Skip to content

Latest commit

 

History

History
75 lines (66 loc) · 5.52 KB

EVALUATION.md

File metadata and controls

75 lines (66 loc) · 5.52 KB

Pretrained models

To load pretrained model you need to define model_name (size), dataset it was trained on, train_type whether it is pretrain-only (ptn), large-margin finetuning (ft_lm), finetuning with cutmix+mixup augmentations (ft_mix).

import torch

model_name='M' # ~b3-b4 size
train_type='ft_mix'
dataset='vb2+vox2+cnc'

model = torch.hub.load('IDRnD/ReDimNet', 'ReDimNet', 
                       model_name=model_name, 
                       train_type=train_type, 
                       dataset=dataset)

All models configurations with corresponding metrics can be found in following table:

Model name (size) Train dataset Train type Vox1-O EER(%) Vox1-E EER(%) Vox1-H EER(%) SITW EER(%) VOICES EER(%) CN-Celeb EER(%)
M vb2+vox2+cnc ft_mix 0.835 0.745 1.284 1.203 2.703 7.474
M vb2 ptn 1.319 1.128 2.000 1.482 4.116 9.012
S vb2+vox2+cnc ft_mix 0.936 0.874 1.510 1.310 2.774 8.043
S vb2 ptn 1.542 1.408 2.505 1.781 3.987 9.592
b0 vox2 ft_lm 1.16 1.25 2.20 - - -
b0 vox2 ptn - - - - - -
b1 vox2 ft_lm 0.85 0.97 1.73 - - -
b1 vox2 ptn - - - - - -
b2 vox2 ft_lm 0.57 0.76 1.32 - - -
b2 vox2 ptn - - - - - -
b3 vox2 ft_lm 0.50 0.73 1.33 - - -
b3 vox2 ptn - - - - - -
b4 vox2 ft_lm 0.51 0.68 1.26 - - -
b4 vox2 ptn - - - - - -
b5 vox2 ft_lm 0.43 0.61 1.08 - - -
b5 vox2 ptn - - - - - -
b6 vox2 ft_lm 0.40 0.55 1.05 - - -
b6 vox2 ptn - - - - - -

Paper metrics

Model Params GMACs LM AS-Norm Vox1-O EER(%) Vox1-E EER(%) Vox1-H EER(%)
⬦ ReDimNet-B0 1.0M 0.43 1.16 1.25 2.20
⬥ ReDimNet-B0 1.07 1.18 2.01
NeXt-TDNN-l (C=128,B=3) 1.6M 0.29* 1.10 1.24 2.12
NeXt-TDNN (C=128,B=3) 1.9M 0.35* 1.03 1.17 1.98
⬦ ReDimNet-B1 2.2M 0.54 0.85 0.97 1.73
⬥ ReDimNet-B1 0.73 0.89 1.57
ECAPA (C=512) 6.4M 1.05 0.94 1.21 2.20
NeXt-TDNN-l (C=256,B=3) 6.0M 1.13* 0.81 1.04 1.86
CAM++ 7.2M 1.15 0.71 0.85 1.66
NeXt-TDNN (C=256,B=3) 7.1M 1.35* 0.79 1.04 1.82
⬦ ReDimNet-B2 4.7M 0.90 0.57 0.76 1.32
⬥ ReDimNet-B2 0.52 0.74 1.27
ECAPA (C=1024) 14.9M 2.67 0.98 1.13 2.09
DF-ResNet56 4.5M 2.66 0.96 1.09 1.99
Gemini DF-ResNet60 4.1M 2.50* 0.94 1.05 1.80
⬦ ReDimNet-B3 3.0M 3.00 0.50 0.73 1.33
⬥ ReDimNet-B3 0.47 0.69 1.23
ResNet34 6.6M 4.55 0.82 0.93 1.68
Gemini DF-ResNet114 6.5M 5.00 0.69 0.86 1.49
⬦ ReDimNet-B4 6.3M 4.80 0.51 0.68 1.26
⬥ ReDimNet-B4 0.44 0.64 1.17
Gemini DF-ResNet183 9.2M 8.25 0.60 0.81 1.44
DF-ResNet233 12.3M 11.17 0.58 0.76 1.44
⬦ ReDimNet-B5 9.2M 9.87 0.43 0.61 1.08
⬥ ReDimNet-B5 0.39 0.59 1.05
ResNet293 23.8M 28.10 0.53 0.71 1.30
ECAPA2 27.1M 187.00* 0.44 0.62 1.15
⬦ ReDimNet-B6 15.0M 20.27 0.40 0.55 1.05
⬥ ReDimNet-B6 0.37 0.53 1.00

* - means values have been estimated.