-
Notifications
You must be signed in to change notification settings - Fork 2
/
MyGabor.cpp
325 lines (233 loc) · 8.77 KB
/
MyGabor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
class gabor{
void gabor(){}
/*!
\fn CvGabor::Init(int iMu, int iNu, double dSigma, double dF)
Initilize the.gabor
Parameters:
iMu The orientations which is iMu*PI.8
iNu The scale can be from -5 to infinit
dSigma The Sigma value of gabor, Normally set to 2*PI
dF The spatial frequence , normally is sqrt(2)
Returns:
Initilize the.gabor with the orientation iMu, the scale iNu, the sigma dSigma, the frequency dF, it will call the function creat_kernel(); So a gabor is created.
*/
void CvGabor::Init(int iMu, int iNu, double dSigma, double dF)
{
//Initilise the parameters
bInitialised = false;
bKernel = false;
Sigma = dSigma;
F = dF;
Kmax = PI/2;
// Absolute value of K
K = Kmax / pow(F, (double)iNu);
Phi = PI*iMu/8;
bInitialised = true;
Width = mask_width();
Real = cvCreateMat( Width, Width, CV_32FC1);
Imag = cvCreateMat( Width, Width, CV_32FC1);
creat_kernel();
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*!
\fn CvGabor::Init(double dPhi, int iNu, double dSigma, double dF)
Initilize the.gabor
Parameters:
dPhi The orientations
iNu The scale can be from -5 to infinit
dSigma The Sigma value of gabor, Normally set to 2*PI
dF The spatial frequence , normally is sqrt(2)
Returns:
None
Initilize the.gabor with the orientation dPhi, the scale iNu, the sigma dSigma, the frequency dF, it will call the function creat_kernel(); So a gabor is created.filename
The name of the image file
file_format The format of the file, e.g. GAN_PNG_FORMAT
image The image structure to be written to the file
octrlstr Format-dependent control structure
*/
void CvGabor::Init(double dPhi, int iNu, double dSigma, double dF)
{
bInitialised = false;
bKernel = false;
Sigma = dSigma;
F = dF;
Kmax = PI/2;
// Absolute value of K
K = Kmax / pow(F, (double)iNu);
Phi = dPhi;
bInitialised = true;
Width = mask_width();
Real = cvCreateMat( Width, Width, CV_32FC1);
Imag = cvCreateMat( Width, Width, CV_32FC1);
creat_kernel();
}
/*!
\fn CvGabor::mask_width()
Give out the width of the mask
Parameters:
None
Returns:
The long type show the width.
Return the width of mask (should be NxN) by the value of Sigma and iNu.
*/
long CvGabor::mask_width()
{
long lWidth;
if (IsInit() == false) {
perror ("Error: The Object has not been initilised in mask_width()!\n");
return 0;
}
else {
//determine the width of Mask
double dModSigma = Sigma/K;
double dWidth = round(dModSigma*6 + 1);
//test whether dWidth is an odd.
if (fmod(dWidth, 2.0)==0.0)
dWidth++;
lWidth = (long)dWidth;
return lWidth;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*!
