99uW1Om+3NLuw1Av4hhfpmCxm3ttwTMtqjYg4G+B+8aVBO77Y7d7sArDx5w//49Tk7WhCCIFDWEUoayWmz73YHDvmdzsinyPhHF2FwDIh6K9NjVdsv19Z6cBd80iPdc73fsx2t8OCDytFhYkPVA8Hteuf/3ONmsEJcZ4g7vEt5BkBFkS04jp+dr/v4//GO+/JWvIOLZnKw4f9AhIZs7pg50EVIaGUdjh00BoySCkYt83EDfX7G9fsKwv0LygdZnujbQhMB2b4VKLGGglG9ESTkzRiuZKxJYdVbtqw0BwbNqG+6dnnB+umHsexoH2+srtleXOBLnpydoGmkEfNsQvcUs5XEkjQMeaL3HC5Y1L4EUlXHIXF5suXh2ZczMYUdG6VadaZeenXN2fmZZ7KO5dF579QFf+9pXePDgAZuTU374o59xcXHNMCTS4NhtB/KoNF1LcHDYXbNaregaz73TDd7B9bWxPVBle4zhyc7hs5rlrGIZ02KAR8U0nIO3YhRZS0GRbP0q6oEhJ1rJhJOWs5MNa21wThHJ7IdInzJDGqxKoQZwGWqFPlxRyHB4ZXrN8EvIztxx0lh5VounLiColEsa9fMPmJftNnb5mGl+EZio02jhfqYJf2aA5+2Of3frjqZJ+QXHkzI76Xw0p7aoORRxytOHH/GzH36P937xU/rtM1Z+oKvenJRIQ6SPkeAafGhRAkNWDjGzHzLbPnJ1GEjSMCQY1DGoA3UkhZizLf5l4YUFWyeW+JdzngoO5ZxovElkQZnEJ1ex6aN7JzTekV1AS3hRziU+2rcEL4j3uNAyRmFQRQqbH5OSh0gWCwgbc2Z36DndnND5QLPe0Gli3F3Tj9Ek59SSjNdFusuFgIvm3u53V7z3y5/y/b/612xO7vPam2+bG9c7mralyi2Ir6aNubPNOBZcqcrXtJZvgGKlgcszHMaRlDPDONK0Db4JiPclxtLiLKvWrjq1YhXB5soQfNFhtqJKY57VAqSA65RyUeTQouXbMfRF6q4J5C5PknYVLHs3s52fl7YExcuKZ0t94ynsShVVI6fmECeYKE4qYbAERqaS5dQMQYtBL0BRsGdbnv8N0JRNUetwOLDf7xnHES8WqqSl7kCM0XCpt3A5X1QyDG/XyreVtDMia9IDUfPWBBcwPDuHENj7mbU9Jv9AZqUNKB6xNH0376NIKuZi6GrRqHZ5StStoFTEEi5d0fOv05jMd6ecj91fq61QY67TxHyjpThaOWVT5HIGtEsZzqoWQ5mjQzEyU7J8AnLGB0FTKmpGpZBYikWAYY8LHb4LZTLVStQvHntl4OttM6Ni2ZZs8BI4f1pw+mmA8XF7GYA+Buu/Tfwy/FaAuYLlAgomb4tjt91x6C3r2bvAyWbFyUlHCNVtMMcCCUJOcNj1HPYDwXcE16FJsKRcY0cQh6jFAO/3O/ZDT9SEaz2+S5ydekJoEUb64aok93i0N43P1q9Zr04AJUs29QgneJQxbRHvaNfCW196wBtfbEgaERdxYSD5RHYZtC2V/TzoyDhco+mahj1d1WxWBXqG/oL95fsctk+AgZO25f7ZGSE0XF5ekYfREnKKqoRisbBjzkVKKuPFXDzeKd4rQWAVhFYUn0acy7jWI11g1IgOe8btQPDC2gHeWKSUsGQYUVL2Uznb4AJtWCEucH0defToY/aHPTknuq5lfbLC+zWnp6/w2quv8/obb/Lgwat0bUtMA84Lq80Jf/TgDVan57jQ8P3v/5DHD58gLtEEhRxxeaRxGdLAcBgJTjk9WSFkUj9w0KIvPU0sGZyVQHWqNJIJahJGoXWlcpeieSAV8XzBlUx5O07KidiApA0rf8YmBCQ3BFbsh8T1IXK5HcijuZ/UW4wnRHwMNKOj7T1dhq4qfkgwrebGJuDohebeipM3XkOCR71w+fAhu+2OVdMyAmw/+8j6fbdPw6C9iFF+2e+NjS9/62JV54PJ1blYtFSrCALzwl2QcBXwq6h7WvBsPEWXiDmSJc+QWpU8Dkg8kA873vv5z/jlj37A9eOPaV2kax1dsKI5Y1QOfSYn03JvmhWjCpf9gYtdz/YwcLE7cH2IJbzQM+AZi2K3ipDELlSEIqFYXLCScE1NFlLE5wn4NY25d2toT87FdZwjUUcEaLwjdCuTfVOLgXaupQvmlk4K4gNerex9yubm9jTkMXPIoynURIhDZrfrWbUdm5XJRYauIw4Hi5PuR1wbcG3LZrWhcULeHdjudohzHC6f8oPv/ktef/1Nzs/WrE/OTR++bSyhURKJEmeZFU+CNJLSwJg8UdtiJHSl/LQr96KAVMpCLI6U1byOqbBiUtVRqoIIkzeubQKrrmVsG5MrySZlKQhpYqNNt9qkvRxduyKOie3umkwmCVPVOC0hGVNs/OeoVXAMtwOQGywwHuesNoIrlTinEIQyVoWM6f1Og9PGqmBSmlIrU5bjA1O8bWE/K9Adhp7r7Za+7y3hzNXiHSUMyal5mUlW3rrmhlC8L1hZdzeBy2xVZq3DTV6mW8jxG+2my59JX7+Sv1M4CTPIVp2ZZnGmySzZ4oW1AHtfkiW1qLUIQM5G8kz33TxXSJHVTGrXnTJZkhn6UIC5fTcjbYPbKlVZwwC0aqnkhz0XKTUXxB5AyR8qtiB+yhFCKZ6kHb7p6HyLJWXkIvFqoQvVBhItSYpoMYzm0J1lW4Y8LJn328Ijlp+/bC16Ln76U7bnPB71ePnT7+O3jGG2sAQENMNqbVrET59e8uzpBYrivLI5aVivGwuMJ1eHBkABn5R4Wwi+w0uDpAbRBiHiyaiU2uhxZBxMUWIY92xOG975yqt8/Ztf5OxUGIbHPHnyLtvrS1IP+ytw6rh3ep/gGpOlKVW4cjZ1hJiF1q9IrFFZEXwwqSSXIWiJnw6gpt0ravrQcTiQhh3oAVOUsbg4ck/qL0n9M066kTfffMBbr71JkJYPP3jIfntNv9tDSUQRgVGVVBRDxAeLdRQDj6rR4hIpMmmSURdpnDOJt1VDCpassQrCqjErN5Vqd6rCmAJj7IgxWyGE8gw1K5fPrumHnjGa/vNqs2K9OTEZwHaDdyuyBuLgGHoDAUPMxDwQ9RlvvtHxzjtfJmW4vt5yfXXNMPQ04uh3B/a7LePpCffO16YHmhVE6LynazyazAVtk1Nh6CWbAL06vCreJdrWs9m09EMkjr0ldDQm+J5G5ZAS4u1+Bqd4UYstTwNN03LaeGTVEEoyXgyJPGpRMxhtosHjtMEPgXBQOlE6hEYcor6EYXhTQ2k8Z195g9e+/mXkbAObNfHdX5I/+ph7m1PWjPCrzz6yfp/ttsnkZdt+0oR2vK2iFlOPzCAZqOz9tL19ZP+7cYzCx9Sy1gUsV7amssmZhLpc5qYi1ZQzPo+kfs/D37zLj//NX/H4g/foHNzbrNmsHakYdYf9QD+Cqif1kIYD+6hsh5E+K4N4YmjpyQzDiBMlqmPEI9nhgscHcxM7p6ZOUzxsjdPi4clTzGjbhBJ6FHDe07YrRIRxjFawJA7ExgCKE8c4JqKzRNUxWXVJoQHnyMkYL3PHYgs6AV9LUKJoUuKQrJhJNE3zvu9pHTRkyyVAGVTZDonQp/8/dX/WJEuWZWdi35l0sMGne2+MGTlWIasKKDQbAgEppPC13/hD+ED+Ov6ApkgPIKoaaKAKhawcIyMj4s4+2aDDmfiwj5qpW/iNjMhsICv0il93NzdTU1M9es7ea6+9Fq7WVMpgnaNylhA8adxz/+YF//Af/x3Pnl7yk5/+FW1jWK8Xpf9jXpLPggJGuX/HUTNWFS460Vs2EozaStDsSYP50FxUjIXEtc0USgYHZHQeoGmlsFrjjCW6CNmhVJGIS+ZIcwNGL70GE+c9pcwYoxhIxbk75LHJ6ru0PUaLeBdlQhXN/ENwqyYjqcPeOFIXZnDj1OdD4dBGkdec0NPp3E1B1hQD7LqOu7t7fAxY58p9FLCFJmGsRlmDcaY00yahDRQ5txRTCSxTQV0F2RWtZg71LMVXg6spKJvoBXMnOIVUEw5pepHiE/3+kh9MhiyT7GHRfz64Dulc9KxlXIkPwgyxNxpSYXorLUZaBVTQOYsSTMoyj3G8d4lyPBIz5+O8OiH4Sj5TLA69KIU2ulRlxFI8Bl/W4VlwWpRL0kRtSYHoR7RxRaZPKGFkJaBbue6ybhbEvpy9aVycNgY+tr6cjsl38Y9Pnz/9/McGy7M/fuP9/BGUjOPWthVKa4yz7PuO3X7H1fkFq3VN3RiUEn7RnJOktSamyND3QNHMywaoIJZOcBVQOELUDP3IfrsjDD2EkVVt+OmPP+H/+n/71zx7VuPDW7a7V3S7HWk0bO8y99dbLi4ralfjFFhbCzpDJTd1WhLTJfuuJYSWql2S0wKf97gqSKCflVgml+w1RRiGSD+MEgRm0WUd+x4/bBnHO9rK8Mn3f8Bf/4ufcnl2zu8+/ZzPPv0NftiR40hV1RAVAZHzEV1gTZbuA3QuusM+EA42pJlsFI1Z0DjhNgaViUmUNM6XDatlg9GTHW4smrDCd8xIM9EwBoZhpO8HfAroFLFl0Kcw0u0h+JFuv+fu9p4XL17h7G/QxqGtwxiwFparJR98+CE//smfsWhX/OhHP2F7v+fLL75gc3NHNIYQA33XkeIZWoMPnoymspZVuxADhxBkEdQKHyVbr6zFaYfNIqdXV4ZFY9HKMmSZFCtXobVjvxsYh4hCSl7OGHEuA8Z+YLJW1kqjcpDSfEGlhJ8cp9yPiZKhAxidsBZcUtRZ4ZLCZEnNszWwqklPFtj3rlDvP+PZpSG+WPHs8gk+e/j//GF31p9y+32ls99Hv5jv57FFec5/O93HO5sI3zkpTq/PD36X0rCVUipjceyKmBzZbm/5+T/8Hb/5xc8I/ZZnFyvOVg2oyG63Y7vdkZPCmAqw+KToxpHt4OkTJGOIeZLVkqAWhQRWSkgnlZWxnFPAaKgrS9M4MVYgoaI/aLUaLc2uxlrapqFpFyzaJTnDvtsL9zlacnRF9Sey23ZFEcPRDZ5MYsxRmEWIXCMFjCAlGe9apOy0dMESfSDHgKkrVNb4MeBjpHGWZdvgrEblSAzQD57dvic3FbVzqMWS/XZL9CMpen77m1/wH//DFVfPnrJatDSVRauEUqmgknJdJoqFGg3ZGOzQY91kay9XUBoFs1QkJ+kzrYsjYkajZyoAhe89a+aZAl8QPqw1lmyPYzZn4S2nJCX/EMKhlyJnkbj00ZN9WbhtPqKD/GFGB//UtseS3dPGqseec0rByvnhvSw0Ignkph4qNd8v86Aqs9/tub29xfsg5lop4sdYlFakUdTVLaboGIcQ0Ur0g6drF3zAoohaYSdLajhw3CfqwGOB8unnOnx2c9QVl6SvVGYLACX7m87RJM9X5Gxn6GmM8cE8ekqNmXD9ErlKIJ4p9Ao5t3IrT06BJQmYIfhCFZ3Q2+m1wvHOE/1JaXJRsHGVI/ix6ItnYjw25k63TspJ+jy8xx7MvSSg1iWRlYcmFB/knYsEMBMK/xBBnvOG549P5+MxxHj+82PW1vPn/T7A511rmhzToy95dPsDKRnH4Y+C/+F/+H+glOH+fst2twUyzaKiaSzOgTbTB5JURBXofhw9u/0e7+VmGYZIihXZFMRIB5QyEBVxHInjHpN7GjuybuHqrOJioTlfgbI1H334vpRCU8v9debXv/ycnPeHrlGnnJTsY6aunxCVYnPr+OWvbnj58ktsvcRWUDWJxVLRNJraOZp6QVPVaOXpdhkvjt2QEkO3ZewGxm6PH7Y4G/nBDz/g3/z3/5Kf/OQTbt++pdteo3PP5VlD29Zk5dh0A9veUxmLtoreB3wMRTsUtEqYnLFK0RjN0lqW1uBipHaiApFKINzUFVeXa64uV9RVwzCOdL1oRIeYsLaiblpiyuz2e/a7jn4Y2e1atvuOfugY/Ij3I77bEwZpWIpRkNcQMn3v5b3airatqGpH87Nf8fd//4/88Ic/5OrJFR9//D222y23b6/RVlNrhw8jQ9ezaCpyiKAzTV2jMox9T/Ieq0q5WVlCEr5mY8RuOKWAVoGcBpxJVOtaytO2wtgaZww5BvpOXMPEHUpc3fpedK4zIgcm9tyRTFFLyUAS7UwJnhXKZ4zXOJupksIpCZpdFl1PZRSqrrijx6melRlp6kR/UYE+J5yv2O7uv/1t9SfeHkOi4NuVvE5fP/+SCVx/BXk4fd3pz992E8NGLeY2MeOUwmpFGnpeffEZv/3VP0LouDhraSuF0YnNZst2u2ccI22zxFWNyL35hDIKbTUqRLyPdD7QDYEQIWYxzgAxz1Fkag3OaoyyVM6waCuWi4a6dpgUyH6cMJjjQpWhbTTnZxXnZwtSVmw20tTkh0jOjrpZEEPi3sCu96AdtTO4IbD3iTGDzgl8LoS5gq4HoY6I4qEhJpFaTAmyVahCRUnZ4EOmGwIpWVHNsZoxiGRk8IHz1YJF3UKT2EfZv++3/OJnf8f7H7zPv/o3/3faSlNZxS4XCSupEwqHOWa0DyjjGd14NCfREqR47w/X0RiDMRIwW22LgkXhgVJslvNxcRZd/2KTPZ3UCZU2GrF9Lk3MlaOua7yXYNl7f1g0Y5RmYlENiPLeWrTtD+6V35HtXUnvFCRNgdlpQPl19+bpvh4E2EqkCbXWB876gcd7oF4lYkx0fUfX7cQePUdUirPA6iH/OoRITiNaFZOVckwZoS9E74kU17ykiinLpIn88DMoJPA7/GH2PU+/F3RW6Ad56vWWx0qFbHoPOUZV5PdK0l7O72NzIeVcaK2Ft68kudOzczzNKfLcKSQ9HL2M+6kyV8b5VJo7qtMI7XUKSp07NiQeG+Cm61eC/FSaX0ePMZJog0ZwokJJOgTMQoeUU3bUqaeAgPOxNDcQmX9/0AQ5G1Pz76djbfr5XWP167Y/lMox3751wHxs3Tk8wP/r//3/JGXDdtez3e2JRLTJVI3BOl1KGAaUK6UCMbboup7tdk/fj9xv9tzfd4RRU5kKCOSkyFqhElgVaayndh213bFajFydZdbtSFMFlN3jqkj0kIKU7Laba5pGc9SBTQW1yYyjIaUFm23gZ//wgn/3Nz9n9FC3ltWZYblWNA2y6DULFk1DUytSHHn14jX7bc/Y92zur+nu78lhpHJweXbODz/+gA+eXNHf3/PZr/+RNy9/C2nPsjVYB2NUjEEToiYbKyLoITL0A0qJZqs2GecqlnXFuqk5XzSsG0etFUunqa0hmYTRhuWy4XLVcL6oaZoaHyx9bRkHzzB6mrZlsVoTU6ZfWOLlmpTg9m7Dze09d9sN+27PrlPSsGQsvqDRIU71FoXIQCh8H+i2PTdseP7lK148f8VP/+KnNE1NXTXUdUMfRXM1RiktV9YRtScDlTYoB04pPJTEACpnS2OfwirFopbu/xgDVgdspVmuWgSUMhhTExcNRmVubu4ZR4/S06TsGceE8sVmOGaUrVi2La5qMbrn+m6DHwYipugzQw5abLF1pMqKCo3NYCdTE2dplkvMh8+onp3BeUM+c/TRsAuKbAbejHd/0M34p9rmE7l8l/+nkuZ8+338stO/zxeLxySKvkkA/W22nBUqKWmUy+C0Io8Dt69f8Ot//M+8ef4ZrU2cL2tMGiHkEiwnjGkwtiZmQzeMdGOgD0LdGUOiHyLd6BlCwocsTa4xChUggzMKR2JlHU1dsWgcTWWoa0NbGxprcbnGlEZRsYP2hS4wsFADaxswxrLAkJKm2wdCyNSNQquahc7c7XrGCIu6YtnCdvTsx8gQE70JBDQ+KFSM9GEkhSjlU2VFAWNitaRIDh6sxRhHzoahNPbppgJdkckMo9DQdC6W01VNDIH9sCP0A/e3iv/tb/4Xvvf9H3B1seB81bDZ3JMmjfIszYcpQ8wZHwLj6LF2LHJzIjVn7ZRA5ILSiYlIDElcREs5XErBFBpFIoZ4dC4L6WD6dLRunoKDjNaUIFrhnCVGK1J9pXGMLAHLmEaSNqSi666NPgYL35FtHlBM99m70NXT13yTgOI0KVYooQalQpOY7edoBpOIKTAMvSi3JKHpOK2onRMKRzmuGCKJgNaGqqpEwlMrnLHYIjkYU0T5VHT/FaFEt0mJnrF8KGRSK4Gy0Hxm1aspQAahQuRY0GVpPE9auO5CQ5jmyYfUg9NzOH3/uqqEOvw7HsN0zsQdVca7mnTjSAcb80mP+hj4zt67SFQdGgSR4xDFKXUMqlUZA0oA0BgjjB4zDjSN7FMpqW5PiPoRUT6pODABI++uHp4iy+8aU8CjUm+ngfI7q5K/Z/tDg2X4gxHm46YV+JAYR0ETYpE+WV+csTpbUjUVSjlStoVTp1DUjB72u5H9fmDfjdzcbLm93TP6TNMUl6skjRlawXKp+fjjJX/+51dcXhh+8INLfvD9hoszj7MjUW+wBuHqpsTo4fruFU/0mQTtSm6EyhmycdztO9ALQszc3G15/vwN6IqLyzXGCYXk7m5Ht98SxhGVoa0rohdZtpu3b3nz5hXbzTVx7LBEFvWSi1XN2G352X/+O+7v3vD8i1+z3d5iXU3TLmlx9B5cVXGB434/8OZmSxq9OMxpjcuZRsNZ47hcL7larzhf1Cxqy8IKPcGoxNADKrNuDKtG0zjE7c9mnDZ4pxg9OGepdCLkSLOsWLQLtHHcnS15s2y527Tsuo7tfkdICW1rfILtrud+27HdDyhlhCmDYuxlwdNW0KMXX75EK80HH7xHXdVcXlxxEzNd2BLjZPohbmghRqKpsdrQOCt6sTlB9NSuomkaaVRJoXwWhbENi2WNqwzNoj4gRgpL8JCj2H3uu15A4+hJPmGVUIVyUbAwGOrWsFyuqKqWGBL78ZYxRdCRyUlJkbBa4bSodCiQWr9SGOtYrVasP3gf31aMyWPxJAN9GtFJsx33f/AN+afY1OxremRChdKh/sdhUv+6CUcd/suHRpPpsVOkZR4sfy3CPC143+CTaCwKLU2zaHQaub+94bNf/iOf/fJnEPYsljWVhdB7dvsd3b4H5TC2JkTFvu/ZD4ExZPZjYD8GxpgZY2IYE0OI+JQOQRs50VSOVV2xrCyX6wXn65ZlLeM4pZEqJlpjaa1GI5SzpBJJZ6IRqleVOtRwg6tqrI1Y6xiNo+8zEGT86xpLYtd7gjJkW9H6ml030oXEEBMhG4aQqIzGEhgG6SGxKotMm3YlaJQOelBkpcFUZCjqE46YjdCXMpBGNpsOleFsvRCTqNjjhz1hgM8//SX/9n/+H/nrf/V/4b0n59zc3KAQWkc68Dc1OQuf2HvPMAwFSTYlYLYH1IlyHJN7GlER86SFLtKboi8bRaM3SIAdUyLFGS3gFN1TR6TZOTFXmTjTU4CQk3A5gz4u8NJI9d3apsAI3l0Wn7Z5Unvq7PZYUDg/rxPyr5QEnPOA9DRgzjmQYmAYe0H4U5EHVSJfGkdfGhU14yhqKdZVVHZSfbDl72Lik3MWmTgQyUTkGEQy7ihVqpSSOdwYkpDvirOmOkxtWakSY5cgUmmyScI31ukY3ioOqLO8f37n9PRVKsskfCDJgzxYgMGcyzGBytPcKfUUDvSmgt7OkGSZa/VBWEEx52hnQB/VUWbHkyYHxAeVmlgoLyMp1aVh+Xidc0l8lZLjlV4rDtbj037mn/V0PM2rB485Q07nbe72+Rji/G02Y8zhNY85F37T7Q/kMB+3FKCqV+z3kTdvNgxj5vLpMy6K5Jh1LTkLmqsodsKqJibNMCr6EbpecXcfuL8f6YfIcuVksc6gVMToxHql+fOffoB1nm4/8uzZU77//TPads8Qt8TcoVWDMeDx3G/3PH/5nKrWhBSKZFtHXVmUcdhakXUk654x3pHylovz9/npX36PP//p91iuMn7csLm/YbfZ4ofA7n7k+ZcveHn/ijev3/Dm1Ut8v6OtNM4pnMsEv+e3n/6S3eZO7KqN5+JywXvvPWV9/hTtlnRDphuh6+HTz59zc32Lzal0eTsaEzirMhdtzbPzJU/WS9aLhtZqbI60tQTMta6w1nBxueb8ckXVVIfroo0l50w/jvjBE0KP8pF20XK+rLCuonaGujJcnLX4KOcoa4t2Nf0Yef32hs+fvyLnW3KEPgahnwwelCrd6VKy2e87vI+crc84O1sz9j05BnbbDfv9hlrDMPSMo6cyFavlgkVT4fvSlR8yFsuqkaA5hp5x3OGcYrVecnG5RluwzrJoF8KfSoa+O0pGVVvLvuvwfiBGh1YOZ6WRJWcvXcD7Pc42rBcNw+UZ2zAydj0oMElhg8JaRWU11uoDryyWHg3nRDlAa0e437NVAbtsMSnSJkU1JvJu+GNvq/+22wTCCdDwAEj7ylT2eyaazMNFQk3ICd+OKzZ//1IZ/WZBc+lOl5pWhjCyuXnF889+zeb6NWdNzXJR43RmDIHb21vGUaOrhpg1wxDZ9SNjVGRtSRp8iowhMUYYfKIfPVlr4VvahCNx1jZcLluWzvDkbMHVWUvjDEO3Yb/36DFCMiQNuegjq4kyoGGxagXh6Tek0GErS60zbeuo0PRDwCENPLk2qBQZU8bUFmcyJieqmBhjJmLpY8IRMWlgTzzQjkxOqCQUg8o5tNHEmOlDJEQvikNZid324KmNoq0sVjkG33G72WKsYb1uaRYt2ni2+w7tFP/pP/wN67NLnnzwCeerBSnu6acGJCjJFtJ4WDiogjQ7rBEt3lR4lSmKOUvKGaccKuvCsRTkjVSavmIq6HU64WROi+wc1XoYLAtXU5qhnLO46Io5hGLioeoSsIfiJPdd2n4fveJdlI13BSiniYf6ykRxLO8/SIDhQA9QShNjFEdG7w/B1qSSksv1kSRFABZtHEpLf4rV+qCP7lNRUTKaqBTBe3QJFo0W3fJj3ezI081KS0NdUGRTAuYpWcrIHCLSV6QkSlXlJDDn5R9PzjcP4A5BZE5CH51Q6DzRPKbjmc6zvE5PCHdJ0Ofc/VIWkabqEkyLK2GZNCewYi4liFCOHkuOhKY0lvFvCnpcEunMISCXvReEe+6lMNsXTA23Dysbp/SK08T2NFiej8mv4ym/K/h+oDl+Umn5Nr0J3ypgfsdh8vOffcbZxVNev9mz6yKbbY9Piohj32Wa1lHVjhwlYNZUZDS9t+w6ce9LdPzqNy/5+JMnNO0zFgtDVlYyGB0xteLqWU2z+AStDG3dFLvtPcYmstL4JNq6/Rj58uVrPv3sS+qm4W7fc/6sFVFwItHvUM4BG8Z0g4+v2I+/Y03m4skP+Iu/uuLisiKnSyr7Q0R0wfL2led//w//wO31Wz7tdiJDNHZUukLXNSl67u9vCWPP0O1oa8Mn3/+Iv/qrH/OTn/wZy9Ulw6jY9ZF+gN/89gUvnj/HJE+tE7qgxwsLTxeGJ+ctT9ctl+uWZVNRW0E9G6dRKhKjZrFsee+9pyzOWmnqmTJ6XQLmYWC/6xnHAdXW1M6hiTgD62VF2zh8XJMBYx1ZGTovRh/OGsniQ8LkDU6PDFoTnJObRWvqRU3WEENgt9vy9OkTzs7Oub+9I6YoC1GRaDpfr9jv9hiVMUp0ZcVwxaJIkgQ4zdOrM6rqgs32LdvdPVqNKDzr1YrVeol1FUpbUjbc3+3Z7fe0qwrrDFrD/Z3oYzurWTQ1aIPdD2x2PUO3Z5MVq/NLVm3F2arl1vf0fY9PmRxrSAaVcrEkF9F7pUBZSzSa+7t7mhdvaT84Z3F+Qb6PhL7nbJ+pHTQ337GAuWyHifMQ5H777V2L6tTMMn+v+QT4lUlb/nAsU85gZjUvp55sKYqGcBx7iANx3PHis9/y4vPPUCmglaZ2FeTA4CMJg6sakjKiQJEVWVnG6BnHAZ8VyjhSQFwss8K5GmVFrskpRWtgVVtWleGssSxsosojesxo31PniFYRlwKVlkVfFWdNkZ3TtE1FiILsqORxGUwasWh0bbA54eMIRFaNpa2XbPtAIKKsQtUGN2ZGrehDIOVA1IHkNLZ1jD6KwoAfCVmaCckZYx2qGI5MUnUxHuoKjDmT00hlhI4R/cj1/YZEZrkQc6PlsgEtkpy/+uV/oVms+OC9K8Yhst/dQtI4XSzuEVtkP0asSfgxMOgRa0RNSRoGI+TJglmhdDyUzCfZZhIHua0JUU5J3GMfjjNB2eZUjFRUyrRWVJUlJUcIDh8dIXpSOC6qU9CMVg8tk78j23QPTkHoqRPjPMGYc00nZPCxfc2rANPzUpGKndMc9IRKzvYjplUD+25HjOGA6mulGSe3zChf3kcyClNQZV1cPEMIhCy9CRlB/0OWsXFg0hqDTtOx6jJ28kGxIockIEjKMt/rXOgkolKhEZk7lRSJJP0Bago+RVkiJ3H2zEQM6lApmc7LuwKzEAIqqkMFBTOd+6KWMTWXZzExUQaSOjb8SZIYCwhegIicSSEfNcdBGiaVNNxO2syUY/KjZwwjWc0oMFEEDAIK6xqYOM4cE01pfpzoS8fUYaLpnganOWestV+pXJxykueVj3ll5HTsfd04n5/n+ZiepBXna8xjVZZvsv3hCPMB+rH8f//Hf0vdXPD5l6/o9hmtG7ou8cXzO9r2FWdnNW1jqWtLUzdUlQUs251h3xliXnK/hb//h9+yWCjqOvPjH31I0y6JCWIacJXCVqIzPLleCVdNo2gwqkEpTT9Evnix4defXvP2LvL23vPy7Y5nH7XUTUtAmmBi7khEXNXx7H3HT356xfvvn/PxJ47V2R5X7akcNLYiBQiDYrnQVDYTfE+/36OVEhQkCRWkG0aGbiSGnsoZnr3/jL/+l/+C//O/+e/4/ve/T1UvubnZc3vXsdmOfP7ZF+A7KgK2sdiqYtlWXCwaPrhoeXpxweXZimVdCxrsNG1VYUVUA61huW65vLzANVW50Y8k/5yh7zu0UoTgShlFFpHoB9CGuqq5WKxYLJe4qmbX9Vzf3pOix68bwrMLDJllXbPd9XRDxPuEtpa6aXBNxc3dDW9u3tLv9/ihJ8WEj/5gR2pdxWq9hOKUmEIihBFypK0sKIM1GVJgt7nn4mzJ1eUVl5cfsOtWvL1+yRj2VPUZ67MFShvGkMghUTeWZlXTjQNKJ5aLihRrwhgKl0saQ6ySc5fSiO87NhmUdRgilYGRSPIDKmlas2BZORpjMJMF92GhH0g3Ef+ffkH75ZrUOEJjGUrDYbYV5uV3q+nvIR2jTE7HX779/qYJsPx8mCv+iOP7psdhDKRU5KmC583LL/jsN7/g+tULWqPFrKNu2e+2dCOMUZOVJaGJCcYY6fzIthsYQhIeKxaMwdY1SkxKyUUJwpZETyePCgkTHFXKxP2A9x0peGonKhhGJQyR2jlsJRJnzhm0NVycrRmD0BSCH0VGLSXS2CPyrBEnTiAAxAxUFp81NoBxmUpbIpo+JuoBXBoxUVFh8Fbjk9h7Z2XQ1hFzpht6Ypex9QJbLxBHMchFH1alacEUEwRtNL0f2fQDVd3QuAqdPN0Q0Nayu7vn7cuXfPjxj7g6W7Hf7tnuhuJaKOjilDyFEA6L6bRQxhgxxhwCVV0CKKXFKhkzKd5MwVougXIkhEiISWh5IRZzqHTY72mQqJTCWktd1/K7loGah170aovaQAZMSkX7/buzzZtsp98fc+ucb6f80kMwPLv/ThPf6XWFiSXviTTXHZHI8nwSw9jT9x0pRglKUaVCIL0A4ziQs1jIay39TkIvlwDIGnMwBxE6h9wPRonWtkbWOa3lu2gzKzEXmfgXE4IpB3/8udA6ps9CoTjIGiA293JvCBUhp0RSQIzo+NAWe04BOD3H0+OTOpiyAGqSmp5O7mGs6rJ2T/yRnFLhOUumIIoYxchrCqCLiEBWRzqCKu/ry1yTVUbbQolyljiOjOPAMAwM44hz9YMky9jieqrycX4vpzCfjLHTSsVjnPrH0Oavq4q8q0LyFT79lHBMajvqqPd/apP9bQyJ/rCAWc1/qPmf/ud/z3L5DB8BZRlD5NPPXjKMf8Pf//0vWSxq1quW9WrJarlitTqjbpZ89tlL3t54MitGr/jsd3do9UvqykGq+eh7T2gXK4yrRW8Rj3YVSitSEmVnsiVFR/Cw7wIv32z4x5/f8LNfXHO7rbi+Uzx/3fNj72gXjjFuiGFE64i1kWfP1vybf/PP+ejj91gsF3zyyVPOLxI5d1TOopLHqAplDX234cvnn/Li5Wf0/QZnDdYtIAX6UcqLKo00tea9J1f84M9+xJ/99M/5wY9+yNXVE/wQsXbAWoUf9ty8fsH+/i02e+q2oW0cV1drPrhc8MHlgov1irapcEpTO0Pb1KxXS1AJbQQdaZeLUhqV7NQYgzPSJBFCIJOp25GmDJ7gPUM/EJPHGU3tNE1tqZzGmEztFG2tGRoNqaE2lovVms2zPZttx34QGTxbVbiqIqTIZ19qRt+jlZIMNcrNKA5Oskj64Kmt6Kz2vi+uQxFbBGMrpwk+sN9t2GwaLq8aLi7Pef+jK+pW8erNS3b7e87SmkW7AmPIKsEYcbUVsxWtaCrRnd1u9yglk0YICbKicY6YIHQ9w36LciI/t7DiMGhzosmZlbUstKbKGZuleUyLp6MoumxHhl9tcM/f0qtEsJqkMnVV0RjHsP+OBcyzAHmODv9R+4QjUv1IsPyt9q8mfumELr/riVlUVUi0lWHoRl5+8VtefPk7wtDRnC9ZLFaECNe3W+42A1lVWCMl/xAD3TCy7wdxiFNFPV4ryFoa1OOEvEWsiVidqbWiNYqF0zQmo/2AImByoLaKRe2oKosziqa21JUrjWTHAEUhlRZTa3IlAVxW4npHCOAcSlmUkspKjBqIQr1XkZQjRkE24DQQs0iqWRm/YygyiiiyNpiqIioN1hESJKUIYRA0zwkPPMVMSMIXTimjjaWuHSGIWkgfguieG4dSA5VzdNsdb1485/LiPRZ1xapdsLvvSFn0didDhSlg9t4XekQ8BMlzKoSwLxKh9E8oSgCEKnHP0S45hHgIlGPhd+acvrJAznnMc8RUF+Rf7c2DIDumEuR/xxDmUz74hICelsGBr5yb09L4vGF3zod+UCafcuMZujpVgyaqVs5ipuX9SExBgJ+SkE3B3DCMoidunVhZU2wxlEgFOmsleQyhmIGIxUkoCPMUyBmjUAZBu4vsXZ4C7RiFYoHQH7IqHOJcguOUSwM5B7paTtKMp0uZIxX6gkgVHwPm+Xiab/NzdprI5CRIMghFJcsLSnws33U6KnYoxQH8mjjaxkhwmLIq0pWUHpR8OJ5JzUP4/4GYEzolspVExGtdgumOcexJiwXOuJJTzJU/JjGFyZ6GA+VpPka+Lmg+RY3n9+ljnPn5a94VWJ+O+ak3Yo5eT2Nzep//agHzV4EizXvvfYyiIacGZ5w4PQ179l3mZz//gk9/8wqjDXVVYYyUIKuqom4WDD6z3QZCaFCmQenM27cjf/s3n3J9Hfjzf/Z9fvTjD3n63pLFSga1ceVkZoumQlHjB8fdbcfvXvyOX//2BX//n1/y2ReJqN7ji1eZX/zmjk/+bE+1WKNSDUlTG0VOUNmGH/zg+3zwwccoHaibRGU9wQ+YnCE6nJaO8bu7V3z6m3/g+u1zKRsqCDGJykXhETWV5fLpE77/ox/yyQ++z2K9JmTo+4Hrt3fc3Gx48+aOX/7iV7x8/hkp9JyvHKtFw3K14KP3L/nw6ZqrtXTaWyUTRdvUrFZLrq6uiCmCVTRNjWtqtDFoYw7i5JVzGGvpu45hDBgrsJi1IrSesjhdGaup24qmrVA64X2P1nB1seb8/IxhCIxjJARF3wfuNjv2fURVLVW7QBnLzd09YxwYRtFVXZ+t2NxvhB8YAjErtrsdy0pTX17QLBuGYaAfelRKLBetuCFpRV07ch4Y+j23t28xladZOT7+3oe0K0c/dGw291R1xersknPbsN0N6Kqmrhf0uz34yHq5YNHsiCGjlWMcA8MYyFPQHCPdMBK8J6eIGUYWKeOyYoXiTFmWGKqQqQI0SaOVxWtDBFLUuAx5E1DBUxfuuI4dKne40H+b2+qfxPZYFv8Vrt7v2fIjkewBUSh//0PKYFKyPYLMxx7trx5BSgHnNFpFbt6+5NNf/4LN3TVNXVHXDTnD9d2W569u6frI+eUZIQpnr+t6NvueLkSydWhjSVmLE2cMjF5k3lKKGBXQNoNVWCPzSWOgMQqnErURq+ZFXbNctjJpW6gb4ctqI0Hy1F2eYkIZg3N6di0ytvL4JGNXZY3GkGLRLFdFfzYh1aWSoOTsafAEFUk6k1XGR08YpZFxyAMMHlcv0E6aaXOOxDiiVDyUYY0RdzVRxOjoPazXLVpnQojc7ToMmtWipao0dd2y2fS8efOGJ69ecvXkQ67WK/Z3O7ohYDIkpQt7O5OzIsZMKAYqWovZixSGJr3rssimTFQlaMv6wKOMKR5K+FPpWYZYiXQmVRAk0FZZTDEyRiyPo5wzYzU2GRpqYhTbZmMMMcUSfKTvXNPfMUjSD34+5YWeOrFNQckpsvz7Gq8KsPkVFPGIME/PL0GcVpBmx5gVIXpCEFTXlgquNY7KVWJjPtl6I5zcHFNpLC9vzrG6pSmGIuIuBjqTDuizGKwcBoXKE+PiwSympv3mqRI3obozRF0+7AMqwXSe5wHc/JwpBA0un0TOfeagiHE8U8dzmaKofImltSpqN7ac54lyktDlECcrlmncaqNFAKCqsM5igyVNKj1Z+NzWGGKpAI3jQIyRukjoSXA8O0N5Xpt897w+JZ9xxpmeB6vvCq5PwZvfB+acBtXT/qfxdarSdKBs6P/KCLPK5VyhaNs1TXNOipYUDSFlMg6yuPn5qAlBkXNVTnUkpw6lR7K2KN2idA2xRmPo95pf/2rDF5//jF/8/DU/+rMP+fDjc548a1mdO+rWlm7qCq1qwmjZ3Sbevt3wj7/6JZ99+ZrX14nNbkHTXrDZ3fDrT2+5+rvfgnqPD98/52xxhtUDpEAMFqct1dKgbUCrjpz3RSrKkKPF9/DqxUv+9t/9W/7u7/89NzevUEkWrjhmSCJf5WxNu2q4uHrC8vyMoODt7S3tl47bpuX5l6948/qaF89f8Yuf/4rt/S3LxrFaLrk4O+fy8oIP3n/G5bpi1YhMjkbJwrtcslouWa4WYnbmpKvYOEtSwj+2Sly6lDFoYzHOYesK1zSkEDDW4FyFNgY/jCQi1mmq2jJZauaUMNpijEVV0kWvlOVsbbi6OmfbR3ZDRNsKU1fYyvDi1Rmv39TUiwWr1ZLNZlOMU+Qm78eByIq6adBKsdvs2O93qJxxlS1jRfSXnVvirMH7gfvNHXwZ+ejjD/jBD7/PGDw397dkrXB1xersguVaUzUrXpm3RO/xIRyC76ASWlvqqsZ2nn03FARSmhVj8BA8dcq02oiUXdKsjGWFoY2KJilabVFZOrMdGqUNOnpAUcdMHStxaBoDNYY8frc4zPPAePr5D8GX56+d3KQOXwJEPHz+DKH62v3OEObHtikkV4hqj9GZ7d0dn/76V3z6618xdh3nZysqV7HbD9zcbek9ZNOSqEl5xIeBmDNVU4ujHorOR+HYhowvQV0uOunGKJzJ1FZRW0NjDY3VLCrDum5ZVIbGSaK7WC6p6opIIKmANVY4zEgnv+jCyifIWVDsmMVq11YGQyAlZgFzxkZwJuNjxtpAZYOgwdpQe4UmkINBJeEcDj6X5FuRY2YcRsZkMFFhKkddGxZVfTCFEGtukZsztiaRCHFgP4zUjcEqTRci3RBpqhpX1ZBlYe32e16/ek3bnrFeXvLB++9zd7fD+3gInOIMbZsUM+Yc2cNX1NKkNXEksyKrIGtQSgQf8SHgvZhaSMBSHN5m4+c4jh4vA8/5ldNCa4xBeSVUjJiI30GEeQpIHkPR5ud7/tj89VOgcbqdltRnd/4RVZ4htsebdxYsaUBJA2vOR8WTic4h4E9NUzfUTY0rwE8MQuWYPtHBshmhKcYousZJJWI+7vug8lCoEHPqgBxZ+QiHx8vxUgLlWXCrSvyjVFEj/hpU9bFzN6GxElDPxughtpqaFKfgtEglplwssCk8a3l9KtQlOI5lpZV4WuhSEeBIQWqKDrmPQj3yMYEVCWBjDBmxLx/HkbqJxfjoJNkqxzjNwKfJwvR1oDbNvuaI7ykSfwrenN6z8+2xsXn62sdUOd5F8/h927cKmA9Zz4yS0Q+BddYED7aqAXDWkYhoZ0T0OoNzi1IOEBQoK1WkmRwoB1mCa61adLLsd57Pftfx+vq31IvM6kyzWluW65q6qUUvNRl294HdbcCPmje3b+mDQplLYIFijTaJL1++5m/+9td4v+ef/9WP+Pj9J6ydZVm3OFujEuTSgGBsJY5ZSUNy9NvEm5ev+F//l/+Nv/13f8uL58+FG5cUOUiHeRgD2UoAW1UNShv2+46XL16h04gDUgj85tef8fyLl7x9fc2b128Io6cyhrPFgveuLvn4ow958uQMpyONlUnBWuF9t21L00iDnbEGU9fYpkZbiyZjXY3OmmEYhNdlFNoKki+mMIKYVM5hXY2xPUpD0y4wxuBDKpIyEZ8DIvyuRGs2ZLRxVHVLZRVvb7bc7XbU7YJ6saBunJiFRE8/iBZ31/fSZKlLdpyF/2S1LdyyjC3mBMY4YhjJROq6orJHjlTfdbx69YqzyzM++Ogj1pcX5KwwrgGlWK5XuLpl9IG76zf0ww7fe0JIpKSojWWxWGCslNuHoWf08TApVcbSnrWYaFHZ0wZDozSt0jglWXzWmjHDjkRvIFuNSRqrNQRF1JnoA66U62L0fJc2YeVlDv3f+Y+kZMzXxwNC8tX6FPz+oDnDTE90QniYOB/k45ICFNWW6Lm5ec0XX/yWm5u3LIxmuVqijeF+c0c/Rup2RdaWMSVy8ox+IAHL1Zrsat7ebUV/OEgj2TiKzq9SGmuln2DhNKvKsm4cZ43jfFFx3jguli3rRc2ilkZUY83hGI2dUL5S0NQGZawkGLmci2kxNhqlo4CgTJQUjVGT4gNCF7IO67zwmpXGByvBSEylZA1jzPgc8CRMTuQAfd8Tx4CrKpRuqStHVTmsUQSfGQbPmD2r5Zrlesl2l4TznDV141DJs42Jylac2YaUIpWr8D7z6tVL2nbN93+w5umTCyrXcHe3JY8jQfQpD8hOSmIeMkeD5j/LNRYlAXQQnuahyS/gxxEfPCFGQkrEuYGJehwZnXOZTxddrU1RznCEGESWsigTfJe2U4T5sXttCm7mr4HjOTtFSN/1HjAlzFNQVAKiifYwUSWEy1AoExZFJvlE8J44BvmbVjjrsLbCWTGZqWyFVlrMfLxH64RRislbYapC5KQOChIpFS2afAzopsdP6SkgDrtaqwNCq2ZxzhQcF0I0h+QAkXNDH+dOUqmnKeE9Z/3VYE+rh0Hiwd0vxkOANdGyKPsVAL1w8kH8AmaGOinF8iXj1FiL0oLAx5gK37skg1aUR1AiHRpDJKUgjYJWSjLej+JT4AMGi9K5WJQXnZ/y/XBwGeZ1mFPO8jReHqMCnY6p+c/ves1j9/WcLvSufb3rvb7J9u0Q5jJejr0PBqUMMSisadCUxjJkQBoFPnpiSJDEDjZEMcbISCdmTJmYPcIFshi9oHFnULzlb+5G0v2IuwG0RzuPsRsJxIAYMuOQUVQ4V2HcAk2FqRRj3JF1wneOz3+3ZxhvePW25XsfZT559oynZw2XZxWNizgTaCtFMo7kI+Pg6PYdv/nNZ/zt3/7v/Id//3e8eHHD0r1Hbjp2+54xjsQcUc6AEYtqawzDbuD25Q3OR4am5UV4zcuXr/jtp7/j+u0N3W6g3/c4Y7m4XPPs/AkfXT3jw4tLztsFWo9o3WOsEdORxQLjHKGUII2RwNzaSnzplSJnK8YERpNSRJmGup5Kj0qUAFJEa4VxDuMqjBXYbgigdU3VOsJuz9D1aJ1xzoHObPZ3+NGzWp6hTMV+85oXX76gWa744ONPuDpf8/TJFZv9nvvtPfthTzaZpDNoxd4PdP1At+tpqxqXDdVMC7ZeiGlCCoNwIokQIjlYApn7ux1vXt9x+fRD/uyf/TUpw2a34+5+y67vcdaxXLecX50xdls2u3vu7jZoZTlbX1HpBJWGypDt1LWtIGVM07C8fJ9lc0Z+06E/36BH4YFnq7i1gesmMq5qtlrRlQ7kVltMCqiQ0WOPCYE6wi5F9vUIN9/qzvqTblmlB93S6kGt8asTisrHR0vh+/Dz9IcpIZk65yXmLSSEzEGvVV4iC1DKx+A3Z0gFeYll1TBl90aBUqK7a6wBDT4GjNaEbiSngS9+91tev36OsmArh6ordrue+10vtvYZcg4oC/f7a0bvcfWSgGZ3P7K5i3jv8BEGP0oDkrFYp2grw5lTnFvF2hnOqprLtuZy0XK5qDlb1jS1UC+UhqRVMTww5V4VyF3MnY0Ef3FaEafPKIFIQqNKs58EIJI8JBRJSTOUcgpnjw1yJhuWzZIQEiFmMJakNEPc04eETRIUpJwZU8BHDd1AIrFaNNRNQ91oYMvN9Q2VhbOzc1JdcTcMjGPGGI0Phk4HrvOOmDTnqzOcM0DCh5G3b79kfXbG+x/9gOVZQyLjwpKq9yL/GAPKSvDvo8dEA14GWBGmEMAvWVQU6U5dWdF7pfCWY2SMgcEPDL5nDAMhe+lvUDxAOk+pAs65hw1KiKKA0gWJa+WYU9dNg/EPv8n+BNucIvAYmneKiM65nY8lE1/ljHKgMxxpBPrBPZxzQudMKk3RMXjGriMPAWE1JsLoxa5dyMCFvmQxaAwGlRRGWUzSpDESw4DXolIj7bqpkAUUxECOpSPeTOYdqhiS5MNcl1U66huXjwDqoLyiC2StpMUGpTQUnWFiQmkjNAWtDq6iIhOZxQ1WLoAkh+VkPWhA07FIJGpIQkdJBWgRKbdjsqEn9Y0ciSkcqA3TNTx1zJu4ylppid0RnwI/CqKM1lhX4aoG1fcEX2hmGHRpoM1WYUjoOGC9xyqLD3uisXiVCRQ1j4J861yaDvNRaWX6Pk/WTo97GqfzMTn97bTiM+1jjlg/HI9ffY/puZMO8ymfOiVJJL7p9u0Q5hkCYmtLGCVTkQ8uS6eeCGNJzD+sVtRthVKZru8YQ8TVLQmwZLR1ODcNd41TFSlZfAgoVeGqBcYqtNP41AsKOnqy8qDKiakMWjnQNWgHSmFtJhFkoTIt45j57POetzdf8Ktf3vPh1R2Xq4ZnF4bL88TFKnPeKJwKbO9u+fKLL3n+/DlffPk5v/3sU16+vkblJWGwDJ0ieA1YtFFonSla64QgWsU90LmB18+veR57Xr16zetXb+m6gRQSOmvOVmc8vXzK08srLldr1lXLqqrFXMA5rNPUrah7xAzJBzBOznn5QhdtRGXRtsYoAzGAsXLTmIp2eYZzo3Tfp4g4GU3IgTTzWCtcKDtG6D0+RECaKgyiRTt0O7LqiMOe0O/YBs92tcbUCy7OzxhjYn+/oe97QpJSUMiZ/RDZ7fZ4P7KqWhpXkdoFrnY0TSVBvjI4V9MawI+EKAL3YDBO0+17nj9/hbK1cMMXa4Yxcnd/z2Zzx/39Bogs1i1nw5ph9Ox3A/fdjmQcRlcoq6mamoTCe09IkXEcMN5ztqpYXS1oxiVX944q1oQEQ6MZnziGq5o7C0NOGJ3ZM6JjQo8eNY5UIdIqhYuJzofvVMCsZsHyVAo8/O2ApswfO319eeW8tHm6FcTmm/Ci58F4UurQrAYc7GonykdSRSkBofRUzrC/2fLyyy95+/Y16ESzXFO1tThf+kA/erQFciYOIr9WLWu0rdkPnuv7kbutZwxKGuIQtMaYTOUUTWVYWFhqWFWWs6Zi3Tas2oa2raWHoNg6Z01ZoEt3/QPKi3rwLytQxeRDK3NElbM09GYmxBSSUQetVZWLkkVKZJWwGJSONKGh9ZE8BvqYcc7gQsIpsEoCGVk0omhLp0iMsGgzy7ZhsWoFfR979p3G6Ip2IdbdMWb2PtEuHNJ4PQVbCWvFZGQYe+43t6x2V1T1gnrR0KiK1Vqz23fc7zZ0fUfwHow4ekrZVxbilMTBTylVGr2lUTCrRIrxQB+ZAmcfgnCaszidqUIHOC0Hz8eqjN/jNVFa+jxcaVCcgs6u70Qv/ju0nQbD8FWFi/n5OA2uT2XA5t+Fmzyly0nGtir3/jH3K2hvRGUBKfwoDrlhDGI4lRPRJ2LMhz6FySpdq/IdTRoTPmdMMoRi2ywqGlKtpFQV0EIjTFoToz0EX5Pd+XTsEw1iMu84JBS5UCHylO7Pg9GDaB0TS1qoDmKcYlCYogNPls8e85EHPp1vrTWqqNSdXoPHxuqEhhvzMIicUyEO1SdT3p8yXxwoE0doY/55FIWyo4qJUc6QIk7X1EboZU/Xa4xt2I4jGx9JGqLOog6S86HtT87bsbHuNGg+TdZOEeN3US++7rGH5+Ph2J83+J1eg8fugW+yfXsOc9l38BFSxlmB6sehw7mM0w2JwOh7nNZixNHUjD7QtBUfP33Gex9+xGa749WbN+y7XiY1ihyMDoASPU6tQGX6YST7jHGCLORiVaknnlk25MIxPVg+FpcmHzyuMlhbE3xktx0JfsP22lPpyLIaOFt61vVIpXrwe+7evuWLz37H7d0Nox8Yxx5f+L27vWe/3+FTKELgudxU4nnfdQM6RlSMOKUY+j277R23d7cMg0chGfSqbXny9Ir333/K++894fJ8zWLpaFuHqyt0VaOtxtUVxootqEZjq1p0jV0lknZKQdZo4zCmOmhfamOk89danC6ZsJWSlgiby4KTc0IZLeUboGkagg8M+44URNPWao0Bhn5PjECMECN3d9fEpFk/eUZO4H3k7n7H/WYvFI/CqUYnQpLmm7p2hNoRg6VqK+q6JumAQtNYQ+s0WM04ioVqypHGLsg5cnd7jasdi2UjTYdEgh/Ybm7pdntiTFSuZbW8ZL+IdPsb+m4kpR21S6QsAcs4jngvLpLZR4brG5I9Y9k84cnqksvg0NuKMSuyNcSlI11U0EDOnmACg/Fo5bExosaED5GoxKWxHzX8p299Z/3JtknQHqbJazb5nMa3+eHDD6aa6cE/Aon7yivVfNKfjlF+V6W7PCYJZDSKHCNvXr/g+fPP2e82rJtKNI69ZxwG9n3HMA5UWsa7DwFna6p2xeAVt9stN9uBPmh8lAY1aw2ustQuU1monaa2mcbCclFxdtZyvlqyXjYsaofTujTYKpLiiGBMiFz5pbA15dzrYit74HrrYl4wwfkFBivFEfLUMChlW6MM2mTRptcZkzJtgpAUyQxUKdNUnjooqpxwKWF1xCgpscp8kNntSwCbMuerFav1ufQkxIRAbbIg5+J8GVIShDd4Oj+ijBbrYusIwXN984aqWXJ29hTtWqqqom0boa+1FZvdlm7syVma9pQPBGMJMWJTQtTtynVPIheXVRQnvhDE3GIWOD9wP5sNo9Og5MEQmyFaptBBrLWHcnjOmTF4VAh/0Jj+U22ngcHpz6f87VOu6TyAPt2HRISzcjdTkHlUlsiFh59zFMdLoOs7un3HOI7FaCYU7i2o0rMz8ccPLpATdzZlsjnyi7OIH6FyLg6PEVUaQ2UNDA9QzLlE3vxrakpDSfVRgnsDzHnaxwBUqVTuv6lBNR3mUK2niu9Xk7O52UjKgRAepxrMXenmqD+kw9R6nGKnayWue+K/IMGz5BFFAUTNg8pjJUspsMaQtComRoFcmgut0rR1w/n6DKUcY0yk3pNSJpvjdZ+Pq3clpXOJw3kC965gdXrOqbrLVCWZruNjrz9NAk95+I8Fzd90+5YB86wWmxTtakVVO1Ces/Ml7733IecX53Tjjpuba/b3e8n8o3BHzy+v+Ou//iv+2V/+Jb/97Hfs/3bD/eZGXHyqiqdPLvjkg5+Qo+H58xfc3t0W7muWrnKbS4nFHhYRQTY46i6a8njyZUQkcimnLppzuRAZxhF637Njy37TcWt2xO6aYXPD5vot2/sN1iiscxA9/a7D+54xZMiBnAIxCaJuim20T5k+JUyMSAO9ZreLbHf3DMMoKhba4IwYjpyvF1xcLLk4X7BcOtrG0rQG2xiyFWQqosT60xrqSmMqh60bdOXAGIryoiBSSklDmhS+ZW1Viqw1yrjSZBTLggJZD3KDKEGEjNZUdc0qS0l47HvCELFloAzDyOgDyXt0znTbLZvdwP1uYFSWu7st9/db9t1ICLJYa61prMbZkjy1Nb6p2O8zmQhEQCSAtFGgoWlqmsYwxI4xeLTJSBe/J0bPZnNPG4MYMQTPbrvhzeu39LuR7BV95+k6T07STBXGBDlgTVUmEhF+N1pjiaT9luHtNWPjIF7gUovGkU1FrB1jowhnmrjKjDEw5i2dvsW6SKMVNiZ6P7IbA8RA33/Hmv5OsvV5cPqn2fIsuMxT7RcQVKPk0fLMBDlK8EzM9PstX37xGTdvX6FUYrlYYo1ms7nn9vYW70dQRSosi5bpol2RtON+v+N6u2cfMkFXJK2LjrioVxgV0Smgg6CoTe1YLCyrZcViWYlBk7MYNZVRSxCcJjTuiAoVOBMKTeNofVs+txIAYGJpT5SBXHoCZFGeZKNK0K2kESgji3pV1TQp41E0PtLUnipkXPK4mKmMJiTwFPCh3BvD4NmpTkxeqoqmXZKyJMRjCGQk6XdNS0w7un5EoairmspGcpJm3pQSu+2Wm+u35Kxx9ZK6SZyZSpSS2guW6yWb3Zbdfs8QBFCQwDgQrQVb5OGiUHZ0zhiOpdd4gjSLQcMRA5xQwUn+6iGmXwAPldHKkA3olDCpIJtJHwAIayzO/NHGuP9Nt9MAZv7YtM1VC77qkngMXObfZSuBXoZS/vjqe2RJZlWKqII0D/3AMA7H9ypNmsYojJaqivS1mAc89qnKoAv4U5QFH7zXFFTOx4UEzIapkpKnaJ5ESoacS6O8KnfoZHBQbkVdfs+kwk1WQpNCGoBj6f2JSiEBrTTLljNxQJGn3ynUs+RF1s4UcGs2M8xwhyMPXCsloJMqVZCTQFuSBUVUMu6nvDqV9f8ANpRG/DQFpEpUIiajFsHCAmnwUCcsCjsh6+JqRJ5sV4uTop4d73wMfIW3PQt0p+c8ts2pJVPyOg96p32/qxHwcE5mz3/seOZ/+6bbt+cwM900iqZuqWrLxeWSv/yLf84//xf/kqdPn7Lrdrx6/Yr/+Ld/zxdfPIcsHKamtrz33iWffO99Qhz4zafnbPd3QuI3cHW15kc/+oixj9zev+TtzU4cbbQiZIhjxliLthalbSmpKIRL7YpECKDSQX+wcoYYMilJyR+MZLZE0BGtRtCJmDr2e8/mdsv+fo/F0dYVKQbiEPHdSNZQV+Jcp0fhNoLc9DFlPBmbIWpDCIl9N5LiQNd7hO9kMUbjrKGtK1bLltWyZrEwNK2hbhRVozGNJVojneQISlzVLbaqSEqCX7TwwLPW4oA0tW0VyRkonu/FYUsbC0ET8YfmFddqdAxFNqlwsIyhaRoM0KVE50eiKiogCrpxZOz26JywRjMMnrubW7x2dJ1nHAKil24YgpR5XaMPGbq1hrqW85BTpB86lMvUVh7TSuynF8sW7VZsdls8iX7cE4js9i31XUXf71FaMXYd/W7H7fVbbl5v6HaJoQtFmshirFzz4MFZw9l6jbGa7W5L3/UQwWAIuy3brWNQjsQShaD8oW1IS4dfQlgFxtAxph3R7MlWdKS10vj9ni7e03Vbuu+YSsZ8O5Qev8Uk8l9vk7RP5WkBmy8r5RlZxrxCEcaB7f0Nn336S+6uX1OZTFV0voeuo+v2MkdYcaVLOYnUUrXkbjdwfb/nvh8ZkiXqhDbgShKXc4IUUDmgALdwLFpD20giax3oQsuiLO5ow4HYPQUgalrIpnMtSS+lJ0MW/ymJkYU+ZuHjprLYZzVZ+E4ItC6GCyIrlQvqrLRQC1xINHVguUj0WTEkxZg8IUey0oh9jyYnJfvKkXEIbPMeX0fatsW6ikxGB8VY9G+t0ShjST4whsgwRupakh0VQqkQKbpuT9PuyVkTAow+0i6XrM8vRJKurmnbBcM4ElIkx4CeUQhCCFJVLBJQWQkdZdJx9t4/CJon3mzOaoI9jwhluR5KaUEjZ6H1vKQ8BWHTZsvC/V3a3lWGnv722GPzv82DjMeaqQ4UqwI255xJzGgfKRXEtgSoOR2c6OabMdJIm6f1Ts1USubJ/OE6clAuQSPOmWpy0pu7xcVD304uiLeY2ch9ZMxRqxuKq16p/KScce5YfVBJl3ujEBDK+YkpEfxYTqCMfaemZsnpvHJMeMt75FSc9woNIh+fSCyVjEMzpRKUOETp9Zojr481wuVZUyMnTZ0pRkJRlJnzn3W5nuRMjokcIiZlsg/02x1KVTBKzw46H663LvQT1LHgMEd/v5po8WBMnlIqHqNxPGY+Mu3jdN+PJYfzsTsfT48llL9v+5YBc5mokYGTY8IYuHqy5oc/+pD3P7hktWp58v6aH/zwe8Q+cXt7x/3mHmM0q/WC5bJhtXL86McfEfO/5vs/+IjPP/+cly9fo1WgH+64v9vSdTdUdaJdtMSc2BWKwHTDSCOMxWqH1jVKWVCRlINgqzqVdSoVdQ7JJrWqsEaR1YAyA5Wq0bpj2Anf7v7uFh0DF2fnOKu43d0TfM962ZCNJoGU36MmJQlqU5ZsMatp1GhSVPTRC5FfSUnXGotzitWy4eJyzeXlivW6oV04mtZQtYaqtWLbbW3hgyu0c6KKUTeysAExKya3Tm0tJDFzmRoRMqlksJYD30kZwKBLCclUmpQCYfQE70nBk2Mq3cL60GxgjSYajTManRM5BJwRdzI7JHZREaIM9GEQExelHVrB4AdGHUjJirsfCecMxkrX/jBKQ03VLGmaVjQfS0PYatVinOJusyEETwB223tiDFjrcJUjhkzwA7qgR9Fn+i4wDAFFxDowJmFswlnhYF7UDmO12OTWCe0N8S4ydHtGepIVN7SYNEFBajRj5dnmO0Zzj657GsQtMQTJ5Yf9Pdc3r9jc3dEP3y2VjIeT1rFM+afeVEGCptrhoc9+CkhzRqWM03JPjMPA7z77Db/6xc/o9vdcvneOyomx88KrD+EgZ2aMxRpwdU0/Jt7c7rjd7kVNQokRglUJraLw6TNUFlbGcVbDurEsG0tTiTa81knmnxKMRYxgmkpk0YAjWgwFF9aSACvhEmayWOBO6qyK0pw4XaPj66UxzhxQrwOnNEUyUYCEUlmyLlHXNSs0UYs7oM8dkQA649GMUTGU8qVSipwiw+jF/CBD3WR0aTIOYyYiyUjM5iA7t+97rNWsVwupXKVEwjMMO7r9QpqQRs/9ZovdNNxt71mtzmmXS6paqGbTgn9QLFCQtSlAQQkSciZEoRB4HxjH8fAVfGmcghIAFcQxFS3l8lX0C4g5EVIkpMn8xJNDPDjBSQVRU7lqXgf/Tmxz3vJ0j89VL04RtzkVAE6CsHcE3fIE+TpwZqdE5fA8oUslgJwmvFKCVfIhuAvel6zzkfeY3iYL/SCkgPTigCrVkQPqzZGCcQzyZ0FuacQ7/Uw6Z3QuFQl1/BJFGoWxlbyfklQ+piwlLo7Bc4wRXfZ/5HnPErHpM2WZzeYOlPPzfEobAfBhJKUATJbPFmsfovAphQNybq30c6mci7LMEXlPIR4DZqYptuhCl0BZJwj9wN3bG5SpCFrLOSrnajJsKQI/8l4nY+vrkN3T3x977ZxG89h5OUW1T/f91STvq6j0f72AWSBLkXTzGaUMo/fsdnfc3r/mxcuGxXbJ02fPuLx8j6unT0Apuq7HWGjainZZYwr378c/+h4fvP+Ei4sV1ijWqxWrZcX97YBWAx9/74pPfvAJVV2z3e25ud2w24/c3XV4r/ABxM+8lC9TuWl1RE1C5EpoCmRN8ImcgzTJ6AFNT7YDpAHvd/hhi8oj62XF2bpmHHrGcUcMPXXd4pqKmGHf94xeuvXFmlUQZlO6FrSe+NRZaBu66KaTqaxhtWg4Xy84Wy9oFxWutrhGvrRTJGvIxoK2Un6xooARkkJbI6FhBsigxVoapYuQeRkUWUvpRHNYgI0GZevjjWIhpYAyI0r1+KxIaSwZt5Kg2liyc6TghctpjehDq0xb1+jKknvPsAuiWdsP+DFgKovWFusyWolklMjWjRirpDEoREIOpJjI1NRNxbJyhF2H9wMxSDNi0zaEnMEaFJkwDlD4ccEH4jhAFK3IunaMg2Ic9nTdQN4HbFVTV8LvMtbStI7FosU5jR8D/dYTNr2I5udAJIqGp4r4HAkq0PuRLl2T7JalVaQxsr/bEYMnjgN9t+X2+lbK/vGfAjr77bbMRAmYBWCPTEDlyUec98HaeAwG4asL8tdtD2khoqbBbL8wldkf1H7lPVNEK8V+u+WLT3/Dm5dfUpvEoqkhR/quY7/bE3wk59JcpzSucrim5e2bHW/utmz2nqDFBluSbFA5YVRx87OW88ZxtTBcLDRtpamcRtxi8wHZzUoQ5FwqYEnBpB4Qi8pKRpGVPlCpmJQwmEDRKQg+QT5Lo9/xnOXDIpxTFi50qVcrpTAobIxUVUWDyCOuQ5LEIHWiXpBK86S1CD95csuLx2tvDDYbSTpSwmgjzbMxl/kpsu/H0qdQURnhgKaYGLodXVXjrEXbTM6Gvgvsuz03N7e0yzXL1YrFckVVVVTOUTlTyvSarDVJm0MpOkXhMM8X1rkpwhzxlK8yUJnm61zQxnT4fZrHi6yA7CNJ8K5UUdSw39zg4J/C9hjC/FhgMn98ft+fBi6n+z5g82Utmn5X+UhA0rKDgkZLMyZqQoEfBjYpZ1nJlX4Q2M/frzwbcrmWSoh909qX8xwRL06PuVQStILCOT58HIXYvyeF+NjkB2o9qlAWjDFiZDaZ5ygNCJhENkUxYgqYA8JY0KRZoP5Acq0E24egMMbDuExFxekY4FHm2QkdVwWVj+QkgbGy00nIxZ1UPrvK4tQ5r1yBBPc5Jak+FyoWFBrE1KMQE8O+J/URY1vsaim9EuTSnJwPFbOcSq+Gejiupn0+Ftg+NlZP//6YNfthPDwS/D62j8eQ7D90+9Y1Jq010WdQk1WrwjnL2dmC9VnD+fkZH3z4jLZZFbH0CfbPtG3DctkQgucXv/g5Xdfx4x//GT/6wfe4u76mbZY8fXrO/d01739wyT//l3/Fj3/yY1DgQ6IfIr/97Dn/8T/+I2/fbui7UE5AAGUlSNZK0GamUpA6LLxKUZqEPIYO2JPjjjHc0u3eEuOeps44G+m6W4b9HsNIXYkRQGUFCTXGEGJiLE5xOUkZQ9TzSgOS0aAMWjusTlTO0NaO9bLl4nzF5cWa1bqhaStsZTGVQTsrTWZKEadJowTOCU1KGSsptSAtWjNxHZWeTyiU3wuSNQ1YpXCTFI7SRCIoi3EGsqDwSVuyGUlKYZynqoOgPDHiqpF2uWDlA5uuJ8RQys6Zoe/pdjv8OKKyInopxzZVQ+tK13mKjL5nXdecna8Yo2U/7NiPHTF6dFlsTYx4H+n6jnrRsFotGUJgjJHoPQpN1qLCorNoKduCUPS9lGpBk5NYC8eoSLFMNRpsdcbl5RqlV9xuNuy7W4JKhCwlvJIsg5ZGitF37LZ3dOYa9D15m1k2F8Qu4cfA7c0d49gzekUIRpCI75BMxsPF6Pdk3NM99Y4/TQjo6WL3TY/j+B4c0arDAjU9sXRAFwQxR3ETuX37mpfPf0cce5aXSzSZ6Efi6On3PSGAsTU+RQlUjWXfj9ztOrb9yBASOLAlOFM5USvNyhpWVrG0ilVlOGtqlpWiMorKSne5PsBREghHOcyCEBdpOME7izmBoDlJSZCqjYPCzYwlQJb7W9zKcpRmt0w4Bj/T6UE4i5NGqtJiD69zBh1wKeNSxsaMM0IHW4yefT+QLSif8IBxlejjD6LdrDPkKIt5jomkj8hZjJG+L6oWyojKRYr0g0jG5bqSylQUV8DKVfi6xipFxBEjhARx8HT9yP39Bm0ci8WC5XLBoq1YtA2LRYut6oLw2YMCwiQTRtFiHoaB4L3YChdYXpNFLz/nMn5Eu1qC42khlaDoyJs0aCWJQgpSuiZnrLXFGOq7tb0rOJkHG/Ng4l0l9FPN4gMaOdFZ5gmuFvxeZYUyYpQj1RKpADMlf1ma2KYAceKLH+gYzGggJQCOEZFuI5fAXN405SJnA+TSkRaCjE+lJeExRrwFUpok2xLk0tNSKhCoSV/4yJFPk/V6FQuIJEpVosEsSPEczdZJo5IiEUWluHzeOFPqiN6TJjpkSgcJuXcFhlofg2c1LexZ5hhSgqTRRoJ0LSdbeM0ooR6Xa2e1xmojaHNRfdFaE0JEZ6EeVdaRg6iYjH2PTyNVozBti6krNPFQHZiu//T5HkvGTtHhx8bm6VicP2dqRn0gATmd6xnl5JCYnHCdp+Obv/8fGjh/6xlAjqVkVUlxtj7jv/s//Uv+9b/+V/TjQM5Q1zXGOO7v9wy9xxiLNolF27BaNFy/ecX/73/9n/A+8v6zpzR1w6KtWC5b2tbRLizf++R9fvoXP2K5bHjx6hWL1ZLvffIBPgz8wz8ohr4jhoyr6pKBlQ5SNeW1hZaQphJLIjMJ5kcMPZUZ0GnHbvOK7d1LdNyJFrPfc3u7x2rDsnV4nxjCSFvXXD15StPsGbynGwZ0UZowRmNV6ZwlyeSORuVMUyna2tA2jtWi4mzVcHG+YL1qaRcNVSOOfThLMkZKuNrIQqTke1IahUFpW1ApA9oUdJ2S5kkFQDGdh6msZMsPgjajFKmgX2jQzkpgbyuyHUh+IJSbSsAvyZSrFFgaQb/3PjLebOj6QQwOhp4UA1ZELvAlQnWmwjlbJh/JvKvKsF4v6AP4tCd2A8MAXb+jdUYcyYwheM9CG5p2Qdhv6bdbQkhcXDgSEqw741i1C9JFptvCbrNlks4z1mCSJsRE7MXQxTrDWViITKczKA2BSCAAFmeUNCmSSToxqkD0I8HviWFL171m6PZ8+HFD1DVj8uzGRIyaMVmoV7h2CXzxB92Qf/rtdCKZZufZ76cPTX9RzKbQr3mHr0EG5m+hUOhivyrBoSDMUraXCZ4YpMt7HLl984rbt6+pjWbR1BjEun4YPEPvUaomZ0PKsGhXWAcvX73mbtfhE0J9sk5KjjFSG83KKFY6szKKs0pzVhuWlaE2wus3Ey5fSrI6p6KdLOdoAtHEoleCdEW5T7VBFftp5dwEkx2Qc8o9n2MiqwBRKFUU2TVZqfMBHUo5F5OT8v5FY1abjLOJuoaQM4OPWKVorJSydQm0g9Gii8/UzzPRPBIphGIkYfEp0fUDIUfqRYuksKbQmEb6YRD6lpoWZkGZx7YRWoeW5D9FmStzyngf8WHPdrOlckYAhqaRNWG1olouadoFbdvitKDy1lqSizjnqKqKGAJB62IsVUxb4CAvp3IuDV1CDyiyv+WrjLM0Q/KTIJPOSN9K/iPRqf/W27v0bR/7+xwFfMDj/j1bSTPKexTd4EPLmSoNcxojM7bQdNJEQyi6xdO+tMZae3AlnKpNE00nqQmBnas9U54r/8mlLtTNAqDNnd5OE4WYIjmUIEsplE5oBP2Oo2c0PZ1xOFdR1TVai5Sus+KYK1VkGUuTyY4yM0UIpQ4o6UT7yVkSeQq/WlDdyYBEHe5nQZmP10YUOMpolUhZeryyJIBS2FbyHCXIcoqhJAgcxvMBVS7I9oFPjRaVGK2lZ8wHxjygsrggP2bckzkG49M5PQ1MT2kZj1U2Hl7LY9J22rh3HBfvGI/vWFtOH5/2/1+Zw8zhxCplsa6hrls+/PADnr13xa9/8ym7bc/d+T0pDtzcCJ8zZ4Utjj05Z3a7DZBZLMRMY+j2WC1oTRgHUvKsVg2103z++W/4u//8d3zw4YdUlWMc9sTYA0F4b86UiS/LgJ88ePOk9AwgN1pWGVREqUCtI7UK+KEjdBty6Kh0orKaoR/xQ4dpGpRyxBgYu57z1Rnf+/Ajbrdb7jZb7u43B35QVeSkJi3JqrbURmEytBUsWncImJdtxbKtaduapqmLjJxF2YpsDUpVGFXJAqsFnRJtSpHQYwqY8zTJldW5IMdMZZzSgT89lktp+CC6VPjNRoGyiWy8IMwFNc5JpP2UER3YmDPYHozlMkS6lNnHLTF29MOecewAQdOzD0WWLjI53RijWC4alquWoc9sr+8ISVQwtBH+1Tj2WCNatj5FVIa6qljlpQTmIbBcLgUNDzLxWm15/9n7LBZPaBdv+c2nX/B6uCUnkQoC8N4XnddMdauwLtMsKnzwKBQWTW3E4a/RGZtGfCrBiQKlIpqERQK30QdiVmy6nu0wgIYxesYYIH+35Ke+imzMkaaT7L8MtcNjHHIzqWaU7zwyKX677H7aqZki8aMWcXk3pUSeyWnL3X7Dqxefs7m9oXGOpnLkEBl7T78fCD5jjSJpRJJRO4ZxYLvr2Y+BqDXGieWzyZlKKZZGs9aKlYa1lYB5VWlap6isOD1qZSFpUoSkZfE8mB0cj7QsegZjxN4XXfRSS0d+1pXcZwg6lMmi0lH0bVU0gqarEgxOQXWO5bFjMDGtmXLuOSy6zhgqa2kqx7Kp8T7QDYGoM04VFYEkiYA2lqSCoG1JaE/JOWzdUlvLqEZigoiRgEEL9S1FRT+M1FajlbimTvf1OHS4eoFyBVXXSmSwcPggyGFKia4b2W09dyrjnKVeLKmXK9rlktVyyaJtcVZMsiY95lOUaT6up4qHKCkdJcAmuC4zwXbH8TkFKFMlzzrHV8OFf9rbVxDhWeD4WKBwGpB8LW/58KIJZRY98EmLZOrnkfMs6+JEzxCkea6LfDzntjR/H1HEYwCflBj3pKJtPj/uKWlNpfKgy30VjC/axMfejFOe8JwDjBZJWK0DEzVE23BEkLXBmECwQRrpgZiEUy/va3B1dVB2kHsaSZ4P9IyE1QpX1VK5mCUJIGvVAz5zOUlTX9LhcycxZkkKooropDGmUCVKgJwo9LDSVayVqJEYXWTnYpKvlDHk2fkolNIQMSUZOV5/NaPefXV8zI1U5gHzqcHKHJV/F8Viuvana8dj6PT8998XBM/H+Lfp1/kDakwKMFi74OryGc5W+FE6ldvFAmtaqqphv4OYpHwR/EhdNSwWK6q6QmvF5eUF52fnNFXFbrenrioWTQM54axhuWrJ2XN7+4ab21dcPT0nZ0+IHSmNYhSSSyuBQgLIw/EpKbVMv1K6YVVCdBo9TkXwPaHboJNnVVe4FPF9j+962rqhcpVYRsaMNRXPnr7Hxx99j/Vux9u3t7x5e8N93Em3vQLnSlMcEVSiqWsqlahdZNkYFo1hvXCcrRqWi0YI+6XTPGtHNg5lK5SyaOWKfqIgUVqLEclEksx5KokxQ48pAbKS86F0gYr0wfFoquFKGVLQaq0yKkcSQupPKaGrgCUJ40MLIlMhfEVjRhbDSFVtyGTGILKBu+2OcYwoI+VYyFgSKXhSki7z84szri7OGHrH9d1Lco4slwtW6xVt29I2LY22UjGI0ukeY6ZtFzxzNTFKmcyaClSm7zpCiCwbx9MnZyQc/SDW2Jv7nqHP9H0snfSR/b5DXQdyHjm/PMNaR6Ms1tasXcUya+ocsXHEF8QgK4UPA0MaMdpSr9bkFPCjZ7O5Yej3oGEYB8YQCmf1O7SdBMvy0FfLs6oErhN6Or00H3YzC5Lf+VYPJ9Kv3Ypu9kwQV1AjpCFM5YRWiZxG3r5+zosvf0cYB87qCoPCj55+3zEOHmuc9DJgqasFIWbutlt8SngyoaTaOkMFLLXhTGtWWkmw7AwrZ1g4qEzGaYXForORfoE8lXthir+kL7EEZUpJdci4KYI9BGlJAcqUwE0XS12hEWRMyUI0EMr5EB3NnOKsv6rYAKMKZ1OWNGlyO5autVI0rmK9yASfSGGP1xGrYAgBssIqhbGaWIxbRIrKk8KIqiqMhtpZshXXvVhQdWctGU2IXgxEogQdRouLmffSm+Bsg7MOoizkuWQYeirvay3a+hTli/2Ovfds93s2mw3LpqVpGpxzKCCGWHR9jw1Uh3J1LtfgMLb17OsYsE3SfFqL+cQUwCilRPZLa/Lk2vYd3OaBxin6N22nRiW/j/tZgHv5uQTNuSS2DyeA6YlTIlP+KY7fy5ww0ThjjEymGjlL9STFSCxazXm6lEyJ/DE9PX6WIvkWw4HSMPGEj59bHWTsxE2vyLRque7SXF7hqpq6bg7rsbUOYyygiSkxhlgCXZE/ncZUylPipYuah0yYzijcTDoPpQ46zdaY0hclVY400ThiOHw+rbX0WhwSPyln5ZgO12LidQu4QEGwzTFIl2zkEMTndJTTszNnPZQ6JJnHmGrqBZGmQjVRQXg4x39dwHy6tjwWLJ/+/RSxPt3HY1z8x/b/dUnh123fHmGGwwKmlOHubsN//of/QrusqZoWkmPfZbq95ub6jpSkm9S5qvCS4KOPPkaRWSwWrJYrXr9+wziIu5uPgZTEITBGT10b3nt2xZOnF7hKse+2dN2GlANm0tCkNNxkCu+poKyHm1kYfjmPZBXQBFLoyX1P8p7GGJrlijQk7jcbjNK8/+wDYkrcXN+gsbS1oXY1y8WSql3wwQcf8sWLl9zc3ZH8eLhQRmtSluY261qWdYOjx6ooxiMG6spQ104c/YyVspUW/rDWDoUgMKX19PAlpVZBnXT5XcSkik7kpI84G8wPEJSD/JRi4ldrZQrXO6BUBlOhXcbk0jhZZLIS0mCBUgzDSIiRkBI+BPpiBuFDgASuUjhniMmKxXQaGIcoJjLOsly2LJeW1Zsld7trXFvRNBVNW3Fxfg5jYLO5K4dr8GNAW8d6uQatub6+IXhpFgw+MvYjcYy4dgXA+cWKcXxKU3dsNiPqvhPZvyBOh10X0TZjrGLZrqiypjUV565mGYwYO6hI0BltRPmgDyP70NPoSO1qjEokEjWJhYVu6FB+pDWGeka3/S5sgsRNP8k2IcvH748jTXOEedpZLjv4utLY1wfM0+uO+qFMQ7v020uMJVHR0G/54ovPeP3qBRrhm5IghcTQi9Sh0RVKO6yr0drRjx1dNzCMgTEmfJIqgyLhMDRAm2GlFOfOcV5blk4jvjqTZ58EdsKDnJCXggoz3Xf6cO9N9rpCp5J7UowFcklwhf+cdUGYy72umILu0lSpQXRk1SEEYfZeU2Mj6djURikOCMKkqJ1j0dT4ION7zJ6hNNNRmoVUUatQTIu3UJ0m62BtnSgrJKm6CHruwIvDakwRa0VfPYVA3+3RdoOuFriqJWRFilNyAFVVIUFXBCPBRk5R1NpjJPY9fvQM+07k8pzDGiu85SmgmtDmqUQ/ayybbHCnauQxq5kAB3VA4WzRBEYdzSj+UN7jP5VtngCfBg+PIW3z+/S0SnR4TS5ShvAAdcwlSM5F/k0paVibArepj2Yy6vkKVSJGMS8rAZ80+ElSmFBkcxL8HH49Bogp5wPAMkfXT87KDMFUaFPuE62xxuCcLU2ookiBkkZ4GX+VgFhKqty+yMEd1FyUIuR05GTrQ4TP5ESplDokenPL6wOq/kA9o9SGZ9dwbnc+v4YS/IPSRd9aS0KedCZGUewyRuyzIR+oSBJDS9CutSr6zPpwDxzAIFWuYUlgpJ/kq0jvYz+fBquPrQUPEPbZOJzLyz2271M0+psgzf8NKBkly7GWXTfw93//M27u7zk7u2AcM84ssfaMly83MnEbaYJ5/fYtv/r1pzy5Ose6CutqPv/iOb/4xa8xxnFx9YzNdsPt7T3nF2u0sXz88SdcXJ3z9P33yRiGYcAHX5QoBEERJHYqCJcJMJuC9ChIQTCkPAIelUdS2GHTQG0StalYuIzPPb01tO2Kjz/+hLv7Ddc39/goAuCv3t7y7Pqe5dlKEI5KyqtyRiQjdUZhirNR5RQX5wtq5QjjHq1kEnBGUVlLZZ1kqtoxSb6lMux0zhSxCpISrtd8wExlE4oGbcxToEJBlTlkgsVHqQBaUjoVPrQE5RNVQxmLVpJ8kOPh+RmFSdLBvN/33Gw2bLvuIKgevSf5kbbSNLXFVTVZ62LsogijOpSKlFG4pqJtF1w+ueB2d42rixpGU3P17CndzT0vX7/EWcvqvCbGzDgEqlqaGi7Oznn79prt/ZYwesZ+4Ha4wTQb3GKJs7BeteSoyUk0sVNK9D2MYSCmyDB4Nps9RMNKLWl0zUo1LHNFlUVyTjcaU4NyEaVikbgqqHP0OJVYVIboFZu7PTlGztZXLNerb3Vb/cm3KWLOxwemifPwyGGSBjV3+HqAMM/i2ncEF+8qvck2X3bV7PscIYSkpNkmZ+kY6Psdr1895/7uLVYjElNZEsoQEt4HnKvFAr5uCEDIiohl1wf6MeNToVMZcbU0MWJ1plaOpTMsK0vthJ+vi5X4seFJ5pxMqeocgtcSOCup8OTpc2slCHPRTk8o4fuWJj9KB3oZcAeuLRQOYy5IHvFhwIwqSI+8IAmEd9gmiTSVPSpFUexp68JZVHS+P+gZp1yalFBH1YCMGFAETw4BZaQJL6QEFOteHDl6lHiPk7OYIIWc6LuObLZUywvaRVEVygpVyvApT8YG0rhotSQwMUsTtIhY5IP2skYaAV0pf0uAPAv60nHBlV8L2j4FWF8ZYvmA5mmlSOqIuE2o43dpOw1STgOs0+D39LXT3+M7kfVS5ShryHFakIAwZzFyUtGDSugUcWQcUsWxStLfwzrNlOdMVcT4YH8gJmRC95jucY7XSKkH045UOHKRWctfmXse8LRLEEvWpZFOxlKOkRQDwSsJiJXGuvoAJFgra5oylsrWh+BSdpGoVfUAnRXEO4lDSBb+/tx8J5frk5lRR6bhas3smqoDwj//SvIfqCL/phXaTnbZgrAHI+oexyTiyBdWSigmrjyetNCtkoaoMlklCQHVEYWXgJkDwvwuvvHXPf7YeD2lbMzdAh9Lfh5br+a/P/b8nCcVnW+2fauA2VqIIZPTiNIeXRuGIeG3kf4311i3FTRQO5p6TddL5lk3Fbuh57/8/Je8evOKy4tzLi7OcK7i7dtrXrx6w2q9JpmG3W7H7fUNVbPgvQ97njy7oF1dcHV5yZu3N2y2nozoIeYkA1Ob0hw3oT3KFkQHchT6hkqRGAeMHnDak9IdMd2xrAJXrcOEnrvtwPmi4sOPP+LyvQuuuy3b6LkbO2q94NOXb1HL33F1ec6bN9eMQ8AaS0hCHdDasVzULExiVWmerBp++PEHWOV5++YFYdxztqxZNI7GOlrbYKmwCOqFkozvoLd/kMYDpkBWy82QDzJWZYFQHF6rBEo6BDKy/GZUaZUohVtU8ujCMzuo3CpFVoasK7LOop1nNEllhuDZ9IFtP5KVoWlajBYF2fNFw8Wqol2uydqwHzxozb7bc733gpwbzRAD0WaqdcPls0te3bbiFpkkK66aBn1pqN++5ebmhvDmmidPn6C0pdsPNK2irVoWdcvteMPbNzf0fYcfPK7Z06x6rKtFyzmPpNShGNEmYZzCKkeIGu8V3aDQDmxtOTMt67xmGZc4GjoDt3RskYnqsjHYtCSqQNaw63v6fk8wiSFF+uAPAZmtmm9zW/0T2DJCulXH3/OsI/uwlYg4Pnzlw+1YYn2wTYgquZTwk4zlsttJcHhCUkQRUQKxwgsqgam02fkQMUlRacfz6zfcXL8khT2N09TWoHJpTIsZ5RxBQzKJmEaSsexiZjtqvGpJeCb+I2SMFSm5yjrWy4qLs5azZYXVCa0TlbO4yqBNkiYhDdoalBIus5qCV6PRRmgY2pQGPyNImdyFkIp6RixadGKlXRB+wBzam+SaTM6GKUfC6JkaABWJnILw9ovNdAy+uHqV5ueUUUmsUqoSuBurcdkSU6LzA/3g8XhSaTSOWQnCmzMhCb3KktA6M3ZbElJF8qNnjxIpP5cZk6BbTllCDIzDKO/rR+LQkeOIM7UsshpxKMvCYc1IPwPFgc9qR1auULcFNafQLsiQvIynPJvDdGleygVVhhKc6dJQnZF5lCkwOqq7RAWxgDFkDoGFUUee6XdhmwKNqdFsjtTNObNzZPI0mT3SJB6ifnkKMKfAbkJ+FeWnSAojYbch7nesG4fxA1XfUw0Di5xZFDBmjAEfAs1iIb8HL0GllaA7l+pGJKKUptYV1lisEiUbWe5KAKXTgcc8fYwJvT2OC1OMOkTZRTS6ZR/WaJRNor3uE8FERhcw1paxozB2YBh73FDhXCU0SlNhS8XjwBVRSOyhjk25h4S0gDiTvJwg70KXKOF8OcelmqWUCAPMqh0TKh5isdqOYuxWVRpd5DEF/PKk5EkJYsz4MUiF3ihUmYNTzox9T84ZZzSusrjakTFErfFW0yu5/6OezreABlarw+/TdqBGnWyPUX2+Kco7jdO5MsZ8n9P7nu7vNHCe7ufpud8mEf5WAXMMEngJfV2QXWxFzhXeO1KyxDgx0QKxZC5DKELz1/fcXN+SUxT5oNWKEDNdP+BuO25ue0iwXDQYu2S7CyS1ZbFqWK01221kt/eEAKk0vKUDWCD/JzX9pmDSfcwJjZSFdPaoPOCsZLvnbcVZHRnuIpVOnL/3lB/9+IeMynG/37Ife4JSpBC523d8+rvPefHyOf1+gx8Hlu0CbYSOoJRmtVrxZOk4c5n3n1zw/Y8/wFmwOrDf3HCxXrJsGyprcMZidIVVBWFW+vBZErLgHJBhEBRdUZoXJ4rENBgm1GCe6c9/npDmKXwW2akEJWieri2CcmkD2h6y1YRl9DD6jKtbmnrBMLym33c0znH1yfdo2hURxWbXUVUjEQihRyuRsBlGz+g9tqqoFw3NesGTp0+wVuMHjzaaEAOr8zPe+/Aj3tzc8vLNW0xV8+FiReUksL69uZPETFmGfuD6+harRX4v7/YoPRKjIgRBserKSUCiDFkFYvaS5AyZbCIGz5VvqWlYqAUqOYKK+EoR6oi2QNgzdBu8zlBZdmPHrtsRQsSTwBqaxQKsofPfLeMSCXBnE9akVXZ8xuznfETmePDjYV8Pfz8iIl8pB893O+9SA/JhtM4TvZLW5UwMksvFGMTl8foNOQWcrVAkvE/0/YCPxba2NApFFQkJ9mNgN3i6IZGyGEprUtFdlqa+thG7+soZrFFHVMZM1Ss57knzfUJUpU80g+agF5DypAsbpPqVcwnxJBlQUy24oEQHFHSSy0pTiTYfgkDhPMayqB6VHQRpneSwJjezfNBw1ggtozIajcFoCMqy9ZZdrxl9JsRIVqbQLjJhGIvEmqNxhqQyvu8EbVaKlCI+iCINCfohYmsrKLRSQp0ox+DHgeRHjHYS6OeEUrpwSbXMO1gyoQQLDq0qpgZIOcdHC+SDGUMsRuF6Wg1kQGpmZh1JkXXG5KM6Q04JrHDjowlk0mFBnY9j846qyT/V7bFS9RRszJHm+XMfq/68s7Q9VTAm57fpX04QPP1uw/b1K/qba+KypSYT7+7Juw4TEzWapPiKesZkW59TIsYRgxFgqFQ0tcqlSCNosKigyCE9COqTZPenyLJW+kCPmDjFqdwbKkfIhlDmOaUD2gasc2hnyFqhvWcMHudHtLMoXYGpjrTTQ5P+EcEFRA0mBOmLSuKSZ604EFfOziQqp3Ra7uNJ1zojyeuDhrUswFlMQifJWpqWVUroQKHDTBWpqc/iKCc3yXWe0jmcEX3npDRRG5JVBJWLiVMJltWxFUPpUiWbHd/p9fhDt8e4zY9Rir5um5+zOZ8awDn3jY/lWwXMOSGTWbaAIQbQqhLEF3HRM1aXiUzOpnOWFL3YrhpBgFOE/V4QX5QhRM0werrdHbWrWC0vqeszrFmisMRgePN2y+dfvGFz3xFCmfZnwv95CiTnx0vppI8erSJGTWWXgCGyqA0XZy1N3rPzA03b8PH3vsfF5RN+8dkXvHj1mq4fsc5hXEVKnuvrV+Tg0USc07RtLU1x3R6K1vTV1ZqF8vL3RcPVxRo/brjWgbqpZVGgXLiC9BwI9WVTh4xt+rt83uk5shhM9cT5gzz4Pc9+nlfM5q/NTFy0XNCqWdlDG7SWLuFxHMkp0zQtqZSPmrrik0++x/vvf4SxFS9evWbXdTS1I6G41wpbGjnGPtD1I8YKHaeuWs7W56TkMVm0Vbt+x5OrJ3zy/e9xd3fL559/wW635/5+w8X5BeuzNbc3G7b3W4Z+RCmhl6QMw+DpRpGHM65BqYrKGUIM2DhiokcHKTPHlIhjIKkeFx2jX6CzxeoKkiCBtnGYCkIe2fdb7u5u8AbcoiWR6IeBqqp47733Wa3WIjlkLMP43W0OAr4aBX/lj0fkOZ/8/M5XPSibTsHz171RLo2qBUZkKp3lI2UB6IeOly9f8ubNa0EDlcJ7z+hHur4/cHTJx2E/xkA3jHSDp+9HMeXQGqcUVkNlNIu2Zr1qRZ5OeBgFMT4msieH++AxOdQsrlnlMyQ1oZ0ZsikyWRkwGGumm7ogdrl81IIgH+gEAlZM6i2HD3XgN06vncrNU/PThGgJD1kaJ8GWILQms2prdn3NMHpCJyowujgKBqUONseVtWQFO6Wk7F1UDVKMeA+66O16K4dnnaNpGsZhYBgHdLdnGHoa24jChy6cdDLGiiuq0RPNTs6PyvYwJ845t1OwPI7jQV1gOv+Ttu2pZNpj5d2USindaAzSdDU53/2xC/6fcnsssHgM5TtF7U6D7cf2mUEipsyhQpnLOpJjxO97bl695ubzz+nbhou2IfQ9aRixKJw2eCUIMQnGYSxUSxn3MQViEHBDT869h4Bf7isZIodQnRQl4JYDFbpTmiVXSikRjyr83APyLi+QBHfKclElkbMiN2ml90Abgy0cel05lHag3AlNoPCoZ+culQbanKXPwrmKpq6oi6qGLYmeKIpM5ZOjRnQUUefjvVyuQU55gjAlQdRSjdNaMWliy8eTKnwqk/bhfipJzoS2aq2wTmiSaRIPULJmhjy/rxT6EDwfaRLzasapU998+zoKxR+7nTYDnnKb5wnUt7G8/3Yc5uKqlzGsL57hTE1IDl+Uw1TOOGvQypDIfPThR7z33jM2d3e8fPGSse9E91NVkBTjgLg3mYrKCoIQfOLmuuPz371Bm4qz8wURz67b8fnnz7m52ZLysURrjBGEoyA6ss5MdWOZ4FMOGC3tApmA05mLxYJz51g1mu7mDdv7e95//wkffvwxPsPvvviSt9e3DONIVoq6XaBVwo89vu+wRuFsIzePkVLhOA7knGiaGpsT+35HP3Qsls+4enpFDDvcgT9UUF11RHxTQX+mxr6pJq5U4Rvr42MH3vF0ab4yYMp3KPq184A8H6HnaXGm1IFTWdAREv/UUOP9yH63o9t3JN/hh4GmafjJT37CcrlmfXbBze09n3/5BWO/xzatNE5ojbMOrTRD79ndd3ifSFGJVXWzYLO5EX5jjux292Q877/3PuEv/oIU4fMvvuCzz75g+CCwWKxZLtbc324ZQ6RuFqxWnv2+Y7cfGLzICda1wtVib+1D0cpM5VNNndZImdp3UXjOCvJkjWoNpoZsPPuxY9ttGX1HzBq8wlai11s7x5PLCy7OzopzGGz3/be6rb5rm5ojzLOkbEpcJ2rFfIJiNkEdJiwOgPLv2fLxe7m/jdboLLrbr1684P7ujrPaEmIi+FF6HXw4SCjmnMs1h8HHYmiTDg1sVkOtNa3VLJqK9apltWypG1F80ap0ihtVmvJkrMzLOarcVlOTnoTVUqxGJYTnLCcvTw5c5V4THVhAzZBNPX326X7MhyoTWom1Ow8RF40qJiNIubVUiNRUjZrQ8NLQK3288vkbZ1i1FeNQE3wijlHKirpwt3UmJU/ODmctVWVLo2A8LMpiLCFz8+gDfT9SL1vqpmEcB/q+R9k9Xb/H1gsxTSKWuEvUhirnqCuxr9daEqsUpUEwpmPwL2uHnAdtJmUPcSJkKnerzOTKJlt6cE4loRDDolhMqOZj9Cvj+Du2PRaEzBOOOT/0QcPY7LlfG8woZD3K5blQ6FQKm2HY7Hn9+XN6owlnaxrn0DFRO6nc+DGgytBPIYkxlTYHbq8PHqWlod1p4bKHGMWkJmWMKrKoJaGMBaU+zDkcub4HAEpuIAl+rcWiSEaiZI09KFJpY3CVo2oaXC2yjxSpQVs5qroW5NlWKFOXnqBSEytKK/PTNrnh5SQ0UmcdztmCSmdykUlV+thcJ5+jBKJK1mRVADY9Icx5CqxFd16FJFKtpcH/IMdZ1rbJ6VTp8sXx+k3p5sFt0RhykbcVcxJKz4UWMCBLUmJ4vDJxmog9OoRmyez/EWj0KSf6lDf9oNowiSB8w+1bysopcgTQ/Pf/6l+xWr/HvoPNzrPbjYyDJ/iANoKYfPD+M/7yL/+C169eE8aRN698cf3RgEg8kS052uJ4ZUgxcnvb8/Off8ar129ZrhuSCuyHPZvNlsFHMvqQbR2U1qaSzCEOlDIlKqJylAw1ejSJtrZcnTcs8544bri/vSHGwNXlU5bLNf/wq8/43RfP6fpBmtdKIpDiSAx7gu9KFz4YXSPUj0gMEKPHVZZ1tcIxirC4huWyZbtoIXmM02irRQjqgATNS9WqoMmzTGjqgOchtlWGwIPfp3hmmiMUPKiyT0jd4f0KcnUwRCg3YGlvYxwH7u/vefv2mlfPP6fb3LBoGp48ecqTqyc4V+F9Yr+9p9ttyDHgjNxszhqRmwqJrvNcX99xd7vlbNVilGW9Ome3u6fr9kV+sGIY9mijuLy65Oz8nPz559zc3BJjxuiKi/UZ1la0zRKjKlLM4q636enHga73dP1emgRtRUgijxWzqBiIS5MM/Zw0agSCCHMJzUWTdGKII3e7e94Mb7gbb4nJo3Ut5w5om5qcMpvNBuccdd1itCV953Tl/o/ZTpHm09LZg4abrFGxoEbvmCCn8HLaF+RDCdZoTRwib9+84fXrV+Iw2VhyhhAi/TAyhlga5pRIlSlNQuF9YCzBtDayGNmcqY1l1VacLxecLVra2mGNkvVKS6AqrGpV7qsSFOfjpKumzzn9ctjkzlSzn7ICNS1ih1V9ykRm51SVfU4OZxQlDFkJSak8riU5Thnh8E+BckGllSqNdlahoqgXTTiDSZlKw7Jy+LZh/P+z958/tmxblh/2Wy7MNmmPue65ciyjKkDNBtndlPhN0ncC+hsJ/Q8CJAgiSBEqApTY3dVlXj13zXFptouIZflhrth7n7zn3Pdus7tZt9gB5MmTmTt3brMi1phjjjlGSIQ0MsUAOtc2uCaFQAqeru9pGsewi8dOQAFSFleBFAI+RA7DQN84mt6Jt3MZCSEwHg50iwltuzpEOdN68niVVjhr62C1ISd5X2OMhBCQIqNe/bTCWokyj1qhogxqSZTwvA7PN+P3P8+6+XIE0ydWel6bTdOgzA9Lw/yUwXvKAj4doHp6rn7sPo8fR3hVfweAOjSrLL1tadDE/cj9bod+3HJ9cQk60TlH3zRMIWCVwinFVNPpJEwHkWnEJM4OCozV1c0hEaOSEQh90vKKROGpt+/clTiB5vksUyiMscfOrZzPBq0cWhtUxTHz0J46WkEie2aW4A+tC8ZV+8H6N03tNp6O86LrvDgRqVZKmRKlkxs5PliUKlVvrY4g1lQpTM6ZkBKkOvx79n7OASsCG+bulAxKagraKkwymKMPtCYmNZ9+svOr6hZiHRhDRJ9wFpze//Jtwu53Ab/n+8G5lvlj+uff9XgKlD/29+bbfJ9C+HsBZqVqtaDg//J//j9hmzXjpLi73/P3v/iSX/7i1wyHURgbA8aI53GMB5zNLBctKaRjayBlTcqyBaQan6lVi0IxDJkpbDB3jxSTSCUSU5TWiHZ189OkuXPBSeTPsRWZ0CQZzFGJXAJaR/qupdEZHQNhOlBSpGs70JpXr9/yN3/7c968vcPHLIEk1mB0IU4DxBGNAEJnAJWFdcmJnGAcR7yfsMsFq87StLJoxXNZgO98Yh2Z3WrdJozJrK9SZyyzPgaYzDBClXmCW317sXLaq+Umx639BJaRTU5RJ8PzbIo+nzF1UCElhsOB+3d3vH71iq+/+orD5p7ry0v6rme9WJFz5O7uHe/evRbQ2zraxpKL5BDqoogJ/BS5v3vkzas7Fp1juTA0rqVvFzjnCH5kmkYe7t/Rd0usXXD77JpPP/2UcRh5fNyS82/Y3dyIAViGEBOxMrtoh6l2Q95nQvJoqxDZj0z/lvn1mDfDDCppTLZSgRvAakIObMY9D2rD1m3xxaNbTb/saPqFDFUAwzCSUmS1WuKcrS/bv/3J/sM4Trr69+XOJ+r5qVZZnRV/al6PZ0z1+8dpS5vv6yg7qIC5lMw0Dbx9/YrH+wfImRQjtm8JSuOrZr4g4QGKOYxDE1LCxyhFN8LU2FLojGbVdayXPcu+wWqq17Po80QKIVZwurLIx43wHB3PYKRUsFoSKlUrrNrCPiLq916/915hTlR+QTpmZ0wxNYhptsysPzvCgWoLR0nyOadjMazmuY76ugrAAaegM5pl65i6htEHYooCrCsgSTmRUzs3ukgpAHPEsSJZ2dTHIEE/XifG4Ok6S9O1tDGQS2KaBmKY6BYyQAii60zRM02cnoPSWCsAoGnM0a5rmqajfnneZOc1Z4wEyhROLfGnrNM5MJ6H2kyeQRHv3VYpiVZWZ8zrD+H4LsD81HP5Y+3qp8d7wKZigdMeJGDMKIlf7l3L5WLNwrU87t+wOQy4WGDVYJ2msw2tnUSaFMQ3vVSiRippkRBlwDlzsmdTlcophZIhzfNU5QTiPsRafkiuM++79dlR6pAryHUmpESaPCGl6set0EZjkiOmLAxzzJgo/xdfZXMErXNo3xHsVt/l+fGk9D4ZADKXMbO9Rmu0MzI8rCW3YbZ4izFSvD9a+ymtJfWybXCt6KlRSLGcs+CI6rRjVMFmKQSbpiGEpmrIJaF3Li60MRjXQNNQihSj5YhL1DH98lwDff56f+h7T9fleXH6oWS/3+X4EEj+bQXgvw2T/b0AszFS5Sud+M//2T/hMGQet55PhoS1lof7t4TpQEqJprGslhajPVqN3Nws+PzTZ2hlEbtCy8PjnjfvNuwHaaMphUyUIy0KyIQYSLGAUmjbopSVj7rxpFyk9agV84qTjUImdSWhLaGJEomtMo0ShwiVJJ7SGpkE/fqbVwy/ecWvf/Ml4+Rru6KeONOALp5FpzBdQ99JO2YImVhN80spPDw+8ur1a3p9xbq7kiQ/Z/EeYXHJYkMz6yArEFbaMjPLs+1brjXvsbI9trbr8Iu87cwtmyOKUWcMcymcJJf1olhOPyvVc/U9Wca8sSqxwTns99y9e8vr19/w7t07kh9orGW/2xGurijZsNs8MBy2aJXoGktjDFOI6JzFysoaco4c9hPffPWaRe/g2ZqLtXhbr2sYSM6Rt29eE0Lm9vYzbp/dgNIMw8ivfil6ZorCWUcMkWE4ME3S6p0mRcoWY1rx9I6FEgPoRCoy6S/vAMf3yxSLLQadNRRN0YqiFZHCIUyMbUA1hs522M7RLxe0/ZJUwQMlc3F5xe3tLbvtgcM0ENMPK+nv+x7vSTJO/31ym7Nq/gxgn25AXW7lvW/MbJFswmctQk6sxswG7vd73r55w26zQVW2R2mJlo8ZQsy1WJXWqzKGFAu+MswxJUoBqxSt1XTOsuwbFp0Te8g56Og4L3ECuKoWtAq5DpX0bcs96mOnlOpmI+zSsZg9Pte5e/Q+WDkxz/OqnUGCROKSE7N2kzxrm2VQ6CitmtnTCpBOwR7l+LqCDAA7DY2uiZdNw6KVc2gIArZzffPn4SyxtZToawEIVmyrYiamhEYAhw+BECPOWbquYxgmhvFA8EKuGKOIyPkY4kRMkRiCyCtipu16rG0q2KiAWOv6euQqhTp52ColzF02+viaza/n/DunwSdJaYUGMQY8Aa5z7bNSiph/mLMJH2PWnraq5+NjoOP89uJpXQHzzGqqSpDkjCkFax0XqwvWixU7NHGcmPYHrFMYK05RnWtIFFIueBNJtdCUx3zig2eJg7WmttHnB8jZZnc6cs5yLup5UFQ6EjFl0DUBVutaNJ4Y51Lb1XN3S6vZDk40w6pmPOgqR5iZ5hjE439O9JwZ4RST3HN1bTHGYLTFWFNlmfro4mKUxtjqbFGvBcboo+e4qZHwqlqboiQ0Jc3DvFrjmoamqaE+WuwccxbZxPH9q/jBWmjblr7viSnIRx2UZ2apXYNtW4ptKCg8QR6bEW1zObL3p6L1KVg+X2/na+s8YXFeZ3NBPL+HH9PcP13fH/rZxxjm/yWyj+8nycipmlUnrq6WbPdv2GzuCFExhS0xHUBHcogs+jU/+uIZn7y8xI8PPLtZ8ZMf/5SuWTCOiX7R89XX9/yP/7+/5he//prdfqTUKOdcVI3ZlNQr0fVIlYVSZPSxssmUYzy1kKaniXVFRhcJKlHZY0qkMQmrIo0ulBwYhz3DeGC32/HVm7fspshmiCglU/HkhFGK1sLFxYrVosUoTY6J3WEiBU/JSVrEObPb7Xj1+jULm/jkdk3bddjGwQGKBpXVUR9lrMUYORFyeLKufgABAABJREFUbXcU5kHGapxfK70TG3WKdZ3fc+nyfJtpBtkXZ33kaTGpytJVFqdeHI64upqql1Lw08TD/T2vXr3i1atXPNzfY8lcLFd1cYMPEyUHSS+yCiK1SAFnNK1zJG2YpsI0Bt68esf15YpF51gtWhrX0XcLvB/wfuTx/p5xCqAci+WSFy+e8ZOf/pRpTDw+bIipEOPEOIyM41C9LRMpi1bRtQ50pviIj0l0j9RquPrc5vpqOePEpijXMJhaNUeVCURwGrdoUa4WZShyyjRti1kZ2kb0lilGpnFgGkemcfpep9UP8TgHdfOyyry/0X7o4/jz+Z+zNfz0GjaPqxhFLaBPA3EpJnbbLffv7jjsd5Bzdc2YwzpEvqtRGCebCNoQoieESIxJmFOlMKrQGkNrDZ0zNAZM9Uw3GpEjUE6pWsj1SVVJhAR3ZFTWp3StY7Ewl6kV/NcXbGbcT+f2iWpWaj6XK1N9esWgnLGD8yZxzsSX8q3X8fh6foDdme9fUzAFnJZo7NZaFl3L6BNTrBG7WczbYi6kggwGOUOcJkoxaN3INcMHQIBAjMLm+xgx2tWEMY/3I+M0kHOoRQloU4dxq7a8FMipkFPBtam6EAg5YIzIMAQon9lvzmuzSGdLOgJlfgEqEy/tfa2kozdHE+vqMHC++QoLWFls/2+3yf6vfXyIXfttIONpq/opcJkLt6KoHdPqIFOKqJeUSAJmNyxjHXmaCDFhc65ECrTWEksm5ozTM9Mj8iLxU6+PtxbTagZZ+bT25dSpHdtyvs5FW4uu52ieB0WrVNOo00C91jX11jIHhxlrxN1Fn8gqY42wuE0jINYYihap17yLKnFHgFKL+Hpxm5P7ipFukNZOhluLYId5sNjpRp6j1rVAtBgrAT1ijSjXB2sLqTQiE0u1S3LGbiuj0LlKPuq5dPTtqf6z1lraVuYLpmkg54i2lSW3Ftc0GNeQtMUojSuqZv3oemGuA5ppfsrvg1w4aeI/1PH4kGRv/pg7SOfr7+ma/m2Sj/O1/nQ9f1cn5WPH99QwV2qyRL78zS8wtqftDHffvOPNmy/Z7x9JURL7nFM8f3bB1WXHm07TNh2fffaMnBS77cAXP37G1c0Vb+4e+Obta3aHCMpSdIZs5cJGZZaNFX1eqV6sR6Z13jMqI1rqdGlB9MuVZdY5UtJEySPWZJyylBg5bLfc3b1j9/jAfrfjfrtn7zNRu0rAiHbvctnzk89f8uPPnrHsGzabDa+/ecvDw4boJzTQOBk4osB+P/C42RJTpm07XNPUydoGXXKN1XQ0rkW7FmVsrdZA7OWqxVzhlO5VK2SRGJwxUMiFpVCdLs436rNFpUqpQwMzS1cvQhTmQSBVW2qoyoBnCRu4v7/n3du3bB4emMYR00obZ7FYELxnGHYYDX3nmCYJLiBFGiOb7qGZ8MEwDjAcBu7v7nm4v+Lyoudi1dG24GxL6zpIicPkGcaBu4e3dIsFz25f8Nlnn6IwfPXlKx7utuz3O1LJxBgINWlR2x6lxBq/qIItilgkOldVBqRUvbm81lKUOTS2nGzDii74EsUuzmmyFmeFEudKXXHz7AatNbvdnoeHDY+Pj6RYBCBM/7iH/r7rmF/X+fj4BaluLudr9GwTP96Zyidv8flHJZOiZ/PwwP39O6ZhoNPQWEcMiSkkphCYQsAxb95WBoYqyxTT3PI0kANayWCbBJ+IvZQmY5hz+6qE4YxBLrnUrIN5g5Dv6/mhn/D1+aszvzByLhbRXeo5ivn8yR9vLtrKOqFXqwt9LKpP9pJzASxnsq7Fd2buMqlKSOQjf6/mzTOLNMUUCRpxxtDahqZJ2CBa0ljDTGJOZEUdWjKMYyaVgi2JggQFWevqkJ5omSfv0RocMqSnYsFPI+OwxzYtpulP7Hxl+VKIjKmQUqGJEdcEcSaoLe2ZoXo6pDYvQVUHBmWSX37mnDoOWgljKRrOmSFVZ0OF584KHw/v+Id/PAUl72t8vw2Kz297zsqdp9EdX2dmuV+9jyMnDBhDv1qxvrqiWSzYH/akWrDMEqHGGIpuSSUzBk8pWQI3KssrlrBVzjC/30rmCo4yr/mRlPf3vKfgPudc/fmlAJ7ZbKNUXQsNxjRoJZLPeX0c15fiCDDbtqlr0Uiq5fFvCiaZi+GT33UF5uokjTFaoTUyD3X2Wmt7isuWgk+G+SS2XQC2FA8G5wSQxqp/ntlnYZwr2M+JjBQls8xpDhkx1tC2LZNvcKMj54i1cr2UwqClGCH0RBalSUpVSwX5O1mGJo4k27ms4kOM7ntdtHPMcvbanP/8KVN9/vn8+BBz/DFAfv69DydAfvj4XoC5vrf87Kc/4+///ue8+ORHvHj+DDD85tdf0zSWw25EUej7lq51UCIpTVjTk1Pgy998zatX7+gWDa69wFpkqGR+JCqL1ZAS83it6qamq8VSpabmBTmzyQKY86ldWrKwnCmiizDMukyYDCobhsOe3XbL4XDA+0hIYtuSMsS6gbXF0jnFJ8+u+cOf/Zj/5A9/TPQDf/e3B3KcIAuLarTBaSushxOWy08BlMa1HcY4tLa0TYdRBWNn32VxFFHaiV2OBpFbyKDBzLJAZcuOdjfzhamc/l+ENa1k83uM8tF1g7kTO5/V82/PALt+1gqVFTElhmFgv9syDHtxAcmFpmnFWi5n3r17S4oT1kg6XuM0KUpqmXUNvu/YubFeRArTNLHZbLm7u2e1bGgsPH9xQdcuKEkGQCiSKuTDyNt3r4kp8+zmJT/+8Y+5urrl53/7S7755msmPxK8w/sRHwLaOorK5OqznHKU1queW0h1qWRpr6aQsEmTQodBbI6Ukt9LJLKBqDL7aWRIA41zLJYtfbegsU6sfFJiv9/hfWC5WH8vi5r/LR3C98hxbLeedUneo5vheNGfV/gMMOe1G0Pg8eGBx4dHkg/YpaVtmhrXXlnNEFHaipihtg9TBcupFHIBawwlTUiypRTIc/CCeDPXeb8sISVqtlGaC/f5yb13XtUilDP291is1uePOgUUUU7n6zkrogoln+BIKdJBmXWIR9BbC+b576sKlIuWa4ZWpcrLpFhEqbPbUztKp+ehirjjmDrJb23E51JlSBkfJSTBtQZjpAgNIWGblmqVLrKyLJHhMeUjYFZVB2qMJgbP4bDDdT29a44sJWgJpcqletZOxJxwMRxZvfO1c7KIOxELau481s3wHFyL921zBETHzTlnOPN1nkHyDBTL2fr8IRwzgPgYk/ahYb9zgHIOXvKTQuJ0v7rut/K7aV7PlSVuVgsunt+yuLliu70nasRtIhdUzrSNxRpNKJkmTJBEsyz3N6f4VhmOEZ9ipUQSIX7KczQzJyJpfg51fec5+U42v+N5Vpi7UIg00sign5w4leGtnYf5mOe45sh5Vfdsa2ZgCOdkgLXnTL6pRTJAqbKgfCwyjutMVbZalXlsQ/7G0faQo+5a9NLC5h+9pM+HE6vcs1AHoGuBIOeadGq0UvgwcDg48bJ3TR1i72iaFjHhrXZ6FfTPc065SsFKkS7UXJjM78NTMPx0fZ5eV/Wtzx8qhmf/8I8RMR8CzB8rEJ/+7d/l+F67u3hVWv6r/+r/St8t+frrV/z+8pZPP/2MLz6/46/+1d/xLm2wpuFidYnRhuEwkmISHe808dVXX/HNN2/50U9+n/VFVyeeZSgu5ULOkXlrlXbhaRCjnG2cMxkxgz1dq0UlZwiqJFSKqBQxKqJywqqMKZk4HChhzzhNIvVTpoJlaccrbWhdg24sq1Zzc7Hk+dWK64sl+11EF7FbclrTN50EXWCZYiJnTwiJlEqVkGhCkLahtQ1W8ncpGWIq6KxwyqGMFS32fBFSstuJLLsuED0zy6chi/l4zynkvZ9wbGMfa3ElHJhW+bTZz/+Zq7SSCcEzHPa1qBAXlDAFJAVOs91s2G8f6FpL37WkGNCq0DYGZRzGWLrG0bWiU3PWMI2Fw+7A2zdvsTpjVObioudivcAacDX+0ydP1BkfRx4e3mFNw4tnn/PJJ58wjTI4pLWi7xvuXeHh/oFhGvA5o5RDaSugqPrIltrG0lUjnguM4wQ+4VOLNhmrxWs25oJyGtNaosocpokxeRaLJRfrK/p+wXazYfQjh8OABrqmYdF3pJhx5j+C5t92fPsCdioOywzk6ko+kqp1jZZSCN6z3Txy2O9RSthlozVTDDUcoIZhOHFnAF2Z5USuG17KClML8aLERQKSrG9S9UOtsg7miJEaMjKzXvVcrds2J85tvkDNg3qnIkG+L//IBPyc8Knr7WaQXb1W52HVyhyLw9D5+SrtX9nDqrZaSYEq3uDz8FsF++qkZ5ZCttqLzXd5fI/0mRRO/KxjKkw+MYVIk4+UPynNAFM6XTHl431kCiEnbIoYCrYCoJwD03TA+wEbOoxVgJNOkNbH+iPnTPaenOVvCCtctaz1ec7ropQT8pchK31kke3REWD+fdGRHgNQIsJsP2GTvw8D9Q/p+BirB6ciY/7Z09/7UAv7HCzDaaULYFUV3OVjEVhKllmm22uuPnnO/cMbcgjiZ66ykCPGoq2msZaubSneSwR1XYglV7nOLMXQc7DHzDDr8/Gl42NVSpHKLD8AZleZOo8g4FWK6FxkvsVQBMiXJGeYxPS999rNeQRzUeWc+DMrM/vXnCQeVUBRwXsloupaSrMf+gze57mkimO0ketXNbJBkWUPy4acDSgpfLUW6Yizs1z1+Avyu4oaimSEBaYCUWPqLIBIzWYm3VlL27a0XUfTdljnKEUsPDFy3cuqFtXVJlMXjnKXGT98SNrz9PPT9XZ++3O2+ela/pjG/kPH78JEfx898/cDzNVA/s/+9C+4efYJ6n4LxRB9AYy4V2Bp3ILLixu6Zsl2d4fVDct+RckwDiPWOKx1hBAZx0kGPFIiZQUlnDlFyGSnGJBzRoFyQoSlbiP1pFF10YvxbkLlRCkRlQPWSn598iMpTEzei5axFELKTCEQskLVNkfvLOulY9U3tFahSqyMssJqQ9c0YBtsaZmSxu/2TFPAuiwyEmWYRs92t2OagmyMM4OCriewQSmLMo6ZzlL1eZ423jrpP1vNARwZ5up9y/sndjlbCLledFB1g0YdN+xayteFLsEKc4BJTrkO1Ik213tPjFFOxpx5fNwwDXsatyIGDyXJyVe1YbO2e7Va4jpFDJ4QBkLw3N89QPZYU7h9dknfNSz6JW3jKCmRxkgqCUj4OHJ3/w6y4fryOcvVgk8+eUnfNez2a7q+oZTM9HZb5RCRpl1grMEg+rJcqmbVVP24OXlL5hiPll2lrjnXOExjK6MWyArapqNpOmLMfPX1N+QS6Pue66srkctoTQr1Yv8fj48e590h+X+p58LpmIu80+9w7I7kLKz+5uERP07CGFpLyRk/ecZxko6DMbimRWtDTAkfhH0+ss05S0LW/DeRYToZvitnG7MwzRYlbWFjoZ7LypijP/qROT8+6CeXK6Uqe0TdQEFrK4OKyMAp6sSezGFMR/9VICuL1pmSq/BDlePGf2K2BEgWJe1iFBVoFIrSJFXb0wjINiqTlcWYjM7xBEAri660EeCsBDj7mBh9oE+xslTyWGIMMhSuClqM+TEVQMuA2KmFrhSEGJj8hA8eF3wNgJCNfR6ErM+anAsl5uM7depQlCoTkI95k3XW0tZhqaZpjhIMc8YYzq/zkU1Wp830KTv7ff1a/yEcv03f+bQ1ff5750EP5/f1FKAc95MZJCOfc+1GKAXd5ZpnX3zKu3evGO7uZQBOMSuB8CmiKHRNU4vayKxHzqlKjI5r58PvwrfkXAg5wjEAjCM4PXkQS7eDyujmMp/KM8Oszn5HwG6uHYj3Coec3hvU0/qk6S4FQoiUTA0rccgVJZ9Q/gyYkQFBY60w6MZUVlhulkohVmnKzCBbZ3E0KC0A2ChVrfWOr8yRKTdWriPWWKwxZ5KQUwqkaVqWiwV912OtdMaNUtiiiVpcySoiOWaxzo/lNEPx/vtwvnY+BJbnDsY5G3x+jn6Mmf7Qe/70Nh/7/vnn7yO3+n5JfxhK0fzN3/yCP7Jrum7N5vHA69df8nd/80v2O4/RLdZ0NK6noJjGgDEdXXdBjBJW0veXdM2SYcocdgPDfiBMqS5SsRnSRphUGUIvJ+ngGVieWVOl5k1P1WFyMa6fmeYcJkgjxhYarUSfaEWX5kOo9sOKEDI+Fiya4iztcsH11QW3t9dcXl6y6Jcc9gPeJ1LRNO0SSkvyWrwQs2xbbdOwXCwx2rLfH8hRADpFoaxFKYc2Ddq0FSgbihLZiTIKZZDqE6k6Z6CttK6LdB4weP91ObZ/60skly/RYsn8cn2diugmjxZVFSjL6yUWNKpeNEMIjMOAHydySjhTW98hEPyAVUWCBloLpaXkgXFK5DgRoryuFxcLtF1QSmac9mwfPeM48rhJqC8TV1crutay+OIl19e3pBg4xAPDOFS7wcx2vGfYDTzc39M0Pc42XF1fsFy1dJ3DWIVy78ivN2y2IyF4tOmgQMyJKSZizhhrwWiUsTRNRxugiQ5TqgbOKJSzaCevoxdLF5xraNuOlDLb7Y53b9+xuljwySeXXF1es9ls2Wx2TH4i/dBcMt4L4Di/OH0XQPjYZnzkJ8++VhwZ0fpfdVYQ1rLvuPFS25oVHx/va76XnBKbzSObzYYQfC1+lPj0pkiMgZyTpHFZJxfFEIlR9LDUbk0qwny6s4dbZnBXweLp8UtUvDZWnHyqfZRoBjkNlFYWV+5Pnsy56dZ8G5k3rHZRtqkDiOcMswwyZ5OPAJOi0CoBTt6yaoShtGg05YapdtrOQIZWMiRVz3e5j1wL3CLXXGMw1I1a5yNzK+yeWGlpa1DZkEs52jlqLbINpeT6EGM8MvuqyJBgSsKCHxPTciYinQDrPTkGSor1CSVmv1iZWZk3TnlvYoxHMDun8c3P0Sp7BCVt29C3HU0FzfN7+63VWjdoo0UmkNQJJH3w4wd4fFc7+vx4Ggc+H08HuI7FRN1PZqkmhRPDWY8IuMWSq5cvuHrxAj+OJA2udkFKSoQwUXLCGdH1Hq8WpZwVneqMRZ6L7LmwFmZ1bkzNYR5HzbDWp3NLn+QWyohNm8iEauFbbzvrkmOW2QWNqp0aoW0LHB1hdC5klU5dIKWPcpGUMt4Hci40TUMurchKZq1xKUcWeba5bLsOU6h6eqqtY6kGBPq45nW9D20MOsU661GJtPpcVV3XWluMlQ6ZNUYAsxLAXEzCmKpZtob1+oLGdcypi1rX9EuljvrvLFPAzLaZsh5O6+0pg/uUXf6YFvm3MdJP7/vpmj7/+cfWLfBeQTi7lPwux/cEzAKy/pv/9v/D3cNIv7wmRsPbt4/8+qvXbLcDpQij97DZ8Mtf/Yr7u3fECM9uAt4XtpvC7bMV0RvGw0QYE8WDLQajHBl9LKmUOhsgAM7t0+ZKc94YhB4425iFVxQwGD26SDvQaU1jJY7yzWsIKdE3HX2XcGqPTwEdAiYaFm7Ns5trnr94yeLiipA1b+52vLo78HBIaNuTSsPgPcMwkULAAKu+4/rqkrZxjMNAmgo5hhp/6WiaHmUX6LZHtS3JCOuD0Rhbk4uSodSW0pxUNbda5dlVH9bKQp2qPKjIm5ml0dpypJoKzAmIRSUgMkftVpMYSoqkEJn2B/xhJIyBOImXbNs3OOsIwROmiX7ds1z2LBctBwMhiGVUjFls3bJmsWhZXqyIObDfPxD8XjbXEHl83PDNq1dcXC65vrnk9vaa9eUVu2mHj54weUrxlKKY/Mg4PAKGi4srLi4u6RYtxl6hrcH0K1T7lvKbNxx2kTAlpgBDjBxCIJIxraNxDaVorG7pjWVlVvSqwygxqo+msA8Dew54GzCdZbHqUFrzuHnk/v6BaYxcXbWsFmu6ruH+PuCngehTnUb+IR3ztjcfvw0Y/A7PT506Jad0uXw8p98Tzc5a/UId0Dppl/MMp7NMeSulKCmz3+04HHZi5aSkyxJKkm5AvV+nFU4rmci3Fl9kbSuoG6cMxCljjlt/zpIql4whZkUyioQlKofCUZTDaovTVro+VS4GIiOYi19dQVz9ibDVxpBNSyqakhXgKLoF21JiqowudXK/dnpq0TxroKUfCiXNjK1B58pQE0hFSbdk1lFrAcYnZizJgFJl97JS8qFruE+1pjMULCJjswb0bNasFTkWQkgEn7FGBqRKril8Sf5myaU+/1mLrCjZUoqr60JLV2gMJB9EQlcSpbZ5Zya+6NOmOIdWlDJbkMq1vGmaIwgxproYOEkjNFV2MbeMj/rcuoRLKXVIU/5m0rrOkyhKlsS1pApFww8tj+gcKH8X6Dj/3tMhqA+xgzOTqJAhNF27BrPsYWY4CwplW3RTWF3e8vyzH7N93BEPG3wJ5JgJOZImT8oRnMWqgjMGXwtAq43IoGZCo0jhWQV2srbmx88MPk84YZYfKGMrEdKgXYt2DmMtqkoA0VKcxVzdtbS4vKQYaiS8ws5Atb4WJSnpYhtFrj7p1MIWJfHXMUb85IWRzoGSvTC3TnyNU4rkVB1hqt85KaOt+H6nXGp+gBBbpgb6WOuwxqAVRK1leDFnMAplNKYO/GWtsUpTXO2SFI7DkyLJAIqlaztWixVd13B5cU1KmlgKJWUxJZiL/zkIqSSxgU0nrb85W2vfGrr8COt8/v+nMqCn6/JDUqH5977rA3iPwX76N2P83Qmu7ym2DKAsX375G3b7WKulBQXHFAoFaVcW4Ndf/oYxvGEcBhQ909BSsuX12wPGeX7169cMw4HDfkArTWcd2jimJG2YouXNP27e6synVE4hOLIoZ7zWkUURZhKERXFGYXXBKHFz0CYRkydT6JcSRNE1j4QpYEqmAVZdx/XVNbbtePu44+Hv7/ibv/17fvXNPfePHuMmCoVh9EQvns6NgUVjuVwtaBvLdDiwGwemcaJpWvwF5NKhHdhe44ymWMgqg656uRqMkFOpsZaVYamb6dyuLlAtbyoAODJjFVxXHVUux31YTvaiyaoQi6cgg3E5RvGvjok4evww8fjugf3jljRFSKAxNEZO1DkO1zmNs4a2daRoaBoFBLGLmje+MmEdXF2u2N5cMhy2jONAip5cFI+bHa/fvOP6+orr6yu6fsHVxS05JLbxkUzCOVer8ERMBaUnYh4knlMp2kXDjbomYMjJ8OqrRx7uRsaD5xAih+QJSvxBc1FYDCYbGjpWdsVSL3GmQRnFlCe2057JiN7OuZa+6xmGgfv7R/b7AWdbnGnxo+ftuOfx4U506lpkID+s4+w8e+9733HzDx5PKn81t7TPL5bqfaKuskSiHZQfaCprixSNpagadyxlY4qBw27PMAzMm1RWMiS8HwZiPjEeqsqCGmOYVCLHIBd8paomr4iVlDZo4yjUQKWkyMaQjSYrS0JAqaE6r+RMg8IeQbISVFl/R1tdAaOk1lnnKE0PZoEumpggFwPagRaddSrzpkT1YpeiNuv6fa2loKgFAtmgqeyytjKmWO30FIViSmV4I74UxuDx0yQgIKVay8imEktmypGQAqWI5Zel4HTBmoKxEj9dlDD5fvT40WMXLRRVgeg8CKSqvlMYdIXYTvmpYBUY21DIGNMQvWcaJ1KM6JLlOjiHsejqFqSq6ERJx8oYQ9uJf+xisaDve5qmeY8hPcYCUwFHPpNZHBdxOavb6gaqZrAunzPyetZH9PFz4h/gcZSSfITd+9hxPuh3/nvn9wuztl+kD3PnsmRh4hOA0hjjUK7QLNY8//QL7t7ecf+VWG/mmEgxkH0gRy8zMI2kw6YoLKY1tt6/Olo5Kq1Q2Lp2Z2mAqjKQild1pdSqBl87V8FyU//vxJu9dohyKTL3wNyAEuCcUyaFSMlFgKqWwUOttEgbbEYZyITjayfMeKE0MogX/CiFXg7EYGhah049sWhikMJBlWqDCMTJV6abmlAr1yspCsFZAbjOWkIMxBhwTXOUEdrGSfKlVojXs0MpQ9KSG6CgyjE085xD13aUZWa5XHB5dcNmM+LHkZILJhdJwaWItLFkmVmoUtqcZq9pxxzOct4Fmo+nUp8PFW3nt50//zbpxXFY8gmz/JSJ/tAA4b9XSYZsTgXXNOy2O0KaMCaiVQumwboGpcCHka+/3vLuQaKwtVrycJ9QNBwOE+MUeNxuiMHz5t0bUpY4bWEOZm0jx435g93i45eVnartArkgVi1qZZldY5HE+ImcItOYGKZHdrstWkPf97IZ14ECayyLfsH19S3L1QWP2wPfvPqGX/zil3zz6o79YSIkjfIivk8xoUumdYZlo7lYdiwaS/YT9293PLx7y353wNiG9fqS65sHnr88cPNsZHVzxeJihekalLXootAVcslGk6vNzZFaZu5py2t1spea/19Ob9URJM8DShLnKcb9PnhimvDjiB9GkvckHwjDxLg/8Hj3wJu3b9nvdnIx0zWxEGo7VzbmFCcULY0zWKMwulQ3EI3SFqUSKY2i972+YPO4JMUARayFpjHw8LDl9WsBzS9ePqNtliy6FcNhQKnCYtnT9jKMEGImJtmEU0pMPnI4jBwGTymBvm9ZLRfstwmjJTDB6ULMoVaUlbmPCpLCFktTgxFikXjsZtGyvrpk6hUHtcUaR/QTPkYyhYuLK9q25+7+nvuHN6QceHH7CZqGYfghWlD9h6HPBPSc2qynv348m+tX6ggM5yFACdwRp5XtbsM0in3fbN00S4hyqaEa1En04oBSwzDSccJd/rA+gl1VtYenQnw+v9SRwfIhkL2npII1lq5boJtGNmZrasHkKMqITaFC2ErrULbD2VakA1mSKgtzy1TDHAbB3DBS85yvBDfo2ZFAWJ4896Dr4KG0XeU5pxyJSYKfRj8xTiPDcGAYBsI0kkIUG7mqJ9U6k0kS5pILqujTtUMJu+Yai/aBVPIpYTPNumEjg5R1yj9SsFahkNc0Z9FyRteQtJyDzjpyjEzjxDgMrOugeEEGIKVVLiBF11a91hLk0Pf9ETB3nQQ1lFIIIRwttnK12JNf5GRBe7b3lvf2GHX0/9cIw6jrcJPKHL1/fyjHx7Sf888+xB5/aBjwY3KOk8uhnKu6lGO3RwCJOKs0xqKMZbG+4Ob5czZvv8IfhFEVa8ZZQgm6mJoUqMlmDvrQ7zG7sw5eHgRynajShlS9wslSWB0dMLRm9i/OWeZz0AIe5yHgUpCODQLES86kkAhBWGZnqh1hPReNrpaEppCJaK1OLkmq1GK/1FTKeHRoyaVBZ4WPELwnhySFQB3uzUXQS8qZkMR9QhkteQ4Vn7RNg6suL42bZUgtTd/RLXqWpYilplXHuShrLKoWnnJdycdCUimNc2KZ17Qd2sgMSCyFmBJRZWLJhBQJJVfpWzwDqgrKKbHvQ+vpY5Ko71pr5/f3dA2eA975cXwMWM/F9NP7+T4Df/B9AbOSXPGmaVgubmm7Kw6HxGY7HDepgkQrxhTIU4Ci0Sry9u4eikMrw/Rm4t3DG2SPEK1uUlE2A+1wVkubQ59PfX5oQz/yyhwFTLV1Me+w2sgFL4dIihHvE8N+y9u7L3ncPHB7dcvFxYqSiojmrca1AmwXixWTT7y9e8u//jd/zW++Er9o5yzWNoj9lAwsWF1ojeJi0XB7uWbRWIbthsP2gYf7e/a7PVoZ7t+849XXr/jmq6+5urnl8vaG55+95Pblc9bXF+i+Q9sGraywKiXXFpE8fzGhUUcpiqLa4JQsG5xRR9ZOJUkqKyhSQRLOJs80SZrWftwR4sQ0jUyHgRwTOmeSD+y3Wx7f3fHwcM9hOBCSRynZBI2hcoDih+unEVWWNcJW2PxsRQvWdi2xaIIfWK/WPL+9YvNwxzQOaFWIKcr7Hwv391t++cuv8CFxc7Wi79cslxP7wx5tGtbra9quZZxGxskLC2EVIUSGYcebN3c8bEb8IEugbQx938pGly1EaTOJfLOQQyGHRE5RgkkANLi+ZXnpGK4cD2WgRETjtbBchEgIiWfPXhLCyKtXr3l4eMOzZ1f0fYehoe+G73Va/eM/1GljnRnm3wmfS1ulVIBrUMQk6Y77/Z7Jj2JRpgwpSftUhtkE6MoFNMs1QCnRNs+hAsfOlZ7FW6Tq0Szd4Mqa5USKAgzTNDLFxOiTxL7bFtuM2KbHtC2m6bBNpumg7Q2tFjcGqzRJWXSS+QnXWJwxZCVOOTlFtLbS/izppNVUQNVQqtp2nYeaS8qSIlZKTRqLBB/w0TPFwBBGDsPAMA5MwdeBvED0IqWK00SJqWJJ0S0bLYyrUTJnoRBWyxmFI2NzOU75z10tCVMTX9c0J+hV7WOp16FcvbFSitLeFmpbOm7TKNaVhwPPirB4WjcU1aDdAmMbnLU4a44BI9YY0afXD2H6LMdCC3mvY6rBGucb5Hv7SAVaCmYbr7n9r+fgrKIxRZFzDcH4R3I8BcvnIOIcXMy3+dChZjr2RMuidEHnWfkn/twYDUbTLhdc3t7Q9j1+U3XFVSqolQGjiZXcsUiM/TFURqljt0HVqnsuKo/P6Sjlqs9Ln92+gviUMsokVJZCdR4ojTUsR+wIJaFPzilf55zyEbzrqlEWAGyR0LuEs5amaY7dtRgDSikpUoM/sq9tjJhQmCL4cSQHceaZZVMhREJKTMEzhSSMudGYtiVX1rgxDqsVVkmHdwbM/XLBxeUFVzfXLNcrXLvAtglrGxpXZRxa1Rml2cNdHYta7wPT5GVmwRhyvW4kVQhFBuBDyaT8/vCjQoP5dlF2vtZmQPsxW7j5vXr68++SYMxuJbPc6ret2afDrN/3+J6A2bBcXtB1HX/8x3/M7fPP+fuff8lf/+0v2R8mXGnolwuuLi8pRN49vGYcA9o0SBKUaG8KwoCkko4tgaIis+xChj44nkz1VaqPAd5r/aKOX87uDkcqtg62lRSJYZIBGg3TNLLZPpBzZH2x4uJizX57OJ4ATdPhmpbDYWT7yy/56ptv+NWv37IdI2gtg0RVIyTG59AYRe801+sFtxcreqdJ00COgfVyycVijUIzDBPbzY7tw4ZvfvMl/XrJ809f8vlPPuflZ59wdXPN6uKK9foSoy1Zdu06QFMr4HrxmKu6gpITuBR0zYKPIUrb1AtAHg4jm8cN+92BnCX3PpIwVlfW2NG0reid2ohVBpKECzzcv+P+nSMnL2BZiQVbypkSPYpI11oZqMoR54RZjqnQdY5Mw8F7jM5cXix5+eIZwU9sNprDYYCiCD7z+CB+xuMUKD/+jC8+f8H19Qt8fEUpDrAcDmMdBhRdat+1KAW7fYdWmXHcsX3wTHvwkziRKF1ZCywkuVjqYjBZo5NG55m9RFKbnCaoxOawY5O2BCtuLs4YFosVbb+kb5Y8fHXP/f0Dxigu1heiIMoJa39okoz/cMeRMZiZv+86aqE8x9WiIMbA/rBnGA54P1GljIQQydHD0VLtHADIBpaqi4JsfElYQ8QDI6Z5kC3V2ls2hHEKBC8JZaL4V6SiQbcUHUllQDcDtutRrgVjsE1Dv1yyXK3oFx1d29EVRWMyukzEWHh/LsHUS1YWT5eq18xZziep/UuNxJb0Te89cfIopHU+DiPb7ZbtYc92OrCbDhyGAR/9kZVyVmO1pe0tfbdE50wOkeAnxnHHwQ+SzGlrRG0dEHJaYVVCx1i12dVuroKHObJ63rSMsZUNFAgjSaPVzaLqj62VeOBcMtEHpmkCpWjbFuV6lOmw3QprO3kMxuDcKURCNKGFGBJaiRXpbBnX1IIpq1D//iy3qItlBlalnCQYSh3T2gQaiw93qetDo48BKD+U47uYtA8Bmw8NVH0XAye77Gne4DjeqkQ2oa2BlEV2bzXaOLr1kn61Ytp0kn0QQ11D8t5mxCcYY8ha44yRSOjqWjGHDByL7nIGFTgB5dkJSVf//ZwzpXo8l8qI5+qikVKuVpSJEiEF6VRN48Q0iYtLzrk65Jwx3lpYWWc1jVO0TUPf90epQ6jrdQbM87Un5oieElMs+HGiVB1JCAHvPYfDwOg9h3HgME7HokN3HalKKRpjq80lWK3r4H3Dou+5vL7k+YvnXF5fs1hesFhdslyuMBcXtK7DGF0T+QQ8GmsxzlJGzRQ8wziCErlKLpmQEllLPsV8DufyxF7wvJjhfVD7UR382TqbbQPPXWzO1+qH5BbnNofn93ceuX0+9Pexc+H7HN8PMJfMixfPef7sOX/xF3/O85c/Zrud+Pkvfk3KAaULP/nJF/zpn/wJu8OG/+//8JeM031tOwoRmrK4YAjJk1G6iGTCalLMxOhJCbkNWqyRxCqD2mU9FrX1QZ0+qZldTqePCspLFlF+YxuCE/aka1vW6yVN60ipTtZbAY65wKvXd9xvHrl/fGSYEsoaFuslbdvjx3AMFTAaWmdYLx2X6xWNNRKmoOD26oar62vWywuMtmw3O16/esvbd+84HPZMux3f/GrisLvn8d1rPv/xj/jk8y9ojGG1WostUyrkKG1Ka6TyVvWEn1kccaXJhBTIMTHs99zf3fFw/8Dd3T3jYWC/G/Ax0ncLLi4vWVxesFguxQFksRAdoFKQItGPDLstz26voSR22wfKG4+zisYZukYzFhlO6hrHxWrBOO5RJdI6TdM4dvtBXpvWMYaJadqxXl3y8sWtVO4VzHsfOBykve5DQGFonWO1XnF5ueLi8galxAd8HCPDKCx/05xasZeXK54/u+EweA6Pb5nGkWGAMWqCskRV9Y25oIrBFI0tlhZHpxoa7dBKEylsxwO/ef2WX+pX7FYjzUqx3e5QwOryiq5bMg6e3X6PUppnz55zdXUlAGuYajTwfzyeHu9V/2q+0H4cNUuj7zTpbrTCl8Q4HtjuNhwOB4gRV8/vlOZhIznm0IGcJRGSkrFG44zFBnGDkT9i5Goxd7KUIsXEYZrI455pGCTJru1ol2u6dgGmwyfN4CVZcB/2+HIg5EIxhqbr6RfysVwuWa+WXPY9y6bFmojRAgSccRgHOcjgidJVw11Z5Jzi0ayfIhZowzgyTiNhEhu3aRzZbvc8Pm7Y7rds/MCYAxlwztL10mbtmkY+rKMxBouiBIl0PwxbhnFHSZGSyjFKWCFzFraUoyxEBqIQ+Uurj5IvqEVJjnLNVrVYqR3AnBPBT8RWIq5LScI6V6bIWctiscB2K5Tpcd0aY1sUShIYjX5PczhvmvPQTimlAnFL0YqkRbKVSPKc5o0jIwxlXWPHD6XIGrJW1XpQtJkzEPxfsM/+gzg+1rL+EJj+2LDWe7ejVLcXVWeG33ciQEuXJpUsfuglYbuW5dUl02ZNCYnkZaBb6mFVOxwCjsVZxdRwjRMgmxlmgLnuns/7uaMgIExRSh0+L+XoSWxswHqHcRIuFqO4ZcWQ8GNkGmRfGofhW4DZWCNJeLMcomloG8OitfRdJ2SUFZBugzC/3k/VPUa0/akkCpHRJxlqr4mh4ziy3+/Z7vZMwXMYR4bJE0umGENpWpIVwq5zDqskwMVpLbIMa2kay+6wF3erybNcj6xHTymwWPRo3WOMkeIw5zpTXEhWhiBBwme0VlBt5FLOZKVFtsJcsMzExIzFzPFaPuuWZwZ6Bq+/jVU+t308B8Xnn+fjPVu/4/WH94D304LvQ+v6qc76tx3fW5Lx53/+5/yT//Sf8ad/+qfELNpA+UhonfnRjz7lf/9P/oJff/Vr/vW/+SvuH3aAOubZFDKpJKzO9IuW6+s1z54/w7mG+7stb14/Mk0ZrWrKz/ybpRwbqXPjbf7bYqw9l5tSOVESqoJmrYQFziliVFursRbjFH3bo2oLT2lNvxD7sBAS95st94+P+JgwzpE1NP1KWol+J22WknHK0DQtF+sVfdsyHAaK33N9seSTl8/44kc/4vLyGqstYQx8/umW+/t7drstj5sH7h7v2W13fBM9jTX0Xc9yuWLZy2MruYg8RRksbdWJzabr0vJMuZBqHrw/DGweHnj19de8efOG+3d3SKxlz8VixeXVtXzc3nJxdcV6fUHX95imaqVzpCRPngaWfcf28Z6vfv0L9tt7rDN0XcNq0aLKBNnTNIa+dZQs1XYpFrRhHGV3cha6TpPigFJLbm8vmfzE23dv2W61XFBCQiFer4fDxK9/8zUxB774/DOWy56uq10K1WB0ou8FiJSSOBz2UDJd61j2raRHWWHCqZq2VCflS1KSIhY1KoLNhs44mspiBDIPw46vpte8ae5RnSWOhRRHuqajXcJmd2DaHYgps1gsuLi4oOs7sUeMgf34j1mSUY6sztl35Jgvnh/CwL+NTT4Ww7IZlirHQM+skVwLck54P7Lf7zgc9tgSaI3GVrY2xVz9U6vmV8skuiSQyc8kvS5jQiLGRK7nE0dGShPThIoeVQpd22K7jsXFFcvLa5p+CbojFM3oM9thZHsY2U1B2NKYGLZb7jZblFJ0XcvFxZLb1ZrnF5esFksW/YKuaVA5VZZN1Q1dU4qhINPboU7pUzcuPwX2w0FA8+DZbLY8brZstzumSYaYS2NxTU/X96xWK5Yr+VvOGJzW6JqypnJGGYPpqi54scBPA/4w4icvAQ5KyYCQEiAjAQdGZgeCZ5ksavZiVlU/nZSEKxRJ0bPOUSohMUfZt01TteSZWYOqtKbrOprFElSHaTuUdkJKVKcV8TufNztZOlIohSOTbKyt779Y4JHzWaK5rKkyOxKU08ItIIBZQdInFxEBy98NHv8hH+ca0A89j3Nt51NgMv/++efjcez2isa7qDOrt3m/NtKpVM7IPFPrWF5eclitmHYHlJEkTvHvhmIV2imMcTL0Nw+nnXkizxKQcrzeKLF1nZ9PlS7Fau8pWmABb2jpdCtj0NYdAfPkPdFH/JQYD55hGBgqYI5VSqSNANOmFQcW1zja2JKio0Rdh9+ke6K0FKsyM5OORZ1SkgkQc+QwBvw4kWLCT4Hdbsdut2O7PxBzIqQoYWhKoZwV6VBxYCytrqmEqUZex0zO/qiV7rpWYq2rEcN6vT4+vrlLhLH1dZProq6zIEprsprjr2H2qJaipIJlylEmquZziBMAPZdrnMeLn4Pq8wLo6cd8m6dM8vma/JCs6Nxv/ZzN/tB9Hb9O/74Ac4E/+IM/5J//83/OJy8/4+e//IZpGglhBJWxVrFa99w+u+TN/StiDihVT4aaTqWNqrrCwtX1ij/9sz/iT/70P6FtOv7qX/8dfzn8S6ZpI9IDXXVpajbMrtKDqhE6DgwUceiAQsmS7keJlRsQ1to5g1bhyJBY61BJ7mM4iIYupYhrWlCa3TCw2e4JSWFcJ20IlRlDFPP/nPHBo3OiVY6msXR9T0iZN+82ECdyecmLzzUBg88CbtEy/OCajsurGy62lyxWS97ev2H0A8Nuz8O7O5arNcuup1ssJT67Muw5Va23FU1jLrLpp+DBe8I0Mh4OjPsdxMCycaiLNU3TcfvsBReXN6wurrCuoVsu6ZYrGteKU0Btw1CE4dcu0y+WXF1fc3F5iWtcldBA33eUtMCPsbZeM03rWF+suLt7oFBYLhd1o0qsV21NVou0jeLyQjyuN5st3tdhvJRoux5rLZvtjv3fbXnz9h0vnj/jiy8+4+b2BtcsxPpHzWujnhRZJoDJCUXGWY1zoGNC5VynrAtkyAGSB5UsDZpeO1ojCWOexFgi0YJddEQd2e535DCxfL5GG8v9/YYSIs46xqmw2Wy5ulphrMW1La/efv29Tqsf8nG+haonX5//QJ1dUEV7f/b1jLRn9VUFzbkUVIaQIo0zhBgIUWwLQ5jwfkKpRIrCrOTaXrVGugXyp+vwTQWms8uCsw3GRMbR41Ukt420aevtlVY419B1YlvWdkvcYo3tFyjbgXZ0pqFdWpplog+RdUjsxontYWA3DOz3B0YvmuIpTEz7A3EYuVxfcLlacXt9RbEOq3W9xmXQCp0dRQuDm6o+L8VEiJHDMLLd7TkMA7vdwMPjll0FuChNv1yyuFjT9C39omexWNK2rQwfplTlaZESEtRzgyKmWGAwxuEaYbxi8cTjuyzXbmst2lrRKlcwaeswlJyLM4kxxygnmq6jJEhhQhstVoAVZDeNY/KeEDyHw6FuelYIgSJWgrLBnzZmrS1zuIr8DdFjliKMsCsKjGgy665xRrDUz4K+UUoGKrMyZBVJqpC0JIRmLfaduQgL/oOnmDnpk8+ZtnPA8RSUfOjz+TELMhTy+hw7PGf3q62pg6gZ4xoWF5e4bgHW4bqO6bAn7g+I/aGiaRx92+JDRKsqyVBVjnEGmMWFp7LYWtWBeDlylRxI4ZmYQiCmJC0cNSffaVIp+CDFX/SRGArTEDkcDozjcPT9lueoSJ0khUY7y7eK2CFG0SALw2xxzlD6rrKlJxcHaw0hJHyMjIdJUnQnz353YLvdSiHso+REIBkCWYlMyFqH7hf0C+kKL9uWNHn8YU8OEaXyccYgpVy7+eLkoyjkFEjRU6zB1DTaXF1tChrrJJ23aVtCVoQ0iLzGGEpJpwFsVQdwOXPsKrOmXLpgIYQjWD63dPuQnhm+Ldd4ygB/DCzPvwscWf9zacf8sxDCe64vM9v/75VhVtrw5Zdf8vbNW/7oD/+E4CeGYU8uotvs+oaLyxVNZyVJbzwQo6/XJ0cpkRgSuUxYp7m5ueQP/uCn/Mmf/Iy2aRmGA//m3/wtd3eiPVaq1EncOahjfrFg9gKUM9SIPq3UizUSO4kSOQY5YYyib2b9TiGOEZ8j+/2AKhLhHWLExgjeM4wTPmWZ0raN2MIkzzh5gg+EcSLHQGd01eLB/jBySJ5x+4DKEdetuHq7Jbu3LB8O4t2a5JlYpWSjKorl6gLTOIZxRyqJ/W7P5u6BRdtzkaFfriRHvrY9c441wVeKjxQ9xXtUXRRWK9aLnt4+g3gjAKHpWCwvyGgSGh8C797e0e4G+sUS13U0bYtrGgHFSAACSmFdQ1+n0XOYjhPo1llSOqXhtY1U3TElUomgBZh0nSOkgnMGRSTnidWy4/PPXzIMIzJJHBnHocZyttjGEfPI43ZLSAkfIpMPfPrZpwwHf2zhdp2jaVqca9HIEETrHG2TmGxA6yRR5rleRCLoUFDJYAo4FI0yApiNJmuFcg0Xy2vU9YoHHti+uSfHJFPYEXJRdH3H7n7Lfr8nxQOrdcf15Q0JzV/9zZvvc1r9wI5ZTnH86njMioaPwYq6nE6/OANkTkEbpwvlSbJRcjp1UlJimmSjiSnSmHrxVKJXzzWESL3XwpW/IT7y84V0vlAbZCZd1wen6iahsabBOYOxjmwsU4YxgCoZbTK6Pq4xJnwqxFxEF6kNxjU0fUFVcJlLZvSezV48yFMMtI3jYrGo50yQmQCjsCpDNuSS5CNH2fQnCfwZhoH9MHGYvLhxNC226XBtR9v3uLbBNQ3WNOSsGAZpCacgLjgksVc0BXSp/T+dyCRSSOQocxDi+CHdOVsdhMoREanqNpDEK3nWy3EOwErt9mWZA8y62lzNbhf2CJinacJP03ETk/TDer1nDow4bcqnAVLNHPV9LtFQRVflhTzeIxMpaI45xlf2Jo3RBYsllijDa0ahk1xfZToqyccP7JgB8fwZ+Cgwnv9/ztw9BTjz8S1Xg/nr2kc+ulqAxGYrCb+xjaNbLtBNC9rimq4WrzK4OZaA1YbGOfKZtfEc3IWa7WVPzyeXeW1IVyojLhjBT5QigVU+iGtModpAFiHhQohMITB5kWSEWAheNMyputiUUo4DgcMQCCEKQdY1QKFET9CF4BtSSrRtQ6GjacV5aQ7YmR1eYgoyLxED+/2e4TAwHEYOwwEfkvi7G7GV1EpJYm3Xo5sO1y5YrS+5ur7larXC5EIYDvhxqB30Qts41hdrFstFTe3rgHIsvuV9E4ApjhwRYwxN29E2Ld1yCT7BbkfM4holQ7H6OJ8jtpYVzNbhzg8B4/O18qH1Nh9PfZJnJvjcO/28uHt6v7+NrbbWkqqjz3FQ8QMSkd92fC/ArJXmX/2rf81nn/8l/9l/9i+YppH9Ycc0DcSScY1hte5QJLa7B8ZxR06TCOONqu2aiLOwWnV89ulzXr68pW0NzhYWvaNrrUxrV/1xKYp5FKOUmVVQaCqjWNu3qpijHEOd6Zhz9lAixmj6hSPnxDiOwiwlz8P9lmkIjOPEnNzlQ2CcJlLOuKbBuAZTMi4WUhHwlmLAaqmGXdOSCmwPE8mPDDsvfs+7wC++ecerzR5rDI22EAtWK1ZdR9c42sZgnSKmiRASyoCfAvfvHjDaoZTFuRbbtKAkxjkClIxtnLxWVRNujEYjUZm9BZ075kl3lMHHzN39A7vDyGGY8D7RVBbbth1t17O6uKDvO6wuqBwYdlumKdC4jsVixWEbGb2nUFisljgr1kGHaUS7BU3X4bqWMIw0zrFcLen7nrYkoLbIgydnzdXlkp/+7AvavuXduweGYUTpTNs3tEozRXE/KCje3t3hk8QakyNNsHJyNy1WN4gbi2ggb68ypkzAgSnviZOwC66AKQpdNC2aNhuabLBZgANKgdU0q571jSGtBt483DH6CVcU4xjI2x0pK1S2bHdbpnGi5ML93QOXFzd89vmPMM3/APv/7emYZzyiKgP0dOhIPdFrPGWd5T7OL4Kzl2463X/J+Glg8oO42pjTZi12iXJN0HWDngdwCgXrjBStVsB0DFGAuTlnr+ahIYWyULTGZ4heNrgcJrCglLRAfYhMMZMQv5yptn9jRtI7jbRynbW0WtiakBOjnwhxImVHLlom0avndFEFjCHFOokeAz4EJj+Ko02d3EdrXN+RbQJlcK4lK8V2P6CGCetEYjWnH8YQSF5kJk5pnJYPazTOKYzJpJghFowyNM6QSiYqcIU6XMexHR5TIkSPNs380nECzDPRIZunOYIAYbWkDQxNI925XMB7j/eBRRZLykwNlCnCHsvGKayiqe/tvGZmKUCqrXkp9hEgVea1VnXLc8DGUcMuoE4Btmb4ZFUdiYoMiyUfKNP07/Bs+Q93nIPm+Wv4bkD8u8hPVL0PfSxe1HySArPnf9UOo1DWYFTDYrVmsV5jmwaVEuv1pRBCJNK4o3WOrmkosVRbVTlvjoxhOb5ttRCuLjLI9UESPwMhTJVBFS9u0eDW9LwU8UEi3r2PhJgIKROzzMoo42rnleoUEaVDk6udaUwknwhlIqvCRCK0TS3YutpJ6Y9GAiBJf03TcBgPxL1nGEZ2ux3TKASQsZbWWIxzGGclTKgUlDXYrieYFpTBKMuiW3JzdYtTEMYBlVO1l5MBXGOUuPE4J/IMa48pitTO9LwfqywDma1raDsxPBjjSCqSdFh0vSZSJTa1cM41LbQoRSqS5zAz3PN79VSKcb7uPiSZeCrH+BD4fi9t8sn9fnCdVqnG+XEOwr+P1Op7Aeb1+oICHA57Ssns9hJAoZRsUm3r6PuWyR/YbO4I4UApEaMyztTKoUDTGl68uOazT59jNbx9/Y7VakXbNqxWHcbKNDw1e4458e74xOY3q17wSkFEVAKWJaoxkUskZ6m6rJUp62G3ZbfdIVdFzW574LAfBRQ2Dc41TIMnpAQKSZBzjkZBsYUpTJQUZRM0GussKNiPExOakhJTkNyw11vP4au3lCKJOA6DSplGa24uL3h2fcWLZ9fc3F7Qtg0mtXXosbDb7AGDa3r6xQrbtChnKfackbNYA9YCWeyWSBpMQYUirgFZWjG7/ZZvXr3j57/6ku1hwofEfn9AKYNpOoxr6VdrXnzyCc+fP2PRt2gScdix2x1QaJxtjhula1uuby7wY0PwMqigjKJfrbi8umKYXtO0LVfX17jGoXVh8hNts2SaCnf3W4ztuL29OrZmX716gzJFMu+1JilD1/dcXV7jx4nDfuAXv/w1q0VP2zqMNnRtK4McpqFtOi7XVzgWdE3AuT2YR/Ruj/WeJiZy1OjJYkZL6zVNEYZZ57pJGEUxCp8jj4cd2/0O6xzLpiNn2O0GaVGFEe99bQFFxsnj2o7rZy/wmG+fPP+IDvXk/+/JMmqb/vzr+fbnDPOHXDKOoHkG0kcbs3rxrRe9cZoYhgNzZLPIOmZf13oPtZWr9ekRWmsxSGydtbIZl1zqBL84P8wT9rOPqk+FkCKHmBhyxKtA1hO5aEJIDD7IoJ+SqX60lvhnZwDDlCKUgm0spnFoK3rsokVqMkyDFPQ1+Q6lycVQciFUJjqFgA8Ckn2KMgSkNLaxZDRTCaRUSDEx+YkpxGPIRkwCzmVOwEtACMIYt9ayaDuWfceyd3QWdEqYUl0yrCbmhKPgSqkR5PJaETMxJXyQIad5I8tFpBsnaYZcr4y2FD0P62VSCsQo99U0Dp+QQqAOgUnL2FSH0GqBlWcGuyaOHdfMXGxxXDeUfPzG0VZuToEii2lgBfggIN5kjm5DIUTKOJL3B9L+gN/t8bvtx0+Kf+DHU1BwDlq+S3LxIXbwvLgVn25dmX4pcCnzaJjs1GXu2igJ0+iWC26ePefuy2/YHQZW6zWrRcfDwx196WTGQEt7XSmRFczzCHMPmdp5UHACaQAJYor44CXsqGIHM0sVshTWIYp/v/cBHyKhJtNGlFwfjKQAGq2wzuJq4UqeZUyJHKIAbFVQqtLhCBhzzuAXPTFW9rZppHvatkx+xE8T4zjK+agVzgrIxhisa7BdQzEanxIxF4qxWN1h2xXr5SXLfkXXdDgFnbEsuob1ekXfC+sdgidEL6RS27JeLlkulhITf6xp5BUURxEZljXWElJinLXbCHGBEupCm5NLzbcH+er5ps+7ex8HsU8lGB/73tPwnXPA/KFC76ncaJZ+fIh5/r7H9wLMy+WST15+wu3tLSFEDoc9MQZJdtGZ1arHOctm+8Dj5o6SA6pEcvaU7FHaYTT0bcMnz2+5vrpgGHbc3x9It89xRrNeLXHWME2T6J61PbXiVL0QV6ZZLp61szbnrZ+/iCpjlMJZg1ZiXyTDdnv6dgUI6Ak1bartRasc4iTVUp3W1TMwjpmUA4kCulYtSuK1fYoYZbDaElUrVjUbz/04UZATzSmNSgVL4XG752G7YzcOFKv56U+/4PJqxbjfs318xB9Gto9b2vYdi9UK13X0dimgWHY8YLZ3SdIIq8yLypLkl3KUk9pH3r55w1//zd/yL//qb9kMnpgKvla2qSgSBtuKzvn5i5esVz2NVSxaw8IqpimgtThTtH1HuxA2Oi0c24fMYRjRVnN7e8Pl9RVv7+4pKJnO7xtSHAi+0DZGXs8txCTa8uWy5zpfMPqBmDOu0fjkSSWxXnS8/PQFGse7t28ZhgOPjzsgE0PAKM36YoHRlrbtSQFK5+qG2YPtsIst9/sdh9GTxHkMksZGRWMMi6bDaRnQCCmyOez4anzF1+od+3Rg1fUsuh4/ZQY/4doWYwrOyXr2lfHrlyuevXx59KH9R3mcAd7y/rfOrJ34FsNcb3HacGfWqTJG79/2/EJYW/hKdM8xRhmM2W6F8VUSYX1szzOHeKgKgmsLLqsjk2EUNI0UWspIaIeuG7SxFrSmqEQsQMocfORxiDyMmV1U+GwJxRBjwcdMUjObrHFNy2q9pjeNhBQYCUwZYsHZQqsMxlq00bKxe9BEOteQlQBFYwxJIZraOvwTYiAkTywnX1ZV47uVdZScGL1nuzswBNFNzyB7Cr7qhKf3AHPjHOvFgqv1msvQsnaKpTV0WqOsWMoZaky2MVgnbXPrHCFKQR5CJtVh4Xlgc7aYk1a2fNZG0hNFFqMrkBBWUBtDiYFxHGVwMacKvtVRD1tmaV5ddKUIgJ6v//IzxWkZKdE8KyUJkuWMTap2gkbpIwtNTXXLaSIf9kyPW4bHLeNmg98eCMPAcNj/OzmF/kMfHwPCT8HyU43n/P/584cGrbSqYFYZmRNR6r3Y8cr/wizlUpqm7Xn24iUPL75hvLsT9wkjI/3Lfin69Vyq/aNIc4yaExhLlWAIWaaVPkoHj8/trBI/AWxZk6H6qIvEL+JrCFYIkWFKBLQMHRYIOdMYzaJtJAkvelSSVNzkhTjLUZwmtBHJ36yVNVYyCFarFcvl8giYrbVS3KeEMYblss4oKY2q3sdN1+P6lmI1wxQYgicVhbZLrm4/4eXLl1wsFpDBOMNquWS9WrBYdCJ7rDNFSoPRYiIgiZgdjXMSFV6dbubui9ZyXUq5MIwT+8NASPGYGprLmQc7T0DnzCQr3vO+Pl9b50D4KWB9erv5Z7PjxblN3Lz2PiTXmNfw+Vqdv34q8Thfx09t7L7r+F6A+fmLF/wf/8v/kt///T/mcbPlcBjwPhBSxDaO9cUli76vRtIJK5MmhOmASgqtG7RWXH56zc9++mNePn9GCANxkrQpZQyLvqdpHGU3Hi++SotH5rermfomHGtNeM9WbgbapTCMI+kw8PrNa6IfWSzXKGWJaRJ5RkiYJlG86ARDLCgjcczKKJq2IeFF71fFVaoCo5gzwUecUZjeoVtHjpmQk8gMTKJvGkzToHOhTJ7NQYIFxmlEW8XF9QW3L55xu1zT90se397x8HjP/f2GbvmObrmgWfaYUqqeWdU2ZWQObc0li89wbV9K0lJiGEc2253YzD08sJ8kwCXFSAxZQk2yIuTCm7f3/Oo3X2K1QpXI7eWSLz65pXdyQVut1iwWjWi7UKxXl1gNd+++Ybvbs764YH15ydXNDQ+PWx62G565a6gMFRRWqx7UC97dbRiGkZQlQfDiYoWyhrbt2ewTNjuoJ/Zi0fHs+XP8NPFwf8fm8YG7d3eUnLi8WOIaIyAuy1R0qsMXi8WCi1JIGrQZGVUg+YQ2mt45FqaltcJW+5wZ/MjDuOFdvuPRbUhtAuXwPrLfT4wRieLuLKvVGmcjj9sJay2riwsurm8k1vQf9fE+i3z67gyaf8fq/b2bnV1Ujz+fmalTm24a9my3D8Tqa3pq59U5By0Xf5E7ypottXugFTIkjMTL1p9Ky65u2hKSIJeRMYg/8Hbw3B0Cd4fI45g5BAg4Mo6shJFKtUho2sBmknCStrEYq2icRWeIRaGdRNeCpGZ5VbAWfPRYZ9FGScStkutKrDrMlONxkCeXUhnmBhMLjVaENLHZH3j3uGE/DexGubZkpEuWsrBuJUuLW+eEiYFDDByiZxxact/SrFf0fX8MBmmMZkqxgmZ9BMx6ysQyEZLYZM2hEiDFTYqBlN2xdpx/llIiKrHizNnSWHEcGKfANM4x2Yl5aLCkuiLqulK1cBIJRj5JgOaf6bN9Is+9+3OUXWoM8Zz4lojBM44Dfjgw7h7xewHL02aH3w3EYSSHQPQ/TEkGvA+an4LhDzF1cPKu/VD63/x9PTvSKPms585RnrllGSgrVRZVxIeO1cWaTz77jN3rt/iHB1LOdP0CDIzJk1MSG0NrhCk+SjHKMRlQFVWj1E+AXivJFSg0BIQYEtcGYZMPo2ecIiGKfZpIHi2gJQlWGXTbSHcKsI3j4uqKy9USf9jjD1I8lZrBUHIGFdE2H0F/SmL1OA4DfvKs1+vavXbHjpkxltViyXq1xmgjMpIqaTDWilzFWYxr6HIPxuLaKy4vbrhYLOmswSjoXMNysWDRL3BWwLJcQ1oJ0jIS0FJI+DChjaG1Bq1NlWbU96oUVJGkzHEY8aF2rXIm+SRD0G1bO4NzcaolQ6MojFU1zOzEMM/X5u8zVPe0WDu3mvuQ/OJDQ4FPA0zmx3Lu3PEhVvt3Ob4fYP70C/7zf/5/oO8veXP3yNt3jxzGQMqahVuwWKxpuxVt5/jpT/6QcRPZPGzZ70eWywuRO4wjP/nxF/zsJz/h+e1zpmlgtVhzcXFBCIX1ak1jm6NmOec5GYr3WwkqM4/Fzm+HKpJsp2osdimBlD05eUIY2AwPPOwPWF3QKeNzIWGYkkyJF+PwOTGlRMgZ4wxRJZLKZC3BIblIap6aF4OWarcwp19kjFagETeHUnDKsOx7LpZLdIpMOpND5upixe///s/42c9+zO2Ll2JZ1TToCtQ9id3hwLvNA1fjM65KJuaERWEU9XFkrCpHq6RSk/2iMkQMqTiKyaIHVJZn1zd8ahs2uz1fffWawzihjGPZr0hFkdE0NKic2W02TI+PlHHPs+s1i4VluWgw1jIMI8MYuLq8oO0c+8OON29esd0NfHHzjBeffs7D7m95/fYdTeO4vV7RdT3GygBhv3SkBJvdN3gvA00xBhZtK7rwqSVljcFy2B7wg0dVHdjFesmw37Lf7bm/S+x3W0rJNE1L43oyDl8UIWZKyLisWdkOOkVJCj95mkazzo51cDTFUApEnRnyxN7vyHjazpAbTUh1kFRrQFpxqmtYLRc0NmJ1QGnFs5tnGNOg/pHjZWlyzv88PU78zum0fXKhmxtE89eKKrGq31aFooGiKEkCJMgRlSPZTxw2j7TWQHES5kEhKUMoGqytRv8yCZ+TopRZCyuaVF3AadAEiB5tHQaFKQqbC6YykmNI3O9G3m0H7ofIxhe2U2aIBUzBtpaiNSF6Ekq8mlNkO+wZx4GutaxWC26ur9Cqx1z0wqbWC3iIAasyIWSsaqUDpxRagzYWZxMTkgSYcpLggFLI2qBsg+2X0oULicNmz/1+z5QTy+trytThH+5xzrJYLtk8PuJzpmkNi7bDKo0fBvw4sYt7rI8siuZyodCuxfULGqfJSTEFRJJRHYq0tWQb8UHS8HxRdXhQ/Ci00vicSSVilSPVAl4rCUyIKWOSsMYCugxkCMEzjSM5RglzyLF2GQV0zUFWYq9VbSJBpHhK2EaUEicmSg0qoYLkUt//IqRFDKTxQJgEKB+2W8bdA35zRzrsifsBNXicj+iQSCXj0w9rLuG7hq0+NDD12+7r6W3kXD4blkVVK1jm8Nnjnl3QRwCNAmU169trLj95zlf7DWlMdBdLvJ/QRHJI6EakQQUlXRyQ1NZSjlLM47WmkmPOaBQOqww2K3xW+BhEjjQFso814VJXD/QW61pyBtcFxlJQbXMMy1kvlry8veFisWD/+MjeWAalIEQJqiqFogLaSkEZU8RPEwrpLMUgPssSW98KA2s7TNPRaRlYt9oQJo+fPEWJZERHSd501mC6Dus6+m5N21i6HGUGp3F0zmIBnTMakVZoI5aKpShAY6rjRogRHQMqige7yL+qlI10tNeb/CQ2fJRjSImqkjFVIaNWql6jNVnJbNA87HlOcDwtys7Z3A+upw+suQ/5Kj/V3p93R84/z8Xeh+wS55/9ewPMr755w//rv/nvsLpn8plf/OorYhLf3VIsMSi2u4n1xTX/uz/7T/nRy9/n4e6eV69e8fz5c7qu482b16zXK25vbpmGwNt3D0zjiNENy+UF6/Way6srQtZMQbEfxdxeaYldLlraDUdZRinVK7BgZis5VVA5UXIgpAkVJ0wpTClSjCGpwpiyRNymwhBr4o1rycmjrAWVQCumOJJHxRDHGqxSAEnAiTFhkGny9bKnb3s0iugjWmVpwRpH21luL9Zcr5eE8cDj9Egmc3uz5o/+6Pf40z/7U549f8FqvWaYJibvWd/eYBYt5dUrDtPIYRpJpdBZCS/RWlXJi+i2tZLXIFNES2kacApUInvF6CXU4adf/IjPP3nJV199zcPbB+78lsvra37vZ39EQZieZ8+fsVotePX1r/n1L/+ax7sHTJkw+oLV8gKlFMM4ctjvKeWG1fqSfrEmxm/Y7keUdtzePqf7zVd8/c03vL1/4GK94PL2GuNapimCSmgr8gxlJHBlu9tJ2ELbYZRj0Xas+hUUxetvvmEc96xWS6Kf2Gw2Ne7X8fgY2O8PpFjo15dc3rygbdekrCih4BK0RRG0YWospcmSzIhiiaFXDlUB8yGM7KctNJFF0xJdYTvusEaM6Sd/YL/boWJg0ShoE+vFEtdant3e8v/4f/6/2Wx33+e0+gdw1Emn3+mYjaTOujrv/fhkGyd6Rvn2zPy9N+jHkUQWBqAO9wkuErYo+kjnNCondI7EceDw+IBTCrQmhCgFpnJkbSU+ViUwhqIMPoJCNo8wJkqQLkzbQGcK2VTJwREsZ6yaW8Ga/ZR4t/Xcj4khK6YszhcX15d88tkXZKX58quv2Q8DVluWqyWNs3zz9YAxSuJrjViqtV1Lv1zSG4VKXpxotFhHoaXLorVMblhj8EpYm5xkYK8UhN3te3SzQDc92IbxYcNmGDBtyx//4R/yo9//KW/v7/mf/uX/xG63Y7FYcNgPtE1iveh5fnPL5XLJ9v6Rt69fkycPCbwXTabtOrrVEmuAqAkahlRwUnaIg4WVx6e0ZsziNoPSaFWq7acUEMUoQk547+m0RRl7lEEcN7Ei/s05Bvw0inVmTqiisNrKACRaApxmYFYBWK4sMyVjlLggqEpg5BKF0YwFFTMqZVRIlGli2m0ZN/eEYU/2A/6wIxwesX6HnkbsGCheZBohF6ZSsOWH55IxH7/LUN+HWOSPgelSZTKZAlmLq8jc5OW0F5V6vajcY9UhSwHSrHouXt7yzTdfsj1sgIasxZUpxiBrSddzQEmnSJhQsTSTVaCO2Y1SxFcbO6UwsUFHBAxmhUXTOYdzLWiHtjXO3nWgDL0PHHIAJ/NOfdNytV5ztV7jlIa4xBQZmJXh2Vx1vQnbKIwujOOIIqNKIflA8F7O3QzWthjX0PYT3WKQCOoKBkvMRCVyjkYbchBgr53FFk2jIn2OLEh0OuNURkdPJhFKYiqJkjtcEYecSCKEhLFKrDG1EzBeJNWwFF2L96rtjnKODsPEFDw+BZJol46PUaRRuXZyc3XYkHdZ6VO4DPAeq3wOaIFvgebv0snPt/lQUt98vzNzPN/3UzA9SzKe/s15EHDWZf8ux/cCzL/4+1/wX//X/zfaZk3bLGUz0g4w7PcjX331iv/+v/9Lnj+/5XK1pm97CmJp1nY9q/WaohTWaPYHz5df/py//Mu/ZJoG/uk//af82Z/9BRfra/74j/+EmBSPu4m//ttf8ert/enUm4Hyex9JSlrheSReVlUP5jBh82yDoMloYvD4JMN+OVWLMifgrXMdixCwUexodocD4zihjKUxLSDBBySFUeL+3FjNsu+4WC5IIbH3nkSia1uM1XSd5dnliqv1kskV8tQxHBKPj3d8+eWv+env/ZTLy0vWl5fYwwFdEuPhEWUUF+PA4fWezW5LCKHGv0poq/izRmnRZlVBs3QiMYZ24VAZhsMIGq6ur/ji00/55Nktw35H4wxaF26uL/m93/sJ3hf2w8Af//Ef8/u/9zO+/uqX/Hf/beHnf/cvGYc902jJuUdhyCmx3W7YbbfcXl+wWvRopdhvtuw3W26e3XJ7fc27t2/Z73Zstns++fQzkVts3jL5yOQ9xhp0lgtjzIn9MNBNIz5kgvdQxEHk66+/4vHxnrax+HGg6zqWyyU5ZhmeSGIdNNzfsxsz/WKgtz2dcnRNy7ifCN5jtKZ1DZpA9gGVM9bICXQckIqB4qpFVUhEH0k60dlO9KUx8rg5sF5pFt2Cq6sLrp9ds1j0/I///79hOPjvc1r9AI+Z2fv2BPMHWQP1cZHGU73b+ZGSwCPZNCU6drvZMB72R5ZptohT1VvdWSePUKmjFZmmVEYyV+92CeRoGkdICWsE1DqjaIymdZbeanKKLBc9yzExlonsM7YxLNcXfP7jL/jp7/0hgw/48YB9AGUk7lkhcxovXz7npz/5MTeXF7x9/Q05ZVarC27WS8K4I41brCqoGEDJ5qMUNFW2oYeD+MYrRY4JYxz9ck27usZ2K3zWPO4H9lVb+8mnn/AXf/7nfPLZp3z51Zd8/Ytf8O7Lr9i+ecN+P9C1DQtjuFkteHn7jKHrWVkLKdI7w0Xf8eL2ipvba1bLFlUieipMMeA0kihmLE4HrBJdYUpBmCt12kpKKaJ3rgPRORdizCQtIVLa1oTSfKYjVOLPnFKU9D/E731mrUqRwAdyHSKrOlYBLdJRVApKlJmOnBI5eFKI5JAhRNLkCfuBuD/gdxv8YUOeBixZCpg4YBGJmyw86RLGkqoq5ENCpH+4x8fa1k/b1edt6vNhwKf38a3PBekpHAGHqoyytPgrCczslKI4AWmtFbZtWF9ecnl7w+P9HZv9js5orBZZxVxUaX0KoZC5hxoUrEQvfcQFtfhWUF1yJGmvUFBG43IjRZwyKOMwrsM2Pa5ZoJVjTImxBFRjqrOX2I0aoISAAbrGYVc9JTaQU03LS6AjMYhkxxpz7Gik6qwhAE08jvt+yWKxlNfnLDSj5CyWjirXMLKMChJq1DYtuhTxNY2xShU1MYSaheFx04QbG2zjaniKQhkYBhmsXSyXrNYXLLQl6wxFWOOcwAfPMI0M48SYwnFoeJY5aV2DoDhZvqVcHWnO2NynjPLsP30uf/iQc8aHvn663p6u56dhJPNanr3Gz+/3Y44as+Tjdz2+nw+za4gxU/LIbjdh7IL1uqdte6Zp4uc//yW/+s1v0BpWyyXPb55DUUyT5/bmisurSwAuL9e8evuOX/3yl/zLf/VvKBRubl9yc/sp6IZPPvmMfnnJ27tHXr155O3dIzHJxTEfT46CDLtRhesZRUIVad2q4iFHcvQkAmkaeLh/YPP4iKLg2l7SfeJUWRPRPvZ9iw8eF7IMzkyerBRWG0rK1S+yQVuLImI1tFbTO82iteLtnITRXnYLutYBiTLtoTesFy3NJy+YRtno7u/vePfurbDoVWPpw8Tj4wMoqruHhGrMkZxKqWqXUxduEh9Zo22dWJ+/lseMgtV6SWNe8vz5NU1rUa5webXkcruEEnh8eEMqmq5bcPvsgpefXGP0wE9+/BnT4Q3D8EDXOYyRbneKif3ukYe7t3z6/AprFM5qHh7uefXVV1xfXfHpixdsHjfsdhu22y1v397x8tPPMK4hThHjHG3fE/HYpkNbI2wbskHe3d/x+LghF89+fyCGCCVhtKbre9q2JYXEYrFgvb6AYrjf7rnbHNhuX7FoljxfXbNeLGmbhoWBZSfSDD/saPcF6x05FVKd4G/7jsvuitwNjF0ipD0pRKBQOvHTdM5yfXnBs2dXXF219MuOm9tbjLOihXXAD6t7+zsfR0kU395EP9ZuU2fzBt993zMgOX0WxqAyIyFwOBxkI1ESBDRfMGf/Xhk0KxSVSEogjkYGVqwxwpJqsaPTWpFjwDqD1WDn2PfWseoci76jX13y/JPMwxh52B04+EjTL3j+7IaLxqKi56pvCQfH427H/W4v6WU5c72+4E//6I95/uyWvzKa7d1b7h4euLm6YLlakWxBR08gkoqEfIAUcFYDJUGOaCWpYdq1dIslq8tLuvU1hynx9v6BaRhYLRZcrleMw453X37FdP/ITbvgR7fPiNEzrA40bcPles1V19FpaPuGq89fcrFacnWxYtE5GqNoDOgSyRGy1TTG4JSm0YbOWjqdaZWmUaL79yEIGw1HX1ZV2/QlQ1a5tn1FanN8n87WigwKJmL0xBSZJ/JLEV3oSW85b+Wl6pAjJct1gZhIJZBjoARPGT1hmPDDSJw8YRjx+4O001MAP2BLpKmsPgZyqJP58/B0qpLA8rvrMP+hHE8Hq55acX0ogvjp753/7vz/4+d6LZiHc+d49KcMXzn7nlwH5iAMQ79ac339jNf917x7eKxyH6p0Z8KGSLdYVCvHKvyQP1Nlm9Unew4x0RLZXJTIB7RRaKswjZyTSUoxlLFo22Jti2tamqanKE1UBdVIFxcKOSbSNOHHkRIDKkcB0EowA9qSyUwhysBqSjIMrvTpindGJBitaZqGxWIhg7BeLGrTFKQwsLLWtTLoLHMO4zCKzNJnGjvQNt0xqyADaIX3nrbtsG1D27W0bYdrrHhgzxa88/mYMovlmrYT15KZdZ6mSeQYJYGtKZ3WyjDizIQrJemAtSia18s5GP4QQH26Lj80aPe0AzKD3jklcf5+Sun4Eau39AyYzyUY53/v/DGdF4Mpfb+u0fcCzH/wB39EjIaSDSkaYlIcDhPWtrTrBTFHhoPYkdy92/D2zSMaTYiRv/u5DLNYa1mvlnSLjuA9IRaMNfzNz3/Jfkx03Yqm7bm8esZuCOx2W2EcKkMkW2A+VqyzLk38lwMqB8geUoAUcFqhUmGz3/J4f8+wP8hiawsYRY7S/tSVol+vlvhp4JBGitYs27YyWJZhiFWCIUNCttq6tVrRGU1vFcYplo3CGcfLmzV9b9lvHwiHe0YTWNxcs75a4ZobbCOelM9ub9jvdzxsN+wPB0rydQiioV9ckUqiX3TEMw1dKUValEK61AhbJ5P/Kh9F/Ydx5HH7gE8TU5p4/fYbusahTGF90fPZ589p2iUFT98vuLpeolVk+/iW4fBI22o++fSWkpZYB/3C0TSG4DN+9Gwe7vjmmy8xGhZtw2PJvHvzmt3jp1xeX/OjTz7lq1fwsH3kF7/+Davra66f3ZKU4XGzRxuH0gnXtHT9gmHyFK3RToIHxv0elERhr5YLlMp0fYs1hjBNHMaBxjVY19C4jlg0Q4CcxR/5cNiTg0c7y3q1wq2WqFETto5+SKwPC1yUKX/tLMvlBbetorgtG33AjxG703JyhoCfZKB1tepZLTucgxAmukWDdZaiDdM/UrD8246PXiR/C1b+0MT0aVM35BIhiQ/ybOUnAEquAzHJZpVSIgQPJYnm0cp5rXW1p1RgjUz2O2donXi3GwPWFrpG0beW3lmWbUPTdFxfNyTTMWXD3WbH2/t7phBoVMaEgcvW8On1BeN2Q3aW9fNnUK3p+qbl3es3jPs9YZyIMfG43TL6iX7Vo7MjxJEQA41WR+CXcxBHiSxSDFVg0bYo12KtxhlD5xwhFDrXsF4s6NuWrm3wO7GjvLCOP/jscz67lgJ5miZyicLGFgk30o2idZbL9ZrFosVYsKpgSkIlaX+XBE4rLIoWTacNjdK4Ao3WeBQpJrKyGGQYL1VgopPMc5wpTYXRygU+YD01Fz6SyJgxuo4RCQLCzNMqdehL4gM9KUykMBLjiA8jYRoo44QaPXmq8cNTIIcAMcrAIxmbg8hxAEqSlNiqE9J1DuVoRyXc2r/difG/0vGxYb6n3/+QXOOpNvRDco6j9OojbfVSz88ZMBfAKKpvrxS8pmlZ3dxwcX3L5v6BnCKhhuxM04jzEm5STKlJcxldqhb6rMusFBLeZ2dGscqbkmjaddKngdkqH4ICMYCa0NbhXAPVKUcbTY6RkDNTSqgYyNMkrHJM5GoXqXUdaJwxiFI4I8SJMMZRuh1JTAistSwXS8ZpQmlNcUkKOhtwNgoTrU0NFcmM08joPYfDSA7gTWC0I26o4UROhnCZpSpKoVyDrY/DNgbbGLQVvfI4DCilca6laVsUWt6PLP7xoeQqcT3zUranobv0xEnlfK2cr6MZvH5IJ3wOrM/X09M1eV7EnUsrZhnGOXt9/pie/v/8735XMfi7HN8LMP+zf/Yv+Puf/4Zf/+o1xlhy0Uw+YQxo5Y4bkbWZYAKuWaBQmAZSjLLglWGzH9gcRjHzb1tyUfz6yzf85su3dF1P1y3oFmuKsmwPU12ImlmtLNVSPla45+xySZ4SR/nIE41W+NHjB0nCcc7hamWmKltrrLg3WK25XF8w7naMuz06Z3rnsMaSkng0zi0U4xSN0zTmxDAvG0OnGtz1mmXf8/mnz1j0lscH2G23LFcdz28vuLy6YrFasbq4pF+uWV2s2e03JBTLZU/fronTgqZ1NSFsxLXN6QKm6n5Rh2C0Nsdoa/laYZ0TkJcTRRVCCtxv7vhyc09rDTkVbp9f8dkXX9D1axbLC5q2R1tHygOb3TtCPLC+aOnaT2kcKCKFQM6BadRMujAOe379y19yuV5itWbRtGQ/sXvccH15xfXlJfvhwP1uy8N2y93dI6v1DYvlmruHHZOXlq51jsVyhY/inDEOgc3jlmE44Jzm+uaS1XpZk4akcPKTJ6dCILLZbLFmYvLSxneNgwCH4cD+MeD6lt4UlHO42NBbx6ptWISWTjVkrVG2oBqLXXQ0LmJTQI0KZy19K/6gfgo0bUPXN7SdxbhCKoGm7aTdd9T4/uM85HrzbYB7/vXTav7cgu67jg9duLTRkKgzAyLjocj09hxUkpMEEcBMBJbTxqPUsXMj9LgkZWoFbduIk4XOOF1orKJ1un42dI2jaEsxlqVpaYzGkdgfDmA0tgSUcnx2c4lTMIaM6xbV03xF13Uoo8kpcXtzy83VBYtewnwWq56sI2ncVzYrYZSkieUY5IWu6XIlZSgiW7DKoEuhJAHX15cr4BO89xjn6JuOlWmwFl5cXoIquNbyuH1gs3lg8gMpemHUjaJ1jr7TGJPE012DrXKHSBJGLWcc4IBWaRxgS8YpIQ5KmoNlqkdrykcQIatFwkcEfCVZD/ZkF5WSBE7FlPF+wgcv8gtVXQhKFKyaIiVMpBAktTCOxGkg+ANhkgG+4AeiH2D0WJ+wGXEOChGTkwx3qoIq4iakKZgie0hRmaREmyvrvCat1TX0Q5NkPGXZzo8Pff1UJ3o+tHX+O8eW+qxb4RRFPTPM8vVJjnF8TEVkjKkodFY0rmV9ec31s+ds7u4ZththclOh4EUSEwu4QtKiDVZFkICa3xdNPd+lUJXOBKQia03Xh6nLnNonqEHI6UQOk/gv13NIOSvBNRXs6hiwOVWtrqZYSEpAmyJjVKFxDkULWQb1FLOkTKFyOV5/nHHYZYuPMigeJo/VYsl30JrgQ03kA6U1TdsK617AYDDaSlR4kWuaKsJaG20kIdFYOtfQNeL57BqLqaA5IxIjY0x9jwrocmSLE+XocvTe9fsM2KZz+Q61XCknB4pzkAy8J3d4Cpw/JOH4ULF2TO9U565IJ5A8/41zIP7046nLxof+zu9yfC/A/F/8i/+C1eqv+M2v/+/sdweU7jHGUYrG+zCLh9DGseg6ihJ22RiDtk21iBOtoVwoE8OYJYmmmQGhYrs78O5hB9rSdgtc00lMZZlrH6mmZl3ZHL+qckJlj0oTxAmVJ5SO+GFHmA7iJdo2aCPOGEIm6No+SVijWXYdrXUQEzpnukYqsclHghEtni4Zi6E1mtYqOqfprKY1Cq0tC9Nztb7g5e0Fi96ybjP+Zsnl5RUvPvmUy5sbuuUK41qafoFrO5nUt2I744wWxj4G3t3f4f3EYrVktVodAfOxMqqtH60tCqkAC+JtKiEChpeffoJWEkleKvteVOTlzXMuLp/R9ksWizVN14uvaoponVisGprmBVbf4ix4f2AcdgzDXiymFAyHLW/fvqFET992NEbSjsLgST5JvPf6guXqgs1uxzffvKFfXrJeX6KUZhgnpjFgm4ambSkUNrst0yBWVdY2GCvPxzhH21jaxokmazHgbMN+t+fx8QGjGwqW/RQZRg+h4JJCl0wcI2VvUbbBFE1nGi66hn5qMVFRtCaVwpgiExkaR6t7+rQg5UDbdqSY2Wx3aKtom4aua1ksNE0DN8+e49ra1vs+J9U/gONplf1UU3x+UVPqu7Vm/64f1zzIU5ANaBwGQt3IUk4VBJ9NU2tTh+ak0DUUdMmgRdIUYhH/5hTRRmGtxqgijKOGpsohrCo4DYlMCJOwvFbBqmPpxIIRo2kXPTfGcX2xJmIwrkc3krgXYsI1DW3b4JxF2cKyb2hMoW8M02TFGqq1qBgwWqFVEaY5SbKWVkqsz2JG245qnkgOHgss2wZ7dSktYqXJMdNkhc7QWENGBn/6vqGUBW1QpGixGrQSBtjYgjEJpQo5RnyMqBAhZiwKqxSmZHldEUBtKvAxWpNiTQ2r0uJcassa8edFzcyzvF/m+DN1BD2lFGKMErgQJlIKEjxVpOBIvuCnCT8NhHHAD3viuGc6bAnjnhxGSpwQHUlEhyie98aiKITiSdEfffVVHQpMKYEBa3Rl4ZRY2R2lR9WGb95zfkDH78KefaxtPv/++e1KeT8AQpibE2Ca9+bj76lZtvH+fcVZVak12jq61Zrl5RWLyysZSAsepQ1uBjVqBrpCklUVuwz7qZNPO/W91UYKtKgkfEzVjnChiEShOrRgNDFKZHSYDoRcpQfW1g5ubdeLcJdWG4yT28Ro8ZOXdarlHNGqQyFuGaoWiOK9PNvJyetojWW9XJJL5pALtmnFuUZrtpstEUWoyZwZqd6Kku8VpdBNfT2SAEejNV3TsOjFb3m2mWvbBoy8D05XO0tjUVW3m3OGXI4doayKSC7m9/C8O1DK2fs8r61TYXU+dHfum/wUdD9de3Pxde5y8TEJ0IckRR9jkT/08XRtf6wD813H9wLMt7c3pCiOFc45bNNBcaRc1faVeSrzoIQGbdxRw6OMLPNcpLpT2qKVlqhhBUqJhYwxTnx/lUxxhuClIixnOiao7UUZ4slpIoUDNv3P7P1ZjyTZlqWJffsMIqKqZuZu7h7DvZnVWdUj0SRI/io+kD+CIAjwsf8FHwk0wAcCBArgQwNsdBE9FVkDqpiZ996Me2PwwQYdROQMmw/7iKiahXlkRFUWmFFoCViYupqOImfYe+211xrxNdN76LxnOj4yHh+ZTkdE2wLqHb5CqcLQDwRvTTU1JWrOfPXuHXfv3/Px40c2fccQIx7P3Cm1jIZKOIdoIbrA66stb252dA6kVq5eXfPlu7d8/fY1m61nunLkUhi2W968ueH121uG3Q2h603Cqe9wIa4Fv+gcZR758PE9Hz58IMbIdruxDtquMwvdnGHpEV4CCq2WgYZgCwLC7urKRM2Hnlc31zx8+SWnwwM5JV7d3FKLaTa+ffuGzfaK1By8vAPvFK0JLTOiiVpvmE577u8+8CEnHlOiVii58unTPWM/Ic2Ra78/UpPSh0gtQhc3zNM9d3cPvH//gcPBrMBTM6LohsF4WF2PKyZpdzydyDnx27df8+rmhmk+8bh/4Mt3b7m+ueH17S2vX9/yu9/9ATmc8ESqCr16TqPpg0cX2Q1bQt8x5czDx09sdh27/hXb2BHwpJRIopQgaB+gL9ArTsyitO8HhmHgeBqR4CmaURxDv+Mf/cM/49XtDpFAqfDx0/2vDIey43P8xR8/DpZd8PmG+rwk9uQxsjz3aWls+fuy+F1apHpvHLOSZ4Iq0zTy+PjIeDqZ22SInI5H0HPZzzkLGkvOaIngaOY8hZwmSoF+u6XWwvVuy8O9p/ewHTqjHjgheofmQpknfNzgo0edtZaFIbKLwlyVrGbnqyr4oUNDj4QO9ZGCkJwzOtkMsQ/0XUfnhW0fIY2UNFpfRk7EhmgZRcRKoOaiZk1EZokLWhJSMtF7Ymx6sTKvXD7vwGk1IwWdjF95ODDnkSqJ2HtLTGvGYec4eI/D+NK+RYWmgVxY1DKDGHoVvCUWAZPoo14kWCpNl1Ubag7eB/oQ0OamZuiuI4bI4+Mjoelfi9BcyJTj8ZFPnz6wqwoSUQ3MU2XcHxiPjxwe7jg93lGnE+QRKRNBC0GUIJiiihZ8WycVxbuKRNCSydmaD8VhFuhCa0YzsECq9csslYp1zLpf18x+rjsL57n3UkBzibi9FEhcngsLdBbE7xL1uyjZu6eo/OXrehxJFUmFLnS8evcVbx8P5Krcv/8BDUq3uULEDEREq8kx1gxYtSWVjFTTVKfxnklmEBa6yCCBnKvx3NX8E3LO5Gr8fC1QstEatQooeAmWeFa7/mYzbb1BoSlBaLVxJVqJIRg/GqWURGgc6qWn4mq7Y4FiF3Wr2HX0wLYoDo9URarShZ7d9prpNJKy6abP2SqwpVakM9pljNGaB1vj+2a7ZbvbstluGQbbq7q+N4fdIDhvBid9v6HbbGwPQ9CFk2ybvfkHuKZtTgt6ebpOX6LJi1HVJT1iBS5aUH6pobwE1pec5MU6fEGJn6trLL8vA/al8vG8WW9d/59ROZbfnwN6fgnW84sCZueVcTzyn//n/zO2m9eME/zVX/2Bx8dTA3qkncRGl1BZq7eCQLV/a21/sqQQo7TZHepaEKgXNphclHYaslxb0wcYn80VgzZcrU0aquK0MJ/2zKdHKDP90BE7v1pmRhcIYqhSLhmpytB13H75BcfHR5OEitEC6gpdEHIQvLPS7dA7NkPgetdze3NFFIU8c3O15d3rG26vr9jsAvW6p9SK6zo2240ZFAQBL4jXphdacLL4tGemaeR4PFBqYdvbRIgxtkz7nN2p1USsmYYmQI7iMOUApx7nAsN2x2sKm81Ant+iWvBipZ6+37C7usGHSKdLGV2pNVnnb/EEt8E7SNtNy7AL+8cDtQinU2IGyNZJm+bC3Yc9+8eR7eaWq80rXt9U9oeJw+HAN3/4I10/4EJHzfYdnHiGfmBOJjm32+04HhK1dvzZn/2WGD1//OMD05QYpwmc0MWOyaW2ONsmnDMgBe8d1Xti8Gw2A+qEKRW0FrQUui6y6zcM0WxLa+eQDugjJWZmmTmWxFTMMa2UwjgnppKZ55Fvv/2Bv/jtl9xcmQmPdD3/5//L/43/6v/5//qVMR1/fPx0xv1jvuPPe03Oa8FlEPK5AH1FMNpjFNMJnSbj/3HW/fQ+/FiqaH27c/nQNnjjqgYvdGLmIhGzq++dIzozUXJO1oBVBLQp4jhnqhvOCVWMs15wZBGqg9aBjASPdnFF5WIMDJ2n7x2uGqJVxhOURLggrazKES0oCM5bAK+WHlOtEUnTTBwiQxcN5V0aYIolC+gi62USa+KNWrAEgc775kzq8A4oxu90anrGRbwFkKqrg5sT21PFKVUyVc2tbOg6hhApx5GcTSpv2GwMyW3mMVYFOI+ZJ8mWE/o+mmtiyRyOez7dfWIqirSqUa0OrZmimVxNV1/zid4pvQv4akF8aJbYNtz0TOOjYlKh1gBVG91ikamrgDS0lNrGjFrwzfoav97jkiZ1GSy/5KB2WWF6KdB4cv3ksiJ1eY503eTlYt5rY1RWZ2Yn6gQfAzfv3vFVsebXopXD4wOnw8GuYVV8Q6W989RqtvZOFyaz7c/QxmZL3sR5nCsX6GWTZ8dRnQXKItXoFdnmXjXtutXgyGiPZqSTkrY+LE8IcdU8lugoWvC5Wcq3sQX279CoYU6E0NDXGDv63hpkydVMUsT2z+vdlemul9J4163RVYIF795cSZegue/71WgoRusTW65r9J4Q/Sr7J9g5FOfJaDNcApyY2klDxxeJOJGnRKTnqKxe3P+c7/4cCb5MzJYAO4RAKeVH6/dzat/yupcKGM8NSpb7fgo1/tuoSX/b8YsC5tgF/lf/6/8l11dvubn+gv/2v/tnfPPH75D9iXMuebEQwhlW4rxjriehlRrsxEijQ9kkWoPti7KATcL2ci0mX+RbqBWpilOzno6iBCqejNPM0Hl2VwMEz+E4obk27q9tQloq8zhRS+bVzTW/+c2XaM1MKa1ZTYhCVz2dF3bbjm3v2Q2Bq93A1bZH80ypSh8DV5uB3aZnt+sJw7UlAj7g+4Fu2Bg1JMbmSiYN7bDvW1LmeDqwPzyiqmw2A5vNsNJY9PK0YpO61mqC/lJbIiGIeMQZ/1N8R7+5JoSOmmfTOsXOf9f1+BipCK5Z92otkKrZBKtHoicEy9ydC9QqHPcj9x/ueLh/ZB5NcL4LHdMp86E88sN392y3b9FiDZK7Ycvh8ciHHz5SqhJiz3Z7hWBlqi4G9vsj82gJWAyR7e4Vr17dcjw+klJuRgxX3Ny8YhgG7u4fORxPnI4nhlcbQogEX4ixoybj1YnAdrshsmH/eOL0eGAeTvTuhiEaFShpZUaZPYxeOZaZsSTUGc3ldDoxF1NOedgf+FOu/OmPP7Dfz5yOmT5s6forcvl1b61/G9J8iTC/dLxY/rqY+5eP+8njYkNXXMuLy4pSLLSkBaEwYX0LKivOEkZZsvMl2a7kPONLwjlh6CJD19HXxBAMCQ1O1s3NOdf0o0HEylvmkudw1cwA1LXgXKA6EC9IFEIXCCGyRNzBe4IHX02xp56O+JoZvMO5SJ7nhjQtp1cQcQQf6XwykECAapWwPE04H/ChI3SBWjxJhCQZ9UJlkaYyxDmoNULRZNhc04qVqtb1XqxBSgREBS8exTjUC+UFh/VKOaVSqFLouoHOW8NflcZXX9AQmpRfQ6qc8/hm26utZF1KxQfrI5GqVLWNNEbPdruh67f4bkvoeqIPaJp4/HTDhz91HD79gJ6O+DyZNGWtuKosMv3Nf4Y1YKYi7gJkaEPN7H/bo6pR7lS1BdD2/HMC9us7ngfLzwOY54oFl8HK5451ndBzwLKAOO1dLblqJeFz0FPXJKoqpKLMXgibLa+/+spMh0Lg4dN77u/uSNPIeDpSpWBkN2/BazaZt+g9tdp7L1J2PlgAbX1PahWoqiBG1wjRmYxhUdJcSM35NudKLQqlJZuqULCksSXQQY3+GFojnPOOQmFM4zn5UNOQ984SXrec6xbCOLCAt+uM9uEKTkGdJza66goVNhqrcx5cANcopA3F7bq4PucywD3rExtQWdpcKyp0CNLb+a/LutZsuV1YmgfP6O1yLhaaxnkMsK7Dl2PiUuLtRR50i6de4je/VPV4/tqXKPLl85bHPQ+Yn1dXngM2vyRm/kUB85dfvmUzvMK7Df/j//Av+Sf/5L/mw4cfKFkQCXaJ3cUHWXCdcxpiSI34dWGWJbBDjF+kLVhWWRcrbbCyTWtdQJx1AFIMPBBtvDoR634WU17ugrDZ9GyvBuZSOC5oUWsIwYFUayLb3z+QxpGr3Y63b99w9/DA4bC3ko4mnDNe4rCJDTEyGSrnlMPpSDodudlujcvkrGwQukgcBnzskdjh+w2+G5BGD6FlpKH50U/zyOm4Z55HNpstm83mrC/bcgY7v9YAd77fBnStVpJF2oYPbcJ5qotkN1FyQkQto8cadayGprhs3eLiPUKP8xEfmji9KsMu8Loox8PI/adHHh8OfDp+4HDMlM4MbOZ54rvvPtEPH6i+8v3De+4e7rj7cM/9wwO5FMR5vvxK8H2/xmBlThweH8nF0Q8Dt2/ecvfwwA/f/4mUEzevbrm9fcPu6oaaM4fDkf1+zzjO7IZM9KHZo0aSM9H4eZ64urni1W5LScp4d+T+8JGxu+YmB6P7iKBB0M5TO4+6gK89g6vUNNukc0LvIEwT46nw//mn/4oudjw8PvL1X/wDUrbN99eKMF8uLD+XonF5fK7kJUibrD8Omn/q9UXOqFdOaS1zeu/RdEZw7POeF+cVHWnvaCL7pen8mkC/aiHGgaGPdKnSeU/nPUFC+7zrB7AKUKuGOZHGkxY8Ebw1BlYXIXSIj6jzuOBNYzy4dbPtvK0zU02kknAlk+cmo6ZY0AeIekQ8TiLBRWqMVpLFmo5zSqTZtOF7cXjfGUXMC07FGhXFdFJLbbrs2no9ammNU42uUHJrmlS0LtQKLPqvpo2sSivXCgWj21XJOAd4vyLbNRe7FtUkAJ16q/S0oMGLJ3ihYCoYYElQTkopRilx4ri5ueIf/IM/46vf/gXbq1f4fovEnhgMnd9/es83Vz1/868T+/ez6UUrxrdGcFKpCLkspVn7TnZdjUazVDFtD5Fz4FctsRKlVf5sHljQ8+u18HyOxL2EMF/e/zyweMpdXub1kkp89l3XviX7V5uRajXQooVcMuSZIXaE7ZabL79A+sjrL99y/+mO4/6Bj+9/4PR4T02nlQBdWmIZnFCKaXaLGvBUCmbAI2L64NGs4JVqDfEh4F0Aha5X8lCMipiVmpSSq/HmS2kNrRVpPOGu6+g760lw7etMeWrLW4t4auNYu8U6/JxMLFrw4mlocWfqNUURVw3hbRGPawG+CwEX/Mo/XtBrcQ7xRhfTpUIPVkGpoEVxsxkf1VqoCH5O5FqJqhTnqMFRXWh8cpOyq9UC/uU6cxm0Xq7XlzcXcONZYrZQMpbHvBTQLvdfNgw+H29LoLzcvvy93P85XvLzYPqloPnnHr8oYPau8hd/8RX/5L/55/zjf/x/53e/+ytUvYWzFcQtGcOy0Aii7gIptn1Tna775xmFXut166Jtv5ZyxPK67fHVZGmkocNGx7DX9x6iOJwWyjzSdY7tbqDf9OTj0SxfkyFFVKEPjoBx9u4+feLTx48MDdV9POxNzipPlJrNPUoc3ivDJhq6fLUFUU7HPXWez3utM1F3FUOXQz/guh4fByTEVX5KW7e2iFLSxPG453A8oKoMreQi66BgHbQiS8lzCUragFyoGQ1hsfKiQ1w0n3kM1cJVpJpAurbPAkJphg82mEyrUcVTqvH8vOvYbG+4ffMF77544NOne+7vDhzuH0nTyc4rwnfffQR64i5wd/zEp/s7Pn34yDTN+GgamQ/397x6fct0POG8aT965/BhYHtlVuF//OZveP/+O26ud8RoMn85JY6HI8fjkZwNlToej3jJjBVya07wjVNZcsI7x263pYTMdD/yeHzgagrEPFB6T3ZCckp2UIKz7bcaD6vbDBb0oPSbLTJOpBn+6T/956iDN1//Obvda36tXmDPGy1e0smEZeg93WAvb1/+e0WqwAIW4RctVoYamaOmCfRPpJSsc92J6eSKrh3UXdexOha2uaG1oC1YpiXUtPu8NyqAz7PZzbMI86s1BtVlHWob4QUYgFrIvAiTqw9ICLgQzkhQsKqRazq/UgxdLuMJVzIRm6O5WgDnxRN9Tx96xPc4V/DeuuK9a5UkbVbZOZlSRjWkGLEEPXSBVM1JbSkNVywRplHhXK1IlYbEGkiRaiW1eVSrIo3XWauQa0PcBLJmpjxRRHHRk5t6SR1nXMrNGKaS5kQQBW2SjWJ7gffmBrig1s4trqkWdDsnXF1d8eWXX/Kb33zN7vo1Ggeyd3gnhJrZ9MJ8vOPx43ekw725whXTmbVBgwXBBp+s+4trtBAxJd0WJC/gjLD4CC6Ha6i6LxjwUH+dGPOPEbWnwfPzx14G05fBy49VNJSFX3kORM7BkW8NeM5dvF8W1Aumr43JC3qo3pIrP2y49o6r21fc3L7hcHik3254/80fePxUSfNol7O6xhumEWq8WaJXbP9KBR87go/NKt3m/BKXqBPzLRgCgwQEZ2OgSJNrLZSc16BZMC103xJyB80Loc3dFvsI52QihsBiunJ5pm2dbeM5BEPVtaC1BdeNElQxe2pLouuSv5saSEOhrQFS2xpAqxqzAmc5V0q2Cotp1CiMnuocNXiUiETjMotzqFvUyGhr33lP+DEKbGfzeUAMZ3fABdC4fI1L6sYlZ/4Sdf5JGtCz45dQMF76Hv/OjEsOp5nT6T1d13N7+waRvySnGR/M/W3NcOyT2fYjF93F7YIuWXxbq0wAXCxoY9mcViiVlXZRl6y2Nu3lpYRZ1bI6XXSaFcS6umMQhmHL7mZLFQEy3mvT9DTXwc0wULJwOj7w8eNHfvjhe95+8YZcJnIaSWlEa6KLzhZQD10fuLrZ8eW7N9y+uub48Ik5TUQxBzHfUCUfbCMV75HgcTGCN/91MNSKFhiQYZrGxt/a48WQ8RijTRTfFnpx1u7XutxrPaPvl4PCAg6ouTH1dNkkWkMlAl5wPqyne8libFFq66FdKvtOaqW2EHqurl7x7ouvebx/5HC3Z9pPTOPU5HscP/zwidOkXL3ekGWkpIpzAe8tgy25cv/pgc2wZU6JGDs2fc+7t2+JwxW4gbu7O+7v79Fa6fpuXYhTLhzHkWnO1KqkOXEoe2IYKC5Yt3UtOG/8rdibEQXFk8KIUxN7TzkTvUNiQEOhOChi2T9OKWk2q/EQzAlwmplT4vVmw3a74e7uez7ePXCccuPUtHP4qyZmnIPdl4+nvMS/NUN/jkywJJQ8B53X16cFk04cPniK2DhPOZNSomti+rVxd1Wh6zp7G1k+30WC3b5PCMGqCap4Z/x1ORwb9tU66IUn2qpoRdU1pLUFAy7gXESdIcrqrGlGnJgSQ3DEaEEAKFqa5OU8UqYRnUejSiy7YPtsXdfT9xsIkRgTyeraLdDD1jet5w09Z2sKbFifrRHV5qBbNl/XHMlc4zEq1LxuUqUIVYWkFixoqUZHaA28udS13J1yYc4zihJCpBRh0w8Udcz5YPzRNTFaNk2Hq+cxJU3WykrKHaqZEzRUz0yCnHemYBIc2QNBrDFJLXl99fYNX/32t0z7PY8pN4pysuSoWNDuWJA9+84GkktLi7QBDMt4a+6DiAEcclEZsejoZ5vH/308XkxkP4PCXf77JRrHOehpzplL99cyZ9fHWiDpg525Uort763R3zs7z4jxlrVU49R6j+DodlvC0KEC4+Mjp4c9Y50aCOeawoPNB2tQ84AzPnNRZk243hGi7RulYoi2gBe/ai8H35nKlPiWNnv7XqW2Ckux3oFq+su1FOsjaH8/N6o9gVytuuz92mOxAFzO+Va9taS1IBRNlJpb4NvOsao195cMTtCcIHhT//HeKB8hUGtAvcfTgtMWT9RGLWlaC0aNKpWUMjqnM6rrz4miKBfuiefxcjlOVkS3/d+JxUWXwfDzcXMZFD8/nvPlnyd0zwPty8/yuec+f9zyGS5f7/Iz/tzjFwXMf/mvvqHWwJdf/hl//uf/gP/gP/iev/qrbxpfqF2VNggUpfpGs5CLcoxhLRf/YZsZ0oJgsIkn60ZrKJWugbZq0wOsag1/mvAyoyRUEhIqhGrWttcDr15t2Gx7Hh8f6CkUzVRnC36IHeIcU6lMCnU68cP9e+IWNM3MpzuYHhnUo12Hmz2hfZObqyv+/M9+y6vdwB9Oj1StJiQeME3T0JqHQlgD5eZjZ923YekMNZcqtJKOI9N+Tx2P1k0bHNFjXd3raLbEwIvZgBctFgS0jVdFUakoJktTpbL4DmmLhFd+X7thlBPWbNjKPi1CcOfGHVuQjAc5DFvevHnL8asHPn7/PR/fv2eaJjOX1cphOnL4VPnh4IgbT99HnB/wDsbjEa2VED3j4yNxN1iAESLbYUM3bJkT3D18YE4jVze7NvgdMQ7E2NGFjuADfddzOpwY0wm3CQQxy89cM+IqcbNh92rL1dWWkBIaZkJVQg2oBCbnGKOjbjx+A12suOAIccdUe8atQ0tCj484TvgqVArZV9zVQH/7hs3tG4byeMGZ/PUcsoyt9d+Xvy+qRQ1dfrooXSLMbn3u84T/vDroqkDgqHineKeNEtASuobqakOCpGWVOSXKnNZkPHrbNKu0hdDqkEC15jxnAa+VQVsVhxb0TQlVS6ZL3K/J/NJ8ExF8zq2kah/e1WAOXC7gfI+GHnUR3IIwd/hgspXee3wQWOTLtEJRKLQfWxul2kbvnYdqaPk8najJSsI4xXszRKq5tODP5DM1B2ryJFsdrZnHpAlWKhbOtaqdcYRdbZrDWkwdgIJoso05FyjF6FnVgpjilOogqTUAmu61qd8MceBKIl0YOB0OfJwnC3jFUZvzKNXUAWJw1Gki1UxsrqoxeOuV0Epwnpm8UqhSSaSayVSSFlNvFk9Vj8QNu1df8PrrxMdPj+wPJ+NCq+I040rCNTJ40abZ28aR0JqsK2BdG+teoygeAxJaEcH4sVLsnL+c3f29PX7K9vc5IncZTFwq1TxHnH/0Opd627KsAc3Yq/Ft3ZpqWEBdnIE3yrkKuhDJvXjj1aoiwYGL7K5v2VzdoBLI2njLpVCLzWEnJv/oXbtmaJvvQs6uKV3Y6iNq/OXoIkECUQO+9Tw4nM1vApgwDWBrSClN5k2UjNEYrb8C6yUVMYS4AXFWFQosHgne9wZM4REJBLG1JEfPVKB6bTQgq+yUvHKpbI5UVhQ6iylcEAKuBMR5ijfKhnOuUVstBlOBJBjlIhrYpblQ52RcaK/gWzxRjXJZilJaOarq0m+gLT6wq7kEq0b0sPhMOVcmLxOry/sug1onbl3vl38bHnD2m7gcrytdjIvHt+TcLfRT+THtY30/pKH5bW+z8vsvmtW/KGD+V//irxHX8fVX/5D/5D/5z/j977/lD7//lnnxQ5dly2nB7kWwvATJT9snlvtY/21np/2ryc0tm5n9qZXPlGbNWEBnHBNKC5pdokgCyVzdbPnyizfE6JnHvQWg254vbq/JxTPPyv1+ZH8aGaeZkAsfHj6x3QquzuTxHpcnnIvMM1AquRbynPDe8/r2NW9e7fjww7drI4CIWqU2NJeh1hyAcws92+SMvKzoeC2FmjLzcSSdTlBmAsFsW50NaNXSwDfrRvFNLsdpJuPITQv1DN01/qXj7Oy6LHANQbGb1iioNBRa2udarlG7CAtaU4pNxiCe3WbLF2/f8uHLL3j//XecjkdOc6YgZFHGeeK4n9jsttxcm82ukx7NR7QWs/fMM1I7rGxkJff5+MA0VY7HPaUmwFBoEeFqd8Xtq9dorvSxY7vZNsH3YoYivkdzYJRCkYzrhf6qZ7fb0o+Z4o5oSXTS4XzHVOFAZRQrH/ShY4gdsY8E2TBq5JQmRnXshoRsJra9x/ceHwe2tzf88PjI/+H/9F/8avnLcBkonxGjdg/noPly/v74WPbhy+afBR1dBpAlakvQrFYlKW0ALgtoPb+7qjLPiWkcqTkTpQV/4ohiChVAawjMiFoQpq3RCzG9CFUzHrAql03E4IOVIZfAunijUVSQUnB5CbZcQ5+cbagYImXWYsY3dq7DuWhlSGdrYFWzey4poXMizxnN9uVc27xFvCHbpVJbwFikmBU8tTVP2UmxRNk3STezgS52L7r0LcRFeYe2djZNZ2fB9pIHty+JakY0myJEMSWZqpXc1CRUDO2qrarn1NH5SAgdfb8hxJ7ohHEcDe3HNli7KLbJhmgOmCqmDW/BvaK54JyZPXTR+jRSTmbRmxO5Zor3ZiSBUMUQtrgRtq9mhtfvkM0PzPs9kYqnIppN9q5xzYvVjRFvia5ZpzfLa7EN34lRDLwaXaAKVGfKJ7U1Kv66wuWzJu7zxqnL28+pWM8D6ZeQ6cu/iUizoV6C6sufJRlZgHpzxfO6JLPL+1pAZ8uMJVvLkXOm65Rhc43vemtsdw7nxSThlqC7qbpYUNwCpAaauCyA9bb4hiA7dfhqFRdfDMZzF+vUEvQ736aL2t5t0rhLYGaOhTLDCgm2/ixDXS3Jsx6gDpFIrgJ4nAZCC6iTyzhfrWlWoNZscnO4JjvZUHTfmhhRXC24bIo5FcjOrfQtO6mAGMWiiiDeEXF4qTipqK+4YPNZc4sriil2aK5tTVyW7KWK0K6lKWDb51jWe1mgoqdj7FLJYqFprONT3AqbLn0na9B8gXCfX/BiXHJ+zedcfKOkPjXdWaJkJ43KexFran3+Rp8/flHA/N/8k/8WHwa++PLPuL66YXt1TT8MpHRaRhqgRjcQXRGpp8fTLOPyCxn351ySuHjG8oi1TPpSxtHyMds4KUit9NuezXazItObYcN2d8X19RvuH0bevzcO3DSdmKYJBeZp4nDYs4nCbrfjenPFNGbm40zwnmkemceRaRzpYsft67dcXV3jgvG5fQhmW9nkXZZyjFvq0K6VTUpd6SZaKmmeGE+jNSXVuuoTLqjR0jSwZkbruWjfXi7PhJ16pzT0ua5C5aJiA70tEJUzsryeb7n4/WzRXDQthYrzwvW1cQ7ff/klD/cPHKd7tOk4albmOVN1pGa43vT0nXELhdpQ/p5aLSjqQmDMI4fTA9MspGwNHvv9ib6LJu/X2TXVTzCmERVl2A5QlT5Govd4CeAyU1a6PjBsera7DemQEMTkr7Bu5eojoQv4ToiDsruKhME43RJmUgi48UhOM+Em0dfCND6YDJdzTDkTh577hzu8t4Ti13b8nMaHp8jzjx//3IHp6bgBfrQIPken1ndqm2dzoCqVOc2M40iplRAjOs9ml9uev3SFLyizXKwl54W06X66YEGwNqm2RvewJjlPLkJxFVctsJZqXH9Hc7Bbv72sqBrrgr9IZzUUtxqFJKcZyTOquSW8rdSrGTA02dcI2nSAXWmPaWteczXUtsm4BRXVxWHNU0slkYjeONSWAIPxrcUqCe4yaVmeb7JZYihEM0Ro791oGdp+TOvZ4aLJavkmr7XdXbE9nHjc789uYLTAbKFpXARSLGh1rSuoELwFGznnlS5VSkGDnkvUFl0RYsf26oY3777k/ofvSI+f0PFkKFuIxtMWo1dobTJibaCt6gmrXNzTTUS5wAuWof4z5sfft+Oy3HypXPA8QL40noDz3F2C7eeB9Ocap5xcmFZ8psztxDVa+cvNWS+WzkNkd33FdrszQ65azTgrhrbYalOEMUlBm9smGVhLpbr2nV1LHltQtvxoSwTVtQqVgrgl8BW7jVKqNZdKi21KySz8bWuUWwK3du5b83nXd3SxW69DRZv2cUBcA40cuFrss2fAmQQdNVPEmpq9802xwmKAmlsyXk15xDnPijCqnQf11kQhMdCpKYgFgM5MnURtNVsUa3Ip5BaXrPP3fIVY1uz12thFNYoLjlJ/rP19eW0vOcqyBODPkOentB+evMbz3y/RKn6KcvSEUnIx/n/u8YsC5n/9r3+HDx3/5X/5f+Vqd8Pj4dgc/hqiLAtyed5Sfup4Ev8rbYM7L7Dr/qoL4K9r4HuG0nXdqJxa+Fer0S60ZEoVpmmy8g3w6vVr3r37Aq2Bu7sjp9OJNI0IcLXrub7pudoFRGAz9Pz23Rdc9Tv++MfvGH+4pxNHrZl5Tjw+7hlPE84ZT0mrghf6vmez2bQNwFDmxb5TmvUqtbTMRteNK6dEyqk1v5hhRggdgsniFEzjtDYOtyFpui7oDhq32RoKEGuKqlXNfasuZW/bdOyD6Lk80a6KrMGyWwOD9Tq0ZAgswKjFjAH6vme32zEMAyEc0KLUIsb3jh0pK/uHE3mcud4NaFaGbmDot3jvyaVSphkJgVwyaa7UGun7LWku5DSzGUJTDdma+YJqs9UOdH20MpxA5zxdiDiXCQmub3ZsdwOxC1Rf8K1kXHNllkTtO5PN6xyxE3RQJCwTz9F3PUkzm2Fg8+oVOTg+fkg8Hh44Tkfu7u7407d/ousC42H+JVPq783xnMP4b/taTxczG2DSzCLsMcYLFmnNWnbvenvFuGttSgqZaZossHSOWasFghef26xqda1arbQvOTd8LYtKyYVaSjMlMCvcoufAzOZMo0yoyVWeX5OWsC7zpPGW10qMsjQa6uJGWCuiBS8V9UYpk2w287WkFqVltGYLqmvrbm+uhrVWQ4CclUmlzd1VM1jqGtRpBUqjtLSkYKFsuTVQXJAYc0xcuve1BU+1ve6KQFVaz4jQx4Gw2VDEGqVSKS3xjWjbfM1k4qn006IYsPCcl27/WpWSTXNWqj4xQjDeawvwmk5uaUte7DrevHnL/qvfMN59MmOh0vpa2rpkaLKuSYH1yCxI6Xnhq0+AmDb2YJUF/PWFy0+DA+BJYHAZKC/n+vI5S7B8Gby+BHQ9aZ5yjkuFmuV5duPzn/NyzVne+zKwd86x2+3YXu/wwZPGhAuGStd6dp5by//PEoLL7+adX9eEMwB3HuvncbloMq9txE0DGqoUFmm8M4WlUTG8UTq8d8SuJ8aerjOdZOfkHNoIpoghgqej89b86rKHk82FkjN1nqmtYR21+Wsz2N7XejpyA5QdS0sXSKtqW39FrL2ZLzmHBk8EVNyqflOrtCqOvbYl67IuxCtkqTwBLFcKZ+vh0NxCEnlpTzkHzbLEHwu29yxofingvhyfl895brH98th6GmxrSxTOgOPPO35RwJyTlU7/xb/8yxZIDBZ4LRIkLLwkeRaEPT1+qqxrbLx6ESxfPHRBU5YT3TYNB2szizUBGq+35MQ8KcfTiVoSzgWur2+4vr7hdEzMKfH4+MB+/4iI8MW7d/z2t7fEmOlc4cs3N/yjv/iHvL56TUqVbz/tEXFsNluEyuk48uHDRz6+uWX/eCClwq7bMgwb84D3vgHK5013zdKKfRcF6+Svi/FAQsTRxZ5h2BBbwFzUJOdWdLma+9EF+cICEhpXdBmwbYBLO6GyLmBtQWrPec5LXbho54wVlHpWB1tQcrUGnb7vGHqzOI8hkEtqWs+BTT8gwOlw5JQmggrOVbaDNU7VYnxJEUjTTFUl+A6kY+ihFmWeRt6++4Lf/PbPePvFO7ouEGKgH3p8sIYpsHK8r2IygbMaH7XzluV3keIyXQiEbiDUsL43UfB9IPRCCZWKBWinaWYG0jxRSzWqxmbDsNny8f6jSYJ51wxVMj5YM+Ov6fgxGvxvHjT/mPco5/WgJYz2Vq3hBxApKwJq811YqEPakI91g1/ge13Q4zMioQvKs7xvQ5pkQZ3KeT7knCm10HcdNUagSbBhY7oCiyqFrMFx40FedCuuC7icq0gVa0ZalDkWwNwwr0JwFcjUmtBids7BBVzjylIzKosCUFkD5qoKpVKkoBgHMemMQwgBUxlwtHh4QZUv1tq2Oaxo8YJa10ytuQW4dX2cScVVSmrIfbW17GqzY7i5YarKKRdKa75SDFErTYqu1iVIO8tsebEEKoRAiEL0BnIkYQ08Vg4tljDJxe1ahdwoZIhn2F3x+u07Ht5+QXl8pEwzRbKhgqqo01VWcHnNZZNfFUzbRlNXzYFngM86dn9dYfNL8/hJgHgRNC//XoKP5497CVEGfhS8LO9R1/nZfvRpsHL5/i9VpZZkyfpllH4Y2F1dEbue0/FAqC1BFbi8VrVWvLgnSc7ToNmS3KU6/eSz0MQAGs+glEwptSHGPHmPnM0xspTaErxq+z2uBcuRvu2HoZmN+EbXWvq4qlskKhUJTSPdCfM0UsrIdDwy7vfkeSI4MwhyLcgW39TJWuNhrkpRTNFGLbH2PiA+NBUfb0oyWnBqsosmRBDOClxLEoC2oPsc0K7jaQUU6nr9LQmx6/DUgGRJKi6vw+X1OgeJP2fPeQlNfv7cy4rj5XU/P+f5GPxb3/bJ8ctk5UJP7DaEVq9yPgBmpnGuQtdGlnP8lMaWXAx0m5ALSL1MgsuTsHzBlv+occp0QWcpy+ps6HLNxu+bJh7Lie0mgBbGlAjjyN3DI6fTbPq902iWliGw2/S8uX1FFwtDqLx9fcPr1695c33LZrMx0r9z3FxdNemkzB+/+RNBhO++e2+ueZuB0MXWKe9bY98ZRXZarS+pIVW1VjQbgjZPJ+bZeLr9MDBsdrgYzOe9WtONIA0lrmsTk527ah4DrhgqVj3manUe6M74GVDss8hSDXCXG6uwGA+YU5KhSHWR2FqvWYWlYcebm97V9RW73Zahi6RcmcjtfQJdiGSfQU33Nc2JachMUyLXGd+bCHuaE1UE73rGOVFzNW3lfsPt61tub01qbppOTPNE7Dyh65t1aSB6oaTE6fFIJbM0Sobg6GJk9tOqBzuEgagR+kDcdPS7nrIT3JXZnJZa8Wlek4wYA9vgkegQ9wVFMh8+feT9x0+8+fAepHLh+vmrOZ5vVH8Xx7LJ1qrrZmMVpCeP4gwxtP+1JG954LLwLbSmM+rV0OOFK4ktIN574yU63zbOi1IzJslU5dxN7lv5uNRsEmlq6G8txmFduy6WBKAp1Kx1tCUgcGdKBiJIUbSoBZ8t0C/zhM8jWiaqZmqdQRMihS521mSk1RQ1LGdg0Y6m1rZZVTQlpFZSVsRnXEp0w4Z+ORcqxo92S3d+Q1gbemvay0uQnFeN6lotWLZzaYhzzpmUbc6KmjpI3Gy5vrnllAs+m3LM4XSgqBK7nlwyWspZlo9ls7Pmq7hoVLu2kTXUKYSzk1fOeeVNO20N3yxlYlujXPCEYcP17RvefvU1890dj/sjNRWqCE4LQjSJvEaBWZI3XYNmWUNlWECfJyOzAQc8G7u/vuN5EPx8rj9PCC6Dj+XvL5XBfxQs16bK1NRQoKVvn0nML39flsuXYN6L2abvrq7oNwPcWVIb1kj2zEl9UtavTZrNudVNzpr++BG3225XqyrZBm1zQk3qEG/jVUuhzJk8Z3JJlFQouZJTQaqSfTC6iI90sSfGbqVKWDUrGhKsreXUO0RCQ44LUaAfBkqaOdXKfn9g//CA1GpUw+byF7sO35k0bVYl18pcq0lKVgXn8bHiY8URDUjSgpSKr42RLy35l4WTvGiMaQMsYJnAeoku13PAjHhjNLfM84wg/zg5ukyQ1rXyAmF+aTw+T6ae04yeVxAu779Mxp6/5jpOf2ES/IsCZjQg0uGckpIhtEsZrrHiXlxTWrL57Hg+OZfHXEb9l5P6QoT+yXvZplQ1Q0lozRTJaJpJ40g6jdxcbxCv7Pd7TqcTD48HjoeRT58+olpN51ig5InptMdVcCGiWhjHIwcfOY1HUpqREBkG48uO44nvv3uP5sLx8Q4Qun6wDViNm+e9byWOtvCrWoOJti1fG3KSZtOZnefmvjfQdQMiJvlW1Tq+XVPJWMoiC3K3aDeqKpqdGQss770kOOczaZsHumbiSwKzWBGfF7czQriocCDWnlea6LxzEKLn+vqK6+srhs1AKpByZZxMKzY6T9/1CAHvKvOcGceJeHIUTey6Hd575jkZQOYr43EipQxuaRUVqIY2PzzccTodmktYXK2Hd5uO+TQZJzwn1Du2V1tijK2TWampEDLWBOEdk1c0KkRw0dH1toj1fcf1qxsOJbEbj9ScuIkRyTPH8YbNzZbb/Tu2N1eAVcz/bsLN//8dLy1cy3FObOWF+fz0ccCTBckWOy5OUFual+B4WZwvUIfza51F7ZcSMnJGCmkvAU0ZQC9E8IvRMZbmFC9uka85I1BidIyylKhFzPhAndG8loYXloW7kZ+a8cVC01h+3Jp4Gte/lMycZnSekHTCa4Ey25rV+NY+YBGyNnpE27C0USHaHmaIO2nlSJtJSkThXBIPkVXSy1tznQlflBUdqlrPjXxLIN7K22vJenlsqWg1ZzART98NbLfXaJqNR6lQmh66ON9qhBZ6lsa3RNS68hvCV4sF51mdNUc7R9dF8OEcMJeFw21JhyFZizyXJUs+wubqhpu373i4fcvp4x05F8gz1MTCU5YagNqSh3WXXrmaALWNKduMbBguLGf49c3t58jbS0EyvByYXD7/OVL3HGlen9MCqiVgrsvj2u3FffNJUKv64u8n30PABU/se/rNgARvOhUtAL5MatfPZR98XS/W93XW6CsiF9KR5yC/vSMiizKENqUv078opZBSIjUHYDM5Me6vtL/X2rTHXVO/aZWpy6Y3oz/oSs2ggWESlM1uB1qZTyPOeebJYpkyz6BK6KJVsbcDvusheKoIWZW5FnKt4D1h0Wb3nqKVXCuu2u/VsKxV6A2EXKDghg5Lq0jRNLdbPFbWvgkxAyQ1TWxZ1t3Lnqu2Zq3pqC587/N8W4DDy3H4kqHOpUzdS6jy5b+fB9O1nkHZNjTWmPOXGBL9ooC5VDFXKFVyUULsQJZGAhpHTlj+rxdLjbaL4FY009DOp4+R1lV9Ub7BMr/lMQsQKrpwjGxJM5mZmU5aWWOe2T8+0sXC42HPbjegKsypcDzd83C35/Fxj6qy6QecF9I88v67b9ltBanX3OwGtBY+fHjPNI10wWRtjvsD2+2WruvY749mpKCJ6Mw2Wpxr2tKyWusuF88DCzdYGsJVQ+CkldPpSMpz25CuuL6+wceO3LLTpWxU2yCkmvSKV2HZl0oVC9Zrts7cll2vK3/jMHu5QO9ag17wrdueFhQ4D42naGUaG2HOu1XBpNTKnDNOYLfb8Ob2NR8+fCJlZZwT45hAK13nEY2kOeMdbLY9IQqlZJyXxlNNxGCLzZhq432aVbiImrJF9FCN7y1iJgdKoes63r654Ys3r/n0/qNpyYrJYfXDQAiBnAvHhz3HhwO7qbONOFZcFHa3O27+/B35Nz3cOLou4DClrRGliKH6ISd0npnSkYfDA7MmppT4r/7rf8IqR4q7GLO/nuNzG+rTxelpefJzj7tc1GorOl30Ji+PYl2Em43rulFVC6xskTTEIhdrBss546FxhHXlYIqI2ScXk5QK3lNzxtEQTIW5Pd6rabJWNXlJKYnakJoMjZ973kCMCSZPFtqlMuNaEKjVXPCU2mgUapWjeWQ6jug0ImkkSCU6owmUNAFKVwacM3c+zRlC15RtpDXeNZpa24RwRvnIJVPTzJxmUpoZNjN9rHR9ZWCDk86af5bSe71AvEsmF6OmgAUltbTgmadoayomxbd0/W+3W46PxRq4nCP2A0WXpNrhQ6SUczNZ33WoONI02vktld2uZ5omOvXtXBqPc5qmFW1cgyAait/Wutr05Ks4XL/h+vYdb7/+LenhkYdUKEeTCnRNQ8RppOaKVusR8SxNbS15wBRUlpzN9rNzUKjPxvev5XgeiDy/fYkSvyT/9XxNuLQ7fh6EC+c1xBRV6jnQaQ6LiznFJWL4OUTwrLJh16ffDGyudsQYKcmkGl17nNMLyk/7WeKgJQFTVWv+9PYZgguoP1evUMxnYOndWRDLAinZejNNUzNQmpnn2eaOCjF0tn+ua9nTJGNxzlvl2TCJM6mY+oUslTSrYF5d3xDEkaeZ437Pp3Ekl0JJicNpZH840R8H+t0Voe9Q71BvgbMu8mrrXDQH0qxWqfHVzKCMkkWrzFervIZIKoUqGDLegARZKvuNOqkthqtq+tbeWRxhWtgteaoLGk0bV0sVzlaVBWi4TFoux+hLiRm8vE9d3vc80Vtea4k7z0DgOfn+uccvQ5jFW1C7uFy1k2MLip5LXOrWLuNnuWKL8LWl6/VHj1g++9NA+imyvGSyy+KfayZowTcktBbbSHIpaJ057A8IyjhN1Gq/D8cD4hzbvjPkU8CTmOcTwQunk5DmV81KN3E4HHBOqHPhdDzRdz3ee07TyDyNdEG42kTbvIEQo9ExdJkgbaetFSgNnTovUiVn5mki58x24xk2G0OYY2d8YW8B3FxmEChNfqtywY1WWUursvx2vjUXGjortTUBucYZXWgZC2LtluxyQZMb8UPWTKZlnY0X2K6U0Uis8a+L1oDnxTiV0+lEcbHZyyZi9OyGLV3nKZowBJEVKehaB/40FUYKTdqVIA2dL4kYHNtNT809VTOvXr/iiy/e8ep6x3yamK4nqsLj6UhKZqFdK0zjTHCeKMEahIBh1/Hmz7/g6j/6c8YvPXNngXl0gaqO7D3aHMpCzug8c5yO5JqQ6Nifjvzv/4//BTRTl1J+WZnn78PxPNj9Nzk+j05fztvlsRfzmafznbaaWLPgufy2NIMtzX3losFnCcWrWuOYNmQUWO2sjd+r68JvnFzBxQ7SRCrmdpc8ZFFKbWg1F6tUm8OLBnzJmaqCOrVGUixhLTWT80zOI9Nkijo6zYRa8dG2i5INmfLtvDnncaFDfI/EARXTgobRNjeL2lrnvjlyaSqrmcvCvS2zkudMTYk8DGYcodUaDPOMlpmck5WUqwXMi9SSSahpCySbMJ+KMd4wTXnx0X5cpKRKxZFzZcqZirDdXTGdDgi1BQtiyiQd1GQNzKEZL+RaKAW8C+vmmZqrYy55RbsXxHdZa8Aad9UHfDewuX7F7Ze/YbrfMx9GDjlRZzMvUkwtg1YZcK6hYUB1DrmoYC2NX3atmyynNHWPX+AI9vfpeAk9fslO+CWE93lJ/Tmt4vL1L2kUqBrtZYX1tO0duiK+z5/z/L0vAyYfI/12w263Iw49JZ3s/mB0BgcXwfLyvjZPy7IuKdbgVmxcVl+pvl4EzIJfgrh6blRdPvM0Tabe0sbnPM+IE7q+p+s7orckO6fCNM7ELhFjNfULcXgfV1rGYgOqtCCaRXHCEUPAdx3Be14dDtzf3ZNSZnSeNI7oOBl/epxIgEsdrov4rsPFiHgD7bSh2NjZJ+eKSsKnSKnaAExzGK1OKXJOynHOkOpl3Hi/JkBaBRNXaNe51vbpz14O8GPKxI/GmwOrxD0NmJfx+VKQvCTSl/c9b1q9fN9zEP5yIG3//lun0Hr8soB5DWla9iG0YMqvynxLWV+pfEYynVWjU5dI/8cb9PmupRRw2a17AbvXAsU0l52cpdZMC9lBhdM4gsPQqVIZx4lxnLi+uubm+pV1oNaC946+U2JIzOOR0/FAyYmUZh4fHtvnkiZdZVnliRPj6UQNwib61RXLLHLFTEVYJq8hO9LckVTFykvFguVpHCkl470ndgM+RGgbCyGgKF46KDPmPLbIv5yzNdcGoCHuVvIJvjO+UFW0tPLYhcmEDfpiaI0YV2sNjtcHSbv+rJspspTm64pSDUPPMPR4sa7pGCIwUcqJEDxdB19+/ZrdbsNpOnI6WdAdggdR0jyhtRDChk10aFImDBXK84n5uKdcbwgO6yzOiUpltxl4/eo1m03P9c2EVtPIrS4gwTOOE2WyBXS32bEdIm5vSUO367n94hWvfvOW/evMniMOJYoHAjVEiB4nis8Jek+3G8wQJgi7PPPweAQHJf+6g+Xl+LsLmhfuG+dNq93/JBm+CKa1JcQ5mZTTImK/lOSMi3hGukIIiLONT+t5fdBiZVbvrQEsK7hirl1Gc7AAM/QdeXKkPJOycZzXFF3PPzZPMGOF0syCKmhWqmRqa85NpbRANFHyxDwbKqWzuYxpF8BZAFwUxBndwUQwAv1wRehvGOdKSjPO7VfKlTiP82bBXeaZ2krEzlVqiWjNpHJqdIZEqZM1xDpAm9lDsc770kxKysqPNipZaRrMWS/Lt2ooVttIVTzdZktQpSuFh8dHjscTXRdbQ2UlyLKhZXLORDlfG2EJ2tqaUqtVMEVWWbnSJMOWQPo8QJrqx7L3BCFud9y8fUfaHzg9PDIdD6Qy27rW9hjBgmYnC8hg5jnVuaYewrlKJMuvFqmLlfN/7cclsvvSHH9Jdu7y/s+hy6rnJHUJpKShx1Zeepkv+reV19fneEe/Gdhdm5Tt8V5RZ+8htdWungdYyxyvptBcXaU2/wERobiyuuaJOBa9cmlzfXmtJUBeVHpqrWvgHKPRIzabDX3XkdPM3PTIU0rM84zrerQh4GExk2kgzPlcGtLsgsOHQGh8/6ubG65e3zBNEzEE5uMR8QdOzSAspdx2ZvAKXpXQaAaNGdHeo11DEjmbCo9gVDUnQt/1xNARQ0fXD0xUpnmyZsbGpUspU+sFvQWjnZXS0GRJKzf8MhG6DH4vx0BV1nhtpdq1a3dpq32p2KJqfRWX4/OzY+ZvuX2pAPNzj18UMK+8NkD8ws0B1K6MsMiPwcI5kJWO8bRbkuVxz76MBX3LxiosL9gKAG3xpDXBLHrASxjfslHnIEb6riPNs2kL5kxKhTm1RrOixC6y2+2oOZOmzPVuy+3tQM57Hu5/YP94z+l0ZJ4qp/FE323Y7QZKqXQxIjjT+1XXJI8us2XbNFXErDyXoFQFETt3gmDU60SaZ0rOxssLsSEuHnFLl2tANJu8lTbPd9fUN0RMAUAE8TbpUzHkqdSK7511y4J9plqhmPi7C1aaWBokxF1SCS6QhnbeS61oaTq3zt6vFkVzIueZruu4vr5qJgQTrV+CUo6ICLe3r/hP/7N/xM2rHX/80zf87m/21FoJEaAwHg+IOG5eBbZ9NDWTcU/OiTTeomXGiyUCJSUODw+kkhnf3CLAZrjizdtA8ANTKozVmiVLUXRKZpSgEHAEhL4LbG56+uuObuOIg6PDI7US2iJXg6N4DDFTGooR8F3Ad4750x3irGzHz597f2+Ov23R+aXHU4QKLoNmXlgLLI5eFo1zAJ1bc5qhqq4ZCXgrnTdO3WK/vGZ/tbBo/V4GZqLmvumcKcwsjStWhXFGLZoTs0DxLZSql1w4W3KKkaJaeVlN45VCFU8VR64w57nxhXOjAJhahqpi6uXe0NHF+MR5UoGalDBEdle3bK7fsj/MjMc9tehqCCKIWdm6alb1izJUMD6+OYJWhETJMJMp2a9uiVoz1HwOmFu52zYkk7PK1ZDvVApzzkwpkYpS1DPNmcd8z+7+Hu17vvjqK1yIfPOnb8lVuep65tq0bFtAsHC41w7/CxQoBI93YpWDKhDMxjvnvFI65HLfsAvKojQANKMLTxi2XL95y+u3X3K8+8TjfCKXGaqz6qgsyZYCFzxb1xo4l0G5MKrWWPnc1PlrOi4RtifUiQvk9rl+7eVjP/fvJQhaXn8N+i5kCS9L7eiKnz75DJeB1PNGrstjGS/ee3ZXOzbbDR8FppzxJupsr1Nldf20F2vVoOV7VF2N1ETssbXUNWB2Yj0LTs8rUc6J0/HE6XQyjv4SwBU1+mijcHSxYzNsKDGuiiCqyjzP+Hkmp3z+brr0Odh7ZjX/XxFnXg7SxqP3+L6n2+0Yrg54WZqWHazUiVYtbrS1Uip1mlGFIQSC7/A+gFrlfSXNNj61c54+dmy2u9Z/JSTgkBOnaSQ16qNV2uc1aVgSgty00q2K5FsAbeILtu5bvGPvZ/S6RatalkpWq4ZfBtuX4MhztPmlSshy/xqj1rOKx5o8XdAvRBbdcGtk/rnHLwyYl40NnDd6xtnkrxHb28W2YdkQgmdo8Utf0gaMPWZZF8+bpz55nbb0r+jUkmGZULgnSjSHm1aSWTSNFUcq1cjmTRYtRkMg03zEi2O33VJKZdwHUk6M4wjV03U9w+aaq+tXq4TYPKdW9m0c3FzXTWacZ/o5IF0gNAcrrc1QBUWay08phWkcGUcbnD6atZA15NC4dsZNosqKtNMCCBGIlkYitU2eau8iLYMTbKJB45+nTEGJ0REktOzcAnopxTZc79YrYOuOkf2rVlZkUM+JigUnZvfd96Y7adwocz1M84ks4OMVm40nRohRuL7ettIWzNPMNJ/oY89m6NhsdlATJZ047CerJJRls8+UeSZNxt+cTyPzmFB1DP2WvTuSs6GUp3lEqmMovaERxcr2wTli9MQh4DsMJdSMBCV4IaotKtk7gx3U3BsjEcLAcR4RdVzf3JDyMj9+NMT/3h8r+svfZaB83mxXxPdyOj9ZC/TZc+zeGAJFoJTpXOqFC9OOdaGw71ArmUwUC5CrLg6Zur5eyIqrrDqmuZgrXMqZMk9MKMmJ/XhTYnDFmmWkFKjFSry1Ur2jUiiNHlDxFFXmnFlcBkVqS+I96gKlZFI2apHizFjDUjG8C4Q40PU7uv6KLo+ICxdd6UuCK6u8o3NiJdwQ8F6oWsx6un2/mhK52BpiJ98SXprsozX0aWsKsvKmBcuVOSdSLdAMRSjCeDrx3d0j+6ngthv+0//5/4KrVyYvGmKkGwYEJU+TOSY615Ltgoh1+NvFKisiaC6KVlbHOeOSL6YlerF/qLaqelMpUZp+tqFr0Qc2Vze8fveO/ccfmA6fKMkcRUVbUqWtP2MZjAvIs7yH+Sy3MXvek54Hl7+G43nA/NLff+r+l/6+vOaCBj6Z82vV5vxYsD2Hi+Rzed5izLUYfD1PppZjCQSD92x3O65ubohdJJ1GssWa5sTndG2wV6VVcnUNqE1M7UIdA0XFxppzi4vnqipHyblVo8cV1VwCPt8UQOoiUZltnvddb1Qts8O1Pb0hzdM04boeFwrBl1alX0BHW8ucWOU+azWberHeAt931JzpatMhD75VstTk6WJEvCdViz9ytvcPLSgurbrtfWwmI4KWav1BPQxdz25rOtc1RK69Y17WB7Q1NuZVLz3nxDxb9T1nM2OSi7FxqaVugblbUeM1YH4SNNcXr/vn+MuXCPYlB365vVQC7H4lp6fVkadz4ufveb+MkuF07d4WEePutQDOYrZGokaAwpOO5Paop/+8PBltcdKFFcu5FLc+/GmWevlVRUyHtAuRQGIshXEccVSGoef2zS2n0wQIpdqmCZUuBjZ9xzw+YDJPhS5aJhuCZ20oe3dLLYHtZgM4jqMR/3M1SkEulTkl40AmC6ZTLsTGY2adyK3BBhtMaZ457fcc93vG45HQhbWpIOeEFL9y5+qcLNiuZuG6OCuFpXM0K0mroamNgxWaiUffdaBKLZmUZmrJlOLwWazbWKCqmbJItUG9dslW2/BWNN+JNTflbAG20hodnbkF5by6HgXvGHrrSvbR0Q+BXGdSEa5e7XCd5+Hhgf3+yGF/JM0Tu2HD9XbD7e0rXt9ccXOz5Zu/+Ru0Ju7vPnB9tTG73jzTBUcIPcPQnRMq56ypKdu1GaeJPFaij1zHDd1G2QwRnzx4s0qP2wEXPWBjQLxvQKcJuNdlkwez2BUldh2ttIICIQj1V+hb8rlN86eOl+PqNbK5+L2sF5baSmucW55v+5mcn3LxUjF0OCfkkzY0o6wSU7WWVXMZL6uKTE6Z4sO6yAvFKjfi8F2wsmfbBLS2v8WAiiX/RdVQ4lKI2RHKsigX0z8Wi6bU8ldDYyvkZpNbaQFC49v7psOu3uPEUzQzp9IWbk8lkKtQpgJRmJNyd//Iw1HZH0b2jwdOJ6OQiTNTbl8rkjOpIc8I+ODwvvUlUFuSW1owaAGzYEkELfDXkld0J7efUs3pa3H8ytX0qeekZLUAf5xnDu/fM6misUd84Jtv/sjV7orrq2semiTcOoRa0OJ9o2DU2tYuz6wWKMcYccU2f61mVFSKZaGL/vXzIaIsSVhr2gueuN2ye/2a7asb4g8Dkw+osw1d173p+Rhtr2VniFVSqw1L6y+UFUT4tRyXXM5LRO5zt196zmWA+xxlXu5fgxA9UwBgAQ+0JXxlrRioNg6xKp0ITpsttZNVYWEREmhRVaueeobdjquba/rNljxac6giqIOFmrhWhKw79En1eflci1LMgjYvWvAWMFvwNY0z42la0W3vA85JMyGxPp/cwLHTeGLYmGFZ7DpIqVVjbT+c5plumgj9TIgz6jzBNVOn5i2xfO6C9UaUlBhTIquaHXiIhB56cbgYiK0KVDFamY+ROc2U48maprXxuhsgkHOmi7oaBpWm8a4qTc3D+ipSnSmxw/lI8E9pFJfn8EyTuNBvbwFz1TOabolAE3xw59dbITmtL4639ae9lzaud23xlDVQPn1ubSDdErDb+qbM01ODm+WnlELf9z97Tv1CDvOiqWqBstlM2r9lQY20Yg5cdv9ZzEye/eZi8aI1+HDBmX1BZ+DZCVqggXWTaohqGkeOD3vSNHPzauD27S2vXt+gPLCbBzrvmfuekhOOmZubK9IUmaZHjqdPbAbPsAnshg2bjUe08Pp1z3iiGQ0koLTAL1k2KJBq5TTN7I8jx9PM1VaJvfWOOrBzU+13zskGQqnUeeJ4f8+nH74nxMgQNry6ec3r168Y+ogej9YoUypTmttkhdS4gYgiavxJKzGDj4EYAs4L3dATewsoq1SSTownaxjSXNBSiF1n5W4BqQKlouoxrjRoUaSasYKj4oOnFJOAKmRSUkqGaS4cDicOhwNaMpsYiKHD9wOb3cCrd68Zbna8/fILxDmmaeav//KvOS2IfSq4omy6jt1uQz9sGDaRw/6ex8Oe77/7E5tNMBULSVztAi4GdtuID4q6jGQlT4/UfCTlI8f5iM6OMARe9zcMG0foK/WozJ1Hr3f43RU+dHSSzMnJN1ROrQ0kqEDrhazOArTtdsvxNDH0G5xroiXOkM5f07GgaOdCJE+C2vaoZ489H+eFTp78bWma+VGj0CLTJjZ7TbFh2bzr+lq1KjkXW1KKBXoe4yELzaBAy7knAktmck6oWLNsKZki1tMQgtCpx+Vs1KQ8M52ODP2OOGyoqTAW5VSFoQWyKWdcmsALxSBdcLQmPOPSZoUpVVJp6I9zppUajTssCF6AWNCcmGdzsrRm266VBwP1WCm65zgJyB3jOJGnA2nOnE6TBaFytAA4BCQ4Yt+ZSVKASgtExZwM02ybNs6dg72lJF1rk6yDWg38QKy5L+dMmhJ5LmawVI3dGWMHSa0crIoLHR8+PHB/f8/h8cS220ABj4OccSGY6cL1hjTPdK9uzIhFhCKVVBX1gVwqMXpUjV/tage1NUFXpXfWW2H1NtCaUSks4a8IuGDKG1kqerUh3t7idzfowyOam+JOkyFDE7IYmqxWbjbPqypaFJW6Njuq+3Fz+q/huJxzn5Pjeq5F+zz4eCmQuXzsk/eSFugsVJkluG5Bzkpmqs2MxnsKpstUzy/UABxZ0eoqSnUeDYEwbNhd37C9vub48EDKcwu+l2SxIbTZGj4XtNmLEADxtldXymqws4B8S5WUqua6OxuNIjhH6CJd1+OdcYwVkFpNnWYaiacj3dBR1IJr54MBTlXJVck5UXKy6ug8Gmouti6IF3PKbrrv85w5nU6cjkfGw8g0KbmY1KmPQhSHOg+lIPWcLDrv6cOGIjBNswX3wYCvUma7KmLrjvOG+Io30IgQkBDJ1Rqfi9ocW8Is70073ZIGo8b5FoecwY+laqNP9g9t7IAnW4CemQECKx1KWpa63H/xhDY+gJYcGQap6+32BVuClk1NbElC8rkx8HI8p5S4v79/eQK9cPzigPn8LezEnBvVtVkuL1/Wvpn8xELzEhH88tWf3D6DtGvWuj5IWJs1tFbKPFNSxjvh6nrH9c013dARvXC1HRhevebwsOf9hx/QMnO969F6xQ/fP3A67XGua6R7aQtrIkQlzq7J05jMmREsKqllWD4X9seJ+4cD+8PEm1v7cFpbN32p1KKWXNQl0xNETZy9TDMfvv+Bx8cDcy4EJ/z5n/8DNv0GlwvTaWQ6jWQ1jeOpZiq0zvWAqpHz+6EjDD3DZkPorCmmiuCD0O02dBTmWsnpRJlz41iCjx6nRuBzFFDjBooKbkGZy0SpE04XBy6HqmeeCw/3j3z7/Q98+90P3N3fU+ZMHztCFIiR3Y3Zmw67La/efcH19TVahaKOw2Gk5m8IPkA15N17Rz9ENnPP7mrL/f6e9++/Y9h4rq93hOiJURi2sbkGKqfTnrwfebz7wHF/x/3jPXf3j3Rli/pKmB0xe6iQpeKGiFztkO0W53s6lyi+Up0iIYAGQjV0VEVozdSU2cphuVb+t/+b/x2qQt9HTqdfIcT84nFGCG1+Pi9fPS+9Kk9nLc8eD0+TZ5u0jTDU/raUzex1zB62BdC1IrVas1bOiFaig4JCK4eG4KB4m58OxFv/fHA0BLo05Ncq7wsZoqxBnGNWZaqOuQpzqbhccRnItmEpRkWrYkhGBVJRxpTJFi0TQmwSS7RdQnB4a/BtTb5TMnQnV1sTuk4IKTHmI91k32eaE+PxwGF/YJwXZNt2ouiVTbQGndh1i9SrARgXG3+aG63CmRzkWaqLRsquDYluDTUtCS9NB1nU0ceeUoWkJjEZuo7eecT30Kgkr1695ubmNd4LwTn6rmMaj3RDNK51+2zqLqqMzuNCD7U1CxXT03eaEbWmSZO9M7mvZRyq2nq1gCxrgEYlizJ7IcdIjQMaBjQkqAnx3hDMLK161P5bHMnEkmJd/latUcxUAXhxn/r7fHyuyQ6eBg0/h67xHGX8qZ/1cW3vk8Xq5wIxFDHEXpwzDrlbZNCWPX4pTFi9uYgjA+oC/faKq5tX3H/4wPSYKFXxojikUa1sXaZeILeuLdxNt7aKUqhr5dCut65J5NJw6rxDQsDH2JqLrWmgVqVgIFmpCT+eiGNPRum7ni529n2W6nCjMaRpxDkjqzpVG+/RmQqFs/F4PJ54fNhzOBzNJCUrqgFtVfu1cUFAqjVU4hxx6Gwt8Ibe2/mVRr3KOB+sZyAa2ltRo6f6gI8dvu+pqSCaQBsNs1ZUhZwrkjIhGMUiREFbVWspEK6yocLKNFkxFDnHjkpd1yjX6HNLzPg0iG5PWUO9Ru9bAmYu+18uqh1VqTVwOaw/N3drrcRGmf05xy+UlWsTQs9ok+qyXF0sXnL5lBeC4c+VgNcT+qO/vnjvk7+s2a0dJk22YbfdMWw2OO/pug4vjtdXr6DC3f0nwNH3PTe84rC/B50N7amFlK1ZDDUtwVwqKdsGqThryBMrP5ZSmFNlfzzy8dMdn+7u+PKLW3a6oaiirZs9p2RlIqUtJFBr5ub6it/+9muqFu4Oj/z17/8S8UKpma++/ArB8fDwyOE4WrtKCIRhIA49oesQ11PViP9d39HvtnS7gRC9bYLVuvhjv6GXyFwcdYY826SsMtERCWIdulqxTd7puuChZj3tVKk5N/SpcNwf+NOfvuVP33zD999+x/c//MDpdKLmiveObT/QD47tbks39PgY2Gw33L55g3eR9z+8R8RRK1ztrum6gVyUbtgSYk8FumGg63umeeTT3T0I7K62prwROkPdFQ6Pex6+/8D93T3Hw5H9w57D4xEkkEJiHifCKSAzKI44DAy7LaHvkNBkdpyHpQNbF1GxZUNtjSNi19x5z//7n/4zjDf160KWl+NzSetLx0vNFp+bm5d/W/igTxcx+/NzbtnSFKgNprjkN/qmay4ixBhwWkmpmnScN/UJFlcv53CY45/Z2Fr50TkxHp9bdGDLmYrQguBcK1MyJNt5jMfLTCnOnDfbhpNrZc72PEXwPl6sQ3WtekHFe6HfRnu9JOTZdFWrFsacoFSOOeH8CbBNe5wTGcFtr4jBm7yiD/R9ZOgHumBl4tqc/BzOeI2q5nCGMqXUjJRa46RrLUctEbFm5HYOUjI0rAURFlvrusYOm54vhy+JV1eo63nYj4QuApXb169AM9tNRxcdf/mv/hm31xtCCAxDbM1BrBGRqZ9IMzsxlQCPb+6Ldp1r414WVxul4+nQWpO5i3yuoGQAH5DYIbmDOls3p3io3uTmminNZXFkvXYiTdxB1iD/VxYv/0gJ43LuPqdYvHQsj3mJu/28Ceul2+1DILUiVVaqw9L86YNRpJaGSnEX/FLOCLhVVpTcgJ3Ndsebt++4e/8D6XRcG3ed9ysfX6GpWT2jpLS1YYkbFurAuUwPVGHhWAcX6HwgdtGAqSXhqKYuU2phTon98YB4xzTPDMOG7XZrHG0XKLWS8sw4TYZOC9YPkSa63OOX104enOPx8ZGH+0fGccRLaGZEDq1LU9zS8G/7kDaKmQ/BXALVKtE+GjUt5UStpaHkHX3f45yBf9az1PoPug5xheoMIJsbgg1CqcWQ5zJbX0+pxGhNuxLccjLXOMwYK2JRb7t+C8q8JEGNYNG+xxIwNwLW8u8naLOcr9nSCdzWpktIxwqY5zhU4GIMP41Pnfq1x+znHL/Q6W8Jll/6OQfHa5bxBJk6H8833HUw6xkpbn9gySI+u1bpupy3yWo6htvtBkNbe/quo+s6bm5uOO2PKBC6Dhc6Uq7MSen6HVdXt9Qy4lzl8PiAc5lSjN9Tq2POpZVeQcUULCrOeES5EJxjTomH/Z5P9/c8Ho5c314RsEliJh9m92zqFtbtn+dE30d+85uviTHwzQ8/cJhnvv3+j6Q88/H+I7vdFSmb4kMcNlxd7Xj97g2b6yuciyADqmYk44MnRI94RwGKeLI4pIJqhODpdx5NxnuexhMlJbIog6dNACt5WqZvjX7UjJaEVDN+mFPm7uNH/ub3v+f3v/sdH354T5pmhu1ATjv2j4+og81ug+szfdcxdB3bzcBmGIgx4n3keDyw3x8JsaPrN8xz4jQlQjcQOnMNxEW6foMLgTlVprnQZ0z/stsCgWlK3D0ceP+n7znePXA6jhwPI2nM0IHOlXRKzGMx/rL0hD4Shoh4+56K0pwono1rm+0LKgXS3C4bJ92xOtD9ZPz4Kzmecxc/t/H+1HOf3cuCIL9UFn6inakLN9W4b9JUMFzbZL33OJSuNxtmOVnSaqXCiEpG3IVyBhf8V6E1nrkWzC78O1t6Fwe8ospcCk4KLgnqPaLemhApZBEy1rtgwLI194YYVkRV1DiMtXH/8YXggd7hYk/pKyFH5lSYZkOox5ypjZeMeLTvzeGsM6lGJ9CFyNBFnFqzG7XiSusnqUIqhYxJwREsqSgp2f3V5rWXRhOrBqnVarrMtRRzURPFB9Pbrw3RyTnzuD/w/nhC7weSevbHmXlOFvh4Ybfp+O3XX/H2zSt+/9f/CpyVcbebjRnGBGeBaFFynpv6iVUAgtkdtibAdu21SWT6agonz8bdZeC3NOYtjYS+65AYIAUowaQ5c7agWXxD61uTl7Y5r8uuvsjW2W5uFt2/roj5eSJ6ef9LzXzL3y5/Xwbdn0OcL9/refB8eV2e0zvODWDyo/XlRw1dtHlUzYjq9t07Xv3whuPjA2WcmuKMa4/TtlZfIOVWl0cx6TVWVFQpjV9tn8vhvLPen9gRJBCdBVXen2k74nQ1J6uqHKeRXAvhGNkOW+acrA/KRXwtNhfFowJzyRAjhECXOkLfWzXTCblWk2g8nNBa2Qzbtq45iB6pmHumLEDhMlYtvqgCLkbiRVCcUjZaig/0fb8GzLUuHGZdr3WMzlR7akVyWdfVXCpM5rxbiq7nthSPpibHxxnMOP9oA1ovaRktYmvcbdGL5yGrjvZCZV3ul4tr9qPxyzlGXGgk2hLgJZZfHvmc9fBLtutfrMN8/i1P7ns60T6PCP/UoUsdRi4mp65/+XzQjC24ijWWuL7DsUFE6WKk63s2m4HrYcv3s8nEhNDjJHB398CHD3d8/fU7Qhg4jBMiMJ4KISjiOpwPqE4WHOfCOGfmXEi5knJmnjNas3XIijCXzP50Yn86MafMoIoPFsBWbbJTzW0KVUoyrlXsAu/evsEPHffHI6dx5v7+E4jy9t0XbHY7NpstYdgwXA3ETUcczERA6UEGnAtN01jIuZBKolaHEo1PNZlBQuyucFeGxmVVpvlEnmeqWPbWEVkDnNrOfS1oSkY/AR7vPvGv/uW/4K/+v3/J8Xhk6HvevnlD9IFvv/2WOc/W4RtNJzcGo1J88e4dr17fIE64+/SR3//hG/bHI1c3r3BV+HC3p98fOYyJsNkisWfYXcPHT5Rkcn2nMdMNhd1VpB+2iETu7w58++33PLy/Q+fENBbmMVGTZd8uO3QslEmRIqaoMnT4zjbPquYeZYdbGyeWQtEyWasaEmEZfSBl0/BWlbV7/N+XY9nw/rYg+XPPvfgXtIVu2TyXx7zEm7SmtZagLJSmWtdmUocneNuAnLN5mXOh76Qls/ZZS+t7qLUiPuBwhODaWt100dWC3NyS2qxmdlCBrEoqBXKC6lAx18cZYVYLlp0Lrfk0NOtbBTX+L1rsB8Vcg6rxFb1QY8AVj4uKj4VchLlYGdQ5bw5d/UDYbgkuUHNCSqULgc57ypQaQqxQrKESIFdlophedAgE78zuex6b6YuJqnnANbdUc/ezxFhEcKvr51LeNa39KU3c3d8xKUxVyBINbQrBVGOcsrm+4u2rr7m5veU0HlBg6AczM1Gz601YRUZCCwbk3ByWWyVOa0Frs8iudR07y/E8uANauTjSbwa67YB0kTJZWd3VaFJ/YsoBCyK2yCuf4Z5zgrxUVBe08td+/FTF9yWU+HmD4Ofu+xEd49lrPU+SLx9zyaV+vh6ck2gDM1ythBC4un7F7Zt3PH664yF/ZE4JGgWk1Gr8WrcAfG0NKe21vMe1QHe1h8fGgjkAdkTviSGyamesAGAL7hqXOXaRuSbSPHE4HWEUjuPI3Hqbhm6DD6HJvBYO82SJQh9xXW+mJ5sBFyJVrGfjcDxRciGG0KRbbeg5HGSbq2kxZmsgjjjTUE/FpGlDFyit56nkbNbiMRJXasky6J+Gj9471AklgfdWCTf+simjjeNk66bKOamR1tTHj8ePBcqmCe1cI1000ypdGkB5mmw5WXbci+B5+bujocsvVzrPFt6sv59XL8/PfRrD/pzj3yBgdpy5iAsQt5yci0eu1+PnfZh1Qj0Jln8Gwnx+ARZHu+BNu7hU1ononCOIJ6XE4XBkGBw+9jzu9/zNH7/DB890Grm/39N3HlzHZvuKzeYVtWaKCnOqPB5GHvYHppQpWjilcxdtjLHZhTumlDiOI1NKIA4fOyKCmyfKBCmntZGJFggEH9gMPZvdlne1cppMjqbfbnl9+4bNbkfcbnHRXH1qzYzTCR+qOW+JITRWRTHuUsl5HTS2oGgrjzu6fgtXxQSw9jCeHqnTZOXZEikxrra/0Ydmml0p08Snuzv++q/+ir/53e84HQ+8eX3Lb377G66vr9k/7vnw6QOhN7fDUjNOK13X8frVK25vXxNC4Hg48M/++T/jr3/3O2pVbl7fMh1nUv3I42nmj999YK7gwoYvvtzw/Q8fef/xnlozikdCx9VVJWXh/uHEd+8/8P79B3yq9KFDZKJkB1lxxSOzUMeCTkA1vetuMxA2Ha5zFGnNJ8sisiJPS7GoDVGFGDtyqZymCSdKzspikPjvwb765Pi7CZrPi9yl5ubz43JxWzbLUisppYbgNxpFTs9QRXP3jNU3hOFSFtEWZmmvH51bg+HWUbg2J6ZSmEuhSkTFNE+zKuSCuATOoa6Yu101hytxrbGkzWUV42caxcDMMbzDbmtz7KO5izkBD47AsOnBB1SlaQYHXN8ThwFBmKcJcsaLQ0rFr4usruOu1NqqStaMuFg/FwFa0Ns6E8whbVGpxCMoRUwSr7Lwvs3JT51SS2ssdFYqzblwzAnEE7pAFWEqhThs+A/+0X/In//Df8i/+B/+O1SM9zxPR1KaCMZ1wIknBPtBjTudU0aqkJopC+0aKRcc2BcC5cvgq+97tldXDNdXSN9RTx6vEZEBtFD9jGjEeUsyxBkkZaFHq6wtwZHBeJY0/MqaeX8qEL78+3L7CUL/Aqr8hNrwE6/x0nG5fly+9mWSfDn3n0uMKdosq23OdcOG2zdvuf90x/Fw4jQntLlm0vR+F/WFxuRY6R1Of0wzWb67d0bVWuKQ2tYNA0KWz25Bs+35HbEm5pqpydageZFeU+Vqm/Ex0PcdwZvSjari+ojvTVVjc3VF7AcqMOdCTrnRpyBrxtR5CzR33Wk2p+K5+TbQZOUIDp+CAVTeGXc52xyyJuS4moEs33lJMIM/gwzoOvxRrcYR9/YdvG9KWK2/xMxQDOjUNld0QZr04rq5cwP4spFawFwaeiyNhuXWmENoDpurwoZhDi1/OX/OhWaxuri2Py5/WmPLRvFwwuWOXn+8DX32+OUB88rpvLh3jdblImg+N+989tXkeWloIVc8R5gvblyUdJYzJiwlCeOlraWSUpjmmZRmxtEx5cJ4GpsH/ImuH/Cx4/37TwDEIKQp433g5voNr19/QQgD+/0Dxylz/3jgw8cHPt0/kLUQYgAxEnzfm/5wPwyId5ymZAhzLjgfiN2A84E5JabZtINzquR5hrpM9MImRHabLT52iLOB322MY4v3+H6w8o33qLPgwKlhQWCmHCySPMU4SpaxufU8iap1sXtPP2wM3aFS6kyajozTSMkTtTd7ziCO0FlTRZlHPn7/A7/7q7/iu+++o4+R/+g//A/5+uuvefPmDXOa+fjpI8fTwTZy75jTRO+Foe+4uroiBsd8OvDtH7/lX/zzf87j456h2xC7DeOkzOp4OM589/6OWYUvvnjH1+++ZNj9gTH9DdM0k6vDx5HHw4T/cM/xeOLb739gPJ643d2w6XtEJmpx5LlA41nprLYAYahT2AzE3YB0DlxpuaBNJePnL+qcrFNMkJaIGaqoag0SXi6G679nx/Og+fkG99PPXRKJ8wb+nE9pJcLm3ueMPmTGR/YCtjCbnrgTRypNp9fZoi/ZSoV1DXBowbVnkXK0hdwWX9fEEUz60hBdEUtkpxTI2pvOsoiVU7XitDUd0poGnaO0z5ayNaihSnRC8QFioPNy3gCKQnPEXBArhycgmEZxR+i3qLi17OnFs3GmRuMUENdk15K1SYohw1WsBTlpIdMC5lqZ0mRcRaF1+3uCLOiyWsJeTH5uMTApbT3IqqRqfOBUlXHOTGluqL7Hudak18Rr58aVHHPmy69/w9svv2qW1I0i4T2nw0x1gFgT5NL4vDZ3ldLmV0G0roJy66b6LGB+KSiMMbLZbemvrvDDQPUBR7TEpiR07tZ9TFTsHKDNNbXtZG38AGcE7BcgUX8fjucUiudKGc/n7+doFc9f63mz4Gd7ki6OlxDr5d+fC8JffI3Wq+JCZHv9itdv3/Hp4yeOhwNFm+avb30otZgfQz3zlNf3hFUazoI4G6NIU/eoCjUjKlRZzpshy/a8phQRPL6YDnpp4zXnwmmeqI8PTMkqz8NmoIs9IKZccxJCH5nSFUmVPheb9w3Qik2idZ5nqjc5TWvinTgc99w/3DPNszX2BQt6i1Z8F+iDVcIq1ugcxNDy7oWAOYZA33WEGBuYYefaOWdUrnqWruyCo+sitSquFGuOL7ZOUBXN7bpdXFdoevgqprZzQfEpa4C70DXO1I0lcanKqo3tmgqV1Et6xznIX/bhJWg+g7bryLL3uHCYFoFf0nr0CwPmp+iyfZpzAP3jD3gZQP+cQ1Y0AVgR5qWUu/zrxUMX3pPgo0e6DrSjlMzhcARR5sPJMh5nzl62/zhO08wP7z9yvdsyDJGu27LbvaKq55s/fsfd/Sfu7h65fzjxsH/keDohXgjRN6tLoQuevu/Ybrd4VzmNEw8PB6bZSoA+mE7ilQipNRSNU2rlXiuteDVebJkynevx4ujiwGZzZc0TIeBij4q0kkjLyNQaK3AWeFuw15AzMfkopGlcworEa+Ptxa5jd7UDEse9Mh4fSXMiOAjSWRmkZMY58eH77/jT73/Ppw/v2Q49X/3mN3z11ZdsdztqVR6/vefDh/c87h8MFfJC1YpzkaurK15dX6Ml83A48Pvf/zXff/89XWfIvKFijrnC8Thxf5io/kA3XPH2naNKx2muHI4zuQrDJvPweGJ/GLm7uzdljlzxJTD0V1QNlOJJ0wyxtRMkwRFAzD3RDx1hEyE0l6ilA1eam9OKGLfGBd+689WuwX//3/+PPD4esbVcrEn03/PjpzbKf5NjcXNauXQijVKq6wIozllwJeeEePkMPgR8tooP2KZa1JrwbEN0LXDWdfWS8wpLzRnpDBFOpXCaZ6ZS6KM1yRUxlMY0yO06q3f00rSXGwpai/UjnFLCoWxiZNd39NHb+uDBL6ZAy3do9ABRj6sOX41SQjUaVyeOHVaxytOEgGmtzrM1H2ptjogLupU5VmGqcJxGpnnEeWG321qPQPAEJxak14rmTG0UsVobUiPW6FZVKSipVjLeXP+mmTQnsrNmQWpBgsd7R0oThI77x0emXPjw8Y5clJStitUPA6cHpeRM6Ez+q5RijYzOekJysV4QA84UJ4bwLQ2ayzV/jhBeopcijtB1dMNghg/OUaon+Ej1HYSO1XmutuBIG5dT27iW8562BpsvNL/9fT4ug8TnKPOanMqPK0eXQfPnuM6XAdHz+y9f5/ntz6Hcl4Hz59aXqmrVlSYn2W12vHrzjldvPrJ/fGQ+HU0NSqSRi6AtzJaMXbyu6AK2WQygTb9XxaQZRUwOjqJmGqbagrgmrRZsrkiTbHTe4arDqVVxaq2M08icCn0/k0qm7/KKMKuHUEJz/nRMqeJCbAl980FQa6yv0VsAnTOHwyPv3//A9z/8wDhPJkO73bDZmWpUKVu0Rkx+19Yt5y3Q7brO6BgX1yKEYJKyLRFBbP31CEGCNfslq/AhVlldkGnnHNUbYq/FknZt80fr55pKhUURyYm366R1pVKI1KZ+0/bbalK4TtsaoAZyOHdWybGL2sze6lmfeYk/l2SHlnhbLETbFxyrGdzPOH5hwHxhh71+/aeZ6GWA/HOC5SeTxzD8Hx1qcUuLny8m2NMXMgS1Tbqh7wlhy2G859Onj4i7RXJZNQTnOXM8TczZxPHnXMkFfBhQiewPIx8/fuL+7iOn8YggjDNAJQTBB8emNw4TWm1D7DqGrqeUmdPxwIcP99zf75lTRcXT9R2hG8gqzKkwTjPTaSSlqW1KE/k4Mz3ObIdxpQxcTxUXO+JmICQh1dLKwY7YdYSu4nvwvVEmcK1ku2TUS81BWOhDpl1dMNdYUfoQ8bsdQTNeM/N4XKki3jvmaeLT+w/86Y9/ZP/4wO3rG7786it+89vfst1tOZ1G3n94zzff/IE/ffM3jKcjm83A0EVCUK6vdry5fc0wdDw+PPD9+w/88Y/fUHNmGK5xvidXYUyFMZt713EuzHd7qnpiv+XDpz3740xK0HWeop79KTEeT9zf33M8HimlMPgN1zcZlYgSSdORHFvWWVxz/fIQAzJ0SOdRb9bgVRrKpGJZM2oKBKqot4B6EV8XHP/4H/8/KCWt4/TXfLyE2P2bvs6/zXMWpAFY3aJicwPThux3zTygam1l/Uht6I33tkCWahujd954vK1Dvi6lxlLRDCqZLjReq4M5J6acKDKgIbTSbHMRwwxJonf4GNZNDhVSKhz0wOHxkcP9A1ozr3ZbXl9dsd0MDNHTB2/qHt6qR8YN9iCRIB2eiKojeM/QD/iaCHNhPs3ImEzGchopWpo7XyGVTMqZaZ44zROHWdmfZh73eyqVN29uuX1tyXz0niCmSyu1UNNMniHN1SpSmBKHNN5uQclqzmPjnJhTbiYnLeiqBVcLXTNoGseJ+/tHVBwf7+6wQrJRRTZdtCRaKzE4qnOkWpAi9CGizlNyaZsxBO9aA6V+NtBabj8p8687v8kKZvOvaKVhDyEabzUnQ65day6kNn58M0cQS4ybHt7P29D+Hh+fS3A/Vyl6KTh+Prd/Ksh9iaLxErp9yVV+jmifH99yOdeoA1Xw3cDVq1u++M2fcTjsef/dt1blEZqcnV5wX91TSs0FumfV6XPTn28BG0WpyfTCk0sE1zSIQyCEaOopWE9QiPHCrEcomNterdXspHPm5EdDeJ0jdIG5eFJW5rkybCwB8CESIwiZEBwSPV4gSaaOI4/3D3z48J7vv/+eOc1sdlsUJcTYQDLjBtfmrwBNfcYbCr4mS02hJoTwNIhGwFmy6sWtiHTJeY3P7BosKkOCLE2WzjXKp1KLWxVILIA+gyHrtRfBSaPQ6ZmCs+gn11LXCoBzxuH2zqpjZoC1MBuW5NDQYjsNyzgURJaA3B4uOFyr/KlA/XeFMC9lsR/d/6x8sxCr/40OkXPkIdJYF8pC3v/R0RbI1SWIZonozBYSYL8/ELvI4EPTQ8wcjyPjNJNLxofAMAwM2x3OR+4fDnx7eGA8HahltjKBE5zr2W47ut4Gy263IQRPmmeCd0RvtPcyF06HkY/+ng8f7jkcJ25SpdtEuhi4XkrGjcT/4fHI/tMd+Xgi4Oh9z6a/ZrO7Ythuud+PuNgTNj2x2xiyhA22GCM+BsJmQ7fbnF1rWpbhRFoZu5UXpbn6iMmkFay8EQN0zsMwIJo4FGtk9CJortx/uuPbb7/lsN/z6tUNv/36a7748guGzYbTeOLDh+/5w+9/z+9+91d8+PCDaSh3kRis8/bVzQ1d37N/fOTT/T3fvX/P48O9NSL0HbUGpll5PE6c5gwu8HAYmaeZ7374yIe7B374/nse9iMxeGK3JXZbchZOY2ZOSspQsnKaCsepIDGiBHKCeTRpPU1AbRzRrsP1EYlnW1Vtm6VrC5/NqDYctfHgANQxTSMfP31gTvNaDvqfjr/DQ0zOCJoTXKsMiQhd19vCW40jF0KgKJSaVmpBrY120BZ2Q1uaHa22prIiJCo5R3zbCNM8M6ZMAcR7S0KXZk7VhngqMQhxiITQgVgSLqrM48TD3T2P9w+M+yPTaeLVzQ3X2y2lH+jVETuPl4hzEdEWJBOpxVEqhOgoGfKUmPLE8Xg0GgqmECNBmOZsyheambL1TJzGif1hZn8yK95hM7DtN+yGLUM3ELwQXIM9iiXf4l2rdTY5N3WIFpDSqB6mM30YR+bcDFusdk1QU+roQ0AQo2wo9MOGaU4mgSl23Zw3cEHUKmE+eHIyhRLvPalArgXfXBxDcMTQ+Is/OUyeBVmtibGU2iy+izWL+Sb7FzpqLmZ2gRCbC6JRd6wBcQkCGj5rCoG/snj5JS7y86bkJ1Qo+fH+/pK19ks85JcQ4pcQ5uU5lxzlzyHKl/cvCbS2fVO8Q1ToNlvefvkV43hkmkb293eoFiq17cdnzvLf1mxcSrGOAwcli1lHz6Vxoz19Z+oSvppalQsBULwzh+ElfMutIoUHVaOGnuYZreNqD91tOiQFZl9ICVQj4gZEjHqppSn7eKhFKXlm3B84nczErO8i3js2fW9JsDNlD+/M5TbPMyUXgg/EEIlxaUim0bvsnIQQ1/vtQi3VfWO/2Od1lJJJKaGKaTmHDu9DC2YblcK1udcaAWt1bV9sBkGLGgbna7mc/7JErbrI2BpCvDR1+2VcNfDUgL8zTcr+ZEF0gzUuxpG5O5/HYmMrSNPk/ncWMC/lkB8dyvOguWHCv+Tl12et2Z8uJfEGjX7m5XTdxByQjfeTRpybWle9cDweyOLpY4fWyjiPTSjdSryb7ZZ+GJjmiYe7Ox4f7vCucvv6qmmIZsDTxX7VM+2iBeCnmojeWTNRyszTbO5ch5GHhyP7/YnjKdFtKrEP9NtrXrnmgFfh9HDgh2++4/0fv0NTYdNfcXurvCYyVuFYBXUnfN/RdSdciMTY4aWpd2iFPtJdbYnRyihCA0aquWgF71pZydHFzjQvfUCd0MVA13mERK0JqWakIs7jcRyOBz5++MTpeOLq6oo/+/orvvziHV3Xsz/s+fbbb/nDH/7AH/7wB97/8AMlJzb9Du+cOQl6CNGa/E6nI4fjkcf9IyVnvLdS+ZwLx3Hm4XjiNGdccHx6OLDf73l8eOQPf/MtebYGu74XinqqepOYS0rKSlWH8z24wGlOlLkwZUP301wZs7mXlaKWHfcdfuiQ6E3IXmsTYTeEykpTi06oUhykkkjzDFRSsrL+PCVCcOT862oK+jUcy9xeSoC00pr3fk1+Y4jrRu18gGpmBuqtPK9NKs45q5agS8nfUMxUjXvbdz2hixyniSknUq1UFwgSDBm5WPAdFU/FU4xm4TwEz2YYePXqFbUUuhCZjifGlInjjI8bJPhWMo04DUg+0zPKXMxooIKkCkxomall5niYcEGsU71YYn5KkJJtTrk4tAa8QB89wW9wrxzb3Ybb21u2/Ybggll1OxC1Tb8slA5VDLvRFXVbksdclWnKnE4zc7L5k7WiuRBQoghBsYY9hd1mh1ZlTnYd5mTItOysaah1I1p/xILcigUzS0XBOyuteznzHm1b+Nt587r+bg2jpeBV0WC6zE4VzRkNoQEutXlaOJbIWN15U6+G2/zq+hMuewOeo8SXQe9LOsvPA8rnz7sMmF+y4H4JXb583eX25e+XjnMShOUtvu31COqs8Xt3fcNvfvvnnI4HMwU67NGmkS/NkMd5h1RrhFOl2bJaTLMoZFhJv5Bz0/6erZGPUgnOryYX0YKNhqpayOadgzaeGvmP4i0hLADVTEIWBLjkipeWjlXBqXUzeCKOYAhqgZIMNs1pZjqZ1NzVbkuM3rjEjb889J0F0SLUnEnzZMFtPzAMA13Xr+oYy7gITV/6KcLcxnxbB7x3xGga6iVnSrF+COcXCoXNS6emqPFEdRguUGALZhdaHYvy1gVSXBcdZz0DpOvN9rkoRseQC7rFeZhZcm1j0nHpCi3yVNZwoYAE5Rft278wYPaItEV1PZ5mnn+nxxOE+Scet2YqzVGnZmqdEZlxncM3dYxSZrqwcHk8Y7FMVBTmeeahVMbTkel0IsTI1dXA69sbNtsOtBqv1xsa3YVATonj/kB0wqbv6WNES5OJq0ItxsV9eDjy+jAy7DL9Vui6SD+IuWzdvuP47pGPf/qeHyqcTiNdd83V7Vtu3n6BOk8N5kmmvqfGnq4bGIYt0Ue0VtNGjB4JPbkqKWW7FrUwTSdQ69Kf5xlqNcvethna99wQo6PkCe+F7abDIQTvKaVw2B+Zppnrqxu+fHvLm9tXIMLHu4/86U9/4ptvvuH9Dz+w3+8RgU1v/GtaSUVVyClzd3dnSga9vb5rlYh5njmcZvbHymmcScXkAY+nicNp4u7hiOYDMcDrmy05K3OqHE8TWgrjmJimQq0wDB0uRA6nmdOcOZ5mIFAKZr1dWtnMucZf7iGIuT4tG+e6KZiWgMO1qruVuqZpppSM8z3znC3D9q7xl5ey3P90/Fsf2rTKl2DYNYeqWnHRNx3RikRp92tbMFlL6iKCFl3/tvxdLqovWcVeR4TQkuBpTkw5k2ug7zzRe2s6UQFsflMTWsxEwIn1M3QxstkMhC++5PXVaw77PafjkeACEjfUbosOO2TYNPtcQ3bnuZCz4oNVKtI0GZexC2QRDj7Txchuu8X5EynPDHGLnEaqFkIpeO2hg9ubYDKWztw9h21PH3sr8VpX8IVZi8lT1Qq6JBfVKFFFoaqQizLNuX3GSsrWDEgtdE7pAHKmVJsrThxpznRdD1oZ55lxnih1oO97SjZ5u05sLVwkt1I2XVjrlHct+NCzlKCzfpnnds7LIRfjxDuPd4GFv1jVvp84hwsVusEaMEWQmtqX9SiFxW/A0CpLnyu/ToT58rgMVpdS+3Ou8k8hwcs1OF+LMwK93H4pIP6p2z//O7QAvf3UlmSJ8/hu4Ob2Db/57Z+RxiPvi1VcuHxqA8a0NNWcFpyZm28DRZyhwTlV0jyTpoQ2yVczP6p0XSTmTIgJH6Jxl31z0RRronM4qrfgeZK0fghpzYOImLa8c3jfE0NPkIioQwukKaPeQBrNiveKlmwNwF1PdI5chrUPy3nPsBnoY0RQSm6KISHQx0jf92ba1uT0DFkOq3JGCGG9LlaJO59/s9cOhGhNjaXUFY1fewrEKBV2uhcqDI2qfKZGtBjcHiUXKhhtvRZ3ZhYITVPbYOjmf2KVI4qgXts5vUzgmtmQZUTWBN4Q72WMPx+jttb/fHfeX07JMBLIevxSXtTPep8fPfdiEi+UDaGVyttlqkrGeH2dWADjxOMEprlZv2brOu3jwGa74eHjB1LORB/4dHdHTopIJnrH7etrvnj3mpvrLV4qJc/00ZCmq92WYeh5uL/nscwIyjB09F3PNM3UYuXglCr7xxN3n/a8+WJkNyV2Wc1WstEyfOy4vnnF23dfcP/uI4++580XX/EX//F/ype//S0FYVZrvMEbZ7KLPZthwxA3RO+pCiV66CIlZ+Z5IgTLpg+P95Q0Iiin05GSZ2II1GaB6x3keWb/cGD/+MBu19N99SXbzQBaOR1H2/BD4Iu3b/ny3S01TXz7/bf88U9/4ts//YmH+wccwu2rV/Qh8unjR6ZpQmsh+p7gHTknDgdDs95uNwwbuwZjPjGdEodj4jQKKRcQa8obp8ycSnNeA69CLrDbDqgKx9NEyYl5MgTLZrppXR/HE4/HkXFKePVQhJpbuad16Iehx/cRvJwn5wUn3/heuvLhqtQ1OSulohRUzYFszHXdnH99WNTfz8PyGmfUoRbQ+kar8r4j14II1qnewhpz/bMm0+V6ODG+2hJAnxNsI7x5MFMDNX501sopZ8acSaqos7KkL4qUpeyYkAI1e6ovBDEK2KLF7XD0PrLdbEjTaDbLvsMPV2xvXnN9fc0wbM1G2zkeHvZmShR7pnnm8WHP1asb+psrMkp4eKALkTevX3Pa73m4+0TnA8fwSEkJzZnsEzF4+qEDUVKeyTUTnAX8IXgsWDZZqFyK/dSlRcp4h6WaFFfRZnyEs+ZGcdbJrxZkL4ohokApBDFe8ng8UUvh9vUbvmvoVM6GHG83G8b5ZBufQAzmRDpNp+Z6eDbLqNXodUFY1QlUnyKin6MKhNCkvNr5JddlKwcfcZ1x0VVAZ7umRr/xFiJXMQmqtlmbktCvb15fNvk9l2+7PF/LYy6Pl7jFy2M/13T5/PgczeL5Z1yOz8lNrpFWq3KLEe3BmbufC57bN28ZD4+MxwN5OlHmRafcgJsl0F8CPns/vwaQtWqzoV6afFswWK3yMdWJXDJumldnQR8jsbO+hNBoSUt44iTgna5o7kJ/cM5bb0BVSnWUVBlPE6Ue8aHgg6fvIsELGhTXWU9D6DcQIyWnVYe5aEW8MHR9o2PY93UidNFc/S7l5LQF7gunOXhzW1RYkWFbCc4Jimsyfct1MmdjSwR8C/wtUGYNkA11P9MoltdtRSKcTSr7PE6Qejl2xFQ+FmtuMXBRUaQsNub+vJ7jV1rI8hEs8S/mWlp+HDAvRymFefp3FDAvmRrrqXyexV5mpz/vJc+PW7ILu72+i7RsX3S1Q1wTR2dyJU48Xr2VInxm6B0hdniBnEbm0RQjhsG6RLEeHVLKtul6x8PpyDxXtoOj2wz0m47NpmO36al54jQmG4Axcnt9RTf0PNx9YpxHm3Qx4LqApkxWs8/ONfPwOPLwMHE8ZE7HxPE4mttV49HkWkA8V9evefvua4IbuHnzli9++xt++5/8x0jXU1xgBjJCqubYE0NH7zuCM/RZYkf1kZozpSRicFAz03FPSScc9f/H3p8sSZKkeZ7Yj1cR0c3MfI0la+ms6ulp6um+AIRHwgEnEAgPgDcZIjwKLjjMAU2D6SWrujuzMmP1xTZdZOENh49FVN3CPTKiClVTUV1CZG7mqmqqaqIszB//v/9CmAYoCWfFcidNgZIip+OBd2+/49SP+GZNt9rQNI7+eOBwODBNI5t1y3a3JhF5e/eGP3zze95+LzZu6/WG59fPaH3D7fv3jKeBsR8pqSxt1WnoMdmijZEdcdOy2iTuDoGYJ1IqhJDIMUu8b0gch4lhjEgqWyYlRQiFxm8AyzSl+vdm2cjlQpoi0ziQDYzpxBQjXe7QCVw0OCXx3xiN6jR6bSi2VK5s5W9SyNUCrGTpQOjaIlJojPIkJdNKrPHfxPTB+P9FHn/P0PjMOFuu7aevV+kws8iOIl7DuXYiAJlctYQG5BRrCzFiDBgD0zDJBihrclbV/s2gTEUUZuQZ0Ijwy5NxOaNTQhuIGvZh4n4MdKHQNYbWWJwpGFIt5CAHmZO0VXVlRSgR1qBTIueANoXVSmPQROMo3rHpPOvW0zSOpm1puhXb3Q60xbcrjn3P3f09V89uWO+2hBQ57PcYFKum46ANeZxI04hVsl5Zr8G5iphJgAElYFTB6oLVYFTlC5ZqBxUlDrx2J6U4RJOLJmSYimYiE43BbSymj5R+RJVMjBNWK1KpwroQcd5SNKRpwGrD8+cv0NYzh5+UAk23Io09Y4giLNKFsUSmqWcaB4n1RpMQZHtONVuYgOr8rcyVyXJzqYWRhBI1jadtPEqbmnxoCdTF31kpClKR3bjK4l2lkDZ7qilkqdrb6YJsH345x1P+8uXPTxHlD/nCHxbUP/Y1H5fe6nNh8mNiwEuU7/J9zD9/MDcoVd2LWNrwQs8qoCFVmkW3WnPz4iX7/QOn44FhfJTuoFGUJOmfxmRSFGNmEahBVXILZ1cXrE4oYzG2dl1MdZqqG+0QJkFaUUhQmBS0riLOQg3QGG2JMWGMJZlCMgprwTq1JImmJBZwcTKkYHAeNtstThmc1VhTcEbhjMJiITuK8fgi3aGQIhglSaBaOsIpZazztG2L83OKoAjdlbJiV6ut8Pm1rQ2VQiKRi3jU65nCUDtx2tSJRkkwjLh0RWJIGOtQduYyM7PmpFNk5D9lFt7Vzae68FKuRGUphpWq60DVSTBzjMWBQ+aoGmCVUkXsQUxvzwVxSoEUQy2YRZsg81y1FFRq4W7/HGD3Z7pkPCXfwweElSeP/WkFxPn5lKouD8utel4m5cOrnJmi1OL2oIrBFochQh7FQYJMYw05G2JUlGwJU2C7aVhvN4KiPOzR2lKUEPKHnMEWdGtoti2m0cQ0kqJDxYDNBRMTN9c3vL65IRTJhw8p0LUenCZpRVKKKWemKBPu6Rg47Kf6fcC6A85r1iuPczLAQ4xo42jaNUqfhMngLHa7xaw2lKbFG8uIRueCNk4Uu9X6LOeE0i1ZGXJKmJJRKqNLZNV1lDCgSZQcJNmLTJ4mplMvgsUEm6sXdOstu+2K3fWGHEfi/pFxEprGetNRCLy7feDN+zf0U89mt+Hli1fc7G7YrXfkKTCdRmwtSkvKYummDKdjYG3WdOt1VdlaMoaYBfUxxpHTSI4iuBtDYhwCKYI1LdolnNY0zRpnW/m7a6FsrcGZhjxF8hQIDvTKgA7kMkF2mFBwk8Zpgxa/PFQLemMoTpGy0FhUlh2vIMhVBa0E5ZR3anFaEQn8ze+/4m9+93tiECucFGXMcjY1+kUcl1fwH7tif+yv+pjIqFTUfn6NJyUzC6hfJ+0POGZFZgClRAYyL+LON0txnbMUW03b0njNOMnmZxwTVjW4zlUbuhlZTcwuHFpBDhNNyXit0TFgnaRwPRxP2NNA263pXMErhbUKZ6W2yrkWiwlMqh2HIhssqzLWQSqJPPaoIl2sxmi0zzR6woQj03ggHh1pvcE2K7Tv0CrhG8dqu8Y4iymJOJ4wYYRcOJ5ODPsDZexRccKrRDERqwuKRIwT4xCFMqHBeod3SnjWpTDH4eaUliCHojUqV+qBglAUQ5avU4SgDbtXV9yGxHT7jmwKsQSMcaQswtppnDBai/hIFY77PShVvZsz4xiIMdF5h2/XxHLEaITSoTOhREIYJRBBaaIyJKUrKjyXwxft/ov/z23uMj9SCbrlncU3nqIUoUDEVtRPgRLLLq0T2ia5ZOtcJNq/JBsoCiUnjJLz+0s69EwB4EN6xUxbuUSFL4uGS6T5qW/vpY/ufNvTAvpTQsH5uGyHf6xw/8F7UorC7JhQi+alRKpdAy3Ugt3VNc9evubdu/ccH0+gsoBKIyjS4rKhslBuUpSRpLQBZTE6U3REqUyp4I6CSgkoxAQx5UohKqSYSSERCIw61s24+L8LJUij9ezzLhkPzrlz4Ih1OL+iaTf4doVtWq62O5rG4r3CmIxSCU1G50p90AL6mRTQOaCtxrcejCKEiQI43+DbDtt4yXSwHmU8un5X2mF9h7ZORrWCehFA5RqnnKqLlpXEXmtko5Cq3V0qkMFlhdWe/ATF1bNdpJl5xnMUtxTTT3a7ck3XBaEUKlAmtWGsqLlCeONFq6rHl031vIGeu1LyvSaFzt2Vi+6xthbfiHB8GIefdkHxswvm8/F0F/hz+cufpHIsbhizlnK+KGSCnJWRyx/P3P6gJtUUYk6MU4YkaVHWeLQvFcWMrNYd2+2Oh+MgaXxTIKWCdUiMds1vn6ZAfzpCmChToF1Znt1c03UtD+/eMI0DTeNYrTqcdxQyU5gYp5EQJ4zyDMPE3d0993f3bHcdTavpT5auFUUrJRNjICZJLsspM/Yj/aEnTwndgfi8yI7QF7GiMspKWtecxJtl16rrpCLWK3W0aY2q8cAxTIRpZOpP7B+PTONIShHnPVc3OzbrDm/hMPWc+gEUrLcbnHf0/YnH/SOxZLbX11yvr7jaXLFuVpQA9+/eV7RXPpMUI8M4klVF4KtNTYjCrd7vjwzjJElMRWD/XDlSJSPPpRVt02KVxlnLdrMGJZ6vJU84g0wu1lNMIoeINlJ8GaulrRUjeYyoKoIvSkQgtnOYxghXrMj4kjZs5bVRLqKVZVcqRZwsGv/r//q/8R//039imhLamzpCfzmF8j+OoyxXuEx659uNurB8qm4Z1lq8d8QoDjc5p0qlgKZx2FP1LE6QvWP22tSII0yqqIQUjFE6FKWQgoEmY7zDNp58OHHoJx6OA7t2xdqBV2DqIlBNN8Qzul5XxlbuXhEig1KCXOYYCCmgEUeGopFFtChSHBjiSDF7SbV0DdlYxpQ5NZ7BN0xDz+l4omSxg4tTII6D+KTrQiyJEEZSHEk5EFKhKI01Dlu5lVli+sSOLgoda94UojRi/VyYpsCYMqEU+pA4jhG/u+LVF19y1w+Ev/oNQxhrp1GhrK3hEJIqplzGaMU333zN/nFPillEf1OQdFPvadq2OstkjIHGW/peVXdW8dy2zmGdvWj9f8iN/Snrja7Pg5IQl6zE+irVroM2HuVTLaSAqGoy2oxeZqFm1A5H+Tly+n8Ex9Mi9pLPmVJaBNfz42a6wtPffyrof4ogf4q2MR8fEw4+fcyPUzjPm6I5mERXMCMnKc5E0Fpo2zVX1zdsd9c8vr8nDoPUgUqQXKF0iG1hztXZKCfmYK+Z/46VEKs5eUIjRV7OiphFKBaCCEpLquvsEhdd1wFVFhqGMU7sLa3DeS8UjsbhmjVtt8Y3a4xrJOTM2oouK4yR2sZoTQlV+agQv2jEnUM7KWYzsl4aJRkR8joe68WJyswWmDV5WArqtoJXAPXzllM+n3pQZbmWYsronIlFbDvJBWNyHTeq0iBiLZgTpbhl/An6Xf3OK5UiFdmApCjIeK4IMKrqtuq6fN4plYUKNt82z/ELzKrnAl3W7kKSc1ZFCDMFp2k8INSVn3r87TjMF+fz09PWGUX6Y8/6QzT6AoW68NqbH1tzn+oupF6QMxYxp1SlQImBkjPeOZQ35DJxOg00bcN6vWHdnXh8PEAJ1eNPY7TDGk8KiSEHdIzoFLGAaxxN6zme9nz33bcMY0/XtWy3a9rGMY6RGEdA2vQamKae2/dvef/2mptna7qVpj8ahtbQWI0mQ07kGJCgkUKOkf3dA4fv39OGgrvRmLXDG43FyCReizvK3J5MYgWV5++REkZynCTdKgVO+weO+0emoSeEiTEmMgrnDNtuw/bqisZb4nTi1Pcc+x5jHZvtFqOhH07kAm3bsV6teXb1jE2zxmvHcBjEEzaEupuTjUAhY5zHmpa2W+Fdw3AaeDiNHI4Dpai6+y7EmBnHiWEMjKmQcqRpGrpVh1eywfDeU3KSpMTxxKgypbT4zYbtboszBkyiLz1TSViTxOkCLsaucN5c6zHOVKRqcdldkIwZyzqjWhXF0grnfOWqyXN6bzmF6UeviH8+Lo+6yDB/CYpzNgWqAc1FUIJS0uLNa41mGmNVvM+KZ4V3DW3TSCFdU+dAJlCj6hgL5yAHpSRUJ5Ya5IEIPY2W9MZhnDj0A8cpMKRWUGjUYs0rtksFiEhq99lqah4nyhhS0sQQUEMvQpRpQMeRtl3RuRbnFUOcxFEmR5Qx2FxQeZT5JBW8RoIzpC9J1gVKIpdACCNDfyDGobY7LUp7zhy/iryUQkxJUgmjIC/z6U8IijPlQkRitU9T4DCMvH71GZ9/+Su+fvOWlAopSoEiNlFVvFvtnFAsYENBxFAzd7LUroHzrqr8pY3vvT+vFhX9nH23qdQc+d0fbkc/VTgXBcZaVqsVbddx7EdZSioypZStyJ8geKVGiZVc+XqZBZSR9/V3HvD/4MfHaBOXFnKXnOanjyulLM40lwXuUxQZPuwmPX2up9SL+XngQ77yx7jol8W4rgm+ugpCNYir0Rw6Ua9l6xxX1zc8e/GS2zfv2Y+yqRaBIKAz2thaQ4iILCeFoYrYKv1DG3m8UbKRm9darUUGbqxBG0m8U6W6dmTpTAIY43DO0fgO5zzeN8t3773oLqzBug7rW7RtKNoASuzOgMUkWCdKZhEXokTEijGSVuulqg4pooucH+vESs55J04YdfOZCygjwT5N29VuXb29CCURJBDpsi5TSgSN0abzpmDuUFUw7kM+eP5gLF0WzHNqK0poLSnJfSI+rh5VWuw/y8zi0PqDrlIuZ/vXyrSQzY6Vv8EYvYxdbZJoMFJNLYRl3TBGf2ir90eOv0PSX1mKhY8ff6ykLhePubhpvtjm2fcjk9aMCMptshiU2k6QwVbOjy+CWHjvmKbIsR9wR0/TXuFdi/cdbSpYk3DeYLUjjJGUg4QGZINTiq71bLcbQpz4/t0bbu/e0TSO3fW10DxyIUwDKQWaxqHREn0dRw6P97x//4ZXD1dsd57TERpbUOsOqxXeStxtCkEK6BC4//4Nf2j+mtX1DVdffMH62QvMZivEf2UWTtKCxKuIKhOkKFG308g0nIjjwHA6kkLg4e499/d3qJzxbYNZy2KyWrWsNytc01JIjFOg70cKim61xrcd09hLsbxa41vPdrWmtY1wu+rOvGRphxcE8ZPdZCZnMTp3Ttqjh0PP4TSgrWe7WzMMhSkMFPaEGJmCoGRQlg2JyYIKai2L2YySDFNPzpHGOZ7f3PDy+TN8p7nv78nvFWU0mKPGDxaLEfcOrcQQvpGEv5QjqUTxo6UK+1DLLFmqJ6Sc6FroLYtIOf+t/4wuf/K4vJzVvPpQliv8jDJLgUTJlJSkKM5BNoGlVGBTPgPFLACTYsx6Q7fqJN46R8os+EFQqTKH0ajFFYpSIKSMLUoWDDTWeJxrGUdxb7k/9GzaFm9atDKoUnAq1yQ6oZGVEilF13lJilplNNo70XvPhv5xYIwTloTJEduKcHFtPdumxTQtyjiyNljnQVtCKkwhMg4SiDTGgRh6SpYN+qk/0vcHSokiGLLCZdYVZclFkNLZQi6EWAvm8+KTUmHMRbQSStHHyP3xyOMQ+MK3rLdXtRWdUYjva4qpXu+lxn+fUUTfNFKI18VRiiBxnVFKgmhCELGNrRaBpUib3RkrG99SSEkKe/2RYvnHD4Wxls12y+7qisOxJ9ewF2elxayz2GMVnRABb5AipBiKlvFHXez5SOH3Szk+VcQ+RYYvUejL4vfSUePp7z99ncvvl8els8llEf7Uj/kpAr2IxmCpjNTysufxlnMhpoh3Gt90PHv+kqubt/SHnjD2tWpRoDPKSvcKEqk6sxTAKCvXckWhzgU6Ih5MUkBqzWIFqZOql/uZYqCUwVmPcw7vW7zzeN/inK9Fs6trjawx0p2R7gdKY52p1KJKRUHmPV19luf1SGuLcRptNRnZ6BqMoNSu0iicxTgLWknkvdIoZ3Fti638/ly46KBKN7rUdXDhjtfzLGi5BScJfAnhj8vnqBa//MXX+hPdBwE5hRaj1Cz8O49PliX2KZgqm4WcMkmn+vhMyaZSM8W1RHFRMOsoXYGa0TEX7iGEH1CM/tjxM23lLv7oirY9vf2Hv/TDm84X2iW6fHFiFv+ey+/5/LgPrtO6OBWZ9Kg7nnmQZWAKAeclXWsKE6dhougg/ntFY7XHNFShHAynEV0irQGcwTpLt1rTdB33+0fe377HesuLly9ZbzeEmLl/fOR0PJBTxDkDRRHjSA6BcTjxeH/H+3fv2GwbjIkYEo2R9omzFlUSKU7kaglzfPuWNyljV2v297dsnj2n3V6z2l1hrMf6BmsblLGVDzVBEZu1EiJhHOiPB/q+Z/9wT46J43FPnCbWqzXrpqHZbml2V7RdQ+OlqIhTYJwmYsm0qxXr7RqlFOMUKGjWmy3bqy1d01JCJg2hJpZpsagKEaM1zllCgFyS2PhQGIaBPAbe3z7Qp0y3bdltr1Fq4v4xLMV3qcij95arqx03N9eEfmQ4nVCqYIwCHMl7YhyJMTIMA+M44Lzl9WcvuMlXNG3Ht/Et/UOPQWOVWVp6xltMK2lNIUaSTlSr6opkXURsqvPWsOS6s9WCIMyFc4xJuM4fjO9/Pn54PD03l8Vzlva4GPzJNZ0nUhqJUfyI8+wxrgXlKRRx0cgZW5B2pnOEUQz8Uwwob9DKkIosqouoCaorRBX8ZWiMZ92uWXcTIew5DiNv7u5rQp5Cda1MsjljShSUWRUolpIDOeZlrIiIyNYOkCJP4uqiimIce0ouhHGiGQZ8u6btVkL1sIKCaaXAKFQqlGlkPO45HvYM/YkQJqYo52UKA7lE5vAAY8XiTptLZbt4y8YYF3RZFjOhPk0xM6XCkDP7MfBuf+D2cU80nm6zpe3WjFMCZMOQYqnXawFdixgtFlfOe54/f06zahdXgFC9mGMyWFWw1hLjtLiXlBpW4pyI9awx4vs6v1c+LND+2CKnAGsdm90Vz1+84OFw4HTsJT7duNoiMPIziZQj5IDxDUoVclE1FjkyhyH8XNrh/97H7AQx0y3+mMjpU44WHzvvlwXzZUH0MX7zx46nKPNMlfroc1W6QykV1VRp4WdrrWR/nWRTGmKWcLDdNdc3L7l9d0cIEcgi/Ksf+1yskQs5xQp4VNWUQnSAaka1a3dHA3WWmj3ZtdaVkjG/X3HwMKaGJZFko5YCpYhv/DSZimDP/GuDNg5lHdoYCg6FQSkthlG1ULW1W5Mrx9h4U4vlavdWckWPHdb7SmuSQKZUPydtNa5t8W2HMpZUSrXYU7WDJXNVqeDEXOfVBs+y8XHOgi5MheqCIy5DMs4+tB2cP8cZeZ61Eykjmqxq+SnjJUmIieICgKoo9rwhKYWkMiVEUqxOSVpL6rL3OKsXu0ChHUGI8QebvgXt/hnr9d+Cw6wWZObH5w/Fh2SYH3ncJVpdUeYiRJ2Zb3DRFq9HjYGEGeWprbsiqGYpsnigFMM04aLHOo/OoUboCuyvlSbnKiZMEJMgpE5laCxaS1hJ23aMYeLh8ZZ+7Hn24hkvX72gAId3txweZSHLWaOUXUjnOcvFcjoeeP/2Leu1x1pRrW9aT6OlvWS08JWUShADejyhTp40Dexjz3D/jnazw9gG4xt80+JdI7YwWqMb0C6Dksz5oe85Hk8MfU8MsZ7pwm694dmzG9ZXV6jNGrtqsd6KzzDi7DHFAErRrjqsbwjTwJQyyjqabo1vOqzz5JIQF3cjXsrHI8PQgyq0jScnT0gBa0RAsD8cmFKhH0aU72jbFcY4ptDTDwP9MEmcaJF29mrdcfNsx3a75mGaCDGQS8TUxCXvHLQtpSTGaeL27j3Pn1/xZ83nvHr2nK5bUY7wzR++kajwihgoo9GNQ7eObCQKOduErsENc7snV7RwiVet/y8l19SjTAyyKKU6af73Xip/TJF/cW/9fkmOketWCmWhE812bxAhR1KYCFNPiiOU6q5gNCVL+y9mmbRTpdXMaGdMiRgCpbRyW6kUj6Kq2lrmnaS02PBmsMqy8prGHNDa0E8T7/eHShOQwlvhKDrjdayUQI0pSUQwRXyElVKQq7+rdZg6dlIRgeAQIyH2BJOJCaYIwxjQ5kTRVlqSWhwrUlHElBjHgWHsZbzmyGk4kosUA9ZZtJkRII2xetkcAsKzXlqic4dO1YUjM4XIcUrsh5Hbfc/7hz3HKdBu12jXMMbE8dTDPC+XQuM9vnFiV5elUHeNo+1abm5u2Kw3dKsV3jcikgqBnC05FYkzN6ZyQ5FC3wgVo/EScDK3ekulZHwSgXwy/hTymbimYbvb8vLVK+4eHgihevNq8V03WqGwFBGvQEkiHlcy/HKuKLPOoCJnq45fxjFHE88F86WLxVNrvku+8vy4xWe3/BAYu6RMXD7H0/vn+z71HJe/+7HP9/wYQSBLkS5ymQM4TI1gBvSc5JvA+xXr7TWu3VCOgzjqKEVtuzB3DFUU29KSMxEkBVPXgljX81bnEz0jolVfs3SyL/4pZMiQcyTEIIWuDVgzyUa7WqAxn2/j0NZinEM7jzYGXzwUK6CMsRjtZO4xpr5MXjjFRRdSjIQUiDmhZ7s4V4tm74UWVgQ8tNbRdB22a8laEXJBJwkK0rUopgJFptI/qIVyLiyUhrkoFu7xXDArYjTLWJsL/afjTKghGZ0VKs9JjGqZN1VKYpVb5HNZyuYynzekEVwScUGwwafqflIcjgoW1I3APJYvr4MYJb1w/pt+yvGzEebzYK5/wHnI/PDxC3J8sVtd7qlcFRZtM+cFdH7k/AzzBTfL/+bBKq2DXAQhUCmQCQQdcVo+rEAk17arsjJwhinSdprNZkffjwyDZL3LLqo6j6rCVDKx9bidDLr96cTDYY9xht3VFW3bcjwe6U9H4hSEFZXS0uKUASOcoBAm7u5uaVeeduVoG8dh76EqNdumoW3EOaOEhCkjroxYCowZrSKawBASyjgGIxeU1kay7deW9c2G1WotThHDkTj0xGmUVEBjaZqG7e6K6+tr/HbDZAzZ6CW2slCYYsyZy0UAAQAASURBVGCKEes9XevJZPoxoLSlbRtc24G2xGrnp7UEtfTDwDhNotItGWMVvrHYIgIEpavqtihBrnfP2F7fcDgl9ocjh8OJfugJSRY1aw27qy2bzZpSMsPQMwwnee51oalRn943UC3zDqcj94+39P2JL1efYbXj/faOO/cerwxWSZs3k9HeoFtLJDJOA1llvPIy1