forked from giordamaug/WisardClassifier-C_vectors
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
54 lines (42 loc) · 1.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from wisard_wrapper import *
import numpy as np
def mk_tuple(discr, sample):
map = discr.getMapping()
n_bit = discr.getNBits()
n_ram = discr.getNRams()
intuple = np.zeros(n_ram, dtype = np.uint64)
for i in range(n_ram):
for j in range(n_bit):
x = map[(i * n_bit) + j]
intuple[i] += (2**(n_bit -1 - j)) * sample[x]
return intuple
X = np.array([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 0, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 1]], np.int32)
y = np.array(["A","A","B","B","A","A","B","A"])
test = np.array([0, 0, 1, 0, 0, 0, 1, 0], np.int32)
# init WiSARD (create discriminator for each class "A" and "B")
wisard = {}
wisard["A"] = PyDiscriminator(2,8)
wisard["B"] = PyDiscriminator(2,8)
# train WiSARD
for s in range(X.shape[0]):
tuple = mk_tuple(wisard[y[s]],X[s])
print(tuple)
wisard[y[s]].TrainByTuple(tuple)
# print WiSARD state
print(wisard["A"].toString())
print(wisard["B"].toString())
# predict by WiSARD
responses = {}
test_tuple = mk_tuple(wisard["A"],test)
responses["A"] = wisard["A"].ClassifyByTuple(test_tuple)
test_tuple = mk_tuple(wisard["B"],test)
responses["B"] = wisard["B"].ClassifyByTuple(test_tuple)
print("A responds with score %.2f\n"%responses["A"])
print("B responds with score %.2f\n"%responses["B"])