\fn CvGabor::creat_kernel()
Create gabor kernel
Parameters:
None
Returns:
None
Create 2 gabor kernels - REAL and IMAG, with an orientation and a scale
*/
void CvGabor::creat_kernel()
{
if (IsInit() == false) {perror("Error: The Object has not been initilised in creat_kernel()!\n");}
else {
CvMat *mReal, *mImag;
mReal = cvCreateMat( Width, Width, CV_32FC1);
mImag = cvCreateMat( Width, Width, CV_32FC1);
/**************************** Gabor Function ****************************/
int x, y;
double dReal;
double dImag;
double dTemp1, dTemp2, dTemp3;
for (int i = 0; i < Width; i++)
{
for (int j = 0; j < Width; j++)
{
x = i-(Width-1)/2;
y = j-(Width-1)/2;
dTemp1 = (pow(K,2)/pow(Sigma,2))*exp(-(pow((double)x,2)+pow((double)y,2))*pow(K,2)/(2*pow(Sigma,2)));
dTemp2 = cos( K*cos(Phi)*x + K*sin(Phi)*y )- exp(-(pow(Sigma,2)/2)); //Re (s(x, y)) = cos (2PI(u0 x + v0 y) + P)
dTemp3 = sin( K*cos(Phi)*x + K*sin(Phi)*y ); //Im (s(x, y)) = sin (2PI(u0 x + v0 y) + P)
dReal = dTemp1*dTemp2;
dImag = dTemp1*dTemp3;
//gan_mat_set_el(pmReal, i, j, dReal);
//cvmSet( (CvMat*)mReal, i, j, dReal );
cvSetReal2D((CvMat*)mReal, i, j, dReal );
//gan_mat_set_el(pmImag, i, j, dImag);
//cvmSet( (CvMat*)mImag, i, j, dImag );
cvSetReal2D((CvMat*)mImag, i, j, dImag );
}
}
/**************************** Gabor Function ****************************/
bKernel = true;
cvCopy(mReal, Real, NULL);
cvCopy(mImag, Imag, NULL);
//printf("A %d x %d Gabor kernel with %f PI in arc is created.\n", Width, Width, Phi/PI);
cvReleaseMat( &mReal );
cvReleaseMat( &mImag );
}
}
/*!
\fn CvGabor::conv_img_a(IplImage *src, IplImage *dst, int Type)
*/
///////////////////////////////////////////////
/////////////////////////////////////////////////
/////////////////////////////////////////////////
/////////// ////////IMPORTANT///////////////////
////////////////////////////////////////////////
///////////////////////////////////////////////
void CvGabor::conv_img_a(IplImage *src, IplImage *dst, int Type)
{
double ve, re,im;
int width = src->width;
int height = src->height;
CvMat *mat = cvCreateMat(src->width, src->height, CV_32FC1);
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
ve = cvGetReal2D((IplImage*)src, j, i);
cvSetReal2D( (CvMat*)mat, i, j, ve );
}
}
CvMat *rmat = cvCreateMat(width, height, CV_32FC1);
CvMat *imat = cvCreateMat(width, height, CV_32FC1);
CvMat *kernel = cvCreateMat( Width, Width, CV_32FC1 );
switch (Type)
{
case CV_GABOR_REAL:
cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL );
cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2));
break;
case CV_GABOR_IMAG:
cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL );
cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2));
break;
case CV_GABOR_MAG:
/* Real Response */
cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL );
cvFilter2D( (CvMat*)mat, (CvMat*)rmat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2));
/* Imag Response */
cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL );
cvFilter2D( (CvMat*)mat, (CvMat*)imat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2));
/* Magnitude response is the square root of the sum of the square of real response and imaginary response */
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
re = cvGetReal2D((CvMat*)rmat, i, j);
im = cvGetReal2D((CvMat*)imat, i, j);
ve = sqrt(re*re + im*im);
cvSetReal2D( (CvMat*)mat, i, j, ve );
}
}
break;
case CV_GABOR_PHASE:
break;
}
if (dst->depth == IPL_DEPTH_8U)
{
cvNormalize((CvMat*)mat, (CvMat*)mat, 0, 255, CV_MINMAX, NULL);
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
ve = cvGetReal2D((CvMat*)mat, i, j);
ve = cvRound(ve);
cvSetReal2D( (IplImage*)dst, j, i, ve );
}
}
}
if (dst->depth == IPL_DEPTH_32F)
{
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
ve = cvGetReal2D((CvMat*)mat, i, j);
cvSetReal2D( (IplImage*)dst, j, i, ve );
}
}
}
cvReleaseMat(&kernel);
cvReleaseMat(&imat);
cvReleaseMat(&rmat);
cvReleaseMat(&mat);
}
};