-
Notifications
You must be signed in to change notification settings - Fork 14
/
stats.go
228 lines (191 loc) · 6.79 KB
/
stats.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
package safe
import (
"bytes"
"fmt"
"kube-safe-scheduler/beta"
"math"
"os"
"strconv"
v1 "k8s.io/api/core/v1"
schedulercache "k8s.io/kubernetes/pkg/scheduler/cache"
)
// getResourceRequest : get the resource demand of a pod (CPU and Memory only)
func getResourceRequest(pod *v1.Pod) *schedulercache.Resource {
result := &schedulercache.Resource{}
for _, container := range pod.Spec.Containers {
result.Add(container.Resources.Requests)
}
// take max_resource(sum_pod, any_init_container)
for _, container := range pod.Spec.InitContainers {
for rName, rQuantity := range container.Resources.Requests {
switch rName {
case v1.ResourceCPU:
if CPU := rQuantity.MilliValue(); CPU > result.MilliCPU {
result.MilliCPU = CPU
}
case v1.ResourceMemory:
if mem := rQuantity.Value(); mem > result.Memory {
result.Memory = mem
}
default:
}
}
}
return result
}
// computeRank : Rank (or utility) is defined as the probability that the utilization of
// the saturated resource is less than or equal to a given utilization limit.
func computeRank(mu, sigma, threshold float64) (float64, string) {
var buf bytes.Buffer
if mu == 0 || (sigma == 0 && mu <= threshold) {
return 1, buf.String()
}
if sigma == 0 && mu > threshold {
return 0, buf.String()
}
m1 := mu
m2 := (sigma * sigma) + (mu * mu)
betaDist := beta.NewBetaDistribution(1, 1)
if !betaDist.MatchMoments(m1, m2) {
return 0, buf.String()
}
belowLimit := betaDist.DistributionFunction(threshold)
fmt.Fprintf(&buf, "%s", betaDist.Print())
if safePrintTableValue := os.Getenv(SafePrintTable); safePrintTableValue == "true" {
fmt.Fprintf(&buf, "%s", betaDist.PrintTable())
}
if math.IsNaN(belowLimit) {
return 1, buf.String()
}
return belowLimit, buf.String()
}
// getSafeUtilization : the safe utilization value
func getSafeUtilization() float64 {
utilizationThreshold := DefaultSafeUtilization
if safeUtilizationValue := os.Getenv(SafeUtilization); len(safeUtilizationValue) > 0 {
suv, err := strconv.Atoi(safeUtilizationValue)
if err == nil && suv >= 0 && suv <= 100 {
utilizationThreshold = float64(suv) / float64(100)
}
}
return utilizationThreshold
}
// getSafePercentile : the safe percentile value
func getSafePercentile() float64 {
utilizationEpsilon := DefaultSafePercentile
if safePercentileValue := os.Getenv(SafePercentile); len(safePercentileValue) > 0 {
spv, err := strconv.Atoi(safePercentileValue)
if err == nil && spv >= 0 && spv <= 100 {
utilizationEpsilon = float64(spv) / float64(100)
}
}
return utilizationEpsilon
}
// getForecastWeight: the weighht for forecasting
func getForecastWeight() float64 {
forecastWeight := DefaultForecastWeight
if forecastWeightValue := os.Getenv(SafeForecastWeight); len(forecastWeightValue) > 0 {
fwv, err := strconv.Atoi(forecastWeightValue)
if err == nil && fwv >= 0 && fwv <= 100 {
forecastWeight = float64(fwv) / float64(100)
}
}
return forecastWeight
}
// resourceStats : statistics for a resource
type resourceStats struct {
// average used
usedAvg float64
// standard deviation used
usedStdev float64
// demand of pod
demand float64
// node capacity
capacity float64
}
// getMuSigma : get average and standard deviation from statistics
func getMuSigma(rs *resourceStats) (float64, float64) {
mu := (rs.usedAvg + rs.demand) / rs.capacity
mu = math.Max(math.Min(mu, 1), 0)
