Skip to content

Latest commit

 

History

History
78 lines (52 loc) · 1.54 KB

README.md

File metadata and controls

78 lines (52 loc) · 1.54 KB

Cats vs Dogs

Classification examples using pytorch and keras to distinguish dogs and cats pictures

How to run it

You will need to:

  • Download and install Python 3.6.1
  • Download and install Nvidia CUDA Toolkit 9.0
  • Download CuDNN for CUDA 9.0 To install CuDNN, copy the files to Nvidia CUDA toolkit(usually is located on C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0)
    • Copy cudnn\bin\cudnn64_5.dll to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\
    • Copy cudnn\include\cudnn.h to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include\
    • Copy cudnn\lib\x64\cudnn.lib to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\
  • Visual C++ Redistributate 2015 x64

Install requirements with pip or conda:

First create a new virtualenv

With Anaconda
conda create -n envname python=3.6 anaconda
Or
python3 -m venv envname

Then activate it

With Anaconda
activate envname
Or (On Windows)
envname\Scripts\activate.bat

Now install the dependencies

With Anaconda
conda install --yes --file requirements.txt
With Pip
pip install -r requirements.txt

To run Keras example

py kerasexp.py

To run PyTorch example

py pytorchexp.py

The result should be something like this

Keras Pytorch
Keras Result Pytorch Result