-
Notifications
You must be signed in to change notification settings - Fork 2
/
dataset.py
258 lines (218 loc) · 9.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import numpy as np
import torch
from sklearn.linear_model import LinearRegression
import sympy
# sigmoid = sympy.Function('sigmoid')
# name: (torch implementation, sympy implementation)
SYMBOLIC_LIB = {'x': (lambda x: x, lambda x: x),
'x^2': (lambda x: x**2, lambda x: x**2),
'x^3': (lambda x: x**3, lambda x: x**3),
'x^4': (lambda x: x**4, lambda x: x**4),
'1/x': (lambda x: 1/x, lambda x: 1/x),
'1/x^2': (lambda x: 1/x**2, lambda x: 1/x**2),
'1/x^3': (lambda x: 1/x**3, lambda x: 1/x**3),
'1/x^4': (lambda x: 1/x**4, lambda x: 1/x**4),
'sqrt': (lambda x: torch.sqrt(x), lambda x: sympy.sqrt(x)),
'1/sqrt(x)': (lambda x: 1/torch.sqrt(x), lambda x: 1/sympy.sqrt(x)),
'exp': (lambda x: torch.exp(x), lambda x: sympy.exp(x)),
'log': (lambda x: torch.log(x), lambda x: sympy.log(x)),
'abs': (lambda x: torch.abs(x), lambda x: sympy.Abs(x)),
'sin': (lambda x: torch.sin(x), lambda x: sympy.sin(x)),
'tan': (lambda x: torch.tan(x), lambda x: sympy.tan(x)),
'tanh': (lambda x: torch.tanh(x), lambda x: sympy.tanh(x)),
'sigmoid': (lambda x: torch.sigmoid(x), sympy.Function('sigmoid')),
#'relu': (lambda x: torch.relu(x), relu),
'sgn': (lambda x: torch.sign(x), lambda x: sympy.sign(x)),
'arcsin': (lambda x: torch.arcsin(x), lambda x: sympy.arcsin(x)),
'arctan': (lambda x: torch.arctan(x), lambda x: sympy.atan(x)),
'arctanh': (lambda x: torch.arctanh(x), lambda x: sympy.atanh(x)),
'0': (lambda x: x*0, lambda x: x*0),
'gaussian': (lambda x: torch.exp(-x**2), lambda x: sympy.exp(-x**2)),
'cosh': (lambda x: torch.cosh(x), lambda x: sympy.cosh(x)),
#'logcosh': (lambda x: torch.log(torch.cosh(x)), lambda x: sympy.log(sympy.cosh(x))),
#'cosh^2': (lambda x: torch.cosh(x)**2, lambda x: sympy.cosh(x)**2),
}
def create_dataset(f,
n_var=2,
ranges = [-1,1],
train_num=1000,
test_num=1000,
normalize_input=False,
normalize_label=False,
device='cpu',
seed=0):
'''
create dataset
Args:
-----
f : function
the symbolic formula used to create the synthetic dataset
ranges : list or np.array; shape (2,) or (n_var, 2)
the range of input variables. Default: [-1,1].
train_num : int
the number of training samples. Default: 1000.
test_num : int
the number of test samples. Default: 1000.
normalize_input : bool
If True, apply normalization to inputs. Default: False.
normalize_label : bool
If True, apply normalization to labels. Default: False.
device : str
device. Default: 'cpu'.
seed : int
random seed. Default: 0.
Returns:
--------
dataset : dic
Train/test inputs/labels are dataset['train_input'], dataset['train_label'],
dataset['test_input'], dataset['test_label']
Example
-------
>>> f = lambda x: torch.exp(torch.sin(torch.pi*x[:,[0]]) + x[:,[1]]**2)
>>> dataset = create_dataset(f, n_var=2, train_num=100)
>>> dataset['train_input'].shape
torch.Size([100, 2])
'''
np.random.seed(seed)
torch.manual_seed(seed)
if len(np.array(ranges).shape) == 1:
ranges = np.array(ranges * n_var).reshape(n_var,2)
else:
ranges = np.array(ranges)
train_input = torch.zeros(train_num, n_var)
test_input = torch.zeros(test_num, n_var)
for i in range(n_var):
train_input[:,i] = torch.rand(train_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
test_input[:,i] = torch.rand(test_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
train_label = f(train_input)
test_label = f(test_input)
def normalize(data, mean, std):
return (data-mean)/std
if normalize_input == True:
mean_input = torch.mean(train_input, dim=0, keepdim=True)
std_input = torch.std(train_input, dim=0, keepdim=True)
train_input = normalize(train_input, mean_input, std_input)
test_input = normalize(test_input, mean_input, std_input)
if normalize_label == True:
mean_label = torch.mean(train_label, dim=0, keepdim=True)
std_label = torch.std(train_label, dim=0, keepdim=True)
train_label = normalize(train_label, mean_label, std_label)
test_label = normalize(test_label, mean_label, std_label)
dataset = {}
dataset['train_input'] = train_input.to(device)
dataset['test_input'] = test_input.to(device)
dataset['train_label'] = train_label.to(device)
dataset['test_label'] = test_label.to(device)
return dataset
def fit_params(x, y, fun, a_range=(-10,10), b_range=(-10,10), grid_number=101, iteration=3, verbose=True, device='cpu'):
'''
fit a, b, c, d such that
.. math::
|y-(cf(ax+b)+d)|^2
is minimized. Both x and y are 1D array. Sweep a and b, find the best fitted model.
