forked from L0SG/relational-rnn-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_rmc.py
385 lines (325 loc) · 16.2 KB
/
train_rmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# copypasta from main.py of pytorch word_language_model code
# coding: utf-8
import argparse
import time
import math
import os
import torch
import torch.nn as nn
import torch.onnx
import datetime
import shutil
import pickle
import data
from relational_rnn_models import RelationalMemory
# is it faster?
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 RNN/LSTM Language Model')
# hyperparams for text data
parser.add_argument('--data', type=str, default='./data/wikitext-2',
help='location of the data corpus')
parser.add_argument('--emsize', type=int, default=192,
help='size of word embeddings')
# NEW!: hyperparams for relational memory core (RMC)
parser.add_argument('--memslots', type=int, default=1,
help='number of memory slots of the relational memory core')
parser.add_argument('--headsize', type=int, default=192,
help='size of the each head for multihead attention')
parser.add_argument('--numheads', type=int, default=4,
help='total number of heads for multihead attention')
parser.add_argument('--numblocks', type=int, default=1,
help='Number of times to compute attention per time step')
parser.add_argument('--forgetbias', type=float, default=1.,
help='Bias to use for the forget gate, assuming we are using some form of gating')
parser.add_argument('--inputbias', type=float, default=0.,
help='Bias to use for the input gate, assuming we are using some form of gating')
parser.add_argument('--gatestyle', type=str, default='unit',
help='Whether to use per-element gating (\'unit\'), per-memory slot gating (\'memory\'), or no gating at all (None).')
parser.add_argument('--attmlplayers', type=int, default=3,
help='Number of layers to use in the post-attention MLP')
parser.add_argument('--keysize', type=int, default=64,
help='Size of vector to use for key & query vectors in the attention'
'computation. Defaults to None, in which case we use `head_size`')
# parameters for adaptive softmax
parser.add_argument('--adaptivesoftmax', action='store_true',
help='use adaptive softmax during hidden state to output logits.'
'it uses less memory by approximating softmax of large vocabulary.')
parser.add_argument('--cutoffs', nargs="*", type=int, default=[10000, 50000, 100000],
help='cutoff values for adaptive softmax. list of integers.'
'optimal values are based on word frequencey and vocabulary size of the dataset.')
# other hyperparams for general RNN mechanics
parser.add_argument('--lr', type=float, default=0.001,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.1,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=100,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
help='batch size')
parser.add_argument('--bptt', type=int, default=100,
help='sequence length')
# dropout of RMC is hard-bound to 0.5 at the embedding layer
# parser.add_argument('--dropout', type=float, default=0.2,
# help='dropout applied to layers (0 = no dropout)')
# embed weight tying is set always to true
# parser.add_argument('--tied', action='store_true',
# help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='report interval')
parser.add_argument('--onnx-export', type=str, default='',
help='path to export the final model in onnx format')
parser.add_argument('--resume', type=int, default=None,
help='if specified with the 1-indexed global epoch, loads the checkpoint and resumes training')
# experiment name for this run
parser.add_argument('--name', type=str, default=None,
help='name for this experiment. generates folder with the name if specified.')
args = parser.parse_args()
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = torch.device("cuda" if args.cuda else "cpu")
###############################################################################
# Load data
###############################################################################
corpus_name = os.path.basename(os.path.normpath(args.data))
corpus_filename = './data/corpus-' + str(corpus_name) + str('.pkl')
if os.path.isfile(corpus_filename):
print("loading pre-built " + str(corpus_name) + " corpus file...")
loadfile = open(corpus_filename, 'rb')
corpus = pickle.load(loadfile)
loadfile.close()
else:
print("building " + str(corpus_name) + " corpus...")