nIRrmOpCE0VTpXqBQmFaZz4+utvSVna0YvS+L/jivnHRDty/+WCWZGckitmI8VsTnERkKUpkFMgBUm8mx9T50Hx6HWONEVCTJiYZOKvqFCKsmiJMNCgKDXmNS/0AWMl5bEooRTlEFBZY4rwnguaIQbeH44SMWs83lgR+JUyh3tVzl6mFF3pHuLmIwgL4qHuNSgri3RKhAhhigzxRJsUagygxYOcaheZ4+wPLrHfUxTxXKyuEqiMroWm9YJQzb6rgojVIJJaLEsLehYmCWUixsQ0BU79yMP+yP3+RD8FlLUkpejDxO39PY+HgxQKKWO1kvNRUf6Zv620+iAAyFlfUS659ucFWRvprKWcsNrQek+MEpAii/Es7S5LsQznNehjyOXlGqOR6O2m63j2/Bkv718wjAPTMDJzQDOygCalUK6phZG0kXNIZJ3QtiGbDDrKZ/MLOi7b4XpB284F82UBDWckej5+DCGe7/+xlvvHKBwfmyM+VlDP728uuEKcQR8gy3gTgZquVmQioC9oUlZo7XHtBtduwDwuHcC54yOdkcwcfVkqtUioeGrhbJVKi5i7Wst7LCyC45xzDT6q9LBS9/tMldMbsMbV+88CNaUUxnq0tejosLmiwnYWDWqhXRhxgkKJxaZVdXNsNbGkpTcnNnemWuI5rGvQ1pEXtxmDaVr8ao32nqyNbBKo4uUiIki9zNelFqznjZMUmglKpHXi8RwXEXH5IHpdKXEWivH82c58Zo0WapyRolmev74GUiirlDknPNdKsMxcA/FTK6UQg1jHhSlUBLul0OCsqWPaVK0JS0LsJS0jxMBPPX7mDKDmIVtPAMsf+oNHfoJ/cn7wuZyei+Izylz/N8eTznYnFITocv4qOVFqy0PliNHz46rtSBH19xgCU5w49gdSisSo2ayvWK9X9KcV/elIiRFyxjbSNiw5opVmvV6zXq94PLwnpMhmd81ms0VrwzQFUpDM9sZrSo6EKBNS2zpSiLI4hsj+cITvvqPpHOtVR2MtpoBXmrbtWG3WDIc1MRVUmShxwHqF0+B0olEBq5PssHMkpxGlLbo4VGqxZLzRFKtwRtN4sa9p2g7ftHSrFevNlma1wnhPtppgFLlySmMMjCFQtKLpVjhvxQQ+Z6xraNoV1nmK0pw1H1IIhxBkp18/n1KFj62zuNbhO49xDV4ZcGva9U5aNCVy9/DA/cMDU5hkAXWWzW7Di+fPcc7y+Lin709SKITAyntWrcfYhqAg50A2hkKWGO+79xwOr3Das3IN225N02p8diIs0wrbWnRjiSozxQmMcD1VFUdRU88u6RjMWzulePvuHf/z//z/rG39ukhLf5lFiPLPB3CJK1/cos7OGLmOmZwiKcz0iyzxxSmQ44gi44ySbpISq68UI8Y52TrXwk874ddao8mhEMNEioEc5fPUSjF75CuquAexU8s5k0PEai88YG2E7qE1p5h4+7DHa0dnLH6jJR2zKGLKmIpESYEsinsK1SpPCWdWO7F0ikkEfiqRQiJmGE8DIAtbVtQOR0VglFp824sS3nAiYYyiKKGmSICCIFTGuuoiwCLMkUU9LeKamKT1KYKbQkyZYRjo+55xGkFJ5K62RgrxyonURlf7RDmBum64TV38UEJPUkaL/WUjrhhORaYgrjlNo1FF6GgpBbSWABNFRqkivrZWVwR47hz+tJ3o/DhZBQSJ7DZrXrx8wTgO3N/dE4MILGMWSl5MBatkMxOVRdmG4hKVNk8xkawDRbm/24XwD3x8jGN86YwxP+Yp9eIpJeJp4fwUGX76GvP3T1E8LjnSn3qv8CEamKobBrWoU3WjuLw3JR2iglAW0Fo6sd0G61dMw0iqmQvWOkyW4lbnjEmJaqSw2JVpVT1bipTLM3Vo9nWmiFBuTndltsOt72/+MloirKOWPAGpxc2CpuoYRYBevDCFtEabvPjKS6NJnl9VEaZc49X1ozriKC36HGO9uL9Uj+VcFCFmina4psV3a3TTUoytaXtwhoFyBUEvOwMs1AhVAYBpmshJ4auwUShekv8wF8/nDY/9YCwsgk5AaRFzZi3CSmMk0lqXKvous50otaCsGzR1Bl5Lre9ije1exqFWKOVrHPiZ+nM5lufC+R8EYZ6Pj100Hx4/FXKbPyhZTD8stiu6vBTLiVLEmF8REcFNRJExVot/oYaShT8bUib0AyGM7A/3jGHg8eHEq1cT2/WGzWYFOdHv9ygK667D60JOQ42VdORSOA49ylqev3zJbnfNOAwiKhhq5LS2qMahVKIfQi2iZEeTFYSYePvuPdpqdrstFFF5Xq1WaOdYrdaE3ZYxZ3QMZB3JKoiNnI6UNOCMvvAfNBQdZXIwQjPZn46M48Q4BZTWtGtxv2i7Fc2qo2lWaGvICpSz9VzLZDTGyJQirmnovKOkKPxOIxYsTSucxEI+4/ylEFJmqklpxhqct9UjWdO0jmbV0G1WaNeQ0BTtUVozhcDpeOLNmzfcPzyQi1jjtI3ls89f8fqzlzzu99zevqMfTkhRHyXiW0HbtTVFUOOsJsaB/fHA119/xXrVcr19Ro6JlWtovcEHg04i+LOtx7SWrCt6YTIxROGQ1pZPrkiYXKQyjrVW1XVDceqPCACiSEk2STH+srxa/8GOOsnlIkEwiw9+XYjIiRRH4jQQo4jBpHsqASDWKLy3YpOmpRBMudoU1T1yrGEYqnYopiKdnRAmUvU8X1r2SlW7JgSlKogFZRHbuM46rK79LyO2Sw+nEypkGhSubHE7j3Wy8AoCJeIjI7L5On0JwqGVlT9Yi+erqQ4NxsqiNE2BlCVDI878YkSAo4u0ipU5ByyAWvxNZ09R67zw85Uk+pXaRs01qWwulsVWLlXHjMQUE33f059OhBBQRc6fhDF5mlXLarumW62wzkIUnYIx1cskpwWxnzeMbSsx2NZYlBLz6piEypSdhdoyLVVtPy9ozgra7Ksdl9LntWVGpy5pAz8YZksxVy3DgKZrefHqJSCf7d3dHcfxkSmMkk4YA1FpdIqYDN40aGFoyMbNJLIOJPXT1fT/WI6nlIlLlHn+uuSZfuqczuf8svjRWn+AKH7s+NhndYlKf+x1P1roK2njy3uV8SaAWkUaZ4AsVwetpNCmoVvt6DZX9KcTYz9VnrzFGImJn5+zzO+rPpfweRO5RJntZ8Gqlvh3Va/bXCuooudCWWihUowJXUKpwDwh6Got56vFm7BOJRjEOUPrHW1raRtL6y3enTeOM1qqawcmllTjn+ucogzGNRjboI2nKMMUCmNOuK6lredCGU9CzqlSYrdpECT5B5XXsvYJ8q61iO1zmkhtwjuD956UQp1rQ0WWJfnwYw4U0hkQikulKtTXUmirMUqCw8Q+roK0NUglV50TswmlOtsO5yQx10orCUjTpobVCEJ/eS2cA06k6/ZTj78Twvzjx9OCVz257WOP4Yc/K2ovN5/R5ZJBCbI8F8vixSrcOOcFq5m9/VIUK6VxGujHiXGMDKdHVOX7NtbhnSUYQw4RRcE5i3IN3lmGcWB/FL/mzz7/nH/x67/EW8vbN++4u31g6CeMcVgnO5qUJ/ZxIMZE4zzGiweiazzjMfDm7S1/+OpbFOCNlVSfUrCNZ7XZYpUiB4nfLN6RrGYoQnTUxoExFCXxmgqHVpkUIuPhhLGiiLVty3qzpdtucb7BeI9tPMVYIhBLXnjL88WAQt6naTBWMfaRrJTsTNsGZR15Gd8FlefEsNqSyQlbrZxKsYQgSUWogveGZt2B9oxJMyQpZo6nA6fTkSkEjAFrNc+f3/CrP/mCpuv4m9//jjdv3mCVprENWiuOxyPrVcuq8XRdB3hKjpz6whSPvHn7Bu8ML6+PcNCQMk57mUgrN8s2juKkpRVSQAURhLmswehlzy2Te14ETnN9N06DiMuGmjKozl6hH225/PNxPko5X/YVaS6z/iALJ1crhVGQSkQTcU7TOEnV0pVqIJG18ybbEFOmjIEKdAJCy4hTIHiLqgb3MmHnivZU66Is9o46ZySKQybsUoTKZb14kD4eB779/j1NCTTmGussykkCJ7VOngN1xMu7+rvWBTMhiLGxVszSHYBCO1sL5ixCHAUoLQF0WaH1LGJOpBIp5GqDBdo4jPMY42sBUpG4KmiMUYpV4TDHxb4pZynUHw8HHo9HpnFAZfDOoJwnOuH4pxgkTQ1xrUgpYJWThacU2Vgr+SxTFj0BSlD1eWOsysTWSwFN3bQYU4VXiCBIihlXlfYibLJ6jr2dh86HaOgnD8WSEmu9Y3d1JSEKuRCnicf3t5z2R4zSlJwxqBowk1HOYWwDvggNyySKCRTzy0OYn56nuXidxVez8OkDusGT709pMD+Fe/yUF/0xJPpTfPRPPtfctSlVFJwKqmqQ5G+dHXPm3pWj6TZstlcc93vG4STXQyqV9WRx/myLNk2hniNxoJIiOlcEdn7Omdc810JiRyvJohdopVLMVqlnwI+aQOnomg7vPK5t8K2jWXW065Wkf3Yt3jm8d3jnZNxKhBNoQZMzEFNkipEpJgHNXKVpGofSjlIMMULICq+96I/aFUUbYgFTkMJVXVjZ1Tpt7vqXes6VFpqTcx6te2KQQrN4Kk/bLhuoEMLy2V3aGH7w+aOWzYLiPA+bmTKUS53zKrJcN9cC7lFLFnHcUZX/LOJHoWaMesCaKvLXtjJvPgzyma+DP7bpuzx+ZjR2zXD/4PjUxDW7VcwD67JoXp7wyf/Lxdflw2YR0NzurzZARHKRL1PRZeGqCKc5xkiYJsYQGMeRKc3eoIqSCsfjHlUy2/UGbzTOaDIGaxRt6zHKEGPg4eGOKU386k8/59/+u3/Hn/zqS77+/Ve8+f4td3f3NL5ls96htGOYIiUrjHJgbfVlFaRHiuaOw/GR33/1DV3b0PmGlfOsvRTc3WaD8U7ax1rhjMEAJFGEYi3KWIq2oC3KerRrycahjGW1vWK93dJ0Lc1qhV2tZIFUEBVkVQkuSondlSrLRGSspe266gUdSKVgrMNotQQAiJAEGbyp1DZvrsKhiVwS3jusdZTsgMBUApnIZrtid/2SpBseT5H3Dz3dw4mrmyv6MTKFxO5qw7/49Z/z2Wev+fq773jz5g37Q89u1YItOOcYjkcOhwOrxtNc72iaFq3B+sIwAXni/vYWNRWasMYGi6nenaVUcVLrUVYTSiSmCCqTUsAUy6UkTVFRiJJre1x4aKtuzdCPeK8ZRlFYx5h+MKL/+bg46l5iWWtk9QNEuKupghukdSm0o4BSCB1Di4Uk1T8TRW3DSZsyB6E+KbFClgKzBgOlYKvos7bj1PyWhKMo1msRUkCliCkZW5XuSit822KyZhoe2Z963t0VOq+kANyuaTSgC95ocipSnJtc1fV1UVCqhhWV2khToCGjJDWvQCxVGFhHny4WCdYuoMsy35WS5LlR55hbVdHDivqmGIk51WCAsgh05us1TIm+H9g/HuiHXoRyWoN1GO8YjCao+vc3ntWqpekaDJmVd3Srhhqoi9aiwM8l0w+DIE1aYa1DqUycIjHaZS+ZS8JUmyxdkSut6xxZPWNN5bCKrZn+6LX11MFhbveCqmtVgQzWG652kkZ6etzz9pvv2IfKkax87lKkKxZsbXF7KSrKlCq//JdXMF+ix5dF6mWxOyNtcKZB/DH+8uXxMerG5WtcFukfK6Sfvs7HXl9V20dp1Ve3jChA2myLxlww181pRkR1TbuiW2/oj4/k6cQUJSTMG135rbPfdKV1FEXKClNtJj9wiSigi4jHrTEYLbZwKYdaMFuyz+RK5xEtk2GOym4aMRDo2hWrtqPbrGhWTRXoObQ92/iJM4ZQLYQlqMVjXZl6jUPKSjYKpQayGCcdHQwpQVIK61q61VaShI2j1M1Arr1i+Xd2wL+4ykq9vmqnTNUNrbWGGGL1c28EgKqIcgjnNMmFr/yEF19/QFVEX12sC0snowY7lWr8MHe0ZeKWWlLNhgnGkm110qnJyWpSy9yhlcI4szz3Zadk3jj+1OMfoYrhIwXzctuH/OWliK4iMyHGB8ZxIoWeEAKnYaDvB/phYE7CUcbgDKhSCGFk7DXFWlTONM6xWa3YbdekOHB4uMd5zc3zG/7Nv/13/Ot//W94fHjg66+/5dvv3jD0I1fbG7abLdOU2R8GYoziwaiNWK9MI1MI+JhwjYde8/bdezarFa1rxOP1Sji9rlEU79FO1OKNd9KaSEmsl7QQm4p2ZGXAOqzrcE2Haxo22x3tek1WVdBToDi3bDNmjmRRgjJrNfMEC8ZaUdSGafFpNc7htF64nhqIWRbdEhM5VkSsSPJPSgltSkXtVxhT6GOPtQbfOJ69eMbm+hWHodB+d0s/Fv7szx5JCR4fD7x+/Tm//vWfoZ3jzZvv2e/3tQVfGKcJ7xvEpipy6k94bzFmzXrV0nY71tkyDUfKNHE8HChRs8mbmgRVhYJNQ7tqMc6Sy1hRgUwIEePTBRdZxuHswyoevjLBvH37VmgsowjNhPdmqjjll1UyfwyJ+qmL5c95Dag0DAR9mVH880RZbaIKCJIgXSMRb1hBli86SRLfKhGsxoj7gtg6ZagK96J11SwEjHPLJLv83QuiIpu/OAWKiXhjWbct7dgTqipdOUd2DpMyQ0i8eX9fHVQ0u1UjBWL1ZRZWRrW3zEK9MqqgjPD2WED26tWhDFlruW4VpFLdVnODVh5DoSgJKklFUgqF06kQeoN4sqc0I4eyEYzpzFNOeS6WE8MwcTgc2R+PTNMoC7NzQoPRhqIVRisiWTjgWbp4oiyfGEuWNnIji6/WGmusFP0x0DS+RgALbUM21IEQLdnJgiut9hk5LAslw3tfE9LmwqmKAD9SmP0xpFnr2ootYJ1js91wc3PD9fUV/f4gmobaPco1FUxoYwbbSJFDyEK7M/8Il8sfOZ6K6T6G6l7GZf+YKG/+/lPP+8de8ymv+WPv57JYnkujD96XmlHmIlZtFwXyIldTdaWqol20xboG51uGOBBTQCRwiDZACRffOCvGPNWzHAWm1PGbkXW4dlVUdaSRTaskAM70DqnsNPN1abR4Ixtt8d7TNA3r1YZ1t6LbrGk6j3Y10k+dr9MyAwqqAo9KZqqMuHTEVN1ulHCFnW2wVryVC8JdxnrW6ys2u2usb+tcI1Z2Mg3Nm8X5s8nSmakF9IJzcnndqQWRn+xE0zQLyhyrgG4uRmOMeC9JejNG8iGnoBarCw336Riivuf5N+bHVFcNU72t6jUes3TBxlHArblYt3oFcN4czdz4nIn574nDXN/nk/+e/Zh/8MALAvkffVo1P/7cDpejnC2gqp2R2ENFSgkoRoyesDpiTLVzGUfGqSeGwHEa6MeRfpI4V+OkvTH7qjbeYY2RwI8S0VjIEaMyWWVCmdhtbvhX/+Zf8S/+5V/QXW34z//lr/lvf/MHbu8PeONANRQcMY+EkCpvSZBuGdCZlMXmqvUdjV9xdxz45vv3bFZbnt88Z7OWBCyq6lx3Dc26Y92tsEYviJmq0Z5FW4oyor43ltVqjXEO4xxYJ4p/pOBNZBJnb5HZYz0nEb3IWMxoY6BkUknELCoIrYRHqJiRAgUhCrocs6QA53lRk1bRGALWg+saTOtxGdymIRpFMJpmd4W9ahhoePdw4rPXL+gPJzZdy5/86jN26xXfvb3n9r0U0o1rCRmmmDDOoH1D1poxJk7DCWuhbQ2dt3SuY2zg+JAJQyaHhEnQIOiZcgq1srByFK+JwJTEfSHEjIkZrTLKVP7qwqFMyPQiKuw372+JtVU1pYJvPOM4/eTL6Jd6/K0Q9FKWCU9R0OeKtT6ZQWPRykr0MwlKQpNx1TNbpYQ1Yk5vrZVrTCNIrjZonUUsY88olLaaGBVTLkyp4Lzw2mZxiK6bSotQc1LJTDnQqoJtDF32rIxhCgmTqg+oteA02RQehxP6/gHftdKSbJwssEVGiqTuyXyVS5S0spwrr074dbou7DGJVkBZC8aRNbLYZyuhCEXmtpwMKQVytUAUj+DZkUPmTbHZU8SkBGXKdTMbpY0a40TfH3nc3zMMoyy2TQNGE5NsSFTdpBtr8Eaz8p6uFTQpoFDaEFIijrOrkF7Qe10y19strbfkHBjjgMqBhJbeYCmkpDBJrDTlhImloNEFb3VFmT0UB8WikHlbqiWYLUfVsl7I6FwQqVponC3+ZGG21rHarNldXfNw/0CJCVVmtCkxhJGsRUyprBUnoKYBJ3S2X/pxibI9pWX8sSL4snD+VHH99LGXr7t8n2vfXJh3r6oWhEbLRniGHVOWzl5WuYIVVfQ7p/wVQBdKMUgcvV6KQOUsxRiSNuAcqu3I40k49yqjUegsNpNaW7xVxCJezinLnDWn41EkqEhAOikKjVLV0UXSd5kpXIuDlBTMutpRUi3fmsbTrTy+a2lah288ykrBXChQN6g5Z7FWq9c3tWAnpboZlsfMnRzjxKKOSrnIRYAFv1nRrNdo58gorNJoDCpXikeZiREsm440c4brtTZv8mdtUsmiRwgh4LwTtwtrwMi4ijmh0hy3LrZ158++Vo0XoIGuLl1zLItEiM3+51SnoPpV5gVEntNoqYeySRDlWg4xoqdJEhm1pm3a82tpcRwpSok3/98XwjxjlJcXgKygH79wpCP2hLvyiR2qTHBz8ANAqmRzwYB0EcP8kpOoKFUCNYLqsfQYJXnw0zRyOJ3ohxMxRsYwMZZEMpX7o7TYRkXo2oab3Q27dUseT5RpwNlCYzPkiZQnnNc8f/2Mv/wf/4Lr1zd88/4t/+G//Bf+61ff8nia2LYNpwnaAGOo0bNpJOeAXCNSkKu6A2uaFausuH88cnff882be56/OHD9/BWdadFG/GjlGiwUp1G+lYLUutrekR2rrj7SKIUymqwhlkiJRSZ3Y4hKUOVUi4j5fCrOLWutNdoaUsnkStyPURIDhZdrlp09qaBigSlDyJSYIStyhpgKY8qc+iOjtqiNRTcN1q+wqxa1XlFWK8p6Q9PseOk3PByOvH/zhuPzDVerhpfXV5zu7/nDf/0b+n3EqQ0xF479IBffaWLVtGSTKVoshWKcGIY9TdeyuV5x9fIV+82G05sBf+/piqdFOKxJZ2KriI1mUpkpZYZR3D38mFE2o1JEW0XRsvu0RtdUNxnTx8PI//n/8n+tLSIZv//UiuWnfMX5+LGF8mMcR7muZ+MjGX95btUq8SUVMxKPUZ6oekFiVRK0JUS0TqQgyH3btuy1FsS4Uia0UcQyYVwh54lpGkRMpgohZ0pIOAcr7ShoQphovSNrTTwNONXIwqA1yWpKIzxbXRJrrYlFY7ImO8dgJ04l0608DZpjCvz+zVtCTHz54jlKGRojHRBftRZSjAe8NngtdmpiN6lRRVOUxruWoh0YRzGublK1bEbnWOikSIDOmjzPxYtdoxQJOWemkEhZkbKuXZ/CNEmC5ziNHI4HDsc9OQfa1tK0LWjDcYqyyTbiUhGPPdmKAHnlHFerDTVbl9X2itPYY5zBq0IMI43znE4niAGVAyVMtI2lj5GQRybliApSURTlyFlVVC3hjGazcqw2nsYrnDaiqCoNWjVQdB0ncyBCnZKUXkCc/GQsqgLEVPMmdC0uNE3b0W03tJs1x8Oxdo9AW4fTRehvpTBlsbTLxqKaBtU0f/cL6x/weIrYPr3vMsiklPIBx3NuUz+lUMzHU3eNy9/7WHdqoWbkuegpS4fkHHYhDje60mpmjnwqAlyUSp+ZO8uqiChb6dpzzsg1oRRFK/y6xaw61NhjN1t8DOz7E6dhICLFoi0JUzTOOMGcq+tWTrFSFtQSMBIr9JQyFJVQOaGKwygn1q1FiYC1SJCGsQYwGCci+5Dqc6MZwkjSmmIgW403RhwjiiKmGrKUQWVVi1EphOeNXYqiKTDVn3lO8ytKEYEUE6bxrHYb/NUGWkepaaclK0gy/8gHeE4MTqqIIUClYciHimxOElhtaX3LoMclM6EoRdEa27bYlDmdTuQQKE6hjSNHocvqSk0jn7GS+UshKYWldry1FuR4zkQQcODcDYlToqRSN9YGa2stkyJkLdSMFBgmSUG01uNsTSG8SEpWhhpJ/tOOv3XS3x+9vdTb1Q9bOU/bMh+IB/gAQGDG8JUSAQgkVBFOX46BFAdC7CkxoqbCMA4cjgeG8bQkxmRVxJLFiPJaF0WrNW3jZLfXtNjWYnKLNYXWaYpKTOPAzfMb/uIv/4KXn33GMEX+6r/8lr/66//Gu/ePTH3AqMgQEv0YGceJkJOEBWhFShGVTc1rF3sZrTXr9YauW3N3es9337/h2c0Vn332ku1uxbqrVigqVjcMwTZn5SfKimfsxZdAz5qiZQEpRlV7HLl/DnSYuUiXbTrZ2Je6e0zLrrGUckaN5p2zqulpIUDOdQOTCdPENIUarhB43B8Zk6bbrdi5Z2x2a3TjhENlPUkpmsay8Z7Pv3zJ/vZzwmnP2+/eUmLPcThxd3tLGAJW+/q+o7RmtLSOVQmElDBGs9ttWK8cqiSGQ0/brvnV539KaCJDONA8ahrt0ShCisSSSSozxcCYBuIwiuJ6SqhGijvxqc3SKrNikG+0Fuue8tN9G//5uGxK1elRlQWqLssjzm4TM85RVMZZ2bDlUW43RlTuM4Uj5AxEuQa0+KDHFClJCkjrHCpCCJFpiijvaudEVPJGa+Hz67MoLxTxZLdGs2obpgxFaybqwlwE+TGNxykHMfL+/h6VE+X5c67WK7zWpFIIKWKVkdbfJE46OcqiuXD7VG3talM3gYJSJ6SelCAFIFcNydwWTUV4zVm8xWeB6uytPNMzYo2wTjlxPB65u72jlMxms5JEvZyFdmI1NsvinHX1ta2c8ZwTzlratiUEuRabpgVTSGFk1bSs1humYSTHxOl4pKse88JjVITKHZ0X/UwhayNRvDUhdbfbslp3lHmDX6TzWDJi57XMX7W982SEnYfaWaArjzjPeYLyNdWGb1iKD+luSyBOmj9jpcE4jG+wvv3/w9XwD3fM7ef5+Fjhq5axz4frwsX/n6LPH0OPn9IqLp/ng+8asUIr541zme/n/EnOdYBYKs5OCLWg18LbXahcxmCVJWZFKuJDrFyLchbfeKEVdi3N1GEbz5QTIYwob2lUwVYbUGsMjbIYkwhRk0JNFtXnv2lJfyWjdK1FcgUDlFk0GEbXYB5tUEZLqZ0RC9YpggpkZdFmEheeomswiSbMZgXVr1RTHcJ0EhAtz7HTdXNSbeW0sWQUISa0d6w2G3Y313TrlWg8YFnTtRI5sq7o8gxey2c1WwEs0BpzhLV8jmJ/GXMi1M2lgEnSwTdW8g4KZ1GdqfPaZYdSIzXK/HrnMVBdWerG6fI2KKQ4z3V6mbfPY1cv4sNcClMQt7K+Hygt+KYRG85kJegtzK/w046/ddLfMhN9qi0zv4dyLoqX2+fb6oq53L/cRy2S5RfmQlr+W1ucKRDCwDQeSeMeU31JYwrnFlM+cxlBY6zsRgyqZsnDOI4MBtatxXlHYxVGF44nKbi/+PJX/Pm/+AuUsvz2d1/xH/7jX/H9m7uqOocxCkqZAeMd3XpFrg4RfX+S5MBJCrsUC1oZNps1m/WK23dveHy85+tvv+FXv3rNixdXrFdN3TUbMOJRW8hoVf0EZ+Gl0rVVU/k4elbRikCmzElhLI3wi4+m7tILKCRkQJVCiWGJ5tYg7fACZEkxC0COEipBEoeMYRg53D/w/v0t9/eP7A89Dw9HOCSsb7i6ecnN8w3b3Y5md8WqXSMiyAlnLVfXLb/60xecHt7yePeOGAfCGBn7nhQyVjdYowlNRhnw3laBivjKKjKbzZqb7YqSBx73d0zTW65+/YK/+JNfM4Yj+7s35H0kJYtpvAg6jSZMA2M+kIYeyMS2JVmLdnoJYMgxS5qh1UIBMMD0cy6x/36Oy43vfMj/L5dCPuR0qPPG7YOTqqTlqb2lBBgR3i6cU6aMNtX5och1roC6qKac0UrTNA0xB6ZJDOq9s+cXmCfhioLLpjGSUwRtavKcw5pImDeNIM4JOaO1p3EWZSLTfs/b97eYUvDmNXbVLh6fDQ5jGileQ5REycWTFTBJaFYlS3uZTEZX1HhWqs9qfvEPTjkRU4AktJJcRCY4TRPTNDKOYfk8Ugr0fc9+/8jj/hGtFV23qXaZCaUNqshCrZUIggV1LZIkliI5BFDC85aWvrSxYwnEEDFtQ4qJcZS0zsP+iFJKUkYztK5lxrRKjsSYMdZK0VRdP4yF3W7NatUtKKKkogHqQ6ClyICri8TH16BlfTkPxqWgmy2vlFYLl1FXy7CsdI3uVUSlsMZhfIttu59xNfzvf1z6GH/quCxw5+OpE8nHwK6nBfRM8Ziv/0u0+gPOea70wPpc6mLOeCpS/IB/XdTCr5cj13hqJVQmJZQGo0RY36y3DEHTvr/DOo2PjnYlIjt7axnHE6cSyVrhKGSlKKZUoZ2staFkUg0OykqxiGpr16aoAjpRiiWbQtYFq2WRMNpSKrgFZ351KZBjIZfAFIUyFVPBjwntLCh99kgvBRDhq4pJOrpaMdvAyjgWtDSjmXIhlUTRmnXTsbu5Ybe7wblGCkklc6YkDs4DgIrcqvpV8benQ0adS715vo5JHHFWKWKLWegR1lqJKi9F0g5VBZu0+RBcXUDRc+G3bOpmZsJCxTiPNaES1VFwISqcr+tSpFiefedzLhhE1GxrqJOxDldq9sLfF8IsrfkZ4Tj/0R89yqy+rBfY5aSm50X1jEAvLX+l+OD6nhdUJPOdHCGP5DgSYk8MPTkG8Tc10p5w3pGq+4EYVwv8PnNfhI+TmELg8XEgTxa1W+M3LYHCECZOY8/masuf/Mmfsd5s+err7/h//b//F/7zb35HyJqm2xLGI1MQz+WQMk3j0RZStpQhoWMgDpk0Jin0oqBfRlef6CJt1fv793z9zdf82Z9+wfXNFbEId1MZoVqg1fk867PvoJxXXS2rpGjWenbQUIhvVX1UtY2pjTNKUdUZQHbHuRTIGQ1YJTZYFoWtc2lOUiiHYeB43BPHwHgaub+95d2bt3z37Td8/+Y7DodHjqfAFAa0uefZiwMvXhY2q+dsr56zvnmOXrUoIjkOKNVztTW8fL7mq5Vh/9iTY41KrgPBKM2qbVFWg5ZwEWcshiwbnuGEulqxXV+hUub+8cDju0fczvH8xefc3mSmuz1MBeM0WJhSTwyamHum04EUA06DKgnXNhhrKVqhvcToqiwiJ53F4/Ofj48fl92kc/dovncubj6sjuf99/JVpxhtFGRFDMK7zSViFFAdLKw1ddERG7fCvIh4UpigiA0SAYbpdBZvlnmRkPZtjqlyXFV1oUgiEjXib26McN2N0jjnajFXNQAO2naFQzPsH3n7/hZy5vXzGzZdK77QJqNtpkFoFeJUk5ZiTZFIOouRf6VHKSVh4TkJMiWdsioIpBYXdRaY0eM5QCglSQGcF5NxHHi8v+Px8RGlFc+ur2iahhAmYpQ5OpbK0S9SIMeSqpNFbZdXSlnJhcZJazMkEQYrpL0/jAM5F1arNae+p+9H4hRRBblei3SnJCjJghKXE0XEmELXrdls13hvKUoW/1gipiThqqvabp/7uUr/YCzNPxZK1UrV9n5t9YpMRnYqxoggK3AuBqUwkjZuLPPY1OA8qvllIcxzv+ap4O5jCPElPeOpm8XT2z91zDSOTyHYSs3WbCyf4zwbxJwXOf/TY6Z16eq6pZiDP2r0vDaARhmLa1q69Y52s4XjhPWSeFkUWGfYbCWXIIaesT+RS6I1WrRDpWBzri4VCCc3a+lUZ2qxKnH1lEKO1LU6MhlFo4u4RahCSAVnJBBH1SjsDJQsHZcUImjOBbPPoj/SImSeRb9ogzKp6oMEqZndH8T5QWgfIRZSDBQL3W7L5uaG9dWNBJRlsZC1zuKsWE8q6uVDmffGtTaViabU2uwD7F9RaVF1fkoilA8hYV1etCm66gZykujqoMQ0wJRcf3fe8IpTxzIk5vFywUzIs80mFxvmmUmiamdNVeu6CormUrAFAtX9JSWGccRYj3ER7wVwtNaTMrJG/MTj76RieIom/dhjPo48lSePeXLBLCgzyCmuYr8UIE/oErEqo3zNZ6faTtXLUitpqxpT+T9RUGGKKL81Ca0hF4mW9Y0nx4nTOGCs4dWrz9hsd7x5e8d/+M1f8e///X/k/d2e9WqDVgbbFJw2jCFyv9/TjBqlE9YBRmObiiqN0kLKuTCNIzEGlCo0ja0F94lvv/+Ob9+85fmr54JkGGqyj6mBBbIbmiUuuXIsZFeoASvIshK+dKkI9IwiazVbM81pPqCVtEVLSpDly8ztlZIXca6udI2xP3E87Hm4u+fh/oG793e8+f4Nd7fvebx/ZBx6UpZ44Bg1p2Pk4a7n9v2J6+cDzQa2tsU2LZSRNI30/R3T9Ei3guvrlrEPHNKAKYWm8rbELSCL0ToKtARfiKG7IM2b1YrXr55zfbXFvXnD2Pd884c/UHhJ2zSYtaQERjVxGB8I+zek/Zpe90zTIzFMDCP4oMFGkvLkpEhF/KWdayjOg7EVzf/n4+nxAbXqg6JZ1wKnXHKt6vHk/wrma70USf8LYSDGEaVKBZiESuGdY5wkta3ULogElxipi1PGNCL4GbWW4jNJYZmzTPrWaohxeW+CXkRUcYILaSnMEwZlPG2q10sRNX3OgnB12x2NNfT7R97e3jKNI8+vd1xtN+e5zipsYyX4AIUxFq0lgntZ/GtxmrWqTaDK3ax85fmr6ErJqGEJIYmN5jiNTCESqjd6jIHjUWzj2q5hu92wWnWCkCuHc4bT0EukfeWTFzI5FdIUiLnnzfff87vf/pb7u7uKipvlWo85YWrHauwntDY0Tcu7N2/5/rvvUSicceQwoq0kL2ZTUK5Gj6eIUgnfWF6+eM5ms8I5g7Fi95dSJOck896TtUYQyqfjqd4nZ0ycDZSqPOYqEjIa33iarqMZhuotnSoirSkYKeZLEjQRoaflX1o09pNZ6lP6oY/RNC5//qje6Mnvzo+79N0tpfwgWfDydy5DLS4FiJfvYf6ua+rvDKqBrv674qCjjMO3K9r1hqbtUNYR0omSZT2b+f7tasX18+fkFHjMmTCcIIo1XTJgE6gpVPcbQFu0zgtFqohfDQVxqSAndCw4lRitx4YoEmalsVpirGXTXdfnGjaSSiSriJkiboo4HzFegodiEe50UUiSrzFoI+NTG41DKGKlcuxDyqSswBi8b+l2V6yvn+FXa7GerefaOUkvpczpoaCqTqzU5EIR350bN8vlVU9/ot5WOxchRtFr1GhwrWsnP0Ry7UInLS45c1dh3sQmSqU+Uj/L+qWVCBKXl/2Y28sZMrz8PiPvWs8Cb6G25JzQwwBaC2hZfaONMRLG9BOPnx9coj4yO330oVW0wg8X0Y8Khy6QgUUnuLQG5gtMKmpphWSMKSSvoBhyTZGKcSLnUKMsIYwTuCLtwygtFlUKaRoxTmGcp2tbNtsVm+2asYd+MKzWHdfPnjGMkd999Vv+v//hN9w/nJiCwgewyrDd3bBqPKTA46OIaJwv7K5WtJ2jaTQlFdIUlxSgnMVBo1u1XF1veXhInE49t/f3/P7rr/jyT79ke72uaUNysag6wPKCEFy0tBD0RPhAMoEsftmlEuirwbcEOoj+tBShfeQs7gApVRHD3OsoQIyLVU5/PHJ3d8v7t2958/0bbt/fcv/wKNZtudB1HU3bME2T7JpjoWTL8RB4890DmT8QisNvtlx5CyaR0sTh4ZbT/Xsogetdx2k/cvf+EaMS226NNh2naaTPEZUVzsvfVyriGAOMQ09OiWbVYjtLe9pz/909X331e0I+8Gq8wqtCtpGsC7kcmfp3nG5vedQn+v4gf3+bMZNi0hMES0JhncfFFp9bOrVi5TUj/7TT/D6lVfgpx1Nk6skzP/lZXdxyRqJnm7EUA3HqGccjKY4YVbBWnBWUmjmaBlWk7RZTopSAtUJ/KikBajHVn1udOcvk7YzBaYcJVbxSshSgMZJt5QjW+WteSPRcGFR/VTDEVGi9Y3f9jFW34vR4z/6wX1Be2NEWj0oFHSPZZ7wH2xiUdrIJqM8/m8qmLKKfTGUecE4lk2tW/EaZ7Z3ixBQDwzAwjBKyFGNk6HtOxwNd1/H69UvWqxUxSiqXMRCmIPZaAJUTqWrbOYTAcZj47W9/i7Kex/2Bl69eYI1jOJ1o2pZ+HHG68Gy7Yt14csrsdlu++sMf+Pqrr7BaY7Ck0wHnG3TJlJQwymNUrnHFGe8tu90Wa42gYdXXVT9t4y6j5dyvOPeKzz/KY0pFli9GnxJHgdVqxXq9ZhxH0WCEUOOXa5GoNBHpZqVSMGhxW/gFHR9Dip+ixJ8qlOHsh3z5e58qlmeu+mXB/DHOdKmI4qUX7qfQ6xmdXhDR8ztj1jwIsmSxrmO13rHabCla0U+B0+lETJGZ91+Q9X53fcNspfrw/h398cAYJlrn8BoRrSJWld45jHFQhPpUVAbthIOfU3WaSky6EDKCKCOFp1EKZyxWaZyVbkbJhRATIRdKdZYyg8M1E86LW4ZYv0pnWdeuuTIS3OS0p6DJldcfQtUZWINvW5rNjnZ7LcWylZAza51cS8bUTpyEd6kKGS/X0DwHLUDbxVlXUlSn2hXQqgrucyKkRMoFi9C0jCmSw5BKtcCsOovCEsddUOcNkhI3rnkBWIpmrcVV6GKdqGxUoYuV85yoFEua6TKOZv1DKaQcGaZR7HRTxDce75uqHfmQkvRjx89zyahQ+uVJveS1KPhgTdTLjIacjHJWcv8Qma4tADV/SDMaOr+aCF+0BuOEMIA15KhJCSYKYQxC0cjipWuMZpgGhmnAGLfYv+RUcEax6lq6xrHZrmg7zzQNjFOPNopnz5/z7PlL7vdHfvPX/5Wvv35DCAqlPYfjQOcbnl8942qzIow9jw/vOfUHOhxdatBB1RS8alyuoGRpcWoDu+2K02nFw/6BMWYeDye+ffOOd3ePvP78NcbKYgrS2pjPR86ptmzmwnj5AFBVZatyHWzz7VVRPPOBVM4SuSuXplz440iOAV1EZJDCRBxG0jQRxoHHh3u++forvvrDH3j79l21ozLcXF9xc32D8y19P3B3d0+IidMwCdqdHWOf+d1/+4r9MGG6jl+vWlZbTRgntFbkFBhOR7brjqvNRJp6yIHduqEoxxR7rrcrie02YmoeUn2PSFv3eNpz9/ieqBND6klESTmKA8cThEGM6JtujVtrRnr6U8+BA8PYU1DovsAhY0JLUhaMxbcrbJ5Yu8IwRm6HI/+3//v/458Uwqz1D3mMP3Z8qqB+ymv8YMGs9mcy4VU0Ar1YejEXrLXFVkikNBLjQMoTIuwT6zEZy5kwToLUKo02krA5hZEQpurRrDgeezrnMcYQpkBuM23bkcIknRcr4QPFQIq5bi6FHmGNIBkKEc4pI8lboBZRHUWhlJWujbGsdztWq5b7d4bHu1u++v47TmPPy2c3JGcWy7JUAiJDtYRUMBlJLkuFPE2kShtIRezidBH9QJwm0jASQ2AcJW1SGU3oA8fjkTFMDNNA3/ccjwdyTOy2Gz57/Yrd1RWUgiqJEhVTzpDTEjseogR15JCZppGcE+Mw8Yff/w0hFf7iL/8l/6f/w/+RECLjMKKtYRwHGqt5/fyGm92Goe859iN/9Vf/idPpQE4RQ8Ibiy4FUwo5jigaSjGLVZe3jhSFrjaPo7N7whx8kWornloACTXjDMRwXn8uAMmiBJWfrcu0zfimYbPbElJkmibGcUSpRAqKGEQHo6vHf0kZXYo4K/yCjnmdnYMwLp0v5vtm3udT2sYluDXf9zEB4aVgcKYAzYWztXZ5H5fvR34fzqTN8kFr/lzwyMZNVTTVWvEyLknsFLVuUEY4y9urG2zTkJRYIx7HidOpZ4xBouZr8VkU2Aa67TVXcaYmKk6Pe/p9j1WJzhm8tbIB14amnp+ZtjBrDITeI6CguKpkokIMEJWS0JtSiCUzTeKzMWurMpqkNClNMI7YacRaL9c8oK0Rvq11WOewTiw3rRVRb666jZwhZKFDtO2KzbOX7J69wK82YMV6VmmL1rYWlmXxNxeEWUM+J+rNFnNzFVbmD6veprVimlJFhY1kIfQ9XdfhjcE5Ta7orra2OpwYckE0EsZg9bkw1vpsC3muVz7UGsSaQTHr3LQRjYHUQmJxq+eur9JVUKyEzlKpbtTXj2lgComuALUbH/NPX81/dtLfWZn85K6PokoF5sjFCsUrfkjHkEeWuiGY9cplmfQqvooiC8qkwEplR1aQjUZRSE6Tqveo7NMUWRfQBhF9iyWMMRpvLd2qY9U4nDUMQ8/Y78lxZHe148XrV/i25dt33/L9m/e8ef9AHzXa+MXs/ng6sm6bpd3hU1MHVJBAlGGC5GjMigxYrTCmoEl4b9hsVnRdw/Ek4sC7hz3vbh85DZGua6n0G3yNjZX9dF0VlPAZFxrf5Tmvc49wgUpFmuePIwkPPCViHElxIqeIRrwSybkSqyJxHDg83nP3/j1vvvuOt2/fcPf+jjhMbDdrXrx4wavXr9nudqA1x2OPazz9MNAPo9BWrEdrx8PtA/en32PXa3TX8OWfPq+fZYO3LYfpgeO+p6SJzbrh5mpFTIZQCq1XGO85TRBiQOXCuvUUW8jhxOHhkdv371EdjDowHHuxDVQWrzVeG3ktDY3TrFvHqvOUNkMeOaSRMQZyf2SwBh0micH1LQEwKZG0xjpPKYrv3rz5J1UwfxoR/uiDf7RseHpdAxXVuEQs6iILyy1cLNClitjIkZInchrJRcJllJZIZSoNQBfqwkqlSUjks7EGpeYCQd6FxLZOeCdxzyiNNeCcQZtCoFQyX6UoVd/3kqVoUhWBFdcKjSpVG6FEdBOzQiVBI6+fv6BpGu7evxXP7pB4ebVGrTrMGIipkDJkhKPoi5aY7JyIlUMrAIUsNqRMjkEK5hAp8ex6MY4jqSTRXpxOHI57Qpyw1nDz4jmfvX7FZrUmxcAUQi1cxOtaNs6ChgnAIedV+N6icZhS5Ouvv2Z/ONF164Xuoo3GOkPrLYf7tzijOOwP7E8n+j4Rcqa1Bl0yqiS80ngxv4YkSYgzFW+2nJpFzRI/PHNV1YU76QfY8sX3J+NwGW8syPMlRcFYQ9M0eO9ZrVbiEDRN9MdBqFhRzr9SIr4OKTKWX1Zn6SyQOovxLnnMH0OaP0bbuNz4zpuXj6HLP4osX7yukg98WdOWgvpjCLbRFc0USoVSlY9XDMp62m7NentNt94QinCKh5A49SNDFPrD7LZSlATyaKvxnWKdZg6xImXDaf9ICAMlZkIW/VPWmThGiWmvGw9lNBLEPLtVRMhFtC7lLIpVSuNSvb4q4DdvAlJJiI4vgVbYFDAmULR0fq1z+CKoLbqK0ItwcnNMlKwIUSwPddOxatc0mx1+vcG0K3ANSdlafFa+d70eas+gfjBPOgVaIwqmsszapUj3etYFKCWbD6UFOIjVZEE+vw/7hvO4kzAWARmUNsumV8YEMsfWz74yQWtkt8y3uczvvWZyqA/H8ayJOwO6nP8erWX+lIkUpTVTjOgYMYjg96cef+eCWSl+cIEIt2yOyZDZ6mMc5vm4wKWkNFaXQY0FlJwgjVwrTglCrIoSdWsWigTJoXHEKG1NpSSpJ+c6IScltm9a4auBeNs6UIXj6cDh4RZrNZ99+QU3NzccTgNfffUtd/d7VOUdlqq+TyFwf3eH13C1XbHZbFh1jmk6EYZR/BpjxiAXnVYF66SgDmEQxwstPFxtDH0f+e7NPb//6nv+4tcHbrZblHNiW6PEp1GhsFo2B6rALGVdBlEtTbQuix0VdTDO1k0ljdUJIzJNPSEM5JSEc2U0ukCMkePjI2+/+5a3337Dd998w9s33zOOI1235svPP+fFq1e8/vw118+uMc4Sc+Y6RNab1bIjHU4Dq9Warltx2Pd88/4Nd6cTpxj4n07/ktcvV5iosHpFCYrHu0eGU6Tzjt225XhKqJh4dtOx3l6z73u+f/OWmAJN02JbzWk/Mo0Dx9MRdacZTcRhaFSLSZAHsRtsssFh2JiW62aDXa3YbDp2xfNoWw59Tx8T6RCIQyHqidIkdJvRPqOLhU4JB/5n7Ej/ezqeLrrz8dQ06Nw1ks3x2XVBAUJbIgdymohpFJpVmlAkrFXCcV38ZREhDYmSIcZZAGIq+KPrlyC1MUqYkCwMUniJJ3ImaaoN24gOlqwk1n5+n0LRqF6xaS7Sa5AQmjhvCYzBWc9Ki+fzw23i7uGRqT9yWnVc73asViu6JjPFhDaO1UahUkZFS6zJkShFyaJ9KEm8qFOYSNWpZoojIQbGaeI0nNgfDhxOR5w3XN9c8+L5M55d37DqWlIULnhJkZLjYhcn25dzVpqqyE1OIh7MRc7rfv/Iw8OepmnFnSQKt79pHNfbFcd1C2liGEdigRi1PNat0CQsCacMGlULdQlSUYiXroybsze1JDuaKthGFkh1DsA5t4rzJ0Cc+RyyiCOZCxYEdXXe46xlvV7jnON0OKAiqCRzZaxe3gCpCF/7l3Rc8oJn5Bc+sam9oF7Mj3mqSXj6+EvKBpxdOeafP8WFLrXlrisCraqblWgDnsytWs/71sVm0RihYHTNhna1pV1viUoxpsAYA8dh4OHUMw6BGLPQF5StFYWGGkzlV5otBqU9xnX4bsNpf0u/v6cfAy5DkxVWJ5wxeCugl9WVJkFCF4nBzswuNkU22yBo6LwZLRdFM5CKIMOxZHTRxCpq1FrjfMMicpst7JCN+zRN0pWzStI2O89ue83u+SvWN89xqy3KeeHb14AO6XDreh1RyQE13EnVyqbSQ7QyQngpM5A5f3YsG0+tDc41YmNXCiEIPSwnR7HmB+MlloxKBXREJQk3kSATQClyFq3AUkDX9zh3yTUFfVkYL6mAopeaN4agqu3f/GZlq4IqIrSeN40poUIEPeGyJcSffl3/bB/mp4vhx3aT9Q5pU5b5RFR7JKSVcKZzlOUayVSEWV2gy/MEWdu2WgSt4mggp4wcJVGrcwqrHCkLU1cpGI4w9APeOpq2rX7Bha5rpb1axBotjHumccDaDucdRSnevX/Hd9+/YYqZzdUOF0WxrwGVItM0cH/3Hm8KL59f07YrjkfDw2Mih1JTiwwpR7TVtCtP01hKtYSKcRSnCqWJSXF8mPjq67f84Q/f8er6il23xWiPyqVaXFlmdCUrEfKVOVADlk1F9cyoqmJIWQrkEgMpDKQwkoO8fkpBrH6UIo1ZXDAeH3jz7bd89Te/4+2b7+gPR8iZlzfP+PyLX/H5F79ic7VjvV1jvCWR0SXTdA1N29bEQHj35j3rzYrVakWYJt6/u+f9fs9hmHi4v+cvf/05n92suGo1moaSFGGapF1enVC0crx8+RmvvviSx1PPqd+zfxyFTqKgcQ5nLFppob9oy/X2Gc/SBnUYSQ+BdIqY0dGphm1acVO2dHrLtc88N1sGN3LwA499zz4E9lPkECP9fiLYjG4Lpre4nSdGSX27xLj++fj0ITz7eW5Q59mQuZNU77mYzHNJlBTIKZBzIJdAKcL9l+hkJ1xXZrRDk5P8nKK4mQiiUiqyCDPncUbCtJFWapZflEm7yIItIrCIsqZaIhmMlgncUEXEIVV/Y+HmlcqFU1YK9VCvq3a9QaM4Pj4yjEfuc6QgrgAhZNqY8U0B1aNtlHQypWp4gETuitKmVAHkVIXDUswe+iO39/c8HvdY77h+ds3zZ9c8f37DbrOBAtPYL2JjWZxypWaUijAvWxlpjtciK6ZIjIkQMimWmqh40ZovGavBeU0hMo0nQgho29C2InYqWRJUrVZoMiVURLnA7A2lMNK1K7NDkqoJo5Z5Npt5qOeO5B8/LpekBb3MgtKJN72sTb7x4t0aAmpdwYWcGKaJWARBS6UsfsG/lONShPeULvX0/08L5U85asDH1/xLBPpjKPOnhIYfo4I8ff05za4oJLLdt6zWWzabZ1jfElLhNIwcx4EhThyHgeMwMExBOgVFn7+Yy0+FMgrXKNY7i7Er1ptrHu5WvAMOj4+MKQsHumS80TQu0lhLa51QAxWVDmbIShELlBKrJdwZMRXMthbPUIE+XQV0RQpII+9Hafmu55+lbQY1/yCiJKVPOYox+HbF7uY5Vy9e0W2vwXmmAioXnFYyL8mZhQ/w1xmQVIvPtHx2LB3q+dd+yJ4VOztrLFS3nBAiyecKIqgKMMpXytXnvESUqptgazHzq5RK15nfmcDLVZM1F/MXloOK6jQEImpD0lCR+aPaV1cqlnQCJQjrbCEZQiBTSMUzhZ+eq/AzEeZPF8w/9jsfttHUxUx2vv2TDbYPPuM5JhtJXisS61EqQiLpkkKud85iFOxLQaXIdr1it7tm7CdOw0C3u0JZzXh8IIYDKZwwJeO9TJ7H45Hb23uOp0HCrTCsWke00n4hVgeFMNIfHxnXnu3mhmc3N1hreHi453jqyTlgjfj+tq1ns+nQpjBOCWMMbdvStpnTqDhNge/evOc3//m/8WKz4WZzxco7SqWfGCf+spTCbPctHs0AeR470k3Os+AlS+x3CuQ4UaaJPA2kGAjTQFZFAj1iZH9/z/fffsu777/j7u0b7t6/I4XA9W7H65ev+Oz1a168eMVqsxPrK6souqCMxlWeknOOFzzjdDyJoEgJolRZJOwPA7/5zW+5u7vnq9++5H/8iy/59efPWRtF51cMDLVYGhmHAdusePZsxZ/9+WcMY+L29i1/CKeKkglPrvXCTY9jwtqW6/aGz91L4t2BHI64o8WOFqcd7mAwtwW9S/hc8CvPjemIpnBsI3sXeAyBu6Hn3enE3WEg+0gaBkpckWKgSWLY99MT6P/7OZ62Yc///3AemC2l9IVry1I0V7/hnKOguqV2i4xa4rG9d4AgWa3zTLrUtt0ZLSm6Wp5pEb6EsWeqSZZaTNuka+MsShWMhqypSaJCD5C5vWCTqpxiaRGnoogpi+I9wyyiVcYuiKjKmaQC2lo2ux3EFmLPmCJpv+d4HOjaFdvtFqUMJiYIhnlWk46RQc8oSpCkvmEYGMPE4bTnbv9AP01srrZ89uUXvHz9gu1mjVGZaZyIYRKUai5CyrzBFoRHfq4tTlULlJSWGO0cEzPwp5XoMkqOGK1pfCuJh86gisT5StJawlhNTpH+NKBUYd1U+8uc0LYikfmc+MjCnRQfW20sxni0knTTZTd1cXy4GXs6Dj983NwKp4rDT6eevu9ruJWsYd46mrXGoTBa4caB4ziQ8iDmnfaXJfqbC8+U0uJWcXkffIgon7nil1zjD+3onor3L9f/p57Pn64LzkK/S0T68vulGDDljHEGbR2+6ei6Nd16g2tbinKMQ89hGHk4HDkMPaexZxxHpqkKObPglInZZ7hmFGRdKRqKduVwvsM4i7IK27zjdDwQxoHY91XM7kQ4biKNNTijsLWgM0bW3GwNKVNt3esGrcim2tRNl1KQVCbOoODcBNMz8psFZEuctUcz5UUbSLKh076l7VZ0my3dZodrV2RlGFORlF5rSEUtQmdpuM2fK0uxvNDMnnT9Z6xyNgeutfCC4BprMUY4xlOY8y/m3zxTQQrqfF+lc1x2I56O10yhZFXdwS7oQMZU+9u0oOSlXteybqiKq870ElBodBH+O1UQWEoh5EQKQrua4t9TwTyTsZ8eH3fAqI6LH4HiPsZtorBEYX/w3MuUWChEitieI3C8kMGV1JMYxDnDWUvXeJw1ECNew7ObZ+x2V/THkWEMROM4TgP9cBIFPpmudVxdb/GN4/b2jnfv3nEaemIUPqU3FmctOUVSjNLaAaZp5P7uFm8VL1++4NXzFxhtyPEdU0gYJ6EXs+Wd0WWZoJqmoW0z3aQZ48RhP/Cbv/4tz1Ydr549Z+0dbt1WpGhCKUHqsypgUl1QxMg7Z0mw0zEuK4auLQjSRA4jaToRx4EUJrGTSpEwDuwfHnnz/fd8/+03PN7fQQy0bcuzzz7jy88/44vXr9ltrzDWU5S0VbRTYIUnXiptJkVpsbadp2kcp0NPSI80jWe726GnxO3+yO9++x1337/j4bs3PPyLL/iXf/YaX3lfYhmmibFHOUPbGJ7dbFGm4cuvX/P9m2+JIWARl4PGS+smjnV8jJrd+gq7XTM297iUaEaPwxLfTbwv3xPeJ8bNiFppurbFdR3aNxjv2XiHWOMpQp85HCPT3Z5xbJhKwif9iWX6F3rMl536xIaVH5QqT2+Qx8yb4/LhY8/X8IwonCeFWelcyW8sot/ldWtXSZ9N97U2eO/lmZWiaTwqlqpPEOTDWlcpBwrvPdYoYhgI05FhHLCq4KzGaVc5cueCPdcFqRRx2ZgLZ7FpnPm9Mh/mmqyXSl6CRtAaoww5z771IoaxjcPSCKJbCtMgMdXTNNH3I9Y6jPcL784YiymGnArTNDINI+M0EKPYxh2GA+2q5fWXX/Dy9Us2V1dSWGj5G3IWuzzpdClKSaSsKVl84JfTXM+7qgv87AAgFpGIZ7yuqHwVcBhtK8pfSClAljj5znuKtuQcxdIpBqJK4LyIPFXBaYvRbkGeJIRJWu3zl7Ue5/zicFLUmWLxdGyeITD1ZAyfy+m5aJbo8MDhsOd4PJJyEoehUkSH4jzOaFzj6KcR2+8xB0U/DBIU8ws6PrrO8iHCPId8zRZbl/ddor+f4jw//f+nxMMfQ7Q/trmev196Nyuj8F2Lb1s2qx2rbocynjFEhjByOI487A/c7R94PB3op0leL1U3KGWAItaTNbGWUmoVocU6zooAbO2ucZ1jtdtxuL9nOBw47R8YDg/kSn9KBKLRNNbQOFuvpTO9zC7WjyxuDiVnSAUzn9M801al7knUz6HMYzXJRtdUOqqGEDXOi3BRa0O72rC7ec5qs8P6Bm0dGIsyloImZqFDJBRJz3MZzBdR1RVXC725fhNAW5cZjqsgXIGspcCWDZVY5TnnmGo6cK7zxTIe6vWqLj5ztMakiE6m1mwIwo0W7UoW55ysBDWeudKysZ4L/GXUfNgJmakYy1UvAm6xuhPWQEIAgYK4nqgkMeM/9fhZBfPSuissIgxVVxlZc887EYrwc2dKRrmgZiy/N38SNcVJLQhyLbarLUcpCA83J1ARSoAi6BOAMjVFJ0vohtPgdcZrg+4asndcX+1YrTYYLNZH7o4D0zQyTBOaIiT71ZrN1TOcb3l3+8D721sRCfm2umwI8pALjCWTi6TkxRglctYaVqsVz58/4/nNNSVl9ntZENMYCWNPmDpKgRBq0G4dtco6jIPTaeLd7S3/9fe/54vffc72aodtGlQ2qBwxVqxcUIK62QzkyOx5oZUV0nwRS7ucM3mayFEK5hgGwnhiGgf644HH/SPv373j3bt33N/fMQw91hqev3jBZ69f8/rVS54/f8Z2s0Vpid3MKIm/tFpM4Uuq8ZiWUqbqMy2I+BhPTH1BOUvTdahGEzG8fXvL+9tAGr+DmHHG8+JmwxQMxaywPoPdE3PhNPWgEqu1Z7txWB1RKuKNofOaxlqsMYyqMI49+9Oe8CzTrVeEdgAVsaWjSQ3qEY6nEw9vDhy6E6OPaGvYNmvWtsM2HWnVcvSCUK76iDodCQ7CQ+C/nN6wn47/pOgY4lEr4xhjlqJ1EYxUXoMka2WKmrmGCw4By0+XxfQ8UeT5VRYO37mjpD5Qyisypi5lKisoTrbKWqHVwNnr0yyTaCoK7x1TTBjjFsskrQ22Fsxae8ZpYIqySVQKvNE4dOUJC8czVaGQmkasMhQscI7q1kqjSiKVUKenVIWJssbpLIVfiQmVMl47rIeSIkZH2mbFum3x3jH2A8f9njBG3t69xWiHNq5uCqr/aoEUE1OYmKZpcYowzvD688/YXl+x3e3wXSNIujakOKJVYdU25JiEilEyhsrnLZIemlWWze7c4cuy+Y0UppKJpRCV8C1R4oWrNVUQFNEl43RHiVWkiRK/+1p0q5xxZKHP6QhGoYy0ZGNMdTGDUoKcY+tAWbRpwDiysSQrm/PzeIJzU526XpwlSjMbGwGnZN1Aptlci6Y0TUzDQBhG2VzNqv1KJdPe47SmWEMy4tKAki7cL+n4GIo3H09pGnPR/DEqxscK71y1PMqoZVtitPkAnV6+L92SD3c8c7H+AXUDsUHV1cLPKIW3DU27plutWW92ONcxTplj33M8TRxOI/v9geOhpz8NTDGC0qgENZSWkis3PtdKJWdUltivYmbkVWOKpbUdxm7wzY5xc6DbPHK4f89xf0+aBvowMqbEqApeZbxWuPlvqHZoum60s5bZLRtNtplUO8FKg6/VqKZgitAZUipCydDi166VkZRfZQUq1AifuutYPXvG9sVLmu2OYhypdtMksRJUzlIkKjkHkgAslnSzoO6sXqAaLsjlVk/TBR2jLP4NuihSyRgtSaip2nWGGp6k7TksptTrLmuW7lRIAZNM5TGrs61bReAl4EUqSQEpaioqGoOBYpZQs0thYu2VVYz2rC1BizuIpqL8pfL7qwvb3GX5KcfPKpiNEg7fXOuKgbUUzEJ6nxGLue2KDNxS5h7FgmjMD5vBJlXJJ3rmpCgt7YCUarBWQZuCsQVtMlWuKTw3pSlkTDF4bXA6Y3LCoVivW5pmxWq9o2jHMATGU89p6BnHQQo9I2lB3XrL9uoa33ZYe0JrxXrVstneYKxnPA1M4yg0hrYlGiVG/EVszvbHI9+/fYtSsNms2a5XTP3A4eEeiKTQiNIdMFrTrTz7IaJ0AC0CgJATeUz89quvsf+ff88E/Jvxf+CLL19zc7XFqurHnCUBK+eJPBbwLdp6MhGVNTlk8pTJITLsD0zjQKwBEIf9PQ93tzzc3fL+3Rtub98zjiPWO7ZXV7x4+YLPvvyCzz7/nO1ui3OWaIwEFegswShGS4QuhZI1Ys8jF3yeXQ5UIuWJ4zAxJNk1Om948fyGFAP3t488HjK///Ye375hCLDuHFmvKDajmhX7w5HfffU1v/r2G75QQJloXWaME63ruFq3dE2D0ZpjjkzHA4/He/bhSGtbopOoa2NafOwwsRBixhFpG4dygLe4bOFNZAwnBj+xbzXZacw0sTn22CvHV/s9//6r/4XHof9oItUv9pgmTE4VTSiMMZIzOONxiyOEFMzVj0ZU68BHMOknt4sF1Dy9zSUNlRCRK3IoCKIUc6bIYpaSoeQGW9EKoz3WiM2Scw5jtcQXj4HNZkUqoKwhlIQeJ5wSF4c5FatYTdbUFK0i4q4xUryRojkJZ7jkyl1MYYZHBOH2Bqscp5NmOgUSkMokyV95AV/RKaHn06Ml8CJl2QzkUihaYZ2jaT3r7YoYIttjT4yZaUxMo4SO5FBDOzS41rParWnbltVq9YFeYE6s00qhs4S6lOpwoYuU/DFniIkSAyVHMmkpmPPMC8yFpApTiYwxMpVCUrJIKy1FaMkTuWoqVHHoGuwBgNGVuiGq9DIGjM60jcE7UCZKUaot/TjSteK5HFOowSGyXVKuJZuGULmS1UC+lluil1hGVH3pXGTxz0oWXV03ajknFDLfKgopRtIUICZ0lsRIVxmmuWSmVBPnlAajca5lsxHUW/0M68V/DMfsZf0UIb4sUD/VMZ6/l3K2pfuBw4YGnWvRrObP6OzHTOEHxYhCUYoEWVy+Bz27GShxgzDyYIxxrDcbuvUV1ncY5YkRpjESauAIlcqji8XpDrQU4iFHYpGxQVHyXudCrMi8k3WpgSRQikbhUFlhaGhVg3FrTLvGr3es+kf6457j4Z6xP3CME8cUcCHToXBGbNCclnGYxwSmCs7IRCUFc8kFnyVVsGQqDckyi5ONNeSimKJcW6FuVo2BRht01+Kvrlm/eEl38wy7WlOMEwu5WqPpUtA5i6NQkVQ+rQVUm6301LxmI4LFUmvXjIIsuoJSQc15O5OTzIVFCzrsrSVGS0qRKYxMydM4uT/XTXlEkP2EfO5MYg1njBYHM+r8rwVlVtUariRZD3Q5i0i1sosdnlaaUkNlZuy1zGNJiZS5VP9olRNKW6HOFIDZr/nDzskfvaZ+8iOhct7Uh2FdlxecqnvNBRov58c8uenDhbZuZxQw808E06kXorRjrbHiY6x1BbjkAyxKRAG+afBkdAoCt6O4vrnh9avPQXve3N4yhIn94cDxeCTEgNUaawq+8Vxf73jx/Bndak2Ika7zpJTZrlu8a7mPkdPxQM6JxjfS5jUao0Q9q0rhuN/zXYxsNmuctaQYxAbPOWx11ygojHe07ZrWR7QegYjSFqVkl/ZwFP/nw7Hn+7dv+Xf/9l/zr/6Hv+T1q+cY47HKUag8T6Ak4T3lLFHc43FkPA7EYWJ/f8fpsGccjgz9kffv3/Ltd1/zcPeeaehpGs+Lly/58k9+xRe/+pLnL1+wu75ivdtinKutZoR/WJCI6tpZkA6P9HFKFD55KRJ6MAwDwzAQQhQacwFvHW3bkeMzrILHx0f2h4m/+f23rFrL+k8+p6gaP6oc948TqXzHb/7qr5lCqA4ZHlLi5nrHZy9f0liLs45DGAFoAKaAyYXGOKyKKCQaXdxFLEU5fNdy9cUzVq+eo48Tp99+T+gju+st2RcOU4/R0KotgWoFRt2k5V8W2vRjRzsdaUPDdrUGozmMkT5FCdooqS5G0jbTWibYBTz+CYdc9nVx5IxILS3f+riKGS4+y3UZBGVqm97ivMN7U63gFCEGtHY471hpi7GW/iQ2a7tuhTGWKYp/s3i9SgpgrqKckvIi/NNaLYvHTJtAicOAdw7fNkTlaLynt1KU5iSdLqkn5TrIUVAyZxQoQyxZnByL8KxTybJ5dBbbeJpc2F0/E0u8WEixojEFjNVoexFdXOdEXROqZl9iOZczx7TOm5cfUJ0v52lWzX6UMmFLkVikHRpTIqZMFPdJcfSpaD5LB1CceuYY24ySDgVRaC7U1rFSSB0kqYm6FhViC1qVGFkCpfp+ok2gjRe0uXLCtRYhpCqlehVVbUZtZ2aVWd5VKRQt1oK68qNFOV/T1lDEi0hvxTzW5MQYawW1VlmUiUqRs8SC/9IK5stwkPl4Wih/irYx3/e0uP4YteNTv/fUlUMeW8N31BOf9rkkKzL2FYm2bRdUue22ZAxTSITKq3fOo7SnYEnZkIvDuqnenzj2R7m2C5Kst/j5UsfLXJTMCF6dg2rxpqzDKRat0Xa3YZp6TscrjodHjvtHTsdHQt8Tx4kySPjJuu0kbjtnWRpTJOUoyZHkOo6EypSTzElZZ5R2FExFYgPZFGxR5CrGs1462FevXvP8sy9ZP3uO9i3FGIxzWOex1iwmALoU0TXpsrjuzPOtaEgu54dadar5vJz/nR81fy8L8lm7GEpE0+M40bYBl91SH+QiIrvZVm62y9ShOh3Vjpp6Mv6ecunltWTjZrTBmJmff7GBq1+lAnmqRhUrqiNLkjAqrWfqka6/8vdUMF8ely8hRZNMaHLO1TIx/+hzLBfc8rcuBfjyfyrPZr5rQVglaCDFhDaaxni61mNKJPZJhCsonr18yfPPXvP+7pHbhz13+0eOw4mYAt5alFEYnWicYbde8fL5M9brNVN/Yt01GKVZtY5xHBn6E31/hFLt4KovdOMdbeMxClKM0vq9FWpDYyw32zVd17BZrVBJFPQpg3WFlAoxijDBGYf3kKKiqMD94UT/u9/xcNzz/u6W33/9Ff/Tv/7X7LYrrnZrWu9k4QAiA0MI9McTh/s9h7tH+ocjUz8wng4c9g8c9g+c+gPH057T6YBShZtnV/z5n/85v/6LX/PFl1/y7Pkz2lVXOV1WUL/aNjNWFKdFVerMUjBfjImKKoQQ6PteCuZRePpGKQwZqwu7VYtTz3h+teHtm+8ZTj33t3f0z25QiINAKXJRhVj45ts3OOdYrTqUtrRdx/OXL3j1+hUlBtqm4UYrvLaEQ8SFiM8Jr6QRTRLrm4QmaI1qW7Yvr3n1r37N7s++ZHw48FZpUsw8//WvuGnhzfu3uDHxXDfcHx+4H97gHn5DyQYWXOKXf7z9q/+Nh65ldf2M5mrH5tkzuqYl5CSClKwgyzVdsqoWB3/8+oYPO0of3jgfM3Q4J08pZmcEkVUKdKuUuCRpM/tyCiWplILo7EqNUxYUUaHrQlkoMVYhsKNpG3SJ4stZJB1QBDKyGdC6kFRlN6pyFpnoGr8NQK6gZ6mFdz4vJiUD5tyepS4qxqBxGKeXItqUjFO6IkoFbTXWObS2WO3QShPSRMxR0NFa3Jda5OW5UFe1DWv0UtR+oDqvhcp5Yagbk7qoLZ9toQYC5DMfscwI4LmhXrGbcyGFFMSlOmtoB05bstYYI2i0qZ+bvnztMo8FTcowTZFhikwh02aE3qEMgjfKhkC4FknQuPr5pJxrt2LeI5QawKAxWjQeKhdyykxDoD8NxCBAg+g+qDz6ujlAoDal5uCNGqAQfnmb5KcuFB+772P3Py2onzpXzFzjrIQ69WPc5Q8dL+q1XG3O5skhl3PL3xhD03RsNls2uyvabo22DcOUJfY9REGNtRULx8bQJEPMGrRDT4EpBspwWji4S2E+FxFza17NJWF9jzmTCst1pozGaI/O/z/u/utJkixL88R+lykx6u5Bk1VmkSbVbBbYBwB/OSB4wq4IHkBWZmZnd7a6u2hmZPBwYkzJZXg4V9UssrO7K1emMZOlJV4RGc7MlNx7znc+oogeai3P6GKxZrW54nQ80B327O/vOe52dF3PEBTrpqG1lkqJMNAojS2cfRVB/AsN1pT1Tpkygc+MPmAqsa5LSAOhtdjSVutrtk8/4frZJ7SrK5R1JM76jglqNKUfndbI/PFFkfc81V3ykM9NtZrnN5f/X9aGywlCadyV0RCKs06I8+diSoQQLq6/2DMSIuPoscqgLeJvLdys+X5JeVp70/maKXlAjTFCrUhpXtsmpDhDiUPPZ65hWZynMLvJMSUlNd+Tf+zxw5L+YB5FXy69gjQW1fv88H0EJ/+Tn3TJjbm8MLNifr54sjjryYu5jH2EjiE58lZr6qqmbRp0inTFIzQCY0jc7fZ88/Ilv3/xgt2xY/SBVOJsrREKR1tpVouWzWpBXTu2qwVffPqMYfCMY+T2/TtOxwdyDGJh5ke0QtBNZ7FGC6E/lwS64FEpYheGZVOxWDTUlZU45zEQfGTwO46HnnGQjtloh3OKkDxjyFhjSdrw/nbH8fQrfvfNN/zDr3/Ho+srnj1+xGa1xFg5XyEGhnHguDtwvN9x2h3wx06U9d0RP/SMQ4fSmc1myfNnz3j+6TM+/eIzvvjiC24eP6JZLMRiyTmxhlPF7qXQblQZhVBsl6Q0ECGPIMuihI0hyXscPKH3jGNCZUdVut8cPJXRNNsl5AZiz/2HW06HI3e3tzR1xenU0feBdrmmbmr6PnB7dwBkE20WNavthmbRMHQRV1u2qw2NcuzfHqgD0I/YUUMSWkHSmqAU3mlYtbTPHrP88jPszz5jvLuD/XuMUaz+7kvqVpHeLmiT4WZxxebDLceHxyxe/kfG3wud4E+lYP77/+f/KLHi6y29Vjz94gv+/N/9OxZXNyhTTeURGcXklSvHHwkxM/XBSta8udAqdmHzzzo3yxciifL5STwj6U4hjIK+asTaKAxgxFM9a+EvU4z1rTPUztGaBUol0thBL0hTSBGrZH3JpUiWqxvRxTlDp4yPnr4/4jGk6KWAnIZiqRSySUKmdQlSmrSM6ML5V4KuxJzwMaJjGUMbaUanaNpEYgi+aEWyFIJRRszkLJuUNYWDWHjJF5di/mvZDFKciu00gxJz+Eo6f+OMOs9uI8JZztO1K7OBydnCFturnBKqGEjklAplXUa3lVHFUUBQ+6nBgMJ3VVL4xih7YwhZUMQp2CVTRuXFPaHEGkxqmZRjoWPA7Es/8RmzkY0xJoZu4HTY83B3x3F/IIUg6YkZyII8TaVCRsRRMTEX+FDQ9B/R8X0I8HfFddPxXfu3y6/7Xl5y+bmROIMk/5zV3D8t1tVUswIyDShbOrZyLBdLVusNq9VadC/KMo6ZoQ/0g2f0kZQUMXlSCXb3IUkeThbK3TgGxsHjx1CQ7jzXDOIeWYhEWYO6eAGFz54noEBNHN9M1o6MCHq1qTHVgrrZ0i47qtUNi8Oe08MD4dTRRRHiB5NxGJw2VNahkhR4AUGOtXaACHFTAQuUa8DW+CxWqZW1NMs1Tz//KTeffcHy+hnVcouuF9hmQVU34p4xr6+Thd0k8ivNSk6kpIvf/QVSPF2jUr/M98rF13x03ZFidqLSGGOKkE5JCnGpcYUFlgXRpQAtMRGLH/6oBdhI5bVKAzbRqnThP5+BU7mnpPC1xcZzQst14qwlT5msIrnUJiLOlnd0pv+oc8rsDzh+oK0czLvExRuYPqWZTuz5Y3495c/JYlkxwejTl5YLw/R3WYh1Er6yUpMN1BTKoYtIQ2gaRgklXLoqQ0iKUz/yh29eUr2/49Xbd3x4eGAIkRQlajZHiZysnKWuNG3lsCqTfU9tFVerBR+GO+739wzHHVbDerWc329VGRZ1TVPXgooOIzEMpCiiRIUtCXMZlQIpFDAnC5oydAe6QR6sAnCUUYaQ85VzmLoix8ju1LM/nbi9e2C5WLDdrFktFtKhZkhxJIaROHri4GH0qBCEpxlGKmdYLlpuHl/xky8/54svP+fTr77g+vE17XIxq1GNLYrhIgCZFazlf4IqK/G+zuf/zoWzFkNgHCSeOIZYfGOleZEpZ0RnIfwbI9zPm80Smzw5R4auR+VM33tOvUdbhzI1MSkGnzh1HgqZXwIbOlLwxOQksGGzQe8T+b1neNjDqcYGK+MhZxiB3hnMeol7coN5vCVfVQQMpycW22jyZzUsFNVizdI06GqLbgKbK4XbLIud3I9r8/yXDtudqIyiD+/5/Zs3POzv+fSLz1ksV/LE6Uk8YUT5TeaP5mN89/iePkPGhOdCTX6Dmkdn5BLiniaPZOH1Nk3NOAZxeYwjzlpBaMsYX+lCC7AWW7myXntCCkQ9zAijKTNMQWyzBIllSfDSGKyGMUSGsWNMWgR8SjxVTQELRPgSIdsLlto0IhPOXkQTsoQd6JQxSaKip+CQqQ8R0FUK7iSSGSgWeUoVSkNBZSbAIk/86Aw6C09SxHeJFIU7GGNJ1is41GT7NBlHCbos65PirKJPnBX9ClH6C5VNUKEYA1qJk0kqI1qK2M5ZWV+djSjlhbo1XfOZTgHBR07dSBukQA4+SlpoO6Jtg1GXgh65TYSCocv7n+6lqWAwEDWjj/Rdx93tB969ec1xv8MaxaKppbEpP3AGYbgs8j4uOH/o5vpf+5hEdd993d/nzXzphvHd75n++/t8lVUR5sMFz/TS4eI736Om703IVKk0X0K90SzaFdurmyLuc+QMwzBy6jPHfqQ7DYWWkRi8J0RQSuLlvY+MPtAPEnU+hijc/Qk1VdPH5LN1bgZRoqGIKRGKBieTi3ajyBZdhY6JnCppXHXEqkhTLXHrK7Yh4I9HhsOBYb8ndR3R98zBG0SUEh/0gCpUiZKtoDXaOEnGdTVRSUNc1w3bm0dcPX7C1dPPWWwf4xYbdLVAuxrralzVnJFlMpI7Opk0lPdGmcTkBLkUjBOSnPP8HFBOxz9BpS8+nUrxDeoiQKp4HEehXpiLuPUkN8NUy0rDHAPGaymUYb5vLnn23xWhTrQLhSpULy0FrNZn8XLKZ8/1WOgZSjEZREzP9CxoVz/smf7hHGb9MYd57ig/KpTP/zRdh+9cj/NXXRTLc9FcYHaVEpIKFRCS9kg2I1mLtZzKSjxKoyCaXo9iv+Ijwyi+oPvjC6p2QT94KQpTJoUg5P+iHLdTY5kjmig8W6fJceD23SvuPtyL88Z6iXGNCFRSYrloWTQ1MXiOh46hP5Fzoqo0WjXUzrJoKyqnJazEZzDSEccU6YdASoKSkyW9K8UoG7g2xJwYfCixrQFyJGbNsd9x+3CkqQUhzylhcsQpcEZRa0OFPDBGK1bbDVfbNc+fP+EnP/0JX/3sS559+px2u0JVZt4sjZNAiJgzIUcZiahi56KEdyUoSyrpgdI9ChImi2r0gXEcCaO87hACfvCMKRFzplYVuhIVbxwjbdOwuN7QVpahH3DOUexSiVkTfEYNAbNs0aYmJEjZ0PUjH27v0DlSO411YqBemwprLN3Q0e2PqBPoqAlZNubeQFdpFpsW+2iL3rbkOjG2gdMm4VaG4SaTFtKwaNMQx8C96xlWilgbQfT+hGR/NgNjcchIiXW7YrlcY1xFthVeaRlTznK9iwXgBxyqTNUEySgLljB/ObfcShZ0FFo7lFKElEoRei5gnHO0bU3XDQyjUJqsNSKE23cAIojTuqTFSVkqyLP4r04Lk9YiGpYGUJIyyYngx4JWWlSG6CNjQEI8yCXQRM88xRQ1OdtSeBcxVFJS9KZy5rQRcYuSzSNIVUzdNExexHmyiEyZRETpXOzyzoVILmvW5ehcTThsQU7ShDCXovkSYWYuZEqDnhMpTl9fNpUJGylrs2J65kvimVKF6hAwVuwgTUnxIkUUCms0lTWC4heUR+KvTeE2ylo/joH9/Z7tU8lL9MNAeNih3ZLKLjDOlCJZzmMum8uZG5+ZUXClyDExdp7D7sju4Z5XL7/lxTd/IIwjT5/csGwaJNkMZg9qpiJChFGXaOl0PX5Mx1QwT8fEK/7nGoBp1H6m5Hz8dfo7xRGctQAf3Yff+fhunDbIhCNPuiRjC1DjJJBkvaVqWmJIAop0A6c+c+hGTseOcYyMPtINA+OU5JfFLSfGzOi9OMpAySIo69U8kTkDVxNINdf9WpoArc5secjiR+5DAQ4KtUgLkmlVLmL8xHJ1g34aiV1HfzoQuyPZj8ShJ4y9ZCHEJImdMZZ6R2FsRdssqBcr2tUanwBraFcbFus1pmn47bevaXYnvsJRL7c0iwqjLRqFs7YU5rEAU9Obo4AB0z0sLfgMdE5sgPzRMO8CuDwXz9/9sxQY5/N6ce8YxaxXGGO4KLbLvUUmqEjQZ4/wj/nKlwl+54JZTUgx06RrCl0RIWdS0+suVA0thgQx+o+bt7kq/fg5/9eOH1YwWyUfefqF5ezOb0gKqflNT7tqzsU9buKZlMI65+KOwUedA1KTYYwssjp6kj8ROFE3UtTm4p9XngOGvmc4HcVmKo74IHMBo60UmyiqqhaLpCijXbIIQnwIWG8IxcBa5UgYe/rjnhRGHl2vOXYeny1ZQ1M1GKNZtg1awWnsiWGAHKmdRG4v2pbVomVRCd/meDoxjIGqXZK1ohs6hiGhqoqqdpihI3S98G+MIL3WWWKIBKVwypGiJAqlMvaIo/A7rdY4wDgtRS6ISKGquN6uePromi+++JTPP/+Ex08fsb7eUrU10YqZ+zSKSihConRlokadTvDs01oUxnoaL6UJkZACKGdFihQP1kQOmRBkjJbJOJPRVMQwknPCaEfb1CwX14xD4Hg8sdsf6MYExnI6dnTjiK1bukFQp7470ThFN4hTQb1oUdbwcDyyMhAS9N1APgUaXwvyjSJqGAz4SqPXLWZVE3Uk5p7RjvhFwm41aQWDGqiva6ypCF3mH979lv/xP/0n/q//w/8NdPxTqpdRqsFWLQ8PD2i74JPPv6JdXZFMhVcGjyKUsZpY80xLzT9/fDzC0zPvmWLvMxnaT7xCU+hHOSkZ0SLRsxQkVO6rgqBqTVXVwFEWRaVFsxAjaM3hdGDdLtkfjyzbBVXlyIjdm2tqrIUhenLXE2PEjyPairl+GD0pBqwV74TJ8SX4zDh4Bp9JSYs95UTDUucNSKzpArakhaIoPD+ZsKQsRUyIYKzBZnlmY0FsZAOTcaPVRtLDlIgEtdbnaZoSIeC0pZeTLfd6TMIljKEgunJ+c87SwEZB2UOSadtEHRE6VSgIpMboYoFV1mUlbxCtDc5anDV4L7HBwvlMmCzFqjGOxom2w1mDtbmMiIWbCXK+ifK+dg9Hbnc9ya24fvoTHj3/ki4l7t69wfcD69UVq+UKV1Wgi9I/yf2ltSmpgqUxiJmxG3i4PXD34Z5vv/2Gb77+A+/fv+Nqu8HZZ1hrMaao8cvIXqzSykZcUHqNWHylnLAT7+RHckwFx/dRIy6LkemYiuTvfkwFxfT1czGMNIPTWqi1FEjT10z/dllwxxhnZwunK6x1KGOom7bwlRc0zYqYkrgr9T394OkGxfE0cOoGQpQGaxjD3MiHMurPBa21dUUOMp2JwQtloBTFEs2tZ/ctSYSjIHwiNp4tbVPRWCmDdkUklgqNhCzJnmUdswqMLfqm9YYVT1ApMvYd3vfEGAh9x9AP5MGz//DAOI44W7Fcrnn8+ClNs6CqW5SpqBatONgYw9sPH/jdH76lWtwSIhAVT571bK+uub66YlFVEuSWpc5RORH8QEoZbW2ZIV2i/dO2r8tU/kwxmxDm+V6ZEec8NxgKXaZwYruorVhpDqPH+YCrG7RxoLzcJSkWIa6AFylnQspCz4gZHdM5jjszP9u58CzkN+q5FhE0Xc2grCnXNJBKoyh7B8Vz+bt8/amxFiHhHy/m/cFJfxO8X87q+VPT/ylVPPSms33Gjz5ClUvBPP8dpsRsKH2+UQmbI1pFNAGTPQRPSgM5eXKUEWrOJeow+DLqKwrzKS1Ka1IIxDGQBuGuGVfLxSgjzpyDJFvFgE8Q/EhbO54+vkEby93Dkbe3R7p+gKahWixmVBpkrKsrS9vUwoXebFgtl1gSfXeUG19rspIkILRDOSHRhxKl5azCKo2pLLaSzTaWEaYPkdOpF09JAxiLR7xztVLUKlOVJLS6XfDs2RO+ev6ML7/4hGdPHvHo0ZbVeomtDba2KAnHI6qCzEyLyTz4ZG4588U1mrGcsqZMzfvUYU7UDJ2njVbjjCUpQ0wepTKVU9imoXKGm5tr6qal6wZSStRty3i74/Z+T3AtylhiTuyPHVmL84AfAvvdEWPgOY+pmpacAne7Pb2OcIyEMVEFC6FEp6cMJknXvm7ZPrpmcb3FLRqsSyxiJaJMYwjDiKstjXHkcST7SHLQxV48oX9cYvl/9dDthoNP3HeR5fNnPP7sK8xiQ1AVHiMIc+Eui4NEnIZ5f9Shprh7Lkd9uYzKZFQ4eT2jCiKMFGEhJKJPpCSIs7EVxlQk7YugSwJWY4oM4yjjzoJyBISjLL7hDltpbFLkoKHvCodW7nqVxcM9K02YnoCc54+ckviaF26i0WerJaY/57jlXKa8SihNSheQwcxI89Ru5HxR2Ezousqo8vON0jNKNsVSayZkRRXXiHLqkjy/aZ4IqTL4y+cB4PRSZ8ziQnhd0OZpVD7VESihW0z2Us5oSfeDgsrL7xCxj7wza6SoNiUkQuU0O20IGphJUV5MihE/DHzYHRmjplpegWt4/NlXrNqa2B/ZeU/yA8vVClvVQkdR05RCkUISuk4IjOPAw/2Rd69vefvmHW9ev2K/25XXJRSUGCN1JWPjTJB7QE3Rvt/Z15CNVev/3Rr5/2rHv4SefbdgvhyH/zHf//Gmfv4Zl4W21uJvPom/tJa4edmfJYDI1i3L5YrlcoOpK1JW9GNiGGPxUVb4KAEcWWlCiowhkpUAS2SFmhwoiqOWUoo8RHGiCEihpQ3KlOjzAhRNKXbkQkzKlzOLizc33WsF35vCKKTkKfQmraUxtmrWLbvKYhFaqaxnI9kHzJAY7g7klHHGYYxl0SwhK6FmVDUhJR4e9iSViVHz+PoZysB46Hnz4hXd/sRyueTm5ppPnj9js17T1BXKiB+7qWuSElRZ6Vw4VrL2iFOJNPy5gJlz5525YNx9XDhf+ACXz04/k7MAdxIFQnlOz9H2U42RUiISCSqUol3SEv853vwUjT3Fd38XXZ7SUOc1OYsmZb4nz+gfE6os07x/Q9Hf5embq/bygqabjDLimhbq+QXnC9Tpo6fsXLBBqdGKzY8hYVXEqIDREZMTJgdII0Qvkbm67E/TjGC60hlSUgyDx1lHGAPjaSDHSF031M1SuhAtG0vXDxyOJ/q+xxlFSoG2qUjbNePo0SoLoqQzzhoqZ+bOSSHFrlaORVuzXDQs2praGcbRcxrE6FxXLdlYoQeYipwiwxjoe/FyrmtJz9I2gxYz8KoyuLphjFI4H/tBHnxriUE8c8VuKRGVkmS8Rcv1zTWff/k5v/j5l6wWFYtlLb61KpFUvCiQ9UyxEXP/MhgvPLR59DbdVMUOaOIzy6kuKPV0Q2YRGeUo5ubWOkafyqflPW03S9arlsePH4Ey3N7t6IYRfxo59j3HweNsgzKGNEaOpx6lDevVgn4MHHZHthv5+xgSKQR2DweOOVDtFXYILEOFDmBiloAKpcnGUi2XbFZLKgUcjpAzC+v4dP2EoCPceUytqBoHPhEGz6JeULnq3Bj+CR2nbPmwe2A0NX/5Z3/F489+AtWCoBSBMtWYGXHTLhn/uB9emmitzveGjNOn516XoqxsptoSMQUNcXJPqoiw1TTRZ4be44exCHsCYxAOLEYCCwppGNkYZBHPBelFSQqd2KiVdSlRvNgV2dhCtNPFaUGJiKS4LIg3qBS0RQuLWKxNhYKI2jK5pF+Wojnraa4GFE97ZdDKYKY9iIk3fN5kTKHAMX1OTUWywqiLgvmiyEuXCOBc81+uuhOCdmExdVk0XxTzlN8ptnaRHFXhJFuij2c4SE1cUVn/p1CDyjmMjuX95VKkQA6C0inKWD8msvfcv3/Hr/7n/8CpH/jzvzvyxc/+jHa5JcfEaRfwY0e7XNG2S2xVCW0Hoe2EwXM6Hni4f+Dd2/e8ffOe29t79rsd5EjlNCThNI/jQNtUXNpsqQvnho/pCPm86f+Iju+zlQM++rfLUfj3cY6/j8N9iTBfroWXCN4lBeMjDrNCUD00VV2zWK5YLDcslitcLYjq4AU9Fv1oEZ/jxUfXVTLhCqlYnFoB6HJGp0mEJnzomCtGP5zXICMhRDlnEf6VNWhGnstpEvIhMxotaOyZ8yvsxHPhpZWWcBHhKontaimag1FUTY01hfZVms/Gw756x8PdA+Pgyd4zjkdiiEgyoWIMwslulwsWdcuyrvBBgCX6gT7f8/DmDa//oLl9/oxPP/2UJ0+ecH1zzXK5LLaTicQ4F6tyoWDespmW4lL8f6c6U2VKdq7dSsGb8zmH4+LfVGmOfAhzBLYyGhXP08SENGshZXwB1qb7ZuK/f7dgPotQE6K/EADS5Dz7v+ecUTGW7wGZhhe3jaxmMfhMFVJabP1+gB7nh7lk6Av0JOcLJ4tyEaaNgwtBH2cKx7ywTx/Txbq8QOVrdJ5Q5YAlSsGcAoYgtlCT3dTFuGfaaLz34v3ry2LuRIxmkvgArxZLcDVd3zOOkvx0Ouy5u73neOi4vl7RLFrWfk1Mid1uR9+fRJTQ1LRNhVaZ4EfZbbOY49dOIrkrZ9EkhqHjcDqy73sCisZVRG0Z4sAYM90QOHY94+gx2tDUkgAGnjH0pBQx1tFUGpsNo6/o/FhMvhXJQDLlhtUG7QymrtDOkFWiHzuO3Y7FYktWlqwl3SYiXXbU4kHyTw/18XWZ0KhpV5czznQBVQGmnHUYbUkx432QVMA4CS6yeLyGgHWGm8dXPHv6iM1mzfHUcxpG0t0Db96/5W5/wNUVrqkZxojPiewTzgdWaJS2OFdT1UuGIXB794DRmUM34AK0B8OqBz1k7Kioo8aGLAmJjaUFzNAzvH1L3EXswtI+2nK1uCKmxPi2p641upHCLZ06FqmmyhqbxZv2j+9J/9s/3h079j7y/Gc/45f/7v/I8uoxfdYkNbljFG7xv9IpfJ8oSk0rs5oYgdPCPBUqU4OrmDi8FC6ioB+GEKDvPfvdibu7HR8+3DF0HYfDid1uh48imDG1wlUV2ppisSbjtpBkLGcqh0niyarKaFDsjOSVaiWbbQoFd8ow+1KlLAhrKSplekLR6E+LuhTLE8oiXOXyzCj5XiOqSZwxYiPpDFZL0yCFqS5CmlKgyahmmunNBfLkG6EobJfER9xjsroQ/pUiIU0i7Av+cgkvOHOXZUmLs/hPzeJCpRTK6MKXVMK/zvMJOhdE5ZJXztA2NbUJqCCFi9ZioRWLfzxKSVCEMqgUCf2Ju7ev2B0PvPvwnn+3f+Cv/ua/Y3v9hJAD3f6O43HPan3F9uoRdS2LTw6R/thz+/6W92/f8uH9B/a7PXHsUAS0krWn70+cTgeGYUkI7azZIF+4UOWLu31GiPKP7qH/PpHev/b13+Upf58I8KOC+Xu+dzouaR/W2qL9kRrCVY7FYsl6tWG53uBcQ1QaP3qGwUvinS68XDQmgI4Zi4h6lbH0w0Ao2hiliz2Z0aXATmg7RStbco5lYmLR+ey1ovK5SMycJ6Mio5UHTybJZ9arvF/mInNOVDRiRKDmFFx5XoxtZr/iqqqotOawf83X3/yBr3/7NcF7lnXLerEmx0jlapqmxRhLhSYcDoy7HatlQw5Sc7TrDVeLFZ02nIaOh3cfCP3Aw90dN48e8eTZUx4/eUy9rFBMtAtmdwvnrFhjlvteTxMlBYnLiXN5r/pcE6SyrnxMc5CvDSkzhkgVIk4VH/WUyjUrk8SYS5hMxudi6KDEZUPr0sRc2mBmqS9UzBgtrl2qNPJSLGfxZU6KqNScaBovG74sPyTnKTCnAECK0qD8cccPnzFNAJM6F7d81IFdjFwvESX46ARk+Yf5R85HTqgcIQdU9ijlMYTyEbFErEYKxiQehWlScKtzR+19IHrh8MVRRH5OGRZVw7Ju6LJmjAk/dOjcM548t/cPvH77FudE1KKNWB/t9ztOxyOeBlc5yIm+H9FK4axhsl+yxW9UUbiC3rM/nuh8wFSyIAwhcOxHDn3P4dQzDJ6cU1GTa0GqkfGwTwXxSF54g05+fh890Qu3OepSfBjOYiISvR+4e/jAqzdQN2CqTG0dOIN2SEztxcZ5KdA4CzllY87qEpW4vL4wj6oKcgAiNslRdt0YxELPWEulK5pGcf1oy+dffMLnn30CZPybd2Sd6MeBD3cPDD6xum4xbUXCY72lHzz9KOhzZSs2V9csVhsSmvuHA9Zkhj4SvMJ0FjU6XNQ0UdEmg0mKMSaGbqS7veftb3vi+0iyns1yzfbxY8x2Q7KGvh8w6w2mDaTG0XdHGDNmgJYi1uJPh8Z8DIHrT57zN//9f8+nX31JcBUxhHmDmAIjIE/12z97/JOxbll5c/GOmlYIKSxLyhSSBpoKNzDGKM9FCAzDwO7hlndvX/Lq2294+c3vub+7ZdG2pAxdN+Ij1LVBa0Nb1VIkR3mmZhd/pbG2kncUxzlVTBZnyGkaucrGkOY3z0UxL2fBKHOhDp/f+VwgfCSamtEchSko8yQqMtqcfxYiqDUF+bh8BqcJ0FTATYWyCDIupnlRCvbp90+BAR8VPN+pmy4LabGMlLCBFOXuNiUFVSKmM3VtMVqRoidPoiWmnx9RYjSJVRL20lQ1lYKc5P1WVYXRjn6UBNdcmg6rJcpYk1E5cLy75R93B477Hfcf3vOLv/xbfvLTn7Nebei90NwyiqZZYLRl7EfuPnzgw9t33H74wPG4J8URCOTsCcEX+lqi7zu604m+bWmapkwBhDqip73tkoogJ+dHWzBf7r+X4rzLrwOhSFzGaU/30XdpGR+J+rJMUL5v/7jkUM/2YynjXMVqtWa9uWKxWGGL0HsYPaeupxtLGJc2UsSaiqpSjEHuM201TiFiMi8OMpP2ScS0QrmZKCDaiIA+l+uotcHYaR0SJjY5i8ViVuIIU56zCWHOJfYuX5wvpc/nYorEVkbPycEUrYXTFpUVTlmaXOEPJ15//YLf/vrvefnNt1TGkrfXKD8Q+hGS4mpzhdFGuNkx0rQNT9dfgHOMfqQBrpqaZ9dbklJ8eLjj9v6B9+/f8+tf/4bt9RVf/uyn/PQXX/L46bW8DmsEKEuRmArAWFb5CSAo/TRzgTf990XDlHMuwnf1nTAfOVchRLwXkwVBmQ1aJ4yR5lQnQYIlNEqm0UFP4VFnO8OPmrSskFA3hYlaPPn1RFXT6JSFmqEFBNHTJOsCGT8zHqZ/Odc+f+zxwznMZeNUH53NSeAnKkV1UUp8d405C/7ONh/q8qtzgORRyaOyRyuPxmMJVCZTWU1lHCjwPjPmKA9SUV4qpckxz91QDJGcAo11bNYrrjZbmuWCXYDTMNAddqLgNpr97sDv//ACSCxqQZG9l807hIitNJWzkDPBB9qmpnJWImLJWCfjoXEc8aOnGwYeDgf6DLWpCMPA4IVW0Q0j/TiKotQY2ZgUKCKahLUaixR5YexRtqKymrZ1DMeAD56kzQz0JsCnQD9CyIvZUDzlxKk70SwsuAajHcZS0LepBLjgBc0YIOW6TtddLnVUJfZ66s6kApDXkIRHmJNQMYzWhBDoug69WnL9+IpPnz/il3/1F/z0q8/YblbsjwdQmdPpRNf3VLVjTYWpHAloFy3GVuSHPTFGKWbbmrquymJnOHVHou+JHpqUaYYWkxpqKupsqZPG5OLXGSP94cDpzZ5xP5LySKfueGhvoW7I2jH6yKOrG6y11NuWd+Mdt8sR/9BTYxiI/PgiDP6Fo3L8/Jd/wS9++UuS0owxoEzJ2swTFpPEt7dMduC85Ex/n4d5U20x0QIQIRpMk8pcPDoDIRU+axjx3Y7+/o7D+/fsb9+wf3jgsN/z4cNbXr98wbs3L3m4e0/wI8+ePqVdLLDW4mOYR+pVXRNTpDv16EZRV5UIaK2VjSwbiT2eRoiUBTQzI7LnhfoCZslnGgTTqHE+gWWnyRMtIc/P01wsaFPO0FSNSxMRI5Ajzpr5d6lSSeYcZ+5d2aI/alZy2dhzaUgmI//pOZyt5NLF1zGtyeqjhkEpLb7W5vy+tNYYZ8lovBeAoHIWBfgiKAJzPoEzYlfs5EoyK6VQq1xF0yyAir4bShprFmpcDCwXFT4lsrVsr1eouqHv9/zP//7/wzffvuDnf/ZL/vyXf8Mnn31Js1gQU+S42+HHyH635+7DLfvdA91JApvGOBBTQJGoXKG+AH3X8/CwE0eelGmaRsRq880ge1zO57OV0hmY+bEcl8Xx99EyLv99uk8vC+bv+57L75XpQ6FVKX0ulguoNq0dcj+mEkhSs15tuL4W6ziUxDaPIQooMgxCx1Dij5yVEmqBFteZHCTdc/SjIIvWQkqEGOeiWBpEEYAqpWaf4BTjjAhnrBRdqSCbOZX1IBVnnH/6vssywCSeU/P7VQJA6RIeVOLqlTY0pi7GBdBohxkzd2/vePvNCx7evwXfYXVLGk+MKTIcT+SYcXHEGUnFrYxl7QytAlc15KZhWTlU9FS6pWpaDvsdJotW5827t/zn/+1X/K+/+nv+4q/+jL/4qz/jJ19+zrMnj6V+UYqg07nxnlcE2dOTzmDNGRyVk8C04mcmpBqhZEznQGsxY4iSxmhTQhkjiLAu4U2Fh6y1nrVuU1hSvBCVThSx+bUpRUq6gACp2N6Wknf+9XpG8pXWYgGoFGcWxOWKfaYJ/zHTl+n4YS4ZlwbyBdWY/INnuD4Lu3Hy3pu6lZwnKF8KLk0W+yEyOQlep4mo3JPjCZ1GKu2ptacxnsZECRdpGioLOY2cusQ+D6QkSneycKOS91hENOgZUURWC8cnjzdcX11TNS31MNJ1ln6vIDuSVfRd5NXLPYp7tusFy1VNHA3OrWkbQ9OuQWmGcZDgjUo8Rq2G6IR3NAS5oDkr+jGyG2DMkByYnBiK5Z33gnoYI24Y2hblaExkIlYLD9AgFjQaWC9WxOjwo9A1stEkJRuWjokwjIQEwUNMFlutcM2KEBXeR8ww0hqDtmWUZDLFxpRJPKMvRiyoSaVatmp9MVZXMr4S8ZNG6VBuioSzGlcZrFNoIikPVLbhs88e83d/+0v+6pe/YLNdSvb8w0jnB3yM1E3Do0c3HI6eMTuiclTNgtol+m6gO51IIRC8ZlTFCQBVRCKBMEIKkeWgyKFGhRoVG1R2JK2IOjG6SFpWLJ9tWF9Zuu5I93aPf3PA+hMuGgiZ2+pAXTuqWnPUB76t7/kPH/4DA+DVRw33j/6wteb555/RbLaMWeFTKCE8AasSEYgYkpYo5pSYhWeQZyeJaTGFaVSmZiFNyoU+pRXkRPSeYRgZR0/wI2N/oj/cc7h7w/uXX/Pu26+5ffua/cM9Dw+33N994HjckaKnqixJKYxz9H6kbhqUAmsVyorYbDz1xFwREbtEVzmcNeQgXH+tJ3vAjJ0COya0GaEzqOJ9LBzmCCkLdUALt7hQDZmafkFHEzpndEqYLJMiq0TFLVOxUgSrCd0tI2Uy6IRKUTzY1cRNVgX9FuRZwkoKcFHgIDX/Zy7x1qG4AIm+Yt7/tUJoKAiHkwzWCrKdtIiTJgBEixuKoMcJzdTYQ8qBlMK8vktBnrDGYFBUWgJLGqfRpkz4tMJUjaCJQehsSclecRo7FpVhc90SvCdrzaNn1zx6/ikPp4EXb295+fVvePPqW1784Q/8zd/+H/izv/xbNttHJJ/Z3T7w/v0tx8MB70eS9xKslCBjJTQGgEjwga4bgR2gZ2/qtm04JxFOjeK5DUxZyGw/pmMqPCa09ft4xdORcy5c3In0Q7nfChefj79e9gBd+AqaXBDVj6gchRaU5ATirGG92nJ9c8NyJY4nYwgMg2cIkTFGej8yhITPZe8xFptFGB8ThCT+y2NZ+6VIL9S5GGZrxFxqDXE+EyFvyvlc4KPQWTIkZ0eMLKDA3F0y1VhnwGg6r3PBjDq74ehzc2xK5LNBQYxUxuGAOA7cvX3Dh1cvCcc9NgZSd6T3I26xxGaZThN6FJnGLdFas3+457aq+OzzL6gXLW3bFERWU1nLZrEk+kTbjxx3Pd8e3vCrl//At9++5je/+T2//Ou/5O/+7m/58qsv2KxXqKQJCZyGZkKJU0HQDWh75vZTJmlTkNAkHIxZAAClFVlP+iiZioec8SmSY8lwKJWtrFWi/0haFQ6xUETVRJ2YRXhnFwylIEYJmApCQMdaeW2zZadSGC32osIXl2J0cmqaqGdKnS03JWjlj3+u/3fIfqe5R3lvacJNcsGhyt/mhf08gpWF1qNyRBmhPagcCHkgR0GTbe4wqqOqIssKWhupdWBZw3bZsFo4nIUwGvYuYFJPTgN+FKuvnBIqjNicAI+rEuTAzcbwydMV2/WSrAwjHY0N1CYTowLb4sfI3UMCfaTrNNvBYFTG2BXrdYPWlq7rIEQ22xWbzZJMZPQwjJl+DAw+SoGaMv0InTcEFDYYKm0IQRKIQggYLWNL5ywxJfpxFEGhLsk32mBVIquE04rawLo2jJUhR0Uycp5T6Sx1ApUU45DYH0b6HkK0YCrAEMZIrjImaEm+A+EzayVjd3XmKUljNnnkTje7LhNuQZlUlmAZpWIBrMS1RBtwFppas1w6oqm5errhp18956uvPuHmyRbjDLu3O16/e8v9bo+pHI+fPkHrmvzmTkzN6ytc3XI8HiFGgvckZ9CmwkfPGCS0wtY1LkZiDPhREbwmBUfyFSlUhCxCy5PL5Ouazc+e8eSvv6R+uqE7dXz49Tfs/v4l+tWeZSeyx2M3oKtEDAPGnNhXb/jVm19z0gmv4U8JYl6tWxZXG4YEXmvGEGlUxqoRg7hNZGWJSgrhKSEpFnGuLICygYTCD0RBQKyDpBGTDWzwMvGJfmToT4xDRxpl0nO4v+X27WtevfyWV998y8PbV3T7B07dnmHsSTEyRUAPYWRMkWN/oqprcg5YK2jUomkJwygTFgXaGow1Yn8WA4EiYtMyEbukKTNNWCY4FgQYiFIwaz3VnYKuoQvSQpaxoXgqQgzoFDHZCI1FCc8ya9kU5PvLZgSCzKQIWhb982hbnnFBsoT/O/83FyI1lUVNTyKlUDibsjkopDEmK5QyGIxcSyVCKJMy2ifSMBSEvVxXznQNrTPOAsjrzDmWmNnMJPirjXCbG2tpa0vbWiqrxCJSK6Iy4noyeHwYMZVjDJ6jH6nbhrbWVJXYva2Xhutty3q7kQLh7QfevL3jd3//v/Lh9Rte/O73fPbFz1gst/iQ6TppulN57ZWzZKXxMROSxCmPY5BI7Dwy9MKThVzcOzJNXYnos1wvrfWZ1gLkH1nBDGdaxfdxkIGPCumczgUQTEXxObjqY6R6oiKU4A1E65BkfkTMkRTyTIuoKsdytebq+obleo0yhjEGxiAf/RikaA6RMWWGGIkxk3VA+0CMUjT7EIsftrpwKyp0KnShcyL3evHSnmwYZzFsaRpVKsmzWc1oo5yf4rCQp8dLnZHKS0izfMwIZymap+mqLtMVcsZqSHHg9v1rXnz9a0GXhxGbMjl6/DCQjWgonMoYVabwRRex3+9YLFZkwNUV7WoFxhDKhPpmfY2JlruwZ2UXtKbFd3d8u3/D7d0D7z/suLs/8dd3B37285/y7NljyZAo9KsaRa0MU2S52MQyr+VZybQ6K1DWoEIRQCNgG+X8xiIE8IBNAiB81JupS1RYEcu+QExoczm5lOuXCjBrCsUikMo6lubrmMv111ooZCbLvSjmE0LjSDOaDJSQJwmbyhJu80ceP5CSkUDFwi3KEAtPpFAwVOGyZSDrYluTBZ3JSagWmoBWQRBgEgqPZgAVsNrT2oGly6zbis3CUZuAiT21CVytKxa1Q+vEYAwqKGKtGEeFH0u8pM9ghBeXUsI5TWUrnj/b8NlnN7TVkv2hwxwDtVNYI6NY6xwpGfp+5MPtnuDFqq6y4Bw0dS3o5jjgrOGT5894/Piah909H25vOfiOrh/wSRGyoRtlxDRGyErhfULrJF6u/UDOmboWaoFSSozWU0LrSnhQWmgaMQm/z2pFDiON0SwqQwgl/UwrfJCFzpbuNowjD/c7bm/veXTV8vTJGmNKOEqxxjKGaZZLznpW+cO0KBSUK5/vcFWQOaWNIDAyT5ZrnNM83klpROvEYtnw5MkNm7zm8Ref8uknz9huVtRtwxgDd3e3/OY3v2G366mqFevVBj9k3r69Z+gHauNxVS3jtBSx1rBYtlSVYxiO9ENHSCtWiwWVtZA6Yg86aUiGnDQpK0IGrzKp1iyfXfH0Z5+z+vQJeVvjntxQuQZ9jOx2Yxm7arLTDDlgUmLMEZ8jx3Egqu95Ln7kx7PPPmVzfU1U4nwsIR/xYkJU0Evy7MgyiV0ntEBrWcRA1M8pxRIsVAQlhXaRwkgMnjAO+O4oH0OHPx3o9nfcv3/Lu9ev+PDuLaeHB8bjntF3oCQqXuyZIPgAOVE5CTfJKKyxtFVNWzeczHHeuIy1s2IbfaZJaGPIRihcUXKQmTb/6Zj/VqYnE+KolEKbqfAoa97sAxzIwZCduEioMhIUJEZs1cw81r74jVnWLA1nXYYxTIpwqdQveajy0lJOBVmWYjbNHJPLN6HmCVJWGuMMVosHsY6RNI74ED6iHUxTwQRYIzZ2MSVyiBKMQD7bSJbRt1WauqrYrFcs2oWItLU4CmUUg/f0xxMRuZ5ddyLkzOADy8ZRO8tyuWC1XKA1NFXFp8vn3Dx+wtXmNX//D7/j69/9htcv3/Dsk99wffOEulnSLJbUbStWdtaincMpTYgj/nTidOoYR08sBYamJo6WMPZE35NiTcaWxh+KeoOclBQGitk+68dyxBgLb/h8Tb+LMF/++d2vu/Sr/a4QsHxVqW6kQDmbekmB4oM0I03TcrXdcnV1zWazRVvL4EdGHxiDpPaNPkhyXyqBPSkRo0Qo5xwIoaCC5feKv3Mq92ianTKgTAkUZK0FRCvrQJqQVCV+4MZQ3mOeJzjos5EAU5MwIaPle+d1cS6YpXnWuqyDsyhN2oiqEoHdOHR8+83v+fp3v+W436FCwE5UrSR+0WLdqBmGAUVktd6wXq559Eiz3WwxSiZoi7ZlTEJFWtQtTlekkBj7kaEfJM1Yskjp+sA3L15z6AZ+/+23/MUv/5y/+9u/5qdffsH1ZoWqKozSYr1aJtsxeAkUodwDpYkXElYmKo1Wsr6VHNgyjUvEQoeZCtSpOBaHH3HYn1D5DKUBEirHJHaeZjupABe5TO6mWUcsgMPkmy7JhYasMnYua8WOT6uyJ00UD3UWA/4QOgb84II5kstJkqJYzaOLs51SKmbmpYjKWagWKqB0QGcPscdELw4YKlJVUDtDWztWVWa7UFyvF2yXFTZ74nAg+xNtBY2LqBzRJuJVoMLjsqdSxZhcZ2wtY4qcI22jePRoxc9/9imffXZNHDKnfodRgcWiYrGo2R8GtAJrNX2f6boeV3wBa6uoK4WiRiVPSp7V6oqvvvoJT5895vd/+D13u4eC7oilk4+J0zgy+CJ0UpOQaaDrOrwfqeqaunI4qwuCUzrcLCiJsZamqUhpFKMPK76nicTCGnJVEdHErDiOkZgCxmixu1PQnY48PNyx3y/x/pqsKvEgnRDpPDFOpzHJ5ZhOzZ311D3KRjJZK6l5M57GysydZCKmkUygXThqdw3Osn32lEXbUFUVaM1pd+Lu7o5x9IJW+sCQe/zo8X7kcNhzGmEZxF9Xa0XdVLjKycg5Z3wYCSFQ1Wtq5winjNcBh3SZqiziUWWiUVBbFjdrFo+3HPPA/m7H+uqa5eMN1z/9BMaI2YkZ/mrdELqOJgZU2MHhgZHytv+E6BgAj59/wmK1ptOCtGhrSBoikSx9sdg7IZ6qpFBcbFJxZEhMHmEacJky+WC2NSPIhpD9SBh6Qnci9kfy0MPQy1hyd8/9u9d8ePOKh9v3pKEnjOJ4Y6xC6Sn4Q0KLcspcba6wtiIEWXA1CqeFGkCmpM+VZ6fc86mMCLM+L9yxJNNpVRC2OD2P0/wsTwyIuVjWRnixcpelM5e4JKzNQRCci2Its8jzBvKdolkxraVyk03I/YRUwcVeDTNnc4qknZwI8vxi9YxiX272JsvakeNIDKmcv8vUNmkECo4tiJlS8t5imn+/LracOguSZ42hco71ckNd1YRRXK1NSeBM3nPsTmRTERE9Rw6J0zCyWVbYqub65hE3j59AEUq3Tc31zYrKVfjRQ4YPt3vevv6G2w/v0MaxXG+4fvSIzWZD3TRY68hZM4yesRsgJGpjcK04ECxXSxarJZvtisWipa4s1hYKwnQlNNhKmi1jDcq5f+Mn8b/sEUKYfZDhXCz/S4XCJeJ8GXENzCEkl/d1iuW5N2eqptAhAKWpm4bt9opHjx+zWq5QxuJDwIckqH+I+FgoW8owsTwMSjjJIRBTwgcJH5sEXSg9816nNMtpXZ6F7BpQCpMz1tr5Obl8bx+dB7FXEJ/mfMnvpqwTef75eSrSSmUsQj/hWU8ezChKCmaFHzr297e8+uZr7t+/A+/FEm3eh6VpV0RsaXIyIn401rJYWpq6JniPHz0xCIBEFkG20eKTPo4jwQeUkmlbWxncskE7y6Hr+Mdf/5YP93e8f/+ev/zzX/CLn/+UX/zkC64XK2lItNA0Ygq4wk9WMOdOTffA2d5SqFsGise60A5SCKTowOZ5QpGRNSIV1B+dybpQ/koqsFJibADn++i8hgrNZwIfRLg98ZYFGZ8EhlpLdLku7yGXICLppcp6OoGDP+D4QQVzIqJLxvo0tJssh3KxNUpz2l+aN1UJOhjReUCnAZ07DAONSixrzWbVcLVp2SwMq9qzbhXbVcOycegU8F1mPEVyGHEmkmMAHfAm0dhIrQKNSmUTBNsaVqsWpS031y2fff6Ezz9/xqIx3Ic9SnVYG1ksKlarhq4bCdGjlCvo5UiMCe+j2EgJCYvKCDt7uWx5/OSG65srXr6p0c5i64YqC+2hHwZOgydEQVGmkzyOI2Mp/tq2pqktWqviB6sJRHLyQi9pFizaCqNbxmGgqUzxMx6xbU3jLAlDzGBS4BQ8RiUqI82HSpGh7zgc9hwOO26uG9qmxjpxDpCghPMiOnGXP1JPT+jCROxn4qJPfJwJxZo280hGxrWoiKs07WpNvVrSXG1wzkHOPHz4wJvXr0kh8dVPfspud+L9uwfu7+44HHqMEseRIQwMw4mYMq6yhBTo+hMqyfgdJEVQKagqV0bCGRcloMKUzjhryFZBY7GrFt06TuHIXb/DLCuWiysWn16jtCbuPFQ19bMbYtdR+cB+9xbz96/x5f3/ydhjlGN1dSX3RI5MVms5J0IuKBuqRLrLOdcqoXIgRw8poUgyIrsMp0A8kEUxXWhIo2cceo6Hg8TG+hFSYOxO3N2+5/XXf+D1i6/ZfXjH2B3JIUoDFQI5izI6I9SrsRsIg2ez2ZCzou8HhkF81g3TYp6LG4Us8rEIg32KBFKhY2R5vzFIPLwufswT5FuYzkwbpJnin035EMRlpjPDvMhPz4ZC9trZSUhNNk5FoKJy8WIu6D0F3ZuBzfMzeg7sVfPXfVTETBtw1jMabbSMWIFCwzqDHDEmsX/MspbLBLS4/iAAAEqaEF2uKZniRQu2RPNOzYnVhspJCJBzCt8DWdB/bZwgYCFiDfSjpx9GUghoYPQJY2u21495+vxTgjIch4B2NYu2hkdX/OIXX7Far/n665e8efueh90twxh52L1nv3/PdnvFZr1huVxRuRqlLKu6or5as1xuWKzW1O2CdrGgXrRUtTThtjIYa89pcSiMlchhqy2uqqiG/t/2QfwvfKQ4pZ4Vd4mLAvi7oj/yx//+3a+bisyJEy0NIVxOZCZrxRQFVlwul2w3G65vHrFcb9DaiG4hig96VqYkvkWUFsqUcgqTEmoMREZUTOQcmBywJhvINC3Chat82QRMU5+5UTQG59xHzcClc8dHhwKVS1T8JM6d3uZEFpj3xPK7NDAXytMGMWHhmRRHDg+3vPzmD7x79S1+6KiU0AJSAZxyLGI2pagqKf5iSAzDwDAOOFeVkJY8i+rX6w2VkUI6jgnvBV2OMWCdY7FcYo2iWi2wdUUi0Q1H7ncHfvX3v+b9+w98++1L7v7ql/zZV1/x7PqGzWIhzY7RElY0NVhFDK2npmFam6AgzGq2Gc4pi696jOSQCjJdCleU2JUqTdbFxUTnudnXOnLpdjYDHNM6NyPWlHXaCA9dnb3+JwHqlOInexIShz7BhFqQZ7G0/OOr5h9UMMd0NuhP4tlR7iNZSHMpnFQZRRiEhkEc0HnAMVLpgaaKtDaxbBTXq4rH1wuur1asl5bWeZoqUTtDZSSCNjUNQxUYukyOgZAT1mTaxrFZtsSYqO1IDIoYIk1TcX2zwdjA4ydLnjxd46zneHjD6XAgxQ7rQA9CTdAG4ugxztG2LaoQxMfBkyOkwt2jkjG01pBTpB864VbmjHHC6xk7Tzd4hii2WUoVe6ucC61A41xVImN1+Vny47MS/qExUDeG7dUSq1fymoNwBpe1cBgl+tuSlaLVinc5MYwBTaSyCp00KQaG/kR3OsrvdhZXORmffR/AUEYeBbri3IFNC+gEdJViIMPZDr2IjQhok1EqYW1mtWrYPLpCNwv8MPDy2285ng4cjkfquuHZk2tWi5EwKva7DnKmso6qsoxjJhNQWlPXFhVgGHtIEesqIBOi4L6FToqNYEJChYSa1lQF2UgSo6oMSQv/NuuMMhBNIrQGnqzIy8jy0SPaT56QxkDe7Rl++0DfWAJ6Rgv/lEDmzfWGED3iyiDhIbKYF6RGydKolYIccSZDDoTYE4aB5AdInhy8DAG1mv1/Q5AGsjsNDL24x/Tdke5woO9OnA573r19zft3b3nz5hV3dx/ou05EPj4SRhEEn6fFEh0vNADN1eaKY7FnDF7QTGcMlbHYEuE8cW2nwiFmEdplpYiITVUqnHRRb4OI3dR5EqMRCoYxWCeIo6DXCls2DDPFu0xjQlVmNRPyxXnfVYWrbIzoAibH60mhn0uxbdTky6zmhf9j5/SP0cLJ4lHSAYU3LQ2tbFbTNGiCqTOC0ljrMNbPaV1TAayQwsIZoVVQimmjZB0wWc3KdKs1zhrqymHMhIqDNgZrK3TW+AgYR8yKrusZQiYMEZMVvU8oU9Eu1my2V6iqoRljQRczdWV4/vwxNzfXPH3yiN//4RtevHjF3f0Dx67nuHvP0D1w3K+4vnrE9fVjrrY3PH58w82Tp6w311TNEu1qbCVOPJTmyFiNdQ4fQ7kPpIB2VYWz4v2bjj8QjvqvfajLQvaclPb9X3sukKfjuw4a/8SSThXiilYXz5cULE3dcHV9w3a7ZblYoZTBx4SPmZgmjRNCw59+nLY4bUgh4nUGinA4iY+z2D1Ozi/nWqO82PLn+e8T73qK7J4Q5nl6Mz1Xl1Z4nBHmyVv8fC7L9OViUiMFcwYN4gKbSUrAQkjixDKOHB7u+Ob3v2V3+x6bi44jBoyb/NJLGmJKVC7ifWIYPIfjke31DZvNlrZpGMeR3W7HtrsuBbHhsNuzfzjy/t17bm8/sNvvyWRW2w25rsiVw1RiLFCFln7o8DHy+t0HjscTu4c979584M9/+lM+f/6c9bZlta1RzqI1Yl95MdGa1hzxcC4c8bLOqVIXks9Fs8JNFYQAGEpEgiplsKoINc8OJ2lywShLp0wqBYwVxxGFUhGCZmpPslLYoumQwCdLNhlrJ57ytKbnGQDUWLKW6f0fe/wwhDlrYtKQiyXIdHPmJKhiLkiLRsa1YYDUoVJPpUaWLrGqEtulYdNatkvHo6uWm6slm1VLXSvxP9ZiBaRzxGmFcjXOZlylGfsTiYhVmYW1aGto2pauGxn6gB89bVtz82iDMiNNDX7cczi84bTf430mJ4c1DTEMxDgU77+EUVA3Iu47Ho90w0CMYmeiUBiVMCoSvNy0fejZ7/cM48DoxUbu2HX03pcRzkRal/NntC60BIfRoHKc7aZ8DqjkqZ3mervik+dP+OzTZ2zXKx5ub/nw/h3ReyornM3BB5Sy2KqiVhB8z+3uANljVMQaXcz6R2IMqLIpaGtFqFlSvqSQl9tOzb6McnOjzmLOCV2WsUe5/mry1lWFRB9ISRoKbUBnRdM61uslQ1a8ePmSDx8+oFRms73CmZr+NNDULc+fPiOMGa1uOR0HcgpFdSw3up260yicZFPcFnKKMkYHdMxkn1FeCuZJ1puzRIzrMi7KMVJby6Zdsmhacs4M0ROcIi4d+mZFWFiCzjy8O/C/vf6aV8d7fHm3Rin8j8xi6l866kVN3+/xGJI25FyfUZXMXNDJpChi84hSokXo/IHD3S2n3T2hPxW+vYwHp01oHAOnbiTGLEVsjPRjx/6dCPxefPM1D7sHDsc9PogvefSBYZDxv3OmjJbjbJhfVzVts2CxXLE7nBi8xyLIb+NqKuewVhLppoS2S0/Oy41PG0Oe6I3zBn4GAED+TWuFtiLMMWUMKL7Jsu6ZXICmydpIfceksWwkpQ2ZvZh1EeZJwTyBEPIKjDaYmSF4/mlzTzu9F85F+uRmc1k8KM6bC6VeFp2ExTmIFvQwlPF3nJE4QxExKS2C6kzhX5cfphIaoaZYpaiMpq4s0Y+kskE563CumgsR7Sp8gkM/MibF6KE2Ch8AU6GMIytD3bSY1nLqThwPe3KOtHXF1XbL0yePefzkhi+++JTXb97y7ctX3N7e0Z16uuMDY99xOp5QKJ48fcZms+bq0Q22aonKkJUBIyJVtEJVDlvXqDAKuu4c1slEzhpLRmGD/y/30P3/4TBGENTvoq/f/bg8vo+SMf375ecFdWReI2ISX21rHW27YLUu1nFLKZZFoJ0lyEJnfMoEGbWgrRYrsijR5D5IkxRLuq3S8vznmC5Q8zxPsmBqRHMJFmIu6KYi1xSrN631XDRfFssfFWszQFTGKPMvkL/MGNKE0iuKV3oWR5FpDFm8g8fuxO7+ltfffiM2tmT8OBKzl7CVMukavZfnyzisqUQomxL9MDKMA9oYhsOR09jx6PSEzTjS1A2+H+lPJ4a+p+t7uq4jGsNitcKuV4xagZHzXOWWJiwI3hP9QMyJV2/fczp2vHnzjp9/9SWfff6Mn3z1XPRGVTXH3FuthZtc+MDz5Iyp4Si1QqlyJR11SvlUs7OS+CaLENjkLP7MFzS2lFPhoRfpcUGGU7kHY0ropFEplcTGghhPriRl/TUkrLFEXQJPCtg3TSqmVdeYf6aJ/J7jhxXM0aCLCbcq1AtJ/EuFzygbKimhU4/OR2rnaRaZtbNsWs3VQnG9smyXhqt1xdW6YbWoqGsjaS1lTJNS4cdYg9OWetFgmhp9rMBWpCC/p2o7quORujpxMj2xcTRNTWUzIXv67kSMmXE8EbzH2Zq2qumPBnLEGMQGzSrqymGdJRT1tHCkVMmzn3ZUWRwedg+ok+ZwODAMgwSllLFKiJEQQOtJbFRQGmuwRkZ9Eh+rcEYTiZBGtArcXD3iJ198wmefP+Ppoxs+//Q5r5zi7v0rjM60Vdloy4VuFw2OxGlYiveqzzidaStHW7t5MxbOpS5BBCJ0ypy5XylnsdkxakZQBY0qi4c+VxSCXck5EvNwTfIln34SAsJ8g4dx4G535Pe//Q0vX77i0eNHNPWCh/zAOCY22xs0ksB4aHucEb9fo7TQepxFKSNduRHVtjOayhhq54QzlQMmg05gE5gk9XxOuYjPFNkn/KGHo2d907KoWuyAjP/HRN0uyK1DVxUhJsbgefvhPb/6w2/4f//63+NJ8n7/hIplgNPxHiVeQvgMtm5RVvik4nOqICQRWKSBFI+Y7In9iXB6YNx/YNjdE4cet6gxRtCgKYBDkUlGPDGNhiF4+t0dH15/y7uX37K7/cCpPzGMgxj1lzEtWqGVnZP7BIWQxbeuW66urkkpcew7jn3H2tWkDG0Jo9BKF4/dIvgrxYE1xZdZnzc/8WhOElAwU5AKolXokZNQ0Frh6mo9Fb1g55HkmS96SXPSFApGCTuwk5fz9HWSryUjzyxNokx205zOJa9Vz+b8OStImqQKrSTnGVVDT874U0EhDW/Ml02ACPmcq/Ap4qMIrybP7JIcLNSmdB4FS0KYNKNKZ3HwcVbOg1HUTta5EKSZ1WKvITzpDFEpuuDpfcDHJFaYWUvBrBxKO2ICHxO2caX71lCcRJTKNG3N82eP2GyWfPrpMz7//DkvXrzk9avX3N49cDyN7I97Xrx8CaYiYPksKh49/YRm2YKxpJJepqzG1BXKWZpaiKxVKZjLiQKkef8xHaZQEZRSF0Ee5yS/S6cMKIjsuTL86Ijxuw4hskuIS0r5F6Wo65rNZstme0XTLlDakrJYf8aYZHIbI178yVDaYVTGZ0+Mgb7vGXykG0dGL3oelCpi2jgL/M5F+8f38/xagLl65oySa60LV/bjZmH2n77c3/T5/U3UgIufLl9bfuX8ubJ8MKH6RE6HA29fv+bhwwfCOMgEjslLWFB/Y41MdibtgxWP6UzmeDpwe+vYrq9xteQx1FXFZrulso4UIu7Cb941NbqqqNcr3GZNY6U5VApiFq5wiiK8JieMEjvcl+/e0Q0DL9+94vWH53z22Sc8efKYq/WazWoFzspenwKT407MQufSujhsTKdhAtCMAB3SwOfz9I2pwP54sjHhi5MTkEKBLpzyJOuXKsAX5Z4U3nNpdoyZYQVd5n5TaIqanD6y/E5RnpwnHH/M8QNt5cR5gCz3os4SYW2IGBXIaSTFAUg4PbBqPNcrw/VmwfXSsm01mxa2rWa1MKwXjmXrqFwh6GtIWpMQvpFCYa3DGoH0TbOkWg60/UgKnug9p/2OmDx9tyergLEGbUQQlvEonairitXqCoWMm2Ou2IdAXTmW7YLgDTlHSQKb0BN17myEsy02JtbKTXPYH/A5cDgciSGUMVRNW0f2x5EUPWSFdk6QHK1xzuKsxpgsm4uVgjmERKgNum35/NOnfPmTT3n69IbNekVTWWLoGfsDjXM0rsY5S+0URjsWywqnM6dxJSEhp5G2tiybiraW9ECtSmGrSxJRlvHqZLUCac6RUSrNmy8U/i+IeFNPfrWmPBRTYTAFnxSRXczEIJzW7jTQ9a/59u17Xn77LXe3dzhjuV3c4lyN95m+C5L+1QeIkdpZamtEEBhHjNM454hBo7IlkKi0orKG1jmhjcUoxu1ZUSmNUwaTJV3NYcgRhv3A7pv32LZiPT6BxnB/3HPYH2ivr1h/tsXYFj1C9iPq2DHc7uiOR75++0JGbUrNhut/Ksfbl18XsahmCInl9hrTrmgWa1SzEHRVUcZgPTkcGMYT/XGP744wHKnxqEpxvWzEm1wZnJNkveOpQx9hGAPdcc+b16/5w29/y4s//IEPHz7INMePdN6LzZFRUhhWVnxRdVnYtMhHlDFstls2V1sO3YlT3zPGOI95bV0VZEo2cGPsvCGqbKSANtM49szjlJSwMwUjlUYs55Iepc258bRG7N+UwhpJtiMC4UKxnzlvEKUwRkmhbI3BmGIhpyakphhxlkYvxXh+xnSxzdJTI6KLhEB+V5oKCJinQHriSCNvKMaEThGdygavVdmUIZwGjn3HGDz5vOsVpT/CVc/l5yIvUinhL9ZWUOWUgkzhtNAntDKobGXzDIFxGIWzSmbf9RyGsfBdNaFQMoYxkjBYVwvRRVvqukUBoUwfsoLBDyQidW1ZrR/z9Nkjnj9/yosX3/Ly5Rvevd9xt+s5dQO//t1vef3+jqdfv+Crn/8FX/z0Zzx+9pzFei2BJUbWF2MUTkexODXS3IQggmqUJoYfl5fkdM9PPN3vS+2bjrPY8/tR6Im7PH1eFy/eVObmRhlcXbPebFlvthJQo3RxzMnEBGNIjD4yBBFWayPhITHn+XNdL4Xy6H3JJJDnOJcAnvOzdeFyMNUjQJrhngtb2ws02RTXme8KIefPZaQ5zFkQzPJMpTJlg7kmFAS6wKwTIqq5yDMAcozsdzvevXlDfzqJzzoaazTpojHXxsjEVInYUZWglxAj3TCwyolj37NerVlfbWhKaFMm40MghECIgawV9XKBXq+othvsagnOoUsQSYyRGKQ5CX5EZbFglBRAEQ2+eP2OV+/e8PTFCz779FN+8tnnfP7ZJ1xvt7ROzAOMEqQ+xExSU7KhKuCy0LqkQcqEGAu9C8oJmycTXKxv0zVJBYQVQ2gl+R/luc+52MApKHIWslLooJgMCkwpmJU63/9VtrK3FABins6VNe6PPX5YcMkkOSliPqOiOF7gqXQEerIacAZWbeLZ45on1w2PrpZcLyzLKtHayKKGtlYsGkddycYhY42zt/DZW88Kqo3G1i1NknFtCp6x70lkTqc7okpElXDGkrXCVI7lsqFtM5tNQ11bcoKh9zwcfHn94qbRVDIGUtqQsp6tYZKPpKKkD4V/VTmDj5G7+3v6oWN/PJKVpm0bWlOTsmZ/6MUcP8VZMS9j4DIKLUibM5qmtqhaUbvMctHw1U8+4/NPn3Fzs2W9WnJ4uOO0v2fRWJZNzXazxDnL0I+SUlUprG04hSXHriPHSFMZmtpKupVGuKmTSELL/4ln7MXjf8lzY2oWFDqpwsnSYvqtxdtVRl2XXX15ENAEL/Z51mi608D97oGXb16zf9jhfeDhYYfWr1mvr4hRsd+dyNlgrRQ3dVVRV5bj0JPDSPJgKkdjxRe7G4eyUVuWTcOqacleXFiUBqcKf1UZHAaXDSpC7hPjqx1vh4HTmztUbST2fBzYPH+KPipM3aKbhqgyaehJb+5osWKFA4JA/okd7179DqsEaYhZkf0nNJsbiaJXGWtlwSIOpGFP3z0wnvZEP0iBFHtiEG65SS2VNlSVYbFo8CHy8DBw2N+z23e8ef2G3//297x88YLb9x84HE6MMTCkEgvhLKYyZDEtJsVJcCLoi7Wa5XLJo8ePMc5xuhs4DQM+JaJWuKbGVJas8sxTnjf7dEaEcqHrGHVWTE8fkyOGPDNaaBhJbBzLAyxFsxKbJKsNlRFUKkQJ8JlQsGnzvORJTs4dVgu1SE3IXoYp2jrGCPGcVqasRRnZmKetJ82pWqGEJeWZkqGVcK7NREdJyJi0jI1TFAGkseIksT8e2B+PxJyEIx5lvZ9Ro1yU8eV3lGk6RgmNzpDJZcKYsyenEWsVOWl8Ue6HEJBYJjh0HcfOU9kKrSw+QTcEdoeebvAYKw4ZKUPdLnFVJaiSlk297zsJeFDgyCyXSxaLJdfX13zyyae8enPLt6/ueP9hx4fbB96/e8Or12/5w4uXfPGH3/MXf/3X/OXf/A3PPv0U7aSo10qmbDFLkquMnrP4NReU9sd2XBaE/ywXmTIyVx+jz9+lZEwfUyFurUbsyTW1q1lvt9zcPKJtJesgZymCfEz4MdKPnmH0Eu6VASWNyERHGH2k7z0hX7hf5CwUolRQxTKynwV5+VxAX/KYpyZ4KsLOr1lQ2GEYiDFSVdVcrBlj5HmJ50jwlFIxRLw4p1wgoLrIokvToLQpu6AEFvmx58P7D9zf3RFDwCH7P0aDZr7HJmRaKYX3HqUtVdWQgX4QyucYhPbZJmko9scDq8USbSSEKeREUhnbVDSbFdV2jV0s0M5irCsGA9J4pCTmCTklrNG0bYuzhnEYOR333N9/4De/e8Efvn7F7559w89/9lO++slP+OTpUx492rKoHKNPEpymFUGJV3kqfvAqi1ZksrxU+SwGp9R6uSAKRmuyMcLjzlLUZ4VY3ZX1jAk4KTWLiHPjDBSII6gq1Dkz38OzqFNJA5TSNKks85SU/u1Ef5KeEtEqYvKIySOKE46BSgXaNrNqDZtlzWap+eRpzfWmYrOqaE2mUiNWZRqXaWpDXYNzgnpmJUNJXQq1rEQBKUb9uqRrOekibSBHh3MG7zvcQ41pHDYmKtdQ1zU3V2uePd2yWCisiQxDx3F3ZOgDYx8IXtT7YtGS5s0NJdwv5wwhKPErdYYUR8YxUlvNOAT2uyPdcMIHT71YsF4uqZoVMSnevbvD5CQ+yTESfSA7K16LRTijMmAtla1oGnHDuLnZ8vlnz3n29BHX1xvWqyX7u7dA4Mnja1atoHdGa/woee1QU9cNm3XLalfRHU84o2hqhxPpPYkoyEzpvHURK0khnM9rzVQ0C6x1Mc79p3eCoPBnYVPO06asCSHT95HaKbzKnE49fd+hlaJ2TiYDxxNts4Zs2B92jGNkvRGFuzWapnKsmlpEODGKsMpadE54BbUxrJqGm82WR1dXhK7n0CRiJU2QK9xPkxQ2FEFStPR9YHh94nTbo5yGFKlUpju84+WbE1kZXFWDVVRGER4+0AwJUxhPM/r2J3Ts715SEXEK0Jax1lRWQyM0KKs0OoykfsdwuGN3946hP9LUFYtli0+eU3dg6DvWbcWyreS5VpmuO/Lm3Wu+fvGGdx8eePH1C15+84L97sDYSzy8z5moNaqy6LoiWQmMyBFGP6JSpjKQfaJuG55+8pzVZs3hdOI09EQyY4qYqsI1FdpaQkokL97CNspkpHKiyFbpLFjRxpQRakn/KpuK0uLVihYPDEWZLJRpjSSiFe681nO6VAoBVWwPVRbDfWtkwjSjSXpSbk9PlhQhabKEK412LmNoo7SMVCnPYnlmL+3kJtqG2FvJxE4XEVJOBfFJQTiWmnm8HYGuP/Gw29EPvaDGpthVKXECOfeIuRTd4ketUDgrXvYqB/lQlpxGhvEovGUl+pachaqVgSFGToPHx0zdOJSS19aPkfvdgfuHAz5lUsjEMbBwtSC+Fura4qqeEAMxyXi56zu01qxWG54/f87jR095/smRTz+55/Zux/vbB968ec+Ll2+429/xq//lnpcv/8CH92/4P/1f/s88+/S5UP+KJ35SgmbHEIpASM5H/hEWzMBc+F4Wu/PERZ0nLJqPi+rpcyGEmV8KzOLBqTipXc16vWV7fc16vUEbhw9CZQox431iDKn4LUcGHxmLy4YgkqmEkoh9XGSiQxY/8lzYppO3b5oaW2bE+ewOcy7uJz/lS5Gfc06aTC/hYd/lMmstoEhKYrOIksCi+feV+37izQpgJD/fKNFLqIJ4q5w57o+8f/eO/f3uO9SXYrU2RyUXyElR0NnJsUjRDwN3D/dsrh5hqkrsfI2iG3rW6w2r9YrFakXVPAgPv21YXm2pr7eYukYbI04wxV5ztssshbNW0DQNTSNpl8F77u4e8bvf/Ya3b17z8PBb3r6/48W3r/npV1/y5Zef8+zxY5moNzVKZ8I4zLVDKlNrnZU0Pzlx5jkzU94mmpkyipwLJSUUGk6SYnaiyaCKBWixPk1QXr+shbo0L1YXBw4lAIRCiuas5GemWIK4svCwJzDjjz1+WMGcgtitJk9OPSr34nphRjYtPL5uePZoxeOrJauF5nqtWbSK1ilMHtExYVWicoqqUjin0U6XIBRdOrMLg/LCyTv7H057TkIbsKaiWdRUi5pq2RKVZdmsuL665pPnT3j+9ApNz273nv2HWx7uD4x9wHuFwpBiliCRITCOQrbPhQ9Y145MRdM4nNMMp1FShmImZ0G+a1ejtaYylkXdsN5sGEYRlOlcaA6mqHLLiFV8qYW/pVXGOcN6tWC9ann65BGPH11xtV1zfbWhbRwpeqzTbNdbKmvoTydQFm0y1oJxCuugbSxtU1FbMWQXPEwCSSa+5DwN0RqjjHhoTurUi4JZhEe6FA3nxVNfzC4m2spUODNfPU2K4L3E/NYmozBs1xuqqsKPgZigblaslkuUchyPPd1pP6Ng/eCpneXR1ZbD8Ug/BpyszqSgWLYti6ZhWdes2pbNYsGQFaEa8E4iWG0RAKjCZzZJQjlM0rS6Jg6ivNfGEEzm1I9094GcFV5pYo6o1qL8Dmc9llQ4YJk//vH6cRz97pZmMaVa1rT0NNrj8ogOPSkkYn/A7z/Q72/pH+4Zx57F9ZZGt/Q5kv1A9D05BawVysLgB97ffuDFq5f89vff8PrNB968esPuficjVpBIXaUwzkLlCFZLUEwUDu/gg1C/lAT5rNYbnj57RkyZ9/e3DGGkblu6GDG1k3WjBIRMNnIg9681pgh3DbWxROfICpyYryLOPlJMTgsw2hCzgphLgaDPRWme0GIpPqaAhJwvFmutccairf1o456fx9JAC+yS5/CTM/KUhWJBKXAoAqXiXXseD09UESueuEqQ6MnqK2e5361VkDQ6ye/zQZqdbjjJRn7BqzZaY9XkoZpnCy+UaB2cMdSVRatEjAGIGJ0hB4bhVPjYCnKQ4l0rxtFz6nrGmMsGaMhJEXNkGAP3D3vevvtA1w9Ui4Wcx2JdpzUY56i0om5HAVUK0hzLCHuxWKK1ZbXccL254rDv6AbP4dDx4tUbvvn2NS9evuJ3X3/D//B/f8P9u2/4u//u7/js8895+vw5VbsWkRngQyhUnDJd+gERuv8tHN8XWHJJ0/huwTyhzB+5Rnyn6Jx+Zs5yLzXFZ/nq6oZ2scQYO0cQ+xJKEmJ5CrUunOaE96kkM5ZZTpZU0JjORVecgJxJK5UuC2bmEf1UQJcXNk9Evit0nAoj55zkAVwcE19WQXGWUaXRo1jFlYJ5ApMuC2Z52FHpvF+SxPL09vaO2w93jOOIMoYYJAlUpi/MSLme91D5w3tP13XUSMJh3/ccuyOLzRpbV9i64u7hAVdVrNolthbRar1oUasV6+st9fWV6H8Q21Vnz5PSOagsCwVzOicT571ZrEAbXNXw7u1b7ncnfHjB7cOO1+/e8ZPPP+eTT57z/PlTFnVDUmKImcqEBpWIuSRlTg3PNJFOah63T65A07mcTqfUJBO4mKVBMbrwlwt0lcrrB4KWNOVoMtlMDUGh62hVzBVk/07F1U3N1/LfCmFOktSl8kitPY31rOrI1cLw7Lrh+eMlj68btquKtlYsG6EMOC2xzTorrHJYA9ZZ2SStJarJORV0TpgUSzJLEnSZwiTIEzdJRIbWaJzVVE1Fs1yADmy3N3z++U949uwxy8bQn+7KgtkTk6KqVqAU1nZoJfZqsYyMgh5IBKyrJASksjRNjbUwnISXm7KiqmSRyAQOB+kca2vZrJb0g2dRV1glvrYaQaRSSsLrtUIvqGv5aJua9WrJo5stT58+5mq7Zr1aslw0ko4WPXVlub7aokikMGKdIaYKV1mW6xZjHGNStE3DctGQE4xDT7KGxbKiaRuqWpA3VdB6hZFRRCyWgBe0kemhPQtALm6qqX3O55GePOpCQpcQhCybIBB8RmvLzc0jYor0/UhM0LYbVqsNMcF61XE89vR9T4jyALdtI6IRFDkfqJ0VykwItJWTZL9pDKymlENNUoW7iZp5bQawaHRI2KTRZnLciDK61xmsjBi1MpAyQwi0QdGlAI1HIeKngDy8f1JAc+xhVLjKsG4XrGtNWykMI6nfM/Yd4XiP379nOD4QB/FPrthSW4shi0F/sUjzwUPfsz+dePn2NS9fvebl69e8f3fH4XSSBbUs3KaqsFUFzjIqRQiezsfiaiKLZA4yolutlzx+8oSqabh7eOD2/p5sDXXbUsXAGCMhRWyxh0w5Yysn4qfK0LYNKnqSddRVRRwrQhZqFmWMqNKEhAoORKEpKUrBbW3xX9ZUSlEZgzV6flLOEbxloS6hF9pMVo7l5xiNnsJOCjAw0TEmX1lBeaVoncfFTH73siFMCLcUzOIEoIrqW82jo8I3NhT/U3BJE7Im9oFhGOT6FSrHhGDPE6bMOaYWoWY4Z2krS11ZVI6EOGJMQehyIMaRmAwkVSwLNSF6TqeOw6nDB2nSQ0yoGFFJMcbI/tDx9v0HjseOerWcExqNcSgyhamCq2qstTRtgx89zjqsq0pBqCRdjYZKK2IEf7Xm5mrFl58/5827L3j0vyz41T/+ml/9x/8XD+++4ee/+AU/+dnPefr5z7m6ecJiuTzzv6eG5ntmbf8tH5eR2CJy4qJA+Kcc5bl4uSiWL10FJsehjFCZqqpivVpzdXXNaiUF1izsTFnQ5RBFNKu0IPU6l2myIKkpF6axkokUWguIky5+P5xdFy4K4VJrnylUOZdm9YKeUd6PmURpWizqmqZBoWb0XJxQZB+8FD5ORdxZtDbtg9O5kzUv5zwnQmpjSCkwjp77+wdOXY+2DqtgPHjIkpQ5CQUnaocqe5bsx4HT6ShCaVsVpLmn6zuO3YlxHLm9u0UpsE8FdLCVY7FaordrFqsVbtFgnBX3mspRWVesQS8mVSCvWYutonNCgbXVpP0wVHXD8bAjBs/h2PHNi5ccTx33+z2nvuf582c0lZNGianYVbMV3Mwbnu7DWRhx8ed0TrWeC9l5bbz4XjVxvSev+5QIWWosr2QPcqbYy5UaRbQrqmASGZ0kR0ROxQ/byH8YhzmO6JRozMDVAh6vDY+3jidXlmc3C642jqaC2gYqp2gbRWU1VoPGFh6LdBrJGDBSBAn1opDly5xGEws3SNLpJf1H+HQmi1JbK3G4aNuWxWqFsYHrxzc8+eQZq+2aHE6MOdINI7ZqaJstTjU87AY0I9Y4yKp0tUmUo0l8nqe0GWs0zsjNHLOIF0CzaBdolRi7I8M4YlRm0VSslw2rpaNpFLGTxBmrZXwbQywiGovTmtrKhtNUjs1qydV6zaKuqIzBYDid9ozDyKJdsN6sMTqjTSZGz6k/4uOIMpnFqiWrmtMh4rsgFIjTAMpSt2uWqzWuajGmAmVl4VKGmYhYpBLzxlDcAybwWHMeb8GENlwSNs7j5hAC3ouKNhVvSaMdtSuR36oTxLiucFVF4yqeG4epam7v7hmGEWMM682G5WqDKgvzcrkSb97oxUPZJKIKdGNHN/ZSFGdQSeOSKslEWbytC3NyHmrHXIoADUSImSolbBDBIMBJGwyZUY384/CaPbE8yJAM8OPS//yLh9GOjBSaN9dXLBcVlU3EeGLsD/T7Pf54T+4eSENHjuCso61qKteQMcQEVd2StGLfHUndibuHPS9fveb169fcvX9Pd+xl4mENPiQRdLVLTF3Tx0gcBvwYSaFwgMk4I8pmayxPnz7h+tENh+ORh92e3e5IvV6xaGqM8ZyOAzEmuV9WK4ahxxRVfFOLPVgMXn6ecxJUEZQUygXamOwgtdLElIuDjTT6lbPFtQdqrWiMpbLCZSZPVlUUSoSaww108VsW6KqIBSeHjuL8kcikXKhTBWmeUOoZETSWrIzEA+WCzhcf5Cm6Vt5GKpvK5GQkOY1ZQVRReHtaYRSkEIjeY8g4DWOKkFOZouQy9ZG/U4oXZxRtZWlrh0VijVNKcyiS+J16godURvIJy7Hv2R9PdKdBrnFW4n+fpfAISdH7yO3Djrvdjs3jK1z2qCIkTMXyLqaI1hZXNwIe+EAMHq0gRQlBEXQpUjnFSCAmz2qhWS42PLppeXRd87OvnvCff/Urvv32Bf/+9hW/++0/8NO/+Hf87Be/5CdffcViucW4Cm3NueD7ER0xCP9aT/F5CsTXWF0gouficHKESMUvbspbyOjzfZ2l+GwXCzabLdurG9qFJPiFmPExIo6eQrHMSktAUNb4lBmj8FSL5I7LZ04phclmfi16QqDzR8DxLNqamcXT1jR9AcxoMUxOPaW+mGgnVpGdcPmJyBY2zw6nQrIIyfIc08b0ss/F8uSGA2GyUNMSBH/qBw5dR1KKarXCpSh2i2EkArk8Z6pMqMgfTwViEus3awzEkTCe6E4P9KcdKgc2qwWNE7efqnYs1gti7TCbFe2ywVTSrNfOUjlH5aRgzmVvPCO54k1srZYAH22osdR2iyZQO83hsKY7nYTKEkdOp46XL1/hQyCheP7kkQAcSjDsad3IqdQHs/deEfEVyz4BCko9UYrlSXRZODDFcUkJP3xiH5QU2mkKF0JJajXCU3d60o6UyXjWqGREg6VlaCBNTvpBbfAPKpgbAkuXuF7BZ08qvnha8cnjiuu1uF5YK+9QHCE0rjYlIEyVIs2RKbVGueGE2yKEO50LTwXKiDTNtVhhGJJDQiXZdFSULPa2aVkt1yxauHn8iHa9BCPikJPvOfmBZrWi1i1p0Hjfk6LCWVHxi42SjAVjoii3LYosue2No28ajjHO45EYItYpdAJiIIUBlT1VlVksDOuNJaogoh1SyYwX5lLynrHLxEoVdCUKhSN6huMJnWQx+/D+Hcf9CWcVwzCyWDg21xtSjBxOBx4OO/qx4/HiKYt2zXhydMeBFBJ9d0Jbw3K9YrHeoF0LqiEmi8oWEGNwzk4wcwc9C5XUXA4zmW6mPBH3J8fmaaRkmGKzU7HWy8FjUSxWCyrXYJwjBM3d/gN92KNczePtlna1JipJIDscj6SYqduG5XZDVTdcbQeUVtzd35KJBDxYR6rgGDoeTjuWusaiaaioMOgMUSW8CpQtU+6hPI3ezvZBkYBKijpDmzTJwOAyXe75YA/8P+5/xTv8XDDkqZv4E0GZh2h4dLVlsW3Y3jyibhpC7PGnA0M/Eo4n6I/o8ShWPupifGdqsq7JpsYtWsYcOR52DKPn/Yd7Xr18xdvXbzk97CBSQlFkk7Bti1su8SlzOvbsDye8L3SIKEhltmLZtlktefrkCc45Xr9+zakbOZ0G6tUWjSMFjU+JFKGy0qB1pxMxRHo/0DROhLveM/gR66zYnQ36zCOckFVt0FriaVXMEohjdaH5gE2JOidqlYT2kxMpBhnZl2htbTXaKpTJoItdo3HzuqJLVFYunnU5J7FoSrFQLuRna60kXdAalLEkSgiLRhbGnMQH2pS7ufCfyalYv6UzYkP5fTGhU0bFSB49+IDNCacCJnkcqRTjFIR9QuwyVkNlFY1VVCrBOBKGEe002lhB+XMi5oD3I9FnYtKEnOjGkW70+DHJGqcyOiUqW2GUYkQzJrjbn3j55g03T6+5cmBVxGqxvcu58KeVRhtHXTUolxj7jpyiuCdF0aaEGLHWMvoTw9CLCNIYVktD++Vjnj1b88Xnj/nffvX3Ehn84RX/6X86cv/+Hd3hgc8+/znNest6+xjXtPxgU6n/ykfymeQBqwSQUvrM3QSm2DStJqTv7CJALlzRPBWpiqQM2jrqumG12bK5umGxXKFMNQeSSPpsxmeIWaYtSYFPmSFmxiguBwnE+zzr+XeTy31c9AFkKa5zKZJy1iQSqSTxwQQmXyDC89+yiPAmNL0YK2il5/XbKovTVrjMQRp5rJ4LX/kG4b5O3uXyO87/E2/hMllCiUZJq+IEc+LoPbptqMnYHKljYDgeSGmQJnuiGoqwgJwzlbGlUU+kNJKjJgwRP9TEUKPSAKHn+aNr2sWSqjLEXFEPNYOBelGxbB22kema0ZrKSU2mlTo3HDmX2qvMiLXCGLA6iXahsji9oTKRhwdLPywLIDZKYqMfOR6P7B52bBdLlrXFGYc4/kYpUrNBJY1KSnjJWaGSKmCV8JtzliATjUVnJfSuuVieaC4lhVRlovwoxLWgpNIWfYG2Bh09uVjo6hJ6JdxmqWaUymUSVvjP/1Yc5seLkWc3LZ8+XvDF85ZPbgw3G8WiTjg7vQCDsU4QHFfq5IvxxVRQzWR7dTbln29Flcs3QrkbpVMtzFzkVCO4jNg9iX1UxXq9xrU1yYuB9+6w53A8snDCs+keRh7u94xDIIY8h16hEFFeEjRb6sNMU1s26xVDd8CPI0rBMAx0pxPt9Zq2bQhxIIVA8D2KSN1YFgtHP44cjyPe9zS1k9dYYoX9OOBHiw+ecRh4uL/HqMy+rmRBWq85Hh5QwDCMvH//jsWyZrlq2W4lbvRut+N06vA+sKwrscXLcrNqo2gWLavNSmJiKwlkkfAZadsmZ5LZYzlPoQrnRYcsGmE1V4h67rApHZ70RPLfgoYJX9OHgALaZsF6vcU1NSjD29t7HnYHfALtxALs9v6OfhyEAxWkMXFVxWa9IXnP7v6hWAVGtBO+lE+J09Bzv9uBW7FVDU1lMVbJeFCBVxJKQ9ZlulFGbGUWlVFSfJDLoijoZoiRMXsGE7nLPV4lmiz85R8Xk/FfP5p2zfWjx9xsW1zdyEJ46hlGTwpJkvzCAH4UU/nKCceuH1ilLFQZFL33dKGjGzr6rufbb9/y7Tff8nD7QPQBqy0hymZpqhplLcd+YH/sOHUD4xgkyancSzHLpr/etDx79piqcux2O/b7A4fTQMrS9OZsGAdPVYndUVW7c7OnC5JR7K2Ek3hWaKML6pQ1MUzm+R87XFD+NDkXW7aIioEyPyWTSakUzIVGMQUliCpfCl5tHUoJlUjuyYCsh0As/OUc55+pipjQuUK1KGNbpgRCVTYgpjs5l/eamASJqrz/Cb2KWbQFOWTCMDB0PWEQRx+T8xxAkpUmZy0TtSx0EUXCGtGeGJXJ2UMMcq6N2DYN48gwahoHEES4l8UFY4zF3aCMhBVCc7JGNAfRWnz0HE49L16+5LPPn3F9tUKLbyRZICvEd9VRuYbK1QW1S/ihZ0xCgwveE1LGOsvQdwxDhzbQLlrqZlECthw//dlP+OLLL/ibv3vDP/zjb/nHf/yad6++xo8Dx92JJ599Sd8F1tePGMOP7MlPkyPCtKdOAGwWSy4lrkdGWyax4xQgQbnPYkFyM4LwNU3L9uqK7faKtl2irZM1dAIEp8VVHmFCFlR5DIExeOEtzzdAeV1MU8uCNKrzKF2nJPHsUBpEoLjXyJHPlBLKQ3/RIMLlfnYuDDMUHreRZ7F8WhXbxPIkkWOhsEz/qDj/nvJPaW54M1lrUs4M3nPoOkKGerkmGQt+pN0ktLb4cU9OThDTmfoidKoIaOsgxSJsHXGVZRw7TscD+4d7jvs9N9trQY21xjojIEDw4q1uDU1Vid4iZSyI7WppkPKl8G5aI5RMwqxSWC2BImZRQ1qLf/44EmIqRbO482itsNaKs0Uqnv0UVL6gyimmIsSTaynos3xODB74+ApN17Ps1VP8k3xthjKxz0mTlUyqpqJZey8uP0phc0l51XlG1qd6Z5qYC6/+36hg/vknmZ99vuSTxy2P1opNE1m3YlSvycQozhZGVTI+NIpcMtantC05ithMTXb9SqD7PD1rU2cqRXaaKRsSa0xWJGNkxKiFXjCT7bP8+DhGdrs9r1++ZvewhzbTWM1+f+TUnQghSzEQIimIwEiKPdBG0C1ILJc11zcrDoeKsavK+CXTDx1ab7i6vgIlHMEQPJRNZeIDzj6rSjajytliZRVIKRDGUYqP04m9UZyMIqfEZrPG1ZbFsqU7BU7dia4/8u5d4tHjG1KMDJ3nYThSuddsl4rd/ZHT6cThcCCkQLtoubq6om1brLGlkS+cTH3BvyLLA5QntxC5decgBMqwapoASFNMjtL8zEEeSuGcY7lYsm9ajILlcsV6s2G13mJrxxAiddOS9gd2uyOH02/px5Gu62mqGo0RTmLbgUpstityiOwf7kU4oQ2phCzYfpRxxQj1suJKb3HtAuokhukYZBhtps5tvucohVBSmqQnu0SNz8K9TnkqP2R8o7IsOjpJIfengi4DXF9fcX11xXopC3j04iteuYoxjiKUKIinUpoxBHzOnHpxK0gZRh8Y00AmcOoOvHv3gd//5g+8ffOOGCTRMmaxGkLL8zyOnkM/sD/2hIkmU5CWKVGuaWs+ef6Ex48e473n/fv37A97us6z3Gyp64acM8Mw4FyF0Zq2rUFJsSRpZ3YunFFKUO44AOeNWRZ6zm4AWagUSil0LgWwlSAio8UPWiwjpYiakE9TvNorW1E5aWKtrcUy0Vq0dlL4EQtlYhoxS2qlCIPlumitsdXEK1RMAsEpDVCVjWJ6bicqBimWAqfc5pli2C/fn1NiHEeOxwOn00HGqlGEhCpLkiXKkjHkGAUFShFtwFVSwCudZ5RPG0F//BhQMRMaQ/CamEMJG4DBJ8bRz+d2qo8mfqm1hhFFSPI6725v2e0eyPlzcqbQ4cQ73llHUzcltCjLGjoM+H4ghwC5IM0pEo2RpNMUATWLoKcNHGXYLFY8efqcn//iz/mrv/yW/+//9B/5+1//nl//438uzWFgd9iR8h+/sf63cQjmKYe4N5zt4SRARmNLEajPnttlzB1zJgQ5R8Y62rrmaruVBL/VUjINUimyCxo9ub/FmAhB6Dr9GEUAWJJgofSqeqIHnF/XuViWwiuXc57EPLx8Hqb9aRKiS9F0uSjnef+aGl6UIMyqjOl11uhoUCWlOCF7tLYidE3TfjjF1aepEThzmXNJ95F2UsC7mBX9MHLqBpLStOsNyTli1+Gsw1hHd9Tk6MkpFNtFL/TN8gw4I/tV9AGdMi4LxaN794HVakvfj/SDRx2OmKomoLDG0jatcPkRS05TdBRzo13E/LlchCkmetrPVNbzumGtxrp6XiOHcWQcPWOQ53oS6tV1zeRnP4n15EPWiBiFiirCX13ACs6dTObi2l1Uzxf362WXrY2s5VqXsKZ8Bjm8D0ylZkqSEouxIl6eiuSpSSgAmFb/RgXz3/58xU8/W7FpoDYjjYksnMZpfWHB5EQJqwyjynN3qAr+Mb3v6YQg9S9zdtzFF01UjazlZlRMEbaRZEAp8QEMKQlv1ifG3pPGSHc8cfv2Ax/e3ZJ9JNhEJOJHT04JZyoZu0Zxr9Ba/H8bIyr4YegwWrPZLri6WnH73tEfDNYY6trifU9Mge31FlRkCONsx2adxVoR9tSVFjpGDqSUMbqmrcV7VKtIThGFLOJNXaNU5vb2Pd53bLZruZdVxrqK0+lAion7+wPL5YpHN895/+4Dr799z50dCV4zDgN+HEFDWzcsl0vMlLaTxBxtjt8tTUZWSYrhNP09n2/iXBaFggjIhcnzBbz0jZXzaKjrhvV6A8sFN9tr1qsNtqpK+ISlbZbU9ZFD13F3e8/xdCLGyHZzBRm64wlTV2KsrmWzH4MnJTkPXX/Cx8gwBBgV1hu8zWRtQVWlgVEo5TA4jHKYPLEyS6GMlm4XjdiGQVYWcRjPKC0bRVaTnJGZJ/3jCsj914+rqyvquialSNf18l6VJMiBFvvTCTm1GqMsIVJ8QXux/lOiBYgxcH+/49sXL3n79j3RJ2pXCyoxeLKxGOcYY+LQ95xGX9xaCrKQIjFI09k2jufPn/DZp5+hleL9h1seHh4YhgFtHKu1PB8Tj020qJmqEtSlbZsyZjRUVXUeo2qNHwRF01qL53Chh02r08wpzEDZMKwuSX9TwRzC5G5+RmesJI3WVY21lRTrxpY/TeHTTal7EtOegidFTwxSRE+va0o4RBU/2OwJaQJnVCmAEjmFuXCehiWo0vSVBlmKmlRST0dprPd7utOJFAI5ZqKXyFlhe2jQEis72Slao6grK04bxXUDLZHFPkgghXGy+YYQIQVUVvgM/RAYRk+MeQ7pUlCcTNLsnhCCOCXs9/tZMDX6IILblNDaUbctbbNAAcGPsqaHhEqZ6CPRD/K7i/eqYSqSmQNUstZkZWgXYrsVc6KuK54+vuLv/ubP8ePA71+84Zvf/SN/9pcN1mj68ceFMBujCiUyy5qIrHzTxAEE7csacjZzk6oKShqDNErGGBZNw/X1NdfX1yyWi48it2OJSk5ZuMuhcM27fhTv5SL8m8wslJqoEWd0eDpmr/Linyt/KtmnS5E9gzlZTdKZ+b8vBYF5SvpTE2c6X+wNCmNNEdBrsSnMsdzSBmXUXJ9MjZ0g9B8Xy4opN6IIf7UhpMzgJc3Q2JraWaK2eGXQMYhuS2tCGIsd26kkCScRradIKIUgShMQtyCrDBqx5jt2PXd39xwOPa5paZYrFosljTMkW0b7aZqSieA4JSlaJ9X61DipC/erUlJKoa3lHGnVoEDyH+yI+f+x9y8xtq3Znh/0+x7zsdaK136cZz5ulquoQq4CYaCgQKJUIFnGctM9g4SEaNCk6IBFAzpI9GjQRDQsIblRuAEIAaawELJBFMJ2ITB23br35s3HOZnn7L0jYj3nnN+Lxvi+OeeKiL1z75OZN3PnneOc2BGxYq255prze/zHGP/xH/1AAqqqlgxaJTVZ0t4tjpggpoCPHps0Jk0BuDFepRUqFOQ3WbmnMUZSUECQLJMy4xp+3uxkAusApb+Q3Cu5XyGc648/9fP72IdFmL/c8OkNWOWolGddSQGMdIFD0o3KQrIMMAoq5CTG6LmaNJNoKY+TtYkzeCani5JOEnbP4KwIX5d7HBMM3nM8STHS6dgxdAN3b+74+mdfM5wGLtoW76RAzDmHQtHUDZWxlOpXraSyumqk21/0HVWlaCpFZSN1DVUlrV/rSgZ715+o6hdcXF/CYS/i57Xl6uqS589vcCFy2EvRkOhXIwohViSb6twtzOYUyvXVJU1jOZ12bLe3eN9hKknFrlYr2nZD1/WA5cWLz7jaXEP8J/xH/78/xg9HmnpDCjHrLlrapsFkLqb3XjoraZsHXAHLClV0RkvaI86Kj/I9Gx2YrIQwX01CCNJMoO/oTh3DMFDXNRerG55dX1M3DUFLRXKIoG2NsQ0xdcRkCEHJ9yh0l74b8CEQUyB4z/6wZxgGtCmkfznnGKSQJCqF7xN99Ax7j+0UyluqWFFjqUvjkTzuAhMFSCIvJo9Pof2UuHpQ8nXWLrV89D8gu7i4kOL0EHBdT11ZjseOwUdS0ihlsFVNRUVdGzabC+72Hf0wsN1LhLJuWwaXuLt7w89//jXffvsakqZtVvSnQeQYlfBcUQbnHV0/5Db0U3YjBdFfbpqa58+u+eyTT2jqmm++/YZvvvkmjwNLu95grWV7v6VdXdJWNcF7EhGbKQybuh7pX1Vd5Q5UEmmMIUoFeN2Q+h6VjABaL7SvsX18lOoVlQt/1KygblyZlShUWGNo64b1apOj27JxpTRFygTYSmQ6eIcbeoa+JwVp7KFKajaDc7TOBclFnzaNvMdRTzW43IUuZ4okDJaz16LlHGIgZqrR6dRx3B/pTh3euVwYiETSVW7EoEUf3+ucDFVQ16IcpHUQ5ZJcf+JDwKVACGCsQmsrzkZIGRQnuqHcb8bNW54TRlmwpqkY+gHnPIfDkdevX3N/f8/N8+c0SigBdSOqP1VV43vH0A30J6nbMLngJS9XVEo6qvmUO6iphBsG4uGAaRo2F9dsLi4ZnOf1mzecjic2dcWPfvAF6/WK1b/7/+FPf/I1X/1kxV/763+T64urv+ip+WtZ0chOSiiME20nSoQVyZbGhEiPxLIfALGooVSs1htubm54/vwZm82FgDjnBCCjhaucJeFKS/PBOWm44b107EsKtJGCK5SkySlRv/MvVRpWSKmqRJKNnFeMk6b0fCEunNzS2ALIQRD5XSLGCeIkl6qNxlQGHWSue+8JKVJL2HEspi10j6RTQTLT+5Y3yvto0pq+Gxh8ROmK9eYaqyUTbrQB70ho0Z13jng6ytqjrMjmZdpRcC7ToGTc9j6gKri4uMTWDYfjiX7wNK045JvNBTeffEq0mv0wcMrqHykmcYiiYCdJRGXJNjijY4gqTOlemgMEWmNqoUBoPUnz+RAkezcrris4rkSYQ/CEoOW7lj1eFyenZDMUZ4ooxcMp4Foap2Vwq7NjMs8knAekxYGb6aULRVvhkCZOqhRGq/JW6sxh+FX2QYB5s9bUFdJ62DYYlTcApQjjGciEFIUVNXFFSJPMUYmMlMgQ0wQwmb4g6bKcJkV0RGXvypWUmUMXg8O5gcN+z2nf09g1lbZ889U3fPWzryEOrJ5bjscTKlqSF81Bl3VISyU5uTpcJmzEmkRdaWLscf0RqxNNLXfX2kQIkRAkkrvebHDB4aOj1pabm2t63+N8QKcDbiB31ElYm79raGorDR5yw4PaWl48e85xf89hf8vxuGdzeQFJ5U6EFVWtubq64YvPf8jF6oI/+5OfElzi7s2Wuna0q5q2abl5ds3N9Q11Vc1SHrmISJcUlRD+hcoicLBEyWUAlrSryOlpnXIUTlKjKqemRFdzoO979vs9u92OSktHts3FBTElXJAokrEVOhc/RcTBisrkCvjI6dSTAFtVJCQattvv6b0jKsXp1OGcRH+9y2ENawg9nA4d7a3B7GpsV1F7TR01dVQTLy3JBPJ5U40q80CT0C0SCU/Eh8iQIkeCqBKgcKRcsMofFGiu6gpjIpWuCB10p5N0kkwmL2wKU9W0laFtG1JVEcKRQzdQH464KLzS3f7AT3/+c37xi18Sgyzu3TFwOjoBxlr4eUM/0PeBGFVWwxBwZZSkyOpG8/xmwxeffUptK16/es2333zDfr/HVhWb9Ypm1XI6nXj1+g3f+0HLerVmu92hkMKhuhYN0WFwkhLUeeH2YeQyV7ZGGzNxU5O0cMZrUpQuciU1PCpQkMZIblG6UEokmZpmRduuadsVuigAJU1MSrjAEZQKxOCJQdKwfT8I1SgGfPAYJZ0FJQpl82aRSGnqGFrctwImStcuEAcn5WjeJE8XxkizGxxuGEghYJRE33UQKkljLTogKeqsx9srWc+thqYSPnZKojRilB6bUwQAPUUAZe3P8CxKQwqXZTkLTySVf5VcnKq2aA3BS8bw7m7Lt9++4ub5c64r6dzarCTljJLiJeckYoz32LzZaqUxGBqrWa1qhhAYksiQ6gRYw3p9wfX1NSnB8XCk7zqG0xHVJypb8cUnz/l7f/fv8PI/+Kf8+c9+yatf/pTnLz//C5qRvxnTRmg5steGca/WKuWC0ryUxUBUwjPV2lKEUWxV0bZrrq5vuLq6FmUoLQ6SgEtFIOGDdMKVhhuJIQScC2OAYZSuG3nUBRhPY/gcMJdmIiUqKtmbOHYEydiMMjfI01Iyg6XBkJrR6kq2NCJ/t9oKLdHIVyTio0MTMFFaxisjQ7Mo9kznON8AcsRbFgtpAT44vItYW9Ner0SZxxqirXHdSaLxxpCGHp80FUp02p2HOEjIRmuiU6QwCBUJqZ8IqWgJy/2pG5FX1FpLY5K6YkjSyMllat0ULMoUSkVujCIiBBLsLYEhMk6LxOgxWYWnqkSclYRQnFy+dzGQAiRlM5VDrk2IHpCIug8i9aijtJsfHaV34NSno75y7EKViSUJoPIXUtWWcktuyRSTBQw0UWfKzVhAyNTz4z3tgwCz0Wvq5gKjI0pLd6YYfe4MpUBJa2mVvXmyp0qOUKTMwdPkKsocZtBaNHEVYKwmJo+KKacjQSVPiAmTADQpRowB73uS6wjDwH63Z3t3wKiG/jjw6ptfcP9mSwo9lZKWroZIU1+gVU1/lOilylXmIWuH2ihRiaYxXGxy1zKbaBtNZYXnJ1EUjTJgK81q3dL1Db4/SXOF1ZrBX3PYH0g+0XWe7nhC4UnRIQVoJssz1eJR+oEUI3VVcX19zeZ1Szh4mrrCR+h7l0GrRemaGBSvXt3x059+ze2bLbvtnvUaqspwdX3JZ599yosXL9isVpMuMWTecv6tRJdHL1yanZQUHvmelSIi0KgoHFOdeU4qR6SK3mI/CHA2dYNSWnhuOcoQ0WgjnM6ERJaVqjG6AQIhKgbnMMZirMWFQNd3OC8NRZLS9INnGDwJKTY0poVkiEMi7AbUrqbqKuoBmqio0VimtHKuYcKW3n3iJUg6ksIuFQ/5GHu+6r6li4EA9Crhyzz+AwLMMQbh6QWJNLreQRbh712QgrBanB204XA8cTqd8EFlrmJgfzjw1Vdf8/OvvqYfPFcX19R2g3dHlDmB9gSEx3oaAkMo9AeVxful2LY2cLlp+PSTFzy7vma73/PNL3/JfreXSHFVsVqvCDFxOIjMUQyR2lqiDxjksHVdS/OUvpciEMgdygxu6DJNQqrnSaWrX5Z4y9fBKI02oHVFXVdYa0nI/KkUmMxt1MZSNwLm6qZBZ8dQGYupakzVMIQgnTdV5te6HtcPdJ1wb63WQmOworcctMEr6VylVXFcS7AgA+ZCw0iZSBRlfY0FMKdCr3os02RKYVBVyRwICkLpXqjzuVecTidUSlSNaFlDzDzU3D3Q54YTCXSV76ePJGOyow4hiCZvSEITUQqMkfMsG6Nwm2OmkoBznt1ux7ffvuKTzz9nfXODsRVV3aC0EX6sdxKFMkY27tydLfgAyUNVU9cNKkWS96iqprYWVVk2l1cYW7Hd7gnes6pqvDoQ3ZAbOwW+/OwllxdXPHv2Y37ys6/56Z//07/Qefnr2khXKHrfRFEz0kIyK53W5DnygtIhzRjLarXm5tlzrq+f0bQrAXVksJoj+SFrLQ8+iAZzLC3pyVKKCp3Hh3SbDOMx5mn0h224ixWeqjF6BrALYD7/nDnuM34vUczCcyW/r/BtxckvYFyaD6lMJwhYTKYy6pxxnd5wTiJQ43XL4DEiRagx0NY1dV3jB4kox1xHFFMkWUMyRlo8KwjGEO1A8hqdglBPNUQP0TvJHMfEse85nE64GDmcTnj/iqpuJGhhLevra+qmoo0Vg3ciw+rlQigN5IhtyoXFJI02iWSyox1zgMiDxhC1zqAbMIZkE7GuRcIxI02Ti/BinKLLch0hRkWMdsQHIcZMq507U/P7PlElzm7u2dWfnKB5hJ8kNTJjIaUCHTTKO3EoZpKFpe35fAy+j30QYP75qwMnZzAmEULH97/8FHQU6kRMWGuJSjwsnRQmQfSRuq5kIc+tXm3hnuSBrJOGWGgXWbNUSxRXqzxgQ8KaSji/KtFYQ+wdhIHuuOf27o7D/ZHQJ375019y2G3p9j1GB/rjwPNn1xhVsWo3BK9hf4AYqHKDkiElNBGtIpWVVO2LF1d89ukLagvH/R27xtB1A0oL361papq2YbNZc+pPeBXZXGxYXaypKkPfdaSYOOxOEAe8GwihY+gDJtXYixXrVSNt5ZUieId3js265eb6WhQJjBVJFJ8YBk9/OKHVjn/yH/0Jr799zY//5Cfc324l/Zl5Pav1mufPnnN1eUldN1LhP/MetdZ5uGZJP6WQ1rWFqpHE8YnFgxfHJqQEQZ5jTUJrSZkpZGFTiCRMiSj0fS8qHiFwdA6flKTvkpE2uPcHWWyddOlSyqJ0RZOblngX6XuHzYUSKalR4zME4UspLecZQ4STx3aRxkHtwcaEVRJliVGeL15pKoGKcfqV1tc+c/iUUZxw/Pnha07Rk3TClbmr4IPc0t9z6/sebwzD8UBysjirJDJt3gXZVGxNUoZj13HsTtm5a7HGsD92fP3VL/jxn/+Uu7sd19fXfPLZFxAth2MgJJFZciHSu5DBU8qLqRQIVVqiHU1d8enLGz59+QxNYne/5f72Dh8DzapmvV5TVTV3r+8YBi8NE/JCbLQi5nbJbdsQkzjg1lpx7rTGti2n0x5rK0gC9mMGxySFd8LFr4zJzQ4UVSVZG53HoNEmO+HChzRVTbve0K4v0FVFSArbNNiqpVmvWW0u2B92tJsWYyL96cBxN2SKSGS3P3Cx3gilzVREZVHakmyNrmsUnkpLMd7QnQhuoDJ2VNQoOrGpbFqhKNvM0p75Xpvc2EPSrkYyUGiJLHvhvdoQpWthZbEma903FdYavHe50Fd4ys6T0/DQVAKiJAVvBDxEKRwr6iiFSWtMTgnnLGWIntooqkoQs3MON3i6U8+p6/FBCJgqr1390HM8nQQcaylK00kLOI5BVCBQuAgBkzdSTV230j5YW3b3e1598y1GKdbrNWpzQXIWYwzd4cCpG1htrvln/8Zf5erygj/+s5/8DmbndzfJbujcUGIqgFOYTGbV0/hI5d6AyUWVl9c3XOUOfkrbnC1IY4Fb6c4nFAyPj0GCJNZgtayoEo2ODF5oSDGEcRycp+EzOC4R51SoGTkjmopyQvl0Zfzk6HVGTkrpPD6V1AjkD1d4tQKUsshAziBVlaVpJHDlfFG7EWm1XLkvKhBzIC9vnn9JlDbTKgLBY1WiaRusMUStCNbgnXRT1SphvWi6KyUUTT9oorPgK4ieMBiC1QSvcb2iPx3FKVawPx64vb/l6uKStJLIsXD5e6J31E2F1QqdAoOTwkJjbS7UzcoYagKLcr1L2+wSjZcCQZ3FCjBGgkwxEaMhRi0SeiXqGyOoEpTK1xvBEZGQx2Hes2cguADmkRuupvGQRzFFK1pnTnfJUOWI3ZgpH2k5KRcW5zWNFFFRnBJrbcYaEyD/rQHmv/8/+J9Iqk4pPnu54b//3/v7fPLJc44n8dKVgk8+e0GiolKgBgdReKZu6Lm62FBZJR5T5peF4PCxpIqkvewQHCl4dGWIAZS2WGvxTtraGp0LsZQihcB2e8/d3S13r/bcxi3JCRDSJNq2xiqL1ZbK1lS2AhLeD2gdqSpFZVQG5wKajVFsNmu+/PxTPvvsJcGduL9rubxo6bsjKTo2myvWm5WkYtuW9eaCpBUXFxe8+OQ519cX9P2JvjthFHmjFPCviSgVqSsjhTSVpbJGKr37DmM1q7alsjVD73BeNqTdsaPvHN3R82d//Oe8+uZbTrsjKmna2rJqW+qq4mK94eryirqqsyddiO0lh5HTWtm7FXqLRJ+LZM+8C5SaZpKk9qIX6ZuUcoOQ0jRBjm9NRVVV9P3AdrslasPRO46dox8Cr+/3vHmz5fWbe7nu1rBer0AZ6mbNxeUFm4tLtLYEn9CqIsTE8dTTO0lLJaUlFRRS1nVUsuH7hAmJFAIuenrlRIYuBiFXKBAR8yTnT8BonwUIFN5YggVVa1KlGYa8NH9sBfIfYMMw0BtN7HtCfxLqgDZM9UFS0HfqHX1/pB96oTkgBXqH/ZGf/OSnfP2LX2IqzfOXn/Dyk8/YbTtc/JbjMHDqh7yYamk558HHSMjR3NKA48Wza37w/S+ojObbV9+yv98KgK0tl5eXrNfrsWitqhqM1gz9IML1MdH3Hd71VLVU8GstgFk6eSFA2FiIPi/+AhA0ET/kRgY54mwzL3nVtrSrVaZYCI3BksBLWrNuGzabDavNBmVrPNCsLqjWG0xVUzUNrYLL6wvWm4rknaRm+47kPX/+p3+KGwaMtbnRg3DGlTE4ErZesWprYnD0Q8fYIQxg1BTVs41I5f3kAXUjCaCujKGyljqSr1FEebk7Nmk6Bo5DLw1CVGTVVjR1JSAkxLGtuWjz5mg2uQYiKUgaimBHLgArEeZSD1BQWswRPan/qKlrzdBJRLR0ggtBsltVVaNytf6h6+jcIHUhdYVVFRWJWFeYykCWvBqSqOAErVC6wjRr4dsPPdv7HYftTrJ8tsIEkRWtG5Gm3B877oZXXN684K/86Hus1uu/4Jn561lAAhQhSRswibhqkrKQJdWyfgIxJAbnJeDSrrl+/pzr6xvqpiUghZ0pN6OSIIcX5YsIPgJKYWyFMRZbSTYGbeiHga4f8lIiHF0XCr0opzsoVB4AJfUOKY54yJR9SyHjJ/Oui/QryNqttBQxSlQakp9C0XHMyJAVuaQ2w2gljWkqC7E40aJehbXiWGotnflG7geTE5q75Kok6w8xYgmsKikAtkYk14IBb1TWOE7YXmF0xKSaWkd8pYm+IgWHSoEwVLje4gZLSpFhkKJVFz13u3t++ctf8OnLl7x8+RJrDN4PxOAYuiO970lW554PPd4rampslTWIlZL9LJYxUcgMqnQBz5JwEuCMxmOQQuqmtvLc6HFkByqGLDJUAm8xa11LM6aYYq6hCMQoTq+eAdzH6doc6R/TBLJXyz0u2QiN1jPAn5sKqRz5HgtSg0ScdaaOlk9aMhpKKfwHtLz/wAjzba7OTvz021f8K/+tv48PUNeyaDsH//K//C/wX/57f5d1W1Ml8H1HZSuid3z5paapqhxRlRaHfog0dU1dWVyK6AAJjbENtrbZW9F4D7ZuqI3FnU50vZPF3lR4H/CDoz91uBDQ0bCuGyqrRWYoiscUfeIUTxwOPcPQYY2ibStsR24+kohBoVXL9eUFX37+BS+e3XB/66mt4fJyw+l0pG1rLq821E1FTAFdGZpVw77b0/cnUgpcXm745NMXnLojbVPRNprDQROdl/RgSgTf411NW1mq3Gd+6HpW64ba1qik2G4P7A4dLikO+45T12N1xWl75Lg/ctG0XD57zmq1Zr1eY2rDxcUFTVNn6bmOupY2oCU1WzhekUipGi6m84JEUiL+nZUD8lqTvUCdF4zMH2OKbhtrWa3XXKw3AlqdR9UGrS3321tevb7j1e2OV2/uOB4dKM26qlCqkvue9VW1svSdZzjt0Upzd3/g/n5P1/WYZkVCNlTnpWjIGE1dWZq6QgeDj3BQnj6vuiF3/IOEThobLCYGbIpYpNNZipFeR5zReOMJNhFUJnKc5fr+sEx0NSEMHamXDpg6F3eq3JAmJsUQHF3X03Udp2OPriIxvuZnP/0ZP//qF3gfeP7Jc26ePydozav7e253O1xMoz6pUhqdDNpIhNYknQvTPBdXa77/vc+5vNjw9c9+xi+//pbBwbpdsbpYc319Q0iR+7tbUkq5LbLnsN/TNiuhNQxOxpxSeN8zDAObzVo48UokHksb2yJhic6UpTy2RTpOHPjKVrRtS9vUQl9Ci6h/Tl0KHaOmaqy0pDZa1DHaFozldrtj8HeiL9wdUMqzbmquNxu0MmwuN3zx5Q/wwYs0X4jUqzXNas2x69i+eUWthaJxOuwxtqKpKlx3kqhR0sRosJaRy1lXcl/VWKMh0nAxr4OhijnqWOgw8llsIKtNBKITucvgnBRRjnrOAoqFukKmSuV1IEqUnqQILhIzABVKxqQ4orQEXcKYXpdNV+uGprb4Qea090K/0lqzXq9ZrdekpDiepD2w955Ka2xdiwZtiqAlACIcbY3JlBOTFPWqpWrX+CgtuPf3O/rjiTomURZIYcxyNnWDrxPbU8dhv2XVtlxdtb+rKfqdLOQIc6FISORQ7pFOhogdJbWSSVhdsd5ccP3shutnz9hsLgGFCyW9nvBJukEOXrJFLggvXWRKJXIt7ckNiclhlT1C9h9fittmafkScJFW1eGsV8MkDyfBHaWFMZiyfvI8tT7/ElyYAReMescxeJHUUwqVz61wgD1SLzQMjmAtdaahFMpoFpiYLCVQQYqCg3xVKqAqQ11b6bRIxOisWmKNgE8cBo1NlsY0xGCIviJEJ50AK4WrNH6w414dXBjb3neup+s7+uHEvndjVrQ+bgkqsb66xLYNKTpcDKCy0gQhR7Z1VieDlIzUFsTc8jBBHxPBaWxlCa7GFCcoU2JTEsfZZ3WskHIGKXqcl86bCvK8Vrm4N9Ndgh11kaUN+KTmU4pHRz18uemydyRk3BZ5zFGNI45jII6vFYfMB3CZgmK0IYSA8WYcb1prBje895z6IMDcIxEa54W3vHORprbseg9JZIf+jf/1/5l//R/8m1ijUDFSGRgc3Fyt+Jf+xX+eL7/4InNiBwjyIf6Zv/JDvv+9L2jaeuz0YyqFGgJKJ5rGsqo3dH1O36tK7rRtaDdXXF5e07YtRu9RUTg3MVfqknrUsyvaakWIkdPpxO3tPSjNxabBhTXH/kjvB5FQUomq0lxebnj54hmbzYbD7o6LzYamrrKAt0fnCWArqdw2fUfXdRy7A+264bPPPuGTFy8hRl6vXvPaKFJwSOuNiB8cx8N+bFu7bhvaRrqnGW0wukLriq4b+OabVxx70bM8HjspaDHSbe1is+H73/uCZ89eAIpDd5ACp1zIJBqJU/Qpzbp2jWSgkciWI845YkzSklrNXmKhZowtJ7N3GnMES2nR7m2M5fryGt8PuK7PqXjHfn/g9d09t3c7DocO75PIUKksxTNIhx8fI6dOOogN/QAJ7u52dIOTjkDGoCL4FEghYrWW9p91DbVl8BBTQNUGZRJBJ5yS9tikhAmRyicqr6lioE4DNkfRO5vwVhNUwOlA1BlUzSgYD9fMj91Wq5Z1qxmGE945go+E6NBVy8XFGlNVKAL7/YnD8Uh/PNGdHKbS3N9/w4//9Mfc391z/fyaz7/4HtfPnrPfd7y+u2N/PJG0FLXErPfrYxQZpTRxyK+uLvjB9z/n+uqS7d0td7ev8c5htLR4rXIRaNd3HE8nbNVgjWV72tEYuHrxqRTNGdHpTilxPJ44Hvc8f/5MMlQh5MK/rAqhoDTl0UWXXGtJT+bFtK6ynrKx+e+iwEGU7lmmqqiaVj7f6ERGDtt7XFTc7w80qw2bywuiUtzdveG1d3xrDfevX1HlopyLiwtJcNqK1tSoFi6ePUcZhTvtOA0DtmmxSGdQqyVTp2LZNEbC6shl1ghAilFjYonYaEINUYmsWuEXVzrKuA9BAhq58DWlICn8VMCtROdSzg6E4khnjVWQrI9LHkpEJ6URoOvSfU1pVJY6Q02cwqqu0NoRk4CW4+GIUprVSgop94cD+9OR3jlIuZ+E0SRrcE6ySNoIiK6rFcpY+lNHSAndbvBottsd93d7ulOP8hF/6jnGXPXfrjgcOjiJKs9mvcZkKcvjofsdzM7vbkpXoKvxPpQqFaJGZVk/imqF0jSrlovrZ7TrC5IydIMU2jsfCEGidYPzDFmP1wVRStHGojHS8ZKBIjUH4HNkMQSP81Kg75zL2aXSJGXirMbZ43Nesy+qD9m5kqL7ML72XI93cg7J1A/vvSh7ZFpGn7NHOsvXxVzIOPQ93ekkqlJZUx0ltLEngyUKSjpFhHMCbogoZWSOuCDXIJViY48i0JiErRQVmmAsKWlCkLnqBkWsDbEVlZ/VZsXmcgMxUdsKnWBdN7gwsNtvcYMof9nGYg81nsTlcGJ1ecGpl2yRsqIjb0yWvM2Fgio3hRNWg0R/DYk2U8C0kWyXNUbWuIQUKw+DZApKsWcSumPI948Yxgx124g+vrWSSTelFXhuXqJG2TtxsMtljkmyVuUeK22y0spEFZ2Ath/HTmLmcOUjNFWVa1Kyjr4Rup0xhu54eO859UGAOSpwSi6MMhUxeE5OFmWFwppayP8xZQ1Xw2GIGK35Ztfxr/2D/20Wx4e2EZ3AGCI/+uGX/OiPfkBV1yhK56zE8xfX/O2//bf45/5Tf4v9aSD2gegctU5oBn7ww0/ZvfmadnPJen1BVe/zoHc43xNDT1tLuglkvFtbc3F5Qbtao+uK9mLFyQ8c3EDnffacSmtMlSeO4uWLF7lTVMvXX39DTJImbpp65MSkFBm8NATou0suLi/4/LNPaWqLJtGdDvihR1eWyog2ofeO4/HIzdUVTSP6rSAFCXXdUFctx1PPt6/viWjWmw1WWS5XG67Wa24upDHIer3OahSyYLlhIIY4VtAqpbJsX0lhPLi5hUBfvPlUQKEA7KKrKG0sPUqLwsXIk0wyMK2tsAratiVoQxgch92eb+7uuLvfcjgc6fuBlJTwq6sKU9V5kQwYUyrfHSppfG544FwQ3mmmliidGx4YTV1VwsU00OEYFKimoV41VJsN0Sg8Dp8chIAeEq6DakhUXiZ8HSQd5YyM8aQiQefCAcgd1bLQORo3JsY/fluvVlQ24lE0Vc2QAlFpmnbF6uISZQyn7kAIwinvTx3BJbpux6u7A3e3tzR1zfPnz7m6upbCwNNJpI+8P9dpTUUXGIKXn1dtzReff8qnn3yCGzpeffNLgve0dU0gd8wzImXV9T2JRNO29H0vz1s3rFYrlIK6rsbK6KHvOR6OlNbOwQeS96Qkjr8iNwnQRvRqkziURiu0FtpCU+fNQok+q7USfZdiYYu2Uh3uvZc5265oNhfc/fI1Q0hc3jzjR3/1r3F9fU0IHX3/OSp4lPfcv3qJP52orOV0PHHqe1xMdNs9Bxf5/uaSi+sbXh0PpOi5vL4k9kf86cjlei30sBDQcSr0A0UKWZ4uc5uNVhJpzJ32KmtBW9ABn1UufHSQPEZLwwKFVLprpUTaUgmoCE6iv7LBCUc5ZQdbAI4A+CF4jMrFf5nqVYqEx/+yqoZ8SeV+3UrUU6XA0IuT7b0IQXrv5Z6HIBt+dnCiEk3w4EWKy2RHKCVF8hGvDKauwFQcu47DqSclxarZyKbcnwhdj6orDu6Izh3SmtZSVwJahr4j+I9LgX1wCXTER2lXLkGN7BjisFrAg9UCHKvNBUkbTv3AoetBaULmHwcvyhf94PJ6LPM6lcYYuS4pxjjSmVCZw5zrCgrQ7n2Q+gjvBVzlYIvOACumKfIMBcy6kZ/qfVbp8J7Cyy5yYiU6HcVDy4ST3D3We0IsTpoav5PpFinEsa16CNKF0xjJsMYcHU2F6jSnKxIg1wC5wRMDaF1T2SZTEWLOrqkcwA2o5CA4actdwH4q7yHUR61FCcPWRrqXJnJhs8Iqxe39LTEr66QI++6ArSsCierbBts0HIeeoxtQhberSgtsm2lUudS/dP5DYRWsMqBUqlAoNKVvgw/SiGaM2Cfpu5wKekvC0xb52rzWlvfVc5qnRiPKLClNDXAKOBlbeMN4HqpoZAOFalZUYDK/hMIlFJgjuETW+ymbMWIirXHd6b3n1AcBZhm8EWUMwXuquhbpEq0yB0q8MGOspMqzCztVwefUDYnDEDBZxP+f/uQr/vgnX4mEzERvo6o0//t/699m1bRErzLnVNQR/tqPvuB/9D/872IwHMKGjkt6teUQTgxDh45gsJiqYec139x3KK24unnG5y+/ZH3ZSlHLt6/45XaPud3iuwEXevbVgcN+z367o63BB8/mcsPN9RWXV1ciOTYEbq6vaJuaFBxu6IjBEZ3juNvx5rUUEaxXLZ88e0Fynt3tLaHrsdbSVDWESNd1+OAYfA86EvD0XcepO2Gt5fnzZ7x8/pyYFFW75sWLl6zrFet2xUWzoq0sMQYG11M3DZdXl6xzCloKLgL1xGSkFAeROW2lcKGA5VIeQpEiyhGCFCXFGpXoSNqk0JXB5IC1jkBIoxoHeXD6ENjtd7y+veVue89uf+A0DGij2bQXkk5tKlzfSWtLpfAh4ZxUGSet6b2ndx7vAr0PVGvhh+naYm1DU61oVYMKSBONpLCrhvaTFvviithoIh0u9LLpnTzq4DGngB0CrQu0UaHx9CbikAjZHR2HrRuvmxoh8lQl/YdggYrjYcd+d+RmvWZ9VRFNRbu6oKnX9EOfZaSS8I+TIXrHmzdv+OWrOxLw+Wef8+z5c5Qy7LZ73ry+FbDqvfDggtA7jBJn2iAOmDWalzcXvLi5wCrYbfccDicpXEtSm9S2Dat1Qxc9IeQUfdtw/+aeWms2mxqFwxpNZYRzWGkgSGqQKIo43klthNHSLQ4/0PlA1VZyXikSo8upfEVdWapaCt9K105rpFBWGYWtNCjRDw8xYpXm8uKST7/8Pne7I6p3fPLiGZ++fM7hcOTrr39GXWk+efGCq5sVX7z8lNN+j+8HvPP8+Gc/4Xi/pXee0zCwv7vCGgEhVhuCk5SptZaQwFYNKf9dBSlsAaThSeFM5I2eEHMQQ5yB2shmIXQc4aNWRo5tgmV/PGCDSF3WdUUEnBO5t3JfUm6drBRjIaHONJAQpNLfaCkyM8rLZpPvv9IJE8p11Rid07dUsi9EAUpD1xMGJw1eBo8KisYW2T6V1yZPH4pUniEkGHpHOHi0qbi8uuT65oYYI4etULwuLy+p0oZ4ajht71DB0axWGAy2bUUm1EeMk6Y8ycd8/T8e++oX32KrChcCIUc4x3R1EuffaoM1FlMZ1t98S71qJUrqHKBw3o8AeeidAGbnsvMVc3ZBiged9xkAqrG4ygcBqWMDnVTUUiYqRdEwl1bVeqRiaJUbqARPYpJGDD7gcoF8DKWQT8Zc+RIqUmltL7hFCvqyWkYBW0WTuCAzCo1JCtr0qL1XpNhKJHaikaScTVGAGwRIGl1hbT3y+JNKuXGRJqmATp4UB4hTOWaKiVAkIDPv1lgrBW054uD6nlXVYLXhtut487qirWp8EDBfty1JS8FjINF7T9SgrXQLTTBRXcgfOeOA4kDohBQ1F5oaKkd7gVxUGWaZgagmqbvx3o0OUHZ+YLZ/lmC9kqBDBsyxFFZqob0x685HPmZSShrMFCyTGCPNY943r3OlbMuQ5Y3zWqWKI6CkH0YoevrvYR8GmEsmP5OkXU6JlGx1LKH0MHv+7IfiORbzOfJ7zgmafu+HyOHVHsV+/HMBY3/yzWv+zX/pvylRzfylgErDp8/WfPnpc9Z1yw0btveg7t5wedHyN66+x+bZ51x88Zxjf6LbdsT2klRvcHQE5wh3O5n8wUv1rG5Eq7ayXF1d88Xnn/Hm9S0pOIxOpNgT3RGCw5JE/mW7J/QDm3bFxXrDhV3x4uIZ9B5tFOv1ihA8p5MViS56Xm+/pbmoUEYLiDzsSX7gr//VP+JHP/w+xtZcXd9QVw0pIhxDP6Wm2ouWi4tL1hcb0LLY9SGig6cKDpK0MLcUsXFIKmUekheKyawFbwqiDx0GR4xeei0qQ5U0DYbK5za9LtH3HtV7aoQO0x07hn7g9e0dd9stu8Oe7X5P504yXoxCN4qko7TQVYmklKR/6hX745HuuKVPcHADx8EJhSOrrygLEU29WvP86hM+dZdYPZDigDcK1Wq41qjvNbhV5JDgpIxM/CER9x72A3rf0w6J66Zhta5wKrL3A7eu59/9yZ/xj7d/whE1Ff6pPEg/rr3znfbVt3v+masLNBuq9SXOJHTbots1lor7N7d0+yM+RHanHpsqDscj33z7mtvtls2zZ3z/h9/n6vkzolLc3+843h9Ip546RFRIuGhQ2kqBWeywxrO2ictNyx997xnPb1acjke2t1uCF5lKowaM9jT1moRju73n1J24XF2iXOCqbVBN5ObSsmodKIXFUYdIPElR3bquaa0luEE4lFEk6JR3+L5nXVdcrRtOhy34nkonrIo0VrNuKhprsBkoGysatugkWsnWlH4P1FUNKBpTYWIidh210pjQ80//g3+f169eczgeSTHxi82G9XrNumnwQ08MHu88q1XL9XrNq1dvaLShjYHTfstaJ5qmJgw9EvCyubmKkhqErIJfKt9VFK6C8BTntQvyWFVJGhblqWtD4zTdIBxOU9VUGUwpoKot3juhVfXSkMEYC8kQVCBq0XNuG4uKg3SGU7V0zYxe5KmUprEafMTFgaCMRIEldYMiYbWh1proHG2VUFH0aXGe1A/QeTgFVrQ01nLsegbfE/HEOFBVinW7RiXN6XDC+8hq1dK20kK7Ag7HA+G0xx33uOAwSnG5WnH9yWdopFmOsjW/+OUv6bpegFnn2GwusMpA93FJ4/zf/tH/M6sLTbQ5mGgPZHBjMmC1dUUplCrAc06RiCnlFHyQgswYS+uCKTtZgNXI9SugtCgngFc6az7n5iG6KNLozMufNzErrZyzbGB2AGMG7AV0xJT1l+cOgbaZoyvnM3KbcySy0ADOAXOUY6QJEBbT2mQe9pyUp1BaAkXlnFTORg2zhlfp7BVJIsz4WaI3h2VUzNdLHhPnXKKrJbsTuqMASKUYvGLXTQdXJ5UDlfkzKsiV+WNwjEy7HHnhJTKbylkorK7OMs6K0tFw9CvysUsnwTRl8mdjTT5DbhSjSrw/d/uMkvkaaVowjtVCf0Op2T2QgB5ZG35+X8u9Mua8Or9kwIMbUIUTzZQlAIjhtwWYH9lvP842H2hvM5HIFjxzinC8PfLV/VGyJPlvKcEnNxX/yW9O/NV/5p560+DDwOtvXvP61TekoAn2gs4dqVLi2/uO+y5y8BZtNgRbse+lqYNXDc3lMzm4rtCmwXk4nnKlO4bjaWC3O7E1OzZty6ptsLairltQifVmAymwWrcMrmdwA6/vXmNrzfe+/AHrdcv2Xjai9XojadMQqXRi3RhSgkN0aKVYtS0Xmws+efmSq5sb6qZhfzjw7avX7A47TFOJzJUxYEqnG6lgVUlnEICIeufocow+68VKcxipWjZYpamMRLBi8OAj0bnMV9esmkYWW++5397z6s0rXr1+zfF0wJiEtVIQhMqNX4JoOwcXiNEzODgdT3gdqHUgVA0eiUyoJNHDxhqwOfVuLCoq6lRRKYW3mUfZVoSVom8chzpw0J6T9UQVMBHMhUGdauIBhj5yqC2sDbqq0NGSOsNwbzkRMxzJpmbf/0DCzP/gf/W/43/83/lvc/vTP+fufs/q02tpzeqGMWtAgt45OueIh4H73Y7X93eoquLFJy95/skLrm+ec7fdcdgfOe4OuK4nDj0pKLSqUUpL6jKKpujVVcP3vnzOpy+v6PuO/fYO7xwqOzZaKTabGlsrtp10FGybhqaq0CFQGwF5q8pQWSkGutysMCnRH49E51k1NaumGQFgXVlskgYCComkqJiI3mNUYpV1e02JKGuwetbRalzYc7GT0lIQl2U1vXP8+E//lOQdn33xJTFFtm9eE13Hs6tLFIphGDjsdvi+E0qFEok3oxQGxeW6palrPrm55nXsiH5Ah4DzXiJbILxwpQBdanDl95TbumeALCCmdPAyVDZ3D0QCGJXR1E3NJipC1FLEFQJVZamjjHwBT4mQm44UeqjPuslFTqo0QSB/l65c8ohWYBKEnLgdI09l940pcz29RA1jlKLEEDgdDmxv70jBEJIB1YhMGQFto3T/aytpfx2gqhoUFqMrqqrOij092/t7VM4CHHZbYsiZKyObefSRw/YN97utqB+ERLIQhyDXzH9cgPlP/uzPpLMmnIGWSZTaAAEAAElEQVSOKSrH+Le5Hi4wAzzndiZFJq8+A5UPn/voMQVRa6LSBKVQmeUi0UyRoyvAuyRBQaFNJKqA1D0IqE1JjRkKnVQmF2SnVonW95jvTLm/wBijy/PDaEpeVKkSBc3KF2W+F6dz9jkeSqONtI68bumSiXrwvNLYQ2Uu83xrKVgnRXEsUIVCYKTYLxYnZLpfc6CZUsHEs3uZEeM863t23uoxYCb3eyimM3VBackYlxh9PojULiQyVSuNmYCxS/CTphBlCyMCEOM9mWThxvMrQDshDrbKRJw0OSIqTfVXpDQK3pXzNKzHSHQanTE5/+gdP37LWT60XxMw/35YzN6PXFTZyEKWFhEQKJftZ3eOr/+dfwz/zj8mkAdXgsrA8+sWrQx9P7Cq4U3/C3787T/iP/E3v+Xv/Of/FtZ0ssmmQHfqOB2PvHz5gpU37J3n9c5xu3doHfA0KKWEtqIT/RCoj6LM0bnA5mKFqRpicNTGUjcNp9Mhc+Wkze16taKpKnrVoVIkDD3Hw4kQEubTT7i+umHz7CqD8AZTNTx7dsPVTS5wyp6uz7w7a4VvHfK1CF46mRmb51QU3rawMgQsezfkCJiTDj1GoljSZETEV5MXXrkPfa6IlQKJ43HH7ZtX3N6+5rDfklJk1dRjVT7GkpTCBU90UgSplcJiUdFDkmpeYwyDlsJItBrJ+yCSWEPXs31zxzZqLgeJ8mEN1JZYG5yFXnt67Ri0J+mIskpaF1cQqsSpcwSTSKvEapU7Gh0ioTZI/7RsafbLHwhYBilUOZ06Vqs1w7BH9wOr66vccU0it6W9urEWu9L0wdN7x2effsJnX3zO9fUN6/WG16/v2N7ecdofJiWKlEiIdJ9WEckyai4v1zx7dkNVW968ecN2dyfdMXPBTFQRW9UYa4nHPhfpVATnqbShtRW11bTGSjGMNaiY6HzP6XiElNis1jRNI+M1RqqqksyOd0AaNZqjdxgUVVOTQhAqgq2ojRWOp8qcvrylxgTJB0pNgE+w3ohKy/12R11VXF1ccLe7J3hH27S8fPGMqqo5nU6igVzX3N++Yb/d0tiW9arF9R1NZbm4WLFa1dLBL+Si2xAw2gqQV7rkPbIcZ0IlWelSTusmItFk4JI3W6M12lpJ2aaIrSrW2mB0wzDA4e6eY9eN8lxFMUCwd4nkQOk8WDixBeQUebAiMVk6h44bPPn5peAvA6OUn+e9l/U6F/U653jz+g1ff/013RDRZoWxK3yS9ajNKiarVT02Y0iVAgJVu6Jdi0739v6e17f3rFctN5eXKKU5Hvac3EA4eupcS3HqOpwPmEIlzNzXqmmk2PMjsig8qEePF+CmddEwlvs6Lw6fR+AKYJo/Pn/eCGuf/Nv5cdGKgGRlxqhjbo6hy04dZ1HDfGxjyWOmSJ6m8WczqtxIBkXnc7LGjoBXo2DWmZNxLE6gVKsSEQ8jtWCqT0pnBYrjF0UhRI2Ac86RnUc/tdKS+UFhjUKb803kLNEuJ5oL8wSsZj7Fk/do/vP8PpdrOAWX5yD5HHQDY4ZAXHey7Ox0HoUuUqLm43XQmtIdeyrGEzg7FWvOr5+GIFns8X0zRaaooozXNp95Gp29qTBwlshgrL3Ka1+KZc1KuatfODt+eW7fd/x7/5f/E+9jfwCAWVBf0kYufgp4csZcR/FmfRivq1VIu1DA5QBJF+DwRiqgrVaYTvGz2y3Nz7f8e//hn/Nv/B/+H8JlHhKVBu8TTZX4F/+r/0X+C3/nJdZoDrFhUBfst1u2w57Liw1WS+rwfn9gs2q5vLigNg3JQOcUwcMwdKxXLco0GJPQpiZmdYr1xRWDLwLuAWsslVXUxtJWlvW6tOEViSBrK0obWog0TUNlWnldZWnamoi0MXXO472TwiClxmIDpZLoQPoBP3QE1wMBpQwajYqeGLQsVojyRExSBe3DgA8DXX/i9u4Nt3ev6fojJM+6bUlKdLdRYKqGkBT9IFJlPglIuVy3NE2D8gNGx3Gx0wq0StRaIgUhBpJPHA5bfvFG04aONDynHdbkMn+UTSQT6Y1n0B5vA5iINxL5ijrhNPQVdHhCq3Gt8FJPLtFraYVdlpD3Snd8hDb4HluJPNq6vmH17IZTDAzDAIMiDcJzVdqwubji5PfcHw5UTcuXP/ghn37+Bc16zX5/4Ouvv+bbb77hcDgQnYcMmrWKhNATo8dY2Gxqrq7WaAOv37zi7v4NfXcCpGLaGKjbBoxhcNLA52It0oPu0NPamsYYKg2tVqysxTYNwTu6buBwONAPHVe68G2lk6AqG1mIVEY4ylKAE1ExieC/1qyrhlVdUefOe7Jw5w1VNLrwXnjYQeQtaJs6NwJBop3e0x+O6JDYbFo2qxWRxOm4p65rLtctq7aiOxqMUVxcrNhu3xCTp20rjoctx73oBOuc3TFZE5YQs0pNiYpNm6JEghPGGjCGoKQVfIhReJTGoJLGBk9V2dy5FJqjtOve7/cSwVWJwTkp8EF0l0d4lNKU6dXThju2C9eaFAKJCMpkECENJbRSYwRNMIBsbs16RR8GKqOlUDREvPPc3r7h1atXrDbXXFxuqOpaKg5VElCkjSgQBNlIvZeGDVVakZKi6x29C1TNCmUqToULXq+li+rJoSzoumV9cZUlthLdUbj0ISlSXqc+Jvvk5Uuq3LjqIbgy1ooDOlOiGAuhCkDKP5sZv/jsK48loSqosy9jRNlm/pjwgRUYJbRDZUTRxNqJkmF0iaGOIFNrBVoKscVxzR36SjOuskeUgsYMmkszLTmOkdrTAmxFxHk8L61lbiklNA2y86ezKkM5TgHl859n4c8JtOciuhjiFClWJRuUdfHU04BZqRwAnDmfSTFSGspj+adcxHdOa2D868RFzsHns/OE3M9iPImUA2oZaM5PUKvcOGhWjFfORYFSMxSbr3MZV0KZiTkKnu9NiOhQihzjGZgdnbhyfQGSyGCKTneB0eNpT8dJE0UnIQBf+sxmFZVYSh3lHh2Pe/61/9n/9C2z6Nz+AACzbB4iwq3y7lgGjc6i6gZlZHK6EKSK3OabnieZDBAjcjpeil223qGjZzvsJOKCAO4yHv8X//o/5H/+v/yHUqyIUD8qC198cclf/4/9kE9fvqC2hlVTcQiJb3b3fPrJc370g+/hXY/2PVUKvHzxDNefuL9/w+vdnmcvDVc311ybFS7VnE5HVAU1InNkK8ux64hRqovXqzXGCOjd7/eEGNgfjzjvqKo2e1E9ymhM1WBzh6HgO8i8o+gGfJSCKEWSAsahB+8komVlsIjEnJfBFgMpBEIcxq+YBpzr6IcjMTnq2mLMirpdsTseqbTCtg1owxBE+i0FhUqai4s1L64vqOuK/pQIzqNtxWalwSXoPbXRBFWiapC843C/ZecMz9UFNa0UmSUpdEnK0asBbzy6Bl3nOEZwuORxOHrtx4hmHxwpwt3QcQzDWYRZMfUv+QOiMJNUw+XVFc+bH3K3f8X+eGTXndhvD5guwuDo+hMDjkN34ic/+wnfvHnNy08/5dMvvuDm2TNcCHz99df84uuv6U9SdKtTTrNaTdRwGhz9EDHWcHGx4uJyQ4ieb19/w+F4EEF5hLe2aldcXq9wceBw7DDNiroRjqoyLU1S1Aoqrdg0DaumRleiRtN3Hbvdlj6E2YKaJ230WKuoq4pVXVGpiDt0qBgwClSKWK1oaktjLbWedYVKQldK5Xgp5Ic0ttKsmhY3DJwOB66ub6S1rvdYpWlthR8G7g9bdvt7bq4vQQn1KaWBdrUWOkJ0oDxaJ+7v35CCp60uZCNPUfjRwRNTxNYVpUW2QiL5ku6N406iUCMoUaWqWkLEo0ZuiAmbyO2/RT9XmkBEnM/ScapcwxkAypzU+YarcyeuTIwa05+l4Fua4pxHw8pmV1U1TmvqumYIIasWBOlEGT3tasWz589p2ktOw4CPDmNhcFLfoORScDr1AnqVZnc8cn+/JYWAMhLAePPmjqqquL66ZHP9HG0aARC2pt1ckFuDkmLiuD+KjKouxesfj/3d/9LfFVUla0e1pLrO0qXG5H0ggzvUCIrn3+dAbA6WlRLJMZEnewyYR4DMeQRzLJYzmSakZ89HY6yAXKNA52yKUoqYpNuqKRFmDQYjwReVYaHKwaX8Xyncm4q8YCwQzBnVEsXUhT6RSmvnqXhtijBPGZYxUjt+VjOm+NUMlBaAWMDquJSIK3lmKf8bc0ORmVKkPD/zzh/aU9Fl4Wpnqsuso+N5hHn6fnYSCqwpEfM8P1X53NPeN48flWt6HsmXF6RQ4tHT8RWCl0xKWRpzdrSSNSiZCTVRMqR5zjlYLseLWSu8rDsj+CaRrBopM1OBoBxht90+uqZvsz8AwIx4ayVckdMeI6FHawiy+Pko8UKMIUUvm0dUmctUQdSiD6ukG1IAmVhkaSYiXnA41iT2kpEVp5kR0/GnP9vx51/9fykUnozhsUbzV374Of+5/+zfZL1aoVSkNkD6lrrS/Gf+0/9xBnVLbJ9jrj6DYSDtPUMnXYJQnmhrkq0IRE4uUA2B1cZk7WmPSyLD1vc9zg3o2uL9wPbec7/bUrctm80mR5lCFhAPRN8TgptSK2GAKHBRa+FXaqThQQhOpH26nug8cXAMXU+MDq0VVS2ACJ5zdXOJd55+GDge96wqjakbXEijuHnQYGvL9WbF5WaNIhFOiNRRXWHqBuUVndvRn45UbYOpJcoeNaigMFG41RUWj1TK+xQI0TOEgT4e0FZTW0sgMgwD0YkCBgZQAUfCDxE3BHYnR+f7B0FldfbbH4q5YeCXv/iGTzcVznkOw5FkBPg451C5A1gMkTd3t/z0619AZfn8+99jfXlBInF7e8tXP/+K3XaHURajLUMcZNFWUkludWCzUqw3NVdXG6racOpOUhwWSyMDUUxo2xpjLHf7LUOIPL8WBQ7fBy7qtehnA22tuFqtqJsaR2R/f8/93Zbu1LG+uOTm5gattdQeOA+VZWUFLBhjGE4d3eGQo8saHUNW2dDCYyaNQLREPsaEZG6fq42R5iZtw6EfhP7UNvhcfb1qG7SG/faOU3/g4mLFp59+wsVmzW57CwTWq4bt/S0petq6QuWOY21VUxtLCKJMMEX+pFulGquuwnhuaOF5hrzukXIDCa2zoocAbpREhH1WwNEk6spSV1WWAXN0fZQqe5NBcR7+VkvEOVIAUdns8qCaRbvUCBpK6voMOcz4l9IqvVTYk4FAUmCsYbVqubi4oG42JGXovSYpTwhOKKrorA2taNo1dbPi9v6O3f7Ium1BW1EoqGqqtkVb6cIYkxbpsixjidbUtsZWJxLS2VIr6Sj5Mdm/8C/881xcXp6D3Lmk1hnQyrSEt0SZHwLhAmTmKHAewZ6n4B/ynsvLzsTtU66pzjxjwVo6yzlmZYTcUKsAt0I10CVlnOdn4cWrWYT5DBgqceALTzrl91UFxkpHHhIQ4zk1pZwr+f1LQaOfUS/KZ55/n5vQLcxIc5ldgim6msf9qAwSQ3YefvV9n4obBTDrJBnhYm+jbszPtzg7kxShAGFtcsOR9BDwS4e/B7CdBEKhLOOHcqvk9T6KVzFFlOU+uVyIN1JHGC97uYAj4J9Of/ZzGYtT5ACjphbq5XOLDOKvvKSj/UEAZjUL4ZOrW0eXynskP5/5USnxyLWD2YSTGxVimdWFL5tAmXzclOeUFK+oBD6VSSzFLWQp5wgUKplOkX//T77i//0nX42NE6yWv6/bmr/1j/4JRsHFZs3z6w1ukEYrP/rBS/72P/c3aCoNtcGTWDc1fX/Ari4IuiYCdU77VJVlo1es1it0XYngOHA4ndjt7jmeDqxWa9q6knam2aNUEeEv56I/laSNbm0MVsniEAi45Om6juHUEXqHChGDom1r3OBIqebq6oqqkk6NQz/w6tUrGitFgZub55x6R4x3HI5HrBavotJINT0wWI3PhYCoCoh4N9CfDigL1+01IRqOyVMpTaMrGix1FEF0ZS1UFUcVJVpOphdo0cyMw0DwbhTY1yTayoojoRP3t/f88R//+Awel/v5h2Y+RLp+4KAcV5dXBG+5O+5pmpZQg7WJqCK//OaOb1+95tj3fP/7P+SzL7+kXa95/eaOH//Zn3N3e4frHafTie4oTVAsJo8bh7GRi03D85fXXF5scG7gdDpKi93cTMRaRbuSAtX94cjx1HP97AXr1QUxQupPECJWKWqruNi01Fa6vBmdhA50+4YYPLYSmkRwoqtqjCKEQBe8ZFiC53Q60B+P1ASMEtpGbUX3WaesAjNWZZcNO0dQ8uAwleHq5op23XC327Nar7i4vGC/3xODF0WMVctw6NA6IUM8cnf7itNxz83VFZvNirvb18Toubm5Yb1p2bmeujIEN0CSBj0pBJRKWKPJmlWofG4FPCelcyoy5Fbf5LVLSWOBmCvRSaM2KqpEsAASbnAMg5+0nWHkKJcCSKUkzepDEBATIyEoShOjGCPGVCIThSImN0byTN6QS7vhlKRFuzEa51wuoJTOe957ulNHP/ScuhODVwy5y5i2olUrUnSJoZcCxaqusVa6wIZcRGW0wdqaplmJ3FpMnLZ7Yky0TYPSFcpYoh/ovWfIVD6UZrbPfjT24tlz1hcXzIudJHo8a0s8psAZKQyFhyqNa2Zgd879hByjmsZGsYc/P9WJb4xPjj/H0bkuj6l8HpmRCkygtey1KUvljd5cmkCUKcVkT4DXObd47jiMzS9mIO6pz/W245Sf54ok85/LyUf0SA8bn5c9heIkpnI+MRKiZDkK1hmP9eC8zjjNkGmUc0rJ9DU/9/l3OAfM498yB6y8W+FZy31JWPP4mjw87vl7G6Q5GpQ1YB6dL9/nUeay6E7ge3rd2FRq/t5AabQ2/8wpZ9hSSr/5CPPbKmZ/XyylJ2J/iVn6Ik5AmvkTy2RVkIq0iEzFENzs7+XpenxdoXyUCT23LKE9a/75+FAgai8qCCQfuoF/+//1H06piunMuN5Y/jf/x/87eFkMmrzRNSryr/6r/wo/+qMfYIBaeeHvAklrbFWhq4r1xQVoRVSaN/f33O3usbsD1xcXbNpGIk+jrqUnBp+7MUoEzVVSPBFjYEiJIQrFw3c9fhhQIVKbCkLkeDiK4sFuz3a3Gyf9MARs3XJxdcX18xfcbY+8enPP4Lx0UQLhMw8OaxQ+wuACQTmCkq6NQ5a3MiFk3raRNIzWBBR98FTR43IKWRkIyRMQLeDUJ1wKED3eDwIKugE/DMJdvdzQNi0pRI77E99882Z2y9L50HkP+/2fN+UzKQIalxL7rufn3/6Sn3/7S1TSNIPhcr3Cx4GfffVLfvzTn+MDrC6uiNpyGjzfvHrNV7/4hsOxYwiBYz/Qd4MU7yhZ5NGRyijqpqFqV4QIu8OJ+92B/aGjH6A25K5TFUOIHE49g0/U7QZTN+ATygySIkdjlSYmOA2iZxqs8FUPJzmP3jmOXYdPmsF5KlvhvaN3Dh0TJgV5bj8QtIBwq8GESO2lnWylE6XNrxRva5I2BPJG5iNGWXyC4+DZdT3aVPiYuNvuOXYD7WpDQuFyO+HBB7b7A8fdjsP+wMvnLxh84DQ4QkiSAdOG3gei8/TBSYpSqdyiV9RmdARVynizlmciEa0SvdsgihNEKZAiFb3UqTFxSBEXEt3gOXYDp36Qn/uBbsgZtSRJPNF5LiljUbWQLLFU+wu4luMpYPCRSksGL6jcYtlI2jQmYdIpwOcUdO8k49Q7T22l+6cLiVPv2B5P7A5H2sMBU4k6TqaSk3yij46h7zlsO/rOga3Rdc3heOJ46vAxieaq83lTVXSnjv3hgNWam5sb+mGNVZ7+NODdwH5/oO8GaiMR6N3xdDZvfl+tnN8f/5N/QrteZfm3uSpGjhvNgKxwQ89BWEzzv+ef83FKcVhMSRySB2A05EJV0rn2M+T7n8droRQVh1RAXgHn0+ukrf0s1c8UZS6RYlKRMCu83eyUzd57fn3mxWyzP07nOwvEjVHq8rQHO4Ep0fk5lYApijkH4MUJUzMOuXSom53jHDAHyZSOzk2+3mMkeQ6Embjoch00RpSInzy/8voyLh7aSEMq5zMGJEuYv0R6pVlJwUYPgfm84E8+s0IpK8GwUjQ8f+PZYC2fpQQrlYqZI35+bwsGfAjUJcqepsY4s3MBOJ3ef16r9B7P+tnPfsYPfvCDX3mwxRZbbLKf/vSnfP/73/9dn8ZbbZnXiy324bbM68UW+8Oz95nX7wWYY4x89dVXXF5ePuK/LLbYYueWUmK32/Hll1+eVaH/vtkyrxdb7P1tmdeLLfaHZx8yr98LMC+22GKLLbbYYosttthfVvv9dZMXW2yxxRZbbLHFFlvs98AWwLzYYosttthiiy222GLvsAUwL7bYYosttthiiy222DtsAcyLLbbYYosttthiiy32DlsA82KLLbbYYosttthii73DFsC82GKLLbbYYosttthi77AFMC+22GKLLbbYYostttg7bAHMiy222GKLLbbYYost9g5bAPNiiy222GKLLbbYYou9wxbAvNhiiy222GKLLbbYYu+wBTAvtthiiy222GKLLbbYO2wBzIsttthiiy222GKLLfYOWwDzYosttthiiy222GKLvcMWwLzYYosttthiiy222GLvsAUwL7bYYosttthiiy222DtsAcyLLbbYYosttthiiy32DlsA82KLLbbYYosttthii73DFsC82GKLLbbYYosttthi77AFMC+22GKLLbbYYostttg7bAHMiy222GKLLbbYYost9g5bAPNiiy222GKLLbbYYou9wxbAvNhiiy222GKLLbbYYu+wBTAvtthiiy222GKLLbbYO2wBzIsttthiiy222GKLLfYOWwDzYosttthiiy222GKLvcMWwLzYYosttthiiy222GLvsAUwL7bYYosttthiiy222DtsAcyLLbbYYosttthiiy32DlsA82KLLbbYYosttthii73DFsC82GKLLbbYYosttthi77AFMC+22GKLLbbYYostttg7bAHMiy222GKLLbbYYost9g5bAPNiiy222GKLLbbYYou9wxbAvNhiiy222GKLLbbYYu+wBTAvtthiiy222GKLLbbYO2wBzIsttthiiy222GKLLfYOWwDzYosttthiiy222GKLvcPs+zwpxshXX33F5eUlSqnf9jkttthHbSkldrsdX375JVr//vqky7xebLH3t2VeL7bYH559yLx+L8D81Vdf8YMf/OA3cnKLLfaXxX7605/y/e9//3d9Gm+1ZV4vttiH2zKvF1vsD8/eZ16/F2C+vLz8jZzQXw5TD77HX+NYOr8+H0slSNPhVZqeaYxCGQVpHlGYn4t+9LhSoOYHeYellABFTBBRoBQppfw4aK3RWj+OaOTDWxRKyddDL+6pIEhKjMcu38vP8/d9dBz19PEeHufxa9WTPz/1/mKRlBIhBJxzTx7z933elPP7ZyuFyZ95+nRx/DnNHi+/KB5f5HLdPjSqNX/+2+7t/O/ver8Y4/j7w7H5Psd83/OUF8pMknGXyMOPcrU07z5uQsnlTACKRJLfI8QEifTW+xAjs9c++PnB2yoFSpf5XubW+d+ZzR1tDMYYjNEYrbDWYKxFa4XSCqXAGINGjddOzQ+SZL2JMRFCIoZIDBHvAz5GYprmTgiBFOPZfVeztSVFuUp6dr75cp1dFxgvPglZNSOK9GCM/KqxqTHyvNn6M67kKfFVdB/NvAb4r/03/uv8lb/6IxmfGjbrFTc311xeXmOMJUUZCyF6huBIKTL0A6fuhPdyb2KUPWw+r1JK+T4CCqy1VHVF27RUdUPdNKzaNUlBiAmFjB3nI33fczqd6E8dkNBGo4AYAkoltMq/pwDI/DXaYK2lXbUAbO+3+OBp6gYAHzwKhbWW1XrF5cXl+Fw3DByPJ7q+wzv/lvVcflYpolIkBkcYeoLvIAaMAq3JkwhQBrRMGKMMBk0ZiSlFYpm5StPULRcX12wurrC2wjmPD4nBeYYh4JG1wPvI4D0mj/8YPEN/4rjfczrs2e/29N1APwx0Xc/usGe73bHb7ri/33K/23I4HHD9IAtIGespyaLyaMI8NvXuP/+W7EP2i9/e2b3PvH4vwLykdWZWLsWT903xYTf/qUOUncsAGqVBj2AzodX05ioBKkJSaGvQ+mlgHEJ6AKSLRcib9NOWZhurPE8p0GjQeVLnzW46/ac/v5oB5ofPefo1Hz4xfhVgfvdr3w6YH1veJfJztdbjpvK2Y/4+Wjk/oybADDJUNJo4u6/jp1Ogknry9nzXNPUZYObdd37+t6dA0Hx8ledqpdDvuBe/aqS9dWwkAQLyf2L+KeT3dy4WE2CWI48/JzVtXCoD6XKU8lylEympcVrHPCRTShNwTOWcp6/y+3yZGudNvn9aKYxCvrTGGo01Cm20gBktY94YAzHIuRcUOwJmRSChSUQUUU1jJiZxbMpJhYfXO1/n+bWYOx/vA5jl838YWB6fk/L9LN7F+eE/mnmNNfTOcfPshhA8MXnaVcPmYsPF5RqtK2JIo/NSBUeIIV97eSw+AMzFmSnrfiShtcZaS13X1BksN03Lar2RY8cISDDFhYA2Ms5UHuXGaAkNxZD3Fzn/OWC21goYXq2IMTIMAyEEmkYAcwhhfN56vebi8oK2beW51spc0gpfvR9gDs7gNUSfUCnInPhAwJxIaFuxatdcXl6y3lxijMX7QO8jxnnMEGTuGoNShkDC9QNGKyor8ysGT/AOlRTWVrRtS103+BDZbne8ubvl7u6e3X7P4XjksD+wvd9xf3fH7e0b3rx+zfb+jt39Ft/384GSwTR535Q5rbQS0P1w+fpNoOn51EmPfvid2vvM6/cCzIvN7IPv7eNRNgeOjxZzpVDKok017nBGqQkExkgJLcs3Wcxkb5jf8Am86Af4RtaIlDeUdP6y8pq8eZZowrhQTljxL7XNo2G/7xvoB9kcrKlZBLE89pfs5r8TbJW/jf/wtun0W7RyfozzFMrPj6PODz/GCKTz41oriSSP69P568dkV/6bMgbSDPRHOWiKMIe0UwS5zJvz85C/z7JplNf/KhfqXSYjdr5+/cq5+gSY+lhHvLGGujLEEDl1B7RWPHt2PcsGStQ5hRwOUY8zeG9b58br+dTfUCg17T8JiXAmdAbg80DMeEDGVUap7Ho9DqzMAXt57Knvc3tXVvKxTRM55UwI33HPS4hjGJM4Hd4HybrEREgQSYSU8DEIuM6A3NSV7NkFz2qFqSxGW6qqpl2vubq6pm1XhBg5HA7cb3ecTh0xJbQxkBTee4a+ozsd5Tn399ze3nL75pY3r1/z9ddfc397x/Fw4HQ84vuBmJ0kZTQpX2NtJeOklBwzxjgB7fNLdv77w4vxrt8/ElsA84dMhLfc5GnBeBC6YR7dUY++5hSGaaIrEoaEyYtImkVXEkqb6WeVKMA4ppLQzR/qUUS5LIDqPReO6bONC854dDWL4pwvrIt9fPZwwyt+FDnK9nAdVCXs95ZjfWz2XSgkBSyMj+V/J4pT2e6n3fY3PkcysHjqsBNAfO9DMXG80llUOk1kEVKKZ2tdiUqTBAQpLedTYmwxRyEjkaTkpwLuC3FCgHLM55uPMwYQ0nfbXB+8Zg6a3/kyxRkdg9m697GtccE7lFL0Q09KCa1Nvn+TwzO5OtOIfSpbNrfxOs72rnENEQQ93uPpC9R4r8tYStO5MDlRD4esevA+cB7IUUqdUbEe2vl5vPseKgXE6ZxnCZsPNgVUVUVd19hMaconJECahDIKpa04mXmtDT5gjJKYdYwQg2RZlCKmhPOe3g0oYwhRaBwhRaICtKbdrLnYXFLXtQTBEWpTCF7oNscjp64jhoAbHNv7e16/esW333zL7e0th/2eN6/fsL2/57Df0/c9fdfR9z3H0wkfAjEECd49/MDvuhh/APaXGDC/xx08S7+eA9/zdKd+ADrOvXL5e5n46hGAntuU2pwvZdMmXDYspXRegB4lJiev+OyYnD1vHu2Z9vRZEjlNv6kx3fQu+gZnnn/5/OdHnZ736wKrh5ufLNbffUN7uJC+z/md8zf/QGza86Z8+NzKWHkLSPsu9lSK9CGn9eHfP+S9Ho7Lh6//kGM9img9GX2au5TTxZqcz/HMxvPT2uZIbZpeL2j1nZ9reo/pnGJ8DAzeFiCfHp9Hlsu5CVCW550DlLL5SxpdU9a1lOb3KIE6jy4r9fj8yuvmEe3pb2oE4+dXbfroZajOHno0Rp+Kjj5lKgcpFBMoFKfk4wLLAD/6ox/xwx/9EcYYEhpjZB0v32Xcyc/OC4UgzvjkD+fMw7mZUhwHUIlaa6XRWgnHXSlCSnmvErAXoxw3zCLEJRjzqxyaaXzHcSyWTOh8Xj5FDXufTGCh40yOAMLZR83GRfmXcb6ehaoevMWcvlKut9IaQn4sHxdV6hkSKlM9xqj/uB5I1qCqa6yt0MZkhzSftinUlYqkwMeANQZrDOiEtYambbm6uZYjFjplSvR9z267o+97ocSEwH6/Z7fbsT8cuL+74+7+nl98/Qvu7+/YbnccDwf2+x273Z7T6cSpO5FCOPcy5gmi2ZwsjvX4+3z+zibwfAiWx5+uX5ocp/d5/LvaX17ArPSv8IjU49EfCjhmjCQ9plZAudkF2E5vpGY3/fyt4DzLMW6Cbw1r5536vVNN8+NO0eYzjD/bPEt2dIr0lJelsye/a5F7Chj/JsDyeJZjFG26vn8xuR71zs/9sdlZ5GZ8dFr0zt3A9zve+9rb+ITf1d4GhB8C7Yfj8G2p3He+1/jPkydyBpqfAogwXdN0liF6j/cf5+JTJ/AYLM/XmMegVKJX09o2PecsZjCjTMhxylowo4KoQgWZQG5JbZ87Cw/P4em5O4cp5ZOVjz6f9mevVuJylDvwVLr+6TF6/pia36iP0F5+8oIXL57TDydiDGhdjan1KcJbgEl42qvi8TwaQSAPsixqHgzKlD7KeNKkEPJrH1Mq4oOMzUObO2tz8PnUuZ5lRT9gfSmBgvk4nWpv8rkqxmEyurapOJaPx7cxBq1NdijMdA05dxamI+bP8PDEpg8oRZK6nM9s3U7TOcaUJPecf5djTpM6ZVBrdCnwNaSUWK1XNE1DYytSLhzUSjEMUgh69+aW2+09x90e5z3H04nueGR/PHJ3f8fd7S2vXr3izatvuX3zhv1+x2F7eHTtUwKjJzA7x7NpXNvG0x2j/eVxrfXZ/X3KgZo7Kw+f/13tDwowP1wEn1ooQbhDRluSekuR0oOdcEr/JFQuSTiL7jwx08f3TPIcWXznwK58V9O2N/fEVKQURYyApXhuKvOWk3wa8oaHKh5t9npHkDBN1GmDK+c4B9Dzj63OokUPgta/Mfsu4HkOVs82we/wXr/uBHqfyMVHb3O0hWwSZaxNT/n1r8GTWYMHf3ufKNH73NPfRIZjjI58wMw4z0IpVEawZdMtUaaUo1dvB+SM68mcMvWujz4BpWkTmoPOgj+KGoY2U7FxAcspKyPEBKQSdIgochFijnj5FCT6lRKBOP5eQJbKC95TcYkzK8D8nb5wWeenK3v+md/vfp+twdPb/8p15ffVzrMF032dov7izIRwnj04DwC9IzqXeKKWvERkZ09iAokFqH+XdXfu7M5/f/ich2pNc+D08PVnx3jqnEaMPKOcIJ97dA6YrQUPfCyTI7xyTvK3GCOpZFnSeFV4ONLGv6dp/OuMQEbwmxJF6mS8d4BOYFBjJdPbHMR51H7+PJ8z2VVlsMaC1SQNVylh24b0yUuapqWqK4zWpAT94Dge9+y2W3b39+x295yOB1598y373Zb7u1vubm+5u3vD9u6e3b6j7z3BR1HLSXFcX0q2S84tjdz3Yk+Nyaeiy8YI9gnhYWnxd7OPCjC/bYKUG68y0H3887x4RRb2+FawPKclzDeiNPPoyiaSHnuDj1Z1NfuC+aQYJ664gOPiNsVSzo+n1Jz/VXB9RCXEe1USNZaIwWxxyEoaafbftLCd00vmFI+HC1R6PKf/UtuHbMZ/UJYX7/cFsb/ycLNxNj/m/NgPN8CHj78tcvyu9/uLvG9Pn/987ZjPNVUCQ4+izmfH5HyVKPvFw017fMI8ljUDyw8BEkqNxX8j7zIfZAQ7aUrJK8q+nrICxlQwVTY7+VvRwvvVPNmHH/IJXPYkQH784g+73yk9CFA88f3jsUTKReG6KJuc1c3IfShqGO+jcvMI7D4RyX14s8a9agbSpyDUOz2h6ZCz6GHhK89/L88pXw+L1p+KOD/9AZ86m2l/TmdPUqBlFuuz+RPRSROR84wp4r1Hac9ZMWSeR+M+PAbIJDcy0fczCJ47NLLZC/CO4sFqwGT6y+zMx891/onye80Bc47EFrURpRTaGFIeJz4EcRS0gqTRmQJSWYu2lmatuLjc8OzZM4a+Y+hPeOeIztF1B/rTCe8dbujojh273ZHt9iiSePf3bLdb7u7vOewPdF1H3w/0Q+ZPDwPBh5mjdx5Yma//8+zD21S8vutc/r0AzPMF7V2L2tsmtKQSH3OZoGxOMC2epXzlLdN0tpOMz0vTBFFMnuL8uIJBf/0FVcDzVGQzHfzhWccMe/OJ5Ipn4hQpmqcxYjp/vVKgZ3SRX8UdKxvJx7Zl/HZsWnjfJin3B2sKVJqkzn6T4PNdYPkpQPzUe/+qCPPv2sk5f9/HW5tWkzZzgdRvpTw9OvZ8zj/x5FlQ6uE5CRiYVA+mc8oc1DGiVo4hG7s2KsexFDHmLNzsPB6BlZRyQOwDIo0Pb9V73jrxST7kfpcxxniRxnXvowPLj3wk4RZboWSoDPQELJfo3nmK+6nv5efxuephVmgKYk3UhhJ4kv0nFpA3vqYc493ztqTVHwLmecS4RJfn97tI452D9Ldds1lUt8zB2bgnpSwYxwhqGYNz+VxRQk1iogWEENAhoEtSJhWgi+zdUwRM3rPM4zjpu8uerSbgPIJmcUQ1apQIHXd2pcZzPF955G9azVRHUs5Up0mmr1B4ynWd73vl2oYYx/fQWo867raqxFGra9q2gqtLrBGOuxQcRgYXRZfae7zznLoTh8OB7XbLfr/ncDhyOOzZbrfsdnt2uwO7beZMn04ZWPeTeseDMfM+uOZD7LcKmN82MB9GNB5FOD7weIxDarL5RJ9HU844Q2853sOLqFTWO03T+0ygeZxJbz3vt9mj1NLZ6Ty1gOTNKFcbjxNBiSMwHUMkaop3SpKIeIwShdKF/zSmkh6D5rc5L2n272Jiv89tcn9bNl9sHgLW73qc+e9PHfNdoPltr33be77r99+2zbM640JC2aMzteFXHeQtoLccZ/6E8W/qaeA3AZyYpawm53pe0HxWtzE2Qslu9Hjc86LGKStX/lbSrhJxjmnWAIO3Y+FHt0i97Q/zJzw9Rt5mc6Asvz8Gix+bzR1bAUB6XP/Ll9BtGKPFBWA+jM7JU9LDN3hg0/44nkHBgmcBnPjoXs/36UdHVY8jyg9B3PwzPYw4fggN5HznnZxHGbNlvIqzKJ+jBBBmcyB/RpDAVOEyp5QIIUf1fSAGiEqJ8lDubYAWSbcURY1CI4WAKjICYZ0v2BhhTglVii5LRBqhZuQY3AT+559KKVEFCeVc5dqZQiOZXeOYEt57QoxYY8a/CUjWoA3eR3wM9G7A9T0pBVpb5ch1plqQBIg3lqo2jHz3JNrf3vvZmJDx2HUdu92O4+FE3zsOhyO73W6MTO92O7qu43A4iHTe7S3H4xHnHCkl2raVc888ehC6zFxn/H3sOwLmEmucCkWmx8iPJ4yxZ8+d/70sptNCr8cox3ixYKptKw/MQyXjzzPAl2ZeYvagym4hp1lm7TuA+fxvBcsqAZ7TK1M+udlqMHtBGo8z//3884Fg8EQ8m+TFWxQfNoyHlaSNiKuT5Xl0yh7nDPhOq9N07lElgo7E0pFs5LHpPLnzJJc7cx4pYLaIJEjofBll4ThbNWcbn0Kh0zn3a3xaiSQ+fOHsx3H5mb2F/Jzy5l8ueVm0zj/3r2PvSzX4XUUqf5P2sNxs/vNDwtHZVB/vyxTCeFgIxONXP370HZ7++4Lb73qvvvv9m4/cDC6Zff7EI5GRcY5n7bJpfdM5yjelG2N27JNSUmuRh/Wj+Vbm6uzRQqOQWyProBqzTnGK7qlyfMYTncCFvDSWa5Qr95XOTUiUfIY44wbGACHG3MtEIbUTpXpY1veYEjEX0qek8oYvJ/vEMiGnOV/byic76+6ipsfGa00G+OociT1a+mevQckK+MRQnCKkH4+t16v8Ux6fIwAqqibyPeUxmBI5+l+8Kxgv8nt99DxG5hf40etygeHYCqks7ImzrrYPj6wKUWFWm8PjdePJ4FuaYYM0NRsaX6um+QvT3vpwTy+gmRzhVkmN2TafpBtgsRKFJgldUqgLGjcEgnME5zNwBpQGI9EseU12XrN8W8q1U+Uz6KQmLnOitAUd91yFRiUNSXPW8qc4EWTgnRdzWVfy+M5zKeRz0TEStZZ5HePUzGrmkEgEPebrqzJFVFHXFRpLGHp0RuxF21llkJ0KO6DcG6OxVXV2P4013CjFS/8yc5Fl3SiR+z53cjwej5yOHf3gOByP3N3e8vrNG+7v77m/vWW323F7e8t2t8MPg9RXhICKkeAmkP4u+yDArJQVr4MSsSgeqx43AfINf9jG+TEeegCe88RNeZEbn6Om9K88MkHRVF43u7gPixBkzqvZ73K892ZP5HmcMkiLYwGKTKyosk7yCC5lkKo06SqW/aW8ZfE8jSnOgnABrRXB8hgUSllSijgfUTpRVTpHQDw6pz51ShgFldEoIyEfo4sQaiBGLwMrRZIuBTjlympikI0sInNLGUNSBp/AxzJpZMOOSglHMmk0Jqf0Igo/TrRy53SeNFJ0oOWemOkendkcDJ9d9iSSO6lAkHz9E7Po+YNXpbcv7O8LyB6+Zv73+SHUgwXjY7b51lDswbaXf1Y5AjluB9O+Oj7/bdfz3cD0KdD8VGR5/txfl17x6zo7qTjMGV1KpX+SNKdiLM6ZO5/ylWW98r9JiIHjACtXNyVyOkhPznbKbm1xHJ+CcVkBSArxCtCexcDM5NyE/N0qhVZ2BqLlK2bAqckdLTN4TnleqwymYj6dOHYfVNKcIeY1N4EPiRhy4XSpAUmZq1ka/5Gx+WxNKABOzqKsX/NNZe7B5Vel8qwCmuW3WJ5+du+n1+m8uKji0OfvsaSdPyL7e//8f4WQIhhFCBFbVwKMlRrvlwuJyGwPj17UoKJCq9KURjbBc7pCvq5aY0yFMRVaG4y2aGOzs6SIKZCStFsfNbqjtMBWCkIUregC4LSWqG2hBsQYMy1AOo9KNFWczhjTSC1RStpna1W+clCnaAannAmMZQ6m8XOVjrcoJBhFIEU/AnutpbOtQqGSRquENQZjBYyGFEnKjCICMQbZO1MiuIBqIHqPC6IGEbzDDQM+iLOotEFhUFo0sg2WkAIh5eukkUmBBMt0Kigjw6wo7edTguATVAprLCopfEjZWc1Qepw2sk5lBXSUyZurimhTyT0ZHfy87sSY56fgjDNOtcq4J3OhTQbAhohSc+3vfC5aZX12T3G0Usq4Ka85SilpoKIhEVG1plIKpcvsN5Aq1mnFVbwenb2ExvtI3w2i4tF1DN2J4BzH45Htdsvt3R27rXCn9/s9/9d/+G+915z6IMBcV02uXjznC+fPy7jwqLzIKcrdeRQgOLd5pPGpn2cAmslLksfnYHhu0wbx8K3ny+y7NvKJuzz7HREIVyS5cQVAP3inpPR4poUHVyLoioAiYdBYpYCISglLxCpD0tl/1GCTDBYdAyl5NBFNxJCwWmG1orKKujYi00IUrzR4lJk2VtlmFT5JpyEfAg5ISZOnAbrSKGPxSdH7SO8ig5eIlFLZI4zZSyxOkZnur1IxBw4mbnThWKcxF5SjEGq6+o/52rP7UiasKo7V2V8fv+6Bc1bsfbmt77JyKm99kz9AG8Eq5A3lbXG2Mv7LvXrwp1/z/cvPvyqt+rbn/Lrg+rE9dDPy73k/ntyN+XPyvFAC/UiSjpWnqdm5l7Es61uJiElL+kRSkhUSmS55jzQq45A3vuKMl/lXLgSjkyMvFaqWUgltip6uwViTVRUYI5PFKU4xSRMSpdBFSiup3AW0vEGZ2dnpzRv7NH8YT0iNDbTz6c2WVFXAuBrLlMqlOVv7Hx6z/Jse/j7uUw9XkJwPVA9zKhnE5zT5xzTtr64uOZ0Oso9U1ZhmL1mM8b4kpsxH+RrHXRqdjac+vIDVsp7n180cXBmXzDIXcRzjI50HZseYHXv2mB61nKfgRDn+dC8fnkt5XjnTUn+Uxqk6JmxUQRhyjmXPnK0+Z+eltXTgLaoOntLBME77PUCIeNcj7RTlegYfic6L85g0ykZ0yjQLBVbn2ZmvmdIao5U0M9GSBQlBWnyH4IjBk3JLc6VAm9Li2hCUOLFTdLnUK0AJRp7TVM+X73Nq63Sv5t/L1S0Ziuw5567EYZrXj0bPhNDGK61K8LWcSJEwDLIGqizfp5B1Q1L0ck+MQSkLaKpa0axWXN5cy3mHmA+XG7/0vXCfnfvtAeZyaR4V5oy76cOLwZOX6TGMffJtHrzkiY34HTbfM+fp/1+Lj5Yk4qrmadEMBKd9TuXFPXtTKZRRhPg+EZUEMFdJUaHG51RBUykraQ0CxmhiFQkxoAigpbuOJmE1NNbQVJraaKz2GIMA8Px+ldZYK9ypKFrpDMHTDY5hiIRkSarCR/AJUIYI9CHJZ4yQQsLFGaRVSLRYCZCPBFIKSCmERmlZRFQy+ROr2Rp8zjGbAEJO01BmnB7v9wyGUd7+yeFT5tu4aZ/ff7lVvymwNB338Wf5+OypzerRc/L37/oJ32PGf5C9jV7xvlSa34Y9BFuPz0LG9gSASzp8vglNYLtAzihhqOx8TteyRG1Sglh6C5FGcCxTaIrKolQGvyqfjUQNdY7OWSPdyLTJ0TojkWqtFVrlTBFJwH0+RggT8Cotj1MCFRUxTCoZpaho/Lzk3KDKYHm+ST+4dnOg/P6jqMz5h8ctC8U5UJ6DvYcM8vGdx73u47DgA1ormrbhdDrgvT/Toy21MCmlsUjtsT0NlOd/Pb+CxdLYoKbsuyV1n2agd1w/H7z3fC7PObWFg1qON68fecxVV2N2Akr2lzG7IRuczptGnkAjsC8D+YkPXT5LEnqJT4qYZvTUmAiZf3z0gWE4iToJGm01RllCSBINTqCDET6TFV5wTFE4zCFI9FcplDb4mHBK4yqD9uLYhuiAIM6uBZF6joTkhOKhNFgzXZNp+Mv+nR5Kysl6MjUxmva1ORf8MV9cFHLOikdHp+OJMVRiC3NqWr7+KlNzVA4ExORJKQCJZCClrN6jYIyej/CwOC0qOzYGhSIkPyqANO2Ky8urcYzudrsnbvLT9kGAeRI9/82Dj9+WPbWBpjQtyR/0KVIaN7QJQJTJmJjTPcpmptE5jSJfRkWMSlQ60ViotEwMlRIVkYoIWqGNdOYBSCphbEVTrTgedxAEMK9rzbqx1MbQmERbK9qmEr5QShiTdQiVAq0JSdGHSNcPdEPAJ3nHIUS6ITCERDckiJ6YZEFIWkB4RBEVY0pT2tzKpw+hpKNL56dJtF6er4joETBHJaLlcqg4eTcp5t8ZU8HjHSpPeZvfNHeRH9jDlP5vwspCMl88PlbA/Bdhv63V4ne2Hp3tpRINmYDV44hKSqWiPs0Ya4WVmdveUqhWU0Q4qryVl42oRITU+Wcf16PRYdRMbm4a560pgFmBzvULRmsqW+UMUkKadUVs3uATEEhjulQ+m2S0InHkE8prJcsUQxJ931kKXUR8VE6bPmzhpaZ14C3X+4MGUZmT5f5QtuDp/cqjY9R6fj55Az8Hgx9XcW8IgcE5tNG0bTuC5Ycg6PFofU976MPkqOAEvHI0uayVM4nBs8M8AMxzB6Wcr3QnfBz8eKpAWM3ufQlTjY4qKePgzBcmQdIltCNAa8yOcAagQ4ykEEdFi6TIwLZ8TkMiMfSO/WHP4bAXtqVRwmE2Fba2rJo1AY3zcr5VXdO0LXVTY6zF9SLh5rxn3tnX1S2kQFVrrNUkY/G+x8eBmIJkoFQk4nCFimEqTM5slZ1Z5fWHxLSeMAWoEpO83HzMPNzjzgFznr+J8bqeb8lPb9oqzaL4Y/Bsmp8pRQieGJzI9IWENqWA1aJ1JWtZ7nxcqpEnJ82TkqKqpJ7uHOhLIWJlqyfO7Wn7zioZb+Mb/r7a28HMOxbp2S5UltUCj+XxabEtbDlZH+RRreQCa5XQKWJ1orWKVW1YWUVjEoaAjonaatZthbVa1CwogEwit+2qlhTb0eCHDoKnrS3rtqY2hnUF60azaoT7HPyQ0zOMFaxJW1yE3lcMLuJTRcDSOc/+OLA/Dty7nt4PaB+xmRNklBG+UVK4FPEkRMZOYTUorfBjo6hyheR7zAM4Zkcix4856zI4Xr0SiQ8ozMzzPL9N6sHvj+/bUw7Sb3aMPoyAfMzycuOGNY/G/Z6C/7dFlt/199+2lXE/hx3zSBsjOIGJrDu/2IyRYFWOl4uJyuoybkIjaJ591vFb3ryUFPwkJoCtKFG5NNu/ivdZ1i5pX5y5FTJXixxGiRTOXoMS6SgZ9xGSzyn4SMr1E2P9VPGLMz4bo705uqAeFJ8I7p9xub/bnTmDYSUd/WAVn67jPO1c3jeld681v8cWY6SpG06nEzc3V1RVdSa7VqKvha/6oR9TLqUax92TsFvNZ0IBn08dTF4f47l6xjlHdopynoO1h4fKgZlEds6EHzvbffIJlQLAcuYxf5Y8cuaAMpyrVmgl3NoY48RJdpHBdRwPJ25vb7nf3nE6dqCgqirqqsFUmlW7RtuamAxVVbHebLi6vuLy4oKqrvHBM3jP4FwuchPef920xCiZ5JQCyli6vud0OuJjolGJOlZEpC25MgqtIyqVDE6Rhyz5Hflco0pNwb0wKmCMgYAHgFmi3pmq9eheqem6KmRuPygAEAcjTbMwjf+Mw0boJzIFQ4jE4EgZaKic9dIz/rzSBq0jWteiSKIQCuHIFSkZvVxjMmpiv39Tkw8CzOdeqdjHIKk190I/HAhMiE3pXJBCgXYph4Amz0yl4tMK4d0SMUQMgUYrrhrLzaZm02gqHCZBay3Pri548fyGpq7pB8f+eKLre3o3EGLi4mLNy5c3uL7ldNwzdAesUazqispoau1pq0itPc734HvQiUpbatuClgSsUVL5amxCmQplDSEZrleW/aZi0xjaWnG/HzgMgd4lhujF402ykFgjhSNKy2f3JEnBSvhGPHolV0ApAb4xhcm1KBEHxq2amcsxXe8n9qp3w6EHQKQ8+luM/qaUHnWW+ijtIz39hxHm3xXQLzGRORR7eEnnm71EQnLqMXuGApZVjmBNG0nM4LZsdnkXGvmhscyTQhnjAR7PIDHBCJhV/kcplTnROa2sjTjC1mLrClvZfL6TFFzZUNGGUkSGVtLEQQso0UkDgUiEQE4zZz34s4hTBjAPo1e8M2n03nfk8YvV+LBKD+6WUqQoAEX8nDl4Tr+zsfVdraoqIn5se1xsBJqJcUwprSB8x883eonq7NeHYEvxdGHvCLbf4vjO5/Y8KPFwzX1E98sFp3JGeszayP2cjY+kijuFKuO5OJSZrx+z0ygR8kCKClLEuZ7T/sD2/k50g/d7jqcTu/2ew+HA6XQikbBVRWUskURTN9i6RZmKpm64ur6mP73AXd/Qtg0hRgbnGFyPc37MAtimoe9PBD/QdQds1eBioOsHktKYyhDTChChgJJchjmPWM+cclGtCSnN4+1jdDaVfbpQYNIUdR/vbbnvJWgwo3Iwfj+f15Q1oID00ab5ZrIEorxPkGLJEIkxTJraKJTqc9GpzeDZYozPhYt6BNwxSB2WXA8zYg2R4Xv/cf+dAPNTadDf9GLy8Hi/Ljdxfjw5Vv79sUs8fxGUaColqZPBXV5oigeKkiIAZUAnkSpJuZim1pHWKta15rKCtfaslaJVgcbC1abls0+u+OLzT7i6vOLU9/zim2/ZHY6c+o6YFJvNmmeXa9K6YasDg01UBioj8L3WhqaCUvSna7CVwVaKdmXwAY59z3AaOA0eHxPtKlLZxKqu2TQVl+uKq3XNzVXL9jCwOzr2nWN3GNgdnBQAWkvIfCqlZZlxOcIakiJE+Z4waG2hSEtFDxTqRoksgckR6vNI8mycpWl+TSjg6bH27qDzh4Pmd423h2mqv2y0jA+Zi+Mi+4Gvfyr9On/9U+vQ2+7Br5tleJjKLlGoESuUc2LaHyY49hgMzsuYx3BmzijNnzfJKObmAfkxpTXdII5skX6LKGLIGqmzPWl+QNF8lfM3RuSurLWS0lQaYw11VVHXNaYyeY5P+rMqRuG75iLAUvkvzcYEdAuo0SgjeaKYEiSP0hat4nhOqXA1R/9gAlxp3E0nDuwIdmf3c+5iw3xvglFLb3YBxucmWdEfOdgpg6zyfmX9UXnt/5imt4IUk9zfnF4v2bCyd5VrHLPXVbr+lWzGeKCR4zzb88v4n4GquW4vOZiAyqn9+anN1kuJKp83IinA+Kl5+1QArPw+/5wgNIqYEIcuq13JXJUGGiQmHeMCIn3EDw7vvGSHlaFwGFKMOZo80HUndts7dnd33L16Lc02Dnu89zif52aMaGMIznHKtA5rLLaqQRtqW9Mdd7juyHA80K5bAekJfHCcTh1uGIgJqtWK3fae/faOy6trmtUKba2A5bqhrmvc0KF0IqYVjQJr9URXKOuSMqTS4TErHsn001npQz263nNt7kLNlct6HlWOGaGqwtkeJTHz/ZwGz2yBU2M2pzhvxujcZCehlCUmSwguO0GJ4INE35UiaC+f0ViMrWaRZ4sxdgwCjNk9Pa3BIiP5W4owzwfmX2RE7dcBIR8OYuYb48PlOOUoDpTFW+5zbk+tlERwEck3CzQqsdKwtpqNhbVNrE1kraA1iVWluWo060pR4TFpQIWB4Dqi71EpYlD4YeD+7o4YPN3pQAoOgiKoiDVgKoU2Nev1CmvWNLWmaQxKweA8g48oOxCiJ0QFPhLdAZcG8A2mamhtTXVhuby45JOgOHSO+/2J13d73tweOHQOFxN98AQU2lhQmp7IkDQ+KTwal8zIWR4lqJiiGVppUbZSKjsuEo0iV8uXlDLMywUeOFDfcSw8uttvGRu/anz/LovLftc2MW/f3wpo/k1es0fFx+X8Hmymv876Md+QH71P+T7DcioDhbMnzJ/7RJBBwdjIQSTpJiCRUIT8vLNGDdqAFqc8JpHtMtpgarC6AGA5ennLpFKWwpN0Z9XUNE1DVVcYLSKQ1lqqphJen5LMUEyyUfosVVk0WRMQlcFFKWCKPpGCfOU4w9QVUmlMpVEp5cKtKLJzKXNCyZu6nOn5xXuoFXp+hxgXlwcPz9qwPbAMlvO2ef7SB6Gvcl8LYP6IbFQsYFI/OacyzINIonw0dcQ7H/vvM+fL+GV+bDVvrz4D4WdxqZQb3s2K7TgPSsyf++RnfUjTUGTZsjQWzs2fl2XFJfoYpRBR60QKnuAdMcQc6TRopCOiH3qOxwPH/Y7Dfs9ut+X+/g372zt2t3ecTkeGYYASsVeKqmmw1oJSxOCRKHXAu0GyOs4Rg8O7gdNhT9PUaKWxxhJTpO86hl40g1VVoWxFs1qxubigXa2p25aqXbG+vCLm5iMxbuReaJUdpgZjKrmD4l3LvRj/K3eH2Z7N2O67zP+HdIzxvqu5I5Xe8vh4o5gtSNPISRPNrLyu0GNKW3f5rkRjWkdUnAqRUwokH+Uao9DaYkowwFRoU7pDGqnd0EVKEWJ0T46pp+yDAfNfCFB4FBr5Doc4iwY9LHJ4tz1+TnltHDM15Xl5fIlyhYrYlLCI5FtjFBur2FSK1iRaG1hrWGlojWJVaVY2YZSnP+359pueV68N2/3AV9/e0w9eqmqtGUHnMAwoIpUBrSJGw8WmRpsGjKFZrVivLZtVxWptMUqx3e1wPlDVEmkwtqPvs3B69LjOMfRHGVh1g65a1lVDW1s2qzU3F4ZPnzfs9h1v7ntutw4fE1qLx9YR6UkEZQkY+qgZfMIlLxNdgTnTYkzTglWur8ratEpN0Z+zgM60kb39Dr5l83yH/bpj+XfhQP5ObcQRvx+f93Hk9y/ovNI0/4Ex+jjxjnkQTjkH8imWApU8J3JUxuQ0YsiR46QgxFweqBQoLbqvETCVFPYqjalrmqalaWqauqYylqqyonxhpoiigAewlWW1XrPZrGnaRpR0ckOTooDhg0TKSjPgECM+OJxzeO8IITH4iHdeInLDgOsH3DDgOpejx1miSzGpKGtF8mWdLZzSaSOdRy4nm4DTuUhRuQHz+555soLCxtdPEVX14PkzCdASR53w8vg+vx8j/v0txqy6XwIV+gH4nAFYxawMbgwW/Qp7eEEyWFbMbt17O6uT8sU8WiyHPY9GPzXXH9Ix5IiZn0uU4lSVxvGQ5AKJBGtuDR5TIjpP8ELL0bmnweAc/enIfrdle3/P3e1r7u/u2O+3nA57hsMR13XiCIJER7WVDIsxaGPkHqSidKNnLlkieMdpf2DoulGtpq4sSmm8l0h3SomoND5GIgpTVVR1Q71asdpsuHr+nL7riSGgFNRVRao8aItKgh4kSB4l6pvVOGTKF+BcimIFiGa26UjbCClN9CvF+HNSavKRZrd7rJ2YrY3ix57PdZmb50WaCXlfnUr0e7q3Wim0NURtxmPGWByvmCkYEjlO0aG0Q+kBlJF7k1t365wlG1z3nmP0gxuXqLNF/+HfPj77VZP5QZR5TI3OC0YQPWQFJkZMStQK1jVcNIZNpVlbaAy0NkmEuYbWKmqdsCYR/MB2O9D7yOAS+1Pgzd7jQ4kc5wmmNYPzaJ0yYIa6Al1bVkmajTgf8EGBlraTtdWk1DA4j9GJFGsUkc5oYtK4EOi6QQoMvCfiMLGH1FA1K65WFdcXLZ+z4tQ5Xr058e3rjuNpwLnA4AMnFRgqRTIarwydU+yHQOcTvtBVziILxRPOE66kP1GjGmvZoJ5aut951xJvXaR/m2P0Lxsl43dtv/MIfwEV8w2CXI9fImpppr+QI5UTF1acRq21NAxKjBtGzmuOEeLCMQ65gMlF2cxs07JZrWlXa9r1hs3FBZeXl1ysV6xy9LhpmpGHLAAiYYymaRtWmzWrVYu1lpgSbhAnOmZ1g5Bi1r1No9KjgOiBYZD5f+odfvD0fUd3PHLY7jntD+x3O1wn7XH9MBBzinrsNJgdBGkmEfOOlyPMT9zW8aECXBUjAJ4c7/mzyz7F+JzCVD17XomkjmNJTf8W4PYAPH8sFmMELQ0q5sV+0x4+e3JebMf1632WsfE5c7BaDjYdSy5ver9jliPOzrMct0gUlrqRd71GtoEse0qRPS2VRzmKHUUStcA0lSYqirSu9jjXSzT5/pa721v22y3b+1v2ux3d6Sgayz5ik8LaWsZZoQCorCCVNYRDFJq4OIPSnEUjVKhEwjuPS45KG4KT4FYMYSalp+idZ3A+tzvQ2Lqh2azZbvecDh191+N9QGqNLHXVSgfC3EBGGspkAK8VKk6Uq/EalmgWuTNnKm3sc1+HkkUYf2aMWk/XPmXN/mm9G8fDuLdP4gBl/Yu5eUlMapyJI5hW0yNG54YmKUfAmYHvNBFAVBI6qI8B6aiqCUGPEWuAoT++97j8zioZH7elB9+feEaaKnrLDZdxIZQCkWmSIjqjwBCpVKI2sKngelVxva5ZVZpaRVqbRPrNJFoLjUloFcfORqfBsz95ugH6ILqqIYGPSJ93Y6hNTaoqej9kAAxBQ+0ibT/QnqBtNKtVi9YNRiVU8tSVDJxoE6FR6GiptcZhcEGKQwbnpCuUQroa6YBOJwgdVlvqtuFiZbnaXPPJsyvutwe22z3b/ZHDKRGSIRpNFxI77QnIYu2jqHwIRW4a/DGmnGqWygRp0T3VnSjG5oC/9/ZxOosfv72NkvHbf+P5L4pCGC4a4KrkeqdnTCntNP1e+KRGS/Og0qq18El1SWlqEegPCD3Do1Dasr645MWnn/Py5adcXt9wfXPDs2c3XF9uaJuKuqokHZy10WOKuaDPUDU11koxmPOeruvR/YCwPTR101A3FVVVCZcwBwlCDDjvcEPP4ALHztEdOw77PYfdjsNuR3c4sr/fcjoc2N1vOex3nA4HuuMJ70tf7FzYoyRCFVKJ7U5lWqiHnOOM6/Le/BRJYhoHJZJcgFRpGlOAwBxUzyKt2clJSknr4wwACy74mCzlMTQHy7O/yufOjpkU5E0auh/k9pcItirqCPn4MKNYvB+Nax7JPy+ozmM4A+aHAYqHzgAp64ynkLMcWcmlFMumrB5BysnNnPVJwu09HY4c9jsOhx33t7e8ef2K+7s7hq6j70/4QaK5KSWs1kKDyhHPECPeS1S7dCRJWkChQLvcDU9LdkhVuekGjM19vC/0DTmfFBMpCL3SewHMUSnc4HHO03UDx2PH4XDieDzRdz3BBbS2VFWd5eTO77/KwHdiMctaM6dbjAV/mYY1v85nTth4VPL8fgiUJzA9zu0MjEdQnHKX1Bw400mNQFjWxxKnSON4i5mbXT6L0pOgQBltBTwnJbK1KWbnJa/Tv/UI89kC89vYqNLo8J5vTm+bb7O02zuPNz8u2es9P5A8PT180zwAStRHKSgTTglvudKwMZaLWnPVGK5XFZdtRaPB4LAEAdQ20daaVV3RNBXaWHxMpGNHFzs0HhVAa9BREbGQpLef1zUpRXxpKxsCQw9ROUz0VLGnreHmuqayCpUcru9IyaOCp9YJ3SgaVdFWiVOwDNHQtAHvPSF64SyKz4n3A847hgDEiqZdcdFesmlWXG80+wvD3b1mf+qJqsarirujJ209AY8yid6D8+I1SlW9kc0/70BKGwKlYIjc3rLI8sndeiTWlubTr9zL2YB5cFt/82P08UB8vCF9TPa2ifX7GS1/ilf8F0nJKACjFNYVhue4cRTQkdvEKlXSyzPGYBnbhTOq1OicKyWgVSERKGlFL5FokhTr1asNn3z2Jd/74R/x+Zff4yoD5hcvXnB9uaG2Mh5jBrjDMOCjR2uFsSbTvBJD39N7JwXBvUNbS1vX1KsVm8sNbSs0D22KvqloxAaX6xmGyOnYcdzvBRQfJLV82O7Yb7fcvnrN3Zs33N3ecn97S3c44ochFxwlTN7oxo00A65x4y0wOl/zEY+N9zzTL85S8lCUeshguQDmIp9WpC2LjNm4pyXpOTgpyc+iph/Z9JaGM+dUhbPocjpfK+cUjQ+f+2pyFufHnx9rFsE+u5SpvFwoDClOwH0eZX5IyTh794eAuXyeEllW+WuEUhOAViRiCDg30J9ObO/v+faXv+D2zRt2u3u293fc391y2O3ynJbGY+KMKKy2VDbTmlIkedlHydSCUmcgkdyiGJUgaYKR8au1pTLSZMMPA8HnPdnnIsyYCC7inSPENLY3x0jk2blA1zlOp57D4chhL1/OefgjxeXlFXXd5qjqBDiVkoK3mApNUmUpydmVylHmEN8WYS73frrX479JHJQzWbkxC5BlZ9NExxDFEp1l+yQKIdesfCV0YspY5DmrpsPmWt/JmdYKks5BziSdTcnUDbHfYtHf9Jl/O+nnuaeiZt/Fi5iBXeY3hbGYBaZ7c76+TUdTSVQy0lg5mre92QtSmjzucb7nm6OJeaAlamBlFReN4WZV86ytuagNa6MELCeHSh5NoNKRVW24vlrx/OaKq+tLjLWcBs/qbo9tttztj3AK+C6SgiLpipA03kX6rs/XXaGSIfqEC5E0RBoHdQi0ds/Lm9X/n73/7HIkya61wcekC4hQqaqqm3xn1qz5/z9m1qx5eS/J7i6ROjIEhLubmg/HHEBERmYJdpNVvLTuqAwBOAB3c7N99tlnH8gL2cbTREkBVaCxmt45cqMYY8FHzZA1MWtS1sRkaueiTIyRKRRMKjWNGghDwRQpJuxXnovlmqtzz36KoD0Bw8e7ge49vL/J3A+R7T6xJxKSlRSsFSlILBCSGN5EpGBwvhxyf5XjOX9sevPZxjVro57e0f6eDKSqwObxhvLHBsyn4/TO+8Kfmc/4w/HzxTmnd/QpcOQkmi2H+/x06zs+vZysA08HvA9yzY+CZH52zXoIjB7oJDn9/lgUc+QqZxBc75n6Ug87+tWNQdVNNCfZCJDCPa2NWMfMm4c2OO0wzqGMpRSwXctqfcGr777j1Xff8ezFS7rFgtVqzWK9ol+0OC1s8DhlQoiMaWIKEwWRZFgrMg2p5s8UrTFeXsc2HuOs6ByRrE9BNlKlLd4CvqNB0RfN2VkihUiaJva7LcN2z/2tuAesliuWyxVd1+Oc5/7mhu39Hfv9nhQjMc339GzsRa1jmIHVKVtUmDfC+bczm3Rkgut9WG3vipJqfSE6pIHFAQxkKZpWOZMO9NUMHNURpJcKIn6nAeSXhmxttWDKWJQyR6Z9ZvXq45Q6dn7MKh+w9JzkOMXXBwKjopS5e+RsM3oKtmZN/wG4HrK1ar7a9VByBxljage9h/ZxRQlYOt6+kgE4XJITT+nZ2eUQuBZhgjVS9Fo4dt8F8VcOQebu3c0N716/5qcff+T64wf2uy377ZbdbkucAsceC2KvatA1I6vE2kzJ/FXW4pQSzXHJxJJrjUA+MNwpZ6IWNto7Ac1Ga1KIUlwbMzkdJUwly88p5UoyFYqO6FTAGMoUGMaR3W7Hdrtlu9lIEaJW/OlP/8TZuanBwzFQlSVVgoei6nnT87zncB4PXyeZBAG2Bq1M/VkY+sPxSpGfTx06tD5OqpN5mOc9XNWi59neT6ouTgLak0lZJ/nDeLYcfjhk6JQia81MWWgl4rl5j7Lml1sj/4ckGX9PgHAAyuV4KgUEnYDkz7BSXeDmtjVPHE/V4rGTh9dbOCJ2IrIgokzd2NQhwj2u1PKNUQqtCkZJExJvC71XrDrNWWe56BpW3tGg0DGhQkDnAaMmnCu0TrNaOJ4/W/OnP3/D8+dXoBUfPt6QykRMjpQ1IYqThSuKkBP7EEkxMo1JOnIpjVMiWi85oWMij4VRFe5d4P52y7jrWTYeozKpiKbJKF1vTE0LtEUxZJgSxGLEuqVATIUxJMYxkGLtvJcyOSZUBp0ibeNw3rLqezIFbR2xaC7PLMsmsHITn24i96awtYV9qIDAOoaQGBOMwD5EQCPG8rKZJeR6zL3BqEUZD69uOXx3+O2RivqHjhk0/5cUm/1DxrG70jzX5yIx4OQeeBDC/uLxWWX8o6efXrbC44fOkfLDYzy1DsyA+sGP9btfZAn2YOrMAdDp5z2Zc6dB00kQdTxV1d5qZvkASq7M0wwytDhFJCnkwViwjtkTWRgkh3Ye7xuMc6AM7WLBxdUVF1eXrM5WNH2D8RasIpbIFAeKKsQU2I0D22HHMAxMYSLmhNHSMMFoKxuj0vjGyyZjLdaJjCOVItmvEFG5YK3DWvFoNsZilVSjK1XlFSjGYc9+u2WzWrNZr1n0S1bLFYvFgqZr+dR33Hx03Nx8EolGCORYqk74uBHObDvVRko2ugc0yeH3M+OvtXQQlXNrKMbWTXcGU0emuciOis7CnKmUa2mYkSPPmw/CP5XawvuPNHLOqGxQymKMRxsHWMphTzyxetOKVBJJJdlPqz70yAbKvily85M1zxhU/ULrCnYq2VSJjhkw5RzJOdUitFO981HueAhaHkktCuLqLb/VkGeZjdzXMvvq77SucowCae6kK4x7ytIAQ82Bd4qEaWS/23F784kPb97y9ocfef/6J+5u70R6NE3EEI5rUg0SdDEoTD2PBW3l8+QiHTNVDThzKtW3ubogK3VoSR1DJJhIsBGjLUWXKuevc7CcrEOqSL1DFkY85kxOoHJBWUvRmhImxnGQzNF+TwhB1iF5QRbLFb5r62cwKF0tdpVIFlKZQHlUEWvKnItIQnMRiVIRqYTOCp01VlmMmEdSSJQSoESEza8SmlnKoY/BGpVZ5iCfqFm2GnCchlWHBEGZgTTSPE0iwkPoJeBZHX83N106ZJ2gSPWxrLdFsKP5Fb1EfnPR3+mk/nuO061pBstfUlwcH3uMZ08XXXX63PobNS97RaLNwyMPALlOEKpgvBzTqI1TWCUOFX2rOF96zheOs86yaiwLa3EJ8jgSp0CJE1oHGi8yjOXSc3Gx4Or5iqvnKy6eLRmmkXI9ME63hHCP1YHV0rFYd0wJ7raBcD9IO22joWSsNrTG0TiNdoESAl4nNJkcYV81hcu2w+iJnCIlFbKKkALOOZTVdG2DU4qQNRFN0Y6iLClrplAYhsA0xmoXBammiKxWeFswJpJKwKiCsRmHQi0y+cJQBoNPsFCFjYXtCNpq0IVPcWROwoacyEVcQHJdVIw2KO2YzebLYc6p00tZb5CZdZhvxCNb8fcaj8HwUz6gf4QGPj8/Tm6W+d6oi8pp4PhrAPNn8qbD4q8e/u6wQfJEEFIegdmvvP9HS9IpAP5ZDeWBnHgQhp0ERsd1ZWZQTmUhR8cGBCgf/G6packDp1UlFpX1s1LBnrUhKVOZI4MyGuNbnPP4psF6jzaWbrlgsexpWo/SipQCKihCMIwDlJDRORJzZAgTwzQyhlBlVxmjxbLKGllLxK/UgBEtpbXSMlbPfqi1i5ZRGq2sfGlbbZ4MRknrWW8d3lm8tXRNy6JtaJ1n0ff0i47FouPT+ZqPZ0v6t504Ddzds9/tKSlBejjN8kwCHjZ0judzZiq1/E5rhdEabWohoTEUY04KhXQFzCcsa9E1zV9IMZN0lozd7A/NvPbP5WJ/rKA4FylCleJKW33xNXB0Fzi9sWZP3nmezn+WazK7rBwZZq2OgZ80stHHCkkO4SOz1EOKSU+baMyvcbyvTteLwz2ljoVpcheeZGCKqvt4JVnmzrLVAYNZpywLGSUHcg5YJZKqcdizub/n5uaGj+/e8eHNGz68ecv9pxuG/V6K7kKkVD9lraTmwBqLsxZrDTVWqEGC6I+nGElZ5AQxJslg1PmpasYil0JOhRgSk4lopmp7JmyztRyBfykYZyg1a1KCdL0r5ThfRW6hyCkx7LaEMBFTEmItZVKIfPunP3FmLoURd3WNrQHSXE9VilQVS3I3H9p/q1qIp+v/VAFTQ5VUClJYOBdSzizzsT26xEdzUzN14nYzX/PTfaH+Ww6LZiVMFXkmrJhlcOVAtMozFZ+lKctjZDg/RGRvv3T8fov+PmOJPt8wn9r+TtVwTz1A/ipRoJxwU/GymP6XKjhSNayZg2ADeFNYeMVqYbk4a7hYtaw7w9JrGg0uF/J+IuQBXQJKZ6yFtrOszlrOL5c8f3nB+dWSrAPXd2+5ub/l7fUbttMtptU8v7ykXTwjqwUfP23h7Q3bobDXYI1iGgPGGtrW01uDzpocCo7CsrOcnxkWvUORCNNAUmL3lIOYw1tr8N6hnMFRKE6ai1ijUNagjIBm58AZx+QScUqkkJgmKTJ0VuNaDSoxjQMhjqggEWtRlrZJXJw7FA1WJ/Sm0BgFRiqGp2Fi1oDlnPEKxlxgjNUOxmJoKLi6SNYF71Gf7FKv27H454+1of1uxoPd64m/PYWRv4I9f20YfbpJful7eBi4fI3Rfypg+pos5/Hffu5n+eXJyjTr+E6LZYA4p1HnghkESKeaqlSloCyU2jFPivrkONY1NG1L0y0w3mFrAZ/xYgfXNI5SEtOwhZIw1hDGLVPnUTmQwyCNE5QwpCmn2mVP42ypnvEabQzOaqx3aGeqd6nBWbGtcs6L+b8SYK31bMck96RRuhYvgZTmpKovTCiVcc6wWLRofUHXOC7OV1yer7g4W/H+3Xs+vHvP9fU1u+2WNMSD7vvBNVYSaD8AcvN5hyNoMxUwGwPakPXMKisUpr53AVUCujSlMn3ZFFLKlClINzE1+/POV5PD+/qjjGMQd/z3NACcs2SndUlf9Dl+4q6eNfuHIjD1+Z03P2ZmGr82HoPl03/nv+dHxygVCM9B01ywVkohhHB0dihUmUOA6pgwTRN3N7e8f/eOD+/e8fH9e27ev+f+5oZhtyfHKO87VZBfpAnM3NjHWicZDZWgRKZxIuXENEWGcWIMEaWMaH+ZM6xWMtlK9rWYM0pF6U6HxlrwxmKtBHgx1/bYWmGN2KnNLhZFBXKKpFJqcCsWdqmIVDOGwP3tLd//7W+UQm25HfiuJC6vntEtl0ifbQkqTHWOkDWrmi0emgvVAHVuBjQDo8OcmedPDbrqfXMgEx5etErC1Gtct/ZDk6b5QfOFm9eD8hAPfj4OXPPRgr2+j1O55rxcz8/RX9lLHo/fL2D+DeOzGr6nxkwk15TAXN7BySam1fHmthqcVzRWsWrg+bnn1fMV56uWxhRsCTgilsrqlAlTJrStXsyNY7luubhac/l8xdnVEtcr9ulO7Gp2G4qPfPPPzzm7eMb5+QuUXvP27cCn++8Zp8A4RKYhkWZw3Fv6rmXpJJpMKmMLrBaOF89XPH/mWCzA6EiOiTCMhCmRU8FYS9MErHfsQ6A4h3Ee51uMB2WEiU5JQZZOgq61RKOhJEYCRYujhlJgbKn6smrdUyLOSuFh1xr6TtN/isToSMWSiqZxDZsxcb+PdB6igiHBnUrc7xIxR2mxqxOpqKqtE3Bc+dxjTFqqjKac8D//g5v/S8fXF7Uvjy95pZ+y+T8nfflSduFrNRdPHfNLUpvDz1pRsn4Ym+dc2TDqSVAzOUJWM0NpJN2tFChdu4hptPMAGCWbat8vWSyXdP0C692h85XzjqZtJOjNkWm/IcU9VMBgnSGHiWnck0sW7XNtnKCMEZYaKFZjtMd7S9d6mrbBNg7nPd45jLW15aw0RBGgaQ6fP+e5bkBYvBQTKRTCODKNA9vNlmm/Y5r25BSwRrHoW1pnWHae9WLBarlg0XV47/j44QM7tSWMQRi9A2tIDUaOm/IXr72aGxzoWu0vDLNWuoJlewDMAgdmcCX2XybV4qakqYS3gOnCHw4swxHI/lygqGZG9sSBYv771+7JGSzrk/N+2q3v9HXm48MvW54fFyqqQpUpnNyXiir+ryy60ifNNo5WaAc9c569iCFME/e3old+/eNPfHj3jtvrazZ3t4y7Hbl6MR+Kd1EoI41MZrtGo418pqpPnsaxssmVkc0I6VazS6oU6ZRZ5qYqQs5ppYkxYXWSdcrUzowFlE4iKylFgsFSBBjbjM4JlY9KcFl35gztMe9+d3fHDz98T4iB7W7Hbtjz//p/F145j+9aeZ0shbBWzXzr0/PgcO7rY+pdeWCmT4tnH98yD0HzHITKXyQgOfyRmfg+AObDwdThGh6ec8IeP+KnDwHVjBiKAl3tOWfQb34FYPhvAZgVPGCkP/v46sH5rtTkLAEX2kKVUiMYYZe1FknhorOs1g2rzvBspXlx3nK57nEqk6Y9Kk3YkjG1MC6ngFEJYzVN4+gWLauLJauLBf26wbSFZCfQkb51LJ49o+0WnJ0/Y7m8IEbN2zcD17c3/PTTW16/uebmJjAMBVW0LPNF4ZTC6ExJIxDQKksqtNUsesdqoWm9oySLN5bd/cB2OzAOkRgTJkSK0WRjsM7TdgnXJtCBjKSLwaIrs2SVweoWOxXGuCekqUbcimXfo7UipMg4TkxTxDaW1bLnfN3y/CIRRs04ZmKGi51hO0au7wc2Q2Aslt1UaDQ0CoYAWUfQ0tI75CJ+llk4LKkQrlqxB7Pgj6Ux/J8h4ylW+efY5V8LnH9p4efp6z8Flg+bCJqscg3A6wZBZS9qo5AZPBcl4DopdWjfOuv5ck0hp6Kw3tO0Hf1yyfrsnNV6Td93OC/FQMZofAXPuQLVGHeEIJtVrt6uKU6M40hB4dsW4xzGO3zT1jbY4IyhbTyLvmXRd/jW473HNV5YZT1LGI6SDK30Afykkqpns9x1sRRSkGxWjAHyBCTIkZSklXCOESj0fYMz51iraLzIONrG8cF8YHu/ZbfdEadQzzOHnXTWNZ/OjEMC5ARczYC5VE2tnsHUoW2yAGatzOEoWhWyLuTsSDoR634aKRLt/AxY/z2Ox97Lj1nbLwHmL7LMnzH/83GPYPUUuKgHbHY5FK9x8pgZE82HFOJD/iKg/Hgnz7ZyirmwT5FVBVezPGQG19VCkQNrOWvdCzEEtnf3vH/zljc//sS716+5vb5me79h3O0I40jJBW1msK4O70XXAEyhquVbpOQkTVCifEatNI03OCv4ItfPr5UR54ecGSt7PRfxCwMu0qCo09zoVnTGFkp1lclFWGlp+V0O2CbV4l1tAtpIlztdA+UYI7c3N4Qwsd1uGccR7zx933NhrirDe2KzV0RjLp+Vg+wDcpW8yEUTuWQFzfX9H+fPAcI/kNbUZzKXgs5XdxbbzLSCfD0Ey+rBI57IeHDSHOl0bh3yz3OQN2NE+e+vEVP+oQHzYbH8lc8rM/sjpHIFycImKwoGaBwsFo5nl0uePTvjYt3wYgkLm1A5MO62MOzEf1lL5BdTRKWEUYqu9azWS/p1T7duMJ0hm8iQJ7SxnF0uWF+uWazX+KZHK884wpvv3/G///KWf/23n/jx9XtubyeGAVIAbzVWGWGI8kQKIynspJDCgDERZxJto1guWxatQeVC7AL7dqLr9mx3A+O0ZxwmlDVEIqMKxJDoUpLKchS+aWm6JdbVTZKCaQy26XFRE1Mg5YhSpaZ1pZDIGcNeDeRU8A4WXcO6V5RJiyY6ZZa7wpQ8V5cNuzGzHQuf7gd6G1i5zH4qhKIIBaaomGJhChBSIZZauY8SZ42iD9XTp36P/zP+eOMxWP4aaP7SOF0I/17v4yngLECuVsjXl5yr+edK8EPVeVZkoYtQvsW2LcZYUm00lEoBbfCLBWcXF1xcPefi8pLVekXfNXhvqtZY4Zyj5Mh+v2W3vWfc7BnHgRhFSiBAF2JKNeiVYj5rLX3fs+gXdP2C5WLBctGz6DupZXAWYzWGAilSalGVAGXQpUhLWdmdBfymTE7S4CSGSAyjdCWr1lvkCXIgx4EUBEirAsZZnDOsVgus1jhraNsGpy3XHz+Bgv1G9KNzE5VcS75m8CHn/GibxgyY5s5q2pBnOcbh30fAWh09fgXHyLFjjFDdFEotPM75c8bs9z5+DcP8S4DyZ8eGExB56p7ALIsVbX7h0JzmcRb4cVF/mcGzUofCwANkrt5i5SQYFZd/VTMs+vC+ZtNeCQRS3TMT0zhyf3PDh7fv+Olv3/P2p5+4m+0Ox1F0wamCe6WknfvsgqENzFKPPDffEqKMHMm5KmLnoMxwAMwACk1RhZwUISUJNGrLclBCCqUIRWFMFgmWdThjSTkyTaN4oMfAFINIrmaituKPEkDriHEW6xzGOopShxqGYRjJpbBYLlksFpQCvmllnTIWVBJWXNful0UKDFOMpJQwxtTrAzP0nVnmU1nPzPyWGaA9noMzA32CfQ9Q99TmrBwPdMDcJ4j4AK5PgOABFxYO3bdVBlUfJK5z6ng/50eT8ivjd+OS8XOv83PR/Wfv5JTxP3w/V7HPi58U0YHIMIwqWCXFfeulgOVvXl7w4vkFZ0vL2ozk/R273Za836BCRNeik5ILxCwFAd6zXC9ZnZ/RnXW4hUK3UFxGt7C86Hjxp2ecv7jCL5akAPefdry/ueXff/iB//VvP/G3H6+5vZuomSEU4ve4bFu6xmJ1QauIswmnoXfQNAVrIhApRdwnoBBTxjcd566nWwS2uy3b3ZYxBFKYxJUj7UhRbjTpvpVwxmCdBm1rVJsOm69vGlCFGINYY2UpGmi8wRnPNI2iCUwTRhu6vqFvLKko2jYTs+al8YxRc7eZePsRepvYtIphzAzJsgmG/T6ymzKjgilqpixAORYtrUZrQwcpoDgu/E/NmX/EfD3dkIwxh65Mf6TxmLWDz++5I4j8ekjycynz08d96Xp8idn9WVZ5XsmfeAtfmw9P/f5xlf6xgQKVWZPCuAInutmT4NJZnPdYa3HOoZ3F+Bbfr+j6Huc9MWfJyMRIKYrFesX5xQVn5xcsViu6rqVrHa13OCtFdlLHsEebzDRuyCkSpr1oMykHZslag20a2q7FNR2L1Yrzi0vW6zP6fkHfVaBsTdVhQoqBGKYDILXa4JwH77Fai4wtZ1KMhDARktixpZiYplFS0ikKWFKFFCOUgCaiVcQoYclCqGBBCdus1QXWGEgZa+yBRZSuZZFYQQQzw1xRlTpci7qTnjCep78/6nePgOxBxgIljhkUeR8USjGUbCogEoeM/5zd7h8zHt8/p/P7a9KLnzvmESgfGbz5Op282AM5xeP7c37u/D3zsU5YXVVTGcLUzu979g9Wh4BVa2F/yYUcpVufFP8VwjBye3PD259+4vX3P/D2hx+5u/4kba1DRKUssgQtDjXWaLzzD+79AmLVpmZ+tNSi+nAoOiWDqvVPB/yhlDhSyImTLNFhvs4MbdU656pZVhJcaqWISTOFkVgyISdiEvtXeYLCKHGqiKlKX4IAeJ1ydeORBijTKA1X2ralbVoo8OKbV/imxWkrOmuOLcakoE6CjqNTVQXKav4XOGkqc/qYQ5B6esFPgOxhQ5nvaXXKMJ/MDzW/n4fz75QyPbxKZZWPZSaPJR/IfNIPKt5+0fhNgPnXpDZ/6/il4Ga+QR//8uFlkzGzFSA42RrZ9CTyTVhVaB2cr1pePlvw7asLXr04Z7Xw6DyShi3j5o6w22FLofEeg+iIcxbLN9f7Q6ta3XqU1/ilo1sa+pXm6mXPN3+65Pz5GaZtKEqxv93z5t01//qvP/F//8v3/OVvn/hwPTFMkASjSqGdNXStpW003maclgXeGThbGFYrRy4j15+2DHtN3zYYHGFIONdhXYPWFt8sabol291OzNqnPbv9jmGzwzqDbzxTSeQ4kePIcrXGW88UM+MUmErB+4bWS9vdEELNCxW01TStpm06QhhJcbbwScKQO4txns1+xLeKlI0sUNHS6p7dwrEfIrvJcLuHTzmgUsIrw6gUu6kwaUW1fDw6aORMrnTF47nzS9Pxv3SomVLk4WtZa0lJDOf/aOOpQrenvj+m2j4/n19ior72ml977AOQ+oXnPlUcxCkr9ejxT7HGp5/9MVg+pvHVg00TXbeVXEBbjPcoLfZSyhq65YL1es1ytWKxXLBYrWgXK7rFmnbR07YtSiumEJnCRC5gvcc3HucbKfIzBu+kwNc7B4glVrmPuNGKHNqIzZu3RgjvWgBXtKFpW7qup1ssWV9ccnn5jPXZOcvlUmQYzqLIxDAJWJ4SMYqFVikZqy3JTeQgXQG1kla9YZoq2yVdxlLO8rsKtq3WGKspJeN0Bidp7al2JkohEqaIUhpbnTXO12vKqyztgGtDqJtPN+R9lcjVduGHwq+TYCfn+XlH3aoqM1g+6lrlmsq/hyJMpSuLqev1BouGYoUISOlolfYHM8I5JQ9ONcZz97j5MadAZ5ZnfEnXf3rMw3FPWerapOLB406fnz/3GnksESmlPNBDCyFVZQHlCP5TrsZ1MyN9eE6RDEhO6FJQWeRCm9tb3vz4E9//5S+8+eEHbt5/JOwHKQJMMh+MBmVFqiO+6BUEy6Ii56tqlufiXXJC1fdiKOgijhVKIQWDShhqzVEuhFKoFA/OIeL7bcR5xsr9o50WWUh1o9HOorOwyHOz79m2kiKOFRwCIHntkFNlyi0oiDFzd3fH3/7y7zgjwbIzmsvnz/HGYNoGq6v0E1U7X2a0LsfPhPil5IMso7L9VdYjHfgkYzPr22HGxaeBFA8YTYVQfA+kPaoGs0pkmIcVWKkamKvD807dhQtUaz95htazTyLH7Wu+N34FNvhDSzJ+ySiV959ZtCN4rj3aAV1EWmANLFrL84sF//TNM7775pL1wpLCjs3dB/af3lPCiNeaRdvROkdJRSzkTME6j29bfN/i2hbTWHRvadcdVy9XXL3ouXzes7poMY2hpERKcHuz5S9/ec3/9//zF/7X//2BN68Tmy2ME5RUHTqcoW8t1iScEXs7VQLOwOVFx/PLBeulp3GJmDYMYcfd3ZZxByUptBJrqtVyxWK1oGka2nZJ2yS62NI2nv1+Ix6O+x2+OJwuhGHLlkK3WGKtx1vFNCSG3Y4wBpz1kjbyFlMLAyHjvaNf9KhqDE+WjRZVcGhaZTAm4ymMY2bZQmsaQmy5u91xu81yw04WW2AXNLooUqRqKJHqYCVWR0rNfpLH++J/xq8bX5IgPBjqkHT9zcd/eLj/WCBzusn+3LGeCgK+xrzNC/0MyE5t4iLiCaqsqr6vAlzbtmV5dsb55TmXz56xPj+jX/S0XY9rWlzT4HxD2zU0TYt1Dm1Ea5tSIqZIKrVLm9ZYJ7UQTlumMDLsJymIMwrXetqFaJytFWY0J5F4ZMrBG9c4T9MuaPslTQ3mu77He4MiUXJDCoFxGDCjIRojQDGL3jOFIEWHSotWMkxiUZci4ziSkqyltU0nkcI0SKRvlBh5ap2wttqcZUXShRQDISeMtjhnOTtfH853zuJakXLdnkWHdUj/5izyjPl6qJzEMShLtzVdjJBW9fHzxjzLth5ec44bKDO7dfxemlH88daVlNIBMMDXguCHYPipv8PDe+WUteezFUE9zqafpKYegpSZRT6i6vkIHFwR9CxrOIDtqguer0t1iFBKVZelJGn2lKTILkZ29xs+vH3H29eiWb5+/5Hd/T3EJH7i9cWVNjgn2t9CbQWf4tHSrlovzvZ5Ockn14fPdJLt0ArvXAW8tQ32/JgsFrAhxArAKzNWFDEHSiqijjAiHSoggDnNDYXEP1yjxdL4kPkrB8AM1M6WhTBNKDXX/Cg2d/f89MOPLHopvFVK0RgHXSKbiKp1EjGIlawEMerk4gh4ni0u8mx1cTIDVCUu5ozQYa5RKJX+FcJTHaU59TBHprlOoHIUfxxf4/DyT0p95vmkDpPx9B3I0U+11b9k/LcBzAf2HZiDzscs8/F0F0D0cQCq3gzWQN9Zri6WfPfqiucXPWm6Z3P3kbvr95RpR+8ty75j0XToookEXCO2T65tMd6BM9BY7KJhcdFx9eqCb//piqsXC9oFaFu9CrVh3CY+vLvjb//2jr/872ve/pC4u4WhBr4GsYLr+4bFwtE7pJq2Fvo13nK2PuPsvOdsZWnawjQq9tsMeaSkzH4Ld/cTIYy07cDZxcDF5Rlnyw6rNY3zNE7TWMVWF4ZxoIRAFDtTyJaURqRDksKoQpgC426P0o626zHLFV3bApEQR7nBrT4sGMZYUoroKuMYxqF2ahJNlAHSpIlBYVNE5YguUFpLCUUqW5Mie0UcM5HZ1nxmO6RlZi5HtuIwN/6O7PL/SeMUiB6AJJ8ndP4zx9eu60Hb+gue/yAl/ygtPf9u3oQfg2txUihEsrhJWIfvFizXS5brFeuLc5brNcuzNU3fo5sGrCWpAnEElbFOiUxp4WmbFqU1+2lgPwwHhlc4FQPags6kHJiitLguWuGahm6xQFHw3guAHUbGaUSB2F5Zh7EeZaRjqBTK6urzLAyaUQ7dtSwWC8IoBXphCozDjv12xzQONe0s3rY5JSl2Klm6BqoiWs+iBNQPoqlGcWCl6slHa4WzCoplyBMpRnmvztK2DZyfEVMmhEyIknouqhAmBIvMneRilDQ/wvilrFApoY0AZ1Rm9lmW167QuRTmTO68F6iDePYhWJ4b19WE1m8IEf9rR0wRY82Tf3ssXTst+PulGbkZEFXowWkoPa/NB7BTNcWqMsT6URr9QfFXEZA8g2VdgXCprZkP77nIm9BGWr0rrWobaQn20jQRhoHd3R3v37zlp+9/4M2PP/Hp+pr9bkeKQcxXqlWiViKrs9aDVsSUGMeRKQqoFV2vZES1NtXfWomdYTm2yjZzcA3V4WYGzHO3TI2lwAixyqCUVjglWaopZgwJlQqmSOMZtKZpPUXLdQ3VU/1Q/FezXTNBqOYLBJSSRZetxGEDxCXk06drvv/rX0We1bSs+yXr5QrlG7Q5QbA1WJlR1CyzqBOAWb98MjPq/DjJ85VHsr9T8foBxh9ngT6dEfOcPFELPAmSHxzt4f16CrVP45pfy/38twDMc6QhF+/zIfdsPfHzRTcyiUBOnNHQeM3FWcfLZ2c8u1zi1MTtp/fcfnzLuN3Tt9D1Dd2iRaNIIYIpdH1L2/coZwlkslW0Fx0vvn3By++uePnNGRdXHb5NFKreUEEMhfdvrvn3f33N9/9+zfXbwHAve2rOkp5xRrNYtJyvF6x6i847UtgSVaZfGFaLJavlkq73LM895+uOaWy4+6Qw+h7vMm1nKez5dDPx6W5iM96wnyLxYkXnFF1r6VpD5z2mdLResR9HxilgnUERidNeGDXnab10CNtMkf12T5ikEYmzclM3bQM6EnMghwllLM46msWSxhtSGDB7S0lyDVLqKDGzL5E0BbzK9FYRdGanCo6ETgWdFKZorNKSOivC9VWXZlAnWrM/Gh30XzhEs/7QYeSxROF4Xpm3wv/y8VvZ5aeOcTo+Z9JkzGnsmDOxaJKyGG1p+yVXz55xfnXBcr2iX61Q1jDFzO72Du7BeU/XehZdQ9t6rFOEYAmTRiuptt+PA7v9IAxuEf1lLAXbeJqmq53SMtqK3CIm8ZMtRbSX0y4xRJEQWO9puyX94ozl+pym7UFbQoL9FNHDSC4W50QX3ViLcx6tpHjX2omcE/vdXtrtbjekaUJrja9OGznJ/aqoQMNZWm8w2pOjIRUBvCmGAyDTymKNRStHKYURkXOJ6wc471iulpxfTgzTxH4YmapkJCWZq3OtwOPMQK4AQucMuny1+r0cVo15W67ryeNNWM3z4avT63c55nqKUw3+LLl4zCZ/zSHjq2uq+vyxT12Xw3NPQdTPjAe1C3n2YBbwmbN0xzxkfmpBwaF9dIykMbC/2/DhzTt++Mtf+eGvf+X6/XuG7Q5KkqwJ0nSncU6K+pRCaQGVuZRawFs7w1GgJFIU6YXVVgrzlMbKRzvIU+aedomMRo5bVEFZeT2nFYnIZpuJMUnjEKMwOHGlspJdmr8KipykwN44h3EWFSMlz70LHp87XWUMAniNmU0O8uF8jvs979+9o/GeRdexXq44W69Z9AvBVLVBizFV5pISuHp86T9yOE8PX5sDy14nwSPycm48Mk+h2feiUFv6He67MoP2OcItn025eoyH/z6eqXOPSLkOtW22/nXsMvx3AcwnZ+dw4usox/NcfyFPmDGC0eA0NBbWq4bnz855drnGWxjubrj99IFpt6exha5z+NZgnNwQxsqN1vU9xnuiyihdaNcrvvnnP/HP/89/5vmrc/qFBT0QpltSHDAmQ4ZPH3f8+P17fvzbe24+7pl2UlheoqYUS9aii10uF5ydL+h9IgyF/TgRp0LqjFjFbLY0bWB5VlCmo+laurBgqi21lfL0K0tmotzv2e4Cb9/fksaRZaM5W7Vw1uFcxhpN20i69nazI8fAsN+izIRynsYorFeYVpOjJcZAihPbzS2FxPnFmvXFCuN1ZYgmYi7s9wMtijFrShQGK4cJlSGlAGRiGMW7dZzItcOmLRFbxHOyREhBYU2HQaGr9lxuSIXCVgDx1CT5Msj7A+6Ff9dxKj04lSIAj8DycbX6/Jx9/psZjvxswe5vQCOPwfJxQz599c+fI385AqOnGOR5pJQOcgyorWxjIlHANbR9x+rsjMurKy6vrlicrbDeMUWxl8wAWuHaBt829H1D3znatqFtLEZnQhhIaSCEwG4ntQTTODHFkXEY2U0B5RxN0+Ccw/sGb+1RQ2kMVgv41E3GF1nT2rY9gOX1+TMWywusa0TfXGC/HwlhxFoOXUQb69CoQ6tY7xsWy9VBhrHdDwzDwKAUViusLhjpn0vSipytSLHaBmMNOSfGaWScVG0vHGuBsHTcc85QSiFFKSwqWTJRbddwcXlOzplhGBkHcQIJMTy8TifXq3AEZznPfvqPr+kJnfQAG8+NkY5z5XS/PwZPv3h6/i7Gwff4BHh+Cfw+BZgfB5OPA8mZQXx87Pnvp8d58tjHB59kAo7v6bTwT/TP+cBQHyQS9XVEzpTQiF45DCPjbs/d9Q1vfviR7//yF96+fs1usyUFqasxxmC1xntP03i0NidSILnPldFY7VGU6kpRWd2cAIMxWmzclK4EzhH8lSJa6lIKOskc8zlLQXBtQW+tRpsZo0gdTtPIfdR2LU3boLUm5cIYJHiMKR7OsXTnq2z7g3M374lUVluRkhQFyilTUBS7zZY3P71m0fVcnF3w8vkLzs8vMdYfEPHp/Xb6s66BZC48XH/Lyf0pF/uhJOJR6+aHmf/6WwWqauGPzy8PH1P/1T/D3szPOgmNxc1o/ts/SpLxpY3v12x4X988f463epI/PpwMVYGTWAJVD9QHy+IcqRTmAMNoaD2sOsXl+ZLzdYdWgc3NR+6u3zJst1hTWC0tq7NO7JdMxltH6xq892iryTpiveX88owXf/6WV3/+jvOrc6zXxDhQyp6cJzSZNAX2m5Gb93fcftgw3CfSaMhRk2ImZ2llKqy352y94PJiidcT9+mWaMEoKDkxDAPbjaHrW+5upBK99fLhur6nEBl2Bd8qVqZB+Yaibxn3Ezc3A8GCKZnGQWnA+4Lxjr515OLYTRPTOFBMwhTJbPqScLah8Yq+dwxjIIQd223AuIRtC73xOG9o3ZKiPZtBERNMYUSVTClaHECSNFSJReypQozsdzt2u0wcpfig95aQDFMuRKWhaMYsziZkSV3XmYhS9rAtluNd8sQ0Kr95B3ySaJnv8j8g/Fa1IOLJTVWpI0Og1EG+9HOjPPr3t45fnyl4KiE3//7pdzWz5kqfArBCThJAGGtFZxwSSktHLN/3nF1d8ez5c84uzmmaBkohxImiNb5r6ZcLFqsl67M1Z+dnLDtP5xTeWWkTXwopiRb47tMtm/t7bu/vD7KKcZoYc0FZh28auq5juVwBDTkXUPpQIKiVoml71tQCYeewvqXtVizXZ6zX5zgvrPQ0DoRpzxQkKk1xIk0BUqqFhpbWN3SNFBteXpzjnUGXwrt3b7m9v0eVQus0y06K9qyxqFIbJWVDzhYoWA1Yg8oGlRMhZ2IcQQlKsFqhrCJnCEm6nXnvOD/3OOcIMTCMO8YwkEqqBX+gskHnhwxWVsIkpZLRJze/4giuZ+uzgjohWp64Z08CKvn3V07D38UoxxbtcwHtKZCdvw6Y5LfcrZ9nZ54+nSewqEozZqD8+NweMsYHCQcHO8EZHYljg0CenBNhGiWIw4l92rjn9vaWD+/f8+b1Gz68e8/93X2VABWcEa2ys9JnAK2leDVEphAIVYYhDRmkmYcxpnoUS32AyJ2kGQ5lBq4iCZFNQjKouUQoSdjpnDDeSkGfVjhvaBpDqkA2pUiYpEV2QcgMbY00ODmxzZsDDq0UyhgUM5Mv5y3PCFrNDUgFINtqkVdqq+lYux2+/vFHLs7P+eblC84uLrh0DkMRgB4jSimctSJf4hjszLC8cATFR/QlwD0ffj+TFUfAykEbUQ7vUZWjvGc+3qmB3eMNeHbDmI9yOpNmwD532ObkuHNUXH7Fvf2bAPMv0zd9JY3z86/0xAF5GqkcHj/XbcpPmdmnMVNO2yLOC2HWKBI6gwfO+4Zn65aly6TdJ+7GO7b3H9Eq0feW5apj2TViPaShbw2N12QCIe1QxrE+u+Tld8949acXLC+WxDwy3m4xaqT1GasnVByI+4HpZiTcBMJdZryD3X1huy2ErDDWoAm03rBeeS4vep49W1Hiht0m0XYKp8F7hfOa5arnYr3ifOHovAMVSSVQbMa0GasKnoRNDtf3aJu5+XjP/nZiHwu7fWYxRETdmEkuY72m6xxRZaYxkjKEMUl6NCiSl0XYaUg2k8uI0pEpFLbbDKqnXXQ0zZK2X+BbQ05awHU1aJ/SlintwESSzRQfoLFkA6nI5mmUxllN5y1jgglZj8aScTExlUikoIsUEigMWhlS3Tyl+ngGsurkxqsVub9hdlKn4vE2OG6q1trqkvEfhYr/eePA9lQWPpeH1vCnn0S+P+3YdbJBnrL4pabqDsTDl2UTv2WNOGXBHx2Neck+/qyPlk5Q5XN1zSgKjZV1OFdSZW7+qbLoG50RdtZkVMpY37I6P+fq+XMuri5pu1ZaT5PwzrO+OOPi6pLLZ1esz9eHIluvodEKo+UcTtNeJA9pSxxuuLt+x6ebW3a7gf0wgbYUZ7GNWMD1XctquaDrOpTS5IwU5CiFM8cudkVJE6EhJIa4YR8Sm/3AcrHCe1d1ubkyxyPjfsfm/o7t/b2wb4iP/Hq15PLijPWip2ks67MF223DbnfL9v6Ozd3I2FnWqyXr9RrXtKAkUzSOqW60cq1iFH9mhapBggRqxtQmLrmASqSS8a6lb3uaVpPyM0LYkeJIjpHtdktR4KotV87iRStsl7B8OSaiimiTaiA0a0qN/Fy0OAowN414wD3B7MiQZ8D289r43+PISHc448xsPwCq0gtK7olcIJ340P5cYSA8YpRrZZ7SCm10LTI8soHiYcyB/WdeB4SaluMe/lO/UQLqUs7YCnRSZV9L/UmRsSgsGpUKRWVUthjtCCUzjgPX1x95++4N7z684267IeS6LueCcxrrG5QSiVUOookPMRBTFEkUHDiQoqq7RQVmzlqc8SgsJSN2bqkC1VzPR+2MmXOqPt4ZbbMU02WpAbDWYo2RLEsAlRVjiuQ0ofWE0R7XSZdNZzzFFJKamFDEclrcd2KjVs/Z/F50lsJAW/XTWknDl5QTpETMhfu7W37821/5l4tzVudnuEXHan3OftgxjHsphqwe5/O9oJU0UUuZGrRKp9+cA7rkyhCnJ2alAsSmsigjgUb1wDBKmiSpGURXuVYukSy9Nw9ylwcA+fDZTx02OG7UFTQ/fB/Cvpt/JGB+nML8ufHrgXP5Aiv41O/L4W6b/5frT/kRODpGLsx3YLUlgcYozrqG887QqEAet4TxFm8zy15SqW3rcErROov3Fmc1qITWGe8Ny/Mlr/70ksuXFxgLu+0dMUdIe3obKRRS2jFt7xnu9mxuIrevRz7+cMOHN3fc3owMYyGhsTqjVaRvDefrhsuLnvPznmE7oEi137zGe0PXNSwXPWdn57x4tuL8fEFkYDfdsR026GkH+0AxipIMpEbu+5RREdIwMUyR/V4cN6zOhDGjtUMZAYCuGHKSGyOFQql96l0jLTitRah6XVBqZpsj4zRWls7Rry/wfkVIhu2Q2Y8TSTck5UhhR4kZ22f6BPshMI3CxOeYiEGRSxJLPGMYswQBtsppUm0qkGuhFEpLBHvQQFVHSSWx8aGAoP78pSn380N99v1sQv9HAsw552PgcGByvgJIH8gf5uWrPNgAZ1eaw3OYF7EThus3BdPHDfvpdzf75Z4eO9XnnTIgx7f2OBbXCoqGrEQ7GHImx0TBYNuO9dk5z1684PmL56zWK6yXRd94w2LZc3F1zsXzKy6uzukXHcaJ60Tcj9wPAyVHUhoYhw3bzQ273Yb3H97x7s07bjc7QihkDO1ixaJfsLw45/nzF5ydnYl/atvhfYs1jlKorXjL4T4YQ0LFACEyhsDNzQ23t7d0bVcblnR0jcNqxC7Oe7JvSG7gfr9jGPbs7jObm49s75Y8u7pgvVrgvOLq6gzFxAcm7m427HYbwnTPNG04v7igbVtySux3O7bbLSEE2WQVwkIbxxQSIQljZq0HZWpXcQNEUBFtpPbi4nJFit8c1hwpSByhFKzRYq+VAjmLJRxKXDLyNKGUodhC0QprZ6lJQelTVDGzq9KsuGhJt6faiU18mPNBEvBHGgWk66Se7wjRtM5sPEpTMqRyXAc/O0Z5OtB9+LtjU4mKTeRV1On+P78yNcZ+glbmZJuvQFOp+T3X9TpX16VSu9HlhCoZYwzeGJzR7Gpg9f7je968f8unuxthSuu1VEUcllK1hyu5YI0AfqMsaHG/yDkfshaF6utcX1cVI5nSJF0vc0gH4sFoe2BdcxL/YunCieyRVtjlYoW1NdqgSyQlYX5jSeQcUGoAZWmKqoGuFmbc2IP1W8wPm+rINZjX7kKJpTZ8UWJRh+AegwSY2sr7TGHiw4e3/K9/+f/Rn61YXl3Rr1YiF6lsvrUNxrpDQaMuSmprc6nbQqqAOR4BbSmVodAPr7USl6GsJGjNqHp+6vuigty638zo7uheow7bzmmgoE72oeMULQ9e+zRee5R0+dnx30LDLGMGxgfu6LBxgzo50fMJy5gCzkHXWvpevEZzToRxoKTIovWcrZe0vQcy3hhWywVt56S6NUfavmd9seLs6pLV1RlaF/bbO6ZSQENrReivSiaMI/d3d2yuN9xdT7x/u+f6+o79bo8qYI0ihELJkaaFvrVcnvVcXa5ZL3tKuMNaxTDCfpJq9cZaYiooDMY2NP2SRbtmxQVTGtiNe+7vN9IWexeIk6KgCTHilGbz6Y40SSvd2DqK05RsSFGRi3Q3ar0mhUyKGTDkAlOUiN96jbG1iCFXbRUKciGMA7efEtOUOMuGy6sF/fKMduEJqXCZRj5+fMv9zQfCbguq4Lxj0XWkPlBCZpiqZKM2dzDGQJRF3GgthRekQ9HQPETfBSWrQzpmTsYe+dHTHeLvxyEdgfofZJTy8N/6/RcD4s/jBGZ7r8Nx5tTh4czX838SQP9D3EvKw6v64G0/AdZlg6+LrJqlJ5L6NEZLZiVEQgTf9KyWa16+eMWr777j8tkVTdccNsC286zWC9YXa1bnK/pFBwamaWS/3bG7u2N7c8dmc8tuc8t+f8v9/SfuN3fsdjtu7+4JqeCbJf1yTb/oef78Oc9fveT5sxc0jWiQu7ZnuVrR90uMNoQQubvbsNlsmKaJtrE0rSOlwm4/8ClENpsN+/sNw+aeabnkfLVktezoGk/vHMvWs+ob7lrPZnPHsN8Sxj23n96Tpy1hOOPiYs3ZqqVrntE18LHJvHv9Ax+vr/l4/Z7L+0vOz8/x3jOOI3f3d2w2G1JKaK2FZW96lPaSDVKKSQe08QIytAQ1OQbCOGFr+95XrzxWS6p9mkamul4ZYw7r+6let5TKH6lJwISpU9uqAwBTJOnAWIpY6c4MoIkCmKufeqq6VWnc8Jgt+30PoxBPbK0xWuputKSQpHHDvDdWTcYRdKkHxNjpOL1vn9JGz495zFQ/LLr/chOh09c+1FPMYCwnSorkOQBQ4sWstcbYFucNuSTuN7e8ffOa169f8/bt20NWAiTr5fTsKS70mlFHy0hBBqL3HUMgZgm4lDEnZIuWru8pY9QkrjG1F4FzDuckO5FTwqiM0rWttC446/De0XSNzK0EjQ/EqTrQ5IzShlLEo73sdiQKpXQ0tWufNCbyWBvJM8AuuTZM0cfVVkFWST6nEtivS/WVrsGMrRZ1MUVubm6J8d+wXcerP/8TL16+xDcNRhumEHCuoalWlccMX3nw7wlFOV9ZPttb53i11NqFais3e0of51KNaA9HLccnnx7+F+y16ldKL740/nsA5scnbQbN5fizXLZ6ExZhJ62Gziv61tE4AynWiZ9wWmEUwqAag7WO1aJnsehx3pDSBLqwWi85vzrD9y3DuGW/uSFScG1Lv+zpm4bOK0rYsrvfcn+7YXu3Y7+Vm8Ubz7JfsF/KpLdTQqlI4wrLTrNaelaLhs4b7smsFkvyOLEdRkqAnR25u9vy4foGTGQ77ml6T7to5avrMHZJ0+zZNnumIaDtnpQCXoMpI9s70WulmFDKYXQjzFXIFGfR1mCqzZuyHqNrK02VyeRDUcGMVozW1WIOphDZbbdkc0dRPReqo1t0NI2h0Q5FwOtMGffcDhPJFLpFi4pglKme0hGVoJRIyoqShQKczdU1J6ZGCqlGRhbbQ2pqXqrniLJuEuowgf5OU/Gw4P/dDvlfMn559ugkRD8w9fNz1fz/Iyvw6Nj/uW4mRyriCAgkZXxkMaSYTmEEOBuFxuBcy/rsgpevvuHVt99x+ewZ3Wop8ikj1o/dosF3LUVVj+Eg6eKYAiEMjOPAZrvhw4cPXH96y/b+hrvba+7ub5km6ZynbYPSDTFDToVhP/Dp+hNhDFKRbwyLbkm3XLBarvGuwdZivdViAYtFtWWLjCFSYia2LXma2G13bG5uGe/v2d22XKxXXF6ccb5esewaFt6w6hzTuGIa92w3t2zub5mmPfe3AVP2mIsz2ka6oHbuBTpLAdXd3R33t7fklFgtlzjvWS4WqFK4vbtjv9sRpokmZKzrgXnTNlhXcO7IjuVM7bJXcM7Ttg1Xz64Yx2pZFyIfr6+rt6y4Dmg9ezdLF0GUqt7QaqZT5X/m6LlLZcfyCcuciwDjA1Au6QHg+0MNddp4p37qU/B6ApKPYPb06V8GzfPfvwaW5+d/7fw9Lt59nJGe2cw8y2SOTzwQYgoOdmm77Y73797zww/f8+7tO25v7wghYmvmT1FdKrxIIWZHi1KkKVeMkVSEoMkpk5IAZg1oY2tH2QhkkpL+DaoUqaVRkDLoJO8vpulgK2eMxXuxkmxbafoVYiTaJJa0LpFSIKWCMU4ytqiDx/msblNatNPSzhqMCcRQGwhFAccl5cNnVUVY66yOumKRvDy6DlkkGtvtlndv3/Hv//ZvvHj5ipevXkFl16dxxHsv7LoyFD2vpaVeo0r3PtQrPjEUomM+oVO0eLbrerz6rpiLJ+fM56/vzfeFd/AbyZr/BoD5CIao35WqZ53/fBSg1/hRQUlgHfSNpm8tjVMYJRGhb6xIHpx4JzprWK6W9F2Lslo8UH1L01q6RUvMkXFzSyiRIQZiySzUivZiwXrRodLIzd09N9c3hCHQuA61sOw3gcYpNBMlTaiS6ZzBWLB6wtuMKRNp3DKaiWG3gZLEBsoJg6CUYbvZ8/bdNffbW+lVr6HtO9Zna5rOs1ov6TqPb3q6XlXGPLJTCRUcJWnSkAlBGqmUYiErYhZbq1yZFWM0yjqc61Bak4u04FYWfGPwZGKcSFHAt28cnW1IeFJR3NxviXxiMdQWvqagiXSN5/L8ApsKO7NFRaArpCnQ9Z52TOxSkW5fMaIwkuWZzc+LgJqsZjlELehU1fCecnIPn1R6/2dMzz/QOGV5DuNBIAoHSHxglh8eY374ATLXB+jCZ5vrP2J8PQQ6Mi8PGO5HJEgBtDJoI1ZrTdOxWJ5xdfWcV6++5fziEtd0oIxYJnpL1zV0i4a2czhvQEkBoCKRSiDHkRhHxmnPOO7Y73dst/K13+3Z7nYoY7FOs9MDRd2Rs2KYEtcfr4UNspamaenaDt+0nK3PxMlisWC1WrNer+m6TjyZjRTpFaMpjUf1HSZF7u8ndvcb9nc3jPe3lGnAkXFqgTWKZedQnSGlhmFhuGsVm3uYxh3D7oZ7NVIWHc47VsuWP337ir7xfPp0w93dXdVFB/quY71csloscNZyc3MjICRGpjzUdUbAgfeFkgrONWjjhOnPSWw7c6HYQtt4Xr58QQiTaKBz4uPHj+RS8MYTY2aaJmGzjbBoOUtzB2mmVNtrZ9A6C0tY2eVSToAdsbKZua5v+QDW/nCAmaMNn34ERGewLFKTh4D2lOU9BbJPgd6nCoXnL11bxX9uLceDx87HOT3mA4aZ6viRj5nFUuUyRmucdVhrmcaR6w8f+OnHH3n9+jUfP16z3w/yXF2IUeRaulogeuexWknx/H6oTiyp/t1hvMPlfPB7LihUzsL45ihCryJuLNbMOvqEQjr1Oe9ZtC3WKawDZxVt63G1yVA5dFwUxw5pxic6fjIoozFayDprbXWuyJhUMDaio0XrIr7Q1hBJhDQRk7DdSkux4qHJXan1KSWjSiUDarGjnHe5Jvvtlv/9L//CcrFkHPZcPXshTUtql05lwZjZgwP5LGWWLcFsG/f5UJwutqrUZi+aQ+a/TgzZR+Yo4eTZv4RNfupV58/HyVz9LXvR7xYw/5rFSfbxzKH1z0HccgqUqzOGKCWwCjoHy96yaA1OFXSJaKSF86LzdI2h6zzLRc9isUAyMcKo+k4AcyqJ+/s7xrCXFo5WY5yjtYpV62mMZnu/Z3t3zzQEvG7QrmHaJbb3d9x+uuf+dkMYIlY7aS3tC42zLBpQZWQa7hhwhHHLtB9IIVASKAMawzhGbm/v2Q6KMQaGMZCV3EQoxcXFiucvz3n2/IznV2u61rA879BpwsSRFPYMRfRiMUIIYJVU7u6nkRRBtxZlLRiL8g2NbyklMU17lE5Y39A0jhQnxnHPFBIFRdt1NO2SXbFMMXO32bHdR6nq9wbyQMkDZRwwCrqmITWRuJ9wztF1nkUoDCUypIiaRK+mM6go/pNaSRcl0KQDYqvdlwoi0kNYQ6VqCpI5fv1MTfcfHv9oUPj3HtIcQL6fZRNHAMEDj/m5av0Y6J8g58LDczkHKPX7pzbFv/8oT8oyHlqLPazFKOQDK4nS4oPqG3zT0nY9y9UZZ+eXXF294OzyAue96IZzxtYGIr5rcY3F2NkuLTLsdsQ0kFJgGgbGYSsFMch5jCEQxkAMiRhSLaAZmUJmnCK7/cjNzU1lkgzeN3R9R9s0WCNawsViyXp9xsXlJc+fPePq8oq2aeWx1qDbBq8VnbUsGs+i8dzeKIbdPXnas7275tYBaU/XWppG6jO0KtJZlJ7OJ3bbwjTuKWnPbjvgRoNzDdYazs7P6PqOrm+4ublB6ULKAaVb+kWL0pe0nef+fsNuNzFOkWkUuy3nJTgpdd12pTZc0RpFZhwmJh3o+iX9qufFNy8ZwsgQJkJObO63UviYC1lR21gfEki1VbO8Vk6ZbORaay3Ff3OWYZ46lMCsOS0H/bK0Tib/sSQZujJ2pnryHgBH1Zwe/i3HvXIeT61hPweWTx/3VMHgYxnWUyD9FHjP7HgppXb5KxitsFbcpErKUNtQlxS5vdvy/fd/5W9/+wtv37zh9vaWGKSD3hQCKWUab6SxiNJYq3HWkqKqbiLgnKHrexY1SxJTYpqC+ImnSIgiETyh5oU0UoILKEJkNa2jaz3LRYe1s344omtRbIoTwz4w7veEaaJksKZmAWIlqLSi8R7v7OGcSNOkRIyJGMRzuhSRlRirMRlCVqQYmfW9praNfyyNMUqkKbGkg1Ax58xut+P7v/6NtmkxxtC4luVqjXVVu6wQ1tzWDGIoRx0zyIuqmTuWuoHjbJjxmf7smtcrL2A/I0xzkWusahHuvLKfzq8v7eAPSZGHj/k/kmEuJxt0qdHTnKY5ZB8ON6R0k6sBDY2FZadY9Y7WKbSK0j1KZZQ1OO2OYLnvsdYQsrAXrnHYRipWx3FkmPbsxg0hRvq+49nqOZfnZ/R9D0WYUhXBFMs4TNx8uOWHv37i3//1ljdvCvudZtX1tMuVRLU20LjAovNcrDy917ROs2gbBm8JO00KSXRUTaZtWnKJhJiBBrRhmiL7bWQYCm/ff+DN+xuunnX8+U9X/Om75/SdpV92qDAxDuK3bLII8WMGVbuCTUGsoHwjJu3KebTvMF0HOTGVREgBh6P3C5pOvoZhR4gjOkFjLJ0/IxZHirDZ7IhhpG0Mlok4bgn7HR5N7zv6tiO1gTBNdLllkTVDmtgMBb2PGJ2rDyxYJe+5CraqFnEGyPOtOfs6HM0Gj9+LLvs/Phf/QZrc/4QxWxUdvj/ZtB5gY+bbSj1cf043QQ6QlNnOi5PnP6Vh/pKe8XDMXwOsj2vqw3EK7qmIqr7TAhRV0NqInaP1ON/g245usWK5Ome1PqdbLLDW1ra0CZslXU+tBp+myDQlbm9HyBMpT2iVK4BO8r0B5xVWQYpi2RjGCaskBRtTFL/imc3Pmabx9H7BctWz6Bd03QLvXfVl9uSc+PDTD3x4/QNd2/Hs8oqXL19xcXGJMw5rNa1tWTSOzmockVukk99uc8fHNJLDCi7WqOwpzuKdlq++obGJ1mSGQRHDSAgD035HmAaMWeCso+/P8E4kI2Ga0JXVbLxn0fecn5/z6foTHz/ecHO7IQbZ/I2W9vYlR8I4QAHnHApPyeJTndEoq+nMkr5vubq6Yrvdii0e77i7vTtomHVNZc+FUOLvLOnirAo5nrQ5L/ph1qkUqKxyqQVhOccKMtIXJtbvd8zB7/FrxsZzAeNDVvhLH+8xyH18fz4lpfgaK336uC+93kMN9HzuC0qJc1KeXy+LNeOw33P98SM//fQTb16/5uPHj0zjeGCoU2WnrbVVqjfLUeS4xijatqFpWy4uLzk/v6BtG8IUGYZBLB7HQezmcq6MqDQNKkRUSagiwDznXB1tVjStw2pJaYeURT4xDZQM0xiZxj1pSqhi0Fi0Fea7KNBW/Jo1kGNgjIkcM9M4e5rnU/gpNT1eY4smoA5e0kUrCfwOYFPOf0rpmJGfM/UFpmlAbSwf37/n/Zu3fPPyG7zzeOfRKKw2WCOBRyqluoDMlnZwdJ15TEfN71QdwfUpqVKoABkKc7/v436NypV0/o/RXHO9zW85wn8aYD6lwb92s5ST/x5+d6Jn+ixylQccU0ySP6mtN6XEq5SMdYZGS8RiFHiFaIR7x6K1LBqFVxGjMp339K3DG03XNPRdQ8yJQsK3Hb5riClwt71jt98wTDsKia5vuby65NvvvuXZs2c4YLjbMm1HbLF43XB3t+HNjx/49GFHiYZVr1kuW7rFGa7ta6oo4vSEd4bVomXhDYrEum+JqwUqJ1TZEMdECgmjLYuzNcpCTAU7JYyNWB/p+0xME9MU+OmnDZvNls12y5+/fc7VckG7XLKOBYpmuN8RVSZbUM6gVEIXhzWANtimo19dgFlgXCNdAH3Ddrsh5kIolsVyReMNu92G/bBFKUVWHuNaumYpxQ1opr1iGjfcbj6Sw5a420HM9G6Bzob9dk8ME85Z2l7RR00/ZJohs4+ZpmlIWlMM2GIF5AcxnI9zu1Aji5p0BovVbL5UW63TbMRvm8ufzd0vbA6/95EPuk/5+Yufof56NhmQ9NZBESoLWZl/L+f2qWKe+TV+y2b6s6Pop3+d6/s7YZpnxkaZ+l61RdfCGnGcUOLM0jQ0bUMhsxt2oktsGopKJAJj2BPilhQGQthTyoRSCWvAO411EjykGAmjPI4ykcNECiOqJGyVgBgUKma0Knir6FsBnGfrFWdna1brNcvlsjY/aWi7lnEceffuPe/fv+Pd6+/58FPH3cfv+Kd//ieevXjJanWGMoaQCkZ5NEuMmri7mdjvNgz7gXs9YtWEYU3jl1jj5P4n463B9C2NhRgt02QYh4FxioQ4ErU0JGm849WL54zjSEoJay19bbkN0HonDVW6O27v5HWl9iyQUiAr8ZOdav2IthZTfXeHcaiFR57luufFqxfE2tlvnAJjCFjlTwqEC6dVPkKoiD5ZKdH0zk0wZH4KE2aqz2zO6WR+VrDxB7u3TxlaVe/Vko/yCOmYV47FjbVxkVLq2ADmCXnGQeZxUvw1//6B9rge57TjoATn1UHi5PiP0+Rai5e4WHTOHsXCvJYqz6BI1jiHyN1myw/ff89f//IX3r59y/39PUqZGvSk2pLdHrTOQPVvztLGHVivV5yfn/Ps2RXr1RpjDdMwEbqmzqcs5yqnA0JJORHjSEojJRdhtNEsuo7laiEBbQpitRgKkyrEEJhiROVaK+UMVnu877C2IVSrN5F+JNKUDpKQOEnzJAU0zlajNbGVdMaiiyJax6g1+9qifnaM0uhqtSrSiQqnMVaLkUaW7oclZXKM3H264fu//oXz9RmLRS/2mXGSLoP1/KW5bbhgYPG0LhIAl4NATsZMoDyw/CxzQDQTN0dZZckijaLkw2OlRXdGHHUeHBy+BKNP59bJA34LyfWHYpif3kjlBB4jxnnUG08ZQDrCzemE1sJ5rzhbevpGoUugxELTK5aNxxstko3G4505GJFLFJQJYWI/bLnZfGI/blGmsFx2XFxe8fLVN1w8e47zLdNmy36zJ+wiw2bi5vqW63e3jNuEVZ7zdctq2WHcgrZbYpsG1xi8SRB35BzwquC0AMRFa/HWyEVLickGjHECCKOgmJhhCpmUC22zwLceYxRT2DKFLTHtePvmlhzA/FlzuVrQrzTTEAiTRK1JZYoFZQxaWbJRGN9gfYdtO4xfYGxTTdUblG2YphFch+3OWJwtWVxkxmnPNI4MCaLpcM2C1arl6vI5m5tr3r8dud5t2d9fE7ZbnDKotqCSZhwDpRRC1Vi0rWexyLT7RBvFXzWiiUi7bJ01sURUEFsblEHbIwtg8lw7PN+u5TB/HnKo/+eNygWf8q/He6k8/PnwmPlndTyTp9KNp07pgzTaf1CS8cWFTsEDd+36Ph6mf4VZVPWxqkqXclGkkMhkXDH4Vgp9rPdoY8hkIFYLJLEunKbEONwRpj0xDFAC1hS8E7CLmn1aE8Ow4/7+jv12S0kTnbcsuhYrfmg45ynaEHMGa2kbR2MVKktr+jR5SC06B0yxnK1a1mdndG3L//XnV7x584a//PtfePPDj7z+/t9EyrW749s//xNXz5+zXHak5OgbRWMTTgc+MbLb3rPd7CEPpLgnhB3LRUfbOLw1aCkYwFqD0Q3OGLz1tDEzBRhDIKXI7MlrrKYgzhL7YUdKEecdvnE8f3bFou9pP1xzff2J7XbHOE6EkLHWE8qc9Ul434o7gcq1S5lcN2MdZ+drlJLU/DhMxJjYbLaHAim5xubIds3BUZbjz8DtCOKqR3BRHL3m5kKzPx5YhllqJZIMVbMqs9b0wOjNbhk/8/meulefcst4/Levjccg+bFs4wjeIYZJCuuMzAGtpTgsxUAYBj58+MDf/vYXXv/0oxSfxsS8AM0SHAH55gDspylgjZLutn3HarWoRbBLVoteXHK8JcdGnq91dUzJdX5nQorENFGKaORLKWg0TdPSdx2N91K7MO4Z9p793jFNE9MUGYfAMIzkBE43eN+ijWMMki0OReqhUkkkMimJwMEbYXjt3CKw+i2XJBIN5Qw5WsZJApZQyqHI71DaVY7XdW6acnodUwjc397ywXs+vHvL/e2fOTu/JIYAekAbg2ubw1p6LMicF9YHyPT4czl9zMNM8OnXA3a5fn9ai/ZfNf6+gPk/EXfMafeZoj/YyCG2aYeK/DmKqa5jxkLjFMtO01rQRdIpBiXpSwPGSLcsbw1xEt9PZS2+bzBaMY0Dd3e33G/vSSqx7hZcXD3j2+/+zItX39H3PdMwsd2OTPtEHjPbmx0fXn/i9npLjhpnPd4s8X5N063wXYdrLE1rcDqTRsc07FG6sGgcfd9inKExlnG3YdjvpPMOBmtFd6mMxRiFwmOibOxi36TpuhUXF5fEsOP+/oZP14F37ZbWdfRNK0C42VHiRDEZ5Yq4XxQDWlGcB+tQ1mGbFuc7QIrqlGspwwDWknWHdpKKalVmnEZ8yCTVopTFakdnHVZBnO7Z3ixQ05bdOKBTIYcoVbjAGBPDEAjFYExPv+hZD4XdtCfGgskFm1Wt8JW23s5ZQsok5oIC0W/pk8oHxcnNWNNDf495Oy823nv2+/AfP+B/0jguVHIuVF3MZiZoli48+byTX58C5196Pp9yzPiSROOXsQGzL/TJm2TejOfjzYCqWi8hjHKeg26t8drStD3L9ZrVekW7EPcLpcA4QIvFWZhGpnFPqEyx04XGG3SyJJ0p2sv9kwIljJRpR552qDLReU3qGyYrjVOavse3HcoajGtwTYMz8jetNI1TNKbgVEaVQBg2TE7RN5pn5ytWi4bzVcebqzM+fbxmCpHbT29RKpHSwItXL1kuF5izFqV7YmwJk0NhCdPEOO64v8/kPBHDgmXf07dit6l1wSDaT2MtVnucy1hf0NW9YprGExZSNutxHBiGvQT8iwWLvqdrHAJapYD5frND6bECuokwVd5MZbxupTPZnEbOCassXSc+1MKQpsokFlLc1mtsmBuVnLKquW7sgu0fSRbgkKKWOZMezMc/WkitlRSNzU4TJVcpxols4rTo76l7HJ6+H/9e8rOvHevAUpdMDKliLJFggDDNMQQ2my0//PA9f/vb33j/7h27ncyBXGUnxmgp4q3ngprtSTmhG0+76Lg4X0sWZ71k2Td0bXXRcAZNkVbW+rhmlNr4Y4yBnAOoUs+1xWmL9w1N47HGEsLIMGzZ73r2w5YwTbVINTLsAylI/VXOipikTf04TUxZCtkThlQKYcpkXbNezuO9F2/xIg2MxmFk3I+MKVJUApUxRuGqZLGUo/d0zuXwOWZ3qXmuaCVFlcNuz83Ha969ecvHD++5evYM7xuyMcQQMM5JllkdW6tDze8rDTmd7B8wSzJOwXN50BSo7juz60Zl2MULfd6z/2vvwr8vYP4Hf5bPCwk46G8O68Bh154fkw8kYt0L8d7grXT6U1mKzxadw+oCOeFtQ99Kg49hvyWVTNf3GDw5BOl+M+xRWnG2PuObP33LP/3zn3j17bd0/VJaX+9HxjGSQmZ3P/Dx3Q3XH+4IY8YZYZS79pKuP6fpFlinMF7hvcKUTPYQGmlF2bYNXddivIEYaRtP4x1kSKkwTYM0WQi165V1LPr+ABZjEo1U16zx/QWOBfthw91t5EO/4+p8SbYO5S2ZkWQi0USKtuAURRkwlqQMEUPrPU2/ABQxFrQDbA9KkVTLNhpSsrSdp+vP8BkSVmzqohQDet9wcXZBfP6SjVPcaLj7dMv95h6VLVpbppAZhokpK2zjMLZhuerpx0LcZ6JcQeIkN6bWVdeZIVRPyrktZ+1ZUOdIeTRZ/n7j6Of5BxpPpES//hm+3PnsAVgup99+maH6mizjtGL+8fOefgOni/NxaK0fpIDn42ilQZtaPS4BgjWerl9wdn7O+cUFy9UK4zQxB/FUVYkQBnb7e7abDSkGvDU0TtxbSIk0BcYS0FGq4o0CQ8LZgiKg0oQukcZqnFb03Yq262kXC6z3KGtlQzKOnDMxTBirUCRyGkkxsbmfKGmglBGVRxbLJd99e8WfXl7x6foTr9++48P1J95/+InddMcw3fPNN99wdnHG+qwnlxU5bzE2st3AsN8zTnsKCUXBan0ECehDBy5FQRlwuoAKOGMwwO04MlV/5FmGkawlBGm7XWIkxYDRUlTNxUpqEZxmtzNMY2IK0iq85JEYpbECKIqyFKXIRGISKz9tNWfn53zzXWSYAlNIpFzYbHaUJKyamrs8VkA828TVSSbHrsvBIWisC8Wp99IfccySidM16VRqQSmHn3/uIz4loXp8L/1y2eVR2vGleoXT952r/na+h8M0iX42Je43G96+fsOP3//Ah3fv2W53xKpTn5f4rMqhtuWg3U0BrSRrslwuWK/XrFYLurbBG41ThUZX9wot5JnRWrIsTrpp5pJJOZKqxtoah3Me71oa1+KcBLsxTYRxyTStCXGstnTSHTCMkTglht3Ezd0dd3c77sPElBOkgLYC+ItSqKzIWeQwzsm6ofVx1iZnGMbCGAeGaUcsEW0VVlnJoGXpRjivxqc2n8boeiwJRNIkQDUMe25vbvj4/gN339yyOj8X/XJtRqSNokTBGDPZMsvx5HryCBA/GrkcJCPq5N9COTihUJvTHA7xX3g7/uMkGf/gYOD05i0nqeBZvH64eIWD7YvV0lLVW4OzCm8yzmhab2i9xduZIbI4Z8kxivl4FbhP00QsiWkascawXK14+d0r/vx//RMvvnlJs1hQMoQ4Mk2ZcUzsbnd8fPORj+8+Me4C3nW0TU/XnLFcntM2K4xzYDLGJYwWv+PGN3RWqu6b1tG0HmMNJWfOzpZM48jG7hn2E1NMbDdb9qO09Oz6ntXZmnaxwGhDSolpnLi5vqdvFjTugmV/xRg/sh8yw5TFYqf1pLwjq0hkQmuF9hpnPLZtMb5BW4c2FmXEm9YkRUgZ4xFDc+/J2jJmjcqGznZYbShBqs1L1uiSD+bny9USXfYQB5gSH7efGPd7Co65GDlnsYwqzuIbx3q9IOtANoWsCyEFxiD6RK2kOFE6MB0LETQaVD5mIA/5iL/vJH1gn/QHG1/b8J783ePn85W17GQ9mJnrUzA8//v4/P0qsPwzp/3JdtpKYa1DoUW3DLRtz3p9wdn5JcvFEm1MtWsaJLWZEzGNxLgDJpxVdK3BG12ruaXpRRkhD0YK9Kwml4E47ilxpKRQGWmF8Z6+F8cJlRPTsGOKkZCkoUBOomFsGs96tSKfn7GgpfVLvDM4AyDFsF3bYZSSugOVyEQ+fIoM+w2vX/+NMWz5c/kTz55fcnGxhHJOKZN00AuGMAX2w14q9JsG7zzOeZSxaO2qdVatAVAFbY/WYVP1RYbaPVJrKRSu1zfGyDjscc6gTaJpPcvUUcg4Zw8kQwiiEdUqkdNEUYZipHRXJBcjOuYDY7haLXn18iUhHJnm3VYYa7QwZwBFa4o5mWNzB79SJ89h/jxilL8S2P2eh1bqUJylqGA5zW4DcNBaPQgOPh9fk2M8/v7XjqcKBk+10vPcSTFiTG1KkxKUzH6/5+OHD3z//ff8+NOP3Nx8YgpB6hWqa8XcbEScJWoXTwXkiPcG5yxN42vBn8dZjdEFqwvOKLzWNNbincUZg/UGa011KCygGjLVqUIbrPW0rsW5RvTSOZOzITUOcos0MKGudaVasBZ224GPH2740F7X9WNiCpE8FenSq4AIFEspCFOsgwT8SoKDlMQXWhspktVzzwJmByCFqffq0TWDKnERwBxjJIeacXce7xzjfuD25hOb+ztSkOvgG1c7eM4B5oOLWn+vmbusPpDJMT/lJMs7P3X+7zwv6/08/+/n9ut/NAf9jwPM/4F3/XPL0jF9NIPjcmQPK08wn1qlpJuNMwpvEt6CdwajIs4qGlul8DGgjERaRqs6YSeUVvi2oWgIYSQU6am9WC15/uo5f/qnP/P81Ut815NDJE6RHDI5wbivuuX3t+x3Aatlk+ubJX2/xFmHsQptMtoWfKPRpqBiwRXRDztv8a3Htw3WWbJSXI4TFEXX79huBkKITFETikFb6QRknEVpQ1agsex3I/e3WzZl5Hx9wdn5iq5dY8welMM3nhBaxlGTVCKWjNUFoy3Gd/h+gWsXON+QSmYME8a1GO+IU6qWeg7bdChnSCozJE0JCmshxcK4H0nTRG80NgVxCRgGwjhitWW9WhOHzKdpw24fCblgXYulMNV0ojbSFGU3gY+zM0imJDFwj8UBc5pIbra5c5u0Rj/UCv/2CfqVeflH21RlfJ4WfQxmTx/7+NwdWOSfvXGPBPB8FHXy3akrx29Z+RTq5JiHlzysAzz5WQ4lXbVjmGOxWHJxccH52Rlt14IqhGkkpFFaxRKZpi0pjSLh0oqSA2PIlCDFfDkGdBbJgXdi1YZJxDKSY8RqpDmBsTRNR9N4JGMTGMaB7X7Hbhhq0ZPoLwdrCPsNadozrnr22zuG3YrddsGwXRGnPavlSrqRto7LyzNySVinef/xI7c3H9nt71EqYkzi/HzFctUzDgvCOFIybLKkjKcpMIwjjWvwzmG1IWvxdlVolDEYI2vrNE3S2Gm1pm1bpmliGEaUqgydc4D4ueccGU+AtXWGvhfvaOd8dRqJxDRXxEuHqWItqSix4psmlAoY4zHa0TQNV1eXhzT3OAVSuGEcZj/aysRVtDQXuKGOjOtxT5m37MqSqX/UavGPH1pVDbPWUvB1UiynK5mkCkd7ua+ML4HmXwyW6+lVcAycf4aRPgDpXIgxSHc7baorQ2HYVfbz4weur6/Z7QZymj34BUim6pCSSiZFRdJZ5gOqSlaUfBmFM0qKTHOVBRYjwafKeJ1pvZNgz2oyWRocaQ3K1AVNnm9IqBIgRSQ3I4XmylqMlSBGsuKJkqXQbdl2eONorBUGumRSHMTWNdRC9qwFEItgWdpKKy3vAfmb95bVeolvHJvtjilIM7KCIkSxj4up9ifIIonQmSoJqQWgIWOdyDtjjHz6dM3rH3/ixTff8Kd//mfgEmvUiX/yvPLKfNIPwq/H82MORsXetRw0ffPKXyp6E2ca+TolUb4+UT+H4KcT6uTrN45fBZh/Tdr2twCH4+mCystzTOZW+6FZu3xiJn+wk1MgkUxNjdYN3xmNVwmnoNUFT6Q3mk5reufoLXhdaKyhbw3awBBGpjRibIMyCa0lgiu6YDvPxcsrvvl/fMflyyt851FGUiY6F5gCabNj9/GOT29vuPm4pQTHarnm4vwZre9QyqBVxJgJ3zjRDJuMMrWdaZZGIaaxuK6h6Tusawhozp4ZtO9p7rd03Yb9MJKwoJxMBq0BC8qQi2IKCaP25GjZbHbc3N2hTKFfFvq+xZsWbRTer8FumMKOOGQ8hXbRYVxD61r65RLlPEHDLuxJe1guL+iWC1IxxKLJ2qK1MFJDjEw76DrLtJ8kkJhGbscNetrCdE+eRqbdxPbTlmkIGN2yWjusT2z3gSnVUqsMecyoRhYc7yyKiZwmDBFdIjlmqfw1rrY0TuRiULaRdPKsUpwj6zq7Cl9PSf5SDe1jJ4g/ylBq1pV97X3XSuh64gpzq9EjoJgLbw+/PjmkqjvlgzM4swzldB2Thf9YxCvV3XpO89XjPX2OVTUILIfHxpwr4zSDZvm8pSjxUlaFXCaM8xgjG+Jy1XF2vmK57jCmMIQ9KU2UHBljIKWRGAe0Ess3jSKOE2HYM+12jMOOYbuBLOyzM4pl39KvOowDayzaN/je4a1DKUVMihgSKUyoacBMI3aqhU5aJB06ZeJuy30K7O8tbeO5aRx937E+W7G5uapV/s9YLFY453h+scaoTJx2TOOGKey5fvcGZwolvWS5WrFarSEbvNlilZN21jGxu9/iMLTO0zUdGMUUJlKM4vPcNRjlME6J5rtbMk0T93f37McoXc+Q5UhrULWbWIqxyjs01nts06KUohsT4zix340Mw0gIUeaZUWSVMEX044FCCBNjCPimo2kWrM7XJDRDSCLPmCK53BGnSEpZ2HEjc0mpQpiExZ5dE1JKoKVAmBMu63Tr/xoL+3scphGbslQKBiWfr0qQUt0/s85goaRS740j2/tYxnEqaTqVe8xM8GGd5GhjVnIRv+SYUCmjrUVX2mK+h2dLwJzFY3/OTig1BzcFaxtKUSI9LDDsd9zc3vHx+oYPHz6x3Q3V6QGMk4LPnKhtwGW9ivWaaldlDEXROEPjwOuA1xONsXilsUScEjvXzkPjCt4EnC7SEItCJEM5aUVNbRSSR1QI1BMqBYpGWpSLO4v0IchJCu21thhjWS4dsCSmc1QZIe25uU+MQ0LnJMV5GrR2gCJlCSi1dVinKdpSkNbeTdfgGi/NfKLcE6mkWiw5P7e6JIdMKQGtS/V1hpgTBskebe52vH7zE9+8+Y6b62tevnwJMVaf8oKKEasKucS69mc0hYdGjEfAO9fKSIdFVX+XxUtaF6T5S0KpjNGFbOadQ9fC8oJUntRR2eyijoGu4MGTgK7uWbKfnLg41U6Iv3T8blwyyoPv6057DPCB8ijKOPlSx80WzOFEqSKFIwq5gF5DaxSdEWbZao0h1yhS/AWdEVeNVMQIXzsFXoM15JRo2pbV+ZqrF89ZX5zTLDq5XjFAApUKaT+xvbnj9v0HdrcbyBqnPd4s8KrBaYe2BusM3mt8ozGNqkbRWVIvSaGdkQ2lbdBeGp40GDAelEObBmsb/G5PzJDQpFTIWdW/S1GgN4XWL1ktz7m/v+d+u2GKE32y5JAJU8I7S8qalB1ZNXL+TINxUrmrjaVtWnTbY7UhZsV2OzBF8Xe2vqMkyIh/s1YG14i7AAqM9YRxx26zYbh9S9p9Qg9b8rAjjSMliWXOdjOw20/EqInFEgISRaMoRUtRoPM0vsHbCctI4zTL3hFVhCQgySgxkH8q4XOEZzMfqb66Ff4W+5k/1jjC1bpdPvp7+fynR0zxU896HOo/BtLqsydVqcYc/RZO0nvqwYt88WpULfKMrY1S0hn5wGyYB8cTaQhUHIHzlrZr8L6uA1l0iiC2kjkFcopoBISUlJlCZNju2G3u2W/umHYbht0GRZLmR62lsQVVHJ1f0Lcd3ktVvNGaHJMARAUWh7eazllG55hSOrC6UpaYUSnCGBnDSJ4sxBHiRAkTw/09Nx8+slgtOb+4YL1as2g83714TuMM7z6+Z7+95+1Pogv85ltF1/X0XU+ZQBeNN47tdktKQRjdMBFiwEQt7HO1jdNG0bmuNjApzOuv84GmmcQqrqbDUYKejTW1PFtVwKqx1mOMpWkU0xTxbsB50UOHmCjKkLWhYMS/1mT2KjKMmXEYyElJF9Ou5eLynN1uz267Y9yLx/UYJmHajUEjkoyYorCMJ2n/2a2dw8x4NMH/YEPmdWG2fgRNKXKNZD89ft6fCwa+VPj32CHjQZatyl5IR2cOXb5+Sh/LMo5g/QTAp8JuN/Dp0x0fP3zi7nbDNEZyPhYpz2HP8ZUqqMqQEqAK1hjaxtM1lsaBVRFTlHTOo2DIaJIAOUr1WpYueQZVM9sZlBEYqGoXPX202jTWIt7RwmQLYNW1kNVKK/fqvqN1oWkMZ+sFYTwjx4nOG3b7gXEUZ42iLdoIME6lkFEo67G+IaMYa9a1GI3uGxqnpSdCiOQ41UYuGuc8IYnmfw4otNFYo8g2oWqBYErCbg/jntu7T3z6dM3m/o6mbbC+gQI5TpQUIUaY12/EyaQUXT2/5zOiOL3Pjjrqmu5Q8wSp2O20pXc9hKoNTA4kSKlk6awvkQMeXkGaGc0B4TGDqeol/DXjVwPmfyxwOEHIX/ggp5qzB9XLh//UqK5GfDLpJU3jDDTe0rUNzim0LjVi05IqsXIrT1MkEsRObX49BU3XcXZ5ztWLZ1w+v6LrF7W7j5z5HBPjbs/9zR1317ds73ekKeGNo/M9i67DO0fjPc57nLdop7HO4pwBU0hFjNG1Mjjf4tse53uca8XUHIsseBZrW5qmZ+hHphDFGD2KVqsgkg6lLSnJFC2lsFx0rLYLpmmP0SPTODAMisXC1fSSQmsjXYOcE3lH3dC0sbR9T+Ma9mNkGBOb7Z7w9h0Xly9Yrs5R1kv0WgreWaxzkKO0Ls2FMAxs7+4Z7z5R9hvysEXHSA6FcZwYxpH9biBETSiWcUoo6ynaEguENOFUQ+s9bdtityONtijjCDqSh8x+khvNWAPFUEUbhzl2AEwngO6xNupxcctnM/Ur98EfDVxXgy0ebi6/cCX5hQ89Pb9fe8rx3D2xhT8C10+NcqjgMsfj6ZPXn5mFAxuGtJCtetuua1kuerx3lOrpXfs4V9umRMlJtI/OUnJmigPDfsfm/p7t3R3TfkcKUdret4rGeakrWCw5P5t9lKUwSCvRDW+3W9IUa5taRQqR3W7PfhhIuaCNodQio1IK6IK19qCptEaRppEdAiKH/Z4winyhr+2pr87PMVrz7sMHdvs9t9efWC2WdE1L30o9Qus8rRc7ud1+hwLGaWS/25JDIMZICEEAs9YYZ+j7vjKDwhK2bUspmXHcMY77yhSXus4JgAjV+1YpVduPN2jtSDGJdtoP7HZ7hmEkoijagLKAxsWC0hM5T+x2E0Pao5TFupaL83NyKkzjyLjfE6eRbZgIYYJiD4A5Z2mBrE2V7yUO6/wTk/cLc/D3PbQ+Kaw7BAV1zzz5nRTGV/7tF2TIHhTNPioqLLWQcM7uPgDQv3BdfJypm1uTp1S18uPAp0+f+Omnn3j9+rW0ZE/5AJ5ytQ6kLgUZ6jXM0o45J5TJWKfFz7xtcM6KKxRz2FezIzNAO+i+cyXodGVIpbA8n5zXnDOlrjPaKnQRxlvr2vzLCMeuELgTazMUoxVd41GrBYZC5y3b8zW73cAwToQKdlFanH1KEVZdSWF+SIXdMLAdBA+gDNFpKJFhnKAMhJCJuaBsQes5U69ISQIIZaUDIlXOKFkFycDc3Nzy7u1brr/9ln65ZOWaQzddXTh20P3K/DmA1CNf9eSYQe3DY5XD72VHPz65FMlKfJlJeXgUIeBmgP3L9+vfDcP868bRIqrUwg4ZRz/ZGk8eWoIaDc5pGu9Ew6wLWh3BtKRLQApLIrEEYWhr4wvXNJw/u+Ty5TOunl+xWq/wbYMyWqrix8Cw3XPz4RNvf3rLuzfv2NxuIBX6pme9XLPsF7RtS9u2+KbBeUfRUmlqtAGVq3ZPobTHmBZrG4xrUMZJKq0E0BbrFFp7nGtpu8Q4jsSUJKBPipTEUq4UKXwI1SzdWk3btqQ8cXvzmt1uxHlArTHGo42TyWcsaNFBW+/BWPbjhM+FvluADijtSfmOTzd3jCHzLCvW55e4pkUpLdpNJyx2KgmvFa21BOcoyorLRczsNjuGnbTgLlmhjSGOkfvtyDAVrJ9QtiUU0WmHZOhWnrY2lMhjJGbEm9KoqvMqWCO2eLGoWuRwnCcP0xe/DBD/HIj+n/Hbxum5PN1c5yYoj8fXGP/Tp5yC4nL4K4fLX05+0FpJW9yupe97nK3Nbkoik6AkSg6UFAApKNIKQgpMw579bst+t2McBlKU+ojVouHZ1RnPrs55dnXJ2dmC1bKnaxqsc1JoaywptvRtQwqhVrErckzs9wP39/eSHq2sVS5JHD10wTVeQLPVKKPRRmzElHEUDHHYs7lRlJToFwsa57hYrSgpcXOrUDGxvbll4RtWyzNa72UpLS1GQ9NYpnGk5MRuu2GYW0orkTVst9L0wFuHbaWzn7cOug6jQJEIkzh6ZFXAGJTW4m+bqmsJpRZlS1ezbEwFLvoA5kqIohdVktI3pkpqkmIak7TankaUNjTec3l5wTSM7Dc7wjASplBByYkPsRJd+CzJODTd+DX52d/5OALm2Sv3KGk8dck4vefmxxw6Jz5qFvYUqzwDZzgWPUtS5+h0MP/ul6yb82vOr5tSnfNFNLb39xvevX/PmzdvuP70iXGcpGBWiaxJivxmW0x10MnKtRcpltUcikaVnoF/ZZZLQecsDcKShiTp/lwgliKBlxFCjvl8ccR/EqRLZvVg31YqFFcarSyQMaYcNOQxlypd0hRnYdnjrWa1XIhP+RTq/qWZcyExZ2IqtcmJ+MiPIXC/27Pd7ZhiIMRI5y1d0+CMw5gN97uRKc1e48LYJwqxYhGr5vceDsx+yYW7uzvevH7Du+/ecXH1jNVqXQsYS2XP9eFaiyTnOI40yMm/PzMVDo8ttSi1EtBlRtx1Ts9k6WHePRqKk+ecoHS5Vj83Gx+OXw2YvxIU/MPHMdUj/3nw8yHtWgWL9Q8ChpHiG2twRqFLgRwRn00jExUoJEJMhDRQTMYacabwTcNivebq1UvOn1+yOFvh2xbtxDi8RLFhCfuJ/WbH7ccbPr27Zvdpy9IuWa2WrBdL2qbDO0/rGrwXwCxvToFRpKoB0praEMQf5BcoJ9XimgOgNVbjHDQFmmki1WKFjCZFCLX4UBmx4BnHkTFMxBSYJs29tpSihYHOqkovnHQSMg5tPBiH8c0BMJv9yOLSsD5f0E4ZZVqUbfn48Za//fA9z8eJF6++Zblc4rRGpYwpWSqM2xZ/fk6fR7YqMTaGnVJ83I6M+ztSAmOaqlfVxFSYYmGIkaK2ZGXI2qOTRvseaz2LriPELUypVoUrvNWkrChZS1FFXZROrcrkBnu6K9z/jP+88VSxIXBIrz3gFz5jLj5fjWat8yF9e/LY00fPR8ozYLOWpmno2o62azBGbORSjlVTLQVrOUuVuFKQYmQcBvbbLcNuTwoTOSVygqa1XF6c8+2rV7x6dcXlxTld62T9qcDElII3Gm0My7YRUJdS7VaX6Lyj96ZKQhQ5iftGLJL6zJS6fEg61VmDcZ6uX5ERnapGwRTJdpLNr2SWTYs7v5BuYzGxv9/gtcU3HaUEjM60jcW7BaNztS3wyBBGQM5VCBqtR4zR0r5XKbxvabyn8V4EJDkQphFKBBXlHpxbMp+AqRQDYRqqA4eux9R4Z4jOMqUobbBzlPyabWicI7UcmpbEOKFGTdcZln3H86tLtnf37LZbhv3AZrMhhghVH3vaqa6UalmWEv+dhlb6AAThFDCfhJBzYfSvGKcOFp8B4AMFWO+/E/D9S9HJDL5PGeZcCzXHceTjx4+8ef2am5sbwhRQagbZx5dIqRycXOTdVHCYRZ6plEZLiwHUAeBLIZoqQrioVEROEqMwyVo+g86gnAKt6uc7Fg7P718IfFXlkWBKbYxUpJnOvPMoOBRmctifkP2yafDGsmh99SGWwrxcCqkUYs6CV2IiFYUyYgpwPvTcbxo2ux3DFAi1KUvXdjRNw7uPt9xs9uzHdHjXc0Al70kRYqj3lQDSaQrc3d7y008/8u3r7/jm2++4uLhAK0WcJrmH6np9GiQdrucpKfJLJsGcKTzFeI/375PveWouPnXMGWgj3Tp+rSbj10syfu0T/s5jjjYeYWe5WZirLqWQS5FrFawAZtEmiaNC1pGiM7nUVoxKkVKmpIlCxraWrutYrHrOL8+4+uYVFy9f0K+XuLYBo8gpk4aJPAbSEBm3E/vbPfvbHXGf8NqzaBcs2gVt0+Gsqx6GFulCpTFKLNqyhpwlLQy6sr0NaE+pX0obkTgo8X4sRTYXaWvs0NXfMedq/aQhF3XYHKZpZBgHYcUmxxQuQEeszShtMQ6apiOrjHUe17RY16CMSCJmcD2MgXW7ousc1i9oF2do23B9fcP9/S3GGMK4x1npRtRoMGlChQGTE6216G5BS8aGRFiNjMPEMASUsqALTQd9NMS8YzsUxlBIKmK8wajMOIy0y4au69gNE02EpIo0i1BSDVwm6RBWstgRzYHUUcNaThbZr8/spzxI/7uMzEP15jxqPcZp/Hn4/u/96R9bS80L29dthJ7IDOhjjknWhlrWOacL1ayRnn8GlMI1nrbvaDqP905Y0IwE1yqhsni3KiJaWXSRFrfDbs9ut2OozLJR0PWOZ5fnvHzxglcvX/D86oJF32J1qkBSWriTU82ESKGvt44UNDFIEY32HWeLBopICMZJCt3mzSjmWB0AEiUGIQAkfyot5X0jKWCtSePItN8JC2Ok2Lm1VjqV7fdslSYvIsZaqcJHHGlM12CtaBs3m8hmuyXEcGhdPI+UEuu1wlorXujeE1ND33conYlxoBSxNSsHJlPS0QMDMaUq85AtKaZIIYKqAKckYgJK9YPWrmYEGnJWTFGaHMQQMMbStsI039/fsdve8/9n70+XJDmSLF3wY9lU1czdYwFyqa7bl2heYmje/w3mx9Al6u7aszITQGzubma6yDY/WETNPBBAAlmVVYXsVpDBw81tVZWF+fDhc3KJnM+JmjqSp3BVbcodtea2Z/z1HCIv6RJwRdr2hLJTMng5B39q38YPqVsYMbvhxPepk3/qc18/R6c4xEYHOp1OvH//jnfv3jHP8/V7vAjQlGJQeClDVrnKCPag1FuLE+UkSylIqRhT9AGpzacWTJa2tKgplkGcaN9OLd0nsgVu3ShFG+9FLBVtuKxiqBhKyZArJWvrnTVNQi1nvDFYWzUIrgJNGpCKytDlQqlFre4rSCmKGOeEEcPkCmZyeAKzE5ZU8M42dBaqGKx3nC6r0jhL2e3klVMtUFV5ozTHtxgj9Tzz/t173r9/z/PTI+t8wQqkbdPzVF4qW/RrWaXsAbP0yu4NWv5jQ+JmqW6PvaFUyk8MmGujYUh3YlQXTBqR+efM+T+LkvHnBAt/SsuxPeqLAf/3yNlXIsvLDX1Hl/P+uxGLM9K6W2mkfTDNScrs4ULe6R3jGDi+euDVr97y6ldf8dVvfsNXv/0tx7dvcMdJub4pk+NKXCN53oinhcf3j3z3x3c8fniCWDkOd9xNKh9njHbJdk3M7k4nKMepFFAXaIsYp8iyDYjRoFlv6oBHthTJmnU2ySAaFy9H1XWsbXZXERCLdR6PgBgmAzFNpLxQ6katUeXbQmaY7smim6q4ARMmjB/BeIxTtHleIiYs3D+MBB/IOH7z298yHe54fnrm+ekTl9OTmjkEz2SEulwgLpT1AtuC5IW6rZRcGacDr199xdkvxFxwBfBCqok1Fpa4ULZKylAkUyRitw2flYcYgldE2RXyphai0SbWljxRa5OUuyKWeyOMQNdW+NJYvZVX+6Fx/Is/2prz/YpN+9kj5yswtR8vqFFc/63o0098+y+e25vS2Wcv9KOUDFFuYWmlu66gc33FjjL012YP8oZhYBzHHSHqpgC1VkqKlBShZkzVeXa5XDifTw1hvpBjZPSOr9684be//prf/PpXvH71imkcsG1DgawNqa3Bpm2finQhiNVeCGMhBOVJCyqrtW1OA8mqtKOUCzFp81+MkYpuQevljPWZcTpgrFM1tVyUg5yzjmmv6hzkRCobay14C3aatHM8JxDBOsdoPEZg2zbK8xOX8xlEzYdoTT3KwdTzaI3FGkvwnjyMlJIQkmpK16LKH23wlJKIDWWmqAScoM6LKW3qokZu56lCTdSc6I1U4+C1irREljUTt6UFZoa7+yOvXr3i4eGB81nl8jJX3i217nzs3lxm5K+r6vSlZr0rWNApKu1xX5jLP/XYOcc3Se7na0KD9pqj5veD8o5Yd7WMnQ9cteKSc2ZZFh4fn5SqlNKO5GqwV9p78XKdEna0si9lzhq1ng9OgR0xSsPIrUoNIKrzn2NFmqRbNa03ymifTDdEYTcQabKLYnTuGavURqtN+tb65qTXgkv6OUOTQ1MRa7XhDhBKoxjq2iWiamGFZndtKzVrYp+aoogXaco1A4O3nNaIAMlb7g+BUo9NFWtm3tT0Z1mlWdRnagHvgibPTb+6ZAWs5suFp0+fmM9nckoq8ZdSq+1roNZH2D7erhy5nQbXFVR0OVZWcb9UO5hxczH3ZtDPk6Ba95e/ypK2/9+OrdvPdLO//dxY9j+Ew/x5WfXnfciXqGC92QD1fq4D7ub/5uanumxVTM1YWmbpDNZqoKzZlDRrZc/d3cTrt695/fYN92/ecP/woHxlo2h0SZm8buRlI62RvESW55lP337g/R/fsTwvTHbifrpnDId9kmiTib0p3WhTXhXb9CKFIoKIR8Srra4dwAxUo5SMTKUai9hm29qgZFMLgoGc2pdXDjNVnf+sD1g3gJkR6VbSA84OIAbrBpyvjNMdSQpZMhiH9QNhnMANGDdgw0gqijKHLeGDA2M4PtwzHe84HA989803PH38wJySKpDkiIkreTmznZ+RtOIoSIqUlPYNrmLIVbPlmEW1J7FY5wghk9bCtibIM9iAmRddiKQlI6XiRBcZasY0bpW12oesi1sbL23h2xUZ+GkbxV8TsvxDR/3ejvP9BOJKb7lJcm+e8r1K7U9MOl4alwh84XR/+Rp05OwmWN43I7nJultDUePcYYQwBLz32og3DHt5soPVMSe2bSHFFWM1Q0+psK0L27qQoqpJWBHu74589eY1X3/1FW9evdJmOmOhqtmCseCdU21cMVhRbm5b3RApOKuJ9BCEcVBlh5SUY63omH6f3IK8VBIpawJdMEQFryglcj5vL6hI1iq+ktaZUrSMap3FVgUANtHrlEvH5wLWedWpddoDMjvLtkW2de3dxIgIznjVlhd117NGNZhDcpR8tdDdFSpAN/maqMaQ9mCuXfuSMWQMBWvQqpwYqIVaE4KCIc4KQiEntRyOcWMc75jGkfu7Ow6HAyEEnPO7pJRp6iTbtu2azFc+5F/H8RKpvd7XA+TrTRFLqVfu8JeUL750/y1/+fOg+/sB800SW19qvN/SPLp8nbV2Rz5TTlDVHOf5+VkToBhV1mwHNQCBlDTgzalid510jRusQHDCq+PEq7sjh2FgcB5vLLYokEZr7M3VkGrBlAK2J9EGwZJdr1DUXc7WiEolqmSswxoH4hCjwbL3IzYEBVhFwDTZvJy0N8K01utGDRLaOtqvT26UpqoBskNlMbHK6oxSiSlR9C6sgeoqWyxskrFEnNFm5MPoiMmr7k4tlOqUgpEz2vvUQaVrNUgQzucz336jVtnLfOYwjZQc2WLCWK+qIC0x6nFppz2VPv6gcQBU8tMI1yRWrqhM/9c+L3f8q7/C9ai13KDN14h4rzrIzbqyn9sbLfKfePzFAuYXk4HvAVM/5RXa6/QZKDvsrhtaR7CaKLhIY6W0DFBE+W7NmatmsFJ0YkjFkNHiiugAN2poMoyWYVIFC9uaVHpmFGMiVe2WT+tKmlfSeaEuifnpwqfvPnH6eKImmMaJKRwIvmVq1iHWQXPJE2sxXgPmIk51Has60RnrMHgKniKOKp4qHkRJV2K1WQYDFi0P5ZK01Gl9y0htSwTAB20OomqHbKVgbMIPE36YKNUgxiGm4vzAKEeSZIz3KmPjB9xwAOuVniGGUmHZIriA9R4RQxgdQ/DaYZwzj+/fc3l+pixnbJqpcWF5UtktUqSmiBWloaRSOM0rS0wsW2KeC+ezSt5pQO+wKZJKJeXKuqyIvaicXaVpQhakaUB28XMV79dxoo5Bffy0YdarFT9hgP6UDvJf6nFt0fiTAlM/41V/evTx+Qb7E5918x63C6TsSNL+SdrakWvTGDXqomkbfUBvnhBc4xhrgFtKIm0rcVuoJWGcOs6VHMkxEteNuG1QK9M08ebNa77++itev3pgGlU2TuUtm5FEa5IRUxrH8tqFrqYotQWbon1DDfB0wWJ3+ljbzERLmlWqJsct7C5V5aXmeeFyuWhDcEpKowgBEdVCLjlTjUHwlCikVb+3BsxavRLRDTVlRbdC8IxDILdgM65J3eMqWNHGPRHhcBgBNZDQhj6PZCFLUntfU1S2swUz1ELOsQU2HY3U+43RoEc6ItrWun7de4Jcc2zNURtGDIfjK6bDyN3dkWkauVxOlLZXUCu1Xwvpm+rPHH7/xY+XwS37z72xbw+EuQlErsefmo+fB89wXT2+KDPHn57jL/tM9OgOhaUownw+nxsNatNEqq8B+3Ohx1hSrjGIMzB6eH038PbVPa/v7rgbRw7OM4jVPaO2hjXTLbU7kHVNFnKpTRO56jisguxUIWk/LcYEmmelBtNO988eRCqJOkLdiLlQUmkBcW9KVXpULUJVUWmlhpXuP6HVGkPR4F1L5+ScNeHNGVLVSMIUgoXRGXKwxOTYRkdqgWwBlaNb9WxpXK50Ee9U4cYYoZTM0+MnvvvjNzx++MSr+4fWE9aokK1nqCPnPcrt/+1rVr2Z5z8yFl7QeX5gDHYQpI+xLz36i0pXf0Z2/AtVybgNem5gd+ni4TfuOlWVMJyh2VsKUjLUhJPGbbYGa9v41TZxHbDO4UPPmgxpi5QYIRXyupLmhXTZkDWzPM9cHs+kOXLwB6Yw4W1AetZ50yRRRZHkVEBKoVCJBVIVLd+0AFlvAc0lHbV12VbT0Shpm7ChFocRVf+oXUy9aumnVMi1dQT7EdsaIca8Mq0ntiiqwmELLgwMDqxksqDINwbjB2hNgf1WKsScGYKKyu8o28MR0td4Ch9S5Dw/YcitfFZIcSMtC6mhO2FQ9H7LhTVGLuvGshViEtZNHY1KS4acM8SoVtnIzIDVzyOCE6N8UJuxRlrAU6jV7KUzjY/7Yq4b/bUF43/P46Yt5uZ3/dfnj+zHnxNb/NBmeYs+/bzj+59iRyReoNOt1FuVP1xqVWFG5wjDsEtLDUPn/OoGVaoiTTGuxLgikq/OaG3jSlGrJM4a7o4jb1+/4vXDA4dpUo3lkrVj3wgYDc4qhVJFNWrR9YFaqbnuY7LWrNSiVDHGtW5+RXy0pK08QWkqCNaqog2izbsjwt3dHcu6cj6fOZ9OKtEWt/1c16KUjrhtmLgQ8oBLmuAjgnUBqUXpGS2qslZ0TVxWSlFXsJKzBiTW45xrdIes8lQNpzbGILuTwRVhdNaqZXWtlJxIKe9NYjs/NaukWNeYr9VQSFRUO76kgpDVONE0x7K4scwz1llevXrg7ds3xG1lnZdmk9wbrG9QVSN/DrLzX/Z4yV/uzXfXuVb3as4Pz78vJbJfbPa7fb68vO96/5W28WPHrQrH1TCl8d2XngTGpoTRQLXr19DvLjoWTJtnRmD0ltf3E1+/feCr1694OEwcfMCL1Ua+Jh9XS6aZ37X+F+0XAkNuiGSuRZM50R4BjNmbVlVBxyNGex2M9YjV30VsC3Y1Vik4MknR7FKoSfuujFisg2IcNSUKRYvhtbYGyLxXB/p1lFKwLXiGQqkZS8UbGJzhMCgAKE7pHktOLCkTs8Wmcq0slR1ro9a690B1+cH5cuHbb7/lj3/4PQ8PR6amisM+LpQ+1St9ffzp2txMam6uNXKd6/33zn1/UW3sQXi9ee5n4+1PHbc1rP34GfvOLyZg1nX2Kovz/ZJPmziiWV/dn1TwTphGx+RdI9dryaNLSXnXuolF8MFxOBw4HA8c7g5Mh6n5pmsGqU1kStYvSyIvG/m8cXk6sc0r3gTupnsO4wFrPLWKBqylYosS7I1oKSZJ1KDWGCKGLBZrg2ah1iPGt2DZUovtW49ydASVtFN+AcYPWFsQ1xcPdbCpRbNmMYJxBovFSAURhjTjw0gmalCPwViPc4KxlUSlWEuuasFprcc6lbJz3pNKz8BVlq+Kyv6kLWKoTEPgOAbyGDAxgqnkENiCb2UvLX85H9SMxGWiqLJGXTOllhawa/kmN2dXqm6iMSZsigSrzZRFDEkywdkrIpUztVi67s+VwwdabrpuIvDZxP3f6LidV+2Om5XlZjf6CwQUXw6U/7zz//K12jxpyUCnaJjW9OKD6v/6IeCDx/umkyqtuz9nUlKlhxw3nGuoRAFqachmadWpwP3xyP3xyKHprRsRqBmposYF1uza75Xa0E5tMnKixiRStMRbDWRJUNU9VKq9CfoVHXQuNDpS50navelRTFfNUCQ9eM88z6yr8p23bVOEeNvIJWO8YcgDY1FTFeNco5Jow46afOg1sdbig8OtjpoTKSXWdeVyueCca3JtQgiOEPwLRzjylXaz3wdNASEpPaCk9hi9njmrFHbKtUli67nSeqoG6N45QtD1KCUN4pdlxtrA/f09X331Fcu88CG+23Vv+3fpzU5/bcc1YL7SqDqi3BHmK5DQ9o3P1r0vJbO3Ae33gucGYl0R5quM34uH/ITP3t8354y1lpwz5/OZZVl2Ckbb4r93iIBtsm+lanF28p5X93e8ffXA/eFAsE71g1NzPcyZmhJSooJSrVqptCmHsVYtX2rVCkxB77MWxGrfj5iGLmuCazBYo8Fyd97NRXuMTDUtMHdgQqNZCqBNqKrYYVRnWaPNF+t0aVXVkm/6AxqIJl0eTAAD3f7DuIqEShJhTok1V3KRJssaQdRCW9emrmmtDoGlqs+D0jL+yD/+wz9wmEb+9m//G4e7ewXwdFW8jpm98tCDZblWh/pey8sxs7MvbsZeZznfNv1VbioZN//+3lj40n21vX2tP2tP+8UEzLdB8jX7uP5VJ08vxfeTpDaWIWjzmTbZZN2khL3RBnQT884xDFqeFVEf9XVZqN7hSiVMBw1CU6FsmbREtvNKPC2s5xlSZQwjh3HCWc/uz54zJqfmYU+bCL2smqnVkYSmU+oxbsDYgBi/TzLtQL0OFmm9nrVRUbBNG9IWqN3RCshFN7qq6JBWPxMY26TpHDa7Rmnp9AePH5QfuJZCzGqtGYzHONnLwdZ3QwGgbdC5FpYUm3HCilDxVqhJu/mh4p2DEKBWXIHxeCRMB2IFv23YwwHvVygzKS/qUpS16S+3615qVf3rlCEUnAuUXLC1Kp9ZWqm2B3sC+6S8mWTAiwX953Psf/nHdTn6jI7xherWv/eZ+VKw3Hlu/7bXhVsum7S5bq3FOrvroQ/jSPC+0abs/gUrhZQiy7KwbSslJ3C2VXREO+m1AsoQAnfTgfu7e6ZpIgSPdw5ndAwao7JvKm3eUOaW0Ss9Q1SitQUs+3u08mWqKgfX/JF2TfHbx1fTHK24Oorp60MIXpucxoFlXZgvM8/PhWVRPnHOTfJN0i61Zal7ZUx7IPyuq55LoeRJm4vzTIwL27axLAvWWkXugwNGNUCy7MH27TrezWI0qOq2yLkhyVk/W8qUaqjVttK0Bno6j7UJWmXoILhCsrk1iCUNSoxjHEfevHnD+XTi9PSkJjEptzVRrZhTSv/GEfdf7+g2yMAeJPfjijA3lLleZ/+Xmmz7cQsofInn3CsK1+deX0duX+tH1tjb196TGRGWReUBl2Whj22qAja3YGOf69B6mIxh8IbDNHF/PHI3TarUVKpqfJdW7cmxgWlaMTEZshVyVSla096htoTaoM3x1rqmuywvArpOI+2N91WUUqX0qW6oBbUrargAxlCzIEU11/t8L/Tgs744R7Up6OTcDM+M+hgYEcRZyHpVixPtf7IquTemwjQGllRJRUhF8F6pTLWqYZPqnVdSqojRoNk7R8mZx8dP/OH3/8rbN695uDviw6DxgLAH80ifp318NLORtgfLXgW8Noh3hLqlBTcAzueD5Hac/mlJuR/768/Z035WwFxvXv0vVbn6wQ9fr01btfJCX74nxn2ywDUzdF71PJ2mhtRacNbgRBtrdLAJ4NQIIARSzpwuF6IVFipjqfit4OYExaimQkosy8bWGv9KrljrsF450TlXDUANFFORItQiWrpARdNdd+3plAOjaLOiRWocgljdLJRU1eag0UlGyz4xSHWUJihtjTYdmNKSi7YQ1N6TX9HgG3OljCB0lREjqASes6R1Y1kjiQu52GamUskxKzLnlU6hExvEKXJnjdHFpxacQKJxD2vGeocCddr97IbAdLzjGAYeRLjfEs8PC8F9INd3LJ+e2LSJXvVxU+mRAzUpV8u6tkHUljTJzc2IltvaOtabGeSzjP1qIfuDQ/Cv8qjf+3lzzxe+9HVD/BxZ+oHX/5GS1w8FzP+W47rIyr6wVkCM8gLDMGigPKjDl3X2xiVKERWhkNLGtl6I27q7b7rmgqlKNLoIhRA4Ho/aXOaDWjD3ALEHJkX2Da9vHpTSmlHZ16a9lNyaAgutSUuuKIrpLc1WUSTtiegNM6Ylk+X6dfo4l643Hch5bJzhzLJmUomkmMkpkLNTDqfiuJhSOHS5uCFoSCSGnAvLZW2bqjZGGiOE4JnngDGog+lNab0Hyv3nrWqDUk/UCrxWGk86orQVWt9kVfjdCEJGeR4tiGucZGhatTlhTGQcBo7HAw+vXjEe3sHTI7Ek5VfvKLf89U1wsdzSza5B7UvEGa41pNuZ90N9BT9Whfvea/D91/hCHv6Dx863bj4Cp9OJdV331yw3S9UNFgK1IhSctQzBcTwEXt0deJhGDt7jRZCSqEn35VIy0hrFVRcZrFV9ZNN7mRrK1s9VbW9orN1BpFp7QHhFojsVSaq+ROlLQ0sAc667zrKiwwblRWvlhe402L6zkZtAnLYOlZY5aAmtNSCK9glQsKKa7RYaqKRKId6aRkkVjL0mV7Q5XmkVreYEOE0jy3Lh+fnEu+++49233/D2zSts8Nw9vMLXQDUK8O2Ie/vu9eZa6QDa42WuP24C5Ha7Dh+5/te3ppaXcH3I98cQL6e2cF1PdbX/6RP/5wXM7WIbaAtWy3Dq9XP2yaAI6ssu2D+J3vXXaRB8qTtVXJ9bW7drAVXSu069up/ZouVAJwxOOIzCNFqCN9Si5h45F6oFHyyuGkpWh73LtpLOGRc9A5D9SPUZsRpM5agDESvkLXOZI+u6UWLkEjeSwBC8dnyXolJS6EYYqwbSYow20/mBZDwiDpxXKoYLGKfycRUHeGr1kE2TS6uYxi8UI4h1Te/RIuKvXMcWFOeaqDmrJE6tpC2St4SUjBOhGscUBmoJlLyQS8QNMHQHMprg+pbIecUSWH0Eq9zJnDNHaxjCxLwtLNuGd0K1liJQc6ZskbzOkFakrIhJYBL+4JjjzLxuSNywpXD0I4fpnoM47l8lhsMDOTiSFcqnM+ucKEWTjZqFmqCsiWIzzqu03kU2cokgiqiLUW6XLmIVxOyLm2q6RihR5XGq2v1KcxLTcSW8mMqtDvhvx0D/6xx7oqnk+Juu4bYAf/ZdOwpAvdmwaI5afd731fBP7Y4/WEbrKM3Lz7kfte7P3cN3aRuf9E2lcX6rXkdjLT4EwjgQBo/1FtPpWNBQJG2ozXkhxQvrcmJdzngnOBkwGEy11BKbrJUQvGeaJrXYDR5r3RVFlYae9E2hI30VrFgN2LCt2QjtHK/ovHZNnkrUrp4ec2P2pqGeDGiPXtOHzRXTkKmUEilF7bIXbcIL3lGnQQMKJ/jZsKyw5Y1lvWC9ZQyOWpL+XjJiDZMxSnUyFectPniGIRDjRoyJdZ2pNWFdxQcwtuADBByqd6w0qtyUD2qF3HobrDgKCYNtDctCSShHumZEMl3fVuOFAlUl9nItUHQ/6AibzZqs1xwpWSkk96/uONwfCR8D87IQkzqQ5pgQsao5+6Xj843+F3IIFmM8guh5z0WDoBsqxn7U8mIu3gbFO2LIFdm8/XdPfPr+Ls1iutaqFYLOlW7VkM/XgxeBe62M47hTMDrXPG2R0+Mjz58eWddNq6pGVC6xqGSsc7Zx7vW1XFCw7DB6Xt+NvL4bOHjBlRWbLMF6vBNMEWjgDmTd39ocs8625mB10qw3yNx17hWsqJm2cZYqyq1PqTQ1Jq3Y2FqahXQh10Ihq/Zzbf0SNWljcc2YikrdiSWTG5WjKPBVuktfbiYrXRirJX6N9oQIFsEbIdeMpVVgq/KagxUGZwhWVGWrFv2cohJxtYjSSdq6bvBItTgboCQ+ffrAH7/5PW+/emA6DkzTSPCWmioitmmea6xUhT3R16HW9lFpqHhbV/q+qmOOHY1XcE9lM22LdrstOCJq6EZ7vGhiQO0GMoDpnTqiBjRUchPu236GTMbPDpgrGjT3zEA/4Et6RG2PtfU68fpk+iG06Xvbcs8u6FlqGxB9vHK1QewdmdLI7oIiKYfR8XAXGJ1gpHMOlcOYt0IZGsG9QEyZy7KwVcsAEDMmFtwGKQolWbwbMUY3w5g2YoJSze66U2j8w1426aVW2zhFIhQj0HRKpTUD1N5tKK0xsCG/FaNOfbVSs0BB0ZeGPBljKbWJo2NVFggNqFUqRoeft64N1grWUmvazRu6dXhKicwGpuKiYINK4DljMUS2NbLKQrUzSTzODThTgVl5hUYpFyUnatq0s92iZa4YietCSquiWjWra6EVslQu64qcLoi/I0yO6fDAwRnG+yPheGA4HPiXf/oDH757Ypmzui+1Mowg5JTUwjfotRGuzZBGOk1H7yt9LPUyjhh2UEDaNQO6PqmYLgN4EyL/HB2aX8LRvs6OHO8bWkenvhTU7kvbCwSgx7gvGzJ+OGL+wb/0z3QbUH+2ftwGyreQxO1btmFObZUX6zzeB4yzmjN1+LaNg0ohl6SNfttCjNrcJhI0WEOpAdqI1tQhrMP7JlvWGvhKl4SX9ol6VJtvKBrNlrcHF6U04wDJUDvnUBuFVF3DtKREUaguY1pr2WXgCmALV3AhaSMR1F0VwlphHALeWYbRMx0Gns+Ox+dPxJxJcaOWgWpQekOtuj4Zq/zL1mxojFFlkSG0z5CIsTDPwjA4vY0WRCluuVGocs57kNQrO51qBwpKGHENCDDUnCg16v32qopEr1oV1V5XZklpxiRCjolcKtGIBgdj4NXrVzw+PbFukWVeKTk3V7iWSH+2P/0J8Oq/9HFF783nX4vrLtUf/P3v9yWa2udUjC+rD7A/76c28t4GzN9X36hs68rlfGae56ZQoaBG1UhOgyljMFUozTHXe8s4eA5jYBo8g+vaU4YgGjQ6wNSuTtE0j/UluzprS3h1jSkU3WsblKca5DrzjNXA7mpOUpulveyPrdTmBVH3oPcFBiodhajNL6Lzl9mruO3E0G0GpO9n7ezL7WOk15WrBsPaEYWTijNKczZSMC1YdlZlWMmipirWYFvcVauQU6PcVFiXlcfHT3z6+IHXb17z6vUbvHfQDHP2OKjqZzPSd+K+R9xkonLz/W+GlErjtsp6vd6u46zuL7EDKA2kaXFy++z6uqqeJEjrdfvePPgTx5/NYb6Wcl58+psH/PzX/D6WdfM36UGO0g6ucjF9EDfd1HZCvRGm4JlCwKNOXQI4a5vesnJsUsogFRuFkB01FSRmXMz4VJWuUQzqqqduezlurFtqeo+6KAnKlbItNN050i3jNpgG0aPd8LY/S9TNp7Q9iZZtSStL5oy0Dl1Vxeg0jC8kHzeL2ZUMX1vzgSg/ylgV1MtXNx7drDO5ZiSp1mV1gh9VNcA7r770MZHnma1apgGCy2zzyvn0zPF+wgVDTDPEFW8hWqBu5LyxLgsxLaSYyKUQnMc6Dyysa0RkYTisal+LSuGN9wcOx3tCmBAJ1Pp73n/3RC7rLrOTKdQUYZkRBk2IjFrfOltwtrLlhjzti09pk/qaldbeLNVQA200+Ex45pqh/W9y/HCIcN3g/qM+y586dPLr2G+rUu1dDfp3a1X1RjV5lSqwz49dI10dP9e4sWwrsYnyi7GIdYgYddlKWQNmEbW7H0aCHzBi9w0Oetd8/3w6/qwIznblC13bUrpp5KkVkYQYRZmssW3Br9fNs0kk0hpjFTDQKN3V1hhcbm2JdS3qZVdjBOsMzht8cIiFmDZOl5MmzyljnNpF55TR3KBLbDbkzRqGIZByhFpYt7o3AM7zhWEMDKMapHTEsJSyB8yl2VRrZeA6kPr8tdYpt7NVyopoA3MxWvnqya1GEg1QaPutNUKxhpQV3JBkcM7y5u1rLvPMPC+kmFlT0mtl9t30R0fYL+l4yV+m/fuGivFZ8ln3/erL3/QWTf5Sw9/nHOk+ljuIIftn+uEg5Uvc6FIK67ZxvrSGP5T+2PWWFRhpnw8FlaxUBu8Yg2caPKN3OANCdwB2TY2iU/jYX8uaipWutrVnvQ0RbcFf37crza2vag+R0YpvbRr/0vsQSsXmjC0t8N5t4rkZctemfg2OOwVVWpDX+hVqq/3Vutt6Gz151xNZb3nAzZegUVVNVSk6L+BFKRr9b86At2rpXWqhFkXNe9BZc8FYXQPitvH8+MT79x94ePWa12/e4n3AhwFj/MvP0wPlvSr4pRHwY5uJ/q30r1nrbYfSDp/2Zr79Zz8XjYokHVyt173958hJ/lkB859Ci/+ih+iEMPtJ0IkvTcBcVGOcYITBWmxp2VUtdLH8WiveB8QWYk4UqQxFKNUiVUgJarFYEwhhZBzvOEx3VBwxV0Vbm6yNbfaVzjhGH/DVtmbCngFeJ1bNUEQlkJCEMQkpmuYZp4G2bRukEdl1MjUAv0rTXa9D/1/PhKui2WKaMgZIgVy0fCklUWoi50yMGzlHcsmt9JW1PJorMVXqJhjvcePIOFm2srAVIaVMvKw4PLagxg05krcDh/uRlGZMWTWTlYSRjBUtza3zxhYjuRaMH/EuYMSRUmJeZsbLzHyYmY4RXwJWhMP9Pb/9b5ZcLDEbtvQ7qpyJ5UJOBUrScpoBm7Vb2YhqbTuLupeZjKOXmSpqgat6s1hVAMmpNJ1mLVuKMX91QPIPHbUtrt9Hdr782B+77z+3YbIHUbIjtC2D0p4B5wh+0Aa/5uaHCDb4vX8BY0gxs6XEljK5lmuwbNVkKKVMjJmSwdnANB6YpiMhDGpW0JNbYzDNOMEZUX7ui0bEawBiTGmIamk3TY5veb4l14YwlReol7YENbhZV5EmW9XWBtuoGtpxvCPZGmG2atw0sR6PWjnLGtRapy6BMWVK3TB2oRptcnKtxyF7RwiKMKv1sN5iVE3kbdtUVcP7VmK9BlLQA7i+p3RlBBqK1+hmulsrraMha7spkyhNJDhLFZX7UpMLVcDIrXkwbpFhmri/f+Crr1Y+vP/Apw8fKUUTA2cMW85cIRD66PnF5sn72NHsEbgNmL/0fa5z93Yefwld/vz2Iljmep1LvSZs/IS14UvBsvLjVSZw2zZ6dbD2YNEY9qYmUcDJNkObwQlD62EyVXWMpQhSsyK9DeBin2+1+TR0adbrTW5Aq+5m2aAorsmxpRqrDbjNbbdUyLmQJDdgpur6VOteJeoYsUjHgzsopjKKtMbAWhL5xXV8ieJ//u9Mq/xWTVKlaMBsa8FLxUtTAakFcyPNaNAG+075AAUpq6k7WpxTYT5f+PThI+8f3vHmq68YhomjsUrJkuvaJaLBck/MEH7y/trXttYyuKsdNTeKa/rVxoM0jw7Tf6ch8+3U98oB6Gd0PyNi/jcjzP3499sofzzL2BezHQzoJwlMUX3VwcBgDd5ow4qQ9zKIokeFOFpskWZOosWKmAoJwQSDcYEhHJjGe8bpjnG65/ESWWNkmTfiVpAWmNUqWAzeOlyxTc+xaLS6d3c3An6jyVVTKamVZxo0oqY9LavtaDlXnpgxTUexNmZ3vdJS2oPbtbgOCJXHSuQSW5NDIhV19NmtLXMhxUSRjFggVUha8h1cYHKGtQhpTZRqlcKyJVwVSIm8zjynC8vZgEScJLIUynzCkJQTlXLbQCMxZ7yPuEE5djVHthQ5n04MwxP3D6+Y5EAqOiXGuyO//e9/y1aENYHx70gI82VpEn+ZTFEBdfrCpt353kMoGhDbdj4qpSF7bYM2XbqnIxY3mfwvbZf8DzpuA56/6Pv8jL/puiD7b1oebRubdUrDaA08neJlnWNoahnOexCVfsxZ9ZoVMUKNh4yhCMRc2LZIrTANI3fHew7TgeCCSrG1bVg5ytpApMgVGhi3BazTEDpSKiJqMERViTvrcU1fea8oNVqWaYH5viLW2gDSgkpZ6n2dykGXssuJlDZyVgRbkVzlNU/TyLpNXC6zUqtKwBlDRCUeS18zTNFk1wjOqTU93DbQloYaa+DcbY5fAmANMWrycYqEa7haSqOYtPXPNp3b2jQsa1WqhTFVaWPOY51FsiHnyLppiT2XqwJGRfDDwDCozNzd/RHnXVMuamurRPa8g305/cUFyv24lWb7HGXuQNPtt+sI8BdpFnK7D71Ema/vcX2tbjay9zDx0xD6W+3oPn62bWOeZ+Z53tVMNNi8oWX2ikULzoyo+60VVTo2VfYYwGBa4JyV+97Gpnr49c96rfzSJOTECYKuJ7Y13XcKpc7FTle9BtfsleJCqplqpSGgsqPHu+lQeyym6jzWLiKq0XFvjGqWUzp3uqPI1yTl81uRSlEB53Y+lJbh0IA5CHgKFm16VAAKqA1hV4iWXrntMUeXj0spczmd+fj+A999947D8Q4/jIxT3VVadFvuVIzbqu1Pjpjp31RVReo+T6+j66aKQdXrzY36Vc8bW3C0V/7l57kw/KyA+Uvo018GUSptdpV9lvdJDzu4TxvNjZ+jRO9gYQyG0Qle6yXUEsk17VyeQiUXSGo1hUUoWFIxOAzOjTg/YmygFGFdEtXMzJuWhrY1IVUY3IBFSBlqbhepolwlKXTasDLSGyuqNr1jtAu+2zNLlZ07Jfs5VsSs22rblrleV/UrWlCKlkvE6kKolpdqgU1p5gIlt+yq2Zlaiyu+yWm1oVZV87TEgouFUSw+jAzZsNUNKZZULGnLpFwJVrt1L6cnTo8z1hW8SZzjgqwLdb6wrTMpJlLMOzo3X1Z8Nq2cZbHWUwvMlwun0zPD/ZEweP38Yjk+3PPf/vv/Ra6WjKJBYo0G4ctKoaMZpZ3P2tQ+LD5DLFXLYqZbdOr4UW5ZR+llR/GNMaq1+Z9RRfkPPnpDDryczz8nGP6TDb3/zsct8vfyvmvWeNVEdZjmtolI40CCxeK8xw8eGxxipVk3Z2LWRhXrm421c3vvQMqqRyoI03jgeDgyhFGDWzFdK4oranTdhLu5kHKdaVzorBqw1L3Bzxnfgu9mPlRax71YnHE4F/aNtqMs+9UqKuNYGg+/drWcqhJyOSe0RNuDBS0Pe2cZh4Ft3VSruGmkG3PVgU1bpJIUTXceHyylaJDfzVSU44wmHw0d7DQLQJPVeotKdjpKa3xsTmqlKQdov4dtFbfW+ERVVzFJWk6WbkKlCQqUphGvCHMqGbvq9ffecXd3x/F4ZFs38pp0kzVKQeljiT7GbgfaL2g5eDkfP0eYv5BufgFVvm3a/xIN48sVqXY96zVg7vvLT/us30eXz+czl3lWidGKNnK3dasU1S/PvWrYmrqkZkzNDU1W3WMraNC497aUPW+oHQ2tpiHAzcsgQ7Ua3Paqca9i7f+mybimArY0czLl/9amvSy1MaA7tYK6B716/jVcF1P1DcVqcCilkXFTEwTIjViiiXGp6mDak6JeyalNilJVM9Ckk0IQSFKJFLyUZotWkKINkyWDmrI0ZLioopg4af1UqiFvRCvycYs8PT/z4cN73rz9iru7V+RjBmm24tg9YpN+yn7G0cFBTUgU8VZ30+ssVSrWTqDRajsaUxWBYrR/zLQKgQbwQjd++anHz2v6+5EN9HuI883/f+w5n5P7exdem943t37i2MtyUPcAU2gBsxOmYBmcxUuFlCglKr9IdDA5qwYdGNjSBlaYikGkNe/4ARFHSpV5jqRyxswFOx1JSSkZgwjj4YARw1wgx0yJpen/2mupQHq26bCmueSZpm5Bp1lY2hp/5R2a2vSTr9yl/YzW67nr5y/Xqs1wMTbOY9H7GkKtyPTLRc9ZTy0BbwPeBbaU9MVFyBmWNRHWxBgc4zRQTGKJFbZMjLO6/A2OYAxLzsTzmcjKUjfKekK2Fdk20ryyzAvbGq/l7LoQkjSNVWHwA8MwIiJczmfMxw+8Hj3WD+q8JsLx4Z7//v8aeJ4XtpSoApfnM2pjrFOyNljYtPHQlLfaRClq2lL1ZPdScP/pnDaFiZgXrlg9COtZ/F/b8aWN8M95jdvj3+c8feHzSH99eImO9e/wEmvQTvdmTd+D1FohVy05GuW2WqvdEClHLV+2qo/zrsnEadWiVkVVUlJFlXEcORwODEEDS4EWdKvJRnF2H5u0dcuIos/GilKV4ro7d1ljMEHRYbWcTuSqCjm1Cs4bxBsMru8MunfTAhQKuTRkSfrp0iA259yC5XKtQJXcFBMyBmEMgTUE8rxSUkR8wFtHbc2Aavqhie3x7g7rHCFYNEDVwFk79HVMKP0rYozBe+2470F6R5+6XGgpdadGlRY4XzvlaY1E7DJclUw2CZKqXNCSE2tbHwgd5YItRs7nMxVNSO7v73nz5jWX85nTvKGqOoZcmh7zjsZeR2H5hc39nbrQfv98Tva17zpvvg+GfSkgvt17Pn/Mvlbu4/fmdfaX6OHTzWf9LAgXkabwktjixuV8ZmkNfxrm5v1zdD72HjDSgr5CA4lU2tQZwVtDcFblJG1TUehrSQXaPN+jih2buiLCpUnBiSkNybw+vu/DxShiLEo2VoqD0d4ZMXINAlugt7v37mLrDkyrPtkeCGvCXuQaJBdpXgigiiG1iQ80xFuBa42rlPIpei4aLcPVghNFnyllNwlSeqf2+Zie7FSleaacNUF1ur6mVLhcFj59+sTT0yNf/+rXivbvidmVAnQT495c87qfZz3Xn9FNagdDGhjYgyDZX2pPfmSn0rT3FSVgJkF7H6TvDO01SiH/DA32f5NxyY9tsP3L/5wteD+5/dk3J7tPsFIbD4faT81+M6KE9eAt3mqAVIs2pHgXsKDUBNFmEKmGmAomqEpFFdNsnx0Fw7olcp0JxRDwmFG1QUsqhGngbroj14ppGal+YS3v0bplpQmWG+uxbsBar3JQxtG1kDvSvAfCbeExvdmHnnFnRVqKJhTmZtDVHgikAk2OSsRirAZ+UgtimiSIdP1lbarxbiD4kVSjYu3WYZyQi+F82TBDZTgeqRbKshHzArKS08a2ZjyRIIKrtdmWPlG2CyZusG3EZWs0lkRMmZRU47YUh/MDKRYOkyH4gPUeatGg+fGRKpYwHHDeYsPIwzDxt//9/yJFpZLQNvua9HulDNKbGzQ9vnZAszPDtKmhlMYhU/RrGEZ8CKSUWZau9XkNwr64i/4VHD9UgoU/Hfje8hf/3ID7y++x72Q//LzPH941Utt1w2gTjrUOcS1gbmoIVTRYttbq2HIokkNpwZwGlc5ZvHO79JHuh5laM84ahsEzjqo4IW2MUYtKotlKsVXlYtrGKVbRVSMG7zxGEjFGdbfLGeNbsF80ANYgV9FSMQ6cNLirbciir9sbe0rJpDbN6ZUkEe3xqKhVMA1loe5OYZARg1IzxoEYU9OGVeQ5l8K6rIoA18p8OashilddalsEXx3WadVn5662I+e8n0Odd5pw1HJzvaq69GngZZo+rmrA1tzAEbEYKaSWHJQYSWVRAM7oGFTOtLqrVgGJkRQjW4xUhOPxjoeHe77++is+vH/P5fGkQX69GVNtusvttP8lwcvcBrzX6mw/et/CzYOv99dbjeyXr3d73D5mD25uIPmeBN68K/WzhfMWNPucK52S9tts67Y7VJZGYfre9YJd8UnjoBasU1RyzkoDRDRx877ZuO/LzJWb3PsbFK1WSpSYLmmoNKie5LWFp92UUFkQqKq60xuDafu8KnuIrgf900uXj6wI2htRdbIitiHdpqqylHFUU5Sm0Qa96dKpJquMbIsh9gS6Jcy0+01VBTNHvTb+iQadfdpapxGWMaZJ5rVwTETl8igaJ1XtcTDbxul05vHxiWVZiCli3EAu2hO0K/oUmmLYlV57Gzf3vXVnFHw2TuvN//vTblOW6zhD1wcgixCNbWh7xaHAR8kZUzL8kJzkF46fjTD/5E2xBbm38+UnoU7XdPgGX+7ZWJ9uPZC5ze1UZcI7UatrCiVH1TSUq0ZpyQWsJTaJpwJY53Bh0A7yJu9Wa2VZV2StIIHpzu3lf2ccr+7uOY4Tp9NJqRBVkWUwFLFqe9mI+tKMSKzTYLyK1fdoX0VakN15szsyZpWy0BeAnCsW2zYjs58D6XUOEcQ4rFU72iqFIkJqaEynhYhxWBcgJ6zxeDcS/IEtbcSyYorFuYEkhmUt2CUz3AWGMbDVlZBFN6p15TKfCSSMFLwRyIltXkjrjKREWVfivJHWRIyZlKEkncYiukmXpGolcdsw1jIMAQmBZVnJj4+MY+LuwTDYQKmZr371NXGL5BipOSFk0hqp1bFtbQI3/rru8FndDZswfKmV2rjbFUGsZZom7u7usM5zPl+Y56WhzFdZoD0rboH4/w7HDzX3vkCVPnvMzwmcf07V6kvv/6Xn1JZNmkbLUO6/3ZUwvNfqUhgGxmnEOaNoiVRwFWtrMzAoTW1FebTWtA2wrSneW0KwOKfC/1IbT7kC6PhSeVdpPOWGIDXOrHdKu0heg+VqwFlVpRFpuqs5UWvnGgecDXswaZw2O/UANJdEqZlSpLmHiTb8dTkYaclAQ7wVwc3kHIGCNxYjhuA9QwisUW3u7dD0nnOGRiFL28a6zAzj0BQz9HuVYpokX6RTm2zTi6+NhpFvra/7Bm2tnoNam8ybvh7VkLMizwZF4HvQUZs2bSkRg8U4SxHXrLvVdphNA/VcM1tMiLEMw8DxqHbZDw8PPH98UmpGbkH8TiNoP9rn7uftl3LcBsxf/Nw7AvglzLc/5KUG85c4zN9DrvvzXm7+OgQV0v5ecPz57/29U0rM87wHy5+/UUeXuzqG8lFLA5N6ZbE39PV+Bl0P6MipNMlJ61RGtVVtjJPdWt44h3FBTUWkAV5iFRTrSblVi/pKs8o2ltwCxHqTrN+GejR0vwnQQMNI9YqJ8ooryt03jlo9VUWaQVzTcW5obNaAmW4SVDK5xObMqfughsHgjGGwjsFVvLVa2doDKbBezdI0LlHln5ozMatCkEjF5oKkjNiISZZlWXh8fOTx8ZFXr95i3ahxj73JbBr4e9P7fHsqvj8+208NlPoTb55WGxqO0kVE+p6t9A0QskgX0cF0RaECkgs2V2z6C1EyfvbxhWD5R9Gonh7uWUVDmXdovu5Zv2nBYs9UDLQmL4O3AmRKijijSGyhIbdWO96xakBijMMFlUKxoao4ea1NTkqz2bFoBpK3jZoyx+PEq7t7HIVtXtjmjZJKW8DbZDdKw6BnpdII+0aDZZ0hpmWvFmPNPon7aSudnlHZeTdI6+tt6NKV2y2oeYlqJFtrKSaTUT1SbXnLCFYHmKlQPLVpKns/YtZAWhayJMx4wA0jGUNMQsyGaTpwtCPGeyiZ0/Mz8+XCvF3wtlDrRrf9zqmSlo3cbmnL5KTc8VzYu4gNen7iljg/nym58ub1K8ZxJDlV0LhcLoj1YBSlH4aB129eE+eFvG2QE/PpQsmCkcyW9GZE5XIajKVjpm2IpZZ9fFoxhBAYx6kPQnbLWF2tFBW4RUJ+Ofvmnzx+qPT6H/XeP3TU+uXTfAtIvHz8NZGuLVgWBWu1j6avH1aNLLo9tq4ZmitTUFkpo0Hzjk4ZUbWXkqFkVWbwFu+sIkPdScvI3sugDXipJao3PD4aLcM6nFOkI6WIrYZhUGpSrRVJKsEoVvB+wLkm11Qb918UQ1HTHVXAKdRW1ZJd21IMUFT7WXWkoeTUGvvyfk41+aG5o3liSsRt0xPT2kqs0IAHTXDXZebu4Z4QAuuqOuvKO10REUIIeN942dYhVh1HS9HvXDKtyuUoVjnJtUSK1rKpGHKBGBX9VzXA7qjW1k9pNsMd4TTSLLqhFGlSopaUVS0gxg1q4Xg8cH9/x+FwwIiwraoQ0tWJ9vFmDDQeJ7+gPPmHEtm9IWyv4HYI/bPA97PSeA+Yv0Tfugbe8uI1b3byl0h9/fLc/1whY9s2LpeLSp228flijepxQXvuTl2UhpKbRkc0RhNIc5Vtqwg0RNk0ObjewyJW54txDnGmqeQol76DYNb5vTei34pxWBQJFusgd2pDM3dBuc6dutkrY7L/1EbjLh1L1eoQplKNV7qYhYpFJLfkvPUqSaKKBs0FlYJMaMUpp4rkRr9AcMY0zn9tlLP23Vu7VQXNV0XpXbVWpYalRMyqdb4llXqsBkxKrNvK09MT79695/Wbr5iOD/iRxhmQ/XL1y/5yzPTb98fd9+sSujLs+tO1/X4TjWtIJK3LrdGDjDTwMSJFGCq4DJc5fm8c/tDxFw2Y++bwebD8Q8c1y+0TuewnbIfhpedg18fRgGEfDM53QwIVBHdOUehS1ACxc7rECtZZ5dCaHaBFy/qKjFo/MgaHsZacIqUaBme5nyam4ImnE8tlZltX3cCqXiB1yHFY46jGUsRQRCkamOuE65NM7DVo7udJaRcq+WYwqpnaup7NjoLTmoUEnEMaR1paGcm072ZMbOhS6TF3y9QcUh1GPM4OODsAnpgyPsHd/REfRrIJxCSE6hiOATsFaopsj5+4VJjPZ2q86PsQsVgohm3NxCVBqqQ1kTJQhUxbjLCaDOiwVxThcuJ0OmGnA+M0MVjPEhPzvODCyt0wUXLGe8fDqwfir76mrAufELY1U4ksW2RVQ8KmTKCBDKgLE1V5UFVURkpRLbVeLbW2jf9aptHF9YcX+f9z/GWOvsF8fnS9WOp1tQCNZaxtVRT6HOlIbdYG35IJlatF9jDgnWqvSpN8dKbinVC8JTjlPCryhDrHpQ2RsiPLe2DcECTZk6zSGvbUrrpUaYo5Oo+tqHuYmp4o/3fwA4MPyhWW3OTgbFOl8LrZuVdAdAABAABJREFUZ+XmtdbeK+eaugcKXVy0AwU90hMjzY73ymc2zUq31axw1hKcx9mNmKKWLkVRqIqaCNRaWbcVmQ3H+yPTNFJKUZ3ctn4ty6z/zpX7+wfVv/ZolalUUlqJMWMtDIPgfSD4zLYm1cdHWhMgpFxaiV+Ue9o3WKPUstyNWqh7sqBa02hjp/fayNnm97IuOOM5Ho/c3R0bNaWQSoRWGVVpzq528CUI7L/2sQefX0g7v9T8Vz97Xn9cKeWLSfUtwvyCknGTnPZ/61y+RRpfcqA/f02AGKNeq2VpAXNp73/7RfS1XnBdXwC4NwH+DcJb0Wqs8x5rr4oXfeyIlT1A7nTN0iq/4rSKa5szb0esRW5+Wo9xAet7RbI2JFgTMjUuEuUuG2nN/Zrcmhb85dZ0SC4qVWc8NHc6I7mXsvQapdQoTPqITCWLJWPJ1ZBaRR0aq6slGppfWj0H1jaVLIjqmKaVWnJrOtYG2lyV0pGaq6JkbYSOMXE6nXj//h2/+vVvePvVbzi2mIVar4IF/bL1i9lQ9is14wscZnkRUtN3BgVL+2pwE5hrrqEBvQi2gDGWUCs2JlyGg3GYrcDz5Xvz44eOvyzCzE8Plr/wTHpucossa6c5u1Ndn6TWCT64tmHqBqK0Iu1KrUBVaFPL+LHixkERqFJY46qbV3GkLAgJF4QwhKYhmjEiTNPEcRopKTGfnpnPF9KWWmlRBb8rLeuqBlO0azvXSq5gMIp4+KDGHV1r1V51ljsCamlZvbTsuHGBtImvNyHoJNydA5tDYK0ddxdErE5uMZiakKxcvpI3qjhMa0i0NmBtIJWNbSvkIhzGO4odKMWyrhkZwYXAdHcgPdyzfTqwfILz+UIpM96jGV7t56Ij4Y33VSpFruYsMebWiGnJVOK28fT0BCHgDgeOD3eI9Sypsq2qxVmLqL6rER4e7olv31K3yNks5AreC9YJrmhjgrNadZBqSU2wXBsjpbmEZS6XiwbsFZZl1U2iNVPsAvKl7lJNf03H5xtfv+8/8v1vj31PRX74c3zvOXW/X1qp9fZ7aaNf2Td/5z0haMAcPDirShWGgrPCNAa8rQzeE5qDX8mFnOKOUO4BM4Vac1uqtd4nexlRE99SakuaWw9C40Delow7/1Z7F9Q8pJZbO2PlMlObAUllXx+qNK5jW/cqvaFPG4OsXPVU97O8Izzf34yMEbxTc4hSNPO0TTkm59IkKQED83LheDwQhoCcIASPMcLz85mPHz+yzCvOee7u7vDeY13ZGycjVxOTIQz4kIGFZVn6CKBdOuWvaqvCNZkqqjObqNSuRGRaACW9udmqbbIIW0yUUgnzzHGyPNzf8+rVA8s8c5H9zOz7Tq31KsX7M8b0f4Vjnztf+ODfD5jlxQP3efM9zexbc52XaHB/mX1funm9PYDmJcr4eXB+S/Hatk35sDESY7z5rDefU19EQZCSyW2sV3sd1dfwqo3uXpmwDnG+rfNyfUHlcGqw3BGX1ngu7X5x7hpM7xSKFqAbi/WqVY71jU7ZaFfVaFLbK2AtWN5vrTBERfcmUZUopVIq4CO9pm5KG5gtMSeTqxALqp7R6KFFNGimoFrU6J7Wm2etsU3sIGDdBjETi9K3bEs0Mt3OW2MbsVCNdFhA/6uFdV34+PEjH95/4De/PXP/+rUm2tLHBIqaNxDqmtvcrkDXsfClsdvNiaReVcVUOUP/XW4C5dLmrReDq4YBbXgcUsKWSHp85vT7777/Jj9w/AUD5hfFmP2nZhYvM43973sJvF6fcvNr96h/URJvWZK17OXRoroo+8YhVtGTLiC+rZEsCT9ZgtfBrgYeldS0Gb2lcR7bxGgl1ON0wFvPfJr59OETp6dn1nWDXDQgy6pOYUsiEXEB1Su2mWq0ZCLW443F+6Hp/+okrjebPdW0ILZvpk4DztaYKKb7qwvWOawN2qBQtZEm615NrRowG6s8QVcdZEs1Qq4btWwqu1eM3rJhi7CUDcKMmwrDw0gVx7plyrwyGIMPgbuHB9aHB84fDpyfLMtlY10SxlZSjNCD9lrVRCAlUlXEqBh0g2sqGaU1RZWSidvK6fkJCQEbBsa7e6y3xALPj0+IWNbzjKSMM/Bwd2C9P1BLZk1bK6GDs7Rg2ZCsdv+qhExb+Op1sU/ryhYjmvT0RKUhEZUrulFaWfCH4jg+Q0B+Icd/NBXjx4791HYEqvbzrchLvdmiXjQa1e4eJ3tQRUvOuAEJrRW8V9rBMAS8L1hTlXYgVXsgJg9BCN6rSkSprMtGSZG0ba3B2OKkq7D2pqEmGilWx2ALqk1HfEvnDvdGHOUhK2+EFqTpBrs1VQrjaivfVmq1WAtqHW1aA40oolQyFLRTvmpgK7VC01q+lrOv5fXa+MRQd1Q6F9VrFrT3I26JmktDx0v7t3Irt3Xh6dMnHu7v8E032gyW8fVETpUPHz4xXxaGQdVErD+qu6APDGNpjV2VnBJm1CbMSmVdF2oB57yuexht1K3QRK7o5jS5dqlcnZv9HNbSQgtrcE7lAWtR2sU8z4zDxP2rB16/ecOHjx9bUKTztysx9Z1qrzL9gg7dL38k8a3fbwb8/kNu6BV70nYNmD9PtNuzrs/ZYd9+P3tQ/YOf21wD5m1b296c6JSMTmPVALV/BlVP0QpLm//9QVzDiIIGVFkgoc1ymrAqd9n1wNVaDSq0PKlKFI2jjHVN3q3RgGpfO3QKm8+kLKOWVLTRmKaNbmRfnzp1rP/Uz9tEcFt1ujTEORcFonLpClO6x29FWAusqTSjoYbMVkNugTMYUlt3VKccwDQH1EAYBrxfsWtpVSxN6Gvrgai2qvMf6tBpRMCUa7Bflf55ej7x6dNHnp+eef12YZp6k/JtSHwdX/sfdoT5Jrhus66DEXIzBszt0k9PhmRX9ezh+L4254qvMGFxKZI+PfHpX//Au7//xx+fBDfHXxRh7pbVwM0uWFH+7nUkXzOJArQuz76o0xtKW5Qi101SUK1dZyBIJUjBVpCms2pa0whdjtzozqtUgcIxR5WDajasiG4WtoL1Wm7JCFup2KbWMAwTOcPjpyfev//E09OZuESkqKbqsmXWWBEb8UPGhaD82K0yRhg2mLKh2hETZOcwYwzV2tYc4LAScHZUtEmE2niLzg+IC8qPEp3EilCHvUhRC7u4NygPy4tr6DKUGoklsZXMmjKXJXI6bzw+b3x62jgtC1HgkgI1XHjtH3CHkWKsIjTnjEfpDHaYCMc73DRRT5Z1vlDLCrXxI2umlowzhmodtRRSUVmcVFCkTKxqHpPJcSNvG1ITy3rm6ekDznuGwwMSdYPOORIvM2mZ8aZiauIwwBoqwVZGD2sw5FJwUgjGEG2FVNQtTTRhuOZnLYUrbVy1pKV2GT6Ut7kne5Xd4vPL4/6XtbF2NA6uyNLPPT7vdP+xx/yMT7Zz4qFhRaJaov3vfVns16bW1MLqhvRa3aAqFWOrNvBZlZ8M3qgD2I2UlKB/E+uxYveGmJwq21zIUZNj7z2D9TiU+uSMU+MiY7R5joyzleAF70Q3ydtNoGZy2ihSSHGhpBXrLDUbUoKUItu6sm0bzkRqKMpfFgdeUSInHtt4h72ZsFahpptGIbTJNWYhtgbY/dYkPMltg+3Bd8pqUd+koXLcWuOwommmqtlBqpUYM6dPmeX1G+7uXzENIzFlpvHAr77+NR8+PPLp8RMfPn7AWCHVN9w9HPDeMYwDW9Qeh5j1VptKiTZ85R1d1xMnO67SkbwqBql6MzSTqD0g0/lsRNHyEDzrurJuqkySc1bFjDevCNOIGwbqlq/BsWhw3kff9d+/kKN22b6yJ2g9Yepx3h7IaPc1X/qKtV4ray8Q5/a3riXcwayuLa7N8O1clutLd6WLKxh2S+nQO2PaWNaZ03wixk21t0uzrLZKAYDaJBoNqZuSSAuQVAb4JYBhDNUYUq3MJauSQy3YqoGts5aAxSM4FJW0oiYl1iq9sithdKe+qva9SOt5oFx7l1LRUaPVZb0Zmlys6d+7rQvlmkXEqpxbTRQVJY0CsRRy0lvKLfGuyl/eUmHdMvOaWOOmoGFVqTWVWXWIeLrOvFRFobUBGYLzjCEQrMOwon16yt3GOfWVQJBatBujWXt7r03UzlicOH3dGHl+fOLTx/d89auvtDHYNk+FBnlQb4davWalLZva42f5nOHMtfevXO8stjf3qf61AFLkWsFTy1JMgZChPJ14+pff8c3/+Ds+/t0//OQp9RcLmHXBuZZlXnzhG9i4c2l0EnY57to6RaVvfXsSspd6RIMtb4QghWDAk7EYrKixqtI3tNtTNYmbjmeBGjXAlb35xiNWrSpLFawbEOtJVXAYTBg53L9CnOf56ZF3Hz7x/tMT87JRYqHEzOWy8XxemNei3dp+xLpAGAKHw5HpcCAMI8e7hYe1cL/ldv8dQ+hBsMFIwLlRUePeIIgBWzFuvPKjXNDyUEPdGkux8XL1GogRjG2ak7kQU+JyOfH46R3n8yPz5ZnnpyeeHx95enri6fTMaT4TRXiYCznckcKRexMY7z1QWC4zS14plwtrKUgYccOBMB7I28K8XKh5Q0QDZu3kNbg2aUzR8umW1YkJI2qeUlXiap0vHOsd02iRmpgvJ2q11OrJayTHhC2FGBdOl2csiZIWLBvBFg6DpRRPzpF5yXgLLku7+rWv7DTVrCYZJLtZQkcsai0qJcQN8o+0xeM2T74d91++/5d0/JzA9qc+9kuNQvDjyPbt5q47cltLZM902iPV4YteEWgqT7WrQrTHW6PgkFYetOFFUJS3tM9mm1arN04R4tbEF2uGHMlxw9RKcF6Ni0Ql43ZXMAPQUaO6B3y5dbPTzHVcMqzrglTHMp+J2wx4UtK5nNLGui4sl0VNov2KEU81XaLSY73HBY8Jls5lLvVqvKG8aZV0y6lxlos2w3rRarNSNW6oUtbuco3NVglKURUa2BuTbWs2lJKJMXF5PjENR47jgWXdSFvhq7df8zd/c2ZeFj49PrJuC7GsvM1vePP2Nd57whi0uTBuLMsZEafa1942Ooies1rKbk7QywVaOdTkW0pLgIuiyzTaWpcJdNYSvCLga43UomuhGGG6OxKmCTcMcF5vu0QV4duxnV8WHavLn30eMPcKrB66pt1Ozc9pErfHLe943487leKWUpgbnYhr8tL7h6gNnDBoxaLWHWTQKkhh2xbO84mnp0cu8wVqwRlhCI5SDaVsVJTKZ8RSJWNr1VvpDbw3SGZDSouBtWa2rVBT1L3HKZfZu6DKEeLwFbxYnHbaEIxSO32BkrWCbKtgpTQesiWJ1caZpupSS4LWJ5NLpuZEpjaLaGmxYRMK2CmUaP9C1YhfKMRaFdzq5l8xaSU7V2IzWdpSZFlXzvOFy3Jmi6tWbYDRWg7eEgRMVuDItUC8igIGzjoGH7Sfo1RM40JTNQjNoEhzAzFrLmQq48EobdV5XKOVUSrnpyfev/uOX/36Vzy8fkWQQJGXNB6kx3e9rMM+73ry1ffeHZm+Wfp3zFVUOi4ZQ5ZdwRPXwU8jWgksQkiJepp5/v0f+OP/+F98+z/+F/N3737ynPqLBczSotyei77cKus+X6VB51fIvT3imhZe+U43mYny/dTZydG72lX+yYlcO9alN9LROrOVT6iVFa9aqMbuGXfvvq4IuYAVyzAcON49MN0/sF5m3j0+8s2HjzydzqQtUdaoFI1Pzzw9L6yp0gw5qShf+TAdmI5HhmFgPBx4ePXEq9evef3mDV//Cl7bN0zONW1W1Yytpeom2AJf0MlksRjHzoPSM5JVfLyd99ICvipFlT9IpLjxfHrk2z/+K3/4/e94/+4bTudnzs/PnJ9PzU1pYUkb1TvmCuHhNe7ugeIc1VvGUW2my5aIy0ZclffrfFD0PYyslzPzdqaUDUPF1aYcINpsZavyKrtDU61qheudUmBSSsyXM3f5FXfHA2ItcV2JaeP8fIFSGbzFUEjbwrKelVYSVWIuBMOQHcEXnI1NIqzRMyqIWCJAlp2fLF2ft6pd+N4cUvtC3s+1PrbcQia/8ONPBbOfN+X8ex87//ELn6t9kv3zyOeyQjeVK230e3lf5aYiJdoUaJ2ahkDdqQVSFbGyBoK3jM4pLUs0GK65KmKbFHm1xjSJSCF26StrCM40dY2Cd6ra42yFZk9LrQSnEmrdfjrGqGYAyWizqbG7acO6rqoxzkIqKrNe+hplBNNkr7RJSZtpg3d0WbqY1F44Nuc+Q8VbYfDawOybAghoFcU530BH23STaTbAURvvmq6swg+6BpUC59OZ43Hh9ZuD/j5vWOsVZf74gdO/ajNv+OQx3uCCuu0Zo018MSZi2lR5JCgaHDe9Nr334fPGsL539CplzrkFhoq6dzdFIy0Rco4heLYYG69UG6i8D4zTtJfI+/fT/ajzLn9phIwfXp4+5ybvVd4vPA7Y6Ttd6aH/e+c43b5f7Tznm+ulL6JVuTYXb227Syl7072uNYUYN9Z5Zr5cWOaLzpvgKVXUO2ETxBpcpyZaiylVUfLaVaVM4yLrZ81VlR22nG4a2CriHH4cGcLIwQ+M1uOjx+eKcxnnM2OF4JXWl5Nyew3gjaU6wXhPzom0LVoVy2lX1qgtCaglUmvem3+7Ps2u81UV0tmiNjgqraSwxY15XZnnhbitba5ktlhYt8gWN9a4cZnPnC9nLuuZZZ1ZlxkpheMw8PowcAyOQMbVjG/npromQWnVwMk5h3OWOmfVcU4bCKSiiYA0cxSK7qmC7qvWXoGlUgqXy8zj4yc+fvzAr377W4Zh+Gytpj3+et1fbi3t95ZxKbWn69zfPuY6Z9tS0JwgW6xYwJRCqJkhV8y8cf7jd3z7d//Id3//T5y/eUc5/5do+msh8O2ed7Po3HKrBLhOLdn5K30O7+XeXoIx4I0Gyz0Y6rqL1miZ1Umn5DXh+9o7wzPWCsMgjMOE9wHTKAElFaoRBnFUDKUKxnim6Y7D3QMSBp4/fuIPHz7yhw8fOT8+I6s62Z0fTzw/zaxbpRpFgrZUiTnBVjmtGX9esd4RQmD6+MSr18+8+XTiaY78Zk18/fXXPLx6hZimGNHKXYhDTENlY8KFqh3/0viP0DrlWwlTGl+7KJol1bBezjx9fMc3f/gX/vkf/57f/fM/8e7dd6zrQk69wUhdcawLDIcjw3BAqpBiYrms+NMFK4O+by9L7TxpldlxrXlAxJCibnQZ5ZNba8A4fLDkqrQIEVjXFTEVf39gHCdK1iaP+XzBCrx69cCWhE+fLqS0UmIirYW8zVAzVqpqSG+bBvNZeU7eC8ELMqvagPeW3HRzSiuXaRd+aWYzt2Puc1scXfT20fpXEiz/2HGLBvy5VI1/y/E5L7JzcDs68/nnlBcbeN+wr9equ8vtlq9tTQBdR3SMWqbBcBicNopSKLGwydb4vnl/zUJhiyqjtixa2nRGoCaEopQMZ1SHFA3+DDAOgbtp5P5u0kpHrq1Jp+m1akShmy2wpUTcMvMamdfIFjOpFGIuKl9pQKzBeosPnmkYlEZSKynnRnfStdE7dUFNXojW4AxYGthgPd4XnHfYZvRircO7QLSZnBW1KmhVBqPc4EplnmdOpxNv3rzFO0ctKylG7o5Hvv7qax4fP7GsMylF5nnm+fmkAXpT7ejrmH5GBQ6sjYpk1StCWmqmVofsa77OTw2qVbpS1+3KrpAATQbQMY0jMRfWtXG3BZx3HI4HNbLYA0PTEGYaUin88kJmbpavljw2EwtVHLkm/dek8jNoq1757t+73QbLfa2go87luo/3hFz6+ir756q7s61yf53TaxujjpNlVhUqAO+cSgymFaiqq7xXGRwkbXLtlRDrdE8S4yhow2fKkZQi67aybCupVKz3hEn3ntEPDFYb/XvDfwiew5SYhhFvLd4YdcsTIbhACdoFV0tW1DpumLBhe2N/o1+UHKlkTIaahbRn95022uZ7jOSS2nVKzMvM5XLi/PzMti6sa2RdN5Z1Y142lnXRx8xn1riS8kZMG9u6UGJk8pblMHI/ekYLgxHGXp2qQrGqYe6HwDAFhiFgTjO0SgEStXenAFmbm50x2ljf5CJV5UdlekvJbHHjfDrz9PjE+XxmOhyw3u+yrv2r9z32unZfQdEX22y9AT+4iZFv1vz+WKkVi+CNwQMhwbBumHXj8t07vv2f/8Af/+ff8/z7bylPZ+x/lNPfTzn2CbI747TjRSDd77h2tO60Na7wvDFWy6W3C33NONizHdOCZtNKjVrSuyJUoKjPNA0MYdwl2pRHm6FZ0Io4nBs4Hu65O75iHI4sMfH+6ZlvPnzi2w+PzB+fkS1S10hcCyYceH1/ZDy+woaRWGCNmXVNrG1jjSmxXBZOa+T5PPP+4xPvHp/48PjE/70s/G2F14c7RusIHemQjKA2syk3ncYcydmi7l6FUiPdratKt+8s5JI4bSvf/PH3/Ou//CO/+5d/5ve/+xfevftOm5eMOo5N04G7uwceHl5x/+oV06t7/GHC3x8YDnc4N1C2TJw37CAYVFlDxNOuBBiP8QMhTAzjkZIL27qqnbgtWDJii4qZN8UArJBSpC6F43EghADiccFSUyYuK1MIHKaRlCoxRt5/945tW6hxwdaEoWApGDKU1NwYBW8dQ7B4Z3BFGIzTBoqkZi69OYumw1nrVZGgLbs7qtw3gf5vsb+s8uyPHj+AMMPLYPk/T1Lv80DlFu2+QR1NpyPp9euNmR2Vvl7Xm8eg3ENnNEkK1nEYPcfJ461QUmLNazO6Ud6vzrHKmjaq7t2trKi0i5w0uDaiTanWtkYVdMzdHSbWhyMFNU8xYrShpzbOrDFa/QoDwzRRq7DGmS0l5mXlfFlYYmbZWlKNyiRaZwhBN3jX+jKsc/gwcDgcmKaJIXi8MVjR+ZKTottUrdJtLhOGQAja9FxpslPGYUiUrOisce2cVw22Y9PLjTHi/cA4jmzryng48ObNa377m9/ydHok16i9HucLpkIITmUzW/Cj8lr6XZxTOb6E0ghSSZCaC1ntvRsWU4UqlZQKsSRNmk2TQjNWA3Jqc2YcOORKrQtdmlCM5XA4EIYBa53q5FpNiCpa1VDawC/r0MbXSpc4pEkPdurOVYqwNTrzMvC4VoGvNAwj5oWqS0eV+x4N7EBPbvOrx4TalHWlVIppldCmGqHXXKu927Yxz7MCOkVfqTcD1lKwojSC4BwGiDnThGNbZcRogGY9uQrLlrRpvSS2dWVeZpYYtQ8nDIQ14/2Ksx4n6gIYhoAPjmEIHA8Td9OkQZgxBGMZvGMMI4cxseaMaZRKrMXXRCBTamxIaaPCiFZoMoYsok36VTu1alViyho3lk0pWeu27Mjx+fmZZV5Y5pV5WVmWlXlWicTLfGHbFnJN6rEgVQ2JUqKmiOTINhsGA5M3HMaBcToQsJjBYYxvjdCBYfAEtyiI2OaeOoUqtWGwjuMYCMFjg2nJrVUVMhGoijKvy8b5dOH58Yn7+weOLij18bZaI71S3oCMTs+tdVdC2ykYDaxStLmrimjArMhzE4BAGIxhwOBLxaeEfVpY3n/ku7//B/7w//wPPv7L75HThZAK9qcb/f0FOcxax9qD1Fuucl9o9Q+3YFG9iaPbiWon0xpFCJ1R3rIzTSKlKu3FtLJqNxuwwv4eZd/09dWtdRwPR7zzbZBKC5g1463G4sOB+/vXvHnzK47HB3KGDx8/8e0373j37iMfPz2znRZCrgTxHI/33N294tXrr7l7eIMfD2Aca8qcLxdO5zOXy4Xn0zOn04l1XbnMFy7LzOlyYp4v5Kzcuu3tV7y9e8XxUHHeqz1maSYGYrGim5ugDXUlJXJZEdFMqaAOSTFmYlx59/4df/93f8c//dPf8+67bzmfn6lSOd7fMY0H7u7uef3qDV999TVff/1rXr15w3h/R7bCnDeigBk82EqOmSRN+1Bc41MGrB/abSQMB0pJjWz/zDavxFxIJSN1w1bBOGmbo20uZi3IL5VxDBzvDozTAKWwzGemO8/93USlspyfOKeZNW2UuGBKRGpuVQfVjdQmkaLl52CIVaAYUjVsSdmIVrSkV0WgcU6701dtZUpFB/XoFcXPakf/Wxx/SYT5x4J1/bnf05/x4hK8KNGXjm5pIw5oZUNpN9fVpaMTuvnT3Pwco7NMY2AaHc5CXAvzWc0uUk4gyvOtIsScKUru0aA3qTNeXBethOSIiJptdLUbbyxrKlSxOD9w/1BU87myB81VLDYIYRpbBduxxYKZNwpCyrBumfNlbUhzJlelXvng8dYyDoHj8Y7j3YFhfODh1Wse7u+ZxgFvBCmJHFfiOhPXmRyTSsat2shUcsa0DviU23woXeWjIEVVZnKTyipFexsu5wv3D55pHHk+nRjGkfvjHb/61a8Ig+Pp9Eg19SrluFmGMBDCQO1mJqXimjHMmnND2pRCIQlSsrigmvLe2eZqqGvT2hxea1YnQWOd0vEqIBZnDeMwaMJsNSCn1F2T2zoNmBVoaQGa3DbM/fKOz2XhvkfJaMdtzXfHizvCLGaXNzXNBKQHzS/frNEsahcb40VCvsvz9RJB4593SoDynxPLfOFyPiu6XMqOLpaiCOc4DIzDSHADOSbSsio/n0b3aO+TcmWNSatDKZLSxhY3ti2q268RbE1seaWy6bqBSjt673DOEAbPYZo4jIFgDMFaRu85DAPHaeI4qgLMMAzNBC2AEwV9cmrfXaUnjRFwTlOxqs1+OXdtcl0DllVtpp+en5RiMV9YloXT6cwyz8yXhXlZ9TtssVGuIqVxpsVU9UdDZSpFNIHZUlIKYm5UCOeRkPGtAmysKvo4o6BiipkEqiyVwdTKYB1304GvXj0wTAO5ZvD6PrmmVlHQ/6WYuJzPPD8+s361cjzeqTxn+zy1fhYs95C4tp6KF+ZhVwC65UXsNEnR/iS1/a6tCbviS8GsCU4L87fv+fTP/8q3//Pvef/PvyN9euZQCoMxOg5+4vGzA+YfQpq+vJjclHS5bnxdjUB/+cJ7fOmNG0JTi3adStYsSpHFHgA1i8z2WEVN5Pq+VZtgxAjHw4HgA7luIKIbTypachkmpuMdr15/xf3DK6xxnE4z3/7hW/74+2/48O4jl9OKTUJwI6+mex7uXvP61VvuH94qIjtOuBCoRli2lfPlwmW+8PT0xOPjJ06n5+ZgpBP9cn7i3bffMFhLWRfK242cEofjERcGpNlTWmuaLKRa9+ZSoERqXil1RSWpMuu2MS8LyzLz/ttv+Pj+G86nR8RU3rx9wzQdmKYjd8cH3rx5y9s3X/Hq1VsOx3vCOGGHQJJKmU+UuKqMlTVU9HMpz9Hj/IQfNsK4qsJF3MjDRqhZEQGUsrHMMzlXiAlX1ITFNAQoBIdxSonY4qZNP9ZxGA+MYSBuEZ+0xBUGx5uv3hDXM+fHFdJGIDduacaJTnhKIsdMLQ7vhJBFuWetm1nZ5RroXLVcuqatBge6SJc+P4EuV3Ydo7/UTfSnHF9q+Pn3/r5/CrW+rjdXGavPP9uLl2iVAH2s3Tf4nuf0wFpEJdOcU110awrBC8ErgmmtmpkkRKUOU9o1nE2Tmyo3n6+i+qfzFrlcZtZ1JsUNUAqYdwZvPaMfwERc2BjXxBy14iLGk5uEFE2LOUwT1niMeHIRYrHE6kjFkWVhy9rIW3PG1oI4dR70zhHGkenuNfev3nD/8MDx/hXH+3sO00iwGjCnuLDNFzY/E7eNuG6qHlEEyaIl2LbGlLahl6RrqG060P06GBQVfHp8xFrPdHzYg9xhDDw8PFBJpLyRq2pTp5QaGt+AlGpwLiPV7s2XUVQmLxd9vCJnV2qMaa5+QmmSftpslVIkxYzzXsvloJJgJuC8ZSiBWs3efOacx4eAmk/ArcSCBnn1Bs75pRy3gFX5YrDcqUm7ZFsPlmvbp1ui2ZkdwjV43svmNwg0+7lidxJEtOrZY50eVNX2okqnbfzXnFjXhfPpxHw5EbthiYiOm1oI3jGEkbvDPd56LqcLS6+C9WTYaH/KlhNlzZSswXKKUcdPRUESqwnXFgtbSio9Su9VaX03zijy6h3BCKN3HIaBu8OB+8OB4zRydzdzd7zj7u7IwRpCzdQaKamvXwU1AlGJ2tzUKkqubFtRBHxV1arTeeHjx098/PSR0/nMvM7ErRlyLRvrurGtWrGuvTnXCqb3P5miga8zDA4mB8GAqxlTMl7AeKcc5v26qCuuQUFHZwWbFA2WqtPBVBgHz8N05Os3bxmmkfN6JpJUeq/Rabv7YCmFZV44P5+I67qPJ25IuDSKXVezaGwNHa83PPgeWHdqxj4a25ijAaY0ozdXwKVMPS+kj088/fPvePcP/8Sn3/2e+PiETRFvHd60pPknmv39WQjzTynPXlUFWqNOqY2HS4PZr2HIVcdRg+Cdi2LM9TGlkGJGunh2U1cQqaq05CB4h7NGH9N800E5cr2cU4qWGkMITXrOYp0h5Y2UC6P3jIcD0+HAw8MD3o/ELfP8eOK7P3zHN7/7I0/vHilz4m448Orwirf3b3i4e8U03mHwpE0/nxgwQW2XqyhXbgieu+PEsrxivlw4zxdyjKj+TuZ8euRpUMkqIzoRXOPYej9QyU2HVR+vVJSClEhO8y7yviwzj89PPJ9OXE7PBC989eY1Yg3T8cA03THd3TONR47HB47HB4bhANaz5EI6zxSBLauEDTFrk5AfyWUFMtarvmvNibgt+LiQ4kaMG5JVsscNmVBU3zqvUS066QJVVekYtW2C1VNrbYH+xt09jE2/VdrADsFxuJ8IU8A4UYWSHCkpQqk4o+5szgJrhKruaaka1txsjcVoYlVrM7VpWaoIBS05Cz3Qqq0hDK4+9rqtfB46/ufSFv7841ZPFX48Cfhzvt9PDbJvH3fLnWz3cJtKf6khkdob0kqrXFwRMUWGTXO0MnvAHILHe4NIxjmLdfpepWRSbeO2IZRVDMZ5NRRynmotYhzQKBUUUrUsqXJeMtsWoXW7e+cYPKTBIy7B88w4HTgvkeEw4IylmArWY32gSJe1ypQsHKvBhCN2OCL2CTeumDCzbImYM2KMmiVYyzAOyrs83jHe3WPCRMazJrAREKvj3lRMEDwOYzd16jSLosai3OhS1OHUWo+YqJqyteJc1b4Hp4GktZZShY8fP4FYxHiGoI6FNhkO48i6qhV5VwFJMZJLZttWUtyQalSpIEwY47Ftfa8ls0VtbkJ8a4hURK1LiyrClJGaISe2dSOXhTBMOB90xZGiBlG2WXE3BNnu1shOA+bGde/7e6Xr5P/sof+feuSGzmsTXWpa4HXnL/dg+dp0e7W+zs0V8bo3X4+96a8/S64c572CLFqWr1zNJSqQ2/sWtDqsJWL9q6q4CM9PT3z8+FEdZHPaZWZTShhjmKaJw3DgzcMbxmHkk/lEXJYG2Oh+oixLvb4x52Ya0ovWDT0OWh3Njd9cqmmfxexNgSlm6lo4XRYM2qMwWMtxGnl1t3G+LExj4PV6R8wFNwYORnuKluVCLUVNc1oPj54XpUHlnEmpsmyRp6cLHz8983SeeXw88+7DR55Oz8zLwrzonMxVdrOR2iiXzljcEAhegSFrBWsq3hvGwXM3Og6DwUuFHJEUsSh1zFp1MYbaVHEgWNG+i0aNkkwDliAYy+QCb473/Obt19jgKI+JGiviPblVnEQMrgIF5svC6fnEclnIMWNspBpdh/fgtyvgVN1ZC5qslVz2hEANVGqT2L0Zd/33rCokkjMOo14Ra2F9PDF/8453//hPvPvHf2b+8AGXdZ2oBXVIdj+dXvlvomT8pMCZ6xdsz9r/cmWlvPxzlWsw3d5IkdNWcmmIP7iKCxCCMPhWVkXFyLuEC42fRVsYjLWMw4izli7GVqoaaRhvCOPQpN4mhnHEiOU0X/jw7j3vvvmWx+/es54ujOIY3cRxvGPwE0YcuQh5y6RtpSwJuczNh76CaZtwSogxhEE3Duttk9bRRctYw7qufHr8BIB1lsOx4H0AKs4fMaZqubQ5OggJaoS0UeNKXle2+cx2eWKdT5S0cXcYOR6PGO9wIWDdgB+UNvK8LDxeVkppvGKxYCzWG6qpJArGCcM6MB0C46gaqs4KNW/knPBxZosLJq6YbcGkTTUbs3bluhLJIrDlm9pKR6+aU1EdAWFZV07nCw8PrxAswzCC96y1UmsCA2H03N0fmfPG8niCbVOTGSA4x+A9Z0nUHHE+MI2WeUtITU2zVbT0XADxN+OtQR9tM9ndC16M25fDs8+F/3N8+fixNeJPdedfecovkeXbtaf/W6lXppWA96c0ao1VhZpp0IqGUbUM7x2lKaPUFhh6bzAO7RPQsg4mBIxXIx3vBD9O+PGIdR5jHFTBxgx2xIQROzxzOp/YlpkYV3JqhiAlNqky4XBYeDyvTMeJu+OA8YIbJvx0gN5QmDeqGN2MaqVgMG7ABcGFiilJ5z9CroacIM4Zu1XmeOZ5zlh3IgyBaRw5jKOWlp3BUpS+RsHiMN5iiwGbGhWxXOdAk7NDDDlrWbtmrR5VKYyDp5bK+XRCxDKN94RxQGqlZOVGjoNSL1KOiASGkIhJN8eYEgZt+FMntLojj8r/VNUQkYp1gl0tcQhKv7Da/CwNHTMUpGZKqkSEkjNiHVUskkB8AHEtSL7qC5dSsdaQkgrqGWM7qQByVlWDn8F3/M8+et9FKWVPAq4NebeM7KuA677UNWDrZhrtO/bLx9YXG/htkL1X4W7R5baumloablahNhONqk3yT09PPD09sq3bXp7XMVOZpoHDMHE3Hnj9+jX3hyOmwHK5sK4zW82ocd+1AmKMaIBsA8Ko91lHGCZsGPaGQG2mVd5uTIktRu09ipHu9CtUtlzI55mUK5d5YxoDqYIfJ15nBfRyzhp0byshKLUDHCUrb7nk1ALmwrosPD498u2373j/6Yl3Hx759OmJy7IScyJGpWMWsVoJ8QE/Bg7ecxgnpmHAO6vVUwrGVMbBcXcYuTt4DoPBUahxo8QNKVqR1WbLZs4mBl8KwRmCU9OlLhet1R7PcZj46u6BX719y6+/+ppiKs+XZ7YSKd0BsSHSpmWXOSa2ZWWZF7Z1wziHBG2oL30MdOlD5dTdVEAaui3XKmJBr21plSeVk9SYz1eleA5FCFuBxzPn33/Lx3/4J97/4z8zv/8Ay6q9VFpCRox+9596/OWa/nbo/QvHiyj5qpfR2vSumefNA2u9OXkomGSA4A1jMAQP3piWrPbp2axki5CbPW0IlnGaCIMiJjVl5QbbivOWMAWGw6DanMNATsrNe/r0xOOHjzw/PhKXjeM04K3HmkDOwrwkJK1kSay5spaM9sRmqlSs68rSTUSmlfYRB6bxm0TFt5d1JW2JXBLW24aOK2p+PB4aHUNfJ9eseo85qWxN4/XWtGr5hUr1aptNy6ZjrqzzwnZZWWLh+TzzfJpZ10StTefVe3zwuEFVLcLomY4jX331mt/89mvVwhTBhYGDe02piVQTFS1/lRy1lJozlsJIm5xmawiWLtzG2Fa61cDZOOWSb1tk21Q+x9jAcDxiSiadC1uOYIXpeES2je35SUvZVVMgZyyHceAyJ5Zto0pl9JbDBKc1sSblwRmymh4I/aogYjCm3mwon3fm1oZi/p/jP/P4nJLRN2jpnCx91F6KFoEQtAPcNuc759ThquSkSRuC84EwWESyqscgOm5dwA4jfipYLH46EqYjIQwY49R4YEnEbLDV4iK4JKRiKdmQosqypRzJFa1mjWfenGce1jsOd4e9W384HBQgYGadN7aUOM8L58vK+aLd8TFXUjHEVJlXVYeIzYxhS1Hl5caREAYwag89jiPHw8jdYWL0Kps3escUPINTRFc5a7ZVroRqfCubV4z32OCJeWONsZkjCWAJfiRnuJzPVISHh7NW1WqgDtpEdZgOjOcT50VpKuMwYI1KZWbRahH08mvFmKqUGW+bA6DS5lg0mfJN9cJ7j6qSKO85ekuMTvs7ijYAm2Z0kprsmPXtdZ1ryiSdpmMbxnWVKNSdSK3Bf2rp9r/G0dUw8h509GD584AZ6RKK+vse+KBa3E28rTsCvECNr+X1tuuW0sxMqtIeWoADQK/0okGzPq0ZdZCI68anjx94/Pix8ZcVeU4pYZ1jGkblL48jb1+/4u3rt5gqXM4n5osi0hitKFtrWiCpqg5D8MqTRgPmYToShokqRuUXszaNppw0gE6xBc3aSG6aKtW2rKQ1smaBWCgSCfPKedmYG3VCpCIkatqoDqS6XclLqC1gjprgxo11WTidnnl8fOTp8Un5yltsVfYrdcJ4z+H+nrvDnVJADgem4FGVzETJG1IzwRsOU2AaLGPQvi+8hxQwpVCSmvcoNUYDWOVmO6bgVN5xU0Mj7z0PxwfePrzh6/tX/PZXv+Lr12+4xBVvXR8+Gsii59pUHSEpacB8OV9Y5gU/Trg+erqt955kqd56LeVFsnblNgOt2qPNiKqjr+NTH+eqEGImP504/8s3vPuf/8D7v/8n5u/ew7IyoLFTJ1jVWn5WM+9fXCXjy8dnmnufRR8tPKEBxNADzZtJvWtr2l6Cb5aT0jhMVi+KmpMIJelpcV65at47Ksq2L1Uhfxc0SAxj4Hg8IEZYlpllmcmdF5einuzmIb+mRCoLpW5kZjaEOSUuMbLkxJayljFFEXDvXCubCOMQGIewW+cOwVKKqnW4otytcdQypjXKGas5aoBcVAO2lqz35ahBc4qUlkmSkw6kZghSKsyx8HS68PH5xLvnE58uC8/PF86XlRgBHGJsE3N3hGAZRs/hOHK4m/jN3/yKYip/8ze/4T4cECc46zjKG6pknKM1GWiGXbeNmjfcNBKkDfpta005Fe8tpWTyppys4NWUASzblnh+vvA6Jl4djgzeUp3l/af3avFppEnhHNhyUX5lbvc7z/EwseTKkjPGVO6OI2s25KKZu3dCxhIbC146xwy1Wa2Um+TrOnabVzY/mBD+n+M/59jpXkUj59qliEorQV9R6Y46WavGRlRFSKz3GKfmHV21oqCVF3EeP07Kgx2mZhw0tA03M2+J03njfJmZl8yWDQlPwrGWpGoOVahN0mx8vvD4fOGrdSNX5SA6H7A+UGumLjOpXI0J1phYt8QaE1sStliYl8Rl3poua2JeV9a8gRX8vO1KF845DocD98uB87wSnMEbYQqeaQiM3hGswzvb9FgFaxvdwVgwKr81TAdSSWpZnDeImrSHbSPl5vKWMpfLuQW5EKNHQN0Rw8AaV014vAdUIUG8Z6kLAk0HXQML29FB7zCmKQWl61qcszqKCqL61sOgmtkYjM2sW2q0C9WpzkntuKtRdaXreLB6PcUq97T0TbXRDIxWpX5pxy3l4oowX5vvdwrFFTPen9ePz2XlrpUfadVfWlbRONJVjXpKbQYipuVVFZVLLFWTrZumwZITJSXm+cLj4yPPz887qlxyUhpQUJqPtxZnDNM48ur+nrhsfLp/4PHTJ9b1Qq4Za5tijDc7H34cB7zX6pJznmE6Yv2g8ow1afVyTwvsTtsy1lIqWuWtsI0bcU0aMxi1io5FOM0rH5+eGQZHLSODU2kza5rGsdVb6Vzr7rTZ9IWN0b10HEdiLGAc1gWc9+RamaP28bigzYWg9uGWyhgcVkTjkhQpqZAiFOvBXb+zdQ4L1JyJ26rUkIbQZiOMzjEGT3AOKxvewN1h5Ou3b/ntV7/mV/dv+Pr1Gw7DxBq3zlUDreuQsjYKGwM1V3JRetTldGaZF+5ed1tto4lN1fnfEzOVMpC9yiHSyY99ANVu+Ny0uwUrpqHaBVcy5bLw/K9/5Lv/8Xe8+7t/Yv3mHWGN2KJVK4qu604EiupN/9TjPylgvh49MwFaCeWm+N0CLPnsD0bAW9Sgwjm8A2dqa/ro3BYd8Fla1oJyiIZhUM3AxgHWxVZlnMIYmI4Hjvd3hHFk3RaenlXRwjWdUyX0QLXCWhOnbaGWjS1V5lg4x8gpblzixpIS85ZZFkU6nLOMw6CZrhUO48Dr1w9Mo95XnMMhmG0h5EhOkaenkWk6EJzy7mJvrHNqTlBzJueoJgg5k+LGOl+YT8+sy0psOrMFLR999+mJf/3mHd+8f8+705nHZeV8WclJEDNAdbvsiw78inPCMHqmKfBPv3vg8fTM/2f8f/Pw5jUmGCAyHO+oRKyrrSFIjVKWZYa0IOJaMBKpscvl1X1Ryq2xKiD4oKobWyp8fDxx9/jI67/5DXev7nlwlruPr1jOZ07nM6VCCCNRZlLS0re6oSuicJwmtvNKKYlpuuNrfwC3UORENYmyWXKylGqadmsfd1nLhHsxsY9WLV/+KAPj/8DPf/HjSzQPpWWoc5/WGlpZT25Sm7Y5aWlTlz8xBtMqK9IUMLrnqBpjFQrSKBmmVYUcMcOWV23amTeeny48Pj7x/Hwm14pzFu8nJhcYDi2ZXWdS3riskU/PZz58euLr0yv+VizGeZVBaxtHSpll25rRBnQjhoohl8qyrFwa8pxLJZXCFgsRbZBa0qKj1Rju7+8RG8g4lliISSXvUgvGZ+uY/MDQysfqilgJ3hJ8O5vGME4TXcs3l7iXT5dlAfGtK1+4nC94HyjUZkwSlelljDZb54RIoWaLWOURUxQ12rYVZ7wiwS2IsM620unVpU75oKqsYcXivT5GS+cGUDQ5pXLTja8JVEpaEo9Zg6QqWl0woglz7+LH3Fg5/8Li5c4p7gHz55zk79GhbihMe1DdXue24fa2Jnzbk1Sr7O9XmrLFbT1dm/yugXZH8BHlNqcUOZ1PnM4n1nmBWnatZzGismdDIFiVTXSiDbvjEDgeDkzjwJPTcaS9CZYQVIo2eMdhmhhDwHmVWrR+ICaYlwvz+cyybZSamrmuosklR7WJF4OEAWMdBzdgHxzBBYRK2hbIiix//PgJDRMesIeBMHjVG29axc5aci1Ya8hJqEndQ6kF71SNAzzOTRxSYhgPDONIrpWneWZumtTrunJ+ekZq5v545M39HYcxIDWSto0sGW8GGBzOGI0fbvSja8k4YxQBjmqo4g0MzjO1BkcrAs7ycHfHr7/+it9+/Su+unvN3XhQt7+UoWiKUVqDfyoFU9UlEYBSiU0icFkWpcXeEH0+T8RuhuHNuLxSd+vNfftzlUwAuRAvM6dvv+Xbv/9Hvvtf/8Dy+3f4y8qQKq7Re6poJmdEK2ryA8ZZXzp+VsD8Jc7ylxp19m99+w1v5qZIn3Qv+U+NOMctX/H25TS4guDgOHnuDyPHyTO4jJOsCHMpLRBr3fBV6KC7D16zTGfJKZLrRqlZLS+9Y5om7u7vOBwO5Fo4n2culwuFih8HxoMqX2x5I1G5bCvLppvUZY48rxundeMUI3NJxAIpO2JU22UoDH5TDWjvsKeV5zVp1+8Q+NVXbzhOIz5uDGnGiiJD0zRyGAcO08i2LcQ04JNrLlttUm8rcVlY55nlcmGZZ5Z1JVdBnGeNiW+/+8D//Id/4XfffMt53ZgFPs0rz6eVKo4QKjlDjEWDCNsp+CoxZR24bxyny5mHV694+/Ytf/t//QZjHClVTBgZuccZqGljmy+slxMpzpTc5bd0K1MLkBaAGtuaiqzqzw4D4zjhWtD84cMnjt++owYVk//1b39LTZHl8YlLfsYNgel4ZFsTNDOSlDcwliF4hpiZs8p3TfcP2OFAEUt6f2LN6i9vdr0jSxblXRZUnqzXnHQM3moWX9VfruXJX/bxH8nF/qH3+nE1jjZm2k6r16M07rKW2HqZTx/dZCmtJfjQzAzUPMg5t5ePMU3Xs5X8aIFrypWkshCEMLBFw7oV4rqxJtVBPT1fuFw2lnnjfF44X2YApmnieHdkGEfCwWFqJs5n1vnEtjyzLBun84XzecbYPge0VblUlYtbl9iCTcMwTKRs2aIh17jrvpaq7n+lqE10hmaCIk0qs+C3zLxlqkSWtWCkMDhDzo5lrQRjyWMhJg2YjRScE8bRU1FjJ2tU5nJkYttUI7bkrFSHGBUh84FSCvMyMyyjWh4buFxmlapqJgFKqfAYKilpUC0ElnlVZQSjSY0IeO8U6PCuKWQ0jfncZPyMBRdUAiw4qJWca5PpK4gpuxqCtYJkRUBTytR1U/e4GDVAd6pJK2xcvc4rubDbN/9Sjh29/ULA/MX+o17RrexNWF2d+RYFFBp1o9E3XnCde1Cyzz/9/622QQ+ySyltvBdKzqyrqqzM54vy1blxFSxtLzxMjG7Ei44N1WQWpjEwjoo+G4P+PngOg2o1D0G1lIcQ8D6ogpU4NeOJkXVd2NYVMTBOgWEaSaWoG2COxGaIE8YD93evePv2a14/vAYqy/mZ5fxEnE+sW+L0fOboLV4qU1AjFmvUmj2EoGMvrtRc2LaNbduoJTOEwMO94+7OkYqA9dw9vGI6HllT5LsPH/j9t9+yzDNStQnSSmUIgbu7Ow6jJ20z23IixgVvKvUwKGWhNdp1HWlKwYol2kitqJwlMHircnmHA8/nhWocX719w29//Wt+9eZrJvFYEZWhzFmvbLvmIqIqZtLXXANSyKmwzqsqZaTazM56QrUPkj5q21C8Wb/33xSRVrEHHYlSKjUXyrqyPZ95/sO3vPu7f+Td//x7tj9+R5hXxgxjVZvsrkguVShJm1/Nz9jz/t0Q5s9LOJ2j0pJPRC2Tbngp+zNpLKZWSq07BN/pGD0wcQaChbvJ8eZh4uHQyh6lYErB0iTBEMR3/c1Nvd4tuCCEILjWgJdTbLGQIFWYxon74z0i2ni3bUknTQU/BqbjhB8C25bYqKzbRowr85J5Om88LytLrqylsgHGBYbpjruHA3FLnE8n1lIYZKAax7xcqOVC8IZpCBiEdHfgzmZK2qBkEMM0HXh1/6CSTylSkhoIKO2kUutGjBeW+Yll1smiXvR69s7LyoenC7//9j1/fPeReas8vPkNf/P2LY+XC7/7/TfEXJkO98xr5HS+UErBe23A2TY1TZBccFvk29/9kf/n//v/4//+m//G3/zm14wPR2KJVD9QJUPZCIeJu/sj29NIuljmVbDF4FEuoQalQG1NB95Q7UC1AXEBNx20IcNYHi8Lw7uPuMOBh9f3HMcjb+7f8HE8cKkfsGI4Ho7Ey8pcZmLMlBgpxuGMZ7SGlAu2ZqbBYvyg+tjryvO8IVtUYXYREEMV00r12oxiWojfNwqp9SbgZ5/QvT/wl7Wt/tc5bgPlH28mVsk4rU6BSFvGWgmvIq3MYBBp7DbRJr/gB5zzKl3onFIfStYgsQXN1vSSYGlqDKWVeAN+VVe7y7xymjeens48Pp44nxd0OTHkXIgpscaN03ImDFrpuD8MjKPD+QMiG6RFg2EB7wLeucb/aw5bSbu+vVicd5Sg4xkc1m1K96qVLHBZNuKSqVaNRvyg1KZlSTw+nzidP/Lx04UQlHYxBstxCoxBA/lghPUYuTtODEF5n0MwWAveqoyncUpdGKxhdI7VWErrgtMGIkWKcymksrKui+rcesf5fCEET0qZmFZVKPEeKw5rtNfBiCpdUHLTfAZEdW8P08g8juRmAFVyIW6JdY0qedkaokSanqw3uGTxyelnFItYSzEOT6Em5VfGslKxxC0hYnBhxIaEiWqBLiLQOJ8/A4j6L3N8nnjeqljcNs3u/4lQRFG42lSBOrquyBw0F2cNenLZ104BJAtkgWIwpbGfm0SnmB4MaQk/o3TBmgs5Jbb1wnw+8f9n77+3JMmONE/wJ5eoqhF3D5KZIFWzM909e3be/xn27L5C90wRAAkgaUQ4MTNVvUz2D7lq7hHIRCUKhWrknNU8ls4s3I2o3ivyyUfyupjjCbbGut4MD0MkTgPTMDHKAFRqWgkC+yGwD57JmZfxzjt2wTENgWkYGMeJ/W5HjBHvzLa0Knit+FYIrdAwlPf2cORwc9vdNZR1MRRYqyXIHXZ7fvXFL/jVr34FCufTI0+P77l/9x3r+cE0B8tqFMvjHodYIFIYiCFSayWpoxWlJEsSdQj7cWQcA2HYI3Fi2B24ffsZu8OBy7rSYuThcqHkDLWaP/QQefPqlrdvXrEbA5czzGdHWiulB75YWme0aXwPf3MCtWTcKtQeFd60Er1d94cpcJgiEgbujgdub4/c3hxoc6albDWWNpvo93PAibs6WkTvieKoGXJayGkxB5NaoTY7f9iczrbRxvPabVSoZ62QwZ4NFXutAuBaX5dSoT2eWL76jg//9K+8/x//wvrH74jnhbHAqDBhgsjW4VNVc0BqvTH8qce/u2D+txwyBLGYytYpEn3+opsVmmxjHBO8Gd+wPbeu/UJ3YobZvtMw9pPj7jjy5nbHYYr4liEpdKi/YFy7/c0NrVXO54a0SvCNYRC8a6iuxhWuineevkZz2B+5Od5SskVS4jwSAnlZQYSxC0xwjuqEJRceTjNPl8zTJbNkpblIkYD4wOHmFb/89T/y6u4Np6cTf/jyS5bzhd3hhv04cCqVMQ78w68+5+2rW2pZWecTixQaBS0FfTpzPz3w5u4Vt8cDh3HsxvyGoArQWqLWhZxOrOuJptWcOTo3M82Fp8tKqnD75gt+dfeG//b//D94/fkX/PHb7/h//3/+v3z97XdXI/phiEy7ibdv3+A8fPPNV7z7/luznnHCfP/Eb/77P/Hff/0P/Jf/9X/jv97+N8bpCINwmQtpsU18GAcO08gaBrJ6VD1BAoRAqspcGq05qh+oImQiSxVcE6p4GEaqWmLQu/cPTMcDwXsYB1wTjrs9TzGyPl3wTRmHYBSLlJBWcL379apEgSCVXRTGYSLVyiUtPWp4pa3mkuB8tMXfexxQ68Zc7OJKbdBcX/JfbEgK5ljy8zz+I5Dl60jtz0yhfuh7L+//w2uKXD++/PHzQmv/M4qk79w2b56k4tk8zEXMTjL2Ytk5s5MUsFAk7/pN0PrcVKtWYogwRnJWHp/OzOcLj48nHh5OPD1dOJ0WSoU4TCDOxHd5pZ4qYfAshz0pDdxMgdvDnjgYBcM5mIaRMUYGb/xCSqHlFWrCtcYgDtdj3Z2YR/M4jYh3qLcggNIKa7GR6u1+z+HuFh9H3n944uE0c//wRCmPOLGI6ON+4Pa4Y4wONDM6R7ozu6ubw47d4I0X2QseocNQWW0dDoEUgoW1dNsu7wZDgNQIhiktxGFEG1y6q0CjkXPqzgEj4iNZGpfLCYp56g9eqLmSU8H7yDDtOe52rPsDeU0kLMXTIdRSyTlbQijb9L/vIw5UbIsUsaCS6APNgTolF6GkYq9fLuZ9PU1MWSnN6CqqNrWsJCT/rBR/Nv7WZwu4l/7LLy3gtp81MVDAXjeldWG5im5byfMNcxVRg95t2tHEWDBVkOZwRJz6nipoe/kVmO7IcqkVqYWSVtbLmbwsBgbRkcNScc4xTiP726NZJsaBwQ20asFcwQuHaeAwBHY9jGZyEFCiMw/l3TSy3+8Y4tBpO45SrFGcgrsiwuO04+5wy/5ww5ozy5y4jIlWxYSCMXLc7/ns9Rt+9cUvcU64zLc8nQ4M0XH/XaMsZ3I2S7pWjaIwOM/oPQEht4ZrWN2RFZoV4kMIuDAy7A+E3ZF4OHL7+hXj/oDMM9P+wG5/4HK+0NaVOI0cxoEYzUZ1HAK0iePNAedhvxs5HA8cDgcOk8V6e4HBGx2hlgAouSaL066WmDt4YTdYmh/OKFlT9IyDRxus2TQYbmuSxNKVvTaCeIKI+cE7j9Zq1pQbbbQUtDUED9LrO2eFsjEgN5DDzllr4rRPeyuCvZ5BFFcKLJl2Xlm//p7zv37J6Z9+x/rl18Tzyr4IQ1GCgKsJRzdWsIEFQYzg5f4zCuZ/69guzE2R7r1DW+3UhA1l7vYg/cVQtQtT5LoHAkbDCGJUjP3kOe4H9lNk9N1Kym0RjgUfPIfjnrvXryyPfrlYwR68qanFVKn0tDlFqK1xO47sD53np8aBC3Fg2jtShnVJZo00jYzjSoiDcfi0sq4LObduy2aL824a+eKzz/nf/9t/45e//BXvvn9HLYmv//DH3iA0nBNubg78l//yv/L/+m//lZxm/vn/+h+8/+ZLck2MPqA05svM+Xwir68oKVFyspO9Wy/VZor+1grQbXQwPl8Vz9PFvCmd87x+deCLX/8D/8s//i98/otf4d3A29vXfPfN96znGRSm3mW/efUKpPF0/5575BpJ6lU5Pzzyr//XP/Plb37D//5//FeO+wOSKzlHLlWND5YK4gLDYGKL1jLqemHTyfprKaaY7qIbdd5ETTmzd44gjnVdeDo98v23Ea2Z1ze3aFoYhpGbm1vmhw/M5wtetftK9sVZLFxiS4AaPNzsR8LhQG3KmhM5Kyk9oHVmTas5jfRdwTvXY3htJKvSuY2tdvu9bcj4MbL8cyuazTrs5/aoPz06zt8Udba6fOQX2zlvGy3LNs7OowuOcRgZx8lEQX7jeFqULmoOOiFES9xzFgV9fjrx9PjI+bKSUqU2Ewjt9gd8MKrIvFTymjnpE3UVyi6Y16lzHHYHbo8Hs1uLZonYaqFqIy82Kg5OiUPE+0hR81kdR8/RecI4UZHOY46oE4Zpx2e/+AWvv/gM70d+/8dveXw88fR4otVKa42UMmct1LwQPdAa+yEwemEIgpdG9Ducm7q3vYUkiWzsatsQx2FgXldSrZScUV1t6uUCrULJyZBybPyelkSVZC4ezjbZcRhBbTTtqqWwevGUdWFdVoYRphDYx8B6zKzr+kKE5p/5si9EbFeerm5BHRWhGGrpvFFx1PaO0lX5tZrFpXQqi1mLda/cVimlWoT4z+z4Sz3QtX/ettfwBQd5O+T6vRfBEfZLrq87vIjP7rS26486P9xswSqaMymtLMtCrfnqJlG7V7GIcHt7y+FwwzgOBOehbtxsNarGNDKOkTFGmjrGaJqf0OlXu92OaZoYhxHf7QRLqYhizZ4IKWXCYC4cwXtqa0zTyO3tDWEcwXmOxxuO+z0ijZRma7xF2Q2Rw34i7SYu+WLoq5pto0M68AdeLX3Q9SAQM5sTBrHz0g2mrYgx4pyjlkxOC6qV3TTy6u6OoAqlQMuMTjhME14VWmEaAm9fv+bu5sAQI69ujxZLPU0mQMQoLNoqRZRSDG333lKUPeBFOIwj+3EkNSWII3q73ocx8FAr67xSWmXJZk4QQsCVfA32cl4MeIibI4ZSN9OEWs0L3wnaKWjaBQPXGPpmVrNe7LVT7TTO1vBAVJDSKJeZy3fv+fC7L3n3m9/x+PU36GUhVoiqRCBemQp0L3W9Nm4Kf9FY+K8umH8s9c/4R/aixcECRbQ5crbxm7lGt27h9RyVaL8TfN/neiw6ro8KdmNgPwWGCE4Lta5o7cb3XrjZHfj8s8843Nzx7sM7U1TXytgdMHBKaRlaIKgnV6Me7I63+GHHkgpRArvDRBz2iBTSajyc0A3vx+iZdiPTuEMwJCueFpYEWR1FrbuVmsjzE8v5iGhmN3iCU85Pj6QzSC3Ml8jTwwOPT/fQCmsyV46dV3aH4XpyW1G+kvJqRfNo6JSlb5nArnS7tOg9cQjgIoSRS4YxPuJEyTnz7rtvOV8W9odbnp4uLE8nDnGkqpJqpaLUZeG7P/7Ruv2U+cXrN2grjM5x3O3ZjRODc3z49jsuD4/cjXdX66FWG2nN5CWRUyWXLXltmygUa69FOyXDYs/H/Z44RGpeWHsASxwGxmAq4YeHB+bLifXVa0YPQRvjNLI7HFkvswUpiCDBQ21X83ltjSARp5XoGm/vDgxjRLWQ10xaMl4rDw+JebmQsoKYQhnxFO1Co06+rlp5ln5vF8LPr1C+Hqo/db34n358GljycfLfM1XGAkr8Rz93zhGjbZ7DYKKyWipx8Ez7if1+xzgGnCsU77uNFKB94e4uEtIX/5wSaUmkpYAKx/3E288+57PPPyfXwvv37/j++++Zl8XG1uo47nZ89voV+yFyGD2vb3a8urtjjNG8g2sj10xKC7UmCwwYA+MwUpqwFkXDgAsjtVmx/HSzZ0kru9KYDgc+e3PLZ5+9YRgPtKZ89+03nB+fOPmziY+9YxwCQ4BWE3lJ1JKYz4/MgzAN0PYe5xohwBDNl9VTcdIMwIiBaTcSl7mLhiyMxK0eFwyh1SSUkqFayElzSnO1+66Cc6YbsTGtUmpliIM1vWIbcrA7EmNkmiZ2ux21F/7mL/zM0b2eIxvNb7NQq4XS1CK0vQNxOBd6qI2hsME7c00Jds7kUpjn2egfRigwu6uf2fGyYN4aix8T/23f+zgJ8Hlq9LF+47lw1o3HCt1b14IxZHOtYhscb/TKTfth1KOcVtPezOZZvv3urWAOQ2Q3HRhCQNXEsC0XCgbGTdOE5mS/20F0VnD64HuapxXNwzAwxEjw3TXCK6KCqBJDIKVsXsfOgn2GIXJ7e8PueDQNw7Rj2u2Zph3ewePjB1Dbf1tZaeuCU5sITV7YxWjCRDEHB1ORV7RUpCmBfnNifFMX8DEgnT5ASaynR9I6UzEk/PPXr3h7c2RwDqkFLSueRuwTeO8cYzgg7IkxcNiZy1YcBgvs0or0JnarswYv5CAUL3YduNa5zvZaU7tl4xCY3Mg8DKypXAkOEhwuiFEt+jTBrAyN0tW00bT0cLJKbRmaXCk6jQ3g6sMpfcmL1+vUKqg1F1EbPlfqZeH87p53X/6R7//1dzx99TV6mhlV2DvHWBXfqiHI/fe3flOxv2sgWH8QP+H4D0eYr51+fwRNMTEKjqa1hwQUg9Y3agZGDpceU+qDJ3gje28dxRSF2+PA7Y0J/aag3YR7taJOYLcbefv2DV988QUNYflqZZ4TtSr7vcfH8NFIKNdGAQ7Tgf3NHVUdD+eZGz8Qpz27/Q21zuDnHopgCtNtrLE73nCzO3KcDry/f+LhtHBeK0tpNM2cPnzPv/yPxB+//B0invUyG4ozRnZj5LibiF748OF7/sd/n3E0Tk8POLFxym43QatIa+Z+sSw9scgajtYqeKXVTC4WWY0YGubjQBx3hHFPVcfj08xSGmsWMsL58YEP371nWTK+Vl4d9qgze6w1ZysAGwxx5PbtG26Oh94lN272B/b7iUZjfnzg29//nt0x4KIS1OElgHpyhvOcmZcMrRky2ypoRbX0JC3j7TgZCMFEWTknWjXknLJ2RNqK4DUn3pXKPgaig1Arh8OR9Xzm8ngyixwXEKmUvJqPszhwjZpm8uWRXVBuv3iD00ZNGWojSmOQzIeHzKkZyifaqOpoTWnizBOzo5fa+uIvRs7YaPvox5vUz+F4GTLwc0kqfIkofnpsCKR/kVrmqvuIi+y8736riYkdMY4M44gPtonEGIkxEryjpH7eum7/JFytqryIIUfe8fr2wP/j17/kH/7hH1lzYj8EpGUuF9u4dzHw2avX/PKzz5kGzz56Xt9MvH39iujkOX2KQqsLtIL3atHug8erIF7R7tjz+vZgoqRWCdFzuswmWGyZtFxAQVpiN3huDgNeKtEHpslU8FBY5zMXKnU14ZVoIvrWwQnPOAam0TP4iKNYWpg0fBPjhnZecm2GyK7rghTjDOfaGKfZXCyCjX+dFxyOlislZUQd02ib+ny52PvqxOw9h8F4x7WAD93laCClaEIp7T77bOLwFzQ+J9eCTTHAozZBnCK+0dyIqruKk8Zx5KCeNXvmVPGP5mZQmiGcPkbb4E//WWf4X398mtL30jHjh+778t98Spn69La5jqjruEcHvdrmpasdje/o8ssssg2gbs1Q5JIz67JYg5JLX1v7fZ2YSLdbuuVkjjFSlF0YzapwGplPJqwXJwzTQBwG3ItZuxOxqPdOWhWMBjGGiOwOBBfIpRivOkTCOID3HMVQ0DBN7A4HYhwBsyfUbbKhBUoitMbO2xTrEB2HYeiR1IqUBrm7ypSC1IIUi6oOrXZENRvN0gdcy2jfA7Vk1HsGB3eHHWOMHMYJ1wplmWl5RbTi6LUBFo0do2fqIkfnfN+DtXuTF6i127op0QkteGpwZCdILfgGFOPvm22bvV8+BJx3FK1I2FJABbC6p+iWECqdumO6hUYxNkArtKJ4F3Bdd4Y3ulnrAXVoX2cBabU/1srohEkd5Xzh9O07Pvz2D3z3T7/hw2//QH3/yC41JvUMKFEhIng1elEzejQ9msM+8pNrZeA/qGB+OQqDDWHuHW2rtJbIHVdvrbCFdFj0s7ObehsrOOmehc4yzR3GMRocd7vIcRcZAzjNtLJAXXGi7I8jn3/xOV988Rm3t0ceTxfSupKzuWfYWDOg3TamqVBUCdPI4e41cX8kNTH+YxwZdjum3YG0KuIda0o97cc4MYNTbneRcDNxs9vx6njg/mnhNGcuuZJKozqHSqVcnhDxRBFeH3fGMzweOOwmvNi409GIHj57c8fobjhE6/CWy8VM3ftoxu6rbGlYrRfOrdqm7rANwx6jZxgin715TVHHuD/weE7MpZGyotWzLoV1WVmLcbabiEVbO2G/mzge99zeHDh0tS1aicFseta8cppPnN59T7l8weHNkTaOHKY9l2HPxQ3kKqRScbWY72S3krPVq8e0tkxr8TqZAGfPqxYLhQCcOON3ukBaE+VyMc6ZFygF583DttXV8IsNDelRrKKFvJx5+vA9p/vv+cV+xy/f3JCWmZpXNAdcCUQZmbzyNBdSzX3qITiCeYhqb087lvknZIyrR/PP5/i5UjI+RZgVuhVij8DuntqtNUouV4eGEGzZy9lG/KWMbGS8ZyqZoY5WdNP9zgtBYDcO3B73zJeVdV6v4twxOAYPu8ExxpH5uGO+PXAYfZ9MOd7c3XCYJnaD5/XNnrd3e24PeyOUtNo95jfjftv4QujfEyEGh0RPGALiPaXuEWAaIx/uHzldZs7nR+b1gkjgdJ6hrtzdDOwnh3f+6iSgpRGaJ+oIO8dhirx9feTtm1vevLnh9nbPfhfZjcGEgBTyKt0LvqEaOR4OhBCZdjvOp5nHy5mSEyqeUpUYR5bjbEmLbsKJQ5tRtp6eztzeHNmNI7c3d5SeaCZSGcYBsCjg2sySL3jHbhrt92uldn9706QZTLQFjETvib5ZcIU3IKD0oAacIh6qBtMtOIcEsyebJmG3S0y7HfF8IRdLe3Rsa9PP6/i0YP70ez/0/Zd7+Q8VyxuyLP2aaS/8l3ULLelfu6sBs4nCOivVJszNxOs5rczrzLJcOm2oXq9tH4KJdEOw6ctSkNKQohzjzuhytbKuq/kCO0cYBnN42gp0sMlgKRQFglpYhzgczopK742LL1Yw+xhxMVCdA+8J08g47RAfKLmw5NRpkHpN2NW0Emrt8dmOKDCIwze1YrlPP6UUXK3G+VVDmUuzADUFS8wroTtbONQDwXyONcI0DBzGkaCRHIS6OqRla7i1IqI9tCVcxc1We1nhLs244a1ajLxoI4hZww3eRLZRKoM3pF3UQDvbqy07QUVZ0or0Wq3Z4AZzqWp2zTbfgbHaQ1oS2gq1WWAcAYIGjL5jNBnFkjm1FjxWyPsOWmkpuKbomrl88z3f/+Z3fPvPv+H+d38gf3ggLpmhChas3AjqiJ1nXbeCmWeU+Vow/wWX9d+EkrEdznWuTK24ttmDWBHdiS72wQnewhsRbwWzc+ZmsYuBu8PEzS5yiHA7OvZBcSXjXTNvz+B4/eqGX/3yC25f3RGC66bgRvMwS6mI92JJUQi5Gg913B053NwhYaCKYxhGdocbxt2BcbdjypUQgsXbZou4iE6YgudmjOz3O17t9rzeHzi9KpzXwpIrWS0lKzUl5Yr3NgryIuzGidvj0S6sMTIOvhPSDXX3mpE0M1/OlGWmCHhnlt7eGQLmewSsqsU8Cu255ukLF83UjIMf+dUXn7PbH/n2/SOP55WmHk9Ei3F9N0s3dcLaLaJ208g0Rg67kWmwNK1aErms9FwYvvmukh7vuXx4z6s3R26nPevuyNO0JwwTLo7gLGfe0y8qtyEUxj+/Bkv0RdU7T62VZZl5vXuN98E67c4x9CLMy0JFaQHS+Wxjo3E0hwwEutOFD4YUWbteuTzd8/3Xf2A3jRzvXvHZqx3LvKetZ4LuuN1FHvYD37x/4uGcWbJtINUp6rSPb7Y5hefZ+vBjesbP7fi3LCNfHj9Kw/qIHvGfc3z8tzYHgM3bs5dRHVWrtV7tj1ATeuWUr04YG5fVOzPTtw3LzlODtYzOcNzveH17S14LdV0I0v+dJh7ef8W/LI8M48CyrgRN7I4Tx8OB3RC7oC6w6wjx69sj0+ANQaHhVK4RvF7EPJFFaVpQxERwQyCMER+UWk2IfDjsOewm3j888OF05rysnOcn8joz+MrdcQQ6f1NAa0Wb4G8iwd0xBuFmP/D27Wvevn7Nq1e3HPdj5zTDECzS17VCVjP7j8Fzd3PLfiqkWgjeULo5ZdaUWVMixoF1XhiHiXEEURPaLevKKVxY18zN4cjx5pbT08lCoqQyDXtCiMzLaohTqxZnPETGyXycE+l6/W0icsQ0HD4YzSvGSAyJlKt51l/hJdc3Tdc9++182e0njkW5WxfWHs28lgzIj6KzP5fjU1Drx67TT7//Q7SMKx1jazS3/wzG7b+/dexAr+s90JPcTB9QS6Lkhbwu5JR66qsVzJunt+9pciUVlsuMpgJVmac9y7LiVDldnljWBe17SmmFEPzzUqzaw4hqD72w3xv9Zrfmqd4mCq0zJELwqPc0b5z9sBWENLw08PYcc7a02XQ54VthDMJxGNgPkYgVb9rTLB3Gww1ixekueCgedZW1NWtG00LrwjnvIgSHRKFUSwglrzYBBaSsZnzQKr7rl1wvtEMHDaSfu1oLrWREy/XzVquJ+cEC1XznK8fIFCMXlyxQpBmA5YkM0cCtZV1sFwy+v+79OpTtdXq2EmxqhXKpiVozEDp9Z6Pv2ppd6QLUUgmiTMETFbIqJWV0Xlnun3j88o98+Ncvefz9V5QPj+yKcvCRCemeyxZMFPBXBNmoGHqlZtRrvfTTr6G/umB+yXf6iC+lSjTGu+V9t3qNq8R1daXrRZOY5+8YA+OuR52Kshsjb+9uuDuM7Hxj5wrkC7GtSK6UkhiccPfqhldvbtjtIjc3e5asfP/99zw8PhqnafSmyhVlTSvTbjKf33HH67evmQ5HVDzqPOPhyM2rN0gI1NbMRaNZIEhJK5bJkXAtM0jjEIQ4TejRW4reZeW8FvADEkfj8uGYph0xDHgXGKKJE5xASgtCY78f2e8s4asuZy6Pjfn0YIiuMwXtbhjt72+duRZyWalpNVTZO+t6S8Z1gv40mPI2NaE0Zc2VECK1OTTD4EeGcTKVs/eWNNaFDN4J3nEtyFs1P1MTzRXSunA3Rdb1wvn996yf3zG9Mgua+dVrzh8eCMMeN+zIq3GWoo9kWQhjJEplTY2qmVoTaV3Y7/bsx5ElnSy9sJXOWwysyQzeQ18MrOtVHs+msD9MO1wI+CFSW0WqwzVBmxVOXpVWV9bLE+enD7RmqONhUP7xF7fc7ALfff+BsjZe781+57Q2TkvjXGxqoGKj4drs9QCwQIVnd+m/6Ar8Ozg+tZh6efzQ5vmyYP6UI7nd5+X9P/3ep8X5jzXdP7SuvHycLykZV4QZrpuGc+ZRrKqUalGwuY9FmzZO51MXDVv3V0pliGapVsUa92kYyCFTqwIVUWE/Dbx9dYs0a56Pe/NHr6Wi5UKeM5oj3jvu9hZG8ObNK257uMB+HNlPkV0ITMHjaoOaCdEmImVdu1C1FyeWVwLikWDoMJROL7GRpouOMLxmf5w4PD7xdJl5Ol04nQcT4Lbnmbg2oxsNIXAYRw67kcN+4OYwcnM8cDzsmcZIcGJiP6zA0WKiIdHG0v2QjVu8MwuuJsxLIrcTKRW0VM6nJ06Pj+x2eytYs6JVSHPmqT0xny6Umxtub254Oh5Z1pWUMvudY39zxMeZ03lGxZJcY/Qc9jucwOUCKSWbtjksRjsEQzeTgrTO1x7IRSk9hKI0pVGpZMSPBIxa4715c9+9usN5s5eU4I0qUM3RgcsPnqp/18d2XW4C2JdOGRtl6dNr7IfWgfpC9NhauybNNjU/ZcEcKopWK6A6t9mHzSO9e/e6fh3XSloWlnmmdHvF7Ro1yz/zwS6lcDlfjNO8FvK84iqU22w0npo5n87M8wXVhvOuI5yCd/4KwGhtMAy2d9DFiHaa9AbZhG+tO3VJLd2wwOhEbV2o/XXZBUdqldNyIl1OkGY0r9Sa8WGwaZMDr82u75KvEROiitfG6IQSPa04aAEnldSglLVzg61wFw14IkHi1XaSbDTRoM80MYfFUvvwPBnjGgNt62XFdBtWKHeKxjU9097f6AOjV+NZd+F9657noe+t63rpCcgZ74yeWUoxbvjGJtDCMATS2kW/PcDEjxNhEkYXiMFcS2o1rrEXx24c7bpOC20uQCXmQruspPf3zH/8lu//6Tfc//b31A+PDKmwV8/YBJ8LXrvpAVDUuNbqtvPYnDE2VFl/eOv50eNv5pJhY0wb9W4XpqohMfTuyCYztjH5MJhC2gdubm/5/O1r3r665bAb8DVRLw+U8z3lfKLkC5JnfGu8utvx+s2ROEW0Fc6nRx4vK+/fv+f+4YJ00r92bowPVpw7D8fjgcPxiAqkUhliYNofiMPQx7OG4Ja0sFxO5HWGZglZg4MojdAyowRC6Ibf48hSlNILcHED3g84FxDctZZyGAI+DJFhtHGgD9iCXo2D2GrpIhvzJzXFfuf/1mzm29V44bWkzm9uXZE+k6L97UhAJDAGx81uIoZIw9PWisOicLXzzkUzvlm0aBSLFd2Us+p8R3AarTSca+y8UtLK8viB+ekDx9cHbm7vKMvK/HTm/Hji8vSBuu5oy0qxGYOp5IMg2TZgu1WoGadWiJhK2JK8nDPhaCublZFSSyEMnsP+yOV8ZkkZaVuEqZJLRnP3ZXUeHwWcLX7n84lcijVvtRCkcjN53Osb83gE5GnpLipmV9hqpxTV7i8qn4rlfl6F8nZ8WgTD3xYl/vPBJP/23/+xglyvCPMzLcNCnZwlSebMsiwWiiC2wIcQbLPfUqPE4boCwzvXo+ztPDT/c/MfHaPj1e2BMQh3NyPrslCKBRB4Z5zYcTA3jv3hyOvXr7m9uWEaI04U16rxG6UhrTCECYdFxK/r0m3O+nNwrncCtrurzVYQ5xjHgHgl1I4ueeFw3JNKZV5X5mUh5UztEbbaDY4FJTjPbhzZj+bHPI3exIBdeNS6YFY6CqQi1D6Ncs7jnCFTVtybU8Dt8YAqlFRZfWJdE0+P97y6e0Xd79Hm0AY5V1JaOZ9mSjFu+atXr0gpcXp66uNpZdpNOB/JtZLTZvHnYGf2mrVmUJtaSm/yazOhkCH0whA9Ywzk3CjVfHpdFx00beSUjP8aBNyANggxcnd3h3OOeTG0ec2Z9/e/+WtP//+0Y0PvXlrH/Ql18kemRT/le6Bc8542hPn6+zeksU87ZQtL6Qh0R5fNo3e1ILF+s6K5oGoUjlyKBYjlipZGWTIBsxRM2X7H0+nJdDxayCVxOEwMPdXXBkr2eLQ1E5l6sZCzXtw3eUEd6Xxc1WyTTwfBCVlbf4yGgqeUKPOFuszUtEBJ5jAjEEX7FNioVQ7fr6P+OrYKreDUJsvBAcF41k6FrJWaFtsrawQmfFDbB7FI7iiOKB6niutCS+e6TkAMoFKBSqNoQVpBtOAsfJqirQsrG6U2arVshKaKDwHxGOffWSNfS6GQaIjZ5hVzN8EpWdpVjKvO0wcL14pUm3nT55KptZrLxXaabJ93Cq9Uu7U10Wox1HpdSR/uuf/yDzz+9o88/eEb8vsH5LISq9nGDmqpf52IR+skqisVY3s4wl9cKG/HfyiH+aONUO2Fdw5LsbqOZCw6eRs7ylWt6fE+GMLpPKVUTqcz6/mJtp7Q5QmfLwy6Emsm0ri7nfjizS3DfiBTWRcbRb57f+L9+/fkDDe3gf1+b2gTjTAE4uCJMXB7e8PheDC0pGSGceJ4c8swjv0p2AVV8sp6OZGW2bh0KNGZS4eriVBto4njxHFnnsNFPFUd2m/Xd6jbGYHZ4YyjjRidg1IW833NyXi1rXSk12gYbgt1aVY8iwq1ZrQVRJXgBTrHqtVCTQmdEsJEcJbio3tPyJWqwBAJ4vEuWGGoXLm/zgnRiYl3Bfx1PVFUK00K4ir7AMuSuXz4nodvj7z6/A3jfuJwOPDms884PZ55uv+eMr9jXey1EGfFpvOKC4rUaurdVpCaCeJwwVt0Z06kNbCbHNF5UuvFgsKyJIIzl4ycM+fHE9KUIQbiEIl5JJf8AgGR7v9pcZ0NrjHp2ux1HELj1c1k3p/jSnxc8aHAnGGptNybvm4rJ9dr4D+XivBzP35K0fxj/+7Tf/tcNFvha1aW/lowW9Fp9ykdTdtGv7vd2G2Vgo0vxXV+PdfRvhOLoDe/YRvhT2NgipFXNztyPrKuM7Uk81Uex2vBHEMPTdjvGQZr6kvKlNrjrHOjpIao2avVVMx+rVXGccB7zwYfbc/Y/HFtg7RxsqK5EvDsOjjRVDnsBkrdkVs14WrbxuEGWARxjCHaZC96huiMziZiiJJt10ZjoaF4vPhuy+URsWa2VUPpY/Ac93u0CfOcrNCZHzg/nUjrYiPxVq/kwXVNzPNCKZUYB25ubrhcLtbUdEFmCANxCEiGkhJarZmfhgE57Pt61AXk2iz6WmyPGYaI4ihV8aHYe1kaAWv+G55ULXVNWkUIaOz7lvccj0fGcWReFy7zwrosf80p/59+/BTR36duGJ8en37/TyZM9JATLFWxqq3Pz2uj9ulGu+pWtmYsp4W0zKzzTFoX8rqyrivLMpNyRdyAqpJzYW2NlgvShJaNX1uynde1ZC7zszC/NuO2h2CuKGpjJms8m1EzDLaxsxp5Zqd7J4TYKSDF+NRb7LO5US09sMymk3Vdr57pnkr0juiF4OQFELTRIwWa70BhNTFbd7hwUfAa8Cq4Zo4aRW2y1UrBJZtUi284F4hOGL0wOvM9FjWK5lZP9X6QitE8pGc3aDWuM/2+2rnNrTVqU6pCxQrtUkq3i6xX6olpOeUaQlJSQqWRnFoDURteMZtGp+aM0393XjPrYs2pBZQo9OZWNppjabiqjD0DY2iNWBLLluL3my95+u0fWd7dw3lhbLAXz855Yu09WgeyWm/otsbu5ezXaDl/wcXUj/8whPnTotmUtH0E1IxwHboAQ0R77HMX1nSuqfOelApff/0Nf/gyIS3jtTC5yk0UPrsZ+ewmIK0yRMfnb+447EbmtLI2pbXE01L4+tt7zueZaRJub48cbo49iCQRgmO327Efdxz2E7TGvCwcdgPHw5HDcW+k9la7cXqm5pWaV9Zl7jxmSwiSvNrF5AVXA0EH8x32EQ0DuNgRFWtpttAB7a/L5k+NM2pGXeymNfex8rNfcYyBcYgIJu5r1TyXqcZfMmV4t9FqSm29sK3ZLhLxXQwjVHVQDG2PInjfhQbOWSFob1rfp7X7Sarxzmqm1gWpGd8yo1QGKTyeznz31e+5/eI1v7o5Mu33fPbZZ8yXhYcP33J5/Ba93AMRT8Trlixk8cNQ8M1U+DEOEDziLegm58RumPDOmTWPGBdyXVecU169umWcdjw9nEjzQsmeaRqZppGmlWVdrQnygTVbuk9RJa8JSYkYoKyJtKyk1EA9N7sJ70fEL7iQaLLSNFGajbeLdg9J1c7b0hcA8/+/cP6h48/RMn7s+DG1/qeH6yixeCt6X6r5QwgoyjAMdg6BpVvV2uOcn62mpIuZtg3HIoF7k5obioloQohEHwzRrJGSA0hjHCKHg3mgBhc6xmF8aNVCqgstr2hZcd4T3UD0rtO9DP316lACgreGW/TZ07Zzs40yIDjnCUBuDamK91gBCQzREPKxj8oNYXQ900PwWBPqnfTru6G1Fzqtdjsn2DyYnk9vweTmQlltA3TXSPuRUpXdOLKsKwKsy2qWYWm9+q6OcegooyH/x+MOVazRGEeWZeV0OiHiGIaJIQ6M43ilEIjAMAzc3vZxbn/vtnMhDoJ4oZFxKbNhTM7Z2BfnaOIo7Zlzawjg8znnY7BwGLEy7+rp/TM5mrbugfy8P7+kUMKfFswvXTJ+0Ebuk/tC16UoH/37Fw+CK++hU/sQ279azqReIC/zhWVeOJ/PzPNiiL+H2szhRIsVkU5Bq+L8YCLe/uvXtKDSiGPEBXcVw9NM8IbqdYJkBWuzOGi199aot9rFgorDBGtlrax5paxmbZpLNn/xYkmQrlUGUTR41Gn3MneIs+upEwCuCPtz02K3IIpGh0eI4g20KuYe00JAfaA6c8cRKl6FoI6g1vh5MZ9h1/fE6wuCXbutVaRkpGRcLVenKsGcp7yP+NDjoZt5RJcGy7pcp1PbeVBrQavBtVrLMypcjdqxLis5WQKx5TUIXiwgTlwj50Lq0xxULCK7WoiLEyuetZrWIKgyiMc1JT088f7LP/D1P/8r73/3Je39I27J7BAm79n7yKgObaWHVnXKhWjPId0s6rim8V47pL9wq/4PpWR8upE55zs/xkboORsXT7DRQejiL7YNyvWxXy+cgjR20XHYBfNHFaF1RMZFM9J2CiWvpNJIBU7nxPmyoAqHw8h+v++cXaU2+1uHw46721d453h8emLJK5/9+he8evXqikaXspJLY53PLPPZUOZ1ppQVqZmaMnmdKTQrmoOHEBEJOB8tfWcY8G7EE6xotlfFuIid8lFa6cXyTF4XtJiwcIiBMQRa9HggeOMTa18Iak5sSUm1luuiAP31pXtcritwJozgR0fwkbHze2rKFMtGxEvDS7QL3R5lj6ptJkhkK5gTrSzG10oJqQuRSksz7775ivG3N4w3N9x98Sum21vefv4LHu/fcb7/hjzfQyo4RlATa8QgrMUy6YNYfHVwtllptNGOFTAvGrBSDPVTZV0zOTfiMDDtJtJlZl5mQBlHsxdqQBwnXByokmjicMEsq9JyIZ+Xrtg2C51asg10NDIFazI8rQs+PTkotfwcNfP/844fQqrg30blP92wf6houQZZeHctKLeNSXpIgXNmJ+dDoJRy9Q5uTa24jcFGmL1IFBGC8wTvCdH3Ma2hY8F7E8QO0cz5NdJaxDllCN7CPpw1qGybch9/imajPUk1Yc0QGIeANMO8aCbsk2YOESrG+TQqlMP5gI8jYYiIHxAJFFVGBHHe0KKcDXkFVKxANQvHnlApnbOrgrS+yXYupDXbxmmsXa2uqtDMdq7kekXXSrFxrnaUyGHImtHM4tX3duk0i8fDA+PugPhAjAPeC600LqeZt2/fkHNlGAYOhwMpFZ6enliWhWna8frVG3a7AyEE1mUhl4LAtYhW1auNoGBcTm32MQabKMbQBWWtBxr1ojCGAGJ+gqVTe2p/vrXWK+/95zZBeokov5yq/JSCefvenxTHnzarghU/aHdD+FjTZIXKFlpi3HHUzp+cVtJqHszz+cL5fOJ0OrHM3enI0c8xC/rQZgUzFXzr0eYlWYrcNbyGa1NVa8VPJvwMIRB9IIi3IBH6hLub/4qYmFxqo60JSg9SboWalZITLlqMfBQDuxSliQcHzSlU020F74xr7K1R3tYfAwula7dMzxWC73a6HnGegtCy/Q43TRACWe3nkZFIIGBAlxMMpZZOIeyv9bboKGpTcC0ErMk0mobr9pU2TWlAEWwNypVcMuflQm2Vabfj1etX3Nze4pozSkxVWjERfssmkixOSatRsApAUVxTvJidp/PRUOdi0O4G7MnWtTTMxzkXKBXpn8+PT7z/wx/56l9/w/d/+CPr/SPTmhkUvHhGHBHpzX3r1DVoIqgotWc/xPbxKbulvP8lDhnwH+yS8SdCgS40ETF7tdZV6E4Mlcva4zVbL4q8XCF0K5qwrqO168mwLgt3o+P13ZExGFGe1ljmC/PaaNUxRA8HYdjtAO12Qq2PBrD4y7s7Umk8Pj1QPNzcHLh7dcM4RBC9ktzny5nL+Ym0GK+wlYZUExzm1VNQsnMk7wghMriIj4MZkosFmDjVTmxvZtrtGq4nCbWcKcm4OkEw5MPJFYEfYrR/j/GVa6nUvI1Ltaf8JfoZZ2L+bitjwSabTU+nd/SLFlVWsY6u9S5YW4Vsm6rvPAzXA2ZMqNFwUs3/sWbKOpvgUI1KMS8nfv+v/0wB/uG/zHz2i1+z3+349T/8I6cPXzE/fsfyeEGL4Jozqk6oeCfdvFyuAoYYAzKaIECbbYbBC84r87ya9WAItGZd6zgE9vsdab7w9LgyrwuKEmJg3O2I40Qc91RZmFOmiaWMtdYo1UZPtRQ73xRyXllyYl4qy3lhvSRqMj/RQCCJswtUtXd717Oenx3CvDWs16HVRnn49Ln89S3C38xJY0NfvWd7/LUnU0ovpmOM1/ccNa/lEP3Veky28R22gYbgGTtquo6JnBvajJ5kQlxPjJY4Z6qS0s/fTaOhV3TWNoVi8epUgveMPXVwnCY8GAKrgnS6T82J0pExXLuukSE4QgzP06oGDJYy2GojY3aNG4+vv6NslmtBvIUYYGidbX69KO6Fva11hkjVUnoh1Mgps67FGtWUqDlbAdC8FdlqoqLdbse8Fg6HAyrCZT7zdDrhwojD4TyEMLCsiaenpytfe7fbGx3vciHdZ57OJ56enshr5vPPP++hMwERJSXzdPc9qcyaKbt+a1NzFBAr4Pc7KM1RNVOSFf1VAWy6iQSaiFmRpnYdu6ecjQNejYP5czpUX1pffowev/wa/rQQ/inXp17/t/3+j/+dqo3CXecHq1oT0spKSeaKkdJ69WA+ny9cLrMFcImnqr0HTekxyw1VQUsj67NAMAbhcDwwr6fe5GSqWFjWMAwW3OGD0T6NTWxFs9o0yWNTXC8YXaHnHAgWrW384k1PEIwX3GwfrrVSs5Ap/QrbGvguIgzxaovnvcdHjzSHb87yKdRZsed8zw8QEwt6jx8H3DBSnRh3WSK+eXzDeMtNOzKs12tcNzS1UxA2/ZF0WmxzFixWO43Ge/A4Sw/0JuRNJZNSIgwDt2/e8ut/+DWfvX3D5WlmOa+0liglk/t0oDVHCd70RilT1ABSL54hWKUa+6RKnxGwq2+3DWgVqtVWlEqdV+YP73n/u9/y7T//M9//7vfMHx7wS8JXJWIx317NB5+eFE0vlLXbyG14wPWE7af5RskQ/sbR2D80qvn0eB7/VDYbMPXBLhY6v6Q7HKB0nrNteNsbHp3FSLqq9gJpNwBvym6aOBxvUOeZ15Wl20Pl1KgaGJzgQrQxZutvhBOEwDTuiOOeYbfn4f07zvOZ3asbdoeJYXA4b2KyUhI1rVzOJ9K62ibboFXFFRvnZ9f9/Zzlk9cQkDDg24ivmdAqTqpdf7TOpbJ3bgvsaHWlthXBbPKab0ixKNfNqcJ1c37jM1lXZ6+xxYpSTAxYNKM9PnejvzgvhCjPoyabt4JWgud6cTkMTd4QCa+OgC0W3jljezUbnwQVG6WUjOSFkBf2ZWG+XDidnvjy8Uw7J/LTyuvPf8nd4YbP377l/vaWfP5AlYhKJUSTRIyxmj+maxQqyYGXwOhGnPfkvDIvF/xxTxgEvHXVMXrWxYQixMg47tgfj1wuM5e5pyO5yH53YLq5YRj3VL+wPDyxrBZEUatDGRAHKkKuJvDJVVkzrKl7XHeFdy3eHFWq9MvHOuTWtg3qb1AM/o0Ph14RitZXFyewSRpfShtfPrO/5Hn+W+4bP3wf7FFt35cX9/koZdGhzpnPaR9Pls4DFO8sicp7fBxxwXitqkrwjmmIRC+4VnEqhla5rWE0QWwMJjgNQdAKTgq0grSAUyHQ+dNi7j4mlHvhV0vnxTaIPNOefBwI04TE0JtfZ4l0WqlayW2llUbYBHbegXqQjMNbwYv5ynsnBNeoruFw5Aq1inFz+2jUXAA6ai7mKV6x5K26BRpUs3SyQlo7wtdvxdCnnCulKKVgk5ZeQJSSaRg9xDvTjtzc3pBrZUmZeT4z7vcMTpiGiWEInE4zp/OZlIyGNo4Dy2JixuhBKJzPZ0pKoMrbN2+YpqlT0OjCRMCFK8IIUKsaEobH+UAYhaE01lR7sIqdYF7EhMDiUBXKulBSIS2ZNRfWnFlTodRGqvknn+9/D0epGecV74cuDu+JpQZPfES92Jrll7SNH6Jm/ElB3AExK4KsQLdAEr0Wjmi1cXkrFs5RM3WZSfOFuibSvDBfZvJajMFQzfa1tmIAkHM0KiF4Wi7W1IFRJWrmeDjw+u6G9fzA+XxPOVf2PRrabAV9F8mJCdk7XWCzcNwcMrwD1CiUV1qT90g0TY0LHvEeRKjNRH/n85lSa/c3Nu67JyAacG7Au4hz0fzPO8pd1Sxtm3jKRtlATbDYjEoTXOjXagTvaWqToRCNs+wa0OkLvWbutCLBhJ50lNmmUmhP5dPGlrJsp4E1ylsd29TCwdbSGMaJX37+Bb98+4bjLiI1sc4L4jNFLyzpiZwuoJ6aPZIyrVR77/BIrLi1EHFM0eMxTYm2QtaMiCNKoJKJVRi0EbRRc+Lp/Tve//a3fPPP/8qH3/2e9bv3uPPCkBtjE3MHUaurcqePCXauSOd0i3YrW/zz9L0/Ud+fumJOJj8V5PqrEOY/y0Hs4NQ2IkG1IxHCltB03fvow84GmwXK9vC9w050B9E7phDZTTv8MLDWwtNl5nRZqc0xDhMRT62GgJSqFrWq9vujjxz2N4zDnpQzl3UBL9zc3XJzdyTGAFLJZSGl2dwfOveudhSmVRtd1LIhL4lShJqFlke0rEhJULIZmouYYTi+Nw/P1j5mh6QvFLJCo+HLc5pY8B01adKV+sYZEjVD71oaLlcymSIdAVGPaMGLxwXpAqg+otAC4vDB40VR15W50odUYpMBr0rotjKb4K822/Tt84arhVAzLS+MacGf71kez5zvT1CE08PM61/e89nnr4g4DrsDT+PEukZUM1DxzmgZtIZKJV+9qCGq4QGKcJlPDIOz4j8ouaygxTbrYvxS7yw1bNjtmHMhN8EVZcTj454wHYktwNPCeUnkJmiutFQMaS+QC6TSWFIiVfNplSD46AnZkHGuIs5w7eq3k9k2mZ8X1/EFBsUWLYDY4ts279QNThJl0yHb9/+y5uCncJeff+cnr6Py8aIB1+TF68SttWdKhlo37kM0u8EtdhlrbkQwC6ZtdEnoqvZtHG0jTAtDsamPuq25rB0R6SieaB/BeqD1YsHjMIeLopWshp7QkU9xVugX7G8UgdJdMErny6O21uQNMRKowd4X8cGu3yu320TWGjy185ZFn2kYEdu0Qhfv9T2VRrXHqc5cJzqFrtVm61w1HmkpRq8rpavpm9C6ZSMd0W2oIUzOioxxHPEh0HqwxJpWwjhYGmlwlGbOJfM8czjsune2MkTP4TCxrBNpWckp8f7d9+S0cjwemXZjjzw25LC2Qs3mlAGO1jzeW5qfiX7VEmTHwKCGvZfqaOq5xpKoQjMAopWVmps5q6yZlCulPduq/RwOS30LOGeNj/bgKPoa/4wwP7tY/ZA/88uC+eNrd0MMnwkB1891u29PdmvZmjst1JxIlzPr+USaL6zzQlpyn3SInVvZPJztPO1AWpCeG2CT4iUvpJwYhleE45HHMbKewJVqNUNw1pv2Jto7d3WX8Goos1EmOrjkBIcHDV0wJrZPDhEfA64n3DVMPDzPF+Z1teskV5w2XBhw5mOBkwFkwEkwvrBYsl1tBWkg/XXSpjb5UMgoKpZP4UWIzhPjaP7hYlOkINu/E2gOafTAly7+68/NuPm9WGxi6HwPZzPAdxvt092lG1kza840hOP+wN3djVnTamYIyjBCqpXULqQygwWUo7nis+komkJWmEuDeeXoI7UoWhpazIs51wUvHvW23onCUJUhZ5bTmctXX/PuN7/h/ve/Z/n+Pf68MGTYqWdo2otcO5raayn9TLk+wc1f2vXgk95IXMmUvUYNKsBPmx79RQXzTxXqAHaSOrk+OOOWdXpG36xeXpfbhtw6h7BiQEyMjjj469+dppH9YU+MkbQmljVRGvg4EuPeEuxaF/SI76MQR+vK6TFaMs3lcjEx2DDw+vVrDoeD2U9VU67bR0sQSslGkqX7F7rezZVudZScWOdYjE+ci3kIIuEa0eq8jVWQK8vIIjdDQGUgqDO6RmqUsnYTcaE4THzYbARaaulq4L5AOTvZa60olqC4qVI1xKvFVRj34EdyM56jD4KEYOOPYg2MqD3Wzb2kv43PZYvQx2qlJzZmtK5oS9AyrjVcrVxOT3z7+y/5/uHM7pvv+eyLN7y+MzRuDCNFgnmctgII0lNQTEvkwFsBlGs1F4AYOT9VlmXl7u6I957lslggjnO02ljXlXGMeB/ZTXvWtbCk3P1TQSQQ40gcrKC9nFfm2Rbpuq60lBBMga/iqRXbJNXGZt5F4iCEBil30dU2YrqOev7UweFnfWwV1fbp9QfPnMS/5bENGj9ii2/18nYNbDe6yKkJdRORQB/198Sr6Pv7a9uDdGqYOO1ft369bigcV+781Z2j/+1We8Jmc/0+ejXFd/3feGyMq529U/rz8CFYQNL+yDQdCKOntYovgZyFmts19Qu1qVJpuf9NWx9baYRo6aWbYNceYw97cM4obhbjYxQM6S4X3nicV/Swo20AdIpGK0bJaFe+cjEqWLWPNRe7dsrz1FCcPf+sFtTUtBlQ0H1wU0qklNipuXuAqenXdeXx8ZFpGjtXHKZp4tWrVz1KO/D4/sTT04nHx0cOhwNv377l1etXDMMAwpVrbGNZE/U57ztHu78G3pJPGx6kkbJQqqOqUKu91uas0LpewiZupY+oy8+MkrEdVgT/cDH88f3s44+K++TZstE5ZxZtTU3TRi/GOv3IOytYVQu5ZlpNqBZaSSzLzPly5nQ6cXp64nK5kJK5qtRujbppCbSrTbVP8bbH0LR1GscZgHG3J8Sx0xratWYSp0ZncibEc/5ZSO/Fd4ec7vzi3YvUSFs7QrSYbN+TNS1cQ80vvBRETXSaU8aJMAI4A6lCsLS+zbYShKbmRpWb0Uucc9ScWGsydwpnE7HWI8NDNJvKGCPiQ79eMacPaXSn1051sRCSKwDSucFm9Ya9II4rogwbImvThpI71SonQgy8en3H4bAnraul9KkyjAPlsXPNl7n7atvEyfjkxdIZo9U+pWZyg3U1l5nUaVw1Z6Q7akSFoYGkzOX+kfuvvuHb3/2B7373Bx6//g49ndlXGHAWBMOPNK7yYit+/padOy/qVnn5s0/q0H/r+Jv5MPPJhvp80X4Mf2/cyZf3dfLiSfUCpORM8a5HIJu3YuuJgeO0R30kJ+XxNHOaV8QFDocb4wB7Ibfcx5bQSibVSk4JP0TGcUIwNac6G696H0m6kDvfjY4U12a0kKYWZ7lkE5YM0WynSqn4jj6LN6qAl67cjgGcv6Jf6kB8JOBoWinV0yikZBdGKRa2QGm02IyXs2FprgsXZFtUNnRFe869osUK6BAj426HCxO+CGtpVMy1o/lKlR5V2Ys/KzY2NMIQiWt4gWa0rbS6WAx1W6GaEDKKsoueNSnz+cx8KXx4OPP44R1v30wcdwGKLYSuD0tMfW4bePPehBXeW/Z7H3FN08Tp8cHUtQgxjohcOnJgBXMqPcBAnNnuxJFclKqCuIALkRBG4iDgoxXTnQ9e14TmjIiax6tgG2lTcumjbR+6k0uFvHEDt7Fkn5H8xF7y7+14Rpj/zGDqT2tW+1xfXsv/wS/Apxv49veed/Zrol/D6FI4m8YEMT4u0n24tw3Me4TaOYbmMy6COc806WPZF5HzzcbY7nq/RqkZr0JxDu864n5Fei0aWBAkWGHo+mjaOYd31sDv90d2uz3DNDEMETrlKadEYUWb4CQa7aptDbx5wGoVaq7EwdBb781hyHtv7AL6qLnT3EQ6b7OnaDoxa6umtVNwtBfmXR+RUveD7xZ4W5hEzhZQUm19K7WQS7FNyovRtozLQ62NVDJrWsk5G+XCB0pX6m/jRxNYZ969e8fNzRGIqMIQR25vbxmGgeAngvtAqZXHx0cu84XwaDSWeZ5NlCmu0+7kek2qNOOIisN7CAFiVQM/vKX+1dY5kM6k0mNwlAHzjK0Nn6TjzwovUK2fw6H6vH8aBfKnP/6XjjQvC+itYJaXKKcAsv0N4/8andDojVozpSw9Bnux0It54XK5cJln1nU1y7I+HWrNIa6Z5/5W6Eu7FuniHFoMQHk6X5jXxHhzZDzY9dSqWYZWzZSWqWpJs+bR0QlozvZkF7Z1wTQB5gxlEx8fAmEYiEPEBZt0qrPmrGmiFHOVMH/vSuhFsXMe8baPiQ9WxDvfaWP0866nxmJ1RcrFGBIx4vtUqbLgfCAOg4XruH6di607rbVux2b7YMUKbVT7EtnDZaRDYCIvIqFNZGzXihXVOWfSmsg5M+123L26YRgia5q74NhTcuN0OvH48MQyJ6Mx0ci9yUZN+LybJoKPtNLIszVJl/OJy+mJdb6wy3t8KYRSGbwyqqDzzOPX3/D1v/yG77/8A/P7e1hWJoW9OIamuPo8Afz4ZP+Ra4AX+wbP18MGfvRv/pmN7+Pjb1cwsxXJ9khaa9fC4k872X5/jIpg7hl271obOStJlBJ9t2/AFvNWOzrpKc2xZOOd5ao2qouxF+gOJ6aGN7eNZt1Qa+zGgd1uZzwfrNNEC4Knda/QdU1GyejPp6nx43KBTKUEvZp/l1qJ9WXUc1fNBkvgkWvBbONdszgyhGtNwppX66BrI6WVtC4ErID2wdsGGU2oIto3Kt8T7Tbkq8ddbkEN/nSiSWQ4WOrfEAZUAooj52IbqCvGwdJuI6cNj8UES+egtZrQutDajNbFbqUXznVBqsV0hgrUlVwzy9PM5fGRdNrz9vWB6DJUU8fTX0vvrNNvvZt30TiFm4grhGgx29JoFXbTnrRbjcJT+qKgrSvnbQFyztxKEM8wTOz3PQI9ZsbpPQ3HZVnIa6KuGa1mEyR0vrs4Kp6mwbipLvSoZIcPFU3PI83NvMYmKP83QZf/3KEfX9vXb/8lE6if9Gf0eUL16fflRTiJM+s1VCmt4ZuAVPy2cXRa2OZ7bqO7QPBcQzpKThRv1ATjwxVLC9NqKXK9IC0YV1ea+Rh719X2oavg8T2owQqJ0Ee+NCje1iRxW6JmvFpNgse5QFOhFGhVCC5Cs4lc6/qCqkrSbEnvBUJs19cgBE+IigYxhLW/PsGFK+rtxHeuthX2Zq9XaDmZRVxK1JStcC75uWDePu88Z7O27K4IYhZV7mpuaqmJy7yyLCtpTaQ1E+LQi39rRGKM7Pc71nXh/bt3vH59h3N39n47E1Hf3Ax4Z2Num4wF1nVlTYnv371DRBjHkePxyOFwMERfjY9dW0ZcNKRw85pvtnf43Ew05OzsErWCwnmbjAbnrg2V64CB/Biy9Xd8bNfjNVTiJ8Jpn6LMLz8+F+C6wbgGZtZKK+Zn31ohVXNVqmUxD+CSyOvFBPrzhWW5sK4LOadrfeB9QNUmN0021w3A08W6tqcqkHLmfJm5LCuvXt1x++oNl8uZh/t3zDmzlkyqiaEFc5pyZqnaxJBe7VYJ4o3nbgVzpzB2lDQEK3xN6GcUpZSyUT7LJrLfaB3+2c/decDSInE2tTTHGgNxzA/B5rfPdNT+/JxZGbamfXJSaGQjjInH9VrCqXaE3xoKo3joNYGWfsaadbLY8waqNoo2SjMKVVWrW1Ix0E+lT/L3O8JgKckuBrTB/cMD797fc77M1oCHAfERFUcVC2STIRK3dVEbuRZyXjmfn7h//46b10dujgf8Yc+QM1EyrJnLd9/z7rdf8t2//pbHP35NeXhiyJWDBPYIYeMqf1LffrTj9Abgyr9nu+8zwPXX7FF/04LZXrIXSlxAP356z8VyB47UbxM1uzBzF2/YWN26PnGOXAtrWu2iaLBWSNnYeHiP9sQn7VzBIJ5piEyD2T+l1Uzob29uu8VcpGQT2Biny8byV0V4rmwXgOkIlVqhOluEcx/hDykTh8xQW+fPyJWWYSNg20wNmHL9YpVuYdMpBk1NQJMtacsF6d6vgWEcCNE6Xtr2OxyuOlrexqkVdeYoUirMS2W8ZPa3md3NK+LuaMpwF1ExSyX1BWnNeFitPN8oSKuWcV8XWl0MVW4LtBltiyHMzYzbvVYoxmVyNaDZEsfW+ZH1vOf17UgUE+qJmEOHHwIhRnQYCONEiCOILVqqZi3kvSf6QGmNw27P8dZQt/lyNhW2Shc320Iu/WJ2zjOME/vjLcfbV8iQ2d/cEccDekmUlsnFOECtmmDrOrvyrvvGBlpzPV7XRr4i9dlr89oA/scWjH+/x39SU6DQVRofU10UQ4BeFMwmaLJiujWjV5ReJNj5YG4J027EEaixET3sxgEn5t6TU+lcXhDpfqVqoUpmkZYpS0deayY738W19KmJFVh0fnDom6hzjuKk07GcFbtNSang5mRj2lo5n1cu58R8ybYGRhPouda6k00PXSkmjqVzEqurgFCCI46KGxwSTdwUnOs2V5s3gEC1jbhls8cs60pZVuqyUtZMTcX0GRvaXMwzt+ZOC9E+iu8NzbbGm+ORCXjXvLIsC7XYNObaYAk0LeSyMu2Gjio37h8+8P79Bw6HHd4/24LtdjuOxwC9yA8hcDqdOJ/PXC4Xci4sS8LAUyFGc9YxaymHOptSSfeoD8ETBwj1OagBMX6neeVbER2CY4yONZolnU/yE1mOf3/Hp+4YP/X4Id/zq11jp/6hDoc1dfSY5VZN2JdbArUcADq6PJ+eeLy/5/Hxnsvp3ANtnqkETp4pE62TfRpcUe0uT0MxO9LH84nv33/g7tUtu+MN+9s7Pjw+MOdEaiaEr1qoOCuWaVQUj9GHcLZ/SrekFHFID1CLQ+z0D6Nfbo4p8zJzWRbWNQNCiAOuNYITfIjgDYzaEO2Go22NsSrNWQowqlavYOFhtpcItF4zbFSzVmm5UJulzrZooWfXJrhTGu25yVUAiHJF1lHdfLR6sVworXRQsnZ9gmUUeBcY9xNxGkz74SJNlYfHR377+z/w1bffsSyZOIzEYWcOHlRcC/iczSlnsZRcNa4TTQuX+cT7d9+xP468uT3ib2/wbmV9Wji9u+fdP/2Gr/7Pf+LD7/9A+nCPXxKjCJMTYoOw6afkE4RZX4KunxTQz3f56Ku+q/zAz/788bcrmD99Unz8ZLZx0fNPts7g+s/pKa5stDQfjMvjvKNoYkmJNSWSQiqw5kouhih7FzpKESyIhM5PEwstyCkRgud4c8PhcIM24XJZGdXh3WgxqXgTINR+0nW+pHVp2804SbUjJ5svsrYCajzJZ9NyuyAU9zxO7k4WvBif1WK2Tqp0/uWzLU0MER+j0RZo1hV3e6mmGB+5dkePliArkpU5N5aiHJtwaMJ4cAyT8TpFbJdwreFbg9LT98Q+qmaoFragdQFdQFekmaestIz0AltKoaVMLbWL9xzzWnh6eGK5nJB6x+3B9whhpYlFNDgfIY7EGC20RP3Vem9Zk42oh4iqEuPIbqdczhfmy9kW9U1r0nc1503YoWLogQ8DMY6MBHb7I7vjkXFJNr1IFuhgYj3jk+YuUpCgFGnkDOtarSlr7trYuB5eAqba/zke21ju+rU8f/8H7//Jv/0hS6qX/MeXY7CfclyLY5u9fYJy9cWuN8IbR7CqTUdqrXYtAKrGddzcE2IMjHHAUWhuJEYlDgGoPS67pwKChYhoRWh4L8Qer5y8I2G2k7VkWrVwEbrQ04mho+gV0+iTn8qyLDw9XaitkZuSSiPOK+M44pzpKk7nmfWyEoIQxPj7lvJp210uBa1dt9Ab8CaGvvliSHVwBS8BfHimZzgrbGiGKG12cSV3e7iUqDlRSzFXmO5DvLlmtO63bCN3XpzzL3nd1cIdaiNlQ+CU7hzgu36jr4O1FpyDYdixLDPrsnA6PZFSYtpNfbJYmCYLKNnvlXRbPrrmDDW1576sK/7sibEQQsQFOiZcTbTpw3WKGJxnjNF4os3W5NbX6OA9g3fU4GhjZKqFlAMpeWr9eV3g8uI6/jQW+4fLio9H158Wyy+/3tLh6DJhVM2zu2aoPYJ5i8FWyw1YLydOD/c8PdxzenpinmdyyuamtYmM2+YTbZM+3yc+Lvi+5vbWUZValKfTha++/Y5Xb17xi88/ww8T6gOlJYt+7tPchj7TEWS7iVFx+g3pOhoBdYbIokquFsG9LCtrWjnPMymtxrlWtf1lGGxiEQIiVixXFUswEA8+oi6YUwieLYK9ae3ToD4NV6zIlD5Kb9KBnEIqakmVORuA5gMxREKwjt3QYrs9T8PtcWxNq60iSqXZOoBRS0urNBXTHITIME7mKOQ8BThfFn7/1Td8+cdv+P7dey5rYhxNSybiKa113+VN62V/G7DpjjRSXnl8+MDT+x3p8XPc5TOkCfPDmQ+//T1f/5//xLvf/o707gMxF0bnmIDQGq7Y7zd0eWucXpznLzallw2ibtQL1S4Qf3G//o8+3v3+/PHvspWzB/nxJngVxbyAwpu+jA5+Xiw//XqjVvUppi3MCn2yiA9mIRZiII4BFSWtK6kmcqvmmaliMbOlmrgrDpRsHGAfIES7sF1w1M4Nvnl7x6u7VwQfUTXbOVXPbn+DxMJX+SuWJZGznQBW5NsIJddGdpbKXpFrAa0vNsrWCq1mXCs9FW5TE8OmTI4xUrXY2DIllmXhfDpTUsU5GxfHODAMEyEMiPir0AeajUqSxby2zlexIt13bk6PIZ0vqHhybTyeThxvX3Nz94Zh2hknCgtHcdJ6itFKywvkhVZmWprRNENZoCy9cM6ImqI8rzN5XbFLTqkpE8YdUxyZkyERT09nbvaBwU0Mg3G0m1Ri5z2FcSKMAxVPLRbN6eJgIRPiKRViMPV/CPEaYlFqsnF7HClaESkd1e+RnKVQteGHgTHA/njk5u4V5zkzLwUXK1WzKZGRLhyp5KqG2ncupCJGvWmN2seQmzvB8zldr+f4z+XYCubrx96yf1rgfkqO+HP2ki/XiX/PIT1cY1vKNrBZ+shURZ7HpzHixPxDLXBACXFgGIfemNqIcRpHQy9zNncW76EVi3llQcTDMKGqlFbMg3yLkfaeOAz4sJgQLGVCp1eZu0LrhaYFnQgdGaqFcRiZxoGvzzPv3r3v0eqRVBV3XhEnTONoY8unhcvpglBZdyuvb2/ZDwMhDASv5HJhXVcQZSc2nco5sa4rMRqyVRBCtc3Fi3nDur52taqUlEnLQk6r2WcWo1/U8izwK6VckcSXQi/XzHXieaEzlKup6TtKqdQNGFDzytWm7HZ7CxF6Qc0De192ux1NG+fziQ8fPvCZ/4xNbJlSMuAgBI43B7Ova926SkHFWVhCaVzmlVgaITTCYPS30jqn3GdCiEjoaawxAhGVwrqa84fNlQwXDEHYeQs9WlJiiCbI/Dkd2p4L5Y3D/LKBhT/dtz+1kvt0f9/OBe3UgdZR5ZoTaV1MHNYyTireNfK6kpcz8+XE5fGRy+nE5XwmpdWKRWkW4BE9KVVyKtQ+7ZPu5qQiFG39XJKuNzCEeF4y33z3PfvDAZyjloyGgbxeOF8Wbm72rLniJZizTTMKYnBXMLc3kIUqDe9tX7Ho9M7Fz4WUrVldkvHxS2nXxDrnPU5N5IbzNtkQB86ceSQMRil0jpwUdQHCYFwJZ02vE4zKog2nnlale3uaE1aTLhSUivcZ7+0croMyaETErDRz66E7m0WsYKLb7XvaujW8UrVSqjlCraX0a8XRmiPlxumyIH4klcpXX33Dv/z2D3z9/T1PpwuCY9hZPbHMC6f1RFJLUpYGUYI95lqQ4HsmRGY5L5w/vGf+cM/y6gMn98Tpq+/49v/6De9/8zvS+w/4NbF3nkEcofYI8R5vbvuUfNTvPddc/ev+0XIdrA5FXjS7n9CL/pLj3+2S8e9CjOwrfvAxykcf7EkLXazhGKbI4XhgmEZUIFWL7vDBMcgIOZDa2hEIQ11bq6wpsztM5oTlHD4OlLQyTCOHw4Fp2tu4ju6EECaGOJHzwroU5ksirb1g7qOgptbhlmZoSmnGS7o2AJ3L1UqiVkNfRT26qcb77Ml5Q8BSSszzzFMn018uS+eHbaNCj3OROOzwfsDHgTiMBI0gYoEKJZuDRwFxrSM6vbjv49OaVpaUye0D9x8+cPf6gZvbWw67PbtuuSVarUhOC+QZzTMtX6h5oaaZWrbPF1peqHntUb9dNZ+NZxx8IGGvhw/eCtdUucyJ3bDZu1j8qaoJLaL3xDigEsmiOLFuHcxmQLtjRSnmeOJDxEdHrn083A3fQ7Awh0Gc2Wp542HFcSCGkbs3b7j9cM/jeeF0mZnnFaqifQFETZzROkJRBVMww9VsvbbnItPOcStQWl+Y/u9wGMorH427nuknf3rt/7WuGR+NfrfvqXx6p+unFjpT7f31gveB2JGhYZwYp+ma8hX6ou3EUiS9QPDdb5mKau3Qeuepar3aP21FsWBF+1XouRXLuhWAGyDQg4a0dYqQcR/NDeLEmjIVzzDtiMPQ0wkd67rw9PDA6fEBoXGz33O+u3B72HNzvMFFz7JYY+2jY3+ICI5SlWXNhj6LY+qTsNzDCmgN9REvDq2N3ENHSk7ma1ss5bLWdqVCbAXWDwnFnrn79GuiO8nq5p7CNUxEMJeS3c4zTBPTOBF6eJJzjmmaOBz3HA4H1nXl4eHRvnc44H3sU0YlREccBnaHPaWZXsQKmXIt1HNtNLXRdWlmMl87Y0qco8SKHxo+TOZUEr0BCxTMwUGh1T4dVGKI7KeBZTd1l4z0V53f/+mHvNx75ePi+KM7brPfH75+r83SRotom3tI6aK/SmsZoRhrVgulLOSyss5n5vMT8+XE+fHEOi+0UnEIQwz9Giq0ioWQabtOdUVad5eSa7OsdHRbFRcMUDovK7//6iuaKMPoOM+z+X6nyJoaa7QIaryl1paqFG/6c6+m0XFqlo2I0pxRF1pTSs0seSXlRK4ZxR6TFpuStFav17hXayDAmch8nMxmLgyIHyyJVC1bouWNt1zQ5tBuVyoq1ARFLF13GB3BDVRxnU5hzpSNBlJRMe9zJxZsVrpHtaqtZNq6vG9bh1qjtkKqmVzNRWrtotw1ZeZ15Twn2nf3LDWwfzCO+FdffcuXX33H6TSTVpsOM88EF0CUYYzEPvHTTsNqCN6Ze1CpCWphaEpdVpaHJz788StOS+Lh91/x9OXX1A8PhJSJrRHFMXTAT7bpyEdn6J+rPa+b1MeUhZd71gbGvLzPTzj+thzmT67Bl19+yqnans+GMveaEh/EkOVhYJwsEraJ8ZJwJhhzYUDxOJfMlN8HQGwxFeVtfEMYsJN4GEmdG3c4HJmm6erFGOPIECcgkHPjcl65nFeWJVFTRfJzZKwoFCd9JGiFbVUotT2POnOCtKI+YguWoWbiTLBXcrZwlMXM+09PJ56ezqxrRgj9/e2e1ZhDiPOBLX47+IEQIt4FZu9ZxJuoJRekc5uagpZkG3kIBG/I7np+4L4slPkBvb1D9gckRrw2pCbIK3otmGdKWij5Qs4XSrlQkn2vptWCQ9RKylYrIoE4jhS1xzrtRoZloZTMmipLKgzRwlCcdHcDtSjiKUbUjYg2BHtfVPM1crXVxuIT09QLoTjAOtO04rwwhEDVRkvFvDadpbltJ9Q4Ddzc3nC8vWXYfUC8JXzVPurRbjckXqB7MzerobueqTPrtNr9X5zDdlHbGPLneEhfPD7VGfx9HX2MpuZkcGWcDxZtHHwA7xmnkXEaiWG4Fs1bwTAOVjyiCSf6gh8MrXnjrmt95lbWbpfVvWvtjh3x6Ci0eZzWvvGFniJluoRSLI3ycpl5enzi/nTm6bKy2x3Y3xyJw8DpdOHx4Z779+9YLmeGwXOcdjze3XB7c+Tm5oZxHGjaGMbI7XgkDhPDNNDEsaZMyolyOl89VZ2zwAYHSFWbhG0hT2u+pls+F8f1ikLZrTcG24JMH++/KJib9uvjZSPVQ1t8b4BdVKPHxcGigPvGYEElI8gNr1+/5uHhntPpxDRNjOPAfr8HrDHaosx9COwPB7rWqb8NQmszuftE595Qm72Y0d8sFIuONJljhwuBUQKtX9wiypmFkldSqvixIT6ym0ZK2fNzE/R+TKf4pMn9aIT9cS3x537Xtm9vwk2HJWRqS5SysC4nLk/3zOdH1ssTeZ1J80xeF9K6UtZk4EgXvwo29RASqNGm0Ep9QUzVa2PcLdC2hy8C4iil8O7+idQK+/0ENNDCZS3Ma2WIjSCtp7QKJXQN0vZ7pRfLmNlA6xxfVbWpb1rI2WiGCH1fbVZE9+AwyQW6k4b0esI5bzzfcbLi2W2UqGxILoGmkdISuQg1tatneAGiNETN3QnEgs1qvYoPt2Wo1GZCyJfUm07PMACnp/12IWwpyUS8xVxvUkk9oCczLysPTzPfP2a+f5hxPnK6zLx//4H7x/P1hIkCpMIQ4HDccXt3YDoOaM7Mp5l1XllzoTQsHKnWLqr3tJI5vX/Pd2vCnS5cvv6O9uGJXa7svGcUs4+Tvp9ueaW1n4f675xavjz1P/oNf8Hv+5sWzFYkPn+1ad6voMx2L3n+eL2/TTcIfstgtzGCIeudx+h99xYd8BJpRVljZYyTCfFyNo5sHJn2kRAtcVC9J44j07QzkYgLOBfwPgJmnXI5L1wu6zUWtZRC65zplopRO7zvlAw7aUv3JS3VAk1qjrghI7XgfMG3grRuoSaQ18qcVs6XswkJLnPndRXGYI9HazWEWTzBD/g4oeop2V4k5wJhGInjjnVJVL0YIubMScNpg9UWiyE4jrdHSoOn04nT6ZHTekLWJzjcUMeBwTkCVjRrNhcMzSu1LJQ0U0u/5fRCCFSub2gHM/riYEX+NO7Yl8JSFlIpLCkxjRGvleB8d/YwlW8QQ33WzislOHMOaJgqWJWUMjGaKHAcR+bZ0bTgg7CfduA99elivtJxJI4RdUrRwuBg2E3s9jt8DFdemyI06eb1LhBctyXa4tvR7tAiVkSJXCkZ9hu28eWPTFD+jo+XyNOfdLl/j4fywjXCRozBgcNsG7037YIPAQmeMFrRjICgDMOAl0Je1+4nbiloOVdyhuijuTn0qHRprk97+mZ0FYa2Zy9afTECb8Uavf5ga8msy8L5fOL9h3u+e3ePCx/YH468+exzdvsD65K4XBYQz6tXbxiHiLTG6bwyzyvv3j8Qo2d32PHLX/6ScX9k3O8NneVIHEfe37/n6eGe+vRIbcUcekSsWJZsm3VplLx5KRuPuZViUb/bJtufnXanoiuvszeOKNemSrbqRcym0tOoanHG3kfG0YSz4hy5FKOOTM5E0M48sHe7ibdv314DTN6/f880TQzDxDRNNLouRLcie0DY3hPpkyehzQtpNbqdM3MCE1o5e3y1mSlnxCE+4qUgYi5G42Bpn/Fi8eZrmtFstDInnv1hwoW/50byh49nmsXH37OP9rX1yT9+zf/QpOFK0UCpZeH0dM/333/N999+xYd333J6fE+ZZ2gV1zolCGxq7NxG+becgc13Ge00xUAInY5Qm1kZZgVtV3tGVci1hxQ5o07cP144zbPpDQbHvFaWRdkFJYmhyUHMQKA08/mXklFRolPEi60DrVBSvab55Zxp2szlSoRajcJ0Pp9ZlwUHjM6b6423m8hWPHv7XhwsTMRlcObq1apQMuSkrLOlSzYtJoB3Dj8IRrE0gZ9XtVyAknookdGSpNRn6gx0KkdvClSvfPNWKlqKuVZUe361Vms0u/4qpcr5kvhwucCHC6Upy5pY1rxd5iay75dV9I44jUyHkXHsdrDBWzphq8QqlGb/NjibIrtaON9/4N39A8OakMvM0CoDMIowOEHaBkrZmrNdee5/8iX4Ny6YPz5sK5brxfE8zn4ulF+sv9dFD7ZOqfvf9vv6jigFCQQ30qoSfDPOTjJBh9aKOMduf0SlkKqSmzKMI8PQebAKYBenpkJqhfv7Rx4eHkhrZguoKKVQcu1Z7JvwwWJAc91OOrNpqqX2gA/jtG5dnrTKZnay5sL5fOJ8uZBKMoQoZ0opJnYQQ7BzrqxrNeqFCilZMekMDCPlheV84XyauczZRkw9oay1Z2/EwzRyezxYgpE02vrEcnnitJ5o5wfSNLGLkTE4fKtoXaGsaE1mD5QXclkoZaGklZxXSl7Na/O6+prPZakmssB7i63e7ZHHQMoL61ope2fjrSrdD7maF3QzxK+kTC4NkdDPkZ5Bp5byZOI/s6Wal5G0mk/1tBsZxhEVIVVwcUfcT3jvrtOBED27/cQ4DfjB44duWaXgVCzOtNmiKjX30X/phfNWTrx0buiN4TYd+Ss74P9Zx4Yw/xA14u/nsBd54822ZqNRijODJt8daMQmOmYlZ3xm6T7wMVojudZCyQ1coTYTH+Wg1Ci4jU5RK66L+oyG8RyqwEbP2Di92zpV6zU5E0xkbIK/Ew+Pj9zfX2gC+zlR1TNOF6MxiPDm9Wd88dlb9ruRtCzmW7pcrGDszi/Tbm8+zvsju/3OBK7DQBNIOXE5PQEXo0Qo5DBcnWQsmMR0CrV0oXIuz0izWhOyIcy1r9MNnl0FVDsyD9IEUfPIFRdw3r6fa8NShLvbDNakL2VmOsROkTER12634+3bt9zf33O5nHl8fGQcTQDsvWeYBuOy6la82dh7X/fmna8W2OIkoO3MsqzklG0P8d2zX0ByNkEUzrjMUroWRDqdy7GfJvKNzRyWxUKoECt6jPf88zm2Bs5Qx49Ffx/Xx3+Cuf3ocQ0t0W7vVjOn0yNfffV7vvzdv/Luu694un/Pcn5Ca2FwntFHou/pkiImopZKrdoTdBvBe2TcAmSsUNRmU+Kmak42zfBG6Y4TORvf2UebplZtlGzWkrU55rmwLIVlaMRgtIzoNoerRnG10yMNnPPNd9H+as4Yfb9Au/VpCNfrPZfMvFw4n054HC2OoLCuK9M09cdgxWYTi9pwzpNL7SYBkFPjsmQu54U0JzQXQEmt4gdnAAC+p/PZuqfNHDtqqeb9XrqlqUgXt3q8bjZ4el0jbY/NV5DL9rNOweqc8NbMvCCVyvmSWXIyummz6yfGYLxzS4YiRsAZ9SyXTKgKbfMFUVuH+9oo3ffaO9BSWPOJc1W0VHa5GTWmZ0dUpWc7KmqLOWrgvE2CfvLZ+m8ff+le/TcrmJ8pI3r92ha260/7PT/hbLz41Hdrle3C965bSLWe6tW9R0UVV81Xk1apFUoqaKk0MQRiGCZSW0wgWArH44EY/TNEopBToa0ztVS+/+573n/3jvP50lOtzLLDECbtHomt+y9XanX9Y+uqVjX+XWnUXBDxZLIpUV2jqjAvK6fzmWVZjPyPELqy3fyRHcuyUssF53o62G5vz9mBc8abXZYLp6cTl9OJdZ5tUaim8i9lZepe07tpZBysez0e9lBueWgrl6cTl7zQlkiJkRIDUcBphposya+mjpqvlGJioZITOacu9DGlsRsCNEcpFmLgQ6B5M4AX58lVqU0w660eoFD1mlTUSrURb614zBZLvDObwGrCi2kcwDlCdIjsmaaJWtPzyHbc0cSz5obEATeMOFFKNqGTc1ZEjePAGI3q43BkDG52zqMVXGngjMuaWzMxSttG1f2SvkJsLwWuf6ur6m9zbOghqleHDPh7LJb7IcaRV7imVlmhKoSOIm4xqN47hiFexcLGQXRIpY81Cz7Uzv/LDEFo04D10R1ZU7Hx4Auk7pla9vzubwVdqY0QXlhhNRMkrjlTqvakQaOUXOYLl3UhxsjN/sBuN3H36o63b14zxEjLiXWdqbXgvWN32PHZ52958/YNcfBsXfO023F794p5mUnrapv6mllkpoZsCX/dMs+cL6xgbqVdC4NNUFe7+OgqEmJDnDuysXEx+3uhzSgXPlqKaFEbojY1EWxrJjBalpnLeqa2O2K3fKzFqCO3t3e8fv3a0t9Ojzw9PfWiOXDr75h2A86Fa+JqrRBCZLfb01qvetRTSiMlAzbotClxYkJE5yBnfKjEWtFgqhTdkPcqTLsJP05M+wMPjyc+PJ2Y12zc9b/fK+IHj6tTQm8yftT1RvmzdJNPA0uenTIK8+XEN998xb/8yz/xm3/5Jx4f3lPTYkFW3iNxwKuDCrkZ3zxLpfVroOSCQ9iNk2loJPQpiE18tClFPHHsxVRr16IdG/bhRSzauvscqzbW0iztdS2sqTDFSnKN6Ps5rp6iYg1fq3j1nftbqTV3Ln8BxbQyHrIaELaWTK6F1i3aUk6kZWVe125T5/HDwLDboUtiyYXTZTbe7EYrvMyc7x+5f/+B0/0HtCRGb+FmToVpsAwCcBZ0IuYoVWojd2poh3vRjsx77wl0pFG7M4g2aqvkYhRRTYlWc/dQN9Ff7Xta0+5T3iA1mLNlHFicIKgLCJ7SVkrTLm4U1py5XBpOBlyz9W57bIZ2G0C4UXmSQlKYehyjAB7BSz8PN+tKAQkv6EDNrlXZYhz/sqthO5v/9Pz+C37Lv7tg/rcrczP/ePmVZThuxbIlM5ntTFfvNgMkh+DYRUf0Jt7Ka6UOnlqUdckE14ghWgS1UxOdNUsXitJY1ky9rJArIUTqmonOszu84uFyb5zHKIRRaJpZ1pkwHnFO0Vy4PJ149/W3PLx7z+XpkVZ6bLJrRK/kjGXaB0fNkF2jeLURIWq0g7UgvkJsuKCoh+aU1jKNQmnK+XKhZEuoQwUvnmmY0KlS1kSpDVrhcj6zriulZOIwcDwcieNgPKVmyuKnS+OyCOsFNC+MHg67kd20Y7+/YXfY4/xIajYSc8PAdLghr4m0FObzmbwkSvC0IbALjkBBWroWzpSVmpdeMBu6XGqi0Cg4qg+0oMhgxbD4QBwnslgITKsCBONkV0+c9khL2K9vUCtezc9yEAv1jdp5zkJX51f7a16IY8C5yu6wt5ACDGWYdhM+RtaUcWGgiae0xHp6AIUwHpi84zhOTMPANIxXkKVmE381heYENwz4CrpuSEewx9O6LVEvz7aO2ERhPy8Os7rGcxg6nX/7vCi9XJs2LOqvFfj94OP45Hda1LQ8R7NvD64/Vu8DKpWiSqtq+0TnODrnGKaBcTcSBkvXQ+w9CiHQmnmoWsObELI1hIPvT7gnYYohL05NfFoVcn22LEKeIy3E5Oe24eRminFVcN5QkxiZjgemks3ZwVVSW9nvDtzeHXl9d8vrL15z8/qGV2/uuLk52rlWjDowTIPxe3fGBc41U8TEquKFsN/z6rPPybkwPz6Qc8W7DLWh3fNdq149lls2lE+b9jW4gphzgW5ZYE6vm5q2jvioOZQAUBuxOwqAOSeMcUTJxukWc6StuVLrQmsFp57dtOewO5JTIafK7e2Rt28/4/HxkdPlzLyu3D8+EMZotxgYR6PnoY4WHG2wVLhaTQhVKqRSWVMhlwu1mh+3udsUrP4RQigdNXQISq7md++9UXimYPx3F4w6II+nDnDk//Bz/m95iFjBZWmVFtcjbMJUu46eaWQG/my2bt77PymUXwr/RKCWwsPDPX/8w+/43e9+wzfffMM6XwgiROeILlAyXFJBuxtLbY3mIIzBEi7VE0Ngvz9wOBwQcZzPM48PJ1LKvXjNdNc3q8FcA1FCUGgg0rqg3wC1Uqv5i6s5QOSaSbUYPUAhN09Wb/xrmlEH1TizrllgUa75GqqlNPMz7o5Ls1bqEHH7A5IbqV6YLxf0MnOujbkpxXn8bsdudCb+vwruDNWdzzPvvvmWb77+hpoS0xC52U3sh4H9NMJuB+OIOkduJuZLJZNqvk4Bqxpo19S6V49ZTVYxK0X6ZLvUTK4mWtVmwTKWtknPlDCR7FLgkoS5Cck5SrACXdTASn8FBJQxBEIYqOqYl4IXZecCLgaqeFaprOIoIV5F8E2V1JSFSnSBLL2pdqDOJsutWXDaFlByDQNT7et331/1mYIiSJ8oPn/+sgp2GxB0RbQ+uVD+gq3sb0jJMI6f9eUC4jYgF7DucEObnzt3S/pzvQvDC7S+Sa2V+byy3oy4SQlDRPxgdjS5PotxtKLZ+MauVnxT2prQ3IhHby+oA6RRdGVez0T17Ha3eDdQUmN+euL0cM96OdNKsRGDUyQKratrVenqVrOAqdVGJblUvOu31PCx4UPF+W4bLjbuS6UwLzNbqML23Kc44vaWalirvdFLNmu7h/MTv/39l9zevbY48C5oAUeqjip7ZAz4kBijcDhM3BxG9seJaT+aBR12QjcXwEfCtCeOF+Z5IadkfOtakOiIFFxLeM1IS9Sy0spqF12xi06xTPuNk0ZzSPTQtscm5FK5nBZSsvG2qqO1Z0N0xCJPS85oWWnNQalmidVfn+qEIkruVl2NailewTOOU1f8m0BSRJgmG+mGIZJK43RZWc+VWhrTUYkEbvd7bvYH7h+eML9YUznn1WyE1tJoGIrnvCC19Wan9aGTnb9g3bzbRFI/NyQKQy+ej00gJfwJpPrJ539tctKPPR47epN9/XvC5ih0HUE6Ma/w7edqP/PBhMLDEI2CsWkfOvdZ+7SotmZJltJt4XRD1BxXhxZ6+6/Si7Nm1KHWvdibWao5M3Ox4B4xBxjBNt04jty+esUXGeJu4nS50FCOxyOv37zm17/+FTeHA3c3t9wcjoz7gWk/WCqn2toQh2hiKd/1HN4bIqYNUcHHgcPNHcv5QlszeZ1twqWKqLtuRPQNs7Xaje63xq/a43556+eBcfg7WmSWBQZ7qG26m3uIc4Z0DWAOCj3oxzllv5+QIAxxZBr3HA83nM9nUjLa26u717x6/Ybv3r3jcjlx6c5B4ziiqhwOzUSEYsJujYI2Q+CGooy5sjvYtdtUWFcbrdctkRB7/DYlfD6PLY3VBL8EENcIEW6Pe0IITOPI03k2gdfP6biiwS/RtefbS7T40/73z9lCbj8rtfD4eM/XX33Ft998w+l0sgj2IeKcp1RnbkIlUZJRAVQVN0QkDogbCcHsTPeHA8e7W2jaXWQqa1pIJVsx30c5WwAYXvD0yY/jOim+cu3hmSLZOsraIFdnjWYLRPWWwOfMBs5CPipVC7mHeqgKojb53ESlqRrqzTgRj0JxgUuuPN0/cFnfcVpW5lQpwNtXb4yyUDNLSpZwmDIlFU6PT1xKYpwGwv6An0ZkHGEcad6TtOFK7roANZeOXugi0tMAoWhDqwWycNW3dzCSTmU1xMr0Rm0Tpst1XSvqSFWYC8xZWbSRxcSHrrXruuv6uaIKtSitZoTGoIEWByR4mmssCLMqi0JGuhuJLQfZOZITspgGrCFo3YrarTvvEd+dO7+RFext1mvBvP1QXnz+p5eBXIvtZ8jnk5//xOMvKpg/Tfz5t/7Qy+LhJe/v2dvxY1RJrieA4sG6j86HXVNf+MWQ6Vpsk1pTvm5y2npCVUmgFS/mq2mq54W9Tnhv6Tsiwrqs1Hpi2kdKyTifu/XTPU+P96zrDF1MZiECE2VdUYxn0xS72JxdbKlUlpQwi7qBODRCabgOf7QeeWndoiXt9B7KREatIh7iOOBHs4zTIcIwmg9kbdzPCznODFVRLDba+4gPA2EcGA+37INwHB3HKbIfHUN0hMF10YoV9+a8YQ4k425imEfOy8y8rmgWqI7BNXzLeE1Iy7SSTShwNYTfREGCOhun+SHiCbjiu/BBSWvi/uGRy3lhDI0SxDpXZ0LGYbD3NJfeBXtPLQXvPUgjxEjDk4px1Uqzwrc1G83vpj1aK0nSVb08iBVL427E58JltlF1KkaHCdORw27k7etXfLh/JKWMBKH4RlqfyKWY/ZBuBvfexCVqHDl1/tOr4y+5lP6ujm2d4roObQluXHm4ut3nRbX8zIf8WyUcvtzF/3SR0xfN9jbuk1LRPkXZ4qwtuEP6etMbs15ka9cYiGz0C3vubismZNsg7H3PvSmWrrAvfSP1mzgZ26h9CF2YY5SD3X7PZ599ThyPvHnzhss8U1Fub295+9lb/vEffs0Qo3E5G0YViiPjMFwRYDAah+ZKE2UcRwSldITUDY5hHLk93lAuF841s3GuTUch3VsaNs61sjlefLwOXxsSYAuncJ7r/TfekVN3Tf3b3hfnPAyOVgSl4YJn8COva2Fclk4P23M83rIks8lbUyJEz/Hmlv3+wGWZjbJymfng7rt+RNnvDwzjiDjbupy3CO0hFqZppPYwjRAil/OZy2XmUpbeEFsYEmoORcu8EGLsQlHfvXNtsuGdEPYj425HjCPIA+fz+T/29P5POJ6t/n6ckvFDx495ML8UEdZauVwu3N/f83R6otbKtNsxDCNaG2tKUBs1FfKajHeLEMXhe9JiCIZK+p5eW0uhaiV12oOK4qLD9wvRztUXaXYieNcT9bRT+7rXt1EX6tV+shS7fnKnILXeBG7hO7W7SNSSKLUADvWCNHoNks3CMBvFxfvI4RjZTTuiH/ASmM8XLpeFr7/5hmWZ+fb4HSFGxImlBK4zqVSGGIkx8NkXv+D2eMN+Gok9kt0aAkeuFdKK7xaJpb82FYwOAd3Ro1K14lTAKS6Aw2ib2rbrua+Rrdokt4MCil7dZqra67OsyWKyt6UCusAaC2WCHii2oM3ma754dh7wnqRGW1lqpzJudR+W0ldFyQJZpGdZOJq3Yp8gCMYtb1qvgupn6OLjneCTupkf2oe1F+F/8pN/B671VyHMf26j7FPNj0ao+tEP7ZOXghk2CL5HVdIvAlGMH+v7heUby2oXQVBhcNHQD7EIRtVqHELvLPGpmstD8Mo0hp5iJ6Q1k8tCiJnarNBelgtPT/ecLo/ksoCrhOjYxRHfPJcQwSdqhdwwpFECFSXVhi8V5yqhFmLJ+Jy75Uymi+3JaiKyTTps0ZSp28F1ND5YMlUUuNsfUfFmmp4b0+EGF0ZUhRBHhmFijBYSchgih9GxD/L/o+4/uyTHrjRd8NlHATAzFxGRgiyS1dXdd6a714j//z/urFl3botSJJPMEC5MADhyPuwDc49gsopZRdatxFoerj3MYMA5e7/7FQRb8ZQubtHOvLaNZ63qfmMNw6SetfPZss6FORcEo6MzMqYbvrdSru4EtcfKapIRILYrzwO2BWw2OPFgDCmvHE8XTueVNsBgCymPiFHupfNozLQ0CkUjj4PBW8swOPwQqFKRKDgctRRSTxLzg2Mcps6pvNBK5nI5U2vC2j3WjDhnMNKgZVKaSWfBl4Yxnjf3t3z17p0iCQjLGrmcFhqrCidKIfcph3oyd6JRv4ZloxdtLfDWfv+EjmvBDNeF7fq9L77eNY5/EUrGP328RgY6N7MnVSHbvb95w9b+UnR0MWdqcQiOVgspLlDzlWveavfvLeXKv9sQ5mv0c9cspJSJKSFVqVc2JU0kswbrug+pbOlSurGIVKzx3OwPhLDj3Zt3ipwJ3Nzecvfmnjd3dyqmKip49aaneBmno8oukKp9zIoB2YrpXFRdbxTd200jcX+gxJUcV8R0NKluYcPtisJ9ti538FGM6ObbtoZE6Sx2m6a0en01BE0cldqdYoxyL/X62KKDPeNuQKzBz7MWoWFgmvYMw5HT+cS8LLjicM4x7Xa4Z08uhWVNWLtgncPamdqEkIs6CDUtCGrRkfEQdE006NoRnOpBcq4gWVNTrTa66xqJqeJDwA/qyGHsVnBsIk+dHlgreGewPzWXjFf36OtQkj9+bOjz6+bp86L5879FbxgzNI0l92FAjNEgrmVV5DNlStRGFtHrVWLG+ozv1+KaErZ7g685UagYJ/31MhqEUSHXrG42OZOzXqvWaaOqk56iU8uOvKaUr0VzrebqN57rS4iLWg42YsqktJJyvOY5uCp9j1Z3mVpf0nRNf852tIx+ZD/umE9nTs/PzOcznz498vDxid1uYpima5NpnWe3O3B3d8v97R37adKo7qz2ltLpB9LFsqXvu7kkLY6haxds12V0rnJpkCrqrKnuL1dXsb5e1qpTpiZbFLhOXio6bYsdEKi90DZWhfBsAtJ+XdRSWFddPSyNpRWOp4Z4QzZG6TS1sLXite+buVVSq6y1sppKxBARkgjZqCiz2f6YO+++le6Bfy16v6h++2XbuJ7iv9jxr6Zk/JNFcyd7v9j/XDEN7Rb7e0H/hjMG7yzOqAn3UhMOYRgch5sdu8OBMAyME+Q60qJyZ4INYISSKtZGnNN0L4ylWWgkIOK9YTCOGvNV5GO9hwa1ZNZ64XJ55nh6YI1nsIpS+2AYpkCLombpzlFzJdZKrDAaSzWQUQcOX2uPh82IXanWUa3B0XpiTyY37XBrUQJ/iunq6IGxUJQXK6JepS5MTGIIw55hd8C4AbAM48S42zHaiYDBd4sc1yKmrhpCspnA95tHNjeKojendY5hHAnDSJxncswsKdOM4KRittHttSB8xdwV6UIHryp5CdgaMK4brlur5uhrZp71fO4mjS4W5xh3I6Wpj3KVRsoR4x37w45xuMH5AecDsWasMzRUHZ1SJq2J0XVB4QCUyjKfiOtMrRFrYBi94qXdwqrlrPZ4CGE8cHPY8c1XX0FToSVPx+4osHXkjVwaMSv/qtCuogo9tNB+4aR8VoL8JI5tCrZ9DJ9vm69ZEYaenMQPF81/eYcQLdW2/9uIKsOr6aEy2+PtxbOs4GgM3sDo+0K/4KTTv1AOa6mZXNQpY1t5X9sEXsMxUiZGtZuLMWNtwhjBOYP33ZawC3d1mlM1vAgVyk09hVR1r4bdfs+4212FLNIES5/OaB3SrzCj3uQNFe8J5DWqz3OK0CpZBKkVawy73Y4cVxaBlNU+Tzn4G88etl1os497GdMbxCo1Ts+4gaYbo35BrhQ4MR1lBppYZHPnyRsNAkIYuLu9Z7c/MFwu+GEgBHUu2e/3rDEyrysjIN271lhHXFZAGMeJWoVcyjXVz5jYhWx0rq5OBby1VO+gqS5BOZ6K7uk836FCqs0CtKj6fvMk8B5ndcayJc/lrKKV15qcn9LxGmX+p44Nidyug5evf07feB2zrTSmpkFZneqy5qQUv3Wldx16X/ZmrDRYU8UsEV8tuRWsdzSn0diZoqjy6LUZLBpIZZqBIuTyskhtj1mQ67i+1XZt7lPWfXij6iFyDZ/a1rGNl91oPRTndXPRaDVfp0kqo1FHh40V7sTiJs/oB9L+wO3+wOV0IcUVaYZpGgnjqJMXK91LfOLu7pbbw0Eb0ZJpVkNzhKqvg6rgFMzbRLklk5uiyNbpZMQJtKwhK6VpcU0P0tKtrPb1rWhNJj1xuOmUrjQhFQUAUsm6NvUfM2IwVQEJqdqh2n5p1K4v6rW7gl4AokCcQeug1lrPOtA1UdDJ21IbM41Aw4tcEXaFSrdz31BfbT3fn1OM/u2PH03JeN1lbl/7Iz+t+84XSV3ts5/giuY420eopvud1oYJhv1hx9dvDnz71Z7dQc2/x92IDW85nw0lLQxhwnQBQFq7P3BFk/SowAokvBOCsaypsS4RYyuTHRFp6viQF56eP/Hw+JFUVobB4VrDO0MYHHOKYC3GB1rMrLmxFshYimjBnBFSg1gqEhPVRJrzkFxPEGpaMKthkxqIJ1WtCmCaVd5u35C8DzjTCM4wTAdu779i3N/gwoS4wH5/o42ECRALeb5Q06xE61RoTdFRoWKNqmBj7tYyuY9sEWwYGHZ71mVlLYVcN2W49Newb9tir4OD1myPvDcYG7BmwDJg8dgsFGOpjc79gph083V+xIYBEwK7mwPH06rcKoElLrgxcLefsNaxLAvNaDR68F5ReISSq6aVDSrac8b3wBpISScAxmhCGNaQ80JrypU0xuq14JX//O6toebG8/HI89NRx3pts9jSRMfcR1YVdcaQtrmKA+qwqVd3Q2Gvn9Bx9Uh9dWyA+fXYaqXt/R9ZtP689Iwv/49NrKTjOkU0LdarU0Rpqtz2zmmqXS6kWog00uooeVAEa1aOvvSFeEOhS9G0ym1KoEu2LtAv9pGVmLTRjLlikwpQQ7CU5vDYq0BpOx8lqfVdWjLeGuX8i7qx1FxZzjMri3KvxeKMxbTCXGdK0EAeaN2LuCrqg7AsMw3dSG1PH4tp0XEraNBJDtSaiKUpb5mm0i+hN7svp7pt12///WtIQJMrP1/R9l409V8Uo+uCCrlVu7Cp74217HZ73n71NcYY9ucjhcawG3EhcLi9Y8mZh4cHrFXx1rRXy7yn44l5jQxrYpoquYJtOhFo3U86Zx2dW1HkWN0udMrgjGU3qY9yzKUjkCrKzKVhir6+JWWWNmNSIgjaNImjFvX7NVfflZ9WI/z6+LGUDPh8v98+f/23BF4Cv4aRdVnVRq1HSNdcezxxF9wKIIbSlFLZYsbVQsHhh4hEizEKKhlvMcUinYMrVzTYqguFMTRbEWsw3WZOpPb1SYMupOq9nVKmNXVVsX3qsKUFYkSTP51D+hrSUCQaOkU0Z0VMU+mTNr3etIgHqiYOizX40XEIO+SNAJVgB3zwV5eo0l1jnDfsJrW2LSmpX7OxCq/WjApuoTWljL14JidSzTgaJjisUY1NkwqmKrLsHdZZpXb0yVvK6vwhdMoU2njkqpPTNSXmNZJK7TVZd97oCDytR3g3wVvBNK1XrIUQ6DWSJwyB4B0SKnVdWC6zBqtsjhm9sS3GEAWWBgPCYIRoDb42dfrozY9sTXl9mYT+sd2141x/0eMvJvrbEIvr+1co1fUm3FAeYzoHsHdsVn1yv3pzwy++fctX9xNTaMR45HSJvPvqwO3d13hvuZyPTCHQVjXiD8ESvZr1i9noHglaz7enQa2sS8T5xjjqz8S0ElPh4eEjz88PIIVppzYplvpyM1mLHUaIK3NMhFzZY3BiMFLJKIE+VTClYmrFs0lq2stb9ztdUiStEagYMdhWGcT2bqsx9CbC07gJnoN3TMHjB4/1A/tpYJxGxAYwkSXBskRqWqCsmJY16pVMK0ItWVHWFIlZb0wjBqzHjzvCrhu1x0YRvdCt8f0CNjQpSLMdbelBMtbRbKCZAVODft/qKLf02N5StSprxjLsd/hpUqeOw57z+kQjq3dyTlQ0TntdI58ePrG/uWF3uCUMA6fzBVClf4qGHDN1qC/7fquUnEgt0yiIaRjrSH2MRrN4b5gmz7gLNAKHbIl3t+p/bXSxMP1vXQ37pY+3pPXXyvLZRf2q5Gyf+zr8JA754jN5/Xz+oKD+w2XpdaH8ZTO9fe/1+9c/d/1ft5/htRD41YMTkLpRJDbLMG0yN96xtZbgA85YpDZqyWQRSk7kFMlRx3+uWZxR9KiVTMlJC+aSr2FBW/HYkKtdXM6NlFX0l3LFb9Sk1q6bcL1ucJVW6bHwmbwmqqAcSAHjE+scNRuygjFCcIFhGBmsU6cP7zXqfSvkUPcNH6xOY/o1KSjfP2dV+G8rr+0BLrbmHsLT6RSNV0WzaJPXYUChdRSqn/tOz1BkqDfzV6RHR9et0osZp64lVYsX7zzjtOP+/q1afwXPWiLDOOKCZ+cO7JaV9x8/cb7M+BDY7W+4uX3Dx08PnC8X5iUyrivjtMMH0SKhn+9lWckpX4df24CnD3Gx1rLb7RhqI+VCzJWctfguVbprQVPQImeKVOb5gjEe7yeMGzScwQre/ZvGFvxZjmuh/MW99nlj+/n7fw4Y2zjxYgzjOHFzuGWa9qSYWbugrVTlGr92Ldj+Vtn8dmm4CpjGWIpOGLpVWZNOzXQW00SnpFpG9uVHFMW0VtFt0wvEJhjRAtu00iPUlaZhjL8GCm1Jfw0wzhFCwDmn17+xnX6htou10zHSGqF2pyTvlRPfNOuhVFE0VgzeegYfcMbgrFfx8TDgvFdKQswgBWcMLUNNFVrVc7x5ZqP83VJzB9UiMa+saVXArVTEWb13rcE5g3MBHyzTOOCdUWS8aWz5ZhXpjOqAWqelpJ4hsabcHUUKiCYe6otNZwDoNM8bvRcUo9aptesUEOmvx7CbsBiSGM5LZKmRTbpnXA+PsJaKIVUhNiFiSK2RW1Pnn9YUPOwNvlCRqnvyRsG4HrIBOJtt8Zf3ANfr/zMwZyNA/IhG8l+1Arze/P7whuqPSL6oK7bf60uaEX1BWi2IgWEcuNvveHN34Jt3d3x1v2d0lTQ/cT4+UrOjlG+4vX2L947gAiZnLvOznmRjMJtBA8rFMVJoncxfa6HmDKXSMzGQ1sg5UXLl4fETa1oYxoEgjZYMphW9yMQgPhAmOC+NOa3YWDiUhuvcOSeGai3NWKqRlw3JqE+x2lEpyX5NmWVN3XMZjDRFk43BC4QGrlSsaZiYkJSwKSPrimBw4vClICkhpZLjQlrPLJdn0nrGtIghU9KCNEWhci8MSs7ErHGT3hpEPHbYEaai3s+lKspMQazrhkSdY7WhLf3CFetoLtBkQLLVNENXqVlDSTYRlAuWXCthHHtcqKLMbhzJoqOgbePLJXOZVz49PlJFFHWaRhRp05jPhcboPKt3GJq+rlWRuJQ0sru1gg8BrIYgtL64hGAJwdKaYRwMd3c31Jp5errl9rBnWVdSrZhUMKJJcgXBVxU5mfIietwQ5tY+33h+KoeIfPGIPy+YoV33W+kF1J8CIn8ZG/6nIM+fL2iv/DLklZVZd6Vo6Ciy9TANxKg413kNVai9eRJoZdRQoKjoRqbQRL16S4+JzVtwUMm46voSrIK3UltPAszK8cuVNWWGFkA0gn4T35Sq18OaUSedokVyXDVVD1G/1tx64FHT9EERwRqHt175y9birKJuOo0DpDAEbfaEplMwJ+AdrTrd3HNC/bbUs9Z7r4mGXbC7he0ojeLVK35dz5VWsSHNtdNFenTL9a12Mr8xRpFrazHeE5f1pSARg4hlHCca4PxKsXTUzeNaIIwjIpan5yestdy9uetF8z0xqa/y+bzg3IXWDLtp0imCdRixpLQQ16jTAX1IOkmyFueD8kyNpbmNStInSLwIPKuoc0pcF6oIpifH2tAQ8QTnOOz2//xF/+/w2OLMf+jrrznKr48vKRhfHrUq0LLb7bm9vWO/33M5X5jroqN/dFZfqhaDLwXAFiyScM3QEEwScq1KZbKo+wv0oB7fhXhcI7JzyTSaJrJaFb2rlkEdaTZ6RiuNlCrrmkipXsVtuRYkNtbV6oSiqfiQTodUapGKFKvoFEPQpiqvkVoqq3UMIRD8CMYBDtPXn2oDxUWcsVjrCSFRUyUMmk0gvbFeY9RGPUdayVAKrSTEVER0kllqYo29UG6pr1taV+QUlZZhPN4ZfHCM48AweIxUUqrEVdHlWjUN0FoNDCpVeqx2VivGlFlS6gVzB4O3PaA1RBpWDMFbrIFgDdaqxd8m0muiwTLOe5wfWEpluMzMa+zYgzY3znuss7DRHWtjbY1oIBlwTfEK2wOJrvXx9Tps/Ov22Jdr/kcOXX5cwfxDm94/tQleh1jt1cbXP4fNZ4/rCNQax81u4O39gbubHcFBWs+UJVLWo3ZhNJZ5hWp4c/81FOH5w3tOz2fW+aKCH+kcGANOwEil5kRaF3JTdNJZi+9v1hpKTjw/H3l6ekSM4XA4YEqm2M5tM4ILK2Fy5FpIZeYcK9jMOVbcAFY6R9o4mnWKvBqhilrfdJtWJb/XpiK+jniAKvuraXgyuVooQkoLahOcKVmQapnPM2GYONxkPEJaVmLJnC9nnh4+amORFoSMJQOFVrLaM9XSRzSFtaptjDNVLdyap5oAdgSXoQiFhOkIuzMOK5rkoyNbnQ5gPc16anOa5lQBU6/Pc397w7skxLzgfdWo4mnAjQPiLGGcyE03eWOU774skdP5wvF0YtztaQjBh57wlJS7WisXUd9uI41W+yKXC3FdddxeC+O+Me5UlWzwGLdNNHQz301OY8elEZeF0+mZmNbuUQllyZTWCNZoUdyRKeVWbRe19tztX3Uj/19zWGuxHTFsVQ3sgc8KqNdF8495iv8U8rwdX36+NdP6b73+zMZfq7SOwujSUTq1SIztFKZtMU6knLpvtgYS5ATFO3S2kqFpkVxSUhQpRlJMmurWtsZBrctSqcSOWJXU0bSy0XY0vEinEoXcQEqjFaFkWOfI5bywzh19E7WWXJIm+A3jiE7idITtNtGaoDHXtJ54q0mF084zjirwu76fBqwVSlFvd+t6eIsx3XtabSBr3ahD21tHmFEkudFenW+5Fuvdz+eKOBsdGWlRbg1ibLdxUzpGSgXWyDyvihMZLYA8YJxXPUh3tBBr+PDxE7VV5TgPI2/efs0aK8fnJ56eT6wxM88rt7dqvRecZxgGRQNzUdFWTMSoPGdt0lUU7XxQcVfrnsM5k7vlnrLCBWeE3HRs3VphXWckVZybcDZws9v96Rf+v4NjS/nbkv7gFeL8gzfxS/Xwx+7R16i0c479/sDd3Rv2+1se/RMNpf3pOdzoO3q9adaIWndW0dhmqUYbqw1g681O7Wl/6rrSaF2snpOiq62B7wWYkf43Kld0ThBtckvt0c5qzRqcxl+XrPHpu2Xq7lQGH/SaxHY/55SoVqcZJSXm85mYVubjmZIzwTqGYcKYwLVgNpZgA6ELdp31eB8YxpFhmLDeafgalZw1+KsmLZhrUp9k3UD1Xs1N17BUIhIMYfJMO9U9hFHpHtY7jLf44JmGHlFdMzX1da9qtLcIPRxGW99SlTq6xsLSpwOxFCpqmCBooqPUDS3ptpGmEQbHbvQ4ByVHSoqUphQ4jOqupqQ1h59npcRY23MM9H2VQiKztEqolaEJQQRn9Tox0gGRza1DthVIPrsu26v3f2r9+yW96E89/iIzpqv9DK8mQf2T7VZVRK51SoDy7W4OO/ZTwEomLs+cElQvTIMhOOW+jt5yOV94fjqy332LNYH5Enl4PJHXmWlwVw6htYYsFaGSUmRdFjKGVhohOI3VthZoLMuF3/3uO86Xs/qB3t2zXs4kDKNzQGN30zC+sawn5pSZe6zuaY0MO8+AoxpLFasJg8Yosqz3vo5VmxaRufTIyWZIuZFS7gR+qzeI6WN/EcZJfUXbw4mn04o4j/cDh5s7bu/uMNZxiQvH+czpfCTFC4aGtw1rdSyd4so0Tle1v7GW0j0oBaWqmFYpayJXQzMBa1SAZCTjHASnzYcKYLRYNtYixlHEYarFGkddk4owW2FNkf1hj/iJy3Jiv7Mcbm/Y3dzgx+GaiBSLIsLOO8R41jVzvswsa1ILvC4aNcaQc8EZNM0vLuQ8YFojxoWY1qsgMOVIadrxygRWLHUrAJr65nrv8G7E2kKrA2/ub/j263fM86y8Mneh1AstVi0QqqJRtdWtjHxB/1p/kX9ih1y1A41CVU9MtilNp0C8frbtjzfKf1b3DF0kruO2qwinj4SVj9A657S3532zzEljjVvLDMEpk6YUahFNlqRp3HvR9Ee1o8yklEgp9dAL2/dfuTZ/OtYvpBgJa2QXM0PKONcozfYo2u4LnQs5QlwKp+eZ58cL8ymyxqwxvg0wBj9OgBb8iBaiRhzIoJtmrhq00ioprd0BBrwThmCZxsDt3YHbuxt204B1qrvQCOGXDUWpbzq6bn0UWa8mRd2Dyki3We7uARv7AvrXTec3VpoxV/a+d57ShLh0lAqIKXNeVqwbeHx8Zrff6QjcKprX+gSyND2v379/z7KuDNOet+/e6fo2r8zzzOn4xDwvLMvKvKwsNwv3t3cMPrCbdlgxLGI4l8pSCnGNEBNmTSw+asy2C7pWdacDFf2pV60xpntXtZ4Yp+4ErSSMaCOyWWr9VI6XlL/6B4WBCsK2qcLLPv1DqPOXor/tWnJe6TaHm1v2uz3WqXPJBgS+JOICTV3DjGkvXupoo7ZNhDcaT04q9FPBl26edRPeFQ3+kC5ckz7C3pJ3NzRc628NbUmpsCxaNA/e4IzSpmKMzOtCjCuNivUON1ht5ARSNJSUVXtXK3lZKOvCQiV38C0uMyIBmlN3FuMYnFpCKsBksU4pGcM44bp9nkZXF2pOii7XQs2awpfyQmsZpKo/vjQwldENHA4H7u/fsLu5xYagxb3Va9dYQ7AGb9SKt+ZESbGH0ZS+Xxukmc7lV+Bs6XSMNWmg2mYfJ6KWem0Dhlrr1BHwzrLfjwyDJ8eZedYk3tLpaADOOQYfCNZfm6aWt9yG3kE5Q22FJJUkhuJ6sLZRtDpfgale8L++wEWui9ProvmHjm232vaQf+nxZyuYX/MSXxfLnz80QToyRNvcMbTzGMdBF3spxGUGC2HyhN3EbnSMXrAUTTeNiefHI7tpT59kENdEiYXBKxdaXvFZtoJxXRaq8bTSukeroiMpRk7PR75//z0CvHv7lq++/oanT5+4tBPBeR3Lh5HjceHDp5lYK6k2WkyclsQ+Vw5iqKYLAFvHxqzBOBUmGe+QnGlJzbrFOCqVGBuXOeqiIg5T4WS102pNOBg9r2tcubSLCggkYp8v7B6eCcNAEWi2qbXb7gZj1V0kDI64ruTzmWQ9KWYKlRCUU2WMZbmcOc9n0nyhrBc8hcEaxmFi8iPOZIJVukhrmrwkffyl/DFHaxYphlaFUqMWGa1xWRaqaTQTmHYjb7664f7dG/a3IzYYXBgY5cASF0pt+LDDu4Fl1TGsNrdWU/tEbaeMEfXadltseqZWjd5NaSXFQlwzMUUdF5d6JRm0qgulWRacXxGGHn3atAjxwmE/8vbNTb+mDSlWWluJRcdOiUox7Uqv0WJtu9b/jAXjv9HRBKULVU1U1LjvziPsRfJLq/uvHYf9qEf28lHr5keNK1q2NSqV1v1A5RqfmlMmrmtPjt6mCaCLrwbl1JKJ60JJqVsuFVJM6hk7qdiutus+obZyHclc14RzK/t1ZUyOYeBVnLToBpga61I4n1aeHo48PVw4P68sMYHVycp02DFOytn1PhDCgHdaBB72B0Qay3JmXfXavpyPnE6PxLjwfDyR04I1cHO75927e+7vbtjvHePogYAPjg2lN9ayqd1bLzKgXW24ZKO2IC8bZp+KaaW78ZgF6QW2Np9yLTDXGIlJR+Cny8zxeOI0z7z96h1vv3qHGy1mtEyHfW/c1bEi58zj0zMPj08M0x7Ecnd7z+HmXlNOS+Z8OnI8nricL1xOZ+ISeXN3p2ieVQFvSZm4xm7/131414gxWrhYFzDOA2p9V4v62PaxJOIM1neEo3bUqlZyLOQl/htc83++43U09h/qBj4X9G2N6JfH66S/17+/CfBcR/nDOOqkQNQKtnXr0c3JRPf8rSDnancGdNTS9OmWcnxz0pCQ1qpaKva/tVmamq5U1tdH3TpKt4/T5sfg/UAzmdrULnSeF3ajxQ0OEaUMLfPC+XLhNiX2xuAH3+3ctNbIRiObTSvUtFd6ZsmcDaQYu61hgarCWGmCiFrLWrFYAdsatjbVNNmKFIPYLoa0HhELNWkTXYsi9KK1iQ26h7tg2d9P3Ly54fbunmG3Ux6wqK1r6c4a3moiXyqFHCM5rhp2It39xihFrHRNRspq3biskTVnXgxIuge7vJr0ta6jaOpC5oNjNwWSVVeOlAtihZgyLq7UXHXq7oLeh6W7bZmGE6OWsVisSQgaFKPlsShwk6ue95aBzmWWP7x2/yUi8z9+H/zTx5/FVu6H379M/LYHdi0puveyt0LwrvNihFoSuUWMzexvDnz79Rve3OzUAqplrCjnqJXG8fmEke8JztGq+hGbHpm48R1TVt4SVRHmuKxU2662NKZHc13OJx4fHzkdj9zeveHbn/2cv/r2Zwxu5BPvNefcGJqpnOcPrCmTijJ6c6pKbF+1O6uoTUsFmigC64Jan7kw0KwlVyE1oa19LFOElLTotwaG3Q3D/VeEUTlzhzdvsMYyzzO3N3fs9joajGvEOc+0mxj3O4b9yDgOqGC9MQyecQhqmD4vSnWY9SYPPuBEyHHhN//w93x6OPL8cKYsJ24nTzhoR3yzd3hJndqRKEUwRQsoa6yiCih9hCr9hm8dCdAQkU/PjzSj5u1h8uxv9gyjw/qm9IzBsCwzORXCMGGMZ15m5jki4im18fR0pN3AbrdnmiaOj7O6WaAjIbq91ha1G7v1nOsm9duYWcVakVxPxAx+SHi/YI1Xa7+acBbGwTGNgcM0cJkGcq7IWiiSSQLFaqHJ1VRhcw0wPzmQuULnY7dr8bxxmF8XyxvS3HGmP/g7fxFv5u5pt+HMGzIKutE204N4qNcQDWk6Uk8pddcK9Ufewkj0fevoU7yK6VTcoyP9lDMWUUS6ypVqkPN2XReWdWVeV/Y50PD9fGnBLM2Qc2ZdI+fThafnZx4fz5yPmdaE27fv+Obbn/P262843N1xONwz7nZM047gR3bTxM3hBmMa8+XEvFxIceH5+ZFPH7/neHzkw/e/4+Ey8zyfOM+zoq+XmTdvRm5uJpA9Oxmxrhc9VrrbhxYdbRPu9o+lde7yFWFWHND05l8M1/VVjFbSttMcUk5XPUZOmfNl5Xw+M19mns8n/vf//f/D/ds33Ly9Ybgd8eOgQS4hUErrKHPl+Xjit7/9HbUZfvlL4fbmlndffYPzjoePH3l6eOByuWhjExPLZeZmt2McFdHz3jNNYy/UFmLKSrmpESTiXMCFER9GtntVQ6N06mBxeo0bQy2Kfi1lRWjMMf/5r++/4PGHtIqX++c6Ndimwa/efujvvC6YtwJ8mzL6EBjHiWHU0BJjNJxjK5a3Qxsv/T3b0eVWNwEZV3/9dV5Yl6jUnqwrTu1MoA1V3ACZ2pu/ktXpRh+w3uuDH2jVITWzrCvH04lptAQ/aVpmrSzLwvPxyM3pxM3tDX4MGCv4wSE0rECmItWz34/YVnCtMnnHMs+kNVES1GyQphPiwXlGrzqEwSsdaBgmhmG8umW0TstopaorRk4kMSQBZ9T7OwRL2AXGadC8gZvAuB8ZpxEfgv4NkV5kKhK9aXnKupKWVWkl3UXHdsGjWuR1WmZUdHmJsYd66boKHb8Xja6mdZprrX2S2lFfGs5bRhnwlT41r6zrSkq6tgzO48RSRN1rBheYwsRu8lijtpymqo4tl6ru7a0oQNrXqCqbZkjFlRtFbENNrgjyD94HL99o7Yd+6i9UMEv/v74syDcV7oYsX7/9cof2L3T33n4DWiN4ZwlevZepGiF9sxv42ddv+dUvfsbkDfPpmbgsOq6JqQcI6JhlGgZyzDg3qKF+i73zNaSkqC1Vze1jTOr1W9WzuYVKiYnny8LjwwNxXbi/v+Obb77iZz/7OWPYYZqQl4R1hiUuLGvieD4Tc9aCuTQua+ISEzE3chWa7RvNpuJ1yi8Ko7pINOOpYjnPGXCEYUcjUOoZZwZu3/2Sv/rP/4W7uzeIEb766h3DOHC5zOz3e+7ubrHWKhIvoryl/Y4walQ4HSW0HdkuqXS1L8znWbth4Pz0wKfvv+Pj44nfvX8gnk94KdzuJpwfmaYD+73HEpG6UotRDzKr3CbTRQ21+7Squbpe1JtXMsDz8zNYz1ffvNOxUXBY7/ABDV7xI9NuJq4J70dqhXlOlCpYG5S7+OEjIPz826+5v7/j+PiBUhIWFT8o+li6gXvWcWtW55QcMyVlWtDrsNZKmheWtVA5g3iCHzAYUkxYqQzOEqzgBfbBEYOj5kYWIVmjo7KiauyyWRRdW8SfVsW8Mea2MaZYFDV8tbhclxj9oX+zx7YhmFqwc11jEN2smxGo+brG6LqiaZAaga1TrY0D/Fqw2ppeI9SCiHqg5hR1IhMjNKE2o8K9Kyq7hSAUYi+uS3lBcFr3nKdtQsHMuq5cLjOn08w8V6Zxx/2bt/z1X/9Hvv7Zz5n2e6bpwLTbE4YJ2ycp0zT1qYdT0VzNTOOk66Z3rOvC+XzkMp+Ja+R8vuCcwbqCMZUwWLy3IFZtr+TFUqr12GvT1LGDLk7ebEBfc5i3K1oaXSAnV2qGtVZ9jueZZV2pzVCrrrXUxjCOLKdn/sf//Fv8P/yWt9/ecffNLW/fveVXv/rVdXIWY1IKXc58+vRATEWDm8LA3c0NN4cdb+7u+P3vfsf3v/sdz09PvP/+e44Pj9zf3nJ/f8dhd+jTBMc4jRjrmdeFep61eMiZGAsuV8YNZBGDNa1rEho5Z2pTOh8YammkEsm9IfjpHtvr+jlKrMcPN7qvqRh/GFqiha9zjmEY2e137A8Hdvs958uFdU2U8uIFfJ321u1Sa9dJ8/b3ci7M88I8L6xL6mnO7UpV4vpY7PV56D3+En8uojHnRqwK+aohJ/27Tw72O880OkwviNeUOJ5OPD49sb/ZKxd42PQu3VKwZJozMA7qv9wazug+ts4reamUKFCNCuNsUCqCDwxhIAwTu2nPNO3xgxbM1aj1Yo6r0jKsJThDKY7WBry3jKPXKfvosc5A0Otyewym34d0ALJ1elqMC/NlZp0XUkzQOrjV3WU2jUFOpads6tQrFgUYN0qrMaY7wYmiyjpH6qFHrYd6Fbw1mDBoeVsVIc65kFPtriIG6yzNOKRVhqBWsNMYun83SKqQFIxIpWCqUmmNcG3idXfdJp/Xi/QK4FxtMf/Y5f/qe6+B3fIDotY/dvzoglleY0zt5aLn1U20jUpt0w6zttozwXtBbQ1OVGThRAhimIxl54SbyfP2bsfbu3smH0jrhfPpRFxmdT+ICes8pgrneGIIickbmnGUZqhFcMbirCFY5cCU1mjde1m80cSftYGBZZ15enjg4f33UDKHaeDN3YE3b2+ppfD8uKMMasx++v53fHh44uPzkaUWijXEXDjGwtOceRMbt8VQrKWhm+fWFVnn8OOgFjnW02xgzoZlNRhn2O0DwollyVj/jvs3f8PPf/lL3OB59807xt1ILAnjLYe7A8PgSSVSq1rFOO91UTNXaQ5I93VdE5RGXSLr6QMlZk7HI//w69/w93/33/k//vv/5NP733MzOP7q6zccbu8YJ0VinA948VA9Jffsd0mA2rWJ8zriyZlYI7nn0qcCMRbWNZFzxnnH/jBxOEwMQ+gKW4OxThHy3cLpuNAIzGvkvBSwgWHQWPDz6Ujwnq/fvWG/GxmCIy4XxBlS6k2XN6xJFdhqy1MpKdFShqTx5Kqn6Dn1TYg5clmychFq61zXhqSVoWYmqUSrHpHFQLFC6zxQixBrIbZG7mhElR/vd/p/9VGcA1Eqg5W+OHVqw0tpvC1Xcv30dWvwR5+xvHzvNY/snx+DbcXbZrLfF8t+P7XWQKxuoN25xdCRVGMwXTRCUycM6b6hCpI0SsvkHCklYUi0lqg1kZMlpoVcMmZLk9O5ryJOryK2a9FQi1I3FwDdwGyPbRZ0M9/S0GJ3xKhb8E1ttFRYTzNEaLGQfLzyMUMIOC/ENFOiXtPremE+n0kxYmhM00hrt1gL+/3E7e2ewyEwjCpC0uJe1Me0I2/Kk4arlufVLFBpGVyLE/potkIPLDCKYjW0gtZ4JXIqpKSvTSl67ex3B/w4INbyt3//j6zridwWxDfWy0xeI3OpnJ6fOR+PGMAZyzLPLPOqDgNuIPz1L/n67R13hwNTCARn+U7g/fffc5nP0IoWCkvEO6evgfMM04g4RxO1sCrzopOvmGiyMIjBOqcbsJErteTa9KCTl5wr61K4LMs/c83++zo2nq/2h9KbxK1Y3j5+eWvdQeU1BePlb/3w/WqdYbcbubm54e7ulsfDgePzM/NlJielCVxrgldrRylaGzgv5AIxVaytzHNkiZlF+W8KfonrXryKdjr3IhKsVWk1dXPN6e4sV/pzp16kGLGXxvEyc7jZ44LDdv3OHBeejo9MjyN28NzaW51Imc3aThBnMM3hasD3tL1qDbgB5yt10f9bqtYfxnpwSsM03mOHgBk9NgTE6URdKRqNmgWpBmEL3Ml4b3rB7DCuJ/FJ7uh6t/XrdZWKjFsvYjPzHDlfVi5LIqem1nyi7iFqoagT2CWuXFZ9W3JSQ4T+elkjGj5mFQxrRdfQ1gCruqweLNh92I1SJr0l19YnDL07knYNmDI9c8OYbv2HwViPCdrISl31/6LhRNTSsQpOmc3b5fPSxPOir3mpQT93cWrtZefSc9defe8lwOZPOX5cwdyqIguveUzbg9AS8fqzpj8rLZaVdK6vhJ5Aaw2DM4zOsLOWnfXsneUQDJMP1Fh4/PTI+fjIfDl2REcpCLvdSAaO55kJwzDeUI0nV4NtlpobOFWrmpaJrVJzY50jwQx6mhcVe5yXE48f3vP08QM3b2/ZD4ZpMFhTKHWhUAjTQG2GDw/P/Pp3H/j4fGaujewMKVdKrjxdEs+Xwv1e2HtL7Z1tSuqwgLVY7xEMwThwcFM9lwucjxnn1Gf448f3lN8+8+23J372tWO6uSOEW3z3IM2mwGGE0WOa+sdmGs3YntKmm3GKhRoLDqHOmXJeKKczv//73xJPF77/3Xf893/8//Hr3/8DHz58ZL3M3E533N+/4fbuhuCacpONWsQYBmJ0WnCKLibWe+2WyaRWiVXlgzFrqMOyRJ4ej7TW2O1GDocdb9/eM00juczU1rAuMAx7hmGmyROXtXKZM2tqGDcyjHvmy4mUMpfzmefHB+4OI7tx4MPzJ2pqDB6c2REGx5IF5oLVUCVaVt9pckFyhgqmVobgcOPIWA3OJy7nmcvzifU8U5ZEzdpk+VYIVAapBAODAglsUdrbjmCcoaD+2z+mY/33cFRneytbu6eu3rMv/ryb302/75uOSGnt+vxfj3M/E1980dn/KcemsN8+vjqQVNhK+NIKle2aV6Gc2nua6/oSvFPBqmnYvkBTqzplkIhppdSISKK1CCRyEWJcyCnirKfhqEU3KGsFHywKipQeeJIonYZQivohW+sRY3BeMC5ird5Dw9QwTtHh8/nI+9/9jrwktaM0njCokj43RaaHYcA5qDXq1KQkcl6JZSHllZYTh/3EzU1gGD03NwdNRB0tzhZEXpwR9Cy1l4mfRpap72tHzxFerPtenfvaWi+aXzjMpqndXOr0KwXqhVQKy6yUlt104PbNPSEMPDw88Pz0jAVG6/BioHOeL8cjy/mMtMroVWexrpH3v3+PaRYLeCpff/2WN3f3WGlMwXFz2PH08MAyL1zOZ+bLgu1OKeO0Y5h2GOsYxomGAetYYyLlRi4FyQmL3ssaSqQIvFiHCsYgl3qdKNTy06JkGOk87QogL9x/2T5u/etbwazXyTX57lUhsXGZt4/1UAQwBM/hsOPu5sDNzZ7HaeR0dKzkz+596Q0XorSgJg0nlpzhckk0LJclaSBYVtG7dxac6+mraj1qjLkWx7kqlao0aGiDSK44VzvfVoN9UqksqXBeEuc148aBoVvQUiun+czD8wNhGpVKMQTonOIqqC17aTRvaMFBCUgTnB1wHhhE6RWlYVoP8hGr8fXeko0QpVGlYjBYA2JUv9VKw2DRtq5ipGIN+MHiBwUzUkn6urjuo0wlZfVNTj2tsommYc5rYl4LGkhqsN3ZqdKU4x8jy7Jwulw4zxcuy8qai+5r0KO3tUmwQZH2mjeutga0NKP86VyhRl1LnGmEwSo1s/TXZovuZrPKQ+uFXJnnzOAMA4L3njA2XKmYUrC1F8xiNbm4ClzF9ts+tF1ZL3yLl9Tazxu8K0X4S5S5T+P/1D3qR3OY/9RhbIPOd6nbsLf/ftMLwoqqvL1hDJYxOMZgCU5pF58+fkBapeSVWqKmqxmLCyOtc3HG3YFhGtXHL1eM9VhraDX2sahao6i4T6g5k+KCMYG4ztjWOJ2fuJyeoKzsRsdu8pQ08/z0idPpmVIiS64cTwt/93f/wPv3T8xzJldN0FMPVmFNhdMlMi+JPHiaV+uxnPO1gDJGuXHBWIwz1GpZ7wvz+YHL+UQriuacHh/52//xfxCC4RfrL4nxxO27e2R0VFOQfIPdjZSSiHFVtLML+Gw1pCVyfjyRTguuQTrNXB6fmY9HPvzuO+bLmd99/x2//u7vuOQL0xDYuVvevX3Lu3dvub2ZkLx01bjBhIDFISWBcR0dVtS8Il3opMVMqfQxdOQ8z6Q14qzh7Zs7bm/3jEPAGGE+zXg/MY1TFzg4xDgup5ll1SLD+qDhBGvsNJzM48MDo3+Ld54QAsv5yOnUcNZwCAemaaCkSbvhFGmlkpaVdb5gnQernqphGgm7HcaPvBXP5bzw9OETn75/z3N8Ihelc5SkBXerFakvRQZdNEZtOKvnfi0vXrU/pePKLRTRzaGjFZ25cH3Tr32OKf9ln+v2f5lXn/eizWzMx9crIH0VbTgrjEPAWq/NkdXRu9BdA2qidH/SQsaYnkbVGikqLcO6AUHI3QPWGINztnP8NPAixcS6rqxrIsakFpGDUXR0sOymynpTiGvB2R21OiyGYD15WVienhBxeOMoYaWOqfNnNdzIDWrlqIEhKoJyTVEdN400HMbBNAUON3v2hxFnK6CItMjWYmyvlwIFrW1v7VpIfX7et/P7ggrS6+xtAqE+rj0YoigSez4vnM8XChpqNE0jPji+/fYrpYlMniF4hEZKCykVco60Vq4esbbbJqxL5MOHT+zGgcmrzd7NzZ7bwy1jCLx984aHT5/4/vff8/H9R+Z5JbVMSsrN9MvKMIyEYcA6xzSNGOexsZBLv95rF2mK6d7Teq1tG6x0dHZzlfgpHdt9/LqZ/SGe8g997TUNQ7MNPi+it+nDNrax1jJOIzc3e/b7HU+Dx86Lul00zaqA7Y594cGLOEppXOaFVBT5VFeYpgV1R/v7QEbf+mik9iALDQnaxiWd37zBeB1xzkVRzzmqc0sYPcYNagMriSUmjucT0/Mz4zApAChcfdlrrd3oreme6By2Sg/GEmxwnY/ckGbUqFAMzg0Y52jOUI2oOF+21MIttM3hBLwRrKkaM03D2Kpobl+LjRNEFYjd771rdbIGs1To53Ahl9Qf7YsLymYnO6+R82XmdD5znmfWpG5S+mJzBUEwIFbpss0KLWvwmSYjeppsgGGm5oQzjrE0MJZYdKpWaiPljAhqXUvTSW0xlGypzl7/lphOYxX10K+5qXtCd0yRflP2Adjnk8umzZ8+9M+FfP/cxFc26vCfcPxZXDK+FAxsD+BqmN6uZX/nxjSMqOWZdQ1jG2I0AjLHwtxjaqWnWkn3/9tNE8Z7/DDy7v4tYdxxuVz4/je/5vTwxF3n+5jadHQjUKn4zd6tRlqyECCXC3NcOZ0/sqxPOFe5vRkZg+F8emaeFz5+eOLp05kUG+/fP/APf/ePPD2eKKm/WK2/uDRizJzOZ46ngTeTJ3mDpeKyXNW70HpnKTgszjhqrDy8f+D8+ExKwmFnSaXx6fu/5/+bnnj89Evuv3rDu6+/olnwg+fbb77i/u6OUhKX00l9JAePGTyTBNqcmT8+k48zAUOJicvxmafjEw+P7zkuZz49fmSej4Rg2R0OjMHyy1/8nL/6+c8YPczHBrUbjjsdfddVU5iMdVo4WKcIVR/1xJhYlqiiqRRZ14VSM+Nu5O72hjF4BB2PLfPM3e1EcMphstbhnCelZ2qtjNMO6zy1bAVJZHGG47Nw2A26QI8Ty/nEPC8MIbA77BnDgBwqThq2VuKykNLKfDnpIjfucM7hDNgukrDGsJtG5P4OcoHSONYTJUdMt+ZzzuFcxTmLLYq4mYI+/1Y6irPxRP8cd9W/3VGqcvJAUYGr+8GrY8Mo4YsN9jWf7IeO7cf+xY9OXkQb8lIiG7bC5vUG3kdstWCcYxwDYTAMg6blOdstw2ruUdi6m9dW1Ge9J4bV0sNxWsdGOgLrrFV7sr7711aJOan4b1lZ40QuFUS9hc0AeVfZrZm4FJzJWAa80aJ5ChO7ccQahxPdhIZB7c8a4ENgGrVBbU0FwjEvpLpSWyaVhVojdF/UKThG73Be44Vrgdo07ZK+eW5uIFvkbi8BrruQdFrJtVjuIr/WG5GNYqNojWgjG/X6z7lwuVxYllkzc6maPOYHvvnmKxqZKhnnDa1puFDOBVp91Yhs24Xa/82XmePzkceHR24PewyN3X7k5nDL2zdv+ertV9zd3LOffsunj48ss64V6xqZ15VhWBmnSUV+ov7WDAZb0Ijm8uIgIc126iDoLv1yEW82ez+lo3VdyZcuGT9UML/+mdfHhixvBfPrEJNtElQ7jWO/33N/f8/j3TNPT88s88oyR0p5CSjTG1g9GLQ5ssp5XxM5qx3jJkrticzdvaepHWufiID6xber0KzTiUzXEqB0yVayOkbUhmT1ZD5dFkJwhMEzDI6GI+bE6bwwhBPjeFBajxW1ZetBWa37P2+WeiKWWsBYwVTlB0sFaZ0SxgYEWbDqZNFaxTS9n01tnYaEpuQ5tX10VthygStKGWjdNk6s6g9KrcSOFsece8IopKJfq1WLVGPles+W2roBwMzpfOJ4OnG5XIhJf1+pFVvMPXq7i+C9hiQ156glEZzFhxFjXA8Ym0nrirOWVBvWB3Jt6rrR47z176pmQtDch+QM2VnEBYwYpFYkZWwp1LJNvni1h2yMho2SA6/B4c1o8IVO9vk1/uc4/mwuGT/0tZdNtb+TayoizoFzgk6/Ko1EypWWVwylR2YLoAR/4yzGBQ63b/jqm5/x7ttvyKXx6X/8D37//hPz8zP+7Q2HcaCJjpjFWhxeLUYN0ApGsnqG1rOO+ecHjEnc3+65v50wUnh6+EBK8P7DM08PZ+ZL5rvffeTjh0fSkqGaq3+pNO2GYkkcT2ceR8/bQ+BmdLjuh6jODRqqYZ3FUKkt44xhCHDYWx7NyvF8Zgx77m5v+f7jJz78/u+o5Ug8f016fk9Kif20g9+/ZT7cUGLkfDypW8TkcbvA7XjDVB0cF/yS8dbhqKyXE3I5Utcz6/pMbTO3h4HBe6YxcLOf+NnX73j75g5qJK8nXSy6F6SI+qUW6fnyPWmrpNJDHdSeZl6W7mNbyN0c/nCz4+aww1lFB2tJjMGzmyZq7f6Kxnb+oXSj9x2IZb6cEDHkXFmWFW/g4fGJ2/2IswHnQkeUEuuy4N2OaQg49nhgtkYL+fmiARG1MhjBrOqZm1mIxZJzI6+RmGJHM9rVUH9LSxtG3WSbieSY1IpthTkqh1Ks1zFo/fPcnP9WR64V5zzURs4RmvKxtXPfXDL0TXgpmLhugp+3+3+OZ/8HYF7/Pza0z8hLcXX9j1EufS4RRBgGz27yhOAwhqvXdC0q7is9QlrtqgTnnfLye2GgCKwqt2vTzWezp9tK0JSVC7jG9YqotCY9pMNco6l98LRsGOzAftwxuIH9MHURn+tzUNHQjjBBn+B4Z64WWjkLLql/e8MRUyNVaFIIwTJ4yxAcNnQP0154IOpTrZtvTyNs+vHnaZUdYZUNTXxB9xDdqLciuvX0v1pNR9q7HVj3NtbzqkW5dXA4DKzpwJpnXe9bpha187MWgnd45/rYX0erOh/UOXHOhWVemcfl+n1r9ux3B37xV57dtOfTm0cePz3y8PDEw9Mj5/nMPF9Y14gLMz6MOBcQq2sXVQXAnV/0MllRayUtyJpu0tZ2PudP7PhjxfDnPM4fLpS3ty9t5a7Wbf3zVrVgHseRu7t73r07cTqdWJeVnJS6BNeeV1HCpvoaY9TrvFYtDsWonZ/066t1wX6hdYeaLzio6KrURF0g1A5RC+Y1JrWU7ZQNU2FNhfNl0bTXoU+fvOqNllg4nWd2x5NSe5yhFvU/32p9+nTHOKOPvSjiS+nNZtNmXvp0e9MTZSq0pJr5ZjVKm6rTFFTLVXp9JM70SrA/143iYYsmUnaqSMpJbVRLue5ZKaWOLhd1x6F7wzcV1K1R9+jLPGuT34vlzaOdrv+gO8cocKDhVk26dbJ3+BAwzpKXosEna9QAOLG4pmtgypqSmHPGbHVDLSrCFshJbfuaWbunvmBLY2jaYKnoUvrvbrqXl2L5ijZfP3392V/m+Iv4MEPnScnGeUP5cUYvCNcvDGPUT1Gk6ALaF3QRNfEXUYNtFzzT/sD926/45X/4G9598w0F+P43v+X333/gdJnJa2OOkVSUb5lFBTrGWmrTkYpzgrfgHdQcSWWm1pnDIfDNN2+4PQzUNPN0OnM8Jz5+OHF8XjlfIr//3QfWWZXzrUKO5aou10m9ChaeT2eezzvu9xODHygVTRqaV0rKmEnRo1qVJystMgXYj8Jzm8mxYGXg/n7EuoxtK65GZLkwIkwx0h6emR/PpHklzgtGLPZmwCwDbjKMfodv6hTinWUtkdEbdqPjrbuBtRH2Rk3Jk9q6vLnZ8/buhv1+JMWKHxyt9TES3QFDmr6mVnr4gOudbmFds3a81+CHDK0wDJ77uxucE1rLPZEvc3d3wzQOLMvMMIydrrJFZwbCMKnLRjMc9re0UilpZo2Jh4dnTK2aUGgdMKgDSF8Ix+Dw1mF3O7w1zJcL8xI5n4+kbq5ea8UOiSKeJRsul8h8OitCtcTedWsxOa8r5zkSi3bhwxhIBkyxiLWI19TE0iyx8KNEBP8eDkUeu02bWFpT7qFG+nx+aLG4iX21cBXg1T98/tG/9nixuKNzo6VtaF/fLuVlySwl6SaHboa7KeB9T4JsDYpaycW4UkvCbOPRzl+12zSl1utmUXKhNeUOKhJqEAOtKKKzxsiaErl0S8WelrgJ7LTCpws7Kk0KYivGoXZPohQTddvIGFsQa3UkaxoYPd+pRpZ4IZe1F8EFseCcZRg9w+jxwSJO0+o0ea9296DNRaa/vQqzaG27ClCNymuEmS7crtt7rp64pSiKXTK6Ac8rL45J+jdrU7cEpOC9oUoX/EiBll/48q30olnFSUqb0Rj7TZchXa0f10iOkfly4bA/MI4jb+/fshsO3B7uub15ZPdhx/tP7zmej1wu6rzgwkIYRnyYcH5Ar/DX/V77gsOtnzfpaYnG/tmu6n+L40u7uD8Wf/1DdIzX3/+yWN5Q5g1wF9GCahhHbm9vePfVV1zOKta/XGZyLtcGuG2TomtB3K7f2ArM7edaRV1LKogo73wrvq8FO6+S37rPsLrbaMNIFwCKUfu1NWZO5xkoV5euw2FUv/5cuSyR5+MZEcMQvNKhOnhgZSveVLSHsYr4Oq4Fs+1RPlvBfL1n+vNupmlegpMXr/ONm+xFKRhOASThZVIvAoWimQOtUmomt0RuidIKdP52qZqTANrkVXTCrft0Yo0a4LLGRO4BS8ZancKLw4reayZnaimsS8Sg52mbPFoHSOf6W0szltw0ZrumiOszwNydqnIuavIgRsXXVQV8CRXLi2jYymQdiMWhP2tFgZuXiJoXuuNmMLFdK/2KVbrLK9R5+9kfOq7Xeb+S/pTjx4n+/giH64+hzNvD0Yui4QzqjNGLZmfAmoZ1ejF6Y/H0k7p1jdZxc/eGX/z1r/jFr37F/uaGNRV+/+E9v/71bzidTqrQdBqnGbMajjdvMQ5a1Rz3SkZEc9C9rbjRI3Zlnx2H2x1fvbth8Ib1cuL4vPDx04lPDzNxFS5z4fnxSMuap27omzZ6sRunlI/aMpc18nyeeZ5X7V6NZY0adFBqVTTJ6EgG0xAy0iJjEO5vBmIsiEl8/e077u4PXI5nzZcvhbc394zimMTjq6UhZNOVp2bE4JiqI4hFLBRTaRaWWklemMYbDvs3fNO+5rLOPH984PjpgUbhdjewnwKDtwgWHxy5WJrVzpdaexCLha4C1i6ysixKxUgxE9dESpGSM9YIt7d73r250+qimW750xRxdpZlWfDeX8d7xjqM9dTSeD6eiMvK/nDHOA6cnj6R1jOXy4I3yn+ngrUeamWNkbAIlgHXO+ZxGq/o+LxG1nXeDDEIuSBhp0leolzOnBK1VA1I2TtcABsibk6cl8h5WckxEbwuli54RhxLqcxLoa2v+GA/kUOcJebCEDSFKq/lpSjeion2gvAiXJcuLQG/qJf/ibXnhzbuL8VF/aP++cvf7K240kyNfFEM6I8ZKrVEhJEhWMYh4OyWJtauCM2WHGWtwcqAs2istveKtqMhKNvzV/5yYBwHwuBVeNPR3pi3ZrGQcyOlSg5q2t8UDgcrFAqXeCbVxLLOxBSZ46w1sTh1kwmeMe40VMiq6Ml2usKaF9a6UkmIqYhtWG9wg1X/2NGAa4jtJv9GvWGlF/+l04c27vILurwVx+p4cXXGbRtnVNEppaooypezIn4x1i7InZnnRRnSTd1WnFd0POdIyiu1JUQqzjpFzanUqtSMZZ11TG10dFuLgidbxZGz+imnFElJU8ysMcQlstvtGMOItZ77+zvGYWQcR4Yx8P7j9/y+fOB0urCeE/O84oeVcTr0uGzXqSjafKlZxtakmZdzAZ229NM5/il/5S9T+z4LJHlVJH/JBX35W1oBbgWftVbj5Kcd9/f3nI4n3r//QAhKk9nQWehrCCo8bEVDLxpcw4eko9atFXKl84TpUxGlPG2j95fZ16bF6EVm0etGaQYO0AIwJkWMa0mIoNOnHvJlpLEskaM5IQK7aSR4q7ZpHRzDWL12O31B0GLXijpR2P7cpGuoaCqAM60CRvm/Xili1ijq6ozBO6NTd6MnSmyvsDVJSgvfUikoPSTX3ItnZVaDah5K0RCv633d0ft8FfutrDEqFQrBOYsTQ6kCxvVgN9VMpJzJMXcfZ7XWtMqtYRwLtnm1ijOOZqyCUVndewyWknVtaLXS+oTKti6+Fl1cStM1uVpNYG5StUEq6opi9PLoHdSrF3t717a2Xj/ZfuzL++CPff5jdQn/IoT5S7PzP/pz5sUjT4wWS6GL/bRw0jfnLKN3BCtIyeS1kkrFGc/tzT2/+NXf8B/+5j8y7ifef/zI779/z6fHB47PR3JSruE4qJduKZVm1a5MrNBq1ihOMeqt2E3Bp33A+Ak3CNM0MY0eqYVlPjEfZ54+PvD8uCBmIs6N9RJJa4Gq1kdjsMQm2mkZA81SU2WJmafTzMPpwjQOBGdYo349l47gmE43MXoeLBVL4XY/En0BJ0yHibu7Oz4ZQ7mop2kwHtcswQRsNRgXsHlFEAYZdXTTDLnB2jJrKyCG1RUIljdfveXuZg9kPn38QH56ImleKfsxMAWLMYrEO2+w2WK9NgO5VDKNKjq2FespqY945pV5XrvoKV/RpRAcd29umSZPaVlN3K10U3avCPO6qkWWDdQKzinys8asm9y8EIJntzsgrfL4cSXmhdPpQgoWb7vRuxFclWuwhIAqfUWwwTPuJqoIa9TUR0XfwFWDHVV0ymGHxbDMmTVWUmr4wXM37TlUw2le+fT0xOPzkbZGxFmaWIo4WqykvGKTct9+Ssduf+ByOqqbi2gYyNUXY7PdqVXv100YJU0XQmBbtTbVsrysYNfjD71fXz7+8ntbwlx/OEC3Z2xbSpj6sr5uTPR7BmOFdblQ20QIFu9V7Kd8SHW1uMasik5gvHM4Kxow1AtmEUMuKkQD1VCEIeC97+NLRZwRRVzXmK9vMRViqgye7iUcsN7STGNtUYVuLVFa5hJPSFObLZryFP05KDVjGBnGAR88g/dgwezUMtNYugtHw3jBeKNCY1exzmCwSieolVa6iLAWtdms9cp5fKFgWGibj+rLtPB1kVzKSzrYmjIpZpYlM8+zBpbk1DmmBec83itaX2pUYV/NXY+i6ZylpB4aslHWUrec6qmMnUeeUmK+XHh8fKS1os1qh5VSUj1ECANjmPAugAi7/cRXvFWBVPcYO54uxE6dybkyjDt8GLHOIUZDFqrpCOE22t/8s16TKX8ix2s0+AeT+l4hzF9+ffv4NX/58+PV32svvxeC57A/cHNzw263I2x2p61pk1lfT4O6jsmq81atyjWmj+RL1eLJAM2YK+IPXBMpaSoG01Cqvh709cM42zVQQo5RKSK5dt/2incLx/FMCI5WB5wTqqlcWLWpE4PgEaw2S31UboxRylrnS5uObG9TCCNaKLcmWrgXELX30PwB7/HB9emSwRkIRpN9La1P2/uaKqaLfbcmslKa+h+njjZvNnPqpJOpLSvqXqBUzURYFvWCv5wvLPOiE3fr9Nn1xkUwOOvBqJBPqS21Zyro/a+UNIMPKxX1TY+5EmsjlqZhI02nZrUoH52mHPSCvlZWVEsirWLry95tBBXWFw1RMtUgVTYdN9f7r+8vrcewapjJq2vy1X26Xdefce+/aAJ/zPHjXTK+uMl+qHP9jJ4hjU2054zBGcFvF1zr/nx9A8xZ4xBbM2AM4/6Gn/3ir/n5L/4DGM//+rt/5Lff/ZbHx0dATebTqsbfLniMbJwb3QRqa9r11IqoESlilbtUW2WcRm5vD+p36rzasZxmltPMfDwzn1aMFeKqCnVnG2vWwI7dFDC5qb1vlwLXCkuuPJ0Xpuczu2li5x2DK1zmyLIkcml4o6MaI8LgHCF4jdAUCM6y9qScu6/e8KtfHliPM27jTWOUR9vAO48M3VIrDGCF6hyrMyzGk7zymnfDHcNg+fart4w05odPpPOJfDnjpTJNI3eHkTE4rFG7KOctLil63qRpR9uUY2a8p2E03WtJzEu8Fgq1iardrTDtAoebHUKlpIXg75SKIxXvLNM0cpnPfPr0wO3tG3VB8YGcKvO8sMxREaHnMzWHXlB4cmlqp5ch9AjxcfB47zUmPWZa594YdL8z1hGGgVxRD8rLTM4NX8A3wfqJKQTGNzvivvLwdObTw4nT5UzKlVhaVwQnvLcsUa/9VCqpZmJq3Xaqk9t/Qse3f/Vzfv0Pibiuek86tWurXdB53eOkc4cb19St2jYrn9dYnFzRZh2PvY4O/8PjSzTrNcXipWimL46fj9CMMUoNqFWLm1ZIeaHVpNMr2/DWYqT0UJKZnBda1QmIESF4TwhWhTy9YGutklLS0JLr1LjzcqWpP6uVTh+ANSbO88plWTl05brrzagGCDnc4FQPgBbGWNgELOI2wR0UV7C+QGgwgASDBIP1GoRkHBhTsV50XbNoTLyDZgErSDMqUtpQOFGUqjMmlJ+LNj9aGFg2isL2fOtmGddTO0tWT+mYFa1a18TlsqpwKK5KxaIiBoZRXWyMQbUp7SVUAprG9qaoAROdH6xBKIJ3KtRMvdEpObEsF05HCy3rJETn3rrpO733gx/wdtDpkNWm5rDf8e7tW9Sx4JGn47lPxOauQ2kEph4bXjUNzUhvBktPeuxJgLX8S26v/8uOPzr5/aJ4hu3++eGi+fXnX/yxfm7K9e9aq4E7N4cDd3d3HA4Hnp+PrGtUdR5q5dauHN0CfZ6lyKheH8q46gVp5/S+tCyNF7sWnRzRqVmyef4ajV4OwSPAKqL6hlpVKJgrKSbmy8wpWDb64OA93hZizMSYurtOL8iaIF0EXE27Gko01NfdgFKONppX0+Rbeu4KVrBeQSjjTZ+mqB0mRq5x4RajSPpW+lW9F6vUHp9d1cXpSi9s3UUqkbJSw0DDtUrVRODlMnM5XbicZ+ISabnixPXAuEpOmVYt1tYNI8c6pyB3Ll2bAWssiFmx54vuh7WwLKsGuXUkWNDE40br04BtYqBrgMVgGkgFV8ADQYSAEJqo73ITbANTW99Se6pjR9O1mejTzu7Y0y8ZtkZqu8b/wPL0C4DmxxTNP6pg/nKc+scUty/f07AApWKoQtkY7aosW4Stoh9LTpQYoVaC97x5+46//pu/4We/+AVLLvzt//xf/N3f/i3H0zNG4Pb2gJNGKwnTah/FFqqFVq3a08RIigutJayHO3kH+wUAAQAASURBVG/ZHfbc3t5yXo4MwXPY7fE+qBXa5cz56cTx4cTl+UxZKtk4cjKMwVMmp0EXMVOqKCm+KcIkYsBAro3jEgnPJ/bTxP1uZD8E5jUzr4naDMYN2C4qcg7GoMKfklbojqfLecZ+ZfjrX/0SyXB+OFLXismCcQEcuGHS9B7Aekc1jRIs7Dx+8gw3A+Nh5P7+htE2grPkxwdOT594fv974vkZ5ww3+4HDfiQE3bTEtGvikRVFGTV6tDCEQBjGbgUUOV+WbqmVX6LI0QSo3RTY7ydyS9AS4+CgFXJSMaAxQimF9+/f4/2OjR8OwrKogf28REp+5HKy7KeAYBUFSzouShZ8N1ffBFKlJIYaMM4j1qpLiRisHwhVSPnCuq7EXPAVXBGsS0zjgd1+YhwHmnhihsvyyPly5NPjkXlZdYHCsObCkgpLVMsijb9QMUfNP62N9T/+5/+NeVn4/nffscwzTjRYSEQUERJDNdviXZEqLxsXr8KKetH8Gm3un36eztSPbT354bHY56Pf1wtgLaWjoorAmGY65aBQqsZhS1eZG6PiYlolrosWSnlVa0vvEIFxGAghINZ0HUWl5aJCvGBxfsR7v23rV3R5e9y5VeZl5Xy+cLksrDeamuW7MriJbj7DbiRMQddEawnWdV4fHcnu58sY3BAYx5EwjIQQtPj00u/PSjO10zKkuw0pH1qF0jqSVnpE7WiVdGS+vTAwRGkHoJMS3dm5ojelN4SbcCv3EWuMkWVNGsW9XJhndcZIOWOcImj73V7PqXnhH1tre4okrMvKuqiDxRA84xiutJkQHDcHS8ramRmjaWs5rcyXyjJDqwUjTWOZh4ngB1a7qOOI1YK5GR1He2e5Oex6whnUeuYyr+rmgWCMI4jpwvA+Kqb0QAzV0dSsqPhP6dg4x/B5ofDlz/yx47Xo78uvAz2a+sWFYyuYrXXc3t3x1Vfv1H/7+UiKj5RSdbpseqx1Lz63ROvWtGAW6bxVp6it9bZz6Le4bf1d+l6xIcya6CnKe5XG6DXQqjUNGXFGUyq3NavmwnKZORmQVqGOGAzJVZaYsEufdEij0YtLQIqir9LXoCab1V1vOoxTAWKrbO7lxvYgEK+Nr/T7tOMPvXnQBhpDD4WrGp/d151Na6IFc70i8HoONVk3RdVrqRhb9RRpicznmfPxwnpZqLkoD9spOEVZaUknPWJz11No5oYxjiK6jjSR7rSROV1mllVFuzklmqgmo20T6D4RkK7v0mlRRazVwJhSMbniGwSEwQgjhtDANY3KFj1914L5apHYJw1b2BDSmxjaD+4x/fT2qeUfNox/sYJ5++P/HJf5ZaPbOj/b7VIMlo2TIlAhrZkaNZ621Urwjv24583XP+Pu3Tc8Hmf+7u//jt/89tdc5jOWxu3NpAVyLZimm+LgDENw6pDgDTFGcrowTQERQxgMh9tbbu7uCOOEDZYQHENQ5LLkyHyaOT4cOT2eWS+RVp0+ziYMLpBD4fbW0E6Rp3MkttYvjL4ZuEABSs2c5sjTeeb5srIfPH5eOV0W1piZdhMintyiioOMw4gjxgzFUL0hc+L89ID8/Gfc39xxCIOOWVPDh4laYJx2eB+ogJ8GJFiat8jokClgJ4/zBkcmn544//47nr77Ld//499zenwPdcU7LZRDUFR4s7KxzjAMAQM9vrNQS8Fah/eB0zpznhcu88qaKrnSkd9CKhnnLLe3N+x2A0/PM1MYGL0jlUTMC61kasmUUpmXmXVdWbp9XAgTYtSfc5lXLjUxDQ5hj6X0Pa1TAnKhGBDUexfxVG8wTn03m4hGmNeqXG/v8T4QY6GkQmMlV0Fs6jZcBusLDcPh5oYqHpwnVdSS57KwpkzMjTU1loyatxtDkUaphvITQ6L+63/7b+ScSHHlN7/+DbFkdUFhu/xFKRBVNyyziXN67fUZmezVkiU/sA79KXY/2/rx8r3P0YHaUQcRbbq2Db0W5eg6pyNPpX2BUMilK8rjCmSs7y4WVq6cZfVM7/xtETANVxu7aWLa37CuhRA01MD1sJfWgKr2cud55jzPzEtkmiLBeUU90Jj6cRxUAtAEZw2DC3ir9AJv7HVrpNOI1PZqUHqGD7ohkbVwEK7cTkWeFZUTdAR8RWS2tbZtfFzz6pwKOgRWVb+e+14sl0pKhRRTF+9UTSxMiXXpXMh1IcaFlKMq81vDOsM4Dky7CR8C0lFttenSQJCUI5fLzHyZ8SEQnGe32/XktYb3Budcnxzo1E0Ra4dII64LMalbxpgGtSg1QquFWFegT0AFnQR0FH03DuRy0y0wM2vKLMuMdV6nYuLUVs5IT2jcEuk0iOrPZU31b3V8CWj9EC3qhybF/5RDxh/ymF/ebVQqYyzTOHJ//4Z3797x8OmRZZ57sIwiq6011cCqPYz+X7IVRlzRVkWMVWBYmxaSdYuC1hq1V0Md7OnrgjRRjm/tfPQeeGG645PtOqJ1jf2PqGe5Nd1BRaDPZK73VbOGajZbu61gVmS4tqr+0ZKp0tMJxSrH2ShF1DqljIkFEX0O23PKoLQ3apeLZH0TrqjqpjsotacXdxS31KZBIV1noEiscp1TKiyXhcvxzHI+U1LWRt2P4AZyXTFNaQ+tNmpWm9+UM86aa0N0pTR05kuMmShdYyDqEc1WyG4gSEeApaPgtG4vKA1yw/Qh2ijC2AwDhqFBaBWbK9KdgxTvpv89g8o30Xu1vRTDL5CMrm1fFsQ/VDT/2ONHI8xqA/aH3eofPrgOnUMfO2jOurRKzZVqoIjQUiW32sdrljAeuHv7DeIG/tff/SO///573r9/z7xcGAbHMGlGu2lqT+aomC0AxTuCtxhpXYiTePvunv0+MB0Cb7/6imk/4qxhP+wJXhHUZV5YL5nT04nj04m4ZL2PN3qBC0AltpX73UgYB8RfOC+JJVcU8NLn2Kwq09dceDye+TgNTE4356fTmcfjmWGaMKKj3JQqNNOFbhDnFXKlrAsffvsbfjuO8O1fcXd7z/3dHdYNhMMNrQlu2mGmiUrDjA6C6whRP/cl0S5Hynrh+Lvf8Nu//T95ev97jg8fSculc6ks3lusFUR0yxZpeK9exdRCXle1EmLzzYRlWTlvXea2gCD9xmh47xmHQUUFVthNg47ZSuk3UCHGlXVZoDXWuDLPMzE1nBdEbPd1Xql9vL6ukbReqFk53b2HJeUMy6qotQVrJ3LVMJnSumF7yv3WMzTRBUwN7wtljfjBUErmcrmQ60qpHrGDKvDfvlVKRwh8enzkvCw8PlzIrWKrWnOVps+9tKq8tZ/Q8V/+63+htsKnjx95//4Dy+XSOcO6mIsR9ajdRDds48gNqmyf7Z1/uBS9dtLoP/fPbOTX39yoHZvVWbcCa6Wqxyhy3ahBC6dpChqfPniMhZQScZ1JcaW2gredhuEd1lq1W1pXYk4gaptknL1uBsM4cNjvEVkJwTOOA947MIZaCuqq0VjjFghwYRpHgvPq+yuC857gDN5oSp6zlikMBKdrkDOmb4ZF7ZusJQRPGAJhHJQLapX2tcXgigHrGtYrCnv1jO5vupkoiqzOF+qvqZrH1vmkm+OIvg6l0y9yLsSoYSwaLqKKd7Vo1KSwZZlZ17kHjyjq5r2O5KdpuvJXW0fBStHHnXJhvigiP+40jW83jeqb7S05WxCnxY6xTMFzu5847HfUmjm2qA1vyWRrtBgSTXzLSZu6UrXMEKPFtzrwaCGnnM5IqTO5ZNZlVlHnEAjGdOGW0nLKZm/wA1f1v/djQ+Tgh8fPW+Hwx7RIX1KkfqgAf104b/cBpmGdU8eMt+94/OqJ0/HEusZOF2jI5j5hdCoi3cdya/LKFbku1KK6IXl5Vorevp5itXpt4lu3dixJKKIUSmlVp6VGBZ6bAYE0SGtipnv3i9WJWi0IVfm1TimkOEPpdB2Qa3G4+XWU0oW0Yqid3uPcoDMcIz1AbfOkBkT0+TWlK7RaECmYVmlkkNqdi5SK8aJB0EK7ohPtVAqpN7Xb/VtrJcbIfFk5Pp85H0/kNeHEEMKIH3YUMZzmdLVwpDRa98LepizXBkY2e8mmm6yY/vrrWmWMINKRd6Tb7bYeKKqNjAFFi6lIqbgKQeiFsmUQg69NaRpNcJ0opr/WgRKj9eTWPGzAiWwTzPZSOG/X9uc04X9d0fyjEebXI57XYQH6fkOG2J5F7+r0ghExKvIoHUsxoibYbngZcxrPeY48nX7D9+/f8/R8RIwwjqEvxIFxCHhnkGKZgkNqwxtBWiHHRrMK129ege+++Yab2x3j5FWVTYGoqEvNmU8fPvH9d7/n6dMz65IoGWiCVGEaRqb9G2KpDOvMnBNhMuxvD3x8uvD9pyNt7XZpTdEJsY5cC8/nCx8eLIdBEZLn04WHpyOHw4H9NCDiKDUBjuAnrA2ktGiUszTOqfDrWlmenvnmm29Yv/6GMB64l4x4zxAaHsAaim8QKsRMvSxwWcjHZ9bHTyzPjzy+/47vf/23xDQT17N209Yyjp7dYWIY3XU8ZJ3DGkfNibTMlJxppfYCwLH0pCDlLibtkq+IhBB8wIUAKAI4TRPD4KglI6jIY11mSi2cTye89+SUSTFRi+H5+Zmnxyeej0fWlJBWyUmjts/HE9QVZypjUH5ZrVpM15opLVOBvQUbrKIWqONKSopqt6puHF6sipmuHKuXYkOMdF9Kx27nNpMI3OC4LBFrnjnOK5wulCVTo3LLKpYf2Hv+XR9/9ctfIiK8//4933//Pb/77W9Ia6Tlgu08UeuMBgE1gdquTgKGfp83HZ/rovXlCZAfqDd+qLTWr70UwC8pVzrCNH1U2UfNXZT1Qu1Q27fdNHLY7xiHASOVOS3M84WUErSG8x259WoRt8wzy7qQciZ0kR3b5ttej7RVde+8xQeP864DCPo4YsyczzPPxyO7cWIcRhg6mmw8thl802YjeM80BEYf8NYQrLtuiqWpQMqFQV05xhHvVZhWiiEWRZfEqsexdUIzlVKUQ5yqivVUDKNUMQ3oULT3OtbuQ4Fae9vT2rUwVupFp1qlbdxbrk3sPC+sy0yMKiASozSsaRo43OzZTRMhBB0pt60AX1Ffa0Wo58vCsixMO00Avb294fn5pFS37u8cBsfd7Q1fvbnn/vaGXBLOQWuFdekBFMHjnVEeZcn9OapwHCClHrLUXyfvHYfDHoxlWVYt4lNU4ME6xKvjgboh0ZPZtlyAn87x4iDzh8Xylz/zT7loXHVLryvUXoxv7iv6lRfUzxjDNO24f/OGb775hvPpxLouXE6z0mlMuwZ1WOVQ0Nk7mg4XC6kH7FSlPmM6zQBqL3pgoxb1cghDvYrEakJpNrap/2FTOzNp2qBOY8AZ1cO0okisyFH//2nonPV2Df6ZhqBFt9voJ2pbq+h4uwqTTRN1qhHRQtnpuqQTra4Z2Iq1TttSEKAAuYsStWBWl7dKboU1p57sV7u9I+RUiKsm66aYyDFRSiXGxPl85vR84ny6UFIhOM847gjDhLGB85qUrpgzLZduQSnY5hS5zkX3Q7YqkytXGGN1H0BfHBEVUfcr42UCXAo1FxUXinKStYBuuAaDCIMIQQTXwNamgS6t+zb3v4duL3quXl+jXxjXbBahf3CN87LbvC6at8//1ONHFszdCmaD1u12I37+4PQDzQ43hq4mVf6d8pYUqTKiQptxmrTwaZXzsvLh6dcscb3aGUl/gs4ajKjKVarBUvBGGP3ALgS6dhDvLGEMOHdgdzhwe39P8JbT6cTp+IQYCCHgnWOdF37/2+/4+P0HUlTrs1qA2hPgxoGvv3qDn3asrfAP333Hkgphd8Owv1Ct8On5TExN+UBGI7xrhiVnHk4z+6czfpyYni58fHjm5nCDE8PkPM5YrDUMg2UYLZgMOeOMYFPj8vCBT8tMfX7i/P49NgTefvMtfrdjurthPNzQvCMPQvMGs2bS8wk5z7TnM/H5kXR65nJ6JB2fcF55UOKs8iqnkXE/4YagYhcjWO+xVohNRz3qhyyEYcQaz+l8UVeMVWNDW9vMyBvBO4x3ar7eFAWehhFruvAHtdg5PT+SOx9qmm5QfpZa8Hx4eOT7Dx85Hc+0WjQVKNfOac6UGBm84NBCrqVGK7AsmRovSBWc9ex2TrnRNBBHqQs5r7ppOo8zhpIbMetCkXPFB0UUp90NfthRm/KVjankvCLsGIPHi2E6XrRRYqa0REntymX7KR1v37zlsNvx9PjE+/fvKaXyu9/8lnlNqG5Nz6cVVZWVHPUXpY/bXyM9fFkGdwT6StngM2To+kV5QZGvYo4NuUJFwJ2USjPbbrmZ2FelJ4hGpA/jyDgOOG+hFuK6siwLpWhYkHMB78M1sW9ZZpZFC6ZhVOqAWKPTCTSGds0rS15JNWlkr1d3jZwKSjTTAm9eI6fzzPmwsI8R25X61jlVgpeCRdQOzhtC0HCSMQxXhDnXirUe5wPDOBKGoGp/oxQBUzy1GTAV60QLZgppK4RrIVP75mEV5WlaLG5iPx0U6MfbK1Sr/v2UirpepI2GkRWlj7mn6C36lqJavxmdKA3DwOGw46YnbjrrSCVTm1ByY1kSpUSaVIaUWdJCTImhFsQZDjc7Djd7YkrEqI5Eg7Xc7He8fXPL27f3mrrWEjlFLk6TF5XqYhHT7fZQwKR1H9xGU7ck9DxYC7v9iHEO5x3rmqjIlZO7FUnGGIwtXaOibz+towNY/CG3U49NBLo9r9f0i89BMf3pPmLfsN4+6am1vEyer29gfWC33/P2zRvOX78jXk48tMIyL7QeXuEMPeBHi0npzgu2FqRo7SitEMxLs0fVR1DlxQh6ewqa+6CvVSuNkrTBL2Xz/N5qBMdht2PwhhQvxGWhZBWDl6JTqVoKdBErVgW3zunkwbSCaxXbCtJsP9VduGssxqk9qun7rMZJ65RDxHS5QFMHG7ovupTuiNErU6lQewZC1UI5F7oQVXnGsVSlCPYGN8dMyYVlmTkfzxyfz8Q1MfiR/f6Gw36vibqlcV4Wao60lCBnpAold4QeDR7ruMQVpTUVTC3YpmKEQsU1MK2LmfvDVkpIVWecWnEIQxVCVWTZV9gb2Elj12BsDd+avu5VaS9lux4NVKu1SelrpIBq4frC1XqRvcHMG+CyXbf11abzL2RjAD+2YL56C3bFaut8oF44l1KuSuJt9GC72E9M9/OsOjoMzjLud+wOewbv1DpoVqFXzKUrq1Ww4b0gFGpaqdZQUiU3wbTE6A175/CiwplxP+KCww6WYQyM08iHT48cn56YLxdqzurbORXWtEJrxGKYoyUuhdHLNZd+HD05XqAs/D/+y/+T6e1bvv2Hf+TX3/2OWBr7+xvczjN8/5GPjydOp4Uc+ybuDLUZTinz/umCDUf8OHLYP3O/v2FnPX7XuJlGZF2YAxzuAseTYX2OmNxwxuMFXDS0Z8O6RIbdjk/PJ8LNnvX2Fr/bUaxQgsEOnlCFdp6pxzOhFPbGkLE0LG3Yc4kXDJZpPLB/85bd/R0yDER0CuC83uR6ZRlyKuRUCW5gGvfQhPk0c3o6EtdV/YulUCQTvDDYQfmf1rIbdwQZmNOZGCP7ww5vHaklPn14T66FcX/Lu7dvuSzQZGFOmafjzOm8kJYV7wO5KCJhjXpil9SQZknGYovFNoNkS6kLqSYukgk+MU2FcTSEMTD5Eet3iDkT1widloERxmAwNiCiVnMlrcTFqO1VM2p1lCOuJUxNSJ4ZJXETKmXv9QY1FuaMZGhZgJ+OQGgcJvbTnv/8v/3feXx6Jme1C4y/+z1xXrBF/YpNn8aVqj7GOhVt10QmofWRGy8ctu3YxGagiPQXq9YLkmX677XrxELdG5TChDUaKV+zoi9dGWJsR5CMMA0qojUNYlZLshgXLah96JOngIhQUiGu6obgvMe7geBH3BgorTJMEy44UsvEEkk1Ik4Iw4C3jigZQfmKNVeWufDsZg77C9M0Iqbhw54pqBQRzRSgWaG5Br5igoOw+bt7HAbrPC4EpTVZTTtFGsYGTDM9gKT2Happo18rqSebNbThR1S4WdmcMexLk7GhMR15Lhly0qjrrWjeRH4xKnd5nmeWZSFGPRdNMiJKg7m9veFws2e/m3QCiBZVBm1S5vWR0+lZ48pHz/l8YV5m/Oix3nF7f8PXMZJz4vx0YS2Z0Tn2o2e3G9RxR4ScV+K6dOGwTiabNBVWGSglY4xjNw3dmz+yrpqIpp6eDucskw0qsDKWXFoPi1Hk0Hef9SrQoo7I60/MX73U3JvO7m3b7zFN6uuWf6WgWSCd620c9EZDP3+xlTPmZa9/EfX3mGPpFBhrNXJ8myBPA2/e3kL6BptmQo08mcoSlZ4htTFaz9TvM6VIrCyl4JOGZVHBldIFbkCD0lMCa4O8CTKl4a6OFnrd1ZiokgAhWNtH+lwdMabBMrpGNLAskZgqa1m7HZoWv9YH3FCxoTI6q18zluosxYqCg5ir4NQ5h3VBecthwIfeoPdQJBGrotKmOQkv96ZA3RwytM6S1jTpsAg5CbXqXl6K0ormpbCuhbhWDQ9bVnKMxHlhvszENWLEcXt3y9s3bxiHoHqVeaHViJGCMw2HapBaKx3NLepS0YBCt+YUcLreSI4KYoqKLSV3caPr1JluLymtYoHQGmNtTAWmCpPAHrizwr037Az4VDAl6xRRtJuq0ogtU61gBk+zhtycUuFKxdWGrWAzSikp7RqMJ30facIVHPkhoZ9siMGfcPyrkv5e+FE/MO7pEP2m2tYOSrvdMAT208RuGhEjXJaFuC7XLPmGjk7CEJimQe2hTNHkrtGxnzx3+5H96LWAWRMlaTTjfj8xTAOpZeW2xgWi8P7TA6enZ7VsqYa16DhJmnZ5u/0OamNZE63COOnINsaF0+mJx6ePvPvlz/l//7/+G19/+zV//9vf8nieGXYju5sDu99/4rvv3vPp4URM9Vo05FI5zgvh8cg0BO4PBx7ujuyHAYc6V9jB44egHo1joK6ecppZc0VqZbSW5gutZgbnMM4QjC4AU/CYwSOj8m0Ha2njQrSeepmRkij99akNjPNMw8T+9o59L7jFORV5+YANQZGsnLqqXB1AnHeAMM8rx+OJ82UmpahBLn2E7p3yAHOpFIHgVETz/PREIfLuq1tKKT1lTZurw37PNE4sMRJj5nQ5M19W5U0WRYaQyjCM5FxUpFEb2aplDl1YUZpGdAtCLUJcCw8PRwrw9us33N7fsr9x7Pa3LPNCjlHH1BWsDXg/YJ2jNbRYyIXL8Zll1THY2sfTcV3Ia3yhLNAYvGUcIDVHjYWi7LJ/za31b3qIaAH4i1/8glIKl8vM6XSm1MaH737frwNdxBV9gD4l6wgVfeqkaICizK8oW9fa+FXRfOWZ0fm1r+rrFxXHyxdb/52OcBm72TDJ1Y9T+zT1T221KVLZpyDQtRRWPYdba6SqfqO1gbPKuR+GkWGYmPYjNnjcEPDBk2oP0uiLr/cad23meJUM1Aq1FC7nhYfHZ8Lg8YPlhj3idMTf+ggW4YocmSIEUXGyEYsYp8LFYcB5f43jFoGKRaqlu6JTuzPIJvpRuhuvEHpF+wTbk1U7WN+6XV7nGpVcu5VWvtIwYlSa1Lpowbks+pZ6CqaIgIUweHb7gf1hx81h4rAbsWFQgWhOWKPFjSJfKw17RcXWdSWmxC4oTaLkSlwTHsfZXthN6tc+TkpPMSJXjvS6rtAUKNnimp2znSuqzU9tek2WmslFvaKrFG2Q7WZF2aDrHaxVRNB7j+mofKtqE9j4aYl5P0eP/7njNcXycyqGCtvkOjjbtEy1u0RpwdcL5n5tK1c9XvUnuynw9v5AXe9xUnk6HlnWBeMM0+DYjV5pRwhrK5js8a0SJZNWHdN3Jzql0XburxGNmG5NXTOEzu3fuEYGbOevO++6i4fRfdcIzjqm3Qj7PZfzhafTyrwW8lpYTOz3YSIMGR96RoEVWjGUrKFeiqxvIUWaj2B8UGQ5eJ3YeuXRK/ApV/pCV/3peZWmtIxauh2kTtJq18e0uukBtKGNUYvmZYmkdVWrx2VhmWfyomDgzeHANO65u71jN01YAymtlBxptfQAMEewfUKuK7c6w/Rx4WYXKhsYwpbU/EoUag0YFYTrWqg85ZYbg8CAMIqwM7A3wt4YbhzsXcPTkKLIcr8ClWZqoAgUY5DBMdzdMN3fYEZPSonj4xOXh2fMmhmMYLK+/hV6QGpjs+r8V4DKnx3/Ih9mtifV3/9Brbw9wP5PFTqfTrBOVebeewDWGEnrQslFv0/FNPWztdKQplJpI40hGL5+95aff/OGr9/cMDrD6emB5w8fWPuoNOdEi7CmlTVHvjl8wzTuWJbIuiSWeeHxeGHflOPccmZdVmgG7zViuZrau8FGronH5wf+9u//F9nBL//mP3LYBw67wJoiIRyYpgPjsKNmSGvhdFp6wIeliiaBPZ1PDI+W28OO+9s9Y1BOrx8CwQ2E/Q3D4czudsEinEshz4mlFnxJSFpZa8VcBsJuwraJ3CprXNVaL2dKymQxlMvM/PjEejxR40zOiXmdqa4Rph3jjdI5wn6PCwHjPdYP+HHCekfOGg290S6UG+qJMfHw+Mjz85EYI8ZYgnfkDDknjDUE72gtAspPX9bI8+MD4lWJnMtKShHvHAaLd56SC8fnIx8/fuLxcel8ZNHUw1ZwXhe8WpLaupWszhTSR9IItQpUpZuUBrnA6byw9oYB43j79g339++Qe/WmvJwvpJjV+cOp+0dDWJfI8XRmrYWSIsv5wtLteloutKL8yVSBptZHwRlCaMRm1HvzJ3YYY7i9veU//af/xOPTkzY5pbBeZp4/PZJz0SJ1Q4eVHM5mO70tAdc6d1uienhRa8Jm/P9alPHatuozG7lekW8iIOWXb6NXdaexnbtYWqPLVl5CTUr3B11XTaiy6oozjmrTJqJj13WdoTXCOLI/7Nnv9+xv9tze3zLtd4gzWtxd5s8AAu9dd8tYyKldC9qcMpecMUbdHqbJc3NzYBgTozUagNAqVVTsnGpGihBj7Jt5bzxwbA3G1nxfPUYNmuAnQq7KWc65XiO5tQFp180159JjhRVp1G1FR6+1qn1aipUYCylmctL3qYv+Xt6ijqpr6+EtHjd49ocdt3e33Nzs2O0nhiFgg25qxoC3VmOlm4aQiGy0j8KyRKaYmKYJ6y2HmwNfpcJgPbvdyBBGbm4PKqIMAWMM4zheX8eaC5tlnRWdZpai1Dpre9Sv7W4CpRDTQipK3bCu0XqYsd1sCnsXKLJ9rTuwdHrgT+n4HE3700qG6/3Vpz3XIrq+cHSvP0v3l2h0/YZgjYZO1JLIaaalhVYiVirTYLndT5Q4QVsxkhARxmCZvMF7HfNLNtjRgAtED4tNUCA3SBlMoZtGvkyzU6cOBA+h0zs2/rZx6u8fwqBpnlZjnpV7KUzTnt0Y2E0Lxh5pT2cu88x6XhU5dt3r23gcHi+BKqKuGU2oBrJrfeIlPf3XKh3DOsRafZAo8i616brYg0GMWDDtGmFPv3+VciadqvWyzpZaO0VKG9l1XYir1lHzMjOfz1Aqh92Ou5t7plENDrw1tFYwRvDOMQ0D4xAJdiXYQrKtW4YqJcT1Nc0gr9ZmfSoWwWFxxnU6VKVZRdoLrVMn9DQrT9kwGsMI7Ixl7xyDqZgWaSnr/gBKv2iQmnKrixPsGLj5+i1/9Te/4mf/8Vfsv7pjjSu/+ft/5B/+z//J8ftPxDkhS1YBde37TVWVjZ75z0Wi/9LjX570B68EMa+/9/LBdoq3F9p279FhCDTgcpkpKXa+cF+tWsZQQBo5rdS8EoJhdzNye7Pjb/76r/iv/7f/yNu7A+fjA/+4njj35LjSAz+kJsQaxjFwOBy4ub0nlcrxNPN8iZyeTqxF+ParPcMwUWJljfMVSS2lkHKiVI2eLTXy3W//gcfTA+8//Z43775h7YlBu92Od+/uuL29w4kKe7777j3n06zKVRFig9OccE9HdtNHpkk5wlVgf3vLm9uAm3YM+xvG/aJRmdYyny7UVGhiNbkvFvLzIz7OnOKKOx2VL2x1hOutxwN1jeRlpsUENamdzeAYbyZ2N3v8bsCMgeYcOI8JA36acH6gNt3I1kUL5pQK3gYMluPpmYdPj5zPZ4SNB25oNWlKkROMaX1Mp4haSpF5PjNZRyuJvEZyjPghQBOeHp4o1fPpw5H5dCGuWW/OpilFpnfvGEvJa0f7MtYZ/Na9S6MR9LFXATfgd3vcYKkUTpeIfHqiNOHtW2G/2zPu9oQwkRZdaHQmrWNq07rl0f+fu//ssiy7znPBZ7ltjwmXpqrgSIIiKXLcH3D//7ifum8PXUnslkCgAFRVVtowx2y3XH+Ya5/IAiQKoKjbrN41IiMrTMaJbdaa852viYm4LCzTyDxMokYuY+r1gQQpAU2JfDcqY/S/wpP5f+dhJK1SacVmv+OX/+6vRdDpPYeHR/w4Mw8jIVO81K2MPEsXr/WqWi/VXRmDCRosq8CFU3bp9i8LBbCOeD8bk1FcR1Ii5zU9UtKzlFLiXyw/Sq5DLgEHGcgaHxNpjiw+gBZleFM7mrahrqsSfCPc3KYSG7R+s2Gz27Lb7bm+vqLf9iwxEA5H8SH2vghgBdmyBWVOKZCj8J19ioTFE4i4pmJ/vWOcZ+q5lkmQVsWfNRd0WMINlrBgxV0Wi0Zrj46WEBVarP4Lwly8WQtX2cfAEp7jcJXWWO1EaxIzIYcLLzkGmahINjxFtJUJS2RZhJqyLBHvU3mLBW2OF+Q5lmfEWoutFN22Yr/fsNvu2PY9m66laasyLg/Ftk8oDtZoNJoYFX7JBA9+yUxjoGkCSosTzdXVjraqGDc9Rhs22566LjxlSnFs1hRBeT1VVYlLUQlwiInijGFxqqQO6uJCNsxM3rMsQu3LWaOURWnNGsQRY4SSOHgRt8UfXyP851rhfe6qsaKHq62Y6FXS5fyjlBSxOROK+0EWEiwpLBBnkh8J85m4nCHOGAKtU4TGkqM4SlU64FTAAilHKuWxLuMqQ6prlkaRQiZGmH1k8gmfBBRZQblQiuP60shaeT0ITUQpQZf1xdbOlEGPXPuq6nC2BVWTcKScOY8Dw/nMKjMzGGpTQ6VkKhud0PqyCB91Et/jkCTBTuUMRtx0slo1BAVQyCUg5DJdW60dJUAnKwlwS/n530xZxLzP9o5zEeDOIsCdZ5ZJ6CS1tWw3W66vr3DGySQtLOScsEbTdR0oy+k8FyFkkhY9S0CRS7lYwK1rOBeDDJ0VDo1VGqelGdbWkLXkMKSU8Vn86cmJOisaFDWaRikqpXFK48i4bDA5FhVIcR6xsklknchOY/cdVz95yRd/95f87O/+iu3ra8Z5xlz3TDoSjGL48CAarCmRvWQroBV2VQVG+NfQFv2LEOb/liXUH36N4tn6I8Us/oXZoo0ho4hBUIvkffFmLN0lwqdZN1xrNftty89/8pq/+9tf8le/+Ak/+eoLLJHD/Tti8LRdB3XDMJ44zyOVMVzdXNHueq6urqmaDvQjISuWkDlPnnE6YE3Lq7tbtrsbqmrgfHySbod1301YZ1FK4ePM9DDweLqn2+ywdU/WFdurO14ax/XuivqXf0Vf9/T1b/nu2+85ns5MxS4qBc8cAg9PR7qmpm0a2q7j8TRQtQ1909BsttjDkZwjFQldVaQloGJCRSX+qsawpMh8OpDOZ2wtokmFRidw2gjvWWtcU1M52cCqvqbatNjGgdMkrTB1hWta6rbDuoqUxW1iHGamcWaefOFmGeZ54elw4HQ+yyJXiuUUxZ2iqsylEfIaSR2MHj+PpOhJMTMOZ/FrTQk/Lywh8vh05nDy3D9JkIFCUua0NvSbLdboUjBl5nkSfmHn2Gw6uk2Lc5YcAyprDDUkV36nDZt9jzIlpRA4DhNLuKetB/q2o60bckiSfJTE31k8Wj3jNLOMI3GewQeyFxqG954QMtiKHFXxvTSQZDPX6hlB/bEcORT7oEK/ub295W/+5m/x88L56YifFr793e/FAhAKp1YKv3yhYz0LK0R4c8GJWZHSZyHGM8J8oWtdCuaVxvX5oS7NOTwXekKtEBQDJX7m1lSl8BH1u/ceBThXUdUVutjI+SD8Tm0tTdvQdC1t39H3fWmyd7R9C+NISk/MU+EETjPkhHOWrm0JS4Q8MY9STKSUJAFr8JxOA8fjmdNppOs6aiueyypHrNIYlVjjUFThG+uimhF/1QhByahSF1Qf4RlKRG6Joy7IsSScmnL/rZ8X68rgxaNVtJL5YvMWvHAf59kzz58L/Fb0ar5wlkMIl+K0aRqq1rDbt1xf7+n7jq5u2WzFnUQU94bZacwiXHRrhWoSUyYs6VLID8OENnLNdrsNXdey7TrCzhNjpK5bmrbBGFMcbPQPirmsxW3BWSuBLkqTUSjtLgipNoWaojXaDKTDIMmry5pO6lBFxxB8wGuPMupi0ZVSKnZiP57jv2cX9z/4rj8Q/D03tKsgcj1WT+CQPgvJCYEcPcnP5DARljN+OuLHI2E+QxyxytNVoJJlCQGVgiDRWYpPnSPWJCptsLVGd5I7EEJm9oHZi8ZJpozSRMcsRWflxL1Ga1MooJBQIuSLIoxTytA0Lf12S+MqcjYsPlM5x26/wxS71U/39xzOB4bzCXISob6r2DQt2dWSilqEaRlf3JwzIWcJJksJHyNJKSyxUAeLKJHVE1oEgymulC6ebRFjJAYR+y1LvISHTfPEeThzOp85n88Mw8B4PhP8gjWGruvom1biyZtGeOEplIR3BVkREAcMrTSVdTjtmXNApSyOFUqXtaoEUynhhgtIIgVzpQwOg8WiS1shE96ET4qYNRmNS+K13GpFjRKnoCj8d52FdirpiQrtxEoTq4gOUmNp73Zsv3rB5osb4tZxnwfOYcB3iu1P7nhJJNzdYM6B8DThHwbmxzNp9JBW279/nWb3X44w/w8fxHVxl4fKBzA64JwlTTOpFE5KGzGX16Ygc0F4QRpcbdhsWl6/vOOrL16z6Vr8MvP4cE8KE4+P9zhraK72zOPEcTgxzzO2EeX0tu/Fg1OVVL4EPsJ5BEvk/fsHnK748vULrq87yOCDh6RpKiMG4WWzkpx4mJaJh08zmCcwDcfjyDB4Xrz8it3+jld3N5wPR8bjUcI5UmIsD+6yRJ5OA1X1yGbTs9vv6Q9H+m1Pv9nSbba0my2QMEbR9iVCMiZUyVUnPiP8KQt3qK4qrHJYDM5oaudoKkfdOIwzWKdxnUNVEq6BkfQk17XUfUfVNGitWfxyEfacT2fCvOC0JoTE4enA49MBHwJ1VVPXFYrA5AOKRNcJh3peFmYLyihy8oRZQkrmOTAMJyrnqKuKmDLEwDwuTNMj7z8eOZwD1m3IuqKqHNbusFYzjUdSXJjHCWsjfd+y223o+wadMkv0oBWmqrDa4uqKrA3a1tStK+IXSRo6nSfOp4lTNVDbCgvYHCHL2HpZhKIzL4vQhZZQhAsKs44llfhQTwHmqFiyxSdLTFbGuf+Sh+r/h0cG0AatJLzD2oovv/yK6AOHxwOP948cn458ev+BQhcGFDELGp8y6CIALEznZ15eBlQui9YftxJCt/jMGJ9ndEsXnoMIlp5HrLAKjFX5XkoBJb6n1lYodJkIRJwRHuNaLM9hIUUPhQ/bNC1VXVPVdXHYaKhLWMg0zxf1/HA+s8wzWhm6tsaaGqMsKh/JccD7WGLhxRP1eBq5fzzQbTe0fSfTGFvOjxEVeFo7iWKFuVIvYo6oFIhzCSkxz+lgKUu4ilKrX20BJnJxqYrCzQ7es8zLs3o+5osHcyohQ/O8MI+zCIaWVArmRdaCz4rlGKVYds7Rtg2bzYa2r7i66dnvt9S1wxkRaFubIRtSbXFLESwWVwRjrHCJL1HbmXGcyyQyU9cVTb1hv+lRKIL3gg66GmudOCho/Yxy8hloU945Jw4FuTgueO+JZRTdNK14WXvxz198FN/7FCEt5b4WH19t5fV578v99uMqmP+IK/k/OP6QbrnaO/73gk5SEivNmKXBI4vOJi4jcR5I84gfDizDgTCdiPNADhM6eWoLujGYSaa5eJkui7eJeCZbFWmso3IVOUnRuwQtDi4J8b7Pz3s7Sp5zcUjJklCH2K/FXKKwJ4/RFV23Yb+/pnI1fl4Yl4jSls22pd91tH2FrRXxredwPDKOZx4foa0tfVtTWUNlDbY0b9oYstbl1cs9RMoM04y1Evi1rmGUCaYmXYDCFAPRe1LykASxDkESdr0XHc0yzQQfGOeRcymWJV10YBxGVE60+5br6xu2rYhvrbWSfeAsyUpi4jjPRZewYLVlu9mwLDDPJ3TO1LZGeQHqci6ibv1s82aypPFVSWKsneJCh0yFHqZj8TCPohNsjaJVmiaDzQkVI0aDVcIlNzrTVI6rq72Anfse1VfMNpE6R//qmqVWfHP/lne//8TpfMQGaI3j+os7dl+03Jie/Djx4TdvePubbzi+eyLPHkOWtOF/heNfLPpbu89nz1QAdUnxyTlfUIBMiW5UiuAipoy4VEpYI2MzbQ1aJ0w26CTxjLtNy9V+z7bfAPDu3Tvef/8Nv28sm7amqTSbzZa2brm/f+A8DozzTJ86tFbsd3tMVXMe5UYbzhPeB7Fy0hUhKN59fKBtGn7xi59wozIhigm/NorFL8XVA5a4YEjUtWXb9GjTchrEIufju3cM55n91QFnGxqrubvaskwDwzRgdJmCJlmgD6czbz98pGtbmqZht93Qdx1d27C7voIciJUu/tKOylgqI04P0ZekI0RtW2aGGAyVrmicKz6xlqoWgWDWiawz2Yhhu7JaCu0y5swp46NnGqUomM4D8zhBSfabx4nHpyfOw4A1jn7bo3VmmWWBq2vLpqtFoGkS01QKpujx4xmThbflp5m2rok+CrJXd6BaPnx6IvgFlRXDcATd0nQd282GqnI85pn7+3dovaBVpq0tm15+Xo7CZpsn2YB1KeQWn/Ah0pqeqmnwQaJw58WzjBPHBLWr6StHrYuwx3spIKalbJJrEERCA67Y2hAiOUL0iSUgmUxZkLyUhTf1YzoSFKvHwl3UmrptePHyJX//D//APIwMxxPzOHE+nUhIoTxNk1gjKrHqEraYkO0yqaCMJaDAqIvh/FrYPI9/S7jE6uOZIQShvaziQQGnC+e2oC9ZFXP8IIp8oiJFOB7PKN3J4h2DWEGVTS2lwDDJ1KNrW5q2lnCQWtTsddvQ9R3u4twjiXTDMDCcB0KI1LWIeCDRtBXN1JRiM7MsElmd8sx5WPjw6ZG6bdlud8Lt7SsMEGaPpng0VxUpgS9BDaLoVszLIiiqEnstXQrqVFDmnCXxa+1CYoz46CEmlnlhGsbCOU5EvwYbIGryVEa7i79YUk3zylteGKeBaZo+swwTlL6uhVu83W7Y7lp2u47tpqN2FqOhdhJUFFOSyG6DvGmwVsJYTGlopnHBaMcye7w/oZQgzOv+0W9ajOqISaGUQ2mDX5YLh9kUCoUvIQ2q4hIzLpQBjfcL53FgnqdifdfQty05KayusMoyjkuhoyzMcyBpRVN3VI2crxCevbh/TEcI4bkJK8/c8+/wx0WwCCeFk7pSF9bmdaWjrN9/aUSCF2F2iuTkyX4mzgNhOhPHE2E6EeYTy3BkGc+kZUbnhC6c2KgRJDgHcsiF866wSmFVRpPROZOzNEeVSigj4R4hy9olKKkV+kKcyUljXY02iinE4gEeRQAcMrpWNG3P7d0ruq7ndDwxjaNwkLXC1IaN3ZIrRXag3iqOpyPn6cTHR3sJ2DEGUg7YZNHJUje10BIWTyjWaUaDiQmtL/wRaTzRgkJnESSLjdsiIUBRUgdTKZrnRZ7TeZ7x88IwjpzPE+fzwPk8MI0jMUa6pmW72XN1dcO2bSElQgi4wvHXSok3+eJBCY1zs+9w9QZrOqbRM6UFmwXdJ2dyklV99UW2JdhHZSW/Vw6oEFE+Y0wiZtApYaJoTlAamxWtNpIZkaJkIWTAWVIROkoy8I6f/uxnfPXzn9Df7pht5CGOnE3EO/ju4T0fzvf8/v03jOPAvun58uoVL9srAb+UxfU9L27viPdnzCkyLEfmeRQK7GfTEnn/POX8U48/q2D+gYl5XpO71xHODx++NQUmF9VKTmJIHmMx4y7dCESM1jiKATiKqnUSPrDdUlcV4zjx3bcnhvMBqxIv7674i599xcu7O7Zdy/2nB777/j2f7p+keFoWpmkkxUUEgOPAPI6kEFBZFKo+JIiw+IV3Hz6KYKWrabsN83wWb1OjwHuygl47xvFI2zRs93uUblF6gbNnCYnhdGI6z2TE9qp2cLPv8VGK//MgHKMcBVF5eHjkfSOK8pvdjuvdnr5u6dqO2PfMY4KYZYypDdZU6Kqi6twFTROlrTQuDktlRGlsrEVZsE54nTKaiuL3WPjhWVFEgjM5SJd/Pp8kkWkcCcuCSokpLwzDmXGZMdbStg1t0xDjQlTCTXRWU9VGQhRUxigpmHNJV6qcpd+3NE1XNuQAecFWjRTmGfa7PX22HE8z4xLpGsf1vud4fGQ8P6Gz52rX0beOTdfStRVtbcnJkGLkdDpzOk0Y4+lQ2Mqx+Mi8eBKSGrjMnrgEwhLJIZGXTJoWRsRgPUbxnvQ+lAAHiRcV8ZkkiakkZ7zkGQm/K2VyipJgmdZr8uM61ueVQrFIQNO2vH79mr/527/l8eGRaZz43ddfczoOpBRxtr7Ql4xzws2NguYLB0Nj1bpJyM/RWl/4Vp9v3isnd72fVSmGVyU8SlwlVi5pSpKkpUp6XYoiuB3HmWnytJ1MaYwtri9J9A0xLIzTiCLTdx1VXdFtNvR9T9d3NG2JdFaasEyM54HT8SiWlDGK849CRsdaUdcVbRsYB49WJZY5rRSJxHCeeXo6CRWrb2hqS+2s8O1jZloClQ2AxmktFnBJNnZVaAxZFdGZ4jkGnFzQ9edx+AWNmiVUZBonQggy6g1REJ8sRF5JxUv4C/XCM04Ly7wwL1NBlmcR/ZTXUTeWrmvoNy2bbSO/T1tRV1ZCYEjCcVSRgExttBLB9sWuzVp0kpARAK0MOUvkvA+LBLo0NZu2RSlF29WAI0bNvHhCjBcwZnUQCT4QQpAo8oL4Vc7h6oaqrskKHh7FHi+lhLWOunbMowSppFKgWGtZojRkyzKLPVpctWHF1vBHdKzPCFxwlf/h8cc9wWdJgKU5S6UQi0H4yhISH8lRCubsJ9I8EMbTBWlOyyC0ixAQT2uFSlIMGyi5DGtxJpxaGdfLOiBsVAHfDEJ/Ugh6LFVzFDqflmm1UkIPkGmLrOU+RLzYhpONpdluub17Sb+beXp8YprOJBNIBrSzdLbjKl8zxZmgAufTwGk88umpomos1mmMVRAzJqrC7xeb1ULfxZiMNgmlitdykqrJoS57yXo+YhItgub5HC9egoLmaSKMC9M4cDodOZ5ODKPYximt2W/2XO12XF1d0baNrBsxCk1wNeQAaZbRZG1wjaNrdsSNwugDH94/sIye5COVLUE/qqDhijJlpVApFCZpjA6yF+pcrqeIsHVBl1VGbN6SZDAk79FJptxrM2a1pq4r6rajbhtsbYkqMSfPGCYexhOH44J3MClfvO7E8ODx6YHl05EPi2KfWva5wRxFlB+WpbggiWg0qR9OMf9goPInHf8iDrNsdKsgIj5vtitjMZc0rrwa5AtnJ2bhDipjflCEaKCuKpx11ErhtKSLLbNnnCbmWVKhUoj89Msrbm9f8uLFF2QUv//uHW/fvOXNm7cczhObvmaZFx7vH3i62lPVHcfHA+enR+I8y8OtNEEbeT1T5O37e4xR/OynX1JVFUuYAVlYc6G8101FzhFrhfPUNi1tf0P1NPL+wyPDMJPzTEqCpNTO0TaW26stKI3OmSFFlhRIAc7nmY8fPrDtKm53W262G7ZtTVOJobpFxEXSGYqQx1YOrSxN3cimXkQBRhucqTBa0GUhzOdCOFptpEToo/PaUQkaqwXOI4wT8/HMXLhQKXj8srAsi0Qlp0C3adn0G7TWpGlBrQVDo2hqWx7JcNkkY85Yrdm0HVf7a6x2PD4+yEg0RrZbi1aGymVUtkTEv/KubtnudsQY+PTxiFELX7664asvX3C93xDDchF8xZCYpgnvF4ZhwNiIrSpCrAUpG0e81yzLhJ9nog8kn6RZiAtDiuTg5SrnVQ0fS4Eh5utKlaYvxmJhpi4byKqqzyXBSIrBH9fOmpMMQoVUIaM1Usa5mru7lxiMhHMEGen/+le/ZhoGum5D8gvJCyKvy1hW3qQxVgWp0jxz4VDPKLyky4WLTdVaLGutMcphrVsF5uQsKXRRy5pTVRKk463QDbTWeF+M/EMSqyEtMbfDeWQZIzFK6EVTC9exaRvqppYAn0LFEOpGYJxGDseDTFfOA+SMLZHZOUtYh3OGFGEcA+PocVNA6ZmMYomZOHjM/RPt5pNMfZxl13cCxEehTOSQ2fZAUxfUVImHqdGk5IvTRbhEZmutS+GSCSmKSC1ElnIdlmVmWWb8sojQL0MKiRiEYpa8/P2S5ldSwuZlYZplvV1T+WxxGGi7mt1uw263Zbfbst1t6DctTW9paidFMQpbNjOVAhBRJa3MGlMQXse8iGJrTX1VypCSYjhP3N8/st32XG03BN+ilKGuW3yAxYcSXCLFbVUaG3Hj0GUPEWGXJL1a6q7BOAl9eXo6CN1qXohBEPnaVajWCCd2LQ7nRc5nGIUOhIAQP7aCeT2eEeZ/vjJYnTEuk+Gc+eGezqXqFs2D0IZU9ORlIk1n/HTGj0f8+YAfjoRpwA9nwjSTfCDHeLGaVTldYpnX/wwItzcncgRURmmhOqUietVJivSVCwxig6aNpbIVaEvIwm/3PjPNgWEKYheXFFF7DueRySc21zd88dMt4zDy9HjPcfjEHM6gMhUNO+PwShO1Iar3zMPAx8MDxhmU1WST6VRPnRUaC07OX9KZHJVQsJRMhD+n9XiRKiAOL7rs0UINkufdF8Q5MM0L0zARxpHT04GHhwfOY3mNdUPbNey3G7abjXCWlRZf8ShIZQpCrYgZuc+zRhmhcW6vbnCmIQTxSpdQo3hJKSyMOowqMdWl8NXI77X+DiqJyLhgLpgVFMkZW+qf1VJTehyZ/qkiltYqczwdef/hAzMe1VlGE3hIA+/GR455wV317F5ccXV1hTMGf555uH/g3cOAOi7scsOras82NaRxuNga6nK/fo5jfZ5++ecwl/6nKRnPjM0//qnPD5ggcSllfAglhqDw7kJCl+7LWCdJcSkwFf6cj4L2xZCFJ9tvsVXH8TxzfLrnzfdvOB/PnM8TSjvarkNpxfl05unhkbZZOD4cGA9HsvdYiu2LqYgmQUrM08z7D5/YbBpevrjGVTXeC7riqrogOIq+36GUJHqlpLi62lM3V8TkCO8/MY4TWolx/mk+oY3D6oq+coTKkX2FijJmUSkxnicOj088fPzEp23PtnHYqx1WKWpbia9h4WBr7dDOyVi062jqBpU1WYEzTlKFtFBbEqnwdiUkJiYhv6OkYF6J/DqDjoKwhGFgOZ/xwyB8qhQkMniayDlSdzVd1+GsIyxe0Fagqhxda2lqU5LwEgqJ+MxJYVSmbVr6dsPxfObx4UBdNXIf6JF+uydmTZiF/9Y0Ldc3V9RNzfsPb7Em8MXrG/7yZ1/x069esekbPn38wOPjI+fTwOKFr2mKEb/3nmmaaOaKZRYUgGzxs3hUkta4zkBcyljRe9YUq5wEkUhFEa7yanuWC/dTuFnRlwU9q6LulUVPJVBZ/dGz8G/6+Iw7C1z4pNYYXF1xdXPNX//1XzOdzgzDyDQuvP3uDUaJ2CbmTAyLIHUkVmcM/cMV6lJoSm+SLqOxFRVc0eV1EUspEbIvG8oazbsmrq3iSlVcO6RXyUlG6MsiXNeqMuQcGceJlCacVdS1pe072k64yxSaA+V15JyYZs/pfOZ4PDKczgTvcVYsqdbJmoysDXXT0PeRec7Mc+I8TBKkEgLeZw7HiQ8f73HO0lQ1KmuczpgshWVeItFH8naL7uyFSy7rZyLGQCybmKvE33X1ePcx4IMn+MDyGfc4xBJ7G4uOpBTMEkQkTh5+EQTLL54QfEnYmy40DmOgbhx937Ldbri+3rG/2gkdY7sRr/pK4ZyGHMWdSJXpIhFUkhG7FbvJtq44Wcs4j6CEVzqOI03fstvuOQ8HliVwPA6cTgNd29B1PVX1DNSs94ouPGbILMtCzpmuaclutY9b0IujMZq+aFmqquLD+48cnj5yOg1UrqGpeyqLOBBlQZ2SErpI8GLrZa34SOs/B4r6N3CklND5mR72pxQG+kLhWAWDPyycnyfMMkrPy0KaRuJwYhlP+PHIMhzxwwE/nIjzRBwn4jKTYyrgYHkhq4Yw6+KtvIb3yCcv7gzky89VBbq9FG2rD3BUGC2AS0LjQy4+xZIOO82R2Yuvr/aR+6cDb9594MufDbx4/RXXL15xdXfH0/ETp/GJYRqYlxnTLmTXEpVjjplpecvjaSLlB2LWeB/ZbwP7rVAQUp2x1mGtrFBhCWVt0xcwRikkbCvLClb0vqQsDX1MkRClYF6WmfNwZjidmI9HxtOJcRxRStH1Pdv9jq5vxau8qoW/r7TsSdZCkgCukGSilZCshL6xaFVxc/cKq2vev3sgxDWAZbXdK04en908KqcSVEVJVFSISLnQlsof6vP/Vjc1LZaZOktlsqRQ9gLIS4KnR5a48PH4Cd07fAOHPPFhPnHWib1J3H5xy4uXLwjXt5wfTzy++cD544HxfGbxM5iFSbW4OQuybMBqRyhWxeue8y/VI/xZBfPnqtsVzn7mgDyPV3VxhvjhZFqVhTviUVitLujtGoyQUsb7RC5j+7mk/qUsnqabTYtxLQ9PZx4+PXB4uud4eCIGsbRyVU1VtTiX0GnBjxNp8UynE36cwEdclhsqZeEmu7pCq0TMntPpxNV+S9NU0unlhKtqMplxHDGNpWk7MlYelpDZXd1Qd3uMrfn666+ZZolLXuaJFBOV2+BUTd/UonYPkTHOkCAukfF45un+gfu+ZV9XdFbTNZVY0iBeoFprlDEYa6jqWlTAzmK1QxmNNQ6lLcpYlLPonCB6YvRAxCQlo/IAqihhVRKf6+w9fp6lUJ4n8iKbbYiB6GeUSjRdK7xO6wrtIBZOo6GuDHUtFBSVtXhnF3uhGOQ+qasarQzDeWI8z0QvcdvLHEUZ7YQXVitLQHM+PXI6Z8JyZtvX3F1vub3usTqwjAfG0yPHx3uens6ECDEJH7trOw4nsQIyRhx9nNNYq4qoQn53YirxmzLhCLHYnq1Fmo9EX7zAtcEkoDR8KRTT/niZUMoEQOni3a7KtfvxHBcv5Cw8ZigbpxaltLWO/dUVf/Xv/p3wAefA/ytm3nzzrQgxFeU+Xf2IdQnJWIVsGQpHWnhaP+RUrpzJdXK1biyhIKIS0KZKMRbLGmQIIZbrZiFLwxKBZVkYhhGtHE0jqXMxTYQ541zFbr9lt93QtK3wmvOzS0dKiXlZOA9HHh4eOBwOQk1AUkuNNgWFzwTv0Qacc+x3O2LQjIPHVWfsEtFBONwhRB6fTlhraeoarTR9U9EYUDGQQyIsAaIACNZaYsjS9MYgDS/CzXUh4KwFpYqXsWf+zCLPB5nKxRQuDUoM4oYRg4x5/RwuqLKAEYEQPYufxcc+Z6zV1E1F37fs91t2+w1X11sR22462rahqqz4oOs19U1Gsylm8TnOxa3HWeoiqLT2SCgpYTEGTqcTTd+y2WxRCqb5LALjTc9+tyue0Aso4dZaay8ouyn6l5WmMy8zlXNoI8mfIXiWRdaGuq7ZbrecTmequsIMs+xFygvlIkPlGpLR+AQ5aVCBEGX9Qmty+HFBzKtI9k8T6cvxuffy5//O6hKyNtXeC+1xHk7Mw5F5ODAPR/x4wg/iiuHHgTTPxGUh+1iQ5AI+rAyPLGtMpqDbigtqrJRwmo0WO8IfxBuz+pXLmoFZ9TxrCI9nPM+Mk2eeEotHrO8K7elwGvjdt99x8/I1d6+/5OblK+5evybEn3E4H3k8PHI4PDEtE5vzEVP3jEvkeJo5nd5x/zQS4iemyTNeLYRFnqm27XCuKtMnV86nRH6vbisCVqnLIFKwhERK8hwm0sWO9Xg8cjw9MQ4CZlVKiYvPfku/2VA1FXa1bNQljGjlniPTPBREGdGhlKVpe9p2y253w6sXX/D0eGIOAuQZbWS/TP7idHSZon4Ggkj1pi7sAXiGTNVnn1dkiJFcwpd02WhTluuhEau6TGaJgTwMjHEinTOhgdAqbKO52nbc3Vxxd3vD6y9e0zQteU58vH3Lr3XFN/Nvmd4f+XAOTOlEHy02ZiqtRHDpYb15n+nCfz558l9cMEsb8YwQrZ9/7kQBhANz6VIoNjQxoJWYymetCzwvKHNCrL0kScqWhz5TNw1106GU4TxMTGdBfubJo5XBOkcmMk4LOisqq/B+wc+J6D06JVSSaFSnFVMQ0UvlDFXXEpbMMEw8Pj1yo68AzbIsoCX5aV4WvF/I2dC0DlfVOFdT1x37qw1VLcj273/3NafTQcYrwTMuJ2qX6auaSmtyCITFX/hO0XuG04nHT5/41Dg2TYXZb2WxUJpcTM/XhS/mzOw9SSkqpzDKgoqsdlIaoWHEzMXR4NKNZ7lk6xiMmPCLGJ2P55NQFhbPsows3pM1dK14N1dNVcRWQlUxKhc6RcI5hTFJkEClyDEJ+uUhpYC2FcNpYB4mVFKMp4mQE9pHQvxA1ff0uz3NtqWyroyGB3LyVE5B9nx8/z3vvhtJQZCz02lgngMxGzIWa2qurq7Q2nI6n5nmiXFw1LXFWkUMQaKuY0RHSiqUvA+xIJdI87byl8lZRBu6dNKpcEUpYg5AJ1mY1oJb+Ks/LtGf0hL3qrOWwjaly0qi0CVBzXJ7e8ff/f3fi61eykznMx/8TPZeBIOsaXryprQshCkmUhDfpJU7tkbzgqwbMcZSRD9v7s45FEpcIfKKLkthrJVlTasTT2Shb+CEGztPE84k2Lc452hyg3OZbS9C4jW+OZffdX0N0zwRx8Cn+498+PCex8cn/OKfaSJFPOhTJKSI0hV927PbtKAqng7DxSNYa4W2si+O08zHTw9YI2Leq92WXVfJNI3MYh3LNHM6DlSuEtScTE4LOXpQzyl0yojftC9peTK+FQsrH6VoLvum0Da8hJHEVXW/BJZpwXvxVc4xEpInxAXIQlVpKvq+Y7/fsdtv2G57+k1fElCLyFOv6/wq8pZGi7Jma7FPx1qNq4y4+TgjQidliNEzTGfmeUdV1zRNyzxPHJ5OPPZHvvoylGRQ8ZK/0AHL/WGLpsIYc4nsbqqaSkvsuUKQ+hXViyFQu4qr3R6VDefTSAyBZQqklHFKk1WNLkV+ynIPO+ckxS7+uBrhH+7X8vw8C53++Ljcs5f9/PnfiVH2bQEUPIfDgafHB6ane/z5kWk4sIxnwiQ2cnEewftC2QoQE1YZiTEvHuDykhQSQa3X2q68Fi78eWMlAVCl59ctxdwzvUujiVkCqaY5cp4Dw7QwTYElPIPaShmy0kyz592Hj/zq179hd3VD12/4y1/+JZvdC5rdLfvbmfM4sviZ8/mJ3f4Wa1uUrklJ83T/iWEK5HgkzJ75NLLd9PRdX+wTxUKxaVpWdwxpWEU8KfQ90SGsz1BMnlgmRj6Iduh0PhGCxxjYVBVXmy03t9dsdztcVXzdjQjxcvF3zyVmOxQKhNKGqnbUncPVHZvNFdv9LfurW5yt+eabt9zf3zMvHqUN0fs/mKWky32gShCVLsXw54qdP7ytFMW6RIlmYoll31RcinFhbihKQKDQy5bIEhIZw+Z6x5c/f8X+qxdcf/WS25+8ZntzLc5G2nG7v6UxNWqG7+avmecTY8zYHFFa4XURmBb6z+eA74Ub8b+KkrFuaKAv45q1y5MXkIoSUdStudwI+tJtfOalWk6WojyQKZGUwrUN2ijCKDeUMVHQ5bbFAMPhwEBkWUTprqyBbIR8kDLLPEsMozZk7+UHhfA8PtB6vfw4K2ETzipUMoRl4vT0RNeIEjyHhWUMkijlPadh4nxa2F3Dqy9vaDdbbF1hm4oX7Utpl0h889uvOXhPysWiKSqqraOtLb6r8LNlyovYXZmM9wPnk+HhQbPrLI2BtmlQxhJnj0oKrYpbQ3FtyDGJv0s5f8IHK2hyyRBNSQo4oVAETBHhKS3c8mkeOA8nDocj5+EsdjPLxOIXUIq26eg2G+pGIsxTlPGSq0W4pbLCmoi1IvRZI0iVEpsclUXxHOLE4eGJ8XxAIQtuVoqIZjjPzAFiNihTsb9p2bQ981IxnA+CK4TI09OJ4fxE8J6mbkpUrSzsYhmjqfsNG9PjlSDkS1yY5hnnbDGIVGQvRcTaPJAy2afnJ2j1W41y/tBJqDFal0VCRrORLAu1Wsdtgk5nnqkNP5pjXUTgggKsHupKK7KWmFLb1dxWL/m7/PfMfuZ4euK//KPh/t07CcqJ5XvW05mlYI5J6CwkMFqhlSCDYgGlWQV/MYrxfdYyWTFFHZyj0DFWCzatRLSSyjVSxYaxqi22cSgVIAnfNfiF3NTibGEs217Ep9rYwqVTZF0SImNmGhbOw8DHd4/cfzoxDJ4ctKCWZZ3TRmG1IceIc4bdrqOqNvgU6D44jMskHeS+UcKv9AHCyaPVAU0t6Zi+p9LgNEwqiADKHEWw5iqs1iglaZdckHvZonKWVEHvA34V9q3IfAoXMCPHwtcPsXTQxU3D++JyIJxJif3OGKOpK/E5X5Hl7a6n71vqxuIqETopHckqC51FZVCRrIsCS8nYFqVKuMH6ZrBKNvYQI9ELZ/J8OmGt43q/xyjDNAfG88A8zITJE3XAKIcpqNlabFljqKoaay0hBMZpout7XCl6ZbJfppfFulBpjavEFcUHWOZInCI+JcLsyVrcFnJ5/UplUEmQ0P9Ooflv91gpTlzePj/ymixXuBGShlbWP6PXWbw8ezletC3zNDEcHjg9fmJ4+shyfmIZToR5IM5nwjxAWNA5kYKXvSpnEYahyjNfAlEKcnFBLJUCShFpkeZQr4HHkZzLaA8NWGI2pKwJGJaoGH3gPC2cl8hpzoxBX3yitdLlOZLruIwT33/7hv/s/jMaQwyKr37+Czb7a9puQ9VJEmc17MmugaYju1oSXu1vOD/es6TAYTqzLGeOY0PXtFTGir2pdUWYrIpWoyRuJgEQLmizkdckUzVBmXPO+OBJOdF1Qll6eXPFftvTtW1JLKywldgtKqVlGpczygjQtm5plTHUdUPTdGz7LfvtNV3bA5qPHz7x7Tff8fHjJ8Z5RmURYS5Knh9X6j2TMzonXNalnntmEKxl4VoEo8rHyh+ljpe6q+wNVonrVK01lTZSl7DepIUO2Le8ePGCL37+c/ZfvaC92bLd7WmaXp5Nbdjs9nz1059zePvI8PaJx8cZFwK1cuiYSDkQSdjPX3MJvxLg/M+zgf0zXTIK+3jtUjPrbc76cMqLWh/Ele33fFZX+H41Qc9lM/U+4FMiGU2yhiUliVtWido6Kq1QKbCMMzkFlmLBggJrnKRJVQqrLVYrKmNEDSs7CQDaOpKyhCgjxL5r0Uqs1irtCFMgB09aZtympaks8zIR5oAhM55nfFyYvSbrBmzNS1tR9T1VZbl9cYdRUBvLb//pn7gPn4h+Fkuz8SRm6W1FCo2IYlKmdmBUZFlO3N8HGgutc5irO9pWE8JCilmM9W0izAuVqpGwtUTyYoFHEpFgikFQvhxRUXwdq1Qsg7J4SicSi585DSeOw5Gn4cDhfBJUWYFpKtquY7vZ0jatbPohoBDLKGuLRCxFccUwxdT8wi9UxCgG8VWlmM4Dx8ODRJArW0brWkbFKZL8xOIzUdyJ2G62mEqx2/QYkMIkG3JQnMOJw3ECNMoZQo7MoaRERcOSPUnH4hFaCoolSgceFTEIHWUt0lKKBXWXJ14lhLaxDksSn3GvVkGcIq3Gn+V5kCAJ4T/yI7OVy6ukm/Ib6ecmOJNJKpGNFqeD2nHz8pZ//7/9PSEuaAP/GD2PHz/iR9lsQ+F5GyNiK1BCGbpwEQ1GSayqLr6pSmBjYimmQowiDMv5EkAgqm0lsfPayIark1w3k7EGKmPxQWbsKUbGcaDrNLu+oa4tXVujlJHxo7HEJKI2bS0pwzAsfHr/xKd3B07HSeg6RpI5i4OyOFSUdcwaRds62q5iDh3764aqUSiTUCazxrNmYJ4C8XEixntmnzmfPduuZtPXOBI5BXIK4kqhdZnYJIQXLnCuys+BEqkgxjGmC80l53Rx0MiFr7++rdeYnCUQYZlLomkUJLWyVLWj61v2+x23d9dsth1939K2FVXtqCqNcxptMlkFcqHKKBNFqJXiBV0mypNgUDgUTgnVwznDcDyTM1jX8MgjTdUQup5KW4KtCVPg8PDE9WZD62psLRukVQaThQLkrCuotSXEyHkc6JcN3aaXsXQGoy1VLeduWRbGYWGaF8Z5AWOxtcMskUhiCpE8zcTCD49R0Lp44Tv+uCgZIMDIyu3/4ZEKDSBeUE5FKtcwAAZdnn9IEnU9T0Q/s4xn5vMT4+mB4fjAfHrCT4NYyi0jhBmVQyluhcYh3PBEVAFjqsv6Ks5NCYNhtZUsi3Bp1iEi0+GYAuHSJIs2JWRLSJopw+gjp3nhPC8MS+bsFT5ZcimWlFYXh5vVU398euKbX3+NCoq8KKYh8tO/+CtuXr7EdQ26Uiwougyvux5VV0SV0JXi/XcV58M9aTwxhgk/zMx+osKgc8YpCSqilCDS9BdhnKAJXER/RpMvyaYi9u+qmqZtuL6+4e7uht2+x1VWqGHKUVct1jTEpIhJkbXFVg7XNTSbnm67oatrWmOkhjKOrmppbcV4OvPmu+/4x//8j/zTf/mvPD4+ihYiBBrnRJSstUzvk7hLW8CllRyTSRqxhSvF8gpCrQX0pT8rfyk5huisLgEo68RbrnuWShqNsYbNds/tq9e8eP2a9naP3QrLwGhZ45cYqbSl63dcX79g02856w+YENEG8Z++nGNxZVmvw+VHrkjzn4gy/4tFf1I0P/99/Ym5oEqCGhfvRrjEwSoyOov1klZ5tW2V9KdCeq2qCmM1nlR4a4aUIn4WB4YQFpZ5FocIq8g6kpNCZelUtMwiySGUTkTjnMOGhM9is1KVCM3KaipriH5mVpHaGWIQT+K6qohRBIjGVBhjmJbA/f09D8cz7x+e+Nlx4Ktp5sWLF9xe37Df9FRaF5FDhPzE+SxG4zlnuq6lbRxhMcRFss93mx6rE9P5xMNHTa0sxMztzQvqurlwv1MUEU0uBXCMofgEAwRBPI38/lrl4nWZSKvrQ/KEnPF+YZ4njsPA6XzmcD5xOp/JIGlnmw2bfkvdNCK2ijIKr5w8LCoXkVzSF7EbefXyDRfvVpCuel4kCCTn1Q8SKX4KdySmTBhmQnxkmj2P7RNVa2gaI76vTYurW+omimfqMmIqjVWWnCM+LExhZA7iwjIMEzknrEiPZVNIuQidFqnKM1BUyeuxUodkLFk+pnkWGGVFzpGkVsN5yscUaCUPaVJ/6rP3b/L4oXo4P/uv6tIYpETdNPziL35BW3j5yXv+y3/6Tzx++MAyCRcvJwk0ePbEFaT+gpJmob8YI/6bTdvimpoYI8fzicPpiB8msfWTneXC5Ufpi8dyDPFCuZnmEYx4sZI9TODqRAwtxgiPlixBFPK6ZO0x1oFSjOPE8enE9+/e8unjQ/m3DU4btLKFJlGQoBQLAinnpu0artHsr3Z0fYNzmnkJZXOUJjLlwDBElvnINM0cNy3X+57r/Y6+rUsT7ck5yXMmA7HiQKEvhbKISoUTmYtXeHFHlSKovLGCBUk871eoJ6ViPxc8sbiZ1HZFlXfs9zuur/dc3+zFCaOpsFZhbBHAGdnkMaDN2lmuI3JkKrBOFcrvYUsSX9d0dG3H/f2ZZZ6oammeP7z/SN/2tE2NNYocZu7vH+jqSoKSmr40vZEcE0YpiTRvWqqqJmfRmZzPZ7abDXSby71mjLhcaK05nwdSSgIOkHC2o+t6tAks54Gp0N3iBWcpaYJ5dXH58R1/Cn/5Anqt4spCz1Dr1C0GYphZ5uEi7vPjieV8YjqdiX6EuEBYIEpYhH5mz5SiqKB8ORUwQqaiKmVx1FlpV2tsdH6eeoUioBVGg0ypUtb4pJliZvCZ0+I5TZ7znJkDTFFcNZRSRX8gTehqV2lyIs0zT/MHfjPOTMczT/ePHB4O/OKvf8lXv/g5Vy9vsW5LVRli3rLta/rGcrXv+fbrG77/9hue3n/P9HQPIaARrvuyeHxMNM4+22MWJ5eqqsST3TzTjIzWGCs8/ZSQgK9CU9rutux2O3QJHssZtHYoW7MkmH0gK9FHdFdXXN/dcvPyBTc3N+zalkYpyRH3kbwEHu8f+N2vv+b/+g//kV/911/x5s0bpmESYavJZeoGqYATF9rEH2Kx+TNAVC7v/7ClTFBY7BRwpBTSn00ZlDa4tqK/2XP14o7Nfo9pW2zXUfW9TAcXSQ+OKFTl2N9ec/vyBcP3n1imR/wUMVnRWCt1YHlt6bN78l9y/AsK5h+etFVY8GwGnUvB/IeFtDwsBbS7PKBqheLL12gNbVMxTzXLcCobBqTg18q7oCoiKrLGYJQWOkiKBJ9ZcmJKCp1rsR5C7KCMTviIiOcqEbRUzlBbzTJlCBbrFCF4zsOZlrb4OmpCjEiSGIQQmaaJ6e1bhmnh/uGRr776CX/5i1/w8vaG3W7Ll19+yTJOhR/6xPFwLmNQi1LQ1hVZiydq19Ts2obpbIjLwru331/U7Ld3d3QbsVhbloWqbi8csxhlIb+knqV8KZiNBqc1SomAQMUAWbwzx3FkHIUfdTyfGIeRnDNN29JvNnRtizG6eBgW30hjaapKQliCIkXxKV3tZ1aEVormSCaQomKeJVI4xoQyDm0rcebIEistD7t0lCkrzsPAaRjRJlG3jrau6fue2jmCD0QsV7cvsZXDOkcgU08j4zQWrmwuPpZcfC6NUjLyz6EokcNF8JejjPcuPCwtnbKxggtKQpzY3+UkQkJRHpdbOxXfvqRAy9enHxsn47nmuRyKNUUuyeZpTCkcwDqLVZq7uxf8zd/+HceHR8I081sUT/efmMaBGANroQtcOKWCJAv3OMVICM/pV7Y0ttoaSY0cRoL3+CDi35ifkYFpEsul4ANGaWwUkWY8ByDgnEzEVi5kSmI/qJVE4FZVhXOyafng8X5mGmY+vf/E+7cfGIe5bG4StOGqSnitOuH9zLzMKKNoWhHlWWfEcm2/o+9a8Y+fJA5XqYoYFYuOBBWYl0x8krStaZZm8ma/x2rhzOtCazBIeINSYEuzIXChIMney7hboTBa3pPFvnMdXQvCJTw+qWWLv+sioUy2sjRdzWbbcXOz4+bmmv3Vnu22Z7vtadqq8NELCln0VdZKwZzLmFOEQeH5lsriMIES0ZZ1maqqxMe9bgAlKL/NTOOC95/Yb6+wL27o25agYR4nPn78hCvOB/1mIw4ghZcco4S8dF1L3dQ8Pj7y6dMnqqqm67b07QZjzGXUnVHUdcNuv8eHzPE8kYk4J9c4a0MeBpbCLU2qCNKXBV0oQD+2Y92bV1eAz/VGz3xOdfncxY1kDS+hCG1TIIWFuIz4+YyfB9IiiHMOi6TR5hVwkNh3Ylon7LIUFBRSZwG4SPE5ehmZFOmMTIzW108RzClFpKCZypC1I2TLkmHwidMceZo8w5yYAiwJolJkZUoNIcWfuHXJ5EWTsUb2YH868PZ3v2E6Hvj49i3f/f5r/uYf/p5f/t3fcPXqlr6ricDm9pZta7m73vGTL17z9T/9irdf/4bTu7fMwyD0zxAvNFCnxD3aGiMWrJ3YV1ZVhbMGa2yhC8nXiLOFJGquXGhjDMZZdGXxJBYfCamEOymLahr6zY6rmztubm+5fXHH7e0tu82GGmCQteb48MjHd+/49X/9J/7zf/xPfP2b3/Lw+CiZFUGaGKUtympCihjEVUQChoVJEC/XZf0zX/aOSy4H/GA/WRHoteROSorylOXfiyqipGJGW4VtLO3Vht3LWzYvbjF9R3AG5Sy5diRdBBQxEZdEJqIqx+b6iv2LO57OHr8cLsBcjPIsk563us8L/f9lHOY//VClW9CsPYdYwgDIwr9mbqzNizKlnFZZ1NmbjvF4gFAQSwVVZQt/VBKyqsqWjjEiztRiYr+kRK00VJaUikG+BqUzOiVc1bDZ78Qk2wjPNqeJUOkSqypIzTAMdL3EVh+OQyEbiQm/RbPExOPDA/O8cD6dOT098uruBfvNBqM1V1d7hmlinBcR6sVE8AFnNZu+Jy+e6XwizQv7u1vu+o7T8cDT05GPHz5cVO+vvuCZy7XGCMd4QfIByEKXiaXASUZ+aaUFYSZFovdM48Dh8MTxeOQ8HBmngUim7Tuur69pN/0FPVVIA2O1+ErXlcPoTND24vFK2URVXjfJWEb80lUv3ouQKuYL311ri0qwzDPjuJCVAh3Iaim8T4O2MC6Bs/McDzPWOSrnMNbibAfakJWhaWrazbV4x84D8zhQGyuezGXSkGKQAsQostUSp5ozMUtIgUr5Ik6FMkI0pesvkaYKDRpUkrjyZ1cAg8lW0PwI+TMbpx/1UTa4daQlwkaNMtJeBC9RyV98+SX//h/+gfPpiJ9naeByhEVdnm2tkM2R58J5vXeXZeHTh4+4WmhA/XZDt9lwe3ODvlGkKEFE4yKj9MWLRVLdJuGhzgtOGZwRyocPM0pHGltLcdbWl6QypaCuLFUlyI21jpwT4yDc/ePjgY/vP/L4+IRW4rVui+Ld2gpjDTEuLEtkGCeM1fQxFDFUpKprNpuO7XZD2zQMQyAqg9YVQeWSalrQygzDnAlpwofINEe62tI2DmdUee40TiO8Xy3P2YrM5QsCunKai+tQysLvXwvmlFE5Pk+bUkkUixFjDV3Xsb/ec32z5fZux9XVls2mp2kbmsZhXeHxwrPzyQVZ1yV19HmdF33NCivKTrACG1VdUbnqkhiYUThXkZJiGmfev/+AVhn38k4s4tLMcB75/vu3TN5zfXODc+4SmrHM8yXh7ObqmmkYOZ3PfPjwgb7r6dsN+72IsX0RptZ1y2aTWXwkocnZXKhgzpoLH5pUXHFKkygo4Y+sES7Hc4qfrE2f28Z9XjTn8rbaK5ribECMqBjQKaJTEBTZz8JTjgFTQBKdE2VuiMlrUV7uU7VakYlVJ4UTq0sFY8r3qJwv+4nECMi6Y3SN0p6sM0lVZCxThOMSOM6R0xw4LZEpggeiBqXFPYpCB5HJh0xcUvETNlpTWY3KkTydOL73xPPA4cM73n37W779+lf84m9+yS/+3V/x6ievharY1eyKi0tbt9y0G443Lzjc3xOmCZ0yVmWc0WJlaxTOGipnhVJhDFYbnCsFcxIx4DrBcNZd0OaLa1BKOO0ACCZIka0s9XbH7uqWuxcvefniNTc3N2z7nso6VPScHw6c333k4d17vvvd7/nmt7/j299/w5vv3vJw/8DsPVllYsxCVTWGrE2xsQRLFvRXCeC5puVpnicX6nKflffqB/WyfF49A6VarUXzRVqEMpmswVSKuq9orrc0V1tSZTmmQAiZTikq46SpsHK/RLXgx4VZJVJtUF1Nrh3ZGZIXkEWE4+kHr1Fe0p/uHrMe/9MF89qd/lAQsY4O82csZnU5s0LXKB/Sa5kCSwwswYOGrpMUqfkkxv26sjjnIInxuUM4kDL+D9TWsGkbahsxacIYoRDkHNForFFoo7Fo2q5mu+sxVigG1kBYNLlx1M2KOklqWMqJ2lqsc2gbRCCWkhR1hRjvl4XH+08MxwPf/e733F5fc7PfFbumgNg0GenOsoSybDc9eI/LgTAvqJS5udmz74SY/+npwOFwEPJ/TLx4Fbm+ucGcj1hXC+9S1AKF+7XyHFPxgi55ayoVS7WZcThxOhw4HJ4YhoHFzyhN8UHdieepqxCgSrpvZx21dbgSrSkJZ88+qOIgIZxIMVqX68VaKJEv1mAYGU/bykp/k6YLHWdZvNiHGQmJ0RjmsKB0wGpPVUmsbV1nDqf7y0NpK0fTCSJuiDhj2ba9JA5F6fJTDCiFXG/t0EahlvV+TBAKVUg8jVj1v9ZY8b01FoWMykJILF6441kZQTGzhRTJSoIYQvr8Wfi3f/w3hm0Xe7nV8QHkGbe22D5osWi7vrnhL3/5S+ZJHAdQ4KPn+PQkm1MZwWb1jD6snMJ1fC9CF4kmnuaJYRzpuk74qcagjBR2bdcLypSFW0opZFRIxQliYZxO5LzQtRW7fUu/cTgnG7+rHG3bip+4K3HUPjIvI+fTkYf7Bx6fDkzLTN90gqRb4VlnFCFk5jkyDDPjPNO01eX8idl/Zrtpub294vvvP3B4GslRRIpGUzQgMinLiK1SnDMpL8BEyjXKyKjZaIhaBDxSpGp0FrFUTqXQUfpCGAwSByhoqi/PYJLx9mX0naUD0lqL+82m5+rmipvba65vNuyvOrq+FqpaZeW8aYBSxJRCGVaONIWqU9b5DGuUfJnuCz89IWuv1SXApKJvO2BBG1tQpsT9x3tUkjF2/eK6pPh5Hh4eGKaJ4TzQb3pBjZP4r0cfcM5xc33NOI1M88zx6cD3b95S2Yaqqtntd7hKXH7ETcPQ1A3sLSlphvPEMgcpamqHT5mcBb3PKRHT2mz8uJ7rz48/RJP/8HPqso+oC5VlpWTEGMkxoHOUtxTEczt5dBJRqk4RVd4oAlKdPytQSvONKo00WYZyAHqlHl10qaVq0GQMOVsR5mrwORKzwsfMYfQcBs95SYwhMwQJBEllDJKVleJfSTOZChXPGENtDBZFhcKRigWbuCvoeWD4sPD70wOP77/nw5vfE8YjN7v/nbv9lqbvmeua1lVUynLbbjlcv+TD2zecD0dy8GgiVgMplMlR8ekvhbvKAiAprbHKYLMrz05GF0G0rL2W1RQhZl2Q6Jq+bbB9z/bmjtuXr3jx8jWvXrxk23bk2XO4f+DTmzd8+u3vePzdd9x//47vv3vDx/cfOB1PxGnBxSznSoEzELUh6ExA3tYpl84yAcgk0Q6g+IFp/w+AZnVZ49cvKUvIBd1dr/tKWU8KQkGysRrVVdBYBgIfzgcwHk0PXNNXNaquy9qGeHe3Adt1mE0HbYXZNOh5Qw4DaYpYo0khPfOry+so7SN/NF79Z45/xYL5jz7zg+o9Xz7KRUQhe54WLnMUm6R5mUkpYp0gEsv5DGSckQ4t+nwZr0Am+Yg2ir6rud5vcWrBTx6jC4dKIdxZLQr9rA1tU9E1FVlJt+mMkhFu62i7+kIrURqJVlYLyli5kZ10qylmdA5kpUTVXmyhjvcPDIcnlhd31FXNPE9SNPO84WitxMi/begMpGkiLguNdWyvrnj5+jX1m7d8++Z7Pn26Z5w9IWWMtcRMUXmLUlY6UVd4uuKDKjwwsfHKBPw8M49nTocnTscD0zRKlGzt6Lcb9ld7uk0ntIi0ir8kNKWpKtq6wWoDsdi9ZJkSCM0lQw6XMa/3/sJ71YW/avT6RIknYmM7fALnRkizFGJKiSgkwjx5lI1EZAFt6gpta/CJ0Y+4wjmd5onx0yPWWdqupTWwqQ1VZaisIyqwpvDWitOAsQZtJQlMa0VQEUzGrKiZkk4XwBpLVdfUdYOxjhAy4zATJ0+cRpJWYAwKQy7RmzFnwv8MSerfyLFuooJyrHQp8RSVBrAiIijQ9e0df/Pv//3Flu3x8MQ0z+JFniKrElkA0nzhsa1uLSkJWh8jjMPIPM88PT5ijFCn2r6n22yomuYyKt5u92y6DU3TQEiM54FpHDgPj8zzgLOw3de0rUEbL36uhUdrjOGiWveCFh9OZ46nM/Ms92NVV8W2SUvBFOX5mmbPeZgJKdF0z41jLmEKXdtwcy22dVpDSgGjknCQ4YIirQ1fyJKKNYZIFaAOK30tYJQCZ8nGYrPQNSTIRIpSu5KwVwrBSj0IhZKR8jOHOUtB75zEW+92GymW7264ut7Tb2uaVqLurdPPsb9lIqiNzDTXlLaUIzmCVe4ZrSy2i+T8GeVR7qPVck5racKbpsb7REzSoBpjODyeMBqurzZcbVuaxqJyZhonhmFgniY22y3dpqeqqmfkVCn6ruf66prD04H7+3s+ffqIcw11LbS6ftML3UfrS0KptpXY8S2+uP80ME0kBpYl4BcvLjpRnuv0I5weKaUua/ofoml/iDA/ezCXgBhVKBkl3EqCnErzFYUXr5HUvZTX5mxtkLlQhC4/T34SK3gmrlW5TLGQojjmz4plK2+qIqLwOTPFTEyKySceB8/T4JkCzFmxJEVSWmgF2pZiUDq3jHjDk54DT6wCfMQvMw7h8VcqUSEgmx8HDt9PvCPw9vaKD1+95qZv6d1LTMi0yvHq5gU3ruWp2dBWLQ/3H5mGM34RW9TgJ9AywUxKqCGrU1SIAYLCOiv+4dqV06XJSpOMxZoSRJIUeUnYpCWw5PaWzd0du9sXbK+vub665mZ3hU2ZT5+e+O7XX/Nf/8P/xZt//C8Mb96ynM7Mw0ScPcZ7XMw0xpaGsDhcacPkJwY/YZwuU4FcqA2yZrnSBRkowSt/vNf9IY+59EmXInBFnNfbY93nE8WTuTKk2jEpiMsC3tIbh+13uN0VyphLeJquFPUGNreB/v6R6npLczyjlGUcPXHy2NUx579z/Dm79f90wfzPcZi1NuWhLOMQuBT0SiEjILFXAK3xKTEtM9M8i1KznGljLG3b0jYNZy9RhylGluCxGjZtze1+z+uXd+Rw4vHjGZ1nQY5LZwGSSOVcLck4nSOEBb+IG4eroHIVSol6PuVMmxqUqYhJoUq3uoRIQlHVNUobGW0qQU50XQvBHLG3Sykyl/c5F0eGz5C2umnY1o7z/SfmeSLnzG67pdvvqboNrq75+OkTD49PfP31r7l/+MSLV19Q1y3b/RX9ZoM2Gq2sIJ1YEZ5lSV4LfibGhbAszOOZ4XSUxcFZmqZhd7Wn3/bUbUPOimlcUEUQ2XUt++1WojaTOA6kHIlB7Ki0kkALrcRX1pYwhWXxOOeoXIPWjvMwUVcNdfGGtUrTtg1xWDBrERFl41xvBeDCF9RGImmnOWBisTnLGuMk1cmYJKPZkFlUZLFQV5qmrdhsWqpKhAzLIgujUsJjbDY9wQfG84ifFjQiaLKVFQux4v/Z9xv6fouxjmmO5PsHDtMD2lnQjqwsKQofKytNyIEl/LgK5v8WwuzMKmr8bOxW5qsqSxqeMQ6UUAau7m75i7/+JafhxNPxidP5yJvvTizLTO0szmihx3yGNOWCiOYo42JthBOfYsIvy7MN2PlMdTigrcVWFU3bCo8vRF41DS9e3KFewDgMnE8bxulIDDN1rWhag9YepSUpbxwnlsU/h/0g05jhPHE4HEkhst1IIS7rWoKsJUo5R5YlEYLEvpM1ClNipsVDtaosfdfQthV1ZQhLEt5/lLAmo414UgOUsWRICpQjKUNURiJoiyd2NIqolTRkMV0KGpRh9iIEZl2Dy2iXws8kiRc8MVJZTVPXbPcbXtzd8OLlLdv9lrZrqduKqla4ag36MZfnUMRyz/fzijBfPEFZvZH1M+qfC5cfirsI+Cg+7V3fsNtteXw68vB4JASoqhZrLKMbyDmLx++2hdxijaJrW5ZiZ7YWeaGppeEoiYjGGG72V/jXC34J3D8cef/uA3XVslp29Zv+sl9JSJYnxoyrHCyBmLMEIPmMn0WDAZCSF2FyeOZo/xgOXZrbtdm1RfgIXIro9XgWND6nKSpdtEFZ7jtrDKFMhNfp0Ko/UBRax/pvrQUR5VYpTjhlllc+ly9hfxGhbCalpW7QhqQdkQpFhc+ZJUemGDmNM+cpcZgi58JXDkDShmwsaAtGaHRK68u0U2UD0UvgUAxYY7AlXCkXC0obimVr8lil0MrB6ci3//j/5v8YR371H/4jr3/2E25evWR7dcX++prdZsP+px19u+Ht2+94uP/I4+NHHh4/ouuKJc6Qo1B+tJa9rdKQrGQWGFBGaKZKW5q6IcbEPHmWGEV0ayocic42bK+uuXn1BTdffMHu5pamk+dnfjpyf//Am3/6ml/9P/8D/5//8//k8be/p5kWeldhItgEThmmnPAhksJCIKMai7aalBRLyDI5NganBM1XiNByKlkZJpd4cnXhExTqIlw6IHIRLBeKjVppNhcH3hL8JBSaqEQSFFQmOYPbbGj217Svbrn6yZd01y/I1YZsLCnPzH6gMZrNvqPWlul05unTJ0wMLDwwfXwgHrOMHbT6YcFeors/zw75U45/FQ5zXhGFy7G2E5/D3c9fIBzmfOkwpClNqCUyDJppmqmNvSxsMa4hEkKt8CpfOJFt7fji5Qt+8fMv6WvL/YdHaqtpXFcELgs+ArqibVtM09E0FU3jmOdACmX0YCzi85hx1pTNuSFmwzBIGlQWy4QLIiInXBYflaGpKlQMmGKfJOMsLwKbS4euiVEQWWMUXdNjUiAtI+d5EL9Irbm5uaaqK25ub/nd73/Puw8fOZ/PTN/8Husq+s2OzXaLdU4ie22NKXQDcr4UyjEuQo0poR3OOUG2+562bdHa4n0UdpJWNHUtgQW7Hduuw2hFWoRLLZ6aEaNMseiRKGShVK9uHSWi1FQShqEEZW4bg/cS1OKnkv4UkyQ+Ps9Hior1hw1XCJGUFypdU7mKqpViJsVIXVWAFPSL95gECiN898LDgyijMCLBF9eQOtJUDc1+D7t19Cqj5KoWmkfTtHT9ls1mS0Lz9u0HhmlkmEe0tWhbkZUjz4mQMyEVcYH5cSFRP7D2+eeOtekt10coVRrtLFVuefXll8zLzNPhicPxyLjMPHz6iJwSDYg3siDMUjxqq8glGEYXREhTvKBXxZ4SulaYZxgH6mkihsRwHgg+kGOk73pS8FRVhdYdMRi0CUWs9px2FrNwwRRZrKpiYhwmzsPI7D2VsdRNjasqtBHP9hwCiYhPQsmIQcREORtilKZchMhSlDe1TLC6xuGXZ6WJ1nJriIBJcXGtQJHQpOIpK+wlaVjEDUQU/Zj1ozI+DlFS+vIaCANcrMIoQj8FtjLsNh3XV3vuXlxzd3fDzc2etm9L46nQNmFtwtpiZ7daRK5IoUKuWrkkcu1lDVzDJ1hf22UjUnz+URRYay7ccqMVS1yI0WBtRdtUEiYTvaxdweGsNPc1NfMi/rTzNBXRonBRtTHUtfgx73Zbrq+umGfPPM28/f5d8Wieubm9oqoq8aEOQv8JPiLboMZosSXdbCyVq+l7z/F44ng6cT6PLPnZUefHcPy3+JkpPadafn6s6L+5UIBKI7Qiz1qLgN3Yy7RVO0ldROmLqEpGSZqMNJVrWa6VLqCOAB45ZXws6XsgITHFflFj0aZGuYZsK0I2jH7hOCWeBs95jIw+MX4m7kvKXOgFpWu7OBzpQsvQiCOOqRIqlMI5Z9q6wuZMXrw0szFIim0t64CaF56+/YbT+/f8brvl6sUd1y9ecvPqJa+//IqXX7zm+uYa4zTXuyuckSkNBsbpSM5GYppTJJDAGtaYb+H7K5IxJGvRynL2kisQCkVm5XHvrq94ef2Sq+tb2t2e3e6GxjUsp5mHx3d8/O57vv/6d7z59W9485uvGd9+oF48G6XplSbqhNOaoBQmZ3yKeF1hGkvsGw45kE8LKSqU1UStWLIwl1MhlWulIWWZCCO0G62QrIhVPK+KAFk9u6RpipgeebOZSyFNFlcvY4Vi6ZqWpt/S7a/Y3L1k9/pLrl59SbXbg20IGXyM5GCoFaJnMhZqS33Vsxw3+IcjrnOY1qFzQMXnNeqZGqQKj/5Pp2X8qxTMz7yoEg6yVvJre1m4tc/fwIXbnLIUWqqEbcxzYBo9XRULXw9CCszzxOIM0S/iCaygbx0vbq/58ouXvLi5wY9HwjyhydTWkZJ0djFlKJGPdV3S34xizpGcFoyBujYXsVtVNSjlWKJmnDPTcpLirpKxZcpQ2ZJ8lxTzOJFdou07aitdeV3LwhxDwPuZnGX7SCTJdQ8LMSeavqFvLPfvvuc8DUxhoVpmmm7Dixcv2Gx3koSYM4fDCR8FzZrnSeKyjcFZR1VFrKmxThfUbCEuCyl76iJasrq+UEGathGE3AeyFueDtmnZ7jZsNz3dxVIuCj+TcuMXxF8Y0umS2nQZJSVFSqp8rxTSGokCHinJXeNImAPJL1ilJfAgSTGmVSbmdREtriqlAMhZRJ7ayoKrtRQnSmXOpzMxRLJzspibFSmmFDKCmuYYCcsEMdHaiv3VXq5VivgoHrht17LZ7ajbFlfV1HXLEjLq4z1L8CSVMVUFrpYiZ1kk+CDL6Db+SO2n/qQjcymYM8V7U2t05Wh0z6uvvuRv/+HvOZ3PjPMIZMbjCZUiQqvNxbKqBJNoTSp+yymlC3K5OmoYZ3F1xap2DjHi/cLj4yNHfWSeZmIIXO33GAVdY9A6yHVPkbh4jA4YWwpW9dzsTtPM6Xzm/vGB8zBCmRy5usY4mZhIwZrwIeNDYpo9i5emNnoIXmKnQwkisGZNyWvo+5plFucelRJWg9WKZGRdQxXvZNRlJJk+V8yo8vFUkJyU5JcoU7sYI3EV2a73XE7kYk2HUtSlWH55d8OrF3fcvbhmf7Wl62pc7S67ltA+xS5u5a1f0Oz1T7XyMEsDUtxOpB9YAZLn5iTnVNBEdSm0jVE0taPvWtqmZhxnYhSXkbatMEqQNuF8589Eu6KhSDkXrvwz0rkWf3Vd45yTRMMI797d8+nTPcMwMM0T8zxzfXtFXdWCOhcLSqUMRguTNQJGyURTm/oH1J3wI3yun6+jHJ+L/T4vmlfazEXQWb4nryl8xqKMQ2kHpiLbCowT2yCjxTmp3AwapIgunuAKRVbi6buWTzknhOkrXNekNGTRCuhsQdUY0xGzIfjI0+B5OM48HLyk9GaYM4RyH6aCbouceBW8yvqvEXpJXVUiyK0c8/nE6eNHpnEU5NMY0AllxLpVpUQFtEqRU8TPM3oJxNnzdBo5vfnAm/rXfL3fsX9xx4uvvuD1l6+4vrumbmtu99dsNz3vPrzheH5ins/i+W003s+kLK4+ROHIr2EmMjEWG0tTaax19JstXd3x5c1rfvryJ2w3O2LM+NPE+zcfeP/9W95+8y3vf/8tn757w/HDB+bDkWqZqZWmI1OniA+hZCdoogKnxKHr6uUN+maHGU98SiM5GrI1BBQqiVN2LmuEVeoigLVZPzflSkFaW2Sh2Ypn/Mo1LoUy4HIJLkGEe7L9i9uWtQ7jKpSxoCzWtVTNFltt0bYn67oIcgPEmaQFxDieB07zSHSaXBuCTZjOYlqLmqXG0WtTn57Zy0obDArSnzY9+lfmMBdk4Q95zVk4SeWMCsqT1/jUVU2v0Fk2p2GYaWxFjMIj1TmQQmCeBkJY0CTqWnN7s+H161s2fcs8nhlPTyK+iqKqrCtFxpJUZMlZglD8QkY8jEMUBNYY8UB0xUC823RoVTN5zRLFEi3GRNU04BpyRkaOXmJmxyK0MUr4Rabw9Ybz6Vl8wxrqAiknfAyM80zWin6743w+MIXAaRpwbUvd9UIfqBw3NzcM4wjAMC1o42i7jrqtWRFdoUGIf7UCUlJEpYhJUCJjiv1b4bR574GIspKW1fcd291WrKRqyffxiycHj8rpUnCmJHzpFBNhTczD4GxNU3dUVYPs67YYzIuDgbEWKsU0izgwBk8KQR40BagfWg5K0lyU4kaLaEhEeYmwLOScStJXRc6RY4njRhlM5dDOXApmlcUtwFmNURULCkqkdeUcfd+SyWhnxCe773BVRYiJcfb44VwKJkmWbLoO5VqCdsxLWfByks08ZX5s++pzWfR8/PPqYYPgDqUoKskEAWi2G37+l3/BMs9M44hfFr773e8YDk8SRpKz8MhLvPPqKZ5i/GyUK96fykrxZp0TWy8UOgYRisVEWCLH4xFrDNM4YrVi0zmqKmMtgEebSOUydfFRXn2h/RI4HA58+PiJp+MTqETbdXRdd+Fty+sSUWqMGe+TULi82Df6AItPlzCFnDLaKapKAlK6rmY4TeKVrCJWi3JeplWF80nh8f1Bo7Wuieu5SOULUygK+fQ8FVKFxhJi4fVFT84R6xzb3Y6vvnzNV69fcVt8ldfgEVR4fq6KKElrcxnbr69ElWdUUEIuIsSsVFnL1zvouTh7rvmfvapXEZlWmaat2e16hnHCe5lUWeeorKbra/riZR3jwjwnjK3RRrarGEWP4JyTSUBprOry93hzg/eJaUqcz295ejoIjzSLXd/V9U15beu0z2NMIGMkiAEBa2KUNaKpa0KI/Nhc5VZ0dS2OP5+0/CGv+ZI6t0JZpSlOZLI2KOtkFG4sUVuiMkRMQXYVYZ3e5CxGcFKNSBGt1MVHXJJSLVllAhCV0N+S0jJpzgqyxi8ZrzIxBeZp5vE48XCeOY5SLOMorlUXU1rZX/OzqBC0FH+iOqXuOr74yc94eXfLdDrx5rdf8+nNdyzjQPIJhzjTyBRZimaTIg5Fqw2muJ3bBHFcGB8H7t994tPv3/Dtr37N3asX3H3xkrsvXvDiyxdc3V3x8voOZzSHk7q4NWkl3OGMwhkRNKIUztYYUxFDRmtLVTVc7a95cfeSTbflbntNo2vG45n7j/d897tv+O63v+fTm3ccP94zPT0RhzNpHGEeUcFjFVRGowmweFTKogNJEZUlxfjl6zv6n34Jjx/5bnhAL8NnPGRF0hL6YRTMsnWKLWwuziaqTJOyWgfFrPOlS7GcBVV2SKG+vjelMiI/r6ExirB+XhIhKnzQLF5T6Q5TdUxzgOxReHLyzGHmNAyc5omgE4sJzMpjG0NykPJqiqfXX6l42ReaiPp8vfvnj/+lCPOzm+IzkR+Vyui+3OaZi1pSlOiJYZxprCvJUBabuHD0KmfQrqJtHNfXO/quISwTnx7PxOUsikgFwc9s+q1wYJUn+HxBZqdpxDpNjJ4S/IkiYaymqiQWG9WQp0RmYF5mpiVhmkYcGbQR70a9YPWAyvlSIDT1lqpypBTEizZL4lmKzx19zlJszGFmXGZ2m45m2zMen3g8Hdns9lJUaBFCtW3LbrfneD4zLUHSsipH0zRlUbRYUxUqxDoGjWQjvMIQvHgQashJvGnRirppxXt5u6Hf9DRtjdGm0GREXZ9SkodLlxGG0tI1olHKyiilXE1jqsKnthjtWLkWIvTRaAQlzFE8HmWdyKUokFedygMpDw6QEq4y2NrhKlvOyVKCbxxaV8JDy5kYiqDMlFGhVnKubCU2eyt1xjpigMqWSE4lDhp127DZ9Li6YvKew/HI4+F0SVIa50noIHUNpuU0R/w0MAcv6HIxqM8/UvupP+koNW0uFIDEKgKVzVVbx+76hp/94hfii/vxA08PD2KfSFGLW0n1Sj5IoE4IBV2mWKuI68LKwfQhYK0q03/BkIy1oKVWG8eRnBLOavysqKpMUxtcVTjMpUjWWjbwcZg5nQYe7h85HA4sy0K36ej7DXVTXzivKsvzFxKEKHZtMcpUSWlNSoacDGRTaEmC9jqnaVor6XiVYZlDoaWIN3o0Mq7WSjYi+MNR+WeoLs/OIjKNk2Y/xiD3vYKM6AvWmGOlFZWx7PdbvvjiFT/92U/48uUL+q4GlUhpKTZg4hpj7Dp6Vxdh5+cC5efR/Lq5yasrw4YL5WTlsKJUceQoa4ZWGJOEGx0kVbBtHLvdhtNp4HQexd7LGfHFr8V2zlgRXXvvcbVE6K7nSivh5LZNg6scpnhrK6XYIsXuNGeWJXD/8IlxGPnw4QNZyXXsuv5SyKcUSoOeWMpm7ZfibY8iJlnDrXP/Nz1k/3rHHyLMn///5wU08ANO8npkJX6GWRnhBmsn2g3tyEaK6KyteFhrIw0w4q6AljVBKBvCXFVZAqciCR8VsTRbK9gQkzSoaoJ8lsnOPC+M88i4JEIuNmRK4p9JQudchcVrWaQploqI377SCWcr7l684q/+6pcQA9f7a77Z7Pj4/XcMjw+EcSSkKFobZ6isptaKKivZJ2JC54DNnqQsJiR8zvjsmZdHvn888um77/juZseLr17x4qvXvPzJK/q6ptre8PB0z/l8RGtNZSqUyRhtC+00o+MK4jR03YbtZsfV1S37/RWVrTgdz3zz9re8/f0b3n3zhu9/+w2Pb96ThhGzBEwIuJSokwj+VcrUGlyx7zMl1TEhdBByQOtMv+148cULDnWm/q5BH0xpYjXZCPUiRvA5i12gElZAooj/ygJgFM/x2Ov9Vt4u6DJQlfdOsP9C6RKgKYbEPHvO54nqONIMC9XkqZbIhgpNSwojKRh0sigSJIVSpgRf1VBpdGNptjWDFYRcoy+vLZeFS63//Rnb9Z9XMKt1K1N/fFaQjkIQ5vJ/6vmUyYdlMxCldTFbVJ9lemcZ9MeQi72MEm5sDHidsGiqxtDWNZtNQ1UZ5mVgOieWacAQaKx0mak898YaVImPdlqCB+Z5wJhEDDOrqbirZAzXtK0spqZFmYi1AzHJpr3ME5vVvzVmohIbLfH5XDgcD9S1oao2xOAv1BEpmONzV+9ks08KxnlimCdcXTGc4fF84HYZWfxMU7c4Z6lTTddJItW5JPKs7g9Cx2gwukKpNcJXiseQM0pJoqJRSAR4EfyJ2KcTVK3vRPiSs1ixocvNn0vnV9CDsrkbbdFOI27UFvJSCkaIEbSS1+R9kAIbhdVGFghE/+yMonFaBHJFEbByVlMGYiIkoThoMo2Ta6SNEqFUECeQnDwKQe+sgapxtH1LVYunqqsE4ba6JRUbqqADQUlctjgLLPJAzYqnHIgpcZ4mhnEiJoWtWmIC4xy7/Z6kDJ6K4f7A4oU77UPEB0Eb4/+fFMz/XZS5oFXS8QhvUCnEK7wI9bb7PT/7+c959/1bPn74wHg6EpZZEI6ysV54/VpjlGwWxQpCuMNZfJoJHlfXRUKdLwW6tYJPhBCI1tJUDoq4NuVSULUN202DqwwxeqZh5OnxicfHA8MwElOiaYSvXlVVQZdLSmlWxUows/jEskS571RJj9MVWjuUMqTi8iM+7uIR39SOykmcfDDC17fFveeSosYzmndBAinnU600FWk8lValcE4XZF/Q7+e1xlpDVzdcb3tev3zJV1++5ubmiqatC0ggkcVKZYwVJ4wSvFgK5lX09WwvBpnnmuoZQU6lUP4cF19pHHktlpUghuJSIvqQurZ474S20jX44DFaUj1tUQOF+EyrySWeSwHee06nEzEl5mkmxchmt8NWYvGXUsJozWaz4fUr8afWGj7df+R0Ol+8rG/uMm23KQ4nojFJOYnN4ByYZ0+MpZij7CfxD/X//7aPVACPz5uxz20iV/QZVo2B/H1tnLQ2pSktYj1lQDu0rTFVh65atK3AWpQVH3QpRmJZy7nAUQpNznKjJcDHzBiEnogWX3xpSrPYLcYFHxUhlPCYHGWQYQscVOiamRUtL7WFEsejAtpC+YxYMYKraq7vXrDfbXn56jVfffUTvv/db/n+d7/l/vs3pMcHlPdQmkajNE5pXE4FmFHokEhEdMw4pQhJqAvezyxh4ePpwMOHD3zz29/yxS++4vVXr7l9dcvO9RibWPxCiAvKKozT6OLCk0qc/abveHHzgk23ZVkC3/76txwPR+7ff+Tjm3e8//Z7Tu/vSacJu0SqkDEhU6VErcTJQiuDcxarEzp5KDUAKKJa1yBdrGehbmrqtsFUBowihbJGIQBZRqZgS5R7Kalnj2adJakvqRXdX2u9Qumh0DLg4tFtLuhycV7Smajk64OPnE9n1OMj7fFMN3n8HFmmQFKBsCT8HNFTYMJjckJbR9N1xHhGWU3dOrpdy1IZklOkWRYrVYp+uSmKFuV/GcKsPn8rjCG13qqfuWAUFSxZMsfFOaOkqGehYegLBy1fNsGYM0kpdHErUCkSioXNHKLEoWaHsSJuW5aZZZGUGp2hsjD5TEgKky2nKVPVmlDoINZBdpkUzgynkZwTVeVwrqWqWtpuR9P1uHqLq3uyjqAeCCERfCTGmdgGsMI3WuaJEJaypEbCMjKPjtBYlJKPKQI5iS9qjPLQhhABhbGO2QcO5yN949CVw0fP4XxiezxRVZ2I+qqKruvZdFvOzUgsNlEqBay2VFZdbGn0ZwWz15kYEslKh2ytonKGpnZ0XUXdOKpaY00SX000SqBYoUakLGl4q7sBgNY4U7iPOZGSFh4ngagqlGsxKmJdA9nTNC3TOMuoV2UpHnTGmUxbURA5WXQiGbQRDvMCTiV0AkeiVonGJLQrC3Fly/jOk3KkcgrrKq5vNtzc7NA6YXWmqhturrZs+5ZpGLj/8IFlOgjqDozzQFQeik93ypl5WZgWT1aGze6abrOTxVtN6JjB1IyLIeaZaVFMS2L2GZ8yPknj8GM7ZN/Mf/D++fi8C8/qM9swJV+fMiXIAhIRU9fcvX7NX/67v+Hjp08cD0/M04SfZrFMSqHcU0poRGXSpAqCrIpgyMcoqnKlsZUsbNEnsg5oK4WULpxXZyWEQGtD7Wo2mw27bUfTGpRKzIvncDpz//QkUfApU9UiBq7bGmOtBCjl1RVG+MNL8d6WMEGNxmB1hTOV8C2TIUXFMiWcTRjl6NqNxDbXFVUtNCRlMtkotBW7LoJQBFDPnNKYIjkbUfcj4ToZGXNf0BpVJj1ZnDPCEopDR0XbdFxfbXh1d8WXr19ze3tF0zgSAR8gZy/R1s4KmFAEWhLiINabxmqMls+tFK5UqEafe/bmcuPI1MmBloCALNGsBZk26KzQWVBmV2nqpAmNo29r6spSOwu5FCfWoJFCLkQJPpKmXBDDsHhOhyOn4Ywxhv35irsQuMpC6chZRs7O1Vxf78g54sPA7CWwaZ4njscDddPgbENlamYdGeaZxXvQDlVCLRTS/IZY0M/w4xL9wfP1gudJ8ErJkzAfdXHEyIX+E0sRmhHqoVJGHGVMhbYN2rYo06BsQ7Y12IZsIzGuom1TtnWZishztDZ7GaU8IWSmKABDRt77mPGLFNhRkpyJUYAzbY3QanRJiCs8Vqk9VitUVi4TIAVfLk2bTEakAVauYnP7gtvXX/LlT3/OT3/2l3zz5T/x7X/9FR+//iemD+9IiycmQcQrbcSvOQvFQEU5RypBVFmoDTmiC5Y5+8hwPvH46SP379/x4cvX/MUv/4Kf/vQn7JsNUxo5jhE/B7INpXERUaTVFoslz5HDcM/3337Hb3/zOz6+e8/50yP+NBLOI2qOtMrQYagi2JhwGapLIQokSEYRtZHAojJ99wrmnIhO4U3mtIz4HC+6jQxkrcim6BSMJejiZqVk2mZSoirNhM2wZIUplAyBHKTmEkVXfk77K42MLuiu3KNy4eRzMn303nM+nUs6q8SaL9Mo+qiUqZRiSomnZcIoL2uVk3XCkOjbmmpMmLYmVAPBAklhYqILiSrK3hOt5fxncK3+vIK5KL/ySr1Yp3OfFcvrMFFOunR2krKzdoHCGZGC+XljVitMrhWmMrjaokIWFX0s/NYsG4hPgdkrQpRkMaMMjatJrDG3Cosi60innYx+yNJ5mcgcAssUyBnqak9Tt4LS2o6q2dF0O1zVMy2DcFejkPJzToRpJmiDD55hODKNR3JeaBvhLVZOk9OM0VAZsWfJSRT0KULMEpYQo9iypZwZpwlnwdWOtCSmZWKcJ6ZlpjMWY6zYHXUdbd0wLSMqJwwJqxKGgFaxeB7L7SoailzMujNaZ1xlhcdrwdiMcwlrIgqPzgqLxeQMRcCRSwjBKsDSJURCFleIKRCjIWRzKZZtvcEzo3SFc5q+7Xl6eAIE7XfOEJYFsdlJVDGJpQ4aXwx6Y4IcobWGlBPWKGoVaZTH6ERdBIs+JMbJk4h0bUXdVXzx+pqb6yu8F6779dWely/u2PUd9x8/8uHdR07nET/POOdIKmG8uSy0KSWWEMlo6naDtTXaVNLU6arQR2qGyXMaEuchMS7ggxT94nLwI6yY4Qco53o8axM+o14p8RVd2+SUL+1w4dsqtK3o99d8+fOf88uHB54e7jkejnx6907cDoL4DButpAEsG1BZFaTBVkXglkR4hYqgFCHIRi8LcKYyFSLWlzAVZzVd37Hpd9R1Rc6eaZo4HgeOp4HFBymqakfTtlR1jXXrfV1sMQu6GVKS9cJnUjAFLdUYRJizWs75JUMWS8W6dmz6HZvNlrY94JeI9xG0iE8otCkduGTNCm/2GR1X2pRGVSYwq6hOr3C+1iJyjbloJDRNLdStu7trbu92bHc9VWXIufgzG7AGKdjtOvlb3RHkc9YIjUlr80yxoDTRZR3OWaFyoWZl9VmIk8BNKyLLOjrPMoXTRsumqjNVpWmbmqaWYKRliYQlUFtX3H4cEAgxEf0E2aCyuvgBL8uCDwEfg1DwYhCrT6Op6pquzVSuZrvreBXuiGnBOc00z6QkDiuVG6jrjspWTCqICxBeklFLoakRHYRQDf70jfXfwhHLvgM/pGKsqPP6OWuFwqatxTiHcRZlStMSQrGkq8gps6iFkDRL1ExeMUfxP16SZgma6DUSMim6n5whksT2baUVocWa0UdCikJnShCC6AKkWRRhWjYy0cmWwi8v1YYqATk8D7vVZU2iWNmtY3h1WS9iEkcjqppmt6e7e8XN7Wvubr/gdveCXynLG5/wD/cA5CS0AZvAlrAMEbNKYSp0kohNHkhEpXFakiSjn3g4HhifjizHM+E48urlK3QJ5DlPA1NJ2ksobCXN++nxzJv8e86PB959+4YPb98zH884H6kjdFloIlVOVAlckkLOKo0tKC+Fpx6VImmDR1DhqDMLicXAkmFOgcfTicl7sZA0VlYaUUiTtLytjICkNJ6MDPKLX3SW515nXSbIlAmhQiWFioIorzHbhYFx0WbknIhJnILWyVZMqVBJI23t6JoKciAtA7WpqJqKsFScF4BMbQQpzjEVerusX7qqSZUjVIjpvZLJQKUUKSt8W/PoZxj/tGfqX85hVn/wvhz5s7+t/6HURZyyjv0Un48gV3N74braElGqyThriV4uwcpxWeYFUpDxi4bK1UQlvB2/BLEOI5FVQFtPUqlYV4nI3JnSRceMc064iyUIpG17+s2OjGX2T4JwlHCCmDLzPJKLH/FwPDCNA03luHtxw+2VIBphmSAn6trRtQ3TJP6tfhVSlAVLlVGAD55l0bS1iKHE9siTSSUhS3h9m01L17diUYOEEDhnUDoBAWkT5NwrndAqye9elhlNFgRJgynjFKtAF6stGWdDjgVZLkWSMZJ06JwEOYQk3pyxxMeiNNo6qqqlafuSAKaprKPvJCY8laCFyjq8m2WRMWUCX9ICjbVgHCFJaqEtiJV1GecURon3Y9tI+lrM0qXGOFLXLbcvb/jyi1d0bcNwPmO0YttvICvu7x/5/vt3vHv7gaeHA5Cp60jMCTXri9F+Kj6TVd1hjCNGOBwGJi+xq1lZfJx59/GR+8cD52Fm8REfiy3dWtT86I78g7cfcGnVuuE+I8DrV5I/e86Rb9FGnnfrGu5evuCvfvlLjg/3fHr/QZImp1lGY0qTEQGb9OLP7XcmUQwWLtxj8cFVlxRCEWtJUR1jYJ5HaiMhFrvdhq7r0DoyjgvH04nj8cSyBIxxOFeX4rbBWBEPxZxIIReEm0uE+pr/EVMJYFlpCQV5DT6UMCBwzlBVjk2/Yb+/YrN5JITEPAe0XuRZLT5+hR4qG3CxSJOmRZAxLg2MIN2G53F5zhDzQs6SfFo7x3634ebmiru7a3b7DlcZUgr4nMiGkjYmkx5yLGETCm1kHXHFJUMbfSmucl5Fe/oinv18+qC1KRahZeSpTdE4pGdKXs6gn/cAlKKqKjYbxXa7YRoDfjnhl4VQOZSuMVoSzlIS7+y4CG/ZVRV93zN7z/F0Yp5nzqczrqpoYsRWTq5ZyvRtpqpqXr56QdNWbLcdH+/vOZ0GpmngdDpijGhBYrmOwzgRQyTEjOTAG6yzoDI/Nnw5fkYD/EMqRlUoLEKLKve8VlI4K1mvx3FgWRaWRSzYlmnieDxyf3/P+w+feLp/YDoe8OPAMk/FLlQajhzTZS0tHkdFLMaFupdi/kzkLaJhTOFKo1CXlUXcpdbzf1l7FM/34trLq+eIb2UEIVYFg47FOtQnWfezVtim4WZ3zcv9LZ0ynN6+4fHb33E4SlLp+n2s614RKYcsxXHSGnShXSLIrFWKylqa7BiPI2d/4E2IxHHh4cVH6qZhSZ7jNHAaR3wKRDLWOeqmRicI88J4PDEfz2QfqZSmrRsaa7ApoyOYVITDl9qK51jqLPzwuNq+ZhFmhhDxKpO0JhOZl4Xz+cw4DFBZ4RRHJKis0F7IlBmXgJ9KiTe8zwiKXdYoJU56aCUCvlReS0yfTca0oNAZsQKUxiiXQlqabp3zRZ9QO0tjNZvGkZ0lhIxWCW0F8NCTJWVDLtoLnRVWGfGxnhd8EAHvGtWOkmvkUQxW842e+X/4/y95//UkWZKleWI/ZZcacRIsadHu2Z6dXYhgZf95CPACyEIEjxAIBDKzNd3VVZ2VGdTdjV2iDA9Hr5lFZFR11UxXdydwUzwjwo3bvap69Dsfmf7sMfXfRsm4unAVXE2u+ZM/LxexVvrMj1NIy1N2oKLOFRcHCQAxSp2dJaw2UuUWUVCOsjP1KYr1kDVEIlOcUECKHmIiaWmhTdNM1ZiyyAga7ZoasmGeInVdSyhK2xWecIcxltPg2T3tGMcRYyzOZeKUJL0seLyfGMcTziju7zZ89eVLbm82nA47Hj5MkKCyjtXKMM8wTpFp9ucdRUqJ4GcqWxFD5HQ6oZKjdoVDGcUaylqNczKBbDYbDocD3o94P2OMJHNpI1xEY7kk1kUtpGV0MYVPl4UM+d5TSXC6IiiilAww2edIK0QEiFK9pLIYLQVSXtquBqq6pu17UoziSuEcTddT1Q0xebGkswZrDMlEKmcFQUrSsjGVcOHmIBOurLei6HdWKCXSvhcRVVu3aDQhBOqm5cX9Pau2E8/omNBZ8/jwxOvvf2D3+Mj7t295enwizF643rnY3hXXhmVnm7PCmIyfE7unA2M4MEXAViRlOU6Jd+8+sNsdGee5fIZUNg/qvBH66R/XRfOl2Fmul4WGVco7QV3OyTPyu7ZpePHiOd9++y2//+Yb3nz/PcPhSCzewcSi5l9eaUF4syx6VgtyEIr1kiqRscLhzeRiM3c8ZuZRU+nM3d2Krm9p2op5lrjk02koiW4GZ6uCYlFawsim7bIUF2RbASWt0soGW6j8iRAC3s94PzFNFrTBmEzdWGBFV1xn+r5jnjzH6lRSOGPpti2IWPm6Cs/0vO9YvI2zLoWHxIsvaG5SMki1FjHdet1xc7vm5rZntWqoKwkcyaVcWebfpZBd+MWCLGvxjl0UsFwKdeGIXhbF87XAIgoUIbf4nCsZr9lcb6lEfKVLUqRZAjQcRlfc3NwwngLHw1AE2SNdV8v4NeLPnLN0BXyINJ1js7k5o9hz9OKta2wp3mWxHMfx3ALuVz1d94K+F+3G69dveXh8YppPTHNDVYnVaFNbJq+Yo3CoYwoYJ0lsVuvCAf3pHJd0TnV2PllAqmuXjHmemaaJcRwlDdFoVBZtwDCceHp8YiiON+MwsN/v2e12DIcdYTyQ/HjWh6QQhOudl+K12CWiPiqg4lkSo1h0ELLZdlAK9pALcCNvlHxdfCjpei4o8/I7yjyltDp3DTOcvbdDFCqedeLclHJGaXG36lY92mrm6PExiFuGXkKpZDwKdRRCzvicxC2CTFSXNVEpcduoraN1lVjr+cj+wwPz4QgZpjQzpUAo1nuhdOlQYJWBmDAZWm1LAqGWACgo5tWFwqVBZZk9pUG7QGaQSQUEKO5kMeFDIBjITgSTMUbCGBj3A6GrUUEaeUabc5eZhYesiu1fAUFT+R5Szlcx2ALMeZVxWf6stDqj1kobMhCyImoJPkNncIpcqfJ5Ir0zdI14KI/HR+bjI93NHcZZfPBC1dXitiPGBAG0WOwa4xh95HQcOI2TBFUlUzp4CV/O105pPlSKf8p/fkf4X8xWbjku7dyrxYcLMqK1JsVwESOkzLLGLoV1ipl59Lji86sKd0iye2Qwk67CDpLwgnMRtGiV0MhiqH2g7tw5VlYrRd+0OKuYqkBd14Xy0LDqVzR1yzgHPrx/4P27D0UYFBeQRIQhs2eeRgyJ7c2KVy/vxbKpbYh+wDlJ/9JGU2Nou4bqMKCO/uxbHLxnmiZWbU2McBpPqFTh1j0gzhYhiAWeKfZaWis2mzXH454QZ/EiJGG0LHbG6KKcl6JNFRVqyEq4zNGTdCaFTAyaGAxhSXU689zkXGhlMNaUhUgQvjjPZAq5v0xGqmyAAGxV07adCOvmmaw11tX0qzXTeCwFgjglOGvOvq/jNBNR0ha3srFJVgqYRAYdUaVwqasLQmZUorKKpjL0bU1TOcaToCApSrDN7vGRx8cHxtOJeRwJIUhrLucyxSRUkmJcm2LHFzPjGEkMBDVzmhMBg6laQtbsTjO7/ZHTJMWy+IUvW/tPdpU/4WMpkj8qlpfbuB7dnNuAMs6NnLkohdpqteLLL7/kF7/4BX/4/T/x8O49h3GC80Juy0QLIHSPxYN7EYOqRWFGibwv3QARC4stmWtr6sbRrUowhlGlfT8xTTOgsLaicuKvO00ePwW0Eas762SDKBPrsljYstFPKCUdmKBkgvZhZppGpsmgjMNaQb0XcVXb1LRtw6kZZIE2IOFIqazl8llCmRMWFbcqQtlcFOQ5CcqVVCkuEM6SIlJZRde3PHt2w4sXN9zerqhrKd61Fk9Zq2QDqArnRSlJtTTOFL5yIcKkXAqDy9y98LjzgjIpfZ5bzpfEmaqz8BI/tjOT60PmCmNMiah2GC0gwHjyHA4njscTp9OJura0XcNq1dG2PfPomctYSxnhanc97TRjvKdrO+q6xVqLKm2JlBLjKN1AYxSb7Zq7uxuMlVAjV1meHg8cj09AwtqaqjZ0uSEphIYTIynNqFyVuOWf1ri21koCKwWgCYF5nhlH2ZiEIL744zgyDANz8Jxt56K4sUzjxO5J9AfLc/h5xs8lyCpItzfnXPrrQltSiGd/ASFl41X2g6kEnaQlQfJczMumUJZ0JaDXdTtjuZau56Hyfq/nqYWTnYrQLWehp8zBE6J4HbdtK2meaEIMzCkyjAP744HTeCIhQjKlNTkKIu2sFNAs+sgsLN2oI1FfU9NEdFhZQ1dVhLIWqckzjTJnzNGD1Sgrbk5GKUACkOacsUrTVDWrpqarGiyLy0UUmmQBdpaOVMzqwgu+inDPRYOk1NI5LmNS6bO7CDETxplsHbVy1NoR0zUIWsZ0+bfSTtZylc4uSTlnJANZimaTMzZnXMo0VsSFSUkYS62ED95qjdMWYzW6UmSXRUOiBFhQBJI/sv/wmrqzKB1o1rfkLPRNZTLrVYvKhjAGwuygaphszT4hrkYF6Y5aQEJKxxAxAQNly7u+Xs3+xJj684benz4+sqZZTtQVGlF+c3VbQSk/eYxSYjCeQmQcRiIZHYRDa7TBFXqCNRSkVEIxFEraaCGgVEJZuZXispCSFEVaSauhcjWuctQ1VJXsUKyVohml2B/2/PDDD3z48MA4TgQfiFHiXtGJyYuQr20cN5ue9arDGUVOQfi2lWNIXgptbKFUuOIrKjY38zwzDSNx3eO9qPe1SvRNTYwBHzzjOOD9TNt2GGuptWK73bDfPzH7UQYBVy3e5UMq0GXXJyE2kehnUkioZNEknFEk50jJfjTZmMVWqhTSqNKSKjthym1y6pYJT0lBa8HVLXUrQq1pnkhKs1pvMRrGQcJFFKKWN9ZR1xUgdkF161CuKpQczTRH5iBtlRATVVZo7aicIOe2RCl3tcWoxOmwJ6E4HQcom5J3795x2O+kTVhmbK2Q0IxkyEkLgpZkg5OztAtjjsxxwmfNEDIhG3Dgk2J3mjkME+PsL64YeeGOqT9z6P17OhZ9wbK8ncGaS1Ek/IBSFC2N0rNsozxPeQ61tFmlq1HXNc+fv+CXv/wV3/3+n/jD737P8empTL6axRni+lBKzglJUqYu+/DLvJFTLH+K+8vd3Q0vX73g5naDNjDNI9M84sMyFhXWOKyry3zhGQdP1kHmgyz8Z3G9KHSxXK71pYBXF6/ilCLzPDLNBleJyEiKkgnnDNYZVquO4/FU6FMabdK5UBa/dlAXeYeMQVVEf0V0lFMkEUWIo6LQrFLAGUXbVdzfb/niCwkl6foWRcToLM5ARmGNwhV+srMaV8lmWFtdLD3jWeRV+BdlQTzj/sDFNUMKZnOZf+CMroEqaFMJL6HM98gmRxckfvmsXdtye3fL6TTy+LiTWOynnVB6jKHrO9p+TeZEiJnTMMrMn2Tzo62j79fUVcNckkjF7UQXFx1xNxoHQ93UrLoG/eKZbBjMGx4enhiGPU0dcFVHp2tyEUel44RPwo82Sgqwn9LhfeB0Op0R5GmaOB6P7Pd7jsfjOYF2KZineS5rc5krQYK35lk2U+Qz1UIhRV5OmpxEbMWy4dOXmURmhMVus2iRStBIKi3yhSufi0ZBQnEgG106P8jaBYIYZy48WLhgFGdkedngU9YmVfjTUs5qo1GFNlayB5mnicfHB54eH/Bhlo2kEw50DgkfJA1YK42yuohuywyoihvm+ZoXuplRilRVEq4UI1YtAswCZhXENsaMchqlHZFCX8zi/dwqTaMUBiSILHr54MJ1IWYBeZb3ItqCBTATEEeVL2l5zUShYmWDzgmLQSeNNRV93VGbmmGey9yvz5t7hWjBlF7OvRBl5BsM+Cxru4h8i/eyUkSl8Vk402NO1EpTKcWsFY1RVFaXDb3UBa6tqCqN1RGVRqbjBx5eR7QO3OlErldktFDqqgqdNXOuCFONrVsG54rvtxHvdmsINgj4iMy5ddZ02dEFS/sXDOu/qGD+NBnoz7nfeXG7UoIv+d1yUeez16cuF3qM4r2YVcaRRImplWSxWyNITSHZL5zgGAIxpJLopTH2Yls3z17aG7bGGidUA+twdYW2hlSsrrTWzPPM4+MTr1+/EfuiKy5vZS2BzDzKF981FU3l0FkcMgSNAlcZTiPCucyiPG+biq51xDiRYuE9lhbkPAyMw0BlYBonZlfh65lhHJjniZRiQXoV682K7c2GEOX3Wi87QeGCKiUcopwk1Wcplv08Qg6oVFFpyM6isnjBmgX5sRZrHOfmdC6x5KgLmlxQJBFgXtwRjNEikHAOVzcMw8joj5Cg7VeQJa0xLobtVmziQowlvjrTthV11xMTDPPM/nRCHQO++FSGEMg5SIhKVdF2DWBIKXE8DgzDjLE1OVPa9Ef2u6PwVnXpTORcWrdaxIUe0FI06ygCk5QVOch1NefMFBVjCKQpMyfFcQwcRy8FfUwEVEFCiv3STy25BPi4I7QgNpx/d1bbf7TJXdDD5XahZ5Dy+XokCW++7TpevnrFt99+y//+4jnv37whTlN5utKyO++tL8+bCi9cFmh99utWZaHVyPzRti3Pnt3z7Pkzur7Gh5nj8VCuuWUhFs9yra34ucbMNEdiFjurFBWxMuJLnCmCL6FI5SzjwDoJ+nFOoXUsnsielC05aynCx6Ek5mn6vqNtG+EIu6UTJIWDyQoTcgn4uZjoLyBW4vJ9iugukjQYFVE50bU1203H82dbXjy7YXPTY6wm+igccZ0wRvyNa7foQy7dKvmqyxy6nP5SaGitSi6EOtOxKAp2WHbilytAeNeXgmBhp0ra21VhU1DqUNrKVV2x3mhubk+s12v2+z2n00BK0NQt1lY4W1HViWGYOA0TIVFQREPtHHXdotAMpxEfA6vVilXf0lQVzhnpYg0D3k9n4fN2uzp37w77E0pFlI44U0nRrIRjeRg9IUnSmf6JIcxv37zBB1++0xPTNHE6nRiGQSgW3p/FfzEJDYVM8bgXPnNOqQgtC6+/UCBsob9Q9ClnHUO+jE25Lpbrq9AAs6T+RRRZy/qDKXNN1iUD52rzXtw1xLJy2VXKzWeGs7qaP667YbIYlu5G2cgVQCkVP/O6aqisYzyc2D89sd89Ef2MUwhIlPIZnc7eY4pbSDZKin4Wjvai6ymIrhYtwKpp0TETdKBxYls5ZYVLsqHGaHxOsntWENAoI4LCWltMzOTRy/OGubhZScddRPkCGCzFssYUUEsoFGrZ6KrlO1CyGdYSaFInjdUWZxxN3dJWDToLGq1Ned5lLcjFIrAg+EJ3udBuYplEFALY6ZxFzJcVU8q4kLAZ6pypFcwkWhI1GZsSNifW1lB3Ff2qpqmQgvnwnjns0dpTd5bm/iXKNAUIMKglyGgRrRbvyFRQ74DYEsq6VnRs2VJrR5MdTf4rIczn9tpVG+T6+DE94+q+Cxa1PEcRkSwDqjxBQfgyIYnDhFGgtEHrRflYlhKlzzZUEm1ZMoQqjavFjD9nwEh7zeRM07Vo7ZCWYeFCCkxCzjB7z+E08cMPr3l4eGCeAzHKxV8ZJ3zqGLFF8V0ZgyGT/IyfNTkFif41ItJLecbP0rJw1tD3LTFmTicJ3pjHmePhRJxHgpf21353EL9pW3FqJTQlxohzskjUdc12uyUEzzCIr6gt2fRaS3s1F+9WvUwaWcJCSJFsymKqwBqD1cIpNsYIrX9BAc6csaVwKuud4nwfykDURuKGk05YVzHqmZg5t4lc3aDVhlgmlHE4yPnUGquhaWtCilTOsFn32Kpm8J7q1FDvLfkJTseJECPz7Jm8p+s3tE1DSgpnLfM8cTjOWNtirGMcRg6HA/PkAX1OETpPnkmVFnRxYuEiSkqI924gEJRhzprRZ6aUmCKc5sAwBwIQUvGmVLKAC9j/03TJAC70i6vjR50gPhnruWyx8mWMX1rxyKbRGFarNS9evOSrr7/h3es3vPv+B+I8CzdUlSjdfIVLlfmBwqVPShWqhBTAi9+qtZqmKMyrqiIrmMPMaTjJptNLlHKMGRUTJiYRaZZgkrm0n1OCEC1VJZxVjD7PW0pr6sbQ1B1d12JMJoSBlD0herw3VHVNzpFpGrFW6EhN20h6ZCtcWXGpSSgMKYOzCe8vdBRdvk/xbZdJXqtUUKVIDBFbKdq24uam59n9lrvbNW1rMVrsJs01HzsvnQB9tQE6S63OC690DsrN103BpfhRl0203JbOd5FDl3S3Zcop6ODipqEEpdKAtQ5puQo9Iqe5uACJH/bhcGAYRt6+fU9OsNpsxC8VxTB5CW9yDucsVVVjjGP2M09Pe07jSAwJZwxt3dO2rcQRhwkfZmY/FUGq4+Zms9RUnE4jIY5Fo6FxVrFedZgqcpo8ISN6j5/Q8Zvf/IZhHMr3OZwpGEuRvBS/UM5j6SDJX0uq5BW3PpViEBZOsjheJPR5rC7dGKVl87cEDeW8qGcAzIXKd7UpZ9nElWJn4SjlzBlUufaU/lwoy/L45TlTLmh4MROAXFw/JMvAanHqmYeR/dMTw/FAKCKwkBJzjCgfcUH8wJWKoCNRW7zWJUhF/IFFFLjQTGVNdHWDMxqj7PkzKC08ZVM2HVojgSkJcYmRshebFXmKhBwwKWFyFIH+guZnyAuyrIqlmxIqzCKwU2jIEi+SipbBGAUqYUk02p51XF3f03adgJWl6w5yiowyEnZ0BZgtIkelkE2Q0sQUsabQogqXPcaEJjGrjAW8SniliCoyZfGRrsjUOqN9ZjUf2OQKY2oMo9RcucUykMMOUo+1GRUjaZpQIaLDiMqR43DkuN8xTQOTH5nCJB05lc/1izLiyBGUYh888yfr2586/psoGZ8rlpfjUwEgcBb6nRHmhY6RZYe0+JDCoqItbcssbcRcfJ0zqtADxHjfKQ1GqBquksFgSitUXDWk3xmDDHQfMiGCosTkWivEfqXxPnDYH3n74UmCFoaREGWRNcZSuRqiuDcYZQSRzsLrnQeNJhGdFbRVG5q2k5PiR2JpozR1TejEI1ncPjzDaSg8MFF16sJfctbStyvh7oXF/seRc6Lvewl0IBFTkAu7GJU7YyhAgRQJ54u8CChChCj+iEaW0TP3aeGUn1ux+tLiAkorR+CoBLCoqo0uBO9FtGFQxmKrRnbKVqGaCltVOOd4enjHNJ5EKOgsyhrGcSjcsprN7R1Ja9bTyG73hGkcb16/ZZpm5hCpQypoocMYTdO0KK3xITLNA5mJaZwYhknQEq3FAztlrNWoVNjLSa4pVVAPXdCHCMwx4rOogecMxykyxMwUM4OPRBRoI3zbFM6buUUk8dM68tVPOZbxvWyOyt8X5OgaXV7+lUtbXy335QxYYoyhaVuePX/Oz3/xC96/fsNpt+cYQ3nqS8jCBaG6QquWjVpeFNklWEBLvKxzFmctWont3DBKXOownM7uEz5Ieps2AR/CeeMXg6AQIUaJQI6Jpq6kHVm+Bussbdtxe3PDatWTc2C/e+A07IQykaPwdklM8wAqsuoVTVOxWvX0fUddVxI0ZBNJWRHNROHqFWiPpdeaE+hCt0pkxKtL7lbZhs2649ndDc+f3bLZdFgDKXkpAMtWd+HrSVIl6LiM9qXVKmdrOUcKzgi+XBUFSSjIYTpfI4qFJ6lKeM1yni5e2sI3NldY+VLKaCPUDFWs+eY5iWvGesXNzZYYo1A0HvYEn7mZI7Z2wu/0nhA81lWs1ytyNsw+stsd+PD+kdMwkGPGGUtlF+u6hrqu8GHiNByZvbSbjXV0bc161RJjYBw983QSv2ptcVXPqqpQxnIYZlKc/zvG2L/+8Q//8A/FgWk+W8gtx6Jbue76froRXpIlL42nfC7WxFpSuoWyV5Z1+kr6dnYeArkudNEi5XMhrVgoYOQrIflHaLW8H40m6yT0/eUNqQuYsxyXWUyK7RhD8WivcM6SU8RoXboPVpatEDge9hyengijFGBKFXecok6UkSPzVCxOE1MZuUkF0KXbm8saGQWwm5lY/NX9JN7kygiqG5I8F1r85pVSOCWaIYvG5FwS+jIOjc25ZCMUxL9QpLQ24oCjdKGCSLdcKwPF6C1GEStap7FOk3LA5iiUrcrRdC1V22CcYZonsRg05mwKsPCXRQqWiORShApqLTx0I9eSNue03qzkuxNHpFx4wwol0Yn4FAkaspU5Q8+Bbsjc+ApjOpoqUTWKdmW5WRm6KmD1Sc6bHwhRg49oP5FOBx7fv+HxwxuOxx3jfBIzCJvFdhQgwpQh5sDRVHzvRx7+THQZ/oU4zJ+jYMD1olcmy3RR6OarnevS+qOgez4J30hpcEqTSrqbj0J4NypglOStozTaaSpnS0TqEj4ghPQYZrQ3pBCYA4xzokfim61155jeaRw5HUc+fHjgdJJFdvaJFBW1azBGXDWiTyUzXTz//Dgy5EiOnrptaMouLZSF6rifxC4pZLSu6NqGGDLDSeyL5mlGpSBNzJCZ08xJD7R1IwlyPkrrLEqMplJQ1y19NxNjYJ6HskAtrVaLsgqlAzkoCEE4kRFSKfSij+SyiTj/sDBTxSZHF7HfAhstBTgUjKq0yo2RAAMpNIRrjFJYV9P2QuqvnUYlSWurqpqcEx/eB7SGbtXjfCWvXWgfm+2aZrVmEwObwxZT18wh8eH9B9CajBFv7Kzom46MY9UfeNrNDKNnmkexQgrx3B6SBEIN2pIKjSMuFlllAVClDpBEo8ycICjFECOHKTAm8AmmlMmlUyHOUyUVC42Iuv4lRtW/3pGLa8o1D/WC1Vx/mCvosWwKlqujODJfHr/QruC8SNRNw7Pnz/nlL3/Fmz98z5s/fE+YJuHX+/jRAilPIxMtShMXtLkIXZalUVwvbAkgEpHO7CeOhxP7/QHv5+LKIBtCfbU5Xz5ATBJS4ktQhmghBCFaBPxV5djerHnx8hnb7QY/j+Q0MU4HMkIrslYQpGkaGMcTxlj6fkPXN7RdI0Em7iDzinIlQRSMDrLZVLkIEBVOI9HcZELREGgFzln6tmKz7ri93bDdrGgbB6qM48UaohQMSvrP0tpOgggtIHM+mxMsbPTLxikvPA0td14wa7hC9dSVIFTL+5e9tpROKi22lmXTLabwMtyUhhLW4KyhaWrxT59DmfMSh/2Rh8c9k4/UXYN1VtwOvKeusgiMo9zv/bsHHj7sGKcZhbh+qCxhV5Wr2GxXtF1D09YMw4lxGgl+JsVAVTtWq1bm+HksUfcBlEVXIlB2xUnkp3Q8Pj5yockUe8YrVHkRZp43qpTrQevL38vIVhQxb/FGP6/t8NHVIxWVutibsaTuCW2HfLGXWxDmxe5rkaotw/vsw35VmCmtUEkXYRiXzsiy8TvbF5Z5hySGAVreR/QBlZK4nqBQMZPCzHw64ccBnSKNlmQ/h4ByjVE0RkMUpDxkkSin4oaUypeljYiTM4Lyal1clxCvGp8lK6FuKnFzGSeGcbrwgrVGJaiMxWhLVQS7NkmUtM2OHGeSCoWPvXiom7O72KLPMarETitDypo5SSqxsYbsDHOU1F1jNa62NKsWUxmm6JnjTNdUaF26sCmXNaK4IeUk/y7fN4WeoRDK23l+0PIYn6NYFlrRffhcaLgalMu4vubmpmddGxrr6ZqEcRFrA00DbafoO0XXZGo7o/IRlSI6agiGOAfm05Hx8YHdh9eMxye8P5GVxzYaqw1aRVTMxDlKQE7OjE7xFBL7v2BM/XcXzNdo86e2csBlQs2cB+dSpSwdIKPFakhp8TJMMUqYgVZURklcdi6tU4LkuessJ4AMGmxt6FYdVVOJ/2JBRr2fmaeJeRyZp4nTEOjGQN1w9heWdm1inDzTNBNjxvvAcJpAVzRKWvrz5JnHmRQiTmURA+SASgFFwrmKpm7Zbm+ZQmS/H4pdz4D3Cecy1tZ0bYNKMJwGibSNEVPORIyLC4cneEG8FmrI4jJSuZqm7fAhCAIVJeyAYs4l5bwpgTEyneWSVBVRpKvAg48GhIJEQiVVFkooqy5Lr1UVA/OlhScJYIL8zPNMCBI2oK2jthW1ramdRhNwVUVVN5zGE7vDHnLE1TW2sswxcBwGhnkEoOk7rNFUfQe24nAaOQ3lNZJimjOzh9Wqou1rVusbqg8n4v6RcRRFfXnXUjuYMpiNk1Z8uvCrUinyUTIphyw0iynBTGaMcJwjc9ZFwCDXsyDSpginLo4Gf8GG9d/FsQhVLpSrH9+++C8DS8jn+VgWV+kkLYtnQaYWVEpprHVsNlu+/PIrvv76G3777Dccnp44zv5s72RKWy8Wn3Vt5JoOC6qCLKIkii5CxoQ1BmssGcXsI4fDicPhhFKpWGWZ86ZcOHgSmKOFOCxdk5gJRfHvnKVyrlC+ZGHpVy139zfc3d0yjSeOh0ceHqU9abTCOYuximmaOZ0GqqqmqTucc3RdS9/31PWeYUrkpFEqsURka11EeU5TOY0RKxeSihJK5BRN5Vh3NTfbFTfbNX3bSJy0kQ2FUsVLtxQPS3t2iadXpZuybDoWMdBSOS/JbIuA+Fx3KwXokvB4BYKcfxZ0eSlWEkoZcdPJgjCL7VxiESTlAqjnrEXQ3NRstxvmOTEMM4fDwGE3MI2ekI5UwVPVNSCbdetqlLYiBDweeXh4Yr8fmecI+SB1W/AYReGcWzbbFTfbGzbrNbvDjsfHR/w846yhaxuMtown6Uj6YWY4HtA+gm2onKVtPxkY/86PEMLZU/v6vF0XycshwR5l/b7uFLFcJ3z8PFA2P5dO07IuZC1reyxcaCmaBaEtFReidOUKWb5szUvfA1BFaLl0QqSjiUp/FJj7yCmDCxU0xUCYZvw0EuaJFKRw1llcMNLsyT5QKYWqKtoUaVKiTdCgqNFnDrbKWmLClSC7saCnUtzLZzJGruvkPVkv+gsJhEmV6Ge80URrCTlitMFoK8W3sWhlMVkCvZwuBTOyfiWXPqKvKVVAm/IdX37KnFA2JxoRGwuVJhGJmMrRbVas7zYM1jDESVyAbEGBI5TJFhm/FMphCTRTxdUig+EqOE1llJG4dB/juWmtlAgiXW3pu5r1quLLF3f88puXvNy26HBgPj1QmUBVQeUSdZWpqoTVM9Hv8LsjWVWYXFHpDjVnwnHHtH9PmA44HWkbg9k0dFWFiw47Kfzs8eNM1UOaDJNqiD7+Rf7qfzWE+UfF89W/VSnAtJadhgj5ZEGLRWQgRaQsBDELpxklF4lKEtFonLRWEwplMq42tKsW1zSS3mXFv3gcBo77A4/vP+Anz/E4s92q82KCVuV9iIl9XTekdGD2gjQFH1AKsYQ5TVBy4G0WHk3ImmQtCkEzKlczzgPH48DxeGQcJ+YpMdtM24KzLV3XSYJhEiTU6OKgkSKz9oyFUjAME95LYIMxDq01zkFdN3gfJPIyzMSoUMpK63RJJCq8XYowIEfZGRLLfJWQSfLMNy2R5YWasEyaqUyMpU/AItpMWXbsISUmPzPOk/inIgizMxZnXfF4lWRDW1X0mxu6/Z55OhBSFoeCtmM3nNjt9zw8PeI2a3TXYaua7e09m9sPmO/fMh5G0IL++5DwUdrltmqwrkJoO2VOVov6Woo1Y6xsGFImFFuZmLPcf2nkaUVIMMV4KZiTYk6ZgCJpSULyPmKtkZSjBUFbxBf8tBbWj8W4P75t+fMs+iu+nHmhZ5QKekFVWDpJXFTjsjAqnKvY3tzw8tUrXrx8JWEm+52077VGW02YY9EOZFGSKwq6XBAkFgGRvI4u6IxWxZt3DgzjzDjNJdhH7BEvYhUKdYCPUFJjRBCzzEOzl/AgoyFRY52m7SU9zllF00r4SShzVVVX1LUBIsfTkePxQFU1VE54zOvNmrbZsdtPJfmzfKal7tSLT3oUlFYJIm6cou86tuueTd9xf7PiZrOmcoYSUF2+uxIikoCyOC7WjRd3i2JZlxFobCEe5wXZuxQw53Z52SQvx8WH+dqBW10+RxHdiH1+YglaWcTd1jpUcQMoRij0XY/RFu8z+92BumokqtyLfdbsI5G5dBMEMKjqhpTheBqFgxwSIWQOhxnNAVNU91VVI5aWCVff0ffdeb1xzjHNM8M4Qp5ZrzrImnmO7IeJ6BO2zuiqw7mfFsIMH3dsrsGteG7rF7vX5eSdQa1yfxYNErKrWzbBLG5w+dx9yAtizNKbEkSWslFbLMoKyZIFWVgKrrKv5tKbEj8JKcIvxb5SxWHjk/lKnTfDl02CKXhPjJF5mpiGkeF4Ikwzbq1xGHIOsknwAZMy1lg6o2lSpg0lTS9DRosrBUJnTKX7pbUBJXSPFAV4MoUu4ZwlGqH2YSTtzmvIWlPXWzpjJK3SF//qmMSqLok+RsUorhNlwtLKgJFOsy7YNUVYq8qir5bzhZL47pghBRIJAngUU5gIJtH0Nzx79Zz7l8/4w3GHVwHbuJJohgBnSQpgrZbaTRwwlJGiOuQESWOLo4YPkl6ojRge6MpB8qiUqRvH3XbLq+fPuH9+w/MXW37+9Ut+9sUzNlXG795yeGiJ456m0RibUcpDnonhxLQ/sR8HfFKYVLNqbqmomE8D2Z/oao2+XdFbRdwEVDS4VGFmw+E4ME8z61iRfY2ZFeY0E/aHP3s8/YsUzMvxuQUXZNJU58VNL9ACKLGLWyavlBf/x4RORVErQAvh3A7Ii3iW2SdG76l9ovIZnwLGWdY3G9brLXXTYLVlGEZJgzI1D+8fUNow+8A0z/K8SlE1cjF2bcfd7S37/cA4eoYxMAwDVtcEH5mnAMGjq5IeYyJL4AVA8IHd7sD7pyceHh85nQahKwQIYUZhsH1NXdforBhOR/w4Fx4lwpPOgdNx4LA/cjqe8LM/8zatrc++yCGIMMh7W+gFihRC+dbPUh9Z94QOeUGaroq6sxJeq7N4DX1Jhsp5CeWQc5ETRdSXi7o6FrqM+DdbK+icM7YoVkFXRhSs3rLe3HI8Hnn44DmNJ7b1irpp0dpwPB55//4Dpl9Rp0TbrWjaln61RpuKYQ7MYaCu1/iQpb2dRcClhNtzTpOSokFaQegSfhHlswglQ2gZcbEOU0jLrQj5fFYS54nYTEWEe7fcLkEUUn2p0rtXJQnpp3R8xGNUF4vIz4r/FnpVWRlVgY3U1X1+9OmzdCEW9XjXdrx48YIvvviC7373e15///3VawoU8amHr6Be+rLJvcKj9NnuTNDTlKRDFLxQJXJBUq21xRFGE2NJndKQk6RB6TK+jFm6U140AgbmWYRlMUrKprFaAi+aCuVFR9A0Ff2qRRs4ng6cjkdiTGzWN2ilaOuGru0wakeKMylKaWB18azNCe8nvMtYZ6kqTeNq6qrj2e0d97db+qaibSraxgkKjXjVaysoO5Q0LuSz6YLooq7GfKmH8+X0nJHpVDZB6upxlx6C/G6x/0RxCeu52lIrKMLahfNRRNqFLiKdBIvSCZ0ADGQj4r0p0XU9TSMUFqWMhFMVLndV1dzc3nCzvaFtujM/VytN39U4G/E+ME+Bw+6EVnLeFw94tCLFNXVdcbO9YdWvOA0n9vs9gxtxqsHpEzFmUj5ynBN+nlBJEfhpFcxLWMlyXHeCfzS2getR9WkxmuHSHS7Xi4xPGTuJ0vFhoe4sY1fmyMVFRTaI+XxFZS57MUFnS0f06u1lBUkVq7ny3tXVnHWec642v0pJ6JEAbIVPnTN+mjjsdszjiDOWWluC9hiU+C3PHhsjVmsqpXFaYWJEJzEd0MgGL2RQhcaitXSrMYZkilOGWkwHSraAzgQyyWlsXdP1W+7uX7G9uWEcBp4eHjkdDsRhIk8efCJOJVsiCSqsl40+XCG2y4ZEnE40qQgExd6NFMlBi+CexDxHJp8Y8gyrlttn93z9s2948eol3//jkZAjrqlkLVSJrBILXVEt85R8arFhNQp8FlMBZaWEnwOohK1lvu1WK3KccTpzd7PhFz/7hl/94ue8/PKeu2drXtxt2DYG7Y9MdqI2M34wpCj6r2GKEo1uEnMO7E8HQoAcLIPZ41RN9hEVPCRP0zoau0ZFjdM1FQ16tjS7A5MPbM0Kq1cYr7F/eMv45u3Vhf+nj7/YJeNzKvo/flxcFwrhBcquU/g36qP88hSFBC8LSREA5kxIog5VusTDlmePKKaQ2B2lYMOcaPrIKhXBxmqD8EwbjGnwYyIERYoeH0VRqWdJhNenA1XVUjUdz262BUlWvHn7iB9HMOJbSNLEAJ4oNjtOdlJLG393HAjHkbcPjzw+7ZnmcsGXDbFM5h5rarq2I8fIPI4SYRuE5B9DKqlKJ4bTiXkWW5mUFaaqUMngUFQxSoy0sVL8laJbZdBZBluUL1baKAsVBrFbiZRN5HlnblCmCBrLJiYj1JOUg5yflEkRktJSbEY5RyiNMxalCqfKuhIkINdNVGIHqHKmblb03Zph/4Q/HYlTwFWW1lUc93uOuz373RPeKIx1NE1H2/Xlc8JwGmmbka6fqZqZ1apC6woRHWi5vkrhlFRGJ/lOhT5yvpihiBwzC0tvQckyKkfhfS6cT2TjEFMU32VdPCnzBQ2RK/6nhzBfCqLLOqk+uu1y5JxLcE0+3/TRIrtohBZuiirx6WXDprVC1RU3N7e8+uJL7u7vqepWvEpTxmbgvLCr83mhIKO6JACqrKAEFAEsXmznVnFMkgoakugOnKaumuJ/LMVlVVlBlQs/T6tKfmctGYm/zSHgY6YaJw7HE0+7PX3fyfM4TdM6lLG4ylA3jtWqwdrM7qni8cMHjrsdYfLUVYtKgdoarMoQgqQclparNgqNbJZV0jij2Kw6+rZhvep4+ewZ2+2KSktrVKso4QUEUkT4pXGpgtUZBV7ObS5CVyk2KN9fOW1npL2krKIuyWbLc2T1UfF8XQ7JV64LzaNYg53dMYqAW4uPe86ZEDJZx4LOWZxToCxKW4bR0/Yt/aqjP3W4Wr7fudD0VqsVz+7u2aw3aKXw04RKma5pWPcdKSVOp0EoeKNnl/ZS/FiDM+J+kn2gX3V0XYOrHTf9mtZWnOqJznmcOZIxaFuhDyeeDiPTdGSKP61xbXQR4aVCOSsFtJxudR5ngHQW1NX51OpM8LuunfPSfFCFLpFBTNUuJbII+65SZ5fnv+5mXqbVpQY/d1vg8hpQgJ4zOl1AneU1L5f8GSDSXJKFxdkiUxlLVpp5HNk9PnA67NFkamfF8cppnNPkHAh+JjuHVhYVs2Q4ZF3E9aCjbPSkeE5i3K8lKEZZTYjirhEyJG3wShGMAqdpNyvuXr3gy69+xtc/+yX398/Y7Xa8ef2a3eMT0+HE8cMjYXdketgRdiemKcgamxM5RwhC5RLKVcaQUEkccnRx0pAY+wRRo5IhocQSNyWOOTA6zWqz5sU3X/PVL3/B+u6O/Pt/ZA4RpSXMxegyN2hIWs5HLoAUSqGNlTpiKW50OgMqGkXf9tzdbfnZN19ijWjPbjYd337zJV++ek6/qmgaRQ4nxlPGZRHzuu0tvnHsdx942j/gj556StRTBJNJWcDNGGE/HMh+jx89cRpJ80SlNbWxOO1QtqaqHM1mjW8sTVbUqgXTc1tt0f+P/+e/PiXjc4c6f7HIt67zud2XEaTJFN+8JQRAkNjAInBJpVj2ATkZOeO0DERrFcaJcOZ4CgyjZ44HQv7AadKMs+GrLHYpEs5RUzUr2n5iPB0I6USeg9i/hcBpf6BpWu7un1OZhrtVRxwj/jjx8Hgkx4DJNQZHiBNzjrJjNhqDZkqwHyeGvGP0kYfdnsM4EZMoxbUBaywai589oxqxbYdzNW3bM5yOzMFLAAqQY8DPI34eiSmI8bpWZGshiym6SwkTMhEtxZ/yQhNRGh09YZ5kEU6SCoZKZCKhmIyHwnlciPvGWpQxKCsxs1oplkQxlSCQip2MKr6asngaJZseY9yFB5mF46WNljY5MtGoJAbtXdNzv71He894PFCh6F3NHk2eJubjgewMXd8Tg5eozpik25Ayh9OEeXgC7ej7DW27wpiqfDeiEg4lCjP6ErV91X7MukyqcbGFW3hn0nYjZ1KQz6uyOGss4S1aSVJYSrk4h1C4bXy0KPxUjmWZgSvURhc0Ue4gR1kchQZbthn58iyXxW4R6C0WUEV4sxRxWtN1PS9efsGLl1+wvrkVVxo/ihjojG6W7xUp5hbDz7JsynMtyJUqKKlC0i7L204hEeaA6hRNXUsoQ4bGOSpr8NPE6Whg9miTcLXoGmJK+ODx3kOMDLNndzjx/sMjrnJ0rQOT6NY1zkdWm4Z+VdH3FVoFKqfwk/iApxBZtWvSrLE5UGvQMWILjOaKtrbS0FpN6xSrRvPspufudsvt7ZZn97c0lYMciVHClHJK5Bjk+04SgSsIvZGQk6SQ5fSMVbBQjxZrZaHe54JnmML91AVRFARZLBcvVI5Uoq4FXZMnXr5xoXpcCh9FKmJAaemmlAgpkUIRNzpxI0FHlHbU7Ui/6dnerjmOR+wo9nyxbHq3qw3b1Yq+afCzCKatyqy7lvWqx1jDOI4cdnv2T08S1vG059FaKmOptCH7yPFxT9M62q5hs1lTOUt2FaqrZdOtEHCismSlZC4f/V9vEP41jjP9kfM1Ihupzx9LeM0ypIuhgTx8udNSxH7022tp8LLF0pKuW+aFszvW4lZw3q8ttnP56nmXAvryrClcwDpVblJ5KZhVaR6osyODVrrUEZfnTTGwf3ri3Zs3PD08EPyEaVuU03RdxWrV4BrL+FSuUSVrAEm6l+f0wSKetcUaVyK8IWmFNRWYQn00FlVbslZU647V8xtefvMV3/zNL/n2l7/m1dff0K9WPO13vNo9MZ5GxsOB99+/4eG717z73Xfsf3jH9LRnHifiNBDKfORQuCzpfzZnTE6QAhQ9FVmorToqdLZEpQlaMeTEPgXsZsvNl1/x5a9+zctvf4ZteygJfzmDnycpmMsVEchnX26fJckUIwFPqWzIsi27FwNt0/Httz/nP/7d3/J//D/8JxQzT48/MA5PdK3mdPrA4emEShOVUbSVY9U23K7XbFYbsm0YdxOvn95zHEaaXrGJNZvtmu1mRe0qpmFiOAx4NTMPOx4PA8fdHhUTjRU/5ptt4PbW8Gy1Iq4ksfMUDFPKvD3u+LDbYTIE/rzjX1T09yO+FGUqPfdelnaCKfy6gmJmEbtJSIjs6HJp98WYiFqhkti16MI3loQSW0aYJuXI8egZ/RvevH/k3eOO/f7EFy9fsuo7nDHUdcO6XxP9zPH4SFUn6qqGnKX9GgJWW9qmR0WonaFrak52ZJoi0Us4SkwJnTPJFGpCgskn4mlETYHJJ06nCfHT1jhnqLoaox05KvwcGU8jcQ50rbQeg/f42RNVhuLyEYMnxEDMUczRcxEVFDs9ZRzaOXSKkEobNhUaQk4krc7cPXKZDIsnYVSpcJAWXqf8KGPRxolYpBSAShux4FMKDFBUwjmpMsCEI+qsiHJCCVBZhEBQhIZZHm6sZb1es6oM+JG300D0AacNfduhjWYeB+LREqaJaRwJ3p85ddpaRj+Tn3YoZbi/vWe72bDq1+Iu4mYJe9GKEMOZ20UuBZUxpaUsaIAKUvwZA9bKNWuUw4SEi0AQT854VnkLr15pA1nELVKQl+j3/95B9a98/LGu0bmjtCxjVytduloil8Vzud9H1pGUdl7OwtErm5am7bi5vePZ8xc8u3/O7umR/W46u69YV6FKRLWwBpf4drmWtFnmnMv7FZcYLXSgYjGXQiR4j8pQVzW+WIo1jfCPjVaM4wSHA6qgztZV4paRgiC3yDk+nk58eHikrizc9VgH602PMR23Nytub7fUtWUaj0Ak+JnhdBBbqqwh1xgFzmgqq0kecpKuGSnhjKOtHZu+4XbTcX+75sXzW25vb9hserTKxDgTvNAiUkxkLTQBs9CC8kJty+WSz5KYZkypkjPJXFrYS3dJREPmLNK6WH5ddx8uqKQqKNNivbcUMj8uxy5dG5lLFqQM+f6tdBd1Fsuspm1kUbzdcBwkKrtyLca4cg4rrFbEIKlnViv6tgEyXdcUj+xbprsbHj+sePjwgdNw5LDfSTZEjkxjj3UG5zR14zju1/R9h9KGLPIumtqxVh3ZaKxztKeB+jj+RePq3/qIMeIqdx7bsViEyan7cecoL3+WQnXBu/jc/eVBnzagzvddromPHnNVfC/6kuXf/yzE8CkIsQAT+bJxO/+U6zqmWDovlPTchN9nPrx7y+PDB8bhRF6tsJVhte5Yb1fUXctRK47zRKUTJokbRlTSYZwzeJXJxmAqJ84LaQnIAB8DU0xk47Btj1uv2Nxu2H75gpc//5qf/e2v+eoX33Lz6hXddiNr63zLTUqQYBpOHN4/8uG7H3jzD7/j3e++5913f+DhzVtOj+/JR0jTxJKtoEvyok4RgidHXzapV+cCAbsCUjB7a7h59oyvfv1rvvmbv+Hm+UtGo1FmEe3J+I/xYvVplcKUjY1IH5Ts8hd4VmURewZJzH35xRf8p//pf+J/+o9/xy9+8S2PH17z+OEHHh4eefvmiNURnWZU9KgYUEDftLx49pznz58RU+T773f84YeBKQRusPR3t6xuv+bVl6+o64ppGDnsdpz2e5J5x36E04P4aSd/QKXM3RC5nzP7OeJsLYFJqiaonv/z//3/zX/5+3/8oxvIzx1/NYQZkAkVLtzH0ncxRoIIhM8sHoUhhLPnX6E6EZOI/UJShWMnPspaaWLShLSkWNUoJSKGkAL7/YHJzxz2e958/we++vJLnt3esO57bjZrVJrJ6cjkj+yejhgllm1hntntdsSQAYciU1UGV2nGaZYY5DSLOnVRBJcUOhXEc0ylRAxFva8c1jm6uqGpanJS+DkQc2IYB44+oXNi1Xf0bQVhhiycSetElTuFWRbvGIgpXBJ2ohTRxloslSBBWos5eYCcPIlMzFE4vixpTJfJSXHW950XUKVEJKW0lUGZEDqKsigrnC2jDLmEPgh32mC0w7pKnjd4UpLXJWbxOFawxIlZazBti64U/brn4clJrHjl6PoOnzynQdLSpmlCHw5M0yQIsdKQRcDhp4BGcTwceH5/z/3tDQ83a/w4MM+JbC05atlwlGvLaOGM2uKQkJzGBUg5Ft4boLSkIDnFKWTUJCIzFRRTSswhEJKSRLizaX8+n5ufGof5cyr6a07z8vvlz2IU9plFbkGTuLRguSygKYvCyxpD0zTc3t7w4uVLXrx8wevXf+B42AkCTBKLJQQVulDBxE9UEE64LOmy6V4WTFOQ0lw2wt6Lf25d1yUwR7Farej7jqqqOA0TGbGtdNZKZHQQNqazRjxntGKeJva7J7pWHBNu257N+pbVquFm29N1FTEUr97SpswpMc8zs5uwWor4qrK0bU3MHj+GMyJbWUvXCuJ5d7fh7vaG7aan7xyVU6AyxhqsqTEG8WIvG2VVfJFjkkUrpiRJnERykkAdrEItNFxVONzGnH/MmT/OeQ4up/W6Q86yoApPWl9dG9ct9YL6n72sF7FWOqPRxhqUQcTPZWZq25rb2y3DKKEzkjZmaepW5tCcmeeJ03GWMakzXd+UoAUJdNlsN6h8y/3tlg+3a969e8fhsGOaTnx4SMx+oO9bXGUYJ8M4nqjrGmsrrG2ICOVMo+lqh9I91lmMdf8No+vf7ljG3zIWrvUJf0xvBJc54HNA2Cd3vCDC/0JdtT/2PJ8LK7l+X+fu4dX1mFLCaKFX5TJOYorsD3t2+ydmP4vDjQJbVTR9j2tbolacgqdWYLPFaHXWUwm9wqAqB1VNDJEQEkknkjGErBgTmNpRb1Z8+atf8+Xf/JIvfvUz7r/+gudff0l/u4G2ITldHlvjqgqnLY3fsLl7xt3zl3z5zbc8/uEtv/vNf+Uff/Mbvv/tfyW/V4z7A2GeSfOMypEQcwHNhKZlAFtcMyRVUZIVJxKnGKFtuf/yC372N7/mi2+/pV2vOJ6OoLS4VjkH3otWKSze+BKidDkfiVDW+eX32mjhcmfFzc0tfb9mGGf+r/+3/413b//Aw7vvORze4/0RZzK10ZhS+PtpRmXYrN5wc7PFGsv+eOQ4nHBNTX+7pVt/w7OX/4H7L7+gaWr8PNM+PvL08IE59TweFendiWMYGMdAmj37+ZHXHwa6+g2b1QqtDSk5Zhpev3sSz/W/4Pr86xbM5Tir61VBKbhc7DFKrHUoqUKFy35uCYYkfrtGyUn3KZ+tTrROMokZSaupKsc4j+z3T0Vs55lOR4bDnrfrFV+9eCmIc9cR4g37Axz2T4QUsFbezzyOaGVQygkVhIg1oFSUYIMYzn6uqShQvY8iSsBgK+E+1ZXF2YbGOPq6RqXMNE7Fb1UQGj8FjvsDlcl0XU1fi7+rIVJZQZmnaZS0vyTxj1pLuzDmRMwJYw3a1qKE1YZQuE4JhU+ROQbimUohCtyPJs10tTKWSUG4oxJ/kJQSXrORQSLnThc6QipLpwg3URR/bc7PmaK8qk8BYsCpWKiQmRADVdPQdI0UGhoaImnMYv8zzUzjJI4ls3hYaqVE0BUyRiWmUeJeY4xsNyue391yfNqRwix8WWcIUeG98JWVShiVinpeRAkxCSUox4WJl0mIfZxVCp2EHecUHCYRF2RsUSMnQVxLelRGSdvhJ3b8qSL/IwRaqbP91Ef34bNg0xl1XEQqucRma6Pp+p67+3uePXtG1/fiYpKC0LKMEXpSLgufWfw9r1DvwmtcksvOTd6ycMYYmeeZabKkFEWkVzusNaxWPeu1IItLfPb+cMToMvuU4l6pfE4FI0f8PDENJ6apQauem+2a27sN61WL1onjXmwnAdq2ZbPeoFSxqENjbaZtGlZdZJpjoVWAqxRt4+i7hlXfslmvipsDpOQJUUBiYzTWWIwp7fYlKCdrichNCQgi9il2MefheO76mHPggTaLu0ZRh1whjXLyFJez+7kffXWNnC8Rls4Cy7lfrrEsaajLuYwpfnRNVE2FsYbZix1nJjEOE66ggClGvB+Z/UDOico5rFOkCMZkmtax2fRU1pK2K+7uNzx/fsv79+95ePzAaTiw2z/iwyix5Z2kM4YQcM6T41GCNYwIn6OWeVDniPmL2I7/9se1z/Ifc8G5PpZx/rli+XOPVZ889tPn+Wsdf2wjf/2a8pkv88eyoUZrYvRM40iMgYxEgocYhT/btmTrSHomKM0cweaybqpCiXSlWLaWKSfGBNlptJOutzMVm/vnPP/mZ/yn//V/5Wd/9x94/u1XqK6G2hGcIShxzohGE7XBk3Eqo61oiJpnjv7mhpsXr2jubmjvb2lue3743T/w9rs/cPjwgfGQUSnilKKyBhMdOgZ0Qd5TzpK+p+X1xhQI2rG+v+fVL37OFz//Oev7e7K1UjcYg6tqKleT9MyFUldAzKvvPQQJEFJl4620BIg1dYufIsM48pv/+l/5zX/533n9w3ecDo+QZzSeeT6Ss6d1jto6dOZspavVnqp6J1QtbXBVxd3zHsw9Vfsl7fobqv4VVdtgg8fnDce5QjWeXO2Z6Tl4yxgMYdaE48A8PGEVNE6s7LRpmGPF494vfgh/9vHXK5iv0eXybzKFInDZMaYULzGd+WOUIgEpqXKxGgkiIWEQH90pRGyMJCx120l79HhgGE9kMrWriDHw8P49p6dH0jAQp4G2bfEp4GxD1yZOhyfmaS7ITGAaBrISRDkLFQljIRFIWQZZAdGK/ZVCBUgFcaxdS1/VWOsEp549p/HAPM742ZOC+EhXVuJH/TzQbBu2mxty9KQw4eeJcZwZhyPjcCQGL8gyojhPZUBYazAYCQ5Ao2MgJy+0DiQAJhWJX15Q5rLWnaNO89JKVbIJWGzosgLM2TVARHLSJr+c1jKhkskxyK4zpLNtVwhBAlhSwBnQTtT7KmUpkLuGpm0YpwwqYbPDBCtxPDmXxx9JyeKMRStNmJPsqq0meM/xcGA4ndh0K+5utjxseubpRM5CyzBa+K+hoIZaRZx1dI2jriwKJwLJECUONmdS1vikcDljsiDOY6XobeYwR/ZREVDlGil0jRLZfG3B9VM4Pl1MP138ru93fZS66NNnuxTJy0Z5aQNrTS6cN600VYl5v72/p+97XOWIcZakT61Q6mKCv/BnxZbMFsRaXly8y0NxjZFukSvaCO89wzAwjiNKwc3NhqaRAIubm+3Z6iyT+f71G6ZZqBjSXZE/lRHFvdFIceVngp8xBlarns16RdMYUpzl9ih2ds+e3XG7vYOsiUExj5D8RNd65jnwZI4owGroO8Nm1bJZtfRdQ1tXWLNQqnz5GnUJYNDkLDZ2OWZyBLJc4yZltE2YFMhBCnKtFms5CWlSqKuJ9kK5Oc/J52633GeJ370+3UvDMC00qfKc52BQJe/90rlarg9JYWXpOJT9utJKUhBLAttNuCFEEQM/fHhCAU0rYzXlHgjMs6jowzyjUAI69A3rTUdlbXEF2nB3v+Xufsu7d2tev/mB3e4RH2bGSYp55yyQcdZhtWx6UxbbypASUxQv2TBOf8mw+jc/luL3OuXvjxXNf6zI/bSA/tHtpXv8L4Ew/3Oo96fH4gKyPC6lHzsUhSAbcH0GilRJdZQUUB88JsmaWHUtTb9CWUdUEvkdlWIq4FAqcwXFpSqGyBQjAwmMputbVttbtvcv+ernv+KbX/8Nf/s//8/cf/UFzc2WY5w5+hmtNMkYoZpqsaEMSZIxrRJ7y4xGWahcxTOjcZsV6+dbbl7d4/7zf+aHf/wdu7fvCLs9cZ4JPpJLPaTzAoLJvBu0YsyZOWvazZpv/oe/5ef/8X/gxbffUq03DDlKR8WIFskax6ISgULbWga8EjpGiAJSWGfPIv9Vv6Jr1+zyjnfv3/P0+MRwOLF7eiT6AWcVtVMoxEXjqOcSEV7UhUm6BGNU6Ek0Dq2q6WPHnFcE1gR1QzK3JFOTiWAVUZ3wqieoHk/DEC3HMTMNUVIZ50SlMuMcOYwzmRHtegYvW+B/9YL5Tw6o5fcfIcxX7d5yYlWZbPWV5Uy5hZTl4lUI/9Q4g85ReEleJgNjDc451tsN1iqJxPUzfhqIMYBWTMPAm++/l7Z+VdOve1QW+ymtBKmaZ08MkayUFEE4rBVuq7EK48rCoBEOsBaFurGOumroujVN1+PqVvisw8xhf2I8jfhpIsVADDNGR1adgpSxKmIIdI1l06/JKfLw8IFpEjTrdDgwnk7M80QIczHtv/CPJYJSnV0uMFaiLa0pgy+XZKRcirl8PieLL7ZeIEDUmWaSS8sVJVzxRBCkG7DaYHURvqVMzkKJkYI/lPo6cjodGYaBqqlp+wYDRO9R2WOsRtVOzs08sZjZL9OmNVZcRHyQVnQJkpCVWgRdc56kYD6eWLeifL/ZbjgedpxO4q9YOYXCMCEFlSouA9Zm2tpQG4fKjhQiMXhBxTOEqBgtNB5mHEnXzMlwivDuFDjOgcMwccwRHxMhJpIyf1mP59/B8ZGF2yeIzTVFY7kv6vI4lT8Z4wunUCnOfNpyP5SSFM4kj9XWslqvuLu7ZbVaUVUV8zSU8VUm8ChWk/CxPVzOkRyXLlVk9rMI9MglKKSjrqWFfzqdeNo9MY4DbfuCm9stVeW4udnQdR1934MW/uHbt++YjyNxnqRLgVDBrFGC8GoAaf/3fct609G2FRAIYSaEGa2g7zv6pqdtVpA1+8cTjx+OJL/nNEy4o8IpRADoFLfrltt1z2bV0jWV+EcLk7Cg+rrMjUYKUQXOWqKCSEZni2yZkRSspCURLMbzd7+MfLG0z+efxRJzuUNa3DEUkPXVXHzG8M+L6ZL5k7WIm2Ue4py2tjxykYUppTHZyG+ycKRNQbsviYzQtjUvXjwT/+rVinEY0Upi0Ffrls2m4+nxkQ8f3jOcJpyztJ0k+q3XnVBrspT5bXQ0rWO1lmL64eGB/X7HaTgxTTPeB3JWNC7T9q3MO1oxxcRxmojJE3K8OLL8hI4/teG9PmQZ/ufpGp95ARnzn1n/P2tf92fUCj/amH/yGa7npgVFX5D08/3Vkukg3GBjTAnpSqTgOR72PD09MM4jm6ajWfVs7+64ub+nbntOT0cJGtEWogj7YgGWJBU0SgCIsZjeUd+v+PKbb/nm57/k5Vff8vLrn/Hsq6/p75/j64qsYLaOkBLGWiLimKXNUvjLupsUInDXWRKPtUL3HWujqfua9qZn9fyeL37+M95/9z0P3//A6d17pscn4v5EnGZx7ZBvgqhhInH0E6puef7LX/Af/pf/hW//7u9Yv3xBrivm8UQ+0zBF25PL3KCLu5nO0vFWIImm2qByxhYPfGs0lavo+455mng4PHKcDkTvi+bMkVJg9vnsCx+i6IGc0tRNS1N3VFWDNSLOU9piqxpdr8F0ZN2TVUtKNSmJt7q2M9r22GpN1Wxo+hu61Q2nYcCnARCaiSoiSJ80c1CoHJi8+ouX6v+ugvlPXfw/Oj5BmJfH5wIrn9utZW8jtwt3KCbwIZdkLouzkoKTfCQWjmLOgRgDdVPR1vcc9obTfkfyI9FLayEEzzzLAB8PJw7HE5pI7WCzbojakcKJqDxaWZEalaLTGCmSjTOgMubcqpUIXaMX4VtBtwA/TcRpghwxOuOskgGBmGQ5YyBFnM0QR/Ajq3ZL09QQA/unHd7PjKcjp+NBHDNCkIK5oDqxiOmydmIFpUSkRInMVEXoIzZgZdFafsoEoM8uCVdt1qWHW36fy/mQYghsEVdEFfFRdvE5JvDCrco5M00j+92eaRqpzC06WfwY8OMRrQLWZLSk0nMaT+ScBGUsRblzVj5f8Q9axBxFmC8E/pxL230kBI+zhvWqo64c+31Ea2jqFldplM7S7leZnAIxTORksK6iNgZVaaLnHCiRsmYOms5n5mTl+lAVs3K0XWQ3eh72ivqkGHxk8BGfE1P8qcn+fnz88bbqhd8sf5ff6oVIdW7hXa618jD5uxYHhpzkNZq2Zb3ZsN5sqKrq3DrV+ky2LWuyCNkExRRfUaWERpBSwvvANE2kBHVd0fcruk4CKoZx5Hjcs9/vCn9Ziumua9lsVqzXK4Zh4MOHD0V8GKRYToJyGCUosDHCW3e1oe1qVquWthXfZj955knSRI1W3N5saVzLqt+iteN9/Ujyb9k/TcV3OWN1pqmgbR0365bNqmHV1lROYp2lFFbFqm+xSxTqibhZlM2ZUZCKiwjI9Y2SOPEillYFJY5RgRbLRNJiP1WEmVyK6uW7v/AsSvDJ0jpS1zlq6nxfpa6DIy7jYInWzahLAAagEFqIsYJ+y9ylhNpWNslNXUsqqvcy51rLuOlpGksmgIo4Y1ivO1arjq6rhQKTBF3VIWNsS1VJhPpq1fP09MSHhwcOh0PxcTbiChIyyhisrQQcMRXWBap5Jqvqv2ks/Xs/rulWf2zz/M9RMj49PseZ/pzX+598P5/87nPF8vL3BV0+00+UYvaBnDL27NsuYIkPE8fjjv1hJwizc7Srnrvnz/niq2/4/bOXhMcjNmtqU8MkhgDZaHAOVdfnlOC276mfb7j7+Rf88m//lp/98tfcvvySbnODbXvmrBhiRE8z2RmikevMJ09KAWNFh2TQxQ62oPZLVkCUaziQsaueZ9W3bJ495+e//hseXr/hze/+iQ9/+J7H71/z+P1rju8/4I8nwjwTfCBomE0mOsPq7pZXv/413/7Hv+Pu669RXUtQmqRMoWoKyCH2lKqAS/KfbEZSEboXHZpxxVmqUNZSkjTSvsOPEyMQjUJRoXJCkTBGUTmLs6rUUIq+71mvt7Rtj3G1PK9rMMaBtrRdz7NXr9jc3VG3PUpXkC1aQ+Ua+m7N7fYO9ZWncYpnN2v+6fc3PLx/SxJlNfMwsd/tRe+GZYqO337/3V8s0P+LfZj/WOv2+t+fHVzn+6qPTcfTZXHNWdT35528EjqoDyLYskrcDazWODQpKmKcGY6ReWrR6x5SJJXiqm1bhuMBoy3WCAIDEpG4PwyYSsy0c2vpGifotTFSiBlYfA/FuxXQ6czFTKXQ18acAxFSDMzzJEWBUgTv0SFiTKZrHMlJW1UlAylgVEajsQoskTAdSWGith3b4sH6dDgxzyPTOJDP8cDyZeWU5TWsRWuLQSzmUqJUJDJJLF7LevmSc3EiSemcIbPwlHThJIF4Lhq1hJ/IwmsQtSzRi1jT+2J/Nwt6Pgsf3c+e4/HIdBrQxtBYRZ4nhuHAOBwwOpDTjNEwh4lpFieMXveQMkZL1HGKEY0t71UmTGs0XkVCAGukFTcMA/M00ThZFI2RHbCzlr5vUVruK3zVQE4RHybmWRNNxtgGZ0p8aRZXhpwUIWoamxk8TDEQMhgyN5XBaYNNFU5lTj5ymDwnXygxP6HjT7lkfPr38/+Lf3XhSQgqccV1W66z5fmz+nQhlturqmK1WnN3d0fdNKTCZVVaf0T9WToZ0rlI5WX1+TY/e/a7A8+e3bNe92zWG9brDU1TM44nxnFkv9+RcmS16mi7VgpTDU1dc3e35f5uy+sfaqxWOK2oalcitxWKiELjrKbvWjbbFW1bo1UiRc88DwynI9M4oLVis9qy6tZ07RqjKuKYef/2CRD3G5UjTaVQvWW1arnbrtmsGrra4YwiRk+MFpVFRLNsbmWfogQFzYvfrCYluV5l7kM4zLnEE8sJZEGGs1Iyl1lBm3XZ+CwuJJdKqGykF+pGoXSwFMUsKWfqvMm5JK2Vx6vlelBQ3HpzvvCeFx610pfwH7vECqeELTSNvu/IIZS5CU5OC7c7zDRNhTWa29stTVtjnRFtR85oo8QqMsZCv1lR1TVdt2K12rJ7euJ4OjFPnuATp+TxswRZmarC2UZEmk1C258eJeNP/fuj3y+boD+C7v6pIvdTBPi6SL6uCRYE+FOg7fp5Pw1b+fR1lscuxfL1/a+pGdLZkpRJjZx/hQyDaRo4DQdmP4EC4yymbbm5v+eLr7/h+asvefz+Lek0E5C8gZSR4K26pbm9od5s6DZbnr14wc3PX3H/q6949fXXbO+f0/QblGvwSRGKDZvYwQWW7JsYZzSSEaAjsqEt718bKyL/EC8BWzGQjaKqG9puxe3tPffPX/HFV99y/PDAw+s3/PDb3/HDP/6ODz+8Zv/wwHA8gYausfS14+XXX/Pz//Q/8upXv6S7vydaJ8iyq4S3n5UkMoZcjLWKfRyiN9JagtnIQj9pGqFFyJosHuddXaNTwimN33pSjDRVhdEKZ404hlVi6elspm0MNze3bG5uqOoWjMPVDavVDXXTkxIobbl/9oKvv/qK9aandq5Q5DKqqtiueky+425T84uvn/Pwsy/4p9+/5LB7IIaZeZ4ZBs/T444UEsfjxDAb/i//22/+dRHm/9bjuv1zfZxbf1n2gkvUbUwXD09FxqpMpSCbwrcNgf3jA9t1QR1SpHKa0yz8vYTwHOdJEn1SlHSw2jopuGJgGmdsX1FVwns2RpNjIoVIoohtrAUVROmdl/djy+Ig75EcGMe9xOVqTWsdtdXiuWwURmdynInzQJhGKmuojOTZWxLz8cDsLLXRbPqO4/GEHwbm4UQYJxZzALWEQaCwymJsJTGYeiJpLU4GquQ5nFHtjM5CUs4piYdiXDYti0+uDF5thMhviretnK9EzgGiJ0Uh/Yd5IoaJ5GfxipzFu/Z0OHI4HCFD128IxyNDmJmngXk+4f2JEEZyDhyPOw67nXzvWmGMFQ7i+XpIBH8RGVSVJIIFMjlmwuw57o8MNwPOrsiIE4KtLVVT0a16mqaiahy73cO5aNYaUg7EJMEvVoEi4YzCaUtOGa+WDQfoOTL6QIwTDkuTNcEEUiWPJWVS8Pg8//UGz1/h+Jwg6I8hQRcJWeaa5ZMXNPEzM1C++oHlWtNoo3BVxWq14ubmhqZpSmNDCq1UbI0WKoa8L3UunJdCLsbEMIx8eHjgi/EVxjg22w3Pnj3jw4e3DMOJELyo43fizdt2NT7MxIMHNtSN4+ZmzapvxfKtLtZ0WnQDqtAyuq7h5nbDdrOmqkxRiieOxz27/SOzn+jqhlXfsep6KluTwoWeEApNjBToGkfX1Kz6jvubNZuuoamNhBEozuErEnGmUVljKJtj4xCaikZn+TMn4Rv7OJFyJMVSEReucCpff3F2+4irLDXtdYtSX4rj8u+sNeKic7lNF77jtUuBObsyUIDnfH4d8dVePNFLwbxQOFClGya3OVcK6+LprbNcD+M4MAxS2HddS9c1tE3Der1mvV5Jh08pdKao4i/FmbMVXQtd62mbFV274nA4ctgfmYaZOCuCV4QQ0ZXHNgbXFHcTfXme/384rilZf+QOH9MnPymQr/9cnu9zz/vPIc6fe+znXmexQFsKZq0uvH3h9QpKmqIneLEepVAbTW3oNmtunj/n9otXNH//W4bpPWMC2zRUztHdrOnv77n76kvuvviCu5evePXVl2y+ek7z6oZ2vUHZiqQsMUuHJwVZv8i5pPQVoMAYnNIYpTFJyXpebHW1QZL6UGRjSRZikrpGRLLiDqVcRX93T7fecvfqC1588y0vf/4d3/32t7z9/gfmcUQ5g24r6r7jxVdf8au/+w/cffkVZrXCx4h4XEi3yigj1pIIJUMrc96gGlEUl42n5e5O7C5PwxHvZ2pXs+7WbFYdTiu2qxVtU2Os5WazxhoRxTsrceHWGDSeuobb21tub++puh5T1dRtz/bmHlc1jFMgJehXKzbrLbWzMn8UJN6oLP70XYtqNY1b8+y25/n9iul0IKVQNHKWw3HguDvw9s173j/NKP5Pf7JL8rnj36RgXo7LILlSWC+/WeJcy6ybU5LEOa+INpJNxBJwJqMskAIpjBBb2q6hrje8S5mxrjmMI8MYSdahtcHPE7bwberK4OeTKGVDoRxodQ5ZWNS21lqsA6VjWYMyJkZyTlhb0TQN3aqjbmsmP3E4jeQMzmq2/ZqbzZp136IIDIcdx/0DYVKSSGPF0Dn5wDweeXof6fs1rbXUxhLnmel4YjieUEEU8JS2TU6S6FS7CpM11DPMjqCFaGG07Fx1GYA6i+epyYsVlZAyTEHviwF2OUHpHG+bUyL7iehHchxJ0ZPiTPQzKUwkP+GPB/zkCd4zPO4ZDyeqqkY5x/vvvyfmCDkyzUcOxydCHPFxIoSJ4/EgdBNrWa82EvNb0MoQApMPTNPFHmwcAtMYiBHmWYRd0zST+mIsryQUoa4bNpsNt3dbhmGFUondHjIRoxSVsRhji/uIIOlic+VlM2LKV50gmlxSs4SHnbNizl6cPQwEG5l1ZP6Ji/6uf/+Ze5//puBMtZLOh1oeuOx6f/SYa6RaaxlX/apne3dL07Wl6xSlyCmLX06cKVESplGQI4W0EElM08SHDx94etrx5ZdfcLO9IX79NafTnqfdE7vdBx4fHvj7v/8Nm23HN/FrqsqRc8R7OddtU7Pue7qmRqWI0UaAN6OxlaVftzx/dsfz5/dstyuMkQ7XPM8cjnvG4Ygzhr4T9MVaS/CB42Fgt3sUBHoaGKcTIUw0taNrOlbrFTerjragy6p0tMRNRzpSORnIFoVFa4c1Dul16ILYGvnJoOPFmSKgxJqvOGbIdy9cyXz+T4b99ZkVNw11pmJIjGIJNhHhRkGYZQkRgHKhgC1Pc+2coYtAUApfrU3xzVbnwnqh7Kli/aeLmwdZUsxUlg1HjBHvZ2KIwldvm7PjiSs6B0WGIibPOZfrpcAGCUFbOoe1LW27YdUPjEfPcIgMw8xpGJhOCR0iznu0sYw/rX3wX3z8sXngT6LL/Bhh5up31//+9OdzSPQfOz7XBbvmLi8/H79WsZlbyEZ52foVAESouHJpK03Vtqyf3XP/zdfcfvMVWmm2puJ2tWaz2XDz4hnbly+5/epLti9fsrm/Z3t7i940xMZAVZGUuDIFEH2BkvdTacljcMUu0yBMKoOW9OIlDyBHlLbCj9aQtSFq8f03WZGD0FBjiCSVyFY0S7ap2XYd1faGzatXfP34SE4JV1m0s5ja0a3X3D5/jlutCcqIn3SWLr5QtxROWZy2KGWENmEk40KazuJK07SW7WbD82f37PaW4/FAV3es2h5nDNFpVn3Pdr3GGMWzZ/coBCknJ4zRVEVjUNksG9HsiX4EnUnZMfkDc5wIMeNshdaRlCbmOZF0IBkr8UrJ48PI7EeIIyrJnGyMwlUWhS55HhL2ZrN44itzYiHq/CXHX7dgli7gj3/90WLK1WQpM6dWWuIvhVgnkyhlIfWZqAGXsDrhDCirWK8bNqsWsojq2u2GL758icqZ8TgwDxOVlYXFh0zKnhgD1lZo5QheOIgSOXnh2MmglMnbOoU2/vyZYmmX2NL239ys6VctMUf6ocZPI52t2G5a7m9XrNdt4UYeSbMhmwq3tDPQBG857A4chicIEjlZWYPKiWkYmAuPj5hQiUuYCwprHFZZdNWQbCWtFpUFnUlBYjMRPldlJCa2sg5rHab8qY0taHwQL2pV4j/JpBiJfiL6gRxGcvLEMOHnofxM+Gkkek+YZubjjulwJLsamzOjN6AVmcgcT5ACtXMsSWDOWMLsiT6QUkQZoWGQEiEkhmFmGgfI4n5SuZnRxBJ/LLZQPoTSvhIXE+ssthKe2fOXL/B+ZvITIQVi8ijAaY3RDu0qoZoUrpWc/MVBJKMLB11phc0y2U6pcETJ2OImkqLiJ8bI+KMLJXymjaukUa9YIpBLybXAl9d3vSqcP62fF/oVCqq6ZrPZsNlscM4xjpNwlAsqCYJIZ61IKRSEOXMWAipFjJHD/shut8d7T9f3NG3NPI+8fvMDw7DjcDjwu9/9nru7LW3bsN2upTgzgq5Apu9btts1OidiiBKy0tX0256buy0vXr3g2bN7+r4Vy7foxQJxnjFa6BqLv7NS4MPMYX/g6fGJ3dMTp+OxuOQoVm0rgTsr6YxZI2iqtC8lvltrg8Khs0VlA0haqNaufJXLii+LHIgNokgXMnOG6DURoSFxxgRVeZxeTkm5Bi4uGgsfmbO7xkK5MKUoLWEoXChcy89HL1MOTUZlCfbR5/l9meNlslEsegt1eU8LdS9GQgmPMtrSNBJY0ndtEXk2F9eTUkDFKJ00Kb4lTjeEJLqorKhcLWLtds3cJR4YyenEOGlynAlBHJlspfD+pyj7+wuOv7BYXm5fhHeXp/n8/ZcOxJ96jX9uHrq+bzqf44/t/pbwEv9pmaFEoap0JqskabVQEkINrm1YPbvni7/5Fcdh4PTVNzzvVnxx/4zNdkt/d0N7f0dzd4vpWnRVE61h0pkQJPrZVoZchM1KKWyhRDotmRFOJEXApWC2WZycdKGBxgxRlWA0rckkCXCaE9pnUpT3mwvnPyH0S+0qVl1P9+ye59NMTlFEeUqLT5YGXdeMWRJCpTOkS9cOyAqTjST3ZslbKAiFbGqz1AEkQ1PXPH/2jO1mxbu3bwlzYBqOPLwNpBSwBHT2GKOoK5ingcNhLxoPo2nqir5ytJVl9/iAshafJRCmXvX06w3ONVhbsVptub97xs3NLV27oq7XtE1X6glxshnniRQGZp847h847B6YR3EXi95zfDripyCpr8rxw+udTD1/YcX8Vw4u+VM3XtCOTx+Ur2fbLC2NXAoZgeEVTkNtFZWRC6uyWsQ0WjEcDzwqzRdffEl8/pynxx27+AiqOEiYihAnvJ9JWfybtXLk7IXGoEVUtLgAyJosLQWtNSU7Q+JaY2T2E9PsmCZL21tub7e8+OKWeRyJw0itND6c2O9HcpwIYcDohHYapzVWCx/WaYO3ltMkQr85CmdYowjTRPQzYZqhOxOPpZVT0L1FEOmMYc6cKSU5Cv9XI2i0s466ElTcVDWVq86+hz7KwpriUjjKrjeFQJgnwnwkTEeiH5nngXk6EuaCOAdPChE/z+T5BH4k+JlTVETdUTU12sC2X9P0Fcpm9ocd4yz8Yz97Od9nu7sSpRs80zAyjiMpJZyraJoK7yN+8uSc8N4zjROz98LbNBZX1SXFzLBab3DOcDwd8HESWkYIsukoBYjRMv2oFIAF3UyFo1WKgCjfedJJ2vW1UEhqZbE2oXKLUcCHnw7f8XMF8x/jPyqlZWdf2rEUD93r5L/LhvgyxuU1rl9TrskcI9oY1us1z54/Z3uzZXoziPfy4vGLKiJAdV4kz+85l24UGe8Dh8Oe0+mEAu7v74HED6+/4zTseHh4x/F45IfXr9ls1+T8gu3NBnJiKuLhVd/z5atXPFY1w/GE1prVdsX2fsPN/Q13z+7YbNZYi2wYkyf4iapy9F1F34qgUDj0UsgfjwfevXvPu3fvOB4PEtzSddzd3nKz2dK1dQkRERqDMQrnLM4J9cIoh8IJ/SubUjgXgdzy3aiFLqEwWQGxbHxjoV+JgPCCvhUkriya6iwYpBSxUixrJQXyuYC+omQoJBl0meiXuVOrQmNRix7i+lqQkjwvkeb56lrLhZqhKc8hDivETPSBUHQOoGi7y6akqpyI/NTiI3+xNjwXc0qKgrNmIylSUqVlb8g5EBKEoEjRolSN1YakhRcevBbR6f+vHvkzK/E/h/rCWeB5eZoSUPOJ9/OnCPGnBfKf68zxabG8vM71aywbsRyToLBC6i90r0I1S5kYBZxBKUmy1Yru7pav//bXdKsVeXfkWdtzt9lImEddYdYrclMxK01QqrhnxAL6KYy2sglVSRBNI1x6p6HSRf+Ty1hEs1gvGlXE7EU+rchEo8S0AtEfSS1gpB4oIv6UBVgLMZFVwjmHqxps06BSQqckrjlKnjNbTUAhqbdFo7R0e9Blc3oJF5L1N0qAkJJub4yWnDNd13J3d4P3M6+/+4Gndx+wSmMqjR8PtG3N9mbNsVbs90+8e/uW3e6RlJLMl87RVzV125KNZgyBoBRV37HabGnajqbt2GxuePHsBV+8+ornL77k9q6jNRrjDCkk4pg5DCeeHt5yOjzw7u0PHB4/MI0HpuHEPA7kKTAeB1LMONfym394c87D+EuOv6hg/rMdMf7M4zxErzq5JbdKLqK8KLwlq8YaqLWis5augtZkrE5kmwjjiaeHB56/eAEp88P339Ov1vR9T7/qOR6OpCAD2DlDDIkQJ0KocNadHRSWVnEu972gYoWjpxZHCWkVxwgxZObZy2JYKbY3Pev1htAYBp0Ip5GHx0fCPGHIVGXwVKaiWQjsWZNVIrYtOSSmQQpIbRuUyqQ0S9sizOToEaO9RFjQlxRBx/MAzEl2gyGEwlEWCobRBmcczjrhElWuuH0AJGIO4MVWK8conOccJKZ7nvDTCT8fmMcT03QizMLHZCmqQyDFhFFQV1YEEyrR9h3dakXVONpehDlP+0e0qbE2o01VEgaldRqzIkfkO/FShAcfhAKjFW3tSCEw5oAmkMLEPJ0Is7iSOLu0sDl3AVbrFTd3d5xKW3yeJuLkYQoywZbrMCXZgeckVlLGWIzRqFgKjxRxKuGMbE7apJgw1BZqY6lNA/x0CuZ/7ri01a+swpY/NSJYUaVN9BGMfEEIKZtPeWzxB48FsVDQdh3P7p9ze3vPw8MjYZ4RgVpBG3Up2MKl1Sv/6XOhllJivz/w+PjINHmapuXLr77il7/8FYfDEyl5huHA27dvqSqLVrDqOxTg55k4z3RNQ/PyFaumY/f4RCay3qzY3m7EUaNvqJ0mx4lhPhLihNaZ9apjvepxxpakUBEjzpPnabfjh9dvePPmDfMwU1cVN9sN97dbNqsV1hliLNHvWugDxlhBnZRBY1lir+Ui1ahizUahS2gWxwCBsM6pZyXoaKFdyFq5cJMXr51inpcv9fKybIvdpzpTMJS+0DXOCDTlNdVFjHUJJ7kU5+WqAPQVN/18lbG0JM9FvCpzW+kmxCT+tFVlsbaXYjwvG1vxXBVvbhE+GmUKyCGJZbF4yytlENeORPDCgT8eJg77mdMA0wwpWbSqIBe/6Ag5/NRaR5zP6Ufg1QIC/ej3P3bI+HOPTxHgnMXdYXm+5Xq8Fv597s9PvZXPxe8VbePacWN5zOc0GIttYS72ludNlJJNneiA0rlAzQqqpuLZq1dsN1vU5FnbisoaxnlizolUW7y5xGNLPLQSrVOWAlXrhdopgn4DWJVxWhDnpJbaIp27OSUhoKxXwi2ORVsAxQ4vi20katEMSL9JuGoC8qWcmUKQojdnTM44xNGrMhaMJltTNo/id2+NEb2GUcSc8FGMBIwRAwH5HmVjqbUhhMjjwxMfPjxxf3/DNPkCVBxw1tDqmnGMaB1p6jua2jKeFCmMDPsnhmFAKzi5mqHtaPuOrBWHaWSMHl3V1H1P0/Y0ndRST0+PTN6jq5bV7Uty+SzeJw7jiXcfHvju97/j9R9+x9vX3zEedkQ/Mp4OTKcj+Jnj/kQIClTD/+v/8xaf/hUoGX+OV6JS6vOV+zJCdWml5hLYXMj4efHxVBoL0kIMAZsTnYYuwlprtlXFurFYJbSAGEA7OO0PDKs1ztWcpgf+8ff/xMvnL1itVzx++EDKM6veEedM8BHyTIgjox9JQWJYm6bGh0DVOsLgxcNRa/Fd9EDSZYAUwDEpYjbEpMlZrOUyiRgn6saSQ837px2H0wmVEpXWVMZRu5bOVVRlByozW2bVKnRWvBtH/DSKnZUyWB0YxydiOJGVR1tHCBMqiaAhxpGsIvN0YJwOIi6aA/M4E0LhOhtLVdVUtRSsSklSUPYDPk6C6viJOJyYhxM5SGGuyMU/2hPnAT8eCeNA9hMWKdJzzgSK0MIZbG1xK83kg1iy1Y5RaaqqxyvD/jAyBccca9rVmnXQHAZPUoaoLD5m0hxQSTPPnnEcicFjtWHdd8x2Is4DuqaE3pyI0540rdA5UVvxaSYHtJaQE+MM3aqn32xwvsEazXwcOL77gD8NaKPQUdxYcg4U+UNpJQt1xDixyjGmksCMGBhDZk7QWmijp65+YrZyGlGCcUFpzsiN1B+lcCroYV5mmrI5U4ms89k5IxeUYuEXnu0LS02UUj53MVKMKA1d1/H8xUu++OpnfHjc8+HN27OYRBtDiFE2ZmYplqWwizFgk5IOUVLMPvKbv/97fv6rX/B1zmw2G/7j3/2P7HeP7HdP/DCOnA4DP3z3mr7puLu5o3Ut2Yt3sVEa29TUyrCqG3IO1I2l6xr62tKohPYDPp+Ypj0phSI6q6icI4SI94F5jMSg2B8HPjweeHzaMZ0GalNxf7Nls11xu+1ZrTpC8IyjuINY6wQlMjVa2UJFKajY0n0rJv/OOSiL2Bn11eI/q4wW9X8wqGDIVgsIwGIjKQugwqBS0YuUYkJlVUQ/xWVCFQupEg2ds1ivKWML1abY0snULpuqdLH8urgayDVzkUl8fM2JIn8pdmTTD/JZURbrOrC58JuL6w9ZipAkm+oUZOORlZKIq3It+xDwIaFxgD1rJPb7kccPO3a7kXkM+EEDDo0TW76YsUbLZ4w/tU2wXtqjLMLMlIWKAPL7ArsCIoCWX3/MM/5jRXRGiq70GeQYOBfHH912tXFaxvF1Aayv7rts1vRnCuVPX+dHHGkK5cEKSJRK8W6NjJkcMviITZmKhCYQY8agaZyj6jWhCgwxcCJBWxHIErdZbNQSSyF+QWPnMFG7BqsNuhTkMq5lLZHrXJOCgD/iIFRWWYGBZWO3PGsGW3a7IQdmrdFWxrqhUDKz9Jskvnvp2ojtmlZJch6KW4zWVmhTJhOVIgaPqyr2KjPHmaAiU5pRFkIOhCwIvYwnhXEN2mj2x5Hf/Nff890f3oin+XGgWze8fPGcu5sNxkDtHNt1T+cco9GMuyf88YiKQYBQrSBZ4qyYU2AcTozRk43leNpj6oaq63g6bhliQDU1m+df8Hye2JIZvefpacdv/+F3/P63v+X1d7/j9Xe/5eHdD0zHA346koLUUORASImnY2IM8OZJdEdZmsp/9vFv45Kx8B6vf0dBnHOJtFQiaalVpjewtrB2ilVlaCtNbcp+0WiMyWhjGGfPYX+gWSnIWtqv+TV90xZUBKw11K5lmiuMTcTkwUcygdY12Nrhi3q2aWu8zoSAxLYu6k4li1ZGuEvzHKgbJ2EXQTxhQQmvzjiG/YnheCTPM1ZbnK0KP4jLpBVLy7rAQaqwk3IKhbcpwQgxzqKS1dKwDlk4vH4a0GEizCf86chx/8hx98RwOhF9QGtNXVXUtYSexBhJMZJiIOmMSvKdxzAT55E0j0QvWfUKMYAPReinVZYJQDtUFtVqyhnrJPQgKY2yFdo61srgcRxnwzB65qc9bddSVzXrds2LV1/iw8DucJBpK2V8SswpElNGRQhh4S4Gur7h5mbNcDIMpx0pKGKAHD3zfGIcT4LMLXt2JelJKQS892QUdd1Qtw3WWEYM89OeqE6F+iMD2WiDIUFBmbVeKC0SaCPLcXHQIGOjdA5s5mKL+BM5Co30jFx8yku8br0ujgfnvfm5qL6MaLXAlHzcbl8Q51xcD0TgAnUlvsmvXr3i66+/4Q/f/YHD415oOYtv84IQaYU2UgjEEPDBQykyjTE87Z5QOvPmzVsOhyPP7m959uwFX3zxJf/4j3/P4+MDKXusceQMx+OJ4+GAUYqcIiEtOfdZAAEAAElEQVRCRM5hXQmy2zSWvq1oa4tCHHVCHrFGUTXi0mC0LD5+iuK2EGA8Bd6+fsfb16857PYoFNvNlufP7tlu1/SrDucMKXmUyrLAlcI350wMCa0SWi/+tYvtYxGqGuEta6UlxGipWpUhq6Kqd66oxCNhaegttpHFOiqpfBHflTMum6PFe/ni0s5H14JQN/LVuf60+P3U1UCmO+FELvXT8pPzZeX6CJBRRtxzquKckyGmgI+SxChsKflezt8VsDiqhJgJCXIyJGXQOFI2jKNnOCXGCWKsQFXUlQVlylxeRINlinbmX7bD+q9xLEXvsgFWn4zLj4AuZCL4S9BlmQouKPHyo5QIetPVxjnnUkSXE/65wnz5++eKc/KPi+XlM3yO7rEI95fHZ5R0XDLEYlVbFAAiAFuoQFkTDGJ/q7LQM2XwSUfFLBtMAVPQCq3sBa6MS2qxZok/UDmfAYOlEtbnOTPLpuMquOs8l17uXnaky/tQZdsLqWz0r8fP0g00SnQY2hQR7XnjLfxprzM5im3d7GemMOFjLF19iq1dXJ6UEGaqquJ4Gvnhh9dksgST6cjtN8/46puv+PWvfkllDB/eveX9m9ccd088PbznuD8xD56cpEucnAAmKQVSKIBc8KScsNacgTgfA4fTiYenJx6entgfB7bDROMMOUOIkdNp4LA/MpwGhuPAeNjjpyM6J0zjcNaQa0cVFH6qCMAc/7KUP/i3dMnI53FWOrbq8g9iEbOJuX9tFX2j2bSGdVfR147KiSVaApRzGOfwIXE6nshG+GzjOIoXcL86D1QfAk3f0XUdKU9YY6ibCus6mkZiWf0sBamzFeRAypFKOyIVTeMZKiu+iFkuyoXnM82B0zBxOAz0h5GubWldzd3tLf40Mh2PuDKAckySZkNpRqqrNk6JmrTWSvsUkB1sJoXCRzbSSkmp2OQMEaUz83hkPD5xfPzA8ekD8+lITgFjDFVVUVV1aY2Jr23KkRjLZoUsKvQSJxoLLUGx2NCJ+CCjUNZiMGUBk12u0gZ04QPXDVXTYauWSMXDYWYOGWMNq75nvV7RdQ0pe3548x0+RaLsFMqgzUQiGGmdirAj03UdN7db6tpxPOyuqBMKHzyHw4G2bT8u/MhM04SbHEpl8Wl2lqaucTkxNjX+qCF5MjI5aC1ceZkMpQpeJmCdtSQNFp6mKmrrmBa/7iV04ydyLIXU9Y/6OAVJQUF6SnLfgi6fFzGuBvTV45bKaEENS8G8xLQvCJe1hvv7e7788ks2m4346C5RtFeLqXzfWrjywUsxqA0hBJTO+HkGlfjDH77j7etv+fLVC/q+5dWrV3zzzbflzQW2mzUvX71gs1pBToQYCbMnTP4syqucpakdrtJYp0AVcWkc0CbS1RVNU2O0JkwzMXuCz8yDZxpmHj4c+OG7P/Dw7j0qZbabNc+Ky8ZqLS4bErqUJPzILM4RZUOQIqaM8TPitvi+O4uxFlXEbAv9YakoTUrk7HCFlhWt2CRef4+U87cggVLkXm+aDEbbkgIqx0K5OIv91Een+8f3u76GFhT6/NpX18hy4eQfP5t8tAvfc/kcsRTMSusz6mytOX+mFNNZmC1otYYs29wYYJ4S05iIQQO2cDnlO82A1vGMVscYMSF85pP++z6uz/WniO+5aBZCAovI/vq2P3ksY5+PqRjXxe/yukLPKK9WNr3W2pLu+GMe9HVhnBYvcS7FcM4/vpY/8+F/VIwv62gsDirL5z0/l17cZi7UkJwEx9LGSlLpMjeW6cuUDaJGyRoZkBbK4h2QxTjg4/lUnekYf+7+ZIkVWqxil89tdNEEXPmbLwWzFMmSH6EKDSvlZb0HozOhfB8hRllnBT2hVP1Cc7qKsZc6yuMPYiEbY6RxFGcwxbPnL3h5f89vcuY3/+U/8/j+HdPphPeRuq4lFdBoXOVQ2jDPiTlGyALCoZbkT9FWGWXJMeNncbA5HgaGYcLSFMDAkqIi+EgMmRgyIWS8T1RGUVU1XVcze8UUEoNfrvvLx/xzj3+jgvmMVZDTuWS8LNw5o4joDFZBrTNdpdl0NZuupq8NRkmIREAQD+cqOqU5zYF5nKSNqDSjn3n77h193WAV7HY7SaPZbhjHPahczMArqloWKzfNoqTOhUyfEb5qZWgaR1UbQhAeEEqkcbOPqGHEGGgaR9McxabFKPzpJAKzYgxuipXZdcua84IoyTlV5XCVw+dlaInoJBWxlKIM0pDIcSbFRE4z/rQjHB6ZD0/40wHCjFWI33PhKy+KcaQ/LotPKWSCF1u4mGTwSMFcPFW1WFjFpNDGXe3gy3s0FutqqrrHNT2u6TC2BVPT3lhc1ZTdbsY5S1Vbdrv3TLNnDh7jDErHc8GstDtz32yJPu/ahtVqhbOWh67FT1Mh7wsidxqOMhk7WyaURAwSKBNjW1qTMvlU1qDbhratGBzgQanS5SDKrrxEuacFo1ALJ7MINbIo/o1KJA1W/ZhP9+/9+HSRu0Z9Pr2PKm3A85S7FMPpQtNYEGeVL2P6gj/ny/AvLUmtpPOz3W559eoF9/d3rFY9fhrkeT96D3KtiSe6PJ9VmhAiMc3MYUSpxNsf3vDD99/zzTdfYvU969WKX/zi59ze/H/Z+/NnSZIkvw/8qJm5x/HOPOvuru5pDHoGALkQAhwsuLsiPLCH7C7/5RUKlxQCpFB2SGAGwPRcfVRXV1VWZr4rwt3NTPcHNXP3iHyZldndA3TOuKa8fO/Fi/DwcLfjq1/9quoFTSOcnZ1wcW5geejvuLm5Yr+3Dll5iDjJaF6xarc416AMxJjJJLyHdt3QNtaAaLcbiDERnNVIzkPm5uUNX335JV99+SXd3Y7z01MeXjzkgydPubi4oF01xDgAuYxvWxNCaUJkZFHZIs1bKcDQIcEae/hQQZ43BqyEZK0MlHX6rKBkmIGSyhq/IqMbHz9M7qu1bA1MT81KKM6LG5HvDBQfRxDLWNAq2eBVvep8vB1jCEVLIjLjWum9tzWxJClZ4mTpSpYtgjFqpaXqtK3hVd8pKTqEFY33qDd5oC+VRpJal9CsjJVU2vyeOcJ5mnc1qit1zRYs0VNmzPIcOL+lHa8R1Y4ZbFVIScsFBfGVmHCjoziXg80rYFSya74mzb+/7nyrjnr+/PmxLYHNoqOSswG1EYgaAPVFjqNSEgOLg5hH586iMW2J9KSciEVLXNc3ClNq7bCm62NlGyv+Kef81lf+0A6jOKVKTllbpyiOFGKyOiOl8UtOY7Kuc46maUhpGH+v90bVGpmklNjtJj2/5swuRn75xVf8+5O/4JOPP+Px5RO2m3NSFK5e3pGHge32jO26ZdUEQPHiiClyfXtN3yfUBUIQBlX6LpPdYPX9RcnJnF3BW+QoQUzWCdHIP5PHWs11Vxwek13lJKXiUVuY6zRd53e84H9zgPk75pzqbPBnoWZc1cXWq51c62HTOE5XgfNty+kmsF05K5WWjQXUEj72zgPWIrdZbwxgiePli5fEsqje7O/YrFd8evkB3kNM3bgZBN+y2a4RAl3Xc3u7LwumlXZxDlZrz2rl2e9NDmGLq9LHBL3SdIn9PrG7iwS3Jw879lcviF0HQ2LjG9xmY7qksuHUJi0hOMR7fGho2pa2acuN9uV5TIlSKeE0AZZ5mOOefnfN3dUL9i+fE3c36LDHkWicpw2eddOUzHuPD2FkaZKCqmXTx6GjHyzhMEULnzixxi3iDBSPi5zzpSSPeYbOtzSrEzabM8Jqi4QWpEFdS7s6ITSN6ec0E1YO8cpd13G9u7PWn5sVKe8s5D0oq9JpLYtjs9mQVAhNsBq33rHebLi9usIXfaR3xlqmFHFVd1gqKFhSULSWoV2HaFvGjBCCWJQtlPSnlNE4IDTFe7clkvp5nTWLyXleA7RkXofy3PfIjEUpK8dE5czYEaih2imgN4WHRjYoz8KlWirMlN+NsS4/l7cQsWtWma+maTg/P+fRo0ecnp7y8vm3xJSO2Cdz8ILzeG8nm4bIMPSAZYlvt1tEGLv7bUtN5I8+/IiPP/yQdlWL5zvubq948XxP7Dv6fofLSgimW12thdAoIkOpMpGt0I4IkjP7256+7+j3HU48m/XWuknedXz7zTN+9cUvufr2OR7Hw8sLPnzyhIcPLllvVjgHqqUZEkpKeXRknYRCcLnCDM03QketT1znoXOlZKMWPWemVMtwI2M9lnGDkbmvx5gfyx6Xkrg0JexVXagT04SqK2Hdme64nuPI6s0SvKa1PiN+LtOYRx4Od68DOU+GnI3xLVJPAzP18VJqE+z3GBNpsDrtttlaNkJKMHSZrgPNVlWIleLEpHRt6bKoQyxsW7ZOpasW127eckb9bpjzfpwvI1DmVTALBpad2Jr5XXv3fXafnGLeuto5N4LflG0lsHraw/j6+6IS9W/K6xny1/2uxZmfS4isOo+B5a7rrKJTtpbPI+sLo7MvyLjPzTi9MfnOYVVpfAbIeMWS1ouk0LDbzKko19ruh6sXf/zbm+w+nfb4uilcM1tfmS229x1RS9JuGtcJKetAlmm98ZiDrGqN4KwLYaRG+1QVUub2ZsdP/vyvuLy85PGDx6zbwKMnH/AXP/lL7q5uuDw/JZysODu7oG3C2Ewqxmu6biA7UCd0KTEgNNmRpUWlZb2Bxq/YrLZsVltCs0Iz7O46rq9vubu1bp05g5NA06xK1a6e3a6j20c2p5d4v2XVNnhhlKi9i/2NMsz3M21y8PMoxSgZotZUwwBz42EdhJO152zdcNr6UcOco7G1GU90nrtuoCv1eKMIoV1DCGw2LU6E1BWgJMLtbsd+v+f09ITT08c4bwkP2+2ay8sLHlxmdruOr7/6BvTWvJdk4VBlxW675vpuB8lKHClSwFQgZcd+F9nd9WzalkYCTjz9fiDt9/h2ZXWSgyLeKkJYSMeNRfedQIwbut4Wbt+sWbdrWt9YmagYyd4GrcbedEDdju7qOTfffsP++gVxdwtpwGUT/LfBWzikaXDFU87ZEhmN6TZNc6xguUz4mqjhpW7UVuomlCx+KQlBTbumWW1pV6c07QmENYonS7CMTNcSk4Xz23aFOLjrbnj+8poX11fshx5xdi2z5CJ3wLx6VVarlqR10bTf12tLYFy1DY33oMJ+36MCsei+nTNWXbOyu7vl6vqK3X7H6ekpqevJQ1cqFCSCF4ILyJBKHc1UFlC1RhKN4Btj7BppCtiz62ZsvLEKzr1fgNmXpbtuqqPur4DlQuQWZq/+Ur6PbDLWjnYWMSk422zOaJbGQCpCyqlECSwitFqtOD09oW2a0RmZM5GqFmq3EqGJqkLYbrdcXJxy+eCcR48vefLkIefn56QhcX19jQ+2eW5PtrStsSq1dGDX7em6HXHoCM5ar69WLdtNQ9NATDt0sDkgqIUhrwcr81jyFU62p5Ct7vKLZ8/5+suveP7Nt2hMXF5c8sHjxzy4vCA0VWsoeG8OoDiTUNQ7YQl5Rcs8yn6cgWJ3tGm6Sb+cc9F5izMZEYwss/NTlYI5WK4b5bhhjo1K6m47Vy9Xxtl0y/V+HyeGHYfXp9JfajVjUx6rbRw/5z6NrWZB0+RYWUwvk7NJMjRHcrJSkKATYE6JnB2o5VpoEoZB6fpM3wspOpSAt6wgRHrQHaIRcRHfJEIDbSFJZHi/JBl3d3eAOUhNYzr/+xyTanOn9l3tdZGpGgmoYy7njFcdx06Mcfw+B9jHjOl95zwH6fNzqD9X3z/MgXjJOI1dT3e3o993kJTQ+rHeuO0z03XyzpW9yR4vBzLHWcFrIVlylbV4Y0VzHPXLth4exv9F3o3grLIPJ5OMozoFs4sCiDU8Gtfr8R3L+lCuA1qONZV/zKlGnI1xz0IpywcW9ze2XYqjjAi+aQhNQOPAy6tbfvKTn/LDz3/KDz//Ho8efsBqteGbu6+J/cuSl+E42Z6w2+14eXXDze2eu31PVGuolFA0BCRkhi7hg0ktnASasLLE6NBarfykDF2k7yN9P9B1A8MQx/yM3a7j7jbRtjCkQJcGXt7aPXYyDoe3tv9gkozDrNYxkotWskpd/QFBTYoRMLC8aThZebaNsA72eHYGkLoYraRKTHT7Hi1p2kMfOd2eIM6zOl+zv7mhE4hdx77ruLq+5uRsy/nlA87PT/HBWi5vt8Yi3N3tgBZxz7i+trbU3js2m5aT0xNWVzfs9oMBgeBtMpRyTc41oJ5uF8Gbsjw4hwvWocuJVVNsQ1vqJls7Wct6L00y+hbnPY061ienbLcn+NBYEssQCX5AsBa6XRyIu1vi3S1pb18MHT5HgnOsGhO9Tx5pKaGnFm/MhQ2qpZksrFu84QqUfUCCN088FL1l0Td63xKaNaHd4tsNNBuQhkxAXWPyDdcQU8JJsNI1+45vnz/nV998w9XNtbX8lEzX7xlST9OsaJpAVtv8tISuK6sYQmC1Ms352dkp61WLqtDc7rnb7+j7HlWTfoQCuvv9nt3tLV3fsWoC3a4pZfK6knVvyQgOD9oQio7ZwloOabyV4Wsa1r4ZS/flmEg5WofAbAlW75Mdaw7vC5FDBTEltK55XKzHcHvOVvtUp82jhvrKO5XXl7CskzEhhZyLtCqw2azZbNcHG6gvybaqiUEtMcSHYLVALy55+vQJT58+4vHjB5yebthsWzabDTEO3N7c4n3GO4so5OQsQW/o2O2u2d9Zwqf3Vm97tQqsVx4fFOeSJXw6yLmn73r2+521nVW18oy1LX0fubvtePbVM5599Q37ux3b9QkPLs55cHFuSYQOFKvD6jy0pXXzMJScCIxhdq6mk2YrQ1X0hIht3FLYoAqEEevqiVg3q6yQZkCiCQ3alhC1TuBiHhKftNBTwl+582VdcwWgmL46plSYtxqNqP/J2Opay/3OxblMmo6qMZTj1/FRnbYZ+5xz8W/GMHgubHM0x0AzKfbkPFBr9tvQLGA72/qWhoG+y/SdJw4ezYJVCgkGvLVj6O+APT7AZtXQrhy+FUQGXN79Fmfd37x1N129dQx+wHl/ANlqp82maXDBwGytolHJm2NW98AqOOWIrb7n5+r0VglP1klHrLOf62vGsojlZzkC+nOJxX3yopxzGcPgnR/3AC1NQlCl7zr6rrMkNO8RCWSREnHVkQgwUFnOX7M1VWIav04hULsW1IhdreHvx/W1cE8mL1JL+hM3OacVUtfrahVxyhx21lRkmhuTwzC/HvNrUafjdGnKO5Q/aFnHqwSl3swq16jHrceuycPHDWi0OAPOBVDh+YuX/OznX/Dxhx+xWm3ZrE9xvmW33zN89ZyhHzg7OaEfOvZ9R9dbJa9IBcyUHK1A8HZMKZm3OWmZt45V29A2K5p2Rc7Kft9xd7tjv9uThz39vmMYolX+Kx2B94Pj57+4sbEzixi8rb0VYD4W2r/pOa97bH6MA1aijrLq25ZOITbQhSZ4u2hSQjgJfHSoJvqU2Q+JLlnGYzcoNELCBOAbdVboWzzSrPAps+96SJlffv0NgyrNesPm9JzLi8esNi0A3X5v9Yh9i7qGIUMXFdGI894mFY6h1gjNMGiGwfqsR3Wk7Nh1iSTRKmDQWLISgT7BPiriMgklqvVEj6rgMkMfudkP3HYDg1qN1QFPNyg3t3va6zu6Qa2d9xDZ3d3SX9/Q395ys9ux33Xsux4dsnWny0ruE4PvcUmM8PU6lbOhTHAtpb5yJo4Jf0ITsNJd0cqqeaytpSXGWZ3JXhS3G/CpwwWPukwkIc7qMYJ1VjRdoJUDfPbtC569vObqbk8XE1kTN3tLJNisVjRZSLveHIIkxKT4FvZ9QryS1BFxqG/AN+YuNpm07+gTqDqyeIYs7Aeb7Lu9tdgWvyfjSN2O213PkCz5ITvzcVwp7dMGa1NqG3lAteggo5bGGzXLmNKNTOnS/YDzd83q+V1dXY1M7pv0iyNgzlbvVjXbqlMsZ3MejBkutXC9SSdqODTnPF63Ki9KQyTHhHeOm7tbuqEnqc2NlPNBQqzm0sUxNJydn/HRRx/yw+9/zg9+8DkffPCE1TrgRMka6bodN3d35HSDk0zbCHfdnuCtxfJud8e+v2XY35GSbW7irblRzMrdvsMHaFsrEbWPe66vr7m5vibHyOl2y/n5BnEr9n3m5dVLvv7VM3761z/niy9+RRqUtj1FfIv6hj6plZMq8q4qjcg508+KgnpXgY0xspmEGzJRHAOOqDamfRNomsLAl3uXUhq7mNbupV3XE7uBIUZiqQ7gXKRNSpMwZ8JnRCpgsciX85ZT4P1gWumih0bEkiRLIu7xeJr/XBlAy4ZXUo62tjL9vcpF5g6SIYui/ZxJ9myjT/ZFAk2lRGFPSgNZ6zmZ85GzR1O0xOg+0O89Q+9JMUCOOElAYOgTQ7wlxmtEOprWF0LCE1Mmpp6ru5tXPufvoh2cn4Imyr26x5GXzhh2bxGiyjBvTzb4MFU6mX+fvdHkLFW8dfScSYpT9nUmkuw4EjEfM/XczRmskPLVxEJ72iQ5ETdpoO38ZHrf2XmnIXJ3u+Pli5e8fPkCAOdC2deZqkjVddH7EYPUZEFneilCFoJOtcVzFvoUGXIk+IAEsfHUVI20NRMJqlNToAq4tSYITp0uc/msDj82GLpPy12v3fQF4tTez9XrVyJDmo24zFY44eb62ipqlT4KWpzc2jETKGRa6ZRRAPMUBfQWnfWOvs88//YFL19c0/d39EO2EnxZ6WLi+taSA1OKxBwZUra9VwwOpgxkqzziXbDirlmJfWJ3t+fm+prrq2t01bK729N31rRsvx/Ydz19H4n9wNBbpLhdeU7PTvDNFrqGbn9VqZsjcv6757XoWzzr5z//OZ999tl3HmyxxRab7Gc/+xmffvrpf+zTeK0t83qxxd7dlnm92GJ/++xt5vVbAeacM1988QVnZ2dvZKAWW2wx81Svr6/5+OOPD0JXv2u2zOvFFnt7W+b1Yov97bN3mddvBZgXW2yxxRZbbLHFFlvs76r97rrJiy222GKLLbbYYost9jtgC2BebLHFFltsscUWW2yxN9gCmBdbbLHFFltsscUWW+wNtgDmxRZbbLHFFltsscUWe4MtgHmxxRZbbLHFFltsscXeYAtgXmyxxRZbbLHFFltssTfYApgXW2yxxRZbbLHFFlvsDbYA5sUWW2yxxRZbbLHFFnuDLYB5scUWW2yxxRZbbLHF3mALYF5sscUWW2yxxRZbbLE32AKYF1tsscUWW2yxxRZb7A22AObFFltsscUWW2yxxRZ7gy2AebHFFltsscUWW2yxxd5gC2BebLHFFltsscUWW2yxN9gCmBdbbLHFFltsscUWW+wNtgDmxRZbbLHFFltsscUWe4MtgHmxxRZbbLHFFltsscXeYAtgXmyxxRZbbLHFFltssTfYApgXW2yxxRZbbLHFFlvsDbYA5sUWW2yxxRZbbLHFFnuDLYB5scUWW2yxxRZbbLHF3mALYF5sscUWW2yxxRZbbLE32AKYF1tsscUWW2yxxRZb7A22AObFFltsscUWW2yxxRZ7gy2AebHFFltsscUWW2yxxd5gC2BebLHFFltsscUWW2yxN9gCmBdbbLHFFltsscUWW+wNtgDmxRZbbLHFFltsscUWe4MtgHmxxRZbbLHFFltsscXeYAtgXmyxxRZbbLHFFltssTfYApgXW2yxxRZbbLHFFlvsDbYA5sUWW2yxxRZbbLHFFnuDLYB5scUWW2yxxRZbbLHF3mALYF5sscUWW2yxxRZbbLE32AKYF1tsscUWW2yxxRZb7A22AObFFltsscUWW2yxxRZ7gy2AebHFFltsscUWW2yxxd5g4W2elHPmiy++4OzsDBH5mz6nxRZ7r01Vub6+5uOPP8a5312fdJnXiy329rbM68UW+9tn7zKv3wowf/HFF3z22We/lZNbbLG/K/azn/2MTz/99D/2abzWlnm92GLvbsu8Xmyxv332NvP6rQDz2dnZ6w/QONKQCQ6+9+mn/KMf/5jtes3dbs8uRrp+YLffc3tzw93ujmGI7Pd7+q5jiAPDEMmqAIiACmSF8tA7mXP2OlU7loiQ86sHEvn1jr/YYu9ib5o3vws2nZ8AxxPCl/+V84sN/+L/+s/5P/zjHwMDZCXHgTgM5DQQYyQPA6Q4TkCPEpzgvUO8Q50H73HiEOfIClkVVSUDwzDQ7Tvuuo672zt2u47dPjIkJeeMiODEvH/FXgc2xwWxvztHSvV3RRw4p4gTVNWe6zwhrAjNisYHXGiQxiM+4J3DO2+snApkyPYfmpSUMylmckrEITJ0Pd2Q6WImJqVP0MVE1w/0safvOmLsgYz3EBysW8dmtWG9bVm1K9brNc0qsGpWtKuGVdvivAdRHA6vgmSHoiAOsjLEnhwj5ASakBxxmhBNeJRGlEbAeyEET9N4fOPsXjix42CLYEqK5gxJ8VnHkZByJqVMzpAz9EPEuQA4hmEgp8zNvuObF9f89S+/ohsSijDkRFYYVLne7bm6uWWIakPM2TfJtsa/lVWC9B3Xa5m9NL/N8avp/IH73/S9mdcCEoLNlVyuwvHGVxlokcNrYRto+VHKS2fHmZ7I+MJ67LoB32fz9xuv72zD11wOKSCzc32b+z+/6QAEZDy36Sm5DuqDl9XPCqqzz1gvg5ud4ux0ZPxy05FkumY5K6oZVUVng17Ggx99tPn1UT149iufdfymoNmeXj/nwd+dvf8Cet5obzOv3wowvzasI5BStoXZN3z/s8+4vLxEh8ijRw/poi2iUpBsSomYEnEwoNz3Hbvdjtu7O3a7HXd3O17cXLHb7ci5DDKlDFrBiZByPpjzUgbcfC7XASsHk3Kyg3HzNxmxWsbn32n7XQ+HTuf36jxxSHlE2axbLi8v2GzWqDpEM2lwpOBIsXx50GiLvGjGA94J3gviHbhggNk5kAKYcyblTEwJ9UIKQoiOEFxZUwwoqivLfgmX1YX/ADSL4JyUjausAa6sD84+XlbFlffNKRJFkOTs9TmRRHFOcc7hnAcVNAualZyUlAqIjJkYM31U+pjoh0Sf7PcuZrp+oBt6uq4jxYiIEoKgjSNkIQFZAhICEhpcaHFNg2tafLsmBI/z5iA04nHqUDUAoVkJQ0uKHcSI5Iiox+UBpx5HxqUB75QmOJrW07aBELwB5gKEFLE1M6mRCjEhOY8YJWdH9vY3zbBpGnLO7HZ7WhH8KpCHPZ88PuXjJ2eI9+yHyO1uT3aeiPDsxUu+evacuy4SNTMMA0OMxJTp+0TfR/Ox6pjzTQEXaTZID4fmfE69CQBU7PDKDPzOKSmv+VVnYOQ9mdczwKtHj93zovJ9+l1mr6+mx68Xh4gBspGtqvam8PabrmEF63PA/BaX/Pi+yGt+cvProQcfuZx2PW+1c6jXwd1PvhncNsAss+tmxzKnNGdF68eqoOXofRWbl4en/IoXcPyRykAXW7HLfJlu5+Hr3zRn7hvXf5dA9tvM67cCzG8yVWhXgVVo+PSzT2mbhruuZ9u2hNbuXi7eVVaPZkXXLSIOH4xxypqJQySmRBalHwaurq749tvnfPvtM66urri729H38eD2C9hGOH5gY1W0MifowXrrZuB6OsBiiy12bFohh2Q2mzXbzaYAmTfydePGqXXi6TGFYs/J2ZjjlBIxRmKMpJTIORmg1Tydw/zY9/w8HTMbSh5BX7ZNCnO8be5nsiZSFlwum2BUkIRzgnPBALNkBAPLmhVNas5+jOSUGPrIvhvohkg3JPqY6WJkSJk+Joahox8GckoEZ6x6ykJUR1IpX56MI+NBGlQasvjiXAS8d3Y+KgaYMTbYkVH1aE6IgEtqjDoJIaNE+7wFdKhkA8kiiCubOo6cK7GYUcnk6iIZ/W/XLys5Jbr9AApB7O+p2+NSx3a75urmmn3fkxFcVlJWbu/uCAgfPzolIfQxstt13MXMbsjs9xZ5HPpMzmKgC0fKiZgGco7TzZUy7HR231+3drsaibBrVYnTEcsd7/9vZLDr2K3Q+/0ED3rMML3+mSP4mp7+5k3yb9J5OGC2f43XTRv9MauekQrGZQ4pCzvspFyCyTE3oFudcZ05JQriUfxI7NVxOrK6ddwW590JSCUDj8+dsmSOY7WAdgoDMJo9QcfxOf/8r3EWF/uN7TcGzCKw2w34TaDbd3iF1aql33dFWmEDxYnDeYcroc/RkRLBuYaw3qICQ4qknHn6+DH+RxYeVVX6oefq5RU3Nzc8f/6cFy+e8+KlAemomSEl4pDIKY/hPqn/zSJFiy222HebYoDRibBer1mtVyaNcBgg1uIIa55CjjNEYoCN0Wm16KPNZQOuBshe/ZrJLcoGdswkV3nFfWHGaYMysJyL3EBFqXFVdQmpgFnUGGgfEOdwknBkII00pYHGTIqJFCMxJoaY6PrIvh/o4mBMc4z2PSViTmhKxvqoIlnwScjqSRpI6knqidnj1aHSoOJRCag0IKH87klgwLc4IhlPlrKGZsVELfU+RCCTHfaZXQbnitLgEDHa9SybfAGsU/jYpCdaQspCovEezZm77g4Bgsu8/PYrxDtWjSNlyDmiKJcna+6GyPXtLde3O/phIOJIBOJg8hYRwQePx4F4cganDhccSFMkNODwkDHHKiWTkEgF/oxjR3MGVXJlqPXNa/4ME80eq27DGOx+r+0YLB8nNR1Ha+Y2Z5hfC1qPkdlvCqALuzyPDn8XcJ6D9rcB8FIcx/qzmzHDdczVNUvLGje+bmSJ67xRwKPO45wvr53WpkoEuCRF4lSJAA5UKXYZZ4TAAXCZsc5vcgbKSxaw/DdnvwXALEjRCTZNg3OOxnlySrShAYqHNr0AdxS2EFXT5IngRSwcmkFzsuEgwiq0fPT0A/TJU/RzG4wpJ4Zh4OXtDTe3t9zc3HB9fc31zS37fUccBrrOpB79MIX5lBlP9i4j631fPRdb7F67nzX2zhM8rNYrmiagmvEixv6qAZQaPapAeIqiKgd60PncqYC7gJyRjZk9se4NIg6RfBDqvG9THDfVrGV+l/MimaxDhYytJ1o0tSJGW6ovwMx7Y4/UJBiG+G3zyymRhsqGJ5MVxMh+MMDcDdEAc5Gd1c8QnCsMlCOJJ+EMLGdPzELKjiEJKp5MKCDaqCinnqG8f2VYc9EWp6SICk6FnMHPrmXdzNUZy2zwXzGdo+Bm7NSoJQcD1qokVXJOaE4G9lVBI13Xk1OEHBFx5DSwXrVkgV3Xc7fr6HMmO8euj+xjIuVEu2rBC93dntuuY589KVEAhIwOlEiwPcB5tLDE1HvvPaumYXV0v4ExUpFSOd/ZWDEHZyBFc4COI5T3Bbz16P/513tpR0BzDkAPwPA92uPvAqA6k6pMOoDfDlw7Bsrvwnbb55r/cfazTo6icw4vDueKXMnNPgYTYDanUWdr0LQ+4QS8EEIgNBYVKvEgUCGlyBAH+m6gHzrSkNCkI3E8B7iVYBBqlG4WAjkerPrKDwc23pY3XrXF3sV+C5KMyVsSJ/iS2JMLu1LZi/Ls+iILJRatYPXcbF/QaeIWZnrUKIqgbkryUYDVmrPzM3J5fk6Jvh/ouo6+77m9veFut+Pm5pbr6xuur664ubvl+fUVMWX0NRHmqn/MeTrtmlR4+Pl/0yt49L6/ZhhqscV+YzuKOnvvUBKb9Qrn3AhsRoBc4ty5yiFKEkENgWcyLjvUVYdZx7Wgzn9VRcaEJHv1qCGWAjxfo62bM8zj5l82cAWyGqC37wYcK/YUcSCFjcyuAGjFFT1mrmtDZZgL4xpjKgxzpIuRfoiFYR4sypWrBtekAUmKqloEcGQt0oysxARDBskwJIEseBU8obDIwa5vKsx7iqQUyWXDddk02a7cE0mmH3dOwZtAIwKSTZaRxWEikHqPika7MunjdTVteU7GkpMTmgw0OBFc8OWcMr1aVLBPGQktmhK7rifjGTSx65NJVFJiyJAL+5aREqGYA9IKvirwL/dXssllxDTw4mQCGAreOULTMOrYxeGcIRqLCgxGyKjiVPEiiELse4a+J8bJwalTIDOdVx2a3y1Ier9sDpZt7swdXB3n1Cs26lsKwzpjPl8HwOdOzFyq8ErUozDgdp+nczie6/PPcN/nsh8mLDHeW6WMJZuf3nu8q4C5HmB2DDVnuyZC5GQyKD8+36JXzkHbelZtQ2gaw0GuvE6UYRjY7zq6zhKah74n9ZmU6lpYih1kCu6Rca0qH2r+AbEWGnWBkvEeyBid0/ESjJKQ4/vzym3VV+7T8fPfGG34O2C/MWAGu8n/zX/9X3Oy3RK7nj4ObLdbUkoHjAcF6PqS/HMskAfFM8U8KkiG2YQrg58KspFxARUUDYHgPdv12jy3p08KG50Zuo673Z6u74jA3X7H8+cv+Pbbb3n+/DlXV1d0XWcDNR/6bRXQH0W4Xo2QHL3GwrxulsQ4PXGexPSm0Nhii/2HtxqKVNabNSEEnBNSHsbN1GyW6OJcYSMPw4sTlTd7bp03gKT0CjskdVNzhw7kffPj4Fw4AjkFlGUgKaRc2WUDi2OlDp0cfFUKYDagmqOiBSBWvXUXM0POxGTM8pCiyTCqBy5KVhB1Zd0ozLdCVGWISkgQkuIT9DGBC3ivOJcRr0gpF5SyvX+KmVRkZ5IymhSfMy4rkkBSRnLGB5OZuCy4oiwJagmNOVtCpu31dm5kDOSr6ZjtrmdSTkWWkRFVBCFptmsRE1k8MSu9OrrCeu+T0qswJKWL0GdHlzNdFgY1ByJrkd9oTeo2Xq24O4zSnrpviDHlKjoSKhUy11e6EkrX8vxUmbrgaPwKWbUGljXjFVxWchPIbUAUgvOEYHtSjJHdfs/dXUdXxlI++v5emMyIpSMwdAw09R52+TutDp7a/+wYLB+cyiEQm45R/jua/69+lCMJVmVnXwfqmf7mCsnm5pv1AVifCDxjfMvrxOFdHVuC5kwcehwQvC8nprbHN57VZmWAOTT4YNJTcY4meHK23KyhP+Vut+fm+qpUAxrQPCPjRoKuAt+DlXR+QQqjVyMxOuKi6bX2/7w6x/xaLvbu9ltJ+gP48KMPifvO2KHGlRBZLPPAFdbIFcDsChMw+fTz+TqB6zoupt/HwTDzBl39XWuakI6Taeh7e5LAqgmsV+eIOO66nn085eHlAz7/7LNSMirSdR0vr6548fwFL16+4O72jn3XEYeEC0JMiWFIRWtpp+Cc4D0lzDxdE4UStp6VsClhoDFJabHFfhfsnj0nxsiq8Wy3G1brBu+VYTj0GqWWjtMAJSTuMM2uoDhfSrU5D2UN0BqHpFSuGJ3nabN0xbFGJlB77HC+ulEKWYw5hYKSVYy5ocgPkAkkYo5x1GTSAE2j/tAAs2l5Uywa5lQ1zFbuLuYiC8uRpMlAZ2Xc6qangqiD7AtTzZg1H2MmxoT3mWHIOBcZhlJ1ACtJJTjbqMcKHYom0KRQEuxcKtU+1CNZ8UntWkdbY7MK2YF3xhAbmMzGTOXKBFjI2ZIirZxcylbZqGqDNdsFy9HA8QDsU6aLypBgSMo+Kl2CLmb2SdknCnCGIULMWsqI2n3MhQUUmbHMWKRxKlBgzHmmEiNS2OfCzondd1vmCwDC4cTb72LHcvW1qjgRgg8GiBSCdzTe4QTcZo27ODddagj40OKbhqjKf//H/9uvOcH+I9hsr3kTsLTnwpSpy+vBc2WO6mvgfrbojacl4149ioXLt1cqXcx+n3+W0el9jQM9RqXLmuPETYC5JrSqjW8BQgh470tZW5snTQisWiv1GLwl2cZhAM2WyIuBcdd4XOtpVyuaEHAlyu5K9bB21dq5Z5M67buO59+uePH8OS/lin03kDJWwWd2eV1xFGFaw165FwUvzz59+Saj1OM4klCv0dvcp4VlPrTfStKfE+Hrr77iwfkF3ns27Yr9bjfW/RQ5BMzO22NSJouRDBb6kMpEzZirN2kX7QgcDJrKVYgI63ZtmsuaUJQSmUTwjhWBgKDe26acMqebLQ8uLuiffsAQB3JM7Ls9t3c7Xly/ZNd1JvfoeoahJAANg+nkUqYmjQi1qo6MzHSd7Cm9Gmr+uzoAF/sds7JnFjeWpvVsN5uyoSRSkikHpcxTnMeFsrjnjGipm4zivYU9xVsd5lGiVViPeaTpcL7XjHWHzHXORwt//bmGeCsjMyUX2udIBTgXnElNoksZYs6ksonWF6VUHOJZwp99j8TCLqdc5R7FKZaZfqtcTAOmeWS1qpwlp1olZEomHFxNyrL68TllnBSgrUqMaqWXM4j6MeSloiXz3qpfOJSsjqyBlN34WTWDkzwCR8OShYHScp7Y+8ZkspMhmhyjhnU1KykaUE9Z6VO2yiApMURLvh5iph9ieSwSc7ZrXCJ9xi5XcDwxoKCz5MSRRBzvZ4EO07mXaGQt1zVeebUKSZptnXVF4lFj3pJNlx0Q+8zZ5Dc5CiE4QpMJ0iDOI5JLIqirPOp7Zfclxt7/xPLfcUT3Pjt4vMzn8vgrkozX2b2h2bdjuI8xwevWBF/WG+dkdvfUKqmUOaZqOvqUYqlRXq6ZNyTqnKNpG9ZtW3Ib4sgwV6crrDwSHG3TWA312Tk0IdCuVnhv759V2bQNnoQTRTUi13f0Q2IY9GDdAmO5tbDEOjGIjPeqzPuarDv6MJMP8sq1WezXt98OwyxW9LkOzK7rWK1XI9N7DHhr2Kwyv7WO44w0ngZG+RIY6zkfT7HptTMPGfsxpak8kdVxxhJaVKzwf/Ewq86wbpqNOHzToD4QnCM4z8npCUmnUljDYFrprusZhp6+79nvO/Z7009XvWOq2s5l0C72PpgwMq3r1YrNdjPKI5xzqMuoM+YTHFJi/AfVLXLGoaOjTHGca+OMOovnkqtxnpcQKMK9HS7mDNJ8w5wz15WtNOBkjGXSAkTRGYsKSS1ylGIu87+wuNXBHRIpZXO2az3mnK02hU4ihoMQL1bxQSoQ1Vmd48Jcj9IGn0gx4USIVYKSMzl5vORKABd5iUD25TpkIBTdYr0edq1Nw+tNQpAzSiJLuSeogeZyujWBsyZspJSsTn5h03PSEfMbyLdrkLUA4TiYI5GUVNa8mCKxJEmmKm3JeSwbmI7gZy7XbEz+lEmkMUo0OFxDqxyjjok6duu1mYiYSW+PmpzFGflPAIIIXhzBKZJ6q+SklgzmnTGFMKu+8b7YDIy+beJcfc7rJBSjxGM0NwLlYxD7pqoWcxnVHKi/zbkd//y6x8a64/YhJqbdHhi/cjawmrI1TVFRXBRysuQ9J0DOrJoGJ442eJoQ8M5qnDergA+OECxpdR5VboOnGUs5gnhPEEBOUTIpDXjn6brIvo/0fWQYLKKUMwUwG/MszllN+skzBKqQaf4Ih7/PogL3ORqLvb39VjTMm+0aEaHvB862W7p+sIHpK+CdgWCK91P/VFnnkdMys43TTYzzOCksYcMSRKYNer5ZzxVx3tfNZSaBUCyJpWxg02atRLR0MEuTBluhbRpyHMjIGL5pmoa2bVmvhzHEM/+es7Lveu7u9vT9wH6/Z7/f03Xd2L3sPl3zW7MCiy32N2Y2/jbbLaenJ6YPrXPMTZUrCjy27n3OWJk6p+ZRosk5lmkRh4O5/SrTPL7sIMQ6Dy8fAICD3cJqF+dKLEoFfAY8M7YhxaSWHFdrLNfaw9k6/OWqHR5LrOkorYAKmFNhlw1wThuysT+VvdWcrfJP8mhMZB/J3pG8Iw0DTiAVJ0G9I3tPwheJicyIhgLGpQFKlj4e1BIlxUkp9mrMU8pW+cKRjDGFsVLG2FZVTf9sOm0DzMMQGWI2wFyunWbGKh1ZEzkPxKE3AD2W9kzE3ljzFFMB17VhjJIKm1lXbAPFMNbGHW+nvoIADsiS2Rga/1YZuhl5Uh2nMdRXx5TWCghQNaBtEAKK0wjDlMzqmhb/vvEdRyzx2xI2b2SXZ8f+TWwE47Mb/KZDvk6OdXyu94H2mpcwgmaMIPOFJS7ePjXhVasLnC3hNaWBvtuzaRua0ODWa0KpCiCAF7EmTWKfJ5e5pChp6E2i5hzBe5om0IaW0PqiW1bW6zX7/cDdrme/L1+dRa8FDzh8zkTnSEz10afZ8HqsIPW6LmTdb8V+M8Bsaw//xR/9szIYWuIwsF6v8M6TKICzoOPqZY0/j/qiwoxInRiVWJ5tpjNPagLEjAvquDzWF9fXaGU30thZDMAHD8ky+XPZMOrzjElr8N6Z7GIYxsclYw1WUh4Zkxr+qTbWBVWlaVpOTs+KBrJsINkYpW6/o+v7EUTHIZUJx9jS+3cHN9cJ9ztzQov9Nu0obFOJ3XbTsNmucKW9tOYZu+u0hPPHl40Hq2t0gc1UR9ckvlpxS3lhZZ29AU8JdkKSwKk95Bwe6xBIcUgtElzBs0kTVKV2tTZdqwkUxioZuWyeWU1/XMo0k4oMwdjUKs8wZjWVBLW6vY/bVEGQJZ2PUSjrC1CmdNQrr8laKl64RPK+yDEyg4/4mFGJIA6vCZ8VlzNOsx2rrJf1CwQfGgSPqMfnWjvawLt6SFI2/lLeobJlFSzP5SKiltiXSiWQYUjEWHTTyRyEui4Zw5yKvCwzRGUo0owYk/0ci0QjplG3bEmXUCF7ofPKyKndDCtQnlUtGNmV+lxGZpnKlEkhUiqZJgd3anYXaofJRMbhUZzzhBBovKBxZ2xezoh3YyUFcf53aTF+KzO5UxW51nk7casHEKqwkK9nl2dgdebsjFKao4jB4evmson6WD2n+dlMm/lEDOv43aIEk9OIytSIZybxpKwxMaXRSR9XoQpynd3XJjS2tmVjmFOOJQJtYyalZHlQKZGH3vTMUqQSAqHMD+91ahBUmv0oSuyNfHPeQduyalua0FjpRN2QUqYJDd16YNXuuW07mqbDh46+T/a5cMSs7GKElKv7B4dDfFxnxz/o5DiOd6wS1ML8ltYbezQoFju23wgwm3cFTx89IqgQcLimnSZeuSFO5oPa7pSUDXTcbMsNHJPMceMxpnnixve1DdJ+MX2PlgWzMDzlNTlPjEOd1MZoZLS2uqxJAJjyXjVPRcYlgy+LgpZNyfw8EDUQ7SgTTseMVOfcVKRcFecpXqYwhlFP12VTzuSaTBStrut+6BmihWjqxmVJjINdj9k9mK/j474ye840ceprysZ0XFNPxv84nDnznzPv28ax2K9h5ZZvTlraTUBcDUkbY6mSDaCWugoeKaC6rMiiiJSw9nyuz+ZEZUnMWfY29wTUOfAOpwMuRVSKZEodFO2vl1IrWJNtuoUdyggDpQSYOLIzKYZpkqWsMUVLm5SchSEJMUHKbsp1UClOriFqIyd1ZJkpbLFdqxq5qtpsNzkB4kjFcQ8FlErOSEq4lJCUiL2C68k0qDgkKy4ZmRBEjWMqwM3kYUJw1j5ccIg6av1oyDhvVTayJvLQkVQgUXS4JY8jR2ObC4gSFGrZvGEg9sZwTYBZxwYuuUpSFFIWhuQZkiX+dUnZR9hH6BP0SYhFUGnMviOrH6+RNZCQgyghde1nxh7qfGUqDkRJqJSjNWvkm1VrgLOUEbPEKpNaVHwgVn+6nF9TEk0RD76BEKyNOZ78ftXIgJJoa9GNyuVK2TN09mnKdSslXueZZFKiFBWEzeUxE2CTce+Y2N6yX5aW7gaa69ahZX2Y3r5uPTIe53CbUSZG1yK4tqNrUtR72sbYYi2JqjknkiaopW7HDpAlodg5Gh9om5amaRChSCh7ch7GMpJaPEUVRYIH8cQMQ0q4HEp5RIu+eC8GwGtVrJym+uCidN2evu9o2xYXAlkzHseqbTGHEUR8uU5C02TEBUAsF+DWqvKQE8Q0XjwD1QVnUdepWW7FnJ04IkaOt/kRWM9r6C822rsD5plnUqeWd57GhyKCt01nnJwzprjen6nF5LTUHYRbkHHBtOcxPp+DZ5llp9OgGPWMejjjjlyq2np3nrQz+mEyYzqk/i4jmyaz8Uc5zxE8lHOon/9AP8e0gFdnwDmHbwKyMkcjZZvkKqUiRz9Yl6whjdrCGjKNMdL3PUMfreRScR5K5SwcVW9WFpfZNZuu0+zy1G8ye/wAG+vBc9/KFmz9O2/TzJitquXHduVp1waYdUiFjSkVIUpBf9QYRKkx+woM6xzUSvjV+WUArVZ+rZIocKj4MnjVMItUaa1ABYYpWwMNqR62jseux9fiJBrjWBjObEl+JinANlZ1pAgpSdkka3Qoj7KtMVxbwLQdfKrKW5lNu3Su/GIbvPG49se6wuTxfAw4e5RuGMyfQBCfbF0oMhfvHI2z7HsEK7nnBR9CucaOqvUVCoPtLLktO+tChm/IqYDgotUWjBkzB9v01ClGht6iajHmWbWQCph1vE5JDQwPMROzlcrrotKlXKpmYM1ZytpsKdEO1QJKx4t2D+CtrPqcUWRi0eRoERr3inE0y2ycMa6/ryxIdeyNEqCis3euODz2fhXEvE82lzHOL+LhVZiu77G84T4ZhAjjWDMrKaRHzDRQrt10rMN31wKQZ/IrXj1Gfa0cMdh1/xQRgvd4ccUZzmPtv1qzuxJ2FTR77wg+0IaG1coAM4D3EedKUmtKxBpROziPQ/IvZ2OyvXc4CaxWG8CiFilFvHf0w0DfdyXfqaMpdZrNfy/jWdUaRYVM4z2pDfgMzgUUq8TV9YNFwWIs+MacwNHZqCxzWQTHKPzxNNOj349+NvLxaH4tkg7gt5T0t+/2rJ48mTwyDDgnraDzcEKNXXUOjnPELtwzcV53044ffdsEh+/SCVcdVD2OE0HFFXBcQHdhnqxmaZ6OWR4fNYJHJ1qrZTik9JeX8ppsJbkEWhxtu2bbrIpcxCZVbR+sqmOVjrt+xz52xD7S9Z1tejGSDupJH+kr4Z4JpdO1OZhY97moi/1tsHvvqIA4WK1WrNsWMHZRKgAtFR40GzCrYUiKjEABdZPmVy3xYNoudT4KsTerrJOARW/Ks5XimDqcKIkC+EQN1NjZzeaqTh0HK54ewR7lvMtnyEqKlEz5dCCnIs/AouZxLo9JcmM47ADRlVM+3HSqz5yzImKaaKv7KuTsyCKjZEy8scvee6LzNMEjreAIhOJxZzEgWkvBUc8RY981Fy05DnUByXbdhqgMvTFwiOJK4wRNiVyS94YhkoY4ssuj35Om5D3NJrGIySpjxGRSjK60DR9SrVOdqUEHu++zcDKT/O6V4Tfi3vLDvc95w/pewNicQJnLAioh48UYyOA9wWFJmiUxlYPV8v3PK3kX0HNYlcbGed23FcocoeztbtzX51bzDerxZkdndGq+4/wOpSFy8JiTeZMjKZ0uy15aSLyKs+t8CqVRiS96Yqsv78ipVkuZVeTJdZ2RAo6rrDISSy8JW1s8DstzAks2XK1WqLasVi1937HzbsxdqkRXTRyusouEGNmAnXaq5AMG+tdtY9c9RbTWR6/ZX9kIsdGpm3ySwz3+PjsG1Iu91n5jwHx+dsaqbUs2Z7byUSmP5aAqWIa5NykjGD22MQI3A73flYQw9wDn9qYFTkTG0MlbJTmAlXhyDs1CIlqN1lomqTBTULsbVt1U3TjNIxR0tgcU5imXDR8Lq9awYSU/tGTbOwWSEpzpF4O37lYpJ/ZpT9ShaC5LdY4h0sfE7m5n7HSMxH5giKmUxKrJMMw2MYpHy8TUzf+42N8NU2hbODnZWpH+rGg2+YOmRB5s46AkztaF3ACzEmTSDEtpSW3iXsZ2zdXZHFHyuPlakkxWb0BHKAxTAdUu4VwwXbG4AhRlAuG1zFKewP3UnZARxFcnVLNQ23TX72Mli7JxHnc3HB3huR85Tmw5uI6iyljabSxjZbkPtQ51Qsfw7RwwhxBIaiXOXKMElAQmI9M4OtkT22/yGO9KK9/SZht1pFIfeRhyKW2Zy2XXkrA3lG6G0VjoVK5DYa00y5jwaBg9G7ucrFpGTJmY1GpUJy1rTFk/XEm8oi5qs0t0tE7PiQrVKXT/NnvBeIz5UNYjsFxghivHnPJoKN0EXyV1xrH6HtmxDvmYPX6TjfNkdt1mR56+6avMdH2vOdn0du/5aq3oac7V4xbudBwTpr+fR4Oc8/jg8Y2nJnPOAbPVSLbKV6JYNGWw5NVhGEhpJsmYnbOq0vcDmjLDMNCW+sxNcOx3ga7bk1Jis1njgwHy1aphtVqx3Z4wRDv+MAx0fU/XdaR+IOaiVXYeQazAQKrgPQEmw1q3DaBITjjVUspWZ1GwWV4Xs2iecNBhe7Ff335jwPx7v/dDnj59SipC+VXbMqhVyXDOHdZsfUvGGO6fXG+zUM494zdO0KPJPgfwx8eY6rNWXfaUyHRflA8olTzK4ixVP1n0m7UWawld14NICavYwM9jBu8YjhJK1j1WxaOIuFOOBC+EUvbGvO2yCWYlnZ2Ssk76xMKkdX3HkHpLPIol6akyb5U9t489kuTLfPvbbuPAZbNecbKxEKO1FrY6xHlIxMJCggFmjRYqFM14wRxmyjTTGi6kyI1qE5GaXDjLTRAd29LPzVgYKSy02EYptaSbN4CsVgW9Ju5pKgl7VWYxVnjLoxY3Jym1jWuzklQqI1St8mwtyLWecgHMtfnH1DmJ0cukAABVRooVLcm8k3rUZSMXyMkY5RgPAHPTNKiqJaVlK1EZUyaV2ssT/WvOuqpV9ojR2GZXmfI+E7tE12eG3hzqrCUXAyUlk2HoeL2KxCPX9dDearwEhXCPVpnTpC4ZhqwMeUrwS8UhqrpjKicmry89dgiWC9lyJMKYS/zuHcUVOYz3YFrrXRmL4+tlun/O+VLSUGysFj3vlDb1ftrb7p1ves24P9bxq9Pj33X8w7/Pokn3vO8xSD38+yTzHDW7JZHfHEY7sXL7SqddGRsoTU1MbM1J0cZ93/dWHjHFsXxgTeYPIdA2TWleoqUes4HmNER6MjsH+70B5pOTE9brFZvtGufWNE3DZrNBBPphoOv2dF3Pvtuz33cMQyyfy6NgDXVKScMYp46Y4h3SBjwb2uDp+2H8ijFO16ksQzVXaQQWjJdnsV/TfmPAfHFxQdM05D5anUBVUow0q9Ymltw/WY8n2eQNzyam6oGn/zoAfAyQR5D7JtPD190HkuftrLWUZtJCjQk19FOVwgXI1mLo4+eYdfZDLXxdNjfHIfM0evNqXbYqU+3Fjwt5Lpn9YFn34ozZR5NpO0sCgIjgnSULJYJd1yag6xU1cSNrIuVYMt0trFqz5PtodVSteUFkGJKVkmKZb397rdI49uN6tWazXpNjJLlY2JgSDowRjZEKsA1ID1SGVbyOYW8jYisrZNlWSSEhU8WEwjzXhX1ySSdtKTicZBArj4Z4Sz7UwoLCyASP7HEBxlrlGEVKUitU5CwFOJcGJTmNzPKoBKgAeQ6Y65fA1B14xrzNr6piwJVpbRKRsdKEhYLtd+99qaNsdV0VAedpUwHLOSM5jXO8ZimMVSBUi+TENOZOsXJxQ2LoE92Q6Ids8znHIitLY1m9SXZSMh60MPfj4yZfqR8/ZRnBsjWBgSFTqpKUELGMfC4ySh3uB2Pz30fQPI4BmX1uZpG8ey87NRowZ1i9cwRxNAINQqBUTHCuVOIrxIXUSh5MIW333aDzd9netI++Cpan17xCJB0kP+rB6+fvcfzYRJopNVH2eO8+lnXUv1Ute73vzjlzvA7Atf1nTh+oL1Fe78roM0+v7rcpmXPZ9z2xSCQgm+55LANXSseuVqyaltr90z651R23DqE2r7tuAG4ZojHJ5sSu8d7kH23BCU580VG3xJTKfJKRsBraNX3f0/UG5q3EY8R5R7NqWDeevm3Y7zrugL0ayZVh9AKlyEezfAcWWuyt7Z0BsyvMkXW1s9+HYSCUbn7AqAsaydfZ5INXPcj6/VBMfzih5q+f23yaH3ujr2ObVWeayqPjH0tB5sA5xjSe3zHYdyK4YNnfuTBx/TCUSlMBQfDUpgk2ycamDpTEpoJUcs64xpveKQ207Yo+RZy6Er61TkPJQYxd2QSsC1EuQNs5XzodQe0+WN9hbEvuHKgn5cxqvA5SmKO6iVpmrmXMK/2Q2HVWdzXGoTBV3z0h3yU0t9h/JDtmdVHOz07REr53qibFGIxlzkOi6nlzSuRhMMDhHQ5rmpE9Bmo0j8UkLIdPJudLKqOquKz47EtjEWfzJOvIMGexFhcilkEupZya5eNWcMe4sc2lF9aS2saxde4r5dJq2+lZWJcaVWLaiA+/ji7YnLqpHUtHUK1UmUgq8x4Y10iTVelYWacC5nptxAcr2ZazhW9TjVzZelGlXJQVV6s8I1sES2Mk7geGbqDvon0NkZiGcp2tokAq12v8fPUzlofIFYROxIZFyhgTABOOLCalwTu8Kw5UYZftMHIocZmPudeQK3lGIFCkfuMdkAKcyndluhZ1JDtXtcqB1ntWztGI0IBVHimRQF+jgKXCCUU2k0s96/fJqmMGvLJnjWON+/djY2llfC41elHHxujAHBJax/tn/Xmy+U50/74+f+2YTzC6xBjoTRPjb4DaZoKU31PMOIF2u2a1XpXW1CbdSMma6aClq+UwlMcsuuWdnyUKOprQsGpXrFvr2OcwnGASKgPZ86jRUPT/wzCY06tW87k6yyklUMVRExZ9KbFbkmEz4/O6rufu7o67uz03d7d0w4A4WDct21XLvgk0jae58+z3HTGmsj7aXDmIFB9Pi3obypccPPiqLfv2uwJmqZPCLqkv4Q5VLZ28bBJYx5vyghnDfN/Emputea/34r+LYT441Rn4vfd5ZYIdv2b+c11UXOkw6F3R5aVk7K7RT2PVAGN/U2Ft7Pm1lBMoUioMoAlfukcNQ0fKsYR/nGXCO8gO0pDpNeKlIZZWmjkNeN8QBUQz2St9v8MPmcZBTZocy9rpXLc5u5HILFFoVq2geO7eexrVsWWwabWt0cO2ZNpbS/BYmLJcQLX9XB0N00m//h6+jvWon6E+/p0Rg8V+M5PDnwUIztpiC0wJMSmSh4jGVMqTJauukKJJMgRE/dh+2Uku3e5KQ55cugRWgCuVhSwaUgfiMt5BDh5IqJvYTshotsJx5gi6kZ0xnDtvOZ0nSUYsiWoFLNdKETnLmNxXay/PQfGEH3QscfmKVQAxe25lnassw5ISJ+0llLGfMzhzsieioICFlEiudM2LcXRiXd0Q3WzuHJX+UtXSBzwVCU2iH0yS0ffZWvEmW6vSWCnIgKFWvQwVlMr0OdOccazNYeweRC11rr1DU9FQHxCG5XgK913Gg2fOL1RZQ0aI/LotYnRaytGdnbn3trY2oaENgcZZzeUWoREhiCvtIUC0rN+IRfREZsd9v9agY/D6XaTF4f7MJH1wE5FTsnAKETNzhGbHux8oH72P1Pc4BPQ1qjx/biWkgDHiY87ntLfZWchEBgEUWaOvxFRxTJOWPTwZKM21YZFOczTVa6SWT9R4T+M83rU476a/OT+TkCnzqHSKia7rRsa6aWK5vmmUXKA1omTSD+c9kkszn6wMTU8j5tCRBxyGPZrG40NgvWpZr1raELh2YqA5lT3zdWvVKzeEw3Xp3ru2GPwaDHMdKDU6VfVeEz6eCfKLXhEOJ8bcs30VME1L48F7vuM5fudryrm+TpIxPq0ANzTjnWXiJi1tctVAg5XYKvWZtSRDacZ5T/Dt6P16VzKzvccHx77ryLkv7EfRdXnYrNeI99zd3hGcp1kHcpfZ7XZjT/qhlL7xweO8EIeIU4/3U+MUEUpyj5tt/lX/CVnj5DTU+5DMQ6WU6al/s6QExeNYO482gq5WY9KjFo+4/p5S6fRVQHPKNtHr374LAL+NrGZhrX97Nsd7YPN7u1mzXrU4DLzl2I+spRjdVEqRDQxDJMfBIi2qRWghJFfqCrsCQCsAkamwnDEfFTTX9ts2T4Ta1coAGmoAWmVAcQWIO5MAZMaufGlIJQktlTJRtaXzxChbt7oSYq1fVQd5wCRTlCKzNgBSqZnZ3+uv1RlX7BqRC0NuG/JYjm7OpOk8+dges7JzGRezgfwhkkNjLa6dK1GpGfosREZlmDVnKG2sY62xHBN9zPQlWS+pyVCSZhJTomMFzAZWfAEq5e20duezSkgV0ObKeFcnaFxdJlZxvs6/znm+D2hJBXBYeH5GjFWyczItw6kAqOA8bdGhtqGhdZ7GURhmq5QRChTUBFI6ROKsGVWqQPkNZM7vos2B8hyQvs11P/6o0z5o990Y6FoDW145FhwC9kPw/uobHIP6AxmN96Xp0SSPnOQ2THPUWa1xL9bO3IlYKcW+p2mClWkUcyKtzX0ipzgm+U4EmJJJY3JzFenX5OY2NNRohvfeysE1fiSpxsYnYg58HBLdvh8lVyF4vA+FdAyGp5yzREVn2KAeP3mPB4IDiKCRfdcjGnE4mralbawRSnUm9vveqtOUaIvUCMx3QaLROVzsdfZugFkLCC6D+eLigovzi6kxSfU8y4JVNxiOJuR9yQTfBX7eBIjexGC+zsryOC4g85bW82NNYUfT+ll0SgqD1ZNL5QDnoPHWxrYfjN1qGs+D83PW7Ybb21u6vmO7bdlsN4gTrq6vePEiEnOkXVs9SB8aVps14q24PiKcnZ2iKtzc3OCdI6XM9fUNNzd7SAnnGwOsJQyTSx/6KQw0K3I+JhAaiNW6mRcAMzLCMnmpebZIVUxRa2n7ItHRsrAdXLNyTa1hgY4ldcYWxEfXff71unt5rKm77/HF3tEqeTsz72CzKbo9VTQZYBOs+YNpYxVSqd/bD6Q4WIUBLCGtln3K3h8CUBkrMENhKXVWz9WJoM6AN2XsjK9HAY9IwHTMjlpOaWw2EovjVjtyJi2MsgGiMSkw55GVtk0zTRSyVu0kE1jkNezLuHZVJrag52wXSmthdCqzNs2PGpVTGKNZ1UGQlMguozGThmiJliEVhl5IksfOiZNVUFEjAtZVtILlmqeQSkWLpCapiFmJOrFjFXzb/agMPxNoxjTKNfHY7qk9CoX9PrhnylTH+B3naQHLc9/+GDDX5xzwLtSKCYG2be3LB5qiYQ5AELGqIrN7mwtjiXPmIOaZA/Qe2X2yiNeRQq/mE80ai8zMFV3sRGxJufbyyrHme+mxLGOaZq8meE4yjAmoW+Oi2dguQ+tgDJRj2+g0KJ/iwKAZ0daaqtV1IVpHP/IkLZ23lBdhnIexMMXeOVvr2nYqReh9Sc5tCcH2PyOp6uex/azvB1JKNG0zdmAMzh2WvStsfhOskoeIQNPQBs+qDSZv0ohmk3smMWnmqlkhJ5vSp6HKJC2i7Cubn2uZuvkAef3YWex+e2eG2XtPVPOgnj59wpOnT4quuXqI095wLHmYT4rXhWt0XBTfjT3U2fPehmF+HbNcPdo62eeT1zkZs2itIVQglgz8dtVweXnO6emWYejZ7XY4EZ48fMrl2SVXVy+5urrm9OyUB48ekHJm3+14efWCu90OccJqvWZ7csJ6vUY1m9B/6HHiOT09M6kLwjAM/PSnP+P29pYHDx5wd7vjlz//kt3tnmGIiLipS5kY82b3xxnIKDxZzCWM6xKCK6W+qgLwCDBXsKM1kUtfuY7z+zZfOH0F8nqYSDm/F5V1nn+vX/X3N93X10k7Fvv1zDths17bmI8DkhIpDaXppd7DMlu2uTUH0LE0lzlRFvKXsYPYDPnYdoVJidzIMosTxOqnAcaY5tp4JIOIp8ZCJzkGUyWMKgfSWZe6IsGo5eNq9vkILkeAx4GWdyKPZTzt6iSOOE4Ot+zpl/pqHTeoV0BLppRdq875jJmr1W5iYugjQxisy1+AWrP1EK4rVR6m2YBBHAaGvh+Th0bgXK5BrVZSvyqPXp2jGvIGxpbfmKtNLnWwxzVfSx1uMZ25HXBOQrz9GPyNTabkyaZpaJuGxntCAcherImrRUUq8GoYa2NIKYtog2SWCfJ+2H176DEpdMxAT1adnENy4lAqc78PMd8DjveGyuKOjt3sb/M9tzqTldWmklbHYLniDQVNWjS75pw5CWQgquLFWefPXJjlnErjMG8lBgtgFuesGkX9nOUDOhFSTPTSo6oE75G2haYp4NyNEsLKLnvvGYahyMQGUrK/Oye0IeBpxuRCK3dn79OEZmyuEpwj5w3DsGWzbvAeNCeur2+JOaFpwDUtq6Zhu16zX3X0fTRST5UkEFFI8WBtWezXs3dP+vMeKW0ZQ2M1BmsY8RgwQ5VkTKVgqqke7DHjY9X7rMz0d0srXmWr7/v52ObgbTxU4WrquY76qTIRxAkkK2flnNC0LRvXIA4uL8/50Y9+j+997zO8h6urK4Zh4GxzxuXpBTEmrq6vCE2gaRvu9jvW2w3b7Zo+9ry4uiJr5vzsnM1qRR4iOSk3t9fc3txxcXHBarUhhMDp6Sk3N7eklDk/P+OLX37J//bHf8Kf/Mm/5xe/+EUB854hGniujLDJuGZlkrREXpNpLMf7pfaMupHOWSdrMWvHqKWn7Da8CpTHxbYAoGMJ4Lgg3vN6VSWmWEpkxZEVU83s9/uJva568u+434u9m4UmsF6vAWvH7tVKyYnIVHkilzJslWVOyZjP5A7mliqT/rf+PCKw4shlA8xSKmZUU5VSJ7m2oNWDYhWpgGOTA6VZxKKC5JLwlyvzLGXDrFETRkmRlkQ/I2Xqhv7qOjXqOMePMO+oVUPOh+vd/LlvzNOoIoYZm5Zzsvrpvqd3niCC5lAAXq1GUs9TSdlqyWrKpAKWa5exvusZhp4+DQYugCy1bXUlHqbPOCdsp1KZ1A/IJFKenIvxWtQXUefm22qAy7u8ct0ncASHYKky0POXTA0qGpq2oWkagvNWGUN11C17LJohFIIRHUtpxvJGqu/f+vK2kdr7QXOescAlz0XGOz8FGyqRwqsk2Kvyigqij9nsV8/vGJhPSbn1dYwAs85TLetDjXVosA6BdW/IJelP1Jjy2k1zrMQlWPJd8PhZGbo6KSbGOZKTVapp2/ZgzckpMcRhxERUAmqW16MokpTUtqxKLWfvPY239121LY33rEpUxBWgf77f0rS293rnuN3tQbxp9EMgphWbzZp+6IFSiUhAsjUPqnKR98zv+52ydwbMuYQbvHM2aFQNRME46Ma1TjyMoZ0yIBnFEJXAOVjkbLEuj+o0OV954sEL5p5sPfbEZI3SizrNSyes2qJWZ+eK2uaqWsrAmbQY0Uzqe1xQ2lWLRUsCZ2enPH7yiI8++oAf/OBzPvnkYyDx7bNn3N3taF3gZL0l+MCQHiPOWmXe3t1xfnnBkw8ec7e749sXz0kpcXp6isbI3c0dosrjR5e0TcvFxQUpZbz3nJyestls6Lueu7sdTx8/4uHlA5wTvn3+Nd2+JBp4xs/hsIQHC6SWNESZGkhAvb523cu0rpdkfiVLeHL28+zWaGXUiuhQEOuMqMqorZxteDAt2N57k6KIQ5xjUzVz4+nZyBh6y+5PpRTWUJpo9H0/LmZjQ5mcShekccDcN4hmP8trnvO32Orcmn3sEBzb7bqwlJZkl6Jap71RA1yqS0QL++eYwAuaPLWN/PgW49SbdIdVw3xQakxmzpoNP2q15ay1yozVWo5Rpxri0ZLYaiWJWM8v14S2RKwVMnIpI5crw1wlGTq7HDOEP2/PPK5BmYMHR7A8IWwpkRXGZ00QdGSDy8UR/Aj65qgw50RMJlMZBof3QnCKpoYQ/Awo1yuoxDRYBYwYiX1k6Dv2fU/f9XS9AeYhRWNMxZxkLQca19oK/DGAIwfvMOlQXZHEWA6Hjs8xJ6LotrEcEK3XqazZ98mopstVRDuKXdPDXWLmrtTrKEzwvoApZ+O4aYpuNFgLZZMUKSIzPbTKuJdJGXsZStOZUhXhPQPMc7svkgqvAtbpMUd1cKoe3X4GGxPT/o3O79vhccf9YPxbAeVjpILR96oOV3U2pR5HSnfOVM+PkkhncFjLPl3XF+/EmnuJRRGCOEKJFNjfwUvp+Of8eO51v/clf6IJjSXiFaewyr1sj7Fa58MQaZpoFaqAmAb6rrMxFK3cnOHmiTXPQ0SbgaEN5PUGL0IbPKExp25bStitNys2qzWNt4ZPfdzSrKyxTtsEXrx4STdEXGhwPqBZ6dYtXdeWEpRaKnpkMpmU/BhZo9y3OiWnUTBnM6axs5jZOwJmIUer7ekcrLy38KDImLl9uElUAGtgp04IJzbMs+YJrRXkZlolmb165tEeALuZlVJABownsXsNsdprJ/bJ5qsl40yA2YZN1jQmsmQySMYFkODAG0t7fnrKo0cPefDgkocPHvD4yWPOz89YtQ373Q1913H18gW3NzcQE89UCb5hs91yfnnJ0A3sbm9BYL1Z8ctffclX33xFVuXzH3yfm6trvvrV1wTn+PTTT3j09DGnF+dU8X7X7RluO148f8F+t2O73fLo0ZZ/8Iefc3PzNc++fcFu37PfR549e84wDIgv1z+7sh+LaSHFakDO97IKspGR70K1ZkjXCTe6PdQNCyZtWl1ERdzE+B2xB6oZ43nK+2U7VhYbY55SnL4kVlgtasfpWRhHxUFVhGEgDqWiQKmDaSV+UimBF0cNZy5SjxmvNts85t91XPTHKJ3WAXs0O2Q2Rt83ywW0ikFU54TtyYqUe1C7XqhnqDWLNZeaxrUzXCTHjKigXouzW1kWytibnC20gBIBXLmPZS7W0osZIYmSSCUjvrxned9aH7wvtYVjtnbMQ04MORprmtVKpmkak1x11G2U8ZoKOqq7/8yhs1uvRX6RpzVJjgCxylgpSAugQNW6g44roCvvKyYSL++lZPxY89egnwE3JeWIihJV6QYFyYjk0nQklIiPjNdVVBlqVY0i6eq7nm6I9CnTF6ciVX+g7pYi4GBqN1NAZAU5wLw2MTA2ILE1tlaCVsDZ55AJwurIRtsYqbKNUQpDTSSfVn3RCRibE1VC3yJo0VDUezFeOamgy0aSd6VakbPfxxtbTcq9q2GP2vXPmRwGlwuxIPdXHfgdtvsS/SpYfmOUY1zErOumc4Il+kFdD1UdejiAZsd1s+PI7HLX9UAQdeWSV4A2cyRnoQOllrKboijOWyMSA8wmlWxqg5Js5eR8uYe+1lMOxhYnzaXqRwHGY36dlrxjO19fpmhwMoJmzZB8pncDKaaSb2AJ9zH0xuRqsrrnRUY1rhPU0oh2jCFGiB6flcY51sEjTUMjLa33rJvAtm3YtC1NCDjvyLLCB9Pdb9uGbdvw4uqKIZZSiI3QbwL7faDvy/V3QlAhZUfyjpxkXH8rD2DKtgmfjcTjcWLLYu8GmEU81c1rQ+DpkycjYJbRVZF6B0DTK9hWxo10TqTUDWb2xInqmL341XOqDI2VbToCzTrptZQp+U0B563ddA3L1nXTdHzZdJgCPgROTtacnG5oG2G9anj44AEff/Qxjx49pG2bMSS8392wu9vR9x13d3f0+z2x2zN0ewTPZnvCEAecbxn6gXR1gyL8/Ge/4M//4s/pY8+Dywd8++23/Ls/+zM2my1nlxcMv/gF/ssv+eDpE9Zty/X1NXe7W26uruj7obD9A0+enPP/+n/+C/Z95Isvv+KnP/2Cf/Wv/leurr/CZ8VJwGnAi5CSTp8ZSmF4KddgYo7t8pZNrXQsNNKlyDK0gk03bVzj4jyrplJYZpugVetVQbOFRLNU2F22trIRe6VslmZFmo2IhbBCU6QzFJXsCNAry6wGHPqBGK0QfNf19ENPHDqGoSemYdRMzzeViQ2fBp8tsHOn8H23usmJAToBHxzrTUsumdkpJlwWUtRRkhFzTSYzVt/E8r4Atwksq+16ZY5SGLtsNZVdvU+FQc5SwHhiSJaMZg6OhTutXuok0bFSa5bAFrMyFKZ5KA5RlWPUco91bGvlrVXQ7MYN+fiyyGz8jve6jFsbI27aZFRwLhiLlOvzi8zD2THyrA7zwciR6txXEFJL71m1DGIm54hqRCSjGtEcpuQgKks+a1ddoi5DX1rypjR24Zva6E4d0+YnNMrsDsCQnzm79jzT+tpj5nMUyZfzI2AyBrB8H2tU14PoWN95nFH6ihhkbJboRC1iNbtH9Yod3sDCINd7qGrREgfzWncTQVB7z4i1KHYlEupKkqV4SlPy98aq1GCUI3wHs3wgT5yRB+P4Gtfsev+nY40SBKbxUZ9zLK+QMaTBBNxqYxIn1sm93OE6j5x3IwB2vuQ4mI9K4z1tcLTOE2RcyUptckpJwYB3QhS1CvGFiXbllEfppTgr8+YFL0oQxVOSmIMn+0AbGstd0pqkW6LPjf0enJC1lMiboR0pY7063lnUOu/2HbFfocmIoiDOaoX7QOsdTZGIEALOndF6z3bV0jgrh3h9c0ufLA8prlru2sCtg6F0YUXNufXFuZ5Hlc03mXIxxvtWl7r3lgH6m7F3ZpgV89622zU//OEP7EbOs8BH03sn5bh4jROwLpSVhqo/T8eZv/8rdnSs46+xjjJQEwvM8yqaySoXKOyDK+nSIrA93fLB00d8/OmHPH78gDYIl+dntG1bkmg6UurKZpPp9rdcXz0nxohzwmrladzKslr3A3e3d/RD4vT0gs32FHGBb795we6mswSAnLl9ccdXv3zGn//ZX/HgwSU//v0f8xc/+VNevnzBH/3RP+XTjz/hV19+QwhWw/H2+iU5J05PNpw9POWjjz/l9PyS5y+v+eu//rllv+f/leurO/a7HtWMc6XUlfqJDZPxcjKXWtTHxu/luk6lMnW8r3XhtCzh6ff6WJVjTAmiMuqPrcanw5HJzhVvXcGDqCvbsIzPBbG+K2WxlbLR4ZyF5Bo3Vm85tppNbCC6Y9/tpp/3BUCPuuna0CEfjKvqMNh1+du0qNhnaVtLkhKYAGeyTn9SyjHVazQm6VAX38NrXrW4CmipFU424JM1o5InsJytioWVJcwFkBdWO1pDoJSs5FPK9SuPlS5yaUyQozUiyEopJ6djO+ekWBk6LXKC2fnq7Lf79Phlxx93FdPmlwiMOKw7y+xv1CYijuwEqvQCNTZKpIBeHa+hYiFoS0SypMmUFNQxQKnHHom9PxjjOVtG5BBnLHyplX4wntNhIvNIFM4iQNPnlYO5fQy4KhmoTIDzOKlxXHPrTqyz9xCBWoVjXHXMoTKHvoK12VhSHUE6OjHZ9TzGe1fgyhjdPAJ6B2CuyLZsHXGoc0A6JICOutC9T/Y6Rvk+DfF9UplXpTPHYHl63tushwevKQBSMKBafxtrI2clUKpShDADzGolAb0Bx+AdK2+EEJqtG6laL9Eg9vfgmnJv69jVcQw5Z1FkRKz5UomEkyKo4oIjeAfe0xRH3oawJdhqtslgic8BsGTDsTnZrE+BycJnK2XBPU6EEExCVJMBQ9E2i3O4FlofWIXG9sgh4kS4udsjQ6QNmVUTaJxjV9bGhBT9txZSSUZ50Qi3ytww/+Qe8mAx4B0Bsy1iii+o8uL8fMYG3AeO73nMDjSxlgfQDEYQcgDYdGKv7z+xGat5CJjn5zI/nzgMI1ir4gJB8V5wrWe1WvPZ9z7ix3/w+3zve59weroh9R3OCX2355cvv+Wbb76mbRoeXJ4Tgqfvb7m9fYFzwmaztvJVavrOu90O7xN3377kp/svWK1PuLh4QFLwruGH3/sRX331K/7NH/9bfvHlF/zql9+gUUiD48tffM0vvvg5/+gP/hPko4Zf/uIrHj96hADBbdicrLm83LJZr3nx8hpcw/nZOf/oP/1PUfGstyf8m3/9p/zkz35Ct9vhvAFRRcemA5UdyNX5mJMCR4wzr1kU60L7ugV3SmSakv3qYzUbOqsi2cCHc8bUOVccH3FUPV2JBI/jZWI7yvuVMntz8GMApBShb1vQrYX+sy2sMaXCPnfmEM2qC/QFYMci8UjjYl7CYZrHMfR+4ueJMXcCq5UlSim1gklCsrVmrzVMYylZlke9soENKczWgftc7q051wUkl+8qlWEugDlmA7wjYI5W8S3q1CgnWrQgpiq1mQBhjpbcY2MNKyWXTfdsXeYgq6c2KhgZy/IZFFtvatRsEiZVZ69s7kZGkV3RxFrnC6vtWoGaCIiN3RA8Is3YIAQVXKj1V93EAIpYyUctlUhkYsxUM0PfW+ULH8bckZFFzKatnKRKh9Vm5lVqDufreAEORsQordD58jvpm+dL8ivJvkegeTqqTEC3Vt1hugfVqVamutdZ5wle03GP15zKhqIT66lZxvLa9fo6sQZNY91ww+2FXXZFQsJExowM6vtnb5JfVJuzz98FeOfX+tipvJ+lfuXdqNKHGoipUsmJoa7zN0OyqC8lmuK9x3lHKA1pgoDLuWiSi665JAM7oBXHumlYte3YHbMC5VzmBmoOrnirkmHyKuOqzaE0tlmK1Ici19Q6xcseQJEMVe/N2GGLzCQRBrVomMBYIcM7m//BWSfKUDpSeu/HbsC+RD08DXhL/E3nlwz7vpAFL4nDDU7V2OnGuqAOXSSKJxZJpBNnlTaKvK3cDrREyqY14L3cxP7G7R0Z5jxOllR0jDlbAuDophxY5f3Lt8oSoAfFxw8n1mzhnG9VM53TsY23+B4gd5+OS0RsvGtZljWjmN7IO8fZ2Qkff/wBP/p7P+D7n33IxcUW74TsArHvWbWeD548pPFKHHq264a2bRjONqThFNVM33U8+/oZ+90AOaDZZCA5Kt989S13d7/kyZMP+eyz7/P4yRNOTk54/uUL/uJP/zU3+zvW/oRNc4ZEz3Z1xsPzJ5xvHyKpweWW3XVPt+949OgBJ5sT9nc7vIvshjtiFrZd5Ozigs9/+DldHOiGjl999QX77o5Bd8WLXKFaK5CWTPB6HQ/CazqyQTK7pvVv4+iYlSsa783RdZfC2Ixd/Gavr+86vdYGT86WbJZL3Vnn/NGYKWC/sIkWiq2cVdE1lsWRI/abqmMvx12t1rTtihp+NJauluQaxu+x1PEctdFxKAAljk1b3iebzy7nYb1esVo15dql8d7kWtu3dtKryXN5arleUoCNsSi1yrKUclCltrhKMg1rCRFmldofoHTii6VZh/2cS/3kkdUeIkOs92JgiJFcEt201F8ee5AUyXLOJu2x0nJzZxFG5nh2QbQk8I0MLHbuUrWToqVBgsOHonEVHTdaF9zY2GCzPqFtNwxD5m63p+97vHe0q5bQNCN5EJqAiKPr9mTBxnLVPZc8rFTnlM8H83CsY55q6Hwq13iw9h1ZjfIdUxf1uthrM1XHamNCmCfjzZ3k4/eYr8H2RrP9ogBYqOH3+Visn206z/r9GJjd66jnApYVNE9j04sBEY+UttiMofMa+rejGIioCafvM4R4G83yu0TKjhnm+Wvn4Pv1r6dEpy0Rt9RWtLEqOrLLE/tZK3XYqPBOaJuGVdsQnOCSlTP0YPXhETyOxjtONhvOzs7YbDZWHnxGdqQYGeJQ1ms1bXwpiem8B/FU7b6KOXE5qXnh1Zk1b7acbzKnq8w/X5ht761sK9kYZsMaE0A2rbWVPwwhjJUzrLRcyeGR2dzzytnJCenBA6vMMUTu7nZ4VVYhsG1NCy06mBSpXBNXEurVpXG/ryKWssJzP5ZbDN4ZMNtFt65UtdaqjI9Pm86cJdZXr72aflBLjRipC2elF8b3KkcpG9E84WQ0YWQ87/uCqa5j3TicuJGtUc2IJoJX1quG84tTPvveJ3z++ad8+PFTNmtPHO7Q0jFq3Xqca1i3gVVjG1vwjrb8fnaypu/2vHj+3BL7sifHQCQT+4yXhscPn7L+6IQnjz/kk08+4/HDxzYpf8/jc8Pd0CNt4PLBBQ/Pn/DjHwX4vcynH33OyXbLP/5P/in9fk+337M92bDb3dINe1btCb7ZsN2cMQyJZ8++5dHTp3z/8+/x5Vc/4pe//DmQrInKfkCzMWG1eUQNbVbALFIB9Lg2FKZ2KrV33yY26sEq63UMml8T2rxviZ3uYQXCGef8DOjUhducsFw2cSlg45gFm5iyCt5nLPHs/eYbgHOetl3RNC3r9WYsTD9vxGKAORVA3fPts2/u/Yy/m6bMUAreC+vNitVqZSF7MDYmq8kdxmYYpW52qUXupDTKqTWTk+KSdc3KTsiSIXvbXIo/ZtUIMrHUV84J0hBLo450wDCnpNZ+PWZyZZhjtCS3NJTzGopsw9hjK0XHDEDrBKJq7TDmX0zfRyBQoyDGKnvvWDWBtvWlXFkLQNf37Dvr6NU0LZuTEzbrDe1qxcn2lLbdcHO959m3z9nd3dGuVmxPtjRNw77riSlamU7vuLtzpLGM1UCKGc0RJEwghVzA5yFgns+k+tz5fL2vMVCNIh2Az/G+54M29XVOHbPSx6H5+4daXVeknHtmdrBxE6/u+ujEl5p2x476/QyzvY+WrNJC/JXowFROzJfmEU352QCzjE23BlLpZGuSvfdNw1ztlWvDd4Pj+Tp4HJ2dH/e+Y30XWNb5816JRk73WWcDoZZ/q4mhAoRgpdfWIVgSaYwwRNBkzLNr2a5aLi8uuLx8wHa7Ac1jzoWqkmMsuSwDOUcS0fCNK1p273EugDhisl0iO2WQ2segDOMSVQveukpW+WfwjrYxIKwh40WMfFOlKQ11mlIdY6wVHoKB5gPg7EHzVNrRObarNXp2RhoGun3H3e2OYYggYgB639FnJe3jWHJTnC8Rlnl+gh/JMDAyY8HL99s7AeYqcM/ADz7/fmFmSwhiQiKFZZEJMBeruHdiljGwWwJwHHDKOoI3KIevXn5dE4/A2isbwGyROOwgl8kpIlhP9na14ux8w9Onj/jwwyd89MkHPLg8Z3PSImL0lBSdnXPmFTuU7WZN4x2x74ndgChsV2vWTcO6WfH44VNyDFy96Pjqq2c8//aa1sFnHz7h7/3oxzx98hEOz3q9pQkNf+/zH/OP/+F/xk2/Z3t+yvb0pDSOiCVMbhvzxx98j/3tLSlFbm9vubp6wfnFBecPTrnd3eJdA5LY9Xu6rme7PeEf/IM/QCTz/c8/41dffslf/+VP+fqra+5uIqgrANMQso4LpBTSbaTXSlhsGhNz9v6NMoz5vZkVqFdktvAeguY6hW3TtHJmtnibTMMCG/YiEwtNzQXseW4E+ON7MG30lWnImkpmvNXcrCFsyjUpuVSFMZ02cXD40OBDYKUrEEgpMgzDewaYYWT7UJwPnGy3pYWrJdoMGmfNP/IIkqdwv+KkPJ6qljghsUhtHORSo1GcHzWoKpCQsSFJSjo2QUlDlWXE0tJaC0g3Zqgyy3GswWwAu3b3yzkXRpkS+51ap4xKa5k+f3XgxzWrtncuiZAinrZtOD3Z8ODynMvLM9abNavVCkW42+24ub2l7yPb7ZYHDx9yenpmm2FocdJwc9NxfnbG3W7HemONioL33O12xJzG0or7/Z6+H+j2e+7u7tjvdsSUcKJjiLfWhX1l1swm6KifnEV/5ozgOC9n9ZJHgDU79uF6et/7Htox6ziC9lnGkUpJukSKBEJGkFzuyCjNGCOOR873vWCZ6uRP9bgrMKgJjk6khPANNFcw5rwrCYZKyFbGz3lzlOR+P/933u4Dx/fJ5u6zNwHl73r+ve8hdajNI8yzNdleWPbaomcWCDJ11atEnRNLZGu8I6gz5zhmcNAKnK/XXJ6d8vDBQy4vL2ye5swwDKQUkZIUHkuUKqWBIfUMqWdSmdmepziSVxCPwphUG5OaLstb/fgmBFZNizgDzF4cq9XK5CBAHwJNF8iaadqW9WrFerVmvV6zXq1YtSsrZzfTLvtSASQXmUmVrwTnWTctJ5sTLs/P2e33pJxxIdg55sygQpduSqtsI4dk5qCWXR5wiANNFbPl2Xq4WLV31DAXb1OV//v/4/9G7rsJShX9HjVMJxS90JylmY71SqLA7O/1dyq4LhOphuyqV/q2QO1YkmEyEvBBOD/f8vDhJU+ePuCzzz7h8ZNLQnD4kMlxj2qiH6zgvyTQrIhCCIFhGNCcWa9WtvhqwDtPn3qcZjZNg2tWrES4PHkCP/Bs12dcnj/m9OSCHIWXL2+4+vYa7827DKHhwekWQkAHh28bNuutTfTOJnqvxr51XQfZ8ejiKevThvakYdftuevuaDYt+9jxxa++IGvi8ZMn/B//2T/nj/7z/5xnz77hv/v//Hf8y//x/8df/sUXpFi0V86SoKxMlbHOCqWaagWhjMz8/F6+jmmuG2VNBLQ1ctbUohzDvF8Ll9f3EeeMISqhMntPYepWmKmFsFx1wEYXXIvG1E2s1oxdOzxXKfraeWKfjJU2UB1lG6ig4qeElPGYdWy6kjn6fpmBQjtv7wIXF5dYgmhDCI5YyjAeS5xUKexnJouMWuGUMi5mVKLdQy+os3qiTgV1xWmiFNjPkLLVVrbM8VIWsDDMKVUwraY1j9GckzgwpKFofnPpvGmOTart3IvTZywppUrLFGYXxM55FvYFRr0j1KohKx49esTHH3/IkyePOD8/Zb1eI85Cyf0Q6WPEe4tInJ6dc3JyMoZ0G9+CekssjZHVqqVtV6RsyWX7bs/N7S1DSVa6urrm6uolN9fXXL14ydXNjTFIE0VHLlKYOj5FXFk354l9ju9aKwsuGB+r7F9N0K3r+ARMp3n6Jjtmt62BglJLElUdsw0Mc66kONIwQqgDZ3oeOTxufDT/WbMlimrWApCnKjpQ1gdXRmHOqJucqCBCCI628bTJo9Lihu/4sL9jdiyReR0TfN/fXweKX/fcucNy372YnRXOO9BETANKLVtX1vmsiC9yDQJZE2QlSKAJDU0TcE7woVbn0gMHSIPH41k7z6PLSx4/fMDDBw/YbjalI3GZGzlNIyyX6jsx0qeObtgzlChVykpMVq4yK4gPuNAAQixSiCSMCaEhWP1msBrqHldaWzc0PhhA7leWwOcsiXG72XB2csrJ9oTVakXbGAnjpCYeSsEdUmrGpzFiEpxns1lzfnbGvu/ohsGkXN6jzrFPym0f7fPEodyDWtJyoidrTessU1vvt/Cn/s7ZrwGYbWzs9ztaJ2WjrYVcXn3+6EnW3xWKgLhyB+XJ9b/yNbuZdaGtsbppsh4ef3rPaRLXMmGHOj5YrxtOTlo++PAxH3/8AZcPTlmvhb6/oe+VmHpitK8h9uQhIcnT73tqyOjF8xcMQ+Ti/ILzswtONsYUO+fxbotXj5c1p6enbLdnbNZneGlJSdjvBl6+MM+vCSu8Nx3j0BsYHm4sEc4HT1sSB7z3rNuWbtiTukxDgwvOJtHgcKnh8uyEBw+ekEg8v3nB2faCu/0t3W4gpsh61fDRBx/zX/zz/zM3LyMvX+x49s3zyRkSN7YUrhuwEz96/FIB6T0xm/sclfk9qdf+kAV7ddFW1VL+RkuCAgeTdwSpWkFzGZvuUGNtXeIgSbbSVVU3LxOAPg4Hqmot0WvXIU/OXB2/le2eg5L62bT2F34vrcwPZ5KMpgmYftlAl+mQK7Ocx6S8ZBl7ZClgORfAnBMWxXZkHKrJWAzFQLSYNGtM9kulzfYwEEuYNNbycdEkHkOfGIbEUDa5IQ4MsSelaFq9ApDHCFX5ZIb/pnWjcCjl/4z4ktAzssmWUNSUblwnJ1sePnrIxx9/yAcffMDZ2RmhaUySVtkflGa15tHDR9ZcaHtCW7p1rVYbGt8SfIsrjoP3AXFWx3V7esLNzQ3Pvv2W5y9fcH19zfPn33L98iXXV1d88/XXfP3Nt1xdX7Pf98SUSrTDpDGqFZyGg4ouB3f3aH7e93e7Vveziq+G5suCfN9Ieqvd1jG6LGLjAzC2+eD1h3rpt7a6cMyYTHHg3CTvGhPWZVYCkwpGYNUGVFY0ybMb3i9H+Jh1n9vx42967pvGRf37faz/fWB5vnfI9Cjz7WAaayB4cIrHTcxyYZfHesvlWFZhomEVAidtw9nJCaebLSfrNet2NUaxnQulpNyUj2COdSKmnq7f09VmP0OiGwb6IVojkNDgmgZxroDpNHbJRCwhMdRIZU64bC2yHaa7bpqW9aoFseTS4D2bzYbtdstmYyxzE4J1/XO1youZd25MVhamiHcTApvNirOzU3Z9TxSQsCML3A2R611HjCZViVmtLCtWLUtxzGW0401Y7F57Nw2zlI0Haw+5Xq84ALkUVCvAGOI8BMsVRIvUV1RwrCOImR+z/rMnH8fEdPY+h4BrPoGPk9G8d2w2nidPLvj046dcPDjBuWgd8mRFuwp0+1tUE5vNhlO3oe8GvDasHq0RhN3dnmGfeH73nG9+9Zxf/fxbNMODiwd8/vkP+OSTDznZnBBkRaC19r69WOOAQem7SI6w3Zxw+eAh6+0JmhJ91zGoqeX6YWC/27O/7Y3hWq3IouhgC8h6tbJEBu/wq4A6JQ0JUUfTBJ48+JBHj57wzfNvePHiW17uXqDBcXZ2wR/8/Uturga++vJbbm/+d/b7DrBweG0yYAC01PKkLmSHGsmD4TFjHus1vy8sd8BAzI6lWseN2vuLFgatapgn5sjqR9eN0JjNWnfTsoltoU0z8KrjOCvND8a9dGK7x/GT8+g4jM7bbL1PqVbHmI/nWq3g/QPMIhObF7xnu93QNIGc9lRJgiVIVqBcK1gU+Uq2Ek85l25YweQYdY4nVWuaU8CK6UIFLWA6lVrKwxAZup6+M7ZkSKkAcIgx03UD/WDA2Gowx7GGdi3XNEUCGBltN2a9U2/0dD8RklrtVNThg6MpWfUnpyecn59zcXHB48cPefz4MSenp4RmhYrQ9z3iHCcnpzx89IgnH3zAk8dPefDgAevtFihdw5qW4AJNsLDrOOLESi664MlZiX3krt/x/Plzvvnma7599oznz57xxRdf8ItffMGvvvqaly+v2O067nYdu31n96F0MEx5MD3uDLC8DhgfP1an5bh2lrV8BC/j8cz5mHeAe+fBVr8XmU6N9Iw36ODQldGuL7sPvB+9xbh/pOL0lczPsp65ApgpgMsXIOZLoxIEglPWjcOFliaZPOl9treVUnzXMeZRWzgcT29mqe261maYh7xLSTN3YuypSAnUmSxQakGHQmKM2p2ShFyPG5xn07Zst2s26zXrtjENcSiRSLGIzCh1qMBZSkKfrhjiir7v6PqBLlrUqBsi/RDJYrrmqtFRpNSMj6XyDWPucCgld12p6Y1mggu0qxXON4jzBnbXa7abLZvV2tphN4FmJsUoV84ulTFC1H1SxLpZrtYrTvMp+xTpNZNUSQiXKXPXD2QSSmK/7+lTJuMssEKNpFqjKNvL3r/96z+UvWPjEgt1urYBLLnHy2yRG78qqLr/ws81NOPvcM9EPGIB6/eDkPDhpD0GbHOrrSnbtuHy8oSHD844O1uzWXuc9ziXadpgrVT9KSJC0zR4F+BUkMHTuJaUlJXf0rDioyefkSM8++YF1y9veHD+mMeXn3Jx8iGb1RqXHLnPxMGaL0gSJFmG9rb1CI48ZCRjiWWhKYXyLWy83+/puz1OpDB+povKMVr5nGRMlUuOOCRwDsWb5zsk/Mrx+PIDHj54RN939N0O52C92vDP/uifc3O9Q5zj3/ybP+Hudm9g0nkL6+AK8yPjvZjw7asg+D7t5H2/z/Hk4SipTC4HrO5h0pGiTpjXvauP15afYzLDa6IeUqQcWl5zLNM4TlR85ROLJZNVgF9wDzh7/fuZGjQBltWqMUfMOYZhypqu+uVUGohMtX2tkkNOzth8l5AhjpuQ4MneZDW1QQHjUa0e8pASQ0z0vTmuXbenHwb6ZF3pcgHMfW+t0DN+qsOcrO11BV1VFy8FZPkyNp2AK/dMVA8+eW3mISXEeXZ2yunpCScnJ2zWa5NPBKsTTo6ggeBXrM7OOT0754MPPuTjTz/h6dMP2W5PSClxdX3N1dUVOWs5zpbTzQmNc4SmKQlFDm0CQxwQUdYnLSfnW87PTnj08JI4fM7+7o6vv/6Kn/38F/z0pz/n5z/7gmfPn/Ps2XOeffuCl1fX1pGR0qxiFrW5Dxy/7vFXQvj24AzM1tcoObvC0r6rsLeA5JFYqS2zbU7rK3vG4Rx+W2BnZp3XcrbSkVl9eVs/kjpz2VjwEIKUV5q23mE14EMQxL3fQOJNLPK72H2a8bd+rR1gWjOxlVpnzpkt35a060rUMOdExhFTLt2AHdE7khTtshM8gm+sq9+qadm0DeuVSR3XbWMR2xGIMjqBMi1JZEr7+RpdSmrdQ2Omi9G6ZGbIIvjQEJqiF45TGdKcEjW5VIuOuXbktHMLhHaNK1UxNmsD923p6meYQyZspVoinjXnxsraCYyt230ItKuW7cmG9X5P2O/ww8DJds2Dy3P6oafv9tYhdMC6emYYkhGOSdPINstYZ36xY3snwOy9bVI/+uHnNE0Yw9+T3c8kjkC4hBEowKum+r3+5sxZ6cmpfBWITyH2+cZ+DKJTjDRty8nJCQ8uz2gaoetuWK2V85NTQiPEOHB3Z2Wf6qnd3txx9eKa3Al3VztSUjarLeB5cPGITz/5Pk9//zOCX3F2esl6tbUNvvM0WdBOkeRpxEFoaDw0gbH2Ydu0CFh5m5QMULqG1apluz1hu1qZd+w9eIfGgWG/Z9/trQ6upLHzWhabCGHdsmodyQtDv8MHz0l7yrbdknMEgaePP+C//C//K9brDZrhJ3/2E/bdQB8TmqbQ9OHd1XrXDu/UKyHUw9fa/aivnzbsfABc6qZc9Gz3gOX6zLlTZWPNzldRpFRBcLNarDVZqb4uzfTH9+ma7wPMs0978Fmt4osguQLw93GxmZjy7XbNerUeO4WZs3N4z1KqwNmun6+P5wwpIVHAyVin1ExMJ6rG/GXsPiVNxCEzDJG+H4xd3nf0aaDPidpE0DTMuTQkMc1xSmkss2bE8sReipguz8KvikNN617ZLK2RCmjElw2s5ezshAcPH3B5ecl2u6Ft29I0weNJiCa2mw1PPvyEpx98yOMnT3n0yJjnru/5y7/8K77++mtevLyi66x2+8X5BQ8uH/Dw4gFDP3B6dkqzahERYozc3N3S9T2r9YrLy0vapuHs9Awv4B495KMPP+Tz7/+AX/7er/jZz3/B11894y//6q/5i7/6KT/92c/49tuX9H2P835skHDMMM8BQi3hdTgC9JXnj39T21gnudOUgHufvRZM1XV/nLgVgJWKGWOAvY7J6XhvzzDXtUJArbpITgMpOZJTsjNAIGqEhRPwBSw33tCTipDFWVkwzUStTWneHzuOMrxeKsF3rHfT8eY/H8swjt/39ZIMpltc1uX5LqOKaXbL2u0KCxpzwilWZjF7khOiKw2BxPTAbdOwXq3Zri2RbrVasVq1rFYrQnCl8kTVMldcMe0rSCBpYBgCPiZcyviU8SHTKAw5W01j52iatsxhSoWkjt1uR9/1oFqcMDun4DxgjzVNS9NucI1VyFivVsUpX5Wych5fr4mWPXJG5NRtUtGSOGs/O+9YrVo22zWru5Z939PmhpOTDWe7LfvuBBXFdT1+SPQxk7HoVM41ijjzHhZ7xd4JMKdoQvl/8k/+M4IPFg4ZB/t8oZt7knrwfRycWhdotZJB4+OzwTt7Th0l0xHmWtkJSM8Z5ioDsfOx57WN5+L8hLPTNdsN5NTz7JsbXrz4itC48Tyb0LDdnuJdg5MBTQ5PgzDQ3d0Rux2b1QmiDY3b8uD8KdvtGUKg31t2vzjLrtVSggsUFxQtmmBlYl73e9NNpTTgQ4v3DcNuB1gIqV2taEUQL2jN0B0imrIxycHjQrD3LE0ehl1kyAOu8VZGjmxlsNqVbXgOHj98zD/7p/+M1Gf+h7P/kX/9b/6UX339NSlaaR4V06jXySuVDXpl5aP0pq+j4XjRrCx1tuQFpu5fdnddAbx1o5bp3mLsX+0IlvKk2axDRmrIXaqDVhkKNxJaplNTRt1zPtwkDsByzpMzNwN89XNPAHx63BZ6+3rfTBVwlni52a5p2qLF9x71AeeMMfYlcWZ8Ub2H5brnrJAy4jOSTBvsSlkvtIDUaeZb7eyspLGm9cAQB8sfKMxxihlrmV0SUdTKxGVNpfHMpFu2MWrdusbwq7OQe6j1kzWPq5UASUzC1LYt682as7MzLi4uODs9ZbVesVqvTV+43nB6esLlg0d88PH3+PizH/Lg0WM22y3r1RoVYf/s2Sgb2W5Pefz4KW1x0h9ePuD81OrB+hDGTPohRZ49e8aLFy9wzvH0g6c8efKYk5NTGnGIZlahYbPecHl+wSeffMLN9R0/+Ouf8emf/Tl/+m//LX/5V3/Nr778iuubGwaJBRxXCVKVwVRy19hSObr/terGAdCuHQgLeLF5Zw6U6bzrVaxr9FuMtZFdnq31ozOrrxxpulevgrB731EZW2krxszllNAYyaX1sngFZ6DZSSjjw1mxAy9j2D0LRFUGzbxzFdb/yDZvjT3/ehMz/LqIxPRzfd60Tt/3/PvfQ47uu23cthdWh4mxihJijjLikAxOUil/rKTZ5xIR2tCwWa042W45O91yfn7K+fkpZ6ennJ5sWLUtIQSaxhqClA2BAxAPKLbmiA9Woi4mSLbPilpuzarIMkJjNdRDsD0mp8h+v+f29nYEzasKhtu2fDa1ZL9mM77eKmXYV/De1qeyB43ra1lbVUq7bXFocTBrNFbE0YQV2/WGk82WfhhICpvYcHlxipIJTSDc3HJz15G7AZ9zYdhNw211p187PP7O27tJMtRecLrZIqnovkoFAkrHphpaAwNHh2zcTKssVSdqSTcYHhpBVB3Ms2lUWq9W7WPZENSaRdjvhYnMan6pAGVz7IceyZHN6oRVUIh7dFCGoef6+oqUI6t1y2az5dGjJzx68ITg1+z2kZMmsHp4xsn6gtavGIaE0HBxdsnl+SO26zMr5ZaENCQYBJdtkqes5Ohw6sEHrCyNlKYE1jmt23dARjTTqEDsSX1nLJH3tJsVqo6kIDkgXmnXLSrK7vaOrutotaWtma5RUSKBQOPX5CQ00hpYjCBqYacsCe0Gnlx8wP/pj/4vaO94/s0VVy9ukNwVlg4QxrJdNbO8Vh6os2tcAhVE/LQuasWcoTzgbQPXGnGom2XJAIZybfKYNe+LUyWlkUDKEZXa2rzWoQWhLrRVlKFF2zwxVvkIJI9l83Ri0WoL71oJxBK7mLx8DBlPAG26AjJ+pvfH5gopccLJ6YrV2jaW7BuyDMbEOVcyty1cOEFnIcWEOnDeivVryqi36xfETU5X3TSlgmy7zlHNuetTJGoiqhJL+DGptZ3N2ZxBkrHU1sSjVNiokYRaAcdZO1zvMsEpwVG0gVM5Nu+lgEfHdntS6myv2ZycICLc7Xuy8zQbz+bkko8/+YTvf/59PvjwYy4ffcD5+SN80xZwbhKfyweP+fGPN+y6DielMUkINI2VlvLOj86ilKRp3zT88Pd+j2fffMOzZ9/w8sVzyAl5olyenpVWvwboViennGy3xIeZp48e8aPPv88f/v6P+Pd/9u/5t3/67/jJn/85v/jyS25u7xiGkpzprLKPjOOWQnakCZzMnb4RVJnjWWUeVeZiY6YyzRVAl66J1I58h9K6abBRPj8l6TNZMcja9AHGc62JTZWFljKv65wzEmSWGGWetX0+B+pkrPOdc0Szwyl4Ml6VRpUgQiOZINnC5s4ieT4IEmxtSSitKY3eK5sD12PgfP/zp7VgdF7K+niYpD13dGDu7Njz7itlWI9jtNfYbhwt1YnKOElamgppcXZlbDGfSUaCCKUDXjAGtzVW9XSz5my74eJsy4OLUx5enLPdbNisVzQFMLdtg/N+HFcTyWbrUFIDyNl7sh/Iw0AYBHy2HUwc4msSfmNyyDbQri0K1XUdTbtiv9uBQqiVMdp2qugChGaNDwHvG5NptE1paW0Roqyp7Fu2RuSsdQsqc6deVNtrnTiCeLJ3bJot5xsrdRu7yOAFtmtrIx6sDn7MiSFH+gjeK0HFmPOcRj/iILr8HdGHvyv2bpIMbDFchYbGe0gRcebxVEwiajU1x9JjMmMtRgahhMNLDdzDen8yGxXFgywPTyG54lvVTaBqbsqCKSLWzUkE8UoaOtZtIOdEcJHL8zWnG6UNCWk2PDw/pW1XVpo+KSu3YX8TefH8V3z5q2fcXN+RIvz+D/6ATz7+Hh89fczJ5pzt5hRHQxoycZ/QUvLJq0xhlARkZyJ/H8jOqloI4INHBxukoSQAoMnChyga/BjCzhrJ6oj7ARFh1bZs/Ak5Krt4S06RNABBEXVkrBRORbi1o5oLHgkOUQNAQVvEOT5++in/5B//U3715ddcX93y81/8nG7oSLnH1d72EkYHpzLktVvbCIzFNKNa+tFrLWg50zoKU3lCe6m1BbDEnGkk1NGi5TWVxVItJc4QhFpXslY9KExUpatndrxZjAAg6QwwmxZ2BMNuHJUlCbC0GNbD3fOAEXvPPHSdUXomyWhYrRqTYLlgDlBxTpyz4vyN90TnxpKDORvAdYCWLHFRKe2HDWjbTieUSn82DhTUQZZs0EmslnYWGevhjhu4teoj5yoRsTKEmdplz1wqj1oHN6cEgdYLXjLBJTabFaiz5gTeA442rDg7PbNQadMg3hEzrHzg4sFjfvh7P+L7n/+ATz/7Ph998jFn55d434JYj7hy5RBgs2lZr89sNOdZxEs56Goozo3JTd47ViI8efqU9XrFzfU1OUeuX14RFE63J1a+jknW5puG5vyUi9MTnjx+yA8++4Tf+/73+JM//ZT//U/+HX/505/yyy9/ye3dHY6ASCT1VmtWbYe1cnTZ6rxbg6+p2tEkgarlpYpD4oo0oSbrMYGsrGnGFhbgqlMMUmdfWUqSZg3L1Mla1ntXXjXigoLmpAzS6nzV56DTD3X7SNnqtVsyZCRnh1PBZ8HnZHIdzTgMnIga8PBOCaFUhxQhFM1qDu9XIea5NGIux7ifRZ7/VsHym0DSFN2d/27HOgbU096g9c2M1rR3cnUNnkgT1KSFtYV5FnOwTHzrCU1gvd1wenLCxckJl6dbzjcrLjZrzs+3nJ9uTFrWtNZm2rlSw9mXKjUyMvDjeWjGaUJShBSQEHAh4JtYoprlQ4gfj+VDwDUNzXpj2uOmQdXykVCl8VYOb9U0Y1k7EcuVcM5b85ymoS2VMYLzpJLArgUha3HGaw35kbSpDpGA4HHi8SK0IXGyOqFf9XTNnjj0th56A8v7vuOu6+iTJTQOyZe8E4umjM7LwVqwGLxr4xKx0ENMVhu1cVN2KWCgY6LcDm12zWt92yqbqOASLfpGZapSwAzYzI416u0AcVavMQ7RjiGe0oiStvFkcTTB4UPg8eMLHj044/zEc3bS4r3j5vaWq5dXXF9f8/LFDbc3HRnPMAib1Rkff/wZH374Cd//5IdcXjyi8S05QhpM7G+geGJWlYyTssEnQE0L58QGpGTbWBoaC+EP2cKAODSphZsxsBtTIkdLNFB13N7uTDO1PWGzOeH09JxtuyHGjqyDAUkH4EpXNgMGWSjUsMepAuZpr2jpuo7sHT/8wQ/5b//f/y0ffPgh/9O/+p/413/yr/nVN1+DlgoIMjGytX1srpNqJB7KgmxoeiyLfDQEqAlZ9XW28bnCJHOwgk9AV8ffDbxNvzN32maNSuavn2vuDkOGsw1dKptMPakR/Mw7Rh4D5um85MgBfD+sEkMiwvbkhNVqbV3talOH8uW96QBTCDjvRn2z+blWq9TVay31PldpjK0f4sTa36JQa11TNxJXEnCTadHL+dU6w1ZbuTSqqUBL03jPvDPZSONMjxo8tN6y59vG0Zai/llzCYm2nJxcsN2cEEJTAHNgc3LKp9/7Pn//7/8Bf+/Hf8AHH33M9uSUEFpEfEn6rLBuNrbHH2oXVKaoGQqlsxxoSd4xVjOnxHq1ZfNkw+XlQ66vXnL98pqrmztCs2K99iQgJqul6r0vOQ3CxcWai/MHPH76IZ99/4f8/h/8Q/7dT/6cP/7jP+bf/+TP+ObZM+7ubsu4t3C0aFmQRKzyDq8fs/Mw/rR5GmhWnEllAC2JtE5A9fC6HOSTAOS5ZtlhKXaMYHh0euucP0DP0/dcsdeMAa17Q8oJl5QkkL0by+2NY40aHZ2+nDfnztpme9PhewMpbXq/5vV8nTtOwn7VpvX14NHZ9Zr//l3v912m43/jiwuWKLfZybh21PMXBw5H4wOrdsXJiVWweXB2zoPTLZfbNRfbNRenW05OTmjb1dTkZ37uOknCZATSJudLmvAp4lO0yFC7Imer1JNT2aicQwpoFu+RJuBbI55a560Z2co6j6JqLa/LedS9zoeAD75En6xGcygEhHqLrNqScSiJqiSikY1TvfRa3tIjtL4hrdecbE/Y93uGnAia8DmD9+xj5K4f6JPSR6tOJIg1cyvSrVxu0G8jSfRvk70TYM6a+d4nn45lWKwdritLlDLWVh7LUB0xbzAOGKDU2hVcxVcYaGYGcCpgvo+2M/CiJJSYSwkyBBEreUUe8ARQCyl/8uFHfP75p5yerEhxz5e/fMGzZ894/vwFfW8Z/04azs8eWfLe5oKHD57y8Uef8ujRB6zCluBXFgqOCcngpcG7cu4ZaqMLKzCep6QjFI3GTlpCXdlo+ojEjCQhD5k49PSxJztFfQUZ5hDshz1kY0x2wx3pxtjmxgfEQyigJEsJaQmmaZbCBFQ9slPEZWI/GAOoQr/v8E3gs48/4eK/+Rd88sknXF5c8i//53/JV998zZDixPKrFn22LQCpsF5TOK9ssjU6wOGme5+N93/+gByC3Xn5QJgvJLNjCMV5eRU03/ezbY42DWrY8PAkDh282rDk+Fjz7/dVaHkfTLDWwKenp6xWLaJDKbBfssu9J1dWxVuTHnNOCvOhilSGqGSJV1DtvMd5Z45hYYuqntmVsL/znpCF5LM9NzkEN20SpXmARQFkzBo3VnKKWnixKEfwjlVwrILQBEcTPGCM7rrdsNmesNme4sKa1WrDyckJjx494cGjR3z40cd8/sMf8cln3+Pho8e07abUeC6yHaZqFNW0bDLHjlmt0FG19ZUp1tLwRpwbW3d752jDmpNTMKSWACGqlUCzkeVHOJnKrHEibM/O+f4PNzz+8CN+9Pt/nx/96Ef8z//L/8If//Ef89c//Wuev3zBbrdjGAb7HDFbkiZuTBZ8nR1HZgA0Qy5SKXMAyiiqWnN0/F6PofU6jcxz/arXU8c1hkqUOEqFimkNmX9/XYKZlSNTC/OnPI6jCrzHqIk4fNHre6kl5kplg+IQRu7ngX6XLedc9LpvY3bt36RhfhNYronZb/PcaiMJUjiKkTEtD7hZeUQRKdWrGpNhrFraYKUf1+t10S6fcHZisozNek3jrfkHImOXUuvgOsmJpuRTGWsy+6r3F4cPdQwzRrEMoBpDLN6RnSudZkuDnNWaJjSWkB+T5X3UzVFsjoemMWa5sa5+TqZERCklVWuLdur+yjQGK4FTb13FCvUeNKFhvdmw2W/Z9Z2pAQBcw/mQuOkG9kOii4l+yKVTq0XI9Tv2z7/L9m6NS4A//MM/ZLVu8cGRusHAmBuDBWVpFGpoTabxOA68eWK1yTmqhGF6fNSrwSuLYfUWx3AnYmGS4EzlmhNCJGvPfn/L2cmav/ejz/n8e58Qhz1f/vyvefniirvbW25v7wi+4eEj6763WZ/ywdNPePz4Iy7OH7FZn9H4FSkLeYCcxGQnQ6LbD+S4xztPG0oTg5zGTdsmneLVzinnSBoscUGchwQ+Kw2+PEfRBCvXIMGT1LJqXWjIKLHPtD7YcdUx3A3s73YW6W6Udm1tvmuNYtd4QhvG7j+U7ODsioyiAEEv5pUOQ0SjcrLe8A//8B9YJRSB//5/+P/y9bfW6nnUqo23WcfNjQJY6kZZ9ybqVvj/Z+/P3iTJritf7LfPYGbuHkPONaEwEEABBEhwbLK7JUqf7vN9078sXanF7tscQEyFmiurMivnGNzd7Ez3YZ9jbhGZBbJ41RLzglafV0SGz2Zn2HvttdZuQWUdENICYholY7mA6QtcWYCvzNmXhX9LhBlenuTLcuRh7OSrL/uSEv5A05gbulx7zbx4zW+CsvxbOtolHAajbbGtI8e42LCUjqEJXOUVzkLLQ0Lb0GTrbEVRHK6iKcbqczXP0g3akvUxueBrI44QLdZoA4BkDKlSdVqZ8HAtMq280/iuloLF4UzBG+icofOGvtpL5ZJ1s7MO9VAF7wdOb93jW996lx/84Ie8861vcffem5zevIkfVhjr1CpQDihRC/QOoFWZr7+WPhfrHYqhZlEqQqa1Fk+1Z4Cjc54YE9MUsGLxtufkxCFknDHkdn6tU1SX5jCj5zOhtAHfd5x6z/HxEaenp9qZ8K23+C9/+7f8/J9+zoMHD4gxY+qcmyfq1dHA4ZOXl+5ezmMpB3rE7HhTrs69BbC3mH9SHyd14qrPVXs9LfQ0BO2AslwPmF8FpOin0eBHGgCTr1Y0NVXRMaONpqzS+Fq3v1Ijh6rRkZyvWBG+LsfX85VfTjCWKcF1ZPn6a73KMeM6X/qV77uoAMzv2tZxkbk61faFtp54p23pu67HicE7PyPDWvXyDEPPerWmHzp1mmiBaEtaKz2xgQBimgZGDtWtlswWNCmun00pVPbw2MplFtG9NBVqxah+/5zJTsGx2eWpAjzWWm16VNtfm7qm5JxnCmMGishBE9TmQ7maZrbPmlPW/byeWyuCd8rvds4Tqh1f3zmOj4+5MQX2U1BKRlAgb5qmeTnQ6tjV6/m7+O+/L8c3E/3Vn9M4YkSDQkUal+KAhhReVWFfAQ9nL0H9fQ5eZoGWvo4xh5LsS/ZFtRyriEHtRieZnINyJSTibGHoHN9+9x7f+fablLjjs48/4PzsjM3RTb77nR9wcnqDFDPWdNw8vc2d229x+/YbODNQioXiMFgkQwhRkZ4MMRSIgjPVcsqY2pte0S5rNZBIIZDiiLWdKn1TVSrFTCxTRetNDSALvXWaEVOFdmNGYtAysxjiGDDW4L1lbXtWvSL947gjjBN0BbFGwSmXyD7NorUigTRFGCPFBfphQESzVStgnVdlOAV/1PGnf/JngDCOE3/7X/+WR08fEWJE7KIq0ErqjZ4jzDy0w1Z6dQu+OqhkfuSVQJRD0FsWG/G1QbB4DDNypErkl0uQr1rUFTVMi9dbbgrUwKehU+0LVHRi8fnarRnNv05Hs4sE2KzV3miJ7gPz937p6y1hj4bSWC01NhTFeUWkG7qMFDIGUzLFWlwx1SkDUhKsicpdNA7bOrJJPlQApFBy1OupYS91e8MJOJPxptA7oXNSGxcoFaEUmKZAGiMrHJvjge9//0f84Ec/4Xt/8H2+9e67nNw4xXfafVPbv5l6ExKVSnHIERbjQwdFKk2oo4G+MYKxhkRkCiMpBK2OlEY8qIKdWiUTEU1ui5BJGFNwwalYyViMUTeclBTVdU433Vg0+PBG8MZy4/SUP/zxj7l16xYnJ6ccbY74x5//nE8/+5yL8wtiShQjKpqeqybLhLFQiq5LbX1vCQs07cIszaOJ/hrPSiuG9XXq67VoQCiKZC2e3wQDh8eaep5zi6rmcTavL7L8d3vulTRdq5CpEGImJL1NMdEZIdqML8qZxxy+X8lZwRHUCvF1DRaWge3BnvOVj6x5r37Xr3vs7wqaX3V8XWVxSbMr9doahV9re/tUHbB1fer7nqHv8K5T8wFra3MhFdMOXcfQ10553tV1WDBSOcst2W+i+zpXWi6mtazqqCTKw28uFFLRWyOujrem56i6DDH4tp80m1ID4tUyUjjsk+pk4aoL0aI3QdKgVWpluuSFnkfQz59N5SlrMI1ZWOe2GKyUaq1pNPF2nt517KeAoeC6jhNnmWJmH4I2UkuafE9TwLlEyPqKbR79e7B8OL6hD7MQ48TR0RGlJHKIOrClLlw0dHFZVptPu/6/BSmtnDAPslSzqyoQasH3lWy1LprXUD4qulhSIoY9Oe3pTWHVW95+8xY3TlZ89MGv+OqLLzg9OeGH3/8+3/nOj/HdsW5wCbpuzd3bb3J0dBOypSQhTTrQQ4zEqIbf1qh7QGctMQVKVB8xqZBSmgIlBbIFSiaOAbJgOxUi5ppp5pSZxlFRsWqmbo1gbLWamib1Vk5aDOy7nmG9JuwnzQqNofeDZtLO49xASBME3Wj18yciiaOTI7IUQorEHMkmkxiJfmQ4XuH7viYuQk5ZW4FPhW498Ed/+BMuLs65vLjgv//9nhfVUYSs13h2mailtbZHzojwIaqgccmAg0OCoNl6rlZfC8R4vrxX/tEWdRYb+XwXcPB5XqLTS8RkViu/9F4tmG6vVxa8x6uB9FLQtXz913FhaQCxAH010L8GODHzPetxZQa26kLblKzBOKscvcq11c2qJcEVI63NeawpVXVeMLbMHPTGuVUUaMZEF++v6L8hU0Tt4jpnFV22SsPovDYiijEyjoGCNifo1xveeuddfvrHf8bP/uyv+P6Pf8Ldu28w9AO56JzPMSPGzUF+kVIRR1eBgUN7dKlNMho6E8PEuFc/9xgj6gaRmMLIfrclx4RD+Y4lZcb9iPc9XTdgrCUmpUsUEr53rNdrfN/ju17bbPcDxjhiTISkQXNLWEPKmtDmzDD0vPvuu6zXG27fvsPJySnyv/y/+ODDj7jcXupaa1UQ3TjVV8dvYVnJgTYfZU6qarFqEehmDiHyITBqyO1ia7iaJM9VxTmEvjpA2/rP4fNcp2TVwVohOv1HlkwyiZhN7dpm8NYwJoOvXdGaXmb5HXPWrn9mUUl4nY5Z1HbteBV6rP9+9ev8S1Dqf235/kDMaZU5M48P5LBeqz+xm8eIdY6hU8u2oW9+y9XHWLTSnCp4RXVlolTubyptEdfEgLoHGVMDbOUCSxO1Gm3mJWJqMHpArItITWKrg1NKQASo6Lc2y2kWpg0Nd87Wc6WWh+3Ibb7U/fMq7Wvx3jWoR/QcNh1YmTFyfa6zHu87rNmRSsYaR+86NpvEZrdjs9+z20+EENjvR9UzpUKKLcB/fZPF/xHHN/NhToVhWFUBSeFoNUDW1qO5aThTni+kFWpnrxaY6AYjpcwWctrOdumO0LiqV9GCFmg752oLSkVOJRdKipUPGBHJGMms1x337pxw9+4Nxt0l++0lm80R33r7HdarY375yw/YbhNvvvkOP37vJxwfnWJLTxohh0xKINlAMdoIIGRK1AlXnMNbjxcPttpYFchJecopBkrUyZomVaDHmummWDvwGcfQd4RpRJR0y/n2kovLC0gJJ0ZV7VG7BqWkbbovL3b0fT8P8M1mw40bN8miqt7VaoMTRaBCyuzGkYv9c3zf6WTMmdV6zRgnpr12EJQCGMGuVzirpdUpTJSYOVpv+Nkf/Yxnz57z/MULfvGrf2KKGiTElKAtFqITtAgzRWcuh1LmdqZXNiU5BKu6aMk8QfWnXJmwgpk5eTPXbRHklvk1r07uZRMbHccLrmYtBx/QsIM5fAM0y0LgdwiMD5xm0MXRNUFZjP/SKfVv4ogx4b0QUmEYBm7eulkXZTMv+s45knUYE1Rs1jaPSs1oIZK2ndXHW1tRUakdu0z7qUGr1PUiNg6zsRjJB/SmmEMiV7n72gI61UAZpLY/NxS8NayGjsFZVkPHZr2i7z05Z2LKON9jXMfprdt87wfv8Sd/9hf89Kd/wnf+4D02JzdxVr1SW4UolwJiteSaUt3w1Bax5KTONCmqx28phGnP5cUl437HuN+x3++Y9nv2+z3b3ZbdeMF2e87l+QX7yy22qLhs2gfGcWK1WrHeHGvlx1kK4HtPv+oZVms2R8ec3LjBjZu32Rwf47uBrh8oWKagTjuNUeysAauotQHu3rnN5i//nFu3bnL79m3+H//P/4Vf/OKXPH78mBC0MmKco2QVdDdgAtp8vn4c5rRUFLlZLZYCzmsQnlKsTRFy5XKa+fE6lzLNtVEO05ll+F2KIm+Ny3dwNziEE9eRzxZfVzibVApTjGynoi4YFpwFnywuO1zO2FSwsSBGHaEQQfIS5PnfPdX+f3pcT+S/7rgaOF993KtobXC4Btc55Ie1+6qW4yVP6Hr9c60UixTtfFkDUefUMaKJ4qy1lKzJjRWDt5ZhGFivVvTV59hZi61jNSUFYJIorUYbnoj+3j57/ZlZUgIBTI0zmIV1Ymx1iKmDtFaGVWtnZ3oInnlvbGvGrOOYz5lqRQByTFppqedA9y9dA5tOTK1pEyUnyM19hwM4NddSNMjPFZArGawo79saB2FSYwSv51Ut91ashj0hqIf0brslhaTaiH8PlF86vlHA7L0jpYgYYRg6Qph0cxFBVxY7L2rMPw4TRwORa6jgtetxnftW5LBwIhrsqE1QfU0d1cQ44Rw4U4gh0HU99+7d5s7tG6yHt3j+9Cnnzy948uSMX/3yEx48uOBHP/4T7tx6k836Bpv1DSyekgzeWIiJVEUwFotxlkKCKiwkJm2BWUt2iUJOkRKTJg11U41hVBTNGshCSQVbA4MxTJxdvKCQcZ3l4vKM52fPKCEqdSMXnLFY6xi3O86eCyULW2eJITHFyDSdM4ULEo6MLiyr9ZobN2/RdR7CRM6WmAtDPyCmwxe12SFvVXAYcnWVmjC9p7NeF5uYGeOeVdfzh+/9iPd//Ws+/PC37HaXuN5jjSE1JFkxtvma0/bbhgTVBUJg2dV6RnsbN7gcVoHra/e/6Lg+wV9VTrrCZUYXK9rnqsiGfq2GYs6fbB6w7fOql64iAyHGira9fotM6044DAN91888cLiGHsnhb02oJxWeFhoa08SqplI0ajBcKRmqgNeNMhetFMxBDmiStRgDB57rHJ3VjVkfYKVUHr529BtWHUPvMdXRoxQB49kcnfLG29/ihz/+KX/653/J99/7MSent+lXx1jrSaUQo3bIs8ZoAFiKOoVYq9dchFwrWTHsSTGy3V5yfn7GxdkLnj97xpNHj3j29AlPnzzm8uJC23yPIzGPUAJhPzLt9jgsnVhKKoQQNNi1Dtd5cI5MYXW0pl8NuK5jtT7i5OSUm7fvcHR6g7v33uTOnXscnZ7S9QP9sKLzvVKr6vXQPV5Lx/ZozXs//AGr1cDp6Qld5/mv//W/8fjJE+VAkjUZaWjwjOJCw4NndLnCuMJBxChZr4mRykUlIahtm/LNMyI1sMiaOJXStvrl+1w/9LpLDVTK4a81cFlk3hyQahWg67oUSyFQiAITmX2OuGRwISIyAVLtury2Rq6NcoyTGrhQS9Wv//H1VIpXB0hfx0lua8BLGqNrCPYr75e69udC68PQQBPnHE6ctrq21Xkqqe2kFEPXO1Y1WB76gd57vNOb7mup0gKzjkdbfcGz8oxNqWsSWs0ypQkAZd6z8rxJtbFuZoRZFhVwqXRQU/9r+4GIxZpcNRMH3nSblwrClPbSYCoBpZZrpO6rbc9pOWk7nwftQLn6/9KSz0r2MhbnPEYsJUGiNjVC6Oa23D1TmBiGntWqp2Rt8/3vx8vHNwqY37h3l7fffgMRIYaAEzXTP9RPCrTBRFuwDl33RA6Tbw5i5s1xMcnKYQAsEUhgVrqmReBiSsGkSC4R6zNHm557d2/yxr07bFYdu4tLPvn4Po8fPuHZkzNSEv7wD/+S//Qf/4Yf/+iPSLEw7QqDtxicNv6IqicStGOft4IVV8U6EEIgjJMGz97hjCjSnTQLNJUL5b2qZUOYkAzjbmS3HxEj7KYdH370Wy525wybgd204+ziOXkKlBBI46RZtnFcnp2TQuDOnXvs9yO77R6M4eatm9y6e5fTG/eIxRBj4mg6ZhcvlbJhHb7rFJ1FjdRDCBQrGKcUkrFohu1rD2LjrdpzOU8OaoC+6gbeeuNNTo6OePLkEcWpgCLXTZCaGdNKuvOQuLYBXkeZF2MhcxDWyfyJ/+VH4V8WMHPtcYePeCjLtmBZk7187TmHKohUKOtKK/bXDYqi2QjB0dFGO9EZS14geDOSRBV3ydWSb+M9GmsrHcNV4Y26aRhnZ2so9VGXGpCCMeqX21AVPeqGkUstZ9YkpqKSTbYlaDOd3gmdt3TOkHPCWsvx8RHeazWmtx0/+PEf8lf/6W947w//iDfefpfN8Q1itVZyHAQ5tgVhtRFS4xeCJuy73ZaL82dsL16wvTjn8ZNHfHn/Cx58eZ/HXz3k+bOn7Ldb9rstMUwISpkYBsuqd5hS6PKESapm90aYSOxHtYCi7/CrHmsNaRfYTpdMIRJzomAQ63BdzxtvvcM73/o2737nu7zx1jvcuXePmzduQvII6j+r50z54JSCtcK33n0Hay0hBMZp5O/+7u948kRFve2aKv86zyicXuPDfNJEV+0zpWjg3BZrg/peQ/VBromRlZockaugKVcgW4EUY5dI9gwRc4gq/oVHUSG6oJSfXDnm2rGvMJWCyxmXEjZNEDQhy1U0Za3Fe/BoUGWNcl7jazat/zkR3r/0/uXvDUF+FbrcjlfxlufnL1Z/EamJKDUx1vu891hntSMRuueHECAnnHG41Zp1v2K9XjMMA53v8M6pVqcwd8LVJB0aItz2h5wSFl3VW5Cq3UK1mrV0d9LP3PQ5LXg+rA/UxjkaqFapqVDdVqyCSCIvW52mQimt4ZoG8AVqkyIFARV4ayLEUgWMZT6/phzs5VJ7Tnu9GqRbY+ZkQtgRQ9DXs/r31WrFZr1mnCb6vqPrPOM+IbVb6L8jzFePbxQwn5yq8rpE5S6Lc1paKIpJzAOqogFSBx9QkQAdVKVURKvugqYOKn2c/mhlMKm/C8zcZ13WlMqhPB2D7dSzuHfCO2/d5a037hLGHT//7a/54Dcf8v6vPyZHw+2bb/Af/+pv+J//5/87R5sbxKngjKcfekoSYszqi0y1aytJSyhoqU7V0oqaqLey1KBWIAb1WS5VFZ8LYQrsdju22y0X5+fsdjsuLi55+uwJXz1+yFdPHrILe4rP7MIeMYXNusdbw7Qb6azjeL1RZF+EeHaf5y/OOL+4RIzhxniD2+kF8uhTHj99Qc6FO7fvMnQDpyc3+N673+X46AQpBrFRxYdF/UaH02PimJRLXQMaDJhkkdoRqfMdfYpsNsf84Afv8Yc//gkPHz1kjKNeqFwoRoPmxtO6MsdqHrUEjOefLWFCJ/wyuDWYb7RH1hf8nQHz1wlT5gy+frorgpQrPxefm5ctrub3eg0D5lLAeTg5OaEf+kN5/BUbYqaWDiua3hD15qHsqjPG7I7hDmp2Ra416KU2NrGmaDe6hlS3pLm6xqiFXBtD+WClRqXC2ELfO1a92kxZa+mGHrGW/TRy69Zdfvjjn/Cnf/HX/OxP/5Jbd99C3ADWIxWdtjX5K6Wo40RSBKgUtV9M1Xv++fPn3L//Ofc//4iHX3zKo68e8PTpEy7Ozri4OGe/vYQcWa8Ghs5jeu2wNQyeVWfprAqEUt9hYmaoTRViH7jcRnYhY7tCNwjiHVkKURLeQMqWEBO7acvF9pyLs+d8/slHvP/rX/Dt73yP7//wPb79ne9y4/QmN2/e5OjomCIQU1ZRtHFYJ3Sm591vvc1f//V/UPrI9pK/+3ulg5WsQXJJ6QqC+DJXX4MCkwuQkErHMNKoeJXoVC0ti2kCTQBLKhkxmgyp1i/PCNzBTqsNTnkp8X6VdqAds/h4XkBqo6NcsAlsAu8MY0647DAp6ntXJpWzWV0PsJXe0kTY/9rZ9f+fY+bZfs05evnnqwPk5Xm+HiD/ruB4+Zjr9886Bag1isPn9Z32R8hEYtMPpYSVogFzdX8YquBPXWlUfxNLhhRIMeK9vfqd9M0pAqlkTGWCFgHJamNpayfTVu1Q3GeGgevfGih4APdKEaWLWGYxYKmPVu1O7VvQ9pP6HKWdQdtPlI7hQLJ6jFNQd546t+qnyTVYTjWxLYkZbDLG1ISgEEkY45THbB0pBK10dQ5jjNJa1iu2uy2d034R2kdCrlSC/z1w1uMbBcxhSuz3e3qnBPyYEoL6DB64o4fgI9fSwmHBVRSy+SdfxRpffSwne8u0RHSjDaU6UpSMEOmdcPP0iNOTDZfnL/jg/fv84ue/5OnjFwzdMe9++/v87I/+kr/5P/9P3L3zFjkZyIZSLGFKWONxtiNXfqQOxFJt6pRvFKsYT4qizlouCkwhE6aRaVQVfAwT+/2Wy+0Fl7stT5484f79+1xcXDBOI189fsjz82cMRz2r0xV46AbH5njN0ckaYyCME4PzHA1r4hR0+U6FshH8vifERDKFs3yGdR1xtYNseDZ9xfhiYni+4sXuKWkfuXPrLj/4gx9y88ZtnDimXeDWYJkqlcKLdiAsMUHlXOWUSGS88xyt17z11lv86Ec/4jcf/IpPPv9UNcSiwYxpJdvF9Z/xSWn1tvZ35sz6VeW7QnkZmf4XHFcC8Wu/Lxf6qwv+1Vf4JuvC8n2WiufydYH5v/Gj6y2bzQbvPORwuH5Qq0P1l1pBmKs9+YC229Y21lmMcxos28bxO9AuqjSzlg1N9WKW+T0bGlQ0uz5s3POQ0pK+NYXeOYZOy4vee1brNev1BmMdt2/e4a/+6j/y1//pb/ju99+j25xQjCVjKUX9jR0CC86hqzSThmxtt5dcnJ/z/NlzPv3sU97/9a/46INf8eCLT3jx/BkpRlZDz9FmxZ1bp6w6z2atLXnJiRgCkOmk0FvBGVGnmYS2sy+FbCwOjx8jiYQpexUuibpi+G7Ad56UtWX3bgqMMXF28YJPzp/z5PFXPHjwBZ998h2+893v8c673+att95ic3SM73r1zba6QWcKxlrefust/uqv/oqYAsYZ/v4f/oGnT5+Qo6J54j3SqicckFqdS9URplqv1cyGJkhSxE1L4lhmio+g9AZEKMVo9zbRxaFaHldU7jAuG/eUxZhYViCX+47G2jIHQm1VENDvlDISMxpjaWtsUztUNmTPWUdCiMXgcyFaPV+vXcDcfn5NQHsVQdZnvApUWGo1rq/XpRRSTa7+ucC5vsMhKV68nqlrh/eergbMU8oHAEKUEtr3/dxuvllWmiqsSykRc8Es1gtdozKFJXe5Buvt3zRKxrKKcuXEUOb/HZbAdpKXe4aep4ZAXxVK58Xrz+O5/Zfz/AAjB9pRO49ibJ1ry3Nbv0dGQZ/FOtzmYQOlOt/R9z2X014NBXLC9j2dc8pjXq1m0eShcnD1ev970PxNO/0ZLRkIRcVoFY05NCqRihBUIVlu3DQdHK3RQMOIgToAWrClf5gH+wK9mhfJQt14LQldpNtGe3p6wrvfepu+Ez7+6H0++O2H7Pcjb9x7iz/+yV/yRz/9C378kz/n9s03ydFgTKdrZMhYYyEVUok4W0/LFNUCKimaTM6kcSKFhBFDyaIE+aAZbYyBMO3Z77ecn73g2bOnPD1/xtMXz3j6/BkX5+e8ODsj5sDRyZq3br+J7S12ZXBrR7fy1c1iJNtC13t63yFOCGlijInOd7AqOG/JoRBSInYBMxju3r7Baliz302cv7hge77l/c9/RdwnPv3qUz59+Am3b9zlrXtvcXR8gqw8mKqizZYUJhBtDUyIFAsxJ7IRrHPcvHGD737ve7z9zjt8+egB+xArqjtLJurq0VaJ2mhEbO1kuAhU688YI43TNt8rh+z9Gx1XFrurQfP1BX35+5z11+cdONgVHSuvWjyuvnULFltw8bodIkob6PsOY828QR5O0wGBmgW7NWDOKVWaRt0k7KFRyfXmA4fLqgET0sr+zblkvvewDsz1CQ1oDEUrIXJoUKI+rSoQ6oc1xvfcu/cG//E//5/4z//5b3jjrXdx/YZsPGI6EoaUQcTUJj/KnQTIOTHtdrMI5tGjh3zy8cd88vFHfPzxJ9z//FPOXzympJHeW45Ojzk+WnG0WXG8WbNZDRgjGowJ5BSYxpESJrxkfC3jdl7wAqSojTEGhzWeMQXEFqyHiKLvvRP63iHi6Zyl21v2MeGtYx/Ub/6zD3/D88df8flnn/D2u9/m+z/4Ad/73h/MXQpTjoDBGI8xluOTI77/w+9jnCLXZ+dn7PY7thfnB85lVrFRqZxuoAqg6rBogu25gYzBlFJdAJrQk7n5SMlCCNRgpgW6FcczdR2Yk6q6M5SKxtU/NtvKttTMvzdEUKRWI1NrZkjjsBLUocWSlMvaeKu1ipErfzlKxGOJRZ1bfCfE/DrO7KvHK4PYOYB+9f1fFyhdR56XQsDlY14VSC+rFlBm+kDXdXRdp11xZxBCdw7v+1lj4ZzFWZ37zmoCp+OU+nqHhF5qa+mC0hutOaxNBU3mrGhr6Rk1Ls3pq54Y7dKj4y3neb1qq9XcmXC5kRmQYhYb28vnsdTx3HzlJV+zJpVFpSCmWYTYAu+ZCljmvPMQc4nMDdScc3S+U+OBlAg50juH6zSQXvUrVqs1w7DC+x3aqudfBmr+Ph3fKGDuqiOEd4YUa+kOVSDP2WwNmgrUlqvUoKqiw+0ayNVS0aEsUebHUxShVmqG8oNCDBqwWos3vg7egjWe45NThmHDwwf3+ezzh1gZ+MMffo/vfOv7/Okf/xXf+/Z7bNa3cKUjiYViqtLe1MVeB1sOIyYVKBmbDz3ty2RILwLTfoSiNnuKQo16iyPby3MeP/qK+198zpePHvDZ4/ucTZfcuHOL/rgDo8H58ZunrI9WiC0YD85bMJByxNNhLITdjv3+gmjQXu8mYbpC5womCTKhG0CXWB9ZhrUAE26VOe3XrG+u2G0n9tuJOGU+ePQxf//BPzF0K05PTvnjP/4zfviDH7Hq1/RThzOOW7du490JZZ+05aerggXvsf0J73z7Xd7+7rf5h/d/yfbFC11sipBDoPOOQJkRx8Z19UbI8bBJijCrhk01wixUJGPmBh/8qGd4UxQdk2sZeDsqTlWfv8iwD9jzlcy5VTra4tgWqiW/HrQURvsc9f5YeGlzyIsM/3U7rIWus9y5e4OYRoSEmCrMy/kQkNSA1dZAKqbAFCegUCRTVI5OqTZrYBGxsz+zmNq0fm4vrtUbU0uh5EyOEzlOpDwypUk9oiWjwoJYkcyC9xYrap3W9x3GGKYpsiqWO3ff4j/+57/hb/6v/xN333oH4wayOLJYUiogSRNjMZQYCUFpF5RCmEZePH/O06dP+PKLz/nt++/zyUcf8vDhA148f04KE6vecXQyMPSOofesBs968KwHQ9+Bq4yiAhTjGJyFNCAxUKI2VjIlk0oECaQSKBLoOoNNjlAytiTEgJOIyyMSBTGZwRhM5+iMoQM6MgOZKSXGi8d8sT/j4eMvePjoM54+e8j3v/8D3njrbU5v3GJYHWFNoeDAeIbNhje/9S5//Gd/wYOvnnBxOfHBB+8z7rfElGujmcozNU3gaVAxXcbaUjsEKvdXbf0MvdW5LV7wXrBeZj5pijLPu1wK+2liGrVraSq5ugbUAAwhi5DI6spTasBObQ6h7ddm9A406WrgcjXymMvqOWZKKBC1qUROiViEUIQeQxdHOlfwgMsFlyzWJTpagP/6HIpcxkVQu0SSrwfIhyD2ih7jGqI8v/YrgujrnVevP64FfjNkJlS016qfct/Trwa6vsOIOtMkLWXRW0/v3dzQqPOO3hs6B1YyJUZaZtYqIUVq0BwjIh7jOqzomlGLGfM+ZGuloYnpSv0uYhzqPVNQeFCrHQ31bjzpZn9bEEwxWNEug9a5Q8OrotUTQau3zV2nIcNWNyE9lxV4bP7gGrzbanNam/DkKqTNSisTa9WKMuV5/ypt/c4Z5z2bzRGX08R2ewE2Yn2vichqzdCvcK6rHVyLzhV0b8izTePv9/GNAub/2//lb+iqvYu1lmma6Pv+la2Ald+4KDnQ0ASqAnQ5IRfI33xRypXApQA5xdnwU1FNLcOEEtgcrbDWcXm5ZwqZGyd3WfU9f/4nf8E7b3yHb731PXq3JuwD4rva6ctUg3p1thCpStUUq85Lyx15ipQs7J9e4iJYPGcXLzjbbymSCWnk8dOv+OLB5zx68ohHj77i0eOvGPNEXgv2yJGHRB400ysGZAPDrR5ja2MDoVo6Ncu9TLYGK0n9mYshm4SYiDOC9UY3Dgdd1+F9teJxTi3uiiIlMniG4w0pCW7dY554zp6f8+TBJzx4/pivXjzmj378E9688wbYjt32Bc4J/WqNsQaLoo37ccQOnuMbp9y8fZthveL52QtaEAptAqe52NCudyraQn1GcMshuFwGmWovWA6BchsvIgekiaWifh4qbfQwbwaLu6/8/lIsm2dU8+oe0FDnq+PzMGZfPmYk4JU2XP+2j4ImbZvNBmPadSk0Q1tFQtSlhVTFkHUhnpsQtRMvctiMFwiJ1IC5STkNqN1TwxLbvC4aTKt6Xm/GLMRGUH3LDdZAVy3svO8Y1mve/ta7/NHP/pSf/OwvuHnvbUx3BDhCVi5vES1/Zu3fpx0FKex2Wy7Pz3n2/ClPHj3ii/uf8/FHH/DpJx/x4tkzYgx4B+u+ZzN0HK08Q+f01hv6zjJ0jt4rXaR5AYutLX0R8hRJ00gKe4hBrSgpiC0H3q8x+Kzfceg8UQzWGTpn8d0AYgmpcLGd1JkiJ5w4ugRTzkRTuLx4wYe/OePxVw/48IPf8KM//EN++N6PeeOtdzk+uY31a4SCsY4bN27w3ns/5vnTMx48+IqvHjxkvNzWKkvmMOHkcJ1AecFi9CLWSp9qOvR7OFvwXuhXln7l6AdfFfseWx0HYizsdjsutzu22x1j46xmZhtMI9pJTaqbgqkVKGngXZEq+FrsI4s9R1ssmlq61mA9CkySEUk1HDJkAsl6Yo50xeCKggEuq3tIet0C5uqj+3WVNX1MW79fTUdr1KQlmnz9/uuv+3Xv0WgQZh5P+p7WGnzn6XtFO7vOQyn4rlOwrBQG39dmJeqr3neWVdfRdw5XlEPfqtsF3Yc0gE9km+oaUnn34inFaDOlIpgKiqjuKs9k9VK5FwVLje71ZhYdAPUbVx/vtldY1QzVxkMt3Gme7Y0+MTf9gvl1GphzhaLYfjdVBZDbNa10EjlUWHL9LC2OMsZgvadkQ2+EIWeGYcXlNJJiZB+CNoiynr5fsV5vWK8vefHiErne9bYh7r/HxzcKmJ1VonhKaQ6UXxUsQyuTHXjH80CpA2fZuE8DrMUkyweP2+Vkc85embxq2aITq+stUww47/jhD99DfvBDpt1ITrBaH7G5cYvObChTQcxAnVNaukuJkpRLZ8RiSk2pslJPpn2AKdJbQ5xGxmmPkYSxmS8efsFHn3/EZw/u8+ziOeKF0hf8vRP6Tn0Z93FHyomYI/3Q0606VptBW3kbUUcKAwZtBZxLmsuJZIuUTIoTpRSmaarlbrXN8oDvXG232TEMK7XHKoWUDaaHFAs5Qj+sOD69wdmLc54+foYplk8+/pDPP/6Yu7fu8NMf/5RvvfMuIWVOgd7WZhN9hzeGnGHVr7h39y4nmyMe0YQMVSxV3QSyqKiQWk431zaapZAkpTQLU2Y0Y35c5qpeecEP+x3Hy0HuYWG7WtUoLBeprxO2tL+9Smi0XNiu8/Jel6MZ3ayGFcfHx/Mm2ZCRhvw30W1Karmo17tyV40ixEbk0MBEVGtgFpSM+XwZU/UNIOZgETc3MWr+rDAnS7PcxmgZ1lqrJdxhhess/XrNzVtv8uOf/jF//h/+mu/+wQ/w/YqQ1FrKGIczKhBKVBpJyVzut2wvLnj65DH373/Oxx9+wOefqaDvyZNHbC/OqnCv0+Yi1tI7g6tBe6MniGhLcOfV3srUT2+tw7sOhyF3gbATgskkyWq8VkR9l0uq/F4FJDrfY7y6apRKb3NGXTKQgneJmBwxK8KrMUjGW0cR4WK746v7n/Ps8WOeP33Gs6fP+fFPLvneH/yIm7fewHpF5Jy1vHH3Fn/ysz/iwRf3+eyTjzk7f0EIE5TaUMrMF6EG0prYpqzJsDXVwsoanDWKvA+W1drRD5Z+ZRlWqsK3tqPzPb7roBTGaVK/+Ist+3FiHCd1BYmJlCpyHpIG0kUDBw188ywKS6mO13x17rdydatamlzIAjFWO7wikByURM6e5LQRazYGB/iKcJdkXj+EebEOvarz6fXHtOP6OvZ1NI5/SbC8/FvzYS9iK10BCqYGwD3DsOLo6AjnzOxMY0XnWO8Vde6dwXulbfS9iv6INXHk0KWxpETOUSlX2c3noFnCqZ+/Dua2/0gDBurYrgN9pnVo8q+uXBpMN0vUPDe+UfqHUCQrOqwFsVoB0c+WKbVRW7pynk3bpUrDjWqV9KVK6+E2x1lXruPheyhV0FCM4I3Q58xqNbCaVuxjnOeFiBw6J/a9csNNmivC7bK+Zlvb/9ePbxQwj9PIer1it9vN5Pxwza/vEEwcMqolD1k9BuHqslYn1bywoZS4ivLO8Y+U2u9cG5hYo2rrkCI+KeLQmNC3b93m1s3b3Dy+zenxXbpuTR4VJTO0DKy0qLlmlYUihRQSeYpILsQpMO4nmAJht4c4MU0TT8+ecv/Rl/z6o/f57acfcjZe4o8Hbty5xfpkTVcyUxwJ4w72wpQmYkhshg2roxWrzVCTVeX7Dd6pfVFKhBgJMdR/G3KY1HEjVYeOGoyokKrQ9x3Wdxjrsb6vqEtBirbHdM4TxkiYEr6f8H3H0fERphiePXzKwy++5Mmjr9httzz48gHf+ta3+e4f/IB7b79Dj7qFWOOIUyRNgcH3dK5Dm7VpqZOSq9E7OpFL3YxKAckUOSzY18t97frPC1ddnJb70xIJaeOr3lN/vArVWIytxYRftmP/umPJs3vl/S99rsO/XzuXjHpeN0cb1uv1XHUpi8Q11/J1SomYIikFUopzrc5I9fw1cy+T+reG+Fe0j6sL+7IsrNckLx7XFoJEWxQE5fhZI5VzrYI2xNCvjvj+j3/CX/z1f+IHP/4jVscniOkoGULR50VUjNy+Y46BR1895PGjh3xx/3M++O1v+e37v+LBl/eZxj3WwGroWK8GnNVWtzGMmGLp7EBKEIPBGYuYbnYGUSsnh62dCq0YTNYkNhshGdH91mhnRBBKRboNSn3oO49f9cRSiFHFiL62x6ZAZyPJGpI1dfM2SNKAb2U9bi3srWU3Bb787FN22y3bix0xFH74I8vN229gnanzTLh9+yY//aOf8E+/+Ec++fRjnjx+dFh7WxFgbqFdGwvVIEQdUrTy1XnLet1xcjxwdDzQ9WCdOpn0XT8HO12vqKEYpXzsJw2W9/uRMWj3sRASuymw2wfGKc6Vj5y14U6YJvb7PZfbHfvdviYPgPaSPCBxLZmzptKBMikLBLW5070DUla3gySCL0oY8kAxtgbjr+/xKuT3+jp4PbH9uude5yG/Kni+fpjK3W9bvYjSEHqv9mZHR0ccb45ACuO4131HDJ33dM5BqQixOTRVkspDnveFzExBSKkl4rpXppSwJpHmvUhqQJ2R2jCpgci016znJlPpD2bOjvXvrfrZXtEUWqWsbQOzHivX38nkHGk+73Cwt9PJpuuclGpp2nisLYaX9n1bo6B6DeenNx3OAWw0MAMMq9WaTYqYEMgixLQcB/oc5z3GTC8lib/vgfM3CpiHYUWMEe89wBw4X0fdQLHAVqa4wgmtJ1oW/9fY9Wqpog3mGU2uJRb1VzSzolZV42eMISEUvPf4ruf4+CZvvfkunh6yZXu2xSSPNf2B+1OoPyudIKE8zJBIY4ACKSZySKQwEfZnvHj8FZ9/+Tm//vC3fPnkISMBe9zx1re/RX+6RnpLspBzIOwKWYTB9+zHWsJ0guu0xGqt4Kyl73RBkFKIuUmcVBlrgVJtj4yxpKCbhklBuyuKxSBa6vQdYjUT98bQVaSp7wbiKjOFwOXZJfsYkKgq/bfffYs37t3h+ZPn7LcjH37yIc/OzphKpluveHOzUW/pKeKdUW53LDiMNmGpC5ZzfuYfVtFum9MUc/BXvh6AvkooIrVkJ2XRpGC+v3UCnB/dBhBtY2wTv4n12msukeTDQv+7J/8V94tyaMKz5Dsvj1Z2fK2OUnBOOD3RZhYpjzS++RwwZ3XDyEktJbUqo0iwgYowinIBZcGRrAG0tEW+tpdeBs5NoNJ+1+Tp8Dqa/NXCueh7+a6bKUgJwVvPrbtv8Cd/+df88A//mKOT2zMFA1PFL610Wq/juN9xcfaCTz76gE8+/pCPP/qIzz79mEdfPSDFkb5zrNc9J8dHrFcdOQW224kxTZRsSMlgjdMguDIXrFNqSN95+m7Q+ZGL8gpTVEvOdu6ydiNT+1ilZc2+x1XIOHSdNkZKgLhDOdsJq76vZWHlMI4iGEkqZkzq8ONBm6AI7M7P+Oj9X6vAyVh+IMKtW29gO0PBsF4NvPvuO7z33nv83d/9HU8fP1JuqLXMKEejOtTNvX3uluBYC8PgWA+Ok6OBmzeP6buCmMTQd6zWA32nFBqxzRmhw3qHyIaUMiE2O7HIFBRd3k+RKUR1PKjBUAiR7XbL+dk5z54/58XzyG4XSblpaMwM0uSWcy2qWGpXKNWLW7vVuhJIImRryWLJJpGNRUrhdywT/+aPOTCra9N1msXy/uvVsiVw8KqA+l9TURNa62hD3/VsNhuOj45YrVbEODFNujAbEZx11VO81DQIrdjWMUJKSNJAWBuHlGt7BPN6lnLGzFzryknmMDaM1eT28ORyddzUygag7jY1GKWdF6r5XHMVqZxqjX8OrhW6AjZQoNIU5ySkcrCXwE5pM++wdy3X5nZt5u9aX19Ez3MuBSvQGcPR0YZiDW7csw+BvBvn8TB3dq2uRjpWDnvk1XP6jS/7a398o4B5v98hw7BQk+evnXgH34SXKRmmgYLzYDk8VzVgh0CnDYxSCtYJ/bCpvotaHsEYjAXrFEX0nefe3Te5fesucVIrGt+t6ZyHaMhRGHcjpFi7eQExITGSY9Z+Pbm6Q8TE7vKSp0+fcn72nHH/jJ///O/44OMPuRy3dOsef7yiO1nRHXukh2QT+xwYY6B4WK9WOAb82FGkcHR8xLBZgQXjDjY63lltqx2CTjrnkJLJsTmQ6MAPOc8CpVzqxtr1uGIoRdth287XMnWnwl5j6TrDyhxp210rXNhLeixrNzDu9gzrFWEf2V7uGPeBX//2N4wx8bMMb739Dv16w9CvOVltuHPjJrdOb7Lqh8ozTKo6LjXpaGOiBgRwaEf9u0p2h4BUDp3iWmoluhQdUI327DmkvlKxKEXHh/5s4+nwvCvjVQ4dyhqKtgjnDq9JoXWlsk47v6VmfVSDc9M4eq/RUQp0fcfJ6SnGWGJsAdFicS5FUebSuHeHwMOICvqWjhhKzzBXKRn1mkINEIuQs9R/6TUQUTGt2tOlSlma0yFKRZY7r81RrO/phhV337zHz/78L/nJz/4MvzlmlzJiHDEVYop4p4l9TIE4TmwvLnj4xX0+/fhDfvvrX/D555/w+NFXbC/PcSZz4+YJm02vegGbIY84U9gMjk46cip4J3S9Nmgx3oFVnnY3rBi6rjYLKJASmaLUqJxqwhGqgDFWLnjUhMAe6CzqzBMx4jHOkbNWoMgRaz2rvgMyKTuU/JQwZJIIFq2kWbxujsOA8T1ZhAf3P8e5Tjm9Pyyc3ryD71Z423H7xg1+9tOf8tGf/wVnz57z5Zdf1Lm7rBA0rYEBcTVnVVTMGU/XGU5O15yerrlx3OOcOk0cH284PlnReTsHBqUI1hl8dThpcx+U7jGGwBQzU8yEEMmp7i9ZO2teXFzy4sULnj0dePKk4/zsnHEcSUXI4oixEMbAfh8I+0Cs3UfEWrQBtiZRISblf4qBlDFZS++SC0YxgtcOYb7SRXW5x16rnr1q/4bDunxdBHgdRLj+vOvH9fe20hpr1G5zqxVH6w1HmyOMEdUqpeZwUQNnY+a+C6VATplpCkxhQmLAxESSgq0KCRGZYwlT0NbqOUNKlIZKF6GUpMLQrPuWRf3KxTSKx8GcQKyjVb0q1oaJkVKtM3XNowrZ9dyZkg54Tiub15vKHOoaS5mnFnM/gwYeLuOnFkjnxe9tLW5heNHqfF0327qda9fVvu9JRrTXwn7PFOKVROjQkEpmlPwwpg6JhF7Tr73s/4c8vlHA3E7mOI6klK6gy9fLO1lmLOIQCOk/tAS4PNOL5zUeT14Q4luZQrMfAdEWtjlrl6/Tk2O+9e03+c63vsPJyQ1u3rjNyfEtbOkoUYhTJoeREg1GNFsd9/t5k1dlfqKEyBgTKUTG/Z5xHHny+Akff/IxXz68z+Pn97n/8FOyFG68dRM/eMYcGZmIodD7gb4f6LGkPFVj8B5voF8pinJ8fKx+qjGoP633dH3PyvvK2yrY0s5BRJIWacsycKyTp3EkjegkjiljCrOgphgtrTjfAQZrLN0wgDH4fiCcbUk5M+UIInSbnvXpMbvtyJdfPOIf/ukfGKfAn/zJn/Hut7+jtj+95c0793j7jbfYDCsudtv5c+TWvrhyvw6cspcX1pdoDIvEqC1Kslz8XioJzkPn8MsiyWrB8YyYwFwGbEH0slvfkhqg5/5lxff1udA2j+s8/n+OY/1v7SiAs5aTkxPd1GgI3GJet/lYQGb84iDAbMivrYpzqdfAVORZ3RaYz3PBYEuh2ELOdvZGVQqHcmKtVSFrjtU7uAZqzQLOeg/GsNps+O733+OnP/szbt97myIdIQtdLfWDbnrjODJud+wuz3j04Et+9U8/55e/+Dlffv4JlxcvKDniraUfeo42PUPvKTkSpj1THBEpeKfIr+87+k79S51XMaPzXv2Ovcc41RjMAmcptbPY4XuQs1pF5TB/L024VJ1kK8/T1Pa+WYSYG3KvlA5vLZ1z5BTVfUKo3E9R2yhnEWvx64F+tSEbx3YfeHD/M4a+x3vH2zFy4+ZthvUJq1XP97//B/yH//CXfP75Z5yfn3N29kIrcEavfSmpzrUmlsooWmcwNtN74WjdcbTW4NnZTN97jo8Gbpxs2Kz6avtVSCWBmNm7W7Uq2ulNA9moHvdB17e8CJpSzoz7NRc31jw/XXPrdOD58xdstztCKmQMIWQuL0fOz7Zc2C27y4kYNZlPM1FI2haDoI4ZUvllDd2TXF6/gLlS25q/+KuOV1X9rtPM2t/a0dbG65S167SMV71ufeT8+ZxTb+VhNTAMPTklpnKgtS3XIWsttj43NXpYiEiKuFxIuZBEkd9WAWwwSqvyZMlkUxtzoFRB5RWnqqkoJCmVb23RVLAF4C0mOTTEKbPdXLOuU1BFbeYaKs08jqo+dgYTtXKRZ9znSmBcHTFKo1jk6tQya0ry/Bg9J+WAZtcKa7P+jDkpFx8HRvnKOEcC/HY3J0Htui59868Pnd+3IHl5fKOAGXSgWmuvBTh6LEvWpZZGlOB+UIfC1cVnOS2F2uNdpPLXoqI3taSQc+Hi4oJSMsaoYtY5z+nJMTeOTzk+OubG8S1W/QYpHimKyqRUIAklFXLRhgzO2Op5qDYvpRTG/cju8oKLywu220u+fPCQjz75iAcPv+R8f0YcItwa8N6SBkOyKkpzvUX9ZDNWNJBNohmrE1To13f0q4FhNVAojKPMvokYg3G+cqgcmHhoByzKPSreQ0nzAgKlCXah2syYrO04nfPVTifjeksR9cUFQz/0nIjBdwNjd8nu7BL2I/txorOOfjVw+/QG3fqILz//kl+//ytSilgK73zrXYbTI9a+543bdxn8wIuzc8QZXaxSblcRaDqhKtyspanlYntd7Lc8Sg0okAOq/LLATkWJbUFp6PRLrzMPsHLlfZvAyiwg4eW4XqIp1z/zMkhedtP6Xbznf7NHAWOFGzdOacr6JXVhWf6bz1TRpAaa2OyADku1lROpAbOtwbKhBsYLb1LRbcUGW4V5NXiyWq71zlKsJZVIEVWnY6jBtAOE4xu3eO/HP+Xtd79LwiJGVfb7lLT0bwwhKN/14uwFX335Ob/99S/4h7/773z8wfuMuzNV3a+02Yi22BacJMSCWGE7RsI0YoaOo5MTVqs1znaKMHtPMaK0AqsmVDRubxWqlqzVo5IbFWOBEGVdN8S0KkV1AbFK3TLW1KTDIlmTjVLPre8cK9PXgDxTpEBJxKRBuSa5nvVqRb8eiChFZDdt+eKzT1S0mAveWqzrcH7F7du3eO9H7/HDH/6QDz74kO3lBSGGGqmj6Fht5WuoTZ5yRIzFmUzfG7wrWFuwpuCsMPSO1aCo+NHxWu0qEWJKpKwonDFCLhnr1bq0UHDe0XUaDKTUKpo1EBIhxp7jTcdm5Vj3wvGmY7fbE1NWu7hUuDzf82x9zrNnjufmku12IoZc37dooi9S28FbIoKkQgnVf9pkxDZ0/fU5rFVqgVbC0itpFF+X3C+R6Fch0r9L8Hd9vV6+X/s952pD6DvWw4rVsMI7T8hqA0eBzvk5eGuiNEej0VUBck7YmtjEqI1pfEu+600qgDM7U6RMnoGmg22mKYVCIuVwSICNq9/fVgqa1H1X21RTDnQfQcWixtT91qi2oJ41DaoPcDOlRHJqVjpUnKi5RxUV/6caEOfDd6YGzaUFzU10nzOpudbLwYu8dQRMFGXDeTtbutrrnVlt/d37ug4HKoN1/lyH6/jNxuP/EY5vFDBfD26uBwlX75e5fePyPlmsO7OlWH2NltV1XoPH5pNrrZZ9c07VVUE3ZShsNmveuHuX9bCmROjdwGDXlKDctDRlHEZLLbXcnqvLR7zcE4PSM7ZnF+x3l4zjlmfPH/H5/c/4h3/6OZ99eR8/eE7uneKOe1ark8ojVFSuFC3zCIXV0NFZ9Y9cGUsuGYdOLt91DMOAVJcR69RayXcdxnck0YBSnMfmQo5BEwPrMT5ri+4SCMbWjNfMjTopeeZ4QlbUp3neloIpGsSKsTOq7XzGHVtSKLhxYrNas1pvODk55XhzzO03Mq7zfPCr9/nywX0+/ew2m3XPnd7SieX2jZvcuXmLp8+fMWX1yzyU3NDMXev1rcpE4WVl9fXgspWCtORVtNnBAUZejL1KyWkDCJmpAi3ogoOrQ0Pl5uegG7SKE/Miky6LW6ULiCze+4BkMy/e7bNf/fk6Hb56dHa+U14gzMjygStXZus/KepYYZYbU92clv82IsoJtCpuk7r5Sa6RL1CKwTlTF2qH8wYbDN4akrUUJ3O3NyuGYqyi2GJYb475znf+gD9470fcvPOGBsvWYagJKUIMe6b9jv3lBU8fP+C3v/4F//jf/xuffvRbxu05w2DUQ3ndsV51OKsNO0ydU6YUbAExlt46Bt/RO6edBi04ZzDeMQwrhtWAOJ17iIIDioRNxBDIMVKSCn6UBtS649UEpOgaRfUxtgb1r3YGUyzZKvWqGEWOpViwzSW2WmsRKFOkkLDeMKw6VqsO1zscupl3+8B2f8kXn3ykifKwQmzH+gj6bsXbb73Fj957j1/8/Jc8f/aMF2FiKchs9CUrep4MCW9htbIcHXmOjno2645V7xCrwmZFxQWxln414L12VQ0hEGMkFw2exQoYTYJ1LmtSnKKQkn5XU8WU9J7BW7wTvBVWq45xHBWNBrXfO9sz9F0VYTqc27LbTUxBXUkyqvmOqSBJkxeF9gsmgcsQXrc2f/VYBr7t38vjZf3Iyxzlf04A3d7ja4GPl/6mVQJnVbQ7DAO973BGBaqx6nSsqQh0bWbSeY/JCVvHhamB8TLYTKL7HcZgsNfxkyvfqX2+BuYlqZZyRhM1BVIU7JFS1Ic86xqnhau2fiWolEOtYlZKQxMliszjVeMcfU7OoTr1VE5zm/ul0V3TorInHLoj62ynJApqv9mQbaV3UCOBuvbESMqZmDVwFhym66qbkVSQrQXN2pV1Jl6UVhW8GiD/PgbL8A0D5lYGuR70vDT49B+zHdVyUBbQAQ3zcw6voZtiTo17Wlk+pZHdM9YaVqsB79VK7caNGxyvjylTYtpGHJ7eDkj25GywRapZuV7xXAq2FPJuUo/hlLl4cc7l+RmUSAgj97/4hP/P//pfePDkIavTI05uHtMdd8ixx6493tXgu9rRddayGnqGviNOI9NenSVEW5GRUmIaJ4w1pAIhBpxzHB+f4LoesY5YBQlFLLbryJVKkKUAiZIsqSqDc0WpilG+XYyBXhTJ0UZHLQAsxElN23PRRMN7g7UDq8GRbMSvJk6c4+j4hM1mo5SSriNOkXtx4uLiBeePn/PwwX1Ojzb06wF/fMpb997gO+++y/0HXxJ3l3XyUq/x4pou4ktdQ642rFn6MB9uSkFZVkBfpktoW4g2bhSo198PAXM+jEsaInptk2jPXywKB7eOqwjLcoznGlCXclVc8rqhUAAIDH3P8dERzjtqvKzfs5nklzwLb9vC3RLdFiAfBH9KK2iWUGYZLFdHCGlcjppYK9LRbh7nAtZmnE0kY+oGqNZwVMGv6Tpu3rnNH/zgh7z77e/RDWui8ZgqDSqlkMPE9nLLxYtnPHpwn/f/6R/5p3/473z+8Qfkac/t0w1HRx1Kvg+kkLFF7TOpCUJJGYvBGo/FkUMimgnrHTlZcnE40+E6X1Ep5WdK5UhKUVRLEa5EKamKjFtJVUWUbZsTseBsLRGL6h1MFSLVjnQYKEY3c2scXmAwWYNNaykykqeCcYauc3SDp+s9GUPfW1b9AOWc87PnfPLh+xjXgxt4822lrB0fHfHeez/iu9/9Lr/97W958fy5Vrhs6zKmKKC1Gux7Kxxvem7eOOLO7RNu3NhwfLSmcwKiugoxpvKSIy4WrNcgxDil85CNWuALxApugFLMtLrT9hJNVFrAZIwHVop8GxjHTpvdGPWj3ww93lnt8CZq+3d2PrLbTWpXVy3pYgETW3VEPXyNSQSrjbJetzy41GinVcba39ra9nVWc18n6lsix7+LsvEqSsfikTMWYYzBO4d3vgJimRCDVkvNofNfa9ssIpRpREpR+0bnayvngokJatfGTMEkrQ6UXJOfxXe//rnbmKKoN3sxur7pHgKQq0e6AkFI5UdXKztNcg9aj6UVqqkVLvU6VsBKipBLE09XAEIaCn7gJTe3j8NnPlBB5mtV/9UoHLnxq4GE6jdijMScmVIkRjB0eGuhfibv/UFL5T1u1udoQtn2xmtv/Xt5fKOAeS7Lfk32ubxfiefNVu7QvrHNlpnXU492wWPRC9yEJofXThVxqM05qnI7xcg4jnRisGuLx0MylCi68VWVekpBLeTIyrnNalkTS0VoyTx5/BUff/4Rf/9Pf8eXj79gdWPNyb0NfmXxR5ajm8fkWgqlFMYY8N5yfHTEelgx9B0hTIRhmgdcSFEdNsYJxGCcrdY31RbJZYytE886bBPPjSOxVLNoCTXrrFlsrQFlMQiGFBXBcqm2syy5+uEaMppBIhbB4myP7z1mYxTtwrCfJtZHG1brtZaSxFByot8M3H3jDhIjF5fPefDlZxzfOOWOH7hz8w7fffd7/OMvf8XFNGIySPW1bosPBUUGOQTRy+v9uw8NvJoAak6oeNXMLXNm3+5P9VyUxWL0yvdon+7a3V+3IbQMfvm4JcLyOlIyjMB6vWZzdAQcApUrZ3jeEFRc1tB1I03d3RIiqZQCmXnIdhEsi1XUJWseCAK5VP9i5+g6X6lWDu8SyVqiNZDV09laU9voCl3f8+abb/Hud77H8clNCspZTtSGRmFi2u148fwpj7/8gvd/+XP+/r/9LZ9/9D5l2nG86ll3ls3Kk4qQQoTG0a0NkigFJxbbDQhaVUqxEG3EOA2IlSJWvV1F7d1K0YY9pFRl5lQ3HkWjcopzR8OSAkYavUWqL3YNrDlYS5XWObWe75gTtYMC1hl66THOYrwK/cq+ilC9rdQGRylCiJlYElYy5MjzJ4/57fu/ovgB161wtqPvV7z5xhu88cabDMMK01qIG6nlYe26Z4rQe8fRZuD2rRPu3bnB7Vs3uHHjmM16wLlKs3AO6zoKhlhgDNpQQtdyj+s8khN5MrVpDcTqxeuo/slp6fufadQ8EcF5pZ4MsdJTcsR5DVQ2w0Dne5zvca5TgaO/5OJyYj8F9mNkPwVSZm760CzJUsrEmHAuz3zY1+VYBrpLrcWSXrZ83O+iUbRjGSz/rjXvVdVn/TscuIi6AgvMHv6CVBqmWg465+ZgruRMFBXWHdYKDZh1wNT5W5l5uVrXNGeZIjInwNSOpLPpcQtPpNq51WA1133HkGrvEqVgmJqMlHpv49XXbPIqLJsLmAylaRqofGT1i64nagYZS33OAWhsZ6sG4y3mWoA4OWsnzFjpTS1gbn75zQ401kprcVaT1KIC9ob0r1YrhmE1+1Qvv4p+Aq5uDL9nxzcMmMsrxVDXA2YArJmRuCXXWQpz6+SGUOlrZ/UnrH/PWb0x1ekg1x7qOjnVISJScubs7Dkb77l38w6nx6d0biCNiRwFLyrqKzGRYqTkiDUZxGL7NeFsy/bskouzMz75+AP+6ef/nU/uf8zldMmNWyds7hxReiF3iX7jyWnCWcemG3STat+joFmcdxjv8dYwTRMhTuRSVC1fbeGc9fhOB2NIGRMTxhYtF3qPFatCozDRvIWbqrche7qoZ0xRRwYpWT1jh4mhoVc5Y72omn4YKEU7Gzrr1GorgxgtzeQU2aeIo7DqFWHKZNzgWR2v2JysebG75NHjh6w+O8WvTlidnnLv3l2GYdAsvtTFtI6JhjbrQlQnvywz+qsc4atHKyq9+jgEz4vFPjMjCc2rtXG924d6ebtrdncakMhiWWrVECla8mtoefsuS+u4gxtH++yvV/nWWu3wt1mv2yWjtSVuR2kJbl3sSznM3yX9orljSOPyiY576xzinSIsouVFYwRJWm5MPhO6SAiRrpsIUyD5TIqFFCySkwpa1YgVgNVqxdvvvMObb76F9b6uHabSEiCEwPn5GQ++/IJPPvgNv/n1L/ny/mdM+y3HvXbpMyWS4qROO52iiFK/o2nbubEY46rVkqWQK11CcDUhUL6fm0vEqdKq8jTBNJFCIMZ6S4EUAznFWqWKzHzvdmul5jYPzGE+6GapYuWmsxVR/YJ4S7GO7Cy290Ch6zzG6kbpndd21mmkc45133G5m3j25DHvv/8bhs0x3nfcuf0Gq/Wau3fvcnp6gnOOaazv34SZAqvBc7xZcef2KW+/cYd7d25yenKkVnzrHue12RR1/ROnrOeQocRMMQXbOU3ic1KP6lZCrjqWkDN2NnmfzwIiUQWC9bx75+m6ytlMBWMyXSd0rgcsKQsxCik7kA7fTeymwHY3IRdb9lN10WhIZVL/a2syYUqvXcC8PK7rLA5OCHosg9qXg9xDIL18zHXgbPn45etef435762fedHmYSJSKRg9DeFtlapcqWDGGBXmdv0MnEmxFBM1tcy6NyYRoCaU5hCgG1GbQEWxDz7wM7VDHJja62D+/Cqgy1lq4yRR9pS012we042qJNCQ6FoFaX0fmkiwVKCutL1ibten37NV5Jt4Glr793rO8rLil+egOGVtyJRB/cTTgd+cWwKQEmkcZ1s8ilLy1us1Uwhs9xNHR0d0z56z200zmPSa4UD/Q45vFjC3wPXKX3UwyeKiiIgu5vU5V6kaiv6VUrCVi6gDXYn3zujCjxWa36tQVEzUvIiTljONNYQQ2W33uDsdN05v0ncDeaqlfltftw5kWfjElt2OZ48ecX72nIcPv+C//a9/y/sf/BI6OL51TH/cEUzEdp7V0YpUItPljuP1ETk4CtA7R9f3+L6bUXBTubuxKGdIAO87fN9pmbgGFIipggKHzFY2+ropZ0rWoOKAKB0mddN2GymLpCIBafZE1cmkXKfLiy3GdjjfVwC6eVJq7f2Q4ScQpYFkKUQyU4kUk4kl8OThQ1IRbt17i+H4iM1qhTNWHUukqG+0qVl828yb6Glh1TaXm8qy7LUYUeXAw3o5bi40sd+Vx9cHH4R5lc9Zg9yZAiCLYJ4W6LdzTD0fMo/pMtM+NEJs4IhZgNaL7eHrJ8+/4cNYw7CuZc86v5sHcm0WX8/RQQfe/jijTfX/c+C84DI3LqKtzhGI0jBMKhjJSBFSTvTeE7yn8x3Bt4A5EZ1TnUDRzyrGYjrPerPm3r03ODm9QarlTGNrYhMT4+WWRw8f8OH7v+Y3v/hHPn7/12wvnrPqDOtVR+cEkUycRpyXBaoiiirX6lSjAKk/qVpLiclY4+Zba57S5mvOiTyNpHEH00Se9sSwJ8aRFCdyCjS6Rkv/2rky1h5oHUZqC+i2BugaUkSpCqloNU/HpK4tCRis0A/qYtSuZUpKBVsNPUasnttpYpwCcT/y5PFDPvrwfU6OT1gNGzq/4t69u9y6dQvvHeNYz7EB77QF+OnJips3jnnz3k3efOMWt26ecnS8Zr3uWW9W6pVfdD3JWap/bgJJZAGsxeWMzeh1NZ5sCjlqsLofAyYlPNXftibLbT9JqeB9mQPARu0Bg5VC5yxKSbNspsJ2HdnvEjEUBIsfO4wYYlChdU6Tvk/RSou6DCjK/Loe14V71/992J+vVtqW9I3f9dr10fU5DSytgXV9HZUcLVBWRcVQJ+8DiumcgeIPCHjW9w/jhDHgrArXXdepv3pRoCOj1a/WEjvJYr40MEeUEmSKejGbkhUdloUHujXafGQJq3IAUVQTlCk1CJ6r6XO6LtU+U4Pm3L4bukenlKuDR6oiw3bS6jlsKDWHW4NxaKLFoih5Tmnm/acc9VYtLDNF590yUK/7YMpZBchJtRK5aKKyWq2JMbE/DhwfHzMMA+fnW40jyuJj/h4f3yhgnuKEWA10i1CRxYrEwUxg17HVyj3MyFyLgFILcErRgQdVUQoxR2IOM6m/NPW4042qFDBGyzS6waif5mZzjHMd292W3m3wnaPkwjjtsQVWnXamM6Iq07Nnzxi3F3x+/xP+y3/7f/OPv/w71qcb3vz2PbLLRBJjysh+wnY9xycDxWSmGDDRKO+nCn9MLXPEFIlBB6ZNCW8MqSivUJyGHinpBmxtFaCI9nkPY4FOFIF2DukFIiSRSi9A3TkiuCLEkAl50tcx+jmQ2s1n6BHXIdYjvqsTNzOFibPzM+30s16z3Y/EOOLIeOuxOZP3I9J3FIFAZp8DkySkN0QTuLh8zm57Rgw7+s5yenpSA19HMuqdmpJyvpw4iiQka+29rcUiVRRVJ7SImfnHbQHRhggWqePoEG0fEOSmlF+2ZKYFdC34rRl+UxO3u3Sh1qQDo/5dy81Bf7y8qczBYm6WQDXYqR7DhVqKf40O8XB685SYEhu3whRDiBmqlqBhzc3loohSfZKCJEqVwODFYOvjZ+TViTowGFutig4Bs6WQRBvgOGM1CHMdoetJvSbVqSRi8loKjXWDs0oxWq+PuX37Hv1qBcZRsNgC+8uJsxfPePzwCz759a/49T/+dz7+7a84f/aIo1XHZrCUMhKC4L0gsRArTctbVztbNoSp0kxAhYpSAYEoxL3SN8QWKFXwaARKIsWJNO1Iu0vyfkeZRsK0Yxp35BAoUW8SAyXn2X8ZIJOJkjCSsYApagmpDhz63YvY6g9cyKXym43a7yFgK73A1Hbd1jpFyZ1DKeEF5wy+M3hfsFNkvz/jyVf3efjlXd588y1WqzV337jDW++8he2cBrQl0YvldL3CusjN0457dzfce+OEGzfWrNeevjM4b3HOYL3qPRJKqSCKfr8UMA5yCsRgFQUvFita3cpJ+eTTPmBKUqqJU+FUqt1QFXRJhBhqgOUq4q4IYMqFKAnnwIujM47OGHprGLylDF7nfzbEUchTAos6mqSkoAVCnDutvV4NiUSaePpAxWgAxXWHq0Pg22q8B4H0vDbPgbXQ+LRS+b7q7rBwDqrrZ07KdXfG4ryuAzkm5e/XRj6l+pGLGLrO4ypPXkrtipcyzspMwxhWPRhhSgGfChIDOQbcnBhWPYBkbTpjdL+JWUjFzet4KZlOsq5PtiambR0X3ZeYW2JXa9fa7Kak5gqkG2+s59iIVn2NsUpNEztbv+WoIJKK2XUPm23mWnW+UjFm0MIuxlwOlBzJlbKqThqZVBIhB2KJs/xPr1h13CiJhIJaKsDPqL90RopWzXJMSDEM3YrTU7h96w4PHj7i6dPnCqQd8KXlCLs24l5PwOibHN9M9JcTKduaQh4mYjuWKLKqQNvv5cpjZj5kRaNNLd+2nue58m4staWs1fspjS8lTFOsSZmw2wWmKdKEYkVq2DQHVjr5SlT+ZRxH9ttzXpw/49fv/5Jf//aXyGC59fZt3KZjLJOWS1HT793ljpwyQ+/U7NvayldUXnEMUy3JZFz9PglqK+FCSIESFP0ppXYprNQIRai80jWMxzmPpEySUDcAS26Ll6g3M1Ko3XERUaFCTrFa8QVcqnQM53B9j3r925rLZHIOpKT866F3TCUhORLHUc+300muEzESSkScsDpaQSmcnT2j5MTR0RE3b96kHwZ2SX1YlStW7cfqQtMcTdqaXFBv2au8t4azLWLjBmRyQH+vo7uHtFcOljwwBw6KKC8Q4nmAzk+r/2sIyastk64fy3vK4t91q/na5/1bPMQa1psV1jZBabnC4T0IUdrtgH3UUFoR5fpvZfEuKBq1smOpLheCCuJEN9zsqt7BZWKX6cJECB0hR8ykQVcpjlKiIv9GG6WsVmuOT0/p+7UmYQjjdmJ3fsmzrx7x0W9+w69+/vd89vGH7C5eMHSWdW9xBkqIJArWOCgJg8VYh6tiI1OhqbIokR5sxjUQSRjEZHIspJCIIShKZgqkoAFBCuQ4kqaRGPakNFJKVG1CirURSSaX2i7bNrcXg62WUG1TVURLHalVHKif1RqDMR3UBL2EUUVvrcpTN0VN8msCXWBYdaQ0EFJklxL7y4nL82c8fvSA588ecXR8TD90nNw4pu81uPRGGDrH6dGGo2PL3Tc23L51xMnxwGrl6DqLr0EyDbGrvtrZVPQrJGKcND2ulcYce13nqWLJmLXRyBjnZixdFVSminilmIm16qmevnpOYkjEoCjiVKJSY7JqNiQXrBS8FKJkosn0rrDpDWXlcMAUMuMUiaWm1QayqeX91/y4Tq04HAd7M5nXwoYWw2FVbsG0HJBTSoPkr66Di6cYqRWCkpGcMUVwpnqaO6NdZI3BWcH7TpfopBzcbFGOetfRddqFLuXAPow4yZgcqvNMUtCnVW5k8VmLJsCpFELOGqjX9UcFntoxt/1sm4XMQEylWDQHjArWzFW21pW4nSmpSLOgLX1SE05r1UIFg1dtOmX2/S5X0O35YpSiyVyMxBQrjZVKw6it4oxSyQrVHatqThSJVp9qjZycun4g9TMVShYVEDs/28qZynP+Z0YV/4IH/R/i+Ga2chwCXbiaucJhErYSeYpXg6Kr9x/+PpflBagteJXVoTzmlASRVLM3HaRp5iUXButBDN53ONMjosI6tYMymFwULYuJOO05e/GcZ2fPeP/j9/n4/sfg4ebtG6yOerCFNAVimrT7lqiwJ4YRGVxV9aplWQiKcmSrf3dekRJrbf3sgomuenmayq/SmzWqVO/6AWu90hmsAxFiCsqBnlQQFFNQMWGYCEFLuQ3Zb8bk1upEDCFgxxFvPNanioqZORMupRDTyH7UqZ1TJKeIlIrWV79YpZcoqm2tIRq01BkL+/2eFBPOasbvasm8lYK08FD9mqqdTcusl+PgMHbk2hrR/pYX/17YCFGDtrJ8vTwH0bkFN0YRgRbkNCrLAoBmxqSvjdOv21iuCAgX5chMmcuHr5vozxrD0WaD944QpoooFKXTNaeIrEhPqlSruWooVGT1IM5sm4qZNxOuJMbqU8yMpPh6NVQln+i6jhAiU5w06XOu+qdqhQYEMZZhvWFzfILvPKGuKdvLLS+ePuPzzz7h17/8Bb/9zW84e/6UzhnWvcNaIaeJGMaq+8l4D8VI9TatY4pchTmJnApShFY+NqZ1Citkq02P0hSZxlGBAiuKHFcRToyRGEbCNKn4OKnwT/JBbxABslFOsxFIpiJIteCbM0XynJCqS0bliXuPc73SvbIKjWkOARiQhrLZuolbrC10XU9cZVYx0Y8Bu5vY7y548vghjx494Nade3Sd4cbpMZvNijNnWA2Ok+OBWzdPeePNE27d6dhsBjZrdS4So/MvpIRLRbsJ2orUWYGY6vkPxCkSQ8RiiT5iOgUTDIY0JabdxLSfMAKdtVBqZ8GSSQmmKdXufxkxhs5njHXEEIlThBSwIVVbOsO0D8QwKWe8JMgBkyNetIOjNys6E9nuFDBJIVKSPlet0F6veQ28tB79zrVJDqhyS/uvUzWW81teSiB0NW1aljZXgFkon+qYt1a5yqthYOh7OudQwZ16ghtjiKEKLYvQDx3DasB3pgJqE+M44kvGk7U1dk6LltQaSIJa1c76lFIWjVxq0Fo771lrtFWWHDqSiihqrLqJFjQ37HYhnhTtwtleVRe9pqfQeZyKUsxyzhjJGA49CV51va5SWQ+uGa0tuAbMCx1OO/eiwEWposdS17GUdJ2Jde02YilEYi6Vu69Bf6rr4GE9XwBUv+fHv8olo13EfzZgrijVdTHAkhs1N4IoWgKGUo3Kmd0yvCt0fcfRZqOliNo2MyadfHm9UfqBcVCEEsuMkplUG6DmTJ4Cl2fnPPjiC/7+lz/n73/xDzw7e8bNezfpjhxZEt5ZTMzkEkg54J1n6FRFqlZ21e5t6QgiDdVUG8e2waVchZJJO+k1OklrympmNK6W93Mipch+v2O/2xLGHTntSNPIVH1cSynVokodLsQZrNEA3CDEEJjGCcyIcR0iliQW6ZUbnlMipFw5lIU4BcI44YxlNQw4K6SkgiRBxYjOWsY5QiqEcWK33bIHxnGsAaqonVXO9WcNkKtAqKmBl1WJ64vFYZIyl3/aWLH2gEC/Ssl9VYXNDAAsgGuaBdAhcL5K37h+fO3mInJYgGvU2D4rpXz98/6NHs5Yjo7WGCNM+zCjyjklSp1vORVKuzVbuXYehMXi2hwzDhdgfgx1s63nqxaqsAgpVZqSU9GpqzQCV22niho61IDd4Lqe49MbrFcbRQGT/n17ccGXX3zOb379Sz747W948uQRnckMvcc7IEdiTUYtKNroHDkmgkxaEvUZZ+286eSUaoKmdktmLs3r3Dd7i/WOYgopOUXLUoQ4keLEFAMhjKQWrGU9r5ISUtJiDB3KHsqtNAc0uxRMro00Wtm8zZcFHaiAihRth5Vqz+W72hjJapOO0pp1WKz1WOfonKNzhnE7cf7iGc+ePGK3Pcf7gc1mYL3u8Z1hsxm4dfOEW7du8NZbdzg5MXiv6K8YmGIg5YriWU80FuO1+pBFl/ic8+y12xLvvu/npCsnTfx3ux277R7vDHnoMcZjUFF0DJn9ToGFlCqy3BWcUzFUGCNxGpU/bzMlW3bbif12R9jv9FpEbavclUzXGUq3ojcJa4QQR0KKxBLIsTaikG/c5+vfxPEqwd7yp96XD+ukaJDa9BvLQvJynr/8PtCCyPqi82NnR45a9fXecbTZcHJ8wtF6g3dSUdOke6MYssnq2y0G55tbhiMyEsfqMmVUh2BrIGkLc3Uop1wD4gNQkheiO1O7+kUqrRKt4JAqv7jSnBCt6VQSPdBaczU6ZgUBNMMADYWreLhSg3LRvhC1G5+trjgaa1/llLdrdUV8udxTWsVrkUyrhW/TNMkB7W60jdRcNPT7gqLJAuqaExMUFVeO+z3TNF0xeHjNtrT/Ycf/Llu5lK4KIa4HL41K9FJQQ5k30XbhU0q6KQiKSNT3895zdHTEarUil8J+P2oDgIp0GWtxXY9xXjeBXLT0WwyuaKAmBXKM7M63PHrwFb99/33+69//V57tnrParOhPOvxgwCkNoUik5ECcdpQ44u1BjNDOQfOJbAhYs3ErQIhqjTcb8md1VTC1gUNJSrqf2EEpeN9hnUey0c183BOmkWkaKWmkxNY6V4ObVDlIuZZknXUIhpwScQoYO2FtT+kiyQQSEWcNxUOqdIxY+WLWCmOOTCGQ+xVmGHSChYkwjsRpJKWJXKK25w2Fy+1W289aS4yK7DbBcypzca+Cu5ppW7lO4al8T1q1aYFstGBrUQp8lZ0hbTRdQT/qe7fFrSKcDTGB8lJltZQyj8XfdVzdJK7iTQ2F5TVEmH3nWK9Witw08VNUwW2OKjCZA+X21eZzrn7YzVWjre1lhqHbscD0Z7T/+qZ72MhFGk1LA2d1bKsCYhE2m2Pu3nuD9WajwXQpxDBy/uIZ9z/7hI8+eJ8nj7/Cog2FemcxJVJiUMFLjFU3oQFxrOXSXFXl4juscXVsl9q2XkuXRnSdySVjkvIGtUFPIidP8QaTEwR1xwhx0nUgRagBM5XX2DZzaY04qquI3lrjAz07mcNYbeLTNs+KtHOrXUONGEzhig2nvr69EjgpWmiwVui8wUpm2m85e/6E7cULbtzqOFr3nJ5sWK87NpueGzeOOT1Zc3q8ZrNRT2RtNFUYx0BMI3YKTMUyFMH1Cdd1GoCESAqJEBKlCpP3+5Gu29H4ydM0sd3uuLzccnFxydB1HK+PoFhyNqRkSEGYpsR+F/W1AO8yXafrRJgi036spXkL2bDfTVxeXDLuRuIUyeMIMWKtoXcd1ns64yklM02dromT8tGjMZV3+nodbc1arr3XK2hLgd4CXajz+dCcqY3H+irA9XVukSyXQwHuyqopShVcrXqOjtYcr1esuw5jtGV8ojVEAicGsdDoDu39Zn1TKcQYKw+92jWKwdU1P1bnjUOvvTIjtSKi9pCo203O2lRHz1PtqDuL12vDnVplal9sWUUTtIJyOLdVtF8OThWlogTaREyT9ZZMLJOQ69dmBibreui8p6CAYmlWs4uS3xLQVB/9GlTXGCsjtXFUuyZ6rVPO7Pd7Li4vuLy4ZJqmBYh1VRD6+3p8405/y8DlVa2xl0hfU1dSyjxkKdQuWKWKKjJaaaxtjitnxojgvFqiOe/V7uTysg6SQ2nUOIfrB8R3h6wOIGXSlDFBP2MIE2fPX/Dl/fv88le/5NMvP+HkzRsc3V4TTZhbVOYQyDkAyp3TlrYjKThy7LQDn7dY2ymXuXKrZ/HiTCeow1cMzlD9QiuPKgTGitYtQVARQ5xG4jRVMUylhWTtVOesIdKs2CyuCqlEWwdByuQQKa6KKUIkm6Cd/erCEYqi2GKElI16XVrHOI2M4x7f9yS0Tfi43xNjuIKctpJNTIkkRgWcUEtORX0gW+ZLqa4kRjskNfSYw2a9XAjrPfOCs0yo2piCQ6vs9rxDXNxC4ha0H5AFs3jv2XuzLqD/kmD5pWOBWs8LWykHGsJrdKx6T991hGkiBh1vIQRSjIosN3qjigMoRXRbU94Lavd48O08nA9UGL841csNpUV8ZSYHt2tYkWlRzrMxDmMKiNX2z8UwrI+4c/ceq/WmVpsKZ2fnfHH/Mz77+EMe3P+ccXvJqjf0rnqbp0AOgRQmnSfWkA2EHDBWW+9izEybasJQSrPL1A1Ux3OZGwWINfi+U6GxEVIWUklIDZhTiioELflAw6gl/ibQ0QWt8R7N4WdDnuYhVU9mO31ymEvGGrDqIpRTIsWKRC8pGTSqxqIcXDRI6azgJDNNW85fPOXy/AW379zhjbu3+O633+Hs6QNWXjja9HReNRu2ipxEFAXfjxMX2z3iHGOCVSr4VY/vowYGMWCmSIqN5gOjmdjZPSUJ1lmmceLifMvF+SVnZxeErudoOGaz1teY9pFpTIR9ZtxHxnEixYxzgb5PWGdJMbLfa3KUk7puhClqsDxOWjWIAclJO85ZT9epa1OInv3Os9tbphAJcdKr5F6/gLkdrSrafr9+XKnuXXte+3kI6g5rnjQvY66uwXOVsFwNMMWArwJfK0BWnj/al0/HSE6QtAKLkZlyoEI3TcyNUTAsBm1WI1k9jb2B4swcGOdrxgSlNPqCrmdGCikZsjHkilbnuvaYBUDYXEtN0wG2fU0q8CN2Rp3b+Vz+BDmInilYyTg5aLiWAfP1JjMzUJmzvscCtS8h1PNT7WZl4bldDvqTAwrNtbXkcG1zThown19wcXkxB8z/fhyObxgwHwbAdXrG8mh/T9faiebKpWlcRn1NvcjaltFjXfVCrX/LpXB+cTFnSC27bO/RuEFTjHMLyhKUr5zGyCCeOE1cnr9gu73gywdf8un9T7gYLzjyJ0QJSM6EaU/OE95rm17vBGs6pEDnHd4apGRyisQwKQ/ZWrKpnXysBedVBFTt4IzY2vGrJQQVlazdh3LlCwdQJNwYwjTWQFmbrEhrEgHzomFE6RVm9oU90DoMapdTQmDabbElM5gjTFEbLGcNqWjC0lpxd31PDoqgxSmQKEyjci7VRkrbe04hkJMFq6LG7bhnN47EXCi17a0RV83h4VAGW3pxLxHYQ/YMy8xa19ild+hiFH7NT1n8zpUAv7XkbYG/5FxtjvQ6NNRueSwXsOuce72EdRFeLHJLitHrdKxXa0wR4hSVYzdNpCmRQm0WkaBEKFlQnluDNCvPbx6BleeHBmaaogklSw2y9XmltPKjjum5vFiuXMG6oR14z7kq1DGGYXXE+uhEO2mJYbe74KuHX/HZJx/x6ccf8OzxV5gSwVtyqIl7CqRpIo0TJUZSNkQSxQquc0jdxA3La942rZoI1h1T7aNkVsU3MZPUypfk6rHcRJS1NNwC8bIIfIsuFjNmJ3I4d2pjVdfc2iK3gvrzOkndtI1VWlY2kCWj3fiK7vBoUxWhBglQA9ZYbwFSUJRvCpw9f8rZ8yeU+G3u3rnJ97/3Hb749APSdImzQs7KA4+TOmKIcYQpsR8Du91EkkAsjikLbpxw3V71HxS62uGsaQ9kDGxlr57H1jJNI5cXW7aXe7aXO9KUudhsWa/3mtyPgXGv77O7VC5rCBFrHTEUfOehJMKUGcdA2E9VlJlIkyaCVO64lYKrNy+ZbA0rbxg6S2fRhhU5kqJc84F+/Y7rdIqr61RdAGtkqUncIdBtD73KaT7MkeVrNA4zrapY541pa6UIJUWm/Y7L8zNMSQx9R+cVgCpVxIaowUBL1HONKZyIXutKM5CkjYY86jOckoJHDQjJOauOiaLdMds5aOchZ2LSpie5FJxjjjGIKpGzSPVzLjVB1ORi9p23h6ZZ18/tcl9oug1jEk7KfE5e9bhWeW/3AdUp57A+2XzopiyUK42+Uil6bhbPb9euVB60mWGBwjRNXFxccHZ2xsXFxUzL+PfjcHxjhBkOwfLvKvM0UjocJmprrxuC2sZpRx8zDz6t5KhHcEOQ1aotYKvK2xpT28iqJyvAfhx5fvaCcQoMXQdTwaCbmhWYQuDp0yc8/OpLPvz0Q56ePaNfd9hOCHnCO8h5Yre7xNDjbacuFk4N8Z1V6kLJiTiN6khhazvJvsc3/p3RYEAVq2rnJKXMLTTzIgu0YmbrLQXV04w6GdHMvVEWBCGhLbBbmNJaEAN1I85ISVg0aC5hIpQqsijgOsfKKx85FasCCRGMdZjBUlLBFFNtanLdWNU5wFgHxlQelirW9zHw5MUZZ5cXxJJrcxWpYgmZJzC5KA/2Ch/qalWijZH277YIC+V3LvLXOfGHalkNnqXMqEdpUOfituTazUv+tdKYiMyL1oFS1JATDequ8ndfP0rGqh8oqWizkCky7UZyyBowB0XnUoQchZIMZAPFItSOkgClirKKdpQEB8VRsiVn5UGqDWtD91uV6oAEXWkFWxrP+VDeTLmQVe2G71c435My2CJsL7c8/uorvvzsMx49vM+0u+Ro3Wn3uBgRY9WNIgZymFQcVGy1rXQa4osGRTlG4hINr3OxlJYYWbW0FIP1Ht95nDWz9VxLXlvSZha0oeY6XpDq5gMYUWcaIwdbNFBubkwYl9U5p2QN1kVpZlraTUqZqaJfjK1Jhigqv0hStcOZaGJdigaNSYN8YiSHCZMTJif2lxecPX/KfnfJ0Hnu3L7JZj1wES9JKbDbRraXFovFdw6xHeNUmMZIShBKxuwnRbengLWC946Vs5p0LJLQlJRjOY4B7z0hBMZxZJoCYQpIpVPstiPeZ0JITGNkv5vY7kbG/Vj3FEvO0CddQ2MshClp0DyqiC+HRE5BAY9atdO6n1YTnQjOQOcMvbd0ThgDTNXx6HU6riPJv2uNmpdCFrUeOSS2cBU4ODz9gC43GkcLmBd15blupGunJmrjfsf5mRDHLZthxdFmxbBaaXt30epzEUMRgynmsDaIorVZqq93jkgpuNoDQCvNpVrOHgCbRp2w1eXKWY0PjFFnmljiYX82hmJyBQeaVqBaTJpDwN3ilma9p1/yEJxSWlLcwCP9DkbUraWhwQeE/3DNWvx0hcN8ba/Rz2NmcFHMQhcG2JSqN7nD5kxMVTgY1AXG5gLGEULk8vKS58+f8+zZM87PL2Z9wL/HzIfjm6kYFkjhEmG+HvSkdFBxLifoocRQyc3Y6guqgd80TfNkMEaYpmkuebN4neaiYawFI+ynkWfPn3FxecGJX1fludB5Cymz3V3w8NGXvP/R+3xy/xOSJE5vndIPHuPAeQvFEyfFdYyAtwbnfd2U6pJa/TkRcK6rm6g/ZIMxzd11GhfROauiQ5gbu5QCxmqb365zWGfnSY0UxKgYwFoNwNvEK7lot7EWSNLuKjXYjlg0cy1FEcKWbPuu8qQ7x4wMWo84j/eW3vZIViHFNO7rJBFFp4wFUxcohCTC88tLPv3yC56enZFFA4BUylweKqVm5aCI4uzmW+bPrcvrsuOULJBhLYG3BaCV+uDQTOOwIC+RZWrAUcckstgMWpmdK5m9fsaDyGK5aL0UlLeP3u6vC6ZeD7nyuNfl6NwAWZj2E2E/Me1GSIk4JeJYiGMmzgE05GQoRZ1itBE1GiQXSymGnA05i3aFVmohJmaM1SRNFJCmFF0rUsy17bGCeApK6ZhvAl8VvJvZhUWsw7mOENU7/OLiksePH/Hw4RfsLs5xtnWtzJja6lp9X4OqB6ujibTuXRTtgCXqiywmYqObKzhaHTbzhmkrN9h3HV3f4Tuvfq4ic9fdkg+BPzRESudDkcolrHwGY9VnWaQhSMzC2ZILRTI5RjKCyUIxWopWANmSjAdk9nNWW79qPwc1W6nBTymQU+2eqEm2CqPVG9sbIU0TL54+4/zFc46PT6rdl4qxQxhJU+LsRSYHi+86jOtJ2VYfeotyw1VUTAhMkglWKM5RKvBR5qQEprrpe686kWkfSCFW67jIuJ/Y7/akqF33VMA3Mm5H9jW4NqYlbYJzRvOBRdCsrhfKyZeSKCI4bdNGQZTuZ9QVyVphNXSsx54xZsKYDm2MX5PjdwET7TgAEdcqdNcqbtcPfV4LhQ8Gk4f3u/qeM6Kbm7hQxfD7yy3TZSb0l+RwpK41fYc4qwBNAazFlIKxXpOztifU9VoDy0NsYJGKQtsWr857gFRqhFosqsWkAbThiXKCc4xka3SeyWHeKpqsn312TSkKpOVURXRyODeZXMGwSl1pKUMF5Vvn2+vXbNm9bwYmW4K7qOo3RNp7jUFybQ7WzostBWerWBJRh4wpEHImVP93WwpiM/v9xPn5OU+fPuXJ0ydcXJwr1alZWv8z4+H35fhmPswpHYKPRclgeQHbBW9tGlsgkSvCp1SLRifQ2mIuumHGFCupXe3VQgg462buT2nlhCWajfJmz7cXXFyckU9u62YfM73tmMY9jx494P6Xn/Hp/U95sT+nP9F2z13nWK96em8JpmDzGmdV8d05Wx0x7FwqXWaK7d1zVkV3TDppUw3YrPMor9DhjC4mZpFwSPWddp2KBqcwKWeUhDZHKFASKQVKVKsvMWCLpbUIZ97qBUqCPCGljuvhmQABAABJREFUR4ra3ZWsobq1njgFxt2o5u7eqXDAOrIxOD+wWnc4LPvdnikV4nbHfgyMU6AguG7ADSt1AjHC4xfP+OSL+zy/PCdXVHkBRRzW3vn3hjHo70tu1wLTmJ9mTMvoD8ywOelaTN5lQGuowspWqWhjpSrAW6BcQcMryHJ7jSX6ciXDX34G0BJcRVQazCC8jNy8DkdnPSUJu4s9cRwJo1qipSkQ9lED5rGQJkhRyElvJVuabV8piihTLCUZUhRShBhAnC7Kxtbg2lgwei1j9VxX3m2ehTKH5FoT0Ax1LhZSERCHcR0xJrb7iRfPn/PVw4e8ePYUcmTVqVuFJVerxEyadlohCkEDW6PJrCLPkVjntzFZrS4LFKPJb4WR9JpbwXiL6zxd19MPA33fKS8TNEuotCylyx/0DSJSkwVNwuexY2x9/TYftIJkad7EtChEu3xVB5oshuISxWb1lDXU6pXMANc8g+qGS9amEWS1VzNknBE6a9lXf9wpJs5fvODixRm978kx4a3DVacdSmK/21MieD9hfaRIRxHtWOrEYIpAbD6wkSAZsQ5ch3N23hcaVcvVQKYU1VDESVFhycI4Tmwv93gXGcfAxcUFl5db9vuKRIeAMVkDBOcw4ioIUQghzwGz1A6eyiLSikURS8qoS0PJjFOAkum7jvU6s5si45SJ1V/gdTmur2cvo8pXRWr64+UAriwXXH3mopK3QFavRdlLfi4saJyIAjylkKqDjIkTnRV6YxCOsPTEFJlSrZp0gvMdOXuFWVqSWddcqbFEG0vW2to0pMzzaonMtqC5cypILymRkqlUyBa0avySUyLXZD+jj22BqckZkxKYAK7TRj20OCipIwd1zy8aRuv9qfKJX6b+LSv4M5VxcVvGW2rDqL+nnGtF+WpA7ZzDI3SlEFKmTCpCTmQcKgAcx5HLy0vOz885PztXc4XXuLvl/6jjXxUwXy3NLFScy4lR6RcCB15N/WmdraVu9TvWFwJEhX7GGm3bmpJuahUxTDnPPsy5ZpOkhC2Z3bjl4vKMlALWaNknRTg7f87jp1/x8MlDPv/qPpdxy52jO3S9llGP1mu8gX2ccMMKYxRxNgUVAtb3K6h5euMv+eqMoa0opbbTVJTIOo/ver05p0Fqm4RFFwxTEWzXKe0jh0wsiVSatYhytqdposQRKVHRrUoB0PNwaOWrPsSBkpWL2OgQZJ1QpQYkRizWdeAsQUQ7hvmO1fqYlesZVgGsYyqFy3FP3O0gC75fcXRyys5nxpJ58vQxXz19wm6aVP1eBY0W0Q2yemqqe86h3PSqxVuDlObXWbf3Fp9cQ3t/V0CqUjRdMOdmL4cnz61MmwHXjELLAdm+vngt3//6fXXIKrVtHsJyJch/HQ5rOmL1vS0pkqZIDoE4TcQxkKZUEWbmIDjFusmWGlhmQ8mWki0pCTGAsRooY5NamFaPXjFZfYJLtY7MamsUU3XmSI2iseQ1C0W0LTZFiUdgSClzud3y9OlTHj54wMXZC3IMWJuVeiEJ4sSUA3HcEsY9JWqZskoXNYDK1YaqRLX6rVUlEeZGSKDjtKHKfT8wDAOr1YrOe6yIcpgDUEzbGg8bWDvh0jbKQyBeWsIlrSpiDk48omixw5BkrsvMP00BK4KvuoZktDFJsUJJLUDUroRkpR4oulxwAr5SEFx11rAIkiGME9Nuz7jbM42TUlCMUYReIIZEngLBZ6wDcWC9wdQ241Jdi6SKHSmBKJHRFVKlu6UZQVOKnbMTuRS1rRwnbUhlRcVIFxdYY9nvdXO/vNzO1qPqRFArFi34oWh+kIoi1VEFm5XJrR0rxWoHuFCroikzxUxGkbvVSliPgf2UKijyetenr4NbS/rZYkW+/iyWy24Llq8EzTKnefPjlnqOFieUlKq1YJ1/rdyYMyUGpv0eP3RKUUpJnXsk44xXP/MYSU61OMrbN5AOtE6Dmas/FkuuSj2zSAoOdIZqV2cslEROlpRiFfYuwb+IBK3OtPPUNCzGxoOeqBQEp64auXlOl0NSWKCIAjvabozZCeg6ULOs3r8qYG7XzsghGZiBokWQ3eSOzdHL2ji/V8qV/11gGif2+z37haVcu9btrf/9+FfYyqX0CsTtVcFGU2eWyhVzh4YezXlhGWw75w7Bcs5qvg+IOXgeu2qpIrV8FqM+JsbAdrvl/OIFU9izsmuMZKZp5PziBZe7S15cvODhs68YmbC9otg5KpdRAFLGG4dIxhaU65OoepkmPmDmP1lfJ4m1GOcwzuNch/Mdru/xvsc5jzeVo1w9ltViTrNj6+zcUnuKgZC0JKRdEhc/U1Jec+NP0YK3BWorRc3Qa0vdgnK6sKY2SshYY+m7HtcPBBGyMerV7DzWdfTDmmEQXD9ghgHxDmMt2/MzsgjDuhDyxLOLCx48fsbZ9lI7Gore5i5IBZBUF5AallQ+duOCtoWrlWRn9G1ecK8Gx18XuF5Z+IsuZKokru9hrlKCoIGidRW4VjFZjuv2XteDfUFbErff2yfLaOBiX7MWukYs+/3EtN9ipRDHScVxYSRNjfuZNXBOSs/ISc+dKVqmbBSMGBTRMzZRpFo0ilBEG2/YZGff4FwONCa1Yay3qA0ttD1xG0O6CelYssSUmUIkpsxut+fJk6c8efyYi4tzZNypB3EO9F6QNJHjSJ4mLcfPgbLOS1sdelRcp9fVGKmtvV1txa2fue97Vus1w3rNsFoxDBo0e6P0rxLUh7hkU4V1qmEwrWmRoAibaAKAMXNjo6VHNS3xKujzpVSubQ1ERD+bqb7Vs/OA8wQR5XtXUCFVYV9JSc9k0eqVlYxY7dwXRqeBOZWbLRrs7nd7Xjx/wfmLs+prK/XaZ6aUMKLOBbY4HBmxOiasKGVHBbYKbOQUiEXISalfTR+wbIQlouv9OI7stjumcSTbzPZyqzoLMYx1c5+mMLcILrWKlSsw0Lp+tuSDNobm5hMFsZaMYT9pOT6EkRyVqmH8gHVGUebVit0+VsTt9UGZrwTD15L/l/8ui/WwVifmwHm59uq/W4DaVsCDD8XLn+F6jKBNrXQeeuvIzmn1NVaRbBVlzs5GRZHTECLjqFVSI666VtjZhtZUi1XvXQ2YjfoezwHlQffTjrl1PJbiLDnZWeALUvcPBeBUI9D6RpSDmN0kXHZEdF4ZMRUwrFWzckgKVYCu1LJSDgCR0kfKlUD5JWOFqvFoSaFWW2V27aij/aU4jMqpMEa/a7OZTPX6ppSZpiqejUHZAPO1fjl9+n0+vlnAXPKBmwc6P8rBFWPJYVYOarOyyThbSCUxBV3klAtYO/DUiWdE0Sot0xYV+Xmvyv1KXlcBWlFbs4oMkRK7cc/5+QX7/Z4b6xWUzG53ycX2jGfnz3j64gn7uKM/7jFOgMRuu+Wy86y8Ntww3lZUtnJoqx+qGKssLallXFcbLHSerl/RDStc11fkacB3fe3aZ2a7m5zU9qnAPGhLRUBTOPCUdJAncg4ICWdQu5ua5okciAuHpAQV+JjKp8oRwVROlXKpKBlDwRvH0A10xrDNhZQhjIGd7LHF0nU9vh+4dfsO/WbF8ckxX335Bc8eP1aUkYnnL17w8NEj9iFQjKJ8RWogjMybV9usxOjmJLSxwrxwLQPmNqD0dcqV9Xe5kNhaimvZr9RxqAhDW8xrdl1AuZsHOoeWyRtPujqcVHeDUj+zctRoUXe7R/lolZumd9dx0b5B2xBeo8MA427PbrvFWyHs96RpUovFoChPjtrRLsZMrFZz84Iqgs0QU0FixkwJRPm2yqsRsqhPcUsSpaKgM+8/JkKMhOnQAS5NWSnS2ahNZFTEUKxUYdieHCNhHDl7/oLzszPCuMOGkWIyUSJeHCVOlDBq508jmGI1SIbZGs7WsrMR3XQ739MNA77rZv6/9dpgY1it6Ddr+tVA3/X03iMZ8hQ0nIqREqsItga8Uj2s5/WuBuDFmvl8UIWzimBV9kRJ5JqYaBBRxYU1ODCVJmErdc06DQItmSSJVDIxBMI0kqNWnmxNGK1oHuuddijtvAqZcwKTIYWJF8+fcnF5wZPHjxj3u+qAkymSSDkwOOUNC7pWOmtqq2MLJCTXdSEXiFmbOCRI5tDIqHFQWxOknHSfmKaJGANJtJVwHFUs3pKrUgol6XlVEabMwktyWw9M5Z5b9foV2+JBpFIxdNztlZsdA9apH7Nxuk5539F5jzOW1+mYecPX/vYq8KEFwf98cLREafXf860sKW5qM6q/1mtklP7gUH2OtYbOO0VFg3ZXVGaFVkRcbVWfkoobYgyMexWsWunpTK2wWItJGqhqq22n7eIxcxyi1Ztl0Hz43O00GdTCsuRqy1YRXFOtW2Xp7lWDVxoKXZTGU6r38xIMnMXM1ADZmLnRWSlFP2tDfVsgXBYV6VZmqxW4VDuItoDZUPscULT/QJFKBal/q8BV69ngnaPrOm2aYGrnxKyOI9qNV74hpPz7E1J/s4BZtI2uSKmK1Rp4XEMDG3inA9JUHple4BCCDto509fBYrB6kZOWzu0iUE1URC9nJEWsqG9iQxFKKcT9yNPnz9leXFL6E+K0Z7+75MX5M7786gsePX+EHywnN45AMiGOpBzY7i+wMuCtYG1RhW4peGPVZso5smimaozHWjW4t76jW60YNhtW6w39akXXddomuqGsBUoUYmoLtJ47ay2+7zBWSDESJlM33cwYJiQHCDskjjg1pIQk1VavKn9zruWe6ipiQMSTYyaMI0jGOA0QlLGhQUMe90jf0/cDOcM+BHbbkfHFBc+co+sHXNfhes+wWvHGm2/R+Y5ShP0YMecjuSRCGIkpanlNLGK6mrwwtwhNRpSrakylLUgNFGrwX9XJ0gYNFZGraLWpZSa9qwa4pWipF2phtb1uS7wOZItS/1dIc4BNUb9YSsFax/HJCSc3bnKxveT5ixdajipK6XDO1ddqC4jM19HbRZkMZh5Zqwq8VkdJbC8vmPZ7IoUwTeRJ/VFLbB3/sgbNOVVRnp6T1JK1VG8xwxQVPRWjlAipgpOidCxbKza6QWhpUMV/6qCjbh2JMgkEi4QCQb1ZJWeQTJx27HcX5DgSdlv25y+Iu0ulC5C0c2YqlJCQHFUAI4LSmGrDkKz85FIFrs56nNckeLVes1ofsdqsGdYb+kETYd/3qrHwFuNMFa+por8hTrmVkkMN/KN6L0umdi6TKqSF6hGpc6GVP4GYtb00FKSE2i1UK0KWqgUxTZCs3OpcEdZQaic/DDmWWm7V7naUhLNV1Dw79IB1Bjf09FMkj5GQAtN4ybPHX1LEcvbsEdO0JeXmU59xYqA4DIpyd52j7y1dJzhX50UWSjBEMYSiiWnKkEpFagvqp5sSYV+768VYKTpRaXminvLRNyeMPCfnFKrAsXZNLdWVKNWKHBZvHZ3zmOa8UhcVbbairhvjlAhRUUyPQVLG5Aa6GqzY2XXhdTlawPwqGtvLYvz6txZIytVK8iE4rkutLMXblT982Pb0+RVYE8VyECNYKzgy6sIq+M6SSyJlwZhmOZfJIWkSVgSTIQYdL6kUkgjRohWgkmq8IOp6YdQ2USuICnpIE94WQWqP3VIFsM2vv1ShPAJitZGPUEG92RPd0Jq3mFJmCtlSt3VwCOGA5sydUQ+WcY3SgVXXmFwrKymqZ7smzY3HXOOrpAF5SEpjy0V7HYgxGKdjs6AxWqv65raDycGZy1lH59RgIEuNT4qaEsQKoml+Lwdw9JXH70+g3I5vZisnomKnerFLdYyAV6NqJdfyY1GKQ5tJzvq53FjqhZG2chdVoBfR0t8+T7qBlGb3VDOyOnltVkukkgrn5+dcnp+TT+6Qw8Tl9pzHT7/iy0dfcDlecHrzhNMbx5WjCN2qw1SZrDjlITvnWnSLWIcYRWzEgPc9vhvwfY8fOrr1QLda0a9XrDdrur4jxcj28pJxt6ckxXpKFkKMOnCtwecIFgbb0yx2LKg35XaLJVDCnhz2mBxVlCBCqoKVXBsT5NriU8+xItitq2EWRZSzFG22QmFvDOTCtN3iuhXS9YSU2O737OpmVYxFnCrfb966xdtvv8ONGzfZbnecn2/ZbSfu3LrJo2cveD5W/jIWazpyKdSIWXFYKeRK0yxxXlZ1/ZipDjNbQ8eVkTlgbuhIqxi2lsQLbKAt4bouoWh6C5ZbFzpKs+jTpaxl8bdu3+BP/uRP+fFPfsJXjx/zy1/+ig8++oDtbquovbXVn7MuWDkfOGdERRTKgt/XeNuvGcKcw8TF2YvqIJC0qUdUYVipDTq0Hfthc/3f2Pu3JsmyLL8P++3rOcfd45KZVdXVc+kZXG3YgAiAoMkkM5jhCZCe8MVkxheJH0DQi15lJvFVoigDZTCQIGAkSAiYmZ6Z7p6urqrMjIu7n7OveljrHPfMyupBNRo9XYM+ZVEZGRnhEeF+9t5r/df/0nWS0LQQrB26bTSjTZT6LfduKL1iGri6+q37Cwqz0jK0aM45k5dMmgt16dRkadnQsxG0uXY6heV8ZDk+0fLM/PzI6fGBuszYXjF679M6NXWi7XhjpdBEzy8ujbm42QRBk4eBcRqZpj03Nzfc3N+zv7kljiPOBXGkoLG0zJyS6Bxqg1zpKdOWhXw8Uucz5fRMWU7QMq43HE1i7MPVoaqY8nqwVX3OGsqbNILsW+sIIcq4t8oEKbOoDV5laQ2XEqk1ltylIO8wn0+cnp9I6UxrBXohess4RobgFdGTwsEPnjhFSu/YnMj5xOPbL2jGsJyfhNZSM6UWOg0fBlZ/Z2cV3QtSLHtfhQ9tDa07TBG6m6FgG6Bx43QjepVFAptyzuSSZYK4+uyaTveWWoQvKr2xvZpQGkwzYDTtrRZq0eKmQ/CBaWjkKwuvvtIPtPkTO1BLQ+wzc6nYUgCvXvQS8PRtu1aKy4f0GO9rMlaUef337Q59p3B+D7G+wPWKeF5E2cY7TcrTh7I6QUSEoMZ0nDf4ZikaomV6o5dKy1nkrh1tXArNGLDybwsVrCWoiZPzTsX1l0J59Y0HdO8CYzu1iLC3VKF6SCxCk5AwI0W9PD8a9nN1VrE9K1cD0KuCWWhkF03XxXvaEpwUHjIFVsS5y9leqk7YStFzTJ+lK/GfadB1TVQkf2J936gg2VqhEVkMpbetsLZrxLh1Iq61AmQWjDQUsl1qwdy2huIKsfr1xc+Z9LeOs98XcG0LS2GS1vt28wCXEb25sgq7WqzOee3i5SartcpjKPrStGhprSl/yYK7FCnL+cTx+EDvBWMbT88PfPb5Z3z25Wd0B/evXjDuR2rLuChBC86JOr31TjdinyZRsToiNZKoF63HO0Fmh91EnAbCNOCHSIyeED3WGuaceHx44OHNa/KSsCZgjZPkNLXMGcaB+BQYxoGcEvPpRCuFNM8s5zOD7dieJNOei1G6Neolqx14KY1uL3Y2UsA1rRFF9Fhp1J5IKXM6njGv32BdAOMpxiryJ56N3RjwGuAQIufTM87Ap9/5LofdjpvDnuV4onz8MZ+9eeAnD0/Y1ae3Nky39L6Ou+xl81xnXoqeNS1mwIjASJH3S1G6oiMX0Yhh9cBVjvB2r3F5X8xp9SBe77sN89DHUuTLWu7u7vjrf/2v8Tf/k+/z+s0bhhDIaeZPfvhDTvNMb2ULjei9bqNlSTjTcVxfKSaCP1vrBF39Fl3Lkjg+nwRxrbpmW6OXdqEntfV9JAIWKTTaGsKDoMC1g6/9CnDuuGoxFWy2+FClmLJX98M6ZqyVkjPLUkhLpi0iLiy5UlZaSJPi+vj0zPn0TF7OnJ4feH54Q01JDztJC9OfUm+LCy/Pbnw+j/cOH5241UTPMAamaWCaRsZpJMaANYa8LBzzSX7OXjmXhXMWAaEUzF1St5aFejrTljN1OdNrwpnOYA3BgXdSIFjf6A5Ms7JurIAQtXVqMxgrj9utiIGtddqEWMiVXI9quRUkcdNYCoYlF+ZcMVb2o1oKJS9yz1qZBrTgcaYR3YTBKporyFQMgcVlqW1aZTmfKL1TyiIInO7pDXUBsOGdwl/2q77tW1aWuQLphmYFXBGcX8OTWlGe82r5V9VXXkOYWqUiRQ3Ob2JI6AhdSsOPGxrC4qgGmhWRaAiyP1pnhO5Xijo4QTcW3y21eqGuGfndUsn0ZcbaKF7fzuF9/OUuzF/w9X7R/LNE1D9LXH35JFjBivUeYAUQFC1eLVntGhPdGpYqU4Yqk784DDIZUP658IE63QiP2WOo1gotyllKyTK5cY4pqKuW0++DCmKtuLQ0IzaDK4LaSxGAznScg5zB20qzWjBbERRLjSKN5Jp5sE4QeytfdbFQH/msTd9KHQzOs7pZeOu0uO4iLmStdGTtLykJDUmnVRUtxJXScQlwaVuq7lISeXXtsJJWWqukVxYFItAJTDdCywhO1o+1TTUoAlKKPuvaqefXhfL71zcW/W0Fs0ZOwgcWXl8XzqrwRHl6Znscoy8SRoRsPnhiDDK+1SjZCpeR0nVnez1KAoI19JJZ5ifOx0eW+RmTCks68ebxNY/HJ+zk8eNA6bIheueouZBawVsJHzDOK6osgR4YOQKs84QQCT7q2DEwTGIn5aK4ZaR5ppbK8fmZ8/FZ7NnmWQQyHVJOLDlhnXCiWqtYY1iWmZqyJoCBt4Z98IxOjgHjjLpZCY+v97YJc1a0duXt9i6CSlAahi1QHal0Upa30qxYKDV4eDpSeieMI9PNgcPtHbvbO0a/x1JYjk+8/ulPGJ3wtodgmcbIaYjEGKVhMUbHUgVn1sNTqRembRiwteI8Ii9lu/o8o38osmFVgGUvY3u4FDnGmCt/565F3CoouaDKokRe6R7yPUoWQcPKQ8s58flPfsI/O515fj6SS+Z+v+d0d4MzUGqmUtRGSx1auqCJ0zSIFWJb/bPBWIejfeu2meWcOZqTTADaWmCyFcmsa72va31NrdQCjk7vBlO7NGgNGpXa8zsFswsW7yrOV30t5fuvB0gp4lSQUiEvlZo6rbCN6aWBrjTgfHzm+PjEfDpxPj7z/PRAbVnsyqqEqpiVsG4uW78xVgtH8ScN0eOCJwyecYrs9hPTNBKjx/TGfDzy8PYtx+cT53kW1LM35pqYy6IF89odFEgFcsbUhKkVRyM4w+gt0RmCN/I9vcU4g/EOG6xOsozsexXA0XymOrMhZqV0FpvJuTIviTkXKpbaYWkiwluKivG8xJ07FS9OQ8QNQWzVrMG2TjDiV1u1OTImbBxk7yzJQEoLucq+76yj2XfHzmsTumkCWoNaMNYr2md07QjY5xW9uwijtOg1FmM8vhhyEcRNqBmNUhSgqdKYWZxQa3qXB1Wv+N66OGJk5Ht6SWj13uPdOvLPZBqmdt1jpJA3BnwxpAqpipi0lIx1ltZln1uDsr6t1/uo8nq9D3i9/3nvo8rvfC5fw3vWGkGoMlfobBdwRcTB4krihwEXBmpPytXv1JyFh66i+qCCf+csOQkn33pPMEF0AEbpEwrOGBXzWaxMbYpQdYQuKDQ9TMWYAs3ibKO1os4ZdXs8eVMXDtzm3rOGWcG2xdB7J5fCPM+AGBk0K3tdjJHuZZ2UUkhZ3GBKESvd2htLSuIpXgRcK1eR1n19rvXJbnRyLZzTwqImCtY5xmGglMLg5SyutW1n6op4XxEZxfXHS00zxkFQfr76ev/6kusbi/621DMlvMuL2N9ZbCunWWVfXEsB1mSb1trFcUIXg/XSFaWUKL3h1DWjI0W2zvRxZl0YyMYIjGPg1e0B7xpffP5j8vPM26fXPB0f6LYxHSb8EJjzrIW7EV51KzLCULcI1q7YeYxGc1on0a/eO5yXjVcOXeHM1bTIzX6eSWnBdDjsdpQQqClTcsZSaaWzzGeWNHOez+QlMZ9Pmg4GwTn200j1nhw8g3f06OnOKoYi4j2niLdxGn+pN7iow+vKbAEjXKbTaeE8J85zoVZLUYHW8XSmW8fucGAKBrsbcG3EtYBrctCl4yMPXwaGYcLUgreWnDMpZ+1qLZiq9ZSiC2uHepXha536sq5Hbe9a3F58bg3Cq1qj06+dKew2FjPbZIL19+yrbZ3cIpdyfON6YFDPyr42bZXlPPPTn/yEn/zxD/n888+JYxSz+VYZnGE3jNQqojLbHdEFTYMrTN5TSyLlLMVcl1EgTSch36Kr5Mp8TmIJqPeTNcJfE+55Vx9gNqTGWKUy9XUDNpQuhbFw6xq1C5LkqsVWsNngXMPZpj7bl3FpVb5qrRJhnHOjpkatwuWtOmrvXe6RPC88PzxwPj6Tl5m8nLE0XPAymqddHHCs2k0ZoWZYK6PJEAI+eFx0xMEzTJFxGojRYUxjnk+b5+/ToyZfNTmoTnlmVu90inJSahPRYxOry2DQItkyOyPpcdERg8cHiwsO5+3muNPRh9GQlh4CzWuR1tjcSc7zwvm8kLLQXwqSRJdrE9s57wjjQLMiWoxuYBo8u0EK6OAdk3cMus4KYHtDfJmR58ZJSmkrQl/yzhFjlIZT0XtrndDAdO2t9nVSLK3NlZwA1jRhbxiD6xbCavvWGZqjVE8tgVzLtqayCv9SkgK6d0WtrWLKXfzq11B2o/tjq13Cn/o6w3JcXIQ63lu8tzgnyHNrnVgcuXhsBpKhZxWeCLYtVZH9dq3rzY6Md4vgr7P3/ND1frH87tddznYFm1l3gw3Qeq/H0JkPvRtqbeRSMYMhhkhVdLjXypIy1SyEOBB3O3y0eCuOPHnlD3R53bcgkhAlgEd/Du+8CPebfOdarvzeewEyGE+rRlDvIvoq52el3vlNTLsKBVtVX/iryfnaFPQufsY5iVVurZViLrZxQ4gYIGdx9SpqfoA2rfOysKSF87JQmgj7amtX9dNquWpoBkqrzEmAuKZ1wTgMpGVhGkbVgRliHKRhNZf1s4Ka1lyKZu+90h6/Xff5L/P6ZqSs1mnmKmmmrSPwD1tyuZWnrI6k638rD3S90Z2XTn910Cht7QL7xnhqtE0RLRunjuYNUDOvXr7gL//2b3C7jzw/v+b1T77gxz/+MU/HtwyT5+VHL7i5O1AfC/Ny5nQqpHkhBI91ARsGcXKwFusMGLWLc/bSkRmQ0BCxxOnaKYrKX7xrW5HQAouRw9mAM2pHN0Rcr9jqsN7xdMrYnPHGCO+4i5Dg2DvFe8o40MZI805oGTr2JAQ5YKuMNCXSutA0uAAjgQBiz1cFHTstLLkCHqOWPDsvAQxTdEweomm4mkRs6C0dRzo98dAqh8Mt07RjN0VKSZznsy5k+b9V1wNZa3YrlvuaNLaKPG2XQ6yvlDYpnJyRgRo6yrrmjME6ulLEY30x9I9u145Z7k+6vboftx9KubNsI7Oqr9VvfPIJEXg8PnGaZxyNMTgON3tBNozFW/DYzVPWZbE+KqVIs5QWlpy2DezbdNXcyL2+I6R1RtLaxPebte+hYci9YewFqcdIcWJt1+kA2NYoDVxt2GJxRVLorK0XxEaRytb7O6lWW/pfufx95VAbOsZ0KJnnhwfm5yfh6LeCNZ0QPN0UidAu4ighyGLHGSNx9HoY+uDxwRHGQBwk8VLEPhqokLKkXaVl8y3utdJToiWxqisaJ95yo2f5OW2T5LxgIDhD9IIsR28pxVNiIBRHKBYfHK7KKHQtmFvXH7o3WlO3nS5Ie06Z87ywLEkQOgSlpom7zmqtNXjLFD3jGBiHyH6M7MaBoGPiaRgYfJTiKXZKM+RUMK0TnIxtxQlA+dPO0xHf7FILXfc0mZhdpmASoCTTBsEe9TVw67zH6noXhL3rft4Qjcom+quFnBJLSuQkrhhV98h1N1jfX52MjE7arDM4b3DeSnFAVUqVhEJ5b9Ray8vz3julekrxmKVrCqvY5dUuITzFXrzivy1X26zZ1inf5ef/UKH8IZ7z130uyO5e12mUftkq1O7d0pTCI/WqgiRdvfqNcGhTKpSxMw2RYCw1FwmpOZ9JpTHtdzgXCJN+fRPrTrTACyEwDgPTuGOMEafr1CpCvIpr29pAt6q0HBEatu7IFmiFUpKCAVqb+CA2sat9rHGsQUpF/eJ7Xx3hzTsc5s3nWR/LGMMYIs1aUlJbxJw2ykUumSXJun4+n+T+f6dglnOyr38a0QglbSzXjIoYI8t5ZjeKCcEwDHjn1dJSKBlR6SGpi9VtyZWas4YZtYsV3a+vr1zfmMN8TbOgf3Vccy2CsluJpwvWmI3usOabWy8oblnthXrTos+CUfNvs9ZHIo+prW9UDmst0RsGB8vxkTdL4tZPDAPsD5HvfPqSNnZ8hFwWWiukZSGnBXqXWFcXhPPnAmY7AOzmVwioSr3rvwn6WovwlaounF4qFOFh1lLptWBypi2JmhO9ZuyS8KXKqEjtoIL6ytacMG0WD2jnMbXhasMEt1pBK6gu45fSumaTGBkvWQlXMdbQ9MCZcyLPC60ULWp0mtkAZ7He4KmYkuh5xpSIaxFTBakrtXFKC5SMp+NNxDpLzukdz8ZV3Hmx75HXT4rg9bVjC2y4jIhEELH2Pis3XV7v9zh3V2IKuv5p+ra2L42ZbK4CjioSoI8n7wpfPuXE5z/9jBfjxHc/+YRP7cecljOn+cycF25u9gwhcHc4YOm41ilp4fTmLTFXEWrSBaHNM0vOfPnmDQ+Pj/xPfPlNltaf61WzCNIwXcN6UHsipQWxnodG5TqCQtd1H9Bq2jk5KIw1guY52aCts7iCCk+u3+T7X/iAur+se4FSkKry9k1XKzSEUnB+euB8fKK3LAWxFeV807RB43QHMmwe5s6J+MZaKZacs0Tv1DGi02uhSAQXpneis5gYBT3undK6xDsTsaaztE7ShqN2oWboH8BlP+wKHGDq2va+s4/ithmSpBqqcr53A9ZguljwpST8zVYbtQjSL/xgi9PDtavncasZWsAZ9cI3kqbnvcOqPkCeUxFcWTK0qq4TIGEORUAO5zYBk1nXq1ndQRq1FUmALF3wXuNWAxAJdLEWdO9chZ/Oq45lbZyUn15b1QS4TM4SXpJSFt/lUtVJtG38TGPfE2c5JyCID6DpkKWAreC8CrCiU1RN4pNrreRqwDWct4RQad1SqmFeGo1K8d8uMe/ajLzvJf8hdPlDtIz3C+UPapb0FjZcCuw1IMqwpvNeNE+2N3WmMOTSOC8Sbb4fIkOMYmFZJUVySQJsxGFk6DebDaKzBhcC47AWyxPTNDF4jylFtD/yA+kPztbIYzqlJlJeSAlSknj0XjJJnZ864uYTfNA8BUVfrRfaRVZxsgJ8qG1kKWWjOayg4DSMUrR6z5ISzlqWZWGZZ87LSWPdhYoxp4WcE6dlERFgK2rzhuwBVppn62TE3Y0IOksVR5neIcwzZUmUlJjGCXpnGkd663gva6U2GEJiyVkalpRZ5pm0zFLn6GTu1yXzV69vVjBfv6+nwNaVqkVYv5wOdI2/pK8HlhShVpEJs6qWQdFH4QkZpxGUSg4yOra4iArb5lNKF97v85vX/M9/8iN2zfKdu5e8uLnl9m7HXxl+m+n1yBfPj7Qys5sitURKXkBHz6vArGnBh/WEKJ6k6+gP63HBEoL4ebayyMHRmqSi5SK2RCmLI0YHB/hupBg+L6TlTK2yoFtOmDkTK5AyNlf6Isph76Q7L0smAbZ5ujdbwQFG/J3RKO4uR63zhqqz81ySoN+50EqRg9J5WkO8bosc3HEYsMMoHqa9i8NFKTSrDhgdcp55OJ/puTDdfcRuN+FjIOeEsRIHKoYpqtTVQ0rsbLzYjq2or3GXAtkgnCmte1EUfT1Ar72O6VLt997f5TDr77/y2ddQinUnl/GfbNYrVUL8Wi0lZT77058wNcP3f+/3+Bt/4/s0Bz/4kz/i4emBTz75iOgdg/fk85kXhxsohT98fubp8y8ZzNrJGW6C55MXt3zv5Suez2f+n//2j7/RQvzzvFqRAjm3Qq1NhB/65OtAekvMbUYCb3qFy47Q5SBq6xRGp0hNLJ6sVcHZVeO7NcBXTfj7bzQRsdY1wAdR1Yugp/P89i0PX35JyYnoLTHI2DZXQZTke1+cWIyVg3AYx4vLjrc62tVDT72ArfqYr4WzY0XGwFtLcI5aHc06sZ3U4qBdUYSkG4RmrLr8sM3MGhq40TqtGmIMgiQpWNB1hGyckzXZ5O+lqFdqFxV/75AWpWZ04ZB7Z0mpYM1C8IHeJ0VR6xb5XbUoWcudVhsS6V0ksEnXWc1FGpcqcdlrmAzIc7xUjdc2FUcVizk83ajbjpVi3BkRJ1vnlN4xEMJq12W2MbHoMtaCWVD0rAVzVvFnrfLnRexkpUhWioi1TiK4bRD6Wc5aGEFtsnt47wjRqytSJxcwpWKMwxqxoQNPKkBPlNLx/ttmK/fu3792nfEuunzRhJj3H/KDRbZ+N7Vp1DtKAa3elSL3Dp0OqrGk3jkviefzmdvdjsN+orqkkdciBj4+PhHiwP6jVwSUBKIFsVcUOMbIOEq2gBrJ6SzDbXkN1lpC8OSaab2Q0kLRVGBnLgVzrkVdJWQKFXzU5s7jrBdnCaWNLkkK01YbVWsA7/3WPIzjyGG358WLF0oHhBAC83zmPJ95Oj7y+PDI8XTkeDqx5KRTJgEJSr8ARMZKgrDYSgY545TW5vV1KqVQcmZuHY8hWE8bCrVkeqsiOnSe1g1DjMSUWVLBIFai8/lMK0Xria++9r++vikl42dc1th36BrrRryNg66LUy4FN2b1xlTkYkUl18NY4a1uLsji+mFRSztMK5xPj3zxR3/C8vaJP93d8NGLF7z6+GM++s3v8uLFnrD3LEU4PyV5Ht8UoUGtPEd0xFcbPQgCGZxAsUZpA95bMI2SFxGCNaNIT1XBkvAvN8TZGFBRUHCB7iU9UKyzZIyb50zLGWrFVLYQg06nl0Y1hQwiTHB6ADdxDmndqIuIxZomtl1VY8dbU8G5+o12Q8qZ+ZzJpWGMEzTdSxiEFC/ImPd0gnmRNEIXpNtNmbwk9qXTimMYoqQuVgkGwHtMdWpsKQXUhjqYLlTlrUgxl0JGfb1t573EIilirhGP9U/TrhGOriEaZiuIVzRURoOCO69CVaMfyzkTvPJGS+HFy5d859NPyb3wky8+o5nG/Yt7lvOZ0+mZfYi0kji+ecB3OD8+SpS6cxLbWwqn4ZH7+zvit2x0u6K6q5C3t64R7esnXLbPjqXZbRlerpXkzIrmGKo2yUKfuoxrQe8Fw/a6XJAogLb9uQbY9BXJboCppPOJ4+MDX/z0J1jvZMoUPa0VGiLYMjXjvWUcglieWQlKkEZYflrvxI7KNei5kKt6xTfwymFsVZAcqz+30Fk7roPD4ozH6/jGuEZdG/oua0sliMKvbAZTLWQ2b+vqdRCyAgRO08taxzSZ1HQVLNWq3tVV9oFUKkvJ5KbhQYqgR9sJ0dJwQivoIn4SBzxxuBAkXxqRXEXh3xtCqWgVZyB4SzOWdOUAUBX9FwGeTHWsCQTTaB560+cIgzcQ3eoyofZ9YWCIER+ceEmv00IAs6aZSfLeKvyTaGu1mmvq21w0q0wLZrcVzY5upHwvVcRlKevPXi6hWsauKZXyXDajPvzeEZwFItY0km94m3Gb/+W34/o6/vHP+ty1UL7+3A8Vzl+9FLC4Bj62s1rXOmujJdkKuQtla06ZecmkseLjQIwihOutk3LifDoKZaBXtZpT1Fy3nKufdJuE2I7YpanmyjqLN+Cy0wYpsSxnDB1vrUyWiviP13YVWmKXKz0NWjDL/pKzAE81Z/K8UEvVn1smZNM08fL+xabbSueZYRgkgGWZOZ/OPDw+8PD4yPF4JJUs9A3vwUBF9TxupSzKa7EmHrvgNQhKHr/oz9FXI+XWNMSnKWrccc4Qo2ccomQwpIJZEjT5PVqtl9dN74MPTRv+olzf9Hf79y6Yr9WyK0eqNnXCviLGX49at+IYFRNdoTGXMRJbB4VdDaLkQJXu0W6FpUHHfr2RzmceU6LOzxxPb5nrkeH2BjuNeNMlLtd0puDIteMUkVyLebstlFVRKuNOHwzdNnJeyEsipyw3Zu2Ybln52UJ/tht6VFU4vpSmCnbhdm78qdLJS9GCuWNNwRaH8RZ806NWENpaDcaBsXI41oZEUluHs1KM99LAGWqT8e2yIt/VcJ4z81zpWEn2igOlW55OC6fa8cczLgpvK44DwzBIaAmQU2GZF5obadM9wzjifaAVseJZ/aZZayJN1JJ6+VJIrSN7t24CRhak1c1B3jfSOK0Heu/vjLpYG5LeBf2yq8hUJH9Gv5kg2hqa0gGnym1rGccRZ2CMA3/lr/5Vfu/3fo+3j4/86Kc/Buf43b/8l9kfdjy+fcPT29c8fPEFsUNPmbIs/PZv/5aoszrc3d0CQmc4n8+8fXj8911Wv+TrYhcJF4RJ/uX9T+2XMeHV18v/5Yk22uC29fU0UAwbqruiy1996PX7Ko3BNBXYXo3uWwfTaEtjOZ346Y9+jBsc1MwQPUsuGCMC5V4L1TqMlbCR6D0xeOIQ1JZMmrZggSKCnW30X9sWZGKNYxUp1aqFW1FNRZO9zNqgPN0mnOre1f5SNA9WLeVWJ4xSO8V0ioXo18a2b02s8Q7TgJaBSm/KkcxNkd5OaY0lN5bSKVhMkAK/dkepllQNp7mCmanNkIbOGBtDbAIG0Km5bPSqWpu6AzkpJHSk3IwTuzx1MZFkM6FreAs0g+0FbypjALzBeiPe0zoxC2EVZgViGBh0gud0n7VWKTvIVKE1TymOWgu1NH3uBV1vXc6YotS8i/ZEkEBrHd06andqXnIREK5Fc6lFCx51X6kyZcFYaXC6o3dPr0WEm+6C5H3brg+BDh/695/1OR8snsy7+8P6FatrxLbMjdk+d6VjpC42cobOaVl4Pp/YTyP3+wO9NkH+EdpNKZmSFlrO4pWukwS/GgZYzyVURJpfC7R8iTG3VjjzMqECEP5uV4oITZoxjMEqkCLUHwG2am3Co69tc8lYE/xqyiTNXcAY0rJQa+V8PmMxTNMk4lov958xcv/mIuK/p0dBmWvvEn62cUiU3og8d/LzFYpb01KNNgICBOAC2XjKsqgVrtO9E+nI1W3HO8cQI2PMBLfIc1WbrI1ctqbn19dXr19Ywbyak19Qv87qtYsWTX1FdK25Wl1yY1zsYOTBxD7R0C1bhHTva3qTIgNdisLqOwOG6ARpChYMlTQf+cmf/gn+YeRwf8/u9pad94yHiVYKx1l8W1HqiLeCggTn5HDvDds73hqCNZxK4jgfmU8nyiICGdctDq/2M/KnAQkTSJk0J5Y5sSyzqF5r3Q7l3hqpQ9VOoZYkXGNr8NEyxoAhaHep3O4C1jewloqhW4PtaxEpXE/rrUTQ5kZOledzYsmNVKDjMSawFMsyV+o50/pRDuogI1MXHNM0sZsmdrsd0zjgrTiFtFZwXgpOrKrXTURrV+WtQ1dHjBUY3IQLOq63quBdGe7WXDiua6Oid9jWZG0FtXOXkeKWOtmv6cx6T5oNlGxqM7bGu6+v8+9873f4T//W32FJhX/9B7/Pzctb/vP//O/iB88f/MG/xTjL9//m32B+eOSP/82/5fH5mZubPe14Ipe8WQjd397xnU9f0Vtn/Pxz+O/+h3/fpfVLvb5OuPuV0nhFgN/ZUfWz+kqvEmrCKgrWPupqyV++9kNWV5fvLX/aq6+3+u18cOzHgVYTx4eZ56cHSiuyX+goU/h9q+epF3eE4LV4DnL4N/EBTvPC+XxmXhY5mLAUX/G5ShGJ3Q7NnBWJqlVtI4UeYa1Oqaw8Q60K9YLeoYCrMs6NzhBsp1roXlFrxBfY+Y7DYq3QSYT+0GgVoSHkSsqFXBtLrkI56JJ8SnfUZmlzg5I5Lp2HxzMheHbjwG4cGcfIfhrZ73YM0dNbVU3HjOmNYZiwfsAZcdMwLtCtlzATa7VhauQiIqnmQfL0KtFBqw66Q9xzu/CnLQSPRmZLNG9Q7YYmp29Fs6SyrUW0IOQiRu205tYZBg1Nf8UIV13tx5yTPQwX6DYKBt7kdUtp2Qrn83nmdDqxLDM5dwmBEoq5hq0YSXdFJgneyBnwbbzeL5jfv96Z3n1Nwbx+7N2iWQ799+srKdD0XzbK49XPg6X0hlXU85wyx1k0INYLeirCNkGGnfMy+SwFYpBJRQhMwyDi1TgQvDTBpomFoanrlOryXeV3kAlnUBvb3pu4b2jt0tVGQhzBmgpO8yboK5oGuf5dK9mNGtR716lIIQTZY7xGUQcn0y3vHb47Tucok7gqTesaMGLDGt8uGoHaCsYWAdOsCH9Xe1qn/OoYI0MIeGMZfGTwnjHIn14pLr1J4Bm63tyqFVIws+asTiHf9A77j+f6hVAy+hXqdEGquiKPUhBv6KC7ZLKbayWbWUdkKk5ADtrar3wI7WpTpkVZa5LE5rzwC1ViPu0GXr24Y9hF3j4/8vz4htISQ/Tsb25xMVL7gc6RXKogQrVigm7cBjXOX9+vlFQ4nZ54eH5gOZ3pteO6wRuPNw7h6MpmX1vnvCw8n2fOqbLkzPl8lhSfLmp24RZnKAXfxVFD+JBgWqHMSUIyTBPEDod1gpyt4+2uyHvTwn6NK29mFVsKKj3PhXNutO4xzlKqeD7mVilUsZ4ZIz56qo5DnbdMw8Dd7Q0v7++4PRzwYaDWQgye3W4nXtatyV20Nktc+Kny2irqu3LYtmJZDkunzdDq1SncT1h5oBcPzMuGvoVetJUPuhZ8Hy7wTAeco3RBzZoRtO7jV6/423/n7/Dq44/5//2bf8Ph9p7/9f/2f8P+7sD/9D//jzydTvzl3/ltfuvjj/nyxz/isx/+iNoaT6cjPSe67ZTocMZSg6M4w6ff/ZSPf+s34f/2//hFLK1fyiUHXL/iPPZ3/vwqimTe21P14DQquMToVOEKLea9Q/XfZVxsgWapvWFMw1FpDryDj16+5Hu/9Vu8+s5LPvvyMx4eX3M6PuNiIGkwhTSoqyVZuxrbq9WTtdScyHNifjpyfH4m5QKKVpraBUkmS1BA0UJxLZpLEdvhZmhNi6ymgwdj6dZicLLme6f1LJSthiRgOvDG0ZyllC48XifPizVrgp5TqpHssblUUiospZFrpxpHNY5SOylncl8oTdLV1iYzeive8dETdF3fHHYcDhNDVD5kFVGvc57opPgYYsR1S7OekDLBe5yxFAqrkItuaK1Qm3jL03TiZ41atwl3WA7oLoItpenIPaB0E1O1WBYkTMJL1umfor/rVMA6mWAgbgv2umBWIblxke4GjA2AivpyYlkSy7IoH1nuK0kB7Zhe6E2j3Jv4ifdc6LWJOd23jGq10tQ+xEd+R0yta2+dEL9fNL/Pc97+3FpaNmBk+4s+/DrtQzXgHS5itQ6ud1JrzKWyFPG/RpFT5xwBCeOgXyhjVnnxK385eL+dE1JpXvjZgjx3/XDTyYklxEDrFWcNgw/C78VscdKtS5M1n5ftd/b+IkzOWdIoN6/6ItqB9XLOMY4jL1++5NWrV7x69YrBB4ZhwFrDkmdySez3O4YxcjzbLVCnqdFBa+tUXefoTS0S7QV1tuozPo0jN/sDN7sDh3FiN0xMcWAIUWLhraVrCFC3ZgM1JTG4Sk1SJHJ7BSf+YpIw/v2uX1jBfInNlTfZ2q6LHLv5H68HlnoRKSqli2k9OK/QxlVVjhY6rTURbqlIsAHOeW5ubtjR+c2PXvIbn7wijoGffPk5n735UpDYmukl0ToMQXiN2w2y1nfIwurdiJ2NNdSUmJcjz8dHnh4fWM6zcBdxBOuxzZJS5TwnCRRYFk7nM0/nhVNtZHVRzjkzz6KKpTXhVFrLFAKD84JmO0dEEOpUMn2uSi0YCNZrzr3H+Ui3Iiaid7yPeLRhQTbKnBrnVJiTUDJK7+QlcV7kZ20WTLRMux23Ny94+eoFMQaW5cTbN1KALItQUFqp3N7dEbKo5veHA9O0w5qjFMXeKXfRylgVZMRswHY9JJGD1GqikLWXEBJzzXmmbTxYkU6+W2xZnVo0mqJ7G3aJuUrZ21AQYyVeXA/51c7we7/zO9zc3fGv/82/obbKf/a3/lOm3Y5/+we/z5ITv/f9/4TdEPkf/9W/4n/5F/+CL370Y55ev+bNTz/n6fkB5xz73Y6XL16QLDRvObx4wSeffvqLWFa/tEt8bPu2xmBdA/2dJ15Luav3YS2K5WPvFtrwLmrd+sUSUCg0Rg+yr9mamxRQpcvEqPWK92IPeHNzw/3dHd/5+GOc77x9+JKUZ1IpKpJTn3hjhQYQVbzjNFXSyL2Qc+Z0PHJ6PnI+zYIq+kC3RWKpO+TaSLmwFKE3rV6utfTtt5fUQysIb+sYJ/xCq/tc73I4GQymCQfaA9WKzEGez4ZpVteENJfOOfl7q0BVdFeQ5oqnWkPpsJTOMSfOqWxUhRAc0xSIbgAXKK2T5sTj85Ev3nzJfhq4vTlwOOzYBdlbqqJl3nli6JhqWJpUOk4LGVNlzUlamJGmvvdtlGuNIYZA9GFzonDqPmSANa21FomdN12oZ/qP0uV28dKW2+XqHluBF6XpGEXajL+gbcZ58dT3EbsVC52cJajGB0ttmVwWOlX3oo7rVRxIugqvclK7LXEOkaLq23itpe1a6G4flv+tKOM7BbGCDVdN9PXH3imQ9XqnJN8+YQXEJMhqRZ67gdqlya5d3LCqtEvEITLud0zziZIrIQY9P9bptRR4a92xosEGKcC7gikruivfv2vjrW45Ky3Qik7Hrj7LNHqvSgHuas0q1qHnZSYt0nSllLUAZ1vPWwLlNOG959WrV3z88cd8/NFHfPTxx2L1FgTVPp6fSXnh5YtXnM8zHcOyLDodUSCMvkVbS+OjT3xb92rQcEpRZ1fxUB/Hkf1+zzQOxGHA+yBar/U/rataq0pJavr4KkT+xd14v/LXN+Vm/3wF87vnKIZVVKWH7Dqh7Rp9igXbN9TJGtXuaCvTzLoIhZ8GYLvdBHDOQDcSB7k+JsbQraVTeUoLg7ccXr1keHHgo/sbXr24x1lRn+/GiYfTSdDTXrA+4OiEKKijdQ6wl7EgdbM7s1hyLcynmXROtKXQS1OmbKP0wjInHh9PPD2fOJ8XTvPCnBINh9vtme7uieOOUiru+Zn29MTpeOI0Z6KDc8qMvjF6z+A7aHfdqKRSaa7giGKBNXjCOOBDuNh6dVHfRhvIRUR9KWWeTpnHU+Y5wdIMpRuel8LjcSHVIrSXpWGOM18cZw5vnxii8ApDsJiwo9XM81yY5sx0a+lGlO23N7cc9gccb7BuoBLBCdpmkMJAqBVVD1e/IchWeelma3rWgrnrvaVFtBbZa7srRdC2v2OR6FNrLpuw7B5rEXP1thZnei7vpx2HacfD27fUUvj+3/w+9y/v+KMf/IDj8xO/+d3vkk8L/5//7z/lX/x3/z2f/eiHPL15y/PDA7UU9jcTpjeOpxOfPR/Zf/4Ff/Uv/WXG+xfEl69+rmX153WZrb3V5/7qNbjePS9r/kP2WheSxgWX7tt49t1PvYxzt73kK2NAbb6KfL/e5UywVvi+y3nm7RdfMA1gTeZ+cNQx8HBcoBYqBaMWZnEYiMOOwQ1E6/AGbJfpVJpPnE9Hzmpj1boEdlQ6uQmSe15EC5CqFNDGKAL9jq+t8JNLa5xTwpgqwuEoKaIYWTvW6ji6Q+iQW8fWqgFAMiLt1ggPODp8jPq7G1Df5dKFhpFrpxhIrXHKlXPuzMVQDVJEmoHmJlqcIEaldC2UeuR0PnGej6Qs4IC/2RGdp6ICRSeUitaqoOo101c9hTZY1hk8XHQgrEDGxWd/E+IpOryhXBVak0ZAIreb/N76PYT73Teq3hrwYNVlB133662zfn/TGxYZywvyLBMtoQfIRKq2SoziT91rxXUkndA7TLDklqlNaDe5ipd9bWs8yrfn6kasIqXAqiLSvAIUsP1KZ3Q9TbrsBe8v3UuuRd+ed31q5TXo28CYvsWW2w1ZXh+1N6kZqgHTO3NtzLVSvSWMI7cv7sl5Ji0LwxDYh0CoHZNkXWMFES2lklOh2LJtJMZYnVZcgLBuBJwJzjL4QPJBrCqx9GbISqXIJZNK2jjuScGv8+nM6XQiK+cd1OLOGLy1jKNnGidCkMeNMXJ//5IX9/fcHG643R3Y7/eEEChFqBw30y0vbz+ipMY47IXf7KwmHUuxXFu5WO7KCEpBSLmvnfUadx2YxpG7w4Gb/Q2H3Y5hiITgcS7g8Jjusd3RmpWmVX3uSy2aansFAPwC78O/SNc3KpjXM+3Kw2JD94Sn+M4chtX2aOUpWy9oixD/2zsHZVtvdPXT7GZltyriZSR9y3qZ/3crnqjUxmIti3Xc3u4YeoJowRt6qZjS8N2yHGfezE+8cnC3G/BDYCqNrhtwq/JTOTF8wLlGb4mMIWcJMDClM9iAcTJ2TbnydDzy5uGZtw9PHE8LpXRylRFKHAcwgdcPR+afvuU8L+Qi6WW1dEwzYLyIbmynDlCqo0Xhy0n2fMM7Rw8BEyN+jIRxkOeyVqzRxDLjGEKEJbOcF/JcOebOXCyJwNOSWRocc+UhF0oHry9ATeIxOroBYzzPj0/QC4dx5Ha/I+wm4nTDtL8lTnus9xzCnvube6L7DGyk9SCiTYOivnJ4rq2wDWEroleHDEPfvHJlICZoE93STdu8memKkOjmepn2i7tG13nfGiTYdawmCmGNT1BEqhrxmbQY3r5+g6Hzv/pbf4Pf+t5v8Md/8gMeHx/53b/0uzhr+ef/7J/xL/6Hf8kP/vBP+PLLL2RyMuwhFhZnKSUTvaNTeXh4JP/RH3OusNhfmPnML+VaD8krIE8T/C4ONtefbT5YMF8u8/575vL393nKoHvIV4pqOXwtTka4XV/XJo4Jb798TcsnHl7/iE8+vmdqlRfRYRZpzps1lOCVD+lxNhJcVNP+DhRSXliWE+c0k0omty5xtLVqzDSclsIpFbI60xjrcCHgvfAsBfRSpItGMZWlS1FPyYTe2TmJmjZoVVE7uTUyhmSEuxyDA+dw0eOHwLgXlC2OO2rttOczJhWalXa0dnG7SF28oOcCSzFaSMv4eq6J59QIx4VpiozRCz2iOTqBVhLnuXI8JXbjyG7nJcApRPF5bVUFioVS8iaS6k2j4unQigZFWLHeM2gim9n0BnZNSuuAkTXeizQldElb7a3pqLmLHSBrZLVRTqn6y2vzZFzXwknuVRRl6yDNuIqcWB0xjHKlvYTFSME80EvB1EIzVpyHHCRT1as3M+fCnBulepoZ/sy19Kt0daOaAtcvfzdmQ4q7nqOw/l197DerC/lzxRw3jrMRFEKYc++u9suJLeL5vtInMds+bfqluZYgpM6pFp6WmWwMYb/j3htyOpHOJ8Y4cRiieHDXGRs9zRhKypSYBfW1fvVrEU91K8BOU+2Pd5ZgHcELChx8YF4SOTcV93U6Aja10slJxKYGxxAG7CRphCJCv6IY0ojWcTtO7Pd7YoigDWcMA7eHPaNyrIOPeOfpzRDMwOT33N+8wpnIy/sFYw0hRmqvWzR80vuwtKLey9C7WF4GF6VgNg7vAoM2gdMQiStX2orXvNEQl45jqY08J9KyyCRbvbCbgk6rHu3X11evb1gwm82L9PpjGEVd7HsHIcjBt3JXnViZYYR7tor/tvGCYeueVmRhLYCktpPHMYoU6K4KWKoxJMT9guhYWiU9P/HFT77gs59+yedv35J9Y//yljs60xBo1UDP1GqRVK2uDg5GeE+KeLcVJXWC+DQDZS4c55nXb97y5uGZp+eZ01wAg/UeHyLWOZaUeHsU5Lk26bo13ZegfqTdGmpOnJdEq07GJ6FjrGUIkXG/ZzwciENgd3MgRhn3SgSxVcK/LJL+dIQsi8sG4WFSClmjc43zjNNE6Y1aFgk8sJbb2xv+0u/+LjFE/uRP/pjz6cjt3Q2/9d3v8Nvf/Q6v7m+ESzaOeO9pzvPi/p7dNHGqgtJ7Y6lqS2WRJDiL2sZpyp5VZMgaQaYMm0GKYFvdyjjWGBFM0VmTzqDRTVdjfN3M34E1V8xjHffL62n035x31CJ2ctM0klJit9vx/e9/H+cdP/7xj/hrf+2v8dGrV/yTf/JP+Jf/4l/yB7//B7x584ZcKjFGnHPUZrQ5yKRaCNYRx5HH5yM/+OEP8eP4TZbVn/vV14bkA9f7wO/Ps4/+WWOv9/99bbx7Vw9XVh4f26ThfDqTzo+8+XwhPX3E/e1ICJbDMKoop5MBFyNOR+lWKQXWts1pIdcsyJd3aDo0qRROS+WcG6fUmbNi6g6Ma3hTKZgtQKNVySI1BnrtZLUvpEPKBTufGIeId30LXjDISLp11LLSMY0j0z4Sx8huN3B7f890uGFJkkr2dJylwTRCR8pNeJ9LNWCcJJQWGd+Woq4SPWPdzOmkPtWmEyxE2xk81O51HAs+BHa7HcM0SeHQMiBrqCNK+t6KFLlo0XzFM97sA7sib5oo9g5nuXdKK1vkOjpeF4QZVjtJa0SL4awc9l0nlKaLBzdd17ZmIVtjpCBUrmZrFVOzCCd1TGWsTC69crprDtTsqFkTHrVgX/+riq4viyYMfispGe8WuyvF4kK1uFAwLsXu+nVr5XT9GJev0feuvqq/85GL2M9se0zn4owlfFyZqMhkRsI7jLMcDgfy/T2LF2oPRdI3W2/QHJWKHzwlB2oM1JIkic+4Lb7KWjQN0OGjx1pD61X2/lKZ58SSRIewuuCkNHM6H0lLojaJrl4pPb2vFIZ89fuLy87tMLHfH/DeU4s8A855xkFoGOukBcwW0hR85O72jnGcaL0xTAO7/Y5mmmqJKkteWFIi1UJFaCu9G7WyjHjr9X2nWQtW00y1YUUSTrFOrPxap6WyUUtyzkI3W/Mj0CnClavor6/L9c0KZntZNP09kMlZo8XglR+jevL2lZ+qKLJ1wnk1q6/wehhaHd+tYyOd7VycMox6uerooDWwjlIyx1zY1c7dFIm7CYPhOJ/46Ref8+WbNzyfFlqwzMcjNRe8NcTgqAPkLDcxNSuH3yplRFDeYYp0c2CeHbGJMGHMFRtHjIvYOOKGZ/zzzKwLUH4dx6cffcx3rOdHP/5T3j4+sSwShxmHyN3NLYfdRD6fOD9VahLkt5mADY5xN3Cz3/Hy/o672x1DsNze3BBjIAxRbKWSeDfe3d0Sh0jqnTDPhNpxz0fK85mnpwfmOVOMhyCiKYdlKZb9MDCMIzf7HcHAYTfx1//qX+H+7o7v/fZv8Je+91t8+vErTK+8efOGpyXThx0Lnvv7O/b7Hc9vZxHwaVqZ0B+sKuCl+XDObQizMxaJyEbiSs16UCoK1yzNFEGJrohzG1f5asRh1q5s/cu6QdOk8UIKcZkgyDUMwvG6vb3he9/7HiEE/uiPfsDd3R2/8zvf4/d///f5p//0n/KHf/iHPD4+0FpVdbO/oh5Jk9hbwzpLDJG8LDw+P/FHf/LH32RZfauu9wvon+f6UFjCO/9+gbmlMFpRXLq81A2CdfSWOD488dOW6ecbDjd7TAi4bjbrKeeDBtW0bTyL0aS4XiXoxztMANMMrVYyldybhI3ABXXRTa30Ri+FXEQYVIoK3Rx4C8NoCd5SciMtjZwa3s54pX0FB85YXG+EIPHVwzCw201MuwEXHUOc2O93HG5uWbII/c5zEju6ZljqibbI924GnPcM1oOv1KVv/rMOSf/cjSMxenpNOCreGcYxcHtzw8sX99y/uOFw2DOOAyF6MI2QxWXEGOHxlpKFd9yaelCLM9HgDWP0jGEgukBwTkR/2oyLw47dXnMRF2kh1srGR3XvFczWSEiOcV0DXNpG0zPqZmC7pBgKhOJE8WAM3WSMc3SZ+YsQUPoi+hpVHhw1eIq3JAvWXCGfVwEV85wlCOdbFlwClwnw+w4Y70941rX4vpz3+jG++rG1ie1bbd03sALWTmr7al3HTfURa8SzdZ5mOksqvH77lk/u7znc3fPyxStmH0jnhZSFM5xLhl5pppPnSB5G6igR0s4IHUma2Y6PjmhFwzAMklArlJyGzwVnAzE2QENBrKPVQkqzJucpL9nLvdtaJWfRINVatt/J09mHyG7aYaxlmcVVwxjLEIctMXgVJq7CQeecINJGft5xknNJYhHkOW1KIcqtsZQkguYqHojOeJwJ2C5R886u6LoERglVRtPdrGgrWqsSOb8spCWrHqKwzLM4kXx1pPjr6+r6RgWzM0qj6ah9k7xv1n/UJ1t4zEbFLrzDaTOa8scqiFlHNgYRclyPZ7eDSt/nwnmt8sDyvYMjpcJcK9157BBJ88LD6cgpLdJFdsi5k9JC8JbR62bqZeMvzeB8x5qrTsBYjIcYovgTD1EV64KSf/SxLPKk3qjPx5nXbx548/aRlIqgzHHk8XgixshuGAhOkqWcdzi1wOo0XHBYNxC9ZTzsuH9x4NWLO+4Oe272O3ajpA7a6PHjwP7mRor644neO2G3IwweOwT8NHITR44p83hesN6x3znwAcIooxljMO0G7yzTNHF7f89hGLg/7Lm7v+Plyxe8vL8lBM95Potn8W7E7/dkIibD7X7HzWHP5w8zpVdRpJsuXE2zRrJ2XfwivtgmBcastS1bjJzuusZ1DO6yqStXoCOCqXdQkFV9/c6YQrhpF68QoXj0KqO0GCMxBl6+fMHHn7ziT//0R/zwh3/C7/3e7/HZZz/hv/6v/1/84R/+Pm/fvpYADCOIdmvqQVuLRhIbmjHklPXeNxAcT6fTN1lW/9FcH7St+5qiea2NeWc7uLIhxDCEgYalnmaOtkPO+GmiVsndM87gEGszEYaLzVtvgtXgLWEIGBNwsdJCJpsELdG9itFa325Ppc4KAuOs0gw6BkFMnRZh+ykSg/ihHvtCLQow6KEenCMGRzSwi55h8Ox2I9NuZBwCOA1U8R4fA8YHDrcHcmmEOGBdZGmdp5TEux1DiBacw1ajSJHFW1XrTyO3tzfsdyNDdEzRc7OLHHYDt/uJm/3EYfKMUYRz6xpZgYPTsgCVXqVYWdPRorVMDqJ37GJgFz3jmu5nrVqxyeRJhMgNNCQEPbzFAFknSeqw0YzauVltSDvvNM1GR1TGWozSRlbxn3MO1yWl0FqnYtYqHE4rd4/pwtR2VuKCo7csXvUr4mdKq039m4XL2gDb03+IZfFLu66L5uuPbcWysVz/61cmP/r17398nfqtW2DXqSAqykYBkfWt9nU6KDokYwPWiK/48Xji8emZV4dbbvYHXOuk0/KOjduaeplSIs0zZZqooYiA1oDkboLrq+uH3e4dq8mzMsX2BCfnlXMB74IWqQeukfX1/U7XqPZEq8r47Z1gYB8iQxwlKdWeSKnQ+ypClzdrvJ57Tn3V+xbK002n1S4TK7o0+9YK9UtjUlNbA3hEAyAhLg6LxRqnDjRmA4nERq7Quwh5WxfKWWlyb5daSLlwPp85zzOlyDyvvQeG/vq6XN8MYV5HX+vfYeswrS44zAWBc9bpIhL+stOKe0tzU4rFRjAzFxRi/QYd2UDlr/I9Vh5Paw2nPJ3eMql3ijX04JiPmbfHJ55OZ1Kt7A8TYT/wnY8/5tNPPuZw2EM7kU4Z0wUN8c4iovauo6JCtxbnwYWgDYD8nNaKN2tTsU/vjpQLHx/PHJ/FQg5jacZxmhPf/fS7vH37wPPzM6fTibQsWCtuHW2wuBdSvNIb0+B58eqeT7/7He5v90Qnwkd6kVFjiPhhwljDuai6OXrMGPHTIG9YXpSX1G7xw0Su0I3HDiPWB6GapEJZEiFGXt7f8uL2hvubHYfdgOuF0/GJtJywthOCE0/mww0hGEKHaYq8uLshfvYgqVtOuidBgMA4tZ4yTQ8coVA0IzSJdWogfsorYVmLZtYgEqOPoffDdi9sIwy2EnobkylXbnu/4a3Hio0I+8NO0LvDnmWe+fGffqGoY+Vf/at/xR//8R/z/PxMznkbx633pTFic+T8ZbzZaqO0Lqpr5znnb9fB+jMpGR8qZn8B32/988NJS1fWhPr60SzC3lWqa2sYI4VRMI7QDfW8iFOLcwwxiL1iB28UeVEql1iHdeIYOfhb8fftltvcOM+Fx6eZ5+PCac48nxKnOZGrJPhBFxqY8xgvE7KaRXDmnWEIjmEIjNHTXMf0TMmN4GEMlv3oGYNnCpHJWwYntm+7/cgwBGIMGKfRtT4QvacZyzSN1LvOMO3ABs65cEoZGzOpIV7R1uGqpTFQuxSMMQb2+z33t3fc3Oy5PUzc3+y4u91LYe9VmNsztqtYl/U5NKRcJLRDEVhvjXDCnSVaw94Z+X2GwH4aGIfIEDwONhrGSsVYl6vYnTV1VmpaKHdd212nksJXX1PMpHmSEcHGWTYGqsXUutH9nHf41rZGyTSPqwFXrxE+cWa3BryXUJUYHDF4Zt3jJaBGi5n1fv1KYM+35/o6j+V3kWY5Yz9EoXrfO/39r12bWzVoAfplcqyPLe5GUtQ1gxTMBkQQ2xQdRhLoloWddaLzaYhPcSsbzaPVwjKfOTkJ4QrWYMKA9RHvzDs1BkiTZkxXuqUjWknnrF5SM7veUy44oo8qMlVAq69BWU35wv5in9sa3qB+x4HWEq1BKUrxDE7DTqRwd5oeuqb/rfZ0Mr0QL/DWFVUuBlOESmicBW/VnrereN3hjBMdkxPLRxHOy/deQQcpgtuFF10ySynMS+J0OvP4fOR0XmRddFba/6+vD1zfWPS3LZxtrcgK2XrTdeZ51Z0JQNDEMaM1KY668lVZF7OF9w/nFbReu1bdbDGIKGmdsTqo1pKoVGvozlJMJ7fK4e7A/rDnu7/5G9y9uOX+oztevrgnhsjp+UzJM3npIqjrjt6dWkut0FYTv1TnCGHQOGojqvgmaV+SgJVpFcYhEEOQDbc2Um4E5zX8pLMbHPN+YJ7PGCRAo7dKCJJBfzo+Y2wnjIHD3Q2397d4wyZi6bXgY8CPA70brF8AEdUN08R42GOfnunVMO0nXgGpNp6fz6TaCFZGtKVUcisMwbIbA4M1uJbpaSafIM/C8RTTdMPN3Q2fuE8YdhO2ZRyOwTtuDjtidDzlLEWutRjUQsqC6UWEd10QhYa8dk1vEXnF7ZbRJ6Mkc4VSyL9LMeykeGI1yzdXd5j87WKovzZY8hlN7Xkk+VY2WWM6P/7TH/HFl5/zV/7aX6UU6bZjjGL9t97BqqBebYqcW3mSXYpn51lS2hxelpy/ybL6lb6+jn/8QVD4z+Aqf+hzPowwq7BzpYBdRhMiHjYi4OlVGsghjOziSMmL+qEKKlutxMs6a/DOSDMsQ06sFRTVTwPOjsQ44nykNsPzMfH8NHM6Z55PM4/PJ55PEmpSShYfbxPIzZBzohaPbQ3vOtFZxgBjAOMdwUZJxDOGKXoO48AYPbs4MIWANx1aZRgCIYgtmguOcRgYQmDwgWpF0JuGgguBlAv7mx33JTPMiTlXahcvaN86zka69YQQmaaR25tb7m9vxUJuN3DYDex2kSE6Rd6h5UxrIjC2dl0/He+EdhGsxEX3bjXi2jF6y80QmHxgGgLT6NmPI9MYlQbz3oD/CrTb+K0rmvXeJOHqgGFNTbwUzLCmoEnwjIj8bHcb171ZNk/7Vgu1ymTTqBOJ6Q2rfO6mKHPwbjtTWtfgmS4hNhuy/S27fpb/8vXHNpvHq7//uzz2Nbi1TgHWr2x99Xa/1AfGANZffIG7+AK3Lu4xOE9tcJoXYun0ZaG3LuuuNXEywdBbpaTObA2n4Bm9F7qfs1TUl1mFf30tRA1bOI61DuuNUn8kbr436FWUM82u4ki5aWUfUv92/b1FANvwQNDJTO8iIGwanLKmggol0OikPYiV3doMdqGFrPe5j5HSVGibxZMZZ8Q7GihZkj+d6sbeySlYgUhWP2koVfQOKWe1vU3M88J5njmeThyPZ+Yl07rsr7X2q9/9321f/4/l+kYFsyCwZpu09A69KqLM5YWzXrs70BnmRS3tgqg1cVY5y36zVOpa3Jg12Q9Bk1Yk0oAK3aTSsqi/Zq0McWQKDRc8eE93TrjM1XAY9/ylv/S7TIeJMDmW+URaZpyzjGNkTrPwoVGvVNuweKLSJuhNxh0+UBV96A1yMdSUmc9n5nPSTnJNqpLfz3RDy4nl+Ew+HSHPuJ5wZEErHdjgKEXUsDYYbvd7Xn38ETd3t/K8WYg+0nshz125tJYQB+7vPA9Pj+QqvK5pv2PcT+S5MY0HhjgqbSRxfHhknk80YEmZwYlYcOmZko+8ff2nxGFgnEbiKPHYIQbiNDKOnpRmKfyj5enhjDGVu5sD0xgxpyLdr4+CXndR1Eu60SrEuyANbh27GhmbGyNelr0LH03QgSDFcGtiS2jUd5lOL3XjmYuNUKNXs9kJ6XahB4TFO9lknSIHmM4wDpQifLRhCLx9+wZj4PXrL3h4eEuMUe2wOpLkduGyrZHeOeetgzfOcZ5nXn38ET/64Rc//6r8Fbh+1ib584LOHxoJv58w+M436YgZVhNPXosEh5hWMXtBgaZh5Ga356NX98ynI3PuLA3KnGFyxCEQndxvvVXhTFpDNyJUHYbIMO0Zhp02xI7dvnJzW1hSZZ4zz8cTz89HsZeaz5znxFIhVUjiYodtUoA5I2K6XbQMIWD2UYq63gimMwTHYbdjNw64Dr1mepPGeRgi4zQKJcMHSS9TGts4DSwl8/gkCZPjFLjJI62JJZTrovUwpRGnQMfgPOyjZXKd2AuuLPSlUWxlaQvJNpyFYfAE73BukKLRejpW6Ge90XoVAZU1NAtjFIFi9JbbQRLGhigo8zCo/3KQs6L3TsmyVpvyW52Kn9Ygq16LhC8h658rF4Vaq+z/q4WfFtpd4yONFvGUunFDO3o+WSnVOhWLw7Y1Yl1OE+ugW0EdY5DkzzgMWLOI64fGbDvbwIlw7Nt0WbtO7eRqrX1l/W2oM+bik85X1+Xa2K574OV7SJG4erZv9A61dNQv3tBO0V8KUc6oYL/3StY1vpSitIHKnBNG6TBxGMgpkasIRI0Tuk6aF072SHTCE47OU0Mj2ADGUGrDFOEbC/B0QWX1RwEjFonGWxH0t0ZOEpsuPGb1bHZXFA9EONxXRO+KeoECar3DMmemURBmuT+NOmYEpWhIRP36GoDVxjVgjKUsZ3JKNNNJKQuH3wgVo1HpKgI2iPbLqRtPr4ZK1+CmwrzMnFImJaGynE4nnp6eef36DY+PTxo/r+5dZhvW/rpYfu/6xjvA2vuvJXFdX2yla4h37hX6q2MY41Z7E3nrWweo9jPWbmjgegNtG5+O6qRjXRe1bHy2S/caLEw7xzRO2+Ld7/cUPB/dv+Lm9obaC8fnZzqVYdrRMKqi9VRjoVVaAR+kE7TG0mujGxkF96bOD95tm3MMlhIsJUMtEluZUpaiWhdOSpV8OmPKTKDgXcdHQ22Nkk6cc6YbmPZ7Xr56xasXL/jko1fsd6NYLtWyde0SCyqxniFKcWq9p1VB5YZhYIoDPZ2xtjEOgU8//mhTC799eGZOiTFaWlmEGkLEuQHnPcqIwltH0PQtSxExU3B4bzCt4kwness0RXbTSAyJYtfXTBY+Sqxoa+fLBfvtZqUBmEv0+XW2tTGXvxsQKGrlxclh2NsFwepK6zFtRZ3X/zVFiLM0PkESvoYhctjvSFmKkbcPb+mtsywLP/3pTzXgYpuPIO+1C2ZmRLwhiIMgCc4bfuM3f5O/9/f+Hv/yn/8v33Rp/UpdHypuL9cvh+S2OaC8CzjS6aRa2HvH/nBgd7MnxEBOgXw8k1qjD5YweWmQaJS0YL3Fqe2UsRZv1cnByWTDWYhq8N9qpaaKbQnXMsFURg9u9ETbOc4FUxLGSMCJDV2tIOVtsBXfxYXWBSNuN8EzaIiHQwvsKF6qh8OOw82BYRgoLYuyvXW8MdgYocEcFsboORxG0YysvZ9pnM+JkgumVKxHisRa6QlyK5zSmT6PtN1AT4MkVHoIwWEZ8GbExbiBHqJDUTGjNgLegnGGKQb2u4ExePaDxO/GIBOnED0+Kkq9uguw2plpUIQKgrdCyknR1GtRMbkGoShqub30H7gfBQBc16jZCr3emgof+8bfFN75+nNYpYWZ7T6QJEOnY2+PszJ+j9HgwoCP0y/+Jv8lX9cTna/VD8A7n/P+17/7eYo0X1fmBvXKfudDqyW0DAnl9kamSX2j5aTaOKfMeckE3/GI1/7m2d9QgG69L0REuiwL8/kswSFGqRS1MngJCqGLq0pzTb9ep9pdJ5FdNQmge4EHd6HvCP1eqKcy5VItlpOf0RpJulyR5cv8U27PWho5V0KQ+9Rap2dyoHVBoIuGsgUT5LGNBAjVqkEtaqjg1LlD7s+ADwHvVjcatDmR03ZtZtaJSamCNC8pcTydOaqD15IypV6Az1/XyR++vqHoz2pxq7xZTbSStMYLX82peGA1wjbGYJymRKlYAyuezNZJTPKKMMt4Yk14Uv6NEZGJNYaqPqBr5Kc1hhgH9t6xGy0xDhjTmKaJ73z3U7780U/xwbMsC91UumlijwYSKxmlMy0Vcmk40wnVCkeyGywW1y22dUpLEnrijXS5VJztjNHRW8B2EcbUXKkti5YFh++dwVRwYh9fW6H3RFpmuumM0TPtD7z8+GO+8+mn3BwOEkvrLSW1bYexFlwUnuMwRkKIovi1jloTthumacdpf6DMmd4NPjrGOLDf73j54o4v3z7w8PjIPM+ktNBzFUuradzGws5ZnO942/Ae9mPk/mbHy/sbDruBOTWCE2X8fjew2414f6L09XiyiN9TU4eTKzHJOlpfi1Bz9b7eK9Z58Vtdvbq3L6ygiFFfR7pcHk82VR3LdjCmbwt/bYBiDFoMNC10ZdT3+vWXch+UwtPzI2G9L0qRA1/mBts27WzcUMo1XfH27p5/8A/+If/gH/xD/ov/w//xmyytP9frQxzm/xDc5Z/nupRCl/d7h9IqxgX2+wNhiByXmcfnJx4ez6QO0YwMZsJbR29NGppu6DaAC+IZjNigmV6hJWgSrzx4Q3GwUKAmejlDOWFKwpaKr5WBSrcZR6KSMQ28MbjWMbXR2ypstkQf2IXIboxEbzWAp2KtVe/UgcPNgdtbccCZ51kOahXHBWtx0yTisypj6WEaOewnnm8OvHk7iT7i6cg8L2A7tYvw0dVFHUKaaAqWSqVQqoVo8TZCszgr6LJ1Thr9qmtEp0DBiTe8s45pDNzshHpxiIN4WztLcBCCRPUKJcteibaNjqJF0W+7ngvdQRdv25rNJgS0ayG1Fm7rqH+l5JnL+xvEsqLL+rVNxZ9rq127+EWLZai27l2KO68FzDoudzr9DCGA88Rhhx92v7wb/z/g9SHkGN6pb7/28+GKwqGvwfsszZW6ssZ7bYFUvWO7nvMApusur/e66cw5c0qJc87sVCvSN2cUedTepIAVlNmQ08L5bDQ5/aJT6L7Sw1VipDU4BW+81fOhGVDgRagaRkSrDggr0i60CWPY0GazuX9oHVSrhJ4kEYrWsk5JLbV2liR+0TFEVu9q0RhEEd+VosV2xzqPdx683P/GWkrT2GoVAjobCDYQXCS4IG5UQlYRr+jaaLVvKYErLzoVyZQ4zzPH45Hj8cTpPAvI1/qlkfglgSLftusbFczWyc2CdvCsBvVcLbh+Odzs2qmsxTRsHBtJtXI66nZbUbVSPbYH0hF+t7JAmxaxa2SyN5YpDEzBMUWHxZCXTJkTFsOrj17x8YtXOGt5+/Alczlx//KeOESMjaTssKFiWtbO2NA1QjaYkWGI6gPZwBnEK7hiEEcNbzrGWxg8tgV6yfRsoUCuhZozLRVICVNmepqpZYFeOEyeYTdyuLnjcH/P4e6O/c1eNm7ToZfNH9Sq0j8GT4wyQvUaMe0stCJq8ikO3Oz3pONMyVk8TLthHAfu7u/47m98l6fjM4/PT7x985rj0xMlJ+Eqho73lRgd+/3AOO0IcWDaH7jdj4zeEixUL16moVumcWAcB2luVnHOaqVCV6T4umC+zCiMFrndSHMii/T9KOwu4zt9X9U++rgiHlotdK7vxdUjA1QkZKC3/g6toiOhDDGG7R49Ho+bIjvG+M79f324iMeteGX23vnOJ5/w9//+3+d//w//dyK4+JZff9Yo7pddT29e7AjSk0uh2kDcTXTb+PLLtzy8ecvTg6xTt484J5zgzkKrFYyk+Lmu2WOtQc7gNRDDitgtGM/koQ8emwM2eUwCKPQyU1PGl0oshV4WbCmCxOo96KxhcpFpCMQhMMSB3SAOONZ0jA9iQecj4xgZhkHWdJACreS8Rd63WvHdEMaBzgGsIaaFVIWCcH9zw8v7e54fn3h6fOR4PHJOWfjWuWK7IKhTMEyDYwgW7zrOStM7eMMYrIoVB6wVDUdr+jsh6WjeiSiuY5iGyDQO+jYSrCLpRqwlcQYf/Daq7hgJZfGri4XR+G91iGyy9k3vmv5ntoJZ6CzSKl/7+mLXostczhd1rrFGqRftMuGkXU1MmmgolD6ukyqr4lC1AFOuqrWW6CPjOGLDtyu45EPXVwKDtr+sf/zshf2ucLBfNSm6q1ujBXGHthbJSEGs3a5FBZ6XYZ0IdLGcU+K0LCy1CA3GOSiNnmd6ExS1aez9eiqUnJm1XBfap9dIeZlmuGw3ekpvnVYa3ouATwSkmhVgO707TJDJgvNOTQ7UBm+1tr3iN/fesL2p8H+RyXNbnSbkvKlVKB7Lkggh6xpbQUFN7HNdQtvset/JevEhMoyjhJmo6NG7iDNeaEY6E+4d1sj5Uio1a3pfLTSNvK4ahZ1yYl4W5nlhXpJ4S7fOClX+akAlv5rXN0OYvdxEpnW6tVtNu159VTsrMmCtvUD8dt3ULglAKyWDdWBv2MYi8C4lQwjsBYMU7esIzVuHz+CxeOOgNtKSOL5+zfzwwG99/Ckff/IJtMbrx9c8PDzgB8+4v8F4jxsMPmZ8NRilVtMrrTRVwDo8jlKFjkEXdNsaiF44eK11YvAMzhGs0EO866QZMpXSPaMzgKe3SK0Z6y3TYYcbIn4YCdOEHyLWVJxxDDGK6b+xGLxEC/aG8+qziNglbXHkrdNSptfGbhgphwPLknSDtNTesM5wmHbc3d+wpJecvvsxz08PnI/PlJzorYi63BmGGBimwDCO7G923O5HpsEzBDGbH1Jj6V44oEMUH+56VWQZsc9Z0SU1d9Mx8ooM9csYYWU4rhzTbqi9gOmYtmJEKNC8bjZX9816w6yfpP9msXS70muKBEc4efaOxyOn05HWGtY6cs4cj8dN9Pch0cPKkfROAmhKzoQQ+f73v88/+kf/CGMM/9V/9X//JsvqV/b6JoK/X8a1tUtGdAutd1kzPTPnxJwbc4bBS2LWMERcsJSik6su68YCtgFVx/bKSW8l0W3ABct+CAQsAXC94ChEGqdeObdCap3gOxELwat1ptB4gtMQkmnHEMNWCAfdX4ZhwMUotnEqInXKqVxjdw1G6GClYnonOs9+nABDSGEbqw7BczNNfPzijjQvnE9nno7PHM8n5tNCSYVeGt4Ip9oHj/dG3ADGwDhFdlNkN4kPNMaxLImUyyZ4slYEcSF6rPVMY2SaBvaDFPzCDulYhBPt3BpStU4O1T7MSYyv1eCm7UXlApJIPbyKly5hNWthjP77hlyr+I91TL2eUUr5W0fXRr2gN2GUUgOMIp/yffVrjArLlNrnnKSpGv/t4jB/6PoQWgwrNvXhhf0hL2d5sAt1Z/Uq76CC/PceA7MVz+JecyXsNgHrOpZKqY3TsnBcErWDiyPeWJqt1EV1JOczpVahX1hDK5mUM1iDXyIhScCUR4vmK3eUVirVF4LLUjDjsF2mCdZ5nSx3iHI/GW8xuI0Wut2GG/Wnb1zmrlMT7wOsRSx2A2lqbVooX6gSm9ez/pxdqROtVvkdgiNYaVRrL7rPiPdyq52ulpViIVepOZPTQk4LpSRyT+SeyUWCSXLO6i0+My8LuRQFeK7qrl/zMb72+mYF8+qlbJSSoc+rjNZY7Ym3azP9h/foF+sM591dUwAJRZxXhpJGHtdexTd5Lci78NJ607dqyClRDRzGiXB3z2POOO8pteCd4dNPP8HYAtbw9HwkTpbW1ihu5T115QZ54bH11ihdxiEYsa8zaobuXVDbI3C2iSDOWymeh8gyL7QsN7VBbLBqSZSyYCx0Z7ZEPvFc9RKN650o+k0XJNk6FbWth6kKOEqlt7zxnPOykJeF4B03NwdiFCGiD4ElZ2prWCuiTOtH4iDWUafRM5+OpPlIKxmlH4owz3acA+elQQleYkmdb/imI2UVB5pcN/4W+tqv70gfpMizEXR5e9G1/DfqpLE2TqYJt1EKblVxd/PuTaaIk25nW5O1NmErZ9EaQa9yKfggjYCY4Qs1p5TCw8MD5/OZ3jv7/Z7T6fS1fD8ZnTm8MYzDyP39PSEE/pv/93/Df//P/vk3WVZ/7tfXUTK+npbxy9hQ5QS6FgBfDdLVnlDsHnupLKWRuzC9hjFwOBwYx4luqwSQtEatqNtC2xJDDY2ak1AoWhdNRIdp3OPHgOsNT2P0lnmKzOeJ+Xwip0yrVfxY+1pUmO15jEMQ/3Yt2oL3IoybAlHDDC6fLwr4jghv1ijQWprQu3KRsIRWMabjvaM2oZbVnDHeMrrIfhjYjyM3t3sJJpgTZU4s54Wayzb2ds4Sh8i4G9kdJsb9jnE3EYdIX8EBA6twtvcm1DcvAt79NHGYJrGQi0ECR7o8l9aIoxBWhd46Pey6/6OTpI1C0VYbUpnqtCrTu24EQZR1tyKEZmvAZSswW4CJBGCstl0rUiff0yrVxLgVoFEbVP0+xnTx5zX5Cj1sGyfVeS2aY/gl3Pf/4a8Pc5cvf792v3jfTu5DXszX9ZVhdSIRUeXqYy6BMrLHG9FwK6/daJ66UGNaTpyXhafTkfOSeHl3xzgEwuhoc8Q6pe0si6Z2Gmqz1JJFP7QszMssArhqcUFoV/JzitMUtdFMwVmvzZHDm4r1DUeU+7c2umu0ckHTt6NtBWp0Eyo5kc5nlnmmlqqgnqd34TaLeFeCUYyRolhSji/3t2gtjDpulct+bIJ4o1twxmkyr4Mu+qoNPa6yVxQtiFNayDlR0II5J1LKpJxYkrydl4VlSVrbCLy0NgK/Ioy8X7nrGyb9acGLlDheBTLG8E6ghEEEW9VoUasjhhVxQDdQjLuY0F+jBZjVXEMep2cJjVAjTyswsHD6jAix5pI5MMrGh+HTT36DT1++xBvDuS7shpGPPv2UYRp4/fo1j+cThSPeT1gPpSZa61g3YKx0qDRP6wZnO1AwtQuK6jzGeWx0YDwobwgdOXpgMPJzlqWqL7+YiLdWNOAD3VQCPgz4EPUtyOKp6sTgvVJXhBdYS6F0gymN4ISXGYClZE7zmWGeiONI1cK2dWg+gPcEazZBZi8ZbwNT3GMbRGMp3pHSTKsZFxzOWxmtOkulUZDmxampujHKH9/tNI5T6BM6eZPX3toNMe6K/DZFjISNvKawyTgV1sJXU4cwykJkW9TGeh3lFjT3Vl4Dw+VzFc1eaUFZRX9USLVSOpTWscHTeiHNC6Vm5mUWD23YrInEl7VudjvCIzPkssjr4eBf/+t/xT/+x/9nPv/8CxUWfnuuDxXHP6tgXtGR9X396PVXX/XE1x9/F6m//l4fvpTH3td2aP1c2UOcj1gXxRqydkoDM8CwGxnGgWA9GEcliqDGWiqGagxG7QllmcmeY22mx463IhQKPmB3Az4YxtGRFs+8BHIaaDlDrSqkEUFPVRW8+AFL4dYVlXLOy/p2Ee8C1jj19ZXiJfphC+qorcqh3julVuY007zQEgqKsnuLsyIY6hqyIcE8IgzGBGKw9NGTR0dZsqBQeli7IRKnkbDbEfcHwuGGMOyl+W8Vzo5uhYeKRZwkomMcAtMY2I2B3RTFl1lecpkoWUFIjLVUYyhVXy6EBtU6ErayCvU0Grv3SqtdR/catKBjb/ni9WXXKaW1KpWw6hVmMM5jfMSGoJQKu3b+ct6okMqsd2KvYlPWm6oUoFKoplB6opSZVgU5F6/db9m65quosdisXezezPVnWPnbVhhuKOgKZmmRh7pV6XRztfkz1kpB3K8etUtRWHWyKBNkKTaN1pxb/gLQmuO8FB6PZ96cjtyne/Yv7hkJmDGwVPEP7sh2LsmZCroY8T9OqeBdZaHgTcWVhnUyZZHfs0t9oc5YxoiwH2QKa+savIVEQ673l05Du7o4OWPJubIcF87HI6fTiWXJMoG26rAySIllnJHEQNVydeNx2WNmS87igWyaEQpFq/gQJB/CeQG51GPZNgPqX24ULKw5bzTCnJOEm5RM7YXaCktZhKPcO7VD6ZBqZ6mNpXeyvj5dQ8bendb++rq+vhnCbMV0e31SvfPaaXU2Bxt9opuoKbZDbh2JCQIoG5lZqRkGaTlRj2PWTVdewIsX4mUs0hAlezeQTccbEXTQJXmtDYHb21tRvg+eaZrouZFLhy6baS1J1dAdY1aEI9K7ozdPa+rHaSq9Z2rOYIwo1zGqpA3yHLjKatBflS/UW6OWunkAl9rIFVoX9pWMgiI+jPgQlX6hj+30fUVPWpdRYdPRVtONqLcCrUroCY05L1RvMSHSwoixjlwb52XBVuhVgggkWlhEN8EEjIv4UHF0SlE+oBNHjhADxjsqnaUoslYKpnmCDUTvhFVuHd066mo91M3WYG3w4AUmXAewdCPIk6iQVSyqs1gpvjeomm2XNWK3t9oBosVy2zbBtcDq26HQukKQavnnh4GUGt547u7vePv2rRQ5vW8Inrhf+C1AAdb7smKMiKk6hefnBz7//KeEEPn444++ybL6lbz+7LHcVnbo5+tHP4hcfbhQ/hCK9e5X9rWy0b8LzWelT7Zmt0JVuDZgHMSd2Js59Xv3PUjT3aHipGAGmc7UxurVao3HGU8plVKL+KcHi3VBOIaugqt43+i504vQkFISVKk0/SndutdJqllvnWYKPYG4pkmI0+rrHYIneIlel/harQ+to9bKeZnJplGA7oRjWY3ssbU3iZpOhZLEXcMFtVIzHestfgh0L+hRo9OdE0rIbse4PzDc3DDsdvg4UGrH1owdPJwtOHDeMowBa0bGMbKfRqZRwlmciopWWkRrcijTDKV1teZiQ9ZsF/tIC6roF8pV71WIn71huzS/hrbtA8YqCmbBeNVFbHQuo2taEWUXNGhKfZW3wlq/vndYqWwAzSlY2PWtUtHcgPVn7T+HpdSvwPWV1WgElDJXf7/++Cqmv/oCtn14/Tx9zWvvUHV/XQvlbi8ZCVz2hcsKXucqbQNXpIvSNMjWWUrlvGQeTmcezmfu7m+520+E5omnI+E00puhlIK3DkzFWk/t0uw6o8JNHzZDAbEjtdju8N3hm1Fqo3izWwOWgm0JWwwGvw00VJwgwBXiUyy5ErAcTzw/PPH89MDpdGJeFox1jONEHAZ8DOrl3ely82ODwzpobSQsMybNpEVcbppqZw6Hg2qnOlj1nFon+cieQu/0WgW0qZVaMqUW8XBuUnjXVoSjrBS2ZgzdObrztLW20GndRqm5vGC/vt67vtEeEII4NLQi1IBVXKGYz3ZprUx3Eq2KQfhB2t2K9tqwEYIUVV4Rwaao4jY+NQbvRdBXlTMkPB8E/XWwm3aEKIK4aCypFLqJ7G9vWNLMm7dvmJ/O5PMihv5UTmnRKEvPOIzQMxZDK5ViRPCSE0j7Jf6F3jmcr+J/mhfhwFnh5jnnpGD2nu4dzdmLs0cp1JJoLUuHqIcLzQvC2gXBrFWCEQR4t7QOzsnCDyGyO+ykAM+ZJc0s6Uyl0nqhnBOldXYdbl/tuX3xEWEYef36NafnIyln4SsvCx6j6lqL1UOKJlwq46LwwYwIoKL1+AZlXjgVKdZLNmB2ukHJ4eWcoRrhS3esCA6RAthf0Wy4vNyXTUkbr7Y2R8q9FlztcnUtwExXkoaOsqT1v4y55HMvB4ZTe57W21ao7HZ7Rcub7KkaZToMwybmKyUTwqDe1zJJaE3uBatIV87CD9vtdvzO7/wuf+Wv/DX+L//4//pNltav3PV1/sjvIs/vFsPvfeb6SH/m9/pZjhwr4rXNHkzXRkWadB883kWG0fP8BMNgmHYDcfA4JyEC2yGtUzCHNHitCppbewIkWKi6QEkzZQkUYwg9CEJsDNE6ukSBSsPeoWwjzDUFVZT7RVXzuWRabzJ5cp4SC9V22UeMZbQjwUdsFHsoAzTTaKYiAEKhZqWHedFZmC5oUyuFkqt4xi4Ly2mmpEyMQagpzjOEdRwsv0frHbzDj5EwTQy7UTyVh4gNHlcqyVuCCnudtTQryYNriuFumhiGAe+d7OS1CXpVFeErhVw7ORfOc6KsHslNXs1oRawcnFX3o47pVeKs1cJOClV95bXoRfpkcTPoVlL+ApjWsU680vGrv7sgopvDghPk31gBHHprF+S6iqAdK2dWX8XozmPsirj1q8b923FdJjKXq/fLpOb6jfWc6n3b+6y98G+vqWnvNLoGgXiu9gWD2Zb9O5MkLq5InaqPZYRe0KpSYYTHvywLx+ORp+dnHo97Pr75GBscftrhxhnbGsF6WUdNxNe1d8IQ2Y87DtOeKU4MXsJ/guoEvNJ7rBGqhtuQb3OZcLY1VroJMEKXSeZaq7RKzfIzPj088vz0yPl44rwkcqmEIDuOc174xasvM2pnGQLeBAydYR5wJ3FaOs9n0pLE3tA5pmki+SRHW9Xody/PdW8axpULNRc9l4RGJHSiRimZ3Iruc9J8StNjN7qUVYvN63uGD+z73/brZ50x34Sz/Q2DS+QGbUjCklWbOcOVrRzIq2KNjvK7jjNkXNfomjtvVrOXqzZYbkgRDirfyKr3oZNjzthOyte8QXl9nRNBQBhHJm/Ix7c8n05Yb3l6eiCXzGAC425HdAGSZU6Z5TxjXcQagzcW0zs1F2pvlG5IvdIsWNMU9Zaft5ZEaY3OrKp3TwxRkK+SoFUJWGgN22QTEhJlVyRFWo1WMvPpBIuTcY21Wya8NaKmDbERhlHStcYgSteeBV3rVRBP5TiXlChLgtqYxoHD3R3H56MU9CHAtOPxPPPF6zekOWFAYm3HQLAivBDessNWMLVDqlSTKElRdOfIZsDGiLfqz6qvYOtq0m5RJbwgZt3pRqr1bTdb+fwO+LxNE1Y0YlP3rJ+5jmk1OHt14OhNldbXi0PHiQi9QhC8wvk8U3JRLqnFUDifT1LUeM/NzQ1v377djOtbUz9XHUNC18cT9Dxn4T//6Ec/4m//7f+Mv/t3/+43WVZ/7teHOMw/63N/eZZzWiVpZSPf90LPmSYRpNoOd/cHSk7sdyO7KSiUW/FeRH+2qy1md5juhQpQEeFME64+ptFzIc8Li/GY2inOYx3Q5QAqKckINAuqm3Ml5UopokWtDXIRm6hcRKHuvCPEAWsb1XRKl4TQYg0OTzUNFx02WOH02k41UmTaCqFHhjjgpgG8ZSmV5XwmLQutVAEosPTSOD0+88X5BHT208T9zR37cSQ49Y21RnT1RqhSzq70lIoha8Gqe4DV56VXnLcEFyXkJA5Yp7QyNNK4CS3lPC8sc+Y0J+Y5cTzNzHOmZBF0GUQgHUNgDIJSS0CUIRhk+uUsfqPgoFM2nS7ZjvFgqqLG1WKdx/qGwdK8hxYElDCrTdbaKK3FkdQ/XZVqzSoKbe0WJmGsx9iAtSsSareJ2F+Ua3UBWddzWYswnaT92RMgVJay7gl9Q6S36vd6urR+jQJk6+u7PpY8nvj2l1o5nmfePj1yeDvyeLfH7kdMiLhxxJVGIQtnvXdclfM5DJHdOLEfd4whMngN0rFW/JIB05rQetRnQ4cj0rCBgkdN6UJK41E8ZvUzXuaF56cnnh4emU9nBd5kDTvvRWS+TpyMUlG6nGfOeB10rkWwVzBSfNBrKZyOR0nd1Gk23RGU6mFWf/PattdLkoUVSdaP5Sox2KmIfklSijW9cj0Y37mnr5qhn/+2+gt9fTNbOSWcOyT7ffNcvupU19FBN1Iwb861muZnuqAHTbvQ9ai+XlZWF5QO23XDk2JadHKdthbSgOl1CxWJUSJfWwo8nY6cljMY6UbFFtkxjBPGO56ej5xKUtGcIpy1UXrDdgnwoHaq6XgvCXdm5VvT6DVTaqYti3D2wgC9SzJPrbSUaTlT0+Wt6Q29dvDLouMQZwnjwG6aiOMgfKtuaKWQ9EkoMTLPZ8YxctjfQ7/h6emBh9dvqHmRUadzRC+pVd7Kn9Mw4qyIeYYQGeJISpmffPYZ83lmN0Re3OzZj5KKNgbHOI647qk2sbQTbi5U1AIueJqfsPuBHkY2SoTR7tW4TaEuLhdSuDY5764iSDptjUn/2rvuCkHe/lTBllHnjd62w+yrput949xaY6kdZvWdHOJA7w4o3N7e8oMf/BGHw4HPPvuMx8dHMZEPQR9TorCNEZHgirSs4q35fOaHP/whL1++3A6cX1//PpdBID+9sUBmUwpeGQ0QKq3geuX+5T0fvbrDOycpkDVTi3DsnbmgS6YbaqpakMpr2mkYb6RAbpmlAaVT5iRCZytNvIw3EyVnQXZSJedKzo1c5C3lxrxIamelE6JnGEZ2454welwwWC+ojlNBmlS86+NnlnRiSTMWoYMEHzjsD0y3NzRreDwepelLIlp11uO9JduZkiqvP39NSon9uCPfJ5abA+OgqZ1jJDqHVWV9LZmSZjCVWp3082XGtLwFlhiEzz1No9jfDVHRcEWzlEM9L4nj85nTaeZ4SpzPmdNp5nyWSN6URMPhnCF4zxgj+2lgN0QG7zRW3DNFT7BqHuosdrXVkM5ALN6dTBat9zjfca0LZc0HqitS8OrcU3SGAtioM5iMtDUAg9XizIoHPNaD8VgbsLYiscVWooP/glzvi5ll0n8pkL8OdXtn8rSeywqEmNXbWAGPvp4L14+LeBkblIlxjYcggJTz4q4058zbp0eG6Hn14oD1hoyhGMPSBDX13uCtx1sRicYQiS4SnRdfdA0ScqDnkAhOe7M02zdrXAG6hRcsB0aji5khqEtGb0p9yJX5fOb4+MR8PFFKwXlxtrJWEzKNCMmHcRQqq/Vq/6ZNmv78Tc/scRzx3lNL5eHtW47PR/Ii1rjBeayJAghVicVuVeievbUNFV4Fg6UUSpWGPeUk9rZA7YZSJLgkqaf7u5NEfSH+4gHMv7DrmyHMxhKd34JLgA1h3grmdWyh47C1a5HxvBY8ek9adES4IlwbuohauDXVU0uR1HvX0abRQgeEoyj1+LibCDqOPNwceH7OnOcTtWZ6PeO7pe/vuD3c0eaZWmT0YowRTq9frWcKuUkn2GlUmnB9o9nsW6yKF2oWs/LeobhAq42UBLktubAcF0qqpJQpSs7PtciYsjfh61ojMdTeM4XIfpww1lByJZVCyoVam6YDWbybuL+/E3unMVKWmeOb19QlYXHs4sCLmxt2wwC14Z1lHAbOreGxHG4OTONIzpW3bx54UwvPux13+4H9ENiN4uXcUifPBePOWB8kxtY2CIY+HPA9Usdxs8JqtYO3eB/pdhWXCP+wZqV9mAuSbI3wvVnxGx3vcWmVpKHqq6+yok6aaGR1nCHUFv2SFUGSE0Bvqb69tSYevsfjiVIb4xBJqfLq1cd88sl3aK3z8uVHfPbZZ1uU7IqeGNtVRW9IKdNa1dF0IMRACIH/9r/9J/yX/6f/8udajL9K1597cMm6abfrFLF1/1DebG+cTs/U8sR+cvz2b32XwXkeHx54/foNy3LWB+rqbW5oubHURO8iNMN0jK20Zik201smMZPcLKNT63QSq7zFWnQP6NTcKUUKZimUM/Midm+5FLAW7w4MYeL2cMuwi2Abq3WiV+cZUzvHpyd6byzzzOl4pNTMGCJxCnLg4oguYKKnNom2L6nImsPgvaFOhRgGerPMz4nleWE5LjzfnNjvdky7kelmYiyZUBKxLMQ84+ewiXyNMSxLZj6J404tQrz2QTzpQ1gDPqSoqZqOWnoj58w8L5yOM89PJ5a5cToXznOW4nlZyHnZGp/oHLsxchhHdjEwRcdhHEjDQPQOb8WZw7uVxNmlqLkqmm2oWF+xwSPBflb40xVMkGLEOUcLum87BTx60ymEvq6mSWFt1WrMOJ1aKnjT+ru2md/i67pYBjR4aaXDXZ3l79ExPvQ428p871O+zpJTGl71M5K4x21iKH1LV7AFSik8Hp+xprPbBVLJUBvnp2fS+YzHEDEK4knAjreCypomTWgrlaSUIddF3G6MxdiGaVZpO8qlptI1WAVrMK1ie8d0ccgqucjaXjLn85nT85G8zBjriD4wjSPWe3IRtFeaA4/3F6EvTSgnRisb44SisQJ+xRass6SUOJ9OOCsWuofDgWkcMD1grOw7Rfchmvi155xZlkUCVKoUxUvO5J5p1lG7uEQty8JpnklZnHdqE82Avkr8Gl/++usb2sopT5errlHRz+ui2WjB3MzVCGZ96+uCuVgqrUX0hc+xosoIl7Wzcc4MRpOZEH9P5aDV1rDOkWvlVDK3UyBMI8d04rxkpmHiZrzB2cCbt0+8/uKnvH79mlob016K8LUwapryV0rFqX66eCcmC7WCyfIc1E4+zyznRO+Gat0WjS10i0aaJfkvZ+n4Sq0sOYn1S5FI7BAjwXui8xymHYf9DZ1OsgmTE6i4wWGx3UoU6PmEqYVlPpPnGdu7qNtzkhEVhnI+8/x8Yj7PEo4QIodR410r/OQnX/DFT7/k+flMmzN1HinTQJ0KlE7NDecl1MOGgAse4zstGJga0d1hrPC2WjMylm1dEpj0HlHmlmzI+upKBuBa1YrgomuxC4Ics90K6lvJimbIzbExNXqFrkZVBoWTrjrm9RM7Gsggb09Pzzw/PXFz+ITj8YllWfjN3/wtfvCDH/DRR6/oHXLOG9UHdVVYVeO73STpkV2ETSAc//P5zL/9/R98k2X15359c1u5n/1YH0aoPlxsfPhz18nRZbpwQcC6OklIo1npLDkRhoCPjvv7G5yD0/nIPJ9Zcif4uOkLSlG7sF6Em2ylobOt0Y0VK7faSSaJqFmRTtTWf43ZpduNs1tyY0mV03nhPGdyqaRWJPa2GawJeD8wDRM+WGotGLq4YtTGkhbOT8+0VkjzzHk+CQlg2hFN5Hg8E8Ij1XTCbqJ0ocft9zeCEikto4579rsD0zDxbJ45PR+ZT4nzeeFwOLA/7NnlxDjPxHMknDxh9PjBE6IjRKec/MayZJalyP7VlFNszWWP3pbWJahiFfnlXDgdF1LqLHNjWQrzXDifM0ldAHqv2A5zXEhjYg6B/RipU6Htio7SLS2Ij7W1SqMwTXjFDhlALBXjC9Y7cmrUDDl1/NBxQxOvffWz9d7ivDQX1q7nT1NusnBUrfKX5Re0WlijyWnf/snR++v6GmHs7xXMH+I/f/1jfvXjX49SS7EoYjgRcNLQqgBZF6vX+izr9Ec/+YyUE7Zb8iIc5ttxR7OGZgGjIj1rlaMujXWthVqEDumNxXjxEm/W0pymt2oh34wBilCUqriqdAy2C/c6LYllnpnnhfNpJs0zrRYsKLJbcUgMdimFbgTocazUFxXelqoDd9HS+OBlatXk68QZwwrC/vYt1lgJIbu/E2DJNtmnNGF2tZUr6rOcSybXfEGbTRPdRZeE1DknlrRsUdyKLanX9J/9+n0br1/U7/KNCuboBHG5/gH61hHa7eMG8w63SUYxcvhJLS2CGbvRMrRiWlHB1iQ4xHTd2OTjYMRvsAhvECRRShK9nBrXS7dpY2Qf7yg0cm+8fPUR+bjwox//Kce3Tzy+fs08n9nfHMAGdoeAD0Jb6KaRSwU8Ucen4nzRKbkR0JCO1mk5U5ZZRAAV0pIppSJ2OtCL+KnKeCRzXhZO85k5zZRaFREXQePgAzf7A/e397TemePCkBIVIxA6EI2DXHnz+Zecnp54ePsl8+nI/PhEXTJxmPjyJ59xPCemu3t2d/eEccd+2jMviwoQmooIB8Zhx+xmliXxlI+YVDEFTDXkuYAKBIZpJEwBQqdFyQ21tw2HFb5iaXQXwAYq0Fel9FqMXYvz1snPFcJQ6ZtYVBT0wlcXBXuR0RXIPbR+zTqd2MQjRtAA5Y11fZ8uDVUpRfw5rWOeZ56envne936b25tbUspM047WOiFIspdwwzQ8RR9vFfmJH64IAXMuGGNZloUvv/ySnPPPsRR/Na6ft1C+Lny/vlj+alH+9Z9vL5Mm5EBovdFtE46/95yXmTAcuDl8jPcVFzxYGPeR3WHi6XiUtDF1nOkN8rJQirx+Tg9E0zU2ma7AY5cpEFVRNB3l9jULC+hWxvTNUIoUhUmpGedZ6BgSNb+jdcvxOFOKOFdAk/Ala2k5k9JMns+0Vqil0FvBWwOpU5MlZcvptGC/fM1w2BGmnVpoVYIL0ghm4Tx7H9jf3PJ0PHM8LZxTohzPlAa5iiAvzgvhaAmjI06BOAZ8MLgA1jhybmpc4GlZkYwm06IQPMZL4HSjkXoj1UoqAgqkVJhPC8s5Mc+V81w5L4UlVXIRB57SOqjfdC+dlhqLm0lDIJ8jeR7ZjwNTjNShSkCVdzhvVjI6pkr8d6GJbakPhNiYzw0XMz4u2Dhg13RBbzR8xRGCJUQpop3T+0Mpg26ljeVGnpPsgcFDaNT07VrX1/xk+PpiebOHU5Tq/fX4teLfqz/ff/wP09K6TgwvgMY2ddb1fqFANao6PTyeT1gLz6eTBIlZw+iF5jAqqDF6904uxDpNNDShXK4BHdnSXCB6T/MOr7WLTJwkvVcscK14MPeGaZ5cK/MixfLx6UiaF+hCC61VNDClFMIQ6UBtXdDmvOCSw0dPCA4xge3qJiMT9NZkOnM+n1mWRc8p4S4fn56ZzzPH5yfS6cTd3S3TtN/cP1pHp9CJUrI6colzzrwszGURNpK11G5IJfN8PHI6n5gX2ZPWV2ADMfu/q6LlP77rG9rKiapZ0rbWJCTzjpq2sd210NtlgZq13FmXxkX93pTX3JVs31eSvOxhujVrgaVIpNVo7eA8tuliMOBjJNrVI9lw8/IFxzTz+vGJh8/f8Pj5G05vH4nWMi8JFxO73iitYnEY78Rf1VRqa9RmdSxntUgvKw66peuRMj0L7aClosk7nZyrRrJa5T3NPB2PnOYTqRQtRCcdo8J8mjk+HOkVUi6wPtfWSxKSdaTjzPPbmfl8ZDk+cz49k5czpIxpndINzw0ejmf820em2wfCtGcYJ/F0Pc8s55nj85EYB+7vX1DmzPPyhvmcsKVDgZYa4xQvtnLWilUgBrzB4WjGsiyZp9NCboZmvLhkNMA0Qck2Aa4qA80l3MGYlc+snb6m/a3ow+btbVQ+uBUtXbfadxf3xecTLpQO/Vu/0DRKEeHf4+MT1lr2+xt++tOf8PLVCw6HA6UUPvnkO/zhH/6BeOK2xn6/E2FXLeorfdn4V55zKYUvvvhCGqZv0fWOwv29P9fr6wZ17x/AX3990y1YZhKtS2O8TpzQnzVniX+uHV68+oj9zjGMkarWiqU3RR0z1UhSXs1VHrWtyKLYiDnTsEburd4Q5CW3yy+tnEaM+vsYgyjPoHdLqZ1cm3KZxVatdUipcjrNGPfM6bxgEM9Ui5ECzil61SolLYCk+jmkMO3FUMqJc2rY8ET3VgRPMYqdnDqA1FIZbCBYx3mewYKfImE/kHtjrpVyOrPUxjlnhiUyTp4hecYcKCngPFgnjXRrRnxkfSMVtexqdUPiVrRX9ni1ppJnVPdMRbtSEYrGnJlTJeVGqesET24JU5pMswyYTRgtqHkdC7VGxmFgINBQ8V+Rwiu3QmlVuJ0mY13CugXrJZXPBA/WavqgkUCp/z97f9YlSZZdaWLfnWTQwczcPSIykYmhUQCqgMXnXnxt/m7ygT+A5APXalZVFxpDNTKRGREe7mamqjLc4fDh3Cuq5uGRmY7KAY6GxLIwczMdREXucM4+++w9BPreM+x6+l1P3we6scOY6qBmkqKddd6bWpI3IpDTJ47hP/zxseT3w99tvNtW8/0gyIYfmNs1mbyd2hsdzsjN6ns9dPtuN9/S9Pdv123ZHqdVakQ4TUt1kvR01hK7wNjv2I2RvnSsokCWl4a9KY2iIaeCjstYG/E1QPaIV7qTVP9156A6pelYTipHOa+RaZ5rU13GV3fPvEamy1TnnaXvenynngq9GbRROC2k1JGSVktEHCUrNXBdV87ThdP5xHQ+qyRuUkfjvu8pOTOdL1yen5hPJy6vX/Hw8IZ+GLFeW2NTKYrG1ybAWDnKKaXKpzaI1WrYkvRzTLP6DRQaFbLx2H+jYfV/2uOTm/5eIMmVZqGOOyohZ6VsfIpNhsdUjUdU0gejZQoNjG6CHlG0Wgn3SoXIkilZVSuoRgTOemxQJynvHWVZAEX8Qt9pl3fQMGydLwy7PRKF/kcDP3r4ijSv3O92/Jf/8p85nU7K60lRnagq9zqjG1lVd6qTQ9GfklR4v6REWlaW00SKaopRPQeUK7smUtIgcFlXHk8nHk8nlrRivWM37BjHA+N4wDnP5Tzxzz//BcY5pnmpgachhMBut+ew32ONEONMXCbKupDjovJ2KWKkNgJkYZln0mXGPJ5ZRUvYKZdq491xdziwHw8sh8hyWIjnWVVD5gT5otzs2DOMPT0F8QZvBeMctu8w1hPF8t3zmbfPZ6IYcAGxXr0HKiKlze3XIBlq6W1bk80WJhvhyqUSRXqMaXx2jVmuAXINulvlAqultI3qwVbVkLY+G0USUspM08y7d+9Z18Sf/elPeX5+ohT44s0XOOf4yU9+wj/90/+BtZDz+mLMN2S5bSJKU7KUbGrA/PltrL/u+L2z2oR2w2slolxLrlZlpJ6fT3z37h0//elrdscjMc6cL8+cz88UA7vDgdPziZgT1jqKFFKRKrGUsUUVIgpqOy9FqrSjaHDdNL5FRylVyk4pZzpARQwpCcuamWNmTVriz0WY18Tj6cyUFJlMa1JnvroOWiN4a5WrGyzeaRDdOYeIwzjBuYKwUNaFZCA/nZizJguX80WrGQKvj6/44tVrTd66wHAY2aUjCcP6fOE0Zy7rxLwmdmskxY6cO6UaxIwPKDXFWYzx+GCQYpWCVjWcdbk31TwEBDViwFmMs1ivyXXfdYxDT0pgLmruoxQ0oWSQYqqsV9Wqzjr3lyrhZYwqJElt8mtKAo0GovSPwpISS0rErOtbrtJdGJX+E2/0ngHeGfohsNsNjLuOw2HH/m7H7jiyQyoyWN3TUoJqJz52ji50DN7+myhR3ybEm6ZyKVvnCFzXudvH/Mqq0wbt1v+ZDZ344GhASX2nOpc2BzyqXGzjOhsD1iGSlb9cBG8K2Tmsscy5sJZqvIGCbhHDmhM2GTUhaYXN2vQiRceOSUkrVU03WiAVLXyYqsiTpbDmxBKj0q2mGe89fddrU7z1TOVMjJH3794xrQvOGYZhx/545HB3rzbtBrpeA+aUHDYaoslM68w8z0yXidPpzOV0Iq4rEjNj13M8HBi7nm9T5u23T8RpJs7a2Ls/3OG7Tq9PpUXl6paZolIzSikYZ6D5CIhWuZdlZlkWpapAbXqs1f5/A2P8d3l8WsBc0WSlsclmfW2ri5I28WmwfC3HU8vx9hoUsbEvdFI2+K/uQ4ipHcmyzUWt6lctTaNe7WCRysOh8oScr5qOzjIMA+N+ZJon8prx2eIj7EPP/d0d756fOP3d/05SyyDlLImG6rk1FiWlYqhn/ErJK4u1SFwpMVKWlfWyqCuPCeQkLEsmVi5kLkISYY4rz6cLl2kBZ+i6gd3+jmHc40OPNZZ1zfzs/S85Xy5cJi3/lNoM0PcDd4cDx93I0Ht67/BGlTokRSSvpLyC7/D7QnKBc1yYyzOPl4nny4QPHQ8PD9zf3bEsESmGLgyMw57deIBYKMtMipmprCpBYwXxBvGG4MHmAZsNFs9lLXzzdOLxtJCNR1yH4LVUVZUFmtlMga0ZvZX9BDUqURBBqr2ubEiwaX7rW8HINGdd2Bb++oKWasTSaAHUTvj2eg1FVVpPrPywb775mr/6y//Aj3/8R/ziF//M3d0dGOGP//in/K//656n5/d0fbfpW4bgqxtTHZaidAFjDM72PD4+/ZvgOv42j+sa/AmLcV0TrsjT1RYeIEthWTJPT2fOp4nzrud8fsf59JacVvb7O3Z3IzFlLudZg6qcSJJ1vkvj7mnjb85JqQ31K9WA+Vrm1QDXVPkxMVlNLgqkal6ypkzKGuAXY1izIPPKXHm98xyJa2nUfQzQef067nv64FShpoNiC8UJziTKmoimMKfI0/nM+9OJy6QUEO8Mx33PcXdPFgjGqDHC2NHlkb4I05qJ80ReCjEtpJQ3Z7CyJtLg6TpLCFaDdGuhZGzWqpDvPd6HjVtpWtJgBIryQn3XMY4GjgYnASMO6yZiEqaYmFPEFg2YTUFlvSo9r+khpQTRFBYbcdYSsqeXTsvWdS+RovJna0pMS1J735hZGrpfroG8UpGVwtMFx27Xk9esUnzYapftsMGrfbcYRNEOOu+4Px5wtmcMe4IfmNd/g4lw3dPVpOXl728rTx+nZdQfbv9kbv790Ri71hEr79kYVaRqTyvb+l8DZmMoxWCK2QCVIkJssmk5kUSDZp1TmRAjxhScA+9rg3i1RVfBlSolYFpNs2i1GKkazCsYlba7zDPPlwvTslBE2O32DH5HN2hfREwe5y1FIqen98zLjA8dx/s77i5nYly4iw+NIo/kyLQExMFcMtM8c76cef/4ntPjE2mN9N6zH0b2+z1mFOKycn5+4vT+kbyuxDVz9zAz7neEfqgN+QpAppw2eTmMUtdM8BTnEOIGDsaUq5Nui8Hqfvnvx688Ph1hNrqINk7ptbx+G8DUiVgzl01mTqildEX9Cmwb46aSUUXTGz5onSVYjxMqb8dtBflSrvwr5TWvKgVmLb4LdGOv5hLBs+92sCR+/vc/w2Y47HOVELKkimzb4NSUxWoJQ5JsAVHOGSSS08IqUJYZiRGbVTzc4bQrd80sl5l5SarLKmhZdF2Z50gRQxd6+mFPP+wwLlCqBaYzjpQm3n33yDdvv2O6rJtWqjWGse85jCN3+5GH445DH5TOUCLGZDKRkgpzLlwKPK+ZuagMT/CB4/HIw8MrhmFAclWfMBZvHV3XI8OeKLBOF9aoVuTFQrGGbIU+WEXwxZJEeZXfvFu4LAmxA2I8gtcO5MZlrwL1ypipndBWx0xr59MAogZItUS0oYt17BmaC5ipyiYflPykARv6OjoutEQlN65epWpjllJ4enriH/7hH/nLv/gL7u4O1fJaNW+//PJLfvzjH/Hu/bcVAVFk2VhDWhPedfq2UrWe68aT/4100v/2j0+/LiodKIgpN1UDPVIp2JxZ18T7x2d8gJwWjAt4ZzHOqZQSOgcRNTbISvQAqtZ7KSoVtebaewAlG3XozG2lqeuWlZr7q+Z3Eq0mpST6lUVdPCudTFDUymZ1LzsvmVkl2kEUuA0FfIIoC0NnGbvAkAtDLnQp0UW/6ddf0srj6ZnTOZKxjPue++OeL9+84c2rN+z6oa6lKoRuh0CfRoY1M62ZXFQ7fk2FsGa8SXjQJDNZijdY77BeP48LQjf2jMPIbjfSdQHjawDVdJGdw3pP1xuCdHTS0bseKx5rO20gTImEYOzMajSgdTisVdtpzWPVtVXvl5DJiAXbOVwI1W3TUYqqA8xL5HyZOU8z05KYV1UqyRk1HrFgg+AcBO+RoaPzARkEKUolUXkvvX8uq+xkyVqpG7qOXdcxjkeGsMfieT6d/4dmwL+G40NL+qvubgW6bv726/sZ/uVrXZGCLRoAG5M3bwZ9VV33lfrWqAI1qBOVBo0pc1kWpiUSd4lYPKZoApaKw2VFmrGOYJ1WQVqFqDLmsggmp1rJ1QokBVIsVWFi5TRNnKeJLMI47vDB03UdLnicdXR9x+G44+585Hw+sSwT86wqN9M0cb6cuHt65HI5c3p4YBirlnTfkYxwej7x9ttvefvtt5yfT1AKX716o4ZMIWCLMI4jx8OB5XxmmiZi/IZ1iRwf7tkf7wjDoEZoRh2GU86KIZmWOCptqlGlci5c4za97tqIeR0L/9ZYzH8Q4xJj7AeBcZX6Mq3uAYoKa2a4aRY3jpLoZDBb2KyLta2oLo1vU2kNikDq71Q4vDn9tQHhcS6QsmNdVk6nM/Hhjt1x0MzLeZa4EGPizcOIuMJ5muj2gTUn1STteqZlYl4W+t14QzFxuuklDcbFFOI6k+KELYW8LNhU6IyFpFSHJIVlTkyXlXVJrKmw5sKStaS0loTtAn0/1skXMNYjWKzvGPseg2deM6cpMs3vtDxVdIFZiKzTwuXpielp5PXxwNh71YMus8os9SMlZFYsrht5uD9yePWa3eEI1pFTxojSPJwI0a51wBis9xjnycaQSiathWwL2UFyUPqOkqEznojnaU68O00sYhDXkTA1a61osIg2aonogtfGTWm8ZTTzbvSG+mVrwCxVAaPpNNtaXqW00m0NVmvw08YSVZy9VM5zqYGRiPLPGkdjmiZ+/vN/5mc//zn3D3/Nfr9HSiGEni6s/NVf/RX/8A9/xzSdlcddN5jWiKa6zJqMGGvUSCYXtT39vGjMv/OjVQ0+6Tm11FhrTRTKJsdrcNrAcpr45tt3hC7w5s2Rr378U9b1wunpxOP7Z57OZ9KSCU7dOKmvqbbyRfsVYq70KZ0bVJpFyeWaxNWMrKpJKm1LDDELuSGbomVfUx0gBVWMMc7U4NJiO0uqMpS155U1qmPgWjKxwFqEORVCzHSLxXnBBq/uo77j4c3I7njk4f6e437P3eFI5ztMUedCJ9qPEUoAPLlYYhKknFguCzELy5qqLYxsSYL3FhfAFYstmWALvfMMux39uMOHDsxV2wijUqM4dTY1veCLOhim2jg4rytLVh6584booXiL5kAFpKG2Be+UQ2qDwXUePwS6caDfjfRBNW6XVSt7ay7Ma+T5vGjT8SrEKDX4Ueth64UQLPSWPgBiFfk2DudUZ9ngqnOiVjLWuCI54QyMfcdxt6PvdpgCMS6/hZnwhz1u6RW3Tbrtngq/Orh4edzCyb/pCbSnSu1dKvWVVInCWHcNYCrCrM5hRVHmqu2fiwa187oyx0QfMhaDx23S7VkKuRi8tW0G63vWWCMV5dS3ZNwYSynCPC2cq831HCOpFLqqPd71Pb4PtcoEruvYHQ68ev3AvEwUMs/nM8uyMMeFp/MzT89PnC4n7p7u2R8OdOOI7Xoiwvn5xNu3b3l+fKSsiSF02qjqfQUaha7vON7dq79DKUzzwtPpGbwD7+ipKhimNhHqBltdcPXqlmqelptKDWjxFqvgpdyAU5W68u/H949PCpjFOMSqvJoYbddqFqSm4s3NLluVeqw2h6CbiTWt7IJSLKhZLmxotZhCsVabcEx9oFzlvEqVIwJtE9OO2g4oxNWwRGFNEDOMocOVwileKMaw5MJTXLkfApe0EAaH2Kze61JY10jwQUtEGUrMSC6YpANtni+s60Lt/sKLIkgmCySQbIhrYV0yy5JZ1swSk05Ka+nCSBcCvQ24Al4snQ30/Y6+39GNI91wxAx7zLin/+Uv+e7tW+bzRZHSnAjWcY6R9JyJuXC3H/FBpZBSLiqzJGDHkf39Gw6v33C4v8f7wLquSFbbWG+EWBZKulBYKQ6SM6TgMcOAsYUUZ5W7WQNEg4kOSoc1I5gd382GXz5nzqVn9R2xalhaad3QKpYOqpUJbEFulqLs5VpqY+Mia9OUiME3Okaj7dD4GHWu14leReoARRA1SG7B8dWcoJlUaFePUFLk3eMj/8fPfsaf/Nmfcnf/wLu33zKOI0jmT37yx/zkRz/mH//735NTIgRPSplxHElrrIF+IS4zWEff77DWbHSNz+Voti+1CFS/b2HRB4d8r3T7azN0wzU6/E2PijiVmnxjLA5LqTJg1vYUgcti+OW3E+KeOb76kt3dl9jLI9++PfP23Ym337zHieXNwys610MwxGVV2aeStS8hS5Uk04BZqvRg7R6ifWAxou6AoHQMqmmnDrMaE0ttjBaMd/guYJ1WrIrz2EUqL75e8zpWlpRbgY0lZbxX/vI4WPqhrhO7gVd39/S7kWE/cH//wG5QB1CL0tkCGoOKE7zxTKzEITMexs2lMs4Lc8rqZloKWQxd8bgieCBYtblfk65xfrfn8PCA85aYFrXEdqZuHkIsit5DQZxgPYTBElbLMDoOB0+SDmsSK0nRsCrxKI1CgVOlDm/oekfY93T7ge4w0O8Hhmq+JJPjkiIR4ZISU4pMMbFmiAVS1v4R5yCIrVUfw7IW5jkx7ApDrvuR1abxzmujeKrKAjFHclzIWOhGnPPqkpbn33z8/qs4Ppy/t4Hyyz4Sg67J0JRp2B77g3JyUAGNFo6aq1Z1re59yJnWSlzQoLbS5aRARieQShdq0ilSiVjGUEzl49amvJKFNSsgtUatNBljcB5tIPVqniXU8VB597U1lZQzklSbO2d1pxXUO+FULbnXGDFWTUVC39ONA+IcqVbXrTEQOrq9sJd7XuVEBKKI0oTmhSKrOnOWwjmu9M/PhL7H+I5ihHmaeXx8JM4L+93IeDzQ73eY4JQOiSDB0h9GjvKaFZi//Zbn9UJ6LhSf2bPXGKBqShvnVBLTGbJhq8SnmFjXqM6kRVQ5B3UAvL3Df2jjrV+3p/wme85v0rj6L+Frf2LA3JoqBFUuaChyDXYqGmRM7W6t56ybsN3sJdvv2nepF0AMFOOglWAbvaOW1EtRTd+GckgpIGp3K9kzT4nLJTGOQsxQsISux4dALMJaEvQdU0nYuOI6iw12k3bJqeApSDbacHZDOlFumyC5bqy1gc6kgqSCyQbEUWqwHrMhFf0S1IHQd05dvkC51zlSJGv50Kt1tet6HsYd/cM9X/30J7x/945333zLd2/fcnl+osS0kfrj+cw5R7WV7Tyu87je4sThxBGMR3xHRgXTU6UqGDRDN5KwVnQDDI64wGoM4h1WgqqPSEGMo9hAMoFkerIdSSXwfkqcsie5HcUPW9BgimDFQBVqV4C5orJoU4/cWF43fcqG8tTaQg2DM+0vGi7reGvKKqZKfZmKGlMz7IYuN8Z8i9dURldqFzx89+47/vbv/47/9Dd/zZ//2Z9g5DU5RfK68HD/wF/8+V/wD3//9xpw13se16Suii0QLLVhLMVK3fmUWfWv53iBMv0Gj/v04xOeZSpiK5qAbxsvRisOxtXAM3G6ZLrHlctsmGfD6RJ59/7C+8eJx8cJh2UcjnTdiLXKV9VAt+qlJkOKhZx04y+5On7RbqUiPRllDpWb743Ke5VElNrNb3HBEXqPDQ4/dIQh0c2JZXHENZNj1VOtakI5wyJClEIQwWdBbCEbi7iMF8vYj4z7Pf3Q174Lg/GqNOCsziMvqumeXWG1Ge8dfd+Rd01LWEjrylpUjk5sIjtHsJZStDeEqlVLCLh+wPigDdgYRCxkwTmDy1pRTDUVTRUSMaZgbcE5oQuWcXCQPGspWjrO2u+iBlQGjK9rIHS9Y9yNDIeB/jAwHEd2ux0WS3IGM09kb0lGWEVYigbLGQ2WxKqikK0oMsaRBZW/i8rjLEX7LIL39MHjrSGVBOTadJi00XI6sYhQsCzr9C8a9X/Y4zqja1sRN8QL/b+5Bg+3Ae6vs8auWS1bet2olbChtq1qfD0bU1F9U5Nf4UUGfnN6rddJlC+hTrFOeTsZpUCtUUGp1ReMswQrJCrVQz3tVWatNqE3TrvBVHUbNfxYVzUIW1ZFly+XCwUYhh2uC/Q7BbRsCIjzFKuNpcYYjO8ZzJF9LhzWlctSlWGaG+iyks8n5pIxPmjTOLYG9IV1WXHW0g8D++OB0PfgLbkaxBUrEBx26On2O8I0spSVJc2cJ4txhUF6Qqca085ZvNdqF5VyQYGUVfUmZqU1pZaQtHv2LygY/Gs8PhYst5//R5saPylg1h3BXicFVH3gFtnW/1VQqMVEmom2aBqcqaXRiiJtugeiG1GyLQBqJSRbs1XZMt5SHfcShWAsqcD5MvH0/Mzh2JHLQEqZ/TjwcP8KZy3n80U5qKWw5pW+79ntdjw9nbbXbfwea51ms0DJqlXYOY+4QLSlBl55ExsXTeW0Y36JLEtRDrNFO2UHj3iU4mAz4iscFARxheIKxRe8LzhvGfsd/W5gOOwYdgNh7Hh+P3J6fORyEubzRIqRiDr52RSx0eMr4m1SJnYBM4xI6Oi7oM0RWdFxKwVfVPWiGwf6KFzmBDZWXegAJZJyVg5v1SnFBorrmaLwNC1k4yAEcK4GpU0d4ypGj0iVpGsBj9HFS1Qsvqrh6iJ3I5NxRTCq8YnUJiG5kXWrHOWGMotR+kXjMFO1OM0Nr3lLgkSlfX75y1/yt//tv/GTH/+Ivu9J1vDq4RU/+9mJP/2TP+XNmzc8Pr0nlYx3OmWafqUGbpaUMqeTluI+t+N2D71Spl7scx88+FMP8+Lbb35Stz/UxUNqPwR67aWoycY0LcxzZFkL7x8nfvn1O96+feJyWem9Z42ZnAWPqS6dqs0dU6JEo00wWcdJQ4xtXcO0EVi50C1YFup0qP0Ftv7srCUEp2ZEQ4frgzbhea+27Iu64c3TyjxFlnlllVLdfKRef5TTY0tVqpCqcbwS10hcI9Y7utJhqNbAVb+2ZNVmLq7gbMFZVQhRl1BPPwyU6nCaY9pK287rObo2Nypnvx8HhnGslKPadSB6TayzUJQG5WpSoyBenZe1udIgBGuRTtenYlRdZHN4s+q4hlU6Rtc79vuB4/HA8W7P3f0d+/0ei6VYx/M00w3PhL4j9CshSZUF0xtkjNVKXh/ou6D3I1hcsDQoXu25HX1QTV5bK2O9t/ReKWg2ZXJcmQpEsZzOl3/J4P+DHddg4fb7D0xgw5aY/pC05IfHC8MjefnKGx+5vd5WZWoxdu1dqTFDA9qa8pZpdCzR+6lgnWyqWiknlsVwmWcu86C6zASKd5UK2PaLipwX1PDGGkWqVXW9Kudk5mXhdD4zzTPzqlrIPihXuRsG+qHHeV8bRTXYNdUJUlvghXGfuXtQBHeNWrkpcmJJiXlRGlGuwZGgfUtdr420Q9+z2+3ZH/Z0facxQ5X7E9uMugy+CwzjyLJMxHViWWalUjmjbp3WXg3mrEWsrk1CIWX1l9Cq0m0UdzMu/sBB829KB/pUlPnD418aOH8ah9larHspr/ODGq43CLOOkTpZTOMh6QO2gLkhNkWbMkotD33oROSc2xr9tPFQMM5jnWWZZx6fnnl42BPXHcsc6UNg6Ace7u+ZLyt3xwMlZbJkdvs9d/f3fPfdI4IS5q2xONOyv1zLRrqwa+FQQ7PSSsb1IxYppJTV0WqOpCRgPa7rYAhEVyglKSjkHHbw+NFje0vxmWRm1mKhJIrpyHhFNBGG/ciXP/6KV68e+O7br3l6N/L0/pG4rqrqVA0YkgjrEnHG0w8WV5sLXNdhuw5roCxOeXoxYVNWNNh3hEGwYarXGeVhOoeDqkxS5ZpCR/E9p5g5rwlxPeI8qV4PU7WaS61ESC2tXZWHfgCfrPCHabwA2GgYpgbLxsjW2VshyI2LKlJoihxU3rS6PdUgSDIlK39ZweZrSfL5+Zn/7b/9N/7D//Rn/Okf/5Tz6YwzsN/teR4G/vIv/4r/9//n/6VGM5Wf6qy/cr+tLpwxruT0byBF/9d0tOYyc7Mji2zVDBGhJJ17paiz3OP7me/ennh+XigJgrHkqFxj5w1N8D9n3URy1q57KfVtNM7bxkcRFI2pX4LiBL6q/+h5QiuxNdtr710FgYUuOIz39J3T5lmnMo2OuFHT7AY2GFxteLTtc1d6iEEBB28cne8IriM4ryXYGgBY6zE2Y4zXLxytwU3nttUeBrTSRa3YbOtwq0RZQ9f19H2/qSOZJivaEqus0K6RmviKYIrUKpNsVBEPiHP4riJfAMZWJNhhvK4Xxhu63rPbdxzv9hwOBw53Rw6HAwZLxnKcV46XiWnV5kcXZnVYjFWb2lq6rmccOoY+MPRVe3nsVFHkbsduPzCMnRqYOLPdz8Fb9n3AjB2sKn+6xMQUhcfn0+9jxP9Ojg8VL77375sqzu1z2t8/+pp1/+a2pH/Lha30zPbo9lVj3hv0+Hp+W5wg1/cwBjK1Jyar2U2KmTkWOueZ+oGl6+idJeuuXSkHCdAYAdGZGqyvAXip/QYai6SSmee5NvgVTRZ3I+NuRzf0uBBUDMBsGI4G9E01zHnCsON4rzTEVJtPUxHyPBOLUh9y3bM0IVBra+8cXdcxDiPDMOKcq/uthUofmavlNQY18XGWVUQblrPqy1tntRnRe6z3YDSQFmuQNZGyNjhvKk41TJOGjvwPoq+/zeO3gQb/Lo5PVsn4sHP2Bw0P6iQQ80FAbXXDug2YQREHjbUKzlBL+TqwmrQaXCdvKWUTPHfeY+mIaeF0OvP0/Mz9/U47Yim8fvWA957LWe1yvbG4zjPsRo539wy7HTFmYtRmGVvFGxtRXnItHRW0E7dmvVjIziMOSslkiSTJ2qPQB5zvMZ0nW4hppUhm6Dr8MNDvR7rdSOhDRT4KxibEOKxVm298oOs8Q+eJfU+KkeCMysJ9OVFyqq6ImSVlnqeZy7rg+5G7h1e8fvMFr1695nD3gHOGZbZq3V3tM0lqFyrOY4KA89pUmVO1n1VJnjZ5re/ww4HkR57OC3OxFNeRjSUVpdRUH0hNgwxXeUBaPNHGjtWohK2q10bCdYmt8a9uxroQWdO2aurmznVcSNXvbEmOtEW9vq8x27/FaEAtuRAjvH37lv/8X/4zd8cDwVrevv2Wu+OR/f7If/yPf81/+9u/hdMzpWpd9j5olaMURflcXYg/ZUL9+/Erjo9cyTYgoPLU6322NWkxnnnKLLMgpaPvjhSbQIQ1qmxZcFd1hFKT7iyl6q8CpkpXcY3Rc7kJmOupOFTqClF0U4sr1XK5DmiDBrzBWcbO4/uOVAKdswQLvTP03rD2QfnPzuArakVN8qz1ON8Rhp7dYbcFj/04sBtG+tATGmcRPcFYEjlBLqqp7GzAGEcpKNJeRN1RTZWPg80C3jTNc7lqjm8FAnOFn6RW+PRCarJBUVkgK4LH0lvPGDpyt2JLobNOK2tVqcZai3O6wRuvTdbGG3zn2O069vtRA9udNv5Zq8ZIc0rMKVGswYYO150Jl4VlqVQL5+l7DZbHsWN/2HHYjxwPI/v9wGHXc3+/53gc6YLHO/1c3sLgoHSebr9DOkuMjuWSwDnO8+fl9AcfR9k+FhgLSq3R3pPvA2I/bFxiN1Rye4xcn1tDXtpPbTBdZzLcBtMa28q2J9y+j2xa6Rr4SUFtqqeZdRzIXaiNfGrk4auOt6svZIsqSaikoSfUQDFXrnUuijYbZ+nGgd1+T6jUpyQZLwVXEWnJCVeTA+ccLnR0VYRAm+sLBae0DOMwMaojpZZBQUqd757gPSH0WpWqVu7qGaDxx7quXKaL0rdSDY5t1Zm2pgbKQZ8fOjXu0ZKXJqNG98lY3TjzljC1UlkNlv+VBc0fO37zhtTfzfHpKhn2tnnHbFnKtX7bMkauSHINbI3d/tCGcM00m5TY9SVovOYbdFnf5hp8O++1HOosxnb4NTDPZ94/PnN/d8CQMRTujwfevXvHf//v/0hcFg739wy9x3vPMAwMw8gyPzNH1VMWK5gqbycVcVHbTKubjK28O6vcQcSQCmCzSix5i3UduMBSCtO6EHOi6wPj7o794Z6+3+F9j7deP24RyAXjCtZq4401igzFrF2tKSsiPPiO8a5ThEuEFBPnJeL8hJ8viPN4LHnNrNPC6icE0Sx1juRVrXwlRbUpR+18teN4RdZVS6PeadnVO8R5bDcQ9nec/MC7+cIkjuQ8GYvY2m1bI19VVzWUjXuasRu2y839L5tCSqPhmBs07RpI1ybRLUCu32sA3MafcBOE1yduoLVRRLBRe4qpjRvA6fTM3/7t/87D8Y7/y9/8Nbvdjnfv3jEMA2/efMFf/6e/5v/3X/8L3737jpQTPtSyftaAyVQd13+PmH+bR7uY2mD8YWWiNad463HOA46SHdATwgHpHMmspGUmxtoQlq9Iq9q315dtQPHNQlSKId+iy9zKZNaxXvVbXaVjWO/UBczp2hCcYwiBIQSVsRTlJAdrKd5BFwh1DHpn8c6pLF5F1UMYcKGvfOiO4JwmeWtk9R7JQnKWPuhmS1FDupRAxGJsUJUNtyJctNGuJvzOW4zorPReq4eu0iOMqZt5CNWESFHplNatbJ5TwmVBKsVDdc/VSc0ZQ+89u6GD1OMrALEltpXD6XzA+YD1FWV24IJlGAO7/Y5xN9ANPWEY8KFDnOOuFJKI0sCcPv/UXZhnVRFwNWBWasfI/cMdDw93PNwf2e8Hxj6w23WMfairlJpQmZJxZMbg6AZt8DpJoZTI+6dn/svfffM7He2/7eOHgK1bpYzt33oVtj33w+d+LFBpyaqUa3P2LU2j9Ztw+9We26AR+WBBr697lT0z7QmUJNqkl7SBTcSwrJFpXpiXyNInhmbRbiDYoICQ1ca3XAo5W7K1eFclUr0nFwh9h+87OslKdxp6rLfElHg+n4hJdb5DF+n7TAiqmhFKVyswikD7zrHbG9aHRCqW02UmF4OZ57of1tUlq3FK3/f0Q8/YDzjnN1rqGiPrurIsM8/PZ56ez+RqUiQ54YNnb3Z47xh3O8ZxpB8GXKcB+1XbR6vhMRfWmLThL5etMn7NhrnSYD99qP1Ojj90cPyx4xMpGVt0rP/+IXRZ/1GRydYYaLfJI+Z287sJn+prbyT/G/3cxltuerftsHVSGrS8l4twPk88vn/CO6HvAvOykmPk7rBn9+UXKjOzTMSUcT6oBaU8UlLBGkcxhWDMZrJSKsrZjDdulhI9n+p0aL3DYbHGg/WsWTmL05Iw1tH5PWN/pHM7SJ54yaQ5qx6pgdRFum4FMyPyVEvDyjWM66ocxmlWSknK25RIKbMWnRgdTks/08L53XuswOXxRCrataua1YnpcmFdZtYUScWwruqcdrmc8SXR+QA2KB0jdNh+IOwOmOHIJIHnCAvaCJitVwSgtAW3LY4OsZpNk6t04EaF0I1Z9ZnLNgY2EFGozVQ3HdhbmF3HzYvxRK2lb3h2fYxU9EO/tCpBLaXpG+WSmaYL33z9Nf/1f/uvHHYjf/kf/py4Rvb7HcNu5H/+n/+vnKeZp+eTjrNcKmc13AQCnzKb/vUfv7I7/tc85rd0BjffP3ifhtRUKSjlxTsET1wN6yrMS1EJtyRVW1lIQVTxQBoSbGvCI022B1ulfTK1WmHaCDWIrW6gRjf1TFGra2cxwWNDUJm1rYScievKbC1MkcuSWJaFdVEHvBi1UdQgFKebearggnMWyWBSxkbLsi64ZdbgsjYJuYog7fqBYegxGGJRRaCYhZwNuRg1UUpXJ8OrvrvVYN9rsKxBs6LNoQsaMFPlE0NARM9VxFJyxtd1uSQ1epEqxWdRtZDeeaTr1Nm1rQ9UtNE5nAtbCdkEh/EGFyzdEBjGnm7otArXdYSuB2vZl6JGNBUdc84QguNymUgx13P39INnf+g4HAfuXx14eHXH4TDS16pd56vxVdXczTEqOm607ySLQ0QbpS5r4tv3n58O88eanm5/9zHlgA8R5l/zDlzRrra+v+Qn367V19hBKn3jpmqxxc5XVSzVYldd9LhGNd1pX3WPWJaVmLRHYY2J2UWcgV3vt8a3IoUkmZjquLce7wLOOvqhsNvvOcaI6zsFZ5zVwDvOpJRx/pnd7sIwjux2B4ZxxzCMDEPZqlAW7Wcw1jGMe453wvHpWT0NxGgzYkXwxaiz59D17IYdQ99D/Szruqo7Zly5XC48Pz9zOZ8hZzrv6TtP1wXC2NP1Qasp40DX99gQlAZS97sihiSFmKqaSEpqo936i743XnhxL37fx691lbw5fqjy8bHXuB37t98/9fg0lYyPTKRbuZjb8s2LLU7ajaiFmduA2YARWysDKtNlrJY7PxaQf0gLkVJqQKvYovMdMSbePz6x3/cghhwLzhu++uJLuj4Ql5XLMrHMa3UHDPVE7NW1zalUUylNnUOVFUqFp1rZv/F/jLPa/WohYymieqvzHJnnTBcs61R4endBomEYAs4CkgnBYo1KIQ3VojVWyRvnnMpUpepGtiZKzizTQopaIowpEYvB9gM2BGwwIIn4fGaun2leV+ZlxRhLSonnp2dO85nzspKKrm4xRmzO+N5jnFUEx3tsP9Id7unvXxNdz7tzZiqBZDvE94h4vX8WTG59t9fKQpucZvtLS6Ck+ZPQMGTZbEk11b7GMVf0wlUEu40nqSj/NqBelio2NKMhg7INvGvjUSmF8+XCP//8n/mvux13hyM/+tGXHPZ7BBjHHX/913/DL375Nd++/ZYU1Y49hACoc+Dn2PD3mxwvFpYNjfqdvuMHP38/YN70sI2Qc8RaxziMlAyn08LlrI11cVkIVuXaYjUYUaUfWzmF1ASvJVZaOWrkne2TSoWhq1SVOoFWcLo2/iVUQ9mkXE0CImbSZlTvHAXHsuqmLiUpOl2yKuWIUjJs1d40UPVYHbZzWO+QGtBiDRnRpiTrSDExdB3jMGgyZzyxXPssYsqcT2dO54l5mpGcMZ0nuFCT/WvS3xLaRsewdW6UkvFeg9ucInBd/0SoTdiKNBvQBkSrqPkQAr4GPU2X3VqLWG2g0oZDh+sCrnP43hMGT9d3hBCwXpVGXBcw3rET5Z9LbSi0CN4a+s6xLhGRgveW0DvGwTOOgWEMjLuOYdfT94HgLK5Km8RS71ejmEBdGwwpF6Y1Mq9ZUe3P9Phwf/6h4xZh/pXI8vbYrXzHLQ9aTAu86z6w7f0N+LhdReSD19R9V821tAlfshoLxZiUIllUczuhdvcYbVpNqXCZFzqv/GFtEiyUnMiSNylaW4N37wP9OPJgHb7veT6flOIRV23OnRfmeSalwmM41YD5yLjbsRt37PZ7hnHHOO7pQ1dBHpWm9CEwDCPjsGNdtIJRKkAj1m7AjzVqz70si6pf1UB5mi7b95wTvXMcdiNdd6DvOnbjwDB0+C4oQt51GOeJMW3mJcUKMWmgvMa0JRa5NJnV7a7ejJU/LDPjQ479x/7ejl+V/P2649dx9D92fFrAzIcXuJU0lTxvWzOHsAUibJOo/tw0EdrfQMuc9fUbINlKpI2/3CZy+7l90FSUy+iMBr5CpuSZZYlaLhdY1xUrlr7v6YJTTtNuxyWfMK5uSs5p2SdLbe5yFY28Cp7nlK9W3CLbFTH18zuvJV/tANcPkFJmXRIpQlpPnJ8vnHYX9uNAFzTL7IPDGpViujgNGnNRc4Oh7wkubO+3zqueZ4wQizohigbFEtXy1VlF20tKrE9PzJW3bH2H84HpMvPtN+94fz4RyVusaQR2vXYGG+cxIWC7HtuPhP0dYX/Pd8nw9hSZxVNsh9iOUnQR3JDfTRHF6YKKgFH6hd5UhQayNE3fm4C3IvuCIsc64koNXq7pr0rK3Yy3rdJwrVBonNUWcFAMoCHd9TRuArKU1C77H//hH3k43rHbjRx2B3b7HWtMvH79BV999SO++fZbnPXEtBKC5dXDPdM089//6Z8/ZTp9lkcb9Vcu+u/wuC033J5BTZjaOuCc53A4cv/wipRgXRPLqpqjaY0qmZiKGst0DhWn1LFZpYkxtXR5Te5rkGHrVn+T/eeKqlIyxuioyqkQpbDERFhUn96KYCrH11kDxpOKJWUVb3ZNTLyi1EljdWxrhqvd7M4KVK1jUWEKlqQasQbDOieCd4xDhzGOJRmWiiRT1W3iGlmXmZwizmjQMIRQQYhatavBcc5Gz53277yZ9FijzcUibTZt8RINs7LVKdVZQ7BgvMMZIRlDzlGRQ2trA/iVyhK6QBg6fB/wvaOrDn8NgXZBHV9FVE6wpAg5Y6TgLYydZ54XcorasNh7dpWzvBs7ut6rtGfVrC1FOzsLkCqPPdMqoa46yhWWmLnMK/Ezi5cbZalVZH9VcNHWztuA+ocCbO0ruiZLVyCMm0DH1Ipw/ftWPW4mGS1BvdJ0tnOrY07dNnW/NXX/LUluGld0xDnvGcaRfhgp66xNmuvKPgV6b1S9PSWMZEzRoLkSqnA+MAw9w27P7nBkeN7x/v17zufzFrinmFjmiWl64unxCWPfEjpVtTgcDuwOB/aHO8a+3xpyvXE16C9bVbOkTKbUtUMBvrisXDDknHFntSh/Pj3zfHrmcrkQ44oxaOyyGzQB7Tt2u5Hj8cA49rVp1uF8IAG5iK4xTqtvS8zMa2RZKxLfkpB6DW868j+LKukPJXG/KWr84eM+BW3+xICZm5C5hbhNbJzrTkP7p6K2jY7RmsduA+jrZGonDtaqUsYt/aI1WFnbJOauARJoo0cIHaAKGCKWnFTjcJ4cnp6xD1XkX8uEqevpk9D3oyInMVGyaqMG66ozmKIuubpoNYTk2q5Yr8LNYtHOCtiaikrJlCjMayFVDtbdbofpPEtc8RachTXN5DyTS1SktR/wThUZrLGkmCr6raUlV+0viwEJWsb0XcD3ygtcUgQp3B337A53hDDw9//4j1CNQ/b7jm7oiWtmXaIiy7aitsZhwoDpdrjxSHID76fM01KI9BTbk8VpY6TUrn7a7bQ1hNYEwBlXURuVgNPEX6oJDVU4U5MwqQGMUi2KcuGklfF0sTZytd82dQwZ7FYd1PHf9J6rYke9H9rc0oJqg0jegsB5mfjFL37BfhzZjSPTZeL+4YGvvvqK16/fcHf3wP/0Z3/OP/3DP+K952/++m/48Y9/zN/93d/z//1f//MfPDv/vRxyuw58//jtcM+u6FMLxrbXr/dOu8MLx8OB16/fcNgfOV9mnPeAKu1oL5rSlmLShjdtVHI0v8mGCOlklvYBuQYBm0iWKqZJIZamaQ6m6Dk52yw49Mvffjd6zXKxtSybCc7gHGBEzU1KlcLyKC3COYwHF1QiCqmboKg5gn5+TVbXWm1KqXCeMlO1ihajdIumJmNE6Lwhd83Qp1WCGtqic6ZV2YDN9evKJ20b7I26RkMSnVXnVqMNTq5qRRdsrU7YGqhqyKLzWlG24D3BKw3Ee6+ItgsvGhKtUZOV1AVi15H7DhkHnGQGb1n7oJUyC13fMe5HDocd4zgQgt/cz0qd/oUmsWVUbckPFZE0JDJLEtao5exfNeb/NR5tn/x1Ze5fVS3+EIW7vh5sFbwb+2qMNuA2EOnDHiQpTfKturAWRZFbEKxJ2g3tIqct6CzVC+GqV6sA2jDsuLu7Z3c4Mj0X1unCtCyssWP1akEvIpiSWXNFnCsq1/U9xjn6fmAYDT4EvHMMfc9+WVjXyOl84enxmXfvnnh6PnE6P1GK0PUD4zDQjSPj7sDQ9XQ+MPhAcEH3sCJM08wyz4pUZ00idEkTZhHO5wvWXZOT0+WZ0+VMTAnvLfv9nsPxwMPxwMPdgVcP99wdjxyOO7quq/4V2hSfYyImRZibitcSE5dZHTHXmDaTFtotbId88P0zPD6WFH4YEN+OyU/dqz5Nh/lXnOBHIXTreGmnXcvgLVi5LePUUo1BJ8SHr2et3YLl2yC6Za4K9Vis00YOITNNM+fzxNgHZOhIKRGNcuswKpvW9z3DMGAqdSFn9eWOKeKsr9qotRmcVpmtgRai3UDUc6BqsWKhaCJhPNjBager06BcRFjSyhSdUjN8oA8OIxmRzDDscU6IKWqZE5XTk1IUyXauOueZrSFnGHq6w57Xb15rZ3BnORyPTMtMAV5/+RWCI2P4h3/674z7wP7hDYdXR0I38Ph05t2799pYoB9ES6a+I+yPuN2RqRjeXSJz9mTbU2xHKqZKqal8yDWItRRz5Ykaa7EtULUa9G6RbRsfG2JcA2MFordMeLPQrre98Zs3BLANF3NdyG8X9saZu036rDXajNi8rAXmeeYXv/glfTfw/t0jP/njn+J84P7+gf/w5/+Br778ise37zgc9vwv/8v/jb7v+dnPfn4dBp/xgvOv93g5z6gIs3WW4+GOu7v7+u/adNf4yM5uwXWzLldktybzON08hc1178UN3ALmayCtq4vyBJshIKLVMYcGx50B48zVjltENyqj9KsiBestXaeqOK6ub62PI/iOfujwo6c/jnR9T0aUluA807IwT7Our2JYlwUp8PR44vlyIsVMyvXzoyYvmhjml/uigdbM3Spq2jTXM+52hK57oVB0paHpazS929JuTQVOGmCiAbTqN6vcXJ0iVXNaKLibxFc51cov9b7D+24Lmp21Wr72osG1s3hr6LzF9B29taQukJO6vnVdoNv1jOPI0GkjphjVhDeYqoZiyMaooUS/w+HJcybFyJompiUzr5k55s1W6XM5rvfr+vVDpW7TKnLt54/9/fu/ZAuY23Ob3lodIK0S1GQ+NWksZFEaTMm5JnI1kKmJqNxQfCjaoK3zrO71RhNI6zy7/YGH16+5O+zI68Iya3/Ssq70AUwzCwM1rFpVaN1ZR0yqRW6sIVSKkzPKLc45q737vPD0dOJ4eMc3377FfvMtp9OFdV5Ypgl5fFSVCuvpQ8fgg45fo+M1pcKyrizrSi5Skz/9QLmi6dI2NVCnyZLp+57j/ZHXr1/xxZvXvD7suN/vuDvs2deGWOMsKWdidfKLFRiIOQOGVIR5XblcZi6Tou9FGnf8xWj5N7tv3QbGHyZwn3p8okqG2SgRvy4bbRlm01XcUGUDreP9toO2cZs29Jjvv+ZtoHz7nqXUdjKjm44UR8mJ6bIwXWbK3QFjjNo8p0WNPqhoo9Gs0nlfASYdOCklViO4mgUDNVC2urPWGFFuEEWlpDgMioj4kHCDNrA8vHrg4e4BScJynpifzyqOPgYe7o88HA/ktBLXiT/68Re8ejjy/vE9b9++pe8GDvsjy7xwucx0IdCFQCmGZZ4pAsP9PccvXvPVj37EeTqR8sqrN685T2ecD7z56kc8X2bePT5THHzx4y/54svXDLuOedVJNF0uJIO6EoaACQE/7BgP9xAGnubE85yJ0pPxqJGuVQk6qSUvuRYbtsVTKvqLYI2p66nSLaytgYjuovVLXm7qutJtAXOrZAtURzYN1FsjVmso0dijLZVmC1xaXeBmj9C/FdEAxwmXiyLN67LSDQOvXr1hd9jzF3/xVzyfnplOev+Ox3uenh755ptvt1Llv/XjNjf5/bzbR96xIpPBB47HI7vdjnmeVbrJ1UyLujmhRgcpRVLqwFVkizo+S/2SG87yi/cGWtBsrr/NcONGpv9wQLDgjQHrtZPeOkzW8n839FgnpLzQdY79rsMawVhh6AeCV2TKWtVmHe52vPrRa/aHO2LOuC4Q+oElrjw/n3HV2vn0fGaZZn7xi685Tf9EKpHeOvphoOtV6WJdJ9ZlwpCq3FRdQ61+aeOyUteOxyN3d3fsxlF5xNZUaoZmFQaqLf21MZo6P4uom18LyKnoulS7ZP3SYLWZFrkqC2itU8k73wLmgHP+qgPdvqTyWysvNTi1DxevjXrWWHxwqnwQAt66m6ZyNUxCrCoieY8fBpwNSMgszJxPz5znxGmauSyR8zRv1tH/1o4PUbmPBRgffbywVfDavFG6TEOgr6/XGqOFovSXUsgpkVPljbdApkm4ym02CtvE26rW+o7eB47HO169/oLD0HF+elTwq0TmdaEP4Ewg1EZayRCz+lL6EFTHuFaOQSXixq5XdQ3AWk9KmbvjPXeHB+6O9xx2R757947T6czlcmFNkZwSS4nkuBKNxRat/pas1dRUwbisfKQqg6kJXM6KeBtXFb+MZbcfePX6FV9+9RWvX7/m9cMdx6Hj0Ad2oypr9H2n1aoY1U0wZ1JOtaItZEksBU7niefTmfPlQoyxXkZz3f9qBtxoMp/j8WFC92Hz6od/+5cenxwwYxph/vslnBeP++Dv9S+6PN6sfPqSZkMlbHMSlJb11kW5UhKakUFjUWppo2ohOsu6ZnKuXe1StEmg6AKKZJZlZjVCZwLTNGGNZxhGDvs7Lk8zSSLGaFOJ+qzr4kwTEje6QOgmmeucvjY4mGp8YkX5yS5ACJbj6x0/+cmP2A97ylp4fv/I+2++VSTnYc+f/Pmf4q3lcn7mz/70J/zxT3/Eu/eP/OxnP+PVq1d88eYr3r975Juvv+Xh/p5Xr19jsLx9+x3PpzO7Vw/cffmGN1+84Zuvf8np8sTDm1eEx0dwFjcEAsL67jv2D0d+8vDAm9f3LOvMt2/fVUkrg/FOLTa9V9Rl3OF2BxYxvL8sTNFRXEDEVY1l7ao3RTCSr/d9QxjYrtEWTQONW3xVPDFX22ppSVRDBkQTlW0268/SVDE2DlxBTNEAZHvVOsgal/k6SvXfRZ2gvGmJmK3OfYmn52dyLjVgfs1DLnz51Zd89dWX/OjNG96/f8+7d+/4+7//O/7hH/+R/1PAyy0w+siffjtUjA/frH6/ubSCaqkaUQ32caeSSsu64oKn+VTbpvmeC6mUTYdUqlZrya1pydSoj41+v1Ez6gKzJYH1C9hk2DCVshX1NQtVYcNaXNcxdAMeQ+g9d/cHnBfWONP3jsOhxxkNJPaHPcfDkb4btsBjuNvzoz/5Cff3r7jME2IMoR9IJfP09Ix3Hbth5P27Jy6nC8Z6vns30Q2RbhjZHw6EzrOuK6fnR07PhhxnVfWwbZ7Ve1fNikLfsdvvOBz2jONA1ynXOWfllLZlWSoBvCAVpVfaRym5roelBrUtSNYSe44ZKao44pwhOE/fBfquows9XdWkbZQM71xF62qHghRtwE61Aaw1/xmDrVJ5zntCVS1xrvaj6A7DRsUxhqYS2vUOEwTxwrpALCfO88rzZeGyrDyeJmIT4f5Mjs1BkTZtZbvfH65VKg3ceMnywZ5WH1/nxobSbdlQRZpplYOaVNWBoklUS3CkNr4VDRRrRXcLjG+DZGkBnLw41/rpQAzOBQ7HOx4eHui8wYeuzkdRVDdYOqcujy0ITjkjoprGuagxSEwJayOeJgfpa1+WIzhtkO3CQD8M7MYdrx9e8fSsPOM5rqxxZVlWjRWyUNaExRKXRVVpjCFXl+H2bzUgcepSaapSjVeX0P1xz1c//oovv/yS490dh/3IPlgGbwlVulI106vbcE4bWt4qPqkUpiXyfDrzdDpxvkysUZFna71ak5ebNfYjV/lf4/FD1KgWcci2bvO9D/Sx534K1erTOMyNoGpaIMIH8qjyIji+PZ0tiIYaON2GvFfRdCOlLmdsWoFS30ZVJcyGWFhj8NZiihCqTIsUhySw3tB1nhDUqlZPU0uCcV1Z88rj+0eGQbtd7453vHv7jnlayDnp+4ryHx1UCoQutjTuVWnyVCozdV1cRF39yPReaRmOhJHIbgzcfXWH+5Mf8/z4E6bTGRD61w/sxhF57OjePDB89ZqH4461d3z11Y/44s2X7N4/Yu72/OQnP+GLL77COc/D12/55Tdf0+1Gjm9ecXd3JAbwp5HdYU9ylpQTz/PE0/OJx/MTb758zZdffoX1jvl9IqUMKdEZoXiDs5AQ8AH2RxY/8G7OvJ8LKz1ivaIzVeLCGgHT7KgbG1hQp0R0UlfLh7b2VgYl0riZRhdgMQax5oae0QZZG191aRYdFboRtCYKU7P2NnL0vrQtY/tJblvWrmOwoEGAQxf6Ms/My0yRjLWGv/7rv2G3G/nJj3/Evg/s9wNff/0L1nXhF19/rYjbTZL3uRwW85LS8sHH0E3y+vPvJy8wtSqh1YnrmytSK0YQKxRTtGGs7/HB103YaA8EHkzBmKTcyfqVJJMLGkxjycVcEzK5+Sa8mNdWlHNvC3gMzjh81RDOFJJP5KQBeQaKh3BQtNY7S9953nzxQBcs0/TMOHpePewRSWDgeHfH3f0Dh+M9WQyny0wYB17/5I949foV0zSxxrj1NPgQ8NYzhBGLp/cD59PMj/7ozKsC427HMPRA4Xw6YcxCTp4Fg/WAFXUbM0bl8ayDqofsglVepdN11yBISRr0lMYBzar2IVl/FnUzlZI3+seWiaAum0YXVRCDKQZvoHOWwTl65+iCp/NBaRnW1wYqS7BGjSgw5O18MilHUkpaabqpTFpUg9o4j6nubqauS1qtUhqB6EDA+Q6HZY0RMYE5Fs5L4rRELmvhHAvr73rI/7YPS9VqNZtuuJFWITDcLILXkNQaEKX7FWk79FYmoPUZUV8FrmhvQ5CbfXXb+z9EmbUi0Rrj3fUMboPjjWhbwTPXFp0KllmLVB7x7njH/u4eSSvWBTAeIbIuicVFBh8YglrDp1wQIqWou2drBo4x42zGGvCC0jbrumiN2qjbStfonOO42zEvr7SxuGiD8TLPugdW90trLOuidvbzogH1siqPuPVchS5gnVEaZaWT9UPP/rDj9ReveXj1it1uVGUXW3BWqimJIVd34ZRVWzkVVQwpaMEs5sJ5WXl3PvP+PHFeovZeGFcR7kIxRSWEmlxVW+BfrO//Ovaz27pzEzYCtp83oSyR68+w7VcvAuP2u+1FfrNz+LSAeYtdzBWJaSX2W+yulk2uqhpX9LUFlDpha2hVP4xI+5t+IFuz0VayadTD9p6uIiKmiJY8BYJB/1egHzyH48DhOOK9oUSpi6IS7Z/eP5H38OrVSBcaVy6wplUHZeEF3UNq+bY2yFOKAVyTg4W2CIsiKUYy++AZg2UQoUxnlueO1VvevPmSP/rJX5FS4dvvvmO2htP5RCyFyTnepchcIusQiGPHxUPZD/jXd4TXD8ShI1uHf33H3hZM53CHgewtdhzwFFaEFZjWyNt37/n6l18TY+TNm1eEznNZtaklxoSkxGAN4izGGxZvkd0Ojg+cTODbaeVSPNl25LpAKqLckLhyDYJhK5kigjFFuYPbWBWK1celurhu/GQM2pBFRR7awDMY41C951R/3wIqd90sqWi0qQjXRq602yJ+W3a31uLw+ppcm5ic0QVJUubd+3eb3q2hqL3uYeTx/TtKiex2o3JSnbtqMn9GR0sZrpelcUqvaNLtz2A25Op3dkZGG8TULvqa8uj3Um+/kMmsOYKzDPsDb79+y3SJ5Cg0pRopmgTKpr+syZZ1AWMTuaLMZpPIukHQ5IouWyPYIurwlXVYem9UUSd0mJ3O/ZQjOWZCMLjB4HaW4C2+swxHNcwQN3E89Lx5c0fOC2Lh+HBkfzxy9+o1K2AuCyb0uMOIP4zsBo+b54Y3sK4rRrQT3mCxxrHfH/npn/4U0wdC8KS4sswTORtCKISgSLj2M+u8UZdDNTIh1CZiCjEt5OwRmta1UqZKTptygRTdbA1VIq/K5GlPQG07qn93zihloq6rGi4p7c2WgisFXwRfCiYLJoPNYItgS9JE1kARDdRTjsS4EOOqzcNW1wfr9JxznffOOFUUMbYG7EoFK1U2zhSlb4Ajppk1F6aYuayZ05qZsxDF8pkBzNcAuEbGWyBbg8BW1dW9VzcxY+01EKkrg5TbFfMaQquGuQawrRlWxG5ocltLN4ZFTVi39cV4jHOIaY6RdTy1YFlu3q9R+6qtvXUOKUK/27PbHxh3R+bzM871WNeRZSXGlcUmYsgwOrzvMIUqzZpIVbd5TZm+tB6DSkmpcx8jm6Ow9wZLhzXQeU9K4xYfNGUPpY6qbb13QZHuZeV8PnN6vnA+n1kWXa9CCBowW20+pWqv94PqKu8PO/b7nr73+GApksjk6/4oKomYitJc1A68bPbgS4o8TWfenU48TjOXlIloScW4TummOVNIUNI14jRGe7MaiPJiP/tD05KuwfBtUHz9+QZdvg79l8Hy7d8+cRv7RJWMBi9/iCKbFz8bU1UWaA9v1Iz6KpVXun2HOjhrnNPgLaPYUtm4p/pa1pjqLKdBmDd2W7Ct02aPkiPeWw7HHfv9yBA8S05qaymFuK51kCdiVOzAe7WpjD5QUpWzqSWikjM2FaUvlxYYt5JulcqpE2azTDYQnEI0vgjERFxmTk9POOs4Hu/44osvGfd7nk9nvv3urfL1up6n88T79+8opXC3RNK7R07PJ5Zl5XS5IGhDwfl8JpeEy4ZlmlmXlaenZ6Z5IsbIN19/w3S5sKwrPnTsdnu6rtOMdFWdWkkJh+Cdrdmpww87uuMDOYw8L3CKlkhHsYGmD6Jc4atuqXV2uy5tkrWyeEOjb0A8GqdYRJOjjUNlWve8qmRcF059zZKvQa82FjnsFvTcsEoFfT5mC7pvEeUX5/JhkLuNV0Xo3373LSlGrIHgDX/5F39GXGfG3YD3GnhYY8mSX5zr53p8GPT/4ZKA64r2EvSQShNQGaZv374lpszP/unnPL5/rBuzJremVJpyUf1Rb+wNiFVRqyZhKDdyhW3takEzBmsKzbBUiqIzpjh63zHsB5UucwYpEUkRI4Xp8oR0Hd6NpDiTneh8M+CM4J0nkwjGEKwhOA0mUicU76vz16qbfEkVwRJSyZSYSOvM+TIjWPZ3R356twNniHHl+fmJuF6AjDEFazVw1TiqJbvtq9JMgqtIYkWNcyJXacdmPvIyyW3QSAvIrhQNvU8oR9ppWdxap3NYwDpDKYl1nbG+6mqXjIuRkJNqLHshO6VaYQ0praS8kkokJQ2atYfBYyqFo3kZNQ6NqZQOaipoxGDFYBuamjWIX5aketVLZFoiy6qf/Hug2+dytKBnO24+y7aH1fldL1r7m9noh9egF24aP9HEE1qQ3NQvqhJGKTe691Uc1KCTkYZ91eTbaNN4Xut6jYUfSFGEKglqPd0wMOx2hL4nr6tqEVtLrkhvirAuiXWJDMFhsTrfKm8hR23wjGtkNW5ToGpB8jXUUlOzUI28HIbkVCEKRClOdWyH0BF8h3MeY3y1t45M08L5fGaaFrIUlUusyHnONRgGukED6X7oVNnFoEmqisZRN0ykKL0kNVpJro2Uoj0bl2ni8emZ98/PnOe5OgbrfmydxeII1pGdoyRLKemGT26u4+YTUdjfy/Epge6Hc+CHfv4Njk/mMG9NfC3LbJuL/ZDP/PEz+ZDn+DEZkBfBS+MxCcq3MS1otlpOMK0TXBda4zRI60LP8aicwK7rCMEha2A1hpyTPqYLYKQaTggh+NoA6FR+JRc8Tdcw4kvBbudjKmIl2z5R5GZDQc+xc0abSqpQuSlCXleeHx/5+he/wHtPP+54OB5xRmXXXDGcny7M54VxHElL4vFb5ct2PvB1gi50IMLj4yPLstDv9hinjUJLjJxOzyzryul0IoSOh7t7MIZ1jZu7WFpnSpwxJekm0w9kY0ndgBnvIOx5XuH9lJmKJbmOYjRgNhuP/CozZJwFUa5jC2i02nAtx2H0PmoVoSZG20y88tuNaY0kVV5OmiFKyyAtzdb2Wji8QT+2xOsje8YHh8jN+ZjtlzelRVjWle/evUX+tjDPF0peOByPWGP50z/9M0SUl/c5xsrSkpWb42Pz8jZp/d2f1O3JtG8fNKYYiDHx7Tff8rf+b9ntdnz7y7c8PT7VjayNr4pQt3jO6tzNuZCyVADglre5tSXX92k8X0VijcmqwmGhKWhYowHwGDx3xz1D8FgK6zwxX86UlEjTxOXRUS4OyQvRFC7OUXLEOoMTh0TBFEs2nvMSka4jLpH1cgIR1riS1lpSXjM5CSWDJMN+f2QfepaSWOJCiksNqKNWvJBNbchs1/MmcDGKcHnv6iatQUdOakNs69yVVvmpYEILoHUcNeyjcQmrayFWUX4MJQilSoxYY8glk6cLMSWwJ3zX4fuebhwYlz1rHhlyT596jLPEFFmWmZRWYl5Z4wK5UKyDoKYlXsIG0LQhZGjJO2qKUTT5LhmSJFLMPJ9m3r975nS6ME0LRSCEbtv3Pqej5SxtUZIaBJu6zrZAebNLr1WY20rSNmdaYF1l4aS0oMqBuc6dK6pc18+bwEs5t7reNznBBoyZF83S13X3FogTkVrJ1fOxtX9ht9urisy6ELoOYx0pJYIIJRfWqHSJ2DkGZ/HWIzZrQL1G0hLJfSQ7TypauTZWky4FWPUz5fqZLQZvPVjNuhui7qza2lujYF7OuVrdO9zg6ELPOAysa2JNUaGcqpiTcyKViIgQql546MI2F6Veszp4N65yTJlUZeRyTrWBUVjXyPl84v3jI49Pz0yTOhaK9bR0xTqv8ZJksrXkZNWUqJTaJtTisbqpmdv7Ue/TR378nA7ziYnwJ8rK1UvdNsyPvNM1SDLXROUjG+zH5G1uYpVtd5NyDUJF5IWBQOshswr36OOK8pf3+z1ffvUFD6/u6aqzkxl6prMiL8s6KZpSMzxXCfjGGFwIsEREFF0waFlK94mtWI1wY8YBNE6tMVT1B20osTVgNiIqsZQzy/nMN/HnpHXl/kG5SodepWyWy8T5csbiGPyIrIX1vGCiMHSBt//8S57ePxLXhcv5hDWO48NrCob9/oALntP5hO87fvzFV7z58ksE4bvH95zP33KZJu1QjjO2rAQrZK8IsliPG4/Y/SsWN/JuyjyunsX0ZNuTaWYkbIhNux/WXJ362hy7rTCAuTYZ1HKgVhVuKxANdZBrA4hRhLjhfM57pYOIJiAbSl2TlFY22iy621veIMwNJS/bb9pGUrZFEq7BtLWqD/ru/XdcLs88P77lP/6n/8RP/vhPeH7+roVk358Qn+nxoRD87x9h/lhQLjd/bSYamefHZ+KquuVprXrt0srO6FizaLAEGOuQYmoJU//e+v4aytwoPghVfcVsgfXWLEad37ZATqRlYjWZ6A2j3XHYjfihZx16lmmi5ASLGog4k0nO8rSuTNOJruuYni/4/h2Pb59IOKYYscNIGPfsDqNyMFNz8TKb7Npu2NP3e3a7A7lk5seFZbpwOZ9Z5ol1XdS4Ab0mLWCG1vimms/WXhsADYpqSUoUB1vvSNEgRCPjCg4UeRE8t5K2qSV761AFgLovZEQNKOr8TTER10i81KDZqctfN/TsjkfGaWSYtSej6zuyCGtcFBFDlTJy1rKyNRCTxZeAkYCIv4IutHVEg8mchbgW4pJZlsw8zbx7+8Tbb9/z9HRmmldC6Em5mW18XofSUNyGlG5jd9t3hSYJJzW4vGoqgzGtOtfAILhqJzfwwmBawKyvuAEjVZZkiwcaiLK9Qe1HYEu0PkQyW5yhY0kfd01+nfeM445+HAldR+o6Qt/jnCOXQm/1c6c1Mk0TY+foxkHnAFZVc0hVPSvXBtKMiANTezuMqVJ3WsFW+cXWE4VSPEre1D0ENQwyDcoxa91X7Db2nDMEHEnKtm8Z7zZpPe+tBtrVDE4v0XX/k6zeDjEVljUxL5FljawpqpxezlwuF56ennh8fOR8uVR7br22UittzjWAyuH89XI3Wb9t/9XmnjooWuJYrk/gw/v2b/f4NIQZaFFNy1JbuLFFii+QvusicztRfyiAFtjKn9+79g29pWXFzUCkBjNZJ7O6/nju7va8fv2a/W4keIMzQrbq5jbPE5fzM10/0oUR7x273cAwDpxPE6HriCFRUqmbg6np902gaLRhZjtbuX6OVsalLioOgxWQnFXnWFRmJi4rJWem04nL0yPH4x3j/kA/jtzt7ik5k6aVx/PMcpnY+Z7ReM5zJJ8v5HVlfTzhQ4d0C9Z3hAGcg4fdkT/66U/40R//lGE/8o8/+ydOz6ct04wxUtKKJ9M5Q3SOWAQTRtzugbx7xWR6nlbLQk90O6IEsnFXI786Em6Dqfb5b/IaWtlb/3kVvdfA9HpPt1Fh2vhq6HINgFtQa9UcQTah5nxdpE3dqDfNP0MrK17Pob1J3UCloU/cPFb94LAWydqUZa0ll8zpvPDzf44YazldLvzf/x//T0CthGNMn9268UMI8x8uWL4e17t2PUy9d9Yof7hIYZmXyqutqi3W1rjX1jW+IUEV6WqmRNYq2lSoag+3Cis3gUCb5tu/dRxbV6URJVNiZskrj+tEeu7Ihz13hwNj6NjtDyCCc+AoeCMM3iJpJSZAMklm1stKXgsZy5ILfoykS4RpJnQdYLCdZxxHujAw7g/c3T1gXSBn4fn0zPn5kdPpmelyIsZZm/VK2ZL7mzxCq3XOaRJqqvtdK8s2w6WsFIZi2PRxq6zCRlnjZjO+VmxsReDNhr5hrdpm5/qYVBDUIGJZFs7ni5arnccGz+75md20Z7ccuE+R/WGvTqQieOcIwROD00CniPI8SySXiC0Z2z73TSUQlKoT18T5tHA+TTw/qTnF47sT3719z+V5YlkiIex5Wi6s62fX8levv84FjXqVZ6z2lnZLHDTnMeQs14opbZzcqBiJ9u3IzS2n7YA1CN5Wkk3p6OXsbYF2C/+uf9jQEmrDwe1J1KVc1XEajdY6RzcMhK7H+YAPHX0/4vueBkWXklmyUg6XLjD6QOe0AVRyIYkizGlNFJ8ovpnssNF4itG1gLrdGP2oWKmxTlFn3vZ7p4T6el0jNA642OtnrJUVTX5FA2OrQJFrEo+2qvDUK9Y045MkYozMa2KeVy7LyhQTc4zKvV9W3j898u79e56eT8zzSiqCmGqAhPLA1cb+GsfZqgxC1ccuIkh1W7wGzdvg4rOJkD+GvdRjy91+w+OTEeYWyLR32wLEm/+2YIRWLr95hQ+C5hfazfW1r4bIdUE3ZrPP3rhRdUKpNrRa0wqFvg9KxTgeGIa+7on1NUohpQg6JTCi/9b9wao1a98jYsmxkGMmpqU60lnE2NpuZGr5qqJP15T8g0/bMjRdpCRlta82Dl8HqaTIcj7zmBJxnjjMC3cPr7h/9QW+G1WIfZrUhIBCusyM1tM9vMaUwjur7lW7cU+/O7Lb79U5cOi42x0gFd5+/S1f//Mveffde+Z12WxhJWdsLSU53ym/a3dP2b9iciNP0XHOgdXviDKwiqsLYWm3d1sUN8Shle3rhGocx419AbTYFsOLMnhbFhSpakhwW5I1CZEa2JZ2pY0mM6ZZBlaNbIO50ci+TcIqv34LButtqq97e/9KG4W2bQX1nBHmeeZnP/snni8Xvvn2O6wzqnH5mawhn8/RUjN58Zsaz2lbYN1Ui6lc1a0hsa4pttof51K75Kt6gvM4H4g5U0zRgHCbz2281X8XENsCaFELa2dwTrCm6o9nkCwsSyafDel0Yt2dOOx3DF3P0HeMu4HdMGrXvhRKCgwuKAfSezIQupFsDTsxhDBibMAlpyGOMYxdx7E/gnMEscTzhWleuEwz75+eOM0Tl2VSZ7F1oaSoHMjcmnBvrqexOOc1yWgBcVGqE0XqZnmjUpIbJaMGxpUL2iTJEFPVg1pUVas+xmGsB++0micKJFCpEeuyIsC6LszzrHfPGqbLhVVWJMCwGxmGAR8CnffI0JPiSk4Ri66vxgiFXPs6qmJH/UxkVX4uAikW5inx9Hjh7bfvefvNO95998jlsjBfFvIqxCgMg+cyr8zL5xcwS66KIo2rL1RagX5t624FE1MuN6puLZCSreIgtGD5wyD4CkS0x+gTPgBO2h5xk1RtEqRWA1CxFYRyXDeMDYAx2zoNgvWB0KmzrXUO3wW6caDvB5wP5CUSS8ZIwokwLyt5l8HbKjOrHOa4qo5x9B0BizivfVMVQGloqqLErU8HGkHbUl0GioJoWXJNtvXaNIUWqkyt1KpWzomUdFxZr7xiY4WcNIAWbzeASN/PQlEq2bompnnhfJk5LzNTTCy5MK2Jp/OZ796/493jE+dJTVwKVg1crGtlMUXNpWh8ZMHZ2iB7sw5kryBfTualmkYbRr+noHkDxLZf3Pz8KwLiX//CfNJH+Bc7/bXM5DZg/t5jbpFGXqLM7d8vf5Yqga5cXqVgKJKo/R4WKXnrnBd7Q9cg471jGHoOhx3Huz3e24oCaZe8BnpC6DzDONSGkZkiK3FVsxJrDF3fU5KwzpF5WihFCFYF8XNR4rw12kleWopQKRdbI0xdNbRRpm4yriAlYcThnZqlNL1QEKbzibRG1nklTom7w5Gh7+mtR6wjzgvZGgKGIfQ4A/2bL/S6uh7XdUjUAHxZZn5u/gm8493pia/fveUyT5jgN2TAOYs4RSCK8RAG7HhPHu6YGDhnw0RHNB3RBIo4vTvmOso08G0J1M1nv92Tzcux0nAI2UxqtlSsDa6bEqGu5uYmEs25dt5LU06pKLIoJWdbr1viduM8tcX0dVNoTRAtPBZamM6GclyzcOXQOaejdFkW3r59e9WmrdJWn9vxMXrUh3//vR/bZvV9fLluy9za6erm69gKwx9ZCGNKzMvKMKrGr3EeSVE1kw1XY6LbrKdCy4JUsw0dQA0NglI3npuEOVUeYUycYiJNM33XMfQ96bij7HcwDvTWqPNdsXShV4THe1zXI06t5b0JWON1o1y0icq5QjmvFIRJTszrolbAKTEtMyuiXfdVqzgl5TCL6Di1rQm30jOaTrGupXUeVfvgFCPJCrhK4ygKADQaVHNjkyb+KlUNITYZyVpWtuBRcxKsw1tX181C6DIhrDjrkQJxjaqVa/ROD8sOKeCMI/hAF7q6rttNG9qKEM2CqdrQuapouNJpE3YuYAuGQhFLjIV5ijw9Xvjml+/55hdveXw6MU+xUjgdRRylqAJEkqvKz+dyZD1xRFKtLtzuxzqOWyBdBHK5doRokFrXTWkUO7ON8RdTa1u2zXX+wQZqbVNYbp5gbuC0OteFgnEeTN4C6/a6pdrCi6AoaSnq6Om170isIXR9tZE+0vU98/kJkUyoCfMaI2uMDF1QOqb3SgeKiXVdSX1GOr1GRVRxotQPuwXscuVwl6JzyTm/mWapSkYDibQyY5uBW+15atUsJ4bi3FYBKVomRyhqZ59tDe61W6dkTWqWmJmWyOky8XS+cFpm1ixkLOdl4d3ziW/fP/F4OrOsaev00aDfYb3Owbpk1XkmaNZSYybjcE5wTvnN0Sq/WVr16VbNpI4XU215P+x1+bAC3b7/kLnID+03Lx77sYf8qm3qtxTXf5pKxvc+YOOe2i1bbL9HuIqm1+d96ND34WvXH7aL3sp/DVFWtKNcJ3QdZE0ftOs8Xefph45x7DfCvLUoLyiozmHXeXLnSGnZ6BzTdGGZtZzuKvJkXailzurTnoWSsuo/O1cFHNTRR4djRWbIYK3SMLbgsm609bs1gqs8SGc0w1tiYjlH4rQyPZ457fYM44A3lryu5LjSeY834J1V96IKls5zIj1fWHNiWhdwlqfTE9EIp2XivC6YztMHX0urlmIt4gOxLJzWCMMRG/ZcSsepeGbjSW4g2aConFH7blOanFy92zf3UvOEev/NdaW8ve+yPZA60cCK3ZAHrlcM7awSVCIsV5CroUWCmKvzH9KwgJdjVNpCfltLrGjHdSyZ7XlbKvACcZatpG2tofPqnhZvuGuf6/HrAuY/5HE9LXPzfzZ0o1FprlULefG8LQ0TTbSWNapjXggY69UauQaILT4wDUmrrydtPWrQdkvoioBUjqGRrbnXOI8VtfstqbCUhbQm5kl7E56HgeNuYPQBBxgpjKMip37oCX2Cakzg8oJH6RIxa4K+nBcuzxfEwpzV0SyLBrVFCuKq2kWbGNcyiiJi1ZDBV5ME51xNCAoVLq7BjipkpFggV+OQ1jNQGpAhN4YXVLpXIi0aeILSMZTX6XGolm3xVvX2xWKNWmGbZioilbLhLMEHxnFkP+447A7sxz390GviEB25Buy6ySvvWqsO1MS+SuGVjGSntuRFSGthOq88vT/z3TdPfPvNI8+nCymDNZ7gLYjTpsrPdGpLgWyqalPlvW9z/WbNUrUpBR22dc+8TFYbDeq6Ll4Tyduj1QTb2voiQN8e1ACMm9cQuGqDtfepQAvK290k8qzTPdT5SicKqPKDY9ztOd7fM+x2nN8KpmScVb7wEuNmDR18IHSlBr5qcJZyUlMVEUgZMQbvqhq8sdv815iDrSpurcWic++KhddPUjnItiYgFrX5NrXS46yt40ugihi4SltqlXFrrgo/MQrzkjhdZp4uM0/TxHlZiWIoxnKaFt4/n3n/fOY8R2LRerqY5kRRf65uie3eCEIqgkVVgNSG3qiBmVW5weTcVqkqxSjiXK5p5PegjY8EzNto+DXB8kf3o5fb+kePjz7ttzh/PzFg1nJb4+BswXK9Gd8zLdlKmteJ2SbsrcX29e/oul5LgVs2I9d/b8+p1poprZSS8QEV9+7UNrrrOi2Tp5nsO/Aq0dL3+rfVXzBW8EFdgeblQsqapZaspYvQ9XRjppSZtCzbJmGt2WTPrqioVHSqqFSR3OTam190c77KSLHXUmexOBfovCXmRJwvrOeZ9fSsHbbWqC5iyXTB46whWK8bmOikX5KwbkiIgHdkZ1glkQwUbxl8j/NuSzAKgPVEHKsEuuFI6Q6ckuUpCTOe5AJZ7E1zHFf0uKEO1zRzGysbDmG+P/ivChv1NduCsY2z+hznMK2caivSIXJjTrJFRTcoAHXj1RO8Cev1tT+YabqlNuPu28XuurkYaby8ispUhDGnzDRP3y8X/fvxWztuTWZ087xlo9cNV26GpL2iXNSyK3XDK5KJNWgOnUeMIk+5zZlasdiIQDfDuv0o5vqeJQN1A8SKmnwYpRyYyu9VGlghoeVas67KOzxfGF1HcAaHwftzDZg7fN9hvJZNfTZ0xuFsINdzFWOrwYijGHUktd7SDT3Guxp7aGVGqWeiqHBpOrGGrq6Dvm6IpdoDb8lf1VymZFKsyLapc7Wug6pycVWP0Ca6yDotLEskJ3Vzs9bR9wMxCjasahceAlYULJCUiLFgjGcYdqSUsW7BepXevL97xf3dKw6HO8ZRnQtzrQj1fd6alIwIeY2AauFaazDNbXAL7iEnYZ0T5+eFp/dnnt+fOT1NnM4LzncE3zSXLTEV0mfYlwCQxGCyBlo560rn7FVy78W+i4Bxt6syNzPvgyC3/g7BmPJi7WveCXZbM/V/GxSxzcd6Dk0fv9KaWnLKZlZk2GL3WrVtKJixrlKrXF3HYdjteHj1muPdHU9DT1ky2ajr3RxXpnUh5h1dF+j6XkGPNW3mJTFn5b6LINZivcFZT6uAFu0S1gqOiEpMImASpe7n1xnRNJyvqLy23ahjQQukTXUw1sZbsMERvCc4d+NSqSpMa0ycp4Wny8TTeeK0ROYsZGPIwGmJPJ4vPJ1npphJoo23GvDbDRyqiyUYo7rmdW8zpWyUNqmKH8areZAi8qtSNbLTqlVOtQJcKrf8V8+U36vS0u3xQ2/3iRP7kykZP/xBG/dPj1IRi9sM9Pa5pZQXv9vKNw0Qaa96c4GbjXKTbImxujxZIYSOfugJ3hGCoielZKbLGSeRUNEW77VRpOs8xmq22JrgrBvxPrBkwTnPsNsjFWVYl1VND+rE2ZrRGvJEy4YrqaQGyTpYC00lIktRon8l+QcLIolSDM4aXB9wFUWazxdSjHUzAGcs3nssDdWWWpIsJDEUZxHrNG53FhMCtnfYoVcHraAbeYorKSfEWFIRTNhxfPOAPX7Jye+Yk2Eujug8GU8uOqls/Vym3TdRFGcr7bRAt16T64L7kUyyLbg/MJaomTsiWmqvi6gxyhkTJ5VerOckm96QeTHmtnerPEqVAqqLbjU+uQ64a1BtqquYrWR1zYfqhyzo2IuJ8+miCM5HP8e/H7+t4zZINi9++3ItlG3ssW2wgia3tjYIrjFtmqSlDodcEVUxOkQ017v2YAg3o9hc9+8imssmW0hksijSVUepblBGOfnaN1PIMRLXxMRKMIomBa+GG67XZjexunZ0Ar31hNCDddU3z1KswQaH6z2mc3QuUGpvQaFWZJqFdFYHQqVlFEWMjMFWMw8pdR0piZLNhhqZ+sGlSlVp7l+TxkqTw7rr2pYycU0sy8rlsiiavyaMsXTdQtdNGpB2PV3QdS5Uuc2cIgbHbndH1w/EFHHB8fDqFff3rzns7xn6PcF36kgoGWcL3meCT6ROFYYMILlsgbwiWUrFU54p5FSYppXT6cL5tLAsiZItlkBOGuDkmLFem7Zi+twsS/QoRYOynCu9rWZ+dgtIb9c9o+oxcEV6a6D1PeS3HS0YvFHc2yQGTUtC2+/K9SXq9za+2i+uPSctM6vgmrGos119cKVOGafqLhhDyglbCqHrNcl6eMW74x0zGcmRXDJrzkzLyrRGtWH3Ht/35EqRiDmzpASuSi96r0ZozmKtV4fNlMkxU+qYcMZQWDGp3MQ0NcJv/GWjWt/NREvEaGJhTPUpqGhyc9b0Gr+076Z+vlzpGJclcp4jc8qKLDuP8QEpsGQ4L7kGy6Yay9jtXkqt8OqlLC/v7U0sVoTrOnATtznv1UjIWWwyFGuVOVCN2qSNgZvv/5aOT1TJuMLlH+t+baNfapaZJddM6vr4D7kr3wuY66T+ELK/RaV1cW9UjaIbTlAusHUWHzzOWVKaWdeVxULsAl6UGxQ6R9cFvFWJuTUmjDX4WtrBZKz3dCinbl0TaUlc1pWUhGIzIoq42Pb54Aokm3aNbH1Q1a62NaNrbkK1O7ZIZo0Z5xzOOCwZZxJLvDCdz6xz1A2qaWCLhuWGdp3Uyro4iws9Jij3qd/t2Q17paQEi3NQJFEkVXchz1oEO+w5Dq+Z3JFpsSziEd9h/YA1AZMtDlM52kWpNhusZ26C5RajmGr+cL3H12titttcI5k6gF6OtZeT7WasyDW7R6AYbTxqUmKNC/8ChWyItjWYYlX0XQy2GaRIkzeqN1HYQqWGBFxDfBpLBOccKak0UPn3iPm3fsiHGzRcUaYtWDZ1ydBHlxtKzzUeqMFeDexizsRUcN7opms92USl+myVhTbErs/VYXDd6Z1BlbEKSIZMJmFqcntTfbNt9KgJjuTEHDMugxNwGLrgcN7iFg2Axenpe4HOqkuZDcq7xnqKNTjjGXs1UyjBkp1g7G1TTqWrlYyUrJz/2gTtrFO0EataxuuKSKLr7KaT3rj7tl73nPImN9Usg7X0pEh+SYWcFIC4zDPzvLDMGjCHEPE+4Gyg70c6H0AKHoNXgWdyTnRdz25/xDlH6AOHuyO73YHO91r2zno/xTQqh1oMq0ymmrpkSTfB/a1WuwaRKWaWWQPm0/OFaYqkKEixxKIgQEmZvjp3mi1x/rwmuZS694ggN2oX1y91jNtk35qDnGlbcW2Oe1E5fjkfjWk9LdvuT1OXqTeh/n4TNaZBydta3eb07Zr/ojSvwbwTITdk1GoznKsVkpgynaWqZI08vH7D4f6OdTkRJzWcKkDMmWmZGXrtYwhdp5KxObOmyGWeKRS6rseLuuh5lALpvEfqnBYXAN3eRcC6Snup52poFfQq61cdOXPKWKtIbu2MAFOFCbwGzs6ZijZrMg1U2khmWQtLKqQCYgO+77HeI94T55WIYcnCWkRBtCqluYFGV2if5mtBVR/ZFFFqsqPtQ3nbB5Gipk/WYNHPVVyVoEsWQ1LpPWOuwgwfHB8Te/hdHz+E8W5byScc/4Mc5itSbFu8237PDUeKFiCa7Ttcg+fb12+dp9eAWLb3aI8pNzaUKv2ijX2tlOq9Cn6vS+2aLokUV7bJaa7BqqSCs5aHVw94e2CaC3FddLGhYIxj6EfsnUFy4iL69xQT3kLnLLZmgQ1Z3hAuU4M0XzceW/UVvSd4p3rPtl0TvVJrXChLhJxwpuCtECWR1pWcZQvQpHU+oxltNpCMEPqeYTfibU8hUSSTS6Sjq0o71abWWygO2zk8A9LtWKLhEoUoDvEd2AC1acdha0nzyvXdkIAtWL5FH9r/Pj5ppEbYtyhDe2RLnq7a2zfR+C0KwRY3b8+/xUw+dtyMtuv7NDTg5tma9JXaZNq4nfoO7VO1cnZjzNA2ns9tY72Zq8jLa3dzqV8cRj5hpflNnaK2MfPyd9clQq7gU/3jdau+br6CNq+Zm6cJZZNs0n4VIRhP1/fENLHmSjsSwVk129goYN879VZNUgUsg9Aw5etbmqraYbYzLMaAd6r0Q6mGBZp0x1y0/JsyREOxumkFq5UnY3S9cKHfAufeD5iSEUlb87rDbmNZagOc9nB4QghgVP6wHwb6vienwrwU1nUBMjn5bU1ums1WIEsi50heExStdmEtxeiaLXJjopCU53i1Cr6CHSllKCvJZFJckJQ18aBgreVwEC1Jdx0udAhqtnQ5T9osuCzYYNUkyQqlaKUn14Zb61yL05Qv7dzGxyylsMaVeUpM54nT04Xn5wvztJJi0abODOJVPhJxxJg+W4RZGkjhbG2OvoI2W/LHbcB8Batu0dEWtG7Pa68vQtvpP3xf4Nq0V1GkLXCrfUg6r24COOCGL6J7aX09W1Ud9Oaq9Ie1ltB1hOqG6bzXptCh5/Wb13zx1Vcs0zPnknBFqRapZOZ1ZV4XdsNACD2+N5R5YV5XkhQyRcdayqwx4VzCe09u590AsPpljce6bpNpsy5sCZo1KnAs1B6onElJSJKrYkmhycpZh5r8eItxet+M0WA+rpFlicwxEZNQjMMFh+06TN+TrWOSM8U6DZKNVbWYlmDUBcsYU5VQ5HrPN9M52fYujaUbLU22RThZrdQ4W8eV094j45QioxV7rWhtQXMbZ22A3FBUXiRJNODDbADIJ0e0P7THfGwPM9dY5DcN2z8tYK5NeKZd4LpxSJHv0VfE1pOpYcyVm0TtGv3+J9B4RDZCfWusaShqs1fOuXGZazBnwElrGdFs0FpXA1arkySuDNaQSyJXC0lrA85l9vuBEA5AD08T01QXfQpiBN9ZnBuAV6q9+/zIMs+kNSGhJgK6c7I1R2xrkCja5GwtsQR1FPTarSq1fBWqw6DaXEZo8nc185RYiDECRid1zuqWZbWje0VYSibkiA0OPwSkZOK6YIPXpMJadfsRECzGB9zoyQxMeE6r4WIsi7VEY5U2XWknxlZZq9oechukYmqTlK4eyvXmunAaUSTtxVFfRBqaZz5ADVvw0yoR9X2MpuMV+VW5P9umV8nalLg94eYk22ttvHj9w8Z3be8iFUmvP7fP0gLJJqEXY0G6yhfVfsRtY/nd58y/32O7QvWa2k/8gKYBSP+Cd1YE5qpiYmnjymyPuXkn3Qzqm+nb1pBaqKoqdltPrPV0dmB1gdU4cpWMyljE2hp4V0CgImfNTrptGg4wlYdsjTbHGF/XN1sTfCmb8YW0T1VPv5gr2GCLaGk3lzr3IPQG6wQkYtKKz5FQelzwOuaUoAleHUItnsZDbRuCtZYQPDn3GOPwoWMcdnRdzyxLpSnUnqqGHqP/doaKGOr6k9aIKRpMSdWzbo6nKRVyitpTYqELar4QQk/ogj4nG0zWgCOLqENZNYUIPrAsETcteueKkGNiiZEpRc7LSug8LlT7bmuATJFMyfq+RgzBqQKH3qOrhJjkQpwL82Xhcl64XCLLnFkjFNHApsSVZHXTn+PK03zhu+cn0meWBOtRg9ytKb1RKMzL9dRws1i3p9bktGkEb8nfTVIoRasyVUsf2mys2dvN2ro5t94obSBc1+62x7d7RaWQGEVJTZU9pOS2EKuUnPeq2V2rMIo69xzuXvPlV3/E+fmZkjJ5XZB1JpbMHDNzSqwlq7yrNSQDS1yxOWGDp+syKQsxZXzKBJcxaEOplbZH6apkUQ1j1Ym2eBvq2KxxSF2PXNGE0TjBpIyr80r5y1oMMMZgQ01EjYoNzDlziZHLmpiWwpoMYjpc8NhhwI6DqmfFXN37NKE0pbQu+C1oZQPnzPa1/bStnd9v5YTauCjQzNycrXVuIxjrVTYyJ6W+WVebAlPlNn8wf4ypUfkNIvLR2PjlyMJ88LhfEU9vOM0PPablgXyMxvnx4xMDZjYko71ZlkKGbUJdu3ALRV6qKUC7NvL9x9PmbSOmt026bntS1B9edBDngipZWAhW8MbhjCdYr4LkKQKW0HeslxOnFBnu7xS58I5xOFCihcvK/viKmC3v359VC9EBFLre4QzkZFiXld1R7addF3h+fOT56ZHLmkgl0zlHHzx4jzdtoSqbEYtzGiAb5zQz8w7feWJSm1trlHfneg+5047dVIglsuZILOo1H+NKromgqYuGdQaHo7eabStnUjnHFvBW5Zhs7T4XcRjXkXAka7HjHmHHZU2cjOGCZRXdEL011WN+ViTNuq1ZsfVClxZIGOVnqeCFuRpFNKJn7fRVTqHZytVqMqKoAdIaiYSmirFNGU3vddOWUtVFDK4u5OWm8aBxLeuJVtRJx9JNflu7pKUGRGxovzMWaytFp2Qqc1SnloEcYE2FVMo2IeUz5WUUqsrAiwZOPSoGsinztUQCfrPcf0tFtoX6h48tAd+e2/oDrgjf96/wFavSJ10bPm9WFRoXUiqqK7W5xbtA3/Wsy0yyWe1mm7KqdQilNukUTcZEajBZUWVTu9qdGqZgoBhtUvVVis1SpdZynQcaKZCcBsyprqut4VBqNG2sVSS6vogibhlrEs45CpEiHud7xrGj74IiYbnNr2rsEVX6qusU/fKhp+t2eN8hZFIyINpcHFxHHwKd07VP1T60wbrElbyslX5SO+2d36pkiiytUDLe1fUZgw8B51TpQ7JFkjotdn5Hjrmalqy4qki0zhGDRXLBx4TNmakkpnWl76v6kTUIBecEb8FYwVhF042zVWHAXgHLLFrSvkROjxPv3504P89Mc2KNkIrFiKEPKkNnnGcthdXAJc2fZY+CmEo5MorqbtXcbX+6CX65rsutInClJtX1zzbXwAZoZW0ApaGIUhtCFXVWuqGuq9bUyrJQq5QtaK7EhG2hqfQ2QceVceAcqQhdF5Q3mzMmBPq+wztHTNqUmZIm2MZ0jLs7Xn/xE07PJ86niafpa3LSazLFhL/MWHtiXhPOarP9nFasGLrQMfuVLvT0oVeTm5QxxtL7Gp8U2fawIlU1QrhxrdVKj8aEpo7XloHWkLPu+4oB1Q9tlFaWEYqxxJR4Os+8Oy+8nyLvzgvnJWP7nn53wO9G7NCTDfRLwjhHKolUklJijaiqSGPWiDZkWlshgEpnxHCVTHV+qw614QL6GVofmVYMruNITNGmR+8wXcDGRImRkp1K6lZN9Ipo6F5f6R2tcttGIubacL3lb3WZL237ueHNtwT/dst/ORFA3A/MkU+khPwPUTJu6RXwMmjWT3F7IbZHbQiP0hRe7qLa8Xybxcr36Bk5Z3LOdVFUm+T5MiFkxtFpiS7l2iXtyN5jc9LB4hx9N2C94e3X7zeaw7ys+K7DFY9zZ6zNijZalaQTCaQohK5j3O3JKbMuC/PlREy1FGNqgCdaBqwgk5qeyDUJ2LiZdRMvkkkxYozQWW1EMFGtn9ecCEk/b52T2lW+Ko/b5tqo1I90w8g4DPjOE6q1bN/3hOA3ZJSKylvnScXQhQG3OzDFjmImirVgAsZ4fWxDzozFISoub25RVGmsjDYIaMO8YnLbRIU2NhwN2Nig2zpSjFDleT4y/rhSH9rkEGqi2owTaKGSDjBTH6+Lta3SdfWdb/SdmzvgNt6MqfbHNxqW16iRlBPzuqjlaL5+9N8DJeu3flwz8F998i1P/pTj+yH47+Y57cw2dPXDQSWmjqui5fmsyFDwgaEfWNeFlDJrUv3VTSPctCYpqd/rHKzjz1QdY+/MFSEyKPrsrCZzIhRbE0824AMAAOj8SURBVEkrJJM21LZBCgK6qdlWuVMupPUFQivZqixm33f01QRlvxvZjyND3+PrPKei6EDVWfZ1Q9aGP+88ztZScf0c1lp8sKoeEELtA3FYK0hS+khz8ZNSpbeqjTxZ71hJuSa8MPTd9v7eKzUCDCVbsrUVeDGIV8WMrutqkgLO203ayjstTxeEnBIrQoqmBnhaUbJW9Nz7wNBrpc47XykFvgY1ENfMNEcul5nzaeJ8mliXSGUp0/pjul518S9xJfThup58ZseHe/Ptz7dA1a161cu/tz26NYm2APpmXzdtvn6AAMr1+60yFgKbx0LVLm5JaGnrp2kvfP3aBG/0BHHea/IUfI0NmimLAkT9MHJ3/8D9w2v2h695fnxHmi4YU0jFsKyR8zSTiyqHlKJ7MNXW+lZKUOe02Zz3mrkHtWEPqTzhIqq8IwZT3f202lETBaqG8xaI1j1ZiuLpVuOmLPoVpTCvicfLxHfPZ759f+bpnCjGstt1+H5Hv9vj+o4lZzCuyaS/qGi1iOPlceN5Uf9NQ1rlw0DyNoGy1/FUv3SL1XmKEdxW/Xdbw3GpqhpUVY0XNL0PxtOL7x8cPzQTC/V0PvLYXzV7r5S532x+f1LA3ILVW0rFh3zkFwGzXC/MdcK2wEYqL+mqzaxay1wDmg8C5Fs9Z2DTEk3Lwnw+EUvPqzdHBXCMY+g9ORu8FObziWVesVIIvmN6nkhFWGLi8vY7+n7P/vjA6TyrjIxR1zaD0jq8N+QUlbc6jBo8FeHZWubLmXlZSWskBcfQdQQfcE6Dw1IMJWtHqThdnK1xGLF4H6rOYsQWqQofASe6KIi32NARxqFyA0V5dVGpJVu3ez/Sj3t2+1EnnoUw9IShV/vQ0GN8R6BlnQGbC2MY6YYjzwKlzDqWvUdbkdTZzxpFcV2dRMWYiriUmwXObnQITR50SkrVdWxjwBrliupzynWItMlnuKLEG+LYluTKaa5d0lJL3cgNomy4SUEbLtSkdK4Bb+PoKVJouFqZOzaiRv1spiLejV2lv1Nnv1t3vw85+Z/NYa7r1q8KiD81WP5tHJ/0nvX8FbTZ0jGa49gtzSYnreC4nSMElaP0sSOywlotsqU1NElFmbe3oUowbwGFdXaTmHK2aalq044Gx7Wc6RoSqgG20st0bbVWy8tq9lFfM4AJRoPAEAjB0fUdXdcx7gd2u5HDYU8Yws34K+R8bY7ekkApeOfpeqWF5dJ6UKrUXNAgpB+qioWzWFPIpqFM9fOLbD0UtulX6x+wxuLddb23lRJhMIqyVyUOqXPU1rXVGFfL13ouPji6XjX13dhROrftOw0NVb7kSpJMKRZDJjjI3mGqdbmp0FPKhWmKGiifZ+ZZTSxElNMtzlFSwjqlxxXJSCyM4/433kz/tR3XIOflLPpeZfdm3br92+3zv9/kX9dd2JxT5eYL+GjjVwvjWmNgM+24FrduA2/Dtnk0+k/9nQ2OblCZ1NL2BKsNq2LAOM+w3/Pw+jVvvvySy+mJvE6QFgRYc8FMKgrQ+O0lZ2yBtCrg1mKT1iCrAbPDVDMRmsV2Pe1SVSeSNMt4BWUa2HKNZ8p2PaVJzBVda4oY1pSJCEsRTtPEd09n3j6d+e75wloc3W7ADjv87kAY99gQyGlFjKtzGlpfwYvEpt3L+uvb7fAWtbrtObsdEx+L+25G1Q0SXRuCrUOKJ1k1TrLZUbK9jouSlbax7dnX0J16+7efP3i32ynZesZ+JbPjt3R8WsB8swB/bNK9vIi3DXa8uAHb690Ey6AfuJrdXAPoGjDfosxwbWIxRrvekxR6jEqsRe2S9jZgJdN1O9K0kGMCYwmuQ2Th+enCHDNffPlHPLz6gtM58fR0gpp5FYRMtdXGctjfa3lmXTQrzeqitS4L6zwTUySulpyFcTD0BAxK6WhBp6gHpfIPPQTvMd6RkwZl3mmZmJ0GyqbrCeNKyrnKBFVebcsiRQDLUsBWNzEopKyNCi54Ql85j94TjKNYdbtyaONQ8AOGRBYlQahsldMypeI+NWAu1dHoGgQoylQ2XWqkYIwy0yxF+WdSS6W0cd70Xht2YzGmqG1n7VKH2m1b6RpSJzKiGqv1ITR8TrBg3dbR3/judQWoDkv1XKmbiYYm9fwLFFO/W91wLShnJG9jXL+DD8rJLJ+rq8EHx9Zg+ULQnuumWP95Y/L4uzuXH/zHrz8cH6u92Y14rZ9ROarruiJlrO55GjjHXIgmAVUiqTUaoRuxredk6t/aF6XRPqglQoM3jed33RgLYIPTAC205VcpZ86FalGtFA8NmC22s/iu08C+BfdBz3fYDQzDUIM8nfelqRZIC1LLtnZ0XaeP7zxliZSSyCXprLdoQN5pQN24q/Z7G6apKCGbHnpzDGzXeCvpVrQqpdo7kiqtsQUSldqhvQKuzn1b6QSC7xyhc5jOq771ZoaVyNmwrpmYspb8GzrWem2MUj8EYVkTl0vkfF6Zpqg9CGLx1ZxKRLWXLRrUUx1hvf+BWu5ncNzurbeSrB8Lgj8MmD8Mtm+lwl5Umo256tT/wONuG/7h/8/dfzXJliRbmtinZraJ82CHJK0scu9tCgwwIxA84AEi+N+AQPAAQAQj3S0y0327+xZPdkhwJ5sYwYOabfeIPFmVZwQ9uFm7yjPieDjd28jSpUuXwtQNt2Ryps6Rp697UpwICpyLqB477f/qbEXWLlsIUdnZoFKLxWrDy9efMhwODN2ex9v3dOOI94kBcLkgVN9CaxF0XBuwDudqqqrB2ioHdZp5tXmv0oJvDd5CCFn6bY5gOZy4rJTrUkApx3VBn6KB5BiFPiUe+5HrhwPv7w/cPHYckmBnC5qzC2bnF8w2ZzTzBWIN425LiIIPKh5M075ViKKnhzL7TEB6uvdkHDwfQ0+e/+yaPr9PyjW0pc7DYGIgBjs1o4tx1FqRUm17spembOhx/GTlPco/nnPJz+7KTypU21/aSEoQ/lOOjwLMIaqO2JQ0SWbfNGpJqt/JKUVdu1QbmU4uylNInX9Ok4XJq7AA5Hgymcq/QTc4EWEYBsZxpK5qnHXstnse7u452yxgVkGWS9ikNkzBe/aHA+/fXgOWV69e8PLVZ9zcb7m5faCqGoaB7PWZVI+YGaAguqSKsTSzFmvV9UKAe2C/3TH6AfqRhHa3qpyhDpbo0W5FSfWxqnuMaldjyeFUTtMmlQRgDaauqKzBJWW9alfniSYQdXFISaiCglNXOUgRE20uALCEGOn7keR1MpGrn+u6wVUzEEsgqKeitYwCIwkvKsGwYnjigFFQQ8ra4wSlumBaoNFFR4mCSJZ3ZicCSCHkwZ8XlAxgxRmShMmlxKCsU8ydFlM2eC/gOe/JiKTMZOlrqt4+M+AnUTe5+CTlMLsUdU2KVzmCq8wlZnpNTiZgPg3m6Wb6s2SX85G/6ak0DGBiI/7XZJfLOT491z/1eR8C9EnQjNC0bhliiIxedX7TPEuJmsQYRnz0WYJwbJmeCiuT3ytEZYhVYmEnqyuxhSHODg25UjGR1IYplSr7vHZqOkYdHaxKJUy2zDKVxTXq5lFVFTYXDNtcC6FMsJ06iZWMk7Xgszes99oW21lL0zS0bYu1lmEYCEH9mSV5UnLZ1irLtkpxWNneT6ZF0f4nQmbFRSvm08k8OPlZiIxh8IzDyDgGZdqOym2MVBiTsM7Sjg3JeDCRmVtQO/Tz15U6/EhNiJ79AbpO1wI3NXqwgCVGZdzGENgfAo/bA4+PHdttl+3uHK4WUnKkZLBiqIxjDD3OWZw07IPHWaN7389sej8ntJ7f/yHmGU4lGEeQ/YPH5T2fpHrbwjA/f63y/AkMaxSq8oUQSKGwsQVox5N5ypQtTZIIBq0hsoZ61tLOZjSNFvqp80wODGLE5yY99WzG5cuXBN+z3z/S73cctgPjOGCIOGuprMqPKmchZ0B9DPTjwK474HbqLqNSiUjj6/x4h0B2vPC5E7EGmKQEQUlGtYE1xyYmIoTcKEjdJbSWJ3ohGAhi2Y+eu33P/X5gNyZ6U5HamursjNn5Bc36DLdY4ZoZukB3mslOmq1R7+eSYX0aDCXyOlkQc2aHS3tv0ocY5OO1PP39eUClsD9TjoXBLjJQY8HGaV0NsSLFcWpvH4PPzeqU7Crrbn6Zvwh7y+M+ePz/cPP6OA0zWvFdKil0cwrHSWkM5kR/nC0g8wQjC99PLkaeJ6eAGXgCjk+jznK/tnY1xBDY7/cMXU+9akkp8fjwwHJekUKgEquehX4k+ohzjsP2kT//6Wv6w8jF5RWL1QY/Rg571TA2sxlig0aSKSGlO1+Ew9hhRFMzdaVsrjWGEDStFGNitw30YyCm/HqVI1a5YDQBGKzR6LeyBm8CBLUvK9ZKMQV83pBCbhownQMR3aSzrllPvGg73uy5KFk3aIzang3jiO+91vi6hqqdqc7Ztdiq1j7xAjhDitmijoQnTcVN0WjFbnm/49DNUewUyZ4GRjmQKowwTIV3STLeTpJtpTSVUxTDSUratrASIOnEwiZZkkn5pGZEV8BH9udOZC3axKpkBixbxJX0tRQ2uqzbEzASmAz+45Q1SqRcVJqwVmVZP+cjX5G/uCBNbMQz8PyhIOGnLLZ//XGF9fmLH/3kSfk1KcPzCP1juX4p5WCxrCX6PsZVVEQwhpAiXd8hA1m3S4mVJmeLMsp1Y006uUGB9wRYLc5YXEnfaisn0uTPKkeyQZTZt1mGQQbS1gm2Mrja0TYVrqowGSybDM4LqC1gxGAIyU9r5ThqBsyHSFVblTrUquvVQHQkxhFJgZg8EClyhhJQanYmTecsRAW7ISZMAiMGkxsqIZrNsbkYaiI7gmpEgx81Kzdo06mY14AEWWKmjRvaoWFMHUPoWMaeRVxgZEFl0cyiASQxayoMGhToudMghqhXfRgTXed53A483B24v9+zfewZRxBTUdcVCatBTO2wsde2yM4Skuf9m3cqm/mJw/Cf0/EhDfMPpJPPHv+h26mtazlM3tOJQZvdwJO9ugDu57KMI9ERIObuvTGegLSylh99mgFSiETnMLmde9u2zBZz2rbFGJNlm35qZpIk4fuR2lWsNucQAruHB7rdlusY2D/e433SxcIcCw2NVcAbROuHDkOP6w5qoYgC5rYaJ3tYyERi0gZioNklyQxEGEflXPJ9JdgIucrXZXesZAwh77ldSOzHwEM3sPOJWM9o6wVmvmJ5ccnZ+Tmz2ZymabHGEb1XOUbSYnvEojVIOV3/gcF7ApUzUD65EyYbyNOjKAKevE653hxJp8Kel4AnIVqUKyBofYCkhCOSoiWEYkWnOucYw9HNKr/aD77Cj+0L8gHw/ASvPP2eP7YH/djxUYDZp4hL6lc5FaeYouLRdHacTpt2VBKOEesPUjM/iELJ6bz4ZJKWlN44jid+nopSDl2n+sIEgx8RPNfvr9nfv2ZcLoljpNsfqEzN9v6Rr//4NdvHHb/86tdEKh4eD7x6ec7hMGBMRV3PsNaD6XUCZv9HsYYwDuoo4GHoO0AzRGcXZ7Rtra0jQ+Dh/o5uGKicY1bV+CrQ1NWkk0opTu0uSRVSHYHmftsRpcPW7ZQOVIYIrHV4rxpmvS/7pNpSSBmJwWulq7ipUCiGyDh69sOIqSILU+HTgEk1c2dx85bweGCIozpAJJ970wsYtfVRdkWOVdHT9cppX5RxNaLd1IoOCop3pUwTQGslKpJVLelRP6yLpTmlo3OQlpCMnpTtMSgwMShDIdlFoEyYklJTLVWWXRAyKNaUshYAmikQFO3GoMC8pMpECpbOLJoyibHveffu/YSVTFl0f4aHWJsX86wbN6U4sgQrRWN4EjA9W8E+JLl68vcfe+9nad9TpmK6mB9zPEk/HoO3GHWzEwOUblpNjViVKCWrZvx129D6lpgiY68MbIpaxT95HYsunILeF0JiNJ7amjxPPUaE2qaTxVnXy5QCMg0ozYoYUyQOCkwL02xMljWFgaGDlAI1zdTUoMglgOOmE9W5JWSw3Heq03RVzawwckL2gPaM40A/dEjyhGCYdnqJWFdjYlDlk+Sta8r86e8h6edNKU2fyVo71bqUzxajEha6H+gQ8t6hmXnVGNs6d/QUZe26oUcOaMZH1A9dJBBTnSUjIBIz41xpFipL1bQT7EDXR3b7gYfHnvv7A/vdwDAkYjLUlXaGDSkRIhA9EgYchj4FVssl7//xRq/Pz1B69RwU/6U0++m/f0y7/HyuFsvX5+Dj9GeR6ZRDtfQZABXQXbKrZQFNku9WcJkAsjuVE8NiPufFixecrzdYY7MsSrv1iqi+2dhKi1CNstbz1ZovvvpK9/CgHsHdfkfI2Y80BqoQSU1F7Qy1GExKdONI3O7ohoH94cBi1rGYz6nzWM5fVAPqvHaZpI442kxLO2CW+R9DwOTsEBasVz/HhBCNEIyh85EhCYcIsWqYLWdslmtllpcr2tkMZ6ssS0wkk3IgbtACRMla77wpZaq3FFpqFstOe27KRXh6up+Og9PjQ7jt+DdO1oBc85OSthIvxdBGju9Rxpcz6hZSBWL2cA/BZ3vKzDbHcstjbbLqO85JyURIyXAVPKnb1gmbAoX/yoFS/Kg95qNbY0+DnPKZ0zRQfjC5cteXspkWHZ08m2BwPOFHzV3M9x/lGFNKIS+I03sZ1baphiggyWGS0O8ODP2eWd0y9Afur+8RHJ+++oy6WrDvR/wQcXXLYrHmcTdgTZVb25bPXfSsidmswY+ePnexijHgrKOta+qm4fLFC2zlaN613N3e0u0P+NEzuorRV8TUEFMuKEmBmFrdvKJ2nSNF9YyURCXjBAord9T8HXvTn4CJoItNykxWTIkxez5GDL3X7kCdj7jksKNHksWHHS6NVHmTHIeOYRypZw2mqhmTU9vLXM1fGr6crJC6DEgBA0dQnApVCycDMlOUxZZMtBIeUOa4GMMnAJMdwlJmo5WpBr0mR8paQFR/rB8rgjmJrOVkNpxEw/ktKB6RSqgJk21SAQjThzdH1kOUIfc+fDyg+2d4FICsm8sxQCiFPdNpLMzU/6J3+V/nRE1jMb9lRC97RFQiZDUgNJltdnWNsUIYPCFFjDPUTQMp0Rth6LVxRvBJg6Ok2ZYSv8XMHNmkGlrjI2bwE8OWUu76Z0SzVdk7S0RytiVNWbg8tPK58oA2ZEghAT2Mx059joo6SysKCzgVSI+Bzo/s93u6XoucqmLD5dQqL8bA6Hu6vqPrOrJblspH8nqghXUxr1dPXTLKe0lm9wqT+KHCIOdcbtbk8uf0tG3JIKpkzPuAuFJwm622nOCcOmdoCtdrkZ9HvamNy48zOl+DkJLBBxh6z6ELHA6B7a7n8XFgt/f0oxBT0aJWOi5SVPudvDYZK5iYmM3biQz4OR6nAOjHwHM5fkyL+pdlZukHj/mx95m0zPl5/OB1/8L7CNPaU9c1m82Gq/MLFu1M5Y1yZG+LvM8geDH4lNChUrNYn/Hi9SccdlvCOHILjH2nent0jyvrRJTEmJJmREKgH3r2hwP7rmN32FM5N5HhRYpFSlPbeZUBplw8mLJNqbrDiLWIU+IlmV59yEmItSTniKbC1C1uscDVDfV8SbtcU6832DaDZYQ4KicdozyRHJYagNMz+jxrcCQoIZk0BSilx0YByz+UXDy7atN1Ldf9SP5NF69wH4V0g8JB5+cx+dc747AxEHP3TlUHaE1Jsa6ddvD09HOU95qgR0bMkxSo4P9nnMzHHB+nYc7dm/5ahDppocr3o5ifH71YT4FzOQpofl4AcLoY6+cI07+ds8rSWKsRZUzMmhmb5YZZ01KlhB86Hm8f8ENgNV+xWKww4vDjwDDoor3eXPC4e6dMh3Go0Y1V3bpRwEYK+u/KUkXHOERCHNkdRowYKufYnG0wuUnJ7c0th+2O7WFPNxqGMLCYtdSj0eYkeSEYK4c1CWuAGLVhSurBo1ZRGCRq6icGHUBx1OgrjExRfrLHzUoLgLSV6JBgiMIolqZK+Ij6Rs8arBOGfovDs7TCza5DzB6TLCk5QlQpg3qa5teOGWSRIGWmK7tW6HU7jf4KsFcwnzLXq39VPbIyxEUPHY+MshiSRASLkaTvi80YWS2yJGqRoRQLw3T0h9QmKhrwpEkuYp5OZ5OQZCaXDck5+CMsTBOIRpIWI0Fm1ZiA01/cV/65H6XuIEfbxXmkAObpeJ7a+m98PF96nx8fXO8mNkVTjTED0iii6VpnGLxXVqOuaBdzovWMaWTwAyJQ1RZDRXHIiClpw6MTpln/onIiI/r6iCAeTmVKMWq3PnXRCNl3NZ0UyJ0AVdIUnCMJ7eBniCmzR+QkiwgxBazTOQfCGFQb7EPE5/a/h8OBGCNN07BcLpjPWnXuQUGrgs9BiQyna6lzWnCocz2qJCynzWMmR2I6OhdJrmkJ3hMnzbaZGKQpu+gcqa7zGqHzW+dkBswhYor9pcnrmagVniFRmRwYhMDoR7WwspDbo3FsPZzoh8B+79ltA9vdyPaxZ7/3dD2E0SKpwpo6Fwlr4BJNVK/mIdC2FbN6wdnl+RRcy89wjj8Hyz8GmJ8X/J3e99eAUgmgfqrc6igvzLKMYr58Smxkb2Kmz6/aeIOwWi756stf8JuvfsV6tWI5n1NbV5zTc+ZWAWzV1LkHwIgYQztfcvnyNd5rJjUZ4f7mhr7vSUbnpLjM/hrNPI4xMkafvdfVF7nre7U7zB85cswuWmuzll+yfElvRV8fQvZArhxBTC66VS1z1bTYpqWeVcyaGYuzc9rVGc1iST1fIM0MrNM9zods98iU8UF0nZHsi146ffLk+kuey3LMiJZFSJjm7I8B5r80LrR2QJ5uEXJsFHXcV48PMNmFCyHLacreEzHWI2bEmzFrwTOFlYIuwsRjoWCahCCU1Zny34JHnn/k5wU7P+H4OElGCIzeP2GZjMndrfK/pwWGpwvMc0eMD9H9H4pWT22RTpmUkuJzriLGgTF4fD9C6EkxUbmaWdWy2x/47utvGfqO1XJNXWkbyyHC43bPvhvY7zuadkZV1cp0GO0cJJmpTDmVMHptr11VBudaQuMYh5Gu6zl0e7YxYrMf4XKzUo2Ss2wf7hm6jnjw+DjS1hU+1lMqs60dlTXaLjtHailGhuGAt8fINKZEEJs3q9IiWzWFSciTRe0oYtJ2uz6BF8OQhGTVj1SMpW4abFMzqy2pdlwt5ryct9zdKXuepKEWGLFPLORizDntDAierot6TS0nDCVHl5Sj5+N0hSmxZkmlyMmE1NfOI6qwymIyS3fiIVmCMEqEnUhYrVCWElqWSVSKExWwSEpILIuDIqGCvSU7dBTmT6ZFPS+uZR6m45rDs3H/czg0tf8s8D5h46f7/v/w2f7S8aHPU4BsWSOVMdI5bKwyR8FA3dTMlkvm6xWBgc4f6PoDgaLbVTvEuspMkhiMi4w+4sfI6HUjVL9gDUAlCSZC8hGRmL2PA9EaXAJnIknUjSJxUlA46Q5zKjo7tiQpFpCZ1Q2QDYBysZ529koc6xpijAze0w0DwUcqVzGbqdbTOZdrA1KWcIykFLAu0bSWdtbQNDV17XLhX5nH2b6RIyul8jIt+hPR4uvnDBYwERslQChz2oid2LCYUCawUicMWzuMhUTQtc2PEJVQEKt7gQ9axGxsIkmlzggRhlHt4x63PY8PA7vtyHY70PcQY01KDjE1YioQm6VGCUlBZVy1w9jE5nzDy5dXulpk9v2kf87P5vgxnXI5fizN/nw/fg6cik1h+fmXWObTsTCRKj9ALz8k0PS1yIBPCamzzYavvvySv//Nb3CioNVZq1r6lNeELDGo6ka1zwIStS/DYrXixatXRD8y9APD4AnpkRSTkm+VIBYlchB18AgaMPoYCf1AP4w5Q1S+0wkeM6WwTlQ6aHNLbWMg790ihmAtPsuxrLW0sxmLqlIGebmkXq+YnW9YrM5x7QypKrC15kKD7qVqi1oW7pQbi2gtUJKkgQcyFSEfm87kz53rM0ow8nz+/qUsxA/GVFKr3ELsln0WEkmOkpRprxeh+HKmlIF0aeiQlPgSo/Ub1jXEGEj5FsJIip6U60IykzaNo6eDJwe7JhVo8KNj+qccHwWYn0Sg+T49AemYxsn/nkD1yWd5XlX5ND2QfvC4J5PzRKJR5BgiOd1XVZA1eS6//ziM7Hd7/vznr7m7vedss+ZsvaGqalabDd+8ueHhYUdE2O0OXFytubi45PbukdH3CsSDdrhK+QJXdUXw/bQxAbjKMjctxsB2u6MbuhxECHXbsDpbY53h4f6OoevY9x3D2NMPFTEmhnGkrR21c8zqmto6KqutMmMIDEX8PrUUtdMCJegADd4rm5YXl2I5HI0lYhijFgWYOjcQMAYxjrauSGOPMRWfrM+ofjXHhG/53be3HPwWcS1iHMFWJGeIWmlTBAz5ehwnoF7zUkxUrm2xd+MoL50utajAPyVMrpQuEwp5avUSCxg2eYBLmr7n6evpwqtAOU07fv6gJYeW52aJd0Viht/KQCNgCsmRXTLMSQuTRGC/656cg5/zofrzwr6rJygFvOVbpCww/9xg89Mj5gGUYMoGaAtnHS8BdcVYbdacXV4wX63pw45maOmHhhBHQq9gkqRFuK6qSFJhqoQZA0lGxhjwUfXzidwdLSpLH01CCFO9RbSGYA3RBKx4rBGS1deWXDAaK4cYyQxvXiOF7D+r1yYEg4nqEautgjvttJftDdW1Ag65yM9kqzzn7OSWYZzT7FMuvoNIXTvWqwXn5xuWqyVNBtdTTUBmq9JJQyHJeqbTepIpuxUjVVXpdzgBXgU0qzezA9SRwIp6NbfzGbZ21E2NrTQwDnEkjupFl1IgJE9MPtdapOycExh9ousDh/3IbjvwcN+xe/Qc9p6ui3iv50mygwbJMFn3SJg6tDXLBQ8PN4Tgp+81NRD9mR2n+/Up2/+h40PM4em+/HzvLkA5TBkDPZ4zk+V4WsB/AozIK4owZfUmzJSOqX7rHE1VsZjNuTq/5NWLF4R+ZByGKWdoxEye+kUiGDOwzFsHVTuD9Rl+GDjsD/S99h4Y+h51T8pZROdw2dc5hkDygeCzHaX32UpS7Qsjuu6EeOz6GqKy02pVGZR0Mwq3jHVE10CljcUWTUu1WtGcnTFfrFmtN7SrNc18gWkqcBaPQAgaXOeGWzY3FCsyreLdrhZ8mcExRiUgOQ2qxCOasXo+FJ7tY8/HwoeOcp1VGqO1TukELEshp3J90PGt9G8x6dxPWRrJSQBiRHC2xlSSZWCeGEZsELWnM0EzW1IwUjp+j8xymbzZayBxlPc+x5g/9fh4DfPJkRLZhPvpyYMMRk69B6c/PUX3UoBROnlcjvoTSStQs0ZO2znqUe4TEdrKEYLak2zWS5aLFSlEdtsdYfR88vITXlxdslytcM6xXK44DAaR/8JivmDoB4yxXFxe8rg7EA6dFt44l7vU6AUxBmJuTxuzN2/SK0vVVCxlzjAMeusHQo6CbGVoZy3GCL7XIhw/jPh+pGsb2lrb0c5nM9qqorWR1qknpI+Bsfe6WRlDzJW91lrt1iV6DYrO0IegXbis+jgnVzEai2lrZu2CdjbHWkdKicbVmBCwo2fWCusXL5iZFcvqO75+/8jdEHn0nj4EYnIkVyHGMSZdIApbEPOi+cTWbVpoyeMgTJc/SRYPPwPIZKazBAUxxuxad8JEk6auSwojMqeY0uTgUCQZIiXtK1nTVZbkYx7kqMEuy65aXclJtKf/Lny2Mmvv378Hcjo+r00/W+Cc6XFlmgUkqpZt8iAuNoGZEfgo9PBTTsox6kkn9/y01/ohCxJzYFQ8fnOcRxS1kquaivXmjLOLC5p5SxxG2tmMcewJ48DYdZrNogToMdebaNe8qtIMUMArg4XKn1KMjCnihFz9H/BOGJyhNpbKBmrRxibGSg5S9GQOg0ohXOVyI49S7KQboAaJJrc6dlpnISV1arK9pJ6hmIBcxV8q+TVzNuKydVSMAWsNi8Wc1WrBy6sLrq4u2WxWzNoaa8lsTpjWWmXa89wzxw0nxEAaf0h