From f92334e0923d304c332f4a918f520eb17414f8c8 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Tue, 16 Jul 2024 14:08:01 +0900 Subject: [PATCH] minor edits --- theories/absolute_continuity.v | 135 ++++++++++++++++++--------------- 1 file changed, 75 insertions(+), 60 deletions(-) diff --git a/theories/absolute_continuity.v b/theories/absolute_continuity.v index 19049a4c8..ad2e2f9c9 100644 --- a/theories/absolute_continuity.v +++ b/theories/absolute_continuity.v @@ -1748,8 +1748,10 @@ exists U_, Z; split. exact: subIsetl. by rewrite (le_lt_trans (mueS0E _))// ltry. + move=> i. - admit. - + admit. + apply: measurableD. + by apply: open_measurable. + admit. (* measurable E *) + + admit. (* measurable E *) + move=> m n mn. apply/subsetPset; apply: setSD => x H k h. apply: H => //. @@ -1814,6 +1816,7 @@ Fail Lemma lusinN_total_variation a b f : abs_contN a b f -> Lemma abs_contN_dominates a b (f : cumulative R) : abs_contN a b f -> mu `<< lebesgue_stieltjes_measure f. +Proof. Abort. Fail Lemma differentiable_lusinN a b f : {in `]a, b[%classic, differentiable f} -> @@ -3120,51 +3123,6 @@ Qed. (* admit. *) (* by apply: sub_Rhullr. *) -(* a wlog part in image_measure0_Lusin *) -Lemma image_measure0_Lusin' - (f : R -> R) - (cf : {within `[a, b], continuous f}) - (ndf : {in `[a, b] &, {homo f : x y / x <= y}}) - (HZ : forall Z : set R, - Z `<=` `[a, b] -> compact Z -> mu Z = 0 -> mu [set f x | x in Z] = 0) - (Z : set R) - (Zab : Z `<=` `[a, b]) - (mZ : (((wlength idfun)^*)%mu).-cara.-measurable Z) - (muZ0 : mu Z = 0) - (muFZ0 : (0%R < mu [set f x | x in Z])%E) - (GdeltaZ : Gdelta Z) : False. -Proof. -(* lemma *) -have ndf' : {in `[a, b]%classic &, {homo f : n m / n <= m}}. - move=> x y. - rewrite !inE/= => xab yab. - exact: ndf. -have mfZ : measurable (f @` Z). - have set_fun_f : set_fun `[a, b] [set: R] f by []. - pose Hf := isFun.Build R R `[a, b]%classic [set: R] f set_fun_f. - pose F : {fun `[a, b] >-> [set: R]} := HB.pack f Hf. - simpl in F. - have := @measurable_image_delta_set_nondecreasing_fun R a b F ab ndf cf Z. - apply => //. - admit. (* ?! *) -have mfZ_gt0 : (0 < mu (f @` Z))%E. - done. -have [K [cK KfZ muK]] : exists K, [/\ compact K, K `<=` f @` Z & (0 < mu K)%E]. - have /= := lebesgue_regularity_inner mfZ. - admit. -pose K1 := (f @^-1` K) `&` `[a, b]. -have cK1 : compact K1. - (* using continuity, continuous_compact? *) - admit. -have K1ab : K1 `<=` `[a, b]. - admit. -have K1Z : K1 `<=` Z. - admit. -have fK1K : f @` K1 = K. - admit. -have := HZ K1 K1ab cK1. -Admitted. - (* lemma3 (converse) *) Lemma image_measure0_Lusin (f : R -> R) : {within `[a, b], continuous f} -> @@ -3178,13 +3136,42 @@ Proof. move=> cf ndf HZ; apply: contrapT. move=> /existsNP[Z]/not_implyP[Zab/=] /not_implyP[mZ] /not_implyP[muZ0]. move=> /eqP; rewrite neq_lt ltNge measure_ge0/= => muFZ0. -have lmZ : lebesgue_measurability Z. +wlog : Z Zab mZ muZ0 muFZ0 / Gdelta Z. + move=> wlg. + have [Z1 [gdZ1 mZ10 ZZ1]] : exists Z1, [/\ Gdelta Z1, mu Z1 = 0 & Z `<=` Z1]. + admit. + have mFZ1 : (0 < (((wlength idfun)^*)%mu) (f @` Z1))%E. + admit. + apply: (wlg Z1) => //. + admit. + admit. +move=> gdZ. +have mFZ : measurable (f @` Z). + admit. +have muF0_gt0 : (0 < mu (f @` Z))%E. + admit. +have [K [cK KfZ muK]] : exists K, [/\ compact K, K `<=` f @` Z & (0 < mu K)%E]. +(* have /= := lebesgue_regularity_inner mfZ.