forked from dccharacter/AHRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sensors.c
452 lines (384 loc) · 14.6 KB
/
sensors.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#include "sensors.h"
#include <math.h>
#define USE_MAG
#define USE_MADGWICK_AHRS
//#define USE_MAHONY_AHRS
#ifdef USE_MAHONY_AHRS
#include "MahonyAHRS.h"
#else
#include "MadgwickAHRS.h"
#endif
#define L3G_Sensitivity_250dps (float) 114.285f /*!< gyroscope sensitivity with 250 dps full scale [LSB/dps] */
#define L3G_Sensitivity_500dps (float) 57.1429f /*!< gyroscope sensitivity with 500 dps full scale [LSB/dps] */
#define L3G_Sensitivity_2000dps (float) 14.285f /*!< gyroscope sensitivity with 2000 dps full scale [LSB/dps] */
#define LSM_Acc_Sensitivity_2g (float) 1.0f /*!< accelerometer sensitivity with 2 g full scale [LSB/mg] */
#define LSM_Acc_Sensitivity_4g (float) 0.5f /*!< accelerometer sensitivity with 4 g full scale [LSB/mg] */
#define LSM_Acc_Sensitivity_8g (float) 0.25f /*!< accelerometer sensitivity with 8 g full scale [LSB/mg] */
#define LSM_Acc_Sensitivity_16g (float) 0.0834f /*!< accelerometer sensitivity with 12 g full scale [LSB/mg] */
#define QW q[0]
#define QX q[1]
#define QY q[2]
#define QZ q[3]
void AHRS_GetValues(float * val);
void readAllSensors(uint8_t *GyroTempBuf, uint8_t *AccTempBuf, uint8_t *MagTempBuf);
void readRawGyro(uint8_t *GyroTempBuf);
void processGyroData(float *GyroBuf, uint8_t *GyroTempBuf);
void processAccelData(float *AccBuf, uint8_t *AccTempBuf);
void processMagnetoData(float *MagBuf, uint8_t *MagTempBuf);
uint16_t Magn_Sensitivity_XY = 0, Magn_Sensitivity_Z = 0;
float GyroSensitivity = 0;
uint8_t Gyro_LBEFlag = 0;
uint8_t GyroDRDFlag = 0;
uint8_t Accel_LBEorFIFOFlag = 0;
float LSM_Acc_Sensitivity = LSM_Acc_Sensitivity_2g;
uint8_t Accel_cDivider;
void myFusion(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
//float fNormAcc,fSinRoll,fCosRoll,fSinPitch,fCosPitch = 0.0f, RollAng = 0.0f, PitchAng = 0.0f;
//float fTiltedX,fTiltedY = 0.0f;
float MagBuffer[3] = {0.0f}, AccBuffer[3] = {0.0f}, GyroBuffer[3] = {0.0f};
uint8_t MagTempBuffer[6] = {0.0f}, AccTempBuffer[6] = {0.0f}, GyroTempBuffer[6] = {0.0f};
float QuaternionsBuffer[4] = {1.0f, 0.0f, 0.0f, 0.0f};
float euler[3] = {0.0f};
uint8_t eulerArr[6] = {0};
float GyroCorrectionCoeffs[3] = {0.0f};
void myFusion(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
float recipNorm;
q0 = 0;
q1 = gx;
q2 = gy;
q3 = gz;
// Normalise quaternion
recipNorm = 1/sqrt((q0 * q0) + (q1 * q1) + (q2 * q2) + (q3 * q3));
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
void updateQuaternions(float * quatBuf) {
float val[9] = {0.0f};
AHRS_GetValues(val);
#ifdef USE_MADGWICK_AHRS
#ifdef USE_MAG
MadgwickAHRSupdate(val[0]*PI/180.0, val[1]*PI/180.0, val[2]*PI/180.0, val[3], val[4], val[5], val[6], val[7], val[8]);
#else
MadgwickAHRSupdate(val[0]*PI/180.0, val[1]*PI/180.0, val[2]*PI/180.0, val[3], val[4], val[5], 0.0f, 0.0f, 0.0f);