4lMfGEDDGEuxRzmclp4VTUmmEdQyDpTJQ1Q5jKm3chCPVAQle3YPCQIgjyRRXEy30G72nO4xstx339wceH3oO28DQJ0ZvSClLuXIMXcZ3KsFJ/u8wDNpueRz4d//uf6TELD9HxPwcMJ/+PD1Og5oP/b2QQ6cB0bF472i7eIoDPsQwwwlr/WSxPMENzwg5XcoL8NHOnIv5nM16QxxG+kNH9BrgOqf2cGUtK0G+dZU23YoDKUbqpuHs/IIYg/r8i+Hm+oauO2iAZjWQ08I5DZgC2WpuGNR1xvsJSHsfs1NGlhoh+BjxKSDWaSMTV6k1ZN7r3WxGNVuwWC5Zr1dsNmtWZxtm8znz5RrXtIhzJCM561XYeTSTJZoxmySCol0xTSl+B7CSbfiULQ8xTkBZcoCSptOv++FfGgenY+WJJlpXRqTkljM2mMgp3dQpVksp79dlb46c6p/zfq4LuNrgZnLLmErtM00iWo/3+XV9nAJ6rcU5KiCQUmwYj8F/Xig/5P7y146PbFwiJJ8X+Ux6KqOZEEyOzvQrq3tBPFLtnJyQaWYxncC8w2Vwlbs5lSgWfV3jTI7qEj57ebkgeD8yDnusBBZtRVtVPN4/sKgrXl9+wmLWslwsmc/muLoiBrjcXLKar2lmS5Jx7Lue9fmKejYnPDxiK0cdI2PwVClOkUxKBmu0dbR6uSpQJ6Ed+nJXIMk7VxxHgveA6pikqokR/DCyOwSGsaOpAk0d6UdLW0NrEwsHldX36LuRGLTyvrCrxadVJAcPaIQ7jB6PFhCYJiE1NOs5tplj6wZXNyDqNNF1I6vlks1yTUyJw90NV/M1/+f/4V/z3e2WP7275abruT10XG+3PPY7PJ7WzumxdCkwCuDUlinGhI0gAU0pT1ZaYLMeMaZUrq7+TUBMmkBnzIC4aJNOF1hD9nMs08yEvFCfsPDhGHxp3/lwXHzzIq0e+BkAx7LATG0LNBKXSNFDp6xJdZJy857Eft8xZcPgf1G0+s/nKEEHyq7npVS/n87ZeEouy/EcHwPg4+/k4GU6JE2zvETExwXyZL7n10uSdJ4hkCQ3wCkvGE/f9eQj5HRj9tC11qqf+WQnJ4ToQSLzZcP5izOW50tMI1on2lRUsxY3zJDDAaqKJGrRFlL2MkYg5e6QVSKKkDwEr+yuZJu1KgdPMYIPCecDo4nUFoJVK0ITVJefktoaOmuxLlF5mWRYQiLalKvgSyDoMSZgnG6Cxlr1fwk6t4wx1LOZdgNsWmxVTdZOMWaCw6h8q501nJs1bdvw4mrD2fmS+aKmriyk7CubO7HpJTckMdmBJkGySFQ7rZCi+isOEHKveCMqvXBiEKPrl0GddNS7NhBiRDu3OfzYU48NkjyGiGlrqsoqi24MMQaMAR81+NG0rtF/h5G+j6pd3o3sdiPdIalVVcwBtBHNUpMwEvPvcAy4E323o503NPOW//T/+Sftcugsafj56TGeA+bnoPm5dvkUGH9oPTtlmycpRqGH9YlHAmJ6zTBlGSd2OT8WsZBfwyTNDDIx1AlshVgLxuGTullYq7Zys/mcam7YVzv2u51ijtz0ZwrW5ITtzs4xPgYMNW5mWF8IV2PgMHg6Hxhz9iagY0oLSSNj7xn6nu7Q0R0O9IcD4zAqu+yDAu98ThAF7NraOmBsRQCqBu20axxVM2O2WjPbnLM5O2O1WrGYz9Umb7bANa020xFHikdNcTJWN7W8Vqek2axkRRcdZ7QRSFlbxSCmUkY7Fv14VMCdQayiOd1/icrSJ0lHp6py3YsSoFy7CQ0XYrQE7ccQ6oSSooySssaX900onimfZdobsqauYGCFmrnVvUkYime9R1Af7BQDSeKEFySDdZlw5sm+kdJRNfIRx8dJMqJAPKbddZQWBo+J4SgnJaSUq9HziZ9eSE7cn44McxStcpZsm6QpFX0Pk4VkpWrbOZMrrwVJI7MazldnbBZznMDt+2tWrz/l8vIl46Hj8DBQy5zGthADdUpcrS+533e4umbfDVTjyPrykuv7O7pxUA/VvKGZlBijqG9gJNsrCdpCWhmbEHRhcGKY1Q2VGBrraJ1lu93Rdx3eOqyt6c1Id+jphkjXe6yFx32irgbmVli3lrbSzSoMkRS0m5UCOtVBmko9DcfgScaS0LaaMXciqkyNrVqknpFsxa7viYeOKgrJGKyrGcbE0HsWqxn7w5b9/Y6/++ySv/+7f+Dt3ZZvb+55c3PPt++v+e7tDW+vD+w6j3EVwRlGZ+gzW+TEqJYsgoRccJUr7kUikgIkBbAFgInNxQchYTMQC2hhlFhBSq/PpF3TnJbMM003STlgAwkma3Hz5JBs1VOCXYvqQ0uEPTUtIRct6uSNUTsCIgaDIUaNUDVgAmuPWrBy/Jw7/qXT3xK6gMWyOBagVh73LCov5AFQMgsFO5/i65OQfwqK41SIeUTjRwsgXWtMpq4Ku1+KhPIVJ1EEppqKrZ3BOS0tPWVkYoxgImfnS37x6y/4xa8+Y3O5oB8OxC4SDSRrtAOfdXpLqDuLi5iYN8cw5kAepDIYZ4ijIQxBA0UEXxbjoD7gPiZGiXgD3oKzYK3qn8mfrzKC8eBNxBr9u4gQTCDaMqb1/BobNM0qgnFZlhVVgtE0La6paWYtdd1ijOXoSS5I0g6EdeVYLees1zMWixkXF0s2mzlNbamMEL2QxrzhlaLDFHJcqusHzkCyR401SUFH7yEmnGgWTBsYFcGTRaLFB+0wWLIBWFG2f2yQMOTbHDubZUlMTq2LZg2YZAB67UMQxiHSd5G+S/SDMHhLjA51kncZzCkYSyloP7QMQEwet22l/rXtYk4XhBFwxmKsZJ/dnw/V/CHA/GPM4alk4y/pnp80FCOvgVJkNrlhT75WxhwB8yTNK8RGYSMzQ3pcLDIDagRTVVoIam0GQIa6bqiblqZpaeualJJ6eodIyVJmq5cJmwC6P9oqP85gxWJmwvLCczkMdH4g4NlvhTAO7McRGZTs6vYHDvs9fd/THzqGThlmbbySgy2yW5hRUBdFG+bYSn93SRCpcK6lbVbMF2uWm3M2FxfM5wvqqsG1M1wzw9gK6xToGiosOo9MblqmHTO9Bp0SSDaRHESj1pkhJoppgbrBODJ1oOeCXFxcQHAsGvQ0FfZPADOlk31OCjMyAWeRAtBzICVHIqzcl0trJ650egWJBEmUbqFwwsUkmSyOUmaY9dIKiNYfqBotkKzHxZAlG15/RrXvNKKa7hgl131JHmMnBYMfcXykJOOUZjqekHICC0tUfi9ckALp4+NIWSdUaPeUcjpDo7DaVhhjGbxnGDskJpqqxlkDQbKFi1ZPS4hYScybmvPVmovlmrP5igrh4uyc8805j/GB+9s7DvbAfLZUNjyM/OKLL/n3//EfiSEwbxoe7u9ZbTZs1mvu3r+nImGd47Df0bgKMosTvHbpgazZSqXdY5g61ZQFRayhblvmqObu0G/ph4GEapxHExiHwBAiQ+wxXcdeEv3BsWhbKmczaNcp4MdRnTqcwRgNHgY/6qAzTlM/7YzZcslstcG2DZ2PhDEz4c6BNdTURFGGuE8dq2rJxcWSu9s7+sd3/PKL17y++ISlTdT9jnNzzhfzOX+qb/nD9w+8z9rnqmnYkwgYGDW4sIgWDBlDNCrHUIu77O08DR4wURRoBA09bBJSiATJtnIGBKPeyGgKtzRIOG2UUgq9ouh7FFVymjq8ZdsfyD7QGShLLlrNA1cozFX+fAjWCMSBmLQw5KnX79/OcSSNZSqGyv88eVBBefpPc7rmlIWNDy9EBeIqmDVZTqP3xvK8gtkp17msKLnAQwpo0fGg4DznzEU7a4YwMI4hgzqHWO1et94s+eXf/ZJf/cNXvHh9RTKRftypH3GWUsUYpwZL6jOrBUB1LQTxjCmRfJi+j+qNHT6pc0XKzjSSYEiRIBkgi37MGMFFsDGoBjGfmxAiMmomxuZue2INXgJRtIo+klksMluaayVSfvx8Madqatr5LFvOqY6YKLljWvGOE6qqYV61zOYNm/WS1aqlrQVDUK1k8BMDMrFEhU2SlGtw9dqpr2xOmyfAJ8LoyVydrgflmwYhjhCDMvfJ5MDYGPqxox4ahnHAhzEzd4GqqrMOEyIhs1h5VCSIIRF8ZBwj/RDo+qBey0GBfsoM2MRapYQhTf8r7LKQ6Pue9XqNcyrhiEmL3XnSOe3ncZRWzae64ue65NPaoA+B6efOGU9uADmIKcxuftYHH6/3ccqqPTl0vS6fo7DVJjcBMlS1WiMuFnPmixnOWIa6oqodPqhrUfH61eUh5eUqBwJZZmmSxZqEJIsxiZS0GD8RuTHC490d/XCgO3RqIXs40O339F1PHP2kgdVkpIZj1lrI1q5aW2MQp1royjmaxYLFcs1qc87m/Jz5ZkOzWCj4n81o2xl13VK5irpuFCxbNxXMGmtVkkkiRSWCJtcqVIo5jCPDOGqGR0Q7/RbnCnSOPdWiF135ybhOGvxOWa2TsVLGw/Ghp7VnhcRA15gTNqk8zpSaImEiObLo4sm4OUZi5XEwZRBThvKSA12jLLpQkZInhJEYtAGKurBkPbvAVCBYXs98vC3sx3X6K4NfjiP+iU3MhDNK0U3KytVjlHIs5MoXTkRlFzknX+WNeug7hk5TH06UtenGgdo4og8cdnsqZ1mdr1nPZ8xbw+Vyzeurl7w6v4QxsmwXDPtuah972O3pFntm7YzKWF5dXnG+XvPQdcRB2Q4/DCwXc1arJffX70lEpLJ4ScralnU/R85FR+2cJYhuBNlG9GjUTaJpG3xQvRNis7F5IoknGrWNU7YpEYPnEAJpHKmJyo+I4IwQrEbgPgGjJ1lI1pHE4ZoZy9WK+XJJ1bZgLT6pPAObdbkSM1Pkud1ec351hW1hCHsuN+fM6jPCuGX37hs++/RL/sXLM+bDga+//p6LmeHzv/uSzy/3/Lvf/4Hf3V7Td0JV11hTY6XOrWlzc5kU8Ulbp4pTJt7kbn0F7qQQlZGO2S8zoX6qEggq0JjmTOmgKqKNSH4QvJWfR7yrTEWUCeNN0y/lNODJa+g8z+AaQfsd6gxXCzuVnTzcPXzMtPlZHFFyyd+0yfCDha/cDTxZaOQHi47wZO/N4/qYnpO8VB4PexJQayvrzPZnbjWWhhrEPKfy9S80eH41HwM+BqLNrZoduMYyXy354ldf8Hf/8te8+OSSZCL7rlN7x6RSm+AVYDhjcwFLAVf5XBSf1NwoIaSkXeEimkkjZ1XQ+RmS8mghKRkbIngBG0CnZKTI+yxMLKcVwdiEsREvkWgTJqjEycdj98FiNGGdYTZvsXVFs5jRzFpcXSHoeMVmBtEKxhmME6rGsVzOOdssWa3nzFuHFU8cB23wMl3x/F5y9IDXFDEa9CRBbR8NFpODXT2XKeUvn2VSIoIEIQ5q06cpfWW1xBnsaHTDi16r4DNrVLX6fWxlEZuzShTWXVn8qeiv83SdZ+gjMdhpGCuhmZRoSSE3glR2yyS9cpJGjFGv36qqMDZNpGUYPc/Xm3/uR4xaVxJCwFr7rPDuKaAFpqLMU23nc4B02oGXSfrwVIZxykafgrEPS9Y+cE5Pni/51lQV1gh1XTGbtdR1jY1a9N/UDWMmhI6QXSZ5R6GwjVjE1ESvwEqSEmKL9Yqr8JIkcZJz3d3esO+1SH+729Ht94zDoHuXiK4RldOCVYAYdG9OaJMV4zDWUNUtdTtjc37B5uKS84tzzi+vmG3OsbM5Taut6mezGZVrMpZQsCzGTvNw2qnyOmNEg/XoBDNqoOG9tvwOmW0vjD8cg6YPFXX+wA0DBdEfImCfX8Oj+9lEX+RLKNPP0wI7KWTUcWk55V/y+z8fGc/HoPpml89ijJZ6CKINn0RyMyg7vZqJllEEL6ILsZEj+VPs937C8XEM86RROZ0E8ZhGTSdwWI4uPFlSoltJShx309OLpwC773otwkOdE9rs0+uyn6nf7+n2e/CBZbvmxWrDLz5/yfmq5fL8nPPVhnnV8N3X3/L1+zs2iw2X5+es5gu2Dzv2D3sqcdjGkXzgk6sX7P/8Zx6ur6lXS26v31HVNZdXl+y29/RhoFrO6Lb7zCInMOjmEEE7dymbmrK9W8oUpkTdpEI0JAy2qmkXiSiG7tDjuwGfwpQuSfl82txG0vsB4xUsV9ZSWZNBiz5arNDUjW6QzQxXz3BtQ6oquqjd/XyK1LOZ+qPm9FcIA32/JzXCGHuSCXTDjnfvD7Riif3I7toRNis27ZIv5o7gAu/v72nPGr76N7/k73/1mv/85nv+8fvv+eb+kZtdR+d7UnLaXjtJbpurnQKxLmcXSqyo6WFRWhhixGCUYU7FRJ5prEyZiZSIhd0qWqfMTk7uIFJcNY5/p/QySelocp/SiVa6jMZTBlV1k4GkLJlYfBh4lwv+/laOUhCpvsXK6ko5Dc/Ts6Qna8sT+9ST28mLn/x8ejtloqcmgtNrSpb0nL6dnLx4fh0RTH5yEhhSUCcMYxBnaeY151eXvP7iNb/41Ze8eHWJdcKuOzD6HmvNVHMgOSITUfmPNVrdHZPPmaOENYamrjDBMnrtdBfzmmYqo2lRH4v0V1lQyW1IkupvbVRyYypoR1looXjJZsYzoFKRVJqgaEc6LWZisrSzzuHahnreUs1qyLrmMtmkZFGsNm7BCK5yLFYL1ucbFosWJ9nXFU4aUZXbEQgZU27qD22DniNrDAZLiqI6QrGkHITEElQg2JTJgaBe0LEsCFGIGCKBkFST6KPHB89s6annLTW1+jEbbeiUxBKDztFhCBwOA/t9T9eNdH0iepVvGEvOTJL1mRFrAkG0lkHtyCLCyLxtcdZxdXVFiLo9pnIyPpKN+udwFJAyFc0/Y5VPAfOPFQSePm9qUkOaAFlp1vFEzpEKuHle6PeXT2LR60Yy4C6d8DK2sKYUsennLQ15hr5iKBiD47gtAi4NtJWxjlHyHA0YAVfXrM42WCfMmobZvKVdzhFn8UFtGsfgKZ3ztPOn7hFaeIeO+0KvGIepa0xVM18smC/XXLx4yebinNVyzXJzRrveYJqWpmmo64aqqrBZhlpOoKSAiNVMespOLkkzdNZoPQDWMmbpyziOuQNwZl6fAdhyHZ8yw0/Pe2H34wmo/dDY+EHwk07WcHn6vh9028iESI5lPnhMwDkvZRO6LN7OGU/GWMZ5kVaJSlHKc/N7iDiMjFoXgrbfjjGSwshPndwfWfSnFdMpV1qnHB5MukWY/FujYUpPcHqRCmoqrHQ6shdGJIPxk5MaNMJMUX2FnQifnJ3zyatXfPnp57x6ecnF2ZzlrKJtGsZDx/7ukfv3txDhan2BxbBarJBoGIeB/eOOpayQlHh5fsH1zS2//fpPxO0DI4lmPmNzccbLVy959/YNQ9cRDLlrT3bMmKIbtTwhxDyYy4UtGt5p18FYi6srqhAYfcAEj6CFD5FICFkLLajEISr74awhiOCnAanMqbMOmpZqscQ2M5Kp8MZqCtKAGIsDBu/VTVlE7ZokgEks3Iau7xi9Nl75/u07WmOxPjIj0b98ycoI68bwyfmS/vaa2+9+j8SBv//ql/zy83/JP1y/5j9/+z1/enfLtzf33G97tp3nMGhCtnU1wVm2o89a0jJeCmjKKVMjkEzWsQvkRi7pdDaZorHKC1MGVkUGkIAgR4Z5mriCVs4WVllOgJ0UHSzHGY9qnExOs5fq3+JUMPTDx0ybf/ZH9gUp9SQFhx6bKf5gLXl6xxHDCgVP/xBmq8a+aNFO+OSThV3yY/VvUY52VSWAMfnvU4o/lddTWUZIkQFP28xYn684u7jgs198xmdffMrFi3Oq1tL5Az72JDygmmHV3+s8JmgzDmusCvLzBnK68FtRBsukSMzdS2JMBLLO91gwTq4zI5O9+pJolqMkTCu066UyVjktGrVlN8kgpjjS6DA1FiojVLWjmbfMlguqtgGjFfpC0O+Q09DW2cwKa4BunGW2mLFYLWgbR/I9wZ9ctXJ6T+keKdpUMCZh4kmBUZJpPimYVc/plDuOpqBaRkiYqJm4lJRgUH1jyr7ORXqTMFZUelZZqAy2NlSSG0MYp0VQCXwYOfQD2/2B3a5jfxjpOi1S15Q+mY1PJFG7P2fMVPhrJOUGLAPeJdpZS0qJuhKsVQ16kXT9nI7ncopT5viHUomnbOOpfOO0F8KpJVfRKxem+SmoSlPKf2K2/9rnpQA7LThLKWbdah43RqiczXZvEbGWtq6JTUNfd7p35hoVY43WJKSYbQHTEWcYQypt2iVLM5zOpTpLmubLFVXdIrZGqop6NlfNcoyEQYsAtZhfI17DMasmrqJpZ9SzGevNGeuzC65evWK92dA0M9rlktlyga1aqrpRW9wsnThmpTk6QQlYI9pQZdJqqwRiFO1wPPQqHRmGQQFzMQ+fOCNd46frEfX8Ttdukngdn1fGwfOfzxnjYwH3D8cfHNntp2OvpOF/BC8n3UXKa6e8RpTXfeJklRRHxuxUYjM+MtNn1l3G2IQre1TSujDvB3zyf2VkHo+PA8w5sopF1F3A7ynAJZ+ASLYEyxtN6QaUlD2JeUMorI3JRSySQi6g88RxpDaO5WLB+WrN5XrDpy9f8tnrTzhfb2hcRWUFJ56ZMxDg+t0Njw9bZlXLJ69eMWtnDMNAkwvw9v0ju4dH/DDSLma0TcOr80u+/e47rh/ucfOW2/fvqeuKTz/5hMNhx/e7LTiLE0scA37UPueqK5aJRZpsuRBCvj+EgA8lta8nRyt9K4ZxxETVJ0rxszQJjxYfacctm1M0GslalLUWq/qoVDcE15CMA2sRW4GR3EZWixass5NSyI0lnVqpIfuoG19pLZ7Ecnt3S+h6Pn31ivPVCrtomK1alouax/tb7r/+J2Yu8Onf/YYXv/yEL642fHO/5du7R75+d8dvv/6Or7+/5mG7I/gDtmpZmEZ1npr8nEZNkkgwk0IVBEJm6J2xTEUHGTCJmKyvLIbn5BXBTItyeZ0pfJ3YMZM7NimpZRLZycXk1y5PTGQaDEG7l6WgaXuTK/anx/2NHFE0mIh5IS5OIiUhNGmVk3x4geN4uqd/a9RCwhDRMVjULhMfI6ch0XHhVT2jjg8pfzsF4yeWlUcmQjAWaldz9eqSr379C15/8pqXn75ifbYESep6EUa1fPMj3aGDoLInSWhhn9fuIFYjU0WnRouYY1AvVgW0+hybC5WKc4CyujrmtD5DWRBzUvFdzo+ghhMh6GJcWQ0KQhwJSoIwtdDOmT1j9eZEC6PcbEbdzjCVU0eP4HVsO7Wfc1WFq1SDq22ACzuWM2ApaKYsN104SQBPoEd4nnY/fseJCMlBlsGQjGq5U0xqvRfyrC9FSVEFV8mi8296PWWBCz0vohrNkLJLkSEz5aKOHWNkDJG+H9kfevZdT9d7htEQg64XNuk5luyxazI1bzJYLoXUljFbVxn+r/+3/wd3d4/EAMaRa1Z+bOT/8zxKx8XnOtQfOwozeZq+/xBYnhjMDLTK+vrktWAiR37wh79wlNdURygwVq0RjREqo7aL1uqu64xBGoP3NVXl8N6qMUEGzMFILszXovGUCSy1mlM3K+0gO06TcSaq/bVVTUCL6McQcFWj+C5B9F51zYduYnQLq5AErGto53NmiyWbyyvOLi65ev2axXKNWEPTtFTtDFe11FWVLSKPe5QGeXodSktt6yzWWbwBGTUoDyRSCIzjQNdpi3utw9AAT8yxq645vT4iOSjNK+tJPUS5npw8/kMOKx8eQB++nk8echqoyY/NqHRc56cXynghqg752DVajs/Jy4aAZguNUetIKe8rythb7ewbRdN13uTW2z/h+Miiv6PYvyy6ISkUs9PCedT4jNnIW3IUINlwO8WEUZ8TBYAJ8NrBBQKVNczalsuXr/j89ae8vnrBxXrN1eacZTtjVlWYlAjjSPQjY7fnzXf39EOPNZazxUZTNVVD087p91kLbRxnm3Pev3/PzfsbLuIFm6rmYrnkV59/TvqT577bUonw9e9/T/ADr1+9xofIu3fv8F2vrEm2HjPCBHTLRbRWUyUpJHyIuRmBCtKRMG081hrqtiJJwic1JLfGUDUOjNNK2VRStOiESuggsBptirMk64jFkF+saif7kWHs8/lMuGTBJ6zVltzNUDFPid39nrXMGHee2XLOqxef4kR4991b3r/7mi9/8RWfffFL5k5Z93azhO++obu54Y3fc75wfLH+V5y/OueT8xVvD5fc/Trxr65/yT/98Ru++f4d37+55v3NAz5ZdFgmAoKPMMRENZvTx8SYmbNAGR8JEwJEHWPabEUZpdKW24jNtV4afRaGIpEX96g+uRq5Z2YsiqZtikArM9r6vOczVCPZGANN3TIGj6SMVv6GjpBxqhgFStFn9xA56uZ0T8jZo5PnTmyxrmZIPtdlwS3tYTVYMpiYAZ851VNGZOp0d7wOxuSUajTZd9QeF8nciMM6fV7wAbFQL1tef3HFr3/9Kz774lOuXlxRtxUhBU3x+4EQBoahoz/sGfqR1HusGGpXcYCJZdbg/mThLixcYmLKoyRiCtnSDarKqHY/6PdWiZaeW63FyXeUNQQNFseg491KmPz9E7lGJJ8zEbBOs0RVY2nnLe28pW5byN6xAbBJwUTR4paUfPEiVYb4CLw1iDkFPRrMiDG6dlWJFMCMWnR5BFLxBFjnW0R1zGPUtHdKFB/z4NVJqLimqJxPJRMu2wBaowC/qitcrWCpya4fmr6ucbXDOEeSiiEMGtzmduL92LPvBmKoMOKwkhh9Tz8OUxGVEdG6EdSZR28gJtD32hjr7v6eYVS7Ts35PmXJfg6Hgk/zBLQ+91R+zhR+SLLx/DVtdrEyE3EAp3kllW0cC+OfHCctRY1IbqsdlaHNQD2GgKkqKldpYJOBo7WW+Xyedcs1JLVenVU1Q9MSQ8zklF6uMXoEzdBOBak5iDfGTm3iIRcIRyXudGxpE44xaN2AjgPVPFdO9cWmqnOhH7kOKzIGbSpEbn09poRtW2arNavNWS7eFcRqw7WqaXG546+yyqqhd5lEtNlhBimZkIAV9DOFkRRHwjjSHQ5st1uG4Zj91IxUznKnlLsX5kCqjIuUJla5yGAKPjk9ToOu06zF6ViKeT34MTeW0yyGNl5C524q2YiJ1p4A8hQ1p7KWHtdPHXFlH8+EV5ZqSh5nIdeZhdz1V6zgop5n6xzWCH3X/WTq6+MY5lTUs/lnIutitCFASTGmGLUxB/FIjWvIqenOqJPFJAjjSCKxXiy5uLpis15ytllzdXnBy4tLztcb2srhktA6Rxo9h9s7dg+PHLY7/NCTwoA1ifl8znI1x1aVnsCk3sjM4O72Ft97losFy+WK4dBz8+49IonVxRmvzs65u7lmHDsehw685+HmlvVqxcurK3bbHdthUEfezHqMg9cUa75wCuOY/F8nyq3IN8To5Kj0RVJmVZJB7amSAgfdxRzJ57QBCUce5Do6Jh1wTFoQOXpP9JpKDlFZsBgDItpYRCcMk/6rrgPiIQ2JfjfQmYqmqRBnGBHe3t7xu6+/5dd/90D1YkasK+rVgsV6weHuPdt33/Gn/2SZVY7Xv/k7LudL2mbOi6rmkxeXfPnqiu/f3vD119/z7ffveXvzwO39I3fbB/ohEY0lGMswPCJGWdwuapOIJAabEo3SfNpFiVIolCdRYZ6Vpj521SxnSFAZBrmqX+lKXRxyQxRiuWIF3+WJmkGRFiRZvA9UmiRh+/iYC4D+lo6sYTYypfwn0ArFFGhKgZ1ug2U/PV0fY2bwU/mflDkQs85ci62QiCSf18OgbGouINONPmBMbtiDsreSctow5ySSCK6pWZ8vWZ0teP3LS159ccHLFy9oZw3GaRFgSKqH9X5Qx5jRE0ZPGrxaQ+Xg3SIQE35U26iicZ80vGKyfWycinuPZyvfkWnkkmErQVnpxFkQoxKpOb2ZPZwjGfuZDCgEsMowVZWlri1N62hqS91o4VFKCR8DLloqqaiqmspVGvwEdZWwiMoS8kfQQhl1s7GSTqooysZWLu7T71+kVHozkLRpgDoRKgmSSpOTcmoy6E+THCufJqOsr24cKjFzTUXdNtRtrQVRs5a6bXLRn1P/6ewgogGExTUVVVtTNRViwceRcQxaPGmUjFDn1ohJOpqjaOAcpdwg2UiKFeHENu3nfDwHLh8q8Pqx55XHn7LLBUgX5wZrVWZ1PE9yIsPIc/+Z5GNKtX/ofTmdZzpIT2sbjAi1c9ROs6+6DiequmI+n5FI9MMw+UNLsgRSHpMcP49oPQqZnBFEm4DZyDAMPDxu+ea77/jzn/7En7/+mndv3nDY75EETVVTu4qUctYkgzPdnwKD9wTfk/Yd4vY89j2madlcXrG+uGS+WmoTnyAY0bb2iMHZEsCczFHJc/TEWzpkHGuiOr2QEsGP9H0/ufyUa1iuSzFX+OD1/wvA9nQsPP/76eOm2gb5IVg+lW88fb1cUEsRUxa6+QQ0l9ziKZmVNMg5/lufU5wzJNc4HLX0+blGr7/ihGwzKqng9Z98fLxLRlQqu7BSMVPkKYSJHYohQQw0lWRRtTpHGMAmYVa31M5SGcusabk4O+P1i1dcXV6yWs5YzGcsZnOaSgvzuscdD9sdt31PHEfGfiAMA8SIM4ZZW9O2NbP5gqpupkjPY9QKbL7Abnc8Pm5JIszbGbN2xvs3b4l+pGlqLhZLPnvxgnE8cHi3o46R/d09181bXn/+OV998SW/HXq6w4EYVXSfyuZ4wm4G1F4u5AJA0MeUAjiMITl005RK06KVofZVXqRF9XkYwhg0oAglHagDL2SDdIkJn5SZ0gymguEY/UknxEQKOY0WILqEc06tmIaQXSsMYYxUyzqzNJ73t7f89g9/5N+8e8f5xRViDdVszny1YjGb0T8+8sf//I9ITGzOz5nVFa0IUQJiW+ZXK14uWr46O+Phl3uu7x/49vu3fPvd97y/uedut+Ph0HO7Ux/sytW4lGgke0RHbfwdYiIkTc9FzFTJDSbbWh0ZZjN5sxYrGQXLWgZfQDMl4tFHpZPXkTJ5yxROiFhCSviYSGJ4fHh8ogX8Wzj0G5eOS2TLxxKa6X9FUK/qvMJMjUSECRwlZAoey/2lzkFE7cWkMHo2IeQ2x8FroXIEg8MYi0mWgNe6ALFTC1rrKqxVS8TFomG5WnB2vuHFy5e8eH3Bi882LM5rmrrGh4Fh3OOL9jAEwhAI46D2UEMkjok0BlKuQTCS2aigxWqko17+uIkLSbTeQvIiXDpNlpxgaWYpFElKXuYnz9E0EQlavKLscAlWnAFxGmAbZ6mco6osVW1wtdWbM3kz0jU3TZtHZld8UKmYESTZzP6oHac1gpu0vIUlS5PrUZpAUjrGA8cBMYHnmFnlmEEzIZG83ln2C5Xk5WKpGLOapqSKM2tkUNDb1rQzLWSeLee0y+z60ShoNs5inGbZEMHVltmiYXW2YHOxYvOwY3fQboB+7CB49fsWi42jhkSiXtQGdWexAk4g2EiMRptUnVoE/NyR88nxoYKsU0DzXJIB/ChYLp13T5J1OdNQMtFFxnFsJkFZgz8ImbNu1xyzVJnr1qBMkvZfyLIM3+vru+wSg6hjTAhaUVvl9vUhd+OLXoksJfE0SC96X+0H4On6gbfvrvnd737Pb//pt7z5/nse7u8Z+wFJUFUVlXPZGUOfmwwEiYgYfIiZldbGRu7ugSiWxWbD+uKSxWbDbL7IhYdkkKcBsS6Vx4I9HZ9Zv5xvKRkNvKM2KTFA8CND3+VW9+ocUuZynDyZma7pX5PmnB7PQfZTB5T05P4iqy3H82zG6Zgq2UuZ9upcqA/TmpY40UeXwWUSKZZdKZ8/MgeRCRrFSfn9Tr472VkjTNtT1GZLH+HH/JEaZmV5igV2qYWwolYoyXv8oExzZSD1A21ds9mc8eLiisvzC1aLBbOqJg6ese+pjGM5nzNvWtUDPx7YPe7p5FpTkyEShpGUdXkGqNGe8I2rqCtH5ZSBwgd8P+a+7cpCJAScY7leczh03N3eIQk26zXdwyM3d9d8/2fL519+yuvzc4Z+z93NDbvtjmQMN+/e087mvHj9mk8/+ZQQlHmWnJ5Jo4ecUipdxSYtI2ViinbXycBPpSla5CNVpfYzldO0TkqqR8YSXGC0opZ3PpBits1JulEZNJXjfVBdc2ZHi21OzPZQIUMinYjaXjuGhPeeuq6wzjCMPWJW+HFku9tyd3/PN99+w3fffccvv/yKRTOjrWuWyxX7xZK6vuO7r7/lv/7P/xOvP/mE38xbqtUCFwZG6amrlraquLhcwdWGvb/k9rNLrm9ecXP9wJvrG97dPvD25p4uwEM/8tj3dCGyOxzoxgBGvTVtVWGMU51pre4ESQSJIGLyedFN2kztSY8sUaTonbSYTxcdZQeIZmK8pkg1F4ocGTZ1RLFWLQ1/bLH/uR7FXWRy2cnrEydY6VSakPsXTUd+qAbQmT0qTg56d8SZgCEgErGi1l4wol6ZcSpSleQonaOijSSngDNJwGBoWks7NyxXGy6uLrh4ecHZxYbz8zPWZ0tM4/EM7PoDkjJIDqN2wgsRP+h6EsegwC4kwuA1MPUBm8Blh4yQ/FTkqzj4WGmuszvpvI7HQkXK984MUaScXJSVKpxcPjdGjqnYEnir/ESbkrjKYSpLZe1x4xRd7HWdP6bHRTT4C2PAxJxNyoVDKeQCO6NrVbGpdCcdv46M4glwTrmj28QQTqNG/5vBdQhBB0WIEEphX5y03imVTbBIemLeB20uKhBsrYC5mjXU84Z61lC3DVVT45oaV+laZU7cPmpjWTJnDIauTxx6z+AjyCO7x1E7siVQ/82IYDFJ8MjE6BcDF5vX7tH7D8sJ/gaOD6XTnxf7Pdcwl/ufO2EUtrYcp/rUU3Y5//F4+7H18zQYy2B8kv/k9zFZmmGKh3mKpKgS0LaulQvJMoM+DHjv8cYwEvDJq1I1lbmpa3sBz0PXc3t9w9d//prf/e4P/PEPf+L+7p6h7zXblFLu5JvfOwOtiLo6WeemolvN1BmMG7m+vuH7795y9fKay6sXnJ23WFMzDuoUU4pzizTBWZuzI5KRYO7Olwyu6JINRKv7lR+1CNGPo15La6ZMmSkrTg7ESUeFwJPzfiR+QT6cjXiuZX7CHPPD4r6/pHsuDPqpBM8WYJwzcqk8kCLVS1ODJE6tL1M5T2laq6fvOqX5MjGkmjEk6lWb/OZ/4vFRgDnEiIRIMsowR9HUgIiBqGb1NiWWswXnmxWvLs+4WK95+eKKT1++5my1pnKO7e0Dh8dHfD8QetXgyKHLkgWT109RdsVYpMkevhnEaNSVbdK0lRYpqbuEFaPNObK8ymRD8aqqWCyXvHnzlt1ux+VyzeXFBfv9I/fX1yxnFcvzDVfrM15fXXH38KAnOUSu375jHD0vP30JEvkmJba3d0gIWrGdBxixtE4ui61SbDZf9DIINCI6gmbrbB7EpSe90WLYlCAYtY1Jylw7U8rvj8xWCoGQEUoKkcGr8f8T9xJBI3MxBB+1cl29tBh9xzB2zLYVh92Oh/s7Drst12+/55s//oHtb/6BzctPcbZiXKy4ny8gF2O8++57/t3/+//F8uKMT/7F39E2DWIiIQxIDLioDhhVLczOW14sXtBfnbPfv+Zw8NxvDzweBt7d3HP9sOUweq7vH/j69pZv7+/ZjqNqLStNWwc/aOexI5dJSQ0L2l0Kii2OIWQIJ0hmtvSxR5uzDITy78VSK3vPaWDiHBGvHg3F/PZv8ND0YMo/C4oqf82FmqmwARw3uPLrxJgyPVFAU+Gxw8YBawLOJJxkTe1J2p80KmAPgk85IHdaJLOezZktVqw2Z8xXa168esn55RnLsyVVW2GdEJO20Nl3W8ZxpMrto8dxxI+e4JPeRmWbUtCAKfqAH0aGfpgq360x04aQigE4zxgSY7JfNEzmPplA1nVfMJgMmguTr0NPdcrHhfrUQyBlmYAkzxgjxhtSNFgrOCzWVTicsvXWUlUVdVXjbA42kmpube74WUxoZPou+tnUlSNXoBeA8wOGOd9CnIiAJ4U7hSDwCphT1n+nJJOr0JN0rEguigSsIM7orbLYWl2E7CS/cIhThl2bN5hjyjXXcdSSH2tbklSEvDZoM4MHdtuOvh9VZhECBkcSbT6kGSayFaVuySHEXNT9N0Qr/8Tjx6QY5W/POwFO0p0ccRU28FiL8GQB+ZgPMv2qnyNogWcB3DFOgaXKmY7sd13XOYkoiE94Ywg2UklgNJZxzJlXIEbBZwDV7Tvevb3m97//A7/9p9/yzZ+/5vr6hrHvdR+doj11mCowDrSoN2R5GAHt9Jl0nAc8D4+PfP/992wuLzm/uGS9OWe1nFE3jqRtPKfdTDC4qiJTfVprINmNhJOA2mR8JKLdCLuOruvVjzoq2z3Nu1wUkU4C4eO5/vHL8DyQOr32NrPJk96dxHOQ/RcLBfP6J2Xs6BWckHRhmKdO0pPLRJGilPMv0xCTVAp4yzqdJZdlv861SgrLEpIUC/03A8yFXZ7YB0F1j0GLq9qq5vXlJX/31S/5xWef8vpyQ+ssdVVRW0caA4e7R1I/sGpqmsUCQsL3PWHwunhFbfsoZOF5tkAxJcaIZbBm9jDG7NWUbeliYBwDgqOuHT4E6sqRjGG+XlE3NfePD3Sbc2azOS9fvuL9u7e8f/ueEAKz9YJffPo5292BP799Q0hC6AZu3r3HNZZZ2/Ly5UsYRw6PW+1Ulwzeq3QiZhPssh/KtFlkc4VoiEZZzpSCRoOV6vJKP3ofYPSBMQaCaLLc5AXJivapF0CyLRJRK31jTl0F7wnB5/fNQ9GqT6poxZWePQv7YQdO0127/Zb3796wfbwnDAO7+wfefv0192/f8+n6EodQW0fbzlmuNpyfX3J/fccf/um3XP2Hf4+dNyw/fU2qW7xPmOQwOHzypFqbu9TOMG8NGzeHpaVfrxl94mZzxv12T8Sy6wf+cHfHf/j6j/yXP3/NQ9czjmBFDd11cnDiAidIPLYxnyCbri4KrpOOmaJ1IqpmF3L8ehLMJErRgCjwcJYw5IYOIqrF/xs64uQSIrmJQx43Jkf1oUT3WuSWjC44emQtPgU0lzGvNxGw4pkbz9wGZq1lsaxZzGuaRuUA0Y94H/CDxw8RP0bGlPCNwyzVmun88iWb80vmqw1V29Iu5tTzhmQhykAg0I8dJhmG4UAcRwiWEIKyjEEL14IX/JiIYzoW90UtIB6H/oSpiZQ02vQ7GSTk7zl1j4wpg3/Jc3IiSiiGD1I2+zxmT+IQBGhqp6RADvrL6+gY1zVXYmHZapy1tE1N02hhn3MWZ+zUdMVK6V6Zcn1hysxbhGgnC0zdh9PT73fKNE+gWWUtqaTYp/NyBNcpZMo2SzmKpGMK3PMaJk6DVzGSQbLTIj/n1FPaVdqRzZ5U7k9uDEz3iVUQ56zql109x1UzmnbGbL5ktbjl/ftb7u4e2e96hl5bm5MCYLJtZJYimcx1BQXNMZ2EMD/85WdxpGc/gadg6eTfp6n600ApZA38tI9MXr3HwDidsMZPmGi9J5PKJ6DpQ6dRTk/z6WeK2rHRkgmToJmLlPK1t3p/CCDadEgJLC0IdMaSnMptRusZ7Mg4qq96EEhRGEbPw8Mj33z9DX/43R/45utvuL+7x+cCOpODAFvOAUxAL6WcDTLaZyDEUvegK6J1qol/eHjgu2+/4+ryBZuzCyrX0rZzrKspnSaNqHWeywWpAjgrOeOVLfJyfsZag4+Rpm0wTnGP9z7r79OxZ0ue5IX1f37df6Aml+Pff0zvfho4nZIKyZwExic/n/9+vC//nMbHcZ4fkfzTf5eC/5Mdh8m5Keq+VAL+JyRFPp+Sju4gJkVCz0dN648CzCNeK0mLPVdM2JDAe2qEL19e8r/9N/+Kv/v1r9gsZljfE8cBGTziKhzqqRlFDegbV2MQfFNrf/ZxwA+JGCUX+ORNJzfskJDTCzEQgp48LYxJ2fdTq0e9qN4ykBjHATefafOTumG5WvP9d9/z7u6OLz/7jKWcE3zg3fffs73Z4pJlNZ/zi6tP6Q8j17st/aAdoG7fv2e5WbFcLZDPPuG7b75le/+gNm1GtG1uBJcMdgJVaomkBUoRjLaOzqUGiLPYqsqtX1V/JcNA9Nri0mRfQbWVE4jFu1XZdfHK+vjgCbnyLcRSpaxDxVqbmS6NgjVyM/iooDwKNE3Ddnfg+uae3a7H+0Q/jtxcP3BzfUf/xYitGwyGeTtns1qzm89pK8fN3Q2/+4//kc3lGb+ZtZjlimEM2HpGMA4Exl1P7RyVrTDR4IJBCFTOIHXFzCy4WNRgKxLCZ+MLLi+XLE3iH//wR267nlAZhuTZ+wRVTUA7mWkhn2YaJIV8dlPBxR9g9hNiMoWZEeJRtZwnb9TMgTWCxKCSmX7QQkojuuf+jRwxAxMdLTpGJ4CMmutBcaOGqT21mEwQK0evLiQBS8CkEcKAlcC6jbxYJV5ftFxerNhs5mzWcxaLhspCDJ6h6xn6kb4bGIdAFEOsG+x8wXJzzmJ9QdWuSK4liGVIEOKAj9m5gUDyPeOYSMNIGkfGNEzFfVpqIYQg+JC77iUtBgxxIMWRGAa9+UEDztMuZZyCyeNGJKnkLzSNSnHNSYXfiCfBbWbNM0i2ohuftYbVYj6lKaeU7/TecdJwVrVj5iyts7SuUlmatVQYdRuKUXXWkyd0OoJ3o4W/GtMbSJaU20drjldOolB9XwXKITuBaOc9lWyoC03pzBezHlTnUNTzMK15maETfX+qnDa2GSy3x6I9Bc926rimTH/S6yvHwkkjVrM9rsLVNda2uEawVU3dOBaLOWdna87frHj/9j13Nw883O/y2uZVuhiEZCokWWwUajGYAd6/u+Ptw6P63gtZuvHzAssAOSrJYCXmug2eBIAF0Kqet2QDjsFSytLCqbBrYvxyNqKsnOnILGtvgsIKKkMaJ8CWcpAoE+mG0boVY6wScORiY2uQkLMYQbMmPqiGNcaUWz+XuhPI4jtA13ObP6sVCw56IzgreGcIIaqLVDTshoGHuzvevX3H2zfvVIbRDepQZWwu8E2ZtFNK5UmmSWTKEovPAWSCtmlZrNc08zmLxQp85P76lvffv2XVLqkuDO1sqR37su2izXUFcHTdclWeD4XgEdFMdEx0Q0dV1yCZQhSTG/Tod1ef7KmgYpIaPQGzOVp5DnALMD4Nkk6BsjFmCqwkn//Tx5bjSUZqeg0Ak21Dj65K+oS8r0xR/DH40mr9AoP1O6qrZw5g8tp0Qn3pJ8uBu7FZpJIkO5Do5/6px0cB5j55JBmqYLFJEB8UGI4jn7x6wf/wr/+BX375Kf5wz7dv/8S43zJ0B8IYqJxj1sxpmobNcs1quUGstlLGol2yQqOp0a5jHLRrDTHmtCGTLVNKRgdYjIgzOmklECSzhkY7bmlV/KjFQsYgAeazBeMYefdwz+svPqdqZ5xfvaTfdXTbHQ/vHlmfGy7n5/z6NaRv/8jb+1siA6a2PNzdEqNnc36GbSq+/vOfubu9U+uoymFiwgXdDP040I+DFjalUk2K6gaT1QtntchJbK4AN4YwDpgUtDgnj5MgpcNiXuBiJI1eI+6km7/PQtOJHSjpUEFlDD5hXIWNgYR6TEYMYivEVGx399zd7djuero+EhLcPx54d3vP476jcjWIZdHMODQtbVMzn7fc3gSuv/uOr//zf+X169ecV7VmEyLEqqLOWu/RB6KMuGTRRrq6sFrnsCQqMxLxIMJZbfjXn1xx2fx3XLYV/89//z9zu39kdnaBTYkhBbo4KmgxDh89RgIua5nUGUQrYVPpO57KFCvs53F5nf4rAqVQoJjgi+AHTxh7DodH0kcYnf8cjpCRmskZJGOyyi1pqhrJsqtCmaIg1WStcYoJmyIuJUzosOFAzUBrA+s5vL6s+dUXS375iwteXm1YLmYsFw2LeY0Q8GPPOLR4Hxj7kb4fwFSIm2OaJbaaMyah8wdlnk3NPib2Q9JW0SkSkrKHMWoAzziq7tAHba+Xi+JiVAgbE0cQGHpSHJEUSNGrXVPIBoiSi1KgUO8cF3J0MU8ZrE5C8DyCMmsWTVKrt8x4qO98tpGsVNo0axp9ryntmRd4gBSIQUAilRGcZClcCJgYtIEIuemRNRgbSWKfbHjG6MZiUyJ4SwiGEIQYDdY2OBMZGfLaogBlkmFQCrcCpVBqkmJEr1rvVFTduWFJyq4bRjf+jNQQl5Ba23O7ylJVjqatqNuKqtGsoKsqnKtwuQujsSDWZ62zIRkhWUtyldaA1DXOVZjaZMchmC1mbC42XL044/rtmut3N7x/e8P793fcP+7Zbgd850lRa0tcMjTRUo+G72633O62xBwh2vix2+o/jyOSAwuApMRS+b1AS8lSlHjCxcWcPSgA+giUC/PI9Ld0snampDp6k/fhEDjOkQJwpBQGH1VMiCDOItmPOAIYlVMWXbkOOcGPAR8S3idqZynaVZmIj6PbS5HauSKvito1r64sMQSGEfoO+sOBx/t77u/ueHx85LDvGMdRM9smSyljkfb9kJBU7/EcLBpDNGAwrJcrrl68ZLlaM1+usK4mjoGHmzvuFu+ZWceybqldq7nPlCWa2ebRGHCVUDeOqlJ3EA1+VbDhQ+Rxv8VVRbqkcycm1NISZcf1pxJAkuWdJI7Xr4DlE9D8HCw/Z41PAXDJBMizDlfPgfLT7Ibk/z8Fy5O1XF4ySjEfUgQYuablFHyfvJ7+o+xTOt5EVHo2+pGEeuPbwlr8sCvXXzw+ziUDZRtC1A2oToKJgfPNin/1D7/hkxdXvP3+a/74h98yHLakYSCOI8OgcoW2mbFardmsN5xvzrm8uOLs7IzZbK6WQs5iK0vd1ozDQH/oGA+9NhOImSkxBmwBhYk0egUwLiLOgWhBQIyJcRhwbiQMA7adQRhpZi3tbMbD/T37hy1nmw3NquHFi1e8j294uL8n3sH5yyteXb3k4Hv6YeB6dwdthU8D96OnrRuuLi5BBB8Cu4fH/L7aejplwBpJuVVzvj5FN5g3nZJ21KJgrb43Of3jjCXaQPJoMWDW6WqaKk3xU0TtZtQT9qg/yzwrMarEQ0LEmBHrqpy2sTk6rhgGz+3dAzc3Nzw+7hiGEZJhu91ze3vH/cMj86bFwmT9NF8sWJ1taN6/Zft4z+//63/l6pPXzDdniKvpB0+qG6hrXFDnkiGqtZPFaArZ1icLsNdNOiXGUYHAL19fslr/H2ibGf/ht3/gzb6jC4ExebX3cRZPxKJpqCIpMGWycJRkFBsZOM4ni1bKIycbYkL1lUlBvckerGEcGfv+CfP4N3HkcXca1EPBfmVDTNk9Q7K+M2JtwpEgeWwYqfDUqae1A5sWPrla8MUnGz7/ZMlXny/57PWSxbzGWahrwVWBFAdtsNN6vPf0fc+h60hxpKobbA0Yz5CErXgeugNjL1gc4iPJJ7Jd99TamuB1XYhxapoRQswsc5q+p4SoTQD8kD1NdS3RcajNSUAXdQOThEe3x6OGd2LYU2mCc8xapKRNM9TBUDceV9VUzuCcdharq0oZqpKCjpEQx0mbmT3ZdDYXPWXW5EbvtdOgCDFv7kTQ9s+ZtUvTjAAghMjQD+y2e2azhvmsydk61faWGocQwrHavkARAYqOtKwzWfJBOhbcTDCqpFMzq2hcwtRazOiqirpR+7imabTTWq1uILYyWCfZszvLL6zqnY3VJg7GOazVxg9SudwF0FE3Lau1cH4JV1dXvH55xc31LW++f8d3377j7fs73r+/5/FmB4dE7S11MLgIVbKEsdPMRUlr59vP7Yg5SMklfOoVLmVdzNejAIdp7P2wuO+0mOu5/lXXgx86Jpw+/vTvxQdbl5Y8f2Bqs30kvmVy5JiK1VNiHL3WJIRAU7kj20kR3KWCk5BcjBtRqZNxBmf0OSEYxjAy5CL3x92OcRx1fuamJiEcC10LLHsSIOQd2FCcq3Rft8Zgq4b1Zs0nr1+zOTunXazUMhWh6w7c3lwzaxrWyxWzptGuvRT2Nao0o8oWkm1F0zgqbX2rJKMY+tHn3/V5Nns7hwiptDBPPDn3MUbNNhemuXyvdHRL+bFiv+cs8dNahuO1Pv17ee0PO3OU9SH/TOWzlM98lPtND332ecrjp49cIppTgC/aCyOEwFTqaQwicRovP4iCfuT4OMAcAglP9GpgVjnHYtby2WevmM8q/um3/4l3775l93BP8AM2aivrGBPRR0Y/MPieh4c7vv3ma2azGZcXl7x69ZqryyuWyxVN1Wo1tG2xRhiMYTj0+GFUVlJ0oEavfsPKEA3qWpHUs9DY3KY2eIZ+YDx01LM5iNC0Lev1mj/+lzfcvn3PZr5Emor5esV5DPgUeXh8IN7esj4/49XVC7Wl+i7wcOipGksYA9ffv8EPA+1izheff8H7d++4fX+NJxENjMSs9bSTnVLOSlKmnUhZsBKS1DkgJvVSds4RI8iYRwtJ0+Y+M0khR10iJ9OWJ7qzJMf0SAz6rt4Hgtdgo6pq1Qoaw8PuntubG+7u7+n7juKjOY4j+/2ew+GgjL8EgknYtqZdzVmslzTzhrvHW969e8t/+U//yOblSy4//wXq2pILDLOuSIuCclSehPlskaNTUYuXpEWMcRzp9h193/Hy1Sf8X/5P/0cuX73i//4//nsO370hJINxDbGy7LoOocgnjh0DTY5eFTCrtkyy3hmJCOrYYDMbJmXRzQukcs0J33natuVw448g5qfOsJ/VUdj1HE2UVapgnkKsBpCUsMnTGI9LI40ZaBm5XFpeX5zx2YslX31+yZefX/HivOFsEZnPIkYCpBGJAUZPYqQ2uq54PFXsqdNAjJ4UHugfesYAUs+Yu1YtLX0gjOCCYEbBRItNOUWf28unkBfD4gscs87OK4AmRGRUW6E09BOrTMyZiZQt5VLZGGSab8UUX+dIDjQMk/QHjl0nM4WmMirRavi6rqmbiqauM1CstElL7nA6DiPD6NUyMp9zyQG1zWvGSedb/V5lY8luG0wb/XGDUXmgno/ucOD25paUPMvljFlTZa2GgGjhnLaML7/nQTAxQIWFLOn7YqsHpXlACf4nrk8EcWp7VVUVde2om4a6qaka7dZmK5edMMjRbALL5HokRplIsdrFUD2ZrTKb1mGtpWkMKVl8EGbzOevVgs35hs3FGedXV7y8vuPNdzdcf3dDd73HbANsPWk/5kzBiU79ZzzNY5YrZUZCr1X5fumkfXI+UpkjhcwRZfRLi+ajFRhTkxFlKNX+M57onVW3rvNEA880STamsPME9JweOlb19QvDGf2JA9UpQJcjKJKYgXMBVtYcXRUQZALfMIZANww87rY8bB/px4G6bbm4vGQMI2IM+8ctvte1CNRtatpPU8rSkbxGRM3KqSLK0cxa1psNl5dXrM8uqNuWYfCMuUvobrfj7u6W9WpN285YLJaIkEFd0g6/laVp1DK3aSol2qLHWm2cMobAOI4cDgf6viPEMMkdJDfyKOeqBD0myz4/dHwY1P71x4hIDqzDFC2f8L6kZwSTrosFJDMFXj98/aOk4giW9bs9Z62fFyg+D+B0KKvNrLUWZ1X3ftzPf9rxcYB5HEkZ6DSuYtY41osWZwNv3vyZu7v3+NBTO5MdJPS8GCe5YYZk5kSjn8fdHTc373j77ntev/6ETz/5lBdXr1gt1mrfUlla0U44w6HDd8M0cTCCdSrNSEG1QwFtbFGZCuMMeC2AGw4H5uOIAFVdc7Y547f7A3ffvyW8+oTKOq24XszYXF0yELjfPuJT5PLFBV+8fI0h8fs339DjGWKg3x649YHV+RmL9YqXL18SRs/7fmAcB6LNkypoUVUoi1ROe6STyTcVBMWIBNXgqldyzN6LSdOpCN4r2izpW2NO9qgM9gqThqS8uZdGEEAyhJDwPjIOozZMMIa+63XidT3Ba/vcmJKev2HIUb0nmUA0ETtz1MsZ7WpBPZ+BMfR9z59+/wdWF5f823ZFvdowdiND109gw6SMRUavbYa7gXbWYp3L+k5d3E0YMb6nO+x5ENi8/oz//b/4DT5omvyPb2/YdTtMamkJ+JQQcYgzR1YsHRdWwWJMQqJGlohyEobSWa1A5mN1t+QNpKQtQTeKvyX98tPjJEyXfJ6mexKIlgfWYpEUqMJIHUaWJnDewuvzBV++2vDlJ2e8vJxztm5YzsD6Pf3DgfDYYyQgJmCrhK0ixnicS4gETByo40jtEiTH6A1mHKEfGA6QnGNeN9RNSytQdaiHci+QKqxtUP2batRKB7sgUX2jUyKFkTQE0uBh8OB97gipfShLga21pZjlmA4GTe9p1i9rNTMbIlGX9zilhiesnBds1So752jbirZVoNhkhtk5p2DZj/QWjA2Mw5E1T0nf11l1ErJy4rSRU6uqRZ6gLZP0qDDTCluRBH707LdbhIAfesZZTWUN3gdELNZWBOsRE/MmpYWNKlEJFNtGXWuU7c4K1jxgRMFtOWfGKJlRST4PNW4q8KvUEcMYDTxs0lSRSWBijq6zHtfYfHNgnWYVzRHYG2OzM4hTAOUsdV3RzBra5ZzV+RkvHva8ennP9eU1j9/c0L/Zsn9zz358oDIG8RzBPzlT8LPkmDkJ3I5sYAEJUwtyVJ4UvM969QyYSzqeDGLJgYscpQkJ0RbDFMD9dHE8svM6DnTMHgH8h47iflEOa7Vz7nTPKbNJYRs5Ll8lo5F9+FPOkJi8WfoQOPQ9D4+P3N7f8bjbEVJkvlzw4vVLbKW+5zfVNdu7Bw77PSH5DARTZq3zuMjnhZRlEBHECk2bi5UvLlms15rNNQPWaybNh8Dj4yPv3r1jNpvRNC11DpyVARUqpw44x6Jezf5Ya8AYQgzs93seHx/Z7/e5TbcCQ5vPd0rPPMU5BtAfGisfczwp8BRyhiJB9jo3U+aysNIZGP9ABiHHIJVpSJ5e0KeP/ZHPUn4+B8/lu4mQ1yGHtYmx3xF/JHj4seOjALONkcYaFnXNatayqGsaC93+Hm8SRlRHGsKIze1OiyWTQRdMZYdHxBqcs4Rx5P3tG7b7e27vr/ny80c+/+xL1ss1ldGIsGockhokJnp/wMeQO8uoyMwmixC1WGiMONfibK2dBnP6sd/taGcLjBE26xXzquHu7Xseb+90oNbaytvNG85eXDKmyKE7sL1/YLVY8sWL12CEN3fvud9vVYCfLIeHHX0/0MxnXL14CSK8efOG3XZHsApSU5TJC5mcBtONpCwOOhFNKt3M8vl2pfhFcmtH0cKdTF0ZKRM4g9vj+pejbjOBaJMt10QsMSaGYeTQHabHjl414zqZfS5cSAzjwDAMx/RsUM0ilaVZzFhfnLE5P+fNd/qdH27v+O1//Eeurl7zy3/4l9gQ2ftAMOpj7ExuuNKPhGFkMB3jMNO0tHW6eVqDjYE6jQxDz8PbbzACZ598wX//D7/CSKT5n/6Rf/r6O/qxo6oqBtQ8HmOJSZ1EYlTLn4SyJRbDUSearwXk39OJh3COa0X9l5umpnvcM44DRTbzc2ae/vqRAwYkn6+U9yAtfKmtShRcGGlTz+Xc8dXrNf/iq1e8vpyzaAVSx/v313w3dgieyozUJuJswlaJykWqOjFrDetVQ+UiJI8kj7OCSYFqhNrOWCwsXX9gN9zjg6FqFjT1nBaH85GqT+yGniF1RFMR0A0l5YW79LFT28aROHrSMMIwkrwW5CrQDCozsRkglykbcslXmgQ+uhkpfaKgURSA5FhsAtnKbGQ3B2eoG0fbOppGb0WC4JwhRoc12StYHM6QnSdSDna1YZLNjRc0Oi4AKH/YKGAL750oPrVTAnZifJUtDj4w9APJq4bbmDwHkqj9mnGU5qPGRow5pp4nl4wsIylzSdnkwnJla1Br1UvdaTBirTph2NyuWkS0nseAmKRdCTO7jDWZYXZHdtm53OpaAXQyJntwZcbZuKzbjiRrMJXBNI5m0bI+W3OxOePl4oy7esXOXPMwWm5HGJyhSvY4Ff4W5vkpEDoBm0ZEG5BldlBtAI/e45LZZZezkKVRhkwvVSQ5x43nNP1+qoOd/j09Pxd+ZabR5KBSUiEoTpjpRLZvlewiFY5Z1HTy/crXLJp5mwmQWDKu2o2vGzoetg/cPtyx3W/x0VO3NWuzoW5rZrMZ89mM+XzO2+oNN+/eT4C0HDGnb6ZlIjuuJLQYcTZfcHZ+zvnFBbP5HB8jYrQr5zCOBD8Sgudx+8D19TVN03J+fkZVVRgLdV1p9qWup/NvnTZXUXyphga73Y7t4yOHrsudBzWoJEs7isPN6VGuyY9JJX7MHeP076dynbIWhNz5cLp/Kqo71macAthywdLENhey6i8fpx/5w8D4Q5mLnG7LWmstTI2lAvqvvmc5Pgowt85wtphxtlqyahtqEUwaSWEgRU9TW1rTaIV5zC4XeZEWTlKFki+iBiMYSRyGLd98d+BwOBBD5KtffMVyvlTlndfiq2beMvT9sSlI1vNqYYMQx4BPgTgL1AiVaOOLNHq63Z62XYDAbNZyeXbOt7/7Azdv37FcL5jNNgQiYww08zkXL654//0b7m5uMSHy4sULfvH6U5qq4pt3b3g47AgI3eDZHzr6bmBxtubq5Stc3fD92zc83D8QxFMgWIoKm4se24kWSdjMFJkpWj2mUaqqYnROK7tDyBswR7Y2qb5b65pyaYUU0/Ps7lgWsCzRUH23+s22bYuI0HXd1F5TJRT6OcdRbXg0vQc+BoZxwErCzVrOLi+5fPGS+fxrtvc7CJHbd9d8/6dv+OUvfkPjKraHHYMRrA0ka5GoeuCQte3iA6lpcFVF00SMq2itULU1w37P7c0d3W5PZS2ffPoly//Nv6V1jtoKf3r7nsdh0E6TYgnJTRq5JMrITdxx0klTgpSpJEJy1JuOFdq6KuVUUNJuSvf3d7kZjPxN7KNPjpT9e8kV2pM0w+eMhj7MpECVAi6OuDSyrBIvz+b86ovXvH65QeKBNzc3bA+PHMYOjGG2aFm0LbVo0E03EEOHYaC2kVl9YNnArIJZZZg1jtokmpSo8UQTqF2gMYnOd3R9hx+2bKoN89WSlQjvb3tutgeiVHjrSNZA9tyNGdSGmLKjwwhphOihuANIqVIXnNPvLiRSSSeEwpKo/VNh31UDp0VHKSUtOpsA5XEuOmuwlaGuDLWz1JVRBskKzmp7ajFJ7bOckKLaQCYTc6dOnlhqnuZCpLAn6M1M8otnl7gADLT631o3BdDdOOD7DlfZ3EQh7yUZMItNGBsQU0BDZrbzpqPuNMcAVNk91PLRmKw3dlr175i6xUmu4cjOhtk1AWWXrbJ14gxYRe0FLItVCzqxTj+jcRNQLsDaoKQGKWKTxQZH3QbCLLGsWpbesXwM7B4ijw+eRZ94H0Zsf5ulGdM3/dkeE/g5kTCUQ+8qFoHH2hftcKnjOxpDijHb/bkjcwhTYfnz5ibPvbeP3VnzkMiBeMpexYhMfRWyJ0eWdBwBuM31NmoTqRnPGJUgKd8l51l0aIoGXmUdz7QSPnj2hz2P2wd2+y0hBuqmxlVOwbhfstmsOVuvWS6WWDGM46CEUvBPx0Ieq0fGWb+LOEc7n7M+27BYLmlnM8YQcC5grWXwI/1+P/VseHi8p7luqOuKs/MNdd3StpVaRtZa22VsmgovSyfhruvY7R7Z7nYM/XDCJB8DYq2b0PXs9Jo8Hx9/jV1+/twfumYcH3cE4scMwHPAnB9NkWMWzDyl5f7C5/iw5EJ+8JjpXORgTOV6EZEAYo+kwn8rwHx1dsbL8zOW85YmW0hJMmANZGN96yzJGd2YxqiWb/nE6JdDi/ZSad1cUpvax/399VucdRgDn37yKcvZQovExGCt+nX60XPYHrQwLoNCSQqgJYHvPaEasc4CKtsYDz3D4UDdtjR1zcsXL/jjf/qvPDw8sN3uaC7PqWctD9fvsc4yXyx48fIFd+/e0x069o872mXL64srJMG3795w3++pkhDF0g8jj/f3zFdL1puNtuasah7vH+n3faadtPI4+lHbr0qgkSp3LjqyzqfieSNCXVeTtikRVRaQAxJtiasAV0y+nFEjcmOzQX/pMJgHUNk0Z+2M1WpFjHruC5OcYqmUzp8lM0jl/sGPOCM0zjGbLzk/v+Ls7JLbd7f4MYCHmzfv2d3ec/XqNYeqwecWlCnF7OkV1cEgBMYYwXukbfEpYqqIaSxt0xCXC96/fcv1+2saV7FsZ7x69Rn//d//Gkvi7Pd/4A/fveHd/T2H5Bk1xj9J0zJ1vixuSkLKTJpQdH1lghtjdQpllsUYQxwUVO23WxWD/+zq5f/acSycQdSCUGIEjl7eYoCQkOiR0OHSwKIWXpyvePHinNlyxm4c2B+27PqRUM1x60va9Zr12RmL+RxjIPqeMHakbsvQPXA4PHLz8EgVOhY2sawT8xpWjeG8iSTbY6uIrSIzK9TGUMfArtsTYqJ20LRLmpWjjiNv+g4RyxCFEI2ypGIzcAKRoKyjBJIpDIPPDLO27Vb/PJnQmxctost5XiZ3lYS6ipSk44k1xuT9LVqsZo1mipzRttfWKEg2kjASp8YEVn3lSJXVYmEjJJuIPk1rqX5O1TMX0Kx2VOrBXBobIEc5BqkEjUyfHXKxlZjsquFyzUF2n5FcB2AdYhNiPZKBrstuANbo56oqrS8hlrlF9s3TeYiRXLCnWbIJ3YtMgLmA5WQEnFHnhEoblxzZZatOP65CXAXWZSCdZRrGkozN7HbZ1LP8KkWiFaxE0phwbYVtG+qqoXYNppnzcHjk/f31ccv+OaPlHzmOIJrjODCS271nYiscZRahrI8xkVycmlbAMUA7QUxZ/pcm4PKDvyey733RUXP8G4UITHnYlBT7sVlGYZeVPVUXDFLSbriZ5Sh/132w1DQFuv7Afr+l6w/EFGha1c4n1OM5eNW19qs1Td0QRs9uu2P7uKXve+1HYozWNZEUsJcMkByzHHXbslqtaWYzXLaNdS5RVRVtjPSVU5mpD/R9x/3DHcvVktVatcx1rTUOLjtjHBlc3YP7vuf+/o7319fc3d3SdV0u+Bf9PMUt2piJWDwt1HteOPehQr/nx2l79PKYI1gtoPmI9cp9ejthk9HvM4FkTn+egt+nn+GngOXnn12msXcaMGp9m7WnFnU/7fgowPzq4pzz5RxnQMKISMQQMc4gVHk/0epiay3J5ErrqGbj5fPanDbQ+pqUmdeAmERInnc3b9EGJD1ffv4L1vOVSg6ip2oqYog83j8w+MhiPteK1jFirKOySVOMwHy1xBpHIhL6gSGzlNYYLi4uMM7yuNvyuNuyCZ6mbYkpsX14YPai5fzyEpsS27t7bu9u2aQ1s+WC15cvEAR3d819t8cRqSQyxEi/PWCbilnT8uknn3LYHHi4e2D3uGUYeoIfGXvdCJUZUtnGxO2ddKArAUVVVfn3pLrjoF36JLOlJmU9Y9ZUhhRz1bGCZUlCUHFVHrzCbDbj7OyM+XzG/nBQYFgmj5FpjEkuviipnRgCfdczkmjmSyrXsFis2GzOWa/Oebh/pLIN/a7n7TdvOFtf8PLFK8LtNf04YkUt2iRFbEKtxMJAHLQzYBpHaDwmVjgaZnXNsq656Tvuv/uGt7M5tbW8Pr/kv/vNVyzamhfnG75+94439/fc9z2HYWQIY04ri1qjKV9IoGQnMmDOlnO+ZD9SnDbbJEW/p+3fk8/evH89a/TzPHJaTAobkYpmt5yXiOCR2FHbxHq14OzijGo5ZxcjPhpYnjF/8YrZ2YZ2c0a9WlPPFriqJgXP0B9IQ4fr93B4RLb3hLv37O6vORz2PGwHXBpZ1yP7eeBsJiwWjnYmOKe+pDNjMZXQDQPjeE9tAmdVS72pMF3iLkQeuhE/BIZkqVyLSJ3TpoFAUFCcVz/xWnSr+mUFgEaiYr38Pxtz4ZsU5ibPlayPLDu9Mr15IZZi6VZuxUM9YVJ+z5RdY4xgk2abAiq3CiYXO8WkOuxctS8UIKJFR4ovja5tpYV2lhxl/ogpYi5tuqMuOkYMVixSGZxoV0RtDa0bSchkRELA6OsnZ4nWUDkBJ1TklHrejJ3VzJlabAkBVYpoLYtMGFpOTieScgGfKPh1durypwV+bvppncO4SkF0BssFqJRAufgPp7IhTvS7Mo9CxMVAEyJhCMQu0I8JGyIP24cfmR/8rAD0c9ZNf/nw44xkFj9GMGGyliMlkldnrGQiMTio0iQTmGpj8rnR2pyUi+3iETBzTDCTC8pPPsExW1EAUYwktNCzpPynAsATBjuRpSMn/uHls4TgNeMApBgYhoGu0wK5lCKztmU+azFWvZb7fmAcxlys7qmtIwwj93e3XL9XWUZMCVs5tc0jqfTLx0JpQ5YM1U1LO18oWM7OWNYJdV3rnm4NnQiHQ5clkgOHgxbXz+ctxsjkEGJMyZBp7YBql3fc3Nzw/t07Hu7vFczH3BBtmlvqfJMkTkTc6fEhR4y/dJyC7YJNTtlkkXKNS/Gjme7/4FicJBlPwbdePjlmeNLpY9MHX+tDrHn5PQlTPZjF5rVR+ykcK9l/2jn4KMC8nje0lYHcLclkz1aDZJB1TK8JEF3ABpUS+KkCPYFVq64YRNMSIeUksMmWJ4Gbu2tEULb5089ZNHNSTNRVw2xhqGct2/sHxuAx1mnRF2CNYxgOdP5AVdU443SBjgl/6Bhylfpis2G2XvK43/Gwe2T3+MD6/Iz5fM7Dwz3jOLJaLJgvl4gI12/fcf/wACLMl0teX76kqmrq+xvuDjt6ArVAHz19N2IrmM1nnL1cc3V+wd3dHXd3d2wfHuiyPEM1yGhFf4z4PNAmxi9X44tVv1JKQ4Ds61xsoxAIXn2YQ8yLTQrEbB5vrcMkyQM5MJs1nJ1tWK1WOFfRton5fKGac9Lkoykn+8yxYCQxdApuaZYIlqaasV6d8/rV5zh5rxW+puLbb77n7PyKf/PVLzl4z+3DHYRENwyadQ0R3/XE4IlGMDGSqhEbA15a+nz91/MFq6ah2z5y9+3XrOYzZk3Dy3nLfrNk3jg+f33Ft7c3fH9/x/ubO67v79geOsagHKD67mZmUDIIyBPdGiElo8HKtNGiAUiAyjmCqyj89M9q1/yIY7IHCxGX2QmCjhmTSvW2prTqWcXqfEV7tibNWsa2ZXl1xvJiQ71e4eZz7GwOTUMQh09CGD1jrIgyQ+wSqdbY+py6OoPqnPR4j98/0u8eGPYDfd/xuPNs+prVwrKYCbNGcJWhxuAqwxCgH3ak2LMwDZ+sa9ohUcVAGgfwgoSINRFjaoyapuItpGyhZRFcyMAuKmB2uf2tR40aJllZzlpQCmv1zD0lMEogWxpvmGc1CwUcpICW8mpAhtHPYg3YYNQrWTzJBzwQxEx6UZGsZc6NDpy1OOuwNjOrBTCXz02ewxRZBvnvWVtsSmGbAmOf12xtGBEz5tS1RCoHdYVNo3oUW2VwyZKRqlIkHEUY8zkMIohTJxtnc3c0l3/mNtfWOUxVYUpb7MqB08I+Kd3/XIXYapJoYI9FgKUgEGOmgsOYSmYuX6fsSJS8h36AfYfZHrDbDrsfsMez8IR8+puc8XmwqhRQmWObuUkvXrOgRecZ0eK+Ym+I1qQU8kCOv+jaOgWO+Sigp6TqEwqSC7Y5wZwS4yRv0HkipEzcpKQWbiEzvHICrPQpOvb0+mV3HGDsRw77Pf2hI4VIU9XMm1Y1wlVF8J7DoWPo+2ySo52L4+i5fveO7775loeHB8ZxxFYVrq4on2C0QV2okqgXct1QNS1122YpkspGNFtcI2XOikqjxnHEuYqiS45Zc41kS0VREqukSlOMdF3H3f0dd/e37A97QvCUAk9JKQe8RxyR0pFR/nGbt592nD7/QyC8/DwqCI6M9OkhefydJiCmn+m00Pb5e3z4c31IXjLN+5xVViLRITExBP+D1/5rx8dpmK2hMhngZYcByQBLcoWyLlqKmA2eYAyIR6tps41HjlxzPgfBqIZPMuuRwd3d/S2//+PvsGL44tMvqEyFEy0OW61W2vI2Rka0yUaKylpa4wghcHjcUxlHM2/BWnw/0ANuKVSzhs2LS968e8fucODu9pbZfM5itaJ+/57dbsf52RnVvAVnWPmR2+/fcn97T0rKXl+dXSDOwo3hbr9VWzSjhXpJhNSPBITZvKV99ZLVYsH9csn97a36Pcds3WPVjWIcfY6Y3bG9sBS+ypF7h5NSQAxUuSEBgjYtQZBctV7Wpxi1m5gxjn4YsNYyX8xYrZeaKraGZbNksZjrhpQtWwp4yvFbGZK6sA3KYPs+EscOkmWzviS9EozUhKAT9u7uga///A1f/v0d67MVfd8zdp2ytaOn7zp816tLgbV4wKRIqhzERAwaXK3mCzaLJWG4ZXx85O67b1nM52xev2ZOYCCw2CzZrGd8Olxy+/jI+9s73t/dcn33wMNuz2HwjF7dQWIsrFnWnuXiyCgGiu49BlWKBj1/fd+dLPp/W5KM40KT7ZEiubtmKQ4q9j6BED22rVicbzj/5BVnr66YL2csN0vmF2uazRLT1gyo7ZIEtUpMIWUNmYA4LcKyDkyFJEMtFbRL4u6RoVngD1u23R2h39Ml2A6eTWc4W1UsGkNtoa4qKie4NLLvDwzjgaVdICbh6kgdLLMUuTkM7FLEVUJla1xl2MdItCpdclpIoZKRoIGbEcCXzUWnnpICOVsRchFhYWClzBR1prHZxae4Ax0rxfO5DuoskUIk2QLS8uZiDdFGQjB4hFBccRB1+whkMsHkRgcFNOt8TlOR5ukmldeH/F0KADb5Pa2idiU9XMLGiPHqeRv9qE83EesiFTW1AWpITcKkCmJQB5KkG5OPypRbEbyxBLFEEayQAbPBOaGqDa5xmMphS9OSqsK4Sov6rONJsV/+ndy8QU7S4BirwCo31NHvm7KLQ7mWgRQ8sevw2x3D/SPhfos8dpj9gDQlmf23fRwlFTIxzDafS5uL7ccsf4jeU6zmog/4nKGwNmQN+tPmFuX4QWHZKbFY9pYcoKaT1D6Sx3DZx575QKfCMGdG+yj3zGBZDKWEW5La3fmhp9vvGfseK0Izn9PmojoxhhgCtasYqkYJvOBxYhguOl6+eMHV5SU319ds93tsVWFrZZkTQjcEhlGLEbV7pQLmqm5pynvk72czm51E929rHePoqaqa5XJBlb2l9bvqXpX7uagPeg56+6Hn4f6O+8Iu53kcs/yy9GMoRe7wYfnFTwXOp+zyh557qmOGEzlnNmh4+vciPT197lHSof/NQb9GTicD5ykofi7ROAXsUt6kvL4RNIuolsR933EclD/t+CjAXFmojclNMlSPK7kSXCM9g6B6QU215QuW02BlAhz1RzlilaMuJqSEjx4njhA9N7fXfF21zOoZV+dXSBCsOJq2Yb1ec9jtNZAUYQwRF6FtGlxQUfz+cYdzlib7GsdhJHqPOMP5yyveP9wRUuKwPzD0A4vNmrZp2e62DH6kbiqigdXFOf12z+Fxx8P9PWIt89WCq7MLnHM09w232we66MFZooFuHBgOByLq47teL9msVzxuNnz37Xfc3t5N3pWYsnAoeZLS0d5HjDb6AIskh0iDD1b7oqekqR5TYY1V27kyYAECGKu7p7Xq+DCbaconBi1CbJrcOKAUdpSqZjHZL7XKljyJMHjiEKmdY9gPdA870hCYNQvCKtEdFPjvDh3jOPD++pbf/fZ3/MP/7t+ymi/YhUiczTmELfuuZ+g7JCWqSq2/PIlQVaQwB+NISQOxeTunr/d4P9Ld3bF995b1Zs3CGe76A4nAer1gtd7w+sWGw/CK2+2WN9e3vL/TToX7bmC769jttUhzGD0+RLSsq2y0GUhnBg9rSH7kzXffZaCcnkz2v40j56rLgjQxEVkb+/9t7097ZcnSLD3s2ZOZufuZ7hxjzlVdVWwBakJCQxAoQS1CP0CAfoD0QaSgTyIgQD+IEiBAIgR9EsSGZjbIBpssobsqa8ihMjMyMuLeuGfywYY9vPrwbjP3cyMyOyNL1cwKnp04eW/cc467uZlt22uvd71rmUCgICmDNayvLnj20Qe8/O53eP7qJavzNc26gwBj0AdaKplSJiQBpWDT7JNeN9R1oSsGsjeUxoM0wArrBNM1mEMgj3v2eWTqB6Ypk2JiaOFyE5A2EVpH4wQJBWcy43DDSjzBNKy7hjMsXc580Qv7cSK12uiWrCV7WbTD1hqKq134qRDNnGqn50dEGWNjVWwrVsjGYIs6DRwf4FoK1aY2uzBES+UI3dhnwCYQr9UlKVK1zl7bHWrwiKlhKKZKZHJl1IzRxFCVOJgjEzWzNebIasPJ/TqzptUysd7s2mBn1LnIGUsxhlCydvRPIyWOiFH2O3iLlYAXT2daTFFQbUVD1FNJHPqRqViicSTrySYQqzbeGXDBatJfo30pJnh8E/Btgw+Nsnje41yjwLkGlcwyjNr5TF08tDReP2ypGwNtip75Yk04yylTqjxvut0yXN9RbreY3YAbM8aXI8Ncp8Y3aq7Pa3Uddq5CGAVmOv0rmK6AOTu3NKgta3fUPhzj3NIvM0uPfl2ZfwHVM8BdGNETJrBuPkVk4adPwY/M62FlbaVoMNhc9jdVL29L1d+XrI4UMSI51eCthvVqTbfqFtyBCME5Rt+QpkSKEVOEi7Nznj19xotnL/jV2a8YxhFjNCfBBq9rhtN+CIlRKz6hITT6tVqtaJrm+D6g6cNScI3De3XOWK02XF5esl6vCY3KW1NOEDNQfcnr5C050/c9tzWZMKWkGx5nMMUQ8zH3wdpjw/avuya/8XY5YW1nI4Kv0gzPLLb6yc/veQTOD++BGcceiYSvBu5zpYwTXPvVr3n6Gu+CZv1TSVzdbBV1+xrH3/jZv2p8LcDsrVX9sjEaQ70oQReugtkbSIqosFZrLLoLtbXxjXlnOG8x9GFtQdnWorspZzXz/e3NNav2lwTfcLG5wCOsmhXtqlMHhyw1yCPpomZUL9iGhrHvOXhbbVkcUiBPEdu0XL14TvjkF2pZg+qWjAirruP+/p5D39OsW4zxtM7x7OVLbuQN/aHnsD/gQ0N3tubl0xesN2ds7m652d1ziCNjjjTGUoBp6JnGnq5bsV5vuLg8V5Ddddze3LLbH6reVnPgAU0yqyyvkbKwJs40NK0y6GkciXHCGUPXeErdrYLUlCK9OZ1T/+b1esWTJ5dYazgc9mqbt9vSdS2r1YrNZsN6vWY89MiUCNZzttmw2ejON6WsrH5M5GKIeeTu9o7+vufpxRNWqw1tt6fIgDCAsRz6gV988gnvffdjnjx9Qp4mvBjyMGpXdPWdlqwViFQKo3P4bsSu1mh0ciaEwGa1ZrffQYpMhz3jbst6vaE1Qj/ssSuH9Y2WXjz4izWbVcOrl88YUmZMhcOY2O72vL2+5Ysvbri92ypwT4Uic9OI1VQxqekJGW7fvlFP7LnB4xs0zAkbqbIq/YDWKoCTPFEoNG3D5rzhxccveP973+XZRx9z8fwp7WYNTkgSyTIhktRZISVSHJAYabIuYMZq0TtTvbJLouSJjMaiG1egsRgTQM5wtoU4EKcdu2lPngYOLpKnxPnKsl5ZvC94KzStw0skTJFYhAb14G02Da0R3gyFXUpkI7TWUpxlqmX6UHS+FBFSTNgpLsDCFk3osq5KoDD6HLHaSOScrfKMI+thbG1m4537RU7DBCqDVwNDrKluAW7uG0hQEkZcBcy2ggt9wQWQz012zCzQCYBYGBmW4xOZz726HEh9bVutNdTb2FMAFxLZe0r0iPfY5HA5YUoiSGHlRFMVrWHdrll3DaVk7ncH9lOiTzCII1lHwEMp2uzolFluGo8LAdN4QtvimgbfNhpgEgK2aXGhwfgG66pnc9UsyxK8cex3Pz0PJbMAQEHBVU5FK437A8PdluHmDnO3oz1EXL3+35z60TsmXe88uOq+6ghiTn5+BqXGqlRGk2u1KW7pS6qEVxGNsMb7B4Dq3dL/sdGM6mo0X62HjP5cbWH5c7ZB0591TpMiTWUK1UGj3gr1HrZQ/cYzadLUTG8dvnO0Tct6vabrugfSAW89wXiSz8SY8NaRY+LZk6e8ePGc8/Nzbu5uiVUyYTAqo6oNvSalijO0UhKCJuKGmuJ3BP6KgWbbXGcdZ2fnXF5eVhs57U9IFdsYaoqlVbnqFCe223uub67Z7XbENDdnV/nXnMFQd37vrle/Fats+Ery9avAKO9co1OmWMkG6v318GJLlegIR6Z4/tmHmPyIE2dxwld9jq8C/7K8YH3HIpUbUgJX2YzffkH/WoB5CVc1dpEN6A5RtXBVgacsM4VirHp7mrnMYmqDzPwhHrJa1s0d3ixhW4hwGAd+9fpz1uszmtCxrhYw3ukOrYCyQ15LrKXueHzXkEpiGAfMFjbn51qynCK2DWwuN7TrTj2hgyelSIqR9WaDD57dfs/F00us88qGPAukZIh8wZQS/WGkCQ1N13LRrAlXjlXT8Pr2Ldf3g3qbGgUEqWRSnOj7Pc4H2m7Fi1fPCW2AN9fstjuMzeSYyVkbGOeyaskJSlabuRofixT63tIfVM+VjFXLNgwlZbKhdjfXxo2SOdusaduGw2FPzJHVxYrubUdoNEjhxfPn3H7xlmnXw5BYh5anV094cnlF13RILsRxQmIhxgiucNgdePvFW4INvHz+grPzM8Yp4pyjTBPOwG63480Xr3n24imrVUtENL2oaxgHV2MICzlrzLGfJuI00k4jyTqmccR7x9n5hlQSWQrjcOBwf8vVquWidUx3O9JdIu+NQi8DUQol6GYnNJ6rizW+XVNw9P3E9fUdv/zsNT//5Fd8/uaau90ejMPYsFRCnNXkqJKi3q7lyw+gv+9DG2p0Os7NXtpwIkuPgbGWs2dP+OC9p3zrex/x/vc+5vL5M7qzNW3XkCXhiaSpJ8aD+htXHbFMo4KzWkIvopWk2X0lJ2V/RNIiJ8iiGskcLAH9snj6yRL7LblEYnKkZGldUju6tWezPqPxkUMfKfFAI5knzYrONnQO3gwJcqK4QHG+amuDMpJG2eM0JZxxOCa81cpVqU1pM+0lWRv1StFybhFZfGPBVFnG7AMttUxadc9Vnzc30Zbqe45osEOobgBS1I/aMrOegmUGKrNMQ1CvjqImiRWsz1HDCu71Z2bAIbgFKGh/SY3RpjoN1eexVli0B0S8heAxKUCcKHGkTJNa/O3vKXFkdXnG+XlLExo2LrIbCvdD5lAKE4ZYnUOc1UZx33pcGzBtQHzAti2u7bCNAmjTNpi2gdBhXIttGkxosEtYiUEnZKwa2ILgKJI11r64umlR6GjEqiHKkCnbiXS7J93uafYTPuoz9EeHa3agVad6OWeC5+/bUNHKLA4+Ac+nYGipSBzL/UobCFhbX6M6WhSHsRlSRBL1nj1uwOwJQP51jVkGqgGNWcCM0W/W6vtc7dK70VTXF1fNzQWdh9ZplWdO8jv1RZ9JyZS1QpJSxlpP161wVsNAmtDiXahzKSnp5wy2tXStVpqGECgpcXV1ydXlJWdnZzjnGWtAiH5mqvSjmpTmvGx8Qwi0Taub5DzbLpolqa8LvgLkwGaz4WzT0YRQK/dCjpFidIPpLRindpPjmLi5veft9S3b/YEpJrLYRdqCPRKzUPFglSBK/b/6lFpuh2WzL7NM8eRSLNfFHEHv/OeChOunOwW7c0UBc7JmHnXW+loPGefT++XhTVqP07DoszHvzMt3GOblPqyyH+0JqzkXImDU4eTrJJF9PcBs1Yge608OXChGm/Vm0Gyx1Eg7Pa6TXYNIORrtG32ASnXNsEZ9Oat6Q0FzLKQpsR0GPvviLeebK9y5w4ll1XSsmo6xZEwbwBhSjsrQWEvKkWbTMQ492/1WO+zbjqbRhpLQNpxdnCE544LXHXROdKsVXdcRp4kUMy4YTPDYzYr1C8sgwv7mhpwy8TDhi4aMnDmP35xR0sjY7xmnPZSIQcHDNE7ksU7wnWe1WrM5X2uTCobD9kAsEZFELoXZcSenSMwZ64TQeNabDu+gbaFtDeMwsB+zlmuNJTuPd6Z6cqtbxNnZhvWqYxwHdvsdITbcbW9pNg3WW1ah4+LsnCfnlwyrHWU/cbk559XzVzy9fELXNJAz42FgGiYc2tAzTRNTnLjf3fPq1UvOzzdst9vlvc5WK5yBm+sv2O3uudhsKHEktJ521bCaWsZhIKeMyVTWLVHihEkjBUOaenzwhM2KdYlMKZJKpD/ccz5suGgcPZnD7sCUR/o8MebIIU9I45DGY9uO9vwCVhesNpc8f/GU7374kh9890N+9ov3+LO/+Gt+9LNfcLvtGUtE0860OXWIoy4oJX4D5RhoBWPuGi7quyzOEEXTOtuLM64uz/nw29/mu9/9kI++/YqXH7zi4mKDDxU45hHJI2mAfjcxDoUyJWQqpJjIJdZ0uspACerfWwq2gkZ9olsKjoKnOG3wSVkQ39WgIsuE4XbcqW/6mDkP4DtHh8OGhtAFWqcyjtjf48vAhVsRukBnLG5UT+ZR1IEmV4Dp0K9sPR5LMIaYHbFkEhmxQrGVMU4G43ztK9K4bWXdjqXL2UkAqMFCohKgrGVBKOQciVMhBY+jQbzDhoCvTLOzoqEhFdAmotpn1aCQOV3LWLNsSKxz+MpeiQipNgEvHLhVu88kWf1hc14s6cTVa1O97o2hbhS00c6GgIQWpgZjCjlu2R0Gxrtb2mngZWfZXHVsmsiZiZyHwj47DrlwiNoA7n1RsLxy2DZQmpYUWqTrMKs1NAFpHGbdIk2DuBZsByFU94w5MU41yeSClAQ4itGIdIvHmgaLUwttAbLFTmD2Be4muBlw9xPtVGgLTC7xz97+lGsgwuIeuTDOf8/mvanVSZGZeD0BsfX/jZG65Tp+OFmoZ6BKNjBgi2rQZ+mgNoTKAoxOG8pONc2nOlNl8FVGMZfKjV2oOGaHoiX0xsxx1trXpBXA+jpGA25KVeioxEgbFAWISSV3gsU3nlB9pA0630tW4GVReYex2mTunW60rLUMQ89q1bFadXSrTquMQs1+sFrFRfACYhzDNGp4Ue1PCr4hp1Rl2KqptsbinbBqAuvVagkoaZ2lDa722eQqmdRemmwM4lWjPw6J29sdd/d7+jEy5VI3DbOcsJ4bvcJIBdMKlKsfV70pNAF0viGOO8RSK2BHQEyV0pllkzN3V502FR8rlcdriTn2eJQTxG0W687Te/PhPaTfO26spN5/J/TtQ+BcN3CLpKeCqDLLSWpzcomaQ/F1y0lfCzDjVB8kGDU0X25SjuUxAzWKrmrz5g9wYgWzTKz5tKv2WXCVvdZUrJKFTFYbuoyW0m+uWfmWzrfkxVC96gQl1J0x4K1qIaXgiicPiXE4QMm0qxZypl2vuLy6ZHt7t+Swl6Ki8FXXEbdbpmGkm30nvac927CZrojjRDn0TNNEMIZGBIOlcZYnZxeahueEN/dvGUZlz0rJZAqJQhwy99t7zs8u2KwuuHpySY611ONXDKM2X6U0Mk260DS1JFxKBmdZr1d0XeCwD7Cf2A+ZJJHgtdc5F6EFjA2cX1whIuy292qdQ+Gw37LbdlgMU1gRxwFvLI3TCOKnl5c8f/KEzWqF5Mw4Rfrdnn6/p/VBF2Vj8M6RoqbyrdYrrq4ulcmvpvA2BHbbLV+8fs3V979P17VcJ21AbLuWaRxJORNqE1NOkak/ENcdPgRmxw/nLU3XYiWQSlZD+WlgtVmzbgMx9WQp7Pc7dvs7RhLZw2QEQsDfbmjWF5xfPsPmxNNnr/jg2RUvnj3lvfde8uovfsS/+ssf8cvP35JqObdUux/1Gl9sN79xoFnDOwzG6oO+WGU52vWKDz98n+9+5zt893vf4f33X/Dk2TlPn1+xWbUYMpRIHi3TITKVTI6ROI5M40SaJlLUBL9ijp3KzlQRl5l1b1YXUhFyMcpC54K3Bt805An6nAgu4LsNicztsCONCb9uuPANsTcYGbDnjq5rMd7gyAzbAzmNdO6MF5tL6DzjIIypkMmY0GGtNrxascrqiHq8p5yJJZIkUWzRZ54YCB7JHsQsTG2u9plzyM/MMM8P/mzAFdFKVlJWIOeIlMTkPRah8Q4JXokDY2lCUHmLoN64pej9907ZW6rjhlaJj+85P3tnwmImZud0vlxfjwpSWNbHWUpyZHk0QcxijMeijgomjqR8w273ltvUc7g88Gxl2ayFzgmrAusi7FKiGQoxZU2BbcG1BlqLdIHcrsjtClmtKU0gB4/rWnXMsA3WhBpSYuejq5WzcmQqjdoCUhlMbfarEoAimJjhkJDtBPcTZjvhxoLP6lVSnOW2JIZ/U5Pu73iYeo44YeQeNoHOo3qMz8wyKMKeQcvMAltbO2kAYyjuYcrfqU73q8rlRyu4+k5mOazjXbYAZqU3jXELYJ9fV39Xln9byu1GyzhHvTNgLNYbQmhoq5ZYw3ZOGtjqH7Y2/s7N8E3jadqG0Kie3hrVLi/pe97rZCoFbwrGObJTVj6lSJympelNy3f6Vt4YGm9oQ0PXtnRdpxHYXi0hxSpfK9bW/AMlHTyGWAq73YG7u3t2+8NiAZnrM0BM0eeTmRnk2VZVz5GZ5QgzUDYzGy0n12AmlI/c8/y9Ob+A6roxs8o6zwSKNtbJcmINc1PmkWQ2y5+nenqR+b75isVVpDpimmVjoO9wArjnz/Hg3pudVGpQXpXT5DhBzse58Vvuhr8eYFZ8vhjqG3Q3M5dKxJYqW1abmqM2xCzIvyJqpcbnE25rfOrc+TzbpdXdjqtdszFFbm5vudpccLY6gzLQ+nYxJnfOYUvtkDUG7xtMybgWZUfr4n12eUGbM65tOD874/7mlqne3HGa6LqO9XrNbr+n73tC21QT9ILrAquzDYe7lv1+xzBpybSUgCsO0zi60PDs4glZiuo6SZRDrNGauguWnJmmyOfbAxcXA+dnV2zO16SSKKMy3pIh5um4EzdWk46SYC00oaVtGz2fLiN2AA7kXJiieja2TUPbrWgbx3Z3YBr75Qaa+p5+t4ep0LsdqU+MhwMSE5uu48XTpzy9vKT1njyOpHFkPOyZ+p7QgWksm25FPoukmBkOBy7Oznn69AnqNVsbF5wljRPXb75g+uBD2iYgRUgxnqQbHoMVqA+InJJ2zDu3POzbrsOjHcmpZA6HA121mesHj3GG7cGRpkm3JkXIkonjQN4fsH7L4W7HcN8z7XpevP8h589e8L1vfcT52QXPnr3ghz/6KT/+6c+4vr5m2O9586tfzXPvQanrmzIkZ9WEVu9V1wS6VcPZ2ZoPP3yfP/wHP+B73/8eH7z/PucXa7rOc3GxoQmWMo3ksVAmNYNP08g4DgxDTxx6bRhLES3Ia+e6tQZxXqUHaMlVexy0IDwDoVyyurZYQ7R68rODxga82xAlcojCbhJWJlFG8DFrZLZZ0XoPTYddwTRALJnGFi6awKvgkARdgeRdDTjxOses4K0jNQ0pF2KeSDmpRZmZ5RW+flWP8lzIJZErYJaFoZ07tNVGqoiQvCVGq4lqtaydciSmmioWNd3LVS9WYwRCRpKHnBfAXIryT7NjACcYYgbSsz7TWVPjqe0CbBaN6QNG8Ug2lSInIKv2qtjZhszhcBQnTOkN263H9hO3VyMvL1asQ8HaRGsL1oF3hdZ5xghJwNiIswnXGEznyW2grDrKekUKDdF5aFqMn8G53icz+6XBOmVxBFISSu8Ra0Ujn5WCAZTxYxLoI7IbyHcH8naAUeUwWWrz5r+hOfdvYpRSFknKbxpH79uv+PeTr9N/s/V5MQO6d1nld8dX2ZDNaEBf+MskxOncefhvM6irjCGnL3S8r2dXCudUhuGrxVtJmUJ+KBUxx8bZ+fe9V1ZaRF0ppinirKMNjb5eCGq/SsJkSCLE4sglcTjs2e81e2HVdXjnKTFXLs/SNp621d6hrusUu7jjuZ3Po7LNKoEU4DCO3NzccH1zw+FwqIFm1GdSqRtp3WxXJXedN7VZvUpbjl8wW1A+BI8n7hPCwu7b2ddaZh8avQ7H864vdyqrWPbd5p0LfsJez45csxvLV91Gx/vDPPj+CeQ+YZrnh+ER9JdS7fZKVklpKcvv/bbjawHmJTcdBc3zqVVLGDnS5UbUz7ECYjXeXk6v3gy2KuaMx1r1AjWLJZAO5xzOOIpRayoK7PoD9/sdl2eXSGix1i2d5UY0abCINsSEEDA5aRpUKexjYpomxnFknTPGBNq2BdGwk5ILKUZKznRth/eeYRhYTStCjITQYr2jWbW0q44+eCQlUikQI04yVhzBNHS+4enZJYLG76ZhYIo9SNKbLxeC0eCMw35HSgXvW84uzxj7gOy2mkqVtXucoucYDM76JdbWWkvbrjAecC0hNIzjCIceX4TV5oxVt2Z/OCASWa+CXgNrSWPP4e6O5AeC9ZSxMO0POBEuzs54fnXFpmkxKTEdDqRx1E7ggpaWgG69xgq8fXvN4XDAAJcX58RhRFLRJr16s+7v77n94i3vvfeSTbfi7otr7UbGELxXUqPMoSuWXJkj6+zSjGODBwQXAnno2e/3qjn3Hu90Mq+bQGONMptoeluWQkojkYkyJPJ+RA4DZZgYDj2bJ8+4Wp/xj/7kj/jw/Q95/8ULfvgXf8lf/8UPuX/zenlIlPx19qN/P4YuPmoB5L3l6sk573/0Hh989AHf//53+PDjD3j27AkXlxesVh3Ogev0Oswb2RinyiproubU96RBG/4kJyCSq4uCNQbxGWr5084bpfqgnUGQIMSqTzWmYIMlFceE0LiG7uIC6T3bfsDGRPaGy5LJppCMxa8cjbG4riM62PeF/bTDiuFZd0noGjZJ2GbDVJkYsZYcHE2jC2DKhWlqVE+YE2QNcUhGrdKU9M0q68izp7fqaGf3QXXrcrU0afDZ4Y0l27x43SowPn7+nKsdU2XwLAZvVQ6X7VzlSNhKShhBQWQuFJtPH6O6CPs5ivohaJ6HGNWuzi3cp/TdvOCJWOYUTYtFUqCfIrthzbYPlDJyfTOyfzqxdgXve/ARZy0r09CFltE6toNuln0wrOyG0EBsDaV1lLZh8h2jDRTfaGoftWh5Wqmcy/PLcc4go7Ja1DK2UfbYiYUk2EPC3A3IzZ58d8D2kRyFscAg36x5PYOP0/FrQa0xR10pRyb63Z8/9dTVQAyz6JHftR17cBwcQREccYTih/pvpnLdM5aqr82XXvIEyM9/r/9+CsNnsGytXfzJF4b6nXN0BOcKDnPRvoSUM7vdjpvra/b7HRQ1I3B1zTLOaXO+q+Sec+SkRM52u6Xveza1wbA4dbNorKMNlrZTKcbsonFMP7bMyXil2OV5IBi22x1ffPGW25vbaidXm7Mr+MzzCT0SriqcmGUUVZysZ6DKtESxhakgWUH3/P5Hnfop8rUzCTo/qUWWRtBScuVK64Ws1remHhfmIeBd1PUiIObk6lA/x8NN1kykmpN/OyYJquWx1NeyVgC7HJ+UQpGi5OW8qH+N8bUA88wOaSfmcvQnH8os2pmC6hUtpnoCLr1dixRDAZ/TYI1qoG+sW4K0DObYFZkBV5hS5HZ7z+X5JeEyUNCyrXUGa4TgAiJq6RS81wZAEWy3JsfIdhjo+56LlPC5sF6taUKo5RPdLecY8SHQhoZ9f2AaRnzTYpqoMbHW0KwaQttUFrlQqgbXZUuRor9vPU83l7oLzgkrwv1hhySVIBS0U7afBvb7A6vNOZeXV6w2KzQqfCTFCG1GilM/VGO1U7wmJeYExji8M2zWgaZp6IeBbr0i+Ib1eqM71DRywRpzbhhH9a/OYpBpJMWMiGM6TEz7HZ31vLi85Nn5BcEYyjBqMMowYFOmMQZSQVxmddbireP67fWSonR5ccFqtSJOE9M0UmqkbxxGrt98wbOrS87PzmmahulwUMbKB20SSwkXXHVIyQt4KlLVXLaWuq3FxYkY1ZB+c7YheE1d6kJgFRr6Yavd2A6cCD4XtTubMsNh5LafSMPAdnfP5Yv3ePLiPS6evuL7H73Ps6sLPnz1grUV/vP/5z+tZUG1KXK1T/GbMpwBKlh+9vwJ3/vBd/jDP/4DPv7Ox7x6/yWrTUvbNTRngWYV9DljWVjVaZqYhoGxPzAeDsRhIA8jeZyQpJID7RLKy+IkKSMuka3Du6qfLWWZg4hgnSFnYShJJRxhTu2CIRVo1lixmMngx0QjQisTrqhezdFgA8o6Oot0nmE7YccdnfO4IHjrWdmGvThGhGghB0txgYghpowPgRKTukFMiZQSkzEk52qIgiHbTLJ1gUEJggWwVJZW7dCcWtJZS7SRaNQppmmaGkR0mp6lYHwGzMFqep5U9leqhtRULaK6QORF8zmDG2vtsQnwHQA0A/SUs65tMzs1a0tNlTQgx4JhAYoGT93t4f5g2B4sKQrXtyP3dwNXncH6CecHrBHdGIUVThpSgSHpM9tPG1o5o3UbkhVKZdWxgWyaGtZSNDjnpBxftwlHwDRrXudqpXXIHJudRYOWhgT3A1wfkOs95fYA/UTMjlGE4chXfiNGKdr095uYXzgyzL/uZ+ZI5Hd1ygpUFIxRyY3TasWpBIMFLCvx8S5wXt6rJl8+ALSYB7jmAfM9E3BfwTC7mjh5mhBY3+Sdd33IMmuMdmI4DLx9+5bPPvuM16/fcNgfFkCLzBplT5rUpaIJnlwaBOj7A7vtlr4/YO0L1quVWl9aS+N0ve6CJ4RwjPxOqbrufJnRRzSF8/b2js8//5y31zeM47TMcxE97tq4pBirgtxlQzGDWGaHiwqMzRE0V2TLqeUbIkfrv1Idu+Zv1UpgKeoyNUvSVGuuzxtXteOzNt7U43h3Ds/g2yyfez625eAfgPR65eZDhJlsqc9dbayuZC6l9tzV5rjyu830rwWYHWq9IrYeUC2j51r6MdQTu1DPxxNTysycSPXpM7VcNH+5SsW4Y6NMLmRJyjRag/FWQe9+y93unouLcyZJeBOq5VfRBQcFVGIsUl3+Q9PQdSt29p6+PzDs96ybQLtas16tebv7YrGbSzGq7Vvbst/viePEOIyYtkWsJVhL0zU0q479ONZI2EJJiSBeo7qrfYm3cB468uUzSkzEfuAw7pE8IdaQSEjWyZfTxN32jlW75vLJFYfdXm3jrNRoT0OhkHKNurSazKcbFMH6hqaeu6dPnrBarQG4vr7hfL1G1iBFOLielBJSDDkZTb0qmXw4YGPk6uKcV0+e8GS9Vm120vJFGQZkmiBpZ31wlnXXYjdrftU2xBjZ7Xe8evmKELTk3jUNsaieO4swHHqGQ89qteLs7IzDdqsPIV2SkdrcRAUAqWgzmvG2hhe4qmsWlWokBTCI0FjHlAoBy7pt2O5qWSnrrtKLIEn1S8LElDJ3aWKIg3pjVt3Z+ZMXnJ9d8G/9wfcp/Z7/sAls7yftGDd803JLsGQ2mw3PX73ge9//Dn/wR9/n/Y/e4/zpBU3ncAHCyuFaQzZRG+OKqNZ8HBj6HeN+x7DfMR72xP5AmtRFoVTAbGrIkT7MNRK9GNWsi/Pq8FLBoxSpsfFgHAiWbAzFGrAtxgRSdOxS1mjmdUuxE4d+jz8cIBYwEWcszcpinIAVWuc57yxmiAz7W4IfuWjO8F2DE2GXtPJTHNpY5rSSY72D1GBjQULW5wNFwXWpwQhZ2eK8NP6VB8B3DtkwzoEDEUcTPCklSi4cU6jM4lhiq/zBIBhnSEVwJhGLkGNSSUdlcHQjUSrgC19ikecQBAMP9M/qO52Wn3UOvBU8s8uHlt5V66wRvRhNJI1RuBtGtkNkOyTGA9zcRO7vB/ozj28TIRSs0XRIGwvGZc5MwFvDNGyZbvQzN8bRhY5SUg1tMkxiyVKz96rEpUC14JyZJQVDc8S3fgVwgeI9Bqva7yki+4lysye/3ZGv95QqyUhiiBb2tnyjAPNvMx7ILU7+/cv9RvLge6fx1HDKEpsjO3wCkmcHi5M3XjaTx9fVn50dN0oplXk9ejKfHttv2APU7x9j6c28pszPldl3vgL9WQoBeq9P48T19TU//9nP+NnPfsbN9TU5Jq2OoeuoQeWi6ojh6VYdPjj2Q09/2HN785axP+AMdE2DaeYIe3WeCdW67zTgZa42vev04JxlnCJ3d3d8/vlr3n7xlmEY6jnTc730T1AtemVpxzu+1nwO638YjsC4PHi/+TqD2FnGgW42zGzHhrrs1GZeqc+IpR+mKgmcO4GZZb5up5u4SqBaWea+qQhf5jV3wcvzvWiY/3/5lDPhMgNmYWlcLCjGsFKBqZTjDfQ1SOav55IhGmKgD6tqZWQMJSZC1yxlRCmVhZdKRlRt9fHreKJUh+QWJgOZxejmyCyKYA1Y5yg2MubI9rBjSGo3lorHGYexsuhUShGN1TZemUtj8KGhaRvGaWS33dGeneHalvVqxdtS6A8955szDecIma5tcdYSxwnbDDR5vXQbN11Lt1kxHvaYyuosF7+ASehCLdDZhmdnl5janZlzhn7HWDQZqGk82Vii1GYBFzHGsDk7o+97+qwLWpCClEzOahnkQt0l1t2zm2eBwJPLK5zz3N/fU3Kia7VBQb0drZaUo5CkNm5kaAxcXFzw0auXvLy6Yu09jQg+ZaTECpiTJj8BiOqv1KQ9ME5j1XoWvK9ykRAoSRArNN5jMIuMYnO20aTElBQgGPW4tdgFCMzJZ9YajHeI1QAJEcF5j0tJ09JS0ebQIlgsnWsIxqplltEykeSCKzrBnBFt1CAh44Hh/i3bGuaSU+KyJNbnl7z34inBK6UsdXKWrzPD/h6MVev5+INXfO8Pvsf3/uC7vP/Re7TrFkuiFDV3907LPFrK0ujk3A8Muy377ZZxu2XcH4h9Tx5GyjiRxxHJUR9qBhZPPtENnvZDWHAF8TNgLgsALVbUQcfr5jfXe8A6i2k64jBqY6ezJKtNrzZZTCrgC85r/HzoKrMqmZWDYgvEodrBASGQbctYogYySEsmkZoWsQ3GOU0/8wbjCz4FTEnYWvqb/WlT0qpISrmWV6U6AsH8rMNYTUerJdRSgbVu+qgWnHUBd06rZ6ALSRGKcwsLDbqombo4zM/OI+t6wlYLS8n82BCoC16MUcmLygC5SoTMLvsCVUKnvtNFIKbCru+5H+7YxT1jieQIu74wjJnhAGu0DGulrgcOTMh0Qd1ITEqMuxtGMeQobGowU1g7sjU1ibHRagalBmHpYlqkHpOZGytVJuJQwkKMU9YMg8lCGRN5O5DuDqTbPbIdCBFKMWRn6a3w8+nmGwWYf53++Kt+DvhSefpd0Hz690U7ri/wgO+bGeXyDsiGI49mDPX6vSO5kCMgN0YBmBEh5+OVyTXsS7HDfPyz7/Dxsz4M2ZAH7zGD5+Uz1N8ptbJ7d3fHLz/9lJ/+zd/w6S9/yX6/B6gpcQpkTN3YB+cwnWWzXtOWwlhDXW5vtTfKGG2M9xW8B+c0FttwMhdPJS36eeb+gxCCPg9L4f7+npubW3a7HSllBPuAkFwAdL0Gi1OFfPkcHMHyctUWEIqpZgzVFUhEJ10pastmMOQqYU1x9pI/2VhVQs+UsjyTeHA/HqG8Eq811cPOTYS6yZ/TZmsoxYP7SY/6qJE+NZeQepxzJHieAbMzR3eXB7WO3258TUmGJ0eBYrAyP6hgjD2+0zQgIzM7NPv+lbpw6Cvohs4sO7+5hGbtnGKvHfJzCdM6wRaqlVJWVlYK94ctu35P17WkWrJ1zpBFO7+159DgXahrtO7cum7FMA4Mh4OW60th3XYE7xn7HqlSiZISbdPgnWMYR+yg2sxu1VV209CuWlwTdFI7lX7kKTLmEQmeIE4ZYYkIhY3veHX1QnenNxqnnYwhm7npEciaOpimzNXVJd16xTj2xKmHumMuOWqDSlHrOA0wsMSobKxznq5dsd3es9/t1DWj7qytaGCDLbojbRuVtcQUWa/XfPD8PT5+7yMuug2NMQpIS1FWdhixOWGLemwH77Tp0FmMM7ia1pUpNF2LbzwxamCBkFmtVoSgunCsbgjaVadsd8p467FW8MZiq/G7C143aFZ9NmNK2qUcPG171JbG6tW8ate4NDB0K7qmY4h93VkWTMnVN9Pi0DKvyRGJPWUMpL4lNoEhKAMQx4FPf/E3SI44Z1Vv+q9hNf4+jvdeXPL973zAd771Hs+uNjiTMWXC24ZgRJta00RJCkyyFMoUGfd7+p0yy9Nux7Q/kA49ZVKte4kTkpWVqZTH8jCbF6yCQWwi1+fBDB5jzog32BBUr+88xVnEq4OEEcHaTjfQk2BywDQDpm8xOcMIvhecySrnqI3IvmRWFpwVYhwZDhnvHOvNBaNJ3E97cuq1WbesKT5jXVttptSO0nlHyBZK1Ad2BV3Z2wWA5mI0Va5QN1qzv8Asd5gXDn0EF18dfqRqCOv3XV1ozVxehRqrrcxwTElBnqiP8wwe3nUpgMoczazWCfDWTZBZWHDvlGkXU0GKqDYbNIW1SKEfBm7ub7jbf8Eh3pFtxllIBZJa9SLRa90o66JpnYco2DbSWocVgyuJcXfHMCbyVHDbEc4PDG5DT0vxK0rjEaf9C6HrMCHUhdWqlG+WYlSQb4tZGE9EKGMm73qmux39zZbxdkfejXixjJKZLBwc/Oj+828UYFb55FFzPP95CoBP/9ucOFnN8oVfdx8trCgzW2nmby4gqHzF784/KuicPJbUZ7ZZ/3sGykWKEpoopsg5M00TuQafzBu6udo9H4eytCevfXIo2g81byRnaYmGoKSc2G53fPLpL/nxj3/M3/z0p7x5/ZppHPXIisaDO+eQLEhS3+XgHMEHgjU0jbo49YcDwzDUe9/iK9OqcfZmaZZcNMpSKsinykJUnuG9V9Z7ilxf33B/f6+bXNRjfd501yuqLLgs+1+t2J5IG+bvzdetbjfQs1yBb5mZdxamU0SW90WEGBN5iiqcNvOuWFlla+0yR53TmSnGLmywRtsrwGV+C33sVUmYVghkBrZimSOFzLHhZdkYyMkxzinSZnZCMUpyGQrOOkqOzPLAr8t9fS3AHLOwXq+1jCjaeR2j5pgbsepYUc2h02yzVKR2jivrW8/W/GhjNifXTkujYRulGvLPE9LWZLCcCMGRp8h+2LM9bLk4Pyd4izMsbIP3nhSLeow61bNZFHTNeqE4TcRpomla9V40GkCgZRftqjECwQedoDEyHA6sN2tc24J1NG2DbzyHYcBaTR8ap0iMUY3yZi1gsRrHDWx8x/OLp5S6sPQ5Ms0MkLE4hERmt99TpPD82TOMXPHFmxONdRFM0RJtjoVGLC4E4jTgrOXq6pLDYeCLN9eUkui6htlayjqr1jel1Phny1QS3ljee/GKH3z8HZ6cXWok55QxMRJTUreDnJUxwuCDgmXnPeJVolIMiBWmFDlbrWm6hv1+R2i0072pncq5lMXd4vmrl+ScGXZ7vA9YhGAsrm01Ktdrk1OuD2B1phSa2tTprCXHxNgP+M2Grl2RJdGGlvPNBff7ew5DTyHXhhIF9/owKViTcU4IJmPLSB73TAd123j95nP+o//j/4G3b9+qlrSyIl+lgfv7PL710Us+ev85V+crrERif4+UgPNrbGMxyVBGdRGw1lGSkMeJeDgwHQ7EQ0/qe/IwUKYJSQlTdDNackaMlvbm7um5bDYHfRRjyYteti4gUrA2YI3Du4D1mvZmQoMEpwupTxQZGEpCgsOvL+BwR0mRNGaszXhjaH1Nz3PVL3Xmt3MmpYjrt6zaQLGGvc3EFBlHDU+ggHghO2U5HE7ngIPWOX04W4O3Vo+rFKIz+vxzaWGGlE0+pl5pR/4cnW3A+oXxKXDsmrdUyYUlhNowmfX8TNNEGbSZJVUmxxtqWfQIiODI7GGOzgEzuNDFWn9gdr4otpBLZF5KMWrzl7K6/ex3d2x3bzlMN8SyxzXC6swQOmWfx9ESvaGIx+TKFGIovmCL4IIupFZQv/UhM00FDpGy3tObNdviGSQQQ0NqPH69Zn1+TlitsW2LDdrkHEJDEzToxlmDR4kYEU9JwjBE+vsD++s7Dte35Pu9umOkTCwwAgcLA1/blvX3frwLeL90X4gsvSKzcvg36Z3fbRbNp+yzvuDyGu++jrz7N2MWAHV00HrIjM9fztkFsMUYK/uqLzVL+maEONsqzq4NcKy6zO++sLnGLKX8GAvDNPDF27f89Kc/5Sc/+TGvX7+m73vd9M2gLGvPUsmJlFxlU1E5kXV4Z8klMY49+9090zQoaWOpdnYsUpOvGjPgm8/JrL/e73a8fXvN/f22erlrom+pQHSusmgehjkyu/NehJndN1XqYE8YXANYrBig+rbPz+lcA6yKEGsCqohuHKguHRhTq8QVY3mvZgzm2BMxCyhqKaAei62ssB6dEtWyOIbMV2/mvk/vn1OwPK8nJZ8c9yz9rYRNKYUUtUftyD585SX4teNrAeZeDJ2x7MdJ2b1SKMYR2jVTVMslk1SPO47jwmCUqluWqrfWJatUCUXdMYguY7EUMixxr0XU6D/XOEms0UlaIrv+wBhHVtaB96qrLPPD0iwLgbUOisZz29rZGmMiThOIaKdqCEzDRE5J03ayWmBtOm1eiyWTp0ieIqZpFZi3DWHVkW7voBTOuzW2wJD3qmfEqGG6bVTAkgtGLGu/4tnFU1IxvLm/ZdxvSRQkqBds41uMDcQ4LSEgV5dPuL19q57MKeFsg4illMRUMjZBcK26GNiGm+s79ts963VXNaFgnd5w3hpttmw86RDxCE+fPuUH3/qYD54/x0RhGhNIweSsYHkccUbtwIzztKsVznsyhdC0+LbBA2IMY5q4aq/o1iu4RqUTVhskNJlR2B72tGdrnjx7yna7JadECAFb1I7OeWXBjLN459AIVp2cOWe9B6ibxKT+06XNBNdgisW7wGq1xlrHNE6IU81zkTnWtJARQgEnHsqI5J4SAzk2lKllGgbefP45KUdCE5jGWB9i3xywDPDy2TmblYPUMx2G2ivQEJyQvcOIWvjZnBHniKmQ+olpt2fa74l7Bc25HyjjCFNUllfqg1eOTShLI5yIsjwIxc6L3smia4xSDsXgJBBsg/cdtmkpIZBEIGRS9kypR8TTipD350xjzzgdaL3lInlyNPihYEIBq6AZI9jaDDJNB0zfYNuOl0EdLO6k0KeJCUvGkoslGyHXKph3lhB0cRRYFt1cDJaAz5ZkDS6Z6tGsm1xtQqmJX1ZDRkyVGdm5kx+qF702OXqrTTZZBLLR82X0vxPqAJPROZ5LIfAQdCzNTif/ro11ZlmcY4yULDg0xtqJEgyG2swjyr6lkpjixH5/y+FwS4x7ms5y9uKCJwYumUhZGKdCbHQjRHKLDtrEgitAJ1gPjTlak9lyoHBHTgZnBmy0lGTpXcPOe5LzuDkNsF3huxVtu6JtO1Zdx3q14my10jAIr9dYUiHvR4btjrvrW/Zvb7D3e7qUsTgkGKK39K584wDzXFU8HXOZ/6E0R+dlKtXFxtoHXw8a/RbZwBHCzPBFe8YMR53przkuTub5O/89W5Qt5fsqy3N1czpVomuWH8wc9YMyf910s3gEs5Ts5+8z/47I0txaJLPdbvn5z3/OD3/4Q37645+wv98DZiHaTD1OKRU0W7VNNcao/CKqrA9RcHl9fc1uu2UaR0LVUpecNQTogWQEFBw/PFfzz6SUuL/fcn19zXa7q7phdfGwNR9DGfbau6D7exYOfsaHZnknFjs5o1XX0+smOS9uEnlKWi3L1Sr4RBtOsEuz8vFaVfcQM1sF2+PzfLagY2a2q+Sj/mkLNQPA8qWTwYMbrr7O6b35sGl8/jmt3Cl7nnNW84T5pviaoPlrAeaDgWm7w1tLTAXJkTZo+SFNI8Er+9YET8HqTqzkmqBXpRn1ipUCpgaTSAXNBUOSmgJU9IJKTdHSG1sbDEt1SzgMe/rxwHlosE4jbFPOKjsoyjiXqu2WWtbxFbSNJTMNI5ILbdvSdSumXsMWmqYhpYSfy//OM6aIzXV3Ui+IcY6u6zDOKZgyhm69wRSYDj0xZjAaux1cQylCymq5d96dYZ55UikchpFpmlSjZ1nseoZx4ub2lg/ee8WTy0tiUkA/TfqwCD5QyjxZMy8ur2i7lt32jrvbe7wLNL6hRA0qMcypG3qfBGvJKXO5XvOD73yb73z0EaFY+uGALSqvsSJLbLCvJXHaTu3krGGKE41bq744At4y5YgYoVuvcE3QCemO4ABn6KeRfhw5vzhjc3VBihFXdBdvsyyNSQDWq3XPvOlJtYKhF5el7JhTQbMNPN43dN2a9foct7tVQA2k2tWLOJwI2RQisXrtZkIRxFlsaIjThMjsc3lS46q78G/KWDWGNO7Ypx7rHW3XYSWTekv2HpMbbC7ai2CtbjaHgXGRYuzJhwNlGCjjRIlRde6pprDNS2u9l+bFVd5Z5E41tsZpkJERp1aNNLSmxbk14gNT3XRLZ0jZkHzSJtDzK/L+nmEYOJ+EMRqmvuCkEEQQV2rWlRC8wRmnbi7bW3xc8aRdE3zAJ+F2igzZMmZLdIZshWJddarQz+S8LgqlGFKqDUuuMlc1CUzTtsoCVI1SMVirm0HrtHzp6gZxLmmGEBYZBSJEOwHgospSxM7EgtMKm3PY4HWDWj1nl3O7rB7HhmtT/e3nLvyShDQlRkaIGe/Ulkkk1yjyiTFrHHZ/uCfnka4NPOme86Lb8BSLv7+mHL5gikLKkMVW3WdBkgIyI5ZSMrYxWG/okDrvR5LZEYulc4VSGsiGKWdMbig2k6Nu1rLZY3yD9SrZCd7ThsCmW3G+WrPuzujCCmsd46Hn7u0t27t79lttDJUxIkWdUEZbGKwwmm/SrH7I8r4LkE//ewE/5gg+3/3ZeRzB6Fyx4FjuNyegFOAdD2hTf395HMxQewE2s1xjJjyrptXO7hUVMKe0PC9Abd50m6lN/vP3fHVnmKPky9yvI3IM96nyEkQ47Pe8/vw1P/7xj/jRj37E689eE6xXBx+R2lhafeOlbpJzXYMwTONYpRPTYkIwN7lP48i67RZ7uy+x78vmZm5A5MGGpe97bm5uuLu9o+97rfpm/TxSIysQTqRe8wnnmIdhjvKMowK9NmQufzdYqcl8dc6mFJGYtHnWWIw3S5KoMWoEoYyw6Dpv5yA6eyzGSgXJ9aYpIjMfUmWO9X6rsg5ZgLUK2gSrErHlPB2Jl1m3rLZxJw1zzMDcMGueSynV4up3I72+FmD+3/5H/2cQYd16JAvf/ugl/40//mNcPbk2JYbDnsuzM73BatNLTioj0MrksVigVijUEqmemGyMAuZ6soocdwyuLjxzCtF2v+PQ90ztGumkOmTM2kiVTZb5ROWEM0W1RCEwjurHHGOkCQ1t25JzZhxHVqsV0zThqmbOOd2xSU7qL7te13AWZVrX5xu28Y5hGmk6T7daQS7EYarXzeJcoKkMUE56UVe+5er8isOYiPe37ONEsVQJitrXpJS5vb1j1XY8efIUg3pGp5wX1t0UwVrHarVhGAbu73dMY+Tp1QXee+KU9B4qotKdrOWUaUy03vPBy1d8+OoVXQgM9wckRZrqL1mq3ZTxaoFju5bctLjgcSEs6Ww2eMoAeEsqmTFNtF1L23UMw4CrgLOI4H0glsxuv+P86pzziwumQ8/+/p4gVX9mZxZD2XDDrIOnNp1K9aBudXMWM3FKGJvxvsGTCb7h8uqKu8Mtt/s71d7Oi6ImpCBZ5QWzQ0e2DnyDCS1DnzAmYy3EmI4Vod+hlPN7PUpk7LeYWnUwoo4W0VkGYwlRjfl91YZOMTINPeP+wLjvmQ49+dAjtdlP4kjJEylPlJJq0MVcGpzZLfTBKEfNWTkBldr4aTF4nPEE42lsg7cNuEblYBRKBwaHSQnxAy4+Ie+3jPue+6Hn3gxscHTeILFWJypg98bivGGdDDKOkAo2G85aSxaNvTalQEngnVre1KUZQ00Ms1ivUieDw5q5pGoXraJLap9XigM8c1qVda4CW2VTZuCMtZpgGnyVT3iMaDCT9/rIzqKMbRZBclL9n3M0bUtoG4IP2pBdwc381F0AT11cZwBvAEmQYqaPB6KF4GrgiclkSUx5ZIwjQxyQElmtGs43V5yHNc+7NWdjJMaBcrDEFEnZkMXiRJCS1XqzGPVxL9S+AjBoPDoJypCQpuBaYeXWiHj2VhflbHTDBrY6/BRSmihl1GuRCw5onWftOzbtGW3TUkphuLln3B90XfKOYhKTZPos7DMMwZD4ZgNmbSid8cTcVMYCKN0cFgYPXDDmjdc8T0/eADl5GJ6y0PN7fsVBPQDmAEbMAzb8XTnGzDZrQ21amv4UKB3DkObffcBun/zdnPzf7Jwxn5d+6Hn9+jU//smP+clPfsLr16/Z7/ecrTbYOpdC9fp3Ntc5U0VUszuNGGJWssA1YamwxzgxTRMghOBxHEH6r2Pij+yzfu7dbs/nn3/O7e0dcYoP5K1LI6ZQXSDqB61Sh1Mxw/FcKJZaHM3MkfWdr0/t7tNzWi0pLfpsakKj98Wy+dJLq04/WuE/asePOnNO/zw5lvl9rD1t1nz33Lz7KY5EwKn8ZgHMD+4/WT7Xb6p+/OvG1wLM//xf/Cmgx9F4+P/+WcP/5Z/+M4IDyXpaNp3jv/vf+W/zB9//PlZUw5hzqsLvgBG1oHPG1G7mCkbrCS6SK1CuSsO5FC/oQmL0d8mFfjhoUMIUiTljrK8TZ97WKDNirCZpGadspHUekZ44DqQ40bQt3muDSkxpAWQZaBqPbQJ2dOScGPueNE31IWLwTeDs4oLD/sChH2h9YNOsCJ0C8JQTuU8E7wne4bs1TfQcpp5dP3DmOp6eXbLvB3b7nmwypg1ApvGei7MN93d35GniB9//Pu+/9yHjqN7DBfV8RmC12mCM5e72hn5/IFhD2wSsKdpxLjrBpejCKBHI8OLpc777re/w5PKK3KuIP1SvyCwwxUl3nd7QdA1+tWJyjgIaqOIssRRc0EAUa7REHafI+rxTHXN/0BKLnADmWDj0PakI7WaD6zqmm1vEzHHA1W6sAogiZjFld3oh8d7hW0PCMKaBKU0wGbqw0vsUw9nqjHV3xt1uixT148XLkRGh6sJTJI0DgnrAim3Y7icOh1FZ8XJSgPxbTLjfxxHjgJ9E5wWBQ04YU3BWdb5t12lwfSkUVPOYh4E0DKShJ40DaRxgGilxpEwKmEuZamnHVsaglgzNsXwoM/DLtWRvKtMlFQhbq/pe1+hGxqllmPOWTMGJbhYlavNbc/EEt9sz3G3Z343cHiJPVi2XtkWKVmhiUdcd4xUHr4ODJOxjJJue1nguGgfe6GZU9DwUIllQmQEOsnoqi2gVJHhHEHQhyrNlmy7yKWUFkNkst5K1VqVHS4PMEdAYc7K5sLpQBaMNvTNDNKWoX7URz1nV/DdBY+vhxEOXujDJEdgom2WxTt+wIOQYSVWCFi04Z4BErv/Tpj+hbRrOwopVe8nKtmxw2LwH6xGs9lcU0YYgAcnq7kPW82mNQJWzkBMyKWDGgm0GXOloWoezwt447lJkjKolL67BeO09yRYwdc2IiTxlhjyR0sCBLaFtMc5oc5LJhIsWMxZELIdd5PYwcm3gzjh65BsFmK2URSahjOosPThqPLUpU9k5cwIH3gW/70oyFo9u6mor7/7Or3HkoOIYUy2/sMsjVR48WisTi6trimpd5yj3MvsOS1HAjTKcoG0mBqCkIwjkBJDXRD9bJRalZHa7LZ9++kt+9Fd/zd/89Kfc3tyQYyZYX9P5fMUOuhE2xtRAHFOduQrWO7wYkjH4+n0L5JSUpS1lefb9Os5FAX+uz0zdwE0psT8ceP32mvvtVhuiZ4Qq1RnMlMrE1ut3IjcoCyA9uQBG9BzWqzKvh1C5JCwYh3Fzv4HeMxZD03QatoKp2mYlO5hJrfo+swfFDGt1UyG16nYkvk4/u62aZ5ZqxcmZWpiK+YVnpl8JkEVjvlDaUhMPlahUQhWOQSlfcQH+NePrRWPPxy0wTjBOE5qRVT8wwB38+P/0HwP/8YLonYN/95/893j/1QtVABZh0zVcnp/RBr8ItUP14yxpIqWJXEsEueZ/Ox9oXMBmwWRDMA1lSAx9pF9HLi82jOOOUtSbt23PyCXhfSCVkdCumMYJ4x2habBSkDhBjpyfbzg739APPUMa6JoN3oj+7LrDxZHd9R5wTFOkW2+Y9VrtuqPdrLjpD9xPvbpFrAKrcI5MkXjokRTJCSjqB3xuOqyFAX2II4b+0HPT7zCNwxo1T3cGztcrDJbPP3vNixcvuLx8CsZT0KCYtml48fIlN29e8+azX7FuPE8vzpHhQPFQssoRsFre9iUgxfLk/JyP3/82Ty6fIlEnw7PLS1rryVNkl++hbTCtuoWs1mvEOMZxwjYW37aIdRTj6LoNlDs6t2LddupSkoWrZ095/cVbXNOSCrgMa7/CWs9hGnn95i0ffOtj1s+e4rc70mFkKtCtV6RgcaFlEnXxdaEBDKH+GYtqqqKgDgUlQj4QMtiSCXjOmjOebp5yd33HdtqpP7dozLGtMhFrG7Uzi4mSD4g4bu4H/pN/8UP+xX/xr2rJyL77RP/GjClPmEkfZK7KjKJXvXecBow5ow0wpkkfOEUwMcE4EEeNWx/HHhkPlOEAacRJUSBU1BJRnMf5CuSM1VS9oou1iFb7UtZqgpVAyhZrCx5BgqWsAnHlyW01N3cOKYamXYNLjOmg4T7ZsNpcMa4uNFkyC7eD4WIKrL2jxAxlxHSamhdzJhjDOhjECgcZKcnQtU79l2MmT5nkBNu2+K5joNoXZoMNFuM8hIBYTaRzop71pi6mMSWmqEA95UKMuXovK1tjltKrgm0KSCoUI1ivG4bZm9VWT/EQI6FtcGOA2uzbNYGu8TRNANTrOlem0GDrAmOwWsZCS9i68UhGyE4BlisWl2H2LSrGL2yitZ6VW+GswxtPWzyt9YjAan2GOTvncNciZcQWiysGEws26txXMw+BIqR+xPsKikZLvlfrOL8GlyOMe1wXWTeFzhaitNjsSN4RxTLIRA4F48EZoRGHLQ6TDDYrQZBiJhUhEZFVITzzpKbDrAzD3cB2CHwxjvxq6tlKIf1XORH//zzuPv2ZVmN9w2qzYrVaK41U8hHgUjc0zM4idmkaXZqxRB64bcys7Oy1XAsWzIFkc5U3R33GzvrfOQkOU3BOpXNQN4jV4SWnGpAj8z2qoDpWI4CCvu/cBG5EFhmCZLV6tJXgMCUvoMsuAF+PzVlLqK42w3jg7vYtP/vpT/jJj/6au+sbpM5PQaqMbwKpnxkFZ8E4Ohe0nwAhplwb1jusV6MBi1aitOG9bmIRUokqxzLaIFwkLThwbuILTccUI4cx8ubmltdv33KIEwmqRhic180pMruEULd9ZrHuXDYvhiqJrBJGKRW7aSU7p4zBEiw4AsY5gm0J4diorT3Itio7FZ8laqNxLlhbuzxM/fRGn4FSr109HL3f6no6A2VX5WdLY6mxFYzrJm+2MsyzXacouLdFN/qmFCVppYYwWYcxmtjosRqWldKyif9dxtcDzF8x5ov8lUPPHKkI/7f/z39KjglJ+lB+erXhe9/6iJcvXmjEJHC+ann19IKLzYpsfGVOBFfp/xi1rLdyAWsg58R2P/DqyjPtBkpI5GHCCJw3HXl/wFnHul0xDBPWdzAkfNZOar079eby3mkoSwEKeKtNBpJzTSJUTSG1JB1TJNRwg6ZrVa8bPDEn1TuHhtB4pBRijQ13NdUwx0jKmdZ6YlI7pifnF3z03gfEX/2C+3GgO+tog2ccR8ZcVZci/Pznn/Ds1Uv+8I//hI+/9S3aruOTT37Bj//yr/jZL35OsIanz55AicQ40oUWTKEkwRlPnCZSP3G1vuAH3/4+3/rgQy7WZ5isoQJeDKSix+VcbXCEtu1Yb9aMY8TFRNvVXab3ytoapzHnOLx1NEFjP40zrM5W7HY9AK20qh03yjSPMbHd71mfX/Dk+QtuP/+CEgtTytgmaPiMcVrDrTdarlpmZ9T5AKMuKsYZrCk1KKM+TAU2zYpNu2EYB2VV1LsG53UCz+UtnfAabDJV6y79jjve7L/rTPs9Hn/zs8949fKFamZtISbDMBW6ruPq4pJxKCADXSuEEJBU6A8H+kPPOCb6MRKT9gQEMXjfEKdRmy9tqAtcdXcoscYz61do1EUhl4k5hielTOMDzntlIR1EkykkEIeZ05uqdVDJkVQiiaybwnaFW60ZXVBZxpgYk2XlHEaC2t1Vxsk5h8QJY6HxlikVYpqQ6UBwnoumI9deiG2aiJOnCW2Np9d0Uqquec5CsMaqUwO2ss8e2wi+CCll3JSW5it9qNf7MBc0g6cgpfJQtXSeKxtmnMU3Dc1qRTdNxBRVuydC09RFueo989xtj2o23Unan0j1biWTRIhkCgVvtOE2GKfMeq3UzQ1UpgarOOtw4nTxcaI64qYhNo1GCietLloJeOMpJqGNtrrISToyTMaAKx6TJlIUUhxpssOvW004NMre+2zVojNN5KaGmDgFLxYqk6qpkdTAFSmirh/e1OsEtm3wqzXmKnO4PVDudnz6izfsSv6Gze6iJzkO9LcD/d3t8Vu1qmHn5jPrmWSsrKJV3/FqPahFW+3lWEr5WRlNY+1iYzYn/i0hc3Mzfy4Lw+2dhkjMnuwaY0z9hfp+zK4KLA4exhmwmWEYOBz2TNOoG/xZWiHKFNejOrLKzFKBKtlcpAIq5xnHkZuba375y0/45JOfc/32C6ZhqLZ1lilqb0QbWp3PjTaSUgRva8MboE3pkGZ5hNHn3czIu9nLfel/OJEGzCWlEymL1O8XEfph4Pbujvv9jqHqpOfIcK1CsVybuTIFM6Msy2stPz9XV2VOv5Oql/aVXY76/JETqUTdHOWYKKaoxrq+02LvZ+x8xmHZgM1k8FxVnG/A5SiXW3J2bDnVzT90DJnPj60PEalyHj2WIir9MqXo+sCxoVCd6GZ57xFLfN3xtwbMv3EUmDMVh2Ga8TMicHO350//1V+C/CX1urLqGt578ZTLizNSEYoRNhcdH3/rA16+eIHJghPIxuONIbQt91Nkt+/xgxCuHGu3YtgfWHUt/RTxFnw0dBJwEVbSMElkrBpJDf5wtL6j8Y3aqmR0RxLVGaN1ntZ5YlBnkDhOpJhouk5F76FhtV7TtK3qOqeJxnmNyjQwpkQaRqJ1dD5QqlcrztK1LUIhZrjcnPH04oq8u6V2r5GnSDTaeeqcw4XA7d0dq7MNLz94n4v1E6aceX39lmJgdbYh5oyVQtt1ZMnkmKuN3UgaE5tuxcfvf8j3PvoWT88vIavPshE1Uo3jREk1cagc04ec8xQmnPOsVistHcAxAr3e3K42VooxNG3L5dMn3N//kpQybYM2RQRHu1oxWWG33fHy1SvOzy/YXd8q84+W7Gy1wBKjcoDFlszO5WpbEyOBOuEiURvAsoKp1jecdWt2+3tGmTAZtZaT46S2xmriGZaUR6JILTN988d/9s//gqdP3qgeXIRSEs45nj4950/++I/41re+xWbTMPQTxkScge39ljgNlEkYs6EQyLbTYB3JGs5ThIDBu1qiNEbthuZmnFpOy0X1t1iVZVDZrWIK4qBYIZsMJExtBram2gdl9YhOZUCIRAfStbjzDdK27G7hvo/0MXPeBIxYchRKLMqmdB5JYL0CRe/AFSFOE8aNhK7hvG1IxWlzcx50Y+ZqwA767DUAsxZYajN5XWx8CFgxeBGiyxjjFh/ZhwsGgM6h48J61HHODUoiBe91DpacFoeOEPySqpVzISW1gDOAdUc2kVqOLzWRa/4Q8+eYO+jnz2JqFzwzgLI14ay4uimo20qvEppU1JovF2UIXfXbj6aGHpTKU1AZeVP94RMM+8LEQJcNK2NVytYa1hgikCUTS4RiVRITq12pAZMdJqNMulGCMhtdRzB6j7m2XqNYaP2KjW+5Wq9Jn386w7hvzli0Pcfn4zKSGnRmE8mAdpvrmoiBZLRB21THBQwY7/GVKbXOKwNYpZNz9W1hDaFuXEBFAWYBKe5E0mHqXNFbXf12jZltZXWO6iZvbtrKTFOsbOismdXXVUuy+jscG9xm3+h3E/VyVgB+fX3Np59+yueff879/T19P+j6bA3GONbrFefn53RNxzROHMKeqR+qdOAIGsnU52ep97i6TIjIIrv68iX6svMI5ujRLAi73Y63b99ye3vLMAzK0i+uHTNIhvlZcQTMKj2bJTjKrOoMtzUMrOLoxRM7VwlZKRk364k5atrfddxZ3tNaqP1OC406b5rsAq2Xe1HP2dFK9FT+Mz//Hr4PJ1uh2gDI3FB+vL1lZp+NbsTFSP2MhsWm7W+xK/47BcwGV71WdReZOS4PgrIVRoRUr0EcJu5/8VllMmpVxljcv/wxTXAEAxSDx/DyyRn/+B/92/zg428TQ0sOLW/3e5rQEK1aI03Gkgrsxomzq6eM/YBtWuI+ktFdtJYGwPhAaFus89U+RY+pTJlu3dL5htEFch7V0iXlB/R6CA2rbk3upyXtK9uC9YFmtWIYRsZ+ILmMtxotbBCa1QqsMPWF1gbO2zW7Yc+QEjZYGh90l11LLFdPn/Ds1UuevHjG/WHPr/78z/j5Jz/n+v6OtnGYRv1kV01HMLDd9zjnCMEz7UfWTcv3Pvg2/+A73+dqfYatmwJXBFut+ErKtUlL/aoLdbHxMyuollepAhZEw1PmhXv2W44psurWPH3+jE8/fU3MadHANm1g1XVQEv0wkHNitVqxXm+I0lOM+qr62u0v1ctVNdt6J80m79ZpaIF+S8gl4ToNfJhGbRZdNR2tb4ijejCKZLXyq7o0OweTSFFrv9AcGYBv+Li5i2y3n2GtSiMWMGMNf/qnPyE0GrXceIP3lnEsXJx3/MkffZ9vf/whJhvGQ8JKg6QRB3SrSyiZwzRgSyFIwcSMnSJt52jboBUI4LDbYYxjitoYs1qtsV43m8YUEuosUzlFDGp5KAhSIqkMFInKQBlLGxpkvcZuNozuC3apcJgSsfW0xkO2xLFuKo1WkySr5VzjPOKBUhj7PVKgWVsuwxopFlMyhziQStXBOwvZIsVpjLeBnPX+AtWFg9HucbQg4v1xEYAKsGdbvZMFfS6Lw3HRn+UbxhqapmFqW5oUKbH2iZi6UOekASo5V91kZeKsxRZXxRhVAmMtRiypJEjqamS1YUAZZe9wwYGnVnEU23hxNNKoddscD170z5TnDeexZG6otZrZ4GZeEw16fOJUgzyCyKihNU1LszacYUgGEoVJEq54nFhSnitEVpsJs6IvDcsxCppR6z2L4IDsLNJajHicb+i6FTkEqjvrN2csFVR04Z0/3Pz3k83SUt+ugQ5SJQIPhjGkB1ZoytpjnAK4Sm7MEgwQ3Vi52osg2qOUybW8sGg56n+7Cn7rcVDUv99bldBZr44xRR9SUrSJ25w0nx0f2V+toQadYyklpkltW6+vr7m7u6uBQ4UpTio3tRbvGnwIXD654uriiqkfuXHX3JUb8qS6ZOZNBTO+kUXyMs/Bo8SlAuT5Y8sR8i0NizWdbiagdrsdN7c3ak83TccNev2dmZR8eKlmYKrBUzI/OwWsaLiPsVX7LbY2C6pc0RS1rrXBL/N2Zn9Pj/P0uB84q+gZqOeaeRfOTG3PgH6RyZyA5QfHXl9z/r6yyIZSNBW1FFHnrBPAXWTevNWGxspEa6/cvDP73cffKWCeGZKmXZGqtdmcSldKYkplOaHWQlB5IzlTH4RUY76Rw6gVT+9AItzc7/nks/8r45BYARtr+be+8z3+/X/v3yM4z1+/fcO6W+ExfHSxYXCwz5Guaclna8ZDpg2ByTkyCvhc2+HblpgLsRRCBasCNG1HOBwYBXLKxBpQ4g11Ynk2mw2xH0j9SEyJ6D2r0LA6O6MfBoZ+0EQ6o9olHzyl75HGq+7XGnb7PS2eIUaERFuPYTcMCMLl0yf84A//ANc1JBGeAlcvnnF5dcW023H72WdgNKRjd9izXq8Zp3FBQk8ur/jo/Q+5XJ9hUo2UzpUNECHFTOwH9vsDfX9gipHN+RnOa0oZmMXuSkQbJ6yhxpAraPbeE5rAEEfEwvr8nHazYndzV8+nqDNJ0xKjYFNkGieuLi559uIZn42f6qLdVGcOb1XTiXrZSuHoPSkaNWy9oyRlvQyCQ5MIo42QC23Vv3tjSGKqA0jRqHCiSmVSwovBOg1Wef369d/l9Pi9GQJMX0Gv5SLkYcCM4yJbqTiEt9fws59/RrD6ezOxYICnly3f/84HvHrxlKYJNM7isj6IzzZrurMzosB+HBEKvjvXRjOjID25VtkgA4KjwZGwCljFYmvcovpuZr2GRePVi3McrMG2Le7iAtYtfd+zHSaGtqULDU4aytirZMEJZlXFIAVCcBhN/0CmxDQcMMazMh4JOkdNShyyJVlPLg7JTu2MyrFEjVT+ozYlzU4h1soDwDwvmqX6X5763yr41cV9/nlXN65N04BQLTBbcnWSMVajXx9459bqTyKpvtd5bFFHCY2er2l5xQIRV7Tb3hl1lPBdwLQe47WL3VCQJPhi6WxHmiKSErGoX3ehluXnW6qCIoeSJrPszVmqzttgjadxBmcOSBKGfcGFkdC0mE5dezojHIq+jhhDcQZ1UantVcWCOI1bN2hVyihY0OJ/JmGYLPjgiMUSQ8Mh9wx8s/TLy/gqfDATPafgwWSl+6kl4Lnk8O7vVZXHgoJOqiRiDMVoJWCpiHiV6hwtDotWmRqvzkkLgJJaOSraxFtUcinGUHJtZnMgpeizIiZyjjijATWqWbWAP9rMVSy5HP7JRnR23dhut9zf31NK4ezsjPPzC25ubulHXTPnDeBcEQoh0LTqEhUndasyIjUWqzbyGgMLzjmZi+UEGJrKRs+JhSfA0FSJREqJFCN3d3fc3tzSD4N+36r2S6s/HM9fvUZyCqClhmdXttmYyrLmQp7mzbjHuKCSGazK4Ooz9nQjDywuPct7vQN252/I8Uce3Gd6XUy9zWZQ/ZBl12P6ir8bTVNW5zh1SJG6eTLl2GJ4PBdyvJe/eu/0YB/524y/W4a5RpdKlkVDk/I76TCO6rEoDFlYnlrHebicg2IgFbvodHaj/nCxMDn4v//0R/y//jf/a6xQXR6Ef/RHf8J//9/5d7S703qatuHj997n1dNLLoNncI4AeGPIbYN0HWPODKK6vCiQjcE1LT40WDuQU2IcBpqhw3hlMkPQEum+aZj6cbF8KwZcE9icn5GmyLDdVzuownCYkP6A71q6szWbpuNb731AWDX86Fc/4/r+lmwNY5zIJbM62/D+Rx/Sbtb8s3/+n9LHyJ/8w39I2zW8+uB9Llcr/mWauPvsUxqnwH/jPFIGhsPA2q/48NV7vLh6isdhs8EV3aHEaWK/23F/e8duu2N/2NMPA03XcnH1hOBb3QSkRNe0GFT3HZoWZ+zSwDBNEzFGvWQGTVtsGp6/ekl/6FV7bFXnbIpwsT5DjGG33XF2ds7Z5SXN22tMSgtb4bzX5a5qt4yRhWUzFbQ779RFxVlKVBmKaxo8ykI5rEZuY1Wrjpb5Taixy/XBYK1hGAb+5hdf8Fd/9dO/y+nxezMyWtqcS4DWVDEuyudqNz3qTmLNsnhkKaR8nKozYfj5/cj1v/opIj9VuQVadm89PH96xgfvv+Li7BznlZlJccSZwovnT3h6ccUuRqxA27ZY25LMCiMdpXhstJjZvUEgRSEmbTgxxiLBM2AJocVuzjDrDeP+wHZIjBvBNA3ONJg0aDPKoE2FplEv45kQcd7hjKGPhWnak61lZS34Bpwu8oOzTMZoeEguiMm6gBlXk0m18WgGePMmUyvlpwyzLAzy7B07hzXYEDDBqSViqrpnZ/S5I4EmN+ScSO5oxlqmqAC96qpnAD+Hh7jZxq+yMxYNjAje12aoBp914TbO4DqPaTwmVGuykhGTIatm2Af9fPp+RhuSqhe14i6ZHaoWzaEROSaAFS2gN8HT+IxjYOjhYCa8H2hXHU1wtMHQUhNUJWFy1iqmsYiok04qYOviqU7dRXXLVtcjXUcMElpy9kSxXA97DjmS7JGQ/eaNygB+JcBBb518wkZ/+ddPQBgP12eo4OTLv1bixDj0FVjrL9rgMd6rL/8JK2yMw/lA23Y411R3ogRRf8fhKCmpfjkngquWjFIrIbZaJDpTY5FnhP+wcpMrAB6Ggbdv3/LmzRv6vsdalV+sViutehYFzLvdjjdv3pCmROMblWvoAdfNaZULmmrTiKiX/zuNkvNwda6WnL4EFKX+/NzkO04Td3d33N3fkWJc5A8FFvmLgufKws6bGVFQOe9OvUUlFoCUjEhSUwNjMaYgMlGKxVp1ILK21UqRNlWw+MJzIhep98vMNqsR1jGSRD/PDF5PpRT1ZwpVgXA8R/M5+7L0g/qZ9DX1Wlb5Rc5LrLvhodXhl27iB0D81/zYbxh/5wxzllzn4fxhYKaytOxwGpmtQ1n0k08zf8Zi6glW7Wmu356A0QrF1cVIwKEl/P/3X/w5/8lf/Lkyn3UX90d/8Id8/OIFK+9pm8A6eKwY/pf/0/8ZsfHkqTAYwUimsYGxFFZdhwsNBvX/7A8DYT1qgIfRmNmm7Vit1gz7npTK4pWMsXSbDUYMe+uZ+qFGZSdSTtoEJxC6lrPzDd/7+NuY1vGjX/wNv3z9mYK7nFlt1jx/9RLbeD757Ff85//Ff8m//Isf0oTAe8+f8z/6H/wTnr14wdtf/ZKUE8479ru96hVT4enzJ3zvO9/l5bMX0CdkNyLjxHDo2d7fc3dzy367ox96piniguf84pyrKw1EOQwDVHDaNA05eGUCi9D4gMXo+0mN920ahnFk07U8ef6cm+sbpsNYtcLqg2u9Z9V13B327Pc7njx7ztMXz3n9xRfaxevsoqUzzuoDoJqbzxOsaVudvG7Shdiqf3RJmeA80VhaH2rjhoJsbazQ+1Etf2Yze60WUIH2f13GzAjOzOhCInH89ywKkk7aPWA5i4tZD0ZgmvfEJ1+HCDef7/jx57vjz9avNliePjnn8uKCuaQevAKv0DR8/3vf4r/5b/9DLZRIovEGZz3TNGIJTHFUhjkou+nbBrte4zcb8ttrtofMYZOITYe1DQ5NuYy+0HSoViKjgSuAazwrpyb+JiUOvcbR+vU55+0ZUn2Bp5LIUapHsHZ7a4vcrMVUFsQV1S7D/MyeHQbyEnOrG7bjIgvm6ABQF6Vc1HJqtpvzIajtX9Iyas5RiQrn1HZNcmX/FeTPNktwZNxMsbWRzxKso/GGBrtYv5nWIt5qWqYxmOLAZohgslnkWqZkZRS7FiJLOcIUBe3VqwPQBp2ca+iEC0ADCE1o8TaRpqQhT37ArPa44FideVpX8CSMaPBIKY6igixKDRRSzbKoG8dMMc6slgVxnuI8KTsOY+HmsOcQR9Lfrlr7+z1+HVD+rX//y6/3pfL26UNj+Z0vA+lSEkzqfKSPkJmtBuM8yWkYzfyr1lguXr3EBqfOLbXk7p2jCY6SThJ9q8xD9/wnzhFy9HuPMTIMA2/evOGXv/wln3zyCbe3txwOB1LOS+hPqjKjaZrYHfYY42icZxoieZoW8GqcVUcvOdoSvsu8pnT08VeQfGS7T4d3Wmaf/3232/HFF1+wvd9WazS7AEKVpNXEw/mZwsktP//U7PVWMikOSBlpGsdq1bLZnNF1G8YxcnO7Y4oj1naIdwu4LJXgdM4tgVM556UYsUgo7NGj/p2b4kExYmnGK0fW/d0gnQcWhgvZUMjl6MN9/Izz7XhyT5oTcCwnh3LC8P8u47cCzL/7RJMHf3/3deTdg5fTP05+Vo5/Oe4wTk4WWj4+XeBTpeGnE5H3WN/vT//6r/izv/4rPNCa2twu8Gc//HNut1sNCTCG77x4wf/if/7v8/G3PqbzDflwYD9MKnGIkRw84jxNM6mAPheGlBiSyhqmnFlNkcZ71Uka1c/VHn3EOXLJHMYRUsQMB1YpsnlxxZMnz7i4u+Hnn/2KZNSLcdf3/PAv/4onL5/hQkPKmb/+0Y/Y7/b8gx/8If/4v/WPsT4wZeF2u6O1BiTjBUqx+Kaj7c4oGGLMxL4n7gf22x33d/fsdrULNxds09Cdb1hfXGLalj5l9jHSp4iZIhLjYvWCdYxT5jCNxHFiP47QHyBY9sOe1HhyhoiwPewwog2b2Ttsnhgks+t7ijW4zYYownboaaRgQ8B6R0yTes7GiJSksg/raJymF47jwDiM2GovI0UIU8YY4TBNDFMipkI/RkYmks2MkhBn1SpotuZJwoTX95lvveW+/Xrz4PddA316fHJKrVVwdvJ/p7/FPA91mJOf+A2f9yvW1lPQPMbC9vUd5vXd8m8OnZ/FwJ//5U/5p/+P/4yYhGB1IcwCZ6vC/+R//O9ycb6mPwzERkGfyWqpNhpHwnAzZa6HxKZJhAj7ZOl7iD4R1w2uum6UXCAYbBEwjiSGPsFumhhGgxGP0DH5xFBgj2H0lpQLatIhOAuuWgWoTCJjUq7SgWqzJMqi5KSL8oIr5Bg2YnPBFcHUwBQMWFfwziwl5RIzMWmCaEqFFDPTlBhjJiUNjZqBg6mykGIy2SaS6Oe0RT22rakWUcZRrMP7WtPOWhGTpIDZSsGkAhFSRZneWXJMDFmIOHZZuE/CfdTPaichR0ESaCqi2kG11GqRwJgtvfH0xrKLkCaITSLvJtr1SPINY4DeFHprGJJjYtZhqhOCMYLUZBRtOAKsYOrX7L2LNUzJ8uZu4Jeff8713fa3ljf+fZrXv9sL/G1+77f55Xqzz9KBBWUZJE9EJqKcIBoDw6DVyV/95Cf8xX/5L/jf/+/+Q5rg+B/+k3/C/+o/+A84X2sD/pwkams34ew0PMcmz+Fk9/f3fPLJJ/z857/gk08+4eb2ljhNHA4D0zQtLLQIxBAZxhHvDozGMu0nTBGCczgxWpkqolZ3da4Ua7DREOPE4XBge3/P2XpNE5pF1hZjREQTCVnAolHZkgjDMPDFmy948+bNwjBLKVq94hj3VjhWrmYyEaluJpLVj9pAKok0HTCSWDUdl+uOZ8+fcHHxlO3uQIqJ27sdJSftMTDaqF0q4JaS659FWepSHl7uisvnCoQ8+OZ8XPo1N3yrWYr+pLW2NpAeATOcap0LOae6QZpdVuTIpBfhYYrfyRvO0ozZJeMr7tTfZt4Y+S1+6pNPPuHjjz/+177Y43gcj+M4fvGLX/DRRx/9V30Yv3Y8zuvH8Ti+/nic14/jcXzzxm8zr38rwFxK4dNPP+X8/PzXdp4+jsfxOHSICNvtlg8++OCBPc7v23ic14/jcfz243FeP47H8c0bX2de/1aA+XE8jsfxOB7H43gcj+NxPI7/uo7f323y43gcj+NxPI7H8Tgex+N4HL8H4xEwP47H8Tgex+N4HI/jcTyOx/EbxiNgfhyP43E8jsfxOB7H43gcj+M3jEfA/Dgex+N4HI/jcTyOx/E4HsdvGI+A+XE8jsfxOB7H43gcj+NxPI7fMB4B8+N4HI/jcTyOx/E4HsfjeBy/YTwC5sfxOB7H43gcj+NxPI7H8Th+w/j/AYARW9vnlJ9vAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sample = next(iter(train_dataset))\n", - "visualize(*sample)\n", - "\n", - "anchor, positive, negative = sample\n", - "anchor_embedding, positive_embedding, negative_embedding = (\n", - " embedding(resnet.preprocess_input(anchor)),\n", - " embedding(resnet.preprocess_input(positive)),\n", - " embedding(resnet.preprocess_input(negative)),\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "# read in image as a tensor\n", - "\n", - "david_1 = preprocess_image(\"david_1.jpg\")\n", - "david_2 = preprocess_image(\"test_david10.jpg\")\n", - "will_1 = preprocess_image(\"test_will_smith.jpg\")\n", - "# add a dimension to the tensor\n", - "david_1 = tf.expand_dims(david_1, axis=0)\n", - "david_2 = tf.expand_dims(david_2, axis=0)\n", - "will_1 = tf.expand_dims(will_1, axis=0)\n", - "\n", - "anchor_embedding, positive_embedding, negative_embedding = (\n", - " embedding(resnet.preprocess_input(david_1)),\n", - " embedding(resnet.preprocess_input(david_2)),\n", - " embedding(resnet.preprocess_input(will_1)),\n", - ")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Positive similarity: 0.9981853\n", - "Negative similarity 0.99821514\n" - ] - } - ], - "source": [ - "cosine_similarity = metrics.CosineSimilarity()\n", - "\n", - "positive_similarity = cosine_similarity(anchor_embedding, positive_embedding)\n", - "print(\"Positive similarity:\", positive_similarity.numpy())\n", - "\n", - "negative_similarity = cosine_similarity(anchor_embedding, negative_embedding)\n", - "print(\"Negative similarity\", negative_similarity.numpy())\n" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# read in image as a tensor\n", - "\n", - "david_1 = preprocess_image(\"test/david_1.jpg\")\n", - "david_2 = preprocess_image(\"test/test_david10.jpg\")\n", - "will_1 = preprocess_image(\"test/test_will_smith.jpg\")\n", - "# add a dimension to the tensor\n", - "david_1 = tf.expand_dims(david_1, axis=0)\n", - "david_2 = tf.expand_dims(david_2, axis=0)\n", - "will_1 = tf.expand_dims(will_1, axis=0)\n", - "\n", - "anchor_embedding, positive_embedding, negative_embedding = (\n", - " new_embed(resnet.preprocess_input(david_1)),\n", - " new_embed(resnet.preprocess_input(david_2)),\n", - " new_embed(resnet.preprocess_input(will_1)),\n", - ")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Positive similarity: 0.9981853\n", - "Negative similarity 0.99821514\n" - ] - } - ], - "source": [ - "cosine_similarity = metrics.CosineSimilarity()\n", - "\n", - "positive_similarity = cosine_similarity(anchor_embedding, positive_embedding)\n", - "print(\"Positive similarity:\", positive_similarity.numpy())\n", - "\n", - "negative_similarity = cosine_similarity(anchor_embedding, negative_embedding)\n", - "print(\"Negative similarity\", negative_similarity.numpy())\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/src/model/Siamese_Network.py b/src/model/Siamese_Network.py index ccf4757..149fd19 100644 --- a/src/model/Siamese_Network.py +++ b/src/model/Siamese_Network.py @@ -1,171 +1,363 @@ -# https://keras.io/examples/vision/siamese_network/ - -import os -import random -import tensorflow as tf -from pathlib import Path - -from utils import preprocess_image, preprocess_triplets - -from tensorflow.keras import layers -from tensorflow.keras import optimizers -from tensorflow.keras import metrics -from tensorflow.keras import Model -from tensorflow.keras.applications import resnet - -target_shape = (200, 200) - -cache_dir = Path().resolve() / "keras" -anchor_images_path = cache_dir / "left" -positive_images_path = cache_dir / "right" - -class DistanceLayer(layers.Layer): - """ - This layer is responsible for computing the distance between the anchor - embedding and the positive embedding, and the anchor embedding and the - negative embedding. - """ - - def __init__(self, **kwargs): - super().__init__(**kwargs) - - def call(self, anchor, positive, negative): - ap_distance = tf.reduce_sum(tf.square(anchor - positive), -1) - an_distance = tf.reduce_sum(tf.square(anchor - negative), -1) - return (ap_distance, an_distance) - -class SiameseModel(Model): - """The Siamese Network model with a custom training and testing loops. - - Computes the triplet loss using the three embeddings produced by the - Siamese Network. - - The triplet loss is defined as: - L(A, P, N) = max(‖f(A) - f(P)‖² - ‖f(A) - f(N)‖² + margin, 0) - """ - - def __init__(self, siamese_network, margin=0.5): - super().__init__() - self.siamese_network = siamese_network - self.margin = margin - self.loss_tracker = metrics.Mean(name="loss") - - def call(self, inputs): - return self.siamese_network(inputs) - - def train_step(self, data): - # GradientTape is a context manager that records every operation that - # you do inside. We are using it here to compute the loss so we can get - # the gradients and apply them using the optimizer specified in - # `compile()`. - with tf.GradientTape() as tape: - loss = self._compute_loss(data) - - # Storing the gradients of the loss function with respect to the - # weights/parameters. - gradients = tape.gradient(loss, self.siamese_network.trainable_weights) - - # Applying the gradients on the model using the specified optimizer - self.optimizer.apply_gradients( - zip(gradients, self.siamese_network.trainable_weights) - ) - - # Let's update and return the training loss metric. - self.loss_tracker.update_state(loss) - return {"loss": self.loss_tracker.result()} - - def test_step(self, data): - loss = self._compute_loss(data) - - # Let's update and return the loss metric. - self.loss_tracker.update_state(loss) - return {"loss": self.loss_tracker.result()} - - def _compute_loss(self, data): - # The output of the network is a tuple containing the distances - # between the anchor and the positive example, and the anchor and - # the negative example. - ap_distance, an_distance = self.siamese_network(data) - - # Computing the Triplet Loss by subtracting both distances and - # making sure we don't get a negative value. - loss = ap_distance - an_distance - loss = tf.maximum(loss + self.margin, 0.0) - return loss - - @property - def metrics(self): - # We need to list our metrics here so the `reset_states()` can be - # called automatically. - return [self.loss_tracker] - - -# We need to make sure both the anchor and positive images are loaded in -# sorted order so we can match them together. -anchor_images = sorted( - [str(anchor_images_path / f) for f in os.listdir(anchor_images_path)] -) - -positive_images = sorted( - [str(positive_images_path / f) for f in os.listdir(positive_images_path)] -) - -all_images = anchor_images + positive_images -random.shuffle(all_images) - -image_count = len(anchor_images) - -anchor_dataset = tf.data.Dataset.from_tensor_slices(anchor_images) -positive_dataset = tf.data.Dataset.from_tensor_slices(positive_images) -negative_dataset = tf.data.Dataset.from_tensor_slices(all_images[:100]) - -dataset = tf.data.Dataset.zip((anchor_dataset, positive_dataset, negative_dataset)) -dataset = dataset.shuffle(buffer_size=1024) -dataset = dataset.map(preprocess_triplets) - -# Let's now split our dataset in train and validation. -train_dataset = dataset.take(round(image_count * 0.8)) -val_dataset = dataset.skip(round(image_count * 0.8)) - -batch_size = 16 - -train_dataset = train_dataset.batch(batch_size, drop_remainder=False).prefetch(8) -val_dataset = val_dataset.batch(batch_size, drop_remainder=False).prefetch(8) - -base_cnn = resnet.ResNet50( - weights="imagenet", input_shape=target_shape + (3,), include_top=False -) - -flatten = layers.Flatten()(base_cnn.output) -dense1 = layers.BatchNormalization()(layers.Dense(512, activation="relu")(flatten)) -dense2 = layers.BatchNormalization()(layers.Dense(256, activation="relu")(dense1)) -output = layers.Dense(256)(dense2) - -embedding = Model(base_cnn.input, output, name="Embedding") - -trainable = False -for layer in base_cnn.layers: - if layer.name == "conv5_block1_out": - trainable = True - layer.trainable = trainable - -anchor_input = layers.Input(name="anchor", shape=target_shape + (3,)) -positive_input = layers.Input(name="positive", shape=target_shape + (3,)) -negative_input = layers.Input(name="negative", shape=target_shape + (3,)) - -distances = DistanceLayer()( - embedding(resnet.preprocess_input(anchor_input)), - embedding(resnet.preprocess_input(positive_input)), - embedding(resnet.preprocess_input(negative_input)), -) - -siamese_network = Model( - inputs=[anchor_input, positive_input, negative_input], outputs=distances -) - -# Training -siamese_model = SiameseModel(siamese_network) -siamese_model.compile(optimizer=optimizers.Adam(0.0001)) # 0..0001 -siamese_model.fit(train_dataset, epochs=7, validation_data=val_dataset) -embedding.save_weights("weights/embedding_weights.h5") -siamese_model.save_weights("weights/siamese_weights.h5") +from sklearn.model_selection import train_test_split + +import os +import pickle +import random + +import numpy as np +import tensorflow as tf +from tensorflow.keras import Input, Sequential, Model +from tensorflow.keras import backend as K +from tensorflow.keras.callbacks import EarlyStopping +from tensorflow.keras.layers import ( + Conv2D, + MaxPooling2D, + Flatten, + Dense, + Lambda, + BatchNormalization, + Activation, + Dropout, +) +from tensorflow.keras.regularizers import l2 + + +class SiameseNetwork(object): + def __init__( + self, seed, width, height, cells, loss, metrics, optimizer, dropout_rate + ): + """ + Seed - The seed used to initialize the weights + width, height, cells - used for defining the tensors used for the input images + loss, metrics, optimizer, dropout_rate - settings used for compiling the siamese model (e.g., 'Accuracy' and 'ADAM) + """ + K.clear_session() + self.load_file = None + self.seed = seed + self.initialize_seed() + self.optimizer = optimizer + + # Define the matrices for the input images + input_shape = (width, height, cells) + left_input = Input(input_shape) + right_input = Input(input_shape) + + # Get the CNN architecture as presented in the paper (read the readme for more information) + model = self._get_architecture(input_shape) + encoded_l = model(left_input) + encoded_r = model(right_input) + + # Add a layer to combine the two CNNs + L1_layer = Lambda(lambda tensors: K.abs(tensors[0] - tensors[1])) + L1_siamese_dist = L1_layer([encoded_l, encoded_r]) + L1_siamese_dist = Dropout(dropout_rate)(L1_siamese_dist) + + # An output layer with Sigmoid activation function + prediction = Dense( + 1, activation="sigmoid", bias_initializer=self.initialize_bias + )(L1_siamese_dist) + + siamese_net = Model(inputs=[left_input, right_input], outputs=prediction) + self.siamese_net = siamese_net + self.siamese_net.compile(loss=loss, optimizer=optimizer, metrics=metrics) + + def initialize_seed(self): + """ + Initialize seed all for environment + """ + os.environ["PYTHONHASHSEED"] = str(self.seed) + random.seed(self.seed) + np.random.seed(self.seed) + tf.random.set_seed(self.seed) + + def initialize_weights(self, shape, dtype=None): + """ + Called when initializing the weights of the siamese model, uses the random_normal function of keras to return a + tensor with a normal distribution of weights. + """ + return K.random_normal( + shape, mean=0.0, stddev=0.01, dtype=dtype, seed=self.seed + ) + + def initialize_bias(self, shape, dtype=None): + """ + Called when initializing the biases of the siamese model, uses the random_normal function of keras to return a + tensor with a normal distribution of weights. + """ + return K.random_normal( + shape, mean=0.5, stddev=0.01, dtype=dtype, seed=self.seed + ) + + def _get_architecture(self, input_shape): + """ + Returns a Convolutional Neural Network based on the input shape given of the images. This is the CNN network + that is used inside the siamese model. Uses parameters from the siamese one shot paper. + """ + model = Sequential() + model.add( + Conv2D( + filters=64, + kernel_size=(10, 10), + input_shape=input_shape, + kernel_initializer=self.initialize_weights, + kernel_regularizer=l2(2e-4), + name="Conv1", + ) + ) + model.add(BatchNormalization()) + model.add(Activation("relu")) + model.add(MaxPooling2D()) + + model.add( + Conv2D( + filters=128, + kernel_size=(7, 7), + kernel_initializer=self.initialize_weights, + bias_initializer=self.initialize_bias, + kernel_regularizer=l2(2e-4), + name="Conv2", + ) + ) + model.add(BatchNormalization()) + model.add(Activation("relu")) + model.add(MaxPooling2D()) + + model.add( + Conv2D( + filters=128, + kernel_size=(4, 4), + kernel_initializer=self.initialize_weights, + bias_initializer=self.initialize_bias, + kernel_regularizer=l2(2e-4), + name="Conv3", + ) + ) + model.add(BatchNormalization()) + model.add(Activation("relu")) + model.add(MaxPooling2D()) + + model.add( + Conv2D( + filters=256, + kernel_size=(4, 4), + kernel_initializer=self.initialize_weights, + bias_initializer=self.initialize_bias, + kernel_regularizer=l2(2e-4), + name="Conv4", + ) + ) + model.add(BatchNormalization()) + model.add(Activation("relu")) + + model.add(Flatten()) + model.add( + Dense( + 4096, + activation="sigmoid", + kernel_initializer=self.initialize_weights, + kernel_regularizer=l2(2e-3), + bias_initializer=self.initialize_bias, + ) + ) + return model + + def _load_weights(self, weights_file): + """ + A function that attempts to load pre-existing weight files for the siamese model. If it succeeds then returns + True and updates the weights, otherwise False. + :return True if the file is already exists + """ + # self.siamese_net.summary() + self.load_file = weights_file + if os.path.exists( + weights_file + ): # if the file is already exists, load and return true + print("Loading pre-existed weights file") + self.siamese_net.load_weights(weights_file) + return True + return False + + def fit( + self, + weights_file, + train_path, + validation_size, + batch_size, + epochs, + early_stopping, + patience, + min_delta, + ): + """ + Function for fitting the model. If the weights already exist, just return the summary of the model. Otherwise, + perform a whole train/validation/test split and train the model with the given parameters. + """ + with open(train_path, "rb") as f: + x_train, y_train, names = pickle.load(f) + """ + X_train[0]: |----------x_train_0---------------------------|-------x_val_0--------| + X_train[1]: |----------x_train_1---------------------------|-------x_val_1--------| + y_train: |----------y_train_0 = y_train_1---------------|----y_val_0=y_val_1---| + """ + x_train_0, x_val_0, y_train_0, y_val_0 = train_test_split( + x_train[0], y_train, test_size=validation_size, random_state=self.seed + ) + x_train_1, x_val_1, y_train_1, y_val_1 = train_test_split( + x_train[1], y_train, test_size=validation_size, random_state=self.seed + ) + x_train_0 = np.array(x_train_0, dtype="float64") + x_val_0 = np.array(x_val_0, dtype="float64") + x_train_1 = np.array(x_train_1, dtype="float64") + x_val_1 = np.array(x_val_1, dtype="float64") + x_train = [x_train_0, x_train_1] + x_val = [x_val_0, x_val_1] + if y_train_0 != y_train_1 and y_val_0 != y_val_1: + raise Exception("y train lists or y validation list do not equal") + y_train_both = np.array(y_train_0, dtype="float64") + y_val_both = np.array(y_val_0, dtype="float64") + # if not self._load_weights(weights_file=weights_file): + # need to load weights and continue training here + # I'm also lazy and don't want to fix indenting so if True :D + if True: + # print("No such pre-existed weights file") + print("Beginning to fit the model") + callback = [] + if early_stopping: + """ + We used the EarlyStopping function monitoring on the validation loss with a minimum delta of 0.1 + (Minimum change in the monitored quantity to qualify as an improvement, i.e. + an absolute change of less than min_delta, will count as no improvement.) and patience 5 + (Number of epochs with no improvement after which training will be stopped.). + The direction is automatically inferred from the name of the monitored quantity (‘auto’). + """ + es = EarlyStopping( + monitor="val_loss", + min_delta=min_delta, + patience=patience, + mode="auto", + verbose=1, + ) + callback.append(es) + self.siamese_net.fit( + x_train, + y_train_both, + batch_size=batch_size, + epochs=epochs, + validation_data=(x_val, y_val_both), + callbacks=callback, + verbose=1, + ) + self.siamese_net.save_weights(self.load_file) + # evaluate on the testing set + loss, accuracy = self.siamese_net.evaluate( + x_val, y_val_both, batch_size=batch_size + ) + print(f"Loss on Validation set: {loss}") + print(f"Accuracy on Validation set: {accuracy}") + + def evaluate(self, test_file, batch_size, analyze=False): + """ + Function for evaluating the final model after training. + test_file - file path to the test file. + batch_size - the batch size used in training. + + Returns the loss and accuracy results. + """ + with open(test_file, "rb") as f: + x_test, y_test, names = pickle.load(f) + print(f"Available Metrics: {self.siamese_net.metrics_names}") + y_test = np.array(y_test, dtype="float64") + x_test[0] = np.array(x_test[0], dtype="float64") + x_test[1] = np.array(x_test[1], dtype="float64") + # evaluate on the test set + loss, accuracy = self.siamese_net.evaluate( + x_test, y_test, batch_size=batch_size + ) + if analyze: + self._analyze(x_test, y_test, names) + return loss, accuracy + + def predict(self, x_test, names): + prob = self.siamese_net.predict(x_test) + + for pair_index in range(len(names)): + name = names[pair_index] + pair_prob = prob[pair_index][0] + print(f"Similar to {name} with probability: ", pair_prob) + return pair_prob + + def _analyze(self, x_test, y_test, names): + """ + Function used for evaluating our network in the methods proposed in the assignment. + We will find: + - The person who has 2 images that are the most dissimilar to each other + - The person with the two images that are the most similar to each other + - Two people with the most dissimilar images, and + - The two people with the most similar images. + """ + + best_class_0_prob = ( + 1 # correct classification for different people, y=0, prediction->0 + ) + best_class_0_name = None + worst_class_0_prob = ( + 0 # misclassification for different people, y=0, prediction->1 + ) + worst_class_0_name = None + best_class_1_prob = ( + 0 # correct classification for same people, y=1, prediction->1 + ) + best_class_1_name = None + worst_class_1_prob = 1 # misclassification for same people, y=1, prediction->0 + worst_class_1_name = None + print(len(x_test)) + print(x_test[0].shape) + prob = self.siamese_net.predict(x_test) + + for pair_index in range(len(names)): + name = names[pair_index] + y_pair = y_test[pair_index] + if pair_index == 0: + x_pair = x_test[pair_index] + print(x_pair) + print(type(x_pair)) + print(x_pair.shape) + pair_prob = prob[pair_index][0] + if y_pair == 0: # different people (actual) + if ( + pair_prob < best_class_0_prob + ): # correct classification for different people, y=0, prediction->0 + best_class_0_prob = pair_prob + best_class_0_name = name + if ( + pair_prob > worst_class_0_prob + ): # misclassification for different people, y=0, prediction->1 + worst_class_0_prob = pair_prob + worst_class_0_name = name + else: # the same person (actual) + if ( + pair_prob > best_class_1_prob + ): # correct classification for same people, y=1, prediction->1 + best_class_1_prob = pair_prob + best_class_1_name = name + if ( + pair_prob < worst_class_1_prob + ): # misclassification for same people, y=1, prediction->0 + worst_class_1_prob = pair_prob + worst_class_1_name = name + + print( + f"correct classification for different people, y=0, prediction->0, name: {best_class_0_name} | prob: {best_class_0_prob}" + ) + print( + f"misclassification for different people, y=0, prediction->1, name: {worst_class_0_name} | prob: {worst_class_0_prob}" + ) + print( + f"correct classification for same people, y=1, prediction->1, name: {best_class_1_name} | prob: {best_class_1_prob}" + ) + print( + f"misclassification for same people, y=1, prediction->0, name: {worst_class_1_name} | prob: {worst_class_1_prob}" + ) + + +print("Loaded Siamese Network") diff --git a/src/model/Siamese_Predictor.py b/src/model/Siamese_Predictor.py index 72c2fbe..bc73605 100644 --- a/src/model/Siamese_Predictor.py +++ b/src/model/Siamese_Predictor.py @@ -1,5 +1,8 @@ +import sklearn import threading import tensorflow as tf +from tensorflow.keras.optimizers import Adam +import numpy as np import time from utils import preprocess_image @@ -9,38 +12,71 @@ from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler +import threading +from Siamese_Network import SiameseNetwork +from PIL import Image + + +WIDTH = HEIGHT = 105 +CEELS = 1 +seed = 0 +loss_type = "binary_crossentropy" + + +def preprocess_image(filename): + """ + Load the specified file as a JPEG image, preprocess it and + resize it to the target shape. + """ + img = Image.open(filename) + + # resize images to 105 x 105 + img = img.resize((WIDTH, HEIGHT)) + # make black white and reduce channels to 1 + img = img.convert("L") + img = np.array(img) + img = img.reshape(WIDTH, HEIGHT, CEELS) + img = img.reshape(1, WIDTH, HEIGHT, CEELS) + + return img + from message import sms_message # load the model -embedding = tf.keras.models.load_model("siamese_weights.h5", compile=False) +siamese = SiameseNetwork( + seed=seed, + width=WIDTH, + height=HEIGHT, + cells=CEELS, + loss=loss_type, + metrics=["accuracy"], + optimizer=Adam(lr=0.00005), + dropout_rate=0.4, +) +siamese._load_weights( + "weights/weights_seed_0_lr_5e-05_bs_32_ep_10_val_0.2_es_True_pa_5_md_0.1.h5" +) print("Model is done loading") # load david base david_2 = preprocess_image("david_base.jpg") -david_2 = tf.expand_dims(david_2, axis=0) + def get_similarity_score(img_path): - time.sleep(0.5); + time.sleep(0.5) david_1 = preprocess_image(img_path) - + # add a dimension to the tensor - david_1 = tf.expand_dims(david_1, axis=0) - # get embeddings - anchor_embedding, positive_embedding = ( - embedding(resnet.preprocess_input(david_1)), - embedding(resnet.preprocess_input(david_2)), - ) - - # get similarity score - cosine_similarity = metrics.CosineSimilarity() - - positive_similarity = cosine_similarity(anchor_embedding, positive_embedding) - print(f"Similarity score for {img_path}: ", positive_similarity.numpy()) - threshold = 0.999 + prob = siamese.predict([david_2, david_1], ["David Han"]) + # positive_similarity = cosine_similarity(anchor_embedding, positive_embedding) + # print(f"Similarity score for {img_path}: ", positive_similarity.numpy()) + print(f"Probability of David: {prob}", prob) + threshold = 0.8 print("Sending message") - sms_message.send_message(positive_similarity.numpy() < threshold) + # sms_message.send_message(positive_similarity.numpy() < threshold) + sms_message.send_message(prob < threshold) # set up on created def on_created(event): @@ -48,12 +84,15 @@ def on_created(event): model_thread = threading.Thread(target=lambda: get_similarity_score(event.src_path)) model_thread.start() + # set up watchdog patterns = ["*"] ignore_patterns = None ignore_directories = False case_sensitive = True -my_event_handler = PatternMatchingEventHandler(patterns, ignore_patterns, ignore_directories, case_sensitive) +my_event_handler = PatternMatchingEventHandler( + patterns, ignore_patterns, ignore_directories, case_sensitive +) my_event_handler.on_created = on_created # create observer diff --git a/src/model/__pycache__/utils.cpython-38.pyc b/src/model/__pycache__/utils.cpython-38.pyc index 01b377fc957dff7195f65213e1bf2fe3d6a3e7df..0a34ceb671ced56ebe4b3feb285791315fc65594 100644 GIT binary patch delta 20 acmcb?c7u&Ol$V!_0SIO=U=!+cGWyzW~Qot&rD5E|GWFYrTMfsOkf z4-fY}E-pS11u;GW86hq%2@MGuCFRGDAMuH4>1nCxDX2bDA^f`y4HXRs9UX^?0GEL3 z|FiwqkB|=lAfO=pPXqkFhJc8K{LdY93{0#K07L{NB*cGC{`2zRl>z_G0g!P~@MyRt zQSsGG(P+U0JUdU;*!#` zy84F3rskH`w%)$}fx)5Skr61?mr&He|wIM_CI(K5WW5#NVv!-G~B3ol4@wCV0>DhALs;M6Y^?%Fz9&I z{}7tFPGb_$^KCO+{ST!7N%VgQ6#V~-=zjzKZ=V0U0l4T0TZlnO09pV7E&?Jh!hb6O zY@~lr0~Zk&@EPzYOZ{R}KTM|8s_AHzH!4MC*8RDaFt@cA4RCXLTS2-pNlHe~Lny}L z4tVz3i4pbpvSmj%tiwTgs9xgfpszb&B_Y*M(W>0MlJFI>Mqj~e9&^i^&z-J>e_}6X z6Lm5nfIJ7X4rU)vk1s^m2#*MrGR@Mb?_!Brjyka}58n+DS~;>;1|!GN#>b^a(wlhQ zRdT_O)G}at85hatFj?sSLzzR9L&0mYXR@;sJ$u|k4`CKB=Xmq4Vx4?!^c9^S zaeaKhmfbq03x^SLNJ{o__MR5K#0g0iqKqEgY`$g*!ePU=m0AarED}>}h+j+-q10cguUg*T+;;aIZ|HA^&R1eCE8J0q*IN&jLwtn|P8CT&S2 z|LOaLsH1suaebDNFWctjo?TPk_gvc%FPgBPZSdcDM;^9l;d~5IXi;@qie~F1cTv9)y*e#Z2@G9(c^!JoIUVbcL zudZX=J$7LC)Y$2SwUO?WbG;w8Q3-f9eSNl(zB8+1xXTjYw$XT*AH1{tLk7vw4_0q8 zQRbcT+@@bUeb*e`U`KqNPMOUfk4*SQ~B_bWgLtljUKd(t_*xdBxB5) z$WK;HhOw~7JR<0k#hMCJrk73Q$Iq|=|9WZ3fq`EJ69%qhdQij&sh0voer>OX){3sb7;&Nd6D z^*cI`+5wTj+G?86jud?d)1}BlH6(={${>^f0Ph6*1))Cq3oJU)#I~x+=u?E%U~D$m zfvrUr7shY(ik*iAgCvH{P*i^KV z_r<&c`5aZO7qxDV9nZbat|~m z8AFbV#L~-1S}mL9kIbr6D6EPMyFNT8bwX~VAN<@;b)O6?QY4qg_Ra>$DV6QmytCPo zbXB1^0lWrkecO2~vcb)wu3m{6H&2GR7_Al2fH=}`_(m{Pw^wP8?XyDUCJ@i;wU9rw9<~^%|xyI;^ z4C>_0Tw6}aCS;EgPD+zvbxoF2(UW$c%vvaLMzt+)q0o0F<5+18n>J1769x9dc~xh? zJq>mpDr=sK+hc-e!$RYnLx`B4K7CzwT5)9ucl{?!6?M@$P*E{ZtvoAmVB^&CcLR+xGSFxj4U$Vso`e)jG1nL^J*m*0tC>?Gr$F-Ix zkXkYwPSWwj%J$vK_3JrM*to0ulG|UDF}dutq{1>J6V)ISY)GLkpk4Dw^s6ll;W_8i z_0v3-;d=$|o~+13immKlS@h+_ItLp9AocG?9g8Rm80JQ_ybo=jM688uM@6q9#Bxif zkB*eYo)`lLN@gS+$voz0l-?62onfikV~;vtrLeQ@b2_b>Tdo<*69#-gq1STEmuqkM zZC>!`FhmAYPB`k3@aw;ps2OAu-My4sZD?$t(noCYW}09_!3J3ous!RhB=#sFQenGQ zNQb4KpJiGw#l9rzi~Uf)%Q{gfWF^TtkhiSy<2oykSKN+nOS@o+*n+LO(-(gBdch^U zm0l!gMhPn;tN{5_&9M2hBpl>-$B^&A75@QjMlZ4r{QihQtpD6r7mjg_apWGER^|Dv z{wf_hd(>vvXufL=M=kcT=WWoChbVt!3bwOp)Nh1YBs9BaCQRLwRyi6ScuyB#eHbzE zW(ATCie9NJnInx6Fzdh``%E z*%pgQm?pURW_sKo>xy*Mil4_f1~N;B?`s--+}FCubFOW`c^uw)TEPCz-yU?xs)Eh7 zlBZ;LQtim#w|O8Y&ODcqbm#S!syF546l;DUKu5h5w~%9fkaC@yV*Z%~88U~1hFKgk zQt2*YA%Kp~!8OK)^7Q=1KQBhWrBeob)D}zbR8atlPwLuLH=q6`oy}}xK!EKCaNrx=yp{_nUEW7f5S6n3EMXUv<0&-mjd zvneYN4aX<;WMDmbD}ieVF9yef2VEC;&O%{ZSN65(!G}G@*@Sd`n;qcnIjet@!PR0m z?A?C)>Y8&?&Uj1@HC0&v^LS0F_YTXBH5$wLcy+#2LeI1GDShXrc;I+B*imd)q3Y`v z1y0T(Av^dLN=Rj$K134_j#IWfhrjl7^V#hc6p@nW3Jobl;##I6s))O=30quv$5l)x zMj0BLF{n@PTPtlJ@BJh>s6nNDT#tQcbcI@9qPLRfe?2+YOv;~P>O;nE@8A`?EdE)9 zpQMT(gJ4X|rJpz6HBi#%+n>792>&j+>W8^)rhu%RYI!`|-&&eclmXg&AKK!&l=1TPyvgoSl zqHO0~ELL;X!=1)5CAj&9$y&7mA0m_}E;OjPo* z!pY9G(6|+o5nB58V`K!0l6h!{DYBYE%2t5|zG>W-hnJaG*(Jr{ey)t3eeCAkKov9c zF-*D{e^Vas;OwPLAr0emP*t>|(!+a})U!m_M~m#N6GKJ$`cA+Q;+HRjdw}o3ZCsBX zwo~c0ZtkAKRGe`l9z>nb6ypoZ5GuBov9b$l3tWxAP9ywSJqM#8*bnS=j3T=g15fT@ zYN)Q|@X%N{(p6df`dS}JjFjv~=Q~SnN~4aw-HPl9O54`igQCj=Pu>o0{C5*Q7E|H_ ze86J#5jA{iUYI2^8GQR#y2&-5jhl5ZXcEp> z57iLViBst_2jpBsjoXM|*2;#K?f_Tdx5~C``WPSYlt&2=A4ia)R*b6SHNdvn*Kr`d zFwmOEMR|)iyU|(cH*NMbW40}B>g&A0m9gc|-su?BgV)Q0*Y{ei5K|w%mrV^?Zci&b zJ%ccJ_2Cow7Zj-ypqC#l|H}k#ehfTLa-nIq&kL+TCal0hPpmFE@IE&p%dp5+T=LQ& zwS$P5JUW(+(zY@GyOCAbCUzxTd1X8Fuhz=!*o{+19q>^Kd!Zy;u_5E!h46h`27S(< z!RzZqPKfP3%zcuJ>$6CsbJ5ChD|4@St~q%3uDn{S;iOd~E6>R|p-(@%z|9qG6slLD zVZ1(g^*MED{|PhknZVKlGs^qb6X1f>lnMTAT86;*B!|4<*ZzHVS&q+<}2@@xe zTJy^=wR+cpTlL$8@XJTIm|a2)pY#Ymuvtiz2jfM!nhgV6Mrag7egLhn|6SH{)FPx2 z-JHEgBofeO4D_D3AzV$IA}L;@Pigi}c#th{W)i-y;bduB!|_I=ft)9ZuW2!emt{F8UdBQ0oIHuB~g>#PV8s@8n08p`1|A z2(?dMnIa)E4JxMN2YDQyr^>P0ts1*HAoWn)QO=LAz#D>*(K73{aJsT#M;g8JvBz&= zLJIi`;Q33owPsUu{=xif(gd?XuJ@`kjz&jq4q8_u4rWmG@MOyW0Az=b@wOkGZ1KC&I_Kka(jkmc66Bl<1Bp_+q-_XbD5Pw zgxTv;-AiYps0u^DUSp>(Q^)#0<$lh?bwf-L%Um%Ys;sr=_Bv?=)N1vqz4-Uldv*@B z=JGQxm$>fO=2DoJPvq#It1)J2*?PLWM+obS){NGcE9&)wgiiwDmPc3R21A0GW_?@W zIkPrlr}JF-c`J2UInuYr(*yS`;ja{<$}5|0-z@S7^5-{qWXw!rRfLC<_PZS3NGkOg zldqS%T!(~&g$KZGA;z1Nmme5F?YMEy)e0Lm9bNkVO8Y{Cy+bU+6I_K;eU> z4Mg;g3~2ruo(y?5BQF9n$OUBr*1x=g0;)7~IC{&Q08jt^_fBkTxuOvb*T63)!N$4< z1j)OBnW-zES6)ujv&6Iq#A(}Z`8C%y3%8x_*-o^H5x4eW#@oX?dCfjpmYm2=xmhij zdWoBnk~-(hO}KN`jHOZ*PKS7PSZ={zurf2Bw0|j=yAxko0}}Vvs2A)_(}B`TvP;;f=M5884c2P!99#$bV~(|?XYEgP#Nd@x0Ak=@hLm3dSmF)G zb+au+(bT<%^o|_(Rs{o!_&vn3`ruaHO}&6}dJV!sKpdrgdaS*1!eC**VSQ_o{d7_i z)n$q3@$cn^49^ir9@awHu^|425e#a@U1m{we8$qGZKh*hpAFdJ{2d50s1L@{U`p=N zrFI&#&YoWtS!(&TQQnnue4q&}f=`tny9FeehvT*|Ye$VH>&s_hH<3>h{*GjIFfgN#RvvUT{3< z)mN&AHh_%+j5iz<-TXw9kp1Xzg77w8+dzKgY-66r5^DQF-pKQ!Ou#$q729jO8&b=39#T(8^*U0qlTgLF1ke=kOPVvE3-9lT zQjTg)c6vHA%DMYWc*@R+T6)HOptd-AZ==L_IlnXaWDy4luzw=6R8h$?H z6LH+<2+D3#aH+rwAWDZlb}1dI?U4SWUNoT8-8RTM}X z4T-ah>)p7O-QK-KlVvrm#0v^UdHxZ8(&+fi34gb^oMoZ*`}sRRJhyR91iVMG8H$$8 zx;Jf9Bgn${-N>y0$3^tE`um50?UU<;tg}iBVJ$V~Xkb-3)L_6J%DxH;vGx+16G(4_ zH?GoO;ZloP%D&U;T4W05hwxlHX<6RqKcGX!+YY_nZ*FvAYFab5j@Y=W_e~b}H(aE3 zmY>u|22PvOkaKh&KWYlpPk3M?q{{9-FCQMOW+_ZA3)GjcfUhy97OEYq&WTNFzg;~p z1nL%$eR|MNaVZXuwqq6d5|N1!i*#dc|06l%d(c?kDswhQTSS2XBY6UyDlTh$gE54L zV-g5R?s-*UNKMfYqcmfOgrswA%y``D8!NwsD-*wGp0m@Za~&4@9Z+zt&^`1ZOe&G7 z>ABeCbV|7JS_pVN&Y8@cxjleRYX97#W5iiYNY7&=pt!bQDoEBU%RHFVTNpV%@lZix zuJWuTuCJZzf|=8Qx9nih4LTWmi3+AK6xR(K+r-&$>%}k*@+^`5hUvnp_e0s7;{~`1GPPphWybmq zEC;kqDCE@t0b=ZR_2G4)5hnN5*#n2SyZQ=1xhcO)kJH)W3fOX19>Z!HJf8Ief$QWw zUC2t|uiqR89UDABO*+^+O`xwVKC)ciPqQ4wepABS_0D67n;RVp9g^qpv&-`HydDj% zO4iIj)EO#KqW<5?Xq_;o;MRWw%-&|b&n<2MyS7O5I4}3*URC3>`bs=?j=PBl6CFQC z?<}Iex+r9eYL^Ga(ss}naHexiaGk&{8CdKlmrdm<{6mC?OKGxdrt3@4;t|RgoMv^1 z{2+BDfLf+M715#?#2_C=$8BMClAH8&9p6TBWn2B$9x|#Kb;w?W;I@r8rtrap(2@{N!ygb%Z?=#EVN2{F<@6&=R z;|w1`aM~5VX)|3M#(ih)w~|-G8oNeiyH4LL&fbT!G4!y$r$}$Mq&(HXfE-Y+elZ{P zg|f}YYD8zD={BUKHT-e2->^BOX=!#}L3fLlJb+980EmL*^$r>qJD|X1erdD6NL~)F zEX{Fc9aAI;I<>w2>%U;$t}(X2K|JGtCLtoF^P9(q?gM^H8==>u7RyHb4vVhqt}Yr! z1=0l7kGsPsY<2@=eo}l673HzK3$0@*_!9@%KbEY8@ z^;7#ey1@-zdzg*e0(s48jFWuGHY~KgHIW5vjE2CL@*!w~*FIBQH7L}mFxU@PX z=KDh`rbb4eBCK&h=(-*^!tm%gx}xp!)mr77z7!q=S0*_vGtA7xKRdZIm+ae?&FLd} zs`Aev)r*ZzQJDn2&7^3G@Z9?jboxhJa-{G1cwUwCSqKuG>jOD#YRk%o%VWB+ z6Hn8%+gohRiH2z>74cWmS$Ku$x#%eE?&6~UMbHcbA!Gs3dHd++06q2CF2&L{%qu+U`bC!*R>8nttP?zY=gZ*iP$t^j^e)8U=)j;{w(gDICB##=Qpr zNRQKOQ`EQi19}lo3JsX+*`!6T{)kK5s`BOfakI`VIC1gRrPZp13S zkaROe?Z2oNocn3kKp?wfRt=6GirVYgJVcgGZkrpW_S@OZ5tCSm-p6VoCG$4VDn6bU z?xsoGx^4t~+a8n+%|w5h!;vZ6-dvem=LmX7fA7cw1msRZ4UZcbBQX&YX{UNAZ4Ngd z1t;Xpc;sB|j|@IlI1)Zm4alJI?QzEV;5H|`jS`e2#ec?}Zc5*~2(15+BRfT?qLkW$ z(Cq$&P)>OF^jvi+Ks@u9f|n@VcKD8-?9suze|}&^q^kJcKi!K=@rq{NdFvMpvd~9u zs-lseqBQr3CSXZbYnx}PHH^^mTSLr zN^fu6fo1`Qkk%G~@Rj2MS@Kl`|Y9E{dpyxpULjQH(({m5$D1cK1q38V>#*TY`jPvA4#Q`&cr2 zm?(x>>72o0{mZwpT6ZRpt-7MecYG)~+xJSFgKCDJJ3ncNj;>O*C7b!uT>g5Mq?)eE zPV_W9wI9JSZKY!u>Gu<8wy&pmRK-wkjAcN^HtrB{SO6gVpyO>2s{@isSxW zBQzLkwHg5BVVxMr&TuNHhqfSeSt1EjW!X)1T&=HExaiA}4Z0Y}mdOv1c8^qjF5Q|- zf_qMA9=G{J+hxdqHq9BMO5umyo`NP}O-%j$P3t33$%X>DoP{1xo-`)0{{UfR0naOj zRa=y53J^$K)jLNqdTW%k>{TyxH(7zA+cVW>sEw7ZWgp8hioHS7-1)t{=g2SmSn&Ci zMk7h#yc6DjQLNCkyr?z+;RsOX>yq{9m&>8u%U(8u+S=ULl*UllrpV2at*~49z;aB~ z@T#3cBIQU+nUg_C_Rr?qRW@>)*gIohTjmWN`bL>|=b5vFP{XPAkl6RTs`hH4?2g!> zj!s=^)oc%uckO|6u{!CA(3mr;)r~Q07M(#&JkPnSQ_6B%WTmW4=-Wp{Pg?3(4L#8I-K78}8)zzIzkd(tOEuz{(2(X{A*k~`4?-&H+ zAMExuv9RuBTkdUvsaBJc+lAH}87Oc-LaTOz+>A0oIvP<$7Yh%vUDHzvzMr@sL>yd) zbF4Fb@7UKshWg6Sd^Xc-&Sri%F!z=9-VEt>R3GY`$>8MSAH|vS=66%V6<{5fsf-oP zUxH@4dTRC{Gd9I$Z)q=_A)&{x4=az0vZ6kOtw;yR9woO|PK$Q+tvYe)qFUQ2a`g!l zq1j-x@8`vk0DFt$EgCe`$By}tQU=r&S+6B*FIud~Y$D;0tb6#!b0A0MrQTWuQo4BK zBKz_ilMYn<2yLwJ5u{2>?-12mE^?jJJ&Gz+pGzYThnY^_%??kc@@0}CawY~97_9Ol z4?5-$eo-PjT>j)xt1oRPpM$-`u3~pcmr$VPfy9(|!6td>M61R+hA;OUz?=9t>a4#v z--*jt(J6(sl2qXAfml7AjRia1tvR(n95gaqNpgEXS78SAu>gXD+-6^HKpfR)G!1z4 zn2StwNr3mhQLFkL#LSelRzAZ!9hu6+#2S|F4fD9nDv4{_(33G@BdTP3$7uIM>ve43 zd8qrS9rZ&sXG%k{cDllU z0N$L_#^WyC{_U?oa+1AC&7I^gTc45?tx0z~-TTh)R=29Kf`|4lm}eW7EgF3oY=U!A zvE7EgT^Sq8aYyBiu>kp+Ma>~0N+WuM9-%8SvCp~45&cf$_4)!SeX7kH2scT$Qwn)y zF_P>>KUeVzJVRrpW)2!Dj^8J+pZ7DpGL*u0^a7fOru5x5c|AO0fr<6SZSaMb?+-NbFe z3Rv1>``m)hj{3gQUjKCAv$-5BE>$B>a*-bvST@S3s;zIZ-S5^sG2;Gq^L3j8{n)IG3p}-_m65FLH+|C zV5lI*A5LsTRh2O8{$M*smnFQczc=ZtW7BJ}_tD z-@Vwnf5cVtfGavIv=_wyZZIZyyD$IF9DC_ya++pu+BIYT6Zyc#L;@5%E#l)J&1J zJ~J}+YH+)v1@j48TQY5oke>5irE}`s)1-Fd8DmcAsxS-nQ78A5-oygu^aXnJ*IGwv z3b&9sPzA%0QcGx^ZJ%K7IUV=IFwxJucS`zL z`{=kKA~ijzb>&I3{R$*!>?=`$Sg$xyyiw71qVZ#hoV|5FnUVpxn;Y3pf7&>En9}u0 zRQI$iIHDRg8)KQ$2+l#N0iqd36roR}OeANgwf1k6T<{C+^8r-}@CR ziuL5acO6^bDHg*Z-GeY|;Xat>4R{`xEg8WKlwckVz=-CBDwg(kC&UmU6UXDt#FZ;;JLUhKMJiqAe6$m4tD*g{J57JwhV6d=HLB@6! zjlKH~Ur6ML@N3q!q6=G*M~gbBHW+bP7pPvR3a;W%CiLT4Y9I2)FFPs#(0sj)#+^}|J;zz01^lT;IVBEnjLLJ zHPT&Aov#HvG_~NTN+RT)%pIRXSLavVhnu%h|EWi<^l}}cjdA61w^s)G)!oyqhSO>Q6m-1*y zmRz3OeN8~^Ke(cV%p*)%IrnZL?iG?Kx1n`%j2d*pc{1AJ^&tGFMG=>|efmT%#nytN zR7)HJM zAga=7v2Irn?~W8|q(>w$kLzvV^Fv~Hj@ySN+f zp0`@O?dtSWEI5w7Vth;YsNk#xij2@83#^$hc1i{~W2R9p>|5Qc;+*8DSqAXq$>TC0 z<7x4K9IZGK&_%W0s_90XNk-&^Fffnk(IzF~XZR5}EYSvt6X}d*g+M$i68IYg&+#LZ ze5|;%n*zy>@|nOZ2$ZbZaBK0?4@5$>FLG6K%E28X30VrwNgJJU5-<n+a>Z};r-d2GKs)j& zOwFP#S)u!qK9I+@@F>u3KJlni`6)i;lW$^U-&t~o+CYouirlwsSZW(ArgG&q9dSUj zoJeSjzrz}LCCw96Rm4Qgz>5fl^q@hLA@Vuo^sb^I3a05sAp+PJ45U^Ke3 zh8IJg*ce1IX-|fwsNF?-pk9mAL;duu=D}JyoK1o`=!2X)v_Df(o#BTiA5X+KR{}6= z|MTd+CT+UfcX2EU;RTkR1YFRY?^{tJ*Ku#wsD2u8(!u8~xbE!PDYY?vgl<_{Qk5R-Y8xEPfaBEgI z_NGt)KQdD!%z>7i^E$)LXgFp)xmP+$w@wu|o|&=?|0PLm`+?k?h8$b5ie5LsZ%t^_ z+4D#n@Wzf`HW8G=IN({nbwMDEaZ_xQiO#yoUg1=wp~YXRbJhtR?LR=Zeg`3|-YBpp z5spE>-#RqK(QerAM_Pbu|Gng;svJ$MB<)Z<&evwzwluyB9RmK&mTryA>p;EaG5N-> z7_3lf=_A?q$A(GZzjiEcN}G+hk5u7{HUmy8yzb9EUd8ZsX)n5Lk)Zc><@vT#;!CIk zpm*J-KhlpY9Ua~8mlEC;lnybbsJH8=71jsw{?j%2yK7T@Ju(X}B`(MJp3Vr;3o}~B z>{dMXYuWdB1WDDwry!FkfiDcKG{}hH;ir|I2Sy@hW z2x(uWAVGG2Yo0wq%@#=91U*$%is4ogkzOVP$P!K$VFC8TeY@v#G$3p12o{;Oj0IZm(gcd-6-&M+Av&>JvC zu8p?oQvj|I`rMVw_9bwvD2k3${8Ly95s_R4(4Ti-ujC>a@;He@_lu75=Q z$^3ALhYj{0KnplE`@?9Gj5mvz@vJ>7$&^%mdex{Ccsn6NRIlBlI>VOz-sxZI*xAC%OEuZ2!5R-BD&a!1tO*1RRfB6|2^nC`3xbFo&iR0npAv)y2!U0D@ZN_GZjc|YUX z?X@67Q*9Rq`%Bro+}*@St#9>53wlr~j^Zp-)C-<~ry2f<&Je=TijqE29ltkNP9Pt# zw~Yx4^$CGBQ>QP9uXm~3@}M&;Av{dk(c)2wv`-SBAA)s1e5Lp9Ao@RbL?JbdY+WQkH$@co0A&@OWOlEJ!;M~KD zSbnl!3Ss`4ZJ$0=N!)Hipqf^)vWK)*pUbpc265IUMHBOA&aC)Ah zzy3c!g(>kE?EIz7r())5q`<$%c~@e_S-8k}q3c;2 zZI?`LFX&poqlM`>Bu{~0S?{7vBRze<%m?j{ z%+;TW(`4;%+m$?jZ|la$udvu3nZvu9l5H3@pvY;PhS1c|}<`i}IVNwGwOBjAy2gVGJdmHl!JPqAv59 zQ*`zYgCBjL!yd0Lc{RwVOuNaHHrSh<$}G3HWIxV#dd6vAUyXfuSTi#Rtf9e~|4&Il zZPR-yz--tiKBui}D?rk8l&mfkWH$TPUkcV{hqvkr$j0b;?gO{}1F&{_RLOY`Fg9o# zBp+djpTxq;^~W5{nSeZ_ z&$JV#*l7jVyX$kxE?9Uk+}qU`z%KHu-D_+qT&5tRSWZv@@pbL(m%^2y-HBaA zfyJx4c@}+6L-3+wRN_*%;;t`>6UJ@X2~>u@CSczLfv)DR)acG?QkK}8+MI7|0YX8I ze%|}i;btrs_B63p=CE+;rZZ~m*SGUQ_gnRS@K{48g1*c8DnnfpD9$LrJ}zNn;Vdnm zXOM>+DXvnbaO_}BHaDxiKDM_by`f~GTF6aL(a`-@8vh@se07Ht=#DV4Yg>@*qM(Z; zS;q{7Yp2GeA=VtF5D70aSk6>WAe|u+!ZF^D@|nfTiTAb|(~*T??54K=&)g#cT$Hxg zXhrG6^&Xly!l`mQ%(N~cSz30Gfa-R)Ku4BHXCJHiqIMXy<__194=&TQ0RZh*`hMu0 z_7Go5_p0SCP}XR$IMZmoajY7jR;b%L^xnHU)fe&DOZgouP`9nKg^;N0M?YI^rl6qk z<0bC4yl!RuKF-Y!pl!;yk@+g3U9K(=We=KO*<|!ufG`jScC`BtXQ6*B+t>UNFV4oe z507F9IaAPd{jQd|yU=_KW3eLIyNHKmyG142Y=dldgZDIas;zw;Gc~V_wR6}TYx{;% z{$;JC2~u~I2qkA)I}2OGTsYjr6YkK0b>?Tjqtzeez!MRW?2Ls{m;ba(t6MDaO{d~y zzs10P-gd6e@Kfu_?10R`5o|2ophnEdvKzT>D_H2nZtkWRVigNAVC243>a3B!?T{WF z|3D~wNO_7W%5tdoBg{m3$9t#U*7CND#gD}%_PsUPjH9BI>&!VE${4n2R%J0#o^qpn zKVIXw9;bJp6ur_%SJ^AXeN&TtkQ;pRDCpz$t;D6!;P#K`yZMgafZu>bz%7mEPFq5GYk;5exH`24y z!kq}BKlz#;)iuafDQl;Z@n|$?8GWK|j6rXP)wDPz8MQQzL?Rg7GKjkI+HzZ_h~Iy3 zupcV9dGUmhUhimHd_p|}c9oW6=K&7w8-7Tpf(e~YaK3)64?QG;DqiwBaOAcm$n;N= zrZ5B@$Fj-XDl#)f*}&N`9#ijn2ouY{Iu^2-x@_ngnBWh5mRBqa+iUL>71);DO}I3Q zW#dVy3DqPIx$aEsfGG<10%`4+*iB&asqF|ijI6~G3=t8zKaqc`qD@8+(`^z~@nsQG zD@Hms%M;Uci3h^)SC@@oRtEVl6*z3;gI0HJ{6CW#u4%L&6#9u)PT@tBjKZW2N-?iqfMo}rsT|(>v@?WVX zyLB})MYhqALrN70uWXxrT6R&n?U${a6klVu)t0OK>*03Oy!G;f;^o)XU*74|&F^NY zYQ77j#DXmHdR_rpY>4e%xs@Ai^4m0A3UhC(hW|{G<=>|S{`tlf9432MI)9p;01?v_ zoul}`gW~!Xh_akOQ5bqCF0v>EE3r#KXT(&i-7 ztiiX_TvbtOpu(V0V>s8n09!@6-i~7CY>+nAf3M&6Q=tq~D0`sS}27j_)Y3n#CIC?N?S5x(GjnF~rg}h9i4TC|L%SEG2upk$$9c zEQmTft330frf20wy4a~wB8qr_c}W{X*=kt0OL%U2BdlInIu|*{?!o+=Y|Wqlj((j*-xyiMr>4d0Vi@N0f!SR$c6r=ivNQOv?I>PRRpDIHC0Zz3A z%-O%)pn13S>Pv)M8qizJW!@h-=hkO=PM#1mbX~X&xbb#qX{$^3i;2c6K;HOU#q=D< zRad`0Gpetyrz9Thro$mbjtz$N<0KH2&kLo$@8iLT+Q%M?twQdlBLib{zyC!hbFel0 z?-BZ_kXY_lKkd(8B>qR4fT)iMG4@MJ`>SJiG5cw?!xSDLVcMDL^hc(0YvezuMEZ6G#{LP`;dj@;d$RU~>P932% zKU4`2H4hmZ%%a$i@%&t`>$o;}8-wl-v+oExGZ_n*Uyt_Oh3#5_HZKv*MZ`E`Wb_o- z(G9pmX#Xa3vWHV3Vr6}RJ&UdHeCM*Ni*<3CvK5}?o<-6{>c|QzLOWd{?}I@$5>|~D zo-HMx!RubuGPc{#pX-qLAcl_s2zcrnSv9yw(rLePSJrfv>1lS}iC&Gs%ej*PVDND; z%awU{qZ~ zV>rJei2b90my?UgO)zWc*#nzJS(+^(8#lkZ%fENp|5S=uwjn*!qM6;uX5rrRN9Bc{ zZhy>y3%J2?HCE*H;Xia_iIG<3YQ_nEY z^U^c+fp_@K-YdFV)(&LqmmT8iS-I+}B*0()D|Y9}WM8tkW=+Iz;U~Pj@;1<_A(*n= zMTfSynHr}trM$<30w9l6=07g^JfBj0VgxiLLv+hLOwjX_;lEUveB#_=<*YkApLTGz zu|?_F*X?Pcd=(Fq+reTJ3IQIlepB}R@ldauAjJDxq-%(^7xyU{wehTyW}X4a7smfFe8Bg;-e zA%N2)tG&DRC%zgU*6V_%&%@>E{?K)!0wAWq29BzUwhTuh@j_lv%BZ_xYLA%Pv9^{* zfmInl@o{aX!d0;)L%DETwQe5tBMsLUc6y;xVVsX@LUOk#0rT#$zU;Gd6R#v|xJ9=? z?&rLU=!pH~?c&&_h#+KB+4tKzBPN-1cW%pqO>i|RY(}|{){AL!4KyTtsfWMuO&|Xg z2_Qj3w$!!spuguQ#{F(wZ^2yGJT^oBm);>XYH-w9j6Yp)=t6mIW+oG-k)b?iHD_V? z2r!$^ASQSIbDhx;MurvWi;0Sh?Z4TE7Hd~!F0|rC9iNM@=s*B676d1_jm?M*h#%Jf2{oYPP{4H~EJu|4dSk-pHxAG41mCYxZdFl`3=2C6M z3Gm>&9A} zaJY}P`A!#n-rRBfqg0R}S9<-_K?b?+e&qOTN2(_lGp28v|5P$PaT7ZJz5h=!!FbTG zm+gy}{|_Ksa#_t;P5+5Eg(>7%KO9t_^NFK|2elhTa`(jc_einf&l{5{%1!{u{{y5z zTffibD_CLaN{nF`HOsrP+3nZGI6IghXuDPlv&axG(7U<{zo!}Qo5-4ZOlXAlCmp}7 zL#m~qy9;K_**pL^tNK0iSWMRUFyJuS#}!oY)L~A3&hFhhnoY(~=8ScILub;OHgtmT za$s%*V4uQ~^qApoNs+p-9C25!H4QfdY=N>f zkzDSfBzGQJ@`4aK!s9gxFdrx%O6XZ7T9dTuB)gm9FkI8-bG!03ZuI+m$Yqw^KxKYZ zj+K?5MJ2wd$#CW_2+t#T_|~S8aGGkgmobu(V5b1%-ml+1wAS8uMQ@bgl?NZ4d3d}P zYBl3db#E2-8AlN+7pEn4-?2|rI(4Hm#cq;F;BrSFUuvOkc@oXO;vAq{E&%yyO}w+) zNpS9WD_|}&pVx}0B#8q@EJU}t#w**xWtd8o?>d)$zj4z}4oj84$753Z-|ca%(IMHh zA%|R2=#Yu-w#@Q2&{kircr<)>~05jul53 z&S*_`$zov962p*j&3vS=IMrXCE1SuyqlSc~PJZ<}lACn7w#CUnHs=f~l4&}04$T-~ zN2?y6ol(BMmil0pk~)B=DtOIBJ=M&yBo2(Pjz}DwantavXyloLT+Y_L>}yJuXs>nI zK7@LlCfew-qZnA{H4;HB+itZ4sTd=sG3!^N)J&mZctd31j>J^jQM$8o_MjjvTWM@p z)X}evr9o1w4UV`@QH`XvUx|gf6qH3hxj!(@4qc3cH^grL9*dsmk{E1h>Z#`0@#>#3yw0DBb`)aVA5?x%BrxX8y| zYK_K+JV@^i%zG4W!x9dEDl|<_b`iqP&mx1@y;RlW)Mu60DOg84bJr9sUMCK(W%EZZ zI9H8cM{5;y>u*RG*tkn5p{zhhxZziI^u*7?|lisarx@EPT zpShSY+PWrqrOx9QWMwSZ zv4QqtBN3)~7|73Gtz9>FB4&-HX;shxxwFP=SH&_T+eW`6TegfS#uw-+l#uC@T1K%= zwq!e0@;LXbTw_xcDveq%p_{8tqUN`eO|9=P7`affuLIJvE@tvBUL2Mx*yFu)R`R`- ziH>Q+#d!cRBcH8Q(&N*m)MTFJM&@z1KJ@*rHjEm=(^_>jr&cOYn`PLgZmlnvBjlon zAcLNJeQ63$B)c{_Z$c}ny|sopO~gO~TyEMsRJYr(WoYoESn~DW98=YG~~(rghzN ze6R^WfURh5t>(6AuNU{K#BDs}{X5oqxRs$P0a(#V`9Q{V_+q`BB(X_2wZD=&V^z5F zweK&uw6R#lJIKg(sL2@VpT?V~-&$MWmuooM5ZK;SaZ#m?p?41T`O4*SyOYf}=k50S zvYEygotzMV&TF<(&40=I4jpR zMRy0->4qncF;?_@+l?<#iuqsz=(+ED~`X#Uoxpy z_I%Dwv~jvx^HXe+{{TgqVi&f9%ixd!#!t7UQn%BE%!xhQz6T7r{{ZXNv94a)+awaA zNw^Y7IRqbKIIRmPEiWzPk(p6&FgfUJhwIhnPSS&F`aQPjYwfDjSCaYeWnF3UNF!?) znb}x_h9f`ZR84PpA~Z4Elq&r?VER_I#<6LpKFcLZanR!c)hT>OG_D)TL5@#7Yuuww zScxjG4o_|L`-)X+%V=G9*rTS}MK$}{-_F+P1_<>(g>ANzWn*#X>35r%e(1|!{&iON zA%C^xkH~$w$vNjV)2CSJ?vtDRwlY_4Gn(ba;i^@u?R}>&PEy@_#?A7+*0@at{pHre zv7}BwjEyL-Cowql*ZTtYiFN+ z)z^jPQA$lenKbKjyE|L2b8AMwveY3cn2uCDf-q05XWnU-H@ECsb@F#{^AmyIvg~Zw zPRlf&M$kD2u4-{9u$T8Yer5(r@+%l%9Xg)U@o%Dk*5vyYPOmjLe<%KB%}FJ*M2gZ8 zC_}f?BAa`83RhF z*HN79uB4>glBl)b^EOvWOdzY;>i0%)UdW<6ZiO(aa zrE|>$OLoEz6`PNxOQ=h6B81zwV8#zqQChK$iOzchKsl~jSZYrZ7`Qw1?f0D&srxkC ze&XbU8*&{lJ0p!pS`pkfeweFKz0iq#xujUR zzzxUcUSh-AZBTb{`~LvQg@pELI(jovr;)Bam47NUae@bLO1X1$6mrNRCQ=7e-l$r& zw6?n@b`OG28Rn(2OIah|8|9B2aa+~GQA*R@ZgbRv`&~aDna=8lON)k>{H#WC>sxvj zr!@AdZy*Flpk%dPy@tW9W&1)5s^LyKA4=vn2(B1f%;GX}&j%Ir62tpEZ!{v@ALe({ zojgSzM6A)#wa~SiLnDH$MidT5tx0jOLnJ?Db#E`GHjIj`Z))@Vj029f>(;G@!|6R4$f#44ttRe=yewi8TC1#XFx>U1STu3vn3rA% z&PFR|Oq9K>aEWq4<0G{}s$2bv4ap+O<`cM)liQ5`73fDX<&w~m`eh3% zkek`<(on;V*yHrAJu1?|{s}k#0HeC+9qSe_%*9nnJ4qP!8K-!1L;bTFOnyel&uXm0 zF;p$jDRaNL-c;O^ani=7$+X!egRx0O(; zfv|KwwaZvq$8&e(%^*nr^Ano!YSyb+I*_&3-}fBKimbV$?D~?~hq}8k#>!hbEP7V5 z=%hAoCm0wYAnGeWQx>*!lcz}eP%!E+3H<6=@2)Q5h>MZJfZMn=(}vG6lcuP&lYT~( z9JF-y^Cy!`^5@-d>;WL5JYuVAiE^{CncbA02|a2=yt|Sy1WE}&Sh9{yRhs7dMo}V{ zj1AoM#d?vH=(Se7Q|L?;XD@ohG02NH@SvXH*2sztLL&ZGlOnEo;2-gVrUp2E1Xv#n0NYD!wm zUn7?n2BjH6+FrU8uVb>ZgK1$q-9EBYPK4g%}&m?#~X^O8PCL}F` z&3m|NvXni&YKqM4rlo7i-IgVqTe%~EaTa9{1oh2RT{8G=MpXrlIXx?; zvz{_GB&&>`YcBgxv@9XGkQ0&%Df_waRfggT#j8JgoV4+E9GXhyy#q&q6=jxSWp3-7 z0r=vXc=6g?p(Ap!+w}MSYXS8+tmkOplgvUm&p4^#zgd-9@maQ#Kne)y^{-V{mL{e7 zuKbIY3e%T7z8@mx{FcdZv+m1a1s(pi8q0LrrqD=5_uz`dxlu7V&nB$JEzD`QIo$O5 zNvcuBx|X*z67F&`kK)D1H}@w*AWEio^$-GNlKjSx;2+AmX7ychfRDuYQ;IbGo#eu z)8dKaS<)~-YypCE^sI5D7nS5$)nFqkPbQ&)(ixa$;F!Sq$X}RxU>eu^1ajFVP~7a= zF_Y_ENxVIrYNm1~=qvNy{m8WVZDCeI;fWY#Jx};jY7*I6vztMg7y*;qah~-JrJM;r z*>30EB%t&>as6vfKMq0ynC>>Kbp?%QJY_i4N^`pIM4Wl=Dew51%l0iq2f2SKkN^Uc z@9Jrnr%Zy@NbL&AChiGRMmhER)m>J}Ev4AfC{}D_^c8^trgAD#{g*4U z+Jy=ibA4&?8*9zblu|Z>y8^taW@-|gVSZPw`vq)DlCn(~((VXw5-%|rFFaH?N2N*oS7TyZtz%CA07fiP6l85sK^>1u&3lO^l*;bR{d3-~S>2`M$@Ytv zKrlj*NNjr3t}Ww&cbG~r$abjz06x{r9M6_ca*DYP(}eX_W$haKPi2eyMKI_JgN&NL zs$W>kY$Axq8gc_70NtHm9Zn_`*ejk=s;@x@Q94K&%?%cqC)T{+{7{&iC>5D3v&Z72y*nthCR z(4=iU;ym)IIU=|EwlZ~6sWlkeR+hK)J1u2){{Y~X5vAHZ%G%Yt7rB!# zcV&(=EZwlb)~AZcQMW~#%5^1osRVTOt=pfoTSgYm0V@{b+W_m1{d?9#m-kb$FPh7> zHh>N|uNqFRY*UpRD6P7E{lyyG%E=5{>+88dmg)X{FD!BSQtEIEdAzSY%KJv{IvjNO ztGbSzX=Q8)olM06$31Y^4Gn9DB9trIO7GI=D7Q1s81tlN7{JNsDrqg?TLqk5hn1MAK&Q8S z){N3w%U~h4gcrsz6a&EZs-7G+(X`RsM6xsTnOyVfUaTt06zRi}wzqcj-0qD?H71p; zLt%e&3=ad4`5>#Gytw!4P+a0d&c`grB%0OLAhmg2l0Prx+@VxfWKfA%C~Q|w3kg9+ zPm`JVeqw~7C(j)T^vi{@eZnPTMsioyt~RN4B*-ns!W$|DO$;`0+ag@@T?2JIiY{fd zw1>=xXjdJ(`&JHET2Ob6tG35IT9oBIQ*ZDo>ed>i)Pn0fi(@%&^NOVlEz3i17*v;) ze2f4`)A`og>Y&&>D&a!|f&SOw_*QX*+ zwIyp7PLjsXCKDa}f`_Jg>G@Vy+9!v7vxZO!2Mv$^09|x8*3y}Y7dZuq0RI4uQPu2W zF7m}XZyd6o^}Rf0M=nXpB=y+JmML@EO&PvIh!$PwLv$SH`BZUBJZu&@T~u}qML=g{ zAQ(#wI zlPvH^@~01se9M~amKz~y8%Ct=;D%m5om6S`Wx17E0?G&n<;br$89I2ZY$oK?7e)9S zk;XxDN0qyocg=ryGd$o%tB$+?57MfcZ3KQ?Xk?Tz%$Xo#*jDA`&6KQ(Auk^6xKZg@ zw@GEOMXXMQXC=G-rnaSq#!nEH9Vy?orj)A1$7>biK`d_mVyIEdoaFr~IirnN?%@3@ z=r-31-)P$#@CL=e{VL_9y`-}=VT*yCzcJx`E7YwQInUbCQg+?+DbeD8D|aqfgMo|+oW%C3@vO}zQ{`3QXZ)I@0$p2NG?FgRsh%;6*MVCP zUaT)=?)L0*I-b*+q>6gAvuU@YG$aDK2R_tk))L+`m}FEcLCX`={uM5>a??sY(65jR zw{c0QLh{8kTg+62&rEO)df0l2;hU{y*4HHw$;=|^Scf&ZTPw=t4RJm?kv7MlweU>*KK4k~|^rgSM zzI-La$~FQ3$;CjW;3SX%3_5qIrqr(HU4eNW2pxXDwdqxlJXECxD`;gXURSlsR?%JE zu~;_{dXjjncGir-_1oY2pp{r?^bKZ-HBvFojW757C z5t-JfQ{S_un2bvNyyCBD zHr7)~8_vzVXE^QY-nDI#Bn+}#BPu>|CP-1A#=9{U+#k6W%^$VYQ^dv&%;ecZm6cV2 z9D|PaEyc|DgfkLA?VQ!Si^-?d8Yt~ls**;)2OpJQ@cqq-H1NxA@yQ?s4mcR=n)B*o zDAuoe(c5;G?6&TdoP7+~0$a(8gpfa=>@nA^EOvHA6Xs4;j!12!FHTrCM^B8(1*F{{Zz> z)8XqF(M{f@@srplYd&}_E#xu7GsvLh%p(W#ta7~KG%7lDs5GD7{{Reb+-9%MaqzfC z+yKa@4>7@bK+5uaf1Z_M!p14VCg)-So!fK$Y1id#WH$Db$>p!!Ad!>by?rOwBUTC& z(z`O}TNR?Qy||ef7_5iq$!|kY-%EXQaSgQWS(SnkPI>jNmqxQhg&uchZKnZ!{{R}P zf2UeT=Hh9LARO+=09A&ldn!ViV{uVTkO~Qoe{c~ z=17g65!p%fIH0u4F87i`&CcR^HEzl)MUxWA)C?RR4r^4$AiY--2_PdOdB^2nQ(6?N zT2g}MUvbMiv5T<=kEXPeeWu}vU_nuyO0lC^rgL#BUrMy^~l9kg8tH0 z+cpR%l_Nj>YWe(CI<+dPC@xjec0B3IRiveFb#yUhyZcL#G@FR^s~T399n_M`A~-;~ zQlmS)y41R?7Rm&c7RrR=u_HWvJ5{S4XUMSfwl3uZcl$tpkyBF;@f4i}g-IuVZ^-mj zMHpU^Gj44f2_$%%D7nGtNT%txYaPnCVgcadr-Je?E>R#YyE{lgNc?kDwgf}7j-xpB zuWJiK5h%EFD_Eqt;`!0i9a$FMQRcUpNDJwXed{kx)UPGf0Fp^wJRE`gRvN_dawM+5 zMV{W%M_DC~FkF4`0o;Eq_OG9)oj5ltZAte_W1d(_78rhNuD&ASi3;N=!-CV7unwzOI ze6k25sl`IXVkPf5-7e=k##DPG?Xk!UlMUF72Ifb?k~-6M!7))R>9JX|IQ!izq0t*m zx>Du@ifGR6f1M_yb8RFq1Hh8JS!|R3b6exHs?(zA)P}aU*64ci#zqg4&izb#TLUZt zU-f8LDsi0pRCiF^Lf9m@TwsI7KN`QHYf;5uV7aseD`iRPf$LPDnBQJH$#LXvCxQ;q z>C^D5!{#o%I7Sdq`F7vbw(2^KHKHKE{wj2DByI$AOBxgN7|%GQF`u;gPD&A+pTe%+ zTSI6dFd1auy32O}G z++&=K9G}Li>)OKKM}Um1$G*fwT%{6ysy8b5}I&~ae zn`+;A*jo5*!ot+g6o%qWxnf2(pHK2C38Aw{8hOI!Z#-2iePvAPYYeVc*eE4``t@^K zw%=_a+&{cH&q`F)WuwsZ>eR0(r%~GGZI}9Sk!`RSJ3($Uz^S0n*)DDNx=5~sN-#2~ zoMJtzhfG5#X5R^0X2kIsAjPM6(LFfLSsXY$4Q%s@G}WAM=hUCBIJ-33{79m((~>BsEV0Nl!mmSFRyMKT z%jbDU5VBzyal4+stz6c$$>(KgXWO)cjGk(?qkVEATT5gi%Y3_joY#X}A6BhI>C0Z; zK}MwJuBCST_Vp^>>Dqw5BG`W9gUN1!pj|5R%~s|#^ERs%2N>zw^Q$rHT7{@Bd%I!v z13!f(qpIHA*}O33APxgDz#!H*inxp^(-~j}YZ^G}6zVBcS2(KGbn03$xyQI*3}!G1U~)$yhmUD0Ip>322C-=b z`>t&qG2QcLzH?MeOA092x=r9`gI%y#d8bzD@1fIA6B)%=Np9~AiYC^KMx*9A$!O3j>0IemP z)>wx^jg&gKx;vCtCp#@^(&_fmgDhrOE%O3_hfX@yZN!o_(0JDhTPFh?X1DGC$;S<;oto#(4beqMiUT5cXJ*<*ry`puN0CE)%>2Wr6{QNyg(xW0Y5c5It3zvmjGPh%2Nf5HG_;H~woki}@{dYw-O#hNNc^x1FC26=<<-sb)MS-J z@Aw$C30hEE_AXgyc5?Y`HOk|i!w2xIR~8mF@F2BU$X-uR>rm;I5DOTu8tm^QJ9!*b zNw38leUt-&*vT9kb?VUeifyIoq0dsKcP9wD_p&nPXIW&4lpmWpBcINnZ8WgT3TM#N zx6;8b=2rR3^M&p0O|zLp7|MBxoZyQ3Y#nI*S+sPCzR$ENK zer#orrBeG;DJRGZfN)3Gy;r-xlHJ-nM;JZp$Hdd4Eq$KfiOlJ9w4)LeC@xHd$Uw*h z)KQr)E=n_O02VxO0IRD2mcZTlK)x{TRbW;=X@@(NdB>$WL)+7HgcKsJWX{;~>Xzto zNNwfBZ@Mx*Y>K&O4Xx8o#$v9(2-6tJtoEA{6XgN{`=+f+6d}y9Nw5!_W-EERYDrF4 zZEtM}nzp+$R>B=l!ss`ajD=2I5I_3$Aci@wB6(PE1mkI{vFrC2OZHKK!Fc&cr>#)3 zovm)td81-I#d(zQpINOpMX0p4Ii(7+z15mJ$gJjGHz|mm?Wh*Q)o!Gig;|)KnjZYk z7<)N_k}?BuO>)}Z&Ct|hc^I~N!02nlm$bvrS8ktq!-u6_r1?{~_1NgIbo*Qp)5Nb^c47!YHtGfrE z#=BJsVHY-$R@~@b*OBvD=F2g$wU>HHBP#(O20$M5pQ>KlUBMzUNs)qnTwvE`9<|3{Q%idn`<cHFpTd8Qacr zT?GCelHMehrwti6;Bsl&rHooa`LRL1RXGowftt-4)}+yhUVo4t7t*%DR;faxjvY6D zEj~x7D$}g5P3iiM)lI1V-MA&!jN+{5QcehY?njsWD#Z5x0QFWh(iO{|b6Xly*xW}L zyK+G1l5<|=MavFKlYHCTu%`s6``Vg1t?1TTSR?Y)$rvZF9k>YQ#lmaElTcheNawJvi@PeOb|U6-g(}`5e`2 z>&ma84wx)0VBHjsS-$bx$s_Trb~@aD>e<-==t$zRBes@#x(Vh`F9SZ-xZ4# zl3PgPIYAu`Iv>uoZ#5{Uw({aauF4AxahmjLdO(M$6$}H2C zaKLxzTW@2gc?Hy;H#|SpDu}2R!!uD@iBQ?^Rw4b%cYv?&CGd zjmv6OX;hoj$ec{)&fVUgT7BeJT3(+cG?y|YN0GoMIjK{_`h2%fa~;T(G6e&XkMoLq z>AHNei5b^!&r{Z*(_yr7W3+PYgXZLq#=N@ORHl=4ejS%%HHn%{#(J+IbzK(HYtK2P zWmQaLIqg;;@a3J`LXaqVHsB~?KRQ^&y|vGkcT7n_?3VM1Z6w(JRH?xqO3g;S z7TjvHmU#NKqL(+|aW?uzv2i1HPn+f>kMq*A^|@ge4HR)<^Ya~`0xM?9;NQs7G9+Vu zHjaXi5!#LEEw!@B!vL=wp68n0q;V8+3Rs!6)vtZ*dT_)^RZ*zSTL+2=+To&N%l8g4 zx%a0_s@*>9oMmzJ=C$oCmg3l3hcL$}1>-%4tFd@?$y_vria6=%kH?zr#%35AjWs*J z$lA4BGP9hn`*u0y)vw_s_1u7Ahiqev)fTzM%G|^Zb7v>hHQnCZ>GDSsG%CuAw=APQ z`Wof6yPFFi^hJeS=O7gvel^c5b_d;*cVBZNjd~KFEjYWr#VgDCZlPGDBMa%qYQ2n1 z*NV}&Sr?S|HLGKHrlbv2*U zYiVmWfr8b>#V2bHdewVdHiqTabP_59f!LE;<#=2zSh?bKXYd2bsVE{?uU7^14JwFQCM}ix7FYk5R%}qCmoL!*O%6uZmH9YOJ&iWjX5`SPfNds-aHg9-<9ZU zOU+vN#!?vkxX%X*)}_#+(-a4qUDA>At}(RM%1>YzfgEd-f=Z0nPAatsUNtV|*4rb_ zuTqpMK4jnIa@r-jTJG(2VPdQxiS$7fIYBvHIZCPZ-;~-E7=A^m@N7MF&GA|sr99Mx-4yA5u*=c3mnu-pb zR28N9nOFArR;04Ze4t1G6Y}T$Yd$Nbx7^|_go2w_amTmrKRAmXyJ-PR$ zSj%TRI?rN}1pwz@IS25sYA$iZNm7DR>i7H3npm4h--~wM##{KB{(OXY^6&=I$BbZq zN^H2+~d1-Mgj&MgGm1BZfNJEc;>Kqpwc84Js2iVl{>(*^<6{9VlxfsP_U$ks~ z&>(eUdE)|$OLe_3^MoC6tLtAUO9dQ7X-&`Jz0s4w(Q&)FG_UMpnkT%mC8N(Nj1Vzd z5kbCXCw9@v#dQ83j99{Li+rt|u^mS>GwIrOuliF=LleeF9R4-!;PJF-;r*5)Ww-em ztYj(4!M{dw_e~Jk7jP;u$m>?E^*K`8$uX<+`HxXsrpC_pAnk2{y-4FVn{i=b7D;Aa zdmh!jJYEe)l5WfK1&E_H%PZWXFMoPuDhm;eXQe@ZFuY~+xY{_ttA-dH7Pf@2-HqFi zN}Ep7AY;C5$M0ox(~c_&)iTa?2Oeh4qUp!p+Qvrrjy;jHGJ*F;YLE+Ng&3*adisM> zOs!{h+ZSm59E|Z#VGYE7VO5NSjs`jWD|(cgY0`rBZ|^m7R=VrdtA!261GQU<0V5f3co@xkvaLp(BTiZ;x0$5rT`zk6pQ$X@ zK4hib0CA25Ln=J1rBC5oX`+^k%()|Z>$LjP*=eZ>F8OnwGuT&~R~ZRLR4Qn^xBJY! zwJ2=%D?X&qT78ckF!_{#Fh`|SONL3FNDxFEV2`D1>LX2P$_Rm*JndXyeQLIpQH#W5 z`3FPklU#9+)*|InFO@s!LYy32(q?k+Ex55Q>zXApebVel*1Efcq7*QdRg@+M6b@>M zv9tkM!sBW0#d=W0;8h+)bk^4)VyWqLbC#re`N38lIISDItC@nVvldkV1?(~HT2|3$ z*DsmoShlI;0&;4-^~Ro&`Bt%(1$OSoQ&`}!SXxx&?W4^r-879QS~GekWl0Q^G6=&K z=WY#5jU-B~HhjhAJ>30jZ6@ehOwB4C;TcqcoH6KXj;}P*+#y4`ae;wc`H$7yo+5O# zXK9s8B@HDBUle7Fk%;uM~za@zzxweu=0vL>J0b*D4?bfc^Ug=hh85LBH z4%Ehf8qT>$jEip=-dK=0tBImOB36}7cJqcjpYxi+6>wG5l&0*N%_R;?IkdksLTzJD zW>yoH=g{$4dd26SVp|)Mq?5a-s@J-FF(W#8h^heTk)O_?u(yUuvTj!Zalstc^zzKU zR;ei?8dyp(_tU+*>}g4<7Wme@T3~;A4(odyYOCNG};~<_Y zy|$4QQ0;XxU}1@+8R6pH6tsHZrkfpjdbDY#)A<>mY*UvHy^b)v^yj@eMhQeyoDHLl zRe2&dm#rIcfajk|zhf1>)XJt-(amt+ruO++eSJ!n3HFN|5v8E0MREtfxl4Q4J+Dh)^_O63Kv9OlJNUTdT z<%uM7=~_nG)H#tNOrL7TF9$(44O>=yiFnFbf8EES&E07?ks?15t_C)f^zT$94;+K< zBd_3Vtku@#Em`eJ%8cXJ@Txjh$+@;@t9-k+9x>aBhSF_P2u#-VN|2$?55PXS&2=IR3(H?5#;P;N7(Dt_ zIJB>`xrF@j7U){LC5*$@q|?$r*HR;mr6$w+naz36439F%;o0{S*CMx9Q?s7ImPTl# z!5Ad+D@}YeXZCfHRRh0MnuKV&N(S7=<>``Zj-_n1PRe%EOZOE_RvM=7Q$E(;LoC4E zg4h5cQcDx{;$b@0G`kdA85qNga7yyoa&-a(E z2j^LTYD%osBQJ+*?f7bHu{2Xpp6Tw4DJ1^U+GMy^ZsoI_RozDB+TUwi$cJ)gV&@{T zULziN0)w%~28=5f5S{qXIPG6UEEKBRJj=PPs3~cGbkUyaE+7#@A&7C3LF3kq8u)3K zGAUm$F~M=v)hUE9+CwLs^S(nWjQ%v+SZ*a?(L!B$$*k#7z`_pm_5A^1;^N@8WV+?Y z+OGWNcOxCfF;c;GJcy_r%l`lY4T3+$t8IC%5;GeO+-G1I9XnLczhb*n8*kcjq^>!L*(!O8F`V=G=AYs* za`){#E@o*7-LP!~9l14=1`i7zbv$vjaHL?e?c7ij2jxvmo2{E3 zM+49vDbdQX+}w_p+wZsD4+$Gvl|NHsP}jcDu8_tf4UXK5RxQw3EdV`>({{SOeG$TV;72`&o&cHL&p4EOk z2%&a26C;7f)XsbQ@%q(Bh1JBZ953?_NdRDAQl^CL>m|hdS;j~?HI8G8#bHu}DXVR3 z>}dCQl1O@5U6g3i7^q_u{2>dv$jUE}S%ad?sjqm~VAB{I$ z)$N7QlHE75uHI{ctx7nUa@D2pKB=6Z-}jt}U(mH_Z)s~{v7)-EZW|cjel?LUuH;OM z7;m5DVmp7F)|{G#{T$Esc2EaWg9LWPa%plE$z|FNapAK3Eb7J;CgPDaX*$!Csx3|H zKM^s4TW>8ALJ9l1&*@YoySKSUOZb_Xu;{=2aaq%eqjb81KDl1iqBb>**Ed;b4f6KE z<2A=tt_qeSrXEwey^~v5?~WFfBIcc*g)2x$ndHKyi#8Nhh$4+9VRDQxhiD$S;*Bcx z7UZ?Gd60kIRxGUHxVMSrhDJLG<-aPhblVGCR(aHx2N>kzp8cxvn3^)4_GpTD zoHQz0v~T!*#tw!ed!5&kZ9$v@G6}_6p8YNE5v?Uq0+3S}=Bmur!bT8APy^hY)9ql> z@MgHULiqVm1CW1}aZ3i)8CPvLe!rNiMl*MNb{TniF2au}AsxY~?Jkzq7FfY!*PmL} z(`{^LK{Rp3%YmGz;MCXlu!tmBqXmle!0T5mP7jmW)puy)o+66<-I%&f{4&PO2wArL z!xcltv)sHG9hxo+OeymgJmg7^{hMcQY`C)UpGNlZvmSUBxV)W_ZyM zp$mnrD~(DmI^;!y;d%^lThXspP)bqJtq~ZO<5k8w9+i5NO8zi8U9s5 zc_)fO@8&F?wR-DRk?uvpAW$1Pr{C(b-ztgXjgWT7C-JVOgPxY6o3~S@l2MAhEMl2j zMkjVy`qrJkr)dR`ku(Q>-Mg3T)|m6yJ=(ilh!76Py;s$)wAsn>qiy)k>|kf;E5^rS zRT^#;A1s#3p|q4|Xj$0Wx4W{M-dKbu5&%?{^x*SZ%L%lfbPeZcyH)mKk8=Mz4-RBzg+;sNtcAuNv0(U-hZ0p&3h=+x*M7x3SL>tB;v`;+bUeESZo3xX~ei>@+m2GU{KG66FA+er4E4o;S;hU!@zE`s;Q;Z{I%TwwW@>{fCSs?pTY2!|| zcbX1ZuU6_RmGQTL;u#t7o!JFHZ8b@D7#+?Tfjr|ilyLcIvKO{#Rat@b9c#82N)@R`k$n67$Mt%4 zvqq|2X<}y*MqWb4J@~7(>1}Y1*6FjI!vh^Fm(_;9n)>@+w5qe%@m#0hW_c9jxb5c$7-1)+A_tLJgLV@ z*t2aFz%xJNuw?Vv3d?lzE-?^eMER znjDbYUU{=maxLV^AyzYteiX3YM-0lc4>fx>NHv=yv|uj`NXW%T5@vK^A{>HtjO2cG z&5l?oB^h0}rLDKC4`t4*_BuFjtmDCigp&sahrL{|)EeZ3Bn)tJd*jl%d1JU(Bbb4) z$sYVu;*wP59Iky0EH+bssO1_ry8O;Mm?+9RyPNvvqdakl11=6jE(Sl(HO;glZLz2& z$-u>F4dUKLxCtW_1ZVFGn?afZIZ0zcz=l@9&*xoq@N}tDoLn!_l|?ELenj`vKAme7 zykO*}-RG|rUe8*%ScEcL`Hj(7oNlD?POmKN_QEWveZc29=l=k&Qd?SE-PkNqN%J7x z>Onng#`?Yz%9Y$@f53-Mn}pvxbEnG`pl}rT6tR%2L;c$FkK^(-g(yxuu$xC+J?*$eB24ZF zBe3?YOUC!`5-Fn+{mk>mYSqo@c1UetM~pWB#5u{YPKFLNX?t4H z_nOh9~Vk0Nk(046|l7Gd`ReJ*C!Aopo|9}FdUJOf7a%u z?xSx6<{41nV3M_N&i2|Mv#J>bow+PUIABYgwWy(h?69LSYOMnOGSC8LoMCD~RS2ZCqz1Ffmh2 zt6a`hDh2ifIj=F~IH^@j*_`pq>QjF1%-_+jq?_)>$ftwrMbx2me;Kp&r4w$WV0F)>JIjP1x~5t`fZrl4(PdwC@>M~(T%;rR8Z-(IW{ zOjyeC+$NvCYv9I-am7i>ARE%c>rCm&J7Ns{&*y{SP)VNitRa=z5;=7+BQr5~0 zPBL2@^X=N5;X7HTxgTj@`H*28aynNyF4;&jMCCxo%()n@pThcuq<0@_y-y$)&QuV3 zaCrBxnZ&vS`;wY;Po0mQx#GhHg(a z%O#Yr31uzj58?G3Rm(dmnOP47BQhP?98rM9R>fBLsdC$`jirN0^C=rsX#(8?nZv6n z!zdsEezgVlsI?w)$+!kwaZPL4rnZ94=lxm?XBi}8imoJ);1J09O!YjP`g%39S0x1> zbjOyjHmu*$H6*%-$9UVqpN_VF-q+1&(Bn=uyryX|HYs(dTn54+q4P;qg z$2muy=16ckL7X2-wRv}OXp1_5BJgleYUiBmIP=uk@43Y3Vk0%pE3$n^TiHVyMk(!% zrn#$>Uo*~5RJLmVr*}4~U?h$P05=4I_|&>A_VPy7_iGqZeqK7)P6BXg)rxN2yB(Ax zIxusd<4&M1t%bjokw&}^e{Pj-^Fz`uZ6jM&c;?yzl1W^SrjuKfPL3Zg)DM_-3xl3( zCr-Axl0YDRyN(I(TK!E|Qk5&E*5=Tt^_4eoQ=+iaG`MZj8K+XfV`*IH-kYgub_N}h zY$|ym40Fv>pTe`Xp}03lT%VN~oSwek)kexKO4{ehXkJM87%jl(sIQl=l5%^{ad!L6 zWg4@U<5ykmExwQq>CV)MC^_gek3saO-P)sScCoPxm?4iiIL&J%#LaNf{hUW0HUe8G zIqg+^P$IP4z!YZK3Jr4 zZF>tS`E`*5?W|y89JUo@lgMbx2ENmPru z&}(`EOD1exM&r1QU}CZE^sAdqfyy1tv;ce8OQuP47F%!3!|s#QipKFA65UPa`NaZf zBi_33*`<0v9Cho|=B0|M?R}iBZsj!63AshOc>JK)Vx;mao~Ip)%!b+)jB*Gg-;VS& z)4jol8D36!tC2}OJ633f&VKHB#bJn0#?CdW!8>&7dJ&yiZ}@+~8=&nsVksSjSi#3Y zGh4crn`sn+H(};BHw<(Kk<-}IE&j{_-5hG}2cW3+Ndz|Kpis`lV;!r{$2>JzsMCd) zZ!^xTT~4Cqx@9}Gcej0Dmvn;yR5?B8ugIxNyNAM0scZgSlG z%12N-RXaz!S6OFu@}zCYCy`N3u*S;C5$-U1)rj=vyVJwTH_C*ZWd2lD!B>q5ILlY% zVv>S_zv61oZ)tNFW?k)^=CdynJw7&cgtB|{RqQWiwsuqVfVdexm3~{N& z-`%f1l|0U(F2Wy z^8ESgzPYRVS-jchG)l3Pxm=Nx{cA${#yh)n6EdqFbDYtP%p(Z86#gZp`WRNOp){nl zXESf7U)*_eX5WL;8OPGKnmuOT2DSS_yls!0C;tG~Syz@fa7@y} zI6GKijtQ;|ETutvYVvYRqGv;?8T+?id8aHob=Gksi3)-8puiw~d)7tcLm709NL~DT z;+?)hDL*R6r1AzSiE7epW}A|7bK9Erx$!ZNJBzbgc@qU^?>z|7&!+~Zf++4}^3Nk6 zk(_bOXd4((&7FwnB~E=Rm7%s7`B`M_`8*nUiuGrP_9wY?NjOU-Nz_JW>j7XZk*P&>{b&5TbD(U4mrkuD&?tzbf?KGjbE|NIFZNJ2G)}qxkm|(Z_A(I3gZ6~dJv@sN^ z)8uka{Yr&;R#8$DUbe7~0W5M4Gdu-R&)1sGx4nA;%oFdZ;P(|L_Fce)%)4E14guz& zc)0O2He&+P!7P(uxEUn$W)R4)smQMS+1NHv^>r@vP7anNK z452t>;;q?f65QZ3`Akj#??ugocGAX@-2jZlGZE6S1qxK;p;D%+uR?E1F37W?wXEsI2D%F^mXZm3veI2gdLPVGcRim)IaqrFXPWMHLV%gip9 zev7wpPY)*fqdP9fzlbj0Tc${+CO-J$v+eB?MpZ1>Am;<8r57+w6s29&&vFm=)|P;` zVq#&7&OkZNK3}DJv~Y2a7b*i^`O(f==`+aS+=7es$*VSc5*a+g z#KssLW3_ExN|LIA!9nBYI5d+@C9Rw7V#BB&wbc$Je93YpV!ppo?5t!>q+9)={{YgJ z6M5qqAXR8pH0@3~Be)YXFx!R4KaD|sZ!N{k%A#K}k1A6Dem&{BY*H=hS)<0oj(ZyS zaQVGVMJFjce6{}ohCM%HTAU*)l3J_jV*T~PI5FNaV$u>+9+cZHCO~JOuz?d)FK>b!tx3Q%}3t$-=6SH8;7uAc^q+ z$j1PRRj_Li1Tq;hlk=L2-rD9II?U2GazUm^7Nve(GcVb&*aS8+`B%?Z!eV7peGe~| zqircGbu;`^az%lJKupej#wv4x>T5Geion@rEXYt-+rE_txuMXB@S(0Qleey=GXVJ zq=x_%+s!2RD|=$e6|yR-lpkfSyuN2#D04}+&0Sh&y}itEDtw>? zTmg)GaZng$h<@=1%|UN zJqIXG9_^RjUGUM3M6$Os9v6;B`Qo*2uZnInMp?G)A1FT6%YCBdkIOUe>&IRy^_HbG zKbJcBtXnx_(Ec^ejiHN`M>(r6BZm=&oafKbtM+N$=y{N`27b8WuHV7s+Bur+jj!?s z$>Zx?9>}MQ%$PTrdFTkw=UBS!y|K4e`by zQ$FBNLP)I}d%a3oS!0z|R0Fw*{{RZdjm*)j+eE@l@<(nfZr-2G{rB)Pv>e8TQu8G6~Xv$vAj8_FtJ zmM6cr@~k_UF70lH&FdnzRlogJ(}k8EDY(HlzpV|aN}HD~Rhl+0F0~y#J+lRH!wOXP z{{RZ3ZFzfhF>f_MRr|dGs3pF?WmLL%Bmy$To;^9JK#ZI;fjxTWv%_HFiHxdFHn*t$ ztsA$>uFDeK&nuV0A1~$30msucvtHj%GOqKuAG$cIQ8U2X7E%Cipqzbaj`E2W(T@Gu z _-cq~7?4VKsI=xnIR;kJiGadW6XpB!&K)j&^Lz)L9zYk-X3HXGM9r1GuRm+$1* zOJ@s4nwREDL2N*d3hq5?#jPq7nscSC^w7qSH9l)3pXftrr{748Ew*E2A4B+6og(W~ zI)S&kxRVH^;fX$#YU5cDNMejMhxoI=tg(4BUo7QAFed=lWqdrd7tX2L#6`-j+@P&( zA5(T%I=ml`j_=BV&GjYju|7`It~e{ms+e>vj|{?+b8B7IPX;+ z@vZ|!bfl&@DmofyF0yEg>rR$giK*^GNiFVePYX?JC9md7EtU1W;^N97 zh6HUVIQ;77mkrE`=3SkjwmrwKK@7T!xhW|M20$l*D)ru}6n3KD%H1y~c5%t?#Y`|& zJ+C~a%-?VL2AG<%o3|oO_P&GV()76@^B~m-lXuLfGsR&`EUP(&D~5fog&@#_+a*IY)-1nDqD@iWn`3h^j%yDdvX23m(#S%!KVG*tYJP%5}Hk|2Z zlZFQ%miqcvys*?GPnVtR(e!`jYTRw_B7u;I$iPx~%@Ey55|oa1QurJ;Gf%gGUdpi! z{c7H!rA2O${heLd51Zx3^{#5()`XNO+DWb3)9x-Zj9#wHsWVPlOz!QDn~r}fRE|eg zV5Ng(aqUf#OPJYh+>li84h}O`Bn<=tHIHH5PX7Fkm2~lSsig{WT;GHAA?S+t6JAGc zzA0o>2OKv_g*6MdJLQs6 zylo-c0LQgqS1g37x$>7Eor><+E)nUK5w~jL81YCXN*FKft zyvGyH`J%bD?2(QlqJ^U#rZwH&{nHZi?#bKo3}+wyx?7z+<&mWmZRJ#k9Fl6mp3_er zLPTBFN6f?cyVN&&gWM+6Q6C|)4>_)?bShS}j5RXnYDvOBGg{Bjw}?PMDvQJCt||-d zH7;G;+_-I-3O#EzwHvomjN=4zfk_0{Hp*w)yLiB2Yl9J#<`ZsFU3-{E4_BSkR!o9f zZ#1b{LmjTTC$(u?U22bM_Lw%lMoQpy>D*J7Sc#!4ab+Bg56T%s56q4!mOAv7b7d`% zE`Cq|`F~3DD^Sd5c-4m8SL$u7qjwK@p*_{}xp`gD^Vn_Xsa(D7z$+xON=syAiN$N` zTBO$zJd;}t9(MX?p{Vq9zJ^tkXjCJ2I3x0}L)qbK(~T*o8QZ@8rtn;gnZn<3TH?k* z51!HaXk3k?=M;l#M~rjpn$w$9bX1Mw-_@{v{VA~BOMX%>AyFHG?VJzNy^IZ5VV69k zd0NTbms)b#Iurt(o6jqpXWp#YYr2M*jFxu|7(D!^2k<>bH&GvCv+|UTJMvVVaoeA* zRkRR^(pgi?QPq0qiu7t@ULu31LK^y%qZup9VgCTyx|EZL-qJjTWVz4lR_?=DuchYDIf`iL|Zm+i><2=Pe?U z(&>@REd;l&WpKm*#F9JxDr2ib9EKTR%fj^|j%y9|sRH?1Hjdc;06fsk=MeHK+}${= zFgZO8ZFxqPlJkF=%{(VNyw#VH(49&fcy|Ylj?52~8p@Jc@9o;;%jJdYzuq-V%Wx0+ zJHI>}9zP0=Wsrjy1yekLIL&%-%4LVDlb!s!T&j3Q9agNprk4}>(lC-J`C#1t06N*Q z)O7fyic-NyVp&4-isuz#M0U7o6OWf_q65=(N!6q zJe6R0B=_{`TuQYl^Fh0Id;SL`Rt}r9)%l~7f@vmTZf9Ya2Pd2k{L(D4K`R(#=y8#r zYpS_}K%Mf+v1N$h6~OJ%x$Q~qBz0Rz!lIJ7$6reA!cPw-smI=Lx;m-Vr8mnJ_!ZPW z#GTpCJaw!0bKi?qx4BJ`ag3nP=hw9)cTs8aX4mI(eQ;|_LcEt!)MFP2SqrEtPC#Db zs(9Qt!}WWp^%Y6kT}J5@b!{%*AhTIqJkB%nGGiaDJ4jh|V;pTPY2|#l$0xt1;Z`n^ z@LUBkuEGi910R)Fw$r1wxl4;#-6R~439l-)Wl~R`qH=Gq`I*MIG+L8Ou@<`5)>&EX zByb#%?7fF@anh-#xp{GJ=+bo?xto0?#XgN;-Iq4 z%W|H9aQ4$raF`)i8RLRYHSDFkmRVwu0Ik+WJBj=% zt*xWUbM|Q1w&uadr>$K&MA1Pjmvbt(3KyZTZxH7RI`+}@)#!Dlc`G%j&+VO8BHiR? z*f#XeKhA0?CZ6){Av~mDX$yNA#b|3V=W+9(69pnyoh6QI4QnKCZ5l# zH>rrFhDtGu)Z?~Z>6vK};w5^6(;}jePQSWgH;~vXxG^Ac>s?;8JU218xWPrnd-_#t zZEYt8*%%L(YUBaMWmhzHoMAX#+r4!r7|W+64Sz#B`%dP{-Z-UmD`O`Ir=>$KuXl30 zQ3Pyr%Jr){rj!)C-gp4^#(Amqn+s-%NdEv>5ao!@PtezODtI?I&Qp7Ag%^iwovlnp zo@s{3B;Gw(Wd40>0;-aOCU)d!9+h@&K0$i^Wz@ictqxrm<$-?Eh{#ENN zULDeLifQyZ)ak({nz2&S-KM!kL^4OaobW5DyN1%&N=Ys4vp9_M0O0qiG^j)tff#^s zlaE@vrAujY(qdHLZ5hu7xbfB8^o*XLiRa?6p7Z3{7#aQoYgIJRY#5O&R$}rLW=TnIgLt_igD2+3F0SKqUBn4 z+~uBC3`kC=j`bW-m9E80L^n+^tV!9G?K-)B<%{kWALtrP}S~i?IDQ~ zpCsp=zvmT!E~ef>x)NOHa6PNV#Ab4ZYsG5zvCTov&CN#Wu8z~j7C3-0r#y1p)MXup z7+~W#_N_f8c8B-(5bpY1}Gir>(J3+=XUak{0ok*zET6H@){r+1SX727X z5nYPZ(@QhNH)8{*05r{{SxT zypAiP80xj6r&2PCeS4WzuLwO>jKH4u=H=8W+Q;SK^{qvcXe`Q113#CH=dEUINgbWg zFdT!=%h>x?orRp2meI>K$xK9WHxg>=LkDQeGS|;?CZQ^7QCb+2T1va8DiJU`V;s^% zWq*-NHb*1cwj!~c%4k|~BH)3VW}m0rM2-spq+^QH3yh&fH5lIBW}jG#PVH!A+geRD z;p0rIoRWH0?0072R?_Apv}fomISti~&=4_~JYxrnOSz{O@yJxiCP*Y!80xaCE@~?G zWYp%Umu`%>_SV{DvCh&E2t9jLmpYxikpzYE?0$l??WVQ5{l)KAKPjsk#g(E!(po57 z4i8Gst|p{vDs}WpbTM?(lJ>3Kt9PZ(D*5tF`|Rf#>?xXc#lV!qD*d7{&KLr7R32&F zQ9RcG3}U)F0UU4yjj=BP}T1Y!noJN2ct zyPn?g8L;KK^~dK{(O6v*doujToMw|(vbVxLt9;nW$?N*pt4*m@<(qo>+~;$q-z>WI zEL=?^LKUF}A0YJNvmuh+$T?(uvBpTwDxK{2&WRgL_#Ly>rqi!65RT|>+IY`773Jb1 zio?ypCugRehZ+)u8(Vo0T$!gb$~at}^jK_`>oTt57bIh?ZK%`lLc**gAxQhUtnEVC zG~y(*ZPFiJK^3)0D8@3BHClhcHHBDw3rEnfzhe?Ckw=LXZQG1V&d9+^9#hO3z6HVD{B7$NYa|zwWQgXf-soJ>sZyyqeByF zNx1b|-5YY!g`BRLC5^@TRk<-`0_BJ!nu<>nx7s%Sp8-$Jlg&vK_qN(^ljc6qxX(Br zO6H|$C%a96$Xk$l<9FKo3ai-$i;Tj#8jnL@KUljr%p8D)LPSHQr-yS zRE}ulEwuCHuTk%e)fohZh>UKGoZw({RqwSqE~nb6$r#T9qkt!xpFY(mn)Yy*++5VE zM$eaY*y*aP-fqQ+<1)G}Dw+D>kk^UC?Kp-BhyuWu2VP>pE1I>)Wd z-X;y&Pg6d9Ch9p5O%Iev%9cOjS5BjIU_wo7k~RV71D~!b5?x1Bm}2FE#JfRx39Tut z;*kVX-3c71B)4;3b$XOr_KhgF+3I6ns*Sn!{6^_sAdc<4x3^fz9FU+K=Cd^$`4V|y zhy;(!+y>EFV?{tiBS0UiDgeOGt~1)J>e@+%KWn)XU~ofahJOm?!c@OBs{FOp_W78p zVckw>y*m*@Y}&4#{&cOpvB3h54B6jVv+n^TE!2=n$4Z+)wVzM6^JJeHB!jycsjd>? z?A~#9;6^tLF+F?N1zu{^)k<+`c4MnomCBr2o zlPN}!VDue0u43h`CtoUQ3o4!gH8z)RWUT9TERk*)RvdtR$A8YfdRS_)rqrn2e=>W2 zzzATHq~j;6C)5DcwIUKkjdFJ9Abx_QY}&AaWk*fh!zlj%5lJPSkZ)z&=!Xn(g1=gX zx9=3DcXr2I*SCbr=qP(w+ok)Rafc*S3$`z4j_)|ja#uYoV?@-gJj99+kT)YGKg6`O!oRauyn6K8sG)_Xpwe6Y=9al7@Nm*IvM~8oNg!w1qqWkmHi@ossLPZAx%_Ke zOSsf7ZDLsz{hXbljz152sj9A}Bl#v=M;8EYJXg=wm2YUNQ)(-}f0;0oroEbqPq|J- zmdVVJ%faCD&2$<*w>(zM=OJceo!RN{T-Bwt*B7Y)Bk_O6Qh=F?11E;lbCsZfrb zWA(2`8CRBy_OiU6Yg_S;1 zpne}(!J5(RZVFAFc~X0d=)&WkEvizA=5I%3r>WaUaGtW=8gf0P*B0m|5+FOBI#hba zg^ZZEhUyr{bmV^_S$!epl)RS?7DLYbb*%9? z390i_jBJ;m%+_?EZ=Gr` z)2|6AsHGmaea@wYrtH(R@;fV?Nd!HYu3PE`J>N2h3sQb2^wvut;_n2@w!1C&y;lcs1m~LsFd3`mJeKx-D_ey zy*>25^=PwW1wsMO;ZQfE;!m>g~0ZFDJ`4nS-66b`{ALPEqGlYMbe8 zZf`ik3zkT_*4MX|D?9~Jdj0CBKbviBhkebs7SC^Lvjn$_?1>K4L6D@?#)2Emc@g%9 zz&m@MypN@D)RjszR;HSL_p!$0sp-q7;&YC2OCEE{#Z49M!9|KTBLf_FtD1Z^Fh~BB zGUF%a^!ia@Hk2d|h(iYBBai1^#awkMI8){Mf05BC(`lxgw~+*Pmp3d6_wM~`L}_Jh zSw7T39S31hO{hi*mNS>#jihmkteSTBQh_iwBaaFY+6Fu%CHj%1E1HUH z>vfmTh7unb^s7fyD1%~y9p5o48=vO$$BQz)Hi$QUofsf02Zlq=`Uf0qe*ib zjoVoLE6sAnB-L2+Hv8;tJ4y+(vx7LaGp7J?&0hs!X*K)(oDpaJb-p{d}7&uA0XgV94gKlAT zP(Zym&F^(=)yD7L zM7E+ovp#MFU>&#sO3jkiOLzp#{{XvYBhs#o zC{e4;LTc}R%!N`nYU8aYvsmOyjOD=qft*!?qsR7RaUIEE22*Ntp55vVH%o^6%1I+( z80NJt?5=G=fl3rtEWDhLZk0I6zpTzOf?jt|?lY-TQ}|`CV+%JDA!!~-Jh90qJ86dL zqbRJbRSx0;^NQ``(IbOQl543K&XGwev~%gttzyr*?s63Zt3)Gb0B4HlshC;{mKr*) ztQBZ=j)e<7ZsexJx66M{G0%EkMeU}P9N>}54Aj;dbSZXW5V=^!OCI&Be`%yFaisqM zxjS>XFFf<>%@|%)PBX77N$zDiP=!R}rOsY*k~mG|pa5suuU*Y=wPUw;c=m;0-FWHG zdXD}Cw4F>7KO-vG+C@*L+S>@0?&d-q&5^-5biQPwiTeMy%WD) z-i1?habh3Jjfe+4_RU2EM(%Le42_v4K<07)GH4AYQ zZns6k1s%^?^JPLfj6>&bCbYM7Vy3L;80*}zBrgeA)BPQGU)WwImle( zW2aG8XSaL#!4n9CL zHH;xAb-7~mQkv=&h=7Q_hk9!+p#`x?5rjl%lb$Konr!nYm=4Sw4328d*P5Q;1gIqe zM0}t*9l6D0Qk6CC!6xr_sh=ztyA+w9WodJ9C(2YQ?oZSFYTf>xkiq8p%XRb$Snhm@Of_`193Pi=J;m{~++n6@*HO=(}<*g8Cy7AmZuVek$; z>aB&4+>+c(UPS5v$(p)- z>^D~b0K1hQH(`K%s~g0&PsFzNpbmEx0Dmg4qQx96(n)X^Z$t-m*gV@ z2dMg2bvVlhZ+$o9#U(lwmn*-K%EGc-+nAeAQ;y;9zmU@5Nd1K$&2R&2sIY4oS!7R{S|PO8`mZoYc2>>veVZW{n?f3}r`OPL-2q zsL!Rww)0w?gTIs5iq6zEi;z^q7>owoaoqdX_{=^d4JTUd$9sxYD^;xDPMVu~mY)sc zzm))4OYYy$dy2}BM7owu%Vze?LFMoOOTbcc8t{w7Er*jI?+A=kcw3YY5iJJ+;URqvcY^r`Ejc?-1&^!YM`k(WOapu4vC!y6N&_Ne!Gr zONir+C){Ms5to!}bU6~*S8Q%co z9MykhSB0g`Zn_0JH74yjeD^wQsBIEqED(e&ykS7;pH7v}>eg7eNmM8A7blE!T@IYn zrKkF4)?>jcIO4J|;J?1V0u$xJy&E{MHhHX+;~LKE%vgGr6=xRq^U$}aX*RK2tj7|$ zBOs20=y+Q?A_P7hu0I0=+0@bgN;N+xzq(Q*CP5x&5gQ=@MU+fWRSo z{#A_)-P-Cuxn`7{j=W;6MP>GgjKWn?Q+5x2D&?|8X=}Y2KR0RlhkEjH8Fe_WXwOqP zMvW%A|h>xP>dYt0mmVZlu+t^Bt`!r9$OVno;g z&OpEw92&*c@iWf(RqdK=S7zcu!Z0FGMon*q!&Rh`jGcwcUzxd;E#;EKQ&ADzNgU&- zskJF>r*xQ4nH=GUKJPVR2eD9GGNg&}=Wk!esWr4R&m*L&Hn1u&!LG<+t9wTD(`I!l zk&{<#SdpI5Vvz?d!;FEDX*AWH5!=ZOth{8^0f)Q*FB^$In5`)FRVb+(Jb{dKr!2~= ze6yA0`XS0PjC9uJYui$0V;W!+z!g{|fMNB|t43bQ#oGJdpxsGQcjdD6 zIqMkm?y@-wxWS`-WZF3-;VoCx|vHBZ30IX>2_4E=C9sAgNMRz#d`U7#pD@zhtRhlC)Ldv#a*k4Bt%V50Z)Ea~uRO8Ve;F6+!0=y!D0Qc zJe$3=MYSfkFW=ut$cmAb`2gLF8Y0zhb_DXg&rmzm4XWJlEX5lm9H9RI3b_QDg!aNn zkr#0|$>)x}tBVmzl_<41JNLQEDoWn;Z}Tnb+P%Ax9KgcBoQ54MTHoyQBCZ2QfRJ(5 zn!t|QDN*ISee-dE2l>rtN2o<@Xv!fuAOT-JTL$A4{inUzZTFlN=|w-?H-GD?bL?u0 z!DI-z;GEVKocf%1?+`5Ea$h|N{9rby|Zu& zsP@FuwX+tzfE0BgU<2N- zog&PGEwee?xB-ShIR5||%S~HSWILbD3N!O^depjBt}U_lwQZ&Mf`AkKD|y$)LGsC2 zKE+gcon;;ThPD2qZE)qBD{KkSat9Re4_q01L29?LiR0cr@C1YS)EBy+nW(kY2txJ; zuhx^qdbIPjS3@yvjd~t_yjMk9SZ9Y)sTUX3-(~1&O-Z!eb$@}aePes7+@#X9P&We~ z*MZivuWX@zDQCScK5*SmIq6+R+~q^w-O5k_f^*WbB3&l@w6L_kZvOyI3HcdK;FLb4Hm5XY+ee7#=9o@5q zY&Jzrt~$)9WEm=P^!BSIrWfC8xtXM7J3xLw1apdqR!f06ni-c0IZ>bRrH7|RlpzT& zX?45v9Nb-4w323huA4o}28KKin~A`wqtdUXkRu_;J91lrPqWnSqqs>*yn$E}xToA| zw~{iL)Wmw=cdts)=e%gf-b~VSt<7Z>_nI1Ioc5c4d|L+vM@oZT^X?;6Fzw6ZIUmSW zmX~rxZT5^a%0@`)b4}AFy45eqxMhwd!R2r>+PSM!PEMrau8uVsx~_6dP0n-dvn>0; z-G>ULeQR#==Ty?>7qGn1q8+De;O8FIse7bBZ#Z;i2@@AN@0wSZ(*Duyns7!wY##OE z;^&5o=BKQk+rRa(wOnmE^1EKeJNxDFC9E^eBBjc&H~u=OfX!*aq(T-&b0tx?4{N>{&5sE+a} z;8qq;fS~de4hPbpmK{cGbsN=Np7`tQ#Voqd?#41n!8~`UCel4;T_*~W`EnJj>YJn%(Fsywj36_?GC z$oa9HA4;Vhu-gwd*gD|gRQg7zA-XZ$eA}BKp4G`1JU_b_f57!FRGOQdR-bp=L1zT> z$t#@3$fdA*)G(P+Wsw-~&lok)S?X5Jc`Q$W8;p_Gtbb=|>pIK=aHo#nm3r8GZ50k& zLf6YeUN#YSoNaRiY4YAn=Ff0J2dT+8sUWb3N)*b^)N(PJyLYHq!paPLNCX|LS+A+K z{{Y;^3Wmt_HOjFSDs#e$X+Fb^TD3kEr=cb8k*Ikhb&-6KZ~-+Af{AfFf$~aVW3^jL z+xy6cvLuNSW63xJ@Tc2Y{ec>C`U3e@I&*8CU+*+D-4-aO+-EK_KoxT8HdqOn@tml^{Hp}da{xj1l1lU{O>0EY zcV?#T!ych~*EK8*;Rw2_$T1PB+LYR8W|60{n9Dl=iU?kM)!(q#qlpMmROdB~eRx^? zn3Sg8Frx(iRU{DIJ+nt}T~(W@Dd}+Y{mnp?#6y$&0}7| zuX7-^M|A5%7cXX72&YHhc7jHDBL}b6h;Q3Wl33$?;P6jMj5SJ%qmyadp;W0#4Ycq2 zl33b{ZLfE@GatFvio17cw-ArBoujWJu4&WTT&J4hWZTaoi?*1L^hneJ&pZQM6zhA= zcW&?GbJWC2Q?}3WIqB@~AYvo~Xc^o(RFK+BENsy-umdNYR^`p7+U>$Ksxc#{Jkmj< zybJQ(oH@Y*JuB!i`GQpB6dXcV__@L%4?!J zYgoc0x0nLi3_<3w?jHIH*vB`UyYFM3YZ+sC=A9&yE;ycc)GS8}YO~BBxKd+b)s0xV z(IiL`RQt!MCaasxMcfbyZ8$u4HFoDvyN=MSf#wVkrFoS8wL){7jn(#HR&`aJQeQHa zyb{~Yl1xG)WD%aVrz|#%fRL^VWbPg7I>A2J&Ti!_iUt$4Ac@*@%L`$_=N$!WiLZ&P zh;E|gNd(lS_p?T9rdw;aNRX=MjB}c?70huWiQ#R`+3D1MDr>vch{P@2uo*juHDhUIRdgiB2x}^P_uYIod`FR~Tyl*5)CEfg%UR{#PsCw;e3eSouT5XP{ zrCy+(Yp;vUvyCFRmL)tZ00%vNMPkoo65Yux)BNR#7#vo(dUJ(eXyeUg*SUo{^p)bj z;F;tVlgn|m`_t$NHK2 zRoC^G79&1u5B->9;zJ@Zx;uGgj@gmW!V$)dN zT(0IP0Z*r;GXCy;M(LhHiV*-+0{{R391i^|eP#=Yk{`63kWTWWr%JhLq+83S8>r_c z-vbQ10h;!5>@5mZ{j9s_zs%lMe%#qZ?AG^WExelw!@0wZ4a2AvZ$iFgAKCXxf-t-n z0FR;ds+xjXtH|qe?BfAIj{xJZdZ1cclwlAAqh#dcu0O)P9A#+KrOzoXKK}quGSYKe zJsEpi)1XU&_SXrp0$6jw&p}tM51Rxs3D}iSpDon?0Q%|LM~98(nJo8L0yhKYRp*R% ztY)*ku%1X_ot_ZKq2T@%<6>=5#woeCyY2Ux$~^Jpa#uy`T~^w{L~E!_jtd6)MsR)U z=4QHxURy}9#pY}v_4UpxF;+W={ox%zW^UQyq>dYC?oGLyY&-aq2Z8kKU9rn*#}=W? zxozKP*nYwZUGLkWpus1%XYvcS;4_{v&S}Qd+(z?2@+^wGi0%32uIpD;7WVCFrd=rr zqYSD+Z1ok(qTEF*7M4NA4>gO1CNGx{8>aRD0EX;LAvbiLy-j$nlT-+o4(LcboRW7D z(2@TD>!|Ov+e<5CD?jfT766V2=qkONNiE7o)3SES&w9JB+3C>vBHrcYkO8<6*!$wP z#8Oy#(W%Oldv&n+rwMZ2$^6JP`+Li)LnK!!6K@N+{#`0*G|8|Qh$j-FfUE^;q{ z9M15NK5mD<6`Q7M=TtI9aVd^PV2Y%2dJpSYAk`z5f3;7wTy7gc;GA$xV_sc6mxk=N z$K#bX&3wteR+I02k_ukc$)~?Z*yyjNxVy3u-j=~{o9EB#Rqb|Z&;w@xkRxw6IW?K6 z-rY+J+ep~;7!=P9T}`K4%*^DYM!*aLGmbjfku0Ydg`8C2+wO^{hM%*SMccW%H;Ecs zW(@%Z%e*H9eszU;Gu=$`bvr_z@uj`d z8c7mZol^h@0Gxj+%=RURa~~LVa)F-K8Wg$8NOFjTm8g8YQ5AVEg=PWU?4o=qKeAluGLmDrB6GK zDf(%(woURhttL1dZ~^+}rMSOoWZxW)ue&^PkJh^=V5Rk6VxYOD)vZz5{{VL`T5-_S z)Spt*EbzNrsO;R<81WR0sFyaOfCLlMIs7SZZ>~z8GU{i@0KGs$zroz(@m1n4dom-% z5-ub^4#zC2mMhMRp-l^l;jApF2F4gB}q6U<;vcO}A0CTt? z4f)foZM@mM!l0yoG0%ErbHfY-%MN!aAob)Q(xp0#p@dfRHpviVWB@WcX1A6n3ugqq z>32GtmdI?DUVfqETbu?t8^45pwSH|bTQrVGy@jN8PfMM_YGs8?k~Yl}fe=RRXfLOVbM* zaEif)dUlb2ZEP8@LrBHHxEPPlscSc|-AFu`umQ*ZiT{=8rm7x*uhYaHpK$RxCP{@j@d)IQH#UbnBTVkfD^s=jPr8dUfzM zYE8apW#6#pLZ>^E)pXRh`ozt8VtAEFY!Vu?^-G3%QJO$O2LN`ece1KovNz7h`Ov{i zX1lO>8giO+nsSb;+8Ag-saTfQ-|aF3kQE3#)%bLC72le-E3_VmJpPrEuIextfO}Kg z;^1Jcug6Y$RAcaS#LwC!v^J8dv|6!h`bD+9ie-&=E_wB-<<}Z(a|=Wj3C=}iOk|Zq zOziyQl1Zn=6$V0rG0@iyJg@5x(~iq~>-P)T#l>^#(N0B>TmnWyusnAaX7VMHBr6Lc zY>>oOq#tHjBe^H;uE!f`*V>h>#h8L9!jK0$27fy9r&ks*7Yc^DgL5QH<0Yh>Clq`yn_yZRuXi!qcTMXUn3{ z<(xgGUwsfuaXgcgxrxq3-qmUw`{5#?c5TcC*5Z~MTf14owtTVc+nSE*d&%!aH*K_e zfU)D{_oY+V!troTcQy8O=b}lP+O*QgVC>QYcpoX~YcEcnBl8?g1F_wP2lA$0*~+h! zk)~XnWMhw7r4y->X5c$!xGCW2*3nc^ZSF-ZJYyD@Q%dUoQ#yH2?hk@+JJrjyid$mr z85z3dVyWrZLIw)1SJAOlwX6GyW_Y*ni10YCKN~8TI+|Ujvl64tB^WC+S}R!6#ifmW z!aYZPR(gH3#^{kTLUxc;ahkuRYW7gtJa-vJ#y|iZpU#r!Ta8)1$~P(JC)T>5nL5`~ zjpWGYsHWoMa=Pd@zh`NTYlRucY71*C^tlTZY>YYGoMNxXugvOHf=TQ1V188h)Z?8< z++%EXuHI^qkMQi5R9mlEJ4zZ9(I3nYc_}&hw-QMvuP63&=+VR&ILj$z#(!UGf*2xu zRC#CLDOO;lWMiJW{3^Da51A-=&yyN*Nfp;dyeD|cs9SF^adJ;vTd_UT-O4s2l6rnq1>9hm`$#}$84zRW1G-1&tYBd__zSka_Lv}ZqmaVDabR|v{#8trmb zSwfqYi!s9$rMVW#7+}56Q~ph7#dE4bJZ(Ri(G$3+AdFR8%Ui^m=Oh)*bCa6Ard$_O z9p0cI9WePkd)GWL^p!bIR&8|c=jLbZuAJv-U+@;@<5G3=tfR;rka3^Zu+-gMUxy)# z;j@o%T|e6G?RG^C*qk>Yu6zAzDUx_37f6W3n3q4rx9eV2D@JM5_(FwPQg%_-qa)NN zxi&~VrXFK$z!SND5Yt$KKR zk)0VvnoskwgN&t4QH*W*o67}+k{4*BE_ulu)oJy6dpX+NtAX5OissGz+fBSXFSR!6 zc`g=9so3$xa5*)#JQ8qHsO=Ktf~ei9N!!%j)+dHrM{w%FfFNhKMNW~yb*A}N;Kt0O z18Bw$E0sW|GD#$n#w$-s)a29WXxy12;4iSQsbT6;q`7sw)6ltL94Yd_?8!APF|BPD zW4VEBbM*fJ9M)uPU|9k)D#^oO;7&l$@0;3nrR0BcjF7efMQmp$)1^nLXwyR*%#)G<&Ks}4N~dqB$!IoP%18%{ zk4}{x#-(>EVWwifmCwsoTSXYSR_DA@{{S(919AJOeUX!vz~Fursbg!S$pc3ae>Wk1 zZa=MK!8G1z0hvi79QUi&I!)!O{klmb+8l0hPJXqXHkKYURjJuqtKIiHWz3U}?Q-w- zEMZxeT(<0}6xY$DUGCDa2a(*>{U-J~$Ci_WwYO(Ied?CCW2p=Eo*9|pBybx5dvjQ< z_N^-_aZk06Iu)xrp3StqNG~)iiENpzSe?Y3r+{(kSsDqJ-t)LNu`}V_1NaWh<%v1DyRtjxD}f= zF6J{_Tu6>S?gmCGYb&X&t`=xWEI#WI!N;{_hoq`hs~XX1weolW03*_-q^->LEZu2W zuWW9llt|mKa!Eb?YdI}0ZW&{@QcrV^E4PO5G-Ta~fWhDlkL6L=U+I#_5(Nr#jDgm& zo@W&aMoFh@D|9#(V6VkSm9SfrE)Qx zRtBe}TE!j&%8W^1Px7qW71b8em4Aqn2x03} zseW~4S<@{cUGn+d;B0LEbjw-oC%=_%2bh@~c>MnWTFh3EBS)4|-E&qfpUTUuM1?|F zj0669SG9=C>Qw#fmG9W;_HyQOZ(f4yHVl`H`c~yd0EJ`Dd-tcqrQD(kuK+;FxPU<; znyUBnOL67LD=zFWU*}GFt{sS)c^QWU7S27Z%fjLDv#-rUcXqX#{=p%P1Ot*WQr*}+luBfiGB@x6(0iJ(Yjtx4w5=S7MgZEwIQQgLD~aTrnHZDXHQ5R{ zfs|vSh!KOa6110jbGLElc-z_MjkbN-#2=7o}#i$kxg!a7w(V;9>TgX zib^i0vV70&6$v#2}@@Wr)&1!bmACM zRS<)c*(27gq*o9^5iSC+Vn;vyYSN#!uQyVoS6VKF%C|f;egK&9~F!zIj;0@V5-P7|wduww(XuWG+njzi zYTLxZ<1x)>Mi&6C4Lec3GO1YhkWlA$Z%X4?pR%7UbCZwKwf_LNNMPS(0eWr* zs%m%3d;pCYHyG#ht}6H{si;Y~`WHfYh(1{>r`43Fk5OV}k{KVIWSrI8eI{wGyu&D0 z+meUZ(xzQkRkgEwGW!sm@&>@A;2K9>P<%ajihdvW-e5*Dmqk>Nfx1QRit5+7(HtW*^O4Y z8?$?yv&2qGX=GxqkU?gOP{3!X>rufitYOw@>4-< zx=5_fplv;Wm3?*>80g{LsyoWZM4h8_Mw)fk+BQPxV-88+iobQE#~fStw=0|u)jU$o zGN`sxIqpvaov6&#*1)+A+;F`A06O_U?MzJy(wt?v#XLn}6?s1~?@WUI z;7#()<~x4~&lSUmr-+Bdn|=Bj&JvPSrmPmSL2Ym?ZXa;QGuTx3I%T3NJ+Wpv=N-jW zv4R`dnrY_PuoYAU}cd{nmXY0sLrV)$H)lWnl_%WFqNe90`Nz#=TSjr3|1i#cQ;Z^IdvtvmlsHjo^nQe)H<~H5wY zTJtAG!m6n~ALu1I^0XxNWlMWYhTXCzIP1nKZY|}B&g3HiXTLSQrCsWgS_uFlo2buU ztxIv{OB+u)21Y!N_1d#%$f?nd;=Ib9A;J5|&(qU3!KG3da5Gh*yOLY;Z#rfNU^waq zYH2T4M_}ZHUN8q!PqUWF&P9`leVsthKaF)y1uRSU^1AXwCa&cr@+8zOH22B0EUm%8 z&#ygdIaRH0;)gy^Vb>L<1@)E0xgdP2{7cfaFDFU0l-m)OC19jukItH{B{dn`%AHx& zmm^HMtX`XTjS4I7OyrF8s&hdl`~vC-TXEw97(cJIKg1^8wnm}1FK(4Klc`4xKVyx- zR>&Ka5HrsM*FEatk948!BL~08RML$#D5rawjc+}piDbqR#^3g<{{Z!>XO5>@mo-T0wh2l#pyfR*BzhZ0a%50R z&Oqji@UQ_SNC82^5sqlqwGBmPR{;571uwff^!`;YpLcD1QVY$okaN8BJbF^XV-k-n zDWs#lmvZ^5G^$H)BAj>e&JMiWVMX(jg z{Xbfk<3+bv+5X(A8sHMk$<1k7O21~>^Q23XGQ^w@%dK*g#AdiH^D}3^Q&`rWL8`65qC4Gd}p8{x(W0!XIU+u895+|qoid7EI{?!