-
Notifications
You must be signed in to change notification settings - Fork 1
/
assignment3.py
71 lines (50 loc) · 1.77 KB
/
assignment3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
from sim.sim2d import sim_run
# Simulator options.
options = {}
options['FIG_SIZE'] = [8,8]
options['OBSTACLES'] = True
class ModelPredictiveControl:
def __init__(self):
self.horizon = 15
self.dt = 0.2
self.L = 2.5 # Car base [m]
# Reference or set point the controller will achieve.
self.reference1 = [10, 0, 0]
self.reference2 = None
self.x_obs = 7
self.y_obs = 0.1
def plant_model(self,prev_state, dt, pedal, steering):
x_t = prev_state[0]
y_t = prev_state[1]
psi_t = prev_state[2]
v_t = prev_state[3]
x_t += np.cos(psi_t) * v_t * dt
y_t += np.sin(psi_t) * v_t * dt
a_t = pedal
v_t += a_t * dt - v_t/25
psi_t += v_t * dt * np.tan(steering)/self.L
return [x_t, y_t, psi_t, v_t]
def cost_function(self,u, *args):
state = args[0]
ref = args[1]
cost = 0.0
for i in range(self.horizon):
speed = state[3]
heading = state[2]
state = self.plant_model(state, self.dt, u[i*2], u[i*2 + 1])
distance_to_goal = np.sqrt((ref[0] - state[0])**2 + (ref[1] - state[1])**2)
distance_to_obstacle = np.sqrt((self.x_obs - state[0])**2 + (self.y_obs - state[1])**2)
# Position cost
cost += distance_to_goal
# Obstacle cost
if distance_to_obstacle < 1.5:
cost += 3.5/distance_to_obstacle
# Heading cost
cost += 10 * (heading - state[2])**2
cost += 2 * (ref[2] - state[2])**2
# Acceleration cost
if abs(u[2*i]) > 0.2:
cost += (speed - state[3])**2
return cost
sim_run(options, ModelPredictiveControl)