//MadgwickAHRSupdate(0.0f, 0.0f, 0.0f, 100, 100, 1100, 0.0f, 0.0f, 0.0f);
#endif //#ifdef USE_MAG
#elif defined USE_MAHONY_AHRS
#ifdef USE_MAG
MahonyAHRSupdate(val[0]*PI/180.0, val[1]*PI/180.0, val[2]*PI/180.0, val[3], val[4], val[5], val[6], val[7], val[8]);
#else
MahonyAHRSupdate(val[0]*PI/180.0, val[1]*PI/180.0, val[2]*PI/180.0, val[3], val[4], val[5], 0.0f, 0.0f, 0.0f);
#endif //#ifdef USE_MAG
#else
myFusion(val[0]*PI/180.0, val[1]*PI/180.0, val[2]*PI/180.0, val[3], val[4], val[5], val[6], val[7], val[8]);
#endif
quatBuf[0] = q0;
quatBuf[1] = q1;
quatBuf[2] = q2;
quatBuf[3] = q3;
}
void readAllSensors(uint8_t *GyroTempBuf, uint8_t *AccTempBuf, uint8_t *MagTempBuf) {
L3GD20_Read(GyroTempBuf, L3GD20_OUT_X_L_ADDR, 6);
LSM303DLHC_Read(ACC_I2C_ADDRESS, LSM303DLHC_OUT_X_L_A, AccTempBuf, 6);
LSM303DLHC_Read(MAG_I2C_ADDRESS, LSM303DLHC_OUT_X_H_M, MagTempBuf, 6);
}
void readRawGyro(uint8_t *GyroTempBuf) {
L3GD20_Read(GyroTempBuf, L3GD20_OUT_X_L_ADDR, 6);
}
void AHRS_GetValues(float * val) {
STM_EVAL_LEDOn(LED8);
#if defined OUT_GYRO || defined OUT_ACCEL || defined OUT_MAG
uint8_t USART_TempBuf[100];
uint8_t byteCounter = 0;
#endif //#if defined OUT_GYRO || defined OUT_ACCEL || defined OUT_MAG
processGyroData(GyroBuffer, GyroTempBuffer);
processAccelData(AccBuffer, AccTempBuffer);
processMagnetoData(MagBuffer, MagTempBuffer);
val[0] = - (GyroBuffer[1] - GyroCorrectionCoeffs[1]);
val[1] = GyroBuffer[0] - GyroCorrectionCoeffs[0];
val[2] = GyroBuffer[2] - GyroCorrectionCoeffs[2];
#ifdef OUT_GYRO
byteCounter += sprintf((char*)(USART_TempBuf + byteCounter), "%f,%f,%f,", val[0], val[1], val[2]);
//USART_printfWithDMA("%f,%f,%f,", val[0], val[1], val[2]);
#endif //#ifdef OUT_GYRO
val[3] = AccBuffer[0];
val[4] = AccBuffer[1];
val[5] = AccBuffer[2];
#ifdef OUT_ACCEL
byteCounter += sprintf((char*)(USART_TempBuf + byteCounter), "%f,%f,%f,", val[3], val[4], val[5]);
//USART_printfWithDMA("%f,%f,%f,", val[3], val[4], val[5]);
#endif //#ifdef OUT_ACCEL
val[6] = MagBuffer[0];
val[7] = MagBuffer[1];
val[8] = MagBuffer[2];
#ifdef OUT_MAG
byteCounter += sprintf((char*)(USART_TempBuf + byteCounter), "%f,%f,%f,", val[6], val[7], val[8]);
//USART_printfWithDMA("%f,%f,%f,", val[6], val[7], val[8]);
#endif //#ifdef OUT_MAG
#if defined OUT_GYRO || defined OUT_ACCEL || defined OUT_MAG
sprintf((char*)(USART_TempBuf + byteCounter), "\r\n");
USART_printfWithDMA("%s", USART_TempBuf);
//USART_printfWithDMA("\r\n");
#endif
STM_EVAL_LEDOff(LED8);
}
void UpdateGyroBias() {
Delay_1ms(1000);
int i = 0;
for (i = 0; i < 100; i++) {
readRawGyro(GyroTempBuffer);
processGyroData(GyroBuffer, GyroTempBuffer);
GyroCorrectionCoeffs[0] += GyroBuffer[0];
GyroCorrectionCoeffs[1] += GyroBuffer[1];
GyroCorrectionCoeffs[2] += GyroBuffer[2];
Delay_1ms(10);
}
GyroCorrectionCoeffs[0] /= 100.0f;
GyroCorrectionCoeffs[1] /= 100.0f;
GyroCorrectionCoeffs[2] /= 100.0f;
}
/**
* @brief Configure the Mems to gyroscope application.
