-
Notifications
You must be signed in to change notification settings - Fork 66
/
test.py
221 lines (195 loc) · 6.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import unittest
import numpy as np
from pcanet import Patches, PCANet, image_to_patch_vectors
from pcanet import binarize, binary_to_decimal, to_tuple_if_int
from ensemble import most_frequent_label
try:
import cupy as xp
from cupy.testing import assert_array_equal
except ImportError:
import numpy as xp
from numpy.testing import assert_array_equal
class TestPatches(unittest.TestCase):
def test_kernel_startpoints(self):
"""
The coodinates of startpoints of kernel are valid.
"""
image_shape = (10, 8)
filter_shape = (4, 3)
step_shape = (1, 2)
image = np.zeros(image_shape)
patches = Patches(image, filter_shape, step_shape)
self.assertEqual(list(patches.ys), [0, 1, 2, 3, 4, 5, 6])
self.assertEqual(list(patches.xs), [0, 2, 4])
def test_patches(self):
# Supporse that image below is geven.
# [[0 1 2]
# [3 4 5]
# [6 7 8]]
#
# If the patches are squares and its size = 2, and the step size = 1
# the extracted patches should be like below.
# [0 1] [1 2] [3 4] [4 5]
# [3 4] [4 5] [6 7] [7 8]
image = np.array(
[[0, 3, 1],
[3, 1, 1],
[2, 0, 0]]
)
patches = Patches(image, (2, 2), (1, 1)).patches
expected = np.array([
[[0, 3],
[3, 1]],
[[3, 1],
[1, 1]],
[[3, 1],
[2, 0]],
[[1, 1],
[0, 0]]
])
assert_array_equal(patches, expected)
class TestPCANet(unittest.TestCase):
def test_binarize(self):
image = np.array([
[3, -8],
[2, 1],
[-1, 5]
])
expected = np.array([
[1, 0],
[1, 1],
[0, 1]
])
assert_array_equal(binarize(image), expected)
def test_binary_to_decimal(self):
image = xp.array([
[[[1, 0],
[1, 0]],
[[1, 1],
[0, 1]]],
[[[1, 1],
[0, 0]],
[[1, 0],
[1, 0]]]
])
expected = xp.array([
[[3, 1],
[2, 1]],
[[3, 2],
[1, 0]]
])
assert_array_equal(binary_to_decimal(image), expected)
def test_histogram(self):
images = xp.array([
[[0, 1, 1, 3],
[3, 1, 2, 2],
[2, 0, 1, 2],
[0, 1, 1, 1]],
[[2, 0, 1, 2],
[1, 3, 0, 1],
[2, 2, 2, 3],
[1, 3, 3, 1]]
])
expected = xp.array([
[1, 2, 0, 1, 0, 1, 2, 1, 2, 1, 1, 0, 0, 3, 1, 0],
[1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 0, 1, 1, 2]
])
pcanet = PCANet(None, None, None, None, None, None,
n_l2_output=2,
filter_shape_pooling=2,
step_shape_pooling=2)
assert_array_equal(pcanet.histogram(images), expected)
images = xp.array([
[[1, 0, 1],
[2, 0, 0],
[1, 3, 3]],
[[2, 0, 0],
[1, 1, 1],
[3, 0, 1]]
])
expected = xp.array([
[2, 1, 1, 0, 3, 1, 0, 0, 1, 1, 1, 1, 2, 0, 0, 2],
[1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 0, 1, 1, 3, 0, 0]
])
pcanet = PCANet(None, None, None, None, None, None,
n_l2_output=2,
filter_shape_pooling=2,
step_shape_pooling=1)
assert_array_equal(pcanet.histogram(images), expected)
def test_to_tuple_if_int(self):
# duplicate if int is given
self.assertEqual(to_tuple_if_int(10), (10, 10))
# do nothing if non-integer is given
self.assertEqual(to_tuple_if_int((10, 10)), (10, 10))
def test_image_to_patch_vectors(self):
image = np.array([
[0, 2, 1, 5],
[2, 0, 1, 1],
[3, 3, 0, 2],
])
expected = np.array([
[-1, 1, 1, -1],
[1, 0, -1, 0],
[-1, 3, -1, -1],
[0, -2, 1, 1],
[-1, 0, 2, -1],
[0, 0, -1, 1]
])
patches = image_to_patch_vectors(image, (2, 2), (1, 1))
assert_array_equal(patches, expected)
def test_validate_structure(self):
# Check whether filters visit all pixels of input images
pcanet = PCANet(
image_shape=9,
filter_shape_l1=3, step_shape_l1=2, n_l1_output=1,
filter_shape_l2=3, step_shape_l2=1, n_l2_output=1,
filter_shape_pooling=1, step_shape_pooling=1
)
pcanet.validate_structure()
pcanet = PCANet(
image_shape=10,
filter_shape_l1=3, step_shape_l1=2, n_l1_output=1,
filter_shape_l2=3, step_shape_l2=1, n_l2_output=1,
filter_shape_pooling=1, step_shape_pooling=1
)
self.assertRaises(ValueError, pcanet.validate_structure)
# Check whether filters visit all pixels of L1 output
# the shape of L1 output is (6, 6)
pcanet = PCANet(
image_shape=13,
filter_shape_l1=3, step_shape_l1=2, n_l1_output=1,
filter_shape_l2=3, step_shape_l2=1, n_l2_output=1,
filter_shape_pooling=1, step_shape_pooling=1
)
pcanet.validate_structure()
pcanet = PCANet(
image_shape=13,
filter_shape_l1=3, step_shape_l1=2, n_l1_output=1,
filter_shape_l2=3, step_shape_l2=2, n_l2_output=1,
filter_shape_pooling=1, step_shape_pooling=1
)
self.assertRaises(ValueError, pcanet.validate_structure)
# Check whether blocks cover all pixels of L2 output
# the shape of L1 output is (9, 9)
# the shape of L2 output is (4, 4)
pcanet = PCANet(
image_shape=19,
filter_shape_l1=3, step_shape_l1=2, n_l1_output=1,
filter_shape_l2=3, step_shape_l2=2, n_l2_output=1,
filter_shape_pooling=2, step_shape_pooling=2
)
pcanet.validate_structure()
pcanet = PCANet(
image_shape=19,
filter_shape_l1=3, step_shape_l1=2, n_l1_output=1,
filter_shape_l2=3, step_shape_l2=2, n_l2_output=1,
filter_shape_pooling=3, step_shape_pooling=1
)
self.assertRaises(ValueError, pcanet.validate_structure)
class TestBagging(unittest.TestCase):
def test_most_frequent_label(self):
v = np.array([0, 1, 1, 3, 2, 0, 1])
self.assertEqual(most_frequent_label(v), 1)
v = np.array([0, 2, 1, 2, 2, 1, 0])
self.assertEqual(most_frequent_label(v), 2)
unittest.main()