sigma := rs.usedStdev / rs.capacity
sigma = math.Max(math.Min(sigma, 1), 0)
return mu, sigma
}
// getMemoryStats : get statistics for memory resource
func getMemoryStats(node *v1.Node,
podRequest *schedulercache.Resource,
buf *bytes.Buffer) (rs *resourceStats, isValid bool) {
meanFreeMemory := node.ObjectMeta.Annotations[MeanFreeMemoryKey]
freeAvg, err := strconv.ParseFloat(meanFreeMemory, 64)
if err != nil {
fmt.Fprintf(buf, "No valid memory statistics. \n")
return nil, false
}
rs = &resourceStats{}
stdFreeMemory := node.ObjectMeta.Annotations[StdFreeMemoryKey]
freeStdev, err := strconv.ParseFloat(stdFreeMemory, 64)
if err != nil {
freeStdev = 0
}
fmt.Fprintf(buf, "meanFreeMemory = %s; stdFreeMemory = %s \n", meanFreeMemory, stdFreeMemory)
safeForecastWeight := getForecastWeight()
meanFreeForecastMemory := node.ObjectMeta.Annotations[ForcastedFreeMemoryKey]
freeForecastAvg, err := strconv.ParseFloat(meanFreeForecastMemory, 64)
if err == nil && len(meanFreeForecastMemory) > 0 {
freeAvg = (1.-safeForecastWeight)*freeAvg + safeForecastWeight*freeForecastAvg
fmt.Fprintf(buf, "forcastedFreeMemory = %s; safeForecastWeight = %f; weightedFreeMemory = %f \n",
meanFreeForecastMemory, safeForecastWeight, freeAvg)
}
var megaFactor = float64(1. / 1024. / 1024.)
freeAvg *= megaFactor
freeStdev *= megaFactor
fmt.Fprintf(buf, "freeAvg = %f MB; freeStdev = %f MB \n", freeAvg, freeStdev)
allocatableResources := node.Status.Allocatable
if am := allocatableResources["memory"]; &am != nil {
rs.capacity = float64((&am).Value())
}
rs.capacity *= megaFactor
rs.demand = float64(podRequest.Memory) * megaFactor
fmt.Fprintf(buf, "capacity = %f MB; demand = %f MB \n", rs.capacity, rs.demand)
rs.usedAvg = math.Max(rs.capacity-freeAvg, 0)
rs.usedStdev = freeStdev
fmt.Fprintf(buf, "usedAvg = %f; usedStdev = %f \n", rs.usedAvg, rs.usedStdev)
return rs, true
}
// getCPUStats : get statistics for CPU resource
func getCPUStats(node *v1.Node,
podRequest *schedulercache.Resource,
buf *bytes.Buffer) (rs *resourceStats, isValid bool) {
meanFreeCPU := node.ObjectMeta.Annotations[MeanFreeCPUKey]
freeAvg, err := strconv.ParseFloat(meanFreeCPU, 64)
if err != nil {
fmt.Fprintf(buf, "No valid CPU statistics. \n")
return nil, false
}
rs = &resourceStats{}
stdFreeCPU := node.ObjectMeta.Annotations[StdFreeCPUKey]
freeStdev, err := strconv.ParseFloat(stdFreeCPU, 64)
if err != nil {
freeStdev = 0
}
fmt.Fprintf(buf, "meanFreeCPU = %s; stdFreeCPU = %s \n", meanFreeCPU, stdFreeCPU)
safeForecastWeight := getForecastWeight()
meanFreeForecastCPU := node.ObjectMeta.Annotations[ForcastedFreeCPUKey]
freeForecastAvg, err := strconv.ParseFloat(meanFreeForecastCPU, 64)
if err == nil && len(meanFreeForecastCPU) > 0 {
freeAvg = (1.-safeForecastWeight)*freeAvg + safeForecastWeight*freeForecastAvg
fmt.Fprintf(buf, "forcastedFreeCPU = %s; safeForecastWeight = %f; weightedFreeCPU = %f \n",
meanFreeForecastCPU, safeForecastWeight, freeAvg)
}
fmt.Fprintf(buf, "freeAvg = %f; freeStdev = %f \n", freeAvg, freeStdev)
allocatableResources := node.Status.Allocatable
if am := allocatableResources["cpu"]; &am != nil {
rs.capacity = float64((&am).MilliValue())
}
rs.demand = float64(podRequest.MilliCPU)
fmt.Fprintf(buf, "capacity = %f; demand = %f \n", rs.capacity, rs.demand)
rs.usedAvg = math.Max(rs.capacity-freeAvg, 0)
rs.usedStdev = freeStdev
fmt.Fprintf(buf, "usedAvg = %f; usedStdev = %f \n", rs.usedAvg, rs.usedStdev)
return rs, true
}