* @param None
* @retval None
*/
void Demo_GyroConfig(void)
{
L3GD20_InitTypeDef L3GD20_InitStructure;
L3GD20_FilterConfigTypeDef L3GD20_FilterStructure;
/* Configure Mems L3GD20 */
L3GD20_InitStructure.Power_Mode = L3GD20_MODE_ACTIVE;
L3GD20_InitStructure.Output_DataRate = L3GD20_OUTPUT_DATARATE_3;
L3GD20_InitStructure.Axes_Enable = L3GD20_AXES_ENABLE;
L3GD20_InitStructure.Band_Width = L3GD20_BANDWIDTH_4;
L3GD20_InitStructure.BlockData_Update = L3GD20_BlockDataUpdate_Single;
L3GD20_InitStructure.Endianness = L3GD20_BLE_LSB;
L3GD20_InitStructure.Full_Scale = L3GD20_FULLSCALE_250;
L3GD20_Init(&L3GD20_InitStructure);
L3GD20_FilterStructure.HighPassFilter_Mode_Selection =L3GD20_HPM_REF_SIGNAL;
L3GD20_FilterStructure.HighPassFilter_CutOff_Frequency = L3GD20_HPFCF_5;
L3GD20_FilterConfig(&L3GD20_FilterStructure) ;
L3GD20_FilterCmd(L3GD20_HIGHPASSFILTER_DISABLE);
L3GD20_INT2InterruptCmd(L3GD20_INT2INTERRUPT_ENABLE);
uint8_t tmpreg = 0;
L3GD20_Read(&tmpreg, L3GD20_CTRL_REG4_ADDR, 1);
/* Switch the sensitivity value set in the CRTL4 */
switch(tmpreg & 0x30)
{
case 0x00:
GyroSensitivity=L3G_Sensitivity_250dps;
break;
case 0x10:
GyroSensitivity=L3G_Sensitivity_500dps;
break;
case 0x20:
GyroSensitivity=L3G_Sensitivity_2000dps;
break;
}
Gyro_LBEFlag = tmpreg & 0x40;
}
/**
* @brief Configure the Mems to compass application.
* @param None
* @retval None
*/
void Demo_CompassConfig(void)
{
LSM303DLHCMag_InitTypeDef LSM303DLHC_InitStructure;
LSM303DLHCAcc_InitTypeDef LSM303DLHCAcc_InitStructure;
LSM303DLHCAcc_FilterConfigTypeDef LSM303DLHCFilter_InitStructure;
/* Configure MEMS magnetometer main parameters: temp, working mode, full Scale and Data rate */
LSM303DLHC_InitStructure.Temperature_Sensor = LSM303DLHC_TEMPSENSOR_DISABLE;
LSM303DLHC_InitStructure.MagOutput_DataRate =LSM303DLHC_ODR_220_HZ ;
LSM303DLHC_InitStructure.MagFull_Scale = LSM303DLHC_FS_1_3_GA;
LSM303DLHC_InitStructure.Working_Mode = LSM303DLHC_CONTINUOS_CONVERSION; //DO NOT CHANGE - IT DOES ONLY ONE CONVERSIO AND STOPS
LSM303DLHC_MagInit(&LSM303DLHC_InitStructure);
/* Fill the accelerometer structure */
LSM303DLHCAcc_InitStructure.Power_Mode = LSM303DLHC_NORMAL_MODE; // normal or low power mode
LSM303DLHCAcc_InitStructure.AccOutput_DataRate = LSM303DLHC_ODR_1344_HZ;
LSM303DLHCAcc_InitStructure.Axes_Enable= LSM303DLHC_AXES_ENABLE; // all axes are enabled
LSM303DLHCAcc_InitStructure.AccFull_Scale = LSM303DLHC_FULLSCALE_2G; //2G, 4G, 8G, 16G
LSM303DLHCAcc_InitStructure.BlockData_Update = LSM303DLHC_BlockUpdate_Continous; // Single or Continous
LSM303DLHCAcc_InitStructure.Endianness=LSM303DLHC_BLE_LSB;
LSM303DLHCAcc_InitStructure.High_Resolution=LSM303DLHC_HR_ENABLE; // High resolution enable
/* Configure the accelerometer main parameters */
