diff --git a/.gitignore b/.gitignore index d2d6f36..8f35883 100644 --- a/.gitignore +++ b/.gitignore @@ -33,3 +33,13 @@ nosetests.xml .mr.developer.cfg .project .pydevproject + +# Mac files +.DS_Store + +# IDE config +.idea/ + +# Notebooks checkpoints +examples/.ipynb_checkpoints/ + diff --git a/New_HexagonalTopology.ipynb b/New_HexagonalTopology.ipynb new file mode 100644 index 0000000..a705d79 --- /dev/null +++ b/New_HexagonalTopology.ipynb @@ -0,0 +1,396 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we will see how to plot an hexagonal map that reflects the results of the training process. This example is an extension of BasicUsage.ipynb. Only the plotting section has new code." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ModuleNotFoundError", + "evalue": "No module named 'bokeh'", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlines\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mLine2D\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mbokeh\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolors\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mRGB\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 12\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mbokeh\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mio\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mcurdoc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshow\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moutput_notebook\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mbokeh\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtransform\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mfactor_mark\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfactor_cmap\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'bokeh'" + ] + } + ], + "source": [ + "\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.patches import RegularPolygon, Ellipse\n", + "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", + "from matplotlib import cm, colorbar\n", + "from matplotlib.lines import Line2D\n", + "\n", + "from bokeh.colors import RGB\n", + "from bokeh.io import curdoc, show, output_notebook\n", + "from bokeh.transform import factor_mark, factor_cmap\n", + "from bokeh.models import ColumnDataSource, HoverTool\n", + "from bokeh.plotting import figure, output_file\n", + "\n", + "# display matplotlib plots in notebook\n", + "%matplotlib inline\n", + "# display bokeh plot in notebook\n", + "output_notebook()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Load, Preprocess and Training\n", + "We load the seeds dataset, normalise the data along the columns and then train our SOMs. \n", + "\n", + "> Note, we are training a hexagonal topology because we will be plotting this." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " [ 1000 / 1000 ] 100% - 0:00:00 left \n", + " quantization error: 0.45378615630601005\n", + "0.1523809523809524\n", + "0.45378615630601005\n", + "0.45378615630601005\n", + "0.15238095238095237\n" + ] + } + ], + "source": [ + "from minisom import MiniSom\n", + "data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt', \n", + " names=['area', 'perimeter', 'compactness', 'length_kernel', 'width_kernel',\n", + " 'asymmetry_coefficient', 'length_kernel_groove', 'target'], \n", + " sep='\\t+')\n", + "t = data['target'].values\n", + "data = data[data.columns[:-1]]\n", + "\n", + "# data normalization\n", + "data = (data - np.mean(data, axis=0)) / np.std(data, axis=0)\n", + "data = data.values\n", + "\n", + "# initialization and training of 15x15 SOM\n", + "som = MiniSom(15, 15, data.shape[1], sigma=1.5, learning_rate=.7, activation_distance='euclidean',\n", + " topology='hexagonal', neighborhood_function='gaussian', random_seed=10)\n", + "\n", + "som.train(data, 1000, verbose=True)\n", + "\n", + "# some_file.py\n", + "import sys\n", + "# insert at 1, 0 is the script path (or '' in REPL)\n", + "sys.path.insert(1, '/path/to/application/app/folder')\n", + "\n", + "print(som.calculate_hexa_topographical_error(data))\n", + "print(som.quantization_error(data))\n", + "print(som.partitioned_quant_error(data,20))\n", + "print(som.partitioned_topo_error(data,20))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "***\n", + "\n", + "## Plotting: matplotlib\n", + "Below, we are plotting using matplotlib to create a static hexagonal topology." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "xx, yy = som.get_euclidean_coordinates()\n", + "umatrix = som.distance_map()\n", + "weights = som.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAIHCAYAAAD96HqjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5xcV333/77Te++zVatiy5JtuWJsWhwwEGyICWCqMRgCISGkkIQAhlAewi/lyRN6swWB2CGEgImNIRT3JnfLsvq26b3XO3N/f8zOalfSrmZ3Z1aWdN+vl17amVu+d2buPedzvuUcQZIkZGRkZGRkZGRkTg8UJ/sCZGRkZGRkZGRk+ocs7mRkZGRkZGRkTiNkcScjIyMjIyMjcxohizsZGRkZGRkZmdMIWdzJyMjIyMjIyJxGyOJORkZGRkZGRuY0QnWyL+B04IknnrhKpVJ9SpIkH7JglpGRObNoC4IQE0Xx7y644IJfnOyLkZGRAUGe525tPPHEE1dptdovj42NNfR6fU2hUMhfqIyMzBlDu90WqtWqbmpqSlOv1/9YFngyMicf2cu0RlQq1afGxsYaRqOxKgs7GRmZMw2FQiEZjcbq2NhYQ6VSfepkX4+MjIws7taMJEk+vV5fO9nXISMjI3My0ev1tbnUFBkZmZOMnHO3dhRr8di1JYn7D6SMT85kjeVGS2nUKFs7RuzlKza5ygpB6Od1ysic8nzrmW+5r5m4Jus1esVe9o+X46rbD91uf9+570sO+trOdObaQdlhICPzAkAWdyeJhtgWbnlg0nnbrlnPZKqsP3r7uMtYve7i4cQNl4+nNSo53PuC4tPWCzv/5x8/yVdyRvGtZ77l/tcn/3Xkvw/+t+eWq27ZdyKBFy/HVTf84oYts8VZHYAs8GRkZM4U5FHWSSBfbSre9q2HN37h53tHJ1Nlvcuk5e2XjvChV0zw9ktHcJk0TKbK+i/8fO/o27/98MZ8tSn/TjJnPNdMXJMdNg/XZouzuht+ccOWeDm+5OB0obAbNg/Xrpm4Jrue13qy2bRp0zl//ud/Hui+DgaD22+66SbvybwmGRmZ9UMWDetMQ2wL7925a+Kx6azFadTw/647nwf/5nf4/O9v56NXncXnf387D/7Nlfy/687HadSwayprufG7uyYaYruvMdo3vvGNY694xSs2Lnzv1ltvter1+h0f/vCHA0sdJ7P+vPGNbxwTBOFCQRAuVKlUF/r9/u1vf/vbR5LJpPJkX9t64jV6xVuuumXfiQTe0cKuFy/fapidnVXdcMMNw8PDw9s0Gs0FHo/n3Je+9KWb/uM//sPab1trZdeuXc9/9KMflT2XMjJnCLK4W2dueWDS2RV2P/rgi3n9+UE0qsU/g0al4PXnB/nRB188L/BueWDSOcjr+spXvuK4/vrrJ/72b/82/K//+q+RQdqSWTmXXXZZYXp6+ul9+/Y985WvfGX6V7/6le0973nPyMm+rvXmRAJvvYTdvn37NBdeeOHWu+++2/KpT30qvGvXrufuuuuu/a9+9atzH/nIR15wv0sgEBDNZnP7ZF+HjIzM+iCLu3WkLUnc+uiMB+Cmq7cy7jIuu/+4y8hNV28F4LZds572gOYk/MxnPuP5sz/7s7F/+Zd/mfrkJz+ZAPjqV7/q2LZt29lGo3GHw+E47zWvec2GyclJdfeY//mf/zELgnDhD3/4Q8s555xztk6nu+DCCy/ccujQIfUdd9xh2rJly1aDwbDjFa94xcZYLDbvYbrnnnsMl19++Sa73X6eyWTaceGFF2751a9+tfwXIYNWq5VGRkbEiYmJ5rXXXlu45pprMvfdd58VoNVq8dGPftTv8/nO1Wg0F2zevHnr97//fdvC4//yL//SHwgEtms0mgtcLtd5v//7vz/W3fajH/3IcuGFF26xWCznW63W86+44opNTzzxhG59P2HvLCXw1kvYAbz//e8fAXjqqaeev/HGG7PnnXde/YILLqj97d/+bfLZZ5/dA/DpT3/au3nz5q16vX6Hx+M59y1vectoKpWafxb+9V//1WkwGHb89Kc/NW/atOkcvV6/49JLL928d+9eTXef5557TnvllVdOuFyu8/R6/Y6tW7eefeutty7yDIbDYdWVV145odPpLggEAtv/5V/+5ZiB4NFh2X5cm4yMzAsXWdytI/cfSBmn0hW9y6TlNdv8PR3z6m2++Ry8+w+k+i6CPvzhDwe+8IUvBP/t3/7t0B/90R9luu83Gg3hk5/8ZGTXrl3P/dd//deBTCajetOb3rTh6OM/+9nPBv/pn/5p9p577nm+UCio3vSmN0187nOfC3zta1+bvuuuu/bt379f/9d//dfzYd58Pq9829velv71r3+977777nv+nHPOqV577bWbFgpAmeXZs2eP5re//a1VpVJJAJ/73Oc8X/va13yf/vSnQ4899thzr33ta3PXX3/9xIMPPqgH2Llzp+3rX/+675//+Z9nnnvuud0//vGPD1x88cXl7vlKpZLiT/7kT+IPPPDA87/85S/3WSyW1hve8IaNtVrtBVuufbTAu/b2a8+59vZrz1kPYRePx5X33Xef9T3veU/CarUe4w1zuVwt6FSP/uM//uPsU0899dwtt9xy+MknnzTeeOONi7x6jUZD+OIXv+j/5je/OXn33XfvLRQKqhtvvHG0u71QKCiuuuqqwp133rl/165de66++ursu971roknn3xyXny/7W1vG5uentbdfvvt+/7zP//z4L//+7+7wuHwsiKsH9cmIyPzwkWull1HnpzJGgGuOsd7TCh2KbQqJa86x8e/PzLDkzNZ40s3u8snPqo3HnjgAcvdd99tvfXWWw++5S1vyS/c9pGPfCTd/Xvr1q2Nr3/96zMXXHDBOYcOHVJPTEw0u9s+/elPh1/96leXAG644YbExz/+8ZH77rvv+SuuuKIC8Ja3vCX9s5/9zN7d/5prrikutLNz584Zr9dr+/GPf2xdKC5fEHSrYle6fQBVtPfdd5/VYDDsaLfbQr1eFwA+/elPzwJ85Stf8X3gAx+IfeADH8gA/Mu//EvkwQcfNH/xi1/0/fSnP52cmprSulyu5u///u8XtFqttGnTpsZLX/rSSvfc7373u3MLbd12221Tdrt9xz333GO86qqrSv3+LP2iK/Cuvf3acwqNggrAorGIgxR2AHv27NFKksTWrVuXnd/ypptuSnT/3rJlS6NarYbe9ra3bWy1WpNKZWcs02q1hK997WvT5513Xh3gwx/+cOxP//RPx9rtNgqFgssuu6x62WWXVbvn+eIXvxi76667bLfeeqt9x44d0WeeeUZ77733Wn/xi1/sfdWrXlUG+P73vz959tlnbx/0tcnIyLxwkZ/QdaTcaCkBbAb1iXZdhE2vXnR8v9i0aVN1eHi4/vnPfz6wMCQDcP/99xuuvPLKiUAgsN1oNO64/PLLzwY4fPjwIo/ARRddNN/x+Hw+EeDiiy+ef8/r9TbT6fT8ICIcDqve9ra3jY6NjW0zm83nm0ymHZlMRj0zMyOHe5bhoosuKj766KN77r333uevv/76xMte9rL8xz/+8UQmk1Ekk0n1S17ykkUi7EUvelHxwIEDOoB3vOMdmUajIYyMjGx/85vfPHrzzTfbq9XqvFfuueee01599dXjw8PD20wm0w6fz3deu91mcnJS/k2OgyRJPXk0b7/9dvOLX/ziTV6v91yj0bjjne9850Sz2RRmZ2fnGwCNRiN1xRPA0NBQs9lsCt1imUKhoPjABz4wNDExcY7FYjnfYDDseO6554yzs7MagGeeeUavUCh42cteNi/WN2/e3HC73U2WoR/XJiMj88JF9tytI0aNsgWQqyzb7h5DrtpcdHy/8Hg8zf/5n/85+IpXvGLLy1/+8s2//e1v97vd7lahUFBcffXVm6644orCd77znUmfzycmEgnVq1/96i31en3RgECj0cwnAgpzky5rtdpF7y1cv/itb33reCqVUv393//97MaNG+s6nU561atetbnRaLzwBhpLeeBOwjx3er2+vW3btjrAJZdcMnvppZdu/qu/+qvAJz7xidhSx3R/j40bNzYPHjy4+/bbb7f87//+r+XjH//40Be+8IXA448//rzFYmlfffXVG30+X+NLX/rS9MjISFOtVks7duw4p9FovGDDsnCkeKLQKKgsGosIUGgUVDf84oYtg/TenXPOOTVBENizZ8+SeYn79+/XvPnNb9503XXXJT/zmc9EPB6P+PDDDxv+8A//cEPX8wqgVCoXJdJ2f7N2u1Md/8EPfnDo7rvvtn7+85+fPfvss+tGo7H9zne+c/zo32YlE6n369pkZGReuLzwOtTTmB0j9jLAL56L0xB7K1yriy1++Vxs0fH9ZHx8vHnPPffsq1Qqipe97GWbY7GY8umnn9blcjnVP/zDP4Rf85rXlHbs2FGLxWJ9GQg8/vjjpj/8wz9MXHfddfmLLrqoZrVaW8lkcmWuTBk++clPRr/61a/6CoWC0u12N++77z7Twu0PP/ywedOmTfNhQ4PBIF133XX573znO7OPPvro8wcPHtT96le/MsViMeXk5KTuYx/7WOwNb3hD8YILLqjl83llq9V6QXfgRxdP/PiaHz/342t+/Fyv8+CtBa/X27riiisKN998syefzx/ThqZSKeWDDz5oaDabwre//e3Z3/3d3y2fe+659UgksmJP6K5du0xvfvOb0+9+97tzl156aXXDhg2NmZkZbXf79u3bq+12m7vvvns+H/fAgQOa5Z6pfl2bjIzMCxdZ3K0jV2xylcechmqqVOfnu6M9HXPX7hipUoNxl7F6xSZX38UdwOjoaPOee+7Z12w2FS972cu2TExMNDQajfRP//RPnj179mhuu+0262c/+9lgP2yNjY3VbrvtNufjjz+uu+eeewx/8Ad/sEGtVssrcKyQ173udcWJiYnqJz7xCf8f//Efx77+9a/7vvGNbzieeeYZ7Uc+8pHA448/bvrrv/7rGHQqH//5n//Z9eijj+r37t2r+drXvuZSqVTS1q1ba263u2Wz2cRvfvObrt27d2vvuOMO0wc/+MHRo702LySWqortdR68fvD1r399WpIkzj///LNvvvlm+9NPP6198skndV/84hfd27dv33r22WfX2+02n/3sZ7179+7VfOMb33B84xvf8KzUzvj4eP2OO+6w3X///YZHH31Uf+211y7y2p133nn1l7zkJYUPfehDo7/61a+MDz74oP6d73znmFarXXL02K9rk5GReeEii7t1RCEIvPWSkQTAZ362h8nU8lptMlXmMz/bA8B1Fw8nBrnW7PDwsHjPPffsA3j5y1+++ctf/vLkXXfdZduxY8e2z3/+84EvfvGLs/2w8+1vf3uqXC4rLr/88q3veMc7NrzrXe9KBYPBRj/OfabxJ3/yJ/Ef/vCHruuuuy73wQ9+MPapT31q6MILLzznzjvvtO3cufNQNxHfbre3vve977muvPLKLTt27Djn9ttvt3/ve987dNZZZzWUSiXf/e53D+/du9dw4YUXnvORj3xk9NOf/nR4Ybj9hcSJpjtZL4G3devWxmOPPfb8S1/60sJNN900dPHFF59z1VVXbb7jjjtsX/rSl6YvvfTS6mc/+9nZr33ta97zzz9/286dO12f/exnQyu186UvfWnW5XKJr3zlK7dcffXVmy655JLyRRddtCi/8gc/+MHk0NBQ43Wve92Wa6+9dtOb3/zmzHLPVL+uTUZG5oWLIA1o7rQzhaeffnrqvPPOS/W6f0NsC2//9sMbd011JjK+6eqtvGabf1H1bF1scdfuGJ/52R7S5QYXj9kLP7jxRQflNWZfIMhry54UVjKP3XrOeSdzhKefftp13nnnjZ3s65CROdORCyrWGY1KIX37+osP3fjdXRO7prKWP73tKT5r2sOrzvFh06vJVZv88rlOKBbg4jF74dvXX3xIFnYyZzq3H7rd3qtY63rwugLv9kO329937vvk5bdkZGTOCGTP3RpZqeeuS0NsC7c8MOm8bdesZzJV1h+9fdxlrF538XDihsvH07Kwk5Hp8K1nvuW+ZuKabK9euHg5rpKF3fohe+5kZF4YyOJujaxW3HVpSxL3H0gZn5zJGsuNltKoUbYuGLWXL9/oKg8yx05GRkam38jiTkbmhYEclj3JKASBl252l/u58oSMjIyMjIzMmYtcLbt22vKknjIyMmc6c+1gbxN4ysjIDBRZ3K0RQRBi1Wp1yZnqZWRkZM4EqtWqThCEJVdMkZGRWT9kcbdGRFH8u6mpKU25XNbLHjwZGZkzjXa7LZTLZf3U1JRGFMW/O9nXIyMjIxdU9IUnnnjiKpVK9SlJknzIgllGRubMoi0IQkwUxb+74IILfnGyL0ZGRkYWdzIyMjIyMjIypxWyl0lGRkZGRkZG5jRCFncyMjIyMjIyMqcRsriTkZGRkZGRkTmNkMWdjIyMjIyMjMxphCzuZGRkZGRkZGROI2RxJyMjIyMjIyOzCgRBuFkQhIQgCLuX2C4IgvCvgiAcFAThGUEQLliP65LFnYyMjIyMjIzM6tgJvHqZ7a8BNs39ez/wtXW4JlncycjIyMjIyMisBkmS7gUyy+zyeuB7UoeHAZsgCP5BX5cs7mRkZGRkZGRkBkMQmF3wOjT33kBRDdrAQlwulzQ2NraeJmVkZGRkZGROcR5//PGUJEnu7uttOy6VSoX8wO1OH973HFBb8NY3JUn65sANr5F1FXdjY2M89thj62lSRkZGRkZG5hRHEITpha9jsQRXv+fTA7e78/+8uyZJ0kVrOEUYGF7wemjuvYGyruJORkZGRkZGRmatmAxarrhg48Dt7Fz7KW4H/lgQhNuAS4G8JEnRtZ92eWRxJyMjIyMjI3NKUarUuf/JQyf7MhAE4Vbg5YBLEIQQ8ClADSBJ0teBO4HXAgeBCnDDelyXLO5kZGRkZGRkTilMxheG506SpLeeYLsEfKhvF9QjsriTkZGRkZGROaUolevc/8TJ99y9UJHFnYyMjIyMjMwpRcdzNzFwOzsHbmEwyOJORkZGRkZG5pSiVGlw/5OHT/ZlvGCRxZ2MjIyMjIzMqYcgnOwreMEiizsZGRkZGRmZUwqTQcsVO+Sw7FLI4k5GRkZGRkbmlKIzFYocll0KWdzJyMjIyMjInFJ0PHcbBm5n58AtDAZZ3MnIyMjIyMicUpQqde5/avJkX8YLFlncycjIyMjIyJxSyJ675ZHFnYyMjIyMjMwphey5Wx5Z3MnIyMjIyMicYghz/2SOhyzuZGRkZGRkZE4pTAYNV5w/PnA7OwduYTDI4k5GRkZGRkbmlKJUaXD/01Mn+zJesMjiTkZGRkZGRuaUouO5Gxu4nZ0DtzAYZHEnIyMjIyMjc0pRqjS4/6npk30ZL1jOaHEnSRLpdJpwJIrFbGJoaAi1Wr1u9jOZDDOhMCajgZHhYTQazbrZzuVyTM+G0Ou0jAwPo9Pp1s12oVBgemYWtVrN6Mgwer1+3WyXSiWmpmcQFAJjIyMYjcZ1s12pVJicmqHVbjM+OozZbF4329VqlamZGer1JhvGRrBYLOtmu16vMzU9Q6laZWJ0BJvNtm62G40GMzOz5IolNowO43A41s12s9lkNhQmk8sxOhTE5XIhrNNamKIoEo5ESKezBAM+PB7PutlutVpEo1ESyRR+nxev14tCoVgX2+12m1gsRjSewOdx4/f71822JEnE43HC0Rhul5NgIIBSqVw328lkknAkit1uYygYRKU6vbt32XO3PIIkSetm7KKLLpIee+yxdbO3HKVSienpGdoIeH1+CoUChVwav8838MaoUqkwNT1DtSHi9gaolksUcmkCPs/AG6Nqtcr0zCzFSg2Xx0+9XqOQSeH3uggMuDGq1+tMz8ySK5RweAK0mk1ymTg+t5PggBujRqPBzGyIdLaAw+NDkiSyyRguh42R4cGK+m4nn0hlsTg9KBQKcqk4TpuZ0ZHBinpRFAmHI0TiKUwON2qNhmwiisNiYHRkZKCivtVqEYlGmY7E0ZgdaLRaSpkEdqOODWOjAxX17XabaCzGVCiKymRDpzdQSCew6dVsGBsdqKjvdvJToQhqgxWD2UwuGcegFtgwNjpQUd/t5Gdmw2iNFiw2O5lkHIUkMj42OlBRL0kSmUyGqZlZtHozdoeDdCpJq1ljfB1EfTabZXJ6BqVGj8PpJptJIdYqjK2DqM/n80xOz9AWVDhcPgq5NI1KkdGRoYGL+mKxyOT0NC1Jicvjo5jPUSnlGA4G1lXUDxpBEB6XJOmi7mtXcEK6+g+/OHC7Oz/1pkV2TxXOOHHXaDSYDYXIF4p4fQHsCx76eq1GNBKm2agzOjLc98ao2WwSCodJpXPY3V7sDuf8g9doNEjEwoj1KmMj/W+MuiP5WCKNzenB4TzS4DSbTVLxKI1aiZEBeBi6nXwklsBic2N3uecFrCiKpBMxquU8o0P9b4y6I/lQJI7B4sDlOSLcW60W6WScSiHLcLD/or7byU+HImhNNpxu77x4brfbZFJJyvk0wwEvgT6L+m4nPzUbRq034/D45sVzu90mm05RzqUI+tx99zB0O/mDUzO0VTpsbh+qOfEsSRLFbIZKPsWQx8XwUP9FfTab5cDkNE2FBrvbh3pOPEuSRDGXpZxNEnTbGRke7ruoz+fzHJqcpimosHt8aLVHxHMxnyOfiuGxWRgdHem7qC8Wi0xOTSNKCty+ILoF4rlYyJOKRbCZDYyM9N9T3/GIz9JstfH4ghgWiOdSsUgiFsao0zA6OtJ3Ud8dLFdqIh5/AKPJdGRbuUwiGkanUTA22n9RX6vVmJqeoVCu4vIGMZmPiOdqtUIyFkajhPHRkb6L+nq9zszsLLlCGZc3gNVqW3BdVeKxMIq2yNjoCFarta+2TwbHFXcfWAdxd5Ms7k7IyRR37XabaDRKPJHA5nDh8fqW7EyLhQLRSBi9Vs3IyNobo3a7Pe+uN5jtuL2+JTvTcrlEIhpGr1ExNjqCwWBYk+3FI3krbq9vyc602xiplTA+OoppQSO5WtuZTIap6VlUOiMub2DJzrRWq5KMRVAJLcZH+xM27I7kBZUOty+ARqM97n6Nep1kLAytBuNj/fEw5PN5Dk9N0xLUOL3+RZ38QpqNBulElHaz1rewYaFQYHJqhnpbwOkLoNMd//4Vm01SiSjtWpmxPnkYSqUSh6emKdRbWF0+dEvcv62WSC6VQKqW2DAS7Iuor1QqHJ6aJluuY3X70BuPf/+2Wi3y6SRiOc+G4UBfRH2tVmNyeppssYrN7cNoPv792xHWSWqFDCMBX19E/RGPeBmn149lQSd/rO0U+UwCv7c/or7RaDA7GyKTL+Dy+LHa7Mf9HSVJIpNOkU3FcbscfQkbdgfLyVT2mMHy0bZz2QyZZAyX3cZwHzz1RwbLKSwODw6ne8n7t5DLkk5EcfTJU98Ne0fiSax2F06XZ5m+LE8yHsFi1A9E1K8nR4u7sY1bpU/+8/cGbvfG118si7sTcbLEXSaTYWY2hFanxx8c6unhkiSJdCpFMh7F5XSsOmyYy+U6OV4qDR5/cMlO/mjbuWyGTCKGy2FddS5goVBganoGUVLgOWokvxz5BY3RanMBS6USU1Mz1MQ2bt8Q+h5FarGQJx0PY7MYV50LWKlUmJyeplITcXmDi0byy15zsUAqHsFs0DK2Sg9DN7ctX6rh8PgXjeSXveZyiXQiilGjYnxsdbmA9Xqd6ekZ0oUSdrcf8xKd/NHUqhVS8Qh6VSdsuBpR381ti6ZzGJ0eTBZbT2KtUauRS8XQK9psHB9blajvhr3DiTR6uwuLzdGT7WajTjYZQyuJbBwfXZWo74a9Q/EkRpsLm7M3gdxsNMgkYwjNGhNjI6sS9fOdfCyJ2e7CscAjvuw1N5skE1GalRIjw6vz1Hc94uFIDLPdiWuBV3pZ26JIMhGjUlx92LDrEZ8NRzGYbcsOlhfSarVIJRKUCxmGAqvz1C8cLGsMFlxef0/9QrvdJpNMUMynGPJ7V5V+szDsrdYZ8foCqNU99mXpJLlUAp/Xta65gP3kWM/dRunqD/x/A7e786Y3yuLuRKy3uKtUKkxPz9AQW/iDQUymlbvFRVEkFotSymcJBnpvjKrVKjNzuW1uXxDzKjqtTmMUo1TIMuTvvTFaOJJ3LTOSX452u006laCYTRFcQWN0dG6b1bbyTqvr3ShkkwS87p5zAZvNJqFQmHg6i93lw2bvrZNfiCRJHe9GOo7P03suYHckH4mnMNvd2Hvs5I+2nc9lKKQSeFw2hnsU9d2wdyiawGRzYnP21skfTSGXJZeK4bJbGO1R1B/JbYugNtmxOlwoVtFxlIsFiqkYbpuJsR5zAbud/OGZMAqDBZvLs6pOq1IqUkjFcJgMbBjrTdR3O/nJmTBKnRG7Z2mP+LK2yyWyiShmnYYNPYr6hZ28SmfEvYxHfDmq1QrJaCdsOLaCsGE2m2VqLrfN61/aI74ctVqVRDQCUpPx0d5zAbu5bQhqPP4A2lUM/hr1OvFYBEmsrygXsBv2brYVuH0BdPqVR1WajQbJeIRWo8L4aO+ivlwuMzU9TU2U8PqCGAwrH/yJzSaJeJRapcjoKkX9yeT4nrt/G7jdG19/kSzuTsR6ibtms0k4HCadzeHx+XEs4a5fCdVqlUg4BO0WoyPDSzZG3U4+nkhjd3lwuJZ21/dKvV4jEe00RmPLNEYLR/KWFYzkl6Mx3xgtnwvYHcnPRmKYLE4c7tV1tAvp5gI2ayXGRoZwOpcOu8TjcWZCUfRmGy5PbyP55RBFkVQ8Rq2cZ3R4aVF/dG6bc5Wd/EJarRaZZIJaKctI0L+kqO928oenZ1FoDB0vwhrDTV0PQ6WQYSSwvKjv5raJCg22Bblta7FdyKap59MM+70MBZcW9fl8noOT09QkJTa3F00PHvHlkCSJfDZNLZdi2OdeNmxYLBY5NDlNtQUOj79nj/hytgu5LMV0Ap/LvmyBT7lcZnJqmnqzjcu/uk7+aPK5LJlEFLt1+bBhpVJhamaGaq2Jx7+6wfLRFPJ5krEwFtPyuYC1Wo3pmRkKpRpunx+zZe05ZKVikWQsglGvWdZT381ty+RLOD2BVQ2Wj6ZSLpGMhTFoO+k3S4n6RqNBKBQilc3jdPtXNWA9mmqlQjwWRq2QViTqTzbH9dx98B8GbnfnJ6+Vxd2JGLS463bykWgUi82B1+fvu/s5n8sRi4QxGfWMjIyg1WrnbSeTSWZCEfQmC+4e3fUroVQskIiGMRt0jCyYQmSxu96E2+vve6J4uVwiFYug1yoZGx1dlAvYzW1TqHW4vKsbyS9HtVIhGQ+jVcL4UWHDfD7P5NQMbYUKtze4qpH8ciyXC1gsFjk8NU29LeDyBNbcyR9No14nFY+gaHemL1ko6kulEpNTM1SaLZzeAPo+dPILaTYapOIREOvH5AIuzG2zuH0YlshtWy1is0kuFUdoVpk4KhewVqsxOTVDqljG7PQumdu2WlqiSDadgOPkAnY94qlcEYvL23PYu2fbrRbZVIJGKc/Y0GJRP9/JZwrYPb4lc9tWS7vdJp2MU8yljwkbiqJIKBQimc7icPuWzG1bk+1Uknwmic+zuGpfFEUic4VgVqcbZx8GywtZmAvodTsXifruYDkcTcyFvZfObVut7Vw20/GWH1W1Px/2jsYxWR09h71XQj6XJZWIYLMMvmq/Hxzjudu0VfrkP39/4HZvvOZCWdydiEGKu0qlwsFDh1GqNPiDwYEmjrbbbZLJBJlkAr/Pi8PhYP/Bg7QkJV5/77ltq0GSJDKpJNm5/Amvx8OBg4eoi23cq3TXr8R2Lpshk4rhcdgJBgMcPHSI8gpz21ZLPtfJQ3TaLYyNjnDw0GEKpSouX7Dn3LbVUsjnSCci2CxGNoyNMTk1TSZfwub29WUkvxylYoFsIorFqGPjxAZmZmeJp3PYXD4sfe7kj6ZSLpGORzDr1GzaOEE4EiUUT2GwuTD3wYuwHLVqhVwihkWr5KzNG4knkkxHYuhsLqz2/gqMo6nXquSSMQxKOHvzRrK5HFOzEfRWJzana6DTFTUadTLxGCqpyVmbJjrTNs1GMFrtiyquB0Gz0SAZiyA2qmzeuKEzR+HMLMY5j/ggpytqNpsk4xFqlRIbxkYBODQ5hdZgweP1rdkrvRwtUSQZj1Mp5dgwNoJarWb/wcOotEbcPn9PuW2rtr2gan9sJIjBYODAocMo1Dq83gAabX8Hywtpt9ukUgkKmSQjQwF8Pt/AbK2V43ruPvSPA7e78+O/f0qKu9NmlsN0Oo3BZCEQDA7clkKhwOv1Ybc7OLB3D4IgIKj0jA6PDNy2IAg43R6sdgeH9z2HVqNBRMXI+OjA8ycEQcDucGKx2pg68DwGg55aU2Jkw+Z1yd2w2hyYLTamD+7FYs5QrDYY3XjWuti2WG2YzBZmDu8nm82SKZQZ2rB5XSZINZktGE1mwtOHyWQyxNM5hjdsWVVu20oxGE3oxzcRmZ0im80yG0vgGdu8LgnZOr0B3+gGEuHZjnd4Nox3fAvKdZicVavT4x0eJxkNk81mmQ5HcQ9vGGhH20Wj0eIbHiUVj5FMpchkc3iHxwY6cOui1mgIjIyRTiaIJ5JUq1U8/pFV5Qyv2LZaTWBolGwmTTyRRJIk7HOhyEGjVKnwBYMUCiaisThajRaTzY3D5R68baUSjy9AxWwhHA1ht1rQm+x4vIMXWgqFAo/Hh8ViJTRz6AUt7o7PqZMzuN6cNuIOQKVe34+zcBS73rOBq1Sq+ftaqVSta2KsUqlEUHTsKdbZtkKhmBc1SqVy3W13RY1CoVi3me+hI6wX2V7HajdBEFB17S24jvVioZhbD2F3tO1udONk2IaO7ZPSvjQbJ812Y/7v9VsxqGv7eH+vB0rlyexP1vd77gcmg4Yrzh28Q2XnwC0MhtNK3K2G7z88xY8eD1GptzBolfzBhUO840Vj62L7UKLEo1NpyvUWRq2SS8acTHgGG9rscve+BHc+G6VYFzFrVbx2u5+Xb/Gsi+1DyRKPTWUo1UVMWhUXjTmYcK/P5z6Ztu/dn+Dnu2Pztl+zzcdLN6/Pd37v/gR3LbD96nW0PZUq8+RMlkqjhUGjZMeInTHX+i37drK4/0CSXzwXp1RrYtKpueocL1dsGrwn6GRz994EP3s2QqkmYtKpuHp7gJeftT73GnSe8UcnM5TrIkatikvGz4z25UyjVGlw/zOzJ/syXrCcseLupp/u5sdPhGgflXL4f+7cy9//fC/XXjDEZ16/bSC2H5lM8617D/PETPaYbReM2HnfSzdw6bhzILa/99AkNz8wSaneWvT+b/YlMGmVvOfycd512fhAbD86meY79x/mydncMdt2DNt47xUbuGRAn/tk2v7Bw9PsfGiS8lHf+T37kxi1St592Thvf9HowGx/dxnb1w/Q9hPTWb7/8DTPhvLHbNs+ZOUdLxrlglH7QGyfTG59dJp/e3CacmPxd37v/iRGjZJ3vniUt14ymO/8ZPLdByf59v2TlOriovd/szeBSavixivGuf7Fg2lboPOMf+u+wzwxkztm2wUjNt73ktOzfTlTkT13y3NGiru3feshnpo90uEYNUpMWhWluki50aItwY8eD3EoWeIHN76or7Z/8mSIz92xh7YEBo2SK8/24jZpSZbq/Pr5OE/MZPnQDx7nE687hzec39/8wU/dvps7no3Ovx6267EbNGQrDWazVUr1Fv/6m4NMpsp86ur+CtufPhXmCz8/8rl/5ywvLpOWVKnOb/bGeXI2x4dve4K/fe1Wrjmvv5/7ZNr+3P/s4c7dR77zoF2Pw6AhU2kQzlYp11t85e6DTKXKfPx1W/tu++cnsP3VAdn++bNR/uV/99OWQK9W8pLNLpwmLelSnfv2p3g2lOdj//UMf/bKzbx6u7+vtk8mX7hzD3ftjs+/Dtr02A1qspUm4VyVcqPF1+8+zFSqwsdee/ZJvNL+ctNPn+VnzyxuWxxGDZlyt20R+ZdfH+BwqszfXdP/QfNPngzz+TsXtKtneXGbtSSLdX69N84TMzk+9O9P8Inf28rr+9yunsz25UymVG1y/7Oy524pTijuBEG4GXgdkJAkadtR2/4C+EfALUlSajCX2F9u+unueWHnMWvZecPFjLmOuM2nUiXefcsuEsU6T87kuOmnu/vmwXtkMj0v7G64fJz3XD6OUXvkJ/irq87i5gcmueWBST73P8/ht+r65sH73kOT88Lu3KCVL77xXNzmIxXFyWKNv/6vZ3gmnOdnz0QZdxn75sF7dDI93/i9+8VjXH/Z4s/9F6/cwncfmmTng1P8nzv34LPo+jbKPZm2f/Dw9Lyw2xa08Pk3bD/mO//4T55ld7jAHbujjLmMffOi/eDh6Xlhty1o4XPHsf2JOdt39tn2E9PZeWF33SXDvPXSEQyaI9/5h35H5NZHZrjt0Vn+7//ux2PRnRYevFsfnZ4XducELHzm9efgWvCdp4o1bvrpczwXKXDX7hhjLsNp4cH77oOT88Lu3CEr//jG83BbFtxrhRp/+V9P80woz+1PR9jgMvbVg/foZHpe2N3w4jFuOKpd/ehVW7jlgUlueXCKz92xB7/19GhfznRMejVXnDs8cDs7B25hMPTiudsJfBlYtIibIAjDwKuAmf5f1uD48RMhoCPs7v7oK47ZPuYycfdHX8HL/+G3JIp1/vuJUN/E3bfuPTwv7P7kdzYds92oVc2/f8sDk3z7vsN9E3c3PzAJdITdze++5JjtbrOOm999Ce/Z+SjPhPPc/MBU38Tdd+4/PN/4/dHLj/+5u+/vfHCKmx+Y7FsDeDJt73yo851vC1r45jsvPma726zjm++8mPf/2y52hwt896HJvgms7y6w/Y0lbH/jnRfzh3O2v9dH299/eHpe2L33JRuO2W7QqObfv+3RWX7w8PRpIe7+7cFpoCPsvvqOC4/Z7jLr+Oo7LuSPvv84z0UK/NtD06eFuPv2/XNty5CV795w6THb3RYd373hUq6/5RGeCeX59v2TfRV337rv8Lyw++Ml2tXu+7c8OMW37zs92pcznY7nLnSyL+MFywnL/SRJuhfIHGfT/wX+im451ynA9x+ems+x23nDsR3eQr5zfWd7S+oct1YOJUo8MZPFoOnktS3HDZePY9AoeXw6y6FEac22796XmM+x++Ibz1123y9c29leqovcvS+xZtuHkiWenM1h0HTyu5bjXZd1PvcTM1kOJdf+uU+m7Xv3J+bz3D7/hu3L7vu513e2l+ot7t2/9u98oe3PncD2Z/tseypV5tlQHr1ayVsvXT4f5rpLRtCrlTwTyjOVKq/Z9snk/gPJ+Ry7z7z+nGX3/btrOtvL9Rb3H0gO/NoGyd17E/M5dv/4xvOW3ff/m9teqovcvXft9xp0nvEnZjrP+A0naFff3W1XT4P2RQZMeg1XbB8e+L9TlVXl3AmC8HogLEnS06fS2nQ/eryj8o0a5aJQ7PGY8JgwaJRUGi1+9HhozRW0j06lAbjybO8it/3xMGlVXHmWl589E+HRqfSaK2jvnAvHDtv1i0Jzx8Nr0TFk1xPKVrnz2eiaK2gfm+qMC37nrN4+9yu2eLjj2SiPTWXWXGV2Mm3/fHcM6OS5neg791h0BG16wrkqP98dW3MV612rtH1XH2w/OVck9JLNrkWh2ONh1Kq4YrOL/30uzpMz2VO6gvYXz3XCsUGbflEo9ni4LToCNh2RXI1fPBc/pStof/ZsBJhrWyy9ty0/ezbSlwraRyc7z/iVPT7jv3OWh/95Jsqjk6d2+yIDpWqD+3fLnrulWPFEXYIgGIC/BW7qcf/3C4LwmCAIjyWTJ3eUWpnzZphO8CB26e5XOarScDV0PSluU2+ToLrM2kXHrYXi3MjabuhtlnXH3H7Fo6reVkN3VO/q8XO75z730RV3p6ptR4/fud2oPi1sV+a8V84ev3OnUbPouFOVUq0JgN3Q23xh3Wexe9ypSqk2d68Ze2xbjN3PvfZ7DaA8d892n90T0W1/y6d4+yLTRViHf6cmq/HcTQDjQNdrNwQ8IQjCJZIkxY7eWZKkbwLfhM7yY2u41jVj0HYmX+314eru1z1uLRjnzpEs1XvaP1WsLzpuLZjnRGq20jjBnh0yc/uZexTBy9EVyKkeP3dy7nP3KsBf6LYzPX7n2XLztLBt0HTu13SP33m63Fh03KmKSdcRddlKb2Kt+yx2jztVMenm7rVyj21Lufu5+zNRQ9dj1n12T0S3/T2Rp60XTmb7ItMNyw4N3M7OgVsYDCu+yyRJehaY96cLgjAFXHQqVMv+wYVD/J8791JutJhKlZYNzR5KlOa9CX9w4dpvoEvGOkm0v34+zl9dddayjUupLvLrvfFFx62F127385t9CWazVZLF2rKhunihRihbnT9urVw01lk66Dd74/zFK7ec8HP/di7Pr3vcqWr7Ndt83LM/SbiH7zxRqBHOVeePWyuvXqXtV/fB9o6RTmHEfftTfOh3xGVDs+W6yP37U4uOO1W56hwv9+5PEs5VSRVry4Zmk4UakVxt/rhTmau3B/jN3rm2pVBbNjS7sG25enugL/YvGe88q7/eG+ejV534Gf/NXK5f97i1cDLbFxk5LHsiThiWFQThVuAhYIsgCCFBEN47+MsaDO940Rhzq2bx7lt2Lbvve7/b2a4U6MuKFRMeExeM2Kk0WvOVq0txywOTVBotLhy192XFipdv8WCa8wD+9X89s+y+H/txZ7tJq+rLihUTbhM7hm1UGq35Cs6l+N5Dnc99wYi9LzkpJ9P2Szd75r2uH//Js8vu+4mfdrabtMq+rBqx0PYnTmD7k322PeYysn3ISrXZ4tZHli+kv+3RGarNFucOWU/pfDuAKza5Mc55H2/66XPL7vup2zvbjVrlKZ1vB/Dyszzznqi//K+nl933r+a2m7Sqvq1YMeE2ccFI5xm/5QTt6s5uu3oatC8yc567bUMD/3eq0ku17FslSfJLkqSWJGlIkqTvHLV97FTw2nW59oLOj5Uo1nn5P/z2mGrUQ4nS/DQoAL9/Qf9+3Pe9dAMKoSPevvSbA8eEh0t1kS/95gC3PDCJQoAbjzONxGrpVug+E87znp2PEi/UFm2PF2rz06B09h/rm+33XtH53DsfnOKrdx//c3/17gPsfHAKhcAJq4lPFdvvnqug2x0u8P5/20XiqO88UajNT4MCnLDibiVcv8D2Hy5h+w8X2O7nqiTveNEoCqEzzcl37jt8TH5TuS7ynfsOc9ujsygEBrZCxnrzzhd3PsdzkQJ/9P3HSR71nScLtflpUADeednp8blvvGKubQnluf6WR47btnSnQVm4f79430vm2tUHp/jyEu3ql39zgFvmnvEbX3J6tC9nOqVqg/ufCw/836nKGRf8/8zrt3EwUeSp2TyJYp2rv3w/hgUrVCxM7N4xYuvrEmSXjjv5xO9t5XN37OGWByb5j10zXHmWF5dZS2puJvVKo4VCgE+87py+LkH2rsvGOZQsc8ezUZ4J5/m9L93H0IIVC7rhEoCrz/X3tbO/ZNzJx16zlS/8fA87H5zih4/N8ootnvkZ5H+7LzH/uf/2tVv7Og/UybT99heNMpkqc+fuKLvDBd7w1Qc6KxYY1WTLzflwKMDvbfP3VeR0bf98zvbvL2P7tX22fcGonY+8cjP/8r/7ue3RWX76ZIQrNrtwGjWkyw3u35+i2ux853/2ys2nxRx3AG+9ZJSpVJm7dsd5LlLgD77+EAGbbn4VmG4oFjoh8NNhjjuA6188zqFkiZ89E+WZUJ5X/797O23L3AoVC9uWa84L9H0JskvGnXz8tVv5/J17uOXBKf7jsVl+5yzP/Mo/v9l75Bn/xO+dPu3LmU7Xczdodg7cwmA448QdwL+/7zJu+ulu/vuJEC2pU6m3UNQphY7HbhBry75hxxB+m55v33eYx6ez/OyZyKLtF47aufElg1lb9u+u2caE28jND0xRqouEstVFDa9Jq+I9l48NZG3Z158fxG/VcfMDkzwxk120DBp01tR9z+XjA2n8TqbtT7xuK+MuI999qLOebzhXXSSsTANc37Vr+3vL2H7XgGy/Zrsfr0XHDx6e5plQnv99Lr5o+7lDVt5+Gq4t+7HXbmXMZeTfHpqmXG8RydUWiTqjVsk7Lzv91pb9zOu3M+E2za8te7y2ZZBry75hR5CATce375vk8Zks//PM4mf8whE7N77k9GtfzmRK1Sb3746ceMczlNNK3LVb7Z73/czrt/GZ12/j+w9P8aPHQ1TqLQxaJX9w4VDPOXbtdvu4f5+IS8edXDru5FCixKNTacr1FkatkkvGnD3n2LXb7fnpo9vt3qeReNdl47zrsnHu3pfgzmejFOsiZq2K127395xj1263kSRpxbYvGXdyybiTQ8kSj01lKNVFTFoVF405es5DkSQJae67Xsl33i/bXZuSJCFJEr3M8/j2F43y9heNcu/+BD/fHZu3/ZptvhXluXW/a2nu+1+p7bsW2H71im3Pfddz34FCceJZlC4YtXPBqJ2pVJknZ7JUGi0MGiU7RuwryrFbeI/1artfLH7GWyiVJ67qfeslHfF2/4Ekv3guTqnWxKRTc9U53hXl2HU+d+ezrqRt6wetdpvuJ+31Obv+xR3xdvfeBD97NkKpJmLSqbh6e2BFOXZHf+e9svAZf3QyQ7kuYtSquGS892d84ffcWuf2pS2trj/pByv5nl8wnNozlQwcodtJrwcXXXSR9Nhjjw3k3MVikYOHDqM3mvAHgqjVg5tiQJIkspkM8VgEl8OO0+nkwMFDKDV6PP4gGk1vcz6tlnwuSyoewWGzEPD72bf/AJJSg8cXQKtdfiLRtVIo5EnHI1jNRkaGh9h34CBiW4HbH0Sn0w/UdqlUJB0PY9JrGR8b5cDBQ9RFcPuC6A2GgdqulEskYmEMWiUbN2zg0OQkpWoTpzeAwTjYBOlatUIqHkWrgi0bJ5icniZXquHw+DGZLQO1Xa/VSMUjqGlx1uaNzIbCxLMFTE4vJot1oLabjTrZZAyNJHLOlk1EY3EiyQxGpwezdbAev2azQS4ZRyXW2bplI+lMllAsgcnhwWp39CSsV4soNskk4kj1Mls2bqBULhOKxLA5vdidroHabokiqUSMainPxPgojUaD2VAEq8ON0+0ZqLButVqkknFK+Qyjw0NIksTUTAiTzYnL7elJWK+WdrtNKpmgmE0xMhRArVZzaHIGvdmKy+MfqG1JksikkhSyCYaDfgx6PQcPT6EzmvF4A6hUg/PBdPqyFJlUHL/XzVAwOND7ay0IgvC4JEkXdV+PbT5H+uS//sfA7d74mu2L7J4qnDbiDjqNQyQSIZFM4XB7cA+gMSqVSkTDITQqJR6Pm1giSaFUZjToR5IkItE4ZrsLl8fbd9vVSoV4NIxaKeH3ekmmM6RzeUaDfpQKBeFoHIPZjsvj7XtjVKtVScYiKCSRYMBPOpsjmsywYdiPWqUiFImhNVpwefx9b4wa9TqJeBhBbDAU9JMrFAnFU4wFvRh0OmbDUdQ6Iy5voO+ivtlokIxHaDUqDAcDlMsVpqMJRvwezCYjM6EIqHS4vH7UfRb1otgkFY8h1kqMBP3U6g0mwzGGPC5sVjOz4SgthRqXN4BG29tEqr3SEkXSyRiNcoGRoJ+m2OLgTBi/24HbYWc2HKXSAqvbh7bPor7dapFLJxHLeUaDPpBg/3QYt92K3+MkHI1TqLewuX3o+izq2+02+UyKRiHDaNCHUqnkwHQIq8nIkM9DPJGkUG1g8/j7LuolSSKXTlLJpQl63Wi1Gg7NhDHotAwHfKTSGYrlKk5fEHOfRX2nk0+TT8XxuBwYDHqmZiOo1SqGAz4y2Rz5Yhm3N4DVZuu77Vw2QzoRw2m3YjabmA5FQBAYGwqQyxfI5Ao4PT6sNnvfxUc+lyWViGK3mLHbrEyGIohim42jQUqlMvF0FrvTi83h7LvtYiFPOhHBajLgdNiZDseo1OpsGR+mUq2SSGawuTw4ne6+2y6ViiRiYYw6DW6Xk3g8SblaZWxkCLe7//bWytHizjW8Wbr6T78ycLs7P/oqWdydiEGLuy61Wo3Z2VlK5Sq+QLAvjVGj0SAWCVOrVAgEfJQrVSKJFHq7G73BRDYZRUeL4aCfQqFIJl/A6fFjs699TqNms0kiHqFRKRH0+6jVG8zEEqjNDvQmM4V0HJ0kMjYUoFwuk8zksLt82PrgYWiJIsm5kfxQwIcotjgUiiEZrOjNVsrZJPp2nYmRINVajXgyjdXRHw9Dq9UinYxRKeQI+j1IwKHZKKLWjMFip5JLoWlV2TgcoCmKRONJzDY3Dpd7zcK63W6TTsYp5dIE/R2vwcGZME2NCaPVSTmfRtUosXE4gCRJzEbiGKwOHK61Dyja7TbZdIpSLkXA60Kr0XBwNkJdocNgd1EtZFHUikwM+VAqFMxGYmiMVpwe35pFvSRJ5DIpiukkPo8To0HP/ukQhZYanc1FvVRAXc+zadiPRq1iKhRF0Bmxubwo1yjqJUmimM9SySQJuO1YzGYOTIdJ10Fr89CoFFHX8mwe8nTERyhCS6XD7vah6oOoL+ZzlDMJvHYLDruNw7NhMnXQ2700qhUop9ngd3VEfThCW6nF4emPqC8VC+STMRwWAy6Hg9lIjExVxODy0azXEPMphtx27FYL4UgUSanB3SdPfalYJDXnEXe7nETjCfLVJla3j1ZLpJiK47GZcTrsRGIx2pISrz+ITr92UV8pl4hHw2jVSrweN/Fkikypitnl69wPqTguiwGv20U0FqcutvH4gxgMa586p1qpkIiFUSvA7/OSSGcIp4to7R4EhZJaJobHoifodRNPJqnURFzeIEbT2kV9vVYjEQuhpMVQwE8qm2c6nkGwuFCpNNSzcbxmDSMBH+l0hmKlhtsbxGxZu6hv1OvEY2HaYp2hgJ9iqUQilcPm8qLTG0jFw6gVEuOjI1j6YK9fHN9z98OB273xNdtOmrgTBEEBuICUJEkritWfluKuS6FQYHpmFkGpwh8Iol9FY9Rut0nE42TTSbweN0qlkqlQFKXBjN3tRak80qGViwXyyShOixG300E0HqfZAq8/iH4VjVG73SadSpLPJPG6nWg1Gg7PhmlpjNhcHpSqIx1atVyilIrhNOnwedwkkkmq9RYuXwDjKjwMkiSRSafIpeN43U4Mej2HZkJU0GJyelCpj3Ro9WqFSiaGy6hh2O8jkUxRrNRweYOrCht2R/K5VAyXw4bFbOLQTJhSW4nR4UWtOeKlatSqlNMx7DolY0N+Mtkc2UIJpyeAxWpbsW3ojOQziSgO29xIfjZCvilhdPrQLOhMm/UapXQci0pifDhAvlAkmcljc3c8DKuhWMiTSUZxmA04HQ6mwzGyNRGD04dmgYdMbDQop+MYBJGNo0GKpTLxVBaLc/Vhw3KpSCYewWLU4nG5mI3GiRZqqG0etPoj929LbFLNJDELcx6GSpXZeBK9zYXFvjrvRrVSJp+MYdWpCfg8ROJJZjNlFBY3WsOR+7fdEqnmkpilGlvGgjRFkZloAo3ZgdXhXJWwrlUr5JMxTBoFQ34f8VSGULqAyupBbzpy/7ZbLcrZBNpmmU2jAZAkZiIxtGY79lWK+nqtRiYRRSu0GQ52POKhVA6NzY3RYjtiu92imEmhqBaYGPajEARC0TgGkw2Xd3WivlGvk4xFkMQ6Q0E/hVKJSCKD0eHGvMBD1m63yafT1IsZRvwe1CoVkWgcncmCx7s6T32z0SARi9KolxkK+ClXKszGU8fcQ5IkUcikqeVTDHndGPQ6QpEoGp0Jt8+/Kk+92GySiMeoVwoMBfzUGg0Oh+Ogt2OyOxHmfkdJkqjks7SKacZ8TswmI6FIFEGtw+0NoNGs3FveEkWSyRi1Up7hgA+x1WL/TJSm1oLB5lp0D1UKOaRiijGfA4fVQjgaA6UarzeIVrdyUd9qtUgm45RzaQL+zuTZoWgcvcmO86hoTzGfI52I4rCYGB0dRtvnyMBqOK7n7iNfHbjdnX/5ynUXd4IgXAn8HXAxoAaawGPApyRJ+lVP5zidxR10HtBEIkE4EsFktePz9d4YZbMZ4tEIFrMJq8XCbCRGrS1g9wSWfLgkSSKfTlHNpxjyutDr9cyGI2j0Jjy+3sOGhXyeZCyM1WzAYbczG4lRaLSwuPxolxCpkiRRzGao51MM+1yYjUZmwxEUGj0eb6DnXMBSsUgyHsGk77jrw7EEyVIdvcOLbgmRKkkS5UIOMZ9kxOvEZjETCkeRlGrcvmDPHoZKuUQyFsagVeHzeojEksQKFfR2L7plRGqlmKeRSzDksuFy2AhHYzTbCjwryAWsVisko2E0Kgj4vCRSGSLZIjr74k7+mONKBWrZBH67Ca/LSTQWp9qUcHoDPecCdnPbVHPe33Q2x2wyh/qoTv5oauUStUwcj0VPwOsmnkhSrDZw+oI9hw0b9TqpRBSFWGdkKECuUORwNI1kdKC32JYUa41qhWYugdesZTToI55MkS5WsLh8GEzmnmyLzSbZZAyVWGdsOECxVOZAOIGos6O3Li1Sm/UqzVwCj1HFhuEAqUyWRK6IeQW5gKLYJJeMIzQqjA0FqNUbHArFaRlsGK1HOvljbDfqVDNx7BqJDXOiPp7JYXF6sfQo6lstkUwygVgpMBr0z3nEo2CwYXK4lhSKYqNBaU7UT4x0woaJdBa7u3dPfavVIp2IUy5kCfo7hQ7T4RhKoxWby72kUBSbTbKJGAqxxvhwsBM2TGVwOD04XL2F8Toe8QT5TBK/ryOIp8JRBJ15bsB6/La5JYrkknFolBkL+hFFkWg8hcXhwtmjp16SpM5gOZ3E6+kMlg/ORKgpdJiciwfLi6651aKUSaJuFpkY7oj6UDSOyeLE2WP6zXzYOx3HOxf23j8dpthWobcvHiwv/r5alLMpNI0iW0YDKASBcDSO0WLD3WMu4HzYOxnFZbdiNndSOiSlBpfXv2Tb3G63yaSSlPMpAj4PAf9gcw9PxLGeu23r5Lk7Z13FnSAIbwF+AOwFfgTEAS/wB8DZwNslSbrthOc53cVdF1EUCYfDpNIZXF4frmUao0qlQiQcQomE1+shlcmQypewugMYe/REiWKTXCJOu16aa7xFoolUJzF5mcaoVquSiEYQpCZBf8cTFU3n0Ts9mJbp5BfSaonkUwmEWonxoU4uYDgax2Rz4VomD7GT2zY3kg/4yReKTMfTqCwujNbecl26HgZlrcCGubBhKBLHYLYtGzZsNhqk4hHEudy2UrnCZDSJwuTEZOut02q325SyKYRqjokhH2qVitlIDJ3BgmsZD4MoNknGozQrRYa6uW2RBILRhsm2dCe/EEmSKGXTtMsZNgQ8GPR6pkMRlBpDx/YSor6T2xanXs7P57YdCkWRDFZM9t47rXI+S7uQZtTvwmIydnKWVNpOHuISor7danVsl3IM+b1IwP6ZCDWVqeNF6LHjqBbzCKU0G3xObFYz06EIdVTY3L4lcwGPzm1TKBTsmw5TQo/B7kah7G0AVisVoJRi3GubzwUst8C2TC5gJ/Scpp5PMeLzoNVqODAdpizoMDqW7uSPploqIOaTBJ0mfC4nkViccqOF3eNf0lMvSRL5bJpyJonf48Jo0HNoJkwVDSbX0p38MZ+7XKLSFfVznvpyTcTtWzpsKEkS+VyGTCKG22Gbz22ro8LuWfq3OsZ2pUIuGcOiVRLweUmnM5QqNdy+5cOGnUKwKDaLCZvNykw4SkUEq6f3vM16rUo+EcOoFo7kAhbKuHz+ZT31xUKeZCyK1aTH4bAzE4mRrojoHV60+t4GYM16jXImjnWBpz6dLWB3L58LWC4VScbCmA0aPG53xyOer6GxL/aIL4fYbFDNJLCqRDaNDlEql0mmszhcPuzL5AJWyiXisTA6tQKvx0MylaZQqeNcQTFWs9kkFY/QqlcYHx3G4RhsQdFSHNdz92fr4Ln7i/X13AmC8DywX5Kk1x9n20+ALZIknX3C85wp4q5LtVplZmaGar2JP7C4MWo2m8SiESqlIn6fl3q9QSieRG91YllmNL0ctWqFXCKKQS0w5PeRyWbJFyu4fYvDhi1RJBGPUi3lCfo77vrJcAyVyYbFsbocska9Rj4Rw6SSGAn6yRcKZHJFHHOj/HnbrRbpZIJSIUPQ18ltOxyK0tJYOl6EVYzWmo065XQCo0Jkw3AnFzCR7uQCLgwbzue25dMEfR4U3dw2tQmTw70o7N0rYrNJKRNHL9XZuCAX0OLw4liQC7iwSs3n6eS2HZrLbTM5V5dD1hJFiuk42laViblcwEgsidHmxO488jt2BUYhk8Dn7uS2HZwJUUWD0entuZNfZLslUkonUTdLTCzMBbTYcbi9i2wXclnyqRgepx2L2cTBmTDZpgKdzYNqFTlk7XaLSjaNrllk00inwGcqFEVhsHQ8MgvuoVI+R2lBbtuhmTCJShuNzYN6FTlkUrtNJZ9G2yhw1minwGepXMBysdDJ47IZcc+FvZMVEZ3duyjs3bNtSaKcT6MoZ5gIejHodUyHIghaA46jcgErpRLZRBSrUYvX7SIcS5Aq1dE7l/aIn9B2LotYSDPmd2EyGghFoijU+k6UYMHvWCmXScbC6DQKfB4PiWSadKmC1d27l/Vo290cRb/DhnUuF1Ch0uLxL84F7BaCqRQSfp933su6lorrUiFPKRXHa5/LBYzGEFHg9S3OBazXasSjYRSSSMDvI5MrMJvMorIu7xFfjmqpSCMXx2cz4fe4iEbjVMU2bt/iXMBGvU4yHoa5QrB8scShSApMDgyW1RWG1CtlGrk4fqueIZ+HRDJFtS7iOUrUN5sN4rEIzVqZ4WCASqVCLJnB4vCsOh+6WimTjEXQqxWMj41g6kPu4Uo4Vtxtka7+s68N3O7Ov7hyvcVdFXijJEl3Hmfba4D/liTphA3lGSfuuuRyOaZnZlFrtPj8AQqFAulkHLfLiUajYTocBY0Bu8eHqseR/HIU8zmKqRgeuwW7zUo0FqctKHH7AlTKZbLJOB63A4Nez+RMmLpSi829uk7+aCrFAqV0HK/NNJ8L2BDB7Qt0cn5SMdz2zkj+8GyYUkuJ0bk4t2211Molqtk4XosBv8dFPJGkUu8kJnemfFiY2xYm1wSTw7eqTv5o6tUK1UwMp7GTmJxIpiiWa7h8wU6IZq5KzWG3MRuJk6mJnby6PlR/NmpVKuk4Np2C0aCfTCZHpljC7vajUChIJ6JYDBo8Ltd82Fu3TNh7JTTrNcrpOBa1xPhQgFyhQCqTx+ru5Chl4hGM3bB3IkU4W0ZpcS8b9u4VsdmglklgU7XYNDZEsVQmnEhjsLvQ6PTH5LZNJ/NgdqEzrj1xuyU2qWYT2JRNzlqQC6izudAbjOSTcXTKNqPBAOlsnulEFoXZhWGVnfwi2y2RcjqBoV1l02hH1IeiSfRWB0azpRN6bjcZGQqQL5aYiadRWZw9e8SXo91qUUwnUC4o8AlH45isTiw2O+lkHLHe6eTLlQqhudw2ax+qP9utFtlUErGcYyTQ8dRHYnGMFjt2h5N0MkGtXCQY8NFoNJiOJtBaHKseLC+y3W6TTydpFrOM+L2o1SrC0Rg6gxWH20U2laZSynUKwVotDs5Gaet794gvR9dTTznDeMCDQX+kat/h9pLPZigXMvMe8QMzUWoqE0b76gbLR9uu5LMIlTQTfjdmk5FwJIpSo8ft8ZMv5ChkkgTmwt6hSByN0YLL41vzTAbdgWE2FcNltzIyPDTwqb+6HDcs+6X/HLjdG1+9db3F3bPAP0mStPM4294FfFSSpO0nPM+ZKu6g0zjE43HCkRgWiwmH3U44GqPcbGPzBND16K5fib1cKkm9mGbE30lgjUTjGI0G3C4nkXiCTLmBxe3rSye/kE5icopmMcOIz41+bgoRnU6Dz+MhmkgRz1fQOTzojSsfyZ/IdjmXoVXMMNatNgxF0KhVR6rUMkW0Ng+GZXLbVm27kEMsJBldkAsoKASG5qZ0CfWQ27ZayoUjuYBOu5VINI7YbjESDMyHvZUrCHuvhGqpQD2TwO/o5AJGYnHqjSajQ53ctkORJC2DHcMyuW2rpV4pIeaSBO16Al4P0USScqXayW1rNNg/E6OusXZs93nKoEatgphP4LdoGQv6iSdT5AolxocDnSldZjsJ7MY+dPLH2q5Sy8Zw6ZWMDQVIZ7Jkcp2QO8ChUJSW1ozZ4V5zJ380Cwt8xobmwoaZDEF/J+w9HY4h6E3Yl8ltW7XtRoNsIoa63WBsOEipXCaRTOP3utFqtUyGIrTVemwub18qmxciNpvkkjGUC3IBY/EkPo8Lg8HAoZkwZUm9ao/4crREkVKm46nfOO+pj+N2OrCYzRycCZNrCOgdXlR9GCwvpFPgk0Qnltk8V+ATjsaw26zYbd28YwGXr/9zkHajPdVChuGgD5/PN/DJxY/rufvzrw/UJsDOP/+d9RZ3rwf+H/AWSZIeWfD+pcAPgT+VJOknJzzPmSzuukiSxOHDk0TTOcwu77pMkNpNTN66eSOpVJqpWBK93Y1pAJ38Qlpik1wqgbJR5pzNG8kXSxycjaA0OTH2mNu2atstkVImiapRYtumDdTqDfZOzSIY7D3ntq2WTi5gElWtwNkbxwDYc3AKyWDDZF+7F2F5251cQCo5tm4YRaFU8PyhKUSNCZPD0/dOfiEdD0MKqZxl8+gQRr2Op/ceoqI0oLe7VhX2Xontaj6LopJhy4gfu83Kk3sOUJA06GzunnPbVm27mENZzrBp2IPf4+bp5/fPJbD3v5M/mkoxT7uQZNRjZzjoZ/fe/RRbSkyu/njEl7VdKlDLJAg4zGwYHeH5fQeotMC2gty2Vdsul8gnYtiNOjZNjLN3/0EKdRGrx9/3wfLR1CoV8skoVp2azRs3sP/QJPFiDb3di7bPg+Wj6VbtO3VKtm7ZyKHJGULZIiqrB12fB8tH02zUqWXj2DVw7lmbCEUiZPMlHG4/5lXOGNArjUadVDwKYo2zNm/CMMDJ5I/rufvyjwZmr8uNV5293uLuN8AWwA9McaSgYgyIAfsW7i5J0suPd57TavmxtRBOpAhs3LouSxup1Ro8wRGSsQiFQoHZWBLH0Ia+j2iPh1KlxukLkk0lyObyRJJp9J6RRVN8DMy2UoXV7aeYTZPK5MiXymgcwb57KY+HQqHE6vJRLuhIpDK02m1Udt+yVbD9s63A4vRQ1emJJJJotRraJheWAQ8iAARBwOxwU9cbCccSOGwWKhorJvvg17kUBAGDzYFoMDEVCSEIkEOP2eVdH9sWO22jhcnQYUx6HXlJi9UTGLhtAIPZSttoZiZ8AJvFRElSYw8MfpFzAIPJgt5oJjZzAKctT6WtwDuyPmvZGowm9GMTxKcOks/nKdRbeEcn1sW2zmBAO7KB5MxhCoUCiUIFa3BiXZL/NTo9muA42cgUhUKBcKaAMbA+ttUaLWrvCNl4iGKxSDqTZ3TT+vRlGo2WwPAYsfAsxWJxoOLuaErVJvfvia2bvXVEoiPgFoq4qbl/x9v3uMjibgHruWbl0fZWans6Veap2RyVhohBo+L8YRujK1ivcy2210rHQ9c+KbYX2uvMD7l+LLR3Uj+3Yn0r3RbaExTrO5WCIAjzrd96/94KhWJ+7cv1ri4UBGHepmIVv3d3PeDuutcrWQ94se31fsaEeZsKQbH+3/ucbUEhrNh2KFPhuXCealNEr1ZxTtDKkKN3sSScxDZ9ve0BmPRqrtjqG7idnQO3sBhJkq7sx3lkcXeK8dRMln9/eIbd4fwx27YFrbztRSOcPzJ4j5CMjMzpxxPTWb7/0DTPhI5tX84dsvKOy0a5YFRuX/rJ7lCOnzwRYm+0cMy2s/wW3nDBENuGbOt/YS9wTmPPXV+Qxd0pxC92R/nSrw7QlkCvVnL5JhdOk4Z0qcEDB1LsDuf5xI+f5cO/u5lXbRv8iEZGRub04efPRvm/v9w/3768dLMLp0lLulTn3v0pngnl+ZsfPcOfvWozr9nuP9mXe1pw994437n3EJIEOrWCi8ed2I0asuUGuybT7I0W+OKde7jxpRO87KzBpzOcUgjr7xFfDwRBeNmJ9pEk6R5BEEzAhZIk3XO8fWRxd4rw1Ex2Xti9+eJh3nzJMAbNkZ/vA6+Y4IePzvLDXbP866/247FoZQ+ejIxMTzwxnZ0Xdm+9dJi3XjqyqH350JUitz4yw62PzPJ/f7kfr0Une/DWyO5Qbl7YXX1+kGt2DKHXHElbeNflG7j9yRA/eyrMt+89hNOklT14CzDp1icse8vALRzDb+gkdCyVTycACmAr8Nu5v4/hhOJOEISbgdcBCUmSts2991ng9XQSpxLAuyVJiqzwA8isgH9/eGZe2L37ivFjths0qvn3f7hrllsfmZHFnYyMTE98/6HpeWH33pdsOGa7QaOaf//WR2b5/kPTsrhbIz95IjQv7N5y6bEFL3qNcv79nz0V5idPhGRxt4BSrckDp2dY9hU97rcHePlSG3vx3O0Evgx8b8F7/yBJ0icBBEH4MHAT8IEeL0hmhUynyuwO59Grlbz5kuFl933zxcP87KkIz4byTKfKKyqykJGROfOYSpV5JtRpX9566ciy+153yQg/eSLCM6E8U6lyz0UWMosJZSrsjRbQqRVcs2P5KuqrdwT53+ei7I0WCGUqKyqyOJ0x6dRcvg6eu5sHbmExkiTd2+N+JWDJfU8o7iRJulcQhLGj3luY+WlkmXJcmbXz1GwOgMs3uRaFSo6HQavi8k0ufrUnzlOzOVncycjILMuTM1kAXrr5xO2LUaviJZtd/PK5OE/OZGVxt0qemyuIu3jcuSgUezwMGhUXjzu5b3+S58J5WdzNUao1eeD5089zJwjCi4DzJEn6xoL3JoDzgSckSZrs5TyrzrkTBOHzwLuAPMu4EQVBeD/wfoCRkeVHhTLHp9IQAXCaept41WHULDpORkZGZinK9RYATlNvkyt326HucTIrp9rstM12Y29tus2gWXSczOnruQP+GqgA34D5AotfAGqgKQjC6yVJ+sWJTrJqcSdJ0seBjwuC8DHgj4FPLbHfN4FvQmeFitXaO5PpjqbTpUZP+2fKjUXHycjIyCyFUdvxHKVL9Z7277ZD3eNkVo5e3Wmbs+Xe2vRcpbHoOBko1UQeeD5+si9jEFwA/O2C138N/Bp4C/BVOmlwgxN3C/gBcCdLiDuZtXP+sA2ABw6k+MArJpYVbZW6yAMHUouOk5GRkVmKHXOFV/fuT/GhK8Vl25dyXeS+/alFx8msnHOCVgB2TaZ51+Ublg3NVhoiuybTi46TAZNOxeVnn5aeOw8wCyAIghp4GfAuSZJKgiB8n876sidkVeJOEIRNkiQdmHv5emDvas4j0xujLiPbglZ2h/P88NHZ41bLdvnhrlmqzRbbh6xyvp2MjMwJGXMZOXfIyjOhPLc+MnPcatkutz06Q7XZ4twhq5xvtwaGHAbO8lvYGy1w+5Oh41bLdvnZk2FqzTZn+S1yvt0CyjWRB09Pz10GcM/9fTmg40jhRAPoyWV+wjVDBEG4FXgI2CIIQkgQhPcCfy8Iwm5BEJ4BXgX86QovXmaFvO1FIyiEjnjbef8klfri3ItKXWTn/ZP8cNcsCoETVr3JyMjIdHnHZaMohM40J9+57zDlo9qXcl3kO/cd5tZHOu3LOy5bn7VqT2fecMEQgtCZ5uQ/Hpk+Jke60hD5j0em+dlTYQShs7/MYgRh8P9OAvcBfyMIwtXAZ4FHJUlKzm3bBIR7OUkv1bJvPc7b3+n1KmX6w/kjdv7kdzfxpV8d4Ie7ZvnZUxEu3+TCYdSQKXdWqKg2WygE+PDvbpbnuJORkemZC0bt/NmrNvN/f7mfWx+Z5SdPRHjJ5iMr4Ny3/0j78mev2izPcdcHtg3ZeO9LJ/jOvYf42VNh/ve5KBePO7EZNOQqnRUqas02ggA3vnRCnuPuKIx6FS8+e/Crdnx74BaO4ZN0cux+ApTpzDPcZQPw/V5OImdnnkJctc2P16Lj1kdmeDaU51d7Fruktw9Zeeul8tqyMjIyK+c12zvtS3dt2V8+t7h9kdeW7T8vP8uLy6SdX1v2vv3JRdvltWWXplwVeXBv4mRfRt+RJOmAIAibgG3ApCRJmQXbPtbreWRxd4px/oid80fsTKfKPDWbo9LoJECfP2yTc+xkZGTWxAWjdi4YtTOVKvPkTJZyvYVRq2THiF3OsRsQ24ZsbBuyEcpUeC6cp9oU0atVnBO0yjl2y2DUq3jxWZ6B2zkJnjskSaoDjx/9viAI48BNkiTdcKJzyOJuHglRbKJSqdfNYks8kmPRaokolL1PLTDqMq5JzLWaTbp5mS1RRKXubb6lftAWRdB20j1brfWdt6kliqASTort9gJ7C3/79aAlivMJtu3W+s5P1m6JKBDm/15v28f7ez1otUQkSZr7u4UkSeu20Hm71aI9Z7u9CttjLuOqxVy73abdbs/93aLdbqNQnDC9uy+0221ac/d3a+461su2JEnzz5bUbtNutVbUpg85DKsWcx3b4vzfLVFEqVq/7l0Um+tmq0u5JvLQvtPPcycIggG4kc7asUdPPukGXrvgWf6JJEk/Pd55ZHFHp+EdCwaYnT6I3urE6nQPtBGuV6tkExEMKgGz2cyGkQCHZqdQGW1YnO6BNkaNeo1CMo5B2cZh96HVatg/FaKutWByulAoBjd3ldhoUEzHMQkiHtcYVouJfZMz5CslTA43SuXgbseW2KSYjqOX6gQmxmi32xQPT5OrljE7vQNtCFuiSCmTQCNWGN4wilKpJHdwknysgtHpQ6Ue3ICi3WpRzCRRN4qMjg2j1+lIZg6TjYfQ2z2oNIMT9e12m2o2haZZZPOGYYwGA75EhmRiBo3Ng1qjG5htqd2mmk+jaRQ4a3wYk8mER5ciFZ1EZ/eh0ekHZ1uSKOfTKMoZNg/7MZvNuPRp0uFJDA4vWsPgPGAd21nEfJoxvxuTyYRNnyU2dRCr24fBZB6YbYBiLkspk8DvsHU+tzlHYvogZpcPo9kyUNulQp5SKo7HbsZkMjHitjIbPoTK6sZosQ3UdrVcpJGN47eZMJvNTPjdHIpOgsmJwWIbbH9SKdPIxQlY9ZjNZgJeNzOH92F1erA7XAO1Xa1USMbD6FUCNpttYHaOh0mn5sVnDT7n7lsDt3Bck9fRqZqtHrVNQ2dFsCvnXj+z1EmE7shyPbjoooukxx57bN3snQhRFAlHIkSiCUxGPX6fl2Q6Q7pQxur2970xaoki2WSMdq3EaNBPoymyfyaC1ahnw3CAdDZHNJ3H4PRg6nNj1G61yKXiCLUS40N+Wm2J5ydDGHUaNo8NkS8UmY6n5xvCfjYI7XaLYiaFsppnYiSAIAjsnwqjVivZPDpEsVxhOppCMDkw2Rx9tS212xRzKYRKng1BLxq1ioMzERQKgYnhALV6g8OROAqjHZO9vw2hJEmUsmna5Qzjfg8GvY4DUyFaksTGkQDtVpuDoSiS3obJ4eqrqJckiUo+i1hIM+ZzYjYZ2TcVotYQOXs8CMD+mQg1lQmDvf+ivlLIQSnNuM+Bw2rh4EyYUqXOlrEgKpWSvVMhyoIBvc29Iu9GL9RKBSimGPVY8bocTIejFMpVxoM+dFoNB6bDlAUdRkf/RX2tXKSZSxB0mPC5nYSicXLFMiN+NyajkUMzIaqCFpPT23dRX6uUqabjuM06Al43kXiSVK7AiM+N1WJmKhShIahweHyoNb2tRtGz7WqFXCKGWaMk6PcSS6aJprKM+Fw47TamwxGqLQU2tw+Nrr+ivl6rkk/EMKpgKOAjlc0xHUsx7HbidTuYDsfIVEUMzv6L+majTjkdw6Jqs2E4SDZf5FAoTsBtY8jnYSYSI1aoo7F70er7G2IVmw2qmQQWpcim0SDFcoXJcByn1cSw30silaJYruPyBTH2WdQ3m01S8QhivcL4yBBOp3PgXmlBEB6XJOmi7mv36FnS7//14Gs7v/WhKxbZHTSCIKSBj0uS9PXjbLsYeESSpBPPdHImijtJkkgkEsyEImiNFpweH+VSkWwiitNuwWqxMBuOUkOJw+NHo11bYyRJEvl0iko+xZDHhV6vY99UiEJbg97uplmr0i6mGPNY8TgdzESiFBsSFrcP7RobI0mSKOYy1HMphr1OTMZOJ5+qC6gtblrNBpTTjLlMBL1uQrE4qVIDg9OLVr82D4MkSZQLOcRCimG3HbvVwqHZMJm6gNbuod0SEXMJ/FY9Qz4PkXiSRKGKzuFFZzCtyTZApZinkUsQdFlwOzqdfLbexuT0IbXblDNxnHoVwwEf8VSaaLaEzu5Bb1q7qK+WitTmRvJet5OZSIx4qYHO5kVQKKhl4zh0inlRP5vMobF5MFjWPklpp5OP4bHoCXrdzEbjzGQqYHKhUKkQ80k8eoHNY0PkCkUOR9NIJgd689pFfaNaoZFL4DVpGA36iCbSzKYLCGY3Ko2WWi6JTSWyZawj6g+EEoh6O3qLfc22m/UazVwct1HFhiE/6WyOcLqA1u5BqzdQTMXRtmvzov5QKE7LYMNoW7uobzbqVDNxbOo2EyNBcvkC4VQWnd2DwWimkEkcGVi12hwKRcFow2Rfu6gXmw2KqThGQWTDcIBSqcx0PI3a4sRosVHIJBFqBTYM+QGYCcdQmqzYnWsX1mKzSTYRQyHWGBsKUKnWOBSOIxkdGMx2yvkUqlqBjcN+1Colk6EICp0Zq9uzZk99SxTJJeNQLzMa9NEUW+yfiVLXWtFb7FQLWTT1PJuHvOh0Wg7OhKkp9Jj64Klvt1qUMklUjSITw36ktsTz0xEqSiM6i5N6KY+mnmPzsBez0cD+6RDFlga9w73mFJh2u005m0TTKLJ5xI9CoeDgTIS62ojJ7qZaKnb6E58Tm8XMbDiCpNTi9gbQaNcm6tvtNplUknI+RcDrJhAIoOzz4Gwpji/uBj/F8Lc+dPl6i7sWcKkkSceIJUEQLgEelsXdcSgUCkxOz9BsC7j9QXQLxFO73SadiFMuZAj6PCiVSqZCUZQGM3a3d1WNUblYIJ+M4rAY8DidTIdjxIp11DYPGt2RkZzUblPOp9HWC2wa8aHTaDg8G6alMWJzra4xqpZLlFIxHEYdfq+bmUicmWwFweRCs0C4SZJErZhB1yiwZa4xOjgdoqrQYnKszsNQr1aoZGI49WqGAz5iiTSzmSJKqxud8cgoUpIkqoUsQjnLRMCF1Wzi0EyYUluF0eFZlYehUa9RTsewaxWMBn2kszlC6QI6mxuDebF4KhdyNPJJhl127DYLU6EI+aaAyelFvQpR32zUKadimFVtNowMkc7lmYpnUJhc6M3WRSKiWirQKiQZdllwO+zMRGJka61VexjEZoNSKoZRaDExEqBQKrNvNk5Da0d7lHBrVEqLRP1MJE6sWEdj86BZhYehJTapZpKYhTqbx4aoVKvsn03Q1FnRWxeP6hvVMmI+SdCmY9jvJRxPEsqUUVjcaFch6tstkWouiVmqsWUsSKMpMhmOgdGOxe5CWCCe6rUq5VQUx7yozxBKF1BZVyfq260W5WwCbbPMxhE/kiQxFY4hGKxYHYvFUyclIoZJJTE61BH1oVRH1BtXIerb7TbFTBJFJc/EcKeTPzQboa01Y3F6FtluNuodAagQGR8OUigWiSSzGJ1uzNaVC+t2u00+naZezDDic6NWqzkwE6Gq0GN0LBZuYrNBJZvAJDTYNDpEuVIlFE+hs7mw2FfuqZckiUImTS2fYsjrwqDXs28qRL6tRm/3oFyQN90SRWq5JGY6XuOupx7D6jz1XY94q5hm1OfEMucRzzQUaKxulAuEW7vVopZPYZaqnDUepNVqc2A2SlNrwWBbnaivFHJIxTSjXjtOm4XJ2Qi5JujtPtQLhFu71aKcS6GuF9k44kcAQtE4erMdp9u7KkFWzOfIJKPYzEZGR4bR9dkDeyKOFnfjW7ZLn/rafw/c7g1XblpvcXcYuEaSpN3H2XYe8N+SJC0903h33zNF3NXrdaZnZskWSjg8fixW25L7NhsNkvEoUrPKUMBPuVIhnEhjsLux2ntzPzfqNbLxKBqh1WnIc3kORzMw5yFZipbYpJpNYlE02DI2RLVWZyaWQG12YOkxf6LZaFBIxtDSZHw4SK5YYv9snIbOjta0tHem3RKp51NYhRpnjQ/Nhw0x9O5h6OS2JdC3a2wcHaJUqXAolKBlcKBfphNpt1pUcil0YpnNIx0Pw6GZCKLOgtnh7ilseCS3rczGkW4nHwejDbPNuaiTX2S73aaUTSFUckwM+1EqlRyYCSNqTD3nAnZz21SNIhuHA7Qlif3TERoaC0a7c8nr74p6VTXPxmEvWo2m42FQ6nvOBWy325QySRTVPBPDARQKgecnQxQkPVrb0iFXSZKoFbLoGnm2jHRE/b7JWYqSptNJ9iDqpXabSj6DupZj07AfjVrFvqkwRbTo7R4US3x3kiRRLeZQVTJMBNzYLCb2T4XINAS0dm9P3g1Jkqh2bQ95MBr0HJoJU1foMLm8yxZHlQs56rkEwy47DruVQ7NhsnXQO3oLWXYHJVIpzbjfhcVkZDIUoYYKq8uPeplcxnKxQCUTx2sz4XZ2woa5mojB1bunvpzP0cwnGZrziE+FopREAZPLu2ykoVoqUskm8Fj0+NwuIrEEhVoTq8eHvsdcwFIhTzEdx2M143TYmQpFSFVb6E+Qy1ivlqln43jNWob8XuLJFJlSDbPL23MuYKVUpJCM4TQb5jzicaKFGqqjBstH06xVaeQTeI1qxoI+kukskUwRzQo89fVKmWo2jsesY8jnmfOIl1GY3YsGy0cjNmo08yk8BgWbRoOdsHE8i2BxYVimL1hIo1ahlu1c/2iwE2kIZ4qoTzAoERt1KpkEFlWLiZEghWKJZDqHze3DautN1NdqVVKxCGpFm/HRESyWweZOLsXxPHfX/s3gPXff/KP19dz1i9Ne3LVaLSLRKJFYArPNhd3Ve8FCpVwiGYtg1KnweTxE40lylRo2dwCD6fgehtZcbptYLjAa9NFqS+ybDlNTmzHYlu7kj6ZRq9LMJfCZ1YwG/SRSaRL5MianF8MSuYDtdptCOkGrnGd8yI8gzHXy6NFae8+rEhs1xHwSv1nFxpEgqcyJPQxSu00pl4ZyjvG53Lb902HKCj16e+/FEmKjTi2bwK6R2DgSJNfNBbQsnQsoSRKlXBqplGE84Mag73TyVYUOs9PTcwW02GxQTCcw0GBiJEipXGEqmkJpdmBcIhewm8DeKnRG8maTkYMzYQqiCr3D03MIpiU2KWeTGKUam0ePeBiEE+QClgs5mrkkI55OJ39gOkys0kZt6YRBe+FoUd9qtdk/E6Whtczds8d/XqqlAlIhyYi7k05weDZCoiyitnlQa3sTKe1Wi2o+hUEss2UsABLsm45QURnRLyNM65US7UKCEacZv8dFKBojXRExOn095zZ1RTHVPBNDPhRKJfunw9SUBkyOpYVpvVKmkY3hteoZ9nuJxhOkSjVMTh96Y2+eR6ndppBNI5YyjPg86LSajjBVLS/q69UKlXR8gecxTTxXRu/wYOhRpEiSRDGbRixmGPW7MBkMTM1GEFVaHJ6lC3zqtSq5RAyDEoaDfpKZLLPJPErLsR7x5WxXCjmkUopxnwurxdTJBUSFbZlcwEa9Ti4ZQ4fI6FCgk9sWTdE2riydoFrMQynFBq8dl8PO5GyYXAOMTt+Snnqx2aCcjmMUmkyMBCmWKuwPxWnobOjMvXs96+UilFKMe2z43A6mwjGS5SZau3dJUdwSmx2vpzTnEa/VORyOI60wnaBWLtHIxfFbjfi9LmLxBJVGC5c3iMF4fGEqiiKpRIxGucDocACPx7Nu1d7H43ieu09/ffCeu3f/zrp77gTgfcCrgQrwH5Ik/WxumwWoz02Vsvx5TldxJ0kSmUyGyelZVDojLq8f9SrCi5IkkctmyKfieJx2jEYDM6EITaUWh+fICF2SJArZDOVsgoDbiWkuzyLXVKKz997JH021mINShg0+Ow6blelwlHJLwOr2zY/QJUmilM9RyyUIOO3Y5jr5eKWNagWd/NHUywUUlTQTXvt8Ynqu1sbgXNwYVYp56rkkQ05Lp8EMRUhWWmjtqwttQqcxauUTDDnM+D1OZqNx0uUGesfizrtaKlLPxfHZugnsMVKVJkZH7538MbYrZSqZzgg96PMQjiVIFKvo7V50CzrvbgK7xzK3XzROJF9FY1t9RWR3hO5ZMEKPZktoj/Iw1KsVquk4TkOnk48mUkwmC7SNTrSG1SVPz4t6k4qNo0GSmSzTiRyCuRNS7tKs16hn47j0SsaH/KSyOSbjOTC50K0yX1Fs1KnnEji1sGk0SLZQ5FA4ReuozruzXxyXVmDjaEf8zyYyqNdQCNTNWdPTZGIk0ElMjyQ7eWPWI6JebDaoZOJYlCIbR4KUKhVmYyk0VhfmVRYCic0mhXQcVbPK+Fwu4FQk0fE2L/DUi2KTUiqBrl1jYiRItVZnKpJAaXZg7jGacDQtUaSQSaCsl5kY9tNqt5kOx9BYHNicRzz1nUKwOFKtk9smzoUXWzorxlWGFzthwySaRomNc5766XAMpdGCbUFIudVqkU8laFUKjAV9SPPi34RhGY/4ckjtNpVcGm2jwJbRACqVkoMzYZpqE8YFnvp5j3gtz8Y5j/7zh0MUBT06q2tV+YpSu021kEXXzLNl2Idep+0MggUdBrtnXtRL7TblXBpVLcemYR9aTacQqKrUY1yw34psSxKVfAapnGHc58JsMjITiqDQ6HH7AqjVR/qybDpFIZPA73ESDAZRreO0KktxPM/dGz82eM/dNz647jl3nwE+DuylM6PJJuA6SZJ+KAjCN4GSJEl/fsLznI7irlQqMTk1Q63Zxu0P9BxuWI5Wq0UqEaNWzBP0e5AkiZlIHLXJhs5oopCMYTVo8HnchGIJwrkqKqt7zUUJ0H3QU+ibRTaPBlAqFEyGokg6E3qThVI6jlWnZsjvJZJIMZUs0Da6VpW/dIxtqU0tn0EvFjl71I9O2wkb1pV6dGYb1VwSm6aT25bKZJlO5o8RA6u3LVHNZ1FUMkwEPZjmwm4VQYvObKeaT81XqeUKRWYSGdQWV1+qfSVJolToeORGvJ3cmsOzEcptFTqrg1o+00lgHwlQLJU5FE2BwYFhFflLx6NSyNEuphnz2nEsyAXU2VzUCln0Up2NI0HK1Rp7Z2LU1BZ0lv5UGh8t6qdCERKVFmqLk2aliKFdZfNIgGarzf7pCDWNBYN16bD3imxXSrQLSYYdRgJeN9ORGNF8HaXFhVgtY2iX2TIaQJIkDs/GkAy9h+1PRK1SppKO4Z4X9Umi+Qpqq5tmrYK6XmDTiB+VUsmh2QiS1oTVtfbCAOhMj1RIR7FqlQz7fSTSGaLZIlpbp+hJKuUYD3rQajoevqbagKVPU/g0ajVK6RgWtcDokJ9MNkc8W8Dk9NASRaq5Tm6b0dAZsJYkDUZ7f6p9m4061Wwcq6pTiFIoFAmnshgcbpAkKtkUQY8Di6kTts82FWjXMFheSKvZoJbtFPhsHhua99QLJgeCUomYTzLstuO0WzkwHe48A1bPqgfLi2yLTeq5FDZVk7PmcgEPhmKIejtKlZpWMcXIfC5unFRVRL+Mh28ltFsipUwSnVhmYiSA1G4TiiYw2pzodHoyyRgWg5ax0RH0+sFNGbRSziDPXQj4YVfACYLwHeAcSZJeJAjCm+hMYrz9hOc5ncRdo9FgZjZEOpvHPpdX1283cr1eIxmNoGg3GQr6yReK5IslRoJ+8sUSB8NJWgY7hj5U/x1Nq9mgmk1gU7U6jVGlQiqTY2woQKlSYe9MnLragrZPnfwi22KTRiGFQ9Xk7PFhqrU6sWSGkYCHptjqJArrbB1PR5/n6Wu1RKqZZEdUjAYQW23C8QQjAR/tdpvDs1HaeitmR/+n9Gi3WhSySVT1IhNDfiRgNppg2OdBUAgcmI5QUxkx2vs/pUe73aaSSy0SFVPhGAGPE61Gw57DIXItTSevrs9zBEpSm2o+g2GBqD80G8XvsmM0dBLYc61jE9j7Y/tILt3GIU+nwGcmgsduxWLuiOyKpMLs9PV9nr5umL1ZSDHidWI1mzg8G8FmNuG0W5kKRSi3BCwu35qr6I9HKZ+jmk0QcNmwWy1Mh2OYDDpcDjsz4Si5RhvzAKb0AKgUC1Szcfx2Cx6Xg1A0hlqlwuPqeM4TpQZaW/+n9IDOFDKNfIKAzYjf4yIST6IQwOdxdwpusmWUqyy4ORHdAp+AtVPgE02kEFsthuemdJlM5MHkQmvs/xyBzXqVVj6J36JhfMhPPJWhUqvPe8RnEjlU1t7D3iuzXaOSiWPX0pnGJZenUqkyOjK07nPW9cJxPXd/uw6euw+su+euRKeg4jdzr18N3CpJkl0QhJcAd0qSdMKb8bQRd9lslgOHJjFYHDjcnoGXZ5eKBVKxCHarEb/Xy67de6koDBgGMG/X0dTnGqNhh4ENI8PsemYvWUmD1tL/Tv5omvVqx7Ni13H2xg08sft5Cm0teoe77538sbY74UCPQck5WzbxzJ59lCQVZod3oJPxwly1YTqORdli+9lbeHbvftJ1Ab19dRW9K0GcE/UWpciOc85i996DhAoNlBb3qsPevXJE1Itccu7Z7D80RShfRWVdPoG9H7RbIpVsEgs1Ltp+FtOhMLFcGYPDtyg8PhjbrbmQZZHzz95MLJEkks5jdCyd89o32+02hUySdjnHOZs2kMsXmIqn0dkGPxmv1G5TzKZplbJs3ThKtVZn30wUhck18Ml4O8I6g1BOc87EKO12i2cPhRAHNFg+2na1mENZzrB1PIhWrebJfZPUtFb0AxgsH02tlEdRzrB11IfFbOSZ/Ydpaa0Y+zBVzomolgo0c0nGfHY2T5ywCPOkcbS484yevS7i7usfePF6i7vfAndJkvTFudcXAY/SCdFeDXxdkiT/ic5z8gPpfaJYKmG0uXB5Bj9jNYDJbEFvMDJzYA9mo5GywoDZ6VsX21q9EY3OQDR6EK/TQbatQe9YH9tqrR7cI8SShxkqFim2NZg8gXWyrUPtGyUdPUyxWKTcErAHhtfHtkaLwz9CLjxJsVgkV21j8Y+ti22VWoPZM0QxPkOhUCBerKJzr49tpUqN3uEnm45SLBaJZYvofRPrklitUKowufwUUlFKpRLxVBb72NnrZFuJze0nlxQoFosk0lkcwYl1WdJJoVBgc3nJCwryxSKJTBaLb2TggwgAQaHA4nRTUqrI5gvkSxU0juBAvHXH2BYETDYnVZWaZCZLqy0hWTwYB+AxO55tg8VOQ60hnspi0Gup650D8ZgdD53JiqjREkmmkKQ2bX0nl3I90JssaHR6YqnpF7S4OxqjTsVlWwa/tuwxMwkPno8A/yMIQhL4HtCee18L/BGwq5eTnDbiDlhVo384WWLXVIZyXcSoVXHxmIMN7t68AovtrW8VkSAIR0yehAImoWv0ZNjufu+r+L1n0mWeDeWpNEQMGhXbh6yMOFeQFym8AD73Kow/NZPlkcNpqg0RvUbFpRucnD9iX4Ht413H+rDQ3rpX663B9nS6zNMzufl77bwRG6Orudc6L1Zke82czO980WWs3HY4W2FPOE+12UKvVrI1aCVo71GcLvrcKza9RhY9ZCfP9ilCuSby0P7kyb6MQfDfgAH4NvANOsuQSUAcEIHLejnJaSXuVsKuyQzfuf8wT87mjtm2Y9jGe6/YwMXjjvW/MJmB8Mxsjh/ummFPpHDMtq0BC2++eIRzh23rf2ED5pe7o9z1bJRqs7Xo/admsujVSl693c+rtp3Qw39Ks+NbHe/uk++bXRd7T81kufWRGXaH88ds2xa08tZLR1YkrGV6Y084z+1PhtgXKx6zbYvPzDU7htgaXB9P3MniRbeMAvDwDdMn+UoGj1Gn4rLN7oHbOQmeu99yrNquAfvo5N4lejnJGSnubn8qzBd+/jxtCQwaJa84y4PbpCVZqvPbvQmenM3x4due4GOvPZtrzgue7MuVWSO/2hPj6789SFsCnVrJZRNOHEYNmXKDhw6l2RMp8Jnbd/PBV2zkyq3rE95eD757/2EePpyef+02azHrVBRrIslinWqzxX8/ESKWr/Kuy0+dcMwLmV/sjvLlXx+gLYFereTyTa75e+2BAyl2h/N88r+f5U9+dzOvOuf0uddONvfuS7Dz/sNIEujUCi4ac2IzqMlVmjw2lWZfrMg/3vU8775iAy9dh1CezOAp10UePnD6ee4kSXpvP85zxom7XZOZeWF3/YvHuP6yMYzaI1/DX7xyC999aIrvPjjFF+58Hr9FL3vwTmGemc3NC7trLxzijRcOodcc+b1vfKnIfz0e4sePh/jabw/iNutOCw/eL3dH54XduMvI+1++EZvhSNFJrtLgm3cfZDJV5qFDaXxW/WnvwRs0T81k54Xdmy8e5k0XD2NYcK/94csn+M9ds/xw1yxf+tV+PGat7MHrA3vC+Xlh93vnBfi984LoNUeK2t522Rh3PB3mjqcj7Lz/MC6T9rT34J0JGLUqXrQOnruv9bDPXEXr/wOUwLclSfr7o7aPAN8FbHP7/I0kSXf2+VIXcUJxJwjCzcDrgIQkSdvm3vsHOlUbDeAQcIMkSbkBXmff+M79h+eF3R+9fOMx241a1fz7331wipsfOCyLu1OYH+6amRd277hs7Jjteo1q/v0fPx7iP3fNnBbi7q5no0BH2P3Va7ces91m0PBXr93K/3fnHiZTZe56NiqLuzVy6yMz88Lu+svHj9lu0Kjm3//hrllue2RGFnd94PYnQ/PC7g8uHjlmu16jnH//jqcj3P5kSBZ3pwHlusjD+1Mn+zIQBEEJfAV4JRACdgmCcLskSXsW7PYJOnPXfU0QhK3AncDYEue7/kQmJUnaeaLr6qXGeiedZTAW8r/ANkmSzgX2Ax/r4TwnncPJEk/O5jBolFx/nI5+Ie+6bAyDRskTMzkOJ0vrc4EyfWUmXWZPpIBOreSNFw4tu++1Fw6hUyt5LlJgJl1epyscDE/NZOdz7N5/nAHMQt73ss72arPFUzPZgV/b6cp0uszucB69WsmbLl6+gvtNFw2jVyt5Npxn+hS/10424WyFfbEiOrWC3ztBCs3vnRdAp1awL1YknK2s0xXKDBJBGPy/HrgEOChJ0mFJkhrAbcDrj9pHArpzKFmByDLnu3mJf7fM/etp/pcTeu4kSbpXEISxo9775YKXDwN/0Iuxk82uqQwArzjLsygUezxMWhWv2OLhjmej7JrK9FxBK/PC4dlQJ6H9sgnnolDs8TBoVFw24eS3exM8G8qvrIL2BcYjc+FYt1m7KBR7POxGDS6zllSxziOH06e8J6lbPNHrtn4VWTw9kwPg8k2uRaHY42HQqnjxRhe/fj7O0zO5lVXQyixiz1zRykVjzkWh2OOh16i4cMzBAwdS7Anne6+gfYHSLZ7oddvpVmRh1K1PWPar4BIEYeEEvd+UJOmbC14HgYUNSQi49KjTfBr4pSAIfwIYgd9dxuSm47znAF4LvB14Vy/X3Y+cu/cA/7HURkEQ3g+8H2Bk5FiX+XpSrosAuE29zRflMmsXHSdzalFpdH43h7G3CY7tc/t1jztVqc5dv1nX2+Nt1qpIFevzx8msnJXea07T6XGvnWy6HmqbobcJ1LuDnaOrx2VOPcq1dQvLpvowifFbgZ2SJP2TIAiXAf8mCMI2SZLaR+8oSdLh4xx/GHhMEAQF8CfAIycyuCZxJwjCx+nMu/KDpfaZU7jfhM4KFWuxt1a63rpkqd7T/qlifdFxMqcWXQ9Kptzoaf/s3H4n8ry80Ol6KYu13oRDcW7wciLv5qnA8Txx6zEVykrvtXTp9LjXTjZ6dcdbl6s0e9o/V2ksOu5U5nieuDNtKpQXbXYN3M5XT7xLGFgYFhiae28h72UuvU2SpIcEQdABLqCnaU0WcC/wZ73suOqWRRCEd9MptLhSWs81zNbAxWOdwojf7k3wF6/csqxoK9VFfrsvseg4mVOL7UOdpOmHDqW58aXisuKl0hB56FB60XGnKpducPLUTJZksU6u0lg2NJstN+YHMZduWJ8Z8U9HzhuxAfDAgRR/+PKJZUVbpS7y4MHUouNkVke3MOKxqTRvu2xs2dBstSHy+FxqjlxQcepTrok8ciB94h0Hzy5gkyAI43RE3XXA247aZwa4EtgpCMLZgA5YzTwulwE9FQGsStzNlf3+FfAySZJOmczUDW4TO4ZtPDmb47sPTR23WrbL9x6aotJoccGITc63O0UZcRrZGrCwJ1Lgvx4PHbdatsuPHw9Ra7Y4J2A5pfPtAM4fsaNXK6k2W3zz7oPHrZbt8q17DgIdT8apnm93Mhl1GtkWtLI7nOc/d80et1q2y38+Nku12WJ70Crn262RoN3AFp+ZfbEidzwdPm61bJc7no5Qa7bZ4jOf8vl2MmDSqXjRpsF77r5ygu2SJImCIPwx8As605zcLEnSc4IgfAZ4TJKk24G/AL4lCMKf0SmuePdSTjFBED51nLe1wHbgNT1cEtDbVCi3Ai+nk1QYAj5FpzpWC/zv3PIwD0uS9IFeDJ5s3nvFBj582xN898EpoFMVa1rgwSvVRb43N8+dQoD3yJO7ntK8+eIRPnP7bn78eAjoVMUu9KpUGiI/npvnTiHAm5bpHE4lXr3dz38/EWIyVeb/u3MP73vZxvmcQuh47L51T2eeu+7+MmvjrZeO8Mn/fpYf7uqEf9900TCGBW1LpS7yn4915rlTCHDdpafHvXayuWbHEP941/Pc8XSnAPH3zgss8tJXGyJ3PB3hjqcjCEJnf5lTn1JN5OGDJ38qFIC5OevuPOq9mxb8vQe4vMfTfZJjV6io0/H+fRb4Qi8n6aVa9q3Hefs7vZz8hcjF4w4+9pqz+cLPn+e7D07xn4/N8ootnvmKwd/uS1BptFAI8LHXni3PcXeKc+6wjQ+8YiNf/+1Bfvx4iDufiXLZhBO7UUN2boWKWrPze3/wFRtPiznuAF61zU80V+Xhw2kmU2X+9r+exmXWYtaqKNbF+VAsdKqJ5Tnu1s75I3b++MpNfPnXB/jhrll+9lSEF2904TRpSJcaPHgwRXXuXvuT390se0r7xNaglXdfsYGd9x/mjqcj/HpPjAvHHNgMGnKVBo9PZag12wgCvPuKDXJI9jThheK56zeSJPUlEfeMzOa95vwgfquemx84zBMzOe6Ym/C1ywUjNt5zuby27OnC72714THr+M9dMzwXKfDbvYtzWM8JWHjTabi27PVXbMBv08+vLZsq1heJujNlbdn1WlMW4KptfrwWHbc9MsOz4Ty/fj6+aPv2oJXr5LVl+85Lt3hwmbTza8s+cGCxR+dMWVv2TCik6FKqiTx84IXhuXshckaKO+h48C4ed3A4WWLXVIZyXcSoVXHxmEPOsTsNOXfYxrnDNmbSZZ4N5ak0RAwaFduHrKd8jt1yvGpbR7w9NZPlkcNpqo1OYcmlG5yywBgQ54/YOX/EznS6zNMzufl77bwRm5xjN0C2Bq1sDVoJZyvsCeepNlvo1Uq2Bq1yjt1piYDQ4yzDpxqCIKiAdwCvolNVm6azeMS/SZLUU2n4aSPuBKBRryNJ0op+8A1u06rFXKNepxsabzWbK7a9FsRmo5OWCbSbTSSpTWcKnMHTEpsIc5+1LTZpt9soFOtlW6Td6sxR1W51/lYoe5/WYMRpXLWYa7VE2q3OtCFSS6TVElEq1+cRardbtMS5Z3rub6Wqt7m94IjgWA1Su935zQUBkGg1GyjVvc3ntlYkSaLV7LZlAs1GHbWmt3kq+2FbbDQQBCMI0GjU0el7FwmjTuOqxZwkSTQbDQSjDhAQG3XUmvX5zgGajRqCWokggNioo9Hp18222Gwg6AQEQUJsNljprx20G1Yt5sRGHZSdVr3V7G1am37RajYQ5voTsbHyvmwtiI36MUleL3RMOhWXrkNY9ssDt7AYQRAMdITci4AYnQrcc4A3AzcKgvC7vRSynjbizu12UyhOMnP4AG5fAINxcN63liiSiseplfOMjw6h1+vZ4NAwG5tCZXWjNQzOdrvVopJLoW+V2TYxgsFg4GyfmUPxadoGJ1qj5cQnWSVSu02tkMHYKrJ14zAGg4EJj4Wp2CSYnBgstoHaruQzqGo5zhrxYTAYGPPYmYkcRmlxYrLYB9YQSpJEKZ+hVcww4XNhNBrZFHRzKDKJZHBgsDoGartSzEExzUa/E4PBwPbxAM9Ph6ioLOis9oGK+lopj6qaYWvAgV6vZ9vEMHsnZymrTRhsboQBivpauYhUTLLJZcVoNHL2xAgHZqapaMyYnZ4Vifr/n73/DrPtPMv78c/avfe+p5+qI9mSZUluMdiygRBMbIoNTgiGhJYfLSG/hJhAIAFMS0hoCTEBQwpuuCFjiluwcFGXLemco1Om7d776uX7x56Z0+ZM3TOSzpn7unTpzN5rrWftvdd633vdz/08724hjYZI7SqZkI9AIMCJ2WkurRQR3X7C8TR2x8ENnbI4YtCsEvW5iEYiBPx+Liyt0h72CCXSOHZB6ncLRZYYNitE3HZSiWkSsSjnF1fo1Qb4Y2kcB0jqNVVBaleJuGEqMy42kRZXaNZGeKIpHAdI6nVNRW7XiLssjs3NYrPZGIxWqTYKOEJJnG7PgcU2dA2l2yDq0Dl1fBan00lvMKRRWcYTTePexQPF7mPrjDp1vIbEqfkZFEXB7T6ch6f9YqToPPoiKaiYMH6ecWXsP7Qs6y/WXxQE4VsYL23274F/u91BhMNsUXffffdZjz/++PYb7gPtdpvl1QKC00synZ3o065lWXRaTXqtOplkHJ/Py+XVErKqM5WOEw4GuFwo01IEPJHkRAcjy7KQBl1sozYLuQTRUJCLy0V6kspcJkYiGuFyoUxloOMIJ3G4JjsYrU/yx7MxkrEolwslukOZfCJCJhlnpVShNtJxRVITf8qXh32MfoOZRJhUPEqpWqM/komF/GRSScq1BvWBjC+WxuObbNpLGg2ROjXSIR/ZVIJStU6jNyIR9jGVSVOpNyl1RjjDSTz+4ERjK5KI2qmRDrmZzqYp1RoUmz2SIR8L0zlqzTaLtS6GLzZxUq8pEka/QT7kYmE6R7XRZqXeJur3cGI2T7vXY7HSxvTH8QYjE42tqwpKt0bSY+P4bJ5Wp0ux0cHvcrIwk6M/HFGotbCHEgTCkyX1mqowaFYJ2AwWZvL0+wNKjTZup5356TyiKLFSbeAKxQlG4xONrWsavUYVl6mwMJNnOBIp1Bo47Tbmp3Koms5yuYbgjxCKJiZKrA1dp9es4dJFjs3kkRWVS8UadpvAydkcpmlxabWM5gnhjyQnqtSbhs6wXcdtiJyczaPrBudXSoDA6dkcdruN55dLiHY/3khioqTeNA2kThOPPuL0bA4EuLhawTAtTkxncDkdnFsq0rc8eCIJbBNU6i3TROq18ep97pjL47DbWC5W0E2L6UwSn9fDxZUSI8FFIJbelVK/bWzLYtRtIohdFvJpvG4X5UoVwzBJJGJM5fM4nQf3ELEXCILwxNUrRSycfrn1i//zzw887ve8fv6auAcNQRCWgD+wLOs9m7z3M8A/tSxr60XDuQXJHYBpmlQqFYqVGoFwnFgyte/BaDgc0KqWCfpcJBPjSb41UgjEM7g8HvrtBoh95qcy2GxXBiPfBAYjVRqh9RpkQx5m8xmK1TrF9hBbMInL40PstXBrA07PZnE6HJxdLNCzPLjD+x+MNEXC7DfIrU3ytWabQquPI5zC4w8y6rawix2OTaXweTw8v1xkiBtvNLnvwUhTZJROnbhH4NhMnnanS63TJxhPEwiF6XVaSN0m+VScgN/PpZUSIk6C8dS+FQZNVRi2avhtBsdm8vT6A1brbZyhBP5wlFG/i9ptMJOOEQkFubxaoqMJ+KLpfZN6Q9MYdeqEbConZqcYDEdcKNZRPRG8oRjKaIBt1GQhEx2T+tUyleFkSL1p6CjdJlG7yh0LU0iywoVCDdkVwhuKoUojGDaYTYTIphIslypU+yqOSHrfpN40DKRuA78pcnp+CkM3uFysYPkiBKIJVElE6tRIBb3k0mNS3xjI+OKZfZN60zQYtBrYlD4LU1kEYLlUxe4LEU6k0BSFXqNCyOMgn0lTa7Zo9Eb44xl8gf2RetM06bcbGMMu81MZ7DYbS8UKljtAOJFC1zX6jSpBl8BMLkuz3aHc7uOJpvAH91cgYFkWg3YTY9hhLpfC43ZxYaXECDfeaArTNJE7NWJuODado93rs1JrYw8m963UW5bFqN9GGLaZzyUJ+n08v1ykpdpxh5OAhdprEHOZnJ6fpjcYcqnUwPDF8IYi+yLWVz8sH8smiIaDXFot0dUEvNE0gs2G2K4TQOHU/DRDUeT51RqKO4J3AlkCedgbx85EScajrJYqjHQIJTM4HE66zSqCKjKfz6JqOpeLVUxvBH8kvm9SLw37aL06+ViQdCJOtVZHNyGdzeN2e2jUqwx6baZyWdLp9IvG13Y9uUvPn7G+6+f/94HH/Z3vv++wyZ0MfItlWZ/d5L03AX9hWda2A/0tSe7Woaoqq4UCrc6AaCpDOLJ7z5GqKDSqZTAUpvM5ev0BhUYb1yaqgaYq9Fs1fOjMT+foD0ZcqjQwfTG8wd0PRoamInUbhO06p+amGIxELhZraN4YvuuOZ+gacrdBxK5zci7PSJQ4X6ihuEK4g7tPG5qGjtprErGNJ/n1J3ljkwHG0HXEdh2fJXFiJoei6VwqVNA8kXHKcpeDkWkYSJ0GXkPk5FwewzBYLVdxBaNE4tcSdcPQ6TbqGNKA2XwG07S4XChjesMEY7tXGEzTYNBuYpP7HJseV5EuFiuY7tD4eFcR9fG2DQSpz8Iaqb+wUkZx+PFHk7sm9aZpInZbOJQeJ6azG4rFAO8NqsH4qb+FV+tzei63b1JvWRZyvz0+3mwGr9vN+eUSPdOJO3wtUV/f1qV0OTmdwe/1cH6pSN904dkDqbcsC6nfwSF1ODGVIuj3cXm1hIiLwHVE3bIsRr0ORr/FXDZBwO9jcbWMiINgIrNrUj8mGF20XoOZVIxwKMhKsYyMg0gyg+uqFNU4Pd9l1K6TS0QJh4IsF8qIlp1wIoNzD+msYb+L1K6TjYWJxyKsFMsMDQgnMjeQ5VG/x6hdIxsLE4uEWS1X6SkmwUQWl2f3pF4c9pHaddIRP+lEnJVSldpIwx1J4fJcmwqURwOMfp2paJBMKs5qqUpd1PBG0zdsuxPI4hC1WycbHhP1QqVGoSONH1ivS0Oq0ghz0GAm6mcqm6JYqVPsijgiKdze3ZN6VRbROnVyYQ8zuSvqu2MT9V2VRJRunXTAyUwuQ7neZKUxgGBiT/YbTZHRe3WyQScL0zma7Q61zoBAPI0/dC1RV2SJfqOK3wkzuSyN1vjB2hlK4Q3uXqnXFAWpUyXshIXpHP1+n05vSDKdJRK9tjOELMvUqiUsXWVudoZw+IWvMr6NlLsS8GOWZX1sk/e+Hfg9y7K2bXFwS5O7dQyHQ5aWV1B0SGRzeHfgYTAMg1ajhtTvkM+msWD8NO0NEdpm4pZGQ0btKsmgl2xqPHCVezLOcBLXDgYja22Sd6t9Tl6VlhjZfHjDWyuBqiSi9+tkwx5mcxlKtQbLzSH447h2MBhtNsmPUwMefLGtvUaqLKG0qyR8DuamstRbbVYbfYRQAm9g+8HIsiykXgeb1OZ4LkXA72O5WMawu4kmM1um2FVFpl2v4BVMpvNZOt0+hWYHVziJfwcKw9WT/Gw6TjgUZLFQYmjYCSYyW5r4N1Q+YY3UD0csVprgj+Hb4VO+OOhh9pvMpSPEoxEurZSoiQauSGpLNW7s16kTseucnp8ak/rVGrI7hGeHpF4RB9iGLRbSYTLJOEvFCtWBij2cwum+uRpn6DpKr0FIUDg9l0fRdC6sVlBcIXzhnSkMijjE7DeYivnJp5PjtPdQwbtNit0wdIbtBg51yPHp3Bqpr2D5QgRjO1PqZXGE2K4R9zuZyqSpNVq0hyLBxNZqnGkYdFsN9GGX2fxYaVssVsATIBxP74jUK7LEoFEl6BaYzmZotbvUugN88TT+LSbuscrXRB92mMulcTocXC6U0Z1+QvHUjryAqiIzbNYIOCzmprK0umM1jkBiSzXOsizEXgu71OF4Pr2WNiwywo1/h2lDXVUQO3VCdp3js1N0+0MuluronijuLR6ALctCHnRwSl1OTqcIBfxcWC7S0e14o6kdFfgYuobUqRO2aZyam2IoSiyW65jb+GbHKl8Pa9hkLh0jFg5xYblIUwZneGf2G9PQkbtNwjaFO+anUFWVlUodZzBGKJbY8nod9nuMWlXS0RCJWJSlQpm2bOGNp3HtwAtoGgbDTh23NuL4TA7LNKnUGoRjCZLJ9JaxB/0+tWqJgNfN7OwMnj08REwKmyp3v3AIyt33Hbpy9yGgZVnWP9/kvf8BxCzLevu2x7kdyB2Mb9Bms8lKoYTDEyCRzmzqKbAsi163Q6dRJRmLEAoGWCyUkCwHwXh6x5V6lmUx6LXR+i1mMwkCvnHKoWc48EaSNx2MpEEPhk3m01ESsSiXVko0ZRNnOIlzhym39cHILrY4lksSDQe5sFykLlk4wzcfCK+e5NOJGKvlGg1Rxx3dXcpNHPQwew1mUmES0QiLhTIt2cIdTd3UmKyIQ/Rug3zURy6dpFKr05M1IoksXv/On85Hgz79ZpV40E8yEaNQrtKSdPyxmxuTFWnEqFUjEXBt+OjqfRFvLI13Fz46eTREbFdJhcakvlipUR0ouLZQGFRZQu7USPodzOWz1Bptlho9rEAczy58dKosYvYa5CLuHZN6XVXQe3UyATsnZqdotDssVTsYvjieXaT7xmpEjUzAuZG6X2n0IJDAcxNSr2sqSqdGzGVxcm6K3mDISrWFMxTHtwsfnabIDFs1Qk6L+ancVaQ+RSAcuUlsjUGrisdUOD47xUgUKdaaeCIJQrvw0WmqSrdewWlpzE3lGAxHFOttXOEEwcjmn8HQNXrNOnZtxML02Nu2Wq3jDMQIxXaectM1jV6zilNXmJ/OMZJkVisNHMEYgZt8BsPQGTQb2NQhx2dy6IbBhdUKmjs0fmjcYWzD0JE6dXymzMnZsRfwUrGK4YkQuEna0DQNRp0GTnXAiZkcAOeXSwwFH55tHlivOY5hIPeaBK1x6t40LZ5fKSE5g/gjm/sQr35YPjWbw2G3cWG1jGTz4ouldlzxPv4MTVzqgJMzWWw2G+eXigy2+AxjVbqNR+lxcmasci8VyhhOL+FEGscOfW3rqXtt0GE2m8bpdHBxtYRs9+GPbk7qx2S8gzVsbaS9S+UKTo+PdCaPa4d+dMuyaDUbtJs10sk4uVwOxwEWFN0Mm5G77/6F/3PgcX/7+1552OQuwZjAXdjkvZNAx7KsbdelvW3I3ToMw6BULlOpNQhGE0TjV1J34mhEs1bG67KRSaWo1Js0BxK+WBrvHqtvDUOn32pgU4Ycm86iG+Y4decK4btqINRkCbVXJ+V3Mj81nuSXGz2E4O4m+athmgZSt4XXGHJqJodgEzi3VGIg+HCH49hs48FIVxX0fp2MfzzJtzpdlmtdbKGtn+S3jm0idpprKcYMdrudiytlRLsP31XKp66qSJ06UafBidkp+oMBlUYHXyxF6CYT5HawLItuq4ncbzKVTuJxu7lcKKPYPOM035rCMJ7ka3hROD4zxXAkslxtYA/GCUb2Zpa3LItht41+Vdrw4kqJgenAG72SYlyvUvObMifn8jd42/biqxmrGz0cUovjuSSRUICLKyXqkjX24znHDybjCbJBWJA5szC9YWCXnEG8ob0b9eVhD2HU4tiaF3CxWKE+GquP66R+fE028epDTs/mEQS4XKygu4I3pL13A2nYR+7UyUYDpBNxCuUqbUnHH89skHrTNBl0GjDqcmxqnPZeLlUQPEEiiZ2pXptBHA0ZNKpE/e6NAp/2SCGYuOIFtCxrrLgN2sxkx962pWIZw+EdV8Du0bwuSyKDRoWo10Uuk6LWaFLrieMxa019tCyLwdo1OZu5ck32jGuvyd1CU9YeTHx25qdy47Rhc4AjnNxQ6i3LQux3MYdN5tNxImsPmrtRvTaDripovTpJr22twKfPYqWNFYhdU+AjDXoIwxZz6QiJaITlYoWmbOKJpvdcAatrKlK7RthhcHwmT28w4mKpjuaJ4rlKfVRGAxg2mUuO/amlSo2eohNKZnfVUufa2BrdRhWHLrMwk2ckiiyWGliBKP7wlTFLFoeonTqZtbR3o9FEVg3S2Tz+wN7mMl3XqVXLSKM+0/kcyWTyUP14m6Vlf+kPHzrwuP/4780dKrmbFG47crcOWZZZWS3QHYyIJjOIgz6GKjKdzzEcjdZUhNieJ/nroSryuArPwTgV0umyXOtg+mOYqkwQmVNzU8iywvOFGqo7PE7pTaAqTddUlG6dmMvixGx+LRXSQHFHsAyFCDJ3rE3yFwsVdHdoTMAmENvQNEbtGkGbyomZPENR5HKpgeGNYpk6Hn3IyZkcArBSqmL3h4kmUtgnUBGn6xqdeg3UEbNrxuSlUg38YSwLBPHKJH+5UEZ3+Qluk3re8ec2dAatOg51yLHpHIZpcWG1jO4OgWDDLnU5NjWuUju/XKJnOHFH9l+EAlcIlN8YVwCuk/q+4EOwOfCoPU5NpwkGxmpyWxsb2CfRu27DC6j3OT079gKeXy4xwIPN6cEutjmWGxvYFwslBoadwC4U8S1jWxbDThNz1GEhl8Lr8Yyr2W0enF4/aq9BPh4hEYtQWDOwh1MZ3BOo7rYsi36njdxtMpUeF/gsrpZQBCdufxCp2yQV9pNKxClWqvRkg1AyM5E2F+teQKlTJ58cF/gsFUqMTAfuQAi52yQZ8pJLpyhUalR6Ms49+tU2gzToYQ0azKSuEKiWYuL0R9GHbVIBF9PZNOVag5XmcM9+tc1wPYFaLlWoDjRs/gjmqEfKb2dhOke91abQ7GMLJXdkEdlRbHGItuYbzGdSFCp1Ch0RfBEsqb9BPDu9PtVWF28sRTA8mcbhsijSb1YIrxX4VOstyp0h9lAcXRwQtOscn8kzGo1odnokkhmiscnMZZIkUq2UsGMyNztDMDjZLgE3w2bK3Tv/w8Erd7/1rsNV7gAEQZgG/iPw94E4UAf+Gvh5y7KKOzrG7Uru1tHv91ktlIiEg9jWvDOGy08otvcn+a0gDvuI7bHCkIzHKFTrRAJ+vB43zy+X6FkuvOHERMve16GIQ4xBk+mYn6lMimK1TsDnJXi1unRAvawUaTRu6xEct/WoNtq4XQ4ioSCrxTKq4CCSzF5jYJ8UZEmk26jidwpMZTM0210EAeLRCEuFMn2NjarnSWPsb6oSco5JfbvXxzAMUvEYS8UKlb6CI5zGeQBNYnVNRe3WibstTs6OFQZJVsilExQqNYodCVtoZz7Q3WLdCxh1jIuBRqLEYCSRzySpNprUuiLuWGpXae+dx9YZtGq4DYlj0+O0YXcwIJ9O0Wx3qHfHBvZAaPImccPQ6TYbWGKfuakspmXR6vTIpZN0en0qrS7eaJLAhCb5q2EaBr12A2vU2/AC1lod8ukk/eGIy+UmBGJ4g5PvCTkuBmriVPqcnMngdDioNFrk00mGosSFwuQqTa/HekGOR+lupD4L1Qb5VBxV07hYqKF7w2Nla8J9Gdd9wohtjuWShAJ+lks1cqkYlmmOK64DEcLx/Xds2Cz2sNdF7NTJrxX4FCp1krEwNkGgUqsTDMdIpjITeVi+Hr1ul3qtRCToZ3p6+sD7422q3P3RISh3rztc5U4QhBzwONADvgZ8J/C/gH/AuL/2A5ZlLW97nNud3MH4Jvnqs2fpyAbBRGZHJtX9xut3xu0H7jl9nJVShUJHGvvqtjCwTyq2OOjilDq88o4Fmu0OK80Brmh6Yk/yW8bud2HQ5GXHZ5BEkXKrRyiZwb/PdhI7waDXZdCqMZ9PYxgml0p1PNE0vj1Unu0W4lracCETx+l08tXLxXFLhwn3iNsMqjTC7Dc4mYsSDgZ58vkldF8MT2B/7SR2FFsWMXp1FpJBsqkEX72wiM1/c1/YZGNLiK0ayYCL2akcz5y/iCu0vYF9IrEVmW59rNQfm5/lq2efxxaIENpDBfduoakKvWYVHwanTxzj8WfPI9n9+CJ7T3vvFIamIXZrRGwad585xWNfO0fXdE+8R9ymsXUdpdckale472V38PTZ5+mbrrGv7gAbP8O4YGLUGavl9951mnMXL6PgJJzK4Dzg1VxMw6DXamCKXe4+c5rFpWWwO8mstTY50NimSbNZp9tqcOrEMUKhgxtLN1Xu/uP/PbB46/it7733sMnde4F7gNcDZ4AnACcQBL4APGNZ1j/e7ji3zAoV+0WnPyA+f+ZQYgmCQDiWpGMYiKJIszvAE5898IF3PbY/FGVkmgyHI1rdAd7k1IF2nr8mdjjKCOgNhkiiRDST37P/ZLcIhsdkpj8YohkGvngWzwGuZHI1fIEQNpud7qCN0+kcN/8NHE57AZfXj2630+w0sQnCWiudw1lX1uXxYTjyNLolwgEf+CIEYwe/ZNA4thdndoZW8SKpuITdHyaSSB1ObLeH1PQc1UtnEUURPAEiifShxHa63CRyszSWLzAajZAFN4F45lBi251OgskphtUlRqMRQ8OOL3FIsR0OfPEMw2aB0WjESBcIZvKHEttmH7fiGdXHsSXNIDV37JBi24mmMrQq2vj3VlROnTl9OLFtNlKpDLquI0nSgZK76+F3O3jgWPzQ4h0ivhn4d5ZlKcJVT8CWZXUFQfgV4Ld2cpAjcrcPrLZGfLXQRVQNfC47d09HdrluqbDpP28nbKfefGr5z3ht9kEi7nEfpuXmiCdXO4iKjs/t4N6ZKHMJP12lzZcqn+MfzH3nvuJdj88UPsID6QcJubYmQ321w6O1z/Hm6e/Y4ZEP+wd/cVxgwovkPF4KWGmOeLrQRVR1fC4H90xHmE3sfHw5+qZ3j2Jb5LlSD0nT8Tod3JkPMxXbzcPnC/etv5D31gvR6Hik6Dx6uX3ocQ8BSWD5Ju81gR0x6CNytwd8tdDhA4+s8ly5f8N7d+ZCfPerZrh7+nCUkVsZn1r+M9773H/iL1c+wjum3sNHH+vytWLvhu3unBaQ4r9HQ1kF2Jbg7RSfKXyE//X8b/LZ4kd59yt/96YEr692+JUnfozSaBlgFwTvCEe4EU+vdvjTr6zybOnGa/2ufJh/9OoZ7pk5Gl8miWeLXT7+ZJHzlRvH9NPZEG+7d4q7piKHf2KHiPCvj1Ww3r9pvcBnskMI8CJZPGPSaAHX3+Drn/S7gHM7OcgRudsl/ua5Kv/tcxcxLfA67bz2eIKY30V7pPKlS02eK/f5+Y8/y48+eIJvuPNw0hG3Kl6bfZC/XPkIheESv/HVn0Ss/BBeZ5ivO5kkHnDRGqp84fISS87/jl2pE3VO89rsgxOL/0D6QT5b/Cil0TK/8sSPbUrwriZ2ef8cD6QnF/8Itx/++tkKv/OZK+PL604kNq71L15s8mypx89+9Bl+4s0n+ca7jsaXSeD/na/xh1+4jGWBx2nj/vk4Ub+LzkjlsaUW5yt9fu1TZ/mBrzvG158+nNT6EbbHOC0b237Dlx6eBe4CPnHVa/9CEIRvBN4E7Eg9OCJ3u8BXC50NYved903znfdN4XNd+Qp/8OsX+LPHi/zZ4wV+73MXSYXcRwrePhBxx3jH1Hv4ja/+JDZ3nczp9/Ebr/99soEkAF2lzYr3FyiN6hhKiuLFd7F4SuDe2cnED7mivPuVv7tB3q4neNcTu63UvSMcYTs8vdrZIHbvuH+adzwwfc348iNvPMaHHi3woccK/PZnLpAKuY8UvH3i2WJ3g9h96z15/uErpvC6rnifv/d1C/z5U0UeerrE//zCZeIB9y2v4L1UMFJ0Hl28JdOyfwJcrRKYwK8BXwXealnWJ3dykG3JnSAIfwS8BahblnXX2mtvB34BuINxWe6LrwT2APCBR1Y3iN33vnbuhvd9LsfG63/2eIEPPlo4Inf7xEcf6yJWfojM6fcxNEu854mf4Bdf/XsA/NxXfpTSaJnpwDynA/+Gjy72+D9fXube2cl95zcjeMARsTvCRPGnX1ndIHbf9/fmb3jf53JsvP6hxwq8/5HVI3K3T3z8yeIGsfuuV934VOh12Tdef+jpEh9/snhE7l4k8LsdPLBw6yl3lmX9KfCna38+AxxjvBzZcDfH2Yly98fA7zLus7KOZ4FvB/7HboK9lLHaGvFcuY/Xaec775vactvvfOUUf/HVMs+Weqy2RrsssjjCOpabI75W7OF1hvmN1/8+73niJygMl/jJL4yrwHtqh+nAPL/46t/DSYi/fPrLfLXYY7k5Ym4XxvPtcD3Be/eXvweAgdY9InZHmAhWmiOeLfXwOu2844HpLbd9x/3TPPR0mWeKPVaao10VWRzhCoptkfOVPh6njX/4iq3H9G99RZ5PP1fhfKVPsS3ussjiCAeBkaLz2NItqdxtwLIsDVjZy77bkjvLsr4gCMLcda+dgxemQuaFwlcLXQBeezxxTapkM/jcDl5zPM7nztX5aqF7RO72iCdXOwB83ckk2UCSX3z17/GTX/jH9NTx62FXlF989e9tVNK+/mSCv3muxpOrnYmSO7hC8N795e9hoHUBCDojR8TuCBPB02vjy+tO7Gx8ed2JBJ85W+PpQveI3O0Rz60VrNw/H78mFbsZfC4H98/HefhCg+dKvZc8uVsvntjpey/GIotbVbmbFA7ccycIwg8BPwQwMzNz0OEODKJqABDz76wfXMzvvma/I+weoqIDEA/s7DuPB9zX7HeEI7xUIKq7u9bXx6H1/Y6we0ja+LuL7nBMj/hc1+x3hBcWomLw2GLnhT6NFy0OnNxZlvVe4L0wXqHioOMdFHxrT3btkbqj7dsj5Zr9jrB7+Nzjy7M1VOkqbX7uKz9KT+0QXlPKemqHn/vKj26od62hcs1+k8R68cRA6xJ0RoBxWvZmVbRHOMJusK7WtYY7HV/Ua/Y7wu7hdY6/u84Ox/SuqF6z30sZmylxL7lWKEfYEi/9q/SQcPd0BIAvXWryg1+/sOWgKio6X77Uuma/I+we966Zxb9weWmtKnZ5w2MH44KKwnCJn/vKj/Lue3+bhy80r9lvUtisKha4aRXtEY6wW9yzNk588WKTH3njsW3Hly9ebF6z3xF2jzvz4xViHltq8b2vW9gyNSuqOo8tta7Z7wgvLHxuO/cfpWVviiNyt0PMxP3cmQvxXLnPnz1e3LRadh1/9kQRSTO4Kx8+8tvtA3MJP3dOCyw5/zulUX2D2K177H7x1b+3QfD+zd/9CLL5/dw9lZ+o326rdidbtUk5whF2g9mEn7vyYZ4t9fjQo4VNq2XX8aHHCkiawcumwkd+u31gKubjdDbE+UqfP3+quGm17DoeeqqErJmczoZe8n67WwWiYvD4LV5QcT0EQcgBP2hZ1n/YbtudtEJ5P/AGICEIQhH4eaAN/A7jZTL+QhCEpy3L+qZ9nfVLAN/9qhl+/uPP8mePF4BxVezVKUBR0fmzJ8Z97mwCfNc2VW9H2BpdpY0U/z3syriP3enAv8F51corEXeMd9/72/ybv/sRhmYJ3+x7+ba7d7Ts3o6wXR+77frgHeEIu8E/evUMP/vRZ/jQY+Px5R33T98wvnzosXGfO5sA73zVS9fD/GLB2+6d4tc+dZaHni4B46rYq1VTUdV56KkSDz1dQhDG2x/hxQH/LarcCYKw1aLEdwM/LwjCHwNFy7JuaurfSbXsO2/y1se22/dWw93TUf5/D57gv33uIn/2eIG/+GqZ1xyPE/O7aY8UvnyphaQZ2AT40QdPHPW42ye+VPkcDWWVqHOa4sV38dHFHn/59Jd5/ckE8YCb1lDh4QtNZPP78c2+F5u7zsD+BHBz1WM3eLT2uW372F1P8Ha3vuwRjnAF98xE+fE3n+B3PnORDz1W4KGny7zuxJUVcL54sbkxvvzEm08e9bibAO6aivDPvu4Yf/iFyzz0dIlPP1fh/vk4EZ+LrjheoULWTAQBfuDrjh31uHsRYaQYPL50SxZUXGDrRYotYAkYCILwPZZlPbTZRkdp2V3iG+/MkA65+eCjBZ4t9fjcufo179+VD/NdD0wfEbsJYH2N2NdmH2TxlMD/+fIyXy32+Jvnatdsd/dUnm+7+7cY2J+Y2LqycGWN2AfSD26pxq0TvCNid4T94pvuypIOeXj/I6s8U+zxmbPXXusvmwrzzlcdrS07SbzhdJpEwL2xtuzDFxrXvH+7rC37Uiuk8Lvt3Dd/S94H37/FewvAvwf+KfB24JeBI3I3Kdw9HeXu6SirrRFfLXQRVQOfy87d05Ejj92EsU7W7p2Fe2ejLDdHPLnaQVR0fG4H985Er/LYTUaxuxo7JWshV/SI2B1hIrhnJso9M1FWmiOeLnQRVR2fy8E905Ejj90B4a6pCHdNRSi2RZ4r9ZA0Ha/TwZ358JHH7kWKkWrwxPKtp9xZlvW/bvaeIAgPAP/esqw/FgThIvCZm217RO7WIAgCiiTi9u78Rp6J+/dM5kzTRFNlBCGAIAiosoTbF9jTsXYLyzTRVRnB5sVmE5AkEYdzZ72e9h3bstAVCVvAg2ATkMQRbo93x/vPJfx7LpiwLAtJHBF2COPfWxZx+/yH1oxbkUS8NgGbIKApIm5/8NBiq7KIzSYgCDYMZYhlRQ4ttiZL+GwCCAKaImOaJjab7VBiK5KIbe1j6oqCaRjY7IfTnkiWRGA8tuiqgmHo2O07H3JnE/49kzlVljBNA5vNhqmpGLqO3XE4w72uKpjGuBecZWgYuobd4TyU2IamYRo6giBgGjq6quBwuXe8/1TMt2cyZ+gahqYiCAKWaaAqMi63Z0/H2n1sHU1VxrEtC0kU8foOh5QahoEiSRA4nM+6Dr/Lzn3zt57nbhv0gf+39m8NuOnEfUTugOFwyJ0nFri4XGBkdxOKZ3A4D24wGva6KN06s8koHo+Hl5+c5/mlAu1GD3ckeaBESx72sYZNTqYihINBgn4/l1aKtKs9vLEMzl0MhLuOPRqgdevMRAOk4jHMqMlqsUx1tU80ld0VydstxNGQXqNCxOcmncpgWRZmuUKrtIQ/ntkVqd8tFElk1KoS8zqYyeUQBAFNr7JaX8EWSuLyHpwaoykyeq9Oxm/nxNw0NpuNk4rCcn0JAknc/uCBxdZVBbVXJ+mBU8fnsNvtzEZlisXLOCMp/KGDaymhayrDZg2foHPniQUcDge5iI/SyiV8sSTBcPTAyK2uaXQbVWy6zOljc7hcLmaTYVZXL+MOJwhGYwcW29B1es0aNnXEqblpnE4nZ6aTXCwuIXmj+MPxA4ttGgZit4FHH3HXQh63283dCznOLxcQHSG84RjCAZF6yzSRei18xoC7juVxOp3cNZ/jwmqRoTOAL5rAZjsYUm+ZJqNeC4fU486ZNC6Xi5OzUywWVsATIJJM74rU7yq2ZdFvt1D6TWbSCZxOJ3MzUxQLi3j9IdLp7IHNZZZl0Wm3aDaqJKJh4vGbr3pxEBipBo/fgsrdVrAs6zzw4NqfjwE3zUsLlnV4fYXvu+8+6/HHHz+0eNtBFEWWV1YZSQoCJrlMGt0wWSpVsfkjBKOJiSoMiiQyWJvkp7IZao0Wle4Ql83i2FQWy4LzKyVERwBfOD7RwUhTZNRenbTfwfxUlmanS6HRxSHAiZksdrudC8slZIcffyyJbYKDka4qSO0aEafJ8dkp2t0exUYHGzCfT+F2uVgulsEdIJZMT1Rh0FSVTr2Cw1SZm84zGAxZrrZAsJjLJgn4fFxaKSLb3AQnTOp1XWPYrOE2ZY7PTjESRS4U6ljA8VyScCjA88tFWoqAK5KaKKk3DR250yAkKJyez6NqOhcLVXQL5tIx4pEQl1bLNCQTZzi1K3Vj+9gGcq9JwBxxen4K0zRZLlUxLIFMNEQiHmWlVKUrG/jiaVwTJPWmaTJsNxDkPsensthsAkvFCpoFyZCfdDJBuVqnJ6uEklm8vskRa9M06bebKP02s9k0TqeDpWIZxYR4wEsunaJab9IaSgQSGbz+ySn1lmUx6LRQei1mMkl8Xg+XVkuMVJNE0MNMLkOt2abQ7GMPp/BMkNRbloU06MCwzbFcglDAz/mlAs2hRjbi5cRsnkarw+VqB9MfwxOYLKmXBj0cUptjmRjxaJiLKyWaQ5W438nJuSm6/QGLlRZCMI43OFnFWhr2MfoNZhIhUvEYq6UKPUnD6xBYmMkzEiUKtQbucJLQhEm9OBwwaFVJBHykk3Gq9TojScUuwFQug6qq1BotovEUiWRqorFHwyG1Sgm3y87szDR+/8HbBQRBeMKyrPvW/84cu9N6169+4MDj/vo7Xn5N3IOGIAif324Ty7LesO1xbkdyp2kaxVKJRrNDNJkhGoujyDK1agkHBtlMmnanR6ndwzsBhUHXNfrNGi5jPMmLosRipY49ECMQia+pDFUCDpOF6Tztbp/FagvTNx4I93NTmoaO1G0SQOb03HiSv1SsYnrD+CMJDENHbNUI2nWOz+QZjEQWyw0sfxzfPtUN0zAQ23Xc+ogTszksy+JyoYLlDRGKJTFNk0GrhtuQOTaTR5IVirU6nnCCSCyxv9imSbdZRx12mM1nsQkClwplDFeAYCw1ngzbdZzaiGPTOQzD5HKpCr79k3rLNBl0m1jDLvP5NC6ng+dXSgwsD75YEhAQO0385oiTszmw4NxKiZHNjzeyP4XBsiykfhuX3OXUdBq/z8uF5SIDXPgiaQS7HbHbwKUOOLlG6s8tFRnixRNJ7itlaVkW8rCLU2xzfCpFOOAfkxschBJZHA4H/U4LfdhmNjsm9ZdWSyh2L8H4/kn9qN9F6zWYTkaJhkOslCqIpkA4OVak++0War/FdDqB3+djqVDCcHiIJPdP6of9HqNWjWQkSCIWZbVcYaBaBBMZXG4Pw14HudtkOhUjFAywVCghCw7Cif2r5eJwwLBZJRX2k0rEKVRqNIYqnlgat9eH2O+i95vMJKPEo2Eur5ZoKRae6P5jK9IIrVsnG/YwnU2zWq6x1Bhg+uI4vX6U0QCX3OF4NkImGWexUKEyUHGEkzjd+yP1mixh9OtkQ27mp7JU6k2WG30sfwK3P4giDhGGTWYTAXLpJIVKjWpfwRVN71up1xQZuVMj7rGxMJ2j1e5SbvfwxpIEQhFkccSwWSXmd5NLp6g1mrQGMsHk/km9pip06xU8gsHcVI7+YECz3SOazBCOxJBliUa1hMsO2XSKTqfLQJRIZfKE9jmXqapKrVpCk0VmZ6aJxQ4vLXo9uTt2x8utX/1fnzrwuO94YPqwyd3fcm21rABkgTmgBVywLOv12x7ndiJ3lmVRq9UolCr4Q1ESqQz26yazfq9Ls1YmHPQTi0bGT2KqSSCe2XXa0DJN+p0m5qjLXG48yV8ulFEdPoKx1A2TmTQcIHVqZCMB0sk4K+UqlZ6CI5zE5dndYDSe5Ds45S4nplL4fV4urpQYCS78sfQNHhhFHKF06qRDbqazaUrVOuWuOB4Id+kFXI/NsMV8dvwkv1goI1kOAvEMTte1CpUiiQzbY0VzOpuh0WzT6o8IJTP4g6GbRLk5Bt0Og3adbCxMOBxiqVimrwsEY2mc13lgVEVm2KoScdmYm8rSbHcpt3q4Ikn8ociuY4uDHnKnTj4eIhGLslgoUxvpuKOpGyYzXVVQOg3iHovjM3k6vQGXyg10bxxPcPekXhGH0G8wkwySSyVYLVepDVRckTSu6yYzXVOROnXCdp0Ts3kGQ5ELpTqaJ4InuHtSr0ojzH6DqaiPmVyaSq1OcygTiN84memaRr9Vw6HLLEznkGSFxXINmz9KILp7Uq9IImKrRtznYDqXod5s0+gP8cfTN1w/47RlHeQh81NZDNNkpVTFGYwSjid3TeoVWaJXr+J3wHQ+S6vTpdLq4Y2lCFx3/ZiGQa9VB3nAfD6DBSyXKgjeEOF4atfEWlMUes0q3rVJvtsfsFxrYQ8m8IWuVahM02TUaWKXexybyuJwjJV6ye7DF929Un/99dMfipxbqSI6Q7gD18a2LBNl0CVoDjgzl8PjdnFuqUjXdOEJJ3dN6g1dQ+k2iTg0Ts/lEWWF51eryK4Q3lD8utgW8qCDW+lycipFMODnwkqRgenCF01h3yWpNwwdsd3Aa4qcmMlhmiZLxXGmJxS/9qHQsiyGvQ5Kt8l0MkYoFGS5WEbGQSS5e2JtrF0/lthnLp8BoFip4Q/FiCfTN8xlvW6Hdr1CLBIkGglTqlTA5iSTncLj2Z0/zjRNGo0avXaTXCZFNps9NN/sOq4nd9lDUu5+7ZCVu5tBEISXAR8HftKyrE9uu/3tQu56vR5LK6tgd5JK53FvcXGbpkm72aDXbpBNJ3A4HCwWymhOH+EdKgyjQQ+pUycXG0/yK6UKHcUkENs6DWVZFsNuC2PYZj6bwuf18Pxyka7hxBtJ7siYrIhDzEGDmXiQ7Nok3xhpuLd5YrUsC7HXwRq1mM+MSdml1RJ9w4E3lt5R2lARR6idKpmwl6lMinKtQWMg4Ytt/8Q67HVRe3Wm1pSX1VIFxbIRTWV3ZEyWJZFuvULAZSefTVNrtqh2hrijKXyBrUmiOOihdBvkYiGS8fHv1ZVNAonMjtKGqiwzbFWIuGzM5DM0O12Wa12sYALvNrEVcYjZqzMVD5BLJVkpVyl3FWw7JPW6qqB26yS9cGJ2im5vwGK1BYEE3m1I4vXKS6FSo9AWd+wFNDQVpVcn5jQ5NTfFUBQpVJu4IwkC4a3TUIok0m9WiXjsY5tCs0WlM8QTTW37ncF4kh+26uO095ryu1qt4wrFCG2j/CqyRL9RJeAQmMlnaXe6VNt9AvEUgXBkB7F1umskcTafwVib5O2BCKHY1iRRUxR6rSo+dOam83T7A0qNNt7oOPZ25NY0DLrN2pigrpHEi6tldHeIQGxr5VfXVMRWHb9N21DqL5frmL4YvtD2aUPTNJF6TZxKf0P5fe5SgY7pxhmMb0lQTV1HGzRJunTuWJhGlBUurFaR3WG8O4htmSZSv4NX63NyJoPX7eLc4hWSaNtiXDYNHbnXJITM6fk8hmFysVBBc4fxReLbEpXx2NjGJrZZyKUI+n0srpZQ7G7CifSWyu+Y1DdA6rMwlV0j9VXsvp2ResuyGHQ7yN0G+eRY+S2WKuBwkUzncblvThJN06TVqDHstchnUtjtdkqVKoFQlGQqg2MHc1m306FRKxMNB5iensblOpziu+txuyh3W0EQhO8DfsKyrHu33fZWJ3eyLLOyskpflEmm8wRDO1eCNE2jUS2jykOmclkkSWa50sAeihGKbG5MVmWZQatCyGVjJpeh1elSavVxR5L4gjuXxA1dZ9Cu49JFFqayaLrB86tlFGcY302MybqqoPTqxN0CJ2bzdHp9VmpthFAC3y68JqZhMOw0cKtDjs9ksSyLi6sVVHcQfzS56eShaypSq0bQoXNiJs9wOGK52sIZihOI7NxrMvYt1RGkPsemMthsNlZKVeze4JoxebPYGp1GFUGTmJvKIUkyS5U6trW0905jr6dTGfWYz6dwOZ1cLpTRHL6bpg0NXaffruFURY5Nj3+nC6sVFPfNf6dNY1sWUq+NQ+pyfCpFwOfl/FKRruHAHUltSuqv9radmstv/E6KK4hvF+nddc+UMGyzsOaZurBcpKXaxrE3IfXW2iTv1YfcMZfDbrOxVKxgeQKE4qldGciHvc74QSgxJvVLxTJ9TSAQv1FpXY896DRB7LGw9jstlSqYTh/hZArHLiozR/0eo1addCRIIh6lUK4y0kzCNynwWTewy70mU+kEPq+XpUIZ1eEmvEvPpjgcILZrJILeDS9gR1IJJrN4NnkIW5/klW6TqVSM4Joi3jfs+GO7800q4gi5Uycd8pBPJynXGpS7Io5w6qZKvdjvwrDJbDpGIhrm+aUi5YGOLZjYVWxdkWDYZDrqZWH6SjqVQOKmBT7yqI9t2GI+HSEVj7JUrFAZaNhDu0vv6oqM3q+TCTg4NpOn2e6wUu9hC40fhDaPPUDvNchF/eRSCUrVOm1RJZhI49mFZ1NTFPprRT5z03n6/QGlZgdvNEngJhYYSRwxaFSI+Fzk0ikazSYDUSWZyeMP7Nw3qakq9VoZUxWZzucQRZFmq0MsmSEW3/xBSBJFqpUSDpvF3OwMgcDhdHO4GTZT7r7v1w5eufvVt784lDsAQRC+Dvhry7K2vehvWXKn6zqlcplavUU4niKeSO7ZwyWKI+qVEi4HZNNjRajeHeGNpfGt3WCGrtNv1bFrow0ytliqIviiBKPxPVeJracNo+4xWWy0OyzXehCI41lTN0zDQOw1CZgiJ9e8bZdWK2juEP5tnuS3gqYqSK0aYafJsbW04XKthRBMbBiTx+mexpUneZuNy4UyujtAOJbes4dL11T6zbG6sTCTYzgSKTda+CJXjMmmadJtNVEHbaYzSZxrZEyxewntw8Ol6xqDVh3PuiIkySxVGmOPZDS+0W5g2BkrrLPZBH6vl+eXi/RMJ97o5mRsJzANHanTxG9JnJrNoRsm55dLSM4Q3vD4OhqTsS5Oqc2JfIpw0M+llRJdw443ujOFdfPYV6odT8xksUyL51fKjBx+POEr15E06OIQ2yysGdhXShVGhkBozV+2p9imSb9VxxB7LOTHdomLqyV0V4BALLlBFtcV1nwsRCIWoVCpMtQsQsnd2yauid1uog86zGZTuFwuloplcPnHDxRr15E4HDBoVomtGdhL1TodUSWYyOxqkr8aY8LWQu21mMlcIYuaw004cYUsyuKIQaNK1D+e5Mu1BtWehDuWwrPHFkrrSr05bDGXSRAOBri4UqSr2/FGrpBFVZZQuzVSfiez+QyVRotLlQ66N45rH+2blGEPt9rlZD5BIhrm0mqZumhcU+CjKTJ6v0Hab+f4TJ5Gu8PlSgfDt7/CDHnUxzZqsbBGFldKFRqigTt6JbOiqwpSp0bEObZNrCus7khyRwrrzSAOB4xadVKhq0i9rBJOZDeuI01T6dWrOE2F+ek8oihRa7YJx9NEY3uveBZHQxrVEj63g3QqSbPZQlQ00tk8gbW5TNM06tUysjhgeipPIrE///OkcINyd+bl1q8dgnL39vtfVMrdXcCbgP9uWZa65ba3GrmzLItGo8FqsYzHHySZzu1Iet4Jup32mochtOafqDA0BOxuL+awy2x2XKV2ebWEZHMTjG0t1+8G4qCH3G0wdZ2XC5cfp9LjeD65kUYdGA588b1P8tdDHg3QOnVysQCZZJzVcpX6UEPwBhHELrOpKLHIWHEZ6jaCN1Fc9hRbHI6N6kEPuXSSar1BV1TwBiNI/TbJcJB47Eoa1T/B6ktFEhHbtbEXMDeubq51h9gDUfRhh3TETyaZYLVco9KXcURSu/ZG3gyaIqN2ayR9DhbWqpsXqx00dxi7MmAq6mU6m96R4rJbrE9qUdfVXsAmqjuMTR2QDY4N7PVmi3pvhD+WxrcHb+SmsTWVXrOK29KYnxqT+uVKE1sggiGLhF0Cc1Njb1u13cMXv9HbtvfYGr1mDYcmM7/mBSxU67hDMVRZwoPO7Jq3rdRo44nsLI26Exi6Tq9Vx6Zc8QIularY/RFMTcG19n0MRiJLlQZCIIZ/m7T3TmEaBsN2A6c25Ph0FoALK2UUZwBMAz8KJ2fH3rZzyxWG9iDuPfgyN4NlmiiDNiFrxJ3HpnDY7ZxbLDLAA4JA0JI20qjnlkuI9uDGQ84kYkv9Nl69z+nZLB6XiwvLJUY2D9jsuLUhJ2fG38disYLNGyIU31/R0Ubstepmtd9mJpMg4POxWCih2z3YnU70YZe5fAaH3U6hXMUTCJNMZibSScCyLLqdNt1mlWQsQjAYoFSuYHd68Hh9dNsNMqkEuVxu00zJC4XNlbsPHnjcX337yw6d3K35634O+HogBrSBh4H/YFnWMzs6xq1E7gaDAUsrK+imjVQ2j/cAepcZhkGrUWfQbZLPphEEgcFIJB6NUKxUaYoa/tjB9E0bpw1bWKMOC/kMLqeDdm9AZk1FqPQkXNG9P8lvGduyGHVbCKMOx3JJfD4vrW6PVDw29rZ1h3ij6W29bXuNPex10HpNZjNxggE/rU6XZDxGs92l1OziOsC+aaN+F/WqKsxGq0MyHqXTG3C50sT0xybeYmEd8rCPNWgylwqTiseoNlqk4tFde6X2FHs0wOjVyceCZFNxas028UgIWVFZrdZxBGOE9lAAsaPY4miskvnd5DMpGq0OoYAPY62tij0Q2VMBxI5iSyL9RpWw28FUNk2728Pv9YwXdCzuvQBiJ1BliX6zSsApMJPL0O0P8Lpd2Ox2Lq2UkJ1+ghNuVbQOTVUQ15T6hek8vcEQh8OOx+XiucsFmpoDVyhxILENXcMYNEl5LO5YmGY4krCwCPp9nF8q0NIcuMM78xzvJbbSaxJdK9CQFRXDMAkF/SwWSkiWg3AyfSA9QA1dp9+sY1NHG6ReUVQi4RClcgUdO6lM/kB6gI7nsipiv0s+mwJAlhXy+dyuCy4OA5uRu+//9Q8deNxf+c67Drta9n7GjYpF4FNAlXG17FsAD/AGy7Ie3fY4twq5q9frLBfLJNN5QjswRO8XqqpQr5YRTJWpXI6nzl/GGR5XWB60hL2eNgwKKicX5nj8uYsQiI09Xgcc29B1xHadAAp3nlzg6XMXEQIxgrvwtu0VpmHQb9dxqkNedvoET5+9gOENT7wf4aaxTZNBu4Fd6fOKM6d4/NnzDG3+A22Oug7LNBF7bbxan/vvOsVXz11kKHj3VOW469hrRnKn1OG+u05y/tIiit1LJLH31PNuYo+rDRvcffo4l5dXEHFOpHXJTjDodZDade46Pk+hXKWvjtO/B9noex2jQQ+xVeP0/NS4grsv49uk2vsgII8GKJ06d8xmGAxFzpa6CIEEjkOIrckitlGTu+fTWFg8t9rEFpqcIr517HFrlVO5KF6Pm8Vyg0AiPdF+hDeDKsv0m1XSQc9aG58qiXSe4AE2+l6Hosg0amXcNos7z9xx4PH2ihvTsncfUlp26rDJ3d8AYeBBy7JGV70eBD4H9CzLevN2x7llVqhQFIVwNHkoxA7A5XKTm5pl8flnUBQFwRciED6cRYwdDifRdJ7uynkURcF0+QlGDqc7uN3hIJjKMSxdRJZlLKeXcDRxKLFtdjuRZJZu8TKyLKPbXUTiqcOJbbMRTqTpliUkSUI27QSS6UOJLdhs+KMJpIaMJElIOgSy2cOJLQj4I3FGuowsy8iqTmI+f2ixg5EYujqOPRBl0scXDiU2QDAcRVdVZFlmKEpEp44f2tJl/mAYXdOQZJn+UMSfyB/aEoEefxDDMBBFie5QPDRiB+D0+FDNGP2hhAXYAolDIXbj2F4gSW84AEy80fihEDsAl8dDKJlh0KrgcbuIxFKHQuwA3G4PmdwMxaXnDyXepCCqOk+tdl/o0zgIvBr4vquJHYBlWQNBEN4D3HTt2atxy5C7veJyY8ijSy1GioHfbeeB+TjHkgdzQ3+m8BEeSD9IyLU1CeyrHR6tfe5AF6IvtEWeK3YRNQOf086dUxGmb4MFsldbI54p9jYWY3/ZVHjP6wMfYWf48uUmnztbY6Tq+F0OHjyT5jXHDueB4MuXmnz2bI2RouN3O3jTmTSvOX44sVdaI7662t241u6eiTB7SNdaoS3ybLGLqBr4XHbuuk3u7yPcPvC5HNw7G3mhT+MgsF0KbEcpstuW3D261OIPHl7kydUb16a7dybKD75+gQfmJ6eGfabwEf73hf/CZ0sf4933/s5NCV5f7fArT/445dEywMQJ3rPFLh95vMD5Sv+G905nQ3zHfdPcNRWZaMwXA75W6PKhx1Y5W77xc5/JhXjH/TO8fDpy+Cd2C+Mjjxf4wKOriKpxzetfutzC57Lz3Q/M8B33TR9I7A8/VuADj9wY+4uX1mK/aoa3338wsZ9e7fD+R1Z5ttS74b278mHe+aoZ7pk5GJX/mbX7+9wm1/kdufH9/bJb8P6+Ht/0weMA/PV3XXqBz+RwkfrNJAD1n2q8wGdy8BBVnSdXui/0aRwEvgz8tCAIn7Ysa7D+4lpa9t3AV3ZykNuS3H38qSK//KmzmBb4XHbedDpNMuimMVD47PkaT652+NE/fYKf/ZY7ees9k0lBPZB+kM+WPkZ5tMyvPPnjmxK8q4ldzj/HA+kHb3K0veHz52r8wd9ewrLA47TxqoUEUb+LzkjlkcUm5yt93vPJ5/jBrz/OG+84nJTjYeAzZ6v8/ucvYVrgcdp5zbE4Mb+L9kjly5dbnC33+Y9//iz//I3HedOZzAt9urcEfvOvz/PZc/WNv7NhDxGfk66oUenJiKrBH/3dEqttkX/5jacmGvs//9V5PnP2SuxcxEPY66QnaZS7a7EfXqLQFvmpb5ps7L9+tsLvfvYipgVep53XnUhsXGtfvNjk2VKPn/vYM/z4m0/yjXdO9lr73Nka7736/j6WIOZz0RZVHrnc5Fy5zy8/9Bw//IZb6/4+wu2JW1i5ezfwBWBJEISHGBdUZIB/CHgZV9Bui9uO3D261Nogdt//2nm+/3Xz+N1XvoZ//U2ned8Xl3jfl5b4pb94jmzYMxEFL+SK8u57f2eDvF1P8K4ndlupe3vBs8XuBrF76yumeOu9ebyuK5/7XX9vnk88WeITTxX5g7+9RDLoviUUvK8VuhvE7ttfOcV3vHLqms/9A1+n85Eninz0iSL//fOXSAY9RwrePvGRxwsbxO50NsjPfMsZ4oErRQitocJ7/uIs5ysDPnO2xkzMNzEF78OPFTaI3R3ZIP/uW2+M/csPneVcZcCnn6sxHfNNTMF7erWzQezecf80b79/Gt9V19oPv+EYH36swIceK/A7n7lAKuiemIL3TLG7Qezedu8Ub7vu/v7+vzfPx58s8fEni/yP/3eJRNB9Wyh4R7h1IaoGT63eqI6/1GFZ1hOCILyacSuUtwBRoAN8nl20Qtm2xFAQhD8SBKEuCMKzV70WEwTh04IgXFz7/+FUEkwAf/Dw4gax+7EHT1xD7AD8bgc/9uAJvv+185gW/M+HFycWe53g5fxzGwSvr3YOnNjBeMJdJ3bf/erZawZ+AK/LwXe/epa3vmIKy4KPPlGYaPwXCh96bHWD2H3Pa+Y2/dzf85o5vv2VU5gWfPix1RfoTG8dfODR8Xd4OhvkP3/XK64hVwDxgJv//F2v4HR23DT1g49O7jv/wCPjY92RDfKb79w89m++8xXcsR77kcnFfv8jqxvE7l2vm7+G2MFYaXjX6+Z5x/3TmNaVc50E1u/vt907xTtvcn+/89WzvO3etfv78Vvj/j7CbQ7hEP57AWBZ1jOWZb3DsqykZVmOtf9/506JHexMuftj4He5tkLj3wKftSzrVwVB+Ldrf//0bk7+hcDlxpAnVzv4XHa+/3XzW277fa+b54OPr/LEaofLjeHEiiyuV/B+5iv/BICB1j0wYldoi5yv9PE4bbz13q3TzP/w3jx//WyZc+U+hbb4kjZhr7ZGnC338TjtfMcrp7bc9ttfOcWnvlbhuXKf1dboqMhij/jy5eaGz+1nvuXMltu++x/cwbv+8FFGqsGXLzf3XWTx5UtXYv+7b90m9lvu4Hv/YC32pea+iyxWWiOeLfXwOu3bKoFvv2+ah54u80ypx0prtO8ii0Jb5Fx5fH+/bZv7+6335vmrZ8qcvQXu7yPc3vC77Nw7E3mhT+NFi23JnWVZXxAEYe66l98KvGHt33/CuOHei57cPbrUAuBNp9M3KHbXI+B28ODpNJ/8WplHl1oTraBdJ3g/85V/wkDrAhB0Rg6E2AE8VxzHeNVC4oYn+uvhczl4YCHBF56v81yx+5Ie/J8pjiX71xyL7+hzv+ZYnM+fr/NMsXdE7vaIz52tAWOP3fWq2fVIBD1kwx4qPZnPna3tm9x9di12LrJ97ORVsT97trZvcvfVtZYMrzuRuEGxux4+t4PXHk/w2XM1vrra3Te5e3b9/j62s/v7VQsJ/vb5Os++xO/vdawXT+z0vVulyGK9eGKn791qRRbjtGz3hT6NiUMQhPdtt4llWd+33XH26rlLW5ZVWft3FbipO1cQhB8CfghgZmZmj+Emg5EyfqpPBnfWhDS5NkGs7/dShaiNzz/q31mfrKjPdc1+L1WIqg5AbKefe2279f2OsHuM1r67iG9nTYbDPieVnryx375iK+NjhL07ix1Zj63sP/Zur7V4YHLX2rpaGfPt9jp/ad/fR7i94XPZecWtqdw9yI0J4QjgB4bAjaXwm2DfBRWWZVmCINx0mQvLst4LvBfGK1TsN95+4HePG5A2BsqOtm8MlWv2mxTWPXYDrUvQGQHGadmbVdHuFz7n+Pw7oy3XGd5AR1Sv2e+linUFpb3Tz7223XbKyxFuDv/ad9cVtR1t31vbzj+B73xdje9JO4u9fo7bqfg7wW6vtdZwcteazzW+T9vibq/zl/b9vY7NlLjboRXKZkrc7dUKxeDpQveFPo2Jw7Ks2c1eFwThdcD/AN61k+PsdWSpCYKQtSyrIghCFqhvu8eLAOtVr589X+Nff9PpLQf1oaLzufO1a/abBDYrngBuWkU7Cdy5VhX3yGKTd/29+S1TN6Kq8+hi85r9Xqp42dS4w/uXL7f4ga/Tt/3cX77cuma/I+weD55J86XLLSo9mdZQ2TI92hzIVHryxn77xZvOpPnipRbl7vaxG1fFftMEYt+9piB88WKTH37DsS1Jm6jofOlS85r99oP1qvZHLjf5/h3c34+s3d+3QjX8EW5f3MLK3aawLOuLgiD8J+C3gddtt/1eF+T8c66wx3cBn9jjcQ4Vx5IB7p2JIqoG7/vi0pbb/vEXlxBVg1fORCfmt7tZVezNqmgnhemYj9PZELJm8oknS1tu++dPlpA1kztyoZe8H2cm7udMLoSsGXzkieKW2370iSKyZnBnLnTkt9sHXnMssaEIvecvzm657a986hwwNkZPYsWK1xy/EvuXH9om9ievij2BFStm437uyoeRNIMPP7Z1JeqHHy8gaQYvy4cnsmLFdMzHHbnx/f3xbe7vT6zd32dugfv7CLc31j13B/3fiwxl4BU72XAnrVDez7hj8ilBEIqCIPwz4FeBbxAE4SLw5rW/XxL4wdcvYBPgfV9a4nc/d5HhdX6boaLzu5+7yPu+tIRNgB94/WTWstyu3clBE7zvuG8aQYBPPFXkA19ZucHrI6o6H/jKCp94qoggwLe/8mC69x823nH/DDZhTN7+z5eXN/3c/+fLy3z0iSI2Ad5+/wvrC70V8N0PjL/D85UB/+qDT9EcyNe83xzI/KsPPsX5yrj5+nc9MLnv/LtfNT7WucqAn3r/UzSui90YyPzU+5/i3HrsV00u9jtfNb7WPvRYgT/54hLidWOLqOj8yReX+NBjBWzClXOdBNbv748/WeT9N7m/3/+VFT7+5Nr9fUArgxzhCIcJQRAO/L8XAwRBcAqC8DLgZ4Ed9VDaSbXsO2/y1pt2cW4vGjwwH+ff/YMz/PKnzvK+Ly3xwcdXefB0mmTATWOo8LnzNUTVwCbAz37LnRNLyT5a+9y2feyub5MyyfVl75qK8INff5w/+NtLfOKpIn/9bJkHFhJEfS46osqji01kzUQQ4Ae//vgtk7J5+XSEH3njcX7/85f46BNFPvW1Cq85Ft9YmePLl1vI2vj3/udvPH7UwHgC+I77pllpjfjsuTrnKwPe9YePkg17CPuc9NZWqFjHm8+kJ7oE2dvvn2a1NeIzZ+ucqwz43j949IbVMdbxDXemJ7oE2T0zUX7sTSf43c9e5EOPFXjo6TKvPZ4gHnDRGqp86VITae1a+/E3n5zoEmQvm4rwQ19/nPf+7SU+/mSRv3qmfMMKNOv39w+/4fhRA+MjvOQxTsveehYaQRAMbt5hTwF2RApuS+f4214xRS7i5X8+vMgTqx0++bXyNe+/cibKD0x4bdl1kvZA+sEt/XTrBG+SxG4db7xjvMzaR58Yrz35heevtUrekQvx7a+89daWffOZDKmghw8/tspz5T6fP3/t574zF+LtR2vLThQ/9U2nmY37+eCjq4xUg0pPvoZY+V12vuuA1pb9V3//NDNxPx98ZIvYB7S27DfdlSUd8vCBR1Z5ptTjs+dq17z/snyY7z6gtWUfPJMmGXLz0ccLnC33+dvr7u8zuRDffpusLXsrF1JshduhkGIdombwdOHWW6EC+CVuJHdRxlnSv7As61M7OchtSe5grOA9MB/ncmPIo0stRoqB323ngfn4RHvaXY2dkrWQKzpxYreOu6Yi3DUVodAWea7YRdQMfE47d05FbmkPzsunI7x8OsJqa8QzxR6iquNzOXjZVPjIY3dA+I77pvmO+6b58uUmnztbY6Tq+F0OHjyTnojHbiu8fW35ry9favLZszVGio7f7eBNZ9IT8dhthXtmotwzE2WlNeKrq92Na+3umchEPHZb4WVTEV62dn8/W+wiqgY+l527bvH7+wi3H3xOO/fcgg/klmX9/GavC+Mc8ccFQfgpy7J+c7vj3DLkThAExNEQIxrD7tj5xzqWDOyZzPV7XWw2OzabDV2W0XUNh2NnPbb2C3HYx2YTsNlsGKqMrqk4nDvrcwVjE/ZeB3tZHGKzLOx2O4aqoKkKTtfOegfuF7I4wjJ0bDYbpq6hKjIut2fH+8/E/Xsmc6osYRkaNpsNTB1NlnB6vHs61m6hqwqWrmK32xEsA0Ua4fYeDinVVQVTlbHZbAhYiMMBvkBwx/u/5lhiz2RO1zQ0WcZmi2K3CYz6PfyhnadiXnM8sWcyp+saqiRii/lx2G2MBn2CkZ0rbrNx/57JnGHoqNIIWyCMw2FjMOzjj8R37AHaz/1tmgaaOMTu8+N02NGHQ+wu96H4jyzTxFBGOCI+LMtCk4Y4PT4E215r/3YR27JQxQHOkA2bYEMejPAFQuP7/RBii8MBXrsNm83GqD8gFIlitx98uxrLshj0e9gP4XNOErewcrcp1trO/T7w34BtyZ1gWYfXeu6+++6zHn/88QM5tq7rlEolas02kXiaWDxxYIORJIrUqyWcNotsZtxGYSRKLJVq4I8QjMQPbDBSFZlhq0rYKTA/nRufj6xwsVBBd4fwRxMHNhjpqoLYrhN2GBybySMIAqqqcqlQxnQHCcVS2A5oMNI1jUGrisdSOTaTx2azoWkal1ZLaE4/wVhqV6R+NzB0nX6rhseQODaTx+l0YhgG55cK9E0XnmgS+wGRetMwkDoN/JbEqbk8LqcTy7K4sFykZzjwRlO7IvW7im0aiJ0mbn3IyZksXo8H0zRZLpQRsROOZ3C6D4bUm6ZJv93AHHWZy2fwesYEfrVUYahbhJIZ3AdErC3Lot9uovbbzGRSBPw+BEGgUK7Sk3WCiQxu78GoYJZlMey2UXpNpjMJQoEAgiBQrNap9WU80RRu38GQesuyEPtdjEGTuXScWGRMoovVBou1Hrovhst7MFkNAGXUx610OJGLkU6MiWyl3mSp1sXwx/H4QwcYe4AwajKXDJHPpLAsi3anS6nZwRNNEQhHDiy2NBoyatVIBDxk0ykA+v0B9VaHSCJDJBo7sLlMFEc0qyU8LhuZVAqHw0E4HH7RFBJcDUEQnrAs6771v4+fudv6T3/6Vwce99tekbsm7gsJQRC+D/gty7K2fcK9ZcjdOiRJYnlllZGkkszkCQR3rjBsB13TaNQqyOKAqVwGWVFZLtcxbQ4iHgcz+QyNVodyu487ksIXnNxgZBg6g3YDpzrk+EweTTe4sFpBwU7Ca2dhOke722el3sEeSuALRSYW2zQNRu0mLnXA8ZksABdWykiWnahL4Phsnv5wRKHWwhFKEAhHJzY4mKbJoNOAUZeFqSw2u40LK2VE00bICSdn84wkmeVKHXswTiA8uYHQsiwGnSbWqMtCLoXb7eLCSomBbiNgNzg5m0fRdC6uVlDcYXzh2MRI/Xii7eAQO5yYShH0+7i4UqKvgVcwODGbwzQtLqyW0dwhvOHJkXrLspAGXRi2WMjGiYSCLBfLSIaAzVCZzWew22wsFisI3smT+mG/i9Suk42HiUcjFEoVRpoFhspsLo3D4WCxUAZPgHBisqR+NOgzatVIhQMk4zEKlSo9ScNmGsxkk/i8Xi6vltAdHkLxNA7n5Ei9NBoybFU3JvlStU5jIGGzTGYzCYIBPxdXioxMJ774ZEm9IonI7RrJgIvpbJpSrcFSo4/Nsjg1lSQWCfH8UoHqyMIWTGCfYGxdlbGGTabCbo7P5KjUW5wvjntO3jGdIJOMcXm1RHWo4wilcOxCqd8+toLWq5Py2Tgxm6fd67NUaWMJAtPxIJlknGKlRlfSCSbTEyX1mqrSb1bxoLMwnWcwHFJpdMBmI+zzkEklqDUaiLJOIp3HH5gcsdY0jUa1jK6MmM5nkSSJZruD3eHC5bAxNzuD3//isqtcT+5yJ+6yfvi//NmBx/2Fb73jUMmdIAibNSl2AaeBHwA+b1nW27Y9zq1G7tbR7XZZXllFcLhJZfK49qEwWJZFq9mg16qTTsVxu1wsFsqodg/BRBqHw8mo30Xu1MknIsQiYVZKVXqqhT+e3lXacLPYw14bY9BmPpPA7/dxYaVI33DgWVNt5NEAo1dnJhEmnYixUqrSFHU8sTSufagb60/y1qDJXGY8yV9aLdFWBbyRFA6XG0UcovXqTEX95NJJStU6zaGCP57Bs0+FYdTvonTH32k8GuFyoUxTNHFFUjjdHlRJROvVyIY8zOTSVBtNaj0RTzSF178/Ui8O+8idOrlYkFQ8xkqpQnWg4YyMv1NNllB7NVJ+J/NTWeqtNsv1HkIwgSewP1KviEOMfoOpqJ98OkmxWqfal3FFUri9fjRVQWrXiLlhYTpHq9tnpdaGYAJfMLKv2KokonRrZIJuZnJpao0WraFIIJ7BFwiiqQq9RhU3OrP5LIPhiEK9jSeyf1KvyBKDZpWgS2Aml6XV7lDvDQjG0wRCYXRNo1OvYtNl5qZyiJJModbAFYoTiu08Zbnp51Zkeo0qfpvFTD5Lp9en3OzgjaYIhKMYukavWceujZifyqFqOiuVGo5AlFA0sS9SP57kK3jQmZ/O0xsMr3lQMk2DfruOQxlybDqHYVpcKlTQPSEC+1TqdU1DbNfxoXBidorBUOT8ahXJGcYdioJlIvfahKwRd8znsdttPHu5QM/04gzFsNn2TupNQ0frt4g7Ne48No2kqDxzqUhb9+IMRMECXewQs0u8/MQ0LqeDc4tFerjxhJPY7Hsn9aZhIPebhCyROxamMQyD51cqqK4g3sg46yN2WzjlLsfzKXw+L4urJTSHl1AitS9SbxoGvVYTpB7zU1kEYLVcw+EPEU2ksdls9DptxE6dXCqO3+ejWK4gOD2k0nmcrr0Ta9M0aTfrDLpNcpkUdpuNSrWGPxQhlclit9vpdjo0qmVikRBTU1O49hFvkrhBubvzbus/H4Jy97Z7Dle5W6uW3Qw68DHgRy3Lam17nFuV3MH4Qq7VahTLVfyhGIlUetcehkG/R7NaJhTwEotFKZSrdGSDQOLGtNC6ymQNeyxMZXA47FfShvEU9l0ORvJoiNipkQ75yKYSFCs1Kn0Zx9okfzUsy0LstXFIHU5MpfG43VxcKSEKHvzx1K7Thoo0Qm7XSAfdTGfTlOtNSu0R9lASj//aJ8hx7A52qc3x/DiNdXm1hCy4CMbTu1YYFFli2KwQXVND6602K/UeQjB5A3FaV5lsoxYLuQTRUJDFQomBYScYT+/aC6gpMoN2jbDDYn46T7PdZbnWwQok8AZvVMKlQQ+GTebTYwK6WCzTuIqA7ga6pqJ06sScJifmpugNhixWmuCP4QvdSJzk4QC9X2cqHtog9fWRhiuye1JvaBpSt05QUDk5N8VIFCnUmrjDCULRG4mTNBoyaFaJBzykkwnKtTrtkUowsXtSb+g6vWYNuzZiYTqPqqqsVuu4gnEi8fgN5EUSR3TrVcIeJ7lMilqjSXMgEUikd+UFhLEi3m82sKQBC9M5DMNgsVTF5gsTjqduiK1IawTUPSagzXaHameAL5bCv8n1sRVMwxinnsUrk/zlYgXTFSQUv1EN1RR5HNsJc1NZ2t0+q42xUu/fpVJvmiajbgub1OP4VAaH3cbZpSJdw4MrHL+BOBmaitZvkvJY3LEwTbc/4NxqHdkVxuXfXRrPsizUQQe/MeCOuSx+r4evXVihKgoIvhtjm4aGNWqRDcDLT84xFEWeX62huMJ4QrtT6i3LQh52cEldTk2nCQbGD8s9/crD8jWfW9eROnUCyJyczW+Qeps/Sji2O/uNZVkM+12UToN8MkYkFGS1VEHDTjSVu0GAMAydTqOGLg6YzWewLItSpY4/FCOeSu+a1Pd7XVr1MrFwgEg4TLVax7LZyeTyeLzXjheGYdCs1+h1WuQyaTKZzKF4D7fCpsrdfz0E5e4th67cbdZcVwYq1i4I2y1N7tahaRqFQpFmp0ssmd2Rh0GRZWrVIjZTJ5/L0u70KLW6uCPJbQdSXVMZtGq4TZWF6RwjUWS52txx2lBTFYatGn7b2NvW7Q9YrLSw/DG8ociW+48HowYBS+bEbA5F1bhcqmF4IwR24AUcP8nXCAjq+El+JHK5VMfwRsdpxy1im4aB2G3gM0ROzuUx9PFEiTdMMJbcdnBY97a5dJFjM3lkVeVioYrmDuMNbX3upmkgdRt49REnprPY7TYuFcro7iChaHLbtOF62tuhDjlxddrbFcQX3lqZsUwTsdvErfU5OTN++r2wUmYoePBFt09ZmqaB1Gni1Uecms2BwDjV6wzgjyS23N+yLEbdFnapy7GpFD6Ph+eXi4xw441uT+rNtXN3KX1OzGRx2G0slyrjlGc8vWXK07IsBt02crfBVDpB0O9nsVBCEZyEE5ltSb1lWfQ7TfTB2Nvm9bhZLpYxnV6iya1TnpZlMeh1GLUaZJNRwsFx6li27IRTmW1J/Tjl3kbujr1tAZ+PpUIZxbazc99IHcfCxKJhVstVhppFKJHZlliP1fguSq9OLjGe5JcKJYamnWB8+3NfV5XTET/pRJzV8lip98ZSuDzbpw3FQQ+912A6ESERi3BxpUR5oGEPJXG4tn4gUaXR2JuWCDCdSbFarrHcHGH64zh3EFsVhzikFsfSEXLpBJdWyyzVRTRPbNvYuirhktsspAMcm8lRqjVYaQywAgncvu1Tlqo0who0mI77mcmmKVRqlLsSjvD2PkZNkVA7dZJ+O/NTOZrtDpVOf8ekXpZEhs0qUa+LfCZFvdWi05cIJzP4t7HvqIpMu17BjcF0PkuvP6DV6RNLZQhHYjuK3aiWcdpMctkMnU6X/kgklc0R3sZLqCoK1UoZXZGYnZkmGp18C5+d4npylz9xl/XDv/WRA4/7899y+kXjudsNbgtyt47RaMTySgFZ00ll8vj8Nw4Ihq7TqFcRB12mchn0NYIi+HZGUK6GLI4YtWvEfeMbulIfpw29sTTeTWKbpsGg3cSu9FmYWvO2rVaQHX5820zy10OVJdRunZTfwVx+nDYsNgc4Ikm8m6QNTdNk1GniUHocnxqTo4srZUS7F28kuSvVUVNk5G6dhEdgYTpHp9un2OzgjqQ2Jcbr3jZz2GH+Km9b33TtiKBcjbH6VSPqNDe8gKu1Fo5gHP8macONtHe/zVw2QcDv2yhW8ERSu/IWGZqK1K0TtuucnM0zFCUuFuvo3simxPiK6tjm2JrqeHm1REcT8EXTOHahOhq6zqhTx2+ukXpNHxfZeCL4w5sTY2nQwxw0mEtFSMSirJYqjHR2XaxgGGPlzZKGzE9lMS2LxWIFuz9C6Cb3jDjoM2rXSIX9pBJxSpUaA9Ugksrg2YWvyTQMOq0G+rDLTG7sBVwqVhB8IULx5KZKvTQaMmiMVcd1b1t7pOxadVwv+jCGXebzV7yApjtAOL65F1CWRAbNysYkX2s0qXVHeOOZXVkJrr5n5nJJvB7PWKm3eQjENi/wUWVpnM732JmbylJrtrlU6aD7Yrh3UaxgWRbyoINX7XHHTIZQ0M/Zy6vUZQF7MLFpbF1VMIdNsgE7p+amaLZ7nF2pMbCFcfl2F1sT+wStPnfOZ4hHQlxYLlKXwRVKbnrPGJqK2qsTd1ucmpuiPxxxudTA9MfwbqKIbwVp0BvbVNIREtEIq+Uqgw1SfyM51TWNXrOGy1BYmB5bCcr1Jr5IgnBsd0V/w0GfXqNKPOQjGY9RqdZQDEim83h9N94zuq7TrFdQR33yuQy6rlNrNInGk8STN6rSW8ceUKuU8LgczM7M4Nsk3kFjs7Tsb77/rw887lvvzh6Ru+3wQpO7dbTbbZZXCjg8PpLpHC6XC8uy6LSbdJo1UokYPq+XxdUykuAklNh9anEdlmUx6nVRew2mUzHCa2nDoWEnsJY2tCyLUb+L1mswm44TXvO2dVRhnCrYR5uRqwejeCTCUrFMRwFvLL2RNlx/kp9NjQesxUKZhmTi2UNq8Wpc4wVMxsYpbUnHn8hukAdx2Efq1MhGgqQSN3rb9oqxb61OPupnKpOiWKnRGCr4YumNCXwj7R30kU0nKFbrlLoSznAK1z7ajKiSiN6rkwmNfWvlWoNCe4Q9nNxQGFRZRO/WN/yClXqTUmeEM5zEsw+/oCpLyJ0ayatI/Wqjjy10hdRryto2visqRK07IBBL76rNyA2xFZleo4LPbjGTG/vWKs3uNdWGqiLTb1bx2y1m81m6vT7VdpdALLWrNiPXQ1MV2vUqLuuKF7DUaOOOJAhGxhO4pqpjv6ClMT+dpz8YUqy3cYWvbLMX6JpGr1HFZSrMr03gq9UGrnB8XDkvCONtWlVc+nibkSSxUmngCMbHivoeY1+tdi9Mj0n9YqmK6Y0SiIwLfAxdZ9iu4zUkTszmkRWVcysVRvYA7lAMQdhbus00DJR+k4ggc2ZhCsO0eG6xSB8f7uA4tmkaaP0WEZvCXcen0XWDZy4WaGoeHP7onr2KlmlijNrEXQovPz6NzW7j3FKRgeDDExo/CJumgdxrETBHnJ7NIdiE8cOy3Yc3sr2af9PPbZpIa2r3ydksznVS7/ITWivwsUyTXruFOeowlxunvVfLNezeANHE1or4lp/bsui1moi9JlPpBB6Ph0KpgtPjJ5HO4Vyrpm+3GvTbddLJOF6Ph3KlgscXJJUdb7PX2O1Wk1a9RiIWYWpqCscBdSjYDJspdz9yCMrdvz9S7rbHi4XcwfgGrVQqlKp1AsEoojjA73GRTMQpVeu0RpMpCtiIt+avEeQrqtxisYLuCmAqEomAi6nMmrets7m3bc+xTROp28KpjNOGDoediyslZLsPdJWEz7H2JN9ipdHDFtxc3dsLLNNE7LdxyF1O5NN4PG4WC2UUmwfLNAg6LOanc1d52+J491kUsBHbspD6Yy/giQ0vYBERN2DhF3SOzeTp9YdcrjQwfDG8wclU+m7mBby4UqKtCFg2gYhN59T8OO29WK5j+WLbpr13A3HQw+yPSX0sEmaxUKalADYHfkvm1NzY27ZSqeMMxQhNsIXOuOK0SnKt4rRYqdJVDOxONzZltOFtWylXcQaiRBK7U8S3gjgc0G/WiPo9ZFJJStUanZGKw+PDkvrMrXnblkrVjdTzpCp9ZXHEoFkl6ruiyjX6Enavfxx7bZK/XKigu/yEJti+R5Elhq0qUbd9w6daag2wPAHscp+FfBqfx83ZxQItzYErlMA2ofY9uqpg9OtkAw5OzOZpdnpcKDURbV4CpsQdsxlCAR/PXVql1DfBF59YbENXEcQWU2EHZ45N0xuMuFiqI9v9uPURx3MJYpHQuBBMEXBHUxPryWnoGlK7TsiucXI2jyjJrFQb2HwhTHGwkbIvVqrIukA0nZ1Y+x5d1+g0apjyiNl8Bk3XqdQa+IJRpFGfkN9LIh6jVqujmZDJ5fFNqPpV13UatSrDXod8Lks6nT6U1ilHyt3ucNuSu3WoqkqlUsHn842r1OotnBNu53E1NFVh0KzhE3QWZvKMJAmfx3PF2+bb3tu2V+iaitxprA1GU0iKgtvpvMbbdrMU3n5h6Dpip04AZUwsNH3cIHWtSm0n3ra9wjTGfjyfKXJqLo9pmBuLu1xYKSPa/fj28SS/ZeyrvIAnZ3IIgoBpWdhtAhdXy0h2L77o7ottdhbbROy2cCg9TkxncDgcaLqBx+VkqVDGcHoJJybbzmMdV3rFtZjOpPC4XSiqtuGr020uoqnMvir/tozdaSN2m0ylEvh9XkRJxu/zjnv0WXbCiYPp0bfup5O79Q3T/HAkEvD7WC1X6SkmgXh20xTeJHB1hXksEmYwHBEKBlgsVih2ZYRgEqf7YPoDquIA+6jFQjpMNpWg2x8QDYdYKlS5VOujuqI43AeTztNlEbfW5kQ2zEwuTa8/IBwKUq23WG0NsO9TEd8KqiSidcdK/Ww+Q28wIBQI0Gp3aPSGhBMZAvtQxLeCLEl0GhV8dpjKZRiORvh9PvqDAZ1un1Q2RyS6vS9vT7FlmWq5BLrG7Ow04fDBrvO6uXL30QONCfDvv+XUEbnbDi9GcgfjAfkrjz+F6gqMPUKH0BV83LiyysuPTbNYKNHSnHhju/O27RWKNELr1LjnWJ5qo01FNMcE4xBW11BlCaVT5a6ZFP2hyEpHxhtLT7Rv1s2gKTJKt8qpbBRDN7jUGOCJZvaV9t4pdE1Fblc5lvTjcjq5UOngjWX2lfbeTWyxXScfdBALB7lcaRJO5XblbdtzbF1bazFikEkmuFioEEllN/WcThrjasM6Dk1kbnqKZy6vEIhnd11RuxeM213UsatDTh+b56nzl/FE0/h2WVG7p9hrVft2qcddp47zxa+eR3LH8AQOPrZlWcj9NhFzwP0vO8XDT5ylbQVweA++Me7Yj9cjYR/y9+49w5NnLyK7N/e7HkRsadDFMWpx/10nOXfxMu5QjPAufdp7xaDXpd+scOeJBRaXlglF43vqDrEX9Ps9aqUi87PTxGIHQyThSLnbLW6Z5cf2C0lVieczhxbP6w+giEE0TWMkqfjS+X31jNoN3F4/mhxGUVRGsoI3kjsUYgfg8njR/REkRUWUFdyRyTZE3QpOtwcjEEeSZXTDwBmMHwqxA3A4XbhCcUZSH9MCZyB6KMRuPbY3mmQ0rOH3anhD0UMhdgAOx7j6tF9ZQtM0PMHwoRA7ALvdQSyVobZ4Hl3XcXqDh0LsAGx2O9FUlsbSOVRVxeb2HwqxA7DZbITjaTqrPRRFQRXch0LsYLwMpDccR2qNUFUV0bDjDEQOLbbLH0EcSaiqioYdfyR+aLF9oSiSMkJRFCxsRBPpQ4kNEAxHkEcDVFXFtCCdzR1a7FAozGgwRNO0Q4sJIKkGXyv1DzXmSwlH5O4limJb5Gy5h6QaeF12zuTCTN2CC4N/ofIxXhF/A0HX1mb7gdrhqdb/4+uy33ZIZ3b4eHypxcMXG0iqjtfl4PUnktw3fziT15cuNfns2SojxcDvtvOmMxleu8c1W4+wMzxyucnnn68jKjo+t4M3nkrxqj2u0XuEI9xyEOBFuEraviEIwiIbxqHNYVnW/HbHOSJ3LzE8V+rx8ScLPF8Z3PDeqWyQt907zZ35w3lKP2h8ofIxPrz4X3m48nF+4q7/elOCN1A7/Paz/4KqtAxwyxG8Tz5d5ONPlZDUaxuXP77Uxuuy87ZX5HnLPVMHEvvDj63ygUdWGV0X+4uXWvhddr77VTO8/f6ZA4l9u+JjTxb48GMFxOu+869cbuFz2Xn7/dN8273TL9DZHeEILw74nHZenj+49YZfQDzMjeQuBrwGGKy9vy2OyN1LCH97vsYfPbyIZYHHaeP++TgRn4uuqPLYUovnKwN+/VNn+aevP8bXn0690Ke7b7wi/gYernycqrTMbz/7LzYleFcTu4x3jlfE3/DCnOwB4fc/f5GHLzQ2/k6H3IS8TvqSRq2vIKkG739klVJH4offeGKisf/TX53nM2drG3/nIh4iXhddSaXclRmpBn/48BKrbZF/9U2nJxr7dsVvffp5Pn++vvF3Juwh4nXSlTSqPRlRNfiTLy5TaIv8xJtPvYBneoQjvLAQNZNnyjeKHC91WJa12dqyCIIQAj4NfHInx9kXuRME4SeBH2TMMv/Asqz/up/jHeHmeK7U2yB233pPnrfck8fruuLR+57XzvPJp0s89HSJP3r4Momg+yWv4AVdUX7irv+6Qd6uJ3jXE7ut1L2XIj75dHGD2J1IBfjJbzxN1H/Fn9gZqfzW35znYn3IFy40yEe9E1PwPvzY6gaxuyMb5Ge/9QzxwBWPYGso80sPneVcZcCnn6sxE/MdKXj7xMeeLGwQu1OZID/9zXcQC1zxhLaHCr/2l+d4vjrgc+fqTMd8RwreEW5b+Jy2W1W52xSWZfUFQfhV4JeBD263/Z7JnSAIdzEmdg8AKvBXgiB80rKsS3s95hFujo8/Wdggdm9/4MZJ1Ouyb7z+0NMlPvFk8SVP7uDmBA+4pYkdwMefKgFjYvcL3/byG96P+l38wre9nF/42Ne4WB/yiadKEyN3H3hkFRgTu//yzntveD8e8PBf3nkv//L9T3KuMuADj6wekbt94sOPFYAxsfu1t99zw/uxgJtfe/s9/PSHn+b56oAPP1Y4IndHuG0haubtWFChADsaaPej3N0BPGJZlgggCMLfAt8O/Po+jnmETVBsizxfGeBx2njLPfktt33LPTk+/VyF85U+xbZ4SxRZXE/w3vP09wEw1Lq3LLF7fKm14bH7yW/cOuX5499wip/4v08gqgaPL7X2XWTxpUvNDY/dz37rmS23/Zm3nOGf/MEjjFSDL11qHhVZ7BGPXG5ueOx++pvv2HLbf/3Np/mB9z2GqBo8crl5VGRxhNsSt5NyJwiCC3gZ8EvAuZ3ssx9y9yzwy4IgxAEJ+AfAi6+J3S2As+UeAPfPx69JxW4Gr8vBffNx/u5Cg7Pl3i1B7uAKwXvP09/HUOsCEHBGbkliB/DwxXE6Nh1yX5OK3QzxgJtUyE29r/Dwxca+yd1nz1aBscfu6lTsZkgGPWTDHio9mc+erR6Ruz3i88+P07GZsOeaVOxmSAQ8ZEIeqn2Zzz9fPyJ3R7gtIWkmz5RvPeVOEASDm1fLdoFv3clx9kzuLMs6JwjCrwF/A4yApwHj+u0EQfgh4IcAZmaO0jZ7wbqCE/HtrB9cdG2766srj/DSgaTqAIS8O+s/GPY4qfeVjf32g5Gydr15d3a9RXxOKj15Y78j7B6iMv7dIjv9vX1Oqn15Y78jHOF2xK3YCgX4BW4kdzKwCnzKsqwdMdp9FVRYlvWHwB8CCILwHqC4yTbvBd4L4xUq9hPvdsW6WtcV1R1t31nbbjuV76WE9eKJodYl4IwA47TszapoX+rwusa3Zl/aWWPQnqxds99+4HevXW/Szq63rqhds98Rdg+fe/y7dXf6e6995+v7HeEItxu8Thsvy916aVnLsn5xEsfZb7VsyrKsuiAIM4z9dq+exEkd4VqcyY0LIx5bavE9r53fkrRJqs7jS61r9nupY7OqWOCmVbS3Al5/IsnjS21qfYXOSN0yNdsaKtT7ysZ++8WbzmT44qUW5a5MayhvmZptDGQqPXljvyPsDW88leIrl1tUezLtobJlarY5lKn25Y39jnCE2xGSZvLsLdgK5WoIgnAKiAP13Rar7vex7yNrnjsN+FHLsrr7PN4RNsFUzMepbJDnKwM++XRp02rZdXzy6TKyZnI6G7ol/HZbtTvZqk3KSx33rfkrJdXgt/7m/KbVsuv4nU8/D4DPZZ/IihWvPZ7A77IzUg1+6aGzm1bLruM9nzwLgN9lP/Lb7QOvOpbA57Ijqga/9pfnNq2WXcdv/OV5YPx7H/ntjnC7wuu035LKHYAgCN8M/B4wd9Vrl4F/YVnWX+zkGPtNy75+P/sfYed4273T/PqnzvLQ0+P2GG+5J3dNCk5SdT75dJmHni4hCPDWew9mxYLDxHZ97Lbrg/dSx9tekef9j6xysT7kFz72NX78G04Rv0rRaQ0VfufTz3OxPgTgra/YupJ6N/juV83whw8vca4y4F++/0l+5i1nSAavKHiNgcx7Pjnuc7e+/RH2h7ffP82ffHGZ56sDfvrDT/Ovv/k0iatU0+ZQ5jf+8jzPVwcb2x/hCLcrJM3gmcotWVDxKuDjwAeA3wd+BfhnwD8CPi4Iwpsty/rb7Y5zZNh4ieDOfJh/+voF/ujhRR56usSnn6tw33ycqM9FR1R5fKmFrJkIAvzT1x+7JXrcPdX6f9v2sbue4N1K68u+5Z4pih2Jhy80uFgf8hP/9wlSITdhj5OerG2kYgG+7mRyokuQvf3+GVZaIp85W+NcZcA/+YNHyIY9RHxOuqK2kYoF+IY700c97iaAb7t3mtWWyOfP13m+OuAH3vcYmZCHsM9JT9Q2UrEAD96ROupxd4TbGl7Xi0e5EwTh7wO/BdiB/2lZ1q9uss07GBdLWMBXLcv6Rzc53L8DPmZZ1rsEQbgX+FXgf1uW9ceCIHwU+DngiNzdSvj602kSQQ+feLLI+Uqfv7tqWSqA09kQb7136pYgdnBljdhXxN+wpRq3TvBuJWK3jh954wmmol4+8VQJUTWo95VrSJ3PZeetB7S27P//759mNu7bWFu20pOvIXVHa8tOHj/5DaeYifs21pat9uVrSN3R2rJHOMIYkmrw3IugFYogCHbGKdRvYFxU+pggCH9uWdbZq7Y5AbwbeJ1lWR1BELYyy76O8QIRm+F9wP/dyXkdkbuXGO7Mh7kzH6bYFjlb7iGpBl6XnTO58C3hsbseOyVrQVf0liN263jLPVO85Z4pHl9q8fDFBpKq43U5eP2J5EQ8dlvh7fePyduXLjX57NkqI8XA77bzpjOZI4/dAeHb7h2Tt0cuN/n883VERcfndvDGU6kjj90RjrAOgRdLL5QHgEuWZS0CCILwAeCtwNmrtvlB4Pcsy+oAWJZVv+EoV+AFmlu8b9vJSR2RuzW4HHYGnRaBSAzhEC4YTVXQ5CF2ewi3y0G/18EXie849lTMt2cyp2sqpjzA4Ujhdjro9zv4o0lsth1dM/uCoWvo0hBXJIzL6UAZdLE7XdhsB99GwzR0tFEPV8KHXRBQuz2cbi82+2HENlCGPVxhB06HHaXTx+XzY7fv/Ba8bz6+JzJnmiZSv0PIbcdutyN1evgCIRzOnfVUg3GRxV7InGmaDHptXPa12MMOgVAYp2vrRr2TgGVZ9DptnA4HNpsNVRqhKjIu99aNmScVe9Dt4LAJ2Gw2DEVClSVcHu+Oj/GqY4k9k7lhr4sNE4fDgc1Q0WQRp+dwHv6UUR8vBg6HAycGiiziOKTYmjzaiC2YOvJogMcfPJTYijQCTcHhcGCZBoNel2A4ciixZUlEk0UcjgRYFp12i0j0cOYyWZIQhwNiocMVF7xOO3dlD+e33QZ5oHDV30XgVddtcxJAEIQvMk7d/oJlWX91k+NVgfR1rwmCIASAfwv83U5O6rYnd4Zh0Gw2ueP4AuVanUZxEV8sjdcfOJB4pmHQb9WxKQPOTOewLItT8zNU6y2KlSVs4eSBDUamaSJ1mri0AXfP5nA5HSxM5wi2O6zUlhACCbzBg0npWqbJqNfCpfS4azqLz+MmFAzg7/ZZrCxj+mN4g5EDGYwsy0Lqt3FIHe7MpwgG/AB4PCMuFZcw/DG8wejBxR50sIsd7sglCAfH19UZh4PLxSUMbxT/Lkj9biH2u5jDJgvpGPFIGMMwWEhHWS5exhmMEoodHKkf9XuM2jVSkSCJVH4cOxtnpbiMIxAmGk8eGLEWhwN6jSrxgI/U3AyGYXDHTIbFwipDd4BwIrUrYr0byOKIQbNKzO8mf3wBTdO4cz7H5dUiI4ePUDyN3XEwsRVJZNiqEvM6mD6xgKqqvObOec4urtJsdXGGk9gdOyf1u4Guyhj9JrmggxN3HkdVVV7/ihM8d2mVYq+H5Ytjd+ysMfZuYWgqNqnFXMTBmWMnUFWVe08vcHm1RLPawR1LH9gDha6pKJ06IYfOyVOzaJrGqWNzlCpVKt0W0VQWj/dgiI+uaXQaVSxV5Nh0Fk3TmJ+boV5v0Gk2Sefz+A9oLtN1nXq1yqjfYSqfI5E4XFVZ1gyeqxxKK5SEIAhXr7713rX+vbuBAzgBvAGYAr4gCMLLbtJh5CvAa4EPr/1tAR8FXsOYGO6okPW2JXeWZdFut1lcKWBzetBkkVQiRjoRZ7FQpt1rE0xkcLomMxhZlsWw10HrN5lJxQkGZriwUqKjCjhMjYVsjFeemuVyoUS71sUdTU10MBL7XRi2WMjEiIXnuLRaoilZ2C2duVSY+07Ps1Qs06iuxXbvXGHYDtKwjzVoMJcMk5pbYLlYpikZCKZJPhbgvjvmWS3XqNSWcUbSuCb4lK+IQ4xejel4iOzsAsVqjcVaByxIhTzcd+YYxUqNUm0JeyiF2ze5gVCRRui9OvmIl+nZBUrVOovVDpYgkPQ7uefUAtVGi2J5EWc4hScwOVKvyiJyp07K72T21Dy1ZounLqxg2exEPTbuODZHu9OlunIRXzxNIBSZWGxFlug3qvgdcGZhhla7yzOXVhAcTvw2k5PzM/QGAyrLl/DHkwTDkyPWqqLQqVfxoHN6bopuf8Azl5bB4cYrGJyYm2YoihQKl3GFEwQnqNTrmkqvWcVtapyZyzEciXztwhKW043H0jg+O4UkKyyXF7EFogSjicnF1jUGzRpuU+auuTyiJPPEuUUUm5ugTePUbI4Fw+S5pRJDmx9PKI4wIVJvGjpqv0nEpnDm5BSabvClp5+nrdhJeS1efnKGY9PwtYurtCQ3dn9sYrEt00AftUm6NV5+1zQW8OS5RTqag7BD485jU0zb7Ty/XGJo8+GLTu6BwjRNpG4Ll9rnZbNZHHY7l1eKmE4Plioxk0mSdrlYLhYYePxEk2kcEyLWpmnSazeRei2mM0lcrjDFUgW724cqj0gnYiR8PkqFFdxeP+lsbqJzWavZpN2okozHOP7yl+E4oIeVrXCIyl3Tsqz7tni/BFxtgp1ae+1qFIFHLMvSgCVBEC4wJnuPbXK832JM5ABUxitT5ID/Dfxny7KuP/amECzr8BaNuO+++6zHH3/hl58djUYsLq0gaSaJdA6vz49hGLQbVeRhl6lcBtOyWCxUsLwhQvHkvtKGsjhk1KqRCHjIZ1JjMtEVN8iEaRqIvSYedcjp2RyCTeDCShnJvv/BSJUl1G6dtN/JbD5DpdFitdFHCI0VQss0kXot3GqfEzNZ3E4H/x97/x0mWXqW9+OfUznn2FXVYXrCRm3UapWlFdgGjCRyEsnYMj8bDBhM+IKNsIUBGZkkG5AxCCwDAuUElsQqrCRWq9mk3dndSZ0q53yq6qT390d1985M93Ss7tX09n1dc+1On3DX21PnPff7PPfzvBeW8/QkB67g/qIb6mjIqFkm4jJzIjNFtdEkW21j9kVxef0IIei360j9BvNTMVwuJ+eXcnQNK45gfF8RBk0ZMWqVCdnh5HSKVqfLSrmOxR/FvSpk+u0meqfOTCKM1+PmwnKelmbCEYhjse59ItRVhWGzgt+icXo2Tbcvs1ioInlCuPxjMdHvtDA6VWbiIYJ+H5ezBZojcO4zwqBrKnKzilsMOT2bRh6OWMyXEe4gntUIodztoLYrpMM+ouEQ2UKRnirwRZPYd5E23Mit0a6XYdhjNpVENwwWcyVM7gC+cASTyYTc6yLXy0T9buKRMIVShc5IIxBN4HDtXdTruk6rVkHvd5hJJRDAQq6IdMXzO1h9DsPu8XNYLFeo9YZ4wol9ReoNw6DTqKL3W5xIJTCbzVxaKWDYPHgjUcxmy2pErUzQaSaTTFCu1Sm1ejiDcVyevVf8CcOg26pj9JrMpWLYbTaeW8rRFQ6cwShmiwV1NERplYm6LMxnpqjUm1wq1FGdYez74RaCUbeJU2lz03QCr8fF184vU+jq4AxhMlvRNQVp2GAmaOOWk9PUWx2eWSzTkbxYXb49i1shBNqgg1d0uW0uQdDv5dmFFUp9MHvDmK02dE1F79SIu+DmExm6fZnL+Qq6M4RznwuKQbcNvRqzsSCRUICVfJGBIRGIJrE7HOOIWq2MSZGZTU8xHI7Ilas4/WEC4ei+uHudNp1aiYjfQzgUpFAqo+oQTaRwOl1omkatUmLYb5NKxjEMg1K5SiAcIRKL7ytS3+t2KBfyOO02ZmamcTonFwTYDpIkPXqlyMqcuV381B9++MB5/8MbTj66lbiTJMkCXADewFjUfRX4fiHEuSvO+WfA961WwEaAx4E7hRD1g/rcLypxpygK2VyOar1NIJLAF9j4gI9GQ+rlAiahkUklabTa5KpN7IGxKNjNQ6mpCp1aGScqJzJTdPsyl3KV66YBtVVRELDqnJlN0+n2uFSoItwhnL7dTUa6pjJoVPFII87MppEHQy5ky6gOP07/xjSgrqkMW1X8JoWb5jL05fFn1ZwBXJucvyW3ro0FhjHg9MwUmm5wMVtEd/hxByIbJhdd1+g3KjiNAaemp1BUjQvZIorNP+bexWRk6DqDVhWn3uf0zBQAl1eK6A4f3nBkg0g3dJ1uo4pF6TKfTmIYggsrRYZWD87AxvO3gjAM5HYVu9LjzEwSs9nMxeU8I6sbTzCK6RqhbBgG/WYNy6jNycwUJpPExeUCQ4t77IHchahfS3tbBm1OZuLYbTYuruQZmZ24g7ENaUBhGPRadaRBi/lUApvVwlK+iGFzEYgkdpU2FELQadYZtWtk4hHcLhcLK3lGJjv+aHyDt298fgOtUyeTiOB2OlnKFTAsDoKxxK68gEIIOq0GcqPGVCyEz+NhIZtnICz4IhuF8loEfdSuMRML4/G4WcoVGGDBH0nuOrrRa7cYNCtMRQKEAn4WswW6GngjiU29fb12i1GrQjoSJBjwsZQr0tUkvOE41l16AeVue8wd8hEJBVjKlyj3VGyBGNZNRPqw10F0a8zG/MTCIS6vFMh3FEzeKJZdciuDHqZenbmYl1Q8ymK2yMViB8UWxGLbyK0N+zj0NmfSQTLJGAvZIgvlHoojtOn5W0EbydiUJifjXmbTCbLFCgvVLoYzhNXp3nC+OpQxyXXmIh5mUglypQr5Zh+Lf/eR+vFiuUzCY2UmlaTaaFBr9/BFkri9G4XycCDTqhTx2sykknFqjQb1jowvksCzyflbYTQc0qoUsZsMMqkkzVabZrtLKJrEH9jYTWA4HFApFbBIOqlkglarRbvbJ5qcIrDJ+Vtyj0aUi3k0Zcjs9DSBQGBX108C14q707fdKX7/bz914LzfdEt8S3G3+tm+GfhdxmnTPxVC/LokSf8ZOCuE+Kg0foG+E/hngA78uhDirw/yc78oxJ1hGJRKJbL5Ek5fiHAktu2Ls9ft0KgU8HscRCMRsoUSDVnFE0lg38Y/YRgG3UYF5A4n0gkkk4nzywUGJhfOwPYv7dGgj96uMBVwkk7EyJUqFNoDrP4YdtfGyetKjAVGA+uwxalMErvNurqSt+MIbHzJXwtlKKO1KyS9dmZSCUqVOtlGF7NvMlug8AABAABJREFUey+gEAK53cA8aDKfiuFxObm4nKeHDXdw40v+WqijIYNGibDTxEwqSa3ZYqnSAk8Ep2drL+CV3rb5ZAS/z8PllTx9w4I7vH2KWx0N6dfLeCwGJzIpGu0Oi8UGhjuM0+vfVtwOui2kfp25eIhw0M9CNk9zBK5QAqt9a25NVZAbZTwmjZPTqXGEoVAFVwjXDiIMg14HvVMlE/ERDQVZKZSpDzRcofi2Bn5dU+nXKzgZcWpmvAjIlirY/GF8O0gbyr0uvfrY2xaPhsmXKjRkBW8kjmOb76quabRrFcxKn7n0ONK3Uihj8wbxhzcuAjaMu9+nXS3hd1pJxmOUKjWq3QHu8PaeWUPXaTcqSIMuJ9JJBLCYKyK5/PhDO3lGB3TqRfz2cSSuWm9QbPZwhmLbRuLW5gchd5hPr0X68mh2D/5QfFtuZTik1yjht0nj56TRHFsNduCZFYaB3FqL1Cdw2Gw8s5Clodmw+SMbFiDXQlcVtE6VuAvOzGaotzqcWyjSFl6sTu+W3xchBOqgRdA04Pb5KXxeN09dWKbQE0juMCbz1vODoakwqDPlkbjt1AydvsyzSyX6Zh/2bZ5RIQSjXgeX1uamTIyg38vFpRzNtUj9NqJe11QGzQpeSeH0TIrRSCFbruLwhfGHt39Ouq0mvUaZeChA0O8jWygxEiZCseS2BT66rtGolDGGXWZSSXRdJ1+q4AtECEVi2z4nnXaLeqVIwOciFAxSLJURmIinxpG+rbl1quUSnVaDVDJBPL6/yN9+sFnk7mf+8CMHzvuzb5jfVtxNEqtC8IeB7wVmgGu/IJIQYnbb+xx1cddsNllYWgGLg0g8iW0XKS8hBM1GlW6jSiIWxulwcHklz8jswBfZ3D/Ra7dQ2lVSkfFDfHklT30E9kAcyy65B90mpn6DU6koXo+bi8t52roZRzC2adpw0OsgOjWmoz5i4RCLuQLlnoY1sDsPnRCCYa+NqV/nRDJEyO/n8kqexki6rhdw2O+hd6ukgm6mYhGyxTKVnoI9EN9WDF8Ludsei5Woj2goxEKuQLWvYwtsHt1QBn3UNW9bMk6hXKHcGeAMxnHsMt026HUZNsskAx7i0TArhRLFzui6XkBlOEBtlUl4xyv5cq1OvtHD6o/i3GXKayT3GTbLJPwOUvEYhVVRbwtsHmFQR0OGzTJhh4m5zBS1RotsbWyad+2yMGY0kBk0ykTdVjJTCSq1OtWOjDeyedpQVUa0K0Ucks5MeopWp0u+2sAeiOLx7y7CrQyHdGolvFaJ6akEzVabcrODNxLH49s4DlVRaFXLmPURs+kperLMSqmG1RfetYdOVUZ0aiXcks5sJrU+DkcwhmeTSL2mqnTqZSzqkLlMktFIYbFQwewJ4g3tzkN3bWS/15dZLtWweMObVu3ruka3Xsa8ap7XdIPzywVGNt+40n4XL92xWBlH6s/MpukPhjy3XKJv8eLwbeQ2DJ1Ru46fAbecSIGAJy+sUBlasLh256EzdB0xaBB3Gbzk9DSqpvO1SzkamgOLK7jhXsIw0PpNwtYht59MY7VaOHcpS0O3YfWGdxXhNgwdpdMgaBpy6/y4N+SF5QJDixdnMLwhUj9eLNexDtucSsdxOOws5QpgdxPYpYfOMAxatQpqr8nM1FjUL+WKWFxegtH4BguMEIJ2o06/VSUVi+B2Ocnmi1jsLqKx3UWZDcOgUa/SaVZJxiLYbDbyxRIuj594MrnBMzd+9zWoVYqEAn4y6TTWXUTUDwKbRe7+4G8/feC8/+yW2GGLu18Bfg14Cniase/uKggh/sW29zmq4k6WZZaWV+gOFMKxKdz7MKtrmka9WkSRu2SmEiiqxlKhjOQOjKMbJtPznhqHmcxUglK1zkqti2kHEa+tsJ5mNPqcmUkhhODCcoGR1YszOI5ujL1tFSJO07q3bbHcROwg4rUlt6EzaNdwqj1umkld7QVcjUBqisKgVSZkE2NvW7vLYrmOyRPBtcs09pVYSxuahy1Opsdpw/PLefo4ca6mOHVVYdiq4DePvW29vsxSsYbZG8K9D6O8EIJes47RbzCXjOFyOsZeQGFbjX5aV9PY45X8mVVv20K+jHAFcAf2bpQfRz+biF6duWQEr8fNpZU8Hc2CMzQW9Yau0W9UcRoyp6bHae/L2SKGM4A7GN7zyloIsSqsa0zHggT9PpbzRQbChH81zajrOu36OOo0u+ptW7zS27YPf2i/20auV0iGfERCQbKFErImCMQS2B3O1ZdjFbXXYmYqjtls5nK2gG734A9H9+UPlXtd5EaZ2KoXMF+q0BwoeCPjSkdhGHSadbReg5nk2Nt2eSWPanHhi+yv+vVaT26hXKHaHeIMjiOQQgh6rTpat85MMorH5eL8Uo62ZsERjGLehz90vDipkFxdnBQrNS5X2hiuCDaXZzXi1cYxanI6PY54nbu4TLalIRxBTPuoftXVEeZRk7mIgzMnMpSqDZ7N1pDNfqzO8ZypyB28RoebZ6LEwkEuLObIdVVMnsiuFssbuRX0bo2kx8RNcxma7S4LpRrCHV6v2h/2OhidKtNRP/FIiFyxRF818Ef3V/2qKgrNShGLoTCbnqIvyxQqdVzBGP7V9iVyr0urWiTgdpCIRSmVx/0OY4kUrn34Q1VVpVYpog56pFNJRqMRlVqdUDROODL2Avb7PUr5PHarmZnpDG731hH4w8Kmkbs/OoTI3QOHHrlbZLxDxb/f132OmrjTNI1cLkep2sAXihMITa7NxHAwoFbJYzMJUskEtUaTQqMDFgcOMWJ+elyldjFXRnXs3qu2FTRlxLBVJmKH+enVtGGpgW5x4BajdW/b+eUCQ5sXlz8ysYq0tVL/oFXnzFxm3