From 336b4aae3a6a8cbdddad67fc914139bc79b0c345 Mon Sep 17 00:00:00 2001 From: JustGlowing Date: Wed, 28 Aug 2024 13:49:17 +0100 Subject: [PATCH] unit test improvement --- minisom.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/minisom.py b/minisom.py index 25c1b21..f6e657d 100644 --- a/minisom.py +++ b/minisom.py @@ -911,6 +911,8 @@ def test_quantization(self): def test_divergence_measure(self): test_data = array([[4], [2]]) + + # test that doesn't use vectorization r = 0 for d in test_data: for i in self.som._neigx: @@ -921,6 +923,17 @@ def test_divergence_measure(self): r += h * norm(d - w) assert_array_almost_equal(r, self.som.divergence_measure(test_data)) + # handwritten test + som = MiniSom(2, 1, 2, random_seed=1) + som._weights = array([[[0., 1.]], [[1., 0.]]]) + test_data = array([[1., 0.], [0., 1.]]) + + h1 = som.neighborhood(som.winner(test_data[0]), som._sigma) + h2 = som.neighborhood(som.winner(test_data[1]), som._sigma) + r = h1[0][0] * sqrt(2) + h1[1][0] * 0 + r += h2[0][0] * 0 + h2[1][0] * sqrt(2) + assert_array_almost_equal(r, som.divergence_measure(test_data)) + def test_random_seed(self): som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1)