LSM303DLHC_AccInit(&LSM303DLHCAcc_InitStructure);
/* Fill the accelerometer LPF structure */
LSM303DLHCFilter_InitStructure.HighPassFilter_Mode_Selection = LSM303DLHC_HPM_NORMAL_MODE;
LSM303DLHCFilter_InitStructure.HighPassFilter_CutOff_Frequency = LSM303DLHC_HPFCF_64; // 8, 16, 32, 64
LSM303DLHCFilter_InitStructure.HighPassFilter_AOI1 = LSM303DLHC_HPF_AOI1_DISABLE;
LSM303DLHCFilter_InitStructure.HighPassFilter_AOI2 = LSM303DLHC_HPF_AOI2_DISABLE;
/* Configure the accelerometer LPF main parameters */
LSM303DLHC_AccFilterConfig(&LSM303DLHCFilter_InitStructure);
LSM303DLHC_AccFilterCmd(LSM303DLHC_HIGHPASSFILTER_DISABLE);
uint8_t CTRLB = 0;
LSM303DLHC_Read(MAG_I2C_ADDRESS, LSM303DLHC_CRB_REG_M, &CTRLB, 1);
/* Switch the sensitivity set in the CRTLB*/
switch(CTRLB & 0xE0)
{
case LSM303DLHC_FS_1_3_GA:
Magn_Sensitivity_XY = LSM303DLHC_M_SENSITIVITY_XY_1_3Ga;
Magn_Sensitivity_Z = LSM303DLHC_M_SENSITIVITY_Z_1_3Ga;
break;
case LSM303DLHC_FS_1_9_GA:
Magn_Sensitivity_XY = LSM303DLHC_M_SENSITIVITY_XY_1_9Ga;
Magn_Sensitivity_Z = LSM303DLHC_M_SENSITIVITY_Z_1_9Ga;
break;
case LSM303DLHC_FS_2_5_GA:
Magn_Sensitivity_XY = LSM303DLHC_M_SENSITIVITY_XY_2_5Ga;
Magn_Sensitivity_Z = LSM303DLHC_M_SENSITIVITY_Z_2_5Ga;
break;
case LSM303DLHC_FS_4_0_GA:
Magn_Sensitivity_XY = LSM303DLHC_M_SENSITIVITY_XY_4Ga;
Magn_Sensitivity_Z = LSM303DLHC_M_SENSITIVITY_Z_4Ga;
break;
case LSM303DLHC_FS_4_7_GA:
Magn_Sensitivity_XY = LSM303DLHC_M_SENSITIVITY_XY_4_7Ga;
Magn_Sensitivity_Z = LSM303DLHC_M_SENSITIVITY_Z_4_7Ga;
break;
case LSM303DLHC_FS_5_6_GA:
Magn_Sensitivity_XY = LSM303DLHC_M_SENSITIVITY_XY_5_6Ga;
Magn_Sensitivity_Z = LSM303DLHC_M_SENSITIVITY_Z_5_6Ga;
break;
case LSM303DLHC_FS_8_1_GA:
Magn_Sensitivity_XY = LSM303DLHC_M_SENSITIVITY_XY_8_1Ga;
Magn_Sensitivity_Z = LSM303DLHC_M_SENSITIVITY_Z_8_1Ga;
break;
}
uint8_t ctrlx[2];
/* Read the register content */
LSM303DLHC_Read(ACC_I2C_ADDRESS, LSM303DLHC_CTRL_REG4_A, ctrlx, 2);
if(ctrlx[1]&0x40)
{
Accel_cDivider=64;
LSM_Acc_Sensitivity = 0.25;
}
else
{
Accel_cDivider=16;
/* normal mode */
/* switch the sensitivity value set in the CRTL4*/
switch(ctrlx[0] & 0x30)
{
case LSM303DLHC_FULLSCALE_2G:
LSM_Acc_Sensitivity = LSM_Acc_Sensitivity_2g;
break;
case LSM303DLHC_FULLSCALE_4G:
LSM_Acc_Sensitivity = LSM_Acc_Sensitivity_4g;
break;
case LSM303DLHC_FULLSCALE_8G:
LSM_Acc_Sensitivity = LSM_Acc_Sensitivity_8g;
break;
case LSM303DLHC_FULLSCALE_16G:
LSM_Acc_Sensitivity = LSM_Acc_Sensitivity_16g;
break;
}
}
Accel_LBEorFIFOFlag = (ctrlx[0] & 0x40) || (ctrlx[1] & 0x40);
}
void processGyroData(float *GyroBuf, uint8_t *GyroTempBuf) {
int16_t RawData[3] = {0};
int i = 0;
/* check in the control register 4 the data alignment (Big Endian or Little Endian)*/
if(!(Gyro_LBEFlag))
{
for(i=0; i<3; i++)
{
RawData[i]=(int16_t)(((uint16_t)GyroTempBuf[2*i+1] << 8) + GyroTempBuf[2*i]);