(*t4DWiS}no%jC$4$SHv~$**`4~NA29>%^Mk)7O!G*Bm|F6 zqOMxs-(5rYb8-`@%Q52|=cQG#wVP15+GN@SYlU_zx8<%7`&K%*YtZU|t{+&j8R*sIgKWHCpIZk-z(xAT6<$*l) zaM3ZqBR_?Dj}K0S(o0^c1Z4=mT@et4ww4M?s095flE=BSnG2pPV^6!ixqr2e*UizuRE8N!brY9VwK!!;7m}wvI||P7T(pycu|`*(Ggh?SVh4~U$f>)j!0T1K zLYHoEipvpmgi<&aTTauXn%YUGn8c{SbjkdwQo~cN87b(a)qbUW8gr+>Us z3q>x9+qVJ+4R1vQoj8`2H@D4#GH^ZXow3wy^ytKB#ovBev7CMes@!Tf&imHk!k&xR z3gC`ii=5h_9&2^-Ii-hkii8&3UsC3yr(DZ&^GD_3uravj`Bq4WQ;zYVRb)-uT!$fl z994^nb$F1=9m}+QF)G*}h^JfYbEFKiLaxj{_IuY=Y<6hy@xw=D+gI~DX)4s>u9Nwc zwP+=`x*=m{P6D!w^cAaVqg%^tXOi%v41x-tqO^2L-tsk&z>^b?PTyM3@eGsADq6)8 zF7|9=r@uAk(#)|mXUN^1_b2NTl$A8B$3@&mP!=rmI@2CE^BOCASS41#R@l6LmBWTu zmnSOP>7~D0nki6q6rtFmX&Jba3m(SW08x&#lEZSY3}{JG4o7OYd!*e0?GqxOyrVch zdv>TTHC;x^=vhd?yv7Q|9(wxMRI^$+ejYe@%iU{!%-J_Lcx&Zx4c+TGb29>XVy79T zneHV*URGciJ!@`#3Qx27$<*}0?^NGUzkzcEj6lHvH|Jix8DQm2IK6!B`JC~oNxQ3D z%FKWO%Z$-z$d~ZEs96Ez0h-<#M3*uNr$0CGD);)DuX}bh$rdECL-OGX13#WKUS46F z!O-?qB-`6VSk{E4%N@;4np82Zz<@Ddn2#(9k~`fST0duXF^uQ#-I9ii_^qtnna{6wSZD#&liT83oQ=fi% z*Bz<4$#o(wRY}G^m0~-t>5iCMu{PimPpj&%s_H}oYnz~bd(9cQ`Zzqt-EnN zS8g9Kp(-+!6)PrnR;SL@-HlC4RfcONw2d|(AmacJ%Bb4NA>as|{7gr9No)Pf@5P8zv>q?6SEm#IZTaH5s^dwlRV8H+p^3 ziEd26HZNc)F1&_~L=mtflFWM0pz2eTQE|J`exVpf*0DaE&1r7(&u*oOAZG`PTYJWi z>&_|yk&V5DXTfnYtg)XkN4GpwvB|kP6~mQM!s4np)s^PFhgOyKeN7vUTII=PA~1S| z0984!Zg%9%**)o@$j;Eehz6qoFU)a}dyLn&Q!S+rb`igslxWjk1c%JHn_}d#?^dRU zYh+j?h!)$B!>G+z)8Mye68V5J9D&9^Dz`L`1BqgC&47UCkSoZkE42ygyn=P2q@ar0 zO~h8|v7{=^gVTU&)#QGBqCs`Lq_5^nb8O!uB*n;!9r!hpW1i+A zWira&Iqy)!j}Q#5Q1&3wJbTG5q-I#$jBguu`c>T!qRb4Dj3~}{_pffO zqgp)5_wVFsDJ2)!agH0ib$itd7$<4yYe&PaY^TVDOsc1i!~AP6TAlVr1LYeh1Ey*{ zF5==Q^KE3Ix(mbhX`2a#Jkjpvc%#iz-!e7;Hzr03L%_3+rb@x%Kk4}SVT zBf3kKB@(uw0>ijlDQ4hj`SDtI_g0p+LuA1lCvuGS;-I*;zJ|$Uz-M8WZ2ZI5p7oTF zFm*Qpf)(5dBavJ+D0^CtwOMSe`k3;$rkk~f+|2T^a>dy9Cz?wWBzMtIA}gvL#d}qY z*0L?O-53tLz5S{fouk7mVX=(YwG1^pToov{6&1G0`kfGxg{+RB#22=A@x!=PT{~_wN!LAUE0gw!KIpOk~nMS4^?e+5cB)ZW_fugtl7(&lSZarEmL?NUFpmy?1|W6!VQ zROd;V46tygqOMQZtvc6G)GoF`9%KVK$v*tm?e_Y8u?6IL0%ZKT!+IQ=@+-;VtJ+le zIb}MF<5w_6(@QG-sz;R+bS9ym`Z;dL*^|oS7|&Bqav7h?BWn;y1HbtutIGz$l4VYF z$8lbcCE{U4RKui`dgyo4}_a^m?g)nn}y+w(c49$iw<#teao+FRIF>uZIc z)9j04jL3M9a6vtftpd_pDZbYUjzq^^ym}mpzXqoaawPFufHJKhRR9JZ_@cfi6*v31 zS#-9)fxK}Z&seT+x&CHjiQt*l8RF+@#~k`m6c=|Aq-T4#KwJL+uU$3LX}7lG>PA#| zVC0^>)Vgk(zG0Ol46H^8Jq2{f9ZlL(R+>EdW2q~)tkKWOq}{_Rt0IycYl3^4-I(7+ zqeZ7n3}PrG$!rbH^*HIxORSMB-dYtT;N%|SnLHOPV^wX#Ibu&Dxa-ufiD~m_VfEKi zD@3kY((LV)2{#R{M(zh0Jk}lere4Ux@so*L5)l)i1^B!dz*Hybo71~CWHb6MY&(POLb){Is?dH0x zg~H@<&w9eQlEY89#Fq&!A3I#-O8QsKPdLIVQM3|kdv!U~@YNoX*V9uu=G5*b;LVcX zC<6mIs@F?(APVG#V}d}*3Ezx>92Lio2~adVQ4F;ZRlYLwv~=O=Yn$Uj+HyQMvRk|+yKB)p1o_Lz5dU({msfo z((L=dXQ-wPFGrM#zR(WfNkN+L!De4phb1XlTHAi4JY*&DCX72v(FD&L{_-MlK^;e} zYiqi65nH9?NwFnWWf%j3J*z*&M$zY0)8h&gzR)r~>P6HQwA8j}azgDm_4Tf*IJwno zR(D;NjShEdP8SajNvp+vKETol0r{}l0M*TMO=041Een<8u>0QU^rJ-a0kF0<>k!+L zN&3~;JWT>fS>fJE&Nhr1`Rv;)l<||5H0=9+hc$W6+9s)8FT~8!;<%OrB(BOs=L|^C zsp(aX)#Nu0#&P8t22>Jq2c=%U)=kPviwKM`!j3dHXjx z#lk6e+}fNuxu75wJW$E_@!b_c!7ukTUqagd@qtrE ztqfqU8@E5_H6D$B1bZ1{EbO>^VUB3w)H=-D#bLR6{U z;Ac6kaT$*+lyymTF`a3*c*Xw!UPCS5xhNLq&`BZ4FCzoT>rzjp+kKhXM#%Wc`H2-q zEpB;b8E~pt1Hix)V_DW&B2>5PN8a|VYT~6%JnKaJF-_tWl2O(9nPN5v8xG^pQcjXU zsM5wjk#aq`>sB=Y z)|`~A*WzYPATj*3*q?!(ndY3~r2(*`0~i1bj58{g9gcB|(yk`7A51SdqO32YT^VcDlf!3_0wZ@$+tsujM!CzxcxVkqg z42ZufZ5S2rVd~;*FJ*hByXrYl-qT`;B_$#zBL{<0J?+Fe3_QRG2ROw&p>Z0^<(;H; zs~UQJrgVeKM&R;5r-{pxqU|SjvtOt_SFDxD(^b7#hnC}~rChUQzgzuf*b5w4n zc;pc*YBmgTqNcaMzd4O%2sV??P6c>4jJw*Xx_7$V&QxjI@q!08&|d_aOupgCIjb6j zrQ5Bui5a?*4P>p|#PXMvv0#4oYW=3CBm*8&J9G0e8Lp~0EIoQktvKJKOa2I_MW&s$ z>_aY3x7gw63;XA{78^TI@Sn91c2quKAMotcJeLZ^CRrS=1s05LkIG2V4y;886Sky@# zRfT8^xMp3~F@}@<+}Aa19A{1yV|JzaoR1G0RU5U@LRJNjln&n6>rVo3fRc9OAm`Su zUdL%1D8rN+ci7!D)siAPF$8XKbI8py0O^&D zo1Vg^fxtl=;YM3Iz$Ab5s?MK(6{XCQM;IAgAt(+HuQj~tVBEQ(7T9a>q*u7Kytczj zZtA6Xeia06t;~4z>0JwJxA$=Dl%mF0YbXOb{HvOHWLwD?F38JqTvE>3uNoC0c(?Oj zgM+(kW;RBZn{Iy-PKdI$31(x{9ctPLnd3s62vQ3JoyVHH1)LBlmfr3;E>!)}r;+K% zu8cydLaUwK*2(M+q*AjgOM9t2LK7s+pkQY?#X|er@9x|NIqh4zYhOz%8;}=h&j0{_ zDu(|6Q?`az-)@o;m?s0RI#p@HPE&@DQ=8hQE>#_TjMa`?k1ZlX#TSqO6*ZN-QaEX( zP@}5g=lm+&rm1BqG8EWI^!BRylWFt7&jgDcfpSMY^V92Ftj-kaK3nV6hqip&vWr6} zOLb==V}xzE3D@zeR}jR^1+B`R=tMXf)TJiBX%J`Y`DL2cZ=VIYrNi?jyiasnhDp(;6CNK^;sXQm8 zCB*A3(*hJ{Z#`=smt0n6M3q%26^yAo88Nw@OQ>7C2Re@kq^_Du&P3 zkyf=Ush&U^Xi>m%jGX%Stn$me?QPgRU~p^nJS}wa(OYyqnsReo%@t!825bZ;o-taJ zeW5;AB%t6Ne_DJO7g2yC`B(2`pyM3%#%d|`8=0eInsUm=I6c0emB&j1DizwCy`tY< zh^a}-?2evHM;vjv+7vSkpS|2uA(r$;5ilb;3R$FjU748l_`?yK`WDzSHHDh{@(K>EpDtF z42?HMhgMQ<6I9Wod{Z_n`U(|v8(URYvr-ICDhY4 z>#2({8;JEJfA#8pLf+C_d`?7oQ}g|6pL_Hda=H1GoPoEDRGO}{9pZUO2E{nXJuAv^ zmo=huJUvGw;H-;qYOvYHmTG2Xh-2Av(LwwT4{w&pB8?oN7tO3r~a>o@)DH0%g%%hTyzb_43t!+Q$U-!tCJ zbE2LioEzj;{6>rX=|%}43<<)?oV3zh6+(UH881zRVn%=w9VZ71Qi5ezVG9v8j zoOR~8>wPNrV5MT%q!X4n>0Pua;gV_)NiLGOQ#| zHm)uFFK>9((jqBd7iby$PkOy;rAjOoNm)^3Y=y_nG2b}j^QEy@o#Vcq>uiH|RkNSM znW*Y=Mv?ya%*Q#&;8&pWlUQ{@MROnzN6f)pGxb`@&kc`cdj;+>3RgN_3p{8il+;zUU;W)2g02ewJ7xAssq%#tO`XRzzd zb4=s8w z(fs<;EtS0S))7nWUu35CxB$-IKM%+lpJm6Iu>v?RlT?tLt z2OVpES@kcogKrTGzL*?Us8%U#)L$<7SxF%C&3wiuA72kAI&n*($njH-vRWLxT7tAI zwb`EpFh8d?HlIC+K(lAf=c@22+E$%lnv=c!-b@FT7(9&h;TtQWYLxlkyEgi5Z_w-Hgq@*%dk|h}X(hYdMRXhh2tW^UpYf=4uOcXlsg7AN z9}Iwzj@dP{4w(nokJ+xBi9iS-j!)xRQRxxIF(z@q$IZv`u8Boe(pG(rXx2-b9OR`| z@0)9dj{vC$Jm#NiU}KLG+y(_mE6xRGUNkEDCTGaH7(T9p`s;)V# z=x(w+nPUYPC3xnvE$^Zh&j~}y@JC$NlU6u~T2!fB#XSdBRbuXl4xci4Qdy?Li}NsS zay!+=u}N%Yxw^bZn2(o|ez~f%?pt-1JGWxs2TpkZ02;4sv69Z`h2tK%uU83xmL7%P z>+dPbZ&zZh&gcT5$tM6+$u#-C%qAK6fWbKA`ctL*8i3HF83T9DG5OLp(aJW=u=V1% zty33Ps&G%)+ix=Y^j1WpOuU95&9EUE1fI17tRa{LkdQi%FlyA=qdXfKUHHO++%094 zAQG#A=~`g%nD|LilDus7u%pck)}xqyTsgpG6D6-qTXA( zLA^q>a(iSNwRvj`D7y}-zyMGR@>V9SD>+kp>Du2SRCyaxd-W%{yja|2ra?sRh7YQpyL42L*|@>&KTp4mF{vzF^#3~bqLbsPr1E+XJaLRy-T37vTtPy zNGClj4mp&d3^D~uA%JZ+Hz5if5sI&={g^XLYbe{CV1GLE7Idgj*;Lhi--zKA@Z7z5 zY9d5`?bLC0)tRbHRxJ+2B=fr*(p!A;BDncW0BS{!M#7PjYDDHH4=xBGs^c}~ z(#vCowCPl5)0a@i?)cRGMc&=p# zfRGOWmad3L9VP7JB%-^SHzljFqXwNM@JAT=nlX&^;+FpaOPbcz8aW6EIT@{8F#VJ$ zk;x1R}ElxUS6S^-c>A5Opt2#_6_>L@=0?WU}ULdpXF5atyQc6K@f6!9Q3PisA?CfBB4}8 z|RUQA#)Jg({J~l(G znA615i*DNfW^JB@a&6g*#TzO6tWWe6O506o^%*VhB}j~8sOKlpRlP%4f3%M!d8-=45~LuBLhW6{p7rTMt$ZvSirs1d z006<_rmUv7F?Cxw?T|EEnLOxsCho)auL1EZO*qE-_B8gjBU9P9qP_L}+RGG31Z=LPVEmzT%|mOW$oG;x z%q64Um0;WtUMl2nY|$e~q2vI~y9cL!Dbs3Kc25tNDyq245IM)!6`fjA##ZL0<;(XE z+qElGMqZ(8Qe`ZrFynxIzLf%|a55JI0<i{PMy4`G4DwV@ws!4)Kg%N6MY(z zOnb&oD@#(6-D5D@LJ_z-f()-7qP;vOGZRI*Cw^@${#}A|T6vW1tuAhqv{04+XVRW@ z$rmxo-dx4PsK*@p*1v?_M~+9jxD4DV$6R~UHMs!3NnOswesTOlysSofiK#zk>G^q_ zvc$O7_Gu#`^Gth01?P$KafK)Pimvg1s>{izPJH&^v9brfPYZ!{?bKT55oZnV;o9&k3VbKa=lG&jCrj!b8k}I!yn(dv1~KWr80??jz|GP z$JAsB#kqGAd2NujriaUC0ZZ|PAapqxH7&)h;FR1XD>Dz9Bo1@!>sOg!YJE|v61A1@ z-CJ(@o|O(rSv`%P3(O6Hf>L8pHjH-wRZVi%*4jd2SIZ3NsO#@fytCDHND=MfSdIZX zZfjmkU~I%U5e?yRPY3m{8W@Z*rb<|`E2Cv1aXSZxYUbES}4#)56Z{AQ-b1sT1AE6V-k~+ z4^FtJU0FDVVYWPO=XH6GI2l#vs#I{%jPFxM`V}u^GF=kKBNY*0jiZs)rjEku8-Vv4 z79e?HhW!m|{f|!~IU;4{`96ZZtUh&@Ql;#nXKy2}RUt;o{{V4b8<`=1$8QTfjs^+s z)~o71d9_n>CfPH>f$djrwL3dIuOrJ}1KWJm-3}KXH*NrU44T+ka zCjC*%&bgHN9=%R^5HTT+4nfUbz0ldiDimdM5q}ZNFy|{6r)D9oNa%Z%Q;FFSG&Jc8urHf z%=6@jJDV9$0Q>;yQJAGc^F~)4PinOmw|N|DuFWzhI4%BtYf0{HE^G=r{gG-o}O%jDf- z%kmix2**m>4B`L6!}KOmh~1f^pQp$ak|bM7FnJ8{iF z_zqX4SiHHlGRO8<8*+>t%h%Hbnx#DROukw92Ye2->tQoFQI9lZ&2qiz+d^2U^4DYT zU^&NLYPnZ!z!Qc!#VAI`#TlzQWWqTB*sU)=d;$mOTzHH=8Z%XE#?tInly1=#t&EaL z2wkdA-ZgezJIioko6GmjK2dh;SW1H!u6?q6z&(ZkfJ zy{r@E-PqUKN}AP~fiiwhDrE#Ho zuW4^Cgi8?%*|Q-oCXI&K2==DudxIm8zPRaHX{E^>$&TVZ+;NXuy>p~mHebzf%$dTk zMxv!m7q#c-*T{)hr3a~if>{?Rg@$l2D$?n9MFfN#?QeO8h(3e*?_cqZ(xNK2{ z00F`Es&d)S7+*DZ?-^cmkw~{PUEPlu2|}xon8*jEO&oH%nQdj= zzYT%cH8HJD3!bE7cd@0NuOx`Bts#Q%YDy$w_pmX8=~DfbWrVy^hj21bDaib4u*iHq zRkMcmtxX~e>v_e;k-8JZbm{Ag_x-gDCLZqG)7R9wIdbo+DqE|hEhW3VPP~=p8UFzF zR<56@>L%NL!~ue@KQ}d_adoHKp^)2!X5^itlUO>AuvbHPXj$ zRZdA6?_TB|VW>j&DZTew9TA|Z$KG2I!35HWks;i%4a{-C6@2P9+haqQjey`F=brVn zEn{dIAsL7+TW$c&V&31}Szn|PM6J7?4?$Ck&alxW+u zm1ZqQ&`J_H!)`dh6`Xj2r#C9H@1ai{QESR`mo|4c=nTkk+@ETa%*$}8W)9fbKQgEU zXVlkMbu2U6mXQ&ZjC{ajipIa4Y=p8UyiF6H3gaODRq8C~4PKWd{w{;1jrOU<$5Cwb z8+cjE$t2tjxn75i_p186i8m#niJfC*+8Z4D)rfpSY_S57znR}S#Yw2O>*-H^fFffg zt~eRRc@=Q=DqHz{$W?J3(K#!A1#5eV5iTP(#uA_qcK73op>?f1@|1}TLl^+BG?ser zmn$2S=7v4SaZ)9>_ME}sk7p%`z~EI-p($2esWsJKr^xG6mp$qy`W2;3(fNjQ&;8O5 z^Q$&cwfqc?#Ht3ud*ih>3rVEN8&nMCn>ZhpGTkm(O}27|J95}0SJdKThQrfRr#0zf z_gV>YVR07ac$nbhE6+6e>~CaEp-EL4!96Ra(Kp-MX6*#70d^+``O{*1dz+~e-cKe> zWaJUg;a+wlF-!hktFEUc@s2IWmiGIMT|UXg$R%C5Zbz`Kk0KjrouXAGfesl#7^KxC zYY=2~-b8ub*EH)ZxMZ~w3DLI#4}L!y@+;?Vb&`5|9QA9|no?UBY{9P4ERoVhQa)Y{ zQkcsm&E}HtyOK^$YijKxcX=SV@>um?ai7Yf)3nKc(33>*$r=)R^T5r01``*Dtq*^7 z)$aU`$~7TwXTP4~A4x72WR;PeZYs(+>*#4MbXo4Xj%bEDmd~%!tx0orcYCrxB1HtA zbDnWkH5qPnsn!VYiw(Pu)5b`yf3DVR*~Zp;CJLoi?5%#6C%@3;wm=qSW?rW!AIheO z!SA$fnyJkj zF3czOrLs+#*PC?RU7p&1IL6189eqLdt*t(I-Bx*%%6^PT9e$Mitrpi+wtKiC`#S-X zgN%ET_|;u95|GPb8EKgqDJ0`H^FG;0LJFJaS~4q2ol1H?d46ByShm>$h69sPTWMD|7mYl~PQ#oWaz8rHhBdmp2ndWjAAO>}iwQ=g;^LY} zsL))zidq_DR=A2e0gug%o8>2^YFX+@bql4`K3^CrMt>@b%3B)?86$EhC~<&;p1jso z)~0TC0~mw|8`XLG))lJKhKen}Bc0KOR^d)B)V--or`tlwYQRd^=(r-PX*1nTez3IU z`M)ktII12Xv?*|s+sHOZx#`ljJTWGd9ioegh`T&xm!bAK;+o9pxJor)Cf3iVq0{W5 zsPnhXbT-l(dEFhuVX$%1v%FENLXk9f?nLc?03Nj6LBvqC#4WgYY@P*V3GHWpI4)-# z^1Ro}%L!8xSDN-;dF9f=#&tcUuVh_qblY2mSdW}ka>J(;ktV6AG|K*Y!kmHHhI#HT zcDULY@(AOKit0&&v@Q^Zaz@ny^~HTo4=bSxN)=+;eQtV`u(YD?mP2gqazO6OI7BKtaEiogIwk+(^0H!zwYE5v}@2+Ch8Vh+C1U&8JAFXLTWhxZa zI&xRrZ@|UMQ}-!7PLD&;Eun8RMGpDvj+L=CnPkw(m5(Kd%a2Or&xkKPuP!LSZlsQD zP+yY@@06h=a(!#c#5`0gbNe*E1I)z77}}Jbk(a4R)>@;zylMv-!VFdG8{0eiL|1Af z8!|@RgH~`F5Sae(GVbBV zdRFf&#M7zI6r1SY$9*bOSGj78Il4>RcG#f}bz`)>rD%I7MrJcJN?UxzjcO-r$zIkFWH0sKDm8H6F zb4slkd#?V5ZKOAs(g|$iSU_x^e=gqDS@g|TX^3lb8#pA9T~3;0SW%-Z<(0^*Qq0nE zkrH827j5X|TrS9G_FWXyB zeQD*+Sq|C(Daujz}NMvZU9HxJY4CkPa(aTgf1_ji-?^Q|9NPHRj_gw47Xd zVtJT}S4&9QGL^=cX)7pDB5}xJTDC3Z#9|U|0Cgv=VMz_#L9PYTx&fWJJZILZ-rdTm zNn;+|0(%ah$MaeU3Q@XiX7)HKh_BqXA-A{HLnH|-=Gh1FAnkIms zI5dj*3`Ie#Y0}L*OCs^91=;Ya7Sv9$Rs4UZYs1V?AIbpk1BPSg7#z)~E`he^sR4Q=L6eW^)w#U?8noE`;HoODgZpgAN}^@itB zb1b84g#ef1pP;C95fzQ!lf7jt*X6D7)hJbj>8Zs>&vyMyp%~M4OXORRNR_QjkjPws z4g&FxInU!+*Dy^C<~c?Wdg=82Vkm4_w$)aQe7Mhk)s3iXP|bR;>{7*nrORUBMRy)xX5Iyl&{ZM^4#Difqd<}C8uJdO___a2orv-#RK_D=*mGMjz|UruQr;Jda&eyg{{W3+J>BFe(aF5! zcI1kyZj-E{L|5Fy86&N7yt@$Z%F|C>_Vg-otyOB$>~GxoTTYHRheD1g$4AnWMYp@K`GY~Q|dR7#0bHlezlU&m2eOW%s6H`i( z_k50_uPm0)rGyt5C4d}O16<7w>(6hx+%U$`?^^mspB=4{cazLnK4DjbX;a#lmPJrV zDhSEQ_O5kWTJzJB`Pjuuo*r&G$j`O7)m8_dXvC3_7Y)>k&W`xLr5vn4%K&-C1#iu$ z*(wzC3q{u$;QkdvTUbwUw}`8>4nQ4wuB<(2LAiS^J$4;Bl$4urvM*{kw%bY&#TbR* zYPG(br$Z^7RgV}TlTWd_(+e(J4d}qty+!SWGZmR~F@gU8>iSoiDsfdgWdoH|bYCoP zu4iiTX|94>RVd{06nwb+{{W>j!c?`kl2p2tcmvA>^PassR&29K`-yXd)9Fx0J0Wxm zA9t;NjWp?DZ#ZbrLNun~X6|TQ-pO2KsxGY=Q_BS%m7`BDX zrNB-x&*NR$UQJWkMQMF}w>mw`^BooKw3A#!Ep9hNl6=ej>gA@LYL0x9vQv|sbvUeD zB%2uIAiFqxl>?3{?3#;@-pH>J2}1k{4{A z6n6DJYod+^AIj{~M@2k6Xhq8E{{Vf-p|HBsFVb6yB71Vja3`D$Kb+0B$tvjMQ}E; zBL~x^dJ~mOIC#z)Pp-e##*?J}8cxs8bD@1Y#^Iw$hFE8|IQovYUQZ8L$Qg?`1RMZ( z6`gUYIf@|>lQE7-Tve-E`{%aEiz65eG0kC93yz&8)vR(`6$N<6)YH_ei*+9=j3_k* zt7!LuB52fP^#_sks=gmfr@S|JGPv0I*m`2F>M5zTiuQy#T;+4tzH8ZH;W+AJIL;N- z+P|ruQ7x_Dw|JCil6HffXPQO6dsNI!+p-TW)KsEru1@QiJf>Wz1m_~NwR@OuZ&EvC z=$lRy4s)9JXwrpxx5RJU>VlN#%RTq~1C(LU|-o<2WypD8*o%N&753d6#$Oby9~cT8_`}`5k0X zT88r$5X{4qv;&{5I^##Tx?p5d6n4p?9ahniO8H^JeXwC)r>_B#*|@IuBD2qJVLZm5BxH zml~jvTacs=rE5zp#^N30C89cLdrH&hpF!5TM3&cHYv8EqgU)?w(TWC7C+x7Eeq*&k zACFqP^GfQ>#IeRXHO${lFuat8WI64}PL=9Wr;MnTH7!xoPOVzz0Igb@UY}`ht0WJ(h~>MQ!_zHN>6&Yqcl&3r9qRR*me!kMigH3^1j(n0tBj!) zNjvwqL05HDc~tfE{Y%pM@yi*3K^Y+Pik9LpwnSo-oE|bOIvr#r?vh7{m!1Cpm1gf) zu|lFLk0f)BE9GlBPEVRI?l@&mqH*_i?pU^u?2x1zizxX*XxISn4p#!Ho3+5EB(VV-MiRnlOR*sOPNFU`lwN7MS#Z{yHxw@9G8>e;}_ z=jcs6d`StmiUV$4A{b2bx8^O!rz~rhRWB6>3(2i)zZ;!X#7d>71mDYJ8htlVg*>mF zeM5=VkFgH+p7g6jNQvLBU;Za$z_Rt~iY!`alO z&D+b&#yIK8waKdfu0d&{iwOkr%o;tz@IQ?=#Zxr4;n0DCGtC;s)sjYI7i2Lz%8c-8 zjjhagGKd}{Bz+l(&OPgz7^%*zX~89K!b)|fs>@pu#i~Y@3j&~N2Uc#N)Vh7$rSziO z`Mj0m=f@fKtsAR7D^9mEfE}BR5sJ&O7I#<3mnj+{2a(6}uUa*$Vqq_4nzOroEOh?r zS8DzJ4M;Sd6#UW6=gGkxa5Lhe2Q{rA{{U-T9qWV~Cu+%|2&Y zbGFhWQF0Hi;{JRNmnB?OX9;Iuh z#QtRH3p-;cCaopKg^CA{VA^x?sL%Q0v$YH8ZVF9r2b}$Z73H^0O4Q|lTN%P~m21;( z#e30ZG(T}-e1#lhs=cMOcG5H9L_P2RBWCe(qI@N>}d>?+JUB&OYrvnXxY z0YNqEU@=su7YdTMspzZIUiAL`%668wR~F7;3}Qe@8?ZRWf0(JI(xZymrJ3^EIuXDo zv~2$X(BYaH?hJ75!h*yCNF9gJb5Na2OnHnlFkntM5yg6#y7+pF+1)7Vw^ApFl9%q) z%6f9#Ni25aR#=pCk55YIWS`5nRJMp26?3?NdHiavthQ-1k;J3rg9k<#!~#`Ro1Y2cDo?G(*e14fxha3Ll0j{irNc7 zIJI>mR*b7V4u`PE<;`D$X>R2qWqr@`l5>DPDx|iz5#7Tat&<~QHhI9ScpBAYm1!ky ze9uOWT9)OL)S6pOLI@gGxi7VN!yc6$i)z}1%d_N0tN}i?(hF%s8Ev~9aanqRn@eeC zx0h&V3_u)aw1zUQ8jU2bb3+oFakA# zblWW!7M+^~(SoSPe?oCdsZC{lb>vCWR|5-h7G{U5(1ErOrTHF+3Cc)KY2Be+JJqq+pyKxvVL4`-r7wSlRX* z?om@bJn<8}CYPx(m$ptk_VPP+xwDmV97V|l5_zXtg_i6~z2T8?RgOp#NeretqCNa`)XO! z;aw^=w|$dmAh7_P{#7m95b8?Aym1J|-k9SDjw_7&Mc%=SsW1+4y0>lg@uu!gqPgQ2_SsFd%!~*3l z)jTXO`2ND8u_m>TLM)3r%X+nqvBD;qK9vB;|WhJ|s&i#kjc0fE<_t$8w` z3U!*2R(kwhdyDH(Qc>n#d7))_Wd)&RX+$ib;~5#i0m{76g3=ACg^s3e)?Ieg_ z4y0s%S}E42PH&#qdtaf_-!i?nG(5(JLvGQ2g?W9s)_=a#XOqLBs_{k`dysi9iHHIS%I&rm1TK6$n zDM=+edXek;-PD)P_VRx3wiFNLS+@5(CHuPVQ?`h!=M3)2O|{e9SVfp-Pg6}*^M>s=2G zS>dHSU+=%jq~?;@v#+;^W ztC`#xoxom%@tW}IVKX^KQ>Ua>_uTWH3`8X-&16}**6dPI51O z$`8M{A5N70Lr0e7(cUtyycS#khs?YRq@GFrE3XXZpyg6lYw;XmN-*bAYDlE( zYo{>Gl1Oudfr0H-GzYNW-gW?r&yb&WSJQdDfzL`_NzDAwau()5?h6o zdY&;&7y7mQ7>*_9^{ZSu9ow3tG-)D!cH@jyu&$ ztNlV|BhT8qw*V_+Nz=jD1=PER!oK>CQQ(jtDYCHB8{T|q_npX!HBhdG&GFw~6VA2bc z(i6bPQB?1(Zsxl-(n-D4?FE>e{VP%r4ohyLd%2cKRY?epNj!UjSY}ziB6XByYk7D7 z03q_ORQZvQ3&hf>kQPnDc0D`O?xcZab8d_y-N0_RsqPZd7bZPTHLfo`I%(vfO;~w=I@D zezj#SZD0-dML@)J>-pC+E%BaH61y%5`GD`jkU|6Q zVg^92X>|D_bu$bG&N;51Z(5(TjvkV~>UtP?dwP7*c4tFz_FD)Gl^9{4m%UA(#cpLc zX@%Ty7qIu{x#zdKl>kOQS`EE%#StsUgKM!Pq0JD(<~6Z0grjRMdkN5&D}36srM!v6 zjVUNY0$G=gcB&dZ)ucD25CYA>W6sm)D?KK5RfXntk2uD10Pj<*R<>m)iM;a1jE%U# z71<0fGLp2V?!L^3(P=d)9S*ChEt2eMce%&PJ?XPv!*!>~EyyfapHOR>xDR7x4LZur{MC1yM87xB&j1d*RujtR*SxjjgNLzOoD;+x$IX|NPF4=dQ#u7P^3 zbL9{s-VWRhbDouzHJ;}V4_-m_=AJi1!O$J+$Rpa6a_m(}&)Pvo7U{R(dQ*fY3w1g> z!+U8z`aDAi=59w?SnnDsOI^sj-Le2Vz^qX<_3W;~;mFz;^MUlhtpw6d!5i+`iRApe z{{T9iJ_`>hURL$g^XEbkR-69-GA(BpSE1S0Y@K$Fp0y(X0AgC$2+{*2#GJD(f0?a2 zZ3YGrM9gpj640PyYZ~vi6S;D5*ED_IiB!ikhKIXKy2z zvJAHX${Zo;aa}Kmbht0zmF2lqWjIymIQ*+N_SG%r5s6i@3CS46U9f>8whbK2j>+?2 zk=CmT3b-l_LapxZpJQ6}qd0R#*x8C}D+{QtqX=2g80tS7mU|d(Wr}7X^~bexXHS+3 zsO|*eNNvX%>BqHhrP7;CsO6s=5t`$jd`#;;Yq#H_=3*$$9JM1mvevLJV6@+DFxolW zpGxQMb$RcjF;BGgv9%05V}5%!wkU=`!*IyYBBU=Io=^>j#@5KjJwCiun53|2klaR8bGRV?0QFVZ zIs`>dhWy{YC2B|BT>bh@c-n3`Rgp4M2E6=f_i?den7XwqBWZn>OnCxV&C zV!qVw@BcjpEj;vC+(;pSD-GV^>eShsY5ustDwdf2B$Gs~c$@oSZV} zC3xboZ!GMlzK&>jDuN3tj(}u;I+&Vu>MC~M z@MKrlSNEhCWoLz0x`M|aTFW#2nfEgM>esfTrX05hK%A7HHrt1~Xv z?&s~ZM|6aOKp7otRc#VY?J*ICO}@Y9wH|$x_Xus>U4Yy%Ow?wDqVq2pgbX;(T8Eh@ zZdkO>GF2|uDzSlaquNJ%BQ@%vBZa~H-kmBtYi85#*5>2Omfd+PjEv{diq(?N%Tq_V zwB#>Lai7MhYu4AWMI>qzK^Oq8a%-xVCK96K&h>ZmUUxl8Scy*2Z(X%kCW`w{H$@{< zSRCYnxC1@0_*I*&KS;ZYCbgMilW9}2G2h$hDVk1?VI`LPw;o|oMlyQUi`22x?Z??; zW*Gy4$v>TEik1~$o~JWfnN+J7Pu!btZ&Ny1r!dWCh#Zv)UAg3U=BUS}-adbGg&)L7 z#cEt?P{P0JS9$*cWM}cHto0kaox(^8pd1|i;Z;XEt%djL!s~0aYfhy_7SsaWt*y*3 zO0hhk4RtEobLrVC4kTmc%Qk_XbSNvS2}vXFMBcs&nX zcB-&RWG*I%Mj6WoB#!m-m9e!QM56}GsJW*3@90&r(d|6BWYqZz2Gvr3omsK5(xbU^ z1i`>iRY*8JYV5)kQu7?gj^i~+?{sW!h7T!}U^kc7@#|jV$4q2BAZFnPlRR`p9usTfZdUJ`y)E%}v%BO$+tR2~|RD5aCloBmo1 zWOfyoXDqW?#b)MB%1Gm&9jTMWcMAp?3Db9a=EGv+UN73tN_~=gzcPJ{?J9iR?0O9I z2q6;1Czv{%@qt|Cx2dL~3)`wOa7GBMDRry(V0&%ktBhy8J4%W|VVUm)US{m|$Rnrc zMLb3xIGAv6Y~~k}jx84C)}W-ht*?=$@hElsM#)`47;IG5 zU^0~ov28p7(z2|V`%2~ImRunFs167~qwMisW*) zmt#9xy10Vp$yrG52&;DXTHf`R3(`W6#D^lOUs+vTUVz(h!-mfsRo}JV=*S}zNi0r4 z&ioK7c{HdgSvLOjWf;a0vWsTMpl7(T5WHedfa4~zA<~hdh^Ox5;hg8EwMlue5eDHQ zk(hrG=~kkZ))3OV4nAT!SDwDJNlTJeITY(silkD+_k+4X{e!VDXfRd6xj$iJQfd2rV)mqk4_Z#k~LFKX7bJ*1PH;W5-cD`H5 z&||SR6!Uu3EgL(o{SAHSw6Cv|Gqnvj%lY79>PQ<%Fn zrfsjcX{XHd$vm>i22_qS)~AQ;vfFKc-N-V*v7GVJwZrBPbf2+yl6vWV4^9cFu6;za zw);)OgOH<^Be1KQoJ#Br7R-qfVUOcfA{RTswk?s#1E&>s<6Ds<+az1QKrw(lD8}OI zVXC=uXsp}rOueQ3)p0bd6}pfXa;g}1;QH0Mw7A6OP0l0T@(P;L>&}xY3WObTj`dGe zvz~i~k|Io5I9&G}*9}b0t}3eb5z_t6S5~8`%X@m4zp^b^m?II`bDEmRPPdNoIOdEr zL=aiMNUna;ORGtVjz?Xs^C>)LwxiZit^pu}laYgi#d>usW(qvBkGjn2tVAA;=*`!y zMVyN*nvkSm;A8Wt^gH)0g@HG0+RQ*FHD>zl)(~Te5IH9`mt}P%O5`ZPZ1d|}l<<<3 zprfa4yPCpMt4Z^%dz~HAUa}(zL?uwD?@%tab7Uii?OD}R9%7v5^R9PLzPg=?ndBwC z>h_y>uQ-bJkCMYVKQS2k*PDsUr5c{glWkjC+sT-HN8G&Pn*2*Eb}w}{c&BK=Omo3J z_N}eb?Ew{iGn`f}?Vg-sSuAexA>^qT$Lq)8P(9|Ts=qOJo6Mhc`` zep=j_;iEMe!rFHkI@$|>lg{q@$i_3*@uN|>X@`>>TOm>cl9(qR^)=O;esmK?s^nuW zzZoMH(oT>|rFl3_paMbXC-SW@xZEu%a!xIz@BK4ZUY$6`?&mqB`BBA)C4lhKbNppHwsC{}dDo0}U!>0Q|BxJr_BVN-pTwG`;8 z@18POG-uLMS90>Qw*X*g99Erb~cP>On@1D3FD=>J2WCky@m6YJN{?#6pcQxLi zMA8o^AsFe_x#e1TieAz`3hIR8iIQqsByXF2J7F#m{Jqq0Jt}~X&M*qNSd*Mpt7|(j zSLOr=h{5&ER=P_GZc+`YfV*%h#)`H5t2pC5Z06s{rD}AGi9`Yx+{EDHAJ(+)Em}J% z6=g9(BgYx!A75UzUsb!d(=C;f$wL8v$^hrzy<4@_ZS@^3(V@V6Cm?2_=Bk}fV;jrW z8q}#$%5?7I=5li-sc^B%%vE~hsn6Dw#k>U^lh9K&OEGPzAF~s;I3S*tJ)G@tFqMHL z7~ogZ!0Gt@6+On2eJ-Eo$uT}+;4b2M zA6lC2{L5%ALOQGP0|GxPo^3@_PA$EGL6D^P#dx@kY$GQ9mZysD(x!PT@~FPi;M*HOkT)JiY&HniIdbbtkpJ`@5-$^B}Us3Nq%SokVW6&|I3 z6^x<){{ST0trwRBuHXwHR$POEdsizEfmT7W zknJnESmTUf{*>jvzYYMM)Z_wv>&vH+V_{qOYusJ*BEBBAN}TbQzJKryrtri`f%b;y zJY$b)qp4^!*v2PDS5?OBbswc~PpQRWr(xMI(lCsuV8kvl)}Gg_ZryDcYRG~- zU~(`j5GIo7AOU60K2R3~eJkl`<+v)U>J~?Of|jicp1reUNTW zxePEz(3;S@hf;(H+65#G@Z*ZHr)rvkfLYsKq{Tr@?#6!{RdF_`&E{P$e8aR7++YfS zP^XEk>b+N!)9xZubKWZJ)Cukuk<%R|TLh7EOc{ZgiyHQ!sB zs7*VrpNXNPvO)gvusvDe+aDN(!^r1bn zm}Sdgle>zusb1HSmb7brlQ!artmWo zR{(eISvL|*0&H0uVd^u*M61D3_OXtOSEi`xr$ReM*XV3q*tOr!6w#14+D1Bb0~K0t zwX7l+c}!!48;KN}1+CTOZ;4hUCx$2UtJl`C$7PtW)!9zcH#SKhht|BhdE6>i(w8;* zn)^1d88xQA*Oi%lVt?1205K^)^B{<_g^H%MuA!6c23yr+zQrn$J{F60lqK{+P1 z^!xa2V#C|0e^JRb^eYcuisyo}eHN!KAyn2;m&jYM4~eARZ!W>;d8J(rSR@7JJ5&Re z>zZxmuRc~wV!K8+anRBq5y-IONH;gHV_sWWs#29+TX%Lw5uP!{Stt3G_0*j%)#7PJ z)dz9xN4-%msoX~8r)G^#@0pJ#x?MK?FQIJVPBxY6RW&PV$O&wtX*{UoH8a9Syc9N{ zd+2FP6KCw_9ZKFCy}O3%$$~UxZ@zE=$JZ2imf~i>*io9&cm)dF(R{Y+{{RkjYdVRgq8)E?@XoJ|`&&HpHD>g+#CG>G$_kYr zfKEm}wVZO%*sfuSBf}A6w+0z>T$rpy98Qp0y&Jyhi%M%nW=*HamX~pEvr4MS;y`Sc4y}YvAxsL`n`Gb?iR%=<6q>?6A zRA8ltf6lB~UP|7OBrp{*`J0C2&-45%b&AJMiln3P>=EXUmLoG= zTse$0Ul>-9?mJQHM*K)>o$Oy<@J9epWtOv53y-i)e(>6d}2^hHOj5>^Z(pfXu-H2tGKqKys zm8Wv*RyUSy!_X6u2mb(CqIjCpZ`sKt%x0W4% z${ZZy9l5PprY)xtZ4{CDd2QZ<>(;Ssq$Y5(p?H@qjN+HInn~St=rZ2Tt~EK< z>u-```FPJYE}^GdwC3K~jCoOv3}gKBQo&`a#d?yzmgq?bZU;|ZD#oDRSvM_=j&X|d z-U78bt4l`jYn-(!P7WzOJd8|+T<1T|sbKI5ZKtN&+V=7~ z;Tmy=CDn|1rMbAdC8yeqL1B}M*M{p(w^&yVBw@=k6aE+VZ(wpU%OPX3XN;-NE`(*DR2wE_W@{HE}_VDVKK6Do>lMSH6 z`N2E_bIoSy))%chOf7dHIr)ekE2XtVcL$XkCA+E?Jv!t3Yo5Lyl?0QON%uN6!arMrD*CG65MHs z2JNW$e!%p{6}p;Lq=Ds-D|3;Rs}S2;M$(@lSm$ua2c>XV%<%KC&Y+gNEwnJHj-xJH z>e0{WdQ5j#S3YV4aGRrIInGBlLs!yn?TC0YAPbftbgjKdS)K-OCfQ>p2;oUx~lT(PyK7(2F? zp`B?|gws;G@;TX|xrxu(BXCL2u4)NlbOoJCjN_gwqt!JHMmbSh*L-9g9x+RCVy+{3 zkw#8I#%roM>WwuAPfPvfM-yb6qh!u<3El}7NLZwZau{}@Z*KhaI>_PjTO-z;Fkv_o zyq-~RewpUF8<)`IjTXY?cjIYL4ueYD6(5pxD<{6Am zIZ`?r(bOALSQE&&cZiU1gn|uJ)h;e%w}~Kt$i(-@9^BTZl-Cf#4a{v3?7UzP!o28X zp-OEiYkRd~YRaR6t2CXoF(tIsUf<1*8BRai0M_4z^!fhHy7p-coRXQ&+SqHGSYie4 z71SUs0LBecOoBel?M*YhrlX*`N#$48+$gXyfWsNhWgArHH93G|9Y4dUBf^ zc*i-aGTp;-q&$}qDwQ}=6n6LPT9Mk>-C41gCdpMf10U9@U)n6On@HtUTSpL7Yq`QlF4)i(Y?F*ty=Gf@+`zG`I62>po}S}1cTTpm(yZCt zrSn^oLJVW;n#jAo65ceM1iWE)cCN}C)oMk_YrD7Tb@N7bZ%t|3hU7d7p_s1a&H+6Q zNv7GwG>F#|g+e!N!O0n`7WUEWD#qegib$6qD9(L7sgh{-(X?^7GC>oLLFaC2v3acP zRORI5weJ4_Pg9~2g_@MDE`{rew7Yo`RfKJ~t`ADREu?o==p>hVU;&c_NcdGZ;il_n)4;?tH(w79(2`7tHw>gPsnDkrD;(B(P{xosRaN% zdBLTpD(#V%mMUXq-L9Y`eBu9gli3Rd-NaHR(~%}wd~np%7xXp|#dM;=clv!Aa5uRfCUDzo0@LE53R ze=4mS*~0;mcS#}O9+)*=Pd@HVxg-ui>K468qF0JuTHIjs3ax?HT*$-@wLo^kD7bCjLq zEnW7ukH}H3ugadLN<(_G3s@zRHDisLAbwS6O|ZLLsNi^xSda+CY}sEM{{S$^3P_me zc53CUfi4M;=5V>rJ!{X6Dl{<)r8u~?_IerA#<<=tI+>cirR|*Ls})yr09L^#*NV(# zkxK~?l&QhbO6fHV5q-8xiH`)5qrFtoWO(;k+}e{8H&S>!*RMl1bS);8zY#+arwgrG z=yUAbWWhP&n;f2NGK6Le$-wPhCaY#Y?n|TdkXJba7^pS~)+vN4Ky38S z;YFpZjtZm_i%;kIot(;oOJTZY&IF>;5~_!A z8?a7uPrVIuFObT>6$cD>eeiJX8vD>qov{HaWq@i2%Co^y)cwwPX{8+RjU=R9Jdb0jfJ zw~`=bIN)`zN|>xvrlQ9TRc>p`?l2&>M$_fE5}oM(0C&`JOJOykStGeZcMOIDkZL=- zY|6(Bs>hFd9wMk&qd9MwH??=uql&w6jiUPBW7ASnS1w!WabA{a+sZ~<$DVVJIsB=* zPL%^ZqHBN(gRw?(ed|X^jw_p3x30&H3Se+~sYag#w!s!vz{c-it$da*6<(GnMYGdS z#O0nZl2U_ab={hq$4h0}5dk3o07^;p^Btj)<&79~&VMSutjg(bT}!Lr09Upv0#=@I z4E|#g$laRy+%{ucr5|S<-*BTj)mH?PMfs56`i`|dgz-K90QyX7+sVTpT8cgh1aU;@ zs>o5ZfDUnt8tukmD%GRS3EF2*Dt9_}cxBoM8!>_pBA}My2<492*%v3S0035Xz3hes zh(@e(NImmbY^>fWyvK+g&7AiY;nvAzabwKr%x!ki>1kiV`hC>)SB0%2$aWtg z717Usek??CC{=8+1JqY-40bYt_oHVe)QXX-M$RvP>tizeLb;1RRH{>e%aS>$EwpRB zo1|TD#xT`4t+tj$eoH zDNSVYmu!QBf-#DeU0+#SGKMIT^1qE))34U=P!V26qA3Slf1K6J@onV*V%-@yCm6^T z)mu5QN)HcO3gphKR*hKhRMEBYvFy3r1`jynHL-JjVk}xi8opD|Rv5g}ks3IyM_dE6 z9zAk-rHf96Mrl!ukh3Y;I|}mZ!WLB>)AZBiV^blIg&{}=9QhCWrVZLhF*YjO)jITt*{pE&PhKgQ_{KZ8d&Z%5)AHeFah-S zt*u3)f^gngcT9lXe>(E#744F!{^NqJCmNAcecbSXjr_!V7F1vTFAGN$&I$5*^R`U6OrgE>GJwBRGiiAx5)Hx)>QU79R~f{ zCXM9GiZI8gf7YqPeSVt6iZ1+~FsCPxpVFeWu@EG8h{9YjIK?He*fl%0X<3p%#@u!H z&2wTf@Kt@uC-ONxjU`dZYP~ic;%KHUvq>?S00wc*JHu9jSVPAsj#eam+2MK3KT?`& zQi0;%2^d_T^NP-vY3^i-C;>$by7LsobB)8)`qrwRCDTe2)t6fu(&v>fMc1jfs+p{9 zSN$nlc0f>0aailB-=N}hRPb}@Pq?zQip7?B-b;|c4XSpJ%#Y<+uwdLIat10+FuhG_ zgThdfl(7)`uH{q0Qc2w>@-N0Dyu9M*GNJTUu(^)zKeOBz@Jv$19Y#A4 zMloFOqhV`lWRj{nyMx^Pr}M0PLn_J;J4P7bw>*7oimf@#sL|0bqja4}+LN`sj`H>! zGDx%|Vb4te09v78ro(S@B;m_DkZ|A9vLn~6EiV93A&g`<9s5S_*9mF`1*xo>3h=4>N;y!5BVc{Ra;-fixx-!4?1wJ~UA)S;F*ijU(eI+M^>Q)hRk zTf-EuYa0;27up61>0Fho`wCpKr1{g;y}m}XtqM?!oL&5pi6)Y%ZjTM2W=TF)W5FKc zw~^8d23v@CvX78sIR5|&)lEvuOK<>C0LKfDkNNzojk|&4 zaF_wc4i6yL&|q-%u}QeCmG{-2g#`>o`dj+BZ%=|qR$1;(n63ctpIXwklSiD$e4q&! z<#Aa}adKFK0vNzQt6QqOH>kun_M4D*wNSgzWIwc(O1?UxLy*fpi5YLMMYs79M(!%NhZNOxEW36^2tR=L2pDA%70tr!^W7??NCA!V$#z2kJ z3P9kB^eE>P;drQSani-8b7<54v@mqrxwQT2@P^;c9e>B^S6g1cnsXd6pb`M31^_f` zca}5lRV0ux!t|`k?H=5gk)0R-%g1kCwce>=@lbP`e8*H(I{y6Qugtq8>@9Rf%vrzy z4x>Hl^xB=9TD7~j!O*WY&Rp4D7KT=k1)LV$ocjL&g(UWOHxsOO<(=OH9;X%L*7s)V zMlx-7)f>wJqSd5srl)5dZWV*z3=lt+K_0UNw;^RhA?c7gABA)Fjl1MLVBprQ+DS_# zyoPZkWZ?Xy5NdGvU#!JcbKmg)0D>oif^V6&Z(d(%Pi(50RmK^D;F0)MXzldJMv^Ge zk;mT0Po-hUEW!`6h8|yklyg%Xi6gi2PB!BMj@7g>d}>ZnZryHT@bZFul6M=a7(CK# zmuzCSboru4m966&S#W+{#e+rPI~$nBw$rboMsZetLvQDKo40iQsw!fkIW;t#zYv{z)@r15dla=k)lWJ&HyBSOe+TN{n`m5SR)G|9TaizSwjm4dCr@%>~Dso zq^&3kVIxa$1h2VWzIEq3R_p23L0WvH5_7W${4rd_7Y5mci=2=>EeU#1H`g z0C#x<)~iLRLn;rp+bgi+a8c5;QpD7js!lylep%f~b1wbM&1<8SU{W{qm4LV|X%9cw78?#4pIu{p`_S}|%Cw+ckihGje*pysC3651F% zz;=!?v}ZMg_7&!*Qe3fJS93^7Q-1V)=2+6MgD|&CUAw=#&*xhAT6A+q=1U;o)JDYf zR5UB7E$r6n5HeKdij39E>${DOaAO-)dgr}!;;T^hiP4jj?s?dT)oa0P=4IX9OKTz| zuqvXTyblNTtGac}7cqY5?gNYw%|&r@Z8ej~>*g}12g{yFu4_fqMV;pN$V?HD+PHC9 zkF%E~?-#G$bV7r#30XBI_?;HFX>|mGXqlIeM())b>d{4Q6I{C&BajC_l`ZFqRzwj- z-e_;VxB*ozZC>Wb?W_@G&k6=IG1jr8TBa&4+^H|L{{SyB)1apdRnyO@d;40}SlP@( zgU8(itw}baVKuR4RotK`P`yQ9+DE+@$n24hz4@&uwEHQRW{yIo2OW7N@m|z0(29$@ zZ@Sneho?{NF=CR&Yd7;P0+l?no^e`wbb33ifzfhQ6(uq;SQ49<3qbDb%fVgUD!{x& z()I-lB7&s;99N}`ql%>-XwTj0t;bRmN%FV%lIzCS*7_&Y*?M3FUI;a%ZK}laD#;tD z#?oALtRD`~Y30o&+{%tHR1uux`By92^dwwctY&8kV%%U)MuCO*E}e zrQ2OapHtJ)EMz|z!is{z_e;5#WYI3{U~XP3oVrmIje<%B$2Bw!ZeW^L1sxOsK|KEe zoL8*y^gWj|cmB5=a7r=eQg=GZPMZt)n2a%B#}wPmOHGv@dmtd~;cJ>(JKLLfxnN!> zl}j;h+;RHTudGeUPqKwjKvvK5u6o#5%F}YcrlxNO+g{S6xcyOd$st*707uCkF_0;m z1lEFmw-6SSc2%*Ffl}UR!pBcXc}JSBvHIZq*H5QuP)DMGwyP_SUTuJN_v=wllAaFG ze46dl=$&eGskG+bOZ75k)NMwi95O2oSx(ppL{*SDdqZ*QbWZmDGf4hGW2K+ofoS$8@% zs9sxzxx_8=bw8DATcUlQDD2QOg#h;aY9A6_-P_nbzF9g0^L4Ak;M6Vd{Dt+3lC7t` z(^Dq$`Uw%>Xv~rT6i9hIQt1{k+^ZX~@r7^!$0yqrTHfPNwum#pZYCi}50Ieu93EO12U@9g+2t{Ku5 zX**-F{-1?fxoevn0dWl5fIEVMLB(fj+V$P+#tVBfG^M^=k{ zoBh)FeRUmoev$yUNQy}y2j`_bMtdDf_A5ywwzpXZ=aOJVV1wTo{#9H9b$an%TB&4j umuMKzTvmkfsngKeX{56+$W)HMgZucCpr-|%ILk9F9xHF z9yQnReeZhL{qx@YS?hWJdD_{}S?8R6_TK;I{w)H&0Pyi1J$i(P|8T;`$0q=i5CR{H z?D1nF5^^#M3UV@Xa!MK|T1qMgYI1Tqb~*-TW>!{KN?Hys4i+vZ7FHIVhsS^fKvF_N zQWh$5DwhAx^{*S}I{<)#kMq9@@P8K$F5aVu<`5DQKYj|p#lgeFeQ4xED^V0NFQ160n79P! zjr=`l+?8J48-?> zLL{oFxTLhEwywURv8nlI*YED0-ad5yz{KR#^vvws{KDEgW@B>;yS=k}d~$kresTHt z>KX@t_rKvhoc}kV{|6rO2RyhB|NIf~fAHYo`aT?ZHv{u>W6({tux4gXdodfSeF#6*mMAzyZJ^ z$H67X`L_Td!F%Wpa$ItN44|!OlZgUs|0v0y^VXrIMK?rjHT3=KGU?J;NE5iWzt9q} zlcjrT9!$2W{v<(S3#rm)ofY*DKm^);qtk+y2-iSwE8p^PL6FLsxZN;+mgE^WJA}jN z?2ZN(Cid=$IB92X4e)bue;?SPFl;Hvzc47hj~?}7761FpbKRzOE#@chux*|TS;{E# z?I)_$uhbctJB9_L_pY?(R((*eKsJ)t$?-(@8YU*nzxpmclps!)45&7=9s(OPjS1YGh`^zD9U=Im+lsGMJCemZ7s%AaZ)4X4b( ziZaC=%%r4~HjDK3nd@maOAQn5L$4>vDxRQG8-I93z2s}3-tCKPPEEM~*ACV7=R{b6 z`UVk3+|F<9=vi8e{b_iHV4d0|a9My@fRXU}urmCDFmpvcm=7w%STi*+<4rr|vY@`s z=JxGiPoK`l8eY80!rQUw;ZRsmJz69>S4u{At*d(1Tp(d?he%ow7;gP5tDmORN;eh# zJyuzB0!n%|8Q#y8Yw9(;rEJE{991t2OJ4cT62c;g$as5(>L!q&7Aj-O<`wlwrZgg# z05{Wpf7@nkQRrQi#Wo@o;I4y3_`D|y*ahZYAocYwLy(J!2#?UKvFr#B;J2*e!rnJ9 zzJcR01_y1=Bw>w#n-t%rkk50EYz&$rsXWyc^w7g9jqy-T9=eIpUNX9(-b_Um37vkV zwtN6WC6|qD1811ViRLHyRsNjdD%0wXURzX^t0|2rTNWUI3@V4z(#+mD=SPgn_Q3Y- zicXQ-(&@}Hy_qeQt2}*|nkol(ycJ^9%YA}RvhM_A1E6}RO;0^X#L3LPsGmM!B2SXU zmK2d#0(>dl$l5&>4)Tt^H^2TYgw1MrLpi5Epqd~~%jbE2I;A{Z=ZnRY89{z~L}Gbd zAE;EuKsmFvWgeZwK`fA}v8bI>!M+<5R(Don8)>YN`EiZq{g1;*mde1WvvP0SC3?*n zs|J}1qZY%FFaH3xRz782m4n`WuE(OPrqo*N;L)|B7*Vr;mOv_t7Yl*qEY3@_^v|jA zLdeQk!n1HJs=n{NajB*RM+^+;9aYK65MM>z*gG)b&UdT?_KZ`m2w^W_K^wucJEqdi zv$m5Pr}-JTXx1%Dw~3MEwy>J4*QI<&e4S;NKuHC+HtORk;hqggyC*brIacF^;1KG? z-!Jq~e{GCD7=X%6KY7L=L3%z(tOlYlrDwIH2AZSIaS73fe9KfAZd&hVLHM_yORM$& zJ>qZpo1H@js(hxvDiS}(^be5pDXyiudGhdG`KdgY%dC-*qVhACT%PE`xsvWg`4MJb z1XAo2uk-$CW!nPyg*0Rk`OeRLZ0`LQ_=5&)B=Ea~O9gw!s1-*r`6a=R&$4;u3*C)m zHR}To>Q&x2OR)g7md;s~@v+huTk_kCRPMCljE0jAFAGp5jai_XYBR;6vL#|a;LnT$6>}Pl$Dl;X6^P6tS`|##aCn64u zIVU@o>G}62J3l)lIW=f5Hu3zOh{CkV%+KQ`cF>i8G zeMkL|^q$?I2Jwr2B--}1(!;Bo_8l9LciFN>n4JHFOiu}fc#3lnvZ0?0tZhTVKi zu9K0b*G=YoTn*Vg4k2kpCQMEEPM=Ji`=yT8lT#i76Tc1km|;LmhT8HtiOQ?}k2cQ7 zLL200Zqb+Z-Cwc&aH|gV=!dQ({%D_{|Djw%%dp9evor&xvA*A*~L zXP4y*%N)L}U?lSFOW4a-!1o245R*olMjF_=lD^Bd0)`YuH}=yURK;(vfgJtPXAx;B zF7En^yWCXMh`Axd<&Fgv3@{O);`}Gik`qFAU`pxWuEnTUR4XnSYjbMwYOOhv%a<`q zPU}yWmrORVnykprWSh9~r%Io7w)n-KvA))n)ZabHP3ic!c*PLr7lT?~a_$Y>6{neD z^B#yRTovR7?-b8z6s4REzxqRDF!IK8rQGao%|OhTkMYYr21y+KEpz7|*0~b*Vu&#C ztQ%c#8ML12TJ6|nx%1eW9ux3`<`nLm#K{;}+3;b!Cc0|`y_QCwPY0ezm*41lp)Chu z=|qdlm;utr+{#;(1@ELPcm&XzfC+~VtGR46MABf2M3ycYVN+ltC`GRrj|9DxE&)|JsGpmoKmvTNojpzqluGbB(h-L2srJ#| z@ddV~lW1B6`8ZfUk8{eQ#Ao;Mn7pj*Q4oBxPFcz798cJJI{M|k^x#{#ewRwS8uwM3P zA!EeeEPVDIUZumXv}J%cfD4iMb{9nLd;whYxF)WpeLTwX-GB)<$T8qYht8P(G8NJ- zAq^{0+;uvUMFyfGS)DX{6alaf9fVHY*O8%k3y1cZk7b!~77(|dQwW`$FTv-fPNK!< zm~hQySRgL|V4dtuCq-Jf4^E%>?EqQHWF4BnD70OglOpZS`Pw`%xfO^z3z-f;xNkrj zk!;)|1+x-8&qc0dQ}Dc`whFxb(9A8taq2@r`n_T0yp+)oI|eje2PxCXAu4S5VOj0M zAN??R^A6nFWCNhx|JHP{**&eJXVkBo&Y(4JcZ1I8e}Fbaq~euaZkiN)8_dU4DdSgE zJo;BR5Af$EYQ?q6O72IJa;p=IzmMQr)bJ=@^Nv{q#et`r8|2GDETk;>yo_boM4#s> zD1kRMd7^-F{Ghz|`MF+mE{pa*z^CS0zU7F8GM?xde}&X1OJyoK zANGtHmzRX#&5`JS&_e4%g@VA<=h}W2{l~EI7Cp818u|Rf^^^5PG3q(1ZnQKS+fM86FNL_cz`<|=OG;mr#Te9mH#VU zAi8bw@=x~4O-llU-_a|n#pu43ccXHxN^3jjiUroEKa=AUk8C;^{b0}NSO;YyTrUh@ zO;rxmT%L^!20fYkP3rVnO^LKT{Zr219$WEr=J)hTN*?m0rQch4UKQ0f`Wf;Z9z1vZ z_K9zkUWp#B`m%g6`}w4p!5e*o1~IFwG6^g>X2oO&U?0o8BJ zq#h&m_V9Q6OkNI=m5pSQvdyNAd`d^rilVgx=N!7@O0`@-_B&&=b8@0{BCQHiEsU{nv=uy?x79dQ9W%sj^x?}iRiw;4Pp0x037gr%JXcR zTyOqoH~n~IsUWcpyitN0sAS6E7&7>yScXpvp|@2+w|lIYD8-K;QUPep;!Mu&%<9YK zA4&65_*Q6_H{o~ueCxx;qCIdTy`OleFAbVw3+rommP`S@eY={x3vx0GIU0rOlUzYm ze?M@71>E%>sDz#7&Pj&!TP5>B` zXHB;-N8zQh-@xJ?(RA{$FzCcqEme9;`fC?nvSMzL$#@t0QG(Qs9`U^UiYC&jGeClB z*ng@pDTt3>$r^n}4`D^`o2PGbntI-@LbzT?!}vclZ;T^^Vxi8lOM1u;cLA87cU zCIO!V?%57}SZ>KnYH}^%sG`ssRcASwaxD{!(LFNS1UA6_jG5=aH|}tnhlP^2XfT zz8N{06sJ$(-yk-Vb}z?)C6zQrc0P%7sgP7@RFG_b7~ z!Te^jz`O+hR~7{@2{8{6xqM)7ki5bpYcU36JBd78t$OiC?z(K~one|E%QL^>JG!rU z^GKi!P#joO5Bal$rbBAa5zIBQi~o*VSinT_C|yDE^feBBuM7h;5)a{lB2X^MMM}mS zDm5~#r!}~1c1jf53`;ijH%&h}@uNc$6M;R|#@rW@pFWW^)`b%N_d{g9hKfhxya-;e z=FOdVR-E>%w$Ie)@dZPvA}OC6VK1))N0L^G=R}68`S)6Y7(B8l3%{T3dfMQ{q4B9^ zjz%e`eAfATRI>*A?hSH;U?tZyxqq`t_8(xj*b=Ww-SIEurHIwHurQ?)tl6EIlqFaCe(C_oRzwQe+l8-4x2X6eGc!y?mGS~wjGFN z`F1br@sx_>Zkqmi+Ixa|do)KZ6Z4@A`<}sAsstxauhtE}&aeFb?UjLLNvSP*Uz8pTV}6-Y$wG58p|&VJ-DjrCP6%@4 zag+IlZMA5~w&tVD{t$g_NY^pr!5fgZ( zNoPd1{((?lq(-yP9!0^!eQENGJjH@`ps*3tSiN~uaA&; zwi5s*!?(!wwEG|6>79lrZ9|Y;!%*r6C!<9o^X3p8-_WX_)5u4IJW@fx$$x+< zlZGl!2!|F`D8uKv7$cA5Gq!VrZzARIRbMh;9+n?!p#6$c^FIJb-2tb`i}iqRuBIW6 z;P@&>#1^Auy-9`k;u46lB6{TBJy~X=e3Vk9Nbz3(>sV53tn|^E9zW8Wr)N;9I)o;Y+;`-Wc1X3+W~^zvC_3IEAa+a)rni?p?-9lvh>E&zv)1QT}v$ z>d)L|x$LNx4w-NgXJe8~YpB+sV?J|BMQ~r`+AY1Wy3VXBBb4xaZM~TeLoH9oD0M~Q$ck~SXJQQ8BvKgX zajY}yFs}JE&3LDJrZ0uC{$h?%EW`Me9_e7XNyRn+K4+@oJB9e5sR{80P#;uaj0P`e}dk1_;Oz4<{3Vbnb-vV2Y3VeNfbp_=us*J#aRgtU-)rr zP@Hag!=(|G;GtxtFc0@x>YjDIU-lVl-yK^6-|b0O0AO3mWCL~M^zU6>%POmIWGT}# zJFqk6<^VrWET#6-Ub-FLKi}zjm#^ds{T$bP^2R6Mh*Jb!%`XcXRxZdoFO2^$#slVQ z5Kw)1&Qichw=vNK0Pqe7yz!gZ6f`2L>2dBB$%PlVihV-k9V1A1KfB z_j)*j+$r`uN1A7D>M*gwe`xXB#cgynRz_-pi5lt-k39$eKmx1YD(`LcJs;J} zvg4)}qUdn>;1QgFx((Z}wJmG(%xM*zq!#^e0QdDW-pj*4zMrYlcr4k*kh8*99dQ+5 z{+&B2{)oAQ)M54Lz z>Wi5y|Zgk4hPD zWumOlbWU`Q$Q`k7S^+U;u_Pk`9~)`*#_H9TbF7dddo_*PPSv=jo-zUiP7D0YIzDd0zGuuKLFpZ zlnm#)b^2$vCuz1SBV1N#oZAvbBjw&*zF@>_hQL%tW6l^AZ1%LaO7BzmrkoALzE_3e zpq|nv6N4B*MfyYjt)f|E(*2%+uDW}uvmL8!pZt~0opL2y;h1#}t3Y}j2rpCgDNt4V zdo+vtxN(r{i09Dym=S$+jxd zt&puSL1z(vzscqFr{8ZGqZSf0C^k)?c5}xQZ7GQq?|3;Pbp>RZKgAq#M{G2hxOmkG znWYS+`d^vf@z+par4$CxIeFwZ>uK#>pGf;n9n4-6$slz{VUcoOZhW zcRf}yZP1uK?_mmdp7(Evf_)ea8`-MmXXy{$7}5H=aPkydC7NuYJ4apWHHjCq??(o< zznLbf1<OcHnmN z8%=vz@bF_9t>Ct$lsJ5u5W{Cc<{`@mmYtrv+65`eQSV_%BJ9T3oQm zM;mq`W6)D&<0OB&O52p-sU+GUEiOH})dVtA`P`B-)S)?fERzoMjM33F|F;C641+|k zq@KLcDeQ^pA1F3n)mc!|i=`rRM2p&o01$a(vKpey2`X8)b{`{~`6kdj>Ck8#?67qz=Ny$StwCEBy{gOYzCRzW-@q~HSj)W+DdK3`IJ`>I+GKHus+o- zy+rjmJE`XRmQdm)Nl^7L1CF$u?#5>l4y??!=vh*@{5ZFYjeHyj07^(ndoE?pj=dfU zIWjg+&1io-g7Q)u5>k8U6Ka}QnhNS)^~qFQsGBh!*lXQ>Jp3gfRn?L&uP_ZuSLq;~ z6c*r3ZEdN4tmDyVC3RV*xiMG4N<7ivLrTSRPD#!#v8T6mB2^t%5L37|btoTWN?-Pk zOJaj1(1FHKClZL{(}G8pyvJkOpfo_1i+-Pq6B_*$^LYf&(Th1!8YuN}-!YgJlJFdX z>ee`Y@-QyIE9v`ujfh*43NJB`_~5yxnIs#}{|J6ftPn3T9|9%0$XC-oVQFVuk|7q7 zVStEjY5(Hcxfdy_K3a&2%nAF#wd%zjIBe4R)dp|w#B*xuQ-T;wWe0vemBh*?P<9!Q zH>Z6lnrE(F{u^E`2}Q&RH=p!v9i5|G47)HAJAKegLZ}S>=(3kpaa{ zq`nwDLFaOMrD(ZAp|oBqHlYdV`K38RF#da^#n>|@V(Vf97GrcTEpv$;9(?3szhgeT z^r`Fxk9HnP;8)^*q9*?h1;5URG>_&X5pP3YDJrTI>)iJIw&F_gY@A#v!JYd-pNZ8u zRrbj{qxO+Zz!9q4jNMlPX5C57K;vRfB7-9Z_jEZqPJUmy!*VL*UYa;MnXr-3zh&XN zik9id=2fV?GM(vFE}%>4?Xeo82!fcHTKl`>4t4%)oI1PXX`b?A?#dEE;oj6s?mFha z*4_8Do{n5cNxpj_(cwULb;mdT>qedC@a9W!dlRHrtLW;yoafcXw~xOtBXPhCj#@A7 zA7zHWN8-I)M(iv{0!rggul0fy$4e@sK7HS#yx-+cP`-4UcvF34AQ||E(gMClM&IA~ z*$iu9qAO7y5+g*!(u(h=PV3UyW z4XWR@pgpz`|At?&U+iKbv^jN~hYQWkD@T&*jdWW+Q}I+-W`0lgbzqm7PAD-!c2CVD z3&@EH2KJRzE$oZ^h8DT+b6sDvLXUHw&Sg~EHnc?_ytdE?ZTRC3W4-;fquP1=A)@ZT zr@u2M2b#6tc@|$q{f*f{nl31xxiw+6mP#5oKDU=TTpBh~$htpP;z}on<)=-tV34}e zMUBn0Vo5^kvDLjwMeW5^y2oTuuSJAjh^h&C7g=6;aO+DKdv;z_+I}Ea!9Sz;eV<}U z)mbk^etH?Q)t682{tdmjEpbAd=iQg|1(6+t~#O z4rY*B^ur?A`{_iM&haYTxlyR4;e1UpQwKJ$jXMXS&L){`W~$Jcx^cFonkVzu<4GQZ z9Y^Z@K!Rk-xfq6hjWeo5-FHh6x}zSWXK62I{}d6(sH$E(+Z{|mi*L5fTtt8z-i~US zZYIgM{MYK}K#L19__;dGFK$cJa_BQVBeyG%AEkQAf2E7j%}BW472|6@f}vVi$v;KT z%6mmrySqs>-5JUF-G3Nq@=JllKKCmq-qY}6X2*BWd64SeN7c8o+@M~?(adB(5Yo%D z(YrVcvPlQtiGuf|&yZYr>fE6I4v}oMHHFw8f0VdX3>_BX;*L<%h(ltq`Z$I zQsaq#*K@uIpvw<@ZjI+!f(PZh$e?2{$iF`Yr7Lm@E38uu0oQ6 zVnD^dd_)a;wG$r`@M>psR{jA}WCM%dJl_{199>&Ht#TdzMYA>6$ppxMJ0c)YcbZUi zhhn2V(Enw!_VQhn$xCs130=WPiOu#^&QP7^GM)Ka>|(JGMNh!7{zn#F%G`{0)q`8v z!r#PfhN0kY&A2l0q&HrN-LUf zp*3)rCJ+}x>jfL~7AvwRQv`nS9mz~pIvsFWl-E?LniJBbY))6=H1kem_{98q+WHej8pd$}ux^W4o1XAo~` zYK%KISNzdQa95dJyTq!c_ob+F7CsKleFn+x&i|b^D~sD_jI zmn4>Bwqwe<_@{__u43$*3$G5dD8-QY)rX4Ubqg+i4j1leBCX zmOzAYE_~`*$Nkk6sV0pe{Lt~2(<)#1FPRZc1F%AOoHppoz{m~6#lm(8E45xx->D$X zap3Fv>a`_b9bN9{QbOM=YOS~65-zw+>|coppQ4-pu!zTIh=lj-X`X9b-}qqd-szVY zWj+;~8qQ3&eE@MvCan7|@PswaQc+bzTN1Zes;|!+gEVh!PRutpX(URo*6akfyW}GI z7pZPvnknRJI*tMPd1^$#!~zxn=oVx1pX;Wc|p3Lyx?hln%&ey#-XEL`xv#_43 z9FD{i@9SN5EnvP@(!!`ZN;UTwS3vtOkjzv1eS@@PRmyx8&OSTHlw9kQ&8sI2tK zDfjQY593Gv$^B}l_KmQx=|(Eem(?kwldI;{s_;KRJVVB$7KHe(s<**f^O-Ys_g~Jw z)PTsF^DJ zGiog}3JvV)DNWJPwF%eOCy?xu)Mz}GuvuBTs zpQnO2KiYL+T(xEHR_)?4vx?3EXmJKNL?N?(D*HJ$j6%AHFw)z#tuWFizdHclLr z4`osW<6B94oxjdYd7&tv5QJy!xs;yq>T1^5G8*3W1yh{oA&VD7m*5!_v*jH|fRMv2 z9wyT@%1B&q`3HEuWTx0Hm93RmsnJSZg2;V*)z(tCo zI7Aqq6=^Ex8zR_;3pcXaULHOm6@J-O%vnXxL>AoDmiYJM+8{Zylk3=OE6$jAHvygk z9M8J#TWIt6v+L3li~r&=N!4Zh`~$tw`qIeadF2Z7Qjfs9H&q6Z{Ju-M`3_fkGK|dM zKK|ZIIt_q7c;S;U!cIU8Px;Vj&OK;bXYNznvtL%6DdNR=vBB4;7J|hM#)VOws88Ef z3xoyl7hltx1qIWHo;K8F+BmI}6^W{B+qZ7-S}x^T#HGj}^*(P^sqPX<-^S}1Z~>C^ zF$psqD9KNUx0x|8@zB{>>H20de0>bg56%}E7E z0;cv`Xp6zaU?m&j2O-^GW}x8aAZ2e1Pa~!A2WQFNKA)KZY3C2Z?E)(QZ)tMf_MGuq z6u>PsCo(Kw zA@=&d0UXpBlZgO3CwHDs#Px)KX^*bW3tAG*fJtt4B14O(HaCch)HSW=^3Cz}BAFtF zAHT=_uuK(dP{W(k|1Mj-?4H`i#*)2TCroAN#UwbFcUh8{7?LD&WkWVNYHAcfh1fQO zec+QDxKXI{dqi3peEknFP}w8mL1&dop5iK|+1bPt7~EUEwrL&OrqeQ%j0K%Ns9)!7 zDI1EmqZyK`mKVT(fN2dSGepm&SRyu&fwKGZ63_kYZE$Mv8N+Nt%kxFOsRS%fgJH-8 za1-;VZ|f5xW}7!HdpGxIT%(6fUpv;6pRInfqCk;A;!+j7NXJ@o$Jh8__Po0ABXWMy z0a5TEw7k%LP#Xb_ahVA=R$)q*rhDrBTrw%!Tu8X)6xT~80o++ls34eZ3;**T3N5v0 zkK|;G>u#1xoXzbBs-LiLtVwkF!k(-B^Vv5qLPFM2nG`#b!cT9sE1PWsjgcnuy!gs! z&eoUym%noyNtyX?k%tRsIPBLQFC$$Kryu|kw-^goGqkN7=;XLBWLiT7=YZ|4o-8lgSGop-`%Gl=Dk?O0oDOnq zrC`A3N(MuRkN)YK>04hb)C;TJ$)vPtnd}hn^e*G6inyltZO<4EV7%kv(r4ubOp{d3 z4{z^sN=(M*@|2fgrr|K|g#@=BUlO)Pzd8{5w+BVHDX|xh~R!!!vX1Pj= zFJZ|vrR6pmJXPUNyYkczn*5Q)^q+wDF{6ed%AF7|a>&iMTh6`Q^w}>9Dq#fv z($f?6h~!j{@_``lo96Rg;kT39foX?t^gbp@SUY_5Rv!D9o(16V`XzoWX;4$E_9^pA zGX53IyXANYx-^IPZ)owZPK|~KE@@(~K=Z!)O6{JtzlquU*3X})Dv#sb`qplpoqvrOH`dr^w|q#aVop#s*T+W(N;mU;dNIONtR?vkwA(yRr_rnwE_mmlsT>@s#H>N; z){>b=6%JD}jah%!Pd2WoLIn?CZx}c9m+HqQ4c~&?@fxHvcf<`reR`BOS3_rghfG7< z9zRt)q^X;=G%fp%Cccfu{RMc#;L$5zN}f1fDtJX1etK^@{EAId&2E!BhaaJ1f9x&+8o#W_Kgn=nHFc2b zexpkX?_)Xp;(UZ?jW;vfCG8gHBAE~i@I8`6v-zH(DEqJ1Q_2~@5gwi~E{B2(VX_ii z>D^Imv9a3a(-{=A?j|9aBBWwBPyc$>27DnurIGb@Ww5FiIyGt`ZnF@4tzWLG=|IJU zqeMqXMM1cM@b%@8H@^M-2uA}FD(~h2KnX5^cf|8D-01v450qRLp^3V~w5e&q)qS5EtbWNk}4-@9wcx@X(% zf8M-dO_FZfL7;(oC|B#7Xf8Nh3xLzos`q}#$CpKOd`|=TkReL)D+(c%D6%%AIzv7W zBXCzFP?Xdz=a2dN2fjjbZ65r0ZtbF21kPFipkyb)rf(^wUR|i#)uW##fM`!F~meP`d_Dz8WtZ z1&=Rfpox8ozaTupjjvm_0rLY?>PC{IpjpF|K!#C+n^6WnPCZn^WEt!QL{e-<0=D@D zGzp&G9iFpi^2TB~GF5Nz4~G*=!~}|vl#b8RNcv#sqgP1MB@9&@=+M#JsV`82@mpB; z=}fWu{D|`KyVK8i!;1T6kC@i8>!_-xVtl%89*A4{e*zn)xkHnMmYP~)`pz9_iL=r< z8jKeGBM%upozR2H|5{ZN-eQ?+HQ1`u6BqY1BuOvkw0mSh*!EU_zUsvs=#SA4j#f@2 zp_AvLT*PWFXi0zRtxQ9Ls6HAxTq0Ykcr97oWiN8P1nG0WEs3FY{P^Y3s*1Ptk^1Mm zOWq|j*U`uyzXuPP9z^__7yueGQ4l9i(P5cWSCd701?Ek&7$=XL!wDLpf_-fS~*$=UyQq!5uXUN|7 zHYpk%kswg%O^Ed>BQU@~+@muW7NisNN#9|p5|ms(BSrGL=}0xE007}k{Vw+SL|~xG)U(_8 zBY_%={RwlgOW$w{7Gj9Ue|H?dD~YJg_5X^+v#-ou%lUTKjB%D8p7d^QzA@-SO>N+v zOHiFDyMKeLK6@GPd!aY*}WVku_5< zG0hFRQE`31|K?`D-pc;<^j%wfRq*{q+E3Fk_4gke{{hz1RW%h1-Jupq*J6SREM^p_T%;x=tOw9@S$to z!xp;Xj2H0f+d6@e9DH8sAHa+{GU-L^L0lz454cQI>4qjXF-%;B?)?1w`#9dK{BbR= z?Fo{jhxDLD%$t7zt%17KooetDtN$kXJ1|x7`44^;Ucod4;$uZLEj>=Wu8gqZs#`n* z1Q-8>;+tyhExuu9Hu}{t$XMf%)i<=hdgxS`QdRIsOFXe3OyiByi!75xK789*Ims`?koTB#F5T&@=#nA1J&@rgntqp--24GIMj zTwoAX*G+}_$#X(o;oRO@72~*sN@dL7l89(&6buSi>Gh`;`;n=pBMhId-~{00$4fBj z(TA>5o_|LV*L6cWusLUg9t?7SF9f@2B6R>RUyI2KgH1tzN9H$bkDvf zGn$jcsJ(kch}3-Y5O(oFl|1R?QwS{8chd@XWb}C!{d`)R_6T~dXHc6EC@k-Vat}v1 zlo7#QIFVpNkTn@|tHxWH8Qz1JIoY}Ve0pU19{}`yL()Zyh#0vzTk+0TGWxc5Aw%j* zvBIt6%MLp!mb3S*18ouGd_NC3Pxf>qsYlr!X43EnpJZ<;?Cmo2?0PIEqV#F|a1V>E zA64I83wKPM7E}1BsZCicu#IpDxVEFy+<)ahx}&)?w|8__U=P{un<+6XzOYe($6Mg@ zSW3`!t_H{P$DU(udGoR?-L$rORqRC&au^xk1PN-}MNjx{8RY#c)Pn=&b^j>5oq!O%c$3(hSkn}ni zrLuFN%Zph$7iHH~THc7YP5tehtQwW>o)UjG9g7J+7hxk#cky|MEXAw_{PBMvo>yeW zbJNK5)3}xF2!~ip(hf@lGl_YFLaWH&F@vn*QAhEy{5h0*m&BkQd`vIO+&~h`^*I9* zy6>>4^C6$+A;9h#;ywuy*^~@1k`eZno@NRu(YIFZ6$%QN2 zGb#Z8`{iu|LCxo-&5h-{I&roczj+Y_xp=`6HA?QUbjBC{pbsim1zz^ zrB{WRykXKp+`aIY(0EmQwgySIjj`qN(n~KJj8iU8SIueY*lfdRf^mky-;E4Yd(r3g zg7o0;n!qiOVB+IIzFv&M^oujJCw4`>`jw>3NiYuluhBG(Si+p~;@l#DtufA8cAtPB zv|IyYQ1^p z4A79KiadOIt;EBWB=hrAZ+EzBI*_sW@#?G^kMd(Bs_g!S<`nQh0n1i^2v zuGy+6y4@l`oYiH2^M^UVQECcaephp#_g@PYp7pewsoWLjw}@a9dfO~<_%P90e4mI< zf-j>%Z%xYz{0EF#5r$W_J0_yO`9qbLFBYmF6GtvA4Ro`fE?!M)5hPbEp+v*RD&Tw6Cy{}V2dGgnUo-M?`v%Y~h7r<&{~ z;;i`S5~X-edP~sLmp5cF|oE)BcDbzh}q?&ju zr3>$?5TU%RmVLqo+Ep4iFfm^iI=D;PDosbuO_7-(pQm4jke61(WK_jv9 z{kJXC^bK&(vhDtVj!#}`PBR+q7$n=m!+3v(>MtjLDLd5z13O94o@~O{78Nb>f#Y5oNI*Dk#1U@CalAS}uMS2$M8w(ShK^VgyhKlM&XcRNf z(UJ1qgM}yn!y-JSNeOQio>R2THZlJ2#|=}#%)+%k(xGolvS3p##QX0%GoN(!JrBt` zg#}y_%ZB-26Z=aF7$eE_hDG+lbLZLwTFa)D-7Pe(>)37HOH%6F>T&2)uyA-|*na~N zrA_dF=%+7MTuGUB@HgqH!T5b2OYv-H&nR$ZGskAvXJ(hs2ll*HpiLDSJl;mIYN|ny>H=;B?ZP zSu<8x&@6$K%F4-^TKyHsTfEYGtydizLJE8yu_5iOsJThGH1pZz^Dt)CzQonW&Yf<= zEL5-J%Wm;W-P5YuS`(WEvp;2R;TmV`ZZ*pKPX#=bDim=B#R$39l0$d+fkgrwm6?Y(MK!6VBmVj%|*pVnm@k3q7P5Ya}svcw}yf&i~a z*fd4=Fr&+(13bKmLc*#pE0vAd^Wp?M>%<4?#NaFbw67#{aX|^VM7$!#Wuksm>n`_9 z-n(MOFLDi-X49t7rgU3p)qhKSHCxY;y@%IvEpyA+_Oxd5SL-D|ZKm`}6~D)SYkv** z+R)!>8XqU+*-SlOY~C9$8l;NChAzOlXA%Rr0w z|6c&=Ko!4P)Dz9RG6uLpxQo zjP7c!7fv`VdgiT1A!PZ_&-X)7s#+HdSQO_Z@LjrlRhXt+v`%*^`BBeqYNy?koZ&~O zdU7!Y4C83rN$p8*sY#tP6PiLm9G(RLlap(_Y;)#PQK{*jE1limwV=eU%vRlkax-IrXK%r(|OSkWy~uQXIaNpn=6G!5mPa_vV)DNs3nnoH9oP@TP*q@;IXeHx%uC z3A-LW=qIrZ(3$m{9rP>cXE+r2smV&0>mrEtEt1zpDg6YKS>S@L6MY;HUctvzK} zu&M#c>yEVz!7c=jeq4|~w65NO(^~Z_5uOR_%Nl%YbCnp#$Iwt01P11wPsxGCY2L%Q zg|ac6H$|v|vShKqUjC+#A2GUn3V6e}mf6~!O*<=v?W+ZnU7L3io=F~*)X9DRoGnhn z057jvj9>zK4uX<>N{zb~1{p?q0RFWi1CfrVtHsM>oDQ{VG5DVTf{#%*sO+9wwm7C- zNwEs&lh@juSf^e998@;YeYWI@TgtaVzG;0I(0iIX09eT!dA+zmNH~QE`^VJ#3W|1; zS^UXdxg3@!twlV^EUhXg$j8eX`U-SMfQOOP(@Ut=k#UP%S^^Y#v49wX)pNn9;y~v; zcKoV6>0m0dg2e4`SC2ze!mAn=4fl8)bu>RBtUgbb77@_~So)erm;}7Z%rITX`7@j5nhXLtCv4zO55Is22B1o1P>5Sn5SKjV#fLb1B%weeKu+pyPxm zIOVE&k(P3kp;k{`D!U`8T!LA-%{00owfYVY*=Oj?Z~*kF<79J&;fM362MxQRUf%TO z`?wwXG_28Fwk0a-fN_?t!{Gjf{kP+2B$Y#2X~XR@tB(?{)@J*orh8Y= z9|g1@>|X}Qbu@c!wI=&R=cr6!7xL%vr1XvYoj7Vq%I~4t?`D`~8wVt}U~)M9e@Yra zC0O>hNGCYpV;%nh8V-5>loQaC$4YiqNc7^t z=C!1gmEOxy)TzlEoZHIJH=5lLVMaPt$Vgi^xM8&PA6larFNnZA^{bkTg;=drebK$X zrlwMJk>#uE*$h({*%YxkInH?%ZInuzm4@@j)~GpJA z1P%bEtco0~{n60+Qbg;bXI;kOz~Y)tdUZ6?LE{}MySEJRD+?X6?u93wO(PtRI5dsO z$9hLR6G)x)Ba`=&EJX3t{VL8!LBOi^fVTNaA29%9(x)Bp4t>Q{$!tf!9McKo8O}8A?f{TrLoZSPRxPCe>#eJ z1W`1N(Lprv*Cf^_if=YseU(TJCtP+F4(4*YTAco&a`#tnGiR;~dT~l}6z8=kqbB#z zMu^HEAmY>^VW{)}8p%K*a#_NQSO1PI#vSoPj~dr6|B0P{Ty5g!5Q4gK_y=81G85L`jZ9aNYeWydsm_)J&P@si$#UxjeAFyJU>1 z=zVFffw>iPPLU;x?9%~{;Xa0;nkRy0M^Z3xMfKEHNTgI}6q|?@Y0+7D12s{G(}UK4 zVzvO!=j}*2{Ag2*jD2ZH11GPoRfY$TtvG!BI-liCC!8Otr^dlSKD^OuYRP&rr1Q7? z-Ms}#3Z4G|qW=Jm3x+x4cl4>@UajxI#Tz1RVY7UnQZNBM1uW>I+5$3oW9`@f0M}CA z+Q||uj1F9N$4ZXoMROW1cBElNN_Vw~E8kQ^gJR&3>S?oZ2cvbTN_KW{l*ixbs z^YtC76jLK-KQnap6?H&Soun^8nk=j}YYQ6V0R2r$GDlyfG!B4%G_FD+VtAs$dg_Oy zPjx7O6$qnrj>m-_rlHg>LtCw_sUi;J`^VJOH?ySMV1)`IukRZZG>Q-;#Z)!9gbjyIcWTO1hUCYdIvcu(GpIRW*?hV-9 zhVIu}kL=o>A-@Vdxs(7OAKvseLr}80)9zjyq&%D^eJeEXBLp4He@flcHKc21vDMSh zwfR*hKQqPC^Ay$A#l~Gxmhk`=2P(gK&Q5Y2mZzmlX2sxPacd#@WM8_&6-#21 zzA{K&-jsCIX*Id4;GGe?MdG^+94_dY_uL$P*w>c-01w8#oyws|G-`e&2O#&v&HVNlW0pQBRf%q@;uQMdKLEoiX ze6;;eOia^!rRxQbNxaesRT*R30;|b5o=GHO_nU*<3Z0MH^!=DB((#OT?^OZA00#&% zY7({C&1>#h5$xIrLC@Bt3!DMfjWXT7UU|u>hXAtlJq<0GAc?TK6*`q}Sf64$8m$4VIE2hx~Ho~V!<3Tx$v9jQ;szLbb~!J&5(TIe}I6myzx4|;g*L%&jGy@eUi zYFu(pdO@7vaZ03xG+(gNKmjKt(}Q!;ldpOd^Zx+Wp=ycp9KB9xZd*B}W5(V+=@@~8 z>zY~zEuF~UEZiKZ=}rV=6yO4kcBEC$G{nJJqi!CUHKQ8~%TFwlWkK?ux<7{zWHv{f{b4|v2=Z;N14i7jWQi#X*vJW)VWb_>pliTld zMQQ1=g62l$Q1CtKfFdQ!V?C*DZk`EwJCya!XFI(jRXIgFvtPs)Ycy8&upk?GKU$%C zXt2VP2i#dfz#MZ^6ls8HNGG}U%~ig;k7Gi=IgR$K4u=$??e3yyHzwrzlw}RTZrqw1 za8RHP&Oaejw5C|ZL@3&FNbga`q_K0=h5+;xrmYf|gOP-Pcd+84ljZ|y1TQVkB(Jm_ zbR2#(wx~>>L6$T$%Se{qJTCLqzm-qd9^EJ$jE<(1emr%hxJg`cf;#u=D!t>9r)m4W zs#zr3xg3+lP|jp8pOt@8O=t^U1nRzCKqrvB~>%*-*lxK4PfZIFclkGZHVTQeLCqWb#P zxyBO_kG-m18#mX zwK{v!=0#;>VzM#Hk<@$Awz>*B7Ow54wwb)e+T)F;p;gEVTO8z?=q)uUHAq&^R8<#y z)J1ii1JGfrj;p3zSlm1lCJAh3JTU7*T{@asbRVPY*A@}9Qjb2#*cXKV05$YDtysJ? z+Qr?c_6)!1_jdv;H{OpubMzUmWpW(xkiPZnAG7X?%x}C$Fd+f^J-Gh!b$0wZesw9@ z?VD3hb4c}j3rH+1;IOq&klRKgjC&40`t>$>$E7tLSg=M?RN=jkT7Gfq#VD>-W_l6R zLC0~%a^BTfQ@pj)bnCrF=WKA>#?we~*J%EH0aHq;D(!U)yc~Ojn)6TE16unogKeNd z`(@N0%$x(#BtO*u04mZ8nW(O%-%GQ{wHxb=S5dmuZkU)BI|@StBQsf0Z?h zg1bq}b5OL zomoHK0R9valh&J%522v?_1GoERsfIlrt(?D-PB;%3z)NFfFvF=SVi7kpRVnyRT(jGdR zFahM8pL#-lsq->hY-#$^Nb4FGJpj!d<2bC36J0DezCb^`leT&am+EHQO6NbRU45?g z=FbO(`cwgX^rom8$E8RPMl)Boh{9Wmf!dt727sb~qpnR#cX|kU0MG!&C3ZNE)X8t65PDKOVR4)jO5Z5xDi$Q3X(e#g zmh`)yCPNgT>SW=Er@c*o8$%<+N8{~T{kL>K(zGouMdT@EHWo$VH^*ONN?YEZN}eU@$iUAu`60^^GBZgq+YwYe z^y@-y+K%@`GdB4NCxOzEFj#CSIpq6OM<8Gv4xZ+xMJlb4$sGGr=4(J@shnHcVm=;E zddon1sOi9|GR%W}vCrKf-4qe!seeus3SIBiZ$VLTtUtOwYH%dRGmXdjQbMhg7~_n! zM9klNqc;nWN-oxbwGs2bKi%o|tCs2Ipi|WH#-g`f{{S-&xzpU$k~sH0Xl~jP*eD== zf}gjHaxuxKhVR?8M{?m)8?a3mcd+hOyO*2~pyrsMe5uaW<&UYQM)N*%!wwXl^n@M3 z2T{u!sc&K5TcPRqcc{Z2l_)!p%sF4w)JSpzV0tbpMF6l?I0KSJF1nR%E=_G2EK6rC z&(KuP;FEwh^j%scZ<&s2d@P;$LC3vYR@81nCU%I($UK_e z(e;H}QKssclElBsC|%DF=hRjkj)W=8ew6S^Nwuo8~TrjuHI-9PeXGJ z)PguAQNxmOE9h?z=~ns%g=M6|R7Y(Zp+DYp)cr{{<(~kw>${7~twu>CI(?%93~l#J z)pEDj>#jh0+@&unUxe4<*+)OWBO4famg7; z2Ia^&&N>{5Bpae+S7a#w4CGT=cj%e(XTSV%mK{pS1ze>(Z?BQXIUK3s5XqL;fDKa%}S>eT2U z9%d9CdY^i?sSvS6XuK8qpXz`5)M@dcn9AoUgK-_>FIGBRpr`G!>RO)YjR=TE>m&M6$=cc3!1aB?auhAM{{=Zebx4vhlT24|FxN#p5O zNgY`Arb4?SRXs&4gm%USP1uqVkImQ$Y4)W(I#Y6UPsmM;BocFwX}gC4hQ@d~q{c_m zjVw%qp~%HFp7ayXJc>i~skMb|1!f9`x&SlHaeBScyS#Vm0mA(&q1W!j7JC%@(r_!4 zIL|cWZf#7ZVN=-Bu^7fVpmEZbaNR{V?Cxa2GuECLnn8?GjP@MU({v^n!Qz70I5eSq z(T`9KKT>VfQI3L@zG5 z0l@?X`?YG$9nXg0N6f_fR8f%JvX%+c-mEZa&_n!gH%aV0DP6HzNsg43CBV+^2e7Jg zGM6|2h3iupO62j+090&>N63C&tOrp|GOYI_86a*SGoFI3+o+8~FGcI_Y8!Rj#!?R) zFSR~Qj0HLMrFPz>?iV<9J3jg28LEu9Wr*i$oVF?6VJuu87lBe_NSksM&nMhfUcm0^SY zC(?r)#H0~MURf9gQT$AJ0-_i$0O-HYy$|4qigkYywySX%Ho9O82^=)X?vKN*X5N=H zgn6Z7*L)eGr-!^TWu%T|i8oHe_@q3s{-1?xXFrE}W2kbZml$B&HZzZ3YFPuae2!x| z9OFImMNCzd&q*t6IGm2(l>jkw^8zq1yLujT&*k}2WMpL4KaF*z&^#@DsqkctHo&Cg zbdAFQ06hK_`Wma+=Zk!2*MGKrX7-TC8q-T2LSXP@>gW1?70lUO!tsl1rCo>axL$Mb zRG3IhJf)gOV$R3A6Uj9$p9z}eFCY#{^cA&PYM{191m(=xCB&jDFD5l$T=Gw)Rsa?N zk$^f>*U|}YUTgxK0r*r%psyT~b6MRaLu9cwS8I1al}G^V+qFdy=jl?$cnWj%G&Wjx z6lZNaBP92vKPcpk9tAbBIqgfD;`Kta0zfAq4l1<8gQ{{%epshA@>G9#(klk*)1a!+ z6z7;>?i$rnlQN|>aW!$(`In7+o zNj=XL-h_fbD#lFJru0ICz|S<+!0W-F{m>0Dh!m_1b`-J3X^c+Zc%jb&9cj7alg%9g zzQQr>oX|6X22C`N&XbXlNv8aXZ?F<*W($%|DWGx(B>Pn@ZsBcgTW&YE$^kv;TEXUX z`rXgkZ&-}&P6bjNo@sDYe8)eHD)MUNmd7*HUJ1o202>*gV>lj^;JF^+g};$2u(;`8}l21}=L&O(pd#Nys1{gne7rr>n zP#x*LiEX!g>>~_}`cm~d#V>AYK%rcFhf$h_Pf&i8`5Otebu`oqjB}pUSYDzokLQ%?sSPqhtOKwzNv>D*N4b}uB1nqns& zxTgsdYm&JG08_AD`x;Z*Tisf!p~EK&fywn1n8=aHRYMGLb5FepuFm;ACTtf}w&vi-Um8$*G1w zC$ORF7eI0;j@wkRr}g0Xs@IZpk3spGNopjyiqbJ>J-N$MgXA2JPYP+FdE4KsPzWqs zjt2@VrDF8ha7~0E?bOq-#DWIqV}%r}^AN4vXFinpgRGnJz~Md3FEN&5L`*A#wlBT3 za?k$&)~MXM$!=tGlk6%&!_4xC`=IV&*Cv@Nv*%~u$LZ@!b}naf262){A$oh#ru>Cm z0>_$Y7&}iz8L4el^D~l59zK-q(4~29T3w}gAmDbYbCPm%g2xp+jkSWOKr&51#Gt=N z=%YPoOH%KygEoQk^$W=~1CV6E1fBq=6*v)(yiYWXg4rDtf$v58jkbxP{==yQ{m4 z`^oR_n|${&8DuBao|U~7Yt8ih$gMtAV`E5$&sKm~0+zSoSfOUZ&5Uu=tx;l@))Ih! zdgoyF9qOgDCVPZHGtEBrqc=>EC|J;7d*D`DJNA9AtN^ z5oHKmj12DgqoF8r@W5vy6y`j78bULYr-M!)j!$7nLf*o}Nf{(lT=w;*^S9;4<4t!2 zoQ?p%s(P`wt09uf!6fwHQXn|mc)-c1%}`6;+S!sdBtGtnZGT!7oMZ9rfH0F zX9>-2fc%-?cT5I25FVo}!t!?(6h4 znz#-JoSpy`%lL-u&w1s8@+azRe*ST5X!5b?)84q&EY4ldS&mH+Nxga)RDA(PbDB^{ z98!Ui#Uqe@QQEHeb|yC-q@I-`AD5*>o|N!g(uS>}ERYe?tp~3Zi`S7)`ck!tVq?~k zy8BYMPkKNN2$!nRcO-K{=dh*0@A*(T?b4l-6J3Sr)|4M=4_bCJ(-aUU-q+Hp^%q3?%WThTHF#K*gTD@52tfYI}%sp z?;MVDed+dhZ3ODW1QYWQYK~kluHL4bZkybaI@K}W>r(B}j!BG>C<=Mw)~Y)kk=wmY z#Ah7`N|OG`;)!NYnj$$p!KJ3c(OIK9LQg}<;CoZ86!hw=-1jujU4y8>JONhGb|_r* zq3A2=pzqYugWss6KaDBC_Z2p?5Xsys6UI$Z-ld6b;B@-bml82-1Dy1x0KGGiy-%sC z*rd9Ra6sF}Tasz&2jIW03G*+`c_)u*aT|EY1Jk`Cxt+yak_J9z{#9xp-JqLh;5c7% zP{ORlWA8T~g->%SRYX()6Q{YP)4hszV;qGC*QqrU%Z!)%r19-ck=c&X->n>He`V=S zuHd4}PY{rdaDBQry*q^m+od+sG( zW?R04RFm`LfxxLS#40LfnBWfNo`RdShQY`K^{(IG#(*`S6pcdWFxHxOBy92;L-!Z@ z)W3I9pqq9*bK%~CJUQW8YX(&pGJg8x`pDhC0fAi+#&9rcgyfu_wM$QTlIC~w0LNqA zl{iXUYT4V&k)Wp^T5%$xidf%v#s>$UYCS^o-%hZ&zq(~hduZBO3G@Rsq~g=F+}1AY z=al}?TJSGr;g}zx`%T~n{`gb+n(~}{xgScKTh!;)HH*z&=>GchQz8EVWPb?!1w(3% z@~WxhJw0nmvE_<_`JA(xmgUNlnZAN1tl3s=Aq$2-uZ`WAX1* z;$j${qoy;(V`i1i?b73hG0$$4_2>Wu6G1?J;Ooiup$X1MZj>e5(`BJ7O@=+iIl0JF zk6MXOAa458gKayx=AEtz??y54lh+j#oM3u#YG(lS#~+`b`=C82cC*5RALBT$CH|ttih`=JqJAZpptk!_@RdzheCMfl|kLRA9P}=JuX$6 zI^t=E1ZI~x<*+I?ILICA3tZ@F?gyTy@TQZVhZKy!QV@7xc&BHvo4OIRO&KQu(}*XY zp0ydm=ZsO(!f#ChjyT6^Kr{GKXLEJu)7qJHD2CmnBn_*YcCamsPZM00nJvKp0l1HP z#vOA~TuNq{-3~Sh3T4NlFV6$ zB-D$~8Tx%`a`YjqJAqT42Vdt+Rms6TdQ{s%7#s|Kp0vORLC4mu8KyC|jxo(fcqH|y zSRQjqkvxYHfJhm|3vn+YsE0iC6y`vFY;)AojHnprzvE9_9E{KwzQtx4JpMF<9P%n> zK&PCMNwX&hKBlRw3#l3=PJ5az4nT}`116_9jW-d`Z+fh#Wp!S6vB{~vql?s*!Zj@O zOg>Z}D92Mxm5aGy9;XHfYcC?h%ctl5aqIKcgCIF*^ONd%me=|f4O*`;)8 z-`I;*^J65&zz&~u`WmdHbm}_Ry_L|K6AYY^Im!FNv#)L133$nj@~!GCG}ZML$h&7h zN{VL-$79x{;2~m0DwND!$jHZfw7Q3&#|24lNjwi~LJ4hv@HsT}ZVrC$MW=atM$k_@ zlTEY<_8L2!XRsA2ZDX|b9ZfMw2P3!Ls}|92U>JZgmp+v)))LT=DUKb=F!FG|!kM{L zV*r3V(#a>7Oqd`Z6nj;6JDh=>4z&q3isuJXpq%8lLMV+x$QP=wUTI<^o_Pn4rCAaA zYk|*v)mp}zSP2THh#AKf5=qF7vcU3vsFnF7V`}uMx!IAO&HSmmgI!A|HGQv=$Fpaz z{{UXA@;E{wlKJT>&H(#udNDlkQr5O27te6NOMopk(E`9@OoQK1^YW zFej*i|RZ64W#dW>?sv&O>)P)`g!MldVH6FYKx znx4|;;?n9Hn_Gz>xP`YzDs@9jQRaG@Q=Og9t2p%OR3x;KWn&4zbIuKN{{RlWc@K#p z`wjVy-&c%snZURo-d}%e?UU|jztV)<9nsd3V=Q3uBHD42US<10_=Cu?weZ!npi6a$ zuE72n!TD7EPx7x#ySj$b(rde!1a|O7(n!a$fsOHC@cEuTAp&~I}dFRrk zRZ>aEPPGc2di1Fkoqf#>8Yg`P8+!LN);V#Gf}TiWl@$>reP~5XaT)gVI+~4!<}Jqq z6q69dvF8JdNWmLaV?9kY3EZ&~1y#>_0n0NH*MWmT8B+fMhAE(dfIE8n(Yv`@Xg!V} zfxsM^RT(66gVg#{H+;A_%N*0oADbA#;*MPh6@3n;c6tLyPTrmUX`)!z{H(v7BQkcz zY8y@28)yu9@69yl6c+cUxxl2|gx^6F=aOlzd8H%+?@Tx(l6k4RM5Y5hyVggD?n>J% z3VvrfKEPJ7)Ty3n;9{B=ob;y>K=-S5xrMC6>T)=z zV~(`J%{@Nw?@-nBK-KjgtC7-`IHd)%fGNs3$;An~1KUyP380g_@qtF{bfg*0IHFSO zIZjO}=NO;>dCfd}0YlInR^lMfdU5HD^Gd6Ono=@)Q)IT7Vw7hfQjWCc1F6j-R2q2PrXMyWaiAzLCCkw_8r8te_fzzgGC2hnt zM&NVKKb5*9djVCXCj|48&{Wf$ zwm*lxKu%Z#!8{6DpxlY^Asl_)p7lIYZHyfJ$CFBt4>PaIy!7u=5%Ql?)`>Pd>1IZ! zYll;Uy(-kw2_XTL0Np;dSAuF#fH?Q7 zM0s(Di20kB_N0L}=10j$`g@vV6Owb880Cqnaky)H4WH#12ZO+<0^xSxmM12pSu#jq z3Q{T(*z36U%~hD@Vf(;8 zgmtE`cgP)-Q`F!ECpjF@Qw+HnjYn?uTxpF6%AoopIV)Oc=B_%vF<8$MOwvW$#Q+L zJtzd@9AwbwRrZ|Yy*0TxHBDS;tCAx;awM_H@yi=-M?;2EJA+=?@WbL9deMtU*5pWa zK)Yg_qTFNoHF$Q?2R%(FC2-2cNFas>1xV;ey*93E3XN)eKgYiieV0dv!*us5j`ggi%LNtl9H-AG zbY0UI?D4(SofLez_3c^gTP8+4v8(!#!pCU8b}$QjxBmcIsE?Vt3<||JyB)8f^!a{X z)h5%+j+Dh19_NaBF%7`Vj0PKRuU6{0VCF< zlN$*K=Ef*3!8{!CQApTqdQyrSX$>QylkRFrhss+RCxJ{{Fx)sSaf+Fa0MA7jrrnE7 zMarD#80%6h5;7`1rLZZ%h-1$k1yXNebrTzo;Cgq9rH`STUNw5v7Pa#$fBN@jAE-lkhy%n$mu zAB9HIvbGspKA5eqwA|+{Zmo`(IHwEA2+6iQ@%N~+S|M~Wa6!lzA4--r&&&mEi;H$3 zNdxk6jk%-^r*6SUUt+laR3!TY?2ModJq9|~s>7x+IFUg2BvZwnn;|4!AU=WfNwKKg zMq;r6hqt{y9qVKJ7S>OhE)PA%Dp>RY!{oXI_8V%P*3FWlVG*ANZ4BWR5Wr=9|!oD;X|#9jnk# zssXESrD{;%&!=6)NyZu@nub`UiGs}=#&OY?288TQ#;ElCX~+mU>q4(N9Mp;iIjT;? za`hg76NNZEiS6oYMNq^5cJ3HZdm!p+D6m+Qz$4~3=%f5<>?#N%Kv75!H~TS;i}?Ce zYe7BAWdZ0q^ccn#niRJk2_KTyjm!+k%#`4=`I7)KU}Dyj5iICSZ-nc)$Ax* znYQnt0x%E2`A=_Zl`u)#aywJ)?V9G|I3pN&4@`a0Tdk*Qma<71B+7~~#OEi9ZS)IX z<|0L&PXKkOOYW1BeFbP;p^h+sV}B;IWkZla!*m}?b|tsCj-h!R zPDMp3ZG3(vn$&MX2%~0vFv0#prjZ-sQjb6 z91>3grFFsEo_dsGD62ut@o zdsI7LarL=W9L$nWh7qR~DwO5mZ z6}wZRkf|&{B=$8cC}qd+{{Sj&+d`38bCdZ}9B{n*)P+K4BY{mncO$>@rrB5M3UE$9 zBCgmVwvJ1u!Bkv;d!E%!1Tx5|JJp>{)k0b+%BL)SO-pZLmC`GTH*RL+wJ(%cXb0uS zb5W=}vVQ0o0;h{RHnvDLQg+x^P3ScUIUr*lDct%{$&7)}QtkkA^c6SkUW1h2lY@$E zpb?LLeW_S{pn6j?)Q)N2sMeYYN`)uVt4K?5JNK#PA15DEP%k8s-olz;a!AG)9>alB z@WX?TT4I0#gY`830B|`pD*{Tws}KqA(v&F3K9rdGv!0zrAZ9!h%TTVhHNJzFjP)gs zY0Z!Ii_@kmK0{!PfzZ^7;5T9@ZQkOOY20uO+=EZpdX6hBB$ykAJ*h;puiY#N_pIA& zi?poGAg$?6*^1AKdC9?%vEHmjaX9MVFSw%J5m)R_v9rjxALdQGaukW z0OS!#Y&(zIXxed(*{MXF972SF^rs}z^m}ZdX)*mN#XE^Bk#Kub?ZM<^RjA$u9NDoa z(rkZ9l%=bG%e<;P4>v#3i!}8KE3%s40g+ECt<(>Cx{=zPZjNBy*yg26Yd@R*KJ(B3 zibwOLl&&1UWeDMkh6*X;(x3J#W66Oz?~2uq&eMR#{Ca-jPyWqQCY=E#M3;p68)3)e zx~cOmNPC$u>2_sytU*UkJ5=%L)=Ua*J9~3mkZCa-ZMeG!wru|Z`zp5%k15X9e0q5# zP~|&=r5kK>@pyjGepsZKW2PL8Rg}==CyVQ`obl!#&bnAM8>S$lGap@z&*@j7@ZPTf z05aQ>3FGB){{XVl&3z3VHqho`(C>jPy4~REgSef()qWi-TmWtH710CRjMr5Mg*-&x z>h$v2^ez7Y#MX_kggjEff5e@}eNRf6CdqWVoK#l6EQp0q7EZ&d1|g53Qca#Dk=PKADw={ z=db!9-)yz!}s$Lgo9;A_(p;m?W4&dof3+tYvX6zBMB z;zEL(&07zq>{BniALnh+SnB;;;BzUD#j*L`;+K>!_JBsz6j6V%EO#?-L5?$SC z;3SC~#~U{1+`)J_llx5_ch_bt$U7O#Dbr7J74%R!hf4byy( z0d;=LbGk$Rt`S+X!74j_rZSFHOEB)a{X{{XM+`hARl3u)zxPRog< zA1C`FpK)jw<-j2AeVehzUZ%PjQSIZJ-C}s|)x4t{jinEzKw*m37e?B6!OwqFS=*@E zx;gz?1v!Keb{~-AudQI*N1lTRrEcn*#uVhCJRah*q*1>e&q}zHuR}P48Qum*OncP9 zK^bmw)~1#s4;aTxW33^NV8=n!nl3qaAen*y2PD)Cx%tOIPmq><*uid}N^%Sl!60$< zpck1GG4E_=IpwP2$KM}HbZ~^@sXc0Kp8nMjQF@Vx@^Ep*TheTP)pi4Xu_w&!=qZUF zNKm|!S{F>Vc0$z%EP0iObLm;V>{f*xa`WvI6pQ7FI92o&jz)fC&0BOVm%IWlAv4@6xEt0Y}aT-ow^}#+xFyizjOX z>c`TbD+0z$aram0QxFjZNAI^S?NCk%1L@kE9>sV0j^5qqQX3$z9S5~39AiA1d`Zsi zU=Eb-t)Sl49I3HF^*wV@O52}k;0~s&7F=ME3F%d3-MFXYnl>7G*o@#E{PWVKM#A|- zeeU?CADOyvqly$^NhIW+Dqf?vQRPP92>BP0NC$q0u&1d~L~Wd7B;&md2su3mN@%rr zsDW?*9ZBY#tPXR^ia&&&=93%+$OFA84_oLCxI3~NJqr*effxiq zk~7|_DOWi^!_b;&cN&R~KRS_5rxchcf;lv(GwH=1r9DX#00n$=M2m*@9qEAnbnU>6 zxF<9%0S)ILT4N9oQ^h@r11G0Sf>D*nuQWH%PWKSVd-I;&)T*G7f%30WQKrTz;T8m@1b{yuEk@uJBieSgyI30y5 z9i$F8=cQ6s&=auij)%1`%6L7^HTfI6nsh^Z^vT8r2)*6<4|D!;O#x5vgH8u=!No5b z-72EXBqD0Gvk<{M|p#wNxl6 zyA>4Ph86yibzvsk%Sj>hC3@5%)qKA&E`0@iOs^bPZzR~*idnd?HS*R?LNqF>xoO-E zfMD2LzK{2Zf{a9yw!a!yzxPWGBv+E~u#CH_zcLG{f-!>0LD z4sOO^h2m|pt0RsW9-!6hG$+_~=|~~EzP`AY6yC6c@-a9Ay> z$`B47=b$goAgC$l-kIq!b8OI8}+NL^4T$egKaAJlpvF1g$Z?jm1KQ+b69K63l z&o%Tn!OsiBpm=5(o+0+TfL=)tEZI3EpMUVL9r!zFNYZl0q3~h{k_xiCQ zXWqV`TwI+aYZ=$!Nwiwf_LPf2B<- zi)I$?c@r>L-qNUN;fJ_O6Eh&C_}?!TZvmLFrTsKWK!bj5_jz)OuF8 z2CZW-jPgeVrB|N}S|V^e)#--R!5AZeJ?e|ZazG>0(@38(w!%2?&{Wp(bG!Igr@5&X zGT=5aPalO@jyoT%wqnuD0oB8)SBg0nXF;{)}nw@`@-AjirNJ$0Ue@I(pRIAoE2=k0%|^G}eI@J?D_4k8@X2ERn#;q?tM>18DtCF<8L4Rt1ZF z%ECt0qA>7^LltWS+RC#{h5ur)>+p z^aenS^731~Fq}5hI2~$Kf0*tcDeX;k+CUjO?^A7c1iB(DjPA+$RogNlfV|n*c`M)A zptp<7oFExd)YP}5&2WfL)ce%zwnZmmyv$ga=X?6{Y07{QoiH*_y)}7a#A6%^cot~+GYvDD`WwK+lL zbtZxieT5{!C(u!}0H>c`XgF-J9cj2bcs!bVouh%k?N4Az!sF%VwHz9L(r`HB{#3;| z91i%XTD=Dq)JEecJ+W3T$UxHd+Bo{u3OUDK{{W3nN=AWCBywuIqSMnsHUKg>qaYmM z=8OPw`BIEyt#&Q$VRo4!sb(1JYtwuMW^J^eG>@8A&rWbUe_HbxUuh&BL9JQ5L#wr* zwvO$giC1V5{J9?W(Lto!Wz(IV&qDEq;#=6Qrc_BW`G$HZ=bGfK+{z@l3!gc{DF=x zl{b5#Zl^NpQb@fN?OYy!S5+j(NASK>?YNv_eR9K($Y!wO@g&g1zD5I+^I&uzT7v%o zQ@zz>jLJ-oxhkqL&#h$7Ys@>%0{uvD0p%l5k~q zJJg&Ixc<2{KC!65ZDakJrx#Fv);8|B{&mCTZ@|M~;2&DE44iVu+OM7oU#T~i$A6^j z8a1YuZD>WqGm0(yRTM95IjA9RaRJ-cD2w=Nuljq;Qi6;|F(q z_cWbtEP+Q;xsSw(!1)o$5zj1foO%kMMb^H{B(ix4E6714wlVEog|HDB45e6(0M8k# z_84HU$AaBGhkBP$^e!mvhO;HpDRKq~J2Alau8PlFxNu7Z9)U(H&uu0qUp72pF3BhYlMMZ%5C!L7(-5~g?txGg&Mf~s!Zd-Gi#jqcUX?mg?4wF~Nu zs!>f{8&@;MYi%XW?yr4 zv|*vzN)~y*GM`TBKdJmZYvyTBIbwO|C#_>n9E+X&jzt&EsSi1+qWR9l#YRu$Y4GGY zJ-gFd>RY>Im_|2qg2R$Og+*yuo$@O55-tz>5sJ@2#_q@Oe}!mRAYxWVz;BvE=)RQi zaA~A^-@vV29UH`~E>MUsATh>Q{#l})7>`3=L@C^%fFmQJubh4tL2V4OYdV`4?QE1! zIX>U&p&!iGy?9$&xA6vz7NY_f_i*tOmP6=&3?Ig`s+&ofOG#>K)m>V`+f=ZY%IyQk zAnrOI#Cz4MD-b?%@xO*<()AgwX3K5MvyKCf#8(e-ZzOW>#u>R$j)K0X@wR~;yQP&2 zi->+`&-cIC{A<8`MWwtlxhheZ;|KUauBvmo9<1T@2sh^C0VPfd^ggwk(GZ|#pvzZ9 zENu*~cAqT#qF?5?977pnfGakx#-BnUg+Td6 z_TYO8g~E)3(08kHE>3yQII7OMIP5ypdt7eTGw!1#9^{M)%xDU}2l_5~M^yyXEjEl$LBdtq6FYQot8?n!7w5+rUA~L6T+;rcR0>F-lu zy6naqzr8SZ#yDQIbRM=D(DBu~)ZgnACUC>8Fb+5Il6V-U#@utsKb0#mwYMAmM~*vY zlN(n($*Fjius93P)|UCL!CqoZwK8^5l*U2cMRvvxLhxBPhJmvalvg zg|oJ12j*^usUx~C1nwrLx^XSRIVBT;Q4UFS*S0CGwdzv6?n{8fAav>}G0tc~w;sJ| zz;5Q6LtR7zkOd!y0-T_zEkOq~Ud1h)gmQ348SPOr@rrwpa&gj_%r@Yh6G=5-OHD{6 z&m?y^6p9JLpRFPJpVe3OsT6#pBa=$)?l*g;I{+>-!J&ar5NDpIkw?w+r*6n2)`Hx* zv|?}=w@;-h1dIdjX$Dk~dIL`9udO$9N_yFVIOK9oI1F)`Z&FC;DabGedY)-)iiV7Q zOS!NrPSC$DU45*Qev2OmtgquO7#;?l0wYT9tLr>GMntejS zuR%;jA8hf-&lQInm&jbz?Jgg*U8GcXs zGPcOwvXK_in;`M&&U0FtT>PEIhS9j5#<|F3GF+{?U?OC;KU&m+a=|UthI+ZhG`a^% zokpEI3=%f0bUwACf3Cx(>GIvn{;m|x2k{<&ekQq0BqpFA%u58g0C% zB>eb4#s2`-AE~US?1d@W9AAtzx%KUO;_~6kWzG(A3GRQV&{h=u@M*)}w-m`q-JjCA zr!Hw6vO`ziq(H%jdB^jn4@~_kVT=aOdww+zNLy%Fw`JY~41?7B*3OF->!l2(fM8f- z?;P;8hX~660qgqLOQg*mlBDu>I8NlZb4?*zsnqH>UQL`f2&CG=-hIjc0G_gEg|9&P zKd+k&N9>nwxV!R1?;lW6T>k)pb&u_R5;G|td|(D0%Krcfu7bGQadu{HSSx_|o8gtYN7U`3 z%RU6(?EBY$O_35$P#wu9i$qE6h^26su zWmOy3uehgL#z@FsPk%u}DK3N_TC6494WQvc?rS-bw-A3C)Vg6IP=n-Ah5CBb4;Jx^ ze9P9O$d#!?CmAChg(yM}2*~eNL}c|GdQvhR;1930HVtS%k&dVEsR#gV9D&xPRoXY> z9e^~)>5tBnC0&)|;N(;+17HEqda&Jj9CoI8eB-&PV^<(_7|trK&>L~z998K+0FIcd z6K9t1+M3X{QnMHr=Oq2n(wcb75t4gVf}xji1Y@YEPg2YVdr*Pd493zF zXD6*nHn=38x;Y-S!H~T^W)z&M3OMyNTT<*N0B<~G@F}?H6!Jw(Rb}OS9!IT2M$wXf zlxP>Q(xY%0I2@XgGPotZaJ0ts6ojsF2Lh*k!ZFlBg?jZhc3rl%i5Kz64)3Kl(+&I9 z94~&=UUxFg(w=j`qT1M}6|xx7fI@-_p5mMoZaC;VQ_~9&Q`NfD*#dw+Us`h0Qk**x z1D?H2JQ5BTh02mh`cQgxSttV~xn&xxf_! zkF*v&PfC^WK3?Xl=X>$Wtx}2-S0zN;iU8z{ns-L}cBZC6@-SMTjN{w&p=w?4u+|@~ zDth9P!5wKAt}(#m(4){2xg!8qZ(Py?&mdrMDMn8{sTgEn^c?X*LA%g!#~APWQ=>xe zFnXGda=6bmW-pR5R;g5+RO)rZG+2g{!z*sDW;-B2YeUk(}}l zeJbXmZbDkvllzzxe4KsfBAsCp{jS#6DkF(ZvmEh}&p%RX7S(N9R+d2|vN0r#aD6$Y zIP%ABN|c&LZS+{UB0Z=EI0Cd984}tXQ?!Q5I2>o5IjAhd-Rc0hR&B&}z^C3^m${Iy zA2t;F3W|4IgjAVdgv)>dJaNrwX}`I(c>|!9Vk1ybJo;98sdhv_a(ESByTLhG7i_7( z$83smwe>b@l^5K{6FC{%Zn#f!dYY2bRgyT&K>1eS$mEZ_=BZh^a!lKdaf0j^@W-&J zV@YMoJVFFNyf_%+u=-ZIwPs7ZCrAC%VWwY`GPozJb`>N~9_5tDym2dlyzcbPMHRF_ zBD$P`=1HE**nTw0l_O*W{bO=aE&`6!`K_@RTNkwV23c<<1(q?MPf~gcnPh9nNEe*8 zbLxAVjg=y`5p2q+-v0nM-ec3JrAwpWO3D=PafBpr2k{@um9DN?9Tm<~=2Vnbub2TGPAF^q9c2j$@MYDmuFKnESFtR?1M)6q>UOkIMRS>yb;MP*$J5%j^_wrV$jn!T;Z%;bm1+0Pa{mAq-uAA|9;Mk_$}u)~5yxr-XSQ-rTGO7~ zqm^O6=zAKkj$*5vzrzCt90;5>TZcjbx^QUpZ1M{Xj?Mxo0lSoZmr80nWITcz! zNFde6&){mbh*tpPEzLVg1%+zx|^c^QwKWK-2La0W5WMm55|&22j&Fr6a^p?laorM1J^&^ zr_`^J0XPMlK7dl~!t#FgO6jbM0VQ4xOnPSS|+* zLW7Zx0OZoMdbT#T7(v=e`^K87xx{KdW7ei+45C4vI)W<2qNFfA%%Eqty$?h?+=}#w zk!{n{nyQLffH=bQQ#lfi#D4JSCp~G3xcPa{Q%|70$72T|ObJCWnXi~j^;Afg+lfti4PdUIC`qBZD zlaNg~=m`&q7RMOvQp|SX4%|@+Z3X({r9~z|>Uit*qRGnTY{x{Qh#2CMW#h}nb54te zCmm^kg5HOH|`{M~(voFvcT^3uNQh@vQZ2 ztZ+?QjpJ}U&i(7ub6mO{+~e$J7STL`OFN7YK}}n!HY9oZRPF;EO*TYw2GR)aKwKP= z&w8GFBTJ^qWw@5&R%u-2xFB#b>5oc@eq0K2fxLT~b098591QX(=W;@B?3xRiqE_;W zQru@aqzrTOb5U}C1YL;EO<1>8Syd&BvoG%^Xox2egV@TY2p}7OhJLKo0 z4uY#GmU-p58%8-frn!zAO{nTxPEH#oKIvEMJL`){qS(x$9YF>i1wJk?0%^X%y zAs;qQPbAdODS)3MP6#QH)cVy+Pd%K-yt9%wx9d{CnU{130-^46lS#GI8_>13IG1Dj zg}}}|4O@i_7NSC{o~J#%Dykng>&j=suPjO6nz%%4B83j*A2X5P+LqcAZ3(o{t@pSM z^GHu+^s0K!qH^w7ZpH=&L0T7nUA?YY1uVO<=sQ;ru3naJEqLFao|TzkofIQLU4aNlXwV+oN*6#;qd-ZKpU-)XO%qXzQn6X1WiG!gfOc$E>hiAu>*C7cV|fU+04$t+ z<~_&I*QzNDp_JqikZXpdIa!S3%EhF>BLrj`S}F-V)8aRWgfe}yD972)3ZQ+~uQ0o{ zFini%+m_E^UrFCu#d&J>^C&9A@;+J>eHo-(_c^Fz z7jTsr%J9DRQcHFWc;=;u`7@4o#)kvcn$t0fR5)H(b6T~jYhw$^J^Bi%aG56<&wAFs zUoEzdm7O$a1CC8QbtPENkvg8jq6xc$-=$iS4&o0=jzNLb6oSQ9U85NK)hS6iJYXIw z?Ee5T!0U|FDSi41q=eP_mDuAva!o-f1#+jSTAlb^$FD(9H_OH|p0t}=2dP!DlEiV^ zsL#W5#_GQ!_Z>?1XP;#TKHIob&V6SR%19k!A^`TBU#~tZw zxp7@c*m0B8&_+(sDf1~`nDjj=JT@>fk~pN5(V`y&W#v@K#XA07@+@h@aq;!3vTdz$ zIgz;fRVH7QDCCpLrxL85!vO`i;D9(4G7amIfZp`oynr}SPh5_B4wN^hf@$;`6n-=i zM>*+I6y6R8G{+r}7@=y#)J{m_siuRw_Zr9mSx z0B7bVraZ7#KKZC5Q@?rqF-4OrVB3-u9y^+p9Ax#T#GGRsns)%=lh9nY3~@}xNj(5O zQ?r9hfN*b2w(O3$r0;+z*=RKSiU(m%RSd(|rYR13_o<-)KYB)X z(&=)N*5b-S;RhQ>>rj!F03P`?j!t;|Y0;r6xrnM!wxKJ?S&roZaZT@#af)dq(&Tnt zM_OrW8vtTX2t8_0aoU-Ug!iQ!@r>7Xk;>n@?vEvy@Yuyq6te9b$Zt%Ffkx4e{b|6G zGoC1Gp-*DU+yFrUXV_72*=^?>)phDf6(ct2!C}r#5zww(gct`RrHO!aGG}h!TODzl zgjS8LY#`qnDUwsMGBRnTu9>VXw=OrCAq=cT+&9bH3Mw7&LvJR)f!pO!2X9(z8zN~8 zYnfXyqZ8BD6(!VB`HKQBJhcnJ>fP&JTPu~*Lanr7Bx$yy#~5YW zaJU%y)oYO&N@GAqI-S|csUel(g_tf2j0X1aOPf)ou1v2BUa|7=3b#SdM{1gRUP2)V zQ*&pYIPFoUV6{Tg0$b)F`gW-xl(3TaOe%~89_O&9WF(6cG?3eZvh7fIC>{N2%CbcR zW=)C!CyxDvRkKe%;IkGnMV86>)8gB4c%+h4oy=I&#De{!MFI&Y9JkMb$u(};k^W*m7qF$d8*D?ZYEn+`xuJcQ)> z52aevXJ&1@bJnP^%Wf-*;;SpNWQ89(ob?pI4{DJzAXS@uk+AdJRRe0}s91rXgz!D9MHo5>hs?{t9=`RKq?W6el6g`G z>b(f{s@$1fSkt#+t+bQay>%WOyH;HTNh4hg|_HS7KY)|T$cEhm>V;FTVO(!5gAb=0f`j_&tX zBXbOA%#02X)MFLUcw1GH3y7pfVKjsgNAQY?!vGdlurx-3=07P;2$0XF2g`%~~ z@aM7ZUZvvy01YkN;_4MukCu=QK5ts`{Yn;lhg3KtoO+7wg!$3E?yiixr4li6e@deu z+Hgj5*V?rw9r@V2eN9oAahx2tO14T}iV{bT2>fcD!78~U+O%ZJ1vAL$S<~^mAdFCw zLwcf&hv)bHRbF%q3l5!6wOE$}oO4x}kk|w3Kyv6+lkVpks`3w)+|{{&&gJ`{RW>I% z&owW|OVEovZ9OWr%8+uyj@4oQR@=cRueCtr9I5C!RJ7R2tTIb?G>16AsT^%N;+dX3 zNvRms`H5BpsPE}fu)}2Y=~57JxAUhAHwU8hG+R-nsb3fw9Ze=NfIk|M)T!Kap48q# z^yY%%)r16OsUI(IYLebBn8^6rKU!+0_f#K^Nj?=;6eHfI)+u)&mQwESN6I(@+L~AR z{b_of4uYJdE=d57N*hix1g|912sy{+OIC|(O$IP^V#;%#nW9d6 zoSwYX+ueBWQ8DUAT4ja7o|+LcR41vKdJ@OklTB zPYS0Co(D=|XK7+GTBO^wZN)a-tbq%Sw3sYL4&PdM<$hy~Qw~7D878M;vAH?Pqwe5y zlh%xk#Mr*f{Cnf~t;DbJP{Iizd`;2Ks9=}zNGzd=wIAqQ4C6{%~OOpMLu zEJ{>l@T^A_PfbtWd8Ba|EOYu*fY$|HJ*v6+n3~o)BY35;ZrP!Th9ok;g^mve%~pc) zQS+F$s^sKx$@M+zg0Uc=&pmjlnTp1-BV=_r>6*8`qP3W*mwdKMx$Em!WL28#I2DS* zxZHaWQ&8FBD5a6x7+f#ZntiMc>aHB_ZbuvuQ=@u%CSHY zMo0kcZ*$(Fx8E#{Jcn>l0Kmu4Rf1MY{IbK#i;_U;)Tf-zE|+P(PeQNUMj0MDf=0>rPUS`dqaX+XdL zPY2qkiH8TjK~d(WhgH6U!v;9H{m7s}T|p95Fbo=$nv7 zW17AO?I&{krog$&4|`1EH*Yl^||8B>mi1d*Ur6tgfB{phQ0R9cz!(ATYZYAg(hWIuTvb zXx+!LhjOI+pmKWEDgJ(Qoxa^`Lg5*B!Q6XRbi@Y0=%=kaTupT;N^m!~Ue!uK-1Nz- z_bLf4qmNHRRAwYLGnPGSdWFaf92MhdeAP+UX(w+TMOl23M{ee#W4kKY;P7cJ1+h** zLG>rCK_^@cU{#s2r0(IWs}67p$?Hk#G?0Dsf&jqdiii!a#~kyDlz?ym#}x3Pl$?CS zr@ce6MOpPK?IRfEnnqKc1JbNxXwE)t(l8k5&vR3DQdZQ3u-!*Jz3LYQc{OF1EHThj zk;EoD+l{^ZP_)sFF62>#iXHy|#C>~JN6PYfB-Garz5f8%2a0MC!;$o&&ch;6&|{i^ z9X%=gKs+942;&E(7DZcIf{>eu=XdEtuF-+sfIeLI%_nYpQfltQ-$9LlFit8n+>Vta zj=&syQ#i+gN+bz%IM%<0vsigJ6LSPN(!($i#(&Gn=S7VWi(?li-8RBw0y#Y~T%Oem-C7bN*=ImBu^fmJU^d9WLV`9*D|jjpez!|b9G&4xHZ$?r^d z+~lHdQg{NQ1mg2~!Su#C9?^D^ul`=aO<8dCMpqxf$MQz(b zD}J*i2p#UxbK?zhTFIO|zFu_X1U&c)9E09u5cSDR9!ZHZ~R7v7gW z{V9*fEs@1I9QLV+I@nOnpRG**`MDT10O0qlC^n|z4owR}FKt-cm%ze3X^XcP&w=EQEb5@J?eFCIT+0e_8&o13=Vp9s|$>7 z9edSv1aBW> z42X6}M?!t8O1Q5FYF1i(vS{}5dDojvvJS-KB|-H9yExrsja_;$$gT>Jv(V+7Z1f#P z6jTso_?JpuPSfT2WlllIQR!Y+tJz_Ua>s=Y`?5zvUe#QujPzBVe%6XMsQHu*{;rS@6kH}J_5;lcA5obl4KE+gcqzyqyz`puCjWGEJJ4^HFOxjV>8<{^OJ#a)-s z*4@l^U>Ng+6-wnwKJaoI?wY@HfSx)ErsNeqVHiJlrS~S?3KHk;@srl8$;Yr2W?<2s zyyVqsFn&-vb*b2Ukvn;VoMd$Os_Zs{$IN?F?bC1=1By_)#{U4~9jbH%W>@n1FRvz? zp!UcWCNcp2DnOZSxIVQTmaN9eyTNY%0M4OcdUrKtK@F46C@aSC)b^q1GPsGDgkHVs zTf9XY!o5iOs>~=Mgvx&NbgHr`a$KCXE!l9|lOr85VRe;P%=Qc3zyl6r(~Vpdbv df$dU9*nyl8RV~*N@|Jj8bu4DiJ diff --git a/src/model/chris.jpg b/src/model/chris.jpg deleted file mode 100644 index ee6b3b14447654cffc8a5d607762f5f8a45539fa..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 42899 zcmbTdbx<2`7%dzKUZl`KasL%7?rz21ofavU;@VK4c$?x*ik1X-r$CE^AO%VYQmhm$ zULd%A+e~9o=GNcsoulIu?CIJ0 z#pM+a0QkS)Je>a*p#K98fKoPJ$x-$uwc=MxsPC#RmOorvLy%Gw%_(FLnNzMP?FybT7 zdgokXqVUq)%QV~}(bgtkxyMqx)28Qp-;}pvD)r=0t7|7+OU-yC1!TJ{sLstO{8iM~-JdZfc24d^PyI~HGwKiKCGxD&+oyX;P!PkCq zd?|}j)#PsHo?t#YEft%(p7TVCvp7}_nx;Q1V}%7^_oLJu%J{o6yXB8Z@jWp3Cprwg z-i40fn1lXS6#Y&6?X!e?0Nj1uss7U6cwupFs3!uxaCR9HLU>%Uu4jw!p8BculoDeL1>N zmt` z_V{hhua&6PXHd5^%Q=V4IA!X>*63vk>^&grKWJ;($AA2r`MgO+?>VB>oEL2}IVp$g z+TSVv>+gjP{rLLA9PPxg|2@cHmI*u%{`?(%eE-bRODk|nGu7zEWiSW0&h}NpLC-Ea zzi75oulew@OM*8|$}ucPu)4ri zc}=Bl7dG^YSI|I7@RrdRr9Vq4mKVSQ6V~7)H0~0WRsHW2f{uH@<84S*V#FE0{`5*p zDRzQwmeV=Z*G@3z)K24CmCAlew|1vG={j;4#e5206Vq<9epfu4!jn)}G*2EOH*F{X za|54yi8-J@fkcT{H3{p9E#H)0z_{o=^9w<+MkBcyu?URCQ%(W=7d>enjzq;ESAG@i zkG~S)ckR4;GAg2sYVFE6_gOR?Q1eWx45WyuqGSP1uPC&jdZ^ujL>?fd1~J?ewdd3c5S#SAn3Gg zd`yf2LAM%RkW+%toLb}&*3l{8S*-dv1}X{|lLbO;$lUA4FOUK}kV0($@{w{Co3PHf z5RWDbB0B|1I%k-Nh5+a(+O$8D1=DN62Mw%!m=a|H{-(|RmM)?**|Z$6AnBrnB=?u? zR&PY^NbId{DE&2%qWXb3RRcnv63njatbT!_?A8nhSQTtw=auCm~$ zpm|<`myA$kbbK$2G`tzyS4?~++`9@#0=yVcD}F@>FD3w!4Y^TrCP=n%Uv$!!mY=`O zZvb5NjoI>6j|J}m_C-z%)KuTPQOBTj(B8@PS3qJ~L&;c&l239LYdXob_w=_6-%c zJc|9ZT^xL7b8Wd#L{Lnma9L<%@-BxxukmkPRCaJ{U6N!UBSjVPmXBn4b@k~Z>h(zq zN2Myhx4xXk&YI5%E1dD}0&L%H?~KE?jFb4e-4DxiSM$#`kD~S}y9vl;&%TUFZa0N} zGLCa4MNog!;7C#D%hOr-@T;r520`k(G0c28@|BEto@=Ts%oyYDqh0j2`qsx!==&{% zrfLWw8TPo1EYzF+_FJEl=y85KOHR!_fNV$RF8gy8SQ!ww!R+Y)R}7G z-U)uic)cYxaf3ITdQmd)wY1~yf8%8l@&gl?&a?t!Q8vN)PeUFfJw4tZX)wvTbIA9@dt(FJ`fi>W#0+?QfU^ zudnfbPi`lB;Q335j2#YM8ybV|Ptu`I!es*@{%XzA8bU}R`p|#Ut0`PZK?t8$IO7J| z7F#vKIj7r3ooQheRmJ=Vq`weqiy_5NeJVuC<+riyXUsxTu%0GoEVkHB-#X{`?BzHd z!uI1&2$RS2G(Wxnv_Lj-t3EspUgDsJ9!AWyFNww7I7RJM!Q zA~|*sASE`#QC!x|7L+;l`?sCV#FkZE#gs z&SW1Hp;wK(g1wz1ARJM&wzjo?9Lsd|^LH>K&c61DX&!m^t$UFxLSmqWQj0Ls04BT< zMI^Tc;(W8^5oJ(cB{7ru{L>R*&H|`tat(9z*U;P*2_NaIR@m#YLGs`H@_OFZ?q@S= zY?6u?u%E>0z|Q%a|8cO}thnHJ70T)sT+V+P+EM4oze2R_C|$ee2l%p{>%BslU8wnic03{5u{m;@*yL4l$ROdB%?Y zeAm=dLPR&wO*8wP;tIhby;-Vbn&9eXPyrus7}OXo@U@_Q>Gy7wPi9DE_^~av%(mJ` zpUtysD!9e0t6fx+_z%cIou^4dgf(?FP<>sPk$%!d$I-Snc6u`*;l)!A;0ex5$-i|f z``_%`m$^}bm}!P{*6N6lwG)33A5O;hpuQwoEQgelSEgf2Pz7va1oKkq=OPA8A)zlI z=BR7`Wjn=zM5RSAu}9r;UuRB4bHvr}@eY-{mSpAG;Go9|W}n4K*MpGeLlffL zicR|kx&CX{Jb^Z*ovo2=&727ZLgb1caFvl}*ExAjArWR0_W<|1@vlOW>0B8>YrB?H zlxc*@$nd0JOWVOTZ)TbnhP|Mwo~-Wyf7RYeAAOZ)y9uoL?KXouh+egYJE&{{aOapr zl%>A>1M5I{^e5$x)rU(>76HDx6}tIaB^<56u6b2Rhx{T0N0{&)! zohI+s-&8DQeOr+#2Dk~1hY2eac|)IsU(Wd29{X|avRDR?in95v`L8-g&N0}y)yEPiv^(9 z=CeUXzM2A(p1>L@a(9&}LFM)_ZUkdMnNv~*E*;cRcuba73OAeaYVzkKyNHm#PEu)p zB!SoL83=?bPyL`AmtWQw@94UB*qQ@!E1!wIt&|9yk@mG#51Jy9?vT z@GlB$CHd&FWw_$Fm#V*6ag1ToBI;R%`OlQx9@a2u9k@L;+8ZI{0!{H^ceUy%qj>(l zPr-!-@%9HxOKJY9?AyLdA9TLv_=1zy$~y-A(~F|38FW_|_Yo@13lGH{n;Wd0NILXrLq1mk3^G)b^>z(n>eb0&u2!> zA^jQYB82C4_gRCub`5v$c&Eeyj-!bWK(EyE8+Pq|S1G7Gtoz&BGmtpjq^`iD(@K+! z=D)!mgOm?pi_fH%q)}#@cGGSFM;`c~^$?~7Jf>oIZk!7W!!YvR;=2gq;nPw(G6bim zA48w}O8?gUpye`DWu&xMB1ZySCi>}vqflBp$k6euD!sk>zb?w6?erawbq>}mQx$2m zqYWYXV;S>;%u@RukxLrGVSfdMJ#9@E6EiTD-fqN%dft%qf#7uoNU@>!1zR571Dd)Q z3VErMLqWh=(b@S!?k|@isa;w#Paj!i(*6l z)yHA7cbN+}N}V=#jPnC3*#msZ`uBiR@JNkVQ@T}!f?M~>BFP`{snJ+GR@8TY&2g(B?3Y#V`k3_- zJ%xCv8Piu-lc&dtlp$U6xkU}$VkC9WAJc}js;n6i%^rM#rRmTxJzGlad9pStvU|YE zpy==wYziHaA8a=eB=P%o(_d#r?i&LLe^|`AOLI^bxOHP7Ir;P zS4j9yr1@l0t@>-t&-M3ZqlCX_x|{kHACU|X@F#fk^+W8ly*I3^Q7nvke&Nky20Do;S?iSOHd$wEb(sAn5YJ?}%r66` zK$oj6t-qtG7%LQ=Fg<2O;$h(y5x1&#<&bEOG_+rXJj{S5@3BQZTrEHbs1E{VU~S82 z(mtE>K5#Vyn1_zkCTyXh&Dqr^6x;JxVnowFAw*}8rq1UlMObO|TggxcZq zZjVgGBxw)zfm2Z10I~LM?F}zUV1XNR^L|GOkak}Us^ZiQ@P|qYNJ(EAKV3tJq_?+^ z3Gm8~Yg~e2p3I~i$Ylaf&@fx_JeX1!I(87BKGBUsmN^=f;y#v3LKHPWza7 z9Zd~v(Uf;5+Ke+B>R}`y>Mg@xNKt5JQPo~$K)>giD`6s&plNyxMCVm)D={7!t4puO z$&b!MZr0e_)@>J->(INms;mCTwBEF{>Gs`yIb=%0}U~?G~+**ABAn5;bz?f z2AGY-OOq+)ivFVS0i#xm%+sICcPu2c2|{z<%>qeec$1Z6&8Rgp@4DUeuNnD~{Nhwr zI>Lim@>)CYM@q-9QX>z|+1kw369=oEeITUfdD+&v2mf_9e)!eHBIs|R>zZyZ7HU%d zvZmhgW7PN^l&@$~j-g^_D)+gk^&`FC{K&~m-#r=Fyx8wwJQ{lBui^9XmDp49sT;+g zE&Qq`HpnSN8Z9Qn{pp+6oz4YI;Gbd?IDcWjR&}7AV2=DLilw?qaIHQ-3AcQOdxc~f zBr}8-`nJV^2*I6rTWH$>zO-t4tCf+!Vqjjorq>)dv*fwAk~B~KH?`d8%7lGzg|G78 z@AyJ9GtX-_vJ;`5<-V4n7(FLykpHZ91BbLCZ<4Q7_S0|rpXL9>CTB7XRYLNM3b*ak z*96It?(p2z4`S}`S4cgXTl%{@**8G3jO0AVFxb~;#-A)cb!--pOu5X6Yu>1aF-DI% ziE6R0jPm>?h=>K}UF=t0&LgruG2pgtpMCVb-Tb4mQ8?b6w137&XIWXqd5tsk4Ls}3 zVtvGPQ2L8~)6wJ?;iD^(z_L*WwpB3Cys$L~;sWg2@C?IAYnknlzO*p)uX=)U`BUP{ zp{3(KMU#8L3^J&I4qZzx%Oo(veonPNpF8NB@}3|(r-p+59l=q4QgT==!PEha+I<}= z8~3}}PiX|;BY$m?O?%R4;SM^^^U{R%DGaGI8eiW1L&CB9B)}#e>Q1|w_bux4v-KKgLdGd|16;&M!1X{9 zuVxJ*zk!~Vd<&}iCJ|t)DC3`Yv6X6U`)hGQ=%j=#RA}9Zlu9dsoZ>-U;wOq)_s^To z;kQ@8AuM=Lntow+QOyx4w@~)D?ECZZsAjQFegkuVf<(tj)MTmG_mBG~VOkvp{QUbM zhBEGmE!gqa(Y|@}XEF=()S{^(iGNQ{q}NzX?Ct@v;S43Z^qT9Kg9%QY518wM(`^Nk zfAmcH=hteu&yBxa68GIA6)}c$-r$0;74Nu)F&UzLXUswSqGkBD!S|X_RBZUuUV4;7 zi%`0^Ci@@4mY@P=^h#rk<^GDM6H}(Ija@yj?dL}Vv7wI`bckpk=>)`y{{=Z#8yV{P zgI;YkDJ^i7>OA))Z3?H(4z7$HG6q!3-dafa8#yvgHdS~;Dx0yAY>4w6Po(&dnS8@M zdNSr@yOibCyz`&Uj?WP+}_tJf^NKve=?v`u1_29)EN;?TT^a6ck4o zFeb>HQGyU47Hi{O^G#Kg1x3ib=EvjM*3p658+hnZZwklbO3;R}Stb|23 z?!!W1AC!tnQfhgKSQ1%-84`@3Vb4V8KV>=;`NBvZVpnok+Sf-4=WNlgCiv^$@c0mq zJrmPNf*5w6g%J3D`q5sOEHi zyf5wPp@pCmcm7pCg_t<0x(4XhA%p5^eHBzvXQ^Xdg8t1c72t83f6{xis`gi{uTu5X z^4=|Ikc5dE>jjJLIL5v!59K{VbsSn?1&Ma8*DBf)RNokgj`rO#w@lJQ=DCk&I_cEu zVvL4NJhalPLs#2wIp z2iT_1d^IDgITcS3$85=ou5>?9HDVu}&6e79@3_e>sx8)fB|24K`d-+WdkgxDp9~+R zi}|2ntt8dEnbBCZIKa)MRrx5(vm=o1(0=$2pL5&K8i`};|2VHxVMn1nYpD|%J^NCe z77Z8A&SWPjYyd06RF_^dlu3$NeCc#Ie3!YaEC*P@-SS4a?2$QC$}NNbQyJ-`je z$s}@I^MG$k&f#6wSN;Kq_i3iwqKC-0QH!2rS%2Yo;uA6YW1k4xzM&|OGz`Hk#4kl! zx!R3zou=Elj>p~-d@R)vK!D#UY$|)dW^DV**LHy{XQ)x1)l0Z(pb);D!?L8@f(exp zF0)M{7lu^i4Y;r+PfScxn-a&8TkZc_>K-f%Ba8i${~G$%#sd|ddPQbXt3;_HXZ{OC;i@;*ag^JeT%; zg>kF(zGA8MD~g(cEdRxYrDn*RY>I$NI4>25(dncj7{caRG3lW|(~_(W+pndcd92|1 zTO_%!Lr;d`Q)i_2mtS3nNv^L~!uT2*{+%HzZLKFNZ6|ytK71P?-)mTbofYD}tg1iJO$&wy8i5rPK|F?;tc(0(6G^|_<=pug`+v`cttCbMP_Ss zg+h@CXr>{_eeG%7O=-Bs@59EA8NfQ zV!kSP`#2M0XUi#^Ha6xn=^-0<>rEIfr*RKpMX3MC)!aAV6t{JLWh%Pk%LRb0mrl!D zmoIv}xCc_qZf>Uj+V-I+GC`R36S8YTiJEX&RHBlF`NON;}*OCdHJA$qa zoTEyu4DO^_(qzoj{<>>zJ4m3{ptdlhS%ij(UEB&fN;Cngg+rt%j$iw3au+H<)C{;X z`LLNy`#_=fNOc1cySqArJU*c$Bq}&#w7bzd$=0_1P)ZelZ4E}_NTh)97?ZZ@+bhFw z?PY7vGDrlBA4fv5-o!r|FZ9PH=!6d+7V|Kczu@tnE!cJ!PspTIv(gGNF=~Z}f2?S4 zRDrF<_!q$6wgsbXdt`_BV^t!(UXVGy6Vywt=Z4}w6&is|`Sw;(JtLPc&+#>KH0+Tz zlnFIXMfvLknZKl~k@id=Xyr`m31_k@GDIJ8P$0U1kP+><1yfZef}_O#0p9%72*(Vj z{4mnifJm*e7b@4h02V?Tyd)pNU%MV&QPQJdcRkixQ&vlp6RaiYYUJBfTPp{ctsLN^WU83Aekj# z3wnxfQ~k&p&%OPSXv-OvK>bLH>Q5h1Zs!ve(P)~!2yQ~UF)5=Hj7IGDcaMYZ&TcXJ zxZdaKYz_<>Q~0QteWf8YYJ9AuWi1R1+M)$+WT-wWR%#G$Qh$Q^W^&cC)d1Cu6~Wq& z`Jf_wA8i%QamHUwF$8EjhieiB$zPi8_bPB_Og?PYtPaj&^&0?aaG~KH8TE3r3`c@y zGB2a+N;MY5Dp^0AFWy8v$CQ^paOKS}&2uMY7M7kC1Hn&ge zzWCq}-P)9G+Zx34&+lAu11>FNCfXvV#4#5myF-%#bPDF#=kD0;o2sGm!)HI$EfOc> zFm-CvH|MNRHl^jRf+{EY+UR=VfjyuR7N^YCB@~7A$3cBx6Y`ArMjaCDMv>|00;0iC zO)3K($|0#V?+Zqhs)k`pFaCzqTZpM;8@ek>_`Z5 zcaU_1mw?S@+slM%(l;V%L0>hcn7=9mp zKd`E(woS=|xYdC{jiLLAQEu2@+_i}v51Q=dDnk7C((I)jFD$21PC1+odjNctpL^$GDi&}>g z@q|t$LySzElxvAqlS0ZJv`Cj7?7mcAqfa_hQ68^Z5y%HVN8tWOHWBz8A?qnfyKYE` zkj-d)Okr&-suPJtpjNrL)rJ)^+PCI2aLM?ADmana_@M4>&?AiV^gg>2s9JQUg8Rxe zg{tv%SCvOzzjWp`Ularb$xwMck~E$9AP5QdB0bbZnw^=awLTA`g#;Yt)?ZCaFlW|; zx{n4dG2fU)wq$ znL@-)uyDBi8C|n6B`g$(PJKV23w2^hpod`B>bhBNouajs_f-jAHh+H9T%abgqkBFf z?}7K`6;N}(pm~aaREHTx$OuanU9OUE)Z=YV7@+twj&H3`!IBwD94!5KgRX*r=RMUg zIn(z6rNaGEgFGWbLT|-#kkXLQE0af10(|a4HCFjuHqX{M1D zYU0Vdq0U@_=c7$Y_-}fYyXj4#cDy;=SC)gBOlU+g3Jafa;IB!r(+V0(aP0gZ(-1ek zF|_UZdx!7CH0nxUzUu3RVUUL;7kZ8YWBe`7vrzelsl&$3#^RN_uKC(&S~v5S^`Ou6 z>URonU5l%RVZ2MA^jXAFZDZJrlyC^LxI?t!>x|X+Pp8%3F~iny@0t42?_3v^3Fk3e z&r(0T)QlHtNqdZUba8zH%Yf5Dr>(dYn)kH4z)}8V4r-D&dM%7BtH}?pDzv@YIjray z{9k-#)$h_3RKVNbwF46ObPhGd?wC3{blMRcyHl$yt97U+IA$Rd41exB^C?o{n8I3e zv+4k`80L<})B6gKv*HLll2&IzS`ZY(rRwF)CT(V|*;={G+b$Fh(N6GNGD4S*at6yN zPa`9+&#Gmb$G%`G`m#a6`}%`2lm5zpL!^`|-57}ozF>Kg`$v6XK}N|;q!Js?L)KB5 z&9v>F5tR@g(2f+48XDuv^c5Zx;0Au3t+{D>Kv!|O{KiBPz=YmzRPIzSGO|eKxRle@l)ReDKVs3^9 zi?#5R%aRW2F=ERiw>6a~K%h2y0x3D;6{oAIRxDzRHG-GU+BVr8&cRe^&YUq4%)3TZ zQeGwjK?iLs?K{LgL1`Px28gXb7@Js4+JWjA?d*=Uurs zwvGA4BS?IZ!liQ9GsLcDcc>wS?HN33H36tf2@_4#%JbFDqU$YfdMuMiPmA$dbc`?0 zja~CJx#sGpkG*^&=95x*Sn%{ze8rkkcMK(XuF>(}7%`pl!(PXwC64_lwIaOcnL1TO z_$~uluGK5Z)y*u2`fryDYx$C?{~L9r(${dR{qfZxo`{ykwXKIqWbPh7f2{OlpsB&t zDT{MG{efj8A1$>C&-3)_aVZ`oMHKK&M3P9?672@r1y`!>h}Z-}LVVnlWTE06(I81$ zIN3P9x`>`O)V*1?y~s6Pe}x`0Xs~qSVI!64$}qTAI0Bbk3`1n3=TBr9U}lhA!hMlW zwj^e@q$HVyj3ikoFn~^O>izJxzJ0e;8UAKUZek?`wo&m{%_GrPv|L0`xrdWv;)D|K zq6W?I-M&OO`oGpV`$~U5eQ@iA%Yv7{%d!KDD+`M9ym9H;sXu>uJKo#_0HCvvG;grK z@y5+PjqU*pAHoyu7?zw}#Ro4GRGykh559gF0?Ojet`m^qVhJ}b9|K5~*6mJiwm8F3 zm`5;M7PD(>ZY>~Z>m zC4hecq1$F(Daq5=#SHYopmcOt5P~n0P?;#PMk~5Bk`IH()bG6W-KyWI;7Fot) zZbtRBBy9U;hI2tidk@?)XGp4u#0OMlM(skonHoP5o^gOlP%tUfCV9aJgG_}W6@RYA z8UOSdX3mflixw-J&m2(=I#Ooz<9WLc1G!d|-i+$%8avGwCcQ<7)ml3Nu*FKf1o=>k zZC!Y+7{u7IFcPLBwN66VK}U#qCIw)`#4w(hFa{uHn?>XTR#TF0AAG5I-;jd#+Y)~;8jcN4)|&+!$dakw5*CWaI?Ek^mCX-66W;EL?%$|&*_&H6e+p8pLFRK z)b<2Q?0AA9QB_vJF0KbwQuih*^Ety(+QfBCz9x;2gm#1^(ax)1;lSedJGkO*%rOKd zYv2s^A3<)dyQhq8J7DiWOKsU;-{1sX8u2^VOX!NZmY_GhGh<^b6A@7%U1u`MPNTpW zY5A(r+q+`3YwtyigPPq5V_ib3;OX%Z^(19V3*!UXp_gPEVeBZx{dw_a3 z*Ij7cU9|O^0dfL;FjoitT%+@t*mtS&rbG3e7Y)}RZC1}xJLxXH0R?tDSuKBuKcv7OeH77;*^v#-hu4nO_?M`-;Q{Ast3DC8{ zLGGZu^k&m}s%cTgMXud?An{G2vGYPhnSAWJiPqB;bk5z;r_GnO9(C`6&#PeJh_F}4 zYVT*QoUblD6QEtN^>od|D(n6V_5}QhjL5yWWyNGU->@YJu)V~`;O9E7t`eWK9_r5& zbKZvv5T2Bee+p)Etw-)D{WFQpE4w*hZ@J z?5ezS2thG>7Eid|1Ac)syDqI{ug+a{glEvB1kd2>kEtMAy+6lT2j#tDIY_d)# zAX8t&5t!MTK>0O^V`qSWv>Ds19b50PPYBXcSD2*XdH^jTk#|~bxy13)(<{0s!IFl9 zi#q5jX$SSz*RWIMS5i%Nz6h-ux($+bMoc#@N}p#=&eT^b5HCPnh!!-1BqH>%rPPV+ zMF6m6?dM8_VsPWNlOhUhb6WD8A_@;{6C_b{j94>{zI}VC*#NNqVW^Kr&%ilAF{D&( zHd(nZ8KFV4Mo^<2x7U#Ow1|6vJom#YI|fu%qLl^}g_{<;iL3hRj0uQvD`bd?NirHL zk0}D{AgY%p9Ytta^edC0eLXo6f*2q=y&$7(Te-+dU0ClG95QvJN+Of2!j8|FS|C;S z$~nPU()!JFNT9rLQYP*8n7lqDpw4amTg>})=czbhJroG2L|zoe!{esnSdcOG^TDLm zO>$>|ft7_5Le6Ws*2s&`1PN?aYCZ}qdCnFLYY5BticL%e zt%Se73(Q-NGh^70TEd-M{M`=#9Qu5Zk3e^e4u}$op{sfpTGV`hQ}Dm|ih}h}e|!|q z6?qFTI(h?d_607c+v}cQex9;z=oo8U-z?#nFJ;f^`!eX6N}1F=!~EdkW+YpKNnSjr zM2WML6Y$WQ{9)mz>5x2-;ufGitH@Lq`yijFT^X_lb+cgnv}??JZCLUQVRi-|V6TG& z@ysD*LH4U1V;(P$?g4_B2wn#%>vR*~{_#Da+mOoFj6b1Z<59xpV5cJf5m@+~8u=q4 z1l;(~_a5*fyI?i_LL*>&s-Nzf>DOsH%N0?L(Bh0m?8E9azI)fX^`Np)mlc4eWt$|1 zal~A5C_KnDwBuBrhSyzE(1GyPocMrBp~8#YrDV5zKx$R{P^F=N<(k%Kr5=2_RIUQ`8kF)Sv@Dsv%nU~fPtP6a*WSGO?Smbz z?P2B_)x+_SB6%|fC!-n)x=d^i^D)3ya6FLE^8tpOYy+O|FX;{;g^GhjQa4S;nM-j? zsr@(VU!(7+q+>+9eCa<5K_tsIpzBIOtf@2k5?dX?LC>u|x^QvAv=-T9!wZ@JuzgC=JgVkmlPQcp%$BiW9AyhcX{mvhPQ6^s84 z`b7T=3+G5ulcE^^Je6wT7;_Z}M@dhB_EClj(}nG}!icU&>v~-vh3724(Vp%BGJWr?V^>WM9#rzodF8kYBv~TNsrN zl)73=o~1s?FL&`78-3D#owq(Kz&6iMHyV(vb`k2m;ht{$7$>z}ktEtCLgKO;b~zCf(f5_X6`qktCgty;D$Zkf1cM zdPZdAaCJFelx@bW4tyKrz)-YBBD(1?$q1~X^r{5cJ-!kOx_)=1xHO_TPrce!?v&0{)pQ~K_BmvF zEa`B`fcPEDpq2XM#R!l(hMUw6s#c6wB6URo0(QFo3F{wFfT`DiIWglNx=(EBo5o(8?UwUD6v@k?4rxzd(Y%6 zdVC&oWbSQE_y91$c#S=SBuLcM?0^;6g8OhOJVpS5|YWfq{>?33H z4CtVc>4=lT7*txV%0hKwQdG{tsc+G`I1Q&ODJM7DHm*eT9vSmu5%qDA`>MDeO57-r zZ8~&@^HGG*+99mSHt<2v^_Y;u|*G0Hkyw<{Dpkije(C9h@< z<$0E&4z%^=q8_-KsfB{CJbz(MUwix{b~$3KwUklPdqOeyy7XlCA@l`NbcwE4kkUHs$>@qEZPBN4%{cpPcw(umJ`qdmELd~DCf{(Xo{H+** zb6%dPibG}<$Jgtn*UTUoaiLKrG*jB0&caFPcFsw0R7t7a%FdEDJ#!-!gA!j`d;cN& zgzL)Kj6dLGUO>k$s70c40vuYKAf&t{MiRnkBDXmqe#8>H()_JG)R~xt94b%dgmn3$ zhHq?8zHOhq`j@)7*LNsnd|5WyKBx!fKeZvx3qMGg^;yPRQ}J;x@Q%=4U72uB?xU`n zk>H+UL&(q2R7-!cgP`Lox|1ptt_GF!I?lKdZ_Ma-B>gMa23^rRLh-Utz8590@IS82 zS8Y#bVerPayiN2emODh}QMT1(v<_ohNnzmZw3}MQx<(rL)8s=7lj7~;#NAMz-uNFP zAxQ5~zNXJ<*8tEzsfw*OGlt?!&X-Q;Vn+I4yr?Xw-z`s83@bXx4L1X4SHB1J?P4>V zah=3a8l~+vNjw*b7}S7R8wxL{YL@TDDO%&p*j^^d^AHfP8=mv_{p4O_;!&#X_(G1) zrEQ{&g&UtdDTiMj=^yGLANZ^aqZ5K{8!3}=HinM_igCswI9*^6e;wn@fj7RngXJC(T|$xcOk# zAK4EN{Q6H8`bz9e!FrqT+-gcBR8&bJDuxYC4^{DphBB`<1zscTCl9@IR+NF?R|zjL zZH`_ct_gMDo8Q?~EO{+{^G&3<<~vT_uruiI4Ah~kC0S|mWKrT9UvYJOqHUrFfu)>q!OepFnr4($(a{=khGo(ac>TEYg2F63WJqJChavwroiwkT55nlc`#s zjQ=K2hrST$c2B#N^%dUB98qkM2Gcb`3}v1so= z(G6F3rMB$x_s6{ptf)?@JxB2tR#ac)jItUWG8+`tgycS0-kP$7z~9tx^HP5Zb#uPR z+dv%IW2MC+=F43>jDJOl`5#rCW*W1*(vJQA5+u?_^lkE7u{B{b^A?}bTHlWDcJ2YE zyY33!sTl$0|8?dII8))&Q#qM4HA+=xndGL#qjC~kz7IAF)}%2gihr;yVlBVBq#jrH z-|(19KQ8%hpycu8XTjhKK?XTDEs|ddAYY-OEfY`{R4N2SXM>{h^*pRe4GGsYJnXT2 zUnZ@Matq~;beY^Ah!(0pjC($UB&b8@hprRUWVQw`JRmM^^e+?6W)fsld60)Dx=ov0 zsb@7B`JZsr#|6w!|5;Fg7^9(EN`D&n1an5m%0Kt&UJHLApuC=mz>4N(N*;9Lv&GcU z#_Bt8a#sV{K)9K`o}*`HG5R1sqWjt72y1D}j?`K|LTlY4+kvaIF9Vmp3%z@OTUTa0 zf%#S+pItsF{1Zd5YdZ7w(>xzj#r8bx?OKfwMXkpU>h75_b5|y{zwT_H#B<#voq8|c z(KxZ{&iIy(2cNc~kn}N)(_5Zl6dwJVfWKu1Gmo0st-A&jx00+J`pMXTEQxrQVER=B zVf)+9y;CYRCrjG($)$b~%6851K)KoU8}BZHbG@nauz|NZVLpV%;(5#2>|oXR=;F7B zUt)l1Jr=c^-^`$8^|)PIJ^zSL+vl(*g(KZGw;jaW_I4Wn5Z>V?nPAiPBUtT8AKMAt zdm~K2bbi&a!dChw2|UtvX>1^o&Oj)Zi_;Z4TE2c6EW=hkFFy2%i}3wYVL}jR0`|=>!ukguWyg?90F2$DP}_pFCdZ4)@^T z@EeRTce%?bt&Jr<9@5EuG!Z!tR_KIe*mDBfxMcH~j&&XXSVjkiDJQwu{)#59v z!+9dt==Z}PTRpAdx^7#!UEER>l5T=l(6MS$*VpwDDeX)qzgT{>3vcOer5WEM`Ev}v zK0?0rU<~uXn9u5WuC?X9-(oYMZc4D<0+o2?9=`J=tdWZXJ&8WS7Z8< z3XK+pyI0ThU0nreIgeH{gNMi8vefvqa{v8O*l1882)p8#{qIO4e)W33rQ%8gEMq|9 zrc>U$y4UPNZCgpDg;%(1@1~IPusP(HM*F2R#O7k_g-MJJO8$L(-LC%2r`}w9UlodZ zfO4p|WP5PxKWD?+(#)`gkEQNQU62f|KJx1xAy_eRKa!a2&O4L!ijLc}!ddphKdpI#0Y3u8v z|6LX^sqol(KT3c9)+vh5)!cHc%@H2w)N@|FP*oL1KcsEerj?nTkQNr6sq+5-(m*Z0 zYp**_cZz4;r*2QL8KTYVPM09MY>b2FHvM z`Bwb5)^P^6Yq-hAJh<0^_}4#scPx|IBcdu0Lb8l!9<^v0v!Pu5r%Q@PAh;V``;IBs zTCSUFNS^i;f9{6MenPm-U1Ws$Nh^q%ixtlqHI_hLwW3Mub3ImvWq0EZG9$Jqt|o6# zm>->G+<4;TpWN8R811?De@f);Wy27)TXs!SNg=s2u5TLZdEz@?`{4foja}3HUwtC6 zlEx`QjJC%h{#C;MHG4^v$1y5TLMb-86s057^j%WdRkbr)HcFkYhpL}LSBF~QejH5W z#2SscVnau~{X-A&uKaP*lU)ts?p2t7rJlcbmWjXP=x3jkKdl{oC}x%e(~3h&oC-qd z21~C#^jM@Aq&+**G|^-IV(05j`$R*6;)2O2?^R^Kv`@VLv!}gDB;3knAn?;2-1?5fuoaF$CZ}0=rF(2<>Rj3W)0`&X zHG=vBfmLoVx4=Le**`=$*$or>W012suB>oEX=zm5bPvXD5n&bIvL?CX^n=sRf7U zjMII^FKTJ(I%1J5Y=@6}@NbFNg7e1L#2kn=z(3$4pVXT7OPK^{@;5~UpTfRtzPNkq z`X{ixy#FtGCEdAfNlJp6v{>mu{}Qu+s7I8 zuQsF9?1J|UZAvqcn^$SB8LZ}->O=zrdFRk(y*2D!@wUW5vh$PDvQ2}<=Q6~HV;#%~ zTviG4w#$@x;*M)i(89EaRSpQkh8;cYPe!+GKF&myvmXBdkka2sVqoCp9+gsC$z^?@ z{EOG?PBWaHjOPeKCdewwka7=tV}bZpZ7NrmLkotyn>Y9CoN>MqR4d+^hqAYFWJXwR?y{GDdK~w?CC6u1>_!kDJz~jCKO5 zT3KpWR_k(;z=*>jV<)eAY+8&s+aW6IaNd~|`AE2Hu}dwYq(rV;=K57l8%&DVP>NX5 zfeLa-Cp=Z@?t$3wNDl;YQ5)HVE?XcTYo4W72V{D9JOpdgb8Ohh6%_08XVRwRfN|D_ z8C)Lqs%M!cXJVRx)Kh?@9ZfiNq{(F+e#~C!Gr$MTS1a`u=71b?!LM07*PHm7)9iZ0 z(WoIYUJ z1nUS1z%jq_u98>SjDzotE;F2tXp~cWoS2D8Z0u6irALgsXk%7<5uD^w*=zc}jj6V_ zyk(29VV%EEO0TSDJ4IqJqDB6+Y4#G{$`U1JB;WutNvcUDAi89!{~XYrE{WGoi}EM$)qQ(2AfEmvuDDWu-jj} zH!Zdslrgh^boMoF{=!(VB#nqWPY2XjIr!I4Vd5P+TWHf*f@YQ=6iE{2a2~wY^k>S< z<=v8NvVD)kHkSVY^48{E=h!Yk`x>-iX|~8lNdWY&bHo~{)h`v2HjdsU+Y+9<^*^Al z<4cuaMYME{cNmu^9OMd`vTcek?)E4{Y32O#4o^j`ts>Wap_p;jp|`hbB?aqV7Fd8q z>yB%lO6G+R7+VL1)>Ktv7-56zaf;^bZKX>am6rgqErIl|vtNMErIO51w}PKe_0A+N zkxLk#QRNNF^j> zAyJ=GS1wZF*UGbsNtur>2Ni^pnB%vaQg(s@DC*VJ+Qs4vs8&HLK?;wS0LOvvOU!;q zqM8NVXj#=7Lz3BUYn#0DZ7waNlod}fsn7GS`X+g!Xs!^&I2}RjTz`m_%xMg#aPymM zcLubKwX+8gcS1c%Av^_#EsEwYUjwamR{4?uJC(=dT)w$(_V+kt!k$)?7Pb_X%*lx+ zq8ZOMBX#Rc?^<5rVe8Fa(|`|?$9krNfmYOrt!0z_oDZ!_)GqIHd*PEAd`o>VV{XU) z03TZPe01Wx_u(ug&8S?F_f;bY>ym$vuRtWxEzRlP#&)&#@W|FNqa0xF&lQqa#L^No zZ4mwvBQ5#l*0+eYVWa7fc=7p!5U9DvNv<|u9qMGAmUf^Xgp-k0qT108Qc3E~<Mc<6X%7^c8O0-dW`bHd?}#_wVDN^ga1I;DD8E+uNAs@%v|pJQ zJXfxKZo4sfZr;&b2Ik~sda8{706bThXps5(lo55@;9|LP4@)B_@mTe39uKqVmeAu3 zux7WW($#HPd7pO7?GuNLRsDYDha;L6Pj#OpBe5_=OP#qZcKD7$R5z@rq0O-UwxS_K?Te8-bA(B}^ z&d@lkS0$8g99DjS-ej_#*y69=ebeqMhYM&}g>y$aFF0HkQQa~9dx}w#OnW=tub-ES!y-6}QuxyYIOxCIlwkw11#qft&Ku!`| zq34fk?)eac8o#fa@$`_|Y-npL*D=xblIKfcihu~|djl@>bMvJ(*?r*88cfHZW ziE)*aF+4$))3%fU04)Ljb=rI~Xydkf&4Jt?1D=`BKc#VAB_!#Lsf8@7Br2<&>6Fzf30};h^;=wsml&>0}-EE z_8V(a31agsk&(t!41P7`zCDr|HO4UG7|F-^^c0d;(A%3vj(D0*yijUHhE`C@j6tWO zGqv;>I#E*nnt%D^-<2q|xICDc4|-{#@;huq4SElQ-DS|AR&G$T=kX@EQD<@2%Qe*a zFv>LP(+Br*^X-s7!iLl8CmAKGI;NI5K_KMzq_>m|+)e(iPXqhM(x}3Zb0}VY{i@1s zp7uBw{Y*Un0QKs2Gu)e5xo0s&gO(X1(~7{jk)yYfWR2A1;FaT=*||q}uCCRUUn;R~ zJ+sYc+MDv*C%25DJwxaERy8GKqKp$c&1yhJxE+%e#<)0K#IB`Aa(S+z^G3A1`^m9~ zLWdZv>-`7Gw-Lo7OCag;@_ndNjH6v1j3}Mi@oS!$Sl_51E_S@U0!YlXmp6TThq(RDwvX$ytu3cb%YuD_Yjp z`7UG@_U%4+42zMP-m~zWP+Y}vbt_49VluMh3WpiSDPNaXQdeeXj|`U=RwCni+r+_{ zvG+jdHRy{X+ifu02@`J;hve5cq}(i53?xNyB5fp(%zZ0m6=8@Aek1CG)7q2MK`k{! zyNObG#Dnj4^{zKsK4Zi%PtNW7*GGA978j5%!;VM2bCRi&`WTNPP!ss`O)YL!^fIqn zds~G_$jc4Diq6+e@>+=`ee9>DYid)$9-#3N!tf1N)PBz-J7QqNs~<|ZyI3u~naUD# z%_@wX)tkM5fCWXKDxLZhdk>6KYBFuKSn-0*nsSg9sp<}1ZG-qm0Hqzondv_apz=IB z=Ml}stp5Oj;D0LX0Ts{qMLeAf2s^|!{{Ua>TZl#~Q`NJoI~Y-HpMTuqMUR;jVm_n zjU%<$OJ2B0wR3L_?K;Q)x=irzlbm~dS7qR<=NAI{{U5RcJ~VQ#wLa( z&+%>Mw|pb!!>Gd|NTLo^@OtOh@uw>!T{%0QCyplBp!s9|TFR;Yf2DB@Fl(yu?3sqj zEbz|F`2qel$~mWfEL}#NhSQaD3CI9?nv5Tt+MECH5;R7^qv0 z^m+{qc3ybFrUOlLNDpcV>Q1f3DtoCstsTxWy?`HuRYOv13{s^ z)1^o%HRM#E!;xOb#rX^Lrw*7r(*fp}JYuL%QT+x*BOHv<4hJTOJQ_sY@&5phH$q){ z!pLO#Fc}EYf*8Xgr1(%pAs((=Z*Cj2P+dSEB^oiALE+V_+bDyGu#o# zTvr8V+=WU!(>h-hTnKGO2PEKC{{RZ=-foZONw_o&Mo*_&+wkqRtnG0v)wENLg;65z z1K0Xi;#g@VG5wipx$B64{*}s}hoYfV@X0K-~EhMvz1bFd5vSC=F5qSoqU;QE-J6SuLv7glWxAu;Y&kAuPI z>(;xk3qb~%p~a`iKb#Snv$qG6o|TKDU8>IuTR~_gNo?2p2LIMi-M--qplfrZ2eX~^n7&MPX(=KbUdf!0OA&u@C}=7PxO zS`dAkn#0uXVhJI#fdNI`g&55aN_rXlHy3-8S;b~FcqO*B5uS|a?=kOH?m=y;paOWR zS{=-@G|_pVx(9Z^cm}Rs5|M7_j+MoTg{p3S4p`Hnp|fw{AXGHhA(yxuRojg=)h+(Z z3P&7ea6lb?wZ}=X>UWmn)mWlq3`bV1$=dcMVdh8y=K+r*uaa$Q&mLaREwqk`F9qq* z%(DHyT!Wk{jyd|)yWt4{vd?TS#;0Dp>BOQJG+o0QD8OD>+*#v?ebU#$r%B)nX6eb6atk zqkuxBu~h@7TA^({wAz)k?iJ4&lCHq)mIB%RcP;1;5 z!ja?`)ER)!0xrL;U~9h(qrSX*sI`Vha5Ak1azMvj)YX}@lX@OZO>Jq}lG-&f#*uVu_FU{t1CPDWH zYe>WrqItXWNIByie>#7LuF~HA>L)Gx&81X#HB$0Prj*FbFZ>UaRMzlVUyHU}?L&`a zQk9*8z2!%lo$5TunT^&Gz~nMypKiQTX?S~C${#Lf$`$HV*BhpIm&{}59lu)Ev(*w& zB(b>8M?+f0$!O0WaEn(*L8;qI4U)8vmi`gY4}4Z_oOgS(EyQJU(N_og)h$m_`%SXD z$abTR-1Ae}Lkw~(rtW79GOE&ir|_j&XqZrX+Q#*O`AeQa{b;_qYb$5Elnvw`Ek{~z zpEy{-;N!JZ*IG-th&$RwFumYJZAq+AIgk-*k>^S>EW*F3~1QB8nZ+g;CfJD?UeAFTlz9(29!g8R9vM zFBf7eoy4pFbq9JJ)Z0SToy@y)y6iw$BNoR!jci#>Dmk~96?Nc)-mx#j`QK=bhS%rl zYWLgL;@C^LdGU;6xvQ1;K^1RxmoMb=3PatFPtaCBoCWOHP4`!U^u<_PtlG(N_!6+% zp!Te}a8yQE65NsNNjs~J>7kt@ziOGBU;=V;QC-Oz#pJ{}KY6K_B3&TtMKKO)?za$Im396l=j)UGF;viEv|5tWOmvN~4AdHA zUue~!M&ubXeuJ8H-FZ31UGTa_x9>EJpdw&r)X=m|mlk?AhTHdYufA(s9D7$gq+Bck z*%C=f0E9)!KT1tg#5XoE31rf)5;Od7fz3o>`WmK@hvWGRYw)Q42m!~rW~>{B^FYsP z)bT9eYViWfLHVGKw)N_}zpX)iq+Y=2j|o5VM`qs|+CQJ9WDA`%u-pnDjg`|9B zt@N!C;qsBLpkFTDG*AG@;MWxe#8;R1S2ys*eRAZn z^B9FvPdzK6vG7NTpG~{Hp4v$7-0h0llxJ^qoblK6sH}b;c$N*$mLR(feDZ(?q^)0#qe zA2R1F^dl9iZ}96<^A_dCmleiygyu2FWyMdr_Xi0rQRfg|UELLHyNRbOkfui`A4-x_ z^H+B#!wp}4^QzbYbHGNY4~7?fZ`R=V+ip+wtL9e^XE&{nKgrEVhq)E#ar`eqg8JhV z-xk09m06GBg@^pK)$ZH35vu%C?wzvn)F`~$KV|wbQaob>NjJJqC(0KyBgze zB=hComX`LZ*&0{nYa%@~n^WzGf$Y1?thrOCx-ZEhtU4}TuU zq!`6T&}37_NX>gCEeBJ(^rnhl)WpT>nvQo=iJguWRFm`-AkICj8^)J^V(_-5ah;_t z+XQ-%f&A)QvJ=?wE4iBQP`bK3XPxBy$*)NGac|{l(n^1gxZ~2i%GhUO_pe{@%wK2l zP2a0XG?6SwM5p#t!Xgkm{d|CQAT50{b>cRK@PbGw`$OF(wl+CC}wh2 zDZ^z1M9h#zt_A@J0jS?9|zEi zbU~GJyqXN!Ov{tQT1&1T$}}JJ%mqKCM&1z7a6i$cJ@92Fx6t{IzEXJX4DeIg>>RjlAQQRg0OvS}QsT;L9X zRB8@$nyVahS7!$&fvnm>e##j;DgOW(R`9LlAT5^2;$D%m>emyB! znYDAxpXF3z_ZJHM~=({{V6@ zJqHx+*qJFk4@a38ubQ%%WPh2OQ_0W0QV%Bl$0pEt#c;{uo3K835>H~p3Pa*~yv_dr zWI>LAIjrSPuu*%R{En}KG;z$}a7AZ})rpx(0=|vfxb^WY%OQWW1{vUQ$MmTe#EA2& zT-vtIAt9|v~|XCP>D4lH&|PBkbdY>G!FV_%B-) zzh(+#Rr{sDQa@8&P1G=6Mq#~B@wxf2!TdccSo{Owo*ixOGDbo3&-hneI?ACJci7^s zG#?S^R?M?YYvht}USGTGOJp@Wi=?%L!7Ip0sVqYK^NQ|Af^-EREEgFE{(GPBtCkuT zn_}wlTYTxAtn65d)vm=w-Q49Y^bZlnfh0=;q4x|-djA05HK8VtuQ1{pKgQty0P!`} zDu6llr{H3n)!xEaT3qBI(mX(?l(7T;z7PKZ6IKq3syu(ZOCNvUpZ+GgeY9<*@-8}c zI2*4AYBJiqD>b5$avOO#{VKMf;4MxGgs-VvGj|1B73jeRYE?n$PhE>oTb_3>fUl*v z^IuzyM_`uZkJQxAd_T8YjI!!;GkZh_^{+rGG18-C8KO5z!|QX5kHI=}%jP`SGB>#Z zepO~q32BmyN^V$s32-Z@*gYvqaYcr-INOf^_iE780> zhC7Kx#ozGTL`Lt#_7&y6Ch>N)uagv#{f^A^w}j(AQ{K7opD}h~?#CsV>{91fGI@)W|RubQgYRt;6*6+r32EXwYQ$?aSgOGPa!x8gC?b1X*Z$nqmiFV zdLC(=Kmc=^kPe>QSGAxH?MwL6N9#+0MSxy|+PI&Lmtr3Wyc>u&6QqApoyYlCYudcO z zJk)L0p2MGNjk8i^A(FNcn;e0f&lj%oh9F>$#}#&FMUG9(00W%XBo2I)9X?UkmB^8O zF8sAB6rB3GG<~r{a}IsW^!+NHb4X8WFWk+SKGzA(Vto4=c)742c_z=Y41YS!Bv1`2 znKoz}iwD34RP{bk0C*M3&Gu=Z9Z+nZAk@yXyKfMp`y$|eRma67mJ*X}-dFp)X0>#m z7|hpZ!dn%2LT(Z(Z3KIaP?~xW(>H~@#AKl#g)($895U_AW?kyqg~=e!(V_knI2F%p znyuA@$RLvp>Pr?GCWj>zc4IkmtFy2NBexyv8(x>g*HD;sXS16h!u+uMdRHAbt#dc} z^+|L6;hL!=w(@Z$j1E1=70&TA&S_U&j6W9WeixEpbW4fhZ2ZeFD1Q^v@~%4TO&0PI zEQrcKiZhX3izFIjf*(tS{TmfhO(Q~(Vf2K?drW`An#EIE8GC(oI9Q?3j7#R+-lU}b z*n|=Ib5>;2^oKxgZ&o7 zV^x!84E`J;lv`Y+%FCRCQCxUiQCPghRg?XNY`5iGQ+RH~f2f|}G0>LXib%BWPT5M@ z>lX;8wfIVZ5VMkvs@BdEtBp*HRqsYV2QS8e|Q6O?6lyII(GkZ1Fv z?@-llM%$<~*?{O;4oA|hRbA0O*&L<5iK$MT;Io=U^$WnLH47Vy84^2)$}_Iu52bc+ z-`y@0+S;lP(ULRus%J%yRll0^P?@9N-zrD*1YW~DQ0l0w$)WpL*ynV`h}@`WRa3zy zwR*RQFD&g|-|YA3hBe!SlOI~=?6f^5*o~6PJGVw-T_l@;S->N@sN zVvZ$8M2_7q;G6;`j!*a=b5wQfr~TAuan+cAD&`g##Gfo^qp$-2RoFlaz!C|B7^{q9BiEYSv`3ECDCEZVK&Kv{Q>>Xyjkw%1p%j}G8c|3P z`cw9tdQ(G4MI7@|sLe4{)T53lWuzG5qa&JEo+RMEK7y7sl6-k9l7AWy(9Cm9k>gGo zz|T*5pX^eTmJ&8P^MUzO*4fl?9zDRPWLngxzDD9WTk8J+D5X@C{r3aeM^DDBh*zAe{$5E{8`-nXN?Nq5TlTHY6%|z-sX|n8cNw)4Fr-i2~ z3}6bAVnn;9aD&sSHJ!@bi4h+Yk0- z0gu$zj@sNnBMQnY$h@}PHw7Si;+jeII;qr(S4j0Y!Y8l<3- z1my?OKws%u)pmn3p1K;}3~av9t(%u%kz2-Glic(J^{-&?dU=}E@?hdP2>eMO(>3OQ z44@*y=3qE!5i|7U{{TAme*(q(tJ{ol@+t%LAN_G&Zi`d14IMQ)0y(JNl@z;>6m=%1 zHId?--`Mh%Jmr6wsXJOlnJ!~cNXvKmd8)6eE=XH@f`8o~<6P#ObS=Ygl%PD0YTVbN zXmbt9GkSszN|Jh+%_Po(I91Th@R;|hRypfj=bEW0jIiL5)~-W7B2|%Hw+?Xl%~!g! z((WV;G%dTcXQewBOI4utJq~DN-?b6w`hGukd2<=-fp9?lsgI;iT!=5OTm9z@DKj^6 zHiMtE1tf2ANws>T_;;i7LLT@o-Tj;8X6(7gDS)Gb56FI`5m!7*7PWZWA+~F4a6V$k1&`re#L--7 z5=V7Aq7d1S2RT1V!b-rd&rDUWZ^i@tDh~euA^vrv;hlO7UrjSI2<1by$7Aj*GsTY+ z+(YF!V5)QZ)^((mT4orCKW5p9^`MW&oH++HoDA2R&n=8RifQ`O$i+2>G&qtl=QNGQ zJkw7j6t*Rik(yx~Q_oCOPg*W3br|Xhs_zgzs?q0)jEcCi^Ay?vo;p>SQ)+-Z0Z&oR zNT(6niAwqjuoLT*CSo2n(Zb~jg$~GH zVI=d{@viD|zJ{t+iRq;r^o*avnqVW75d1}a>2!Sss)Js&0v#_%G%f)i%cZe^5?h*FYNAVwsq(45tsgddSf-7p@;r{@LrN_%+ zp3ON2{{TU&(R?!2p9SviBlX%H&+-(NRQ0kcMfEtz@3jfeX4EewJP>n?9}2Em4>MJK{{XXTpZ%CsxV{rE?7pdTNBw)M{{Za9pSEm#vbp6xOl)$|D<4zM zD#IBE_iOoAu)*+~O#>2L-ASIL$+!7c=)M(bDt>poBmTRZe^{Q$nkp}$;z2zHI0orn z?H9uz4JY1$SN{NdLVvAVi{a0N)wed9uHK~7x~=Y9X-VtU`TVO9oKr~)!!QTyUq;2? zUkS&Jx*eg%c3l4eI=cskG#G{>(rp*%5|895Ikt@*2eN0(yb+x7OXaf+s=Iv@n);GG zBTbB9Y+wV^ZB_9erJ{IiOKbf_A&xP`ajK2-x1x$k$+DIoP0yNs%|6VSWI^i4K>cc1 z(Nm{iTG{bei8T)rY6j-u3wvS2HpqBE@9JwMSL=$o!NW#j7O$XZwJMC$)oVjU(ls4s z^jc|ll3dIDSm9ILp4A%{7~PaMfHHW;t#9~y!kYHEADdyPw~#;Otfyk1p*?HTd?E1D zPSXr`TH7w8crbjte(E#y{wnWqHiQ5LQH4-20QRMO>~>Sbe=*|2;h&0`HpJR(xBE?U zOMmDzuzVrbnX_}O*sre8Sl6@d_M>3yR<3NY(R-d%2f_<*2cM}txbCuS{Qxzi55k=h zK;13F9^tN7{{STw=%GLd)|FSi7Sz@_XfB5hAHv@bh5OH(VB|Ar^JrnH_su(uZ0;k4 zq;84}AE2+Bt|d1Ylg@HXvb+9lO?&r??uDO*H7lIsWwYbzMg@HP2qY-zaa_2U?wQTE zYaXlMD15IDz{Fs?yPu%qy+gr~`FaFwddnj}>yPPPf1<_qeFoAq{1&QD)w!=v(IOD& z)=}}q3QyFGpXXdo>9f(pr=`mz56ZLk$X8Ol#lL9A7A(uf2CzzX!@nOCQB12^@rx9SxQL(?P8c zt1%(f&bK zv$9|gxH+if*6ros5{Lb|G=rxU_+>FMAPm<%j~R&e@&S-D^r+q$7w;hktP7I4`7@t-9`AB( z*@2wZs%iBGmvWmU4yu1DYa#1{k6c!RULoYCKU#w3;T?9WmFK5wpJ!#cEiUCUr{0)U z4o++hKHwVgZ?FUpY_5&{RCHyd}LtWF_}ot*rOl#;ICV@zJ?7t*$b&;g%sfT3I$;J zhep#pL_F8-Aj;Vc(|rwvUi=y!%cP;0%^{vKQxcG50I!VZZy z$lunv4PQ#sw8;b)_ETG&{{Ry3ew35Gh}U8pd`-llAAa?E%EwH3w%*;(0-lVK1|N?+ zRS4#6V1RHj(yqCP+p8-b-RjYI>~`88!_5~}gUzAF4N&aP;B{*|mK`z^ppPyDfyhW`NT*0^49YHcLT zR%pzFL(!oB09B+|p!5(5yB)j{j7J12J);7r+lqG3C~-~dS|Qjy1t>wB;Ahv;r3=k2 z(VXIi6jB+q`p{9c)}#wdifJOz7)oC(RDe@}_NS%GNQ@{H;H37a?aep}Y|z4^Q@+&{K?Cc1Y6dD(tc2KNM-c z71MsxdVI@=AGo$(y&?XC-n;|Ede)=j9Z~f?R!!0#BZwc8CG-NK)o=9;Us0P=)h-%) zsZUaPQRoL@RTL6&T`j6QEoJ!}wQ6(e&{R@eH8@b9XSu-lsqAefx|v~t3o#&j3hz80 zW2b0tm(#$Px7h_6L6wMM4-4z_{*}wDg%xtYg1#GH>porXuw<~)&nlS2vk#~6iuN5N zO|a5zR?AGZj@kwO6dbp?JlK@&3@^3N{}HVBuOSPa6Y}oPM#3d z%abkq5dw4aWwD%g+QQg%Az{fmc0F`Tj)8gq2TNs zHm@f`(gED(`_xO}JvKGX*0CV>*sG3n>S*^yr7P@dw!Nh&{{WAmax;J_t>P^ubD7(Z zL?*HS0O1|bTRSc_D}(*mutEAzJSPO4Lv47U?M-)&&?%ucOi)O2S3ugvU8sG$8*-AnC-_jd4{7W znnHP@nl?_d`wDlMDz<4srDRKGpy2hPl}I_N!Hr0*g%vF(Lw&@!w1VL_Pa4RlvkZ#I zyzsV{F(o2S!(Ar`e(;ad&&lZ1Bf2CzlrEB)AeC;tO zPw(5wxc)>6^nm{WN;fGyt!C*i#52lT?kHHL%yU|>?J58^YDR;rH0=U3K2T#_a)3Gi_Y`Tq{5$>L4jN?07gZWlf&xvh^ z%V`9+4gSdDy2w5s!1DR`#9d3%E^smQt=k_BSlOr%#|&V0Nby3Zx{&23-@b}QRMWQ^Nek1XwQMQI6bu3#`+By+^wQbhzBh2V^ipnerr zYgt#A^NOq7vol)wdEw1Vbe3WC+1TeXa-a9jaT@18x*!wxbi-Tq(xMMlyYkcJav^_88n7B8PsZD|9<;8&%WwcuUyM z8Q1T`+&XUBr~TpE>qC!X z)Q>}@0)#5@tg*VhZZfQ=Ac}S>O%Q-_N-1&0C<8S~8YCbTpmR5kYm zwL{sR_hkN+E`#A8F&5(W-Yw&H#ry5<$F*`_5PVmnXzeDA;hSi#^#R1!Z--b9pgr2E zDM|9hU5Zk1S8l=Le~8+hplB`prMYFu3diK^3FFwG#8;a+xxBlQ`ugHao2gD-M>!yV}>1(sKTflLXS*W zGje)F=%qsX$i~vV58=Hv0zqpugmalDCnt`7O4zs3^xJj~Z>L(u!?=uR^ZW%j?H3F< z0DT5)6UF`|wD8uPF10Bc=5hO*aB$Ke=soL5MW>@XJ=m-CI%})QtnFIj?(HqD;~8gn z+M>Mw09yF9q1w#Q>6UjIn<>Wf-clc-!6)*r8rsvvKNB@$D9m;-oEKt55RXCqmOz9TFMmZ{BK^!BQ9lloa}!XM(oMqh65kLd6WMDpjGQ% zirN*+i0(esV#MH=hjOpgv;8Zjx$rlHE@CMshisSqsFz_Mh^#$F;Wviv0XCO+v?Uy<0-n&f9+x*<3RZ^-DO<GGZ=Ded+_%(Vm zbp2M+>y8$5FrUxntZ(>1ej(`6hSTk?*Bs`?=Xdy1R(mp)OKy*NMGL}#fle71uLgZ{ z;+Bv8zI|~3?Q;=uYEkhw#}OT}8#VxPTGOox3GB*MqjTMJNzQn$3vY{FCE5mT)w`9A zN9Dn&AL0*=!{bnjfR zgwr~m%!F`}?djZ+{uR@870UKKT50Y-%pSCxhH5?uq&#<^rb-xk(Yu<2oSu{hIL;{& z$@kOIs=AU*NHg3VQFAw`IBEf=FFont0o+p9mV-1>;7~D+l*nRH$>~n*&{E*_=}E4p zY;FndKpv)?X)0_>1HkK1vV+EH_~M#IIvPnC$c)0Ia!p`(vq+y%vqZIc{KS33%p?La z>s<-Xc&MH>Zq%h7WMw6FW6UP-=DLKDZ*3s|0Ah2W-1ij| zTZ575T%T4<;g%hDJfd4`_>LvhuHzo99YF3E?`419QY+SGi6M;0?juDREP4v&^__B1 zrae9{F*-EPGCqJBpQ<+WGnEAut2m(|x7}cAc_49G<}-V{?Q*y~a*dCaeQPPEgiqw5 z6FzVjKIWz2WS*vO0LZ`sI%BOy+r4?Nf`1KonjI|aFX7EV*no37qOuGU4@2rJ6EWj} z%6$l};X*dpR!FJy=NU9%^W2)W5HY~3w)PUf-HJ;df~jHROGwB8i9KoRu1*F`bvC{p zy^$qkhYF)IF>V0OSkino_TUsst0TV6xXDq+%~Y_lV^q#fBX8oX(8Dj;Lj?c^>IXlK zbsi@0y{?k$<%_&BZc{X11{`t@d8^tjy!P-<9kzyUrna~9y=vAH z9T40SXFH`wJVluXcpLIL$N3_Kt(~&npp>K_%`7pTV6u#ILEvVx9BS8a zUEj(cQzH%16Y~yuAQ^vV6uRypjB~JGN3FFfgCqZhH2vh+*QiVBapKo7=w* zK?I*>)^BbnRsmyuJImfOGtTplD;7;=R&uKd3)tr;@~B9HeQQ*VLS#f{SQQ&+0ZucH z{Bum(b*DU9jitHr%O5Xz+!GvUA6}IGlx%2?y+-QJ6os_et}j51TIuD8MzOPF3OPCF zG|Np*Tp_wZAVJDw~9@{Bp7h`;E~h4KyG|Lc0YBh+eZHY z+;-a4M@I0y-lrmYbK69l8Qxi60RU3m@!uE~UOOq)!7iG{2SFmJW=yGU6M{SE`cyh` zMX7f$Ph!!W!E+P$7;#nB`tI2BH!s$+1S&%Wjx|y;%Z>@pVcV@)xv+{&?QOh;0iWf; zPH~RDrjA0ci#mnQk*wPrZC=hfhA^zd=3j7oS2uH^-|0Zj;p@?RYI04ir0-v4J?j4e z*(3u3LUH}-hHF{l`J;DJ{>kZ2;n1xlVZHQPgBYANS1ZFsAj1RwYcBc>5&-76^_@QM z>d;(W+L>Yvuv`_v4UFSIO2Buzw8G63Tu0Cr;eh(mZC^pXH!k>J#ahRPW&+kvKFplS zYa#hh(DpU!{uA+riQ+iITFx!+G4oo=KySm;SBAflaJh<59RC2zH{q(Jku-7)ZdOyn z1A+}Zr@5phW9jS=a7HP>SBiLJ;zqfpB0;FA)oquL-Zt4s(YyXt=(;bD{4J>}hSUXw zr;je|Y{~XL=(9%fX`MhE9%(?Nw`91CJ-mrB5s=8hgHMZxg)ta%_SLoXW&-iyDEG`I?`^-xM@0EzPc!8&|!~2b6IVpLXx~S2^Ogxwz79 z0p@F{LcRy_I~Q-z)`~B8)Eh=`kNzcIYobjr!=hU)J&9Q^4-(Ejzq%`q)AZe{FfcmS z-jU&}+o?nrcCy?}=!?_pdslU#_!(i92CC~MnIE`}{G;l7(K@OTOUe(?FKcD;p{gt(~jigpqP^1>njj0+804e5FQ_BHVoJvM!m?!%n(1@*crg7mfZm46ZN2_c2hT(PsDJb`kHB7UPHyi zF#RIQ{&l7l4gkQU$LCJvB+T@)ygW;+-Aa=?07}zQ%_yS7 zRN_*!(sa91n_V)>6Y8)oYWlOT0AHvxpw3J%h(McXRR;twwX!M~wmY zbfp=f3Q#E!&}N;Hib_mUvNK}wLB%II=}FBNA&O}+>qQ@p79omP(xZ}S;AJxX);Q0l zNDXG|mbW(+=g3gxe+fAJsP!^v)+-qR;B(N{R;wDyH`_F^Tp{3qKqJuBPKmBPvkN=m z;S}R7_oMpzR_)~1A`ddytLK&H0FSL(g^Zh4GnZ7f(=@B0t9X7bLiTmr1gv&*4}X@I!FfD6wR4BTb^UN;b1c zJeIdbKM>yqhG-!Os!)PQt}BLcBaL^CAE2(_z-^(+nV`om5(xfC zRA=wWkG|MF=`{Er_gj+M!^@9Pv`vvqGi+Up)yelf;)umHswPWa4}8%69(*p;p|_UT z`$cECPc+7FByTT*PDemEHP35uX!>+(9j=bn_BSr+9nY2{G6f^2QhCK&8I zRr`FA+hn}<<(2`s0?3<&^MX3!ta!u38g{wisO-kK71WmJFvTW}Ew<$3g>d8!++&kSMLYEXx_p5a&Jpv!kU6=S}punmS!<5 zcPY1#$Riw%=Dc!!Lg}D}E2-XOiFQUDPT{1%yyqJWhdS{m{xf<0KsLduFJ3O2%c(FY=YA1=V1=g=^bE>YDcz(>8I%p9R2_y*!AAEPkVnHmC2_sO!TmTT| zxXwTyjWCI%xGvJj6y%0I$m@z?%EXv{(qh$hRmg;Y`AyJ>+AafpOgdgpyTtQG=|z9v&``XMs1zOc;nmgrMZ!2*$XpmhBn8|$;%#ny45MJ zPIeanN3>_9XUnNv%W>yPG?O{TOpHl501wa#yQbU= zyPwy z`2+6azM_>9Sd3DlNQbJp$gXQx@E?WsGG0wCC?r3}2gqs^tWu=zculUQHKu;XVug=Z zRpz&}zYO@J#V8!zq_OoMX}iLK{^-y0uA@}=Np6Lt)9$&@T?k*t<2*=Sjbnc4jvU3m)5YKgOK7r0;v0#>=7UFeFyC z#yfbD7{EU&4Wg-84cA4_HHjCBBfEzYsLAdPUed3l9J^wdC6UslbEF+92&$3ZBLRjL zD4Y@ZfuhznOrN!R@5gOn?0hi}l?xFjqUU};=aOKN_>u*8s^s({ymR7}$<)3eSlYKS z#j+qivU6I|OPO3I(uvXhKF}i4d^-Z&3>on(k+0r%Ju~PlvbT=nRoaNQ(2f9Jq*NM3 zvo>duLBYa`*c-UuRtipS$?nY{m9!y-(m471&D@%>6fXc%dCf1)?Nwt`k{1*jInQb` zf4fYy7|kf8A4*W%P*Ok#VMZ}PJaI}hMx`+^)833y^O`=C!Jim{7<|JN)=Zp(O&P^I zClsw?=2qeYdK#AASGRvM2WX$wPAQ62xIJm%0qI&swBfTGxg33ZpM2M^coAKE8yu{} z<=g@3&{vYijIIw{9+m963V9v})0CcGJ;&cHO+=qEZJii+-bZ!e)Y+n240Td}HYT(_ zhO6m|<>}VRo{*^hD!|20Q`Lg97qusD4IND=&q@J?1vmqad8A)XY2&32LP1414k#Z= za1@aYKn*-EwK+$vI1E!HXcQ66I|DRhnh25_M--UNJdF0mC>W$>(H`G=QZOmlq~?(g z45F8xN-^zD#56Y)^f;#D(u`4KHc{4edp%77l{QR1?2FV^40CF}9GFLRhUUqS3_5@H zjdg(YO5r3zk|=a;3X#F57UE?n+@Wpu4N?OvAxXy|kC|&a`$K1A<=`IOg);lY*A{dA zw?UZ3rolD;6KK${S2Hfxy{%`G;_0yV&p3XJ+f4c z{<)>oZQ)H$-VIi1Ahu^;F~Iq@=bU@imBbpOfNiYgV0aBPc_ZuG)n~EQx=(WyN_wnm zyZ-F<-&q&%-Wxiam<4X1pTb%5zb8{olDRy^kvoXmh>qrs94iDp9H}+5|w|;#) zRax}uRknswqrPe!ueg*t6fM#`sS*??f=J+0*0)nZITnw&W9B7t556j4r#!n>A)E{` z&ji%1r`$qD=!;t~GAcM$VcZi==s9|u);9Kc8f+3ts4R1Al6errfRTfaIpvs+l?{i5 zwe3JW^`!K$ibBX1QVQO@P9h8nuEkAU$h@O zS0U~?z6iks@D#ahR-HuEbbUup6GMMzJ+s7i$-5a-f!7DzRamW|OFus1L*=I!*~=a| zu7NMSIi_e**;(B*w^Ch(oA*0S%nXZ_VoBOTUMrEhxrv)>CSNRp_r@@NDe`ty66n#fUK0l@3wSutD~u)1$L{h~vGTt>I*?UcamK4-7-hhy=ZE3LT;Gp z_W@xsf}U4$1~7g7>zq;;V-+k;@jmDngO8gdgY8Ajk7G_|xfdeZX$!g#0p3`9V!O>d zHrA2CgBwRbTIBpY4c4uyTeR|JBN-s}1OEW8UV#;?X@iWPdYR8;Z%!;ra_qTpN}Ckm zwBRZZgoYL4rDy8^3w~=<3dYyuz}hHD6>A)Y=u|F2JP=!I?jR0N86MSVOVQHfM~->W zv(5{WPERJY_2PcdD+uxeU@=u75^>a=gY>UJ)9r*>ZLPZul!X-iKom)7WDtsPQ--?H ze&z2a?;wOM00ul4tP^kzT%=NXBtoU&Ngd+*_Nd*KlsQ z>_t>qRf}rq?7TavL#Sx>*VfJqQzq`c4{&|Ktwf!OpmOtPKmC7x_$C_#B*;c+aUZYDCwc4I-JPrRziL0!cO%|EQjU<8j)r76wZXp zVY5oEMOR4&ZuKIvo(%;O?-`{GDWe9BhdgzvMWn}Z){3dA>J}PYCT&Xg-qJr=qyo5& zbK=H@W?DTe+I>z@z;E?&eRIh_l{m&ydJmZ`&qEpD44SQ}>NXl&K5nIZZ)Tpd$QHaO zTlkUU-B7YccDi&V@RoyXW6-x#T&#&b%;tNEB$h@wEab5!wDxIyPR26C!F4iq4I=v2 z@5C8>ROYBMl;HKRQj##^455MQ4P$Da9<;j!qW#RBi0NF{X<42`=-J&IC;)R$2CwQm zE$y2U(U)KEEoZW_oE+6%J&a`+u{3Aq=b`nlYx4Z915AJn5ek3kAfM-6Eo7!kh|n%e zFdwaZt^8l<))v^u+)_UfKczLbj+`ob-0WikP$(P$ig5I#9nCK}7^Hg9PQuc!UY+T^ zDd|Bi4g=Dh2Yk?@ih7P{u$W?;t4oYilweRpNC5RTxy>d!QibM*Ll10Iu}CrLOGt(k znZV+Lds2Reos8NQsOv~^?q~;&l!<5vqLY9qH2jR%jq6ASJOX{G!2qRVS|Y*eP6%pB zC^Kk97^>QiooT2j^W)np@{*?xhuGDsDD)+nPj{&4Y8L)Kwc8Gt5&hsl+7&#kbt@g( zb^E~GojQ+W=~uzW9jh|qN+~(J(xv+}=aQem{=`)&cQbJ*3mbnhCI0}MJpGz>F0J&> z6@K2(M7XzwB474bXf-9R@?1!4ui*PV$sg*U?#ce??@l(e+bR1CjlFz{d0(JE!}`^> z_9Dvr3>KlY=5_X_8!KV_3crOaO?^6#^cRJ?H<-ad{CoaX@3Gv!GF>VUL`GtP zCWBIq#g)DZKb>buU}paSk64;)_ff~@Yii)>RwI4Gd5$`7K4VlTQ@_0Vbo(+Capo}H z$LI&^OI_KzeMn6jHHh#^vPLWW$$n$ULE5@3RCcL^%}fPh=61$5Kq)|@6u7H3 zNGqGxpLE0?g1R|QA}7#SC9J+)MgWu80h$m<=I(99)!n>i44G~cAnk55jx&ePBRxhd z)0-Q(>0WQ6`FB1iu~@v5i?((Pl0h7d_5@@3*P~40IGK-OPFl2GH0`OGs6P4jj)RKO zvA0ofGC3l%Es>|WPP}H6$RD5 znF~cHD%@7vL7d>#d11im(tvTf;~p>Y!`j?5u%R%Mk}>yv$F*`7x?99Vj~P|$$D#ad z=xf^;?jzdcK8Cp+LqwL!Qug0;o?|2BKS~pE)g02JXLNanpRM?lO;9W~o7hkfl?0@( z6t+H0tzbEx*ORVHa%rC5*@W$stVs7&SQfzo-F)@b$KR?n(au*=o%H010Jg z{{Tku1U|xBQa_VZSK$@#KR1YM@_j9s7R8tyO)*#7_%oS)XUv~LXSTAKd=#J5VhxL)oT3O=OQyJ0)K?$Zk6op8g#Kwe=<752>YrgQ<`$n&GdHf?geYYR*tGRocXGfpG3v*Xe;R(x zFN#Mzt1IYxwxjWn!%$>cSn3z;>dGQh_?*@>pBks!e6I{gj@z#f{{RzSOCp$X8KgAX&qc7=QGxFG)kD%R6JGwAZVrlX_X+5^?&aVQ^#1$p}E zc81Xy#+|01Xswej})Q4c-$Ts91&fAhW;e@r$Y-7xf+eK;CWX$Vh5mZ)n3g@ z;eU8@pF`Zi4a`O>h{TE8Jx92xQ|)$OFVA^z(0|WF{{Z5vjqs<%KMw0srLE|FChfWj zSQyXItGyUxS5h4qWHOwBKD3-=4H_w=$}(JE$iXda8wdVcOm?WK&YgE~b9<<`U-{>5 zHjmH$0Iga>G*ah%1maY*(`+qyhS^JJJLLJB^EGg>AY{@}Qrmlq*4Q@ZnnDdcQS_k- z#CZ0kDi2Xo;*Gx4dW?aiQ`(x=@vy;BRssz5qisC`#V4_ahuswm=}|Rlh2oS7H3X9} zUq?^jH52IV+PA>RYACxOB00Cxr5y%p7Srb+z-z1n+JK|dpEDn`ITL9z^+QSI$frDm zU2%>x{34LS8U6u9{Dz@plvSPBBJL#mn%l6q3AG0#bv~xAi)d8kPyiTVRyy5pK9W@gO&p-GUKSv z3noY%>ssFSIWTu)HHkf}kTx;L(wi1X z-QfFBwFKW&saFS~%{Ustx44!t25S5_nH-L3n<-q-2M4V^TPCX{s>3}EJAXZRri)Cr zq+_ipTys@cLL2K-M<;CiQ!O-n+&o5?I-A%7umiUvp+1#=N@kBy+_}k9T!p5ca=s)W z#&PDC-HtJw=DQ14jWsCuF!VH>u9IC)3Ovo~UTH2RB(tzmagSQm)1fWN?OE*5#_Yw$ z&}&~vhT`lJh;8lo`P=V5&{Q{bqA6U8CRm~tcB!&3%+0i8EKer84Fb>XRzVnk@y_@D zf~jd*ZN0pLOmC1Jf_ek=t=M_`(3#Or7I!33&MIiun-b-!)N%JBsTZz zN;+iF78`u1jC> z_lfUdWA^_5v7jGv)pmXv>T8(*jMew=#F~v<+!+c?j@3GSn~2Q zWBSwLwr2pbz%^?TK`X4${KOEvWM|f#gb|JnWh#=Mh7H_~C?i9V1AS_4ovAVD#WH!8 zBqZ}t;)L}p+BBGk`o{A}paK{9w#XE9|I~$Vg0Ku|3Hy!{q zlIj|!v3nG^Gf3*30{jIYfOe`D)7#_*j12Xyh)4=H^fZ%E*%H!|ESO`Rb{O~m6+-Vw zA9_5Y^dh>y4(eJ}ss+2ZB;y3_&QGmRt?GJB#2!_hypHFqIKT(mvV6(tX=QECIk>Zy zH`^-yHQ0DR#Tw?5YaiKfPaVWZqsG|= zpNfL)Aso`t+Kf;Z5YbDDF+l7viYfS`Z?yqopil>DaOq2m3b2^;rNsh)LMSmsEfmTM z1r$+c%18|qQALYLGsP%8(g9A}#Vw0U<1R+%91lw2yg)=?la3s5jFXd$4|CHs-j&Lc zTxW_c%8Asxk^H3YkMCpK-l!(7j(19z%hxR3-Q*uU0ooraPqKe}dz@FHX%XejnCLjK zIk`_ zQfot{L}(Par9WC#rnWS)7)N?3*xWKbX&7OEBm#O2(Ybd4ngHjeDOMQBG?~YGXlV^( z>xzY=895x)q28LxC@XV1=Gi0|AZD?y>>4ALAC+{>zQc-!NP~U z&}WrARmcb7*o?{?oYP3a`e9}79kxo5o zn#+&9QVoRqQFaNQ1vSOQoPEH1EhGz$3C?M%%t*~jg0oMtCRC6TGlQDzbes7Y zDEq_OxZ8DN!Bk|EU0#7@Fu^0gN@<%?Zu%WvgmX+mRs2nETUtmIZXi`HCO<7#al!Ph zQ!++?$s#KHmc>&&7Ic{z9?t{wR26EQ?6> z3*7JuLKSoMCZ8;&vMtFSfywowVLW2I+VkR_^OjvdM7D>~=a|X*04omv0LMNmyjBNN z7OHz&N9CW-n$y_I+URFG(OTU0a~9Mt8@kfTV?2Dad*UTUC&Nklv0FbW` zznZ6DfC6HPg&PBKluLu)-PvM{02-X zOV1BoimPU z0R-a}9Jkm;TsH{g3_v-e@fD8Ja1Y%*s_n&$GXmRozxRbj_G!^}vZSaxbS9!v4?``i z>W6YQd)CdAc>i)!GK|-ZE0@+{n`L~k}_)FY}KgfEjpB}^s9S+-eb&@yEi7Z2TW6PX~&^Ctu5T0^cV4@ z%>&o9CVeT8J9j+NgOSPNneWz|s>B=)ooQ{bShJ_z-PlYfu)3PsPwzzdHP`6>01|bp zO|j|_L#W0({mDP?u5%?^Akt-l=}qgpE1kz?drptz{{RkO?MbJTPn7i+3xv=6 z!~83%iQ|?fmM2*wVUXx@4Sd;=+||7sTGe!Wk2^`emIKtr4pIK2y-TMTvo?)x=g~A* zA>cn9*!YdcpL&U9s)59L`DVvbzW&wNsH~h^U766V#*s!T*!80VmCCT%J5#aNn?TYG zQA>f^jD2WDBqbEIb*556QA^DxDHM>o%^ZCbRQx{PY>y z!+k4YQo4tYm4-tM5l5ixd2RzkEwgMA+w%y=@Pc^v&nNK}cf$TDk4q9+-XndNaVkgN zjQ1Ymqw!_5+I`u)w~V-q{OUWdMfVRU=OWkT=>sjyo{_(9kO;23^(H6 zjb?}~(m2FuTM-60_6eWle>zvU2@@}teo|K;_8A}hA*AI6vL~KR?o_(eFD}@v>rHUc z^OltL=YT&0NekGCRLdOEyA#SWJ-8oAwe~}T>+Zfvw7}SR4+2LH-n#RuP<& z(7cA~**?*yYBI)2Ibh@;TG6)gRh zc`p9PGAk(<4to0mM>Wb-T4#Ht_|s3gaUIzf?oKnDujgG-vdDqagDDvVbRxW0Q?vq4 zHZhUc1JfD)Rnqu3#Ky^?w!302WZ_x5um1pAi>I-@I=b1Oj6lsqSFKEpu7Q+>1Y{B3 zjAYTd)1xX$9^ubQ&Aqe-B}HvWGB~JSJ-~t~i btVOI^z<)}Jt06e3;gEtVz-`#(kdXh`k9Hv1 diff --git a/src/model/data_loader.py b/src/model/data_loader.py new file mode 100644 index 0000000..2b42563 --- /dev/null +++ b/src/model/data_loader.py @@ -0,0 +1,118 @@ +import os +import pickle + +import tqdm +from PIL import Image +import numpy as np + + +class DataLoader(object): + """ + Class for loading data from image files + """ + + def __init__(self, width, height, cells, data_path, output_path): + """ + Proper width and height for each image. + """ + self.width = width + self.height = height + self.cells = cells + self.data_path = data_path + self.output_path = output_path + + def _open_image(self, path): + """ + Using the Image library we open the image in the given path. The path must lead to a .jpg file. + We then resize it to 105x105 like in the paper (the dataset contains 250x250 images.) + + Returns the image as a numpy array. + """ + image = Image.open(path) + image = image.resize((self.width, self.height)) + data = np.asarray(image) + data = np.array(data, dtype="float64") + return data + + def convert_image_to_array(self, person, image_num, data_path, predict=False): + """ + Given a person, image number and datapath, returns a numpy array which represents the image. + predict - whether this function is called during training or testing. If called when training, we must reshape + the images since the given dataset is not in the correct dimensions. + """ + max_zeros = 4 + image_num = "0" * max_zeros + image_num + image_num = image_num[-max_zeros:] + image_path = os.path.join( + data_path, "lfw2", person, f"{person}_{image_num}.jpg" + ) + image_data = self._open_image(image_path) + if not predict: + image_data = image_data.reshape(self.width, self.height, self.cells) + return image_data + + def load(self, set_name): + """ + Writes into the given output_path the images from the data_path. + dataset_type = train or test + """ + file_path = os.path.join(self.data_path, "splits", f"{set_name}.txt") + print(file_path) + print("Loading dataset...") + x_first = [] + x_second = [] + y = [] + names = [] + with open(file_path, "r") as file: + lines = file.readlines() + for line in tqdm.tqdm(lines): + line = line.split() + if len(line) == 4: # Class 0 - non-identical + names.append(line) + ( + first_person_name, + first_image_num, + second_person_name, + second_image_num, + ) = (line[0], line[1], line[2], line[3]) + first_image = self.convert_image_to_array( + person=first_person_name, + image_num=first_image_num, + data_path=self.data_path, + ) + second_image = self.convert_image_to_array( + person=second_person_name, + image_num=second_image_num, + data_path=self.data_path, + ) + x_first.append(first_image) + x_second.append(second_image) + y.append(0) + elif len(line) == 3: # Class 1 - identical + names.append(line) + person_name, first_image_num, second_image_num = ( + line[0], + line[1], + line[2], + ) + first_image = self.convert_image_to_array( + person=person_name, + image_num=first_image_num, + data_path=self.data_path, + ) + second_image = self.convert_image_to_array( + person=person_name, + image_num=second_image_num, + data_path=self.data_path, + ) + x_first.append(first_image) + x_second.append(second_image) + y.append(1) + elif len(line) == 1: + print(f"line with a single value: {line}") + print("Done loading dataset") + with open(self.output_path, "wb") as f: + pickle.dump([[x_first, x_second], y, names], f) + + +print("Loaded data loader") diff --git a/src/model/experiment.py b/src/model/experiment.py new file mode 100644 index 0000000..3f37159 --- /dev/null +++ b/src/model/experiment.py @@ -0,0 +1,180 @@ +import os +import random +import time + +import numpy as np +import pandas as pd +import tensorflow as tf +from tensorflow.keras.optimizers import Adam + +from data_loader import DataLoader +from Siamese_Network import SiameseNetwork + + +path_separator = os.path.sep +# Environment settings +IS_COLAB = False # os.name == "posix" +LOAD_DATA = True # not (os.name == "posix") +IS_EXPERIMENT = False +train_name = "train" +test_name = "test" +WIDTH = HEIGHT = 105 +CEELS = 1 +loss_type = "binary_crossentropy" +validation_size = 0.2 +early_stopping = True + +data_path = os.path.join("lfwa", "lfw2") +os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" + +# locally + + +def run_combination(l, bs, ep, pat, md, seed, train_path, test_path): + """ + This function gets the parameters and run the experiment. + :return: loss - loss on the testing set, accuracy - accuracy on the testing set + """ + # file types + model_save_type = "h5" + # files paths + initialize_seed(seed) + parameters_name = ( + f"seed_{seed}_lr_{l}_bs_{bs}_ep_{ep}_val_{validation_size}_" + f"es_{early_stopping}_pa_{pat}_md_{md}" + ) + print(f"Running combination with {parameters_name}") + # A path for the weights + load_weights_path = os.path.join( + data_path, "weights", f"weights_{parameters_name}.{model_save_type}" + ) + + siamese = SiameseNetwork( + seed=seed, + width=WIDTH, + height=HEIGHT, + cells=CEELS, + loss=loss_type, + metrics=["accuracy"], + optimizer=Adam(lr=l), + dropout_rate=0.4, + ) + siamese.fit( + weights_file=load_weights_path, + train_path=train_path, + validation_size=validation_size, + batch_size=bs, + epochs=ep, + early_stopping=early_stopping, + patience=pat, + min_delta=md, + ) + loss, accuracy = siamese.evaluate(test_file=test_path, batch_size=bs, analyze=True) + print(f"Loss on Testing set: {loss}") + print(f"Accuracy on Testing set: {accuracy}") + # predict_pairs(model) + return loss, accuracy + + +def run(): + """ + The main function that runs the training and experiments. Uses the global variables above. + """ + # file types + data_set_save_type = "pickle" + train_path = os.path.join( + data_path, f"{train_name}.{data_set_save_type}" + ) # A path for the train file + test_path = os.path.join( + data_path, f"{test_name}.{data_set_save_type}" + ) # A path for the test file + if LOAD_DATA: # If the training data already exists + loader = DataLoader( + width=WIDTH, + height=HEIGHT, + cells=CEELS, + data_path=data_path, + output_path=train_path, + ) + loader.load(set_name=train_name) + loader = DataLoader( + width=WIDTH, + height=HEIGHT, + cells=CEELS, + data_path=data_path, + output_path=test_path, + ) + loader.load(set_name=test_name) + + result_path = os.path.join(data_path, f"results.csv") # A path for the train file + results = { + "lr": [], + "batch_size": [], + "epochs": [], + "patience": [], + "min_delta": [], + "seed": [], + "loss": [], + "accuracy": [], + } + for l in lr: + for bs in batch_size: + for ep in epochs: + for pat in patience: + for md in min_delta: + for seed in seeds: + loss, accuracy = run_combination( + l=l, + bs=bs, + ep=ep, + pat=pat, + md=md, + seed=seed, + train_path=train_path, + test_path=test_path, + ) + results["lr"].append(l) + results["batch_size"].append(bs) + results["epochs"].append(ep) + results["patience"].append(pat) + results["min_delta"].append(md) + results["seed"].append(seed) + results["loss"].append(loss) + results["accuracy"].append(accuracy) + df_results = pd.DataFrame.from_dict(results) + df_results.to_csv(result_path) + + +def initialize_seed(seed): + """ + Initialize all relevant environments with the seed. + """ + os.environ["PYTHONHASHSEED"] = str(seed) + random.seed(seed) + np.random.seed(seed) + tf.random.set_seed(seed) + + +if __name__ == "__main__": + if IS_EXPERIMENT: + # Experiments settings + seeds = [0] + lr = [0.00005] + batch_size = [32] + epochs = [10] + patience = [5] + min_delta = [0.1] + else: + # Final settings + seeds = [0] + lr = [0.00005] + batch_size = [32] + epochs = [1] + patience = [5] + min_delta = [0.1] + + print(os.name) + start_time = time.time() + print("Starting the experiments") + run() + print(f"Total Running Time: {time.time() - start_time}") diff --git a/src/model/message/__pycache__/__init__.cpython-38.pyc b/src/model/message/__pycache__/__init__.cpython-38.pyc index 9502cd2339572d1dcdafa264408efe6eca74c9ea..4f78ac3108c1f7e0b292fdf23f9fda505ce21b46 100644 GIT binary patch delta 19 ZcmbQpIFXS%l$V!_0SFc`d%$~^I1^_6(1m^$% diff --git a/src/model/message/__pycache__/sms_message.cpython-38.pyc b/src/model/message/__pycache__/sms_message.cpython-38.pyc index c4a7ba82bce69d60e31d8a020d3dd2d7520ceec9..5e09d02ebb981f3f210d37e8edf6f03271a1ee56 100644 GIT binary patch delta 20 acmdnVx|5YVl$V!_0SFc`W_jRboD delta 20 acmdnVx|5YVl$V!_0SMlI%ihSnjtKxZX9c|g diff --git a/src/model/realtime/lfw2/David_Han/David_Han_0001.jpg b/src/model/realtime/lfw2/David_Han/David_Han_0001.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ba2f8b44ebf35f52087ded0f5fc1a3a579517ece GIT binary patch literal 2541 zcmV}I*#F=F5K2Z#MgRc;000310RRC1+Wgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5kXnj`5^ zv|iN%#ZWYL6Co7b8tVd%XxmB?iqD^2(e0%%%c#JP4hom#8bhvW1`{gkmPRqvy!HP8 z8p6K#jp4g8RWDX|11D$QACLG~I^P*I<8ZMprqSKYw~{~_*hrmN$B zmf=$6#yC8v_4@i(hTiL~szK!>lE#bu!WBUGZ}a)rC44MnEaGXTbI%<=I;R9vT<<7Y zC>0CAc^trOlPr3H*1D**w$nVjCXx5FYaE9^D>r=m3;|Xzb$2tPz|+AnT!OEHKgPR% z1bj`EXG=X*gC;_U=)`;a*Rhh4#c|%BJ8xPJ7 z3h~yyQ}NBrseLWD4z7$#?qXT9(Xx5ubNJUQ6qghER&eEsI0`*$(L6Ko?QbPUzisj! zNIe$4OHJ@jji;bQwT;UTT!CEA#9JLdMDW$k)G z^#fFOv>TIEb%zX(023#hh4xr$v9D)z1 zuNSrP6q+PsOO`dgwTzJz$k=VU=tW`c62U+3Ay);Qk{DKVOg0F|-aUP*+x`n`7mcP| z*hvh{3`85* z%K#jJHy^J~D;vUI8@II8XSTnUzSj~G@uub22V9am*5;vUqC<5G#JBNWzbM7sgMMPK z*=i{ZNohRSkxd$g+2k~Yspv+~ay`XS!fW%(6drrW3+-_6l)>wcd8IIYiIN*%4#vpi z{yro@!1XyiepQQqrCi)cBncZYnQapuC+};Et1_~y}8T8GrqpM_qt5rL+Ks$=rkQbNA=)Ke zD`Ptws<8ST8qd0t8@qL$TS%kSqxohb0CGFv_fmNVxvQz|R$npTlLMcgL$rNqbemJH z_=UAbMi!AqT>Ij=;56R0GQ zYdlgcZ?T9Z4EMqBRPItsX^e8N)*k#CgUt7&^D5V!nol}`H@!!B9Cx;@6o{;Uhj7jf zdHw#6DY)6fpl|{=GX~@VA*{TGrsS>yseH zH+?-TfxBqp0V6jq$}mvK{{Ya}KY4IwaG`Dxjz8AF_|*2%rL10aZZcy#q>!9`6-MIz z=Tn&4*^)EE&Hd5sU0#o49h?!{#Gqh)Ugo;%J+Q&G7-aSLHPC7CkFXe|i8e6#hC0_V ze{R-SO&BDhtmp|Z=|37YN>VMjbhf_=bdfii3VBPZ~z~Tb(VW{{W{Xzo?}6~+@4SB zYce~N{iQN7`CN)vr1JG!lbjbA%}03~N(&}>V6SGbT3BqXLxH9=%uaSmhK&!Zsqa;` zCCsKv%iL$5FBl3vItsrIp`}?U0%*=VFF(qr9xAuUNFkNU>9#XaTxwdzqQ)C|jkr7# zN6r5L)~#&=!;xDtnsQ~GkIy5VpQUyvs;Ct}0Cb}Qq}KK84-eTJo7r)mBZ+x=52A|U zNz{B*sl#!sDT2itd^&ob037a<`^Va~^?7{QmSlabK4m%M+#hPkj^O>WHyzo1`kK9S zD2n0OXFIv860v5D#DpOG-LvgbUO^j}<&rQ#>+e+>4LOI;6l^`kRW>?YueK{BEKg!; z`&rs)Hokmz=^VKGz;jEdhK|?GVe`m$6I&Le&gB`w`q!lX@)ij(RvW(Y>5odl^M1>#h#MYL zNDOB^4tiGg*!hO;cR9cvYIq%tSr`Ck85t&tBR4iBnVaN22Yl8KmPsnj$tR5Vu7gOh z0Zfj#0;gv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5k{% zJ|*6?)VwQZx?Mk?-Ff+>W1Qwq~cQyMJOS{jL=_NX2YYON$5 z)lPUg=~m!_rD($*D)dQ=Rg6;&G}2;}EgoJ-70+vaGSPH7nhTlBO22ty8Qb-)aC}|x z%g^NplpdR%a0Onv_=Vy4VpopoXDl*89tY!9?LH#-cJgm2=WB9K1IRvH{cE7i7f~#h z@+64ZA(ZDeYB=#$<65^E!Ktun5_qQ3k(yC}GDrY(lU{G)FNuv6+}2t=aWVn1Zr#38 z-3~bDJ!{D|EBF4?WMGdhpEmRJ1}EJ1s!gZ8^o4BgO~i!rDNGFi0I~;a(v#u-yCtei z6_lt5t6o=;U5i03~4xt5eMA`Yp$Niw;%#>fHB2+ zFU5NaE%akD!i>SjNX9_*uNu09+ubMcM2b)qbvXvT!{Exg_;&f5J6hmi9-nub^u#qf zHA%Xvm!=lxfZX-0Zy9K^_>aQ3I&2dpQ!x&V{W$6m)MmbHyR(|wkYg4g~6}!5+ zK5#x$`AqxpGl8@oanCiAIA0RHl3q!DED)ySIZy(`Sdx zYymg${{X$5V!dDC+;iFZef0Z{HcL4y=4f5oQ0p^-cNO#*uD~@+k5BUrRo_f9Q+&)* z#J=^!`1`}+{UE=$iaqeY`Ea9iEZ(I{<*RF73`6Z(Noxzub|4q{E;-73fQ ztGY%mwQGG={^mP-cw=D_zCL2Z1cCI({A&vGShRclqhmZ*HdhlF82|*v=dTC10<^q8 ztu&glBE(p-l~5EY9^{VPS5*QCA_xvnOEZ6YiOD~SCZ!Kjqtmz5Gc7R7Ofro1q%(ou zt=U4?F+9!)w^9K(`^52qT;25caO+pPTtLKP0z_WLPp9Lb&a)J>w0IV=D;t^*_?I{M<1I zf;b|cvQ(<{{{S=Ivy8k{Z8j^NPY~Yf8r-^WkEKa`@tv&5_!;lpf$nR&)BG!PV@Wl6 zqlJjilWyCH_AE#86{j85z05CRx6AUg5JGx^(2Da<8rijvh^@63`;$c0?)|fnRQ`su zR`2BJ=Er>h09wk_FRa*@+syMl2_)0>IGXn7WD)Iw5AP*z{=&UKM)M#eVBn9^wRIgm zZZ!6~jRM@p2{_<5{{R~0(^j%ZRF>`-+>Gsa0ORqi@Xr+7$0|SjtPM@ip{%Eq9qPuF zq+DyWJZT|@1sHjN&NJA1*JY+?+HZxl;c2E@h+`x)j!s@f{pN1wl53`t<~+B`r>CuB zeV6T4_Y$iVnP+0G4nn_|H{^e_F< z)YGjmE;YNc35>;M+&5W2`qh=>5`eHLT|={{R3dr_lbD=C`m#WpgYS zRvtydHr7H4Fh7M;^C151$NmIA_}8P##pI4PBXo|ap6pHluSB!7hfmYRgiWxf2!HQC za%s00W_veN#EXzep{)3)SsoHk%t)q0LYa_ockZYzt)seMn+pDwo|Z=pjU#OX91;)a z4MaRTQ}>p)lETNS&hOW)SAPzdY+Y)X66g3=ioIu|*y+-!Tn z!b-lrhtSg7-2l}N^fhti2`2#Z+|o#!rV^_B$~ez&dWL2z8E_ffxb>x8}Nx|hrklv+(=8^+&eCNBAjvf?lsUydxv<8fswP+V-=sNTL|r%Se&P*1A={O zj*oViw^nj543d>`{nLYyTe1Q%+?L=UPg-%qMV-K$c0DN(e{;C^>6*?|GTdzh0iKzz zjwt-N2d#4&ozMDtZm6RMwKpSKD-tpWYcOh&Lw00fUmRc>*L_UQr-n%Uwvgde^*;2U zXPUEq9e>F)(ZB1Hf9S@i-G9f!eQM?B{D4-t{{Res$ZG5UzDNFpU6lP#`=*&|{{SAQ zl3%(%-4#a9{z41&uATn?)HQKe{{Vhpt!e)N%sqaU%%}W+&Gi-5OaA~Lc7N`Vgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5kW(WvCr9%|g*sFAudq@OxERAoi*kHva%A;;dU+;0`NN7y#{8qKg8q zMxY9}7#I~NHBi$C%|y$^1u8QYMDZxhTk2k>~Z3(BJVk>?0IahwXt)BH!`Ee_yMZKyuSIaHgS{`+dp=foX!N=3u4m$^KC zRd-7GtF73`nVeikPchCnen+UUbMWtoZ9GF}C4lUiR2d>CmCy98wHP%r^HQcZihe~@ zVkv~u1M`kWc~`|3eFYz(wpTo6z)$I26v58`Gvaj5Ydhyb-;WBF4 ztOo)BHK`-p^8#&A)eYc`Sd3{{TT<4x{kfK$ZrJ?6?46IVUyaek<^j zcym!!Neq^yzUv--l-(1>x0*kQlTo%}0+j|n%$*9?)KE&Z+r={d$q+ctxXn(cr9<+H zcH>mbQwvj7z;Rza{7|0aPlz`%tWrdZR3UMV!Bh;7YU53goc=7ajBai+OyVZ{vG8|&HBJstI+$Kh}Wyt%dt$Cl0Qs>2&N&TCq zIam&S&Wr9pO5%Jw;j5in#PMkx;fagpMv=e@qpm%EmGvYst+l*RDfweSgXjh-MSf~X z-;T8=@#-ppmx_s{_ojKjF|L2b-W;~^CY~BbG2GiLG;%6}agJB?uPE^U0Ec0Ha(L%P zbPMtcR|o5g?1zS}zqTQi&optpyA6g<-R}i(anq)1#pj2knV|D8-Xw_bB_BJ-p#)-` z4uuY_thJ?+-P*woyEC*efg>Dk$ml?xU5&s?19-%u3*bINOTe zhr&8N&xU4#J7X;Oa*^iA$wSj{=Z-(Ec9xJsVP_4cvh0Es2^!>_0q$yXB|ax+WmE;2 z@BkSmta%ro^XoVL@M|Ha%|_Eyes?C7W-P%J7GiJ!9c!HNKA#qgsA<>IG;w+I`7D{q z85|t?XOG6Fyi??b+njO_rDdC2%ZA$}(Ty?2TO`zjSl4u=Xsm4@jSmIW??1WCW>5B; z`2_lek&CWCG2@l=CcA9{$Z6VI2FaFBoyqDm(0)~=zMLMc>5fLFZT|pW1$JA_d8Uoa?B}oRS+Qzt5m24V0KxB3&Q|4vIP*a0yNcqmuEWJ43vC-@^>dOx8t6PL zq(W|@yPhQS)%R@+!ykWY@9%9IReQT&3jODdbspo|vldMEsa3O9bmk*dw*LUGg1cP% zSIhRnuAk4GNj=Q(y8x0&Jpcl|Gs9mC(qv1`eGD<4R?%4QBmJ|UK7*R{HIBzgwn#Ml zXl>&-P>~=}`gN=gL9Srbr?|8^Vv5p6dOvT^j(sQ(Gh|DZ z+M~Cit+9U%iiHFj8|78?HNbd}LGezA(%->-adBegzF|dwC?0TBjDS6Bk{&nLZT{u$ ztl)GK+hg?xy1xi`p5tD&nBBz`bHygpb92sA;J)eWC(VPf%)< zw=zo!w7yR|BD-672Q`#5D=R4k_L?xAx~nvsm41qPnzIGrx0uSBO~ltsFjWav)f-Re5$us^NCI87ezek=!bBK)@7_ek36x zUznVAt40lxrt^|MWA&=6#z^-m-(W21&WSXs%A{#A7 za1^1)2-E|R>Apt z8qvLfE(sX+6_ut)Ck1jj6i({`6lUW!e#ca`llO74XI04^g;DVyo^>w@Oi@Rl85a=` z_LS!zh{*hF&pzBgyld6h{ycvQyrNfDwTRA zG=HxAYCGTcb#F-P_*1oS`1F_YtW6XBWS?4gvHrTC(tqRHOuj{*Ma{#E03 F|Jey%g`ofd literal 0 HcmV?d00001 diff --git a/src/model/realtime/lfw2/David_Han/David_Han_0004.jpg b/src/model/realtime/lfw2/David_Han/David_Han_0004.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fa4e03cf21e92c432554a472bd073b8306826db1 GIT binary patch literal 2349 zcmV+|3DWle*#F=F5K2Z#MgRc;000310RRC1+Wgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5k_FhywWK9$lHrWK|XrWB?$Ueyyt=}{PZ)NK#7LeSNB zhuW*WHC9ellp!b>u~E_-4R&Za>DgEj}Vx%_tMvN{Gj3 zWf|mkvQ622om zk^O?s386)Ay(h|8gVz=26Kb(s49yx%Gj;iM{{YuC`wt20TIA|&wAM(8>@YuCeyQMn zQ%3^g_Aw2zu-@Cb12tmTTbNv!Oll)Jc=Ml|kN*Hya(Uzt z-o4Afo-0oj=?qdC+IgwNx<2`wu_u9Dsd!&*5H0dj^$%V;fmaiy|tolup-AP(iLlAz5VH zK-rQ{>5A_@4r*y@;+vaNa4w?4_8c77y2;NV)KUKctz+ye)MljoMO!j^(+sp05-CQ( zRv0<&Uod#5!ne`*g8at^+3ll|iiu7LOz?0ksL-tqmxp0=)~=w8ru@SmaskG1jN-TS z?PpN8Si@>l+$6v1t)?SM0yhf+71>PQ;q1fNbTnbh<%7WkS8qEtgON|<0&dvV{2=>8ITc0EH~H@A?s%TyA_oPfmi`r^IO z&T~;les(os4h>714AjFf9ceu3t#=AsyfX-+c_Cs#xEOUK45#W3<^^-tvuW0^EGcZU zpeJesDi_-TVwt1}ueCc{>0}nRmM&ch;K=21`2cG_Qo4OJS-jM(E+d}Sf0|WN4%6#{ z?MwZ&Z?HO~3dCnVPe01BH6(pb8<7+~WYb6GMykA=`+h&AcRmx+Kd?MAX=1|?qLSqG z$vMSpGv=8Y<-WCH8lSuCRgB*B!!r^#uI9$TFg@1NQQ;w${O>#Po#+0a@ zcb^fAm0v0*Vsr1(vEr9QhG8O$*&jT)g^H8zD_GpYa~UEZFFgTV6ZloFA==()WVV_$ zx{VK%AJmL-+coL-@+JL(Bf%J(${#W62pvi9SYB_vIyT__YIJIT>di7#Pc|rlE^lV? ztzmgzxIxqF>09>R7Limwp>Pw8#wfWzpGu!mFx+YIU0WdX(Fh6$MI!`b_53Tz&Dfe- zyLn{trh;ZnsNjyE{zO(>p~Ty+E?mYB8KzCBqn(z+fz{1)o*2>E84jg)yK}B1jQV~Yq-`^CN%lIG|8V@Q@iv@(G- z2ym_kLNn0UB$hh0{lK>S1kEt(@?Zh#PeENah2h9xlzE$PF3|q~sgLf)ef?{?v(o&$ zOLSL%P=lh@fxEP}P0~n;tI6i6#jVe+Ol|bVD+oJG>^T1bfR6R%elGA1v*GoU>KPjM zPvwlUj5L4mDCj-MA4HZbkVeTf52>E#! zBK=Pl=$7$Cr&vX64+0$EpW^j3OH#YckUE}?%|mp{C5)tU3jk@&CivI5D~x(pRmGDl z?u_F-iK-VGb?l>LH*FdYOkqG%_<#*Xj}Ti&<=b1p2dcI+_3mo9vGFC_Vr#hJ9rlsO z^Q$)AABb&RyNRceF6S=XeE_bjMTRSMK3ae}06i;ndX*W*4;AG<5PS<~WLI6%AQ43y z6LW7E`38TC4&3zv>s%k&*ZafsuTt=hwDRgQUftV>qP1MF&78UE+px*5n^KutHjU&c zkIG0tg}wc&pIeE%uP$%(h}(0X51|!))?qH19fw&P^yB(d;Fo$jo};IwHY8<19&owN z=I&~w*NX$O4bE_L&{QW-mSzZ`0(;`L+2L=2~@u*e|w2kTtt{2(3~{{Wyl{{X+O{xz|=qtVj{ z%w#2xIQmsMrt^_vU`qqSn!wcMT{~1%JA^KFo!`PwO53p?@h*T5lx5hTPngrK$=$%) zyC)`|a%WY^IpAihYHFbL>)M^A+j)2(kb-?{pYfminLi5X zEdK!H4;TBV`P6U!03TnKT!a2USN+pfbr1D|v~IeJcvTOg@QWbWa literal 0 HcmV?d00001 diff --git a/src/model/realtime/lfw2/David_Han/David_Han_0005.jpg b/src/model/realtime/lfw2/David_Han/David_Han_0005.jpg new file mode 100644 index 0000000000000000000000000000000000000000..af275a03ce355a8ffdaf691c005c4a7ed9c34e2e GIT binary patch literal 2546 zcmVgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5kO7}01DwQ{x{me9JtV~_ozEu zNH%BJkPUE`{{R@Z>-}a1)8v}k9pHIov$%K9Zk2l9;ufVeziAq?DOY7=-cKA5N55XV zt&2a5w-%C!^%&CbAlNcSHoiS^(EgR`8aB6K;u`^VV=#5VEWH_X(;}?MqtdD{``=ot zBK4}SDhC|YSg!7yJIx)8@>@o-PKd=3jsqNUE9HM0c(+p4HTRzKO!q!c;fTJdZMQDECmc|t&9wie=PG~OeCvu zZ5+wUx`qeT8m##FzO`0Ls{LvQsIl)|zIssMrL~$geU9kLul>?T2EIP=Zku-Rcc z+A+F_{KRv-o^m~N*1c!Kejpwl(QP1)N4b*`sFHo4DC4Dc*WNvtS^;fs61$I-G31}6 zd3DZ_cGojs$*J1u-)Lg~L~;cZ6aK+J(z%JWS*Ey_47g@e>n8t21V#iU$HPn~@G&f<}yJ~6@P zx6-R=_tv(I@WE?x%;zlA$H@AUYG>OdyT=s&01IoDS~rcRy1S5hGTQk_qB8BjcLaKI zoSOB7ySKVjk!8ef&Tw=2R5!C)Kz-c_eRzA`()|A{2 zTF~(NrPi|_n7gBiOpTs{9W(gix@qr=YEXRNDP5+cx0`Lv(8u3z&lQ!bX|P_Q%dtY( zz+wPDg=XF8S5n8aJx)lY0{~+<9@U)}gKVUBlIrqng+Z1qPCuP&X%;q)#%S%Mjy>CA zRbBuc>#&HV5e8xvK)}r^OpZ=IW<3C`y+}oNjSR4)fDVVR;C*X|)h$y`U$iX0=%nDY zup1AdKi09ow)F4%2-^Pu-{t=R8ueq~Z5;GBEA*HD0Ig8mcq>M>f##a>;uw%+o#jxf zJ;@bELK;HDadD*FO>q>gViL*#4Y!lGfsxN&YJub_dXZqOBd!5GiT+h>-In!O9x`)M zNf>02VPWAhn%6Pyg!L8l)s87Fgy*Er95$FjS7tx=`i78GJjH$nb2OT<=oS5UkQ{*!BU z`>BvADs$WVit|7CQ`SH8`EmaMe$9J#iT)vJJ{?Di7+qbj9$GdP5Bp8feLB|*Cb4Pa zDVFQR9w4!mLERmMa|MMyy!^-OUB;Z2_qsK_ww_dxF5ry|0;2@<#dF%+@>|`-dFA}j zva137OP+YGi{rN706hld(-mSi-8@9|!OjI#)2+PCMY5*~PEBHXn($Amq+tB2)wy9h zjWoL-m>TD-Cysv+T}>l}O{%4jrcHF(zNKvif}#RYkC%*QxmUi9UAF3b{l)3{`qx1v zn1{oRMniwB2i#T{+vW8&;}Trm-5vLnhjK~6t`&WNs`4BHFe}=;Eo-b;{5;W?#Q7~K zdxAU3xrqR0rx-Y;y4PoWc}3N-%HxLI*dYB6dg|<^Tk9BZ*JxQIQ_m!vbHz-k6_l#5 z8R}}(%@u~9G>eV+Id5}bVRt#7R0lccx;bTNw4u&Deznc%kv-PCHuouK9AW1p*zi84 zpQ>t7>NmS%QW1DW^cA(B=uTu=E&%|XocFGyQkFM_z=3v!+gvZ%ru45QZK^%{3WSe2 z)dChQ!9X2Odso#{$8Q#w1-y3B2qKA51WFrV0|0P)R~xO1OQ`lq6w}HM12kJ%N7t$P z9Mzu*O(b^G*+_rYHt4=wWlwLw{{TAQc4nC)^yK?h4-veP>2eeto<5c5)=?j|10!>u zPo-|^Q-#xhUV(}IDxZ-gb}`vN2b(eTW^!;cdJn)=+be4gEq6%bNxPiYm)99j?l*Jl zDX{7i$lttD!1X4l-k#OqZPuo-{{WDcpZ$DC{{W#1`eQ@r{{Zh%tADK(k8A$`A@u(M zu5JA*av%8mZ>3e&KjalJ`@hz_@BUv+UDUti7XJW4{HUA#VE+JgRV4oaUTZ}gv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5k;bm$vE$T*?Jhhg;Ha<=yb8zm;a&`Tlv1-tI?X(2S@x9o62TkNd}R zqw=e|7OiwOdv)EN&4N0Q#=Rp(_=h!}+Kah7>vF|duO&yQ_5OA1)>klJTE}s1BFPkr z8C_062Cg8*PL%qEshOdA*P8rB@g$O5zK?A%NFx6LUR3?&#&A!d^sgM&ZxZnpB2+^Y zf6Fz%KDDKxcy@hSI9_7QZTt#9i{8Cw!`}~dNFZ6REyS`8LXpL3>Ru4hrnVs1#)lmO z3h_@AX|QO1AV@Um_RS*n9kX1&n=E%zqXM}(E1rhEzu>Li#QJ8X1IxMyoeC*Gbe!iN zgOAR=NorLiH6~3!?NOGe#76O&`M<`gEsu)z2qj{{nY|7GPNY7rC=t07Osse$)0CcAZsa5ITWm7V7QJHz` zOfyt|do!vi%P{~CQ(Xeue`diLl&eW26_tlT2;hA)UUxP9yxN`ZgwYh1*@kn`)aL|# zMxurXj5|WmM<1ksl7CTIS9dT5KWKQvgTPn;AD(Ko6G=Yl9)I1hK(VUl>&1576NJHb zmy%=5BMXn=ALCs`?UT%9y0-a%`JOS?+>c+SW;C{ zhhcr9+su|SKIx`_@~62Vasl<}T*7M_jB2HItDt|{Rd44{{{V!GR{sE?)SvhcpW$6} zvh5Ypcx%J)+#=uV2pJogp>BkKc>e%FT@~d1REocKdH_F4%row|b}jQV5zlJNf(Y(3 zbOho>X2I?bYMaj>ZzBB~Snxn?+!6lJ=xdAA{1tB{!JkRE`!c^iOLC*>&jO;d@U5&e z54GLLdv%|dD8JROxjp{?m35YO_LfnsxA#zaiazXTtxWJE1^H z{t=3W^c^A=-0&A~MsjNOHgH7>h;8GHGiT*oa4B809!K|$X;@r`fw|-gSv58nLKRW9 zRBmkZnz#0!X0AiPQ9RdLj-@nP1Z8a_$-F}sesQ&=3(|_H6{RGr@fASWy`nU2mtv5#h0D7$d0LuYP rU%Y;`UT^i|=~L;QPu8#Af2nV!VQK#We0>dDZ}rBXrS*TUY*+u;te|Wp literal 0 HcmV?d00001 diff --git a/src/model/realtime/lfw2/David_Han/David_Han_0007.jpg b/src/model/realtime/lfw2/David_Han/David_Han_0007.jpg new file mode 100644 index 0000000000000000000000000000000000000000..53139c9d3f05915728b5acbcd9d635743378873b GIT binary patch literal 2415 zcmV-#36S>x*#F=F5K2Z#MgRc;000310RRC1+Wgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5kiRMXJB2u_7K)&FeX6vOdsPdYe5vB6wzt3> zR+KP%RoLRkYP5&|s|vgdm3XIq6$=5ARorn=veacMjU7bLW~y93p$r_3z+Gdz^O+lA2s`^{`PU8N z4;)`#%_CS$VYgqFDAb+J>Pi0q3gPt)cUq74tEen;CoFuzTmJy9T9&^QJV_0jLv$Bn zj%8HCF!!rA{{R?uIAl>1@H;r%59j?Wz3_*{n=N-xk4@AdTT6*PRFzvO$I$1I`q!lu zrBE;_;8BliuE)JZ$L1W0ZtR-nz9Qe;*!WR}tb!+=Q5!#^V3Yi-#VoDhSfrH6zdtGr zW2pZC8jkAY`x@m&=;mT^w2b54t7y7=>Y9@*e5eJ~ILJ~@UvueRkEMJnNnkfuSFAk1 zcP?^Rd)GVSkA**DwtKxcVs?!AZ{D~qA^{A1Omi$=54;)#!#=0}$t06GADPc`Ef z_m>gc<0pbh{CK3cxL>s=mGC zy4>Uaj8uBItD~JhStXy1q~gAI)}oSKR(phv{?8<*V-+9}PfGS*g8m%5(=D&HTd1Ul zE0tKGM_r|Wlpto?ULwec2_E}eJ6z6!YNj5-ls z9j|y{w9A<-QIXmw2>Vp?_}5RSco$D1H!GZhyg1ya^Q}!IMb+Sv=n0_mV4TE)-q}V} z073nKN|Ag&boX}`nx)Kf+pjU<0=_-RIjqaeeMH(pc^S6*47Y;b7idmM+y>|Qusim_ z#cM&~L9c32Tk3b=?3C{jCftArJde)0j||veSzq0^_NCm~WMj&=x0$zsbN8}FM;PF7 z$*z%PCjbIZpys7TxF?7u{{X%XOXb}E0MER?_ra_dnxiuFO)}%XD$mFRl6U}C5031k zu+V1Iu3=9wV-T}p-?tuz9MpP252r&YZOTv(eMUH_Zti7h-G8pU zia`Mc5eWIeB5K6GD6_fKKe6J`o5@9Aiv`eo(QyEusyKpnu8sb0Ucin%`4iEeYKm1K> zJDgMvE;G$nYl6+SK`eLxa!qxbK9L=)F<#FhY1wiU7!l{!-noy6x@5YSgzq4WCTPKu zHtU>oT%M13+J2d98n>9fQik{AtzT==CQ1Rj(DfCaH1k4?$#ZkK@<366^x~^n3!PT+ zVTwzY%W_^$KO6zYdTq9pnr4`ZXiSix21foZ-O2W*i8E8_&y7;t{{YiLT3#*it+$LU zAhfx;n%F}xn6D57lZU=lgt#4N`-fEhi z<)xANgn0r<2j%jQ*1ZkpHuB#nV@K^1OsT~j$Dpg-nz(VhRQ9hK_qS3PhV>DuMv-z@=GkKZ@3^m0|0V9y*=rk5%Epdw-vy=Se9s<0Ad6J4}MK`@m$Qjq|z_Zh^csjNgE@ql=sal|9BBfEbut#?;WR1!Kc{c9fLXyjF2 zI6T(Uw<>p`{Od1K(qo!aJ+av$_Z3Dv>x*S*u90O7Hsz2LkFTe-VcmF7MxJK5j@sa< zIWXH1kJq59R_|eG5U0LmiA%@W0rZI zY1^y6W9&OuS#Nc^6(r;zl;*hoU&6K)mvienJV^^T{CzJsY>Ja~hOCW4l*X+Z@?t1EQSrDj&3uTI%m6OG}N?E@6MXeGjc*Yxj2+ zL2j4#mcZp?2RI$UG|_x6Arb}*uDJwyRJuHy^rN0YmHz;pUPflhkU90Hgj4{AEwKRULq=Snfk=E}0#0MLy?kv2&gnW~9^gsG3EE zBW=KBvFIuK+#=&dSqCyke8GX+zv=v|litr{c<&p;qUnXSbx_q z>T7R8{{WCwpY`zn0M4}|{{UEif|`0K<4XSk>V-pR{{SBc{p#7c>Hh!$u0}8U4L{V? hoooI*2hi0`7ydo&f87<)+<(Y4{{YuE{zkaE|Jj9dixvO? literal 0 HcmV?d00001 diff --git a/src/model/realtime/lfw2/David_Han/David_Han_0008.jpg b/src/model/realtime/lfw2/David_Han/David_Han_0008.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1775058400d52fef5815f601053a36682b046265 GIT binary patch literal 2350 zcmV+}3DNfd*#F=F5K2Z#MgRc;000310RRC1+Wgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5k0VHC!SqiDUV z2anpIc=@XD9YE34Ot>`P!n;6%oDgQ0Z74%a<e$j)|Gx?RiqVF$2AKIixt@la{cP& ze0{Ip_;)}TR%;M0#Tr-1*~b_jr_|TX7drjS_jBCN%DZOzk&qI_n;EY!ve9ML?Pt_rK3IZZE)YEhWZlUk-7qV+)lW>1 zO1GCpis2bbx`UNGR8kz(XQ&#PU4D3_R{5*XJ~G?i zP2qSZw`Th+QXjPi{^`aE_RW0fr-*0P?Sz=}{Lzqm*U-8azu~PmHHKU0UgVBZ4@&4R zd`qM(8;NEZ>5B1}%87E*Se*e9N~%4+@}hU3J#b-ZZi8Fs|pU+}I# z1bs7KK|^esWrekjZIpsB7&yj27^q}wuJ2J6$);|uhtA`zC!Oz37asK4RVQyVaY;gz z4m}TIJBr{nD@*UTvv_|$riv#MFxe`i|hk&AfF)gOFG?oX{?*++FH;d!I` z3hnuoGlG3_+NHWi-Uph}DD^de!xvf{ULlZbQJ=NKh+vfDs-8*CIP~jYi6pShityY; zIevi~0DF^6zZP*IF+9xda6VkG=UI&W)Me?r{p(ZDIO|8BOXvI2i;Q=wx`ns)ge;M^ z*_dqvcdjo~g7(`n7rfmU%FE{C2D!-Mc_++*U7+x?O2lXAO*-pTj?fiT=14nsA6j;Y zqCNfJ_O1TqPO60Cf4Q$s(xXL1X}1W+Nd11l;a8#3Mysd`$?jzl$B`UMz!gVOw`&`t z5jkF}-lD3PrtYhLZxo(yG=^+c_Ez^gjK({4%8$P1?x6RsoouW$cnsJxN{hJ2{l0^s zt{dViO$M6x)@$Z0a;%aJ5wsj+6X<<=9M_)SkvLDWt0`_73FS|xty|K3G_kVJsAG0= zu=P3j{{RZ_wCyS7+a#&A7w$*t?rVN46bd)tSKga*aOM@D;j-5eO(Wc zr`)m+m`Kr)`BrbA$p?Zc^Ol|Vwe_VJK=-CeamO8N&|!@4-`Dn@oE|_mZ6$C zX1MP11E0ursO9mbjCR`DN=I*$FY~5cH;8pNNSOVVTx24)UmpIIwc*bRTG=tUoO#oe z%el!viLT5dq+lot2S6($R`C6tT9yOxwIqwQn~bH2Bx<~NFM4) zk~q|SpePkvOn*7%yJ9luYW*vvv@7KXBmgO+RkfN%SmsyQaBzFn^3A#fCU5|(&$WC0 zwbS3~7J5~i-QLcS!kt-9qteWg@vzG5}ELsUDSIMz|L`e6ROeT=|30;;q?| zxsQcCPI;o`1om>Xee^sZOx8`6vd=o894DfiHTB<(dj!R^J=q9}u^7~BGBh9VG;tn?Y z)lDAN?JhMX-Tt>@3>@^x{{RZP3@;3u-9ZHX>{XBnx1E2y3u6@B8r6fDT}IK+<5k5txW}n#|(H1FO>o z-lYB&N9}9>06gRW0KU)oSBW>=6vO_k{uSt73;zJ*72;3#BmPfUw7gv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5kGD$JkE zb6mEe@w;ERkgO0#XB!{7tCq*q*E=`F&2CxuNp&Gz#fmY=B>Nia^xqa;%!zcjQ$-^v zWC#GrCmfOQn&>UQEMDpND+Z?r+9A&~3$V;swfjYs$l#2S4?mS#kvi39 z6$>vk&A!#q)0A=e)jelXZ6imxzE}+AA)TAHkEuO{eAD9p02p5Cy7L*BDGh_O_tG_aHfLRz03CRY!4+VIxnyisC7*i?#gSmhB=}!mfSvHdhqLg zLf1gHIv%8({Fh*t5RJ(oC$FfkTT>9N!n_U`F(-~Y)lo4?<1t{gY#XL|74;{Cb(Yrr zFKK$oAZAQ4b;ekA$F*uZR7}*&n%m!sQ2bO^wy^3tboO@&9vP6MFQ_&0mb2kqRvl*L z1*^vzIUA)RHm*)HpKfcr(5!yR;rLtoa^@suCw01moOQ>13ZBbYmfb|BR-We6w$DA# zkffXpAvxF1`h{~K1-vk=P(tI&{sB3W9S-`7w5odVIWH2W@eFi^T`ep=MYbYT^*s-8c zxz0GK-Rd&b-PNn-aY^S7T5zAcKt|o#hqBBAPbPe}&&=b=&R_Y0DWb)+z5;8Dy4OTBr-&Z{2N1aEVN+-v9 z&DQMJ{td$$*S&J$8%rgc-|cS<@(;hiZxw^6TSD>|ZD^EH)k|cbz;jHon$9LMtNo?e z`_NxROZ&xy?Xi%{O_g9&Z$$Z@o0jj`YKE$N=Q~R{fTPaOkq$$>gE` z0G4BxKVM42@ivPUw4&z2Y9pb@V~|My0PBA$^SkpSF6eHR(DCx}K9xmoBD0B_SqWqO zBaGEpt?u>Nf(*xM4>?%u3L5E`dgq@k9+>y5 za^3H>67D!uE%?@Wwi4*D$1ABvQe+IdI5|8X)#Z178@$mq38J-eBooM5JpI?tZ$RIn zs^9R7c~S{=RuHpgg|_fyKVL!m*GH#mO(0c@FD4<=j&bc>Ri>JdMgSW?siwZM(;_m@ zG7Nf}%T0d!T5}$kZbVtfogl#c2UA*0;b~=on(F!5;Pf~fSKAdw{t-Px{(Hgt{{V$+ zw}90B-BHKZ5&ktBcnWXe)f4fA{{Zn-lc;!kG|SsNTa8W`C%KhUI1)3xhIu`B0B4h3 zRpr_tctOG0fIYibWu&{TCXD|83jY9FwQl*gR6SH+{VP81+D46~wYVrc61_*#v7*y% zpmQ)-u4E@5&)4wnOFh?!zU)>}AoT=QXzhGOc_wDLSYrp~UY#5Y*w)#FD988>Bge-lYrEHtNRqazI9;zHpmTP#}0DA^G{$jlv>lVn#<(x8=+t7-{(5CXW zc{KLiM3J+{$4n8CTJIoBo=GIOcCTSpf&TzVhiD@w7_9ACHr|q>B>t75qT2;eG_N@8 zT>k)xE`04y7`J3^=Cy4w@jq||DK#6`v(n@$a6%JV`aDH6=#+w8hEKUQvG!U08oqVZ zf8=7-f9tsa0MJE3{XYuypMu}=8r6U6-aq{a*Qx8j>V-@%F#&*2bUz03ILk8sRm6`3pz>^>kW){CmmutnU$j$T9x_-8FYg`>=fl Hbd~?vs>^gP literal 0 HcmV?d00001 diff --git a/src/model/realtime/lfw2/David_Han/David_Han_0010.jpg b/src/model/realtime/lfw2/David_Han/David_Han_0010.jpg new file mode 100644 index 0000000000000000000000000000000000000000..44cfa15e0faa550a0d7457a2d0da4b853f1a109e GIT binary patch literal 2480 zcmV;h2~YO_*#F=F5K2Z#MgRc;000310RRC1+Wgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2momS zX#oKd0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5k5zFh`944Q^%p|+3Aoz^tYGRGBxb>nXi+fVj$evdIY z2)$~gzC6;ReT8})5#|img_nu6ZAJX3?u2t=K3s!oBh(&*RrUz$lx1(BsN{@_tm#m? z)DD#%%IpBc{6%?n_l&$wvNPFhZ*3NM%%!vc z0DV^>tN5>7znCq~vpv}v$Ifs+4wZ`}x63l*zVd!wt#)v0>un?2&nEe%h(_S9cQ;ed z=}*)(cwQuiHk5@K9fY6?5aT|u3(2xpFbB}PtpXXljpzF5!^@)-(wp74$ zBp;y%xIVRZRl%yxI@Am)n`^8ce+t0yuBUsW_sQ8}6Vdb^3Et{Z zK@!Une22bC!2WgS8h3|e)N~=J$)7etN;iCaRxYITtmA%GSpHqZy;794&c1?kxdVFDcBmSeT|jS}@UBzhVZJ^Dy;~G6%vEK_ zIFCOuuaz|=Up>_uJ8RVb73mSlq@?T>L%C*i-_TdGTZ<@wK{}E<=Bew^=(>)Pabu}U zhTde_;2+d`*NFcBZ4U~w=^%|qPDegO$iO;}LOa$5w|8fFJm^wDOXm!|GhF?{7-9%i zhHi32O{32}wyAGC3SLE!5TKq;dRNvqQr%0YK_%QP1nz;FAak>hnW3ASiHP;4X1YE6 z{uH@c5TgK8@ImiiEBKGWm(Su|MoTC_u@gB~89P&P>;XNGYZ%bNkMHIPXbzTUBR<31(~zzWA9xM!~A^X_`ixk#!1- zf!BSrKkJ-UW~HT_M|0W39tYiKfU5rhI>VPpmg7O5>gv)ZxKQ3u>Hr*Mk6eRO{4en9 z>V6=%xGE%u)q~E2;DOE$zcutE&MKolFts;zZF$rQ@!qrN-)X7;0BBo89VS5))L?z! z56a&7$p_f`Rvx`=rIOgPfW+T0Sik@`ewELx39Q`OY1T>P`7^BYNfG4&=Z)U^$I~?@ ziFDbm^_cGL6JbCUq-Q&aN&I?H=z z*73%sM^cKTfLXu#=DS}5_$KGVmKQVKq)^K$fbHf26-PNI*1CACq`tO};@Vi`j!f+& zmCiei_N>`=M0NcT!ls_me93JRe5#xl1F-ZJntab9 zIi41cBpF=u_-3OLQhA>BYt8qj`MB>)Y4P5)blo=dQeQCw#}0AkKST5#>ZZTpSYe5- z?Gx=%1^wbM8TzmISDNYqLKa?X4|xmFh1$^ z6~@f3Z!<*y0C|5}i_EFK(d$fUusYV~hjetlKWw}ifE-4L_{i!{wR8=4#Hk(^X}|z* z2eoEG&o-}e1LYxvCJE|#*Pr<3LAz#;QL@^YY}~~c%s<`(9Q`Yhk}J96js&z}G@o?D zrIp91BCXkYX>HrhzhKgKh;j$l*XdnlhM6ST8wyA1(4X+Gj^9im4lp`Z-}Gw;%#%tK z0m(I&Cy3;~l*6S$)ANrrqJDk<019pPiK+`Wy?jqHsV@{`=D_~w@AR${{t}6Q=nbp? z0N@)}qPK%JkbYOTZ}=Ji01Byl;hj>-+3qe{);LgQou&W}&bp`yX|@)&+2%9@uT$Uk zHJfj7{{Rz7RGf!lMYCu00GjqTctOeHU9t-*m!!}HNzP$B;p%r`I1BIJw5AbR^^n(I4Up;esyWa z>6T%*{I~=9)E9@ylt}wdEN8_#SE2#!JaS5rt0YXr^lOpE5f*jtiU|dR55I z(;Q&@sxezIX8@D*r?tX|<%bl%ZBJVH$5_{HwQJcfWu9L#j(4+s$MNm-uBYKl(_MIu z`6arQz_M+s&Pe;q&MVRin^pm&Ef{R)8O2~hIJMWKjI#L>$~Fp1c%o9w%_Cs56U!Rc-7oh=eCpkQ3hjOo{{YC} zbN>KdFaH3cEqYz|+%?H+AMyET{{UZcf9PVm-AnyQ{{VKPwf_K*cB_*A0LTq~pVqSU u@A&vnt#mq<{DaTZxQ!?NKJI_tu8n`xrDOPm{ZwD|(SMz3+x1G_um9OhhrV9` literal 0 HcmV?d00001 diff --git a/src/model/realtime/splits/train.txt b/src/model/realtime/splits/train.txt new file mode 100644 index 0000000..75b4312 --- /dev/null +++ b/src/model/realtime/splits/train.txt @@ -0,0 +1,5 @@ +David_Han 1 5 +David_Han 2 6 +David_Han 3 7 +David_Han 4 8 +David_Han 5 10 \ No newline at end of file diff --git a/src/model/realtime/train.pickle b/src/model/realtime/train.pickle new file mode 100644 index 0000000000000000000000000000000000000000..f8e788087b368df7d9c656c50d16926adc22ac73 GIT binary patch literal 882730 zcmd?S+pcfPb)PqwLTkKT>{@X>F4;qlSmeDuwa zUVrxs@BaDU|IZix=A#e)>mUEZcYpNP|NeVV-TsU3fBB=o``fFqi}zCjV~AWEbQ0`8;rvJZy66RIN>Pl*mq3o z@7So9r`?T?w*IBQ-RR8npB1Cb{~z04`04ZFWW35jd1a@(vbMXk8~tTq%Z(0J;l!>S zly{hg4O?z>vEYOQc9^iiDBR??T-Xzi!j4^;lvg&&D{W`~n}1tBlAj5CvF$f0e^ol} ztFrO@pH~L+*YA~!cvMcxKPx-q$i!|i3O72q`~aUqi~~-1qbXf3mbM6Zt{M? zdBaY*Ol;Y(E2ETW$wT96`JjHm2`%5)uS&;zRgN;BPiuGjzbcddpBEeBRR-nHag+CV zT-3{f-3t@D!6@A1|8w<=cJqcwxop@07y6iR6ehN8*fOv;dA|w=w(Qt4v0GsjyWix& zpnMs>e|OzO1MZu0>pv+cdRfpKHIt{6BAY#;r`spJSt)4D8B*K4iz1iQS5h zqLf=Nt>5aQaAJ?bj-4>zMh~lSV9So3uoVWjT zYWw({_l3`EJpEs3e5Cc-auUY@JIot4%4J}0bg*tXDVGCVcIGZE zKmD*fOxOxHI$3bS@eDil4F=rmp>SaL!iF7ibMB}odGw^e^mnl*_JZ02`?E63^BixM z=iS-%58AgfuT^Z@%TB!<*b}Z|Cw7AyJ#_3Ozc%dZ89Ls{Px@KDi#;3{MkV7W2^$Q!(ZzzZa9}5FFra#p z>PUYN{N17UD)G>slz&$C@;t{|l;6>I?(1@wd4+in8yq+79H*O~&~aDk*RZX(|D@b} zlRm%yfOE9W%kew?<;EVg5Bg8++Ryg=X8gf;LA~vp&n zu99{Q2Hfai6;5n9usci`gGP!HZ07MC zm-8xl>3D;2l6C{So^|sa`!(yyk8nI_yNNBMJkRIazBwK=ADiP+zKQ?hUXkCw^f$kE zvBRJ|eD5XR=8yU5bN0=A7v;7a&Xe+lVSnmvm$rBQ>fnZxayhU&Oc;g7FZu^gIADhf z8;l!!@eZBp7x7zg7S{u zHhI*^ch|F+xAV6=S;waRR4+H>gZhNc_Jte2tiplaVZv4z*sf=>t_g?hgn7e8x!lGH zPB;n^JMf$Sk{kat>Jw_)&vu`cj_3F?Z=P@cq+XiG$@#RY59mDeW?b9JR{C}P60n;u z*yc_5{P@n5@AKtP)4Yy9y~^W{F0S9bINqoHE%;j(^A9dA`VDmE_?_pi$JK72r$PJt z6UKo9{WbMPUbwEtx)$rSd}`|l*AHvILHh>dh8tZhIN^XDCTuVY7rK~mz+RZxvS9~Q zPwGex{RFpug0t8)pS10#{duvK{O;H?OZ_r#__3Gu1@Cr zzG9wuE+qNkdq$E!-iv~KJ9%#&o4^13dTvzy3(Ef&_&-DQU0VOIs8=6f!FHTq$Nn|g z;IF{{2|BL*|JSSh=nvh*`&YT^^!^v*zkUerkIBBFe%w#e`=#e5<2Ur!(AD5QZ*!0B z@u$BmHYEH@5ti@H#Dy5D2Ve$PYZTvze#^Nuw}>crxPNfPDJA~Z-`*#}yg)ap?Y+hO4fn0^y~6$c8{~!OkmrSYZQgrs zc!SC;#XUE?@1iU9cl7x-{k>PJUvxFl=OiAB^Y5Hf zzAW=Wx_^>K%RED0?z6tXRL0vpk9_t0B)oV18ujYPb4A@)U-hOQev$sq=}299F2?mI z*)NVC-nquJ+~G%Z z&-*j+_8v3T32{98tocK}o$mnZiF)^8^GCg@vv5EDGWnq{zJzUlOY6Ny%6~!o+D{#+ zD|HjJw_bh1bH1>S;C*VaUi15`<88)MfBMaR$bPo-{C?}|H>7%cLHSo1_XBL=knDfw z=f>)R_ztL^)J>z^EDY?8E*6|{zz!2O7;vKlIk5-q&#+N%-fq^hpyf$k57?pQ(sDV9 z9wzoG^c?c}!}G`f-zOfv?|A+YZ}(OANAEKqi?eYh?(VOFj?TXQKF>36UR-v31*(f* z#(oWY{#gDx<>+mYUo!Yk5Z)8tr2Q{JbrUy#d=B$m`r~W#S6}A2?fI^8^yR+r?$z)3 zlX2q((8vw$Fnd-S}Mn=e>IC_dmYk>3z+6*11pA_aEc_^{b!n5B5*L*S$@i zm^X?2tFYbBbHV(y9r^2bK6T?foyT~=xbEM6xAQySuTlRR^m*zN{Uzs!?=i#qt9Kdv z`O-C>dO7FvyOisP7ngm`U;TtW!g|kF&u7nB*YzIbvR?)7QH%H3{P3#Z<}-R4>Pp=} zb!7XXTw6}Y8?eJHY}f%ex==@QP+r+6|ExOd>H!Wo;VRtNfqv5V_^osPoP7)Zcwh6} zIeF+l$UP>|jXLvuQaAqGGmNwEH|E1v$RG3KpJSWX>csbb?{9CEcFxPZeE+IHKW}B8 zHIJR2x;yi9UhEIPznyix;Q5|E`XeY;@6I2+sz3b{p4<9IKVZ8LgzHkbws)TP!#?{7 z@W)(cEF7;){UNKDNk(kILPPC{AHuOL)%Ns zC-u#C=wxFr*!g*ow)>IqJ?>Y@`)+VAIJ)t^VBE|P_Gk0&{M`RN^5_M0zn6|<{M}DI zj~w58EO~hHobmm6&e4nK1$pCp{rJOcK7;b}9%nnhH?n^pKRDj|^f&LlZ>b;8A$9&H z>;Dq;e0#w-oaaYRj%Ppoan3vRdTj4^>g&rqr$P52b>;V+KfUTZ`Y?ZjJZzLN>`A_# z_V$BSPqrWSD{R;@u+@`XML!d}e@;3I^x^q3ioLNX9QdRETjGaad{6d!f&0~YkNMa> z8`q!Lu5p6=AKvGP=dsPNe@1)bs-D!1<9UDbJo4V}xa6pK@4 z`|rT+*w&}z^z-Ln-hvLW2UGqHqmhG!Q^!JOaz3+SH zyfO~#Z=rtGHT9l{lXaV)%{)OL9b28OqM!D2uA|BN+7IwQdRfr-pT;>9l*jk4_W5VT z;Q{~XqPmI~lvf?RM!8fUo-5wdytlbOn-_1;-~4dj)aG91y-Pj&ezpGa>OZ)5`g_&m zag}fMaem(QA*J9kk`F!46%v0yD{q8l+`95b}>nG1y&)2Uq zzqg?69nXD7|Gh>#^@&c-`J^ttMmxuGo}O36hjZ9_z58vdqoSKI?`k>r=3JR@z+Tv} zWngd48M*#}&!a>a>Zqw7nCNSwqXAuy`)#17fsWkg&pzvY%Q(J4e2j}av7NTMkoI$5 zG#~8u^=n-3H|j>c_1k@tfEkssqo7&HUxZbfG?~e$b2UC-nnvc=V)AKKk9+ z_oCz1B%bbD=F1l;e+?QJ?*$`B3858FzjEdhXGy`@8w54p^^x(T_5I`x?jh$MbV!_YZYa={chR)zRzM zcxRu}kB(=1%Z;Ps|04a%eL2}L7I`@I4_q)ydBYC4@#lmC_QHlO1KT*sMf_%A$4>G& z%=b^JBXu(A?|1`UZOU!u{ccfiK91kH{Cd9QzD3-SITpq}0!9_mItnP0y|{THF- z-22q;`2DLsdGGamq59d6tGO;RK{x=TR2YMLLcnsQ4X#YW6PCuS^?!V^sYu9{& z^?9H2_c{E1cfV_#pD&@Oc!&P#((eTNS)FPP;(>S(jBS#;!muJY*1JmNeG-;3VE|HS3Iw|c*LlX~|v6P?ccp@{WS5D`kCaL_3B54el2ks*uAh}%fLSIA}*`M>BNijB>w}d3)v{|(Drgt zu09&}V!hhI`DFPh_mz(A_hP@lMdD|_Gq~TqLAm=~J*UjGMmzUC@-6sI;6AT@2Kkrh zyK|3A=I1$KzBlqd@uzXn@1yvCW6RpE`+mgp5_^4%b-1qJ5Br4gL&^LnJnwbxQ+^-$ z-D|vop3Z&Gb4h=z6aDA&-KY4@aP}wl<2jYg+i@Jf#BcB(<$IxdJr(nQ9si1 zO+Wh&>|WTgWndd0X`E(>XE*L8?9dV-t!X}cSC%ER`=tzk>+chQS+?vy9A zJc^En`3^Uc{VIz0>b;u@TQeKjw4jNBrO6fD7(I%WaqTW4r~YHhJW^x6t)@uL=IRPpAX#r=F*w zekk{QsP9d_Px<>Fdv=&0*osNEb7KL@tl`X3J1VHR4h9wze}g$rB#Nc&me(Tnw2baZU@lW!8Q7x+=V zyiK_}qW;_)yvMykzt>=caT7?z#TF&i5?8!<_Hqopb6bb>z9Dj?|CmmU^_m@pFIV zKDmjD`-y(v`T_swFa6mlPiXllw)KuDm*c}x*s&7^T*eV5>~KQcNy~R>=ec7$?Twzo zeEYpC4*tI7;Rlp^zw>@zeB95Bn{jY|R7b|?y=%Pldq#gk{LxW9F57cxbN;jsukxiI zoj2>$MNS3@w>EV zUsFeZ&vQTX_t)c1+P?wyvpP{f#!G$J&VI&A`^${?wTpgNoakv12X)o-7yeNffh}99 zx1HtNan(bi&mELkI-g0rIy8QXJ>V>~d{N$Epcm`ak4(qGKgRX^9`}3r^DU@e+y~W( zaWFo{(YRpyJ<9LC=leF#@8sh^KimCYzY&K?++<>J>Q|w0w!J*%v=93^9?uPU;>7$G z=VpJ9Z|nzt&pYS3`U(ELcC|k`AaB*lc`y1p?cRpo>-6^x%5+C z#@F_aqptkE_~F$*^-Ix_x>(f9jjf-xrS0UTy&TxGV@u;>zMJ2TJeS?PFC5s?c8hZD z`Gafy3w=rFwKyNtliy#@&yBn{sGlzqk5=MhJl>?-@3Fsq+5TMrdc@DgLv`f%zDMzV_k+QH*T`S@tA3-SS@PUGvs_x< zOZ&vWW20UMwmL}izZD)mP;Pq}=wnkq;bxtF#|z3=ZD*eS9)9;+|7wYoaeIyOFT!7h z#?QDB*K=Rw-r{#c@86B@LhkR<@}Pb^uIE@jJQt|nwxc}ILxTxB9MJou<0j9Uj_3D) zZ(q;%etQ0%(7RW8ytsINzuo(=dhvTF^nL!k|8VXM#yRC*VSMx6^TKgGN2>pg&p)C6 zKZUkacaHn^Re$c2oU@zr`jEUz$_H%PH#+E)%fwa(&vBEdmG3H|*#k)f?plyU{QE)zAHR@IA!)=wN>8=kNvnegpm{{Km!e?=o;+ zh3kXb(!a;xd2sZEE|31+Vf?ScH(~I{{Y|PT^{0+JH~9|acg2n_Ja+>7=mmSB2RX6j zDEjHx3EK^W^2(~CiN1Qt|Aw8=yr0Fc_1dkp^Sn|=juW)Ae0VS7o^sxsy&tp^r)qoe zv%NMyM>juwulD=!$rtkOyf2uS=E>K1{s$M6d7k`6SN>k>`MHfcK{w-Z_3!BB{JkRX zx5@dF>d5y4&TD_)`>f|%*LeQiWpHkJfAu+==LYkb%**#he=jR|PO3Ne57vEte)Zn< zT<;m;h(A>?+c!f=*oE~=eha4%yZ8n?>UrPFDK;#c9^g|!=PSP-Bep0nfKNiwR6WewTzbyU4c^-MiDPDtbK+m1vk8$yS@T;_QzkB<#&G*H3 zU-QiUFUjj;o5$>veiwG%*7m!S=ala)>c~8;=htAJtK{=we#vwFxz|81scyXIp|i>S z&BN)v5iasG9+y9o=X>t?ds55ipdY{ANzdhDb6%hOR2^ z_dz}{nB<4|7u#7sX=lG~KNzs;z;apZwa@dIpZ35G^S$J=dNSX$pR4)WN1^xQf5Y<}~c&UxUuuqk&Qo9Bf3<2+PX zSd5ye{iJ@~f7FZbdExz*dse)QKh+2G_xDJ=w}tmg z&o9=q)Y)6tIOq39$~~a|dkpGSU3+g$#&ca89Zm9clNaj~>Sfb!ncsy2`#E;nRVL*! z9FIIs*or-{XJIexv~4dZ?G~)M>W=GoJ@*sx{rH=FbHDeVvdF(>KD-d2D-sZW6o?n%9f@B%FM2+b|i&a`Up$eo?=$JGMGgf1a~x zp2JhFzj!}%{|WW?)r_Y;p z*p-d)N_CXX_h-e0|0eXip7ZJGDe#-;&M@AbW3FeD&%<+u@3=wyHZ<=$?Yr?MKSMt9 zDLrDDS1`y&+xcBW`d+Zy$GNYJM?MV~&Hm;c`RTu3)tSF1e(Kpj;csC9>g@+t+$Q~(_idQ0 zTRoXK@woa0<1h1udzI&+dELl|t{;7l@#S82&PDEh=8?K?>eBO%ecSumpnfpFRrZ15 zdR!lDP+jYXaK3Ot>)nUy{xXYyoVVXy&U=%7dk=rUdC{MPH=dWqSAW4I{_16vyx;bB z{?yy9VY{xRU5BSX?H1*qm6Lh@thn*#F8*8Co%(@JQosBDfImF92JJilzL!7e4fgSL zKZoYe!mj6%dNKdaucrTfKK`=Nxf<$``FA+YclGiX`S+U_{duqVNA;u*JN*aT zj_3SJ{!Hu+8}pup1HHQL;rRr8{yF!{y-(fv{-@41>ux3QhVeJP`c*%{C{#a-_7gTZ z%6d1p{jC4YWd5$>ADgTAv!R24S?Z5oxG#0i56`P8?Hl?#`9gl^&&1z>e>eFgle`S* zILSD@9mM^fdtgU@TOHz$V7vwwL8i$7r-W=Q#H|@8Q97jO%3m9sj$pnE%cEH$E^apV$*S90v~D!)?F9j{R9_ zp8l-3%qOUhCVJ5B*y>2X1bL@l7rLqOO8hm@iR|jidz!j{+q{w`4~O|dd*9#Bc|^a- z^A~jf&3&J768iI+@aH>zcVpjA^c2uMHeZ+X;`tkUl;?Ey!Z_!>$?u!gPy4H5zfXD} zE&cudVCR3%HR8ODJ9)l{?};0>c{$8?_no4TPJO@zCtNVK8K+~vDjWTq`T8?v>R0Ig zG|Rc9?#}r`9tQjK)X(V2cuoE2c~kQXyIW5FoP5cwQR668}kk zXWWzLexE=;{@$$ToA*4w`)9pZk=LFlo)dCVul{7R&J7pyYB2o{@Aq)^qAA3h_)xbl4G|Fhyi$NF2p zbjqEV=k=!Ccnspz)B$mu`WM^#mG?8-5Bg~@#xvi-e6Spz?{R$pO*k3P=Pl#tdaykg zxATVG{_4T+%jhcjd5k~j@w=INuJd;O>PWk@4s|kLX8hz2bUc4vH=Kt$;ygO%81vok z59Is#duV(Is=6>9o?FIy)82p2dSGvV-iY1Q9q}IcR~T`ca+^&y( zMjfdib+DOVBM%QL@Ah|H_Y~r^{oX^qd%jHfLDrk-FR?w3mi^F8z@d&9UpvTyNxaohHy-8(R0p4x!#up9 z@o&`sL(}I~_M7=_%7eIcxG10aD^2B^1f6X`VQ=9m^52yQ{ z=OPSkbhCUvg2Oy|I!xA%1QqArN%#$KF1+w+cb-7h=-m+EPd55`GbnlF{> zMt8QW`C9G9{AHN8pA$EERau|o^Y56(1D ztUV|n=w_HFk9?BD`T2k2-0{9O%KOXmTq^C@A>1;WlMQrtFy{F zj{8yKzwP|+xA7X<`oVLHd35^ex2E3AGxU?_#`rq!!p{NKNn%fEJMB*SxS{RtXuoit zH>~;ndD{aW$?1L#*E3Wn#!Gt@Jq_%Izx+;??(5{O_Y=<<^UAzjbw5`}=wm+eNgffD zPxA^kSkF82Rb33e)A`*l)iL|N?fw1FL(U<8uCvgE`@uP1y^lfbhwX1@z2o{E?|BPd zxNiNd-@Ey&-(jM!b`$?i{H8>g8!nh|@|=V|cVJ8FEBiD3>~Fi8r!|kCvj^*bRd)K{ z@owBnzf>=9Q@)%R z*dN!t&C`wly}wQLWB#iPN;=eYTJNSv1WfvwIa`cX&fXOQO$eFnC4{Myd;a?@Yhzw*>GPxG;|nU6Pg zU9ZaeylU6yr+$U*JGSeT54d1>E?KXhZti0z?!@2x+uB7x(|y(VF7n0pzCR4}jdR2M znm-phcF~>R6OwW{v}<19=x8$k1>HZK=Q&?JSD3H+LYDLE=*aJf?gx@`_2hZw`MvPt zz<=HRB`zBs7}rf4hwn+)&3=wo^m*b#JN4jmD{U_q{VGqry1!x7N0^u9=}o`&3Cq<% zW$nKiud*=@%bj0RF0EgTV>|ts_}#d6;?dxInep^z!}Z7~GXmW-{5-M!j&bZqKD9pI z+sx-MPd!g$$yd*VdcRtY~d02VZ?~|5yo?AI6ubgF`9Y5KwQ?GukUzCTs)4x6kzXX0B#Kkzfe~y<| zoZ@j&y)^wwKlQU2PwIc$dk#pS(-=?I)L(Ex{gmc6T(A)z&!MhIJ~fX)KgWqjJ{8BZ+^-8|*o^1KSpgYZ2?a&D;u^(dW> zcKAHU*Y-T}IbXZx?e~xKT;@MnkL&7>tG)hO?h}-28^?xTI$Z9XlDIYFPCPey>--!l zpyLJoWMa!!?1{bMg57pJ*F5~Z*%-evo+-Cpn)j6*|E2zeLs}0VZ&4q{2Y)p614CUH zXY-qUT7Cy7PkoO#`Rw=VO1}?C>iurucZcxr!+mh&pZ|WH|IWhs_Y`R7--l2CUWvcw zYTl#E!8%gj+~dxZem~+=seC zKYoWuejh^mb6j<~iSH^5=TUfDZa%#t8~rMyj92qtdy(IjlX5w*pQG(}(T(%5d|6+{ zjT#^0O}-89DdeO3_cm|H7xTw_vVNC*O8O1BeUAC=dEk2o=ZoL_&b_MqyC~|pz7KWB zXC3Cf-#-@5tM5bZ7oI!*{lvld1pB$(&Uz-S`q}s)@vr%8{5tuw%p>Ard@Q$JvLB|u z|G<6D^Jx0}6#kxs-zkW{&(ESKb*;`i^|Q1yuRd>@r*bmiJC2gi9Xksfw%phOC;NwX zFa0<5wzGZ_hvRSW)wIu&=jMs|5%^UO@+mWANO?bM#l@hlyS~j8bk~)P+oRGz$Z} znGfi!aUM1FG@#$dmvM!YxDWG$II5RM{8uR-*mBeVRXOQjIVhJMyYj9+Y2RQ#{Vk{K zgqC+~{UImgxPQ4{HO~LZ?>#1*#9cp6{>k)SXnvP-$NQf2 zJ9&6tRBxOo;klw7N_muWpTB&r=i9p(Pk;Q5;63x`*K?EeZL8NuK6Q)!$R`}`M?RS` z$~iQM%fQdQ=%%3)<6s<{d0~6+>AoKo9S!s&r+RXH;<%ZgI$0&YmdnLFUX`8xl}Wj5 z*p=2x>x1^{LcPd=P8xJQa#5b+wg+xN)#w;|`zX~#I; z8>i>c<7%&77XD~3$WP;AoTvFgywsETIQ_nx5lDL+=TlxFvaG zo|so@o{_Jf56QWa?E8o2vFCu_2cUniG}M>vz2|Y>ocopMg!e7xv(T^S*wH2W@xCS( z<;in`^(@BqzBtfH#~%SZ<=R318Q(>`X+j$l0PdTVh*kIU?^(^T6w)ObIb40zUBhQWO?o-A8 zn|j*~_AmXs%oom`VcwQ}^WLNGe9uqsUFBZqcjS}D=x^DMen+=HS6x-sdt3P)=zr&B zQGU)n&o94EKy|WNzw2t8PlIyv%{VU3rDGG%P8=tBB+aKm`9eqLeG-qM9*E!3O|cj4 zwz~2D2Rq~Ul4lcplyc|SnP0+_m#nK%E|+y!uiUC$$Rw27NKN#h6y?2^1`?u!zA`TXHJV2ADpi}~9=nD3-~n9qfl z+pg03%FZ})Ixc=)h0Zr0`4p}&9_|;DeP*JIL`MzV{8u+g`F4N8pGzI0mw_LrakU-& z8g|fc(Qf14rr*h@P(RT7pXb&v@5_B}n9qJsP+!{g8|sDj>d)VEjSnvW`R{o9b0)vP zd4CJWQ7_?p4^%(y3+iRCPVF?`ie8Lw5clVF)bXqSRX^UV^?wqF%B?PpA2fce^fT_M zUd#N=Ti0QnPdV#aFbgO4fDQK2E{knD8PrStIGC?AAEU&hk>8;n(9OgSbl`cO*tT!j zOTRLn{!VnFADzecJ+|ntJ0Ic^tRu*)b6@j4r|4pEUmD)O)D!d^@;%CXp8C@EJ4E{T zC_Ha|>(bBpxsNvW>3f*x8hSap=lpR!>SVCKN&Bvj9@q0)iD$>&aFPe+#j(+i`kC0x zdmM3CaN~dVGt><{=MM3vNr*av3-6Y;V1OlZ$yB zq7&=8{$_p?yWy8r^wY5$`MvZbe(UNA+AfNY)Rlf8tZ(Zl{5p9~s3)k7)w%vw2lYHi z-#^S_bwl2IPM!C9@_c#j_?>~DgQ}mQem=-}`lEi%`;P7DfAoSLmh`=@ya&yf*SJZ$ zrv13e7x6T1##MIw8tS9y#&c&|@3{awaZm?I{+l1oxWi38gu0^rRwvlW^Rnc1XFZMe zxv#rU{nzMc-pFvhu)~DL|_s z;$L;wso(h3dFn6YHF%!mb=ptkQ{ocj+4;`)&XsRr9(ykM_YAz(`CdXEdv5u?!TZ|q zeMfyr%hfCAl)66eXN=#_#ef?o^B+*%Eb1q5GJeK?m=~W=C%xz;$nz8b;%9X;)d#dZ zu$S?G%l!~;=BZBf!)Cpkyjt6Wz{CDB0?=Wpof5&N*%SC;Z_LfiT2kbBl?cdS+ zhRyYQo}i!2`7`8=jvBf+`Hp@d*b|y-P=f z_nY8+3GzJD6*@cL6Kv->g6GFP~HHXX>J>7j*&E%PjSa{5ty!>zi=t5A-wD zQPGLI*_5An6Zgb_8xH)x)eCWR|D2Rh{SLeRdCnrP=9%w-t~c2i%*)AqjDM1!@zxc` z__d3ZaqTB9A3hg4kB)6SIViWjVF%phylL2r`8E7L%v1E^cR2OqxwL4fKC0h)(Mzfu zIALR)6L;p@@W1^U`rY(1t^C*O5VSEJ~vQ|~yl=%*96RjB_$eL(eNo^Hy`d*f*S9-W|<0TbHK@s_$( z-};|*4bNfyK)jQA1aVx9Z`>z&;<}8F`MwxOrsKj12W+qxCU!t|vxwh>#>4nDoy3jamU>W6+_w@B0lEd$$!7U zx$m2=lzVSWbpn0AO7!NvZ<8;^CDjk*jqz8}N!;X@aZ2LT%}e8qzmmKS^RUqMH{%2K zPsg5c+YWzf+b*bAFT?$g`84+n_bJ{l8|z%=W0`mIyhgrsxS{zM+=I-YhCl8Y`s;?y z$GFMqI-D;Y(0JRfQ|`GF?)$F8_Y&tXU7!BOFP%7==Rv!vpWw9IxRg9e#u>Cro~y3Z zO=CRc>+`h-<9Fsa@TcFqeQz<&llo5n`(EVlHF)21|4GjQ=AZf<-Hf6i&%woeSgK>5 zx9smc9M^rud}Tc+pVbfRP3ZbJ_VE{fOL*#S2Rl@cQ$I4VVBX<(N5B8GzQKC*(`5eX zxFsKq^U)9SU$B?_OZ-&XD3^gp&w<R?#zb6{hfroY*D&vymhw>)oxymDOob^05}#`B{1(e;?m`YZ5* zY}j4@z=WGPJ5I-5P&@F;(aj^D(&zkpxW4}_zi*-+_Xqn$eID~@#*_RquLe3X|7Oum zD|!m-`N*f~gse^=lT&E=Rtq-==3*_X}`@2xTv4Dqr9sp#&!IzP2O(oZ9Xwh!bZ90g!wiqpoJLUGH6e6n`|v4WHvZhNRsyn^PT<6?do&%lpC`*owES>sCF8~uFVaGWx(`kItC*wwT7Xx_6sD$uED;VYvS>&Z_gLJSf*c=C|CmYo(pG?b7j} zI#AcnXQGSgzFC;q=l3>>ZjyEDhcjN;Cx-LTujT>V@Z<~mwV*ms7t->MPDY{Sw%h)E z^M?MMW>BB7!GQCIn{w&*fhan)e392%ny=W)e6$>%yd@9x@4}w=`Q$nMM$yrxz4@aK zr~8C)^10g3c^uu8`oTCMd0v#;&j$8}gZ@puYV%yrhvjq1 zIGw!ryfFXkeam}S`tvZ}Tl{`vz5Ro6Cv?7x=Wp1VmpV@OH~eUPI{tQlRX^raEBmy1 z3Us0_5?gj`Ij{o`@?6f6_vZf{@7k|2&T?MnIrrO19y>p6scsf|yYQRmz^SKvI6nEI ztsWZflJR=ck?p$qO}y+E#A(6?JKUBRomrpM5Bo8nRpza(lDu!^k$I&qlJY^msVDPZ zF7mX&@aHOi@8Z2fT|}{$-;-&7&O`fio~Y~LdE$BcGUMrw>p1Jvzs8I81nVA@>z}}1 zQT&~hcm0X~)s6Wy%s2EjZqBDxbh2ruZnD;MpSsgYM-NpOwSB)C$9abPi9eSoE`#|v zPw9T*zO&tb%+u;m@^HgtTqNb4aU8$l*Qx($7ql~O#%I$`9fbN;my&s^8+Ci=I_&Ry zT&MFUpUkU?AG`V~ws|@q`INTj-+vAB7#*4Ca-jpiBd6~r=*@cdH@s)oddGo{=c=2* zIy>t&uAYakYqS1Id;Qpp->f$-wSMuOB+lwcZps6l^r9>CQBLYdp?Wxa@ja!SC$^K* z`aAuwUj04l?@5|B^q=k%FySPxn)ea>tKXLOMK zs}pr&yd?GZtK&_^X|$iTKjl2n{UFPF8tZ(HCm-qGVS^hTR{gCT#xG>t{cA$`VHgGbIj9eJj}0>H|A4P zzZ@4oFXGV|cfbiPKep|So8!R-%?I;#@%&xeGmn7k$^M;w&TI4hRs7H>PdID`?I-nv z^IfIg)GmI|AI{5pB+vjI;SKjW6preTNe|5Bn$NWPZ*3E_A)szrlPu?S1~#A7wp*`J8nSm-)!2>tVPLTkm+g ztfOHkT-NhE^JN(asGi)XyZKvmF|k+Sz)skpI#5Roon+CC^)m6B@1ef;1m8K`Unc7t zv>*D-JaL}-n{^GiDG&X_cwyX#qvwlp^*Qcu$L9GP{W)&O&vm}$M{~VCk8u*)I2ylX zyi?A+8|&!M=gG7jYB%~P^Kkvn%lgXDUxk}-WG~}R)-_;rovb^sZRa?y&-Kf}dYsRy zaUdQ^`C>kkc@NkM&v=w~o?{%QafKVIpGBUjhfY2YIE$Uw0qrl<$GXvv-}h2~`kuqR zZTMXVKe%4~VZW0Xe*Z4{60CEuzED^ADe-TEi}|Rd?)*xeCidhU3gXrocj#a2?YJ;} zF1ETn<5HjYhvrq~rrzgI?1?{|Ph(!z_quN8N{?MOAN1f;E&y79FD|OM(g?2Cc(T<`Y^YrjW zKg;o4Cw~t!p+AQ(zMJ&~+^lmLFYDD2>(U?ktHz<(&v6;=oO{gAyiRpP`Nj@7Tn~QN zzk~4?<8Pm1{IQqg!(QgMu$$}iIgI1D>9{`EJRr{cVN-AWIzQLj%e?A5Z5Om#Au&Pzw6hpLw_=EKJw{0cmDmSVBBQfq2E~l)DPPF6T8zsm`_6I zw~Pn#o8-6pXxIsRu{ZtHO%}VJM?Qc0^E&??GxXo5S$7UNSd}KZYs*l8$tN6oq?n6~KoA#4&^s{~s=6Tk^{GGR4v~%9Z#rL7{ z@`_huJ%jb>_s+T(qdeF6rT&4NJli!7nAgi;{QIP$z;US}T6Yrzc%O!Q)T zEBfgrJ`GzY&l~#N^T*$d^6wM+_mj@r{~c)md-eXiw()}Y_ERs;AA1t7 zlMm)6emv`-eWQHpFUKJ+{`}m1FB#AAll3O!G{!MbgYk^#bbRLNd}XKJ{?0cTH}Lx| z>(Oq`!*$u-_%VLt`Es)^*VoC@DXVU)@2@=cboD_yP)6Z zxnX=@Sk7~7zvwq$E8Mi7Fs=8w%%kgn@@*C-c7v|R`EUF%@JoY1x$|f|_k4Hr9_HUC z^gF_DU3xhGE{Fe~)B9Jsy7J#=JO57SJ3rkoS(o}ZPR^?vcjJkFrgZ+snfZ6?$sd1@ ztg|n;?;6j=bCz*nUc-38<0tINb91MnI zzX2VGc@ED});sXWFi&BlJW9RgllccUKfHJQewOH|;}7%6arEEfIn(DcZr5gBp$+xp zuJfk?$zGJ?+Pf*_Bpj*(q zKc?%_AI!`5?QVWjKZ+lZzg#C=&d2fTm#|xof1S5F8qBl9<+|YUKl9t}!}u+kuW_C} zkLM4+ANcRud0+eB(!u%npx;Fo=w{GPeVzYa=zBliFFe1P|CY>O|9d{3^)PSeAH`oC ze+BDlw4dgazh^A*&r(l}H}yN?Y+1$+{Yc*Vyj|vLT!a1#_OjkAad6$OJinQ*CEm;R zG9UMcDDxZIa2C3*!FWqQGw(*cl6efM9n>3-L4S3sZWejDi9_W`s6pngl* zHE8*8-uO$sxDIXeZZYmeFP@vuTfaD;&hrM;UR5`5ql33Ds*m&UKhb`?L;W}4Z$kR} zJ;Hw9I-kL~jwge1*OAP_eqmf`XTEOpg7)_7Jbx5@Oy}!6Peuf2s{IIsL3_py84+gCf^pWF{7{?`uHnXVt2cZq*oulbSY59{#0 z(pdj~T+eqOJm2FvpCQEr=)x^zIquv$8k3G!~2=%lIIQI7yJ(AzqhV^_#S#G z9N+lqa@QTiWuu?ry5VG=9X4&|YhDl5XD~zcPzeW;d|q-_P+$z4eXyfEzEY8&1jx?1hOf1N%gQ zY@B8#G)od&2KKI5jXmKg>^F8&-e5r0@yMrP&%bKryqEJX>(?*(uj9X|KTA9(ws|nf2lH)^ zcjo;j@4LG-3~lNcoN&M_Y}hie<>vXTaAHgAwFmVbCTuX^Hvi!&oY?wBcFJYLj>3h1 z_46qH@5N4R*{}m{^-#F5rSTq=Cu}eZ%^NvOUbP!tnTLaXG(Qu&J)JR9@lsqIptLOAJZ}b)BvGwLTY*0N+bP-Vf1aGyS@&&v79hc`gALrd! z$8w)w-TGfPSFW;- zf!&{BQr}<{ZuJ2doKSyu?1T*l+$A2?%i7NP$w~iSn2rkrniq1GycyUD8{8$|CiZ~6 zFtG!=|C`4{{lHDWFF4_VP5WiW)1S#Xw9t|I$wxj_pTG5H{)+V^#RSBi9KM44F)v-JU zZt{AS{8m@y{eI+=9L~Sy+aLL4o___x^Jja%d*oB?Y2V8D8{7FfPuJu62J72U|LM<# z|BTx(E+s!E_JZbXlDErzE;>?AQXN$W{VFHp%7HCAcKZCnyYfc6DBR|IS!XTR50iGI zuwz#y_mZard&4X`>cy`0jruz}u3S7vPV7%2Pio6Zxu-s!saL-G5@Zp70#PwWlNw5h~70Xt0CVBF9+$wk~I9M7;*pRmDz zoBUWMU$o7mPJP0#eaS!bQYQ6bJMwtK0nKymq`bk6J|+y9k9?9*%$FBC<+gX+#W>Ex zc}?fXdKw(A&vN{wKbQU_ZUc5Wjc3Wbj=d}=zh~jVuI!Y{#I6j=E4TSu=HYzgq+Sl} z%1(J@QZ5^IWl&zZ@t<79uN^yKg8{9VdDG7JTRp%DM`6d#!iFsuc{58sb?h{+U=%L$ z()=9Q9X7bhYx7$U%4M4WP#vXud0hHgu$BHB+vg_FAJF-`uElz`>nwiU`j5B_xZs55 zMJG=NoNz<)f0FkbjvIE$E0c2Bu`8r{T2^$P(-Y<0n6MD`J&m$Px zrJv*ayv}o$&oArQ&L2M{ocaZS8<&Z_3eAU3eoVN`m!gM>z2SIw*(kqbP`~lBejnJfmpIr?)^}cs5jfw-{&mHE%Th%uG4jo;vfAvO1!rIh33N` z{>waoQSyCaZ>TK?<(0jRQ|+X_vQb_cl^Lmzi@7QVHL-o|u3;Iz{ zyXePpx8s!gI8WE(I!Ez?{?d;V|84z9e2sUD_JSMgw}GD)G#JRJjyKx!D!T6A;S=h0sc??_8(JJk1F9-FNopPDj zvSEKx2JI_1>#TgP-70?iwDzR`9qV|t-JpLjOzc(|*t^7kVVf6nP%b-m!hoB6GymkE zyu*YIZt~cC9wpBcTZZkQ(bMo;qFpQFZtN)Yn%J(Zu|CU&SzO( z*5mp*ac5FGYmwEYfqNB!qpJTYL!n=M+J6Zi$`)&L@3u`~y)pDOB zZPytuOB{W^<>o___6>X3AKHGEJhFUHE^QZ-PxS(|13RJZyEarea-fS*?svz&(T~p= zj_Y%nr_UcZ>)Dj+r^G+K_-*UIl0U|4P`;t(PokrKbFW*ppM{S1N!jTy6T7le{;CZ6 z%e!&%=K1>3ezw!Le&KIvx$QdRPpECXNq=qotrAD=M!B?nQ{G`h^JbDi+Ku|KJ@u>P z5NjdCtU^qm0+E13Jzs@ie}ja%n%ub-bkAhT7&+FL~v7 zllHPIOWtdl#nBcHo@?r?niEq)H_ z@3-ypdj(m>pY(VBX&$nU?s}llo6M`(-}N|Oc-p&u+r!4VS)Mnr7u+zIpY!b4(|N;f zJK~hEL;X0hH*Eiz>d1M2UL3^_+LQ7-F6!mL?qxjd_2B!-~&d$Gr)A)U9zk4m7m;VoS@3X7xa@^;Y1_6kSh=2nQIA|OQ z#KD1J=&wb~v{>AvNS=L2QL+_VN#vx@k}c7IlT2~}H3^)|nR#DIUrJwsFCkw1o~Hv9 z^JQ&rDv-VQ;D@TN?yjz?Uw6OnxAwQJN8X3||K`%aM($q|;alGmbo^re!XNt;>zK|% z9a_(2om$`c5yKjer0=@%$}MDyFR$m0SJXx_8seVg}& z_7{ux55Frl-oM`bYW%KO*PQ70q@GZ1{tKj|C&36yp z#2 zP3*-)?r8hRVl}@Oa>tFn<3ZnXwQ=od9F5;_KJQEJ=X_h>ty8~E@bgD~#&^JPf!_rG z<9Fg0KjK%=i{C*06#PdZJgXld!;27qgdTpxA0vMkl*jT_UVWc-{rsoMwEI`H{Qi>3 zIXK{p=Z=_v`{*w};%5(efC<`O$gAN-?)=F&cogJItd?ixg?@tvH2=x|xxj9xeMjw9 zn|C6AEY_3$iC*mE_kN?gzhSIFiu$VWDu$OUfjfaX^;&m9-}-QWSO8+lZXN8R3j z>cz!)1;);Vl}<(6T8*y53+S4S`QtU zbpal5w7OWx`-#2%Y+u+_!