-
Notifications
You must be signed in to change notification settings - Fork 95
/
jdbc_to_gcs.py
271 lines (242 loc) · 11.5 KB
/
jdbc_to_gcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession, DataFrame, DataFrameWriter
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage
import dataproc_templates.util.template_constants as constants
import dataproc_templates.util.secret_manager as secret_manager
__all__ = ['JDBCToGCSTemplate']
class JDBCToGCSTemplate(BaseTemplate):
"""
Dataproc template implementing loads from JDBC into Cloud Storage
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
f'--{constants.JDBCTOGCS_INPUT_URL}',
dest=constants.JDBCTOGCS_INPUT_URL,
required=False,
default="",
help='JDBC input URL'
)
group.add_argument(
f'--{constants.JDBCTOGCS_INPUT_URL_SECRET}',
dest=constants.JDBCTOGCS_INPUT_URL_SECRET,
required=False,
default="",
help='JDBC input URL secret name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_DRIVER}',
dest=constants.JDBCTOGCS_INPUT_DRIVER,
required=True,
help='JDBC input driver name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_TABLE}',
dest=constants.JDBCTOGCS_INPUT_TABLE,
required=False,
help='JDBC input table name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_SQL_QUERY}',
dest=constants.JDBCTOGCS_INPUT_SQL_QUERY,
required=False,
help='JDBC input SQL query'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN}',
dest=constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN,
required=False,
default="",
help='JDBC input table partition column name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_LOWERBOUND}',
dest=constants.JDBCTOGCS_INPUT_LOWERBOUND,
required=False,
default="",
help='JDBC input table partition column lower bound which is used to decide the partition stride'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_UPPERBOUND}',
dest=constants.JDBCTOGCS_INPUT_UPPERBOUND,
required=False,
default="",
help='JDBC input table partition column upper bound which is used to decide the partition stride'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_NUMPARTITIONS}',
dest=constants.JDBCTOGCS_NUMPARTITIONS,
required=False,
default="10",
help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_FETCHSIZE}',
dest=constants.JDBCTOGCS_INPUT_FETCHSIZE,
required=False,
default=0,
type=int,
help='Determines how many rows to fetch per round trip'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_SESSIONINITSTATEMENT}',
dest=constants.JDBCTOGCS_SESSIONINITSTATEMENT,
required=False,
default="",
help='Custom SQL statement to execute in each reader database session'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_LOCATION}',
dest=constants.JDBCTOGCS_OUTPUT_LOCATION,
required=True,
help='Cloud Storage location for output files'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_FORMAT}',
dest=constants.JDBCTOGCS_OUTPUT_FORMAT,
required=True,
help='Output file format (one of: avro,parquet,csv,json)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_MODE}',
dest=constants.JDBCTOGCS_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN}',
dest=constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN,
required=False,
default="",
help='Cloud Storage partition column name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_TEMP_VIEW_NAME}',
dest=constants.JDBCTOGCS_TEMP_VIEW_NAME,
required=False,
default="",
help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_TEMP_SQL_QUERY}',
dest=constants.JDBCTOGCS_TEMP_SQL_QUERY,
required=False,
default="",
help='SQL query for data transformation. This must use the temp view name as the table to query from.'
)
add_spark_options(parser, constants.get_csv_output_spark_options("jdbc.gcs.output."))
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if getattr(known_args, constants.JDBCTOGCS_INPUT_TABLE) and getattr(known_args, constants.JDBCTOGCS_INPUT_SQL_QUERY):
sys.exit('ArgumentParser Error: Arguments cannot have both input table and sql query, use either one.')
if getattr(known_args, constants.JDBCTOGCS_TEMP_SQL_QUERY) and not getattr(known_args, constants.JDBCTOGCS_TEMP_VIEW_NAME):
sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query')
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
#check if secret is passed or the connection string in URL
#check if secret is passed or the connection string in the agruments
if str(args[constants.JDBCTOGCS_INPUT_URL])=="":
input_jdbc_url: str = secret_manager.access_secret_version(args[constants.JDBCTOGCS_INPUT_URL_SECRET])
else:
input_jdbc_url: str = args[constants.JDBCTOGCS_INPUT_URL]
input_jdbc_driver: str = args[constants.JDBCTOGCS_INPUT_DRIVER]
input_jdbc_table: str = args[constants.JDBCTOGCS_INPUT_TABLE]
input_jdbc_sql_query: str = args[constants.JDBCTOGCS_INPUT_SQL_QUERY]
input_jdbc_partitioncolumn: str = args[constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN]
input_jdbc_lowerbound: str = args[constants.JDBCTOGCS_INPUT_LOWERBOUND]
input_jdbc_upperbound: str = args[constants.JDBCTOGCS_INPUT_UPPERBOUND]
jdbc_numpartitions: str = args[constants.JDBCTOGCS_NUMPARTITIONS]
input_jdbc_fetchsize: int = args[constants.JDBCTOGCS_INPUT_FETCHSIZE]
input_jdbc_sessioninitstatement: str = args[constants.JDBCTOGCS_SESSIONINITSTATEMENT]
output_location: str = args[constants.JDBCTOGCS_OUTPUT_LOCATION]
output_format: str = args[constants.JDBCTOGCS_OUTPUT_FORMAT]
output_mode: str = args[constants.JDBCTOGCS_OUTPUT_MODE]
output_partitioncolumn: str = args[constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN]
temp_view: str = args[constants.JDBCTOGCS_TEMP_VIEW_NAME]
temp_sql_query:str = args[constants.JDBCTOGCS_TEMP_SQL_QUERY]
ignore_keys = {constants.JDBCTOGCS_INPUT_URL}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting JDBC to Cloud Storage Spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data: DataFrame
read_properties = {constants.JDBC_URL: input_jdbc_url,
constants.JDBC_DRIVER: input_jdbc_driver}
if input_jdbc_table:
read_properties.update({constants.JDBC_TABLE: input_jdbc_table})
elif input_jdbc_sql_query:
read_properties.update({constants.JDBC_QUERY: input_jdbc_sql_query})
else:
logger.error("Arguments must have either input table or input SQL query")
exit(1)
read_properties.update({constants.JDBC_NUMPARTITIONS: jdbc_numpartitions,
constants.JDBC_FETCHSIZE: input_jdbc_fetchsize})
if input_jdbc_sessioninitstatement:
read_properties[constants.JDBC_SESSIONINITSTATEMENT] = input_jdbc_sessioninitstatement
partition_parameters = str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound)
if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))):
logger.error("Set all the sql partitioning parameters together-jdbctogcs.input.partitioncolumn,jdbctogcs.input.lowerbound,jdbctogcs.input.upperbound. Refer to README.md for more instructions.")
exit(1)
if partition_parameters:
read_properties.update({constants.JDBC_PARTITIONCOLUMN: input_jdbc_partitioncolumn,
constants.JDBC_LOWERBOUND: input_jdbc_lowerbound,
constants.JDBC_UPPERBOUND: input_jdbc_upperbound})
input_data = spark.read \
.format(constants.FORMAT_JDBC) \
.options(**read_properties) \
.load()
if temp_sql_query:
# Create temp view on source data
input_data.createGlobalTempView(temp_view)
# Execute SQL
output_data = spark.sql(temp_sql_query)
else:
output_data = input_data
# Write
if (output_partitioncolumn != ""):
writer: DataFrameWriter = output_data.write.mode(output_mode).partitionBy(output_partitioncolumn)
else:
writer: DataFrameWriter = output_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "jdbc.gcs.output.")