*) + admit. +pose K1 := (f @^-1` K) `&` `[a, b]. +have cK1 : compact K1. + (* using continuity, continuous_compact? *) + admit. +have K1ab : K1 `<=` `[a, b]. + admit. +have K1Z : K1 `<=` Z. + admit. +have fK1K : f @` K1 = K. + admit. +have := HZ K1 K1ab cK1. +rewrite fK1K. +(*have lmZ : lebesgue_measurability Z. move=> e e0. have [U [oU ZU /andP[muZU muUZe]]] := outer_regularity_outer0 Z e0. exists U; split => //. - rewrite -(@leeD2lE _ (((wlength idfun)^*)%mu (U `&` Z))); last first. + rewrite -(@leeD2lE _ (((wlength idfun)^* )%mu (U `&` Z))); last first. rewrite ge0_fin_numE; last exact: outer_measure_ge0. - apply: (@le_lt_trans _ _ (((wlength idfun)^*)%mu `[a, b]%classic)). + apply: (@le_lt_trans _ _ (((wlength idfun)^* )%mu `[a, b]%classic)). apply: le_outer_measure. by rewrite setIidr. rewrite [ltLHS](_:_= lebesgue_measure `[a, b]%classic); last by []. @@ -3207,7 +3194,7 @@ apply. exact: open_measurable. - admit. - admit. -- by exists H. +- by exists H.*) Admitted. End lemma3. @@ -3263,17 +3250,45 @@ Lemma Lusin_total_variation (f : R -> R) : lusinN `[a, b] (fun x => fine (total_variation a ^~ f x)). Proof. move=> cf bvf lf. -have ndt := @total_variation_nondecreasing R a b f. -have ct := total_variation_continuous ab cf bvf. -apply: image_measure0_Lusin => //. -apply: contrapT. -move=> H. +pose H := fun x => fine (total_variation a ^~ f x). +have ndt : {in `[a, b] &, nondecreasing_fun H}. + move=> x y xab yab xy. + have axyf := @total_variation_nondecreasing R a b f _ _ xab yab xy. + rewrite /H fine_le//. + - apply/bounded_variationP => //. + by move: xab; rewrite in_itv/= => /andP[]. + move: xab; rewrite in_itv/= => /andP[? ?]. + by move: bvf; apply: bounded_variationl. + - apply/bounded_variationP => //. + by move: yab; rewrite in_itv/= => /andP[]. + move: yab; rewrite in_itv/= => /andP[? ?]. + by move: bvf; apply: bounded_variationl. +have cH : {within `[a, b], continuous H}. + exact: total_variation_continuous. +apply: contrapT => ababsurdo. +have := image_measure0_Lusin ab cH ndt. +move/contra_not => /(_ ababsurdo). +move/existsNP => [Z /not_implyP [Zab /not_implyP[cZ /not_implyP[muZ0]]]]. +move/eqP; rewrite neq_lt ltNge measure_ge0/= => muHZ_gt0. +have compactH : compact (H @` Z). + have := @continuous_compact _ _ H Z. + apply. + apply: continuous_subspaceW. + exact: Zab. + assumption. + exact: cZ. +pose c : R := inf Z. +pose d : R := sup Z. +wlog : Z Zab cZ muZ0 muHZ_gt0 compactH c d / perfect_set Z. + admit. +move=> perfectZ. + pose TV := (fine \o (total_variation a)^~ f). have : exists n : nat, (0 < n)%N /\ exists Z_ : `I_ n -> interval R, trivIset setT (fun i => [set` (Z_ i)]) /\ (0 < mu (TV @` (\bigcup_i [set` Z_ i])))%E /\ forall i, [/\ [set` Z_ i] `<=` `[a, b], compact [set` Z_ i] & mu [set` Z_ i] = 0]. admit. -move=> [n [] n0 [Z_]] [trivZ [Uz0]] /all_and3 [Zab cZ Z0]. +move=> [n [] n0 [Z_]] [trivZ [Uz0]] /all_and3 [Zab' cZ' Z0]. pose UZ := \bigcup_i [set` Z_ i]. have UZ_not_empty : UZ !=set0. admit. @@ -4005,15 +4020,15 @@ Theorem Banach_Zarecki (f : R -> R) : abs_cont a b f. Proof. move=> cf bvf Lf. -apply: total_variation_AC => //. -apply: Banach_Zarecki_nondecreasing => //. +apply: total_variation_AC => //. (* lemma 8 *) +apply: Banach_Zarecki_nondecreasing => //. (* lemma 7 *) - exact: total_variation_continuous. - move=> x y; rewrite !in_itv /= => /andP[ax xb] /andP[ay yb] xy. apply: fine_le. + apply/(bounded_variationP _ ax); exact:(bounded_variationl _ xb). + apply/(bounded_variationP _ ay); exact:(bounded_variationl _ yb). + by apply: (@total_variation_nondecreasing _ _ b); rewrite ?in_itv /= ?ax ?ay. -- exact: Lusin_total_variation. +- exact: Lusin_total_variation. (* lemma 6 *) Qed. End banach_zarecki.