-@Q{_@U$WdF?ltU(_yG-)a8Zu71-VZJbGe^D@jkbzptm z=W_VrJ?`@7J@w@I^h4?q{k`8=|LpU@`Q`JJ->QD=w)4vKL;Q?+z5>P@Kk`a@QGMsz zZ!#|aZuW(QPku|h`ukUe=A+*|pNOk*F6v!gb$!SOFu`uO&~Na7Jg;!vD3fn9LkB+os5Pn6##?q6ApKYP@L z=Zxo0eUCchIixsm#P}z)yT8M)%fByZe+PQM(mwdfN4w*C9+uBN^72#0vHm|n4u0gz zSJ8jc(DO-tbvw@=?swr|(ekeX@w}LvSHbyo;F0Hxa{cTvzj+(-0KIvd=*2=_;I^N6 z1qWD9aG~Ge0XvVBwHNItsuzp#=HCkawi z`2Y5izwo~CIWl#3>+p-etM_wL-&5Us@Vxm1`>%uEr##1eFK#`{GtUX%i|fz(Hb3{t z!tdg9B){+1dy`o6(ckv+b6M_T_g<<$_!;^g{CGa$Z|aBql_&k&G%k+sJ(crx|HZ?< z_16!SKk`J}@S>jJLa*IH9^^Y4S|=SBb{jn4Xgn%p``hmsYB!r7${&lVe_*_Uqs_1V zLchTR)r-bIxF7f&?DNc($*a%z_pi2l&->9M-~LsodtS*m&!O?K3+u}FaGW3ayz-oJ zTzSTQsjT^wQ{{BAEzj^3=?pwY``=1{AyFWOu_5azU{hqUl z>^k&Y+4DH~;e5K!ZJxLAF*vt8-}T>o4)_p_C+1UJtv#rN0cOKO?zqrz@PM6136HcB z*OPH4`fNBH{~rj0dEFP1I4W=C`R~a)a!`+cPPw_)d$03(-}eZcd(z#1;miG;h<#W- z-uH0w#`~H3Fm+h(@C$z4`Te~d{G9M+!yEZAfA;8a{fLR)dMtRA;QSl<$v^oBul%dl z^4I<1K4*Df^ZlUbr}8&gS3i&Ck8u%y?_uwIlKt|Kt+yg?%Ext>Ur;;aaLo6U`kd&+ zLSEnj1HO!g`GGugd@&hU9LWDrIGvyM7)RHqpUVC|TC%_UTpXM~KK~Z`@%Fwa@?Jpx zgzpjj{Q&oA_3q2o4|@B1AB=zXsGI#iP(PdxNnOjIpnmQ;S^owDlt)W@cy;8LGJKL( z_xBN~xTLccon`6_%`+8 z^SN~-e{5IJJx~64e++oz=TZJ$Am6i}m&ZK!JqYzbSm)|U-N>VmFZQFokOLkK&nNDE zi+R&{84vdhpPRl$9OS`g$ia{AE##5?++V!cd0zA0#J@@z@&GiC$+{E$bY0+T_6IrW zXZ##zq8AtP1`jBY#9^J$ZofhnCvt+Lq56--K3E1t}j`i@8dRg5}Ygk_4RuW zQ77^%ec#1%boiVgFMLn-P3p$_uw5Rx-?IPu`I7vxUhZ@Me2nLF%i+G2_%A=K8|%Zk zDcjyr{&>GT#sw^R6yEdTQ5X;JZJ)C4&p^)?_m$2c?TnYGz4u*t>Um6lUB`z1$_YP| z#q|b{qScLcHqjTjzzrVIIuo@M3%dzs!-4$wg{SQk!T4gIC!0T;{soSmPuJ!%)J*VW)JL=&35A<^z?`Pq;BY&(9?)f3_*nj>1 z67p#C{4u^{9_!cV8scKUj_dNh3AoX_{(*dmPk{j%_h9^DzR9_?dH)dl<$fbCf*;?% zfR|6*?i1Gc8R+w(Jn}pv?i(Ii2j^#xegl8?UpdiF*VF7a@&S!Q$3c7&oW`r+Mm}IQ zw4a!?4=@_)-^b!?>#kpM{e?dpw2qE-WxLNIKO&Fj?K{XneBk8=`=WIr-!6~H_x*jh z-(ehhb$`#n@xMVk^ULe|dCm*%)NvRW{7=@iK<}#q9=TrIr*@$6IgB@2yKx-O3$J{? z;d5jVm;1TW7Z1NZ$K5CH`}|;CK1U5??{z*`aef=Oe0kU{{eedtd4l>YruN_hH+Y_4 z5En6#Cs^QWxLdn+6MZ%u$k9+gKNgd9&4z{SxckZa4|@HZ_;>3{f927S$)owR{yjh5 zJ=*=8qmX@%bpOAd_jvF1-dC(MKW9?@3iJNpfu2L>OJvR=?=1(vi+YzA%3FTO2l(Xs zeNn#IZ(%S0j8`$=q+ZMO=&v9CmGS$Wb$klOv( zWgY0}F#lkJ6I|d1&l?!bH;e~pe3t%z8_Xv-(02^7(QN5^MJlH$` z!k&n@DQs1Nh2-uh7Xz9t{pU*+B1mwi6^e=K?A z{R;H?$mbV7PxapA`+}uCIKZU-!Z@S1E+?{edEie?{QcJt^t_2L9`Y~og!SKZ$T)e= z{e*t#C5&-Ru&1Gz{ct=)C%~ z@T1zg{$V$%zxDEveczUxC*IEnJUQ@o z*$*t9*X}*;pFhUy_ucUPaGj#}SlTb&m-S*h&sBGSw@&|zdi|U_gKzh}NUu}Q$2-n{OaH%k zpnN=&@!*Mk+kf?U^+Em0OFs{||NrR=#{V(+FF^VHuNaT{eZPPAC3)n&<9;I_8OQTC z$m0e*pQ4>Z+KI#bH%!NAxRAw-d_Z}S@Isu(Vl>{^Uv%7OxSAh@Ji%E);B@g74{IEW(bDx(yx8$ArKc)USN37p_@8q86 z`|$L9`0wZ^PpD%*&-HWT`@KK%0+d(Ix8PU8Cx8EE!-td)%AA+ug*Xw<6w&*6vghah zoI&3Bxl-_B9Pww9-$7j#xVV1??bd_$JM|rh<2}JbFD~Q_9x(7jzp}~NKf}d1Vj(}n zNqc@EYA^PF>Z|#&kSFW;B|G(?_SVzg$Ki|b;qLnc`Qts`e0$Ewk3n6*ll%Ve^M~Hw zm-F{OZ=F#$*7M;0b)T=fcOCSn-Mc(bl6zoM?^h2$Y!7(@PbaeI?~50F@&79(_GN$k zDf~(7FMmC!JYU~G;^2GFct^ZEZ@-GnK31I1&b!zb&Ho|q1HC+YhJk&@fj+?r7P!C- z9#B4s>b37!^y@g$i?%B#?c)v9uJ=>lQM+Q?1u75Z18>C8j(grV{?>!<)qX_2&GR3U zUwNb~dcJrr{7d?Czq-#q)`j;j?6&rvKh))rFVwB)()Rq~{!^S!_Z|k1LOrtmd_Izw z)~W40|AI}lTzrSzodHB7@ zxbi9C-;sab*WCBHf8OUE`iJPg@M#;@aX`-FB{dkNONz+nD6{=0|Yo?DA`$)97qn!dabI-bvE z-XrPfdpPqp<&)?1%VU1`J@dRde_WTi8jqAW`i=*^7}gIsK|9#IV&jX&rgL*3JCaGiV)X$L$UWD_w z-%>XVOl9is$WPGuw)a8D`{dE@s4l{e!L z@+@z}1CKWM)zGh27t!i}IbOp;?x=mojlFn~$CJA1^)s7Yex&StLH~~W)lt6-ztW1>ZOK#?5nLQNO7lKJWbKvA*ei`sKLD@^zpejlWAh>)y7Lzas9A zbNNYofaX1wS+Dt@=$~QHE-qwoJ1%&@XmyeL3ts=5-S|k^d7okTbG3C8@-yuAUEcKX zc+ht=KH|b|vi=mQ1Mf}uebWyfbr#%17W`S%-7nq8sNX?dAM293n$(4SDD<28t@DX| z_1MYVu)gsly)W|IcbI>>-?PqO{poX}@8x};;XXnC0x!Rt-gwB1ZGZet`0F_|@Yi(> z{JMVPUztzWt=~^@qVMQ9;=)ec$Op7eZe8Htv`&oUuZhkpuI86=q3<}+e=PR#R-1n# zKf_}E15~ztf9W~j_XRvhTQ8myqV;XP`Q9zrpB;b7D^Q*-_3r1?n|!dIlR94V2ifz- z_izIqF3&IP+5O%AzUSb4y7w*atp{HCzR&f`7uV@?-_+iDj5G3-M=fuutiQ+;+4h0{ z8EPj^#{sM1Lf+s3qt!_^S^JO0YJMnB^c@quIFLUU>&g7;7wzIk7ANtT>XAd4Iw*LP zzNhuQ9PRRE$P>>8(7Ic#?zNxvEBiP8jK(ARl*}KD>+}BRJaWEdJ%@YU{GT&ke-7&{ z+CA5N@3uL2eGlR1xZC%R#^;GFzg(aD$DOC0F9V(o{93e|AN_PcIM|EfI>7M;ChZd} zaDf{-&ez zdn)T>Q2(AM%ljDpCpg5Hd@bkLFZl`~j~3&E_>!;9VZSAR`uj2ObBw=Tx6ecHXTqm@ z&%$mR2l`)L`uybn;d=qjFP|5^2jBNK+-rT`abEIu8L=B*%&+%adF1m`;-Bl$Psb4* zr(@8+<3OJc3wePXJPp+s`j5q=|9FCdzN70@uiSAHZ*d`u_U|~J_><_x&AzhHiwC*P zcjpsz+F@;;TyFZpT~@+o{@%)P1D*Dun(tyj-Q&I#+Y;ML_H`*^WF z*E?9(@t)^-`I4`0g>^nz$AM4xe#gAY`n^AT|8<|)`l%i7_1#|rUK?-YoW>hJ2eSTa zw_6=7WcA`f{|v)H)!MuLc@n?wm-1-q zP`2HDalPbgxrOJD_nt!?59+Vv4d}UKoyJSP4iiD0%7cJM-pkzA+N@vfjN1 z$zSz-{J`G?b?AKxz2}nrQ5NeZUs)8^al#*;KkoZB>)Fp~nP+=`d7ia%E8xTCy}Q51dh6fu zcrRXl@8l02e);{EJ`bkzd0xtA=Dqhn{k0t&FOP9OA4iLS8Q-R#%EbL3+uwGvXkXxN zc#xl=bv?{;L-Q|g+O>a%fn7)a=zey2wRI^MdT}BrI6e@ye}&M-;CpXvfy47ych9vr119veedY+ z?VwLTZ}NQ#ya?xIo&-HVuYdX}pWyu@PMi2`;+MpA8DG%-Of)~**-xCUf3mI~=R^7YBHz&8`)WUD zg=j6Hf(c!vyPFvL7YCP)k-sS-e;+qXelWm{q3tUfdqZbddC@)6iQ8wBB z9ao#TkULKF9TUAckl(_`&AE zntBb!5m!4utaEW%|JW%n#@p7b=gmvLmVaD3`p=hqRfjyt-p}VL&mGSr-xqjZwfAkl zkMq5P_fF3{&mre`e+k~VC-F++HH>%93-SSX!?*O-lX(@>e1a3Kh6{Ov=LyQAq`l)n zF9vc)*VD1Ddl83@_S4?>!u}b)WjE=c4F|Fq$eVgU*17vAyh-X{AeZlxsSD%e^GWf1 zF<$buoI@U^c8ZHe0s@Ov)J;+=N0Rn_XVl!`*44c*5@PNJNQ0M*>>MI z@LnSPya){1eGga6Tiz2rpTNmFz4v+^ZQ|&A?@9d4!=Yc97jS{K= ze|dC>(;&3sPsvB63Hv(?45M_&yW@&->s z>wTEFh7-BK^#nKiXxQgd)}M|G|HMM>IMH_u^x|o8G@c)di~eOEzywFb34c6?HvA}` zd;Zr)-FY8bu9tJk^T~ceo!;*=WPkTwc9D9U;Gy3H4|SU00B?KiKahj|<@sg(dv0)^ z-SfnD&lk=q&z-e!eIA6zwU4iorOxoYVft}9{(>S8H?l<~EZ{6F^cCp}x`~U2GY3=f6 z!<+bDGG2cYT;zR`_oLtPiGBCh^G_cAgLA3i!S;Oc{IKr91b5?+e7bt7? zAd9vi^b<^YF+kh37u83zpYn?F)*D!D{;3~NaG-yNLHi*-+D-eZr{0a@MlVm)8*lXk zyX83GWV`^4-*BIVH{0hP^b<^YbMSM?AMoDae7^YJgHQ4x;Kw~LyjQ`iL%aN#jVJc^ zy@BUM^z*{!D0pzs7oUe3e|-MApWo7Nd*0xu_euFQUmojozY5}f^Glr>w}Lkl9K<vyZF1$>TK79?mTUN{SYVZ363Wi=*7eO#EmRY z><{s<4yW}_d(p4QRe9SVy9C31(t0HChj#Pn`7^x7$s6)p@(I~ z^{wWAAy3yq{U644{B3^R@8CfoFZyX$^29pQ-g(I5h7ZU4TjPs)Ebatz7xjJa~urfTjWQ6$){mHna?^>U$ked=UZ3Sul#<31AT(C zq5h~p%7)MqzJUAtVcwU1(%Pwm!8o1|Y2A|- z&zlV|5?sW|_u0#Q((e9vv}eEczH(aJFTcNd__@7Lwev?lS?A&Vfp)&g2cJulIH@oC z+23<6m`{HAyyWLU@@V@xkWIpwSIykO}b^F{N z{=TU9CfDoz3AFCzi+s4U`;0vD{hROAJa3el&-V;I|J?Tq@WXxT#{Vae_^14b*OPr} zTDPEaTjrlST-GOXaete{YZB*+#I@Y7j5oOG=YARZQ~JUD@?tRm)Q=_~WHInlR4;Dq zSL;{i8#E50?Nk5Wz(Kol-K=kcu6L?uUy&F0{TBP6?~}}@_n095-oNCHIN^!y7s*GM zC-Ar~{0jEX!93aWJLz{(f81Bi7krUNcb)JcJx4sJyjOXDk~f|!+9`LQQ1||xx8ED< z|2s_fqq{G8?)>z@n~*>5Q~F1}Chq{KeWwmqY@`1Po@!buN`Qcm|$iw(@ zpH2MHuT5PY>kB{aCkEprxIlR{<$uGC?E2(~Sj0nAFDC8d2?qLYe8B=Im|(asdw=-e zBcJBm=LGk!1wZ7=mM`jkPIVt6?gefzX-{N%v+)0b#@F^EU+A}59muz&ZjS4;F5Mrz zC&>fQ=cs!wQOBN3TYhog-20&8z>EI(1^s^!>F+Bve>{i6{_>PMobm>=ZiDp=>zewq z4hz}*P2&aj_?f37Khr#k@a#A)JUU=-Zr*#eb;Wwi-^&$^Fa3gXmg{DH+q#x_%)h{* zU7W~bB9DfFY@Nsp?bQ$CZ#~g(3;E($3Ahtw-`Q|_waKbcv754{rSe{nftztI&oZo zug7!n@&g`i@5%4+$8(H&I^<`Qhw}v8zqj$DuB`K5{Rfms^2dE=8PAp{^Rv;X{K3B> zuI{(KhxAeyWfjT-Q2uT=Ldcy=sp$jDZvF6c=s{mPrVni<0yx90Lp_~55&oJ9OFiP zg!yM4>t(`I>!8TL`7yuV!va2pbuG{Q{Wc|#>;!L z=el)>?EWMljca=Ub^l>Mj6Y$%ULVBifE!%kjc?Nj@&Mhxg7|y>n6G<3@%e#x$s2LY z3oyXT1NgQ<`E$sJc^u?3t#|E_<&pJae%&_*c{C1pzou>$==f#+$#>We8jqmP<(21z z=g6%C>cM=P-+NE-J%)ATJ;wc(`YP{r-hbeac`EX?UZ@XnpfBoWHvSyf)p%q4#YtR- zac?M}(s78NbtQis$9*%I-_OT9SB#VIH~oD<@t*fSuY&i!?7h$D#LheRHTPHXz=Pd* zQpgj`j>Z{0%H*NQm-$%aL%xWcbLUX!@+FZk!l!}$uzw{e4@&-k=Ff4bd31jh(Yr5B z`XAbFd|2lM&Hu!Y&c99lIo=?S=Kub^K+cooTnf!i0^XWYnZm%kM_jBq+Yah-onm2CiUd{U8ix8Kg03OyZ%^L=#TL>KkXjjdF8#{ z`=Gr0CEjo!^z+yPjF~wKFF^;^1M0PHGWzj%eo@J+dB9% z05pb#A@O59_nY zbGCeMWb?7fk31OU+i?%`EqO(M>m;#XSvL+iM-_#a?*dlWWfobtwXg5mmIFL99v)_=+;;<><7#*bU~>gjjw z$lIhIoku=R?8EsOx4({!HuZK97b!^?ye=uIP@vQs7I<7y|vGq3`|0Q3u zar3jC2fvM@;~n$?>WBPxea_=LZhcS(zK`{JMBe-RO9vjuOTM}ngE%DX7@+em{hOV^g2kUu4&B{sQ}f zfBPk0(|o@dIT+vfTJq#RZ}?o{{SiMGe$VDl5;x;l@(H~>-{fPGzo0%QnBWG>Izztp z=(Ri68+r6|&3g{@=OOsCL3y%Uo&(wT^^&h)yx%Kh{+9Ox>w)@`2l7H59NLXTw)MDf zaTp)tMjYjZ@x9|R{w5yF`fjrRXcy$oJgZOVYvY9L01xf@wHR->|&fY!NkQeW1w z_S-uA@{xz_`&jOGzQ0xPJt>f3P3aUBDmf)$xY@wa*WHAL?__J*UX$VZCC= z3-m?25AmMJ3)y8*!{a?nzx@_w|$QN06f%4@L=fOD1xMH+aFSlOw2mcO!r*S7Pfo!~#({|8!FXFq*2dEs>jcC1$USHJF zLT{Z8^b=k!dB%D?cYH6peSYHkD6yNJN5~t#3}y1bLdKc#!a6P;c9O z5odXEke7Dy2weKx#@F8dNgmBxm`8X}pu9M=oA-r(@^>+RGVfh4vh87fj0629avH}T zf5$;@9tU}wjYp@|NgyZnv>Ts>dhNiVUW@jro$qseKKg0K>re9g4Ws2xUd2nkn%(Ci z^I?3&vK~8ssJo5+cz)tn+Rr#+zgUm{%OB&iusg)rx;G!zyK%oV^DOW%|7~x1H2;(N z9IwnfIOr!|Y^(H^Gv!2AHP6z!r{p_F2 z>pAW3O9bbUJPPul{4dB{8BGtCeEiueq$)U%#y zc`+ZwIHKb&?3J&djF+~PKjp1o#<7h*=-0=WM}vNces_N7qu#Qi^>nOD?5|(wop;kN zsxS0|`SokJ_2{4NOM5UK-+95?PkZ!JM6Vy!^w&?vGY-hkn~XE@ds^@AyI`U>zt)@e zwCF!T?Hy0Mlt+v!4_%kPC*j`{*xVZ?D6i@zU+HuIuGQw;Po5{I@sY>!g?U|vxLDt` z9ee!`#xq_6d;2LHN9~t!C(j2oKeOfkwllu*EbNl}Ezo%m{%!LK+TL-{E+(=#+c<;y zN2{k&1~;gGuE+6?^HL|ux1D)hul>bEdw`Sq0vw?F?R?lT+8uAuuKxDZUTpJdchKvX z>#-h|^<+N5qfC1lZ|7lN{dfGJE{p!F@o6A$?%DN|2TxKSy*%VX4se6M5AwZc;@|dM zQEvWE*F|3S&vnZCV4d4_w*4X)C(#e%0*{RMBtFsdGZ?qf>xaDD=o33}Iga%JI=^{H z+p!;DI4^QQBI$9Bfu)`vW??yNV_^*avtt%*O*Z+&gXAB=mz%U9ds)AW4` zJQLU4Q7G zp!KzUuVJ0Ex?8Nfz|B0$wr~BTzp{P~`(bC?^rM{DcI}xrtas|^w7Q!5$vC6=;ryu` z{gb+M{Irg(YwV_cYWyjli|*&S-+u5XzV$%kZvV|V2i(l3A5)&7*DveH_#4+CUdGRL z9@aU)Lp=1ye#-Vs#`C@!j)Pwd+4&dtlYAX;HB9m-i@4A)P5UH5GAZgyq6@#kC!;(v@6vT;q~t1J%m6HNLU|Kqr{7xPXq z(I0R({}OqD`ah5ZoZt}|-}O6RpqCHXvzd2-#(6ld^@OaQ^AGxM#&f^7UPaG^a9-+p!XMvb`#J6Xf3@() z_Rah2Y`oa;XMo1p_37V+&*Cy3u2X+r@)t8F^=~~G7yBt2??t@DG#`wU#4Gee**M}) zAQ$o?{sY-@7IvqNGqKOs?;v0Qkkvb%sNQh``-`r(@kCy{g^RdoSB&F)!#G$s-~tCY zwF4J%n)r9jFaA6JR>t0S7y9w6zxK?R;6{HOm;SCR)MFp|sZ3prR^QgUb!=P?{ffFB zejfLeNBw$_i$9>AiI?yHiun@W1SoG8?O{LX1NFy#u3ug+{D~L*ArFVR4B}D9+x)k< zPxP)cnE&8c=@0Q-4b6w~FXq+XZ2il;fT2u3#}N3g*89OO=|8}rUN`?w$^X|L{A_-|XmJlbV0oUwpDU{e<%{zc>zl3ve<${d zp9}u@`(mDlX;#G}5@@ZLLV7X4lH6N}+)UKFs(BHTP zEX!{Nm@U544^O{w#Pi zsQYM`$ns+1SGM@N&P`ke|9iggcA zIf;w$5ofE*-Tfs_>j`!q9pl^b6U@KRi~7G>ypnMez4n{_1ASpPLE|!+FG1&V+-u*~ z71V1-d1M~9^XVu5AE|!)*yoGi#~bWt+3s_PdE`@47mM*0vVLUq>-u3GuuktG!Mx`A z#>==+9}AqI`)*nn*atlFbFXs!#IMIAXuo!@tL4A&U;8@_>!0-7*mYd!C#bC5Y5i=k z)-Uvn^)B!bSahhPYy3=l(cgJCT`Mk-~a9-qS>okssaSrYBV6k3h z<2dM#*^`q@$@tB zZ-WCr5;?G+)&=X&7H4@9#9hA<{{nm4C$i%V*Wr5<<{QnAZJfa_S8G4WcO9+=wB2#U z={T((0=@0p55`N-`40BQIJ>XgxPXiJ9kA3pul|!y<5R@x87}N6xEOD@d=>J|3-ikd z*AvzgSo+1d0S?gl(stv~*1OR!$J1}tcfd)VE^vd^uj{Nf|9u|fbJlqG;L|eC@Mrp7 z4t_e`z^}x9=&$QC9{OosTn~1$%fw-Go&rNn&6Df7{;lFKZW1MWjH^0SZ{#S@xcO*L&F47P##!_e16g~=3H);1%Q^y$ zgZXhCgYo3SATGuysHcTK!2lQe)W3-zi+oJ-mF|Q1GtCqBciq+pIKYXY+8z42{&HT% zP4Iw|xVp~GxUR!>P1ZHQqn+qDjO+ZDKi_=tXY>E+xBLM&Jat{hSAWucTL+-)a~(I{ z*bn=Gfxkx?G(RCP$dA82Tgc|;V3(qNBi{Nyna_BLY23i=L~5 z*&no@aoF?^aN3{wt((Pq#f==~J@nW0FkZ3FvX0!J+rDhQ1$OpJ#<_LtzD8cQD8KM) z<5#&J{Q%96aX7{a|E-H+9M@Znf55aI9IhW!PRD2d%O~`U{*J5P@rN0|`1#ETx^K%P z-^+O}xvtGT=65rX;|^r~3;i(O;9wlIO^weJp5ePPf-8UbvwRj9+4e)W3PY8eH{I=jt2fsaD(PyFwbE8 z#Loj7m;68;*}oju`8|KglROIa!*=X%{}#WAJix&3B5olvj``k>-{#W~aal*$9mk`aIJQjXz#uKOhfyZ%JZ?gXK zdpP`F0l%LEy9tlH|J{7Cj%0lOao*MaGA{UOzhxZsmwX@lgO1nxCF4%U(aySYoXI%D zc^sGi#wU#vXq_$WjIZNv{7vHFIo)}*j2Ae-YJM2+Y5dI>cF;RkUyj?buzU~-Tcw{`)7yHyPFOJ9f15EHx z#|yczKg#$$^cS>_T!(dV<3$`iKkx6S^L?`Cg>^AcAm4g*{mfU$;=-?qzvelx7n64V zJIG0Y?W*+)+HXJPY<_I|9oox&+B=`|G~QsK-{5c@#=U%yALQ4(2eLexjZgYzJ`eR+ zpz=~r9=snc{4CaS$HUJqZ|q!`<4^NTT`bVNciyCa=ojN!cjn8uP5e|guR%O~KDys; z%X82ne%m;L$NHoHAs>@<5Byo?6`T!ij~2gV+{t{(+wmQT^>5?l_d@aB-tWgTf6F*C zpL_|{W4(&TX|#L}*Xua=>OX5=*Oi=&PZ1w3z?q)wq!F1kJzkcf85E z7x5N1auWXn101%~f8d|vTi2WXggmic$%A>*PwQYYUJwW6W1XAPB6g$cdMF29u1A^ zVzt$9A_r)-EwWHn9hl$%12kJ=5zPsv(FFtS)nvAd>`k)>2Do1G7lEE&f@a@&xAQiC z2l{QlFEd_$2A`ej;4)Sa~I`F2zXFSrc)%=~vLw{M<0$q1Dc_1Ho(r_6!aDaz6i^hGSFEASp`&p+A z3weU(eISe0$CfwXv~IvdeJ#+s8%=-vG0$pP$P@Gw*u0e~zlE1m+~2Yc|M%u+8Nc|E zHxDV|E9jNQ?>zLIZ@qIJcixvryZXU;%XJ%v=C|vLmY0PbEzc8qtEXNHTwqXl2`=jp z4C-3k);T=*Re7`;#v^GT4a5G#u|VUS#up6m zke3abr$U|$6M29E9_tpg4ygQMlOkT+;u zl=T1}FsZk)?yN)VHyb|V(SZk}--h8$f=k4{pG%Hk%sbos16d5@gWs#I$Mp^L;rc-1 zV0k3pp)ZuJADC#wz z;6&fieyjD9m-EYv*Pp|Avz%YQUh=g$3cG6U$_IV4buQOQd=fN%%eb}tEaPvU$oB*{ zXuZrp5Oojbe&?k zZZNz(XBv(7Gz*30jAndK8y+ z3nn-k%9rtyuVsJ#`p}XmpzZmRuV(jKb)9cux8arZrR#Xf*KToM@)hEsx83zD^g$dZ zxQq*ET#ffK-Yu^ad6{48V}jdy0h2mg)*Cpe;{>hqLf+tL{F%tB@ksuNr;X#d({aH7 zPxG(KyRD;;Cz#*>59?o`@k!$X4)C!>Z&Pp9Us`|QfiDZ3p!GeFL%WxJE${o+ypFs8<<&%%H_F-U&P%=ycmGOS;n!w9 z+n4@=uGcth8s4KNDQw2F-s_2OEr5S7lvUXVk6rY<(~E+xmtl@}`i*jU3$L z<{@cFXBQkCh{KbIMI0IeEKn&R~-5QM#IzAw~#v;he7*kaV+GHiGDN;Wb?AgPsc(pPV)!`c*y^5 zSjgf;PB1|0YExh0L>32fXh+>zzlA)lXRz}rssGChcyi#+6wz<_)c7+P-+A>b@vp!I z9?E^)I?aUmC&V1TE^b0LcpSxn^7Fp!VDXlNc6`T{4I;AnW{3AjP) zXCfy!8gA-NEaV9eFu)^kK>1|7A9%39DKFqj${Tnje-gV5CgU&gI3Ip2{c7tgVC@ucoGdee|twZ_I(E2a*M?S!h(NNx${1NHrc%#j8nqT@?=;sqm^aG5B zhxM<9#z#!!1O|9oyp=cl)v%Cf!$clnfT!huAzK#{SxjUxkgcmteOYf}T6bW8)~R(n zsoQKA$eVgEFu_m{PY(Q4DhtNE942L^{AaZ0jptJ*V@S&P(FDs z4fx`@bdayz6aFmcX@0t{!TJ&`aD&Ft_)g-wjW1|^&G#ao`w3cKVo_fkJl2~$X(*2h z{Q>1q$Ic_=Nk1{$Jo=$u3%{OW(LTX!IFQA+;$-}aI3_rntX{M|usbbZ=C9+zuD~?E zV7!5+)sOWw(Pu+>wW-eqR;$;6e5hw}BNsTVcW^a6dH%?!N&D8$exTzA^G|T;AM0^_ ztF7O78OI`iqWLjjNxll)=C5J2y0Xp+{RYn)IH>mmkM++v6QF!bFs^8eHmiLLAPjH|Q@U*(J&IG#j5Br(-x?<5TxXKgET=1g_HCY8{VZg0TUXjqzX{GK zxX{a+0Z%$+}bX|k> zO>nzj;%mIK<)NCqkT+<3j8;DjS=`76w62pno=k|X{8J-qT z<6G!$@3>n(<%M2M$s>a6iFgyyZiyn?haTyVX@8 zixWA)0a~ZK)$v3Y6FETZf5C&256Yf9;8YLVf3$hF^E5y8UtF|r(0F8vXCdz=c+i{I zqz)!n;A*&$4`^NIlXFP@vd*ph#vge!8js|Y^K=ZybNuF?e(HC})z;VLqCMZhL3@Bb z?!CYEqWzv>A5VFaN3oDQCi)M>fxT$`J;OmgF6ua~XRw~=PveDrIr0aTH`))zo8STu zs6VM+jW_25`LkMll{b3PyqV8Q9Td14ZsY@6*GV1EhU&{Y2j$IavOLPhr-5C^us^6@ z9rgPyTy4F|iGDUzF9z+W#rds%_8;``80b4Xk7!;$6xWkFDfHq%?ilE;%c4H5->`mL zy<7ij-GlNa;g@_Gv}`z}0XgAJDo^ z>UcJ^z0hy#{Rzr1c_cbc$6y>$zdGvo$KqtY&oGS#7@%=3WN{*kiTn%)?awf1@96wp zZ+$H4V1mQC0DJxIR-Y3&n_jzvet-dPc>~IaR1c3PXuJImc8)t4cR4pH3D+0b_N`w4%JeBd0q{6Th{j$uE?ZT{(}et#@Z#;u0x z(|CXZ8u#8$d1BWw(Z7WQyN-drbLd& z1U-+2{1LGa`!#>{tK)gHj`flHYW*Bvy>S;4`w40<+CJL2(|+VpyR9BnzmNl5^eg1u z>Oo%ke%aq=^Ls{$@2^U}ZF%!OBf(#POaH0?|IaRXjv3VbfDfCxE->W@_Q~f%!SB(D z{yvbO!}j}~<4)GK7=JTpx zQC{)@+zk)%FY!q|=(zg%47FQreIF}N#wl<&**J^ZYbO@{5?tV5ec9F<$lBRoO#45< zO+8qbji-$Hx8HJx$%J}$o}Xv1Is+Q(qrBY#+b7zfv_9yvwy#z+04-Ep4bpnrk|F2@DU zpE$_pGt4J-pnlVS-oXFTcr=OEY4JC%hjwM{xBb8csvpM5cE;DvxH@k~_hwC! z{&(BA=OpLn@blZouTA`nQxVqzPU8zE`gnr&)2^^v;I?Jq9ujAM~sW#c)~d*6{io(th$5#=0-Z&CN0 zFC}k0Z{AU-e+2#>D6c+2{*T{@zx#vU?-~A0WajfcE6+F1v-;k{uKQ8%=nvMPAj^09 z#Xmvs`dF{`(aAm1_!;*gzUrqkX!|e^PcU1*g}lMjFyMiC6!mM;F4|s=NAg4r`O^6F zpF59=_@r^N&XJAdMArV;&wT~d-nbq0BI7&WM)vuk*oXJaqpp(sQM$iVzqcNL{IK)> zcI`M9yyxBTH~lvC`c+UK`TfCPNB;@n_k{ab zwd9rigMY1x_zdDEe+KzjV1Ng^G+$3}qAzfP8$1nze41x5(a(mq7y4uW#+(1rc$CDY zK;<5H%KULN)2^M&6t>T|?qU%ua;4Q~QoUEcUS^q%_s z9Ay75>(z6~y0(5j7p!mps+A~zWgf`OB<|*Cs(%BY<=K26`iqXA%s(3z@@V>lEN`CSXgqVApuc|T-!s&1;s39T zlX0@eQ@Qge7BKKf;xkO%jW&3)hRl~4B7;CtrN=K`KLE^p+E_aJ!UbIY~+KK180 zW8JZj-+PsHEKlT_{NsKWw#zr_+k2b$Nxz>v{E~@>>^9FW)4eT9HKc4xiUb}_g zzb+=@h!c5$@<_e@Zu_wg*CQtS#ksTP%O6n>pzp`(3-s?n>N&(8J@h{J`##Qd=+-so z%6%@OU-+Ey8RK&vIgWp|>OSXu6Fcjlb4VWE`yqbc^GzPek7z%hTjFhIzGwYDq5bzk z_Z4_loX7qZIG-aIc`{$-v(SqZxufli_Kq9<0j&@7KdFPV9zgB2Tk65x@F2^hE2{?` zSHD*CyO71+u57zF>Gz>Hj0dQ^)HlCNJI>n$PWa&<=s&!`Le;`0u5Qtuz_ zKJR#r`MHnpweGpW{(qmBzQy>#kM}yBmo9(3&;1VeqIK(ij^~s+KK_O1ebDC_&#_M! z7dP(TYxx>_`KtU?^j(H$zTflwzVUhY=x4mWCntF`pMmUsZ<9yurZOo1?619euyb5- zFpuMk+AA;Y4!9etmq&v-3+y^NzWy!z6RXKxZ@W0L?`V6+#D0Lv3t4|R{@bp+xQF}w zp~2@l*7-eu-cu*s-#i!Ya}VwJeDI!yef-6v|9!9Qea~}bFupSPygQG)mCu|b_Z)LR zd5wJQRsQ2g{!8ZLUg~|*`9lBXqyEJQ{>Zc6f6R05vBu-wLx2C;xBm0FK>XWBdy&VB z=d zDfQr$@!NIf%OhXjd+Oao4)1f^v;2G|ITvnSa1Ob@U*1vA;XUn($GGmx+D9_qSHRCe z&msHEpLevsf1vlHz%TiFpWpbrHGK|wdGx#YsK0*52mQeAzGswg_~%WGd#`S`WCa*x$;84-@s#ka6G}# z?uoyyt7z{y(RWPr;y@MyS^nH}h5gEYtBvpZYQN-tf%l%ff4?Wc{+!%Uj z@6S!_igQ4o6}-ClUCyt2?s^aG&rj$*uZ_n&=X{^>DSpW#-Y1%mIUnssUWylXG+W@jCXqt(0i>KE<1Vb>r1ZQ~8(08jJB`4)Pykj07IG10$;13US!iF34Z zH?sV>vUS70=Y7U|`aN&lkG+?1KPvWr??=|R{o@Pj!+Vi+@=wuoFN@zr<{lUFiSwtN z4?l|c9~<7>`sQ5my;rhsW!G&zp2j2j6zG%qB)mF|zo~0~FXNuKKA#QNqwKnTZz5{v zxu%`Gq`&us)L-h(^+e0JvUQrqp`rc7L%Vfte^EQ-(hqPw!Hr(~Ko*_X@mKS+kj07o z43qYbqm5Hd)?Pd1g`NJ2hjr|KL%yv~o?{kiI^p1Z1zUsez$kq5WUmp5F-5<{z)<0SAL3Y0>>;g>tHT|T17x7B?Y`qA^ie9rIqg?|2unAmq5=*8K_)!uf`CFR2YfbPSK_a@_oJh9(<-?+~=-sk`P zVdvlXzV|-*xnJJqj1m?!%r#@TuUh{PFYP z`~1WCuzauOxj`JNueZs@$+!*rB|P#TB|j5BRlDEa_Yv+p?gL*ZE}loC&rzOF+KHai z#*6!~>vvsYeY!5>$vSLzefAR<{dU8HY=2RE<>~xjHC)KM**Q+fV&0Auy_m=y2l|eI zUR=cI85*yH-K75pC;G#>e6G3A^WG<{>+e76V0&J{xBGnUzUy<3{grKJoO_>vZ})Rp z`D-0fKgIKWun*toZR*(iF3%6vdDq7|G+i%vup2EdNqj`dE%-U%tLNYFe#dzk?kE2@ zb8oY2Ym%Jj1qTKS8W9Eu9B_~*5RF2iVbJ=qXsIPeA69i$S5-F&k`O3~H1llGLK~2& zi7p@}g6w&Fo|lrBl9!-Mkan%-Nt@AF*r%(z1@8jtMMVBZM!s)me&1SWZ_lBDj?_!= z^D%zUBj>H({lw=)+TZ6v;tu8$*b8+17vIHcn4X630-h6`g-*MRg8|ZvHZh8L%7yfGH#<3W8F^{00 z@2T(SimtCZ@}AE6-t)%wR(Gzq_rXu$1^a2pAM1P1`-*z-{`OWcO^|MF2 z$-G4KFk3$Kn-B3&&-z=NehUn6qu&JO^*t}Sht@mh<$cZl;bZ*fRr~kwyKix?4fZAP z4V&k)MLfnou=P8i#BX_EKSS#!^{Vx2JL}C>e(YbKHB?u&OX_zV_@7}=?)*D$*6|rG z$~%_p4{AH!WZda~3?J|3JDwM=dtX<})sH;?l=W99qWZC1-k?wKb$);K?%%d||Av>o z5Ai)+&BwS0Ebe{r*AM@FFQK3F;=It#_XOO_ihK-sDql<6a_igP@&4@5@6D(0y$Ak} zLFcFK^O5_D=Tba=d~dp6@>|Dr{aH`fH?a$p9|PO+L;GhK)bH&k{$8$sQGTq~^b^?X zD5)n7?2ci74SW2Xd39Xot6^b_6Fb4t?5)4W9X=PU2hsiT)5p4n=Zp6>-{ZONmTTLO z?LVd;QGI&9vz_Ol6Z_`?-_ls;=lX2x;os<8j{lIlz4n>bYwk)tN~C{T}XQ{KNWfaDv$|tjD@*kLH&b z9nX_?j$^s~=`Z^S52${`R8N%Kj~KRV=(yr0&W;Oz$HFfrcE`YfxbJ9B{2N@9-~Ah& z1?wN`$n!`2$ZOH(A9WzAt54yT`|T&#o@e%>U;e;Hzds}I{hpcMm%I3v@RoBc(3`pm z-(&nK^(ePr|6R!DT-kp^oan~)%)Tc}KM(et{PRbB-)Gvd@s<7l8|wWl`u_&>y~4-X z`M^7_>k9uaKjGPIeCz9dT=x$|d15o<;~-m-qfgFPAsc1PprXdL2tGQYy# zap3Q$el|MM&ep$i4(|8r>3)9bz1-)acdW0U3(0?V_9^A+MO!_o8~EWlp>BQN@^jq$ z*YF6wPWT)z__EP zxj0u6-QVv$m>=`TdF*=l{N?>}!MDo`?9Dp6?%E4~HXanVXg%>ze)-bI?ezxbX}u>n z@%R26r=#_Di{J6ZYV(=c366&P1OGxd;>NbT<5XwP2YbR(d41oW$}vdiUVJ?R~FN=q1>n{XHQ1ubwFPJd)o--h$fU^9uU8yhT6v`%Ro9cRbpuL+?`w z|BHLD_2aJ|^Ge6F+9?a%tFS`Z@S_FQ>izZtRYh7vU*$-q(EI zudis&y>hdkyWf}lyXP3X^4vI_OZgY{^8@f5h~N8_JWTFg`{hy3_hY_y^L}-8#&eec zF7}?A%+q;=@epr$9)TPGo!`HEj6YZh&zX8p{OD(Rf2E%M+^!?Ml6S7R<)iU1vBin~ z46}_B#?jgp_HO9>?B9CN(0WNf13bjh(RnV)tKr19p7y{mW@}g2v$fZM{2YXQT$}Zi zC&4`^eP8w!>&y9b?}0qmUmd_F??oXm;O_+0o9`Foi~IAUpH2HIzC7YM;E=!EkKE_I zuc@2GychgEKF{#I!AXA`-d;Z2@8^$kH}PAZ>=PSZd2Zf&Ao1P#5XW}iSO=e92lFiN zhw!LeFWRN+h%MjjS3U;qJ6gYEQeU)uHh*9{p0@Q?t3R5ZPi*T2<%ju+jwdej2+k*1 z_y;KO#lW8pt-r~)@lEP&(EZ|Q!!!5S@P6gK@BRI=2e0nF4W9xYEO3JfZ{?xo>Ai<> z6CTTR^-%PqZj5ik(}@mBozh=1|Iqe*gz>UZEaqRnr&UkJ$NQFvU)}e48Nc<4`o=fm z$5ua#H;s>ZIPXDR2?jVt`m^7Kzrfw_V0V5@=wtf?PfYDIBh?c9DLO1h?o@{sP_wihZroW<|>k{&U{W|K3!jA$6=zbf%XQRG)aDIWV^e=4nnDE$sFXCVD()xa0RDKS`bC`LXo=4DDSxO&({86 zhdRPGKHGWEaUP3$qV+`mVo`sBqhVm*ammAOx>zkg+7o|*1@49mdoi9ov|f+Pew=^7 zpZgpmZ_v$sPX-@@^Jt+5`R)EJzppOPL!v+VRB#uyj@=cvM9ysJR{TB8Dy{CE( z6+Cv{$Ne9i=9T_^ujl*h&H1#wCo+zH&!MX;=54>l`V@ZGC-MIR%3t+Dy$LRnxb=4| z>UCVU2M_&>=C@r~5A^%O^FL&~{%r9{`-wko4?3>sIHG=W%XhGzU^<_M`X_!-|7d>8 z3;zNSs6VjxOTMNf=1aaps4L&^CGWZA<$B52Y9XGNd^Kak`-2Xa_>!;1QSR5^eE;yP zpGp1EbW|^oddK=A{m9?@{15NddBMl{Kk4V+KhSgO?z`k;Fy5WF@AG&cr+&isjOvSV zeGeJt109?9)$}26zAFxRDQ4rX_Qc;&UIgW$^{V;9b5{L;i+a|#ec~UW<8Ao|>KA+Y zqFyze*y6yBhWZn~*!@NM1{XLRT2GY6@^!;c_x0qxuJ5M~ME=}U`UbvmN`#a~)!CtPf_b$#0bv(?2@3(o*^SNuA7xiR4 z;+*tXj3b|R<5OUNR~*jc2_}AVVvFYKkT22tqJGcwqkcf^iGy(hwEbqB)$p0WTt_e) zj%Ek;c3naJ*4Osl?Y%|YdZPZ_`YXnBzJqf2arwS^kLTx-@@q8x6!rnja|Jx`+;eEj zQ}uyfyg#ZJpRe5iJr_5;R*wVT9_BTjZyW!h-)eeI&lBRf_fd4>=dj-Qx}JQFbbiK> z=yo?gb$(g@mqq*OI2f;E;un{^1GRfQ{mcCb{dm8NHb3XFTfgP{yn#u%IIshh*Buw@ zUJdnc{G$HEKfnnd&~Z1mc>T`D{KChC_v*-d&ea#?>SlTFfFXa?7xk<0IN`I;8QXi3 zpX<2a`#CP<1$xgab%-9e{O6pI_ZRWs_mRAB@pE7M_q_D;Gf~~CckgqaL#OeouowB( z-q_z2kGy(<@>?9lA(rtp?EOy4r_Yz@Xm~EQ_V#PLq+A@>&oC&L$MRNO@VVo}KN{*U z{Mw1_c-o`;iD%>gg?gSF)LYcs&J*7Iy&lhzi7wQO_aW_xewOvXq(A!!-xt9D^m`8K z2*3J`)}Qx2&!<8U#(O`%@_h;D`#e8~_PxLRh5dTI1aYhPM91pMdP}{C=3U#oVi)#z z#pSwzuA6x9Kf~F^*WRt)fjxXbgMI=`%EenBe>6PgrQ?==pnNRs*)XxifqlH6fbpcB ze&e%U(a!#o_WG0ZWj*HS`VXHUcpg8t=Y6>MJ9VOd3O!DBiH-)mU+^$Nc^RBX8$F5T zy^Hpqd)dypO}V^J-?RJt_A7^bQF|3-)FetQ^zIG8cytNIIugO#&3D9KWL}DsjolP z1vo7S7yPrGc}n!M{oEZ~zL%k$-|KYW-s-}BLC3lGJa}GUfLBl03q0Tk13ebF!3n1A z-)Fr3OmKns976}e{ZHLhYo|TXvFA>q7xlf>zj~Kv=ttgVJBQ?(n6&$@IB72ywz#mL z;cWG_cWW2e&vdlm=Ucd_*Rk-66Fb4tFt9ty?}GQD{)1n8sSj{IX&3khXnsc1jlVy{ z&j;K;Q$G3qnSc7=YjFQ^A3jY_q1|+_ULNh`dte_>-RK|hAN3Q|U({Duj<+1oa@sBM zj*IPiqrM8AsT=3%^N;tq&AslZYtEs``ih?K10HV53p;;BoV4#~{~Z_gMa#7(<-64z z*w1vdm{-Sgz6~dK$G7Sa+8y}}E-)MF7YF6h>N&1FlFyTR@@yHm=ZrdHzx2J5dNQ9W zzxjT0B)sNx75RO~K|jW$Kj7Pu-`E?w6=-RlCJ74a(;`0;ds_(7+evtP$#}A*gjMwLFKHuHs%k@00pZN`Wj$i() zX6x^GsMk^6cTC57f)l^(tRJnu;k<9h?wU0qS`{ln*^qn~lhd)+^L@Z8^z=ly2+ynqhWg*x2uFTez+ z_&($H=iVcIp0QuBsCTT7PUL<1ew=e7d_O?Fz`v=dPSmC6+`Ye1&w09jMII+Sa$hQW z2(Kns4Oc6-p7^Z3?L>LsQT~f*Tn&4>LtM7A{KkWhJcrzulXl|34sgTc1y;i&&%s`Q z;vZmGAAagD?S|^YeSUksP;Y_y3;sL5^1Vv?Ud+K(Kht*Zv*fFYx4h^4;|JgG{SJOk zcpjk79UFVXdv!2g9{pHuJI^;U?T_|ByA<)4dh(p%d`j{;LNun~r+>-tVUW6y=5c2N;xh zJn&~XT-c)J+LQ7DhV2{g<^RDy!2u>1ma~qoXJO0FLw=U?LqCZ<(T(3T^W532yY~JgWhsojyl3|_&m(oAPSBIz?+N|t&vs2e(|yhLl#k>m$a`s%&m#XDU8z6$vFP{EuPE>2 zZNj?=7Py+-{hRUwKGT!s;%e=*hy5^5_vb=Sx7_yf9$cXFpV*@Q#DB<-d2$^F{*Kn` zdQmq6{Y;U596!_nxLCJj9bHfN$)H@nw*3@(a@~(QVqEWcS4Z$~%WIM6e06in@oN`$ z(N4XD`U2HcVJ~o7&*vcfH!j~lc)#<$N4fX6;vBO7V7}pcJAdp!o>KjY>WVyv_kpIT zO+N)LQ2)UWc$wgQ1B>zv9`Kot^ozaSqW!R+rX$azqCBk!I=^tf!lN_%Xpj zUhcVM-sPKlMo+>1W?mD1O?d_`(DB3Z8fJ^9uorm1AWq|bhP$=X9`@tBn9p`z#B2V2 zFXi{L{Cwg1`CdtKFNk(u@ZR9}9XoFC<=%_Feym%tKPLKH^4Pqi7vCGC`%b@)dO4 zg`M!#@zeUOPl4&W*$&*G^+fw0lxqk5h{JyMGta~RCcpjt1o!t$`#oUM=T-D$yHsC( z57K&|-;4C~z0LZn7xR2|qCV6Qx;d_cI`SOB4)X@zCwWixqi&jxhWfD_^xkrj{(}8{ z``ivsLmoFQ`3`P*uifg~kN2*-&!`W_S10ag=-cnB`gzd3hkl0siFn6YQ%Jp05XR04?nP=8*s~_-?&z_&;95%jEXQ20<)OKCq_W{+pnCN|i&ZDFAT+CN{ z&~Jg3%WHqn;C&C}bEx~M_W{?RbuZ9$_guRuzi5Btw|YP)N4SF&ntUgs^!toYm$7bEAyy+ioALL-}Bx5 zN*#am(1&`7rYnDMpZnguPr4r9FmL2*wEa2ZPsqcjAM?4%mw61=3-o@z)xp>3`yKOe zKllRs%fIix-@jm<$$k>@&Af7M-}B<-(T_ar^HmpYL~7Il?;1Q}0h3{kXoK!#7{(B-EMczQum#{o30>vQ)Dcw>G_eYh`(%+ue~ z>F;@sKZ4Ky9Q*-D9`5g9|BSq_|CrCaUht&IgQ$M8=}i3ud3T*Ry1w(!W}OQ=<$?3V zcArrXo;PBmn}a^|i$%Hmk>Bof!MeCk?st|a^WUKJpX6u1f8^0P)!$%!)z8G9@Fmq9 zw*7k#3D@^eSU>XO=QQRw@rU{YOWo+_+`0X7{Fs;L=7XseZuHR)6$Y-~fYl3GyKSJfFk+vHO$fjy#l?>d$lA_4tzf zynEpN`@Wyzx14*W_s&gT+?SX6aKHI6{jvV8v+I6!;y%gzJa@u4ef}lS>fs{1m+$)3 z*+fsNt~h6g=z6eTqv>d4AJ>z4hw-p}=H;+n)BV|VO8wEU=r6%zKaN9O@=YFiet1sE zd(SJMU$o7mSgwcnwx%EZ3(Glge6GDbZ2Lu^pL%($yXR1luj9VM{5`M5e*UPRNj}Wi zY4#v*^3QRO>*l^nyTy9=J|*3sJcrpg(*4GLWKPRZ`9l7m-PtvtA5=7 zf_llkJx8YN%080n1)dGi`PhEQC&o1n_gDF~jEnk{ym)Sh>(9RE{p_wQdhmRChOT?L z4(P|f)8&0T9G`g=_C!ZFzNR1N8_cJ`VP3(5|K?S@VUh1C4;>G`{kZ;}C$6ja(R+TI zPxNKJ{J#3-wfuIUv7KoC^1t31x)y!D@mwnJ7o4L-`-Kih z!-=h)Hu~^9c7Z=_FW)_%7gaz7((_wixe#>M;&C?A~HG*8Y840K~& zmwKZ7fQ$ACZgs-=>ULp=?Ohl4(Z%|!D|xjnH!k0E{Uqb{r_=-cRNuEOzvuNgw6p!^ z*k6F2Bkv#fWSv9ayYA}9bCC7$zUKYi_4f0?34gCnnttwlnRkNfBbrV;Pt--y|0cig zck*(XN6KB-pxv#Xvdk;m{kf_}I8Bp!JtZg~Q)?B9E&`Z2$O zPP~7V>%sozIdt!9+&d1ul%MLvaooqV-&^6idDz5R>I5|36Z=r_s1s3MG0uK@@NZ}n z=Wtxt5k71%)C=~p9RHC|BIBm_rOzMZy3cq%sVnpB`Qdv%-&6SB+Vx51k>;842J1h; z-PUirzp>vc>3TPTfrP0;+?A@A7fEe&!w9^}g#%yQJP`zUrv# zm+|aZ-B~Zq6YC%3QQX**a_h^hV*ClNhUPu(m-~bFKkox~9ep0SfDk&qGjd|C4q@{+l0owTUaj2-JCyFyCT62Ml%Oe&@XbT*Tx2)J-oI zot6*#DdwwQoc~k@tfTAgIv4%{26$W#+RI<(S**W0nr-|^KSe)BzPRq>@1935k34Vk z6C(B8r^H1+_PgYz`DZ;Q?Kk}&a9Ixj2AIYNUyo=%lshl;YaS>4g!v<`Ei&%1U+3xj zB=1%29_&1vxAS%Wj+=}-SdZr>5aFHt4ErN4pPR0ZJhyy4@_zi;V_oli zas0`=&F>^H1#U37hi}mDSqNT5 zaj%|`i$XkL9dGvM$H< zQ8$f03;Tc}A8oI$F@K^nu#%KAn$ajGW9@b-EZ`Q+p<>ir=>XCX~H=BM|8)wJ^ z`Z15CKIAo++UU*v2l+OxEuX2sYzI!;vySq3dv9Z(OzMU0z@r~jA4NOQ(Xzkx{iNW1 zQdmwL?$6F=ntw3Jvw584uhg;mG|#NZ0p;INC+Y@X%BR!Itp~cF58C{A7c{?xieaL5-f6(H27^qh&wLPrkaYj^nuYKk5J0!#?H(9vu2j^VfKLULN~cf(tCyf%@uZ(9ben z%H{d?`>66+g!iuV=KL7yPQ+jK<8zarUt)Xi40JY)8@}8)oo_pT2Kg#5Me_GdM~C&A z?r-oT)P?*5<)gfE-8a0`4)rOYjfc;1`aLYZc&uBz1Ah#9k9~RAhxu32k$i~8|HSrO zF;B+1ofq>}chhr7eTmd7=6CrlPnqW=uSXkn{6+l$)AsZ`z+{~REc>JXjjc`+d+7&l zXT8CAi++dWG#w1}&`^KkpYCt!(thwyZ09rZZ}`5@%LIL|s%}!f$p`8k+V92>$C=L4 ze3@tBwqB5@0nTP8?Iw9TqJGyK40t8K3S0lgF8Ks5&~`_j;XjtU9zR7Ve!lR%9V z|Iq_C`%RLsqP;rW>It69?}L5{oW$e45zJQ|IG<^pV9~GoTFgJ`Z_$tImE`|`>j`ex zSN>ve`ZeA~x$A9z({-c&pnZX(ja%6IjaNPt$hFkzFw}Y?ad$Ylz!q2>_Pby>DTqQow#jBz1iYf<^jBXhra_1 zaDqoa?G88{4@}TFlJUjDUM;TK>|Q=758E?-I9@L&-fi6WPksBb-@^Y3`Dybk$6-A- z>$v0__5>}LKg)dDFa2%$lb7;ZwEvAh?)O_gkJORxv$;>ZFM3ZO=*j*L;|}7_cAiXi zz_I!xJdf6|{B%9-H>h`Q$D!XF2X;_y z{f)iAO+Cj^CzEx~hWf2PX>UJee_%Qec)$XULwn*+Fsx^Pp!u0k@_(o|c(gOW%RJ*Z&+^J@JBahaErZ}cax<>TVK&@P{s z{wX^8$pi1X#ku7DF3^*DP2zK%9Dkr2pL5ie{zcqL9)@|Pza;+gBrnc8S;vd?W52W6 z);sdF#XpIwXcvvINxAV4>`i^!b(}p8?4#d)v3Hx7aqP}t>P2gJ?bg5XZ^twKW*e7r zIKDhi;+T$0`)NP=+xV8>ekr#f@wE9b$CLj(4~#4S)Rp{nzQuT>Xg<4ndi9(8mmH-6`39w+?_>Y10qKN)Yf ze4GD`zrX<=@1@xG8?E1-Z{srFWc*?N!NWQ&Fu-KI%ZC<6(f;;JyGgq+UijmD3cvLd zTYu6|8AroI{f+~F$Xo9t*y%XLZ60^a$HaDip-uY@4(HqAvplFboxgE`_PgW_xLQ1A zKcM+Z>J54DjKAuN`rCM&7wAH_ddAc7kVo5z3;&|M>tFD(h$AUa=41Pf ze>gsTv7fMAL+elcr=kA9U-T<(?BRICyTOCsJQVqJzYFupd=^;R@{aM1XJMy#11DIN zuO6RqQg1U(f(O6-8o%S(|FoU_g1-q*#jT%uuIC+(IQ{qd;rC8Cmx6QYpeOqi2mPAI zV!Ul!#5u9`4{h^C9HZscc^>)+(0XFf&!YV%&*^^3=b96L5T|jO@3Ot|m}lbz%kdiC z^|5`6LtZ+L^^H4dm$nCsew>%}#N#;DZ|#$E`&sH54Ex8P;IbX_4A%`jp#DX^#Kd-< z$8o?xoCjQtvqAmNGifJo+f%>5Z0*Z-)VF-PzRY97i-C@g`T@)N(2sF$$~WI5PQTC1 z=WxDv@P2pe)6V=QajZ7}VceqJc?bUEe3@stj@V&2xU?;2J_En~Z_DL_=PGuXALFJU z*Xv-LXX9|3j>-7eOWM2M&THV`_Ae6e1Q-4T+U}N9&v`EF1NQokznK5_p6)q~e>AlJ z!Fny%5p-R{Ji6YX>ui3Eb2?9vc`nx%9AHvj)K9SVxBMUb10650?>Z4@5`V&r11@ko zZ{un4`P`E7>+{F`&d;^|JgGRBCOX;lKg}ocIG%di)Hj}TzOEzV-hAL+;AGyLyqSk# zKETuRn)>O-eZYB|w?*8ppL|KL((i3Ye*sR~Ij^Aq zWnRE(e+~6}zcmksdfMJQt$&;c>wFp(c05D#LOkY?q9O7EUJ>YYI&Qt%yf7jdoTR-*}exHc@o!{5G@9})E?YTo7<$8mKe=+{BKJy&p zGt>+BuG62(sJF?(ApT?i&CiqdIrLwgM~*v)ZxU~se^CA`^9~w^{%Y+8_N4x3?X_<| z#Glruz5N>3aeVMNU*@MimU*S$ZF&2?o_Vkz+huDX#IwoMCU4@zj%R2)<2P>C4Ky$2 zFKD+MpZ3+-1%BhqmVfIH$D#c8&o~Dh%;SLaH{fsTrytt|JXddnbI0#LB%dQ~KUYFW zMZd%L#^XAR#z%d}TbBFW;(3RTJpUHuuKP3}pzAJQChN38`E}?&KC}RiPt<0Z0k+y(N8)bP(2j!7ra(K+w;Kr(aw3Q1M4{t z|6O|ey~y~9CE&Z~;PiVK>H?G>13SR#$yO%HL1)68)b%;CBNr9)?n|kJD z63=wr)L#w#cm2t~lkj`;6CG^o567cF^JZRLx6M3~yku)<9)|A)egE$79c%ed@*ncU z{kZuj{rSGc{n&L5*U9y3>*KnJ(aID1*k0b4XK-5&+dPd{zU;^PU{KF;$J0M;N1liI z2IbRi{>0v({SNXnSXX%@miz(D=dDkB;~VrJtkVW3>t%T|kIj6id;w?6m-8;#X*-`{ zT+#mR_YnUAomcm7^T9X=40t>ndXANR_TK~g{tg{2bpYC5wejTpByUCDobMqo;d&S! z=TfL6KIby;_PgkJ*ndNHRNPCgfAd1Ti*YwNntin88<_az%aZTT3oPnQ(01a+Kd7JJ zY3&Yv>s2e)PW;Pw8(#yzXuVCla2;8f?fQTV9H8r`y=ZSduABGEVx3$^<1lXLdFaRf zZ(L9E8pJ=C-)7#T{zbiGeQ<(~vl)LnAJ?7n)xl|cnAnSY{yrdopYA4aNj>YIme1`t zt|NK#^W4M^=SloYKh87JlfQ>*Hl5sl@UMpI$mhJE+`O1C$J@pM9`nk44)YoKZ5NbJ zFs)C$0`m!4z9~PT_QEdLlm4&&Sv%rg<{3QTlozx&Zu8@MxbA~>*S0)Zw*lIII1ln3 z+_UAu#$U!~yylPjI?liz=Gl2W50U=L{#|!ao*2h4F3N-coyRuc^dGJR`8etZ4A6Xd zAM)P~+wU@Ow#Rn9fxQ@iGye8DhcWgO>I`k8N$7jc*;=Rv>TuUxM~xp~|4Cr<3ic&^hVug88t^Xfd0dSl(w z`7z(5e2bKuzo~6M=;)3^TuXey!!mzhHhY>U@KA1^ocC(=cI(f6Cw}qRAMLB5I4NB4c#VNidA$NpWv#*c-aln<~(@@bsQ^=2K+zdWv&e5LRG`)|h8=Nee`wwr=S1qAN=Q^|Jlz!`TDoM{y+ZPf4}vgfBv)o@&A7JfBofeJ*rN! ze${EOpiu<2qd&uK7Qt#bjULQ~13N%jBW_klEZNyGu?HAWaJdQ%r&(<{u*Cxlcf*D4 zs*4kU$ASOA1~Kr9Teg7O3tKGg*)Xw1cgqdCm%AJ2ZkO1jq3qtUe1Q{8Fu?PY-x6&5!y z6CEvdqgn^H7|rhfgAR7Xg)L6(Y&fu^;Xx1L!WIi#oY)DDh6i1U8+$b@?AdT&i-CRA z1-QZW1Pgz@frIkHdUo9SUGKscC$>1S#lV&~8~#+oiJjm81C)nLK7!dWu;uZ7$yYju z{LYtrH6vc~_5UIN*ZYS(!35RG^ivd2`__MXwBO($4&!wm<-EwtHealR>;0CFs_ALI zVJGF{z>bCoeJrpVPV59n!@%x%(8+GNu&ZHWivwE>?1Mgb!@?FPwwTxhj3;3_-BYWMtcoXL0xOydR3#~}~XytAHNN5T1Y;Qf9B7vDWDIZ`oJn90hh7(&%>;Xo@O&-OCEf)4P-wpK-{6`&t(fk{KHFRCYqXnzy!w|7?f}LSKyS7-~i>VxZrWgXE4C?lCLtjI;fX?HDkWyE8KHSJq`4uee2WT z1UHz(wLs@n=7Bse^UL~7pGw>PPCdPa3w?Af{1eQE1G{737Y{nv;QBx;>P;{k4(yFC z#D!hpY?#<$V2g*mZg4d$?2d_lfYEIIr>&#*#xE}H0%ya-9t{Kgz?%iiqlx_t2jv0o z#>>K<;AnUnuUF%HVh`}VL2G+y#mR`+>I+j{ozxXW?dJT|uZ*yf4+CwS1q1{XNNd;%-fknAE zv9sa8j)n(aY;ZL!Y;j_Xi9H$y_E8_;YFOB_VPcObcvz491{US>2_}AVUFZn8?P(RwYKK(5F1C#ic z@iIU2U>+y=T;|trrNaLW7C6Ctf|iTD-k@E82i}VtTU^*;VNWm{2DW(QJGj9GRzv+_ zFQ3%Uh6DSc3vpwM3%eT5W+!$u9N6M%>sQ#~#1<2KG>m3juK&QF4KA=6uLial*c%=e zIKc!5cp8s)<9A_CdERh)4uR@vzvQco{@;7vOTL<6{Y5{H7sONGHqJJ0^Hk*TfD3+$ zh23%D@0j?-f!#6iciiYeT-Y58f5(YmOze&Wf5(j;#D!hpY?#<$V1FncbRiaYHoc7I zpRGKwUB}IOiVM3MPHZu;#ep5*fk)z2Ct!jD4Dd8QuEtaOI`L=2z&?%d@?Q+fhxO1? zfafJ&<#Y8@)&m{KIF4~Jk8(cXBrh9uofiD=Sok|m{9O@r#Mwap3QG;Bm)|zvIF$7Iw#pzhmNmhJ$i3un&3=H}(Rn;lxgGfB_!) z4lb}7>K84~R&Qd9mJj@5V2kpi;DPI);^Yq)^ewY0cm+@|F=Q*7(m@VH2e(xu^@IS+%d_KX%{|tljXL#f>xEn6) zXIPYr6I*=dPwEXY-oS%CHn_kECOE)o_F-LiL;cpbe6@PoVzqTnY;jvduqQ9?Lw! zp$pZfdx)5pV)za zw0hRpe_TIsH(c1R^TZYtdo&De@xY@Eu7>h#;1BS?%iZ`{*b~f#13N%@F7L&H{{x(0 zs0;Ko)D^g`*TylPjoxsSorriRo;lvgbTO8P8V2cMGY_P!9 z{FdvVly^-0qhVmX?&5+6VquFDI~xvc`6Vv+R*jDXI~s2IE6V4>KO5hNdf27gIH{Kn2liGEp!^W4@h7pxz!p#ApL{I* z6HHM4iW@#Ju)u6MEJq*DbflitSI};P$9{>&cn`Moa=wfC9?(1{I_jvN#CURE9eCJr z;};ip$HFg8?2d`QW5L6s+&DM3=sXVo0Z!U)Fj~3xk?##{_Y4>Hr~QK)9``s7elc1* z{o~+ zx%EKDos3uD0iBQYT+DAfZ}a)zNkffF1JyN;%MqTXrfc#gju*LaBE`EBO|PV@L1($SGmPjJbP zC%9WX>v!~=De5Pvy|GurgFRdQ`X%i}9w$7`)_yn+6}x&1ENfsSLndk#~+ zSm$J%0v+GHX>ZC`tLOOE8&-SV%Zv7da{acm zzijPqIqeI+PUnR!-^}kJ&x`VEP?Fp9BkB_7AH2YV(OU--X@z zqCLpF7}y_*u3yJ3Z@{<8t-s_$!?)tI-Jo598=P%k)-TG%iGASL0=NCN^1vQo$xHGc ztk3atjhB4=8d&)6&Nly!Gev&SfWLPj-c$eOfe8lni{BbEskeQ9CI6i_@fq)(mvJ`U z1oJrHlt-=phwA9&0sijB>nX3nXt>bL2B$XqIp8g)z5OoiZNKIRT&@%7ev!=g*QKMk zczop7FNvG_;==A|xmeW8RzKUmV7=YeKgrhwi}FE#>dwCcVn6cF{JJjQD=yFdZJqoT zp7^&99h86l_Z#dVHN@|4(e<}NZ~lspe-+E$8nyoo?HR|v`cwWj$CpR>fIsqOcAaRO z2W;mnkIa+v59;rhPxCwQcRTQ#ztwo3*v5U(jab^~XJCi(Y`TJONaj<)apYWMouoBpcxyX3p&#Jxr4?LH;1g5L(4{C3#%uT5bWeD}Ah z``55H-#aPyee0WRtt zSD*fM5`K&Ird&OGZiV|d{E|O|yovgw>1@d>(0Us_%Fl@{CiVd3^(Kx2Cz!_9aG@LZ zliJj?Kk?X}agC#l!?>8w1gl}fuZ{!17}y;x@7U|f|Bm^AdOZ&<6nZF6P^d^K)#E=OZ|^Qb@M&!-v*=oe54<=pIZ(8@3(ry zQRw690X_Lw=F-1{$~olz;9pnRl;895j~RzNY;@{*c=>(AFV&f6}RQ!aKCt>qpe>aHk6Ozke>}L7oXJ&+WorG zahGwSpXIu`?{Mz;98vO%`%&{s7h4 zN7(=6kK)^(t|QBXdXHKW>QWsUC+FuzH&;jgHB@z@uFy$*^XR|OVK~os_`iOj{T|ON z_b2%TUVix!_s-7=CDf^RPp`i2A+X!P^jR|0V6c_x%C( zM_}-yUOvX}y-vM-f?qwUKbl{lo$nbg|JfI|`cgNe_hMxx=P~u z;RDNkhx=oHA6Tr5=a9BM?I@3nb(`P-Pt(!Hex{@8c?mA++h5RcfeYMVpc8d8n|{`> zSw{o@c6_EApIgLd^*+?U+W3q0TYvjlZ=a*xm+N!*;Q8?bYTy!&<7{$J3} zd*468{vN0fJV$;TKhHP!Jwn&rr_}ohjP|3hzI>FsFNEhJJdgjC_M9Wet?txGS^gvX zqo1;$FYv#kKlX>h_CD!8wb-{VKUt4-T^dghw)|b#6HM!aT~F#mJ%##0Kb}t;zx@sR zTMf74p_2svd+X>K|J6;$XZ1hSe|2R3ULNax-xs(qfA;rz5Z}l496(o|Q|jhEH@F|G zANj9dKBB+i$8$%&4bhv(yuDYw1j8JB+a?>#ll2m8p?#XI_Q zU-(08=dIuNj?X#h^XB~9N4wp4c;M+kS3$Xcd0f<+)&~PTthf4D*aP%Fr;e;|e@QG|>~_de%&G~u1R3~cc< zeoyQKhdc+>$3{QdbQIV@{Q@VrzzrU75LdQ%7xr#Ae?vM_FCEp7_@R1vRIFaU8}_5_T^D$%jzoDY zUjtssW6R6-^1I~i^9k$ieN26b>dX4t?&rSu;yqZv?~*V7`=kHKdJa&# zSg+;!IB)y|`%u2*pW~@_5uW?L?%o%F#5_GG(7`>oeD3Mzu6g)=%ah}&W80}y^JP8G zalijj%xf^O1ShEfkO%WLv9qE6Lw+m|?SJ=(-~1KrZ#(P_9xz%w##i`v!-bvjR2-&7fbH;sd{S7>TKjC`2Z~7iU-e}7Q>#^_N z_hNtf=vRK6mxsO4&uZ(D+MwmGkMmf}cQL=A?K=JGW1RQ|41T_N*nVE>=VQK)^ZDt1 zuIzK2=Z5!I@2BRY`#*k+bMJlXQ$4ybiQj+JuYXN^%)h`5Ci4sViGPBlVPK2TbTofS z9c}w1jsdz(g}sck;c(p=%HNKM^?eIB^*S#3(aIA$IB%wQi|gRO=MXxQKfbrV?}0r> zSl3V=>dNyb`1u{yKS7@Ny)V|^Jp70AC()1lV6h&nt-pTP<+v{F2gy9mLt5^6KVss_OT!0G0t*5jI-HYC*78}9e2~gGka05W8oL4_283s zVIL9R)qL=1``iHE;|CA_eJ)Z*^2ha-H^I+GwB!3fKKE>R>Gx7o{h;58j*|WFfWdl} z>(2Uw@i+ZU=I8k|ET?_^A@Lcn=Op{R?<3Ta-~YMaxBD~Ne+GU5stflQ^JBie7k^59 z_2YSDJ@pgR``!cZb0c|@&+0~=4tOb#t(WEvR2LnsH_SWhU_JYr_5-eFAM74qHQg-i z396d|k2`MsZ{bo04Ga4j+Rk$0N&8Vh;Emhog&(nQ??BhteNw;suInuZKi{YQkHLTS zKtEqhbQ|br!Hc_Ytlw(r`W^Glyqw>`?(^1v*Ht}#M11l1@q4Gs_;|l}^+UV-bK0q& zudvOR^A|s+T=e^ezQdAfScW9^W=Ugujf68O%Zo`v2Yo&F}qu&G!uE^<(NAm(QC&eE8ju zHu;l}LB2X3^1E7|2X{{ruMFlHlJ#r2n3R`T6{GzbEDW zOnrEs;J?qEzMn9Ep6jCbI^*JAsE$3y&6oL;za1?v@}1xStLZ2`r+!5p9mjE9LE{!T ze)%ab*1u!ne+#F4ZDCFz(?D=F20Ytd_WJOj$GG|^Rcq-pYlXLeEBH1 z-}}8hc75um#eUI|Kf1&&P{S){;;j38K3)HrJ;1A26 z=*V-=dW-sLyC=BuA8@d~2~Mz@eb=k4-@@)#_{E9cG4XdC_{D?0!2s2lYl8t55KM1b+3v^tp?Bk^BwDTk!aRcRyr35BhRnyt-@a?1k!=Cej%XnWN_QCJ(0aA~FF4e2gJ>Ji}kNKSF=S1oI zIiBx)KJtC|eGmQhWBhveKy_rlVtCG*x8TRTsvG_4Sv_)|`8ij#`>_0!ukyI#{MjSU z0ji_Gex@VqrS%%xZ#DnIK47R9uK*P4aJh-u>01U*9v|`yc1T7N_yDqRt!)o;ob~@ibeXLWs&ORS}yL$hh|9wn7?-}mPe~$le9=O{1F}Q#E zoGcE`7x{nhdEEQdljqE&-`fs7=?}{NenNPzdCs5%%hhMv4h-gz>X&xDM{(credm47 z{AZ8(-}g42yP)mw`563s@@RK;#r?9l2Osj+`FL1Ac{{P6;h9aElz;|VVO^`yRj<4n#;(S6wa*S(+oh;{w(1AQL%`<$WfcpvP& zW6Q&rN4tqm61ynh_y=}kd#-pNE1#=uM?V2>@Yo(*c`hdH)rIxaez?EMSLfyT0reY4 z`2L%7v%t{)VaB&Vz8@Ia?mIul_PyMrcHG|&_Pdn3k9n_^uk7Ci%2WBA)Dvg32evv| z-bX(0JhET=DdT#A3;zbg^9M}l0e?3ruRF@;j!C=m1OxwDX#1r81gqh}R!4*Ti~FuT zNqFJCXv;^>ogcH_KX{-zTk!pW0S~-KdH=cpeuw8M&yD09u$|-kT;hGn&u{KI06+D6 z|Erfre93zV^|aaNcfWsep7>m|xwqNxX8%b1SEuToe&b8>qpr*w?II`-e#m2}pMUu% zzxzz%U%*RwIM^2zz+`{sDh`oaf!tj;d)KBJ!RCE&?^dHAnx*uN+JdQZE0lBd=~ zf1CQ=zwUm|bB*_$fj*3{xW9R>`CiZGo-{u6?R?8~3_WblDffl#en9^|_gU}S?jP#K z=SKQ>AGrVC_V*t7av$o?iDlm4-((%-r97RK=NmXE?>ZXjMINXl>)EgEgMR7*aXW6q zWIhQWI}ZFEqw#w;9h@h&^%ms?YJXQWo@9RF!S;PY!jI+t#JS;qEq{}B-|$J?@59?k{S8jucP*YbYp#RA{Ch->b z0E7D82i3p(is$ZqFYf0~?=oJ0ig5;UCb(Je0Eawaon~9VfvpZU>*o52g?}?nfkXcj zJop_)%ofkW-p14L&gTR5B3}>l7Ylp6f!3SUOHluJMdR|Gx8)`M%iFu}dVW!U<8d8) z9+sys`AU!2FZl`~{}LW*FKyZ->*V`1?@4L@KIgeFz2s~65$cHZbizyd=(@^-BTpOZ z58}`kH}%z{^VyEa`RYCt=sGx0{Tv{^m*0l%_e##o!#2*8hpxLeI6>=)f!}#<=CQy6 zC+K{Nc@6zf@ZcYeBRc-XU*K+dnk^5Hylc3zJ1+CmaAJ#zJ-}#az3+;P`8W^J`44#N z{VL6?-*2Pb{l4J&l4sOE*yZyW^=^I7BhL-%`JT=DpMJ(ok@o4m%l9DI0Y3-z3OiaH zVgKNvJVn|s`EI}OGhTnx?Pgr>m-o5M&!ztOQQzP1;P;FiznGWnnymXGpRP}`e#3PH z<@u)mZD)IMTJHM%k~)euzHvpN+lYr~KXUa=_DrE$@8qF&TH62YBW>*pIyRy@2dw<%8a^o1pli&mkT;K)|*m;+%bH{U+fd+QDIsg7pbx3v?0(NDqGfq(lv?)xuzn8t^0H@M87JfNTC^Pa0C z-yh&#^jqq|d4ZlQft}#69_k! zSlIIkruEGq82X>!#xEZ1AkG20ZWFt}1#VE@tAmb*dL3=w{m*RcFZwHR{)$-UgMJ3K z^D zXU8F)RM+4!PV9xPe!};7KL4mA=i~U;zK<*Jo!*ztk9jxG@>9S3n&#yRTHZ0K-?7k7 zHXRl9R~u(zcRct*K0V>5^P8?)!;Rf>;qO@Z#ka~Q_4C(+H$Uuu=Ap2S$8i^Y9>$G+ zmOOKRhF8UNwS4n=`@aA7+^`-zRHx3<@q=|r*AZQM?=0*kdd?A7dQSMB-p@}N*Y^Oo zp7GJnbI#|mQun?;us-8CU*~Uq^RhiZna?t>V7JXjQGdRH=BeYLo&K&P_oJd-$Aw?q z*kTa>0F8TMi~2Wyabb5X{2dd&II%_j;-EZ0?eB{AV?K&}xbF>Y_rr;u=uE%-b^jIz z`?vQV?`_+C9Nt-;@Xv7%dhp&SPW9@3FK^WeI-ZQbD3`xJ*Izx*ZmVZ)^tIK8{i}EV z#F4bWXnf9>cqZ$2TyOH}dL;gBxp@Z0!L2OPxje5UgO>kaJn zwX^jb*d2|dqjCPGu#czR3KB1fW0-vbo_bGO}e|bMrCw@=I&ujgDfZqr7d!>HA zspx+(p1L>Q>G`Fey{CGvc#l&*>am?)o@0Y?e4djJ34h1mJ?1_B!vp>I^M2ku)LY|U z$k*?P>xqu+x9B$;PHfA?g@1zwR0m?Vd06im+Ml@SSA6ETyr|!C;?Lg@+P_#&;u!dY zebf4$OXvNA7Yj@e%?Bj9a$@AMpKI$C@_SNIb=o@3;F)Bd|+*HO}6(7)@M*rWL^ zFZ|-hKA`)CI_hZsMg5M|`tSCnykp|;IPm|vFz8Qw)^9$EXX0O;x5lRq(8q+I1qS8! zxk~<8F2Y}Vyx@1qbI%3O4g5*_0opF0X+D`tfqv9OWR>!x0`m=w>yU%6n z!1p(z=MVS2sh+Uqf6@L|#X&y_9&OhXlqa1J@}T}JdGE7p?Q-1bl?DNbjDo-e4?Jib z1O!14h8#zUY{^#XP&)rfC5{j%wiEZaq5%U09_0dR5;&PN^S+e6l)eOCg0;_jo=#E+ z3*X_^VHhDFf%9WkS9e!e)vvqXcdfm*^#E@0*q=I)M}cg=S2*e4G0~5P;d~8U*AI=G zc!{sZf92P1eon@_$oVqh)3&bV5%Q#-1NmTo-!nK)JFliZZQ~Ee1;g=>ZMVLC9^2mA zz=WSeej#tplZ)DWF4?cmFONLOChbK%E%+1i=>=+E#QVKyo`P{ktA}j)wGIY)QM-x0 zzy)sbfbvJ2=*2`92l6XC&F|ghh1{`T=)2v=^?lcEJy0JBZw_@M z#)ph=|52v}T3_0!PwsbqFCeXF>eutY=c@0#r{JFFdxhY=wfDkm?ea?=74zBO`(~iO z=sH|Caazb*e~E{2^f}1)5I#>O@tnSofL}>o-iwp|_qi5%gVycQ4vZIdZT?+PVYeF| zWHFFC_IdTIZ$j8tR1!Y=ZXBi<$fQ>_Y>vkv%V*=&gE%4Z^HKr{e1Gd zjQ4n(_QSe|=PBo-ak=|4`;Kv3Ja;b7CGK}+d|%|L=k1l8^zZp!j%&Rm@20oz2X^8_ zE^vYS6}Iu6zhhzdF`U?SO!OVMd3h&J`qc|u=sRxofnV~-eY5;MbJWGw&h@bm2RsVv z(R%IszVGY&Jt*+apXc#?T=My<=Zoi-=Z^3Fd`}@CePJqsT{cLtyJID3j(e}%tUW}{vmP!B3xwJf& zz|+uuT^zLAZz8L|_dV)*bAJ=lI+rgmFguJe32K-Q^>bnUdluHf_(YI=fT1G zD9?}aBOcaM5|3L~^2+^*dz^gQ#$7#jj$^!?Z!+&PZ{&UAhxVh%2f3`1=BN7I+Nb#i z5ACkc^H;lJ{}&kOMg8iy@mE~>56*^(Jer;T)EmDre&!LhJ)2xj*3NNVcXUg}iY-5gu)L zQf*%6^L+DOdH)_8^9;_RV;-q5>)!fU#Kq?#_oI+6@MpPC5l=s7I@k^CnEA5R%YGqm z=C|G#<2c@={jLK!+IkLp$FqN7x4{X9zCRm{QZQX*S z$qRXrU(cID7VmhjoBSQ_7YT0oB!2?Eb+GVzG0q}h^2O(yqJHmr1h1-{OXdD=eZ!A{ zFTSVnUKQT!un*4}=DU1t{0Z$D|Gtl49(lEqgP%7n{qcM?kF0wThkjVx`LDlMPy3;|DI#_c>RVXP#T+XUHqZ$FF?kTUg_mck*K0 zTi?Sv@BSm(F3Km@d9YiIBPO!AoZtFrXuMwGz+Mbw<7<6S)|(BF=ZEnS(cgFxzd-MJ z#;wTDB<_bibljdpZ9jCsO!`mk!o0gbx<2ECzxVw3#WTP6y%~HN;N_Qmk`L7XJwH6B zJWqTM5`7+0_Ib(Y9eCq8dGBkq%XjrY7kQ4FPxH4}ukjA^1WxK|!k+|{Cvh}Si}qpO zh;I`2V;)~yXdd zx;k%+FZv;phix8^6ZHJik0c%;zvPYfizPCI`HQ!(w|QSJ%{8^z#Gqn?B*4>6HD z+8!;g%Ef%ya3CMzFNXRD>wrHc&xm)wmwDcYd?LQe?py9}lW`{bSzwSy{TRfwDhQHuK0I-w#}V_@03IxA#1G4ewq5VjYwG zibK8oh4svBg)u$g6}; z!~Vp%8jm)4nasCb&x?K3{^r~K7kpY^>c8>-CmG-V`|62X{+M6T=ctlb@aWpZ1M8%y zgYdrQ{lxmfKJ15GIls?o=vcIWfGn(}7eBEIs#^GE*d#-ETcU@2pl#+|%w#-Fqg+6VLB^|U;@zi#+-Xuta+ zvU=wY<4i@?jJ2~#=|%(FYJs{Hr@>6B0saC^IhJ%|H6lRF8>8}4L>}m{ksAFK6QEL z=VU(D`ghineW&125{CtEw)bt~eTd&H+_W#SzzL3~Pvj#{LHV_;OZOY^XW)hx#@YBD zcra;~7ov7)UdglhILtTIlZWkk$lC%hf2be(9ohr5En>i#^vj0`+cvc9sIk0m+j|IyZilN_ObclsZZwf`&wzd zLH+Bvs4sCMCpa3~Zay~iFXlhwW55H?odJKu@0>5zzq|tzURl@XBZ(_Y;6BhC{XVA3vc5B}Wq;KMUs#d-$z zMIG4RdtQ8v{Z~)C=g%+Ee*?-Vc|^Om{)H{K-jl3&IJoYb{E8OWDM#M8V?WwG@??#K9_@W6Qn^9KE_r=VYg1%`FO zdzqgaRf ziQM(e^|tnne88z4`;7Z*T3S`S!Xr=guLl`?6>s^b{-XRG(Ux1 zkS9@oq~lQk$NIw0?RcO(O7l*gZTe65du7I%x>dp-FhZ$$Ys zh`)8W$;+}1ANT<#`B~KCW<9&@7qjWpbz_(GFY6eT55}j<=23K-t^_SU zbqX3k(e+RJ6F1MXjXwdFaR!TZ2mVaXox6|lzEb|nbJwdMyYa{SgZwG$3|=j8q7VJ? z`6-|E>w5-y2=ACsO^Xt0F=R}{#gMDL~FV^XPknR)IXShz# zb*nGeZ9S7$_cQlH>wUI*Smb%qFBqqk$@5^n=4Ua^#9sak`Z?Za{2~9y%K+tuM1{`#Jt#KI_$af^qFP=)WDu@r@trOY>u#zyt#<*GIe#SlGL;@8A)*RjasvOYlT zCgITp<&9|jq2F*E>(c#4zI>JO?Y}O=pUv~B=YQFs^(Zg(V1OxpU>^EekAwT!1i#}i zejn?b^%OY4pxwGK??rqMbt3Lo=gOz?Vzqi2ZJdQ%@N0udz4M??{L#O(PN|DweOQ;^ z0uS+=k7qoGJmERl&y##^xb4_`9yp%!Z|5UF)@vb8+nK)@?=XMBk7}O}m!D7i`4n=p zuWRo)v>Dg>8O*PL#;wT9AfCqGeNrA-AB#FUpgfuIXf!_AE^hl#rwMNS@cpWv&)&ZW z?B@->hj88Ug7p=$>z++c;!+@6(ahNv^O8}D?LA~Z|eQtujB(fkw3oQ-JCm{e&0dH zU5%e9-&wEm*~qSEA{#I5I*-zPn@{TE?!(p*^=17P^0p4a1@`tKpWuzMbyxDqJn>xQ zesiCnn>Kus=9K{j*)%`UjTtfuSFcr@eaCyW|o2WjnaZbAUy@%u`YK z7s=mzH{lx#v1O1{sS!WQ}FfOheblij8Ab%-;z)}xS zCTP9M3uW62JKK*kywP4Bh4t+D?YZQA*7ps>UA|=F(Rt)sSnuDVHvY-@>3N8J>y~vM z?b`aS(@ngTjbEX+9uN5thk0xDe9$|N@juuN>Q6ME(|Ts!1PguI4yqS7dQrXp6n;%m z*}9zg<@&5o_1B*M0gfgo@=~wA$c{H#eGlvob{kZ-eL9}&#qYx2^$f;$zA&Hk8?G0e z`bYc1ezm$XpYrHXR{$9tvklmKQYly=WVifwmY8K^^yaJO*_*>Ms%K>atbqpib!TYLLA zKMMWvehDu0`n`zHT_5sjcE7+swPrA5nks(|DRE^H$_7h@d)Fh1nr z&^{Y(WKlcwUc`5S%C=iKqJAFp(s(qOFKBnZK!0AWZ`1C)qxmzDd%NRL$0t7eIgLN4 zys@*txE-gV_7nbW5xc;@$+*|vd^Nj+{r(7#w)IB7<&pK6^p}@`eSvp;^Tasb_m*|! z_~16)JRf=9OwS>3z@z(~l(=}#$zyr1-$%chPd{8wnK#eJ7tgWAIf(OWXr2aoahey` zt3Rx}*F%xNY-qhK`h{^;Hjc!_`g5E~`w*=Y(0LE?c74QWS=X))yV1sprq3oX`X9y{ zj*s61T*}yQ#wphc9`v^zS$}=+IGvAvOTSzvn9c`Qn|Bd+>wb{e0_DZD-r&d3Pu5lV zbI@ClgYh^0tYhm|J|*pk^%UoX@mcU@aqa}N=aA>u9f$jz<3vAq@JoL~|D2b0-vc?H zd^WCuzhQidgR*%yUu8X*7w2WZ!FUPkUtvG(2Wmg*U;0gd^K{G){T6we;6eWi3%dYU zv)}pyy53=(g6hRYzvTzG*|!!rTb=3mGXAdLb+`EG_l-Z}4*WIVj;r2vD$lm=U>@T? ztz$46kE~DgmezyM`^blRmU(i0ypQd@m|r+B!Dl zcrLjf<7+(Rcj}+(V4d<q-AX z?W2ubZ9L<#wFB)pkj3jCaj;%D>z^+$j8Ef@`l9_XZZhv;eaU)V|J64h4b~?=#f9GW zx*p?UyZrrqQCb3{wKdT z=;v?hr}msf`n~0kd;|~c3jB%Y_cjmMZN?9HFgzd0^KgD-^FPS{KtJi1&gcB#ji2p~ z3p&rTuF!An^?Tv}FrKsz(0DmssK-9>XEwhU^M&)`M~JL5MfBFKSe^%9fa;fVq`z@- zU8P^3c`W=7aI!A_8_vu4cRko`)^$MJhcf;cf9&{VVI*@!;iPyhZWc!&9h@iAVYb-G`y*Z3{QUCeX+CVty_T0HIF<35`GF~0aUK;wA* zr=ROB{4$TzaX{x^$eVHRxg(#bXY)0*XTFdR%xC`ABj0Eg>3p0+1AEUQ+l%=fZ(^rh zt20tfSkemM`QzYF`c-oTAsJjhEs z^U~%I?6gnhVBW?0l65U`qCby(OHa&4zCk4VYN);Khj!~US-0^T_-j6u?|N9rpwLgw;yo|f?1t;yrJYgJ=%XJ!OP(NIMQMb2#;nDE(T-x

kzqW7eT#xIGmfvdmUCevh{Dbidw0&S#_!0U=oCfQi)a?O{Q(|YlCicVrjIZCu zX%er_pJY7?KlN`jUOn=S&fz=@z3s+xw)H3DCHl!a?RRC`H}=;LWXB!W2UsnS+MVXd zux_na>l_@u7r-tV*YS*7wDlb10gpU?$~ZUw9WT*aN1?rb8V}>9y?Lh|qT#I<;$xh* zvdDQfT`%)To4?0#`sX0tPoSC9R|k1%h#sU5H4|`?fwy;ld(J!%I?kAx7 z&<-5*-=OQB);s+1+)#h8Kdei?ZoM)7!k=UO;GyH}9$&^y`-2m`^${%(%YNuX|EPl` z4&#w;+uZ$LU)pZml&zCTzM04MAAeo{#=p`}(0I81fj(UaIKkcYj(f+UzvGCuJC3-G z1E}3$odc8)!#ZXC)4U?D7MJZf_gGFZyA zD{D9PAG@Pn8*kDsZe;y&oYUfzjFa{!FUxuaUH3rV#6#5n&aa==4`{p=aTASSVt4Ro zJ0JVq`S8rk_8g#nY6n{P#$hpDIWFs*p!Q)rz}ez5S-0m=I4|P__Q!cxkL#2#;vo)$ zx*x`c@rv;ae;hvxA`h{L@ZM;+k!}-&r^9@+y!Wr*?yTcU>Dl?!3mEd`#+j=?9q2pJaUn z>Ywo`=F$H}95%RUFUHNrqtH+6r~QpP>z!@g#zFq9b{-A->xceN=3A~4JI^EUi^kP_ zPwZUZaNUffywFEmkMnQx)W;3Rkw=p}`E#8Yd;E~Qzpi^5N9Ik}i=QRpZyA5r;kvCa z(DmH$w4?u_{|2>7@|Z0Sj_3S?e#5v>p9NaCNqb^%|BXLKf0_5RI#Qm^ufsa@!*i#| zi|3K`Jn>7^?_ivTKjvL|w|F1cF`XX_^qYA$d=BTOeQ9q#jB|TV8S(|Z{LzknlW_t} z#|NizH@-e^iHvviz&NFUjN`hK@m%jvc3%7n{RG4OSr72Sea`c!e_v@4zne$LY3ncN z1vh?)=F7Y$>l?05L_fi89KZqtJj}De)DAxv{v>FB=iS8PST~@u{8`vd<~jK5x)<{q zcTxU`Lp%Lp9Q`oP`GQAjKES{)*K=Gy<4@O*{@Sq)W%E?l2jeezG?eYfcuQnm$9hJd ztqzy6?eq`Fu@3O#=9PKvzrD|a`_;V6V;yYfDdsVsu3HTAg8e3r0qR!~7kT9O{QSK+ z^2z;ZY0o&0YaCO(abVrXM|A#W{;|93LEf&Db&Q6tGqF$FCvi)#@N0nDCF9#)e~hE@ zX8hCqay)ra%s0qq&+DQ+z>U9-YkZBj=TT6{37&R7=Uz_En|IcAz#N{zl#=-u^nL5*-zrp`=#Pi>;|JPqXe)S*y>PKJ4|Mu%& z{m1|A*Z<uylj`4OD&tp6XX zU-$20<97Ql57yH$(7(dd;=hm!oM1K_$N?Vsu)zfuIKgZ2>^6M29E9{B(+uo@<^IFL`{QN7@kyy|>f@MVL_6M1}u zPt|xdUhrwb53!IZm|!%NPm}ZHy(s_8+j}uu{u8+xE@aX6jsACqhxx_uTks9lYbWmJ z|9Y{`Lf>(s7ZW+a11~nX8ct*}kp~#yh9BZ;e433<@f-4~^GN=5Ecla+Ptka_;LXSQ zwBd)ikPDn(f&&b2!K04yqvL$RyFtF*i{^bYPJs*Dzh$((e<&P{KV9zgd~AKjL97<1 zi7Y1a00Z3cVZFdYFDCK;13dBre8s0hyL{R&&Zk%BQRk0xH6G;)K5cj;pXT>GpSJt} z3!Gp!Jn*99MlY@xe4FUa+k0`6=Q7{m0ejtbS-baQuk+tj)*t&NJbH!N1$G@@tz)MHhA}2V&BM-p+0vGxMCz#*>1Ki(}Psit=h7);!2VTgVE?48xZ1O-3$7$!1d=dxk z(ePt@l2-#>MZ?p0^omc3o%wq&F7hlMWb4bi`)%Q*p5Kevc;h&QUR0mW{*^qi>lo<8 zO}s?oSm-C1-~glHkr&_s3!Gqr13d7k^J${bb}n^3E%?*<6pdfX8-7&7iJV}72Y##< zd`k4A@#w&d4KA=62C^uB#Ll0RH=aZCjeP8P;%fa4a<89k^=JD;|GUP*4{;%j>c!dY z)r+=wO!|p|EE+%aVSFcX6%#oc9{91r1sTV{Dyo=c+~M@e3D0_@o2x` zlROe%@#z(h{&y|5dtUMBK)(D`ZK;IcnIy?B(tE7M+# zGiWb=D-80ay^uHUyV<+G`%{y&hvWFu#I2w87u07^cj~R@qFw)-N59f}zyTWPWF4+& zAggzti^fH4e2T`W-Ta=&qwy$^6RdXrC?E97quFivQefwidzyLdclsk`% zf5+4E)Mf3}TeoSwg4S=x36HdQyiLDN`vSFBuBLbVO?@ou)Oo;x{t##5J@}T$_OG7s z*K+*p$zYD%5{!HpsKPUcf*JECqexVQI z7s&QI*ax`40w*}Y05|?Duo|D_&44!xlt;>me%Ri4G#j51d4T4t-0zGRX#56pfCoNo za5XIC2@WtodDBrI-MTg2=H~_8{E(-Eo%(@(f(5P@sNMAgyTSeG@`icL^Ub4r`W<-U zZ&?-{FRc&G<4v5FeBiHn)YqIJpFT1E5d1Hm=wBO8_!9nAa{p?Vf4%7Qr@iAPcEwL& zC4cR}-_l-e;ID+hJjv9~97 z1uk&Ez(L&~+O2!-jq|`??@@Pux9 zpM#tuAuoP{{uA&Yfd3izQ_%jl|GlUF{&i9RYR*^azkZ_k!u!|W;LH71JG}9J=U-V2 z`^#(B^*R2)^Kw3ay4Zcjx`!v`L4FnO`4Jus?BtR8kVj>Hz>o20Hy(99$)nZyRLBz? z;DH|tEO3Ge4luw2A2!(KLZ9FO;{|Tw{$BnJ_#r0p1XttFLGGxXnD%GgK2KPe^2on( zYTd=B)Y(4=|MZFXujx1d*{>Mqj{6zoGHYFEzv9udUcis>=)encBNsTq@e%w@c{Iq!E42Pg9)Rb2;=;~-bHa1?>+N4n z(6&U@QGq&|NP{v+@c@V^8-pMLa|J%=1G{wwSpkMrvC`YZZ< z3Vs282FgDXyMQP0$4|SENA45wsj&CC>;6@4?zNLTmPhhs!J`dd)K}xvXnc}KV!hzW zZ;M9>p8}LWV!@*c4luw2FFJ1Y1x_%*@dD*hP`~d+_q8@oAPtQQQu^0{ zz5o1zy89({B|q5T!}Ec<4eQdn^M3YI`v0t<=MVS3@_zVFu@k>W{v7mt3;wlnp9hWelsDvUHa_jfqXkbAeSrhL z?eb=Nu7IJPd2Kk5#RES!Sl|Rl!vjAySl|Q`953*|4{;+eaDoYrhKKz=TK)f~@}$2g zKQ?-0$DO=~8}MdeXZ`}ed>?k}%X*=1JrC~l_ZQTY_3!@ec_DwS^Zx|(09ThW5XDVsanyJ-8Sjuw&m3$Mt^2xtZKE>r3oC7s2oNt)HTN*H8K7{Z5`~_wWBC zzWvwt2l>Z7;OA4vx}<(DFXYMp^7MOx@@vZ%(0=Lz{bF3@v>*BcCn$eJ{oD9i`rG(3 zkPrOWV1W}%aJ;|+FT{kfBDoO_N#ng2Y)tb9tS)+=ns6T#v}Cu z{WfmM6AWO7J+@?&!D_`GAgJTlJref3|G&wuem&zpN5Str)lPq7y} zZ-RDt^%>)GUii6FvX2zJF|SEp7kNL*?mN~i^LnowkLNsdKGFA!_r2mbPyKyv^F4yk zUGh`DtN(<4^2u}QXXt%DqF=^Eo)L#~|KNSi-A7obJX)ShjaR82`)K_7|0|Dz^C_tN z_u^>%H~ZM-4eiPK_WAXA%EfyU*SF#EeIN2E{aladjXd(XZeS;0 z_5E18|NhxO{vP-#_&+|e9#8Z+>%MoS-{#!)ugl+aSN?c!^L%ps>b3hR^U9-sF3Yn| zu=AcMpZ@Zx_qnvF_acAC`fqVq=tF*KM|_OmK_0YkLpv9 zY-I0&!TreTJ!gF0@_r|uyhr)DYCO`6X|3Kzq+++ud($H%?zY z$E*27>wI{BV7;fsWy1^OBd_c)Pm}}u1y8c!_&d&{V_mubfI%F^TkkLI+)YyAHH|?Io!IDKh~3VB2q`*3-`aGE~t-Uos)b`=1uY&$h|&__3D2r>o@)H zbC5jXe&+iH+x@;>;Gf@Xz3=Z_uRQuGaWNk5EAqkTKksj!U@v-JirRZ`hQC3aHtRDE zfxJNTHCeauE966b7pNSx7y2|0;Ar@<^C-Db4Dhfox<9(lP4BDjn=f#2&ld}MHcaI4 z0*&7xUh#rQ#u0}3 zyv_fH2S+|wC#`N=k65OQ|w&v#wa|75*ezBK(0#iL;UkMT(Uh{k`zlLF@p-i)TV4#jHx znaKHqKY@NxAJ&UJQr^}NsNC&}cJ&MX40*(RhK)QQ{P{7m_zAM;xI9<+-rn~x%l*au!n`Vj@@f*7O?*o}G*qAHCpf^+p7<`XK;u4; z13d6zg9T>eOCWb#@&GJwHcaHvFpw8u0;4OWimd_ZH_uztJD_0v3AXcR1hnhvz)SeD`zXFP{2)uDT!m zG5SyGr`_l1zX3m^o%PqJ$bSxcF8Tb}&ztby)Be5(ao>?=#!+7WnDKc}()W=fuLJ%Z zcoX3FTs_+#>40BugIr7GSA*yJdZx1PQ=fVse^btp7xafOem}|Y^mlCiu29y8Ext=KdE_eYKrZ72?uNFDtF=$}EBJ8SudtIZ@~V%2usg)ndb#(L zA3y8r)`j)*({F3+2?j=p~8-FuGD3*MiW>xVz%@w7kIxja**j>3DA&o$OD z=fk${Jx3Tf7{_xasdL{Sde8KIx6f7K^AhLeecz|vaq#DkOMAaZ%16&H?}PElbN%=G zR_;STe(L?ch54K0ZM6L`;8DpZ@W6)!PB0q|B)94X>6w#ZI0@JIC%l^6^}U_sOz9ehy^k z_ns-gywBe68U2{Jcn{|N#l1KGKJC6=A^z@bo;zV4Bgg5#^8hPvi7XEczL5aj9=SInINA@SLQ5QkU-E)}8z)&WErr zzQKIVJ1+Yg@kdq<{qNga8vP3rkrH{{><2H`p3c-R+yi>Jx+ub*|RevzMnUAS)R z8vX^mm0ugbeLqt8bMZ^~;pc9Ce()Lk&!3pSZ=s%(d=%$Ug36P4O!dU&7#~pn$QvoW z@F>uGP8l!nMZu^rE~G<&RiD5RcOOCf*xV zZ=On?fa3YFq9aF!>bBb{})W^Yo!58`J zJ!*R{QU6<>$_M6=SBLo~?O{Lp(e8bov&B63Jqfa(i@C3OFTT&0pFa5${}lYAC%T_3 z;%vSqaSiiCKIDtMQeMPqf&+|(@~HD>!mj}yc(EHU2sX-NzW(r@>m|-=fTh6 z&6iKS=hPR-%x9ce%imUZUxOF!bAi6pzu=Ah+3=(qZxT5``6F+{BEJb9dC<_jFZ5y| z&xWt~@qP8neVKTjcVbX)W!ypaDK8qTzxjd>r5)o8WcN9Fp}(7coA@s3GpYLn%A0&p zU)C=;=s)xyTz z=DE)DJtX4=pHmqh^DtR&f(M=~a4N%>@q$N3J~Uj&6C7ZI0UGZj-r|iv`qOwKU&LyB zN#u_5;JrA#uUIed#GuZL{^sK#%LDDY{@Tlz-VdHE=W*X7E*m`NMVbBIb3sh@Ve5En zNB=?pLVxSrdItwQ+MwrwpX+$<^FHQz<$DwT@O^o^0&Y&&H!Gqc;zmc!~>o8s~-weyqlykMXF;*KC-`;y{ju@8ysE z5*}H{#&HqPSE${@uA}W8*NbsCdhsB4l!qOc`y%lfoHs>%pN1PASbyI0ihgNby6;=R zyx$7Y&#ycWe7*|aC;A@3dGu%CPv_^g^L%06bbihoc`0vq+ZX(t&Ch@3^JIPU!ZpzhP@ydo1S?ukj+1svt$HKnjLN9LQjt70m$vG9|JB%ZBv#49qI<{^%?P0z0JvMpZ zb5L+U@^j(%GUM%^@~vC$bsHX9zxO`+$hU5>9{C0l%wO`sd!oG2FYkArPukIb`}4je z{Cvp!9&t*~_m+>#pT--{8|z<`PquIBUETzIn($`H2XHifp`W&c0dDfTz-l;=6CB`a ze2@p$|E67BFYF6_$3%aOn{`NhN5im=zo)(ZlYSj1`i_OZ<3it29*O4H=OOu1)T_K1 z$l9GpzEyR2zJ&K6>U8_P1J0xL{>1kzJO{j&O~#im`;l+M$9Uu$L_G5CzmeE^J_YBY zemGt=9&Pwko}Zqxe(&QSGd}(f;|HINW1_cRS(IN3USvOStQ&B{k0URT3zS##tn()u zj}ClTU^Se`;y?~?zu?7e`t^b*gci7^LW;i&pQ*@^I;o5?Rk$7)OS&z?)T!RUA%hF3C@=xPuh54-HV<_@WSVq%O~%9 zU^)-u%KQ6$qz0lj9w7pd3SKs3ud4hfur{jBV=tcAAx#YN=KLM|{ zc>^by-~glHA#dh&As09sCh{vBw2Of(F6v?uH{-XEU!isryJ6g4pmrS#`>t2Ez2l;v znB+CUtxO&#`Jcv1z9_>h&#j<6;fM9_{$JFo&;Nc;$@g^L|C0OE=DAAreT3uG3*L18 zXeWQtb4&ERf=_;*(EFym_dIqVJ=AT<8{)fLev}vS^&WlWPk(t}-QRiGUp8?))<5&x zPyM3ZaT0mh4?N^i+{g>8h7(yF$Q=WH$3uOH3waQ)Y&csSd%OJtyNU2N>XCoZWCaK3L#vn8@)FG%n(19pXYh#7PX+KN_mn?qjHZ z$5-Qi%+7w<@-&;Q-BRE9l=8{E`uxLtgQA|pbHeux*1gX&wELVB_VaU2pZ9%FLA(42 z-=oM4nD zurCeHeaCg211~nXzycE-;Gyotjl3EbvN(~mVIYe~UNqdu9T)oLe)CQ&`n?x7{ojk1 zFYspd@z8tk8@7{|cs%RN_W{%WnY?>{+TNe2XX|`Zmwx_v?`_nx_bT73Z+PXs&~fC| z_TFfnJD+Gf7`X+TSiHE$obxZrLXX5Gm1LI%zC!Wc^+_N4}a5(D|J=(67dWjjXs?fW1$x}@}#cbi%I|YV$uJ-xaogD zWzl`|cs_vx`(=FLPsk(C{NMKj?&sW}?sJi!8-cgJu}|t>9_@A>Wjl|`^9wtlr+nY; z_fdWB^4{q87vifYkCfd9CZ*V!MPNSH;kL-kh1%d^Lfr8Z|0w% zvizwR?F)TxPxJ!}&~WBL!b+y<}1AcifEqUdA z&wH5nF64X8G`@uVRPTMy_XXU~wm-MX`-1fSU*{9=JABWef2ZYtvyQ>~iuG;mCUKa= zrNB+x%6961g2VV>AG{Y&a4GYCe5-dJ#*qgL9&FHc=w~&)jPJ>t#X8INHcaG>1ARyB zjLYu|7xDk0@tD^aD6g~&@@f5S`VI3--KFOg_kTaXx%V{hZzB8%@IL=Exje`GzIfw_ z{1La3Pi{?cv+Qo_7F<

;GixJ`=51mXfN;a=AHT*J};B!`@BS*26gM_O56LJ=aBa|&l%tIA&2)m z-}~9_`)qhBKg{REpG96b{&)`EcGf+q+iLe&>w3_x-I7O&* zJWl*L;9@@ScLyE~_?7xkoywPN^=lnl*N66k2c9SLMjpwlgI#D({{ZFX!5{q!1sMuU8nf7j>uXerSDo&K!6n`aC3m z+*ddJaUWKH)OEK`V{r^6>29Q;`2k{jW^>iuo_Nf*Cn5=6ZqpflRodrAKE=}g*+_v#u1#@iN<>~-ef)D zc_uHMA1v^IVcoyLfxcs+?-=OKqj<=dJQ3Av_e0^bKEMJem<()FKjtgRzw^r*?|+AJhV{$5VI5eH+}nJQx5=aVAJ_%;y1Cbt=MME@-RsA29{FrN zfdgK69v|j$KI2)APaVkH`<~viVICHG+XGp2oJGHB z99VCVH`le~&xed}{~>2X^V0EPC(4(O_FL4YxRFmo_1cN*-;2dO;zUkxfYI>gt?_0d zZ{tipjsGA&hj#T7z5A#b*m<70zk5!V`#NCSN?F&BTBj4N&aX#`*jJu9UzKQquIITy%iLoE~1{cpG-^38LvtB3h zFfOl9yZnf~b{*{}MjJ^B^BWKj>fh6W}xs#)om^k#Fg}zkley*N_i9zxkg1@}+&g zD^K*(apxo7hL6L1MZF&UOzW8VSpSJUi1)GnLE}4HJ~sUh7_^Uuz2BV|e};J=UVR_g zk9=EJoDWZ2pzB?ar#?aTgE(yT*6koa`4QC4e&5%=_p|?OJkd`5G;i9upR*4IINS5j zp&mUqCUG?%qWO|<$@t6qFu(4f)`e)k*pI{h#PK`)@x3pfCz%)Rf^|mAlldAS$gA)7 z;D^s);rnwxrvl~8_IpX(&yMrxFY_n*gDjsn>)WhXbl7xB4B9JA%^=8ty!@5Y~` zUEU~f;;(*V=e&pZMLit$qecA}``JJ?&hjeciFK%5??;?AXxv_*cA|Xf*!yeWahfM^ zfuU@kk&VlSH^#HbPZ3A=^@IN$|Ur{g~5=Pkwg;<=LWA<=*5a~SVs4+znB>QC<>z4?OJts*f1vh(KjztfwjbK9 z_eK8%)m!)aHTBQ&iT8QrTbaZ}ul;FtcWQ=UFB<=ao&A*aMZeMVW58~K)up1v1vOJme6YYP{iyJvX z^R6GK<)QG~xFzlCC;M1{+qk)2??3QIK279&R6oCb<^8E(65Gt+;O7s zcpmxYPDC4LJn~H&^O0{5lX@~Q#x;n~0GIViJkos?G>$<P`Cc7y&?WZc#A<-FVY zgIhoJn{lmg^A?UvzijBZ2mNV&W|Q4-#6^2D&u|>iL-X~>w=l<|e)K~>hx6FqbrBEi zd%zRSSRYY^+O!2tD~N{ znkVBb8b|Fn^J#Bh5`8gGnjiBH-f^%C`l&z2u45ri5k<7$1F zKi4sctNx|_xGvhQU-L5M4Y;jy`Yp!+oo6!MYIu;h{xh!ia2(fujO#qJ%~!~!J#q7S zFq9pKc&$giRb}|T)8AJcfBw|hhbJ!3xW?nDPq4rRZqW9FEKcMC&6DlX+MV}&$oTdj zXg&CzC*6mLgZwDgyU}N>vqk-Cck^W)TD+~F!8k#?d7bn-=m+CZ{Xnm5|K03Ezrfw( z>A1F&XYXU?UwP3!m?wzWjSKDRzGs}h-{HUgi*dy5xU7GekH(vcKFEjnMe{z`A2;(Q zI2qsk$baX#=N;oaPtwnE7ULb_b`d*y8QK{)<4b((H(a;h?|4?}{jc@Ah-ZNb26#Bn zRzuIZp`HC6`RyG0g?`XpV1l#dxA1@RT;zUdJ&zWLX+FSV{aGi*i#kZqc@F(bq<9_4zj$ch`VBf>^mt-l`0G5{ZTt=5eEH8f z$GZJx#{d1F>zS-0z(qgfYaWa7&EG^`#>;ye7~o`naUlojd)&^)G%x1Mx&SwE*Z+h6 zlXz}q{a@Ch`2i>6^n7gdz&K@n*w4J6w+@!F^C0V2F>X3OehuRZ8sABL#n9e7F~0l4 zHa^Th@ZWRje8_nFx6Kpnp`W1ZbzQ06am|Z)a$fukJ_qyjF#Vp+)AF>C7wv<2T#xlH zPUc(qzgqkX`4A_^E&3gBI3ITAeObSt<4ocgfAoyw;XU%l(9b;=_M-h(e~*S-zNZE~ zSG=d$FWY`*+=la+C*tZpwORim{sme$##cG4Tl#Irn{AxIIJ3nyu$%PDhBqJB>1XJ- z^=e+pbHNjF_j;gxgTwxew;6vCC(ntczl=8?&%76PFr0^R^uOr0!ECr(xARet+AZeU zd~ahh-^OqAr2S$3H15o2{M=7xyFcD_Gp_rLaSYc-`(b?773PI?*uM0W{*(0#_+;Gt zUZQm>ruE*itmlTa*&XCpsQu6mzFm9b6rlMk)+xWjeTcY(XkD@XL_WkN(T8Kt!wN31+EwRiN5e}cfQc>yyne1y891#oWw0# zUI%dr;%OXbuMgH;#+PxdZ}aJR*83gTe3Adfyw=klhj9Z;P`iO_p5)2WU(h^-exujE z@Mk-Z`zdkKKmGT9B7Y8ia=h($ZGENxtapR%8}c>Lr{nlNLVu2txF6aJd*f`saDL`p ztShLWL7nT@CO+;H)4B#1^DgFH#)okZWwG)8syb+Hsh7?2W_`*2K}e~tq;&~ zCU(iZp`APd6TJC(!JmbHgYhQyR>=ApjCaWYlt0#k^SMsO-TIH;0WS2xJgJ_3&gVJg z&tJJun2#GT<~7dg_^e0XB=xeG*SH$5ppM)hf;=bV>!p)d1RdZzGd)xr^=tVX8rCz*2}Wai0{pVc_hAzI4tVqFkaDr$}{p+^tbMu z&phoGSM4q`j{S}@c<67wJZBf}8@~d(?q}k!?Lj}svo4CbSZDg>E5_aKKaAtLJlA^NpT?8jXFVYiU)I$qTOKp)@&H#ou5&^Wk0 ze;(%k-d%tG(s&z3^I`n(-}o61(Yka$b|2o1GmTIC9*1>Vy*`W={R_VqX#SGC=*Mbx zb&vy`*eBzL^$u>=Z=OAWkPmWVSFX=_h*w|#(4IKl&u^%o^T@aDC5H2W`a2kZyADwO ze<1H|c5X|K^t|YS0YW3g(4YqzBnkpiAPAu?$yVFVR!1MQ&TkdlRtrX3KUSXYHb4Un zXyOaVi6D7S&+}69Qt}df3DU0hJSkTkES%!UqUnZ<0AED@L}o_3Z)UEw_qUI@j0gRL z@%$Z>eB^VOkax!OtQ)_ZcnsDfHuqK91>+6p>ptQ5*0cUa{dnYa8t40Gr=0mF?Lt3{ zXIwvtXKAkv5Zk7!82|kJ3%`$(KKGEn?mXdxc`$$Ku*owpj5F)&@~QIE z^~1kroE-m=&uB)_Zh+f<_#5T}-0~81zVdq6ulNc3gJ&JAN54s2#A!T1+jabR<5KpW z<#_I^k9@8+e1F!6gM3eQ>iG0`oMfEExBqW=Iaf?6w^r8#(;`2!>_1Xz<{QNZi z`(&SY_`9;nJR9?q55|9%@+mKjqvyK30Vm_zziG<@;%j{5kN5S(xbk`vw~e0;2H0qS z@`T;xgYED$upMX7uDK4@m6XrIhm9>x*G2z9|HC(V#=Ok$MmNd1oZ94N!ixoun)AV* zJU($^U0K#Q@H6r6=SJ#P|J}G7C)TkGHsiy38|^#uGcJudopqFTP4x{X^X#Ra{>*!4 z++-e(f7bEH=l1ZQzaNiIR?&-k>XZ-j^vGxL2><@l-_ylz&X4u367L|6+kDG+#Uc7B8Q&Hl8LkAv|h^K+h?^2U0{BcCcbzXM(M zlIX_ssM`;N&p0OYH2wqI`7ZNpzehetJHNAX&LerjdM5K6#=GEV9OKzsmwCXS z`E(t-tmoK|d`|29J*)i^KcQd7X~q*gHuG}b^N~-t=XZm)pKqZb`4Rpufd3AH@1_0y zGJaoUeZ2e)*GF8{dzATh;ve9#SSwxs;@uusUMBlofQ@`@ z>bvd9Tj+;*>ECq)^KpJj|A}A6sXFTB7u=3xeDOOO*L64AJC5@X=D*O-z)t3|Sg+VA zpR`kF6aVICt84kDP5jUL9Uq+L1>4^N_5Ht}qYZ!8@av3k|9gAkc=KJ`e<%C=yT9L1 zZ$It7xXS(g(bT_rLO&Z!aH4znr@crXrmFh1sQ8YlADL3uT>jptG)ptj?SX+L$td>wbg%LPx9cGgeg z;C){$-Ept8PE8H z@uA#y`gi`xcpZP|eHWicHtHAkop~nw@6Lz3xvw1^k)O_doL48_TOHwdFpj$M-{J9l z2EjQp-e-LK-#6edFH~1zeE4p;{Vk7o)T5{4_n%zl^KoJ4+>t->wy_TLEN{2`2j!*f z&QjitBYg2ZGN1aL)Gu%oS8?E1+}QdNoBc)noIKHQQt$pD4)%)$+Hb+P&3Xp$lW&2J z0Q-tK-u9^~0{UuNGrd8S=5U*okuW<38p@2kJM?D*M*<25$A_~d+fPdjv` zUXGqhxjGu}@cWkjp#R>9^Gx~TddZJ*RsXKXJTG}5vhD>xtyf2lcAdC|`w;C1@!Qz) zTz`Y|u75Dh4|bONNqud%8Q**w2hX9!JSXd#@LJw2@+!}gxXJG+A0Ncu{aJkwkHG)H z_S~56KlWq1g+IshcPITkaXAlkv>lH)n3qu3_*EzF2V&yK=iH+s*4OEuWt|N^EqP(S z;hS+c4~zMAaL_OCGZ`n^70>uXP#vkCZzzBNT~rV1=A0{~o%;La98#y8Lw?_3u&xd7 zw(<0P!^E$Zc(unhzeRqR{9?TWRCnsA({5B95wB+an2-G3#*_IPZ*kHuN`Kd7yQIG1 zr;*R?K2q{)eANFgyiVgqoaC4M9z{n%yoPZ=H|l2*w@rOA-Xz|}U44e%^XBvS0s6eq z)L)5<;~)MzfAkli>lvk7y}ABX_>jy$$eZ~w@5Wu*{7mxRLHn!6LA*mAzq)wnx!}Jm zcXXhx{G65d1fDae-8=k%<1IGmIXAw#%EvFj_aO6ie_Azf@WB0OW1Gh%PgtMzjdJ5H znpfkRj4w}59L;;-eZc?I-+Ivg`rY`qU#GwM>*yxI02ey%&I5jT;+tyS6uIb*1Z) zH~8=D4~zIu^F~}x{3$vAqqncGcE`_q?04Tq z{lpu}Utg%6{C(ZcI+A(2FB<>uc~j!ISkD%TYX{Ylc?iEpi68eF<9y;soEP(I;NdfI z?qC+XVF$Ri@ninfi>Pik;|Hie_rpaz>Za((`u4cuKRqARi97)}I`X`5yiR}h zA^+v|;{B`dVNZYe7yO#9RNv*?Q7^$d1{mbc@#}gVFIk6iQ@`?T64zrpKk{_?!N*p3 zIf;YMHJ&Hq>npxTC+Na*^%QTv+wK!T@2CgWk?+Ypm*S6Tr#^VU5b$g=@5Q<%xXc6b zU*_TC$`diEHy`Kz4v(gBB);;w>c@E{^XbkDZ1~yO1JpL3gK@;bPEcJrzWYjJ zzMFLp))mH~=*WHDICbO0zTNS6;tKx`52+9GB>y+#rQ^zX?{)Bf6&{{>)9>hz{%60_ zAM5Fk$9jjnaUJktF@MK3?wh;}__gGj<>V>Mm%0H%KDy5^{wMdhuP^>t?(@%izWG4C z?L^DpQUCV4cy#yXDv#ISt(TVz9r-!zkk|5@^(E_1)-@lOKlfqvV)-;*?q}r1?)VEkrWu{)Tc^R(Y!e%iK+(tgu!f+3=##=TDe;r>DX8tazN?$hoQS$G)m&$y@` zao}IRbonSx8Bg6#{CN%y&iV7bG4*NQ@U!XXeAHo*m-M|k^Ka^u@tbf`;z)4O)({Gy-txAF6<-#L%aSNtjE+#@%9 znS767$R~LukDWjI*|f90@$BZ8d@S-IuNL12G~Y{|F-`~dn~Y-~JU4>!?tJ0D^^3ge z&-~i2)%oj3zvkU}!E?`7^&^kN{h_Q^eHj;dxZuG-d1-tZ&-NQ0PvSe|x8tIt4$mj^ zPW5D7=$D>X&bR2N)6Q`NKgqlX^XvsT_8H$ifC+BqXZuz3a`;5K=e7IUGF~6hhq_S* z+SH$O$$Fljyw8pI=)!*DTgqR9UxBZ{$Ax~cZ=)mM^A2?6x;yJ`tZT52N!-qT=x;8+ zjd;r=zprw5M;=o?;8z`N;|5x27rcsvRZ z-QPpr%76Md{K-#wAup%#Qy270{HRO6x2TSddlFA|*yv|IJa^7Lj&-P?&Ugd8C-X7? zLEe`E>P6iY^m)nm;GS2(`#jG#?{Npw zXUHS&bAJBny>6l-c|Ftz@o^uS@{4?T>}8z6Za&-xL7$U?Jj?HC+~IRFU-|C*tKQT> zQxEu2M?-zEo{nGpP3pV-nZJB;o}RDaxy$!)EKk-aF9+)z@{>57c&RJKYw}9{fD2vf z*K>Uk|CG1*+l;%_v*(xd#-6kb^0etMf17atXW@6KC+58h4(xPYH7xk2H&>4BTvS+ z6Ib^c?Nd)2hH+9)=GD)q{Ci#El=59Z!}p;LE^vePlTXfTsVCY^{3U4rslT$$gs0)W zJ%8jQ=s7gd(WHHQkO%z8muXx;d185|pL%fo;e8D3#BGz0MZd-P%X5?Vjq?QIeJnzJii>heSPJ@=c-Tc zdvBIqa|>aC+QdDr2ex=Zq4@*e-Gewfd>$Ek1n$=As`7vrmw#8xMRb{n)`U^nKSu9I;BG!EPR zQ{KTWxUmDjXB@^;KL^p((G7Y!_3tmfo%aT>u|I%CN8a;>?f(3`{k!qvoEf0}8SrS5 zpP+qUFL|mT*44ovj`8st*L`t3E<3>m26;dEM<12n>Q$8YoA%DTmwDQL-soo(JsF23 z&za|Np77Cg$N4w+d3g+O*NH#*d-y^5Ab!?2`sK%r=YQ(<#L4#HbX?}w=_gM4UHYk) zMm{I?uHSjuf5C5Y$aio&@;Tjb{_)7CdF*`T(>(t^knQ^;pT+0jGf(^_^KL~?>f@Y4 z>WKTB=Z5D>preDY8PD=Jm+gD*^L+FR%71?0;_sTgr%leI0Z#94@Tz;iG48CRvA%8G zT<_x=$9UMTQ7+%s$E#i19$Oxm$ElvcR``Bw>NonC>WKNPvrhlz`oK{z@aH^ShkRb} zwSiSn-Fnv5S?3~74PJD4El=bxcF?ckXK;Vq*qiqHabDI3&KF$F zXE6S99>um^+|)PvC)mLSI^WKC8$9zdUd|WYoaY?$bIy^s8Q=Z~`aVH@o%`K8+I@AQ z=T+$M74@_;5At)smxX?Udt3)6sO}Em?8pAKj6dkUk*s@y+j`?coWlAVKgN;Q@;^L3 z;r~Q01N{WH>+G~^V5h(9N&Se7J3Mchm%Qm8uehos?_1vcw)&!-Jj%z_Z?UJ#CLYu!Fc)Y>X4MPue@*$+!us(}mq=-@ybe*PfO$&Mvm`a6W^1 zt%4JKJMRw}&;ROqqh5|q)RTI-!>TviaZZgtzs5`N%kX262lpxYI1As@(d4Zh}gM*HPBV26k6amBHV zA1_-yh4J;?SM(J0llNO*fla={lSX@W>F3v5KeS8w%lqxT>|gATtuD^|nQsS!b_3M! z#P8Do4F>b-&JT3mjrpq&bv}thho4=Zz^C=A{J;KwT>t(0|M>OefBVq)6rHaa%<~RyC)ReBS6n4d)t=Og9Xr7W#tpg?h!dp_6$@s;h8^H8JI287?jQyK z6Z5_$(g5=Y8|ChN?sVdW(F5#Ylj-0>0ph?GJ9YyD-0oNfRn|*!=#RXt9|+}DgOB+c z?9~6hu+Hyu^Qi5s-B?e>p!^PZiT}hNUfE~<&4Ld+j-dS{%MMr^M z_0)^Lw5y)B`T!@WjuJb-jV=~A3U=%S8yH~KlREfq@h-35w|tw&!k_$}`k1u){|YYV zvkO{Y=Q(Isu~S|#DX-Wl7me#8z7re;6T5){ZuJ08a1=~zv0-oYp^nClo|5t?dYb5H zf!ZCrfm?lm3mjmA4GeIji&=1BcQC;ysGhnvy%(bTGjA`&DEUw9QE+05)-TF`U$_}x z44%|lLCb9?t}_35v(7IvA|idV~dI1zyKHe5NFX-FM5jKP)}7y>ZjsB zKUwq?MOPEO3^2h42Ds3NII#!V!2}x^;6y(a)knpCqqj!BUW(?u<7a>qT)$(K-#-*q z{ZzY-^SSjI2XT}*b!;)Q8yMh15Ay~GebV_IiK#%qpBb6QFN3y zdRpjYf*nk-fdOuGvD61Rzz$}?jV>xK%Efu3w@$fvdntDEJj^$^!OFX8+wP@UdH$Q) z&c}YqIdq4%3))q@TgNK#(H@kG9Xr7WZgl{z8=RC6u!9LUFu?Ua^|ZaW73|mz+~`8x zRC^R1^

d&<{EpU@utpq^>@vCw0}(RTSJsM|XNk+L^zX;v~=F#+G05?stV9KED*R z=te(-a?$cE?eFYHyNW@%xQLf%90%ncOt67baH|V&f&=Vef(_j0sOqUxp5M4r8v={mq1v_?v0d90NZ}gOuH!#4BE*3b!Q82JY^&?jO40Yof zWZ|Fno$}u|4(1_FY|(PDm-d#6)>lmWiGeK|Kl5RHJ8=~gI|^>}vA_xTf{Cq;#EEW3 z(NX&i^_1wS;^*|Fj#|;tLLU0oH0q)P}NWF+vH?!!bV~dGB$wS3Oxwx?_&YO0v z@TFsaf{su90;m1`=7To4wW%NYX_ODjJ9ejjU@z)dY47?P^^^M0kKe#8{p4T3&wzK9 z%jZG8^K%^Mm5u{8&^RaSa6Jv%a>qGnT*RWMD0*6D-W|IY9R+rRqntn5n{w?|+AZ`l zz^Wtl6x1*DF~D9hu^Xt4R?*We_P|cCfdOvxQgPhqXc6y${ckEf(ZESI2C#Y^W>r*$KakHTHwl^+={&|B{C))cnI@;)C{*H7MgD_k)BZ9D{rv`x-#i`sCA@zTKha$> zpAKK0XJ@|4^_Z7ZJ}D347ufdOv=4BC1MFY}16<5!f}`k3-86JFL3N~^lsD^(j(X8k zVmHuy4fi|a1scDG9pFX}3!DW9b_W|6pt`B3jt*~)xB0ojlOOW5X=iz(yn_RrH)y*v z58C;cOGh`1W1deQEvMf`C&B$o)L+UE&f`U#rh4#Sg89Jt@#@0(WAGne=r2(DFBFFV z@|wR4;y2;mTELcZh#Y9H`w6)re5CL-Z(er>pkl1@A4krrRNAdZtU{|T>hn; zzsLsfJ!j$<7jNUI;C}=9i(-F>{TCOWe?jUs0g&>|lZcs-t|WY6?EO7;6tr9DV-)Pz z2{v$}2XSGG6MKLOHZX2b9jSvm4EbHK-PoP-0j|%W=S`xg2`=|JzRBx1hy6zSzx99jD)%oLgMY!pzu@xR@m}aJREqvf zI{vbv_q){3hs*!bwf{oM8|H(~{YJm%+H#+f_vpktsINhNenv-)cIwD{sH0(iicaoy zw2F?Zp48DSdK%arY~V&86C7X%6Kr6B8$B$r+Jo{08yGie++V7nhCal^?%*u?+1M3r zC#L;bx6c#uQXTnCfB&*7Ucs|}3jX7}mpeUGooF}veMUz?{bJs;;K07q(UdRX=XA8ug}AT>*unN0{7rS#$j2SZ|Dg`R z{XKEg&V949zq()hFNb&zc~1)NL7qn;PvtH5FaMI)Um%Zv06%{W{@36a;C~BxKKU%ZU} zo_68~>^Gq2Tkv1;qn^C)`HPz8TtTm%Lq{)va```hiL8#$^Z5nnf5bdEe^V~}aqNi1KG|@>?KEOt~_3Ea3u7F`X^IEWBiyM6`aDW|b1vmOw-~cOo_{*S?b0IDa^dn5Wg`eq;SzIo0ubQ7-A{=WBc zJ)Vz_>;8cLJ(qot==m*A8@g%4-?&fpL4DYc@&FS&`avffJq%D=y)DXn!G|lcJ1~`~LZtro3O3_ig7d`Ms}! zpUm5Nit62Ys;{3hzB;qr|NUq2?SFNDP=D+Lem=G3CHy_QP$z$LjnhH(wbTn}Kg)yi ziC^usALRq=p!yM=-(sG_`4;^&?2SGaIKU1j*luv63vppju!9MZ;a-{-mYmy~->ig&vA9CAPSBl^2;-!ptkx$FC5>>q)|#eHV| zi>usUFvth((9Z&cJT`DszR|-dIO4|6>Z7ZhavrH8 z<9yy%|8w&B&o1=5Ip>i)kzYTdy;yY<)T^u4_~pFtbEjk<8R*8mCV8FYeQUe#$XCYo zUfCYkIK5x!`^EEK@$0MnJh!dTHoJUUm0n_4bDGg8zPr&AoI!F56#LbbY=r zIqySW(a-gG-l!v=>l*FUi#k$Q?k}E0#;eA~d+aZmANxvYUFyVjFZ8m}i{&R?>Q7yP zllTR8g2s1H-@#V!Z`*m~J@2LZv7frpPI%YLx#V-vd2S+pKF_;Pe{vqV?*{+LEAMTV z)6UObyf1oAc)uOLx_C4lzo2;@bw9S<|9th2zYD$s|CbBL<3gXa&U;7tE%%FW=qJC` zkM}muC)aPe?S4XkbyUw~b@m1AyeB%|KflU-E*dOA=L_26d(Mc9;f6H~Wx$nzo z^$^5Sv|g<3)Q9Dw`Y|s9zn(`!Uj8fi;d^JF!{v?okx%kOgh$>B*S~}p@MEyfPQE(h zCixBQ%8!B0oquXOZ~C9-Aa%g~%=Zh{C+Af#Kfl*{-ru=i@2@{0F2=)sMLqcZ=l$&q z+KZl-qV2smqu(G-%YDtbU{BC|b?S}Zz~01ng4#j-pghe3*b08`JWB2p4czRD?vL(s z-TSKh<_%8n`QpIt1rxj7pz+(pD{gdTJZn37R?D~h8aO$J5}eHE{1Ul*F~2?sd>jqwnpv~%D2f^u|qp5Nf}Sr`28taquGQvO5fC>Z~9I#NHP z@n7guVU`OkTE z-sh_u+lfCVKGv&C_m$wkAJIHgw=VP3UCb=8T>BECaC z6tp}k?_dMN_QZFB12papJHU-D7C68xdI{``QyqW<>;)6M6%6c2obL2ty=c2lKd}{i zqZivZbmV*F=fV7&9W@!P9BoWJ|Q&nSOIKij>b{A=(v_4FUFu)hL5mwbM#=S}$E)&9H(aopn8bYePR9-30i3byRheML%~s>f|HA1_o&UX31}2H!yB+ssnI;zjubu@1Dv5GEiH!0r*6I%@R zQv9f+fvzU+0S>R^MU?-{ySlQPec$hsg}Q{-=U)tbd-3#qKm32f{?`{SbRwUYyaIhs z;O9|iJan=C3O}IF9jOk{ZD{kp!S^HQeWmv}?p^*p;rI*u^IWz52j>6vh3D@y*E z_3ZoT$nO~~co(4jKko(90eWiieH7k%ZycN}pXf;)a;_O~*`;j{3JZkJ`L7o!yd8yv(wtBeH(JVSj>;N0M z(Tg~-2bf?31Kj9if&=Ve0|VUfz2c-?9N4{JVz+{UJ&YH)3R*ADQs3RL(8G4WqMdqC zSJnTf-6pQ`<=jtxeDUh=LcYAa%GHVAA873N0iOeYc#pH)(E)rO-V5pP=cnq;aYEgB zUqlDpa|S)h_jAtt*)?CkKR7r~T<_6^=c)LX^?QCY{@EwEKc43@&uib$eMx`cn|mIq zqhDV2o-1K~&8s>AqmfUtTTFGMF0?&=3VIHyJN4#%@B1##n<0-rz(?*mJ}-EGnyw%Hw8zzc%X4+6 z4UfWmlFv2rnDb%Dd(RR427Wwe5}y11(0iuuyM3+-pO-i%&-*^h^}~FQU+U{UQayTp zc^`}~uJxbqTe%PY_$qh5Fn^uAwXz=uIvVN;+~{F~9n69ad!vV0uot}qwz$#51beYZ zDR0;tJ}hwDV5d9_HtYa>9ugNkGj1=%Y1|90q9e~Ev3sBM9HYIT_b>Sap67AyA?LmE zYk0!BaNY;NL+^9mf8^Veujt~ucOx#o_cN~6r{@j#zFFEYbT!o}?bKP6bL`wBAJ;m( zPY(Mt&xY;z-ZRzLQ1_gB@nhoRJ(%|w=idBB)cbyg_`9!p?u2<%H{eni-~>CE1snE4 zALE5OQZHF_qy0Jkbo5|ewMEMt?E+LcqWUraX`Eh&gMP+aoR$}zY{#Lz@tkD)gqQB$ z@=kpW&Ii9wBc6L2&pEzVJN?jE@E)McOL*kD*5UJ(H{{><2H`oOKiUuGE$(9XzrJ{D z`6NG$cHz3^HTny5tG*WV4%RuC&%t--!_VFP{NOd^Z!XNgyii^z`52r-32JxZ(Jdz~ z+xUR$N8N})z2j9K<<0rC(aQn{m|z0~+{AT(1MFaet=P5P`kMN2AG{AX`08_gdtCMI=K~%t+sWf^u6F8g zIS%y;UVAU|eMQP^_@9jD^Vx75aDvVDV7H&+c*jOXBwyS85uQ!fH_%;k9QjE*^S{Ayr#|ebKFYn%b9OM!c~649(3$&+_u}(>`RdZo z`JIVBxor27Nu14BC$3?h$cK7SSK5;}b+Ca^P#sm>boAB0jV@NfiJe6^QS1#*7I=7r z-N6LS?;S4ke}{v5WlL8JopCvyu0w6Q*W^u&p6MLzoqTIhA!Oag7RVcjc(M>LMNl>Cb0ulKk7yteBbivzD&IK3o+o^Fz%q`sV)jye)5GLhVAgvu-)g>h4WqXTf}$5 z&xH3IR5uB)L;iw|{>}M=lk#r8I<&v~@i~R}BIkWMx>Bd=#B)a7c|TLvOMmFazo!bu z^ISar)SK@czP|J_d=H7g;BzYDV;(x|O>m==33hGt(r$FL)kDFF-N6PX7@+YU#9KV^ zr+gQks26b*y(D%;b?{Q`-dE(y3o+pNpuhRp*y_M`wfwYKFSQ>!nU3SWM_d-T&5Jhs zzvqIO?8EYS*^d5={)6(vbM*i=bhN-Bzj=Q5-sgSH^UC)o&cpWw>cn{++jB`Bl=mpB zyl+_O$oDkj;{D3eAv!QWgSe|7b+Tw@c`rITHs$7F5l?YqcjH`eqmNni^En+2^3@9_ zw%D+v;7j#mzeGp!*f>t&d55;^w5w=+#d+g*Q7&%mit4c9bYCPsjq_%}?_F@A1NrAY zZ_qF0rMi&6=p)n#pI><%_IVO@0?R3l8iKHgLo9 z1&)H2SDdt~I77EUwy!v7UvW|{F6@e%@`{~vD#&*jM|d;gttgM> z?V>*9tNP$`-(flTBR?08cNx$Bv=48&*DZ7?f6smNkc_aTt^<@2m@9HMdQ%5&bJ%Fv056ZjsV1SFf zPH+_L*a{m3V)!}BG)2f@?j_YOFZ()*Ko1Lc3mzj|4Ze7cYJ$R|WR^7;Rf zwDWul&O_&+zfp9we81rN={d_h{5?rOCu+tIJsHQO+O7;-X$W<(?CqFHM~ke<*Vb^5&zdA5xgILUj(M)}#7(9h8m_39yczq)S5fJTc6b5;o?13jo%_ZcUapG<6W?}(_WwP zU+XvRE2owkpcy^DT4Z;sy7 z4S4RE>H|D_!uG!CxwZ7;_r*C!{k+xRPuiX%@|^heqN_o9(%$oBVQ<GDEzC+t}+BM^T zgSM+UXkW{`QZL%*%5y8IPxK-G-TwzX_4(iLDGly>-v7K$ zEuO1H-$&?Y+~}t2$9C!`J-0;9EA-^|34QON?mds)M>o73>W28Pk{|6!e7#4X_|sn< z$on%6`^zG(TmCb?{Vbo<>nE|B{lHBg#f3e=QLtl+4ZC7cUU9<@abh>(l?8i=W39Je z(5|BO6|;;}>$Ph;?Ox`!iaoW>H}>-WVBFLbJU%?-98nK`e=okd&YAP?T)f5p`a-{- z7ufNEa{8&O^WMO7#OIuXKL2Ey->T=5??KSd^1Y(t`}xs(=KGF$@w_$Rx4cN7XV66h zC*=*C@}D>daUNiT>SGvh;(z+%XQPV+4zPm_3~=LT6`cA92iOZHc6aII%Zz z5{*YA4x;6@`yAT7qW;8MuWfzBEP3k1w*9oc=qc5cdG+~+_XYz#hv$Uv8|1yuGt~Q> z6ZZ3SPM`OEPeHx<2;ZaG4|M#~&T($=eBSGO5Z~9mK`%cCU!x=6i!i?TRQX_h7I7Nj z1l3VTPv+y~0X`-14fdtRxvyXSY;>`}2@Wv925xvSF6>!wV2d3)3kJ5h)kVRDU2#%A z-EUrqgMKf?MgN!L(F?kn)gR^F`Qd>_!=pUJ!Tr{(<#KFjk3Fa7-U+}q%@ z_o`4&p!Y)ksH^3@QJy=VXg&T@^m`2I=$GHs&%kznSgfzZgHAlu&EYNehtI^*_Xoy* z*q?YN`;O=DAb#F2&p7JUe1MMcxIy_WI#}4259|&$Fu=`v#D!gPQeJUTE-vg2uU?8t z|Ci#R|4VVve}meh`{ed~0vqk8@kKwOjzIH&-VeB+`+2O-MSgAs9)8n4;r~)kT{R(M!&xh?=Kx`yAP4GhqAE!Pi@8|;)<%+fyK(@Sv^$CsjfeknTcC_2&> z1O2#vF7;%&`EWn=If;FAV4rgYU7YjA&y&0#`u+^vxGx9#Nc{Tw&?&cGz2WctU8CQZ z0M%1{K0A8j9-8oYk$?Gh%Bi>f+`qUNPu|=3UctCe^54;enCgr8Zv340clt$7yYPKt zuTmb^w(rrRqU{&!{e9v7Ep_O;)nS%>!TRw00h{?1orn7+ zyqfH%fxbMKrn>UJ=RM4O7xp=4%J~!O({k^7zAxZ@w*0$A-WR0r|EivNzu|iZ=eJA# z7wc%OZ?L{ayG|TBaT(wuZo_)`-@#`5Xdk>6PjG7UetcQ(IQUTq6CEtjbvVya^wPek zZYJv-uD4)fS8SA5w4HJJec>ejKQwOhdV}i9c0oSn&!S&5zwjmG>!!~{WkG2URzyw{(z&{i+i2AYsTIC0P|Nr z;$q&Sc@YQoV#ltSH|4goUTn0#!xInV@*83h-`^KD#+MIbw;a??>`}|Tx3GTqOY=O< z5ABYvjy#{d=lPzX=qP=^$NLH21DyA1zGqW6=*ausdG6sno18C8WS;VFqnpnCZPPAT zf3jZn<9QtDW7BThp7n3zP|lU~90Dix>Z@Zrj(!IIoYzK2i}e_9?Lm3}3?}uT!$!M` zL3za!N9yI>OL38h-xnHp=Re9m;Jg~;9c=Jov;WDXP5tm5Z{Fcw^Ld#(pXVib8t~T7 zmCpM)&mr$`o-@AZ!w&CtzW1}<_u1%FeVEVAd?tBa%*S)+)U)mmZ%4V$%IikG?WVe7 z{e!ru6ZPZwf~Gp6eS#-`>X7*~{4e!H9$Zhdt^sO)Uu^WN7?g{~v*L1}x4JMi35FQ9r_>W=d+$YW<78=Q>i{cfY9hQ8AI!&CK=g}?GxUT^9LI`BMEH|j`T zZQ6zH=^voF+|0*$1@_4k`IyY#bvEN)_#Bj5uU++Ex$SDb_A34-_8kU%XkdN@ZD+qu z`{Ce)3=M{8h`O@~D=jTpuGoJr> zPfPSOJf}FnCjAqhq~n5~JMEEAcjtTT^6&6eJ%H**y-axy|J6f!9)qD>+BIzbCGl$L z!+3Y+t^Psz-QjD1S@>)mM(Jn&iktqT^^N|PS6pS>iG7C~eu)7u@6dMQUAymFuAi4; zznQ<~jr#7o;7fxK+w%t9`0vZiQs2C%zz_M{+4uc-!u&n^EczMP>Lfgm{G8U$iF}WT z-+*^1Zyx!SOQ^4n-$tGX>y^jq!}DRY{#9_Gg9Uc5mN&|`aR9gDGSB(Q=QJaXkLM}( zQa?ZQJ?G%O_VZ`&%f>fZpZxEPvu^l4jK>X5%6Gx)Puuo)Xxt}pSf4@L+3)`??9A&9 zgZklqjqQFYKRjnPx)FUIQa|pi3;nncTfWt$Jb9Df(#G$zs+Z+^2KaMqbaVb*$odC< zSjQmG%X3LRGVYR3tXKW0myq}9#&Y$rC?7>Xu5+N10Nsz8=L+*kb)p{F4}72K=V*RT zaP-0a-6zg^+&@ZQjmLIe;*&RMd$E^x6Z@s8-!%T9JRQ!zl-Kr+`j?{q?)nG*#Z7!g z`z7T84tSoPD@8ZW_XwUd;L)4+cX*~An|y+Ij=y}5pq_khAg{2O@44aKHm~vqT+~yg~Cgu*I&;I)-|d zC+Np>CVk#fKh%594Du*1m;TA0yd30z(7&lu+WR@FpC9?XA@$?;f85s{r+FV@pY5DG z0WT*0Cp?t@lleHm?fSu{%{n&yJGj6}{N%^*{PVp&=c?=Q`$$JW>=&K+Hg)Lu#A&J* z@-Qtoj$o&qXuKExI_n9~Gj-wk-~cxm^8N-Jw60sAu^EHgw^6ycx&wjOWllJW#jiJ-we3S5!~vW-|YcKi9XIpYby8 zsXkbTd6<-2AK0RPCjGi`V7)=!T-Q`TA2YuF4?7E*mx`NqqI#)lzX>nJg}n<}ZadNP zm*QX?v12FLz$kd~R&+D5mvJVa#=nuDO}*uva`#a&XyLel_dW zDdpznrx~K{UxMd1-?JaRl+Sn7iSyKNf8^7BY{nb#bu-VD$HYheCw3!_TmBnYu!CVe{WfTM zqh9Q#-x-(rH1j~b>OQg_`CL}`-eP{dY}Y#KC}-`MJTvA)H6MfWXv zKZ(yl;+Q3GCx6u2e--^C_3B1@5r4}U?HqSgKjFh>Kbr7=u%9(-UG5!WUdUG(XL!0YBASS7)yOkFUH)%gW<6#_)llCTF)BJ$OKd>k5>~HxtPvrgB zmg|rHoxGS2_lb0!V58k)UB;z9@)`DX&ufo-n&zE?rH0KA}KA4Yrwx9Kzdig%-pP=RP-g$NBr+?zTANiz7bjoeN3lF#biJx&- z2g`EeEdNF0KWS$_?Y!yNO5V(eaj)q7jZ2icSl(DqQXjoAoqqF?&vc%BLH@0B9-TOv4|!a4G2ulgUfVp|kN7p(eG*^%PSLny z%PY}*rhHS^&dYNBP_FLeeWPAnw40#qQopQ29W-p)uQJZ!9PE#LhC5Ea=(ioO_&IT4 z{Xrb74pz~_#8xMrexm(1<>JCl(7Zd3UGgxPw{c7AE${4O0WRa_dcFUkANAC+^O4VJ zo%^0VPIxSKd0on_Z6ZodyD8sgo>^@78*x&fjMMbv zd1$^K`3!SR_~SgBXLB6;yDs7(zZ*JHFGE{h(7qQO*sI{g-r&#=IKc)QPv`4;Q@_l6 zupZkj^+cW~>ulKT;}xIux#@vT`N9@A_8rR?|0sD(#t(3CKKUNOxNX+i ziHkh3e90f;Ag{LN#ML|*SJ61yelecy%}Y`~7$?n-c?XXl+6DbA-`K8WV%x5j_Kk5m z`OkvtRlmVJI{l2R{4js6qY+oZ$UGM@j9j~7nRxXR;vT=fH--~z4R*kZ>X zpn0-BO1|A?5%@inbl)@1-tU;d{Re);rC-+H%tz5p zr##4q_eJyG*dG_;CD`$Ae$>C?obwLlXwm=!2mbs*(~Te*KB9MM}9lTx+!ne4=}-A@;jJ+=efxJPCmC1hi*Q=CjaD# z@qz~lI?krw5b2-T2`?J`%=dIW=G$mDu{WsQofq?w{{y=_Pf(pC>)7y6`>fM>JHC8( z9_9JdxHsqFI%#iQve>RW)G0dJ>dN&pp8Rn?9VMts;_V#A}%4y zE7qUbo46$9Ay0^7$8KQ9-=LrQH_pa?)4#c|VV^uvz9^sgRoBBjqmNy5(iq>o**;j; zV7{AijFa(k9rA0z=fi8pU-%3B>9;xWQtrCdtLxRz;QsI5iEQ|1eIpJXztg;d)A3lB z`WfI3041P>Gc#?AaE{)}JB3)cmoSHZ(;`F?}*ro2-=nBS^; zq26)Ln>;%E4|(jwElXY-aS7sS9DC&l>mJ4zKl0mr>QBBOzvhelPsWu`#}9r3Owe`> z+dQe0>3l)+6waG++Yjcm9LN2XI5|J(@BKvmZ1kkRrN6Si;rv1icV3J5xKDI>4Nk_Lj601Fel~vH4>sklGv$kV^gO40 zk(VLgUx=H2728d@?I!bW%rAHka=s_VdaHgmI6*i0ooC>0lmD)MgWsJR{=GHpcmI(uQ=SpulLzxid?#_3 z@MPm}(7&rQ@-^r$?;OuOtrAz;9mJ3Qwl=uwZ@xTdC-sYY1?}oQllfX7^wXcb7{o=M zIUm=X#6uovJHGR@pX=DfC&1ynjhi;}cmH-j^!-AozO!D(TgFHII-dKi$oiZ|qn~;) z-wR$lPU1J2XUA^Fz3@YSr=7gQ?{fdakL&VWtGwSuC#%@CK5yz5^Y{Cd{`(^5cR>6; zGV59HL(D(uKUsHU{j9->&}lE&;KU=^<$j2^JBb*ALEnqgK+~~^1^Y!v_F2G zuj^RUi`JW0c|XvP_ICaF4g754wVA);Z~4i(je{s37JgmlaGm%cpnh8^pUh_(C--N* zhdzkEi&iBtwIrB~0g?<>%xPB7P(q0`TdYDBQ){CpuPv0Xj{`vbCejg`&?je8O zdBO+tVE)u$lV@NUXV%x{Q{|`YhkwmDIsPM`(Tt$o0Jr_{H_QjP-g`+rR+P)@!VG*`CM)I{;UxP`JU?3@#*h4$vBH~19ZKvZ{Vjt z@;O`#-goauKFx4lN&IGshk5U;C&0z{X`Dyz1$v*G!cV&}#Hs&WEjQ=d(mJI zTpDpY>nQ7*>Kjbv*-Jb9nfK1P$vhnYtmBc-?cqOvKOUW|q8IhlDIezPkXKwb*B%a2}xODT2|1h6mvYv_U{08lt{b?s3 z2jflV=R7y%jrER4K2>mj2fFGd(T(R(w;%lT-+S}9r@7C$4%%<|Xa2zk>Q`I7sQ(Vn zI_q&A@~^vI{0+u+zc7x*-E}AV^`7H+!8n6?hyKXFJg~f%^-Sks-mwoa@jIz^JmWMN zM?N>~X8awGxNLBmZ{sa59{Ei3`CVZ1q^>%AI((#`aZKiE{0Fx4UFO+-k9>}HerM&J zNAiO8Oy)U^cfrj##6v@~4vzdD&^FfA<0B-yKJO z5r+lpXS#mk-5yt7Ci`4~jeKqDyY0za=!bdf-*pA^aehhviC@R5I_l;Z+>T>>@jDsU zbvN2Oj`I%YztGRXPUf*#uh=P{v{Ppj|K?|_Yx$;4{LlIwADrd|+us58{lA~14S(10 z>x^&zdwbz{^IhA2C;R-nzu!=AKkdJ`%KiP()W3N`KO0PNqI>t_p$>?D(*NWQeoXRh zJdLkBN&UF*=m#9++qmx%|3$mQ19@1>8K;B6c!~dkU-NbNOP-8_I&!?_eBhP5?(&K6 zi*9Urr;fIIz|Ushn{_n#%{)8p8sjy18ji=gFVDRn$Y0CPdhtKyt2X)D4|oJ_#yjY^ z{*Gq(eyr<0^Tn@mcYVgS%RBNUPa1Iv)-5jXYd$wh3k=Kff?uUD#RQVjTg0raEF>@@dKFB$c_#et&WF6YuN@tc zpU!-oS0~{$9R(PR3iz zXJU8!8#nVMPq(@+7}$Qk?|t3pkxsqyJL9q5?tVcYa87JBm&-g=79jTvhD1ZN5R1fOr zoGYcB`upS@Qm33le&1oRt_|SqzR zO?@)nB;LkdeTLuj_IC_GpBI|?D{*oB!++$AR5ZoEbFYFv}?<>`r|c`v*V_<#Ca587Y98~^s}^f!MU-6R;` zLg(Fi!0%3c_T!45>kWA*uRRZlL(u+nI+~2L;9+CDLH`D-Q}O(sIKPYBK3?O@S|p&r%KVx5z9rR$P6`0wlwi}+9TMqE$)DL;9#z4OM;i3{sGI^cO{sgrN6 zb*lq^AI18kx38~u$IpB0ci%<*#2d(ANLvKeBwx)7xQZ1;WKgWU>3V!2e`HIWB$~OsBSjn2dF>y!$mygk9=C{rs&A} z_PF9dJs;GGJOMX4^1N`oPJi_w|K;`K{j2X`Pk;9p{F<*+-{ssv|k7 zS%+~`zw&Gn*JC?B@^t#a$5wbbiG$BIo+sn$E51i3=)!XK6mP%V?h`-ns0Y=N@5w!v z;*V&jK6t+n@N6>g#kwZA%meXX=HcVzFCQ1m6EUebALsrKkEU@XzVf;1$9X05>COvm z_}SP4)Ha`kam2t*P+d8``$}WJn{^J>6~>|H$bH>7b>qXn-SKzg3jYodsSolb|2N~M zJXTQ@Q>*z2>%)9w>lco^`{xTqg-;9tIU`6y2rPu))Zc@7QE`SZOo^=aPlv+3u2)M1jB z^u0OrZ|aosn|j9o*~7w6neO?B;*UW8Q(mB32x?R z`&IOE_(ZwqwfosJULVkhx={z()Sq+7dY+%W&yDx!!hYgg%3p(Dfv>>Fg?_JZqa)w* z4s_(YJL_(&Yp{+<+|GUIZ!W)$c*`TduX1=t9#cNxR~>BQ4a)xs&((oAC>JOF2J>E^ z<+HTc&$6H6+RwZZx3dm-JPHrp-$UNYfBHB4$xnG9FQ@TS7xYW~s7t@MsE&<$5>Iv5 z=x07Wcg{VIb*P`tcmusB^D+NH-j_T#f9ePfc>`)YzlGlc&N9xxukE+>VDNt7lk=qN zMcowidCB+So>#&9JkK}paRLw&HGj$ivt>bw1!zkG6@p0DA#%lC0CPu3?d z2kRU1lQ^AtsVl~7@=E=H3tj5hbA1s1l(+cXjJwsd=a=)wp0o?{wCOK@n{fbV;diJf z=Di9I>~vk_JWj@2V5i--AN~huy?p;fPwK_@+oI*@;C$}$KI7Z}-d=dlC)>TDoO-`k z=egr^(Ly)r`v&X=-?qFXPsXZdT{*VeGKfx zZIh2hzs2~=bCdRs^01xyAzy(X^I37rXK>k1-m{*G-==@oukJT?r{4A(TizVq$PdTk zJn~#QdQvw$zZ|`NedWRDs!#5FZ>WEL;n5TN@jSBMhCl1yUhO@Hd|qnm2~=O|t)nw} z*WsVKOZjL#9@jX_IAXVtS9y@%Nxgo8d3LZlj{ZU0ZTLUnfoS>hqdzb~{Um;Ze97l? zpJTrA`S7%yx9aHd+IYaTUNGbd<&8LbUN}y84>O+f9{>3txqF*kTa)ClE_xuKp;1HN zfCCN^1)|X?5Clcp5=~NObg|h#Rc(r-DUg;4EAO@~l_1)l=mBCPP@0$K`6&4)`3QOh z^VD7|4Mkz&lx{aQ@F}1cB7Y;}Co{iq?|Y8GrxI~$mU7W?m+tm z@<8u&oy-$ZI~@H_`Gnbckb`mWJj`eQT#{EeZ^)-x|M@fC?t6nDBYy!~9(m6z+x_sr z>_4>^=S)H4r--A4e}eXbyp2=GVOqY)l%O~xyjdS!Y^&}oWchrBl&l|_^xK741es6qGUf9q2LBITv@%CfhUOU+y zF6TwRNk6%a@7B+J8TfNi@A}o#{+sxgWxT_B`AluJJz7^lU zXP%6g=sj9KnIHEYGLN{wd2V>F1bKA%W9GB`Cr{b;-1qtDN0k5Jlbe6nT3JwRLN!Fs`x3p#5MR-)kiO2ki&)vORJk2X^lq%oDUv+NFEZYK`gvo%+&nR#%$HZ}`DQ!Lsrun_zVyCKd=!3g zpE4d-i#PLV@m%Ed(Iy@@?bEm?jt6mlj7MnsM(*)*{Y1U_a2%ic3R%4e^KR#-op~pF z{!G>}Xuq8YPU3Jso_3t_!&5e&Li>8}YxxxPGwzRZ1&8rYoDABVmwtYI9EWyEf8+kB zm;IYOkv@7Vii*dK(zhI!(R6ppt2l|^I=J~=7llYv*3GuYQ%>Ojv`SaDk z`|9!K-}~~rU&O!v>dU|XH(&kPS3mgTJ74^pzy0q!fAiIs|KLA<_8HV))~2kXg=tW^tHPUM86F_5LZnB2{a zh1?mG>;2uLqL3#{IN*8Y*M2hUjKWEI!hlBW{*dwZa~}DIaJ*vNu9x#Vp3z^v?e^`6 zZ|QyONYCi$`dn|b-$B+tOMl_-rT>YmgvO)sTg34;zS$+K?V8E1 z=Wd(s?$X^AhW#0L!3op(UN9(^2mNmON^%hZ2xGzPMMmzy}4#zSKuAL3|3<4dM-2E+D`d<)N5k9@;@>NXF?Bj1W+et2@h zcs%8T2ljDiE5GeO(7)0A8T3nd;ArbRuB+Ke`)T*7eWCu|_|-U?#LqUah|_}GcqaaP z9u4xy+l03Z^J&sA;eY`hf3>O;53fm`H=DUW85oC%NOm& zBj1`wKJpEh@yIvv8{^DJz7>Dt{88^MRJ4^ku^iPYEWjwUFEaVN1|1$o~ z3-V~e;2biaY%eGM5(YeNKIgSuTE1vsjT2c0vOKI;Ze;CH$kK9Yxtz35I2sRjmm66w zi0rE`n|>DLO#&AFXDcg2jow|1I?q| z+S|`@lKRmYO@39cej7dIQt!rr9MJX4jXk90(sH?IUvM@KWEsfv;GYdwqyCdgy&T8^ zPm6xt7 zaz6BR9ouy@J8bQMJty2S@!x_+{}N9VZsQ9Yzt!?#BgZ>=bZ95-w?vjOv>dz4*L;LtI@ccE#3z5As&s(LY^=i1KGIV zFY@S+7qjt@H?uKlcVIED3-JA8xh1^+`%ZZ$DG@fSvjVu>( z!P#her|pvVqcM<+c#y_PQa<2m@wAbp@m7>49QGqlH#Bai@e6w%Da%D3Olf|+;G#TQ zUXG?mpyz~3y`lD4Eq}CYVb5s(F60G|^~B+V2bu?+lRVkx3;9#fa=B<%FzpAU(fQ?W z`W3RA$TE@TK<*66JGG14*r{_hdn!-LWg-t4@Zcx8k(c?cKpvKpHv?{Hf5(@{`Os^rXIrOs&|VX}Ex4in zn)q$&&lYzJ`7|2egE*gX8~2_+(DTT8xoBT)oPjI@x$B|4(QmjH8|9#_n<Zfr510M4P8ea>!j5j#oAzn9JEq*6*!hpv6GH>97VP3q*C-bXl=lHUm z$NACM^&Hp1`nAu|F3sNhWl^r5C;nb=>wjqc8sAA=7u?1@`I9Y=%&*hhuQtv^PRDzP zLH%iZtH0|h>R)kEFB4f>-f6uY^y>`DhQ zD@)6>={MA;(RInqIy+ahhjLLqUoa_u#XE<2%o*@=5ztj~5KeI)_uFkbMOFVMJ~$ip~n+{CYOT*wm+X#8*DUzYh`xp@N@w0$z3 z+{l4m>bsETLDn9n9k8qR)&52K*6wh$xHLW|<#Hh(XkJY6XT8Xyq}=v_ycx%F3t3t& zEtiw_sXmQ?+ksywm#5#ke2K_r@#6mlHV~2XZtX;$y=Fjhl&_u*-vT<8Bjw z)#5af2MljkUD{V?v~F@NBI=1(98?fbaSJDGo}hkCId*Hy?HYCr9n*t6i)zAf&I z$4R*?Et|%@^7g9FE)a$b2gErsY-7 zqfLMHbNt=(O7t!DZq#0~u;YRU>JRHXd6(m={TT!39TSAj{LnU&ykMJ16Cx zNx2N&xyLpw!=0PtvpOQS9l78WQ>J1m%)~hF6u&*m!7c98of%+p~_^b2- zH2yo2{3y6u{){FE@@eC5xV+#@aPxvz{#?rq@PZO|OA06M0*XT?%?-r=Eqp;D*{i zT~}ivFL++id?@n)Za85!4&;EZ#@|g3^^ryWD^BWv*?cwMYWnV`pL*E;P_I3-lk#kK zvtC+1Xy<&%xVF>p#*y(Qr}0I6IG%bA%8m2z9PobC-am)&Z@eQf=1InrjvvkszmXS? z!?+7xy%;}Wxvs`zyEdQtOv+^;FL+>RXE>pDTgV%p7u4R%yx_M$9pu@V$iw!HeIDnR z3q3lE^8eQCdTjLQRIl0WsC~4@pnm8#WygKtNBujAk4e0x@$L6IUwltG$cHpeod?-^ z{~eIO?atpaocunY5a-T9cO{4MW)`qabuZ#)0WfceKd{Jz5WoWUO2C6K3iV?I&78aMKR zVf@2{v$2rnLf-Jefj<*oKO%2<-l2K0h=ry}4&sM*Y2l@n@u8(}Vzjf5VV)5tyWgLe2z;9{3zkT*c&vx^qx{G4 zbISQGxk=oYh6jE-!CF}IB@VXxq`Mj}@=hr5G z7W6y{;(In)UX;s$d|=`a^KMbTTRZ)D{YSrT{}&A702(KSyk0OVmjgK(Pt!wv7Udty zqW{NIy_0cf(ekoBi>Q7(7OBijZ3PI&!~yc-X)H13U$NqiJsFPN0efgFv_ z)Ajg8 z^IY&;8N};<{)2e_Aio#y#=rUW>-2Lx`+t}6fXc7()BJWE$2IT%$#WckOT5oh#lCX$ zi*xywdtT3H|G_=b^JtI{tK~)F&jrmB+ZXLE*Z+g|_MdH>jVzDj!!RzOaZ$+Y1(R|) zkfYK0od1`_LjRAYdPlcU(|=O$`l{7?fA{@W{5kPwT>KpQXRVz5*|;+Af^zR&_qoXZ zp7YCmtj`$NbB(wS^Y4G4-aPsQ*}U}rXFixW=IJZOiy!mRykcJUP4egdRV|+1yx;o# z=6>QnOrUz9Jn8xOKH?v0a4oER?)xicx3 zqs3PsJI{N1*zVi1SjWdwz1^3R@n&0Bxh~G5g*<7$xZnF%QSWolpWx>&pz-oKvd<-+ zJ3o4s_q@5!AB=PJ%<=5s^Tm8h=KCSzOY_eA*(cPSH}P$M==TXUkL>PvtoPc-^TvDb zPwCG-l-f^y`73rlZ~ESE;D>-ker@u``h~n{XL%ya={Rt~-FT2?5EsMvfX0t;)0woB z134O<=RG}a_ib6M<6}ALFL$#`v5rmtSnqqKdOZEUi3jf|cfTdh-G{?C@|+<4eIEDu zzKnb8{VQ(f%@@R*&o|#kHeQ1t%m3-K{+@64=e3zy4dr(ol;8Wrzj*qsJWu@VXvX`` z@wYT@en7eT^cmxrH_Bf;%f0VO=L_T6@uYe4>9c?Myl>q7jB@t%Fi(l^V*YUdC;#p^ zKKBIUm|xLjiBugLZv<=Uq*oUsRrqC$q`b=G(}pmHWQHb=-Z7{7LTv?tk9z zfBN)a;CJsK-n#-nhtDPM_wqOC|NF4Vx#JsWw*SYp{|)H9jB&gNO7-wLKY9MzJinQz zKG#`(*WvzP{`=lrJ#IdsPw?~Ir|fy_b5AmFm?y4l(BJXRC(ljFJ+Fg%tmoJvpT?KZ zaRz?YuVEe$r?;MV31?#=uf~JC8!a~Sf$TWac~;Zo7nLXD$!v19`8M)_ zuERWWef|~A(elSQkiM7OfARF2a`~RYxbvL&ggEhiuHHruaF2@;$>(@w@r+Gi3MQUqd#IxSs^)lJCoWua(9FdU&t$ zyovc7FCS0({Zrppxjy|eShx3@B43jD+Kr`bzL8hXGn|)v(r)Ss9vL z{Vw&vxFXoT-bH6dqygz>a>}URa&j{9Y?Vvqi!r55Jt5LhkL%s4KuCnD#HQ9DD zsCPWM+x!c8{*sw(ylV4q3z*Sx_Lt$d5_w}`F(HuL;S}*&F`Cq`?2vP zJ&&OGy82Vb@xH{l<2}lI)qFhLP0pXgee4+b%^s`eMUfXtd-G2g<)@uX!9Ks4e?j%T z_fFSmKK$URZ}_}pK6vhYkNV)pe%j0ZM%jJH@wf+ij~J|98lTn5t=Ol6M=Z81WKgaLxyY83z*L#fbwcI~jJoNWj+xyY~ z`W)Z*^!uH@mn!a8-d}=vA1yCDSET#0oaC3Z+&l`$BTtJw^116iKmCiRzW2G%yzw07 z-04$el$S(JZUZrUH%^GSUy zm*KwN`a52qf70%k#cbmh@`4*4nCRw7H!Jwg0$l>Zg;^86DYD1SUTIEQ>Mu*suI+#k4zqhmb5)DGH(a`VV> z%%fqRl24w4J}>#6!_SlBlc%1+`Qd&Mp6h;&<@xA$c3(2@e)Q~L_$yie z_-n>xo!Vm{OYJc!mu0^fv|g^(?jV~V=1UQO#-X%6sNZco=XsBlew|7Ax8!l$iD^6 zi-Bz3$RAMde&l-w@+i1Jr24Z?<3J9|Wj1>#Ps%$N<#Hn*XuQcm+;!%Qa>sGp#klnj zC-t34dFOah-rFtOssBRnBo6O;1oyKaKmFu$kDs&NJR%?5U+XjcO8I?`_MYPX!+bLy ze*M|c`HjQPITXHk=Nt;+)#sofPNsHaU9L|a%D3x=v&n~X3TijYlXBzJ{eEM|g`V4c zu+K4{V4p7_&wGBK%Kb}w#;3G1pR}X-qy5Yy?CR&v-X|9M9_W3(e2%-3#|z$dQm;Ib z6X*H~L?{dtQA?yI+Bxcbr4zJ#Ieh=i^DAONw}Kz1rRNb#B({dzI5< z%WY@>MLWw=yJ1iD8068_lRUZSc6&bZeO{Vx@a|jQhs~qFPTzq-@E*j{^pJ2+0MB7G3|VA zARgm?f0l3Z-Tl>b;J#Ndzu+N$_6r8>rv0#k<4)vZIqlN8B(KdMKgaStqwiztkDvP2 zXROcs@th8Rw6}IKFWi638~FpqbDyK1?*aYy`vbj=*Fzk*PUGhlgZ7=nczVI2e8Js# zkUM+3qTPfE$2$z_J72BSa@+UulkpZz@@JV( z-s8N_7!Uou1aaZ`J}0S9`reMb8k|qY?d88jA2?}Ww4aY>y>UNU9w=|h7qonm&%rp$ z@wtcI{fE4X&z|$$&&|9q|L|E}*1La5-h=v_2rqd z>=%E@_{6_?xXFto?*bO(#^?RMs`;Z{fASpHf6w6k*z@7OcktZz{;D3F!@f85dqu7% zw3l{tpNi*?`_MpNpMUiC`SPjXhQ`Cf|FXxI@}XVlAf99zU$7b%vfRj>))(~&2aI>v z^;F)*d!zMzT+5~NZ}lOM=3hVUo9w?gZh!JDkMBR}dj$Oz-b2`D@4wG6FFvLJC(!eX z^X%rMdB=OF8~^_^^ZptA;Z`PYeO|Yp??2*m`uq6|s z!=k=(w>VQiluO5vNqotPTyQlWKW*&gIkfP15_j_ji}KDzxje`+7+((L2^ZW= z4&?C;ZRdQu>9amkF8WEw*=>F5H_@}8dKLTB{_AHvInKgg_j{M_gFk$>^PcCu&+myT zdr!PHe(=BL#^EJ#ZazrwT}i!hXI|d%jC0Nt?`57pw;lU~@7K(md|(ITm2)FFFN%BO zjeqmOdm+zF{`=eeJ{!BG{abtU((gMI<0Ray+kNinH_xv>#4qS={uJlWZcO4tPUOyN zai+W}mj_uIciG}@AE_dx%I%lEwa~+$HgC{CV!o z2l{yr{G9a+$a{~wF3(lZTif}5!@SmBjPD*QodNa`VCbSnPZ0 zeqsKaU-)wn2m04>Zn^c16ZsVv^>QQ2gKT_F^eL!5wv$1^IoA!q08=xBD^ojr+X^?;pQUe3D1rqkL}_zeb#X3XNm$k;IqJC+3fFX#9^4 z&;B=G+^>nJL;ZGqpI3}u=JWZ%Jof#^y~oimnqK$wRnAvG&-R=!U)A&G3HlZL%SKN0 zJ+QF%fx&amG!F6O*3YbS(O*CM{<~;5$ghcihvhGrly^?b>jf9(8yat;<&WjIlZSrN za=F^P6ZvB~=>Lk@=3B_yeyr=fXjjc|H(tyu{8#S3e@K4#ISA#RGxr|$PoM3EaYCH> zJamj-VBWZoBhoP&pqD@`uXfK-r@yq1jG2e4cKRS>8W*tR&QXVfjDDSkNoV4pK$`?G)ycsR- zY`1Cminc4-O_;wRgZ{5L+V~T>;D)QUv;MH&-R=oN`_M1O@9#b1-R}pPUxT>W#CQCR zc9uiqZF&wu^CiiLK|XEfH6IK4P(O`l_g{F7Q}ywA{qv_@=Goo9wG-n8=dI5@_Z&dK z$$DJJHjkNiTkra*cbsG%*LkQ<^e_&K^>}X`)LUNo&HX@sP2*U5!0T7WQFh$Uq+RD! z54hoh!Tbxk)ApUVEBZ~CzaWGD?{TzwCvw39^^bB=9<6;gKioL}(K8NxFO@tuOyaeO z5AS1#xG&?1I5Wm01VY=?bZ$HH&6JGAc%`gab>Wg@>~ zQNQ4UJ&z{kwtq$2CGE#M4Cia?>)po9N3!doev^3%uEveL-B;KzH_!k6-iGA8z`@_c zcqTp)-u;%iFWMO&p}&a>>$By_9moBhyfxm+cs2ffKH<5~=k>$5*AC3@e8srtQ~BP* z&wp5#&vlMF-8bOPBV_I2IiB2`C-%_p_q_Bx(+>D0V50Ygw_JZxzTkerLwV<59GS=y zR^vjJyS1OKeYN^T9`7)ymtF5J?-%R-w&l(v2lFSKuo@TgfoXiZe{%2fbC4je%_rmC zd;RpBG9KVIKdE2J#LuDJaR>R4a5mZUMY(yfdG1ffPuAr=;W{_#^xhWC?>hZF+4tA? z_gru;nk>BxkS9&_%=SslXSnO zeA%CPH?GVJ#|g)E|M%Q6o_!yW9E|6>eI7hKU-+DHu)`vL7wd3-^C5gc@8>$)7w`K= z<}cqTdM`Ael^Ms+y*$?fJJ049{W!@Fxti>LP?UGtzH`%FYA-p^M<()w^@6sSNjqtI zP=3(k71d8J+W)tv^Pd;`x*pfLTsQ4+{QLPN@i2(HL);pNNq%_mIpo2l-Jw3@^j+w{%D?=Cwwkj+DqDwyb9K3 zJm{yXpUiL9qd(w)?gRFF#iG4j_J`*MjgMhmG)`n``}gR4n|bAGdUd&|mlOH#n$Gtg z6MN{FfqsMX!+GH6Nalq!ugp91Wq!zb`zi9meYm^_xsQ9!u#bDcGG2ptG=J)mZ^MS? z<~Q^<{=8RuZkjLXwOQAK0bTE)UGm<)d~WhR26E3E-&b6+4{XMn%%fiddv_+~uUPu2 zvA3Vpzv7~PHy&j3!gzQ^``hmoZMPV|-r=OaGbxt?`R|I(^NNf4k8#)aBQA&cCeI7v zvncQTy7BJ$VjTHAb>q|h+V2?|uWdiKz4et9tGDMH^KS2J+~54ZkMCFR z=dIpz(aYzu@SO3U*Vc2tAH=-ctJtT!pGo6jwzzP=u$}cmJ2_fE6v|P7Y*wh|`Z{Fy6;fzu3PR&%AQ~vE6*++i?&<-Wkt_d@@b~IUo7f zI)eS(_rm6d=iDa#+{eu~-tiM$%sd(v)l9;|jQcn-;J{%{^_;^`Z4Mn3p{ zxM_Xy?rrvAQ1AWy>kEBURS zcb(p2dG9g)@BDguDdIwV>ks9PAL@la4&|M}xSje@PTI*rmJ4~q(`b28KHs732JHgA zD!2Z<^=<6XxtiUSi*k8dJI|3x`9x3K7yF_0LA!(-9`0?fWApu$!}ltW?a3q0rOi2X zi2L;3XB-l5o-@W-8h^xTnsg77l+Si=^V~8IJs<9KjQ2E^HP(9=9Kf424J4|eiB{QQ5O>+$>f+B2Jf^vlBD*B`XAyr`F!pVm)#w{piFEv_fB zEaRy$TR&y{DG%Dk3wHg~bD^)aTw2~)%`VE5a+$~*DhKj{L%G@Cb(%Me`pvmh+&`w@ zPa%&i-{jjNP696C-T03d|J%GW-i&ABZc%SP$JvZijz^vjxF{d;L&n!XE#C%m(r&{A zlYSe0%!`}<_9u@#FVk|@g{)l{b~Jw$`_m$>Y-gNJ{f3N_2$bF{pe z$g+^-Kz@%wJM~aMxzMxV{FZ#LeKJnxaK4rowkyhyc>yiAo%OzV3&+L3gS_!MDa|9| zAs9FC^CpkXE93hRpW%6hZ2U>%cM-?axV9gh%#)5wd*2UweiZq6^FUd0&-1+Ue&=(R zpUZ~NU)=kAuJbMM$2WdR}T7h8u!vTp0u}I`%mmGEg#0e=LhoQ9189o zoPA&?;qveP4LHl%G z`$PS?TeGmfE9pHM=PrueKkwEA5XQ+ShVu zd3t~I{2`AlcYM#IZF}c4u8b%0BFUFYzHH)4`JOx6e>_LbC+~m9@#sIG_pW6A!#Icf zX!ARc?SeeGdB}O=`wE|j2IF46$QPf(ioCboVBW+&OB#2aN9nn4K6y?-@7F`WF|Khv z8CU-pcdz1b5|_Kh??RT=AIi5R==pP7o3!LrsHZ~`y)?i zo~1H=2-PKiermr-T-W*grvAIv9dJL9ohJ`Bep zzSHM<&j%Ro`6fN*d>`$(<$DKY&pGdf=C`u><9O!falbH+u>1A9=RNz-AYTr0ATRRD zd!PH6eqW5g^*8=;o+Qpji^E<&sh5Sk;BGv~os;tSn6w*>;kc}0!}ShrH)$smxpPq7 zsU4;HGO@3+@u<8!pM7sc-sm^;De&iJodxecN?aI6e*WUW=Pu8g4;gPi#{Z^#SP#u3 z^X{~GOl9wpk9-?89LKo6=ZWWw_cm!c_c%X~^>fqh`)u;@=1)I|sGpB~QzO(@j+RFo zy9ahF@<*C4S9V|1PvqIa4nsR2ua;MfxY^Kno%#_f%c6Y2{SK3QIgzF1a!?wRa%WK9xv|@|A9BHseT_@oyYKlqMv_N?-?sM(?|Jw;(ZhJ~JSyYc`1{>w zTp53!7sGrqe~>qf$FpBHnqNKtHs?(d-#!Ng=Zc?4`MK&gZ`yN^-}|w>d9?fa=KFch zui4g7#x?fWU!~oQFY@RQ z)cbzI^DN8{*5i9T^YP{>`ngYq`2#0h*nb;G(0%B5KhU1$mFJJ|Pw|s^b@L2+4fHXd z2J>%tnAdnHWfxb1ik!2ze81S_9Eab^PUbe>$?wh`Mz4Z5T za6j?)b@;ix{x0o`9}f3|g6@0z!8}^+JR0T|=eslP!-9ejT(g`a8~GU7L7|A3gQG@sHosJMgc5HV=m9!3$2xZRdEN zC+0_xH|B%qQTcpCo_r&}%$I-m)Zcx|^J_j>7k1z6-VoXWhIWP<9`_;lck*YtUt#Zs zy*K_C?sv!&IT>$bAMN6L@AnD4-x^o$&+dEDa=(8F@As;#Z|ln@4`l7In|)4`tzVQE zoG=>~_TTu$b0_}r=_kMc<^6pVhXXr%&X_lY{F$)ehUUqlzw=J)Kg}onqu&ZS;PtEi zr@!kqFZ{hco(q@mk1!kUZ(bGqWV&B^e{0YE(cZ`H_CC&hGOm2TV7{6E?qmLa&~3gE zp9_Dv-t?@k z|8ZYQ*X_R8sQp~mEB5>`PO9a{Y;v}Ic_rKL?vp^{+Kr#yN3H2y!OX` z2Y*ccLc5J03wxSB?g#GE?ibqMee3R5uGe#|$=(M%@A`UOx8-uFADl2=@MurZ{TI{^ z*N=Zh{aPYV1Uedn%O@Dh2aX&PlHs?qD zn05J_VSE$+(daqyjeH`1w&xE0io7xIeZIW^j`g3hKmGBO-fxU6e=ohi-^G2}=d<&8 z_PhSVpUM;2I9b?nL-WV;=e#&~hIs?^U*X3A^+!04dFj2t^T>Vp=d7Q7yN74SuwA;kbD{7Z&@s`LvUl#T(m@wdB|Jv?j>g9Uf=g1H9CCQITx$;0R>UTSD zJU0rzZ1W1)^^KNC`h5}y6F-?Za^XkgV$p8n&!GQ3hlpqQjqtpJ=0Tbl=84Z$`VIN+ zyV}un$Mc4~^*(>|%6#_T?|J0B?7ufp^b6FVOTS{jYd6mwxUow$drkI9&!K}n^bgd3 zgZgTDv(ZC;lySj)+9~{ZSlG*ZoA&N`lG+u!g#NJH^V;}%!AZG!W4s0B2mM_~ArH%& z{fB;li5`pb%!`8^%nS2mX&>@NdmZw}eJioQ@oxDdkCy&mUgLeVJa9d(H>`*H?T&}v zjGKub+O6C#$fxqT)wnkPTV9!m+xt4a<;I8OFs^yCDNjkg&p|iN@Jm6@A@{w&uVKA@ zYk6~8{si_;?QVQ4H)_x8KkKpk-QUo|earEeb|+qpr=|aV&LsY{tNG-4<-QiQlV$$E z#15VMT^{oSF3CFVf0UtdxV#r|-cJ2NTnFnN((?rlNxmrG{A%Zr@tyc9nI~y?@Jo8{ zzz(zdcT?~BwZ}AW7)O7n`zPfCZuQXK+*{)(+&BKGC+|7sbBp=W@=E`f=TGB(KSSR7 zoM7I1pYz^%^b3A7PZGZ!s6P+uFfPp-IasgjH@>Uc>maXYuRuQ9&3%iwN%U2ZqQ1-@ z{Omp)#E-Omw7l|pHd~(fJSnYD{9|0aVqmXr-azeH#vgW`Er0aGqFnn1aeecF{7Lr@ z>`-uM7yGsPNx6P;p282FLuo(!lx=N&2fx3BDn=&+qVFj9ssN(Wl4LCN9eOfC1gVw7>1w<2kR~*zM+t`O@gQ zQJ-Dl_g~m-{Ci*lV)>14BEKS4A8JdKm}GN&QkU>^m6Gdti_!>H7xq!FJ~5 zc0R@n{qrH??Pv2Iy^zcNQ4j5h9S(BB>N5QbyOie`OQQ#ey+Rmvn>4%U5ELT_%#~!!*ZSN zyxHhmlrI>zLtpg|<(4OfEX@b)c#M0fzn5`9f7`ikIcQhb9Q=ET6XW0U z&LiKVAqMuEwlgk}hvky`gpRivM~3at$MqU#Q$IF;CGw*GXn7OZVX@xX);*mMf8TX8 zZawmC+4uL2`FZ92oSFB=mfK$YxUPeKcRuFbZQc6q7$5jgKblWTTuI|>5udZw58~5u z^T@bO-uo@=EVcWfTz}2xhyBPmD~0Ef>ouRJd4gW*b0|;rR-c2s%^&QrjAQ(|-Tx?0 z%JsYU)bAU+-*WA2z7V%*ycsXFi`L$82kjhpwYV}K3cES}VLsy|kuBGbNqna9()w-p zWAvN0W4@uk9{J{`@bh>5R`kE?U_GwGJS@iD%)eV)oJYP5AKUj9-Vgo$g`ansH+~O; z_KWe4`G_6O8@VYjxM**=ewg}=_?d7+^GUggH`@*44<gd zTYhfZ567{;<2ROmCjJ(j#v^t!-jniUyXJ?oAJkt-JjRFo+8xUG`+Dq`&g1;@j??_D zU-k25{PJ@b@0HN!tRPPYdZ~~7#^b4{>kRC?uwT!o!p^DvX_wg7@?@MOE{w-)@oxTD zZk`x-Vg9tdo0QwGh+Eqq>}MQJ=$WO}^BNd|GWCj${04 z?`t>4AMjx3(Ej=dPV~C{+kQKYfBH}LS7sdb3Fp<%(0I__=IefuC)$4-&$dIqP*3WM zJe>Gp61U#ljo}|bv-L#+DT|ePp{T%McjpJ3GP;Q^8+TFaKmAK*{{W?mxoqokQ=C^qwUGKFE zcCdbEAMCZUOH!WAj!U~i-0aZamtrk6Y#gb~(uA zO=vItSlDx-{~-@Hc~G1;i9A{!9QO_D>2F>w$73B!dtj$*_MG|w4($oGv*lBL%n$v^ zxD%G+&~71b{boPPv(b5NzqA+Q2OQA&^1KT2AV8s-z_>Sx>;&q+J` z%jtN~cALBzaFaLgH}xUo?Posn4NnX?xbOVZm(c8?8R*U+PD_?H2O3 zzUiYK)&Ef6xha2-={(M>zVu(Pnx5gj^jB}kOX`&;{beE_=z6cd_-h;Y#92tnjfZM+ zH`E*b`nblW@oWBs_l8HlrAzo+xgPl@-uE%namkmZKIpg6$2{_!ao%WgY5$<#W}M@= zl64L277~4qdcmUoYUP9R)I<9_ZnkkS0DAi_4EtJL%#)`Z>g{4&O<-Pb9^~mFSMQd zPU6h?GTx1=W1hh@zl=}fV0jNf8+C!Z)p<8bLo+9;{E+l={d!@G?;IA?l6w} z4f4VINxP(6{g3uTAN$L}xSRUf{1L3{z|D9C^^^8p`iF668+SX7_H%suG5^Cq$!t$s58Zu45cT6rN`t~@9&#@9}>=~v3MAJ})be#(wJ zsUP-7PR2=O=aaWR{T3|RFZD3aiQ9#|)DPZxqyHg)2Jvth|4_df-*Ltx-_qv3zxMuS zd6GZjeVu$Lsa|kH^WXfDuH)+Ax>--qzuGzry^Hm1);E#0x9e3-*Do1&LdPBG5wvsM zvYhz?o>sn*d-<{*9K9WS49BOw&|^XS74;h?^>W*<&2x~QXEUEH=ZBN_&L52Hd7Z`= z9Mn(8ab4=^c+?NuQGOhcajaL5a(?TT>8F01a@Tv~$hef~ccAfb=sy|PdAE8(*Xj7) z>*|qj*>szo$Z%0~?}s0U2_zt{ z{h<9sUX90lO=s(`{@QimSM&3*K4n>ytH)+s^h&_TSe|>L=%q&poT1E5&#l9%#9Cp6bu~w(Dda2{&A= z-J)E3xnAkI5B8keh4@YECbf^_rt`vJemRh*dMmRo?R)ibeyCpCaqWlf{2ToPJuIKd z^1bq)z2i;Cg#%V&Am4oe`OeqYeX#2=4qO+E9>4TIj60?4wZ6%V^8I36j-#GM`$CTe zjl(N5p8Ll_pYvk=U>w&wJ%`Abn@9XRrQ!JG(ed2j{lUg=ju*$CRy|{cN|aXCB{2Zq|RGc0P<-a6`wNO&-mk$#|P`^-1PeAIBeUJm=}Oy`1z* zX!$}O*0X-~C}iX0_v>e#LHnu~cGG^T%((h(QGWfy`lsVk zZ~x`^a8j@Si}AHjFwSs1`Z@2QzxE0BY3onypgjtCVi)bRkvr|L{nbzVT|XO7*dZDV z`Sxr2tDknzK6hQNPdmV*+P!E^<2cUiJoMlA#q**3Jv9EFEC2l@ z-=A9Ki}yPFdCu&XNBUh(?6)QJyRPMPgLw?iuZ7=7Tc`4*zKDZ?Y<#5U#z~9M^~$c; zO+QZU3WxTk|ACG-kvsLvdeXTDzpZ{<`DXAN>!q<7&5XK3J_^GVf+R zo)7+e5Wk1$?=d^X_au)N`7$KuQz>Id{cik}es|r>KWTs0`N+3pG5nrn@ckq6Y_P6$ zea-(tT$K6Z`34z zi+QJdK-ZtN+uB?Ia~=ifs!INJD0`Gn3tX}2i9enSuC(fT`%ak#VtdTnUA`7^MOaeL?|qpj~CN7H+lFZvM{ z4C`GV+>CRyGxGZ45m1xs2_`)cDj-=KX!=W+d|J)GC}=pV}Wf@69jfJ=70a%qMR-^|Q6N{xrQ;Uk~=tPU^o~ zKgUV>hx4It8aMdaI5I94^|m|os~79le+T_i`!fG*a-xsi$eZ?y_60{*TNc#=+xa(3+>}LKi^qA=D`j2_Q`;Wjr z#=~Ho&3>Riu55p)KFp&Zius*)BOmRfe$Fo`*Dt}icOA%!d9{b*PRgCHoR4zHwV(28 z^|ze<+FN@~^gS?~2YKU{L{<;yaXo?G7d+7YS$SFxH+CrXX8wu)F404MWYT`qe?s*e zmbEv{)1lzXE$ZcU$#p>phQWzoEV0q1{Fvta~;)EaVOK z_r%`|ZfLw@i>E?fjmFxBowM0tAZxF}ZnH6whjxYfLF%8`{FnL*2Grkj;r}!aV89zE#7n{1X!&p)=SA<+ z<{$L;RQ6xH-nXp2UHuVp|69;JFrR{--=zNgP}zRAlRtU3+uW`fr}{>(%{mrxO3JP8 z>(vjN^}24UKlS(4J}`)ngk`+I^MXa(Z8(VE2@7sG$dlQ)kpK2H`r1+n&7(p-aF9P` zJ~94k^CogY^;GXf?=HLE-R!WCCk*X^9kuI1E;wPr0R!qM{kQOA!3h%%81S_CSjZC^ zFUL58#@RH^pz>B`9OqLH>G=1&@|@zg64w_`zs4WH-+<=T*IxhI|9SpM%grl)3o?0g z(67)>CbIg6G91l*g}kBu(O(lkmHvVQ|7VMfWn92PoEdMO#;5VRj8}M|`BUV}hUU*f z9^^?jPUHn;v9xz@|J5BA>7}^ngujU8+B8Pr~0S|s%P=8P4 z&ZIoxei2{Bm2qg?E#lI9P(AYNNLIFfGVW<~oK3&wJ&SW=``aUb{v7xIRlt9O{9VYs z@BS7x`X~DBwl3FE)T?LFPJ0aOA}8{(9J}k6g)9&9z`y#xke7ak#*uMV#FJdeNn9GI z2RY0OIA7#V&mZ&U6&HDQpy!hFO6Qlm>6z*Y59_(>a(#^h`82y}Pnp_LyJG*{{Gxv* z56`?>O%LZ!=IMHF+G{86awyj>){kcYrQI6`{?yM4dFy9roJ``S;DWnx5{JgA zaXZMHe33`txdIbTSWUKkQGVb(m)d;Js~)H6S;*?2FY?Lt%gOpfJ2X3L*P?vF)V?s_ z!A~3Nze1ic;eY`Tc_KHm@iCEy?TDirXT}@s@i-`#$GC+7J%6O-H_mA{V3Aj09)5V{ zi}lX8dOzd?x8t>Sx!z>m(Rj26cGS*G`!;{+KmED&V~dA@Y@96QV>{w38kg}0ja%bb zPU3vSFb`nD3G0QtDL>FWI&J)Fc@@^9=Z5O9T&@GUeyLqjyTH-pK-S(1yBC~|L%%d` z{HlMe`F$df#z5Z0%Yp?b%vOJhN8>b!Q@N0h^GSQ_gZgEDzzxp}hU1V=6MkbJ`VZ!D z{q|ps6Rbdoem5S7qlEJX59Nb6ozOUzi}C}9`OxG^ zc{MKEL+^8!)-#^-rSqbv`tBx=)~={e*Jpd|qrFD6qxMY7tqwn8pPRc!;mvIFWC>wKzP)XTd`pSIeu7oY4F!;y+-SC(yi!Htx2)^EADN^PrdO z>g%7{q1p4cqg+31?QQ$!PyM_pUr;$({1{J*^4%E3pYd8Pju-NVLA+;+`++=RH7?u3 zn?Jl~2c!(?GYa!3ZH2!Sg;fh|Kv_oSye-!eD(fpps6E5Qc261JaP2_sP zMfrioagXa>K8f>cT*iOnK{k)1dE|IWy8+c}H~lAaHV)*|?6RA^68T`~fh?od>kql; zCnvH@$88Mc)8fGRD9R^HIAFlj;%y-thZ8xCN81y>tI_x#lyCE<<9R_i09M2~A@}jWNxOK#-Rw7z^98LB>QD2}Zhq5$Mfq$@^D)KuchjEj{OEs=$n}0|*UX9~w zaoy7w`JJ2eCmwYHJ(mhwCibvA%M|(P-2Oj*VKePF{uxF#?2IBSA=>-?u@W3EGItS?qC#*Mk$Twb%z;u2vpnmOs?&*c!XJcZ^aDCu0?i-DR&P6#{*b`>sz?Pf1lg8sDJ&j8k z(0De!r|}Jkaj$-$=a1*oAiZEv&-Rw>K*zHf$96o>c}?cI;DP#k;P2gdTnFg757ytf z=$zzNyUT)*O(Q`-L$n^W(lusDeXMEbD#<2cjlp`m{)yc=Nw3C*y&FxJhkWC65~l_8f#xsr z<;FgZPdZXh)+_3b2WCrm{MF{KJxNa(P`|I{ch{lk7vEw^rzWr|dVVnu8aXSzEm$2Z18=gkjd9?L6 z4kqccu$S=x&(BEX);N}vxJ{^S{vus&?9=$9BhxK!J4yY{+0p}BKXgv~kTCR1TZf+R zy0}h@^7X(Z{fUEo8Q4!e#E~?vR*Sd7o{fn;V8EkJpm8l%i~qDd`j`(oTBIM#QP1{l z|B&vu9Org?j<@-9VlTMifv(?RePv=#SP$H!%Y$uv4dP6i-kHW@ z7tbGQy5((eQa_=#G<}f2n76Fvuf!fu|GOSRdS@@U+Ikjt=OkSw_P6Dre8AJ<%(#<_ zd|B9XV&?+~=>d&ln5G96ma_G~|CzwF0;+kBn>B)#C)AC0bW=WKDXu;n%$ z8iTkpzIwcwE~CY38JBQAaJ6#UoAlGDUeu4w_B}h>nbc3HElnTf>zB^LKNAiZ`i=E4 zU79aXTgQd{#3H|QlKyR(lpin}4{`X!-Qsm&cP8oM4XTe+FPuMxeW2~x&!*jD`^^u| zQ%>?1-0(ox#r2wPoeNto?CrY0!62@TFXK&`-Z_oO#=GAm} zYUQ*y>8J5YN1jX8E9#90W=q#E3;%Q$=@TXl=sKA$2l+BudDrqm3Pj*ml5%20q{Uqm1sT=Nder`0(hl6$sZfHN#{-FMq`aSXcgaucl>C*g7 zxziZLk?iG6A1&Ur&6lQ6%CE-4?(F5XH|0;`la5TU*3ZPw#(^D;rt6Q+sUO?A73rOp zPx9r!jt6eqH%-Njl}vtJ z+W!ii|BkQxJl6Axb`K23I~dm;54PiQe24OubDdY4&rNUfv0Gf|mq~s1ZR5`LNj;gZ zUF|`7=du0PPBnXCo4&C30}tuaad%q3TKf|_8wYkga5J9;wI}vr{Q|olX!#^x4(w=j zy}m8WID+oi)%q*qYEten?*)hLQ0~T|w&w==@ZYWa>&)rzlfdM6O49$j4h()LD6sv# z$l`bI>fdL4_?v#ef&Q1{R$q+Aa+B}pt@rt%dieeEAbtBi3F>d!OXjaXocF?i>LuIf zlhypEA1CRZNqXlXT}CTc*b8b)(>M8@hxE>_A8pH3>u+LbcAkpI?$Vt=}WQ|M10B zKj@{tex={vq5I-x`(N3K-zNW4813(qmj25xyAs+S{WzXrJnA~tx%BrUJr_Cm)VJrL z=i{bcp|8n3Q@?K4i?~_F&%=3D*z$$HdOYfgOzp zKN)XQ|CN3;9%0Y7+$2962X-`?-r36~^_KOShxHbA!KH4zC&A4<$M~<$uQ}e&WykUngCCeg9?O-)Z%{ zGoACTewT9QJ8typIeE)jkMhNQ*Pp%GxpC)zrNQ;k-w$*>Iw$3`)jQb6xArDo+wo{i z>vdYb({e@oa$;xWz>da^KdP~(2l)f`{33nAY#i9pXnFGw@ozcv7xi|d^9^+3_t(^i zaS-oc@sQ{x`JGaKm)m_g*w3T=PNVyId`WzM1+_h&&|g9I_*3W9KYY~>btOL`U8*y6 zs6PJ@<^CR2zu&{Q+-KO5ehd9ya(;RqhUI?ns=v7xF8$1Z{bUnQos0C&B3)*)4|eBn z>FPlpJkfHU$$4r&)y6TgvvFWYqj6dP<>fEg(}VnkrZR%ZSI| zT!~*JzCVHLK^=6Rc&_~l<$n==2K(>t2Y-Wn&o%j7((TuD`!W5WyvjMB!}Hg2U5KXx z_X8K{orCmh^-i-lw&_p0F}>?XJJF9c-TvjIzib@X(P*3&evv&r$WQ&(%3E)?a+V*Y zN2BFEht!ejj{Df3`e9%6Jy{Xg@s9ZT68;c=)kxg?oOAC<>gSJM<;@SCm#z-mb4S>| zI&nYO_Ib%T4gTKIk2+%>-nZ`a7x%6pu0tK!&Uaqz+~3>(d2I8g^?sFn&&5x$rRSgL zA-eZHi|;88@zl9V?_8wIfjwLLZnou3Kja6x=u{svn|``&`;&Il_M!17gY*G6@oBzx zkv!Od%usUC!QCst~f`w&p%&L|LYg;y~}jZ z9q2igo;!a`Jx5Qc+PoG49^SWT-|ssN%a-XH`<@| ze~$cLfR6XGmtF55`^VK zK8th7xQ(xA=X0q3zI@rnd8xa9LAgI6-}leN`8@~JwdW7{jcbkd!Fy_ZaZHSZ@&uF!Kc{Y zf!+%_$HIGDzVh$$zUk`PeZX;e9@q|cuunMdFz(ey@TV?*j&Yf;?fKN}c~5m7_RDy; zX>=Y%x}4a< z^8cB6!yrAO<+Vqv|72T!xANZSb{l{2el2{TtA4r;d~Zd3Z{q**N3Z#K&fMo8%3nPh zzxIc|d=9$jmG?f!qn?bzcd!18^ZUM;_KJ8c?u%(WGS1}u^S}3UKVRi}e?Y$%5uB6m zH})5vTfe|~!oO~}^zXj%-IwAIu+dZa9K}AC+_#O>B#tNR>AD8#N&0fVq4}rP(;n2< zexmJIJ{=Fd>GU%m7^ENK)wo^Qoke=WfX4U0o={sxtJiJICFQD>x1Vy{=(oIA8Gqi> zSXVz+G;Rw06!GYO>3cfg&s}}_+(UcbyGs4|`4IQ4dyjlaT%jY+l^eI-zkJ?u+&o`w zbRvWA3Hkk=^JlO2{k$vx)63rf@x_42bISY=uXMk+;D7&8f5bcLeFw(FpZ7lZrLSJ) z-GAIqLS6FT8}vN9pEtC4U##nf30-f~Pb=5c)yG@q%)feh(9xj3CkFY4cwH@iP46tq zW#eq^1h(=2M9U4z%fg;eJDr#3AUbm2HvZk`(|ZQ{WVx@qpKGHp_f_LJx$j@SslzXc zH=pa>e}9Yg@4;V(o=fTudd|3Cd%mcf&AFmp%6T_`>0h503mvJeiCyR_(BYb|@!j{E zoU`$Bj63+#{#DZdA>_Qd=e7Hb_e9UTU!y$hF_?#O9Ng<%XXAFV-V5$#_w>`sS-#V9 z>MqfdyyK$1fTPj$!+NY1uNzyMKim2RcDDMitK9fanr{8k+MTUE$M3lP+%H<3tAp|! z_=5HO>P6pgZO<`v#(5Ch-WNF^LY;YjyrbRE;HS{I@jZY#()Rhpdm;C&B%bg0;@-d7 zGw$_Qv5wXJwba*-spombIpy~Q2e!Hz=*jPG=ojCA#4j^1-;29nxPSEdx_?;jyVSQl z`J3}`pdaHlnV;*d?Yx)sZ!~?A{uYn@pr6}+vk!g_%8y3VH{}+bFduB!({+>E{e^nk zZ}GVP)Ef`|PyJ&#;>GhK)CK!vcrJXOb@V*)ex@$4y{Gy7;CqAcyt2OSs*hix{ojCo zj`JDzJ7_)P&U5nKum1E^ZoYqU5oduOj{3k~+6!B%mxW%EdP6oHZFH31y!!P$+r6jx zek5M`;k?`rq<;8$%DHcNzvCWQ?_T-pw*LHOJN}8Tj_b_2yZ+Vep1zEe#-4u2kEWY! z_OKjuT$}L~oG=>)c0l8Ovu;ncob2URTlb!Cy+glcdHq7V`>LN;+W-()`N zyx3pwbA|W%zOJmhaqs6voU>#&*s(hqID^l#$7z)xLAi9RRKOTLGgj)(K{`a_-gd=!j(z+Y~3AN!1S z?|-~^aNWvv1_bBI;%qQT0rcdlATCUUbMg7&du{#%jmDS=g zu}5P(*siDR^F+&)Ixr62U@z}DOka#kzu(VCK5y%3eE$;Z-ZPA2^NoMk9X;K93+bL? zop}guX?MZVSmt^{QA}Te-}Udy!30#n|;d96Vkl_{^WwtM{ziJLq}fJ?-a7 z{{*)6z2}MgP)EjtI{GE*8$aGtO#h60(|sQJ@|Au+cU7<63%^f3ae6-=`VX&k-!G`I z!SjpvzVLa*bah`bU5GzS46^|EMd@ zp+YZ@po?H6;7CNyuqh(LA@vTcGdf~ zf8)S?@(b42``GVbs|U{wsct-Xi0^xE`;7Yi+|g#Abzi;rG@l!cC-r2y<1zh9`r-K~ zfAq3t|DMJDT=|b)<=oGGPwDge{`a)|&5Qf}i}(Ej@jE2Cos_%h59hq+==Bdexc6K4 z1?TC0<-Vbwe)lzw;vPGQ&!div&t@;u-_lbU@3u=l^(QT7|4Df{v1Qq=?GcCP4H~a< z8ozMBc!QRcz5GEBvgcdxuwNeflj*+wr>qbA`+dLc`gyLfAKrLy{k>nkd$n_Q;l1xO z($$ge{SxW!v*x@1s+V7+obmNrFWdKc`(KieKJpKLGXFl8P%miro^xNm%KLfOeIENa zw1cjE|8}1zJ#YRU{S)7JJhbb5&hHssJ*zXu8}DdGf3ct0-g*DZPjoV%@j6ZaFRyZ& z`2AURq+XsF>H-d!a5ffpFfM5v%1wMOSPvY=G4a3O&_Ph%a*Oh^u%+p8lRu>Mpk2o^ z(V6RY-zU9$t;c$=8p5u9fJ}aV_>Q$D5p| z@x^N#_x%id_kEoA%jEObKsT4JFX_giaXZylS zM$-rB#&?hRApa2e(sHuMf1>5&ru=qXt^Lp+-w;nxD3WFz%r1Jt!v=d%*)u z9}ndx=><1DjYa>nF|kKuU`xxLhxq@gc&D7{)#^>`C-(B%j$^d;?tDF$+;_c?f1dH- z@4hekee5q@yq}ABE}@TlN50AfBov$ zbEn6-{oH#T^*rao_X6nH^CgUX^t!dxbaclyzD zn|TN=9Lmx3a)?j4v4e68d%|pXVN1)& zB!9d?%URF&NsD?1TF&v6^JG1W`+l&_#=G}?_sjd7;W;FK8y)@8PsVk)&l7jvhm3o_ zr=7&9{om)VUwF0W_m0x`iMLzd@w+d4&3GK2`@Zqc{(j!S%57Mr+u!~7d+am!-uv!V zFWgT&N80%n>_dK!Ui}B-INtk+L)XRe`2BUizvaDevwruv$#^zSu}9+}-}>6o`Y*~o zaXqwSe@Xsm3~b|a6Q56<8Q>Aifle8)X$$NX)-%qys;p1gmA z`#$k|&jsVk_j$xs8sEk>ak-%PosB(-U!QLVcDipT@ruqSOzMZ_iO1xA=REHBWf@m8 zuA<(yy!*TU<2>;m>-#;=sk;yS6UIloo?F9x!F2YKVBA+ft}o9)+vgq2xBcf3?~8lf zVf_~ExX#D*Hf~*K>RV5$qiuVQrc3Lo8=15p_6Hr0+>CEEmg9y48vmR1(GK#Z>7CYl zVlSVL!+6kcA66;)BVIc6*@A07xgylIxN>{e?j^&F5r5g?ONXUXKTN(EiV`C7MzWV z-5I1W;&Z#Iw0>h?OUoVBsTvpdZtUsWvL4zof0I9<@(PV2XL z@x1i+#kBog*L}eKq?nJk^F8Ru@teN!lT<%9P8pB!ob5c?tY@d?ZEvV!c=rqLndN;G zjz53xn-gw$VE)%vei~13GzRu@-5M8m!P%JD@~wQ!J+aq!pELcm{(HLf+my4sacewJ z?>p?<;q!)i@|Dz2Kl98Q9V|bDnZFKNR+a2}h&pGRXhyvS??u{zgmR z*p{EzsUP0whj0t`(|DgB%(%}VydO*7R}ojnt8r@Fs+%GX)laDh;%llKo^y=H{mrX? z+f_$Fz4QJj^BuQw?0fM^T$l09{$M}0yIp_w>*6_P5vM_a_xX|irPxo@ljoJ~TW_mJ z#y{w9!rQ;PfTQtAH@0Vf(XQ+|QU|GC)QL15s-M%+gMJS2BzKFydWgSi9Kr$P4O(uy z-+m-*N7}FFi~DOao&^&Y{Te5m_1(m|>%LkX8aIAEX}p|oUU98%CwsH5)bufHGk^QfO9I!o&5cjJ9D zon*5Q<8z$lc#Yo&dy*~>`+_={>ce{)9Hehp%|0#NxRPaj!P(+&V0Q-T#_fJX7nWPb zabscstemZ$3xbL>-bmP=G4&qZCCG8|}sBX-k#xv!Dcr)(3 zhZ+Cd&y9S)$mcWaTKYbJpsPju%keSKB;JhA?gz)`Jc9aLzj!Wr@AKT|9&G;`eJq}D zCU&Pf3i5XwpSlRr%|EQ)B7HP2&sTKdbIw9PKL4m2-zz5V*skLnj-P&~@dF2p#$$Xn zZtMl?4O*_V*PFD{nWW3n?1g=x_H5Wff64p08}IM)Lvjq- zv)-ou^t{71E+@9<%kn%iPNCJ;Bf4^aQ~em<#G&!1Zsck4TiEgtpNsU3-SaJ{E~YwaT-rQGE!WA<_r8Al z$i}=l! zZ~EXo8t7%I7tW)jj?8Dh?)R*kAN)SbA&z#Vaag3wiT%VRe|$??URp1xZ@kOxykJka zp6wLn0xs*(zW(+8pZGQLxBKTJ9ZTi!hLL0&-#Vkb#&0-LPuAZv}^mG zLqWV=dOlF!{uBG&zr2@v4|AXO^D*b{BiHZ#`;f0*>+bvi;(oH3r(D~$& z_&fU9^Bw!Nb3?sE%eUO7ytZ7eor!IGg>Cxbe&Kq1{tVBf_FjCk{+>Jcdt$!#_nuEb z0S|E|7k0sfquGId?6;M(yyZ6KW^1QNzw2P!k>2yu^2E>3hKF?P`FyK>^sDDl;pgyv zM?0PaelO_$`#JX~?pf0~Cw_0gwBz_3*JgYZ8uwxSZ!$jose^olf9R^OD6lWI8T*h|}G; zu#IC`q)XEW>Cy5Rw)vh*S2wKFChm@L+U((aGVaMa~ zBlTiE%5TzdKi&s@f1&@0yM^C2G|r8)AbnZ>TXIuQT7Qy$Snt3dE#3D=>gK2JcjzbK zrahk*y~oG*Gd}$J?-QqS)|l7>9^%_L?=14OabnAXeT<`)zm0!58jU~oQ>@>o-p9 zZ9DBe*_=nqbf}*1`)Qwp;BY*x{rfybx#E2C{^q$g@VonuJgzJ8Q|RUp*9*=E7U@s4 zzWGUc<36yZ>E1sM=gx%cW?>gP^4?#}r+R$iKlLKVgMPN{=pVS6o!A3v%OG97EXH-z z0bDT2pD>{L+w%BrppU>0*B{(_z1OLu>nHT$dh72}UyR%MxxdTBJ{~QOjbC-Njo((T znqIWk%|Q=SeNf+a({q9RWL?!qk*dAdn9R>bg?xXl)8<#)G`0!`E zc^(Y%rRm=LyoVXr(sJ?5t6lY!+V%_8k@b3iTYYg(Uj6X=bMJfH+wQ%Ed*0QT@9((3 zIi6*F;HS;Gu8zuco^$l;y z!3p<&CmpFDb)!x?7rL2nG^(40jtZXlueeHBP+i&XKqu+E+*eG8mQz2I^u@X#;{pzJ zbk~h>8+X#UHNML@hVK8yb8#N{eNOchoHy#C(9MDqrh20NLNDIGQoZdU3){gC^?J zebDpC=N-=*-z#{J^ZcRyavw7uh>ui9P<@qtW*v;bfuD_|qMg;ajXxOpT^&i&59Msn z`Z8_LaiW_fJ~sBoUd9cKR&KCgTmIO7qx~1@1FENmKSyI=-*dvaS0~u&O5JSMDWU5& zX)jzC=DYeljCqz1$$bU{Y?i^s+wVop8b7xS5B#zxy)dFF4Sb_ucVL#$WwG{qMTC@AY*q z*2i^qpY?e_yI2>$Kk0KtuzvQVf2R8wdO0u|cbSiUSg%B{({oM#P<}!E6V`j+Bz>z> z+Dq4mcyu0q{_niiOAx<-KDPQ$FOBL&zuDfksqeX%*moV&9Xct$kD-3l6WC_{Ve?tEuYx4)mQgLy5-)Y z?O1P9|3G!==M3rht>FEhqMskMe9H&-X+P)n_jFD7dr9~Antu4w>u~?X-`hA=C+Nm= zC$T+8)ze^oJa?R@`#=!~!}+_;u5a6S)XgG4)Su&{{3dRUGvn0HZ^C^8ecbna?*Hn@ z_;1|QzdBKe(0wY@h3$GT^Yb9+dpMte{5;w7RNe0Pul3pPL&UfKEBv_7)nP=aFwO-J<4wkS_1Dg)uB%CTY5h*~<)EI=o!jpp zy1zP)x5&CV&l@l8^F8-V^?URq`tZD&*y==m49YJ!JWpAtB0aFZHyY=jcltZj6HN4R z>)Q?-aH%_()OTOFao~F}_kDGsKU;j1`anOPKkBHcm()|YzIWU1XFq)DAbuY`@cpl! z`aJ$0lTW|iN3Opf&IjZ25I+a~6n-fEg1j zgMA|LqvuMX7xf_3&qODtPj%$J2CJ=$@$S5n`Of#RbqMx9_ucDH%Bc(WvW<(TpNZ|c zRQj3y^1lCKUANC4=s`R1ljq9Si@MXl=qG8X@bf)izG8k~zv%bSfQRDZO=o~QZ6eP=fPENpcWtk1@OwmV37ztqoH z=U*@n@2Sk+@8|gaYtJM9JHCGYb=RADE!M?-LLH>>0gac9eI97Js}J_cJAQ2Q%ln@9 z5!U(MuNmjYFQIJcSRdDEV5=kbHd$|t>z9a|<4rtbajuv$3b~(e$#LUfd7wx#Pab{%Jdd^TKmQy(IoPjpaE5 z2l=}(%}1ZvbhJ!|%W=5g`01{{`>FFMf1)4nvo&Aqw1}^wd{N)_HvKq`ZTqZ)=i$cQ z+|zt7<2mB@@BLlu@csg~=ZxvU{~F(||M|=IIiu7i?=SZISN>)`scuL&ZU*BIsJ--O z)5+F0pLz!-Iym~-I3;~jKfRx@{;qqGUaae4o!mF>e7|J=--rJDMAk9v-}S_HUGDr@ zXXE;=yX)Wbx9Q%?JZIYdyRf(Gf_?qUJk^W(P!~(TNOZCBi~c$KiG15R=)?WZe)WHm zU#!QnUDoyb$@Qh&H2(2J8u$2lX@0rAd_qx-+ z`24Jmj_!Lm($nWE=3)EcAJFX@~5#=&9T zjiZHa`X+wDIAWbA>vQjQzwy$M=k{hFIm~-AZ^xxQ7}tWqJcjWB7j&N5-Xn|Wqw?PF zeckhv=N{wQIQQHs=C_%@ei)?7B!A+E)F1HbzEv2(8)cQxc7N~$ZuZpH^w=j;|^^11KZj7<+%TA6SqTsx{tu=`Wgqs$7pf1h@+{F$T!}c zx9=x>pW<`LZ0qK@i}9VduPoQo^~Im5UmLx*dH>v=KivUKj=P{U1LC2kpUq5c_ zXnN8wu9KgGsps3D`v7{$HV^lSB)`nZ9}AZAhQ{;MZ^ZS0oA@r6jrxDF{`zlGKPZ2g zzi}4!W51NMy`;U(I_o$6evA`|eoQxB2kF`i|Ce#axCVAg*U9x&$F8g6Vw^?XO!AX) zN!MRpI8XhyXz$oB-1bj#~g-XdDgVXF=n| z{aZa1{ipi&a~=G7n3r*$%-4Aj{i)xf@idyh)Q|5GYc#beoAo)w$Dw}MKIt0<^(?3VgL;$v0WI(P z-#Dhd!r#Vkv^X|S^{?xx&dPSw1ssms^<;gFU*9LBpZgL2hjNa`eplOEfBPQM z=VYGG)s^F2j4v72Vw}l3RP&$dTb;q^st5hax^43lfdUTy^cd%ZTAGCAZ z|0d(ZpZ6ECPkRZ_?kPyuAGwFECioO?+%@*Lk*fl6>QM6Nk31KlJ~#@k{7` zxM1Mt+4MAwb9As_XfvK<{LW`NKk8R&=hi1Z;h^52-B3TQTfhYeH2z)hh2P3JVtuSv z`jPtSx*0d5+uv{?e3q*=j)lD_uU`T?JFV|N%KEvEhxFCra8hsE58Td=cr*SI zd()2o4$k%EKEyf|+U@hKmOdzNIXNh2Ka+9A1N(Yd?oj?Pzuv#L z<4DKLo zuS5Q#9raY$w(q>`_t4(5owiP!{A&Ih*v6yz>Adj!q+HUj<%;}-$8xYJKOe?5^oRYx zkdDuFYVqT^ZyY)A#*Lk}2N(Tp`(r$gE1DlR^=>qX)y-(!RQ8I=Qb~j&}9`HeG)~+dbq5 zez@ta{J|cSw|&c-Zab6q7Uk1^jbFxH*yhWiyj<9`jrU+n``5O-^^g5Q*Rg1SGw##Y z=jONhFKz1EPm(UDr=0YpCEm}O}hO|(t~#7 zB0XDu+p+$jJ;$5aw!54!{u`{@^^5&5pMv_O_kS$k{1&9&aWwzg&U8F&zMJ~CV|mA+ z-yQ#E9>(2aev@`wALG??X7jn5_q=F2Qct#Lzky#4wBPhxf$AuI{$X6M%R#5k)A2d4 zvb?lk<~5-HalTLSFzIhoZ_{2u=Vd#k|5%^XxUl8M9xxpr>!0=y%|Dc%)~8;n8{-)6 z2Rd)t-L$iy`NR5*>ogYjfcEG3^q1?i+xql!&hL(g{tHgV7tCKe?zBAPnQ)PQTK!wk z`CA`*)6Zeu7vm3f)VUlN<&Do_``^6Iqmu7m_VhebSM;-J$8ikfk9_@E?oa6HsB?8j zz3UI+N`DO7bKKae&Ad|oHBS7t@ORMuU_OWZJAT^LU;1a#Zqc9f)(+AKG~IdJb!Hql zF0r@kKz;iQ#v#_1laq3uORnP}UB8s&p!wJT_(}ii_dy&S<~i6euKyWNI1k!S z{1wptv-Ll*H?*ANzV*>@G0sD~mP`Aw-`3Bo(x3c$$PfJkr|HbE+%Noo zne%qs#wm21<#?TM&2J3s?YJEm{pbht^{XuECH1EBg+o8UX#Hq!(l_&2j7xni z=R>>?bmBY@T-5mC7b+kw?+Lg9DtWW#q+rQ%~@)z^a9|yk-n4TMOlCB?? zeuM=N+%TZ=;C*hOBiBJc>Q~q8&Wri!f5$H^XZ_>)z?<*-xxUR0j@Nk{^P7L|ciJBF zoSrNAO}!lA?B=^qSx&Zi9<*C<=?B&^-G8(jC${UZU+%b#f4HFY*KgJf`ZwQs1>-Z_ z_O;Cq{AD}I_y+UXP<;$_xZ9@+f0 zSeF5v-*H_?pROO=jfq{*eujR6hyJY}ls|C5)zY`?2PgRngLKO!_Q5}^=TmPpp2hgm zb%!@yKeqW4_NKjIKj`PK1LN4xaWDE0+R?T>$6dAy6B-Aj&9n3iv>p2``c3*B*aLeK z*XlxDS>AI%9c|-U{XFPmw{dIRZsGT|f5sE~&wkVo-_s9&=MJ6ek3oM${lmK4eEmlH zMo0d8fl2zoKU2TK<+{T|e=s76N$7BEI+ux-8Pmyt_q};|1 zIAOJN#?3K)nvS;Vuo@G4+b`>q_+Q>QAb(JP;jf^b0VnCl@wRy^+9~>(#*gvfzU@5) z9`YCc_wf(rfAj;oaDUm1&vPM(Yjt#=chJFrL3^&}(N9pjXn#>&J#GAw*Dmj0uh`HOyxBiFfDKWX}MeWB|e*oXF9uN!Bs59^VPXR8bRbp2;Pq&wbY zJ*Xb)K`)E=Ufg$#bL&m#-}>41j~@u28w`0v^MJ&IyHmMi?PUhK#GMgPttIp-|D+d7pt^SJYIUU0!`+}KGww|&#$ zga@!j=e9fSRC zvQCTjoQx+Jhw};gSBxAlno zgMFGGo$p<@J|FzGNnea_(C@T8{o=pN{9(q2KmVPyaS*iAxkxYhK0j0s|6TNcpC8QF ztcUYA4hQk1KMULWnXaD?`PJ6l_N{NdNjVwRmm7Q8Etwmv z+Fz{8W?kGrhw(tV<)Yb3f6#8S9{D~$xIf(Aj5GJQXT5*kH7O({2zbu z1&Cbmp$Ij{pBbh6=s1!rSo4;XNJD!?Zl zCHbT2=%9xU7c4ko!qFJmr|D>8ua>S|q|1pdP4C?JPcH0E^N)US>u+4hLH>jbR!iU5 zAIn4ikLAbqYrRGPokhBw*l#f@HyQ(5|4Y-Q>2g1;XOTW(HU{=l7jQKe_Jji-bg>&3 zww%}r2Ml=7!-lJIVrS#P4tUVR6F2#*>8ReYEx+-XJo*p1K7(~kI2%ou<}cSDZfJUV zd;ds!`~RC_AOC6d)pp*UtNEj_XJcZI#;5e4oa^cOb{6X_C-!jt;Xxm}abXvnaKL~^ zT{IT9oY)D6<<$e+uo@?}OzZ*Ufd{?pZ>cBsBaeR4Z*83>c0F*lbjzE5$bX8rL_Z(P zN&S!I$M*Ye>kY;yqwN>^M{fMJ8Vh?iCU)l_Jz!tw&3aek#7;QiK@YpJrx*DXjyJf` z$!eU~2?vbEjV|QEE;t(#yK|8Kq$l;#InkYd*6$O)7hG^Z@U(Qxn{NDM(~Ifzuc?Eg z{>SovRR6u*Z1dM1q|3n8e{#3=Sl9(;V`7iSz?KW0$ikj5VKk~A)3rCcsivpI?mXy1 zZtMjMPMC1OWBfO6>;n|113Z9NNn!fZU~LvHK^3r?7DJn*2G^`NKO^fj;p z9`v!{f(0i`IAAm$^swP-ENnTk2Mo9$?t6>$f(O64UasG4>z>%=%WCB&w&@2u+NW8Y zbn`!!w)?Sk93RWYJUXlSL3@(^#3Wx1?0~M9G+ml5H|x7#H4bbU*aw|#Sd9}q;eY`* zx>&FtI7pX)ebB{*)i|+7V_?gp9^h&$>2f#Q^iIni${Y6s zef{@l(ypA?o#U_Bzw`N6uI9hO?wq7|4$=?tzu{`O=|%d4+KC+xJm_P=g0nHPPt#2{ zdt;kEuw`J&gFbfS#FmLY;6V=?t~XfZPdH#ebtSjw(!;tf(mOZl@-*A@PRqq#Gj6|a z+-K8~_H26kw(UKY3)=fwc0YA{wRI?LIk5)}c+^8n-=wd`i9M|MVDF|Q^(3EkG~dus zHXV%z9i5+1M`3w%u;F@Okv?I(lLGow9K@d$^wHL|qkjHvM$_priG`NqU&y^s}%}OP|;>u?GyOj%1;e z**LHR9(1rDxJZ{1JK=!QxO_gsuYEnWpW-4}|8L7l`D!%%V>xI~=EJz2+OIaApVfY9 z_uHlq`i}=5dtuMU!j_30@I2^glHNH;S5F(g$ig0`6aNctb@oG{^l0o9S~*qPrl9*c7G4O(tdZog6ft@g~%H`*!kJ69XW z{z%()K9+-iJA?GjWBjWJ$BnIC8?9r&67CPxH(i4uRr=xD*gon7_P+Og8OUo7I zCrmhCz>Pi@EI47p0RtZO(Cn=~V8IC!4(RhyU%zBsIw$F!MY?>-UzC%()vNzbw(WP? zU+1CUzbQ`o?@ZD=2kD&$UF@bCZCT_eoN&N{KDIh(c3~%sM)g$asOv>LTYfy~uF%VD zI#N#?9ms`UaKh0T*qujxzy)VxVh8N&(br9TKCE|=aU`Nx_ zYC6iMr-L4LV_{F2a6B+bmm7U7Sa3EDZ2jDsZG9$oXFa4pm0OhGQ2S$fXh%N9@yF`q zZ@ONekMop^`4`N_+3bOR(1$vj*aOA`H##Ypja^4wC)$Nx=7XLNdQnG(t&Zd&{^iDA zaKeP+4F>rKeJof_KNCA;^Rw%q|7B6G(|nnf(=O}f5gQllEm{uXfH^&;P1Tk$;HG8?V&A@x;HH^SL!#H~)1b?}dy9CGS54ao`R43|YISYJ7n%Ht+2i)jj!GiOF zgLE0#2mi~By&4l+Kg+3q8>{(O`>DL?mRr={@HD%pn=hlqtG2qBEq(^J^_TV0m-WkZ z>pMQ<3)}Mc7yQ?6LcLNxS%3ZSzq0gS|A)U01CxIRTJQ6({$b^TfBCO6|H_`){)!Cc zO~3z2)phrLU_MJfGrnl^asK7_sjnWA^x4{(%yUs*TJMlwP`})Iq-)DTdcfUuRB!0$ zpo0Yq&Ib>L=~` z7ubLD;{DhA&EDTo&Nxv=uo(X_ZdsSRPL$KX8@MyvOZGJi)c>X`u zQP)$~QP)$Vqly1Ii}cRb{B8bh?U*h%`3D-8Z*i!H#>6hTI3J9A-gaZcL=wQKmV3IBewhV0jqkiN>M}>c$xXAC^Z`89r>sdaCdpWRWVs}pU(zv~c z;rApiHu{l;j;?Ngk9huPP+bh{pM%<;V#{B`MhDT;f06v}z-ac*V@vug##LXF&-t}E zkG$8V=NISDMo+={80fLSqMaYSc+Wr2#V^UH{e%CE&q5F3`RuvH`kO8{<<-$)T^8Ih zC}(<+KH;z&+&_MebHRcWCJeZV{{`!Tlk{vH*a6j1XT6~#6Q!rNLT0Tp^S5N!ue_b)f4mE=*W9v{Qhekwo^aA{@oYjSFrQN^jtXF zUtLG$A9Vn=-_lVw9Ub(s8YgzbfQNCfH#o_ci9KL6{&jV<@n7d6{fU-8l#4fXG|BH& zH=VA_Vcm=US$YpLKC8vyPwoF-6IaIX=h*LvEAMUJ#a0)eVyiQ0y1My){#pFQpY2G` z5$}&bpk3@z7mPD~KBHcIL3y9cZ09#gcl^JB{XNKjadn2DihXGR8RgK^{9j-8z*a{G zeW@e$vYUJ9ym#ti9H$v`+t;<)Q5Um_*a@9O+QyB z+{-LCsekWl)C=3iUfBMcp!c@w`?1d%#@|=O1NMDhFb>gAy`!Ax(63+*_#No;&u6W? z=bLeBIiHh)zwf^4)fe#d7egHewtD4#MX5LS@_p*(Pcl4r)QjypKK1nL^yB*w{o}on zb3S-KdHs)$7F0*-WTTgY2VKl&Z_*1U47kxp!3nc*UwGAwe-G5IiEl7zHYn3cX%$SPvZPO#~Am<`)K`}u6}-x{LkUvhw9#b zrT0{A=Vw2^OnuL>KX}=`_uKEuS2u97PM%Nd;-~{S)d%ZtxkY-xv>e>5cQq!q9M}Oj zdRVX;6I%}KX#Cr*qpJ^eqHYSk9P~A?6aD+%`QFz)XMK%-_E+QD=c1q5_uo;^_%n`- zt4`z7=O}gY#jBnB-uX{nw)e~8y}*q}-xF|NIt zo|C3Ce?R}-?Aue_prgW;<{#IS{Dtj0PwWAY=L)RG#Fhg)pyOMNvlWMy79B-%U_`1GFXMlsj{yT7bg|S4>4k0mG#?)PxS@V6>}(v^0XP0%uo@Fv4(w?B z+peSXxrlRU!>LW2dXF=X<7?u;^*0XHgX`~o#rjK~BYy6_&Uq8OuNvsN7*DAS z{Jo{?+Ty|ZxaFLe&qHk-;l9B+7ytS-Uf)am`B41MEB)%h`F=*ae)0TrU-^`L%UMqy zsW)wPq;vBi_#yVG9 zN5@;n0bIn5aZHhO`w8Q@7y>q^Qr5ADMJSX!_=MAH!C;pN8C-fiwU5(xEN&bKVx8s72Qzq$hU`ONM zb{!4QokBkoJsr}A`kJiQm#nAvn(twM3f(u|M@jbuIe#|m z};B%JC5{a9{bTW&L-L)_iC@jaGt;Q9~N-}TlG z{@hp9A@85^Pha(NzUV&d^N)U=t`A(s194K&xGD0F^_b5_mwvA5@Pcz>d!Ky&8qaoo z>Ij|r{W_oHJxi4v3AKKqwoW}prFWmDselcIaOv^#@H~uQ9 z-#Z8SGO!PRUa;V79N3*fdZ&7l({*h6Q76W=G+kEH&r>&Wy(HwSLY`(KHT@4wbd{oMCeo=e_KTwmkhJFj|1gZG}zdq4kOU7{cF zCj$Y)})GPK2^&Q{+$@$*z&AFd=uj4%Rd#b*NsLz?V z`q3|+lCF*t+w)w1d2Xv4ZRt6s-_kV4YdX_g`nyVr>U#(eYWfQ8F4XS zG_ue8xsT89_j!ot|LJ-=Ux2&+_)Kp7f_W(%;;#uV0Bz^%MAUO6IG60(;~4 zg04eikH*0Mf7yGRo!gS*OfNJrQ0Nh1XrMt45(f?8pinR*HEmOEwHS3+tiMx5QxauM zZnl+Yo0e%qW>0(pIWgLvv*&p!c`11beF?3v*7Ib8aj@`Jog$lZ%O8Py8JUrP5%Ff^ z%DwhJoADMn!2xzK!3N5MJCrXKC;My{@w;(hoJ`6^%lnP~UA_8~b{mvW${qeF4`k0V zeqJw+&VFk?G9KhlMdHHti~Zd5oOx(zXZ*bi8vn+F^(U{$tHPI{ALB*;ub*A<>p9Z= zIJoydpD)QD%Qt1m^`7Pr=%?zL=Z$ylu;fYM zk38DwFK~cqKVTHx_)EV{ukV5S|NY|cPcGT#t@XI%Bo9sPtiO;u_R4~%96j47 z@<88pGPq2dxjDj2cu3~rX-ziV9fl+YbA93ohg8H#yqL;*P zFF26JTAxK0?v7g_B=S9v(e(rm|zr^#typo4oet`*| z^P2qR{yKkh&CmOM-@BC`fxdk7{2B0akyZ4s2)q`hLJ5uFXHb z*F50MiEnskoS$~Y`;bT6Um54!xc7dI{oC>7!O2tbLtZx8clw|5lY4vHJ0JIn`0}!c z_cZYy_VHfE=N#5)9t-y)^UVv|MQP9Zz<4y@$d^X`8S)7~%9jaG#EzU`fEykxaNgjc zyn_h_xQU-TJnKNOgL#9E@*s}IW?bK(dfyc7H|bZjpC)g#GkOc$)NlL|#B&%A-ZSXu z_w;*Qe|gDgzxDh^eCFe-_x^ctKHHSL|9cPby_9jk&}*RW!*kvn`iF0ar|@Y|9zHM0 z4-vgH{~ulb#gBg#y&n(rws}vUe1bl9GjF*soc>;*r#W8yt=gCfL9LH*sHaQ9i*A<}=u+->w@puJ5qwS9#HoXubWl!p}rM z;Ym_IzzHsSq+LCK$e%yK@87#{5MSN{>u;YU+~1A=O`Oli)n3_q0Pn}syi?-xyjMVd z62Fe?^N8oA0WZ>XS!dqJVSD(HuJ;r4UV-LO=Hvddc#az6Kj(A!_3_nyIgayjfBNvM z5C6W4%>9MWRrb4y(`o(zm-`-mGcRrBg7Txq9MVx%HxYn|?#SATQ)@IoOIkuyoi#A4sVF(=J^iPpIyI#QFt_IKfqov z?H>$q6X(l#zrjIy2NP@sEf+WUyq!26;Cu$vtL?_;-5E*$hLZ>D~OM+wTK#9tE} zUb7XLj zz47k^kDli|^Belc^){|qM`QfPd^$Km`4Q+Z+sg~eC-OP>nRm=XT^sXU(BOE z-!0}f@lW6n?Hkxxehl~__QD_ag7Ssk2H3#_8@TbGxR8%ukvo`RD;UV)CLTn~YdhoY ztvJRmS+F6CwVm=E+Ais*gNGN&;KVQXx83)^1ebc`sinP*CwWA_eot^=H}`Ml|P2B>jhZz~>ath1^FB;ymbgg3c%CN4YbfgXsI* zV;=GxDGu*vMET|Y;O7}nfAYwAPk5ofMQEUic8)U9K_cwSou-wZTD?)Gj7Eo4l6dw#f>~b^VBHkx52vg>!MyBP53q* z`4l#>iOT_oNPN2Adw(79&~=2o)~>|Kz;E(49{Ds}7@vNQ<9&(yf53rmq7|D3UyhI$I@!*Z|FHZ)1 z5YKZC^OZkGU;bII3=h?t*h_o2;*Vo@%H_|p9hmq*{ms5o<*hy#;KpD2trvM9Ti%ex zKo%|ky1bdhNySciuzpcH-JyEFF1#BjnU~o0Q^Ad_Kh&G>shJl*^_uzVkx$`!;@9Vs z=DCRTR~lc&8@$@|Gss5)Pvl|Ro;Xj=aq^_zr!RTpInVnDo~Puq`OrKzxW5SI<+)Hk zgy&ECkCM0SC%p$ZPhsEfzJy%|ylCe2axRlc;XXz`6FJP!^sAq?`y!}+9Vg+HJQz3p zkuUn^4j29tC$c#7?+qs9n{|o7dhbv@anb%=(S9n{@f-8H!|lAaf0>uO3jK!uHvS*^ zM5hSz5AknY8i$^r%u}1Z<$mvdUAWK7KlrnJkLSz$YPjJ29^Y#dy|-B8CHWYSt6hTT zGv}k;Ip4`2c`QE)9{w=z#l6BLZYTCK-!AP};zvF0tzXQ~#&;N(_(Pt?FRt}%(Dzu* zc+5xs zd`s7>9f{8cpWOG&6KCH>&-38$+~;}B_$QB;e|-PV_m+Hb!uRHsgZ7R)nUCkc>2nG^ z4sdyY!F+7L3U8FnTka1&m-&9{q~EQ5ioeVsQ$Bc)119!f#QOvn`N%xf%|pe1@=v}@ z=Fz?;f7HLjPJb1X@`}yz3mQiq`-lTsv|LQ;zb!WU5%2ozWq!(|v=8TnKlIN)PUICY~sgm-zvEF6UmlF2Rsrt z^I6~o$1|AJ-(jO(4CJ?v^&5W;+4YK+N74VbvT=NewSVU!TA%oB>QDXQd`tbd+x;r*rD=dTaMl$Zp=%bAErEey#Z zbC>a2&Tm2d$%FHLtMU8k)xYnLpYP#vAK~Yr=7;3D$9y914!@Y6^#fiF=6UW->2 z?f87jStUH>~`VAo$aHu@D4xuWx*&ZFcd>l^!|@#DG6^M>(cz2)kONgi;2U6p4g zUzxwuOL-$7;g5OcpuCYU%C>_yzPE7lBKHcO=g$3t{SfDkxbpeWcwBqJ@0;SH zpI;Yl`n$uBF9p?aln-!;^qcNiJ`b=@Ch;Xso;&1==PG$H;LGqlMgBSGHu8ku1Cd9| zyd{6&$2tF)AI)3JjOX)>&pYSytj{x^{(LU-ej&>}!g}PBTJ%RgK{Vs&kxycT@$dNz zo|xwcvd=>s`)>3X*eP%Dt#hyL`;q6K9X=g>dCR+o@$S4UEU*X`9ePNc_-ux=d6>T(D%8^ zyc7OT#ohZ8pItoh{3airxA~>Bz6Q!0_m53{1$OH0GvK0pgYu?XPac`tnLOn4)Al?E zpUh7S+4_cGmgffMm4z3r$m2%tl#7X6aj}kFPmQUOwfUqtNJ!BOmMxp`~CBkjDjx92F=JHF)ClQ~Df*-T*B>?-O~?=I=cE{XpN} z`y#)ZM#?jvzvMIgnC2Vo6Ufeg%cEkyz&;C1>@7y&%`EzjydLmC-c0yn-WkXVPIx4L zI_=MM7~^!-(ZF4JamSm6o~YiSeA8cd9B@2?Rlmwf`#b!m`gi?UZhxbUJBk0ZKbCdb z&baUBYnPB;p4;%3->2<-PhEd{o=E$_pYgcj*YlEjWRPckjuB73q2Bx?ZwB$d;6s{c zIG>$+HlK6+{t$c$@|Ne!1}}nmNaF^1$S+X)v|{gttUVXJ+485L<>vS4c?`RC^H0Hz z+~ARV?r-{`)8EN&_+_%LR@UpfD+czc*b0xTJyLrVv|Oz1l*OREXt|iwE8k(1eyTjE zKYYPn1GIdWa_hCLdfMOTS^2Wz&EP#`>wV5$_;ui)4gXwMcrQTQcjFTDKK$r;zee24 zAD?@aPkxbC72(mcKl2a#?#$OXIq}83oTqW4y&Jsfg&*b>A%ds(hKoF}OhE-1rXj zwRV>m@MeOkO#R`T?cs~#bjM|$9s8fSU_J6cKXuBLtzVRj)_2Oc{oTZ?aVV~$H*aLi z2lb-m;-X%;;-J3YV3z(HvgJpHFO&6l^pkFHgWte*+9q-c05d%-8t`>)fnUxuW$8J?%7TKSAXz zvT-#^Tux-M*7u^XEGG4$<>H`Txnfe^z_>y8nc7}EYM&0D68jtP6TX;-8a!Gh-*jdD ziocA9ML+JB4gJBmLmrtgKDl^w&SyR^aSw6$WghZ;=KDK-{zQN0+~$2CeqLY$lQ=p2 zdUMS~dAjeo&%lp?ERQ;NoP|G=a(OecSA#bb40(gB9S8c0eir?A#-GGNGS6n*vkpJE z^Yd@-6+3zpTfKNAPZHmoxSz=KAmju79pD!6?~q5v4gI(t<0+`0`0eBkc_9zrhx{=gc^`4^8GQf2 zdpys7^uO`*CLSDDo)|x~@NHu^<8>3i;wXICtgC~{@?g8)JcnhR?l|yfIWN}JJ@@)K zH~HMp*UZCyuFz;_KgQK4{FvxP!GXN(2UK4)Zbjpu7hYMeo>g`^Emb@Uwn!zwN|J1Kq#RzH2#g@9!zf7te3Q z=N$MF-ghH=e;344!wwDq=9`SCKlu{K-eWAj#-Ip4h#Lx_)jGT*VEb{&s=D*lh} zLp}0IjC|x1gyX*}8vhmL!*l4ktMH;Dr}inb<+JeToaf0ap3^#Vz@v`8r{@dm2eS2P zx$%L&J%@Mn&11uShkjBon#aP=Upb#8abeu}Jamxfr_MgLm`7v%`cvM>vy?ZFd~$c# ze!Aa-qr_hj|DrrlPI&`PaEQe5q~8Fi^JX3Mkx$c#@N+ftvir#}@3MaVee6%ajd8W} z*$=V*1h@Y19D=-@Cvhe}^G$v=y;X1&+4%i!;bh+8a2;R+1Kh;T0{i1y=fE%eclewG z8s`)Hb^UL=%NOiA(9@p- zzO2%Zc5*!P&Z0l#PkSupD-PEUI)71qG~#gEFSwZRz+cYu>>E7)rO$z7Uy0&h$64^y zyw~u9_8<5oz(IZGlln_Px_}=elZ`>G<-MH5NwBN`{zmxb%#)}${)OY+eypO<-#z`2T`jLEg^eGSG zw%f1kb6)@#=zNa-oG&e;@6@7^($E0Z|pO)1MxVuv+DvI_3w&N;=Rhx^?Rppx%^4|vfZD+&iLBRbKKUR zyBNo` z59SrjquW2@x$Y%DLF3juBFc{jPiBdmz#l%}dpIB(E?xBf0z+o^APS6|+MO}`lj z<{fyWy*|+b|Mavakk^Zi^SfcogI&OulLI4!^0QPW$ z{l=dIOfW#>+xvsby0yFa1Y3Kue&co!Uz>Q0;t%_A9OFOG@A?D#j^gh|eNb*copBd< z_IK93T(|M(xySPa?b3V<+Rs4V#m@HIwWs^3pIdpK=zX&1F7MmDp9e#}cu(>s~gQefWP^Mj$_KkY|I@GfqT$DFZ zd;Yp`Jo3qGA)^e^2*&^cH&hw;_wh#V~)^p7BFIkssuT`KdAA20s>jGEcd`YoGQe zzcQ2Wm;2t{$s4|BZvKEL=W{CGD~G@5Uck?7~<;4NS0uqu@fGr96?_ zGZ?O;@JKs}u6vtz@LzLZ*PrmL)9=7uTfd{EDSI8&# z0pn9UdHyoLc%KX|@`mRv@81Xf@N=e$KF1vXzR7s{OXlr9)3J~I>Exfue5d<}`x)(% z@=p20Uiw#A+|+OUWW0CcJ;5mPKaCgt3vTopakT8W=(o~eV;=5fUAuq{-1-Ha?mwXQ z&tcHtTlmN)cf>0FjYmEepYQE#+IRHa?*{AEp251ccW0eTzv!nDkAXiYsJ)JzC^t@; z`uKm-Z#o`wIIjLcmPbuJuscqfpW`lh42~ijuZMT!3G+b`*ZYxA);;G0^PK1Xw@@B9 zu68Q>Quw^}$fxdO!1H5Q*K0fNr>uPn>c7;EB5~cp1ShB;Z6`+2U&x~Ertt)Ja5F#s z-OG3jy#@~SjT8N!*kfbY2_|TqC-z_1w}VZ@ukKq>{M_Z=BcI%Icy-3}et~(0^U`0g z7rEgt+jr)-nfKv`_M+V)Zq!qDf1T)Q*H-MdsqdieEVsS$OXd^WmGK=nk!L~c#bCXs zU*ulOt8D*K#+|g=BK3`VcJrfo2tNnL~~Px4ItW;rQU9 zAKNd+9bh^S>@dt9$U*yHe(8Maf1Mo&R)wlsEd--UIt>uo2J4&qX%= zH{}5?+IMAe6tvxXX|meb#KzMyd~PU2l0$YMtp_cQ!>u0EgXPy6~@Jb6B9@IPIr z`-$t-fB3m8`fX0Ko(vOMV0())xF&;K?XnZF9+iug&xH<7lKgRv0-2&CO-^nA_IWDMdKY@PIkL&Nn4%_%gZ_uCX&>xPU=)d*6MZeCY)6ZfaqUF1cGqJn=o%nTw z@Q-`^a9jQopq-BgmI2vjbr1pQEogfuv{f6t) zE?{7(9iTMe;j{0p7W#svku}oOZ-pdRpQ)u7r(Ba z`fnk5#dWx^`8x!Q&o{h(NbIJ4j$K(-uV|baAMUfDab{c?PxiCuZ{z1df5vyCpAe~6 z|M-c1mi>So{fX>&Lw)M)-#D+>SYH_5@M6dhQ2s3Vlax=|xxUW$$1li@`PgrNFXK(^>w8yUUVaHaPd7faL&7`#pj`vIY9H&hZ!nJbwcm!l zhw*0|U?=;V$ldvZ)A$2Z|EY)FCwSJOAJFg0>J@*Taftg4w!#nd%U~ViLJss3blr{l zHpcD7DL9y4W1Wq>)81VE8jlN|&vISb33=9X>Rta}{K2^T*Z6MEM?0|&`JBwBv);~l z&c`?i*JD4T{mUEBc^D7LyzS4p-X-2=xqq-;Z0IYm8+nmG)RPDL!SB}$zjwmtzCzv>2KnH{V5t(f!?OyPQQ+0oHgt5Q-H%bp?)$SF_A_457$%b zH*ve1KXO>kdYpe(&o}~?aW9`}?|hr%mbh7zk77qZ&+~g4L%Y&%FY#-8acVF7t@hIH z`c*_vKKs6(pO0+jv6x4r|HgO$9{=e_*U32YM$}IO{pI`}$M}agT^W=gi~20}^6lus zn^E*S^Yr^ReorfWKZX5lyH4kae9m*sL;p_Jm8?G)r(2Gk^b^EUBi=gYCr&9}wBOnn z+5Q*)(O;AK4*EOxrhPa+@XQz4`8LM`JL5S2%{cOAVK?)R>)NbSJ#ou3=DCey=K+r< z@@Cx={j<-r?+@;Mw5#(|Kj{CALx0WkGLOl+wNG;%lyCGyzWAO7^O^1&*h&3nJ8(Ka zsNFl`$)CU;;XKeke%GFrFUYg-U>CXaq}F%h{p=6Ezs2*;;2bxd2kSHb&bpm9>oAVH z`qU5XtUc5lv`cw`oxA(9_GTVK8U3_hKCw6K8+XJ+s?Rbl-vKJU3Z?;_cDGu zp8El)9p%YjJ<1C?U7z-&|BapcP2AY7nRnn%Jx6W&AN0S$U|p`yICec-yD^{Xy1_yF zWF5XYc)ov8{As_7@jKW={Rf8Q8ZX)b)DN5XlX*1kZ~U(tK3P6Xz3s%LK8y$7-{CpO z`vTwZay{F4bAEN5tm~W)(bul}ZQ2j^&@RpP)Vu!eK92nZyM*HxKQ`JY<;U;nyY9*Q zk3Q|9U?LAuelzSCg*MStQ%?qHVsGcU$74^8ag{<4`z(B8b~ ze!Pf(&u1N3eu&NdB33=^=l3~1ubGGV{f_W=r*7WA_xoSV_wn&tlzl;e4A!MR#L!>Z z$GDJp%YKOi?a_@h+8Mu&XFo~*>TBP{d^&zV^H86D7kKK?cm9KV{ph%x{*!rDzNGvj zt{Qr+%qyKo*?%3cQQsYp{>(q;y;khF3Xit)qrK~##v|x@8nW{m$W6Pr4#xBI5YLs` zLAy`Jb=~1SKY%caXP%2qVosk`9?prlkvg+boMFA2YO3BV6WwQ zj`zd&(+}VTEnoUyJ?!Q@I{g?= z2hl(CH_n;IHV(jP{D|;pi^NZsemCQ<5;v#ZdDHL0PVWESlNm?Gm%KBMo$p}%8*Ivq zv%pDtx8C@7U%*d(E;5dc5B)i={dMhX9JxN`-H6X5ZaVhy`$;E`j4$S;y&XRpe~R?K!7jRP_2{p$ z?>nwM8s-D{5%j0_0khb3;?Hp1pmCMhL3;aeH0I^{onJ-Q-|<5l57=>GkA>em7{;I9 z-)7y_&WnCU`#*6_|AGH%JT2y9`-Yv3x6M2!<-79OI5SRMPeI3TuA6ZO{VwAO9u3EF zee|zg7WPPZG&pa!$K|Jq{WkL$v>#=?u6w%<>L>C>)~=KOj92e@y{}9C$9SFfCg}RR zkir#<5g*6X?DtheMJ{Vw0b`vUo6-udq@`^gv4^O|`{e2XWa)Bdvy ztv~->=|_|k*PU~n>(}p%^^4jevBSik9Xrb-{j=C#)}xF^ymb0^JngH$1OI4m?br1u z^}&1=Xgr_!miV!LmGN!wcxk+XyT%j!ZpWv;fInhVzMKdBOzhL)Q7b%3?AD31B<{m` zxPJEq<`Kw~`ayYD#(v@cz&L*X7~U5$?nZAiZqR;%+HJDV34gjW^Xb~jcJi2U&c1@& z7_VW^ZoVRJ&-0G=Z``~2@AMk?C*Qm#4#Bth^BMKv;mfDLT7K>yUR~v$9~bl7&R5hP zpmx$v+HtVn1doiJQa+LY!t)DuHm(CZPwh;99h@Td#!1sZV8?F>HscMP>Qf*3oAPG= z`k8STIIO3?GmiGcehYay4*G+B1G{YOvAp+jpLyUv;%b1M_VVJb^)lXaey+FJwb7q^ z4St8kyx3eXxRvQge{IIw*fChQ<->aY!@TT2od?)lALDr5^z$t9wfR$?#HW|N{P*II z`~`L_So4#-JLkC1=+AzUSr=NkHC+!FAkG+xYe`#m^Li=q$;F%wK-EziV;H2FCjdyY3-_1NG{Y~wl9kJ6u z)=tTMw|sb9e&~fq%9Hwy{fzq)XN-U5&pf*8qJF#X8^3st8vdRUehSwMYL`xbuFL&Z z9(DY>z$U-6GwrATwSTbMIk~?K=jHp=e?%OA5Bv=L{KAuOUQ-UrpNjRoC$GfQ-^cX- z>cZuDl65Bj*B+HuA&^#Sh=GLON!HuGN2 zU!?x%F@6IF{G7z6JX*-j{g3gcc5ywdyR&Xl{wPo8<2(G z;}<#IZyv0h{!SbqPudxO%8l{>x8s3}@@2p3frE1EoAJgvhBEzi`_->tcO2t`INIO@ zwUhJi#(#}p&U2nu8ga9+)5$~fiGG~NiBskipyLMfHBJZZgLycfJW9shj)xs4_H*CK zvR-*3kGA%qo%0#RuG%FTZ!)hl&%EL#z5|kfPQ3r{DmSjrzZ?G<`md=6&pGgmUoDqM zVY^RhPygpUXZhz>{ldPU-^@pi^>@~_Rc{^Y9jF&+?i4A!>PugqG!w>l4`wQXo5#{rN zAF-El7V?1kIL>0c;ku}I{>JN|zo385k@9F$KJe#u{`8xyKd{>xE={}R$3$NEW#Pw8xqg_A&%BI>O}X>U68D|@$$0X|_KSM` zn#i_u{BAtZPdGp1!MqMnxt@3_-_Q~s1V2zkSJ%HrS0$-irH{r&R)`sL&2|HaSWdmaDxFMs||{_QXS z{Fg6Z|IX|G{qO(xJOB2VKmRZP-&g<7U;PfMSU*a%EWBHB8#PA5KXM$bU+l;glk$pp zdJX+3C|kuvG(U$Ey^5XkEEvd}D0O$AvgQT{Hp_mzOYxtNx3+X@32!ZCUPqn$l^BMZ*Wn5hm-mN zb}+#P2DpuTaDlVnK<;1`Y{+6DZ+Nl52@bG>2{teaZsL1^v*19^cf?LRQC{4kd`WoI z!BJ$(|5IZ!kKYzH#uo!w+{FDIF6w8&f!x6?*pTlqs28_9xWPraIFLJ-U@N$Z|5b1z z53t{0Qr^G-H@sNj1V_O{ZUqB*6YuK=<-xmR(y#unn1v?;dHn;!Ugr6qT298l!$y6@ zpuFNH{uek44&;iRaxsy`h8)k}h9?soUH4({1>aOZomSq4WD~;b7hU29xryiw%7-kT>za zp211IIFLJ-1p`^!@M3`z>|j2FjrssLJP?<>04F#KCUOG<-0}gO1qX5mvtUCOcj47S z7ALYeki}FVKdom_-Zc0lTK?O@=jQ#JuAkWL4hQvOM;2$PuX;&+D;PJj|lZo3~<8(aUoA|6zs@ZuptNd9G?a}>V*%+qwyeGUa`~uA1h|D zpK_zTVo)w_;~iWDC-MM$!CIcwH*mv)1qu_=Iv*17$J92`pU?7VdUMz5e zyTP(k3QpuK*pN5;Sl|RlLCZz!J9-TaaLWsD797Y4HZVZ>BrfvNz(4&NRBxiUz`OEI zy{P^y?Z&s1?XTi<{Z{?OJjB|*Q=ec1Eg#5ts9vZ?Jj(;)J4?T|Ym}=uXuods2jvsJ zLEKM~@&*RDsb8S&5;?$4ymw^l#a8qd`m8((8(DwoXX9uUef93}o9f^7WBFZw&hzWyWF6y~^|x}xUlC0 z2iS|98?qS48@ua=S^UwF#neyObw7hq;^g?Jl&e?!v%D33`}wxm>37_q{Wt2J-(=mb z#8>TaQLn!JDI15I`01d2Klz`xkbN6EZ{9}kzU}PW$-E^!zt2*cU2l;avieE8Rn}*Dv)`gO3ZI&G0XMu@1qX5m6Kn+oS={hpffMWn6IpD?;(mrt zqwr~CFL7zVQXVD#^^5VOte*XemaCUH@jl+Me9~?ew7gRu*0a6=wzA%hUV_HS#BT%i zzGlh?>-v&5wVf>c3 zcYQ-16r9K%topV~>cjSoSNW9B@TuClWA7~3kfY#&7ZV&{zrm!ufdL-7!JAo7J{jkW zIJ!gijKfBJ^%8H^-(i+^1NmKX(SF~c^_}_vUFSq@pn3z@xM=QA#QlUX%eePfnfw*A z&#!zjKDy9vH!kY^^`@YG`YU_>ng*Dl|C&@FFMnm7Ur}rJ1HTr(f_uhup74E(?yJU; z@kpFcadUw<*~6TUg_<~*nV`IfSL@>h4{6a5b6 z>%UGlOAKdf31#vc^Fsdw?{rTi*w#_pXOVc{;LOm>om&kt%`m0Re zMgD_Q{tB6YwL|_G_wsbXk4_$xN9HN@LSB&9hQCsXte)R?_E!g7S1=EMEg>G){I<_q z#80nrWPFvlkw1fS{n+4H2Pb@yPnAa-UMz4H9LNbaFm7-$-vRc5i7Ync0OgPPO?lLa z@BEtB(HjLPvgmWLdZ!%wC-+nh9(3Z~{drJ6+*dj0g!}I6D;~zH3&VIfKl~}>#=Yg= zr(9nAx5)D1pCQYS_mM4c$l{Aq|NEEhzap^s*1f-W>#seX_-EbqS8)&TS@-!@8^}}g z(|^4n9LHbJbzdM)hIU~6^0hy%`JU%N;%XVc_-mDXB98{V8R#pkKWW#&25$5nXChbZ z&I61ac`@$+_8Uyf8yE%U(PCd|#C1G_>Lq#|tmUivGU^u?fxnFog%}Vus-vniKh9}M-Z3xf&$D0u2><^O^gPBsd!ARQ_xb<) ziW2%KU&)u>r9bf{vb=jyWcekJY-hQ0@JGHg-sO|OhPHlk^?&%~^N@Vt+;@I0*Esin zg1nsY^!&=rr&quJO3nEdwpWyk+7J2goBljc4|pX{n*Nsu@{4l$q5ej1f*n+E%Yz#n zlqcA3aKnQMj)EOoOymYe!8;zg{))-^`!hJG7bo(%!BO~g><4eouQM4R@XGtDV4n`+ z%Y8TSv+~)8JYFpSM$z$)c^bM$5(&0GcSEgy>ah3 z%X0UJ&n`Xr;IDa}eMG*=m)G?B@rC9Sc@XAn&#~mi@Ej|Cmwx_$ewf$z>q|cQ5C3@H zHtr|<-}Uz86}J^NemqvD`E3xBG-e}2t-797Z8M^3QaV5moYw`VY^@8Bpn zk-sT=AJ?_p-{K$m;`zj1?K=B5ev~igTw)v%S3!J+GW)aqiqDCUR~Lry^j{$x|G$e& zJcZ}Me@Xej0KW&yKl70N$TP-q9V@;J`N;LFkDhta^IiV*ns2fXj{lAM!=nx#R>@E1rJ#KN znt3FjzA29?pDKTjOgtOcVo=_|2`;dM^;~9t3C?R#^|9yjJm>!Kz}}n>4o`fZss1G{ z7W^4LFL-V{7^(mvWtRA2l29{sw%$TR%od^{(d&m(?zwcGf8!k_&Ac@$57v+$`SPxB43_G|yk zWl!VF^K=-WoR7|asQ--rS66%Q147w&(C?z{j3fQt=to(e!WaK_fc%R~PaepV>{t0> zJt4CHrg3BW<{NN=|5)--!V}MP=9~C8m%S2u_}nx8$E)1? z+`&CtxZi7k_g&-NcyJ#T<;MqCzh~byue_i<`1=mB^`9dD8TgkMnokDLYwbZf{7BCI zgShbX$wcnf|LxVT!LRsNmmKo;edL$mM;FRp?G()K+*70HbI^J3qS{fOx?aceT&w+@ zhkDrmE)Rx&(eBFjXFlWHdh#{)ktc)rSl}+Q_04+DWec1I2XZf%$gSXFKH@|k1v_#U zY{CK;A zXnxV2+A*+O;E(F>%{gV2bN{5>_zClIea@HlJHPQ$=7F6S^F8_d&#wCOoCTl4^Oe4?}GX<__LhnXXDdzRqI!~1%I4hBX1b@ z`g!B`1}<>uXLu8=Up@_aGW~WcTYA z$ibhodgdSEGVtH{G40sj2YyWbN&eZK+qBcxj?6p2Mfp|+H-28mgEIBQ=c8B5$9*EM zKR<`@d2Bu|J?A<8^(C7>y{8#}d6l30v5zh}UV-w&c$X*UEAxfr^33`_p&#|kPcJC< z+!*}X?)_5#=_N0okI%Uo`!wwafAarhJW6>0%8x)6C-SQL@T6OhtX{|?`}6+lGwl2! zsK4v^&V5@x$s6(TC$7JC_2={W;`t)}<|^;-r#;YfUxY`4yx~66;f?$m#qWv#lX9{0 z>YNujkA;8o>C0+thV??cW#1pWBF__>F8dG&wZ!;n|Tz5Ec(Bl<&q zc_vTHQ!nV>a*=xP8GXJRZ!UeGH#@uuaA4OCF6?W0P(CdOd+|dZ_ON$(tzh)K0{)_tx6?oJZXE+#fy1{Vslb4~&X&{jq=MUsCV$ z1@Wo>f;^OkN2{FcHg?hv1HWwjrN3F9ez%?e4)uL5Ec>|MpNOAc^Y%X7ef#i>_Cvn; z-1O(Hmpp&oM>Rjm2hV$==QsHyFU&*Vr{C(A_bGRu3;x{K^ppD^{PS}^_XF*;v10?x zNA2&fagJRJFD9~n>7~9Q#|=*WD-L9_BPZDIu<%Dd$PZE8%%X37l6SWJ5h?e%!_O1E z=MMaQ?wj6kaK?B~ppRdPN-wS`tLmNA7?4J6ypnlcw1Am|W zqO@<+d++CSS{TRen%8;Hi1}~kyV<{8hrIH<=e{w>ck9Pjf9_Y2$nr;Cy-&IJHV=9K zAdk#j^2U8l-YM%Z`-MN}9`BQDJkO_rT?c5qYu~~Cw6Ny{N5QVW!3M@NIPteQkUN+K z8*;@cyh!AQ-^EV(DEdtqzD(PL=BNI+>^EM4KfLhx*?m(#`@H%RJ>o3hLk|Ct^`r5_ ze%(6t#G&V_ZdbU$GKP~&k|K1<@ z{Bq9m>{I9aKl)Wazr+vbrQpwVgnIbLiOJI@>Do$2}QhBwB)*x|zjw=(S~I4Do; zSM&n8ThBZO=Q-bhJI^uL!E&E3@_)GOG5+d8-?#Adu#itakGXHTPnl=5v-dmJ%OC5t zzr6X*H7;I=P*zV~$-DQ_H=pGtdp}~nHGbX4mUe{~3sf(W#mb*WoZsQTsh^Y&u-{-% zZrsa*Anpf#o`ok}UVt04T|@5VCuQyA`!I(`Kf<0LV`u$nK9V0FQ2zqdPr;x2sQa+b zMdYE)Ij-7UUUcHSf%?(7Ps$e<@&I{)M-Tsp`rs~c(B%>HG@p16{vW?T%eu9P=P&K{ z`BiTo^S!3?JVG8gpAX3s^Ni;<`Q$kAMm~t{XD^tS{`oGl5>M@RaZy=w0jmI?~?>+LTmmJ&+d+s^k4>Erk@1CEum*+5^YmPnqeAagI!aQTS zaqT`PFY11!{2uddptAmXLHSEi|CwK3U*&^yLdp;LGmr=N)c%w5sUN`5?)Yti`tc42 zdSXXTuoVnsvGOR)FNHty$@;?!^qWY#jXW%eXYy^37d&^I?+X|Q`azy3>xY;4#r-h& z`;cP_oG%ZGZllNZPdhO+&5o+RIRPZiuF96S8zn(x_HK0|h0 z<{$E|JQ2_H)vK%BdEf36_M`sCSN+L@-$TFhro{YI8QqUC|!L~q@odJFw- zJNFajcs|!)Kkytf*;mXvow!I)-b{Fs@~H4;5%1ze z76)<%vtUE67?f9(H==x!5AsCp@I$m*oHz9izK8=^Oxl^B&wZ8W33;TS%u65OuNPp5 zas7Gj`E$zU6Y+K47chR{ozD{|4*%+E@B3_v_|L~x-r&nbmM@LC=di;+(e*d>pRdcK{tS;MaW4+!4(1Iu%EdsgC~qptqd{EDkA-Z!i&^4v7sPvE6? z8RV$IahV~Fbg(hvDSC$#f=>BXqEa=>N|SrI=;l-?}IPF4?z85e)9R4 z@+Du0L-*}`T<6vfCv^DJZg}LmF5sUyh@W22xN4Ng4a$!@lrI&h&m~|I-^RHZ#{ErwZP(Eg2lBkZ zr9O6BoWIU<(hK|(H-Dbv{^Zgdo`Z;Id9!?u`P)mcd!E3b`^{CpXcxqPz(-~4=i}1% zImtYc^w+8H_D4VRQQnF2GteKjpUivt`~`X*vc5Sk>lltFALS=`Da^;@;q&{c?oThT z^~w9QufTVo=i~=Z#<}soEGPaNvV1Xq7IClt3mXX*#_ zVn-Gec@y_(d>ikS%cDlQdbSJ7<&XO6iIz9?H`s`4_q`;plKpS7&rixXvU$S%<@>I- zo9H#$5g*eyA-?2Y$QSa5ac;bY@#}Lt@zI^H{nCE9e-pP0J?E9k9iAui9rTmNvGHqO zGmm&qbH8z1#_PjBg(HIchk6_mzUfb;HX=zsqr`U(7$@o#%j)m;S|NZ@<@W zes0%ckD)&bnQ{^B;_Jc*eYkb}{cbf9B~u$Xn;TFR+96 z-=AEvpHF!n?TjXuz_HkXS>Y;CWr#^qf*zBLU&UZxfwHWl%3fBI+ z<6+;EpO6!Oy8l}*&lY*9gVuNKX?$+tXMw|b2aW%wztQW|8-MaTzDv9iXU@lUC+*L3 z9nT-em3h{ChQYWY-$CO&$~=SqH|5TA(awI1-$wspA|EvWgB@PEznuF4dB*p6WQZ!%q`?4)nF(!d}Km%4xXoaXb<3KB<6ENfB@cens2wW~ z`2r63aQJ0hx*xJ`?cQkTey4xrM<$=GA`=$TszadX#QT+52t z{kO%XJ;^Uo`z3w{aWb%r``tiaf5{)uIVb*!r$L;p5~r4L%X!XO#*=(>Uu4|D{@U=% zU>y5#A5Zsx@BfH9@6C*3pGSr~^ZZqKQs?h@o%Ok%>3Ud481LR2$YbyC;LTfkNFKQk z=f`@(c*Y*a#X>&&qvt%HbDRFBJpWC`)8C+eQ!md%_fvV2jIV5*D6djKo$ov1pxv3j z>-dHkuJ0YO({6xge@AwH3BM-sv0Zl=x9dN6*2!nAF+;wAGZ0z_30nt z(YOra%{+7B$IoTJPP=5h!T8C%od4lJ<4$=8CjB%}e%rt2EI)4z&Pjg08a!tO`NI5V zJLf;t^Epn0pX!N29u*Ao%*jXQEA-soD?fsGH~u$#8k9HeH{N7C{hj?pzo9RW^t<;+ zi+abg->pBezwy10(4n3!VHGYG6B=PBc6T!WP=e~Ll zlMnJ_nJ45y$uH@=O1bUq$90&mJl~yth=fvC*>7;ZExJYBL?l>6({x+wdZz!0&D+`aXa;0 z89r^~&3gAEpTa)8uQD#YS3h~6++UeTY-ik=7wkvb=bYr8+waT8>uY@9i|~7e=lte- zxSZ#P_Ym?>zKQYzdB`8@Ek`eIaKQJscqHFE&v~zDUL=pW{^32y<67s`?&gV-zm3Cz z|Ek{?{yRuNQ+~K_8Yhg`z*Uj)<=t?8&I=66#fE%`|Dm|E*_HH2%5V%j?jo10&l$F{>I;%k>6K! z%JNtJU&W0bui|9>dV;Q7^mjaM|7`vr^!q$=>x^+H-!2cxA9-`nP0vyDmHfUuB)`)4 zd%h?4bEEcotoJrQcae7mf7IvJ2ln?ozxt8qfjy~Rt?tSb`BdGyM+!wLjH^cKxs4yk8Xe3hRw|DBgbVBOA0m$!qUrp6lMv%Fl^F zKcBSUdt`aO%R}x>=6At|MSceRy8l2f+p#M|+pR0|L7v!dy|Uf?++TiwNnQQof&RXi z_fg;L-}8laPUDsNIEa_LDe`ohubzuMANe_97-!a9+%L`hYP>nDw_V@-ZzwN1x?V@e zX~(OmJ+I=c``&r-rNtv?->pCKn{ge)VUus>A{x-b3nGw3?vX1r+otNHJ|!Vmvnc+at> zN6IU3iTH8i-vo_|ai8WPalhk`FQ1S%+_y}mo9(&Jqw@XJTKDqwG;o!AN@AS$FLvV@`~r50+-K2^y}|| z|BrFy+%zxD^J4vEU)$Bg_Kx!j&lc^DcfVIryI;kHUp|LZ|28aTcrroT<@=`nI3B+* z{YyN|_w^y;{oe-7NBi?F-@C(clX2#2k*8viU)GcK9_90i&lf&-S(kin;oj%_yHK`{ zv7h>?pL+HEm;8}8^2p~!_V;-P51#<|X-{WMJE>G_2phJ5<)h>!QMYI*Jb$Npu$n|J0t==0D$*L|Pu^Lcy! zu#oTH)$#o`-|P7t;`3KDzNYyM-g?&fQt(ASmAt}U_fa3;H(HOvzl&v`@rK{v#jO*b zPv#$fmIs?S$d9z1fWvwOPmHhQ<=wGf`FXG3D}q?s>x~_U9dM?(#ypk87`}zLDdgy)3y5ir@`}vjkH~+gJzGw8F zS?n(!{9>K(e7gR_k7@oIFL^>-s_|*sZ=8*zJOTZlgP;G3{r$v}&!Bv`dZC}~;-G!C z{()YvVv(mE&D&=f?AzxlZ`KtTa!1#3oOl?Y%|82wdg~Wu{CdcbNnYr`d!Es5UVH9) zzME&><8C{A2=8(72EGKmy6?NJch(bmYyMh~k*(Ey9~MSb#nN}IZ6Jfrc+cClLj zL7wD|{pQ=NxUuVVSmtR%=PlaBiJT1wvRK%2K*ty3HfaB1+ysr^@bd`JIGG2Nd^jyH z9W3gFKhS6k}uz8 zy#HI@fYwd<3+CISzn=JK(!b0{;|UM8e1Jb`ooRTOx4@u(P`47^$fJpD9ZKSQ`Ne$o z61RFj!J=Jsy!yS08@oP-tNEeJlYTLg2NB30FUb>7?LYeV(09$9y+ zd%iEYJn{Po)}L>vE6V6AZv(p%eux|Xl>MOm>2cb`Yr%&CC%iex8&qD%!MO0fg8Tt* zyojUs4EeJeXI*mNiC#$_6?QH2%KU5nj(7g6nC{}@5+~5Ke z|4(>y8jq5=?S_sk=4Hdf`sSBB3i4_-9LV+$^X^5weqp}y!EgGnf7quY8|wJ^AiYU!v6=>yhosOa0_6_qd6D@}!Ut=k+}=8h?zB@jAwpIBn#OJk8^V z=C^g|z@uSZfe*&3h}Sf3jGN$=f7}OM$92u$kT=+=JZ%SU*S=S=@Q3(p9s9Tb1BZTe z9rQckR>mHAGiYD!lj-TNN(W0{w} z2eAG$KHd9Vd$@NflrRJ4*C07>g)Y&QAf2W;77+ndx7%Gcop#( z#MS&v;(hZ3dEoD8Jd!`&&xgDL)A;=t(YU$JCcZ~rvH!uY1)6VSdhY|x?^ki*CvhWp zw13i{&TIZ2wBI<;FMlR}5B#>_i~LyLzrZPiB9|~OBE1%4l7g2wG4hQQ8c+g{YKGPoRr;MHY$@`iZ^2NLc4}21>_xd;V zxBNg(_MPZE>}TDLe9?Glr}gKXM;`j$JGKraJn+4M&m;X_*m)!m?&qY`A)j+@9fCL3 zA?w+#kMaea@MDlCN4X>YgZSJy8rOyaZ{*AIya5Z`<}vj_{tWnIoGu^mx3ck>#AVW7 zuE+ZFQyy*Ne9SlP6KM~|rFP?&#khstui{|-GYtKT9tC#&ufLm~iTwjUcyC*+zFdBo z?~J!TS#JveZu4Hh!;c_tg&rIIZ+sZ%I>Y#|Ub;U1z0dvR^?fd(j$A%)pYuJ!t!LDs z)t-NRu8}|1pMsz1cb*{*5oY@kBpu{1x7py;p$? z|8MYs6Tj;BtxWs^dC4149+^jp{+<)wXO*>Y${+l-^&9OIdEu97p1g?ihPsGo-h0jU9$@uZ# z*AMi$#LqdcBkAAykpGTLKZm0JRI5Y1?v(le#(weuOxwY90~1{H}X)uh-)z4bq@0;{u;*r zMZEcrpOs5qfYUgDqqS>K(ypHdygBej{>)yF@Na3qGI_ti+2UaPpnc;9^`ERKFE{+0 z#LqYz#~WAHOU~u{+#^qX-r@PjdSiX@b06O)Sl2GfE9QGIEaL6`V-fE``;lMB3weV* zPxM1z#{{)&!V~cz%a=o5iu!Yy|ILr}L_Tf2>$u-QujM@gdwlM+&IfjH@~qJJu0!0W z=df|a4*ltSA-{L%davR_pN^CElo#N^PS5+T-NZZfJG|Mg?j&-+BlBASS36IZerP;e z#6=#ZGJ0M<89)3Q@|krPZ~Qd%yMESxj9=h(Klx%l znP1w$`J^B9!(rS&|5RV&2o~`i#M}J3=ec_L{^!^E2qWw3zyB^K^E(dh1Lcizp2T~A zhj9mcmOR0(v<}c7$c{HI8@~_Z!g`LASBL(he;PORS>_MpqWO2auJb_oW88!G!2c6F ztph$E`TlIPzxgj;lDxNnk`Ez2nYZD|1P}S;`UBbirQgBHdYzvapKjF{ytt=H16)FAH>8jWj?@@Qg2YZ7V@Aj-1EbDw7473>o@FIKFDdF%OB&0 z-{ny;-gPJPF+S!u^UcTd90fP~cwPp1;CpiYvs@Q+y@~(jhj~@LPq)62Z}Ms5?=XJo zp*~Cfuw&tuWd99nuX5u51qN7*7ac!rXMOpS@)bQM`M0pAd>`Ze*t+l`6X@0f5JB&BqHnQ#JxwzCDw7s72$?-}50F~_*cU#xm=U-ELxzhp{Y|{(`{)SfAJ$V(`Mixg`4Z+&!=87JGw+J|8&nSBa^CV?oBMab%Jz@OkBMyE zImpX)Fu?tm@5@KNZZhhm@QK8!!?XTGV=*01=>`jXt!`~P^&#WOe~gP`H=DcFFBXZvu(bC zj-Sk5tZ#m4N4P(B6{udlf6*VH>kigG?3WGIr{3~i{rfx3=E*?s@;wLj#`kHyk9OQ) z{CLav<>KJ4i5?rfjPv#!G7jX8@jk{KG|$8|55WMPS8e`QMz7`hWnAC#UF};x;w|6B zTSu%Xwy(E*?+$T)c*qGVALIg!bHX3>P4rXmr9VLVb5Z}9ALfDlu;2V={ewIiH<_ni z$9BfaLva`{FkFxQ!hKn%SU<@F^YFYq{59~4&pSRB$frqOh5jR6t`p`LINVQvfJMLh zOxm~e<)!(7ew%%-o_vqV&yD@O%lBnsQcv#v)6a*oXEnQueS-ZyM>B`hLjA zd~f-(IIr&h=CyuRZ}nsT0T=Cud7JTpK1I9z%KKTndZO1PZzp-;d3%xko#a)Dv>#;i zP7L}J9Buq&Uhw?xeX8>zeLmrNK7AkJ_i5>OoZn-*GIeLNU&4!@*(YB>{UP5c{xTkA zTtM@%h>Lk^9*OIJnMY+F@qX+yEaVOP9=hXc^FAxPFZOTb+3M${{pO?jOMXuIgRFm( z{MY|s-Iq^{5BFuAXKA!asJWBAur`>r44>lO)Bl&5b zZtp>!^FFWpzRT~y`h5xV{PM{66yCd-=Y7liShSC}pZibrT-X)(Q9paW4eSWV87IaE ze$vlk>OXMn-zPjet=;_ppVlMS*^MuSEPjp`juUs|)p9-TnD}jRo@s}6s+W1b@$150 z6Zs(PPvaEU5#q9uofrBaeF}LPH~Ayd?mmuB;wE28*?1vO^#+}PkQd_)`z-V|ujH5K z!=%6D9r6Gjf6sICR3yI>{&}C8@IlNb+rDVu;9{KuFTc?*wO>2&Yk5xtOFI~^f3|)C z2e|Rqc3p7c|KT~=(EKv*I%d0}m-S!jFXA%6z@JH6V!Z?d)K49&>66IieDv3jYo~VE?>u;I{SEEF zAI12h{n$^t>lfoE{P8>%7wsD~?($>vHP2zv`0;KKjI`;M~l2OTHhjCU~J{L!z*eG(`0Vjzph^&Lk%kMVAN zDE5=j!94d{%-hV9PvySsH^Aw>V1m~k#<|a;|A3?AU%Ef2KDGz#{f_&ZFAa^iyeN1fA3Dkx$BVW*KCM^qVS>+iQ=jQK z->ox#@A7_cgSx+sH~TNo1MI3N{?N}09?4UAlg7z9#JGh#K=V8CvvCXJGKp7$lXab^ z{?j;u#&IKO<58Ih*yn!7`Jm&pM^vxFItz6CMi%WCZ5NC2(Xg<0fckf0kAARU-gLbF zF)qZz=b`d`$-0Ri&Qs6LeDyqxOZ|*L7g(VAxQsJ6$g|n%i~Lx$Cm7%W?JxTqj}AQ9 zjaTx=elZ+x9H=w*?>>3I>%4Lt``q}m z&%hq@=@@4)%rC|b?1{FX^B3c_-|>U}%op=x>QCmm|8X7r!BlV1bygdFX({^lMhe-83wy{oVGu)h6=ao0Y^CHsr3#lw7(2T7hOPh{Hz zxrnEDko&yteE1+gM4xv?>mSw+{p|PmxwrY=$2e^KvGf=ATNg_ieI|JH6Y~f1MBc>p z?xQ}&8#E8BW68M0FYe>I#x2pe91m`==r?|Y_-W5XU-b^{Y*_lIjo;>t`|Ce2zyZ$I z@BBr3g4(lKHyRdxo6UdDQ{Rcb=Iv^B1$L$DP=9<6;rhuq*A-8*OIbe_`>BUm^2+#v z+44(y(LT&O#&59mDBAct51z=EYP^wG8~uF0x_sW@`+~L)^M@YNV99G_MzSmgC!d!et#&AI5KRc0XZ%*zS1! z%l_u4e%$!eywAp?iM$&xig^ok9osuj#>tcE`!-NM1$z4Vy3afJcWdzX!Cw8akT?Ev zouZy~zw0N*9rx9L`W>9a*LW)j?aI~iWg~}vCLV)*O1;6GKg>(_r{8&}#do_dxb4>- zaA_y{7?)&Tvd?7SqaL7kE@aX6pnVgkVZ6v^+Yjx|(@x_U>Vv++JVVxA{g>`*9rC?` z`(W3?4+#e7I^u1oe>Qz?zL?ifa5O$CZ^oM!gp$l^?&{}x*YYILufR!vkdMneFfQOyU+_3ye;^y* zO+FO*R@dKlaJ2qqKkd#h_OHet?KbZVyEeGM2_`te=%{~0_S3FtdaK_--vEtEc)qaD z;r&wjUV(i^_p^R{g64toalgU->QnN;dV_4d53==WBA0f6h200#PTRL}bDaEP{>I+> z`!d|y7SBO`4&?W!($B~JT%6C(tzY5id7cB>$^OPmJotC2kNO%P`iK3*tK0`(4f0`{ z|KPHn`KzsOyf*uo7n}LXeA|<8uCvt()DBU-Z#Wcii&-0E4 zmvZxqaj53!o`+Y)f0OaadSU&6M^{hu*KgZ>z(brx^;xt#FWFbW7ydrRm3)iF6VLHG zk9`ZhNAqXUzd-lj>>uu@-hMvK_ow{6x_q)8`QP#I_c{E#=leT2-(>vw@3#+J-#xI< zV{5N^;n$=8(ILCw~_QHz;mOKFi`%^!IrHoxmz0g}f1$kMXgW$DOKe<2r z@p}$Q`)NFy>=*9KItSe91rEjy^xNRUfAS_9k8ZxGH|rJt3-ZT2TKL8NC*uQD@8Q1G z55KqW-y8b5>Ed^3kHcX9Vqj|`{=QU;+xS(H5$G7>$`|9gB)^Y!1UJ#ch(th_r5BcJG zVV-K=)J{-&H91*N{}%h{AMMMT+`fc#wNA)e^BX9V;W}~P6IX&L)PkXwK@$o*!{mk$4`g>^dBdja_KAOK{X#M&9 z!(X>feT~d}y&w+8WvB<3=xM$xFWQxzx6psmzdQ%2t3Jo+ALD2~ZTzc0ruwk%2Hk(+ zKmDtoq2B7jI^q1b-l4yqj8F73Ul($?u5pA9+C7kWL+wq+xBj92+V6hEtK<)O)KB}E zuYY|W3V2j4KizLLPb_5Z9L-Oup3bBHpocsXOFh9f4%k1*6Q2i){28n-y05s}{)Ha* zImh3p`R0-T_j_>uo?zpR|J_~hbN=^3*Ke5ryPxvN^I;no?Gud)dZm79{u|A2n{k03 zlDO%o&|kDCdAQkkG2eBw=_7v%|H~gSSWo|k@oISE$bN-g6Infi{q@&D9_q<{r}1Go zc_9xlLG@LC_b>Dv)*Is_e`wb~g+51pIN#;Z!S6|XvA^R3`_sHsZvHs7w{iOGp!d>m zp!O{KUFY)J@3W)dY5JvhwfL&n(BJ=9Bv}Uw@14I~|WdZ7=j#w5NH+ zdgj|vb|1$v-+AW6AP@9cqUUB_8CUf|KlL2Q9k=c3ZT!{CJY+xPBVIiiKbSwz!~5mJ z&+=)vJXQbWJoM48`r)`fm`}zP`fN~tm-e}i{!%}`e`CJTzrd-?z6Ts&fbQe(*j=9Z zJS3mKf)~`I^7nL+twW;!U3hur?-ma8)^m=y1?|%~>JRK!fBiqOPu$p(<~!)QQ#>bm z&ztbed^O*19Q3>X(yz#qe*KuOeWHIg?CS^X6!RCd`W*dYUbEhCJbG!j_mXX1;D;%H z7=M_rKJI6HE^mmFvT+*dv9#NLJh#Zx@qxTSALDh5AM*n&QU9}#{+{%2P=9GhwRy*J zB6=+N<9+4OzV#>L-7i|4Y#+2Q^t}A(&o|Z`P+kQ5y6^42!e6bPtuG(#{toqlCyRQN z{qmx{s#~3Lv;VOYxpJWIQpzZUx~`Zsvn8L$6}@qPV8o}~8^^xOJ}b=AZDTxYj9o1dZos4Mcx-&yy4 zweJ_wan>RE1%INU@9mtwwHF>O;&S6j{{Z#JXntAd1NPtZR{r2G?-|KC={e;0F|MD~ z3xAl$hkf;H;%DM)%w|QUkJ*j!Be(2-8&_DW38UF-vS;`F)*?#3gd$F!O8RS8>_jAMj z!HFIVH15ii_07{y@%fK`kH^1{|N8Om`|tnZ Date: Sun, 3 Dec 2023 14:51:05 -0500 Subject: [PATCH 09/10] Remove Makefiles, add Makefiles to gitignore --- .gitignore | 2 +- Makefile | 192 ------------------------------------------------- src/Makefile | 134 ---------------------------------- utils/Makefile | 180 ---------------------------------------------- 4 files changed, 1 insertion(+), 507 deletions(-) delete mode 100644 Makefile delete mode 100644 src/Makefile delete mode 100644 utils/Makefile diff --git a/.gitignore b/.gitignore index 49276ba..b5eff7a 100644 --- a/.gitignore +++ b/.gitignore @@ -23,4 +23,4 @@ src/model/message/__pycache__/** src/model/__pycache__/utils.cpython-38.pyc src/model/message/__pycache__/__init__.cpython-38.pyc src/model/message/__pycache__/sms_message.cpython-38.pyc - +**/Makefile diff --git a/Makefile b/Makefile deleted file mode 100644 index 5f611d3..0000000 --- a/Makefile +++ /dev/null @@ -1,192 +0,0 @@ -# CMAKE generated file: DO NOT EDIT! -# Generated by "Unix Makefiles" Generator, CMake Version 3.13 - -# Default target executed when no arguments are given to make. -default_target: all - -.PHONY : default_target - -# Allow only one "make -f Makefile2" at a time, but pass parallelism. -.NOTPARALLEL: - - -#============================================================================= -# Special targets provided by cmake. - -# Disable implicit rules so canonical targets will work. -.SUFFIXES: - - -# Remove some rules from gmake that .SUFFIXES does not remove. -SUFFIXES = - -.SUFFIXES: .hpux_make_needs_suffix_list - - -# Suppress display of executed commands. -$(VERBOSE).SILENT: - - -# A target that is always out of date. -cmake_force: - -.PHONY : cmake_force - -#============================================================================= -# Set environment variables for the build. - -# The shell in which to execute make rules. -SHELL = /bin/sh - -# The CMake executable. -CMAKE_COMMAND = /usr/local/bin/cmake - -# The command to remove a file. -RM = /usr/local/bin/cmake -E remove -f - -# Escaping for special characters. -EQUALS = = - -# The top-level source directory on which CMake was run. -CMAKE_SOURCE_DIR = /home/cds-nano-3/edge-ml - -# The top-level build directory on which CMake was run. -CMAKE_BINARY_DIR = /home/cds-nano-3/edge-ml - -#============================================================================= -# Targets provided globally by CMake. - -# Special rule for the target rebuild_cache -rebuild_cache: - @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "Running CMake to regenerate build system..." - /usr/local/bin/cmake -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) -.PHONY : rebuild_cache - -# Special rule for the target rebuild_cache -rebuild_cache/fast: rebuild_cache - -.PHONY : rebuild_cache/fast - -# Special rule for the target edit_cache -edit_cache: - @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "No interactive CMake dialog available..." - /usr/local/bin/cmake -E echo No\ interactive\ CMake\ dialog\ available. -.PHONY : edit_cache - -# Special rule for the target edit_cache -edit_cache/fast: edit_cache - -.PHONY : edit_cache/fast - -# The main all target -all: cmake_check_build_system - $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/CMakeFiles /home/cds-nano-3/edge-ml/CMakeFiles/progress.marks - $(MAKE) -f CMakeFiles/Makefile2 all - $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/CMakeFiles 0 -.PHONY : all - -# The main clean target -clean: - $(MAKE) -f CMakeFiles/Makefile2 clean -.PHONY : clean - -# The main clean target -clean/fast: clean - -.PHONY : clean/fast - -# Prepare targets for installation. -preinstall: all - $(MAKE) -f CMakeFiles/Makefile2 preinstall -.PHONY : preinstall - -# Prepare targets for installation. -preinstall/fast: - $(MAKE) -f CMakeFiles/Makefile2 preinstall -.PHONY : preinstall/fast - -# clear depends -depend: - $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 1 -.PHONY : depend - -#============================================================================= -# Target rules for targets named camera - -# Build rule for target. -camera: cmake_check_build_system - $(MAKE) -f CMakeFiles/Makefile2 camera -.PHONY : camera - -# fast build rule for target. -camera/fast: - $(MAKE) -f CMakeFiles/camera.dir/build.make CMakeFiles/camera.dir/build -.PHONY : camera/fast - -#============================================================================= -# Target rules for targets named UtilityLib - -# Build rule for target. -UtilityLib: cmake_check_build_system - $(MAKE) -f CMakeFiles/Makefile2 UtilityLib -.PHONY : UtilityLib - -# fast build rule for target. -UtilityLib/fast: - $(MAKE) -f utils/CMakeFiles/UtilityLib.dir/build.make utils/CMakeFiles/UtilityLib.dir/build -.PHONY : UtilityLib/fast - -src/simple_camera.o: src/simple_camera.cpp.o - -.PHONY : src/simple_camera.o - -# target to build an object file -src/simple_camera.cpp.o: - $(MAKE) -f CMakeFiles/camera.dir/build.make CMakeFiles/camera.dir/src/simple_camera.cpp.o -.PHONY : src/simple_camera.cpp.o - -src/simple_camera.i: src/simple_camera.cpp.i - -.PHONY : src/simple_camera.i - -# target to preprocess a source file -src/simple_camera.cpp.i: - $(MAKE) -f CMakeFiles/camera.dir/build.make CMakeFiles/camera.dir/src/simple_camera.cpp.i -.PHONY : src/simple_camera.cpp.i - -src/simple_camera.s: src/simple_camera.cpp.s - -.PHONY : src/simple_camera.s - -# target to generate assembly for a file -src/simple_camera.cpp.s: - $(MAKE) -f CMakeFiles/camera.dir/build.make CMakeFiles/camera.dir/src/simple_camera.cpp.s -.PHONY : src/simple_camera.cpp.s - -# Help Target -help: - @echo "The following are some of the valid targets for this Makefile:" - @echo "... all (the default if no target is provided)" - @echo "... clean" - @echo "... depend" - @echo "... rebuild_cache" - @echo "... camera" - @echo "... edit_cache" - @echo "... UtilityLib" - @echo "... src/simple_camera.o" - @echo "... src/simple_camera.i" - @echo "... src/simple_camera.s" -.PHONY : help - - - -#============================================================================= -# Special targets to cleanup operation of make. - -# Special rule to run CMake to check the build system integrity. -# No rule that depends on this can have commands that come from listfiles -# because they might be regenerated. -cmake_check_build_system: - $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 0 -.PHONY : cmake_check_build_system - diff --git a/src/Makefile b/src/Makefile deleted file mode 100644 index c5430bd..0000000 --- a/src/Makefile +++ /dev/null @@ -1,134 +0,0 @@ -# CMAKE generated file: DO NOT EDIT! -# Generated by "Unix Makefiles" Generator, CMake Version 3.13 - -# Default target executed when no arguments are given to make. -default_target: all - -.PHONY : default_target - -# Allow only one "make -f Makefile2" at a time, but pass parallelism. -.NOTPARALLEL: - - -#============================================================================= -# Special targets provided by cmake. - -# Disable implicit rules so canonical targets will work. -.SUFFIXES: - - -# Remove some rules from gmake that .SUFFIXES does not remove. -SUFFIXES = - -.SUFFIXES: .hpux_make_needs_suffix_list - - -# Suppress display of executed commands. -$(VERBOSE).SILENT: - - -# A target that is always out of date. -cmake_force: - -.PHONY : cmake_force - -#============================================================================= -# Set environment variables for the build. - -# The shell in which to execute make rules. -SHELL = /bin/sh - -# The CMake executable. -CMAKE_COMMAND = /usr/local/bin/cmake - -# The command to remove a file. -RM = /usr/local/bin/cmake -E remove -f - -# Escaping for special characters. -EQUALS = = - -# The top-level source directory on which CMake was run. -CMAKE_SOURCE_DIR = /home/cds-nano-3/edge-ml/src - -# The top-level build directory on which CMake was run. -CMAKE_BINARY_DIR = /home/cds-nano-3/edge-ml/src - -#============================================================================= -# Targets provided globally by CMake. - -# Special rule for the target rebuild_cache -rebuild_cache: - @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "Running CMake to regenerate build system..." - /usr/local/bin/cmake -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) -.PHONY : rebuild_cache - -# Special rule for the target rebuild_cache -rebuild_cache/fast: rebuild_cache - -.PHONY : rebuild_cache/fast - -# Special rule for the target edit_cache -edit_cache: - @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "No interactive CMake dialog available..." - /usr/local/bin/cmake -E echo No\ interactive\ CMake\ dialog\ available. -.PHONY : edit_cache - -# Special rule for the target edit_cache -edit_cache/fast: edit_cache - -.PHONY : edit_cache/fast - -# The main all target -all: cmake_check_build_system - $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/src/CMakeFiles /home/cds-nano-3/edge-ml/src/CMakeFiles/progress.marks - $(MAKE) -f CMakeFiles/Makefile2 all - $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/src/CMakeFiles 0 -.PHONY : all - -# The main clean target -clean: - $(MAKE) -f CMakeFiles/Makefile2 clean -.PHONY : clean - -# The main clean target -clean/fast: clean - -.PHONY : clean/fast - -# Prepare targets for installation. -preinstall: all - $(MAKE) -f CMakeFiles/Makefile2 preinstall -.PHONY : preinstall - -# Prepare targets for installation. -preinstall/fast: - $(MAKE) -f CMakeFiles/Makefile2 preinstall -.PHONY : preinstall/fast - -# clear depends -depend: - $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 1 -.PHONY : depend - -# Help Target -help: - @echo "The following are some of the valid targets for this Makefile:" - @echo "... all (the default if no target is provided)" - @echo "... clean" - @echo "... depend" - @echo "... rebuild_cache" - @echo "... edit_cache" -.PHONY : help - - - -#============================================================================= -# Special targets to cleanup operation of make. - -# Special rule to run CMake to check the build system integrity. -# No rule that depends on this can have commands that come from listfiles -# because they might be regenerated. -cmake_check_build_system: - $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 0 -.PHONY : cmake_check_build_system - diff --git a/utils/Makefile b/utils/Makefile deleted file mode 100644 index 697661a..0000000 --- a/utils/Makefile +++ /dev/null @@ -1,180 +0,0 @@ -# CMAKE generated file: DO NOT EDIT! -# Generated by "Unix Makefiles" Generator, CMake Version 3.13 - -# Default target executed when no arguments are given to make. -default_target: all - -.PHONY : default_target - -# Allow only one "make -f Makefile2" at a time, but pass parallelism. -.NOTPARALLEL: - - -#============================================================================= -# Special targets provided by cmake. - -# Disable implicit rules so canonical targets will work. -.SUFFIXES: - - -# Remove some rules from gmake that .SUFFIXES does not remove. -SUFFIXES = - -.SUFFIXES: .hpux_make_needs_suffix_list - - -# Suppress display of executed commands. -$(VERBOSE).SILENT: - - -# A target that is always out of date. -cmake_force: - -.PHONY : cmake_force - -#============================================================================= -# Set environment variables for the build. - -# The shell in which to execute make rules. -SHELL = /bin/sh - -# The CMake executable. -CMAKE_COMMAND = /usr/local/bin/cmake - -# The command to remove a file. -RM = /usr/local/bin/cmake -E remove -f - -# Escaping for special characters. -EQUALS = = - -# The top-level source directory on which CMake was run. -CMAKE_SOURCE_DIR = /home/cds-nano-3/edge-ml - -# The top-level build directory on which CMake was run. -CMAKE_BINARY_DIR = /home/cds-nano-3/edge-ml - -#============================================================================= -# Targets provided globally by CMake. - -# Special rule for the target rebuild_cache -rebuild_cache: - @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "Running CMake to regenerate build system..." - /usr/local/bin/cmake -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) -.PHONY : rebuild_cache - -# Special rule for the target rebuild_cache -rebuild_cache/fast: rebuild_cache - -.PHONY : rebuild_cache/fast - -# Special rule for the target edit_cache -edit_cache: - @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "No interactive CMake dialog available..." - /usr/local/bin/cmake -E echo No\ interactive\ CMake\ dialog\ available. -.PHONY : edit_cache - -# Special rule for the target edit_cache -edit_cache/fast: edit_cache - -.PHONY : edit_cache/fast - -# The main all target -all: cmake_check_build_system - cd /home/cds-nano-3/edge-ml && $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/CMakeFiles /home/cds-nano-3/edge-ml/utils/CMakeFiles/progress.marks - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 utils/all - $(CMAKE_COMMAND) -E cmake_progress_start /home/cds-nano-3/edge-ml/CMakeFiles 0 -.PHONY : all - -# The main clean target -clean: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 utils/clean -.PHONY : clean - -# The main clean target -clean/fast: clean - -.PHONY : clean/fast - -# Prepare targets for installation. -preinstall: all - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 utils/preinstall -.PHONY : preinstall - -# Prepare targets for installation. -preinstall/fast: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 utils/preinstall -.PHONY : preinstall/fast - -# clear depends -depend: - cd /home/cds-nano-3/edge-ml && $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 1 -.PHONY : depend - -# Convenience name for target. -utils/CMakeFiles/UtilityLib.dir/rule: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f CMakeFiles/Makefile2 utils/CMakeFiles/UtilityLib.dir/rule -.PHONY : utils/CMakeFiles/UtilityLib.dir/rule - -# Convenience name for target. -UtilityLib: utils/CMakeFiles/UtilityLib.dir/rule - -.PHONY : UtilityLib - -# fast build rule for target. -UtilityLib/fast: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f utils/CMakeFiles/UtilityLib.dir/build.make utils/CMakeFiles/UtilityLib.dir/build -.PHONY : UtilityLib/fast - -motion_detection.o: motion_detection.cpp.o - -.PHONY : motion_detection.o - -# target to build an object file -motion_detection.cpp.o: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f utils/CMakeFiles/UtilityLib.dir/build.make utils/CMakeFiles/UtilityLib.dir/motion_detection.cpp.o -.PHONY : motion_detection.cpp.o - -motion_detection.i: motion_detection.cpp.i - -.PHONY : motion_detection.i - -# target to preprocess a source file -motion_detection.cpp.i: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f utils/CMakeFiles/UtilityLib.dir/build.make utils/CMakeFiles/UtilityLib.dir/motion_detection.cpp.i -.PHONY : motion_detection.cpp.i - -motion_detection.s: motion_detection.cpp.s - -.PHONY : motion_detection.s - -# target to generate assembly for a file -motion_detection.cpp.s: - cd /home/cds-nano-3/edge-ml && $(MAKE) -f utils/CMakeFiles/UtilityLib.dir/build.make utils/CMakeFiles/UtilityLib.dir/motion_detection.cpp.s -.PHONY : motion_detection.cpp.s - -# Help Target -help: - @echo "The following are some of the valid targets for this Makefile:" - @echo "... all (the default if no target is provided)" - @echo "... clean" - @echo "... depend" - @echo "... rebuild_cache" - @echo "... UtilityLib" - @echo "... edit_cache" - @echo "... motion_detection.o" - @echo "... motion_detection.i" - @echo "... motion_detection.s" -.PHONY : help - - - -#============================================================================= -# Special targets to cleanup operation of make. - -# Special rule to run CMake to check the build system integrity. -# No rule that depends on this can have commands that come from listfiles -# because they might be regenerated. -cmake_check_build_system: - cd /home/cds-nano-3/edge-ml && $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 0 -.PHONY : cmake_check_build_system - From 151755e848b86d9b094611351ed717583e77319e Mon Sep 17 00:00:00 2001 From: JamesZhang2 <46012390+JamesZhang2@users.noreply.github.com> Date: Sun, 3 Dec 2023 15:06:48 -0500 Subject: [PATCH 10/10] Update README.md --- README.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 727346d..2026649 100644 --- a/README.md +++ b/README.md @@ -6,7 +6,8 @@ Make sure git-clang-format is installed with `npm install -g clang-format` 1. Call `clang-format.sh` under ci/ 2. `git add` and `git commit`! -To run: + +## To run `cd build` @@ -16,7 +17,7 @@ To run: `./camera` -Setting up Twilio: +## Setting up Twilio - `cd` to `src/message/` @@ -26,4 +27,4 @@ Setting up Twilio: - `twilio login` -- `pip install twilio` \ No newline at end of file +- `pip install twilio`