-
Notifications
You must be signed in to change notification settings - Fork 5
/
main_bench_mark.py
133 lines (103 loc) · 4.8 KB
/
main_bench_mark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import time
import random
import argparse
import numpy as np
import torch
import torch.distributed as dist
import torch.backends.cudnn as cudnn
# os.environ['TORCH_HOME']='~/.cache/torch/'
os.environ['TORCH_HOME']='/home/data/equation/submit_template_for_AI_challenger_sea6/ckpt/'
def reduce_tensor(tensor, n):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
return rt
from utils import MyCustomDataset, get_architecture, Input_diversity
parser = argparse.ArgumentParser(description='Benchmarking ImageNet models under transfer-based unrestricted attacks')
parser.add_argument('--batch_size', type=int, default=10, metavar='N', help='batch size for attack (default: 30)')
parser.add_argument('--input_path', type=str, default="data/images", help='The path of adversarial examples to evaluate on the benchmark')
parser.add_argument('--mode', type=str, default="nearest")
parser.add_argument('--prob', default=0.7, type=float,help='input diversity prob')
parser.add_argument('--scale', default=0.1, type=float,help='input diversity scale')
parser.add_argument('--distributed', action='store_true',help='Use multi-processing distributed training to launch')
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
NUM_CLASSES = 1000
MODEL_NAME_DICT = {
0: "ens_adv_inception_resnet_v2",
1: "Fast_AT",
2: "Free_AT",
3: "AdvResnet152",
4: "Resnext101-DenoiseAll",
5: "Resnet152-DenoiseAll",
6: "RVT-Tiny",
7: "DeepAugment_AugMix",
8: "tf_efficientnet_l2_ns_475",
9: "swin_large_patch4_window12_384",
}
def init_seeds(seed=0, cuda_deterministic=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
def main(args):
init_seeds(cuda_deterministic=True)
# Target model
target_id_list = list(range(0, 10))
if not args.distributed or args.local_rank == 0:
print("Target id list: {}".format(target_id_list))
Target_model_list = []
for idx in target_id_list:
temp_model = get_architecture(model_name=MODEL_NAME_DICT[idx]).cuda().eval()
temp_model = Input_diversity(temp_model, args, num_classes=NUM_CLASSES, prob=args.prob, mode=args.mode, diversity_scale=args.scale)
Target_model_list.append(temp_model)
loader = MyCustomDataset(img_path=args.input_path)
if args.distributed:
sampler = torch.utils.data.distributed.DistributedSampler(loader)
else:
sampler = torch.utils.data.SequentialSampler(loader)
attack_loader = torch.utils.data.DataLoader(dataset=loader,
batch_size=args.batch_size,
shuffle=False,
sampler=sampler, num_workers=8, pin_memory=True)
target_err_total = torch.zeros((10, )).cuda()
count = 0
time_start = time.time()
if not args.distributed or args.local_rank == 0:
print("Starting time counting: {}\n".format(time_start))
for (img, label, img_name) in attack_loader:
img, label = img.cuda(), label.cuda()
batch_szie = img.shape[0]
count += batch_szie
target_err_now = []
with torch.no_grad():
for idx in range(0, 10):
out_target = Target_model_list[idx](img, diversity=False).view(batch_szie, -1)
mask = (out_target.data.max(1)[1] != label.data)
err_target = mask.float().sum()
target_err_now.append(err_target.item())
target_err_total[idx] += err_target
print("img_id: {}, Attacked: {}, Batch size: {}, Target error: {}".format(img_name, count, batch_szie, target_err_now))
if args.distributed:
target_err_total = reduce_tensor(target_err_total.data, args.world_size)
torch.cuda.synchronize()
time_end = time.time()
if not args.distributed or args.local_rank == 0:
print('time cost', time_end-time_start, 's')
print("Target Success total: ", target_err_total)
print("Benchmarking Accuracy: ", [(1000 - item.item()) / 1000 for item in target_err_total])
if __name__ == "__main__":
opt = parser.parse_args()
if opt.distributed:
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
opt.world_size = dist.get_world_size()
opt.batch_size = int(opt.batch_size / opt.world_size)
if not opt.distributed or opt.local_rank == 0:
print(opt)
main(opt)