corpus = data.Corpus(args.data)
# save the corpus for later
savefile = open(corpus_filename, 'wb')
pickle.dump(corpus, savefile)
savefile.close()
print("corpus saved to pickle")
# Starting from sequential data, batchify arranges the dataset into columns.
# For instance, with the alphabet as the sequence and batch size 4, we'd get
# ┌ a g m s ┐
# │ b h n t │
# │ c i o u │
# │ d j p v │
# │ e k q w │
# └ f l r x ┘.
# These columns are treated as independent by the model, which means that the
# dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient
# batch processing.
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
return data.to(device)
eval_batch_size = 32
train_data = batchify(corpus.train, args.batch_size)
val_data = batchify(corpus.valid, eval_batch_size)
test_data = batchify(corpus.test, eval_batch_size)
# create folder for current experiments
# name: args.name + current time
# includes: entire scripts for faithful reproduction, train & test logs
folder_name = str(datetime.datetime.now())[:-7]
if args.name is not None:
folder_name = str(args.name) + ' ' + folder_name
os.mkdir(folder_name)
for file in os.listdir(os.getcwd()):
if file.endswith(".py"):
shutil.copy2(file, os.path.join(os.getcwd(), folder_name))
logger_train = open(os.path.join(os.getcwd(), folder_name, 'train_log.txt'), 'w+')
logger_test = open(os.path.join(os.getcwd(), folder_name, 'test_log.txt'), 'w+')
# save args to logger
logger_train.write(str(args) + '\n')
# define saved model file location
savepath = os.path.join(os.getcwd(), folder_name)
###############################################################################
# Build the model
###############################################################################
ntokens = len(corpus.dictionary)
print("vocabulary size (ntokens): " + str(ntokens))
if args.adaptivesoftmax:
print("Adaptive Softmax is on: the performance depends on cutoff values. check if the cutoff is properly set")
print("Cutoffs: " + str(args.cutoffs))
if args.cutoffs[-1] > ntokens:
raise ValueError("the last element of cutoff list must be lower than vocab size of the dataset")
model = RelationalMemory(mem_slots=args.memslots, head_size=args.headsize, input_size=args.emsize, num_tokens=ntokens,
num_heads=args.numheads, num_blocks=args.numblocks, forget_bias=args.forgetbias,
input_bias=args.inputbias, attention_mlp_layers=args.attmlplayers, key_size=args.keysize,
use_adaptive_softmax=args.adaptivesoftmax, cutoffs=args.cutoffs).to(device)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
model = nn.DataParallel(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
###############################################################################
# Load the model checkpoint if specified and restore the global & best epoch
###############################################################################
if args.resume is not None:
print("--resume detected. loading checkpoint...")
global_epoch = args.resume if args.resume is not None else 0
best_epoch = args.resume if args.resume is not None else 0
if args.resume is not None:
loadpath = os.path.join(os.getcwd(), "model_{}.pt".format(args.resume))
if not os.path.isfile(loadpath):
raise FileNotFoundError(
"model_{}.pt not found. place the model checkpoint file to the current working directory.".format(
args.resume))
checkpoint = torch.load(loadpath)
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
global_epoch = checkpoint["global_epoch"]
best_epoch = checkpoint["best_epoch"]
print("model built, total trainable params: " + str(total_params))
###############################################################################
# Training code
###############################################################################
# get_batch subdivides the source data into chunks of length args.bptt.
# If source is equal to the example output of the batchify function, with
# a bptt-limit of 2, we'd get the following two Variables for i = 0:
# ┌ a g m s ┐ ┌ b h n t ┐
# └ b h n t ┘ └ c i o u ┘
# Note that despite the name of the function, the subdivison of data is not
# done along the batch dimension (i.e. dimension 1), since that was handled
# by the batchify function. The chunks are along dimension 0, corresponding
# to the seq_len dimension in the LSTM.
def get_batch(source, i):
seq_len = min(args.bptt, len(source) - 1 - i)
data = source[i:i + seq_len]
target = source[i + 1:i + 1 + seq_len].view(-1)
return data, target
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
memory = model.module.initial_state(eval_batch_size, trainable=False).to(device)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
data = torch.t(data)
loss, memory = model(data, memory, targets)
loss = torch.mean(loss)
# data has shape [T * B, N]
total_loss += args.bptt * loss.item()
return total_loss / len(data_source)
def train():
# Turn on training mode which enables dropout.
model.train()
total_loss = 0.
forward_elapsed_time = 0.