QuomJ24GXJ6euxtu7hSQLV5V3vmTaYiTddU+o0ybhROz6bpyzIXcxVGZicuY8jp1Sq1iyt5NJsHT2h/L/mruTV6jQo2TWY+87wXcGhy4jAGnMqM01oXl/PIJgee0ORaXBi6Tq9Zxab2ODU9bplzYaXA0OTEpg2Ym4ridbu4uJxDxoY7tH3ae8fchk6vWcc8bHNqegqTJLGYKyLsLoyhTOoab5s/Ork2E8Iw6DTq6P0mM8k4NquF5XwRw+pEHw2Ih/yEAn6WcgV6W3jb9sQtBN1WA7VTZyYRxeV0sJgtMDLZEOqIRMBLJBxkJV+iNdLwRPZXgHItd6/dRG3XmI6PC3wWsgVkw4zQVRJ+F/FohJVCmUJniNUfwzbB9hqDbgup11iN1Pu4uJyn2NMxCZ3pkJuZVJyVQpnz+RYjSwCLfXLc6qCHW3S4eTpCMhbmwlKOpfoQSQjmoi5OzaYplGtcLDbRnCFsE6xoVwY9LIMG83E/qXiUlUKZUmcEJhNhhzSea5stys0OnnB8on3rBv0+7VqRgNM2thWUq7TkIWarDatQmU5N0en2qDVaBCOJifatG8gylXIeuwWS8Tj1RoO+PMTucKIMZWamM4RCoYlwTQqbibt//8cHL+7+/esPXdz1gDcKIR7c132OirgTQlAul1nJFbG7/YSjB9dLqtNu0awWCfk9hIIBFEXBZDKNozs4cO7A27ZXDPvd8Woy7CUZjzAYDrFZrZxfzNEyLOuRpYOAstraIx10kU7EGI1G2Gw2Li3n6OgWXMHYvlbTW2E0kBm1xmnD6akEw9EIh93OYjZPWwV3eHIv+WuhjIb06yWCNhPTqQQjRcFus7FSKFMbaDiD23vb9gp1NEJulglYBfPTqfVx54plqn0FRzCGfRMT+SSgqQr9RhmPpHFyJo2iKNjtdkqVGrXezrxte+dW6dQqWPUh89MpVFXFbrdTrTcoNXu4wtt72/YKXdPo1MdewBOrvShtNhv1Zot8rYUjGFuvuJ40ruyDeSKdxGQyYbFYaHa6LBRqq8VYB9QP0jDot2o41S5nZqawWCyYTSY6vT5fu5SnbbixOLf3n+6JWxhocpuwdcBLTmVw2G3jCNZwyDOLRbomD3ZvAEmavN9rHJ1s4dE63DyTxOtxoRsGmqaxXChh84YIhA+mH+RaQdCgWSUZHS+aNE3DMAzyxQpuX3D8LjugfpDtVoN6pUQ46MXv86HrOrHY9j6+FwKbpWXf9f6DT8v+05sPPS37SeDTQojf2dd9joq4KxQK5MoNYlMZ7IfQgX7sYagw6jaYTqf4yvkVHMHkplVqk8Y4dVfHrba5/fQJHj63gDmQmOhKfivuYbeJY9jkzpvmefS5RazBBI4Jrqa34pa7LUy9GnfdfJLHn72MLRTftbdtr5C7bdRWmbtuOsljz1xE8sd37W3bKwb9LlqzxD03z/Pk+Uvgie4r7b0bDOU+o0aRu8/M8cylRcx78LbtmXsg060UuO1EhouLKwh3EG/w4Jo+XwllOKRdznPr3BTL+SJDiwtv6HBefKoyol3OcyYVoVhrUhqacIUmFxHfCrqq0K+XuC0VpNXp87VcD4s7jHRIu8iIfo17T453Ynkq38UW2FhpflDcSrvGTTEnPreDYksmFJ9cf7itoOs6zWoJJyohv49Ko0tiKoNtm2KsScAwDGqVEuqgw513vOTA+faKzSJ3P/vHHz1w3p95/YnDFndzwIcZV9d+XAjR2Mt9jkwTY03XcXn8hyLsAEwmE6FwjJVGFV3XweY+FGEHIEkS7kCEUbGBpmkIm/NQhN0at9MXQpGbaJoGVsehCLs1brcvSL/fRFVVsNoOTdgBuLx+2t0xtzBbcR+SsANwur30ei1UVcXAjNe/u1YG+4HD5UbpOdE0Dd0QBIMHu5/tVdxOFwPHuA/lSNWIhA6vC77N4cDiHkdSRoqGN3o4W/QBWG12bG4fqqYzVDQc/sShCDtgnBZ0+1BUjcFIxWT3HYqwAzCZLag2D8ORCpKE2eU7FGG3xm12+xkqfZx2Ky5f4FCEHYDZbMYXDCNX82i6jscXOBRhB6vvskiM3GLzUPgmBafVzC2Jw3n3HDIurf73PcCmC1khxLYT0ZERdzvFRxf+hlenvoGgfewnWKj2OLvcoD/ScNst3DsT4kTUQ3PU4KH8Z3jjie8+sM+Sb8o8k28zUPXxFzXlJxU8HJGWb8o8U2gzVHQcNjO3TB0c92fzH+Se6Ovx2bYWJB2lyaPVz/L61LdPjPsz2Q9wX/yBHXE/Un6Qb8h8x8S4X8hxH2OMhy/XePDZCrKi4bJZeODmGPfvcb/W3WKl3ufJbIuBouO0mbkjE2A6fDjm9Bdybil3hyzU+ww1A4fFxImwm7j3cBbdx3jxYKjqPFvuvdAf4yDwNmDfqYkXlbj76MLf8K6n3sHHlt7P92d+g795pMkT2daG826bNjEI/Q8qo2WAiQu8Z/JtPvJ4lvOljfvinUl4edNdGW5JHUxU6JlCm48+nuPCJtynE17eeFeaW6Ymx/3Z/Af5q0u/w+cKH+Jn7/j96wqdjtLknU/+O4ryEsBEhM5nsh/gvRd+hwfzH+IX7/6DLbl/87GfpNAfc09C4H02/0H+8uLv8Nn8h/i5O7ce928/MdlxHwM+eDbL+76aRVb0q37+j5fruGxmvuelGb793sx1rt4fnsw2ed9XVjhX6Gw4duuUj+952TR3ZA4m8vpMfvx8X29ueeNd6QObWy7Xenz2Uo2lhrzh2GzIxetPRpiPHMlIy1U4+a5xgdmlnygcOnf0v0cBqP776qFzHzYcVjO3JA5l+7FDhRDiv0ziPi8qcffq1DfwsaX3s9xd4Ncf/0nkwltx2fy8/kyMiMdOrTfis5cWWLD8IeZRhZA1w6tT3zDRz/D582Xe88UFhACH1cS9s2ECLhstWeHsUp3zpS7/7e+f4UdfNc9rzsQmyv2F8xX+/Etjbvs6t5WWrHJ2qc6FUpd3/v2z/MirTvDq05Phvif6ej5X+BBFeYl3PvnvNhV4Vwq7pGuWe6Kvnwj3ffEHeDD/IQr9JX7zsZ/cVOBdKeym3LPcF39gItz3RF/PZ/Pjcf/2E/9uU4F3pbCb5Lhf7PidT53nwWcr639P+h34XVbaskqxPURWdP7sS0usNGR++p+cmSj3p8+V+J8PXsQQ45fPK05GCLltNPoKX75U41yhw9s+/DT/9oFTfMOtiYlyf+F8ZZO55fnn+3ypy2+vPt+TnlvOZpt85KkiArCZTdya8OJzWOkMVc6Vuiw1ZN7zyApvvj3JPQckbI/x4sJQNXimdCQjdxPBvsSdJEk/A/xLQDBuuPejQojhJD7YQSBoD/H9md/g1x//SUz2Csmb3sPvv/bdpHzjia45arDoeBvZXgV9FCN78Ye5dAu8dHYy/M/k2+uT7z+/I8W33JHCaXvey/IDL5/jE0/m+fiTef7si5eJeOwTW2U/U2ivC7tvuWOKb37J1dzff/8sn/xank88WeA9X1wg7LFPJILnswX52Tt+f128XSvwrhV2W0X39sL9i3f/wbp4u1bgXSvstoru7YX75+78/XXxdq3Au1bYbRXdO8bO8cGz2XVhd1PCyy9+y82EPc97l+q9Eb/5iWd5rtTlH56tMB1yTSyC92S2uS7svvPeDN9xbxqX7fkp9l+99gQfOJvj/Wez/I8HLxL12ScWwbtybvmWO6Y2zC3f//JZPvHk88/3JOeWy7XeurB7zXyY185HsFue5/7nt+p8/nKNL1yu8+GnigSc1hdFBO8YBwwJDqGu6tAhSdKvbneKEOJt291nz+JOkqQU8O+AW4QQA0mS/obxdhnv2es9DwN/80gTufBWkje9h66R421nf4J3vPKPAPj5L/042d4iM94T3Or7Bd630OTPvrTAS2cn0+/nI49n14Xdd750esNxp828/vOPP5nnI4/nJjYBf/Tx3PrE/x33bs699vNPPFngY4/nJpaevZ7AAw5M2F3JvZnAAw5M2F3JvZnAA46F3QHhfV/NAmNh99++584Nx8MeO//te+7kP7zvCZ4rdXnfV7MTE3fv+8rKurD7wVfMbjjuslnWf/7+s1n+5pHsxMTdlc/3dnPLJ54s8NEJzi2fvVRbF3b/5Ex8w3G7xbz+8y9crvPZS7VjcXeMfcNhMR3Vgor/yPU9d2s/f9t2N9lvWtYCOCVJUgEXcPgmg11godrjiWwLl83P77/23bzt7E+w3F3grQ9+DwBtpcmM9wTveOUfYcPHxx5/iMezLRaqPU5E9/clyjdlzpe6OKwmvuWO1JbnfssdU3zmmSLnSx3yTXnfRuh8U+ZCqYvdauKbX7I19ze/ZIrPPFPifKk7Ee41XCvwfu3sDwHQVVsHJuyu5L5S4P3ywz+4zn1Qwu5K7isF3tu+evW4j4Xd5PDw5dq6x+4Xv+XmLc/9hW++iR/9068iKzoPX67tu8hipd7nXKGDw2rmO+5Nb3nud9yT5uNPFng632al3t93kcVu55Z/mODzXe4OWWrI2MwmXrvN7/A1JyI8vNRkqSFT7g6PiyyOsS8MNeOoFlRcW6ItAUngzcBPrf53W+xZ3Akh8pIk/TawAgyATwkhPrXX+x0Gzi6P28W8/kyMlC/GO175R7z1we+hrYxLwP22IO945R+tV9K+7nSMTz5d5OxyY9/i7pl8G4B7Z8NXpUs2g9Nm4Z7ZMF+6WOWZfHvfE/Azhd1x3zsb4ksXazxT2D/3lVgTeL929ofoqi0AvNbAgQq7K7l/8e4/4Jcf/sGruA9S2F3J/XN3/j5v++rV4z4WdpPFWjo26XdclYrdDBGvg4TfQak95MFnK/sWd0+uFma94mTkqlTsZnDZLbziZJgHn63wZLa1b3G3+7ll9fmewNyyUO8DcGvCe1UqdjM4rGZuTXh5PN9mod4/EuJurXhip8cmWWSxVjyx02NHrcjCYTFxc/zoRe6EEMYmP84B75IkycO4/90/2+4++0nLBoE3AXNAC/hbSZLeIoR47zXnvRV4K8D09MZ0wWGiP9IAiGwz8a8h4rVfdd1+MFDHEYWAa2d9k4Kr561dtx8MlTXune1csfYZh8r+uY9xjMOCrIyfU/9Ov+dOK6X2cP26/WCw+qyE3Dt7vkNu+1XX7Ytb3dvzPZG5RRu/h3yOnXF7HZarrjvGMfaKoWbw3NGM3G2Fh4Ff3smJ+0nLfgOwKISoAkiS9EHgFcBV4k4I8W7g3TDeoWIffPuG2z4ebq03ojlq8PNf+nHaShP/avSkrTT5+S/9+Hr0rtYdXXXdfuC0jle1LVnZ0fnN1fPWrtsPHLY1bnVH5699Rsc2UYDdYq14oqu28FoDwDg9eb0q2klz/+ZjP7mB+3pVtJPm/u0nNo77elW0x9gb1iJm7Z1+zwfqVdftB2sRs0Z/Z893oz+66rp9cVv39nxPZG6xjHupdoY74+4Otauuu9GxWSTusFqhbBaJezG1QnEe0cjdNjCAz0iSZBNCbDnZ7GdWWwHulyTJxTgt+wbgYPYWmxDunRmnWz97aWG1KnZx3WMH44KK5e4CP/+lH+dt976Lz12oXHXdfrBmXj67VOcHXj635aQ+UDQeXapfdd2+uKee5/7++2e35T671Ljquklgs6pY4LpVtJPEZlWxwHWraCfNfW3xBHDdKtpj7B0P3BzjHy/XKbaH1HujLVOzte6QUnu4ft1+cUcmAMCXL9X4V689saVglEcaX75Uv+q6/eDKueX7X7798/3o2vM9gbnlxGpK+Vypyz+/Vd8yNTtUdc6t9t87cUjNnI9xdDE4wpG7VV31I8BrgRDQAB4C/lQI8W07uceel09CiK8A7wceY9wGxcRqhO7rFSeiHm6bNkHyD68SdkF7iKA9xDte+UfMeE+w3F3g333+rQz0NndlAvv22wGkgi7OJLwMVYNPPJnf8txPPFlgqBqcSfgm4nlLBV2cTngZqQaf/NrW3J/8WoGRanAm4Z2Y3+567U7WPHhJ1+y6wOsok90C53rtTtY8eFPu2XWBdxDcm1XFrnnw1sb9209MftwvRtw/H8G1Kmx+8xPPbnnub33yOQBcNvNEdqyYDru5dcrHUNX5wNnclud+4NEcQ1XntpR/IjtW7G1umczzHfc6mA25UHSDz1+ubXnuFxZqKLrBbMh1JPx2x3hhITHemuug/xz6uCQpDjwO/AFwP+ADXg78HvCEJEk7apC5r9i4EOJXhRA3CSFuE0L8oBBitJ/7HTSaowaD0P/AbB/3sbtV+gVsPL83adAe4m33vguvKU3XyOGaeTffdd/kIipvuiuDJI3bnLz/qysMrvH6DBSN9391hY8/mUeS4E13bV11txu88a40kjSe3D9wdnPuD5xd4RNPFpAk+NYJcW/Xx+4gBd52fewOUuBt18fuWOAdDL7npeO2Js+VuvyH9z1BrXt1281ad7jeBuXK8yfC/bJpTNK4zcn/+fIS8jVeXXmk8X++vMT7z2YxSfDd902O+8rne6u5Ze35fuME55bXn4wgMW5z8qnzZYbXePmGqs6nzpf5wuU60ur5xzjGfuGwmrgp7jnwPy8A3sFY0L1KCDEjhHiZEGIaeB3gXz2+LV5UO1Q8lP8MldEyIWuG7MUf5n0LTT72+EO87nSMiNdOrTvicxcqDPQfwTXzbkz2Cl3zo8D8RPhvSfn5kVed4D1fXODjT+b5zDNF7pkNE3TZaMoKjy7VGaoGkgQ/+qr5iW4TdMuUnx9+5Qn+/EsLfOLJAp95psS9s6ErdsdoMFrl/pFXnZhYSvbR6me37WN3bZuUSe2z+kj5wW372F3bJmVS+8teOe7rpV2vbZNyvL/s/vHt92ZYbsg8+GyF50pdfvRPv0rC7yDgtNIaqOupWIA33Byb6BZkd2SC/JsHTvE/H7zI+89m+fiTBV5xMkzIbafRH/HlS3WGqo5Jgn/7wKmJbkF25dzyiScL/MMzJe654vl+dKmxPrf8yKtOTHRumY94eNPtST7yVJEvXK7z8FKTWxNevA4L3aHGuVIXRTeQgDffnjzucXeMiWCoGjxXOZJp2W8CfkkI8Y9X/lAI8ZAkSf8f8Js7ucmLStyt7RH76tQ3cOkW+LMvLfB4tsUnny5edd5dmTTfddcf0DU/OvF9ZV97Jk7U4+Ajj+c4X+rwpYtXG1/PJHy86YD2f3zNmbGI/djq3pNfunh1GuVMwsu3Tnhv2TWxck/09Vv6ytYE3iQFzppIuy/+wLbcv3j3H0xM2MHuxv1zd0523C92/Mw/OcNMyLW+t2ypPbxK1B3k3rLfeGuCmM/O3zyS5el8+6pt0ABuS/n57vsyB7K37GtWt1H86BbP90HtLXtvJkjQaV3fW/bx1fYsa3gx7S37Quwpu4YXQyHFGhxWEzfFjuT3ycu49clmyK0e3xYvKnEHzwu8l87CS2dDLFR7nF1u0B9puO0W7p0JXeGxm0zE7lrckvJzS8pPvinzTL7NQNVxWs3ckvJPtK/cptxTfm6ZWuUutBkqOg6bmVumDo57p6LFZwtOXODsVKz5bMGJCbs1vJDjfrHj2+8di7eHL9d48NkKsqLhsll44ObYRDx2W+GOTJA7MkFW6n2ezLYYKDpOm5k7MoGJeOy2wgs5t8xHPMxHPJS7QxbqfYaagcNi4kTYfeyxO8bEMVQNzlePZOTuPPAW4P9tcuwtq8e3xZERdxazmX63jtvjweHc+SR2IurZU8GEoevUqmVsNisWiwVJ6aEMPNicO5+8U0HXniZcYRjIrRpeq3mVW2Yk97C7dj6OPXMLwaBdx20Gm82GpA4Y9Do4Pb7tL94nhBD0Ow0sQsdms4E2ot9p4fYFDom7haQr2Gw2TIZGv93E5QsciulW7rZBG2Kz2bBg0GvVcftDh8I96HVAGWCz2bCaJVq1Kv5QGMl08O0sBv0e2qCHxRLGYbPQrlXwhiKYdsh9/3xkz2JuOJDR+l2scT8Om5VOvYIvHMNk3lkLkemwe89iThkOUPptrIEYLruFZquGOxTDZN7ZlL3X5xtAU0bo/Tb2YBi30wbVNobZsmPuuNexZzFnaComtYvLEUMgMKptdKsNs2VnffT2A11T0XstXEkPVquFfqOB3eHEZt9ZX9T9cWu0a1U8VgsWi4VarYHL7cbhcB48t65Tq5awWW8sOXCEI3e/Bbx3tbDi/wIlIMFY2L0B+MGd3EQS4vBaz917773i7NmD6ZYihKBWq7G0ksPi9BCJJbEcwIQghKDdatKulYiGA/i8HkajETabjfNLOdq6BWcghtm6s2amu8Wg24Zejbl4gEgoiDwY4HQ4uLicpz4CezCO5YC4h/0udKvMRPzEoyH68gCX08FirkBzBM5gHKv9YFboQ7mH0qqQ9LtIJaL0+31cLhfZQon6QMMdTmA7oIlwNJCR6yUiHhvpRBxZlnG73WQLJcrdEY5gHLvrYCIyynDAoFkm7DAzm07Sl2XcLhelao1iq48tEMPp3lGUftdQRyPkRhm/TTCXnkIeDHG7nFTrTUqtDq5QDLd38ik+AFVR6NRKONA4kUkxGI5wOuw02x3ytRaOYBTPAYl6TVXp1MvY9BHz0ymGIwWH3Uan1ydbqWP1RfD4gwcirHVNo1MvY1VlTmSm0HQDm9VCXx5wMVdBcwZwHpCoN3SdQauKy5C5aTaNMARms4nBSOFrF7PUVQdWVwBJmryoF4aBJjeJ2hXuODODabVSUTMMzl3O0hYu7L7QgSwohDAYdZp4RY/b5lLYbFYMIZCApVwJs9tLIBLHvENRvztuQbtRY9iukY7HcDkdKKqK2WQiVyhhd/uIxpJYLJMXXkIImo06rXqZWDiI2+1CVVUSicSBjHW/kCTpUSHEvWt/n7npJeKX/vTjB877/3vlzFW8hwFJkn4MeDtwZZ+mKvArQog/2dE9joq4W4Ou6+QLBQqlKt5ghEAouuNV/naQ+33qlTwum5lEPEa5WqPSGWCyOTCrMvOZKVRN58JKgZHNh8sfmdhkpA4HKO0yMbeVuXSSSr3BSq2DYXXi0Aecnk6CgPPLBWSLG6c/suMIw3bQlBFKq0LEITE/PUWj1SFXbSLsbixKnxPpBBaLmYvLeYZmN55QdMer/J1w9xsV/BaNkzNpOr0ehUoDi8uLJnfIJGI47DYuZwuMTA484djEVvmaqtJrlHEaI07OpOnLMrlyDbPTiz7okY5HcLucXFzO0Rc2XKHYxIS1rmn0mxWc+oBTMylGisLlfAXd5sY06jEdDxPweVlYydPRTLjCcay2yUQYdF2j36hi0/qcnE6h6zqXsiUUqxuT0mc6GiAU8LNSKNFVBb5IAptjMqLe0HXa9Rpi0OZEOgnApZUiQ4sTSR2QDvmIR0JkiyXaQx1PJIF9QqLeMAw6jRpCbjGXSmA2mbiwXKAvOZC0Iamgm1Q8Sr5Uod4f4Q4ncExI1Ash6Dbr6N0Gs1MxnA47F5Zy9CU7aApxr51MMk6hUiVb72P2R3cVqd+Oe9BpYpabnErH8LpdPLuQpTKUkIROxm9nfnqKYqXOsys1+pIPq3Ny3Oqgi0/qcduJOOGAn2curbDcVJCEYDbi4KYTGWrNNudzNUY2P3bP5BYUo34H26jF6akQsXCQpXyRmmwgTCYCFp2T0ym6/T7FSgNnKIovMDlh3e926NRKhL0uYpEwhVKFgaqPAwPKgEwqyWA4pFyt4w/HCYUik+PudamWC7gdVmLRCNVqjaGiYXc6GfS7ZFJTRKPRF6QVyPWwmbj7/w5B3P34CyDuAKTxL/8Wnu9z94zYhWA7cuJuDcPhkOWVLM1un1B0Cq9v7xOCqirUygUMZcB0eoqeLLNSrGHzh/GsPuzKaEi3VsZjEcymp6g1miyWW+CJ4NxHdEPXNAatCl6GnJlNM1IULmbLaE4/bv84NaYpIwbNyngymknT7HRZKNTQXCGc3r2nDddW8m5D5qa5NLquczlbxHD58QTHollTFfr1Mk4UTk6n6fVlLhcq4A7vK21oGDr9ZhWr0uXU9BQSsJwvYXb58UeimM1mNE2lVS0jKTKz6SlGI4WFQgVcAbzBvacNDcOg16yB3OJkOonZbGIpXwKHh2AkhtliQdc1WtUKYthlLj0W9ZeyRXSHH3dw52nDayGEoN+qIcktTqTiuBz2VdHswBMaC1fD0Ok1qlhGXeYzqwIoW0Szecb/LnsU9UII+u0GotdgNhnF63ZxaSVP37DiCo+Fq2EY9Jt1zMM28+kEVouZhWwBw+bGF41h3qOoF0LQa7cYtqqkoyECPi+XV/K0NdM4Imyzr/9uTHKL+XQch93GQraAanHgi8T3Fanvd1oMmlWmQn7CoQAL2QJVWce+Go0e2xGamAcNTqZieNwuFrIFBljH3PsQ9XKvy6BRJu53E4+GWc6XqPZV7KE4NocLIQRypwXdGnPJsai/uJynMZKw73NBMZJ76O0qqaCLTDLOcr7EUq2P8ISxOsbCddTvYBs2ODUVJhoKcGExx2JtgG4PYbbufUGhKQNsaouTcQ8npqfIlSo8l20wMPuxrHJrwz4uvc3N0xGm4hEWskWWGwMkTxiLfe+iXlOGiF6djN/GyZnUeLFcbWPyxdYtJiO5h9auMBVwMRWPUixXaA9V/JEkTvfeRb0yGtKslHBIOtOpJO1Ol2qjhT+axB8YF9oM5D71cgG3zUwyEadSrdGVh0TjKTzevVtgFGVEtVzEUAekp8aZgHqjRSSWIBgKI0kSg4FMqZDHhMHszDRe78FkBnaLa8XdmdvvFH/8oQcPnPf1p8IviLjbL46suFtDu91mcWkFDTOReAr7LiIMhmHQqFfot+qkkzFMJhOLuSK6zY0vPH7JXwu510Gul0kEvUTDIZZyRcp9FZs/jnUXEQYhBHK7jm3Y4mQ6jsvp4MJSjp7kwBWMbhqdGso9tFaFqYCbVCLKcr5EoT3E4o9h24UPUQjBoNvEcsVK/vJKnj5WPOHNX2SjQZ9BvUzUYyOViFMo1yi2+9j8cRzuna/y115koldjNh4m4PeynCswwkIgmtjU/zIcyLSrJTw2E+lkgmq9Qb7RxR6I4drlRNjvtFHaVdJhP5FQgJV8EVkDf2zzCJEyHNKqlnCaDWZSU9SbLVaqLczeCK5dpg0HvQ5qu0Iq5CUeCZMtlKjJGs5QHPsm/36qMqLfKOM16cxPp2h3eyyXakjeCO5degGHco9Rs0Lc5ySViJErVSh3hjiCsU1Tzpqq0m+UcaNwaiZNXx6wXKpi84XGwno33AOZXq1E0GkjlYhRqtbJN3rYAjEcm6Scx1HNMi5jyMnpKRRFZalYwewNjSMruxDWo+GAbq2M3yYxnUquv+TxRjf1kRq6jtwcL3hOz6YwDIPL2SKSy493l1kCZTSkVy/jMQtm00ka7Q7L5QaSN7rpd8cwdPqNKna1x6npsai/sFygb3bjCuwuUq+pCqNmhYBV5/RMmna3x3PZCgOrH7tn43dHGAajTh2v6HPLiRQ2i4Unzy9Tkk2YXSEk0865DV1DyA2mfPCS07N0+zJPXcrT1F1YXP6N3EKgyW3ClgG3nUzjcTk4d3mF6siC1RvGtIuUpaFrqJ06YZvKrScyKKrGpWwJ1eHH5d+4IBzPRw1McpP5qfGCZylXQDfbCUQTWG07F9a6rtOqltEHXWZTCYQQZItlnN4goWh8w3dHCEGn1aRVKxEPB/D7fGRzBbDYicaT2HdhgTEMg3q1TLddJ52MI0kShVIZrz9ELL55GrbValIpFQh43WQyGeyH4D3cChsidze/RPzyn37iwHn/9SumD1XcSZL0w9udIoR4z7b3OeriDsYPSaVSYTlbwO72EY4mNhVmV6LTbtGsFgkFPIQCAZbzRbqKwLuDFJQwDLqtBlq3wUxynDY8v5SjhwNHYHNReCWG/S6iW2U67CMeDbGcL1Hpq9iDMWyOrUXaWBQ2kOQmJ6eieNwuzi/laGkWHMHtU5YjuYfRqZIOukgn4+RKFardIY5QfNsU1FrRgd6urqcNL6/kaGsWXMEYlm3ShqOBzKhVJuaxkUnGqdTq1LsyvkgCl2f71WOv3aLXqBAP+ggFAyxmC3RUcIXj2LaZCJXhALleJmA3MZNOUms0qbS6eMJxPDuI+va7Hbq1ElG/h2h4/G+2Jsy28wKqoxGDZomAFeYyUzTbHVYqTSz+6I6KRYb9HqNmmbjPxVQiSq5QotxTcF5HmF2Jtcir16xzIjNFt9dnsVTD5Anj2oGvbDToM2xWiLrH/2alSo1qd4AnEse5jajXVJV2bextO5GZQpYHXC5UEO7QOCq9DffYj1gi6rIyk0o87wUMxrcV9bqm0V71ts2lpxipGhezRVT75i/5a6GOhoyaFSJOiROZKZqtDvl6C3tg+38zQ9fp1CuYRl3mM1PohuBitohi8+IObi8QNWXEYNWqMD+dotPtc6lQRXdvH6k3DB25WcepdblpJoVkkjh3OUfLcGDzhzFtI9J0TUXrVInaDW4+kVkVZgWahgurc6MwuxJCGKhyi4h1yEtOZbDbrDx5YZlSz4TkCm4rTseisEnSI3jJ6RlGisq5xQJdkwe7d2svoBCCUa+FR+twy1wSj8vF+cUsXey4djAvGrqG3Kzh1PucmplCCMFyvojVGyQQjm35byaEoNNsILeqpKJhvB43K7kCwmInHE9i22ZeNHSderXMqNcilRhz5QplXL4Akej2/rh2q0G9UiIc9OH3eSkWy0gWG/HkFI5t3mWGYVCtlGk1aiTjUZLJ5Avmx3uxRO4kSdKvd2jtf4QQ264iXxTibg2appHL5SnVGviCMQKhjS+Q4WBArZzHbhZMJZ9/YTiDuzeP65pGp1bGog04kZliOBpxMVtGcQTGL5BruDVlxKhVJmwfe9vqrQ7L5SaSN7zrKJCha/SbVZy6zOmZFJqmc36lwMjqxbmJF1BTFZRWhaDV4PRsejUKVMfi29lL/mrucdrQfGXacKWIYvOsvryunhw0VaXfLONB4fTs8942RyCCf5dRIMMwaDdqKJ0GM6kEFrOZSyt5VJsHTyi6IW2oaxrdehm7Phh7JlWV5WIFmy+EfxdVmc9z11E69XUv4KWVPLLkwB2KbxD1hq7Ta1awq31OzaRW094ldIdv7FvcBfc4ZbmWUo3gcbu4tJyjjw33Jqm7cWq3hmXU5eT086lddQ+p3bVoq95djbb6vCxl88jCgi+60QsoVn9PRr/J7FQcq8XCxZUCA5MTd2j3qV2520bvVJmJjb2Ay/kiPU3CG9ko6te8bWq3wWxybGB/bjFLV9hxXicivhWG/S5G5/mFWLZQonkdL6AQgl6rgdqpMxMP4/G4ubiSp6tZcF4nIr41dw+1XWFqtchopbAWqY9uqNoXQjDstpH6DU4kQ4QDfs4vZin2DEzeyLYLr2uhDmWkfo3pkIvZVIJsocL5fJOhJYDFvkmUedDFLTrcMhMjHglycSnPQlVGswd3ndrVlSEWpcV81MWpuTSlap2LhSaqM4jNtXERqAx6WAYN5uMBUvEIK4US5a6CLRDfVUYDxtHyYbNE2L4q6tsdyo02nnAcrz+w4fxBv0e7WiTgspOIRSlXq3RlhXAihWsXGQ0AZTSiXikiaSMyqST9fp9KvUUwkiAQ3GiBkeU+1VIeh9VEMhGnVqvTH4yIJ1N4fbvLaKiKQqlURBn0mM6kCYUOp1L/Slwr7mYPKXL31sOP3J3Y5Mch4JuBHwB+aHX7163v82ISd2sYDAYsLi+PH7LYFG6PF03TqFeKqIMumVSSkaKwVKhg9gTx7cO/BePUT69Wwu8wk0kmKFcbrNQ7SN4oDrd33dvmNGRumh2/5C+uFFHsvnG6ZR/c6mjIsFUhZIf5TIpao8lCuYnwRHB6/BiGzqBVw6n1uGkmBRIs5IqoNu84zbSPVZqqjK6ICqVodboslepInnHKcs1DZRm2OZlJYjGbWM6XkBzucXXaPirEVFWhVS1j0UbMZqbo92UWizXM3hDuQAiAXrOO0W9wYiqO02FnMVfAsDoJROJYrHv3b615AU3KgNl0kuFI4XK+jHAFcAfGbTnkdhPRqzO3muq5vJKnJyx4wol9eajWiiGsao+T02NRfzlXwnD4ca8K5bEQqzMTH3vbFrJ52ur+izLGacMaFqXLyUwSifF3SXL68IXH36V+p82gUSEZ8hMKjoVYfWDgDCX2VWltGMZV3yWrxczlbAHD7sEXHot6uddFbpSJ+d3EI2GWCyVKHQVbcPvo6lYQQiC36liHLU6l4zgcdhayBRSzA++qF3Ao9+jXy0S9DpKxKLlShVJ7gC2Y2Fel9Xqkvt9g/opIfVu34AhEMVttKEMZrVUh6bMzPZUgX66xWGmjOcPY9lGUMY6GtXEoLW7KRAn6fTxzaYWVpopwBDFZbOjqCPOoyYmok9OrQuyZpSo90/6LMtRBF6/ocutsnGg4wKXlArmOguQZi1VdVdC7NaY8Zs7MpWm0OyyWGkirPuj9iJNhv4verpCJjAt88sUyPVXHH03icLpQFYVmpYjVUJhJT9Hry5RqDfzhOP5NhNhu0O91aVSK+Fw2YpEI5UqVwUgjuioYVVWlWimgDfukp5IMh0Oq9QahSJxwZH9FEv1+j3Ihj81iYmZmGvc+vIe7xWaRu3d/+OAjd687+fXjuZMk6W3ASSHEW7Y998Uo7tbQbDZZXF5Bl6zoypBkPILDbufySh7V6sQXjk20nUqv02LYrDIV9hMOBri8kqc6MLAaKidXvW0Xl/N0DAvO4OQqL2Hs59I7VTLh8WS0mCtS7iqYMZhPhgn6xy/5rmbCHUlMrPISYNDvMmpUSARcJKIRssUyle4ISRhkon6ioSDZfJG+DoHo5KofYWxMbldLBJxWkvEYxUqNckcGIUgGPMSjYfLFMp2Rhj+W3FWPxO0wGsi0qiW8q17Acm3sBUSSSFzhbat0BjhCk6u8hLGo7zfWUr2pdS8gJjORtRRqtU6hOfa2OXeQ9t4pNGWE3KjgNa96ATtdctUGmK34bCamU0mq9QbZWgeLPzbRHomaqiA3K3ikNS+gzHKphjDb8FhY97YtFhsIbxiXNzAxbl3TGDQreBhxZjbFaKSwWKxgmG24TAYnMlN0en0WijUkTxinb3LtVIxVUe/Q++uR+gsrBQbCht+qc2Z27It8ZrmEbPFh906OWxg6w06dgDTglrk0EvDkhRXqA4h7pHEKdaTy5KUsDcWB2e2fWDuVcQuVFhHbiDtOT2O1Wjh3KUtDNRGw6tw2n0EIwfnlAorNu7pYnkxacVyAVMcyaHIqncBht7GcL6KZrKCOmEklMEkS2UIJm9tPODa5FiNCCFqNOt1GhUQ0jNvlJFcogsmGqgyZikewWCwUSmXcXj+x+OTaqQghaDUbVMtFQkE/mXQa6z4WwzvFZpG7X/mzg4/c/auXH27kbitIkvQA8CEhxLZpxBe1uIPVoolGA4BssUxroOGNbG5gnxRft1HD6LeYSydw2O2YTCayxTLFzhBbIIZ9F42QdwNhGKuTUZuT6ThulxNJkihV65RaPezB+ERf8ldxr6YNjW6d2WQE32oFVq3RpNru4gntzNu2V+5uq0m/WSUVDeJfTUk0W22K9RbucAyvf/LbQa2h227Rb1RIrHoBhRB0uj2WSnXM3t2nvXeDQa/DqDku0ohFQuPUYK/PQrEKntCBNkIe9nsorTIJn5upRBTDMJAHQy7lSuiOAJ7AwTVCHg36Yx+i1046GccwDBRF5fxygZHNizOwvb9sr1CGA5RWmbjbymw6iRACRVW5uFxgZHHjCu28EfJuoY6GDJrl9Ui9YRjous65hRxNzYrVF5lYm6JroasKWrdKwilxZi6NJEkIIXjyuUUKPQHO0IFxG5oKgyZpv5nbTk2vZzsuLOXo6GO/8UH1/1wT9W4x5NTMFGazGUmSyBWKaJKV8C6LH3bLXa+WUPodMlMJLBYLJpOJYqmMIZlJJKdwHtC7TNd1qpUSnVaDqUScRCIxsbZjm+FacXfTIUXuXvv1Fbn7ZeDfCCFS2577Yhd3MH75f/ErZ7EE4ng28U0cBDRVoVHKc+t0nIvLeWSbH9ch7TigayrdaoGXZCKUa3W6Jhfe0OH0NNI1jXalwHzUS78vI0s2gpGtDckT49Z1GuUiYZcFXddpKoJwfOpQuA3DoFEp4rcILFYry40h/ljywF7yV0IYBp1GlZBJIej3cr7UwRdL7ivtvWNuIeg1a3j0PulElCeXq/hjqUPZcWDsBWxiHzQ4PZfhkQs5XNHUgb3kr8Wg28bWr3L76Tm+emEFVzQ90Yj4lty9DlK7xJ03zfOFJy8ivAksByQwroUy6OOQK9x/+yk+e/ZZ+pYQZtvB77QA4/YqXr3J6++9mUefvYwpkJxYP8DtoAwHqI0CL715jguXFwklpvHs0tu2V4yGQ8r5ZU5OT7G4nCWZmsYfCBwO92hELrtMOhElGo0eGM+mkbv3HELk7v5D99z96iY/tgO3A98E/A8hxE9td58ba7+RA4SmGwQOSdgBWKw2rA4XhmGg6TrOQ9rGCsBssWJxeNB1HVU3cAUOk9uCze1F03U03cAT8h+KuAIwm824vD50pYeuC9y+wKFxm0wm3L4AWreGZDJj93gPRdgBSCYTLq8ftVNCNwysLvehCDsASZJw+QKo1Q6GYWB1uA9F2K1zewMMelWEEEg256EJOwCn18+wU8EwDExW56EJOwCnx4fcrqBpGobZdmA7x2wGm9ONPjCP5zashybsACw2J5rcQdd1MFkPTdgB2BxOVKsdTdOQTOZDE3YAdocDu8OJYRhIknRowg7AbrfjcrkxDOPQONcgcbhFHYeE/wgbBjYCVoD/AvzGTm5yLO52gU+tfICXxR/Ab986hdceNflK+UH+yfRkN6J/ofAP2Q/w0vgD+Gxbj7ujNPlq+UHekDm4cS/V+jy+0kRWdFw2M3dNB5mNHJyp9++W3s8rkg/gt4e2PK89avDl4oN80+x3Hthnydb7PJVrM1A1nFYLt6f9ZA54I/p17obM07nW+u/9tnSATOhgN6K/kvtc/nnuW1OHx/1CIteQeTrfYqDoOG1mbksFSL8Ixl3ujlio9xlpBnaLiRNhN3HvC9tj7Rhff3BYTJyKHr3nQQgxEV12LO52iE+tfID3PPff+XT2g/zKve+6rsBrj5q8/exPkO8vAdzwAu8fsh/gvRd+hwfzH+IX7v6D6wq8jtLktx77SQqr4560wHtsucl7H17mqVx7w7Hb037ecv8Md89M1jf3d0vv50+eeSd/v/JB/vPL3nVdgdceNfhPX/kJcr1FgIkLvKeyLf727ArPFjobjt085eO77p3m9kxgopzr3LkWHzibvS73d9yb4fb0wXA/nWvxgUezPFfcyH1T0sd33JPhtgPifiHxdK7Fh7YY97cd0XFfrvX53KUaSw15w7HZkIvXnYwwf4ALuTW8+i9mAXjoh5YOnOtapH43DkD+p8uHzu37rTAAnV+oHzr3XjDUDC7VNn5XjjHGsbjbIV4Wf4BPZz9Ivr/E28/+xKYC70phl3LP8rL4Ay/Qp50cXhp/gAfzH6LQX+K3HvvJTQXelcJuyj3LSyc87r97qsjvfvoChgCn1cyrT0cIe+zUeyMeulDjqVybX/rA1/iZbzzNP7s9OTHeVyQf4O9XPkiut8h/+spPbCrwrhR2ac8cr0hOduz/8EyJP/7cJYQAh9XM/fNhgm4bzb7Cw5frPFvo8F8+9jQ//rqTPHBLYqLcDz5T5t2fX+M28bL5CCGXjYas8JXLNZ4tdPj1j53jX7/uJK+/OT5R7s8+W+Z/feEK7hMRgi4bTVnhKws1nit2+K+fOMe/eu1JXn/TZLlfSHzu2TJ/csW477ti3I+sjvs3P3GOf/nak7zuCI370WyLjzxVRAA2s4lbE168Dgvdoca5UpelhsyfP7LCm25Pcs8BLWSOcWPBYTFz6hDE/mFDkqSfAV4rhHjz6t/NwC8DLwUeBn5TCHG9Rsfr2LO4kyTpDPC+K350AvhPQojf3es9v57htwf5lXvftS7erhV41wq7raJ7NxJ8tiC/cPcfrIu3awXetcJuq+jeXvDYcnNd2H3vfRm+72XTuGzPf23/7QMaf/WVFf76kSy/8+kLxHyOiUXw/PYQ//ll71oXb9cKvGuF3VbRvb3gqWxrXdh9291pvu2eNM4rxv4vXq3xoUdzfOixHH/0uUtEvY6JRfCeyrXWhd2b707z5rtTV3H/6Kvm+PBjeT78WI4//twlIl77xCJ4T+da68LuTXeledNdV3P/8Cvn+MjjeT7yeI7/9flLRD32IxHJejrXWhd2b7wrzRuvGfcPvXKOjz6e56OP5/iTz18ickTGfbnWXxd2r5kP85r5MHbL837Ub7lV5wuX63zhcp2PPFUk4LQeSgTvGF/fGGoGl+pHMnL3XcCnr/j7vwd+Efgk8AuAg7Evb0vs2U0uhDgvhLhTCHEncA8gAx/a6/1uBKwJvJR7dl3gtUfNIyvs1rAm8Kbcs+sCr6M0D1zYAbz34eV1Yfdjrz5xlbADcNks/NirT/C992UwBPzfh5cnyr8m8NKeuXWB1x41DlzYAfzt2ZV1Yff9L5+96kUP4LRZ+P6Xz/Jtd6cRAt5/dmVi3B84m10Xdt93/8ym3N93/wxvXuX+4Nns5Lgfza4Lu+992ebc3/uyGd501yr3o5PjfiHxodVxv/GuNN9znXF/z8tmeOPquD98RMb9uUu1dWH3jWdiVwk7ALvFzDeeifGa+TBi9fxjHMNhMXEq4jrwPy8ATgGPXfH3twD/XQjxncD/B3zfTm4yqbTsG4DLQojJvlm/DnFtBO8XvjxuFN1RW0dS2K3h2gjerzz8gwB01daBCbul2riAwGk1830vm97y3O+9b5qPPF7ga7k2S7X+RIssro3g/fRDq//mSvPAhF223ufZQgeH1cy33ZPe8tw335Pm754q8kyhQ7be33eRRbYhr3KbePPdW7dTetPdKf7+qcKYuyHvu9Ah25B5rjjmftNdW3O/8a4U/+/pAs8WJ8P9QiJ3xbjfuM24v/WuFJ9aHXeuId/QRRbl7oilhozNbOI18+Etz331iTAPLzVZasiUu6PjIosXOUZH13PnApoAkiTFgNuAf7N67Elg2x53MDlx973AX03oXl/3WBN4v/Dlt9BRWwD4rIEjK+zWsCbwfuXhH6S7Om6vNXAgwg7g8ZUmAK8+HdkQsbsWbruFV52O8OlzZR5faU68gnZN4P30Q2+ho4w/l88WPBBhB6wXjtw/H94QwbkWLpuFl82H+fxzFZ7Ktfct7p7OtQB42XxkZ9wnInz+fIWnc619C6xz+VXuEzvjvm8uwhcuVDiX3z/3C4mnV8d93w7H/dK5CA9dqPB0vnVDi7uFeh+AWxPeDRG7a+Gwmrk14eXxfJuFen8i4m6teGKnxyZZZLFWPLHTY5Msslgrntjpsa/XIosj2Qhl3PLkbuALwD8H+sAjq8d8QG8nN9m3uJMkyQa8Efil6xx/K/BWgOnpraMvxzjGlZCVsWc07NnZJB5226667kbGQNUACLp31pct5LJddd1+sPb7W7vndghO8Pe+do/gC8D9QmKwx3EPbvBxj7RxbzSvY2evorXz1q47xosXdouJky9M2vSg8ZfAr0uS9GrgG4D3CyHU1WP3As/u5CaTiNx9E/CYEGLTZYUQ4t3Au2G8Q8UE+F5wrHnsOmoLnzUAjNOy16uiPSpY89h11Rbe1XF31dZ1q2j3C5dtvJKv90Y7Or/eV666bpJY89h1lOZVxSTXq6LdL5zW8aPZXB3TdmjIylXX7Qdrv7+1e26H5gR/72v3aL4A3C8knHsct/MGH7fdMrZ9d4c7W5Ssnbd23X6xWSTusFqhbBaJO6xWKJtF4m60Vigj3eBSffBCf4yDwH8F/MA/ZVxE8R+uOPYoVxdbXBeTeEK+jxdRSvba4onfesV7+a1XvHdDkcVRw7XFE2+////w9vv/z4Yii0nirumxiHroQg1Z2Xry7480vnihdtV1k8K1xRO/++r38ruvfu+GIotJ4vb0eJ/dhy/XGWwzdlnR+Mrl+lXX7QdrFZhfuVzbGfdC7arr9oNbU6vcCzvjfmSxdtV1NypuW/38j+xw3F9dHfdtN/i4T6xaCM6Vuoy0raOQQ1XnXKl71XXHePFiLXJ30H8OG0IIXQjxc0KI24UQ3yeEqF9x7ONCiC/v5D77EneSJLmBbwQ+uJ/73Ci4XlXs9apojwquVxV7vSraSWE24ub2tJ+BqvNXX9m6EvSvH1lhoOq8JO2fqN/uelWx16uinRQyYTc3T/kYqjofejS35bkffjTHUNW5Zco3kR0rMiHXKrfBhx/Lb3nuRx7LM1SNMfcEvF+ZkIubkmPujzy+NfdHHx9z35ycDPcLifQV4/7oNuP+2BXjvpH9dgBxr53ZkAtFN/jC5a0jRg8t1FF0g9mQ67iY4hiMNIPLNfnA/9yo2Je4E0L0hRBhIcTGbQOOGLZrd3JUBd527U4OWuC95f4ZTBL89SNZ/vdDC/RHV0c1+iON//3QAn/9SBaTBD9w/8zEuLdrd3LQAu+77p1GkuBDj+X4y39c2hC9lBWNv/zHJT70WA5Jgu+8d3Ke1u+4N4MkwYcfy/FXDy9vyv1XDy/z4VXub783Mznue8bcH3k8x19/ZXPuv/7KMh95fJX7nslxv5D4ttVxf/TxHO+7zrjf95VlPro67jcfkXG/7mQECfjC5TqfPl9hqF4dwRuqOp8+X+ELl+tIq+cf4xhHNXI3KRzvULFDfKX84LZ97K5tk3IU9pf9avnBbfvYXdsmZZL7y949E+Snv/E0v/vpC/z1I1k+8niBV52OEHbbqPcVvnihxkDVMUnwM994eqJbkH25+OC2feyubZMyyf1lb88E+NevO8kff+4SH3osx989VeRl8+ErdomoM1R1JAl+/HUnJ7oF2e3pAG997Une/flLfPixHH//VGG8S8Tq7hhfWagxVA0kCf71605OdAuy29IB/tVrTvK/vnCJjzye4/89XeC+uee5H1l8nvtfvfbkkWjkC+Nx/8vXnORPvnCJjz6e41NPF3jpFeP+6hXj/pdHaNzzETdvuj3JR54q8oXLdR5eam7YoULRDSTgTbcnjxsYHwMARTNYOJpNjCeCY3G3Q6yJtJfFH9iyYGJN4B0FYQfP7xH70vgDWxZMrAm8SQq7NXzT7UniPgf/9+FlvpZr8+lzV5uNX5L28wMHsLfsmkh7RfKBLQsm1gTeJIXdGt5wS4KY18H7z67wTKHD55+rXHX8likf33lAe8s+cEucqM/OB89mx9znN3J/+wHtLfv6m+NEvXY++GiWZ4sdvnDhau6bkz6+/Qjusfq6m+NEvHY+vDruhzYZ95uP4LjvyQQIOK3re8s+nr86GXSYe8u+EHvKruGF2FN2DTdKIcWVkI5oL5RJ4Fjc7QI7FWt+e/BICLs17FSs+WzBiQu7Ndw9E+TumSBLtT6PrzSRFR2Xzcxd08GJ97S7EjsVa357aOLCbg23ZwLcngmQrY+bOg9UDafVwu1p/0Q8dltypwPcng6Qbcg8nWut/95vSwcO3Od2WzrAbavc5/LPc9+aOnjuFxJr4841ZJ7OtxgoOk6bmdtSgRveY7cV5iNu5iNuyt0RC/U+I83AbjFxIuw+9tgdYwPG342j+zzsF8fibhVup51muYAvHMNsOfhfS7/bRpfb2GxBPC4ntVoJVyiG2WI9cO5hv4uQWzim0ridDiq1Et5wAottZz229sUt91E7DZyZGEI3qFXLBGMJbHbHjq6fjbj3LOaGA5luo0Y64kfXdQq1CmazGbvDuaf77Qaj4YBOrULc78JqtaIU65gtVuzOnU9OmbB7T2JOVUb0G2WSXgcOux29VGJos+FweXbOHXLtSVBpqkK/XibqtGOz2RCDMoOeHafHd+DcuqbSb5QJrnJblD6Dbhund/8Vxdty6xqDZpWg04rdbses9um3m7h8AaQdhhvSIdeexJyh6/SbVdwWCYfDgROVbqeJw7tz7r1CGAajTp2QBRwOB16rQaXfwuLy75g77rXvScwJYaD124QcAofDgU3S6DUquAIRTKbJtE65PrdA7jSwaEMcDgcmBNVSgXA0jsl8sO1qhBC0Ww1Gcg+7PYbZJFHM54jGE1gO4V3WajbptpvEQpPzO+8EI81g8Tgte11IQhxe67l7771XnD179tD4doLhcEi+UMTrcdOXByyXqlh9YbyB0IFMhMpwSKdWwmeTmEklaXe6uJwOFFXjUraE5gzg8oeQDmAy0pQRcrNM0Co4OZ2i2+vjsNswhODSSgHD6cMTimIyTX4y0lSFXq2EW9KYn04hD4dYzGZMksRSrojJ5SMQiWE+gIlQU1VatTKSOmAuPcVwpGCSwGKxsJQvgs1NIBo/EFGvaxrNWgWGPWZTCXTdQDcMnA47l1byyJIdbzh+IKLe0HV6jQoWpcd8JgmAqmq4XU4ureTpGRbc4TgW6+RFvWEY9Js1zMM2JzNJzGYzg+EIn8fNQrZASwFnKIHVNvmIjDAMeu065kGL+XQch81GpycTCvhYzBWo9HXswRhW++RFvRCCQbuBSW5yMh3D63bRaHeJBP2sFEpUeir2YBzbLkT9brjlTgt6NU4kI/i9HhqtNpFQkJVCmcVqD+EOY3UeTLR31GtjGzU5NRUmFg5SbbSIhgLkSlWey9YZmP1YHAfDrQ57uPUOt8xEScbC1BotIqEA1UaT5UoLkzd6YKJ+JPdQ2xVSATepRJR6s0XQ76PT7VKutwhEEvgCwQN5n8j9HvVyAY/dSiIepd3p4PV4kGWZWr1FOBYnFI4cCPdAlikV85glwcx0Bq/XO3GOKyFJ0qNCiHvX/n7zS+4Sf/axzx4oJ8DLZ4NX8R40JEnablCSEOJ1kiTdBPyhEOL11ztp8p/uOvh6Ene6rpPP5ylV6niDIeReF7vFRCIeo1yrU2n3cYXiuDyT+cLqmkanXsGs9JlLJ9F1g8u5IsLlxxgNCNhNzKSSVOoNstU2Jt/kJqO1lbxD63NqevySX8gV0e1ehKrgsRicyKRotNqsVJpY/ZFdRRi25DYMeo0qpkGb+UwSi9nMQrYADg+GrmMXCnOZsdDMV+o4AxF8wckIa8MwaDfqKN0604kYNpuNxVwBYXOBEJi1IXOZFLI8IFuuYveH8YcmMxEKIWg36ozaNdLxCG6Xi8srOQaSHclkxqb2OZGZQlE1FnIlhCuAJxiZiKgXQtBvNzG6NWYS45f8xeUcLc2MZLLi0PucnplCCMHFlQKa3YcnFJmYqO93WuidGtPRIOGgn8sreepDAVY7DrXHqekpTCaJi8sFRlY3nmBsYtGNQa+D1q6QjviIhUNcXimQbY/QzQ68QuaW2SR2m5ULy3l6OHCGYpjNkxH1w34Po1NlKugiFY+ylC+xUpdRLE48eo+bZ5N4XE4uLufpYcMVjGO2TkbUjwZ9Rs0yCa+dTDJOvlRludFDt7qxq11OpWP4PW6eW8hRGYDZF8E8IVGvjQaIXo1MwMH89BT5cpUL+QZ9XHiRuXkmRiTo59nLWZbrQ3RHaGLcujrCPGoxG7Zz8/w0lXqT87kassmD0+hxOhUmEQmxmCtQlXUcwfjERL2mjBi0KgStBienU7Q7XVYqDczuAHq/TTzgIR4NUypX6Cs64fgUTtdkxK2qKNQrRYQyYDo9RV8eUKrWcflDDHpdvA4LiXiMSrXKYKSRSKbwTEh8aapKuVxE7nWYTqeIRA5GPF6La8XdiVvuEG//v3934Lw/cHfqsMXdP7DNzmpCiAdWxd3/FEI8sOl9XmziTghBtVplJZfH7vIRSySxWCyroe0m9UqJUMCH3+dlKVugL0z4InuPMAgh6LYaqO0608kIHpeLSys5hpIdTziOZXVyl7ttRs0qqbCPSCjIYq5AbWCsTkY7S1luxj3oNKHfWF/JL6zk6QsLnnB8fUyDXpdBo0Qi4CERi7CSL1KXVZzhxK7Shtei32mhtaqkV1/yy7kCfUPCH30+DTvo9+jWSoRcDpLxKKVKlWZ/hD+awOneedrwWvQ6bXr1MtGAl3AwQK5Ypq8a+KPPj2koy7SrRXwOC6lEnEqtTq0j443EcXt3nja8FnKvOx6Tx0U8GiZXKlPvq7hDcRyrk7syHNKrF/HbTUxPJag3W+RqbayBGK59iPqR3GfQLBPz2EklYhTKNQqtPhZ/DPtqGlZVRgybZUJ2ODk9FvXL5SZmX3hfol4ZDhg0ykRcFqanEpRrDVZqHcz+KA73+MWiqQrDZgW/WefUzFjULxZrCE8Yt2/v0Q11NERulgjZJU5kUlTqTS4W6iiOEHb3+N/S0FTUTo2ITePWkzP0ZZlLuQqqI4ArEN4zt6YoDFtlQrZxRLzZ7vBctsrA5sfuHqcjDV1D7dQJWRVumUujajqXciU0ux/3PkS9pioMGmW8JpVTM2m6fZkL2TIjewDH6u/T0HWG7RpeIXPTbAphCM4t5ukIJ3Z/GGmPot7QVJRunYhV5ZYTGeThiKcXCrQNN1bP+HskDAOt1yBoGXL7yQxmk4mvXVimJJsxu4N75haGji43Sbh07jg9i6ZrPH05T0u4sHvHmQ8hDJRuEx89bp1L4bDbOL+URzY5cAb3LuoNXUdu1bBrPU5fsVg27D584XHmQwhBr1VH69aZSUZxO52s5IuYbE7C8STWPYpbwzBoVCvInTrpZByL2cxKvojN7SMcTWBee5c1G3TqFeKRAB63m0KxhMXmJJGcwmbf27vMMAzqtSrNeoV4NMLU1NSBZFquh00jdx8/hMjdzOFG7iaFF5W463a7LC4towkTseQUzk2Ei67r1KpVeu06qUQMSZLGETaHB39odxEGuddFblSI+ZzEo5HVl7yC6zqiSRgGvVYd0Wsxl4pjs1q4sJxnYHbuejIaDfoorQpJr510Mk6xUqPSkXGFEjg2EU1CCHrNOnqvwWwyisvp4NJKnoFkxxvZXdpwNJCR62XCqy/5ar1Bpd3DHd5cNI0nwiaDZpVMPILH7WIpV0A12QhGE1h34QUcDQe0qiVcZphOJWk0W5QaHTzhGB5/YNNruu0m/XqFZDhAwO9jOVdgiIVANL5jLyCAMhrRqpZwoDGTnlpfydv8UdzXEU1yt82wWWFqVdQv5Yo0RwauUBzbLryAa942FwonZ9L0+jKXClUMVxCXb/NI6LDfRW9XSIe8JOMRlvNFqn0VZyi+K1Gvayq9RhWXMeTk9DjtfTFXQnMGxxaDTbhHch+1XWHK7ySdiFEoVym2ZWyB+K68gIau0WtUceh9Ts2k0DSdc4t5urix+za3N6ijAXRrTIcczKWTlCp1so0uJt/zInRn3Dpys4ZT73F6ZgoEnFvI0RJO7L7wptyaMkR0a6T8Nk5OT1FrtliptjHvMlJvGAZys4pl1OFUJonFYubZhRxdHNgD0U3nKU0ZobWrRBxwejZNo9XhfK7K0BbA7tm5J04Ig2GniVfvcvNsEqfDztOXVigPzJjcIUybzFOGpmL060x5JG49OU272+epS3lahhuLy7cLboEmtwmYZF5yKoXP4+aZyyuUZQmTN7LpPGVoGlqvRtShc9v8NPJwNBbWziBu/85F/VraW+rXOZEME/B5VxfLZrzhzQMAuqbRaVSwKH3mM0l0wyBXLOP2hwlGYrvyAnZaTVq1EpGAj2DATzZfRMVMJD6F3bFxntJ1nUa1zKjXIp0cb2tWLFXwBcNEY/FdCbNOu025lMfrcjI9ncGxCd9BY7PI3a//5cFH7r7/rsON3E0KLwpxNxqNWMlmabX7hOMJ/IHtW2YoyohKqYiuDMikpuh2eyxX6tj9ETz+rSMMqjKiUy3jNmnMZlK0Ol1WynWsgeu/5K+Epqn0ahUcxnD8opZlLucrGK7QdV+W69eqCoNmBZ9J49RMin5fZrFYw+IL49mBj1DXNLqNCla1z/xa2jBfBpd/27Shrqn06uPPPZ8Zv+RXShVsvhC+HaQ7dV2nU6sgBl3m0kkMIVjKF7F6ggTC0S0nQl3TaNYrMOgxm06i6TrLhRJWTxD/NtfC+EXdalTRe21mUglMksRirojZ5cO/jRdQ13VatQqG3GE2lUCwcSW/FYRh0GnVEP0Wc1NjUX8pW2BkduEJbV3gYxgGveZq2js9fslfWMozMLtwBaObvmiv4hYCud3APGhwMhXH5XRwcXks6t3hrQt8xouRBqZBkxNT8fXISE9y4ApGt/UwrkWWpX6T+akIPo+bSyt5OroZdyixpRdwnHpuQL/O/FQMj9vFM5dXqI5MWHzRHS1G1jxiZ9IRwoHV9PFIGvvxtojUjz93C5PcYC4ZJujz8txClpIsMHt3lu4c9bvYhk1OTQWJR0Is5QpUVyP124l6udPC6NaYjQUIBwNcXM5TlnWs/igW2/Yv3ZHcg26V2aiPqViEpVyR5cYQvJFtU5aK3MUiN5hPBkhGw1xazrNUH6I7Qzvi1oYy1lGT+biXmVSc5XyJC/kWQ2sAi33rBYU2knFobc6kAsykEizmiizV+uiuMNZtrh1fP0CS68yEnJzIJClV62TrXSz+2LaiXhnIKK0yCd847V2s1Kh2ZJyhnWUYro3UN1tt6u0ugWgS33UWnWsYDmRq5QIOi0QqEafeaNDoyARjSby+7RcEymhEvVzAZKhkUkm63S6NVodoPElgGwvMcDigVCiAoTIzncHvP/hipOths8jdew4hcnf/IUfuJEl67XbnCCE+v+19jrK403WdYrFIoVTFFwwTju5upQTQ7/WoFAu4HBZi0QiFcpV6b4g7Esd5TYTB0HXa9SrSsMOJdPL5l7xjb56mcQSsRNhtI5NMUCzXyDV7WPwbIwxrBnab0uH09Njbdmklj2bz4A3vPgWxNhmteQGrjQb5WgdbcGPaUBgGvWYd5BZzqRgOm42FXAHD6sIfjWHZZbGAMhrSqZZxmoxx0Um7Q7HewhWK4fVfLY7XvG3DK7xti9k8msVBMJpYT3vvFKqi0KqWsBprXsAeuUodZyC6wQu4lnKXmzVSsRA+zzjtLV+T9t4pNE2lWy9j18eivi8PWCxUwB3CE9wYYeh3WmjtKpkrvW0jgSOw+1T+uLqzgssYcnpmLOov50sYzgCewMYolNztoLWrpMJeYuEQS7kilb6GLRjbVcQR1tJcVZya/LwXcLmAavfiDm4Ux8N+D6VdJul3MxWPsJwvsdyQEe4IVsfubATCMBh16/iEzK0n0phMEueXC2NxvEkEbDToo7YqTPkdZJJxcsUKi9UemiuEbZeFCkIYjDpNvKJ/hRewwMDkxLXJM6sMB4yaZaIuC7PpJMVKjcVKG+GJYN9FxHHMLRi2G9iVNmcycdwuJ89czlJVzFh9GyNgmjLC6FaZ8lo4NZOi2mjx7EoV2eLH5tqdhUEIgSq38Rpdbp1L4Pd6OHdxmWxLQzhDmK7hNjQF06BFJmTl1pPTNNsdnlmuMLD6sbl3HnFcw6jfxqm0uCkTHT832QLNkcAe3Bh9G9sIqnjNCqdn0vT7MkulGmbv3oruro3U5wslhjpEEikczqufG01TqZdLaMMe06kkI0WhUK7hCUQIhHdfAdzvdqhXigQ8DqLhMJVKFUUXJJIpXO6rv7uaplEtl+h1mqRTU8RisUPx1W2Fa8Xd/C13iP/6l39/4Lzfe9fUYYs7nbHnTnAd750QYtt//CMp7oQQNBoNlldyWBwuYom9exzW7tds1GlWy8QiQdxuNwsreQaSFf9qyrLXbqK0a2RiYXxXeNvc4a2jADvhHr/Ea2RiIQI+L5dW8rRUE85gDIvNjtxpIbp1ZuJBIkE/i9kCHRW8kcSe/Xpr6HfbKM0KU2E/kVBgPW3ojox9c3K3jdKqMhUav+SzhRJd1cAXSWB37s+4LPe69Gploj43sUiIfLFMZ6QTiCZwuFzIvS6dWomQZ5z2LpQqtIcqvmhi38blQb9Hp1oi4LaTjEUplqs05ee9gAO5T7taIui0kozHdr2S3wqjgUy/XiLkspBOJihV65RaPWyBOE6PF2U4GIt+l4WZ1GoEotbBvIMIxHZQR0NGzTIRl4m59BTVeoNsvYPVH8Xl9Y+9bY0yQRvMZVLUmk2Wyi0kb2TfBUCqMmLUrBCyC05Op6m32iyXG5i8EVzeALqqIDcr+C0681d423abVtwMuqqgdWvEHXDzfIZOt8elfBXDHcLpC6JrKsNmFZ9Z5cxsmk5f5tmlErLFh32fLUYMTUPt1Ija17yAAy7lyxiuEO5AGEPX6DcqeMSQUzMpBqMR51dKDK0+HLtIK27KrWuMWlX8ksJNcykUReXcUoGeyYPdF0IYAqVTI2gecet8Bk3V+NrlHC3dicUd3FcBkDB0tF6TiE3h9pMZDCF44vwy1ZEVi2ucXdHkJnGHxktOTyMBTy/kaOoOrN7QvgqAhGGgdBsETANunU9hNpm4uFxgYHbjCkZBkhi0a1jX0t5mE5ezBfQ9Lpav5b42Up8tlLA4PYRj48ryRq1Kv1VjKh7BbrORzZcwO9yE44ldL5av4haCVr1Gt1ElGQvjdDrIF4rYXV4SiSQWq5VGvUa9WiISDpFOpQ6lncpOsJm4+41DEHffc/jibrMCiRDwzcBrgZ8WQnxs2/scNXHX7/dZXF5mpBrEkilcE6pOgnEksFouIXdbpJJxDCHGVaeYCXvsTK2+5CsdGWcovqm3ba8wDJ1uo4Zp0OFEOoFpdTIaGhJRj52ZVIJKvUGx2cMRjOHaRR+x7SAMg26rdpUX8NJKnqFhIuAwM5dJ0Wi2KDbauMIxPL7A5LiFoNOooXQaZOJjL+BSroAiTDjNMJOeotPpkq81cYWieLdJme+Wu9tqMGhWScWe9wIOdQm7yWAuk9r3Sn4r7n6njdKukI4GCfp9LGTzdEYCp1ls8Lbtxju0Ewy6bYxulZmon+hqZK4hqzjM48pATdO5uFJEsftwBsIT7SM27Hcx2tWrvYA9BbtkcHI6Ofa2LeZor3vbJmfqVod9pH6d2bCb6ak4uVKFQlPGZhLjiLjFzLlLWRqGHZs3PNEeZmtVpzMh57oXMNfsYkFwMj1Oez+3lKOp23D4o5gm+NLVRkO0ToWk28pcJrlakNLAIsFNswl8bhdPX1ym1AfJHd4QXdsPdFVBkuukAxZuPjFNtd7i3GIJJLhtLkk46OO5hSyFnoHJM7kqXxhbSYxujYRrLOq7vT6Xi1UMITEbDxIO+FnKFelq4AnvvB/nTnBtpF4eDChW6iCZCPlchEMhCqUyA00QiU/hmGD7HE3TaFRKqIMu6WQcXdcpVWqYzRZcDhszM9M497k4nzQ2S8v++SGkZV/2dVRQIUnS7wEmIcRPbnvuURF3qqqSzeaoNVuEooltvQT7wWg4pFIa+xDSU0lMJhPtdmf1JR/CfUA98mBcmderl3FJGidn0phMJrrdHouFCpI7iHdCrTw25dZUerUy9lUvoMVioS/LLOVLmD2BHXnb9gpd02jXykijPnPpKex2O/JgwHK+hNntIxCeXDuNDdy6TnvNU5dO4nA4GI1GXFrJT2QlvxUMQ6fTqGJaTfW7XS5GoxEXlvP0Wa36O6CVtTAM5HYd67DNyUwCr8eNruucX8rS0a04gtED6ZEHa/3impjlBifTMfw+H4Zh8OzlFcoDgdkbnehL/lpupdfCobS5aSZOOODHMAwuLOUodDUkTwTLAfTnW8Oo18Y+anEmHSEWCSGEYCFboNBRMPujB9Kfbw3DfgdTr8Z8PEgyHl3nXij3UB3BbX1x+4E66OFQW5xKBshMjQsAVgplLpfbaI6D688HoA5lzIM6J6IeZtNJJEmiVKlRaHRwBuO49lE9vx1GA5leo0TYaSEzNeauN5vUml0CkTi+HXjE94rhcEC9VMBuEqSmEthsNny+gxvrfrAhcnfrHeI3DyFy9913Hm7kbitIkvQNwF8JIaLbnntUxF0ul6PWlplKZw6tPLvTaVMtrDCdTvG15TLBZPrAXvLXYtjvMarlufXkLF9bLBBITB/KzhownowGlRVuPTnLs0t5QqmZXXvb9sw9HNAurHDL/AzPLmYJp2YOpBHuZlBGQxr5FW4+keFrF5fwJmYmupLfCqqi0Ckt85KT0zz+3CLmcHrX3ra9QtdU+pUs952Z5onzC0jB1IE04d2UW9folXPcdyrF488t0HPEdu1t2ysMQ2dQL/C6W9I8u5ClJvnX26ocNIRhIDdKvPxklEK1QdVw4fQd3Ev+Wu5+vcTtSQ/NjsxzdX3cXuQQPFdCCEadGnem3AghOFcZ4fAfTh+1MXed00EzXo+DfEchGE0eSEP5zdBp1nFqXWJBP9XOkHgqc+A7a6yh3WrSb5R56d13HgrfXrBZ5O4vPvG5A+e9bzrw9STu/i3wtp2Iu6+PZPoEIITA6XIdat8dj8dLRQiEEFjsjkMTdgAOt4dhdcxttjkOTdgB2J0uBpJpldt+aMIOwO5wYjKP+0iZrbZDE3YANrsDs3XcR8pksR6asAOw2myYrXYMwwCT+dCEHYDZYsVsG3MLpH31Ptw1t9mC2eZACIGuG4cm7ABMJjOS1YFhGGiGwOo5PG7JZMJkc2AYq+OeoL1kJ9wWhxvdEKi6gcXhPjQzvSRJmG1OdEPHEAKL3XWo3BaHG1XvIwwDu9N9aMIOwOlyY7Q6GELgcLsPTdgBuD1eurXiofFNAopusNwYvNAfY+KQJOmHN/mxHbgd+DHgAzu5z5ERdzvFd33im/mpO3+eV6VeB8Dlao9HFhv0Rxpuu4X75kLMRz18Mf85fu+Jd/C33/LJF/YDTwifyX6A++IP4LNtvfrvKE0eKT/IN2S+45A+2cHinY/9Mt996sfIeE9seV62u8DfXPzf/Ozdv35In+xwkWvInCu0GSgaTpuFW6f8R3oT+mMc4xhHG3azidnQ15cvcEL40+v8fAS8D/ipndzkRSXuvusT30x1WOZXHv5ZfnjuV/ny00keW2ltOO/U9DIl9x+uX3OjC7zPZD/AX5z/7/xD7oP80j3vuq7A6yhNfuPRnyDfXwK44QXeOx/7Zb5cepBHKg/x2698z3UFXra7wM996UfQDBUe++UjJfDO5Vt86LEc54udDcfOJH18291pbk0FDv+DHePA8U//+iQA/+97L73An+QYh4XU7469ivmfLr/An+TgMdINlppHL3IHzG3ys6EQorKbmxxe3PfrAD9158+v//97Fn6NJ+pfxmUz860vmeJfvHKOb33JFC7/sxRdf7jpNTcq7os/QMo9S76/xG88+hN0lOaGc64Udin3LPfFN92u7obCd5/6MSwmK5qh8nNf+hGy3YUN51wp7CwmK9996sdegE96MPjcc2V+65PPcL7YwWE18erTUd54Z4pXn47isJo4X+zwW598hs8/d/RfBMc4xjGOFiTAJB38n8OGEGJlkz+7Enawz8idJEkB4E+A2xg33PsXQoh/3M89DxKvSr2OH577Vd6z8GtIErin/4L/eO87eMPMrQB8Mf85Pqf+OQBCgJz9IWx33/5CfuSJwGcL8kv3vGtdvP3Goz9xVQTvWmG3VXTvRkLGe4LffuV71sXbz33pR66K4F0r7LaK7t1oOJdv8acPXUYI+NY7U3zrnWmctuf9qD/4ihN87IkcH3siz/9+6DIRr/04gneMYxzjhoHNbGImeCTTshPBftOyvwf8vRDiOyVJsgFf9yaeLz+dRK7/EO7pvwDgv5z9eeyWdwLwKw//7Pp5r3D/HJ/qR/iThxa5by78gnzWSeJ6Ag84ksJuDdcTeMCRFXYAH3osty7svvu+mQ3HnTbz+s8/9kSeDz+WOxZ3xzjGMW4YKLrBytFMy04EexZ3kiT5gdcAPwIghFAAZTIf62BwudrjsZUWLtvt/Md738F/OTtOuV4p6gDefv87uTPyKr741Bd4dKXJ5WqP+ejkGhK/ULhW4P3SP74FgK7aOpLCbg3XCryfeWg8boE4ksIu15DXU7Hfemd6y3O/9c4Unz5X5Llih1xDPi6yOMYxjnFD4DhytzX2E7mbA6rAn0mSdAfwKPBTQoj+RD7ZAeCRxQYAb7gpzhtmbsVueeemwm6tkvaBm2J8/GtFHllsHAlxB88LvF/6x7fQVVsAeK2BIyvs1rAm8H7mobcgGPd2lJCOnLADOFdoA/DSufBVqdjN4LRZuHcuzBcvVDlXaB+LuxsUa8UTOz12XGRx42OteGKnx45akYWiG6y0jiN318N+xJ0FuBv4SSHEV1a3xfhF4D9eeZIkSW8F3gowPT29D7r9oz/SAIh6d9YbLeqxX3XdMY5xI2CgjL+vQdfOdnBYO2/tumMc4xjH+HqHzWJi+jhyd13sR9zlgJwQ4iurf38/Y3F3FYQQ7wbeDeMdKvbBt2+47ePhVrsjvpj/3IaoHYxTtGvRu2pvdNV1RwFrxRNdtYXXGgDGadlriyyOGtaKJwQCiXEJlEBsKLI4CnDaxt/Xprwzl8TaeWvXHePGw2aRuONWKEcbm0XiXkytUBTNINsavtAf41AhSdJ9wMNCiG07ney5FYoQogRkJUk6s/qjNwDP7PV+h4H75kIA/MPyP1wl7N5+/zt5+/3vXP/7rzz8s3xm+R948LnKVdfd6Li2KvY3Xv5efuPl7922TcqNjmurYn/n1e/ld1793m3bpNyouHXKD8BXF+sMFH3LcweKxtnF+lXXHeMYxzjGjQDpEP4cNiRJerkkSY9JkjSUJMm48g/wMCCu+NmvXu8++12q/yTwf1crZReAH93n/Q4U81EPp6aXKbr+fP1nV3rs3n7/8x68t5/9eYbWH+KexCuPhN9uq3YnW7VJudGxVbuTrdqk3MhIh1ycSfo4X+zwsSdym1bLruFjT+QZqgY3JX3HfrtjHOMYNwxsFhPTgSOZlv19wAH8AXCtqTDFWGe9ffXvn7/eTfYl7oQQTwBfFxvq7gRfzH+OkvsPkRj3sXuF++e4M/Kq9eOvSr2OX7n3Hbx9tYrWlfkLXn5is2bRNxa262O3XR+8GxXb9bHbrg/ejYxvuzvNb33yGT72RB4YV8VemXYdKBofeyLPx57II0nw5ru3rqo9xjGOcYyvJ6i6QbZ9JAsqbgXeKIT4zLUHVtOyPyqE+E/b3eRFZbL5vSfesf7/cvaH+FQ/whef+gIP3BQj6rFT7Y148DmJofWHcGX+AkmCTxb/iB/ljS/gp94/Hik/uG0fu2sF3lHYX/ZvLv7vbfvYXSvwjsr+sremAvyLV8/zpw9d5mNP5Pn0uSL3zoUJumw0ZYWzi3WGqoEkwY+9ev64x90xjnGMGwpWs4nM0Yzc2YGt/FE7ql14UYm7v/2WT/Jdn/hmfurOn8d29+38yUOLPLrS5ONfK1513j2JV/LyE3N8svhHN/y+svD8HrH3xR/YMhq3JvCOgrADxiLtsV/mu0/92JbRuDWBd1SE3Rped1OcqNfOhx/L8VyxwxcvVK86flPSx5uP95Y9sjgupHjx4cVQSLEGVTfIHc1WKL8GFK5zLLd6fFu8qMQdcJVYu28uzOVqj0cWG/RHGm67hfvmQuseuxs9YncldirWfLbgkRB2a9ipWMt4TxwpYbeGW1MBbk0FyDVkzhXaDBQNp83CrVP+Y4/dMY5xjBsWtiMauRNC/OctjhWA6x6/EkdG3DkcDoorOcxmM4FgCEnaWZ3LfNSzp4KJ0XBIpVjA7XLhcDhgkKPXtOIO7Jx7r1CVEf16BZ/bicPhQBr16NSreEORA+fWVJVuvYTHbsHlcsEoS6tawReOYDLtufh6R9A1jVa1jFUSuFwuTJpCo1IkEI5hMm/drHff3LpOq1bBZGg4nU5s6LQqBbzhGGbzwT5GhqHTaVQx60Pcbjcem0S7mscZjGG2WHd0j3TItScxZxgGcquGTRvgdDrxOW00KjkcwRgW68766O0VQggG7QZWtYfTmSIS8JBt5DF7o5gPgXvUbeHW+2Nuv4dOvYjhiWKx7axP5n64lX4Hp9rF444S8rlpVksY/ihW+8G/zIa9Dma5jjeVASQKzSqqCGKxH/xiQB30cKgtgt4UhhBYqkVUBFbnwRe1qUMZ86BOOBrF5XSQXykiSRIu78FXkY8GMr16kVTQi8vppJQtYjKZ8QcO3vc8HA6olwp4PTfWYk/RBbkj2ApFkqQ/283pQogfud6ByXyiHeDee+8VZ8+ePbD79/t9lpaXGSoGsWQKl9s9cQ5d06iWy8i9FumpBLqu0+nLxMIhipUalY6MIxTH6Z78ZGQYOr16DWnYYT6TRAKanR7xSIhqo0mx2cMRiOHy+g6A26DbrEK/xXw6idlsotHuEI+EabbaFBttXKEYHn9g4txCCDqNGkqnwXQihtNhp1JvkoiG6XS65GtNXMEo3kBw4uJWCEGn2WDYqpGOh3G7XJSqdRLRMP2+zFKphtkbwhsIHwh3v9NCaVfJxEIEfF4KlRqxUICRonIxV0JzBHD7w0gHIKwH3TaiW2U6FiASDJBf5dY0nQsrRVS7D2cgfCCiftjvYrSrpENeErEw+VKVkN+LJEmcW8zRFk5svjAm0+RFvTroI8l15iIeMskYhUoNv9eNxWzmmcs5GroNmy9yIAsKdTRA6tWYCTmZTScp1xq4HHacDjvPLeVoajbsgciORf3uuIfonQpJt5UT01PUGi2sVgtet4unLy5TlMHkCmM6AG5dHSHJDdIBCzfNZWi2O4BE0O/luYUshZ6ByRM5EFGvawpGt07CDTefyNDtyWi6RijgZylXpKuBJ5TA5nBMnFvTVLr1MnZ9yPx0CnkwRFFUwqEAhVKZgSYIx6ZwuiYvvDRNo1EpocodMqkkmqYxGA5Jp1LjhfvXGSRJelQIsV7Aeeq2O8Xv/e2nDpz3W26JX8V70JAkaZmNXViCgAvoAe0rTxdCZDa9z1ESdzB+ITYaDZZXclgcLmKJJNYJTAhCCJqNOs1qmVgkiMvlYilXQJFsWJwuRu066UgQn8/LwkqenmHGE4ljncAqf+0lr7aqTMfDBHxeFrN5uroZi9OD1q2TjgQIBwMsZgt0VPBEEtjsk5mM+p0WSqvKVNhPOOgnVygh6+Dw+JFbNSIBD9FQiGyhRFcx8EUT2J2TiTD0ux369TJRn4dYJESuWKY11LB7/QzbTaJeJ4lYhEKpQmug4o8lcLomI+rlfo9OtUTIbScRi5IvV6l2h1g8QdRek5jHRioRXxf1rlBiYqJ+NJDp10uEXBbSyQTFSp1svQPuEGLQJua2Mrf68s/WOph8UZyeyYh6dTRg2CwTdZmZS09RrjVYLLfRnX4Y9Yi5zJycnqLearFUbiF5IzgnFN1QlRGjZoWQXTCfSVFvtTmfqzGy+pE0mbhT4qa5NK1Ol+eyVYa2AHaPfyLCWlcV9G6NmANuOpGm3e3x7HIZ2eJD0kfEHAa3nMjQ7cs8u1xCtviweyezoDA0DbVTI2rXuGV+mr484Hy2zMDqA10laFK4aS7FUFE4v1JiaPHh8IcmIuoNXWPUquKXxhwjVePCcpGhzYcwNLxiwJnZFLqm89TlHE3dicUdnAi3MHTUXoOoTeX2kxkMIXh2MUfP7AEh8Ig+N8+kkEwST1/O0dQcWH2hiYh6YRgo3QYBk8xt8xlMJonzS3n6JjeYJOxKl5tmkljMZi5nC+g2N95wfCKRemEYdFo1RL/F3FQcm9XCYq6AYXdjNttQew2mE1EcdjvZfAmTw00klsBi3b+wFkLQqtfoNqokY2FcLifZfAG704vd4aBZrxALB0mn01gsXz/JvWvF3a133CX+6u+v2wlkYrhjyn+o4u56kCTpNcAfAj+w2qlk6/OPmrhbg67rlEol8sUy3mCESDS25whDr9elWirgsluJx6IUShWa8ghP9Hkhoes6nXoVIXeYSSUAWMgVMew+POHIniej0UBGrpcIu22kE3FK1RrlVh9HOI7T7QXGUbVeowbyOKpmsZi5tJJHs3n2lTZUhgN6tRIBh4mZVJJ6o0ml3cUTiuPx+de5O80Go3aNdCKGw25jMVdAt7rwR2NY9rjKV0ZD2tUSLpNgJpWk2e5QqDVxBJ+PDgoh6LYaKO06M4kIbpeLxWwezeIgEI3vWdSrikKrUsQqVGbTU3R6fZZLNczeCG7/+GU+FtxN9E5tXXAvrOTpCzPecGLPol5TVTr1Eg5jxPx0ir484FK+guYM4vQ9n/IfdNvQqzEX//+z999hsq13fSf6WZVzzqHjDidJOhJCWBiwkGUbfG1sD54ZD5YJMsOdIWPA1/JYJNmWr20y4j7DNQeQeXAYgzBjYwOyJARGVwnpSCfs2KlyWBVXhVUrvPeP6uq9d58Otburep+zT3/3U8/u7lq1vrUqvO/3/f7CGyIWCXN3r4SsClyhJPYzinrD0Bm163jMMddWM6iazs3dCiO7f8q9//1RB/0pdyJEKh5hp1ShPtBxhBI4XGcT9aZhMGw3cBtDrq1mMEzBS1tFepIHp/+eMzkZDbDOXLVMkp1ihR15CL4YdtfZ3AZhGqi9FgGGPL2Rw2KReOFugbbhwnGfkNDGQyyDFqsxD2vZFMVKne1GH90TxeE+24JCCBO118YvBjy9lsbhsPPydomOcOAKxLDsf3c1dYTRa5AJONjIZ6g2ZLbrXYQvhnN/HHh4bsG428I56XJ9JYnP4+HlrQJdw44zHD9wB/XJmEmnQdxt4cpKhkarw429BgNbEIfnbAsKIQTasIvf7PP0eopQwM+N7QJNVcIeuBd2N7QJk16DhBOurWXp9BRe3qsxtAVxeM8m6u+FvTs8kY8TDQe5s1eiORY4Q8mDsLuha4zbdUJWnWtrWQbDqVNv80fP5dQP+l3Udp1MNEAsEmavXKE/EQTjqYPvj6FrdJp1rJMB67kMmq5TqjbwhWKEzpECo/R701QWn4t4NEq11mBimCRS9yJd0+hUdT86lSaZTC493WceHOXc/dx/WL5z95efvFjn7iRIkvS/An9HCPE1px77uIq7GVRVZa9QpN3rE0ukHyqHYTJRqVcqmPqYbDpFfzCgVG/hCsXwHRMC1CYq3UYNFzpruQzdXp+9uowtGMcbCM39JdE1DUWu3ZvkRyN2Kg2svgi+8NEDi65NUOQ6bqGyuZK7L2wYxfcQuYCGrtOXa9j1IZv5DJqmsVet4/BHCUaODsPpukanUUPSRqxl06jqhN1qHUcgQuAhcgENw6DXrCNGfdZzaUzTZKtUxeIJEojGj+Q2DJ2e3MAyVljPpTFMk91SFXsgTDBy9GOOgmkYdOQGutJhNZtCkiS2ChU0px9/OH5kGM40DPrtBja1z2Y+DdwT9dPnO5+oF6ZJr91EDNqsZ1PYbVZu7ZUZ4MYdjh9M8ocfM+o2cUx6XFvJYLNZubVTYmTz4Akd/ZgjuYVg2JWxjtpcySbxuF28vF2kY9hwBuNHhgCFaTLqt3FNulzPp3C7nNzaKaFILtzhONY5V/xCCEa9NtKgxZVMHL/Py8tbBepjCZv/6DDcLB/Oo3d5YjVFwOvhpbt7NFQLtsDRz/c4bnXQw6m2uZ6LEQ0FubldpKwYWP1RrPZXCvSpMOjimvR4ciVOOBjgxnaB6kBgPeb5Hgd10MM+bnMtEyERDbNVqFBRNGyBODbH0QJ9rPSwjWQ20xFi4RB39srUhwa24PGPOZJ72Id+k7V4gEwixk6pSqWrYg3FcRwjktXB7DFBkvEId/bK7DRHGO7IQ3Hr4yF2tcVmMsBqNsleucZee4jkix0rkicjBZQma1E/uXSC7WKF7YaC6Xk4Ua+rI6RBk9Woh82VDOVak4LcQ/LHjxXJk9EQvVsnHXSymkmd2amfjMcocoWgc7pYbrbaVNs9vJEk3sDRzrc6GtFrVgk4LOQzKeRWm1ZvQDiRxn/MY47kVlWatTJWUyOfTdPr9Wl1e0T358SjxufxeES9UkYyNdZWVwgGH+0ONkc5d//2Apy7N75KnDsASZL+PPA7QohTV5OPvbibod/vs7O7h2ZCIpU9MYfBMAyajTpKRyabnu7Vt1OqIrn9BGIJrHPk2gyVPkqzRszvJhmPUazWkAcTPJEkzhPChqZporSbD+S23S2U0Rxe/JHEXJPmeDhgJNeI+ZxkU4mDwch9ymAkhEBpyxhKi/XMNLdtp1jGtLkIxecLCYxHQ7qNKn6HlWw6SUNuUe8qeKNJvCfkAgohUDotRu0m+VQMn8fDdqHMWLITjCfnSt6fqGN6jRp+m2A1l6HV7uwPngn8J+QCCiFQuh0GrTrpaIhQMMBWoURPt+Cb04XTJiqDVg2/1WAjn90X9S0cc4j6Qb+L2qmTiUzD3tvFCo2hgWNOF87QJow6dYJWnetrOZTBkDulOqY3gidwsqgfD/oYvTq58DS3badUodRVsQUS2Odw4QxdR+02CFk1nljLMlYnB7mAnlPChupQQes2yATd5FIJ9so1dmQF4Y1hd53uhJmGwaQnE7aOeXozj64bvLhVpG/x4fSfzK2pI+g3WYm4WM+lKdWa3K110N0RHHMk7wvTZNJrEbKMeGojhwS8uFWkI1yn5gLqkzGi3yQXcnBlJUut2WKr2sb0RnF6T3fChGky6rXwGn2eXMtis1l5eatIDxeu0NGLkHvcKnq3QdwNV1dztDpd7lZaGN4IrjnC20IIRh0Z56TH9XwSl8vJC7f3qI2sWHyRExcUhq4hBjJZn8RTV1boKQNuFmpMXGGcvtMXvkIIxv02LnXqNPr3RX11yLTI5gRRb+o6utIk4TJ4enOF4XDErWIdzRXEHTzdhRNCMOp3sA5abGZjhAN+tgolBubpTr2h6/RadezagM18homms1upYfOFCUZic4W3lV6HkVwnHQ0SDk1TY3RhIZLK4Drhe2oYBq16FXXQJZ9JYZomlWodfzhGND7fXNbvdWlUywS8blZW8tMCwkeAw+Lu2jPPip/7zeU7d1//xKvDudvfCew54G1CiGunHv96EXcw/YI2Gg32iiWcngCJ5IOCRQhBp92i1agSCwfx+/3sFMuMhZVAPIXD+XChNiEE/baM2pXJJ6dhw7t7RUaSE180+QqxNOh1mXQaZPdz23ZLVboTE2/04ZN5hRAMum30nsxKMkrQ7zvIBfTHXjkYjZQ+41aVZMhHMh6lVKnRVw2CiRQu98OHu/r7YikZCRIJBdktlhkYEsHEK3MBRwOFfqNK1OcilYhTrjVoDcZ4o2crTBn0ewxbNVIhP/HoNBdQ0UxC8RTOQ9cyHg7pNioEXDayqSTVhky1o+AM3wt7PwzGA4VRu0Yq6CGdiFGq1mkOJngjSVyHRP1kPEKRqwcr+brcYrfeRfLHcZ0hf24yGqB162SCLvLpJOVak3JngC2YwOl58HXUJirjdo2IEzbzGVqdLncqMro7eqb8OU0dYXQbpP0O1nIp6nKbvWYXa+CV16JrE8btOkGrwdXVLN2+wo29OmNHEMcck/xh6BMVs98g47dxbS1HXW5zuywzcYZx+h68FlPX0HpNYk6DpzbyKMMRL+9UUGyBuQTGYRjaNBk/6ZV4cmNaCHCj0GBkD74iF9A0dLSeTMQ+4emNPOpE48ZehZEtgCsQRpIeLtRm6Bpqt0nMofPE+jQX8GahxsQZ2j/f/dwG426TgBjyxHoOYQpe3ikxsvlwhR6+MMXQp3l6AYvKE2s5hmOVF7bKdE0Pdl/ogWsRpomutAjbxrzx6goWi8TL20V6uHEGHz5lxTQM1F6DIGOe3Mij6zov3C3SxYvD96CoF8Jk0m8TYMAz6xkcDjs3d0r0JRfuh3C3D7hNg1GniUcfcH01A9LMqfcTiDxYtT9dsMro/RZr6Thej5utvRKazUUw9srx/3Ruk57cwBh0WMumsFmt7JUqOLwBovHUAwt/IQTddoueXCcZC+P3eSmWytgcHuLpNI6HTBsRQtBqNmjLdVKJGNlMZi5huEgc5dz9u99bvnP3hvTpzp0kSV8H/CxgBf6VEOKfHXPcNwL/AfhyIcSRYkiSpI8d8WcncA2IAP+7EOL/PO15v67E3QyGYVAqlajWZYLRONFYnNFoSL1Swmm3kEokqDdlGr0hvlgSj+9sOS0HfLpOt1mHWdjQMLlbrIA3hC8cQ5+oDJq1g9y2ZqtNSe7hDMfPXYZvGgb9VgOr2mczl0ZwL2zoj8YxtGm1lt9msp7L0O32qMgdvNEE/uD5yvBN06QrN9CUDquZJFarla1CGVw+gvEEpmHSbVRx7ue2KcqAvbqMIxg7d+Wr2M8FNJRpha3L6Zi6kA4PoXgSBHQaVaz6mLVchuFoxHa5geSL4Dtn5evMhTQVmfVMHJ/Hw929EmPJgT86Dff25BoOfchGfprbdrtQYeII4jln5evMYbAMZDYyU4fh9m6Rjm7FHUpgsdoYthu4jAHXVjOYpuDGTomB1Td1MM6ZJD9WulgGLTbTYeKzXMCxwBlOYLXbGbZlnFqf66sZJEnipbtTt8u+gMrXybCPbdhiMx0iHY9yt1Cm2Jkg+aJYHU7UXhufqRzktr24VUCe2Kfc50yS10YDrMMW6wk/K5kk28UKu/IQ4Y1ic7pRlQ5evceTq6mp47RVoK3ZcATPX/k6GQ8R/Qb5sIeVTJJStcGurCD5Y9jdXsb9No5Rh6v5BCG/j5vbBVqaBUfo/O1sNHWE3mmQ8tlZz6cp15vcKrYYO8LYXF60YQ+v0ePJ1QSxcJDbuyVqQ3M/9Hy+YjN9oqL36qS8Nq6uZqnLbW4Wm4wdYZzeAJNhH+e4zdVchFQswlahTH2gYw8lzt1SRtcmqO0aEYfg2lruwKm3B2L4guHpIm9/sZxKxChWqnRGGv54+kyL5Qe5NTqNKg5DZWM/L7dal/FH44QiMUbDwbS1iXuaI15vNBmpOol0Fq/vfAVfuqbRqFUYD/qs5LPEYstvvzXDUc7dz1+Ac/d1pzh3kiRZgVvAX2DaZPgzwP8ihHjp0HF+4D8DDuC7TxB3/41XVsuOgT3g3wgh5lK0r0txN8N4PGZ3b49Of4DNIpHLpBmOxhRqDRyBKIHIYttbqOMRvUYVr03aF3EdSs02TpvlwK7fLtWQfKGpwFhgiwltoqI0a/juDxvWWtitU+fGFGKap+YLETwmt+3M3NqETqOGzVCnIm44pFhrYgHWcmksksRWsQIuH4EF96ybFijUsGnjqZBSJ+xV60jASiaJ3WbjTqHMxOrBN2fYe14Yuk6/VcehT8MxpmFOhTXSwUr+xnaBvnDgCs3fs24emIbBqNvArQ+4tjJ1GG7tltFMwZVMnIDfx43tAvLEMs2rW2CLCWGajHsybk3hibV7uYBj3WQ9HSUSDHBrp0RlYGDxxRbaN25WoOAzFJ5cm+YCvrRVoK8aXElHSMYi3NktUehORd/D5Iqdzi1Q+92pmFm7lwvYGWqsp8JkkzF2ilWK3TFW/9kLQI7jHisd7OMO17IxwsEAN3eKtAcquaiffDpJsVqn2B5iCcTPXAByHMZKF0mR2UyFiUXC3NwuUG4NWYn72VzJUKk32W70ML2xV7jI54U67GNRmmwkQ6TiUe7ulSjJA9JhL1fXsjRabbZrHfDFzuSIn8ytYPYa5CJecqkExUqNZm+A32VnPZ+l0+tTbrZwhaaFYIucT8bDAf1mlbDbQSaVoN5s0ukPcdisrGTTDIdD6nKbSDxFeMFz2Wg4NUNsFsHa6gp+//kMkHnwanXuJEl6O/BjQoi/tP/7ewGEEB84dNzPAH8A/DDwQ8eJu0XhdS3uZhgMBvT7fbYKJYTTSzCWXOgk/wq+fo9Bs0Yy5CeVjKNpGrd3CowtLnyxs1eYzoPRoM+4VScZ9JDPpNE0ja29IprFQTiRWkjbmGO5hwN6jSpBj4NcOoUQgru7BQamhWAshf0hw94PA3U0oi9XCTqtrOWyCCHY2ivRVvfD3gtqG3MUNHWMIlcJOSU2V3L7hRolqj0Veyh5bAL7IvCAw7Cex2q1sl0oU2gNljLJ3w9D01C7DSJ2nac2V7Hb7ewUK2zXu+juKI4FT/L3YxoCbRK1azy9uYLL5aJYqXGr3GLiDM2V23Z2bgOtLxOxTnjm6sq0KW29we2yjO6O4PQGluZ2mKbBuCvjF0OeXMsSCPipN2VuFxvo7leGaxeJaYGPjHvfmQ0G/MitNjcKNVR7AOcp+Z/n4haCca+FW+vxxEqKaCRMu9s9aOlyXkf8NO5Rr41t1OZqLkE8GqHX77NdrGDxBqdFXUsKYc7yhUftOrl4hEQ8xmAwoFSp4vGHiCfTSw2fdjttmrUKoYCPtdUV7Ato1XIcjnLufuG3/mBpfDP8peuJ08Td3wS+Tgjx7fu//x3gK4QQ333fMW8B/g8hxDdKkvRxLkDcLXdLgdcIPB4PN7d38STzRFLZpQo7AK8/QGx1k+pAZTQacePuDoRShFLZpQo7ALfXTyi3QXVg0Ol22d4rYQ/GSWRXlirsANweL4mVDQaGFbnVZqdYRneHiGVXlyrsAJxuN7HcOgPJRaXeoFCp0ZM8hDNrSxV2AHani3BmDcXiY69cpVJvUh5Z8STXlirsAGx2B95Eno41wO2dIo1Wm62ujjOxulRhB2C12/HEMnTtYV64s0u31+el2hApsrJUYQdgsdpwhlO07TG+cGOb0WjE84UuhHNLFXZTbivOUIKuM87nXr7LeDzmhVIXS3RlrqKFc3FbrHjCCVR/hufvFBiPx7xUlLHGV3EHl7t7jmSx4AnHMcM5vrRdQlVVvrRbQ4TzuOYoWjgXtyThDkYxw3m+uFNjPB7z4k4Foit4w/GlCbsZtycYwRZf46WizHg85s5emUBmnXA8tdTdcyRJwh8KE1u5QrHVn0ajiiWyq1dIZXJLz4sLhsKsX32CgarRarWWynUUpAu4ATFJkj573+07Huo5ThNQfwr4wYd4TF6SpF+RJKkiSdJEkqSiJEm/LElSbt5zvHo6FD5qCHCesUfXWWCxWLA7XQghMAW4L7ACSZIkbE4XQoBALKzh8LzcdpcLgY4QYild30+Cw+lCGMPpzxfMbXe6MCej6bZKTteF9o6yO92Ywx4Igc1xsdw2hwsxFggEkt15wdxOzIE5/cXueOiihfNyo0yv1WKzL2U3jWO57Q5MiwUhxJT7ApPfrXYHxv61Sjb7ufMZHwYWqw2LbZ/bYl3KTh7Hc1ux2GzT19xiwe5Y7mL5MLfN7phyY8F5gWObxWLBscD0hnlht1rIBC6Et3lKQUUJuH+XiNz+32bwA88AH98f+1LA70iS9A1HuXeSJGWATzHdieITwN9kGs79K8BflSTpbUKIndOe9KW4ewj8193f5O2pryXojJx4XFdt8cnqx/i61W+8oGe2XPzgH30L73nq+3k6+uYTj3tR/jzPvfQz/ORX/9oFPbPHG5+ofJg3R9+B33FyYUt/0ubz8sf5mvTfuKBndrH4YqHNZ3ZajCYGboeVL1+L8Mb88vfcvMQlLvHqhWaaVPqvir1lPwNclSRpnamo+1vAN83uFEJ0gdjs9znCsj/GtDDjq4GngP8R+HamIvETwD8B/vZpT+pS3M2J/7r7mzz30k/y+3u/xY++7eePFXhdtcWPf/p7KCrbAK95gfeDf/QtbPdv8b5PfSfv/4pfPFbgvSh/nvd96jsPHnMp8M6HT1Q+zP+19TP8UeW3+d5nfuZYgdeftPm5F76f6mgH4LESeB95qcrvv1hhrJkP/P35QgeX3cJffDrNu55KPaJnd4ll4uv//VUA/sv/dPsRP5OLxVP/n2nU7aX/vXjh3JF/MdUfrR9uXjj3WeCwXJhzdyKEELokSd8N/B7TVijPCSFelCTpJ4DPCiF+5yFP+fVM8/NU6b4whxCiI0nSB5i2XDkVl+JuTrw99bX8/t5vUVS2+fFPf8+RAu9+YZfzrfP21Nc+ome7OLznqe8/EG3HCbz7hd3sMZc4H94cfQd/VPltqqMdfu6F7z9S4N0v7FLuNd4cfcejebJLwK9/cptPb9/L4Yn5nPhdNvpjnaaiMtZMfucLJardMe9++9qje6KXuMQlHgk006TSe1U4dwghfhf43UN/+5Fjjn3HKaeLAzvH3NcE5koaPpe4kyRpB+gDBqC/Gro4LwtBZ4QffdvPH4i3wwLvsLA7yd17LeHp6Jt5/1f84rEC77CwO8ndu8T88DvCfO8zP3Mg3g4LvMPC7iR377WGj7xUPRB2a1Ev7/nqDUKee/lLneGE5/5oix15wKe3ZVJB16WDd4lLvM5gf5U4d0uADBwezGcO3v8MvDzPSRaRXfy1QohnH2dhN8NM4OV86wcCr6u2HlthN8NM4M3wvk99Jy/Kn78UdkvGTOCl3GsHAq8/aT/Wwg7g91+sAFNh9/f+0hMPCDuAkMfB3/tLT7AW9T5w/CUucYnXD2Y5d8u+PQK8wLQA4358vyRJvw98G/Dj85zkshXKQ+KwwPvBP343P/jH735shd0MRwm8S2G3fBwWeP/0C9/KP/3Ctz62wu6LhfZBjt17vnrjxGO/bf/+sWbyxUJ76c/tEpe4xKsL0gX8ewT4NWD9vt9N4P/NtCjjrwkhfnuek5w3504Avy9JkgD+TyHEL53zfK8JzATeD/7xu+lNOgAEHKHHVtjNcDhEO8OlsFsuZgLvn37hW1G0DgA+e+ixE3YAn9mZhmNjPucrHLvDCHscxHxOmorKZ3ZalxW0r1HMiifmve9xKbKYFU/Me98iiyxmxRPz3vdqLLKwWy2kH8OwrBDiN4Df2P/1S8AmIAshlIc5z3nF3VcJIUqSJCWAP5Ak6YYQ4hP3H7Df8O87AFZWVs5Jd4lLXOJxxmhiAOB3zTc0+Zw2mop68LhLXOISrw9ohkn11dEKZWkQQmjA7lkeey5xJ4Qo7f9flyTpw8DbmPZhuf+YXwJ+Cabbj52H79WCWY5db9Ih4AgB0Jt0jq2ifVxwOMduhtPapFzifJjl2ClaB589BICidY6ton0tw+2YNqDtj/W5jldU/YHHXeK1h6OcuNdDK5SjnLiLaoVylBP3WmuFYrdaSPkfP+duUTizuJMkyQtYhBD9/Z//IvATC3tmr1IcVTwBHFtF+7jgqOIJ4NQ2KZc4H44qngCOraJ9rePL1yI8X+jQVFQ6w8mJodn2cEJTUQ8ed4lLXOL1A80wqT3mzt15cJ6CiiTwx5IkPQ98GvjPQoj/upin9erEcVWxx1XRPi44rir2uCraSywGx1XFHldF+zjgjfkwLvt0WHruj7ZOPPZX9u932S2X+XaXuMTrDDPnbtm31yrOLO6EEFtCiDft354WQvyTRT6xVxtOa3fyuAq809qdXAq85eC0diePs8D7i0+nAdiRB/zU792gPZw8cH97OOGnfu8GO/LggeMvcYlLvH6gGyY1Zbz022sVl61Q5sQnqx87td3JYYH3yerHHsEzXSyee+lnDn4+Lux6WODd/5hLnA2flz9+aruTwwLv8/LHL/6JLgHveirF29an368decCP/vaX+InfeYGf+r0b/MTvvMCP/vaXDoTd29ajlw2ML3GJ1yke01YoC8Hl9mNzYrZH7NtTX3tiPt1M4H2y+rHX/L6yAD/51b/GD/7Rt/Cep77/xHy6mcB77qWfudxXdgGY7RH75ug7Tsynmwm8z8sff6z2lX3329dJBd0He8s2FfUgvw643Fv2McfjXEhxEh7FnrIzvFYKKWawWS0k/c5H/TQWDkmSvuW0Q4QQv3raeS7F3UNgXrEWdEbmO1bcVzz8KOuIT+GeV6w9HX3zwwu7C75ucewvF4w5uOcVa35H+NRjxX2fNfEoL1zMz/2up1K866kUXyy0+cxOi9HEwO2w8uVrkflz7MQxP78e8BCv9eK5D/3/CLhf5V/vxwwXf8W6YVLvq6cf+NrDc8f8/X4b8VdPO8mluAMkSSISDFDf2yIQT+Fye5bKZ5omPbmJOejizSeIh4NUyru4o0lcHu9SuYVp0m/LMOjgz6yj6TrV8i7+aBKvf679iM/OLQS9lsyo2yS3voLNamW3WkSPJvD6g0vnVrpt1E6T/EoW3TRo7FUwjDjeQGip3ACDXget2yCfS+Kw2yk29hgKA7c/jCQt1/ofKz1Ev0EiGyfg9+IsbTEU4A4sn1sdKtBvkkyF8Hu9BEQZpSvhDISRpPmyQt6YD5+pYEIbD0FpspaM4PF4iFhGdDoNnIEokmW5GSm6OoZBk3w0gNfrJSCN6bXrOINRLJbltm3RJyp6r0Em4Mbn8+G3aHTkCu5QHIt1uUO+rk2YdOrEPTZ8Ph8hh6Apl3EE41ht9qVyG7rGpNsg7pCm3E4Lcr2IM5zAZj+5Ifb5uXXGnTpBScfn8+Fz2WkUdwjGUzicy03KNwydXrOONBni863g8bjY3bpNIp3FveS5zDAMmvUaw36HfOr4xsjLgP0xde6Ao7p6R4C/DPxt4JvnOYkkLnB199a3vlV89rOfvTC+edButykUSwQCftwuF9uFMrrdRTCWxGZf/GCkdDsMW3XS0RCRUJDdUpWQ34vf52Vrr8wAG/5YcimD0bDfRW03yEQCxCIhitU6XreLcDDAXqnMWNgIxVM4nIv/wgyVPr1mlYjPQzIepVxv4LTZiUZC7JYq9DVBIJbC4Vr8QDgeDlCaVSJeJ5lkgmpDRpIkEtEwxUqN5lDHE0niXMJAOBmPGLaqRNw2VjIp6nILwzBJJ2IUq3XKnRHWYAKne/GiXlPHTDp1Ym6JzZUsjVab0XjCSiZJpd5kp9EHfxSnx79wbl2boHUaxFyCa2s5Wp0enf6QjXyKutzmdrmF5o7g9C5+QWHoGnqvQdxp8tTmCr3BkGanx0Y2RavT42axwdgRwuENLFzcmoaO1pOJOXSe3swzVic02h1WMyl6yoCbhToTVwiXL7QEbgO11yTAiCc38ui6QbUps5pJMRyNuFmoMXGGcAcji+c2DUZtGZ+pcH01CxKU601yyTiarvPyToWh3Y8rEJlb1M8LYZqMey28Rp8n17JYrRYK1Qa5ZAxhCm7ulhnZfbhDsYULayEEw46MU+1yLZ/E5XKyW66RSUSxWixsFysIl49QLInFunjufruF2m2ykorh9XgoVmrEwkHsdjulSg23z088mcFmW6yoF0LQabdo1atEw0Hy+Rz2JcyX90OSpM/dv4f9E294Vvzy7/y3pXICfNVG7AHeRwlJkn4MuCKEePepx75exd1wOGRnb4/hWCMWT6EoPcaDPtl0Ek3T2a3UsPnDBCIxLAtY5aujEb1GlYDTSi6dpNaUqbQUHKE42niIXVPYzGcQpuBuoYzpCeKPxBfCPRmPGcg1AnZYz2eQWx1KcgdHMIGujZFGPTZyKawWCzvFChZPgFAsgXUBg5E2UWnXqzjRWc1l6PT6lBotnKEYhm5gKG3WMkkcdhtbhTKG00swmsC6gMFI1yZ0mzWcxoSNlSzKYMhOpYnFH0EIgRi0WE8n8Lhd3NkrMZKc+KPJhTgMhq7Rb9VxGWOurGQYqxO2y3UkbwjJYsXoyaylovh8Xm7tluhq1oU5DKZhMOrU8Zgjrq1mMAyTG7slRrYAktWOddTiSjpCJBTk9m6JxkhgD8axOc4v6k3DYNxt4hNDrq9mkYAv3t6jqTkRVgceo8cT+SjpeJQ7eyVKXQ3JH8PmOL+oF6aJ2m/hNxWe2shht1l58U6BlulEsruwjTtsJoNkkzG2ihX25BHCF8XudJ+fW5io/c6Uey2N2+Xk9m6JocWF3e1H6zVIBtzkUgkKlTp7rQGSL4ZjAaJeCMGo38Gldri+ksTv9XB7t8gABw5vALUrE/faWcmkqNSb7Db7SP4YTu/5Rb0QgnG/i3UocyUbJxzwc3evhGJacfrCjHsyYaeF1exU1G/V2hie6MJE/VjpYtv/PMfCIbYKZeSxwOYPoysdwg7BlZUsrW6XrUob0xPB5Q8uRNyOB31Ev8FaLEgyHmGnVKUx0LAHomhKl4BV5+pqFmUwoFCTcYZi+EOLEdYjpY8i14j63KSTccrVGt2Rhi8SZ9TvYtHHrOUyjMdjao0W4ViCSCy+EO7hQKFeKeG0W1lbXcHrXW60aYbD4u4Nz75F/NYffOKkhywE1xL+V5O4eyfwYSHEqaGu152403WdYrFIXW4TiSUJR2IHH/jRaEi9UsJqMcmkUjRbbWrtPt5oAm/gbGFDXdPoNmrY9DFruTQjdcJ2uYbkDeML3ePW1DGDVo2ATbCez9Du9ig22tiDcbzB0Jm4DUNHkevYJgM289NJfqtYAW8If/iecNQmExS5ilvS2VzJ0lcGlOoynvDZByPDMOg2G+jDLmvZFALYKlawuAMEovGDVayuaXSbNRyGyuZKluFwxG61gT0QxR8+G7dpmvRbTQylw3ouhc1q5fZeCd3uwxuNY90PTRm6jtKq49CHXMlnmGg6W6UawhPEH4qdKXQnTBOlIyOGbTYySVxOB3f2SqhW975wnHKbhkG/Vcc2UbiSz2CYglu7ZcYOH55g/GzcQjDqtbAO21zJxvH7vNzYLtDWbTiDcaz7wtE0pwLMow+4vprBarVwY7tIX/LgCsbO5DBMJ/kO9nH7YJJ/6e4exa6B8ESw2hz7x5loSoeIdcQbrmRxOuy8tFWkZTiw+6NnDhuqSheH2uZqJkoiGubWTpFST8fijx2IViEEar+N1+jz1GoKr8fNS3f3qKtW7P4YljMuKCbDPrZRm6vpMOlElN1SleZQxxVO4nC5D7iHvTZCkVlPxwj4vNzcKdJULTgCsYP35qG5RwpCkVmL+silExTKVerKBFc4gXM/xUMIwbDfxeg2WU2GCQcD3Nkt0RgLHKHEmUX9ZDTE6NXJBl1T4VhrUu0NcYeTuLy+g+OG/S6TTp1sLEA8EuHuXpmKomENxM8s6jV1hNlrkAk42MhnqDVb7DW7WANxXL57wnE86GN0G+QjflKJKLvlKpWeii2YwOE6m1OvTaaOeNxlYXMlg9zpslvrIAWiePyhg+PU4YBJp0Y6OBX11XoDWRnji6Vw3/f6PBy3SrdRxYXOWi5DX1EoN9p4wnH8oXtpFuPRkG69it9pJZtOIsst+sMx8VQWf+BswlqbTKhXK2jqgNV8jkhk8Q7wSTjKuXvuApy7P/vqcu7+D+A7hRDZU499vYg7IQS1Wo1iuYLHFyKeSB3rDnW7HZq1MqGAl1AwSKFcRdEEgUQKp2u+Vb5pmvRaMlq/xUoqcTDJjy0PTvKHMVJ6jNt1MhEfyViUQrlKa6Tjic4fNhRCoHRaGH2ZtWQMn8/L3b0iY8mJP5o6Ntw8GigMW1USATfpRJxKvUFnoBKMzz8YCSHod9oM2w0y8TABv5+tQomRsBGMJ7EfM5GMR0OUZpWQy37gbDa6AzzRJB7f/A6D0u0wajfIRINEwyG2CyU6GviiKezH5L5MxiMGco2w08JaLk2j1aIk93EE43geIhdwqPRQ23WyET+JWITdUpX2WMcbTR1M8oehqVNX1b8v6lvdHtuVFsIXxX3fRHEa1KGC3q2Ti3jJJuPslquUu2MsgeMnMUObMOnWidhNrq/n6fQVbhfqaO4wLv/8YcPJaIjZb5ANuVjNpNgr17hd6aI6wthdR6/qTUNHDGRSXsEbr63RHwx5ebfKyBbA8RB5iLo6QigyuZCDzXyGSkPmTqWN7o7i8Bz9mZ2FTiP2CU9v5JlMNF7cLtOTvA+VC6hPVEylSc5v5+pallany269g9Ufw3NMHqdpGCjtOk5twNXVDKYpeHm7iGL14X6IXEBdm6D1GsRdcH0tR6fXZ6cmY/HH8AaOfu9M00Bpy9jGXa7kM1gsEje2SwysDyfqDV1j3K4TsRlcX8/RHwymjrgviu+YxaAwTfqdJtKwy0Z26tS/vF2iIxw4A7G5Rb1p6KjdJmHLhCc3cozVCbeLVTRnCG8ocuTrNw2dtrGNWmxmE3g9bm7uFOkYdtzhxNxO/dQRb+Ddd6UNw+R2oYLmDOAJHR3hmS642jBosbEv6neKZVTsBOIp7I75RL1pGHTlOmLUYy2bRgJ2SlVsniDBWPzYKEu/22YgT9OAgsEApUoVyeogkcrgnDMFxjRN5EadXqtBJp0klUotJKrzsHiFuHvjs+K53/no0nn/7Hr0QsWdJEk/esSfncAbgK8HPiiE+L5Tz/N6EHfdbped3T1Mi41kKotrDoFmmiZys0631SCdjGOzTcOGuLwEY8eLM4BBv8egWSMZ8hONhNgr12iNTp7k78dUnMnTsGEmgcfl4u5eibHFhS+WwHbCYDQaKIxbNRIBD+lEjFK1TnMwwRuZr1hjJgy1+8KGO8UymsVBOJHCfoLDMBoO6DaqhNx20skE1XqTpjLCG03OJQ6FECi9DuN2g1w8QijgZ6dQYiCsBGMp7CfkAqqjEX25StBpJZ9OUW+2KLX7uMIJ3L75VqrDfpdJu04uFiQWCbNTrNBWzen7dkJStKaOUVpVQnZYz2eR2x2KjQ720PyO70zUp0M+kvEou6UKVUXDHkye+JnRtQlqu0bYbnJ1LUe71+dOqYHujs4dfpqMBpi9Ovmwd+r+VOoUWgMsgfiJYUND01C7DSJ2nSfW8/SUAV+6W6aHH7t3Pm5dHWEbt9hMeNlYyVCqNdmqdTE8x4szmAm0JlG7xlMbeUaqykvbFRSrH6c/NJdA0ydjRL9JLuTgykqWWrPFrXILzRXGcUIeomkYaH2ZiHXC01emuW13ChV0VwBvaL5UCm2iMmrVCDkEG/kMrU6X22UZ3R3B5Tv+MzN1XWX8YsgTa1kkiSm3w483PJ9A07UJA7mGz6JzdTVHt69wu9hAd4dwnVBkI0yTUVfGpfV5YjWDzWrhTqGMZvfhi9xzxE+CoWv05RpuoXJ1NYcyHHJjr4bqCOD0H+8ECSEY91q4tR5PrKRwu5zc2i3Rx4knPF+xhmHojFoNvGLEtdUsE03n5l4F1RHAEzxeWM8Emm3U5mougd/r4dZukb7pwB2Oz5VKYRoGg3YDtz4V9UIItosVLN4gwUj82PdtWgjWYdSuk4tHCAb87BbLqMyfH22aJl25gaa0Wc2ksFgslKs1PP4Q8WT6RKHW7bRp1iqEAj5W8jmcS8jHnhdHhWU//JE/Wjrv1bjvosWdDq9osKcCe8C/AT4ghJi84oGHz/M4i7vxeMzeXoHeYEQ8mcF/htCqpk2oVcto4wG5TJrhaEyh1sARiBKIRB8YjCbqmF69iscqWM1lkNsdCo1pbpvnDNzTsGENhzE6CBtul2rgDeIPPxg21CYqSrOGz2qwkc/S7fXZq7dwBOPHruRPgmkYdFs1bOo0F9AUgp1iBYc/TDD64ASmaRM6jRo2XWUtn2EwHLJXbWIPRs8U1p2uUpuIUZf17DQX8G6xjOTyE4gmHhgIDV2n26xh04Zs5LOo6oS7s7B3OPbQ3MI0UVpNGHXYyKZw2G3TsKrNiz/yYC6gYej05ToOfcCVlSyGbnC3WEF4QvjCD5+rKYRAacuY9+UC3twp0hcOXKEHHQbTnLoIbn3AtZUMADd2SwwsPlzB6EOHVqdh1Tb2/QlsFjaUJxacwQTW+9zeWQK7W+vxxFoWm9XKF2/v0VBtWLyRh05aF0KgDXv4zB5PrSaJRYLc2ilSGZhY/TGsducDx6r9Fj5d4cm16ST/0t0CTc2G/SEcoPuhDnrYx22uZSIkYxFu75YodidIvugDYcMpdxev0ePJtRSB/dw2RTjwnDFfcjzoT0OWER/J2DRvq9RVsfpj2O9zXIUQjJXu9HlmY4SDAe7ulegbVjyRs4VWx8MBartGMuAmm4xTrNQpdoZHivqx0kVSZDZTYaLhEDvF8tQRjxzviJ8EdTRk2KoS89jJZ1KU6012Gj1MbwznIVGvDvtYFJmNZJDU/sKnpug4wom5FsuHoalj1HaNuMfKWjZNo9Vmp9YFf+yBkO6UW8HsNQ4c8UKlRrWv4gidrQhKm6iM23XCDsFmPkOn26Mst3GFEviCD47T4+GAfrNK2O0gk0pQa8i0lCGBWOqhohkH3NqEdr2K3ZywlpuO0w25TSSeInxoLhsNpylKNotgbXUFv3/xRVcPi8Pi7skLcu6+8oKdu0XhsRR3hmFQKpWo1mVCsQTR6PkTSYfDAbVqCZdNIplIUGs0afZH+GJJnG433UYdxgob+QzabJJ3n22SP4xp2LBK2GWdhg3lNuVWD2c4jsvjo99qYFX7bOSm2zBtFSuYzv3ctnNWh2nqmL5cw2czWc9l6HZ7VOTONA/RH6QrN5j026xmp7ltW4UyptNHIDbfSv5E7smEXnOaX7Key9BXBhTqMo5gDF8wRL/dwlAeDHurVje+E8Le80LXNJR9h+HKSpbBaMxOuY7ki+ALRlC6bUxFZj0dx+f1cHevyBAnvuj5iyIMXacv13AaIzb3Rf2tQoWJI4gnGGWkdLEMZDYyMcIBP7d2isiqhD10fm7TMBh3GvjEkCfWc9Ow4U6JodWHKxhhMlSwDFpspsPEwiFubhfZbU8Q7sgDIuwsEKaJNmgRs6u84Uoeq9XCS3eLdIQLeyCKPh5iG7bYTIdIx6Pc3StT6KhIvhi2c7abEMJE7bXxC4Wn1jI4HXZevFtA1uzYA1GMiYpl1GIj7mclk6RQrlLrqzjDyXNXOgshGHRlpEGLzWwSj9vFy9tF2poNRzCGqWuY/Sa58DTsPc1tG+AIPZjbdlbu4eyznIrh93m5tVOkpVlwhBII00DvNEj57Kzn09TlFqVWH2cogWdOR/xE7l4HrddkJTHNBby1U6Q+EtiCcRCg9+qkvFaurGSROx12ah0kfwz3AlonjfpdzH6T1XiQRDTCVqFMfaBjDyWRLBbUdo2IQ3B1NUu3r7BVkcEXxXOGxfJhjAd99G6DXNhHKhGlWKnRHWv442lsNjudRhWHobKezzAcjSnWGrhDMQLh6Lm5RwNlGmHxOkkn4tQbTUaqTiKdxel00qhVGA/65HMZ4vHFFGEsAkc5d799Ac7dlQt27haFx0rcCSFoNBrsFcu4PH4SyfRC25nMyr/lRoVYOIjf72enWGY4npBPTSf5O7tFhjjwRRffzmTY66J26+RjIaLhaRuV3mDISipOMOBna28awvRHU8fmtp2ZW+kxatdIhaa5gKVKjY4yIB2LENlfySs6BJbQ12k0UBjINaI+F+lEnHKtgdztk4qGiEfv5bZ55gx7PwzU0ZBRq0rUPXUYqo0mVblLMhwknZy2M2kqKu45w94Pg/tzAVdz04l1t9YiGZoKjFKtwZ6sIPnjr3A7zgt9oqJ168RcEldXp/lkd8oNEgEf6/k05VqTG8UWY3sIu3ux3KauIYYtsn6JZ66u0un1ublXI+x3c201S6PV4VZJZuIKL7yViqlPw71xp87TV1anuYA7FQIeB0+s5+n2FXaqMpIvtpBJ/n4Yhs6gVcdtjri6kmGiaby8U8bjtPPEeh5lMGC73ARfZJpftkDuaS5gA8dE4crKtGr/5Z0SNquFJ9ayqBONrXINyRPGF1psn0DTNFBaTSzjLldWMkiSxMvbRSTgifUchmFya6/CxBnAE4oupIPADMI0GXZb2McdruTTOO02bu6UMEzBtZU0kkXi1l4F1e7DGzpbsdGx3EIw7LawDFtc2Rf124UyE12fRiysVnZLVSS3j9CCOgjcz93vtBi2m2QTUXxeD6VyBU03SCViZLPZR5JXdxKOcu5+5QKcu7c/AudOkiQb0552XwdEgTrwe8BvCCGMuc7xuIi70WjEnbtbaKZEMpXF7Vle80bDMGg2aigdmWwmhd/v5+7uHg1lst8vbXml4aZporSbSKMOV/IZwqEg23tFGr0h7sjZq7DmwXRAkDH7LdYyCeKxKHvFEtVOH28kiWeJTZBng9GkK7OSipGMxymWKxQaHeyh5TYinjkMerdBPhEhm05RqdbYrcnYAjG8weU2Ax72u6idBrlogHw2Q7Xe4FahhuYO4TohT2kRUAd9UJqsxvysr+RoyC2+dKdI2/Bg982X23ZW6OMhjkmLK6kg1zdXaXe7vHCnMC188B+dPL8oaOoISWmyGnFzbWOVwXDIze0iE4dvmle3xIlvMh4xbteIui1cXV9lrKrc3N5DtXnxhuMLneQPQ1NVhq0aIbvg2sYquq5zY2uPsdW1n5awvF5mujZBkWt4JZ3rGysAvHR3h55hw7XkRsSGrjFqNfBLKk9dWcNqtfLy3R06moQ7nFxIm6BjuQ2dUbuO2xjz5EYep9PJ1s4eAwNC8fmL+M7GbdBp1jGHPTZWskSj0aX3qzsrXi/OnSRJDqZC7iuBArAB7ACrwJ8Af1EIMTrtPI/NDhXNZhOL3cNaNrd0LqvVSjKVIRSKsLd9k5VcltpIEMmsL93CtlgsBKIJdC3MrZ27PHPVRk3RiOY2l84tSRKBcAzDH2KrdAe3y0m1NyK2cuWCuKMYgSC7hS18Hg8FuU8gt7nQlfxx3N5gGNMfYK+0PS30qLcJZjeXOsnP4PEHcXn9FMs7hIMKN/Zq2OJruC+A2+n1Izw+thoFEtEBX7i5x9CTwbHknQ4AbC4PhtPNl0pVskmFL97cQQ3mcS15pwMAu9ONcOS4KVfJJBRu7ZawRPL4l7zbAIDD5caRXqPRqBJtd6g0W4hgmsCSd68BsDudBNMrdOUGtUaT/nCE6YsRWvIOMgA2u4NQKk+/LVOq1TFMgWIL4os+/O4kDwurzY4vkWHY77JdrOBxOelIXvzJ5e+6YLXa8MUyjAd97uyVScVCqFY3yczy9022Wq1Ek2nGoyDbhSKp1Gtnr2bdFDSVU+sKXov4B0x3qXgD4AU+t//7nwF+G/gx4P912kkeG3EHzF1Wvgw+m81+obkJ94ebrfaL5bbabAeOzfTnC+S22g4ElcVqXbqwux8Wi/VB7gsMW1gslgPXRLJYLpRbkqSDQgXJIi19C6vjuAUsfQurV3Db7Af78l4kN0zHFAEgWMpuOSdhWkCjT5/HkrfuOgyb3Q77xYDWi75umx2h7z+PC36/rXYHjPe5L/i6T+qC8GqFzSIR9732nvcc+FvATwohbkmS9JbZH4UQ/12SpJ8AfoA5xN3FzYyvEnz7R76J5xt/eupxzzf+lG//yDctlPsXX3gfJWX71ONKyja/+ML7Fsr9B4XfpDtpn3pcd9LmDwq/uVDu9/7Jt/Gy/IVTj3tZ/gLv/ZNvWyj3o8QHvzT/+/3BLy32/f7j6ofpa6e/332tzR9XP7xQ7ktc4hKXWDZ0U9AYTJZ+ewRYB54/5r4XgFMbGMPrTNx9+0e+idvdG3zvJ779RIH3fONP+d5PfDu3uzcWJvB+8YX38Zn6x/ixz7znxAm/pGzzY595D5+pf2xhAu8PCr/Jh27+FB/43HefKPC6kzYf+Nx386GbP7UwgffeP/k2dvq3+InPfteJAu9l+Qv8xGe/i53+rcdC4H3wS9P3+0c/ffr7/aOfnr7fixJ4f1z9ML+183P84ks/cKLA62ttfvGlH+C3dn7uUuAtCW//1VXe/qurj4T7K55b5SueezTcb/3lFd76yyuPhPv1jKsfzHL1g3PN/Y8FpAv49wgwAI6zJP8MUJrnJK8rcfc9b/qhg5+PE3gzYXfUY86Dv7b2HmySHV1oxwq8mbDThYZNsvPX1t6zEO63Jd9J1rtGabBzrMCbCbvSYIesd423Jd+5EO5vvn6vkfZxAm8m7I56zGsVf3393vt9nMCbCbvZ+/3X1xfzfr8p+g6S7lVqo91jBd5M2NVGuyTdq7wp+o6FcF/iEpe4xEVgFpZd9u0R4C5w5dDf3iJJ0j8EfgT4V/Oc5NziTpIkqyRJn5ck6T+d91zLxpvib+Hnvube63JY4B0Wdj/3Nf+KN8XfwiKQ9a3zY1/+3LEC77Cw+7Evf46sb30h3EFHmPd+2S8cK/AOC7v3ftkvEHQsJon5yeiz/MhbP3jw+2GBd1jY/chbP8iT0WcXwv0okfWt8+Nve+5YgXdY2P342xb3fvvtYb7zqZ8+VuAdFnbf+dRP47cvP2n9Epe4xCUWhVlBxbJvjwD/Cfir9/0ugE8xFXa/AHxgnpMswrn7PuDlBZznQnCcwFumsJvhOIG3TGE3w3ECb5nCbobjBN7jKuxmOE7gLVPYzXCcwLsUdpe4xCUeB9gsEjGfY+m3R4B/Avy1/Z93gPcA3wDkhBA/LObsX3eusjdJknLA/2P/yfy985zrIjETeDMxd7+og+UIuxlmAm8m5t736W8GQCCWJuxmmAm8mZh77yffDUBf6yxN2M0wE3gzMXe/qIPHT9jNMBN4MzH3jz714Pu9DGE3w0zgzcTcv3h+GvZV9M6lsLvEJS7xmoZhCuRHU/CwVAghTPbrpoUQLeDXznKe8/Y0+Bng7wOPfuO5h8RhgTfDMoXdDDOB975PfzNi2uwACWmpwm6GmcB77yffTV/rAOC3h5Yq7GY4LPBmeFyF3QwzgfePPvXg+71MYTfDTOD9i+ffg6J3APDZQpfCbgk4qXDiqPs++a27C+M+qXDiqPs+9Z7FcZ9UOHHUfZ/9u3sL434946TCiaPuu/1dc+Xhv2Zgs0jEvI9fKxRJkv7caccIIf5QkiQf8GVCiD886pgziztJkv4KUBdCfE6SpHeccNx3AN8BsLJyWT11iUtc4hKXuMQlzgfdFDQfQ+cO+CggAceFXyWmKXVPAR/jmPS68zh3fxb4BkmS/jLgAgKSJP26EOLd9x8khPgl4Jdguv3YOfgWisM5djN87ye+fenu3SzHTiAOSq0Fgh/7zHuW7t7Ncuz6Wge/PQRMw7If+Nx3L929O5xjN8NPfPa7Hmv3bpZjd/j9/tFPv2fp7t0sx07RO/hsIWAalv3Fl37g0r1bMI5y4maO3SJduqNwlBM3c+wW6dIdhaOcuJljd+nSLQ9HOXEzx+5xc+mOwwX2z79IfO2cx70EvOO4O89cUCGEeK8QIieEWGPaUfmjh4XdqxVHFU+cVEW7SBwunnj/2z7E+9/2oVPbpCwCh4snPvD2X+cDb//1U9ukLAJHFU+cVEX7uOBw8cQ//ooP8Y+/4kOntklZBA4XT/zwm57jh9/03KltUi5xiUtc4tWOWVh22beLhhDiE6fd9o9TZj8fhddVnzs4vt3JaW1SFoHjqmJPa5OyCBxXFXtam5RF4Liq2NPapLzWcVxV7GltUhaB46piT2uTcolLXOISrwXo+wUVy749KkiSFJIk6aslSfqf9v8PPczjFyLuhBAfF0L8lUWca5k4rd3JMgXeae1OlinwTmt3skyBd1q7k8dV4J3W7mSZAu+0dieXAu8Sl7jEax02i0TU61j67SIgSdJTkiS9bf9nSZKk9wMF4A+BfwN8HChIkvSPpdnG7qfgdeXc/fzz//Lg5+Py6g4LvPsfcx78x53nTu1jd1jg/ced5xbC/enaR0/tY3dY4H269tGFcH/o5s8e/HxcXt1hgXf/Y16r+O3t507tY3dY4P329mLe7+flj5/ax+6wwHte/vhCuC9xiUtc4iKgm4LWQFv67YLwQaZt5QB+Angv0xYoXws8A7wT+NX9v//EPCc8byuU1xT+1bt+g2//yDfxPW/6oRMLJmYC7+ef/5f8q3f9xkK4v/OZ9/OLL7yPv7b2nhMT6GcC7z/uPMd3PvP+hXD/hfw3AtNtyE4qmJgJvE/XPnrwmPPiA1/5K7z3T76Nb77+fScWTMwE3odu/iwf+MpfWQj3o8R3veH9fPBL7+Ovr5/+fv/4257jt7ef47vesJj3+6tSfwOYbkN2UsHETOA9L3/84DGXWCyWXUhxEpZdSHESLgspHg1eL4UUcM+5e0zwDPAv9n/+u8C/FEL8g/vufxn4Q0mS+kybGv+j0074WIk7YZqnHjOvWHtT/C2nHnt/o+h5mkbPK9ayvvVTj32Ae47rnlesBR3hU48VQhzwC/P0655XrD0ZffbUY4UQB5xzNupeKA6uew7uecVa1rc+17H33ufp6y+dUCo2r1jz28NzHXvvujmVe9E4/D27SG7Eve/WRX/exP3cc3zPFst9/2t++viyPO5Hed0XPL68Sq77tYKpc/fYtEIJsN+4GAgCHznmuP/GdFewU/HYhGWDwSD9bpNquYih60vn63Y77Ny9SSwaxe/349IHdGqlC+EeKX26pbtk4mF8Ph9uodKuFtC15VvIo4FCq7RFPOQnGAzilnSapT20ibp07vFoiFzcJux1EQgECNgl2uUdNHV8+oPPiYk6pl3aIeSyEQgECLvstEvbTMajpXNr6phOeRefXRAMBkmHvKiNXSbj4dK5DW3CsFkkYjcIBAKspyNY+yW08WDp3KahY/RqZH0mfr+fjWwC0dpjMlQuhFtt14jbVQKBANlkjGFth2GvcwHcBr1mBYfaJRIKkknGGDX2GHTbS5+ETdOkJ9exKjLRSJhULIraLNNvy0vnFqZJr1XH6NZJRCOkohGkXg2l1ZxrAXsubiEYtFvQqZCJR4hHw1gHTZRWHfMCuIfdFppcJJuMEQ4GmfRkWrUqhmEslRug323TLGyRikeWzrVISExboSz7dkGoA2/d//n/BxwXWvwy4JPznFC6SMX+1re+VXz2s59d2vl1XadYKlFvtojEkoQjsYWv8kejIfVKCavFJJNK0Wy16fQU1nJpxuqErXINyRvGF1o8t6aOGbRqBGyC9XyGVrdHtdnmykoG0zDZKlXBE8QfjmOxLFa3a5MJfbmKR9LZyGfoKQNKdZnNfBqA7WIFyR0gEI1jsVoXyq1rGt1mDYehspHPMByNKdYarGVS2GxWbu+V0Ow+fNE4VutizWhD11FadRz6kCv5DBNNp1itkU0mcDkd3N0rMba68UeTWG2L5TYNg36rgW3S50o+g2kKdkoVsokYXq+HG9sF2roNZyiB1WZfLLdpMO428RgDnlzNIkkSL28VyaeiREIBXrq7R7FrIDwRrLbFhkaEMNGUDhHriDdcyeJ02Hnh9h6ZRJhkLMKtnSKlno7FH8PmcC6YW6AqHbx6jydXU/i9Hm7vFgn5fSRjEXZLVZpDHVc4icPlXjj3sNdGDGTWUzGCfh9390p4XS4yqTiFcpX6YIIrnMDp9i6UG2DQ62B0m6wmw0RCQe7slXDabeTTSSq1JtXeAHc4hcvrWzj3sN9l0qmTjQWIR6avswSsZFPU5BZ7jS7WQByXL7Bw7vFAwejWyUX8pBNRCpUamm6wnksjd3rs1tpIgSgef2jh3OpwwKRTIx10k0slKNcbjMYq67kM/cGAcr2FJxzHHwovfD4Zj4Z061X8TivZdBJZbjEYjVjN54hEIhfrkM8BSZI+J4SYCSDe+OxbxH/+6H9fOu9K1PMA7zIgSdIHmbaU+38CRab5dr8E/HugBiSBvwn8b8A3CCFunnrOx0nczTAcDtndKzAYT0iksvh8598dTdd16rUy40GfbDrJRNPYrdSx+sI43R76cp2Qy0o+naLWbFFp9XGGE7gXMBhNJ/k6dk3hykoWwzC4uVtmZPfj8PjQuk3iHiub+Qxyu0Op2cEZSuANhM7PbRr0Wg2kUY+NXApJkri9V2Fk8+DwBlG7MhGHyZWVLN1en2KjhTMUxxcMnXtwEKZJtyVjDtqsppPYbVa2ihUmdg/uQJhRW8aNyuZKDmUwZKfSxOKP4A2df2ASQqC0ZcSgxXo6gcftYrtQZmJz4QtFGXRkbNqI9XwGVZ2wVa4jeUP4wucX9UIIBt02Rk9mLRXF5/OyVSgzwoYnHGfcbWOZTD8Lmj79LAxtftzBKNI5Rb0QgrHSxTpscSUdIRIKcmO7QLGrI9wRzHGfqE3lmSt5JOCLdwo0Jw5s3si5uQG0UR+33uWJfJRULMKt7RJb9QGaI4jQRsScE569toLdbuPFOwVaphOHP7qQBcVkqGAdtdhMBskmY+yVq9QUDWc4gTYaYh11uJJL4nI6uL1bYmhx4Q0vRtSrwwFqp0oysD/J1xrUeiPckSSaqmIqMuvpOL59sTnAgTeSxGY/v6ifjIeMWjViHjur2TSVWpNCq481GMc0dCSlxXo6SjjgZ6tQom9Y8UaS2BcgrCfqmIFcJey0sJZL02y1KTa72EMJEKB16+TjISKhIFuFMvJY4AwnsDtd5+bWJyrjdp2wQ3BlJUu722O72kLyx5AsFoxeg3w0cCDq6wMN54JEva5NGLXqBKw6V1ezKMqAnaqMLRDF6rAzbtVJBDxkknHK1RqdkUYwnsLtOb+o1zWNTqOKRR+zlsswGo+pN1oEo3Hcbg+NWhmX3cLa6ipe7+IXEWfFYXH39BvfLH7jd4/ceWuheDYfvAhxFwT+M/B27u1OcdREIpjqtlMH28dS3M3QbrfZ2StgsbtIJjM4nA8/GAkhkOUGnWadZCKKy+lka6+EZnMTiCUeGFyVbodxu0EmNh2Mtgslupo0HQjPMBgJIVC6bcy+zFo6ht/r4dZOkbZuxR1OYLXfc0zGSg/Rb7KWCJKIRtgrVWmrBv5o6kyDkRCCQa/DpNsgFw8TDga4s1eiPZGmg+t9A/t4oGD0GmTDXjKJGKVqndZwgj+WxHXGwWjQ6zJq1UlHgkTCQfbKVTqqiTeawuG691qOhwNGco2Yz0k2laBSb1LrDXGFk2d2GEZKH7VdIxXykYpHKVZqdMYa/lgal9tzcJw6GtJrVgm5rOTSKerNFuV2H9c5RP14OGDUqpHwu6YDe61BUxnjiSZxee5dz0QdozSrBGywls/QaLXZqrYxvVFcvuCZuCfjIUa3QSboZC2bolRtcKvSYeIIY3ff4za0CQxlsgErT27kaXV6vLhToy/5sXsCZxK3hqZiGcmsRV1cW8tRqcu8tFunj/8BbtPQkEYdckErb7y+Rm8w5OWdKkNbAKf/bAsKQ5tg9JukfRLX1/K0uj12a9NJ3n3fOQ1dZ9iq4RVjrq5mGasT7hZrmJ4Q3jM69bo2mbrxVp0rK1n6+5O8xR/FF7zn1hiGjtJqHCzwdN3gbrGK4QriDUfP5NQbusZAruMWKldXswxHI+4U6+juMJ77FkimYTDsNHFpCtdWMwDcLVTQnX78kTgWy8ML6wNH3LjniG8VqwjP/gJp/3pM02TQbiKNOmzm0thsVm7tlBhaPXjCZ4sSTK+ngVsfcm01g2ma3NqrMHH48YZjB9cjhJgu4u4T9bd2SwwkF55w4kyifnY9Tq3H1XwGq0XiTqGM4fDhjyYOrmfK3ULvy6yn4ni9HnYKZXSbk1A8id3+8G65ub9YnvRlVtJJ7DYbpUoVpzdAIpnGtn89Qgg67RatRpVYOEQ+n8O+gEXEefEK5+7NF+TcRZbv3M0gSdKfZRqSDXJC2pwQ4tSK2cda3MH0A12tVilVaviCEWLxJNY5B4R+r0ejVsLvcRGNRg4meV8s9cAkf5iv32piDDpsZFNYrFbuzMKGkfnDhuOhwqhVIxlwk0nGKVbqFDtDbKHjQzLCNBl2WzjVLldXUrgc07DhxOYh8BBhQ3U0RJErRD12cukU1bp8sJJ3eY92QWd5I9Zhm81sAr/Xw9ZeCdXqJBib32GYjMf0mlUCdomV7HQlX5J7OMNxPP6jRcvM6dJ7MivJ6EE4SzGteKPzOwzaRGXQrB6EvTvdHiW5jXvfBT1u8p6K+jrpB0Q9+KKpuUW9PpmgyDW8ks7GSgZFGbBbk7EHoic6kcN+j3GrRjriJx6NsF2oUOlPsIUS2J3ziXpD11A7dUJWnSfWcyjDES9uVejhxe47PhykjQY4Ji2upkPkUnG2CxXu1BR0VwTbnNymoWMOWiTdBm+4uoKqajx/e4+m6sTqDXJcSyd9MsKldbmaCbKRT1Os1Nlq9DE9UexzhixN02DSaxG2jHl6M4cQglu7ZSZOP97w8aJlMh5N8/E8NlYySepym2Krhz0wv6g3TZNBp4F93OPKSgaLReJuoYxm9+GPJI4VLZo6RmlVCdlhPZ9FbnfYa3SwBY//fhyGME0GHXkqmLIpHHbbvmhx4z5hjNInE0btOmG7wdXVHJ1en72ajDUQP/H78QC3ECgdGaG0WM8k8Hrc3N4tMpSc+E5wInVtwkCu4WHCldWpU3+nXMd0R3AH5wtZCiEY9dpIgzabmWnY+/Zuka5uxR1JYjtGMBm6zrBdxyvGXNsX9XeKNXR3CG8oOreoH/Y6CKXJWjJCJBhgu1imr0v4oscv/g1DR5Eb2Padet0w2CvXsPtCBKPzp98ovS5Kq0Yi6CcaCVOuVtFNC4l0Bvcxc5lhGDTrdQa9FrlMimQyufB0n4fBK5y7N71Z/JsLcO7elFu+c7cMPPbibobJZEKxWKTZ7hKNpwmFj58w1fGYWq0EhkY2nZpO8s02rnACXzA0F5+uTeg2azhNjY18hv4sbOiL4Dthsta1CYpcxSsZbK5Mc9vulBoYngjuOQdQQ9cYtxsELJODwWinXMfiC+M/IWyo6xp9uYbTGLO5kmUwHHG3VEd3R/DMmfNhGDqjdhOPMeTq/qp4u1jF4g0RiMaOHRwMXafbrGPVBmzkpiv57VINyRfCF5ov3DjLUbOqfTZzaQRTh8Fw+vFFj5+sZ4+zz3LbhGC7WMHiCRKIzOcOmKZJr9XAGHRYz6awWae5gLrjZFFvmiZKq4Fl1GVzJYNFmk7yptP/wEr+JAjTpN+WMZU2a5lpLuDL20V6pmM/H+9obmGajHoyrkmfJ1bTOOw2vnSnQGNsw+qLYJljISKEYDLoEBB9nl5PE/B5+dLtXcoKWDwRLMfkAgoh0AddgpLC05sZAl4Pz9/YptgT4A7Nza2P+gQtA96wkSEaDvDyVoHaUGD1xx5wtl/xnJUubq3LEysJQgE/t3eL9AzbiZP8YQx7Hcxek7VkiGg4xFahRFsFd/hkp37Y62D0G6zOJvlCma4u4XsIh3+o9FA7dbJhP4n7cgE90ZPDhsN+D73bIBfdXwwUyzSGxn6ocz5Brg4V9G6DbGgaNixWazSUCZ5I8sRcwNHgQUe8UK7SHGq4IymcxwiMV3LPnG0H2VSScq1BqT3EForj9Bzv1KujAVqnTmY/t61UrVPpjrCHEic+7n4ciHqvnbXsNP2mIPewBuInivrJeIjarpPw2lnNpqg1ZSptBVckgWfOxcBEHU8XnnaJtVyadqdLrd3DG0ngP2FOUscjOo0qXivkMik63S6d3oBYMk1gzrlsoqrUqmWErrK+ukIoNN/jFo2jnLvfvQDnLn+Bzt0i8boRdzMMBgN2dncZ64JkKovnvrChYRg06hUGvQ7ZdBJTCLYOJvnYmUIA4+EApVkl4nWR3R9U6r0RrsiDYTbTNKaT/P5KXpIkbu6UGFq9uENn456MR2idOim/nbVsmlpTptpRcIeTDwwqwjTpdZqIQYf1THLulfxJ0NQx43aduNvCRj6D3OpQbnVxR+L47ssFFELQa7fQezKrqTgej5s7u0XGFhe+WALbGQoFtImK0qzhsxps5LP3HIbggw7D1G2cOn5rqSgBv4+tQgkVO4FYCrvj4UMfU1FfxWlqrOczB7mA1iNyAQe9Dlq3QX4/7L1TLNPXLfhjZwvj67qG0qzhMMZs5DOMxio3C1UmjiCu4IMOw1jpYRk0WUuESMYi3N4psttSMT1RbI6H5zYNHWMgE3PoPLOZxzAMnr9ToKW7sXvDD4hzbTzANWlzPRsmm4pzd6/MnUoP1R7CegZuYRqYww4Jt8Gz11cBeHGrSEe4cQaih7iHSIMm6zEfK5kkpVqDSmeII5yce5J/4LpNk2G7gU3tcTU/DRve3i0xtnrwRRIPiNTJeMioXSPhsbOSTVFtTL+PztDZwvjCNKcu2LDNRmY/F3CvxEhy44s+KOon6piRXCPskljPTcP4u/XOfuj54cP4M6feMmxzJRPH7/NyZ7fIEAe+aOoBB06bqChylYDNPPg+7tZkbIE4njkXrIe5B702Zq/JSjJ6IM7b2jRdxXbf91bXpm5j0GpwfS1HTxlwt9wAz/yO32EM+x1ET2Y1GSIWDnG3UEIeg/tQLqChawxbdXyoXFvLMRqP2S7Xpwv88PyO34PcPdR2nXTETyIaoVipokxMgvEHo0mGrtOR64jRtNhP13UqtQaBcIxoPHEmB07p92lUy3jdDtZWV3C7F1tQdBqOcu7+7QU4d2+8YOdOkqQffZjDhRA/dtwdi3lGc+DVIO5gOji0Wi129grYXV4SyQxKv0erWSUeDeP1eNgulhljJxBLnmmSP8zX77SZdJvkE1H8Pi9398oMhA1vJMFkNETrNVlJ3Mtta47BFU4spBpw1O8gKTLryQjRcJCdYoW+LuGPJplMVNR2nUw0QDQcYqdU2V/Jn01gvIJb6SF6TVbigf1cwAq9icAfT07DHXKNRNBLIjZdycsjDW90/pX8idyDPuNWnWTQQyoeo1Cp0RxM8ESTCAEjuUoi4CabjFOpNWgNxnijKdwLqAYcDwf0m1UiXieZZJxKfT9BPpxEslgYtqpE3XbymRS1hkytq+COpHAvoPhHHQ2nSeouG/lMikq9yW6zB744FpsdvVsn6bWyuZKl1mxxo9BkZA/j8Jyf25ioMGyyEnZyfT1Hrdnm5b0GA2sQq92JNJLJB+08uZmn2erywnaFrunF5vafuxDF1CdYxh1WIw6evrpKu9vjRqHByBHE7vSg92WSbsGTG3n6yoC7lSZ4o3jOOMnfD12bMGzVCFg0ru6HDbfKDYQvgssTYNiu4UXl6mqO4Wg6yUu+yNSVPie3oWv0W3VcxpgrK5lp1X6phukN4/EHGbQaOI0hV1eyqJrOnUIVzRnAHTpbrt79MA2DYbtx4NQbhsndYgXhDuENhlE6Mna1z+bK1MW/W6hguAL4zpird5hbaTewqf2Dqv1be2XGNh/uYIRRt41T63NtP+x9e7fMyOad5tWds6reNE2GnSb2+0T9rd0SI6sHTyjGqN/BNupyNT8Ne98tlJnYFlNVP3PqGXQOnPqdYhnh8BCKJRn0u4w6TXLJOB63i2K5Mp3nUukz5eo9wC0E7ZZMq1ElGY+Sy2YPcvWWjVeKu7eIf/dfli/u3pANXLS40zm6mALuFVsc/H5cccXrUtzNYBgGlUqFUqWK3+cjEY9RrjWQlTG+WHIhk/z9MA2DrlyHcZ+NbBpTCO4WKgS97v1JWKYg95ACx+e2nRXTPJsmbq3P9dUMNquVO7tFPG4Xq9k0DbnFTqOL5Ywr+dO5W9jVDlfz93IBHTYba/kM7W6PYqONLRibO3dnbu79qldDabGWjuPzeLizW0SSJDZXsiiDAYWajDMUwxdcbPn/rCBm3GmST0QI7OcCmqbJ5kqW4WjMbqWBxR/Bf8aV/EkY9DpM2nWysTDhUIA7e2VGkwlPruVQJxpfuluiK9zYfZFjc9vOismwj0vr8EQ2QjIe4c5uiY4y4o1XVzFMg+dv7lEf27F6Qgupsr0fujrEo/d4Ih8hn0mwU6zS7PZ5anMF6/4kP7Z58Z6Q23ZWqKMBk3aNlN9JLp2kXGvS7HTZzGdw2G3cKZSZWN34IotvnTMZjxi2qkTcNlYy0wKfitxmPZPE63Fza6dITzimxQALTpDX1DFqu07UNf1eye0OpXqTlXSSwGwxa9rwxuYPe8/NPVGnRSkWg42VLO1en91ynXwqRnS/yralgmtBFb73Y+oMNvBbJlybifpSlUw8QiIaYbdU2S8EW3zrHEPXUeSpU7+5X7W/V6kSCQZJxqNU63VUzSSRfjBCtSjuRr3GsN9hJZchkUgsvXXKYXH3pjd/mfjdjy0/LJsLuy9a3B01IEaAvwz8EPA/AFuzO8QxXcZf1+JuBsMw2CsW2a00cARjS+kpdD80VaXXrOGRdJ68dgW51ebGbgXdHcK9YIFxGIY2YdRpELbqvPGJK/T6Cjd2imiuEJ7gYtpZHMuta4zaDXyovPH6JmNV5ebWHqYniD8SO/dK/mTuaXWebTLgyc01AG5s7YLLRzCaXPgkfz/uF/XX11ewWCzcuLuDZvcspT/eA9ymSb/VgGGXa6s5PB43n33hFtWhhNV3fgfjJEz71bUJSkPedC1POBjkM8/foNDRMV2hY/PxFsMt0Ic9IrYhz15bIZmI8cLNO7Qm4I6kFj7JH+Ye9jqgNNlMx0mnErx06y7tsbFf7b3ccNZBuD8RZiWb4eXbW1T7Ko5QAscCHPGTMFZ6mL0m+XiAjZU8t7d2qPdGOA+loSwD05y+Oqmgh6sba9zZ3qUo97EFE7gW4IifBHU0YNKpk/I7eeLKBnvFEsVGB0c4gTew2MXyK7jHI4bNqVN//co69XqdRqtDJJ46Mbd8ERiPR9SrZSymzvVrV3G5zh/tOQ5HOXf//gKcu2cu2Lk7CZIk/QDw54UQf+W0Yx+r7cfOCovFwk6xSnTt2lIn+RnsTifR7ApytUyv1+NOoYI1lsex4BXtUbDaHfjiWVpyHbnVpliXkSJZvHMmU5+L22bHF8+gtGWqDZn+YIg9mllKU9RXctsIJjIo3TbVRgvTNHCEkksfeAEsVivhRJph30upWsfpdGD6ooRCy+8Ib7FYCMaSjIc+9qo1Qn4/pZEDVzC6dG5JsuDwR1E0Hze2y1xfFdxpGTgD8aVvjSNJEnZvkK7h5YU7e3jcTpqajVAqu2TmKbc3GMb0BbhbuoPP66alQSR7/B7Di4Q3EML0BSgW7xDy+6gqGt7U6oU0pXX5AgiPj0J1h3i4T70/JpDduBBut9ePy+OjVt4m2etRbCl4MxfD7XR7cbjWqNb2yPSmkYhg/sqFVJc6XW6cuXXa5T0URaHWaLFx/am5u0KcBy6Xm5W1TcqFPbrd7lLF3WHYLBIhz6Nv0XLBeB44tQ0KXIq7B3ARwu44PulRci/RMTua23Lfz4/gus1HyD37+YJfc6vVOrvsC3+/Jcu91/ziuS333u8L/5xbDzJnrBfNbbEgWaT9n60XutuAZLEcRACki+aWpANBZbFYHgH39H2WLJYLbxsyG18kSboQYXc/Fr0z0DwwTEF3uPwtN19l+KuAPM+Bl+LuIfD7e7/JVyTfSdAZPvG4rtrmU7WP8hdXvnFh3J+ofJg3R9+B33Eyd3/S5vPyx/ma9Hwbx7/a8ZHCb/K25DsJnHLdvUmbT9c+yrvyi3vNAf7Bn3wr33L9+3gy+uYTj3tZ/jy/dvNn+Wdf+asL5b8E1PsqW/IQ1TBxWi1sRD0k/MsLq17iEpd49cP6mDp3kiT9yhF/dgLP7N/mqqa9FHdz4vf3fpNfefmn+P293+J9X/4Lxwq8rtrm/Z/5bkqDHYCFCLxPVD7Mf9j6Wf648h/5nmd++liB15+0+fkXfoDqaMr9Whd4Hyn8Jv/65k/z34of5r1f9vPHCrzepM0HPvc9lPdf80UJvH/wJ9/KTv8WP/7Z7+JH3/rBYwXey/Ln+fHPftfBYy4F3mKwJQ/4+B2Z3fboFfetht2840qUjejyt0f6s786ba/y3791d+lcryZ8zYemYeRPfPP2hXN/+S+vAPCZv7t34dxf9WtrAPzxt+xcOPdb/r/T6/7T//Xirzv6L+MAyD/UuHDus8AwBZ3H07n7Gl5ZLTsG9oCfFEL82jwneXTtpl9j+IrkO8l61ygNdnj/Z76brtp+xTH3C7usd42vSL5zIdxvjr6DlHuN6miHn3/hB+hPXsl9v7BLudd4c/QdC+F+lHhb8p1kvGuUBzt84HPfQ++I675f2GW8a7xtQa85wLdc/76Dn3/8s9/Fy/LnX3HM/cLu8GMucXZ8rtjhQ58pstse4bBKPJsN8NUbEZ7NBnBYJXbbIz70mSJ/Wuw+6qd6iUtc4hFg5twt+3bREEJsCiE2Dt2eEkJ83bzCDs4h7iRJckmS9GlJkp6XJOlFSZJ+/Kznei0g6Azzvi//hWMF3mFhd5K797DwO8J8zzM/fazAOyzsTnL3XksIOMK898t+/liBd1jYneTunQVPRt/Mj771gwe/HxZ4h4XdSe7eJebHljzg/36hhgC+eiPCD33tFf7GG9K861qcv/GGND/0tVf46o0IAvidF6psyYNH/ZQvcYlLXDCmOXf60m+vVZzHuVOBdwoh3gQ8C3ydJEl/ZiHP6lWK4wTeMoXdDMcJvMdV2M1wnMBbtrCb4TiBdynsloeP35EPhN27rsVx2h4cppw2C++6Fj8QeH94Z6784ktc4hKPGSRp+beLvybpzz3M7bjznDnnTkwb5Cn7v9r3bxfXNO8RYSbwZmLu7//JuwHoTTpLE3YzzATeTMx94AvfBoCidR5LYTfDTODNxNw//OTfAaCvdZYq7GaYCbyZmLtf1MGlsFsk6n31IBT71Rsnt2v5qo0In9pts9MeUe+rl0UWl7jE6whWi0TQ/fgVVAAf5fgdKmCqs6T7/j/SpDtXQYUkSVbgc8AV4INCiE+d53yvFcwE3t//k3fTm3QACDhCSxV2M8wE3ge+8G0o2pTbZw89tsJuhpnA+4ef/Dv096/bbw8tXdjNcFjgzXAp7BaLLXkIwFMp/yscu8Nw2aw8lfTzhXKPLXm4EHE3K56Y977HpchiVjwx732LLLKYFU/Me98iiyxmxRPz3rfIIotZ8cS89y2yyGJWPDHvfa/GIgvDFPRGr92w6Qn4RuBngReBfw/UgCTwPwJvAL4f6Jx2knOJOyGEATwrSVII+LAkSc8IIV64/xhJkr4D+A6AlZXjP8yXuMQlLqEa06Z0fud8Q5PfZXvgcZe4xCVeH7BaJIKex7LhxzcA/00I8Z5Df/9VSZJ+GfirQohvO+0kC3llhBAdSZI+Bnwd8MKh+34J+CWYbj+2CL5HjVmOXW/SIeAIAdOw7Ps/891Ld+9mOXaK1sFnn3IrWoeff+EHHmv3bpZj19c6+Pevu691+MDnvudC3LvDOXYznNYm5RIPB+d+g+u+Ot+KvD/WH3jceXGUE/d6aIVylBN3Ua1QjnLiLqoVylFO3EW1QjnKibuoVihHOXGvxVYo3cfTufvrwN865r5/B/zbeU5ynmrZ+L5jhyRJbuAvADfOer7XCg4XT/zzr/x1/vlX/vqpbVIWgcPFE+999ld477O/cmqblNc6DhdP/NO3/2v+6dv/9altUhaFo4onTqqivcTZsRGd7n36UrWPqp/sxo11g5dq/Qced4lLXOL1gWnOnW3pt0dxacD1Y+67un//qTjPcjcNfEySpC8CnwH+QAjxn85xvlc9jquKPa1NyiJwXFXsaW1SXus4rir2tDYpi8JxVbGntUm5xNmQ8DtZDbuZGII/2jq5CvaPt1pMDMFa2H1ZTHGJS7zOMMu5W/btEeB3gH8sSdLfliTJDiBJkl2SpG8CPgD83/Oc5MziTgjxRSHEm4UQbxRCPCOEmGsz29cqTmt3skyBd1q7k8dV4J3W7mTZAu+0dieXAm85eMeVKBLwR1stPnKrwVg3Hrh/rBt85FaDP9pqIQF/7srJVbWXuMQlHj9IF3R7BPg+pobZh4CRJEkNYAT8+v7fv3eek1zuUDEnPlX76Kl97A4LvE/VProQ7s/LHz+1j91hgfd5+eML4X6U+HTto6f2sTss8D69oNcc4Ndu/uzBz8fl1R0WePc/5hJnw0bUy199Jnkg8H7yY3f58BcrfORWgw9/scJPfuzugbD7hmdSF7IF2SUucYlXFywWiYDbtvTbRUMI0RJCvAv488CPMK2Y/RHgzwsh/rwQojXPeR7LUpNlYLZH7Fck33liwcRM4H2q9tGF7CsL9/aIfXP0HScWTMwE3uflj7/m95WFe3vEvi35zhMLJmYC79O1jy5sX1mAf/aVv8o/+JNv5Vuuf9+JBRMzgfdrN3/2cl/ZBeHLciHCbjt/eEdmpz3iC+XeA/evhd38uQvaW/ZxLqQ4CY9iT9kZHsWesjM8ij1lZ3gUe8rO8FoppJjBNAW98WNZUAGAEOLjwMfP+vhLcXcfTMPAYj0+V3FesRZ0huc61jTuhZuEYYDleO55xZrfEZ7r2Ae4TeOEIxcP0zCZmcb3P4+jMK9YCzjCcx1rGsaB127Ocd3zirUno28+9VjTMA4yYefhXiQMwzgIMQjzYtuG3P/5epjP2kbUy0bUS72vsiUPUQ0Tp9XCRtQzd47d/dd60a+5aRoHbd3NC37NTdNEmOLgeQghkC6o3b4Q4uB1F4+Ae/Zam6b5CLinnzFhmgjTRLJcXHBsNpYKITAMA+sJc9miYRgXL7Jmzt3jCGn6of164M8BEaANfAL4z/sbSJyKx/OVeUgIIVjLptgt3MURjOEPhZc6IGgTlV6jhkfSCQRybOZS3NwroLpDuIORpXIb2oRRp0HYqhONZLHb7dzYKTJwhfAEI0sdjAxdY9hu4EclGdsg5Pdxc3sPdRTEH4ljWSa3oaPIdWyTAekr65imyc3tPSajAcFo8kRRf16YhkFXrsO4x9r6KlarFfnONh11jD+awGpb3tfQNE36rQYMOlxby+N2u8jWZKrdKlZfDIt1edxCmGhKm6A05PqVPJFwkCuRKnudOsIVxmKbr7t8wu986IIJIQT6sEfYNuTpayv4/X6itiqd6h6uSBK7Y3kFGEIIhr0O9JtsZBMEAgHC9jrt8g7eaAqH07U0boBBr4PWbZBPRAgGg6R8DarVXRyhBA73cquKx0oPo9dkJRYgEAiQ8MvUSlu4IklcHt9yuQcKartGMuAhGAySC7cpVraxBeO4vP6lcqujIZN2jVTASTAYJBsLUypu4QzH8fiDy+Uejxg2q4RcNvx+P4lYhN07N4kkUgSXPJeNxyPq1TIWUycQyC6N5yiYpqA/utgF20VAkiQf8LvAVwEG0GIq8H4I+O+SJP1lIUT/1PPMKQIXgre+9a3is5/97IXxnQbDMKhUKpQqNfx+L4lYjHKtgayM8cWSuL2LHYymk3wDRj02cmkEsFUoE/B5yKdTlGsNCnIfSzCBc8EDoTBNhh0Zl9bj2koGm83KrZ0iXreT9VyGutxit9HFEojj9gUWzj3otLCrHa7mkricTm7vlXDabKznM7S7PYqNNvZgHG8wtFhuIVA6LYy+zHoqjtfr4fZuEUmSuLqao99XKNRbOEMxfMHFDoRCCJRum3GnSS4eJhjwc2e3iGEKrq3lGAxH7FYaWP0RfOHowgfhQa+D2q6TjYWIhkPc3ikyVCc8tZFHnWi8cLdER3iw+8JI0mKFtTbq45x0uJYNk0nEuLVVoN1TePbJTUxh8oUbu9THDqze4MK5dXWIW+/yRC7Cai7FdrFCo93nmSsrWCwSt3fLqDYvnkhi4aJeHQ1Q2zVSfif5dJJyrUGt1ePqagan3cadQpmJ1YMvsnhRPxmPGLaqhF02VrMpKg2ZvarMk2sZvB43t3aK9IUTdySOdU5hPS80dYzarhN1SWzkMzRaHXbKda6upgn6fNzdK6MIK75oCpvdsVjuicqgVcNvMdjIZ+j2FbZLNVYzcSLBIHcLZdoTCVc4sXBRb2gaw3Ydv2XCtdUc/cGA7WKNTCJCIhpht1Sho5p4o0kcLvdiuXWdvlzDqY/YyGeYaDo7xQrxSJBELEq1VkfVTRLpLB7PYtMXDF2nUa8x7HfIZ9Mkk8mlO6SSJH1OCPHW2e/PvvnLxO//4SeXygmQDDof4F02JEn6OeBbgP8N+L+EELokSTbgfwF+Efg1IcR3n3qe16O4E0LQarXYLRSxOz3Ek2mUfo9Ws0YiGsbr9bK1V2Is2QnGk+cejGaTvNppkktECfp9bO2VUEwrvlgSdTRE6zRYSUYJBfzc2SvRHIMrnMC2gMFo1O8iKU3WkxFikRB390rIY4EznECfqIh+k9VEiHgkzFahTHNk4AwnsS/AYRgrPcxek5V4YH+wqyKPdDyRJIauMek0yER8JGNRCuUqrZGOJ5rEuQCHYTRQGLdqJAIeMsk4hXKVWl/FGU4iEEzaddJBN5lknHKtQWswxhdNLUTUj4cD+s0qEa+DTDJBudak3BlgCyWwSBbUTp2kz85qNk213qTWVXBHUrh953cY1PGIQbNCyGljZX+Sv1vtYHiiWG12zH6DTMDBlZUM1UaLm8UmI3sYh+f83IamwkBmJWzn2lqOerPFl26X6epOLDYHNqPPetLH01fXaLa6fGmrQg8fdvf5uU1dwzJusxpx8PTVVVqdHi/t1lAsAWxOD2Iok/FJPH1llW5fYavSRPJFcQfOL+oNTWPQqhGwTLi6mkMZDLldrKO5Qji9fsadJkHrhCfW8wyGI7bLdSRfBF/o/KLe0HX6rRouY8SVlSwjVeXFrTJdfDg8fnSlRcyp88xmnommc7tQQVuQU28aBsN2A48x5NpaFl03eGGrQA8vdk8ITWkRtqk8s5lHCMGdvTKGK4hvAU69aRoorQY2tc9mPg3Azd0yQ6sXVyDCuN/CrSk8sZpF2hf1I5sXbzh+blFv7i+W7WqXq/k0VquF27tlhlYP7lCUcb+Lfdzhaj6Nw27jbqHMxO7BvwBRL4Sg32rCoMNaJoHL6WC7UEazuwhEEwz7fbSezEoqjsftoliu4HD5iKfS2O3nE/VCCNotmXazRiIWIZfNYlti5OF+HBZ3b3jTW8SHf/+Pl857NeW9aHFXAv65EOIV1XmSJH0/8MNCiFNt0teduBsMBuzs7qFqBolUFs99E/l0NVJlqHTIpJKYQrBVrGDxBAlEzzYYjYcDlGaViNdJJpmgUm9S7w1xRR50Bk3TQJGbSOMeG7kUFouFmzslhlYv7lDsTIORNh4x6dZJ+eys5zJUGzJ7zS7WQBzXfe7cbKByqD2uraSw22zc3CkxsLjxROJYzxC6u38lv7mSRW532Gt0sAVieAOhg+OmzpqMNGiznk3gcbm4u1dibHHhiyWwncFh0CYqSrOGz2qwkc/S6fXZqcpI/hieQOhgMhVCMOy2QZFZz8Txez1sF8uo2AnGz+Yw6NqEbrOG01BZX8miDIbcKdUR3sh0Mr2Pe9TvIPoyG6kooaCf7UIJxbDij6fO5DAYuk6/WcNhTFfyI1Xl5Z0qA6sPVzDygEOmKj1s4xZX0xES0TC3tovstVWEJ4b1DNymYWAMZGIOjTdcWUHXdf70pS3qAwsWl/8Bbl0d4reOeGo9QT6T4vZOiTvVPhN7EKvj4RcUwjQxRx0SLp03XV9BQuJLdwq0dCc2XwTpvlxWbTzAPm5xJRVgJZOkWK1T7Y5whFM4z+BumKbJsN3Erna5sj/J39wtoeDGE44/EPaejIfo3TrpgJPVTIpqQ6baUXCGk7jPEDacfneaiEGbjUwSl9PBi3cL1McWbP4HQ+76ZLwvup1cXc2e26kXQjDqtrGMWlzJJPB5Pbx0d4/aSMLqjz3gDBqaiqnIZHxWrq/naHd77NXb2ILxB8aCh+Ee9DqYvXsL4tu7JWQVnKEHF8S6NkFt1wnbDa6v5+n1Fe5WmuCJ4D6jUz/qdzF7TVaTIaKhINvFCs2RiTOceGBBbOgao1YDv6RyfV/U71TqWHxnd+qHSg+1XScd9pOIRihUqnTGBoHYgwtiQ9fp7qehrOcy6LpOpdYkEIkRjZ1tLlOUPo1qGa/LwepKHo/nYhuHv0LcPfsW8dsXIO6uJC9c3I2BvyKE+MgR970L+E9CiFMHyteNuNM0jUKhSLPdIRpPEwofn9umjsfUqkUkUyeTTtHu9ig3O7jCcXxzhg11bUKvUcdhqmysZBkMhmxXG9j8Ubyh47m1icpAruOVdNbzGXr9AXfKDQxPBPd9wuQkGLrOuDPNbbu+lmWsTrhdrKK7wniC4WNX67MQQ0CacH09jzIccqdYx3BH8MyZu3HUSv5uoYLpDuENR48dVAxdR2nVcZkjruyHGLZLNfAG8YdjczkMM4FsUadhb4A7exUmDj/e8PEC2TR0lHYDlzbgykoGsS/qrZ4ggWhiroFwlttmDDqsZVNYrVZu7ZYYWT37TsHRAtk0DQbtJs5Jn6sraawWC3cLZUynH390vrDhbCVvKu2DlfzLW0Vk3Y4jeHxenTBNxr0WPlPh6fUMdpuNL90pUB9bsfmic+XjCSHQBh38os/T62kCPi9fvHGX3YaK6Qgczy0ExrhPzK3z7BOr+Lwenr+5Q6knwB2am1sf9QlaBrxhI0M0HODlrQKlngGeKNZjxLkQAm3YxW/2eGotRdDv4/Zeib5uwx2d36kf9ruY3QZryRCRUJC7e2UaIxNHKHGs6y2EYNzvYhnIbGQiRIJBtgoleroFX3R+UT/an+QzkWmO1d1CmV15hPBEsTmPD/9Nhn1caodruQjJWIStYpnm8OGcenWooHcaZMMesqkEO8UKO80BhieK3XX8hD8ZKtjVFpvJILlUgr1SheZQwx1Jze3Uq6MBo1aNmNdxEPYutAZYAvETU1kmowF6t04u7CGXShyIensoObeon4xHqO0aca+NtWyautxir9FDCsROFMiT0RCtUyfpd7CSSVHbF/WuSHJup15TxyhyjYBNsJbL7M9JbVzhxIlz0mQ8ptesErBL5DMp2p0u3f6AWDJNYM65bKKq1KplhK6ytpInHH40W1y+jsKyN4D/IoT4gSPu+2ng64UQT5x6nsdd3JmmSa1Wo1iu4gtGiMWTc1cR9XtdGrUyAa+bSCR87CrpMF+/1cQYdFjPprBZrdzZK6E7fPii87tg44HCaD+kmE7EKFbqlLojbME4DvfRg5EwTYbdFg61y7VcEpfLya3dEn1ceMLxucMBk9GQSadOyu9kNZuiXGtSbPWxBhO4jglZHrWSv7NbZIADbyQx94Q5zRuqEXFZWculabbalOTeiYnJs5W83m2wkogSDPi5u1eiq1vxROYPbWuqyqhdJWSHjXyGzgOi/vgBTel2GLXrZKJBIuEQdwslWiq4TpjkD0OfqIzadYI2g6urOXp9hb26jD0Qw3uCwzBUeoxbddJhH/FohK1CmWJ3gsUfO3GSvx+GrqF1m0QdOk9vrtAfDHlxq0JP8mL3Hs+tjQc41DabqQCrmSR3d0vc3JMZSV6s9vmuW5gGqD2yYRvPPrmBOtF4/laBpnpyPp4xGeGcdLmaCbCxkqFYbXC70mHiiGA/5vtxGKZhoM/cxs08phDc3iszcQamgvwYUT8Zjxi3qsS9dtayKWrNqQuGL/aAI34it2kw6jRxawrXVzNYrFNRrzn8+E8IG2rqGKU1/Yyu5TI02x1uFJqM7CGc3vm4hWkyUdoEGfD0Rhanw86t3RIDyT3NxztmjNInE0b7LtiVlSydnsKNvTpDewCHNzjX4k8Igaq08Rt9nlpL4/W4ubNXYiQ58UWTx+YC6prGQK7iYcLmSpbBcDQNe7tDuAPzFaFNhXUb67DNlWycgM/Lnb0SXd2G+4QxytB1hu06XnPM1dXMmULbU6e+O40SpCJEggG2i2UUXcIbO17UG4ZOX25gnyhs5jNnjiYNel1GrTqpSIBYJEy5WkUXFpKpLC730eOEYRg063WUXotcOkkqlVpq0dtpeB05d98L/DTwHNPGxVUgBbwb+LvA3xNC/Myp53mcxV2n02F7dw+LzUkylcXhfPhwkxACWW7QadZJxiO4XC629kr7+Q1JbPflMEwn+QaZaJBoOMR2oUxPE3hjZ6uQE0Iw6LQw+i1WUzH8Pi83twu0DRvuUPwBZ2Ks9Ka5c7EgyXiEnVKFuqLjCCfOlMg7CxuitNhIRQkHp7mArYmE+1Au4OGVfKFcpa5McIcTZwp1wdQV0ToN8vEQ0XCQ3VKV7kTsJybfey3V4YBhq0bU6ySXSlCpNSl3BzhCiTNXyI2UHlqnTi7qJxmLUjwQ9Q86DOpoRE+uEHRYyWemk3xB7mE9R1GKOlTQOtNcwGwqQbnWoKmM8URTuO57LTV1TL9ZxW9jXwR3uF2W0dwRnL6zVedp4xEoDfJhN+u5NIVK/UjBZGgTxFAm67fw1OYKcrvLl24VkFUHNpfvTOEmQ1dxGgqbmSBPbK5Qqcu8tFunL/mxu+5LXzB0pFGbXNDKG6+v0VMGvLhdoSf5cXjnc7Zfwa2pSEOZbNDGE+t5Wt0eu7UWkj+O576woaHrDFs1PGLMtdUs44nGrb0KqiN45vy1o8KGO1UZqz/6gKg3DB2l1cCuKVxZyaLrOi/cLdIRHhy+s3GbuoauyCTdJs9cWUUZDrlbrKMfcupN02DYbuLSFK6tZpAkiRfuFGgbLuyBCJYTWjgdy23oaH2ZmF3j6f1cwK1SDeEJ4gvdc+pN02TQbiKNumzmUlitFm7tllEkF+7Q8Y74ydwGo04Drznk+loW0xTcLpRR7YGpw7/PPR1/ZayjNldySdzO6WJZwYk7fLailOlrKePU+lNRL0ncKZQxHH780Xuifjb2670Wa+np2L+1V2JssROMnS0PXJgmvbaMobRZTSdx2G2UKlVc3iDxZOogd04IQafdotWoEguHyOdz587VWwReL84dgCRJ72daHTubaAUwAX5SCPGP5jrH4yjuRqMRO7t7DEcT4qksPv/5k7V1TaNeqzAe9smmk0w0nd1KDasvgtPjQZFrB5N8XW5RafVxhhN4/OevPD28ejNMwc3dEmN7AIfHx6TbIO62sJHPIHc67NQ6SP4Y7gWU4M8GdqemcG0lPc0F3C0ztnpx+gOMOzJh+9Rt6vT67NZkLP5pXt15E8WnA7uMZdRhMz/NBZy6oF7cgQjDThO3UNlcyTEYDLlTriN5o3hOCHvPCyEEg3YTy7DDRm6aC7hVKKPbXPhCUfqdFjZtwEZ+Gva+U6yhu4N4g9FzJ6lPcwFbSMM2m5mpw3B3r8QIO95wnGG3hXUyneQ13eCl7RKKxYczcP4E+amz0sUxbnM9FycS2g91dnWEJ4I57hO1qTxzJY8EfP7lLSo9gcUZWEgbHX08IGgf88xmhlQiys2tAnfrQ3RHEDEZEnNqPHt9BZvVygt3CzQnNqze+ULIp0EbKTgnLa5mImSTMXZLVRoDDUc4gTYaYh11uJKb5rbd3CnREw5cocVUnqpDBaPXOAgblmoNGv0xrnACTVURynSS93k9vHh3j9oQLL7YQrh1dYRlKLMW87CRz9zn1McxDX26wEtHCQf83NguUOmbWPyxY8PeD8U9GSOUJishJ1dWszRaLUpyH3swDgIm3Tor8WnYe6tYoT4wTgx7Pxy3itqpEXNJXFnJ0ur22Km1kHwxLBYrerdOPhogGZ9WvdYG+rSdzAKqXnVtwrg1deqvrU2d+t2qjC04TScYt2rEA24yifuKvWIPLvDOzq3Ra9axG2M2V7IMRyPqjRahWAKX202jWsZpt7C+uorX++rZ/eUo5+4/XoBzt3nBzt0MkiRFgLczbYPSAj457+4U8JiJO13XKZZK1BstIvEk4Uhs4eXZo+GQWrWE3SJIp5I05TadvsJaLo2q/v/b++842bKzPhd/VuWcc+c+cc6cCZoZZBuwUCJeLlxjI4PBlkFcJNtCSJYNxoAkIzAXhEAE20hGgPiRLNIF65I00ighQNLMaMLJfTpXzjntvdfvj+o6c05P566qk/Yzn/2Zqq5d+7urTvde3/Wu9313j5VUDpw+3P7jD/Lb6XU7NAsZPFtLMsVylWypwqm5QW7b1fU0PasHh2/33LajovR6dMo5fFtLMrVGk81sgZOzCQCWNtIoFjeuPXLbjqy9VYnooMfJ2Sma7Q7JbJ75RAyD0cDSeorOVhXcqNtLDKI1Oexam5OzgyWZzUyWqeggt22wnDVc9h7t7FZTFZrlAnalyam5BFKTrCbTTEVCOJ0OLi2vU+gaMXlHry01lU61iEe2OLcwhcFg4OL1DWbjIQI+Dy9eWWEl10Q1eQ7cr+7A2lJD69SJODVecW4Ri9nEC9fWSIQDREN+rq4m2ThG8cfe2pJ+o4xHNHlwIYHLYePaWhKf20ksHGQ1mSZT62Hyjb61hZSSTq2MsV3m1HQEt9PB9fUULruNeDTEWirLcq6Oat87t+2o2r1mDYdS5exshKDPw/WNJBaTeavwJM9ytkrfHsBiH32/ul6zhqVX4XRikAu4uplGCMHc1GCyvJo73LL3Yeg061DPMxPykIiEWEum6Svq1mS5ymqmDO7gLVHcUTGI1OeZ8r0UqW93uyxMJ6g3mmzkimPrvdppt2gUMvhsZqbjUQrFEq12m7mZaQKB8fZbPQo7Re4+PoHIXeQ2RO5GwT1j7mq1GleXruNw+QhHYmNtDAtQrZQp5FIEfF6ikTDPXbpK9xgVnodhWDE1FfAwOz3FMxcuU1PN2PzhkfeQ2s6NJdiAk9OL8zx38TK1rdy2cTaGhUEydaeUI+y2cvbkIi9cukqpK7EHRtO2ZS8GeVZZgnYjDz1wmhcvXyPX7GP1j36Q306/16VdyhK0wiPnznDx6nXWSk1whUc+yG9H7ffo1wrE7JLHH3qAK0vLXFjO0ZAOTJbxfm5NVTD0aswGrXzVKx9hdSPJxfUCHbNvJG1b9tNWm0UiVpV/+OgDZPNFriZzSGcQu9s3Zu2Xlg0fO3eKcrXGc0tJWqaD57YdFalp9Ool/MY2X3H+FJ1Ol2evrNEwubG6xtsQV2oa3XoZLw0eO3cCJDx/bZWexYN9BBHxPbWlpF0tYu5UOX9yFovZxPNXV+iZ3dhvWqodm3atjGiWeGAugdvl5MVr1xE296Cga4wN1qWUNGoVuuU8s7Ewi/NzY9M6LjtG7j4+gchdZPKROyGEEfgKYA7YPrgJKeVv7neMe+YOFdVqFbc3RDgam4ie1+fH5XKzfO0CDruNjsmBPxKfiLbD5cHudJNcu4Lf66GqWnBHEhPRtjpcWOxO0qnrRINVaooRb2xmMtp2J5bEPIXUMrVajXJXwxOfn4i2xWbHkpinnF6hWq1SaPZwxxcmom22WDHHZqlk16lWq2yWGpiCcxOZWRvNFozBBNliilqtxtJ6jrYpgGkC2gajCewBVgtlHqrVWNrIonpmsYy46fFu2gZPlFQlT61WYz2dwxyaHXmEdGdtI85gjGa5QKlSZS1doOeMYjWPd/IEIAwGrN4Q5UaFbKFMtdGkbQ9jG/MkYqht8wapN82kskWEAMUVwTHmu0sACCFw+EJ0WzZS2QJOu5W+I3ikVi1H0vYG6NvsbGbzRBUFgyuANxCaiLbb68fucJJOr93R5m4n7qzY4mgQQjwA/Blwghs3MLx1F+A39zvO7St9GQMHmdl935P/gufyz+y733P5Z/i+J//FgfUmHcIWQtz4xT6I9qdTf0K9V953v3qvzKdTf7KvNluaB7m7wCc3/5jaAbRrvTKf3PzjfbXFDe39P/cHL7yLZGP/G6AnGyt88MK79t3vMNqj5mbt/fR/+eJbWKk/v+8xV+rP88sX33IA8dv3u85Neoe9m0Wm1uFzS3k+cTnL55byZGqdiWkfm5u/57voOz++9m28rt7Ga/pt/dyT/jceAUaDwG0zjX27Dfy3rf9/G3AGWNi2zR/kIPdM5O4gfN+T/4Jr1cu87TPfxy+96td4JPzYjvs9l3+Gt33m+26859de/7uTPM2R8+nUn/DR6x/gM+n/l7c/9AHclp3betR7ZT7wwtvJtFYB+JrEPzm29ic3/5jfufYLPJX8E/7jK34Jzy7atV6Z9z37NlJb2q+d/rZja3/wwrt4Ov8UzxU+x48+/mGmXDtH2pKNFX7q6TehyD4fvPAu3vzgTxxb+3byyxffQqq9xIeu/nu+//TPs+B+eMf9VurP86Gr//7Ge37g3K9O8jTHyrVcnScvZ1kpNFm1DSZp853B3/FCyMnrz0Y5FRl/ROi1v7MIwCe/a3nsWtv5p//7HAB/9H9enLj27eZ2fu+v+q3BdeYz/2r/SeWoOf+rg1WUF9+yMXHtSaNpkkZHud2nMQ6eAL5HSvn/Hucgd59dPwY/8Mh/uPH4bZ/5vh0jeDcbu+3vuVt5LPRqYo55Mq1VPvDC23eM4N1s7GKOeR4LvXok2k9EXkPCMU+qtcr7nn3bjhG8m41dwjHPE5HXjET7m+e+B5Mwo8g+P/X0m3aM4N1s7EzCzDfPfc9ItG8n3zzzb288/tDVf79jBO9mY7f9PXc7X1gt8mufW2al0MRieukS98SsH4vJwEqhya99bpkvrhZv41nq6OgcB4NB4LKZxr7dBkpA97gHua/M3SPhx/ilV/3ajefbDd52Y7dXdO9uwm3x8/aHPrCrwdtu7PaK7h0Wj8XPf3zFL+1q8LYbu72ie4dlyrXAjz7+4V0N3nZjt1d0725iwf0w33/65288327wthu7vaJ7dxvXcnX+6JlNJPCa0xF+7BvP3XjtDU/M8mPfeI7XnI4ggT98ZpNrufptO1cdHZ2jM4zcjXu7DXwA+LdbRRVH5sjmTggxI4R4SghxUQhxQQjxg8c5kUmxm8G7V43dkN0M3jiN3ZDdDN44jd2Q3QzevWrshuxm8O5lYwfw5OXsDWP3jefj2My3Xh9tZiPfeD5+w+B94nL2tpynjo7O8biHI3de4AHgghDil4QQ7962vecgBznOmSvAO6WUzwgh3MDTQoiPSynv+ASPocEbmrmbTR3ce8ZuyNDgDc3cTz7zrwFo9CtjM3ZDhgZvaObe9YV/BUC9XxmbsRsyNHhDM/cTX3ojABJ5Txq7IUODNzRzN5s6uPeMXabWubEU+5ozkT33fc2ZCH+zXGC50CRT6xDzjLeVjo6OzmjRNEmjq97u0wBACPENwC8CRuDXpJT/z7bX/z3wfQx8Ux74Xinl2i6Hu7my79ROcsB79junI5s7KWUaSG89rgshLgFTwB1v7uDlBm/IvWrshgwN3k8+869p9CsAuMy+sRq7IUOD964v/CvqW9pus2+sxm7I0OD9xJfeiNyqLheIe9bYDdlu8Ibca8YOYClXv1E8wcdf/vob/vzBW57/KxPMK7/LUq4+EnM3TOI/6GujTPYfFk8c9LV7qcjidn7vw+KJg742yiKLYfHEQV+714osBpG78fUAPChby6f/DfhaYBP4ohDiz7YFup4FnpBStoQQ/wb4WeCf73Q8KeVIPtRIYo5CiHngFcDf7/Da9wPfDzA7OzsKOR0dHZ2X0VW0ib5PR0fn9qFpkmbnjojcvRJYklIuAwghfh/4Vm4KdEkpn7pp/78DvnvcJ3VscyeEcAF/BLxdSlnb/rqU8kPAh2Bwh4rj6o2K7Tl2Q/Zrk3K3M8yxa/QruMw+YLAs+4EX3j726N0wx67er+De0q73K7zv2beNPXo3zLGTSIYdAiWSn3r6Tfd09G57jt2Q/dqk3I1YTQbmO7/LE7N+3vDESxPJYcTuo9904Zb9/9eX1mG9jNU0mrqynSJCk2rJsVMk7n5phXI7v/edInGTaoWyUyTufmqFMkFCQoibb631oS1fM2QKuPkL3wT+wR7HexPwFyM8vx051lVNCGFmYOx+R0q5d/fZO4idiif2qqK9V9hePPFjj/0mP/bYb+7bJmUUbC+e+IlX/hY/8crf2rdNyijYXjzxric+wrue+Mi+bVLudnYqntirivZu5+RW37rnU1U6/b1n9J2+ygup6i3v09HRuXsYLsuOewMKUsonbto+tN+57YYQ4rsZ9LF73x77qEIIba/tQN/PMU5SAB8GLkkpf36//e8UdquK3a9Nyt3OblWx+7VJGQW7VcXu1yZlFOxWFbtfm5S7nd2qYvdrk3I3E/PYWAg56SkaT13J7bnvU1dy9BSNxZBTL6bQ0bkLGRZUjHs7AEng5iTH6a2f3YIQ4vXAjwLfIqXcq4/dT27bfgr4dSC1tf3Xg5zUcSJ3XwX8S+C1Qogvb23fdIzjjZ392p3cqwZvv3Yn4zR4+7U7GafB26/dyb1q8PZrd3IvG7zXn40igKeu5viLF9Mvi+B1+ip/8WKap67mEMDrzkZvy3nq6OgcD4NB4LKaxr4dgC8Cp4QQC0IIC/AdDO4NewMhxCuADzIwdnvOPKWU75ZSvuum7cellN8HLALXgQM15zyyuZNSfk5KKaSUD0spH93a/vyox5sEv/zcz914vFte3XaDd/N77laeKXxq3z522w3eM4VPjUT7S7mn9u1jt93gfSn31A5HOjwfW/uNffvYbTd4H1v7jZFo304+tvHfbzzeLa9uu8G7+T13M6cibv7pY9M3DN5P/sVL+Wb/60vr/ORfXLxh7P7ZY9MTuQWZjo7O6NE0aHbVsW/7IaVUgLcCfwVcAj4qpbwghPgJIcS3bO32PsAF/MFWIOzPdjncXjo9Bg2O33yQ/e+re8v+2ut/l+978l/wA4/8hz0LJoYG75ef+7m7/r6y8NI9Yh8LvXrPgomhwXum8KmR3FcWXrpH7BOR1+xZMDE0eF/KPTWS+8oCvPnBn+CDF97FN899z54FE0OD97G137jr7ysL8APnfpVfvvgWvnnm3+5ZMDE0eB/b+O/31H1lXzkfxO+w8InLWZYLTeaVrb/h9UFEeDHk5HUTurfs7bi36ZB7vZBiL27n93477ik75H4qpDAYwGW9/a1QALYCW3++7Wfvuunx60ck1QRmhBAGKeWeuXf3lbkDDmzWHgk/dk8YuyEHNWtui39kxm7IQc2ax+IfmbEbclCzNuVauCeM3ZCDmrUF98P3lLEbciri5lTETabWYSlXp6toWE0GTkbceo6djs49wDByd5/xLIOCDLHfjveUuev3epPV67+kp/b7SCkZ1JmMH6XfZ9hXRlWViWqrqgJbk4ZJa2uqiqaqLz3WNAyGydwiWdNU1KG2pqJpKgbDZGaOUtNQFeXGY6mqGIwT0pYSqfVvOhcVManPLSWaOvjcQoCm9DGYzAd+f8xjO7KZk1Ii1f7gd1uAqvQn9p3DQA+sAGiKgtFkmZi2pigIBnqa2gcmZ4g1tY/AgGD4HUwOVenfSFaatLa2pScYXN8nyaT1RsZkhp2JIoR49wF2+7+2xlwhpXzPTjvcM+YuFApRvn6dteVrROJT2O2OsWmpqkoxn6VeKTI7PYXb7SZsL1FMruAIRLE6nGPTlppGvVxENsucnpvG6XQy57WQTK9i8oWxOlzj05aSVqWEqV3m9Gwct9vNjK9KMrmMxRfG7vKMV7taRm0UWYyHcLlczIc9rKWWMXrDONze8WrXK2i1AvPRAC6XixOxAMvpFYQ7iN3tG6u5bderaLU882EvbrebB+djXF5fp2X2YnP7x6rdazUwtAqcjnhxuVw8fm6RZy+vkG+ZMNrcY9VWex0cNDl7avDv/eiZBZ6/tk65bcfsDCDGaOqVbhtju8gDUQdut5uz8zNcWtmkaXJi94XGaur73Q79Spa400TQ78PpsNO/skKh2sDsCo7VYKr9HrJRYM5jJBENEQ54aV9doVBpYnKHMBjHN2SoSh+1XiDhgPnpRaSU1JdWqeRb2HxhjObxmVtV6dOp5PEaeiyenMdgMFBtrFHObWLzRTBZxqitKrTLeRxam1Mn5rBYLJSraxQ21/CEo1is4zPWmqpSK+aQnTqnZqfp9/uYzQefPN1ODAZw3iHLsiPmx9ndtgpAbnv+nh13lHJyfYWfeOIJ+aUvfWn/HY+IlJJ8Ps/6Zgqb000kmsBkGt3FSEpJtVKmmEsT8Hnwej2sJ1O0uz2mIiEcDgdLa5t0DFZcwSimEf+RtOpVuuU8U0EvQb+XjXSGerPNdCyMx+Xi2tomlb4Rm3/0F6NOs45azTMTcBOLBNlMZyjVW0yHg/h9HlY2U1R6AmcgitlqHa12q0m3nCXqsZOIhklmcmTKNWYiAaKhIKubaQotBVsgisVmH6l2t92iW84SdpqZm4qzmcmzmikyFwswHQ2zkc6SqXWx+KNYRzyh6Hc7dMpZQnYDC9MJsoUS1zZyTEd8zE/F2MzkWCk0kM4QFvtoJxRqv4tSzRNzGjg9P02hVOHC9RSJsJfTC9MkM3kuLKepqw5M1tF+bk1VMPRrzIdtPHRmkWq1zvOXrhMOejl35gS5YpnL63laZh8Wx2gnFJqqoDULRO2S8ydnabTavLiUxOeyce7kLOVanevJAqozMHJTr6kK7Uoet+xwZn6Kbq/PheUkDquZB0/OUms2ubiSoWFwY3GNWFtTUeolAqYu50/OoKoaF65vYDaZOH9yhna3y4WVFHXhwuoOjFRbahq9egmvaHH+xAwGg+Di9U0AHjw5g6KoXFlL0bW4sXtDIzX1UtNoV4tYezVOz8axmE1cWkmiaCoPzE8jBFxdT9ExuXD4R2vqpZS0q2WMrRInpiO4HA4ur2zQ7aucmUtgNhlZ3kih2Vx4gmGMIzTWUkrqlTK9aoGZSBC3y8lGMk2vrzAVjzCVSGCcYJT6IAghnpZSPjF8/vCjj8v/75N/M3bd2aD9Ft1xI4TY6Rc8AHwT8B+AbwNuJJXulnt3T5m7IYqikEqlyOSK+EIRgsHwsS9GrVaTXCaJxSiIRSPki0UqjTb+cByb3UEpn6XfqjGTiKGqGtc30+D04fKHjr1s2Ou0aRaz+KwG5qbiFEplsuUazmAUm9NFrZhHtmrMT8WQwNW1FB3zaC5G/V6XbjlHwCo5MTNFuVpjM1/G4o3gcHuol/LQqnJiJobBaGRpLUnX7MQVOP7FSOn3aBSzuA0KJ2anqDeaXE8XYGtgbVWLmNpVTs5EsVosXFtL0jLYcAaiGI9p6lWlT7OUxSl7nJqbotlqc3E1TcPkwer00m1WcSo1zs3FcbscXF3bpK5ZcPgjGI9p6gcz+Rx2tcPpuQTdXp8Xl5NUpROLy0evVcep1jg3F8XvdXN5eYNsG8ze40c3NE2lWy3gEx3OLU6jqRrPXl4l0zRitPtQe028hhbnT8SIhgJcuLbKcqaOYnRjOOayoZQaWqdO1CV57NwiBoPg2RevkS51ECYHqtLFY1V58PQsiViEpbUkq8UOmiOIyXK86IaUGv1GGZ9ocf7EFFaLmeevrpFpGzHYA2j9DjalwukpPzPxCOupLKlqB5M3guWYpn4wyJcwdyqcmhkM8i9eWyPbNmB0h1D7PUydIgthF/NTMTbSOa5nayi2AOZjmnopJb1m9cbvk8/j5sL1dVJ1DeEMIjUNY7vIXNDOyVCLgL4AAFnlSURBVNkE6VyRpXSZni2AZQSrBN1GFVu/wtnpMEG/l6urSdINFeEKDs6vUSDhNm1NMMosZ8tIZwj7CCL1nUYNGgXmI14iwQDL6ymS9T5GTxhhMNCv5ona4fT8NJVaneV0EekajanvNBuo1RzTATeJaIjVZJpUtYvJO7hudip5/CaVMwvTNFst1jMFzJ4Abn/w+NqtJo1ChoDTRiIaJpcvUGv3CEbiWG02CtkMaqfJ/OwUoVBoYik3+7Hd3D362OPyk5/9u7HrBl2WiZq7vRBCvAN4nZTym/fd9140d0M6nQ5r6+vUGx3CsQRuz+EvCP1+n3wmRbfTYDoRp93pkM4WcQZC+AO3/uJ3O20K2TRWg8Z0Ik6hVCFZrGLxhXEeQVtVFOqlHJZ+ixMzCfp9hbV0FpPbjydwq2nsdbvU8hlsQmV+OkG5Wmc5U4QjXow0VaVVyWNXWpyeSyCl5PpGGmn34AmEbzGNSr9HrZDFQZ/F2QT1ZouVdB6DK4DTe/hZvqZpNMoFjJ0qp2YTCCG4tpaiY3Li9IdvWZZSlT6tch6n7HB6fppWp8vyZhbN4cPpP/yFSWoazUoRY7vCiekYFrOJC8sbFHtmzJ7gLctSmqrQq5cIGns8eGIaRdW4tpGmb/Xi8AUPbeoHS88lDK0SJ6YGg/wL19bItQ0Y3du0NZV+vUzQ3OX84jQSuLSSpCrs2DzBQ+fESSnp1itYexXOzkbwud08f2WF9VIf1eLFYDTftK+G2q4Scyg8enYek9HIsxeXSFU1hNVzpHw8pdPAZ+7y8OlpQgEfF65cZyVZQRHWbdoStdsi4jXx6IMnsdutvHBtnVzXiNEZPNKyYa9Vx94vc2Y6RCwc4OrKJquFNorNj9H8kmmUUtJvVfAZWjy0mMDjdnJldZOKYsLmj2A8RC7gkG6rgVbLMRt0k4iGWV5PsVJsodmDmKwvRaEH2lUcykum/tL1dVINDYMrdCRT3++0MLaLLEbczCWirKeyXM/W6Vn9mG23msZes4ZDrXB2Jkwk6OfKygbJmoLBHcJoPnykXum2oVlkLmBncSZOKlvgeraKYn+5aey16pjbZU7GfcTCQVY202QbfczeCOYjROr73Q69So6I08jidJx8qcL1dAnFGcTqvDUS3Gs3EI0C80E3U7FBpD5d62LxHc3UK70unXIOv0VycnaKcrXOUiqP5gxic3lvuV712k2UWoFpn42ZeJRMrkC+3sYVimJ3Ht5YK/0e1UIWm9ZncXaKRrNJJl/CE4zg22YaO+0WhWwKq0mwODeL2337WwbtFLn78wlE7mYmHLnbCyHEa4E/lVLu+w9yT5u7IdVqlZW1dTCYicamsNr2n+VrmkaxmKdayhOPhDCZTGykMphsbgKR6J7LvfValUo+Q8DjJBjws5ZMU+lqOIMHWzaUUtIoF9EaJRbiERwOO8vrSRSzDW9o7+XeVqNOo5Al7HEQCQVZT2XJ1A9+MZJS0q6VEc0SJxJhvG4X19eTtKUJVzCGeY/l3k6rSauYIeS2MRWLkMzkyFbbWAMRbAec5TdrFdRqgdmoH7/Xw/WNFOWewO6PYLbsPoj0Oi265dzW8mmMbKFEslTH5D14LmC7XkOp5pgJeQgHAyytJdmo9hCuvSNDSq8DjSJTXgun5qbIl8qs56oYPAePMHSadZRqnmm/i1gkyPJGmtViC80euGWQ347a76E1i0y7jZxdnKFcrXFlM0/X6se6bbDYjX67iWwUmA86mU1EWd3McHmjRNvgwWjZXVtT+xi6FeYCFh46M0+t3uTLl9codk0YrQfLx1P7XWxag1PTPk4tzLCZynDx2ib1nmnP71zTVITSYibi5JEHT9NqD5YNq9KJ2XWwPES110W0C8z6rJxemCaTL3FpPU/T4MFs3/3aqakqWqtExK7y8KlZVE3jylqKjsWN44DLhkqvS7eSJWQVnJybolipcXk9R9PkxeLw7Hr+mqbSb5QImgamHuDF5U1KihWLO3ggbVXpozUKxBzw4Mk5qrUGF1bT1A0ezI7df2ekpqE0y/gMLc6fmMZsNnFhaZ2iYsHsDh0oF1BTFJRGgbBV5cETszTbHS6tpmkY3Vj3yB+VUqNTr+BW65ybj2O3WbmyuklNWrH5IgeK1A+XvV2yw9n5KfqKwsXVFC2jC6tn9+9uMPEpY+1WOTMTweNycnVtk5pqxn7ASP1wsmxTWpyZS6CpGlfWU7RMLuze4K4rLFJK2vUKplaJE1Nh/B43KxuD67EnHN3zmnhDW9OolwpozQoL03EMQrCRymB1egmG917lqFXKlAsZQj4Pc7MzWMaYe7gf283dKyYUuQvcWZG7XwD+iZRyft997wdzB4M/kmw2y2YqjcPtIxyJ75pTUKtWyGdTeN1OAn4fm6kMXU0QisaxHnCmqGka5VKeVqXEVDSE2WxmeSNF12THHdz9D6rdqNMpZYn5XETDQZKZLNW2gjscw+Y42ExRSkmtVKRXKzITDeF0OLiyskFN7r1s2G016VdzJLx2pmMRUtk8+UYHZyB6YHMmpaRRLaPUCsxEgzfMYV014gxGMe0SYeh2WnRKWYKOQW5bOltgs9zA7A1jcx581tiqVdAaBeYjAQI+D8ubKSo9sPtju+YC9rsd2sUsAZtgYWaQ23Y1VaJn9b1sJr8XvVYdS6fMybifWDjI6maKfEvF5o/uGmFQel3a5Rx+s8aJ2cEgf2ktS8u89yD/ss/QbmLpljkR8zIdC7OazLBRboMrvKu2qvRRqjnCNji7ME211uC5a5uUejaM9oNrq702dq3GmWk/i7MJVjdTXFot0JKOXc2hpioYejWmAxYePXeCRrPFly8sUahrGC2Og2srPayiy6m5CKdPzJHKFbiaLNO1+DHbd/6d1VQFtVkibFV46OQMvb7Cc9c2KPVtmBy+A+d0qf0uxk6J+ZCNMwszLy0bukLYXTubek1VaVcKOLQmZ+enBrlty5uUVTtm18GLRNR+D9kskHAbeWBxhlK1xqW1HC2TF4tz5387qWn0GqXB0vPJGYzCwIvXN8j3zJicBy/U0JQ+WqtI3MGNXMBLqxmaRs+uuYBSanTrZbyyyYMLCSwWMxeXNyn2Xx4R31tboV8vELIonFucodPtcnUjS8/qxe7declSSkmnVsLUrnBqOoLTYefyyibFvnGQynDAiKumqnSreXyiw9mFaVRV4+p6mp7Vs2uk/qXJcpkTiRAel5Nra0mKPQNWX3jX6+FO2u1qEafa4Mz8FAArm2mE3YMnGN71365RrdAp50mEfPi9HjZTGRSMhGIJrAcs1NA0jVIhR7NaYiYRJRGPT6xDwc1sN3ePvGIykbvpwMRz7nbqpG8Fzm9t75ZSvnff49wv5m5Iv98nmUySK5YJhGL4Ay9dEDrtNtlMEqNQScRilEplCtUG/nAMt9d3JD2l36eQyyC7TWanE7Q7XVZSWQyuAK6bQuH9XpdmIYPLJFmYTlCp1kgVy9j9EVzeo+V4qIpCtZCFTpOF6fhg2XDrYmS/6WKk9Hu0yzl8RpVTc1M0Gk1WM0XMniAu39GSpzVVpVbKYejWOTEdRwJL62kUqxtX4KVcQFXp0yjmcMguJ+emaLU7LCWzaA4/zl0u1vtqaxrNcgFLr8ap2YGJv7aWpGN24vKHbwwkqqLQKuWwaW1OzQ5y2y6upKgJJ1aPn53zWvdGSo1OrYxnaxCzWS1cXU3SNNhwBCI38hA1VaVZzmNXmpyaS6CqGi9e36Cs2bEcYpC/VVvSa1Rwaw0eXBjkAl5cXqfQNWH2hm4MYlLT6FSLeGhybmEagxA8e3mFdENgsPmOtKwqpURt1/Gb2zx8aoqAz8MLV5ZZzbVRze4bS6tSSrROjbBT4xUPzGO1WHjuwjU2800wOY7cYkXptvDZJefPzhMJBbiysslmtY90BG8sG0op6Te3/m0W47idDp6/skqqAcLhv2X59zD02w0capUHZkMkoiGW11Nkmn0svgjmrajrwGBUMLZLnEyE8bidXFreIN2QCFfwyG1OBqa+dMPUr2xmWC000RyBWwpdus0qjn6VszOD3Ladvp/DonRbmDolFiMv5QIu52qojuAty7rDSc+pqQCxUICl9RSblS7CHTpyrqTS7SAbBWb9NhZn4mTzJdYKVXDfOhkcLHvnmQk4SUTDrCUzbFTaCHcYs+1ouZJKr4tazRFzmTg1N0WhXGY1W0G4b43Ud9tNlEqO+NZkOZnNs1FqYnCHj9xRQen36FVyBK2SU3PTVGt1NvMlrL7wLeNEt92mXszgtRqZiccolkqU6y0C4QQuz9GKkPq9HsVcGq3fYXFuhkAgcKTjHJX7yNxd5+XVsh1gHfg9KeVHDnSc+83cDWm1WqyurdPuKoQiMRr1Gu1mjal4lL6ikMzkcfgC+APhkcxS2q0WxVwKh9lAIhYlmy+SqTSw+sP0222MvTonZxJoUrKaTGN0+PAED7bUsR/dTptaLoPLLJidipMvlVnLDS5Gaq+LtV/n9GwCo0FwfSOFYnXhDURHot3vdakXMriMKgszU1RqddayJYzuIJqqINoVTkwNctuurqW2CiIiI6kMG5pWt0Hh1NzUIBcwlQdXYNCbr1nmxFQYp8PBhaU1cl3jYHlpBBXWgwhDkbBV4cETs7Q6XZY2M2iOLdPYLLEYD+F1u7h4fZ1UQ2JwBUbSy0xTFfr1EmFrn/MnZlBUjQsrSRoGF8JowtKtcHoqSNDn5eK1NVYKHRSz99gFETDogad1qsRdGo+emUdKybOXVsjWJZow4zF1OH8iTjwa4vK1Fa5vFOhK25Hy1V6mLTW0Xpuoz8Qrzp/GZDLxwtI6+Z4ZTHZs/Qon4z5m4hGur6dYyjToW32Y9lh6Poy20qoSMLV46OQMdquFy1vLhia7G61eZNpnZzoeYT01MEF9W+BluW1H05b0mxVcWp0H5wem/sWldXJtgbS6MHYqzAXtnJhJkMwWuJbaO7J5aO1WFZdW49xcbJALuLxOuinB5kG0q8z4LJycTZArlbmWLNGz+Q8VEd+LbrOGtVvm9FSIcMDH0lqSQkfD6AqgNMqErHBqfppiucq1ZIGe/eDpCvtr1zE2CyzGfMS2qvZzTQWTJ4jSrOA1qpyen6bWaHJtM0ff5sfuGU2Vc7fVQKvnmQ24SETDpDI5Sq0eDn+ITrOGud9hcXaKTqdDKlfE5QsRCB2/sBCg1WxQzKVxWkwszM/idI6v9dfN7Lgs+7kJLMs675xl2cNw35q7IeVymY3NJB6PG4fdztpGEmF1EorERt7KBAY5DJVChkjAh9fjZj2Vxed24nG7WNlI0hUWvOHonrltR6VZq9Is5oj63YQCftZSGVwOOwHvoJVJQzHgDkYxj6GvUrtRp13KEN1abt7M5LCaTYSDgVuWL0fdygQGM+heJUfMM0hMTmbzGIQgHgmxvJFirdRGOoM3oiyjROm2oVFkditxPJsvoWgqU9HwIIE9V0exvTyBfSTavS6iWWTGb+H0/DS5Ypl2t8dcIspmOseF1QJN4cJkHb22pvQw9qoshG08eGqOYqlCqdrg1MI02VyBF66sUesaR2KsXqatKhi0NvMxDw+dO0Wt3iRfrnFyLkGxUuXCcoaacGM+xNLzYbRlq0TcJXn49DytdodcqcLiTGKQ27aWpmHwYHGOvjeipioojRIhS4/zJ2boqyobmQKn56aoN9tcWElRO0RO4mGQmorSKBEw93joxKDAZy2V48RMjJ6icHE5OYiIu0ffn1BqGt16aRCRPTGNyWhkLZllNhFBUzUurSapG5xY98htO7K21OhUSziUOg/MxbFZLaylsiQiIQwGwZXVJA1hx+7bfen06NqSVq08iIpOR3E7HWyks4T8PizmYY64i1A0hmkEk6ft2tVKiWohRzTkY2Z6euz98XaK3P3FU58fqybAlN+mm7v9uBPN3ZCLly5T7/QJROLYx9iEGIY5DFnatTLnTp8kncmRrTZwh2NHqoI6rHatVECpl3nw1CLFcoX1fBm7P4pjjE2IYSsfr1JEqZd48OQcjVaba5tZjO7wSFob7KfdqpWhWeL84gx9ReXL19bpWHy75iiNkm6jiq1X4ZGTM1jMJr54cZm6wTOyKMJe9Fp1bL0KDy3E8HncfPbpSxS61kPl1R0VpdvCSY1HTyZIREN8+vPPkK30MVodR1r2Pgxqv4vd2OOhMzMszs/y2acvkO+aMTnG2wAZBg2YTd0Sp+Nuzp5c4PPPXqDQs2AacxNiGBT4iGaRuYCVh86e5O++fIFM++jVxIdB7fegVWDGa+Kx82f50vOXyHQEJndoJNHZPbWVPmptUCjy+ENn+fKFK2TaErM3MtYGyEPtfjVP0KzyFQ8/wItXlsg01UFe3THb9OzHoFCkgIcOX/HwAyyvrNFSNMLRBLYxNvOHQUP/Uj5Lp1Hh3JlTY62q3Sly99Tn/n5sekP8TvPEzZ0QIg68A/gaBj3uSsBngfdLKdMHOcY9c4eK4yClpFStMXf6/ER6+hgMBkKROHkJzWaTfKVKcPbkRJpGGgwGfKEIFSGo1Rvky1U80bmxRAq3I4TA7Q/RMBipVOuU6w0sgamxROt20nZ6A7SNJgqVKr2eQs8ewjri5r+7YXV56XXMZItl7FYrTbMP24gb8O6GxeGmb7aQKpRRNY1814rZMV4zPcRkddBWLaynC7jsVtLlHpY9KlFHidFspSvNrG1miUVCZDtmrO7QZLQtNqQlwWZuk5l4k2LPjMUbmYi2yWIDyxTZyjoLjQaFtgGzJzoRbaPZAt4EufomjUaDYkdi9Scmo20yYwzEKZaTA+22gi00NzntYIJKMUm9XqfY6OCMLk5E22A04QzGqBfSNBoN6q0286cfnIi20WgkHEuQS0tardZEW6ZoElq9e+/eskKIU8DnAB/wd8AzQBx4G/BGIcRXSSmv7necyZe83MHsZ+ze+unv5oXCs/se54XCs7z10999KL39LOVfrv0R1W5p32NWuyX+cu2P9te+SXE/P/vxjT+i2ivvr90r8/GN/bUPw6dSf0ztANq1XplPpf543/3EHXMzwtt5HnfKdzAJ7qfPug2x7f+39SRuh+Tt+OBbmreh8e9t7TV8G7QNAhwW49i328DPABXglJTya6SU/1xK+SrgDFDden1fdHN3QN766e/mevUqP/T5N+9p8F4oPMsPff7NXK9ePZDBOwh/ufZH/PrF9/NfvvADexq8arfEf/nCD/DrF99/IIN3ED6+8Uf81pWf56effuueBq/aK/PTT7+V37ry8yMzeJ9K/TG/v/QBfuH5H9zT4NV6ZX7h+R/k95c+cCCDp6NzGL7ryUf4ricfud2noTMhvumjp/imj5663acxcRIfiJL4wGQivKNgGLkb93YbeA3wHinl+s0/lFKuMLjv7KsPchDd3B2QNz/4zhuPdzN4Q2O303uOwz+KvYZp1wKbjZVdDd7Q2G02Vph2LfCPYq8ZifYro69lyjlPsrm6q8EbGrtkc5Up5zyvjL52JNqPhV5D3DFPurW6q8EbGrt0a5W4Y57HQqP53Do6Ojo6dzZiAtttwArUd3mttvX6vujm7oA8FHoFP/uVH7zxfLvB227sfvYrP8hDoVeMRNtrDfDuV/7yrgZvu7F79yt/Ga91ND2IvBY/P/L4r+xq8LYbux95/FfwWvwj0fZY/Lzj4V/c1eBtN3bvePgX8YxIW0dHR0fnzsUgwG4xjn27DXwZ+LdiW8XZ1vN/Bzx3kIMcy9wJIX5dCJETQrx4nOPcLexm8MZp7IbsZvDGaexuaO9i8MZp7IbsZvB0Y6ejo6Nz/6JJaPfUsW+3gXcDXwtcEEK8RwjxZiHEu4GLwNcB7znIQY5bLfubwK8Av3XM49w1DA3e0MzdbOpgPMZuyNDgDc3cOz83yOmr9SpjM3Y3tLcM3tDM/cjfDrTr/crYjN2QocEbmrn3Pv3GG9q6sdPR0dG5/xgWVNxrSCk/LoT4JuCngB9jsDosGUT0/g8p5V8d5DjHMndSys8IIeaPc4y7ke0Gb8g4jd2QocF75+e+m1qvAoDH4hursbuhvWXwfuRvv5t6f6DtNvvGauyGDA3ee59+4y3aurHTGSV7FU7s9NrvvP5AKyQ6dyh7FU7s9Nqfv+HaOE9nYuxVOLHTa6m3Z8d5OkdCk9Dua7f7NMaClPLjwMeFEC7AD5SllI3DHGPsfe6EEN8PfD/A7OzsuOV0dHR0dHR07nEGOXf3fNmAdtN2KMZu7qSUHwI+BIM7VIxbbxJsz7Eb8kOff/PYo3fDHLtar4LH4gMGy7L/5Qs/MPbo3TDHrt6v4DYPtOv9Cj/99FvHHr0b5tht1/6F539Qj97pjIydInHDiJ0epbv32CkSN4zY3StRup3YKRI3jNjdiVG6ndAkdHr3ZuROCPH1wHuBx9lalhVCPAv8mJTyLw9yjHve9o6anYon9qqiHSXbiyfe/9W/zfu/+rf3bZMyEu1txRM//Y9+m5/+R7+9b5uUUbC9eOLHH/8IP/74R/Ztk6Kjo6Ojc28yjNyNe5s0QoivAz4GuICfZFAh+1OAG/iYEOIbDnIc3dwdgt2qYvdrkzIKdquK3a9Nyki0d6mK3a9NyijYrSp2vzYpOjo6Ojr3LoNqWW3s223g3cDHgQellO+WUv4PKeW7gAeAJ4F3HeQgx22F8nvA3wJnhBCbQog3Hed4dzL7tTsZp8Hbr93JOA3efu1Oxmnw9mt3ohs8HR0dnfuYe7OL8aPAf5dS3pLGJqXUgF/een1fjmXupJTfKaWMSynNUsppKeWHj3O8O5kPXnj/jce75dVtN3g3v+c4/G3mqX372G03eH+beWok2l/IfnLfPnbbDd4Xsp8cifYzhaf27WO33eA9UxjN59bR0dHRuXMxCLCbDWPfbgM9BkuwO+Heen1fxl5Qca/wK1/z27z109/Nmx98554FE0OD98EL7+dXvua3R6L9DXP/FBjchmyvgomhwfvbzFM33nNcvnZmcJxXRl+7Z8HE0OB9IfvJG+85Lq9OfBswuA3ZXgUTQ4P3TOGpG+/R0RkVeiHF/cW9XEixF3dLIcUQKaFzb7ZCeQp4jxDi81LKteEPt9rOvXfr9X3Rzd0hOKhZeyj0ipEZuyEHNWtea2Bkxm7IQc2a1+IfmbEbclCz5rH4dWOno6Ojc58gDGC7N1uh/DDwWeCqEOLzQAaIAV8FlLde35d78ps5CgLodtoT09M0jV63ixBioN3tTExbSkmv20EIMCDodW6PtkDQ701OG6DXbWMYiKP0uxPVVntdDEIgBKi3SxuBVHpsS+cYK5rS2/rcAjR1stpqf/DvDaD0GKStTAa130OIwWeVah+pTVYbTSKEQCoKUpvcbZQ0pQ9bn1VqCpqqTE5bfUlPaiqq0p+gtoqm9rZ+zzWU/oFWz0ajralbv28CKbWJjifDsWzSSAndvjb2bfKfS15jkFf3iwwqZl+59f9fAh6VUl49yHH0yB3Qbrc5MT/L2uYqJoeHYDiKyTS+r6Zeq1LJZ/B7HDgcDk4vzLK8nqRlsuENRzGZzWPTbjXqNApZgm47Pq8Xp8PB0uompUYVTyiKyWwZm3an1aRZzBByWQkHowT9Pq6urFPO1nH4o5gs1rFp9zptOuUsEaeZqegUAP3+OpulJMIVxGSxjU1b6XXRGgVm3WZOzs0B0GpvsFZMojkCmKz2sWmr/R6yWWTaZeDciXmMRiOPLza5spmjbfBgtIxPW1MVRLfCot/EIw+cwGw28w8fmefitU0afRMm8/i+c6mpCKXNbNjBKx46g91u5ytOBLm0kaZl8GK2u8aqrTRLRO0qjzx4ErvdzmPzQS6tb9Iye7E6vWPU1ug3iviNXc6fncNms/H4yQgXVpI0jB7MDu/AfIxLu1nCb2hz/swMNpuNRxaiXFpL0jR5sLp849OWkm69jEut88BiHLvdziMLcS6tbdIyubF6A2y7D/vIta3dKg/PRrHb7Ty0OM3l1U2aJhcOXwhhGJ92p17F2CryQCKMzWZjcXaa9Y1lrC4vwXAMo3F8t+iqVSuU82mCPjeBwHjvkLQdgwDb7cmJGztSygzwQ8c5hpjkLPqJJ56QX/rSlyamtx+dTof1jQ3q9SZGg4F4PEq73SGVK+IKhPAHQiO9GHU7HYq5FGY0phMxKtUa5UoNgwGm4jH6fYW1dBaTO4AnEMQwwgtCv9elms9iQ2F+OkGt3iBTKGEyCGYSMTRNcn0jjXR48AQiI9VW+j3qxSw22ePE7BTNVptkNo9BGJhNRBAGA1fXUnRNTpz+MIYRXoxURaFVzuGQHU7PTdHp9riezCIEnJyOYTaZeHFpg6JqweIOYDCOztRrqkq/XiRg7PHgyRkUReXKegpNg