A jupyter notebook created to solve the AIR Centre's Kaggle competition about Automatic Identification of Internal Waves:
internal_waves_yolo.ipynb - Main notebook that prepares the internal waves dataset, trains a YOLOv8 model and performs classification.
Download API:
- Go to Your Profile in Kaggle;
- Go to Settings;
- In Account, scroll to API and Create New Token;
- Click Continue;
- Save kaggle.json inside a /home/user/.config/kaggle (might change according to OS);
- Click here for more info.
Create an Anaconda environment:
conda create -n internal_waves_yolo-env python=3.10
conda activate internal_waves_yolo-env
pip install ultralytics==8.2.82
pip install tensorflow==2.16.2
pip install -U scikit-learn==1.5.1
pip install kaggle==1.6.17
or use Colab:
A model based on YOLOv8x trained for 100 epochs is provided on request (113MB).
- YOLOv8: Jocher, G., Chaurasia, A., & Qiu, J. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics
- AIR Centre Kaggle Competition: Joao Pinelo, Adriana Santos-Ferreira, César Capinha, José da Silva. (2024). Automatic Identification of Internal Waves. Kaggle. https://kaggle.com/competitions/internal-waves