start_time = time.time()
ntokens = len(corpus.dictionary)
# in RMC, "hidden state" is called "memory" instead. so use the name "memory"
memory = model.module.initial_state(args.batch_size, trainable=True).to(device)
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
data, targets = get_batch(train_data, i)
# transpose the data to [batch, seq]
data = torch.t(data)
# synchronize cuda for a proper speed benchmark
torch.cuda.synchronize()
forward_start_time = time.time()
model.zero_grad()
# the forward pass of RMC just returns loss and does not return logits (DataParallel code optimization)
loss, memory = model(data, memory, targets)
loss = torch.mean(loss)
total_loss += loss.item()
# synchronize cuda for a proper speed benchmark
torch.cuda.synchronize()
forward_elapsed = time.time() - forward_start_time
forward_elapsed_time += forward_elapsed
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
if batch % args.log_interval == 0 and batch > 0:
cur_loss = total_loss / args.log_interval
elapsed = time.time() - start_time
printlog = '| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | forward ms/batch {:5.2f} | loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'],
elapsed * 1000 / args.log_interval, forward_elapsed_time * 1000 / args.log_interval,
cur_loss, math.exp(cur_loss))
# print and save the log
print(printlog)
logger_train.write(printlog + '\n')
logger_train.flush()
total_loss = 0.
# reset timer
start_time = time.time()
forward_start_time = time.time()
forward_elapsed_time = 0.
def export_onnx(path, batch_size, seq_len):
print('The model is also exported in ONNX format at {}'.
format(os.path.realpath(args.onnx_export)))
model.eval()
dummy_input = torch.LongTensor(seq_len * batch_size).zero_().view(-1, batch_size).to(device)
hidden = model.init_hidden(batch_size)
torch.onnx.export(model, (dummy_input, hidden), path)
# Loop over epochs.
best_val_loss = None
# At any point you can hit Ctrl + C to break out of training early.
try:
print("training started...")
if global_epoch > args.epochs:
raise ValueError("global_epoch is higher than args.epochs when resuming training.")
for epoch in range(global_epoch + 1, args.epochs + 1):
global_epoch += 1
epoch_start_time = time.time()
train()
val_loss = evaluate(val_data)
print('-' * 89)
testlog = '| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | valid ppl {:8.2f}'.format(epoch, (
time.time() - epoch_start_time), val_loss, math.exp(val_loss))
print(testlog)
logger_test.write(testlog + '\n')
logger_test.flush()
print('-' * 89)
scheduler.step(val_loss)
# Save the model if the validation loss is the best we've seen so far.
# model_{} contains state_dict and other states, model_dump_{} contains all the dependencies for generate_rmc.py
if not best_val_loss or val_loss < best_val_loss:
try:
os.remove(os.path.join(savepath, "model_{}.pt".format(best_epoch)))
os.remove(os.path.join(savepath, "model_dump_{}.pt").format(best_epoch))
except FileNotFoundError:
pass
best_epoch = global_epoch
torch.save(model, os.path.join(savepath, "model_dump_{}.pt".format(global_epoch)))
with open(os.path.join(savepath, "model_{}.pt".format(global_epoch)), 'wb') as f:
optimizer_state = optimizer.state_dict()
scheduler_state = scheduler.state_dict()
torch.save({"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"scheduler": scheduler_state,
"global_epoch": global_epoch,
"best_epoch": best_epoch}, f)
best_val_loss = val_loss
else:
pass
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early: loading checkpoint from the best epoch {}...'.format(best_epoch))
# Load the best saved model.
with open(os.path.join(savepath, "model_{}.pt".format(best_epoch)), 'rb') as f:
checkpoint = torch.load(f)
model.load_state_dict(checkpoint["state_dict"])
# Run on test data.
test_loss = evaluate(test_data)
print('=' * 89)
testlog = '| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss))
print(testlog)
logger_test.write(testlog + '\n')
logger_test.flush()
print('=' * 89)
if len(args.onnx_export) > 0:
# Export the model in ONNX format.
export_onnx(args.onnx_export, batch_size=1, seq_len=args.bptt)