forked from giordamaug/WisardClassifier-C_vectors
-
Notifications
You must be signed in to change notification settings - Fork 1
/
utilities.py
87 lines (80 loc) · 2.72 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/opt/local/bin/python2.7
# -*- coding: utf-8 -*-
# Code source: Maurizio Giordano
#
#
# License: GPL
import numpy as np
try:
import matplotlib
#matplotlib.use('pdf')
import matplotlib.pyplot as plt
import itertools
matplotfound = True
except ImportError:
matplotfound = False
pass
class color:
PURPLE = '\033[95m'
CYAN = '\033[96m'
DARKCYAN = '\033[36m'
BLUE = '\033[94m'
GREEN = '\033[0;32m'
WHITEBLACK = '\033[1m\033[40;37m'
BLUEBLACK = '\033[1m\033[40;94m'
YELLOWBLACK = '\033[1m\033[40;93m'
YELLOW = '\033[93m'
RED = '\033[91m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
END = '\033[0m'
def print_confmatrix(table,fieldsize=3,decimals=3):
nclasses = len(table)
hfrmt = '{0: >%d}' % fieldsize
dfrmt = '%%%dd' % fieldsize
ffrmt = '%%%d.0%df' % (fieldsize,decimals)
str = (' ' * fieldsize)
for c in range(nclasses):
str += ' ' + color.BOLD + hfrmt.format(c) + color.END
print(str)
print((' ' * fieldsize) + '┌' + ('─' * fieldsize + '┬') * (nclasses-1) + ('─' * fieldsize) + '┐')
for k in range(nclasses):
str = color.BOLD + hfrmt.format(k) + color.END
for j in range(nclasses):
if table[k][j]==0:
str += '│' + (' '* fieldsize)
continue
if j==k:
str += '│' + dfrmt % (table[k][j])
else:
str += '│' + color.RED + dfrmt % (table[k][j]) + color.END
str += '│'
print(str + '')
print((' ' * fieldsize) + '└' + ('─' * fieldsize + '┴') * (nclasses-1) + ('─' * fieldsize) + '┘')
if matplotfound:
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
title += " (Normalized)"
else:
title += " (No Normalization)"
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')