9MzUZwOOy9cWyPXNmB0B0eqLTWNfr2E39Tl/IlpBHBlLUlPlZyeieJxOXn+8gprpR6a1YfBOLoJhZQaartK1K7w6Nk5TEYjL17foNlVOTcfIejz8uLl66ymyijCPtrPLSVqt0XYa+TRB0/isNt4cWmDeqfP6ekQ0VCAKysbrBY6qLYARvPoJhRSSvqtKj5Dk4dOJPC4nFxd3aTeUZgJe4mFgyxvpFgrtlHtwZGaeiklvWYNp1rlgdkIAZ+H1Y0kjZ5C2OMkFgmzlsxyPVejbw1itjlGpg3Qa9Vw9CucmQkRCfpZT2Wot7sEXA6m4lE2M3muZ6uojgCWERvrXquBqV3kZNxPPBxkI52h0uzgtVuZnYqTLZS4nimjOoNYnZ7RarebiHqe+ZCbqViYVDZPvtrAbbewMJ2gVKlyPV1Ccwawu32j1e60UKo5El4b81NxcoUC5VoTi8nI3HSCeqNJtlDCG4zi9QdGOpZ12m0K2SRWIyzOz+F275b/PzqEEE9LKZ8YPn/0scflxz/9t2PXjXist+hOCiGEF3gYiDNYmn1eSlk58PvvR3OnqiqpVIpcvkAwHCUUjtBqNUknk5iNgkgkTL5QpNLsEAjHcR7zF1dVFIr5LP1Wjdmp+EA/k8ftDxEKh+l2OuQyKcwGSTwWpVAsk63UcQYjOD3Hm+Vrqkq1mEe2asxNxRDARjqL1eUjEIqgKH2K2ZcMZ7lSY7NQxuKN4PL6jqetadTLeWhWWJyOYzIZWd1MY3S48YciqKpKOZ/BrPWZnYpTazRZThfAGcDh8R/rYiSlpFkpYmxXODkdxWa1sLSepCVsOINRpJS0ilmcosfJ2SkazTYX19IjiTAMZvJVnGqNB+ZjeJwOrqxuUlFM2HxhEAY6lRxu0eXM3BSdXp8L15NUcGJ1+44VYbh1kI8S8Hm4urZJsSuw+CIYDEbalTxu2ebM/BSqqvHspVWyLSNGx/G0AZROA4+hyUOLMSIhP1dXk6yXumiOIAajmX6jRMjc4aGTMxgMgmdfvEa61EGYHMeObii9Dm6LyoOnpplKRLm+nmK12EZzBDGaLPQaZXyGFg+dmMZiNvHc1TWybSMGe+DYEwql28Lar3A64WU2EWUzkyNZaWP2RjDbHLSrRUydCqemo1uGc33L1IeObW6VbgtDq8RCyMnCTIxsvkC+1sYZjGJ3uqhXSvSqBWZiIdxOJxeW1kg1JAZnCIPpeKZe6XUwtIrMB2ycnJ+66doVxeFy06hW6FTyJEJ+vB43V1Y2SDclRncI4zFXCYYR8YTLxOn5KcrVGqlCBbs/jMvrp1mr0ipliQe8BAM+rq8nSdX7GL2RY0fq1X6PfjVPxCY5PT9NrdFkPVvE7Anh9PrpNBt0ShmifhfRUJDVZJp0rYfJG8ZyTGOtKn06lTw+Y5+zCzO0Wm3SuSLOQBh/IES71aSUTeK2W4hGwmRzeRqdPsFoAofzeMZaUfoUc1n67TrzM1OEw+GxRWO3s7O5+7ux60Y8lomaOzG4CL8HeAfgBIYmrQV8AHi3PEB+yX1l7qSUFAoFNpMpHC430VgC801LoFJKyuUSuUwKv8+L2+ViI5lGESZC0QQW6+Fm+VJKKqUi9XKeeDiI02FnM5nGZHMQjsaxWG69uFUrZQq5NH6PG5/Xw3oqQ1OReMIxrLbDzfKllDSqFdrlPNMhPx6Pm41kGtVgJhiJv+yzNOo1yrk0fo+DUCDARipDqa3gCsaw2g9/MWrWKnQrOaZCPgI+LxupDB1N4A/HsdpuvbC2mg0q+TR+p41oOMRmOkum3sXii2C1Ow+t3WnUUWo5poMeoqEA68kM+ZaCPRjFsu177LZbdEpZIi4LM/Eom9k8y5kaisN/pAhDv93E0C6xGHYzm4iynsqQrHQGF/Vtn6XfbdOr5Ig5zSzMxMnkilxNlehYfFgch59QKN02hlaRhbCLhekYqWye9VID4Q5jddz6WZRel14lR9hu4ORsglyxzIvLGSqKA7P98Npqv4tFqXAy7ubMwgzpXJErm0XaZv/LlkA1pY9sFpjyGDl3YoZypcbzl1YoNSVGi/3Qg4Wm9jHJDovTAc6dXqRQqnBpI0/b5MOyLVKjKX3URomYQ+PBk7PUmy1evJ6iIp2Y7IdfstSUHrRLzHhNnDs5S63e5Ho6j+YIYnPfOknQ1EEU2UXnJVO/nKSGC7Pr8MZaU/qozSJRu+TBEzO02h3WM3nMniAef3CbtkqlkEV0GyxOx1FUjReXNiipdsyuwKGNtaYqqM0iEavK+ZMzt646+G9dddBUlUqpgGxVmEvEMBgMXLi+SVmzYfEEMBgOZ6w1VaVXLxIwdDl3YhopJSubaQxOH55A+BZtqWlUywXURpm5eBSL2cTF5Q2q0obFe3hjrWkq3WoRt9bkgfkpjEYDSxspVKt7sOJx0yRBSkmjXERtlJiPh3HYbYNJnmrG5gtjPKSxlppGq1rE1q9zdi6O2WRiPZnGbPcQiMRuSSWSUlItF6mVcsRCAVxOBxvJNJhshKJxzJbDGWspJaVCnkalwFQ0RCKRGGvq0k5sN3ePPf6E/PTf/P3YdT1206TN3U8A/5nBbVs/CmSBKPDtwFuAn5ZS/ti+x7lfzF29XmdtfQMNQTwxjcOxu2FRVZV8NkO1XCQajQCwmc5i2Yp2HSSHodmoU86l8TitRMNhMtkcnZ5COD6Fc4/Zk6ZpFPI56uUiiVgYo9HI8kYKbC68oQjGA/xBdVpNavkMfruFRCzyUhQyEsfp2n3gllJSLuZploskokFsNhvX15N0DTbcoSimA1yMup02zUIan83E7FSMQqlEodrAE4zh2iMKKaWkWinSKheYioRwOuxcW0tS10zY/ZED5QL2ux3a5RwBGyxOJyhVaqznyxg9IRwe357arVoFrVZgPhbE53FzeWWDdEM7cIRB7ffQ6kWiTsHZhWmq9SZLyTzq1nLMXqah3agiGgUWon5Cfh/X1pJslHtIZ/BAeYgDw1Ik6oAHT8zQbLW5spmlb/Nh9+y9HNNt1pH1PPNby4ZXVzZZStfomrwYD5ATp6kKdCpM+ww8cmaeTrfPC9eTVDQ7Zpd/T8OidFqYeyVOxjzMJaKsrG1yeTlNW7UcaLlUahqy3yQRtPPo+VOomuSF6xtUVMdAew/DonTbGNuDaNfibJz1VJaryTIdkw+Tbf8JhdQ0lFaJsKXHw6dmMRgNXFlN0jI6cfj2Ti0Ymvqw08jidIJMvsTVZJGOxX8gUy81bRCFFE3Ob0UhlzdSaFYX3uDe14het0OtkMFplMxNxSmUq1xaz9EyvtwI76gtJf1GGY9o8uBCArfTzvJ6EsVkwxvaO1+43+tRLWSwyj4LM1NUanUur+dom71YXPsb60FEvIJDqfHAXAyv28nyepKuwYw3FNvzGqH0+1QLGSxql8XZKRqtFpfXs3TMHqz7/I3c0G5UsbRLnJoKE/B5WNlIUleNuEMxzHv8naqKQr2Yxay0ODGToNdXuLKepmvxDP4+D2CsO40qNEosxnyEA342U2l6moFgNLHnxF9VVUr5DL1mdZB+IyWbqSwOr59AKHqg9JtGrUYpl8LndjA/N4vNNr5c2b3YKXL35AQid+HJR+5SwG9LKV+WcyeE+BngX0opE/se5143d71ej/WNDWr1BtFYAp//4Emf3W6XdGoTpdslHo/SaDbJFMp4ghG8vp0vCL1ul2IujUHtMTMVp9FoUihXCIRj+A6R99Dv98hl0iidFlOJGK12h41sHqs3iHvbrHyI0u9TzWcwq10WZqZoNluk8yXcgTC+wM7v2Ylh6F3tNJhJxOj1FVaSWQwuP25fcMeLkaoo1IpZLEqLE7NTdLs9NrN5rN4APn/owDl8qqpQzudQ23XmpmKomuTqegrF6sHh2/k4mqrQKOexqy1OzSZQVY2lzQyazYPjENqaptIsFTB365yYGUQYXlzaoKLZMO8SYZCaRq9Wwmdoc25xGiHgymqKlsmJ3Rs68HLfYFZewNp7aVb+wtI6+a4Z8y65gC8N8i3On5jGZDJyZTVJAzs2/8GjElJK2pUi1l7tRi7gsxeX2aiqYPXtrC0lartK2Nbj4VMzOB02XlhaJ9syYHAePH9wkKdWwSMbnF+I4/W4eP7CVVYzNTTDzvl4UkrUXougy8Aj5xbxetxcWFon02KgfcCIyC1L2HNRgj4PF6+vs17qIx0BjKaXmwUpJf12DY9s8OBilIDXw/WNFMWuwOaLHKooqN2oQqPAfMT3kqmv9JCO3Qt8eq0atl6FM9PBG7ltjb7EE4q9LCq9F616jWYpS8TrJBIKcn0jxWqhhWrbPRew325g7ZU4lQgwFR1E2KtdBU8ohu0Q0f12s0G9kCHoshGLhFlPZVkpNJDO0K65gP12cysq7WYmHiGVzVNqdnGHYtgcB4/ud9ot6oU0fruF6XiUZDbPSq6GdIWwOHaedPc7LWQ9z4zPzvx0nHSuQLbSwB6MYXcePMrd67RpFDL4bAbmtnIBV3MVcIWwuXY21v1uh341R9RpYnEmQalUplhr4gvHcR8iZafb7VDMpTHJPjOJONVanXypii8cw+vbuYdot9uhkElhQmFxfg6vd3yFQAdhp8jdZyYQuXNPPnLXBL5VSvnkDq+9HvhTKeW+v/T3rLnTNI10Ok06myMQDBOOHGyWshP1eo1MKonNYiYcDpHO5Gh0+wQi8Rs5DJqqUizk6DYqzMSjAKQyOZweP6FI9MgVS61mk1w6ic1iIBqJkMkXKNbbuEKDnJbhZ60W86iNCvNTMYwGAxupzLErfzvtFsVsGptpUPCRL5ZJlWrY/REc7sEfupSSermA1igzn4hgs1pYS6bB4sC/z0x+L7qdDuV8GptBMpOIUarUWM2WMbiDN6JwUkqa1RKGVpkTiTAup4Ol9SQNzYwjeLBo304ovS7NYg6vSWFxZopKrcHljRwtkwfrVoRhYAyq2Ho1HpgN4/d6uLaWpNgF6yEH+ZtRlT6dcg6fUeH0/CAX8MJKmrrBheWmXMDhIH92Jkw44GN5I0W2pQ5yvKxHm1mrikKnksMjepydn6LT7fPlK2vk2xaMDs+NKJzSbeKiwYPzYaZiYZbWUqwUWqj2AKYjVt9qmoraKBK2Kjx0cgZVVXn2xatkK30MFscNbbXfxWHq88CJBHMzCdaSWZZzdRR7AJP1aLlMg+KTIgFTh/MnZjAYDDx3dY1814zR4UdsmXql28bcK3My5ubEbIJkNs9msY7RG33ZsvdhtFvVItZuldM3mfpCz4LJ9ZKpH+a2zfqtnJwb5LZlKnUcgQhO99EGXSkl9VKBfr3EbDyMw27nhatrZDtikI+3pa32u4hWkWmvmTML01SqNVLFMnZ/BLd39+bi+2nXyiW6N+UCXry+TrYtMHlCN5Ys1X4PtV4g6hhExOuNJpu5EhZvCLfvaHm5UkoatQqdco6pcACfx83V1U2ybYnJG8a0FTVWlT79ap6AWeXc4gyNVpvVdA6TK4hrlwn2QWjWq/TKORJBL6GAj+sbSXLNW/92NVWhXcnjocuZ+Sn6ikIyk8fpC+LbtvR8GBr1GuV8Gr/LTigYIJ3J0u5rBKNT2LdWs4Y54t1mlbnpBNFodGJ5dXuxY+TuMxOI3LknHrn7BPCklPKnd3jtPwFfJ6V87b7HuRfNXalUYn19E6vDQSw+9bLctqMgpaRYLJDPpgkHA9jtdtY3U2C2YbU7qZfzRIN+PG4XyVQaTFaiscPn6e2mXSmXKOUzhPw+3G4Xq5spOtKIxemmUykQD3jx+7wk0xm6moFQNH7oPL3dqFUrVAoZwj4PPq+HtWSGWl9idnjo10vE/C4iwQDJdJZGT8UfiR9qJr8XzXqNaiFNyOsiFAiwlsyQa/YxOr1ojTIJn5NENEQymyNb62L1R7AeYia/F51Wg14pR9zrIB4NsZbMslpsoFjcGLsN5oKOG7ltG6UmBs/Lc9uOSq89qISLe63MJWJsZvIspat0zW5M/QZzARsn56bIFkqs5KrgCu46+z8s/W4bpZIn5hrkAqayBS6s5Khpdqyyw2LEwQMnZ8mXKlxay9M0eg+0pHcQhkZi1m/hzMI0uUKJFy6vUmmBxagxn/By/uxJKrUGF9cyNA0ezM7RtPcYto1JuA08sDhDudbgxeU0NenEqPWYcsNDp+dpNFtc28yhOvz7LnsfWFvp0yln8RgVTs9tmfrVNA3hArVPxKbw4IkZesPcNqcfT2A0LTZUpU+1kMPYb7IwnbhR4FOWDoRUCVv6nD8xg2SQ22Z0+vAGj24wbtFWFaqFPHTqLEzHUTTJhesb1IQTpMQr2jy4MMhtW95MD9JTgtGRVNRrqkq1lEe2qsxPDSL1l1Y2qUk7GAw4lAbnFhKYTSaW1lMoFifuwMFSY/bV1jTq5QI0y5yYHuTLXVrdpIEdYTRj6VY5PTMovlnfTGGwOglG4iNpkzVIvynQLOeJR4PYbTbWk2mMFgcWm516OU8sHGB6auqWnPTbzX0UuTsLfAz4n8Dv8VLO3XcA3w98i5Ty4r7HuZfMXbPZZG19g76iEk9M43SNvpeVoijksmnq1TLxWAxFVWk2W4SCAfLFIs1Wj3Asjss92pJ7GORPFHI5mrUSidggF7BSqxMNhyiWypRqTXzh2KHC9QdF0zRKxRztaonpeBST0UihVCUWCVKp1siWqriDUdzHrLDdiUFhSoFOtch0NIzVaiFTKJGIhKg1mqxkChhcQRze41XY7qbdqpaQjRKL8UF0cCOTZzoaotlqc20zN8ht84621cBQu12vYGyWODEVwu9xs57OkQgH6PYVrqyl6VjcOLw7L5Ufl06jimgUORHzE/T7WEtmiYcDqJrGC0sbFBUbZufhk/EPQr/dwNYvc2YqQCIaYm0jRSTkx2Aw8vzSBsX+oHWNOGQy/oG0O03MnTInYx5m4hE2Mnn8bidWi5krq0mawo7dHx5pC5chvXaLfjVL3GNjNhEdVEHabbicdq6vJekfILftqHTbbeqFDG6rYDYRJ1soYzWb8LidrG6m6AoL3nAU8xh6Yfa6Har5QS7g7FScYqWGQYDf62F1I0VLGvGGYphHMFneTr/XpVrIYGMrUl9voCgq4YCPtc00lZ6GKxjHMoZcM6Xfp17MYNO6nJybptFq0en2iYYCJNMZ2j2NQDSBfUQT1lu0FYViLn0j/aavKLTabWan985Jv13sFLn7xAQid6HJR+6GHcd3GlDk9p9LKXe8AN8z5q5QKLC2sUkkmsAfGP1Au51Op006mcSARiIR5+rSCr5QhEBwtL3xdqLX7ZLNpBBaj4W5OS5cWcLhDeIPHjy/7Kj0ez2K+QwGpcOpE4u8cPkqFpcf34hm8nuhKH3K+SyGXosHzpzimQuX6ZpcOAOj7Y23E5qq0CgO8voeO3+Wp1+8REWz4RjTIH+LtqbSrhRwak1e+dADfPniFUp9M1b/4SvuDovUNNrVIo5+nVc+fJbnLy+xWlExOA6e23ZkbSnpNwftS77m8XNcur7KSrGHcAaP3UbjINq9RgW3rPOqxx5gPZlms9rF4oseedn7MNrtegVDs8grzsxTrlTJVlu4Q0erXD8sjVqFdinHqdkE7U6HZKGCOxTDfsw2GgehuZULOB+PgNRYSRdwBmM3UlDGSbvZoFHMMBP2Y7VYuLKexnZTCso46bZbNIsZpgMufB43y+tJvKE4nl3y4UZJp92mmE3isZt54OyZsesdlR3N3WcnYO5cEzd3P87Oxm5HpJQ/sdPP75k7VLTbbYKhCIFgcCJ6NpuduYVFLl94nna7jcvnJxgKT0TbYrUyM7fAtYsDbavDQzAcmYi22WIhNjXL+tIlWq0WRquTQDg6EW2TyUw4Pk1mbYlWq0VXmHGHYxPRNhhNeCJxGulVms0mTcWAKxKfjLbBiDMQpVPYpNlsUu9qOKL7FkuNBGEw4PCHaRf6tNttCrUOJs/MZLSFwOIKUK0ptNttcuU6Jt/8xLStbj/Vqkqr1aJYa2IPzY99EjHUdnj8NDWNZqtNtd7EG505dPuKo+Ly+EBKGq0WzVYbb2QKq318dzK5GefWikej2UDVNFyhwxUtHAe704UwJKg1Ctisfay+8ESMHYDV7sAQTlCupLGYTbgDkYkYOwCb3U50ep7s2oHuanXHYBACq+neu0OFlPK9ozjOvffN7MO3/OnX8+nNT+2736c3P8W3/OnXj1T7T65/lHKntO9+5U6JP7n+0ZFq/++VP6DS3V+70i3xv1f+YKTaP/v0j7JeX953v/X6Mj/79I+OVPu9X/xerpSf23e/K+XneO8Xv3ek2reTj1x9D+nWyr77pVsrfOTqe8Z6Ltlah7+5XuATV7L8zfUC2drk7nuZqXX43FKeJy9l+dxSnswEtXV0dMaHJiU9RRv7drdyz0TuDsK3/OnXk2tn+eHPvZ2f+eoP8DXTr95xv09vfoof/tzbb7znz771r46t/SfXP8ovfvln+NPrf8AvvOqD+G07t2Qpd0q84zNvZnXLDP2TE284tvb/XvkD/vsL7+Njq3/Iz3zl/8Bn3Vm70i3xw5//N6zXB6bg/1z49mNr/+zTP8rfZD7B3+c+wy989UeYdS/uuN96fZl3fO6NKFqfn30afujxnzq29nu/+L2sN67xc19+K//h0V/hjP+RHfe7Un6On/vyW2+858e/4tePrX07+cjV9/Dl4qd5ofR53vnwB4k7FnbcL91a4f3PvxlV9uHqe3jj6feM9DyW8nU+cTnHSrH5stcWgk5edzbCyfB4ojLXcnWevJRlufBy7cWQk9c/EOVUZPwRoVf/9uC7/9R372+0R82DvzoNwIW3bE5c+3ZzOz/7K/7nILL97P+9MXHt6V8crKJs/mB24tqT5l6N3I2K++qbeefjP3Lj8Q9/7u07RvBuNnbb33McXj31eubdi6zWl3nHZ968YwTvZmM3717k1VOvH4n2P068jln3Auv1FX748/9mxwjezcZu1r3AP068biTa33H6TZgMZhStzzs+98YdI3g3GzuTwcx3nH7TSLTfcPIHbzz+uS+/dccI3s3Gbvt77la+bvqNGIUZVfZ5//Nv3jGCd7OxMwozXzf9xpGewxdXS3z4b1ZYKTaxmAw8PuvnNacjPD7rx2IysFJs8uG/WeGLa/tHkw/LF1aK/M/PLrNcaGI1GXhizs9rz0R4Ys6P1WRgudDkf352mS+sFkeuraOjMxk0Kekq2ti3u5X7ytx9zfSr+Zmv/sCN59sN3nZjt1d077D4bQF+4VUf3NXgbTd2e0X3DovPGuBnvvJ/7Grwthu7vaJ7h2XWvcgvfPVHdjV4243dXtG9w3LG/wj/4dFfufF8u8Hbbuz2iu7dTcQdC7zz4Q/uavC2G7u9ontHYSlf54+/vIkEXn06zI9+/QN8+2MzfP25GN/+2Aw/+vUP8OrTYSTwx89uspSvj0z7Wq7OHz4z0H7tmQg/9k3n+OdPzPKN5+P88ydm+bFvOsdrz0SQwB8+vcm13Oi0dXR0Jscwcjfu7W7lWGcuhPgGIcQVIcTSVnO9O57dDN44jd2Q3QzeOI3dkN0M3jiN3ZDdDN44jd2Q3QzevWrshuxm8MZt7AA+cTl3w9h9w7k4VvOtRQhWs5FvOBe/YfA+cTk3Mu0nL2VvGLtvPB/Htk3bZjbyjefjNwzek5fu/eUrHZ17ESklPVUb+3a3cmRzJ4QwAv8N+EbgHPCdQohzozqxcbKTwRu3sRuy3eB9z5Nv4HuefMNYjd2Q7QbvLU99J2956jvHauyGbDd4b/vMd/G2z3zXWI3dkJ0M3r1s7IZsN3jve+5NvO+5N43V2GVrnRtLsa85tXcF96tPRW4s0Y6iyCJT69xYin3Nmb21X3MmcmOJVi+y0NG5OxET+O9u5TgFFa8ElqSUywBCiN8HvhXYt3PyncDQ4N1s6mC8xm7I0OB9z5NvoNItA+Cz+sdq7IYMDd5bnvpOqr2BttfiH6uxGzI0eG/7zHchGfRXFIixGrshQ4N3s6mDe9fYDRkavPc996ZbvvNxGDuApXwDgIcS3pdF7LZjMxs5H/fyzEaZpXyDqOd4/eOWtpZYH5ryvixit6P2lJen18os5erEjqkNLxVPHPS1URZZDAsIDvravVRkcTs/+7B44qCvjbLIYlg8cdDX7rUiCyEElrt42XTcHMfcTQE3/6ZuAv9g+05CiO9ncMsMZmdnjyGno6Nzp9NRBs3VPbaDNTj22E23vO9Y2n3tUNrerf2G79PR0bl7kFutUHR2ZuytUKSUHwI+BIM7VIxb76Bsz7Ebsl+blFEwzLGrdMv4rINGlZVumXd85s1jj94Nc+yqvTJey0C72ivzw5//N2OP3g1z7CTyRrhbInnH59449ujd9hy7Ifu1SbnbGebYbf/O3//8m8cSvbOZBhGzWqd/oP1rbeWW9x1L22w4lHZ1a7/h+47LTpG4SbVC2Skadb+0Qrmdn32nSNykWqHsFIm7n1qh6JG7vTnON5MEbo47T2/97I5np+KJvapoR8n24onfeP1H+Y3Xf3TfNimjYHvxxK++5vf41df83r5tUkbB9uKJX3rV7/BLr/qdfdukjIKdiif2qqK9V9hePPEfH/kw//GRD+/bJuU4nAwPblH1QqpKt793NK7TV3kxXb3lfcfS3upb90KySucg2snqLe/T0dG5e5B6E+M9OY65+yJwSgixIISwAN8B/NloTmt87FYVu1+blFGwW1Xsfm1SRsFuVbH7tUkZBbtVxe7XJmUU7FYVu1+blLud3api92uTclyiHhsLQSc9ReOpa3tXwX7qWo6eorEQdB473w4g5rGxGHLSVTSeurK39lNXcnQVjcWQcyT5djo6OpNlGLkb93a3cuQzl1IqwFuBvwIuAR+VUl4Y1YmNg/3anYzT4O3X7mScBm+/difjNHj7tTsZp8Hbr93JvWrw9mt3Mm6D97qzEQTwqat5/vJi+mVRtE5f5S8vpvnU1Txia/9R8foHogjgk1dy/MWLO2v/xYtpPnklh9jaX0dH5+5DSklf0ca+3a0cy5ZKKf9cSnlaSnlCSnn8+0WNmfc//dM3Hu+WV7fd4N38nuPwqeST+7Y72W7wPpV8ciTan019Yt92J9sN3mdTnxiJ9u9f/fC+7U62G7zfv/rhkWh/dOkXbzzeLa9uu8G7+T13K3+9+ZF9251sN3h/vfmRkemfDLv5tkenbxi8//pXl/jo0xv85cU0H316g//6V5duGLtve8X0SG9Bdiri5p89Nn3D4P3kn1/k97+0zl+8mOb3v7TOT/75xRvG7p89Pj2RW5Dp6OiMHj1ytzf31b1l/+xb/4pv+dOv552P/8ieBRNDg/f+p396JPeVhZfuEfvqqdfvWTAxNHifSj45kvvKwkv3iP3HidftWTAxNHifTX1iJPeVhcE9Yn/26cFtyPYqmBgavN+/+uGR3FcW4Me/4td57xe/lzec/ME9CyaGBu+jS794199XFhjcI/bqe/i66TfuWTAxNHh/vfmRkd9X9ivmA/id5hv3ln1mo3zL6+O8t+wrF4L4nZYb95Z9eu1W7UneW/Z23FN2yL1eSLEXt/Oz3457yg65HwophgybGOvszH1l7oADm7VhHt4oOahZ89sCIzN2Qw5q1nzWwMiM3ZCDmrVZ9+LIjN2Qg5q1M/5H7gljN+SgZi3uWBi5sRtyMuzmZNhNttZhKd+go6jYTEZOhl0jybHbi1MRN6cibjK1Dku5Op2+hs1s4GTErefY6ejcE9zdTYbHzT1l7lqtJqqqYjQev63CQWjU6whhQAhBp9VGVRSMpsl8pc1G48bjbreNoiiYJqTdbjWRUkMIQb/bod/vYTZbJqLd7bRRlT5CCLR+H6XXxWSxTkS73+uiKQpCCKQ6WW2130Pr9zAYDKCp9LttzFb7ZLSVPlIZaBsEKN02pkNoRz22I5s5TVVA7SGEwGQw0Og0MducB35/zGM7spmTmgpKF4PBgNEgaLUb2F3eIx3r8NoaSreFQVgxCGg3G5gt420yfrN2t9XC6LEMPnergcVmQ4jxD6RSSrrtJk6LAGGg3Wxic7gmpt1pNnAZBAZhoNdu4XB7J6IN0Gk1sRsEIGi3W3g0bfD3PgFajfrEtEaFEGA26eZuN+4ZcxeLxehvbLB05RKRWAKf3z+2P8pup0M6lUTpdzl1chGn00mn02F16Qr+cBR/IDg27V6vSy6TRu21OXPqBB6Ph263S3LlGk5/CH8wNDZtpd+nkMsgu03OnljA7/fT6/VY27iO1RPAFwiP7QKhKgqlQhbZaXBmYZZQKMT5fp+ra+u0rR6cgRAGw3hMvaaqNEt5LP0G5xenCIVCvOK0yqXlDZoGB3ZfGMOYJhRS02hV8tj7DR49MdB+4hy8uLRGrW7B5ouMbUIhNY12rYStW+ORhQTBYJCvfoWRL1+6Tqpaw+AMYDAdrGHwobWlpN+s4BUNzp8dfO6vfIWV5y5fJ1WpIZxBjGOaUAy0qzi1Oo+ejBIOh3E6nVy6tkI+W8Hmj43V1LfrFUSzyJmIn6lEnFAwwLXlVfIbFTyhOFb7+Ex9s16lVcoR87mZmZ5CVVWWllfJbyzjCcWwOQ5urA9Lq1GnUcgS8thZmJtHSolcWaOwcR1XMIbdefx2ObvRaTWpFzIEnBZOLsxjNBpRV9dIb17H5o/gcHnGpt1tt2gWMwTsJk6fOoHZbEZZ32Bz5Qq+UByP1zc+7U6bYjaFxaBx9tSJsemMAwn01Tumde4dh5Bycl/OE088Ib/0pS+NVaPRaLC2voGqSWKJaZzO0V2MVFUll0lTq5ZIxONEo9FbjFSr1WJ1bZ1Wp084nsDlGl1Oj6Zp5HM5GpUC04kYsVjsFiPV6XRYWVujXG8TiMRxuUd3MdI0jXIpT6tSYjoeIRGP3xId7Xa7rK1vkKvUcAeiuEd4MZJSUikXaFeKTEfDTE8lbolQDszlJquZIgZPCIfHNzJzK6WkVS0jG0UWYiFmZ6Yxm18yM/1+n/XNJNc2cyh2P3bPaCcU7XoFQ7PIYjzAwuwsFstLZkZVVTY2k1xZz9C1eLD7Rjuh6DRqiEaR+YiXkwtzWK0vmRlVVUmm0jx3bYOyasfs9CNGaOr7nSbWXpnTcR9nTs5jv8nMaJpGOp3h+WtrlBQbZndwpNpKt4WpXWIx4uaBUws4HI4br0kpyWSzXF7ZpCkcOPyjNfW9Tpt+JUvMbebMiQVcrpfMjJSSfD7P0toGitmJLxTBOEJj3eu0qRUyuMyCUwtzeDwvXT+klJRKJZZW1umZrPhCMUzmEWp3u1QLGexC5dTCHD6f75bXy+Uy11bWaEsT3nAM8wiNtdLvUS1ksGp9Ti3MEgjcGh2tVqtcXV6j1gd3KIbZOrolfUXpUy9ksWkdTs3PEArdOjGv1+ssr67TUSTBaAKb3bHH0Q6rrVDKZ+i3aszPTBGJRCYWoTwqQoinpZRPDJ8//vgT8m/+7gtj17VbjLfo3i3cc+YOXroYrW9sYne6iMWnbhmUj3a8IvlsmqDfx9TU3scrl8usrK1jNNuJxONYjnkxqpRLFHMZAj4PszPTtwzy26lWq1xfXUPBSDCawHrMi1G9VqWcSxPyupibm71lkH/ZvvU611fWaCkSfySO1Xa8CEOzUaeaTxNwO1iYm71lkH/Zvs0mV5dXyTV62AJRrMe8EHZbTTrlLDGPjVML87cM8ttptVpcXV4lWW5h8ISxOo4XYeh12iiVHHHPywf57XQ6Ha6trLKWryHcYazO400o+t0O/UqOqNPIAycXbhnkt9Ptdrm2vMbljQItkxeL43gTCrXfg1aRGZ+Jh88svmyQv5ler8fy2gaX1rI0jV4sTs+xBidN6aM1CsScgkfOLr5skL8ZRVFY29hkKZlDtQeObepVpU+7nMNj6HHuxBzB4O5GXVVVNpNJ1lI5TO4AnsDxIvWqolAt5jB0G5ycm95zkFdVlXQ6zUoyg9Hlw3vMSL2qqlQLOejUWZxJEI1Gdz2epmmkMxmWN1IIuwdvMHIsY61pGrVSHrVZ4cR0nHg8vqu2lJJsNsu1tU0Uiwt3MILRePRoudQ06uUisllmcTrKVCKxayrR0NSvbiQx2lwEIzFMxzD1UkoqpQKNUp5ENMjU1NTE0nmOy3Zz99jjT8hP/83fj13XYzfp5m4/JmXuhgwvRplcnkAwQjgSOfTFqNGok0klsZiMzM3N7jnI34ymaWQyGTZTGVy+IKFw5NC5gK1Wk1w6icUkWJib23OQv5nhxWhtM4XZ6SUYjh5au9tpU8imsRo0Fufn9hzkt2vn83mW1zcRVheBcPTQy4a9bpdyLo1FKJyYf/lMfi/tUqnEpeU1WtKCIxg9dIRB6fdoFbO4DApnF+f2HOS3Uy6XubC0QrlnxOqPYDrksqGq9OmU83gMPR48ufcgv51qtcrFpRXybYnFFzn0sqGmKrQredyyw4MnZg81k6/X67x45TqrxQ6aPYjRcrgJhdRUlEaJkKXHI6fniMV2H+S302w2uXh1hZVCE9UeOFQu4EBbo9co4Te0efjULFOJ3Qf57bRaLa4tr5KstDB6Ioc29VLTaFWLWHpVTs/Gmd5jkN9Op9NheXWNXLWJMxDFcchIvZSSerlIr1ZkLh5m+hCDfLfbZXV9g0ypiiMQweXxHV67UqZTLTAdCTA7PX3gyXe/32dtfYPNfAmbL4LLe/hIfaNapl3Okwj5mJ+d2XOyfDOKorC+sclapoDRHcTlCxxau1Wv0innSAQ8LMzNYLMd7G9lEC1PkczkcfpC+IPhQ2s36zVK+TRep5WFubk9J8t3Inrk7nDc0+ZuSLfbZX1jg3qjRTSewOfz7/ueXq9HOrVJr9Nmdmb6UIP89uOsb2xSqtQIRmJ4ffvP8vv9PvlMml6nwdzM9KEG+e3H2dhMkikU8QSieP37X4wURaGUy9JvHy9crygKyWSKzWwemzeI7wARBlVVqRRyKK0a89PxPWfy+x0nlU5zbT2Navfi9If2PY6maTTLBUydKqdmEyT2mMnvd5x0OsOl1U3aJhd23/65gFLTaFeLWHs1Ts8dbpC/5Thby4aXljeoC/uBcgGllLSrJSzdCqdnYsxOH20mPzT1X76ySq5tHOTj7RPdkFLSb1Vxa3UeXIixMDdzpAj70NQ/d3mZTMuA0XWwXMBes4ZDqXJ2JsSJhbkDD/LbKZfLXFpapaQYsPmiBzL1nUYNWc8zF/GyODd74EF+O9VqlWsrazRVgScUw3KASH2rUadZzBL22FmcP/ogX6/XWVpZpdaTeMOxA0Xq260m9fwgt21xfu7IaTPNZpOllTXKrR7uA+YCdtttasU0XquRUwvzB54sb6fVanF9dZ1crYUjEMN2gFzAXqdDo5jBaxGcXjz4ZHk7nU6H1fV1yrUW/kjiQOk3vW6XYjaFUfZZnJ898GT5TkOP3B2O+8LcDanX66ytrSOFkfjUFPYdlu40TSOfzVAqFUjEoi/LbTsqjUaD1bV1uopGJD6FY4eLkaZpFAt5aqUCiViY+LbctqPSarVYWV2n1u4SiMRx7pALKKWkXCrQLBVIRENMbcttOyrDCEOp3sIbiuHc4WIkpaRWLdEs5UmEg8xMH28ZfUi322V5bYONQgWTN4zDvXOlY7NWQavmmYsEmJ87+Ex+L3q9Hqvrm1xPF1EdfuzunSMMnUYNGgXmwi/PbTsqw1zAq5s5FJsP2y7Lht1WA1nLMxt0cWpxfiQzeUVRWN9M8eL1TSrSOcjH20Fb6bYwd8uciLp44OTCSHJjh7mAzy9tUNEcWFw75wIq3TaGdpH5oIMHTy8eeZC/maGpv7yWpGNyDoz1Dqa+3+3Qq+QIOwycPTF/5EH+ZoaR+uvrSTSrC29o52XD/lZum0OonFo8eER8P+18Ps/S+iaa2YE3FNlx2bDf71HLZ7HIHifnX57bdlTtUqnEtZV1egYr3vDOuYBKv0+tmMXU73ByfvpluW1HpVwuc3V5jYZmHOTj7RAtVxWFeimLqdfi9Pzey96HoVqtsry6Tn+P9BtVVSkVsvQaFWanjj5ZvlPYydx95vPjN3dum27u9uV2mzt46WK0mUzj8niIxl4yMeVyiVw6hdfrZmZ679y2o2qXSiVW1zew2FyEY/EbJqZWrVDIpPF6nMzNzoxkkN9OuVzm+uo60mghGH0pF7BZr1PKp/C57MzP7p3bdlSq1SrXV9boSiP+yEsRhlazQTWfwesYzOQPuux9GOr1Oleur1LsqNgDUSxbEYZep0W7mCXsMHP6xNFn8nvRaDS4srxKutbF5I1gsQ0+33CQjziNPDCiQX47w1zAjdIwF3BgoJRel24lR9gmOHdyfiwz+U6nw5Xrq1xNluiY/Zjtg+9WU/rIVpGEa//ctqPS7XZZWlnj8maRjvmlXEBNVVDqRWJ2jUfOLhw5Ir4XQ1O/nC6gOYM3TP1w2duptXlgcWYsCewDY73JRqaAxRvCvbVsqKkq1eIgt+3EPrltR+VGLmA6h8UTwOMfGChN06iWCqiNMov75LYdRzudTrO8OcgF9GzlAkpNo1YuojRKzMWjTE8dLSK+F8NcwKX1FNLmwR0cmPrB0nMRtV5kIRFhZgy5bTen31gcHgLhGEaTCSkl1UqJWjFHNOh7WSHY3cpOy7Kf//vxL8vazPqy7L7cCeZuiKIopFIp8oUi/mCYRr2OUUjm5mbHMsjfzPBilMrkcfkCdNpNTGjMz82OZZC/mWEu4Foyjc3tp9/tYJLKRML1w4vRykYKo92NpvYxqj1OjGgmv592Pp/nysoGbaMdpMQhu5xdnB3LIL9du1QqcWFplYpqBmHATYdzYxrkt1Mul7lwbYVSzwAmM061yQOLM8QmMJOvVqs8f/k6G9U+ChaC5s6hc9uOyjAXcK3UpW+04hdtzp+cZmYMg/x2ms0mV66vkq51kBYn5m6NUzPRIy97H4ZWq8Xy6hqFRgezw0O/UWEmEpjIID+I1K+TqzawuLz0GxXiwcPlth2VbrfL6toG6VIVs8tHv1kl5nMzf4jctqMyrNpfz5YwunyorRoRj4OTC+PPbVMUhY3NTdL5Eg5PkE6zistqZmF+dqTdIm43O0XuPjuByJ1Lj9ztz51k7oa0223S6TQej2fsg/x2ut0uqVQKh8Mx8VL0Xq9HMpXCZrVOPFzf7/dJptKYzSbiI1r2PiiKopBMpRFCMJUYzbL3QVFVlWQ6g6qqzIxo2fugDJcNu/0+M1OJic7kpZRkMlnqzRbzs6OPiO+nnc/nKVXrzM9MjX2Q365dKpUolMrMTk9NPIG9XC6TL5aYiscmPshXq1WyuTyJeGzsk+Xt1Ot1Upks8Whk7JPl7TSbTZKpDJFwcOK5ba1Wi1Q6Q8DvG/tk+XagR+4Ox31v7nR0dHR0dHTubPTI3eG4Oxrc6Ojo6Ojo6OhsIQCT8c5uvHw70c2djo6Ojo6Ozl2FBFTtdp/FncvdWxeto6Ojo6Ojo6PzMvTInY6Ojo6Ojs5dhQBMBn1Zdjd0c6ejo6Ojo6NzVyEBRZtcQejdhm7udHR0dHR0dO4q9Mjd3ujmTkdHR0dHR+euQgLqBFu53W3o5k5HR0dHR0fnrkIIMOqRu13RzZ2Ojo6Ojo7OXYWUoOo5d7uimzsdHR0dHR2duwoBCPTI3W7o5k5HR0dHR0fn7kKAUe/Uuyu6udPR0dHR0dG5u5Cg6Xeo2BXd3Ono6Ojo6OjcXeiRuz3RzZ2Ojo6Ojo7O3YUEVa+n2BXd3Ono6Ojo6OjcXeiRuz3RvxodHR0dHR2duwsJqjb+7SAIIb5BCHFFCLEkhPhPO7xuFUL8r63X/14IMT/ib+Nl6JE7HR0dHR0dnbuLO6SJsRDCCPw34GuBTeCLQog/k1JevGm3NwFlKeVJIcR3AD8D/PNxnpceudPR0dHR0dG5u9iqlh33dgBeCSxJKZellD3g94Fv3bbPtwIf2Xr8h8DrhBBjdaZ65E5HR0dHR0fn7kKA4c4IT00BGzc93wT+wW77SCkVIUQVCAKFcZ3URM3d008/XRBCrE1S8xCEGOMXrWvr2rq2rq1r3zf696v2OJm7+ckzTz/9V2ajCE1A1yaE+NJNzz8kpfzQBHSPxUTNnZQyPEm9wyCE+JKU8gldW9fWtXVtXfvu1r7d+ver9iSRUn7D7T6HLZLAzE3Pp7d+ttM+m0IIE+AFiuM8qTsjqKmjo6Ojo6Ojc/fxReCUEGJBCGEBvgP4s237/Bnwxq3H/wz4pJRyrF369Jw7HR0dHR0dHZ0jsJVD91bgrwAj8OtSygtCiJ8AviSl/DPgw8D/TwixBJQYGMCxopu7l7ida+i6tq6ta+vauva9o3+/at+XSCn/HPjzbT97102PO8C3T/KcxJgjgzo6Ojo6Ojo6OhNEz7nT0dHR0dHR0bmHuO/N3X63DRmz9q8LIXJCiBcnrDsjhHhKCHFRCHFBCPGDE9a3CSG+IIR4bkv/v0xY3yiEeFYI8bFJ6m5prwohXhBCfHlbef0ktH1CiD8UQlwWQlwSQvyjCeme2fq8w60mhHj7JLS39N+x9Xv2ohDi94QQtglq/+CW7oVxf+adridCiIAQ4uNCiGtb//dPUPvbtz63JoQYW/XmLtrv2/o9f14I8SdCCN8Etd+7pftlIcRfCyESk9K+6bV3CiGkEBNpFaJzB3Jfm7ubbhvyjcA54DuFEOcmeAq/CdyOcm4FeKeU8hzwD4F/N+HP3QVeK6V8BHgU+AYhxD+coP4PApcmqLed10gpH70N7Qp+EfhLKeVZ4BEm9B1IKa9sfd5HgceBFvAnk9AWQkwBbwOekFKeZ5DwPPZk5i3t88D/zaCD/SPANwshTo5R8jd5+fXkPwGfkFKeAj6x9XxS2i8C3wZ8Zkyae2l/HDgvpXwYuAr8yAS13yelfHjr9/1jwLu2v2mM2gghZoCvA9bHpKtzF3BfmzsOdtuQsSGl/AyDypmJIqVMSymf2XpcZzDIT01QX0opG1tPzVvbRJI/hRDTwP8B/Nok9O4UhBBe4FUMqraQUvaklJXbcCqvA65LKSfZzNwE2Lf6SzmA1IR0HwD+XkrZklIqwKcZmJ2xsMv15ObbHn0E+L8mpS2lvCSlvDIOvQNo//XWdw7wdwx6j01Ku3bTUydjurbtMX78AvBD49LVuTu4383dTrcNmZjJuRMQQswDrwD+fsK6RiHEl4Ec8HEp5aT0P8DgwnewuwaOHgn8tRDiaSHE909QdwHIA7+xtST9a0II5wT1h3wH8HuTEpNSJoGfYxDFSANVKeVfT0j+ReAfCyGCQggH8E3c2ux0EkSllOmtxxkgOmH9O4HvBf5ikoJCiJ8SQmwA38X4Inc76X4rkJRSPjcpTZ07k/vd3N3XCCFcwB8Bb9822xw7Ukp1a9liGnjl1hLWWBFCfDOQk1I+PW6tPfhqKeVjDFIB/p0Q4lUT0jUBjwH/Q0r5CqDJ+JbodmSrwee3AH8wQU0/g+jVApAAnEKI756EtpTyEvAzwF8Dfwl8GVAnob3L+Ujus2iOEOJHGaSh/M4kdaWUPyqlnNnSfeskNLcmEP+ZCZpJnTuX+93cHeS2IfckQggzA2P3O1LKP75d57G1NPgUk8k9/CrgW4QQqwyW4F8rhPjtCejeYCuShJQyxyDv7JUTkt4ENm+KkP4hA7M3Sb4ReEZKmZ2g5uuBFSllXkrZB/4Y+MpJiUspPyylfFxK+SqgzCD/a5JkhRBxgK3/5yasf9sQQvxr4JuB7xr33QD24HeAfzohrRMMJjHPbV3jpoFnhBCxCenr3EHc7+buILcNuecQQggGuVeXpJQ/fxv0w8PqNSGEHfha4PK4daWUPyKlnJZSzjP4t/6klHIiURwAIYRTCOEePmaQ9DyRSmkpZQbYEEKc2frR64CLk9C+ie9kgkuyW6wD/1AI4dj6vX8dEyymEUJEtv4/yyDf7ncnpb3Fzbc9eiPwpxPWvy0IIb6BQfrFt0gpWxPWPnXT029lAtc2ACnlC1LKiJRyfusatwk8tvW3r3OfcV/foWK324ZMSl8I8XvAq4GQEGITeLeU8sMTkP4q4F8CL2zlvQH8560u25MgDnxkq1rZAHxUSjnxtiS3gSjwJwOPgQn4XSnlX05Q/weA39mayCwD3zMp4S0z+7XAmyelCSCl/HshxB8CzzBYnnuWyXbw/yMhRBDoA/9unEUsO11PgP8H+KgQ4k3AGvCGCWqXgF8GwsD/J4T4spTy6yek/SOAFfj41t/b30kp3zIh7W/amkRpDL7zkevupj2h8UPnLkC/Q4WOjo6Ojo6Ozj3E/b4sq6Ojo6Ojo6NzT6GbOx0dHR0dHR2dewjd3Ono6Ojo6Ojo3EPo5k5HR0dHR0dH5x5CN3c6Ojo6Ojo6OvcQurnT0dHR0dHR0bmH0M2djo6Ojo6Ojs49hG7udHR0dHR0dHTuIf7/0PtUnksnFkYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(figsize=(10,10))\n", + "ax = f.add_subplot(111)\n", + "\n", + "ax.set_aspect('equal')\n", + "\n", + "# iteratively add hexagons\n", + "for i in range(weights.shape[0]):\n", + " for j in range(weights.shape[1]):\n", + " wy = yy[(i, j)] * 2 / np.sqrt(3) * 3 / 4\n", + " hex = RegularPolygon((xx[(i, j)], wy), \n", + " numVertices=6, \n", + " radius=.95 / np.sqrt(3),\n", + " facecolor=cm.Blues(umatrix[i, j]), \n", + " alpha=.4, \n", + " edgecolor='gray')\n", + " ax.add_patch(hex)\n", + "\n", + "markers = ['o', '+', 'x']\n", + "colors = ['C0', 'C1', 'C2']\n", + "for cnt, x in enumerate(data):\n", + " # getting the winner\n", + " w = som.winner(x)\n", + " # place a marker on the winning position for the sample xx\n", + " wx, wy = som.convert_map_to_euclidean(w) \n", + " wy = wy * 2 / np.sqrt(3) * 3 / 4\n", + " plt.plot(wx, wy, \n", + " markers[t[cnt]-1], \n", + " markerfacecolor='None',\n", + " markeredgecolor=colors[t[cnt]-1], \n", + " markersize=12, \n", + " markeredgewidth=2)\n", + "\n", + "xrange = np.arange(weights.shape[0])\n", + "yrange = np.arange(weights.shape[1])\n", + "plt.xticks(xrange-.5, xrange)\n", + "plt.yticks(yrange * 2 / np.sqrt(3) * 3 / 4, yrange)\n", + "\n", + "divider = make_axes_locatable(plt.gca())\n", + "ax_cb = divider.new_horizontal(size=\"5%\", pad=0.05) \n", + "cb1 = colorbar.ColorbarBase(ax_cb, cmap=cm.Blues, \n", + " orientation='vertical', alpha=.4)\n", + "cb1.ax.get_yaxis().labelpad = 16\n", + "cb1.ax.set_ylabel('distance from neurons in the neighbourhood',\n", + " rotation=270, fontsize=16)\n", + "plt.gcf().add_axes(ax_cb)\n", + "\n", + "legend_elements = [Line2D([0], [0], marker='o', color='C0', label='Kama',\n", + " markerfacecolor='w', markersize=14, linestyle='None', markeredgewidth=2),\n", + " Line2D([0], [0], marker='+', color='C1', label='Rosa',\n", + " markerfacecolor='w', markersize=14, linestyle='None', markeredgewidth=2),\n", + " Line2D([0], [0], marker='x', color='C2', label='Canadian',\n", + " markerfacecolor='w', markersize=14, linestyle='None', markeredgewidth=2)]\n", + "ax.legend(handles=legend_elements, bbox_to_anchor=(0.1, 1.08), loc='upper left', \n", + " borderaxespad=0., ncol=3, fontsize=14)\n", + "\n", + "plt.savefig('resulting_images/som_seed_hex.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting: bokeh\n", + "Below, we are plotting using bokeh to create an interactive hexagonal topology.\n", + "\n", + "> Note: Compared to matplotlib plot, this is rotated 90 degrees." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "hex_centre_col, hex_centre_row = [], []\n", + "hex_colour = []\n", + "label = []\n", + "\n", + "# define labels\n", + "SPECIES = ['Kama', 'Rosa', 'Canadian']\n", + "\n", + "for i in range(weights.shape[0]):\n", + " for j in range(weights.shape[1]):\n", + " wy = yy[(i, j)] * 2 / np.sqrt(3) * 3 / 4\n", + " hex_centre_col.append(xx[(i, j)])\n", + " hex_centre_row.append(wy)\n", + " hex_colour.append(cm.Blues(umatrix[i, j]))\n", + "\n", + "weight_x, weight_y = [], []\n", + "for cnt, i in enumerate(data):\n", + " w = som.winner(i)\n", + " wx, wy = som.convert_map_to_euclidean(xy=w)\n", + " wy = wy * 2 / np.sqrt(3) * 3 / 4\n", + " weight_x.append(wx)\n", + " weight_y.append(wy)\n", + " label.append(SPECIES[t[cnt]-1])\n", + " \n", + "# convert matplotlib colour palette to bokeh colour palette\n", + "hex_plt = [(255 * np.array(i)).astype(int) for i in hex_colour]\n", + "hex_bokeh = [RGB(*tuple(rgb)).to_hex() for rgb in hex_plt]" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function embed_document(root) {\n", + " \n", + " var docs_json = {\"f293967f-2312-4173-861b-1f53293fad9a\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"5662\"}],\"center\":[{\"id\":\"5665\"},{\"id\":\"5669\"},{\"id\":\"5700\"}],\"left\":[{\"id\":\"5666\"}],\"match_aspect\":true,\"plot_height\":800,\"plot_width\":800,\"renderers\":[{\"id\":\"5682\"},{\"id\":\"5689\"}],\"title\":{\"id\":\"5652\"},\"toolbar\":{\"id\":\"5673\"},\"x_range\":{\"id\":\"5654\"},\"x_scale\":{\"id\":\"5658\"},\"y_range\":{\"id\":\"5656\"},\"y_scale\":{\"id\":\"5660\"}},\"id\":\"5651\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"data_source\":{\"id\":\"5677\"},\"glyph\":{\"id\":\"5680\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"5681\"},\"selection_glyph\":null,\"view\":{\"id\":\"5683\"}},\"id\":\"5682\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"label\":{\"field\":\"species\"},\"renderers\":[{\"id\":\"5689\"}]},\"id\":\"5701\",\"type\":\"LegendItem\"},{\"attributes\":{\"items\":[{\"id\":\"5701\"}]},\"id\":\"5700\",\"type\":\"Legend\"},{\"attributes\":{},\"id\":\"5667\",\"type\":\"BasicTicker\"},{\"attributes\":{\"formatter\":{\"id\":\"5693\"},\"ticker\":{\"id\":\"5667\"}},\"id\":\"5666\",\"type\":\"LinearAxis\"},{\"attributes\":{\"data\":{\"c\":[\"#E4EFF9\",\"#B9D5EA\",\"#D2E3F3\",\"#92C3DE\",\"#D1E2F2\",\"#9AC7E0\",\"#CFE1F2\",\"#8FC1DD\",\"#C1D9ED\",\"#8ABFDC\",\"#D1E2F2\",\"#8BC0DD\",\"#C7DBEF\",\"#ABCFE5\",\"#E5EFF9\",\"#CFE1F2\",\"#9AC7E0\",\"#83BBDB\",\"#5DA4D0\",\"#7DB8D9\",\"#83BBDB\",\"#83BBDB\",\"#6AADD5\",\"#60A6D1\",\"#66AAD4\",\"#82BADB\",\"#59A2CF\",\"#5EA5D1\",\"#97C6DF\",\"#D3E3F3\",\"#B9D5EA\",\"#87BDDC\",\"#65AAD3\",\"#65AAD3\",\"#87BDDC\",\"#A3CCE3\",\"#85BCDB\",\"#7FB8DA\",\"#5CA3D0\",\"#63A9D3\",\"#72B1D7\",\"#6DAFD6\",\"#4A97C9\",\"#80B9DA\",\"#CEE0F1\",\"#AACFE5\",\"#6BAED6\",\"#78B5D8\",\"#83BBDB\",\"#90C2DE\",\"#92C3DE\",\"#9AC7E0\",\"#A2CBE2\",\"#70B1D7\",\"#61A7D2\",\"#87BDDC\",\"#A7CEE4\",\"#66AAD4\",\"#7DB8D9\",\"#C9DDF0\",\"#75B3D8\",\"#3787C0\",\"#72B1D7\",\"#95C5DF\",\"#7FB8DA\",\"#7DB8D9\",\"#A1CBE2\",\"#A0CAE1\",\"#80B9DA\",\"#61A7D2\",\"#82BADB\",\"#85BCDB\",\"#82BADB\",\"#80B9DA\",\"#C8DCEF\",\"#5AA3CF\",\"#2C7CBB\",\"#6AADD5\",\"#88BEDC\",\"#80B9DA\",\"#61A7D2\",\"#87BDDC\",\"#7BB7D9\",\"#73B2D7\",\"#6BAED6\",\"#5DA4D0\",\"#539DCC\",\"#6BAED6\",\"#7FB8DA\",\"#BFD8EC\",\"#559FCD\",\"#09539D\",\"#4191C5\",\"#2878B8\",\"#549ECD\",\"#509BCB\",\"#67ABD4\",\"#77B4D8\",\"#7AB6D9\",\"#9DC9E0\",\"#67ABD4\",\"#549ECD\",\"#4896C8\",\"#66AAD4\",\"#BBD6EB\",\"#2474B6\",\"#08306B\",\"#08468C\",\"#135FA7\",\"#2171B5\",\"#3D8DC3\",\"#66AAD4\",\"#70B1D7\",\"#90C2DE\",\"#A5CDE3\",\"#95C5DF\",\"#80B9DA\",\"#5AA3CF\",\"#5AA3CF\",\"#A3CCE3\",\"#2A7AB9\",\"#1C6BB0\",\"#2979B9\",\"#6DAFD6\",\"#3A8AC1\",\"#3787C0\",\"#3D8DC3\",\"#62A8D2\",\"#8FC1DD\",\"#93C4DE\",\"#9AC7E0\",\"#A1CBE2\",\"#85BCDB\",\"#6FB0D6\",\"#A2CBE2\",\"#61A7D2\",\"#2E7EBC\",\"#5AA3CF\",\"#7DB8D9\",\"#70B1D7\",\"#4B98C9\",\"#3A8AC1\",\"#6DAFD6\",\"#8ABFDC\",\"#87BDDC\",\"#95C5DF\",\"#97C6DF\",\"#93C4DE\",\"#83BBDB\",\"#B2D2E8\",\"#93C4DE\",\"#2979B9\",\"#2F7FBC\",\"#65AAD3\",\"#77B4D8\",\"#559FCD\",\"#4F9BCB\",\"#3C8CC3\",\"#5DA4D0\",\"#4191C5\",\"#77B4D8\",\"#67ABD4\",\"#8ABFDC\",\"#A5CDE3\",\"#CBDEF0\",\"#98C7DF\",\"#3A8AC1\",\"#3484BF\",\"#7BB7D9\",\"#7DB8D9\",\"#4A97C9\",\"#2777B8\",\"#1764AB\",\"#1866AC\",\"#1F6FB3\",\"#3B8BC2\",\"#509BCB\",\"#70B1D7\",\"#A1CBE2\",\"#D5E5F4\",\"#93C4DE\",\"#4795C8\",\"#5CA3D0\",\"#6AADD5\",\"#65AAD3\",\"#5AA3CF\",\"#3282BE\",\"#67ABD4\",\"#3787C0\",\"#62A8D2\",\"#4E9ACA\",\"#6AADD5\",\"#5DA4D0\",\"#7BB7D9\",\"#CFE1F2\",\"#85BCDB\",\"#58A1CE\",\"#66AAD4\",\"#83BBDB\",\"#6AADD5\",\"#97C6DF\",\"#87BDDC\",\"#BBD6EB\",\"#A6CDE3\",\"#ADD0E6\",\"#90C2DE\",\"#9BC8E0\",\"#509BCB\",\"#69ACD5\",\"#C8DCEF\",\"#BAD6EA\",\"#BED7EC\",\"#92C3DE\",\"#D0E1F2\",\"#A3CCE3\",\"#D4E4F3\",\"#BCD7EB\",\"#DDEAF6\",\"#CBDEF0\",\"#DDEAF6\",\"#C8DCEF\",\"#DAE8F5\",\"#73B2D7\",\"#C3D9EE\",\"#D1E2F2\"],\"x\":[-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5],\"y\":[0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143]},\"selected\":{\"id\":\"5696\"},\"selection_policy\":{\"id\":\"5697\"}},\"id\":\"5677\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"source\":{\"id\":\"5678\"}},\"id\":\"5690\",\"type\":\"CDSView\"},{\"attributes\":{\"axis\":{\"id\":\"5666\"},\"dimension\":1,\"ticker\":null},\"id\":\"5669\",\"type\":\"Grid\"},{\"attributes\":{\"factors\":[\"Kama\",\"Rosa\",\"Canadian\"],\"palette\":[\"#1f77b4\",\"#ff7f0e\",\"#2ca02c\"]},\"id\":\"5685\",\"type\":\"CategoricalColorMapper\"},{\"attributes\":{},\"id\":\"5671\",\"type\":\"SaveTool\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"marker\":{\"field\":\"species\",\"transform\":{\"id\":\"5684\"}},\"size\":{\"units\":\"screen\",\"value\":20},\"x\":{\"field\":\"wy\"},\"y\":{\"field\":\"wx\"}},\"id\":\"5688\",\"type\":\"Scatter\"},{\"attributes\":{},\"id\":\"5670\",\"type\":\"WheelZoomTool\"},{\"attributes\":{},\"id\":\"5695\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"5696\",\"type\":\"Selection\"},{\"attributes\":{\"formatter\":{\"id\":\"5695\"},\"ticker\":{\"id\":\"5663\"}},\"id\":\"5662\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"5660\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"5654\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"5698\",\"type\":\"Selection\"},{\"attributes\":{\"data_source\":{\"id\":\"5678\"},\"glyph\":{\"id\":\"5687\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"5688\"},\"selection_glyph\":null,\"view\":{\"id\":\"5690\"}},\"id\":\"5689\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"5699\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"data\":{\"species\":[\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\"],\"wx\":[9.0,0.5,5.5,5.5,11.5,4.5,7.5,4.5,11.0,13.0,7.0,1.5,5.0,5.0,6.0,5.5,5.5,8.5,6.5,3.0,7.0,7.5,10.5,-0.5,-0.5,12.5,1.5,0.5,6.0,5.5,-0.5,9.5,7.0,1.5,9.0,11.5,10.5,12.0,8.5,6.5,3.5,2.5,3.5,7.5,8.5,1.0,10.5,9.0,7.5,8.5,6.0,7.5,7.0,6.5,9.0,9.5,6.5,8.5,10.0,-0.5,1.0,1.5,3.5,5.0,0.0,3.0,-0.5,7.5,-0.5,-0.5,11.0,9.5,9.5,14.0,9.5,9.5,10.5,13.5,12.0,11.5,8.0,9.5,11.5,14.0,13.0,13.0,12.5,14.0,11.5,11.5,14.0,14.0,13.5,9.5,14.0,10.5,12.5,14.0,12.0,13.0,8.5,13.5,9.5,12.5,12.0,12.5,14.0,10.0,14.0,12.0,12.0,11.5,13.5,11.5,12.5,13.5,9.5,14.0,14.0,13.5,11.5,11.0,8.5,13.5,7.5,9.5,11.5,14.0,14.0,8.5,13.5,13.0,8.0,8.5,7.5,7.5,11.0,9.5,9.5,8.5,5.5,5.5,5.5,4.0,-0.5,-0.5,0.0,3.5,-0.5,-0.5,3.5,-0.5,-0.5,-0.5,-0.5,1.5,2.0,0.0,0.0,1.0,-0.5,0.0,2.5,5.0,3.5,0.5,3.5,-0.5,0.0,-0.5,-0.5,3.5,0.5,2.5,0.5,2.5,2.0,1.0,3.0,-0.5,2.5,4.5,4.5,3.0,5.5,-0.5,0.0,0.5,3.5,2.5,2.5,2.0,2.5,1.5,3.5,3.5,4.0,4.5,-0.5,4.0,4.0,3.0,2.0,5.5,2.0,3.0,1.5,5.5,1.5,4.0],\"wy\":[7.794228634059948,12.124355652982143,12.124355652982143,12.124355652982143,12.124355652982143,12.124355652982143,8.660254037844387,12.124355652982143,6.062177826491071,11.258330249197702,2.598076211353316,12.124355652982143,7.794228634059948,7.794228634059948,7.794228634059948,10.392304845413264,10.392304845413264,12.124355652982143,12.124355652982143,6.062177826491071,6.062177826491071,6.9282032302755105,12.124355652982143,8.660254037844387,12.124355652982143,12.124355652982143,6.9282032302755105,6.9282032302755105,7.794228634059948,5.196152422706632,10.392304845413264,8.660254037844387,4.330127018922194,12.124355652982143,7.794228634059948,10.392304845413264,6.9282032302755105,9.526279441628825,8.660254037844387,0.0,12.124355652982143,12.124355652982143,10.392304845413264,1.7320508075688776,10.392304845413264,11.258330249197702,12.124355652982143,9.526279441628825,8.660254037844387,6.9282032302755105,6.062177826491071,0.0,4.330127018922194,8.660254037844387,6.062177826491071,6.9282032302755105,8.660254037844387,12.124355652982143,11.258330249197702,6.9282032302755105,7.794228634059948,8.660254037844387,8.660254037844387,6.062177826491071,9.526279441628825,9.526279441628825,12.124355652982143,6.9282032302755105,12.124355652982143,5.196152422706632,2.598076211353316,3.4641016151377553,1.7320508075688776,6.062177826491071,1.7320508075688776,3.4641016151377553,3.4641016151377553,0.0,0.8660254037844388,8.660254037844387,0.8660254037844388,0.0,0.0,2.598076211353316,2.598076211353316,4.330127018922194,6.9282032302755105,0.8660254037844388,0.0,0.0,2.598076211353316,6.062177826491071,5.196152422706632,0.0,0.8660254037844388,3.4641016151377553,1.7320508075688776,2.598076211353316,2.598076211353316,4.330127018922194,1.7320508075688776,10.392304845413264,0.0,1.7320508075688776,2.598076211353316,6.9282032302755105,6.062177826491071,2.598076211353316,0.8660254037844388,6.062177826491071,6.062177826491071,1.7320508075688776,6.9282032302755105,0.0,0.0,3.4641016151377553,0.0,4.330127018922194,6.062177826491071,1.7320508075688776,0.0,2.598076211353316,3.4641016151377553,8.660254037844387,10.392304845413264,0.0,1.7320508075688776,9.526279441628825,2.598076211353316,0.0,8.660254037844387,6.062177826491071,2.598076211353316,3.4641016151377553,1.7320508075688776,10.392304845413264,4.330127018922194,5.196152422706632,5.196152422706632,1.7320508075688776,3.4641016151377553,1.7320508075688776,1.7320508075688776,2.598076211353316,1.7320508075688776,0.0,6.062177826491071,5.196152422706632,5.196152422706632,0.0,1.7320508075688776,0.0,1.7320508075688776,3.4641016151377553,3.4641016151377553,0.0,4.330127018922194,0.8660254037844388,0.8660254037844388,0.8660254037844388,5.196152422706632,4.330127018922194,1.7320508075688776,4.330127018922194,0.0,8.660254037844387,1.7320508075688776,5.196152422706632,2.598076211353316,3.4641016151377553,0.0,0.0,3.4641016151377553,0.0,0.0,3.4641016151377553,0.8660254037844388,2.598076211353316,0.8660254037844388,6.9282032302755105,3.4641016151377553,3.4641016151377553,3.4641016151377553,2.598076211353316,1.7320508075688776,1.7320508075688776,0.8660254037844388,3.4641016151377553,0.0,3.4641016151377553,0.0,4.330127018922194,6.9282032302755105,1.7320508075688776,5.196152422706632,6.9282032302755105,6.062177826491071,6.9282032302755105,5.196152422706632,9.526279441628825,2.598076211353316,9.526279441628825,4.330127018922194,0.0,6.062177826491071,7.794228634059948,3.4641016151377553,0.0,5.196152422706632,2.598076211353316]},\"selected\":{\"id\":\"5698\"},\"selection_policy\":{\"id\":\"5699\"}},\"id\":\"5678\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"5656\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"5672\",\"type\":\"ResetTool\"},{\"attributes\":{},\"id\":\"5693\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"text\":\"SOM: Hexagonal Topology\"},\"id\":\"5652\",\"type\":\"Title\"},{\"attributes\":{\"axis\":{\"id\":\"5662\"},\"ticker\":null},\"id\":\"5665\",\"type\":\"Grid\"},{\"attributes\":{\"source\":{\"id\":\"5677\"}},\"id\":\"5683\",\"type\":\"CDSView\"},{\"attributes\":{\"callback\":null,\"point_policy\":\"follow_mouse\",\"tooltips\":[[\"label\",\"@species\"],[\"(x,y)\",\"($x, $y)\"]]},\"id\":\"5702\",\"type\":\"HoverTool\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"field\":\"c\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"gray\"},\"size\":{\"units\":\"screen\",\"value\":54.84827557301445},\"x\":{\"field\":\"y\"},\"y\":{\"field\":\"x\"}},\"id\":\"5681\",\"type\":\"Hex\"},{\"attributes\":{\"fill_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"line_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"marker\":{\"field\":\"species\",\"transform\":{\"id\":\"5684\"}},\"size\":{\"units\":\"screen\",\"value\":20},\"x\":{\"field\":\"wy\"},\"y\":{\"field\":\"wx\"}},\"id\":\"5687\",\"type\":\"Scatter\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.4},\"fill_color\":{\"field\":\"c\"},\"line_alpha\":{\"value\":0.4},\"line_color\":{\"value\":\"gray\"},\"size\":{\"units\":\"screen\",\"value\":54.84827557301445},\"x\":{\"field\":\"y\"},\"y\":{\"field\":\"x\"}},\"id\":\"5680\",\"type\":\"Hex\"},{\"attributes\":{},\"id\":\"5697\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"5658\",\"type\":\"LinearScale\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"5670\"},{\"id\":\"5671\"},{\"id\":\"5672\"},{\"id\":\"5702\"}]},\"id\":\"5673\",\"type\":\"Toolbar\"},{\"attributes\":{\"factors\":[\"Kama\",\"Rosa\",\"Canadian\"],\"markers\":[\"diamond\",\"cross\",\"x\"]},\"id\":\"5684\",\"type\":\"CategoricalMarkerMapper\"},{\"attributes\":{},\"id\":\"5663\",\"type\":\"BasicTicker\"}],\"root_ids\":[\"5651\"]},\"title\":\"Bokeh Application\",\"version\":\"2.2.3\"}};\n", + " var render_items = [{\"docid\":\"f293967f-2312-4173-861b-1f53293fad9a\",\"root_ids\":[\"5651\"],\"roots\":{\"5651\":\"b7926dd9-1983-4107-964d-36c43895fa8c\"}}];\n", + " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", + "\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " embed_document(root);\n", + " } else {\n", + " var attempts = 0;\n", + " var timer = setInterval(function(root) {\n", + " if (root.Bokeh !== undefined) {\n", + " clearInterval(timer);\n", + " embed_document(root);\n", + " } else {\n", + " attempts++;\n", + " if (attempts > 100) {\n", + " clearInterval(timer);\n", + " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", + " }\n", + " }\n", + " }, 10, root)\n", + " }\n", + "})(window);" + ], + "application/vnd.bokehjs_exec.v0+json": "" + }, + "metadata": { + "application/vnd.bokehjs_exec.v0+json": { + "id": "5651" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "output_file(\"resulting_images/som_seed_hex.html\")\n", + "\n", + "# initialise figure/plot\n", + "fig = figure(title=\"SOM: Hexagonal Topology\",\n", + " plot_height=800, plot_width=800,\n", + " match_aspect=True,\n", + " tools=\"wheel_zoom,save,reset\")\n", + "\n", + "# create data stream for plotting\n", + "source_hex = ColumnDataSource(\n", + " data = dict(\n", + " x=hex_centre_col,\n", + " y=hex_centre_row,\n", + " c=hex_bokeh\n", + " )\n", + ")\n", + "\n", + "source_pages = ColumnDataSource(\n", + " data=dict(\n", + " wx=weight_x,\n", + " wy=weight_y,\n", + " species=label\n", + " )\n", + ")\n", + "\n", + "# define markers\n", + "MARKERS = ['diamond', 'cross', 'x']\n", + "\n", + "# add shapes to plot\n", + "fig.hex(x='y', y='x', source=source_hex,\n", + " size=100 * (.95 / np.sqrt(3)),\n", + " alpha=.4,\n", + " line_color='gray',\n", + " fill_color='c')\n", + "\n", + "fig.scatter(x='wy', y='wx', source=source_pages, \n", + " legend_field='species',\n", + " size=20, \n", + " marker=factor_mark(field_name='species', markers=MARKERS, factors=SPECIES),\n", + " color=factor_cmap(field_name='species', palette='Category10_3', factors=SPECIES))\n", + "\n", + "# add hover-over tooltip\n", + "fig.add_tools(HoverTool(\n", + " tooltips=[\n", + " (\"label\", '@species'),\n", + " (\"(x,y)\", '($x, $y)')],\n", + " mode=\"mouse\", \n", + " point_policy=\"follow_mouse\"\n", + "))\n", + "\n", + "show(fig)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![bokeh plot](https://htmlpreview.github.io/?https://github.com/JustGlowing/minisom/blob/master/examples/resulting_images/som_seed_hex.html)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.1-final" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/README.md b/README.md deleted file mode 100644 index 5eb8b11..0000000 --- a/README.md +++ /dev/null @@ -1,4 +0,0 @@ -minisom -======= - -MiniSom is minimalistic implementation of the Self Organizing Maps diff --git a/Readme.md b/Readme.md new file mode 100644 index 0000000..566f254 --- /dev/null +++ b/Readme.md @@ -0,0 +1,328 @@ +

MiniSom

+ +Self Organizing Maps +-------------------- + +MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. + +Updates about MiniSom are posted on Twitter. + +Installation +--------------------- + +Just use pip: + + pip install minisom + +or download MiniSom to a directory of your choice and use the setup script: + + git clone https://github.com/JustGlowing/minisom.git + python setup.py install + +How to use it +--------------------- + +In order to use MiniSom you need your data organized as a Numpy matrix where each row corresponds to an observation or as list of lists like the following: + +```python +data = [[ 0.80, 0.55, 0.22, 0.03], + [ 0.82, 0.50, 0.23, 0.03], + [ 0.80, 0.54, 0.22, 0.03], + [ 0.80, 0.53, 0.26, 0.03], + [ 0.79, 0.56, 0.22, 0.03], + [ 0.75, 0.60, 0.25, 0.03], + [ 0.77, 0.59, 0.22, 0.03]] +``` + + Then you can train MiniSom just as follows: + +```python +from minisom import MiniSom +som = MiniSom(6, 6, 4, sigma=0.3, learning_rate=0.5) # initialization of 6x6 SOM +som.train(data, 100) # trains the SOM with 100 iterations +``` + +You can obtain the position of the winning neuron on the map for a given sample as follows: + +``` +som.winner(data[0]) +``` + +For an overview of all the features implemented in minisom you can browse the following examples: https://github.com/JustGlowing/minisom/tree/master/examples + +#### Export a SOM and load it again + +A model can be saved using pickle as follows + +```python +import pickle +som = MiniSom(7, 7, 4) + +# ...train the som here + +# saving the som in the file som.p +with open('som.p', 'wb') as outfile: + pickle.dump(som, outfile) +``` + +and can be loaded as follows + +```python +with open('som.p', 'rb') as infile: + som = pickle.load(infile) +``` + +Note that if a lambda function is used to define the decay factor MiniSom will not be pickable anymore. + +Examples +--------------------- + +Here are some of the charts you'll see how to generate in the examples: + +| | | +:-------------------------:|:-------------------------: +Seeds map ![](https://github.com/JustGlowing/minisom/raw/master/examples/resulting_images/som_seed.png) | Class assignment ![](https://github.com/JustGlowing/minisom/raw/master/examples/resulting_images/som_seed_pies.png) +Handwritteng digits mapping ![](https://github.com/JustGlowing/minisom/raw/master/examples/resulting_images/som_digts.png) | Hexagonal Topology som hexagonal toplogy +Color quantization ![](https://github.com/JustGlowing/minisom/raw/master/examples/resulting_images/som_color_quantization.png) | Outliers detection ![](https://github.com/JustGlowing/minisom/raw/master/examples/resulting_images/som_outliers_detection_circle.png) + +Other tutorials +------------ +- Self Organizing Maps on the Glowing Python by me ;-) +- Lecture notes from the Machine Learning course at the University of Lisbon +- Introduction to Self-Organizing by Derrick Mwiti +- Self Organizing Maps on gapminder data [in German] +- Discovering SOM, an Unsupervised Neural Network by Gisely Alves +- Video tutorials made by the GeoEngineerings School: Part 1; Part 2; Part 3; Part 4 +- Video tutorial Self Organizing Maps: Introduction by SuperDataScience +- MATLAB Implementations and Applications of the Self-Organizing Map by Teuvo Kohonen (Inventor of SOM) + +How to cite MiniSom +------------ +``` +@misc{vettigliminisom, + title={MiniSom: minimalistic and NumPy-based implementation of the Self Organizing Map}, + author={Giuseppe Vettigli}, + year={2018}, + url={https://github.com/JustGlowing/minisom/}, +} +``` + +Who uses Minisom? +------------ + + +Compatibility notes +--------------------- +Minisom has been tested under Python 3.8.0. + +License +--------------------- + +This program is distributed in the hope that it will be useful, but without warranty; without even the implied warranty of merchantability or fitness for a particular purpose. + +MiniSom by Giuseppe Vettigli is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit [http://creativecommons.org/licenses/by/3.0/](http://creativecommons.org/licenses/by/3.0/ "http://creativecommons.org/licenses/by/3.0/"). + +![License]( http://i.creativecommons.org/l/by/3.0/88x31.png "Creative Commons Attribution 3.0 Unported License") diff --git a/examples/AdvancedVisualization.ipynb b/examples/AdvancedVisualization.ipynb new file mode 100644 index 0000000..7e88e37 --- /dev/null +++ b/examples/AdvancedVisualization.ipynb @@ -0,0 +1,15948 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook we will demonstrate some more advanced visualizations of MiniSom results." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For this example we will again load the seeds dataset dataset using pandas:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "columns=['area', 'perimeter', 'compactness', 'length_kernel', 'width_kernel',\n", + " 'asymmetry_coefficient', 'length_kernel_groove', 'target']\n", + "\n", + "data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt', \n", + " names=columns, \n", + " sep='\\t+', engine='python')\n", + "target = data['target'].values\n", + "label_names = {1:'Kama', 2:'Rosa', 3:'Canadian'}\n", + "data = data[data.columns[:-1]]\n", + "# data normalization\n", + "data = (data - np.mean(data, axis=0)) / np.std(data, axis=0)\n", + "data = data.values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can initialize and train MiniSom as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " [ 1000 / 1000 ] 100% - 0:00:00 left \n", + " quantization error: 0.6426435848319221\n" + ] + } + ], + "source": [ + "# Initialization and training\n", + "n_neurons = 9\n", + "m_neurons = 9\n", + "som = MiniSom(n_neurons, m_neurons, data.shape[1], sigma=1.5, learning_rate=.5, \n", + " neighborhood_function='gaussian', random_seed=0)\n", + "\n", + "som.pca_weights_init(data)\n", + "som.train(data, 1000, verbose=True) # random training" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To visualize the quality of clustering of each neuron this map uses colors to show the mean difference of the values corresponding to a neuron and the weights of the neuron. Neurons that aren't winning neuron for any sample are left blank." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "colorscale": [ + [ + 0, + "#440154" + ], + [ + 0.1111111111111111, + "#482878" + ], + [ + 0.2222222222222222, + "#3e4989" + ], + [ + 0.3333333333333333, + "#31688e" + ], + [ + 0.4444444444444444, + "#26828e" + ], + [ + 0.5555555555555556, + "#1f9e89" + ], + [ + 0.6666666666666666, + "#35b779" + ], + [ + 0.7777777777777778, + "#6ece58" + ], + [ + 0.8888888888888888, + "#b5de2b" + ], + [ + 1, + "#fde725" + ] + ], + "type": "heatmap", + "z": [ + [ + 0.19500376564819566, + 0.15137575573796866, + 0.1558671912354286, + 0.18404113829810792, + 0.2533877804356632, + 0.19276790182301884, + 0.2444601503637284, + 0.1736223485331231, + 0.2719804581928287 + ], + [ + 0.19213297020174305, + 0.2025523015173449, + null, + 0.1994678575881093, + 0.1254746560234262, + 0.1574292709231158, + 0.27560104958885784, + 0.1961746211187083, + 0.15448574141042007 + ], + [ + 0.3237787170151113, + 0.14720982450174508, + 0.13330620091986606, + 0.16976446927628178, + 0.3167338066373201, + 0.1676080082718647, + 0.1242679203005204, + 0.20506305054000218, + 0.29636821430538335 + ], + [ + 0.2887058845681858, + 0.17993358838853313, + 0.20375058414014185, + 0.14051918434935698, + 0.13828495952457343, + 0.1042342356843416, + null, + 0.1591620561483639, + 0.21452475955093134 + ], + [ + 0.39970182315056596, + 0.4119286638846524, + 0.20106252987117507, + 0.20397962062806482, + 0.2952333796459999, + 0.1479220094951535, + 0.19829900846501158, + 0.12979890113988218, + null + ], + [ + 0.24712183334018104, + 0.18102952186617038, + 0.1993531682936219, + 0.15970981685601582, + 0.17026404717964416, + null, + 0.07928016884833564, + 0.05060957902666275, + 0.22484898852345653 + ], + [ + 0.22998601485356027, + 0.10398957579066306, + 0.14599698372399825, + 0.1387343973619682, + null, + 0.18263535329705402, + 0.15921197358802225, + 0.1222671591029655, + 0.2038540108636231 + ], + [ + 0.24567963870188955, + null, + 0.1738581185211777, + 0.22447164908015152, + 0.09538193998010673, + 0.1380169784161959, + 0.12192387418564066, + null, + 0.23563971870246356 + ], + [ + 0.28193291963714356, + 0.27837344114524776, + 0.263541983590563, + 0.22896765713793554, + 0.15553911771439174, + 0.15442244837808078, + 0.14471257464214718, + 0.10475034225539684, + 0.08376692626734503 + ] + ] + } + ], + "layout": { + "autosize": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "quality plot" + }, + "xaxis": { + "autorange": true, + "range": [ + -0.5, + 8.5 + ] + }, + "yaxis": { + "autorange": true, + "range": [ + -0.5, + 8.5 + ] + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAHCCAYAAAB14EPnAAAgAElEQVR4XuzdebzVVb3/8XUcMSOzutkl+2lqhppThnpLyorKNLMocsDMHHBIU1ERMM0cAEFQs1BxyEocomhwQiPTyHL2Is4D6kVJMzOjErU8v8f6nrP3ORw4nvU567Pf+7v3fvHHj9/Rz3et735+9zVefPfQ1t7e3h74hQACCCCAAAIIIIAAAggggAACpRJoI9hLdT04GQQQQAABBBBAAAEEEEAAAQQKAYKdJwICCCCAAAIIIIAAAggggAACJRQg2Et4UTglBBBAAAEEEEAAAQQQQAABBAh2ngMIIIAAAggggAACCCCAAAIIlFCAYC/hReGUEEAAAQQQQAABBBBAAAEEECDYeQ4ggAACCCCAAAIIIIAAAgggUEIBgr2EF4VTQgABBBBAAAEEEEAAAQQQQIBg5zmAAAIIIIAAAggggAACCCCAQAkFCPYSXhROCQEEEEAAAQQQQAABBBBAAAGCnecAAggggAACCCCAAAIIIIAAAiUUINhLeFE4JQQQQAABBBBAAAEEEEAAAQQIdp4DCCCAAAIIIIAAAggggAACCJRQgGAv4UXhlBBAAAEEEEAAAQQQQAABBBAg2HkOIIAAAggggAACCCCAAAIIIFBCAYK9hBeFU0IAAQQQQAABBBBAAAEEEECAYOc5gAACCCCAAAIIIIAAAggggEAJBQj2El4UTgkBBBBAAAEEEEAAAQQQQAABgp3nAAIIIIAAAggggAACCCCAAAIlFCDYS3hROCUEEEAAAQQQQAABBBBAAAEECHaeAwgggAACCCCAAAIIIIAAAgiUUIBgL+FF4ZQQQAABBBBAAAEEEEAAAQQQINh5DiCAAAIIIIAAAggggAACCCBQQgGCvYQXhVNCAAEEEEAAAQQQQAABBBBAgGDnOYAAAggggAACCCCAAAIIIIBACQUI9hJeFE4JAQQQQAABBBBAAAEEEEAAAYKd5wACCCCAAAIIIIAAAggggAACJRQg2Et4UTglBBBAAAEEEEAAAQQQQAABBAh2ngMIIIAAAggggAACCCCAAAIIlFCAYC/hReGUEEAAAQQQQAABBBBAAAEEECDYeQ4ggAACCCCAAAIIIIAAAgggUEIBgr2EF4VTQgABBBBAAAEEEEAAAQQQQIBg5zmAAAIIIIAAAggggAACCCCAQAkFCPYSXhROCQEEEEAAAQQQQAABBBBAAAGCnecAAggggAACCCCAAAIIIIAAAiUUINhLeFE4JQQQQAABBBBAAAEEEEAAAQQIdp4DCCCAAAIIIIAAAggggAACCJRQgGB3uCgvvrQkHDr2rDD64BFhyJaDw3/+85/ww1k3hFVXWTns/aVPhba2Nodd7Ev0PC/7ChyBAAIIIIAAAggggAACCCBQLwGC3UG+Zxi/9tq/w+nfvzy8aY3VwxEHfCmsvPLKDrvYlyDY7WYcgQACCCCAAAIIIIAAAgiURYBgd7gSKWH8178tCZO/f3k47rA9w9prDXTYte8lUs6rt1Xqcb59PyImEEAAAQQQQAABBBBAAIHWESDYHa51ShjfMf+hcNaMn4bvTTiiIYK9HufrcClYAgEEEEAAAQQQQAABBBBoGoGmC/YXXvx7uHDm1eEX198SXnnl1fDJHT4YDvnabuG8H/8qjNh1x+I95gufWhwOGjM1TBh/YPFz5dfSpa+GE8+4OGz/wc3C8J2HFv946Suvhl/M+X246oY/hPsefiKsvNJKxZpHHfSVMGidtxczKwr2aTNmFf/u8K9/MVww8+pw4WXXhFdefa2617eP3jcsePDxMPDNa4ajDxqxzMvmFy3+czh03FnhuG/sGXbYdvPlnmyzr50Xnlz0p7Djh7cKZ13w03DXvY+Ed7xtrbDPlz8dRn7pU2HA6qv1el7t7e3h/oefDGdf9LNw+z0PFo/no9tvGQ7e5/Nh8Eb/L8SX86/ofE8Zs3/VpGme/TwQBBBAAAEEEEAAAQQQQKDEAk0V7C/9/Z/hmFPODauuvHI45pDdw9pvHRgeeOTJMP2HvwwLn/pT+O6ph5uDfck/Xw5X/OI3xXHrvWed8OLfloSJ58wM73rn28IJR30trLbqKm8Y7KNHjSguf4zsWVfdFKZPOrJ6h/33ty8ogvv7E48M67xj7erT5Nobbws/vfqmcOZJh4W13rLmCoN98vcvC0O22qT4y4j/Xudt4cFHnireN/8/H9osHHvI7sVfAKzoLxJuvfuBcMLpF4X999ql+IuHf//7P+Fn1/4uzL7md+GsUw4LW2yyYa/nW+LnMaeGAAIIIIAAAggggAACCDSdQFMF+w033xHOvvBn4bzTR4f3DHpn9WLdeMvd4fDjvxsuOXusOdhXdMVvvnV+OO+Hv6rG9xvdYX+jYI9/wXDUSd8LX/7cjmHnT2xXbPWvl5eG8RMvCJtuvH4YtfeuK3zCxfi/6PJrlnucMcZPOuOS8N1TDg8bb/ie5YK9svYm74trf6766fXxU+2nnHtl+Oe/Xq7+JcSK/oKh6Z79PCAEEEAAAQQQQAABBBBAoMQCTRXs51w0O/zpzy+E+HLz1Vdbtcre8yXwlpfEr+jaxfd3TztvVnawx7Uv/8Vvwm13PxAmjDswvGmNAeGRxxeF4047P5x+/EFFdK/oV4zpP9x5XzhlzH5hjQGrV0f++uLfw8FjzwwH7LVz+PTHhiwX7E8uejZ8Y/xZxXEf3HzjZZaOsT9l+hVh+qSjirv9BHuJ/6+WU0MAAQQQQAABBBBAAIGWEGiqYK+8b7xyV7tyBXveAbcE+8tLXwm/uO734Ybf3Vm89/0vf32pWDa+dLzy8vb+3mGP68T3qx/9nXPDd47ZN2zyvvXCj396Q1jw0MJw8jH7hQEDOt6L3vNXjOlb775/uZnKecT36sf34K/ocY+fdGGYMPaAsMF6g5ZZNv4lxPgJF4TzJx9d/DuCvSX+758HiQACCCCAAAIIIIAAAiUWaLpgf+nv/wjfOuKrYdVVV6myp95h7xm8lffED1xzjfDN/b8U3v2udxTret5hjx/ydurZPw6D1nlH2GO3T4RjTp4evrjzR6svke8t2H97yz1h0vGjwppvGlAd4Q57if8vjVNDAAEEEEAAAQQQQAABBIwCTRXs8T3sMy69OnzvtCOKD4Wr/Iof7hZfCn7h1GOL97A//afnwyFjzwzHH7F32P6Dm1bnHnjkqfCN8WeGw/f7UnGHOob+0SefW9yRjne/K7/ih8L9eNYNpjvsv7rhD+Hyn/9mmQ+d635+P/zJnLDnFz8ZLr78ujDtpG+Ed77jrb1eSsV72N/ofI3PMcYRQAABBBBAAAEEEEAAAQT6IdBUwd7zjnj8hPWHH19URHB8mXnlU+Jffe3f4ZQzfxie/fNfw7jDRxafJv/UoueKrzp7atGz4bD9hhfB/ue//C0cdvzZYdutBoevfeUzxVeg3bXgkTDt/FnhbW8dWP1O9ZSXxN/74OPFB9+NPWyvsP02m4bVVl21enc8nveYU88rPoH+Q1sNXu5r3npe1xjsp333x2G7rTcNh339i8t8SvynPvahcMg+n+/1U+IrL32vfEp8XPtn1/wuzPz53OIvOrbctONT4t/ofPvxPOMQBBBAAAEEEEAAAQQQQAABo0BTBXt87DGyz/3RL8Mv5/y+oIhfXbbv7juFU8+6NIw+eET1e9e7z/3n9dfDtltvEg7f74vh6l//MQzeaL3qd47fveCRMOmcy8L9jzwZ3jJwzfCFz3wk7LbTDmHGpVeFE47ap/iKtpRgj5/EftnPf1N8H/vf/v6PcOjXvhAO+mrXp8DHD587c8asMGPyMWGrD2z0hpcxBvsf77wvfPaT24VLrpxj+h72uPBDj/1fOO9Hvwq/u3V+sU/372GvbNzX+RqfZ4wjgAACCCCAAAIIIIAAAggYBZou2Ff0+FcU1Eanmo/HYP/DHfcv9770FW3c24fO1fwk2QABBBBAAAEEEEAAAQQQQEAmQLDLqHvfqPJ97J/66IfCnl/4ZJ9nRLD3ScQAAggggAACCCCAAAIIINDwAgR7nS5he3t7+Mc/Xw5LX3k1/PAn14cHHn0ynHHCIeFta7+lzzMi2PskYgABBBBAAAEEEEAAAQQQaHgBgr1Ol/CVV18L35l6SbjmN7cW758f/829w3vf866ksyHYk5gYQgABBBBAAAEEEEAAAQQaWqAlgr2hrxAnjwACCCCAAAIIIIAAAggg0JICBHtLXnYeNAIIIIAAAggggAACCCCAQNkFCPayXyHODwEEEEAAAQQQQAABBBBAoCUFCPaWvOw8aAQQQAABBBBAAAEEEEAAgbILEOxlv0KcHwIIIIAAAggggAACCCCAQEsKEOwtedl50AgggAACCCCAAAIIIIAAAmUXINjLfoU4PwQQQAABBBBAAAEEEEAAgZYUINhb8rLzoBFAAAEEEEAAAQQQQAABBMouQLCX/QpxfggggAACCCCAAAIIIIAAAi0pQLC35GXnQSOAAAIIIIAAAggggAACCJRdgGAv+xXi/BBAAAEEEEAAAQQQQAABBFpSgGBvycvOg0YAAQQQQAABBBBAAAEEECi7AMFe9ivE+SGAAAIIIIAAAggggAACCLSkAMHekpedB40AAggggAACCCCAAAIIIFB2AYK97FeI80MAAQQQQAABBBBAAAEEEGhJAYK9JS87DxoBBBBAAAEEEEAAAQQQQKDsAgR72a8Q54cAAggggAACCCCAAAIIINCSAgR7S152HjQCCCCAAAIIIIAAAggggEDZBQj2sl8hzg8BBBBAAAEEEEAAAQQQQKAlBQj2lrzsPGgEEEAAAQQQQAABBBBAAIGyCxDsZb9CnB8CCCCAAAIIIIAAAggggEBLChDsLXnZedAIIIAAAggggAACCCCAAAJlFyDYy36FOD8EEEAAAQQQQAABBBBAAIGWFCDYW/Ky86ARQAABBBBAAAEEEEAAAQTKLkCwl/0KcX4IIIAAAggggAACCCCAAAItKUCwt+Rl50EjgAACCCCAAAIIIIAAAgiUXYBgL/sV4vwQQAABBBBAAAEEEEAAAQRaUoBgb8nLzoNGAAEEEEAAAQQQQAABBBAouwDBXvYrxPkhgAACCCCAAAIIIIAAAgi0pADB3pKXnQeNAAIIIIAAAggggAACCCBQdgGCvexXiPNDAAEEEEAAAQQQQAABBBBoSQGCvSUvOw8aAQQQQAABBBBAAAEEEECg7AIEe9mvEOeHAAIIIIAAAggggAACCCDQkgIEe0tedh40AggggAACCCCAAAIIIIBA2QUI9rJfIc4PAQQQQAABBBBAAAEEEECgJQUI9pa87DxoBBBAAAEEEEAAAQQQQACBsgsQ7GW/QpwfAggggAACCCCAAAIIIIBASwoQ7C152XnQCCCAAAIIIIAAAggggAACZRcg2Mt+hTg/BBBAAAEEEEAAAQQQQACBlhQg2FvysvOgEUAAAQQQQAABBBBAAAEEyi5AsJf9CnF+CCCAAAIIIIAAAggggAACLSlAsLfkZedBI4AAAggggAACCCCAAAIIlF2AYC/7FeL8EEAAAQQQQAABBBBAAAEEWlKAYG/Jy86DRgABBBBAAAEEEEAAAQQQKLsAwV72K8T5IYAAAggggAACCCCAAAIItKQAwd6Sl50HjQACCCCAAAIIIIAAAgggUHYBgj3zCm39qxMzV+DwVIHXX29LHWXOQWDpy6s5rMISKQL/eXZAyhgzDgJvv9thEZZIF2hPH2UyT2CVV8DOE0w/es0nl6QPM5ktsNIL/8hegwXSBOYsnJo2yJRUgGDP5CbYMwENhxPsBiyHUYLdATFxCYI9EcphjGB3QLQsQUNatLJmCfYsPtPBBLuJK3uYYM8mTF6AYE+mkg4S7JncBHsmoOFwgt2A5TBKsDsgJi5BsCdCOYwR7A6IliUIdotW1izBnsVnOphgN3FlDxPs2YTJCxDsyVTSQYI9k5tgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGyBMFu0cqaJdiz+EwHE+wmruxhgj2bMHkBgj2ZSjpIsGdyE+yZgIbDCXYDlsMowe6AmLgEwZ4I5TBGsDsgWpYg2C1aWbMEexaf6WCC3cSVPUywZxMmL0CwJ1NJBwn2TG6CPRPQcDjBbsByGCXYHRATlyDYE6Ecxgh2B0TLEgS7RStrlmDP4jMdTLCbuLKHCfZswuQFCPZkKukgwZ7JTbBnAhoOJ9gNWA6jBLsDYuISBHsilMMYwe6AaFmCYLdoZc0S7Fl8poMJdhNX9jDBnk2YvADBnkwlHSTYM7kJ9kxAw+EEuwHLYZRgd0BMXIJgT4RyGCPYHRAtSxDsFq2sWYI9i890MMFu4soeJtizCZMXINiTqaSDBHsmN8GeCWg4nGA3YDmMEuwOiIlLEOyJUA5jBLsDomUJgt2ilTVLsGfxmQ4m2E1c2cMEezZh8gIEezKVdJBgz+Qm2DMBDYcT7AYsh1GC3QExcQmCPRHKYYxgd0C0LEGwW7SyZgn2LD7TwQS7iSt7mGDPJkxegGBPppIOEuwJ3C++tCQcOvascO+DjxfTp4zZPwzfeWjx/yfYEwCdRgh2J8jEZQj2RCiHMYLdATFxCYI9EcprjGD3kuxzHYK9TyK3AYLdjTJpIYI9icllSBXsrz+7cWhrawvt7V3/I6H4uW2dh12c1IsQ7Ani02bMCuuv+64i0mO8j594QTj2kD3CBusNItgT/LxGCHYvybR1CPY0J48pgt1DMW0Ngj3NyW2KYHej7Gshgr0vIb9/T7D7WaasRLCnKPnMqIL9tWc39jlh4yqrvusR4xHlGCfY+7gOS5e+Gqace0UYOXxYEejxVwz4odttHoZsOZhgFz6PCXYhdgiBYNd5E+w6a4JdZ13sRLDLwAl2GXUg2HXWcSeCXeetCvalf9o4tFUeVueddsXPq/83wa57Nol3umP+Q2HWVTeFk4/ZLyx4eGH1/z9gwGoEu/BaEOxCbIJdik2w67gJdp01wa61Jth13gS7zppg11qrgv1ff3q/9oF17vam/172JfELn1ocDhozNSx+7oWwxSYbhumTjgxrrzWw13OrvE169MEjihu3ql/cYU+UjtG+7xGTwi7Dti/CPcZ6/MV72BMBHcYIdgdEwxLcYTdgZY4S7JmAhsMJdgOWxyh32D0Uk9Yg2JOYXIYIdhfG5EW4w55MlT2oCvYlf3p/aAttoT20F3fa4/9UKH5+838/VDXq+Srq2HrzblsQRo8a0avjjEuvCs89/2LY6RPbEuzZzzbnBeJL4OOveAHj38SMn3RhmDD2AN7D7uzc13IEe19Cvv+eYPf1fKPVCHadNcGusy52Ithl4AS7jJqXxOuoi50Idh24KthfWlyfO+xrDeq6wx6bbubsucXnksUbsT0/p6yneiXo4+eavefd/0Ww656Wfe8UL97Ec2aGcYePrL5EIl6wRc88X3wIHXfY+zb0miDYvSTT1iHY05w8pgh2D8W0NQj2NCe3KYLdjbKvhQj2voT8/j132P0sU1Yi2FOUfGZUwf7XxfEOe+ed9W7vYS/utNfw57W7BXvPO+or+tyyimrswR9cOSccus9u4dobbyPYfZ5ufqus6G9bun9qPMHuZ93XSgR7X0K+/55g9/V8o9UIdp01wa6zLnYi2GXgBLuMmjvsOupiJ4JdB64K9r8sfn/1ZfCV/6GovCy+lj//V49gr9yArQh3/2Dx7urxpfDDhm5TvLp69rXzCHbdUzJ9p+4fSBCP2n+vXarvbyDY0x1zJwn2XEHb8QS7zStnmmDP0bMdS7DbvLKnCfZswtQFCPZUqfw57rDnG1pWINgtWnmzqmB/9pnBNb2T3tud+nUGPVgFSr3D3v2V1fFggj3vOVaXowl2HTvBrrOOOxHsOm+CXWdNsOusi50Idhk4wS6j5g67jrrYiWDXgauC/U/PDO68w175wDnN74Pe3fWhcynvYY8vkz/xjIvDNXNvXe4idL+BW+srxKfEZwoT7JmAhsMJdgOWwyjB7oCYuATBngjlMEawOyBaliDYLVpZswR7Fp/pYO6wm7iyhwn2bMLkBVTBvujpeIe926fDt7dLfl63W7BXYnzErjsWHyDX/Wu8Fz/3lzDl3CvChHEHLvc1b9xhT346lWeQYNddC4JdZx13Ith13gS7zppg11kXOxHsMnCCXUbNHXYddbETwa4DVwX7U093fId55avcKo+w1j+vt27XHfa4Z2/fwx7/OcGue97VfCeCvebE1Q0Idp01wa61Jth13gS7zppg11oT7Dpv7rDrrAl2rbUq2Bc+vUld3sP+3nc/oAV12o2XxGdCEuyZgIbDCXYDlsMod9gdEBOXINgToRzGCHYHRMsS3GG3aGXNEuxZfKaDCXYTV/Ywd9izCZMXUAX7Y09vknxOnoMbrdv1oXOe69Z6LYI9U5hgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGyBMFu0cqaJdiz+EwHE+wmruxhgj2bMHkBVbA/vGiT+Hr44m1Tle9dV/z8foI9+bnQVIMEu+5yEuw667gTwa7zJth11gS7zrrYiWCXgRPsMmrew66jLnYi2HXgqmB/IAZ78R72Zf9notY/b/oe7rDrnk0l2olg110Mgl1nTbBrrQl2nTfBrrMm2LXWBLvOmzvsOmuCXWutCvb7ijvs8WPii29Mr9xqr/nPH1iX97Brn1El2Y1g110Igl1nTbBrrQl2nTfBrrMm2LXWBLvOm2DXWRPsWmtVsM9ftKn2gXXutuV7CPa6wNd7U4JddwUIdp01wa61Jth13gS7zppg11oT7Dpvgl1nTbBrrVXBfvf/bVrcVy9+tbWF9vg97IKft/5/BLv2GVWS3Qh23YUg2HXWBLvWmmDXeRPsOmuCXWtNsOu8CXadNcGutVYF+53/V5877B8i2LVPqLLs9t4LppTlVJr+PG4ZfljDPcaBb1q1OOcl/3qt4c59lxPPa7hzbtQT/sd7X2/UU2+4897wh39tuHNu5BP+5wZvbeTTb6hzX+Ufjfe/Mw0F3O1kZ/7kqIY79Ub+88jQy7/fcN6NesKPH3aM5NRve2rTru9hr9xhF/y+7f+7X/L4vDfha90yRQn2TEDD4QS7ActhlGB3QExcgmBPhHIYI9gdEA1LEOwGrMxRgj0T0HA4wW7Achgl2B0QE5dQBfsfn9qs+BKRyqfCq37/8HoEe+JTobnGCHbd9STYddZxJ4Jd502w66wJdp113Ilg13kT7Dprgl1nHXci2HXeqmD//VObVR9U9XvYO/9JLX/egWDXPZnKtBPBrrsaBLvOmmDXWhPsOm+CXWdNsGutCXadN8GusybYtdaqYL85Bnt75ze7VR6i4OePrc8ddu0zqiS7Eey6C0Gw66wJdq01wa7zJth11gS71ppg13kT7Dprgl1rrQr23z65WbfvYa/eWu/8Hvba/fzx9e7TgjrtxnvYMyEJ9kxAw+EEuwHLYZSXxDsgJi5BsCdCOYwR7A6IhiV4SbwBK3OUYM8ENBxOsBuwHEZ5SbwDYuISqmCf++QHEs/Id2zY+gS7r2iDrEaw6y4Uwa6zjjsR7Dpvgl1nTbDrrONOBLvOm2DXWRPsOuu4E8Gu81YF+/VPfCB+/Xrxsvjq97ALfv40wa57MpVpJ4JddzUIdp01wa61Jth13gS7zppg11oT7Dpvgl1nTbBrrVXBft0T9bnD/tn3codd+4wqyW4Eu+5CEOw6a4Jda02w67wJdp01wa61Jth13gS7zppg11qrgv3qhZt3vYc93mpvr3ziXG1//9x779WCOu3Ge9gzIQn2TEDD4QS7ActhlJfEOyAmLkGwJ0I5jBHsDoiGJXhJvAErc5RgzwQ0HE6wG7AcRnlJvANi4hKqYP/Vwi0Tz8h37PMbzPddULQawZ4JTbBnAhoOJ9gNWA6jBLsDYuISBHsilMMYwe6AaFiCYDdgZY4S7JmAhsMJdgOWwyjB7oCYuIQq2Gc/vlWI37deubPe3t4u+fmLG9yTKFGuMYI983oQ7JmAhsMJdgOWwyjB7oCYuATBngjlMEawOyAaliDYDViZowR7JqDhcILdgOUwSrA7ICYuoQr2nz3+wY7Pm+t2Xoqfv7zh3YkS5Roj2DOvB8GeCWg4nGA3YDmMEuwOiIlLEOyJUA5jBLsDomEJgt2AlTlKsGcCGg4n2A1YDqMEuwNi4hKqYL/ysW2KO+qVO+uq37+y4Z2JEuUaI9gzrwfBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCYLdgJU5SrBnAhoOJ9gNWA6jBLsDYuISqmC/4rFtq3fYK3fWFb/vudHtiRLlGiPYM68HwZ4JaDicYDdgOYwS7A6IiUsQ7IlQDmMEuwOiYQmC3YCVOUqwZwIaDifYDVgOowS7A2LiEqpgv/TRbTvvsFc+LL7jPexdHxZfm59HbnRbokS5xgj2zOtBsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljhLsmYCGwwl2A5bDKMHugJi4hCrYf/TI/xRnFN/DHu+sV37V+ud9Nv5jokS5xgj2zOtBsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljhLsmYCGwwl2A5bDKMHugJi4hCrYf/DIh0P1Q+I7o13x877v+0OiRLnGCPbM60GwZwIaDifYDVgOowS7A2LiEgR7IpTDGMHugGhYgmA3YGWOEuyZgIbDCXYDlsMowe6AmLiEKtgveniHxDPyHdv//b/3XVC0GsGeCU2wZwIaDifYDVgOowS7A2LiEgR7IpTDGMHugGhYgmA3YGWOEuyZgIbDCXYDlsMowe6AmLiEKthnPDw0tIW2jg+eK76OvV3y84Hv/90yEgufWhwOGjM1LH7uhbDFJhuG6ZOODGuvNXA5rWkzZoWLLrum+OeD1nl7OH/y0WGD9QaFpUtfDSeecXG4Zu6t1WMuOXtsGLLl4ETxtDGCPc2p1ymCPT5jyUoAACAASURBVBPQcDjBbsByGCXYHRATlyDYE6Ecxgh2B0TDEgS7AStzlGDPBDQcTrAbsBxGCXYHxMQlVMF+3kMfSzwj37GDB99cXTDG9pRzrwgjhw8r4vuO+Q+FebctCKNHjVgu6h994pnwmR2HFP88zs266qZw8jH7hZdfeSVMPGdmGHf4yBWGvtfZE+yZkgR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUuogv37D328Lu9hP/T9v61KxLvrM2fPDcceskcYMGC18OJLS8L4iRcUP8eA7+1X9+NisP/gyjnh0H12K9ao1S+CPVOWYM8ENBxOsBuwHEYJdgfExCUI9kQohzGC3QHRsATBbsDKHCXYMwENhxPsBiyHUYLdATFxCVWwf/fBTySeke/YNze5sbpgzzvqPe+497ZzfHn8+uu+KwzfeWjo/pL6OP9GL6vPeSQEe45eCIFgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJVbCf9cCw6hl1fP9615e71fLnIzedu0ywL3rm+SK8K79ijA/dbvPl3oPePcz332uX5V42Xzl+9rXzwq1331+8XN7zjjvBnvgE7m2MYM8ENBxOsBuwHEYJdgfExCUI9kQohzGC3QHRsATBbsDKHCXYMwENhxPsBiyHUYLdATFxCVWwT33g04ln5Dt29KY3LBPs3d+znnqHPd6Zn3berBV+QF18WX0t3tNOsGc+Dwj2TEDD4QS7ActhlGB3QExcgmBPhHIYI9gdEA1LEOwGrMxRgj0T0HA4wW7Achgl2B0QE5dQBfuU+z9T+Xj4+DnxHd/EXvki9hr+fOymc6oS/X0P+xuFPcGe+ERTjxHsOnGCXWcddyLYdd4Eu86aYNdZx50Idp03wa6zJth11nEngl3nrQr2Sfd/Vveguu00drPrqj9VvpJtxK47Fi+B7/7p74uf+0vxCfITxh0YXl76avFVbpVfb3SHPb6kPv7q+UnzuQ+WO+yZggR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUuogv20+3Ypvne9cme98j3stf55/AeuXkait+9hj/+8EuyPPflM2PeISdXjun8Pe4z37v/ujd7fnngJVjhGsOfo8aFzmXq2wwl2m1fuNMGeK5h+PMGebpU7SbDnCtqOJ9htXjnTBHuOnu1Ygt3mlTtNsOcKph+vCvZT7vtc50l1Rnv1FGv78wk9gj1dpr6TBHumP3fYMwENhxPsBiyHUYLdATFxCYI9EcphjGB3QDQsQbAbsDJHCfZMQMPhBLsBy2GUYHdATFxCFewnLfh8cYe9PbRLf//25r9MlCjXGMGeeT0I9kxAw+EEuwHLYZRgd0BMXIJgT4RyGCPYHRANSxDsBqzMUYI9E9BwOMFuwHIYJdgdEBOXUAX7ifd+oePl8JWXxYt+P3kLgj3xqdBcYxudNbW5HlCJH80Gl/69xGfXfKf2jw0GNt+DKukjWunVru8fLekpNs1p/eSiwxrusQx806rFOS/512sNd+6fPfW8hjvnRj3h1V/kvyOqa7fmoqWqrdgnhPDsR9bAQSTw4MlHSXY6fv4XQ/F965U77O3tkp9P3WK25PF5b8Id9kxRgj0T0HA4wW7Achgl2B0QE5cg2BOhHMYIdgdEwxIEuwErc5RgzwQ0HE6wG7AcRgl2B8TEJVTBPm7+lzrvr3e9Z73jfnttf5605c8SJco1RrBnXg+CPRPQcDjBbsByGCXYHRATlyDYE6Ecxgh2B0TDEgS7AStzlGDPBDQcTrAbsBxGCXYHxMQlVME+Zv6XO967LrqzXrmTf/qWHV+71mi/CPbMK0awZwIaDifYDVgOowS7A2LiEgR7IpTDGMHugGhYgmA3YGWOEuyZgIbDCXYDlsMowe6AmLiEKtiP+d/dO18OX3kne+Xl8bX9eepWP0mUKNcYwZ55PQj2TEDD4QS7ActhlGB3QExcgmBPhHIYI9gdEA1LEOwGrMxRgj0T0HA4wW7Achgl2B0QE5dQBftR9+weQlvHy98rd9oVP5+51RWJEuUaI9gzrwfBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCYLdgJU5SrBnAhoOJ9gNWA6jBLsDYuISqmD/5j17FmdU+Wq3yunV+ufvbn15okS5xgj2zOtBsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljhLsmYCGwwl2A5bDKMHugJi4hCrYD7trr45Pha+8h130+zkfnJkoUa4xgj3zehDsmYCGwwl2A5bDKMHugJi4BMGeCOUwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi6hCvZv3LV38R72yvewd91Z7/Yy+Rr8++nbEOyJT4XmGiPYddeTYNdZx50Idp03wa6zJth11nEngl3nTbDrrAl2nXXciWDXeauC/eA79+68w97xVvauO+21/fncbX6sw3TciTvsmZgEeyag4XCC3YDlMEqwOyAmLkGwJ0I5jBHsDoiGJQh2A1bmKMGeCWg4nGA3YDmMEuwOiIlLqIJ91J1fi5Xe+cFznScn+HnGkB8lSpRrjGBPvB4Ln1ocDhozNSx+7oWwxSYbhumTjgxrrzUwEOyJgA5jBLsDomEJgt2AlTlKsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljqqC/YDbv1aX97BfMOSSTKH6HE6wJ7jHWB8/6cIwYewBYYP1Bi1zBMGeAOg0QrA7QSYuQ7AnQjmMEewOiIlLEOyJUE5jBLsTZMIyBHsCktMIwe4EmbgMwZ4I5TCmCvb9bv9619kK7qx3fGVcCBdv+wMHJf0SBHuC+bQZs8LQ7TYPQ7YcvNw0wZ4A6DRCsDtBJi5DsCdCOYwR7A6IiUsQ7IlQTmMEuxNkwjIEewKS0wjB7gSZuAzBngjlMKYK9n1vi8He+QFznZ8Wr/j5ku0udlDSL0Gw92G+dOmrYfqPfhk223j9MPqk7xfT+++1Sxg9akTx/yfYdU9agl1nHXci2HXeBLvOmmDXWcedCHadN8GusybYddZxJ4Jd560K9n1u278u72H/0fYEu+7ZJNzpxZeWhEPHnhWGbD24iPQY8CeecXEYseuOxR13gl13MQh2nTXBrrUm2HXe111+lG4zp51WW3Wl4j7EK6+97rSibpkdxp+j26zFdyLYdU8Agl1nTbBrrVXBvvcf9698HLz090u3v1AL6rQbd9j7gIzBPvGcmWHc4SOLD5mLv+6Y/1CYd9uCIuAJdqdnYsIyBHsCkuMId9gdMftYimDXWTdisK++6koFEMGue5404k4Eu+6qEew6a4Jda60K9r3+eGDo9jXrlVfD1/z3yz58gRbUaTeCvQ/IeEd9yrlXhJHDh1U/cC4G+6Jnng/Ddx5KsDs9EVOWIdhTlPxmCHY/y75WItj7EvL797wk3s8yZSVeEp+i5DNDsPs4pqxCsKco+c3wkng/y75WUgX77reMKj4lvvLVbpXvYa/1z1d8+Py+CEr57wn2hMsy+9p54cmnn+Ul8QlWtRwh2Gupu/zaBLvOm2DXWRPsOuu4E8Gu8ybYddYEu8467kSw67xVwf6VWw7WPahuO/3kI+fVZd/cTQn2RMH4SfEXXXZNMX3KmP2Lu+vxFy+JTwR0GCPYHRANSxDsBqzMUYI9E9BwOMFuwHIYJdgdEBOXINgToRzGCHYHRMMSBLsBK3NUFexf+v3Bdfke9p9+5NxMofocTrBnuhPsmYCGwwl2A5bDKMHugJi4BMGeCOUwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi6hC/ZDK69+l/4+e+j0RIlyjRHsmdeDYM8ENBxOsBuwHEYJdgfExCUI9kQohzGC3QHRsATBbsDKHCXYMwENhxPsBiyHUYLdATFxCVWwf+F3h3beYa98SHy75OefD+34iu5G+0WwZ14xgj0T0HA4wW7Achgl2B0QE5cg2BOhHMYIdgdEwxIEuwErc5RgzwQ0HE6wG7AcRgl2B8TEJVTBvtvvDqt+SHzl1NpDx4fE1/LnX330e4kS5Roj2DOvB8GeCWg4nGA3YDmMEuwOiIlLEOyJUA5jBLsDomEJgt2AlTlKsGcCGg4n2A1YDqMEuwNi4hKqYP/czYeHjg+J19xZb2/vuJN/1UfPSZQo1xjBnnk9CPZMQMPhBLsBy2GUYHdATFyCYE+Echgj2B0QDUsQ7AaszFGCPRPQcDjBbsByGCXYHRATl1AF+y43H9HxPewh/tYR7Yqfr9nx7GUkFj61OBw0ZmpY/NwLYYtNNgzTJx0Z1l5r4HJa3T98fNA6bw/nTz66+nXfibRZYwR7Fh+fEp/JZzqcYDdxZQ8T7NmEyQsQ7MlU2YMEezahaQGC3cSVNUywZ/GZDibYTVzZwwR7NmHyAqpg3+m3R0jes165s165k3/djmdVLZYufTVMOfeKMHL4sCK+75j/UJh324Lia7y7/4pR/+gTz4TP7Dik+MdxbtZVN4WTj9kvDBiwWrJtziDBnqPH17pl6tkOJ9htXrnTBHuuYPrxBHu6Ve4kwZ4raDueYLd55UwT7Dl6tmMJdptX7jTBniuYfrwq2D9z41Ed72EvXhbf8d51xc83fOLMKkYM8Zmz54ZjD9mjCO8XX1oSxk+8oPg5Bnxvv3oel67b/0mCvf92xZG8JD4T0HA4wW7Achgl2B0QE5cg2BOhHMYIdgdEwxIEuwErc5RgzwQ0HE6wG7AcRgl2B8TEJVTBPuzG0fJYj3858OuPT6tK9Lyj3vOOe29k8eXx66/7rjB856GJqvljBHumIcGeCWg4nGA3YDmMEuwOiIlLEOyJUA5jBLsDomEJgt2AlTlKsGcCGg4n2A1YDqMEuwNi4hKqYP/kb46uvGW9OLPKHfbKafb35+qd+sod+x6/3/jJqcsE+6Jnnl8mvGOMD91u8zBky8HLiHV/r/v+e+2y3MvmE3n7PUaw95uu40CCPRPQcDjBbsByGCXYHRATlyDYE6Ecxgh2B0TDEgS7AStzlGDPBDQcTrAbsBxGCXYHxMQlVMG+49xjuu6wV14WL/j9t588Y5lg7/6e9dQ77PHO/LTzZvX6AXWJ1KYxgt3EtfwwwZ4JaDicYDdgOYwS7A6IiUsQ7IlQDmMEuwOiYQmC3YCVOUqwZwIaDifYDVgOowS7A2LiEqpg/+ivjy3OqL930isPx3r87z41pSrR3/ewp4Z9InnSGMGexNT70Hsv7LrwmUtxeB8Cb1mwCkZCgdfeLNysxbd68zOd323S4g6Kh//vAfF/3vmlErj6tINVW7nss8rKK4W3DVw1/Plvr7isp1xkv63HKrdr6b3+8/Tiln786gf/5JTt1Vu27H6PHn205LHvcMNxdbnDPu9Tp1cfXwzvE8+4OIzYdcfiJfDdP/198XN/KT5BfsK4A8PLS18N8avcKr+4wy55ivhuQrD7er7RagS7zjruRLDrvAl2nTXBrrOOOxHsOm+CXWdNsOus404Eu85bFewfvqE+f8H4h09PWgazt+9hj/+8EuyPPflM2PeIruP4Hnbd89FtJ4LdjbLPhQj2PolcBwh2V843XIxg11kT7Dprgl1rTbDrvAl2nTXBrrVWBfv214+rPrC2trYQvye98quWP9/6mYlaUKfdeEl8JiTBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCe6wG7AyRwn2TEDD4QS7ActhlDvsDoiJS6iCfds54xPPyHfs9p0m+C4oWo1gz4Qm2DMBDYcT7AYsh1GC3QExcQmCPRHKYYxgd0A0LEGwG7AyRwn2TEDD4QS7ActhlGB3QExcQhXsQ647PtTyTnp8uCta//adTk2UKNcYwZ55PQj2TEDD4QS7ActhlGB3QExcgmBPhHIYI9gdEA1LEOwGrMxRgj0T0HA4wW7Achgl2B0QE5dQBfuHrj0+8Yx8x+7c+TTfBUWrEeyZ0AR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUvIgv2ab1XPSHmn/c5duMOe+FRorjGCXXc9CXadddyJYNd5E+w6a4JdZx13Ith13gS7zppg11nHnQh2nbcq2Le5uivYdY8uhLs+R7ArvUuzF8GuuxQEu86aYNdaE+w6b4JdZ02wa60Jdp03wa6zJti11qpg/+DVJ8R3mYcQuj4dXvHz3Z87WQvqtBsvic+EJNgzAQ2HE+wGLIdR7rA7ICYuQbAnQjmMEewOiIYluMNuwMocJdgzAQ2HE+wGLIdR7rA7ICYuoQr2ra+Kwa7/dc+up+g3ddiRYM9EJNgzAQ2HE+wGLIdRgt0BMXEJgj0RymGMYHdANCxBsBuwMkcJ9kxAw+EEuwHLYZRgd0BMXEIV7Fv98sTiU9w77rB3fA+74ud7Pv+dRIlyjRHsmdeDYM8ENBxOsBuwHEYJdgfExCUI9kQohzGC3QHRsATBbsDKHCXYMwENhxPsBiyHUYLdATFxCV2wfzvxjHzH/nc3gt1XtEFWI9h1F4pg11nHnQh2nTfBrrMm2HXWcSeCXedNsOusCXadddyJYNd5q4J9y1/EYNfdWa/cyZ//hZN0mI47cYc9E5NgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJVbBv8fP6hPO9X6zPvon8vY4R7JmCBHsmoOFwgt2A5TBKsDsgJi5BsCdCOYwR7A6IhiUIdgNW5ijBngloOJxgN2A5jBLsDoiJS6iCffOfnRRC53vY2zrvtCt+XjC8Pi/FT+Qn2HOhejueYK+V7PLrEuw667gTwa7zJth11gS7zjruRLDrvAl2nTXBrrOOOxHsOm9dsNfnveQLvkSw655NJdqJYNddDIJdZ02wa60Jdp03wa6zJti11gS7zptg11kT7FprVbBv9tPvFJ8KX3w6fLzDHjo+Jb7WP9/3pRO1oE678ZL4TEiCPRPQcDjBbsByGOUOuwNi4hIEeyKUwxjB7oBoWII77AaszFGCPRPQcDjBbsByGOUOuwNi4hK6YI/fh97xlW7K3+//MsGe+FRorjGCXXc9CXadddyJYNd5E+w6a4JdZx13Ith13gS7zppg11nHnQh2nbcq2Df5ySnFW9bb2+Nb2SufFl/7nx8YcYIO03En7rBnYhLsmYCGwwl2A5bDKMHugJi4BMGeCOUwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi6hC/ZTpXfWK3fyH/wKwZ74VGiuMYJddz0Jdp113Ilg13kT7Dprgl1nHXci2HXeBLvOmmDXWcedCHadtyrYB19xqvTOeuVO/oO7H6/DdNyJO+yZmAR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUvogv20utxhf2iPbyVKlGuMYM+8HgR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUuogn3jy06ry3vYH96TO+yJT4XmGiPYddeTYNdZx50Idp03wa6zJth11nEngl3nTbDrrAl2nXXciWDXeeuCfULHV7jFT57r/KX4+dGRBLvu2VSinQh23cUg2HXWBLvWmmDXeRPsOmuCXWtNsOu8CXadNcGutVYF+/sunVB9D3vlVnvl0+Jr+fMjI8dpQZ124yXxmZAEeyag4XCC3YDlMModdgfExCUI9kQohzGC3QHRsAR32A1YmaMEeyag4XCC3YDlMModdgfExCV0wT6x8yvdKl/lpvn9sa8S7IlPheYaI9h115Ng11nHnQh2nTfBrrMm2HXWcSeCXedNsOusCXadddyJYNd5q4J9wx9PDG2hLbSHjpfFFy+HF/z82FfH6jAdd+IOeyYmwZ4JaDicYDdgOYwS7A6IiUsQ7IlQDmMEuwOiYQmC3YCVOUqwZwIaDifYDVgOowS7A2LiErpgn1S9w145tY6vXus60Vr8vHCfZYN94VOLw0FjpobFz70QtthkwzB90pFh7bUGLqc1+9p54YTJFxX/vPvc0qWvhhPPuDhcM/fW6jGXnD02DNlycKJ42hjBnubU6xTBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCYLdgJU5SrBnAhoOJ9gNWA6jBLsDYuISqmDf4IeT6vIe9sf3Oa4qEWN7yrlXhJHDh4UN1hsU7pj/UJh324IwetSIZbRi1M+dd1cYtfeuxT+P8f7k088Wcy++tCRMPGdmGHf4yBWGfiJ7n2MEe59EbzxAsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljhLsmYCGwwl2A5bDKMHugJi4hC7YT6/Le9if2Lcr2GOIz5w9Nxx7yB5hwIDVivgeP/GC4ucY8L396n7cy6+8En5w5Zxw6D67FWvU6hfBnin77DO+L3nIPJ2mPvydK7/e1I+vbA/uA987pGyn1LTn075S0z600j2wt+3wbOnOqZlP6PWL/quZH16pHtvfN1q5VOfTzCfzjrtfa+aHV7rHdvmlh5funN7ohFZZeaXwtoGrhj//7ZWGOu94soPevobknNf/weld712vvIdd8PsT+46pPr6ed9R73nHvDaL7cd1fUh/n3+hl9TmwBHuOXgiBYM8ENBxOsBuwHEYJdgfExCUI9kQohzGC3QHRsATBbsDKHCXYMwENhxPsBiyHUYLdATFxCVmwXzy544zie9bbu51cjX9+cr9lg33RM8+H4TsPrZ7AtBmzwtDtNu/1Peh9vQQ+vlz+1rvvDycfs5/rHXeCPfEJ3NsYwZ4JaDicYDdgOYwS7A6IiUsQ7IlQDmMEuwOiYQmC3YCVOUqwZwIaDifYDVgOowS7A2LiErJgv2hyt/ewd0R71/ew1+7nJ/Y7tiphvcOecge+r6BPvAzLjRHs/ZXrPI5gzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJVbC/96Ip0jvrlTv5TxzQFeyW97BXPg1+xK47vuEnwBPsiU809RjBrhMn2HXWcSeCXedNsOusCXadddyJYNd5E+w6a4JdZx13Ith13rJgv2BK9eXwijvr8XveY7R3D/aeER7vuM+66qbi5eyLn/tL8QnyE8YdGNZYffXiq9v6ivV4leJL6uOvnp80n3sFucOeKUiwZwIaDifYDVgOowS7A2LiEgR7IpTDGMHugGhYgmA3YGWOEuyZgIbDCXYDlsMowe6AmLiELNhnTOk4oxq/Z73n+k+M6rrDHrfv7XvY4z+vBPtjTz4T9j1i0jKCg9Z5ezh/8tHhhb/9fZl/t/9eu7jHesHUXvyVA7/6K0Cw91fOfhzBbjfLOYJgz9GzHUuw27xypgn2HD37sQS73ay/RxDs/ZWzH0ew281yjiDYc/Rsx8qC/fwpkvesV+6sV94jv3DUMTaQkkwT7JkXgmDPBDQcTrAbsBxGCXYHxMQlCPZEKIcxgt0B0bAEwW7Ayhwl2DMBDYcT7AYsh1GC3QExcQlVsG9wXucd9sTz8hpbePCyd9i91q31OgR7pjDBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCYLdgJU5SrBnAhoOJ9gNWA6jBLsDYuISsmA/tz7vYSfYE58IzTZGsOuuKMGus447Eew6b4JdZ02w66zjTgS7zptg11kT7DrruBPBrvOWBfv0M3QPqttOCw/lJfF1gVdv2vPT/wh23RUg2HXWBLvWmmDXeRPsOmuCXWtNsOu8CXadNcGutZYF+/fPqMt72B8/9GgtqNNuvCTeABk/7n/OjbeHdf5r7TBq712LIwl2A2DmKMGeCWg8nDvsRrCMcYI9A894KMFuBMsc5w57JqDhcILdgJU5SrBnAhoP5w67ESxjXBXsG36vPnfYHz+MO+wZT4/yH/riS0vCxHNmFt/Bd8+CRwn2Olwygl2LTrDrvAl2nTXBrrOOOxHsOm+CXWdNsOus404Eu85bFuzndAV79XvYOx9mLX9+/HCCXfdsqsNOMy69Kgwbuk2x89x5dxHsdbgGBLsWnWDXeRPsOmuCXWdNsGutCXadN8GusybYtdayYP9une6wf5Ng1z6jhLvFl8Iveub5MHznoWHhU4sJdqF9960Idi08wa7zJth11gS7zppg11oT7Dpvgl1nHXe6evZo7YaZu63U1hbWWH2l8M+l/8lcSX/4wDVWkWy64dnd3sPeuWMt76zHLeL6j32T97BLLrB6k/hS+B9cOSccus9uYcCA1Qh29QXoth/BrsUn2HXeBLvOmmDXWRPsWmuCXedNsOusCXattSrYNzp7qvaBde722BEEe13ga73p7GvnhRMmX7TcNltssmGYPunI8Mo/htT6FFi/U4Bg1z4VCHadN8GusybYddYEu9aaYNd5E+w667gT72HXeateEr/RWV3Brriz3t7eXiA+diTBrns21XEnXhJfP3yCXWtPsOu8CXadNcGusybYtdYEu86bYNdZE+xaa1mwn1mnO+xHEezaZ1SddiPY6wQfQiDYtfYEu86bYNdZE+w6a4Jda02w67wJdp01wa61lgX7tKmhLbSF9tAe2kII8f634udHRzfW5yFUrj7fw575fwd8D3smoOFwgt2A5TBKsDsgJi5BsCdCOYwR7A6IhiX4WjcDVuYowZ4JaDicYDdgOYzykngHxMQlVMH+vqn1ucP+6NHcYU98KjTXGMGuu54Eu8467kSw67wJdp01wa6zjjsR7Dpvgl1nTbDrrONOBLvOWxbsZ8Rg77i3Xrmzrvj50WO4w657NpVoJ4JddzEIdp01wa61CK7rzwAAIABJREFUJth13gS7zppg11oT7Dpvgl1nTbBrrWXBPmWa9oF17vbosQR7XeDrvSnBrrsCBLvOmmDXWhPsOm+CXWdNsGutCXadN8GusybYtdayYJ88TfKe9Z7vkX9kzFFaUKfdeA97JiTBngloOJxgN2A5jPKSeAfExCUI9kQohzGC3QHRsAQviTdgZY4S7JmAhsMJdgOWwygviXdATFxCFewbn16fO+yPHMcd9sSnQnONEey660mw66zjTgS7zptg11kT7DrruBPBrvMm2HXWBLvOOu5EsOu8ZcE+cVrHW9Yrnw4fvydd8PMjYwl23bOpRDsR7LqLQbDrrAl2rTXBrvMm2HXWBLvWmmDXeRPsOmuCXWstDXbtQyt2e2QcwV4H9vpvSbDrrgHBrrMm2LXWBLvOm2DXWRPsWmuCXedNsOusCXattSzYJ3S+h729PbS1Vb6PvS201/jnh8fzHnbtM6okuxHsugtBsOusCXatNcGu8ybYddYEu9aaYNd5E+w6a4Jda60K9vefdqb2gXXu9vDxBHtd4Ou9KcGuuwIEu86aYNdaE+w6b4JdZ02wa60Jdp03wa6zJti11rJgP+VMyXvWo17xPe+d75F/+FsEu/YZVZLdCHbdhSDYddYEu9aaYNd5E+w6a4Jda02w67wJdp01wa61lga79qEVuz18AsFeB/b6b/mha4+v/0m0yBn8+/p3tMgjLcfDfGWtcpxHK5zF2xf8uxUeZikeY1t7KU6jZU5ijaf/0TKPtd4P9JLrx9b7FMz7v/Otq4e/Lnkt/Ps/r5uPrecBXzj63Hpu33J7/+19nR8f3nKPXP+AHxG9ZPz93zmz473rxXvWQyhugAt+fujEI/WoDjvyPeyZiAR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUuogn3wd+rzHvaHvs0d9sSnQnONEey660mw66zjTgS7zptg11kT7DrruBPBrvMm2HXWBLvOOu5EsOu8ZcH+7XiHXXdnvXIn/8GTlg32hU8tDgeNmRoWP/dC2GKTDcP0SUeGtdcauBz47GvnhRMmX1T88zeaq9WV4g57pizBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCYLdgJU5SrBnAhoOJ9gNWA6jBLsDYuISqmDf5NtnhhDfotb93Q6Cnx88uSvYly59NUw594owcviwsMF6g8Id8x8K825bEEaPGrGMVoz6ufPuCqP23rX45zHen3z62eXmEon7NUaw94ut6yCCPRPQcDjBbsByGCXYHRATlyDYE6Ecxgh2B0TDEgS7AStzlGDPBDQcTrAbsBxGCXYHxMQlZMF+Qtd72Ito7/Ye9lr+/MDJXe9hjyE+c/bccOwhe4QBA1YLL760JIyfeEHxcwz43n71PC6RNmuMYM/iC4FgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJVbBvekLXe9gFN9arN/IfOKXrDnvPO+o977j3RtbbnfhE4n6NEez9Yus6iGDPBDQcTrAbsBxGCXYHxMQlCPZEKIcxgt0B0bAEwW7Ayhwl2DMBDYcT7AYsh1GC3QExcQlZsH+r83vYRXfWK9/D3jPYFz3zfBi+89CqzrQZs8LQ7TYPQ7YcvEKxeBd+4jkzw7jDR67wve6JzOYxgt1MtuwBBHsmoOFwgt2A5TBKsDsgJi5BsCdCOYwR7A6IhiUIdgNW5ijBngloOJxgN2A5jBLsDoiJS6iCfbNvndn5VW5dJ9bx1W61/fmB0/p/hz31DnwitWmMYDdxLT9MsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljhLsmYCGwwl2A5bDKMHugJi4hCzYx9fnPez3nda/97DHWD/xjIvDiF137PXueyJxv8YI9n6xdR1EsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljhLsmYCGwwl2A5bDKMHugJi4hDLYq58SX3kTu+D3+ycu+ynx3SM8vjd91lU3hZOP2S8sfu4vxSfITxh3YFhj9dXrGuvx0hHsiU/g3sYI9kxAw+EEuwHLYZRgd0BMXIJgT4RyGCPYHRANSxDsBqzMUYI9E9BwOMFuwHIYJdgdEBOXkAX72Pp8D/t93YI9kvT2Pezxn1eC/bEnnwn7HjFpGcFB67w9nD/56Df8NPlE8qQxgj2Jqfchgj0T0HA4wW7Achgl2B0QE5cg2BOhHMYIdgdEwxIEuwErc5RgzwQ0HE6wG7AcRgl2B8TEJVTB/oGx3b6HXXBnvfJVcfed3nWHPZGkFGMEe+ZlINgzAQ2HE+wGLIdRgt0BMXEJgj0RymGMYHdANCxBsBuwMkcJ9kxAw+EEuwHLYZRgd0BMXEIW7GO63sMeP2iu4wPn2kL8NPda/rzg9K73sCeSlGKMYM+8DAR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUuogn3zMfW5w75gCnfYE58KzTVGsOuuJ8Gus447Eew6b4JdZ02w66zjTgS7zptg11kT7DrruBPBrvOWBfsx9fkedoJd91wq1U4Eu+5yEOw6a4Jda02w67wJdp01wa61Jth13gS7zppg11qrgn2Lo8/seGDxe9fje9grv2r8871TucOufUaVZDeCXXchCHadNcGutSbYdd4Eu86aYNdaE+w6b4JdZ02wa61lwT66Pt/DPn8q72HXPqNKshvBrrsQBLvOmmDXWhPsOm+CXWdNsGutCXadN8GusybYtdbKYFfeWa/cyb/3TO6wa59RJdmNYNddCIJdZ02wa60Jdp03wa6zJti11gS7zptg11kT7FprWbAf2fE97EW0d/t0+Fr/PJ9g1z6hyrIbwa67EgS7zppg11oT7Dpvgl1nTbBrrQl2nTfBrrMm2LXWqmDf8sjO97BrH16YfxZ32MXk5diOYNddB4JdZ02wa60Jdp03wa6zJti11gS7zptg11kT7FprVbBvdUT8lPjKF7B33Wnv+EL22v38v2fxHnbtM6okuxHsugtBsOusCXatNcGu8ybYddYEu9aaYNd5E+w6a4Jday0L9m/W5w77/36XO+zaZ1RJdiPYdReCYNdZE+xaa4Jd502w66wJdq01wa7zJth11gS71loW7IfX53vYCXbt86k0uxHsuktBsOusCXatNcGu8ybYddYEu9aaYNd5E+w6a4Jda60K9q0Pq88d9nu+xx127TOqJLsR7LoLQbDrrAl2rTXBrvMm2HXWBLvWmmDXeRPsOmuCXWstC/Zv1Od72O/+Hu9h1z6jSrIbwa67EAS7zppg11oT7Dpvgl1nTbBrrQl2nTfBrrMm2LXWqmD/4KH1ucN+93TusGufUSXZjWDXXQiCXWdNsGutCXadN8GusybYtdYEu86bYNdZE+xaa1mwH9IV7G2d38NeeaS1/Pnucwl27TOqJLsR7LoLQbDrrAl2rTXBrvMm2HXWBLvWmmDXeRPsOmuCXWstC/aD63SH/TyCXfuMKsluBLvuQhDsOmuCXWtNsOu8CXadNcGutSbYdd4Eu86aYNdaq4J9m4POrH7devXOeufXr9fy5zvPJ9i1z6iS7Eaw6y4Ewa6zJti11gS7zptg11kT7Fprgl3nTbDrrAl2rbUs2EdN0z6wzt3umjG6LvvmbtrW3t7enrtIKx9/wO1fa+WHL33sD0zdXLpfq2+2yj9fb3UC2eP/x7qryvZq9Y0G7/NAqxNIH//Dl2wq3a+VN3vLE0tb+eFLH/uzHx4g3a/VN3vHDn9qdQLZ45/3qcmSvT50YFew1/I96/HBdF//zgsIdskFLtsmBLvuihDsOuu4E8Gu8ybYddYEu8467kSw67wJdp01wa6zjjsR7DpvWbAfUJ877HdeSLDrnk0l2olg110Mgl1nTbBrrQl2nTfBrrMm2LXWBLvOm2DXWRPsWmtVsA/Zf1poC22hPXS90Fvx8+0X8R527TOqJLsR7LoLQbDrrAl2rTXBrvMm2HXWBLvWmmDXeRPsOmuCXWstC/b96nOH/Y6LucOufUaVZDeCXXchCHadNcGutSbYdd4Eu86aYNdaE+w6b4JdZ02wa61Vwb7t16bGN5cXDy7+v8VHqgl+vv0Sgl37jCrJbgS77kIQ7Dprgl1rTbDrvAl2nTXBrrUm2HXeBLvOmmDXWkuDXfvQit1u/+HRddg1f0s+JT7TkGDPBDQcTrAbsBxG+dA5B8TEJQj2RCiHMYLdAdGwBB86Z8DKHCXYMwENhxPsBiyHUT50zgExcQlZsO8zteM97O3txY31+E52xc+3/WjZO+wLn1ocDhozNSx+7oWwxSYbhumTjgxrrzVwhVpxdvykC8OEsQeEDdYbVMwsXfpqOPGMi8M1c2+tHnPJ2WPDkC0HJ4qnjRHsaU69ThHsmYCGwwl2A5bDKMHugJi4BMGeCOUwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi6hCvbtvjo18Yx8x277cdcd9hjbU869IowcPqwI8DvmPxTm3bYgjB41YrlNK7G+1sA1w3Hf2LMa7C++tCRMPGdmGHf4yF5D3+MREOyZigR7JqDhcILdgOUwSrA7ICYuQbAnQjmMEewOiIYlCHYDVuYowZ4JaDicYDdgOYwS7A6IiUvIgn3kVOmd9cqd/Fsv7Qr2GOEzZ88Nxx6yRxgwYLUQ43v8xAuKnyt30CtsMy69Kgwbuk2YO++u4vfKv4/H/ODKOeHQfXYr1qjVL4I9U5ZgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJVbBvP7I+d9hvndkV7D3vqPe8496TbEX/vvtL6uN8Xy+rT7wMy40R7AlyPS9G9/cmEOwJgE4jBLsTZOIyBHsilMMYwe6AmLgEwZ4I5TRGsDtBJixDsCcgOY0Q7E6QicsQ7IlQDmOyYN/zjNDWVnkPu+73P162bLAveub5MHznoVW5aTNmhaHbbb7C96D3FfRxkdnXzgu33n1/OPmY/VzvuBPsfTy548WZ/qNfhq/vvlPx3oQY7/H9DhPGHVj8TLA7/NchcQmCPRHKaYxgd4JMWIZgT0ByGiHYnSATlyHYE6Ecxgh2B8TEJQj2RCinMYLdCTJhGVWw/8+eZyScjf/IHy8/prqoxx32nmdYq/e0E+zG50LPv10h2I2AGeMEewZePw4l2PuB1s9DCPZ+wvXjMIK9H2gZhxDsGXjGQwl2I1jGOMGegdePQwn2fqD18xBZsO8e77DH71+PX7/e7dPia/zzH67oCnbLe9gjZ8oddoK9n08878N6XgiC3Vu49/UIdp113Ilg13kT7Dprgl1nHXci2HXeBLvOmmDXWcedCHadtyrYP7x7fe6w/+HKrmCvfCXbiF13LF4CH++4z7rqpuLl7Iuf+8syr6hODfb4kvr4a0WfNJ9zFbnDbtTr+d4Ggt0ImDFOsGfg9eNQgr0faP08hGDvJ1w/DiPY+4GWcQjBnoFnPJRgN4JljBPsGXj9OJRg7wdaPw+RBfuI7u9h191pv+UnXe9hj0S9fQ97z7dA9xbsMfL3PWJSVXv/vXZxj/W4OMFueELHDxKIv7p/OAHBbgDMHCXYMwGNhxPsRrCMcYI9A894KMFuBMscJ9gzAQ2HE+wGrMxRgj0T0Hg4wW4EyxhXBftHRtTnDvsts7rusGcwyQ8l2BPJY6w/+fSzy/2tCcGeCOgwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi5BsCdCOYwR7A6IhiUIdgNW5qgs2L80Jb55vbi1XnkPu+LnW35KsGc+Rcp7eG+xHs+YYNddN4JdZx13Ith13gS7zppg11nHnQh2nTfBrrMm2HXWcSeCXeetCvYdhk8J7fGl3t0emuLnW2Yfq8N03Ik77H1gxg+ZO3TsWeHeBx9fZvKUMfsXL40n2B2fjX0sRbDrrAl2rTXBrvMm2HXWBLvWmmDXeRPsOmuCXWstC/YvTOl2Zz2EWO9dd9pr9/O8n3OHXfuMKsluBLvuQhDsOmuCXWtNsOu8CXadNcGutSbYdd4Eu86aYNdaq4J96BemFJFe3GIX/j7vl9xh1z6jSrIbwa67EAS7zppg11oT7Dpvgl1nTbBrrQl2nTfBrrMm2LXWsmD/fHwPe+3upLcXX/C+/PoEu/b5VJrdCHbdpSDYddYEu9aaYNd5E+w6a4Jda02w67wJdp01wa61VgX7Rz8/JX7eXPE5c5U77Iqf513FHXbtM6okuxHsugtBsOusCXatNcGu8ybYddYEu9aaYNd5E+w6a4Jday0L9s9Nln46fOXT6G8m2LVPqLLsRrDrrgTBrrMm2LXWBLvOm2DXWRPsWmuCXedNsOusCXattSrYP/a5ydL3rldeHn/zNWO0oE678SnxmZAEeyag4XCC3YDlMMrXujkgJi5BsCdCOYwR7A6IhiX4WjcDVuYowZ4JaDicYDdgOYzytW4OiIlLyIJ958l1eQ87wZ74RGi2MYJdd0UJdp113Ilg13kT7Dprgl1nHXci2HXeBLvOmmDXWcedCHadtyzYP3t6x4OKb2KPb16v/Krxzzdfd5wO03En7rBnYhLsmYCGwwl2A5bDKMHugJi4BMGeCOUwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi4hC/adTq++h73S6JXvYa/lzzddx0viE58KzTVGsOuuJ8Gus447Eew6b4JdZ02w66zjTgS7zptg11kT7DrruBPBrvNWBfuOn4l32DvvrBffw175uPjKp8bX5uebrh+rw3TciTvsmZgEeyag4XCC3YDlMEqwOyAmLkGwJ0I5jBHsDoiGJQh2A1bmKMGeCWg4nGA3YDmMEuwOiIlLyIL9U5Pq8h72m24g2BOfCs01RrDrrifBrrOOOxHsOm+CXWdNsOus404Eu86bYNdZE+w667gTwa7zVgX7x4dN7HhQNX7Pes/1fzt3nA7TcSfusGdifuC4MzNX4PBUgf+sljrJnIfAb4482GMZ2RqrrLxSeNvAVcOf//aKbE+vjYZNO89rKdbpQ+CddzTe86ORL+q/3rVqI59+Q537y19Y0lDn28gn+/odazXy6Tfcub950esNd86NesK3XXq05NQ//skJdfke9hsJdsn1Ld0mBLvukhDsOuu4E8Gu8ybYddYEu8467kSw67wJdp01wa6zjjsR7DpvWbB/YoLuQXXb6bc3jq/Lvrmbcoc9U5BgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJVbB/4uOndb0cvutj4Tu+4q2GP99IsCc+E5psjGDXXVCCXWcddyLYdd4Eu86aYNdZx50Idp03wa6zJth11nEngl3nLQv2j53W8aC6fRi84ucbbz5eh+m4E3fYMzEJ9kxAw+EEuwHLYZRgd0BMXIJgT4RyGCPYHRANSxDsBqzMUYI9E9BwOMFuwHIYJdgdEBOXUAX7Jz96ak3vpPd2p/43BHviM6HJxgh23QUl2HXWcSeCXedNsOusCXadddyJYNd5E+w6a4JdZx13Ith13rJgH3qK7kF12+k3806oy765m3KHPVOQYM8ENBxOsBuwHEYJdgfExCUI9kQohzGC3QHRsATBbsDKHCXYMwENhxPsBiyHUYLdATFxCVmw79AV7G1tbaE9vne981ctf/7N7wn2xKdCc40R7LrrSbDrrONOBLvOm2DXWRPsOuu4E8Gu8ybYddYEu8467kSw67xVwT7sIyfrHlS3nebecmJd9s3dlDvsmYIEeyag4XCC3YDlMEqwOyAmLkGwJ0I5jBHsDoiGJQh2A1bmKMGeCWg4nGA3YDmMEuwOiIlLyIL9f07u+h72znOr5Z31uEVc/9d/4A574lOhucYIdt31JNh11nEngl3nTbDrrAl2nXXciWDXeRPsOmuCXWcddyLYdd6yYN/+O7oH1W2nubd+uy775m7KHfZMQYI9E9BwOMFuwHIYJdgdEBOXINgToRzGCHYHRMMSBLsBK3OUYM8ENBxOsBuwHEYJdgfExCVUwf6p7U6qnpHiznrlPfK/vq1r30SSUowR7JmXgWDPBDQcTrAbsBxGCXYHxMQlCPZEKIcxgt0B0bAEwW7Ayhwl2DMBDYcT7AYsh1GC3QExcQlZsG9bn3D+9e3L7rvwqcXhoDFTw+LnXghbbLJhmD7pyLD2WgNXqBVnx0+6MEwYe0DYYL1BiaI+YwR7piPBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCYLdgJU5SrBnAhoOJ9gNWA6jBLsDYuISsmAf8u3QFkKInw2v/P2GO7peir906athyrlXhJHDhxUBfsf8h8K82xaE0aNGLKdVifW1Bq4ZjvvGngR74vOpNGMEu+5SEOw667gTwa7zJth11gS7zjruRLDrvAl2nTXBrrOOOxHsOm9VsH/6Q/X5tPYb7uz6dPoY4TNnzw3HHrJHGDBgtfDiS0vC+IkXFD/3vIM+49KrwrCh24S58+4qfucOu+456bITwe7CmLQIwZ7E5DZEsLtR9rkQwd4nkdsAwe5GmbQQwZ7E5DJEsLswJi1CsCcxuQ0R7G6UfS4kC/YPnii9s165k3/93V3B3vOOes877j2x+vr3feJmDPCS+Ay8eCjBngloOJxgN2A5jBLsDoiJSxDsiVAOYwS7A6JhCYLdgJU5SrBnAhoOJ9gNWA6jBLsDYuISqmD/zNb1+Xq16+85pSoRg33RM8+H4TsPrf6zaTNmhaHbbR6GbDl4OTGCPfFJVMYxgl13VQh2nXXciWDXeRPsOmuCXWcddyLYdd4Eu86aYNdZx50Idp23LNi3OqF6h73y6CrvZa/lz3P+d9lg7/6e9b6CvK9/X8urxB32TF2CPRPQcDjBbsByGCXYHRATlyDYE6Ecxgh2B0TDEgS7AStzlGDPBDQcTrAbsBxGCXYHxMQlZMG+5bcSz8h37Pr5p1YXtLyHPR5EsPteC+lqBLuOm2DXWcedCHadN8GusybYddZxJ4Jd502w66wJdp113Ilg13mrgn2nzY/v+Hj44lPi20LxPemCn+fce1oVMwb4iWdcHEbsumPxEvj4EvlZV90UTj5mv7D4ub8UnyA/YdyB1a95I9h1z0P3nQh2d9JeFyTYddYEu9aaYNd5E+w6a4Jda02w67wJdp01wa61lgZ75ZPgKg9R8POc+7qCPW7b2/ewx39OsGufezXdjWCvKe8yixPsOmuCXWtNsOu8CXadNcGutSbYdd4Eu86aYNday4J90/Ghra3jznpbWwjFDXbBz9fdv2ywa3X7vxvvYe+/XXEkwZ4JaDicYDdgOYzykngHxMQlCPZEKIcxgt0B0bAEL4k3YGWOEuyZgIbDCXYDlsMoL4l3QExcQhXsn910fOIZ+Y5d98AE3wVFqxHsmdAEeyag4XCC3YDlMEqwOyAmLkGwJ0I5jBHsDoiGJQh2A1bmKMGeCWg4nGA3YDmMEuwOiIlLyIJ98Nh4S704q+LT4Ttusdf85+senJgoUa4xgj3zehDsmYCGwwl2A5bDKMHugJi4BMGeCOUwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi4hC/b3H9dxRpXXw1fOr8Y/X/fw6YkS5Roj2DOvB8GeCWg4nGA3YDmMEuwOiIlLEOyJUA5jBLsDomEJgt2AlTlKsGcCGg4n2A1YDqMEuwNi4hKyYH/fsdX3rFeivfIe9lr+fO0jkxMlyjVGsGdeD4I9E9BwOMFuwHIYJdgdEBOXINgToRzGCHYHRMMSBLsBK3OUYM8ENBxOsBuwHEYJdgfExCVkwb7RsYln5Dt23WNTfBcUrUawZ0IT7JmAhsMJdgOWwyjB7oCYuATBngjlMEawOyAaliDYDViZowR7JqDhcILdgOUwSrA7ICYuoQr2nTY4uvpyeMWd9cp75Oc8fkaiRLnGCPbM60GwZwIaDifYDVgOowS7A2LiEgR7IpTDGMHugGhYgmA3YGWOEuyZgIbDCXYDlsMowe6AmLiELthHhyD43vXiE+0qv9pDmPPEtESJco0R7JnXg2DPBDQcTrAbsBxGCXYHxMQlCPZEKIcxgt0B0bAEwW7Ayhwl2DMBDYcT7AYsh1GC3QExcQlZsK9/ZF3ew37dE2cmSpRrjGDPvB4Eeyag4XCC3YDlMEqwOyAmLkGwJ0I5jBHsDoiGJQh2A1bmKMGeCWg4nGA3YDmMEuwOiIlLyIJ9vSO7zqjbV7oV/7CGP8956qxEiXKNEeyZ12OzcY35NzWZD7suhw986vW67Nuqm7av3KqPXP+4X37HSvpNW3THJVu+2qKPvD4Pe80HV6vPxi246z83/HcLPur6POS3zl+lPhu36K6vfnxJiz5y/cO+/8snSjbd6T3frO5TfQ975z+p5c9zFn1X8vi8NyHYM0UJ9kxAw+EEuwHLYZRgd0BMXIJgT4RyGCPYHRANSxDsBqzMUYI9E9BwOMFuwHIYJdgdEBOXkAX7uofX9E568XBXcKd+zjPfS5Qo1xjBnnk9CPZMQMPhBLsBy2GUYHdATFyCYE+Echgj2B0QDUsQ7AaszFGCPRPQcDjBbsByGCXYHRATl1AF+2cGfaP6HvbKHXXF7wR74hOh2cYIdt0VJdh11sVfTPKSeBk4wS6jDgS7zjruRLDrvAl2nTXBrrOOOxHsOm9ZsP/3N+KfNEMoPsZd9/v1f5quw3TciTvsmZgEeyag4XCC3YDlMEqwOyAmLkGwJ0I5jBHsDoiGJQh2A1bmKMGeCWg4nGA3YDmMEuwOiIlLyIJ9nYM7v4e98nXs7ZKfr3/23ESJco0R7JnXg2DPBDQcTrAbsBxGCXYHxMQlCPZEKIcxgt1V5hQrAAARtElEQVQB0bAEwW7Ayhwl2DMBDYcT7AYsh1GC3QExcQlZsL/zYOmd9cqd/Ov/fH6iRLnGCPbM60GwZwIaDifYDVgOowS7A2LiEgR7IpTDGMHugGhYgmA3YGWOEuyZgIbDCXYDlsMowe6AmLiELNjfMaou38M+53mCPfGp0FxjBLvuehLsOuu4E8Gu8ybYddYEu8467kSw67wJdp01wa6zjjsR7DpvXbAfqHzrevWt8te/cIEO03En7rBnYhLsmYCGwwl2A5bDKMHugJi4BMGeCOUwRrA7IBqWINgNWJmjBHsmoOFwgt2A5TBKsDsgJi4hC/a196+8eV16p/36v16YKFGuMYI983oQ7JmAhsMJdgOWwyjB7oCYuATBngjlMEawOyAaliDYDViZowR7JqDhcILdgOUwSrA7ICYuoQr2T791v+KMKl/lVjm9Wv98w98uTpQo1xjBnnA9li59NZx4xsXhmrm3FtOXnD02DNlycPH/J9gTAJ1GCHYnyMRlCPZEKIcxgt0BMXEJgj0RymmMYHeCTFiGYE9Achoh2J0gE5ch2BOhHMZkwb7W16V31kN7e7Hf9QS7w7OkpEvMvnZecWbDdx4aXnxpSZh4zsww7vCRYe21BhLswmtGsAuxeQ+7FJtg13ET7DrruBPBrvMm2HXWBLvOOu5EsOu8ZcH+ln1DjOjQ1ib9/YYlP9RhOu7EHfY+MOPd9SnnXhFGDh8WNlhvUDE9bcassP667yoCnjvsjs/GPpYi2HXWcSfusOu8CXadNcGusybYtdYEu86bYNdZE+xaa1mwv3mfuryHnWDXPp9ku/W8ox437n7HnWCXXYpAsOusCXatNcGu8ybYddYEu9aaYNd5E+w6a4Jday0L9jd9teOBVe6wVx5mjX++4V8/1oI67cYd9j4gY7D/4Mo54dB9dgsDBqxWTN8x/6Ew77YFYfSoEdxhd3oipixDsKco+c1wh93Psq+VCPa+hPz+PcHuZ5myEi+JT1HymSHYfRxTViHYU5T8ZnhJvJ9lXyvJgn2NkfV5D/u/Lu2LoJT/nmBPCPbu71mP49xhr89zmWDXuhPsOm+CXWdNsOus404Eu86bYNdZE+w667gTwa7zlgX7gL10D6rbTjcsvawu++ZuSrD3Ich72HOfYn7HE+x+likrEewpSj4zBLuPY8oqBHuKkt8Mwe5n2ddKBHtfQn7/nmD3s0xZiWBPUfKZUQX7p1bbM4S2+IFJ3b7aTfDzr1+53AdKvArBngAe76g/+fSzxUvg40vkx0+8IBx7yB7Fh9DxHvYEQKcRgt0JMnEZgj0RymGMYHdATFyCYE+Echoj2J0gE5Yh2BOQnEYIdifIxGUI9kQohzFZsK+6h8PZ2pf49WtX2A8qwREEe8JF4HvYE5AEIwS7ALnbFgS7zptg11kT7DrruBPBrvMm2HXWBLvOOu5EsOu8ZcG+8lfq8h72G/59pQ7TcSeCPROTO+yZgIbDCXYDlsMowe6AmLgEwZ4I5TBGsDsgGpYg2A1YmaMEeyag4XCC3YDlMEqwOyAmLiEL9pVGJJ6R79ivX5/lu6BoNYI9E5pgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJVbAnng5jnQIEe+ZTgWDPBDQcTrAbsBxGCXYHxMQlCPZEKIcxgt0B0bAEwW7Ayhwl2DMBDYcT7AYsh1GC3QExcQmCPRFKPEawZ4IT7JmAhsMJdgOWwyjB7oCYuATBngjlMEawOyAaliDYDViZowR7JqDhcILdgOUwSrA7ICYuQbAnQonHCPZMcII9E9BwOMFuwHIYJdgdEBOXINgToRzGCHYHRMMSBLsBK3OUYM8ENBxOsBuwHEYJdgfExCUI9kQo8RjBnglOsGcCGg4n2A1YDqMEuwNi4hIEeyKUwxjB7oBoWIJgN2BljhLsmYCGwwl2A5bDKMHugJi4BMGeCCUeI9gzwQn2TEDD4QS7ActhlGB3QExcgmBPhHIYI9gdEA1LEOwGrMxRgj0T0HA4wW7Achgl2B0QE5cg2BOhxGMEeyY4wZ4JaDicYDdgOYwS7A6IiUsQ7IlQDmMEuwOiYQmC3YCVOUqwZwIaDifYDVgOowS7A2LiEgR7IpR4jGDPBCfYMwENhxPsBiyHUYLdATFxCYI9EcphjGB3QDQsQbAbsDJHCfZMQMPhBLsBy2GUYHdATFyCYE+EEo8R7JngBHsmoOFwgt2A5TBKsDsgJi5BsCdCOYwR7A6IhiUIdgNW5ijBngloOJxgN2A5jBLsDoiJSxDsiVDiMYI9E5xgzwQ0HE6wG7AcRgl2B8TEJQj2RCiHMYLdAdGwBMFuwMocJdgzAQ2HE+wGLIdRgt0BMXEJgj0RSjxGsIvB2Q4BBBBAAAEEEEAAAQQQQACBFAGCPUWJGQQQQAABBBBAAAEEEEAAAQTEAgS7GJztEEAAAQQQQAABBBBAAAEEEEgRINhTlJhBAAEEEEAAAQQQQAABBBBAQCxAsIvB67nd0qWvhhPPuDhcM/fW4jQuOXtsGLLl4HqeUtPvPW3GrOIxjh41oukfaz0f4Oxr54UTJl9UnMIWm2wYpk86Mqy91sB6nlLT7n3H/IfCvkdMqj6+U8bsH4bvPLRpH29ZHlh8jt969/3h5GP2CwMGrFaW02qq84j/vb7osmt4bouu6sKnFoeDxkwNi597gf9u18j8xZeWhEPHnhXuffDxZXbYZdj2/LekRubd/zdy0DpvD+dPPjpssN6gGu3Gsq0iQLC3ypUOIcQ/8MVf8Q/X8T/iE8+ZGcYdPpKwqdFzIP7h7/Z7Hgyf+MjWYdTeu9ZoF5aNf+ibO++uqnF8nj/59LP8JUkNnhrxL/1+es3N4cu7fKyIxvjfkfETLwjHHrIHfyCpgXdlyfgcnzl7blhzzTXCofvsRrDXwDo+t6ece0UYOXwYz+Ua+PZcMj6nx0+6MEwYewDeAu/uW3T/s6B466bfruf/JsZ4n3XVTfzlSNNf+do/QIK99sal2GFFfxiJQbn+uu/i7lgNrlAlIocN3WaZmKzBVizZQ6ASNzEiuRNZ26cHkVNb37h6xXinT2wb5t22gGCvEXl0nv6jX4av774Tf4ldI+Puy8Y/fwzdbnNe5Sew7r4FN2tqC97zzx9419a7lVYn2Fvkaq/oPxr8LWvtL37829X4h2xeEl9768oOmGutuXtQW+/43+n3vPu/wkbrvzv84Mo5BHuNuHu+dJiXstYIuvMvoeJfjmy28fph9EnfLzbaf69d+N/J2pFXV+Z/H2uP3P1mGDfGau/dKjsQ7C1ypeMfRnr+YY//cNf+4mNce2PuHmiNu38WBp8XUFv77m/3WNF/w2u7e2uvHv/bPe28WXweRg2eBpW/HBmy9eAi0iv/TRmx647cca+Bd2VJXhFVQ9weS1c+D4PPeNGZN/tOBHuzX+HOx8cd9vpcaIJd584fRnTWlZ0qf/AeffAI/qDtzN/zJdoEuzNwH8vx35Paea/ozyP8b2XtvCsr837q2hv3/N9EPiy09uatsgPB3iJXmvew1+dC84cQjTt3aDTOK9qFt9bUxr7np/FXduGl2rXx7rkqwV475xXZxuf7omee5zN1asce+NyAGuJ2Lr2iP/PNuPSqED/PiE+Kr71/M+9AsDfz1e3x2Lp/ejaf7qy58AR77Z2J9dobd7+jvsbqq1c/zI877Fp73sOu8+bOWG2tu/95hP+G19Y6rs6HsdbeOO7Q81UM/Flb494KuxDsrXCVOx8j38Ouv9gEe+3NV3QnkruQtXFf0Xf68h692lj3XJWXxNfWuft3gsed+J7q2nrH1bt/7z3/HamtNx9+Vlvf7qvHv4w6YfJF1X90ydljecuYjr9pdyLYm/bS8sAQQAABBBBAAAEEEEAAAQQaWYBgb+Srx7kjgAACCCCAAAIIIIAAAgg0rQDB3rSXlgeGAAIIIIAAAggggAACCCDQyAIEeyNfPc4dAQQQQAABBBBAAAEEEECgaQUI9qa9tDwwBBBAAAEEEEAAAQQQQACBRhYg2Bv56nHuCCCAAAIIIIAAAggggAACTStAsDftpeWBIYAAAggggAACCCCAAAIINLIAwd7IV49zRwABBBBAAAEEEEAAAQQQaFoBgr1pLy0PDAEEEEAAAQQQQAABBBBAoJEFCPZGvnqcOwIIIIAAAggggAACCCCAQNMKEOxNe2l5YAgggAACCCCAAAIIIIAAAo0sQLA38tXj3BFAAAEEEEAAAQQQQAABBJpWgGBv2kvLA0MAAQQQQAABBBBAAAEEEGhkAYK9ka8e544AAggggAACCCCAAAIIINC0AgR7015aHhgCCCCAAAIIIIAAAggggEAjCxDsjXz1OHcEEEAAAQQQQAABBBBAAIGmFSDYm/bS8sAQQAABBBBAAAEEEEAAAQQaWYBgb+Srx7kjgAACCCCAAAIIIIAAAgg0rQDB3rSXlgeGAAIIIIAAAggggAACCCDQyAIEeyNfPc4dAQQQQAABBBBAAAEEEECgaQUI9qa9tDwwBBBAAAEEEEAAAQQQQACBRhYg2Bv56nHuCCCAAAIIIIAAAggggAACTStAsDftpeWBIYAAAggggAACCCCAAAIINLIAwd7IV49zRwABBBBAAAEEEEAAAQQQaFoBgr1pLy0PDAEEEEAAAQQQQAABBBBAoJEFCPZGvnqcOwIIIIAAAggggAACCCCAQNMKEOxNe2l5YAgggAACCCCAAAIIIIAAAo0sQLA38tXj3BFAAAEEEEAAAQQQQAABBJpWgGBv2kvLA0MAAQQQQAABBBBAAAEEEGhkAYK9ka8e544AAggggAACCCCAAAIIINC0AgR7015aHhgCCCCAAAIIIIAAAggggEAjCxDsjXz1OHcEEEAAAQQQQAABBBBAAIGmFSDYm/bS8sAQQAABBBBAAAEEEEAAAQQaWYBgb+Srx7kjgAACCCCAAAIIIIAAAgg0rQDB3rSXlgeGAAIIIIAAAggggAACCCDQyAIEeyNfPc4dAQQQQAABBBBAAAEEEECgaQUI9qa9tDwwBBBAAAEEEEAAAQQQQACBRhYg2Bv56nHuCCCAAAIIIIAAAggggAACTStAsDftpeWBIYAAAggggAACCCCAAAIINLIAwd7IV49zRwABBBBAAAEEEEAAAQQQaFoBgr1pLy0PDAEEEEAAAQQQQAABBBBAoJEFCPZGvnqcOwIIIIAAAggggAACCCCAQNMKEOxNe2l5YAgggAACCCCAAAIIIIAAAo0sQLA38tXj3BFAAAEEEEAAAQQQQAABBJpWgGBv2kvLA0MAAQQQQAABBBBAAAEEEGhkAYK9ka8e544AAggggAACCCCAAAIIINC0AgR7015aHhgCCCCAAAIIIIAAAggggEAjCxDsjXz1OHcEEEAAAQQQQAABBBBAAIGmFSDYm/bS8sAQQAABBBBAAAEEEEAAAQQaWYBgb+Srx7kjgAACCCCAAAIIIIAAAgg0rQDB3rSXlgeGAAIIIIAAAggggAACCCDQyAIEeyNfPc4dAQQQQAABBBBAAAEEEECgaQUI9qa9tDwwBBBAAAEEEEAAAQQQQACBRhYg2Bv56nHuCCCAAAIIIIAAAggggAACTStAsDftpeWBIYAAAggggAACCCCAAAIINLIAwd7IV49zRwABBBBAAAEEEEAAAQQQaFoBgr1pLy0PDAEEEEAAAQQQQAABBBBAoJEFCPZGvnqcOwIIIIAAAggggAACCCCAQNMKEOxNe2l5YAgggAACCCCAAAIIIIAAAo0sQLA38tXj3BFAAAEEEEAAAQQQQAABBJpWgGBv2kvLA0MAAQQQQAABBBBAAAEEEGhkAYK9ka8e544AAggggAACCCCAAAL/v/06KAIAACAg2L+1HG62AeuFAIGsgMOenVYxAgQIECBAgAABAgQIEHgWcNif15OdAAECBAgQIECAAAECBLICDnt2WsUIECBAgAABAgQIECBA4FnAYX9eT3YCBAgQIECAAAECBAgQyAo47NlpFSNAgAABAgQIECBAgACBZ4EBdS6WMPoWTM0AAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.graph_objects as go\n", + "\n", + "win_map = som.win_map(data)\n", + "size=som.distance_map().shape[0]\n", + "qualities=np.empty((size,size))\n", + "qualities[:]=np.NaN\n", + "for position, values in win_map.items():\n", + " qualities[position[0], position[1]] = np.mean(abs(values-som.get_weights()[position[0], position[1]]))\n", + "\n", + "layout = go.Layout(title='quality plot')\n", + "fig = go.Figure(layout=layout)\n", + "fig.add_trace(go.Heatmap(z=qualities, colorscale='Viridis'))\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The property plot shows the mean values of each neuron seperately plotted for each property. This view can be used to explore the \"correlation\" of properties." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "coloraxis": "coloraxis2", + "type": "heatmap", + "xaxis": "x", + "yaxis": "y", + "z": [ + [ + -1.180779638616845, + -1.1919758666775857, + -1.2852777671837585, + -1.264320724916218, + -1.22039706098562, + -1.0406832464721922, + -1.0165682937259815, + -0.7139830533151935, + -0.6519731748249373 + ], + [ + -1.1781958936797512, + -1.125659746625506, + null, + -1.1067122837534835, + -0.8535052799182705, + -0.7329305161872162, + -0.7053705701915467, + -0.650250678200208, + -0.3987661709897245 + ], + [ + -1.2048945913630558, + -0.9901566788134647, + -0.8733139911026577, + -0.7921844000779058, + -0.8592469353340347, + -0.6295807187034561, + -0.33445963033316234, + -0.22421984635048442, + -0.2092915422694968 + ], + [ + -0.6337147106028064, + -0.8638402596666461, + -0.5865183030852223, + -0.48144600897673284, + -0.23685148826516617, + -0.28508139375758784, + null, + -0.07924304710243145, + 0.22248094499599144 + ], + [ + -0.3815412047424311, + -0.5090059549724023, + -0.0008694506772465721, + -0.1920665760222033, + 0.22133261391283857, + -0.015223589216657854, + -0.09445843395420749, + -0.018094416924539926, + null + ], + [ + 0.3212374181471401, + 0.39702726963523144, + 0.5692769321081654, + 0.36372566822379765, + 0.254060049782696, + null, + 0.10592534005597273, + 0.18343768816879327, + 0.1717247111206335 + ], + [ + 0.9310012233013272, + 0.8310964190670257, + 0.9192882462531674, + 0.7449715878305584, + null, + 0.5399944894877663, + 0.782866513574604, + 0.49348708062007474, + 0.4538696582512999 + ], + [ + 1.3946973146784656, + null, + 1.4356927343470234, + 1.1445908047677658, + 1.3340654334879924, + 1.2272706427547737, + 1.306505487492323, + null, + 0.7690865405767683 + ], + [ + 1.9248817757701566, + 1.7147371875531774, + 1.4835781405144997, + 1.6909667341319126, + 1.4933963712754563, + 1.377127849106226, + 1.4121519471423898, + 1.2117681731322096, + 1.0808584296527795 + ] + ], + "zmax": 2.533245029471476, + "zmin": -2.492895108748668 + }, + { + "coloraxis": "coloraxis2", + "type": "heatmap", + "xaxis": "x2", + "yaxis": "y2", + "z": [ + [ + -0.9767995969059803, + -1.0701849278730438, + -1.2492800831523436, + -1.3388276607919938, + -1.336908784128287, + -1.1763627699314863, + -1.2045062943325187, + -0.8821350148297789, + -0.6864095951316869 + ], + [ + -1.0452395312448555, + -1.058671667890803, + null, + -1.0663471745456297, + -0.8360819749008156, + -0.7593269083525445, + -0.8360819749008156, + -0.8399197282282291, + -0.4650991532508377 + ], + [ + -1.2428838276066547, + -0.9691240902511531, + -0.8667840015201246, + -0.6979228551139275, + -0.7849119305353015, + -0.6134922819108292, + -0.3550835578649818, + -0.3269400334639495, + -0.3862972849279455 + ], + [ + -0.6441943085301378, + -0.9070804114579671, + -0.5213862020529034, + -0.41392910888532375, + -0.1222598560018918, + -0.24506796247912657, + null, + -0.10690884269223785, + 0.10544684142464637 + ], + [ + -0.4945219287610083, + -0.5981412686011752, + 0.05043904373171857, + -0.037829282798793704, + 0.2922175033587731, + 0.09265433033326763, + -0.040387785017069355, + -0.030153776143966724, + null + ], + [ + 0.26919098339429215, + 0.40351234985376694, + 0.6452908094808215, + 0.4943391786025551, + 0.438052129800489, + null, + 0.1540583835718848, + 0.16173389022671178, + 0.0941894316642333 + ], + [ + 0.8448539825063277, + 0.8985825290901178, + 0.9876184062861124, + 0.9088165379632205, + null, + 0.6184265361889272, + 0.7604234093032296, + 0.4342143764730756, + 0.39583684319893997 + ], + [ + 1.2777525578385784, + null, + 1.5394873347681832, + 1.3053843817959572, + 1.366788435034573, + 1.2247915619202705, + 1.2631690951944066, + null, + 0.6299397961711682 + ], + [ + 1.8631378653800617, + 1.765914781085584, + 1.6154748506509722, + 1.75056376777593, + 1.5011098014940478, + 1.3168976417781968, + 1.296429624031991, + 1.0520926621866606, + 0.9945263622754564 + ] + ], + "zmax": 2.533245029471476, + "zmin": -2.492895108748668 + }, + { + "coloraxis": "coloraxis2", + "type": "heatmap", + "xaxis": "x3", + "yaxis": "y3", + "z": [ + [ + -2.492895108748668, + -1.9311669998364622, + -1.508014988277047, + -0.6532267142998822, + -0.29370658417797263, + 0.18530007886547342, + 0.6024424127335698, + 0.9248439453502693, + -0.004181523637321469 + ], + [ + -2.000101538060427, + -1.4261419674941207, + null, + -1.1962187692332673, + -0.6065633345790438, + -0.10175040850816156, + 0.6363794161669025, + 1.1730082829565411, + 0.5501228657738436 + ], + [ + -0.8059432297498952, + -0.8441223586124001, + -0.5747473938602918, + -1.0621676056715876, + -1.0194635430179717, + -0.2926460528206822, + 0.2729706710682609, + 0.9248439453502676, + 1.4780171013136534 + ], + [ + -0.09835670816483018, + -0.20037982473629798, + -0.5514157039998732, + -0.4496046936998606, + -0.5344472022832021, + -0.07771169774288257, + null, + 0.5207814982221044, + 1.28683864863919 + ], + [ + 0.8633331266273441, + 0.58971603644607, + 0.057329295085602514, + -0.7486745364561413, + 0.05945035780018345, + -0.3378953907317957, + -0.029634276212321467, + 0.47093652442939093, + null + ], + [ + 0.9036333182044315, + 0.5218420295793961, + 0.14429286638352726, + -0.2714354256748461, + -0.6638320278727998, + null, + 0.14641392909811057, + 0.6236530398794075, + 0.9961116525602748 + ], + [ + 1.1920978473877935, + 0.22489324953769976, + 0.22574167462353403, + -0.3675902687359667, + null, + 0.1294454273814418, + 0.7721274299002526, + 0.9757494505002731, + 0.9821126386440231 + ], + [ + 1.3185131851769714, + null, + -0.012665774495653492, + -0.3096145545373486, + 0.42427314470854893, + 0.6681953568856591, + 0.8866648164877651, + null, + 1.5654048851544968 + ], + [ + 0.8004082660947006, + 0.1973194342481145, + -0.18998661743483813, + 0.17738144473103098, + 0.5430526567252314, + 0.9651441369273543, + 1.305221192165581, + 1.6226735784482504, + 1.1984610355315433 + ] + ], + "zmax": 2.533245029471476, + "zmin": -2.492895108748668 + }, + { + "coloraxis": "coloraxis2", + "type": "heatmap", + "xaxis": "x4", + "yaxis": "y4", + "z": [ + [ + -0.6207288048045483, + -0.8377312511446131, + -1.1180810667029768, + -1.2511859555961877, + -1.3105741142383425, + -1.2131021205304238, + -1.3594043780107803, + -1.2828596402053376, + -0.748366212425941 + ], + [ + -0.6957652719143185, + -0.9500597112049174, + null, + -1.0249453512451208, + -0.9604667790050672, + -0.910693846047832, + -1.0600126449195357, + -1.183313774290867, + -0.5645457213906999 + ], + [ + -1.1691737365189259, + -0.9016442218737889, + -0.7489318139368194, + -0.4826466226156124, + -0.734980310001837, + -0.5283472246945299, + -0.2892863194302345, + -0.5094938409986067, + -0.8224600103509158 + ], + [ + -0.5930520375389341, + -0.9005130188520342, + -0.44124459201936816, + -0.254596093429738, + 0.0666655647487757, + -0.12940962568881473, + null, + -0.27665455235396735, + -0.3518795533006971 + ], + [ + -0.7059460991101154, + -0.6980276779578284, + 0.047435113378935634, + 0.1978851152723961, + 0.2906437630563343, + 0.17752346088080065, + 0.07722345961849299, + -0.06342278275308598, + null + ], + [ + 0.10286406144494642, + 0.41394489242766475, + 0.6130366242566048, + 0.4565535395804485, + 0.5598700822341034, + null, + 0.24652684520787566, + 0.07571518892282139, + -0.16228992685450325 + ], + [ + 0.3675655685356966, + 0.7906354986721903, + 1.0417625695018746, + 0.9919896365446393, + null, + 0.7035328659970306, + 0.5010475251028245, + 0.3800088017750034, + 0.264626093555959 + ], + [ + 0.9842974559967047, + null, + 1.5055558084215621, + 1.4535204694208164, + 1.3358753551582605, + 1.209180616721663, + 1.0033016667621948, + null, + 0.4603242163196349 + ], + [ + 1.762338894360023, + 1.9987603259068878, + 2.016859574254973, + 1.9272682949319506, + 1.5717311851942488, + 1.2431167073743243, + 1.2295422711132609, + 0.7940291077374574, + 0.6922208357794765 + ] + ], + "zmax": 2.533245029471476, + "zmin": -2.492895108748668 + }, + { + "coloraxis": "coloraxis2", + "type": "heatmap", + "xaxis": "x5", + "yaxis": "y5", + "z": [ + [ + -1.5200373396459401, + -1.510306633875107, + -1.463422324252001, + -1.2203758323850507, + -1.0704345025526645, + -0.8773684539631753, + -0.8083689039518126, + -0.34925651349158604, + -0.6252547135370394 + ], + [ + -1.4512589420384594, + -1.2860580963381754, + null, + -1.276769695375107, + -0.792445930872267, + -0.5562551635256764, + -0.3519103423381755, + -0.2139112423154494, + -0.23071882501052485 + ], + [ + -1.205116316517153, + -1.0516365482226455, + -0.915848972238744, + -0.9941369232131763, + -0.791561321256736, + -0.6172932269972664, + -0.25194945578325206, + 0.05147164234364152, + 0.30995457200159543 + ], + [ + -0.5175092623654489, + -0.7214560092259604, + -0.6013702539177221, + -0.5137939019802218, + -0.3439488557984048, + -0.26521860001620673, + null, + 0.11781736350841368, + 0.648583132826595 + ], + [ + 0.01697186733795942, + -0.3466026846449942, + -0.004258763434767852, + -0.28954536444328954, + 0.29827772507659694, + -0.17056537115446466, + -0.1661423230768128, + 0.08199067407943772, + null + ], + [ + 0.4654689424118222, + 0.5052763751106867, + 0.5211993481902322, + 0.242547319298187, + -0.00027802016488075176, + null, + 0.1629324539004597, + 0.42566150971295824, + 0.45963051894932283 + ], + [ + 1.1448491271390948, + 0.8900815578663676, + 0.7770284490015956, + 0.5079302039572775, + null, + 0.5464107222328454, + 0.8157743501618233, + 0.6273525020538679, + 0.6180641010908001 + ], + [ + 1.6358074637584124, + null, + 1.1514836992555726, + 0.6724675924459137, + 1.1289261540595488, + 1.0718688338578453, + 1.377059151215799, + null, + 1.1262723252129594 + ], + [ + 1.7990179378237536, + 1.2417138800396623, + 1.1230877305970495, + 1.3136326417822768, + 1.3445497478450603, + 1.2470215377328446, + 1.5376157964345492, + 1.3385786329402314, + 1.14617604156239 + ] + ], + "zmax": 2.533245029471476, + "zmin": -2.492895108748668 + }, + { + "coloraxis": "coloraxis2", + "type": "heatmap", + "xaxis": "x6", + "yaxis": "y6", + "z": [ + [ + 0.9681057050864874, + 0.48704147784491325, + 0.20998092798306667, + 0.5398757635715257, + 0.284037818491557, + -0.26058310998160944, + -0.7579254084302258, + -0.9161504828249603, + -1.6324800620817659 + ], + [ + 1.687896457845678, + 1.0085508785975006, + null, + -0.5271434705665582, + 0.1458686611812676, + 0.267870860398556, + 0.7818801259533593, + -0.7038133218921392, + -1.010596629760019 + ], + [ + 1.950401189768121, + 0.9394385216638456, + 0.5278755472550711, + -0.22427134431293042, + -1.2074890678411068, + -0.21813790041785344, + -0.5063653182408454, + -0.05102377689981983, + -0.5440104412780195 + ], + [ + 1.953767917123571, + 1.1273863540646132, + 0.6868784134480937, + -0.11280266830675241, + -0.41880818437634354, + -0.9048169451927528, + null, + -0.3544736913464621, + -0.23036034296239052 + ], + [ + 2.533245029471476, + 0.6465443530511217, + 0.3725394138254095, + 0.21186985092176808, + -0.1921374317322021, + -1.2350451201233357, + -1.4517156925037653, + -0.5281434885929296, + null + ], + [ + 1.2618887786115414, + 0.771879945689647, + 0.42954044132856845, + 0.42520702988096004, + -0.6784795318907351, + null, + -1.0168189641463288, + -1.1341544125738845, + -1.6813509430305271 + ], + [ + 1.1105527172873648, + 0.5592094454147023, + 0.06280049712403243, + 0.24320374908139922, + null, + -0.8458158816368515, + -0.5614774228053032, + -1.0538196311220638, + -1.7141648678691879 + ], + [ + 0.753879621214965, + null, + 0.22287004921185122, + -0.5648108162265405, + -1.0081521412511116, + -1.0731533129652404, + -0.8708163322961318, + null, + -0.49614291174905045 + ], + [ + 1.2253325640919714, + 0.704878737922776, + 0.027866534069464665, + -0.8622828451377641, + -0.771481208343258, + -0.8381490767680054, + -0.5162543853905163, + -0.526476791882311, + -1.0251524476994223 + ] + ], + "zmax": 2.533245029471476, + "zmin": -2.492895108748668 + }, + { + "coloraxis": "coloraxis2", + "type": "heatmap", + "xaxis": "x7", + "yaxis": "y7", + "z": [ + [ + -0.3101543234310724, + -0.5360323311717378, + -0.7401553464437765, + -0.8873414673643308, + -1.0173615395401094, + -1.098092956904154, + -1.264654617992079, + -1.4930820389126622, + -0.9546459753141452 + ], + [ + -0.34176704686204684, + -0.5744774819248899, + null, + -0.6527954548119466, + -0.8302346121341846, + -1.0076737694564244, + -1.0076737694564244, + -1.2269233029293043, + -0.5909296949792885 + ], + [ + -0.8506299175735232, + -0.34822556025116963, + -0.5039097251047814, + -0.24366562769883132, + -1.127326228033872, + -1.1891919878665296, + -1.0124326740589358, + -1.1592788732221673, + -1.2336537537242858 + ], + [ + -0.4158020056068416, + -0.5895700079499997, + -0.3397275163181124, + -0.6344396799165437, + -0.47331676694577407, + -0.5854909468621324, + null, + -0.4947318376570795, + -0.31355354100429533 + ], + [ + -0.774147522176006, + -0.646676863180145, + -0.365221648117284, + -0.12353727866113236, + -0.3672611786612185, + 0.03588602552302521, + -0.5256647175734076, + -0.40397272845202514, + null + ], + [ + -0.5548979887031252, + 0.6326186705023155, + 0.9186628292890285, + 0.7266070364019303, + 0.8309630158998758, + null, + -0.2408102849373238, + -0.37949836192481984, + -0.7045995306278641 + ], + [ + 0.5158555468621081, + 0.7809945175734988, + 1.130570052803747, + 1.048173018828824, + null, + 0.5994762991633928, + 0.6892156430964791, + 0.16301676276156293, + -0.3407472815900787 + ], + [ + 1.006158689623787, + null, + 1.275580674477439, + 1.7640482397495776, + 1.4050908640172346, + 1.3000550410046443, + 0.873793157322484, + null, + 0.1548586405858287 + ], + [ + 1.647794998745353, + 2.036325567364738, + 2.0079760928040575, + 1.8566429264441713, + 1.599356148326925, + 1.372458375314293, + 1.2653830217577697, + 1.0716276200840622, + 0.9584336748957369 + ] + ], + "zmax": 2.533245029471476, + "zmin": -2.492895108748668 + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "area", + "x": 0.13333333333333333, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "perimeter", + "x": 0.5, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "compactness", + "x": 0.8666666666666667, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "length_kernel", + "x": 0.13333333333333333, + "xanchor": "center", + "xref": "paper", + "y": 0.6499999999999999, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "width_kernel", + "x": 0.5, + "xanchor": "center", + "xref": "paper", + "y": 0.6499999999999999, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "asymmetry_coefficient", + "x": 0.8666666666666667, + "xanchor": "center", + "xref": "paper", + "y": 0.6499999999999999, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "length_kernel_groove", + "x": 0.13333333333333333, + "xanchor": "center", + "xref": "paper", + "y": 0.3, + "yanchor": "bottom", + "yref": "paper" + } + ], + "autosize": true, + "coloraxis": { + "cmax": 2.533245029471476, + "cmin": -2.492895108748668 + }, + "colorscale": { + "diverging": [ + [ + 0, + "#440154" + ], + [ + 0.1111111111111111, + "#482878" + ], + [ + 0.2222222222222222, + "#3e4989" + ], + [ + 0.3333333333333333, + "#31688e" + ], + [ + 0.4444444444444444, + "#26828e" + ], + [ + 0.5555555555555556, + "#1f9e89" + ], + [ + 0.6666666666666666, + "#35b779" + ], + [ + 0.7777777777777778, + "#6ece58" + ], + [ + 0.8888888888888888, + "#b5de2b" + ], + [ + 1, + "#fde725" + ] + ] + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "autorange": true, + "domain": [ + 0, + 0.26666666666666666 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "xaxis2": { + "anchor": "y2", + "autorange": true, + "domain": [ + 0.3666666666666667, + 0.6333333333333333 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "xaxis3": { + "anchor": "y3", + "autorange": true, + "domain": [ + 0.7333333333333334, + 1 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "xaxis4": { + "anchor": "y4", + "autorange": true, + "domain": [ + 0, + 0.26666666666666666 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "xaxis5": { + "anchor": "y5", + "autorange": true, + "domain": [ + 0.3666666666666667, + 0.6333333333333333 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "xaxis6": { + "anchor": "y6", + "autorange": true, + "domain": [ + 0.7333333333333334, + 1 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "xaxis7": { + "anchor": "y7", + "autorange": true, + "domain": [ + 0, + 0.26666666666666666 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "xaxis8": { + "anchor": "y8", + "domain": [ + 0.3666666666666667, + 0.6333333333333333 + ], + "visible": false + }, + "xaxis9": { + "anchor": "y9", + "domain": [ + 0.7333333333333334, + 1 + ], + "visible": false + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0.7, + 1 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "yaxis2": { + "anchor": "x2", + "autorange": true, + "domain": [ + 0.7, + 1 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "yaxis3": { + "anchor": "x3", + "autorange": true, + "domain": [ + 0.7, + 1 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "yaxis4": { + "anchor": "x4", + "autorange": true, + "domain": [ + 0.35, + 0.6499999999999999 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "yaxis5": { + "anchor": "x5", + "autorange": true, + "domain": [ + 0.35, + 0.6499999999999999 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "yaxis6": { + "anchor": "x6", + "autorange": true, + "domain": [ + 0.35, + 0.6499999999999999 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "yaxis7": { + "anchor": "x7", + "autorange": true, + "domain": [ + 0, + 0.3 + ], + "range": [ + -0.5, + 8.5 + ], + "visible": false + }, + "yaxis8": { + "anchor": "x8", + "domain": [ + 0, + 0.3 + ], + "visible": false + }, + "yaxis9": { + "anchor": "x9", + "domain": [ + 0, + 0.3 + ], + "visible": false + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAMgCAYAAAC58+hHAAAgAElEQVR4XuzdB5QTVd/H8X926SCCvb5iAxWwYsMKIjawV1SsCIoNe8OGIip2RcXee0cfe29YUFREFLGgiBVRQNpu3nNnd0JYFu6PTeZuwn5zznt443MzmXxmdjbfnZZKp9Np44EAAggggAACCCCAAAIIIIAAAgUlkCLYC2p5MDMIIIAAAggggAACCCCAAAIIRAIEOysCAggggAACCCCAAAIIIIAAAgUoQLAX4EJhlhBAAAEEEEAAAQQQQAABBBAg2FkHEEAAAQQQQAABBBBAAAEEEChAAYK9ABcKs4QAAggggAACCCCAAAIIIIAAwc46gAACCCCAAAIIIIAAAggggEABChDsBbhQmCUEEEAAAQQQQAABBBBAAAEECHbWAQQQQAABBBBAAAEEEEAAAQQKUIBgL8CFwiwhgAACCCCAAAIIIIAAAgggQLCzDiCAAAIIIIAAAggggAACCCBQgAIEewEuFGYJAQQQQAABBBBAAAEEEEAAAYKddQABBBBAAAEEEEAAAQQQQACBAhQg2AtwoTBLCCCAAAIIIIAAAggggAACCBDsrAMIIIAAAggggAACCCCAAAIIFKAAwV6AC4VZQgABBBBAAAEEEEAAAQQQQIBgZx1AAAEEEEAAAQQQQAABBBBAoAAFCPYCXCjMEgIIIIAAAggggAACCCCAAAIEO+sAAggggAACCCCAAAIIIIAAAgUoQLAX4EJhlhBAAAEEEEAAAQQQQAABBBAg2FkHEEAAAQQQQAABBBBAAAEEEChAAYK9ABcKs4QAAggggAACCCCAAAIIIIAAwc46gAACCCCAAAIIIIAAAggggEABChDsBbhQmCUEEEAAAQQQQAABBBBAAAEECHbWAQQQQAABBBBAAAEEEEAAAQQKUIBgL8CFwiwhgAACCCCAAAIIIIAAAgggQLCzDiCAAAIIIIAAAggggAACCCBQgAIEewEuFGYJAQQQQAABBBBAAAEEEEAAAYKddQABBBBAAAEEEEAAAQQQQACBAhQg2AtwoTBLCCCAAAIIIIAAAggggAACCBDsrAMIIIAAAggggAACCCCAAAIIFKAAwV6AC4VZQgABBBBAAAEEEEAAAQQQQIBgZx1AAAEEEEAAAQQQQAABBBBAoAAFCPYCXCjMEgIIIIAAAggggAACCCCAAAIEO+sAAggggAACCCCAAAIIIIAAAgUoQLAX4EJhlhBAAAEEEEAAAQQQQAABBBAg2FkHEEAAAQQQQAABBBBAAAEEEChAAYK9ABcKs4QAAggggAACCCCAAAIIIIAAwc46gAACCCCAAAIIIIAAAggggEABChDsBbhQmCUEEEAAAQQQQAABBBBAAAEECHbWAQQQQAABBBBAAAEEEEAAAQQKUIBgL8CFwiwhgAACCCCAAAIIIIAAAgggQLCzDiCAAAIIIIAAAggggAACCCBQgAIEewEuFGYJAQQQQAABBBBAAAEEEEAAAYKddQABBBBAAAEEEEAAAQQQQACBAhQg2AtwoTBLCCCAAAIIIIAAAggggAACCBDsrAMIIIAAAggggAACCCCAAAIIFKAAwV6AC4VZQgABBBBAAAEEEEAAAQQQQIBgZx1AAAEEEEAAAQQQQAABBBBAoAAFCPYCXCjMEgIIIIAAAggggAACCCCAAAIEO+sAAggggAACCCCAAAIIIIAAAgUoQLAX4EJhlhBAAAEEEEAAAQQQQAABBBAg2FkHEEAAAQQQQAABBBBAAAEEEChAAYK9ABcKs4QAAggggAACCCCAAAIIIIAAwc46gAACCCCAAAIIIIAAAggggEABChDsBbhQmCUEEEAAAQQQQAABBBBAAAEECHbWAQQQQAABBBBAAAEEEEAAAQQKUIBgL8CFwiwhgAACCCCAAAIIIIAAAgggQLCzDiCAAAIIIIAAAggggAACCCBQgAIEewEuFGYJAQQQQAABBBBAAAEEEEAAAYKddQABBBBAAAEEEEAAAQQQQACBAhQg2AtwoTBLCCCAAAIIIIAAAggggAACCBDsrAMIIIAAAggggAACCCCAAAIIFKAAwV6AC4VZQgABBBBAAAEEEEAAAQQQQIBgZx1AAAEEEEAAAQQQQAABBBBAoAAFCPYCXCjMEgIIIIAAAggggAACCCCAAAIEO+sAAggggAACCCCAAAIIIIAAAgUoQLAX4EJhlhBAAAEEEEAAAQQQQAABBBAg2FkHEEAAAQQQQAABBBBAAAEEEChAAYK9ABcKs4QAAggggAACCCCAAAIIIIAAwc46gAACCCCAAAIIIIAAAggggEABChDsBbhQmCUEEEAAAQQQQAABBBBAAAEECHbWAQQQQAABBBBAAAEEEEAAAQQKUIBgL8CFwiwhgAACCCCAAAIIIIAAAgggQLCzDiCAAAIIIIAAAggggAACCCBQgAIEewEuFGYJAQQQQAABBBBAAAEEEEAAAYKddQABBBBAAAEEEEAAAQQQQACBAhQg2AtwoTBLCCCAAAIIIIAAAggggAACCBDsrAMIIIAAAggggAACCCCAAAIIFKAAwV6AC4VZQgABBBBAAAEEEEAAAQQQQIBgZx1AAAEEEEAAAQQQQAABBBBAoAAFCPYCXCjMEgIIIIBA3RP48edf7dFhb1ivg7rbYk0b1z0APjECCCCAAAIIzCNAsLNSIIAAAgggUAACn34x1q4c+rBdcd4xtvSSLRKfo1mzZtvVtz5qe+28ta22ygqJvx9vgAACCNREYOi9z9gG7de0jddbqyYv5zUIFL0AwV70i5APgAACCCCAwMILjJ/wm5058Ba78NTDCPaF5+MVCCAQQGDyP1Ot3/nX29GH7EawB/DmLQpTgGAvzOXCXAkC//w71e5+9EV75sV37adffrellljcjuyxi/XYYzsrLS2NpnDl0Ees1UrLWZs1VrZLr7/fvhr7o916xam27tqr23/TZ9h9j79s9zz6ov07ZZptt+WG1q/3vrbCsktm3v2DT0bbLfc/ax+PHGNl5eW2yQZr21nHH2SrrrycMIcMQQCBRUXAbUtWWm4pa9iwgbm9Pd+Pn2gbrdvaTu6zn623zuqZj1lenrZ3PvzcrrvtcRv19ffWtnUrO6HXXtaxQztLpVI2ffpMO3fw7bZP921t5sxZdtHV91q9eqV246B+9stvf9qVNz1iQwadaC0XX8w+HPmVPfDEK7ZT503tlnuHRdOLt3PbbL5e9B6vvD0ieu99d+1kfXruai2aN8vMy5+T/rFb7xtmT77wTvTfdt9hC+tdOebtDz63swfdan/8NTkz/ogeu9hJR+1juXyGlZZfelFZ5HwOBApaIJ1O26gx39s1tz1m7rtKaUmJbb9NBzvnxJ7RKTVVf47dtqPn3l3twL22t0YNG0SfLZdtjHvtI8+8bvt272Q33/tMNA/uPXod2M326bZN5nuY8l1tfp/lgD262JkXDzV3ulD82KXLZnbhKYfb52PGRe9/yL472s13P21vvD/SmjRuZEccsLMdlPUZq07bbaOOOqi7deuyWWYe3XfDm+5+2t58f2T0Xa9dm1Wt98G72tabrWvTZ8y0h5953R566tVou+8+4w7bbmx9D93DFm/etKDXEWZu0REg2BedZVnnPsm/U/+zN98baR3Wax1tQEd++a2de/kddsaxPWzLTdpngn3ib39Gv7gO229HW2n5ZaxZ00ZWVp62S667z6ZMmRZ94V6sWRN74MlXbPiIL+3Ss3vbEi2bR68f8fnXVlZWbu3XWs1mlZVFvxR++uU3G3hmr+gXAw8EEKgbAi7Yn3r+bTtgj+1sn27bWr3SUhv28nt2+4PP2XUXnWDrtF4lgnjh9Q/tutsftwtOOczarbWqffLFN3bxNffauSf1jPYOxcHuth+zZ5dFf2R0ce62QR9/PmaeYD/0hEG2zWbr2anH7B8dJv/W8M/swqvutgb169nZJxxkm2/U1iZN/tfOvewO27xDWzvqoG7RHwbcXqlTBtxobVZbOfoC7b6E3njXUzbtv+nW/8Se1qhRAxv3wwQ7a9CtNvCMI+faw57LZygpSdWNFYJPiUAtC7hgPmvgLdan527WqeP60c/4hF//tHZtWkUh+tQL79gt9w2z808+1NZa4/9s8r9T7eqhj1iDBvUz2wA3jZpuY9xr+555tW224Tp2Yq+9bdmll7DR3/xg5w2+w3rs0SXaeeK2Rcp3tQV9ln+mTLNjzrjaTuqzz1x72OP336DdmnbK0fuZC/GfJ/5h5w++01zUH7D7dtESct8NT7lgSLQN3Wbz9aPovvDKu6I/cu62wxb22x9/20nn32AH7tnFOnXcIHL8ZtxP1rLFYrbKSstmvhue1reHLb3E4ub+EPr9TxNtw/ato+0wDwRCCBDsIZR5jyAC7q+oV9z0sDVsUN+OO2LPTLC/8e6ndv3AE2zlFZbJzMdno7+18wbfadcOOC7z3+PDrvbfrbN13Wbjaud57Pc/W/9Lb7dLzuplrdjLHmS58iYIFIKAC/YvvhpnV51/bGavysxZs23AVXfZki0XtxOO3MumTP0v+uK3x85b286dN41m222Xht47zCb8+oedc8LB0R8A3R72SZOn2OD+R8+1h8Z9Aa26h/2k84fYjZf0i+LfPaZOm25nXDzUVm+1QvSe7guxe7z4xof28lsfR3ueXIy75w8+9epc8+sOgT++/3V2wSmHRkcZVRfs7mijXD5DISwr5gGBRV3AXX/iomvusRWWXSrzR7rszxz/HLs/MHbeYsPM/zTxt7+ibcBZxx1o67dbI9rDXtNtTBzMQy87JZpW/Hju1eF232Mv2XUXn2BLtFhsnkVR9bua77O4P0guKNirvr+7cOcHn46OtoWlpSXVOrl5fOK5N+3K8/va73/+He3scd/rsr8nxjPutv1NGzeq1nlRX8/4fIUjQLAXzrJgTvIg4Das7uEO63QP93z69Bl2et8DMoc+uf/++HNv2bsffWEDTjvcGjdqGI2Nf2ks1XLxTPBXnaX57ZHKw6wzCQQQKGABty0pLyu3k/vsm4nkeFvy/ohR0ZdDF+VnDLzFBp55pK3RasXMp3HxfPcjL9oNA0+M/qDogt0dtXPw3l3n+sTVBfvlQx6ymwb1yxz1E++h32zDtrbnzltlXh8fnhoHe3XzG3+J7951C9u1a8dqg91t43L5DAW8CJk1BBYZgflFbPwB5/ddJd5+bLL+2rZ3t22iYK/pNqa617r3V74nZX9X832WBQV71Xmvuk3+b8aMKPbdaUnuSID44XbauJ0v1ww4zpZbeonoiMuvx/1kvQ7aJTp9KT5lwI13n9P9kXSX7TaLDv9fcfml5vodsMisVHyQghYg2At68TBzCxJwG/En/ve2vfTGRzbm2x9txsxZ0fD4PMw42N2/ccDH03Pnft50z9PVTj77PE53OKs7VP7z0eOi8+Tdw53jfvNlJ3ORJlZPBOqQQNU/BsYf3f3x7+kX3om++H37w892WL9Lo0Pdqz7cHm13bnrjhg2jYK8a3PEXw6p72LOfuzFKsKdKUnbBFXdGh8RW9xhw2hFR7Ff3xdqdBpTLZ6hDqwQfFYFaE3CHdfc5/UobcPrh1V6Izf0cn3XJrTbkkhPn+a6SvS2r+kdCdRvjjuKp7rXu9W670vesa+ySM3tFe95939V8n2VBwV51++je322T4z+iTvz9r8jJHV1U9ZH9Xc4dLfXuh19Epzj98NOv0Xnw7pD5ONzdofYPPf1adM78Bm3XsOOP3Cs6zYAHAqEECPZQ0rxPXgX+mvRPdH7mRuu2sYP23D5zWGl1e9irC/bsDbr7xVPdw33ZdYd1uYvMtV971WgPvfKX47x+UCaGAAIFIbCgo3Wy97BXd0549geYX3DnM9jdNm1+f2DInpfqtmfKNm5Bn6EgFhYzgcAiLuDbK70we9hr8kfBONgHXXe/DRnUz5ZdqmVGPPu93UUwfd/VfJ8ll2CP97BXPf99fqtHfIE6d7qBu3aIuyZIfBFj9xp3seK7Hn4hun7JdRcdb6v+3/KL+JrGxysUAYK9UJYE87FQAtX99Tg+n7Rli+ZzHRJfXbC7w6Euvf6B6H7Hyy2zxDzv7fbWuz1USy3ZYq698+4+yedcdlt07jv3LV6oRcZgBIpaQD6H/YIh0RWK3Ze96h6hgt0dhj/spffs4jN7RVeMru4x33PYc/gMRb2QmXkEikQg/r7jLqQbX2gye9aruxaF+9+rO4c9l2B3F51b0Dns34//ZZ49/VW/q/k+Sy7BHp/D3nq1lTMXwVMW8fsjvrTHn3szc02Q7Ne4aO9/2e22326duM2cgsmYvAgQ7HlhZCKhBdzh6e4XhftivOsOW0QXYnr46dfsrkdeiG6XlH0Oe3XB7n5BuHOWfv3tLzv28D1t+WWXiA5jdVcTXb3VitFt29ytm979cJRddPoRtvRSLWz01z/Y5Tc9aH/+9U+1h5mFNuD9EEAgnIAL9vsef8l67L6dHbrfTpmrxLtTZq6+8NjMOevuCutX3vxwdNXijdq3Nnd4+g/jf7XJU6ZGER8q2OOrxLvDPg/bb6foKCT33p+OGhsdmbTMUi3sr7//tePOvibahu6501Y2u6wsuqZHLp8h3BLhnRCo2wLVXVn92x8mRNfHaNqkUXSbs8uHPOi9SnwuwX7kyZfbBm3XtLNPPCi6AJ67Svz5V9wZHVK++45bRldtV76rLeizuNvVudOI3Lnmxxyyu6UtHR2q/tFnc99VI14bqh5BGV8l3p3u6G7f626j+fsff9sPP/9q226+fjSPr737iXXZaqPoPX7/a3J0R6CmTRvbyb33sUeGvRFdgd7dvrN+vXr23sej7OpbHrXL+/ex1quvXLdXQj59MAGCPRg1b5RPAXfYkrto3OAbH4ouFOKu2O7uq1m/Xql99e14b7C7eal6b83mizW1jh3aWr+j9ok2zn//MyW6L6f7Q4B7uA292+C726T0PXR39rDnc4EyLQQKXMAFu7swpTtvMb4P+6Ybrh3dFtLdaz1+uG3T8E9G2833PBPdFtI93D193e3bOm2xQbBgd+/rtmH3PPqiuasmu/utu9tfuvs0u+2Xu5Wce7h5HHDV3Tbux1+iL8O9D+4eXdm+pp+hwBcjs4fAIiPgfk7ddXauu/2J6OfYhW237Te30/v2iII9/p50zS2P2aivv49+/t2FLt3ty+KL7ebjHPZjDt3N7n70xcx92I8/Yq/MPc7V72q+z/Ld+InRHTmGjxht++3ayU4/toe5IyV957DHpzxm32fdHUHpQtv98dVdy8PdNu6GO5+MrocUbyfde/TcZwdr1rSxvfbOJ3br/c/aF2O+i9Yddzu34w7fw9zt5OK7dCwyKxUfpGAFCPaCXTTMGAIIIIBAoQgo54QXyrwyHwgggEDSAvO76FzS78v0EaiLAgR7XVzqfGYEEEAAgYUSINgXiovBCCCwiAsQ7Iv4AubjFZQAwV5Qi4OZQQABBBAoRAGCvRCXCvOEAAK1JUCw15Y871sXBQj2urjU+cwIIIAAAgslQLAvFBeDEUBgERcg2BfxBczHKygBgr2gFgczgwACCCCAAAIIIIAAAggggECFAMHOmoAAAggggAACCCCAAAIIIIBAAQoQ7AW4UJglBBBAAAEEEEAAAQQQQAABBAj2HNeBJ8etn+MU/C//eWZL/6AcRoyfsWQOr9ZeukKDSdrAGo76ZWaLGr5Sf9k/sxvpg2s4sl5JeQ1fqb3s9+nNtIE5jPp3ZrJOnZbe3E5ap0cOc8hLY4HvJ79h7/9+SqIgs9Ml9l95g8TeY2a6nv1bluw6Vz9VZs1Kpyf2GZzPbzObJzZ9N+GZ5fVs8uzGib5H2szS6VRi7zG9rL5NmtEksem7CZenU+bW2SQf565zmG29XPsk36LOTPu8EU/Ys798nOjnnfp3Y5s+NbltWOmUEiuZntzPTbReNy238kbuJzSZR/0ms6y0YVkyE6+cavOm/1njhjMTfY+lG02x5g2S29Yv0/AfW7zetEQ/w/j/lrA/Zyb7Xe+BjkMT/QxMfF4Bgj3HtYJg1wAJds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TcmMYNekCHbNKZ+jCPYcNQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21YlgV6XyN45gz9GSYNcACXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedCHZVKn/jCPYcLQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21YlgV6XyN45gz9GSYNcACXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedCHZVKn/jCPYcLQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21YlgV6XyN45gz9GSYNcACXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedCHZVKn/jCPYcLQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21YlgV6XyN45gz9GSYNcACXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedCHZVKn/jCPYcLQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksJdPbJ2ZrVQqZem0+01T8UjyeclyX6scQcYR7DkyE+waIMGuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU20Fuzp/+RhHsOdDsYCmQbBrC4Ng15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksM+e2DqzJz1lZu73TLxnPcnnpcuOUTmCjGMPe47MBLsGSLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDLYZ2UdEq/OXz7G1eeQ+HwwFs40CHZtWRDsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOoUM9pm/uD3sZu7U9cye9QDPCXZ1bSiScQS7tqAIds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CB3t0GHx8OHygfxsuz0Xn1PWhKMYR7NpiItg1J4Ld70Sw+43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11Chns06M97BVXh09ZytKWDvK84XKcw66uD0UxjmDXFhPBrjkR7H4ngt1vpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPIYP/vlzbqbOV1XOPlCfa8gtb2xAh2bQkQ7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPapv7SJDoePHpk97ck/b0Kwq6tDcYwj2LXlRLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDrY1fnK57imBHs+OWt/WgS7tgwIds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CBvsUt4e9cs96PH8hnjdd7iuVI8g47sOeI/NxI3rkOAX/y89c5Tb/oBxGXD7+0Bxerb30xylLaANrOGqpRlNr+Er9ZVNnNdAH13Bko9JZNXyl9rILV79JG5jDqO7vDczh1f6X7rLChnbhhnv4BzLCK/Dh7yNsyLjrvONyGbBW0/Z28PJH5zKJBb72h+kf2/N/XZ7Y9N2Ep5fVtz9nNkvsPUpSaatXUpbY9N2EZ5WX2LTZyW7DUqm0laZctifzWLtpe+u5fJ9kJl451ff//NbO++KxRN/jyo33s+1XXivR96grE7917G02fNKbiX7cXZc60DZqvlVi73H5e6/bM998mdj03YRLpqesZGbmwOK8v1f5MrMs3Xx23qebPcEGDWdbvXrJbicb1E/2Pfqs0s22X3qjRJ3e/nuofTXt5UTf49z2zyQ6/eyJ/5t9Dnt8ufh4QILPF2MPe7BlHOSNCHaNmWDXnAh2vxPB7jdSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUzAh2TSpksE+e4Pawh78Pe3OCXVsZimUUwa4tKYJdcyLY/U4Eu99IHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp9DBnuCO9OgjVzf9FitwlXh1fSiKcQS7tpgIds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CBvukaA97fB/2yrgO8LzF8pzDrq4PRTGOYNcWE8GuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU+hgV+crn+Nasoc9n5y1Py2CXVsGBLvmRLD7nQh2v5E6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOIYP9T7eHPT5sPcCe9XQ6Hb3fEgS7ujoUxziCXVtOBLvmRLD7nQh2v5E6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOIYP9jwlt1NnK67ilCPa8etb6xAh2bREQ7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPbff25j7jLx0Z7vOZeLT/z50itwDru6PhTFOIJdW0wEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg/23CWtVXGkuc1h85f+T8PNlViTY1fWhKMYR7NpiItg1J4Ld70Sw+43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ChnsE39eq1bOYV+WYFdXh+IYR7Bry4lg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21Sl0sKvzlc9xyxHs+eSs/WkR7NoyINg1J4Ld70Sw+43UEQS7JkWwa04Eu+ZEsHuaJLwAACAASURBVGtOyiiCXVEi2DUlgl11Chnsv/y81pxz2OMZzLpafPSfEni+/AqjVY4g41JpdxY/jxoLEOwaHcGuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU8hgn+CCvfLhgtXdci3E8xXYw66uDsUxjmDXlhPBrjkR7H4ngt1vpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPIYP+pls5hX5FgV1eH4hhHsGvLiWDXnAh2vxPB7jdSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWSwj6/cw+72rGcfEp7085UJdnV1KI5xBLu2nAh2zYlg9zsR7H4jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnUIG+48/rRXdf73iPuxm7kTuEM9XXpFz2NX1oSjGEezaYiLYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQob7GtbOmvfespSQZ6vshL3YVfXh6IYR7Bri4lg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksH//k7voXMUB8PGe9RDPW63EHnZ1fSiKcQS7tpgIds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CBvt3P62tzlZex61KsOfVs9YnRrBri4Bg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksI/7ae2sPesVczhnT3tyz1dd8UuVI8g47sOeI/NWL52W4xT8L58+u75/UA4jGtablcOrtZdOm95QG1jDUcM6nlXDV+ov2+6VwfrgGo5s0nRGDV+pvWzqv420gTmMKi8vyeHV/pfuvsp6dtkWu/gHMsIr8MqEL+2Mkfd6x+UyoCSVttKS7Gu75jK1eV9bmiq3BiWz8zvRKlMrT5fYzPLSxN5jo8Vb2xlr9Ehs+m7C7//5rZ33+WOJvkdJSdpK65cl9h6zZ5Xaf9MaJDb9aMJpd1Gj7Dv95v/trt9qL9uxVev8T7gOTvGGMXfZW3++k+gn/27CMvbbpMUTfY+kJ15/UomVTknud/NJ221ju7RLdk/oZR+9bk9/OypRqiZLTLOGzWYm9h6N68+yBvWS/X2V7NarguaV7a5IzKjqhL+tpT3sq7OHPdgyDvJGBLvGTLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JkRrBrTgS75hQy2MdmB3t8mfh4NhN8vgbBrq0MxTKKYNeWFMGuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pmRHsmlTIYP+mlvawr0mwaytDsYwi2LUlRbBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDLYx7hz2N2t3OL7sEfXjE/+eeuVOIddXR+KYhzBri0mgl1zItj9TgS730gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWnkMH+ldvD7i6DU3Fnt2D/rrUyt3VT14eiGEewa4uJYNecCHa/E8HuN1JHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpZLCPHp91McMEz1mPPnvW9Ncm2NXVoTjGEezaciLYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7F9mB7s6g3kYtw7BngfFApoEwa4tDIJdcyLY/U4Eu99IHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp5DBPmr8nPuwZ46KT1Wewx4fJZ/A83U4h11dHYpjHMGuLSeCXXMi2P1OBLvfSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVaeQwf7F+HXCnrxeebJ8O/awq6tDcYwj2LXlRLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDLYP3N72N1V4TOnmKeDPG+/MleJV9eHohhHsGuLiWDXnAh2vxPB7jdSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWywuz3s4R/rEuzh0ZN8R4Jd0yXYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7CN/XCe6ent8H/Z4V3vSz9dbeZTKEWRcKu0+MY8aCxDsGh3BrjkR7H4ngt1vpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPIYP/UBXstPNb/Pw6JrwX25N6SYNdsCXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedQgb7iB/XqbwMnNvRnvzV4aM992a2AcGurg7FMY5g15YTwa45Eex+J4Ldb6SOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTyGD/uHIPe3xLt3gek36+EcGurg7FMY5g15YTwa45Eex+J4Ldb6SOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTyGD/yO1hD7hnveJq9CnbiHPY1dWhOMYR7NpyItg1J4Ld70Sw+43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11Ch3s8XxFMZ01k0k+78AednV1KI5xBLu2nAh2zYlg9zsR7H4jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnUIG+wfROezuPuzx/dfD/Lvx/3GVeHV9KIpxBLu2mAh2zYlg9zsR7H4jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnUIG+/Af21rFrdws6L+brkKwq+tDUYwj2LXFRLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDLY3/+hbXQfdsu+C3mA55v93xcqR5Bx3Ic9R2aCXQMk2DUngt3vRLD7jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXUKGezvuWCvfCR5zrp7i+zpb84ednV1KI5xq955aeIzWlpanuh7NGw0K9Hpu4lP/69Bou9RPqsk0em7ib+z+3GJv8eWD96Q6Huk67nNUbKP7AuCJPFOe67Z3gZ33jGJSde5af5v3Nd29GtPJvq5UyVpK62f3DbMbR8bNkx2G1ZenrLZs0sTc0qnU+beI8lHx2VWs0s23C3Jt7B3Jnxvp78zLNH3SHziabNUwsvihh12sx3XWDPxj1IX3mDAZ4/a8xM/TPSjTp3WyGbMqJ/Ye8yeWs/KZiS3fXEzXvpviZVMT+57Uv2pZqUzEiOKJnz8LtvYThuuneibXPbRa/b0uOQOhW7YfKbVazw70c/QvMl/1rjBzETf4+XOVyY6/eyJv/ND21q5D3tHgj3YMg7yRgS7xkywa04Eu9+JYPcbqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSmYEuyYVOthr4RR225Jg11aGYhlFsGtLimDXnAh2vxPB7jdSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWSwv+X2sNfCfdi35Bx2dXUojnEEu7acCHbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedQgd7PF8hz2Hfij3s6upQHOMIdm05EeyaE8HudyLY/UbqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46hQz2N753e9grLhKf2dMe4PnWBLu6OhTHOIJdW04Eu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg/317+dcJV6dv3yM27ZVchcfrMn8cVu3mqhlvYZg1wAJds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CBvtr0R72lKWz7sMe4vm2q3AfdnV9KIpxBLu2mAh2zYlg9zsR7H4jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnUIHe/YNid0NUEM871xlD/vjz71l/S+7LSJad+3VbcigE63l4oupZDmPYw97joQEuwZIsGtOBLvfiWD3G6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUMthfcXvYLWVpS2ddLT75551bzdnDPu6HCfbyWx/bUQd1j4hcvH//00Q76ah9VLKcxxHsORIS7Bogwa45Eex+J4Ldb6SOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTyGB/+ft26mzldVyXrGCvOmEX8Pc9/rKdevT+1qhRg7y+7/wmRrDnyEywa4AEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg/2lKNgrzmF3V4uveCT/fPtWn8+X48ORX9lbwz9nD7u6whTCOIJdWwoEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg/3F7D3sAW/E3nU+e9gnTf7XLrnuPjvzuAM5h11dYQphHMGuLQWCXXMi2P1OBLvfSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVaeQwf7Cd1mHxMc3ZI9nNMHnO6w671Xip0+faZff+KAduGcXW22VFVSuvIzjkPgcGQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksD+fHezqDOZh3I5Vgt3F+rmDb7d9um9rG6+3Vh7eYeEmQbAvnNc8owl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksD/3Xbusq8NX3NItvg97fIu3JJ7vlHUOe23HulsuBLu6ds5nHMGuARLsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOoUM9me/a581W+FOYt9l1TkXnXMXmTv0hEFz8ayw7JJ282UnBzs0nmBX106CPScpgl3jI9j9TgS730gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWnkME+bFx7t0vdLJ0O+m+3VT9TOYKMI9hzZGYPuwZIsGtOBLvfiWD3G6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUMtifGbeuOlt5Hdd9NYI9r6C1PTGCXVsCBLvmRLD7nQh2v5E6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOIYP9aRfsqcr7rlvlWesBnu+66kiVI8g49rDnyEywa4AEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg/2pceups5XXcbutRrDnFbS2J0awa0uAYNecCHa/E8HuN1JHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpZLA/8e36tXEKu+2+2qcqR5Bx7GHPkXnt/lflOAX/y0tn+sfkMmL68uW5vFx6bck0dxhLco9ZS5clN/HKKZdOKUn8PVKzk3VK13NX2Ez28WbPYxJ9gyaN6lmLpvUTfY+6MvGXPh9r/e57JtGPmyo3SyX441nWJG3Tl0l4GxZ9huR+NtP101bWLNnP4Oa/ZEZynyFaiZzTrITfI9G11azjyq1sUOedE32XJRZrYI0alCb6HnVl4hd8+pg9N/HjRD/ujBn1bdas5JbXrMkNrGxavUQ/Q6NfS6zB38n9bE5fttxmtkj2+0W9KSVWMj25z+AWgPt9Ut4guc9R0nyWpZok+AvRzE5eZ3vrtlL2ldXzv2qtsGTj/E90PlN84tsNKm7lZpW3dAv0756rfxLsMypvRLArSgsYQ7BrgAS75kSw+50Idr+ROoJgF6UIdg2KYJecCHaJSRpEsEtMRrBrTgS75hQy2B/7doOs+66nLG3pIM/3XG2EhhFoFMGeIzTBrgES7JoTwe53Itj9RuoIgl2UItg1KIJdciLYJSZpEMEuMRHsGhN72EWnsMG+YWauwt2F3Wyv1Ql2cXUojmEEu7acCHbNiWD3OxHsfiN1BMEuShHsGhTBLjkR7BKTNIhgl5gIdo2JYBedQgb7I99uaCmr3LMe8N+9V0/2VBuROjOMPewLK1ZlPMGuARLsmhPB7nci2P1G6giCXZQi2DUogl1yItglJmkQwS4xEewaE8EuOoUN9o0snY7u7Bb0333XINjF1aE4hhHs2nIi2DUngt3vRLD7jdQRBLsoRbBrUAS75ESwS0zSIIJdYiLYNSaCXXQKGewPje2QOWc9nr1U5X3Yk3y+7+ofihphhrGHPUdngl0DJNg1J4Ld70Sw+43UEQS7KEWwa1AEu+REsEtM0iCCXWIi2DUmgl10ChvsG0dXic/EeeVV4pN+vv8aBLu4OhTHMIJdW04Eu+ZEsPudCHa/kTqCYBelCHYNimCXnAh2iUkaRLBLTAS7xkSwi04hg/2BsRvPOYe9cs965pz2BJ/vv8YHokaYYexhz9GZYNcACXbNiWD3OxHsfiN1BMEuShHsGhTBLjkR7BKTNIhgl5gIdo2JYBedQgb7/WM3qZyr+E7s8Uwm+7wHwS6uDUUyjGDXFhTBrjkR7H4ngt1vpI4g2EUpgl2DItglJ4JdYpIGEewSE8GuMRHsolPIYL/vm03NojaPrzxnQZ4fuMZwUSPMMPaw5+hMsGuABLvmRLD7nQh2v5E6gmAXpQh2DYpgl5wIdolJGkSwS0wEu8ZEsItOIYP93m82C3TW+tx77g9ak2AXV4fiGEawa8uJYNecCHa/E8HuN1JHEOyiFMGuQRHskhPBLjFJgwh2iYlg15gIdtEpZLDf8/Vm4e/plkrZwWu+J2qEGcYe9hydCXYNkGDXnAh2vxPB7jdSRxDsohTBrkER7JITwS4xSYMIdomJYNeYCHbRKWSw3/315uJc5XdYz9YEe35Fa3lqBLu2AAh2zYlg9zsR7H4jdQTBLkoR7BoUwS45EewSkzSIYJeYCHaNiWAXnUIG+10u2LOuBm/uJm8Bnh+y5ruiRphh7GHP0Zlg1wAJds2JYPc7Eex+I3UEwS5KEewaFMEuORHsEpM0iGCXmAh2jYlgF51CBvudX3fMzJW7H7u7/lz8SPL5oa0JdnF1KI5hBLu2nAh2zYlg9zsR7H4jdQTBLkoR7BoUwS45EewSkzSIYJeYCHaNiWAXnUIG++1jOlrK7VG3dMX92NPpIM8Pa/2OqBFmGHvYc3Qm2DVAgl1zItj9TgS730gdQbCLUgS7BkWwS04Eu8QkDSLYJSaCXWMi2EWnoMH+9ZZZt3SLb+2W/L+HtyHYxdWhOIYR7NpyItg1J4Ld70Sw+43UEQS7KEWwa1AEu+REsEtM0iCCXWIi2DUmgl10Chnst43ZMsg569Ge+4obvkfvd0Trt0SNMMPYw56jM8GuARLsmhPB7nci2P1G6giCXZQi2DUogl1yItglJmkQwS4xEewaE8EuOoUM9lvHbOUSOk7pYP/2akOwi6tDcQwj2LXlRLBrTgS734lg9xupIwh2UYpg16AIdsmJYJeYpEEEu8REsGtMBLvoFDLYh47Zek6kpyqPjq/YD+52hFva7RBP4HmvNm+KGmGGsYc9R+d1T7oqxyn4X15/in9MLiNmNs/l1dpry+tr42o6anbTmr5Sf12qXB9b05Gv9u1T05dKr9vmjiHSuFwGzV48Wag912hvV3TaMZdZ5LWVAi+PHGsn3/lMoh4ls81K/3O/WpN5lDcwm7lY9nVj8/8+6RKzdGn+pxtPsbyeRV8Uk3y47VfSfxDcvNUqNnCnnRL7GO+O/97OfOl/iU3fTThdmrbyhskuiyE77GY7rrFmop+jrkz8tGdfsCe+HJXox02VmVmCv9bqTUtZ6YxEP0K0/XLbsaQe0fejBI3cfM9eLG1ljZP92Tyl47bWvc06STHZlaNfsmd//iyx6bsJr7bU77bsYv8k+h63b3JHotPPnvjNY7aJczzov70J9mDLOMgbEewaM8GuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IpSxR8cCXa/FcHuN3IjQgb7TV9tU7knvfLq8JnrzSX7vHebNzSMQKPYw54jNMGuARLsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyakhnBrkmFDfZto8PfKx6Vt3YL8PzotV7XMAKNIthzhCbYNUCCXXMi2P1OBLvfSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVaeQwT7kq20zl5yL7sfuTlqvPGs9yefHrPWayhFkHMGeIzPBrgES7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPYbvuqkzlZex/Ul2PPqWesTI9i1RUCwa04Eu9+JYPcbqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQy2K8b3cniPekh/z12rVdVjiDj2MOeIzPBrgES7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPZrR3dWZyuv445fm2DPK2htT4xg15YAwa45Eex+J4Ldb6SOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTyGC/5svOlXvY4/uuJ3t1eHeOvNuTf/zar6gcQcaxhz1HZoJdAyTYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQob7F2iq8Sngt6F3ezEdV5WOYKMI9hzZCbYNUCCXXMi2P1OBLvfSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVaeQwX7Vl13mnMNuKUu7W7tVXi0+leDzE9d+SeUIMo5gz5GZYNcACXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedQgb7lV92rdy3Hs9dvK892ecnrUOwq+tDUYwj2LXFRLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDLYr4iCPfQB8Sk7eZ0XVI4g49jDniMzwa4BEuyaE8HudyLY/UbqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46hQz2wV/uYJZOV1xxLn4EeH5K2xdVjiDjCPYcmQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksF8+aoesc9at4gJ0mXPYk3t+yjrPqxxBxhHsOTIT7Bogwa45Eex+J4Ldb6SOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTyGC/bNSO6mzlddxpbQn2vILW9sQIdm0JEOyaE8HudyLY/UbqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46hQz2QaN2tCSvBh/dd72aq82f3vZ/KkeQcexhz5GZYNcACXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedwgb7zoHvwF5xgbszCHZ1dSiOcQS7tpwIds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CBvslX+wcXXAu2hPuLjxXecG5pJ+f2fZZlSPIOPaw58hMsGuABLvmRLD7nQh2v5E6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOIYN94Be7qLOV13FntSPY8wpa2xMj2LUlQLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDLYL/pil1o5h/3sdsNUjiDj2MOeIzPBrgES7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPYBX3SLZqvizPI5j6Sf9yfY1dWhOMZtsdfgxGd0VjO3Wib3KGtYktzEK6ecrpfsW6TKkp2+m/qspsm/x8zFkn2PdINkp++mnr1BTeLddm/f1i7btWsSk65z03ztvW+s/2VPJvq5y+unbHbT5LYxLqbLS5PdRqZLzcqT/NlJmyW9DYuc6ie6qK28nllZ42TfI53soraUWxblyX6Gq/frbl3brZHsm9SRqZ9714s2bPioRD+tWyeS/MU2u2HyP5sNJ6et3rTkfju77UtUVAk+/ls6ZTObJ/sms1qWWVmz5DYALVtOsWbNpieoZLb6Yn/Yso3/SfQ9Ll3v0USnnz3xCz/v7k5hz5zDXnkKe+LP+7d7JthnVN6IPeyK0gLGEOwaIMGuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IqSGcGuORHsmlPQYP9i18wfzNIWX3iuYj6TfH5u+6c1jECjCPYcoQl2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlMwIdk0qZLCf//muc85hj++XHuDf89o/pWEEGkWw5whNsGuABLvmRLD7nQh2v5E6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOIYP9vM93q9jDHp+0HujfC9Yl2NX1oSjGEezaYiLYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7Od+tlt0H/bo/utxtQd4fmH7ZK/vo1rH49jDvrBiVcYT7Bogwa45Eex+J4Ldb6SOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTyGDv/9nu6mzlddyAdQn2vILW9sQIdm0JEOyaE8HudyLY/UbqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46hQz2cz7bY87R8JU72jNHxSf4fMC6T6gcQcaxhz1HZoJdAyTYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7Gd/tqc6W3kdd/G6j+d1erlOjGDPUZBg1wAJds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CBvtZI/eMzmFPp+NbuqWDPB+47mMqR5BxBHuOzAS7Bkiwa04Eu9+JYPcbqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQy2M8cuXd0x/U5j/iA+Pi/JPP8kvUIdnV9KIpxBLu2mAh2zYlg9zsR7H4jdQTBrkkR7JoTwa45EeyakzKKqF5vOQAAIABJREFUYFeUCHZNiWBXnUIG++kj94ruwx5Fe7ynPcDzQes9qnIEGcce9hyZCXYNkGDXnAh2vxPB7jdSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWywuz3s4R8hP6Py6Qh2RWkBYwh2DZBg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlkzJ766T6WypzDXnE79hDPL1vvYZUjyDiCPUdmgl0DJNg1J4Ld70Sw+43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11Chvs+9bCGexmg9cn2NX1oSjGEezaYiLYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7Cd/um90DnvaKq4SH10tPsDzwes/pHIEGcce9hyZCXYNkGDXnAh2vxPB7jdSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWyw7xftYXeXnYsfIZ5fSbCrq0NxjCPYteVEsGtOBLvfiWD3G6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUMtj7fbpfxR71yvuwR3vaAzy/cv0HVY4g49jDniMzwa4BEuyaE8HudyLY/UbqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46hQ32A6JYn3Mnt4p4T/r51RsQ7Or6UBTjCHZtMRHsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOoUM9hM+OSBrtirvx575L8k9v2aDB1SOIOPYw54jM8GuARLsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOoUM9uM/6WGWOYs9Pns9+X+vJdjV1aE4xhHs2nIi2DUngt3vRLD7jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXUKGezHjehhqVR8//Vw/167wf0qR5Bx7GHPkbnjPoNznIL/5e7LYpKPx27om+Tko2nvdewNib7HzOYJI5lZWYNEP0LFxLMvg5nA2yW9LrlZntU0gRnPmuRu67e1S/bumuyb1JGpv/rBN3bmtU8n/mmTXK07tGtlZ/XaOdHP8NEX39vAoc8l9h7l9VI2u3GSShXblsR//t1phWWJMYXYRFp5fbOZzZL9DFf16G5d26+R7JvUkakPPv1he+WxDxP9tLOWbmqzmzdK7D2OPHI769y5XWLTdxO++d7X7eW3RiX2HtOXLLFZzZLdhs1qnrbZTRL7CNGE6y893Uqbz0zsTZZvPtlaNJ6W2PTdhCf83dL+mprsF7Ev9+2f6GfInvhxIw6suKVbZj975S3eEn5+/YYEe7CFHOKNCHZNmWDXnAh2vxPB7jdSRxDsmhTBrjm5oxYJdr8Vwe43UkcQ7JoUwa45EeyaU8hg7/ux28PuLjRnlXva4/uxJ/v8+g3v0zACjWIPe47QBLsGSLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6LEHnZNiT3sqlPYYD9Qna28jrthI4I9r6C1PTGCXVsCBLvmRLD7nQh2v5E6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOIYP9mI8PjHalR/dhn3Mvt8SfD9nwXpUjyDj2sOfITLBrgAS75kSw+50Idr+ROoJg16QIds2JYNecCHbNSRlFsCtKBLumRLCrTiGD/eiPD1JnK6/jbtyIYM8raG1PjGDXlgDBrjkR7H4ngt1vpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPIYO/z0cG1cpX4Gze6R+UIMo497DkyE+waIMGuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU8hg7/1Rz2i24qvEx/OY9PObO9ytcgQZR7DnyEywa4AEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg/2oj3pG565H57C7c9mjW7wl//zmDnepHEHGEew5MhPsGiDBrjkR7H4ngt1vpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPYYD/E3O8W93D/pLJ2rSf5fOjGBLu6PhTFOIJdW0wEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg/3IDw+p2KMe71kP9O8tG9+pcgQZxx72HJkJdg2QYNecCHa/E8HuN1JHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpbLAfWrlrPd7FHubfWzch2NX1oSjGEezaYiLYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7Ed8cGjFuevpyuPio8Pik39+68Z3qBxBxrGHPUdmgl0DJNg1J4Ld70Sw+43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11Chnsh39w2JzZctEencRe+Ujw+e2bEOzq+lAU4wh2bTER7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPbDhh9WK/dhJ9jVtaFIxhHs2oIi2DUngt3vRLD7jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXUKG+yHB7/gnLvA3Z2bsoddXR+KYhzBri0mgl1zItj9TgS730gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWnkMF+yPDDK/ewV95/vfLWbtF92aOrx1ccJZ/v53ducrvKEWQc57DnyEywa4AEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq06hg12dr3yOu2tTgj2fnrU+LYJdWwQEu+ZEsPudCHa/kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq04hg73n+4fHu9CD/nv3prepHEHGsYc9R2aCXQMk2DUngt3vRLD7jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXUKGewHv3+EOlt5HXfPZgR7XkFre2IEu7YECHbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedQgb7Qe8dkbnvenz/9RD/3rPZrSpHkHHsYc+ROUSwp9wVFRJ8lMxK+A3MLJ1128QkPkq6NImpzj3N2U1Kkn+ThJ1mtEj+MyS9LLpv3NYu6tE1+WVRB97h1Y/G2hnXP53oJ02Vm6XKktvGuGmXzkhu+g4n6c+Q6AKonHi6NGVlDRLewDirBBdFef2UzWqW7GcoLzUra5jse1xxWHfrsv4aIRb7Iv8elx5xo718x6uJfs6SZZexkhbNE3uPWYs3srIm9RObvpvw1JXq24wl6yX2HrObmJU1SGzy0YRnNy+3siblib5Jw2YzrV6j2Ym9R5NGM6xhg+Sm72Z88oTmNm1S48Q+g5vw2BNPTnT62RM/6L0jowvLxQ+3dQ7x/L7NCfZgCznEGxHsmjLBrjklvYedYBeXQx0ZRrBrC5pg15yiP24Q7F4sgt1LJA8g2DUqgl1zItg1p5DB3uPdIyv2sFvlVeHd1eEDPL9v81s0jECj2MOeIzTBrgES7JoTwe53Yg+730gdQbBrUgS75kSwa04Eu+akjCLYFSX2sGtKZgS7JhU02N87yt2zLegF59z73d+RYNfWhiIZRbBrC4pg15wIdr8Twe43UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlksB/w7lHu2K3MHvaKA+KTf/5Ax5tVjiDj2MOeIzPBrgES7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPb93+09Z7biPe3xf0nw+YMEu7o6FMc4gl1bTgS75kSw+50Idr+ROoJg16QIds2JYNecCHbNSRlFsCtKBLumRLCrTiGDfb93ekdfjaP96u7cdXcOe4DnD27BHnZ1fSiKcQS7tpgIds2JYPc7Eex+I3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51CBvu+7/SJ8zzovw8T7OrqUBzjCHZtORHsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOoUM9n3e6WOplLvuXOVV4qM97ck/f7jjTSpHkHGcw54jM8GuARLsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOoUN9qMzd16vuNzcnDuxJ/n8kS0IdnV9KIpxBLu2mAh2zYlg9zsR7H4jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnUIG+15vuz3sleeuB/z30S1uVDmCjGMPe47MBLsGSLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDbY3R728I/HtiTYw6sn+I4Eu4ZLsGtOBLvfiWD3G6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUMtj3fOvoWtnD/tiWQ1SOIOPYw54jM8GuARLsmhPB7nci2P1G6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOoUN9mPU2crruMe3ItjzClrbEyPYtSVAsGtOBLvfiWD3G6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUMtj3ePOYWtnD/vhWN6gcQcaxhz1HZoJdAyTYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQob7H2t4mrwFvTfJ7cm2NX1oSjGEezaYiLYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7Lu92XfOHnZLWdrSQZ4/udX1KkeQcexhz5GZYNcACXbNiWD3OxHsfiN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedwgb7seps5XXcU1sT7HkFre2JEezaEiDYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQoZ7Lu+6YI99AHxKXt66+tUjiDj2MOeIzPBrgES7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPbubx5nlk6bpVy0Vz4CPH9mG/awq+tDUYwj2LXFRLBrTgS734lg9xupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDLYu71xXNY565UXnkulLJ1Oz9nvnsDzZ7a+VuUIMo497DkyE+waIMGuORHsfieC3W+kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU9hgPz66Onz8iA+OT/r5s9sQ7Or6wDgEEEAAAQQQQAABBBBAAIE6KLDz68fXyn3Yn93mmoLSZg97QS0OZgYBBBBAAAEEEEAAAQQQQGDn10+oRAi1b73i7Z7blmBn7UMAAQQQQAABBBBAAAEEEEBgvgI7vXZCdMG56Jx1d+G5ygvOJf38f9tePc88jfthgp016FYbeMaRttoqKwRdauxhD8rNmyGAAAIIIIAAAggggAACCPgEdnztRN+QRP735zvNHexxrC++WFM7ve8BBHsi6kwUAQQQQAABBBBAAAEEEECgaAR2ePXEilu6Ve5hd3vWQzx/odNVcxkNvfcZ67LVRvbyWx9H/7KHvWhWIWYUAQQQQAABBBBAAAEEEEAgCYGur/ZLYrLeab7Yee5gdy+YPn2mXX7jg3bgnl0Idq8gAxBAAAEEEEAAAQQQQAABBBZpge1f7Zd1H/aUpa3iXPaK+7An9/zFTlfO40qwL9KrGh8OAQQQQAABBBBAAAEEEEBgYQS2f/WkzHB3P3Z3rfj4keTzlzoT7AuznBiLAAIIIIAAAggggAACCCBQxwS2e+Wkij3qbs+626Men8ue8POXO18xjzR72OvYysfHRQABBBBAAAEEEEAAAQQQmL/Adq+ebBbvSg/47yvbEeyslwgggAACCCCAAAIIIIAAAgjMV6DzKydnrgqfGRTfjz3+Dwk8f7Xz4HnmiT3srKhFJXDl0Eei+T3pqH0KZr4/HPmVXXnTIzZk0InWcvHFajRf+ZhGjd64Bi8qxGVQg4/BSxBYZAUef+4te3/EKLvwlMOtUaMG1X5O98v/3MG322YbtrU9d96qRhb5mEaN3rgGL4rvYzvwjCODX2G3BrPLSxBAoI4IfDd+og246i4bPmK0dezQ1i49p481aljfhtz5lN3/xMvWsGEDu3bAcbbx+mvVEZHC+ZidXjllzszEt3SL/0uCz1/bbt5gr02VVDq6oR0PBHSBQozFfMR2PqahK+Y2shCXQW6fiFcjUBwCP/78qz067A3rdVB3W6xp4/nONME+Lw3BXhzrOHOJQF0SmPbfdDvrklts8w7tbM+dtrKZs2Zbk8YN7cGnXrWPP/va+p/Y0+rXL7XS0lJ74n9v2ZItm9v2W3fwEk2a/K/d8dDztv9unW2FZZf0jmdA9QLbvnxKfNv1oP8S7KyRRS9Q27E49N5nbIP2a9rG6835S2c+Yjsf0wi1cGt7GYT6nLwPAoUm8OkXY+3KoQ/bFecdY0sv2UIO9p9++d3uefRF69drn8we93zsHc/HNEIZE+yhpHkfBPIvMGvWbLv61kdtr523XqSOkHHbpf6X3W4Xn3GktVp5uQhuxsxZdsEVd1qH9dbKHP3kPv+lNzxgKyy3lB2+/05e4O/HT7RzL7/dzjmxp7VebSXv+IUdUN134YWdRjGM3/blU+dccC6+0FyAf9/owh72Ylg/mMcFCNRmLE7+Z6r1O/96O/qQ3Qj2AjstgR8aBBCYI1B1D/tzrw6319/9ZK5D5PMR2/mYRqjlRrCHkuZ9EMi/wPgJv9mZA2+xC089bJEL9stvfNAGntkrc0ploW9X5/ddOP9LvfanuPVLp1buWY/vvx6f0p7s8ze6XF77Hz5rDjgkvqAWR3HMTNVgd2dVjBrzvV1z22P2wSejbaXll7ajDupu3bpsFh1C5B7uNf+34jK2+GJNbcidT9rX436K/uJ4ytH7WccO7aJbNrjHb3/8bVfc/JC99MZH0V8440fbNqvasYfvbpdce7+5Q1Ljxy5dNou+AH8+Zlx0DvtJvfexofcNi+ajSeNGdsQBO9tBe21vjRpWfw5ptnjVPexlZWV2491P208TfrdzTjzYmjVtbOXlaXvnw8/tutset1Fff29tW7eyE3rtlfkM8UZ+n+7b2syZs+yiq++1evVK7cZB/eyX3/60R5553Q7Zd0e7+e6n7Y33R1Y7j6qnm/dCuo5Acay9zCUCFQJTp023My4eap222GCuPSgXXXOPTZj4h115fl9brFmTaKz7Wb330Rej//bVtz/Oc72MCb/+aZfd8IC99u4n1qJ5M+u5d1dr1KihjfxybHQ45Z0PP2+33v+szZ5dluG/85ozrH2b1aJz2Dds3zo6DPO2+5+1P/6abJtuuLad3Ge/aPvie1T3xXLs9z/b6RfdHG0P4+3rn5P+sVvvG2ZPvvBONMndd9jCevfcNZpf93DbP7d9ckcA3Pbgc9H/3/fQ3a3n3jtE87jbDlvY+Am/2y33DbOJv/1V7Tz+N32G3ff4y9GRBP9OmWbbbbmh9eu9b+ZwUILdtzT53wtd4J9/p9rdj75oz7z4rrmjZpZaYnE7sscu1mOP7TLfd74a+6PddPfT9ub7I62svNzatVnVeh+8qzVv1sTc9uXqC4+NvifFD/e95/j+19qxh+0R/awMuv4BO3CvLnbvYy9lvsvsvcvWtv/u20XbIfcz7A7j7tRxAzut7wFz/XzV9LVuXha0jXj7g8/t7EG3Rtun+HFEj12i7yDu+12rlZazNmusbJdef7+5z+/m68EnX13gZ91yk/YLXNxVv281X6ypue9Wxx22h9WvX2+u+XUem2ywtp3Ya++5tpsL+j7lpv/IsNejbZbbG+4ezt9tex96+jUb8fnXmW22+6zH9NxtnmuOVJ1+aUmJbb9Nh2iv+u9/TLKzBt1q2dfsULaR7o8Hbjv8wFOv2lPPvx3N1767drI+ldvrb777yY4/57pqvwvP73ophf5ztaD52/ql0yy+THx8a7cQz9/cnmAv5vWGea+MbwcRx+LIL7+1Uy4YYqces79ts/n60YbvwivvijYw7kuee7gNutvw7LHTVnbw3l2tcaMG5n4BXHPrY3bV+X2t9eorW/zFc921V49e6x4PP/2afTTyq+gvny7A3TlBx5xxtZ3UZ5959rAfefLltkHbNe2cfgfbKisuaz/+/JudN/gOc1F/wO7beZdddrC7L7FPPv+2PfPSu3bp2b0zh76+8PqHdt3tj9sFpxxm7dZa1T754hu7+Jp77dyTekbzE38GN6/uy7n7Re4ugue++H/8+Rjre+bVtkG7NaM/VLhf2D9P/MPOH3znXPOoemYvA++HYwACCMwj4A4pdF9AT+97QPRl230BP/Hc6236jJl2ef8+tvaaq0SvyR434otv5gp292X7pPNvsPXbrmG9DuxmJSUpe/rFd+36O56wrTZtn9mjXt057fH24q3hn0df1nft2tFKS0vsif9VbHuuHXC8LbPU/A+7d/NWNdh///NvO/3im6379h1t9x23jP4Y6vbGnDLgRmuz2srRPLqIuPGup6Iv/e4PCu5Lntv+uT9EugDpsnUH22yDtaNtrnu4YP989HfRHz+7ddk82tvxzEvvzTWP7g8Ol1x3n02ZMi36wuu2eQ88+YoNH/FltA1domVzI9j5ISx2gX+n/mdvvjfSOqzXOvpZcb+vz738Djvj2B7mAjTeHhy4Z5coqN3P2jfjfrKWLRaLxrs/Eu603aa2c+dNMxTuu5AL/GsvOt7+nvyv9T7tClvSje3bw9ZcbSX78pvv7ayBt9iUadOj7YT7TuO+Xwy+8aHo3Or+/Q6xBvXrRT9fNX2tso2Y38+v+3438bc/ox0ah+23o620/DLRNuLsQbct8LMu0WLBFwh+6oV3oh08Zx53oK3XdvVoWzdp8hRbp/Uq9tekf6Jt2jprtrLD9t8p+vzvfTzKLh/yoA08q1fm+6Hyfcp9LmUPe3V/HHXbTbds+vTczTp1XD9a3u4PuO3atLIffvp1rmBXt5HH978u2kF0Sp/9os/69z9T7aqbH7all2ppJ/feJ/pdNb/vwsX+81Xd/G/54mkVO/UqLzAX34c96edvbX9pQXGyh72gFkdxzEz2HnZ3To/7i/EKyy5lRx3ULbOn3B3++cRzb2b2UrnXfPHVOLvq/GNt8eZNow/q/tLozhtye4DcFZJd6Lu/4A447fDM4VZVf0EsKNhdDA+97BRbv90aGUh3cagPPh29wCs1x4Ozg33Mt+PtlnuH2QWnHpb5S7jbY+S+mO+x89aZX7ZuwzH03mE24dc/7JwTDraysvLoy637pTK4/9GZz+rew03fN4/uy7rqSbAXx88Lc1m4Au5n8vrbn4jC2G2X3J70V98aYfUb1Iu+CLrtUryd6rpNB+u6zcbRz3H2HSlciA97+d25tm3ui5m74rA7Sii+SvyCgr1hg/qZL91Oy30Z7XPGVXbqMfvN9YfJ6iSzv0Tu2Glju+iae639Wqvavt23zezxe/GND6MLKGVvf93hre6L4QWnHGruj6Tuc7k/el52Th/bYduNM28VT983j5+N/tbOG3xndCXllVdYJnp9fNimu+iSsyPYC/dngTmrmYD7DnDFTQ+b+/k47og9o3XcBfwlZ/XK/BxkT9n9Ecv9oT/eLrgj+a64+ZHo6EP3Heq7H3+JovvM4w+0zltsGL3UjXHnTv/9z5S5vsu4nzn33m6PvdsxEAd7TV6rbCMWFOxvvPupXT/whLk+s++zxkdWVidf3fet7HFufp98/h279OyjMkdCuWXhju5xe6DdHzHccZvK96maBvv8vv/G81nVS91GuuXvjkzK/qPO+yO+tGtueSxzJ6S6Feyn1+yHM8dXvd2VYM+RkJfXtkB2sMcbDXdY+GYbrpOZNbdh6n/p7XbNgOOii3i415SXldvJffbNRH3Vv1ZW98ug6sVAFhTslw95yG4a1C/akxM/lCs1Vw32fkftHd3Kw+2pX6PViplpuXk5Y+AtNvDMI+f67+4Xx92PvGg3DDwx+qXtgr39WqtFRxJkP9wXYt88/jdjRnQEgeJJsNf2TwLvX+wCbo/6qRfeFB0h407RcV+c3c98s6aN7K3hn0Vf+n77Y1L0h8TzTjok+kNi1WCf3zU93BfHz78aJwX7JuuvbXt32ybDuTBfxuLtaId129hvf/4dTePonrtmYt09r277G38h7t51i2jPvvtcg66734YM6mfLLtVynmD3zaPb1r770RfRH1wbN2oYvT7+QrtUy8UzMVP1ENFiX4eYfwSytwHu59EdaeJO++t10C7RDonsU/LcH8pOG3Bz9Icyd2RhvEfe7U11Oxvm9z2juu1M1dDM5bXKNmJBwT59+ozMkUrxGuH7rAtac3x/3Jvfdjf7e1aqJCV9n6ppsPu201U/g7qNrO57ZtXfO773XpR+Krd48fSoGypuaub+DBOfu57s87e3H1RQjOxhL6jFURwzk72hdHvF+5x+pbkNc9WHOxfo5stOjr7kVrdxrRrs8a013C+4vbttG03u0WGv2+ixP0aHRLlDnhYU7NXdh31hg/20ATdF53RO/H2SXXVB37n+COHOZzqs36VznYcaf2a3h8rdA75xw4bzva/y/K5Cnz2PE3//q8aexbH2MJcIFI5AvA3qstVG0dWAT7/oJjup977R4YjudJoLTz08OkzenVsen9Oe/XMc/7wvt8yS81xPouq2Z0F72Kveh31hvozFn8GdXvPFV9/ZLtttFl1zIz6cPb7asTu8tLrHgNOOiI4kmN/2aX4XX6o6j+5w+pvuebra94jPdfV9CS+cNYM5QaB6Abfeu1NW3HV2xnz7Y+ZaO/E67l7ljrB598Mv7PYHn4sOi3bX0nGn+blwj4++Wad1q+hUvezrY7jTSBYUxW7a2detqS7Yq/uDmC/23bbCXRHdt41YmHmLHdyRRvP7rAtax9xsVseqAAAgAElEQVT3rbMuudWGXHLiPBe4i7dpSy3ZYp7tbvY8lpSUSN+nahrs8fffAacfXu2RUFW9ctlG1u1gP8Oy7z9ekexzHkk9f7crwc7vgSIXqG4Pe9Vzyqt+RCXY3Wvcl2N3P0x370u3tzr7Qhvuf0862N2FPNxfvseMHR/9Ir3+4hNsuWWWiD6O8mVzQVcWVYI93sNeE88iX62YfQRqRcDtCXd/cNyp86bRaTCXntPb6terF/3hbZcum9uYsT/atP9m2AlH7hX9lV/dw171dJykgz1dno62l+dfcaf12KNLdBGs+JBT5c4euQa78sdRZRtaKysBb4qAIBCfN73Rum3soD23z5zyNr+fr/iCZO6w7G02Wy865N2df+zOWb/rkRfssnN6R9eScKeQxEfkLUwU5yvY3eH0yjZiYeYt5lzQZ10QuW9bsTB72H3fp2oa7L4/rFa3h/39EaMWeIrm/D53XQ72zV84I7OHPd7THuLfd7teImwVwg1hD3s460Xmnao7h731aivP9QWxpsHu/sL7w08To6sTx1eYz55W0sEe76V3fyy46Op7oo1EfFGm6BDSC4ZEF15yv3yre+Qa7PE57DXxXGRWMD4IAgEF3J4cdzcId9632wPm7nDhHi7kf/j5V5s8eYp169ox8zNf3TnsL7/18VznUi7sOez52MMeT8Od69j/0tvmuvCSO21n2Evv2cVn9rLFmjauVjfXYHenQV16/QPR/enjP3JWfSPfl/CAi523QmChBarb6xv/rLds0Xy+d21xP5OPP/dmJtTcYfDuwpAH77293fXwC3b28QdFh8cvaMeAby95fA57Tfawu9cq24iaBPuCPuuCFkB8/Qt3tGX2udzxa6o7535+57D7vk/VNNjjZe8uspd9Dad4Hqs7h72m28i6HexnRnvUM9edi68ZH1+HLqHn7+9AsC/0RpIXFJZA1V8c8VU43SFh7jY+7jZmv//xd/Rld9vN149uv6HuYXfjlmrZPPprc3UXJImDeLmll7BjDtnd3C0e3Jfsjz4bM8+tlpyastcn1q26QXS3RnJXjHaHs8VXW3ZXib/y5oejq7xv1L61uXOkfhj/q02eMjX6Qp9rsLurNdfUs7DWEuYGgeIQ+PWPSXbc2dfa739Oii7KFl+0Mr5AUKMGDezyc/tkLj5ZdTvhbnHmLt7WeYsNogu9lZSW2CtvjbAb7njCOqzfJvMl3b3OXdfDHVq/eqsVrCSVylykMp/BHt+O8qNPx0TzvfSSLTJXiXenKR22307RnkG3rfp01FhzewvdlehzDfb4Csi//vaXHXv4nrb8sktEpw+57dnqrVa0VVdeTjpKqTjWGuayLgq4IwDdhWPdH+133WGL6NaQ7k42bm+5u92YO1zdHSbtbu/oTrNx31N+/2tydBvXpk0bZ67wHV+s9s3hI6PrRVx0+hGZU1gWJorzuYc9vkr8grYRf/39rx139jXRZ99zp61sdllZdL2KBe2dX9Bn9a1D1V0l3i0Dd0eO6TNn2dmX3GL/t+Ky0lXiF/T9tKbB7ua/uqvEf/vDhOg6Rr/+/le1V4mvyTay6vZ5ft+FF3QhP593of7vm75wpqWs4hz2aM+6O4c9wPP3dxhYUCTsYS+oxVEcM1Pdxjn7vqPu/CL31+Ieu28XnRvp9pSrwe7un+7+8uz+Khs/Nlq3dXSboPXWWT36T9+NnxhdgXn4iNG2366d7PRje5j7cp2Pc9irTsP9ZXzAVXfb5f2Pjm6v4TYYwz8ZbTff80x0j073cPdYdbdvc/dzzkewu2nWxLM41h7mEoHCEogvjDb2u5/tuotPsPhWQ/FF2Ro1bGiDzj7KmjapuMVZdWHrrux81dBHotNo3DUw3JfD1VdZPjonNPtq0Pc98Up0CKx73HTpSdFt1tyh9/kMdjdtdz0Qd4SQu2/xqUfvF22D3RWm3VED7lB9dys7d4spd79gdzST28OWa7C793W3w3v4mdftoadejcLFvX/HDm2t31H7RH/wYA97Ya37zM3CCbjf/+7Ciu52au6icu6Cuu6InPr1Su2rb8dHwe6OArzhziejc9zjnzP3PaXnPjtE18aIH6O/+cGOclcD77VP9D0pftRWsLv3920j3Bj3vcd9Jxr34y/RTpPeB3f3Hk4/v8/q03e3iXvl7Y+jU5VGff19tD3puXfX6PuW2xHk5tf9MSS+L727D/sJR+xlbdu0mmuHj+/7VC7B7tYJd9X/625/IrJx92Hvtv3mdnrfHvMEey7byGp/71TzXdgdHbqoPTZ94az4tutB/x2+I8G+qK1LfJ48CTz/2gf2/GvD7fgj9oruWeoe7rzM/732QXS4VnzrpTy9HZNBAAEEEEAAAQSCC3z97fjoNoiX9e9d7e3fgs9Qgm9Ylz5rgox1dtKbPH9W5urw8VXiQ/z7wY4XF5Q5e9gLanHU3ZmJ90y7izxVPT/cHZp+/uA7o71cbi9NTR7xue9uT3zVR/bV7GsybV6DAAIIJCXgTuvpf9lt1U4++8rUSb0/00UAgfwKuL2y9z/xin019ofo1pHuDjiL6mN+n5Xt2qK6xPP/uTZ5/uzM4fDx1OPD45N8/uFO7GHP/9JkikUv4M67dPdALi8vt6N77hadY+kOh/rpl9+iQ43coWTxrd2K/sPyARBAAAEEEECgTgm4azqUlZdHt18ceO29du5Jh2RO9VvUIOrSZ13Ull2hfZ6N/3f2nAvOxReaC/Ave9gLbU1gfgpGoOr5U+7ide78cHcxlx07bRJdXI4HAggggAACCCBQbALuHOfD+l0aXT/i1KP3tx223bjai+sW2+eqbn7r0mddFJZXIX8GF+y18fhwJw6Jrw133hMBBBBAAAEEEEAAAQQQQKBIBDo8l72HPb5avFk67W71ltxzgr1IVhBmEwEEEEAAAQQQQAABBBBAoHYEXLDXxuOjndnDXhvuvCcCCCCAAAIIIIAAAggggECRCHR41u1hr9iTHp/MHuL5hztfVFBCXCU+x8Vxy5g598/McVLzffn/NZiU1KSj6ZakEp18NPGp5cleBfXzqSsl/iG+nrps4u+RTie7MEb/tVzin2H27NJE36P7ihvYRR12T/Q96srEx/39pr352xmJftw/ZjWzkf+unNh7zC4vsellyd57tkFJmTVvMD2xz5CytJWk0olN3024LF1iM8qS3Q43KZ1pyzT8J7HPMaO8vv09u0li03cTnlleav/MbJToe5zcurd1XGb9RN+jrkz8xjF32jt/vZ3ox53wbwv767/k1rvpfzayWf8me42eJr+UWINJyX2/SJeYuf9L8pEqd/f6TfIdzGY3NitPdlEk+wHMrOHfaas3LVmo4fecnPjniN+gw7PnBHuv7Df6aBeCvVbgk3pTgl2TJdg1J4Ld70Sw+43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEyI9g1J4JdcwoZ7BsNOyfrKvHJnbNe9Zx4gl1bF4pmFMGuLSqCXXMi2P1OBLvfSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdU2IPu+oUOtjV+crnuI+7sYc9n561Pi2CXVsEBLvmRLD7nQh2v5E6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOwYM9vhq8udM6Ks5ld+e0pxJ8/vEuA1SOIOM4hz1HZoJdAyTYNSeC3e9EsPuN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddQob7P3nunRBZbJnZjWp5yO6Eezq+lAU4wh2bTER7JoTwe53Itj9RuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjqFDPYNh/0/e/cdJ1dV/3/8zO6m0AQExZ/CF6RDpEtXAYEkICiCiIL0Lr3X0AIhkAaCdJRqQ0EUJQkIRDpICaF3RJCOEErqzu9x7pSdXbJ83rsz59w9k9f8s9/J9+y9d57ngrxy5t47rOawQuV5ZRcd2yfY1bMhkXEEuzZRBLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpT7GCveaJbzQ3onAv5549szQq7ej4kMY5g16aJYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKGexr/HVYx3PYywdYfQ57wPcPb3WayhFlHNew18lMsGuABLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpT3GA/qeOwKkvqlT8J+P6RrQl29XxIYhzBrk0Twa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUNdj/cpKruRl89jX4GO8JdvVsSGQcwa5NFMGuORHsthPBbhupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDfYTy49yq1S6ZF+PvJ9VtjV8yGJcQS7Nk0Eu+ZEsNtOBLttpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPMYF/9xpPLN5orlq9lzx7DXnoOe/Y89jDvH/n+qSpHlHFcw14nM8GuARLsmhPBbjsR7LaROoJg16QIds2JYNecCHbNSRlFsCtKBLumRLCrTrGDXT2uRo579AcEeyM9c98Wwa5NAcGuORHsthPBbhupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDPYV/tzZYXdr6T7FXW/sl55pFu49wS7ejYkMo5g1yaKYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKHezqcTVy3ORtWGFvpGfu2yLYtSkg2DUngt12IthtI3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51iBvuqN/gV9spKeryfk7c5ReWIMo5r2OtkJtg1QIJdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKW6w5xPOj/0wn/12NwcEu3p2djOOYNcACXbNiWC3nQh220gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWnmMG+yvWnRLlmvXS3+Y5r4gl29WxIZBzBrk0Uwa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUM9hXveGUmke3VR7hFv7nlG1ZYVfPhyTGEezaNBHsmhPBbjsR7LaROoJg16QIds2JYNecCHbNSRlFsCtKBLumRLCrTjGDPVthdwVXdEXnXME5V4zy/rFtT1Y5oozjK/F1MhPsGiDBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ32Gvu1l763nrHYQZ8P4VgV0+HNMZt+o8jgh/o1aufHnQf57+2U9Dt+43PaG8Luo+pswYG3b7f+NQZA4Lv4+1p8wfdx5WrjQi6fb/xjSeMDbqPbZZczZ294VZB9zG3bPyp9+9xN70e9tElXxuwttt44ROCkT7+0RPuklcvD7Z9v+GPZwxwr3+4YLB9zNd/hvvKAh8E277fcHux4GYVW4LuY562me7LA6cG28dy867mfvzlg4Jt3294ytQn3UWBz6ejlt/XbbDYakE/x9yy8ZMeusHd9PrDQT/ugcts4YYutkawfZz1yO3uLy89EWz7fsMD3mxx/T4I989/vw+Lru1TvwIa7lVod64Qdhdu9oCCa2+rCcIGf5wDf7iRG7LOSg3eaufNnTNxkvv75KeC7uPxkYcF3X7txlf5U8d/o1SuMa/8/0O+n7IdK+zRJjnGjgh2TZlg15wIdtuJYLeN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JUewi1B5Bbt4eA0ZRrA3hLHvbIRg1+aCYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKGezf+OOpne7e3vVu7qHeT9nuJJUjyjiuYa+TmWDXAAl2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp7jBflp2o7mOV+nGc6HfP/4jvhKvng9JjCPYtWki2DUngt12IthtI3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51iBvsgv8Jevkt89TnpEd4//iNW2NXzIYlxBLs2TQS75kSw204Eu22kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU9xg9yvs8V9PEOzx0UPukWDXdAl2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp5jBvvJ1p9Vcw15wxWIxyvsnfjRM5YgyjmvY62Qm2DVAgl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpbrAPVw+roeOe3J5gbyho3hsj2LUZINg1J4LddiLYbSN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedYgb7Sn8Y7goF50LdDb60Yv/Z7RPs6tmQyDiCXZsogl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpdrCrx9XIcU/9mBX2Rnrmvi2CXZsCgl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpdrBnd4kvLbFnj3SL8f7JH5+ockQZxzXsdTIT7Bogwa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUN9hPj/HY9Y6PXn7M+1M7EOzq+ZDEOIJdmyaCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlqsP/+9JrDKtd09U/CvSfY1bMhkXEEuzZRBLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpT7GCvfBs+5s+nf8IKu3o+JDGOYNemiWDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ihnsK/7u9Opz1yvHVyiUr2kv/0GI90/tcILKEWUc17DXyUywa4AEu+ZEsNtOBLttpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPcYD8ju9Gcc5Wvv8f5yQq7ejYkMo5g1yaKYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKGewr/PaMmuekV56XHv7n0z9hhV09H5IYR7Br00Swa04Eu+1EsNtG6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOsUOdvW4GjnumZ8S7I30zH1bBLs2BQS75kSw204Eu22kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU8xgX/43foW9dM26fwx76cZz4d8/89PjVY4o47iGvU5mgl0DJNg1J4LddiLYbSN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedYge7elyNHPfsjqywN9Iz920tc9XI4Mew0CIfBd3Hl+ebGnT7fuMz21uD7uOq1fxNKcK+trzrzLA7cM5N+7R/0H3MnNkWdPt+47NntATdx3bLrOLGbLxF0H3MLRu/561H3ZhnLw76cafN7ufemzZvsH20txfcrNlh//0ye1aLmzYt3D+b639pGXfG6tsEM/IbvvedF9ywyTcE3UdrW7sbMHBGsH20t7e4mTPC/zssu79RwNfYdXZwmy+xYsA9zD2bPufJa9wd79wb9AO/+eEX3Aefhvt32KwP+7nZn4Q9r4v9iq4YcBfHrLGJ+/5Sg4LOw/k3THITHnwq6D5mDXSuPdy/6t2AD4qu7ZOw/4IZ+OY01++DmUGdbnnglKDbr934ctfWrrBXVtbD/3x2R1bYo01yjB0R7Joywa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7ouQcwa45EeyaU9xgH6EdVINHPbcTwd5g0nw3R7Br/gS75kSw204Eu22kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pOUewa1JRg/2aER3PYS9fxF597nrA98/udJyGEWkU17DXCU2wa4AEu+ZEsNtOBLttpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKRHsqlPUYL/2zNJj2CuvymPYA79/7mcEu3o+JDGOYNemiWDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ihnsy159ZnZ3+NKr4+7wod8T7OrZkMg4gl2bKIJdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWawL3fNmeVHuVUe6Rbn5/M7s8Kung9JjCPYtWki2DUngt12IthtI3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51iBntphb20sl55xXj/3M+OVTmijOMa9jqZCXYNkGDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ihvsHY/PLrqiK7jq9+NdyPfP70ywq+dDEuMIdm2aCHbNiWC3nQh220gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWnmMG+zNUjs0T36+vlm8JHeU+wq2dDIuMIdm2iCHbNiWC3nQh220gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWn2MGuHlcjx73ACnsjOfPfFsGuzQHBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQz2Je+amT1GvbqCnv5mvaQ71/Y+RiVI8o4rmGvk5lg1wAJds2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVae4wX5W+QvxlaOL8yD2F3fhGnb1fEhiHMGuTRPBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ12K8cWb14vXp3+PLSesj3L+7CCrt6PiQxjmDXpolg15wIdtuJYLeN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddYob7H6FPf7rxV0J9vjqAfdIsGu4BLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTzGD/+hVn5XIN+4u7Hq1yRBnHNex1MhPsGiDBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ72NXjauS4l3Zjhb2Rnrlvi2DXpoBg15wIdtuJYLeN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddYoZ7Ev9unaFveCKxWLNinu49y/txgq7ej4kMY5g16aJYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKG+xnZ4dVeYRb5RhDv395d4JdPR+SGEewa9NEsGtOBLvtRLDbRuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjrFDvaCK62kO/9ENx/vEd6/tPtRKkeUcVzDXiczwa4BEuyaE8FuOxHstpE6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOsYPdFbNKdzF/vrwHK+zq+ZDEOIJdmyaCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlqsP+q9JV4/8pW1rNqD/+eYFfPhkTGLf3L0cGPtHXBmUH3MWCeGUG37zc+Y3pb0H209WsPun2/8Vu/e2TwfWx4w3lB99EyrSXo9v3GWz8Ku49tBg1yZ289JPjnmBt2MOGVZ9zBd/8x7Ect+GvPOv4HNsTO/LVsIV/ts1rcjE/7BdtFYVbBtUwL+yE2WHwpN3KTLYN9Br/hu19/2R1z903B9lFoa3ct88wOtv3qfwQGPl/P2/BHbsiSKwT/HHPDDi5+7tfunvfuDPpRX5+6kHtv2rzB9uH/on7GjLD/jRTs4Msb7v9yP9f2VtjPcPBWG7kt1lwp6Ee58A93uIn3PhlsH4VZRVcI/K+wAe9Od20fzQr2GbL/Hr7v5KDbr934Uj7YKyvslf9HhPcv78kKe7RJjrEjgl1TJtg1J4LddiLYbSN1BMGuSRHsmhPBrjkR7JqTMopgV5TCjyHYNWOCXXPqFOyXn129K3zHX6qWr2kv/0Gh0Pj3L+3BNew9n60+/BsEuzY5BLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsilL4MQS7Zkywa061o75++ahoX4P3+6187Z4V9p7PVZ/+DYJdmx6CXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFKfwYgl0zJtg1p9pRS11WWmGvfC2+8hz20O9f2pMV9p7PVh/+DYJdmxyCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFKfwYgl0zJtg1p9pRX79sVM9/qQG/8dJeBHsDGPvOJgh2bS4Ids2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVpfBjCHbNmGDXnDoF+6WjOq5hLz/arXrNesD3L+4V/kbTPdHgOew90ZrDWIJdAyTYNSeC3XYi2G0jdQTBrkkR7JoTwa45EeyakzKKYFeUwo8h2DVjgl1z6hrsPf+t+n/jpb1ZYa9fsQ9tgWDXJoNg15wIdtuJYLeN1BEEuyZFsGtOBLvmRLBrTsoogl1RCj+GYNeMCXbNqVOwXzLK3wkuu4Y9xsq6v0be749g7/lc9enfINi16SHYNSeC3XYi2G0jdQTBrkkR7JoTwa45EeyakzKKYFeUwo8h2DVjgl1z+kyw9/zX6v6Nl/Zhhb1uxL60AYJdmw2CXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFKfwYgl0zJtg1p67Bnj1qrbzy7f9/Md6/uA/XsPd8tvrwbxDs2uQQ7JoTwW47Eey2kTqCYNekCHbNiWDXnAh2zUkZRbArSuHHEOyaMcGuOXUN9uwRbpVX+evxod+/tC8r7D2frT78GwS7NjkEu+ZEsNtOBLttpI4g2DUpgl1zItg1J4Jdc1JGEeyKUvgxBLtmTLBrTp2C/eJRlUvYSyvrrhjl/YsEe88nqy//BsGuzQ7BrjkR7LYTwW4bqSMIdrEPF1MAACAASURBVE2KYNecCHbNiWDXnJRRBLuiFH4Mwa4ZE+yaU+2opS8eld1wrqbSo7x/cT9W2Hs+W334Nwh2bXIIds2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVpfBjCHbNmGDXnDoF+0U1z2Ev/z+qd4sP+P6FfbmGveez1Yd/g2DXJodg15wIdtuJYLeN1BEEuyZFsGtOBLvmRLBrTsoogl1RCj+GYNeMCXbNqWuwV99XVtorfxDwPSvsPZ+rPv0bBLs2PQS75kSw204Eu22kjiDYNSmCXXMi2DUngl1zUkYR7IpS+DEEu2ZMsGtOnYL9wnyew06w93yu+vRvEOza9BDsmhPBbjsR7LaROoJg16QIds2JYNecCHbNSRlFsCtK4ccQ7Joxwa45dQ720S7KRetdLpJ/cX+uYe/5bPXh3yDYtckh2DUngt12IthtI3UEwa5JEeyaE8GuORHsmpMyimBXlMKPIdg1Y4Jdc+oU7BeMdoWCKz+H3f8fLsr7F/bnGvaez1Yf/g2CXZscgl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RSn8GIJdMybYNaeuwd7z36r/N178OcFev2If2gLBrk0Gwa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7ohR+DMGuGRPsmlOnYP/l6Ooj3ap3hy+UviUf8j3B3vO56tO/QbBr00Owa04Eu+1EsNtG6giCXZMi2DUngl1zItg1J2UUwa4ohR9DsGvGBLvm9Jlg7/mv1f0bLx7ACnvdiH1pA6sfPC784fi/SQr4mrrM7IBbL226faB/9kK4V7Ff2O37I2+ZEXginHOFmWH30TI97Pa906Tdfh5uop1z8w5scwvN1y/oPuaWjY9/9jl34M1/CfpxW2YWXOvUcOdde7+imz1/2H/+C7MKrvWTgJ9hnnY3Y9Gw/x72/+y3vd8adK6zjYdjcsW2YvD/Ldnwa0u5kd/5XlCnLy7Q3w3sH2Eugn6KvrHxae+e4PrPvC7owQx/cR33pzeXDbaP6dP6uVkzw54PxVktrjg73D+crVNbXMu0cNv3+Au80u7meTvsv+tbpre7lpnh9vHREm1u2iJh5/rQoRu5LVdbKdj56jf81UXmCbr92o0vfb6/hr2QXcNeupa9Y2U95PsXDjgi2mdUdlQoegFevRYg2DU6gl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2Rck5gl1zItg1p5jBvsz5/i7x8V8vHMgKe3z1gHsk2DVcgl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15ScI9g1qajBfl4+17AT7Nq5kMwogl2bKoJdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKXqw+wMr32iueoyB379wECvs6vmQxDiCXZsmgl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpdrAXXOka9so9UmK8f/4grmFXz4ckxhHs2jQR7JoTwW47Eey2kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq06xg716XP6ua7X3Ngz4nhV29WxIZBzBrk0Uwa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUNdh/0XHTuepz18sHGvL9CwfzlXj1fEhiHMGuTRPBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76pRXsKvH14hxBHsjFPvQNgh2bTIIds2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVaeowX5ux3PYKzeeq66sl288F+L98wd3vob9xVded/sePca9/ua7btWVlnEXjDzULbzgAipZ3eN4DnudhAS7Bkiwa04Eu+1EsNtG6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOsUM9mXPHeOKzl+sXnplN5yL8P6FQzq+Ej9t2gw36sLfuZ223cwtveRX3YOTn3Z33j/FHb7P9ipZ3eMI9joJCXYNkGDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ihnsy/gV9nKkV1bSY7x//pCOFXa/un7t9be6o/b/iRs4sL97/4Op7vgzL83e+4CP8SLY61Qm2DVAgl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpZrD7FfY8XrXB3nVFveuKe4zjI9jrVCbYNUCCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlqsJ8zxoW4Rr36XHf/ePdCzXPey++fO+TwKocP9ldfe9ttu+W3q3829pLr3LfXXcWtvdqKKltd4wj2uvicI9g1QIJdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKXawq8fVyHHPH9rxlXhW2Bspm9O2CHYNnmDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ihrs48b4O805f5+5mCvttcHONezqmdGHxxHs2uQQ7JoTwW47Eey2kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq07Rg109sAaOe/6wjhV2f836SaN/5bbfeuPsK/B+xf26v97hTjtyj+wmdDFefCW+TmWCXQMk2DUngt12IthtI3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51iB3t2V/iiX2IvHWGM988d1nENu98nz2FXz44+Oo5g1yaGYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKHew1j12vfj2+eqzlr8s3+v3zh3essKsuIcexwl6nLsGuARLsmhPBbjsR7LaROoJg16QIds2JYNecCHbNSRlFsCtKBLumRLCrTlGDfeyYyiXsHc9jL13SHvT9cwS7ejqkMY5g1+aJYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKGezLjR1TqfOoP587ghV29XxIYtyqR4wLfpz9P/B/jxTu9eli5YtCwu3CzRoYcOPOuVkLzQ67A+dcy6ctwfcxac/9g+5jk19eFHT7fuMtgafiB6sNciO3HRz8c8wNO7hlyvPusGv+GvSjFmY71zo93C6KLc4V28Jt32+5WHCu2BpuH/4ztAe+b03oz+B11l9qSTdiyy2CQd39+svumDv/Fmz7fsNtA2e5gQtPC7qPMd/cwW2+xEpB9zG3bPzB/57i3vj0+qAf957/Leue+fgrwfbx9scLuA+nhf2PpBlvzuNmfRDuXzKt0wquZUYwomzD/T8surZPwu7jgG03ckPWXTnYTsbeNsn97fGngm0/+9+rVuf8/6aEfD1z4mEhN99p28uNqXkOe/n/U71bfMD3zx7e+Rr2aB+4mx3xlfg6Z4Bg1wAJds2JYLedCHbbSB1BsGtSoWOXYNfmgWDXnOamUQS7NtsEu+ZEsGtOsYO9elSl78F3vAK+Z4VdOxeSGUWwa1NFsGtOBLvtRLDbRuoIgl2TItg1J1bYNSdW2DUnZRTBrig5R7BrTgS75hQ12Efn8xx2gl07F5IZRbBrU0Wwa04Eu+1EsNtG6giCXZMi2DUngl1zItg1J2UUwa4oEeyaknMEuyYVPdizwwp0O/jqR+68/eeO5Bp27WxIZBTBrk0Uwa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUNdhHjXUFfx+Z7Dns/v8o/wj8/tkjuYZdPR+SGEewa9NEsGtOBLvtRLDbRuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjrFDnb1uBo57rmjCPZGeua+LYJdmwKCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlqsJ89tvpt+Ord4cvfXg/5nmBXz4ZExhHs2kQR7JoTwW47Eey2kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq07Rg109sAaOe+5oVtgbyJn/pgh2bQ4Ids2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVaeowX6Wv4a9kF3DXrqW3V/DHv79s0fHe9a84s5z2BWlzxlDsGuABLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpTzGBf3n8l3j9vvfKKdLP4Z49hhV09H5IYR7Br00Swa04Eu+1EsNtG6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOkUN9pHla9izB7uVVtazJ7wFfk+wq2dDIuMIdm2iCHbNiWC3nQh220gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWnqMF+VnmFvbKyHunns8eywq6eD0mMI9i1aSLYNSeC3XYi2G0jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnaIG+8ixpZX1mu/Fx3j/zLFcw66eD0mMI9i1aSLYNSeC3XYi2G0jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnWIHe/W4/LXs5a/DZ38W8D0r7OrZkMg4gl2bKIJdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWqwn5nPc9gJdvVsSGQcwa5NFMGuORHsthPBbhupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFD3Y1QNr4Lhnj+Ma9gZy5r8pgl2bA4JdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWqwj+h4Dnv2dfia57CHfP/McVzDrp4PSYwj2LVpItg1J4LddiLYbSN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedYgb7CiPGRb/hnL/B3bPHs8Kung9JjCPYtWki2DUngt12IthtI3UEwa5JEeyaE8GuORHsmpMyimBXlAh2TYlgV51iBvvyZ3SssBcKpeewx/j5zPGssKvnQxLjCHZtmgh2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp5jBvsIZ49TDaui4Z04g2BsKmvfGCHZtBgh2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp6jBfvq46op6yGvW/cp97fafPuFQlSPKuEIxO0JevRXYYPvRvf1V+fdmLNgij+3NwNkDax9q2Jst2L8zYwF7TD0j+n1Uz29rvztrHm1cPaNmzV/Pb9u/2/axPabeEf0/rHcLn//7W603yJ226+CwO5lLtn77fc+5E0fdGPTTFludm90/3L9jii3OtQfcvscptDtXmB3ufyrbWwsu9L+HS05Bp9q193NuZsB/hxX7Fd3s+dqDfohiW9G1Dww31/7gL9x4G7fF15cP+jnmlo3HCPaJbw9ykz9cPBjp1I8HumnTw/7DWXxrgCt+2C/YZ5j/3+1u4Dth/7mZ+n8tbtqi4f63xOO0TXOuZUYwJjdzgaKbPU9Yp34fFlzbp2Gdppwdb/V5hdNzWmE/Md5nVM44gl1R+pwxBLsGSLBrTgS77USw20bqCIJdkyLYNSeCXXMi2DUnZRTBrig5R7BrTgS75hQ12IeP67Ty3XUlPNT7mN8iUNQJdkWJYK9TyTmCXSMk2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlFhhV52iB7t6YA0c98wwVtgbyJn/plhh1+aAYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKHewFV7o7fHaNub9MLcL7p4dxDbt6PiQxjmDXpolg15wIdtuJYLeN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddYod7M5f9u9jPeLPZ05ihV09H5IYR7Br00Swa04Eu+1EsNtG6giCXZMi2DUngl1zItg1J2UUwa4oEeyaEsGuOkUN9tPG1bR6wRVdMcr7pwl29XRIYxzBrs0Twa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUM9hXPG2cy74NX3Pj+xjvnzmZFXb1fEhiHMGuTRPBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ12E+teQ57+QALhfI17QHfP3US17Cr50MS4wh2bZoIds2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVafYwa4eVyPHPc0KeyM5898Wwa7NAcGuORHsthPBbhupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDXYT8nnOewEu3o2JDKOYNcmimDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ih7s6oE1cNzTp3ANewM5898Uwa7NAcGuORHsthPBbhupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDXYT+64ht3feK50w7nSNewh3z91Ctewq+dDEuMIdm2aCHbNiWC3nQh220gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWnmMG+0snj1MNq6LinTmWFvaGgeW+MYNdmgGDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ihrsJ+VzDTvBrp4NiYwj2LWJItg1J4LddiLYbSN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedoge7emANHPfUaaywN5Az/00R7NocEOyaE8FuOxHstpE6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOsYO94MrPXS+UjjDG+ydP4xp29XxIYhzBrk0Twa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUO9hdsebIfLRHeP/UcFbY1fMhiXEEuzZNBLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsihLBrikR7KpT1GAfNs5VGr16d/hys4d8/yTBrp4OaYwj2LV5Itg1J4LddiLYbSN1BMGuSRHsmhPBrjkR7JqTMopgV5QIdk2JYFedYgb7ysPyuUs8wa6eDYmMI9i1iSLYNSeC3XYi2G0jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnWIHe2UlvXJ8Md4/wTXs6umQxjiCXZsngl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpdrBXj8tfu16+8Vz2ZwHfs8Kung2JjFv9kPBf1eg3tfbuCo2HuXHU/o3faJct/vDQC4Luo72t9p/gMLsqtobZbu1W26aFnevW6WG37z/Lh0uFhfr+WoPcGT8ZHH4y5oI9TLrrWXfyadcH/aTF1oJr798SbB9rrb6UO/rgrYJt32/4ockvu7N/cVOwfcweWHDTvhj2n5v2VudmDwz2EUr/7eT3MSDcPootzrW3hdt+ZcuFwP+a/MV2W7shKy0b/oPMBXu4+dXR7rmPbg76SR/7YHH3yidfDLaP3Rf/odt4kbWDbd9v+JwJk9zfJz8VbB8zFml3sxZoD7b97N8vbUXn/x0Q8jXfF6a5gfPOCLaL9ifmc8X/hP0XcdsnRdcyI+y/xB646ohgRl03vPKJ+TyHnWCPNsVxdkSwa84Eu+ZEsNtOBLttpI4g2DUpgl1zItg1J4Jdc1JGEeyKEsGuKTlHsGtSMYN90InjqgvplQX1GD+fPJ27xGtnQyKjCHZtogh2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp6jBfoJfYS89h73Qcbv44O+fOJ3nsKvnQxLjCHZtmgh2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp+jBrh5YA8c9cQYr7A3kzH9TBLs2BwS75kSw204Eu22kjiDYNSmCXXMi2DUngl1zUkYR7IoSwa4pEeyqU9RgPz6fa9gJdvVsSGQcwa5NFMGuORHsthPBbhupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFD3Y1QNr4LgnRrDC3kDO/DdFsGtzQLBrTgS77USw20bqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46RQ3248a56nPXy9ewx3j/+AiuYVfPhyTGEezaNBHsmhPBbjsR7LaROoJg16QIds2JYNecCHbNSRlFsCtKBLumRLCrTrGDXT2uRo574kxW2Bvpmfu2CHZtCgh2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp6jBfqxfYXeuWPQ3i++4W3zo948T7OrpkMY4gl2bJ4JdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWawf+PYcaXDqjzSrXKQgd8/PpIVdvV8SGIcwa5NE8GuORHsthPBbhupIwh2TYpg15wIds2JYNeclFEEu6JEsGtKBLvqFDvYC660sp5Fe9bu4d9PGck17Or5kMQ4gl2bJoJdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKXawV4+rWF5pr/xBwPessKtnQyLjCHZtogh2zYlgt50IdttIHUGwa1IEu+ZEsGtOBLvmpIwi2BUlgl1TIthVp6jBfkz5K/G+1cvXsFeOM+T7x8/iK/Hq+ZDEOIJdmyaCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21SlmsK9yzDhXWUiP+ZNgV8+GRMYR7NpEEeyaE8FuOxHstpE6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOUYP96HF+ab18m3jnSvUe/v2Us7iGXT0fkhhHsGvTRLBrTgS77USw20bqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46RQ929cAaOG7K2XwlvoGc+W+KYNfmgGDXnAh224lgt43UEQS7JkWwa04Eu+ZEsGtOyiiCXVEi2DUlgl11ihrsR/kV9tLKevWa9QjvCXb1bEhkHMGuTRTBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ92NUDa+C4KaNYYW8gZ/6bIti1OSDYNSeC3XYi2G0jdQTBrkkR7JoTwa45EeyakzKKYFeUCHZNiWBXnaIG+5Hjoq6sV1byHxvFNezq+ZDEOIJdmyaCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21Sl2sKvH1chxU0azwt5Iz9y3terhHc8HDHUwbZ+E2nJpuwP+NzvsDpxzrdP9bR3DvQrhP4Jr7xfu+CtbDh3s7W3+wp+wr4+WaAu6g63WHeSG7zw46D7mlo1P+ucz7tST/xT84xZDnnZ+2y0hd+Cc/+dm1rytwZyKLQXX3j/wZ2h1bvbAsPvw1xn6zxLqNXuAczMWDLX10nZbZjnX+mnYfYzZdWu3+WrLht3JXLL1M6f83k1864Ggn/Z/U+dzn3w6INg+Zk1vc+0zW4Jt32+43zwzXWv/cP+hNHN6m5s1M9y/I/1naPtfq2v9OKxT/w+dawv4z3/LzKIL/d+r8/53uuv/v5lBz6db7z4p6PZrN77KEX6FvXyT+PJz2GO8f4xgjzbHUXZEsGvMBLvmRLDbTgS7baSOINg1KYJdcyLYNSeCXXNSRhHsihLBrik5R7BrUjGDfdUjwi+MzulTPzaGFXbtbEhkFMGuTRTBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ72Auu4IpFf5v40hHGeD95DNewq+dDEuMIdm2aCHbNiWC3nQh220gdQbBrUgS75kSwa04Eu+akjCLYFSWCXVMi2FWn2MHubwRXfZUf6Rb6/WNjWWFXz4ckxhHs2jQR7JoTwW47Eey2kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq05Rg73mXmHZynpNvYd8T7CrZ0Mi4wh2baIIds2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVafowe5X2Csr65F+PjaOFXb1fEhiHMGuTRPBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ12A+reQ57+QAL5bvFV443xPvJY7mGXT0fkhhHsGvTRLBrTgS77USw20bqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46xQz21Q7ruEt8dt+5mieHhnw/mRV29XRIYxzBrs0Twa45Eey2E8FuG6kjCHZNimDXnAh2zYlg15yUUQS7okSwa0oEu+oUNdgPHVfzdfjKA9mdyy5lrz6QvfHvCXb1bEhkHMGuTRTBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ92NUDa+C4yedwDXsDOfPfFMGuzQHBrjkR7LYTwW4bqSMIdk2KYNecCHbNiWDXnJRRBLuiRLBrSgS76hQ72ENco5491738mtP2Hx3HNezq+ZDEOIJdmyaCXXMi2G0ngt02UkcQ7JoUwa45EeyaE8GuOSmjCHZFiWDXlAh21Sl2sKvH1chxrLA3UrMPbItg1yaBYNecCHbbiWC3jdQRBLsmRbBrTgS75kSwa07KKIJdUSLYNSWCXXWKGuyH+LvEO1e6wVzB+ZXxGO8f5Svx6umQxjiCXZsngl1zIthtJ4LdNlJHEOyaFMGuORHsmhPBrjkpowh2RYlg15QIdtUpZrCvfkjHXeLV42vEuEfP5Rr2Rjj2mW0Q7NpUEOyaE8FuOxHstpE6gmDXpAh2zYlg15wIds1JGUWwK0oEu6ZEsKtOUYP94JrnsPtHutWstPv/zQn1/pFzuYZdPR+SGEewa9NEsGtOBLvtRLDbRuoIgl2TItg1J4JdcyLYNSdlFMGuKBHsmhLBrjpFDXa/wt5xf7iOlChk8AAAIABJREFUR7xVDrYc7dVjb9D7R3/BCrt6PiQxjmDXpolg15wIdtuJYLeN1BEEuyZFsGtOBLvmRLBrTsoogl1RItg1JYJddYoa7AeVn8PuH7vuStewZyvrgd8T7OrZkMg4gl2bKIJdcyLYbSeC3TZSRxDsmhTBrjkR7JoTwa45KaMIdkWJYNeUCHbVKWqwH1xeYa+snEf6+eh5rLCr50MS4wh2bZoIds2JYLedCHbbSB1BsGtSBLvmRLBrTgS75qSMItgVJYJdUyLYVaeowX7QuNLKuitWLlmP8v6R87iGXT0fkhhHsGvTRLBrTgS77USw20bqCIJdkyLYNSeCXXMi2DUnZRTBrigR7JoSwa46xQz2NfxX4suv0qPdOo4y5PtHWGFXT4c0xhHs2jwR7JoTwW47Eey2kTqCYNekCHbNiWDXnAh2zUkZRbArSgS7pkSwq05Rg/3A8jXs/sZz1Qewl+4OH/I9wa6eDYxDAAEEEEAAAQQQQAABBBCYKwXW8MGew+uR87mGPQd2dokAAggggAACCCCAAAIIIJCKwBoH5PMc9ofP5xr2VM4RjhMBBBBAAAEEEEAAAQQQQCAHgTUPGJfHY9jdI79khT2H6WaXCCCAAAIIIIAAAggggAACqQis8XO/wu5c6QZzpeewx3j/MMGeyinCcSKAAAIIIIAAAggggAACCOQhsObP87mG/eELWGHPY77ZJwIIIIAAAggggAACCCCAQCICa+6fzzXsD13ANeyJnCIcJgIIIIAAAggggAACCCCAQB4CPtjzeD18ISvsebizTwQQQAABBBBAAAEEEEAAgUQE1tyv4znslWvYXaH0HPaQ7wn2RE4QDhMBBBBAAAEEEEAAAQQQQCAfgSzYc3g9fBEr7Dmws0sEEEAAAQQQQAABBBBAAIFUBHywF1zN3eGdi/L+oYu4hj2Vc4TjRAABBBBAAAEEEEAAAQQQyEFgLb/CXqzZcfnr8NU/CfT+oYtZYc9hupt3l2MvuS77cIfvs32f+ZAPTn7ajb3oOnfByEPdwgsu0KvjasQ2erXjXvxSX5yDXnwMfgUBBBBAAAEEEEAAgT4jsNa+HV+JD9Tmc2x/gr3PnALNcSB9MRYbEduN2EasGe6LcxDrs7MfBBBAAAEEEEAAAQRCCGTBXszuMNex+QjvH7rk8BAfp9fbLBSL/lPzSlUg71i85Jq/ujVWWc6tvdqKVcJGxHYjthFrTvOeg1ifk/0ggAACCCCAAAIIIBBLYK19xnbcDb680+rd4QO+/xdfiY81xXPHfvKMxQ8+/Ngddsr5bv9df0Cw97HLEuaOs59PiQACCCCAAAIIINCsAt/cZ2x2CXvl6/CxfrLC3qxnVE6fq2uw+y9MPPHMy+7cy//kHnjkKbf4//uS2+dnW7utNlvPtba2Zkfpf+f/vvZlt+AC87kLrvize/bF/7jll17cHbn/Dm6Db34j+5ss/3rrnf+5MRf/3t0y6V9u+oyZ1U84aIWvuwP32Mad+YvfuH+/9mb1z7+32XrutCP3cFOeeTG7hv3wfbd3l1x7U3Yc884z0O350y3dz7bb3A0c0N/U6rrCPnv2bHfhVX9x/3n9bXfioTu7+eebx7W3F93dD05x511+vXvi2ZfdoOWXcofsvV31M0ybNsOdNPpXbvutN3YzZsx0p59zjWtra3UXjjzM/fetd911f73D7frjoe7iq/7iJt03eY7HqHr6D6TcR8Af8/g7HnC//PUN7uVX36g6DOjfL/uLj7132iqbn6UW/4pbYdkl3Fnn/8Y9/fy/3WVjjnKrrrSM+3TadHft9be6q/840b3z3gef+cyVDb77/ofusmtvcn+ecLf75NNpbp01VnKH7v2jbHzlL1r8Z99ovdWqx+CNz/rlb90iCy/o9vnZVtk3kD7P15xEBiCAAAIIIIAAAggg0EuBb+49tqbWC+Wvx5eew559TT77enzj3/+Lr8T3csb4tTkKdA32yU++4I489QJ31M9/4jZaf/UsCk8be6X78fc3cT8YsmE12G8cf5f74Rbfdjv/aLCbZ2B/d9cDU9y5l/3JjTvlALf8Mku4Suz6SPS/619/+Mvt7l+Tn3Yjjts7i9v3P5jqfn7sOe7w/bb/zAr7XkeMcmsMWs6deNjObsmvLeb+/dpb7uTRv3Y+6n+6zabmbNYG+0JfmN/9efxd7q+33OPOOmFf96VFFsp+f8IdD7rzfnW9O/XI3d03Vvy6e+Tx59wZ517jTjp8l+x4Kp/BH+usWbPdXjt+L7sJ3gLzz+semvKMO+C4c9wa31gu+4sK/xcbr73xjjtl9BWdjlH1VIP9voefdBdeeWN2zEst8ZVsfk4YeVkW699aZ5Xq/Lzx1rvZX0jsvsNQt/j/+7Kbf76BbubM2W74OVdlf/lw6D7bZ3/h4mP+lDFXZKFfmd/33v/QHTn8Qrfycku53X+yhevfr83d+9ATbtQFv3Mjjt/bfXPVFdwl19zk3n3/A3fMAT+t/kXOm++87w4ddn72Z6t/Y1nT15xEBiCAAAIIIIAAAggg0EuBLNhzeP3rUq5hz4G9eXdZG+wzZ85yp597tfvqYotmK6SVlfK/33a/u+Hv/3RjTzkgi1X/O48//aIbd8qBbsEvzJfh+JXbYWf/Klud3nbLb1dDcvjRe7ill/xqNubFV153x4+8zI04dq/szz4v2H0MX3L2kVn4VV5/vGmSe+DRp7JV+IEDP3+VvTbYn3nhVXfpNTe5U4/aPQtr/5r60Sfu8FN+6X645Xfclt9dN/szvxruQ/T1N99xJx6ys5s9uz1bYX//g4/c6GH7Vz+rH+u3bx1ja2uL7KkGu/82wMzZszutxnf9Sxf/ftI9j7rzRxzilvjql6t+jz31QvYtgV8MP8h95ctfrP75bXc/7K750y3V+Zw46UH35/F3u7NO2Ceb74qNX5V/7qX/uGGH7eqefv4Vd9rYq9w5px1YNfW/57914M+T7PMYvv36tTXvP1h8MgQQQAABBBBAAIFcBb65V8017OWV9Oo17AHfP3gpj3XLdeKbbee1sVcJaP+18PXWXLlT6A0761fu3OEHZau6/nfaZ7e7I/b7cTXqK6vR6605KAv2rnFeCXYf9Wccu1e2nc8L9lEX/N5dNPIw98WFv1A9juv/fqe77+EnehTsh+3zI3fBFTdmK/XLLvW16rb88R074lI34ri9Ov25j86rrpvofjniUOe/Zu6DfZUVl86+SVD78sFuHeOn06dn3yBQPNVgn9M9B/yf9WttdQftuW12iP79tGnTO61++z/vzq+rRXf3Naj9zAMG9HfHnnGJ23rw+m7wRmu7yl/2eGNvpfhW/rKn2f6Z4vMggAACCCCAAAII5C/ggz2P178uY4U9D/em3WdtnPmvV+93zFj36utvfebzfnWxRdzFZx+RrYzPKei6Bru/7vn4My/NVtx/tNXG2fb+eNMd7qnn/+2OO2in7GvWnxfsc3oOe0+D/ejhFzn/dfg33n7fjTv1gE5/CfHwlGfd7oedlX3VvevLf43fPwN+ngEDsmCv/CVE12C3jvGNt9/rtWd3J5y/9ODSa2/KvtrvV8nfeOs9N+zsy92Be2zrVlt5mWqwz+kvAPzq/Kv/feszf+FROw/+s5865gq36CILfeaa+q5/CfPbP//DPfnsy9mK+1vvvO+OOf1id/Lhu2aXRCi+/vICXggggAACCCCAAAIIhBD45p5+hb3yZLdC9m3aGO8fJNhDTOfcu805rbB3vaa8q44S7P53/vPft7Nof+ixZ7PVan8t+367fD+LaP8KHewHn3ieO/XI3dwzz7+a3RTu/DMOqX4VfE7fAOj6Obv+JURPg72ywt4bz+7OSH9jtz/89Q43+qLfZ9fYz+lmf92tkDdyhd1/8+HZF151J4++wp09bF835emX3MQ7Hqjen0DxnXv/qeOTI4AAAggggAACCIQWWHvPfFbYH7ycFfbQcztXbX9O17Avv/QSbscfblr9untvg/3GCXe7V/7zhjtgt22qNyar3VboYK+sgPu/LDj9nKuzzzPs0F2y69+za9hPvSC763ztnc5rj6/eYK9cw94bz+5OQn9DuNPGXeUO2H0bt9zXF5/jsO6C3V/D7gPbX8Nee237nK5h/92Nt3W6R4H/G8naa9j9NyRmzJzlho+7MruD/L8mP+PWXXPl6v0AFN+56h80PiwCCCCAAAIIIIBAVIG198jnGvYHLuca9qgT3ew76+4u8Xvu+D236bfWzB5j9vY7/3OvvPam23j91Z2/UZi6wu7HLbrwF7Jrmis3sJtTEH/lS190P991G1d0xeyRbf967JnssW7+a+m1X5vu6Vfia7fx/MuvuUNPOj97NNw2Q7+VHY+/S/zYi/+Q3eV9rVWWd4WWgnvl1TfdBx99nEV8vcHu/2Kgcpf4nnp2d975levh51ztzjxu7043jqsd312w+9X5URf+3r373gefe5f4qR9/6k4481L3f19bbI53ifd30K+8/A0Jr7pugmtrbXVnHr93p78IsHyb/Z8tPh8CCCCAAAIIIIBAfgLZCrt/hFvlVXmEW+D3D/6KFfb8Zr0J9zynuPOP+rroqr+4f943OXt+ur8mecdtNs1uJuefxa4Gu39++jFnXJw9j73yWmvV5d0R++1Qvd76pVffyFZp73/4KbfD9zdxxxy4o/MrwY0Odr9//0i04eOucqOG7e9WXn7J7DqW+x95yl189V+za6796xsrfD17fNsmG67RkGD32+yNZ3enmr8bv3/Wub8be+X1hQXmcztvt7nbbYeh2ePyugt2P37a9Bnu2j/d4q6qeQ67v1ndhmuv4lpa/L/FSq//ffhR9nz52uewH7Lndm7QCkt1+ssXf9nD/seOc2uuslx2Z/3aO79bvk34jxMfCQEEEEAAAQQQQKCPCKy9ez7XsD9AsPeRM4DD+FyB8bc/4Mbffr87eM/t3MILlW4uVmwvuptvf8D5O7H/YvjBnR6TBqct4C8hGHHuNW69tQa5TTZYPftGgH+9894H7tQxV2b3CPj+4A3sDTECAQQQQAABBBBAAIEmF1hn93yuYX/g1z1bYa99HHWImzIXin4ZjRcCNQKVr5J/b7P1P3N9uP9q+imjr3AjT9in+vzunuJVrn33K/FdX7V3s+/pdvMeb32ug/bY1t3yz4cyu/nmHVg9XP+P4JiL/uC+sMC8bp+fbZ33x2D/CCCAAAIIIIAAAgjkLrDObjXXsJePpvoc9oDv7/+1fg27j/XjR1zq1lhluexJWgR77qfN3HEA/lrpMRdf59rb293+u/wgW0lvby+6//z3LXfer25w8883T/XRbnOHSGM+pb8r+/EjL3PHHrijW+Mby2aXJ/jH591x72TnH9nmQ77yaLfG7JGtIIAAAggggAACCCCQpoAP9poVLpc9063y8mvOgd4/cIW2wu4XOS+46kb30x981/32xtvc7jsMJdjTPNXSPGp/DbS/q/gfb5qUfWXb37zOXx++/dYbu6GbrJPdXI5XzwS6XhPunyG/6BcXzK6333m7wW6Zpb7asw0yGgEEEEAAAQQQQACBJhVYZ9cxpSjPnr9eeg57jPdqsFfY/bdszzzvWlbYm/Q85GMhgAACCCCAAAIIIIAAAgh0EciCPYfXA1ceUd2r/8r7boeM/MxRXHHusa7y5CWCPYdJYpcIIIAAAggggAACCCCAAAL5Cayzy5ialXV/B2y/wF5ZaQ/3/v4rta/EV2QI9vzOEfaMAAIIIIAAAggggAACCCCQg8C6u4zJ4zHs7oGrOlbYlY9NsCtKOY4Z/eTg4Htfc97Xgu5jlqu5gUOgPb07a95AWy5t9qVpiwbdvt/4a9O/GHwfH88Ke2+Ad6bNF/wzfDRzQNB9DF5sHXf8Kj8Oug82jgACCCCAAAIIIJCvwDo7+xX27BL26sp6jPf3E+z5Tnyj906wa6IEu+ZEsNtOBLttxAgEEEAAAQQQQCB1gXV3zuca9vuvZoU99XOn0/ET7Np0EuyaE8FuOxHsthEjEEAAAQQQQACB1AXW/Vk+17Dfd3XPrmEP7VwoZvfH59VbAYJdkyPYNSeC3XYi2G0jRiCAAAIIIIAAAqkL+GDP43X/NT1bYQ99jAR7ncIEuwZIsGtOBLvtRLDbRoxAAAEEEEAAAQRSF1h3p3yuYb+PYE/91Ol8/AS7Np8Eu+ZEsNtOBLttxAgEEEAAAQQQQCB1gfV2Kq+w+/tj134nPPD7+65lhT31c6fT8RPs2nQS7JoTwW47Eey2ESMQQAABBBBAAIHUBXywF1zNc9edi/L+3mu5hj31c4dg78UMEuwaGsFuOxHsthEjEEAAAQQQQACB1AWyFXa/sl5ZUY/0877fsMKe+rlDsPdiBgl2DY1gt50IdtuIEQgggAACCCCAQOoC6+3YcdO5wN+Cr/6dgDcj2FM/c7ocP1+J1yaUYNecCHbbiWC3jRiBAAIIIIAAAgikLrD+jmPyWGAn2FM/cboeP8GuzSjBrjkR7LYTwW4bMQIBBBBAAAEEEEhdYP2fjnauUHDOP4U84s97+Up86qdO5+Mn2LX5JNg1J4LddiLYbSNGIIAAAggggAACqQtkwZ7D697fHpnDXrvfJc9hr3M6CHYNkGDXnAh224lgt40YgQACCCCAAAIIpC6w/k/8CnvpkW6FQs3d4gO/J9hTP3O6HD/Brk0owa45Eey2E8FuGzECAQQQQAABBBBIXSAL9hxe9/6OFfYc2MPtkmDXbAl2zYlgt50IdtuIEQgggAACCCCAQOoC6+8wurqy3nEJe2mlPeT7e37HY91SP3c6HT/Brk0nwa45Eey2E8FuGzECAQQQQAABBBBIXWCDHfJZYb/n96ywp37uEOy9mEGCXUMj2G0ngt02YgQCCCCAAAIIIJC6wAY/zucadoI99TOny/Gzwq5NKMGuORHsthPBbhsxAgEEEEAAAQQQSF0gC/YcXvf8gRX2HNjD7ZJg12wJds2JYLedCHbbiBEIIIAAAggggEDqAj7YC67mmnXnbxof/v3df+Aa9tTPnU7HT7Br00mwa04Eu+1EsNtGjEAAAQQQQAABBFIX2NCvsBdrPkX5EW/VPwn0/u7rWGFP/dwh2HsxgwS7hkaw204Eu23ECAQQQAABBBBAIHWBDbfv+Ep8trJeU+8h3xPsqZ85XY5/89sOC/6JrlxtRNB9nPD8z4Nu3298g4WeD7qPKZ8sEXT7fuMfz+wffB9PvP//gu7j+m+eFHT7fuPfuu78oPvYdrlV3OhNhwbdBxtHAAEEEEAAAQQQyFcgC3a/wl5ZSY/08+4/ssKe78w3eO8EuwZKsGtOBLvtRLDbRoxAAAEEEEAAAQRSF9jwRx3PYa98lkKhdA17yPd3Xcc17KmfO52On2DXppNg15wIdtuJYLeNGIEAAggggAACCKQu4IO9+vKRXvBL7OVXwPessKd+5nQ5foJdm1CCXXMi2G0ngt02YgQCCCCAAAIIIJC6wIbbjSpFerHoqivrEd4T7KmfOQR7r2aQYNfYCHbbiWC3jRiBAAIIIIAAAgikLvCt7Ub5Vq80e7Sfd19/VJ+iKxRrLwLoU4eWxsGwwq7NE8GuORHsthPBbhsxAgEEEEAAAQQQSF3gWz8srbD7XM2+DZ/dgC78+7uu56ZzqZ87nY6fYNemk2DXnAh224lgt40YgQACCCCAAAIIpC6QBXsOr7tuYIU9B/ZwuyTYNVuCXXMi2G0ngt02YgQCCCCAAAIIIJC6wLe28SvspZX1jmvYw78n2FM/c7ocP8GuTSjBrjkR7LYTwW4bMQIBBBBAAAEEEEhdIAv2HF53/ZkV9hzYw+2SYNdsCXbNiWC3nQh224gRCCCAAAIIIIBA6gLf+sGo6sp6+ebwUd7f+WeuYU/93Ol0/AS7Np0Eu+ZEsNtOBLttxAgEEEAAAQQQQCB1gW//IJ8V9jtvZIU99XOHYO/FDBLsGhrBbjsR7LYRIxBAAAEEEEAAgdQFvv398jXs/ubwrnR3+Oya9sDvCfbUz5wux88KuzahBLvmRLDbTgS7bcQIBBBAAAEEEEAgdYFshT17lFvlkW5xft75F1bYUz93Oh0/wa5NJ8GuORHsthPBbhsxAgEEEEAAAQQQSF3Ar7BnK+uuWNPs4d//8y9cw576uUOw92IGCXYNjWC3nQh224gRCCCAAAIIIIBA6gLf8V+JL7+yb8OXvw7v/yjk+3+ywp76qdP5+Flh1+aTYNecCHbbiWC3jRiBAAIIIIAAAgikLvCdrTuCvfoc9vKHCvn+n3/lK/Gpnzudjp9g16aTYNecCHbbiWC3jRiBAAIIIIAAAgikLlAb7DE/C8EeUzvCvgh2DZlg15wIdtuJYLeNGIEAAggggAACCKQu8J2tzq4+dz37PnyxGOX9JFbYUz91Oh8/wa7NJ8GuORHsthPBbhsxAgEEEEAAAQQQSF1go63Ozm4SX3lVbhYf+v0/bzq6T9EVitkD7Xj1VoBg1+QIds2JYLedCHbbiBEIIIAAAggggEDqAt/5nl9hr9xgrvQc9hjvJxHsqZ86nY9/pd+fHvwDzTv/tKD7WPIL7wXdvt/4p7P7Bd3H5auMDLp9v/HBt58dfB+tbe1B9zH1jfmDbt9vfMB/24Lu4werDXIjtx0cdB9sHAEEEEAAAQQQQCBfgY2+F/6/vef0CSf9jRX2fGe+wXsn2DVQgl1zIthtJ4LdNmIEAggggAACCCCQusBGW9Zew+6f5eYf7VZaaa88mD3E+zv+xl3iUz93Oh0/wa5NJ8GuORHsthPBbhsxAgEEEEAAAQQQSF3AB3ser0l/Z4U9D/dg+yTYNVqCXXMi2G0ngt02YgQCCCCAAAIIIJC6wEZbnOWX1KPdHb60cl9wBHvqZ06X4yfYtQkl2DUngt12IthtI0YggAACCCCAAAKpC2TBnsNr0s3H5LDX7nfJXeLrnA6CXQMk2DUngt12IthtI0YggAACCCCAAAKpC/hgL7iau8M7f+l6+Pd33MxX4lM/dzodP8GuTSfBrjkR7LYTwW4bMQIBBBBAAAEEEEhdYGO/wp7Dg9jvGM8Ke+rnDsHeixkk2DU0gt12IthtI0YggAACCCCAAAKpC2w8tOMr8YXSTeKrr5DvCfbUz5wux88KuzahBLvmRLDbTgS7bcQIBBBAAAEEEEAgdYGNh/hg95nu87zyCv/+jgnH9ik6rmGvczoIdg2QYNecCHbbiWC3jRiBAAIIIIAAAgikLrDx4JFRnrve9bnut0/gK/Gpnzudjp9g16aTYNecCHbbiWC3jRiBAAIIIIAAAgikLuCDPY/XHRNZYc/DPdg+CXaNlmDXnAh224lgt40YgQACCCCAAAIIpC6w8eYjS9+Gzx6PXro7fIz3BHvqZ06X4yfYtQkl2DUngt12IthtI0YggAACCCCAAAKpC2TBXr6CPdYN5/z+7riFFfbUz51Ox0+wa9NJsGtOBLvtRLDbRoxAAAEEEEAAAQRSF9h4szOrK+uVFfYYP28n2FM/dTofP8GuzSfBrjkR7LYTwW4bMQIBBBBAAAEEEEhdYJPNzszlI9x+63G57Le7nXKX+Dqng2DXAAl2zYlgt50IdtuIEQgggAACCCCAQOoCm2w6wl+87lyxWHMNe/j3BHvqZ06X4yfYtQkl2DUngt12IthtI0YggAACCCCAAAKpC2TBnsPr9n8cn8Neu98lK+x1TgfBrgES7JoTwW47Eey2ESMQQAABBBBAAIHUBTb57oiod4ev3I3+tn/wlfjUz51Ox0+wa9NJsGtOBLvtRLDbRoxAAAEEEEAAAQRSF8hW2GPeHr78CLnbb2OFPfVzh2DvxQwS7BoawW47Eey2ESMQQAABBBBAAIHUBTbZ5IzSCnvl0W6Va9kDv7+NYE/91Ol8/Kywa/NJsGtOBLvtRLDbRoxAAAEEEEAAAQRSF/jud/0Ke7F647nKDehC/7zt9hP6FB3XsNc5HascNa7OLQi/vv4HwqDeD1lwgU96/8vib3786UBxZO+GtfWb3btf7MFv3bjOiT0Y3buhm1x4Ue9+UfytluniwDqGDQh7urqt1xnkhv9scB1HyK8igAACCCCAAAII9HWB7/oVdudX2Du+Fx/j/T9u5yvxff3c6NHxEewaF8GuORHsthPBbhsxAgEEEEAAAQQQSF3guxufkctHuO0OVthzgQ+1U4JdkyXYNSeC3XYi2G0jRiCAAAIIIIAAAqkLfHejM5wr3wguu5Y9+3q8y25EF/I9wZ76mdPl+Al2bUIJds2JYLedCHbbiBEIIIAAAggggEDqAptudEbHDecqN5qL8PO2Saywp37udDp+gl2bToJdcyLYbSeC3TZiBAIIIIAAAgggkLrApt85PbvhnF9Z9yvqlRvQhX7/D4I99VOn8/ET7Np8EuyaE8FuOxHsthEjEEAAAQQQQACB1AWyYM/h9Y9/hr/RdE8+FneJ74nWHMYS7Bogwa45Eey2E8FuGzECAQQQQAABBBBIXWDTbw+vPtKt45r10kp7yPcEe+pnTpfjJ9i1CSXYNSeC3XYi2G0jRiCAAAIIIIAAAqkLZMGew+sfdw7LYa/d75IV9jqng2DXAAl2zYlgt50IdtuIEQgggAACCCCAQOoCm35reNC7wXd3t/lb7+Qr8amfO52On2DXppNg15wIdtuJYLeNGIEAAggggAACCKQu4IM9j9c/7mKFPQ/3YPsk2DVagl1zIthtJ4LdNmIEAggggAACCCCQusCmG55WXWGvXLMe4+etBHvqp07n4yfYtfkk2DUngt12IthtI0YggAACCCCAAAKpC2y24Wmlj1B5pFvlAwV+f+vdJ/UpOq5hr3M6CHYNkGDXnAh224lgt40YgQACCCCAAAIIpC6w2QYdK+yu4Fx315z757I38v9/y918JT71c6fT8RPs2nQS7JoTwW47Eey2ESMQQAABBBBAAIHUBXyw5/G69R5W2PNwD7ZPgl1xKW5xAAAcnklEQVSjJdg1J4LddiLYbSNGIIAAAggggAACqQtstn5HsJcX2KsfKeT7W+8l2FM/dzodP8GuTSfBrjkR7LYTwW4bMQIBBBBAAAEEEEhdIAv27OvuPs/Lrwjvb73v5D5FxzXsdU4Hwa4BEuyaE8FuOxHsthEjEEAAAQQQQACB1AU2W+/UmuewF7J4r9wlvnIjuhDvb2GFPfVTp/PxE+zafBLsmhPBbjsR7LYRIxBAAAEEEEAAgdQFNl/vVH+fueor5Nfg/U4q22eFPfUzp8vxE+zahBLsmhPBbjsR7LYRIxBAAAEEEEAAgdQFNlv3lGxFvfK1eH83+Bjvb+Er8amfOp2Pn2DX5pNg15wIdtuJYLeNGIEAAggggAACCKQusPm6p+TyEW65P5/9dvdhuYa9ztOAYNcACXbNiWC3nQh224gRCCCAAAIIIIBA6gKbr1NaYW/0c9at7U28n5vOpX7udDr+NQ4YF/zztPcPu4sZC4Tdvt/6rPlrr0Bp/P7aPqq5e2TjN59tccaiswNtuWOz87zWGnQf7f2Cbj7b+K2H7Rd0J/MObHMLzRfhgwT9FGwcAQQQQAABBBBA4PMEfLDn8brlgXz2291nZYW9zrOAYNcACXbNiWC3nQh224gRCCCAAAIIIIBA6gKbr31y6ZFuke4OX1p5LziCPfUzp8vxE+zahBLsmhPBbjsR7LYRIxBAAAEEEEAAgdQFsmDP4XXLg6fmsNfud8kKe53TQbBrgAS75kSw204Eu23ECAQQQAABBBBAIHUBH+zZo9YqK+yVR68Ffj+RYE/91Ol8/AS7Np8Eu+ZEsNtOBLttxAgEEEAAAQQQQCB1gcF+hd1/Tb3yqjziLfD7if86rU/RscJe53QQ7Bogwa45Eey2E8FuGzECAQQQQAABBBBIXWDwWie50hK7v7Q83t3iCfbUz5wux0+waxNKsGtOBLvtRLDbRoxAAAEEEEAAAQRSF8iCPYfXxIdYYc+BPdwuCXbNlmDXnAh224lgt40YgQACCCCAAAIIpC4weM2TOlbWyx+mutIe8P2Eh7jpXOrnTqfjJ9i16STYNSeC3XYi2G0jRiCAAAIIIIAAAqkLDFmzY4W9cuO5ymcK+X7Cw6ywp37uEOy9mEGCXUMj2G0ngt02YgQCCCCAAAIIIJC6wJA1hlWfw155HnuMnwR76mdOl+NnhV2bUIJdcyLYbSeC3TZiBAIIIIAAAgggkLpAFuw5vCY8MjyHvXa/S+4SX+d0EOwaIMGuORHsthPBbhsxAgEEEEAAAQQQSF1gyOrDot4dvnI3+vGP8JX41M+dTsdPsGvTSbBrTgS77USw20aMQAABBBBAAAEEUhfwwZ7Ha8KjrLDn4R5snwS7Rkuwa04Eu+1EsNtGjEAAAQQQQAABBFIXGLLaidVr2Duew15wrlisWXlv/HuCPfUzp8vxE+zahBLsmhPBbjsR7LYRIxBAAAEEEEAAgdQFsmDP4TVh8uk57LX7XXINe53TQbBrgAS75kSw204Eu23ECAQQQAABBBBAIHWBIaueUF1Jr6ywx/g5nmBP/dTpfPwEuzafBLvmRLDbTgS7bcQIBBBAAAEEEEAgdYGhq56Qy0cY/9gZuey3u52ywl7ndBDsGiDBrjkR7LYTwW4bMQIBBBBAAAEEEEhdYOgqJzhXcK5y9/ZisRjlPcGe+pnT5fgJdm1CCXbNiWC3nQh224gRCCCAAAIIIIBA6gLZCnvRVSO9Eu+hf46fwgp76udOp+Mn2LXpJNg1J4LddiLYbSNGIIAAAggggAACqQv4FfZsgb0S7ZV2D/z+ZoI99VOn8/GvfOK44B+obVrYXcycL+z2/db7TQ27j9kDwm7fb71lZvh9TDhuv6A7GTzqoqDb9xufNTDsLrZZbZAb+cPBYXfC1hFAAAEEEEAAAQRyFRj6jdpr2GsqPTuqcO/HP84Ke64T3+idE+yaKMGuORHsthPBbhsxAgEEEEAAAQQQSF1g6KDjqx+h+hz28p+EfD/+iRF9io6bztU5HQS7Bkiwa04Eu+1EsNtGjEAAAQQQQAABBFIX2GLQ8Xlcwu4I9tTPnC7HT7BrE0qwa04Eu+1EsNtGjEAAAQQQQAABBFIX2GLl450rFJy/O3yhfLf4GO9vfoKvxKd+7nQ6foJdm06CXXMi2G0ngt02YgQCCCCAAAIIIJC6QBbsObxufpKvxOfAHm6XBLtmS7BrTgS77USw20aMQAABBBBAAAEEUhfYYqXjshV2f5v46jXrEd4T7KmfOV2On2DXJpRg15wIdtuJYLeNGIEAAggggAACCKQukAV7Dq+bnzozh712v0tuOlfndBDsGiDBrjkR7LYTwW4bMQIBBBBAAAEEEEhdYIsVj426sl5Zyf87wZ76qdP5+Al2bT4Jds2JYLedCHbbiBEIIIAAAggggEDqAj7Y83jd/PTIPHbb7T5ZYa9zOgh2DZBg15wIdtuJYLeNGIEAAggggAACCKQusMUKx+RzDXsPgn3sJde5y3/zt4z6e5ut5047cg83cGD/htIT7HVyEuwaIMGuORHsthPBbhsxAgEEEEAAAQQQSF0gC/ZisRrtlRvQhf5587NnS3QPTn7avfra227bLb+djffxvtTiX6m+lzYiDCLYBaTPG0Kwa4AEu+ZEsNtOBLttxAgEEEAAAQQQQCB1gS2WP9plj1+vRLtzUd7/XQz2rr4+4O+8f4o7fJ/tG0pPsNfJSbBrgAS75kSw204Eu23ECAQQQAABBBBAIHUBH+zZCnvlVX6kW+j3Nz83qld01//9zuz3KivuvdrIHH6JYK9TkmDXAAl2zYlgt50IdtuIEQgggAACCCCAQOoCWyx7VGlJvfLy7R7hfW2w+1Xz3Q757E3orjj3WLf2aitWD+3FV153115/qztq/59wDXtfO/EIdm1GCHbNiWC3nQh224gRCCCAAAIIIIBA6gI+2Iuu6AquEPXn+OdH94ju/Q+mujPPu9Ydd9BObuEFF+jR7yqDWWFXlD5nDMGuARLsmhPBbjsR7LYRIxBAAAEEEEAAgdQFhi5zZMdz2MsfplAolK5pD/j+5uf1r8T7WD/+zEuzlfWll/xqEHKCvU5Wgl0DJNg1J4LddiLYbSNGIIAAAggggAACqQv4YM/jNf4FbYU9Rqz7z0+w13kWEOwaIMGuORHsthPBbhsxAgEEEEAAAQQQSF1g6NJH5PIcdjXY/U3mhp19eSfmVVdaxl0w8tCGfjWeYK/zTCbYNUCCXXMi2G0ngt02YgQCCCCAAAIIIJC6QBbsLtKd5qpYRTf+xbF9io5gr3M6CHYNkGDXnAh224lgt40YgQACCCCAAAIIpC4w9OuHdVzDXn6kW/Ua9oDvbybYUz91Oh8/wa7NJ8GuORHsthPBbhsxAgEEEEAAAQQQSF3AB3ser/Evjctjt93ukxX2OqdjrX3DT+gnX6nzII1fb50edvt+6zPnD7uPLz4+O+wOnHMts4Lvws2at/bhko3fX+u0jrtqNn7rpS22zAq7j6GbrOJOPGhoqMNnuwgggAACCCCAAAJ9QGDoUoeWH7ze8Wi30oPYw74f/3L4vusJL8HeE605jCXYNUCCXXMi2G0ngt02YgQCCCCAAAIIIJC6wNAlfbDHf41/5Zz4O/2cPRLsdU4Hwa4BEuyaE8FuOxHsthEjEEAAAQQQQACB1AWG/t8h+VzDTrCnfup0Pn6CXZtPgl1zIthtJ4LdNmIEAggggAACCCCQukC2wl6sudSyfKO56ucK9H78v8/tU3SssNc5HQS7Bkiwa04Eu+1EsNtGjEAAAQQQQAABBFIXGLrEwfk8h51gT/3UYYW9NzNIsGtqBLvtRLDbRoxAAAEEEEAAAQRSF8iCPYfX+Fd/kcNeu98lK+x1Tgcr7Bogwa45Eey2E8FuGzECAQQQQAABBBBIXWDo4gd1XMNe/jDV57AHfH8zwZ76qdP5+Al2bT4Jds2JYLedCHbbiBEIIIAAAggggEDqAj7Yqy9/Lbu/Zr3yCvh+/H/O61N0rLDXOR0EuwZIsGtOBLvtRLDbRoxAAAEEEEAAAQRSFxj6tQPzuYadYE/91Ol8/AS7Np8Eu+ZEsNtOBLttxAgEEEAAAQQQQCB1gSzYc3iNf+38HPba/S5ZYa9zOgh2DZBg15wIdtuJYLeNGIEAAggggAACCKQuMOSrB1SvYa9cux7jJ8Ge+pnT5fgJdm1CCXbNiWC3nQh224gRCCCAAAIIIIBA6gI+2Ksv/zj2mkvYXcD3E17/ZZ+iY4W9zukg2DVAgl1zIthtJ4LdNmIEAggggAACCCCQusCQr/w8l2vYJ/yXYE/93Ol0/AS7Np0Eu+ZEsNtOBLttxAgEEEAAAQQQQCB1gSzYc3hNeOOCHPba/S5ZYa9zOgh2DZBg15wIdtuJYLeNGIEAAggggAACCKQuMGSx/Tuew+6/Dp892a3gitkj3cK9H0+wp37qdD5+gl2bT4JdcyLYbSeC3TZiBAIIIIAAAgggkLrAkMX2y+UjTHjzolz2291OWWGvczoIdg2QYNecCHbbiWC3jRiBAAIIIIAAAgikLjDky/vmcw07wZ76qcMKe29mkGDX1Ah224lgt40YgQACCCCAAAIIpC6QBXt2N/iCczVfgw/9fsLbF/cpOlbY65wOVtg1QIJdcyLYbSeC3TZiBAIIIIAAAgggkLrAkC/tW7pUPYv10jPdYrwfT7Cnfuqwwt6bGSTYNTWC3XYi2G0jRiCAAAIIIIAAAqkL+GAvraxXVtjj/JzwziV9io4V9jqngxV2DZBg15wIdtuJYLeNGIEAAggggAACCKQuMGTRfaofoXxT+CjvCfbUz5wux7/SyeOCf6K2j8PuYsJx4e/AuMXpYe+22PppWCO/9bZP2sPvJPAe+n8U/jN8uHRb0E+x9VqD3Bk/HRx0H2wcAQQQQAABBBBAIF+BIYvuXb6GveY4smvaw76f8O6l+X7wLntnhb3O6SDYNUCCXXMKPYpgDy3M9hFAAAEEEEAAAQQaITBkkb06nrtefvB69TnsAd+Pf4dgb8T89ZltEOzaVBDsmlPoUQR7aGG2jwACCCCAAAIIINAIAR/s2V3iK69I34uf8N5ljTj8hm2DFfY6KQl2DZBg15xCjyLYQwuzfQQQQAABBBBAAIFGCAxZeM98nsNOsDdi+vrONgh2bS4Ids0p9CiCPbQw20cAAQQQQAABBBBohEAW7Dm8Jrx/eQ577X6XrLDXOR0EuwZIsGtOoUcR7KGF2T4CCCCAAAIIIIBAIwQGL7RH9Rr2yrXrMX4S7I2YvT60DYJdmwyCXXMKPYpgDy3M9hFAAAEEEEAAAQQaIeCDPY/XxP/9Ko/ddrtPVtjrnA6CXQMk2DWn0KMI9tDCbB8BBBBAAAEEEECgEQKDF9w9l2vYCfZGzF4f2gbBrk0Gwa45hR5FsIcWZvsIIIAAAggggAACjRDIgj2H18QPfp3DXrvfJSvsdU4Hwa4BEuyaU+hRBHtoYbaPAAIIIIAAAggg0AiBwV/YreM57IWCc8VilPcTCPZGTF/f2QbBrs0Fwa45hR5FsIcWZvsIIIAAAggggAACjRDwwV59FYulr8dXXgHfT/zwikYcfsO2wQp7nZQEuwZIsGtOoUcR7KGF2T4CCCCAAAIIIIBAIwQGL7BrdTM+1Ys1Gw35fuLUKxtx+A3bBsFeJyXBrgES7JpT6FEEe2hhto8AAggggAACCCDQCIEs2Csr6RF/TvzoqkYcfsO2QbDXSUmwa4AEu+YUehTBHlqY7SOAAAIIIIAAAgg0QmDw/Lt0XLNe3mDlOeyV7Yd4P4EV9kZMX9/ZBsGuzQXBrjmFHkWwhxZm+wgggAACCCCAAAKNEBg83y41m/FfiK+5hj37gnyY9xM/ZoW9EfPXZ7ZBsGtTQbBrTqFHEeyhhdk+AggggAACCCCAQCMEBs+7cz7PYSfYGzF9fWcbBLs2FwS75hR6FMEeWpjtI4AAAggggAACCDRCIAv26kp6ZUU9/M+Jn1zTiMNv2Da4hr1OSoJdAyTYNafQowj20MJsHwEEEEAAAQQQQKARAoPn2SnKc9eLNTe089fETyDYGzF9fWcbBLs2FwS75hR6FMEeWpjtI4AAAggggAACCDRCwAd7Hq+Jn16bx2673Scr7HVOB8GuARLsmlPoUQR7aGG2jwACCCCAAAIIINAIgcEDd8znGnaCvRHT13e2seKp44IfTNvHYXfR9mnY7futt03z15uEe7VOD7t9f+QtM8Pvo/XTsPvoN3VmuEkob/mj/xsYdB/f23CQO2WvIUH3wcYRQAABBBBAAAEE8hXIgj2H18Rpv8lhr93vkhX2OqeDYNcACXbNiWC3nQh224gRCCCAAAIIIIBA6gKbD/hp9Rr2yvPWY/wk2FM/c7ocP8GuTSjBrjkR7LYTwW4bMQIBBBBAAAEEEEhdwAd7dpP4yss/dj3C+1tm/LZP0bHCXud0EOwaIMGuORHsthPBbhsxAgEEEEAAAQQQSF1g834/yeUadoI99TOny/ET7NqEEuyaE8FuOxHsthEjEEAAAQQQQACB1AWyYPevQsE5/+i1yivw+1tm/q5P0bHCXud0EOwaIMGuORHsthPBbhsxAgEEEEAAAQQQSF3AB3v2LfjKc9J9u0d4P5FgT/3U6Xz8BLs2nwS75kSw204Eu23ECAQQQAABBBBAIHWBzdt2yOUj3DLr97nst7udssJe53QQ7Bogwa45Eey2E8FuGzECAQQQQAABBBBIXWDz1h9XP0Ll7vCVPwj5/pbZf+hTdAR7ndNBsGuABLvmRLDbTgS7bcQIBBBAAAEEEEAgdYHaYI/5WQj2mNoR9kWwa8gEu+ZEsNtOBLttxAgEEEAAAQQQQCB1gc1btq8+h71y47nqynr5xnMh3k9khT31U6fz8RPs2nwS7JoTwW47Eey2ESMQQAABBBBAAIHUBXyw5/G6pf26PHbb7T75Snyd00Gwa4AEu+ZEsNtOBLttxAgEEEAAAQQQQACB5hAg2OucR4JdAyTYNSeC3XYi2G0jRiCAAAIIIIAAAgg0hwDBXuc8EuwaIMGuORHsthPBbhsxAgEEEEAAAQQQQKA5BAj2OueRYNcACXbNiWC3nQh224gRCCCAAAIIIIAAAs0hQLDXOY8EuwZIsGtOBLvtRLDbRoxAAAEEEEAAAQQQaA4Bgr3OeSTYNUCCXXMi2G0ngt02YgQCCCCAAAIIIIBAcwgQ7HXOI8GuARLsmhPBbjsR7LYRIxBAAAEEEEAAAQSaQ4Bgr3MeCXYNkGDXnAh224lgt40YgQACCCCAAAIIINAcAgR7nfNIsGuABLvmRLDbTgS7bcQIBBBAAAEEEEAAgeYQINjrnEeCXQMk2DUngt12IthtI0YggAACCCCAAAIINIcAwd4c88inQAABBBBAAAEEEEAAAQQQaDIBgr3JJpSPgwACCCCAAAIIIIAAAggg0BwCBHtzzCOfAgEEEEAAAQQQQAABBBBAoMkECPYmm1A+DgIIIIAAAggggAACCCCAQHMIEOzNMY98CgQQQAABBBBAAAEEEEAAgSYTINibbEL5OAgggAACCCCAAAIIIIAAAs0hQLA3xzzyKRBAAAEEEEAAAQQQQAABBJpMgGBvsgnl4yCAAAIIIIAAAggggAACCDSHAMHeHPPIp0AAAQQQQAABBBBAAAEEEGgyAYK9ySaUj4MAAggggAACCCCAAAIIINAcAgR7c8wjnwIBBBBAAAEEEEAAAQQQQKDJBAj2JptQPg4CCCCAAAIIIIAAAggggEBzCBDszTGPfAoEEEAAAQQQQAABBBBAAIEmEyDYm2xC+TgIIIAAAggggAACCCCAAALNIUCwN8c88ikQQAABBBBAAAEEEEAAAQSaTIBgb7IJ5eMggAACCCCAAAIIIIAAAgg0hwDB3hzzyKdAAAEEEEAAAQQQQAABBBBoMgGCvckmlI+DAAIIIIAAAggggAACCCDQHAIEe3PMI58CAQQQQAABBBBAAAEEEECgyQQI9iabUD4OAggggAACCCCAAAIIIIBAcwgQ7M0xj3wKBBBAAAEEEEAAAQQQQACBJhMg2JtsQvk4CCCAAAIIIIAAAggggAACzSFAsDfHPPIpEEAAAQQQQAABBBBAAAEEmkyAYG+yCeXjIIAAAggggAACCCCAAAIINIcAwd4c88inQAABBBBAAAEEEEAAAQQQaDIBgr3JJpSPgwACCCCAAAIIIIAAAggg0BwCBHtzzCOfAgEEEEAAAQQQQAABBBBAoMkECPYmm1A+DgIIIIAAAggggAACCCCAQHMIEOzNMY98CgQQQAABBBBAAAEEEEAAgSYTINibbEL5OAgggAACCCCAAAIIIIAAAs0hQLA3xzzyKRBAAAEEEEAAAQQQQAABBJpMgGBvsgnl4yCAAAIIIIAAAggggAACCDSHAMHeHPPIp0AAAQQQQAABBBBAAAEEEGgyAYK9ySaUj4MAAggggAACCCCAAAIIINAcAgR7c8wjnwIBBBBAAAEEEEAAAQQQQKDJBAj2JptQPg4CCCCAAAIIIIAAAggggEBzCBDszTGPfAoEEEAAAQQQQAABBBBAAIEmEyDYm2xC+TgIIIAAAggggAACCCCAAALNIUCwN8c88ikQQAABBBBAAAEEEEAAAQSaTIBg///t1zENAAAAgzD/rvFBKoHu2mxQOQQIECBAgAABAgQIECDwEHDYHzuqIECAAAECBAgQIECAAIGZgMM+G1QOAQIECBAgQIAAAQIECDwEHPbHjioIECBAgAABAgQIECBAYCbgsM8GlUOAAAECBAgQIECAAAECDwGH/bGjCgIECBAgQIAAAQIECBCYCTjss0HlECBAgAABAgQIECBAgMBDwGF/7KiCAAECBAgQIECAAAECBGYCDvtsUDkECBAgQIAAAQIECBAg8BBw2B87qiBAgAABAgQIECBAgACBmYDDPhtUDgECBAgQIECAAAECBAg8BBz2x44qCBAgQIAAAQIECBAgQGAm4LDPBpVDgAABAgQIECBAgAABAg8Bh/2xowoCBAgQIECAAAECBAgQmAk47LNB5RAgQIAAAQIECBAgQIDAQ8Bhf+yoggABAgQIECBAgAABAgRmAg77bFA5BAgQIECAAAECBAgQIPAQcNgfO6ogQIAAAQIECBAgQIAAgZmAwz4bVA4BAgQIECBAgAABAgQIPAQc9seOKggQIECAAAECBAgQIEBgJuCwzwaVQ4AAAQIECBAgQIAAAQIPAYf9saMKAgQIECBAgAABAgQIEJgJOOyzQeUQIECAAAECBAgQIECAwEPAYX/sqIIAAQIECBAgQIAAAQIEZgIO+2xQOQQIECBAgAABAgQIECDwEHDYHzuqIECAAAECBAgQIECAAIGZgMM+G1QOAQIECBAgQIAAAQIECDwEHPbHjioIECBAgAABAgQIECBAYCbgsM8GlUOAAAECBAgQIECAAAECDwGH/bGjCgIECBAgQIAAAQIECBCYCTjss0HlECBAgAABAgQIECBAgMBDwGF/7KiCAAECBAgQIECAAAECBGYCDvtsUDkECBAgQIAAAQIECBAg8BBw2B87qiBAgAABAgQIECBAgACBmYDDPhtUDgECBAgQIECAAAECBAg8BBz2x44qCBAgQIAAAQIECBAgQGAm4LDPBpVDgAABAgQIECBAgAABAg8Bh/2xowoCBAgQIECAAAECBAgQmAk47LNB5RAgQIAAAQIECBAgQIDAQ8Bhf+yoggABAgQIECBAgAABAgRmAg77bFA5BAgQIECAAAECBAgQIPAQCLX/UndjjFCZAAAAAElFTkSuQmCC", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from plotly.subplots import make_subplots\n", + "import math\n", + "def showPropertyPlot(som, data, columns):\n", + "# plots the distances for each different property\n", + " win_map = som.win_map(data)\n", + " size=som.distance_map().shape[0]\n", + " properties=np.empty((size*size,2+data.shape[1]))\n", + " properties[:]=np.NaN\n", + " i=0\n", + " for row in range(0,size):\n", + " for col in range(0,size):\n", + " properties[size*row+col,0]=row\n", + " properties[size*row+col,1]=col\n", + "\n", + " for position, values in win_map.items():\n", + " properties[size*position[0]+position[1],0]=position[0]\n", + " properties[size*position[0]+position[1],1]=position[1]\n", + " properties[size*position[0]+position[1],2:] = np.mean(values, axis=0)\n", + " i=i+1\n", + "\n", + " B = ['row', 'col']\n", + " B.extend(columns)\n", + " properties = pd.DataFrame(data=properties, columns=B)\n", + " \n", + " fig = make_subplots(rows=math.ceil(math.sqrt(data.shape[1])), cols=math.ceil(math.sqrt(data.shape[1])), shared_xaxes=False, horizontal_spacing=0.1, vertical_spacing=0.05, subplot_titles=columns, column_widths=None, row_heights=None)\n", + " i=0\n", + " zmin=min(np.min(properties.iloc[:,2:]))\n", + " zmax=max(np.max(properties.iloc[:,2:]))\n", + " for property in columns:\n", + " fig.add_traces(\n", + " [go.Heatmap(z=properties.sort_values(by=['row', 'col'])[property].values.reshape(size,size), zmax=zmax, zmin=zmin, coloraxis = 'coloraxis2')],\n", + " rows=[i // math.ceil(math.sqrt(data.shape[1])) + 1 ],\n", + " cols=[i % math.ceil(math.sqrt(data.shape[1])) + 1 ]\n", + " )\n", + " i=i+1\n", + "\n", + " for layout in fig.layout:\n", + " if layout.startswith('xaxis') or layout.startswith('yaxis'):\n", + " fig.layout[layout].visible=False\n", + " fig.layout[layout].visible=False\n", + " if layout.startswith('coloraxis'):\n", + " fig.layout[layout].cmax=zmax\n", + " fig.layout[layout].cmin=zmin\n", + " if layout.startswith('colorscale'):\n", + " fig.layout[layout]={'diverging':'viridis'}\n", + "\n", + " fig.update_layout(\n", + " height=800\n", + " )\n", + " fig.show()\n", + " \n", + "showPropertyPlot(som, data, columns[:-1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The distribution map shows the min, max and mean of the values of samples corresponding with a neuron. Each neuron's data is shown in an own subplot. This plot can be used to examine similarities or differences in the neuron weights.\n", + "In this example of supervised learning, I have shown the main class of each neuron (as major class of all samples of a neuron) via background color of the subplots." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def distributionMap(data, clusters, size, columns, minimum, maximum, plottype='barpolar'):\n", + " spec={\"type\": \"polar\"}\n", + " fig = make_subplots(rows=size, cols=size, specs=np.full((size,size),spec).tolist(), shared_yaxes=True, shared_xaxes=True,horizontal_spacing=0, vertical_spacing=0, subplot_titles=None, column_widths=None, row_heights=None)\n", + " categories=columns\n", + " if plottype=='spider':\n", + " for index, row in data.iterrows():\n", + " fig.add_traces(\n", + " [go.Scatterpolargl(\n", + " r=row['max'],\n", + " name='max',\n", + " fillcolor='green',\n", + " line=dict(color='green'),\n", + " theta=categories, \n", + " opacity=0.5),\n", + " go.Scatterpolargl(\n", + " r=row['mean'],\n", + " name='mean',\n", + " fillcolor='blue',\n", + " line=dict(color='blue'),\n", + " theta=categories, \n", + " opacity=0.5),\n", + " go.Scatterpolargl(\n", + " r=row['min'],\n", + " name='min',\n", + " fillcolor='red',\n", + " line=dict(color='red'),\n", + " theta=categories, \n", + " opacity=0.5)],\n", + " rows=[row['row'], row['row'], row['row']],\n", + " cols=[row['col'], row['col'], row['col']]\n", + " )\n", + " else:\n", + " for index, row in data.iterrows():\n", + " fig.add_traces(\n", + " [\n", + " go.Barpolar( \n", + " base=minimum,\n", + " r=row['max']-minimum,\n", + " name='max'+str(index),\n", + " marker_color=\"green\",\n", + " theta=categories, \n", + " #opacity=1\n", + " ),\n", + " go.Barpolar( \n", + " base=minimum,\n", + " r=row['mean']-minimum,\n", + " name='mean'+str(index),\n", + " marker_color=\"blue\",\n", + " theta=categories, \n", + " #opacity=1\n", + " ),\n", + " go.Barpolar( \n", + " base=minimum,\n", + " r=row['min']-minimum,\n", + " name='min'+str(index),\n", + " marker_color=\"darkred\",\n", + " theta=categories, \n", + " #opacity=1\n", + " ) \n", + " ],\n", + " rows=[row['row'], row['row'], row['row']],\n", + " cols=[row['col'], row['col'], row['col']]\n", + " ) \n", + "\n", + " if plottype=='spider':\n", + " fig.update_traces(mode='lines', fill='toself')\n", + " for layout in fig.layout:\n", + " if layout.startswith('polar'):\n", + " fig.layout[layout].angularaxis.visible=False\n", + " fig.layout[layout].angularaxis.tickfont.size = 7\n", + " fig.layout[layout].radialaxis.visible=True\n", + " fig.layout[layout].radialaxis.tickfont.size = 7\n", + " fig.layout[layout].barmode='overlay'\n", + " fig.layout[layout].radialaxis.range = [minimum, maximum+1]\n", + "\n", + " for index, row in data.iterrows():\n", + " color=row['bgcolor']\n", + " if row['row']==0 and row['col']==0:\n", + " # row needs to be switched because all the other plots (heatmaps) are shown with row 0 at bottom \n", + " fig.layout['polar'].bgcolor=\"rgb(\"+\",\".join(str(i) for i in [color]*3) +\")\"\n", + " else:\n", + " # row needs to be switched because all the other plots (heatmaps) are shown with row 0 at bottom \n", + " fig.layout['polar'+str((row['row']-1)*size+row['col'])].bgcolor=\"rgb(\"+\",\".join(str(i) for i in [color]*3) +\")\"\n", + " \n", + " fig.update_layout(\n", + " width=900,\n", + " height=900,\n", + " showlegend=False\n", + " )\n", + "\n", + " fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max0", + "r": [ + 2.8103340623295274, + 2.8836987299647405, + 2.9610035495586136, + 2.9724544924716354, + 2.852399377827426, + 1.6820845484832936, + 2.57019314629228 + ], + "subplot": "polar24", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean0", + "r": [ + 2.7741616332102113, + 2.8222946767261234, + 2.8146502222523493, + 2.914763138362114, + 2.831168747054698, + 1.6514173290079097, + 2.427426008216915 + ], + "subplot": "polar24", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min0", + "r": [ + 2.737989204090895, + 2.760890623487506, + 2.668296894946085, + 2.857071784252593, + 2.8099381162819705, + 1.6207501095325259, + 2.28465887014155 + ], + "subplot": "polar24", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max1", + "r": [ + 3.023923643795966, + 2.929751769893704, + 4.144556544296227, + 2.832185317773975, + 3.3460115432933333, + 1.267410406881364, + 2.105180182275379 + ], + "subplot": "polar6", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean1", + "r": [ + 2.839961004274872, + 2.762425724818472, + 3.664347945714513, + 2.505946366299735, + 3.1278668121035613, + 0.9868853501237114, + 1.9636367625263744 + ], + "subplot": "polar6", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min1", + "r": [ + 2.6794243188500975, + 2.569002957116828, + 3.0967515632919587, + 2.1150026019810912, + 2.86566852206038, + 0.7114670520873942, + 1.746222806543034 + ], + "subplot": "polar6", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max2", + "r": [ + 2.6174144403598407, + 2.4001418107106316, + 4.674822222942109, + 2.1195274140681137, + 3.2186277586569707, + 3.690787424120936, + 1.746222806543034 + ], + "subplot": "polar3", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean2", + "r": [ + 2.4589447508847417, + 2.281939008226293, + 4.146253394467892, + 1.8457762828033228, + 2.9781908651558338, + 2.124225851876219, + 1.4345825394299527 + ], + "subplot": "polar3", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min2", + "r": [ + 2.3211450209063944, + 2.1084725578271994, + 3.6906491233753487, + 1.5154650004507646, + 2.8099381162819705, + 1.3794124258349398, + 1.120086929555364 + ], + "subplot": "polar3", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max3", + "r": [ + 3.130718434529185, + 3.1293149429192093, + 4.042745533996214, + 3.130822915517381, + 3.4733953279296967, + 1.10474080792498, + 2.4620980274637896 + ], + "subplot": "polar7", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean3", + "r": [ + 3.1221059514055383, + 3.0640731363531786, + 3.650348931798262, + 2.9328623867101973, + 3.2863003942450386, + 0.9540714252850506, + 2.3274890115641598 + ], + "subplot": "polar7", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min3", + "r": [ + 3.1134934682818916, + 2.998831329787148, + 3.2579523296003083, + 2.734901857903014, + 3.0992054605603805, + 0.8034020426451212, + 2.19287999566453 + ], + "subplot": "polar7", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max4", + "r": [ + 2.717319244594143, + 2.668784543629581, + 3.4021845941919873, + 2.535810126074077, + 2.982436991310379, + 2.5921009524810974, + 2.292816992317286 + ], + "subplot": "polar13", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean4", + "r": [ + 2.5889932460518073, + 2.5613274504620005, + 3.189017791376343, + 2.3915817408002713, + 2.786053656662652, + 2.3137626018077766, + 2.173504455497159 + ], + "subplot": "polar13", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min4", + "r": [ + 2.48994969012987, + 2.45387035729442, + 3.045846058141955, + 2.1240522261551344, + 2.5100554566171978, + 2.0694248640310766, + 1.9257014944092048 + ], + "subplot": "polar13", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max5", + "r": [ + 2.5795195146157957, + 2.45387035729442, + 3.868818391400365, + 2.239434934374179, + 2.86566852206038, + 2.9914414843453345, + 1.8359621504761194 + ], + "subplot": "polar12", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean5", + "r": [ + 2.444016446803754, + 2.341296259690289, + 3.593080238504506, + 2.1587424521556318, + 2.71970793549788, + 2.6172125162544186, + 1.5089574199320712 + ], + "subplot": "polar12", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min5", + "r": [ + 2.338369987153688, + 2.2543071842689146, + 3.389458217904487, + 2.04034320254524, + 2.5100554566171978, + 2.001423638237834, + 1.3016051479654709 + ], + "subplot": "polar12", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max6", + "r": [ + 3.282298137505366, + 3.359580142564024, + 2.825255535825268, + 3.6285522450897294, + 3.215973929810379, + 2.0834251164002735, + 3.6246304375060427 + ], + "subplot": "polar34", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean6", + "r": [ + 3.208230782642005, + 3.2866628293431654, + 2.7976817205356803, + 3.371769159151269, + 3.214647015387084, + 1.822420411517387, + 3.2677125923176313 + ], + "subplot": "polar34", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min6", + "r": [ + 3.134163427778643, + 3.2137455161223074, + 2.7701079052460926, + 3.1149860732128087, + 3.2133201009637884, + 1.5614157066345005, + 2.91079474712922 + ], + "subplot": "polar34", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max7", + "r": [ + 3.216843265765652, + 3.1983945028126533, + 3.898513269404536, + 3.246205623736425, + 3.3221270836740153, + 1.7147518040114198, + 2.9230319303928214 + ], + "subplot": "polar16", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean7", + "r": [ + 3.161723373774313, + 3.102450669627314, + 3.6439857436545116, + 3.048245094929242, + 3.2955887952081064, + 1.6144166620321747, + 2.8312530559158016 + ], + "subplot": "polar16", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min7", + "r": [ + 3.106603481782974, + 3.0065068364419747, + 3.389458217904487, + 2.850284566122059, + 3.2690505067421975, + 1.5140815200529298, + 2.7394741814387817 + ], + "subplot": "polar16", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max8", + "r": [ + 2.8103340623295274, + 2.8913742366195674, + 2.8422240375419343, + 2.861596596339612, + 2.703784962418334, + 3.230112453305931, + 2.4763747412713255 + ], + "subplot": "polar59", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean8", + "r": [ + 2.667366842476992, + 2.718675336885957, + 2.725565588239841, + 2.715671406533174, + 2.6639775297194705, + 3.040775706979648, + 2.3030146450369546 + ], + "subplot": "polar59", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min8", + "r": [ + 2.5243996226244567, + 2.545976437152347, + 2.608907138937748, + 2.5697462167267364, + 2.6241700970206074, + 2.851438960653365, + 2.1296545488025833 + ], + "subplot": "polar59", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max9", + "r": [ + 2.3865998926461094, + 2.361764277436495, + 3.351279089041983, + 2.237172528330668, + 2.5153631143103805, + 1.9260889469178692, + 2.1989985872963316 + ], + "subplot": "polar2", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean9", + "r": [ + 2.269470122164514, + 2.2031371399034008, + 3.218359158928082, + 2.1036905717635386, + 2.4375174681437137, + 1.6576396633942194, + 2.07730659817495 + ], + "subplot": "polar2", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min9", + "r": [ + 2.204015250424799, + 2.1238235711368536, + 3.033119681854455, + 2.0335559844147078, + 2.39594081621379, + 1.3460784916225659, + 1.838001681020054 + ], + "subplot": "polar2", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max10", + "r": [ + 2.414159838641779, + 2.3771152907461492, + 3.134930692154463, + 2.470200350812268, + 2.5684396912421983, + 2.2920955445697335, + 1.9134643111456033 + ], + "subplot": "polar21", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean10", + "r": [ + 2.333776662821076, + 2.3131527352892567, + 2.9412069642224994, + 2.378949973724004, + 2.4162868373709863, + 2.161870974913393, + 1.6558036190953027 + ], + "subplot": "polar21", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min10", + "r": [ + 2.2866950884118076, + 2.277333704233397, + 2.8125291595377635, + 2.3299311761146058, + 2.284480004656971, + 2.0374242871871973, + 1.479044305287709 + ], + "subplot": "polar21", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max11", + "r": [ + 1.9353057769670223, + 1.908909384801694, + 2.566485884646077, + 1.7575424471064065, + 2.111981129628562, + 2.9361071535527943, + 1.660562523697814 + ], + "subplot": "polar29", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean11", + "r": [ + 1.9353057769670223, + 1.908909384801694, + 2.566485884646077, + 1.7575424471064065, + 2.111981129628562, + 2.9361071535527943, + 1.660562523697814 + ], + "subplot": "polar29", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min11", + "r": [ + 1.9353057769670223, + 1.908909384801694, + 2.566485884646077, + 1.7575424471064065, + 2.111981129628562, + 2.9361071535527943, + 1.660562523697814 + ], + "subplot": "polar29", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max12", + "r": [ + 2.4313848048890723, + 2.545976437152347, + 2.133789090871036, + 2.734901857903014, + 2.3242874373558338, + 2.249428108777895, + 2.1949195262084644 + ], + "subplot": "polar40", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean12", + "r": [ + 2.4313848048890723, + 2.545976437152347, + 2.133789090871036, + 2.734901857903014, + 2.3242874373558338, + 2.249428108777895, + 2.1949195262084644 + ], + "subplot": "polar40", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min12", + "r": [ + 2.4313848048890723, + 2.545976437152347, + 2.133789090871036, + 2.734901857903014, + 2.3242874373558338, + 2.249428108777895, + 2.1949195262084644 + ], + "subplot": "polar40", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max13", + "r": [ + 2.414159838641779, + 2.4615458639492473, + 2.744655152671093, + 2.6240439617709925, + 2.4277867623728806, + 1.9934234940268647, + 2.2826193395976153 + ], + "subplot": "polar31", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean13", + "r": [ + 2.3831548993966507, + 2.4231683306751117, + 2.590524595411356, + 2.5388266674654236, + 2.4030176931380316, + 1.7634193479614857, + 2.082745346292106 + ], + "subplot": "polar31", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min13", + "r": [ + 2.3555949534009812, + 2.3694397840913224, + 2.307716233466886, + 2.4226898238985424, + 2.380017843134244, + 1.6174167161112885, + 1.860436517003324 + ], + "subplot": "polar31", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max14", + "r": [ + 2.30736504790856, + 2.269658197578569, + 3.024635430996117, + 2.2733710250268384, + 2.393286987367198, + 1.2414099381957124, + 1.950175860936411 + ], + "subplot": "polar", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean14", + "r": [ + 2.0162631183293014, + 1.9818266980225516, + 2.664054769516917, + 1.9198700807282973, + 2.042981579617199, + 1.0357562310724726, + 1.7135903178400933 + ], + "subplot": "polar", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min14", + "r": [ + 1.7148262090016666, + 1.6479421585375713, + 2.4646748743460645, + 1.4702168795805521, + 1.8120984699637908, + 0.7714681336696674, + 1.3913444918985562 + ], + "subplot": "polar", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max15", + "r": [ + 2.7242092310930603, + 2.8222946767261234, + 2.73617090181276, + 3.031277049602912, + 2.6321315835603802, + 1.395412714256879, + 2.447821313656252 + ], + "subplot": "polar23", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean15", + "r": [ + 2.573777859200031, + 2.627848508137169, + 2.638602016941917, + 2.7454597527727316, + 2.502093970077426, + 1.2165206006504732, + 2.142571575580831 + ], + "subplot": "polar23", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min15", + "r": [ + 2.4933946833793286, + 2.5229499171878644, + 2.4434642472002315, + 2.533547720030566, + 2.3879793296740166, + 1.076740303186586, + 1.838001681020054 + ], + "subplot": "polar23", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max16", + "r": [ + 2.0386555744507824, + 2.054744011243409, + 2.3755902403335565, + 2.1398890684597087, + 2.050943066156972, + 2.450098392736385, + 1.479044305287709 + ], + "subplot": "polar30", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean16", + "r": [ + 2.0386555744507824, + 2.054744011243409, + 2.3755902403335565, + 2.1398890684597087, + 2.050943066156972, + 2.450098392736385, + 1.479044305287709 + ], + "subplot": "polar30", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min16", + "r": [ + 2.0386555744507824, + 2.054744011243409, + 2.3755902403335565, + 2.1398890684597087, + 2.050943066156972, + 2.450098392736385, + 1.479044305287709 + ], + "subplot": "polar30", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max17", + "r": [ + 1.9421957634659395, + 1.9856644513499653, + 2.048946582287695, + 2.1398890684597087, + 2.0668660392365172, + 1.870754616125329, + 2.1989985872963316 + ], + "subplot": "polar39", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean17", + "r": [ + 1.8089893578202036, + 1.883324362618937, + 1.6487727501362668, + 1.9332559831524017, + 1.8766749718975024, + 1.4607472253131317, + 1.5409100651203664 + ], + "subplot": "polar39", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min17", + "r": [ + 1.7251611887500422, + 1.8321543182534228, + 1.3193010084709547, + 1.6059612421911913, + 1.6979838295603815, + 1.2027425745093587, + 0.8549479588439732 + ], + "subplot": "polar39", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max18", + "r": [ + 2.1867902841775058, + 2.2543071842689146, + 2.218631599454378, + 2.4136401997245005, + 2.1544423911740167, + 2.555433624847486, + 2.033796613237695 + ], + "subplot": "polar49", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean18", + "r": [ + 2.1867902841775058, + 2.2543071842689146, + 2.218631599454378, + 2.4136401997245005, + 2.1544423911740167, + 2.555433624847486, + 2.033796613237695 + ], + "subplot": "polar49", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min18", + "r": [ + 2.1867902841775058, + 2.2543071842689146, + 2.218631599454378, + 2.4136401997245005, + 2.1544423911740167, + 2.555433624847486, + 2.033796613237695 + ], + "subplot": "polar49", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max19", + "r": [ + 2.889568907067077, + 2.9604537965130118, + 2.7276866509544218, + 2.958880056210573, + 2.9665140182308356, + 2.4760988614220363, + 2.30097511449302 + ], + "subplot": "polar41", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean19", + "r": [ + 2.889568907067077, + 2.9604537965130118, + 2.7276866509544218, + 2.958880056210573, + 2.9665140182308356, + 2.4760988614220363, + 2.30097511449302 + ], + "subplot": "polar41", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min19", + "r": [ + 2.889568907067077, + 2.9604537965130118, + 2.7276866509544218, + 2.958880056210573, + 2.9665140182308356, + 2.4760988614220363, + 2.30097511449302 + ], + "subplot": "polar41", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max20", + "r": [ + 2.545069582121209, + 2.707162076903716, + 1.9386513211293492, + 2.868383814470146, + 2.4755556816115174, + 2.945440655132259, + 2.6436162458738948 + ], + "subplot": "polar50", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean20", + "r": [ + 2.476169717132035, + 2.630407010355445, + 1.9195617566980971, + 2.8661214084266344, + 2.378690928710949, + 2.8801061440760067, + 2.5446990144931063 + ], + "subplot": "polar50", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min20", + "r": [ + 2.4072698521428615, + 2.5536519438071736, + 1.900472192266845, + 2.863859002383123, + 2.28182617581038, + 2.814771633019754, + 2.4457817831123174 + ], + "subplot": "polar50", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max21", + "r": [ + 3.437322833731007, + 3.298176089325407, + 4.233641178308735, + 3.1285605094738735, + 3.794508618367198, + 2.172093381405188, + 2.8230949337400673 + ], + "subplot": "polar8", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean21", + "r": [ + 3.437322833731007, + 3.298176089325407, + 4.233641178308735, + 3.1285605094738735, + 3.794508618367198, + 2.172093381405188, + 2.8230949337400673 + ], + "subplot": "polar8", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min21", + "r": [ + 3.437322833731007, + 3.298176089325407, + 4.233641178308735, + 3.1285605094738735, + 3.794508618367198, + 2.172093381405188, + 2.8230949337400673 + ], + "subplot": "polar8", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max22", + "r": [ + 2.651864372854428, + 2.6380825170102717, + 3.1476570684419625, + 2.7303770458159953, + 2.7542077105035627, + 2.276095256147794, + 2.4661770885516567 + ], + "subplot": "polar14", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean22", + "r": [ + 2.6501418762296987, + 2.6380825170102717, + 3.1391728175836295, + 2.6048135104011525, + 2.7502269672336763, + 2.140092804561309, + 2.2642635647022136 + ], + "subplot": "polar14", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min22", + "r": [ + 2.648419379604969, + 2.6380825170102717, + 3.130688566725296, + 2.4792499749863097, + 2.74624622396379, + 2.0040903529748237, + 2.06235004085277 + ], + "subplot": "polar14", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max23", + "r": [ + 2.4727247238825765, + 2.3694397840913224, + 3.660954245371178, + 2.1444138805467317, + 2.7727845124296984, + 5.744824450287407, + 1.950175860936411 + ], + "subplot": "polar77", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean23", + "r": [ + 2.2866950884118076, + 2.17371436439323, + 3.5315694197815826, + 1.962290194044123, + 2.685208160492198, + 5.201481322625714, + 1.8940887709782324 + ], + "subplot": "polar77", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min23", + "r": [ + 2.1006654529410387, + 1.9779889446951382, + 3.4021845941919873, + 1.7801665075415147, + 2.5976318085546977, + 4.658138194964023, + 1.838001681020054 + ], + "subplot": "polar77", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max24", + "r": [ + 2.086885479943204, + 1.89355837149204, + 3.93669239826704, + 1.5584507152774676, + 2.5153631143103805, + 2.086758509821511, + 1.4892419580073777 + ], + "subplot": "polar11", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean24", + "r": [ + 2.0179856149540303, + 1.8283165649260094, + 3.8412445761107796, + 1.4849225188633715, + 2.454325050838789, + 1.9644229712620993, + 1.4413129902249342 + ], + "subplot": "polar11", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min24", + "r": [ + 1.9490857499648566, + 1.7630747583599788, + 3.7457967539545196, + 1.4113943224492753, + 2.393286987367198, + 1.8420874327026875, + 1.3933840224424907 + ], + "subplot": "polar11", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max25", + "r": [ + 3.24784820501078, + 3.267474062706097, + 3.33006846189615, + 3.2303687814318534, + 3.3752036606058335, + 3.889457672026684, + 3.6307490291378426 + ], + "subplot": "polar69", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean25", + "r": [ + 3.06526356278947, + 3.0717486430080054, + 3.1900783227336347, + 3.082181185581903, + 3.1735126682649253, + 3.4401162388438857, + 3.300854963656554 + ], + "subplot": "polar69", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min25", + "r": [ + 2.893013900316536, + 2.8990497432743942, + 3.134930692154463, + 2.8706462205136556, + 3.032859739395608, + 3.0127752022412535, + 2.9128342776731526 + ], + "subplot": "polar69", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max26", + "r": [ + 3.0618185695400113, + 2.9220762632388766, + 4.170009296871227, + 2.556171780465672, + 3.5264719048615154, + 2.601434454060562, + 2.7313160592630474 + ], + "subplot": "polar4", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean26", + "r": [ + 2.8907172381502297, + 2.773683134578885, + 3.9550749417934288, + 2.3163567398535414, + 3.3168194259808335, + 2.437875950191848, + 2.354682752149943 + ], + "subplot": "polar4", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min26", + "r": [ + 2.7586591635876467, + 2.653433530319926, + 3.839123513396194, + 2.067492075067367, + 3.208012443270606, + 2.2867621150957538, + 2.1296545488025833 + ], + "subplot": "polar4", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max27", + "r": [ + 2.7310992175919773, + 2.8299701833809503, + 2.524064630354406, + 2.9226815595144022, + 2.666631358566062, + 1.6207501095325259, + 2.829213525371869 + ], + "subplot": "polar32", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean27", + "r": [ + 2.6530127039375806, + 2.760890623487506, + 2.3303409024224426, + 2.845759754035039, + 2.4976709219997737, + 1.4331911730309028, + 2.7041223186772636 + ], + "subplot": "polar32", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min27", + "r": [ + 2.555404561869585, + 2.699486570248889, + 2.019251704283524, + 2.7801499787732284, + 2.28182617581038, + 1.1887423221401618, + 2.551837371396875 + ], + "subplot": "polar32", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max28", + "r": [ + 2.9894737113013785, + 2.9374272765485308, + 3.57186961135867, + 2.771100354599185, + 3.133705235566061, + 3.93012507176578, + 2.1133383044511134 + ], + "subplot": "polar78", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean28", + "r": [ + 2.9894737113013785, + 2.9374272765485308, + 3.57186961135867, + 2.771100354599185, + 3.133705235566061, + 3.93012507176578, + 2.1133383044511134 + ], + "subplot": "polar78", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min28", + "r": [ + 2.9894737113013785, + 2.9374272765485308, + 3.57186961135867, + 2.771100354599185, + 3.133705235566061, + 3.93012507176578, + 2.1133383044511134 + ], + "subplot": "polar78", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max29", + "r": [ + 2.8516739813230316, + 2.8299701833809503, + 3.291889333033646, + 2.74395148207706, + 3.093897802867197, + 1.534081880580354, + 2.2887379312294187 + ], + "subplot": "polar15", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean29", + "r": [ + 2.8516739813230316, + 2.8299701833809503, + 3.291889333033646, + 2.74395148207706, + 3.093897802867197, + 1.534081880580354, + 2.2887379312294187 + ], + "subplot": "polar15", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min29", + "r": [ + 2.8516739813230316, + 2.8299701833809503, + 3.291889333033646, + 2.74395148207706, + 3.093897802867197, + 1.534081880580354, + 2.2887379312294187 + ], + "subplot": "polar15", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max30", + "r": [ + 1.7527211347457117, + 1.6249156385730892, + 3.0288775564252837, + 1.5561883092339581, + 1.9315207680603814, + 2.6221014932722335, + 2.105180182275379 + ], + "subplot": "polar28", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean30", + "r": [ + 1.6275530466820463, + 1.4918735232227522, + 2.853536372019712, + 1.4551341726238147, + 1.7908678391910633, + 2.407653183172629, + 1.5701433362500845 + ], + "subplot": "polar28", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min30", + "r": [ + 1.4874566545373935, + 1.3639484123089665, + 2.5537595083585725, + 1.2643379296210808, + 1.583869189156972, + 2.001423638237834, + 1.0344266467101457 + ], + "subplot": "polar28", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max31", + "r": [ + 1.8112860199865093, + 1.617240131918262, + 3.57186961135867, + 1.4837913158416167, + 2.0934043277024257, + 2.3480965540465215, + 1.950175860936411 + ], + "subplot": "polar19", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean31", + "r": [ + 1.651667999428257, + 1.4637299988217198, + 3.2706787058878084, + 1.3088319151434582, + 1.8598673892024258, + 1.9103108847240127, + 1.4035816751621595 + ], + "subplot": "polar19", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min31", + "r": [ + 1.4220017827976785, + 1.1874117592479432, + 3.0203933055669503, + 1.0245228890089504, + 1.6608302257081071, + 1.668750974798344, + 1.0303475856222788 + ], + "subplot": "polar19", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max32", + "r": [ + 2.1075554394399565, + 2.177552117720644, + 2.541033132071073, + 2.314094333810032, + 2.167711535406971, + 3.737454932018259, + 2.6415767153299603 + ], + "subplot": "polar58", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean32", + "r": [ + 2.0817179900690164, + 2.146850091101335, + 2.1168205891543654, + 2.22699170113487, + 2.0668660392365164, + 3.355114706602332, + 2.3285087768361263 + ], + "subplot": "polar58", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min32", + "r": [ + 2.055880540698076, + 2.1161480644820263, + 1.692608046237658, + 2.1398890684597087, + 1.9660205430660618, + 2.9727744811864056, + 2.015440838342292 + ], + "subplot": "polar58", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max33", + "r": [ + 1.9904256689583613, + 1.8551808382179038, + 3.800944384533695, + 1.560713121320977, + 2.34021041043538, + 1.7694194561197127, + 1.3158818617730068 + ], + "subplot": "polar10", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean33", + "r": [ + 1.954253239839045, + 1.7861012783244596, + 3.5930802385045078, + 1.3853766529489009, + 2.3189797796626523, + 1.7520858103292782, + 1.1751542542415763 + ], + "subplot": "polar10", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min33", + "r": [ + 1.9180808107197287, + 1.7170217184310155, + 3.3852160924753205, + 1.2100401845768247, + 2.2977491488899253, + 1.734752164538844, + 1.0344266467101457 + ], + "subplot": "polar10", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max34", + "r": [ + 1.938750770216481, + 2.0470685045885824, + 1.7392714259584954, + 2.2665838068963082, + 1.7457527487990174, + 2.626768244061966, + 2.837371647547605 + ], + "subplot": "polar48", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean34", + "r": [ + 1.8760518930763328, + 1.9703134380403111, + 1.6060686874826509, + 2.185589670538626, + 1.6740993699410622, + 2.443964948841308, + 2.4245706654554073 + ], + "subplot": "polar48", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min34", + "r": [ + 1.7389411617478774, + 1.8168033049437677, + 1.4592911476334713, + 2.1195274140681137, + 1.5493694141512895, + 2.2560948956203695, + 1.9726106969196828 + ], + "subplot": "polar48", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max35", + "r": [ + 3.802492118173628, + 3.866163581782615, + 3.0500881835711215, + 3.9407642790942012, + 3.505241274088788, + 2.9187735077623604, + 3.9978645270459214 + ], + "subplot": "polar61", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean35", + "r": [ + 3.587524539407406, + 3.6558546994403507, + 2.8939779677777726, + 3.7099988626561133, + 3.445264742155834, + 2.731036790278271, + 3.7988063459579857 + ], + "subplot": "polar61", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min35", + "r": [ + 3.347753009245082, + 3.3979576758381587, + 2.5113382540669016, + 3.5471056275233463, + 3.2717043355887894, + 2.5521002314262486, + 3.551207337924426 + ], + "subplot": "polar61", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max36", + "r": [ + 3.5200026717180157, + 3.7049779420312445, + 2.4052851183377273, + 3.8231191648316454, + 3.2663966778956066, + 3.3181140396265976, + 3.8081881864600824 + ], + "subplot": "polar52", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean36", + "r": [ + 3.413207880984797, + 3.577052831117459, + 2.300646024418272, + 3.660225929698878, + 3.1761664971115158, + 2.911440042235638, + 3.7164093119830626 + ], + "subplot": "polar52", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min36", + "r": [ + 3.354642995743999, + 3.505414769005739, + 2.19742097230854, + 3.504119912696641, + 3.0514365413217432, + 2.6654356077483197, + 3.6246304375060427 + ], + "subplot": "polar52", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max37", + "r": [ + 3.499332712221264, + 3.566818822244356, + 2.893129542691938, + 3.4588717918264287, + 3.558317851020606, + 3.2274457385689406, + 3.4492308107277374 + ], + "subplot": "polar70", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean37", + "r": [ + 3.499332712221264, + 3.566818822244356, + 2.893129542691938, + 3.4588717918264287, + 3.558317851020606, + 3.2274457385689406, + 3.4492308107277374 + ], + "subplot": "polar70", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min37", + "r": [ + 3.499332712221264, + 3.566818822244356, + 2.893129542691938, + 3.4588717918264287, + 3.558317851020606, + 3.2274457385689406, + 3.4492308107277374 + ], + "subplot": "polar70", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max38", + "r": [ + 4.143546449870037, + 4.019673714879158, + 4.242125429167069, + 4.022210896660587, + 4.450004343475151, + 2.6274349227462133, + 4.2833988031966514 + ], + "subplot": "polar27", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean38", + "r": [ + 4.080388240296628, + 3.9646659171862293, + 3.9734574853198197, + 3.897778564267499, + 4.205852089588788, + 2.151981907763722, + 3.9336193149120082 + ], + "subplot": "polar27", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min38", + "r": [ + 4.016081699640067, + 3.9045411150567517, + 3.652469994512845, + 3.8344311950492003, + 4.022737899174015, + 1.6074165358475763, + 3.7204883730709275 + ], + "subplot": "polar27", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max39", + "r": [ + 3.330528042997788, + 3.4823882490412568, + 3.262194455029475, + 3.3434890836073863, + 3.234550731736516, + 3.481450317267229, + 3.7164093119830626 + ], + "subplot": "polar60", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean39", + "r": [ + 3.237513225262404, + 3.31352710263506, + 2.8125291595377657, + 3.2812729174108433, + 3.1894356413444704, + 3.097776734482807, + 3.586899122443267 + ], + "subplot": "polar60", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min39", + "r": [ + 3.1444984075270197, + 3.144665956228863, + 2.3628638640460564, + 3.2190567512143002, + 3.1443205509524255, + 2.7141031516983847, + 3.4573889329034717 + ], + "subplot": "polar60", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max40", + "r": [ + 4.687855383284509, + 4.718144820468428, + 2.893129542691938, + 4.818577823976341, + 4.142160197270605, + 3.5774520477988654, + 4.79532096972403 + ], + "subplot": "polar72", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean40", + "r": [ + 4.382973480707416, + 4.434151074239822, + 2.865555727402353, + 4.666996619061126, + 3.909950173193901, + 3.3731150310770146, + 4.704561860518977 + ], + "subplot": "polar72", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min40", + "r": [ + 4.078091578130323, + 4.150157328011217, + 2.8379819121127676, + 4.515415414145912, + 3.677740149117197, + 3.1687780143551634, + 4.613802751313923 + ], + "subplot": "polar72", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max41", + "r": [ + 3.4511028067288425, + 3.428659702457468, + 3.440363723054491, + 3.169283818257063, + 3.484010643316062, + 2.1067588703489353, + 3.3574519362507176 + ], + "subplot": "polar25", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean41", + "r": [ + 3.4511028067288425, + 3.428659702457468, + 3.440363723054491, + 3.169283818257063, + 3.484010643316062, + 2.1067588703489353, + 3.3574519362507176 + ], + "subplot": "polar25", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min41", + "r": [ + 3.4511028067288425, + 3.428659702457468, + 3.440363723054491, + 3.169283818257063, + 3.484010643316062, + 2.1067588703489353, + 3.3574519362507176 + ], + "subplot": "polar25", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max42", + "r": [ + 4.257231227102174, + 4.157832834666046, + 4.2251569274503975, + 3.7642966077003686, + 4.3624279915376505, + 4.2021299749387495, + 3.893848469305299 + ], + "subplot": "polar80", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean42", + "r": [ + 4.062933607832704, + 3.945988850992817, + 3.98674947833121, + 3.652533749150943, + 4.304043756912651, + 3.4221159143692033, + 3.6743949827780256 + ], + "subplot": "polar80", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min42", + "r": [ + 3.957516814399268, + 3.812435035198825, + 3.800944384533695, + 3.5222191610447284, + 4.256274837674014, + 2.993441520398077, + 3.365610058426452 + ], + "subplot": "polar80", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max43", + "r": [ + 4.849770066009067, + 4.733495833778081, + 4.030019157708715, + 4.805003387715276, + 4.723348714674016, + 4.656138158911281, + 4.5301819990126395 + ], + "subplot": "polar81", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean43", + "r": [ + 4.593118068924396, + 4.5313741585343, + 3.468644559248939, + 4.430575187514261, + 4.467254230977992, + 3.89356885724621, + 4.316031291899591 + ], + "subplot": "polar81", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min43", + "r": [ + 4.1469914431194965, + 4.242263407869144, + 2.719202400096089, + 4.0946078900529255, + 3.9378153760831065, + 3.319447396995092, + 3.983587813238386 + ], + "subplot": "polar81", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max44", + "r": [ + 4.295126152846219, + 4.3420449943818955, + 3.431879472196158, + 4.4498056388841025, + 4.144814026117197, + 2.446764999315148, + 4.432284532903816 + ], + "subplot": "polar45", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean44", + "r": [ + 4.161632664429694, + 4.1693460946482865, + 3.21128894987947, + 4.239967478348487, + 4.012786040999298, + 1.8967550848109807, + 4.267592441481163 + ], + "subplot": "polar45", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min44", + "r": [ + 4.081536571379781, + 4.09642878142743, + 2.9610035495586136, + 4.062934205443778, + 3.8900464568444697, + 1.1827422139819346, + 4.177343214912094 + ], + "subplot": "polar45", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max45", + "r": [ + 4.498380754564281, + 4.5646346873718855, + 3.0967515632919587, + 4.823102636063363, + 4.256274837674014, + 2.2434280006196676, + 4.799400030811896 + ], + "subplot": "polar54", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean45", + "r": [ + 4.359203027286151, + 4.4188000609301685, + 2.8456177378852696, + 4.59550458808619, + 3.9818689349365153, + 1.8059534480164743, + 4.52487921959841 + ], + "subplot": "polar54", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min45", + "r": [ + 4.091871551128158, + 4.211561381249836, + 2.5707280100752437, + 4.33668533670857, + 3.4468570394637883, + 1.4747474776823286, + 4.252805845037644 + ], + "subplot": "polar54", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max46", + "r": [ + 3.943736841401434, + 3.942918648330885, + 3.3470369636128163, + 3.9000409703110077, + 3.7706241587478786, + 1.8300872163862332, + 4.27728021156485 + ], + "subplot": "polar35", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean46", + "r": [ + 3.895506935909012, + 3.893027855074509, + 3.3364316500398976, + 3.8774169098759015, + 3.7401051270120838, + 1.595082980188998, + 3.9682913341588826 + ], + "subplot": "polar35", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min46", + "r": [ + 3.84727703041659, + 3.843137061818133, + 3.325826336466979, + 3.8547928494407953, + 3.709586095276289, + 1.3600787439917632, + 3.6593024567529158 + ], + "subplot": "polar35", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max47", + "r": [ + 4.05742161863357, + 3.996647194914675, + 3.767007381100357, + 4.124019168618567, + 4.00946875494106, + 2.3594300916787283, + 4.097801523698678 + ], + "subplot": "polar36", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean47", + "r": [ + 4.045364142260464, + 3.9851339349324353, + 3.633380430081593, + 3.911353000528563, + 3.915257830887083, + 1.8300872163862332, + 4.040694668468531 + ], + "subplot": "polar36", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min47", + "r": [ + 4.033306665887359, + 3.9736206749501957, + 3.499753479062828, + 3.6986868324385593, + 3.8210469068331063, + 1.3007443410937378, + 3.983587813238386 + ], + "subplot": "polar36", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max48", + "r": [ + 4.422590903076191, + 4.480204114168787, + 3.113720065008625, + 5.035768804153365, + 4.131544881884242, + 3.490117140162446, + 4.9972344935734725 + ], + "subplot": "polar63", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean48", + "r": [ + 4.151814433668738, + 4.283711143805211, + 2.4782496757194004, + 4.685095867409212, + 3.791324023751288, + 2.696102827223703, + 4.676212385958296 + ], + "subplot": "polar63", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min48", + "r": [ + 3.8782819696617183, + 4.1731838479757, + 1.573828534220979, + 4.280125185620802, + 3.2690505067421975, + 2.3694302719424405, + 4.342545188970731 + ], + "subplot": "polar63", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max49", + "r": [ + 3.8128270979220042, + 3.9736206749501957, + 2.3586217386168897, + 4.121756762575055, + 3.3407038856001523, + 2.103425476927698, + 4.432284532903816 + ], + "subplot": "polar53", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean49", + "r": [ + 3.8128270979220042, + 3.9736206749501957, + 2.3586217386168897, + 4.121756762575055, + 3.3407038856001523, + 2.103425476927698, + 4.432284532903816 + ], + "subplot": "polar53", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min49", + "r": [ + 3.8128270979220042, + 3.9736206749501957, + 2.3586217386168897, + 4.121756762575055, + 3.3407038856001523, + 2.103425476927698, + 4.432284532903816 + ], + "subplot": "polar53", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max50", + "r": [ + 4.002301726642231, + 4.035024728188811, + 3.0925094378627875, + 4.004111648312499, + 3.797162447213787, + 1.6600841519031269, + 4.073327157171473 + ], + "subplot": "polar44", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean50", + "r": [ + 4.002301726642231, + 4.035024728188811, + 3.0925094378627875, + 4.004111648312499, + 3.797162447213787, + 1.6600841519031269, + 4.073327157171473 + ], + "subplot": "polar44", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min50", + "r": [ + 4.002301726642231, + 4.035024728188811, + 3.0925094378627875, + 4.004111648312499, + 3.797162447213787, + 1.6600841519031269, + 4.073327157171473 + ], + "subplot": "polar44", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max51", + "r": [ + 3.750817219431747, + 3.6666004087571085, + 3.868818391400365, + 3.4611341978699404, + 3.8237007356796973, + 1.7060849811162024, + 3.710290720351259 + ], + "subplot": "polar9", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean51", + "r": [ + 3.749094722807018, + 3.662762655429695, + 3.866697328685782, + 3.360457128933715, + 3.8144123347166285, + 1.6430838454548162, + 3.6266699680499754 + ], + "subplot": "polar9", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min51", + "r": [ + 3.7473722261822893, + 3.6589249021022816, + 3.8645762659711984, + 3.2597800599974898, + 3.8051239337535603, + 1.5800827097934298, + 3.5430492157486917 + ], + "subplot": "polar9", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max52", + "r": [ + 4.0401966523862765, + 3.996647194914675, + 3.5633853605003365, + 3.750722171439306, + 4.0678529895660605, + 1.9034218716534552, + 3.628709498593908 + ], + "subplot": "polar26", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean52", + "r": [ + 3.9747417806465615, + 3.931405388348645, + 3.5549011096420036, + 3.6715379599164333, + 4.045295444370037, + 1.7974199608581067, + 3.5420294504767225 + ], + "subplot": "polar26", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min52", + "r": [ + 3.9092869089068465, + 3.866163581782615, + 3.54641685878367, + 3.5923537483935606, + 4.022737899174015, + 1.691418050062758, + 3.455349402359537 + ], + "subplot": "polar26", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max53", + "r": [ + 4.229671281106504, + 4.326693981072242, + 2.693749647521089, + 4.194153755967396, + 4.081122133799016, + 3.1287772933003146, + 4.083524809891141 + ], + "subplot": "polar62", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean53", + "r": [ + 4.103929027501262, + 4.207723627922421, + 2.655570518658585, + 4.173792101575801, + 3.8197199924098113, + 2.89110634236609, + 3.9438169676316774 + ], + "subplot": "polar62", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min53", + "r": [ + 3.97818677389602, + 4.088753274772602, + 2.6173913897960808, + 4.1534304471842045, + 3.558317851020606, + 2.6534353914318647, + 3.8041091253722135 + ], + "subplot": "polar62", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max54", + "r": [ + 3.123828448030268, + 3.298176089325407, + 2.6513283932294183, + 3.246205623736425, + 3.0302059105490162, + 3.176111479881885, + 3.4573889329034717 + ], + "subplot": "polar51", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean54", + "r": [ + 3.031961961378036, + 3.1625754717567935, + 2.3968008674793926, + 3.124789832734687, + 2.9107836124524256, + 3.0934433230351983, + 3.394843329556169 + ], + "subplot": "polar51", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min54", + "r": [ + 2.8516739813230316, + 2.929751769893704, + 2.150757592587703, + 2.970192086428126, + 2.6931696470319717, + 3.04544245776938, + 3.269752122861563 + ], + "subplot": "polar51", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max55", + "r": [ + 3.902396922407929, + 3.751030981960208, + 4.35666281575458, + 3.4633966039134516, + 4.028045556867198, + 2.190760384564117, + 3.7979905337404136 + ], + "subplot": "polar18", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean55", + "r": [ + 3.880004466286448, + 3.720328955340899, + 4.290909871602489, + 3.4622654008916958, + 4.00681492609447, + 2.1417595012719275, + 3.7398639132383007 + ], + "subplot": "polar18", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min55", + "r": [ + 3.857612010164967, + 3.689626928721591, + 4.2251569274503975, + 3.4611341978699404, + 3.9855842953217424, + 2.092758617979738, + 3.6817372927361873 + ], + "subplot": "polar18", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max56", + "r": [ + 3.599237516455566, + 3.5130902756605664, + 3.860334140542032, + 3.035801861689935, + 3.8130854202933335, + 3.7787890104416033, + 3.1840918400163467 + ], + "subplot": "polar79", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean56", + "r": [ + 3.599237516455566, + 3.5130902756605664, + 3.860334140542032, + 3.035801861689935, + 3.8130854202933335, + 3.7787890104416033, + 3.1840918400163467 + ], + "subplot": "polar79", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min56", + "r": [ + 3.599237516455566, + 3.5130902756605664, + 3.860334140542032, + 3.035801861689935, + 3.8130854202933335, + 3.7787890104416033, + 3.1840918400163467 + ], + "subplot": "polar79", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max57", + "r": [ + 2.927463832811122, + 3.121639436264382, + 2.1168205891543654, + 3.3276522413028102, + 2.740938566270607, + 2.018090605344021, + 3.628709498593908 + ], + "subplot": "polar42", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean57", + "r": [ + 2.9222963429369346, + 3.1062884229547274, + 2.0044042652814387, + 3.228106375388342, + 2.667958272989358, + 1.9897567612635034, + 3.4991993090541142 + ], + "subplot": "polar42", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min57", + "r": [ + 2.9171288530627466, + 3.090937409645073, + 1.891987941408512, + 3.1285605094738735, + 2.594977979708108, + 1.9614229171829858, + 3.3696891195143204 + ], + "subplot": "polar42", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max58", + "r": [ + 2.1488953584334602, + 2.2005786376851244, + 3.364005465329483, + 2.470200350812268, + 2.223441941185381, + 5.838826144766301, + 2.733355589806982 + ], + "subplot": "polar76", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean58", + "r": [ + 2.0345215825514322, + 2.024041984624101, + 2.5698795849894083, + 2.075184255615304, + 2.1507270307887896, + 4.62200421027781, + 2.252434287547397 + ], + "subplot": "polar76", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min58", + "r": [ + 1.9284157904681045, + 1.7861012783244596, + 1.951377697416849, + 1.6602589872354474, + 2.050943066156972, + 3.8567904164985576, + 1.7503018676309012 + ], + "subplot": "polar76", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max59", + "r": [ + 1.8457359524810966, + 1.8091277982889404, + 2.6513283932294183, + 1.7960033498460866, + 2.0270586065376532, + 3.9594589338726687, + 2.2866984006854842 + ], + "subplot": "polar67", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean59", + "r": [ + 1.8043960334875924, + 1.7611558816962714, + 2.4678564684179407, + 1.7677232743022042, + 1.9467802839282782, + 3.7956226472188517, + 2.078666285204239 + ], + "subplot": "polar67", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min59", + "r": [ + 1.7630561144940882, + 1.7170217184310155, + 2.239842226600211, + 1.7417056048018305, + 1.8943671642081084, + 3.52611778911181, + 1.9277410249531393 + ], + "subplot": "polar67", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max60", + "r": [ + 1.6252563845157408, + 1.7784257716696326, + 0.8908463401250808, + 2.067492075067367, + 1.3901396833558348, + 3.436782845422648, + 2.2071567094720677 + ], + "subplot": "polar64", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean60", + "r": [ + 1.4762604264766528, + 1.5980513652811947, + 0.7370692933177763, + 1.8305050420096254, + 1.1579296592791315, + 3.1552777709991515, + 2.132203961982501 + ], + "subplot": "polar64", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min60", + "r": [ + 1.2807570595698725, + 1.3409218923444854, + 0.4963286752125442, + 1.6444221449308736, + 1.000026842906972, + 2.9094400061828956, + 2.0174803688862246 + ], + "subplot": "polar64", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max61", + "r": [ + 1.73205117524896, + 2.031717491278928, + 0.4963286752125442, + 2.250746964591732, + 1.305217160264927, + 4.3141319938923255, + 2.5538769019408094 + ], + "subplot": "polar73", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean61", + "r": [ + 1.4874566545373935, + 1.691436696248258, + 0.17534118440557034, + 2.04750748834969, + 1.1481989535082984, + 3.636341998240726, + 2.358081969723166 + ], + "subplot": "polar73", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min61", + "r": [ + 1.2704220798214962, + 1.4176769588927567, + 0, + 1.8751875613689604, + 1.0292189602194723, + 3.1201104704050975, + 2.2132753011038675 + ], + "subplot": "polar73", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max62", + "r": [ + 1.632146371014658, + 1.6325911452279174, + 1.8665351888335076, + 1.6444221449308736, + 1.5467155853047, + 2.6001010966920672, + 2.105180182275379 + ], + "subplot": "polar47", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean62", + "r": [ + 1.561524009400755, + 1.6018891186086088, + 1.4720175239209712, + 1.6432909419091177, + 1.3914665977791314, + 2.14109282258768, + 2.015440838342292 + ], + "subplot": "polar47", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min62", + "r": [ + 1.490901647786852, + 1.5711870919893003, + 1.0774998590084348, + 1.642159738887362, + 1.2362176102535627, + 1.6820845484832936, + 1.9257014944092048 + ], + "subplot": "polar47", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max63", + "r": [ + 1.8767408917262247, + 1.908909384801694, + 2.4477063726293977, + 2.0380807965017285, + 1.8970209930546988, + 3.4394495601596384, + 2.4641375580077223 + ], + "subplot": "polar57", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean63", + "r": [ + 1.7949223020515808, + 1.801452291634114, + 2.0934888992939467, + 1.919304479217419, + 1.7523873209154945, + 3.1961118404093094, + 2.1643265680494572 + ], + "subplot": "polar57", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min63", + "r": [ + 1.694156249504914, + 1.7246972250858423, + 1.7901769311084994, + 1.7892161317155564, + 1.4777160352933358, + 3.0487758511906176, + 1.8400412115639866 + ], + "subplot": "polar57", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max64", + "r": [ + 1.8388459659821788, + 1.924260398111348, + 2.0956099620085324, + 1.9679462091528985, + 1.708599144946744, + 3.674120457014749, + 2.4620980274637896 + ], + "subplot": "polar66", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean64", + "r": [ + 1.6780796143407737, + 1.6991122029030854, + 1.8241139345418382, + 1.7665920712804497, + 1.616599744931593, + 3.607674814818084, + 2.320010732903069 + ], + "subplot": "polar66", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min64", + "r": [ + 1.5666914992749432, + 1.525134052060337, + 1.6162497885126497, + 1.490578533972149, + 1.5573309006910625, + 3.4841170320042183, + 2.111298773907179 + ], + "subplot": "polar66", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max65", + "r": [ + 1.6907112562554556, + 1.8705318515275577, + 0.7720668281084064, + 2.1625131288948167, + 1.3874858545092454, + 4.862808551027998, + 2.4682166190955894 + ], + "subplot": "polar74", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean65", + "r": [ + 1.4900403994744873, + 1.622996761909383, + 0.6681347550938117, + 1.9724710212399201, + 1.216977351115779, + 4.356132750999917, + 2.3264692462921914 + ], + "subplot": "polar74", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min65", + "r": [ + 1.349656924559046, + 1.471405505476547, + 0.45814954635004, + 1.8118401921506626, + 1.1194491410035627, + 3.793455941495047, + 2.1684056291373235 + ], + "subplot": "polar74", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max66", + "r": [ + 1.7768360874919227, + 1.931935904766175, + 1.4211120187709672, + 2.169300347025347, + 1.575907702617199, + 3.926791678344542, + 2.57019314629228 + ], + "subplot": "polar65", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean66", + "r": [ + 1.5425765465287324, + 1.6095646252634355, + 1.2420943256601178, + 1.718176581949321, + 1.3821781968160631, + 3.676787171751739, + 2.093758811229349 + ], + "subplot": "polar65", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min66", + "r": [ + 1.318651985313918, + 1.3178953723800046, + 1.0690156081501017, + 1.3503093592744868, + 1.212333150634245, + 3.372115013050643, + 1.9277410249531393 + ], + "subplot": "polar65", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max67", + "r": [ + 1.4667866950406412, + 1.509783038750683, + 1.433838395058467, + 1.7439680108453421, + 1.3529860795035629, + 3.336114364101279, + 2.3723586835307025 + ], + "subplot": "polar55", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean67", + "r": [ + 1.38295852597048, + 1.4189562100018949, + 1.1602213048771914, + 1.5501552264512617, + 1.2048139689022375, + 2.878217221137305, + 1.928080946710462 + ], + "subplot": "polar55", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min67", + "r": [ + 1.253197113574203, + 1.2641668257962144, + 0.7847932043959063, + 1.4453304131019344, + 1.031872789066063, + 2.4227645666822384, + 1.746222806543034 + ], + "subplot": "polar55", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max68", + "r": [ + 1.7251611887500422, + 1.6786441851568794, + 2.541033132071073, + 1.7801665075415147, + 1.9155977949808354, + 3.51811764490084, + 1.860436517003324 + ], + "subplot": "polar37", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean68", + "r": [ + 1.4478392321686184, + 1.3313275090259515, + 2.374529708976266, + 1.357662178915896, + 1.597801790601574, + 2.9522741116457953, + 1.650874753614129 + ], + "subplot": "polar37", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min68", + "r": [ + 1.2015222148323228, + 1.0185506128417456, + 2.1846945960210404, + 1.017735670878418, + 1.4166779718217446, + 2.4327647469459506, + 1.4158188584257607 + ], + "subplot": "polar37", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max69", + "r": [ + 1.5322415667803566, + 1.548160572024818, + 2.176210345162707, + 1.6534717691049152, + 1.5706000449240178, + 5.2174816110476545, + 1.9358991471288736 + ], + "subplot": "polar75", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean69", + "r": [ + 1.4633417017911827, + 1.4253524655475838, + 1.8622930634043433, + 1.4990625566353126, + 1.4631199766370855, + 4.6186374829223595, + 1.8176063755807152 + ], + "subplot": "polar75", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min69", + "r": [ + 1.3909968435525506, + 1.3102198657251762, + 1.5865549105084835, + 1.2711251477516132, + 1.3397169352706084, + 4.1187951394078155, + 1.746222806543034 + ], + "subplot": "polar75", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max70", + "r": [ + 1.4840116612879348, + 1.4330279722024106, + 2.1592418434460408, + 1.5629755273644883, + 1.506908152605836, + 3.5061174285843855, + 1.9644525747439467 + ], + "subplot": "polar46", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean70", + "r": [ + 1.4039155682380204, + 1.3294086323622447, + 2.0150095788543565, + 1.4170503375580508, + 1.4478604607691878, + 3.2081120567257644, + 1.7808948257899075 + ], + "subplot": "polar46", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min70", + "r": [ + 1.2738670730709554, + 1.14135871931898, + 1.824113934541837, + 1.2032529664462925, + 1.3848320256626536, + 2.8581057474958396, + 1.479044305287709 + ], + "subplot": "polar46", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max71", + "r": [ + 1.9628657229626918, + 1.8321543182534228, + 3.304615709321141, + 1.6082236482347028, + 2.316325950816063, + 3.450116419107598, + 1.660562523697814 + ], + "subplot": "polar20", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean71", + "r": [ + 1.9628657229626918, + 1.8321543182534228, + 3.304615709321141, + 1.6082236482347028, + 2.316325950816063, + 3.450116419107598, + 1.660562523697814 + ], + "subplot": "polar20", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min71", + "r": [ + 1.9628657229626918, + 1.8321543182534228, + 3.304615709321141, + 1.6082236482347028, + 2.316325950816063, + 3.450116419107598, + 1.660562523697814 + ], + "subplot": "polar20", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max72", + "r": [ + 2.1592303381818363, + 2.0700950245530634, + 3.2579523296003083, + 1.9702086151964102, + 2.321633608509244, + 3.31478064620536, + 2.0215594299740935 + ], + "subplot": "polar68", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean72", + "r": [ + 2.1592303381818363, + 2.0700950245530634, + 3.2579523296003083, + 1.9702086151964102, + 2.321633608509244, + 3.31478064620536, + 2.0215594299740935 + ], + "subplot": "polar68", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min72", + "r": [ + 2.1592303381818363, + 2.0700950245530634, + 3.2579523296003083, + 1.9702086151964102, + 2.321633608509244, + 3.31478064620536, + 2.0215594299740935 + ], + "subplot": "polar68", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "green" + }, + "name": "max73", + "r": [ + 1.814731013235968, + 1.8321543182534228, + 2.061672958575195, + 1.7077695141491713, + 1.8757903622819714, + 2.814104954335506, + 1.838001681020054 + ], + "subplot": "polar38", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "blue" + }, + "name": "mean73", + "r": [ + 1.814731013235968, + 1.8321543182534228, + 2.061672958575195, + 1.7077695141491713, + 1.8757903622819714, + 2.814104954335506, + 1.838001681020054 + ], + "subplot": "polar38", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + }, + { + "base": -2.6682362931542385, + "marker": { + "color": "darkred" + }, + "name": "min73", + "r": [ + 1.814731013235968, + 1.8321543182534228, + 2.061672958575195, + 1.7077695141491713, + 1.8757903622819714, + 2.814104954335506, + 1.838001681020054 + ], + "subplot": "polar38", + "theta": [ + "area", + "perimeter", + "compactness", + "length_kernel", + "width_kernel", + "asymmetry_coefficient", + "length_kernel_groove" + ], + "type": "barpolar" + } + ], + "layout": { + "height": 900, + "polar": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar10": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar11": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar12": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar13": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar14": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar15": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar16": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar17": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "visible": false + }, + "barmode": "overlay", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "visible": true + } + }, + "polar18": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.7777777777777779, + 0.8888888888888891 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar19": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar2": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar20": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar21": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar22": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "visible": false + }, + "barmode": "overlay", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "visible": true + } + }, + "polar23": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar24": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar25": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar26": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar27": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.6666666666666667, + 0.7777777777777779 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar28": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar29": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar3": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar30": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar31": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar32": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar33": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "visible": false + }, + "barmode": "overlay", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "visible": true + } + }, + "polar34": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar35": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar36": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.5555555555555556, + 0.6666666666666667 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar37": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar38": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar39": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar4": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar40": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar41": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar42": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar43": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "visible": false + }, + "barmode": "overlay", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "visible": true + } + }, + "polar44": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar45": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.4444444444444444, + 0.5555555555555556 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar46": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar47": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar48": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar49": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar5": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "visible": false + }, + "barmode": "overlay", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "visible": true + } + }, + "polar50": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar51": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar52": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar53": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar54": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.3333333333333333, + 0.4444444444444444 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar55": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar56": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "visible": false + }, + "barmode": "overlay", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "visible": true + } + }, + "polar57": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar58": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar59": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar6": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar60": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar61": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar62": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar63": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.2222222222222222, + 0.3333333333333333 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar64": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar65": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar66": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar67": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar68": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar69": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar7": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar70": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar71": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "visible": false + }, + "barmode": "overlay", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "visible": true + } + }, + "polar72": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.1111111111111111, + 0.2222222222222222 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar73": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0, + 0.1111111111111111 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar74": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.1111111111111111, + 0.2222222222222222 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar75": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.2222222222222222, + 0.3333333333333333 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar76": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(170,170,170)", + "domain": { + "x": [ + 0.3333333333333333, + 0.4444444444444444 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar77": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.4444444444444444, + 0.5555555555555556 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar78": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.5555555555555556, + 0.6666666666666667 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar79": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.6666666666666667, + 0.7777777777777779 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar8": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(0, 0, 0)", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar80": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.7777777777777779, + 0.8888888888888891 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar81": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0, + 0.1111111111111111 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "polar9": { + "angularaxis": { + "tickfont": { + "size": 7 + }, + "type": "category", + "visible": false + }, + "barmode": "overlay", + "bgcolor": "rgb(85,85,85)", + "domain": { + "x": [ + 0.8888888888888891, + 1 + ], + "y": [ + 0.8888888888888891, + 1 + ] + }, + "radialaxis": { + "autorange": false, + "range": [ + -2.6682362931542385, + 4.170589851612062 + ], + "tickfont": { + "size": 7 + }, + "type": "linear", + "visible": true + } + }, + "showlegend": false, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "width": 900 + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAOECAYAAAA7fru/AAAgAElEQVR4XuydBXhcZdqGn1jTpk1TTd2p0mLFtfjisLjrQoHizuK2wOLusos7i3txK/UWSqm7a1JJm/zXffoPpKfnzEyqU3i+68rFbjOZOec+37z+vl9WRUVFhbxMwARMwARMwARMwARMwARMwARMwAQyikCWHfaMeh6+GBMwARMwARMwARMwARMwARMwARMICNhh90YwARMwARMwARMwARMwARMwARMwgQwkYIc9Ax+KL8kETMAETMAETMAETMAETMAETMAE7LB7D5iACZiACZiACZiACZiACZiACZhABhKww56BD8WXZAImYAImYAImYAImYAImYAImYAJ22L0HTMAETMAETMAETMAETMAETMAETCADCdhhz8CH4ksyARMwARMwARMwARMwARMwARMwATvs3gMmYAImYAImYAImYAImYAImYAImkIEE7LBn4EPxJZmACZiACZiACZiACZiACZiACZiAHXbvARMwARMwARMwARMwARMwARMwARPIQAJ22DPwofiSTMAETMAETMAETMAETMAETMAETMAOu/eACZiACZiACZiACZiACZiACZiACWQgATvsGfhQfEkmYAImYAImYAImYAImYAImYAImYIfde8AETMAETMAETMAETMAETMAETMAEMpCAHfYMfCi+JBMwARMwARMwARMwARMwARMwAROww+49YAImYAImYAImYAImYAImYAImYAIZSMAOewY+FF+SCZiACZiACZiACZiACZiACZiACdhh9x4wARMwARMwARMwARMwARMwARMwgQwkYIc9Ax+KL8kETMAETMAETMAETMAETMAETMAE7LB7D5iACZiACZiACZiACZiACZiACZhABhKww56BD8WXZAImYAImYAImYAImYAImYAImYAJ22L0HTMAETMAETMAETMAETMAETMAETCADCdhhz8CH4ksyARMwARMwARMwARMwARMwARMwATvs3gMmYAImYAImYAImYAImYAImYAImkIEE7LBn4EPxJZmACZiACZiACZiACZiACZiACZiAHXbvARMwARMwARMwARMwARMwARMwARPIQAJ22DPwofiSTMAETMAETMAETMAETMAETMAETMAOu/eACZiACZiACZiACZiACZiACZiACWQgATvsGfhQfEkmYAImYAImYAImYAImYAImYAImYIfde8AETMAETMAETMAETMAETMAETMAEMpCAHfYMfCi+JBMwARMwARMwARMwARMwARMwAROww+49YAImYAImYAImYAImYAImYAImYAIZSMAOewY+FF+SCZiACZiACZiACZiACZiACZiACdhh9x4wARMwARMwARMwARMwARMwARMwgQwkYIc9Ax+KL8kETMAETMAETMAETMAETMAETMAE7LB7D5iACZiACZiACZiACZiACZiACZhABhKww56BD8WXZAImYAImYAImYAImYAImYAImYAJ22L0HTMAETMAETMAETMAETMAETMAETCADCdhhz8CH4ksyARMwARMwARMwARMwARMwARMwATvs3gMmYAImYAImYAImYAImYAImYAImkIEE7LBn4EPxJZmACZiACZiACZiACZiACZiACZiAHXbvARMwARMwARMwARMwARMwARMwARPIQAJ22DPwofiSTMAETMAETMAETMAETMAETMAETMAOu/eACZiACZiACZiACZiACZiACZiACWQgATvsGfhQfEkmYAImYAImYAImYAImYAImYAImYIfde8AETMAETMAETMAETMAETMAETMAEMpCAHfYMfCi+JBMwARMwARMwARMwARMwARMwAROww+49YAImYAImYAImYAImYAImYAImYAIZSMAOewY+FF+SCZiACZiACZiACZiACZiACZiACdhh9x4wARMwARMwARMwARMwARMwARMwgQwkYIc9Ax+KL8kETMAETMAETMAETMAETMAETMAE7LB7D5iACZiACZiACZiACZiACZiACZhABhKww56BD8WXZAImYAImYAImYAImYAImYAImYAJ22L0HTMAETMAETMAETMAETMAETMAETCADCdhhz8CH4ksyARMwARMwARMwARMwARMwARMwATvs3gMmYAImYAImYAImYAImYAImYAImkIEE7LBn4EPxJZmACZiACZiACZiACZiACZiACZiAHXbvARMwARMwARMwARMwARMwARMwARPIQAJ22DPwofiSTMAETMAETMAETMAETMAETMAETMAOu/eACZiACZiACZiACZiACZiACZiACWQgATvsGfhQfEkmYAImYAImYAImYAImYAImYAImYIfde8AETMAETMAETMAETMAETMAETMAEMpCAHfYMfCi+JBMwARMwARMwARMwARMwARMwAROww+49YAImYAImYAImYAImYAImYAImYAIZSMAOewY+FF+SCZiACZiACZiACZiACZiACZiACdhh9x4wARMwARMwARMwARMwARMwARMwgQwkYIc9Ax+KL8kETMAETMAETMAETMAETMAETMAE7LB7D5iACZiACZiACZiACZiACZiACZhABhKww56BD8WXZAImYAImYAImYAImYAImYAImYAJ22L0HTMAETMAETMAETMAETMAETMAETCADCdhhz8CH4ksyARMwARMwARMwARMwARMwARMwATvs3gMmYAImYAImYAImYAImYAImYAImkIEE7LBn4EPxJZmACZiACZiACZiACZiACZiACZiAHXbvARMwARMwARMwARMwARMwARMwARPIQAJ22DPwofiSTMAETMAETMAETMAETMAETMAETMAOu/eACZiACZiACZiACZiACZiACZiACWQgATvsGfhQfEkmYAImYAImYAImYAImYAImYAImYIfde8AETMAETMAETMAETMAETMAETMAEMpCAHfYMfCi+JBMwARMwARMwARMwARMwARMwAROww+49YAImYAImYAImYAImYAImYAImYAIZSMAOewY+FF+SCZiACZiACZiACZiACZiACZiACdhh9x4wARMwARMwARMwARMwARMwARMwgQwkYIc9Ax+KL8kETMAETMAETMAETMAETMAETMAE7LB7D5iACZiACZiACZiACZiACZiACZhABhKww56BD8WXZAImYAImYAImYAImYAImYAImYAJ22L0HTMAETMAETMAETMAETMAETMAETCADCdhhz8CH4ksyARMwARMwARMwARMwARMwARMwATvs3gMmYAImYAImYAImYAImYAImYAImkIEE7LBn4EPxJZmACZiACZiACZiACZiACZiACZiAHXbvARMwARMwARMwARMwARMwARMwARPIQAJ22DPwofiSTMAETMAETMAETMAETMAETMAETMAOu/eACZiACZiACZiACZiACZiACZiACWQgATvsGfhQfEkmYAImYAImYAImYAImYAImYAImYIfde8AETMAETMAETMAETMAETMAETMAEMpCAHfYMfCi+JBMwARMwARMwARMwARMwARMwAROww+49YAImYAImYAImYAImYAImYAImYAIZSMAOewY+FF+SCZiACZiACZiACZiACZiACZiACdhh9x4wARMwARMwARMwARMwARMwARMwgQwkYIc9Ax+KL8kETMAETMAETMAETMAETMAETMAE7LD/SffA5MmT1adPH/FffqZMmfL7/078G7fepEmT4Kdx48Yr/O+ddtpJ+fn5f1JCa+a2Bg0apOHDh8cyh31hYWEk78Rz6NGjx5q5uD/xuw4ePFi//vqrJk2aFPzAOfy/4/Y5/96hQwd17dr1T0xozdza0KFDNWvWLM2ePTvyvwsXLlTdunVVp06d4CfxvxP/bdeuXfDvXiaQ6QQSOjVOvvDvlu2r/ylatq9+pum8Y+/evSP1aGL/z5s3L7Bjwj+NGjUK/s06NR3Ky7+mrKxM6NTK+jSsW/mLhD6N+m/btm2tU6uOfr34Czvs68VjSu8icdA/+ugjvfnmm/r+++/T+6MUr9pnn310wAEHaOedd9YGG2ywWt7zz/QmS5Ys0bvvvhv8vPfeexo7duwq315RUZEOPPBA7bvvvsJ5b9CgwSq/55/tDeCOQQFz9vuIESNW+RZxHtnre+21V8A9Nzd3ld/zz/YGGGlDhgzRTz/9pB9//FGlpaWrfIvt27fX5ptvro022kg8Ay8TyBQCq1unWranfrKW7akZrYlXTJ8+PdCpb7/9tt544w3NmTNnlT/GOjU1QgKB6FT0ad++fVP/QRqvsE5NA9J6+BI77OvhQ0tcMpG3zz777HfHhczumlzbbLONdt9998CZwYH/q66RI0cGgZGPP/44+O/qUGzJWO63334Bb3422WSTvyp2jR49Otjv/LzzzjuaOXPmGmNRr149EaxKcG/duvUa+6xMf2O4Y1CQ6cJRX5OLagf2+IYbbhj81KxZc01+nN/bBJYjsLZ1qmX7MvyW7evmi9i/f//fdepbb721Ri/COvUPvOhTfgYOHBhUBq7JZZ26Jumu3fe2w752ea+WT1u8eLHuuece3X333Ro/fvxqec+qvslWW22lc845R0ceeWRV/3S9ff2oUaMC5vysq3XQQQepV69e2mWXXdbVJaz1z/3ll190//3367777lvrn534QJifeeaZ6tSp0zq7hrX9wTjo77//vn744Ye1/dHB52Hg/e1vfwt+qlevvk6uwR/61yBA5UhCxkyYMGGd3LRl+zrBHujTv5ps//TTTwN9+vrrr68b6FJgP/LTpk2bdXYNa/uDv/7666Aac00n1+LuC5269957Bz+uIFzbT3/VP88O+6ozXKvv8J///CdwGFdX6cyqXvz++++vs88+W7vuuuuqvlXG/n1JScnvjvrUqVMz4jqPP/74wNCglPjPuuiVw6jgZ+7cuev8NmvXrh0w54eo9Z910V6Ao/75559nxC02b95ce+65Z/DjZQKrm8ADDzwQyJiff/55db/1Sr2fZftKYVulP/qryHZaPNjrTz/99CrxWl1/XFxc/Lvj/meupiL4jaMO/0xYBElw2plT5bX+ELDDvp48KwxoHHX+m4nrlFNOCQTvn21w12OPPRZwR+Bm2srOzv49O8CAlz/LIkCCUUHGa9y4cRl3Wy1atAgyMjjufyYjgwAJ8oWfioqKjONOXx7Z9h122CHjrs0XtP4ReOaZZwIZ891332XcxVu2r5tH8meV7ZRdJypIysvL1w3cJJ+K3Yj9iB35Z1rMNGLOzieffJKRt0X7GY77X7nVMiMfTMxF2WHP8KdFj8vtt98uMusrsxhyQy8oA+NQRg0bNhT/Vq1atcAoZ4ozfXtMkUe4INiZdM7gl6ounBeE7uWXX77eOzL/+9//graDlRW0ZGA7d+4cDNFq1qxZMDiOCcJ5eXlaunRpMKyL6do4SfTvDRs2TJR+r8xiUijOI9xr1KixMm+RMX/z0EMPBc46/V0rs+BN2ToRZJ5B/fr1VVBQEJR/safnz5+vGTNmiLJXWhzIqq3soEC+V3Dv2bPnylxqxvwNLTaURuKoEyxZmdWyZcuAN/KF/YgsQMZkZWUF3JEzVEnAHllDIIYy5JVZG2+8ceC4d+/efWX+3H/zFydAry4y5sMPP1wpEsjyLl26BLIdncr/J0OLbEenLliwIJDtDJMaM2ZMINtXNuBr2f7HI0LGoFOR7ehUZHutWrV+l+3oVOQLOhXZjj5d2WGkfxbZzl686aabgv2OnbcyC33asWNHMccFGc8JH+jUnJwcMdUcOc7AOnQq832Ycs4zWJlFpSYVm1Rurs9r0aJFeu2114KsOv+7qgu2CZ2KfMFmT+hU3gudyn5P6FRkDTp1ZYfAkmlnyHGrVq2qeql+/VokYId9LcKu6kc9++yzuvDCCwPFn+7iS40xS4/z9ttvHwhaHHCMBhwTjGWGpCWECA4eAhhBjEBOCGf6Vr/44ovAYWW4WlXWdtttFwQZ6HNfH9eDDz6oM844o0qXnijbZSDftttuGzgtGGm//fZbIEinTZsWCFcUHMIYhYfB0bRpU3EMBwYgz4Hp/pQiM8yuquVTCF2i6Bgb6+Miuv74449X6dKJzO+xxx5BadfWW28tnE8MBgw1DAgMCZxQFBxOO0ETFCDPiyAWrPjdN998EwxvxIjnmVVlnXzyyaISY31czMDg2mFWlYWcYKo7BjQcGQDIe9EygrMCc2QMDgzckTMYHbBH1mCM8DcY1QRnGH5UVQf+qKOOCk5T8DKBdAncfPPNuuyyy9J9efA69iztGOhUZDuyI3F8JzqVPY9sZ7+TGUe2I8uR7TiXfEf4G2Q7OhV9+tVXX1XpGv6Ksh25gmxP6FTkCLIC+YysQbYjMxKyHduHZ4UzTzAFnUrQkAoKdCqyvaqBk/VZtsOKSrCqtjbRZsdw4R133DHQqchz9APO+MSJE4OgCI4hiQeCVASrCNQSvOKZoZOxMenXRqd+8MEHVZ619K9//UuXXnpplb4jmfJi+tNJsGFzV2V169ZN/CR0Kqz5Qb4QbEGnYt+gU+GOnEGnwj6hU3l9IkDYr1+/KgULsFmPO+64wG/wykwCdtgz87kERgXGRbqL46iOOOIIHXzwwYGTjXJCUK9MrztKjonwTMjG+ceRf+WVV/Tcc88Fjk06C0Fy2223rXclTtdee62uueaadG4xMAaOPfZYHX744YFiY3I5xhhG2coMFWEgCMEOoswcLYZCfPnll0XpZrrvh+B+5JFHgmjp+rIwCNi/X375ZVqXjEF2zDHH6LDDDgsMNKLY7HmM4KoEtxIfRlQZJbXbbrsFk+GpMnnxxRf13//+N+2sBGXaHC+Hob6+LCa+P/zww2nfI3IATsgGDDacbAxgDAQy6FVdGHgY1Tj+m222mTAwMPL4SXcho04//fR0X+7X/YUJnHTSSXryySfTJsBAVXQqJaMcdUUQFZ26MtU/ZIJx9nH60anoR2Q7OpXvUTrrryDbcRoSOpU2r4RORbZTrVDVxXngyCx0Ks8RJ/+ll14KdGq6wwXXR9nOfj311FPTznTTboROPfTQQ4OEQqKMG1m8Mqex8H5ww/FHpxI0SehUnM501oknnqgnnnginZdmzGuwQ7Ab0s10k1Bjf2I/4pgjC5Av2CArU+VKgJAkBDoV558gId+dqiR/CIITDPfKPAJ22DPvmYijXhC4qRblpmeddVZQkotQJaqHUFzdx4yRAcZ4YRgOETyG9KD00lmUyN91113pvHSdvwZDAUWeamE4wf20004LnHMENOVPq3ttscUWgeBEcRGlJnvO56Wz6LuntCzTF04jCp3Kj1QLp46MAVFgDG8qUKqaPUj1GfyeYMnRRx+tQw45JHBoKSdMJ2DSqFGjwMBcH0q1CXI89dRT6eDQpptuGmQYcdjhjQGwumcLYCTi0JBJJCBDwJESfUo6Uy2Mnuuvvz7Vy/z7vzABjOJ0AkFU4CR0Ku0yyHZ0KpVRq3NhVCPbTzjhhCBQhU7lO5nO+jPKdhw82ovQqSQHkO04jat7IV+Q7ehU7CV0ajpJjfVJttPKh92VziKLTjUhQSR0KgEkzgNf3evvf/97EIjh89Cp9957b1rBBBIYVa1GWd3Xnu77oU/T/Q4T9EanEuBP6NTVPdCYDHxCpxIwRKem+53ChrnkkkvSvXW/bi0RsMO+lkCn8zGU1REZSyeSjJNOyRDCFQGdbnYynetI9hoisCgDggVUAKRzdifR7aqW1a/qdVbl78nwIqDoe0u2OFrqn//8ZyDI6LVG6aTjyFXlWqJeS5kljup5550XnINNTxpGXqqV6cESMkxkyVMtyuzozyeQdccddwQOdFXLp1N9RtTvE4GZ888/P3jecE9HqRLM4nuSqStdw4LsN0dNkfXCEPnss8/Wyi0RGCAbRmnmG2+8IeZJpFqUZf773/9eryocUt2Tf7/qBAgwM1CJlqRU6+KLLw5kO5UyyPZ0ZGyq90zn9ziP5557buDAUAqcThDyzyLbmRKObMdRv/POO9N25NLhmuw1BGYIECDbsWGQ7em0QmW6bGcfpXPsLEFYuGP3wJ3AxdoYRkdgJhEQu+WWW3TjjTemrM6i5JvMMy0mmbquu+66tNot4I1Opawdnfrtt9+ulVuihQ2dSqsIOpVqoVQL7lTJru9zkVLd5/r0ezvsGfK0KDUnmphqUWaEcqHkBiGRTtYg1XuuzO8pA7/66qsDQUr5fqogA4o5nSzqylzLqvwNpVpEO1MtovIoF0qe4J7qflO938r+HgODkn0yMnBPNc0bJzcdh2dlr2dl/w5lnU6PGvd4ww03BBlU/rsyZWIre42Jv6NV4corrwyyYQRsYJ9qEczKxAg13An6JFv0glJRg8NMUGVlBy+mYpTq9/S5U+WAofb888+nvG7ej+8mxomXCZCZS+dEAdqH0Km0drB/6E9fF+sf//hHoFNxIJF7qYaEre+yncwuOpUAIvJ9ZUqvV/U50Rd/xRVXBPKd/xIwSbUyVbYzqC1VAoVEC/cIe+wIAuDrYhGUhTnJHHQqFRWpFkmpTOyv5nubqqoV5xedmmgvTbe1NBWTqv6eajR0an5+fqBT0znKku8mf+e17gnYYV/3zyD4spPFSrXoryY6ecEFF6Tdi4egwPBmEAjRNYxfHBCyxTh7DLJgiAhDXMgWM5WerH06pahcL0KfzC+R3VT9gRjg68rRjWLLEBWYJFv0GlLBQD/QRRddlLbzQi8RJdxkKRMTyxPT+elNZ1o5WZ/EFOEBAwak5ZBwrTzTW2+9NXh/Mi0Mdkm2UCj0tWfKevXVVwOlkWyRFSNTgBEH93SyH7zfzrvsqm222VaNOzRVreJCVauZr5y8nGAYVFZFlirKKrRkfplKppbos/c/CMoh0x0OQ3SciDOVMHBnun+yRWknMyUyZVGKmMr53nLLLYPABEMnaQ9JJ0CCEUjmhFkAVCUkTkRAxvA7yomRM4nTKCin57uXroHONdEGQaAhlYyB9aOPPhr0CHv9dQlQCUMZc6qFjMHxZbhrum1NtGwgCyhrp10sMTkbI5gsJXsd2c4+pxcVnUovaToZTIZJUSlCFg4ZQzbszybbcVrgTpYb2Z4qgJi4f5wGdB5DuXgPnm9iOj9yiqornnvi1BUqJNINvlDFBXdsI7inmiuQabKdfnXkXrLF8D64o/OoJkmn6oT3Y69zMgf8kfHYH5RY08ZEPzr2a2IyP8PpeP9U1YqJ68RhhzvPiRa+VI4vSR+SP5myCHwwFyEVd3Qq7XIEwNNZzEdiTyYmxbMv+b4gY9CpcEfOoEMTp64waBfbJJ3F7BdaFGg7S6e9laAaJfZe65aAHfZ1yz/4dIzdZA4JBgLCmMFOCIhUg7VQagyOoEcGR50sMg4hxgOOOQ46DjlffLJpCGAEMZkpSqUQ0J9++mnQ78JxT6kcEzLUTFYno0GZWbJFlJE+qUxYKJ1kx1jRb4Wji6AlSJJqMWAF44/JtgRgcHpQRDxbSjMpvUfQougQvhgcOPM49TDH8KN1gM/DeExV9k3WH+7pRMoRuMwgWNeLIWUEP5ItlBv7nSAQpXrJVo0aBep5xpnquks3VW9UU0OmD1bfqT9pWukUzVk0WyVl87V46SKVV5QrOytH+Tn5qlmtljrW66Kjmh6l7dptEQSu6O8iO5EqQ8G1kInBuCAQQvlsssXz5zu4rhdltqlYUjVDjyfsU5UD4xDjSCNruD8MNpxwBjklTkRAXuGk4ITwXcPoSEyzReZh6CCXGIiT6khD3oNTBJi2TeAh2VF8fNb6NqxoXe+PP9vncwJHsoAQMoh9joPB0MJURy+R2SODiU5lWCIOOI54YmI5sp39TmCQ/YdTgVOJc8l3hAFqBMsog0W2p2qtoXwV2U6fNZnIZGt9ku0MF4U7QXAqplItmFMBgU7FXiGZgA5JTCzHwSMgSKYc550hcwRRCKaQqOBZUP7LTCACxQTLky1az5i5g2xPNeMjU2T7008/HQRZk61EZR57PVU2G9uEnnNmyzCIFdlOUIXvCo44DiK2CSxxLBMnIuBg8r1CLxCcRadS3ZdOOySnCvF5BB6SzelBh2C/ZsIi+JGqwpVTBrCr2fPY38kWdjjssMHRqexxeCdOu0mcRIG9AneeE3IOnYr9jk4lSEiwCZ3K3ydb2KjoVN6Llr9k8pLvFd9Zr3VLwA77uuUfGP70y8UtnGEyXQhlyvVSOToICIxaInk4HyvT204UDwWJcsWIR+Fx9FOygRooU64RJ5Rpo8mityjEdIeirKnHk5hKHff+icFm/DeZgkPo0X9HHyJKDKMAhzvdyH7lz8fIY/gL2RX+C08EfbIMBEKa1xHVThUsQXES0V5XCyMVYzfZlFj2OHsO7hjFcWvbbbfTcWefpKIO9fTW8DfVb2ofjZozQguXpB5Sxntu1nhL1X27rj55+4NA0WEgkw3HyMZQwylMNkWY54MxTSltsqGKKEOU6LrMCmDgJpMdOBlU7tCrhlOfLFBEcIk9RPsOZX0Y0BgI6VbkVH6eVLcQqGJCLkY3PfLImmRGNdyZ3I3MTPa98NCcdfUtX/efm6o0GAeQYXI4wszDiFs4gcyKYbo8OpGsKo7fygzlwplk7yZOcyFojU5N1q+OMY5s5/uITk32vVgfZDsBWPqmke1k9uIWCYqETsVhQadie6zMvBj0DbIdncoQV2Q7QfhkVVUcRwt3Mo9XXXVV7HVmgmwnCIRTnWyxx7F3CNgnY4jMJFDB63g+JGtI2lS25Tp27KImzZurqHZtZefkavGihZo5a6bGjh6lCePH/X4ZOO444OhUHEsqo1KdSEICAp2aGAgYd0+Z0AqSamgr33d0KgEldGqy1kUcdHQq86vQqTjb6NR0qtvCjAgOEKjCbyCwQeItVQUm1Y4E6tGpyYIKDOPl2XitOwJ22Ncd+yCCnuy8b74gGAlERRFkcQsnndIylBv9telkCaty20ThiDyTRaAUO5myJWqOoIIV/DMAACAASURBVEYIUKITtzBYyLavi8XnvvDCC7EfTTCBEkkGh1GdELUw5ugzTJRSEqFM5mBW9T5x8FCeCH2MMXqPkwUBMC7IZuLMJFvrMivAkUbJBpexdym7g3tctHeTTTfTOVedr7Km5XpiwCMaOK2vSstKf7/lgtwCNSxopCY1W6pTjR01d062CnKKVLakXDl5S1S9oEzjFg9Su9pN9c1Nn2vggOWH9xHZxljke0nUn37FuGsho0BgDCM+WRaM8jMU57pYZKLZo3GLMjeqR8iiJDtLnueCs0EwkO8/hmIiK0mwrlXrtqrIlvKLa6iwXpEWasGyNoSsLOVm5SmnPEfzZ8zVktllGh5x5jvcCRKSiUR+EfSKWxifZIwwvJNlYzDS15WMWRfP2p+poB+WIFrcwvFl36CfkgWgcS753jAUCj0d/v526tRF1apXV9ctNlZpeYlyqueoft0GmjtvjmpVK9SkMRM0bexUjR83VhMnjF/ucqhqQ7ajU8laolOTZer4fIKKXHOyvvZMlu30wRIoQbbHVROSPWWuCfIIXYCDF3duOsGMRVSrZecoJzdX2VlZKm7cRD8PHayK8vLIx081GxlcdCoBG3RqXPUg14Jsx7FPZqOtS9meTrUadg5yONlwV5xr5q3g+OPc8/0guF6/QUMdcOAh2rjj5mqcX6jCHGnxzBkqmzlDS0tKVFFeoaz86sqtU1fVi4tVp00L3fDQLXr/3beW408AhMAXWXtayuihj3NGCd7CndclG55H4If5B+ti8V1Ndm0krdjDJFGS2Zm0/aFTkQecApSqXa2q94rjjk7FlqTSIZkNQjUpMomZBsmq6/AFeE+vdUPADvu64R4YpMnOyk6c/coXOs4BR7gljBMU4pqe4kzPCxFnooA4q5R5Ry2CB0TiuL9kZTnrIivAUJ9k2UYcAZQ6Udy4aDTKD2WBMUeAIlWp06puMYwYrhsllswxfPzxx4PyNBRj3CLLgIO5tjO+KINkDiFGAtdEK0fcuuue+9S8R2v9+7ub9f3Er35/Wb0a9bVPm0NUPnkjFS/dVDNGNdPogc2VmyONGpWlatWkkhKJasji4gplZUknnDFVTz2wr/r3ix7ARpkZxj/PmhL4uBkAVFjAE8cRIyJuoehS9Riu6j4J/z3RfYzSOAOZjDp7i/0bV0VCZpHjpzgehuAhhkViNW/RSsVdmqm8qELTNEWjy0ZpacVStSzoqAnT5qpFrbYaN2eCsvMWKa9ggRZpno5oeqxevT8++EjWnf1LHzxDceJ6SXHsMTIJZCbLUlIqiiz1+vMTwIjG0Y5bZHYxSNFLcYFYSt7RqVTFINsT5xcTeNp2+x3VqHMTNdmwmRbXWqSxFWO0OHuRxs4braXlS9WoZmONnzdWdavXC1pwtm+ys0Y89qs+eS8+m4wziGzn6Dh0alyLFoFDvoNce1yfaqbKdnjiEHDtcQEH9AM6lcAz/yWAWHnVb9BATZs2V+dtu6qgUU3l16kuVavQ0hyc84qgQqdGVoFqqqayFmTpsZvu1+xZsyK3Ag4Ssh1dj2xHr8YtZgjgvGITZJJs55rgmazag8oEeJPQiVvYjQSmmI/EHmMdcfTx2m2LPdS8WjXN+qa3Fg7ro9IJ47Vg6hRVLFkS+16d73xW5z54nX77dVjka5DZ8Cb7C/+43mmCU9i86NxkQ/HWRaVmqmo1nHX0ElntuGG/2GjoVILg6NR0jupt3a695s6apeImTTV3zizl5eZp9qwZKXv+eRAEwxOzdNCpcfYqFRbMNmAfJHPasRkImnutfQJ22Nc+8yBTirCN68OkX47SUKLRceex86XBeWPg29oeKIYCRglQzo+hEbX44lPaTF93XIaSiDdCbW31+OKUkGGJWxgNGE1EmqMCDWTViUAzeRhlX9l5WdPbCAcSw4KsLhkC+uOjFqVnXCfBlbhFyWiq3uvVeT+psl4cK4OSjgtgoejv+O8DenXMS3rltxc0b/GywSrNC1tqlzqnqnDGzhr3wybq820NTZqYpYqKZVefk7Psp0YNCTsjO6dCBTWlKZOy9O+Hhuvq8zcJTltItsgOYDQw+4GWg6hWD0r++L6yl5Nl99Z2VoDMXcLhiLpHngtDD2m5iVoMGqIcmF5dMlK0MuTm5ql123aq0aW2hpf/oqYNW4hWuQ3ydlT9pU21ZFyJGtVcpMUlC5Sfs0hLlausvOpauKS68uoWqFbbCr323+StPVwLzgkOFi09ccEEvgvIQEoO474PvBcVM+mcwLE697zfa+0SwBDFCI5bVFtQ5oxsj9srGKroB7JjCb1WULOmDj/2GNVoX6BxNcZqdv4s9Z38vUrKSlLe4N7FB2rMAyM1ZPDApK8lcIZs59qQ7fT+Ri2+z3wnCSqsL7IdmUfSgXuLarWhbxedSuUO3MOBlE027a7u+2ylrCZZmpA/Piiv7j3mY00tnRyJIDsrW2c3v0T/uegRzZyZvNeZ8mGqqNCXcI9zZLDBCN5ja8WttS3bYZrs9BfkNVnsuBJmeqUpgSaYi8NOgOSU03ppz012UcUvQzTv89c1e8gglZeVpdznvCC3Vi21v/s57Xvy/ilfz/5FpyLb0alR2XbmEJDQIRufLNC9Nis1sdf5DsbNn2BeAvqIDHzcs0Gv8UzIdiOz4lanDTdSh05dlDs/T4VZ2aog47B4kZYuXCgpS7m1aiq3Zk0VFDdQn98G69vvPk7Jne8g7Q4EcuKGWSaq1whWxs2VIZiO/8FAPK+1S8AO+9rlHXwaRnDctGOGRySydVGGKhkv/hZFh4OZaiAcw6Eo28LxoPQJJ5koIKWw9NWgRBHWCG4GQJE1Tqc0h/JmMqZcY1zWF+cFA4MS+bhF5JrStzW9KN+FAfcYtcjCUb6EMx71Gnp34U7kkfKuVAthRl8QWQ/+lueKoGNyNgqKyDc90pTc8Z4M7EvmXCU+j0wtARqEPgZo1EJZIGwJmsQtmCfLGqS6v3R/z35CScUtqjHIqMI9SnETXGCA2NPvvaDnS59Rn0nfqV2dDtqsxkEqnPB3zRqymd58I1flZM8bVaiwUNpr15nKnTtazerPVs28EuVWLNTSsiVaUp6riupFqiiop2ZdyvT+Z08G37V0KiQwHChJhTvPKrw4fYH3QtElG1ZEdUo6xwimyzfudZStJxu8RjkuPbG0ckStRFtL5VaPzbfaThXNs9R3yY/qUHdzZU3dWEWT6qlh2VQtHfGt6lSM1vQfv1XZnNlaPHuOsnJztXRBqcqXLlUeg7i230nNLrpOfQd8riFDhqTMDiCjaE/gvzjlUdk5+v7Y52Qp41pw+O4hixhc5/XnI5BKtiODqcLAyYk6f5hgKLKdihRkIv9lrxx82FFqtl1zDcrvr8Gz+mvi/AkBvBq5NdSxfhfVWtpCTbS5GlVrpyUL81WxNFv5+VkqLZ+jBdlTtGO7DTX5uz768MMPUg6n4n3JgqFTqQAjiBm1cF64tmRDxnDEUs0zWR27IJVs5xqxDZDtUdV4JCbgTpaRQHlikQHfaJPNtPGB3TWx9jj1L/lJY+eOVl52nro32Voqq67Wudsqb3FD5SwtUH5uvsqzFisrv0SzK8bokM47q/ezbwcOYTqzZJAf/GCXRTlaOPS8F8MCmWget9aWbEf/IxfjFk4lwQh0Z9TCaYM778F+6rHrHjrlsFOVN+RnzX73P5r72/Aqb4/CNm3V8pbH9PxbTwbftWRDQRNvjm6hfxudSmtIeGE7wp02v7j2FV5DKyJ28ZpecE82QI89jD0e54iTwOK7wH1HtXo0ad5SW229gxosqal5Q4ZoYf/PpYXzNXNAPy2aET2Jvtle+2iDG/+t3h+/raFDf1ZJyfykGPAbsF+p0kGnRtlcXCOtZOjUuFlU+BS06nqtXQJ22Ncu76BsHWc3bmFQ8JqoTB2GBZF/Ml6pFDLOBV86Mgu8J04GjiGRYqbMc6wYZX449Ax5QcBTEoOTSbaTKByZt1QTOxFOZB/jyq74PZ+XLDqNo8pnr8lFJD2ul5cgBsYHAZCo9gOYwJ1nkmxSJs44RgoKhv4kuKPEeV4wmDJlqvKqVdOSsjI1b9FSebnZgTNPtBsBiGFA/xbR8WTnYxJ4gCtONyXP4YWDgxKjZIwy+agF73QCBKv6TBgkE3cqAG0HGKjcT1TgiedB5gme333/g4696mSNqP+r2sw4XSM/2VXvvpUTXN6GG5arW+vx2qLlQNWe8ZWKykZoRv++Kp0wQeWLF61wCw233FoNL79Zs+aPD4a9YFxQnkcAJNkRLdwLzjiKN+oIKJ4jGSIc8rh5BmQBU03pXVXmVA2Q8YlrWUEmELyLaw0hy8iUZUqM2bc1a9ZS2y06akStEapVVF9N5u6vBmPzlTvqc2X99IxmDRqgihTTl7mn4j0PUocbrlZe1pJgwA5OO9mIZCXt/B1tCbT/4MRQqhxeyFMCblQMxE37puKE/eb15yOQTLbj/CHb2ctRspDqLmQ7TiMGKqtlqzba7di/aV6beXpn8usq/f9seqf6G2qbGieq1tzNNWlIW80a10wjf8vS3HnSwtIsEQ8iEUZVT4MGFbrl/omaMea1oBycYC2fgU5NJnepGkG2YwPEBVwJqCeyj1FPE12O/GHw1ZpcyWQ7Mh3ucbKQIC3c0ZeV5WG3jTbR1odsr1H1RwSO+vTSqepcv6u2KTheRSVbaPbo1hrRt4VmTM8KWM+bJ1XPX/bforpSmzYVOqnXIC2d81NgZ5GQQKci25M5kcwLImCPjRCV0WUYKZUZ2DlxLYprQ7bzPOlNjhu4yfXRFgL/qOoxyrVx1LEN2SNXXvsv7dhyQ4275zrN6NdnpbcLOrX+FTdq4aKZQVUlrUzwhHuygaRUaaKr0KlRegCZzfNgH8UdFYeNkM4pPit9c1JQcUlWOW4RBKE9Lq63HSeZuQv8Htu78tp8y23Upk0nFUwp1ewPXtPsH3trwaTodtPw5zc++my1PvNoZc3PUfaChaqoV6Q5C6bryUcfSHq7BKfY0+hUZlOFFzYCspGWibiFvMRO8Fp7BOywrz3WwSfhSOMMRy1K8vgSRQ0OI4NH9BdlQb9R3CJaiXNMNooMG0KT42aqsvgslDHZXEpmMYiSlX9jYDDwjL8JLyKfBArIPMY5bms6y04JU5xTyPUyTwDHISpIgtKHO4owrvyfjAfGFYqS3iWU1ICBg1Rc3EhddthIdZrVUeOmTbWwfKFqFRRqbskc1cyppSULlui1p19Q/y+WKUqcGJwleFCyjiKKyxBQQsh1Mck1SqiSVeKecMzj3mNNZ9nJ8mIIRS361TE6iNJGtX3w70SsyRIk+ph32GlnHXr0y7rqknqaPStLG3at0Hadh6l7/S+V3/cJzej3U1olfMU77a6xf/ubrrxs2VF9BEtQuBgNKFQyFHFtHDj4cOd7FtWDxz7h2jGq4haTd5kYvaYWeyIuyo+jjnxgv0YFJ7gvAngEgugLZbXutIEKdizSvPGt1WluV5V9+5Zy+z6luTG9inH31fyMqzW2TZH6/PBt8BKMMM4GZi/zHUw2BIwySjKkXBcyKby4bkqLGVYVt9/4fq9pJ2ZNPVO/bzSBVLIdHYjTFnUqCfIWfcr3vfKRhyffeKZGNf1Nn475IMjqdm24ibbSOZo5cCv1/7Stfh2WnfJxNGpUobMu/0xXnLPsVA4ccWQ7OhVHCZ1KMDdqEfjlusg6Rl03k8+RiciruIwffeDJZmqkvIEUL0gm2/lTghIMy4sKkhCAI/CJM1a5mm+/I/6u4p0a692SNzVv0Rx1qN9FWyw5RzMGbaURfdqof9/soN2pecsK1S6sUNOmFcoqm6fCWuUqXZSnhUtrqqioQh03ule3XrusfB29T2sNTiqZTTLkUfKD1xJkR7Zjh0XJEVq2uCd0alxZ9JqW7cmy68h2dCrtP1G97VQ74IihU0mysHDYN5q1VKPvumKVtkSjg0/RD83r6KP339WwYUOD9jZ0KvKdxAHfsYQ+CX8Q9i6Be64rajAa+5h7iqvUxGbmO7Um5/Iky65TKUJ1DNWCURlrghIkx6Kc+b33O1jFZTU19bnHNbdPby2eM7tKz6HdNQ+oX8V07dByEw097zg13mEHZXXaUXW23EJ5jfL04P13xb4fLbfsZXRqlNOOPcs+j7Pb+W6t6UBJlWD8BV5sh30tPmScsLihWkxeRImRcQ2XfmKIkq2lty0uK8aXh7JdBAPKOk6Rt2jVSqXzS9SoUePgOI5GjZto8MD+sUfGIHQZFILzR4Qx7gx4AgMYRmRFwwuhjbOLgcQZnlFrTWbZkw2aI6KOExblWCLM4I4DTXYkaiH0cATIrMK/ecs2Kt64sbbusYOGTy9V7UXdNHtGvoprNdSIX3PUslm+xk5cqNr1F6ptm2wN/vphPfbg8kNvOKedSDgD/lB0cUfLUN7Ec2bfRJVQInDJPMZN9VzTWXaUdty0b6oIMBoql0Im+JINRYnQcxUulTv3sps1fFhPZZVI+7R/X3m9b9KsFD2i4efW9MSL9N7SGXrmP08s9yscR66HoBrZ2rgheVRcwB2DM+rEBMoNOVIlrqIDwyNuNsWqiiM+FwMnSgHz3gSBqA6IchbIulBdEyVj9jr0UjWav0iT7+mlmf37rtRldr7zGb3967eaMX3qcn+PM0PGjcnMBBri2lbYx7AjQBUVbGDPsN/iqoJ4rsmmJa/UTfmP1imBZLIdOUJwKmpAEi1LyHacCZywyqt9h07a6Zxd9VnZh9q55tma89Oe+vadDTR+XNby8qJFuWrVwiks0+yJs9WqTbkmjs9WXq1CLS7PV5fuT+v6S1cc+EV1HDKdvY5OjctA4sziiEQ53jg5/Ds6NWpRjcff4tyviZVMtiNjyCZG9U8TqCQYgWwPZ1QZ6tfwqEYatLi/di+4SOO/3EX9P2urCeOz1LZdhfbpMUnN839R3YoRypnQV0XV52r+mFHKLaipJaUlyiqop4a77avP5k3U4488sFwPO9lPWKMTke0ETKIW9heyHf2LjgqvQMc3bx47I2ZNynauJVl2HfuQoGfUMaN8D3gecA8HG5566CVlPfOApn7Ve6W3SqtL7tDLY/vqxO321YIaNVW9RW316nmSqudXC/YpFVL8l2qHqIVsxikmOx9VPUAghO9D3IBAvk/JElkrfWMpsutUqHJNMKdiLLwIFGG/Rz2T3Xc9WM1mz9WoO64MBvpVdWXnVVPXh1/TkHlj1HjIRE145I+p+S322V/ZHbZR/V16aOzMUXr37ddjudNWgE4NH7dLdRKzBghmUiUatQhSkBzyWjsE7LCvHc7BpyCM4hxpHFa++FHHQJDJo7w1bgIu/46xSiQv3A9eWLu2NmjfUe22aK+6reopt3aeFqhUedXyVLqoVHXy6qpNnXZ6+paHNahvdH83146iwgBiqm3cQA3uDWM5yuDn+lDiZBii1prKstObTzAjKmPKMDMcQsp6wueycq3cC4I2bugJ5fE4EWRBGjRqqjqd66lT9800ZkQj1ZjfWeMHF2rDJr+pRtkU5S2crPI5U1RQlK9500ulwmK13LKt3vjpNT3+8P2xRhcCEwMB7lGZcqZq0+6AERhVuUFlBM4hfY1Ra01l2dmzZICiFkEOgkAoivCifJRyUKLWlFSGF4b2vdc/prJvP9Goh2/V7xPmqvA93uDGx/TPF+7R0EHRSgjjgudObzulbFGlhWQDyB5xveH2BZQ4f4sRQg9e1CKAtSacR8pL4wYK4pDjFFfOJiaujX3MD88lqiJnt932VMeiVhp8zrFaMCV64FOyR5BXu7Y63P28nnz3qdiXJQby4EjFTRAmQ8S+ueaaa1Z4H77HDI/COI1yghgKRHCtcePGVdgtfmmmEkgm26mkQLaT1Y46h5h/w8GJGxL5yFNPqqJgJ911TSv9PPSPjHr9BhXqse1cbdp0kIpzRyh3/PeqW7hIswYPUGHbdpoz7GcVNG2m2pvtoO9rZOuGay6PPIMZIx7ZTr8oFTlRcoIBawTKCSiEgwo8Eyq5CHrigEYtnM7E5O/V+QyTyXbuh+A2upVZAJVX586dA51KFVKUDUEr19Nvv6Rx4zfQ/dd10IjfsrRht3Idsl0/NS39THXmfKfJvT9JmoVscc6N6r10urba80hNnPy1Zv42Qw/fTxnyvOBSaBcguE0mFO6JTHPl66TyB51K5VVU8I+AIhWDcc7nmpLtybLryD2CKFEDCcn+IvPJUkfN+dhjz7/pwmPO08irz9C8kfFH8cbuoawsdXv0db09+CttPW2x5vR+TfV22kd1d95Lc4vydN75PdV1wy5Bhhl7JKpqhPcm2YMti04l8Fx5MVEdh5iAStTMGfQaASqCv6t7JcuuYx+QqIpqc0P/s+fjysoPPeJo1RxbouFX9VQZPR1VXAXNmqv5vx7Vovxyld5xg6Z9H2EvHXiw6u57nAo2bK6771h2CkB40ZbC5PqopA97hsREXDsAVR3JTi6q4i355SkI2GFfS1uEaC2lWVGLshK+GFHHcRE5xIGIO5oIR4yoK5nwyoKMzPn+Rx+imhvU1Nyiufp+5leaXzZfE+aNVXZWjmrl1dKipYuUn5OvrYq20/iHxmlQ6Ezq8LVyDRyjhACKKu9JlDkTOKAsN7zoU6Z3Ju48yDWRZUcBxPUV0U+Iox4lUDFK4vqWcOYR0Azk6NXrLO1//CFquV1rLZ2zvSb+2F1d645U4YxvVGfyeyoZM1pzfv1F5YsXr8CjzZX36t8fv6Dvv/066S6EJw4KxmdU2TBRc66XHurwEV5kl3CAyJxGBS3WVJYdpRvnrKJ4KckOZ98xsukT5HlEKUC+B8Fcha++U5PS6hp+xWlalGIScBhsbo0Cdbz3Be19SupptuwbjDdaPaKO+MMxpGKGjHt4EZgiC8aziVoYtukc51IV8UR/N1mMqD5ugj4EzQjshLPvGENkKlHKUX2ePEuG1H3y+dea+dbXGntHfC9f3PUWtmuvRtfeo6GlQ1SjoEDl05aqX5/vtTg0Y4A9wGdxvFXcvAiCV9xjVLkt3PldVHaMa0OGJRvYVRXefu26JZBMtlP6TIYo6gxtppLzu7gJ2sgeMrJDxuXr+Ud2Vr++2YHjuFnbMdqm2beqNfARzR81UiUTVpynkCDS7LQr9EnFLBV2q62x/Udp8i8T9c3XX6wADJmOTsU2iDqtAYMYvUhrVvisdrLo9PUi46OGdnGPODGru880mWwnaE/SIao6iYw606mjHAP0E9wHDR6ieRVb6OkHOmv37sPVZu7LyvrxP5o3Ir1BaF3ue1HfzRyp7WvU16yKplrcpL4WFs7VO88/po/eelelpcum+yPvSEDAP+qIP/rRsb3QqeFj9MiiU/kWx3VNyHauOS67jrOKfiIhxNnflRcOLDqV4HBUsgh5yL574633VHdciUbdcPb/TyJP/7tdvbiRmt34iKYtnqfcR+/UzP7LjkotaNZCtTfcVPUPO1m9R/bV7bcsG8hKZSA6NeyU8zcEmEhCENQPLxxDdFXcST8EAqIy2enfyYqvTNa7To83QR/0VXixb5Av6NRw4Cqhhwik/Nh3iCY9+YomPR1d8ZHs2uttsplqX3ajaiyo0OhLTooNpOPYNzvpIhXtsr0eeCDaaaeykD0UVUlKpSB2ctzsBmwKZILXmidgh33NMw4+gSxv1HEyRNFRupRlh0tBKSUna4pgCJ9Lynsi/DBwKzv69FMfeORhqrtFfY0pGqXeYz/SJsWbK7u8mrrlHqTqi1upYkFtLVyQo5zccuXXXKTOzZqqXdE0vffOW0E2NtnUbBQrShchT9Y9vCgtJ2tLP1jYQcRZx4mJK9Fe3Vl2lBfco/qKEDAYSvQ/hRcOMo5Y1HBAJuxz/2SBcY5atW6jy/79nAb2a6IG8xeq8bTXVHf2Nxr/3ttJd1Z2bq42fvx/mpI7Kyj1IisapcASb0L0nM9FkUUFQ1AMZKWjjkbDQGXQSVyUdHVn2alIiJtAj1LFwY0KTuGAYRxFDSjkecEII53M0uVXXa+u05ZowoPx8xyiHkCtlq3V/q7/aviUwUEgI2p4XOW/I5hGFJ3+6SijmLJWvr9RZatUCGBAxM0+IHIf1UKysiIJ7lFTsHk/jApkSNT98j0m8xGViUQu8Z3FAUIuHPb3k1T65COa+mF0iV3ctTfcejtt8eTzGjKqmgbN/FH1mk3RklmLVDJstn4dNFRlZcsHtCglJOoflSGk7YeSVoyLcGk/8pBeVZ5blMzMzs4OsqocG+S1/hJIJtvRUUxhJkgVnnJM1U9iWBKnpIQXRin7BvnVsVMX9bzgNX3xfhvt0vQd1fz6pmCYpco5+zv56nzHM2q4Yzf1G5utSTk/aursQVo6Zom+erG3hg4ZtNwfExREpuOQRFVzEWDi+xtVekp2nWw2AfuoheyKys6nuv643yeT7bBFPkedgsF3juGuVPmEF1lTdBt6iO/1PvsdqJ57naRpj1ZtEFp+3XrqdP9LqqiZr7GXna7ZQwer/mabq3Cv01XaroPympbq+gsu1M//zx9mBA/Q9VHBU36HPIkaqIscJQARlwxY3bI9WXYdGUn1UNQgYuw5qgWi5CjVSlQJcP+87rbbH1DxD4M05cXlW0RS7ZU6G3ZTh7uf0oKJUzXsnKO1eNbM5f6ksF071dv3RFXvsa32P2iXwG7EtkWnRs0CIKHDfogK2JL0IbgV9bwY2kuAanWeEZ4su55oFcUWrLx4FuhL/jbqPHN4Y8+8+M7rmjp6srbpuoPm3He9pn0XPdMijn/x3odpx4fv1aDn3tOwS05I+phyqldX8aGnq2Ov03TrbVeu8Fp0Ld89fsKl/ZyyQvAKGRRVfUdQKNlxtqn2j3+fPgE77OmzWulXYkTHOakoXCKKOLPhhcGPssWxDC+GopDRpuym8jr56jM0rsUYfTj+HbWv10k71+qlinFbasGojdWtU6mmDBmr4nolqli0FjMv9wAAIABJREFUQDn5eZq/qECb7FiuF9+8PXBQicTiQOLkRRnwfBZD6YjWcg28Lrwo9aO8Ler4M4ISOI70JIUXkVcEMn+7OhZKKqpHmvdG4SbuofJnYcgjsIiQhkvQUQg8SzLHlfvKTzr1DP29+wGafN/FwcTsdFZBk6ZqeuPDevOLV4O+XJQXxhBKKlyen3g/srWUcfLfqCoF/g0FHDbQMFyJFNPPGDVDgDK6qF7sdO4j6jWUUMX1aPN82WPh4BXGA7MXMN7Ciz5NuOPsV24ZeeKhl5Tz/KOa+vlHaV9qg+5bKqvXRerX/6uAOcYuhiKOddQ5wbwxARwMeDIYYSeQ6c84sjzDcAk/ipmy1Lhj3AiuxEWt076h/38hWWUUajgbxK8JSmFccA8Mh6y8CADxfY4yPClRx1ilxSUxqIlS3sN2OUITb7lQc35e8SieuOtufPjpan3eqVrY+yuNn91EU7M3UF63Co3JfVtNlxZpwrejNGniskFIiUUwg4Am8iRqT+DUn3/++StUFBBgILsYd0ICv48KGFWVuV+/7ghQkhxXikn5L1Uk7PnKC71C0I19FRXYokqJIHNlvXVqz146otsW6n9BTy1duCCtG84rLFT7u57T4mq5Gj+6leZVb6fhs4aqcddhmrvkB5UMLNGrjzyveXPn/v5+tHmgj3C6ogJ8DH5CzoRbQQhAIdMTk7nDF7i6dWoy2Y78o4onfMYz8o9qKmRtePYEVQI8C2Rwom0rNy9P99z1uGp9+LGmvLmi7RP3EIo6dFLhpbeoXlauhvY6TEsYI///q/le+yp7l9M1o00D/fjZE3ry/mVHyRJAQPbDL6pPl/2CjRYOkpMI4DlFBfx539Up23k/ev+jBv+SQKCyCrslXN5P9hf5HpV44N/Yb9ilicx7q9Ztdcvlt2vBwzdp+k8/prXXeVHxrvuo5tm9lP3TCI24rlf032Vnq9kBR0l7HqSn33xK22+7ZZBggHs4oUJVCUPzsAWwWyovKmawf+LkN9V54e992jcSemEynUpCikx/1Jwa5Av94FHH7vIc99zzb3rpgzdU1Ky7mk2epV/mjlKnwpYaefWZKhm74kDVuOtvcdb1an70vhp5672a8try83ji/qbpCReqxSnH6N67/+h3T7yWIAK2YFSLDXsJOROX4IB53DyNleXvv1uRgB32tbArMNopoYpanMVNVjqsLHASEGZRRxEx6IEeWkqvwqvH7rup2TEtVbawseqMP1wN1EmFM75Ti9yByh31qWYPHqDFc+cqKytbZfPnqrDtBmpx9d068589NWb0qN97u3B0ceK49qgBVvSCUUqGwgs73zi2GPgYxuGyaBwArh1nKWpRUbC6jGmEDw5ueBGBxVFiGnZ4MTAMBRg16A0BTD9z1PmTLz75Py185BZNTVHenvi8ehttovIzLlXvER9pUr/xGjViuE466cRA2WCIYpBGLRQwUVCUXbh8mSADvYFkmMLOJ048AwPjBrNgDPJ3q7rIaNFnHhWJRZFhyEQ9e6Yek/kK918zMZkMAc8l3HvdrHkLPXTN/Zp48wVpnx3b6IDjNH777sppmqNffxyqUYOG65ijjwy+a2TJ40qp4UaGK6o1JZGBjxpciOGBkR01fI974xliVK/qSkyejnofuOOIhGccYCxjrOLohw1pDECMH4Io4cqCTTffShvlN9VvV52usrnL96nG3UebK+5RrR020+SrLw4yCXW6dFX+bmdoXrMdNKnxRNUtHqlZfaZo2MDlB/dgELFvo8qFcdgJUIQn4uPk46wToIg6ux1DMKoHflWfgf9+7REgQxd1DBR7mnkvfKfCe5osEAG2qOof9HNi+GH4Lh66/xnV+N/rmvpB9Oku4dfTy150+W2qn5WjMXf8UzkbbKvpTQ9U/3m7qG7XAVrY+nVlj56nDx96V2NG/+GQUHmEU0Z7XHjwFjKVYCclweH2HPQFuiwqQM61rS6dmky2I9eR31FVANgHyHUqX8KL3xG8TRypt9vee2m30/bSpw9+qFMP/ofm3Hu1Zg7sn9bGarT9Tso56wLl/vCzxt5+yQp/w2yB4mMu19zNttCESV/oqvMuDF6D/KN8GZ0a1lvoKmQF54WHF/dEYDqqKmJ1ynaeN8GOqAU3ZnKEbRJkIH+HrRUOjrOX0KlUIRHgr1mrlp594jXVU5be6veldt1gc424oqdK0zxarOk/Lpd230pLnvivpr4fPZw3ce3tTz5NC7fcU0ec9vcgsUAAOKpFCX3LdUa1rWAzYxeHy//5DL5DcYmmtDZRpRcl06m09NGqEk6c0LNOlQmBhaWho07ZQyQdHnnuSRW32U6l35SozsD7VGPf4zQ9b54Kh03TqJvOVcWSJWldapd7XtCSJg009ZrzNDtUtRP3Bjn51dXuktvUYO9tddftK1bIkkwjqRa26cmyYx+hc6MW35OoU6LSuhG/KG0CdtjTRrXyL8RBjCqNobSHMrLwcRWUtVNmS9YxfDwHUTCUBBH5qHMpec+DT/iXvv6ooWrP+lZNRj+mivEDYidpB4bzeddqfONxGvvLKP325a8aPuAXjRkzKjDmcXrpCw33z0GDDCLZL/qgw049xgPODQojvCiDYqBL1FRNFE/c0UxVeQIIdTLLUYssNg5M2GjH4UUJk3EMl0ui1AlOoNQj3/O++9W5aAP9dsVpmj9mdMpLLd7zYOWefLyWFDVXRd1R+mXQYA147yfNnjBDl156cXAmO8GNqKn8KGmEf9SJAxgP3Hv43tgvOPMI3qhFCVfcVPOUN1PpBQQ14nqEKV8mEBHuw2evYPBFlfOTeUHxRfWicmTgux98opLvh2vENWdqyYLSlJfa8oJbNK/7xpoxr7MWVB+pOg1+U+83PlaDrLo6u9cZgbInWBa1MHzZs1HBHIwHjIxwwAFnmag6/WpRi7aWuHLWlDdT6QX0jEYFp8g087uEc1v5PXFc6K+LyujxnHCIojKRfK/OueBSfX31HZr4+C0pLzMrJ0cbPfaGFmflavSlJ2nB5Em//03rQw7X3E4naE7nlppW+KrqjS/SD5999fvvq1WrFgzjJMMY7jWldxOjLyrgwL0hZ8LZvsQbE/xZHYGSlDfvF6x2AgSD4zKbGJwEm8JOOdVFOLw4AcjHyosqNaqxyBBVHjBZvUYNHXvuKeraYkN1bdBRI6/updk/rzgJOnyDDbfaRrUuuUaLP/xKEx5ado5x7fYdVWvbA/Rz7sFS+7aaVO8F1cuaro8fekf9fvrj/Gu+p8gDqlvCi0oXMqpho5l9TJCCiruo4Prq0qnJZDvtKQT4w73rGPLoq6gyZe6HPvCEbOyx2+7a/vQemjevmbaqs4daNp6s0sHjNOzSU7Rw+rSU+6jJseeq5mH7au7tt2hq7+iqq5z8fLU883qVbrWz3nr/Lr385LPB+2JzcDpLlENCsJUAfzjggH1DgD3qWfGeq0u2I/9I0kQtvgvYWOF2SnQRdkxUyxUyEXs0Ebx/8+WPVfLqS5r30+dqcem/1WLbDfXLE69p9L+jPzN8HR1ueVJLmhZr+nXnae7wX1M+p8Z7HawGp5+tvfbfKQgcEHANB+Npe2JPs3/CAQdsG2R/nJ7mex5n56S8uDR0KvqPa4gaoEyCC7ZhXYwepvrky29+0PCyMtUZWqyib27QhA/fV/E226n+WdeoZbd26n/ldZryRvxg1sTlVatTRxvc9axyyqWfzzpcS0qWP9s92X3WaNRY7W98RHkdG+vBe/693Eup9mWvoVPDAQdkK1U0UYFS2l24P681S8AO+5rlG0yQjirz5WNRcJwTG56ITBQOJRA1ZRunBycmqtyGvyNqesll/9QJux2uCfdeoxl9/zAGom610c57Kqfn6fohp58GzftOdavXU4vZrTTxq/F66dlngsEsKCqMmqgydpx6HKeorDMD0HDeEMqVFwqIKc5RJY1kOaIGfFX1MZGR49rDC0VA5gUDInweK60HVDqEjw5BGOGoMfQsqmwOZU8E/M2331eP2m00+qZzVb5k2RnWcYszqevutZtKPv9OCxt205LOjdW//H8qH1WiPq99p7/tsVvgwGLMhMvCeE8cSxRd+FQArgPHBqUSnm6OoCXAEjVFnIxVuBerqsx5PWViUQPjyLxwvVFTXGGLgghHxglIYEhTzRFeTGLHgaZ9oGRBuZr0HabJz63YnhH+u64PvqL8Rg01/odJ+m1ORxV2a6mSWoOUm/OT+r3ZR4cdfGDwJ1HfPQxiKhFwwMPOI0OKyAaQqa+8CLyQBaZ6Iewo8Dqi0lHZ46qyx3iJCu5Q8kjUP1zyjuFPpQZGRzirRBUHGbuoAT48v/MvuFCvf/M/NZzXRHPvv0FTv1n++x2+9hqNm6jt7U9ryYRJGnbxir22xVtvp8Wbn6yKnXtoVO5/VeOXahrU54/hSQSbMDwpfw8fPYNzQ0lleM+RicRpizsnlvuOa1OqKnu/fu0SIEgTFcDjKmhjwukKzzZAjqCnwvMxyPAhf9BflUuO+d4ee8E/NLbTKO3f7iDlDM1T64XVNeLqM1Keldz40FNV76RjNe3aS1boS228Yw/N2fxiDV2yq2pt+ZrKS4bo00c+VN+ffvgdIm0/2A3haih6Y8lyM9MmPO2bgBbVbFH96qtLp8bJdmQFOpt+73B5MwE/qqPCZzmjS7F/0FcE1vY94O9qsGdDlWd10gazzlTb8s/Uon2Ohi+Yrpp9hmn8fVen3GTtrn1QeRu00/jLT00ZNG940vUqPPpw3Xntafrqi2U9yL/88kvQrhcO8qEbcSijhsxh4xDIjzr3fHXJdpIbUVlj9CP7OTz0lNYPyuNhHJ5HxHeD6+WeWK+/+bHmv/imJj+37BQZBpk1ueBfmlo2T9kvv6Ap7yXPmOfWrKUO9zyvXFVocM+DVV6W3O5JPMSmp1ymsR0b64VnngicQNiGE1AkEAiihYc144wTIKdaJmoOBfZYlD2acgOFXhCnU6kcJakWrsbDTsGOYWJ/eKG/srJzNXzpOFUf0U21PrxRY974o2KneK9DVHza2Vo8p0TT77hcM1MMgCYA2OqWhzX3mx805raLq3prar73fmrS60rd/+TyDjtvRIUA+yacWKG1hVYKqu6iFjMfoqpWq3xx/oNYAnbY1/DmwCiOylwS8cdQQMmFF0YHX/zwYA362yi7DWfk+Xt64Mn8MSSqpHSBzjz7AnWcVaExty4r+4pbTU+6RHkHHab/vbKRqrfto4pWX2hk+acqXFyoJmOb6uk7H9Xuu+0WOFv0DoUdFQwbSshx6MNZeIxljItwWRPTTnGO4wIZq2NaPMoybCTAgHL7RB9UZSYoARQ2wzfCDgzltUR7owIMZKZRNkTb69atp5tvuU813v84ZU9RpzufVbV6dTX0zMOUW726irbeXXk9jtfo1tKCxf309ZOfa/PNNg4cdriHe5PpoaOvDkeQidqVFwYfxls4as1983dxGV3Ks1f13F7K86L65Bk0Q/90uD+K55E4yiW8RykLJdMbNWSPrAdGbeK79dwjr2vRozdr+o/fx+71/PoN1P7O/6r0t5Eaed2ZarxDD5W0/JvmtT1YcxosVXbjt/Xbe4O15847B4ZAVKUADPn+RX0HMaLZd+HvCME1DLqoeQ84zlGOdlXEUrJJtuxZAm18pyovjA4cmHDgj+uhl5T7DJcU82yvuPJqvd7vLf2y5Fe1n95DbcuXaPS1vTR/9KjYS67bbWNtcOfjGvvgQ5ry6mORryPqX+2QG1W6/dYqrfWhpveeqHFj/6hUoQqD8vbwsZdcL3sLgyicEcCAwHiLCgAigyhr9Fr/CJB1izoWDNlGVpMAVeWFcc3sCX4fdnSRL+zrcLbsyJ7Ha+aWM1SeU67tdIkaVLRSQc4Pyv+8ryY+Fj1pOfGZrS+7S7U33lDDzz1uuWqSxO/rbryJFu18tb6evYe6/f09jRjQWy/c8vTvR49RBUAwGUc7fL0EXAl2h+UoTHAU4k6lWB06NU62Y5cQkA3rFRxGAmlk7cIL+c0P388GDYt1zNUnqaBZa0384EhtXuNLVXv3IilLanrhLSqtkasFj9+rqZ+uOPcm8b7Z+fnq+tCrWlpaoiFnRh8nWvkaarZoqVpH3aScXdrozisvUJ8fvgsqGsmYUzEYXokjXsM9vDgvzBGImpWzOmQ7thX7IWohuynbDlckYjvSLomMX+6ea9YMZCH3yd8xe2ffJhtq3N3/1OLZs39/Ka0F1Y4/T9WysjTjjn8Gw/viVq3WbdXylkc057MvNOGh69IWJtVqF6n9zY/p5pce0u679hCtLOHvIG0FVIzgCIeTK4n5Q1E91VQcxB1tmu4FJtOp6BV0ZFR/Pc8rPJeG6yfY/FLvt5WtbaQXHtPsF1eUIY2PPksNjjlc2ROm69fLTtXCaVNjL7d42x3U+b5H9fP5Z8VWk6S6143vfFq53dvrwXvvXO6lyE+eRVSwmz3HvUQNSCZBFtXCm+o6/Pv0CdhhT5/VSr0SBzpqQBjZH8rbw0dU8HqcwKgSMiKQREfDDgGl3AhgjNDqBbW009G7qnphgVoubK2sV1/S1Hdfir32Trc8qWot2+u5j7fSW6/nasOuS9X94K80sfHjml46Ve1GttfTtzwSOCJEc1HC4cwtCpuIbXgAHkfjkBEgEho+2gLFwfCxqFYBSuVW9WxHshFhRxYIlOxRPhY+l5xSJjLp4T5AhoswhI/satghIEiCs4mC33jT7jrg1MPUqNb2alI+S1NvvUwzmSgcsaoVFWmjh1/V9J/6LVd2Vqt1G9U58ipN37KLJi34UF8+/Jn+fuB+wWdH9QdhnBIJDU/opI2BMsRwqR4lcgSDOJYuapFRjTsjNZ3Nj1ETdcQZf0tlAiX+4UwEpZREcqk0qbwI8rDXo7KgKMzKTDp36ardj9hbezXbXiOvOkOlE5YfXpZ436LOXdT90Zc0+KbrlvtONNl1d83a/EotaNtac2q/osEvf6uzzjgteO5RJyHAkLKx8KA+9ix7PcwQA4nve1SPO9dG5cOqHIsCw6hzy6lCIGgTdQwO/07WEQOj8mJP4xCE+8J5DXvqxykD9fbUt9Vo2uGqX7KddthqpOZ/+ZNG3XCOykOT3hPvW7zHgdrsljv0/bEHxrbm8Nr63beQ9rlekzrnqyD/V/V/89vfj2GCK1UCBBLCsoTvLlmacICT70xZWVkkG0rtV0dlQzrfC79m9RKgvDSsg/gEMtIEocKnYWBIomvCxiQOFY4AWd7K80A232IrbXz2Zvpw2nvaP/929X3uQM2enaXrzv1Y1evkaOZd12jq119G3lRWdrY2e+ptlU6boZ8vWLHCK/FHdbt006wet2tgtXba+MAP9d3TX+mV/y/P5jXIdPqQw9k6AuC0xEW1BMAEHRYVMF1VnZpMthMQZCJ2OLBK6xn6P3xsKhVKVLFxL6wTL+ypZns019iPD1SXRXPVfOBVmvTZx8HvkAl1z7xK1bKzNf7G8zV3+LBI7jWbt1C3B17SmFdf1qSnVxxSGfVHDbfcRtnH3qDhS77X9eddHryEUmZkH1UBYblIUD5s4xCoIKAfN3BrVWU7Mg8bI2rhNDGgjWRC5UV1Cd+F8JA6epDZ6wSiKf9//aHXNP3B6yOrMBvtd7RqHX2s8qfODmaVLJ49K/IaGmy5tbZ47EX1OfUoTfsu+fG04TdoeeDByj38Hzr82H2DPYvtyyybyovqTuzecLk13wsqr6LK0qkwiLL9qiKF4nQq3y/s4HA5Pp/JPuB6wp+N4zt2/EQNK8tSi19rquSRkyJtFOZKNT/rOrU87kCN/c/rGnfPitPcE/eAc9/h5JPV98QDU1aThO+73sYctXeGam7aVRt1b69evU5fAQ280Y/hwctwJ1ESdUQg3+eodsGqcPdrkxOww74GdwiZWkruohYGNpG4cFkNWTiM6LCAwoEh2xrV55soj3711dd08PlHaVjjoaqoKNfu8+/QZvUmacLNF0UOpcgtKFDXh17RvJ9/1oJRv2ly/f313fTdNWBAlrbef7DmbXyrFi0pUcMBxXr6jkeCcjtKUqOcOrKEOIrhXioioEQ7w5k87pNeo3D5OawICoQnblflMSFMwqXJib/nM/ldOOtGwAPDP1x6hmNDyV64PJFMNE4o98xQriMvPlE773iS6gyZpJyG1ZVdWqpfLj5ZC6dOWeHSa2/QXu1ue0IT77pBU3p/sNzvOZqmwcn/0rwe3TV2+vt6/vr/6Nlnng4G24SdWhQWeygqAk9JHM5ueGAYDjMKJOpYFJzGqP6kdNljKEf1MZFhoS2CKHrlRUCHCDrKDiex8iIohZEZLssis83ewfDAGevYqbN6nLGHyhsu1Rble6vuoF80+ubzIy+5eMfd1PaqmzX09KNXMPya7v43TdnwEs1q3Vy5jd7QD899pVdeeiHIVISz02Rzcb7DwxGpdqCtIDw7gUwBx+oRRIoaxse+izp2J13uZNuissgMryJoQwCw8sK4JPsSPooOB58WC+4vPLSQoEODDk316IjHVH/GPhr11qHatf3X2rDpcDXYZVsNu+WO2Ox5s9OvUvPddlHf4/dT2fx5SW+r2V77atYON2n6Rj+q4pcpGvJ9v99fT9CDrH84q8IzInsaliVUvnCfccE/7p+AnNf6Q4AgWVzgiwovMqTh1h72Cz/hAA3fGyqrKve7FxbW1jHXn6z/LXlF2+b3VP6PF+vF53N10YkD1H3ebaq+O5UpeRr+z9M1v9LAuARBKkU63vVfTXr1RU15JbqaJPFasmTDNn1UJR3Hq3nLX3XvObdq7P/PPyFAhU4lyBo++gpdxbWHjWZKuZlHERVsW1WdGifbE7KN4EJYhqODCORTNl558Sxw8tFpW269rTY8YSPll+2q4gk7qMOgszTpnZeXe31xj91Vr+fFqhg3cdmskoh+3fqbdlebG+/VqCvOTtkGmHhzAucdLrxBY9ptr55HLRsqh1OO0wGvygs7joAIFXjhQZZUbzDbJlwNwd+vqmwnAB6nq6neDA/5o2qRoEPU/J7K/e533fuIGn7+nSa+Ej9dvMnxF6jhsYdoxotvacKjN0UKiUYHn6zWJ5ykgaceqgVpDqnjXPCiPY5Uje2213s/fqTFZYu1RfdNlK2KFc40Z/9gUyDfKy90Le0WcbMs2F8EhlZ2xelUgn4kC8InkPCceBZhHYR8QSY98f7zapS3u/T4xZr47muxl8UJE60u+rca7LiVRl7/T0395N3I17a79gEVtWyuvieuOCMq7s2LOnZW3QNOUe5GXfTz+CFq3KSJOjTYQAsXLNTDLy7fTkjFDjIofJ/YiCSoSJpELSpqqGjyWjME7LCvGa7BuyI4ceiiFkKeL3j4KA6EPk45UazKi2wfWeFwfxXGNdkDnNCDTjlci3ZcpAnzx2mbxddqypd/07GnzVDBiC807PLTVjgfs1arNupw2xMaf8cVwXTzgqbNVWvv0/XB5CP1v95tdMyFA9S/aS91yeumCS+N0xe9Pwmul3sKOzFkIukPD2c3CDTgOIbPX6VPlgxY1OA07hvljzGwMgtDPCozSmkSBl9YyDOkCCMoPISKbA3GEiVC4Sg2jjxOGAp5n2MO0hH/uEC5n0/V7McvUEG7Tup0xb806s13gnKz8GLISNurbtfgnkdq/pgVS4k5nib/0Bu1aOci9fnyTQ39pF8Q2Ek4qeF9QSCFiHDlRWSa/u6wYEXJ4/RE8eHvOcqE7OPKLBzEcO8o70MPGoZQuESPPnGyX+EgFO9DJUS4tJX3IpDDPRHwogXhkEuP0rc1v9TWOl+N5uytg/aYo6HXXKkp7zy/wi1wpEnL/fbRD0fuqfLFy5/7zYvbHnWcBtY+R4s3WaSlpR9o0ZjZsWfG06IQNfiRihGi0OG5Dfx/MtR8j8MLpzpqqGM6z4CeUfrno1ZiaGF4Qj3MMT7DU+N5RnwXwqX7VGTccdfduvH9WzV2VpnGPHW