Args:
-----
x : 1D array
x values
y : 1D array
y values
fun : function
symbolic function
a_range : tuple
sweeping range of a
b_range : tuple
sweeping range of b
grid_num : int
number of steps along a and b
iteration : int
number of zooming in
verbose : bool
print extra information if True
device : str
device
Returns:
--------
a_best : float
best fitted a
b_best : float
best fitted b
c_best : float
best fitted c
d_best : float
best fitted d
r2_best : float
best r2 (coefficient of determination)
Example
-------
>>> num = 100
>>> x = torch.linspace(-1,1,steps=num)
>>> noises = torch.normal(0,1,(num,)) * 0.02
>>> y = 5.0*torch.sin(3.0*x + 2.0) + 0.7 + noises
>>> fit_params(x, y, torch.sin)
r2 is 0.9999727010726929
(tensor([2.9982, 1.9996, 5.0053, 0.7011]), tensor(1.0000))
'''
# fit a, b, c, d such that y=c*fun(a*x+b)+d; both x and y are 1D array.
# sweep a and b, choose the best fitted model
for _ in range(iteration):
a_ = torch.linspace(a_range[0], a_range[1], steps=grid_number, device=device)
b_ = torch.linspace(b_range[0], b_range[1], steps=grid_number, device=device)
a_grid, b_grid = torch.meshgrid(a_, b_, indexing='ij')
post_fun = fun(a_grid[None,:,:] * x[:,None,None] + b_grid[None,:,:])
x_mean = torch.mean(post_fun, dim=[0], keepdim=True)
y_mean = torch.mean(y, dim=[0], keepdim=True)
numerator = torch.sum((post_fun - x_mean)*(y-y_mean)[:,None,None], dim=0)**2
denominator = torch.sum((post_fun - x_mean)**2, dim=0)*torch.sum((y - y_mean)[:,None,None]**2, dim=0)
r2 = numerator/(denominator+1e-4)
r2 = torch.nan_to_num(r2)
best_id = torch.argmax(r2)
a_id, b_id = torch.div(best_id, grid_number, rounding_mode='floor'), best_id % grid_number
if a_id == 0 or a_id == grid_number - 1 or b_id == 0 or b_id == grid_number - 1:
if _ == 0 and verbose==True:
print('Best value at boundary.')
if a_id == 0:
a_arange = [a_[0], a_[1]]
if a_id == grid_number - 1:
a_arange = [a_[-2], a_[-1]]
if b_id == 0:
b_arange = [b_[0], b_[1]]
if b_id == grid_number - 1:
b_arange = [b_[-2], b_[-1]]
else:
a_range = [a_[a_id-1], a_[a_id+1]]
b_range = [b_[b_id-1], b_[b_id+1]]
a_best = a_[a_id]
b_best = b_[b_id]
post_fun = fun(a_best * x + b_best)
r2_best = r2[a_id, b_id]
if verbose == True:
print(f"r2 is {r2_best}")
if r2_best < 0.9:
print(f'r2 is not very high, please double check if you are choosing the correct symbolic function.')
post_fun = torch.nan_to_num(post_fun)
reg = LinearRegression().fit(post_fun[:,None].detach().cpu().numpy(), y.detach().cpu().numpy())
c_best = torch.from_numpy(reg.coef_)[0].to(device)
d_best = torch.from_numpy(np.array(reg.intercept_)).to(device)
return torch.stack([a_best, b_best, c_best, d_best]), r2_best
def add_symbolic(name, fun):
'''
add a symbolic function to library
Args:
-----
name : str
name of the function
fun : fun
torch function or lambda function
Returns:
--------
None
Example
-------
>>> print(SYMBOLIC_LIB['Bessel'])
KeyError: 'Bessel'
>>> add_symbolic('Bessel', torch.special.bessel_j0)
>>> print(SYMBOLIC_LIB['Bessel'])
(<built-in function special_bessel_j0>, Bessel)
'''
exec(f"globals()['{name}'] = sympy.Function('{name}')")
SYMBOLIC_LIB[name] = (fun, globals()[name])