}
}
else
{
for(i=0; i<3; i++)
{
RawData[i]=(int16_t)(((uint16_t)GyroTempBuf[2*i] << 8) + GyroTempBuf[2*i+1]);
}
}
/* divide by sensitivity */
for(i=0; i<3; i++)
{
GyroBuf[i]=(float)RawData[i]/GyroSensitivity;
}
}
void processAccelData(float *AccBuf, uint8_t *AccelTempBuf) {
int16_t pnRawData[3];
uint8_t i;
/* check in the control register4 the data alignment*/
if(!Accel_LBEorFIFOFlag) /* Little Endian Mode or FIFO mode */
{
for(i=0; i<3; i++)
{
pnRawData[i]=((int16_t)((uint16_t)AccelTempBuf[2*i+1] << 8) + AccelTempBuf[2*i])/Accel_cDivider;
}
}
else /* Big Endian Mode */
{
for(i=0; i<3; i++)
pnRawData[i]=((int16_t)((uint16_t)AccelTempBuf[2*i] << 8) + AccelTempBuf[2*i+1])/Accel_cDivider;
}
/* Obtain the mg value for the three axis */
for(i=0; i<3; i++)
{
AccBuf[i]=(float)pnRawData[i]/LSM_Acc_Sensitivity;
}
}
void processMagnetoData(float *MagBuf, uint8_t *MagnTempBuf) {
MagBuf[0]=(float)((int16_t)(((uint16_t)MagnTempBuf[0] << 8) + MagnTempBuf[1]))/Magn_Sensitivity_XY;
MagBuf[2]=(float)((int16_t)(((uint16_t)MagnTempBuf[2] << 8) + MagnTempBuf[3]))/Magn_Sensitivity_Z; // THIS IS Z! Check datasheet!
MagBuf[1]=(float)((int16_t)(((uint16_t)MagnTempBuf[4] << 8) + MagnTempBuf[5]))/Magn_Sensitivity_XY; // THIS IS Y! Check datasheet!
}
void getEulerAngles(float *euler) {
float *q = QuaternionsBuffer;
/*euler[0] = atan2(2*q[1]*q[2]-2*q[0]*q[3], 2*q[0]*q[0]+2*q[1]*q[1]-1)*180/PI; // heading, yaw, phi
euler[1] = -asin(2*q[1]*q[3]+2*q[0]*q[2])*180/PI; // attitude, elevation, pitch, theta
euler[2] = atan2(2*q[2]*q[3]-2*q[0]*q[1], 2*q[0]*q[0]+2*q[3]*q[3]-1)*180/PI; // bank, roll, psi*/
float test = QX*QY+QZ*QW;
if (test > 0.499) {
euler[0] = 2*atan2(QX, QW)*180/PI;
euler[1] = PI*180/(2*PI);
euler[2] = 0;
} else if (test< -0.499) {
euler[0] = -2*atan2(QX, QW)*180/PI;
euler[1] = -PI*180/(2*PI);
euler[2] = 0;
} else {
euler[0] = atan2(2*QY*QW - 2*QX*QZ, 1 - 2*QY*QY - 2*QZ*QZ)*180/PI;
euler[1] = asin(2*QX*QY + 2*QZ*QW)*180/PI;
euler[2] = atan2(2*QX*QW - 2*QY*QZ, 1 - 2*QX*QX - 2*QZ*QZ)*180/PI;
}
}
void getEulerAsArray(uint8_t *eulerArr) {
int i = 0;
int16_t elrs = 0;
// Axis X - third Euler
elrs = (int16_t)(euler[0]);
eulerArr[0] = (uint8_t)elrs;
eulerArr[1] = (uint8_t)(elrs>>8);
// Axis Y - second Euler
elrs = (int16_t)(euler[1]);
eulerArr[2] = (uint8_t)elrs;
eulerArr[3] = (uint8_t)(elrs>>8);
// Axis Z - first Euler
elrs = (int16_t)(euler[2]);
eulerArr[4] = (uint8_t)elrs;
eulerArr[5] = (uint8_t)(elrs>>8);
}
/**
* @brief Basic management of the timeout situation.
* @param None.
* @retval None.
*/
uint32_t LSM303DLHC_TIMEOUT_UserCallback(void)
{
return 0;
}
/**
* @brief Basic management of the timeout situation.
* @param None.
* @retval None.
*/
uint32_t L3GD20_TIMEOUT_UserCallback(void)
{
return 0;
}