Skip to content

Latest commit

 

History

History
51 lines (33 loc) · 1.69 KB

README.md

File metadata and controls

51 lines (33 loc) · 1.69 KB

internal_waves_yolo

About

A jupyter notebook created to solve the AIR Centre's Kaggle competition about Automatic Identification of Internal Waves:

internal_waves_yolo.ipynb - Main notebook that prepares the internal waves dataset, trains a YOLOv8 model and performs classification.

Setup and Run

Download API:

  1. Go to Your Profile in Kaggle;
  2. Go to Settings;
  3. In Account, scroll to API and Create New Token;
  4. Click Continue;
  5. Save kaggle.json inside a /home/user/.config/kaggle (might change according to OS);
  6. Click here for more info.

Create an Anaconda environment:

conda create -n internal_waves_yolo-env python=3.10
conda activate internal_waves_yolo-env
pip install ultralytics==8.2.82
pip install tensorflow==2.16.2
pip install -U scikit-learn==1.5.1
pip install kaggle==1.6.17

or use Colab:

internal_waves_yolo.ipynb
Open In Colab

Example

A model based on YOLOv8x trained for 100 epochs is provided on request (113MB).

References