1du7cV236na3ZPw9Vm0tuV+OtN9OQC/+hGf1+WuFSut71rBZOn67fbjgn5S1x3GGHy2/TrHbbaOC3/9HiisUaP2q0yhYvDkprqeaJ6kNmv5A5IohTeVFCjwwKOxO8hiBE1LnQKS/SL1hnBOJkOw4jwT9atCovZDgVGcj2cBAKHYtsqlz1c1zPUzR2yzGat3iOthr3ih64sYV6nTBG28y6TBPffF4Nt9xa7a64QzMGDg6OsArLkbpdN1LbG+7TyCt6Ja0mSVxjuyseVsX2h+irb+7Wp2+9ownjx2n6/5fC0jaGng2fR00AiuBauNWOTCyODCXRUWtNyHayogRWkdmVFw4s9kp4ujoZSoL6iVbAA089VN0O21RlX/dU6+nva/79x6qifOkKl9/ooBPV7bLLNOTeBzTpv3et8PvifY5Qu55nqe8J+2vRjBlJ9yeD5+pv00PNTzxbfaeP1qSpE1Uzr76uv2FZoJd9ETVol+A4QZ/wkE5kDIHlqON3V0W2kxxh/0YtSvBxqMJly8hG5neEKwWpDKCvm+fFevOBVzXj0Zsi5XXi87Jzc9XinBvV7pD9NeTC0zTl6y9WuJQ2l96hwlbNNfD0w1LKBFrS6vQ4UMUHHKxvxgxQxdJydW/eVYULZmt49Swdedj+gTPMPq28qNLAYQ+XoJN8wSmnlTG84LOyZ4OjQ+ImnlNZR7thuMqVJBYJnHCwkPcpqFlLfWbPVJPBRSp5+HgtmDw5KStmvrS/5j7VbNpIQy88RXN+Xf7+svPytNkTb2rCxx+nVU0SVG7udZzq7Lijpi2drvz8Wqo9v0LTP/5A8795R/X+3lMTWtXUt1/2/v266EXHlg9X+GALYDtGnbTBHxPowC7yWjME7LCvGa7Bu8ZNVUWpEh0PT7IkOorgDzuU/H8cAaK74YWQQFhMmDhZO1y4s56d8qQOK7pTc3ufojdezdGJpyzRMXt/o6kffaLxDy7fY9Rg863U/spXGUTdAAAgAElEQVTbNKDn4csd4dHylEv0Xe45ev7Nxtrvgnc0qsH92nTBlrr/wtt1Vq9eQU9RuC+drB1HhKAsKi8ivRhE4ewq/46THDekgsxwlMOWzuOirDdc0sbfURpMhDQ8UIzeO7I2YYcSJUdAJBx0walBqTOptHGTZjr77ovUcHRrLXzyn5rRZ9nwICLPLU44SWPvvllTP35ructufOQZan3gQfru8OUHlFV+EWXahSfdqMn1h+vqEy7UvffeE2S/w85UXGsF1879hgMiBEpwUuKOzluVCatwiTq5AIOTfw8HD+i9o6Q/PNyMiDpKO1xexT1hkCSMwxMvPF2TNhqvVkv21K/Pna7ahRU6dc93VLtlIw27+NQVDOZONz+mRdOna9Rtl8Zuo2an/FOj2l+holZf6p6rz9Z7H3ygY486coVABJFnDM+wMU2EnRMIwsYCvaeU/UVVIGDERg0WTGevY8zEGehcQ6JtovJ7kc3n+sNZeQIK9AaH21TYL2XFOXpj4uvK73eW8ia10fbTz9LUt5dNWC5o0kztr71PNeoVacCZR2nBlD8MkrzC2tr40Vc09uE7NPWz92NvicqSOjsdoIYHHKLqGzRUUfUijZ1eoJE13tGU98dp5Ihl04cJOFF+SzCq8qLsFvkTHgpJjzIZx6gTKcjexA0vS4e9X7P2CcTJdp4l+z3cBkRPNxOdw6d78Dr2UaIsmzupUaNAZ9x5np6f/7T2ybtd79x6qJo3r1CvrR7SlHv+cIKLd91Pzc+6WBOf/Y8mv/zochCKd9tPHc67TN8fvmfSahJOZ6l70Kla2rGtWnVpqcnTcjVm8c/6pc9XevD6ZdkrAmg45eFztMn+ogdogau8+HfkES1yUWtNyHYC1rQW0NdaeWG4Y6+EgwrYKtgKBBM32ay7duy5q0oXbaSsr3fQ7osu0JjX44ecMaisxaEHauRV52ra998u93mtzrtRha1aafC5xyTdlEzwb3DkWZpamKftemyjEV8O0Kwvv1Dj7XfQDf+5W5999lEQgMBR5t4qLwIiBM3DMgOdhAyPmlq+KrI92WkIVCkg15B5lRcJHYIK4QA+/0amnj3/ypvvq/zDrzXm/mUnGCRb1YrqqPWlt6te5/Yact6JmjdqxHIv7/7U/zThvXc0+cVl59pHLQbT1dt+DxUfeoKmVF+sLTbeQuN/HKApb72ueT98pKULFqj93c8qr0luMOA4fO0ERMiYh6s0CZwkgijhz8U+DVckprrXxO8ZDhsOCid+RwUaQcNwDzdcCRKE/52Whhfff12F9XdV4cevaey9y1ovUq3Cdu3V/pp7tLRkvoZe+H/sXQdYVmX7/7GH7A0yBRQE3JojzZw5cu9tuFNzz9ypWebKrZWalWZmzjRH5p6IA0VBxAECsvd+/9fv4AvnfXhfRRr/vu/jvi4vCs54zn2ec8/ffd9DkZde0gWe4wn9Vu5AxGczkHD9qsZL0fE3b9kTlq3bwdzHHkgHUu6EImH/t0gOvlycwGNpgvO0+Vi1UtU/YFKKzrmYVKTdRn3LpKNItEU0lUW+7pkr/v56DlQ47K/nUbmPoHEuZpx5MWZ2aHiINXV0HBkxFLM+VG6MjIqZNDqZhGpTQQ+YGoiEGvFIz06H580fsG2tLdq2K0Bnx80wj/sDTkNG4cnqBYiTRdEcug6BS9fuuDro/VLPaDNiBX5NGwdOATO0/xph188jvvAFLvzyh5RZZgMaEapHp4NQGrHuhc4a1ypGQulsMBonZq+5GGYF1c28LsvL4L3E+mKeR0eFmVHRmaJgogMgOl9UHnTMxQ7bhDjx+ZntGzpzNFq1HIvctasR/8tmleVVHjkb7p074s7ED5ByvwQxUXX+WuQlxOPRl/PVPo6Fb3VYdB4G07fqIC41GSHZwbj5y2UsfPmu5ScRMkkHi0aTnBgg4e+5TjkxWMSgkKaZ68xgi3DAsvCcxxA2qA7yzTID7lMx+szsEaP+Yl07O8AyQyCOc6ExQkOFmQxCKWsH1sP1gsto8HgvDux0wqSOh2B5fTFse46GmYsTgsf0QU5iorR8HSMj1Nm8F4/XL5bQJOrIpv5bsBs0EVk2poBCG1kGAciy/QOGj4FBA/urnMLyFGZ0xW+YgRB+x+KseWbyiDRRV09OJIm6DHBZ+E6nW2xApTyP8DQx68x3RENGlDHMUNIYUZetX79xMxaf+BSP4/Rhc2ceauvvQ9amASjMLcmEmHlXlQyM1Pv3EbawJJNu6ukF3yUbcHf6CLWN6XSNjGHVpBUc+49AJT8XJDyIQd79MGRfOIDUJvMQXu0erLJTEHz0kvRYmtAB5CtrB8U6WmbKaHCokweEw4tlAWXhecUx/38c0CTbKYtZAiF2h+b7ZemN2GCQWWpmeeXjsho2borG05riSvwF2Jzbhl+2uWHBqIuwOzYA6Y9K5qXz6R16joRr//54uHCSCgTbZfTHMHV3w93pw9UyybSKF8w7DIZhvbooNNOFUUI2ki/8AYV/dwSbpEBH7zKOfXkIN15Od2HgkjJedASYBWS2S96MVNmkS1MZ3t8h2+kIEkkoZpdZBsdgofg90sFiMJ1yvH6DRqjykTecn8xG5cf3ofi6p4pMERkojWSbtBSVGzfAjdH9kPHsSfEhtTb9hNij+/F837dq+c66XcseowBvdxQoCmCSnIW4A7uQev2MVLbmMWwijHp3Q4fWTSV7irpf7CNERCTRbGKghF3cGexUdl6XL+DPyHZmcdmZWx1R7tM+EoOudKK4btGZYrCYaAfaWl+t2wXFhiVlQoDw3oSwV1u0FgWZWQiZPAQFLzPghrZ28F+5HQ8/na72WhznyQkgtgM/QrajOfKSsqEXFYPUw9uQeDNYpbTBfcYKxLmbQgcFpdABDIQwESQGpvlt8xtWZ2PTjlY31agskot2kzoEIhM0LC+jPS4nJp24FnF9LFWk3Pnh3D4UhtWC6Y5hr2zgJ66Ne9Zz9nLEnDiBp5tLZqbz99XmrUDQ8J7ISYgv9Ugc+WbZrCPsuvWFia8zEkOjkX37NtJO7CrqPq9QqJxD5EPVVd/jqwOqwUcG19hTQCyTZCCLtpxon/GitB80oWbLwvuKY17NgQqH/W/cIYzIis4eb8ePmBA9cbYmhQHhymIWjrVe7JgtzgGlo0ln+Od9v6D1tA7Y8WIzAi1/wIl17yMuRhvTex6F7bU5SLh+DY59x8CjZy/cnjIMaRFFNWVeM79AfmIcIjepzk80tLGFQ/dAmDd5F4nmZkhItsMVg2WwTLPCiS+PYv7cj6XGN1TIcmIElNBfrldOVNrs2C5Gg3ksnQ11ddPMIGjKHL7uldEQF2vpeY6yjlGsgSXEiQKXP+XEbB0dLbERCgUVMwqJyakYtewjWIU5I3PTJKQIM3p1DI3gMfVTWPt4I2hUb+SlpUFLVxcNvt6H8NULS0VHTTyqSNClym3bIEuRh8yQMOjr6iEiwAYntmzD2jUrpMDHnTuqXVsZbGBZhPjMrIGk8SFvqMTnI4xaUz0131V5BC7r+tQhQHg/Ggmse5IbEWx6o+zxIB8FRJgfMwtsLCUnKkt+G6yPYvO/oRNGIqT6bdTNnYgLW7uhRcBd1I+bgahjh8EGRL5L1iP1/gM8WDxZukwlVzf4L92A21OHIzNadQ4zu5hb9xgFu6YNkRaXgJSrQSi8dwZx9Zcg663b6OTfCNVdq5RaD40lsYEf0TBUZsysyInvgRBRsRZPeQzhvHQs3pQY7BBr1HkNBmrolIjfEDNEDBaKRg6NOQYfmF2SE7NhHXt3xezLH8Pl2SSk36yBttFdEHumBD6nPJ4jgTynLcWzH77G84O7pV/bNmyMatMW4Vy3Iiimktici39zHDwRdg1qIi7kIeJOnUTG2f3F/QVsPtyAiNo1oGt+DmEH7iAnO1vaR0S8iEE3ZlBpSItoDRq1DGapQ9zwXX322WdvyvKK4/8fOaBJtjPYynIyUd8yC0knUZwYwqAlM0XUY0rq/eFA3PQJQnWtboj/aT5MzRTobvsFEr5SzbQqj3f9cC7c27fB1Q96FKNKaqzZiYRjPyPqsGqdKsvNLNr0gXOn95FvqIfM0AgkHfwWSTeuSA29Ko9fhZtOnRHjshQ3vwhC8EuHnSU0RJWIvTz43dOgFkuQmEUnqkCsG+ea/w7ZTpQcYbOi8U67hI4s1yMnBh4YLCYKafjMsXBo5okne8ahScoMpOxd/tqdZWBlDe85q6CtDdyeOBiKwkLoW1qh1poduL9oSin4MOt2LToHwrFFM2SkpSP9ZgjSju2UHBd5OQMDixazVqFPYEdpDQz+EQEpn5Sh1Fl0wuUNaClrGWRmYEUdlVe2M0DN5I5IvD/Xx/XIiQ4i34MYpGdShCVkSvTjL+t+QvSnE5EhNBx9FfPNqvqg6ryVePH7STzeWvSeLPz84TtvBa4FdpdsGznZ1G0A237jYNOwNpIjo5B0/gLST+/V6LDat+2CwkH9USegWqkGfuxRQnnPn3JicJyBWnVoQT6zaLe9dnO9PIDN+sTabf6JCFgGusWeKExwcG2iHmaSzc/fH8EpUbAIskTq+qHIfK5qe7xuTXaN34bbuLmIXDUfLy5fkA63b98LLt364Nqwbiqn6xgawrpxC7gMGQvrWj6IvRGK2KOHkX7xyCunuPAiVZdtw6WUcITLmjoy6cCAiNhni0FzBgrVdeKnvlU3Xed1z1nx97JxoMJhLxufynUUodfqujfTGWW2WYQ3U0DTCRbr1DUpRTpuFCC+frWQ9V4m7qfeRfOoI9i8zB1NGmdisu8sPPxqdfHa3cYvgEP9urg2vAcKsrNR/6u9eLh2CRJf1p3qmZjCqul7qNxvKPTtbJB66y6iFfWw97QvHHotxov8IMRtjkWd2jUkR1CMNDJAQVi0CA1jAIJKS2ysxQwgM1+iQOCCWZulriFdWV6EpvEzzOgSQk7lKic6tnRM5IgBNkJjzaOoFHltGkN0eLv26IO3BnWHw6HHeLFZ/fg8Axtb+Mxfjezop7i/ZDqMHJ1Q47ONCJ7wQXF0lL+zbNULDh06QtfIENG/nUD67z9Jys2tWy9k9JmAgye+RKfGbaXaKTFwQ2gYocziLGpC4Bj5FzPbRELQ6VHXqKy8M0yJRFA3po98pDMv1sXTceS7536RE7MUHJUj1kTSmaSBqhxb9NGaGTipcxTvPN+LC7+6Y0zdDUjePLb4UjTUqs3+DNE/foNnh36Wug17T5iLSwNL0CScZWrV+QNYNWwIXUUBnuzdi/RLJcrNZMIeRPgZoWk9fSwYNlMKmsmJgQX2jhBn3bL2kAEGIlGUxAAdkSeiMaX8e3lLQJjdYv22SIT6svyB719ObBpDp0dEk2hSzpRhubbauJx2CfEHpsBH6z6sD/dXyW7Jr2/fpBk8xszEvUWTkBJ6D5X7joKpV1WELiqBzFrXqQe7vmNhVt0HefHxePbDtqJMlzDGxrlDVyT1/hKZTgeR9EcMHoTelYJClCOcJywn7iN+22Igglkx7il1QQ3WAYvBxbLIl4pj/v84oEm2U2cyKCMakZpkPmGvDPDIg4hjlk/CXsUP6KS9ET990gntmz9HqyedEa8BdsqmrZ7TP4OhmQluThwC6s8663YiZN6EYgPZwNpaqtut3L0X9MzNEPP7WaQd/wGJt4JVMl0MXsV03A+9xkcQeuQatiwvmotNHUgkmhjE16Q7GfxmCYAo83mtv1q285rUnexUzjUqibqRDrk6mc9GYcpSwHErpiLJ0AHaZwajXepQPDuiWjqmaZdVcnGD/+K1iP3jJCK/WgX2fKm+YAWuDOlanP01cXOHRfuBsGvRAro6Wnh26AjSz/6C1LCi0hqRmC12mbcBA2YMluQ2e4owmSA2oaXuZPZWlPlEQlA2qZteUF7Zzmy+upIdBjzoVIq6kwESItnEiSOso+aoM8ryRk2aYkqrvohYMOaNP2I29vOctBCRG5Yi7sI52Ldsj8o9BiJodN/ia1n6BcC6x0iY16wB7dwcPNm1E2lXTpQKkos3t6nXAPmDJ+CDMb2l6QhyPrKunckTUXcSSUAouoh44LX/zEg92qPiaDZeU5PuZIKDCQbR/pJ6p+TkISxfH1anniFlg3rUzetehH2HXvAcNAw3pwxDxtMnqDJxERTJcXj0TZGMIFF+OA2eCOMqbsh4+AgxP36F5OCrGrv7i/d0Hj4TUb6OuHyxJGmlSXdy/xNVoC6owVIjTVMNXvecFX9/PQcqHPbX86jcR2jq8MlMM50ssVaHUXMaoqJDySgvGy7JxxkxG0cHk0qRzebu1LgJn0qNYXRyE378Xhdzhp6H0+8DVSJrupUqSQ2dClOTEPnVStRcvhlB4wajICsTNo3ehmvgJBhYW+HxwcNIPbUXqeEPUOnDH7D1Ui/UG/gzomy+h9UVK9w5GyQ5CeK8UkbXqGDEJmKEKzK6KzawYOaA2Vf+FIlRU7EpVlleBGd9i0628jx232eGUw7B1+RQEl7JjAQdSznRYWRtNYU3+d6swzg4frsBT38uqudVRzQe/BasQvTe7ch4/Aie42bh6vBe0Le0hFXzTnDp1gsGFmYI+2oL0q6cVFFuljVqotLoL/BA/wbigiIl2KeoxFmnS4NBHJ9DBUJYmNgdmVkZojvUNTpj9FjMspaF7xxdqGxoIz+eWUwGDsRO9pqMC2Z/+d2IM32JgKCDRThWZWcXvDuzDXJNDWBwajUKM1LQPqk/ok+odtynk+41/mPcXzYLRlXrwLyaD0KXzQYNPuv2/WHXrBmQl4sn29YiOZiZrpJZtHwGp9HL8Lhee1h6XMP17y9g61ZV5AizX8zQiuNzNBl1nO1OhIAcUaDkFa8l1qqWhe8MCIpyhOdRcXKvi30DNBkXdHaZFaNBLaeZs2bjdPQFHH96HanfbcLAWruR9qVqeYC4TodO/eDevReujxsEr4mLkHrxV0T9dhQW1f1g13MkLPyqI/3xE8Tt3ihBIzWNgzP38UVMh714+vZ6WF+zxMOXzXe4nykn5eNzmAmgHGHPCTnRuOVeYhmLOqIcZrPMCvr3c+BVsp0yjXWnDG7LiQ4lg1fyTCl1Jx12OYrHL6AG2kzqgOOZv6JR3FfYsqAO5g2/hMpnVMuZRC7R0fOdtxIp1y/gxemj8FvwBS4N7go689ZNWsN10HAYWlki/NvvkHbhiNomo7wmEUBxHX9GRM3T0HpyH9sXF5VXcZ/TMREDVAxaMRAqBsG5n6m3WPcr0l8t29ngj9B88fvRFIxlkJjoQuoJd48q6DCtC3Jz3oLNvQBUOdMTyQJC7VU7kmVj1aYvwaOtK6GlUMChx1DcnDgU7NJv1bonHN9rBz0DPTzcugGpQedeOdNaeZ8qCzZhzek9+OP3E1K9NJ11EZmjKQhOFBttAhFRwGuXV7bTzhB1Oq/HYDYDkGK/BmabaYOJZU1876zJpwxcunwN/BKzcX/JtHJ98HZN34XnyEkInjICdl2HQjstDo92bgUn39h0/gDW9eoiNykJz79dIwWl8jMyynQfYwdHOC/ZAt+3q0qoArHnCIPg/G7ljjwRDfzeObFHHREFoU0oxhsS9YgoR3gJJg0YlBHLP2iz0KYUy64YPL4dcg9ZFj6odPA4YrfMfMOVlBzuPGQC7Bs1QtCYfqi9ejsityyXdCdRbY79x8K0igcSb95B/P6vi2Dvb0guvQbDavRIbFlf0v2dKEHKHTEITkQB9x778ojEvlPiRKU3XErF4a/gQIXD/jduDyoudVlMZsUYMRc7RtPQZzZIDmGmUcHstBitZlSbhrpU27N4Mg4Z/4w2ZuNx+cvxSIwHZnX7GRlrepZ6OiM7e/jOW46su9dg7FMXj7evg/PAMTC2t8eTH79D/NljKsrNquc0fH5nKVoPvYob1rNQ7YkPdn+xQ4Iti3BgZu6YsRJHjbCZGyO86hQJHRh1sxsJ0RUDF2V5VTTE1I004bmE8TDyKq8XZqSQmVMxevsqh5KKmbCfSZ/PRl33TtDaPBdRx1WdRXGtbDLkM3UBEq6cg56ZJRKCrsC9fyCgo4vITZ8jIeg68jPVKzeXpfuQWCMd53/4Df369gFHm8mJsGcKSgZG5MQsKtEAYjaVTjzh2SLMkufS4WHU+k2JkFN1nVUJTaODxf0qJwZkCK0SIX9UDlTMopJgfTXfE9dWt14DBIyvBe0cH1xd+xE6N7wNl1O91c7otX+nFdz6D0Pa46fIuncV+YY2qNy2LbISkvBs+ypJ6WmiKoOGI7H9Img5/478kAyMGjlM5VA+F511ESHCwBvfhaj0aWAz8CbWo/KiDK5o6vb+qndBvqjrPM/AEjMw4rukUcfvgIgMOTGAw6ycOP3h8+Vf4Jug7xCTZIL4X0ejq/0aPF+rfmye/HqugZNh4e0JYzs7hK//DGZN34dd3dpIuH0HsXu/loKBryMTd3foBO5GdK3b0Ap7gTsXi5AxRCYRhSHWaRL+LNbm06hj4yuxKZby3kSrEA1RQf9+DrxKtjOLSVkiNiOkoV8WdA+DgH2WD8L51D9Q5da3OLzTHYsDjyFrRbtSNZ8ip0zcq8B/7mdIuvQ7DKpUR8zBXXAbPB46JiaSfk24fK5UMFC8hq6JCQoD9+N+1efQybqOjVNXgQE+6k06BGKZEr9XonbE2nx+7/yG1cnwv1q2U/+zDEEs5WGgkN+oaAdQ3tNppwxycHTCgM8/gEVeF1g9VkB7ex/kJCWgMDdPCuAVCtMe1O1OZmW9PpyOhOBgaKXGIi0xE65deyA/JxePJYfmRpmuo7y25/TPcSD+IbZ9tVEKhKgLiDAYQrkvJhOInuJzqSvFK69sZxBVHQKITjmTH+J4QyIbvby8SiEc+S6IgGMJ5ZTpc9AoIRVxv+0v5rPE79w8FOTlQpGf/1pB4NhlIBxbtJTOiTu6B3pVasPh7SZIe/wE0d9veKPAi/JmOgaG8Fm3GyZVLdWiAhl4Y4KIMkBJ7NXA2nzlxAFx4exdoqmp8asekkkBdc1ziVBgsF189+Q7bRMxAcI99OvpE7B1bQXt3euRcErG89yiPa7c64qC0pMR5GvU0taB5+RFMDTShamHJ0JXLoJd50Gw8vVB7PnzUgPY9JcjIV/7AtUcwAy90eTZ+OnHkjJXlicSrSPalbTliMhjokgk9k5SVwZcnjVVnFOaAxUO+9+4KwjtkcNilbcibI0ZQ/EDpwHKj0GeDSAciPB50ahkzSbhcox2dZ/cB+7unrDUbgdbC1cAeqiaeQ7pL5KgyMuDIi8Hivw8aOXlAPk5MLIwhXfv3jC1MEHqs2hkhN5GWmSEVA9Wyhjx9seFtG6w94zDE5PdqJLvjaCTVyQnm5lYGhXKCDujj3Q6qBjkxKACnXlxHAqjdMxwi/NkeS4jwuqaibzudVFwqoNI8TzlmBSuWUlUcAygiPAyogTYwEh0jpnFYbaYPwfOHYYOrv3gYFqInORUCY5XmJMt1cYp8nN5QyCf/50DrfxcmDrZw7dXT2grCpD+PA6pt68jMyb6dY8Es3d6IMk+DRFX7ktZWDYNk/OdTjEz2SIclE4bgxPiPqPioWGhbhwKM5LlcRwZlRY7AvPBWDrB/SAab3TuaXiITj4zCqxtp0MmJ2aMGKDiv1p16qHP5EEoTK0HeysPOKTfhlZKDPIzMyWeF77kN3nP/W7tVx0+7VsjOzkNmXFxSLl1FbkpKUWX516QZ1iVe0NLS6qFf1GlO7ScgmGeboLDhw5JfCdxz3Nv0JAQofIM5tD5ZVBLTuQPHUR1MoGoAnVNi163ORj4E+/Pc2jMMQglZoho/NPoEVEBzMKwt4OY2Vi3fgO+P7UH2SkBcHdyhkNWBHJS0qDIy0VBdg4UOTnSf0tZcknO8GcudBR5cG7bFm71aiIt6jkynj5G2r3byM/KVM93Ne+CNXmo0xvPbZ7BJDMPSdFFDXbYvI9BEQYy5cQpAjSo5fWllC/kq7rgFM9ltkpT7enreF/x93+WA6+S7XQcKRvl3xwNeqLSRIedwWCWnsnHDzlVdsbkpTPh7umBF48ckJkFVC18DD1dHaAgD4U5L/e75NwU7XHKliIZk4tKtpao1qsnDIwMkB71HKkhwch4EqkqW17BLvZ00H2rL2LN86CrHYXLR85LsoZZLtbHikFBylMa1GJjLcJV+V2oyxD+1bKd3w2D6mKwm98bs2xit2g2EqUdwJ8cydk9sC+cHFqirq2RxOe8rGywKltHC9JMbuQVID8nu0jG5BbZMJQ1lDPSv/xcWHi4wLdXd+SnZyDjRTxSb15BNuH5b4KaeakDzGo1RpgiGzeDr0trJ1JPLC1goJlJGLGxLoMhbJSrroEu5ZWm5nGv+oKY0ZX3WFAey8AUe+uIwW46mrQTxe721AFECxA1ULtufcyfthgZqRmwMbdEVkYGtAoKJJ5LFfGKAmjlFyA/K6vIjuE/Bk9e2o5KnerQuBE8mzdBZswLZMbEIDXkBvLSUkvrUvE9qNO3WlrQ1tGBddtugIWeJNvFRBfL4ZjZFmU+9ZY6FAIfhQEi0a4ri8QilF2O3lKeoynYTb1O/orBbqLbNm7cDDffxrA30EN+Th60CwGzSpWQyX5GCgV0FAppryvyC4C8PGm/S/Ilp8iOkeTMS72qq6cF906d4ODljozoGGQ8CkNqWKhU3lrKhikj35U2kLGzC3Tfaop7oTeLWUS5yQCbWB5AuUM/RV3ZDVE36voulIXvFce8ngMVDvvreVTuI/4Jh/3DyePx/uAe0NW1hLdtG1i9uIXc1FTkZ2ZJ4zIKszIlyHthdiYUWRkozEyDmbM9/EaMgKFWIXKzcpEeekujw17J2x8XX+Gwy5nzv+KwcxyNYaopzM0MJIVGRUchSyVHvks8zy76WUieZ6VLvHesWwteXd6Hrq4OspNTixz25+Vz2OV8/29y2Bm1ZZCBDnuj95qhRq3aqOHbGb5WhshITJGi0uS3rhagpSpB8AoAACAASURBVChEYU6e5ATSWS8kz6V9nwFFNvnOf2mo8n5HeLV6B7kZmch6EY+UmzKH/RVftzqHXX74f5vD/vvFMyiAPqpYukORVwgtBWBqVAlZ6enQVhRCm7ENFAL5BZIDk5dJ/hbJGUnGkO9ZGSjIzIBWXiZ8RwyHo6crcrNzkfnsCVLvyhz2MkjVCoe9DEz6Hzrkr3bYGzVujA69O8PDrRWsrG1Ry9EUyC1ANht6QQs6WooiJ4aGdFa2JGO4z5WyXSHt+XTpn7WPF6r17Q0DHW3kpGcWOexPVQN2r3pVksPesC9izUocdh7PQOx/k8Nep05dHD9/Gv7+beBuVgm6WtqwNDVDYX4+CnKKdKnksCsUkm4t0qnkc5aqTs1MhyI7Hc7N30bVDu0khyczManIYY8v3Tm7LJ+J0mG/dTNIgrf/Wx12Teg0TQ77+UvBiImKQVzMC+hp60JfSxe6OrpqHXatwgIocvORm5Eh8VuS65JNI9OpmWnw7tcX7m/VQW56JjKfM0B145VjDF/Hf8lhf687YK77r3XYmVxgXyMRnabOYa/m648hH4xESPAd5GYXOepahVogQN/MuBIyU9Ok/+Y+10YhFHn5xTpVsttpx2Qr7cciG5Id9P3GjoGVtTkK8gpLHHZhbv3reK3u75wEoPtWM9wLLUEcMmnGYFOFw14ejv4951Q47H8PX6Wr/hOQ+LETJwK9AH0dfVS7tQdeGXuQsb6fxqcytLNHzWXrkXz+BLQcqiD+2E9wHvAhjO3t8GTPd4g/I0Lip+KzkE/RZuhVBFvNQtWnvti9fPsbQeIJU2XGWsymMjr6b4bEEw4kZgkkeGK3HlBkVEL8kglIvhuisQZX/hJsGzSC5+jJyIwIQ2LofeQlx78BJP5nJNVIx7kfjv9PQeKnrZiHpy5P4BayGjXvTkT8qQMlMDJCJ/PzXvv1evQbAtNajaBnZIioPdug6+xbZki8x6ARSGy/AFrOpyVI/Oj/ckj8/dQnCE5+hmZJDfB82RBpxJIE25Pgey8hfMy4vAa+x5cSsPhLpD95CoeGbyFs7acwa9apHJB4D+gM24XomqUh8ewaLGazKiDxr/0c/qMPeFNIPFEwRFVRx8iJepmZ6Xeav4ueS/vDSbcTzuyqj36GYxAvwVZfQlVfwlbFMUgiE029vOH38TKk3TiPzCwdZIRchNvgcS8h8evLDIlXBO5HaNVo6GYFYcN/MCRe0zx4Zjw7de6CWwX3YZDaGd5pCUhcM1gGgy+CZpcVEu/8Xgc4dRuIvNQUxB7bB4WxNVy79vxTkPiDCQ/xzdb/Hkj8wCHD0M+zBmL273wpx5V7u4TPBTL5XhZIfNWPPgaMTGBRxR2Pvv4SxjXe/ssg8ZW8LdQ2Tfw3QOI5iYd9NMSeMeog8UOHTkL295uK7UNRpijLEN4EEl9r5VYkXL8Cp3db4sHKT2BbAYn/j9Zn5Vl8hcNeHq6V8Zx/oulcs+YtYDbQAo/ywtEg/Aj88yJhdmAgMmW1Psrl6lYyQe01OxB98gQSftuDmp9vQtD4IS+bzjWFa+DEUk3nTD78Hlsu9UbdQT8j2ppN56xx5+z1/+mmc0uXLcejxxlInTu6TLNM2XQuYOk6hK9ZAh0Dfdi81wt3Zo4uY9O5Wqg0ejnC9IMQG/T4jZrOsa6cUOD/1KZzI2aOBxoqUCttNswv7ED0+jdrlGPXpCk8hk/G3UVT4dihFzJeJCDqh42o5OIKq/YD4ND8HShy2HTuS41N5yLrtYfV/0jTuej8BJxKO4Pm4f2Q9ElbKVNeHvII/AgWterhzuwPUXPZRkRuXYX461cqms6Vh5kV5xRz4K9uOlfF0wvdF/RFfkENZF4egPbmqxG1pmgMZFmJTedqr96GiB1bkBN5H96T5uHqyD4lTecGDoeh9f9e0zkGRNivQ06E17KJ5Z67v0Anry3s7xnC8KvWKuPVysp3qenczE/xYPlcqUu8tnN1RKyaq6bp3EakBp0tV9M5li6y/ExO/4amcyyHZLPTsjSd4ySbnva+iFqnOi2krHwWj3N+vysqdx+EWzPGwHvSfMQe24/Yk0dg5ukNmy7ypnNfIvHWjbI3nXN0hMuSLfBpUvamc6yX5hi7f2PTuT5DxiB1/gzEX1VtgllevnOvaxtWQujCCWjw1U8IXToTKfdDS5rOeXgg8Vb5m8659hoMy9EjsGX9quIlshyHfRRmzlRtllfRdK68b/HPn1fhsP95Hmq8wj8x1m32x3Ng184Ze5N+QH/9vSi85YFmyRPx5Je9pdblPWs5zL28ELFyHhJv30Tj74/g3tKZSLpdVLdSNNatLTyGf4h8XT1kPAjH88K6RWPdei/Bi/wbiNscgzq1/rfHuj14EI7Tt8OQt30nIjaX7nAvZ7yBjQ3qrPsez377DU+/Wl401u3TDQieFPg/M9aNdWeEV8mpLGPdWndqj7wueQh4sQS+j+4iY+PgMn+tHOtWfeEqRKz7DLFnTsK+2btw7PEBgscPLL6G95hpeOQzCt7VsqEfHYHYY7+qjHUznbAHD/2M0bSeHuYHzijVBPFVY91YHiKvg/tPGOtm6WqPrc+2oknYFJhs6420RxFl5rfyQMd3WsB12CSELp6GlNC7qDppPrJSM/F0a8m887KPdeuCpN5rkel0AEl/xL5yrJumjrYVY93e+BX+q0/4K8e6ERLfbWo/PNXWQuTXixBY71tkbBxS5udnJ/gq0z+DvqMnkvdvQF5yErzGzcbNGWOQHln07XBuuOW7XeDUrSf0LMwRc+oM0k7s0jjWTb/xYdw7cv1PjXVj/Tindoj0bxnrtvrgJmTo+MDsam1UOdXptTOixefglI86a7ch7vBe3N+8FuY+1eEzcymujej1p8a6uc7bgP7/AWPdNOlOdY1yJ06eiVbO/rg78dWTPcqy6aWxblMW4eGKeUi4fhVuvQfBwLs2Hnwysfj04rFutWpAO+cNxrrVb4D8Qf89Y93GTpqJ6HVf4dlO1X5OZeFzqSBJr6Fw6tgNIbM/lMa61Vj+FeJOH0fMoZJJEBVj3crD2f+8cyoc9r/xnXEeobqOiezsSgOenV7lpGnmKjuFsn5PnL/NZl7sZplpV4hftHejldl4JB6ajK5OG5C4cZzKtR36jIHN4InYsdMdjrgBB+No1G9tjai9O/F896biY2mE2Ez4Cn+ktUa3Hgo8fXwD+QovXDH4FJZpVjix5lfMnzdHaobCxj1yYlOTc+fOlepsykZQzPZynJ2ceCxnnTKSLRI7m7L7eXmIjW3UdWtlUy1mm/lTTmfPnpWaAPKnnDj7k81dgoNVO4kzqhsUHQrb2wpEzNHsROoYGsHnk/XQ0TfAvdkjkcdGI7q6aLL7GO4tmSEpPTmZeFSBRbtBcH2/HdJzspEZEgZ9XT088rfB8a3fYO2alVIzsTt37qicx87IhGuJz0wYGZu+yacO8EQ25eL0ATZ3E4nvSuxIXJZ3wI66dFLVEaHL7PAq7+rN+kDen42h5GPO2NCEjjDX9867rVB1mA+0E5vBO8IB+ju6Iich4bXLYe15nfXf4fHRE3iyfqF0PMcm+S1ZjzvTRkhj81w7d8dFo5k4FFQHI+YGI8/8NJq7t0TM5Ujk37uPwrtnEPfWEmQ2uI3Ofo1Q3U11Xjyb+7AxjjgpgTWnbMZCB1JOfA/szM8OyuqIQQ2x2/JrHxSQ6v3UzRinY8OSE/EborHHsg6xoSMbcXXt1hNLbn6KhvlT4PLHWtzf/GbGBkfMVJvzBR5uWiV1ISYxUOI8eByuB3ZTeRwtLW3YNmoMx8ETYfdWLcTdCUfcqZPIOLu/uNu/zYcbEFG7BnTNzyHswB3kZGdL+4iZOkLi5cSsE5tNrlpVkiHg39nYkJMhxOZ7/BvfFTNVFfSfwwFNsp2TMNh4TtS3LJNgDSb1j5yIPKID61DbDXZNHfFs92T4m1yH4bedkZP4ehnDazmPngv990dj+xZbpKcBjsbPMHS8FqKWjELcqV9V7mfsVBkWrfvAo29vJKWlofDpcyQe+PYlsicJlcevQrBTJ8S6fIpbXwThRtA16XxOgGBDT7FpIr97NuLiODs5cawYm41yOsg/IdvZ3I4dy6kT5US7hA6kOOaMEzImfzEL1rVqwS2mPyqfH42I3ZpHoorPwACIx6yVSPZ4D4/+iIJFVghM9FLg3dQT9+ZNQMrL0Y/K8xi4tegUCMcWzZCRkY704BCkHdtZ1EGezb1ekqmnFyxmrUKfwI7Sbxhs5bx4eQNgpc4yNDRUaWzJTC/tM03NK8sr23/55Re1Dbx4fzYuZYMvObEZLt+D2ATwyFcH8WBCP8n+KC8RxeD/xRZE7PwOz3dvlC5j4eePqtM/xY0P+5a6tk3dBrDtNw42DWshOTIaSecvIP30XiTfVbVdlOuxb9sFioH9UbtGNdSoUUNlmezhQHnPn3JiLT8bwfGnSOzrI9ptZX12NmRVN2O8evXq0hQS6lU5MePMtcn1cIOGTeAalYsnK94MFSiu0a7x23AfPw+PVs7Di8tF37pLn0CY1HwL92aOUDmcPV+sG7eAy5CxsK7pg9jgUMQePYz0i0deGxSrumwbLqWEIzzsfvE12QmeHfjFhpcsbeGkGbHJMU+kvmXT3Qr6ezhQ4bD/PXyVrsoOzuo6nbOLIo1mdgGVE+cFs8urOJooMDBQml0qdu+m88Zo+tQ5s2DQ1wC5hblwC10Jh2Qd1Ho6Fc9+PSRd3q51F5gN/xBBRhF4ftsbqQ9qIjvZHLXqKtDAeBfuTS7KOmobGsKm/8c4lfcRnkYboemwg9A1jcCRJfvBpjjGLka48MsfkrKgUuAceDlxLB0/crGDKpU31yp2JX/x4oXUqVdZi6qto4vCgqKxIuy4yo+/PMR7iTMxeR2O2aCgEY19Bj7o9Irjzxgg4TgU0QjkPNPajRohP1YH2VsWIe7iebXLdBk9F3bNmyF87jik3L9XfEzNNd8hPvgGor5ervY8rylL8cR3EHS0H0AvLxYRhaG4uf8yFi5YIDngcqKRcOPGDckpkRONCHbw5U85sVMwjT/+VJKc7xcvXpQmD5SH6HyrCwKwgyr3qdhVlF1V2YmfxqecuG52Er53LxQDlw1DpCIb7yTNheftyXj0GuNO39IKvos3QktXB/dmjCg2vhk8afjjMcTs2opEbW9cyeyKg5f80LLfbTytPhFeltVgcq0SVi/+HD37DECX93qi0LQOsm3PQD9SgcGDBqiskUYCu8mK3zB/z++Y34GcGPhhAxcaGCLfaYDJRw2+Ce8ZNGDQSx1xnBCVJ2clK4nviDBPUcawQea6DZswc+/HMMp5B1VO3UDyt+qvq+5eZt5VEbDyG0T9fgaRX5RA6GgI+36yHndnjlRrNOgaGcOqSSu4fDAWelVskBgWh/wH4ci6cABpTeYhvOo9WOWkIPjoJem2NBY4i1ccrUO+0shmwElOw4YNA8f7yOVBoQLQ1oLUsZqBugr6z+GAJtnO0UN+fn6SPJET3y8DYeL4MxrdNEYPHP8VFoMsYH5zDvDQAZ21JyLyp9IzzEUOOfQcCZNBvbA761sgqi5MUuojM9ESbZpao9LVbYj8bEopplrXqgOtvhuRaumJQoOfoUgshI+ZI1LOnYbCvwdumKZAW/8yfltzGDeCimRiTk6O5AiKoyD5TTNYSH2mJKKY2BWf8uSfku0MgHPKijibmsY8A/ri98jgyYWga3ha/Rl0Ti1Do5SNSPv+4zJtQB0DAzhPWILnVc2QapaKhCxLaKe4oSDPCK1qeiJxxUeIO6z+3VnVrA3L7qOgW90LOXm5MEnOxIsDu5By/Qyy42LhMWwCDHt3R8fWTSUdS91fp04dlXURrbNhw4ZSU2gYmJg3b57KlA+lTv0zsv3SpUsau8tT7tM+ErupMyjOdcuD44d/OoXk9Z8i+tRvZeKzeBAbktVY+Q2SwiMRvmBsMYqB5SA1132PBwsnqS0N1NLRgV3DJrAd+BFyHM2Rm5QNvagYpB7eJo1Tzc9IL76V24wViHc3gzbyJd0vJ9aIS+OLhQQOv21+w3IbW8l32tHiBIWyPjztqaVLl5Y6nEF6OuW0x+XE0XFci3x9Nja2aOvTHI8XjEJuYmJZb61yHPes3+eb8fC7HxC9vWTmOX/vOW0pbo0fUIzSlJ+ob2EBy2bvw65bH5j4OiMxNBrZt28XIXs4o102JYnnGVjboOqq7/HVgS0q92dAkEEPMaHG5oa05eRBOqVOpY9SnoRPuRj0P3hShcP+N750ZpzVRZvoLHGUGSO4cmIEj84UMz9y4v9TiKjLYDILvGDhIri19sbG+FXobT8fUXsmoY3HrzA/O1OCuRsPm46Fa+ajQd/G0HHTBowBrTwTOJk7oMYzL5xdNgd1HMyR7tkdh6L643G0Od7qfxT3crbAJ98RX3+yQRpjZW7vhWbvtoadrS0OHjqEnKxUpMSES+NnGBVlBj2gdgNJIBTk58DGJQD6hUm4cvEcHB2dYGrtjKy0eBiaWsPCCDh05DfUrukPUxsXZCbHwsLRGwV5OUiJi8Cd27ek2eLlIQZD1GXUaNTTwWKpgpzoYNEQ5Lx4OXFMFMe1MKMnJ44KCQm5hyNXriPz25OI2aoaceWx9t0DYfvBGOSHPUHqgXWIPnWi+BJOgz6CRaO3cWTuVLi/iFS5tku/QThS0BGVXN+Bb4tfsXHKCrxIzUPXHn0R9ewprl0PUuE7a4wY3Q0cORY6Onows3VHQtRddHm/aGTaoGHji3menvAMXbr1Qv++vRA4ZjLSE6PA6TlWzr7FfI94GF5qX5b1HZAv6uaXMhDC33PMiZwYKKHBIWZFGeiiocrRgR/MHo2MgHRY352Dms9PIHXLGI3L0dbXh8tHi2EaEABF8Gk82LK+aNTMS6q5fjciMitj08+6yE2tj8bdb+KZxxK8yH6GHmZ9sW7uN3gaXoSm4H73CmiMPgOG4PDBA4iKilbhOyPwF6/ckAxV5V4n3z9dvBCJSUn4cuMOFb4vWrwMqSkJ2PTN7lJ8tzAqRMTDsLKyWeU4Br00IVEYmKLR/OCB6sxzBq64ftHYo9F5OvIS7mW8QP3Qekhd01etQSAu1NjRCb7LipT93amByIqNKT5Ez9QMjfb8htvLFuDGnXsq+z1fWxfPrJ2l3zmNXoZ7lYcjJvUQkPsE9jb2SEjTgsIuGuZxOXgUUfQMK1aswPKVaxEZ+UjqJh2fqQsr43yJ7z/+uAcXroXASK8QWfnaMNUvwIRJ03Ds10O4HHwfJvpFs24Ts/SkDuAdWzfGR+PHlovvFSf9/3BAk2znKDHud7Gut3Xr1pIzRQSGnHgcZ5W/36kL2s3tjPyMOrixvQ+G+a9F6tcfvfLh7Fp1hHbPIdh5fBscmlXGc/NnyMhLR0ZeBmrb1EeXpPdw8pPpcHkSWnwdQxtbKLp9ioMxfmjYJw6pjy5gzcfLYOvii94DAgEtMyTkxCAz5Tn2b90g6VQ6ZOxA/V7Hrio61d3eEOu+XIV69erD3M4DhYX5SIt/ggaN3saqFZ/jvU59/jHZTuOdweJJkyap8IxBRNor4qhPOl+Nm7yN8zlXoYjtBJfH+TD6oUeZkFNOw2YiytcZ0yZ/CJ/qfvBt4A8zd3OYmJnC2coNVR7q4MzGz0vp1GI5E/8Y1dYcRaRJFRz5dTHq1mmC9OeJSI98DHc/X5y6eAC//35cGlfL4MecBUtUdOrY0SPg7V0VM+YuVZHtoz/8CNW8q2Du4hV/qWwn0ky0BZVMJkqQ6BERtcisPIMo8sZoM2YvQPXgEMQe/vGNP1p9cwt4zlkDQwdbhM8Zi7RHD1Wu0WTfadz77jsE/XFcI9+9MuNh8XZrPKnzLiIzUuDq5IyEp9EweBQG91snocjMhNeqndB30sOadZul4Kpcp+7c/rX0u70HT6rwfctX23H61HEc/O1sKb53atsE275R7T9Q1odnc0uO7VVHmzZtkpxzMYBGWcJab/nv+3QMRPzij5D6oCRrXdY1mHp6w++zzUh98gxhc8aodOAnWqfm+l0IWTQFt57EatSpRg6OMG3ZExHu1ZCqUwA9ha40Ttgw/BZcbv2B/JdIItcuPaDzwTh8u22dik7dvGEtlixditCHz1V06vyFS7Bh/ZcIexxXSqdOGx+I1q1blvUxK457Qw5UOOxvyLA3OZyRZ9HZU57PCCgjtsz+yImwPnZUZ2ZXToTGEVJLgSwnOpSEQ3/7424kv5WMm2nX0V5nBfJDOqKd72lYuxniYtglzJg2VZpH26Rpc+jbGMDC3gKV7V1Q1c4f8XdfIDfrbZwMqcVBnKjX/RzSKu9BymUFgvefwMOwB9DRM4C5tRPCQq5JKABmRU2snJGTmQRTGze0adtOWtbJEyekYxOi7sGwkgXead4SHdo0w+gRH0jH52anSkqw43stEFDvHcyfNQHG5g7IyUiEkZkd0hKeSk7nHyd/RU2/kizwm/CdAlVdhNTHx0cS/KISpKPJaDZn3suJSpsoAgYOxI7UdDaN7SxgluOClBWTkPASwsjz7Vq0g8/HS/FbsD0O77FDQ69QVDG+CZP0e6hkqkAlB3vo+PjgxMLZcLhbAiV0bN4SzwJm4kaaCZybP0F66Dls/WIT6jV8B7t2bJKmDjCzIuf70KGBuHbtOu7eDYGugTEykmOhra2DWVPH4vmzSGzZvqeY51lpCfhw0hxU0svD+i07kZX2Qur4bWLtXMz3M6eOokZ1rzdhd/GxnGktQjT5R2aXaXyKAREGTpgx5X6XE6+zdetWie81atVBlTFesCvogOrP68Bk34DingviIp2GTkXV8eOwaKk5FEk5aFXtEswTzsI4KwL52VmwrlUXSY2HYc+B27Cpk4y7Bl+hsokL6unXx8qxnyMtVxupLwMo3MN9BgSi+/utiiF3ZjZu0Dc2l9AmM6bPwMZNG5GWnlm813V0DfHjd1uxcN5sBN+NVOH7yvXbcXDvt7hyI7QU3+s2boUdX2+Cr7dqAK8sL4HlBCLyRnkeMwEsiyBaRU6astR8R54Bvlj5YCXqx82A64FpeH7q+CuXoWdmDo/py2HpXx3h88cj4cb1UsfX3rIPL+4/wLntG9QaF83feQtnDeci2y0HIUbz8Xad2vCEO67su4h8PVOkJ8YgMa0Q5hZWqN+gAX47dgz5hVqwNs5HTr4WtHT0sXHNMsycPhlJGYXQ11aArrmRbiEGj5iIXTs2IiE1V/p/LS0F0nN1JEOjqv9bGNivR7n4XpZ3U3HMX88BTbKdCBFCj0WYsDLrzBI0jmSSE3UsZVNAx3qI80hApZNbUNX4EVz/GKARumvToCHcZi7Hz6d2Y+2XX6JqNR94+HnDsooVTK1NYW/hCE9dX9zbsAq2QWek27H2N7/RaFxT9EW66R54+T3H0Q0HJRi1h3cA7gSdkxBPOrr6yIUhXjyPlHRq9+698DzmOS5fuqSiU7t07QFPF1vMnzsLZnYeKMjLRkbSc/QZPAYN6/ji4wXL/jHZTuQf0VNiQIT/T3uFpTZyou4lAm/K2tnIsHSG7vmReF9rGiJ2lJTlqds19l2HotrUKZgxe6za+c88Z+/GfTjz2Vw4R9xWuYTSYa9drzm0+i7CA91vEftHPEYM7iEFeEaPm4j8Agts+/ozie/jxk+QyiiePnmiolO//OITHDrwMw4fP68i2+d8shKP7t/AL4dP/aWynRMOxN4vygejc8jyscmTVZsk0tFkNlqepW7V5j2Mb9EL92d88EYfpLaurhQAd+nQBmFzJyD2XOnSRe/5awHjSjj++QLNgZIXkcjWM0BKZU/UqNsY3h8EYtzCCajdoBUae/nj4cMIPCvMh79fVbAsFFo6Kjr1zMlD6PJ+O8Ql56rwffuug1i6YDqexaaW4nv/D8Zh1rQJ5ZLttLHEiUZKxrGMlaWcRCLKidloJs/kKMIhI8dCcewP3Pt87hvxnY42+aptYobcoN8Rvm2jSpZeW08PDfecwIOff8G1X/dpdNh5U/I93csftZp3hEWzpnhRkIAnMWnwMDDF5ROnkPr4AYx86yLNXB+RkY+LdaqpuSVmTxuPxQvnSvpSqVOd7S3Rsn1PSadm5umU0qnN23ZDy3calYvvb8Sk/9GDKxz2v/HFM0soh6fJb/Xjjz9KSkGsD2Ht9tOnTyU4vZwIv+3evXsp54bHEHLMaGuhgz6CHK/ASNcYHQ0/g7u5LY7uW4LuXd+XYHWEdvM4OUSWGfPK1Sbj6snWaNz6BfSqH4WpRygUkdq49ONNXP6jyNjX1tZF4LhZqGSogy2bN0JbRw/6RqZIirovRfjpGDA4oayjpsNjZGqLbZtXY9uuA7h6IwQF+blIjAqFhb0n+vfrg+jncTh74RIUhQXQ1TOEQSVL5OWkS/X9Hdq3x9TRfWBuVumN3xDRC8ysqCPW1PFvYnaRtXjMFpCXcqJjTqedRomc2JmUAnrX6YOwCTdE3KpJyIx6Bpt6b8Fi9MdIcE5HWGIekkPqI/yyNx491IGDUyE4YcjeXoH+w+7i8idzYHl6PyTF2LUPQq1HISStNip57YGD3VNsnv8lEhMSMXfpWgQHXcbx346q8D0gwE+aCapEaih5npEUhe27DuHTL9YgLvZ5Mc/J/8lTp2P/wSN4/OghUmIewtrVH4Ym1hLfGbBo365dufnOUgHOTxeJ3YKp5ER4PqGqNLKNjY1LQcIZQGGmg4iTMZ9PQoj1LVR/uAm1k88gZf0HpWBd9p0GwnTAQJwN8cGKBS7SEmztAR+fQjjaZaMwJwdWzsbwbXAQR6MOIMriFt51bQPr51b4fvl2qeaTgQulw+7q6o6PF6/BhrWr8ODBPRW+BwYOlRAZyto5Jd8drY1B423qrHkqe11HW4FPP/sCc+YuQG5OVim++/v5o169uuXmO5EIYrkJn5+BDxqkYo070TAMnohwcHNzc2zYuBGLDyxHeoYrajwwQsIXA5Cvibn4JAAAIABJREFUoVs8IY8u4xbBpff7CF++GrF7t6r95iqPngvLBg3w69wpcHlaknWkIZ3VpgsMPMYj0bIu7jvOxMUbJ9GzXndk30yTYJ25BdqwMsqTIOxEk7CmVNmDoqBQS8qkt23RiN29sHf/r1KGwNooD0nZunBzqQxfvwAcOnIMOtqAuWE+EjL0pHP0dArh7x8AO1ubcvP9jQVTxQl/mgOvku3nz58HZZBYesP9ouxfIl8As8Cs+/1p7y+oNswPiGmJizvaYGzjbxC/ZliptbJm12HiEvzw+x6MHDFMyoJTX4tjnsZNnA7T8HhYH/sWTi3bILrKaKQ6tEaa2QVk5ZxB6LFz+P3kb5JOnTBrKZJeROPHH3epyBgrKwtJp1JvK0vPlHLm+OE9mDJ7KcIfR6OwIE8qI8vPzcaw4aNw/cZN3Ll9s5SM+bM6VZNsV9ZTM2AilvUwGUHkg1hPz3dx+949aDcwRNLVDvBMeIT8rX2Qm5Kidn/YNW8Nnb6jcOj3PRKKgrqBkHV2bJfTl6u349l322FzRbXhHuVMRvP28Gi/GLdtbiIr/BqqOtXHof0/4cqVSyp8f++9NhKyS1kWpuR5YXYidv9yAh9OmIrMjDQVnbrok6VSOVFCfNxfLtsZEFHXQJBz4tnbgEkfORGlyUSRs7Ozyu+/2/ATMtcuQHKIajDjVR+k0+DJsB/SG3Hf70fUltJ6necSSWjVpQdOLpoFpwc3VC4nR1Dxv0MrV4OVjgI+42Zi9c7NiI1PlOzHAUM+QP26taANRTFaTMn3ejW80KVPIJZ+vlpFp9pYW2LU6LH49PMvUJifW4rvLVq0gKuLS7lluyadSoQm7SSxxp0TofgupIDDS3Jz90Qrr7cQOnkg8tJL4P+v4rmeqSncpn6ONC8rOPu5IeGpCQpuhQLhF5EfEYS8jHSpJMF11GzkKBQ4On/6Kx12Jd9Ns9Jg4egI/YZtkWxpCQvzPDg7V0ZVWy9kZ2Zh0+6ifjVKndqvR0c8iU3H0ZNnVHSqn281WNs64NTpM2p1auPGTWBooF9uvv9pBfFffoEKh/1vfsHMHooZLt6SxieFrrymlb+ngKaBLdZP8W+EFbP2lApLTqy54u9at2kLz5a+uGt3C811W+PCt2dw6sQx6VDWzfNedDTotNIYZjaCjueJK/oISv4dBQ5XEJ8QC/sYJ1zddwFBQdclZ5rEgMGECRPR5O2myGKzMgn2XtS0hfWDVMyEkJeQlgSJi4uLlSLBrK1TEuHGN4JvYeiQQRLUn8Tf6eobIy8nQ2oEJTbke9PXZGJiotKlW3k+M7cMKjD6Lyc662wUJtZPsc6V6AbC/uTN0Xgu4ZlTp8/E2fthsL79AumHt8AqcBrW79uKpr1a4AouQFdPFyZZ/tBN8odOpiMKcwxgZqZAkzoOKPxjN7QfBeG5SUvczGyFhzHWaDbwInLSzuLbT7fi6ZNICUZOBTFo8FAySYXvSrhzSU2+lpT9bdO6lQQDlcNDyV+nyi4IDg6CrY2NyrtQ8p3QdEaKy0usadLUVI3BDdYTi82JaOzSKRfH53C/ca+z7rtOvQaoM74+tPN8oH+5F5pkfIJn35W8P7tmLWE8dAJSjHwwd7InoqO01D5CNZ9CbPkuAbfTDyM3IRuXf7qA3T/slAxvaQ9q6xTvdzoGfO+fff5FKb4zQ8T9WVIXXcT3j2fPkva6nIfke6fOXSUDX96TQb7fGSwSexO8yTtg0EYc3cfz6YAz4CTKGP6Nvyc0nsFBOXFPp+ln4/vYH9Dg+QxUu7cdEVtXq12O48AJcBk+EAm/X8GjTz6S5ierI/s2XVB97lJcG90HaS8nUvA4tx59cNdqJHIcmuCJ7UbsSZqCt13eRXe93ji57yigBQm6TiJfGXAcM2aMiizhq5sxY7qU8ZAb8DyrR49e0NZSqMBG+fv8Ai2YGOuXCpa+Cc8rjv3/44Am2c6gKh1IynI5EVFCFJrYb4IynbBjIpfaju6MTK9MmF35BMmhuWiXOQaxJ0uQKSZuHvCYuxor9mzCb0eLfs/viugWBqpDQkLA8hTOfPeo4oX7p27g5sV8JJk2REyWAcwCzsDSLAyHV+/DpYvnpPO5zlatW+O999qXkjGU6XSC2dCthLTgHxCAQwcPqKDEKEsYQE9OToSXpydiY2OL5NlfqFNfJdtZK0xIsFivzlIo8mTRokUq74MIPdo4G058g3RDF7hEjYBf9EJEfa2apOBJ1nXrw3zUxxg1azhevIgD3z1tJ75Pf39/3L17V5IH5FUVb18cmTgfL3aoll659uiLhJoT8dwlBXmZF1DfsSaeRD7ClKnTS/Gdzi6TGiUldUWyfeiQwZL8lts45G/d+m/hqy2bpF48SvorZTsbDvN51RHh1wEBAaXQf0S58Vtg8zQlDRwSiO72VRG2TPXb0PQV27/fH+aDh0I3Oh7hc0cjNzlJ7aFEnDTYsgsXRw5A0qWifS2nAm0d6Ly0IaX3OWQqTLq2Rt/uHYvtR9qh3LO0fUsaxRXxfcP6dZK9Sl0l5++o0R+iTu1aGD68JLCm5Lu+LqQ+S3+GNOlU2ohEMbC0Q05MOtCJp40jnw7Tu+co6J/4uUwNXLl+53GLUPi2H/bt+V76ftt37AznmlWQlGCFvNhUFGZmQVdHC2Y21jDKT0HIhP7IejmRQrkekef8fa6uPgopJxQKOPj5wbbfeOj4eKBeQz+MHataZkid+tlnyySbQt6Pirpz2PCRiIx4iJMnS0o8lTr1rfq11fbs+jPvoeJcVQ5UOOx/847QJHDpKFPJs2mGSPxIWJcqRpDpGNPh7tChQ6lzaGgzKjhg4CDU6tQAZ787hZvBQaWOo2BhFNbK2g7JeUbIjI9Aq57vIc8zD4m38pH18DlOHTuK1NQiB5sQ4Bbvvoufdu+Uus+KwQIKWxr9VGTMcMiJcC0qVTpfcmI3Z9b+ch3qiM4dFdGfIUKaxM7AvB6zojT6+SxyYpaaWUoGGcTGaXTyGeAQu4PyfBoeTZu3wqPkTFhHxmHl/m349dB+VKniher1asD7nWp4YRyLFL1k6GsboiBHgYQbumhVrw780zxw8s47uPMwAn5NAL/6cbh56Qh+23EYz+MSMGL4MAzq31taq7y5EO9Lx5gGEqGUcgXBv+3atUvqeE+nTE58bp7Hmn11xG7ymmaalvVdsAGLWD7Ac1miQMdYzOryfXCaAoNXIhEy+sknn2Dfvl/Qb9JgRPtHwTtxPBzDK8Pz1njEXTgHjgizGDMH5+OvwdarGcLPBeDcUVuEhmqrXE5HLw0uVQ9j6DA7fLNmOJ49fQojcwekJ0UXO+nK/b7s009haWaktv8EecjvT903yHIW7jvxG2EvC5aQMBsnEjNorJn7M8T3JtaKKq/HPcvAgtjYjxl2wi25NjnRiVm1eg2W7v8CqXlm8LztA63dw5EaploHb9e+N6yHj4JxPhD+8RiVpory6xGSF1anBXrP+RgJ33yNmL1fI715Bzh7NEVQZmcYujvjqdk6BCt2wsRKH5OqTcOJbYdKfYMMpHESAfe2uF7uLZYGcfqBnBjsYidwEU3DYwjZFY2uP/MOKs795zigSbZTtjGIKfY+oRNN+c2/8xuVE+ULG6geO/47DN41QEFuAFKOjUOTKtdh//twqZkW68/dZq7ATyFnsePrzaUelEghwpDNLayRnGuE1NgwzFy0A7duVkYCjsC9dhoSwp7g0Maf8SgiXNKpPbp3x+KFcyS0l5iBZtafTgplu7he9nBgJltsNMkml3TuRb2mXOxfoVM1yXbaJcwuinqFWWo2vhTnsXNNTGLcDgmFbu1KeHjdD1ZhBqiZ+Bke7/upmL/mPr5wmrIMczd+gqBrql3oeRBlJ69tbGKOhExdaOXEY8GA8bgztrfUG8PLSAvW3SbjhU07xLg+QF7yDdjmmyPA11Ot/GZSg0gCTqIQibYYA9rihBkiyrS1tUvNqlau78/Kdu5bTd3nKbsZ7KWMkxNtR/a1EUvQdq/7CSlr5miU1cpr2L/9DnQHfYQb4bfR0skDMd+vx4srqkkiHkvZft//bXSePBV55y7g2cZFEt+dkqJVnPQUlpGxz1GnLihs1xO9h6g2W2ZAh+g7OrtyYvCNCDyWMjKwJicG1Pnc4vvgMQyicd/9GXqVTqVeYcKHTZblRNuAtjCRs0ryruqDxnZ+eDB9CArUTOWRn+/QbxwMOrfDnp++KbV0e3tHVPOl3W6DtPR0/H7xLtq++xZ0tm5C7Onjpfiu5LlZVkkPH/lFbVp1g9W05chR3MaerTtV7kf5yXI6dTYF9xz7VYg1/LzAyJEjpaBLBf19HKhw2P8+3kpXpjKWd+SW346GNDOLhMfLiRk6ZkfF5mg8htFTNr4QDW3+jefRSe7Zq5dU9/YqIuTI2NwOrLvVLkiHg50NktILEB/7WKrjYj0dqWaNGmj6zrs4/9uP+O2Y6qga/p1KjIa/2J2Xf6OxQSVOOLScCBui0aHOAaYTz0DGnyVGB5lZEYlRS8JqiWAQlQCDCDRs5LAmns+oKtfUqFEjtePiqDgCatbGjOnTcf6cKkzPzsEBVpbWcPXxgKuPO/IVCiQn5CItIQN1a7VEZe+GuB/1O8yM0nDixwt49jQaBYUFUpDEydkV+3/YgIhwVWeJa1KWQXAvyInZIjqMhMSxm7ac2O2TBp+6cRxESIhQ0vK8AxoLogHB69CgY+bCy6t0fTx5y/PEcgR2G2VknQrbxtYWXaf3wQOre6iTtBj2TxWoErkc5l0DsefiIcTWiMHp5BPwt62BmtkfQTumHh5ccUb4Q228iNWCgVEa9IzD0HNQJHasH43UxDiVXgDK/d6zRw9kZudhx8alEtROTkQ6sIEbM0SiU04jgYEpsRSDAS0GWygD1BlvVPJiYKU8fKcSFfth8DpEKFABi5MO6JgTUkkjSQxQ9ezZE86eHlgXug6+WkPhevMpEjd8iLyXQTy7xk1hN2EhQlOyoJXTCFp3T8Ly5mok3AgqBZ+nUZfs5gPzAWPga2eFtNAUnH5uguhcQ+hbxiDR6CoeZl2Dg54rRnXtjut7zyHt5X2UfGD2ig45n5F1nXKifCHyRTTQ6EDxHE2BDDo34pig8vC94px/ngOaZDtXwmA3DUexlwblCPWU2EyKUxMof6i/dO2MUb1fAHIfNsbZba3Rq97vsDk/GZadA3HftACzpqtvRKXkgFyntmzdBG/3a4ybZ8OQ8jAWZy9ch5aOnnQoHVn/gJo4cWA7rl4uracZlGJ9vViGxewyM9YMgouOPIPT1LPqZO9fpVM1yXY68gyKMfkgotCOHz8uZavF4Dl5QPtn8hczkRNQALfIuXCIuwe9faOR9jAclZxd4b1wHVbv/waH9quOYRV3nJzvn89chEpHdiDE0BvWvq0QlJ2KNO1Q5KfGw7GSPXT1DLD76y+QlBhfauMyYM+O42KfIOpGymhOIRCJ9h2RYGJAlMf9VbJdE0qTQRrKRMKx5cSkDHUBeSxvODp02Ch0dauB+3M0N27laE7HyUsxYtYIPHv6GF9/+yPMsw2gFXYfufcuIulWMNIfP5JuR9meYOcGi0HjUM3BFtFTBuKJqT3MM5PwxMZNyuqS6Kwb+NdCi/YdMWXROKnUQy7biY4ib8WGtZTdLN9inwk5MbnCSTJEXSnRcfK/s8xUHarsTSWVJp3KQAiDgGI5K+0UfiOqqBigT78x0PntIMI2lHR6F9di914P2I0aj69lyEFN6yVsPTNPG47OHmikY4KUL2cj0sYNdNILtYsSFeQ530+dyGDoC3aMhX8AjIauhkVLA/z85ddIk02a4LlMoHDfiKMkaf+y1EBd2SPPI6JGHCn4pjyvOP7VHKhw2P+BHULnW2xSwdtSENEpF7N1FAYUXoz4ioqAmUjOQKcRq64jN6/JrD7H2KibAS83LlhjznpnM1sPGJpaSRClhKchxRlHOuOE+9GoF7PnvA4dKjqAjEgzEionZsQIIevUqVMpDrMmj0qQcDaRCDX+K2Yj0zkS67iU96JgSUxMxPz581VuT1gynVlGtEVFQEFMxSw211FegMYVUQ48jnAqTSSvM/ev9y7c/P2QnZiOSyf3Ij09VaqpZPSWjp6yaZh4LcLd2cxH3fgMvns+u/hs3C/yenfxmkQKaHJu3uQT4bgt1dKIkrNpRDOjJSoC7hUaJWLzOZ7JgAQzpzR+qvsFoPnYVoixeI6A5NmoaxAD86pmuJEbhJkXJiMrvyRA0cS5GXyNm0OR6gS9fCsUEtmQGI0GvtWxddkCpGbmqux3flfMgDNooCnzymejcU8ki0g0ILgHxGCIcsqAJp6wJIC9Kf4s0YlRt+84z54IEToxIkqDUEvCSXfv3l3q9nxPlx/fxG8px+CTNg6uNy8h7ssxsAyoCYfJS1G1sReCE+/jSkwItJ82RTVtF+Q9ugH98F9hop0oZSZzEhORkZ+PJDtXvLfwcxyPSMKF8znQt8iAS+MCnM1bgweJ99CuSif0ceqH098fR7qsqz8XxUaZDKDR4BeDJByzwzFL/Obk85J5Hp+NckY0vpUPyhpYnl9B/3kceJVsp8PFJqIijJjIIWatKV/FwBm/TTr0DRs2wvsfdkecdxyco8bh2p5mmDXsDxi4Ac2bNpBkkDi+TM49uWy3dPSCtb0rUpMTEff4lqRT6dBS9zCoSp2qTv/xO2UQSux2z/uwpwcDbTxGTqxPJ6qJAUVRD/O4v0qnvkq2U47RAaeskROdSuordSV+fJ669erjwL2jyDC3gv6Nj1BH+xQMTsyB3ZAp0KvtCmcHW6nkTkQbauL7iHFzkJPtAC1zI9gHmEFH+x7yHuWg4zutwawpdSp7C4nEQAfnrIu85XG0t/iPMkNOtG+YkVf3rnjcXyXbqQPFUj3lOph0oI2l7B2k/D11Ee0Y6h85bV77PYz2f4+Y40Ujf+Vk5l0NLjM+R6Wq1khOjJccT/KMNGjoCLRr3hHGmXnQzkhHVmwcsvMLEAtt+FatgsvRcXh0ZB8QHwv/pyEqGXbvEeORU6c5fjl3AD/s3KZyTwaZGMgXg9ZMrHBPc/+IZXS0bSi7NelpBisYRPqzpEmn0q7kGkREAO/HMhfaAgxUKYn9cFr4vYuoZZPVohvsGjWB9bj5qNXMV3qPRAm9ipR15pX0C1Db513c3rMTulnppfiu7hpG9o6o1HcJCtrWgFVuTKn3QcQK5QV1qohYo2ylHyOOeeN9KNNoM1TQ38uBCof97+WvdHUqLCondUTjgTB3ZnblRGHEbJ1Yd8dj+EFRSGvKELHumjBRQvVoiKjLqLJAlDVCyhp1+b2ZbWAXUipgCiB1RgCjiTSg6cSK8y7pbFKRMBJJaLacqDC5dnFOtfKYPzN/XeQvgw2sSROJxgNhS+qEOrMBVFJ8ZyJRkBIZoA5NwGP5XKw9ZHaEDrCoaIqup57vVEDM/tAAIPJAk/Bj9pOZUQYOlMpUuU4GHOi0MZsrdkSmY8PItpi1UZ7LiKomJMibfCIMhFChqZsrTuOBTrm6d8/aNfJc3KuExVGp871Qqbdo2QbVewXAxcYdl344B9va9jhZ6Vc8TH7NWDSFFrQU2mjt2A4xm6Jx62W5CLNPDFTwWyNcX4yaK5+dfCNKQF6HrvwbjSk+E79jkRhwo3JX18eC2b3/Y+8+wO6oqr2BrxRSCSSkAaGGJiBFEKSJvWJBEamKICqKwPXyWVBUhGvvFAuggnIREUVUUKz3itKb9CoQIJAEEhIC6cn3/I534GSyZ86cN+dtyezneZ/A+54zs2fN3qv813+tzbnoROBYdHas+ZC795I/uxwNESiXCngFPSeffEqcefm58eDgB2Odhw+IzR+8NtbZZoP4n3uuinvvvjPec/gRsckOW8Slt/0uHpu9JIY+tX3Me3RyTFgSsWY8EbFofixcuCQGDhsWk3cYHtMW3Bt3Dr8/7pn/97js/kti1/X3jAO2OjiGPDQo/n7pX2Pp0qUryM+7sW5TNfoZCMHhax7qWdUT+ntKdwGvis6ub2et15/tPQkU6XZrmqMv+5anbdLNfp+qCQYSY/8cc+xxsc+H941HN3gk3jjoS/H4g3+NU044qpHFZFPpVQ1hU43AinQ70EnWin4BqLKpqbXuHuqONYtUDtQ8Mpo85ki+xIO9YMuKgrpO2dQy3U6v09/5JmiegX9Ar+cDXn8D3t7/wINx9+D7I4ZtHnP/fljst9Of4qrHbo4vnPyZBkvOexMAAe5SIEez3Hd5yR7xoa+cEI88cl/cc81t8epdXhn7vuVNDbua71uTyZf+A7aTe55tRK/T/Xyq/PBMAnnvND86qdsBTVh+qUHmspp5n4QOtE74JM1+yMg114wLTr0gpn3zkzHr1ud9TkeFTf7MqXH2n38ev/j5BQ15oarzQyRlmvXo/gcdGo89/HCsNXp0bL3t9vH9M74ZH/nop2Lzq26I6b9vKmnYetsY++bD4skNN4j3H3PwCtPnk5BT6uhj/jKQLV9O6SL2t/UmMM4PjLLm2v2V0VBlNlVC7Prrr19BD2Cz2evAveaAd8+XvSo2mTMkHvrK8cv1Axiz/Y6NRpa/u+H38czcOQ1mgLWm3DHlu2bPo85cS6MD931vzPzCRys3Exx36Ikx9MD3xODht8fPv7c8Fd61BeVAg7xPj9VAf6UALd8DeuorUY/ulUAdsHevfBtXRzVGJUkNjiNUi8HID2gWpZZC9SHCEPWizJ1rCaYpDgqds87oUTLNDeB8jpODPoXqK+OfHSGXpyhn8/N5nzGHVF0uBY+WlXIgKANKIa8QXFv2AGuAEu/EAFYAHlJD7VNWB9X893+fsX57owlYc8MNnwFEkCEQIpVlza4j8PbsjJwMH+eO8m/uzu+zHESBN4YFx4Dhl4G5++70uZ3qEylx/6YcRr9zLqs10zwE0OqtGMCsIVHz3zm/zzdQW3nJy/ynQaJoADlAhzyYgU2CapXqa4AWR+5KPtBFt9t+xxg6bFis94JJMWuvmfH3qX+tPOmdJu4SO96+U4waNKwhc8iwDIbANQ9yZBcFnnHyBfVqCpuHAADY4R3mWTTkwDlHJUsN9y/KAFd+oP/7IKq4TJQ67/xwlBIHTOCeZ454F9kJEvnvyRwddviR8eO//XfcvOimePXAz8RjD1wU1/5f0yyft1/ett/+MXrjdeKa+66LR555NB6aPT3WG7R9zJ6zJJ5d+GxMGDMyxo4ZFGs9vCjuHntv3DTz+nj5hq+KjZZsFFf/+oqY3nRue/MczJfjSZ/khzXBeUBbzGfMAIWYBflOvtk1lC+k2Cntyrz+fO9JoEy3A/boXmu+ebBJAj7rqjkDln1GaZqg9Atf+FK876Rj4okp0+LbJ31luWvQA4IjdcucanZQcJ0vPxJg2z/ZcZZAJQEj+5saQCT2yB5OMV4wTOiZPHPKPOh0uun5hl3P36HTNrVMt9N/wIy8TqP/gAZ0bZ4Jw5fwLv7yP1fEbQPuiK0mvjEevOrKOO3rzzeqowPYVPudbWRbZPn4Enl9xn6884CD4iW77hK77faShk2l21N9VUiJrmBz2dR80sTfrRc+Wr6hnn4I3lPROemd1O3mwb7kmWl+7/2qm6aH8yVR1in9nvc9X/3aN8RH3/nBePDLH405994dQ9ZeOzb66Nfij9PuiO+c9nzDPuAQ22e/kLl3CDzP91wASL378PfGGyduG/ef/OEYNXmzWPfNB8fAbXeKWWsujcMOXpFBJiCXcLJu82UU+hfxD9DkU3Xi3lV2Qkt+LwHV+JedGGU2VVAtuE6xEsnLd/Nlq/sedFgs+9NN8dh3Pt2Y3qjJm8emn/5W/P2BG+KuO297bsqemy+u9MWesq+BL3nwmZ+8/0HvjqfOOj8e/2XrM+c3PvpzMXPH18eE7WbGxd+5IObPW75kEsuQL5gCs60leibVM8DEAUepkpFOvIf6Gs9LoA7Ye2g1UPCpjCtjJEjVrCFPa0IbF2inOoGatowvml2R8soeTTAu+0dBcnSzs2kZe9k9dXECSgE6xLi57ikvHllYBlnGK3XWufsIgCg0zk/zAEowkFDQ1OAM5WuyV+b1QGDJPW8QXJNyAoSkDC4jxTFJgSwMpOcHwuQbqOXnShYUIIeFMqPENYhj4LJ6aA4cp49BTDXyyK4JUXZfBjjvPPgMIyX4T9HKgSq6phYZMjIv6kTbFfmXdbbNGsyl1qwAC207X2eavS8y8n2GUHfeye/ZIn4+Y0WUuGzOG661cXz/ZT+Mh669p+EoFhmg7Bp6QnAUrYdUdocjbv+m1gJjy1lMOeCur7NynrLYFXln3yH3VCDi77JIwIbU89rHshIpgI5eOuCAg+Lc//1pPPS3+xp1jakxduzYBsj1op12jXETx8a8QYti1tyZjX4Mo4evHWOGj47Z02fGFY9eFUumLokH77g/7k/0ZsiuTeYaQDZ3B87+hi6JZYJymq9Vpg9l8ry3PLji+3SejB0Htx79VwJlul1gCGwFVLJtzQMgnTmXqfpX9k9wd8IJn4w5T8+JRbmeCdm12Gb6XVaWY21NAvzQqoF4gie6nZ1onOmdO42heU7sA90OYEhla2Ug7d9U9ppz7XmLGokCjvMA7sq89TLdTrb0cwqgtOdkiSUR8kOQTbdf/Ktfx//ceEVc9tNfFU6R3RDk8WlkM9k1bC5MLPpCHTo/C/hBpnkgpfnCZKaBGN2eotz7G32CFZgf9CjQoKjssNO63fWKspt0pP4GwJ78sJ4F2Xk9evY558eEpyIe/eYnY523fyBuHzMgTv5MOtCl2wEQbIE1KNGg3IhfBQTjz0hyLHliSUy//p8xcKMN45oHbmo0VUwN9sb+IfdUAsGe4eMAUvID20DZZ+p9Sahowpcqv+jqmid3ayk17FelovneP94FhqXvZqcgZd8/+rgTY8rZP42n/3hebHrCN+LORdPi6iuX73uUfRaYpdyU72jvWIsjLmw0AAAgAElEQVTWO3YOuZP/I1Mfi3t/dWXc/fH3FD7iiEkbxohXHBrz935rTN59SVz4rR8911Q6+5K9w6b6yfeQkl2XoLK+UsxJ6+H5k4q6Kun6e1UkUAfsVaTUgc+g2uabZ2SX5VwKtmQZ8yM7EzRFxfVZqL2u64xPWaDdfF0OBaDAxpeRy2fcix7XHARLaFIpQyUIlW0Q8KaCSspW0J6mE0bDwUl1aF0Z8XMgiowq0AFinz92xv1kqjX2SQW5DJgmV5xBzlS+1qdovpgOFK1Mu+C8zJlovgZ5yqxAdFMoO8RZdkjAlEe/GS9BHKAlD6C4B3kXZX1WRu4AkXw5RHY9BgGlLE8TZ5A4W95HqssrJ807u/jiS+KRkdPjJ3POjpnzn2xrmsMHD4/3Dj86Tj/++fNSiy7AYXBPXalTncYBC5yOfNMf11PfBpwq6toMPCury2zrof7vw4ICwEGqRlPwIvvF6OaRepkUQYy1ni+zcGnvUsAA+Cl6p/n5cqA5LgJk86mqY6wB9wJspRw298Eacs1UBp3c/a2otIEOS1EwuyLv+ju9K4Ey3c5hxrKwVvLDOva3FN3WZ2WzHYnIpuYzwkVPzPa5JltgfxWxdfLfp9MBx3yDVNkHsJ5+Bh7n+8hw6IGFdHwKTDQfAUynM19lul1wgwWVr2X33AJcQbRAOD/YJzofyFn1aFHgCACdrrHn2eN8U8qi90XfoduTf743hu/Q+UoN2NR87w/ZbiUURXLtDt1uTvy8fKmE30u6sE+AjDxNnFytAXTlfOB55FEfjne/4q2x7ou2idNP/3Khvs3LkA/DB9JriQ+TNZHbZpvtYqNNNok/Xn5Z0ifyviSZ9Fwg31SCArAATE3Rq70PtqqooZx1AyDv5JDhL0p0AOpkntmr/LBu6BffzR9pfOjhx8baDz8a2+y/T5z13VNXCOqL5k/u9jRwUOlGti4P2+fwePDjR8S8BFNt1KaTY+R+J8aAvfaI4eveH7/7wSUxO3FEHyaqNQQEzw8sAn5yc/f75s/wKVKn/HTyPdTX+rcE6oC9B1cChVqE1jHKarTyxxaZnmAM6s9BSQ2/54wL7DqZoW6+F1SUgeMAFTVV82yCkFS9vvlR8qlGHe7T6ex6NncBrCx7KliVmeDoMLx5Grq5Zke5pLIeri+gwBYg/05SyrO5c8jQgQVbDMNttz1Pm8o+o5wCgk5p5muUfUbmFMpeVL/X6ex6Ni9rNnXKgb9jCUCnm8+uzb5H8UOsAVipRo1k8fkffjmunXdDnHFTcdfVsm39vnHHxIUnnpc0XL4nSGf4AWAyVClgRW2ggNF89SxoHpx931WuUhTgyrp3R80Xp7eoHEF2i3OX6kpvHfvxXvJ1nJ5NNsvelcEC2lV1jNtRryjEnBwAU/7kjOw6QE3rJk8N9nf7WKMkQEoqEwBAkAmoO9m281b67mfLdDvgh27n3KeYI36nvKgoM6RuWUZTEFDEkFkZyaCz0u2CO7o9pSeA6oJ0GfJUltw+lMkv6segHCfFUFmZeWf+SJFu9zycfrY1D9LRIWyqjHVRg0zP6btsaiqQXtm5670DMJCdJPfUyRoYAmzqK17xiiSoigkpaQHUT43u0u1lWXZ6D7sOoy8/NDUFUrGp+dMFdnrxLrFowfxGeSNZKDFKMZNWVu7mJXFizxU1i8M2yxh4+WBeoA7ox8ZIJabYNcBE6hSalZ17WZadfwCcSyUY2H9rPpUQGjJkaGy//XYNm2pPpI4grjrv/fc/PJ79+ikx45qrnvvKiHXXixHb7xXDXve+mLX5OjFm5JS49JyLY8GC+StcFoAtw54C0jCI9NEqAi0AiqnTnqrOvf5cexKoA/b25LVSn+ZIF9VOcpahjxRSvg6VcefEUnZFzesEpYJq6Jta4CJgoN0HkGXIqD82bfORHM3XAjRQXCmKL/oTI4aOn6JAuU53ZNez+ZU1/YMeonqlGobJPpM7MCGFPLq+4JPTx7kg/3RTnPakDonmbGFXQPKL6uUh1d6zdZNStoyfjGJRCUJ3Zdezpy06jsbfZUA5CKkeA4AhAI/sdEqeAwYMjG9+77RYa6cx8fVrvhS3P7F8w8ZW0n7b+APi1m/dHPfdu3yvADX+1jhDywlOZYlcW0ad3BmyFFCjQR6Ho6jrvgwNEKU7hvvKsqearbkfUBCdM08l9zcBvYxMkY5BfZQZYcSzrtCdeAb3FIhzupQY5EuDsntYx2THAUplPu0Vci1iLtSNcTrxtvrWNcp0Oz0CvElRZNE82VPAXBFl3Hqj2zWG9a+AoBMDuMrJZTPpmxS45D50DMZRqtwGe8fv2dTUAPaaL53WHaNMt9MxAO8Ug0Ftrkwd3Z7qNm2ughg+DB0DcCgrJ6j6bBrwsqnWA92O+psa/C9yxwBLMR7YeKBx6shY1+tO3e76RVl2f7OeMfBSWWbPLTAj93yZSCYHet9z+5f9rcocLHsH5MnGA8Gt1yKQg24WGEtqpVgEeh4pHcwfuZvdm49U1FC36hop+lxZlh04b05knjqOGOjHfy/K/FuXbCpAQsKlaE+UPcPue7081r19ajx65udj2ISJseb2e8bwl787nt5sk5iwxTPx2E13xZ//8PvkJcgdAM6m5kF42XygIjCnyCZrgJ0q1VlZmdffT0ugDth7eGXYIKlMqGkwTmqqGeP80BiKoYNMlykmRpJyFvQ7451TkMqYlT22e1EiDKcmYYxbWedNTjZ6ve/kh3p5dTwQ6SIUsbuy69lc1FsBNFDyUwM1WyYjlW1BRSRzWYGiTAtqGEMnQJa5kfnoSkDG+eIIZE1eGIJ847ts/pwG81J6kEJwKVHPJCgvukZ3ZdezOQpmU0CIv2flE7IcKVllJxXIZKeaKbnGa177hjjg6INi3vj5ce6tP4x/TrshFi1d1HJH77X+K2LxOYvj6iv/fYKBTApgStZIFkDgl2Jk+Cxwxz7k/KSywNaJuXOsigbng+PaXcOayHdOz+4FEacfrNdU0Et/6DjNYcs3ScyuwbkAVshmcKJkB4uAvFJHY/fdG7Knb+zBVCPK7PsyNOoozYtOyg/z5hilzqHO1pv9LfNaj1VHAq10OxsISE7RrOlbe9l+T7FOMinJCNozmDTA0SL2R5lU7RXZfjZVIM2mpkAz10DxptvdLzVvQTidSF8VAfMC3lY9VlZmFZTpdtcFwANCUmUrmEVATbqd/kgN4B0dRfbkzabma4WrzF+gyKYKnPS2UCqR0h+upe8OuQvKUyAOkMLv2VTrLjW6W7eXZdnpdsEuQDV1LjyQCDBK7ilmgedxDUAzXetegPUi/6FM/mTFpkrWCFbtsSJ7Yh1bJ2xK6h1bx54pf/xxdn8+sz3Fp+iuUZZlx1zAYhC8pvolWcNKw8ro+oJmz69cVckohkeRD5J/xuHDR8QH9jsy7vrN9TF0m+3imU0mxOiJT0fMeSJ+d+El8czcp5NikWyyltnUFMDPn7XOi/x2PrVy3nr0nATqgL3nZN24U1nHeH+X0fWZVPAINRc0QrtQoMoGYEDGjIJ2TQpA4KxOhXOteQUlwoHloKOK2byyhzJeQAU0nzLEL8uIUf6pxizmJ3Bwv1QjsWz+3Zldz+7BQSrKeGrogX4tUE7V6ZAJuXsnRXW1maMlkAO4MP7kzinTfRZKS/nJpgjwUZB0EoZAq3cCDMisQ6AZyTzNuvldU5TkKuCmbPNDrRMDxkAUdcru7ux6NicgTpHCZ6BksYvAFM6t90aeZcHcq1792njLu/aNtbYYHTc+eUM8NOehuGX6jTF17qOxcMmKZ+6+eN3d4tBh745xg9dqBODqtjOnsKxm1bNw2DkYqeZt3iOmBUplUTZOh/IUfa6TagiFn5NT1BmZTuCYFWXSBRbo5cCLskBcOQYKLKdYPR02BMolfZD1aADkyczLJKg35VzRNYIlGQmgUqusAgffPbBIUtk2eweTROYsVb9Ptpz21BGZnZR7fa3ekUCZbqcL7UlrOaUL1aHS7bK5qaM8m59InTmbCmSSzbR2Bc7WPOaYvgsaX1nrAFV0WMCpoIUj7h6ytmU9QwT2dDsfQMCaGoJcgXqq6avP21/0T3eDU2W6nU5nU4t0oeZx5M5elulDmfoMTGUvPbv3KYhUv09fS0jQMT6LOeGduj+9AKyh2/UJSPXnyOQLWJbcEICkmFVZUMgmFdXy9oRuN9+yLDs/TKDl+VOlXFgGwAvruIwxYu1a7/xIQaj1iO1Bx5OjAE8ADiTF9GML6HRlTdmJBeTJXpYljASzbBWbmrIDdLaSROvI+04NiY3uDhzLsuzmZI3a90X9klDnrU9/53sXDf4gAIC9Y3szm8qWs6n8R80ygXruJybgv6657h4xf+DTsebaM2PWAzPiD5f8Np5+ek7hffSSsqbZ1FSwzkewj1LJoOyidWf4nrd3dcDe8zJvNF6DMKcGg4PSSYmlDJmMte9SkgLMoqxxdm2UHQ4GBc5Jt7k5zhwZG59BU7OkHhAQwMgWod7N82UMGTZzLKphEeBCDouQUdfr7ux6NmeOPBkUUXs4/AyMACT1GYqU3IEeRefdNsuHcyHQ57D5rvfKaaNoGUAMCFRLtfOuCVCp0vyNwwDtlVHMHxuS3V+WQK1xkcPnc92dXc/mYj0x4kUDKs15I/cUOi0bIEsGofdTNiZOXDd22vnFse/B+8eAMcti+JiRsXTw0lgyYGksWbY4BsXAGDFwZAxZMiSmT5ka119+dWOvVWnWyDnmvJC7d5UfssSuhUnCSSkaAJyiY946qYpkwMitaGiUg/KYOhvZd+xZz+vvVajAggSZd04AJwIgRcco0UG1E9CjYgq46RrBeqtGdL6fUQplzlNH1nESrXPOQ74+M3t2e48uApTVY9WTQCvdTgcLBmQNU6coWK90u/XIHrVal+ynIBxAl3VwZo8FL/aU73OwgeMCeoF9vmFc6i3I0rGpgLRUiZPv+DtQoKxxon4lqY7hnX7zrXS7OfIN6PYUeCgwIXdARtHxq81zVtvuWgJWASUbK2nAJxI8CjzoF7ZP8zXMnyrZYfrDD78sVVtP3q4FpJWh723dXpZlNzd2kj5mO1NDcEnu1npR2Vfz9+wfGe4XvehFDR0vwSNYJBfBONAEa0FwKbNvr5WBI9m12RbXZFNTpW98R3IH2Kea7bqOz7BP1kB3j7Isu3tbw+RQlKAASli/njvVjyg/fwGzNc+m6rvCpmZHHmeNXCWByJrtm/rY4/HIw1NWOOqw+br0FP+VPcYqSvlc9iXwiU0tKp8QU2AS1qNnJVAH7D0r78bdZFzVxxXVc9swHAuUlSJqtdo3xlDmmiLpycH5heRCR4to4gwgBQVtLaL2UPwUcVEdXqefCbhQ1GHUvQAglK46r/z5n/7OQGneQulqzlJWJtDpuXMqIckyMNgVqSMC3ZMhNs+iGjufYciLGpN1et6uB9UvC7Y5p1gdqSPpfN/fyJ1xgaRzyKoMjAU/wx2BsmhxDBw0MEaOGBmPP778Wepl14J0y+DJGnOCUwZMcyj7lbNXdryJPZFiRFR5lq58xlyKyglcT0aag5Gq1cycIU4sfYX10R2N5oqeC8gjw8NhK8rA2QtqF62Nov3g+vaLPVuPVVcCrXS7jBGAkz0qAqCUpLEPdEx3NJorkj5gSiDI7lirsvepQYcKUFKNxbLPK7UpYyN1egW00u0SD4ASz5bqnC+AsH/5AuReBRzs1DMIaul29pJuT50E4l58MH8rYwn2tG7HCChrdEtfs5dFJyEAmwA7wFPMw+5oNFf0nqxftdF0O7mngkad4jMWSVHTX9dnu1KlmJ1aI83XERizqUX+rKamfHLgXFFj5qyxKtp7Udlad8zdNe1BYA32rNMaUkO/D/tQZr3Iz5IE1NcKEF6PnpVAHbD3rLyfu1vZMW8+JOPLUDB2RRQswUQWINhgXanxaufxBYEcZFlCgW0R5VbWFLqOzpQKfLN7on/L4vXkKGtSZB4CccizuRcZcBRdNYIyDDKqVTK0K/OMwBnzFrCXdeRE+YR8y9QUDWi5ddWd9V6pe3OYi4yEzwOdzKmoKaPPcCzIm7G37suoZSsjb98FkAhovWv/FjkNUG/7M2PFFN3Xc6WOOlzZeZZ9HyBIXkXAILTe2rJ+i4JimQtoO0dDJqy7QSrUSowLbBQOTRHgIPMgWEB1LaPU143munOF9a1rt9LtACC6AzBY1IFcMEG3yNTaO1VYTysjBaeumDeAgE1Fq08NYII9aO75Y8ayzwtyAIf+7cnRSreTp9M0zD3FkjFXNpe80dfZ1u4MIAVWgAS2XuBR1MjMvNgsWUzz60u6nV8FfCrzrwRm5F1Uruh5+I3sqr5I3XGiQLPM6GzyxjBjU4t6QQDo+ShYgPZr0ejORnNF96Q3yubEh2FT9TIqCtr5DGwqtgKb2unjXfNzl6nPfELZ/yK/Vpkk4Mk6yJ8f33zN+hi3ntSuy9+rDth7T/aNJhVlxgKKakOjnnBMiwaF7FpqfFBHiwL8rj4qGjYKLcoZlL8M2WV0MzptEUXVPLq7KU7Zs6rfSh2fl31Hox9GjLNfhPhD5TlYPocqV5U6XPUdUPycBMoR0iwzW0bvY/zUC6caFjbf0zUo8N4Y6KNlXfRRtGQ9MEuKUGyoLoMIPJIhEOgX1bZ15RnJBg2bIy37wngVzYVjAXSy38qAFCURqQ6yXZlfu9/xvsvq0GT3IOoc5DJ6JOcCeKg21/5XNlNUL97uHH2e3LGOOHXkqQld0ZAF4Gx792XOjgCn6CjMrsyx/k7fl0Ar3S6Dbt3Q7UU0W09p3dDtQFmNxmTEOjV0X8bmYlPpQza1jDLPptsX5lwU8JqbYF0WrTdGK91OBwnY6XZZ3dRAb6fb6SPPLGCrQh2u+rzKAdlULAYJE7q9qAGdudDtStbYgqLRm7qdXyBoLxv8HL2Kyo4QVSoJ/LR2sB3sj6KmelVl3fw5pYho2IBY/q7yslRW3Xckocjd54rqwX2On9PTGersmcqauvqMkhlrWFlGmZ+pzxGbSh8AwquUorYjf6UjbCpfEnhQpsMAanQSn6eMlSeRVcbebGd+9Wfbl0AdsLcvs45+A6JfRIFzI2gk2g86X1GTqGxCstqCd051FkgUnQNd9hCyajY6ZYLWzhHgzJc5OGpVzZGy4hQV1b64L1pOWZ1vRwVccDFOfxmKKBujBti/ZWdkymgL8FDPUP6g2oKNKrVz+alRrCiNMhb+JU+Z3dQxJ9l3BY3AHJ9pVbfIwGuy1ltDNkDgV2Sszcsat+bIvYwe6TqcL2te3Rwjan125QggMsRogUKrF7M2OYt6DBQN74fcZY/Kur8Cdjh9PZ31ap63915WNsOh48TKuANNUtTV7HocVGtITSOmDdkz8EVHU5WtNdl0qD4nTQ0qhhBdU3acELlz1oA1ZfuCc96T5Qe9tafq+64ogVa6XeAoYAOyCVCKhr0r0KDb9R4Bnsv8pTpwt3oPGsCx9Zg29Jtgg24vA5w0qWID7Ec2tWxf9FRPkqLnrKLbgSAy23R7GeiPHs+m0u169ADE2dSizGCZ7HXUp9vZVOwyup0upJOLhgCT3IHgRUeq+m5f0O2t6tnN0xqnZ8m9TIY+I2jjn3k/bKp/uxK8AwEkbthUJWNK9azRMsAJtZ1Ntd/KElTq3gXDvTnYyTJml/3Opupn4bP6RRUNz8OmKg3NbKo+SmV+UtG19HbwHsUNmtQJ0mX7ywYgUL8lNrWMLWp+GBL16D0J1AF778n+uTtrKFFEW/UhBoxx1+AD2tvqCCUOC8eAgyBzhcZDAdiMWQdnDjZHHbqHfipzKbtJedjwNrpaOEq7VWM7ykEWQjOuVkGjzxYdZ9PTrwI1roiCaC5QR3LnpFXpQgqhVh8O7BDIq6sVuMsoKB/AUFAHrK6aEQNuCCwEQWSOhi244pxwUsoCJ/Nj4MgdpbKoSVEmU44KQ9zbo0pWgKNG7hy8suOWPAtZcgo44bINaPJorDLanEh7BYWU8dN0LOusKoC2NzhxjCnQTGa3CjuF0dK/ITt+r0ymvZn1ap4XynurvgUCCYab7MvALNdVx6YOkq4hRxl68gZyAOvInL7C+iB3e03WyhrXLApIolkRvSQAKnOg3c81MH2AkRy/sqZGgqsyh6+390B9/+6XQCvdLqCwzmW4MdhasUUAVABsNlUQCEzU24FuZ1PpduudTXVv4CvwjwOdNeuSQQMqsqll9p50BJl0u3Vcxt7xWdnR7qYzV3ljVXQ7GZK701aw8VoNGT0/dDvZ0hV0O/YenSMABPYJngVJfCm6XcZfhtG7oIPZcGB6q7PFsR4AsHR7q6RCX9HtWAmtwEn192jv1nqrU0r4JrLhAm4+DTkDR+0VbDZrl29Clrrzo3hruqqniH3FpgpUM5uaavSYf+8yu+4HhC8Dsfir3VkK12o9Nv+dH9CqHFICjV9tzbf6rH4ObCp9waayp+TNd8xsKj3FXyF37wmox6by39lUCQsAOh+orFzCc/CF2FTXwhAtO0aOvS/rJdCO3OrPdl0CdcDeddl17JsUIEPTalC4UDvBY1GX+fw1KAGGiwKQ0aJYs26TNr6AFRLH6YC+ckIYxaoZs5NOOqnRjEVw1WpOlEvZsVmtnr/Tf6fQyKRsZEd1ZOeTVqVGCsQFM4Jx/02pUnqUI0PH6FDCKHmCFYFLWcaweY7eKRql66Pvt0JQOR893ZiwTKZVsgLoYihxjIhyjyIaZf4+3lPmIHOYOc4MG4eOYyeQtN8YwqybcKtgMbsHUAVVzzXIvRWQ1dtZr7xsgDoovmWDwwAwATZh9lRB+TnSnDVOg3UOACRzgTPmDbnTM5xrsudU2HtVz5k1J9kh+6OVjvFsMgXAsHqsvhKoottJh44REGalTVUkBkCnCwSFgkM2lZ3ATANQWevZiQicdDZVgO9vrQZgSgM6GWE2tVXfCxTzrpwL32oeXf17Fd1OL5M7HUG3V7V7WFV0OxAk65wtSCczekoQKRtML9PtApeqTDf6i9yBinR7GS2YbPqabkd5x6osG042IHfZabXKZSzI5utY65odkj8dz/8AhADLJSAE54Bxe85xtK7fKljMru+0ITbVewKCtzqhAVDTm2y1vHwF5K0SK+TOpkrEtHpH2fX5idYkcJtNtS7tFzomO3mFnmFDM5tKNkX9LfLz1uUdtR2Door+EKzzX+vRuxKoA/belf9zd2fQUUNbDd2O0XCdsYk+XOW4mFbX7MrfZeNkdhm27DiLsusIjKsGXV2ZT1e/k52b3er7stnq7mUR1OMV1b61us7K/l3tLpBEjR+5l1Gt3IszWtT8ZGXnsjLfFzx6llbDM8rE+CH3KgFkq2u2+3fGUpaL0dUsh+xbDY1pyroKt/p+d/29StAui6EWGNDHweh0bV3VZ+OsoOsJiFCIqzj21ol633rUEqiq27Fz2FTAHZtaNcjrtIQBq2wqlg+9V0Yfdm9BWk92s6/6vFV1O7YgmyqTTbdXBfCqzqPK5wC5dLtsqZ+is+2br9VXdTufrFXwJdjzjGQvASSz3RtD4K/cABWcTW2V9TdHYHMVH7mnn0cSrRVjBsjBpgKalNb0FssU6MKmCvzZVABLq2GPyt7Xo/clUAfsvf8OnpuBrDbqXSs6qi+orUOFkg1HL+tKrXpXHh2iD4Gm+NHwqlCIzRW9r68OdEYocqvmZTKGjAsKIgqRTF5X6uralYMMJqqeAFDQwrmsska8p7L66nbn0enPVwWpIM1qH4EPnCU1ea1Q7U7MFbLNGAMWvG9yr1LPJ1BQB9lXh1KXKplq7BCZPtlDVN7uPoUikxenBiUYYKBLcxXACZMCLRTYUI9aApkEqup2n5d1pNuVjrCprbKsnZKyml3ZdNRjwVRZbWx2T5lSGcm+OqrqdvuWblezLtBnU7uzQ3wmL9lK5Xt0Ox+Gbq+SUOjrut26ZfdbDUwFcuf3kLvSsyoMkFbXbfV3gR+byiekrwWDSknKBoYivwcztK8OPZ7KelFl8yZvNlWihU1txXjr1POi5bOpEmdsapUyBXIHpMn216NvSKAO2PvGe1huFlVqknxB0Ez5qUtCa1fvBnFvRStq95FRkKCDaqDV08gwtkJys3uYU3/pKmmeRWdSN8ssC+Q4GeqtNDBSc97poRbM8R8cOl1EGdWqR4D0dYcukxWQRM1/FWdJCQDgAj1awAmVr+LctvtenM6AUQGJRn0EEFQBZgALjDZD19eHYKTszPjm+XPu1O4KpMlbr4quNPcrkwl6pa7uauhl1DkU6HpVSnOwjujBetQSKJJAVd0ukMsCCtknup1NVdbRyYFOT7dj7QBf2dSypq7N9wa4ab7Y10c7ul0gJ4BmU2Ug6fbuOE+efqHbs8ZmbGqVBmb9SbfTm2xYlaFPD5tKv7OpGux2paliq3upibcH3Y9NrQrMaLZoD/aHwTcra2LZ/Ax6OZE5EIJNxZRtlaVvVwZOgMlsqhIGvom10YqV6T56TfTU+fbtPtfq/Pk6YO+jb79KLVjz1G0w3ZM14EJhtTkpgirGKC8CiBqFos6FY5DReCjzqlQeNaQoN67RnwaaGMp5lUFOjBAqGqqWGiWUeYq7SoCXvwfqNYYFmhiDq9YdJRmIUPV6wARrB82zvwy1WOigVY9pUUPKkKOEqpfm6FrzAslWDRlTMkG9FvRpsKPxjbpTTjpHoRUtNbseQEudV3/K8HKoATtAuCqDHthrr70aukFJjkBDAyhU4lZZktT1Ne9Sj6o+MuvszXFpp8wH48dPPWoJtJJAO7rdtexpNlVmStMyIBKb2pUjGjnMnGc1u2yqelC6nU2tmslHZ/V5e6W/jHZ1uwCGbmdTlbZkNhWDsKzRZJE89Aais9hU71EPHckGNrXsFJDm6/VH3c7vAwhV7c8CMBGgsanAU2AJm0oXd6VUwfUE55lNxUzIbKq69yqDH6ZEpD8NugGrsWrSzJ62PvmP2OsPTRQAACAASURBVHt6GTnKkA/SlfK/rIkxm6qfD6aLd9gOCKPxX28dD9mf3nVvzLUO2HtD6hXvKRBRa9ROvbSAgUPAMaAIKAQ1eRQ3gwfFo0yyrriOcmIkBXocctQZ39F0SuBJaQtC2xk2Owo8VLo/DnMvO3s19Uy6V0NMNRjhmKERU7wyx7KRWZdPmRoGEfqpCZ9sIgYD+rH3QMFyCjmHOn22M2QPZAxkb/rjQAstO3s19UzZ+d2endHjDOhmqwELh4yDxmlk/NQryqAJ8r0v65Os/A0QpXkfoKtKtr95Ln299KBsLXDG0P2rBg3ZtegJx7wIuMnRdTSu5HSgIZN51tGW3K13DaLIPusU7zuaQ3Fy3L/dMgcdbrEz6lFLoKoEuqLb6enMptLtdAebCkRlU615zZ7oHqw3az07EYEDbY/4Dt3OprKnwMV2hvsDBF2nP46u6HZ6xf7ObCo9QldknfnpdjqD/mZTgSLeFRmh/rKpQHXBIptKt7d7rnt/1u30MSC87Ai91FpSiqQrP5uqtIs+Z1M1kgPu0tv0e9Ylnk1Vow2AFaizqYDuzKZiB5pLOwPjBHO0Pw5JA3u13V4YAmw/mU0laz/0C3mSOR0jQ67RIj0D+CP7zKb6PF/fOgeotzr9olm+bLP1glFXj74pgTpg75vv5blZ2fS6aHb1mCIbmgJl/ChUmzvrVm7jy4xl3Zs5H5A99+wKugcsYOA0E9HUoj8PdbPqwbracIsCpXg5DjLCWedsipahk6FkCNXr6WpLyQpeujKAA+iEatIAMP15CB7RyrqSxfLc5C2YzDrzc+AYNs6eNa07v/IRwbwMM9prVzI37mVfkbt6vP48yMWRRxy7smMOy54x62ZLv1iPdAFnWQDj+qjtnGuyz7rathugZ/eXPRDAqAesRy2BdiWgZpmOqVJzmro2XS4YpGsEh9Z81q2cTbXW6XaOe3YKSLuBYnbfTLdrjNbfa0lXVrfTMWwq3c6m0u2CdLqdTc1OvGFTs1NAALddGauKbhfgqUO23quyxfLyypI4Ejr8GokFNhVIIgFBjwNP2FTyZlO72ocAE0JvBsfj9udBLko7JN3aCZqzZybbzKbSN3x2NpX/mNlUPiSgkE2laySG/K4rAzijR5B71qPvSqAO2Pvuu1luZpxp2cd20dKeejzZLsG6jOeqNDQTIfeuOlzdKQvN6ASMatBWpc7YHC8OBrZAp2ulO/E+AF9kTvb9iQLf6tk5WfRL1Tq3Vtfr9N9lbwTqyhfqUUtgZSWAFk3HyMD2tVHr9t55I6uqbpeIsdbZ1Z5oLtfu2+M38h/5kavSkAzIygv64nM5PlepiH/r0fclUAfsff8dLTdDmfbsLM2+MHVIKEQUMrqqDgEkmfup0iW8J+SgAaCAEX1tVR0CSA6Gn6rni3anLGTRyNyPTMOqOmRJBO3d0dCvKzLLyk2UnNSjlkCnJYB+S8dUOeKo0/dOXa/W7T0h5eXvsbrodmV21vq5557b80JO3NEpAQJ1P6sS+J1/VAkf2fZ2yxy76yVhqQjUZdbr0X8kUAfs/eddPTdTNCd0bQFku7VBnXpctU2UrIYsq8vImnS1W2fdSfk4EkTAqEfB6jKUCmTZgd565ozJgB64ugxOhsBdP4veGOqAZdT9OFKxHrUEuksCaL2ZjqnajKzTc6l1e6clWu16q6Nu/8tf/tII3C+++OJqQuqGT2WBen84VaVTj68BnMC9ahPhTt03uw6bKlD3o5SkHv1LAnXA3r/e13KzVSenOZkmNv5VC92dQzMKzUg0lfPv6jo0X2mWe9WOoF2Vl9oi3fb9rM7UpZ6Uu5qx5rWuMeDqOsj9lltuafx0d2mIjIvGOxra+VmVsy6r63rqy8/d0zYVMy2zp6tzT4Zat/fOrnC+eebLdLVfT9WZ1zb1eUmxpXpF+VciqDtHbVO7U7o9e+06YO9ZeXfr3XSehd6pmWm363PRxGRyM0ROw5d6LC8BDbXIPJN7VxuYNV+VYdt3330bR7PpkKvpSD26X+4arjhOr0agi1cbcEr3WccGOYKmyjnprdauZkbAQD+rE4OhlVzqv/e+BDptU3XUVtqR6RjHn9aj1u19YQ1oBpr5Mjq7d7UpaPOz1Da19ZvF6GFP2dVOAeK1TW0t9/74iTpg749vrcKcKQEKQPdIP5Rx9t/Zvy6jFteP80rz/+0czZqKWkHYTR/Jjvspkrnfc9pS8s7egyC9Hu1JIJO7unc/5Jz/76J17vcamsns1qM9CTjuR1ZSB+LUv06h0FVYt2s/2X9n/6JDounVo5ZAX5dAZlOL9Ivf17q982+x1u2dl2mVKzrmNGVHs/UvoOfH5H+AUH5X29QqUl7+M7rLs6nN9jRvW30js6epfwXrtU1tX/b94Rt1wN4f3lIX5kjRanDhXzXvOoM6csa/jkDJzkh2/JojJBwV4UddCxqqIEZDiv5+PFsXRLdSX8mcC8ecUL7NcpeNF8A4msOPTsB+yN3/U74MXR2wt/8KINM64Tojtnm9W+veg+NOHHnXLHey9/8YDLrsr2onHLQvxfa/kTl1mgI2r3dy9x78DuhHr2Rr3X87oopjp2miNV+P6hKguzUE5DhjONArmZ7JdLurNet2sid3e6DW7dVl3fzJzKYCv61tcs9sarNut7bZ1GbdrqlZrdu7JvdMtzfbVOvdD/1iDzhmjC7PfBmy9x4ELrVu75rc62/1vASaA3a+YqbXm/WMWWV+TOa3Z/qdD6l8z7/1WPUkUAfsq9A7FaBfd911jTMx1a2oiZM1zM76njp1auPMRsgoh8Nm59RxJpwlqxuzjBcHW22Na3EO/X6PPfZonOVej+UlkFHiyYuy5RzstNNOsdVWWzUCSBR58hdI6jbv85Qrxxn1XdBCvmTr72jGruUzFC/QpKbEr7jqyFGw6Px6ho381PeT1X333dc4Do5jLevLoRPIcOaAUbK7nGd0Pd/zWWwU3dG9F2fwAk3qpiwryp1uQRNWd8eJUGfuXHS6RB2qJpgzZswI1PnM4eBcOC/ZucmCxY033rixtjniqIACIY61fbMqn3qwMrrTmr7mmmuCDrdG6Xayt769C78nd7o9O/c30+32xPrrr9/Q7Rw5oCJb4f34vQaitW5Pvx1yskbpbzrDGgXsWevOWCd3f5s7d25D/9Pb7CfdntlUa91eyXS7veJd7LXXXrVuT4g90+233357Q3c77165jCPX7AM2lc6w9gGxPk+32xd0O5vqs9Y0faU80Pe8F3a51u0ro4nq73ZaAtYyX5FvzlbSF2wkfeJUIvoFIG6t+53BN7GeMXqsef4+3W5vsAfsr7/ZO37qsWpIoA7Y+/F7RJX561//2ug4KRARVE+aNKnxO061gJuxyhy4qo9KATCQHDlnHqtj192Soyfw8TcN0FbXkTXIERBy4jQny5yMK6+8siF3zka7w7vjEO6+++6hHMF/60dACVPQHLzVuemcporWNmCD3DVsEmTLNl511VUNx7orDVyALAIg+wdAwtHWyJGxtBesdTSz1XXQIc6qhvaTgzp/7+Fvf/tbI4gk93aPOxTYCPR32WWXhtzJ2HulZwQ/HBa/W50zBWQM1ODEkdU222wTujvT7Tr3ey9k1c4AnNAhu+66a0Of2EN0lWCSMygYXZ11e2ZTBeMcXmuTbfUuMt1OVu2eZc2hps/ZVLqdjOl2Os1e2G233Wrd/te/NoJwsrIuBdt0O7lrjiaoaXcARjKbSrcLXjRXEyR5r6u7bm9XnvXnOyMBOpevYu9LHACS6HpHSwKX/I09bGewE+wmoEovGIkHwb59A5wFlvtd3ci1Han2rc/WAXvfeh+VZpMd68ZJdg46NPnnP/9544gOxq07hgZojp054IADGl1FOdYM4ep2rNsPf/jDhrP27ne/u6FQyf2SSy7pljN8BSs6xO+3337x2te+Ns4777xGgOq/V7dj3axtGZR3vetdDeftF7/4Rfz6179uOF6dHpw8++od73hHwwD+5Cc/aQQz1v7q1BRNcCgoV4t48MEHx89+9rP45S9/Gb/5zW8aDkCnB33y1re+Nfbff//G9X/1q181MpXve9/7GsHT6jKsNyCsgBo4euGFFzZ0e3d1cRYc0e3vfOc7G0yTK664osEUstdWl4GZcNZZZzUyUxp+yl5luh0g1enh+nT729/+9oZeOf/88xvvXDC/uul2ekWwYb0BSi666KKGbu8K+NrqPQF66XY2FZvnxz/+cSOLb/2vTrq9lZzqv3ePBPjN1jX9CoTlrwNf+TTdMQABwFlJIAAYxhBGbX2sW3dIu/uvWQfs3S/jjt7hv//7vxsoNEMvk3v22WfHb3/7247eo+xiEMH3vOc9DSdajRjnTlaG07eqDoH5ueee23jeI444In7wgx80fmQXe2qg+R1++OHx/ve/vwEOaEyC2rcqU4iVEnDcZFwEL9///vfjRz/6UYOO2lPD2vbOP/CBDzSCVXtPIA+tXlUHoy6jzqEAGglkzjnnnI50Da4qM5mvI488snFSwgUXXNBw6K3/VXkA/pQUAOQELnS7YKYnh+CRbgcC/+EPf2j8C0RZlQedApA78MADG7aU3GXUe2oAozKbKsMvgy/jvqrrdoE5BhNfhm4HhneqS3aVd4d6TKfQ7VgrSkqAKKuybq8il/oznZeAdY0p6aQlbEwMPuyRdpk6KzMzLEJgoAw831WmHYO2Hv1HAnXA3k/e1e9///sGMgcJluH+xje+0bGj27oqAtTY448/vuHUQwlt/lWtcZdAXRkAh+qrX/1qfPOb32zURvfmEED+v//3/xoZGfQpQQ3EdlUZAJKf/vSnjZpnlOmvfe1r8e1vf7tXH49x+4//+I/46Ec/2gAR1JRZE6sSvQx1jiOBeo3N8PWvf72RZezNgcL6n//5n3HYYYc1GCbkfeihh/bmlDp+b8EhiqRA3b90uwCiNweAjG63FgTuqJSrGlXeeqJrrCd6ntwxmHpzYJeQu6wvUNYZ7auabgf+yfLJdLOp3/rWt9qm/3b6HR177LENmwqsVEuMObgq6fZOy6u+XjUJCNLvuuuu53oUAQSxmHpzKGvjM+qBwm+XEFmdSy178120e+86YG9XYj38eQ3I1LrJpqK0fO5zn2tk1qsOlFLOFlRNtkR9rt/JFmuEg3oK1ReEUi6cdrXqUMCqA4hw0kknNZwdoALEur8bO0GZhmaHHHJII0A7+eSTG83jqg4oPTRVwKE2XeMnmRSZQgCABiKytVlDQPei2NsZxxxzTGM9oFPKDnz84x9vBFr9eXzve99ryOeoo46Kz372s/H5z3++rcchb9RGtHbvQNCvg7AeANa0ml8OmSOarFVsBeu+6rCuP/OZz8TRRx8dp512WgOsMtf+PAQHABHrFOhmLwtg2hmAOvQ7JQRopzJn1qIGW7KXAA76S4M/ekIw4v+rDte2HjgWQARUcdmw/jzodrR/2VSyspfbob1b1+ROt6uD5HjR7dlRnHQ7irfSKWscwAcQoHuqDswpcrdGsC7QxTl6/Xko6eA0C471ASB3+rfqoMsBGXSNhqFsqgCUbmdTyYpuV66DKeHa7WaOAVT2IQYbXXXcccetErqdr8FunXHGGQ2b2k6drjXOptLtdBXdricD3c5muBbdzqbS7expuwDMpz71qcZ6YIc0suvvur3qmq4/11kJ6BslsUYnY0eyWYLjqsPas975MPQNvc734LdnNpWeod+tebqGbW1Ht9NfdCC/lD1mW9nvevRdCdQBe999N4H+zsCpt5LZkxFoNWzq17/+9Q2K+p577tlwogXgnAZOm8DcJs8a0WWdVSkGyJtgx3coF/WrHEhZtyqDsTvxxBMbxliGRoOd/jgEK+RCeX3sYx9ryKHV4Li97nWvawArGhUJ5DjHnGSKNOvgrP8AZczZ5nDo0oyaxwEU5KAqoUpR9tD+VsN9vvKVrzRqH1EK1dYDaPrj+OIXv9igbHFyyd2/rYaARWZSQyGBD/kyPhw1jq6gMOvOz7FjnBjArDM/WQnk1ZLpOi+biLXQaghaZIcMTvUpp5zS6it98u/WKKq/Ugv1nEAfQUerYX/L/ll39jkqN/CDo5ydisB5QPnLupVzXjgh2fm8vkPuauUxiDgerYYgndztESCArFh/HOjA1hnWhmegM1sNegOriW4nfxRH9Gm63V7htLEXWX8BgXt2VCRdRq8rc1AvKYNPtwODBTutxoc//OHnsqEAAmUh/XFg6wiu6Qs2VfDeatDTbCrdRLfTHdnxnWwqQMRaZFOVjNHtTj1gUwWXgkzfodvZEva0CoOCY/7lL3+5odPPPPPMBnW8v+r2T3/608/Rb8kdWNVqWGd0e2ZT6W/6yr6hO+j2rDu/vZGdREHWbCpZ0T0aktIXdHsV4MReYVP9SzedcMIJraZa/72WwHMS4PMBi+gMvXbY1yrDiU5+6Atr3wkUfugXep0fw79hn4GD9IxAPjsFhG1le93bOgdKVmk4DaTXPyKjybMt9eibEqgD9r75Xho0MXRgXWQ5SzZs2VBnqAZPcM8RY5wYqa40zIHiaVKBAknpCOQ5mDK5rZrayXxxPjmQHEe04f401MtmwS8no2yQE0Wn7lOweOmllzacMU4Zpd3u4OQBWTjkHHOONGQWUNPqepw5cveOUChRnvrLkI3yjGpnZa4BD2VDdgWNVZMsxuqyyy5rrHlOcFea0DF0jJYAdJ999mkEQBp9af7Vat+hrwrWlUp88IMfbIAu/WWg5wHwBCHk3qpuFwKPcSJYA/oJsjm0dEK73crJiEMtcHLKgvXqPdp/yiFajdNPP73hyAu4PvGJT7T6eJ/6O2aGQE5wR+50fNkgHxRdup0+p9uBSwKRrgy6newEQxr9cSrJHEhYNsyZ3IEwgBmZ0v40AIJo2GTHprYaZM6matBkr5APm9qVE0AEk/aZoJ9N5WjT7fS1LH/ZYIfpdvtMtq6/6fbvfve78ZGPfCTYU2U2ZYP+pNvZVHYss6l0exUAN39tbJ/sNATvUZBPt0uGCPrLhtIzctfDw5z6k25vtbbrv3ePBNhQfiHWjT5HrRonAlGtT/6jwJwuoF8wXdthuWZPQ0dL/gBmBf+CcI3uWrFyJfre+973NvwpyQ5+UD36ngTqgL3vvZPgWHAoZKtPPfXUwhlC4DlNAgXZKRkyTYo4050c0GrOC5oexO873/lOw+iVDRRbQRAnR7a0PwzBAoeKoeYoFA2ZE3JH/RecC+yqoqjtyAFgozu3xjiXX355w3koy/Zz5hgJVCkZfeuirw/ZPhlxiDK5l5UFCC4EOEASdZCcLg50pwewJAtMNUMSpJQBJhxxcrfW/bfMZ18fQBFAnP1M7tn5rql5c3Q/9KEPNShz2CeCjK4ELWUykTHgpHu3MgwoqQJb3buLBidawzBBAGZAfxhf+tKXGrrUvFFvWwUM9rDMIrnTT10BpMruIaARlNLtHETBVSvADFUbECvI7y9giUw1cM1ap6+LBgYO3Y4KjTHis2xq2f7oyroDVtHt5CgTxqYCrIqG/UHHACsBPJ6jrw+6HcgAcBIMlIH9WDd8HjZVcgCACxDs9ADG0+3kx19iU8uSGhiH9oOsvkCoP+j2Tsusvl41CWgainnHh6HfywbQFCMTCMSHAUi1ezRqq1nJwGdH1QIMAb32VBmDju/DHvicUtd69C0J1AF7H3ofaHWcTw4DY16W8eBQcJYgZ4J6tNyeGGpe1NMBCzifZZRCTv5//dd/NWh9PttXhwyvOnWIPrkXZbxQTNH+BQdZQNEq892JZ84ycbIUnKAvfOELpY1LNE+SqRfkt2IJdGJ+Xb2G+l0yZagEDEVDMP/JT36ykVmSyRZAlwVyXZ1P/nsZMKPpmfdN7kVGlaMvkAWWQdjtk746rA+MHKCH/Vk0ZL/RQckB46eVE9Kp5wUMaAJljnQHemrRAOKQO2dJAK/EpK8Oga7+B9kReUXz9HdyV9IB+ERb74nBWaPbBYVAY3ItGtlRZOqQPVdfHQApwZ+1RK5lwRlgmW5nC9jUnmoOBZBVGoHOSu5lICQQX5BvvdNLfXVgD6DvYhKQe5G+ViZDtwvU6XYgXTu9Yrr6/Bkww6Z63+ReVgoFMDNXrEF9HOpRS6BZApIH1gUQU2BcNAA+AmFBs6SQviA9MQBPgHd16/yustgC6MAOsDtK0Pp7X6SekG9P3aMO2HtK0i3uA322gTmdqI/Q/dSQtRY4qA/lLKG79MbgsGlGhMLDuSyiq3GUZJ/RnWUI+tqgMFGg1XqilRcdswGV1wAN9Zrcu0LP68Szc9I4yDIy5F6ElnI+HYvF8eQE9bUhs8F4YQyUZUc9o6AS7dy/XaGJreyzK1UAfHCUATZkXzQcCSVraf/2xfpqzrEaUnMryqTaCxxYxtpa80y9MVD6BLhog+ReBA6iH9Ix+m44c7Yv1uDJ7lrndHtR/TJHiW5XM03H9FSgnn+3Andyx9qyXorqjcmZ3IGxrajOvbF+yDlbE3Q71lFqAALJnR0gd/XpvTHoa/vNOqf3ispxZIfV4uvlYN59bZgblgw2iGcqGgB9NhVwSL/PnDmzxx8Fe4VuB4T4ofeKBvBQhl5vmSolFT3+MPUNe0UCWEkSaNZ9EfWcjcKsyspLW5WWdteDsKVK2vR2AC4UxRlAWz4C/wwo7nv16H0J1AF777+DRlZOFklWTu2IrEBqoFDKvnP+qma7KArnuWrOBV2Tgco6OAv2BP7qutRzyRZzzigdtOoqg4MBpZYhKJoTmjkwAmqHYtxXhvO8AR7ohpRpagheZLkEDxSYmt0qQy0RRYdGl3Usz7rzq01X88uBzLoIax4le15leKfWi+uTqZrM1EAft1Y4RK3ot1Xu26nPqAcV1HJMOcipIctK7pw4AWaVRnCu4z3po8DAMI6yIrIpHLOsW7m67ayLsIxb1Q7RAAZGGROG3IuYGEASFE97S6DQV4a5cyzQU4tKWmQJyP3iiy9uyL0KFRgDROM5ASeWSnYahbo4f9P4RvBBr9lz6PTWugxylUGG5m69kHtqYDXQMZrtyOh5731lCL7sRbq9KPilQwW99qtMY5VBnyibyTrFa7YFXMoyInS4/UO32z9kQ7dXLZkyJ3Kn94rm5J2TOwCuLNip8jyd/AwmjKwXfUDusr2pYa0Dpjxj1bImzixdgNauXAwDhU3lBAN8NYei2zUbVYvqnaslrXLmMlskEJeFs9Zlw1JD/w4AOOZPXwIGyRAVly+BJZMa9DK5a/5n7lXtniwh3Q4McA0lYPYAmdFTsvjeO71Mp2NIVAVfsLjI3f4h96K+ApIUAB5gRH/qJdDJvVVf63kJaAaJIUP3FTU01IMC2M/vqXpMKnuWnf6RnXbDj8m6xNNn9Az9zp/JTl/hm1QZ5qT8DPW9yBeg09guSS29P+zrevSuBOqAvXfl37i7zCGnVNOrFB2Mg6DxCToWVLpVHaNAjuOtRoYzZ8MJCDkPnDeZE84cWjunWgCoIyqDKFAS4AtMZXg47q2aIqnHgTLKaBQhzxqpachGsfWVrqscHga/iL4MTSd3ipYj3Wp4fxSbZk7Z2fQcBs6yYAX1PusST/lyOLImIRxAipmMOMAcn1a0b1l/cudEFDnUWY8DxqQv0LQFa9Yf2qcsXmowbuQOBGrVPVt3YFlLzpNaSUCIDIj7CA7tFUZMZp5j572QM0fb3hDwAK7Q2ASEVbpGy8RwRrFGUFNTQxbe+xXAuk9vD89ln1oPaqFTQ5ZLR2p102X1tL4rIKaz0OzsbboF+AGxpy+yUxEEKcoeGP+sM78gT4DPyVC2QYatmEKCIWsdAEbuKUccKGP/eP9V9mtPvBPlG4IrazMVrHOCrHVAKrm3OtpRsEK3y4J7n3S74EKAQp7A1+xoH9fWRAiAAsCi2zU30qyObhcMFmVYMtmwCeROf5F76tgg7xPFkuPXVzKPwA92jE5OsXIE8pxtz0/urbopKzHCFmNTyVMA7n1mHcvpdvYZQKVe1P4QVHpfGYCInWVfsamc7LJhX5G7Ouuisia1pthT3mdfOOKQjaEHPBs/JTXI0HoHapaV42Tf9Vx+2FT+CsDJfTTG4isBn9hUuh0AAAjOOsR7/94FncCGa67YiqEFWFP+Y60DulMD+K1pIyZMf+3a3xO6b1W/h30MWGM3i4Ah4Dgdas3bG2WDH44hRl/wGfgvEgvZaTfZSRT8FYE7H9Ia5M/w3yUJ2AD2gA30/bLBF8KAsXck0lIMF3ab/qHv+Fn16F0J1AF778q/kZVmnAWHqQ3NKVODp4aqKBuZPQKkD12OYwzJ46R3pbadc8xAMq6o75wxtNgyJ54xNUdBClp/in7IwacYoHo+05vDPCg4wUZqCFyyY9LKajkpPfV3ZC/A5hQIuKsi+8335uTpIMwI+Jc8KfqyDIRn4NT5TJGzTOF6Ts5K0fP2xLuQ/QDqMEBF2RdrXICjpp2RKBoCEEeRCe45cYyn9clgtTvI0B5kkDjZHDXroywD7P2QO0oqBy81UM44lN5nb2Z86QCBm6xWiuEC9KBjOADkXna8Gj3FmZXFFvgLtu3nqsh+s5yAJYAWFD0Bk/0mY1jmVFvjHCTZAU54fmRNfFAO7cveHHSBd68XQIoGbw2TO7ACOFU2gG2cP86cwFjdbauu7kXXAx4AFu0zWUjAZavMjzUuaKW3U4wU9HggnH3Y246dNZ41WxJI54c1p5kcvQhQKRoAIIwUuh3opBmaNdeq43LqeoJJwT6wRaDNptDtZU1EOeNsALtC7qnj96xxGWFAjXK53hp0u3cPAC9iq1njSlvY1rJyDwkKz0W3A//sI7q9K/1igCvALb4HfUO3A2rKWFXARHK3z4pAZYCDeVr3vanbe+t9r+73tW/pYromdb66/Q4cZ/8lHcoavbkOFqrO7uwW/XLffffHmqPWitEbjY01x68VI9YcG4MHjY5BA4fFwIhYNmBBRMyOQ2Vt2QAAIABJREFUuU/NiYWz58c1f/n30cMAQskfcQM7rmt9q9Nf2F82CviXikEAAkAqQACgqh69J4E6YO892TecJM4Dyl5qUzE0nAQZAMFB0eDIoa9C42T2qmQJ23lsKBzkmfODil3WvRVq7nkoASh4flBinG3oHzCgNwYFKuCi1FLAAgcIVc8zFAWNnDlMgYxKKdAoCzDbfU5OgMCIvGQI1M+VgQCcC9lMzmBqcFLMOaPQtjufTnxeACvrV9S0x9oVxAhOiuoZBdRqga0hBsZztTo6pZ25Q7Y5izJEsnTqc4vmgrJmD3Pii7JggjHslt7q2C8bpexCYJaaI8CJjuEMl81RsKYvggx3dtQRSl6nBofF/e1JNOwiEMT96BdyB9gIePPDHGWeOfq9dayk7DVHzFrVZTw/ZFLIHTOmjAIvqKbbZW/tjypH3rXzTgRX1rqAFCW47PQPFHk/9GLKSaXP6SlrrbcacwnIAAbWUeokA4EvnUHHlJ0EIrik22WvZbqrlkJVkT1WW3aEpRMy2NQyhon7AxXJPVXXDsCy1mTZeovNY44YHICS1ADEAonIvSjwRkfXSBc7xloXDFU5N72KzH2G7aDb2VSAjbVaxB40FzpGYF/EFrDHMU6KAIqq86o/178kkB2vKGhPAU+SVtYwxlkRm80T2y/2BBYIptm1114Xk7bYJCZutXEMWrZ1DJu9MAY8OTuGLloYy+Y+HUvmzIylC56NZTEgYsjIGDRqbAweOzomvWB8/PiSs2L27OXBSYE7kJAvCeAt02ECdn4+nydVDoJJwt+VGKJb69E7EqgD9t6Re8NZQIHhYDB2+ZGd/SrLXRSAozdmTWcY7VZI2so+qiAJ4kxh2bxFtfYcTFkJYESKlsMYo/QwoD2d8RVsYCHIMqWcJE3dBAJoeEWOBSdasxzOHICijOo0YcLE2Ha7HWLes8/GwKEDY+3Ro+PZZ56NTTacHDfdcF3MmDE9HptaXsvLiUF7F8iUdX2XKZNhLKqbluUDKnBaezorIJsEnUVTTGVjOdHmVOboc6DJW5dz8m8VMMr2LFq8uGEQFyxYGIMGDYwxY8bG/feVU9PsE6iybJB37V/zTw0Br4Cd8dagKz8E9Yyc7/c0TVvWS2YK2p/Kevq9udvPRcdzCS6UsQjGoOxlDfdWVr/4vvWh5EBmjDw5MqnBaaAX7dcUmGkPWCe+bz/35EB9VnKElpjqHSFYJ3cASBHtVqaE3LGl6Pai0otOPRc7Q7comaLbi6jyABABJt2eCtrpKe9QHX1P63Y6hINqTaTq0WV2rQm6vegMe99nUzF16BrvsDuHYJDMgDrkXqTTAIeCYXJP6U/glN/zG3pat3PyARAChFSvEfLEzCH3FOOBfO1R8gYY0e2tOsW/aOdd4sknZgR20BprDGm8ok0nbxbXXXNVzJz5ZOkro9PodPrYv+xq0RCUo/in2Dr0p/Whh4znr8eqLwEAEruKBZZqxmrvsaXWhCA5NfhoGGqSE0DbO+68Kybv+oJYa/SuMfTRZ2LErFmx4J9/isUP3BDPPjY15k+fHksXpXtwDBmzTmz+jfPinMuKj5ETbAP7DIBvkb9q/7JJdE3qhAysWz4cPaPsth49L4E6YO95mTcypWgvaOSp81TRrNAdodEp2qcpUwocLBkPjkrZmNBozjI61tt4g5i48cRYPHhJjBs3IWbPfirWHDIqpj7wSDzx8LS4/rpiCnLz9RlgWX205lT2yGdtfE6+wDiVoWToGGcgQE9lBTQhUivK+UUPzg9Gl9Ok7jEFNMhQo1CiHnIKU8HE2LHjYtvtto9NdtksXrz7S+LJZ0bExFGbxILFg2PA0iExfI2hsTgWxNhRw2LKk1Ni3dHD48T3vyumPPRg6TsUQHIsBIAyBCln2QWUWJgnueaHIEDdpaxfT3Z15uBbL9ZzClSSYZRBKmriow5cNp2R5GQV1fmOGbNOrDdpg9j5lbvGgLUGxPAxI2Lg8AExYPCAWLBkYSxdtCRGDhwZAxYMjKn/eiR+feZFLZuqAcXISiCDjp1iZKCS268MdKprM9aDvQptb1XW0kl1JNADnKHapfag9Sv7b6+mhuAF9RPDA1hStRFlJ56B7iB3GfQiMEHga25o/Oi4+eFd6BGBjthTWTAOHQaSLD8mQH5w0qwVwGdRsC44sN4BF2VH2nVCzvlrWAsCJzqmqEGooN06pttT1GJgtMwxFlNP6XaOKHuKbZMCzpQmoDnT7UW6k6MKzKRjiuxad8gcuEG3mxu5Fx0LZS3Yy/ZlfsgI28v0f08e5Wkd0290TSqb6F3IIlorqZ4skhZsKno5uRex1CZvtkWsP3lSvGCPF8bI8SNjybAlMW3hY7Fk0JIYOGBgLFi4IDYcuXEsmLsgRiwZEeed/MOY1SJwV1tMx7CX5F4UyPDBgPd8rfwQwAi6gOVFerQ71kx9zZ6XwJQpUxolpsDilE2SGLD3JIKKgnWgG5ss233pZb+LrffYPtYeu3sMuXdGxK3/iEU3/DqeuuP2WLZ0SaUHXGvLrWL8Z78dP/1V6xOY6Be2ErhX1MxSIG4f2s8pPytj4WlgvdFGG1WaY/2hzkmgDtg7J8vKVxIsymhw6vJOMFpblq0TYOaH+nJGmaETYBZRusZPmBhv2PctMXyT4TFu8/HxWEyNpxbPio3W3iQemvVwbDdul7htxo2x1YQt4u4nb4s9Jr0s4voF8bvLfts4uqzVQGGFMJpjkYPAYeZgpBxXSg+dSBapJ85oVyML2KBkUllcmQkOh2Cc45Mf3hW5Qx7VNa4QDG+7XWy71wvjxa/cOzZa52Ux/Z5nY/z8ebFszoxYOOXuWDZrSgxaMCuGrjkinpk5N4Zvtm3MnTc0Ju+5WVzx2O1x2aW/rZTNQVvKOpNyQFODsaBsUw6EuXOwONo9kXmUyZKtkrFLndeMjSEbSu6p2mXOntpmzmpR8LL1Ni+MHV67c4zbenxMWePBRiPFf864KcYOHxcLlyyINZatFbEsYtAai2PgwGgE78du8Z/xp5/8prHXWjWDIWPrFErN2KbqkQFBriXYSQViSiasQSUJPUEpkwmX4eRYpIyzOZJ30bFLnFPOuL8z8K0GkJEzguYHYCEPGShNuOg4QAddhaYsYJKBaNV4C0PCWvcvuaeybgIBABxKX6q22PoTQAPi6M7uHgLZrHQgX6qhHESdt/rlIhq84AVIRLe3Ogfc89DD1pPGb5ptabrFcQRSaMBIxkqTAHXKBDiKrRqsoVdjhPh8UV8M60OWiNzzjeiAJBnVu6gGuJPvwfPYn0rIyC4/7DlyZ3NTdf/AULpdvSmd2KqLPsqrQA1gJHvlefWI8H7VmctA6X8hyEMv5cC3aqpozlgwbKo1VLQ+/F2AmSr1YNfYUva7iMbdSbnbW/acdZiyieYIdJJdT7Hx6AxyF/CmGtFiL2217bax45t2jsHrD4mbF14XW66zddz15J0xacCuscaC8TFwycgYNnhoLBmwMNYYviCeXHpfHLLtm+LPP/5NQ08XncrQLAf71Y/kSSrQIm+BGtaGspH8YNeA4VhBPaHbO/kO62tVlwBfF/DHr035DNnxxkU9j4DQ/By+wNIYFJvuunfEfQti2dV/iXlXnB/PTHmo+mT+75MT9nxpbHPa9+LmG6+JpQMGxi033xjTH3+s8DriBnuVjsI2Tflc9iXdjvmTT1BgxtJN9j2fuR49K4E6YO9ZeTcyjNk5uylHmEPhM6lMHccC8i+ghAinxsabbBqvPXCfGLfjuHho4EOx5NnRMfypHWP4s1vGzEcmxtYbjo9bbhgeO+68JG66YVDsutvCuPHOWfGyvZZGPPubePHOOzWyneYmu1XWFAeqL7Mh+yiDmhr+rlN3Cp0W3DBynB50nO4cAhSUSM+Wz55zuDgfnORU+QGnlNy9ExnH5rHbHi+NbfbYLjbd8SWx0dp7x/zrH4hRT90aC648P+Y9/ng888iUiGXLko82ZO3RscW3z48Hn32w4Xij96mbU19X1r1ZUxxylQFTh5cfHEeZCnXAkP/8kDFgcFLvpNPvgFHgRKPJ5geKJAfU86SAJ+9D5gnAkK8VYzheuP2OseObd46Bmw2Mq576e+w4ced49rENY90lL4n5MybFwGfWjdnTRsfAAYNi6dJ/33342k/HuhvOi602vzeGLXm4EdRCzrE9ACCaNxUNXfmtI4Y3RbnlwAtyOG35TJF3QubukcoAdlLujHHWRCwVkGcskiLKMmDEsS+y0mXH6XmnMpKADHIThP/zn7dEDBwU99x9d4wcNSqemD49xo4fH0sXL4611x4VW2y+eaN5GXodPWcdl/XnIBe0cvcg91RNK92j7wS55ynF7uVdkYc+HN05PI/jpTj9qdMNOHwcoFSDOevZGhT8cpbKhsDUWuQ8YirR0dnxhECNLJOJ+QE4AaDInAicvDNsBE5lq5MAfMa6VRaSOhaNfuEAmkt+kDWwTQdia6k7B1lj7wD+8oEx8I5uB5KndCEGAN0uaOSglg32w57wPLLg7iUgB4gARrw7AJVAk10TxAELBPcCevdgU8to9hhU9oS1VJSxFZBnJ67k55vRdMkDYNadA3UdkJYdYdl8Lzqd3On+FKPBuyJ3QX0+MbHxJpNj8pabxw5v2TlmjJ0e9z19V2wz5I0xeu6uMfeRjeP+GzaJRQsHxsBBA2L+vIgxYyKemhUxbvyyGDAgYr933RZLZt/QsKlAK/uKjtHLo2jYUwB7TKJU+ZPyPc9B16R8BO+U7u9uHdOd77O+drEE+Iz8XHYuxSSRuc6OAE5dRZDM76eHBq8xJPY7+JMx/Xd/jwW//kI8deftXRb9eoccGxsdfUgMfmZwzLrrAZsghmw6Ia7+8yVxy83FxwQDp6xpwXeqTIVtoRtl2vPD3qZf2Jn6lIQuv7oufbEO2Lsktq5/iXHixKQarkHHbaJU4zCOF0eQsUjVRY4bPyHefMjbY8yuYxqB+qgnXhaLHtwtJo/aOqbcOi02Hzslxo+cHkMWTovF06fEmuuMiKenzYrhG06O+cvWivFbDou3HbN/48HcixPG2Wfk0MaKakl9noOh4VnKcYO+yxQJzlPIoywEx7Goa3jXJf38N9UcMbYcrFQ2H4XT31IgCaNP7mSRV9R77f3yeMuH94v11nxDLLru4Rh+/yUx808/j2db1KRnM1tr8y1jxMe+GO96/7+Py5AlQ2XPjgsTrBY1mlPbal6c75RS5Sh6JkBI/hruI/sg85qizndC5q4hs4k6BVzKrx+1Xmq7UaxSZR9+L7Dk9OeboGyw4Ubx6oPfEEu3WhLXP3tN7D7uzTHqiVfEwod2iOlTxsRGg2+LjcY9HkOemRJrPDs1Bs5/qkExWzJweCxeY53Y+BW7xLXTr4+TP/OJxqNywBlce5JBFbAWNZoT5NqDHM1Ugy4OnbmnAAr3YCg59ujC3TUEJp5FxjWPkKPFcZRlwlMd9T2/QIPcNTpLDZl0ji2AgnP74JSp8fjcx2LyzpvHoDGDI0ZGTJ3/SKy3zqSYOueR2GTNzeLh6Q/FjuN2irM+dkY89OC/j5sRCJKj+3Ec8mBY8705wgIYIE8qa2beAtRUiVH2N0yf7qzvFTjaWwLj/ACOkWkqeBWsW1MAnSIg1vWAFkpx6FTvmN4tqgkuWlvqJwWd5ARcUNNd1iEeNV/Ab+6pzLzAkh5KZYQBCd5VdwYxdDv9zXkE2uQHdk7R37wrcrffy46PZJu8PyCqjDB5TVx33fjYCZ+JRfOXxDabbRNzZsyKMWuvFc88Oy9GrDMqHps5Pa74x5/ixz86uzElgTj7SLezRXS73hGpoQGgeWEppJ4JGEAn2uMC9+YBQBFc2ONFIHon9A7dDswh3xTTSwCrN08KJOHsAz6tqTyb7wXbbBuvPuwNMXP9GfGv+f+KHZYcEXPu2C2m3bFFzJs3IF444Y7YZpNpMezZh2Loohmx9KnHY/CQQTHvmcUxYMykmLDDC+PhmBrHHX9k4zEFF4AWzAkAtwx5UeBOJ1rLfIRUrw4lW56JTbXumgcAEjsGeNOdur0T766+RvsSkDDAPEr5qTLS2DHYgqmMte8o12kuwzxgv/fGvHO+H4//fsVSrnZmt9lJ342blk2Pl270orjl/W+PtSZvFoO33D3Gvmm/GLTV5Lj+77+K22+9OXlJ+9BalvRJ2RHAsnWe8tvpQ8/amydTtCOnVeWzdcDeg2/SprfAObr5DCqFz4ihXuc7wapxk3mH6qdqYLfb4UVx8CcOixsGXBvj574qZt64d+y48QYxYMrVseHgf8bCf5wfyxYtiif/eVPyadfceNMY8+lvxoFH7rvC3wUZaG2CP/TaojPgBbMco1TzFRkGDgQHKU+DlaHzHZmQ7sqyQ9dl3zie+SHwEIRB2PPDfMidsZcdaR6TJm0YX/nRZTHzhtkx8rbfx9zLvx8LnpjR1mqasPteMe0dB8XHjl8+8yfTrs4cnZQzWUQr5Zxx2KyblMNM4aItWVv5wVFHn+3O2l7zsnZTABQWQdbgKj83IAIjIrjktDYP6+Skc74c504/K3ae8NIY9ci+Me3ql8cmo+6JTde4McbO/HM8deOVsfCpmTF/Rvp9rHf4R+P3S2bGeT9enn0ABAESCIw0I0o1lTEXjAtyFzymTkzg1DtSxdrKD9RczqzAqzuGIFy21X5N0TcFUICpVJbA7+kmck8N75Iz633Krt11z/2x4Z4bx/wJ82PBWvNj8dx1Ys1nt42NRmwdS+atGaOHrxmznl4YE8cPjCfnPxlrxdD4+qfeGjOmL38GNaca6yCTf1ENLyDEmkaDx4rID89tH1hbzUPmg1wEFt0VPKLl093mmA9C6D2gpWxEqi4QcGZ+RcG6WluUb+U8gM/mev1NJ28RR33omBg4eGS8YMPNYsGsubHG4EGxbOmyGDB0jVg6ZGD89do/xalf/eIK8pJFodvJ0rov6g0BSCkqJTI3e1SwkwdS6FUBjr+jo3fHEGizUYLYvN2kRziWqQZJSs+sMyyBVNNXc6U3yZ2est4F2v9x/Anx8h33jjVmzopFU+6LOdf+OQYMGhRzH3wghk9cr8GoGrHu+jFq881j0ZsOjIPe9ZYVHluZQdbTgk0t6g1Bx7hnipFjD/q9tZUfAgdBhACDXLpjsB9ASbowP4ARsomy7/khmAVG0DF0YfOgXz7306/FL6afHzsMOiimXf2qePy2LWOnzR6K7cbeFOOe/ns8deXlsWjO7EJQfOKbDopbXrh5/OEPv4m5s5WEPB7PzJ3bKKsha+uBbi/q4WIPkzv7m9cj5po1gkwB3QA0IGdvnUzRHe+5vmY0ADBgpXWRPybZuspONUmdSqEfiXWdP/VE2dJ+L9s/pn7x+Jh9951dEvNALMPv/zJun/NQrHv71Hj0zM8/d521t3xBDNvyxbHO298VyzZfO37+g+82Gh/nB19H2aqkT55Fxdeyz+nYvG5nq/kL4hh6ph49I4E6YO8ZOTfukmVEUk4jJ97GTznSMnlqwIrO6v3q174Z67xky7jij2Ni/MIXx4ZL/hFj7j0nZl/5+5iXc45Tjztul5fEnEPfH8cdl6a1Z4aKkVIbV9RQg0KTVUmBCgIwRjxF0UUlkzHojnOTUXo5pJgNsgHNQwDPmeRI55snmatnoWiLOoT/4dJ/xLxfnRf3nLVil/8qy2rdg46Ov609MM763mnJjyuBoDApR4FAig4sgy1bzglMlVjIbMtgy5Q1DxRNawoQ0R1Bu7nINHLM8soesitQYCjyw3dk7TicqU7OHNDTL/ph3PbQkrj5dy+KTYfOjU3m/zbGz70qHrzogipijy0+f3aceMFpcdutK/YqcAE0Tu9dxhOVLV+j6zOyQ7JH5psH3xhx32UM8waew2ovCI5kmDs9BB8yyQKS/BB0WEsCnPywvvygkKeaQwEaXdvz/Pi88+PFb9stpo55ODYet13EYzvE5BE7x5PXzYhJox6NRTMejsHzHo9hgxbGvNlzYuTGm8W8xSNjwgvHxFs++G82SWpkDAeZsCJ6siAl61abvwZgEOWY053vpM1J93uAhGxnpwenBjMpdUKD/SeIT4FqsnJKi4po8N6VbB+d2lz+8p8f/UTs/II9YvT8hTHn5htjyX3XxNJFi+Ppf90XQ9cZG/Mefyx0EF5ryy1j6KFHx9sPKmZ0ZOAg3V7UF0OWRRYmZbsEQYLzVNNI5Qj0THcAJXS7gJYOt7abBzq43wOElWrkh98J2FOsKp/FYsvOOP/nLbfGwYceHjtN3Cpm//WPsfCe6+KJ664uXUITXvOWuG+v3eOUz56Q/Bwnnm63r+y7vJ7wJYwRwJt9lwIVvCtggrWdH7LImAfdcZwkfwRQY93kAUvPw6awrfleAJg0bCofIHXqgQDh3N9cEFOnbR7/feoWseu2j8fWAy6PiXP/Jx648PxYtqR1I64Nj/t8/G3Zk7Hby4+Nh+dfG8NjVlz0vfPjlhtvirlz5zTmbR/KDpIN+eUH/U/u2DCpkkAliYCzPDMFeJL5QKlTOTqtc+rr9YwEJG0wX1P7jH/AXqb6TbH/1nyKAWnm+x94SIyc8kzc+5mjYtHTT7f9MCMmbRAbfPGsmD90acz7xn/FjGuuWuEao1+4XYx8zeExbO+945Zbfh+337aizwNgwrxK2Sf+gMREqskeBg/gwWfq0TMSqAP2npFzIxDn0AhS8jXUujJa9ClnT3aVASlq8CAQg3TfcOesGDBtkxh41dmx+MqfxPw2sr0T33Z4XL/phDj1GyvWQzeLxxxkqymgVJf1jOaMApTq2qxOGRUzfx6kwIWzaPN3OsvOkeZMUpz5wbkXqKcUKmOM3pZSVIJ5Cnrm7Nkx4unhMf1rn4jZdy2fCa6yrDb99Onx1T9dENdc9ffSj5Onxjacz1TdqaCYEyUYydccyy4xOOoM8zRv2fus/KHKfNv5jCBD4GrO+QGJRm/On4PMyeaAex8pA2gfeGeX/+HPMWHjfWLutXfE0Ku/GY9e/rvKUxs0fHi84PSfxRvfu2LmK38RmUX3RGVNHfEnUNHoKZVl4pTKgqWy1dY/kKXT3ZzJFXjA2cwj+oJVGWj9GvLN2+gec6JHUiUY3qF9j1q6eM1BsWzbpTFp8sYx/LFXx/pzN48h026O0U9cEbP+95JYOPupmDft8RXex6jNtog1P/6lOPT/yj+KXhggSSDC2S8KYjEY1KqnGqJZd/4my9g80IyxewTIne4hIBNnndBt+YaEnkHmPNWMSkCIXZQqnzB3QSMwjdyBmsZ5F/4qhs1dIwbdf2/M/O25MbOANZU9+4S9XxmP7PPm+NTHV+xw3Swf8yd3dqoILAEqY51ompQfwDW2KE+fBLwBSs2/0+U3gm1rQBO4fPkGdokAMNV8zRrwt1QG2HN5BroLWPKyV7wmDtvnXbHg6r/FtIvPSa7t1Fqe9IET48bR0cha/fHyy+LOO25LLnl7i9zdi27Lj+22267ByFGala/PB+hqbEjH55lIwH37mt3rdJ0p/ey9mlN+CFitoRQ7SUYdmyQVGAjwPf8tt94Wa4x5aQy4d3oM+uPJMfVP6WMdi/THNqf/LK6e9a/YY8DImLFg45g1emIM2HRZzH32mvjNd34R1117dSxevKixxq1H8s/2VvM17Vu+F5uaB/8AomxnSq6ege7qiaZ/lY1e/cEuS4CvTrdIfOQTCGq8gT4pMNK6oV/4j6kmlnxpoM51N94ej//ooph67tfbnuM6O+4Ua53w+Rg+b1k8+PEjCnXTwDWGxGZHfTSW7vKauGfaTXHDtSuW4mBY8XHyTFKTwhTkJ+d7N/D3JRn5Fcrk6tH9EqgD9u6XceMOnH/UzHx2C4rO6Aoq893JZYxkKimGVIdklGNBjkB/ww03jnO+eW7c+/Ej4+n772vrqTb52Ndiwpv3iEsuvqiRjS3rmi3wY3QZJvSw/EAtlyFDkcwHiBxaQUyKos3hEIx28qxqioQS4ujkM8wyo4IQyGl+CJAFYimHhHPo+WWBOf5v2++AOGLPN8f9J30oFs2ZU1nuAwcPjh1+8OuYNnhWI/sm44BGXTSAPe4rO50CQxgGTlQqy8VB1XwnDz6guZK7YL/Iea38QE0fxEiQneAQ5Z0hNZkC3BQ4JWPNOUo1w/O+yIgj2mjc9plT4kVz14gHv/HvOvSqY+RGG8eW3zov7p12WwPISDWPa76W9Siwsh7yTrHPYc0UHSXFwAuc80dEeXZrzD7r5Pm9QB3yEfTqVt08yMz98plIn9HxFbCV6m5vfhx0z+9dHnLUEbH9qw6MGbdsG5vOvS7WvObrDbBqQYsjlMbvtmds/71z4qZbrorLL70sLvxZORtCd3hgUmo9qwcETgho87LlRKCX05l5kIW+Uv9t/XXyHFmOvfWJqp8fABDgVL5pokCKvlcOkOoGzxHi9JE7PTp+/IQ47fSfxBp3PxSzLz4znryp2vng6x12fGz9kSPi9ttvi9O+pbtvcWZYpp+OAZqlyjlQHzVTBDrnWSX0viBGgJkf9lkR86rqvs1/jm4XAKKq5juMs1HYSNg4+VpjLA7BmmBLJ/38YP8wArITNH773V/EzPO+FdP+cUVbU936G+fFpNfsEtMv+V0sWnvdeHLo4Lj7kTvjCyd/eoXrAEvIHYCXYnPJgAkK9CXJD1k/wW7er1BWpUEW/ZM6naOth8np9uyYzTyji2zpnxQ4lR2xmGJzARPpdkAQqvoHPnRs7LPh9nHPiR+olFXPpjd0zDqx9RkXxtKRQ2PKCR+Mp+64LcZst0MMf81R8cSE7WOdnUbEFX//YVz+k9/GQw880JAZ8MAeS2XS/Y1/leoFwG5Yf/nEhXcJwOMfdFK3d/V91d9bOQnQB3zZVAlbViqaP6pW4glgyIaldLv1xl7cdP29ce+Dt8fk8VvE7NNPiRlX/6OtyU544ztj7++fFreef1nc/fEVy0/yF5v40pf2LGtaAAAgAElEQVTHmKM+F7dMuTZuvvHa5f4sw27v+clT+7H12Dg6KA+M+h0GYqqktK2HqT9cSQJ1wF5JTCv3IQ4L5xN9Jp+BYXDRmlPNkjj8MkapWiq/55yi3WTj4HcfHvtvtWc88F/HxJJ58ypPerszfxnn/s9F8YqXv7xB04WSC/JSVEIX9Sw+Yw4+lx+ofhrSpI564aQKHPMOLIXIIUE19t1ODPMTiAJK8vU5DG72DM330qiLwuIs57ONjnfxLtEXm+vKT/7i12LyPdPisR+teORL0XOMWG/9WP/zZ8Ylf7uoQWFW48lZA+ykzjZ2HdlaNE7/5lkK/u53mAF5+iQaNKSYA5vvISDgBBR0krLKOQMepDLPWBbWWL5zsHpawSTnLT9QDcldsN9cMvLD714Ygy44K6b/7x8rL5dxO+8Sg479RDww5c7Ye689G8wDABPHNkUFd2HBNQdeQJYHzgTHAmHvMI/AM8xooykHFhPCexKYdWIwmhwEgXo+2OJwWDd6FmgO2Tw48xzwVDabA25/AxOzsobhI0bEj0+7KOL6q2LK2V+KpYsWVZr+xAM+GAP3fXUMHL19DFjngRg9ZI249x93x7EfXvGIxOyCHHhBZKp0wLuwX6yXfMkCuioHJL+m7W3ghOt2KsueHRMGbMqDB3S6uaeaUAnQNB1LHVXonQALyV1jOONVr31DnPLBj8X1R+4fC54sPskg/zI2P+XMGLzz5jH8nodi8drjY/Q2m8TFl/wsvvyFFbv/+q6GqABEuiQV6AEfZFNSR2OiRwP/8qVH1lEW9KRAjUoLKPchOiZr7phnrAGf0Pc51M2DXaHb7eXU8W7mThc208j/4/hPxO6xTkz5+scqT3ONUaNii2+dHwuHDo7pJx0Xc+67J8bu9OIY/44PxBNj1oqLLr0gLv3t8s2mgCDsEcZA6gx4WX96Jv9OdKWn08k135yTbhG4e95O2VS6hXxSZSX0n7KN/DGS9B82FT2TP4UDS8C7oLvYvpfstmeMWGtEvP1NB8faf/5rTLvkx5XlvvZWL4i1Pv7lGDNgcNzx4XfG4meeee67k17z+li821Exd/stY+6Sv8T3PvXt+Nf99zYYLHQ/+aWaWQJp+Wh5kBzQ5j2lAH+BPD+vUzqmsgDqD3ZUAsBA7BZMy3xjXDYVOyMFbAJq+Jup8iK24HWve0PcfM3dsfDPl8fIXfaKu56eEluN2ij+9dmj2zrabcNjTokNDnlzPPCVU+PxXy5f7lkkiIl7vzLWev9JcfdjN8T1uUw7EOF1r3tdkvpvz9Mz+QSHEhPPS9+m+ml09IXUF4s6YO+BRcAYCQBTzRmc1wqdyhsLQQIjon4kP9A9BbapDo1f+foZsd51d8TjF5xR6cmGjR8fG3zx7Hjbkc83Bco6dHPABBypDpI2qowbg5cPvgW2auhk0/O1eRw3c883IUIzFwy5lr93YqDlCVDytfGya+g9kyZNWuE26LYydKlGbzKQGgSl6gJ/cuYvYumPvhHTr6qGkq6zw4ti8fuPjw8c/W/KuMBEZpmTKdMi6EgNGXYoqIA433jLGtNfQBCaDz4FhxoG5k8YsPbcUwM731vZoSu5d44tke8QTLHLmKYaUHE2Zb7ytY2ozJwf7yXfyXnSBhvG9046I6Z+6fiYc9+9laY+8a3vjmfe/OoYsen6Me3xu+K2/70pXv+K18RL99qz4WClwDEXJjeAUqo0xXqwZlMoswCRk52n/3tWwb5ghuxXdjCk1jXZ5nWJAJWeyZd+eN/AIQh6vmO80hTMFGyYfPbprW97Rxy599vi/s9ilcyuNPVNPvXtWLTdZrHmlGdi1pINYtr6Y2L4uEdii/WHxQ+/+J248MJ0xt1zATdSR1zRqwKAvGNMrtYhYDEPsHgPsh6pesRKD5L7kKAIZR3zJj+8e3okrx8F8Z6n6CQBc5OpyzOUTvj0ybH9k0vjke+cVGmqg4YNixeccWHMXbo0njzluFg45+mY+PLXxNg3HxLr7rldvOUNr2ywQ/KDLqLbAWhFHcABDflTEqx/tfapTDBnD6Mp5eBWepjch8yN05xnYAgAZcjtqXxwKMi3NrLsefMlZcQAOqna4++fcV4M+/XFMf3yX1Sa6qjJm8Xan/xajB0wKG49ar/lQK3NDn1PDH3pW+NfS2fGMR9cvmcMgBP1FpXdCRrNA9jKpm611VYrMEfYC7YsD5BjO7BzrpViNFV6mKYP2VOCVHLN2xGAJT2XevfWf5ZBz9+TnbBP6MO3v/PAWPuVo2P70W+P6y+9IN6291tj9mmfjZm3pLtc5681ca+XxeBjj49BV98ZU77x8RUeb9i48TH+kBPi8S33jjU2ui1O+9hX4647b28Ae4B9NjWfQaRPPau1lh+eSSCXZ0XwcdgJ/lkndHu776n+fGckIFjns/NbMBSbB/3t7/nECeYUlomSiDzLzbUkHf58+bWx9G9/iXu/dUqM2X6HWPcjX4wnhjwdo+6eEQ984T9i2eLFlR5g21MviEXrjYvpJ30knrr91krf8aEtjvtMxGv3jUt+cUbMfXp5VqhkmqRa3mbxETCZUkk4toCNLmpWW3li9QdbSqAO2FuKaOU/wMgJSPJHinH0OOyMXfOQ5eBIyToyZs0DCsZIQORTzpZrHrH/h+KBzx0bT1y/PO0l9SSjt3lhDDrmxDjigweu8GfIM8RNPW6+fs6HZVlk0zn3+aDexma0UsE3miLKdJ56wzkXaHqGlR0CFD+UTF6pQvI5w/lshYCXEebo5+mSjDpwglFPjVNPPyO2XnuzuO/Eo2LuQw+2nP6E1+0Xd79kxxUokmjq6PtAD4Y/1ZWfc0P5p7JcnAfPnX8260Uwn2pG5vMcxU7Q4mXsyQktLH8mtowiICJfh2+tcLxT9GfZb4YvVROI3nzZ5X+OZ665N+7/3NGxONEFNf8iNjr+yzF875fE4OnLYuYaI2PhegPi8Sf/EYsenBdve9M+DVZJ0RGDKKDWbArMQdHl2OUBB8beHmpmwvx/9q4Cuoqr6+64u4cIEMHd3b24Q6G4u7sHd7fiUAoFWgq0eLEW1wCBCCQhQIy427/2hJfMu3khIcBnf+5aXSnJvHkzd+6ce84+++zDa6LjreinrEoELs8FJBygqLdn5kc+mGnm+8Y1LbZ449wykFJ1P3xWDNZ4jDiY1T7225+4v2QT3u76tO4FP0sV7XLbTyAuIwNvZw0DA0mLlr0RadUEapXtYen6Gm9vBGDksME5vouZQQIQdCRydmooIoFWzHKJgAODedpHsWyHZRq0qwQ3VL0LnzvvCoaRqPBOsJWOjCqQljad74G4VrgmGFzxs6oEFwcMH4xB3UfBe94UhPyVd22vgaMTbOZvgl58PJ6O6p51a9omprDtPADW7TvjzI1TWLE8Z2kTs6LMfNK2i4wfBjEE+VQFZwRDCCiL7cYUJUmqdAc+d84ZuPJ9Y9ZTBNho76nTIAblDHjJ7qF9pb2TD76bXCe0kSJbo0nTlhg6YhQsUg3gN3dUvnomW9WoBcOp85B87jqCtuZkMtjWbwTjVr3ho5+CiWOHK10LwWXaA1U1oQRDCAyJADSDQoIUZNyJ+zBLGAi+fI22qbQHdMrJ/BDXBG0jnXyxdp1rhfuVqhIU3g9LEwiSVK5aHRUHVYGGVmmk3RyCDhXPwLyKM+I9A/Fi2qB8afLY9RkHg27fIXrlslxZV2rq6nAYMhfBZVoj2fo2Di3bjQf370psQbIRVAnf0t/if6J2A/0bvgfis6I+AgM8xV74ueu78Pj/jBkgU4LikCILjoxF+leqBJSZ4KJtEhk8XBNkn7wNjYXXpj14syXbLljXqgOL0fPgXM4FD2YvQPCve/KcAG1TM7iuPQiNjHQ8H9UDqXHKgMInT6CmBptRK+E++DusWqjMQiLbl/ab/q4IOHAP5r4kdnegH8o9uLCOPc/H9sUHFAbsXzyFnz4Ba/34sjJTJW5yzGCTPihmKojCcfGr6tVOR5pOtKrMBz/HmttZc+ahV70O8J09PM+e4DYNW+B1s6aYM1NZpElxV3RwuVFxU1XVwopBPQMnVVlnom6svxPLAGgAmakWRbcYqDPY+xp9TBmcMgBnxkU+WP/KDAEdCLEfKzNADA5EA00HkIEanVhRZ4Dn5mZPut9vp/5EQ+NieL1kXJ5UYYcR83Am/g3278ns0ysOZkMZwHLeRconj2VgSYdADKh4HXTQuKmIzicNLQEWMVBg5jo3Z+VzXw9m8hkcimACnXteryoqJeeWG4RYgsFzEOQim0McFIWik0iaaGx8Guzuv8D7QznLM8TPld3yC9J09eA3sS/07YvAsOVQpJSsAh+D1wh/eQ8Ny9REWlqqynePDjG/j+tTrM0npZyAh0j5JfDCunxms8VAgQg936mvke1V1KiLqtcEOggyiZR3bsws+eA9idkDOtjMFKhqx8fnePzECWz7ZSfc9coiY+9ahPz9adFEPVs7OC7dCQSH4KWs1o5goVrNftBp3BYfLJ/CKg7o1blTjmdNwIPris692AKLdaakLor6DLSffDfEmmoCSWz/RcaGKofrc9Y7bTvPRaddBAVp12lLRPE/MmQYPKliRxGwZKmICOyamplj4uJpsHevAY3QeJjHpuDdskmI9n75ycslDdtyzgpEHz+Jd/vW5DjWqX1nmHcZghCtOPTukXPeOae0oaqys2TRECQSlbLJEuKciyVeDPJo01iepEoA9HPmnUEh3zXaABEU5Jpm0CX2OOeccp8S9THokNP+cP8iaCkf67f8iDImDkgPD0eojSGM38XCd84ISVjxU8O26xCYD+iD0PlTEXozl17rllZwHr8IV6MDsXKZMpuKZT9cW2IWm2uX4BvnlzRd+SBlnvus2D+cAAaBoK8BCpLVQNsnMkO419AuUo9HdPIZuPBdE8UIySCh7eN+pa2ji1aT2iFG1wLqNyehmv5fMLu3FEWGTkOAWhz0777Am41z81wiLvO3QMutON5MH5onaG7eYxq0uw+GZ+B+bJy+EnFxsVLnDq55kdJPLSHukapE5ujj0GcREys8B0GUb6HSn+dEFB7wVWaASTYmqsQAlX65trZ2DrCQfgr9GFXtObnXGJtYIPyfFwhcPxuxr/yUrtG6ZRdYDxuD5Kg4hK2ekaeYqLFbCTgv247ov2/Bf2X+y3UUX2rs5ga76Zvw+P0DPBL0UMgQ4PssJlbo/7JUS9TBob/HPZD7sCrW6ld5GIUnkWagMGD/xguBatfMsojGnog/HQWKmoiDTgdffJGKyuwEaYdiRp6fp4PETBkdI27mo8dNQj1tW/gvz9kLWv599gOmIqV1HQSF+OLn7fvx+OH9HNdDWj6DLaLrYqDCgITZLWYpxCw8wQOKP4mZW274DI7FemXS4pkFIbDxpWrxpK8zSy46jnQ+GcSI9B1m27hhMyMp0uLoIJJaq0rVm1RKPlsFVXrtup0wv/I3gvOoKSq59iDCnMpCxyAIh7fvwtWLFxEZGaE090RrGbDzWkWlWmZSmWFiICg6rXT46FCLFHLeNz8nOm9cT3Rk6Tx9ad9eOvDMHItAAjNYLE8Qg1M+D24QZI6Ig9lGse+04hhSm+nUkmLr4uoOj6nLkbB9CcLu3Mr1jdaxsITbmgOI9/GF34KRWcc5deiM1Mr9EVjCCIkRt+Bu7Ijk5CSV/XQ5h5wvVe8g3zsqyovvCINpOnSi3gMzTAw6vjT7xXkiKMgAWwSUmOlkdlMEabjpMlgRxXQYyFOsjYi5WHLBv124dBknb/2BDENHpAYkoZSWBgIWjpX6UOc2KPzksHgjQvbsQfCxH5UOo/iiWcu+0Gw/Bh8cfWH0Ph4D+/XJcSq+g2SbiHXJvCYGuazPV9R7Kz7M9UHAkFlG+WA9P8ESUazsc7cCrnHOOYNQ+SD4RQYPAyWRIcMgheuB9lQ+aD9J7VeViZy6ZDacqtRF5A1H1DS/iTAHG+h4h+DVglFIjc+u0xWv37ptbxQZNRoB00ch/L5qkTqH1m1h0XMULj27hqVLcpbhMFtEEEhkNzBI4dwSTJEPPgfab9LqxeCN4AZt05e276Qt4f4gfjdtG+2+CAiQsUb7zb+LgS7tC69ZBG9afdceY7sOReiPyxH57Cmcp69GYnELpJy6irc/Lv3kUik6fS2MypeFz/g+Unu93IaulTUcJy3FwQeXcPRwtkI8WQAEkwluitdLwJVArPgeMJPNQEHc18ga4Jxzj/jSPZUADRWvRUYO/RLu6WL/cQbl9H/4joqD9pv/HThwEF3G90JsyQQU9VsIm1BfGP4+GNG+3jApWRr2k5YiXk8TCTs3IORy7t1ANHR0UGbrMaTFxSmxSXKdewtL6PVcgowWVfHy3nGsmLdQYt5wXlXNk6LFq1jDSztKHQHRlnCN0xcjQFc4/vtmgEkSBqL0w8XyQoLE3MvFd5O+AX1hUU2d+wB94Vtn7yNs+zK8u3RO5YTY9hoNy++7Qf1tOF5OH4LE0JBcJ866dj2U2rgDzyeMRshf+dfwkZ+wxPjZQLtuOLBloRKjlPaT9lCVADT3LvoMokAy7RIZbaqA6P++p/+fe8WFAfs3fjZ06uhIiqgbKXsMUsS2VzTyDAJVOW58IegoiQEBsyB0SqX2brLaty0b90H/zGmEnPk517ssuWw3zIo74V1oOuBeDF6+J7Fv1TZ4v3yh9BkG3QzquAmLmVtu2EShRdovHVnScFk3KLa2YFDAWk5RRZPONx3tL6XFM5hlBlZsD0bHn0GNqBrP4JiZdLFGh7VrDEBJRWTvVvkgGMBgkxu8PFg4suNXxGxagA8qwA9+XtvEBOW3HUNGdCRC36VDo4w74nTfYuXMmXgitGni5sAsKANBcdA5JRIqZlXpyDJLKlKUuAERDCIwIh/MPPGZMov5JeJzdGo4hyx3EDczZhu5CYhicwwEiOSKQlVcb1zrqjoKyOeEjnWPESOhk2YFk5BA+M0ZgfignL11eb90AKvsPApPj/kI+eOI0hyYlS0H/Y7T8a6CM96/PovmFepJWVNVnRA4h6SNiYwTAjpc62S6yAcdQb7vYo07a1Z5fq4dVYBFfk0TnQcCHyK6zTVLx4PBvDgIjJHBQTVt+eB7QQdFlWASs2WeYd4I1dSDz6m2KF0yBZXLeiH17nOp9i49JVnlJVs374DKy1bjVp/2iPBUXWtn3roftHpOg345X5zfehrbtm5WOheDGK51AmuicCIdJLKURHo0s6pE/cU2ZXzXCUx9yVrnxSlEEsUMNOeVzg7fA/mgI0QWiap6d2aEyewRA4IOHbug+/Sh8PrDAW7+BxH681qwrEOnbjlE7v0F7w6uz3WZOE1YiiIN6uF+/3afVPF37TcQJp0GYcyMwTnWA++NoJgquiOfA+2+qBjPe+S9iEJNvDeFiFd+17aq4whE0jGW96XnccxI05aJbAuyxLjXiHowfA4MjAlUiuDUsd2ngfNH4Hdor3QJhs7FUGzOOqQY6+PD2vkIyUU1npTryntOIT40HM8n5gSexPsxdmWmazUmr5yKF8+zW4PSpjNjLfoNBMA5r6rEzhiUsw5ffD/I7OHcf0k5Am07gQ8GpmLGkVR4lqCIwmxUUKdjT2BSPpilp49DpkCt+vVQe3wDJHg3h84TM1QLnoKgc9mBuUWVajAbOQfa6up44zEB0d7KfonivAYOjii35Qj8jx7Fu32r87W8CCSixwbElXqPtZOm45WfryTOSTCNrABxrycoL/o4ZBxRq0UU3CJIQfVw+mxfYtvzdSOFB331GeAa534q7oN87xiwiiA7S7e4DujjiAkU7gXxSekIOfg7ArfnLD9SXDzZnw6jF8KpbwcE7DshZeJzG7a9R8N94EDc798hTzaJeA7qJ1l0GwHtcu6oUqMM9uzfj/CwMLzyzWZs0bayE5QovEx7RHsvljzRFyZQ/bVERb/6A/0fOWFhwP4NHyQztdzMiHCLtHf+m46m6GTS+VbljDCAYbZVVZ1vbvRo0naObD2O0FXTVYpSaOrrgxTh0Ju3EP3Hfpg16gBUaomMUmZYP28i/r5xVWl2GNBR/VIMSHgQM0kMFMUMHx0FZvdECj/vk0GDSD8nUken60v6mNKYMHtPCo/oiPE7aVTElk8EPOjIi7RsOoekIYr0RDr8DEJ5z2IQWq9BY8zuOw4vpg9GYkhwjhVGJ81l5S4ErV0k1aKy3YZOqzHQqFESxw+sxKHdyoqfrBtibboY1DJ7wjXEYEYcb968kYJdsRUZM73cQET2BgMGai2IFN7PeT34LEkXE6+HzgvpmmJ5AgEd1lxysxOpzgSl6OiJtCxmtrl26GRXqFQF3ccPh016XVgFXkJGSXfE3byH18smAipaNlnXb4ric5bi2fDeKh0/Q+eiMO2/Er6ldPDu/mWsnOchOVsi3ZF16Qy+xUCNbAc6aaSIygcz2QyCSWmVsze4QRMEYj2c6NR+zrxzbXK9i2rqBDz4OwIG8sEsHINNsd6dwBBpnMw4ioJddFzqNG2Iu3FeeH2xI/wfW6Ff6R3Q042HeZtGCNq4HcHHVJd3FBk2G0WaNMKD/u2REhuT660Zf+8BjS7dUMwtFK0rN5KCbflgUMAAS6TkEfTksxCfBwNmZlAp4iUfDD65zhlMFLT8hs+R4B8dctos+SCgRJshgj0MdgiaiUEYr4EBmgjSuri5w+PASnjdc0HRZ5cRunGU9DV61jYoNmsdtJ2L4I3HZITdVt2qrdyWX5AYFg7v2UPzXE4lZyyHfffvUKVCzi4NzLKTGSMKERHc4XpRdZ9cSyL9nI4uAT06tRSTLMggSEbAkUCpSHsnw4sZUrHNEvcg/if2Oec9EQAS690P/vwbdK7dxauNyvXnLOFgxldHRwveM4cj9rUyrVV6Nja2KLF2P94d+xnBv6h+H8T7tmnREXGdOmH40OwAn8Af91SuF7E1Hfcbvo+i00waNm24yN6gr8F9QASuPmf+mVWnnSKjTq7vkptt47m5B/EdFPdaPguupX3796P/kmGI1LFExrVpaG+1AUHrx+e4LOuGzWE+bDIyAt/Cd95IlfW6FpWqoJjHRryaNTpXNol4Yi1jE7iPnYmwsh0wa0pzBPi/luw654mJCdGGE9QmA49MEfkge4NlRyJITd+Dz+NrCS1+zvMqPPbLZoDlMQTSyQSVD4J+tG2ioC7Bd4I3oj9L+0KbdO3EDUQfXIe3F1Rn1xXfwQ4TzpNXwKp+DfgunImQi2dU3ojrvM0wdnaQwNj8DpMSpWDWYRA0y5XBszeekj/mqFcEGh+CkehWAru3emSdiuWItLPifdIfYoKKe5x80NfmPks2MYG9wvFtZqAwYP828yqdlWgtsypc5AwURSPPF5ybmnzQ6DMoF7MWzPLSQRLrqxg80ClXhWyx3uTQT7/gwS8XpZ6myREflL6LAYr7yt14s2oWQj72gLSpUw8aTcdCs15JHNg4F7//mq2My82Z10sHUwxi6LQxABGzGwQaGDiK/VdJFWPWWKx1JsVUAUwU1Kmj0WTNrphxZI0RHT4xO0Enkk6QqOhK4IDOEp8hHVP5YCDP2l8G+eIgHW7RklW4OH8dAtfNzPF3iowUn7MKnsN6ItY/k0pMZ9C47WikNKyHG3/swJb12QaRzgCBHQapIu2X64JAikhZpe4AqamiYaXCPIMx0clmAMNny2CIQE9BBh0dggii0jLZEsxOiDXRDO4ZbImZLxp+BkOqal0JXvCezp49h5Eek1DCfiASf96C6J8XwH7AZJQZOQSP58xB8GllyjHvx77fJDi1bYPbPVsgPVl1NphZeMNRmxFg/wRJnpEoV7aMyhpeliioEn4kY4QBmajbwH9zfvi85INAEZkSYu1pfuefABo/yyya6CxwjdJZFkEYHkfGi6gaz6wBWToiu4Xg1IuX3tj4504EvKyKGz9Xw7DquxG3eyTUdXRRdOpK2FSvjOdThiD8gbK6Ne+jzNqDSAwNha/HuE/eFrNkVpN/QmJZfYQ9uY7x48YoHU97SQdKXBfMRJLJw/ICMcgnIEInW05rZCaA7xGDEHEO8jvvtO38XqoFi8+atpFzKQrHESTj94mCRLwn2h+xZGLKsllQs64GF29tZPw8RqIJKwaVyN3mb4SGjjaeju+H+KBApUvXMbdAmU2H8Wb/zk8yrBQfsqhSFUXHL8LBK8fx447tSuciE4EBDDPV8sE9h6wSMYNI5430aVGUjnaMQnx8FqqYM/mZe34fwS06hXLKPZ8FwT8GlPJBG861TtsuUlsVTC75XmZuaY2DS3bAd85wJLxTtvk8r2X1mnCdtRrhjz3hu2BUDjtiVrY8XBZthO+sUYjwfJznLVFnwLbvBIQYaqHfIGX6NNcFSzc4l/LBOeBaFwNBghgEDUXmCI/jXkgQvKC2nZ9lKZUYyJIRSMBQFGPlv+mviKKL3HuZtePzql6jNlxGucPYbzSKhsTB5OT3iAsMUDlnNh37o9z0aXi6YQve7V+bc09t0wMuw0fj/g/tkBQe/sl5V9fWgWXtBijSbyzuh79CcPA7FCteF9u3zMDjRw8k30uV0C7BcYI+Yts9JmQILIvBHRl+TGCIYH+ei6LwgH/rDHBvIFOVe7NY5klmHe29aNuZxGICRwQL6YfaOxTD6/2/I+ATGXP5DVPzxW3eRhjY2+DZpEGIeumlNB/qWlqovOs3BJ2/kC82iWHRYjBt1Rem9eshNC0cOjqGMI7NQNj5s4j957QUF7is+RlXvf7CKz8f6btoL+jLi+Ayg3j6jiLISfvKdU4/hH5R4fg2M1AYsH+beZXOSsPODCwdRvngpkp0XFQpZpaMhl8MKPlvBgLieXhOGgkaC9FQSL2rL1zGyQd/wlzNFUnHfkfQNuUaRcuq1eE2exUeDeuOeJlzYlqyNIx6zUNYaRMc27IKly9mo4IMUBn4inXp/D7WL7NeRz6YbaRDJGZX+XsaRFVBNUEJ1jsXVDuSABcAACAASURBVJyIDg6DW5GCrAgORTE/OiI8VgwoSX9TqHzL74m0Q27qNF6iYBfPsWb9Jlx+EAi7pBgErF+OkAu/K82Jbc8RKNqhA252b670ey1TU9iPXIWoaiVxZIsHzp/NRlc5t6RpiU59bqUVvHberwiIECgheCJmI/k8iRKT4lpQ9WwFG0HMFvN5MBMpggcMNElzFgNK0rEYeIm1krwnZu0Y0Ddo3hTfj1gP7dvPELt3vBSwqGtpw3GcB+wa1cOLKUNyOMyllu5EIqlfK6fl+tZzM3Sf5IHwyj2wf9sQ7Ny5Dd/37pVj4ybyzHePtE/5YDDM+mWxTIFZWFJVRRovs8Zk1BQ0w86MM4WPeF4xEGQQyMBRLKFhEEB6rPh7lgDw+kVWA++laKUS8IxIwx+rOqNL1Suwvj4GkU8z6fT6dkXgOn899M1N8WhkLyQEZ7NKtIyMUWH7UQRsX4OQy3/mOu86ZuYwbdAORfr0g3dEAOq3qIPOLdrh+bOnSp8hhZ9rXsyu0omiwyDOAY9jNlJkzvDZMdNX0KwjGUNcj2QjyG0A2SL8N+ta5YMBFoEyMfvAAIrrhe+cvC7QytoGK3/biPRX1aF1cBLenT6aY+5I6XWethxx3r7wnj9SiVXCbIq7xya8mDEC0YLDJz+RgZMzTFp8D50a1WHgbAo9HT00rF9d6btYj85sIX8SIJIPOreqSp5ov8kokZdP8d/MGhNcLKgIGp8xbZdIQabd4joVqfsEFfiMxYCSx/HdI8VcPuZ7rECpF77w37c117Vq3aQtHEZPQdDBfQg+ukPpOOumbeE+fjpudW/xSTYJAVrTjoOR6FwEbpXdkfI+DsHRkejSq1XW+QhyMtgm8C4fDJq5D4jib/w9bS1L5OSDc8B9mzXxBbXttMUE7kRHnedlaYGohcF3jutFBBVoj1hmRgrtwHkjoFvCGaEnJ6J56jREHF2Z65zzD/aDpsOpawf4zhmH0Fv/KB3rPN4DRs5O8Bz36TIEKvhb9hyNECNN1GlYG75XHyHynxswq9kYN6JuY9H4GZItJtAjgvEEROhXiOw/7kkE/UWaNOeM2dgvLb355KQU/vGrzwCDTiafWLYhCsUyEUJmjljDTVtCBpX4e/o2d296IXHvRgScPJHvazVycYPbvPVIi4vFs0kDlGwJxXLLrNkHv2XTEH5fuYuU/AsY+Js06QqzZq1gUtIGiAWiPL0Q/tt+RD68pZTAc5u7CdElbfD78ezyWfpzDM7FpCL9NgLPYstUlpFwXyVgWzi+zQwUBuzfZl6lsyoEV8QFTIoqNywxs0gnhtlrMRvN9l5EskWlZwaZdGDEDZrfffnKFdwKfoBXCelwjxmMynZ3EcDau2t/Zd2xbcd+cOzYBXf6fpdjFuwaNoX5MA/cj7iB5VPnI/pjv2WFQ0pHVaTqsV6W4jdi3QuDNV4rRd3kg1kxbt6iUSTljpnwgtJVmZ2l0yxSMlnTysyoGEzRMDEbLWYyaJwZmItBGSlOvH+xJpAgxN17D/CXpw/S/gmHQYIPrOvUgOf4AYh68Tzr1t3nb0JKeCherc/ZT5n1RQ7Tt+B25HUc2rAXAa/9pJooOm28fvFZkzJJMEesiyVAQiqrCJQQLGJAJvZc5xpVUHvFLEp+XxEGQASpxPIPBktcpyKoxMCRKroiW4PXTS0BsdSAQA6/gxmNFQe3wSSkOrB3IEJllGBtMzO4zFgDY0d7PBzRA0kfMlklGnp6qLz9GPw3eyDknxsqb8myWg3JmUsvZoeM1HREpZeBvuNDhD8JxLChyrRisggosiS+wwwm+B6LveaZtWZWUdSsUNCEC1pfqugIwOcnbqykbYtZZ4pc0qkQA0eCT2SR0FEVR9C7YOy8sheBz5ogzqcM2mICgg4p15gbu7nDbe46RL94Ce+F2TX8Ri6uKLVoM55RuVmFMJ2mnj7M6zSFTc9BSLI3RNLbWFikJCCguDve+17C9OETlS6HThTfYTEzzswtqariu032CenAomYFATACHSIjKL9rnbaBTChRpJHvJ3VLxMwiyxAYOIqiPLRxDG7ELPW0eXNhVbE+jO6kI3l7byTkIkBkVbMOnCbMR9CBPXh/Mlu4zLpeQ5ScthjXOzZCerJyaQHvUdfaBqaNO8O0eWuk2uhC7W0cUp55wrFRfczeuAjnzykrppMdwLkVdRsobsl3W6Rn0yaRaSS+wwSnWIOtqp9vfuaeNpCBpyjmxfeH4p+iKjfnlqU3ZELIB7PUfBeYMZOP03vPIGjxBES9UN6rxGuz7ToUTt/3hu/8CUoUbMfhs2BU1BnPpuZsUchzGBV3hUmbH6BbtQrSjTWhF56I8ItnEXfrTzhMWIK9137D0Z8PZn0dgUvaeDEQIHBCoEQuRkpGGlkGZMLJB/clZgRpHwpq2wkQqCr/YMaZbBMxu6wogxM1GZilJqPorytX0WFBN+hntICJlztKPByK99eufHIJUFjOacISFKldHQ+G90Lcm+xsfMVtvyD4z9/w7sR+lefgvmrWZRgyXJ2RjnQYRiYg9ORhRN27KpWtOQ2eDu1ePTGoaxO4FC8mdcYRS1TIGKE9EYES0v75bhM0kg8yH5kcUNVlIT9rvfCYf88MUB2efqlYYsaEGQFt+uPyoah1F4EZlgbS7tw5eQt+U/ohSWC45nV3XLMuM1fi/YULSrXv/H2Juatxf3BXJIWH5TiNtqkpzOq3hXWnHjAs5YAPXm+R+OQJYi4czlSfV1UuWKcetKcsxvED2WweJgI5F6JmBYEs+nKibSc7k4BsofBcXk+24H8vDNgLPnd5fpKbGemXYqDNl5gUEtFZoDFgECtm4Vi/TIqO2AeUgSY3UZEKy+Dg+5H98ST5Bd5cbIWi727BXuMR7Js1x5OJAxDjl9kSxnX6KqR+CMHrbcq9lHUtrWDaqCNc+/VDrFoGwkJSMW5qdwQHv5c+xwwJnS5uvPLBrBMzXbxe+aAYDdu6iC2AeCzRStEgMPBnZkyV0Fqekw5IAR0/LzrpijpG0Ymg00nHjj/lg2gh55JGSz5oqBhoiVRYBryWZR2g7WeLtF8WI/j6FRSbvAwWJV1xf1h3pMTEQE1TE9V3nYDPugUIv6eMjhoWKy5Rl4p3aocP0dFITDHHvuMeOPFzJupJZ5fAhygURrCBm4uoH0DjyQBCrOMnlZRCZPJ6amYCeL907FT1d89r3hksMQCiw8xAXD4YCLLuSY7I8r3g99PJlFNb6YQyaywKpTFbo8hQtmrTHu0HLIDG5bsIX9cvx6WRWl1q8WYpeHzpkRnwMZNYdskWPJk8OEerQ2YqLboMg3W9WogJCUPUnftIvncWqS08kFIzCK1L1oODnbXS9zDAJTtAFPAjG4abGTMu8sHnwPUo1o1zrhng09kT1cbzmnP+nQ4w14QYgDOoYRAlsnWYWSQAJdKVmc2jtgGBQfkgyLB02Uoc8j2HdyfHoozBPzD5tYcSI0dxvHnFyig+eTGCDu/Gu98z16xVzdooMXkhrndWPi8zGFa16sC273iYVy6NMK9XCL98GXHXT8KomAuS+i2DQTF/9K7fUakMhEEyM1yKrgyK76aNJXgigp10OqihIGa/aGO59gqq0M8AhtQ/MdDmdbRr1y4HW4fZOV6HSDFkXTCfndg9Yf3xbYj6UAOO135F6N6cwJ78GVm36IyiA4bDe9FERDx5JP3Jof8EkDb/fHZ2NwT+nnW75vVaw6FXf+gUtUWs1ysE/34CMXcuSGKNJWcuh3bjmmjRRLlrA50xZtN5vfLBNc0yLpElQxvM1ppiOy8G/rRTBQWoCKrSbojZT/6e1yGCq7ldB0FLZorkwngdO3dH33IN4DNvRH5ePTiNmIOibVrgzoDOSPi4N5ZffwDhZ48j6PRxpXPo2zvAtHl3FGnXDmm6Woj38kPEyf2IeHgbyR+7gzj0m4CbFlpYtyp7P2YJDcuYRNYLQU6ubZFpwtI7gkO0xfLBZ8e6cRFgzM+N0rZzj+Z+L5bkkSXHNS067/RLGMiKpYAEHggWV6xcDfUnNkbo7bYoHf0KCWvbISMtLc/LYamH2+y1IIHlyfgfkJGeDm0zc1Rcvw8vFk7KQR8m08S0/UDYNa6PuJhYxD56ipizB6TARV4WxeMMZ22Hx/KRePrksQSSk40g1/LIbc8iKE7/jMCKfDCwZ4BPW1wQ257nZBQe8E1mgH4gmaKijSIDlvuL2C2IIBiDVILJ8sG9tFKV6gg+fw8vZqgG8PK6AevadeE8eg5er52H0FuZLSJtWneDY6fuuDuos9LHNXR1YVG7MRz7jYJFxZIIfuCF4D9PI/afM5/s4sKT2DZqArNhc7H/+CaJ3crBpANBTVFni6VRBArFzjO0R/TlCkUW83qqBf97YcBe8LnL85MM2EmDFWlhdPaYbRbpzdwMP2dTZOBGAyJmtK9du4HzQVcR/L407F7YwvnOaITdvQ3nMQtgW60y7g7ugrTERFT78Rh8Ny7Gh491p1qGRjCv1wJFeg2AtrUlQq5TjO4AzHtPQqBhLEYN7i/dMzMnDEBEpJFOKeniqpxjIv9if2EyEJixEQ0CA2E6dQUVnmO7GAq0iYE5A0lS+pjBlQ8GtqRYyhkDZBKw5pGbtHwws05niPRO+aBh8w8IwqELT2F15TL8N0yX/kzwo8S8dUh8G4gXi6dC384e5ZZvw8Nx/bPQUT07e5g17QbbNt9BU08Xb89dQNyVYzDquQCxZZMwsH0P6VxcG8yoisANs9p0jkVFfDrHRP7FzDYBEZZqiGJArPcl1VukPea50AGJicBsLgNzeSsrziOfvZi5JbWQz57rRT4YuDI4EIXC6GhyQ6AzOmfNUujpdoHTycl4+4dqmhkdsBIzl+Ptkd14c+o4qDbsNm4ubvbJZpOwl6l5+wEwr1UDmunpCDh2DLE3szc30yGb4F/fAa0rF8Go73OuGwILvB5xHpn9IsAgp0oToON7yvUjHwycaQdY01mQEhA+czoLItWVjAw+e5Y5yAc3W2Z1RTCMARCvUbRVpIc6VHTF60hLPDvVCE311iNmr3LWW35+mzr1UWzENDxfOBFRXs9RpOcwGLm6wWth9mdYt2vdcyQM3N2QHhGBN4f3IPretaw2NqTHa485Ad3vQrBp5CrckTEo6BzzPRZLaZgNIy1RzH7R6WC5hwhC0UZRpbqgvdgZIJLVIpbRMGPPTIwYUOZm82mj+AxZ76oYRsbG2Hp+H5KelYPJ+fnwO6QsfKTqfbT/fhSKtWuHu8N6SorwZZZtR+SlXxH0saxGXVtbqtt1HDAWmjbWiHzoiYjfduHDo4dKIl4U7yqxbjfq1C+v9DVklHDNiNlCOrUskRKdWwIiqmw+A2juiQUFSsie4nsksqG4d5KSKTqRudl8srq4VuQg4oQpM1HjXQQC9iuzR3KzfxRtdZm6HDrGhng8vh+4f1bedABP547PEqRjgGnaqAOKdOoGLVNjvL90NTPT9fhhjkxXkZatYT5mOlq2rpf1lbmB+LntnQysCaqINp+BM/fVgoDgtO3cC/mMRTaUqr2TeyPLPMR6edp8lqzQVrXp2REGHQyh/sdmNExag5if5uRnm5GOMXB0RlmPjQj+6wJe71oHE/eSKD1/NW7364i0j0KVkoBo6z6wbtwYmhpqeHPqDGKv/Ypo72wlbPkXGjo7w3LSVpz3OY3t6zZKJVAE0cRSGu6dtJ8Ea+WDTAi+9/ISENp6BvLUUCiIbc/3hBQe+FVngIwRZsfFkjwGosy8i7aHewsTDKL/xX3H0NQSr1bvRMgvyrogn3PBNm26waXvIDyaNEjSeCg+fiEyIkPwaveGrNMQGLf/YTz0izsjzvcV3h/5EZEP72SBgXl9n6aBAVxX/4Qzj84hLDSzpI2+Cf0xEYjg+uf+KwrS0bcgMFWYYc9rtgv+98KAveBzl+cnmV1g1lLMmDPTzCBLFArjZshgWAwoifIyOyNvjcYXgwGmuClK6uWezzH7/AKY+IyD8/ODiNqbSfvTNDCE+4wVSI+OwOsf16DCyu24P/oHpCXEw7JWXTgNnAAdczMEnDqNqEvHEe2TuSk5Dp4JnW6t0LFZXenfpHvScRL7lTLrxSBbVLLnRk/EUswuMXPA7Ct/ygedL2aNRRpjnhMOSOggEVIaW1EJnRlqZjjlAnIMKJlBEOeR9EoyA+hkyIcUMM6ZkwNFpNGeOG8WvK7GQuvgjCw0lJ+l81Bm/lq8PbYXcf6v4DJ6Bu4M7gbSt80btoNjp27QMTWG9487EHP7YlYG2GnUYmS0b4HJAzshMMBfqoXjdYlABpWw6TCINGGuP2ZmRHVkZmXI7hAFVehIkyUhMj/yM++sf2aQTWdN3v6OGV4+B1E5ntkXUmlFNJalIgwyxRpXMiAICDAQWrpvPTRe1IXNlXEIvq7cyUB+rQzSXcfMwotlM6DnXhkmJUrCa9lMyeGzaN0b1uz9npKMgD0bEPnwbo7NzXnQZLxv1hdGFk/w1/6zOTodMPvFd5sbvHzk5tSx1IPZVHF+eB461GKtan7mnfRrbqziu8hAkqU3ol4DA0raDpEKzvPQ7vCnfDAA8k56g8C35XDzcB2MNOmC4LOfrsWzbdcLzp274f7ovnAZvwAxf/+JoPN/wrR0GVh3GQrTMqUR6++PkCPbpIBRVTs4u5lH8LR8Irx/OYNfjh5WuiY6xcxmydWaycwggCkCInzfmf0Vy5KYCae9IuAp1pvnZ96ZyaXAmRiokmVDOyPqNdCmEUQksCYfZO/Q0ZGDrm3adUTPWUMQe8EOGds7qVQjz3GNamqSI2dUxA6eM0ai6tZDeDJztGRLrKrXhH2/cdC3tcP76zcQ8echRD5TbuenOJ+hkzOKL9uNFj2V66YJbhBYpcMqH7kBIixH4l4k1jYTuOD6V9VpJK95p22nAjptmpi5p03jdzLjKx8MKFmnLs+Ucv0zYBdZPOfO/Y0P65Yi8LTyM/rUdbGXeqm5axB172+E/vUnysxfhZs/dASDeYs6zeDUZzB0Lczgs/8gYv4+kyUyquqc+kUcYD1nA7oOze7qQH+AYJTYu57gN9e/CIKzHIngjyiMxsBR4V/kNc/i32nbaceZMZRnzLn+mbknW0Y+uGcymy/2XydIzL2Fe+jQOWOhX6EILH3Gwe35JPjvyb09oarrNS1VGiWmLsarnWuglpEB2y798Wh8f0ml37xZV9i1bAUtHW347tyC6PvZYOCn7t1+9kE8N3uNRRNmSuA49y2xM0tuIDhZbKK4MOeHoC332YLY9s99ToXHf50ZoI0mMCwGqvRrCcSL5R/0WehTiuVC3GNjE9PxZuECvP1TWcfoc6/Uod842NSqhfsjeqHSur14vWOltHeS1WbXexSMihfDh0dPEPbb7kzaewGG+/L9SHI1xdGfMgFisgSZvGFtvnyQUUCmntgdhT4w/TxRL6QAl1L4kVxmoDBg/4ZLg4gbHQlRAZoOPh19UTGajj4RLTmFmU4FMxViQEkHigG/KPJGJ3TKwtk4FXADGdcGo9qLPkoOCFsClZq7EglP70K/VBX4790Ehz4joW9jhYCjhxB29WxWpksxNfbNWkJn3EL0aF9LcrYYlDG7KNKB6cyRDi/SbekU09iJ6D6pRQxgRCSTBpFZy4IIcdERY+DJ7L9IZSeNh1kxeQsxIoV0ZkRHnwElMxVihpLGmRsz65flg9nMis3qIO56KkIXdUNqbKzS3ykyVHLyfITfvg4tYzOE37+Nor0HAhqaeL1tBcLv30NqfJzSZxzatEP6yGXYumwErl25LCH7BD3Y2kw+GMgTwReDByLBZAOIiDCdKVJZRZol55wBe0GUs+kg0mCLyv6kDRMw4HqVD2bsWM8tthz7VEDJ53To0E9Yvv8A9J9ZIHJpa6TERH/yDbZp0BTOvQchxj8QCc/vIFXXEkVatEBCeATe7F33yc2taNceiO40B2o2jxF0wzsHFS63LBcdYz4LMXigg00nVl6PyneIGSxmnsTSmfyYJoJdzBSK9ZO5Ofqs9WbZjeiM5BZQkuly1vsafJ7UA17bonHoIASeydv5cBo4EaZuLtC3toLP5hUwrtcW1pUrIdzTE8HHdmWBgbndo8OEDYhtWhPBL65g1vhJSoflBogweKCdlLedon0k8EY6o3zQHlFQkkCHmK3Pz7zTWSFIJvbpZdaBmUyxjzMdfTo+IkjGgJIgnHxN1G/QCO2mjoH1Y2tELm+H1Lg4CdQg/fdTgxle9+lLgQ+BMCxZGd4bFsOu5zCYFi+KwDOnEHb+RI5yEPF8ahoaKL35GIZ5jFHah7hOnz59msNOEqSjMJEIvDG7xEwL7aV8sA6ebBsxkM/PnNO20wYQLGYpiHxQp4C2hECvYjCQJNtFLBfJjd1z7uR1BC2YKKnxc77Tk1MywSQVNZ/y76YKc9k5KxBx8xJ0ipfF+99/gvMPY6BhaAD/vZsRfus6koVWYKrul5RWl9UH0XVczyxxPzKLuJeJDBEGvmTEiKA2WSZkFfCnfDDjzrlj2cvnDoIjFK4jk4KZc8XgmmAZgkj3zk38jsAUg3ba/dmbFyPVwh6J/3RC9Rc9EXb3jtKcp6ek5HmZFM11HTkV4Y8eQi0qGDEf4uHUsQtSk5LhLwU0D5Cf8yi+yHnKJgRXNsfoHj0lIEQVIKKKEcPPE3DjfYllaSzfoG0VgdM8b67wgH/bDNCXYcAuMmBZdkjQUEy0kS3Ed0u07VxD3t7BiP1xPT48eSys72z7wjWaVzmImroGXCYuhK6+JoyKusBrzUJYt+8L81IlEXzjBkJOHfzsfuziBDtMXIN3Tlr453qmlgRBcPrAol9JX45ALRNF8sF3m/ttYcD+7ZZuYcD+7eZWCn6Y7RWpI6St0dETX3DS8/gyyLMBrC0mfZ7InnzwpSBdThSRGTp0OJr0aI2oaDOYxprANNIT8e/fIYNIeEoSkJoEPVNDuHXvASNTQ0S/eYs4ryeIee2Xq0PIIF+zbmucOLEnyxlmkM2Ams6xAmEnJYxBB2vr5YMvMYN5EfUnSscMtyhYxBpQBt0FEZ2j4aRDSOMqtsaj88a/yR161pcRQBGp2XToWY8tBsfM4hBFFAXt6ETqF7eBXUAGYoLeISM1GaCiMh3ttCSopSbDyN4Gpbp1hXpGGmLfhSD6yT3Ev8/ZOkgxd6TPo3Yb/H31N4SGhkhZRc4JUX/5vDMoZgZEpIMyk0FwQlxndB7oWIgigMzcM9gU64Pz84pwc2NWnKUB8sHSCa4HEcQheMPvEUEcggUMhMTNgFRabpQXL17C2EWbUV1DExrs95mSitTERElYK4PznZwkbYxqackAn0FqEizKlEbJ1s2QGBmD+JAQRD2+g+SoqMzLpDMuzxApnHM1NanfdXy5dtCyfY/0sGSwN6ti7XDNc20w4OKakw+COXSQCWrJB+nmLGeQU+UZTNCJpnaAGHTnZ94JFDFo4mYpH3QiuLZF6jGBGj538R0lYMBgKgeV1t8f237bC1uj72CZFg174zQkRcUAqalIS0iQ6kAzuMYZ2Ej2JfP/NTJS4NiiBZyqVpDeh7hAf8Q8f4LUhHjV8y48C/0ytRHl7orUGH9cv5DpQCjWPN9LBuHy0gv+nQAgg0c5g4GsDK5LEbTi+86sO49lIPK5g9/DdSq2bCKIw7posRc23ytmKyjGJh+kGjPwkauv165TF1OX7EbG8yfQ0NQEi3KoOa+WlibZ8dTEBGmtS/+lpkhrHtJ6T4K2vg6Kd+4MC1tLxL4NRqzPM8T4+iCdx6la7yp+Z9u2O36/djaLwcB5Z2kQ2S1iO0gCnQwqRd0SZrUZGItlSQRAea6C0Cb5nnFvJFgisloYODKLKX/nKL5GVpoIdpMhxgyq2H5o6+r9KOVaHBEh4dKca6hB+om0VKQnJSMtKVGac6n2mev9o33hTwMrM5To1hU6ejqIDXqH6KcPERfwWtm25LHI1NTVYdWqCw6ePpK13pnlIhgiZvVoT+lQE3yVD+4PBPhFsJDBJJkfBbExBAVZOkLxOrnt4n5EVo4IdvM7+F6IYDffW5ae8WeDdk1QvmxrlHUrB1czPSTExCEtKTlr3tWR8dG2065nzjv3VK5/yc58tDWmxRxRqltnpMbGIS40DNGPbkstJJVsel4v98c9wKBSQ8Q5W+DciV+kOadtJrtAPlgSQmBbLEMk+MdSPLH9K0E6Jg5UCQPndVmFf//3zADBVpZtiKWH9FW4/kU/i+AZ901Ru4csq6PHfoVb0TJIikuEWoYa1NMBYwMDxEfHQA0Z0MjIgLTWaduTU5CaRF8m24+R7ExKkrT2NbXUULRdO9i6FkXc2/eIe+WNaG8vqbw1hw8jsF5U+jmKYz6uf+MaTRFjpo03tFuA5CtTw0YER2l3GKeIvgJtFUHEgnai+Pc87f+uby0M2L/h88otYM8t21KQgH302AmYM3AKNNTVoaGWgYyUVOkFTo6LRwYDmYR4ifKenhiPjPg4pCfEwNjBBmWGDIGuWjqSE5IR6/W4wAG7fPo+N2BnoEGn6r8tYK9SvQZ0o41gqK8hORJ06mhkU+ITMoOYRM55gjT36Qmc81hkJMTBrkpFuHZoC01NDSRGRiP6ccEDdvm8/zcG7HQgKZamKmBnVoJ17IpRp30DDOyzFfrRQTDVy0BqfALYbVktI13a5FLi45EazzWegHTpGcQhI5Hznrnei7f9Dq5NGiA5Ph4JoWGIeiQL2D/x/mcH7MFID0uSAnb5+F8O2MvXqYTvOnVBrSo/IPHpLejq6UA9PV0KYhTORUpcHNISOd9c51zvcdI6T4uPg1pKPEoNGQw7FyckJyYj/k0Aop/JAvY87K4UsJdwQ2r066yAXfERKowza/W/ELDTARTbpY2fOhPdGnVA8Jt3sgAGQGqKFDhy3jnfCluTLq19zn0MdI0NUHroUBgZaCM1KS1nwJ6P/c62XXf8fjU7YOdHWDZA9ouoeav+nQAAIABJREFUwv/fGLCTYk6nXBGwz52xApXLVwCS06CjpY3EuLjMef8YtIMgSUKCZHe41rnmOecZiVz3sdJ/FBYt0bM7dDTUkRQbnxmwByoDdnlNvRiw83gCsQQ3RJ0XBoAEev5TA3aC+SLrgu8tgftFi5dg6fx1SE1KgZa6JkyNjJBBAFAI2DOSOO+07Sr21PhYZCTGwqFhXbi3aYWM1DTEf4jIDNjDcipn5zX3/LsiYD//6zHp2gksiUFJYcCen5n87z4mt4CdPgtZmmJZE4F4JuEU+g516zeBta0tqletCc9HnkhOTJECdbV0NahnZAfsBGHVM9KlgJ1+u2Tb4+My7TptjWRfFH5MLDSQhjKjRsDcwgRpKenZAftH3YYvnfXCgP1LZ/Dbf74wYP+Gc/yvoMS379gJa6euwrOhHTKzXXnQJtnOp8KyzYi8cQFqNsURdvaXj5R4awQcOYCwa6TEhyrNSpFmLaE5diF6dcibEs9Msyj89L9Gie/ctTviwwwRs2YMIjyfKKnN5racrKrXgsvwiYj388YHrxdIiQzLFyU+beRybJMo8Zf+5yjxqkSsVFHiR86dAPsSbRH7jwvcb3ZH5NNHmXRVRdbwE+9wsV79YFSxFrT0dBF0dA80HUp9FiU+ptNcwPoRgv72wezZs5S+iVR/BvGiM/2fQIlnNpfvoSggmBslnhlrOioKZ6T3iP4wbWEBvx1L0briPaj92EGi9Uo2Jh9qzuU8NiA2IBA2NWvAZ+NSGNdv9/mU+OY1EfL8CmYKlHhmUwn2iMJPzFKL2VSye5jlJe1cPv6TKfGbdu6HxYmjUvtBOTU7L9tOSnyFVdsRceMCjCvXhf+udQWkxB/H8MVjlLLVBaHEkwUmCpP+KynxfN6q1oRYY332+BW8WzEDcQEBmfMto8NLlOo8KPHGrm4oPWsZoh/cQEKiBuI8/yk4JX7NIXQd2yOLcUG2GcsK8kuJz02L4mtQ4ll2JZbzqKLEUzeCjCuRVaWgxG/cvA1LxszHy9nDJMo6bYr0U5z3PHwzh5ZtYN+pD1KioyRdjQx9yy+jxE/djJCKZhjVM3dKPO0k7b5cJJKXWUiJ/4aO9L/41LlR4slMJCNLfPYiJX7IwOmI2b8us7TmY1lN9vpWvdbz2lNJia+4ZifC792GfaMmeLlmEawKKfH/4pXx7/+6woD9Gz6Df4XoXBEHB/y4/AD8p/SR+ol+alAJstL6/Xh78QLCzx1FhRXbcH9Mv4+ic/VQbMRUsI7u9clTiL12UiY6Nws63VugY9NM9dr/76JzS1esgY9PEuIWDspU+81jUHSu3JKN8Fm/BBo62rBs2Q2e04dni8517gYdE9Wic2jfApMGdUKg/+eLzhEwYgbmXyU6RwedmgtfW3Su3+ihcKzdEuFXm6LW8w54/9fFvKZc+rt1nXooNngCni2cDLs23REXGo6gn7ZKonPmbXrDpn49IDnlo+gcFVUjlc5L0bl3zfrC+BOicwyAxcz7f4LonKL/b35F50j/I11bITr3w5AhKN2rHJ7+3ANFEIpilzoj6sXzfM17sYFjYVqxKjxnjkSFZVvxeudahN27Deo4WHcdAtPSeYvO2c48gme5iM6x5RLrzvMrOkdqIstv5OPfITqnSsWcpSkEruStGk+cOo/038/Db9vyfM23dJCaGiqs/BHR/gEI2LYU1bb/hMfTR30UnasF+35j8y0657JsN5r/D4vOkQnGnuQK0blTJy7jw6p5UhvOzx0Unau4+ke8OrALSf4v4DphLu4O7fFvE51jsMGgkiVE8vGvFJ1j2zbaRLHMjGU7rLkfN34SPEZ74OUwtnJL/dwpl46XROemL8XLlXMklXh1h9LwWzvnq4nOkR1JhXhVWhSqOq8Uis4V6DH+R34oN9E5lv7QduQlOtfzh4mImDEsX75hfieAa11d1wBeC8ah+o+/wGvJdES98Pq6onPLPorOHS4Uncvvc/lXH1cYsH/DGf9XtXVbsnQnIpZPx/sryvVW4q2VXLARGnr68Jo9QqLN1zp0RnrxFb17rQctR1Kj/jBzuIeMF4nQCAxE9B/7M9u6GcRj1JBMobX/723dXr70wfl7r4Gf98Fv66edah1LS1TedAhvzp1D4I8rM9u6Ld2KhxMGCG3duqNoz26Ij4pF2PUbiLtyHEY95yOmTCIGdegpzft/a1s3VSr8n9PWrUbNOqgxvh00745H1ZjlCNqqnOlW9QqzrVvp+Wvht3k5gq9ehE39RrDrMgAPx/TJOpxt3RwGT4FaUVdoJcTi/R9nlNq6mQzZhID6jmhd2R6j+wzNUavOelmKManK9HJjZ2CpGP/qtm65iSbmt61b+YqVUXZ8eWg/H4+MAGd00p2Kl7uUFeRVzbtdg8ZwHDQBLzymIMrrGdzHz0NCTDwCd2a/J9lt3VyRFhGJoMN7EX3vao62bnrfBWPjyDW4c/ufrK/6/9DWrXmr7zCiWit4L1Duof6prarYqFmwqFgJT6YOQVJ4OGrsPoFX21ch5J/r0sc+q63b+j2oUy+nSOT/alu3JSs2wP7kcYRcu/xZ3gCV4Mut2oWY1wHwWTZFautWZesheM4ak9X3+LPaurVoA/Nx09GyVWY3Fo6CtHVj/bhYe/0t27qxnpVCloqRm1AuA3mWv5UvXwF7Nh7Duxn9pTZVnzsIuFZavws+e/fg/a/7YVqSwfsS3B3SreBt3ZycYTl5C877/IHt6zYUtnX73IfyP3R8Qdq6UYhZkRgZNWU+QtatxesDBW/lJp9Oh279Yf9dJzydOVJ6X8qv/BEhf53H+1PZoJy8rVus7ysEF7Z1+x9akdm3Uhiwf8PHyheYdVCi+jNRZjrwYvssKjdTVEdsA0dBHyLkoggGhaNevXqFoiVLwckvAi8WK6spK730P4yHbbNmeDFnDGL8fKQ/VVi7T6JdRl07Dd0mg/CuWD8klbshqavuWrUJb9+H4uIf15GSqIdxU7sjOPi99DmKf1FYiQGkfBCVpkKyKEBExJ9sA7azkw8ey16nrP+RD2Yoqa5fkJ6xPA+zC/w8Bbbkg9RYPhNRCInCgBQB5E/5YEu+vn375lCbv337Nh68fQXzhyl4Pe/7XFeQhq4eSi7aDHVtHXjNHIqUmBioaWqizs9n8XzxNITfu5P1WQYx9qOXwDP1BTo164j71x5BQ9sBe4954NcjP0vHUTSIVGB5No6/pzIyRfZEhVrW+LLWUd51gMcrlP5ZK64YFDfk/VL8TKRf5ucVYVBORXoKConiKxTioRq3vOcx3wt+P1Xl02QUawqaMBCWt1yqXKUaWk5tC5/z/dBQ/y7i1nX65CUZODii8uaD8P/zAgI2L5CONXByRpnFm+E5eQji3wVJvzMsWhRJLZYizqUDTMv+icpOLnh/yx/Jz54h+d6fSG3pgZSaQWhToj6K2FkrfSfrjik+JHZKYM0p6acUYJEPPgeuR9JF5YNzTVE0CjWJasv5mXcKwnBNiErYFJyjc8zrkQ9mmtmSTKSrUgCQ4nds3cTh4uqO5lPaQDO5KS5tbYVxlRYhcv+neyWzxYz7rJXw274OIed+k85DoMSh72jcG6T8zCjaZ1WrDux+mADTSqUQ7vUK4ZcvI+76SRgVd0HSD8tg4OKP3nU7Sq2jFINUdoojisKItLHMgLD8Rj7YPozK/KL4Hm0s115B+4GT8ssaaLFOl9dBGrPYn33cuHHSdYitLanCy2dHO6gYrBc/s+M3PB/bM0e3CVVrwrpFZzj1HQzfpVOzwFe3yR5ISUrF6/VzlT6iZWwMs3qt4dirP3SK2iHW6xWCfz+BmDsXEB/0BiVnLIdWk5po2aS+0ueoKcHnwOuVD65p0qLZOk8+aIOZqRLbr1G/hXZKVB7Oz1rnMRQPpN0Q+9zz97wOrm35oPgf3xHxOtghg91buI8tXrEOpT8kwXvJlPxehnSc65RlMCtfFp4TByLh495Y6+ez8Nu2FsGXlMXg9O0dYNq8O4q0a4dUXS0kePkh4uR+RDy8ndVO0qHfBPxjroX1q5dlXQc7yVD0TezowbIbrm3uc/LBwJxio7TF8sFnR7YV35HPHbTt3KO531M7Qj4obsc1zT1RPuiXEDSUt4Hj30mpJ1i7ffcpaPy6G967Pi+oIQBSbvVuRL3yh8/CsVIJoLaZOSpvPoTnc8ch6qWX0nUQuDVtPxB2jesjLiYWsY+eIubsgUwFeYp7fRwmJUvBcOZ2eCwfhadPHklgK8Wz5ALAbNNGEVdxzyKISP+MInzywZKkLVu2SOKfBbHtn/ucCo//OjNAP5ClVKKNYqcR7i8UN5UPCj9TZ0LReaV1xy7QOPsQwXuXfPEFWdeui6Jj5uLVmrlZrYIdewyEYfkaeD5jiNL5yY61qN0Yjv1GwbxCSYQ88ELw2dOI/edMFoCY2wXZNmoC02FzceD4JkkJn4NK8BQRFkv+CPqzll8U36M9oi8n7olfPAmFJ8iagcKA/RsuBlKS6aSJPYDZfoZ1aeLmScedKq+i08k6QDrSYuDPYynu0rdvP6yctALvN8xChIoejNbNOsB56Fj4r5uPkGt/Zd2xQ+8RsG3WEk8fayKqeEXEWvyFyFd3cXjlHqxetUpq4UIn3tjYBNHRmaraVHWnUBLFhtgHXj4YaPMlFxVUuXkzqBBVyYnK0+lVKKuqa2giPS1VUoNmT8uCqMTzelhHz2sUldzZZoOGRhROIvDBoFdUkiZAQqV50QmcNWsWqtWriyg/LWD/PAT/rRzoK+bEccQcWNerC595YyT6kmJUWH8QYQ8fIGjXSulXpPTptxsPzWblUcbeGCtXLpc6DJQqUw4Br/0k54EKyLx+UW2WTgKpzGxXJx90Ivh7UcGXWQ46f/ypGJz3GtWrZfXVFDsP5PcVIRBCSiZ7AcsHqYXM+ogCPgzsGeArxFoUn6HyMAWK5E7gtM3zEJNQH5qPbFHufndJO0DVoPNWymMr1DQ18HzaYCR9bEOkoaeHmof/hPfSGRJIZV6xEpKqDsM9jYHQrnAUJ+InYqzrFGwbvx7VatRGh5ZdkapXFfqOj/DhyRsMHaq8OVJ8iK2rxHeYv+d7zPdAPgj8UHGVwjXyeR83dowU3Bc0gLl586ak3kwbQ5qvfNC5ZKZfDsxwA6bTLAb4BB74HlIZVjGGeIyGXnF3vPp5BBo4X4X2wW5IDFPWt1Aca+zmjrKrfsTbK9fxelV231YjF1eUXLgJz2cMU+k0aOrpw23wCERX645kdX/oxWvCIi0JgcXc8M7vEmYMVwYh6RTxHRZbD7I0gYGF+G7TYWY7MnmLHq73w4d/gq+PT45+9Pld67QNBA/Ya1w++H6yrIBlQ/LBIIpUWlEdnTaOYKHo5Pxx8hqid65BwMnjn7wk61p1UGz6UrzesRXBvx/MOtamQRM4DZ6IewM6Sh0UxEEtE9PGnWHRph3CtOJhHKOBlKeecGhcH3M3eeDc2T+VPsJAm3Mr9hqmc8t3WxQOpe2hfoL83ea8v37lJ6lp8/0uyKANZADUtWtXpY/z/aFOAe2JfHBuGSyJ7c/odPNdIGiup6ePXzf8hCfDOkviZ/kZtl2HokiXrni9bBrC79/N+ojr1OVIV9eA3xLV7dOMirvCpM0P0K1aBenGmtALT0T4xbOIu3UWDhMWY+/133D0cPZzZCcC2nh57Ti/jAE431m+C4rBd5eq+PLWmpxzeztbCYilfSiobef7w31c7L1MAJwZSZEmTGeee5gIjhM8YeBfqnoVlHgeh/d7ssVF85p3DR0dFJ++BsauxeA1bSji3mRn52v9cgF+u3cg+HQmuC0O8wqVYNZlGODmjLSMdBhGJiD05GFEkdkTEgynITOg3bMHBnVtApfixaTkCMUJ5YMgJ+2JqNFDYILvtlyBn/PepXMnqZ0b94TC8d8zA1T1pzgikyDyQZCe+4+oy8HyLNoZttflqFilOkrDBj7T+n7RTXPNllmxHb4Hf8LbvauzzsXfu0xZgsdjvs9iacq/SNvUFGb1v4N1x54wLO2AD15vkfjkCWIuHM5sY6tCk4Plg9pTFuP4gfVZp2IAzrkQE2oES+nLyf2z9AxgsYeHlNQrSAeQL5qo/0cfLgzYv+HDZvDCui06zfKhoIaJ7Q+I4DGYErNi/DcdIPE8PCezonyxOvQdBatLVxG0XznDYFWjFlzmr0XgiZMI2qa8OVpWrQHzubtwzvMuzNyD4Hn+IW4c+wsjRgxHnbr10L3PUES895UunRkxExtX1G/UDNZWVvj91CkkJUQj6r2PFGCzXQsz6OUqVZcMQlpqEiwdy0E7PQK3/7kOOzt7GFk4ICEmDLpGFjDVA06dOYdKFcrCyNIR8ZHBMLVzg5WFGQ7v2QQtLQ2pt3hBBgNvovgECeSDwRIDLLGulwEWjxWzYl26dJF6NYsts1ib9/Tpc5z6+yniD59FyI7sAEXxfTadB8Lhh/4IXLcMIReVewbb9x0L01p1cWbOZNQu7wbNBv0RWdoRjgbx8PHxxqwFKxEdmtlaQzHv3Xr2QdCbQNy9d19p3ukU00AOHDoKGhpaMLYqivCgZ+jQNrNlWt9BY7LmPDb8DTp06obePbth4IiJiP0QBHYUMXcohRrVqqBDq3po1rRJgdtyEPggiEMQST74POjssZZYPpjhIp1czM4x+0lHla0DFaNx2xYo2a0lzLxHwj18G0I2jc6xNEj7dRy3GOaVK+L1ogmI8HysdEyFzT8jMiAQTz3vwsDhB4SZNUGU9R84nT4aLYu0g/8vkTj/y4GseXctVxs9v++HU7+fRFDQW6V5Z6vGf+48xL69e7PWOud9qccCfIiIwIat+5TmfaHHMkRHhWPb7p+V5r1n964w0EzCksXKPU3zu+7JRmA2jXPG1mzywewXbQODevkgUMIAR/w9abSk4CqyeU2/awXLPtbQ+GcqtCKc0DxuNIJ+2Z3j0vTti6Dkkm2ggPyzKYOyso08UMvIGDWOnMPT5fPxwPM5in5c1/xbqromIqvWh1nVmXgc2wB1ul3FtkVLYG3njDoNa+HogSN4+8Yvy8bwM2SXDBo6SmonpbAxnPe/Lp6TAseb972U5v3UH+ewYtkSPHjqpzTvM6ZPxYe33li4QDljnN95ZzBC+0BATN7qSgFoMksuH2wvx2ydCJRQJI/AKPcCeVDWs/cP6OpUAb5LJuR6SWblKsBt0SaE3boLvyXjlRwxZhad567D+aXzYPNYOQvLeX9j4YCG9WvAp4QHdNyTcO/RHqglaMPW1g779+1WWut0VMnSsSlSFCnJyUrznhAbBUtLK6RrGinN+9v3YXBzKQoNfYusebctXgFLl3ggKSoIgwYq92fP77zzGTMA4n4jHwyWCCiIWgUsWWEwJfYG5nHsVc72cxynjl1C8IKJmQ5tHsO6SVsUnzoLr3bsRPDRHUpHWzdtC9s+w3B69kQ4BihnexXzznfAqkZtWA+ZhombVqNZy3bQydBEVHw8jhz5MWu9k0VCBeqW33VU2lOL2uhi04a1qFq1GkysiyE9PRUxYQGoXqsu1q5egZbteiitdXc3F8yaNAylS5UssG2nLSY4JYpY0nknWDxhgvI6JWOE/gqvXz7IaCFIf/y3MxjUuBdeTf9eUsXOz7AfNA0OHdvj1YIJCL2VXSbDz7rOXIM0LR1c3rRcycYo7AzXe+a814J5j1H4KyQYeqYmiA0KQ2xgABxLlkOKVTg8JsyU7AhBj9nzFyvtqaOGD4GbmzumzVmitNaHjxyLEm7FMcdjtdK8t2zRFFXKFMO4sTn3qvzcb+Ex/54ZCAoKkvwuBuf8f/kgGMvgXATQaEsomEtbTpverXEfBM0djLg3gQW6CSMXN5RZvh3RAW/gPXs4UmJjs87D/bbC5sN4unASHgcE59hTFWtdz9YOxk26wrdoCURrpEErQ1NqJ6zr8xiOj68g9UN41jnNJq9CbHFLXL1wGmHxmjDXT8X2LRuxeMkSePm+g55WOhJS1WGknYZ5CxZjy+YN8PYPgaF2mnSODwla6N+vLxyt9NGwQabWVeH4+jNQGLB//TnNOiORZwadzJ6I1DDSg4nYilkx0vqYuRF7iJMaR/qhSEljQEkkcPe+Q+jZtCcidi5G8McsulnZ8ijpsRkJISGSI50c8UHpbimGZjVvEw7fPoPQ51648tdFKTtE4KB37z6ITEBW4KihpQNTyyJ46XlHCmDp9BuaOyApPgJGls5o3iIzOL544QJ4bHjQc+gamKJBwyZo07w+hg8ZIB2fnBgtbYLftWyMclUbYN6McdA3sUVS3AfoGVujZeOacC9XA106tEGFMtlZ4M95TDS0DFaJfMoH+y0zQyQCIgzAGbyQFi4fzFgwAOUzFPurMjg1trOETqwTYtePRfjdbEqgdaNWKL94NV4cPo7AddlUV8W5mRVzmr4UN68/QImKVZFqGQc7fQN4v/TCoEFDYGjhoDTvVWs2wOF92yQQgpkV+bz37z8Qd+/ew7NnT6Gpo4+4yGCoq2tgxuRRePfmNXbsPZo15wkx4Rg5YTYMtFKweccBJMSESorf/L4508bgnqcfpk0ai/KlXT9nurOOpWNMZ6xz585Kn2d2mc6nCIgQOCG9iutdPtjujywJOWDjXKwY+i8ahhD/hjD0NUDl4JkIPJVJu1YM+wFTUHroADxZMB/Bp3/KcQ9F+k+GQe2GOPKPKYytHJFS7Az+SlqLmnZ1kHglCeeOXFea9x7fD0Tntk2zMiTGls7Q1jcB2y9NmzoNW7dtRUxsfNZa19DUxZGDO7Fg7kw8fPZaad7XbN6L34/tx+0HDCiz5/30iYNYs3kPFs2biVJuzp8971TBJvDB9amg5ClOwjVK2r4IiDAoZyZOzFIzuGdWiQAWh7GJCbov7AtNnaq4uqEP+jW4CONzoxDt/SLrOrWMTVB06iqYli0Jv3ljEf5AuSc9D6y04zhCXnjjxt4tSs6FjnNx+DcYhWiD0bCpdAfpSVeweeFWrF+5ULpuXp98rTs6FZXKNTZv2qRkYwwMTfH3lT9Ryr04tAyslOb91Pm/0atLG6RrGGTNu7GVE969foahY6dL670g807bbmRkJGVuWdojH8wqMzBhVlM+mKXmPYnACrOTzFbIWQD83IldpxG2cioin3nmWBcsGyi5eBvSkpPxYgazjcqOoUQd3vUrzm3eAvNzh5Q+LwEl1RrAtsZU+BqWh1qljYi9n4KJvfuAfaOZBZXPe81adeBQxAEnThxXmvfyFSpj0tih6NiutZJtr1jWHb0GjMbYYX0l265Y71XrNMXyRTNw4+4zdGzbskDzzsw4AUECH/JSGj4L9h8nbVm04VzrLEFjz3v54B5L28Tn1blrD/xQpg5ezPt0cGVVvSacpq9EMlunPrqNkFM/KbF9uOc6zl2Li0vmwer+1RzzrnCmWbLg62iFLVu3w/P+dYnxxJIn+bx37tIN796+lXqqy/fUDh27wMXRCvPmzICxdTGkpSQiLuIdevwwAjUrl8Ks+cuUbMzAPp2RBH0MHdi3wLadZSj9+vXLUdJD5h+fB222fBAgob8iMk3IJmJJBAGsffvOI2PrAgTfUJ4nVUbQpmN/lJ02DYHPYhB58RjSvS4h7O6trEOt2/SAVfe+ODtvChz8lN8XOVDCD6QYGCOxWkM0HjQcuy+fgL6+AQxNy+HsqW14ExqD0WPGSe9AYECA0p66YdUinDp5HKfP31CyMbMXrcGrFw/w6+lLSvO+feNy/HHpFqZOHF2gtf7Zm0HhB77KDNDHYokD37sbN24onZOMHLKKRLCbeyfXNdmEHF2/H4uMXasR8NunGVKqLpiBtvvCzdA0Mob3nJGIFso81LW0UPPoBbw8/ivu/nEi14Cd507U0kGsa1lUbPgdTOvXQ0haOALfR6OYjjFunb+E6ICXUptK8xZd4P3eD1op4UhKVYORiRlmThkDjwVzEJusAW31DDA0d7AxQ5PWXXF431bEp2hATzMdamoZUNc1w5pl83DizBU0aVCrcL1/lZWY8ySFAfs3mlielllCZqtYzyfShPlvbgpifQidNm7cYh076bcMhMTght9DI8FavSo16sM2Xhfv1k5Deloais1aizcGgGuKNgK2LELw38qOJUVziq8+iFEr56FHx+YS/Z0tK2iUEhOTlQJHdXVNDBw9Awa6GtixfSvUNbSgrWeEiKAXEsLPemkG8oo6ajoYekZW2LN9HfYcPok7D54iLTUZH4K8YGrjgt69euDtuxBc+/smMtLToKmlCx0DM5QrU0Kq+y9TuhQmD+8BE2ODz35CpGcSdCBNWKzfJnDCrAsDAvmgcWa2QGFwFX/j8yB1n6i7fDDbQHbD4cvnYe6thfANYyWKHlkLtpMWQTc1DX4rpqvM2LANkOXcdbju74kqxR3RvWsXkGbPZ855lgfs/PecJRvx8P4tnD/3p9K8lytXRqoTVTA1FHMeFxGEvYdPYemq9QgJfpc155z/iZOn4rffz8D/lS+i3vvCwqksdA0t0KhBbfj7B6BWzRoFnncGhlyjTk5OSnPFshAGNaTpywepqnSymZUkfVs+uCHSEZTXbjbv3AbfDR2EG/taoJHdRaj/PlUSNuOwad8HNkOHIfrqLbxeqjoraV2/KbQnrcDlZzfhY/MrnoU9QVPbltB7aoBfd/2CpAydrIDdybkYZi1ahy0b1+Lly+dK8z5wYH+pXEMBTCjm3c5CH3TeJs+Yq7TW1dUysGzFKsyZuwBJifFZ865nZIHOHdvhqacnKleuVOB5ZxBIMEqk8LG0hqCIqElAejazkWJ5BQErBv7MGitqN5t2agWH752g93gk/v6tDMbV3IKwLaOkOVfT0IDj6IUwa9MQ77fuQvCxnSrf1SLDZsOkenWcnTsZjoGZWUez8hWR3GgKLoYVh4WbNkpXvocNE1ehSPHyGNjve4wdMwppGVCyMcxikFHAemoOxby3b90QrqWrY+uP+5SOiJBvAAAgAElEQVTmvYSbC5q3aoMt23YiPTU5a96t7YuiauUKSElJhpOjY4HmnbadWh2qaMJkkhDoW7JEuYaRwTDpzWIdO9cSn4dIwZ08bQ7qmzjhxexhSlRtPRtbFJu5Fmo2VgheNRNht5UZFIqHUGbHCdx98BR6m5VFGnWLFodf3bEI0xoJ80a7ERVxH4ZvnWBpqo8Vy5fmsO1kMzBjquj5rZh3j3lTcPexH85dvq40761btYCWjh5O/3FOad5dSpSDpbkxXF1coaurU6B5p23/P/buA+yuqsob+EovEEISQHpX6YiIoKjYBbEwio5YwIIIVqzYBUQRnMFeGZWxAHYdG9iY0c86iojK0AmhJiEkISG9fM/vxg3n3exzy/vetyV3P0+eQO695+yzzt6r/Nd/rS3Y0xMgr9/mXNOjeekNWnbqX1JdoJ6J7kxZ4ws/9c2491NnFAESv9ty3/3iQW/8YFx82Tfj1ae8KmZus0Pc+Kt/xMqbro/1d9wYY9cui0kzZsWWT39e/OgTn4kZP/hCn/2QAscjDn9EjD/2FXHs8c+MU995diycf3t84xsX95H7zJlbNmyq9ZJKz5Lcf/ajb8Zb3nV2XH/z7bFu7epGGdmaVSvilSedHH+6/K/x97/9tY9uP/SQhzWo8w8/qP86hi4mW4AIRl0aMtEYJgCTXIdLRqCL57aWjwE43+egg2PXhZPixve9MtY1KUXY5vFPiXHHnRw3LLk2HvGkJ8Udc2bGhOvujLHzro+Jq+bHuqULY/Mdd4jJDz8wfn7We2OrP/ZtvpsH7P5/7tOeH5MPfnbEzNviMx/6eIyftFnDlznyyKc2mF2pdCDJfN2Ku+Pr3/t5vObUt8aye5f0sanvP+vs+NRnPhcL7prXR+5HH/XkuGXOLbH//vv1a6137Pj0ftA1CQBVgeGYVNWBoclOYthVxxFHHNFIwAHDjWOPOyHif2fHnLM32Mp2x4Rp02KXt344tjz0oJhz7pkx7xc/Kv70wWd9PsbNmB6XnH5a04DdWr96h4fGtOVLYsvtt4uJhz4tFs2YEVtOXx077LhD7Dxlhxi7cG6s3PMh8aXPfjDWrhvTyKS/8NhnxJy5S+OSX/wqxo2JmDVldSxcMT723fuhMWvrbeOX//2rGDc2YvrkNbHg3gkxfur02G3n7WPGjJkxedLE3npv94V3+L1ewN6hwDr9+he/+MVYtmzZA5w0ToLMe7Wm1bUh1jJlufPmM84hJzxH9zjeAk61Ve8860Mx8ZqFMWnzCfHlX/0wvvrlL8T5F1wUO83cLVZdfV2snv2PWDf3xlizfHmsX7M2djjhtbHb4w6KS37yg4ZyqiKKzn4UTBsAg1NPfWODKr9cs7IG7X1D0xb0WpREFNH7x5gGJW7evLmhkZgsRxroRn+54soGhQbV3/Bv4ydOjd/8+rJG86A8G9up3DW64xjoI1AdMrdAhbwhHTqTzHteWyljjCqM9lc9rsw11TK95W1vj1//4/aY8fdbY9mln4uZL3tLzJ60JCZNfGyM/8fVscUdP42Fv700Fv3j/prridOnxz6f/lZse8B28cMf/qCh/KtNgqpy5/wzEMef8LLG0U1VuasFRCm/v253TCP7+9SnbKiXrdJDyXf7HXaKK664PLbeaqs+72Lq5lvGPYvuatTnpTqsTuXt+7KEgnJOmndYHcCNE0888QHNiTQwFJTbJ9VhvVnr6r7T2GHHneI5b3xBTJ/5lFhw+RNiv4WfjOUXvjm2ecwTYsrLTo0J966MdX/4UdzwlQfStl1j+t77xP6f+UZ8Zu7HY9XaFTFz/qy45y/3xFcv2GB8q3IXGPjz4X877wFyR8tG9by/nneD3N/9rnc21jq0vbrWn/Xsf4lXnXRin0Zp3sdjHvfEOOfs9zcAqjx47kT+Asejjz76AYwSa5bOAIjkA3AF/MsbGNoXMpFof8aDH/rQOOo1x8TcqRFT/vieWHrb0njGZh+M+d/4eGz3klNji399dmw2d3FccfLzGmcpl8Y2Tz0m9n3v2fGnU14Qq+68PbY8/BkxZ9sTYvb6R8e47f4aBx9+XXz27R+JuXfe3mDunPjKV8Ull17aZ60Dgax1Adbcuen4yg1y/6/vf68BiFbBT/I98/0fiLVrNEq7v/Gaf3/dqW+Oh+yx64DWuuekp9VT5zWq5Ar8tA+qA2MEIJj3m/Adeldzsbzm9/zzvx5b//3KuO5jG0CK8ZttHju/+ZxYc9DuMXPu8rj5U2fc12gul/3Ob/pQzHjEwXH1a18QK/9Jf3R29W27nhy/v/vJseXjL4plE34dBy45II4/7gXx6MMfG3NuuaWP3D2btd6Xar5B7nfecXtD71fZYOT7ox9fEp/+1CcaDd2q++CLF3w15s+97QHNVjtZ676LOVICtROVOW9Ih8UDzMr7TXgPACDMJcDuy15xchyz+8PjOgDJPxsvpbltvstusdt7PxYf+ebn4tJLNjjRbLe+Mo95/FPi7rsXxZp1sk1jYsK4sXH5V38Y171tw6kq1fGgpz09Zr349XHaOW+LZzzj6fHEJz0pjjrq6AfoGDpdENwX3BkT++2/f6NEp8oSc08A+uLFC2OP3Xe/b38kmzr7xmsbfQOw8fo76HaMBqBTXtMKyAGmsbnVoRQK2J0zeQD71rrs+wVfuCTGf/vTMef73y5ObdbBh8T0k98dJ7/zlTF//rzY/8CD4k1nvj1m7bpVLJy3ZaxdPTnWrxsTm08ZHztvNT2u+bcPxfyv9C29cuG1Y8fFuH/6MoCXScd9NFY/bHx88ox3xJV/+fN9vgzmjOTH/ce5bVjrL3vpCQ39XfVxyPfgQw6NL5z/uQazrLrW93jw3vHLn1/SaLQ6EN3e3/fV+93AJEAf0w/JDqarYYjojZQ3K2Vj+XF8HD2HMICe+6SXxpLzz4j5v++bpa+bmXW242vPjJ1POCYW/PjXcfV7+vbjqP5u2xe9LnY57kVx5WtfGMtn39jnktW1nj5YNX5irKMn1q+PbffbL2Y975SYtP9e8fBD944LvvKVWHDXXXHTDdc2vg6PO/fccxoNmqv9qMB0bPPsG2+IX/zi5/fd078/99gXxIO2nvEAmzewt9D7dS6BXsA+yGsChZ1DoCFOdcjQaoak8U0+bBKBEwpldQiM1VpzzvOhiR1kWMD/ite9Pu66fV6cd27fmvUzPnBuPOJRh8fYNRNjxdLl8fPfXx4Pf/jeccrxz4xVq1Y3asyXLrz9viDdPVCAn/iEJ8S3vv7VRvfZHCyAuHOeGLKcPsRpVSMo+KoOwAIaqCx4dWiiI5AQZDgqZiBDMCsTQC7VwQFF7/Ms1SEQ0BQvb9LlO4J8hjfvDuozTvvjn3xk3DB/bcyac2Oc973/jEUL747j3nJ83Lt2l1h+226x89KFMX7xjTF2xYJYsfye+N3CRXHUYXvFmz92etxyy5xauZ/0yhPj+Bf9a2Ou1eZC7qvbOAcJlbJ6fJjPMDrQtji21eG5/S5RntNn1hMjZJ3mTbQ6fQcCcIFuOs87/V62UffRajdsn3kfsmWlzqJoaWeddVYfR/AJT3pqPPL4R8fqJY+PuOnQOHyLb8b4XbeKfyyOuPS7T4sDdr8z9pr4y5g5+xux4Io/x/I7bm9MATXsqoc8Mo4+5Q3xyzt/EatuWRWX/er3cfvNVz9gvZ97zjmx5bTJDQpoPlKH8hLTBUihFCPfI9aiQDSnPMtaYRnkGddOZU5fcBCAXPlJAd6FIDzv6EqunIy89hQbQkZMQJDYKfvsd0A89tTHx4oVe8edP3pl7LnNrXH0rt+JBTvvGmun7xN//+9psdfYX8SWcy+Nm77eFyAj9+se/sR49tveGpvPuS3+fO328Zclm8e9iw6Mg4+5PLaceWV8+QNfjjk33xQ//cl/NU6gyNlFaQ/KOMryVYf5AisBRdVu8r4jkPQOfV4dnHJARd6UslO56zxu7+QdoAEwahl1Gjbn6nA+tfUgKKgObA17Iwdq1cJ/54Ifx5offaUh2x1fc0bM33fH2GK3PeLuuTvE+P+bF7MWXhbrrv1lg82zauHCxlr/2077x+P2eWjscfIpcft7T43ZU2bFzvs9PW4e99S4fuXM2PoxP4zbF/6/2GnhTvGBt5/WWDsYX/mQXRc8ei/VAUxLTVKr/46doYGnuvcqZd13NAUUOObNUzuVOxCTPc17i9BtjYZmWe8Te4P+ljXNu6fbB+bM0TY+/tEvxnZXXB6zL/jkfdOavNXWses7z4tv/v3X8eVCV3MZf+96+pazYvHqqbFk3vXxgTe+P25798lx3epxsf3C22PCmDHxoGe/OLY89oXx9g+/Jw7cf994/+nvbrC9cnATOAVIAAbln2n6JpOd61FNLumR3K4JJNkDe2OgNpUe8Q6rvUUIiV8iu5jbFfJOjXfzdwzMAdQeePDhse2qaXHr+0+JZbf3rRfWuX37t5wT7/3sWXF5peTMtaZN2yIe9/gnxD777BuTpk2Lq66dH+uWzY2THv+s+PtrX9Do0UDuKUj3m8VTp8eEzTaLPV5+dqw+4hHxk++dHd/4/IaeJYZmwPSLE03ywZ5adzmghu1jjwIyqsPRt95F3yRGpyu99/3hkgDbJ1HCD89LaawDe0GT5ergG/CFkx591alvjrsu/mXc8okN4HerIQif9KyjYunUNbHt0lmx4L++Gauv/U2f04Rcg36/4bCj4rgz3x13nvGOmPvfP3/AerfWx6xfH1ssv78pZX7/h572oVj5lOfF9770vlhVaUxKfzaSUVn/Cb+X1OMz5DX89FIq8231nL3P+y+BXsDef9m19UsOgiYUMoUcmeqQoZNZzOnyMnQyGnlzNL9FAxQM5VQdn/mdIFkH3dxJzSeL6jV1+jah7vbeRXfE6hVL+9TPjRs/sfGTAw84IB57xBPjtz/7Rlx6yY8f8Mxo0Gq98+68vujZOcx5jSfaEKcjD4DVEwp4qlnVtoRc+BKqOGQ7p2FDxdF9OcacouoAIgh+8lpgqCoH3zvJAyK/Fxg7t/r008+IX/xsQ3flrbd5UBzzoufFLg/fI5aMGxeT1u8ZMyZsG2tWrI158+bE6hUr45ff+URcefnvinIHkmy/487x/Ys+EzdevwH5rI5UBpEHxoLu1Dkcs6M6ZEYYm7wPgvkLMjgZAx0cZqBHTsPm0AlSOKH5AFwxjHk5gmvoCo3uXR2HP/aIeO5pL4y1Cw+NvXbYJq7807fjiqueH9+8YEMPgn32XReHP3Jx7Lb5NTFj7G0x9t47Y+34tTFn+aqYtNXY+MRXPhJ3z7u1KPfnHXtsLFuxOr782bMbdN7qYMAFswKFPCgXhACmOODVAdACtgBW8gY2gniOIMBioAMaLkDNu6Tbl5oS5kGSQNda90zVpmnmgZ3BaFdZLo8/8inxiFccFisX7huLfvvceNpRf4pf/+WimHnwgbHoH4fG9b/bO3aedmMc8KArY6u1V8eEeVfE0ptvjnvXrIvFu+0V6w8+IiZvfWhcfflDY9kW3451466PVYvvjr/97ooYN3ZMHHX0M2OLcUvizDP6HkNmPuSN/SFIy2m31jN6OoZMddir9kYepDgvV9ChQeZAWTz0mwwiJz8/95pexyrJ+wfQzbIzpU66ggGZTGu+Ok569evi2Yc/K8Zd+T+x6MBD47gXPTue8fx/ice/4CmxfPXOsfTW3WK7Jetj6vIbI5bOj9Vr7ok5ixbF+G1mxF6P3D1mLJsY3/rV2pgw/aCYF9+JsdNvinsXLYppKzaP/fc9IK7+8y/iogvvD1zSvcmUDi11ubZuZVDzozqtZQ3hcqDUKReCY7XkJR3QyfoXgJIjoCRfu9Y0PZbT5cmUncpBmilTpjSAc/sEmGJc/LnvxPLzPxR3/emP4XSJXd58TlwzbW2887Q3Np1m1aa++Q1viJ2+f2H85bo5ccATnxDXbPWQuGfKxPj2dy5qAAf77X9g/Oz7F8Sf/tgXTGrc/+KLG3s5L8Oydq03IHgeyAOPvBP7pDoEkoDxnMnXibzTd52WojY975KuVwy9KPmQs9BQi2Wr82P1yIC86cU3n/mh2HPOvXHTOW+M9Ws3dOnfbMed48Fnfio+9v0vxQ9b1AFX5X7uaafH2o+8K65euiamL1sYc7baJWQXjQlTpkYccEQcfMzz47obL4zPnv7RPiAfwN6az+0jFgmwNTUorMqODgBe5SeduIZyrxLo2x/Z934z9BLg6/Fdc0YJuwEEzMtZ+Sn8mATAT5o8OZ77pBNi8affHfNrypbSU21z5LGxzcmvjy9+7RMNX+y5L3xJjN1811h91ZyYcOfNMeGuf8SS66+NFfPnxZLlK2PxHvvGpCc/M2bOviUWf+JdMXurXRqA1Lp/NjsVrAvsHz77ipiY+THuqSRt8knnxt3TZsevf9i3WS0djs2WHyWpxJQeTyVpae7KdthAez8/lWjo39rGfcdewD4E7xc1m3OeO2ICVEF5njGnDGSZIb65IZCJhE5Dzn0nH66JIqsZUn4cWfW71XrnLbbeLSZPm9mghS245R/3ZRw5w+orZR/y7LlrCaggaxBpxqk6UMtRyJxJnA81eeiiHKXq4LCqGyoBFZ2+JsGRPxyW3JnmaMqA5WcKc05lIimgap2ee1PEDHPebTjNi3PFSfU9YMF9inibbWO33feISdMmxfZ77BiTN98i7r1nbSyZf1v87jd/f4DcZVegtwI9KGeeoXNdARU6Yem8dO/ec+fPZr1U692r8vR9zlPOhOhU5r7vHt455zLP/HOiOe25IbBW0FVLzBFBl0wd9Lo6Dnv0Y+KZr3lOPHK7R8S1d24XF39u9/j1//TtzO3706ZFTJmyPmY9aElMnHJjPPZJ0+PXvzwp7rxrUZ/1bl9xyoAGdWdz28fWbJ5hch+ZSGsgz2SjoVbr3dMzyMhpJCnwz5v09Ufu3rt3nJ/zvqEsZV5jTXP2q4Ns0ctLz+NdAQWrgNCzXnhs7PXcfWPqLY+Jox49Pa5fcUt8efYFces9N8ejJ7wmVt10aNzx1/1jzz3XxcIFa2PV4kWxZu3SWDN5QbzwpVvHL//fT+OedTfF2uUrY/zCBfGNi7/SaPqlaR6Dnwe35iqgEvjax3mWV6AgE4INILNRHSi6MiC5zkWPplft9bwpZX/k7vgnjkrOkgDcOGoub7rlHnS6fZCvFWsCq8Rv84Z1e+z54Hj9KW+Lf33RMxtBmbW24047x9OPe3bs/LBdY8GYNbH52n1iszHbxKpl62Lu3FvjIQ/dJf76+z/EqlUTY+G6xTHloFtjz622ioVXLYj9pu8Vz3vuvzRo0qXMOudMsEW350CzbG7jaMtDDnmAyJQ4sT15Y72k0/p7nFuurwAbGEa50yzg0kQ072aOOYS9Rb/mwJksKAYQoAEg9IhDDot3v+qdseAT74sphx0d0579xHjC4x7Z0O0loDzNrWpTn3bM8fHgWTvG2PGTY5/9d4+/XPW/ceFXvtgAOYCqbOpVV23ov1EdwAaZ6rzbve9g5KDp5sCqMhzZLeBbbocB9wKPgdDh0/zoP4E2Fl++JuxNNoQeqg5rhb0qlfh5HiDcSa96Vfz7x78eY3/ww5h70Udi0oyZscvb/z0mHrRL7Ljd1kW2YfUeVbm/8vXvjVVX/D3WzL4u9rvlH/dl2Kc/dK+Yduy7YsFBD4ul91wW57zl9Fj4zyM/XQtozeaWQGusEHYtB8f5N/ZB/q4222yzBpCUbGF/9ErvN8MvATbQmkh16WlGjlHlXyVWTnWmynHoQCwu45Q3vDUW/+r/4qYzT240dysNTYhnve70eNjj9m7sVUkPY0tH1B5wQMzYZZeYOW2PWLdgWaxfsSLuWbIkFqxcFptvs33cddXl8bdvfjXGL1/aZ703k57jEWec/MnY8SWPiW987qOxaNH9zagB+XpY0XU5Q4puZZdyAIMfSuf298jI4X/To2cGvYB9CN6VDehcx5LzxnlAc+eUVoeggeOW1935jg0lKKo779C9OCAyEBzW3DHccJ8NtVmpRr16b9kGDjIGAAWUOwG+C00UbAhiUzOidA1KTvYaEgn1rw5BqLnn51SjUApONQzqRobdPVHZ0bBzI8x54KSWHHbZAM5/KYjxHjl0JTaB+3kuGU7ZEVn66jmV98ugLHfPL/vDAcA84NCXhsyS+j/AQd5QTxDCSZC1yGlcnHzyzbM21p57ynxVz2bv77YAhAh6rQnyrw5OIyp5/u59h5Eztzy7oakRlNt7ySn+zk9+/bmnxSXjvh8Hbf6MGHvD0+Puvz8ifvC9cbF2Q+uFylgfY8auiaOfszQmjX1tfPsbGzpnyz6hftlraKb5ecLpAuYmQOGk5UMQ4pnyYwR9T3DGuHP6qoMTS+b2j3c/0AEE8SzWYLXuzHUFlfRMXkvqfcsqlQJegRqQzl6sluY86kmPjRv+fl3cNX9enHfeR+Lof/2XuOj3F8evFl8W48eNi2VLJsaeY58S45ZtG1PHTg/ns65ctzj2nLV1fO1jb4iFdy+IOTfPbjj9Ajt1uqW62CQPQYLAm87Lh+AACJHXGQpg/DuQQiBTHd4D+eR1zv2Vv0AUwFiqS/fu7eX87HJ72P3zTKU5CNasQ86PvZQP74pOl+3zN2bF7ns8uLGGttxpVuy6124xftKEWL5yRcSq9XH9ldfEk595ZCzc/O5YeeuK2Gns9vEvxzyzIQMOWH56ifu5Ft0uk1IKUIHPwIicGWb9C8JKgTxgyDGnAy3/SPJQNkEGeWmKDI93bm+lxonpN3Szfy8Fr/Q1pzOBZ4854glx1pvOjDl3z4/jX/ac0FTK7wVivpufO7/hHvfrdoDlS088OX76kx/F7JtuaLBorNMEpueAsF+7h6BXx3XATXUAGrwroE7exM0aY8tyMAS7hJ0DMpb0Vqdr3nrEkio1YQW20nOld88W8EHooXzQW/bJN7/13Tj7g5+Lu7/ytZiyy85xxZTl8cEz39M4RYTcAUACpxLIUZX70c88Jo5/8GEx57wNjBsNXic8+LCY8KSXx23bj4ml834TH3nX2XHvvfcfkwUM5peQ+wr9eSpDMJIA8nzubK0/uZ1zLfLwPruh2zt9T73vd0cCfHKAEn2RM3nYLnowTwZhptnr1lQKeJ9z3GtjzcUXx53f6Mt+MUuZ7m3f9MH4yZ8uiXuX3tNgmIoTgJEp6Pe9yZOnxM677t5oMHnvsmUxftyEmD/vjjjmyBfG3R98a58eSa2efvc3vD+WP/FZ8X9/+m5ce3XfpBmbADTIfXolo+x0CXBlC+gmTJTeGFwJ9AL2wZVv4+qCUOi3xZ7TwzlnUK2cQuh30CyBVimIkJVyzWY1UoIBioMTw/Fl9CiZagM490Eb5yDKBGrOI/OXso0l8XCEOSzmkNfl+r6su/rY0uamDCiFXCGoixFwCjhk1boxzE/WWJYRbbY6ZPPTM1T/fcMZ6/9ozCUPfAARZAiEKAX06ToCb8/OweGoUOoC0rzGFjVU4M24C/g4czIwefYiXVdNHCXu79xQ+I5/40TnjhFEWNAjy3R/w64NV+WAqUcaSLO5/F0JJGQdOCz5AOQIWHIwQ9ZTgJD3NfB7mS9yV/KBLprGrK22jjd++B1x2bqfxS9u+Unsv/XDYqf1j4sd7z065l+9Vyy5bYdYvHhM3DJnTEyduqGz8f4Hro/DHvvluHP2Xxsy5wDLnGCT5CBHug/wTMZOUJ8HgIJD9DHvMM+KeiaGXbYyH6iU7svYdWMAkmSVZXvz2jMAHvkJKgFY1cHJlvEr1RULRO1vwXUOKKZrCOzf+a73xMGPOyR+cvmlcc3Ca+PvS/8aUyZPjbn33h5LVy2N3ac/OB46a++Ye9GtseceuzUy3JwZui3PyFXn5nN9LfLu977jXXheDlVe+gHssufzNW1vCw442N5LNwbdTuYaDglIq4NOt9ZLQA5gSgan9P69E9RDcs91Rrq+QFXtsKAsZTftqTxItT7p9mOOeU48/elHNt6jd1ptCFedM3YX/U+X5Cwd3yM3e7vE7qHTUeTzBpLWkSCG/swb8fX3HZCbDJcAMa8l9XzKHvJ+B2wS3W4v5wwA8zB38kuA7K6779FosFQdnHefo61yqslKcJ2vQQ4uOQmUPT89C9xhf0sDO4Y98k7zdeT7KOX0TP5O1E8DYgFrV1xxRZ9LC3DJ3PN2y6Z6/wDwUlkD/QdIyUFX+g9QRs/k65Pv4V3Yyz/7+WVx7jlfjBtm/zVOfd2GngIGUE8Q5L7ACjYVKMyXyIEP9uMjbz035px7Wkw++KiIvZ4W9+yxbcSUa+Lb558fv/zRhrKHNLwb74VNLek4AAEfLW+oh8nkPeVHxLquDKS9nZfp9Het9343PBLA9rRf2epcXwqq2cwSkExHVDvM77jzLvGUw46J+ee9Peb97v6Tmqbtvmfs9p6Pxv+b/ee4unJ0J5vGF6fbrSP72rrPE2f02bEveEksOv/CuPM7fZv21klsmycfExOPf0usnnpH/ODr3+jzNSxD5Wd5fwxfovP4jnkPB4k7z6vsL+/TNTxvbeO+ay9gH6L3KxCT8c4bszBGqO2cs7w+GmIl0LZx83PATVvGV91Yqcaw+lgcNk6jjLzgRy2foJ2xhwBDzAWUjCDFxDGoG7JyDLLMTn5skd+4j0BEkJBniDiwsu6lDDrDCG1Xg9+tgaZM0ckU5l3hKSdASMngCtA4pJzmfAh6PD9HPc/s5d8lCwqQw0KZUeJo4noayPQwBAIITh8nJG/kUb0eB919BQC58+B7nAPBf6kZGgcWQpw7ELI25C7I7wYdPs1XEMYxlx3Ja71Tg7nSmhX0UPylZmDeFxn5fTXrp/nQc17ygpiy75RYus3S+PY1F8aMKbNi6ynbxPT1u8Xukw6N1cumxJQJUyLGr4jJU1fFMfs9Mq777d8ajmJugPJ3aD2mDHopu8MRt39La4EDi+adO+CyeDKN9lk3qKppzjp62s0AACAASURBVJx58hGk5XQ2MnO/vP7Mb61B7IVExavKwPwEwPZDDkhUvwcUArY981nHNOrfx24+MeYvmhtr1q2NmdNmxcxJW8bVV/2tAVgK7PJ+BbncOfCc+RLDSB8KgRfWQy5bICaGjOxrnomkr+g+QFKJottfvQO8sz7z/gWuB/QT5OQAJRnR9xz/dFJG9f6CLcEouZcYTum7Aj1gkfvTuexB+j7Qwn7i8GFJ0O11wIvr+T4dYz2UGg5xUu1n96l2hk96XxBdamxmn7m/7Hu3Bt0uMKJTc73GRuk5AqBMR6Kl+wrQZEzp41KWm4zY2pxSn8+bbabfZWVTbTMdK5Cn27GfBPLshCysI87qBvtM7jLlJQBLHTTwqZS95lwLhHO/wjwEx/RPCXjp73swP/djT/km1UG29E8JoJQl1wtGEiEfgmzPb8//xxe+EIuy8rrq94F9/Acys4fIHFhpX/NlMIbunL0oFt41NdbusEXcNP83sfDmm+Krn/yPuP22vu+AzMjHHstpvu4JxLWfgE35YDf8Ji87NC9+Bf3WTd3e3/fV+93AJEAf0Hd5c1ZXBQjyLfNjJLFrsHCs56TbDzjoEfHwHQ6Ku790Ttz5378IR3Pu/p6Px/+tnhu//23f5tJpxuwfQNz+sHc0t5RUoLcE68Dc2+64M6773m/imtP6NnYuPfXWT3xGTHv5O+OWdVfGb37wiz5fofsxN/3JS1X5yHQTHZQzUPwbsLIESg9M8r1flyTQC9iHaF3IDAqmOFh5RkBQINhijPKRzgSto7QxnKiVjE+zQLt6XQ49oEC2TSYiz7jXicQcGCPU2lJ9PGeZkyLgLQWVaDOC9jw7LIOGCUDRlTq0DuQVCUSAIXnnYNcEOshm51RhnwlivacSSi7rp/stoIMzlQdHdfPFdEiKVnCeZ2XqfkeenC6Ng/L6b7+RHTBfrIC8C7LAhMPMic0BFA42tgQaVrcHdgMDU2p2xCAIYnKaOOdIzaUAMT+Oz/w4Q96ZutWc2r/LrrvFQw7eO/Y6Yp+YM+HmGL/l+PjD7b+J+cvmxep1q2Pd+g0c+a2mbhOvnvHGOPOVfbv6lp7fGud8kk8e/Pk+YIGzV2ISyP4Bp/KuzX5n/bdiafTnfZCrQIoTkdeDM/qCHIY/ZwkIOsyJHslZJebhHdr36s3Jv51hL3OgBQ5AqjxwqruGYAdwQC/VrUvlEa4pG5kP685neeZDaYUMAfCqFdDWzvNVv2M9Wpt0W86gkoUBzpSCGBlDTn2JGu/61rg1RLfnwFfdHMk8nTwiWC/R6ku/NX+gDjsloC0N2SYBW17L67vAHLYoby7Grsm4mz8Ar5tDEEi27E7uSHKY1RLnvS/c3xrwWR1I6RnoLnLPM8J18zcH12QLyDyn0Nb9zhq3t9iRvB7fbwAg5A48zvvIcOiBhWxm7mQLnO1rdq/bmS/20nstAdpYAtZQThP3LAJcgblAOB/sE91C/9f1EMl/Q7cA0O1tDDrvyt+POvyx8fxXvzj++wc/iz//5o9x6y1zHnA/a9x6pNtKe8u+5XuxqfkJLQCyVJKRX9gz8KdK666ba793raGRAB+QblGqkgPWgDqZ5xI70bqhX/iPyb8+5Q1vi2XX3x13ffb0mH7U8fGY178kzv/Mx4uAbenp+I50DMAaSJUYgScc/bKYfdrLY/ncvieSpGuM32yz2OXEt8WKg54YC8ZfHX/++W/7lIT4Hro7HyfvE+Mz4C0gLGcZ0HmAZX5FqefG0LyhTesuvYB9CN+3bJzsR2mDM8oWf5Xym6YmGIP613WT9u8MCENXcqa68YiyUwwcQ1Rtqla9NmNdl0kxP4FuqVEHgykL1I0u5fmzCmBlOxjS+89W3fAtmQJZUw5NTkM3V88i8Kmj7WJNQPtRtVOH4W7IOl2DQ6a8QPaSYcjPzPY95RSCBMFLnvHwuXlRtDnDQGCkrpmCLmU9Bvoc5iLrV6IaYglAp6tn16b7+Q3EmkNYyuiSBao0qqeAmSGpjm23277hbD/uyCfFvROWxrStpsfUaVMDIX7NytWxdvmaWDR3UXz7Mxc2snOlIXjx3gFg5J43z/Mb2WSMAPPNs43uz/jJpOc9HFDd7AXzLlG9Byp3suFQouTmQ3ad/PJsnO95TkwCTn4p2MDOcW3PI9uQd2sf6Lz9XoYOSEKH1QWNgm17rlQv59/sc+BE7mTLRPp3jtRAu5SXnhUwCPwqMUfsPyyaUqDid7IbdUedeVdACNnp0nF33ZC7enrBCd1e11RNECsQLYEk9iFQtMTukYlku7pZcpOemW5XBmD/5T0/gBZ0u4CsxObwb8qL8lMV0rWBJewR3V6iqA9U7ijqdLt9Re75Ea6uD1QXpNt3efd3n3tXMvclCqvSI4BoXb+VgcyfP4IKa93k/Rk8D90vAM8TAcADzyljXfIhBCTKudhlPk27IFUnz2Le9qEyFrIpMR+Aa2wqlljpvWDGWG/5CQnsWWKTdKORaCfP1fvu4EnAO5VlLu0zNlPgXEowKFe15qsJocce8eTY50F7x/xYGHNuvLrhD1tjOdDZydM879iXxbLz3h/z//C7B/xsq0MOjQmPOzHGHH5IzF/0h/jNT+4/Pz19GVjIBpXsE38Ay62UuLKPAfO+0xtDI4FewD40cm7cBS1SICIgyOm1nFCZJU6l7FJ1MO6UBgejjlaIWimohr5xzMtNcTp/WA5jov7YtKWu5a4KaOAkl6iEHGlODzp+XkPNoZJlghx2O7uenlYGgxHmCOQDesjZLFF6zIfcPVMJeXQtwSenj3NB/uWmOJ3JXeYgOdGy4HX18oJu79m6KSlbTg9WRKkEgbMoOzHQM5GbPZl5yX6UAAHZJM5Sfn6t61kTnhvFOM8cpft5b5wmz61mvo4lMm7c+Fj7z6OCBPn5sUPV+QtmzYehZZxLWSLfl1End4Ysd1h9DhjCoCjRimWZgHMlil1nq6T8bXRwNDwOZ348oV+gRFuvJWDQvwtoS6wAv6WHyNr7pIdK/Sv68wx0l0Bc4yx/V5vtVK/HwRYcWhf5kYy+B+m3HvJMpVIkchHgDEbg6N7KNehucxScVwe9550ABnOAyfdkHc2vriGbIINuUcJizZfYS/2Rezp3GqBp3Zfm5rrAPvTyUt26udmj6PI53Z5eFWjSiaVGk/2Zc/4bgAcbZX653QQwWy+l8geAFt1uvZSCYfehN+0JwKa/Wx2V2u7zAD1QTO1BNrUEfrHjdIx7lhghwC06SpCYU/uxS/gZ3gm5DMZIp8OUgDN6B4uvxGAAWGqER8eUaOjmKojhw7C59E1+AkR/nocOIGs2kdxQf0vDHiZ39rfEeLAP2YkSW8T7xJrrZnlZf56195vuSkCWHXPDusgBeOtKoo0eKfkqQD92s8p4mzlzq7j77rsak/R7LBu9dABddXui2RM96jGPjwf94/a4/fMfuO9rMw88KMbtcWhMffKxMXbvmfHHS78VN91w3QMuw9ehQ4AKeQKDT26f07G5bmer7QVgaamZdnffQO9qSQK9gH2I1wIkTg1zKbvGOEHySucDy95ApRm7nA5cfQTGgpPCeUFFZERyumCrR040aYaTY8y4NcsgYw6g15corGrLOKsczRKKKBOJ5t0uDa7V3Eufo+OqyxTE5Mc8+b5MhExGKduC9kfu0MS6TItGTSjenAGZG4FqTvduZ94ce8EqgEAAwBCUKMquxWkwL857idKv3tEzAR3ya7gPWQgUuk1TrT6nYBYDgIOaB2GpfEKAU2qAlU4qkMnOmymle9grnFPyUi/GwepPVkYmhdOfMrzAgjoqsSDEHoRK512yzcs6Mfe6DuBo05w6jutgDZl/z6LJWn6UG0fZOlaXV3KEZbhlBci9Tm+gvynjEWhjn9BpeSlGO88G7KKv3I/Dg7FSNwTa6XSMUh22ectIlpp3ps8wD6y7wRocG3sL6yIfdDKZlpqusQfWFEZHsy7q5AXo8X3vODG2OnkemRSAi3XKCeWQ1YGRritYB3QCp0qMlFSjXQIMZY68q8ECScyPbqdrZblkw/PBBtZ95l2Ru/2en0BRvQ7blNg8rpdnVtuRP1YH+wicFoSzqflZ8ek6QE66nTNceiZBOJ1oj+fAvEAZTd4eL9VetzPXdr5Dt8uIk0fdSQKAEOs0H3wfNtKaysGt9F2lHWxqYji4R14r3M48JUfYOIGT7D0woQT2uRadSO58BKyWfGCQeCY2NS/x0auG/hLcDaZub+eZe9/pvgQk2wSmJT8VOIZRwT6VEgJ+o19U6djSNFNBs/1g/6aSuWa9S6pP6LScFx/x3LjyVc+JGfvuH+t3f0xMfdyRMX7/PeOWm38Wd1xza9x8U9/mmX7PnljLmFule/FnrfOS304feta6k6q6/wZ6VySBXsA+xOuA0UG3lqEqUZih/r5TCh5RpBliTlCJmlh9FMgZx0wWxTUFaAJnAbIsOdorFB99F1omU2Lzyh6is5kbemmJElY1qpxGmdI658Dn7ldqJCaI53zIPA1Wdj3NlYOgBtez5T0E1PWiX9edSUwm5O6dNAsqOFoCOYBL6szNKfO+3JPyk00R4HOcZcwSTZcjLwPMGRR45jTr6rsVKJEr6nCJJsuR4hQyECWHKTUWLL2Tbm8HjjCnqRTAMlCy2J6ndLyU9wG0IM+8aVd1nrJlnDKOICosJ9DzKyHgnMl2CzaARwyi9602FOtCAC7DKPjmFDarWeVwW0cc5VKzOtlpgIHr5tk478Tek30vUeu6KXdMlxRUlEpQZFMF7p69NAQw1iP90SwQ907JnbNCbsAqwJi1SycADRl1SD02B/DGvkChk72k56zjuqP00twAlPQZuZfKQugejj255+UL7uVdkcdgBo7m6nk0AuL0lwLA1PeiVNokCLcGgTmtWC/YQNYi+j1KuKwPdoGyHv0JUm0jAAP4KuCWZQYkeGdAPnNptqc8D0fNurWvSsE6/YLlUwJqyRpAQdd1qzN83R4ha84neeR13uZvT9LbJcaMOlS63fpo1ZyN/bAnPA8A0r3Qo+0RzDHvjmMua8auAaIAp7LQ9A5ghE2t6xTv+QT29oS1VHeSAf0mUC81fU3PSB6pl0E3dUv1WuwhoJNNzVkCzXSha3hX5M5elujE6T7kRu72Pnvp2dlqIDRgItWt2z/8KrbAO2VT6De60L6iY/JjUKvPYk9JbmBFlUrggMP2Gl0D5MmH3j3mNdg6ZrDeZe+6zSXAf2PTrLcSO80+sO9LvZ1cGXXeWqYzm/W34A8Kgq1fuhw7yb2VFUki0DEYNXxN9xMT8Gd2mLFHLLxuXtwzebOYuufWcdMNl8UdV9/SOFKyNADb9or5lIJ1cYN9VEoGmRv9ws50uz9Gbx02l0AvYB+GFZI6k9qcuaGziQTJaHAlQybo4PSn82RLgU71kQTkHAybTJBic3OeOTI2vk1HMXA6OB+MTh3qXb2uzDPnwBzR+0qDQeeglxrmca45jJyOUta7269FNkkWltEvUTvNkSKmLPNu/ebiXZE70KN0XF0+X/cR6HPY/NZ7pbApWkGMYAbVkpOdKMzNHLl0fQGY55CZrKs3FTCgt5YcPnMXALtvq07I3XgH1pNMriCu5BBDpTlv5F5Cpzn9sjiCyHaOQLPGXUuAAoTiOANHBA6CDsE7x818OFn2WjvNGq1TQSO5543FyElg5FpAqFK3ddkda9B6KDUg64asq9eQIeKwooHmxyz5njmSdymg9zkwRymGz0vAYj5fWQaZd/udA08edI/yDk4GR4eDjTbI8RXc5+Ux+TX93lr3N7nnzfJ8Hz0eG8VeAxbkw/qTDQRS0J2DPQCx9p0973mrg85FeRQIlzLSviv4pKuBVaXu8dXr0SX0MEBMthijQmNLdYV0O8eQjG+44YYGaChwlb3Jj7jMZSKTJGgBOtUFINYHYIHc8+aZbAxHs1k5Tzffg+exPwVdZJEPe47c0fJLx7lxeul2ZTV0YqsmrOynIFxQymEVzLHHqK+YZoJEDja9IhMOtC3pjHyegC821RqqWx/ei+C01IeCXWNL2e+haHpmb7FZ5lOyiYJxvgF9XDrlhs4gd0BGqTQqlw/gCegE3AeGsLGCdPcHlAk82Bq2D4AFyKpjqFWvbb/6I4gp1dYD0l0L8FcqM2LXzIetGQrd3s2907tW+xLg6wpk+bUln8Ea5o8D3EoD6GQvSLS0sy75MtY835Fe58fQ+RJtdB49JQnEn1mxal2MnTExrv/z/8WSe+6JG66/pjgHespe9Vs+QsnnMkfApD4yOUPPXqOb2Nq6RtjtS7T3zU4l0AvYO5VYF77PeeIMMQQlCidDxrGAYtWdl8sRZww5TpzaoRwUFqQZ1aeOJi4QExhyqEv0YoaeYoOeczaHYlC4AgkOfgkJ5SSn7GOehTc/70vdLoWGmjoYjebq5MCplG2WgUGbzc8xT7/jAJlnierOqbD21OfV1fANxnvgTHOEBbylBlAMgCCv1LTKfNIxQowLKnZdre1gzF0AQFbQdayW3IC5p0ym/crZKzFj7AN71forHas2GPN2TQbXmka3K+1B6xc4VZfJSzRP2TyZp8FoNFf37JwbcpeRrDvPWGBL7oKXUl13OkpK5+7BOAmhNHf7S4kPnYaCnw+1iuYMDCkBO77PoZIR1jukHZCqm+vHWgA60TF1DUwFYoJKuj1v1mkuKOrkwKEbSt0OHKo7YlEwi7mEWVJXiy7YpTfp9sFoNFf3ngT6dLu5sal1dsVasJfty3xw5slcQN+sZK6ba8W1sIWUcZWOWPS5xAOgxLMl5kd1DgIINlWJF7l3q09AO88J0KVj2Mt0zGbpd3ww7KgSI00yBDuDD9YO6NDOvHrfGZkSEBgD/rC2SjYJUMrOY97UNWYGagOfAad1gf1gPb09yFYC4EsgvvsCw6xzNqDkZyn3A0ryQ0uNbQdr7r3rbpBAL2AfppXAeeC8cdpKTW84OwwFY1eiYJm2YCIFCKgr/anx6uTxOTMcTRkDxqmEmrueYJ1SEoCVAl/IHqRO5kwQN5RDBgvYQHnl9Enz4DQILtG1S0d5+Q6KqMBLhoFiaydDO5BnZBwEX5y6OjaD66O/o0nVdaiV5eEQcbAGs5a39KxqZckUJTfv4O37HB5zKrEf0vVSoznXIv9S9/aByLn6WwAJZ9S7FjjVgWIcZfszsWLy+zNsMvkcw6F0pM3D3uP8ywiW1gTKLB1jP9cFxejsABcBtPmXaju7JXPXsT7IW7aKs18XvNB95m6/lij1WBvWicCrDpDo5ryr15IxlAkBSpbeucysuZtXXdAOXEsNruh2IONgDnaGbkmNIOtKcuh1ZTh0ewk0lG3k9Ol/MNS6XUBrnVoTpZIV4HDSQ6UTKMhXMMymytTS7e2wngbyXmTC2VS0bTa1TqcBEzj75F7Sn5xwbArzx7QYysE2AVK991IJDXnKjJt73hgwzZPNJW9yoNtLbJpuPROdRrebs7/Z1bohsJHFLLHR6E+6XXA2WE1Eu/XMvet0RwJYShhFkgelEhu2VkJEYqIuaE+ngvD/2YpmZafdmDVqe7L/2F11fq39yybRNSV2Vzqdhd9f6tPSjbn2rtFcAr2AfRhXiMyibIpMTCnYRvGzoaFazeo8BaCCZNkFDnVdgN/fR0WLRY1EOeMUlTpjp2szup6Hs4aKmQ9ItsAfba8uSOjvPNv9naBdYxhOf6lmWT2s4BDDoa6JGVSeg+V7nEOU525mBwSvnARZXRlOTnIzGhVHB/JZalhILgJOc0YPpcCHYwAUlAXUBeXWLiNG7nVN36C61o01pCGW58qpxwN5NrLRoIgjLchmvOrmghUgu2K/1QEpgmF0yqEOGpMMrB30OQa4NEcADx3DiDc7AkpWIVG97R+ZvG4CJqjd7o9SyoFu1qAHmGnO9kfpXHg0ZQGZzN1wZb2sTeUcnLdStlbQ7hkEkM2eFWBEtwuA7Y9uZ2VQH611AAO6b6mRYlpLMi/+0O2lYF2wTE9xVJs1zxvI/mz1WyAHnWkdlbo2AyvpDM+ACVE39Bmg260jgLqMWLeGgJFNNU/ACJmVwON0P/ena8y5FPACdJQxKPmoO+GhW3Ovu461Q0fUHfFkjgJ2ur2uL4ZGc3Q7udMxGB6lnhX9fRalC3S7tSlhQu51JYXmQrdjkNSVFwjmMa7qyor6O8/e70a2BLx3dHWBdqkPiKAdGKQso1Tvnp5O+RgbITMPmG6nFLUTyQC/Bdl8STq5mQ4TgGPjsUelYJ1NZUuxw0rMsU7m1ftu/yXQC9j7L7uu/BKaTOGrBSzRCzkenFL1ynVHuqWJoCoK3tHLUiCRH0PRzqQZfhtd1oUTZpNCE5s5OOpqzJGy4hSVqMOyXowwoGIoqcGlZ+a0yX7WNd6SjVE77e9mZ2QKeDgBMk8ofzIdKKHt1Cjl86JYAQnqpPxNngIjKH7d4Mj5HuNQ14hQoOY5ocJ1z9vOuhjod2R8GQMIbd2pANa4IAV1qxkAIrAXsFnz6qlQoq3P/hwBRIaCQCi0+ltlBdapHgN1w/sBoske1QVcgisOtr001Fmv6rw5p4x3OuM8fyZUYjoGtZ/c1fnXDXqKvlK/zBmR+QXglbJ+rdYL8IgTLxARkJI74KvZ0XvWOOcfYFMqF5K9QFu0B4cLEEzPDewBcpBZqYbZGiZ3wVqpEV1VfgIdcufkCao5YKV67FYy9zkqO0fRPlNjTbe36nxujQvG6PaSnVLGRe4A3ZEgd04luZcaKllz9gS92OxoQgAnQF3ZGpsIYLHmSr0SWsldNpbOYFOBqmwKuTc7xkl9Nt3OrpC70o58pLPiMQEG88SPVs9Ht1uPWHOlYzz93hrHmmFTm4H+/Jek2wXUAHH7uS4z2GxumDoSH3wP+gajhe0vreF0HaU25G6f1R2pqmRFeR2gZDh1e6v30vt8cCTAttMj/IQSeGm/A4bUigOf8qMXq7OyhvhlyocA/PYyvdzMDtY9lTIPtl4ySqJBkF4qQ6z+nv2lK4HMJbaodY4pBlCwj3pj+CTQC9iHT/b33RkFlAPMkSrRzHVxF7hxaqG9dWehpwtquCWLiR4nYyhLrFbVZkR55JCrRxVkQ/vVkclc2uwcQhveRoceCoRaNbYDKsgCcErrgkYKSbZP9rquk+ZQvwoZXw4GZ7g0oI7kzkmDmLYa3h/atwDNdTl2AncZBe9V8CbbKUASHAE3BIgaVKEjoWGTEeeEk1Kq+avOQV0uuaOhQkZLg9GQuZSpqHvOVs/Vzc+tK44wR7XOGRKEkzsHr9lxS+ZFlgJtxpP8Ndpi8GTXOJH2imCS8dN4LnVW5WTZG5w4xlTXZ++5jsZWlYH9CnCASNdRlWVDvV+Ge7iyXtU5czDpGOuhDvUXCHOmrZdm4JzrApcYb0CHvU23AI1kDOkLNFLvAutD9lYgzREHknFMOMXAFZkFMmyWYXQ/AZO1bq+QewkQs67S2dXDxWjI94q9iZ1kDZSOo9OIzlrnFJF7q/4MqPJ0uyCE3qXbOXcCEPLEGEpN4Fwbo0XQAhyg2zlyssZ0u0xRs9MoPAubQO70F7nnDeZ8x/skd8HvUJd91OkmwIE1Ru4lx1eGjNw1xyP3Vo34ABJADjaVPIGJ3ifdzqYCBthn+kjGzP5gU70v9lgfDg6vfUW358eC5c9hX5E7ULCOvSPw52QL/gfzWNR29b81QNei5tdlpQEW5E4fYeO1Guxpsqn8FTaVLUudswVEmonS7Wyu5lxsqowgP8a7MC+6HZjeKgiyV4FT1npduQpQWYDjWphBvbFpSgDALFHDbtYlaCTQ6FBrvlXpJD8c80oAzzexxrEHJQ7odXsr6SnrnQ8J1OM30jUSD2wAe8AHKpWjVt8UXwgIrDwVUF5iErLb9A/fvo69uWm+/eF56l7APjxy73NXBo4BE1DJDNTVhnOGONyCR8qinUEJMFwUgGOVOIY2oUY3ApXUwZnTAcHmhDCK7TaY4pCiSQqu6ubEqAlCZSvqjGA7z9Lt71BoAgXKry4rkI7q4OCh6rVLjeQ0cNQEGP6bUuVQUI4yJYIZLATHjnG2ASrNMunVZ/dOOaSuDwCpQ1A5H9YKmY8UR9pzyG5xZFHJ61gjggvADiOCEtzuOd/ek98ykiiQHGeGTTCnk3ByKBnC1E24WbalKnegCupnOte5Dsiyl5Px5PiNlKHWlCw5EXXUZ8EguQPqfJfMWg1HWQmOBG4CEwGNNQoM9BknA1hFr9lzwBRrvRmDoXpPwACavPVSOpfad+0rOoYzL7AaSVkve5COpNtLQbv5+9wz0jF1HcLz90CfpBIXQAhABJWXbjfocPuHbrd/yIZub9UFPd2nnTl55+RuzkPZyLLVmrTOgG8CN2Be6Vg617DWBYSptKnVdX0OQKcLXNs6o9vZVKASgEqpCN3OeeakpyazPms1rGO6HcvKWq9rDoUdAXCmj0aSbheY2P98iToQgV4md3qZjmnX7gGd2Dy2wzUAovYA+01P0cuAEHo5nb7SLtPN/iFL+4fcBT2lAWS2ntiO4WQ0tFpHvc+HRgISCtggSnHqyjecKCEJAaxrVnJUnTE9YE06CYF+EZjbL/4dcEWf0TP0u/iBrlGC2i7TTbNE6xfTpW5OdBoaPIAXgGiv9cbwSqAXsA+v/O+7O8Repimda1yX+dChHA1XoC3YaZWZGqzHQ5UXADBsNrXAszQg6jIKgIZW2dLBmmuz68pQMe4Cc4FBnVMlm43GL0tC7nXPO9jPoLkNkEQGl9zrqFYyjNBTwaMszEgbaImcfXVg6nzrhmeUifEHkt0qQzIYz8mJgzIzupoUNWu8huYqyyNAqgsuB2OO7V6Tc8+RFqAo+SgNe4EDIpDx/dK5xO3ebyDfA75wkDnqqLR1J2YAB+gY1ESNuUpHew1kHt34rfkDNUtnhafr2w90O+eMjml1Tno35lW6huw9uWNimXcdyCDrTO7YPaUzwQdrfu1eGhXAGAAAIABJREFUl25HMZW1IvdSmZZrWed0OztA7u0Gee3Oo93vAffYVMAUvVfXoA1FH7hDt/v+SBuCccEGdlOz+m5ZeHIHKNPtdb1CBvP5ALkYU/S7v5utYzXvWHf2w1AciTqYz927dvckADhLe7KuXIaNkhQCNCmtoZeGY7ClKPDARbT+ujgDKMlH4J9J+ElA9MbwS6AXsA//O7hvBjIijLAMGPpqsxpF2Wq1ghSE3/SnVr0/j44FIBCB8qnRbNbgjkEWaKnTHK4mRO08IzqjbIzsILnXZU5RewVsAkwUIoFwf+rq2plT9TuylLLlMl6yEZz6Zmc0y3YJXNCNm3WV73Qe3f4+2haql6xI6VzhdD/On8CBYy04QL1tVS7QjblCtq1bclerRu51VFboN2qq7KX5yjiP1KEJGiPMUW5GS0X7FDiQA5pou6yegT43SiBQQaack9zsaDMZN3IX3FpDsgIjdQAs0a/pmGbHhgEH6XaZccFPs3rfbj6rGmu6XaaebncMYd0A2JI78KquDKqbc+vvteh29chACHJXtlE3gJx0O+CcTa3LsvZ3LnW/Q6sF5uiMLmBsVtfO/vg+3ekdjNQhAQG0lJWznusyfxhQdLtafHaLTR3MDvFJXvS1dUu3AwLp9mYsLmvIXJWY0J290ZNAVQJ0tGSaIFh5Xd3AzMGekWjBTKpratxt6WIcypJj2WLtNIstAMfsr0bY9Kasfm+MDAn0AvaR8R76zEKAKzMN8eU41A1Bc6pRlg1R78YRbJfy2O6jo/1BBznEaK2ctFbUHo4mBYb2Wne+drv3H6rvqe1F34eWUqZ1IwVynAwIJIp36Rihgc4b3ZWTyUETfHP4mx0BgiII7QX8yCY16/o90Ll16/eo6TKjqF/k3qyGV3AGuFBnLXgUUDRzbvs7R4GLJk+QaIE6gKAZMKOWWLbaXPQvUAIx0ocyCmwS+xNA2Iz6ztAD3wTSgnyBWqkD90CeGa1VAIJhhPKaALFmwIx3ZB1wpj3DaBjqaDn85t2Kymw/2MOygJ6RfmrVv6RTGWCD0O32FPaKuuk65kW6NoYPtomgse4IyU7nMdjfpxfZL7q0dLJAur9Ajk0FiMs+0e1sajulIZ08Azo93U6OwFc2tVnfCPvDM8h8AXDRbEf6oNsFL4A/+7NZVlEGTwDNpspA0u2DwTAxFwACuXu3bGozEEegYz84gxtTYzTo9pG+LjbW+UmmYEfRG63AbT6DfhipSSqmLGp7N4ceJhI31rxeDvYiYKFZAzwBulp1icDe0W3dfBvduVYvYO+OHLt+FV171ZvL9jJkdfS4dOPUfZYDhbZtcwogmhmjuklD1CgUdS6Cl0Tj4ai3ovJw6gU4AgGINGUxmganmKJipFtlp8lJgCHQQMMV5GtwI6juT+Yd9VonZqABxSmgsg44L60alqB8cj68I0yB0QKSWBtqsQAe2BsC8lYBA6dVsKaOU8aDo2vNa4zSn4AGWABc0qBKnTFZc9I59qUu09X1rD4ZnVNAZS2o2x4tg24QeAsgyb10tGT1WfQG4OwCMoCCjL+eDnSCngydDkEL/aBZoPXqPdp/7RxdRscIWoA9grDRNGQ4BOEAV7q9VVNP8hFU0+3eGd0OcKk7S7yVLOh2suMw0tdABDJv1XVesELu9JLgvu54xlb3H67POdGCLrJrhxVA5pxXgJUsLPmwqf0BqzjMnGe6nU2VeU6BaatMPjtMtwNI7BnA5WgZdLtEggCZPW3V50AAk3Q7+i6bSrdjEPanDA0gpXRDY0zvEaNLsoFub9VDA2BG7mww+zqadPtoWR8b2zwF62wjXw7A1urIWWucz0cnY+/pZaQWng/Sn/K/1MT4wAMPbBw9h+kCDGh1soW1bb3z2fk8I7GsbGNbK/15nl7A3h+pDdFvOLCQXY6R5izNMgNpSjYeh4CBoggoBDV56vNcC4pHoaRukxoUMZKyxgJziLLfcIQFnoylILSdga7HKMtKMo6owaNxCL7IRedNcm+n3ACNlAPMEeaYqQOmeNHsNASR8UYLlKnRSRj6CY0FymAwaE7nPVCwnELOIQet1XAflOEEMsiUcepG40C7JjsBDHpqOw6aZoqy2gI/RkYzFp2fNWBJ3VU5jYyfIEkGTZCfOpaTlc8EnRx5wVA7De7Qxshd0AVZH67zvgf6ntGuAUIcao41SnAzBD7djxMM4LDu0P9dh7PCQUFpVY+qz4bgDrAlQOEMAEdk0zgTfkPugn7Bf7Pj5NJ9lUWQO91E9iOpqV8n74JelVkFlNAx7fT3oDcAeXQ7+aNXcvDodnsFWAXY1a3cUMJDPwha6DJ6nSNnvQK3zEEWs3RcWP4s5qluGmVZwDicx0N2Iuf8u/oxWN/0Bbk3K+lKv6Wn2VTBNv1Ed7CpQFk2laOdOjjLftPtHHY2lQONMeI3dLt1y56WjvnL52p9Kwmh0zFbgGWuMxoHqr/1apB7XV+E6rPxH+h2NlVAg2UALEmd+QXfgEI2lW7n+9DtAF3UXzaV7kE7ZlPp9nbOdbdX6Bj+EP3U6sjF0fg+enMePAnQw3Q7+wgMbZd9ySb6Q19Y+9is/tAv9Lq1nppn2gv0DLuqPp6uYVt9nz2wzs2h1ekXpCBZIdkgqLd/gLi9MTIl0AvYR+Z7uW9WHAOBO6PFQKFRtkLLqo9kQwtKKIDUvTl1K+e4cO4oA4E85wOyZ7N3QgFUk6P5TTqGgnOnqcVoHmraKT5Okv/WjKiT2joKlOLlOHAgKELBIkXLQRbMQDJdM3W1bXWkUy5P1E30VNkxgIBgK3WIHq2yR4UmH5RUa0pTok4GeQOdUmd+jjNHjkMnMGf0BIaCecGlINO6b3e4loZc1rhso71krqN5cAL0BrBOGW9rCmjVyQCcCAg5uwLEdBKFAMb1BTT0V+pmC1Tx/+0O1yZ3waIMGadC8D6aBz3LmROMCK7Jvd1TKDw3h43cUzdhgIj16FoG3Q6c5fBZ4wJMAU/paLY6OQrM7UNlNgIfmUb3HM1DkM6ZxdDBWKDb2z0pwnPT5YJBukYAzWF2fCPdzqaSFd3OcU+ngLQTKFZlKkhn64HFdJVmo6O9lpRutx6xGwBU5A5MbXcISNhUup2uAqTQx+ROt1vXdDubmk4BAdx2MiQdyN1cAWSjXbd38uy973ZPAvxnZYx0slJFLI3See11d7T2Uod4+gbwSt8nHZDWO7tqzdM1bGsnup3+wmrkl7LHbKp79sbIlUAvYB+576bPzGSgBHay7ZBiDrbsynAOWQeUYM45ZcTZH+3OXC5PgYsAUv2jY180xml1hu5gvxMUYB08OSOccHRiNPiNZXDigBAcMnTt1BF5OJ+PsdSgiNw5/GqrrYmNiSYJrJP9E4wAftBXORrDOTgV5I4BgGFE3iizG9NQisBhkk0U2JH7cJ3+keQqgy9IpM/ZG2sCNXtjGtYTXWM9yWDT7Z0GeN2WBweaTQW2AFdk6TY23U7WAA6AG91O7p0EGt2WueulkzOw2gRAyiE2Jt0+GDLrXbO1BAClEjFAVbqG79CqBKb1VQf2DaA6nxHbit8OVFDu1hsjXwK9gH3kv6M+M0Rfhd6rZ7TZHCNVd9zRYDyajBnnGRVVFl0GQAZ/tFIk25ERRStwh26q8yFz9UmdIKbt3KfZd6C0AnXHyTAAHHy0zo25Y61MCQPHoKCiOgpOfXururCByrr6e2tbwyTNkGRD7T013BgUG+vgtKLvov1D9tGI1f/2p069vzISHJK7TvHAG1m00Var3umz606uTEDgLjNLzzTrJt/p9dv5vqwz3c6pE6jLIOuPsjEPa1tGTJCGTUW3t+rn0E15qG+3tskd2w1dXJnJxq7b1fAD+7E2lNHR7Z0yEQbyHmTq2XM2FUCGpQZE2Jh1+0Dk1ftt/yVgXcuAY//RNcqRlOC1U37W/7v2/WUqZQIesO8AKUm23hg9EugF7KPnXd03UxRT3eMZGA4tpwpNVDOjVk3h+vu4mnExrBw6WTj3QaHh5GwqQ6DIqVCXK7sqy8rp4GjXnWc5ENkIljgQ5I7NoKutsgNNqNRTbioDQPHd7363QQlTayWgVBvGue5Pk7lWclO7aF8JzDl1arsZWc0FGdxNZaBnq7mV4dN8S/AItACitFMb16mc6BMMIllGGUb7SiZOIIO2t6kM+xxzhjMlC0K3W/+d0OU7kRVdoqyJbsfaAsLqM2CvbSqDLgdMoZgCKJQVYJewqc2O0OyvfIDdSbfTK5otYrjoCbGp6XZ6BSCnDICNpdvt/VbNGPsje+U6dLuEB0DEXpPdt/43Jd3eH9n1fjNwCQCGrHElXurVNQ4VPPenOXQ7s3Efpw0pu9JXRjktm6rHlDLB3hhdEugF7KPrffWZrWyf5mTq7wR3HDzosOwAxSADzAHr1LmGenOeddR1TdlzATqlAixg6ASNm+oQNJO7un/yJgtygZiSk4CyP52E1eVBQTVP47iRc2o8SLmiqW7K1CVyBxbJ9OrHQO4aEGkoxPBZn/3JvgtINURK3bPVpHq/akftBffRGHBTHZqU0SeAKg6Axmepc7O6ZgFNp2UimDqCUWtcc0wZdY6zYJFjASgh95F8rvpgrwdrkP4WPFqfaOmCdg3L6HbUyk5ZD7K5dAjdTp8IDoGNdBaQxDvZlHV7sqn0iLVHDwMKk00lJ+/EXuhkYAmxqXR7sqka/gnSNZezB1JTtk6uu7F8N9lU8mcHrUEJiXQaAh3U6qSUkizoETaVbsdIk120r2Q77QUlB5uybt9Y1s9oew4sGmterbr1xweRhaeL+TT0Tyf9HTw/0Aszyhpnp5Uz2U8SHq6lwTHWXK/UY7Stlvvn2wvYR++7e8DMOXIcaNkCRo8DYNOmxmY6SKrP8rkAk6MA6deoKHVXpTw4iBQK50TGgbPBodbwpTf6SkDzD0G15oBkSlFyzPzNwVDDlLpmp27lghU1wuSO6o4hoVZXwMIZJHvf8W8cRu+mN8pyl4nkPDN4AhGySp35ASoMliZQ+hAwjowVR5zck3HjvAl+AF+AEeu8h0CXVxyZcnhRt5WIcAAEeXQJB8S/p67Z5I7yx5HgHOtJAOAid3qGgwJk8RufC94Fkb3xQAlw5LAdNOqjN+h2sre+OXd0u89St3Lvw/uRTbEnOGuCF2uffhEA+a53Qsf0dHt51bGp7CBghJ4W/LGp1rqyBbqdTU3dysmd/UynIviNtW4fJN3OTvh3QSk91Btl3W7Ns69sKd0OpE2d+ZNur54AAliRuCBT3xW42BN0O1vMpmKO9HR7b8WNJAlIDLCF9DG/kL5gI7H62FIAts/4h6kZND+FnsE8o9P56P7mb9JNfuNa1nuPOTKS3vbA5tIL2AcmvxH7a0pA5gtlmIMgqOE0+FvwIuvu/wXsAhmOhj/peBSONUcudRwesQ86wiaWjvvhKFCuVblzPmSxBDD+cCD8IXf/n45gciJAb3QmgSR3hiqtd7L3x3tg7Dh01neSu7/JXUCTjhrr7K69b8uA0THpyMKqjvEeyJ4OSXJPOkYwybEGbgEXe6N9CdAhgnfBIlCEXkl6Jtft6bx3a91/c+J6ur19WVe/mWyqYNHaJve03qu63dpmU6u6HXCCjt3T7Z3LvmRTk24nd3vAuq7aVLL3HpwS0tPtncu894vhkQB7qT9ROp4z6fWqnjGztNaT3570Ox9SSZ913xsbnwR6AfvG904bT8SJlhnoNGBP5zty6lDIRvvxbEP9eh1bI9sCEEm0ydRYJDkZlGxy5swvKV0OhuAGJbs3OpMAhFoWpRqwk7sAJgXsJacuBewy9BvbCQedSbD37dEiAbpFGUhdwC6gT+ypBMbmAXtPt3f+tpNN7QXsnctuIL/AgMIgSSwGej39EbADT/gpCZxK9jUlH7BLZNx7ozMJCBwxeIDd7GgKGv2dQEL2M+kYV6dn/D+Aig/Zk3tnMu9GwC5DL3DvjY1PAr2AfSN6pwJ0TSVkd1Fk0CY1tmhFiadcBYkyXVVKvGtxDtH3dOlGMeuNvhJgvMhXoC4gR1GiLP3NwWDsZAA4FYye73AoGDXGToAukEQJZgRdB7rqO+jb3ksPNHngqiMr2V00dgGKtVmlxKOGoZMlh4Pcq5R42S5njvodhxAbxZFO3oXO8DJhvaYsvd0+UiSgzENzIoGLNZp0O12RU+LpmsSeoodSuVOVEp9q1gUzOpL3dHv5TZOTsg1AIEZIKjMbCCVeUCMLpvyjV+70QLnT1XrA0MvWMrlbu2TF1vJvrHt0+ASMJ4CKzUwlfnQ85o/mdcAWgLj1Tr97B73RVwJKJQXpACnvAC3bOuV/kJ/SD/4Jnyax2NhUPgz/hd/DXxGoY6PQS67l967Tk3t5xZGtZAP58gm7QYn3nuh+ZZX+9MbGIYFewD6K3yOjpRmOui6GSlAt6PZvau8E3Oq3+tt0jiOnQY7GRJpOoaYJOtFYN7YzeTtZBhwFhkigyFhxKDjIAkRKN9UcdXJN3+WIq0NSV8o58d+UOQPJIfFvmzJyyvGytsmfM6YZoiC7W03n7B+ZR06H5nbep3dgrXM4eqMngaGUgLWOOcKJ0ydgMJrO2UOCI/XVsjtYJpuybk82VX26IEQzOLbVu9BQlE3tb9M59e9sqlIzMtZ0jk4TPGpGtyk3FKVrrUO6XcAt0SDYFkAKZuh5wXqnQ+IiNfXSp4Hd4Md4zwJJQaTvbKrD+tOUjF/Hv+DbCbTJnV+Z6qE7lY/MukBR/wF6S2BP7kAB73dTl7u1Ts72vsQBOXWz6Zy6dTLmi9o/fFVAin/rNZ3rdDWPnO/3AvaR8y7ankk61o2Rc0QJ5egIGkf/DNaxbs94xjMaR584gkbTqU3xWDfOROpCDn2W5dUwS9aLc9HtwVGXEcBwAApwIs3Bf29KTkY61g2g4agpDbMG81g32Zx0rJv37OifTfFYt26v59712pNAOtZNBpYDnY5105l/MIagPR3rhmmiU78Skd6xbt9sHC82GEcuAXod60bujky88MILGwHSpnasG9spGSCgA5bqDK9xLmZDpydPtLM3AN6aWwJI6Hm9IOh2pyawtZvKEBwCnvgS1pz/xuBhWzvtTt6OzPgw5K5bP6AEyC5YBVxtSr5M71i3dlZL7zt1EugF7KNsbXzta19r0HydzQ3t/4//+I/44Q9/OGRPQcm+9KUvbZyNjGImkw+14/RtrENgnjIhjLyg3R/o5VANDp4sr2wBcABSLRO8MR97JaPirHUGXfDyuc99Lr70pS81UP+hGjKOL3/5y+NVr3pV4wxye8/57NDq3uhJoJsSEByiAT/taU9rgHN0uzOqh3IAZOl2IPBPf/rTxt/OJd+YB50iaBM4s6XkLqM+VAN1lU096aSTGvpF8CSgFOBsrMNzCsyxGLAOJAEcWWj9D9UQrCp90q0fKIxGTOYbs03FVJA9F0BjY2KSKS3DOBiqoQmgQJ3P6J3L7m/sPTUAJMr0sDzoGuAruaf+RkMhe+U82LLKn4AzMu0YtL0xeiTQC9hHybu65JJLGkEiRJ5xO++88xp09+EczmN+85vf3KBpOxfY5t/YGndxnNVzCZbVS8uCoBcN5wAayICpkfdH8Mjp21gGhP+iiy5qlAYccsgh8W//9m/xsY99bFgfj3E79dRT461vfWsDRACacLJ79LJhfS0bxc0FhyiST33qUxvO9L//+783gNDhHAAyuh2dVeAOlN3YqPJf/epXG9nEF7/4xfGf//mfDZsqoBnO8bznPa8hd31PrAXnhNP1G8tQnidQwZYSHNOlP/rRjzou2+u2PBz1hvHg/QPDrf+NqXcM8Btrga/gzw9+8INGsDycAzUecxObzZpQ9rexnaIgSAcGCZLpGnIfbr+dL0vujgXlt0uIbMrlOMO5Bzq9dy9g71RiQ/x9Z+aqdaPINFs544wzGpn1dkeqF6IwZEtkZf2b7Dh0T/AJXVWTTbmod4EGpvMe27kPEOH0009vGDuggmzkaA9kUPUYbvVF/pvz1EmgLiOumZ8MAueEvFHcGaXUvVxpg2tS5O7lTyfDO+VIe28cIXVLqIWjeXz2s59tIO4nn3xyvO9974sPfOADHT2OujlyAGpwTBxvYi1qIIcpAeDQZyA1xXHWL/m1O1zrve99b7zmNa+JT37yk429ZK690ZNApxKg27/3ve81sql0BN3eCe3dMYUAUnqAnuJ4WY/pKE66RdYQtdga17iObtcTo90hC2YfCiBlRI855piGozeaB6cZ9V9wzHkmd2Bsu0OtLyCDrmFT/T9dT7/T7WQlg6z/CMDXtcm9k3HCCSc0bKryBLrqDW94Q2ONjOYh0WDtYZAAgb71rW91ZFNT80SZcVlwILW1jvWXfBn6neyteXLj13QyMBef//znN5Iiriv7PpoHHwNzx/oEQiiv4U92MpQKyMbzHSVn+DTADL4MW03PALAxDsmb3L2Ddod3ibUGwLHe3W+0s0v4Y9YQnWy9KlkVHLc7+HF0Oh/GuqfX+R78SIMvYy+RO3+GrsFO6US30190oH3EvxW0KwHsjZErgV7APnLfTaC/C6af+9znNjJ7MgKthk195JFHNqgvFLRmFpp9cBo4bRQqJy41okuNzigGyJtgx28oF8oTZcqfdsa73vWuePe73x2f+tSnGvdGdRuNA/09dRTnVKurazXIUUMbRo2C5bylI944cOSdzmWvnkXtd94Zg0oZU77u5z21Y/TchwPtvsAS79C1RuM4++yzG+uWk/u2t72t8XerIWCRmUSpE/hwUBgf4BHHAcgFEGHgBO2pazZKYAI8fKYnA5SfIymwaTXI/Nxzz204LfbJ+9///lY/6X3ek8B9EhCsWGdYG295y1saOrPVoJOwmgTR9CuKI/o03W6vcNrS+b2uJZjhYNNLHDF6XfM6daoy+MABzjunu9V47WtfGx/+8Ifjox/9aGPfcLBH48DWoR/pCzZV8N5q0OeCTLpJY0q6I50Nnk6j4DjT8YI8QAqgkE0FHKLB+g0aqppp9rQdBgXdcs4558Txxx8fn//85xtlcADa0TiUdvAtDH5MO7rduk3NFq1d619QYp2nxq6CReuX3K13+p3sBUlkzj5KQrAJ9ko7lHu2FOvC396zhMRoHPrrqBXHjAFMJ0ZJq2cRyLFv1m1i8rkWEITcq8fWeid8GHvKPvHOgFgCR3oJcwgo1k75oPuRO//HfuLHjsaBhSmrbv567Sila2dotOgPOdCxEkX+kHs6FSGdAJKOXxbIp878KbmUAEKgZDsNpzFj9StJNHm2pTdGpgR6AfvIfC8NxwgdWPDIWWpVY6TOUA2e4J4jJvCgrPvTMEfgqDkIRU/pCAI5mBrjtGpqp0kS55NBZkzRhkfT4IBRgOTeKivCSeAIM1Do22hnAm0Gh1HrdJA7oweVZfhkDRhKsmx1PQi4LsTmz2kZTTXWgAnOhNpZmesvfvGLTUXnWRl2mRDy+vGPf9xY85xgzlynwztkpNBPjz766IajIROh+VerfYe+Klj/yEc+EqeccspGXf/YqVx73y9L4BOf+EQjkKM/6PbUyLJOXrJ8xx13XEO30+eXXnrpfScj9EfGdDvGFqCLzuBUKkGREWo2zBmrRImQOb/uda/rz+2H7TcAwUS/JfdWg8zZVHRpte3kw6YKQjodspKCfUE/mwpIkXUDyreiyPoNubO9AlF01tEygKV8EXr14osvbtlvJ9XVkpVMq/UuaBZwAl87HeQMKBAI8U2w2MgRyNoqiOT/nHjiiQ2ARWO20cQaBMoJ9gRjX/jCFxrBWLPBX/BdugFQZE2mRE8r36N0XdcTeJI7YBFoQu4AKwB5s2HPkT1GD4ByNA2gf/LjyL2VbgdE8T0kGwTmQCV+J3m1klNJLnQ09g+gi+y9d43uWrFyre1XvOIVDX9KssN+7Y2RJ4FewD7y3klwLDgUstUf//jHa2dIsXKaUHIZny9/+cuNJkUyu90cGp1xXtD0GIFPf/rTjYCm2VBzzABwcmRLR8OAvguWKbdmR8hA8jVOIRfBuYBaNrfbQ6YAagowEYhSpM2y/eaFSibjAFkdDedvcixkPyDKmrtBpuuG4EJAL+OkURRnlwPd7cFJeNGLXtTIImp0x1mGmtcNTg6QwVrnaHJQeqMngZIEPvShDzV06QUXXNCgPDcb9gMQSBaLbhfw9AeQanYPwCAH2Z6iNz7zmc+0BMzMGxAryH/7298+Kl60TDVwjUwBcXUD2JlsqiDRd9nUTkrE2hGITPkLX/jChk0VHLGpgMe6IaNGxwhigcmeY6QPzUGBn7K11pUgpG4I8AAZQNPERGgFZPTn+QUz/BKAleAx9QaquxZw2B6072Ts2fyRPgB6qeyR3Jv5g4Jq7BF0aMEmIGMw+jikI4LJn50k92YMQrae3AXt5jcahtIDgTK9wT9pNvgMnks5AB9GUN1p+UYrmWD6pKNqAYaAM3Jv1uiO78Me+N5oZZa0ksto/rwXsI+gt4cGpOEQh4Exb5bxEKRzlgSXgnqKdiiGmhf1dMACzmczSiGFqwaZs+S7I3WgGQEiOGuchbpjTTjODBxUlDMiiOsP+twfOQho0dMYOUFtM2PHaEBKORkM5Egd6neBDJBljmvd8OzvfOc7G02BNIYSQHda798fGXAi7cU3velNobb+gx/8YO1RQ9YOBgrnCMJun/RGTwJVCQh09T+g25t1f/f5O97xjgYICPjstOa0v1IXMNHtAhP6GiBWN3STt97Vf/szUge9jr2DgUauzRhngOXTTjutUfPLpg5GwFiS08te9rJGaQSQGFjfDIQE4gNL6E4AxEgdv/vd7xoZQkEDWSoLKw2BpcAAiwSLoVUg163nReO23mUSgcaOxG0GhgGKzZWv4Ai4kTqwZdh/QIlGinVDJpbcARCa/rUK5Lr1vABCQSF2jzWMLl4HhmE60kcSKQL4kdy9n67U3wOIKTCuG8B8chc0kztAYigGlgmmkCRbUR1VAAAgAElEQVQOuTeLLQBsr3/96xtrgs812ntnDIV8h+oevYB9qCTd4j7oQgyWWhLURyhdaUCHBQ5qhM4888wGMjccg8OmGRGnhnNZV5PGUaKU0Z1RhEbaUDMu+BNkeQd16KNMN4oRFFRGuJPmHt18ZkG77Iz6V5S1ugFUYIxlNRi7kTaUTTBeshyc5LphbZ111lkN2rm/+0MTG+izYzq85z3vaTjK+jTIhtUNR0JxSuxftcm90ZMACQiuAKzqkOvqlzlKdLvyGrp9qAL1/A1xqAELdCOgTB+P0kDlpNsF94DmkTbIWS8WARa517GTUMzJXZBD7s306mA+I/o1UAcITu/VleOgruon4I95j7Rh/jLT5g/orBsyjLJ5MrsCzaECv6vzAcLzt/zBYBG41w2sKwA4sH4kZn0xMARlKPy675eGRAvgyvyxJIfySODqfATjZM6nIve6hJP5sqP8LeUgqQ/CSFrzWAwSaPpj1FHPPS9mVSovbVVaOljPxy/EHNQ0ELhQF2fYv+TOP+M/+l1vDL8EegH78L+DRlZOAytZOYivrEBpyGTI+HH+WlFu0u8pCjRpzbmgayh1AhCZTcEpRag2TK20jDHnjNKpQ8TzeXEw3vjGNzYyBHVzUoMHTYSWohiPlCGT7tnVktYhnaiIat+g6+qLZIPbGWqCIMKasfhv8nat1NFW4Im2Tv4AA85NO03m3Juy5dy7vsYidY5oysqjUI6kZkWcBEEtx46DXBooerKLSj00h2qnEZzrcAD8lmFnHJU4yH5rOAfJx2IBuqgtw1SQcWu3QzSAgVF2DWuZXEtDRknJhHcrUOiNTVsCgi8ZOrq9LvilQ60tTpJ+CO0MOkmfk9QpXmacbk8ZETrc/qHbU4d4ur3dkql25kQP0e0AONnhkTLoaQwAsiF3mdHSoGNkkci93eZQnFm6gE4FirKpaqXpZfX97AqdLDMIMPXOMbd81mqwEQJxWTg6RjasNADmwEHBAv04UobnJAdsgTp/gE+CVWCdKjkQALczyFlmmPzTiQgy+IJusrXerW2yx06hn9s9AYQ9kixBHTbvOt0u2PHu3WckAeGCbzR/NhUlvjSsV6Az24d1wo61M6xxthTjzLvj06Tu/KlbOf/FnqNrvM92/ST7UzmOhA+51yVC7AUlO9gD9N5IGZpBWst0X13PI/X45M7v0beinSGBlE7/SKfd8GNSd376jJ5JnfnpGqUM7b5Tc7LeZdHrylv5l2wX31jvD3utN4ZXAr2AfXjl37i7zCHHHi2sFKwzUOeff36jidurX/3qlnWMDAl6DhSVQrThBJucBwpV5oRxg14KJilhjbcEOYIdAb4zOmV4IM51xiuJTj0Ox0FGo66Zj87GkF+KjRIYCYPh4iCh75UGuTDOnA/yazUgwJwKf7suZZo6xXt3lCzHInWJZ/RSh3jKMdHD3c97apVNlvU3P02Q6uoDKX1AjXlojjfcw1ytP7RPWbzSYNysdyBQq+7ZKUMiS2b/yNI4b9Z9vF+yZMTI0jvhWDOAnBB7Q8ADuEJj4+y00zUaLRVlDGsEfbY0ZOGtA4wI9+mNTVMCyjcEV2pzS8E6J8hapzeUEDXr4UCCSnLodllwepdux3ICOnHaAJDJ6XVtpTH2vQwJ3a65EX1HtwsG6zIs6W2xCXQ7u2S9lxxqQTvdjubfTjO3oVgJMv7sGLmX9Chgj9yxpci9VTflww8/vEGrZ1PJU2DqfQJC6GpgKx0PkBX0CSgFOd4Xe0wPaIypTh0w0CqgkSkld70LsHtKQ3ZaA0PvE+gw3ENwTN+yNcCE0qBvHftq/cmqtxrsm/dojbGbghLrPJ2iYj16v6k7P/2eOsSze2yq9wSYtVdagSZo8sqzJBZk/kvDfpZp955Hgk31XMA6NOc6Vg77qEmrALPVCQWAFKwUsrdPrG1BeOoU7/3yH8kSEM6HSZ35+SR8Du+F3NniOpCyKltBu31C7nU6SWmaPTZSzmrnGwPWsP/qWDnYMHQoXdOshwNZ8DfJXYKIz0DmfJh02k06iYK/IqAXwGNj8Wf475IE9gZ7AJht1fDOXsHqcS1MmFITRn4p/UPfYUT0xvBKoBewD6/8G6gi46wLaWlDc8qgoeqR6rKR6REgfZrRUN6QPMFHf2rboXhqjDgojBNDwAA3a4rDmJojY5mO5shFC5SgkKF6vjOcgzJkcOvqBSlAzgVKZTOUXhDIMeCccRwYteS0dPp85A7pB9D4G+psns0y756Bkvcd2fbS4FxwICl6fw/X4KRyFhggAW9pWOPWHAPerLOtAOSkk05qINeME+NpfbZzbE9+X4bOHmSQvEcNwTg23mXd4NhxplFSnehQGihnnBtGfTjlPlzve1O/r4DEu3eEWMlJtobpdmVNwKlmg7NNt3PmZERQXlt1da+7HmBLxsQ16QylSq0yP9a4oJXeLjFS0OPpUvtwuB07NiY1WyrpTsGLzC5HFKBSNwQjqK7kTjc7KUWWrFXH5dL1ZCXpjHSai+w/Jx7ltG5wxtlUDCxyLx2/J/iVfQTUKJcbrkHPkYtgD2uhNDAd7Acyb9YfQPBnjQrMZMvZAQF3s0awzWQoEGQj2WlBOHCpjsXoOgJOwBMgpK7XhDUhmBGMDWfGV1YXWCFgrANABI2YCcDvZjIEYgO46Ct6wfv0d7tZ2+o7ELiTu2Zz1sRll13WkHtdfyC/pUPIHVBV55cB+a01umg4h31LF9M1pfPV7XdsWHMl92aN3lxHQgsohSpP7hJECWicMHFiTJk8JSZMnNRgk/C16YLVq1fFihXLY+WKFfeJAkAIaBE3SIxIvNUBT+lHWCP2GmZgKQYBCGD32rMjBSwZznc/nPfuBezDKH1OEueBIaPQ8iGLwkmQARAc1A0KGS0Ooiaz106WsJPHhsKhdHJ+UPcF3HUDW8DzcNpKVDdKDBXHZwKz4RiyIgJiyqyUWRHAcaYZbEqvNCjNdE6pABTy3+qYmE6elYPIgHIeBLoyb82orBQ0o1BH7afEGXZOxnA5GAJYWT8ZwtKwdsldaUidLAXUat6tIdklgXUrJLkTuUO2OcHWO4qy+ty6uXg39jAnvi4LJhhjfO3h3th0JCB7zRGzVktOvwCCbkd/b0aBF1TT7TJL9oc91M2hrhJrSyaSbm8WuAMVZLk4eCUnlT7XYJSTX7fHuzn30rWAbWwPfVg6fk3gS2d4hmYAtGdFk2cDBBBsRbeGjGQ6wlKGn9yb9aJxfzbJnEt17Wwu9gSQebjYPBhKdDP2UWlYG2yQpqF1zd2Az9YNtgBatwCvXUp7O+8GaCog5VcJuOzRunIyc7HWBfZ1bAH7EmtuuIJHsuF3yHTXlRpax3yVZjpGcE3u1g7fjtz7E6TXvQNrFwAjeAc0knsJfPJ73yV3PmxpfwqENTLmP9rjwzHS8YrWUInRIGmlbBXIpD6/btizADz6wHrHwDE2n7ZFzNx6qxi/3cSYPGtKrJ8ccffqBbFk7T2xcv3KiPURE8dMimljp8XM8bNix813jv+58JJGAF8dmCkSb9Y9uTfTYRKGdJL9WUr8KKfAjNWgcbjkPhzveqTdsxewD9MbUfeHAsPBYJDzkc5+taHrAnD0xtR0Bi2nFPR38/EESRBOCsvmrUOpGTLZfmBEKWjneKLhMPCQxaEcgnVoM2VbOtcVdVGgLCNW1wQHDY5xE8yjbw12x3Ioviw59LPZ2fAUdGqeV5KpuiXBJ8cOIDCUQzYJOmuOJWeAE82wNHP0OdCcU0aF0W6G1g/02aDKGswJmDih5lcaaGUCdutJg658COoZOc8/krs6D1Revd/fLwGOF8qo9146uk2wbs0I5uvqfO13uh1bCuukrolUt+TOzgCdsEro9jpaKkaLAJNuLwXtnldgJqs21LrdHkVZ5/CX6tGxdugOc68DNv2e3DF16BqU3sEcwBLNW4E65F6n0wCHWAPmXtKfsqv+nd8w1Gwea9m7tp5LwThQyHr2DHXPJ5BG8QeQeJa6hnvdeBfAKZl+wICAqtnecnIAoLwUEFvjACrA0FCvdXPCnhTg1oHF7CUfplnjP0AKtg2grq5fQqcynzhxUqxatfIBP2NTgWl8LHKva7zme9YS4KDUFI8/xCZjXgw1q4T/JYEi+10CcgTr5i6rXbeuJE00/pOcANryHWTOd9xpl5i052axastVccXyv8TilQtj5doVscW4B8UuEx4ey+6dELMmbxX3rFga4yetjnvjzlgxeU4cvfmz41cXXRqbbT4t7l265AFy56sm1hPAt46aT29b7/ZpKWgX/PPh6JmR1L+h0/U5mr/fC9iH4e2hL6G9QD5L56miBqE7yjTWdfHUcZii1hioLpgYrEfj0MjqozXXUcZsfMYAslrKUHKEUDuBAEOVFYBIM9aAhtK52gJ1xgAdq+RYeF8UlbpQWdNun4nc7H2Zt4YrkH/KtC7ri8ZvnnU0LUpXTZlrDdXg4Fsv1nMJVIL+czw4o6XBwMumM5KC3lZ1vt18LlkBTr5ABl2vlJFRS2a/MtClrs0cUXuVk9KqrKWbc+9da+glwKGTdZGRwDTKByfNWgF8AmtLAw0bPRFgpAHZUA56G/hLt9dl7QTt1jHdXqLHA6MFMTKZQ6XbOaL0HrZNCTgToKGXCwxLupGMOaoy8HRMs2P3uv0+BH7YPOZG7nVNw+hRervUoRyNnE0CANUFcN2et+uRkwyzwKMUgCmDA9JaU6VGtjKmfCD0fyzCkl0ejHm7ptIzIA7mmQ7rdXRxvpbPSsek2ecAItlLoNdQDbLStV5ypFS6hckoi113ogkgmdz5MMpD2m14287zPeW4V8e6tXNi7jW3xc033RhL7lnc52fWsD4B7LhynFK2XeBrHQMRBO75AEzxdQA7Q8Vw4D8CSWSYrYl88M3MGVumLlgHupE7UJfOEqjvuueesdm+0+PyVf8bNy+/Ofbb8pExdt5BMX3FfnHr1dvH7ddsFxMnRsy5eUxst936mDNnTEzbfH2sWTsmHnbQ2njys38bt137qzjgMc+PFauuiiW3LYo//+G3sXjxoj5TpF/IHSBWB87wb61nYGXJz0pMQeUlmBm9MbQS6AXsQyvvxt3UeFHuUOfciMl+pmxd6RxcmVFGWXYehaVVQzj0Z5lVgcdBDz84dtt9j5g5Y0ZMmDg5xo5ZH/cuXxHz594R1193bYPCA+FO1JxmotH5HcJojnUOguCFci45rpQex1YTuqE4ox1tTLYfJbtEP4TqYiwIKEvoPsciGQiZs1bDfbwjjpTf+n/vLnWJ17Hcu5edZyxl+9sxmkAFShXgUffuGTDXLTV7oWgxBHzuWoM9rCfZKhm7UraRw8Gpg5SXmkNB/zlTnFV/Wg1NclyLjIAvnhWirdcA+iJWBMNrPt6jvdaqGYx7WqcoqZgjpXpkTcNci6ErBWKyHMovrKEepazVWxy9nwtkBb10e16qQQcAA+nMur4H6h3parq9ridFkg4Qjx6mt6x7e1upD4qlIbumORfaLF0gq1xXBlSVOCo/Rojv1zWRQ7UVMKh3zRvRYTAlqnddY8luvmH7yv5UI17aW/YcubO5pbp/up9NlbXUF6NVF33BhEwTpoSAzfPS9QJvwYcMFFCYXlH3KZBt1eiLPGTB2FRrqI7C7HO19UCTfAAlyIH9lrkf7OH5rC3zsV7yQUaeyRoo2Tb62TytMzX9rQYdqwyN3RJsA84FSXQ722G90+9kz9YLONqh1LMx1gamY4lRIajyTmR0S4EYFpa5mQ9webCHANb9rKvSmd9AJ5/X2Ut7ltwletrx9egV74rcd9rtIbHZ1MkxfvykGDd+bKxds7pRQ333gnlx8+zZsXLN+pgxf3ncvmjzmPTg7ePeiYvilmv+ELddc3PMnz+3j2joOHsHqFACHTAw1U7TlSVdyHfgNwlErYHBHvS2PcavLfkMGDJ8srqyJQksvglfALC7w447x8yDHhT/u/b3cfPy2XHYlJfEmFsfFbf88RHxpz+OjTWrI/Y/cF3Mmjg3HrzT3TFx/ZKYNHFtrF8/JtaPnxx3LZ4am22zVRx17K2xetXKWPGTX8a81TvEtAP2jOVbT407bvl13HTldXHXvPvlTk8p+eP/kTs/NB/miBWD+ZMnKDA46SYJR6BJbwytBHoB+9DKuxEQpnN2S01COBS+U8rUcSwg2pyvVt14GcoTTnhpPPXIo+J7v/uvuGXRrXHr0tti3fh1ccPi62KHGTvFTQuuj71n7heLFi+MvWfuG1PmjIlHPeqwRrbT3DREatYURzBKOVG2Mqil4XMoLiZAPgQ3AipODzrOYA6KFBgCJMiz5xxcjq8ArkTzp+Q4xRyAZhmABlq6666NZ0KV5ixzIAAA7smx5NDJBFF8HHjBPDmiMfp3stRsrlkNme+bT3JKcrmZByPGqJTquzE4KOyhcC4EIOYqy5IPlEQOqAClBD4w6DJPMtTNzqSG9EKOZfBluwUlnCtGkSy9A8E6wMS79I4EOJx7VEZOHbaHDEqpTCLNW4AiGGd4S5RbDjzn03XzhnnetffhHqUM4GCu/d61h0YC9DYHiFNfOt2Aw8cBKjWYszbpdsEvumSzIXNtLQK6ZItlfYCt1hf9lUp07AWOu31Ov3LE7ENrV4DU6px33xGEWu+lY9E40vaTueRDDwiBEEcaYDyYg6ztffLIwVj7zp4Eksvm5QMDgNxRgkuAYvX7srEcWc8jUHIvAbmgla6n4+leup8NEFwCCwSugjlZaDa1Gc1e5pPNtJYAP6UhyEonruSfJ5ouebAtgzmsI8+m6V3eC8Zz8GHoutKRnHS+fSBoaNYY1xp2DzqVDLETF9+zLMZNmBirlq+NlUtWbijvGhexxawtY+myRbF+3dqYNnVig90BFAcaA2ya6XYgleeQbS4FsdY5MERQXwLsJR34BkNxPjvWpX1dSnTwYyRIBI+lPQuYwIyxH5r5Mkpx1DUfdvgTYuHSZTH3qjmx4o55sXbxov/P3nlAV1VtX3+mkAaBBEJIIZCE3qsiShEEu4JSrAgiCiKoiIoIimDFAojYuyio4FMUsYFdUXqXHmogvff2jd+NF052ziUhgO/5/7LHYPjezTn3nrPPPmutOddcayvzcKxquEt5mVly9/GVW83aanROR6X5uSksJETrx9yixNUrFXbBRcqNvFC1unVRWmCx4vb8roM7Y5SUmHBsWWLLeG8BgZB85sBuoThCbWTurABxxn0Qo57pZmjEWiQeiCXs6tKJP3jvXTVcJDNN3MbfIZbanddVcfWO6s/slerke5Vyt12g2LUdtXa1u87qlKk+bTYrqGCL6rntVdqq71VckK+cI7Gq4e+vvOQkydNTNXz91HjwtfIfOlgF8YXaNXGEMvbsUmDb9nJv3V+1el6krMb1lXDoF+3buksJ8UePTS9ZfuIg5t2OTIOY4P1BGWMO3l3sC37mf2m74DNp6/5XvrsasP/DT4KgjSDGruEaBpiXCIBiDgw0gSD17LCOrgYZwIn33q99GQe1+uAa7S3aqz/ifpG/dx3lFuaoS/2eOpqUq0j/KB3OPKz6gb6Kyd6k3oX99Ohtpdut8VsEYTSbA/CwRY4rmR7HE2CQwbYL3HCmsKOAczsWHadBcxFXXcNPx+MhmEBCjsO2k/kAYJ316ObvAaTJWBNkuepATtYcqStEBwE54BMJXe2AQIWENVbCwSTVKCxRdkqGvLw9VVQi+dXxl5ufl3IKU5SSVOrAUENAKsBkE3gjN3WV7SGQ5rppeGfn6HAOBJYEduZ38Ds4ds7l987UoIEN7DzyPHP9MK8EPjgyu7IPPifoIOh31VGYd4U6PRhjsgXIBE/UWd7VfTJPOFzeSRwqmQlXJQcAfN5BMlx2+5dCXHHtdgQFv4GjBJSRDawe/7dmgO7XKIoIdM0BYclatgOvkHesKQA374qrgcIDuSI2FfCJ3a2MKsf6fdgFQCfrELtIuQdA0tWgFAXAz7XbNegEWOKX7DLCBNKQy4D3MzUI4pHgEzwCuMyBOsfV3+jKzLzzvp9o+0h8E88PVQ6Z+Io66tvdKwAW/wgJCckCEemqhhflBHPK79ndE2QANhF7ZcqFAZaAC0gIVyT66XgW/D7rkOdv14WaWAZSw67RFeCbNUH9t6vtsMics+bI4mHTs3KLlXckR7652cras1uZG36XR0mecuPj5OHjq4KMNPkGN5B/+25y69tfySlJCqkXohy3TAXW8VfP87ofK1ty1WjO2dCUnQ7sMteAR2Ii5NCmT+W9552CuKGZ2JkavFOQQKgaTfUAxDVzSn03JJI5SOIAtjjGVTNdvuPKKweoZbsuWv3Vnyo5tF8pyz9VUWq80nb8pQJD3u78jQaDRynn4p4KqRGsw1NHK+vggWM/3/CSy5Xf5CL5nNdNuQFHterL7xQfdxw8IhPHZ3Jddj16AI9k+CFMzEHPG/7G+3UmCSrITUgduziVOIy5JeNvpxLkHJIxVjDf/Ky2SmqWohr7L9POb/pq00Y39e50UD0jV8p/65vK2L1D2YeOz6Gr9dTkkZe0riRBvRp10qbRV6uksPDYoQEtW8mz0xWq1f8KZYXkadWXS8qAdvwJa4l31c6PQKhhX+3iduwh9/pP9xA4U+/Vv+V7qwH7P/ikeOlZ4GTizKY+1BaTvUNKaUqyAWdk3nEirmpgMcTPPjtL2T6FWvrXF4r3jtOvh35U/wY3yDuls0qSmip2e7jC69bVlk3uat2uRFs3S23bFislvUjdev2se8dcVG42ABk4ALIJOCpXdduwjmSFkRSaA/aTAIIACYdmHci3CGLIcp+pLDukA6oGu4wSQBvwaMfyI6Um+AZYutriCyaabC0OEDLAo4a3/PwClb7ziHJ375ZHykEl/rZCJYVFyok/Kq86AcpNjJd3vfqqf3Z3hU24Twf2bi0zJxh3Z6M5vtOu2zEnEDAhb4MgsJNoQSCgyrBTSRBgEBieyTok1jNr146AIpPhbHBlrhfWBEE0mQBX9+5sQAdQwOE4AyjkmfWC6qt9h06qEeSl8OiGjs6qkGTe7t5Kjk9WxpE0fbn4s3LrlGcJSYAjg9F31R2YOSdQRiFgt2MCQT3rgWs0B5keyB+AV/X4vzMDS5YscdhuAk8zQ8e7RgacbIQdYUg9IWSgK7DuDFZ5VyE+ARSnYxAIY9sJ/Fn3rnpDUE/v7CRt/i7XBmEISDFLcCC3yEjy9zNV3wvQxkcBYk2/SX8UAku7BkkQlfhU7Idd01fuE59Mlhhik/9WhQy0e06o45w9LfCpdrXd+ABsDL9pp8jBpvI5PtUcAAdIZu77TO0TDskKGYts1hzMO5lxu/pp1glNucjc2RHNfBfrhvvbsGmzkhKz5BuXraTlX6ro4FYlrV+rYhsZr/MaGlx+vYqGXqEwjyDFvfq4anW5QLU6dlFWoKe8vIrVv29fR4bUVSNffADPhsSKnd9E/UIsAZFlDgAOWe0zme2ltAJfZ1dPz7uMnbHrrk7WHbKQ+NGVeg8CqNcFl2vd1yuV8cdvSvlmgdK2l896263pyEmztK+Bh1p7NtC2O8snnDgncvC1KjjrRuW0DFHczh+0ftWqY1+FCo/YEftm16iYtQ65Y/fcAMLEP/jlMzG4HnbpwK6bcSJZdfqMoDayi1VIJhADWUugaMrn7u6m3pc/oJefaam6Afm6osVXqr36aaVs2aTC7OxK3Ya7l5favvofbU3fr5CtsTr82uO25wWf21M+l90l97Pbav1vC7Vr6/FnSqyDf+J9NBUZxOQQuthY07bznmATwTEQGdXjn5mBasD+z8yz41ecGRG7jANBPKy7ndyGTB4ZV1d79fL5Y088pXlfv6pfsn7QjuS/1M17pHwOX6D9f3ZSXm6JmgXvV2TgQQV6J8kzP0We7gXKzyuWh3+QGrSN1NaU1Zo6aZzL2YDdxBFT++SqoQYBBk7OjlSAPcXRwVCbA8kijD3G7XQP5EdkNAlKTXk4QQUSNrK/Zqd3sl44OBQAdg6E68RQIcvi2j28aqowp0QZG3YpZdkCZe7YpMwD+094OyHXjVPUXcMVeyDG9jgANQEOBh9HbJdtJxPBdaJisCMVIBxYO6YsEbBPkzfOOROgnZIKfhtpvmnskVMRXNg1vuMcsjaw1kgZzYGjIMAGmBOMO0FGeHiEols1U4vzW6m4frGaNGmmzUlbFObRQUcSM+Xj6SN/Pw8lFMWoV1AXTb7uLqWmptjOO8EDDpYgAABm14CQ7A9ZTq7XJN9QMHAuztB08GTWeRe4bmofq8f/jRkgqEGZhLzTHGSAAYd2deuc5+wabDcTgFGADzaVdXMmBgCKOmNsux0Q4DfJspCFsfNdvIeALLumkcimsT9nIsuOTSNbDfBj1wjrINvG55B/dhlgPoMAtys943tQsTn3OLdrQIfUvkPHLvKs6ammHVso3y1fNWvVVEFegTxLPBW/P05LPljk8nFh0wmGIfCZdztwiH+CKMfe2ZEKPCvsN+SiOSCpWXdnYjtJ7DJrHVBrqp8oA6BpH1lFs7cBdeesY1e14vgkyHtI5l0xh1QSk6qkT95V9u7NyozZW6mlH3HX40ptE67Q5GLtfGCk4xzvwLpqfP0t8urUQz4twxRQ09NRmkbdvZ2SCkUJAIYSCbvdEojT8G+mf4IEAuxzDgmU0z1YC/gm1qUJupGWQ9CY7wHXwDlk/7k2M2HC3/H/t902RokJ+dr/2TfK+2GhEteurvzlu7mpwxufKaYkVX4/rNXRD+a6PNc/Klp1r52s1M5dlRT3vdb99MexY7EhEAvYInOHHtYb7wu2xmwOSPzDe0TJBD08TvfAdqO+sHvPkOsTO9r1m8L/8z5YZeWNIqPV5pLOKtibIx/vGqpdGKnULz9U0mcvl8mOV+Ye/MIbquGTryvXu1g5sx5Twp/l4yXn99SMaKT6105UdqdzFJf6h1b/8Ouxn0AtiA+yU0lB/JGYsGuyhzPAYXoAACAASURBVIIHUE+sVj3+mRmoBuz/zDw7gDgBDSDFBIA4OBY9GQ9zYLwwuK4aPMD0Ir9d8NUnOthiv4oy66tR0kitX9ZRXdsmq1Xt9QpMX6mslUtUkJmhjD27y/1GyOBRWh1RV3Nnn7ipF9dAkAALaler45Q546ztskBkgnEcpkwO4ELQAvg83Vl2gjpAtV0mFKeKsbVj+pHt4TTsJHuAec5FIkrzDRqxZO84qiMLXlXciq9UlJtTqVXVZNqL8juvpdJT7fd6d34JmXKydwSndp1suT/WCAyw6eicKgHUBSaDSnaGwPFMAHZABsCVgNkcMNHUZxJQmkE2GSXWl50D5B6pASU77ywLadQ4Uq06tVWLC1srsW68Ags6qX5hVwW7NVTq5nQF+aeqKC9PXjWkwmIP5bv7q1HrfA249twKnxFrnHWAlNWu3o/gAUmeHbMPMUWWCMLCHKx/MiX/ZDfnCm+2+oAqzwDr0RkUm83FWDtkVO2aoRHssU7syie4GNY4awjQ7mobMudFN24cpZq1aiksPFwt27RR7OGD8vGuqdV/rtSundvVoWNn7d8Xc0KSCtuOn7LLmvI7kMqoTuy2iQK84ItM+SR+DVk61w/hezoHYJu5xf6RAbMOsl4Ek3bN1yhdAHDb7dDCd2B7yJwRyJry6Z69+yioebDa9eysTN805eWEq25JtAryPOXp5id3z3zJM18h/n765MUn1en8zvp92c/aF7NXsbGHyt0+9pF557dYR+ZAvcW8U8Jk1ucDbCGhAWqmD4PER2qM3zjddaaUUABE7ErzsGlI/e3qwDkeH2bafe6Ze0Fhgp1NOpQr/5g9OvTWc8qxSKcrs3bavPixkut6qPjjpYr79O0yp/jUD1bDG+5QUfsuqhnuo04d2jp2Y7Cz7axbABeZXZN4YL55bnYqKe4BxQTqjNM9IH8hzfCB1kHcxH0ADM2kBACWZAtg14xlvL19dMXwIerQtIcO7t0in7gsrR55lYqMd6mi+/AJbqDIp99Wro+U/tRUJW9Yd8JTatSuozoDJ6jONddqR8wyrfvpONDEXvI+c73mQHYOcLdTN0CGkhg43aVmzuw6SR2ToKHGG0LMjoxERUt5qrV8onvPPnJr6qH6iS0V4Zap1pf31qaNm3X07cWKffe5iqa53N/rduws/8mPyS9H2jdpZIXvihvqwwGjFXDjrdp+8Hut++X4vKOw4j2wK49CKUh5pqluIN6HvCKZhK2pHmd+BqoB+5mfY8cvYFAJAgi+rAMWHSMLu8i2LNaBtAomF8NgB9SQHJNJIKvj51dT90xfpp3rz5FbQb56hHyn+nvf0ZEfVqgwO+uEdxl5/7Oqf8W5+vzTxY564hN1zQY8IuHEadjVFMH0sh0QmWGTvSZAIgC1c2YEHEi5Tude1Tg3ACy162aGmVo/jKpd8MA94hiQL5uDrDfGiUAOB1jLv478EvK1/ZEJythbngxxNfHunjXU4a0lata7jaNOCNmlXZMY5/kENLCdOA2ONQfSVBhmu27EKAGoNzIdNkErCgOyNDDIp2uQuYD1JkA3gQY1mQBcu0wkGWsyB3YNCslkIzsmEHVmAVu3aacLRl6syC7R2rbdTV3rXK6CDTGqk71ZXruXKX33LuWnpqggI11u7h4qyst1NGRp+uSr2rZ/rSPDVpG8mPUIsELSa0fsoJpxtZUUz4pAwszQce+QWrxnZJSqx797BiBVWZ+UcJiDdw6JskkYAqTITkL82XVABnBinyBxXfVTCAkN08g7blNU12byrx2hXQdy5F5YU4W5Xip0y5Wfr4cah9RWY98cbSrarj27durQmgPa/vtWbVhffqcLyD1sOySkXTkHdgRCDdLZzDxi9yljAWCagwyVK+VVVZ88QSL2GdKUYNM6sN/UwiIHNxtVIfuFkADElpSUlPt5glJ8rVnadW6P3oo8K1qdLjhL+476Ksq7m+I21lHTwDgVp8fLLSdNKspVUXENqWaAotp6K7RLQ6VsT1ayh4+SFaedG37Ty8/NVlZWZpnfhexh3lEd2ZXhAOYBBdSbmoOsHxlhM66g+R1+D/tTUTO9k3kGAHF8EQSwWSKAXyRDapeJpG8CAb4d0Y9qCgKXdcL8n3/BxQo5lK2YJ+9WSVFRpS+PTHqrFz+We0At7b13lFK3bbE9N+LyAao14BYVBLur/wXnOyTNdradecff2xFUvB/OmMVce4D20703O6oz5hffaDbPA+RynXZNFQGMqLnMbbywHecNvEBZSY0UnbpLsf4e8vTwUv7iL3X0o5crPeccGNCmnVrPm6/MQ3Hafud1yk9JrtT59W58WMUDByo9bqVW/vjjsXN4P7FBdtJ+FEkQbqb9AagTA0FQnM7db4iHiWXtyBlnqai5VS0ECmuKvjpO2x4SGq7oC1sqKLm18t54Wrk71ij6obnaVhCnJvWbKW3eo0r447dKzZvzoOBLh6rXqy9o84KvtGNS+V0jXH1Z0OA75TZ4mHIytuj7b5c5DsP206uKf6a0H+UIPg5y1Czf4TMUiNj/6nHmZ6AasJ/5OXY4IpwcbJwJqHBu1ILZsf0E/GQq7Zh3PscBwgI7R59+F2rskEnK/uIdxX/5vmQTkNjdbrvXPtV7Py5yACmy3WQAYTHtpIScD5hF/s41YDzNATsKGATomANSAidi1pNjEAlIkBpz7ukYNF4BiOKsaIpnHTg/55ZH1s/JygBiCUxMCTp1hcwRYN1q1KKatdXOuW8r9u3K75nsFxquprPnKzC6lmNtMKcAP1hOU57vvD6YZ4ABgaoZiHIM1wb4NhvOkEVHHQE5YWaiCBYhCliDp2uQ+SJDYZd5RmXBGjP3QgaYIOcDyJgDJQDvEGDfWjJy47hRanphd+lwdzWMT5TPXx8r9af/OLqpunRWXc6S27hJ2rDxV8daI9iFYCKwdTXvgGsCeACZSZxBkgC8CVRNBp7sO3Jju+wqBBLSUBjq6vHvnQHnNmEEyyYxg02n/MMumMEmkYm023oJgEVGFXWGHYnXo1cfXTCov9qefa42bfVU6oFGCvIO0cGtCQoLSpOXe54y00skH3916O0mtxo7VFLcXAfc92pD4QI1covUnh926fCGg1r5+y9lJp9eD9h2bL9dph1ghe1kbZsDUoLyLTLq1gFIdjZAsyM1qvL0sRX4U3yGqVgjqIesJaC2DvwKIAuSzG57N66d3hOmjPyCSy5W56Fny9e7kzJj2ql5UYo8Y/9UjY0LJTc3Ja76U8XswfT3oJNzq5cXi0rUpJn3yz8qSjkR/VTz7E5KqpWubxa+q08Xf1jm2iBB8DkAczsJPsoF7IwJvml4ih9jXk15OrYF4I7tOl0+lVgEwt2u3wLPBFLVtO3YWEgV7KhpYwEKPCfWHDEB6rVmzVurVctOylv4oeI+e6/Sy6NO85Zq8Og8+ebma+vYISrMcp2oCGjdViFjH1ZRI3/16X2uIztNGYE5kAlDypr3RJMzYhY7BQdKAkCynWKy0jdjHEiGFyBoEh4kgfAjACezkRzPCd9jp4S4dPgg+aqjshZ8oMxlL6jxfc/oaLCnQnxClTznISWdhCQ++IJLFfXYY0r46nftneG6rNK8d8+aNRU+fpbSunfW1h8/1OG/m6yh+CMZBDlhxjnEZpCCpt+kRI4EFrHr6cqyQwaibiGeMhvjQl7SzwAy1hzYF+y2M7FQr359tb2kq/zSmqjk3VeU/N1Cxyn+0U0VNXWO/so8oJb+jbR32h3KqqCM0vpbEeMfVcMbLlfM0y/o6H/K2twTrTOSRY0nPKvMXr21bvm7OvK38ofYkvm1I9ywidgZc3ccSBLuF3tr10+jquu9+jz7GagG7P/AyoBpI1ti15yBbCkBnVnni3PDCVM/Yg6MBGDDrkPjM7NfVsifW3T0wxcrdWcOmdiTb+iqUVceO97ZoZsADMDhag9Vsqcw5yb4xnji/MimmzW8BG7OfU+tF0j3Yhra8V38/XQMADBZFHMbFoIEstV23ckJAJHA2TUQ4W/UvpHdMUedGqE6+vQDil9ZOZa0bodOinr2FSWmlAYJBCoENkgNyQ7Z1c5xHNkIgjtYXVOqxxxyX8yh2a0UGR9g3cwkwEgDkqkfJCA41QGZwTPnGsxsEYadshC7BlQEmwAEAj7rIHMAyUUjN7OTc916QXp97qfKX7tBqZ88p8z9+yq8/AYDhimpXw951ffR7tXb9dsv32vMmNGOdw1HRad5u0HQw/O3K03hfWHN2gEzMgUE2aaSg3sF7ANmUHtUj3/nDBA4st0XZJo5CPYAI2Z2HcIK4Gsnhee7OAcizZlZb9GytVr3a6fPX16sAVcN0pB7b9S2jaHK2NVWbvG71bTWJvnH/6rCvWukklJiMicuTn5hYYp68BmlZmUr9+NXVdjiSuWFtNXB4Ay5h69X1oEMbf5kg5YtLfvOYUew7QAwu5p27guiwdwlgfVPjbJdJphgj3fLLnNflSdP2Qw2DaLMOiA/qZnnnTIzkRCJvHN2jVHJiJGZQ3brHAGBddX5nK4KiQjXRZdPU/r6DNXY8pFqxv2moz//4PKy/aObqM6Dz6muu7u2jB50rElaYPuOqnP1PUpv1UpH43/VlPFltzqF4ASYYcNNn4VaAJ9Kk1RTwo0MnfpwkyAngMae4q/sFE0nO++onyCZAN1mp3yeBeSUqXbgN5CVYwftSBLntm+spS5dz1Hbxh1UKzNF+32lgMJaSnxuspI3bajUpTbo0Vvhj81U4hc/6cBzkyo8J6BVazW850m5R9VR06gIR4mSuS81a5n7sttij894Tqb8H7KNWA9ffjo6l0MSM/eAJVONQ8KGeAZVm3VA0qPqpO+FqS68/Johyq3RSh6fLVPK26Xz5BcWribTXlCsb74aFtXSrgdvU/YJiG/rb4Xf+qCCbxygw08+o/ivXe84YfdA+N3Au16Vx1l+WvP1d9oXU6pSxEbyrto1LoRgp9GsKf/nvSbeO12kIHaO50jcYpYa8uz5u1neyTMnsQDxRqzIaNmng2oH91DU76sVM6sswMcmhEx4QoleGfLfkaCYJ+6udC1767kfqigsSHHTJiiVDtInMbzrBanena+oZp8wLV/0keKOliY5SKaRVDNjerLsvKt2fabwBawxu/K/k7ik6kMrMQPVgL0Sk3Sqh8CY8xKYEnKCMwJ2M+ggy4ExgqHF0VkHLBhAE9Bmt8c23zlyyFjFTL9TiWuOd+F0dQ8wzR7jH9LI268pdwhZRxg36izN+jkOJstCNp26cxPUEzwAbuzAN8EbTs0ExTgkggHu4VQH0h3+IUk1WVqMMAyo+ftOwGvXiRRGnaDJlD85r7N9+046tHqvdk0dXSngGHzRILV8Ypr279le5lbJhHB9ZPNxCGZGnIMB2Dhpu2cCCOC+zXuDiScQtCsBAERDlkRFRZ3qtDuyEZA4gH+zWRvBHoG2KXVjrXANdk2rcM44PrtMBiTDsm9WKOvPXdrzyB0qzKm4u2qjiTPl16ubPPYcUW5APRU0qq0P35qtkpwCzZj+iCOz6GqLQcpTmFfkYeYgKAbUm4QDzp53yKqE4VwCb+d+yqac9ZQfQvUX/GMz4FQYmRlHgkYCGTuSFptORs9s3smaAABwrlOtMXDQUIX0DlNmWLpaHD5fffv21E8r/JW1O0XhqZ+pbuqvOmgAbufN02iowfQX5ZOdrW3jSu17+MWXKbdxf+W26qmdQWvl6X1Aa99epR+WfVtmziAMyHpi26lftA4IN0gFO2AOoHDKm63nOOtOyQSe6gC48r6hUjAJNgAjdswE5dhu1D1k78ySIgAZYB6A65R8dj37HN00Yaxau0crt3aRfNIKlbRgng58XnGH/vrduqvWA9OV/80vOvxK2X2MPbx9FDn6AWW1O1+xbpv15H3TlGqREBMQYw/sakIhQyCGzKAZYAOoQ3Fn+mEyw6yl07FtKsousptcB6SIdVA6BOlqglfWCLYP4t8cxD4Q0MhwGcMHjVbOZ+/pyDdL1XjyLEVd3kNxv2/V9gdGKdeyd7er9RM67G41GjtcMQ/cr/ifvqvUMou+Ybg8Lxiqmo28HWCP5Io5ADG8lybhwLsNwWMqOfBLKBHwz/jcUx3EHMR7dopFAC2g3FQHAHiJEfCf1tEworFa9xuimiv3KX3BlDI9jWo3a6HGU2ap6fmdtP7FBdr3TPldTuzupfnT76hGVCMdfHCM0nftPOnbDb/wUnkMe0ix+Rv0+9ffO84n/uHanWDQ+qW8r8QXkPjWQekoWW9655wOEpz1DvFhZvNZs5Dwdg2UWefYJuda6X5eb3m0bKD6q9yU+Pxo5SWV71cU3P081Rv/iBq3baL1D89Q3GfvVDiHXgGBajrnA3mUFOuvcdeq0CizqfALJIX06iu3Gx9WXPEW/bGitPwTpSUJQSvh4Pwu3gNsiVkqCg5AyVpdx16ZWT+1Y6oB+6nNX4VnkylFZo08yQx8yLwgHzQzFTB0LH67vdoBPRgyu8wH5+E4pz78iK7vOVB7Hrpd2bHl652tF92gz8Xa1+8CPTylvLSH46hDpoYLp2u3LRqgHgdl140W1o06MLMMAANIYGQ23QKoA/ZOh6SJgAIAbge+CTgxqGaGGhUEMnjzOTll8rCp5tZBzBHZBXoR7N1/WEeW/aGYx+864dYznNPwjukKuaafEo7aPx+cD9kinrddl3L6G9D53pSDch2QIZA6TobX+bw5B1mlGWxx/TjI01H7RQBBtseUzBK4AeYhPswBCMZBmCUYfAdMOrIrc+CUAdAHDx1WWmaB6v2+QUcXlC/PMM9r+/JiFfn4au/Em+RZq5ZCrx4lt/bddLBmvBbOfU133Vm6Z7Tdu0dAzPyxPs3afAIFmsyY7D5qE7Ij1NWaQAFCBhtgJ0Gr0LBUH/BfnwFsO/aAgN3MtGDXUU2ZneEJpAGtdnu1Q1gCsFjzjJat2ujicVdqs996ReRerqiU29Q04mv5puWp4LuFOrDkPyecg3qduypo2jNK/+RzHXlvdpljQ3r3VfElM7Qu+IDCwhP15XNL9PO3K8ocQ4CGTbTLzqKiIYNnZlrpMQHwNUu86NECSQFxSBbqVAbZRL6f7zIzXxC0AFpzj3PmFD9l9scgIMf+4L/IbjM47onX56hRepQy3n5IdS4Zprz2kaodm6k908YqPy31hJcfMuQ21R05TAnTJynhj99tj204YKhqDLpTvx5YqjlTS5+3c1D2w9oypcyAFMhnQLNZ9oRkHj9rZiTJitnVuFdl/lmf1POaHaPxs6wF/LdZeoaPB3CaMQDXxLURs+Bzx98xWftnzdLRz0sbqtVs2EjNHn1RRQ3rKHXJjzo4rzxJat5DkxmvqGarFtp7782VIs2d59e/cLCipjyopk0bOBoOmkkS+h2gDLSrY+a++WdmsQE9kCeno/kcxBm+3KxRx6eS7DHLJFi/xGzMr7WECxXfjfferiPL81X01nil/lV2O1nmg0Zm4fc9rTw/d6W99rLivnK90wHHe9aspVYvfiT34mJtHn11hXGPq3UXeMM0Bd16vb5d9IIS4ku3/kVdSmbXLLsEjENS8EzMPhQQLigUT0fncggoSBcToKIcJalmlqoSpxDHOMlbjjn7mvMVeDRaXp89r0NffeHytQu+eLCCx9yp/LQsJc56UMkb15/wFXWQKzNfU/rvf2r/s/dX5XV2nFP/xgcVNHqUlsyfeYw4xEYSA5uJFcoriC3NnQgo58QHUkJA7Fc9ztwMVAP2Mze3jm/GAcDEmp1aYfwJFOwkUwQdvPjmVi8EesgOzYw8v0MAQ+aPwAhnPv7ue9XTK0T7nz4xSxo2cpK+LIjXgvll2UrrtGA4AVtIXkygAiBhD2EAvZnxhTwAeAJkrIMsMJkRs16Zbd/IgmAsTrVbPN/DMJ0vBgXQaBphMtsAMTKkJtDlesl04wjMQXAKeHRK/0NDmylm9guKq6CmqPXzC1VcJ0CRZ7XSkdgYpaYklPtuHADXyzowpXonkr+THbNrtAd7yhyb9XgQAwRQBISnWusI+QR4MZl91CUEcyY4BQwQ5NsBGLIarvadRimQkpYp9wZ+8thRJHc/T2W++KgSV//p8o1GBtZs9nxl796rvTNKgTmDfUprXTJSKe2b6duFr+iyS/o7AgHIJnOQ6ef9s3sHee9oAGS+I5BrrEMz8CBTxdo5HdmvM2zGqr/eZgZY4wRvAEfroG4YOTsZc5Qr1gFBQ62luX0nmTreDeee4djVEQ+P0eHIA6qd3k1NE+5VaO5vauT3l3LaRcpnZ5z2zhh/woaiwVfcoPBx43Vg8jglrVtT7g4oy6kx+GmtDjsqvzq79c3jS8s1oyNbRIAGOWYdEKtkgk1ylRIb7Df2ybSjkBvc96lu30k2HLBigiEa+DG3JiFA4Axw4e8m0MW+cM3WbNnDs55Sh7rdlfb8RCWtXyOfoPqOjG9udD0VfPmzYt8oC7DNiY2cPEf+7dtq94Rhyjl6xOW7E9z/KtUa/ZAWfz1XC984nlVDBUDGFD9lXi+KNohmM6sLCQ1QMGWpZGaZc0jfU/WpBPAQ7WaNPWsA32KWLEFSYtvs6t0B/agxIEkuunSAam85rP2zJ0uWXjN1WrZSxKRnVVLXXwlznlT8D1+5nEt3b2+1f/U/KqCcbeyQk7ZXTaa/oqJ2oerSsZ2tGgBbDQlu+k7eA8huc3cEngPEil3/kpO5OOrSIdjxd2YpHvEg5RFOosn5vc4GbCZZ2LJTW0W0vFp+i17TkYXl95F3nk9pQe3bH5RnYZGOzLzfZfM+jq8VGa2ms95W4ncrdOjlGSdza8eOpWld6PCJKggP07IfFx/byYL3liw68YFZ3gIRxH2bzwPiDbtzqvJsEiEAUeJws+8CfQ3w5ea7SWxALOxMEnXr3VPZIRGK/Ha74l4r2xjTbqJCbhivoBuvkfvhRO2cfJtyE+Jd245ze6rVC6/rr4l3Kv7Hsuqoyj6E+t3OVfitk5RSy1NfLPtI+Xl5jhgN+4k9tGsATSwDcWX2S8Auofi1K9Ot7PVUH1fxDFQD9orn6JSOIKgDbJlOC8keIMXc9grATT2dM3Cz/jgvBA7CBARkQejYCrC01r69PO89+S1bqvhlH7u8hxYz31b0dT21Z+NOPf3U47Yya04GdMO8AQbNzDSOg+ytKfslkKWmGcme2cANR0O2yazJwgCTXThVWTzZTBqwkYW2DuaIwNFkxAHHZNLN2kHugdpC5Ksmm4v0kqAEBtyaWahdEqTDT97rcnsTrzp1HMFFxs4dKtqzVh5te6tBz646dPivckEuGQ0Yc7MjL/dE0EqGyax3d9alm1k/skkEuaZsm8ZFAGcckF0GvLIvAMQCc0KHeNOZkW3ECZgOlm1ECATNRlWsN9a6XYYChxnVpJkOFMQrJD5EXqs+VVGfgfIrKNLeh8cq+3D57ZO4hzotW6vLG4u05fHpiv+q7DuBfDhk+CSldm2v+S88pimT73PIO+12QnDV+ZsggrVO1sg6KG3hfTdr3FlXfD/2wY6wqOy8Vx/335kBZ5NEMwNNaQfBDu+BdRAIoSKxq3eH7CTocQLjm26/VYc6HVRxYW11PfKK6qdsUuj6h5S0Yb0a3TtT3ue2U+p7i3XkBHseN7rnKYX37qF1Nw9QXrL91pF123eU9/B5+jbwRwUX5uqbeUu12VIzzL1xL3bSXkqbsPum/SGjiszZ7BFChpYeGqeqKAEYEhib+9KTkcZWmhlgVGL4GrMfDM8BYAxZ6fQTt98xQd17XiO9P1dxSxcce3y1Gkcp6uHnVVDbT8lzpiv+t7LN+pwHurm7q/M7S5WdkKS/Jla8jV3d6yYrYNRwzZo2Wr/9enxXEkgJ1FJm3AAIBBDY7eoBKEclZe61DeBjXZ1KOQLPGCIKYGr2QSGTiw80bTs2HLBjbhWFT+OZsK78atXSNT2u0qGnJyltx1/lXuR6Xc5Sg7sflXuJdODRu5S+q2x5hvOEmg0j1O7lj7V/0SIdea/8lmAnshC+DULUaMSdSopook49WjjUGWbpG5lFrtvcbgx/iVTd7M3A2qJPCfHPqShKAKX4QIhgsy8NPpM5NMsgIKFQvlh3HapRw0vX3DlWWT+mKem5EScEg8xVgytuUPBtY1S8L1a7Hhrj2G3FbgSdfY7Ofv1DrR59w0l3Ofdv0lQBl98sny6d1evKHnr/vfdUOzhau3et1o5NpTXZlJQxh2aXe3wp2Xezgz+AEWKOmPhUBgkdkiWsbesgviEONkl2Eh0oIIhxeA/d3T101jU9FRrfXJ7LXtaBz0+shuI3IH4ajn9UjW4aoAPvfaaDcx9yeQuA+xa33KK1Nw88KTUJXwhRW2/IWHm0aqJuPTvo7ffeU5voDkrwzdCyt0oVLthWdoIydxbCHtFQ0SwPIWEIyXyqRMmpPLP/H86tBuxn8CmTlUVGDsNtyt75/zheU1YDc2cXjOD8yMLY1fkSBJIBN7OaSKA+fuU/Snhusm1TCk8/P7Wa97G2B3qouNY+dWrUUUlb43XTjdeVA+VME91Iqf02AQl/I5NEra65NR1BGgDRlPBzn2TBzfogHCJBl13NcmUfFQELygUAq0kukBnFGJtSSogSQKW5766rZm0YaBwpINXcdimgbn25HczU9kmjlPu3vMt67bWbNlPbFxdo95NTHOwo0uzwgdcp8LJr5RHmrcS4svWBBAuQNWbPgorq0rk25NjWgUHlGZn3yW+w7ghKqjp4lkjJzX3dyb4giSSTbx1cP8EGc2luFwIpRVbDlGXx/Fg7L3zyhs4N7q+M5+9X4tpVanDlMNUbeYuy/1infU/dY3sLwb36Kfrhp7Tt9htsAz9PXz9FTJyl1K6NNH/2M/r662UOxhjpunUQRBAwmEAN8oZAjxo364AoIXBFwWDtSYCDJghD0si9Vo9/zwzwHGmqyDtpBvEQStggp7TdeVfUV5O1MUEYGTGIG2e9YwSvxwAAIABJREFUe1D9YA2dcaN+0086L/kVabOf+hTM0L5PPnJ8FQAjasoceUWG69Bj9ylx1R+2E9fu5cXKTUzSrodGn3Bi6/fqL7dbZuk7vzmq8YeX3n6u7LZOZPYIXM3medSlAwZNUov7pHzElJ+TmSHgJailmWRVBtdA9p7vNmXvkB5knk2whQ/in7l/NcQBQb+z3p2Ac9b7ixW6LU37ZpTdfpVrDWjTVmH3PiVvrxraNeV2Ze7bW+4WeDYt5szXkU8+Vtziso3A7O7Xu25dBU16R7kt8zRywPHMMMQfPpX1YvZgARg7QbL1O9mikriCWMA6+AyQbdf1v7LPgO+gdhhFiZW4JsZALQfBbu5oAJiCRDF31gDcQtRDiN48aryS572oI1+Urm27EXx+f4XeOVV5e/ZpN71KbOp163XqomYzX9WuB8bYqknsvhfiPLDnZQoedL0SfHIVs3e36gfVVb++fcoBNe6T9UMcZpaoIcNG3WiqaShPoObXrnFwZecdxQjlkaaiAhIAhYtJTuF7ONasd2/SrIUiu1wrv3dnKu7z+ZX6ebLeUbeP0P43F+rw60/YntNg0C2KHjlKG0YNOuHuLNaT/cIbKuDC61S7d1/tzz2kwoJCtWrYRvm79so3tLESwjL1n1dKm7+iTIWsMIEzsQT3ae6BznsDkQoRdyqxDEQJvtmMW3mW2DazPAHynQSKM55t066jvNtHKXx5ouLm3Vmp+eYgdpigY3/9Xt2059Epil9Ruu2aOZo+8pJqN26odTdXvkFznRatFDhglDzbtdZfsVsVEhKqCN9wpaxZI6/EPcocOEbrfnpfBw/sc5Q0YmfNRAqJBZQ6+DjrQEkCqYsPQxlRPc7MDFQD9jMzr45vZZ9nMre8zE6JtvPncGK84GSBrYPMJKDczFrg3AiQTKYR8ED2wK4zJiBswYKPtf6TH7Rz6uhy+2PWahypRk+9raUre6ig5h6FtNum8NAMdfVvr6uvutIB4KwD4EHmGqBqghiCNgCI6UBwcBxPttQ6cP4YYrPWmYDASUxUNahDkgloNDM8ZCwwOGbjNTLrAHazCRSZZ5rmYbxNQAmQx6Cb3f25xybNmjn2Q975wWIdmFOWoeXvNBlp8egLWn/L1WXY0bB+Fyn45onyCPNVYsJxKSVOCMaYYNWsEWRtsWbMdYRRBSRSc20dSCSpNYIltQ6cG/dICQP3XZVBQMj3Wzst8z0EczQg5NlaB+AehYkZ0BCg4CjsatcJgL754Qe173qZ0l+YrYQvjktJw0berzZ33KZNDz+kuC/LBq38btiIe9Xoiku16rqLVZyfb3uLvqFhCn1gnjYUbVf6/jiXe8ZDhNg1fiQQBZCZNZuACYI6sykTygmCMrtuuFV5BtXn/DMzgG3HntBgzXzWlD+QgTG3+YNAo47bzE5A2kJQOSXFV940WPUGBin7cFPlfn+3hkbMU+zcu8vcGJ3Im02fJ09vL22ZMELZh8vaau+69dTmxYU6NP9NxS9zDYacXxo5bb5yzzpXBw5/qimjy5ZRERSjrCIrah34HFQlpjqE4I26XrMpHXWlNJHCLlW1tpffAwQCoKySe54F5B+g2zogf1F3UfdqSlvxsdyT05ddP/xmDeo/WqnPjnWpjqp/9jlqMnWWkjZt0Z4Z48rZkcC27RX92IvaO/UOpWzZVOFipM9Ak3se1arUTN03rqyUGyDMtTGX1sEcUEpjZnWRDkMamiCGemqAPyQ481aVATmFmsIETmT8iT/MfjTYbrJuZnd1wI5zZwUy9jf1uUaHn5+q1G3l66mt19ngqpvV/sEHtWXuizoyf065Wwi+7Fo1u+NurRl2mW1jL+sJHt7eqtf9fDW8+U4l1CxRVma6gjwC5ZWYIL+mTdW0c2NHcsLsZUNswztsEkXMO3bfLLMj+w1wZH6qMogvIF8oY8NHWAeqLda82XQRQpvMcJnmeW5uGn7P7Ur7o0SpM2+sdPd3d09PRdz1hJoNvVKb77lNcb/9XO42oh+YJf/ICG0cU3EZAiVpAecPVMjAIUrwylJxcYkC83yVuWa1Mn5Y7EgqBfYdJK/7pmnPqs+1bctGx++x9lh3JnGFzwScm71hIIrwt1UlSlC8obTEN5tlnrxLlD+aKleSWMSCTrKwTb/Oiq7bR74fzdE+YwvHitaCb0iomj0yTzXDGmjbvaOUtrNsrOZeo4Y6v7VEh5cv15F3K1aT1IqMUsAlwxTQq5fii5Lk411LtTNLlLj8G2X+/qUyY/bKq06Agp/4RO7RuVr81juONcR6N8ll1iKxvtnUE/uKXeZZEBdVjzMzA9WA/czMq+NbqfUi60y3TuvAqRK4m5lIarrJKJpyN/4/DsH8Hr4TI4GxMLMK1FbzG3Nff0WdunVT7sc/6/Crj5W5jqCu3dTi0Tna9Fu+Fv3eTSWenup4xS9q1u6AugV2UbeuncrVTtMFk9pMs6kQv4cMi79ZB4wvAayZXeVzDKLZpAJH79w3vapSMuT2ODNzSzmyKVyHaWyZX2Tk5udcIxJDs5cAAN9Z727K1OhNoCwfpa74XAF9L9fOmY8ofnnZZiMh141V1FVXa+XQfuVWX7Obb1XNy4cppahs7StBMFlxU8rP9QHoTTki1879mg6Hz1l3ZtDBHGB0CaiqWscO4MCpmtliAk4ykSYri8OFUDBr7ZBjQSqY3dgpuZg48T5tTdmrWuvdFfvoCBXl5hybQ3cvL0Xc9bhC+/TUjvtvKxcwt3rqDeUmJirm2QdcvvU4w+a3jFFaz6Eafdsl2rJls4NYMucLhp13z9wXl2AUxQWSVusgC0vW1ZTxElghxwXIVY9/zwyQeWE9Yjesah3eHYAhYMQ6AFjUYZrZBwAU64V3kv9GN22uKyderS/zP1Pv+EVqnJSmBt/forSd5aXAge06qPEDTytr1x7tmn6HVFJy7CfJpjR//EXteHCs0o2Az3pdNRs1Vp2LblBA3z4q8C+WR13pxkuuUZqlsRqZFtYo/zWzqAS3diVPEIsoSqwKJ/4/WUgk0lXdGYGgEGWLuecvYJJ3zuxUDKkAkWg2oeI43j0ISgaS4WfeeVdB67J05LlRJ1yIwf2uUMNx9+vwB+8pblHZLDp/az5hsv689iIVZGS4/B52Zwm86jblNA5Xs87NlLglVnMWztXyb45n1CA5AeUQ79YBeQJ5bxIifI6tNeXAzAF+G/k2PqEqg1iG52yq+KidZ22bwJFnhJ80FYTcE9cAIB4/8UHFz1+kmBfts7fmdYaPmqzIawdr55RxSvhzZZk/N57wuGpHNtbmu2484e3Rwb/+DXeqKKKB2p/VTttXrFHSTz8q85fPHKqrRpNmK3pofx0+uNvRf8g6AMO872Z2lc+RwJvZSOwDc0MMWJWBv0cZwT8zvmNd4NtNUhCChHjFGsv4+9dWj6GjpE9XKenVsuVaFV0XQC5q8izVbdVcW+4eroyYPWVO6fruFzq0bKmOflS2G731IBrT1e1xoRpcO1JukXUVERyuQ6s26+jnnyhj1fIyZCPN1Oo88IYO5KzT6p9+dXyNK0IElQ2ElhnnAe5R/thtwVrR/fJ3QCfJJ0pTTTKA9c/3mzXc2BKURXyO7T9vWD/V2Rai1CduUp5lF4jK/D7H+DdppmaPzFVRZqa23TdSBZnHbQlb4bWZ/Z72Pv2AktaW3UXK+v0A/zoXDFFg/4tVp2WIlCmlbdmupCXzlbrhz3IJvKDRs+U1qIu+eOslBxlKPAc4N5NBxG3EK6Zyhn4DxESn2rehsnP0/+Nx1YD9DD51DD5yYHMBw44CeE0G0NnEx8xG0w2TDDCdqK0DWS4BjF29DlmcmAOHtanGZjXzvkHNahQoYfYkxf/y47GvCLlqhCKuGqytk8eodq9BWu8xXOtiO6j9gBVq3zFB7jFFGjmi7BZrBKQEqDguk/GkUQcO3Kx7AaxxrWZWF4dEZtc0ikjuyCZXtVs8vweQpsundZAN4HNTvUC2nCDb3N+WLDWZVPNziASy/2b9PQqEJtHttfO117Tr+cfVcPRURQ+6UhvHDy9Tn9d8+osqSEpQzNxHbFdfm2nPqd6A/tq/+zizCpDm+s0MLb9JQGaqA7g+Pje75BM0I/M2O/7DnDqZUf53VQayUwI7s/yDkg3WqRl04GxpEmM2BkSCi6TPJCEgcjZu3qqwJucq4NPXtG9R+Sy6V2BdNZkyS7UbhmrD2OuUl5zsuBUPX191fu0T7X/pccWv/M329oLO6qZ6145TUeMGquHmqd1Fe5Swcd+x5jPWkwhIUY+Y7zCf8x6be82jMiCraPascMqET6W+tCrPqvqcU5sBsjgooRwEnWVgiwnqzO3cKEUBOJpNebBxBIDOLHXHTl3U6I5I1fVqq/rbp6jZnhlK+6gs0Wr9veBzzlPEPTN0+P23j3XY5u/BPfuo5eTH9evAPirOzyt3sz7BDRTQd5ACLrxEhQ185RGfK1/V0OZGR7Rh/i967503y5wDCAAQm7J4gmXebWqYrQPbSBbGfLdRbaF8stuiqjJPhDIDgCcKLevg/UE+a+5WwtxSemNmeskIUzZFxowRFd1UT8xaJJ9P5mr3CRqwOn8zZMhoNbrhBu2ZcU8ZCXbE7VPlHxmpbZPsQb9/dFPVuWy4fLp2UbG/p3yTc5W04lv5Bocq/uwWGnvD4DL3BXFJdtwECBAlEChW1YBTTWAq01ijEI4E3oD6qgyeO/7eVK2RgSNIN7PLzDd237ThEAd8Dlk/9IoRSn3yfttu5XbXSGa88T1PKuy8blp/+3XKOni8P02nVxfr6NdLdORTe7k3dbt1h9wuv/atVIKA7FCC4pYsVPran8uUrYVdfKWC7p2kZtGh5ZrPse4o5zBVhKw71qPZrd0pE65qPbUz7oAcNJVyEDO8j6YMH+DIHFvr2rt176nQVpeo6Lm7Fbf8y5N+/EjYW9KxPztbWyaOUFFeqT3xISaZ8552P3G/rZrEzcND2KfgmybIu2WEMo+mqGjPfqUtfVfJm9arMDPT9lrCZvxHWR2y9N37nzv+DvAm0WISJcTRxKMmsYL/5R0gZq7KIG4kLjWVEbxvgHjicetw1ro7lS2hYeE6a8jF8ll2UPueuLUql+A4hzXbZMqzOrp8uQ6+9uSx7+HzFtNmad2tQ5SXlFju+70CAhTY63IFX32darVqqOTtscrdvFkZyz8s7T5vIXbL+JK+l6jwrpn6c9lLSklOciQCmQvz3WZ9EcuZ7zZqB9ZjdeO5Kj/yCk+sBuwVTlHVD6DmCbbNBNo4M7KZzmDB+QsYA7IwZhaObWyQ6JgNNmDAAKdmHTjgYPSY2/XBukUqdOuiPZ9do6v6bVXnlmnaNGGkMvbudvxk08nPqTA5Xvtenen4/+EXXarVDWbqcH4rnXXdcvXp2FAvPz9PH7z0rnItmUwyJDhuU6aFY0EeyvVaB7V1NKsxtwDiWOoITYMA8CfAILNZlUFQaNclnawKEjWTIKA5FCSD2YkUgIVRMrdywxFQB24ef1a3Htq66Dttv/9mlRQXy8PHV9H3z1Tdls20bvRQR8bFzdNTZ7/9qXbPmVGOHa0VFa2AS4crasBl8vT1VUpiklIKjmfaAQgEyGYDP+c2Y+Z1AiYB+GYdP8w/z8QqKSXY434JDKuyNYezkR8Bs1kuAdsN+WFlZHkvqAPGsVqvgywOz4jsjHXgLJnv+2c9rHM8u+rwIze7bIRDA6JWT7yk9B07tfPxiY6vIZPY9smXtfneW5V9pOxWemQq6w0eo+Ce5ygjPlFpq9fJK367coeO0fdL39O0hyaXq0vnegioTHIDpQLOzNzTnqCNrBgNcayDkhACDDKEZrfxqqz96nP+mRmgjwIElykHx9ZTRmOWf5Algrw1JYYE+WTdnY3Ybr1/vLY126SOufco9+f2Oj/hFh39sXRvYlcj+KJBihx5u3Y9NlEpm0tlpA1vvkfI5v966PhuCHxeozZ1u5co4rqR8okOUcZf+xT3xX+UsXq5AvrfoPzrhyg3e7NuH1h2Zw+CMUCiCUpY05TkmCoZ+rZAIprdswH+2M6qElQAFeyGua83n3MdpuLF1XWgZCNT5ASg9z70kLo17K24aSfu7G59Bo3GPqzIyy7S6pGDlBNXaqfbz31fSd/8R4e/LNtkyi+Mut1r1fDKK1TgW0M5f+1VyufzlbJhlcOOhfbtp9rjn9DwWy5xBMvOgf2mgZ/ZywMby1oyM6yU3kEOmUosnh0kbVVkwtRsk+UFaJsEDKCRzLL5e8QmrBWzVwrHUi4C6T+sz7U6MH2ccuJcd9I31zylHs0eniN3dzdtvvsmh5+FpO04d752PDqxnHwYpUnAgFsUfkFv5eXmKmXNBqV/9b4DMNqVReGDGz72ii4c3NtB/lgJEXwWMR1xibU0DbtNzGbufoD6jZJFkhumP6uMlWKuUWMSJ1p9vrNvgGlj8J1kRPlN6+hz1UXySGwmt5fGKG17+cZ+lbmWOs1bqvm0OYr/Ybn2v/Gs4xS6u7ea9pzW3DKonJokqMvZqn/9eIWc21XJ+2KV9MsvyqQD/LbyO+2Yvx854Wm5XdlPS96a7XjXSZCQxDIVd/hSwKEZ/5IcQulZ1X3BibE437RRKGC5DrP8AxKM6yB+ZzRv1Vq1O3dT8JuLlfjFW5WZXte2/dweajz+Ye2b84gS/izdIrLBpUMVcfW1WjPq6jLnefj4qN65fRUxYpzqdWyhuPU7FPf1l8pcuUyZ+2IqvI6Iy66Urp2izTuWaeeObY6kA6SmqZKhjIhEltm8GIBPLFfdQLfCqa7yAdWAvcpTV/GJGHdksGatGcEe2WZzmycyiIBgs04dNhrnbDJabDOGATEz2jj5L3/+VvX7RGjVG9eoKNFdNwbcJwVHKuSszlpz62AV5ebqrDc/0d55Tyhp/VrHzdSo5a/mDzylvLMHyitusw67d1JWwyX6ftY3+mLJ8W19cEwAEJNpJCjFSZkdNHFmML5mEyaYUZh70yAA5Anqqtp4DmAIkWECcwIZiA+zqypBDDWpZDOcA+cMg2t2uAVg4hAAvNZB0N2sSUdtvGeMYpeX7ufLYEugFo/MVW7sAe14YpL8QsPU/ulXtf7um4+xo9RNB/a7Rg0HDpCnj48OLvvaUdMVMuI+1evdXof273J8FxJIZLNmB3YcBqDY7IgPEcHWgaYSAsYap2TWdALkmbeq7MeOagH5H134rcAcBpz5hhCwDjoz8+zN3wK4Ag7MrtQ8I+TwCe5F0tLN2vf0iRu5EKi1mPK0Yj9+W4eW/kd0G2529zT9MezyY5eB/K7ugJGqe043eZYU6cAnnyjzj68czg3ZWd2pr2vJxo/0yITJDtLN3FYHYgEVg5n9QDYMoLdKpSHoeE8J3qyDZ4odoISjqiUgFVui6iNO9wwAEFG9mGoosm+ULpmA0pXNdzZD47+MMU/dreW+X6lv8oeKik9VnaUjlHVwf4WXH3bjOEUNuFJrRqMqSVKbma8p9fvPdPhviTXlIkHn9lbEyLtUo0GwUjZsVcpnb5ZmurKyHN8f0KqN8u6Yp9qdE3XnpbeWISrpSwFQMRstEtSybs26aVc2HwCNT6zqVobUs/IemXXd+EwkmWYQCbAl02++u/gGq616eO6TapkUpcPTy/bZONHE07S1yaSn5VO7ljZOGOHwn51ffF9bp0041pAOgBnQZ6DCBw1VjTq1dfT7X5SxfKGS6cRvyXR5BQSq8VPv69NVn+vdt47LiwEjgF6TxHflOyG/UTyYO4Rgq7D5VSHBmSv6m5DhNH0P5Dy12tbmpvhInoX5bpAlBezg11u2aqsORYGKebzyDbmcz6JmRGO1fWKe4n5crn1vPi/AZOvps7RqxFXHsr/05wm89CaF9L9AHm5uOvD5F8r8dYnSd5Xt6WI+X8B/86ffUnSvVo76cfyndfAe459MOTDEFIorawzhBPIQ5lUhwVGtUA5hAnPmEYLPBJRk+skKm80Fb5w4Wum/eyhhyqUqyjleQlahUTEOoLFfk3tmaN/LTyr+91/V4IJLFT74Jq27/fg7E9imnYKGjFFg545STo72L5yvjFUrlB1rv3OL3TWE9L1YeXfN1OqvXlFyUqIjrgAMm3XTkOLEoqbiASBP7GO301Jl7plYkBIlkyAAiJJ5N20PpDvKRWdTy3MuPl+hod1VMnuyYr87HgtW5rftjmlw2VA1uWmUNt47yqEqiZ7wqEpS4xXz9vGt+eqfc67Chk+QX3RjZe2J0dGP31TqhtUukxp2v+MdWFeBUz5QbM3tWvP97454k3jMSUQ4z6HEg9JKU/EAkGfNV2fYq/qkKz6vGrBXPEdVPgIjjlzMdLZkmpEOm2AQRhUDZAYXZBbJzlhZVl4MgJjZRAb5G+Bp4ksPysP/XK18fahGnLVIhe8MF01Emj/4jIrTU7Tvzdnq8OxrWjd+uIpyshXUvaca3TJBPvXqat8XS+XXoKGWJo5WjbPfUuam1Xpv9hvH5gG5J46agMc6AII4Y7OTPY4FxtLMLpE5AGjyX+sg+KLhiyljrMyDQE7PfOFoTXaf64LMsDaQA5hjcM19hmEWAY2mdJxaNZhWU96NQ87claZdD45STmzZLu8ED22mz1HsJ+8qa3+Mmox/UKtvHSqvwEDVPf9KNRp8rXzq+GvHG6/97dxKM8BRt96jVvfera0bS7tAI8njusz1QR0mjL+53Q6OC4kSwZp1EASwLk2FAJlBMjRmH4LKzDsBIvOF47LW9ZNxJqtm9mvAoRJYmmwsQQ9OwqxxRdratHlLFQVFq8azjyvhR9d78jqvF5De9K6p2vHUg/Jt3ll1WrTU9plTRMBX79IbFNyrl1SQrwPvvPC3c0stc6uR09/VkeYFqlfs6yB0zI6xrCWaaJn74KIQQfVgAnnWJsSOOT98D/Nu1qpWZt6rj/nvzACZXBqcmUEzvQpQ+Jj9GlwBSohJQBTka5OmzdTvzkuVHJyoyJ2z1TT5e6XPqSSAdHNzBHL+4aHa8uAd6vrKAm2eMl7ZsYdFo7SwEXfLNzRUcb/8ppSvP7Bt8lUrqol8Rr+ipHN36IWbntN+S1YGGwNINBsKYTMo7zKbh1Jfii+i5MMEPKx/u51GKnqS2DgAP01Dzcw9iix+09z+EvvHtVttHb4Tv+Ps1QHA/GDZCpV8u14xT42r6DLK/N2nfrBaTZuttLW/K+HHr9Vm+nP6Y/hVAszXO6+/Gg27VT71ArV7/gfK+H2ZMve7znRFPPSmVqRu0OsvHA/EiQcAHmb2FvIbVZNJghNXQCYzT9YBUe2ML07qBiXH2oRwpDeJ1afiOwG1pnTYFaBk7ZC143sGX3uTvP/YpF3PTDnZy3EcH9CqtVpMekIxb8yWW0mJQgffrA0TbnbsoFD3wiEKu/hSeXrV0J43XlL6ul8r3MbMehHNHntN4ZecpdV/rizn5/FZlHyZQJ6afACeOT8kI0jOOHslnMzNUs6GfzQz5vT5obTK7BwPUCI2swJKarGH3T9WCf9JVdITA0/m522PpdSmyeh7tOHe20QjQLeMeMW8/4bY+SZo4EgFde2ivOQUHZn/Qhky8GR+GKWn9+0zFRv7u37+obTUhnVGTGDtoQExisLDLIOBQKShLf/l/k92oAxiDZtAlaQBv2n2a8D+YU+c5UKdL+2uYHVS/vRbbHeSONnr4fiGI+5Wg+7dtW7s9er0/Lva9/qzSt64QXU7dlboDePkHxWl5E2blbjk7VLZexVH48cXy6tHgD6Y96pDJQhJQm2+dRBXEuuZu6PgA4jzzH4hVbyU6tNsZqAasJ/BZUGAQyBhdoAm+CfQN+v+CPQBK9ZMKVIqMpQmMKeeGeBvdtIGNE+d+rCW7PlK8bv766/vuuu+Rjdp74elDVR8gxuo1bRnlbN1jfxaddH+915UwxvHyq9BsA58/IESf/lGuQkJajxwkJb5vaK6vdbKLe8XPXfX48dmClAGCDTlwDgLaqjMZjgwxAR2ZmkAbDsAxmQyMYjIjauy1RVgHBkVmRVTIk7GHGNslWBTA07m3az1JnsGMEcGaB0YMaRnpjSwY9dztGPxCocc3m7QZKjlfdOVtOpX1agdqKR1qxR5wy2Sh6f2vfqMktatVWF2aabLOUL79leTxwEApTI2srOAdrMrNZ+RoTVr6nkeZHnNGnwcOxJGM0uAcoDnClN/soNAEYNt1k8SpME8s16tg4wdQQfPxDpgywmoTdacuuD4hGQ179hXhbMf1tGfvldxYUGFl9mgd381vuEWZew/qJy/VqvQJ0jhF12k3KQUHXz3+RM6t6YPzlXxxe21649Vys7MLLceuS/AuqkQYW0A5EzwwHqEeLPWo/IOQbDRc8J8Pyq8ueoD/mszQLBCNs3smk3WgfeTDKN1QFoR+JhNIAGU2BmUM/WDg3Xj06MUU2O36iz/QOd7zlXah4+oOL9AxQX5DvnviYZDITX5KSn5kGq17KRdLzyh0OvGKCA6UgeXLVXid586APyJRsNHFqvkcj8teW6hPlp4vB6YdQpIMRUiBG7IcO2INwI3U4VFgI3axgTylXmQZHoBnpDFZi0110b239rZm2CdAN9s9Geqe7ie975YqZIF85WwbIFjrp1zXlxQ4LLm03nNdGFu+/AzSvnjB3lHt9HRLxaq8fA75YGffPdFJf35q/JTy5KBdvfbbPLzyj4nUtcPGHDsz64IEWTSgGiT1Mb/Mkdmczj8GD6RbPjJDtYzTf5Q0FlVQ8QBZJxHjBhR5iuRcQNizEDfmqG8bMBg+X//i+JXfFk63wWla7zMvFdwoUFdz1bTOyYpacMGuaXHKSM5W42uGqzCvHztdwCa9Y7vPdkRMX6GQof216EDe8upHZl33mXTtpN0ACib5DjEEsrIqsizIV2IB001Cn4dX202NuUzgKa1+Z1njRoads8DKlm5X0dff+j4PDPf+WXnvQgbU1hY4XSFDhym0L4XOJ5V/NeLVCN5l3TkAAAgAElEQVS6k0J6nKeM/QcUu+DlSvckcPVDgH/v+1/X7oM/asf2UoUD7zyqJesWusTEfG6S+yQJAPFk5lG6newglmEeTQUsJABko5nc4fnwzjlte/9hAxRR2Fxpbz3hKL8rO8/2a72kqOiEl+nm7qEmEx+Vj5+n/CObaPvsRxU84CbVbdVScb/9pvilH5z0fux2Pxg6ab5yzvPQt/M/dcS5lLWYpDSxHMTbY4+V7a1C5h3bWp1hP9kVV/njqwF75efqpI8kI4cMzZSOIFtD0mQCLwAUL4M1GwBwhKE1DQ/BEHI5s4nMrbfepsuuGKBk30wVHe0n97wUReb9qYyDh+RWkCcV5sk3wF/NrrlG/gG1lH4oVlnbNytj394yAaFfSKj217laXpHZ8vU7oJ8+XVHm/gHZAGqyhk4WE/YR0OHcnsh5AhlbpEQYQuvAiZHlMIkLghRkk1VpOge5AfNPbZ+5Bzkg0TS2BB0EEmaNIAbbuX+49ZoxSFyz2dDurG7ddejXzUo/Eu8w0CX8Y75xgkV5civMl39YA7UaOkTuJUXKPBKv9M1rlX20bDbe+lvI6Wv3u1x5haUdQvldAmaIHesA4ELsmCUAHAs5YSoNYEEBj+b8APxxiGZH/8osfJwbjhMFgHVQOsF6MEkcsoqQS6ZEk+6jEC7IDq2D4OXX31aqa/urFVGnUAXpkBvFcissVGFu7rE5V0GeSgrypcJ8x9yrKE/12rRWy0v7Kzc1Q9nx8UrbtFr5aWmlX48s1crCO2Wqbm6q2fps5bdrqtSD+xzKAYg25x7ErHm6AwO4cNbWQQCLAsMM3iiNoQ+FNegFTBBEs14JzqrHv2MGAKkAdjJu1gFJC5g098KGxCFbYZJqrAXsZmm39fq68ubBCgkNVZ9zblPhgS0qzMyWh5vk6DlfVKSSggIV5uaU2heHjSn951bEms+Tl5+3ogcNUr2QIGXGxilz9zZl7Nl9nNwy17vxDtQ672odCc9Q0voD2rWrtDM9ax6bColmggRsDPa6zDZSkiOjiK10Sv2dc8Q2lHxXVYI63jN8I2QJ76J1INVGoWJ95yBjUaWZZDeAB9/s7DRfq5a/7nxorvq0aKKinALlZmU55tvxz01yKyp0SK35x5wDLMW2kNiYQnxqvmrWD1SLoUPk7eutzMNHlL51g7IO7CtrWypY2rXanqO0RvX0/bLSxmDMOwQxc2WSgthTAmpTAYbPxAeagBJyFOVHVWwMZDZ9W2gUiG12DtYtiQczA+xKmk35EGAKkNWoUZQu7HWFstOz5Oft7QCKRfkFci8pkbtKHP8tXet5Ks7Ptaz1Up+KnWfeA6Ii1GroIBVmZikrIVHpG1c5Eg5lbHpFJsV4J2p36aGabZoqNzfboS6wDrKLxGlm+RmkP8o3K6DkPAhp1FP41pMdAG/6ypjkFj6V98jMAAOi8FNmE7aJkyYrJ7NQiUeT5I67K3aTe3GJavn6KS87x2FXSudccispVElBoaNk0gE0/7Yxjvn+e85Z8yHndleT889T9tEEZR89qvSt61WQkV7el5oZbjt/6zzm778hzfbofrmSsvYpOaG0qRqxAkSJ1XfyuV1MR/KC2JLkDYrIkx2QrexkYPaM4h0iZjIb/OLXiemdSZxGjaPVrmNn9ezRW1s2bFF+boHci93kViLHHNf2q6ns9Ey5qUQejvVeXGrb8wtUmFc678rLVzG25e+1XlKYL88aboq88kqFNI1UVuxRZcXsUvqu7Y5nVS6GqcK8M0/+516p3Agv7du8zUGssv7MZBZ2B5xiqkydySxzl6uTnf/q413PQDVgP4OrwxVgd5VtORXAfvXd16pPz4sV4X+x6sSvV+q+QyrOzSn9l5Ot4txslWRnqTgnQ7UbNlCb226Tj1ux8nPylbl9k0vA7h2ZLZ8TAHbr9P2vAHb2EWdbkzMJ2BOS0+WWmKespDSHJA+jWZiTo6LsHMd/HXOek6WiHOY8UyU5WQrt0lFNB14hT08P5aamlwL2I6cO2Jl3wLwJ2HFWyEj/FwE7zo+MgB1gBwiZ7O3HHy/SnpxDCvbpqyiPFOWlpssNR5efr4Is5pw1nqPi7BzHnJfkMu+l6z36isvVtF9v5WdlKychUWkbLYD9BO+/HWC3Hg5gh1gym+xVA/YzaFT/R776dAF2+kgQAFlrXwl43lw2X3s21FITr1TlpWWIxtYqLFBxHuuddZ3rKGXCrhdn898sleRkyKd2TbUePVr+Nb1UmFdUHrBXBBodgD1TSev3HwPsnIJNJcPFfVsHgB2pqNlo9EwBdmwZ5QYmYIfEpMzGBOz4ADPDjsScoNwq7+99/gWaOv4hFeUXlQPsAMeinFwVZmc75pytJLHvJQ4bn+n4V69lU7W47hp5e7grLzO7FLBXoveAdS5NwM7fWAv/RsBu1zWd4D86uqmyMkqUn50ntxKAoxyAvbiw0JGxtQL24rw8FTj8KfOMXee/pX611KdmquH5PdT8sktUUlik7OSUUsCeWL5z9smYjf8rgP28Xn1VP7iB2rZpp8S4JCUnpJQB7DV9/ZR/DLADJkvkVlxYamMca505L13rDp/qmPcsFWdnqNn11ymyW2flZ2Yr+wgE1foyW4+dzHybx54MYKfvjllaStKADv2nG7ATq2CvXQH2Q7FHFB7eSA1CwuTl461uZ51TCthzWNeQIaXrvXbNmsqmATFE6N8EFSQJ6x0bUxo/Ote7M47JlIeK1GbcWNWtV0dFBcXHAbul99KpzPvpAOyofqq6deSpXvv/D+dXA/Yz+JRPJImnrt3coutkJfEYKme98R3TJ6qgY4GaHnxE9XcsUuILo23vjO18Osx8Sam/rZBbgyglfrNYDYchiW+gAx+/X04SX6/nWpXk/6JZlZDEk0WnKZBZ207zGerHTXD2b5bEHzqSoCMLv9TBV5+07TZrTn79s7urye33KnvvTiVv36GC1MQKJfFhDkn8bB04uM3xdf/XJPF2TaxcSeLJ4BVFeCs5tqMifv5YCR88XSlJfNT1I+Tfsbtq+Pro8KJ35NmwlUMSn5OUokPvznHUgbkaSOJLLmyvXatWKyszo1oSfwZt5b/tq0+XJB6SFnBrLZOAgFu6boVW/+mlep/MVcLn71VOEu/vrw7Pvq6U375T7c49tP+t509eEj99sUouQxK/QB8tfP/YY0EST7bRVN+cSBIP0EQabR2nQxKPjzGzPvTvIJtplcTzu0jiyRQ5lTF8hs9EUYWCyjkuvvRKjb/0Ju2dccdJS+KR8LaeOlPp639TTo6HsrauVOPh4/+WxL9UeUn8g88rq1ukbjAk8fT1MEuHTiSJh0A0FQ+nQxJPjwBro9KqSOJ79OqjI1/8qMMLXrGRwZ+cJL7hxZcp7OphKkhPU9w3n6rEL+j0SOLHzVDoNfaSeLKpqCYrK4knBiTz+k9J4okRnOU4o2+Zooz3n1f6np2lc22VwJ+CJL75XVMl31qOUpuYt16QX/seZ1wSz3omNjAl8dgCdkWyDkgu1CAoD0+nJJ5eDSRATIIASfyemP3aFxyr0JyLVedIvoo/f0T5qcnl5/3v8iaz/KMykviOs99Q0tpVCutzgXbOfkz1/8ck8RBylOhW17CfuWimGrCfubl1NMb5p5rOXTT4ctUbGqSAbRPVJC5Genuoii3yNW7Ts2ZNdZo7X7Erlivp20Xq8MyrWnfniL+bzvVQ9B2T5ebtrf2fL5V/w0h9kTBaNbq9pYyNqzV/TtmmcxhKtuqyDmRLdAsm82gd/xebzq3fuEUZP23R3kfHV7iCaDrX7skXtXvuE/Lw9lLQxUO1ZfLtFTadixw1Ua3vu1NbN/7p+I1/a9M5Ahxzv2qyYdRHIe2zDgJ8PrNrOhfVu5Vi4xqr/or1ynr3rgrnPfi8no7GfdsevU+hl12jrIQkHV74iqPpXN1Lb1CDXj2lggLXTedm/N10rqi66VyFk/3/2QE0nUPabTbSPNmmc5TW0F3X3Olj7Z4t+nldlvw+/U7pC6ZWPLtuburw7JtK339AB159Sme9tlCbJo8r03TOLzRUR0/QdM4/Klo+o19Vwrk7NM9oOocEElk2pKx1IMMFUNo1naP0BpBnHZTOnErTOUoNANtm0zlKSqixNoEUhAjSd6vKCEKEPcmtW22NGT9BFzfvqV3jy26VVNHE03Su46w3FfP+W8rbv0NN75mmNaOvPa1N55Dwm/vW/zeazlGuZN1xpCpN54Zcc702v/2FYp6o2H6faO4dTecmP6mdz05zdIl3j2itvbMfLm0613+Iwi5xNp17WenrfvmvNJ1DlUKfk/9W07nrhk9UypTbT6kJmfkMGl5xlcIH3aRND4xVs3seUdw3SxS3YtlpbzrnNeYpHYn9Qz//+J3jEnjvUa5ZlUj/S03n0tIztTTnK3ln9lLY1g4KXnShchMTKjIflf57i8lPyd2nprbPuFtnv7FY25+arLQd2483nYuOUvLGLUpc8tYpPe9Gjy+ST49AvX+CpnOU4UJAmU3n8AVk16sBe6Uf60kfWA3YT3rKKn8CxpoaV3O/9TOxrVu37j0UdFN9RRQMU9Cutmq65mYlrPytzMW2nPGCPHxravtDYx0S7u4Llmn7k5OP7d0bdNssrfK7VRdclCav+E2K8+yizIaf6fvZ3+qLz6q3dWMyrdu61Urz1p4Hbz1hMOAdFKQuLy3UwW++0cE3n3Vs69Zu5svaMOGW8tu6DRggT1/Ltm433696vdqV2daNTJxZw16Vbd3s6sFOx7ZukDiseedAqk+9vFlHWpVt3cZOvUdr9mcpbJOH0ucMUWFmpsuXkW3dWs+Yo70vPq24n1eoQa8+Ch08UhvuHHbsHOe2bvV795Bbbm7ptm4rv3J0cnZu6/b5xo80rQrbuhFMsH+xc1Rv61Z5u/lvOPJ0betGTw3Ap9lb4+ffV2ptcpYCf09VwlNDpQoazkWNm6p6HTtp8/23ObZ1O/vtT7Xv9ecc2y8xHNu6de+tiFsq2NZt7DzV7pKo8ZfeqjRLozRqRelPwn+tAzKWrIrZmOhMbutGpt/cb/1E27rRYd3sM2Fu6+bj66uFL32mpFn3H/OHFa1DOsG3e+4tZew7oN0z73ds69bllYXaMnX8sX2P2dYtsM9AhV09RDUC6vwj27pBhJr1pf/0tm7UX5tNNEu3dZumVR8u17bx11Q0vS7/DuHaae7b2v3OWzq65H0FtCwF72tuG2ps6zZMIf37lW7r9sUXyvylEtu61a2r5jPfUlTPlo5O+3bbuqESoSu4dfwvbus27v7pSpg3VzHvvlLlubaeyLZuTe99TLtnPayktavVeOhN8m7eSTsfO07Kld/W7X1l/D/2zgO6iqprw296gxRCQiCBUIKAdFBRUERE/eyoiAV772LvHRWxYe+9YsMuIGJBBRHpvRMIKZAEkpCE1H89wzcw9zCTRgL4fzlrudTce2fO7Dlnl3e/e5+/J6swrebHurU44j8qGbnzWDco7vRr2pePdYuOaaaJuVOUnhutzqtGqP1vZ2jTzO2Jlt0dScMvVKsTTtXCu662jnXr8cQbyvrlR2V8u/MkiD15rBt9MjgVqfFYt919s7X/fWPAXnuZ1fgXBOyg0KbhorMrDrwZyNNEhKY65jFw1AficJhNMGjmxbnZKLPWbZJ18q3DlRqaq/5bXlCzRS9qyxs7FWnS+SOVcNTRWnrvdcpftcJ6hp5j31HWtD+V/9ckBR9+ib7deJnGf99ct45ZruxWYzXioPP0y9dTNOZuGoHtPL8TShCNlTgz3jmo2aeRnlnPiDMFNYyu9s7Bd2m+R8MO5yAgpbt+Xc6M5To010GOdEJ3DlBBHBez1ptsLxku85gzKD50eDW7zdOAh+OYghWjtKcfUOo3X7quiYDQMHUZ9ZL8Q4K1+M7LVUrdUmCg+o+bpCWP3GYZPedo0q69Wl94oyJ69lFAaJBKCouVU5q+4yuUFZCtdh7vx4coUGr2zXlSW0rZBefAOgeBOUf/OLvl2w1GAATqcmYs90bedGc1a7pxbgjknV3p2Rc0MAIAcc6Del7ekTP7xdyhtqVnZOnWb+5Vt/UXKmLCDUr74VtXuUcktVbvFz9Q6oTJSn3xQes7EW2S1fWRF7Xg1st26ZS93wOvaGuvU9Q+JUvp01erZNEiBWUt0bYzrtSUb9/RfXffYZ076hzMh+775kkJ0PFwlmnA4hw0CnruuedE0yLnIDMJm4BmUFD4Gse/QwKArtRAm93R0fU0YTPPTib7CwXbzMgTXFFjjR50jtGPjZF/n3BF/XOIQsZfq41//ekpmPhjhqnD5VdryX0jdwSbHW95WKXbyrXm2Xt9fhcUGamYw45T67MvUmi7BOUvXqPMb76wnOroo85RyYhhKt46X1cO9T3tgiaQNMZjvs7Bmqbh29ixY33+TrBDraeZCQcoRHeaAX5N3zqBOlk285x7ABTmYQbyZOagz5vzIEvP6S3ObvMfjJuisrH3KMsAur3mlnLrY4rp0U0LbrpYRZnbQcpDxk3UqlfGKnOK77GTAIDRR52pxJNPVnlYoAoXr1Lu1+8pd84M66xkTgRpeu3DuvDiY5WTk73jluhvOpCbTVGhWXM0HnbSOWhwRgM00/bx7mhQh02o7QB4pOQAWr15OgrBK8G5eT98E9aK2T+F7/7y6W/KfPrOGgMjzvkCgHR/6i1tWb1WKx663mqUy9npfV78UIvvG6kty5b4PB7AbczJF6vVkYdrW3GxcmfOUd6E97d3kKe5lzGwwUmjXtZRpw202ILOPjhkzPFj8EugRtvDPm/dPHqvffv2VkM+aOqmPavJO0DWANvQ8J02H/Cbk3RMHYPtpMeE3QTw+NOGyf+HOcp8x7fvRE3ubX4ncr/O6vHk61r5/vtKH7cdAIju2k373TZas68+y/JtnKN534MUd/a1ShhwgHJWb1D21Kkq+OUzbV7k28TPbS5tbxgjv5OG6Ks3n7Z8BI5no6zSPE0IW0rZDf6vc9AbB7lRrlOXgY9F2YypozjNg3lQyukcJEywAxPX/KqfN85R21mvaeDio5X1x9S63N7nN/H9D1Xb6+7T6qfv22EDWp95iZr0OEiL77zM57sBoaGK7T9YrS+4RrG9Oitz9hJlTvhOBdO+3wEgVjWh1sefJL8z79S8pd9r2dLFVid4wBKz4SWMMPbFV1995XM59BH7oi4NRXdbUP8jF2gM2BvwRaPccdJogOEc1KNB/TWNJ447wRdKwTk4Gocg0Qz8UUx0KSYYYFx64zXK6JOhxIxLFbOqvQ4qeEQr3n1L8UcNVZvLr1fqMw8oa+rOY8qSRlylhCHH6M8/QjVxxRD99ou/RlyeqbDDX9Dryx5SYtPWuqLzSL0z8lWt+G/HYDKmGHAamjnpcdyfQJtNbtI7ARWYK9Qw58CY4/TaaLV/QKAqysusekPOtKxLl3iuz/2gXZqd3KF18neO0XIOmhBRm2cef0aQiWIy/44BIdBMy9ikvB9naOmD7vS+Nlffq4RBg7T07qu1ZenOe/Z87kNlz5ql9W/5GpqgppFKuetptT91sBbM8Q3mOS2A+Zt9D+iETPddsxEK8+PvZq0ndYcoVLu7cKVghZcrISFevXr2tMRiBqE13SJ0hOYkAM6pdQ4cPdapmfUhsCfAN51Auu1CAQUscY6JP07WguLl2pzWTx3nT1XmC7vKHeety8Mvyy8wQItvv1TbcnKsSwSEhengjydo+ei7lDVte9aRkXjcUK3oMlqpSfNU3uZnbZ2Sr8rsSg0//mylhWzQpnlrrbpdnDfn4AgpqMDmHubv7GP2gXNQZwcARLM9e7DeR15/nRXc1zWAqem7afxe/UoA8BQAzSz1oHs39ZbQmJ2DIOq+++7bxZlBx3E0nBn4c52H3n5Cs/6KUcJ3ryv782ddHyD+kAFKuPFRZWdGqXj2RIVn/K78VSvFMZJxp5yvfy46RRUl23b5bbthZ2nroFtUGhso//LFal4aoVAFaUFyuua8O1Xvvv2Gz28ItAnO7LOG7Q9xbtnb5kkfdMMngHHuYdb7mtWrrHPUTYp3Td8OVHBKg2hq5hwAITjU5pnMyBa2iwmO43TjjDr//tBjT6pHQZCWPXRdtdNJOP1yJQ47XWseu13Zs2bu+H7K7WNU4RegVY+6H5/WtH2Koo4/X6EH9FFF0yCF5RQr+6dJCotvqayDOumqEcN87g040apVK58eB3yBABw97Qwo0fl0iMcmOHVMq5YJ1ikUlAGYp8pU+6D//QLvHXtvHqeH3Cn7M0F3khLofVOHU4eclb5VGQ/cok1/1y4DGRASog53PqXIlA5afNtl2ro+dcf0+3/2k1a+9aoyv/M9icb+QrOevRV7+pUK69FZlf5+0vqNyvzqI+X985uKszJ3XKflsScp7qbb1LF9y11AIXw5gmHzyFG64ptN9ioqpQH9D7GCRts/q6ms7e/ZfgeJkGXLlvn8HICK/ehks/EFdA9gFutg/x691Ds4Wctv22lzajsHvh+emKQeY9/W5uWrtfyBa3awGKxykBc/0tIHblDugnm7XNovIEDxBw9Q/PkjFdKpjQoyclW+cq22fPvO9jPaPRhyrR78Qlt7btWP739tXZNSS2ywmdHFj8YfdXbFR+4XXHC+wkJDLZ+5LgO/kdIfatadA5CepJp5VCUJDvTMC9+8rimarE7zPtERpW9qw4u31uX2O37TrEcvdXviNa344CNteOepnX/v2Vsdbn1U8647ZwdL03mj4OhoxQw8UfGnnqkmXZKUs2SDiufPV/7kj7fT5e2TcIzZxQ8+TmXXj9Zf37+o3JxsCxBEFubeZv1PmTLFZ28j90cefliZmRmNAftuvfWqf9wYsDegcAleOJsQh8E5OKcUB8fspojDAZJuHovA/+MAmdfhmhhLNhbBUPO4eJ16x5la3Wy5uq17Qc0z0tW97EPFnHKe1n3xtdJe9T0qi3NMo+95QzffUaio8APUqf8yben8nH7Iekl+5QHqUjpA/QL315ujXrKObotqkaLDBh2lFvFx+ubbb7WtKE9bMlZYATZ1gmTQu/c+yFII5WXb1Lx1dwVX5GrGtN/VsmUrNY1NUlH+JoU2jVV0mPTt95PUu2c3NW3eWoWbMxXdsqPiYmP08dsvKCgowEJW6zIwdBztgTPpHMgbxU822jmQLyi4+XeyqqDkOKvOAVqOow3CGFrYRDlvPq70KdtrrezR4rSLlXL5lVo+5gFlTf7G57NW51+vZoccpm/vuVltN67Z/pmfn9pde586X3WJPv3ic3VNaWn9uaKiUnOXrldIeJRKS0uUtXGTYqMi1Ktzkvz9/az5wdb4buIUFW8r1aKV6Tq4Zzvt3ylF1JC+9eF4tYqPVvrGLdovOV7hTaPVrUsnvf3Rl0ppE2e91+lzVyspsaVOOrq/2rROsoxgXQZZFZw6jvtzDpwLQBS6OzsHGS4cETM7B8MER9VE1GEGXHHnSE1bm6aQ39ur1ew7lD5l8o5LQvttPfIRNevbS2seunEXJ6Lni+OUOX+Rpn/2jiX3tudfo5Xxl2hDi2LlJL2ukjlhWjbxT82Z/Y8ll9ikzrrqmhv07bffKC1tg896x3mY9vccvfvOOzvWenbaIo1++EFl5+To+Vfe27HWC7LX68FRo5Wfl6NX3hqngpw0qVJqltRFZ51xuiICt+nRR3zPNK2L/Bt/s+ckgBPNekRvOI8aYu/w/2TjnIMzgWGvBAYG+vydbBmNlNBNzsZzfGny779pUV6xwmcEq+LDK3bJHsZ076n4kaO0Ljlbs1bnKaFwsJoVNJHyNqpV+yZqGpWlXx65Qy3m+WZhI7rsr5UHX61/1l6hvscsU1HC60qfVqzgsgi1aBOnLz8ar7zNG3fodgJDWC8tEtuqtKTEZ70XFWyxjqOrCGzqs97T0jdqv5R2CgiP3bHeE9r31OhHH9a2LWm65GLfZnQ1fXOAA9DyAS+dA4YKAYzZ3AughEyvWVcJiE4fFoIteyQnt9Wzdz2vjS/co1wcW48RP+QEtbvpbq19801lfPqqz7fih5yohHOv0Hd336TW63wB6jL/QK2PTbJ0D5mzmPPu0GeLligmKlCVeSWavmCGli2as0PuBCoACsccP9THprZtEaoXnhurAw44UFHx7VRRUab8Tanq1/8wPfXEGB178pk+Oma/jh10981XaP8unevcwRlfhgyueb47wCRrm4yvcwBcYifN7BzP1KvvwVr+yoda+8JDNX3t1vcSL7lDrU46QWsevlkb/5rm89uUu59WRWCIprwwZqdN/e83nHKP63eIYs++Vn+TEQ4NUd66LOWvWaPwtfOVNPd3tb31KbU7Y4g2pK7Um+9+JAKRvOIANQsv09ATj7P2+9gX31ZYUIWKyvzVNLhcAwcNUbvkJD336ntqErz9PO2coiAd2Le3Dj2wi048wbenT00fmoQGzAb+McFusu6c+w0Q4xysF/wefBnKPE47/Gyl3XtJrSjpzusFR0Ur5d7nFJoQr+V3X6X81St97jdg/C9a/MEHmvXrj55yTyncpOhDj1Zq3yO0UWWKjYpWTmq6glcvU9t5U1TsAF7Ku/RS08tGKbtiqSZP/seS+y03Xq/Zs+fo20lTfeR+/kWXasXSxfphyjQfuR9/3H/UITFKQ08+qaai9vkeDEzsP8G5ycZk/ROcm7oaoOS5917R5CY/qmvaGPXK26D8J0/2OSq5NpNp2qGjuo55VXmp67X8nqt8OvDD1un54sda+NDNmpea6SN351oPS2ippkeerlVtOykvoEJBlQHWccKhK+ap9bxfVeZg8mwJj1LM8DsVObS33n/1XcWElejVl57Xw488oqWrMnzk/sBDj+qF55/RitSNPnK/8ILz1DouXIMOP6w2j9r43VpIoDFgr4WwavtVjp4h6CR7AlXNOaAHk0UB9XYOaH1kbswsMJlV6IfQy50DxBckkGwqY/CRx0WgSE8AACAASURBVGi/cztrq1+4ktNu1uCOCxSkMs267HSV5G7PNtqDZmhJj76mL2dVKLBtjpY3eVtT1ky0Pu7V/CB1WHOA5nw1WSuXL1NAUIiiYltp+cKZVrBKVrRJsyRtK8xV0+bJOvqYY63f/TR5svXd7LTFCo2IFsflHH/0QF152UXW90uK8xQQEKQT/jNY3Q84XPffOVLhUQnatjVHYZHx+s/gg7Vf934aNvR49ezasbYit75Pp2CCVTMbQBDPuyDD4xw4FqCxZpYapxt668SJE60jQpyDrDzZ+pLyQK3+8melPnWHirO3HycTf8Sx6vHo01r28RdKHXvnLs9AVizx5of1wz23KmHRDEV23E8thl+h5FNP1KKlM7VsTdaOgL2wuET5RRW6cMSpVlYccGT52izFNWuiJasyFZ/QykLTYQjkFxSpbVJzlZWV66T/DFJYSIC++/F3NYuK0LaSMrWKj1J+SZB6dG6jST9PU2KLaAUFBlj3O/3ko/TLtLkadOjB6tqpbZ3kTgYRxoRZ50p2mUaEZ5zhW7fI/0OvYr07B1kJnGk3wOavGX/rj40zVZ57sCKnz1fJuJt39BBoddGt2v+KizX/gfuV+d1HuzxD4kW3qPmgQfpj3HtqmXysspsPUWrYMm1o86Iic6KU83OZfvhie5kHa/jMcy7WaScOEc4nI7J5soLDo+Tn76/bb7tdL7/ysvILCnes9YDAUH3ywet68L67NGfRmh1rvSg/W0+/+I6++fw9zZi9REX5G0VX2CaxSfpu/Ad6+sW3Ner+u9SlY3Kd5N74oz0vAXQ7+oRMIqU9zoFupHOw6UwD/NG468cffcE9gh0ykdDsneP04cN15u0XKHNVe4V+P17Zb96x4+Om7Tso5b7ntcE/Vx+PG6fEg1urZbfW2hZaqILNYWoZGac+UV009YHn1WzShzt+R2mI/wn36J0l3RQf21Vhxz6g7LJlaja3je696korO4fedOr2Qw4ZoFaJifpy/Hgf3d6jZx/dfP3lOuWk43x0O3p7xMXX6forzrN0u73eDxgwRGNG3ak/Zi7SKSf+p07rncw4QTtAh7OUhneBHjQBEUp9oBMDajo7nCMQAiEaWTmzwF/9OE15r7+vjHEvuC6q5gcdLHrBlGVnaf7t1JT62vWYbj3U+r6x+unR+xU3yxfodTrTCVc9oaXtTlBhxJd68IKR6tKpo1XK5ZT7aacNV3pGuv6aPt1H7kNPGaYOreN0/713KjK+ncpLi7U1N11nXXC1DurVSfc8OMZHx1x87mnapnBdfvF56rF/7c8DRxCUuVE6RrDiHAAn+B8mTZi+BrAI2R/OAVNs9OOP64+Pf9LSm87fxSfx2sktTrlQfR+8T7PHjFX6e77lF5bNPf5MtTjrfP1wzy1KWu1Lu3bKne+WhEdq20GDNPCCy7UpolJbt+Ype0OREisrtKy0QiExofpn5kwrKCst91NEcAUHiOrmay/V4oVzNemXvxTsXylC87DACg0YfKIqt23WpJ//tP7fz69SBSUBuuuWazTx5xkaceapdVrr+BeUdACYmeWHZJdZ8yZQgp0l42ufEnD6iOtU9tJopU309XlqojH9AwPV+vpH1G7ocVp85zXKdLAz7d/vd//zqoxooh/H3F8lUFIcFKItiR3Uo29/JQw9XRuDt2r5mgx1CI/TrD+macvKBZYdD2vXRSW9+6lFcK4WLFqqsko/Pf/UI3pu7BNatT7bR+6nnX2p/vj5O61Ym+kj97dffUavvP2php96Qp3kDnuFElQaWAKKOIcTEHH+naTZ6jWp+rbiB4VmH6nExb3V8Z9LtMkoe6yJ3Am0O97/vAKaNtXWn7/Qstd9exD4BwXp4E8na9nnX2rmhPGeATv3Qu4FKd3Ua9AJih54mDaWZys1I1/tQprqr8lTlLd2mVWSExgSIr9Dh6r/kA4a/9EXioxupjtvuVYPP3ivtZbt9Z7UIkaDjztd4959WYWlATvk7h8ao7FjHtAX3/2iIw8/pE5yr4ls/te/0xiwN+AKIEtIxpx6PpMmzP9DVzYRaJw2DLdZx47xI3AwgxumD/UMxW6j3+dedrHCDo9Qh9LDlBjdTWmzQhW17huFLf1UmxfMVUlenvXUNM3p8MxHej99ssbrFZVWbK/pOj7lFKVs6aLpn8zVX79uV/T+/oG6+No7FREaoNdefVn+AUEKDmuq3LSlFsIPNQs2AfWJDAKesKZxQnm+/fHX+nv2QpWXlSgnbYmiW3TQiLPP1Ib0LE39c7oqK8oVGBSqkIgYde/ayar777p/F91y5ZmKioyo9RvibGzojtB2zPptDBoUH2dWjBsQsMNWMGvuoLbyHnHunINMGhRnnPCWrTtp9sNPKf3dpwVrof09T6s0J0eLb7vEh25n/55jgLq/9ol+euFZtfeTWpw4XO0H9dbM6b+ptKzcJ2Dn/3OLgxToV67NOdnaVlqm3C2FOrB7suKax1qUOxuAILhPy9xsOXNBTVvop1+nyV+V6tejrWYvXqew0GAlJiVr2YpVqigvVc/Oifr9n5Xbs+8p7SxZwZ6oq9zJlBOsA5Y4B1RCghrzSChq/3CykaUJiJAhIFNv1m7y/h579im9Ofddddx6pfy+fF75n49Wi5PPVYsrrlDerzO0ZrRvZ2p7LvEDh6jZVbfpl1mVimjZWenhE7Uk8CN1reiuzEkb9dMvfyrvv4yHNm3a6u6Hn9VLz4/VsmWLfdb7xRdfaJV42IG8vdZbxobrnlFP65Y77/NZ6/5+lXrs8Sd1730PaltxobZkrFRsm24Kaxqr0045SQsXLFCfPr3rLPdab5DGH+y2BNAJBDEwR8xuufw/esQ8s/yOO+6w6M1mHTsAKNlhQEBzTPn1d/22Zbbapg9W0Pg7tWHCV1Yn7HZ3jdU3S6dpwMEHWDRn9t60v2YoPCpCzRKbKyK8iUIqwtQuMFHhL27vMt/q6OOUm3K+3vjrJCW0maP4o2ZpduVrOqz8KJWtbqKW8dF6fMzoXXQ7JSoEajYd3l7vD99/q2bOW6VJP//us96P+8/RCgoN13c/TFJFWcmO9d6hU3c1bxaplA4pCg0NqdN6h5mGbqf7vFm/jXN9991375KNpFSHf+gp4xw8E+wqZzOrjvt11hO3Pa3cVx/cJYtLzW6LGx7RL0v/0PDzr1Pmb/+o4LfvVbpqrlXyxHnh1Fh3feNz/fjy64r55k2f+9mB48CB/bWu+/1a1+Y3BWTkKXftOn3yycc+cm/WLNqyqawXu/TMlvuP33+mm+98RCvWbrD0OGVkZSXFuvSyKzRz1lwtmD93h8xDm8Sq34G9LOp8n9511zH0rUG3UzftPCLPrqcGlOUIPeegbARwxdm7hM/JDufklKh43Lta8fZr1e7F+EFHqfXND2rr4mVacf/VKtu6a7NRGqIlP/S8Jj14l5rPmOIqd5vNxntYkthJMX7lata1r8L6DdTa4s2KDS9XQovmGjJ4JzBRXuFnZdJjmgTorPOv1tPPv2IdJxobVqrc4kAF+EunnHa6vvl2goqLChQVWqbsrUHWb/of3FfZm7LVtm1yndY6D0FAzv5mXTsHYDalVyY9H1Yg37VLTs676EoV/LxA68dUX+ZhvoiW59+k5mefom3FSdr8++9qsuFHrfnkQ+uoMnu0OPVixZ12hiY9cJtaLfNlpTiBElvmTYvy1SQmWkG9B6m4TTsltgu3Gmp2SeqqbctXKbxlW2W1zNdnL71nyRAAqnVKL73z4acK8NMOucfGRGngEUfq08/GW+/AlnuZX7AOOqCXCguLFB/XvM5yB1RFx5uACCVwgE4mPZ+TbSh9mJQ6VT9m/aG+q8dp/0WXK/c7Xx1Q3WIPatpUbW55XIH9B+id11LUtsladQmZqsj0SSpYs8rqv1NWuFX7PfiiyoODNeH+26oM2J1yj27VUsH9jtHmmGaKjipRUlKiWoclKnfmTAVvWqmCoVdo+k/vauWaNJ097ASlZhZowk+/+ci9a5dOio1L0JRffvORe2BYlNolt1JMTDOFhgTXWe7Vyed//fPGgL2BVwBNVgiETCcNJ4Fsr7Om1Q4coeK4OW84h9S3m9RtFAVoIOef291wjxl6gpKSk5U84AhlLuwpv81tFVSYqqTgJYoJyFBg6RYpKEQtOsep6JAYnf7N8UqKbKOeTXsrISNRf4//U7Nm/WMF0wzqdUeOvEEDDj1MRRwXZ9Hetxto6m+hJEIR3Tn8LAp/VlamRaVzNk2BbjR7zjxBoYHqz+BvgcHh+mPqz1bzILOhSm1fE1Qm2AupqTvr3LgGMrIbpDmvSUaATLvZTZigEmVM9t3pqPBbao/t8oakFp2V8fknCuvTX/5hoUp9+EblzJnlOu3gqCj1eec7lcpPHfrtr+UL5yonJ8v6LjXl5eUVCsQKwXTo1cvKJv029Q9VVFbK389PISFB8pMshgbAg83GYH7lFZVKSmxl1XMCWNgDar1/YJBOPOE4ffP19towBn/fWlyiC88bYcmd+tC6DjJVBOVkYriWcwCGXHLJJbvUNOIIEpSzT5yD9cZaBxQxB9T6hJ7J+iN9tXptPU3x679RWUoHRZSVK+eTl7V+gns2IarL/urz6if6LmOxfi14TS1DkxSWGq7Zn87QPzNnyM8/YMd6x2AjvzGPP2mVKzjXO12qcTp31vP6WVn3e+6+y8qGgLbbg3V90smn6PLLLrFq8Zx/P3TgYD326EMWQFXXOse6vqvG3+2+BNDT7BcbuLGvCKjK+kAnOgdONuAq/T/MQbBJczECS+dAx4yb/KU+mTZX+2/ootDJ9ynkkOM1tWCdxj452voqe8RmqgAU2DTOVq0Stfqftcr77DUVxh+iBVsH6vtZvdV/YLEK93tDC4LfVG+/A9U+p70uu/h89R9wmFLXrfNZ6zzbTTfdZDRw2r7eM9I3WM/oZIOx3r/7foJefOE5H4YTf3/z7fe1MTNtl3ry2r4JSm/cQG2CQzLqZhCDbMgCm/0mcLyh+qP7+bc97nzoIfUuT1DG83fuOJqpSXI7tbv3GT316SuaNOE76z5vv/exkrv0Ud7KLBWnZ6m8qFgBIUGCRlyyYZWW33rBLo+WcNyJKuj/oNYnbVTL5uvUtUmKhgw5ahcdA4BDBtXXb/BTt+7d9e03X/uUzSFbAPQtW3LVoX17AVgzbJu6ZtUyC9S1m5HVVt58n6ZyNJSieZ8JXgN8AKSY9erocFgN5rnV2LRzz71Yi3/4Q4tvvlCl+dsTCG4jtu+BannDw4qMbqIFN1yovP/20jG/S6PRPu98rSXvvKuN7/qWXvHdcv8ABfzXl7F/WxIYrAo/P4U3j9MBjzyruYUbdfihB1tZVScFnZLfwYOPsHwy9qg9sNVt27bXNVdf6bOm+Xt0s3g9Oup+y9fYHZvKPNhjNLoj4+4c2Ez2JqC3c4waNcqSOfXHISGhOvWIc5Uz9pZaNflrccIIhY84R9Nn/6ruR/dVRna8Qtc1UczWDPlnL5c2rVV5Ub6ade+p9sNO1LTLzlHudF+mkZvcbZn7V1YqNrmNki69XcXJHXXU8X307jvvqWlcO61YNkNL5y+wSq0vu+xSC/x0MkuR75FHHqWOKe19SjT4e58D+unIQYfttj1lDaCnTUYJ+hiwEAaVc5B0IIi//8VHNLXJb+qR+ZhSMjIV/NXVNWr4Zu1Xf38lXfOg4ocfo0+/aqmXHk+0btGufaW6dMhV5xZrFBdVKP8APyV2ClVSUqkWXD9CRWtW+cylqrWO3BO6dbP6OQR07qB+h/XUW+++q27teykrLE/fv/m+JfcxYx6zAE5nPyrkCyi4euUK/fTTzlJE/n7asDPVIi7G8v0aR8NJoDFgbzjZWldG0dCx0lkrx99pVsSRIWQLzMEmocmVWTtNYExmzzznnN+Tgafml0wxwVK37j118DWH6vX0F9Qtrpf6B16tgKy+KsvsqJCAEJWWFWhV+gQd2Pcghcd8rfToDcqZV6ailemaMnGC8vK2WNOCAjz4iCP02bj3re6zJlgABRHniWDdpA9hTLp162YF+85B0AxySVDpHAQ7lA4ATJg1irV9TXYJgtnQDLoYBtRspIHCtevSnVRL7st86VZKoGYOavep4aNuLCqslZolxGrxo48r8wt3ZBWK0vzW3TX0sqsV0bW5igsLtWxtlpUVt4N07rFp81bL+TqgdzdrHUDTcg4aoJBdhyZvGnIQebcu+WS6kbHpWBFks0ZpSFfX+nV7bjgKOG9mrSPZRgAF0wASENBB22y6xfUAT3A+6GhvjokTJ2ltRaayS8OUVNxWqzN/VnLbU1U6J1PhG37Wtr+/9jlWBbkv2u8gHX/l9VrbZp1WL1ip1L9z9Mekb7R1684Ot6z3x0aPVkxkmEWXNcdVV11lBd5uTBf2HY6VuUegM9Jgz6Q8wyAAEDLBvNqu9cbv7x0JELygi83u/gAw1KXTadhsCgXIQ/07jCjnIHtJp3g3oHbYsNN1w2N3aOKMtTqovKXmrPtDd9+xa1MzdDH6tnlcgvLLm6h481pdfv5Vysk8XB9PzFWL2G7qcugKrWr2itb7TVXngr6Kz4zTYw/dbQGkZoNK5kd2nQ7x5rFzgGnsD1hVzkGNLyVJ6CdTjxK8EDiazVNr+/YA7HhOE8xD77311lu7lNLQhZ8sL12lTSCREgWy2GYjqXFf/abiT79V1vtjFNo8Tsl3PKXPFk7Vu2/61qwz95SOHTX8zLMVEtpEi1Zt0vplM3TT+SOVdveVWl4aoFa5GxQSGqrIIedo28HXaUWTFYpplqpzDxuqIUcesUuHdRhK2C/AYHO+PDtNX82MK7Xk6BFstHNQogTDD/uxuzaVtcu9qWd3DuwmtgUgxTmYP4GNm34DVMnLr1DB119ryVPutexRnbuo9W1PaOaGBTqoR39tmzVPW6Z8roxffTPo6PYF7Xpp+E23K7y8TPOvGm71CkDuziCdOl2/ykpFFvkCBK1PGKqwEVdp2fq5FovAPIGAZ0JXs3ZJjDgH+wBgxDyFgBJF5F3XJn/2PQjGSTxwb/aic+AP0q+Hkj3nYE8CDtq9Ya648TbljPtRa8buLKmpas+1GHC4Iq+4XR98vd2HSUhopQ7dOyu8TVPlbA1XRUmsmgTEWBnoxfNnanD/vgqY+K3WvfRQreTOtZvd+KEiTuiqpNAiPfP0TjCEz9i37GcCZJP5SAkGz236MjSd5H2YYGltdQyJHgA9/HCzlIY9SHmqebwuvsGm7FxNKflN6zMi1SfnenX8+wKlT/TtYeQ1l4QR16rJaScp079MS5e00c/jOmvObN9eKPw2IChf3Q/+Tg/dnaycR+9T5i+Td5G711p33rvDORdI/7la6SWpmv7zVyop2WaBcqwd9CGgsznw23kfZg0/rDK7zLe2sm78fs0l0Biw11xWdfomyDQZUpwLHBnnwACCkpp0eTJ0NM8xa375LTRAgiGcPnPwO4JkOpZWBgRo0MVHaV7gLE1YvV1hJES0Up+EA9VcneVfHKns9FyFyE+bfl2krIxU5RaUa1PmWqsmPSAw2PpNzx49dNjhg/Xnj59o4oTvd7knRoFsg9mdly/y7Dh1Zo0nx3BAgTbr3qDVEfC4ZVVrK3w6z+M0ujmhODdkUE26PFlOmADmeyLzjhEk42oenca8cLLJhqxam6b076dr9ajrLdqc28C5yIqKV/jRZ+jAM4eoojjPpya9aNv234HuVlT6q2dK7A4mg/N6GCSMimk0mMfgwYOt7JbpMPMbmryZZ8gyf4wcDex2dxCcwqzguDLngA1AkOKWbQC4wjCSfXQOrkFXaDJg5gAk+fKrrzU/d7Eev+5RxcXH69TrztImv0i19R+kqPR8+W1arpK18xSydb1Kgvy1IayZ/Nsm69MfPtSSBf8ouEn8jh4M9no/fdgwUVrw7sujLTqvc2DAcZBYC2ZQThACMGX3krB/RxAFHRXn1WxgQxDP3nBm5HdX/o2/33MSQL8BjBFoO9kszAC9DvBqNlpENxPEuB19Q3YdB5Q1b44rrrhS5992uX7/7g/dco3viQXmd6FOh0fFi54KB/bppp7dP1Fq0bcKa5+qv1Z9qRj/ODUvjVNgXoB69eqtpbOm6MMP3tvlngRV6ESTQcAXAShpJmke1Qn4BogJgOwc6CTAN2rJdyfjyDUJQJEjQIlZ2oTM6U5v0uWRKXYKZ9M56KgOEIv+cXbAj4uL1+tvfqm8jz9VeLt2Wtq0XHfe5l5qY1/PKfebrrterb/+UHNWrFePIUdoRkA35TdtoaLQDWoaUahWEYma/NVb+vsv3wao9vPBWoAx4BwAqgQugBVmII9uBdh96aWXfH5DGQbAuMnkq8suIWjEmTcZDNhZ1gL223ncGffAxpMlNn0AAGLA2ymf/KKMJ27X5oXzfaYUkdRGHR96QTMyl2jOP9tPCzl88NHaLy5FxctWqGDaBG1dsUQVZWVWne4G/zA1OXa42nVsr/xRN2hJQZmiCnOV2jxZZHUZBOt8t8+aOQr+r26nXjhl1MvaHO2nww7pa3UcN0F+ki0EMDfeeOMuYuO5+cc81o7afdbm7gaO3BD5UW5g0rCxqQCG5lGLrHPKEZAvQVR4eIROOfxsbXz8Bm1evLDKV9+sVx8l3jpG43/9XDk523vy2AM/KKlNO8m/UhWhlar0D9LWLVJ2ZrZO7NlPaTeeq9SmLWokd67Z7PgLFHb57erax0+vPvrsLqcOwYihGacJdKNDKBnlnZisR2r3eRckWXZ3wApEz5nJHcBNwASznBU/BT3y7Jcv6/eg39Qtbay6bNkgvXPuDqaO15zi/zNM8Vdcp+mZv2t8+adqG9VBCVuP0talhyh/5f5avcpP8+dtD94J2Dt0Xq7h5yxVm3WrtOX5u7WmebII0iv+2+zUba2b9w69cpx+zT1FbYc9p9jKAGVOW6+0dWutBAp+olmOSExiN/d0XgvAEwCRxBGAbeNoOAk0BuwNJ9sdVyY7gXNuOmIYOIJyM2OOMiDLTGMR03iQiSQYAznnO+bgmtRWYjBmzZmvuE7xiu+boM3ROfoldbIytm7YvulLQxSWF6fWHWOU8GtXLZqzwgoMs9ct3EELxtkEPYfKbGbPuQYBFcgax5+ZtCxqqMhE0rTNHNTksfFNah0OK4bJDaio7WsCEOAfHDjz+Dnq0rkPgaJz2FlrtyAfJxNWhNmt1f59jx69tf7vVVp+9+UqWOvbiMh5DxyGTU3j1OvAftpy2nAtWLhEoSFB6t+7vZVhJ8PN/AigWTNk9s2BA0ZQ7PZOMFQ8t/lsOLfOenfnNckWkwk0zw6vrcz5PqUDvHOcS7IxzoETjdNuGgLWCsbZjTkCOAXwAHptDhwTnBjeC1mcvLwCHTRogDofvr8i41tLhW1VURyhwoIghQaWa/OWNLVv3UEvPHW1MjZt9lnv7CsyRLxfk+5m35d9jFzN7vV8TvYDB9s8m5S9AyvGbMRH9pVGkgT+5md1kXvjb/aOBHCMcVTMLCKZTijz5vFuzBKdzj4w1wprAlYJoI/ZsI7fsU5YowRlZjDnfHq71nlrbppate+hASecqIVlM7QtZZ2OiB6iwgVb1Teph84+60yLJu2m7+iiDqiJbjcBTABPHDQCBnNQ4oTtMRvrkZECvKrrcW7O+wB8AWzAXjNrTAlQ0WPOunR+i44ga0322gTOYIdhmwEanCBu6zbJevb5jxUSUqyBAw60dJB5Py+5HzP0PKXEtlZBQZRatDxFUb22yD9+lpr7h6pX824679wRu9g/roV8sOFmt3s+I8sLkGue903JGSAsn5l2mIwwfWV2hw5vPyPXAnhkHiboS6IACrZ57ChrBPm6Za2x85269tLq76dr7egbVLxxo3WrkJhmFqOh1ZF9FN88ytLxzrKLoaedpYRWicpdm62gcqmsokJrNmWr837JmrZwodZPmqKyNZyUs3AXGrzP+woLV7tbHtPG5EglJyVYJzvYzdqc3wOgYF+aa5q9zZ402Q4cr8c6wX7XR+CILkA3uO0dTloheHWWdDB3SkDwEWym24VXXKuSv1ZqxT2XWA1P3UZkx05KvuspJR7YXsWFBRboCCDpNez6/ojgcnXreqRWfPO5tCmzWrlzvXZnjtDGXpeo7XEBKlq1WR8ZgCH+D3MfM2bMLmAIYB3+Bdl35wDIAjjHj+Of3R34K+gs85x3dAk+gNueYp0vW75SU/Wn1mQG6cAtj6jt4juV/bHvEb7OudGEOPbaB9Rr4P6atO43PfHPw1q0aTuA1Tm2m1oH9FUH/yNVkR+nwIpIqw+OKjcqpUWyKjbM1fxP31dgUUGN5G7fN/KYi7S4y7Py7/KL3sg5R2e0OVeRcyMU6C+rvAPgwUz4oFvxOU3mL3EADBsYTI2jYSXQGLA3rHytq5N1pG7LzXnDecChB81zDoIGHDez7o7vsKEIityyNHzOvaAgk4VEmdNZ+6gTj1PTtpEKjAlURWiFtlUUa2tRoZqFNFPm0gx9+sTOhjxky9mcZBzsMz1NMYEmEmxACbPP9La/g5LDgIBEmkergYoyd/OcahQsQSMBU31k2JkLgAYIrFmXjiEjeDW7yPMbHAycNjPgtT9DiZnUND6LCmqpjDG3K2uab1dRU26V8rNQ0LjuPdTuiZe1KXd77SQsDLIOZDDI+JinBNjXoakMYA1yMhkCVdHkyaIT/JsgCYgoAADBL0ZwdwdUYDLlrAk6vTsHBg5wwHz3fAdnjy7zZhCD80N2BuNsUi7taxMsEQDxHQCk3NzNap2crH5HDlBUy2hVBFUqskmUSgpLlZ+zWW8/8YqKigqtn/PsUL/Ya2QkTNTcvgcBEmvDWYduf4YjxTOxj81BcEYGxDyZgGclU8D+qQ/nYnffW+Pv6yYBAlECD7e6dN49jp2pH3E40atuzjyNpMjYQ6VlL5mDJmkEl9Bt+bf7et1eY273H7lu1K0KSwxTzvJsUFVJ0wAAIABJREFUtQhsrjOHD7P0G4GIG+jLekS3s6fcAlQCERxpkxnG+ieYcwvkqauGSl1f5R/YNWRggnyU9xBMEsSatE3qwvm7GcwjY57HrR9BRATAY4HVxwSbCj2W75qB6fb3tFPu6NLn35qvNdtWqSjsbyWFxOqM/sP0wTtvW5laMzPIr7kHNF9sk2mzCBKwqQRu9vnc9togi02plxnQIR8AVHS+m96q7YonY4wuRgYmswL7QpBoZt+5B3qVNcPJCubgs5KKAK0f/+v2ZqH+/moz8hEV9kjWt199YpVKoSPxjwCWzFN17OtRd0urkV69D1RKdqVSn7yt2sdLvOR2VQ4+WEWFm6zaW+Rolp6xltmvZrd7Ls7feE/mWoBNgjywLfVhU2FVoAtIaNg9f+yHAwwBjDdtLcwRMv/sEzLOlOkMHXaVSt99XRlf+x7Bx7U4KqzDfc9pbv5azfzrT4tVg/8GSI3tMpksptxPPu1Mlb/9kbImfFat3CP366Tgc55V+KA4tQkpt44iNAdrib0KIGEOAnl0n6m72NeALsi/PgZrDnYFfov5/Lx71rTJrMJ/I0P9+AfPaFrEn+qRf5si5sWq0/wrtXHGrmyamB69lHDjo/ph5g/aWpCniy+5TAUx2/TR/A/164bJWpu3MykXGRKpAL9AlZSVKtg/WNd3uEU9Knore9RN2rxw13JNLxm0P+scTfW7Wenx0saet2pjYZZO8T9di6fMsfYvAJ9ps2A6EBO4gUboQ8DQ+mCT1Md7+/98jcaAfQ+8XYIr6LQsdpMahnMGOmVSCJkWyCoKy80p4+9c07fRm+/DYOjIChCUoXhBiOfPX2Chhi1attKmjVkqLipSYGCA5SCSTUdRooRwRE2Ksn11KDDUKTMHk67EdwiayBS7bW6UAUrBVAg4MdAvCeYxNvUxoA3i4JKJMal6ZDBwIk1qoU1/xwg7G+VZ7pifn+VUYUCdAX27jt207Nm3tOGtx2s87fCWiUp5+j3FtG9iNWpDphggnDGzZsq+KEEBDgwULZM1YDt8ODTmMyFPHDYMr5mx573DNmAN1tfAmCJfZGUOnE4cILP2DDYJtbJmXwN+T+aLtQt1HDqs20B+fI7RBgXGuQMsMgEK3iGAB3MjyMYBxgGATeIld8AzrktQb3Y8xqmAPkbgYGZFQZ4JzMhWmgMnys4g1JfcG6+z5yWAbifDjsNsBrDodPQpetUc9GVgveDsmAOAB6eTfiRmAGF/F+CLLAhrmeDJruc0M2KsT/b48QBlJ51kBT4AX25Zda4Nuwvdhw0wqbZ8jqPK3jZLXvgMgBcZmA0kkQFME+xOfTUlIhDBkSagMsuCeD4yzWbmE5uEPuB3ZraU+TN3AqOqWAD8FkCbZyGAQlYAuCabiEz+tfffrHYp7XV0nyH6avxnGjv26V0Ccft98h6xqdQlmzXifIcaafSM+U4IUAC6AbkBPZ2DzCDzRHfVl02lERV60A14QX8DuJq6HSAaZx89aupYwHMC5U15xVr29lfyK8pX5eEH6rNPdpb8MXf0K6wVwBgCJd6jeVQuzw6gfWyvo7TwqtNVZjC8bNlwJGL0secoYfiJmjP7d6tsj14GZoNavo9doNzAfCbAHXwWN+YX4C6sFLc9UlcNBdiBb/LMM8/4XIJgHcYN68YEqFgT2B6bjdOyZWsd3e9EbRx7uzb9vbMWnya4ybc+oYz4QP00aWfZIzYVEA49hMxZ50uWLNmlLwdr7LCBRyghvVQrH6y6XCeq8/5qMmK0cnrE6tD9ojX6gYd2yeSydwDHkK/dQNF+aMrRAKLMrLdd744+Nvtq1FXm+EU8N7baTO6QFKPMxK3OGx1RUSn9UzBfEzd/p17rX1Fy1iqFf3eFTwO6pu1T1O6esfp9zT9asmhnwA1T4NTTz1JmQKZmrZ+tv7P+0vxNc7StrFgVqlRucbaaBkfqgvaX6/Cow5Xx/FuePZPMZ4/u0lWbBj2v7OY9NTfhRs3M/1o3drhDqT+uUI/u3SzZEZOYA53HuzCbopK443kp+zP7dNVV7o2/85ZAY8C+h1YHaCfKlQyKc1BzTKCGUrSPRLM/B7Ei0GYDm4EC3yFzT9M6txpD5z1w2FC8ZOQJfuyzaTH2ZFMIQEFuCdBRTDgGXgNKHAEwhts8tojfcB8CERSamSHCgQW1dcugY4ChSkOtq6+B0wYy6taAjewmAIGZ+eTePCPGyqxd4jMyvjisyAy6fVxCogpnrdHye66sstut+Ux0bO/5xlfqOKirFXzDtDCPxXH+hqCezAtOvknp5HsoTpxzExDiM5gdBBXOjp/8HQcWBU2QD7BRX8M+s5fuzGatN0E1wbLbmoX6iOI360yZF0AFziDotVv/BnvuPBOOEs4dFC0CctYhDXJw/Mh4wF5gXjjtpgEyZcB6tDPoZvDPd3Hm2L9mMz0+413R48F0wKFR4vCyz+qDqlpf763xOnWTAFl01qfZv4CrsecIck2AkkwMARa62cya8TscUvQTa9kt027PFH1O8M790bn2eeQAUwRD7Cfugy5D15lMLucTYwvQ7QQnbo4oegRaNMGlyQBC7xNEMx9zsM+gUZJ9r69B8MA1ASAJBp2DABG5E7yZzapgQ8Buwbl0y3IDZBAAV7cvsc0AMehkAgjkja3BpqKHacRK9pUAgiy3V2aYebMGkDuBK7rTHASUgDNuzAWca57X9CvIqGL30D9uwEtd3wMABbaI9Ww2YMMuEli7OfwkD0gwmAEn8+A9sUdWr8tUdlqO3v3Qtw7fOVd0OmsMG83vKP/CbhKwoduxjcsXbtCqmy7RZkcQZF8jMmU/JV56u7Ykx2hz9gZLboBmbow25I69p+zFHOwP22dxfsa80O0A+vh09TVYR8gX22iCcvT9YZ5mjTv3JjlCkG13WT/okEPVOWo/bXr5fito9wsIUOvrRqmsXyd9+blvI0x77ugU2ECsc4B93j/JDHwK7ms3Hl41fZWWXHeWSnJ3ZQZxrfZnnastnc7R1l4ROqJHgsY+MnqXpAjfY3/CTjJL5/iMJBHJJDf9g60nOVUfvXjsZ0cfwJZw80kABKHNm1l21iHlUOO//EbTQ2codXOpkhaPUe+yCar85FqV5GZbR3O2v+dZLS7N1PQ/f3NdJi1bttKAQw9Vtx69VRhcoGKVqqB4+5GGTUIiFBUcpcBCP6348g8tvc23sbPbBaP376rNgx7X7xlHK3DQY/o85y5dmnK1oudHaktutnUCAv+Y7FKy69g4dJCZ8OFvMD3d2IX1tfYbr7NTAo0B+x5aDWQGcaxwdsyMgH1sjlsQw0bBoHtR2lBeKFMMT1WBtvMxcShQwmSdaaJmZpK9RMIcCJagSroZXgwyTgpIultnbxBxgnZTwZGBAalG0VEzWZ8DdJTMtLOhkH19jD+Iv1sgBjKNA2YGufwW+jq/JQicO3OFAhYu1poXRqkoa/txOjUdHe59QeGHdlbe5uwqf4ITQOYZR9oNuOH5WCM4UyZ1C6cdZx4HywQEcHwIYs1z02s6/6q+h2GlJMOt2REGAQfNBEsAn3hGsh00/zEHzwhQBOOkqhpe5+8ApwBneGcYG1BiszbL6zlY46wDHCKThspvMOIEVG5MAjKKgFNm12Z+x/oHWDGbLtaH3BuvseclwHpkbdJ00OwrQU0lDrwby4JaZAJDrzpX1jhrCN1uAl9eT0nQzb4jGEWvmzXNXr9j/tDfAaBwmN0G2SaYBG4BDOAUtsjsln3ooYdaGXfmD4BXnwOKO5lF9J/pSOIwk5F0y4DCCuMz8/QSe27oHvQmcjcDfq/5o2O4JjYVmXuxdczfo1uQO8GhG5OOIAm5w7gw1xaBE2AhNtN0sgE2ARMAhuo788VJIFzXTQej0whi3EoG+D6BmFspGs+C34APY9Yme8kccIS1jm6HiQI4RRB57AmnKPDLycocv/OkFurio/sNVvMzLtTC3BVKTmpp2UUSKW66nXULexEwCFDAOQjgsGtuTejY6wQw9ZXldd4XxhhrCxvoHPhNPAd206SJE8CSWIH1aPsyV428TXnz05Xx5M2KOOQ4HXTvLfr9twm7gIpeckfe+I8E6vhAdiPe4adepPwxdyt79j8+Pw2OjlbU0ReosM9QxfaPUMdmIXr+qbGue4T9wH5mvuYA6CaRgp4xB8AUYKQbm2l3dA6+OroFBpPJoCORRuaZoNUcgK3olxc+fFXTm05XRMGB6p53i2JWfqignx5UwkW36dDrztVrLz3rCti6zRn9wj/oduZk65jzj79Qa267SEWZGZ6P2m742VoZe5Gmbxyk2CFv6sPskTo66QR1TuuklbOXWOucfWAewcgFAadgjJisLPx9Anx8freeG7sj98bfukugMWDfgysDZwiF67bBMcpkVdwov1D1oIJhhN0Gfye7gcEzj9Oqr8dD6eNw4QCRMXAbUPq8MinMjyPFCGTMgSKEXWA206mPuRPAYkChYpsUOgwdCh5lbDpYGCXomzgQbnWezI2ME8ZlXfomrf11vjaOe12FK+apwHGmb1XP0PKsq9X2+gu0IXXX5oH8DvSarBlBNRklN2CFZ2CeZOncsjg4Jawds4stgSwAEr9piIAdZgj3JmA1s3pQ4kGnAa/MwW/IJuAwuTXeIqsCBRBngYCZ7EF9D4IXHADePQbZpLtyP0o3yGgwXxPtx4nktzh8Zg8H1ht7gXkDVDWO/x8SgIaNM+kGuhKgEMCYHeN5coJHgmyvo84IGgG/yE6zbhpiULYBMIxu92KvEMTimLvZLvYh2US3ow5hsKB/3H63u8+CTgPgA3CFju0cgH/8ncDKrbSLv0EzJuh3G2Sl2ftVleHszvzR6QQlsN6Qu9nIiWsTFAHsAZCY3d/5nHeF/nbLaGPvAETdTm/ZnXnzW/Qya501YdLwCeRJQOCLmD1WqLNnHfMs+DvmwCYBYBG8wx50C6RrMvc2ye00sHlnLbv9IoXFtVBk74MVdewZKmwRoaxNaRp42CEWaAubwY29AmOB4Jc14JZ5BwxiXZv2iUwkgAW/aYgGXAA22Cb8JMAJ5yDDCZBg7gO+w29IlDA3m2L+n+OHqnOztsqrLNPk3762/DJkgdzdTsKpidyPOPJYRU6dq/QPttP2AyMi1PrEU7Wt29kKOKCTYtqkKSizQi+9+Lzr5dAhMDQADE1/jPXGfkHXmEkL/B/2EYmohuhSDkMIBqLbPoN9x1zdEgzYf/bDJ1O/0h/hvyth6xCFzrlepx84UVuaVSh11RJL7ux9E+isibzt7wwbdoGKnhyljTOm7fIzGBTNjj1fi2Ku0paYjsrt8JImbH1Yh7U6Qj1zemnltMUWWAhA6WafAP3oo+XWm4J+VPiffKdx7BkJNAbse0bO1l3IchKIoMxNQwBNHGVJJtVUmBh3lAYOhhetkGsSVEPNQ2kTPNfHwGEkuMJYsGnNc4XtewA0YETcGvpAH4QWTEbXrEnCocJIgxzWd3bdnhvOC2CBSUvlc2hUIIVmYMVndnYaBNGL0kgASRYke/NmpaflKmfWcuX8+LVK1yxQ9pxZEt1wPEb8IYdqv2de0ro1i32+wTuE4s5aILBza4DHD3BwyO4CRLixK8jM4/y4OYMEywACDRGs2w/DeuYe0CHNQTYJmZp0Vr7HmoCmSLDvxn7gOziFrHMCa2rm6+pkOOfFu2Q+GFqMs9nIx/4uMmd/YcjcmBtkiKgndKMVQ03GWXXLztTHfm28xt6RAOUa7FccOJNBhN4jsLH3szlD2EjsBa+GbOgCdDt7FXaTG3upLk8NuMA6p3aXde8FfpG9495uNbk4pOgngEUTmMMBJzhjD7s1mqzLnM3fAJRgo2jKZuoAAGYcfLez7XkebCr6wy0Y5j7YZAJ6aNb826SA13X+sAIInrCZ2FQzg2tfFx0DIOFWbgPzgr+7lSDQlBYnmudGLg0xAKGgR7uxMZA7YINbwzDWCQARAbGXbmfdYDNgZbDWzdrsmjzPteeNVO7MWQpu10FbI/00d94M9e3V02IqInevHg7YAN4NAZib3QRYw5dwy/KSOIHF1pDNtwBwAO7dgDX8NIB9Nyo5YBrzwn+0g32o1gvmzd4hTspFAKLJsqLPzL4/1ck9Ni5eJ3UeqLVP3q64ky5QYVw/qVOStsVsVN+UeM35daZ++P5b18vYQATrwmSg8gPWOgwBt/cGEw7/x43pVt2ca/K5nWUHdDX9RMB5Em3oETc/DXAlPCJCE+dO0dSQX3Vs5EiFbynSLz9s78VDmSysAnQ8SQ6vvlFVzfOQQwcpYeEGpb3qC1o2P+AgbRtws/7KPVqlzdNU3OUNfZb2lIa2H65O2Z206s8llq+DL4jcTQYmPjkgCTrW1O2Ab9gk4hi3Zto1kWvjd2ovgcaAvfYy261fYAiot3I7uozAAyQPY2wOEEYy2yisqujA0HBwUnBeoCJinNyOBqvqIbgXSgQEDWcO2gtZaK8BcwDlzm/MQVBJ9hdH0w1FRNESSHsdpbVbwv7vj6FtgR5T++XmlAKi4BS4oekE8zg/BFnUJboNqHkE/gTIUCjzC8u0YUGqyjOztC11hTZP/0lBYWHKX71Soc3jVJi+QU3atlNIXIJaXHSdMjavsi6L8gelpwaLrBQ0JK9yBUAc5o0z6eb4kLUDecbpM6/BfaBY8lvu11CDYBanDgfV7BBsl0+QAXKjSNonFeBAmFkce77MHeeUIAlmCSBATanDzmdGTjj97EmMP2CBV90wziR7EFTabDLGNdkzzN2rAziZDjJP9U3da6h32HjdmksAxwbwzs1xRCcTtLo587B50O1kFKvqog4zBaAH+4FutxlbNZ/hdhCSYIh1il7EIXOjQdrXJDBBtwFO8X1z4GDi3LtlZwh4cPQaIrtuz4P+H2SSyXKRDTcH4BkBittnBLvInYyp1wkUXA/bRDCGPuZ6bvu+undAkzLsI+A0gT821Twr3r4GICfzwh65zRuwAZuKvjKBeaj5BBgA5LzjhhroZGw7bCi3IANfBp1vglfMh/IQ1gSMEbeSM75D5g7dT4CNnAA6vYBrt2eMb5GgxNbJKtiSY+1HwF8AGuTqVeaA7wWYAEjg1tEeAIT3B8hi2lSCHnQ7CQlAiYYa7Cl6GQAqmE3yWBfIlMDdbDzLfAjOoGrzHS8QhGuw17mHzZh0a8bn9XwXnHyJ8ktiVdQiTMGRG7V/m3ilLUzV++++7VmKBp0am8m8OCHHHDSktUFL8zNARD5jf8GqaaiBj0pg6uan4odB16fMz61JKL/xDwjQn8v+0ZacXC2dtv3INudg/QCq4BcBDADMVNW7xPlbfMFzDh+meZedYh3ZF9vnAJX2u0pLigdodX47xQ/4XjNCHtL6/FSdknSGotdGas3s5VbzX5JkyN2tdAqdh35189uxZ5SfeJ1U1VDv4X/9uo0B+x5eARg4EFqQThA1c2BU+I4bVY9sKYYYJ4ggqKqBcsYxQ9lxTRQARh6nkCw5VHEyuQRvoGUoPTYvxo3Ak7kBLrg1XrPvS1CI00h2yMs54HPu59a0A1SPoIvMU0Nl1+25koXmXihek+IMkkgASybdPF+W3+MEgQAT7FdF06PRD0afrAbIKca7oKhEnFe6OTNfBTlbFBoaorLycsUkNFdIk0D5+VUoJECWouZ9IEsYASblzfmukTvzwTFzAyCYB4Elc3Wj82NgcHCh/jX0wBFmrm4BLI4BtHKcCLeOv9DFcGwBsNzYEfbccTI4uxiKOUYbg4dTjPFHljgnoMc4wtDmOKeZ+jMcR+SEQ4ITTtaiqnNnyfzjsOMouzWr4zkADLiumY2jGR7gFPdwy5g19HtovH7DS8DuGE8A6xYAok8JFtxKmwja0e1kW73o8fYTEMTwHXQ7NcFkfcisEVBCF7XppGQ5AV/Z5wQblG+wDwlImEtVe4p74aixbtlXbg0xySqhG92AWgIyAi7AhfrqDO/1BpE1zieMAbPOG90OdRkgzq0pF3oAuQNaeNXu2/dFx2BTeR4COu5F4Ao1H10PEEepDrqfTC3sAwIfQBr0Dveg/tiNDm7fg8ADm8lacjtKjO+h3wim3Jq+2qwg5NGQAQzzQAfybIAKJpjDc8CAgsFhlmPxWxiB7AOy8G7sNlserGHugU5FhgT46FHAc4IJu24dm8d3WY/YX3wY3i37ifePH1OVbicY4zkAfd3q77ku8oaNYR65x1wBKLC3DVG7bq57AG72Nfc0B34MtHIYM257FtCQ5pjsh6p8GdYv+gLbTTIGW8p7xD9BjvhQBGzoLXxI/Bf8q269+qoyxl9NSkK1cN58jf/i0yqb6aLLCLrRJW6JB/xCAHnWkXkyDuWIsH94tw3JakDG+Fr2s7uVrQL4s+/dejvxewAJ/LZnn3tO+UY5g/MdojMIgpE7fjMyAXzBL8WPYT1Tw44vw/2ICfA5W0V1UNoPv2hjYG/Ny+yqTUWxijtwqlZGvqG/t3yrlJhOOi3+DOVOz1LqmtUWuMTvAFrdgnVsC/sHH90c7F30C3amvvtjNLyV/nffoTFg3wvvD+WEkiJQNelwKD1QVJx6t7oYUG2CBgwIaK9boON8JJQpDgabjOwPwQqKDkeMjc+mw8lDGVNHjnFzP2PWV1AYBpwD5ujVPAvQAbTZrWEeCokMLEbQzfDU92vB6KB0eW7TqeNeKD7mhKPkRq/G+cH54jM3g23Ol/vwjlDS/Jb/592RjUfuILG8e+SPwsQI1qRBFO8PpxtH3evdwwjgum4docl449DweX12U/V6X6wnnCuyRW7dismQ42hjpHAAzIHTTzaRrLfbEVjm91njXIsABRCKZyWrSOBgMy0I0JkP75G9VpNmjaxTQDAYLG6d+HGguBZMEkoBzEEdKg4U786tAVl9r/fG6+0dCQDEsqbR7eb+RAfgXBIIu2WkmTE17eghdLtb93jnU+G0oYf5Ptli9jM1nPbZz4CyOH04fOgCwCQynm6Zcud1CV6o7+X7XsAwACygAQCvWauMjsLRZL9SG9/Qg+dhf8Jacdtb6G3kTrDidpwbMsOmohORe3VNWLGfBAgAdDisPC+6nkwXtdH8HgebgIiAngyxm84w5UKWDpvKGvJaH3wOKADDxxz4FNhS7Ldbs736fg/oTdYW83Hrbo+MeCbWgJttQz8zT9ZZTWp4sdHsK9Y5SQYCeNY690fuBJEENTDHbDC7JtlhbAyyAzxwA1Ow2bwTyhPc+vcAaKH/mc+eAMEBa7gf68qNCQCwzOde9pI9i9xfffXVGvl6+Ay8KyswbNXK8mkAwgBJ7GZ/+C/YedYDe78qcMReh5RPck3k7lZyyGewSQmCASTNgZ7lPrAnsO8NPfB1CWTxa918BkASEgReaxmgH98EX8CNSWDOn4AZdhMxAToKP8Y+nhGdh54BxGCNB4Y00Z/TDteyjSvVrPNCrQ4fp5nZkxUVEq0j449RwuYEZc5JU0hwkAWAAHQBdLr5XMwRYBIA02SjANCgm/A/vRphN/R7+F++fmPAvhfePs4TGTgMjdv562RAcSxAsdzowkwZWhaBMo4TindPDhQWGXWoPm5nxjIXlCmZUdBcN2oPhpFMAlkLtzq8hngeFBtOru1MmffAEcAw4dy5NRojA04giGEG3PCq52+IuTNvaFM4KDjyXnQpnFPmaZ4by5wADngfZCncGr41xLy5Js40xpmA140+iQEgI+LWtIrf8xmBDMaF2vWGaDTn9ewEQ2T5cSgIXtzolGR2bLqlGzPGPkqK7JpbU6CGknvjdfe8BNDtZK5xttzWMw4YawVnyKsbNnWPZI7Q7zUBqerzKcnqAjqh2926wXMvQCscaXQJWX1z2MfH4dDtKd2OM00A4XXEIo427BacezfdyDMQ7FJ/TdmBl12rT1nb1wLIgZbP3CiJcAvC+C5rAXm6ldMQRGGTCJxreoJGfTwLNhwHH0aeGxCO3LFJZOrcavWxSfgSzJ9u+XVtNFeXZyHo532zbgCF3U5gsX0tPnOrGwewwSaxp3nWPTXQHfhO9ElxO+aVdQSI4dZHgDnCgMD3xIeBVVCTZEF9PRtJHOYOaI7c3U5tIWMP0MNxdG79mNAtrCv8oD1Fy8Z/xDckIeLWhA3fzD4lAZaV24D+j9wB1dg79TWS2rRV24GH6OXUe7WxKEvRITHqH3OY2pW115b52Upbn2rpF5gA7FX7mD/z/jAaiCmwAW5+FkwBkl+sn4Ysp6wvufx/u05jwL6X3ihKEueNbJxb0xsUEsE6WQGvBikEE3aAgEEkO9yQA+OGEgXZBU10o49zf4J1nDocVrcGIhgRm0pFELcnB0wCMiJkQ91QYBByAncyIuYRafY8ydrikNt17zU9wqeuz2k3oAPVrQqZJXuLXL1qI2FaYOBQtGT79+SgVhYKPHN0o/sDOmGk3Rpb2fPEOcGQcC0CXzdQpb6eiWwONDyyJ/zbLYPEvaClsU9tVox5fwwbmXyC/j3pSNeXHBqvU3sJQH0GYAOUdHvnZGZZMwTHbmwM7gg1EqALaiq63csBrP3s3H+BncHZtBtBuvXz4Jdkdgkc0e1ugS8sGpw++qbsad3OvADHCLjdSlYIEtAdzN2r1wWUZmwq2UJ0TVX09fqQPZlOwBsAAmyql04DTMDZZ+5u+hMnHFo+898TzCnnszN3stTUf7uB2GTryIzzDF7PRzABwI/t4t3VRxNRr/fD3iS4xh5Bb/Y69Ybfs0fJZLqdvkO2k/pf1ogX2Fwfa8TtGrxrfBQAAy8WC/YSH8YLeOO6dqO5Tz/91DOIq69nsE/RwMciWHU7BYZ7kU0mICZQd0tY4Q9Rp4+/uydKEJzPj96AUUTywK0pLT4Mcycx4bWuAKfYE8gBW1FVSUhtZN/jpIM0q/JvdQ7qqsAcf+Wv2GwF6qwRWxcjdy9GIXqb9c4+dWN30YQT1gx+P+USjWPPS6AxYN/zMt9xRzKL0FOoOXILtjmqgw0NqgX67DUDKvvSAAAgAElEQVRAqAmSyS4QDHsF+HV9VGqJqUkEhcUpcuuMbV8bJ4fngQrnFqyD/BL4gzC6oZR1nWNtfkfQjlHwooeS0QVMwXnwymSTxcapRumCcEMFq2mTkJrMlYAax4uAD9oTaGdVVE2ooFDtvRxRlDHUPmhVlEnsjUENKewEr6CctYvcYZZ4ydJuDMQaoiEWgb7XsXt1eUaAGDKcONIE2Rgvr7nwbnB0cCq8ykLIOvEP+7Nx/O9IgLVJEMx7d2tSRtCObieApETKawAYcQ0CYPZHfWZluCeOI2udIIYsb1UN1ag5JhjG+XML1nH+CWBwVKtqnteQqwCQAyYM+tCtSRl0YXQGz+DWTdueG89KwENQQcBTkzKxmj4XdGKo99hUu3TALTttXw9AH5vEnN0CWQAdyhiwGQS+e2Pwzu1Ayu3+rA3AWnSqFzONDCW2gUCaJrdkrb0avdblGQmmkA9+FQArWUavBnTMhbVOcOJ1Wgj7ErCespS9MWDKkXQgQ+3FsmQd46t4lVgwb/sECGwfvh1rvbqykNo8L2sXNg46D98Uubtl1bkm30Xu2FSYOuaAkQFYT0C5txq3Ap4iK9aQWx8QSmZgXUDjd6t3t58JpgE2An3AescfxYer62gSF6n4yARlZWWoID/PAk4BNFj37E+3BpD2vQjA0UnYI7dgnaAfQJE9iX/fOPaOBBoD9r0j9x13RfkQELNh3JAvHA+otNCxvI50sy9GVhu6DVkZAgmUY13QO7K0bHSUCYaWTYrRqsrBwSgwR5QVTpGbIQTVxrBgPPY2NRgwAaPs1VSPLDSUKxzTqurgqJ2ixotAEtSVDBX0uboYPBwugASoevybeijmWRVdjWfAEPIdr5pXshsobYwB/95bg2dhjjhBXqcCsMYJUqBuVXWMEoE9NHsyftRT0UiL9VkXBw8nAUYLIBPvkawnGRU3qqEtO5wFQDSycV4BF8EV6wBnZU9nvfbWO268704JELzi1KPb3QIy1jC6nc/cGtE5ZQmIhZ2glAXdjgPmVo9dE/mzHsmIss+osUa3c82qBmscKii63Y0GTxkXuhRAd28Bsfb8AdlwKqnVddOdZENhuAGyUWrjNShZA7zDpgJoALAQSKBvajsINNAZ2FQyydS5wtpxOzrMvjbNabGpBIXI3S3IYX40SyPLC4i5twYZX8pBCD689CHvBB8AmXud/MH8eW4Ca7J5gNXYAYKfupSgcS3ADHr4YKfJfJK59WIH2kEjYApgjVdpBL4WmVLsBT7P3hp2PTvBu1sTY+ZFQgdWITXLXrR/voeNogkrcuf94Ptgr6tqgOv13IAAlA/CAmXvkJBCX5n9Lpy/R4cAtgFQefllsAlYB3sLmLLni21Hj+AneJUfAlpi/5F7VYE46xO5U+7CmkO/UN7i1nG+unUGaGb3yYEBSpBe3VFxAIG8c8qw3GIQmBEwxQBy6DfUOPaeBBoD9r0n+x13ht5DAx8cKTdDQgCHcafRBNn26gwXihKkmqAbJJCsKwqAzUhAaXebJOOKgSXrSYDKZgf1Y8Oz0UEPCYSqa2wHqICShaLl1aQIhYTCxjH16qS5p18FmVkCbi9qFo2EQCkxcsivuoHhRrnxb65LZhaFDS2NDBlNx6j/AdzAGcSQIX+cOTLf/D8OCvfjPbk1BHHOAaPI/MgkedGcyALjqDCPhjqTtzq5OD9nXfHsGGQvKh9BOOudtVLVcUtcl/pDAm2MJ/sHWeO8IhPeL7K0OwnzTuzOqjgn7A1AGYwpdaMAXDVhp7BfARxApL2oymRDWQe8273tXNTm/TR+t34lAEWcDDZr060JJPXLrHX0Brq9uv4MsHrQ7WQJ0bvoLnQTQTTAIrrddoq5NgELegJwAN2OA81v0O1kuryo77YUsAnoduwS693N4cbRJHAgENtXyj4AS3hW5O7m+NKcErmT4Ubu1TXiA6wg2MamokcJInmf1FwD7KHruQb6CBDV7prN+8Iew8TC4QVUxKYS4FY1ABCRO6CgF3uHwB8mB8F/Qx6LWtMdQdDI+sDWeGWl0beADKw/rwDTeT98EWwcawy7CZMNUBb5AcbY9GTkDkUd/Y7eJWmB3cOm8p4I+PGDqjtbHFAFsJhAzCvQAegi4wiAgg3Z24P1BGiPDfM6+QH7yLxJmFTXABGZAXAgd/YJcra7pOOf8H7pR4AssanoGcALkgzoGuTOe0EvUQ7mpvdMmVGuwv1gs3jpJDLvXHdvMRrMOQPs46vAcPE6nhCwBB2KrqmuuS3+Ju+RAJ51hczxvdEvMCnwY9AxyJ2kGnoG/W53iifxwN4AbMEHcmO4Op+BvQIIzLWQuxuTEL8U/cOacTtuem+v/f+1+zcG7PvAG8f4gG6RRQGF9kJ/cYZA7aDbeDUsMh8HJYDRQwGgSO0unyhlAhW7syoBIs4HyhWEz61BjJuocEhpUkFw5TUnFCz0Juj/XjWbe+M18OwoQoALLyo5BgkFCo0cA2QeLeI1bwJxlB0BG/+NvLmW3SWeYBzliwEigwLVsaaNX8jE48BwfRBwL1ofwTqOIkp/Xzp+g+wWjizZKi8Hn+ACYAcjQpbS7WggN9njYPBbu6stjjNN4QAJ7I627DeCeYIj+zismqw/HIonnnhix7nOXkAWe9k2ngQ5jeN/WwLoa3Qkut3LeeVz1hY07Kroq05JopMIgFjz7HWAXRxnHGgGuoX9g8OHbqf/Bbq9puyfmswJPYRuZ87QnfeVgbMKmIZskLvbEVfMFR0DBRu5u9W9uz0PckYXoFMB/rCpOL/oZZxpQEO7azZOut1ktrpgkXthIyhNIBNN5tyrORTBFyVGrBm30zf21nsAlCCIACj18gfwSchQE2BjC6oLLOxnQc5kipE/ep31z1onWEe2+Cysbewhax79XJMu8VyfYBOGArYaH8VLt5ON5N1z/X2pjhcmBiAegDP0arfBeiXAxPbB7Klp5pw1bneIJ7mDT4M/gy+DH4OewX/Brtod+mvqJ+GXInfeE+vFKwPPXgAgAXjcm4wGU64A89h4SnG8+guRvUbu6MnqmEz29dED6HQAEAJy9hR+DME1cseXQc+g35G73aG/pu+UfkbInRIIrzIo/Eto8AC8AIh7q5Ryb+myffG+jQH7PvJWQOxxMNhEZAy9UEY6YkLDRbFBH66q9q0hH83ufA2aZx9n4XY/shI4QgAN1WVLG3K+XtcmI0XAbDdr86IuoThx/lCOZGWqonY15HMQgGN4CWC9UF3uj2HD0OIwkuHZ1wZIP84+lFCaFXkN1hZ9EUCx+Xd1rIOGeE6CIFBmjC4N6Lw673JvMks4f7wfnIzG0SgBJMAxnYCa6HavDBf7Ad2Oc4Zur+6c9IaSLI4/7Bd0I/P2AhmgsJIlhQLtdjpCQ82vptcFhKUPCVkrqJxewCbZR+YPSwG5V6VXa3rvunyPbBfBN0EXes+r8RoUfQJ1gMHqzo6vyzx29zesW4Iq5l9VwzPYCmTtyGSzjryavO7ufKr6vc3QYl9Sb0y22muMGDHCap5Hqdq+yJqCjQGjBBabF/MLlgJsTmRPoOZ1ClFDypxrA9ogc3Qe9HKv0k3mC5iGv0XguieOzavtswOcAUCxJ72aVPK89AsB+KC0xqsxcG3vXdvv4xcCOgEuInevOANQDLnjn5HwIwHROPa+BBoD9r3/DnbMAIQYIwyNBqVaVY0i2WpqBcmY8Ju61KrX5dFhARCIoEipFayKQgzVkFp10Ny91YSoJs9I9gVWAwgmwIlXJ1uMO5lhlB5ZAbJWe8rJsLPlZOFRslV10aXOFSSc0gkcjH11YNxwovkHGqLX4NkJHMiE0RQF6m1Dd+ZnLjgIrFsyjVAkceq9MgesHaipZHiYL5TCxtEoAacEWLfQ49HtVR0bxufodnQSGeA9FbgTqKPbyWSi26s6GxvAls+hbVPvu68O9KWdfUSubuc523OnQzLgIcEONrWqOuv6fF6cfcAcstJk6rzqd7kn5TgAh+hO3sG+OrCN2B8y4MjSi7FH1g42AYEmwSMZv5oyzXbn2cnuQ38HrEGWBOpVlRqyxpkreh6m4r46WDsEW4BPbsfQ2fOGqYDcAfXJ/CL33Wl4VlN5AGajZ+g4DnsEuXuxXwhy0UfoQZhEsB/21YH8SKYRBHsdy8jcYWcgd2RNeYxXOWZ9Pyd+K3Jn7SL3qmILElPInb4D/IZkVuPYNyTQGLDvG+/BZxYEuGSmMc4YO69B0ExAQfAONQaEFUewppTHmj46Sh10kKAK5UmGsapuwlwXRxMFBkVqTx95UtPnMr8HrQiqHSBIVc1ZoIOBOCIXgk0Q96oalNV1PmR2yeyDyuJMUL/nlSXiHswLNBTqGHT7fdmxsGUCPY+mLTwnmaOqanhhCuA4Ue8GfY6zl6tybusqd4wU2RSQaAJ1Aq2qzgfmuCVQduaCI4Iz1DgaJeAmATKJ7FHWb3X13uwHQE+AQnQ7GcDq+pfUVuo40GQ50e2wVwjAORu5qkFWlyCTQIcs2b9hsD95RuaNffUaBGS2TUUX2Ta1Lg2gqpILVGDbpgIMYFOrauoKRZZnIBiDEgvNdl8fgJuwMwgWWFdV1fACjhJAk7kGNCcB4dVEdXeeGwAbvwT5oa+hj1d1ygjyZg9S4gAQuzebttb0uZE5GWkCLeRelT/IuyHbThkZARrsH/yM+h4A2JQQcD+CxeqAGWw9codmTv+If8OgXh92FAzM6ko/6T+C3KGdwzCBKVvTMoKaygKwDNkhd+rdq+pxYF8T3wd7gA+8L5V81PSZ/79/rzFg30ffMLUuZDqopaKRW3XnktrdZ3GgqCNjc2KQqsooeD06ih6FQp0LRtSm8ZBRqY7KQ703AQ4BLMaNTr3/pkEtFcgucq/qzHOeCceJZn00IbLr9qDME1TXJfOO3MmMIzccaVBYegswp+oyyjgWGDm+i9OJA/RvGTAaKJuAvUFAXl3AwLPSNZk6TuSFo8uax9moS0DDO4Tei7NIvSuOJcAX9ZXV7Tvqk6Hrk82wayD/LXJvnOfekQAZDnoqoD/Q7dUdS0j2keAOAAmnkCADJ8+r70Z1T4VuJ2ABXEJnACKQGaqu6zx2gLIm6oUJ7r2OZ6zu/nvrc0AS6PHIzqs5qnNuyBznlfpNsr/IB4podXbB7flwmAH26OeCTSVbi43HplaXyccOI3cAEsqh9sUSJ693CnCMH8J6A3CqjoJNFpWAGlnh/+C/UKIAq4ygubaD3gL0MyFriG9CjS9ZTQCB6o5hRe6UKfB9Ak5oxP+WgU4hy07jRYCeqk5c4ZnwF5A7uoFEEGsSuXONuvgyXI/gHMo76xWbiu/I/qmurA3mCPuEwPffEqzb64J1CkBCII7cq2vYDFsT34P3RMCO3O0mwtXJyW0tkkQClIJlia7gvQMGeFH17Wuw7wCI8T1huDCfxrHvSaAxYN/33smOGRGIEIDhGNF4q6rMgHPj4RDQlR1lh0KwFS/XIqBEodhdcaGGoVzsTpMYN35D1hPlSiBEB+CaDOp7qfUlK4mTAyL9bxwoWbJaKDEazdXEUUCOBNkE+wSRZETsDvHQAZE3WRpnl3gCdH5nd4rn/6kbJeC3u+BWJz/ug1HkvhhpnGqawvwbB7WwOGrIH3oqzIXqBpkqAg+AIZwN5IyhJ0tgn4iAwwHrAFnhOPN+6CLM+sSo8V5wynDkAbpq0uAOmXOEFc4NQRQ1p42jUQI1lQB6lQwigSO1gjXp74FOIgOCbsfJwxEmm4ZTzV4BrAJg4kQKBowbAhb0EqAUeh1HjvUKuMUcoNt7nYnsfBaANGo0AWPtY4hq+qz70vfo1gwQSvYIHVOTUyEAY7GpBHDYVHQHNhXWDTYVR9vu4AwIY3fNxqbCtiFw4Tc4z9hU7Gl1nbqRGbqFbvcwisjYwfrhOv/GAUhlM4/wY2qi21m3rFcCENYu6x8WHOvc7j3DWmf9InfWO2A1zDS7UzzAGO8Jm4Atr8mxn9hSAGH+TaCJL/NvHAASgEwE4jw/jDSvcj/n88HMw76xbqkZx35iS1nnXJP/t7uV29358Tmwq7wzEhhk+NFLBJ8EodWBI9yf+yF3/C1o8v+2ZI8tQ9Ynup0EAGBoTZtZInOAJXxwfBPYrCS+8AcJonl3yMU+ZQg9g35H7ugadDzfhxkEqIjcqzv9gjmzPkg2kFXnWuj3xrFvSqAxYN8338uOWeEYELiDUKPIoFHW5hxYkHyCEhQAihQjhHIFLcZxweDZHT5xPjBQ3LM26B41OdAkqesmaMS5+zeh0W5LAGVJVhuqNv+NwbMd4ZosGZwH5EyASFBOME7AiLJF7jgZKF+uiSLmXtVl0c372gEn7w3FjKLHgP6bB02KkA1lHqwpeiDUZuBsIAecQ7u7KoAIcmFN42z8H3v3AWZXVb0NfKX3HtJIJyEEkCqgKAh/VEREsIAgKFWKgCiC9A5Kl44gIiIgTUBQioAUUZr0EiAQQgnpIb2X7/ndfAduds6duTOZmUzCXc+TB03OvfecdfZe613vKhvY49isVYx4uZOE3YfvMpDLGhe82F/utSIVDdRUA0AVMCebwUZkZ92W+z0AG8IqmyacTc5mewjbgjQEtK1xgQsAXZOBmTJdBqEhHWX0DW9rDEdZlaujvOsE6QC1Ch0ZXIPm8s6WL/UbQK0gkq0RQGc+lX1n2+kKwAbcBaa+u6ZZeeX79C4TzFY50mpV7yXNzuFGfiiJNnyrnIAiew/0rrpKMC7JIDjPppUjwn0X+0731jy9VXd8XvqOrW/rwr0iAVS3rMrC5+kTh0WQTao6ajoTQ6UDvVvnAkSYBr6DZfhqdgZhlU0sp/eazCHwnarrtApZ737P/16VRRJAJRSbbL3Se9557aWeEV7JJsRb93TE3mc2wPdnpyLAM2wNUqUmtp39ondrg18QqPvNijReDVQC9sb7bpa5Mw5O5lG2XRbQ8K1yzgavz8fjeJUEc56MEaZuVQdzqb4ALiAMewl4ITRqAjLqQ/+y6DIOwIk/AlPgZXURBIYSXZktjjubiLwyn4+zNHxONhTgR64A1Y15EM7K1Fflt8vXgN5RhKBKEYEd215OBrb8X6j5lTL4gkT2nL8RoMowr04i08vWyOrJYDuarj76d2uiMwCaTxUEAdGydI1xMnZNnqn4Wr5TJROCygAuttTQs5XtU1WufPvb3y68fz5VcLuqJx2K9W4mj8oaWEEASe/szsoUZLcWNHrXNoEAWBVmM9REZ4hSGW+kKltD79W1wNTk+2tzLSxrrpTqFck/RIwZBhVp/BqoBOyN/x0tc4fKmrCXetUFyY6Rqq4vrC4fEetsSq2zJzk0jKgMvjLN1VWw1FmZvGBZZtafcsq86kondC1rrEdJsIjRZmiRJaurABkcHJZaqbyj4PS3V9fzW5f6ELDo7TrooIMK2VB7Ty/xqjQjoC71Ufmu+tOA6eSyJAJ3RKHy7eqGe9b13cgusu1AnUBdBtl8lNVZ9LbLWOlZv/vuuwu9pw0ZzMhYGoZH76rdtDnomV7Vs4xVrRl2VMWGZzdXQEabzsspWa+rtcivIKGQIoh41ShIhNXZpyIkkIP2tay59gx6r+tBxVW9I8Gryh2Y0W/DV8rfVyeCJH1+RKy1rfrP89I74qohJvNn92Jt0zv9a8/J5kXU1X6qfE/9a6ASsNe/juv8F5RSmx6vtwU7yfgCdvrEqhsKV9ubwYRm5WKMjd9RQgPkfFYEQ5oFiwAtwwtgK5kXQNe1KLHMytH0hgHx7gFDvipMq60rfWColfXJcuu1MkBFbxhwXZshc9XdF1JGkIIUQ5KYFA3QG4bD4VakooH61IBhh8rXVSzJgrDt1r/zletDgDhtTYJ1VVtIWKdg2GufFUGCIkjYcXtfqbUyVj61PqaVC04cU8mnsisGsgka9dZ7H58V4TsNxdJr7tmVsgsmZP6qOhGltvpRWowIQYgoCTZTAJ5CGvC1nxURQCKGYAl6l/Wld761JmXV5eoLOeBoNu0/9ha9y6gjTD5LWMZahyFVSOpXNzuH3mszHLoc3fsdejffR4LJvlICby6DPVeRVUsDlYB91Xpfy9wtlhozrVSbI1LGyDACdgyDDDwAVtNyMwyzYJwTAxoxoQJ0RoVz4/BW9d6uFXntgma9ccoWOR9OD1MKbOgnYhhrE8BnAwANzcmy5wJSDpRzy3qZVuTeV+XPmpGALFKyaB6DNWhAnHI6js/6rE32Xckp9lkWH9NP9/aVXjx7we+obKhIRQMNqQFrkP1mY6xPZelsu3J5th3IrukEZxlN5Y9sO38hODTHAVBnzxAEn2XbnvlUdoQd5v8QhTKBfCrAK9DRM10TEZTwqQKWzKfqJea7Va0pwfaOP6vCn9Ir30rvBnDxobLBdMT2V3XUaim90TvSlY23fxDfZvSYB4Q08Tv892dV6FXrhfWsaswalYVnExBIta0k5J8RIvSuAlNPtvergkQp/Gdd73RB9/RifQqskSj0DtOo6KypbZfgkUiSQfd9qgPZMwkP+wohRe+VNr5Vd7dXAvZV990td+eAnDIz2YLsmC8sHkfHAGCzs+mq2bRJTosBzQa6CEwARAYFiOM0s9IxUzwrsqwGBOr0q6SM09NLjjzxXwZXsG04CH0b0JJNiWeoGVi6FqgD0jL2vodTE6BnE81X51Kx2q4nujKMUSaSTgEDgYh1zOEpP8sm7dM/3WeT/wXhgJsBK5yba2XRABSss3VeYaBr+2Yqn6sPDQByslICDfZacAd8AWRANdvu39hrtoYYUJRNbwbWAENrn23Xz+pacyKy85Hr475X9e/kU/lBgDfzqYAwsM2nsv3Z5GxVONm0cu8I8af6jU/lJ5AvdO/9+HvEyGc5WCy1Nthq9hhh6n9bu6qerFUEtnXOR3on2bRy/pKfFIxkeIZu+eAM+3g37L6gdFUfzlof+wr2QALSL/0I/uidXrPJ/K6Baaxha9p1/h1WgXuseYE/e5TZJT6Vr63oPf+tWeeCdfYYFmQv6J49ySbz+zd693eETrNTEdh0GJ3+YRm2iU3yXSqlKlWB9bFbVs53VgL2laP3ev9VRoDTY2gZV0ENA+u/nCBH5/8ztowuh5cdF8HpMbqAXDZxuN5veDX5gewotwxIeKysT4nus4AdeKBvkukewKZvTq8iNdNAdswSR5Wt90zfnBxnx4EhSeg+++P/C/I5NuRWRSoaaOwakAkXvAsWkVHIq8y++99ZRRVbktl26x3Iswcqtr12bzjzqYhANoauM5/qf3sv7Ak7Tu+Zjfd3iBPB4uo2VKt2mqzZpwzustYF32w5nWd/6N27yHBMpvNsvWdYpjL9umY6d7XqBoQg3wkzZmvdf+nd31nrmS/1Gf/b2s/We0XvNdO79U3v2fGcmV0vtjO+McMxGXbM1rugHcmiSqUiq58GKgH76vdOC08EPDC2/ptt+ix4LDa8xca22OACdgJH/16R8jWQBY5Y6uzc9TxQVxw4Mrr+f3ZmcgXUla/v7EoMtQx5VQG70lZBS17ALkO/up1wUHMt1vwTBucgBWUAMjCdkYKAtL8TOGZ6z0hBQE8GTHuNQKYi5WtAQK4NJC9gz8hY31ZMxqYB++o+5Kl8bVaubOwayGx7sU/NyFiBo4CSbedDiwkqNkbgUrHttXvDeQF7MZYpDtiLA8csYEcMKo2vSPkaqCpgp/ssw15VwC5DD0tWZPXTQCVgX43eqQBdwALQAclKZZSHycIUl2ZngSQjC8jZ/MCdID07sxrD5/sYZX8vC6nsqSLLaiArzVbqSK/AwSabbFLoIRJAZtkB70UJn+vpnE69G0GL8sjs2A8laYJ+1zC8gDXdV2R5vQsW9TcipeivJiXx9J71e2Ul8Xr3vBc9d0iTylCW5Vcd0KxMWLkjAKEsW98zW6IUzxBGZXwCeHbHNewL26GkFYijd2sbEDd3QMAPWNs3q/Nk7BXZw9o8DCdSasq205OKEHY6LYnPMuxseloSD8ixL0rivR/lxgZw2T8VqWigMWiAj2Tb9VZbo3qhlVML/uwDPpXNgE/41KzdKZsBw7a71ppmr/hUn7Nv+OWKbc9/y1opBekqSBAiK1ISrxqFXfJd7JCsL79aSQAtr3trGVbUrspXWu8qE+BJ+stmItkL1ZXE2xv0rtJTW6bv8qciq4cGKgH7Kvwesx4XpWJYTYEdpwUwc1Q2OkBX0wE5mGnALht+pj/G9zECALh/+yxN9kyXiMDEQCjGVHZQL2IGMgwm0vMIbNRUsh5JEz21IwhgDCZihAWPhkR9ls/L1Ito+BOQRu+GIQqyZRvNbhCE1MXQOfvo4YcfLuwjpJdJtgDHZ1UAXvplR+jBmcXeg7LsbMItXdVEADeBvgm2hv3Rsfdq/7BnwKK/+yxnCugYqQHE0RXAa+icKe51OXQOSNdfzZ+oMlndzluvybqsXLtyNJDZdkE4bMG2wxxsu4G3bLugpqZibgM/yqcivwUvbLsgSXLis27b6d1QMqQHv4cY4UPZBPNhsn7omuo9GzqHIDHsDz5FFCIFJCrYss8yhoQP6Zkf5OskeoqHzvk3/rAmUjx0Tt86HYsB7BtJDWS5v6sMnauJVhvXtZWAvXG9j7LuBnBmTGVSZEiUg8kSZoOHyvqSGl5kswsoGWKBKjYQmP4s9Sgxos4Bp/8f//jHBYPq6B/nJxsKVddCv47+cbyYs5lvuOGGQoDqf3+Wjv7JjnVDRjlqCnhzrJsz2mszObi69wTkOS7ReeucqWPdEDKftWPdBIeCcv39P/zhDwtHTzlejN4BgLoWwNqRWrvuumvh+x2pBdw5n1q24LMi2bFuCDoAOjvWTaBRHyI4yo51M/dEBcVn7Vi3+tBr5Tur1wDbfssttxQIaT7V0aW333574cjO2pCv1f0iopdt51MNbrTXZC6t/8/ScK7sWDdBs+QAwg75yrfWNFCsTuf+XRWhqiDEiYw7Ikaw+lk81g0JYihfPGEAACAASURBVK2pkEJGIV8b4lg3mF0yqXKsWzkrtnFeUwnYG+d7KXlXsq16QwXP2OjaHndS28dW+irLJqhhcLOpxaszW8qB/elPfyoMWNlvv/3iD3/4Q+EPB9dQosxv3333jQMPPLBADmDAlfatziXEgnHAzdoSvFx11VXxxz/+sbDmG0pkHL3zgw46KO64447CnhPII7BWV+HUZdRldZFGzqe+7rrrCtmRhhJA7oADDohvfetbBaJA9sD6X50F8aelACEncLnmmmsKwUxDClKK3hFVDzzwQIGgRaJUpKKButQA2y4wV8HkLHq2HRkukGwo0ZbDprDtSCrnviPIV2fbjvCHHQTQMKRjUrUfqMRsKEEGSjiw8aqIkOGwzOp8Go51DbsL1FUzZHrPBhI3hO4RVMhZVSawq0y7IyYrsupooBKwryLvSglXdrSMDLcyl4Y0snlqwlYreQKmld4oqZIRW51EoM7A7rPPPnHeeefFb3/720KFwcoUAeRRRx1VqLLQmyeoUVK1uoh1/pe//KXQ86xk+vzzz4+LL754pT4e5/bzn/88jj766AKJoEfbmlidysvYFEBCCaNqhgsuuKBQQbIyBbg48sgjY++99y5UmND3XnvttTJvqc5/G2hVIilQ998LL7ywEECsTEGQ/fKXvyyshX/+85+FUspKqfzKfCOrx2+z7cg/WT6Zbj71oosuqpesbk00dsQRRxR86rPPPluoHtxjjz1WK9uOIEHEIiPgNlVS7M7KFGTwjjvuWFgHSAPJoNVt4K4gXRVJNqPo73//e+H0ppUpEm4wo/kzsvsSIp/lVsuV+S5q+tuVgL2mGmvg6/WNM7Y2lRJ47KjguFzJjpQx9EnpPBYzmzDpOwSjeheVoBpMJ4uW9aqX+xuYWoBO7ymHjLle1Qd2CcoMNNtzzz0LAdrpp59eo/JrjhHYpQv6QWYo66V7Oqdr2VrvVh+Z32LYayKHH354nHbaaXHTTTcVsgPHHHNMIdBaleV3v/tdQT8HH3xwnHLKKXHWWWfV6HEEeFhsFSDegTkMgjzrEZNvjQJk2VAc1Qqcarniu04++eQ49NBD47LLLisQVO51VRYloQgR6xTjfuqppxYqSmoiyvuQRjKzAKHMmbUIhLEvCA7VOFp3siyP/1+uIAatB8ACiaBUXDZsVRaDKpX9f+ELXyjoyl6uSdk7e87uylhpTeIjrMfsKE42nS03X8AaR+7J9LA95YqMDL1bI6oudtlllwLQq0hFAzXVANtuPR522GFx+eWXF3xqTcqvrfHhw4cXbDtbhdBlj/nUbFo8286nKqfnT9mamsgJJ5xQ2IfuVd/1qm7bVWOq3EGQfOlLXyrYTnNxaiJ0rfXSqUHsOp3DkWw7X802wI1wqWQG3wrblCu+U9WaakHzOfzWql45CKubc8Qmq46kd8FxuWLtqW6CYeidXc/WOr1n651fteYl9PjWmth2WEn7GVwqruBb+e+KNF4NVAL2xvtuCiCLwVW+BNwpk6xOBCYAM0ORBYmcJINqMwNx2ZR438UwcHgAIwDIsNvAjABADeyVm1HmTP3hJP32qnoWpGCFPhivX/3qV4U+3urEO9p+++0LDLEhWthj4BhIZkgF1NnRV3RO1wAH5ySoF9xzXEqV9Hcx9hjx6sTvnHvuuYU+NCWF+gCB+FVRfvOb3xRK5axzei9nvStZl5k0UEjgY79wPtYg4GANZ9P57Q1r29rMJvPTFeenlwzLL5vonVUnghZ65zyBjDPOOKO6jzTKf5fRVeqv1UKvPtKnnDI9GdivfvWrhXVnyrhSbuRHNrE8O7/XvIdsWjmbBHRnZ977DL3rlb///vsLNqc6EaTLytkj9pOs2KooyoGtM1UbnkEAU52wGwb+CaLpX4mj3lNkn70CtGXn9/ougXt2VCRbhvTQ5qBPVQYfOQC8A93VCYJKpYtsqGwRgF2RigbK1cBJJ530SfmtKiV4pjqxzth2PlXvM5zCXtk3bAfbnp3NzrYLaNh2AaZghE9le5588smCvWDbyym5t1fYdv9lm4477rjqbrVR/jsdeW6VMWyzCqVyCBK6499gOSQsHfsuOJBdhyUFpPwEvbMz2WkUsKdAE9Zkl7wvNqoc2+73zKjJThn5xje+0Sj1Wt1NqXxEFrl/s3b413IE6e0PPVj7iCcYBnbMTkSAb7KTV2BIgbw1D0fyreZY0bsBf4bFZieGVPX7SHp6z8rk+ZaKNE4NVAL2xvleCuXOAjiGz0CK7DiHUrebbVjOKguys41e00fUmy6YBLAZYIaBwUYgVGd4AUTDo9w3ILiqTdfWL5sFv0BGVaKnnaHT9ylY/Mc//lEoKRbge381FQQHFlzQCpgLdjCzN954Y7UTcvUBAv2uBcyVPK0qwhkBE4aLCQwQD1WJNa4serfddis4q3vvvbcQfAhCBC01FY6O0xKAKtHj8Az6ck/VZQqUDQvWtUoccsghhT27qojyPCAMwUTv1ZVIYuBVnAjWkICCbIBW0A3U1VSQJYgWpyxYr96j/acdojpR3QDIq35Z1QD1pZde+skMENnG6oZr0Y8SXYOy+AKBB3JJIFIbYavoDsEo6Ece0DmSsCqR2aR3dsk9q/CpSEUDVWmA/bzyyivjF7/4RfCn2myqEvgh86mCxcynsu3lELjpd8MvAhAk1ze/+c1CkJ/ZdsFQVaL1jE81w4O/WZVsO1JO8MavlTNvRybXtYgRJHR2vCxfWBvbTu8CT4E/PIhkcQIIbIQgr0p23333AsmgogcOWpWED4ULZcXpvTrbbo1bn2xydgQhkoPeq9NTnl7YaH6V3iUzBOHZyUVV6RHZtf/++xfwlGQHHFSRxqeBSsDe+N5JgQ2VhcIGVxf4uU6GFvPGocnmVhfc1/SRbWZBjeBb+ZMN7XeqEuCe0RIQCCBXBREsCJY5akChlHBuwKphNRyQSbPlsqg10YP+bdO5DcYRHF1xxRVVZvuVXnES3hGyRgDZ2AWwkBHHKNN7VW0BHL/AUhWB4XPICRmEuhYgIQtMDUMC2qo6UgjIQTIIeAS/gqDGLu7XfgZaOeqqbAag+9Of/rRQMqf6RAtGbY4trEonsmeIL+9WS4OSVIFtVYPuAHvPIQhQGbAqyNlnn10IvvXxaj2oLmCwh2Wx6J19qg0hVdVvANYAMr0jWAVX1RFmSuTZJEH+scceuyqovXKPK0EDbDsyD+HExvjfpQSOQV7xqQgkZCmfV9eCIGTbrV8VRWx7VRO62SL7AeYRgK4Ktt2wSJlXgaP9jFwtJZ4Jcce2IwFVi9W0jaCcd7T55psXEiGqHvhJ77YqMpyvZ/sE7e5vVRCtBwJlGAY+qUrgBNUjkjT0Lqgut5K1XF1ItEkA0buWWERvde0QsA9/4P04OaEijUsDlYC9Eb0PoFlgIHjBjFW1gbNeXX1Dgvqa9IOuyCMrJeZcsbAMExa3lLhHLB+2UKlPYxWOQ6YO2ylA1lOeJ0q/9LgJDrKAojpCpS6eWcWDQFWWAgj69a9/XeXgEtleDoHjrq5KoC7ur7bfoX+XTlWEGCpWSuyH448/vtCzbCCXLF9DTCzPiBl6F7jTe6nzxpXaC2SBI0BJb1hjFTo0+VvQeOaZZ5a8TeBW9poelEJXB0Lq6nn1p//sZz8rDCM655xzCuWppQSwo3dgSRZMpVFjFYGuP2xMVdPf/Tu9I1PMFqgOZNXV8yrhNHyLjdeeQq+lBLni3/UhV0c81NX9Vb5n1dGAyjBJBIGjAFn7Sp6o4mPb9Ypntr0qTFFXGlDCjSBg2/l+672qViiEmXvVUmiOQ2MVJdjaXmCuquaQyMQKyCR7JCcEaOW0Qq3ocyMIBYWCVf5foqMUWSzhwx5JDrHzjbnCQfLAukBiCoxLid5816lSUlGGkGgIQTwh3mFyeq+qmgrpwP9aEzDXqj4XqSH021C/UQnYG0rT1fxONixFJlupYykHp2RF8CsbIjPZUIF6evv6lLCleib1y5QadgFACx71Y8sYNzZhMDk3pXjKyhnSPAE6DEBTeg2k1qY8ry6eXQk2gCwzANSXcrJ6wB3PdMkllxQylY1N3L9shQqFqrKjnlFQ6Y/S89qUia3os2PBER+mwiNsVDqUEkdxASWqZBpjfzVwrIfUvZXKpNoLACxnba15ppUh7JwBfyp03LcS/jwB7AA/Q31kchpjD559KxvNxpSaAA8oIYW0I7ExDRWopzoFqOmdT6L3Uv3G9CxAQKpUV+q8MtZP5TdXjgbMOpC5VQ3CB5USVTvsusCSba/JMN26ejLVK2z7iSeeWPjD7pUS61y2EmmOQG9sorpOUKZNCYGZJxItCEFZa60BpWxqfT8bm63Fh41XOSSznyeSFWwnfKmCUODZ2EQVA8LJunfKQCkfRe/mIiCzatvOtKLPzpdqaTPbAbkAp+SJtkMYAT5DlqwqVbIrqp/G/vlKwN4I3hCGUdAoswHMKWnOE70pso2GeJTKAqefszExk5huZTEymjKABhgRARAmnEHUqyRDyHGWM4jI57MpxXqeSt1Tdo62axpTSZnzvJXpcdrKVPNE8CLLxbEwYJxhOYLBZuiQGtnE8qxMjW7pWtm6wN+7904BgXKEs5N19P0YaCVVeQJUuGeZUZNvG4sACYJa/y11X0r06N1aFGCWMwjO83lPPsuxK/m29mS/veNsWrnKlWyKsHJI+i9HrF1OGZlG76XWO5JEFYo9JUBrLOLeAQvlqcBanmD/6f3OO+8s6L2c9hqgyuA5AacqFWSeNaqVxr8ZfIPYkzmz55TTW+vV9ZBm90eH7t1RRPSeJ2yaTJE2IsDIe28sgnSyF/UFlgp+ZfoEvcCpCplyhD1Bgqpi4hf4D+RSlhHhR+wf80eyCfEAZVUlssW/657onQ0pdU/eOb0j4KoKdsp5nso1q74GEGdKca23UjMO2GU2Rpbb2irX7wka+LzsFBABnO/IpsSrulIBxS6r/sv6sMvRqv1jmKX9w8b4bJ4gshCZyIjGNCeGPTeXgo1UWZcnsBrSme/TclAqKZR+VhZeoJmddkPncCTbnk0rZ9/pnq1h40tVoqXfzXZpx4GD4JRSiR/DOf2W6oHGdHTw1VdfXWivYPtKDTTUj0/v8E65x6TyZ9akBB6shMSFY7Lp/PwyDJlN5s9OXyn3nbonLWWy6KWwgLiB75LUUu1mX1dk5WqgErCvXP0Xfl2mHNjCZuUF6wCYUhqBngBDWVZVYqPJbNvojKtNzaDa4AyiAN13YVsF7oxANiFegOrzDK4plUB2dZNFGROOVLa/1BmTALQSW460sbCkGGnGv1T5MjbdwBmGFpCuTgwtY9iUe9GjjJ/qA+CFHr0DwQudM74Ah2BeUC8YVHpsaB0ADPhUV/Yt64/dlQVVTpgnQJNeMM6kMZRpC9Zk7vSeAz95wrlxhAKG6qZn0yWmHnjSK2mNq+bwO4CJNcyJcfaAnfdCz0AIsCDgUaWgjA3Y8ac6kYlRMmZIXqlMhiy89yuA9TsrWzyXXnvrQUYjT2S5tCYI6pXrVSX2s0BaRsdAJ608bBPGHmBmP7wLFSvAHZuSTeYX5AnwgQzgkg718FUlbJS1bq/Qu32VClLG/vH+y9mvDfFOtG8Yjmht5gXr7C4bAwzTe3VHO8pcIlVkwb1PYEpwgXSiTzY4A72+W0UWAkWwg8gy3Eh2R/ZeaWSpDEumG7aa3tkves8D1N4nvSvzV2Zckc+mBvgYdgAhKnueJ1pxrHekZlXtONlnBcf+8KnwCsLJ7wgK2XY+VfBi78M6bHs2eAtmkqRQ/suHqwapLhGBWNP+Y61rGcoT1S+wDNzTGE5kYQPs8ap6lPlH/p/uS1X4ZM/KXrPPMB0CnI7pWzDOriP84FS2nU9lZxAd/J0AU6DJTrB3bHE5JwII2v2e1rNSNunII48sYN/GclY7UltbAb+Z54/oEznOhtJ7VXNwXMunwiNawmAGOs9OXZHcgQc9P7wioLe2rUFrHgkmScAHSP7YJz5flcBCKmB8lxbPvAoX16hAgWXhrIqsXA1UAvaVq//ChrThZEnzAjQbkvEEggX2VYlNy1kJ8BlXIKs2JfOYU8G+oJ8jyDKSHGRVohyVsdd/n3ecBFAqMMVOr+zzHgWEHItgI0+ywWZYyKp6ORk0g3KwrN4fUCDgLmXAqwuC9JFyAv6rVJChryoDwUi7TrBUCiwLMJEJgtZSz9sQ24CzBxZkVgW8pcBQNnzMOiolAhBHkQnuOSfOU5BZ3TDEvO+jQ4Enh2QPAWqAQ1UZYAETvSthBvDyRMkZcON9rsyMr3JDgZusludKxX6XcUFeWfdVnQSBxAJmZbEF/oJtLH25zH7xbwMngKQSPUBEhgVwqKrtwRoH9PWr55VzIgaQQSpn7MuVKWyBdw/c54Fka5jekRUySFUJsA38AXMyIvpuq5vqXur7kAeIRUQCghVxWV3mxxo3wIje8ypSlMfTu31YAXYrc9WtnN9m2717NqRUtZo1rsWCjalqoBycYO+y7XCPfcS212ZeDPzCttuH7A3bzvdXVVUFb7Ht9lkpUhnh4D6t+5Vp25EX7De8QU95wm5kJzxUNbQSiZ0d1SnoE6QhA8utyCn+bYG7AJwu4VH4lr2qKvljSj37jqQvdZSu9+F+2KKVKe6PLeZP885XRx7BOMgOpG1V4nsMO0Z8IlPhGfqvTfsfcgBRhZgVgJtaX93pL/wvEkTrZN6+EJ+ohLQWGgtZsjLf/cr87UrAvhK1L6i2GYC5vBIiQbP+bwFbVT3TjDHwxxia8FnXQ1t8v+BWZt6GrsroYwY9E8OTdxyI7xGsu1fOdGUIhyAglqHCXKaiJE6pHpBcaigIRl+5kOtkwwUaVQWYNX1OIEBgJCMqe6V/rioSALjAvAp284RjwYZnJbQ1vZ+6uF4Ai40vNbTHe+Fw6L1UP6OAWs87IoWDAb6qOzqlJvdu/QKLMkRKlE31LnUvAn2BjuCpFLATjHG+K2tiP0DHdgjM8gYQAtjZmeBV3SOAZC6CDHd21FF1lTc10TvA4vftyey871KfB8DpXUbaCQ2pyHqxPwAs0L8yRPYaELNW8wbMITfpXal5VSXwgmqtCQgNVRvlHHlXk+cVXFnriFZtNlUF7ipe/AHw8kAq28NOWWuNeTBXTfRTubY8DajCUK5cKpCShcyyvKXam2RpzXlQHWOt81nlnJte3h1GIWhF8vKp7Ia1Wqqtyb3YC/BOqWoBe1wmuRRBUe591fY6x+zCe6oG+ME8sV9JVTZGcG2/8n2IFHN6ahOkl3oOmA9JKIhU6YXYKVXpwKd6/3xqXpWXQNgsIdljvmJlCDJYNYGgPW/OiH/zDHB7VcNFVTwhTmXKVZrRe12K5JhZBbAkfVbVzomItzdgnrwqWT4V3vVMK0vvdambVfW7KgH7SnpzstXKPDmMvGM0BL3YW4C/VAAu+56V2yojKrdvqLaPLNAG2GXgBI+leu2RBwIrREQeqMe8YoX1uDY0Oy3YcHwYB5JXhqvsSsAGXJRi9IFoTkNQINtXXalTbfWdfQ6IMV1aIFPV1HeZMhnGUn3T3gdSQZasofWuUgA7i/3Ny8YCHBydkslSghyhd07Ff+syYEx/0/4zYM679l/3nyf0DYRw3rJHqQArnJzPN3SZNnsA9AA5eVlPfy9LbR2XGvxnj+rPE4xh2asauLei69znrQ8VIcg8ei+ViQP+3Lv96nimVOwBbSKAECDSkAJ4sY3KQfNmNAjWrRn7utTkfaXv9K6NQLBTqvWirp7LvmNbkMiAWamyVASIwJ59zAvatecAirJqK7Oap670Uvme6jXAHiOXvfe8YNw6lj21ZmQc88Tn2XTEs/9WV81X/V2VvoJNY1vYY//lV0uJoJwdzbMh7Kc9Lnvs/htSBNQqp/iXUmQxfylpIplQShzhpeUAOeFZ61P4VH5Im5jqrFLH/LmObcxaGdJ7QurzEbCMddWQgkCyHmS/84axwlXuXVa7VHsdzKBCDU5G2paqJqjpc8HUeUOTBdtIVoLwLYVX7V+kvCRFXtCuLQWGg99g+Io0vAYqAXvD6/yTwW5ZT1Z6C8pXMV6AdCnHxWgJnpWpVNerUtePqK8JW21TlypBZoyAbsZIZj4VpVc+iwRoqCEijt5Q5g/8Kg9OhdMFVt1bnk5l1ZU3cRIChVLDXepa376PEwMsOGgZgjyw7DoBgEy6oDwVQYBsL4fSkFOdAXxleTLneeVZ2H/MeqkhPhy8bDonCWRV1+dbl/oXGNKVQEa5Xl5FhnkEwAUWW4l8KkCRYAhI0f/YUCLQ06oh85VXJWD9Wg+cdJ5w0PSuwkOWt9RAoPp4HkSJgFvJeKmzvgW+7k3fvaxNKt4FO6XypKGyYAAdkoFtNmQuFXbRWkHAlQrWEYb0DpRWdaRdfejdWrBulHPmtU/4TWsKEYH0zCuh1BJkhoS2kcYwv6E+9FT5zqUaECyyb9ZM3mwMAbGAkE/Nq7gznJJPRUyx7Q11zJV7h6HYdn6dbS9F0Au8EBFZtrr43RveJdhFlpeyo/WxVpCUZtgIyvNat2AEWexSBCscIXGhWlK1QVVnotf0/rf57jdi0sjx8cH778a0acsTNPwRm40UdFJJXrYdec9nsut5mWdVVqoFEUANVR6vogFJIsOc55Nkyt2zRBAskCcqZtlP2e5yqqVatGgZnbt0jX79B8bUGVOiR69eMWnyxGjTvE3MmjkzZkyfFjOmT49Baw2JLw39Ukxv3ywWzp8a99x563IDY+1Beld5VoqcEbRb5xJReTgrq8JzPJzKjIo0rAYqAXvD6rvwaxyDwBFgTo2VkmFOQAabgUgFi8ZQyc7L3FWXZRS8Yf2UeAmMscvKH7Mp8Qa2KLfkTBk/2fNyMvW+UzbMPZYqWxPY+828/k3VAQJfRqEhzmjXUy+Lm5V/pXrlAAAO9ySISQUAB7CRFEpxqxO/o3fVu/JZxAQihu4FnnTN0QK8vpOOsPXViSEh2WTSUueschb0mgcg3DuA5XcbIvOIdELMcM555zULBGVD6T2vZ0vJGKcucCkneLGWfFc2TRhphNG2DxBH1rc1637sH4RSORUSskRYas42bz3bz76Lo8sbViTLYQ1aDw1RUgaoyXAioPKCWfdI36WOXeK0gXH/Xqo3snitqgYCRpT5IVjoQwaKnRHom6WhdUEgh2ySlTIboyphO6x1/6X3PPJS0IiAs9fyjtQRAChbpAc2s74FIZO1DqStGmy7Pm8zMUqVqApekETIw1IDPLNn8DxaCVyv/xGI0kYFOBI2HSBXwcWf2IuAYt58kWK9KOVXEUJ3peZiWB+yRPSeEjlIEvNW7NdS2b/6fg+V769/DWT9ttZhnk9UjYF0Yo/z9i6bwafKMtqf1Qm7IpEhqEA+87Fwjd+HYwSdfA3fxraz0+UMPLNf/RHA5gVaAnqBGjua54P4NffD1zSEbUdSsq8y1HlnfiPr/XspfylLKvBiW8spw2ZXslNXfC+dZyeA0LvZPYhspPa8hUui44QlMXFxq+i43qD4aOwz8fwj/42JE5a39fCHSky+ymdT8W/sKVuZZwthB35FIMq/17dI+JiFgAjOwwzWsIrZUoG4KjV7ARaoqtWjb7+B0aZ721hjnZ7RpVf3GD97YrRfPDje/Ghc9GnfN8bOGBd9unaKaYs+iuH9e0TPGd2iWdOWMfGy38Wc0W9Et533j6YDB8fEJpPi4fv/EfOKhlQjyBDC3hm9550C4x4R3EjlNEFhQJ33wdfCzBVpWA1UAvaG1XchGOZgAJo8I8Uh2SR5JYmCPQ5BsFcdmMNYc2gGowDGDBuHBsQJ0IF1GX7OSPkicC2wsaEBPvcmsMnLKGYqs3mBRYCtVLDp3/1e3jEpsi/ZdHq/XZ8iQDHsRiY3zZ4DmMAHkJxXxgSU6kViqA2bKSXeD5AiIBa4yKRxqkBDdtSJUlnOxfN6P4J5mULAW3CDrcd4VzW92fXIBRkwfXip0KlyMYOiMP+pKCXmcPIyBnX9DrQgWAPInVRkXpSVZUMV03/3PlQV0GdVZ1LTI+ZYBl+2W1Di+bP+bUG6YN2+Q5p43wJ7e0lQa517v7IWVQ1plNGwjjhecwtS8V4EOb43nWfgndC5z8s61acoWct6kfMC8qyKpFTJMqBnPdJ7VcfpeadmCSAy2DVBODtg7QLO7BRCEriTMQH87AsZEYG264GbvJL2Yv0AxDLu9J43x0H1hrkT9J4SmH7Lu6KP+j47WfUIAAT0551uAPCxp3kD5thS5cBsqUC4KgGUACpEF30jigydtL60T2XDS+0FAFugg8DiW7wzgYd7qe6cd8QC30DveVVS7At/YV+kQtfINrYOAV2R1U8DStf5O+srJW3YdLbQf/OqwaxdNtfnrcVSgth3jf3Pzgsw+Wp2QHDEXsMX9o9rEeNwhd9lw+Ad+wq5nZcAyX5XNQifKsufV+oseGTT2dM8jIAgcF/1bWPcL/9tXytdTsUzq+zRnpVHzOlVF+Dau1XZdriRvWBTlVnzpa6XZFCtNX/Bwli0cGG0at0qWv7/pBDdb7zpVvHCIfvFjDdHxBrbfy+WDN82Wq67VkxY+Gq89K+nY9LECcvcMlvmngSBeZgHOYMM4jPTRBKfAo8hQet7GBr8xqfBEnmVJPBHdgRw3lr2DNanys68ShOfWXf9DaLzel2jaffmMWdy/1gwtUes0aJXTHhxavToMDWWzJ8TLZbMiSXNW8WChc1izpIO0XtIl1hjrTHRdHqLGPnLvWPGO28Xfr7D4LWi5/cOiKbrbBSTW0yNB+79WyxetOiTW0NOWdP0nlddgZiwj1TOpGJv8fmeozGckrD6WdbST1QJ2Bv4bXMasuSMeyqCCOA2rywMcAI+AbKqpsXbhBwo4CjDw8hUd5RJeh9+i3MU2HDEgGBVg+YEZMpO84aueVbgnDHOc5gcJfZdIF1fwtADDUqV8pycEk7/llfOzAEC4IKC6Qo+uAAAIABJREFUUgNEgFIMPSAuCAEO8iZYV/d8smQCoOy4MMFqqUFzCBn3BXznGVWZXM/E4aXf4XdkH5RF+b36EqXBgjRZujQToEIDyMH05+nK3wssgf5SZ+ICCFh2zhB5IfCrzeA/AQWHKzDhUAWspQbNCXIBNiAy7/xS68S95xEUfoOjtKcMPawvQdJ4FlN/U8INWLOOBc557SyeH4lE76VmVMikA7Yct0yssvW8ORzVPR+ChR79HgCZ16aSfQcgbI+5r7wKmOxcZ5n4VPyb4BWQrc/ZDYJ0ewvQTQU55t7zglfBhjXFzpY6u9r30ZdWHNerOkF2lFqnpXSPKBTsW6cAvbYDGc5SojSfbXbveUE7e6fCIa9iAJHgXVWOeqtuJ6x6/862IyGtw7xKL0SSQXR5hLHgG3GJsC2V4ZXFZdsRcVnAXd2062It9ujRM9q0bRe9eq5RIOplc/kIZ62XGuDLJvKpqqnceypatvw9255WBxnuJXgU2NWnbben+Hal1ymegtngG/+WZ48FWT7Lv5U6CcR3eC+uk8mXcGjZul18bpNNY+H0ZtGlecsIGduFC5eqp3nzaNKqZTTv1CFuvfu62HHLb8eYEw+KWR8srQ5t1qpV9N/le7F44+9E843WjXdHPxJPPfzYMqqFa2V9JR9UYKUieJTh915SEez7NyX+kk71JchNlUd5p9uoFNGbb73mVQn6jORYKf+2/gYbR69N+sbk5jOj6cTNY8abnaPvgnej2UfPxRrN3o5JT/035n08JeZ/PDWaNGsaixzttnhxtOzSNdY+9bL4z5SRsXX/jePlA78TS4qCcrroOGTt6P3jn8f8oWvHw/++cxnCJFsP9J7nR+BZ2DnvlCT+zLM29AyB+nq/q8r3VgL2BnxTgl4ZPk4qHbyFLZSh4wjTMhWZVyCQkygVrHNwAn6GQXBcqtyUE8OMtmzVOhYskHVsEzNmTC0YgDxBACj3wmQL/EqdAS9ot4HzMu2yMJhaQVv6eUEXYkCmv76y7AI5v4/ISEUPmCAMcZCKYFeWnLMvBWqBaIE+koVDqe7ovXKWm/dtCJhy0qrKSumVUwV+8gAzg4vB1oucCqCufLY+e3vdF/JHpjYVVQTZgKv035T0eW7BZSl9em/KzwV6QEqpYUbl6Du7BgmCJPBOZSjyMi2uVXFB74BN3lA0ZZ4AkXtMRTbAHhF41YcIwmVbkTXAaSqqPazXvCyBv2eD6D1PvEu6tmaUKlZ3XE25z+c3ZVAy/eeVefouxAy9IQDzQLfntg/SyfEyH/QisKivDJigFfGArEmDEEG8iijZiLy+QMSZ+ysVrGdgFZi25vNaHMrVdfF1gLCSZcDfui81G0LQ7t24PhW+AcgW7KTlx+yqAMcermqYZG3uvfKZlasB/kPgyhamgmiWTcwjzwSzgmI2ptSwLVls2Xs+l72pzVGd113774iebWPJklFx+x9uijdefiV+8pMDCqQ6W1Nqhos9yucjBxGRqWSDIPOIbjYVGZv33HX1thDtBs7lkST2MhuYN10d2SALzW6XOoITyYuY0wL18L/+FVtuvV10i27RdPy4mPbkI7Fk0uiYMfrdmDdxfDRt3iIWzpldCBBbdOwUa594YbzadEas27xHvP6z5f19szZtot8PfxqLNvlqzFxzdjz3z0di0sRPy+ThM4kK9i1vfhB/LMuf17IgEEZ25q3FutC7+0Fu8vlaI4qFb+Fn4ZA8sgERwW9mR792675GtOveId5/Y1Sh+miTbb8QrYa1iwXj14upz3WN/vP/F63+d3V8/PJLMW/qx1XeftOWLWP9q+6I16a/F71e+yjGXH1Wyet7f3WH6PqjI+KFj16JF59/5pPrEA1sN72nFRmSh/Y5Ijq17fwBvCDWQGRUpGE0UAnYG0bPhV8BjATjjGoqHJjeqzznxJjJdpXKNMqAZKAwNXbNW7SINm3bx7TmM2J6zIzFzRbHpLkTo32rjjFt7sfRp32/6NSyU7ScvCTmz5xTUhvIAMG1ey81tZ7BlNHLC7Lcn8xQXkAP2Am4ZATrWpRx0buyO9mAYhHAu1dOOh2eBHAAFAxtqQnhGHXBMBBQ1bmytX0mg+YYTMbR0TJ52XYZbE5cFiuv19icBBlsoLtYEEfeI1BUH0G7e0EyWdepsRcQAxeGz6TiMzIpWOu8KhS6EAQgeLC89TGADvnkvQMBArC8ORGAjeyR+01L+fRcm1PBGaYOHmDFaLtvmaa6FrqRSbZXUwGC6U+mPxXPKSCm96ykuvgaTLrv9jyC5lLZ9xV5nqzCQSZM/1yeAG7ZtNr03wFSIFvgnIJS601wiRyQjalrAWqUqead0GD/CeLzSDWkB7K1VBm8d6XXENDOa3+pi+fIyEE2ptRcDFkWWZi8bLl9yIbnDY3UjsDO1BdRUhfPX/mOmmlAxhuJZN2kfo891H7Ct6ZHg9l/7EepXnEBAhvjs3xqdQPoJCdI1r+cVYBsuNEmcd6hJ8Z79z4e7bfYLub27xXNukyNm66+JGZNmh7HH39sIbnA5uW1JcJbfKpqmDxSQdWIACc9ApE/E+z7TN6pHDXT8vJXI2H5JkFgat8kHCQY3FcqPkPnMu/FiZw1evSMtdbbLD565+VCqb/9fcMNN8ZO3909lnw4K+a/9nxMuOtPMf3tt6q+9SZNYsNr7opRS6ZG+0eei7E3lm4b7LbxptFxt1/FjPX6xnMP3hLjx4395LvZEL5LoiItG2dbYSG2Jp2H4D3xTzCNJERdi3cqcZXXysZn8pd5bR0y2NZ8VgHZZ81+0WvLftG2S/toOjKiWZNF0Xv9beLF51tFn7EjovXjv46JTz+5XJa81PO0XbNv9P3N72Nuq8Ux58IzC5+tSnpvs1103f2wGNtmdtz/909PBFDlxgfRbyqqHyQm8obsqdKyZ2GGijSMBioBe8PouRCIC8Bkj9IAgINibPKOuQA+BY8p8M9uG7slM20IRDHQbtWqdTTr2iZGL3g/FrZYFC+8NSG6L94o5k/vGDOmtI3mTVrGnHkLoluPBTF8UMdYu9ukmDxxXNUbvnfvQqmUACVvoqoeYdkv2aS8yaWMsftMe5EMaxF41keWHZDmCBjOVIB7gXpeSTlnrKwsz1B5H1k/KmNXbssBZ4JtBRZkYMuduq2kSh+vzHMeey4oBqIEI2lfmt5VDgepk5Y9yWJzhHk9qCu6LQQZAte8afWYaBkMrQjFoqRN64L3kecAAQ9/r2Ii77isvHtGEqlEsDZVdwAs5b4vzD3wRj956x14UJKXx+wDQCoL8rLVeuwBwqqO6KuN/unV3gTsMkY/+x52BNmmmiUFPJyye5IxyyOFvEM6V1qal3UqvtcBAwZFu/btY+iwdaJT946FMupundaIJx5/LCaMHxdjPxpT5aOxg4JGYL9UEIt4QxjkBYHWHfuqPLFYzJdgdxBXecfv1Ubf2Wdk9DNQnA4k9Awy53nDqABvWaW89gnfbY1bQ4L26oKX7F6y4aJalOgw60/8whe/FO+883bu8Cefdf/escA8bzika5CtyMu86fHINbpNyyeBOe/L/ddn+82KvL/KZ2umAfbZe9UuloospExzXnWSQFZ1SB5xxT/dcutt8e/HHyuUwZeSTT+/Rex1wP7RtHWPGNC1VyyYOidatW4eTZo3i1mLFsXEORPiwzdejvVGvB/j7/xjoSS751bbRNOtD4l5w/rF3JYj4ryjT4u99vxhYT2ybXl7i81nn/nUNDiGY/jOvP5d9tG+K3V2e800vezVMKD9nNpgM4ckD7yXdNAlzKEqQDBWbNvXGrpOfGHj7aP9u69G/+/sFE/8+4EY/cGY2GK9r8SCF56LMdddELPHLD8ILu/+W/foGQPP/WPMbd0kpp99Qkx5cfmEVPHn2vUfEJ1+eHJ02enLce/NV8T4cR998s/0rm0pb40gQeCVNPngw/ydxEBdtyNIgMENEh9pAkGPN9Inzw9ZNyot4EfroWevPtHlCz3ilSYvRc+3j4mth3aK7XfoFc88/Wy0ePODeO3Ew2LB9Ok1Wh5dN9okOhx3ZrSdEzH6mP1izviq8bsv77DW0Ohz6OkxrtOCePD+ez75PRVWME5eJalKQTg5nd2gKlh1gdbGhprUXyMFrYYXVwL2BnqpNoPgIR3AIkjlAJTKpmW9Ag39ooxFXim64Bm7XBzoN23aLNqu0SnemP9WjJ83I2aPXi8WfLhR/Pe+3mFI8uTJTaJDhyWx7nqLY+TIprFkccQue06K/XaPmDh+bAHM52XYMjVxDjanktS87CYHkZWSpz2PgoXsqLdU7XrAtAzkla3X9hUJUOhdAJMaeZkAABVzmooAWSCWB0gYKSWsssDVAX+st+f66vY7Ro9evWPRwkUxZ/b8aN2mRbRv1zYmTpwQT/3nsUL2TUltqb4y9yd75Xdlp/NKYjkGICovy4W08E5T8kGJrQoDwX5dlvEB9VhvgCgFQ8CYADcvEyljDRzlDcPzvuhI5qVUFpCeECJKdwXKnKZMEJBj//g361dQ674QGXnD44rXg15tLLqS3rzKEX3EQFLeWuDgAYl09gHgIYiTwa/L83sFWvQj6E1JCTrze7LsqSDRrJG86fbuDxC0H0oFjUOGrh0bf3HT2GzHL0anPp3jwzkfRIcYEBM/nhUz5s+MIT37RKv2s2OzNhvFY/98qJCVq64f1QRj4CxvPcusKY/MO0qKzZQ1A6ZSkkV5LRts/dXlObIyQtYnsjIVIBk5lQ54QyCqmBIo5w0QBYSsX3qv6sgllUt05Pc32mjjAlkybfqMaBJLomPHTjFr5vR49/0xMWVc6xjXZEq8/eaj8dCt98azzyyfjRHsszF8VF47B3LYGlBCmVaVsHUqANxPKlnWsSGPNKytz6h8rmoNsO3ZMZtpRZcKGfYnj5xSPsvX5pFwG2ywYfzxtj/Hg+89Es/f+mzces2ypeh65S+64vfRpkXv6DB1Zsx+841YPPKpaN5scUx7a0S06totYsmSaNayZQw57pyYtmBBfHDcITH19Vc/eRgl2YP3PyI+7rdtLF63fVx/0ckxsG/fgn1m2/My6YJGJLJMYiqeXQCdEqMZ8VXXZ7Ozl7Ag35gORhXkIiTz5gXw+XBa8TFePXv3iR2/tmeMu/yimPzgLdHvZ2fGwi2GRfNoFh2f+U+8euG5NdoGndf7XKx72Z9j5ofj442f7RHzP55S7edb9+wZnX98VizZZv3434O3xNgickB1FRuUNxSTn1KVlGd/HJkJf9ZlpabqKPYur4VN1RZsmfoyGIP9Rmyy8e07dIy1thsez8bT0f+942PGi2vEdm0ui26bbRwjFkyIwWsMiWmXnRkTn/pPtXorvqDHN3eLra+6JF656b5485jlZ7eU+rL2AwfHgOMujGndIu64ZenAR0k/bSL+pKX9qvX4ONVVaWWdv1MNUZkYX6NXV+uLKwF7rVVX/gdl9QQLmKjU2AJuNnjekUQywzKmef2aAKesYcr6ze6+KJ6d+WzMf+dL8fY/vxozJrWPVq0WxTZrvxC9Wr4TrT5+PVovGBsde3SKj0eOioXt+8Xg734j2g3rVshECqjdr98tNSHeswCIMtB5k0aVhiEiPG8qylkxoekQOyAAYATSsyPnytdw/pWybQJRxijtzxGoyQak55Qy9gwWsJxmGz2Tz3DuVR1XxKke/oujY+L7U+LjN0fF3NGjYt7ot2Le6Nei3Zr9YsHsWdG0Y4/ovPPucdM//lQgbIAGYAhTnne2sScUhKrQEBjkDeuRJRV8OzakWJRBY4qzd1v8bwJOREFdlqwCZ8iDvMyzyb5KwVPiSpAtmJQJTkUQAPQL9vN6r11v3QCLAkwEFjZ41tz58fnNt4y33hgRvXqvGUNkcW66PmbPnBHDhw8r6Ny641gBr1JEFQLHHAN6T7PTgmOBsHeY7kXBlrLRPABr3yj/1O9ZF6Jaw/pRvZEGW9mJBcgmE3+LRZBPB3lAGgAHjtihvOORhq+7fmyz03ax4Q6bxEvj3o/mkzaJOR8NjNEv9o+2LdvEmDFNYtbMiAGDlsTnNlgYzZqcGb169Yzttv1KgVDw/ALzUuLfVbPktQ54F57XekkrVZSF2vPpmra32Vn7ozqyrdx3Yl0SGcV0CKEyVPeel/UBoK3TUsdEIQvt97xBb35PkO75Ntxo43jwqUdj1NR3Y+qiqdGybeuI5kti/LSPonOLbtF2cZvYpNNm0eLuO2NRz/Vibq91ot2mQ+I/T18fz97333jskYeXeVQEMBsn4MhrS0A+CBys7VQQMXSQth5ZR3SBaMkjNcrVdeW6la8BtkVWMa+tBJmDFEvPeGb/VFOxMyn+UXV4z78eiCtfuiremfFu7NrimnjzlSvjkguWTqfea+/94wffOzAWvvF2zLzn6vj41VcKA7jypNPa60THY8+JLk2axeuH/SAWzpq13GVdPrdhtP/uCTFx/f7x0YgH4t3XRxSGgVmXeTYOSasUOiXJ4QNVeHmtR/aOQK6ubIyHkLSBE9PBZarY2DOBU0r4w1p0X1yNhrDc6TsHx5wbb4hJd15V0I8e9IHHnB/jejSPXq17x5SLTorJzz1b9mLrsd03Y9CZZ8TE+56MUacfVvbnlHT3PPT8mL5+u3jwLzd9MrBNIkFVAByVVmNKgGjPTP0mbIZwhovy5hGVfVNFF8KMqorg3HQwLvKSz0wruXwcBmG3s8TCBl/fLKb0mRrzXt0hpj27duzU6w/xwWXHR4fBQ2LQSb+NETM+iGEd+se7pxwas95/r+xb7Xf4GdF3z2/FqHMvjfF3LNvuWd2XDNx1j2j9zR/Hwy8/FGM+XDogEKan37zSf3teXJAmOCREPC9SOY+sre4+Kv9eMw1UAvaa6atWVwuWBKMZuCv+EsALU5v2eykRA7DzznzGJApQ8rJUXXv2jFfeGh6XndM91hs2I/5v4KPR+a3rY8GYN5dhnLN7aL1Gjxh60Y0xvcWnAy6yczcF1YLWPNBo6jIgz0mnwTdgJoDxb6mDlmV37xxasRQcyU47Fb7Lv9eFANECFKWnxYLsENA5uiQVA8O0L+QF5Ayw4IDxyhMB4AUXXxmjnhsZs196Oabcc11MfWNELJoze7nLu264USw88Kg46NC9Cv9mfXBQWFuleHm9aK7TF6W8TUCcTokFIgxlsXbS4FPwI9hMs1ycm99E1tTFpH4kj/WsdD9l/Bl26z1vABUmWoAgi14sMgf2gPeSd1SWa2Wr6cs1b7wxKjbedIvosaRdNJk4MZZ8PDFmvv1GtGjVItoPGhztBg6Ku99+NX57/q8LPyPgA0IBNgArHViW3QvQo6Ilj0nOMvB5QEGAKChOy/89q2BfMEP3KyocqcoWeyglmgA6LSpp64f3Lfsi85XOzvBd9ijQl5d92mTTzeJn5/0yJi9cEu+80DdG/mvLwiPMnzU3Nh/6TnRpOTE6tJsfzZo3jRmzmsfADVrEgraTo1fXQTGzzeJ47ol/xFZbfjHat21bGHimwihPZLLYzzxgJNhnX1JgTK/WITuSEizeg4x2XR2tBzhqFWCrU/Hu2ZE0U6RKBpGTVwrvu+xHmbriFpaBgwbHR2M+/OQ4p4032Sz+9vTf4/XZI2Ld4Z+Lt0YuiBaz+8eSWd1jyYLWsWDRwujafVG0X9gi1m03LiadcUQBDHZaZ91oOWzLaPf13WJSn+bxr1uujdtuXjajyRax3Qi0UhPAEQ0pQWH9sy/2SSrAnoqmvMz9iq79yucbRgP2lGohey5tSWLX2bS8d2/9s+spkeyuH//Pk3HD+zfGqLnvxcCR58SbTwyL4/f4W/z7o9di8txJseeWu8bEW38fo26+vpBFr0p6fvkr0ezwX0bzp1+P9y88tuSlbXr1jh4HnB2TN1kv7rz25Bg6YFCB2OdT00pGvsqzIj1T8UwCuXTGjYw8/OP76sK2Z1WPypXTOUbwAHIyvQdJFeS/qpfipMqOe+wdHZ8bFaPO/sUyvdJt+6wZa518aXzUdn70XdQ+Rh5/YMwe+2mpelV6X/Mnx0ePvXaOMb85LybcX/rEibzv6LzuetHhsAtieueJ8eCdd39yCaKTHU8TKi5AsCOG0vJ/pLpWoLoiBQXr3nt2bnnx/SMu/bskSbFIwEksIFOR0kPWGx7vDfkgOkz+ZvSZuXP0eu3cmH7TiZ98pMsGG0avI38Tk1rMiA5vTox3f/3zWJJN4K9mW693yc2xsHf3GH/qz2Pqa59Wk5RrDdbY9pux5nGnxZ+uvyTmzZtb+JiKDDMaUp+FROEzUyztM3yBNVZqWG2591O5rnoNVAL26nW0wldkZxKnJeTYWVnPNCh3FJrAQAYm7TvmADiCvF54N+o7ZywZEOOf/ihavfqX+ODGK2Lh7OWZ5uyhOq+7fgw67/cxZdYHyz0nY6XEiGHKO59awCubLiOTBvWCfp9NA3M/YmAXFjrtDZO5kSHMY61r+hIEKP4IBlKjypHRa9qrKeDlhAF9hr9YGGDD2UoN2ODU9/rxgTHqoadi4m1Xx5h/3lflLffY/nvx5hYbxa9PP2mZ6xhG5fuqDPRB5x2nJwhAOuRluThuz50+m/ckmM/Tresx+HVRFi9jT0+yAemsButZYJ324Qt4BZpATiqcM8eX1xOowgQpYA+dc975sd+PD40W70+IafdcH7PfHxUz3h213Pf1/+U5cf+0UfHHa5ZmFzLBLssmW5d5R7e4TvCo+iKPzNF+YQ2khAOSAmsNWBUL0k02wN7JGwJX0/VuTQvyHLVWLMCcYMleTStm6Na/5T2PagEZi7x+ZSTHn2+6JZ55p2n87dph8e6oJvH9r7we/RY/GR3evSMWL1wQk599NhbNnR2LFy6Mpq1axcbX3h3T5y2IGX+6MJoM+VK03vjLMbV3x2g6a3Ts9t2dCmAg79gb5bAAhH2c9td5JqRVHuHgvlVzpEcBCYjtG/unLuxMNik/nfAONAIyeRN0BfL2QbpWrAlVST5bXK2x2RZfjKN/fWm0GDsxvvjVjePux+6P0Us+jFGLxkTHsTvGnLc3j2ce7RYRTaJHzyVhFtfYj5pE585L4kcHPxFrzR5XyDgWyxqbfyHafuPQmLvZRvH3u86NW//w52X+XWYOwYy4SSt+BDFIhbzgDBkCzKbkdNaSVDniraY7u/Fcj7wByhH16ZpgG4H8tHfdWhHI57WgXHTxpbFkvebx9JSnotWLh8ebj24c+3/+xlj4t5Ojz09PiW5f2TAWjpoYr/xsr5g7aWK1iuj9o59Hu92+FdPPPzsmPPZQlde36dkrOu13YTTfdt34zdH7xsEH/aTgc/MCEkG5PynhAKPZB3BLsRjEpUw484XV3ng1F0jM8N/8ZCoCWkF5WoUp4EW8Fd/zt3fZLTpPbxnvn/7TmD12+VkiHYcOiwHHXxhDtt04Xrj8phh93vKnnOTd6trnXhctBvWPD44/OKaPrGZAXc4XDNjr4Gixx8Hx38dvjdGjRhaukPRhw7NgsPhjCE/4AkFfLNqgZL1VHdQFUYJE5n/S01ZULMJX8FkqiFhYgP3r3KVr9Ni2b4yaOT/m3HdKfGPAXRF3Hxcz3ln6jJn0+OKXotvhp8aAz60VL5x0eoy/67pql0zLzl1iyEU3RrMli2PEYbvHQqVstZA+vzgvFmzSL/5x918Ln4bbkeMZ4VD8lYJ5fikl1/lTPjjdB7W4ncpHqtFAJWCv5yUiKFWuI0uVZj1NtgQq0+yWzJdS0LyeUaWSMk4+l4rPKTt78eVXY+GY2fHqz/aK2dUMeeq57Tdi+IUXxLsjlz//0vcDtUCbYCsveBTUIxjyJt/LuACnabDP+QjC9KEWi98SsNbFpE/BqQBcyV2xcATuB4BInZwMkLK4tNxKVYBADYjNOwOa06T3v/39/tiu+9rxzmmHxuIFC6pcWX1/emo812FhXHftVTFp4vJgRDZU1kK/c94xJwJLgCANqNyHdcOppKXCDK3sfBooyFyXAis13R4y+QiPlEwA7t1vXikl3XIQnqlYfAcwIpBJhVMGEgFHWbv7brgvJt12Tbx3+82FILGUrH/l7bGodeto3al9PPH6M/Hb88+OaVM/LbHM+s1lvlMxDEf5uxLndG8CCgiPlN2399kAezMdxIgIU0ZcF9leYJou0gBVNQgyIj0JgGOWifdM6UReAFumIO84vsLZ6zdfH089NTk+njw+5o7ZLNaccX/EY5fGx6+8lKt2Ga1+Z18TMX5CvPX/e+06D18vun17/5g/bJNY2HVKrDdgUKHqJY88QHhYV4Y8pT10+kyVLqbzGYAHe0P5ZLEAemaFAHt5gKsm610fpcoo7y8lBZWFsyVpjyuwiRDKO79WlYRWEdmjTNbfYKM45eKrY/6T46P1+Odj4Rc3jY8Wj4k5TdeOEQ9vEs880aEQmO+w8YvRdcnI6Nx8UjSbPzXmzZgbnYatHS036h/Tbv9bjP3zb5d7tHb9+kXb7Q6IDrvtGjf+5fS44883L3MNnbKhefMmVNEgidJJ2dpSlEYqgS8WQR6b5hikvAGgNdF75dqVowEVF2xfWhmCODMvQr93eg61wMVeS4cRfv0b34ijf3t8nPD4sfGlBafHlBe+Elu0uysW3nRIzJs0Kdr16x9DT7883msyK9r978348LL8UyOKNbHWaVdGi6GD48NjD4qZ7y+Pj1Kt9dzqK9HkW8fGtCGz4y8XXRJ/+P1VBTuSlvRr7eLj84bMeW62P21p9B1ORyhVjVeTN4jUhZfSijU+FcmdkvOI7KztJ6sw4od23fmQWHzn7+LdW24q+fMGma159Dkxr23TmHb172L8fbdVeavN27WP4ZffEk0XL45XDvputbin1Jf1POqa6LDjsLjpik8nzEvswIPp8aGCcbhAJUOaWFF1BVfWxeRy1QwSTmmAChuoCE2r8ZSHwzEZebvWF4fH6z1HRNdXToq+kxfEgCd+FFNHvJ6rgh7f+H70OPh3oiNlAAAgAElEQVRnMX/arJh04fEx5aUXqtR7gVw55+qY/p+n470LflWT5bTMtZ2GrRvrXnhtXH3LFZ/4VpWesESaWIF/xR/pHBx4D3HFD+dVrdb65iofXE4DlYC9nheFDBCQIoNZLJg7QDRvgJgyVJmKNCMm2BHM5pXJCyplvhgXALzvgCEx5o5HYvQ5v6zyCfvsf0z03fc7Mf6jpX0seWJDAupIh7RPSgAssMS8pYG54FFglTozWT9AMNUJI8gBITZW9Ex22UHGPAWOwKdsbVq+gyxQAeF307I4WQOOL2+qN/YVs5uVQ1908TXR9bH/VttTtM5FN0anfmvGrMkfx5jFc+OWu26IB+9fdmo6tlbA7l7TagTvw9oRCKaZbH3eAHVaQu65fS7N6NI5I+19yVaviADwMscpkSCQ1J6QBqfeB5AvqExFtrHUudNKm70vQ+HIvbf/K8afc1xMevbpkrffqlv3GPrbG2L22+/ElNuuiC5bfSNab7Z1vLNgYhzx00/ZcsGvteMEgFTokL7yqgH0uhkAlAbzvs8eSIGH8mH7o1RGv9z3QE8CUUAiJZSAPdnNlKThdJVNpsN0BPLK2+yHtOWC/bnzwXvjiZemx5ofN425LcfFGq3bxhu/3Ddmjn635O3qG+3768tiwnV/ivF/vWaZ64bud2DM2XCXaLp20xjcvVshi553fFmpPeh+n3766QIx58jMYhFQI1HS96E6CVkia78iYo0jNdj3YkF+qeBBNKUkJ4LGekBeFYt9bm8UZyL7DxgYp195RbR4PWL+X06NSc89E30POy3mbLFOTJm1efzrH/1i+2GPRY/xd8esFx9djjDpsdOesebhh8f7xx4Wk5//X8lHXWO/s6LLPj+Ic47bL/77n8eXuQ4Ra62kA8YQQPYHH1Ys/BOwJ7uXDj5ElLBNeVnMFXkPlc82jAYQNAiqlFRTNSF4TP0KXyNQt0dTeeixR+Py966MzvM3jzeu/Xl8a4MnYtCoc2LMP+/95FLtG32OPjtmt24ec665NCY8UrpqrWnLVrH+VbfHolmz47WkmqQq7az59W9G831Oi3+/dVt88OJbBR8vQZFKdsRr2sNrb0hYpLZEeTa/jaBbEYG3YA8Z/jQpQu8IZPasWOxJpFgxWfj1nXaOzm9Oi9FnHVrt7Wgt6HjwcdF80eIYe86vclspsy8xwGzIhX+MSQ8+HB9eeXq13513gaF1/Q4+LiZ36hp33fOHTy4xTwPZAx+k2NJ7gh/TWTgIEqTRipbFS5LAvQLwNNGGJObL+ftiyY4JRDybmdNqy3bxwdgeMffxQ+NbTY6OqXcsT5ouYzv3PDy677VbNB0zOd467sCYO3FCSX322HKrGH7Z72PEkYfHhEeXzlGpqazxhS2jx55HxPx+3eLWW6/9xH9aO8iQvPYlvgtmSOMAiSAtCnlEdE3vq3J9aQ1UAvZ6Xh02vkAlnQRsABKmENgsFhmv7DzP9NaUYLk+3SzAkQwGcF48UXiNboPi/QvOjwn33lLyKYede10M2XPraLOodbz79hu5pe8+rORFQCcYS4EYIO9Z0qFbDK6SOMFCCqYFuK5PJ+N7DsFp3vT2mrwqwSyQmR4PBvgLatKp8YJjpEdaduZdyJ7pUU2zB8gAzoSDL36+W39/V8y4/PSSx5u07NQpNrjqrzHpuRfig4tPjCH7HBAxfMt4YdaYOOXEZdlSzsGayDt6DSnBYRvyljpsWdK0RIkDklVVvVEsGHnZeFnMFRk+B9TQoQnxqTOTbeQEUvJGgIbJTQdVCbQEBcirVFKdnHbWubHpWhtHs1lzYtTJPy15HA0AuOk1t8WrZ50WE+67tfC1wEK3nfeLqYPXjP0O+PRcdHvJWk8z1j5Dh8rG0jOIgQh9d+mxRAbqAXBpj7vMje+3dvIIi3LXO/CA+EjZbWuWE0UOpqJCB9GWVrnYFwBK3sCkZ557KZ4YNTU6jWwTbR47NRb3WDvaf3+nWPzCm4Xeu8Xz5+feco+v7RKbnHNhPP3jXeLjV19e7pp+39ollnztwFgyaEH83+ZbFIbYpEfIZISa/6aDiFyrnzrNeMhUY/3T4Wn2OmJqRda6h7DvgJs0A02viCT7oFhcq4okr99dJseE3iwgEAQcec4JsV7rr0Snp2+Id25YWiYpo9X/qHNi8aZDo9M7H8XIc0/ILW91bf8jz441v/LleH7fnWPelMkll1O7fgOiw55nRouvDYlzjzkinv/fM59c69k8S96xPcgIz5hObFbC61nSQU2eLRviVe7arlzXODTAtvPnefMmlMLLbKbJBy0usEo6N2Wnb387dj1+z7js5Ytj8Ct/iDaTusQOcVy895dlS5w9efdNN4vOh54cLZs2jQ/POjKmj3wzVyHt+vaLz11xa7x3+20x9vrlz5OuSotrHnFRtN7lm3H8T78TF190YYFUSsut+Xr4K21tQlTIfKcDt5AU9gH7uyK2XVDKB/L/Kf7gM+3N9BSJ7Iz4jLyVVNl1x4Oi+cM3xNvXL6/jPN30/NYPo+dBh8Si0R/FyJMOjvlTP51xVHx9982/EJv//uZ49qA9azzl3BFjnb+1d7Te9POx9c5fjhuuvz4mzZgSI174tFKL39S2lRLOfClfkLYpCBgRRRJCKyISX6oUUyIGvpHcSEl2PtY64LskzNbabHiM6DsierxyZgz8+KPodv/+MWP08i16xffoPfU9/Izo/+Nd4v3r74wPLlm2XbL42l57Hh7D9t8/ntt3l5j5XvXVJMWfVUXR7fuHRLPha8UWW20Yf7z++thgyKbx9kdvxOOPLA3+tSKoOE3xgeoB9h4+Khb7QxVHpY99RVZd9Z+tBOzV66jWVwhsgRol72nZu/ISJVNpWbaeR2Wfab+7AJYBycuub7PNNoVsWFo63aRZs+g4v3O8f6ahFK8s9xzN27aN9X93R3zYtV8s7PZ8rN197ejfcs14/n9P555VLfuDfEgHn/hiPciyumkALmj0nGkJv+cUJKa9cAJkGao8Vr7cF8GYqDag4zRL6D6wr+mRT4gQQD4tyxYMqXRIh+wA/IJQbHbK8h5w0KHxgy/uEG/8av+YO2H8crfdccjQWOv8a2PMRWfGhEeXVl606r5G9N/3FzF7/fXiR/t9dxn9Izb0pqdBLV0JVpSNpeJoK44+PYpMwMzJp4PEtDwoB09LeMvVueu0EuidS3uDvUvrNm1PkJkENji7tNRZVhTQS8uyZLa9E+SRQPeEU86MLZp3i5mvvRCdfvDDmP3080urSnIGFPXY+qsx+OSz4/VD9lwG+MnODDn8hBiLsDnsR4VH9n6RIcBWSjJwygBDGqipdgDS7NNiMTiPEzeosfg5OWggTEnjihx5ZW1a7+k0dYSHrHvansCpygyl/e5IN9kcWdI0o3HlVddEm6H9Y85zvaLbf0+P9+68PdgXk2q7f/urMebyq2L8Xz/NjhQ//5oHnxR9tts2Xtx351gwc0bukhq6zwEx58t7xrzWE+MLn9+gAIDTuRiCAvs3JaicpSxDjRgpFsEk8JoGm2wS0kcWvLbn9qrCQf4B5LILxeK7kQop2QP8Ic3Sfnf34JmKs+vOm/7FGddGq3tui9FXnLrM9+u/HXTCRdFywJrx4VlHx6RnnsrV6eeuvD3mTpocI09aduhm3sVrbLFlNNvrtHh78fNx2hHHLHOJzB4CJyWokDtse/qcyoqREunxjDIzAK9WBHuiIquOBmTV2SmgvLgMObNtKnzSyjSYRwlt6msfeOjhuHzMFdFr7jdj+uN7x7bdbosZV/yo5LCtHtt8PboefHQs+eCjeOfUQ3P7dbttvGkMOuvSePfEn1VZTVKs8ZYdO0WXrXeMPnvuGw+8/O847zenF+w6gs88kGJRjQSvqMBLMQ6bKVBMT8yB7RCJKzJoESnPXik5Lhb23rGpaUDJ97i2OPHw5a23i77TWsWok/ardnBf8W/03vuXMejgfeK9a/8SY36/bFIgu67n9/aPwfsdEC8e8L2YU+aQOtPhO399j+j4lf+L9+Z8WPCBw/uuF82nTIkmaw6Mvz94Y3zw/1satCEgK1ICGZbwnCnpijDn2+g+b1BguTsOUeK+0qGbcK4EStqegHxHEqi47NGjV3Tfqk+8PnlezH/oxPh2i2Njyq3lnQbTokOHGHD0ebHG1pvHO2ecFBMeXrbqMrv/IadeER0H9I3n9/12uY8UndYZHl12PiCar79ujBjzWvTs3Tv6t+4TU597Lpq+/0I03fXAuOnmywrfBzNIBKaYEx6SoOLjigXW5mfhesReRepHA5WAvX70WvhWzCCQLghMy5ZtfIFlGqhgcQU3aQk0g8AhpH2wMvWMdN4kZ4Zlo023iKf+/I9484QDlzsfs/2AgbH+pTfEtHEL493pvWN2nynRb+3xsVXfLeKl/z23XA+0QDqbap8Ow8t6RdMJ1YgGAUBaluqeBXbpUDqBkn9jkGt7vBujycinGUc9RkBnmr0HIgXd6aASmWfAW2YMMC0WPW3eUdo7e/JpZ8cOn/9KtOrcMd669a744OITllthhowMPvmCePXgPWLme8uWEg888Oho/52dY4cdvvzJ5/RjyR5mQWrxF8oCy4ynA7kwz8iQ1LDKfAnGUpAtUBfkc3ZaE2ojgA4SQfBULAZ9WddpT7RgEuhIz9pm+AVDeb2uyAsBktL7nb+7W+yz+Q7xwTm/LBz102ffo2O9ww6Ml04+KSb8Y9l+XPfTZ5+jov9OO8Yze2yfmw0ecszZ8VrnFnHicUvL7Ks6M96796zppFqVNAKylFjz/+knPY4PUQSU5U3DLecdCGp9ll1IZy9kZXvpGnCd0tZ0arysgf5U76tY7Mk7nrg3Xni6Y7R++OYYf9WnAd3SI4EuiJ6bbxwjfnVgTH5h+aMc17voxpg7aVK8c+YRVT7S4KPOjfj6t2L+lJfj9ddeW+7+ACK6So/+Y2ORatoL0uMbgS4gu7iskV1B9ghCUh2Uo3PXKEP1uwaspe8awUOXacURG+330oFsMhnsT3HLxNV33RAd3+ocE87ZO+ZNXj473mHwWjH0tMuieauW8eov9onZY5YdGups6vUuvzk+/PPvY8K9S6tJqpKOaw+LYUccHyM69Y9D9lq2MkDpLd2n6wLxqaokzSAKdgTz6VA6dkzmxrvIq5yp7h4r/77yNKAVSMl7GsiqiEMYpj3D/r81kA5d5GuvuvdPccoTJ8Zab1wec1/tFD/oeEyMvm3ZFpH0SXt+Z9/43HHHxWuXXhFj/3zR8j51x91jrUMOj+f3/nbufin+gCGY3b+4Tay5z+Hx3MTRMWHi2Pj80C3if5OejQuOO6OQQUQqpdgEOX7DDTcUiO1ikZFHLNvHxaLCT5Y7JfvLfYtsl9YZFXHsXrEgJ9mf9Df5UtipeGr8XgceE0tuuy5GXr00GCtXmjZvHv2OOCuG7rZzvHLkgTE+aZfxPYOPvTA6DOwXLx1cfem/lrTO2+wSvXbZNSa2nFVI/nSZ1zZm/u/ZmPHI7YWkUp/Tb4756y2Je2++45PbhAUE7GllFb+HkE2xGezj3cHYtRG+QZsZ35yuAZV1ElMpnoUVJHAKhH3/gTF+o4nRdfy+0e6NbjH8lQNj4tP/LftWzHwZeupl0a5Pz3j9qANi2ltvLPPZpi1axCbX/i3GPPhQWdUk7QcOis47/Cg6b711TFg0OVq3ah8dZy6JSQ8+ELOe/EdhOC/yffgVf42xrWbFA/+4q4DBJbBSctlahB1VPhQL7CzpAEPCRRWpHw1UAvb60WvhWzHMgtV0iAk2WgCeHvVkaAumNv17U0eBo/R7/AbgI+OdGjPg9ctbfSWefPeFWPTxoJhy4xXL9Rh1//wWMezU38YLP/l+KJOZtcFPYuzgYTFo0xHxf/23iv8+/uhy5zYLejmKNOvo97BsaRYGMy2jl5a4+nvOPi2b9N0CNiw+fdRG9NoJbtMSZJk4RjwdKAaIuDYNKJW/ZVO+i+8DScKpYyCLiZj+AwfH1Wf+Lqb+5bKY33qN6LfPfvH+xWfHhIfuWeYxeu3x0xi4yy7x1A+WL/fmJAcedU7M3mhw/Gj3TzOGAlSAPy3lZzgBZs9WLO7d36XZVT11Mq9pdlgJujWpWqO207P1zFuHabbY+xDYpoGj62Vf0qy+HmaBV9or6Zlk7bKM6d+u+3tMv/b8GPf40mF1TVu0jH4/Pyt6b7tVvPmrA5crv17n7GsKA43ePT//yB+TV9c648o476+/j8ceXXo+tfumx9RxY9g56HSyuWBY1UA6mAVRQjdpf7assSqQ2gaOMgmIPN+bBoIAByCRggv924Kw9O+1frjP1P5ceunl0VrLwf/mxZzfLT/Ism3vPjHktMuibdeO8dKhe8Wc8eM+WYotOnSMDa++Ld6/+rcx4ZH7S27nVl26xho7/jA6bLVdnPL7s+L+++4rVI6khKYSPWteRUixCJoB41QHrgP20soZ706Jdt5Z4+XYHJkX65F9Lx7ap1rE/1fSXizsI6IszT4gx5Cf9lzW6rThRpvEwSf9PjrccEmMvfNPJW/HbIABx54bM0e+E2+fdugy2bNOw4bH2mddHm8ef0hMfyu/jNgXt+s/IDptv2e02nyLaDewcyxo3Tz2/c4uMbloKjeQZp2xd2nVA3Arq5UeS6q6jC0vHnzJ76k4Qy7WxckI5bynyjV1owG2GHGXAnWgXjVFOgvDnrNe0uzyiSedHIs+3zTenDA1Oj51fmzS7r5YePWusWju0mOlqpI+BxwX/XbdOUad/IuY+PSTy1w64BdnRYcB/ePVny+tkCola2zxxei+x+ExsUPz2HKbLeOdf78UHz/+eLQZuH58OLx7nP3zn8TBBx0YyHrPViza3+CK9MQSPgkmSIMbOpM0qW3rDRJShZw/6RG+9MrmpTYcgQgnZH/fsmWr2PWrP4qPTv5JzPqg9JyiUvpq2alzDDruwug6fO149ed7x4x3l+3b/vyf7okP7/17jLtl2VNXir9PG0/XL389eu2+XzQZ2DX69ugbHz7zcoy7+68x45kHl2lhG/jTE6P5bj+I264+OxYsWNpiRe8wbmrD6Z0vE0AXi7UniM87grW6Nebfkd+q3yR+0gSZuSW+P21L5cdVO/j7tTYfHiP6jIgWD10c23V8MmZevGwCo5x70C4w9NRLYtGsmfH6UfstU5nmCL71fnt9jDrn2Jj8/LMlv07g33m7XaPz174RndbpHTFzSUx7dURM/tsNMfXFp5dL4PX88VER228R99y1lOBFiMAxqQ78PbySHpmqjYRfFQdUpH40UAnY60evhW8FcoCUdIKwzC+mOc3MlMpGu5bhT/vdgUUlQ2nWzm9vvfU28eKEN+KhhzrEwAVtYpPPTY2RvzkuJvz7kU+euNd39on+3901nvnR0uO0Og9fN5puf2xM2Xjz6L/ByNi04/rx/HPLGgTZKcGeKexpNouBFNik4M3fM6rp8A5TQAHsFJQLKgG72k6Lx8gCzWlJpp5WmdG0pFbgKBstsCwWTK3APA3KDIfKBpIUX3/v3x+PqVdfFmPuXmrw1jzwhBi4y7fi1V/sF9PeHPHJpWufdlksmDwp3r1k2VLX7IJ+O347Ov3g4Nj5gF0+AchKC91/2pvlPmR1075YLLtS1rQMXdm2bEB65jojm5X2plmUcreIHkbZhvR8Zo5WMJWCDs7WoJaU/HHfSvrSVgOElSBLVuHyq/8Ufd8eE2+de/wyt9eyS5dY6/gLo2O/NePFn+4e86YsnQDfrE2b2OTqv8Z7V5wVE578T+4jdd9sixhy5Gnx50fvi6uvurhwDedsv6agyx5AcqQsvr8XjKRnzctOItdSYiUrE67tcVfZiQDeH3a7WOyrdIgiEkzgmFZRCMqAHEA1lZdHj4wHHl0cXe66JD6+6/Jc3XUcunYMOeXimPHmWzHyjE8z6R0GD4nhv74iXje5OWcwXfM2baPrl74aPfc4IOb1aR9t5zaPd+ZMjJ5tmhbIvLT0EIiyh1OCQ+ZWqWq6t1WfOIUgHfiHAEN0pBUy5a51tkE2Kx3SaH8CdWlmEWmJHEiH8iiHt8aKs9SHn/6r+HK3r8e0iw9bLruS3p9qnX6/OD3G/PmPMe6eT89T77HVNrHOcb+OJ3bZNhbPn7fcY7Xu0TM6/9/3ovPXdoiFvdpEk7Gzo/30sTH5c9vHI3dfGL+7dFlbKAig25SQ9fcIurSnkU0yXC7dw0hs7zXviKpydV+5ruE1YP/ktX/IOKs2STO9eo6RWumQtieefCbOfOvMGDDtx/HCTd+Jn/Q8Iqb+rbzMb7NWraL/kb+JNbfcPF445Icx68NPA9CNrro9xt//txh757LHE2aa6rrhxtHl+wdHDB0Qi5YsjvZT58TEu2+Oac89XmhbG/j93SL2OS2uu/r4mDhuTKE3Oj2KTsUIe5JOydd6Y28ju4tFi5LkQN4pC+W8wayVgB61ZxULrGI/pkMtZdZlgbOy/W2+un30ntIy3jlu2aqpcn4/u0YJ+zpnXB6LZs+OV3+5Tyyat9SetO7RIz530fXx9q9/lTubRNa2xxe+FD32/nm0GtY/Zo6bGotGvRfT7vljTHnpxdzWBnNmOp14VTzyn5tj8qSlQ9fgRzgm9QX0qiUjPYGA//X3EkK1EeSAcvq0xQwBxc+kp4vAB2x4hhE23HmLmNiiaXR/57AY9PYZMfbaM2pzG2HNrnXC+THuoYfig6t/88l3+Pt1TrkwnvvJrjFv8qTlvlviQatHj+/uEe2H940pb3wUc195NWY89Jel0+dz2gV9CfzT5qiz4q+3LyVfECXseDolH5EFy6W2XXBvPVYGz9XqdZf1oUrAXpaaaneRgB1TlwbapgcDxtioYsn6NtP+dQ5C1i4d5MWhyPCmfeCyNR16d407H5sUk59eKzYcf2o0axYxePcfxMtH7h8zRr1d+Nkhx18QCydPiNFXnfPJbcjMtP7RxTF/wz7xuQ0WxbRRk2LqxGVLMgUH2LW0Lx1YFQykvfR6sGQR04CCo5MxS6fhM9C+p7aZXkGjzFqajQYeAIwURCATGNyUqVXOxvinPfveJ4a7+Prdf7h37L7BNvH2iT/5pBevWes2Mejos6PbOkPj+YN/EAtmzIgmzZvH5tfeGW9ffHpMTsiQDoMGR6cdfhx9tv96NG3XMt4aPSr2LxqEBuyqBEgHgXj/nEs6IZzx9E7SPn7ZL1UbxT2HCCHrURlv3vnu1e0AAEEAJAAXiBeLQFDfUzEji/jx+yotiofpyNbZN+6vWDjLLEPp/v92/X0xwQTbnNkMBhANP+uKmP7WW/HWWUvL22US1//NlfHKUT9ZbkiXTGW37x8cPbb6Qsz5eFrEzJmx1zE/iXHjxhbaJxBraV+6+wGo0gF+rufMkGzF4j1Yj2nfOF1bY8BeOm28Op37d5Ur1kSauTUIUhCVtn/YiwiotFzZnjPbIAU5SIbDzz02Rt3VKTo/8LOSZId7UaUz+Khfx5hb/hhj71laNmoS7bCjz4gnvpeApyZNCmCu9z5HRpeNh8ekN96NyY88EjH6heh88Cnx5KsPx2abbrTcWhQky3Cl2RNHKyEA0yoZFQZmKKRDglQkAHW1ndAvgFH6l5aDl7oP4Md9pFk4fcHeXXZ6AiLlir/+NVo+Mj7GX7j8Ob95a6LH9t+LgfsdEiPPPDI+fmWpT+m775GhbH7ESctOhW7RsWN02eqb0W+PfaPV4N4xc8ToGH/PHTHj2Yeidfc1os0hv4tmwybED7ZdtpwUGJNNT4+QsqbZ+7R6hg1G6qZgWoDPTtWWoCpnT1SuqVsNsO1IV4FjWuXHF1rTKXgX3PPvKUZ4etQLcfhDh8am4y+LVh/2ii+OPSzev/vT8ufq7lyrx9CTLgoFLK/8Yu9YsnhxtOzSNTa65Pp484yjliO44JnOO+8fvbfdOmbNnBkzX3otZjxwQyFwKR6Sae23O+am+N+s++OKUy8o4Cr4o3iWh/59FSN8VvHgXYkFJDPyvFjgNgE+W1wb247IRqwLwIuTIGwEgiS1dXynIL64CuKb3/luNHvwlRj/x/we9Or0nf17x7XXiWGnXBQTHnko3rtmaT+2ga3DT7kg/rf/9wrYpli6b7p5rPHDw6P3lpvF5PfGxOTH/x0zH729yonzPt9+wKDofuRlMbH1uHjkoaUVWVrjVAWmFXd8qeAwbQXjD2Hs2p4L/v/Yuw7wqKqtuya9915IpxN6R7oiICi9N6lKRxFRKYJUEZAqCKgoAgLSe7HRpbcECKT33tsk83/rhknunEwgCTzfe//L+V4+njP33jl333P32XvttfemXcfzRR3FVCzKXJwHAxycB8FkUzNzOL7uhvgkD2Sd64kuET3KrDFSHtk7tGoDj8lzEbJ6fjGt3rFbf7j3HohrY3prXELXyAi2rTrCfeQk2DaogdibgYg9fgwZl489t4uL+iL2zVrCacZibN23QfqIQQcC/GIxV6YxEjQXCwFyLyUztsphL8+TrdwxVQ575eRWrrPoKNEpER0pRl8YbRaLlJDqyw1OpKDQiCbSJeaNs+AZI2xiRLtduw74K/wKbpxsDpfgw8jeNgYoLITnlAVwbNYY18b0kShoTbfuw5N1i5H0LO9U38wcNq+9Cb/3p0FhYozHyV5wrB2AnCdJyMnOKr5n0r/osIiOGTcXMgrEivhlARFUuHQqxcJ73OhpJGjr2V0ewZPSy2IZomPO+XIzE9ujcA6cozytoCxqKzdnPjfep3wcPHQWBXt+wpMfNauwGtrZoeb8NciJCsfDxbNA+nC95Ztwa9qoYnTU2NkF1p37w6n7W9AzNkTUqbPIuXocNqM+wqSlMxAeFir9FClHNJDEyqjMqaNxLFbEp3FM5F+MbNPA5toRiwHRcSaKLdIeyyNzMhFI+6VjLkf9KUeCTWLkltRCRuu4luSDjiudA7FQGCPZdL4YqezQ+Q3M6DoUgR+UHXJSLHgAACAASURBVDWgoVbj0+WI+uU7RBz5FbaNm8Jv2jxcHvZW8c+xl6nN2+/CpmVz6BYUIPzXX6XNzW3QeDxxs8W0iWOlYwmg0RET1w3XLecjypG0Yb4fcqo0c7xY30FkjdBxpvNH+nBl+lPzmTNfVHTM+Q7RuWKag3xws2VUV+w6QNSccxQprF+vWQsT32bQ/ysSiV8NLLMSvPo3HFu3hef7HyNw4QdIDQyA66AJMPetjsCFM4qnYduoCRwGTYRpDT8UJiUjYtf3SLv+V3EbG6/lP2PfnZPYsHZ1qfaOjLTwPRbrUxC8JC1RjH7R6CATQgShaFyw7kZle7EzwkVWi2g0M2JPVoNIp+Uz5joSI/3UUXyG6rZpHp5e+GjFj7D45SfE/PJNeV496RiXoZPg9XZPXBs/SKoIX2fZZqScO4DIk0VtsnQMDGDXqh3c350KPUcHpNy6h+QD25B05yaUmZnFv+Mw5yAMOjlg+qA+iJEVkWJdCr4DYn0KGrVctyIDhYAI33t5T3n+CB151napLFBSboFUHfjKJEDdTnuFz1pkQ1HX8z2Sg+4EW/nsRRZPrVq1sWL3Wiy4PA+Wp3ajhU047Pf3fG77Km03IYGvi9Yh9rczCNn2NSyr10Ttz1fi6shexdFf1udh3q5Dpw7Q09VBxJFjyPjrANIea0aq5dd3m7sLifUKMKnfEIkpSBBNpGFz76T+FCPeZBuKKXJqXUX7rDK6nYArmXWijuF1OTfRoWR7WbIT5Wk+E2fOR8yyJQjfV8K+qezCYGE/nxkLELJxCeIunodjp25w7TscN94bWHxJ67r1YNd3AqwbNQCysxC68yekXz2LrChN9tfz5uA2dzsSqufhz4NFBXnpNNIpF+0S2g78TGRJ0a7k/icyJMp732SMEKwR2/gSnGXkXWRicm/hmqce92/YBIr6+ogIrA3bYA9UO/lOmZ0Nyjsfx+794TN8NG5/OA6Z4aHwnr4QqpRYBH9XwkwhMO4yYjpMvDyQ+TQYMb9sRcqtv8us7q/tt5lSWHv9Huy9egRpqSkSqE97jECEfHD9c/8VGQ+0Lbj3ifUsynufVce9WAJVDvuLZVTpI+iwU1mLEXNGqBktFSPONP5Z7EJs00GjkzRmeeswRmUYURL749JBat/xdXy1/ywyrjREw8B3EXmqqH+pnqkpqn+yAoVpyQjZugoNVmzG9ckjUJCdBbuWr8Fj7AwY2doi+OBh6MYHIanF50j2v4ZGeq5ITS6JshMtpmEs0iC5kagrgsuFRsebDonoyDNCRdquuPnRWSOCx3z5ig4WMiFCShRULMRHmTPSKY/0Ul4EB0TjgqkGpHjTsZQPPiNeW4ysHdtxCjErZmstukXjoc7nqxG17wdkhgbDZ/In+HtsfykyYNO+B9x795eK1D3e8i3S/+bmFin9ZI35a/FXXjy+XFzU35RGMecl5tCx8AoNBpEmzOgW1w1ZBfJB9gFRezEvm4Y0oyj8rqKDaR9U1Ny45BFzOpJ8DmIle26opMmLcqRzxU1CzHElA4KAAB2hsRMmo12GAtE/adJ2xTnTSfed8hkeLvsExtUbwbJGTQQu+xRsY2XbbQgc2r4G5Ocj7Pu1zza3FOkSbt16wHriR3iz+2vSf3Mj5iYuVoxlKgopcqwoKx9lGXVEn/neyuXDSDzfIwJ1NM4qOki/5sYq9g6mkcfCRGK9Bho3fH9FI4fXISDBf+Xjr0tXcS/aEDoHTiBtu2ZOZ1lzdeoxGB59++PG5OHwmb4A6ZdOIPLUCVjVrgOHfuNhVbs2MsJCEbd7k0SNLHyWq6i+ns/M5XjiZYw+b3aXaOdipwNGv8h4kOtJRpfIPBEBERpvjP6K0RY6n4zSM3Ij5puX5xmQpcCIm2g0M62EekaMODMyScBNjEqQvUNDR12s892x76Pb2xOh3PQZwg/vL89Uio5RKCRDztzVGfc+mYgm3/yMu59OlnSJfbMWcBk5DSbOzoj56wKST+xAyoP7Wq9tO+oLZPXsilUzB+FJUIlzQ6eMkRax8jL3ILb0EQERpiPxnRfTkghYcP2LrQ/Lf6NVR/7TEqBupx5n4EAeMef6p01CFqF8lAXG9ujREz0+7ItfnvwC29MH0NzmBArWlwCoFbkvq1p1UGPWIgRvWQWFSgWnvqNwe/oosIOCzev94PxmV+gb6uPJlm+QdqMEDHzeb9iOWIC07i2w4L1BWLVypeSsi+3duJdx/xcdedp63MtE+RC05T5bGd1O9hSvyTo68kG7iKlVYuV4bQ7l4BEfIHH2eCTfLWmVVhE5i8c6vNYBPuNn4NaH48BCgIr0OAT/tAXsfGP3zruwa9IYuUnJiP5xbSkwsLy/6zlzFcx6t8a2lSWOIovv0SaQ19AgQEJwn6w++SA4wn2P/4prszxzoI4mW0J0VBk0oEMqpn9Q/5FFyACEh6c3IvyjYfhoPGql6cBgU0cU5GSX52efe4zbyGlwbNkSN94fjIZf/4CQb1dIeydZbc5DJsHcywtJd+4i4SDTDW5W+vdqLNmG7Op22LvrRymYwrUndiIgo4D7qdgdhX4KgY4qh73S4n/hiVUO+wtFVPkDqMRJqRKp7FSspDHTQZIPGpDcCOSFergp8kUQHfOyirzRaXbw8sCPR2OAS7lw/WM4MoJLKpEzd7HOvK+Qdf9vmNRqgtDt6+A2dCJMHR0QumcHEv48KSHeemZmMJm8F0HVs9DJywppcSW5MpwT22uJxmdZjjzzPKkAxdQAUoyoUJljKh90qonoEzGu6CA7gXJlz2+Ryk4QgFExec48kUKCJKKhX5ZDSeXM5zdy5MjiqdX1b4glY2YjcEpJH29x3la166LmzM+RePU89C2spWIhnkPeBXT1ELLpSyTeuA5lVkmki+e7DRyDyFZN8OGUCdLliGySfkjZywcdeW5OovNAJJhsABERZt9cUlnFlmmMFNMprUwBNOatc52K7ZoIyhAwUHcRUM+b+Wd0VMRWXM9zKPmcGEVdt3EbnP44h+BdL44aOLbrDI8hY5AeGo7sgL+hNLKDa5cuyElMRvgPX2vd3OjYO8/5Gj2GdpGmS3nQUBDlwvuisy5SxhiF4rMQ1zuBIQJa8oI1pNTTIaXTTieyooNF4uisiz2/GXkgqCZGJQgwMBomGiN0KImYi8UhbwXcw8W7ejDf8zXiD38vOdeqgoIXTrPa6A9g5ecNEwcHBG34Ehav9YBDo4ZIvHcPsfu2IU3mDIoX8xk9EXpDRsCkME2apwiIUJ9SV4qpQHQeCLzJ206R2kjgTawsT+OL0XXKTozWv/DmAMlYIUgmthuiDJlCoc3Qp+EjgmSMUBKEU6+J7m+/jdHD5iBt+WRJRpR3YV5+kdwLC587NTKkasxeClVSBMxqNsTjtYvhPGgCrLw9EX7sCBJO7y8GA8u6kM+Uucjt/i5O7l6E77d9W3wY1yn1tKgnabgxiq4NeCM1kvpSPkjZJdtGLFJWHplXHfPvkQCBXxa95R4j6i6+iyLdmyAZgRkx7WbsuHFoMawDbkQ9Rfz+WehV9xhStkwtXt/ytV6Yn//Cm7Vr0gy+E2ch8dYtKNJikZ6UiWq9+kGZm4dQyaG5ifJcR/1DrsOmI6PvYCyc3BcT339PAvJFhgh1CfW9yN4j4EYnWmRTUkfwHBE4feHNPWOjELwW2ShkaJL2LdbroE6kfSPXPRNGf4LkbV9KaZBMAaA85HIu4H9Lnxd9p1IqXzg153eGwbljJ+m5xZ3YA33vhnBq0xrpoWGI+nkjUgK0g4EvvPCzA+z7vAedUYNw+Ie1xacwN59gvZxlSj1Ce0AE9wku0YmnjUynvqKDjEXaq2JKJZ8hwUbRFufzoW1C3e7tUx16HYxhEjQcdQxjkLxpssRmFeUurvUX7akKHV34fLAQRiZ6MPf0QeCqhXB4ezhsatZE7MULiDuyo8L92LXJxX3qUoS6GeLa1YtSMVGy9ES7krYcbT0GiuSD6XMEk6oc9oquuPIfX+Wwl19WFT6SaCsddrH1E5Uwo0Fir2MakYzkyYu5USnRUROdY75MdIbEgnOe3t5QWRniwXUnuObeQk7IYyC/SGEo8nMBZS6MrczhN2AAzK3MkB4RhYzAu0gPeVrKIDRo1hupTuZwt1UiP12zcBGNTNHR5lwZVREpwqQ0cVMXc6l5D3T+xcIpNKCZSlCZonNUnHQaSQ0jlU8+6HRxjnKDntF/ylykZpeVK6stcuTt7YtNs1cgPzsbhbk50gaoUuYBeXmA5ODkQqHMg7mLI2r17wcdVQEyouOQdvc6smI028XJ50vqX4pvdfx+7rT0MTcRrgXS/XkPavSY64CblLhGyAYgOCE6Cdx4aFiIzA9G7ulsVqa6Kg00bpxiZX+CLyzqJxpvpGTzd0RqNp1irn9xMyCVltWl+Td33nJ0bdIKqbEJUCgLoOSGmJcLFeVN40NZJG9If7mwrVMbNbu9jpyUdGTFxSH1zt/IS00tEjULsMgjRCoVmAtm2fkd7D5alIdNRJn3xXWiXjuUPYETrl2uOfkgmMM0BDHVg3RzpjPIqfKMuDN3nLUDxKJF5VE4pD+SkcIUB/mgEcG1LRp7NEL43PlM5IOAAWUuRo4ePH2Eq9fz4KaIR25qOnR5Eh1HZT4KskvWuiq3SNaUuSo/D7qqfLh36YJqTeojPTJaovKlB9yFUp1aI8pd9ixM3atB2bQtjHVzJR2jjrCr1zwLlhFgEPUGKYxsOSNnMNBo47oUQSu+72Q68djKMHn4O1ynYssmsjFYVI0RIfnge0XwRGQZcS3Iq683aNQYH074HO7OtkiOjYeuApLMWXNeUVAAVX4+lDnZ0lqX/tR6pqBI/gYmhvDu0we2TnbIiIpFRtADpD95jEK1If4cuXO+Zp7eyG3aDU/uncXDZ/qTcmfNCRrMYjtI6mhG2Wk4ywfBVkZaRceGKRq8VlWeY3ne7v+MYwgKEtwiq0Wuu7gfkZUj7tPUY3wvxHQc7i/t3ngdB48cRJ06neFpaQYoC2Flbg6VsgAFuXnSWpfWu0IF5CuhzM2Fin/U78p8SbfgmR3DvdXKyx21+veBMiMTmfEJSLt1FTnscCBE/Z8ryWfvhKlvbeQ0aI2Lp35Bgwb1pXUqppMxJYSMQLF9LSORTMUTW4wRpGPgQCwWW54ny32eTpAIbvFalK0Iusqp2errt+v4Bl57rQMSYhOQlJAMnQIFKFqdQhVMjU2Ql50DKJWSftGBCorCAknOat0u2TJqmUtyL9IzTq1awqd9a2TFxCMrJgZp928iPz2t1F5a6jlo2W+Lj3n2nVnNBiho0AhBdy4Xi4m2AtkN8vXHL/k8RAeabE4CibR9xGK85ZE7AQ9GisXUQwIyDPow/VA+yEjkOmGqFu0CD08fVPP0QteuPXH/9j3kZedDh2aGSgGdQsDC1BRZaRlQoBC6KpUkd1C35+VD+cx+RF5uEfPsmeyp5/X0FfDs2RNOvp7IiIpBVvBjpD0OLOqwINgwlZE778miWXukWhoiKjJcspW5/kQQn3Y7nXbx3SBbkGl1la09VZ5n879+TJXD/i9cAWU57IyGUeG/aoc91SYHeZGvwz3/PnRSo5GfloKCrGwUZmehMDsThVkZKMzOgIWbI+qMGwcjRSHysvOQEXinTIc9zckcbv+jDjtRWjGaLXfYW7Rsg/njPoZOYaHkpCuzs6F8Jm/SoIrlnp0BVXYmnBs3gO87PaCnp4uclLQih12WJyouxec57PJj/7857ARrxLZocoedTtgPi7bA2Ehf2uTys7KgzMpCIWWelY2C7EyocjKL1nx2Orx7vAXfzu2Ql5mF7PgEpN6WOexa3n9WIy7LYZcfXpbDTlo/aaT/TQ47uzUwYiNuwtRhi5Z8if7t3kZeVo7kQBYZF3nIz8yU6H4FBKqkv0xpnRdkZUKRn4Va48bC2aca8nLykBURhrQHMof9OXpX7rDTWReBwYo67ARQxE4P/0kOO2mW8nQn5vqu2/ctrpwrhDcSYGNljEIJEFGiMDdXknthTo5UtbkwJwuF0r+UfTqMLExRe/x4mJsaQJlbUNphf8F+R4c9r2k3BMkcdp7CtAGyX8SoHp01As3yvs88vsph/xcaFv/wpemw0yGlgy5vY1pRh53vLVMq+O/EiR+h82udkJWWCWtzCwlQKnbYFUXOoyo3XwL4JN2enS3pmiKdzjWfAVVOBtzat0H17l0lhz8rKbnIYddSObs8IpM77PXr+0vpS2KHHzLDGJAor8POd4bFXEXAujzzqajDzqgnnVUxBe7TeYuRFJ+ExNgk6BSWOOxmxibIzcqW9LnksDMIUEgdkyftqdTrRbqd/79ItxfZkenwGzwIns0bIS8jC1nR0UUOe4Zm4bny3KO2YyrisLO1JkF8+XhZh50978kKFdPDGFwg8/N5Djvn4eziivoNm6Jd+064f+se8nLyJUddUaiQHPcihz0dCqiKHXZVfpHcybKkHSnZMdTtaplnZ0AXBagz6X3Y2FpCmV9Y4rA/q9pfWXnLz3tZh53OvFhP51XMq+oaRRKoctj/hSvheZR4RrnE3ukvS4lXORriwm0TGN91gd/lQcUVg+W3SEp8/WUbkHLhDBROPkg4sQduwybCxNEBYQIl3nTyXjyunoXOXpZIjSvJYf9focRrK9olp8TXrlcPX47+GA+mDXnhKmIFTp/3PkDW08dICnyI/JQEeA4Z/UJKfFTLJvhg6n8+JZ40MiL8/wQlnpGPQxv24sH4kj71ZT0Ar8EjYN6gFfSNjRC553voudWSKPHZicmI+H41ku7cKnWqRY1acJ2zCm8NfVP6jlF/OlRif/lXRYknE4QO87+TEk/aJiMLojHC6ND3P/6MtnZ1EPL5hHJT4ustWouMsHA4tmiOoHVLYdG2ZwUp8SNhUpgqFRsSW4mRhktKqFj7ggwasRbFfwMlnnR9OdWTHRu2/LYDl/8yge49S3j+MRTJ9++UixJf/6tvkXzhNCwatUHotq8rTIn3nTIXORWgxJPdwai7Nko8qZFMTZKPKkr8C7eK/7gD1JR4MlHk65RpEhWhxDMFikwgRioP7jmDjE3Lkfb4cTEdu6KUeLc3u8Ol9zDkp6Ui9uR+qExsX4oS7zZsOtL7DMbCKWVT4sUikeqHVRYlnuAzmW9ii7DyPGSC1BWhxFMnMiWSjr56mJtb4N2+4xG6ag5yYmNLqNnFVPgSinwB2YDloMRXn/oZYGwmpdoEb1sLE/82/xZKPHU9W/iyZap8vCwlnul9BCLFAqF8hqyRJAIErMfB6Lqayfj6oJ6wyW0A1b4vkP70qbC+S6clSKkIL0gzIyW+waotSLx+FS4dOuHRqi9g/x9Giee7TVZVFXuqPG935Y6pctgrJ7dynfVPF53TtzPD/Thd5N1tjppXByLydFFbDPXQMzVDwzU/IOrsWSSe2oP6X27GjSklRee8J34s9asOPnAY+qkhSGqxAMn1/kZDPTekJZfksP83F51jfp2ctvayReeObT2EJ7NGF9HwyhgsOldvyXoErVkMXUMD2L3ZH/dmvwf2DLdp3xNuvfvDSEvRuerz1+K8rOhcWRWZK1N07qOPPpJybeXjZYvO0Xhn9fyXKTpHQIR0v+cVneOc924+gLRNi0q1xpPfj0Pr1+A1dgYeLJwJ5+4DkBmfiMid37y46FzXt2A9adY/UnSOxgXTWv7dRedI/yNdW4wq0Ni8ffc+GtrXxcP3e73QsKD8vUZPhVWDJrj36UTUX/YNQrasRsL1q0VF5/qOh1WdFxedC/IyQd83u5VZdI5pM+pew/zN5xWdW716tUR/l49XUXSOwJHYpq2iReeYmsLIjdiq8dCdUzh7KQNJp5qj3ePuSNYCLGnckEKB+iu2Ii00DGGblqLp5p24M3vSs6JzLeEyciqMnZ0R+4Kic3ajFiGz55ulis4xYk66P9k88lFWFX4ykRilEum8VUXnymU6/Ecd9KqKztGg577D4nX7fj2FvC1rEXHscKXu1apWbdSYvQSPVsyTqsTruNXG09VzX2nROfaflju/nCg/I5AvMpG0FZ2jfmA9Iu6z/0TROTpKrIwuZxMZm5iif49xCJsxCJnPus1USuDPTnLr0QuufYbjzsfvw2/GfMSePIjYs8decdG51TDr3eqFRefITCJYSMaGfLxs0TmC1gQ+xJQDpkkyfel5Rec4j6ZvtoF+fiuYrRn1wjZ25X0WrE2iY2SKwAXT0GzrXgQumY3Uh4ElRee8vZB0+xUVnathj707t0utacePH6+1Cj9tPbHoHAM2TImtymEv71Ot+HFVDnvFZVbuM/7ptm5m5pZ4YpyAlMt9Yf9oE9K3TdFUZAvWQdfEBAGfvS/lvbTaeQwBi2cXVxB1GLMcV8zfQ8c3suCiG44n6T5Fbd2C/jfbupH+xE1XPsS2bju3HUTmqrllVmFlW7dG639GxKlTCN+6oqit29KNuDVjdBlt3YwQdeoMcq+egPWomRpt3UjVYq6z6FRVpq2bttY0/y1t3fg81qzZBpuDOxF9tii/Xxxs61b789V4umE5Yv88C8e2HeDc913cmjKs+FB1Wzfnjm2hzMgqaut26RjchozHU1dbTJW1daNTJeaqP6+tG40JOX30P72tGw1pRnbFtm5kFRgaG6Omc2Mkr/kE8VdL8gq1yd25XUe4j5mBh4tmSm3dqs+Yj+y0LIRvWV58eHnauv165xTWrVlZqmjQq2rrxqgIndCXaetGebHKvHxUpq0bmRpirvf+88dwLy4LBQ96wufeDMTsKmnho03uXpM+g22Dhrg7axxyExPR7Lv9CNn8FeIuFYFyFWvr5ojpg3ohJjq6+KeYK8p3gJRg+SCIyMirWJioqq1buc2E//gDX1VbN0bfyCRijuu8BUvhffFvxJ3YV+H7Z5ePhl9vQ9AP3yHm4E+wrFkbNWcvxrVxA7S0desIPV1FOdu67URivcJKtXUju4eBDHnBYNoK3DP+qbZurCvE+jTyPuEmpmYYOuIDRM4eh/jLFyssa/kJbOvm+8FCBK2aJwHlHgOGw9CvIR59Mb34MOs69WDXT93WLRuhO3+sXFs3vzz8eaio+wpT4Og8iwVUn+dQvmxbNzqeYr/18rR143w79+wBE9vW0N0wC5FHNOn6lXkAbv1HweWt3rj/6SSpFoz/iq2I+/00Yo7sKr6c1NZt5HSYeKrbum1Dyq2r/5K2bgTeWM9CW1s3vgNVEfbKPOXynVPlsJdPTpU6igY9i1CI1aJJ02RBB+Y2yUdZ/cpZ7ZktjMRq80RT6RSoqyXr6esj074Al/5yg3GAMRrHfFzc0s1txHS4vNEFAXMmIv3pE+ln66/ejrhLF5D611EYdRqD40njsfeoE+zsVJg0MxVd+oejICYbUeFFfcDVg9EqtkaTtzDhdyyGwrx8trWSDxYAIXghtrGjUmVkSd7DlecxNYDXqWzxClLJ2LpMrPJJo1ibccw2cKz2zH/lg8+HdCux2jyfJwuFETnf/etRqA6fQfh3q0qtEV0jY9T8YgN0DQwR8Ol45KenQ6Gnh1a7TyJw8celosNmXt5wHzkDRv4NkJOfg7i0JLw7pqTyPNtFkfYmRuP4/EnXEivUsigXn4lY7I+OOSPhpOupB50P3i8BAbFFU3kWP6OdrEjPvH/Sw+SDjAZW45a30yMQwt83NjbWiMgzUsr3hu3h5IPINtcE8woLCgqwZMUa+CUoEby0pL+3+nhTN3c03LADYSfOIGxDUUs81gOos3gD7n00rlSlbP9lG5Hq6wo3d3fEB0TDBIUYNmssYmKipXwsUt3ESuKkg5KSzX/lg8cz+kJjQj74HLgeyfCQD8qabAJSH8Vqy+WROwvCcE1QLvLBgnMsJCfmk/FdZARGzKnkO8c1zeiXfLDoDJ32e8EpsPvtKB5vLqncK86PLWaqf7YCTzd/jbhTB6WvCZS4jZiM66M1HT2FQgf2LVvBacR02DSujYQHwUj87Tcg5CasJszF5Xvn0KihfykHsaxikIyYM5dadKDpmLMyv1h8j9XySamsbHsxRooZbRap4JwHi7CJvZOnTZsmzUOMyDNax2fHvsrysXb9RjxwfYTsE/PQVOcYsjaU3UHAoUsfVBs+Dk+WflQMHPrNXIT8XCVC1szTuK6+hSVsXusGt8EjYejpjIzAEMQe/hXpf5+BkZ09jCZ8A72acRjQoYfGeawpwbQQzldjnmvXSvsSWQzyQR3MSBXp1PLBwlHUU6KDX561XnXMv0cC1O2MLBMwZrFH+eBeyDV99epVjc9ZaJf7u2gjsMq8n58fRo5+D68Z2CNo0bQK3ZShjS3qrfwOqcEhCFo4TUoTYXvURht+RsC8aUh9FKhxPQK3Vm+PBkHZzPQMZNy+j/STPxVVkGeR0meDa9901s+4nnEC6z//SrKraH/I6wyp9yymfXEPUg+CiHTMmdMvH9zzyFyiLq6MbmehSsqKRc3o9KsH9RajvKKO4d7JiLPYBm7AuOnIXLUWccc0C2FWRPAW1WvC/6stePLTT4je/Y10qlWduqg+ayluThwk2TbyYde4GewHT4ZTqyZICo1E4p/nkfH73hdGnM08vGA3Yx3ijWPw2zOGKCPm1OuiA829lM4h06bkg/shbWyxlWd575d2IM8XdRRTlzgPsT877WFGldUReS9vPzg16Q7zPYeQ8suy8v6s1uMcWrWB59R5CF41rxhwcR84Gmb+zRHwyTiNc1gs17ZVR7iPnATbBjUQezMQsSeOSUGIjJCSTlFlTci+eUs4Tl+Mbfs2SIeQPcViu2IXHKa2sPieWOSYeynfC3FPfCkBVJ2sIYEqh/1fuCDoeNAxEguX0PinQS9SkmlcE5W9fFkzisVj6VCJjj+PJaoqrxRvZGOGIGUWnp7sDr/sQ9A9OB3mdZvBe9IHeLpiDuL++r34jt2GvAfnN7ri8gV9nHr6Bs6dYekRoFefAth1+RanM79EfsGymwAAIABJREFUV/ce6OzcBQWRGdJ33LQYZaExJq9mz+9o9NO5kW8u6s+pBBmxlg8atkTcWc1TBbbELoC+vi769+snVYCuTJV4Xp95TawmKvYAZosWKhqxcBIrZtPpFStJc7NldEEsWEXjmpsz26lx89yzaifCF0xEdmyMxv25vz9X6vUdNG8KUh+WVKyvv2YHEm7eROR3mhuNvrkFfD9dhWhHA4wdVRIJ5kXpSHHeosPHeZDKLFZDpRHBCr78Vz5oALCdG/9VDx1dPTRv1rSY4sSq6JUZBEQY7WcOmHyw8jirBos0Qjr2dPBpmMgH502am2gE0lhkRVj1BnJ052nELJuFpFs3ik+n8VZr0TdQ6Oki4OOxyE1KKlq3xsZosesEHi/9tDjqyM9du78Dw4Hj8M7gLhK4QcPL09MbISFFoBOr/BJN5rOWD0YcWcyMTqJ88N2gA87NTj4I/LA1Ejc7udynTZ0i6YLKOjDUFZwfjQYREON7xUi/HJjhBkyjWXTwCTwQWCGQKA5ed9XXG9DKpiZC5o3RMHTVx1r4VUfdr7Yi6vfzCFk5u/gS5j6+qLlwPQI+maDVaNA3NYPfqv3IdK2OqOCTqOXih+CcRDib6kvOgdgejUYR32GxxR4/J6gpvtsbN26UqszLwTuu9127duJJUFApul951z11A8ED0r7lg2uIDBi2XpIPdmxgRX8x+kCmC8FC0cgZMGgIenzYG5d/sweu26GdciFC9pQ2uB1atka1mUuQd/M8Ar9ehry0IsPesV1HVBv7Ia6/20vqoCAO1jKx6tgHVm90hdLRGIroLJinxiCh3hv47fBKfLN2jcYpdLQpW7GeAPU6322CQ/JBncSImPzdptxDgp9K1bRFGmt55V513L9HAgSo6ISLNFgC4OyeIdKEacyzRajIHCHAyHeanx/bfAAPpw0p1c60rDtkMVDv2Sth4euNwI/HIzMirPjQlnvO4On3WxB7tCTqKL+OTf2GsO47AfDzQIGqEGYp2Yg/tAup1/9ETlwsPPsOAEbOxw+bP0FcTKTkaDMgIh8EOalPGECRDwITfLflXT641vv07iU5eGLr0vI+QXW3HcpRrNdBW4Xvo9gpg90a2M2BulA9Rr03CTm/P8CTBZr9yss7DxNXN/iv/h4pQcF4PH9SMYvByN4BDTbsxMPPpyP5nmbwiddW6OrCoUVrOAyfDsOa7siISUHB01CkHv5eAkyUmUU2pXyQLWH52Sb8dmEXEhPipK9oV9KOESO6lCtTGpmqox6FKmDkyBEwNjIqBT6X934ZoGFxRLHuAPdSggNiXQ7a87QT1Hu4rZ0Dmr3TD4Z/RiFqUcVbtarnyTVb98vNCNqxC1E/fFU8fQLjPjMX486UocUsTfm9GVhZwbptDzj0HgizWu5ICoxEzt17SD+zs6iNLavxaxl2TZvD+MNF2Ld3k/QtHXDKgmCdfHB90ZaT22eU++JFixAbG1MVYS/vQqvEcVUOeyWEVt5TGBGl0ymi0nTimadLw0U+aEzToBM/Z7SRxr54HZ7LCBhfKnUBOwNDQ6RY5iAo2BZpd9qhk/txuDbxwuMduxGxSbNvIvuY2n+xA9NnJuHx3WbSVF5rV4havX/FuYK5iAvKhq+/A2b7z0NBWAZuP4yASscQpqYmCAuPgK2lKRrUdIOOjkKiLdFp+GnXPrCQNCt4n7/xBO2b10Kfd3pIDv6j0Di4OFghOj4V9Wt6oK5/I1y++BcehsTCw8UGNx6Ew9rKHBNHD4KRoX6pFmHllTs3M9LviLTKB4vd0MESe6LSweKxImLNCqREq8WWWawwTUeeUV8i8Rs2/wCXR+F4vOKz4p9z7DMabiNGIXzNMsSd0czTcxkxFVYt2uDY3JnwjA8pOkehgNfkeXAfMQivv9kFac8+J0PD0tEX/QcNQ2REOK5dv4Hc7DSkxgRJLcZoFHPNjB4/Cbq6+rCw90Ri5AP06tldKmI2fMwUZKcnwMjcFhmJEXind38MGdQfo9//ABlJkSBSYuNWC82bNsY7XV/D6507VZrZQOCD61AszsbnQWNv1SpNFgKPp1EiRudIpyUYJCLqfB4EYZg/xbF81XrUVprgycKpyEtLk2i/7tMWw6ZxA4QsnFHKiKi/YTdi7z7A5b0/SHL3fXcS9Dv1gFcjT6xftxY//XKklNynTJ+JI0cOIzIySkPuzG28eOWGZKgWKHNh515PkvvSRQuQlJyMtd9s15D7wkXLkJaaiE3f7daQ+6AB/WCql4slizXfzfKudYKCZDZQZgS/5IMbKiPLIgBIoITGhfg5gUUaJAR05IOGIXWWm2N9pK38GPFXLml8b+LsippLizb5gI9GIzs2tvh7glDNfzmF+8s/x817ASXrHYBSRw/p70xAquNiWDW8A2OXq9i94CjyC3QwahRbsa1FZnpS8VrnRckuGTN+kgRGyeX++9lTUvT3ys2HGnI/cvwUvly2BDfvP9WQ+6ezZyEx6jEWLtCMGJdX7jSiuR6p3+WthmhA8r9ZVV0+qB/VDBH55wT8WMiLFEx5QS8es+fPgwhOV+LGjrfRwXwr0jaN17imdb36cJ+1DA9z/XFqtxE6+l6EfcFd6MYHwMzZHsZtu+LkorlwvKNJhaXcI2zdpGdB5on5G0PxyMkFSQXZ0DHUx6E9e5GaFFMsd+o5snQcXT2Rn5enIffsjFTY2dmjUM9cQ+5RMQnw8/GEroltsdydvOtj6ZJFyE2NxJjRmv3Zyyv3quP+PRKgLiY4JdKSabwTLBZrFRCE4roRU2zoBJBJSKfn0L6zyPh2JSJPaNpBZd2hy5iP4dyjO8IWf1RKBxHoLtA3xG/rl2voGF5Lvt4ZRbQZOAm/x8XA2NIKGVEJyAgNhaNzNTh08MfyGeMwftxYifn12fxFGnvqpPfGwdfXD7PnLdVY6+9NnIoaft6Yu2ilho55s0tnNK7jhWlTJ1fqoZF5SLCRfyLYTbkyOEJGnHwwGs9AkPxzt2qeaF+9PUJmDi4G9Mo7IQNLK3jNXgl9Jxco715E2M9bkRUdWXx6m/2/48GOHbjxx+ky5e6blQCrNm8gvHEHxEMJG0trJIVFwSD4ETzvnEVORHjx9cxGz4Je1244vXczYlJVsDFRYuaMqbh58xaOnPoLxvqFyFbqwNygACPeHYughwE4fu4SzAyKGA9J2fro3u1N+Lha4p23e5b3NjWOi4yMlJixBIH5/+WDQA4DNgS95YNACdOh1Dq8w4juwHVPqDYPRVZkRIXnYe7jB7/5XyNB4Y6s63/D8P4exF+9hLyUFJiwCv2GXbi/8EPcCYsttaeqdbuxkzPMO/XDU88aSNMtgL5KDxnRsTAKuotqd/5AflLJPaSaWMLu7dEw7twYO/YeleS+eeM6LF6yBIFPojXkPn/BYmzcsBaPQ+M05D5q5HC42RmjQ/u2Fb7fqhPKJ4Eqh718cqrUUSzixRYTjDDK81l5MTqOjEowCiYfRBOpcBlFkg86+DTMRQVC55ERNkZA1MPC0gYJ5mlIi/VBA69qSL90FoGfjEWeDHXlsSyG5r3yR3yyUh9xYU3RvlsKTBoewv602UhIT4BrZl1M6Toa/qgt0Zmj49MwY9Jo6beI4PKFtbcxQ+DTWJhbWks/z00mOycPLep7ITYxHaZmFmjbsiGCgwKl420sTZGbp0SzRnXwNCoVyE1BaFQiHGzNERGTgo5tGiE4MgVNGtZBnRqatOLyPgQ6HXRWRRozcy0ZIRJpwpQhnReyGOSD0UY6oKRkif1VN2zYIDEGaLBwHN97FonrlyD6tzNw6NgN/otX4uHOfQj/WpPqymMZFXOYMh9nFn4KpwdXweikY/8JsOrcFh07tYCZrVux46irb4gmLdph1/ZNEghBWqqZjRtys5JhbueBUaNG49q163jw4D70DE2QmRILHR1dfPrRZESFB+PbH/YgLydNMjyy0xMxccYcmOrnY8O3PyE7PV4qIsbfm/vxFFy/9xQffzgV/rV9yytqjeMYZSBNmNFn+WB0metaBEQInDDizEilfNAhJ0uCchcHDRFGefbs2SN9dfL0RcRt24GYnevhMmomak8YjbsLPkfs0dLRSNd3Z8K+Q3uc3/UjGrbsCP16fqhT30vqIb106fJSch84dDT69OhcTMu2sPOAgYklFM9aXH2zcSPSM7ORGBkAI1Mr6OoZ4ZcdW7Bg3qe49SBEQ+6rN27Hob3bcfVmoIbcj+7fgVUbvscX8z9FLT+PCsuduZNci9QLIjWwLECEx5EFI0ap6dwzeiRW3aWhTmDl2+9+gkeOOUIWvo/cZ5s9Kdaes76CVe3qSD/xCwI3lc61bvjtr4gLfIwL2zdqGBde732A3dGtYVOrHrIbfwnFNV3s23wYG1Yvln6P85OvdfdqnlK6xob168H3Qi13UzMrXPzjBGpV94a+qb2G3I+cvojBfbujUNe0WO4W9tUQFXwfE6Z9Iq33ysidUUXqdm3FGxlVpixFY5p6k/ckAitkjFD/8HnJx9hx41FjcD08vlwXqjs+aJcyFVHHfpUOMff2ge+8dUjyVSE4LRVB16oh90lz5OapkJGpA1tbFQaPDMcfX3wKm1OatHS5A8Nr5egbQjFgMvwGfIKYlD2YOmy8htxbtGwNN1c37N//q4bc/es3wodTx6NXz27S8Wo906BudQx+dzKmThgOE0unYrk3ad0Zy7/4BBeuPUCvHm9WSu4VfkGqTnglEmAPdTKKRIYXmV9kWIiFpvjfZLWITBOyiZgSweBE3wGDMbBaAwR/+dEL5+jYaxTqzZ6NmNtPkbRnNaJOaRbUdeg+EPYDhuPk/I/g9vSexvXE9Z5nYoHcZu3QbuQEXE8IQVR0GGwtfBBTGIKdWw9g8pRpUu/p8LAwjT117Vdf4PDBfTh25qKGjpnzxSoEP7yJA0fPaej2zeuW4/i5K5j1weRKrXWmru3cuVNKu2I6gnwwukz9IzIb2GqUdg/3NPUgm2rEqFlI/nouwo8UpSqVZ+jo6cF96iK4DB2GQ7+aI+CmAm09LsG+4B6Ms55AlRwJh7eHIS05DaeXz38uUEIdk+rqA//GreD0Tj/EG2TicUgMfEzscePCJaQ+uYec+DhYdOiLDPM8pEc8RK5SAaVKgXUrF2Pt6hV4GpEIAx0V6Job6xWiz+CxuPDbUQSFxkr/rVCokJGni+83f41N3+9B/95vVUrutLHItKNOZmqlfGgDRPg9U54YOKOtz+HfoSnc7N+G9YnVeLx1Y3nEXXwMHW2/+euQ4dUSH092gompCu0ahsPV4CGMC+NgYKiHWq1t8fTocVw7sb9Mh12t2zN866JB+7dg1bYt4goSEB6TDi9Dc1w5fQ5pYY+kPHcCFCade6FmPVecPnNasuc/mzUVX3w+R5KpWu5ujtbo1K0fdm3/Bln5usVy1zGyxqpl87H/2B/o1K5lpeReISH9jx5c5bD/Cx88W0DQ0WWknX/ywWg0nUCxVzM3ODrxbPsmH3Qy6ZiLNHoeQyoWIyDy3HE6yomm6XCKtkXowqlIuX+31J3qmZig1sY9OPrQGErndERY7sK58MPIzM+AicIcQyynol+9TkhJjEe+sgBRyUo42lkhKiIcuflKJKdmoWk9D+jr6UoABOmR6srNWTl5iIxNwdD+PXHg+J+4G/BEipo39/fEzYBw1Kzhh4TEFISERUBPVweZ2XmITUyDp7uLpDxsbKwx872BsLTQzGUuz+MiEMJ8I8pYzN9mTh3ZCmq6mfp6TDeg861WuOrP1VFjGiXyQSeGOd+MvjOSWb1GTSz/aDkKz+2DcY9h0M3KwsOPx0p0O3FY+PrBd+12XNy6Gd4KwLFHfxS6m+ONDm2go6On4Tjyv+cuWYdbN67g9KkT0NHVh4GxOZIjH6JevToSc0Gd608nxtjcHpnJkfhh9xEsXbEGcbHRSIoMhJWjDwqUefhg5iwcPHwMocFPkBrzBLbV6sLIzBYd2rVCaGgYWrZoXmm5M1JOZ53RQvlg7i7XrUjPZ14fgR9GJUXgipslI/VitJcGCemZavCCv3No3zkYBd6FqlETpP1xBSFa8tp5nEPbzjAfMwNPkpLQskVNuDjYSHRk5tuKcq9WzROfLVqDjetW49GjAA25jx49SmJkqAtwqeXuZGOMuYtWY+Yn8yRZq+Wuq6PC0mVfYc68z5GXm10sd2NzW/Tp1RP3791Do0YNKy13OoEEo0QKH+mYBEXEmgSkZzMnWTS+CVhRX/FfMYJAOZESmg5TmF29jydLpkuUR7fJC5HdzBcKk2bIDsiCfugfsEr6EykBD4rSQHR04D5hLkz96+HkvJlwDw+EgZU1LLuOwRXFcKRbxSCv8QlYpOXi5Kqj8KrVFKNHDsXUKZNQoELxWi8sVEpGKPUl586hlvvb3drDt3YzfLOVbIcSuVf380aXrm9h46YtKFTmFcvdwcUTTRr5S+BXNXf3SsmdDBD2HtdGEyaThEAf80nlg7RJprCIeeykxZPFIFJwee6BP47jSPwpGN74AE6pkfAJ+lxKAfH6dDWOPLqMLq93gq6HEa5EXEZibhay41xhUGANlaIAzRxrIOrcaZhsKGH+8JqiA2NWux6uNp0MlZcKuQl3cWTXIQ25k83A56+mw6vlvmj+R7h25ylO/XZeQ+7dunaBvqExjh4/pSF3nxr1YGdjAV8fXxgZGVZK7uXR/1XHvHoJUBd/9tlnYEtXMrvUg/ncZJSINVH4PVNpSBcX91rS4Y8fPy69P0d/PoWoRTOQcl/TyZbfgUP7N2A2aipiUB9Xf3eEk2EwvPSuwjbnFgrigqDKL4CZpxcMu/bH2S/mwu7qOQ0BiOud/x3oWgPODnYw6z4NMYUFeHj/KM4e/BFvvvmGlKOs7iqhXuuFOUnYfeAMJk6biazMdI09deEXS7B+4yaJwi3fU7t37YzwsHDUq1e30mudDjlT1Ch7+SCYTWYgo7ryQRuR82d1b/no/E4PWN5ORfjy8kf7nUd8APPe3RFgcRcP40KgF/oGjJOaIT/dHEnJCqgKFfCtnY7mHlfw+6LZcHl0s0y5q2Vunp0OM2srGDRsj+xqXnD1MgEKC1HLrQ70EpOgcPXEkTM7EBISKkXSmzWoAXffBvjh5z3QVQC2xvlIztGDrbUl2nXojF/2/gpdHcDSSInETH0oFQZo1rgBsrKz4WBvV2m5E1SljhcBEdq53B9Fej5tcNYs+OqrIuq6X43asPZvCYe/4xG3YniZNHTxTdU3N4fHzC+BZi1w7GAdfLtRT+MQa2vAyFiFCR9GooH+RZxaMOu5Drtc7lYuzjBo3gUp1jawssyDq5srqhm7IOXadeiE3YJuv7HY/vN6Se6D+nRHeHwmTpz5U0PudWrVgK29E879/qeG3PVMLOFVzQXW1jYwMjSotNxfveb6/3XFKof9X/w8adCxEANz+uSDUV1Wjhbz0qkMGKUUozA8l1FKHi8a06SeEemmoyrPXbJ0qIGCv28hfNMipAU90nqnNZZ9D6O3amDw0beRkFWUM1THzh8DfYahvqoucjKK8s4JGEj5z8dPIl+phI5CAUNDfYn+zqIqvBd5RImbOiO9ffr0lopT0DhWj8JCFdq274C7t28W57vzs/SsHPR++y2JjSDmhlb0MbGvNPOd5flNvAYjt0T4xYJ03Ph4j2JuJXOZWCOAtD95uzJei7Q+UvyoqHl/TZu3xLjeE+DgZI+EVZ9p5FbL529gaYlGPxxBbiFg7eeImVPfx7lzJTmg7LmpKiyieDGazN8ePmKURJtn/hGdEg6i7sxtK8nbVUjR3zdeL8qXlRddIQji4uqOW7duwN7Orng6ErJqZoW0lAQpP0/M1a6I3Alc0CmnkSYWSCS4QXmJ+ersaUqnXGyfM2rUKCn/jykf4qBDxPeEVavVY/68pWherTaezn2/TAqaZa3aqLt+FwoM0rH/131SrrGc+SKXO98lPvflX35VSu7suUukvSSft0jun336ifQeyAucUb493+6F8ePGSO+vevDzNm07YtmShVJdCOY+V3bQ8FVHVuTX4Lqh/iEgIg4CV2Q2iAUMCYYw+i4WQeP5lMlf5y/Av0EnKI+dQH52BhIa10W4UQh0PXQQFWEA16xu0Iuwh7UqEqZ6mVLUw97LGu41jXF/7hToqHSQ0XASHqIzck3DkeixEbb5Kpzf+BtSU5KkgoWjx4zDiZMnNdY6QSCudYJTZC4VjSK5Hz50UKqdIC+OQ/l+vuAL6T2aN2+uhtwnT/sA1X08X2qt84KkTFL3iZXTKVcW8ON7IB80sgkIivUmeAwjOWQ+iDm/tWvXwaKdX+LItQBYPp4Ab73b8HUOx4mnN7H6q6XS5QkaTpoyHa513BGWEo6k9GRJLzuYO0JxNx9BUwcXMyLU8ynQ0YVuYQFMXNyAvmsQ6uUNG+cL2LXiR9y9xXSDIh3De+O9qNNQ5HKPjoqU7pHpQfJ1ffTYCWxYvxZHjhzR+Hzb9z8hPjZSeneqxn+XBKjbaccQdBJzWul8E0zjnisfrP1CW0VMkSJAxbXOLg1DR4zGAL+mCPxMszWX+jq2jZvC6r05uKd4jJvGV+GW1g8ZAa2Qk2APFRSw0E+BgU4ujC2N0XuECg9XfoH47aULwKrXu3x+xu99iw3n+8PBSYGOo48h5ulVDGzbF9u2bJZFtIt0zKiRRWlz/fr101jTjZs2x9ZvN2m0O6Tu8fGrhXNnTkgA6MvodlLh6QxyrxPtD+6ZfDflNh8nRwCXto+8WK65hSV6vT4SSV9/rFHDpaxV6PjWEJgMGYrdv25Ds7ZtoHQvxJXMS9BR6EA3wwsWBR6ASg/udjboV78pLo0YhOTLmm1ieW1R7nl6BihUKKCjUsHWwwNWb42ASYtmaNO1JXb8+CPiM5IQcOO2NC3iQuPGjZVYm/J0UMJFnTq9Dj9fb42OOfy8UZPm6NT+tZeSOX+b6QbU0wQq5YMMEabliUVMmbZKJ55tadWdAloN6AjzyIawvbYJQT9+98IXnoVY3SYvgFm31jiVcgxp2WYwjuyOh783QOADHURFUasXjYGjEzC+x2PcnzYU2c/q7Yi6Xf6Dcrk71a0L237vQbeWD5q19sf3P/4If7/GCIoMxJ+/nZbkvmzZUqlgqLwwNuU7Zux4hAY/xZkzJel3/LxP34FwtLcutee98KarDqiQBKoc9gqJq+IHk6pK6tJJGqCyQSOahpa4yfEQOil08MXq6TQOmTOpLcpORcKoMjdTIt52jq44+psn7l1xREffC3BOOgqEXEby3VtSvi8pSnfd66Hja+3hO7U3Jvw5Clnheni9WWu0tmsN11xHZGakISElE44ODujZ/Q2JCi+CBdycaKDSWZdXVOV9MArK3E3RSWPxDm5iokyYz0nHg04Uz3uZQWeWoAEVqHzQACW9j1FG+aAjQFaDWKSLx9DJ58YrVgfldzTaWfhP7Yyt/noLbP64iNhft2mdvlruPce+j9kbPkd4eBjMbd2QkRxV7KTzRFKvx40dg+FDBkiMALGQH6OjXDsEUcR0C0aMyXYQKba8b54n9jinzLkJ8Xm9LFBCB5yOndh6jtFGMk5ER5DPg3QybZVFSUtjj3lt7wjrPNBRUOdI/rx5P3K/XYqEv6+UKfcH1Zuh24TJGDaZlfcVZcp92dKlsLYwliig4qAMKS/+iYMgBQ0rMTec+c58B+gMywcNWbIMxIhrRdc9AQS+O4ymi50C+CwITokVXRmlZp6mmHtKHcOIGN8HkZ2irjz//faf0KRRF2SnxqPfEBYEcsXrA7vBsIYhrDyskZidiLRYGxgXOqEwtxAZYUno2rgm7LK9cO5mTWTgASxqJiLT7Qj0QvVw/rvLiI6OwOnjh8H1w3x8cfAdZIElMdLEOVHe1IuiQcv1QeBHfB6ksxOoEItSVlTuNGi4DsQK0ARgmMvISsNiUSiCPFwPpLrKB/PhaRxqi7ITwOg2pRfOXotADWUPxEZ8i8UL5pSaLqOfdILsHZyRoTJHVmIw3h8zDXpbVuF2aCxckqMkJ1098rxrQafTDMS6dUL9jrew/oPluCa07WN0nWuFDoB8EEzj+yHW9+BzYAFPgsjySto8l+wrvrdMV6oa/30SoB7hMxRri7AeBtk34r7CvYbvCBlW4uA64B/TebZ9sxv6u7cg5jfNGhyWNWvBZeYyzN34BazsbODXrToirSMQmxUN7/wesFM2hCrLBjmZSkRFXUWbBq3QSC8U9yYOkGo0iOudeboKlQoW2WlwG/URfo6cid8u2WH4/NPYrxqFDi5v4EP/GWhUt16p+dL2IVAs7kV8N1ivgkCGfDDCTRuD7/XLDDrjtCEJfvFdlA+C60yTFO0ovpMEB8XaMF0H9IHRhShErirdWUV+Xcc27WAx/mPsOFRiw9jZO8LVqxpUDgooLBTIUKUjN6cA0bcL0a5xPVj9FoDwjQtfKHdtsvAeMx2Jr82ASu8J7lzah7hnxXtJ5WeBQupp0RamLcb7FgvTcn/mkBcArIz8ufcxKMDryWuU8FpcB9zLxaAEnwcZYGqgslnLNsh3bACXK4GIX6PJeNA2J6chk2HWpyeCdYKw+NE8KYDW2Kk56pp2hFFKQ+hnuyM3vYiNmJ9zE4O710fKsnmI/f1MKbnL13pZ989WcA5DpyHXxRrHju9BSkpRoUKuHbY7JRgkDu5dtBlEP4CBJdrIYveZysi+6pyyJVDlsP+LV4e6ABEVvlglncXCGOkS6fJ0wpi3JBqanGrHjh0l6rvYLoXf8Tw6XVf/voaAKAecO+qKA7vNyTiCf4NCtKlxH9424TBDHPLyUxGVmwN9Ryu81r0x7qluIC4wCw2cq+PK3w+QlVNUWdjaygomZhZoWttFioCJgxFobljiZsLjiEjTUREdeTIIaMyJ0T06CfzTFoGq6GMiVZyggEjDJsDA+dAwFtMRSH8ioijmAhMMuX//vkSTEx0izotGB+V+8MhJtLcElx+0AAAgAElEQVTwRMjiaShUljAK5HOnwx5n6QCT1/vjXnYEjh7YrZEvqqtnIB3esUMHuLhVw8GdG/FUCzuCkToa/aJjzHmoK4fLe8LymgRzuNmIxQvp2NPJEGl0FZU5jydQQtBDpGFTkXO+dLDEQdlysxPTEXgNOm90fMRBQIdOBKOuv/95EeMatcKdOR+gIFezJoT6PLXc7UZNx5rtK5EYG6FV7v369kVWTj62f7NEovPKBzdw/h7XtZifTCeEziHBFfmgE8V6FHw3xfoTjCYTfKtsazH577BaM4sTiTRsVuGnnhGdJBrRdPR5T6JBQnYGN22x5gB/j+8U5b5+/QYsXapJ+WZ1/XbdOsPAxRAGNgbI1clDTlYuDDJtEReaiBb+7yMMDxGaegr6KQbIi83H41uBUsX6bt17wFIvA5/PL4mGq++PBijZHwTGxNQJrmdWwRcNZrJL+G7Uq6dpfJO6S6eDNRC03V9F1jyNZeoSglBiJxBGv6hLRKOZETpGZ7T1qmV0nQYou1mIY+as2egwogtun76B2VOfb3CTxmti6SDVVOjR/XV0yTfE30f2wDIrGWF2HmC0hRWeVT7tEaVrhe6DHXFw07c4e0gzL5isIz5vkUHAuREQZDFJdS0J9XwJvrGomAiUkgHGyB8ZKNp0QEXkXnXsv0cCjJgzN12sks6caYJ8zEsXQTMyBel0ie39SPMmeMX9ihG9rYu3IHbVJ8Vtv0zdqsFvwXp8ffA7HDlYVLfBydkF3Qe+Az0PfaSYJiFUFQwbY1uYqWyQGaOCfbYr2ljWQ/6qjxGYrtRY7zyfzjr3gW7VrHHNdgU27qmLvhMeIqrxOCRkx2NF26+x/YtvsXdvUX0U9aDzxz2S+kcc1AEEr8SgBPdYOtvaQN+KPj1G2VmrRKRhc09lsIT6Wj5Ye4fF0QgAylupWlpZo9dbY5C4YiZi/9Ks/K0+nxXIXWcux/4/9yEpKUHrVA0NjaRuIgo9A2TkACmp6RjZsTsiPxiGMHPHMuXeKOQWDIQ91cLHD+k9v8eyHS0xf+M9JClOIe1eEkLuPpbaY5JZJQLd1CG0C8jYk6dncLJkevCZiGu0ojLn8dTftNvl9aH4OYFxAuRiuzOmpdGOkQPwbQd3gW6EPxwurEHwrp/KnIZD175wGD8Fh0/vQf0ezXAy+Sh+fajZ8cDLyhd6Cj1kZubAIcsHHQ27omZsLlLXfYoQOw/QSS98VuxUvda1yVw+CdZC8ftyB26kXMXVE0VtjanDaeeI6Yi0f+l/qFPS1NdhmheBdL77le3sVJnn8794TpXD/g88deZyUXmLeel0ThnRFCPmdIAZsSVNUqwcTGXFTZNRIjGyylvhNe19nbHnzgGEJycCwR0QebENLpzXQVxsEaWmdt1C6OhkIFsZDGuzOug2YB/iop9CX08HLet7SjnlHHTG+QLSsRCdbn7PjZrON6N43FDkgw4BzyW1SBxUxHTOxMJ6NLIZhX3ZKC9/j84R/2jIi8Y0DU3KVewpTOOUkUgqIHEjoCLmxiwW11Hf25p161HL0hdBn41HRuizyu9a1hYNhgRzezRo2hznvHxw6vQ5iX6aGH5firBzg2Ikg44eNyQxQsdLcoNmrQNt/dJJj+Z9i/fG5yTPd5dPjccTrabD+bKDv8HnS8dIXJ9cz4yYixsB0xBoeIjF5zgXOl0Ed9TIuXx+NBpoxHC9hEUmwiohDzl/7EfEiaOlWsao5d5i5CSsu3sVQU/DNOTOCD8NA65Lke6m/k06qgQXxAgTvydgxToHYiRb3WVAjLQQhCDlnuCKWKSvMs+Az53PWMxLJ3jCfGquaTFKQdmSXq7tfghIEHwRASHOjYYrI96MpFJW4nvMYxzZTrCQ/9OBqZUDQh/dwujZcxCRHA9kKqGbkoijh36VCtzRGOYcxC4CvA5ZADSc+B4z+i4f1D+MhDCVRQQ9OW+CmiKAwd/je8N3XSxKWRm583eYDiOyJAjcsNe7WHSLv0Hjnu+BuFa4Jsgq4bkiIMTzhgwdhq9WfCmBF2JNDfnc5bUsPGs2wZttuiP91K+oG34f1j4+MKzTHpn+o5HiZg1dl99xbttBnPpVs1I3HSrqdab78DnLB1sW0kDTFk0hM4yF+MSULrVOq2rnVplV9p9xDvUf1wXBF3FN8Ds64NRD4lrhfqWNOUKGEXUJ9d9bb/fGxLeGI3L1HGRFRcLj469g0NADrk52UkcLudPk7OKKWrXrQqlQwtLZEjZ2TkhNykdqVBj8ardE3s27UIY8lta7nFEi6aXOb+GhzyKs3O6PNq+nwqP/WmwPXoiP/OegYaE/+vTSbMfJcxgx5R+dYPmgjcb3QOz3TXo0QVD1XviyT4+6gLpB27tD3Uk9IwYfWM+Eul/U363adYC3jhtSflyGuEuatpmFXw14fLoSbk19kJ2VLqWpabP71PdTUKiQ8p1NDQpQt04nBB3eByTEapW7Nhkw1cBoyCocT50IA7soJLQeAUMYo3VcKwTcvCPNnfdGB1w+CHrSvhBbfpJdRGCa7B7+veygvUI7TAzgsE4A7StGocXBOki0BdT6r0nzVjDxqwuL2ypkbh6NTFlFfPW5LEJsO3k+GrStJQWETpw8DStPG+Q6KXFHeRO3Yq8hJjO6+Kd08w1hn+2F9+uNgu5Tc9zd8xP0sjPKLXf5nK2HLYTRkK74fd9mpKYkS2wYpizR3hUZUgRwuRbFlBgWQGRQq7LtgF/2Of0vnV/lsP8DT5uGI2mT2vLS6aQwWiFSnhmRY6RZG/2dypsGuNjqQ30r/K16/g1xJe4GLkSex8PoKDimd4F+Sm0E3XCBgcpCqjwZHlYAKys9jJoYDmSU9MLmS0u0kM4io3CiM87fIc2fGzcdDtGpZBSbVFF+Jyp8vticu+jIE7FkQQ86F68KpaNTQQBAjBzTeGAVWG0GOzcBOgEias17pgPDCB+jluI49MsZZHy7ApGnNaNU4nHMuyMKal+3HpTjP8T4iUOlQ7jBkPpFA4B0Lxr02gYdP9KPCByIlGU6ITQSuHZENgeNfD4n0dBntJi/SSBI3pu9sq8FgRAqdNIdxYgAnVeud7FHOX+L+XaUuejEsKgR3wE+F5Hir54jnSWivocOH4ONpQtUEfFIuXwRxnnxSH30EBlhIdAzN5eKmLl16IQ/rG2xasVi6XSmkZBWTyeJkVKxyIz6Nyg3yldsFcjvaUjxnrR9R+eMm7vYqpH3SpkTBHoVxgVBEBq/fIf4zsoHnz0LXIpV4fm8CSJqc3jpqPEdZXRb3KB5bYKKjHLwmbKGAiPJ2vSEOs+cYBSfJaM8sTHRElJPx45ROUaCRHaFev50BMgo0pb3TOeAIISYZ0h2EvUO9Yw8wsRr8jlQPuruDpVd5+rz6Igy4qKNFcRnTyCCOb7yQWOa964tCkRaMdchjR8RrOU1qD8Zgeez5r9kVpQeRXm36joYe7YcQtZ3K6Dn1xrpzh0RUNgANnUCoG98HZd2nMfhA5p0d65H6m6+U6RAioMALp+9GF3n+qcTps2RJzDEOgMvm/7xss+r6vzKS4DrkSwpvnPiPsL9nnpO27Pn+qdeFx1ezoTfkVVCffjlqg2oa+oMVUoSzmdESWkfBNi4FxLcpONEwPR56717j14YXr0Fwr4q6t6iHkZ29jDuNBqPbMbhq81eGDAsBwVNV2F3/CeY6v8RBvsMQLvmrSW2jnxQr/NeGbwQB++JjrwIUtCR47vAyPyr0O2UN2Uv5qVzPnReyTajrSMfBDoZmOB7Kjq8E2fNQcz+S4heOR3K7CzpNLYK85m7FrczQnHtykWJVUMGEn+TOlNkYal/i+wIltZ5u89AFHy/E3EnNEHV5602j/FzsP3JFITE2aDFpI04n/sNhlqPQMDx23jnnbdhZ2cnsRfFQUeeuo/1WeSDdh5tT+4tr2IQKKae5R4n3j/3D+p3MRhEZhoZc3KHt067RrCwfwNOV68ies0UFMrqOVn7N4DTjMU4fu2ElILKlDquNaZekClbq349pJmkQ2Ghg0xkIkOZjpTsZNgbOMLO0B518+sh8YsPn1u0sSxZkBJv+eEapOQ+wbEDRc+NTjlBA3HPYiCQ+6w2FiZBFfo4L5uG8Cqe2f/3a1Q57P/AE6YTymggkTfRgeULTrRQpFRxWnSIqWxF9JTf0enkNbVFYtS35OHhCXcvb9xOuIvL4ZegVBTibvwtmCkcUc3UD4+SAmFoko2hNUbBOstAMjoZreR8SXETI3Lq63IzYESSOTziZsBjGOkjMslokTiYn09FKDr5pMZxc6ORTXr2qxhU9owaE2lmxU/5IP2UESRxQ2AxQBoFdM5Ex4f3RNCFAIsYlZy7YCma2/og4+ROhB0qovA9b5g4u8Bl0WYc/HOvBG7QMODGz01WjF6or8OcODIr6FzSgBEHN49ffvmllGFERJhOD59tScGuorNpgDEf6WWKzYnz4GbKqANbEYqDip0Oi5h7RpSWDgIdaHGQYku5cyNkfr62wXVDKhc31zt37uPRk6cwNbKEmcIIeWlZkrNYoFBBYaiHb7avRXU/H4kJQPCLBgCjuyLIof4dOhl0yil/0QGkUUH6GJ+h+C4yksuNXV1xWD5vvjfqCMKL1kp5vieQxPXDaK/Y+5gGAOVHIExEzWlk893TlldMR5SsA963tlQQzotOJ+VD444OGYEDRiZEMIk1OwgC0JiiMUggjUCCvP2QeJ/8nvKVF3pSH8N3gOfSoBJTP2jg850X1zTfbepZyulVOewETUkFpMHMd08+SAvn3LUBOaTMUk40dsTBZ0I5Uf/Li3XKjyPwxcgjKf9kHqjzOcX9hfJbs2Er8mKqI9vaBuF59+Hjk4Rzh48h/HoI/vxds6I20xOoW3hf2kBLAg18t7WxexhhpQzEApJcR5QFry0W4ivP2q465j9HAnz+NNq1pTVQ/3E9i3ne1H90+qhnxPXJlDXqJupCgl8DBw9DrZr1MW/uh8U3TfuIup2/S71JR5kAH3WSyITj/rFq5pd4MKk/lJmZ0DMzg22Dxkhr/CF++rsbbt3QQd+RCcisvQ4Xcjahvk1jLGy/EON6j9QosKX+caYZEUAT74lMJuo7sUUszyPAyXdbrOD+Mk+R+z4j90xLkA8GZ6gnqQvEvGLaWpS9CK4YGBii/5hZUJ44i6fLpqGoNecKxDjo4eypY8WX555KFgH1EPUm7VcCvKLtRnutXbuOcIzOx5MFE8t1mw7tXscFu1W4E10LLQafxa7sEejnMgS611RS9XEyoxjAoC0qHwSQqfPEqLc63516S6yrUa4JaTmIADRtWO7vIuBO5hT3TG1AMm0QeYV5YxMTtBvwJjJiasLowPdIO1T0DM29feH12WqcD7mOwICSLgnc07hnkDHAdcR1HhwSAjNzK+k8OvbGJqZSimqPd/oh+dufy6yZVNa9u3XrAVXnCcjySsHpXYek/Zg2PWWnreAsg1S0HcWiqAzs8X7JstOWMlJZ2Vedp10CVQ77P7Qy6AAziiw6KnQCaexTyatboqmnxAgcjSMaYyLyy2OIZlNRib0ixVui0UYamZm1NZLyE5GWl448ZR50FLqwMDaHlb4ljJQ6koNOh6Qsx4XX5ebJisEEEUSKP7+nU0DDnJuwGHFjdIhOo5gTxPOoKLgRcFN/VYMbDOXOSKFYFZ7KidFUbRsuab40SLUhtQQ1aGxzYxAje58v+hIedh6wik9F6rEfpLZWuYmJWm+HPU7rbz2IWL0UyUCmESJuuPITaaDzd+kAaCvCRuOAUXdttHI6XUSIRQOCz4KFuWhkvwo6vHq+dIhomLPHuliHgU43HXltebGMyFPxaysGxudFGdFw0xb1U/82wSQ6/3QyCbpwQ2F0ghsov+P65T1zXjSCtMlSLncWXqGzzvWgLbpDwINIv7gWeA0asIw807CTD9471xgNAW52r2rQ0aN8+L6Ljjllxt8T88/42zTGyF4Qe/3yO86PDjDv/3ngINcSARA+d77/BIlonNMQoMxpWLNmBd9FOnZlsYPUsqAzToNR23pmdJ/XoiEqypY6kylINOp4v/JBI5AgJ9efNopuZZ8DwTuuT7F+Aa9H0I9OjhixIFBLQ4yGv9hBhOfRIOX6pdy1RdrVcyU4yv2Dv09ghswn9T5CY566/PGTYIRm6yI87RIeXX6Au7/fLlVcjtcjyEEdw/Uggj78nkYq3xv+jrwyPL+jgUlnTawZwO+4F1Dni9XCKyvvqvP+fRKgbucezf1ULERIYIb6RxtASRYO91ptwCCdbHUEXt0Wq6w7pG6nI0oGCt8hpl0RrOR7zfVOsDvySTLiV8+HsV9DxBi3xuOcFti+xxFu7io07HoHyb4bcShiM7p79ML89p9j5qgpWhk+1N18n5iaJg46LrTZRAea82JuM/Xbq9TtvB5tQe6NIujBqCwBaZHRxjlzz6edJtatadCwKRq26IaEnQdgYm2I3EY+OLBPsxCm+p4pA9qadCDJviTIwn2a9h1/lzYoU5KeXn6KwCmDkJdcutaRXH6OHd7EA5/l2Hq4LnpP/hsPnGfDSscadaPqIOhWgAQU0k4WdSavwQAL156of9h5gHs97U8Cs69qkInJvUKbTUJmIvczcS+jvKgLCUKpK/Xb2NqjSe82MIqvi6ztXyP/1lF4z1mDgPxYXL74p9bpUs7cS/l+0HYmk4J2HPdS2jIEcyOjY/D4wAU8nFX+dEYTZ1fYT10LwzbVsH/remRmZEi6n+8e/0Q7h9F17nEEwEU/hEAR5yTvgPOqZF91ndISqHLY/6FVQYXGF1Bb7jk3QBrZ2hxvvqykeDKqq23QiOLLRiPreY62/Fxubup+qnzpy4riiL/H+dOIJOos9lblsbwujVYaoGKBLX5Pw5LzFFFTGvvcCDgn3surHHREiBBzcxcH6aTc4EWqMI+jE8uotDaUnM+D7eIIcLCojOgcjXt/CurXagwvExvkhYUg48Z5GOirkBpwHyaubsiJj5coq77T5mDmN8txRcglE+dJ547O2NChQ0vlf/NYOqecL5+NyHjgZkODmfRn0fDnpkKnSN4e7VXJnhsrNxjOWRzcEOjEiKg16dHcqPk8xHZ8vAaNIT4zGkTPy+GV/x5BMhZW47/cbIgSi8+rrHumMUbjk/cgOn88h5s4HSptTALSIhl1FrsR8DwyIUjz19Z14GXkT7nSkOG1RUOSeoQAFjd+kSVAAI5zYrRcZJVwPrx/glukp2qnYJeeNY0Wvst0rmlUl8XWEc+kHiS4wBShsqqJMz2C16SxIA6+74y4i5EPGpZ89gSvtIErLyN3rsf/Y+8+wOWsqr2BrySQShICadTQpMhFkSIgxYZiAVRQELEiF7wKdsWCBbFcxY5Y0KuiV8R2Ua8FsVzbB9JsVOmdhAAhEJKQhPA9v8GNk539Tjln5pw5yeznyRPIzLzvfte791rr/19lW5uiyHkJk71lniUQgwiyTqoaJFnjSibIvdSAtDRnWUr2kcGpTnve8VM333hDzJ+/asQqXcP8yV0GSymy7ntS4QG2Ul8DZA5HOm8uhkQUcTd/BF5/jHwJ0M/ea4nQlrVmDeUp2p4aaYMgLfWq4APRLdZRq004RXbpdnsbeKRj/P3WE94dj9vskPja2TvHpX8bFeutF/Fve86PTfb9TVwx/stx2fy/xqu3f208f9uD4q1HvaG4t+xbgAyhlvfo4MdINQdgSz4F3VXquTLYN88H1Asp18EIUZl53kueJg7AIiqV0eW6fdoGG8ahL39zbDlzcvzxDz8vAuTSnNlS+h1QR4SnY+UOO+SouO9jJ8Y9f1k9s9J11pk4MTZ+2dviF3MPi5+cv0Mcctzf4pJZr41xY8bFfkufGtf87rKaLyIoYr750OuAv5IHX3zPmkLidiq6nu7NB+Q3CJrlhDVykg4vZSfyxQRBZHKl9bPHk/aLKTtOi7hpx9h23G2x40FPiS9/4bNFwrYkd1lq/kj7N6fk77/iua+KG084Kpb8s7t+o3U2abM5MePoD8WS3beL83/y9bjrn/ZAjxg+Tk7CuRbylp+MvKgf9h5imV+R93EY7Frv/74sgT5gH8KVIU0UOC51VOfY2xR58yTT4+xhkevP1ayfNjAmbRhQpmC6MSgnTJu5q4ctDcCF0QTo82F+FD2nLx8MPyPXSWY03QOAJXcAME/V5CSYq1SePA0dKOdgYNnzGrV0bUYS2y+q8K8zuVd9uqNfc3xMmTw5nrrfM2LeTXfErNmzagZu2cPL44Zbr40PFY5nSldAkDBcopUcgBKYQnQACUBBSdkyNOrsciMHGHmP0mmBgk4PcxH1s67rz/J0H1kCnCHRwXz4DcaaQ1iK6JKFFEDkDsBcyvIY7LMAL947AyYVrNTcUTRZRMN8c7YfUYHQ4mDkRJtIAGfPvJUGdHqQDYfSXs2H6Dr55ccv+Z7n5HwA76V6RV3NXdvzONYl79beiecQoUM0AIRVoBHYtudK9XL+zT5HzuVOtjQ/pAVHqhtdyhEFnMlS5oj9J4umBFT8DrFRRU54V8gv0enScXedkDunMkVQSlkW7gGIA/8lksQ+RIqWsiFEIumZTpbcdOKZ+9cYuASQw6KZ1k1u9+gJup9PkvflsS/pD0Amd/7NRsq3Onf7k0294ILyEZ3NZr7lVlvHK447N759+hbx1BfcHKM2uTgemH1ufPOyr8T+Wz47nrf5IbHDqMfEK156ZC0bJx/8LTZVtlApG1BmjKyjvIcDHwdh4TedaCSaz0s0l2065phjVgvOyHBBzpcyqBKZiCDOS+LGT5gQM2fMqBGH9jfSLj/XvZm80+dP3f/ZMeX3f4s7vrVq2r7P1Usvedyr4vtXHhorx06Nx+5/cVww7fWxzph1Y/84IG747T9i3333qdkuuii3QXQrX4iuyQln78m649N0qv9R/TMLeMgOqUoVZ2tKAQZ+jn1SHxDaaONNY9eD945F19wXixbOr2VhyNTIic5WZV7zp174qlj8yZNj/gXnN/zZzL32ifEHvSmW7Twnbr/ij3HxBY80HbQfZaeU7BN/QF+cUuBK5ok9W9WIuZ1n6H+3NQn0AXtrcurIt6R8Uyqct9yhxCpyJhnAPOKNSQYMKNsSGDY5kRWgGvsGQOSKeaAPQFExtNKwAMZSar5rMwpqOUuAXJoqIyi7IP89YCHq143oenpm0UH3L6XbYw85m6U605Taz0DmHarTtSll6X4iSJjsqvfTjvy97+REi4KXunjXjOCMGTUHgZNdUracHqlKAE4+GD/GrRtgPd3LvEQ/SvcQleQs5cdx+a1IHHAC7FfJU6o65wSwVjOfl5O0I+/0XWDWfDT2QyhUETWIKXJnyEpEjQiw/VKqb1N7qS4uP/98IPMt/Qbhh7jjcJ5yyimrfQV5Yr2WegH4dzqolBXgQtLwyNr75ISUIh0DeQ735Awl+dMTpYFUsKat51JfD2SifZAft8MZIRfOaLeAo5RehADSI29ElMhUxGCJYJKuilSsOp2A00e3OEECUGhWxtHqO5BebJ27t3VfRX55z7KgSnXr5iazQ6ZXTszRq0gee7jUaLLVefa/13sSYD9khpSyi+gdfk6pzIqdtVfomBIY9qRADN0OEFv3JVDdTCInfuzXcffGf41rH/pN/ObGc2LHGY+LZ8x+drxolxfFhT85P15/3CPndefDHgXQZICVsonMh54qZYsoj+LfdOIot6rnA9rZulJZmL1MB+ansLgWMs27ordLp3r4DsIUEY1woZOUM7Uzps+YGQftsG9cfvyLH/3ZjCfuGSs23TNu3vDw+O01T4wlSyL2eMk5cd64D8TksevFPiv2i5v/cF3svPPjaz0KzK8UdELUiqBrqpsPJC9yvbQW25l/1XdTlJ3fnhPwbIsos/1Q8lXYA5mn9RlveggsW/bPY5P/SdbqpUPupQavzZ5hr32eErMvvz1uO/1DlV+dte+TY9JhJ8Tdm42Lv/7y7Jh/57zad/mvcAO7kpewAuOeC6mc63YNm+0FWKN0EkqzOfc/H5gE+oB9YHIb8K84R0B1KcXRxrFJSp9xlrFdohWNQCGADZgC/dKjOKqtpgCnh3IvziEgLb2UMiwdL5a+D6yrqykx4lJipcnb2HkjKr9nwDGmnehQXvVSpOBLxQdiSmccS81mCAGWfGBvRQOwiXm9bPqu1DAGHpgAyADVPN27lQXDsecIcFg4NQxBKaruWpwGxovzXkrpV3PmmZAO+TWsM58xyt1MUwVmZQCIyuUgTDoV4AqEiUDmw78DERyIqswSZA9QzCiKyiJmBhKV8Y5FMlOEF0lSVTcMhFgPnLK8yZhnsE7MvaoDuLRpe0qkvVtD5N+z2L95vSNH2TpWh1zK5pE1gqBDRlSRc9LfECb2PVKDY1tqPtns+TgLnHr3A7Tdu2oA2vaYeeXOg99wiKSCl0CCz6Rwit5Yd90aHBt7GLmaD5GhVOOff8ahs5fTMXlV80MkIXrScYYAQrvRMNF8hIt1Kp2VQ1ZFRpoHsM6emHveuNPnsmHMvUQYAmTeVbdIkm69x/51m0uAbpeeK2ut6iQBZE2prppuQmpaU4jP0hCAsN9To1G6vVnfi/rrPP3AA2L0C8fEPUvvjudtekgcsNMz45ZLboq3vOkNRbLPb+lEaxkQMfd8AL3+nU3Ny/qQiMptNOLtpm63pxCciWirnyOfDdHtM/PIB/3BL/CdKvvmGnSs76UGuyW/rWqFvPTAo+L2978uJs6aHQ/M3i/umvXc+NPte8Xf/jI69n/RDbF06+/E/y35bOw766nxmAWPiZv+dG088Ym712ymeQHl+UAsJtIy/wyJ6DNZGakUqPnqbf8b6ukB0xKpKsIso4IvImiVD7/h8+dlavXfs/asL0RXKplr1Luk/rcTJkyMlz750Pj7MYfEww+tev9Jm20es17y1li6/eNjweTr4tJfXRT33H1X7efsr7VM7iU7wp+1zp3HWSoAACAASURBVEvRf/bMs8ps6I+hk0AfsA+drGt3Sh3jge4Sc8zZk1aep9n6rWilSDGGtdSoqP5RADrKFxMm2s5xtymlGnHEk2IBNgF0yo4zJ2qrJsrcKOpGtadS3DntAEgpsm4+Pne/EuhSA8bop3t381UA0WpBEQM5gwvYSL8GlEupephbIAegbwQqvB+AgUOSzqfXl4DTyoCSpVRi2QQcEu8npekqCxBZF1UQISy9/yQfdXWcdSC1lCZLpoCr6HPJYQKQkTClRiqdfgdAjDVQArAcA7WOnkf3+HxI09MERS14qQFN+j45AtwMEGDG4Hl+xl8kVjO/1CCHQURqIS3sJQDcOvd+OYWNzp1VX2cdeb95t1Rz8RzWkefNm0vaY9LkObedrqHO5SaCktI1S2fFIkIAd89eGggLJAZg1wiIM/YIH44guSGrEGPWLv1BTyELrUcZRMgbjgniEYnn+9Zx1VF6aW5qud2D3EsOHfDJsfc+8/IF9/KuyKPbwDF1jEe2lY4gTH0vOEL5AMKtQbq0Kj0+/QbJaS1Kv7fORH1E1uxphG6qbbQXpJIC3NJl2Rb7EMlnLo32lHtx1Lw7ci+BdfqFvSj1wCBrgKzfGb7TGrV3rsce0rvWV35SA1Ap8GBPlkhUa9d6Zy8b9cWgrxOZKstDlJOORUKzGfQO/4IvwqbS7aLkT9v/GbHhjrNjxpgN4pLz/xwfeP8jmSRVw56SdYSILNXfu669RteUfAT+j+ftto4xf8EA5XKl4AM/AjFJx5eO2QRw6X3gsZFu5zfye7w/vqIsGt+n18mcnqXb7W8lYIhQBPquu+0XN100P358zoZx8/1bxN/+OjoOOPTOWHeb38ZFYz8eS5YvjufNemGsvHJ53HT5tbUMQIAc4VcKRLExCHkZWDlJwqZ4DiRGt48U4zMiuPkSpew0BD45VIFyhIT16fOqI/K8W/4gAoAPIUhGJnxHeh2At88Ex/iaovvWgbU5Y/xmcc1bXhH3X/fImfV6Jc0+5OhYutXusWK72THq/hvif7//r+a3Agd+R+4lsO6d8M9LwSB+Dl+Lnel3hh9afdwH7EMr79rdOO4cKfXFefSbg8RZZpBKBkbEGvvJwROhLNXX1j8ShUqZUhYUigi+zZ6OThOJZ/AoEQ42hZQrxpKIXJPzBxCVz0aNGihyz9JZ8mrEsXPSMEudhTv9WjicOk8Dd6XUToaDIjan0hFWFKmoAKKEAWk2GC8Osnflt/6f80H2DCBZa8wnqpZSmKtIj/p7AWCeg6NT1S09RetKKdnmDoiRu1T/bg/OFUMHxGmclw9z5LyRe4md5vSL4gCRpSOw8utZS64FoGDeOXmIqNQgh9Gzr8zH/mHsSw3l8uuKugCN5F5az/Yz4MTAleqA1WZyoOyZUgOyTr8Hdc8cM7VneYdg9zJH8i4Bep8jc5Ri+LzUGyGfL2DsD0COFCMPe5++QlIhqzjYdAXHF1hvVrbj99a6v8k9r100B8AfQOZclo7G5EQDphxYOrPbQ625NW3P5yQU3S7lEVgGdksD0OcQIQ+bkbJ0CQedc2fdI0SUudDxBtvA6ePwsSf2IjKrBL7r5yKSJHMC0KoCIEgHQJ3cc7DGEbS/GpXzdPs99K/ffQlYT2wWsFyyiYA2HUIfl/reACZsqgyPUmlU/gSIATYViJOVw5bza+xrfgzgwdawqXQ7PV3KxsmvK5LvDxBTSrlGsNPtiL9SmRG7Zj5szVDodlkJ9KssOVHwfCBRAbkqewnc6omD8C8dD5tfj15hSwU2XJfM6Rg+JJsGuAHxNZL2vkXxl6ufFOeePTv2PviqWD7r4rh41Glx2/23xJNnPT22XbZd3P3neXHX/Hk1HeeabFUpeMVnok+B3FLfJ3rWfZHP7Hu3B70NyCKqSj6DNUznI6FLA/FpL/AFSsRz/huA2ZqnT+l1AB3xL1pPh+sRwVfnz0zZYHbM/eSpsfSGK2LKc46JZZtsHcu3mBWLFlwUf/7dBXH/fQtrl0ewKj3wzsi91HDavkQa6yOTB+zsdSCfre13hu/2ilv9+n3APvQyr200wMHGKzmZgB3DxCCWnFRTpkA5hSLX3Wo0VyUaziFFy6EspdX6nZqcdIRbiemlZCkayohDPhSDwmXoOPglJhSAVTsOBJRkynBLe6N0paYiXIZqMJRS5KV+Ofc6j+CmeXCAGK9Sd/Z0lBQQ1+z4nE4+F7DLSEgbA9TywQAAeaWmVb6bjhECMEVAutForup5gSGy4lBI7S9lnIhkcqKsq1JZBUPN+IkklZoCdVLW9ddyT06RbI9Sep31i5zirJaGNE8p0Z5Nr4duNJqrenYyI3cyqzrPWBTP3ACDUl23d0FPIUW7cRJCae4AAoKAs1Vaz/QiJxuQqWrwBvzI5JHa2gpJ1cn1Yy2oZ5TGybEsDdEkjjQ9mTfr9H0RQHLg0CkR6I81VwIin2xN6YhFTy2bSP8C9r50ig0AwabKCKTbWz0NoRMS5UPRMew63V46+cZ9UkZaqe8I8ItwQCy2Qjp0Yt6uwc7LGKSXSyfy8BHoPaCsNPgRCAqEngynTvSASfd54jPeHeeve3pcseh3sWTF4thjg73jsaP/LR64bGHceP21NXtEZ7PjMgBLJZsCQprksamlsgm6RTCEXRuqtGz+Kv8FoC3ZJH5AOuqtRPyQj3IyckeUVAH7gayRHXbcKfbeYp9YMGlyTJw9Oq678oK4/MK/xMKF9z56OXuQ3FOPgtJ9BDrsQ4GHkp8lU0BvA+un1Nh2IHPv/6Z1CfQBe+uy6ug3RaZtcIxcqd4IQKMYsKhVXdlFqdPRIiIarUTGB/MQNiiSQBRexKbKgeeUAuIY7lIGAKUg8gZYMtRDOUSwpLVRXmSbD0YZcJeuXWXAdfcGvBAqnNtWIrSDeUbGAfgC2BsdBcb4iSaXOlW7vygBoM/B6mYtb+lZ1cqSqehIyXHj8JhTKfshXY9zQu6cLH83yy4ZjMztP86od+3vqgZ0WG8OnUh9KdWdYROF8vytHkU3mHnX/xbpBJRLHSx1LVaKYu7KNqpAsUgKwgWANv8qB7BTc5aBwOlB9pF71ekLiBRzt19LKfX2AJlLu60iJDo15/w6HHjRb++99M4RDeZuXlWgHbmWGlxxnjiu3RxAFd2SGkFWleTIdFCGg4wokYb0lHcoa0tGSn+s+RLwzjn5dHspzRpxJgBB/1f1XEiN5vQFodurAhWdkCadRrfQHXQNu1o1ZCfJBEI454P/JpIvRb5bTUSr5mVO/CspyVVNadlLNrJUj5+uq9zMXqazSplYA5H39k96XNy0yc0xc8XMmHT/xFpH9FtuvqEWnaeXEfCyGUvHGLuf77FHiM1SfxtEi/emBKnTx7g1e16EkowiwYNS6QRba+6pt0fpeulUEH4yuVc1X2w2l/zznfbcLe6+RfbCnY82tfMda4T9FyBEElT5q/Yvm6TUopTdlU5ngUdKfVranW//++1LoA/Y25dZx34BEDrKjOItgW1pMBg5RqHUFTlNRBTJ5qecU71LxyYZUYtSAR4i5SIqjRrQIRAoXMq4BKgSM+d5Kd7hGEC7xjCc/lLNsnpYxk6dThXjj5XHqPueVDnRqIE0PKt6fuCVE4MpxzBzkqsa0LkGRwfzyQCXhvQ3BAlWunR+7FC8B4QCkklaWWkAg9YxuVc1XEEEyYKQ9if6C+jnZ88O5lnIhnMmZRAxwHhVzcVaVhvNqagiUpBC/pTKEwYzz1Z/a+1In2OAS3NEOHAa6CLsedWQ7s6YI+zsH3LPU6FbnVPpe1K73V9KKQe6KmXcb0VXzNl7yjvCJwcFmSZyN5RRr/rnsjaBYDIrNasE2j2D7JJSw7Z0LYSRtQMA2x+djMq4h/IYax3BIN231EgxzUWZhD+AeAmsI3XoKdEleqs/1h4JWDupLKb01DIylDfR7VVEuFRrYIdNtXfZrKpyu4FIlh+DjLc26Q26vcqvAqroduCm6kx1AJf/IAAwHIM/IHgCPNLHpaF0BVBrpGMEYugqtg9BKvqbH8nXzvNtOH1GOONdJ/KF9y6oZc/JxlHqQzeQW1UjZN9F/vheqds9khmhw551s7lfo+c1f7ISACn1AQHaPYM0/lK9e7q28jFyRyAh1lspT2jnPQDgQLb5kGd+ekn9tZQ2pZ5BpX5TQD9bikTRI6E/hkcCfcA+PHJ/9K4iGQyJVJtS5BHASU25mh0ZBsy4ljoXkRJMWKMmWlWPLvqNLJA+LtKFzQWKmrHenFCOH+BaqpPUyIQSYbCHCzSmZ2bgAK6qxlvSzdRO+7vRGZkAD+Ag8uT9STeSEtoIXFfJHUhnhABaf6tRF9lF2FQNBs73GIfSGcl+h41mMNUrVT3vUGwDEV+G1rqsOsKKY8fxJ/dGBAhgz/mSnqusREo0A19VotHo+ciQEcL+20OinpzFUqphuo73I7IrelQFLoErjg/ZI+aGa3BORT3TGef5PNQiSj0XMZIyxwmsGph1RBKgB4hyXjgbVUcFNXpm5JHoDgAIkErzRHyVehmk61jjslpkiZSiLxxtdeL2YFXWwFC9B+AV2CazUjaPNUzuPis1oqufJ6DDoZJOCkhwwEr1q608m/WYwJOSCJGi/Ezp/DrWOEBG7qU0eNlg5C6Ff7jl3ooM+t/prATodutReVvVUaHWuMg23d6o4aGsu2RTBSDYVLp9ICdRqHPXUI5u53uwlWx/aQ0nifBj6HZ7ooqIVbLCP9LvYTh1e6pn529U9RpBKPALEa2NfDjPIfMQeAPakHLs9UB0O7nLpBQU4ROKOFsfjUheqe30u3lWRZ1lEwgYVR092tlVXX01tp3PkHp95N9ELCCG2H/Po1Fc1bCG+GXKhwS6+DP0ciM7WHUtmVnWOeKbHSf3ZqcrsL/eOZK5FH0XgJMpBvBXZW8OldzX9vv0AXsPrAANKCg4Dk/pKCUAnMONlQTMqo5bSo/CaWVMgG6KQ4RQjZLGchSmSHliOEWKNW1J3doBUL8XAacYgZZmqcdIBcoZOVDVKAkYTYYAs9gLQ8SXg8EZLg2ONoUMGGBMmw2OsLQ/rKbrUrwMKUcDSJUOSPYAEnCE+WRIRS0pWYqRAQY2RO1LBE79HNTlSnfT9Eb6b2kwGiKX1ljVczZ7rk5+TulbcwgqqZSlAYSTOwev1G27/jdkKd0L8CN/a1wqssgMJ9Ia5nAwfjIMUmdVjXSwxkCjzATOhNTGUgfgfI4IEIRDOn6v9Ayiod6v/TfczoX5cTA1krEeqlh/qdecaeulFN2of07PhlgS7eZsMPR0EwJS1Ir+8C7oGQ4bncIRR5JxTJCQyBVgX7p3CdDW34+OIlPvjNxLhJh1Zf/IipGF0QvD3hShszZLDbDoXWudvib3Zv0ZOGTKRoAQTplMAs4dAKLGkpOWnGLXppvZFuQAvcuB9huACdnS6DQK8pMFRcfQX+Recri9T/vH+yk1luyF99CfQ/clYO/RtQj+qqi0iKL1Th8h3poNxBKbav+knj9sGd0OfPJrENF0O13L5wE82VQ+k+ilebHhAG2zI241WUROIYMRiKUBvKhdZ1NkBg33QFYjGejSqhIi9lG2DrKi1DS1/hnoa/qZT6JfEf+RvAWB9HAhc+WQQCi5kzH9TvZ0DR3PZ6SX2OJWghfsDh8SUV6lk/hgrtsLMicv60Oght2sekb16nS2Nd+sdFI/B+8RgBfQQlYpmeWD863tLb6/fUDufEj6nd8oS0LggU1FtvA9m2Ue8oWQwK5F7qVMQu8VaWXNVGVvDvf6X5vu3wfsPfC2bUKgjkNrY1TVhnNWKUOKsHQMVulROLo2HQDpuDbKWKfH1CWe0QEiOWIc7NQQr5lhS/cyJ4qCkqiaE7AuAiNSTCH1ymCEAAUKqyoqQKmJTDJcUvUapRXVPxcgnrrZciAYM++A7MmWrBk/4Iaz7Z02iqTXX5tiF8li4KTvlxq5+T7ng5ETMR7q+ulG71jElxHjRFXNC7ggd0ZElLLV6Ir3xOClPgrWHsMGzHHskkPJmHEMEEyNoi31z+F9Std2DXKvWu+YavuU8QRyemUgSMhSxKUq9RkYJHdOoHTuUsPI/Hlk5HDwADf1ibJyNM6kb3wm24aTB/TZc8gUa71RBkP9PbD65I5MIffSsK8QXZx5Tv5wRr3y+dmDUslFZKq6VvvcM9IxjdJX669Nn6QSFzpYBpO0YgSvwY7YP+Qsq4lsOHKtprsizJSFNJqTd07u5jyUjSx7ZU/157GqBAAT+996q8qiksVEx9DL9FGrdg95RLezHa6RCFH2mx+D4EYWsKmILz5JK2DRE9DX0vrtHzqmlBbseyK8CAS2Q1lWrwwZAbK+6MiqZrh8NWQ42yezp9XIOV1K3khFep3e4UcCjuTOdxSMQNIC9a7faj8lwBRY984A4KoIvHfCb2LXvfdeGQIKyB39Rqo6vyN3yB0J3qjkqP6Z2DNrEgECkAPm9gt/HlHCl+FDkrugBF+DbW31nTqJKmW6VM0plaggwBHEQ9UculfebS/Oow/Ye+StJMcKUyYCUrXxKEyghPKSIj+QlPdOPDKjjMXmiDOKVYqWkleHzwAytr02KCOADTAHDERbS0M0W+2UOiNp2416CnTzGTW3EcUSzVJTVJVqBWxhT0UyAMheG5h+zr7Ut0bRUM8oEuMPJnsgaWKDfXaGC8ssXVx0vVHjNenFyBkEQxW4HOx8BvN7BAlHGghT8lEa9gIHhGPq+1UN9wYzj1Z+S89xkDlpUmmrsh8QWDJSpHDSNaLIvTasY6BcNkhVhMt+UGLBOSP3qmhZt5+N44/cEa3XSLGKZEDCilqKSJZOR+j2PPvX700JsDkymACJqmMjzVwUnk0F1Oj2qoZ03XxKRC7dTq/7Q+9VDSUusu7sh6E4ErXd5wbaZSIIKlQ1qQSyZVpp1gaolcqK2r3vQL5PZ0vFBthlfKkHLw3zZav4l4ArQrjXhkxNkXSEa+nUJ/P1vIJCAjlKLaoa7nX72dhScgf8pfVXZTMgf8mdfyZTBSHcH8MvgT5gH/538OgMgHDMtE2tfrfROcXpbExA32+GCrjLArB5KVIsdlUHew9ljhSyVE1sYa8OjgIDR5kxZlWRU6wy4ABgqrUFhKsa6HTyWUUpRcs5/KIRnIrSuaTpntLj1Zti2ht1le/kHAdyLely1i02HhiuGtYO4ABAiuSRe7NygYHMJ/8NB0EKOZLE+wZKqiIH0jEdGyh6ab4izr061J4zwjIvGqWlKmEBNMkBKKtKEe30c8quQCpIn+UkNzraTJaJHhNSvK0h2US9OjTSAlLomFIjujRv5KA6cNEqkcihAu6AOpKJjteQy3quGvpMkDvyqqp3Rq++h/68ui8B/gvSUlTOeq/S1zKg2FQAmN2i2xs1te3UzOlr65ZN1Q+CTW2UxUVXiuwKmNCdvTpk29m/ghDq9asGH1NJk+i5DBk6plGddaeeF5ktWotY4HMhWktngbsfkEsf8TFlEkm979VBfmrwgeBzzz23cpqy9NJJOCLugnNDMWSlkDufXClUo/4niGNyR/z4jWh/f/SGBPqAvTfewyqzEL3FcEmxaQYIgWebUNqp30mNqVKAA31UilJqjrQoaZZqa5o19+J0U7i+z+EfCQPTqz4KW8qIVY0E5DTGwUBK8WZ4Oj0YKc6OOingu1EzFvfmUGB7yVy6faOu352e60CvJ31OZNT6IvdGNbzAGeJCKhfwCFDo+9DpwUgBTZhotV2AVqN9KKpL7uaifwFnqNcHx042iXRpKfKNdIY6dUBThgzHFVDrZPdmsuIUAIHSTKW+JkKsETGjAZosAZGl4erU3O57FpHm8Fu/zcpU7AdyR9h5Rvqp02CGAy3yY0/JXlGvXpV5kZ5V9J1OQriVjgtsVyb976+ZEqDbAQNRaWu5ETgROQWg2VQRSCnb3SCqkJB0u/VrT7Gpjchvuohu5+8o5xsJul0GgIg0nWo/NyqBAeRE2/lrmpPJ/ikdMzzYFYrABmhlZVoT3m2jjAq2PvXeEXwYCUMwRXaUqHUzclv/Eb6C7D1+Q9VJUYN5bj1M+CbWvPI0REKjZo/uxfdRqy5ToH9022Ck353f9gF7d+Q66KuKrojoUrwMSjMQLvUc6AH0RQFF54G2gaSZcRApHuw3h87GN5/U1KjRw0mnpWyBRmk3QPtIGpxiiorT2iw6zSACGICGNFwgnzGS3tWMaCnJhPJmnJAGFCdAxXkBTJs1LJHOz/kApjg/msyMlKGRDMJDUzyAvBlgsMaBNU10RDww1UoVGL2BABplKNJ7NYdTZyw6IV0QEaPko9FQnyydE5AFeno5CpA/B70CeAOQ5N6smyynDoHkPXECOV1YeOl96unaHbJv7DXRFuvVexShaHQUTroHEkVtILKH8z2ShgiHVFx6Fkhp1hyIfIBqBBKnEHmHcKk6crKZLDiLZMdRR8IgEci9Wdd5hC0dQy8B9ylS1Ox+/c/XXgnQ7fSo7Bf2tFmfAxkydDubKhhBJ2gax6byP9odyHW6XWNMxCPfiG5nU5v10EAyWO9sMPs6knQ7ncKO8UsQDs2OnCUngJpukD2pt4uAkWsMRLfzG4FzZU38Qf4QOyHA0ayszbvnAyn5HClgPa1LYJ3PwH8m92a6XVan9ek9WZtKR9lk/l4zOZX2AkJJrwJRcrJnI/RpQq42GtY20ps/Zf69WFbW7t5fE7/fB+w9/FZ1QQXYARSsaSt10xxByhLYtvk0quBci1S5lgZ3wH+q1dZ8TtMWjYpSp3i/kWoP8Cfw34qYsLWUtOYX5oDVG4lDKhl5AHKa4lTVV9U/mzQ0DrBmHlhNqYAMnjQ77DxZ6ktA9mSeOjgjWlJXW84Kw4px5Tw3U7LujyCRNoxFTcfQUdgjcUi7JjslCWrwW1nvQB9AA4AwMpqkMfSiBKm7KqeR8bM3rG37InUsJyufcSaAICx0Kw3uGESp2pwbIGq4zvse7HtGxHFeNcURcSL3VkYiOABu0RPX4ayk4x/pD/qGnkHcSUGlk5CKHHHOhN9wJhAFwH+j4+TSnJRFkDvHj+x7qalfK3JL30EwcYoBdrWCzU5D8Dt6A5EHfJA/R5hd4FTbK8gqzlY6RQThSz/QxXQZ59CxcNYrnYZsEXFppcEoQkeNJqIkHUPUzvP2v7t2S0DKuXRgadd0TFVfhHopKS0ShaTb2QX6G5ihn+kO5VT8mqTbgQ66nb8k65AvglQX2U82taoxWP197RU6BkHFLjQ7crFX3ywdzI8AxOlmWQvNTvzxLGTHvvHnkP8AO3nzBV3T/8vopNvpJL4S/Z46lutvRPfTS96Xhrqt6Hb3Q9Z4r+w4n2YkDnqYbhcAQIa2mn3JJvpDDta+UgB/yJ1e9+7IJXXn50PyMwXFEC5sq++Tu3VuDqXjlXOZWh8CT6Lq9k8v9poaieugG3PuA/ZuSLWD1wS2AXfOrs0HjJSOX6i6ZTruBHi2wTnP/k10x+CsAZGcPEqWAXTPduqZGEjGkULxh7JJ1++gKIb0UuraKD7pc/5bo7lm59DXT5ACJRNgnHwSeUL2ZJ46q7omgOpezY50ygWgvloDOtExhIDa+tQhekiF1cGbSYUmH6mRnk1TonZG6u2AaU7dVa17zh7HjrPBeQDmU6f4diI3nEKN0AAY4IXBfM1rXtPOFHvuu5wA9aPWKeMt5Rl4b2cgTgBCzi6AiHyyFoHq1J2fI4a8Qqa02zDTtckdSBUh41QA7yN5cKo4c4gmsrLeWz2FwnNb1+SeugmzEamDs8/pdLqcw2eNi3JxoBudhZzLU6TLvFwL8BFpdM/+6EugXQnQ7dZjOmubTW0FQKb7ACTADN1OVwGI/Jqk212LbwS00O3sqeBBO0M9vfWuFAoYHem6nc1z4gdALVotW6BZWnQuL7IWWAAMEYBkzo+k29lquoHfyK7K7GRb28nsZCtkD8n0QiS6Vy/3CWhlPbF5MqHoZKWK5C4brNVh7aUO8XxHcqfvUz156s4vCETuqVN8O7qdryRbThCDPWZT3bM/elcCfcDeu+9mlZnZkAwS5UkpSplplq7b7UfjmGNgKRGGMh350e37DuX1RdsZJRFIx75oetaoGeBQzE0KsKgc4MMJl07ci91TByoL6xwJYT2lo9R0Hh7OwVhqUETuupVzUKR5jqQ0yWbyo1Okn8o6EJ2VvsrRGM7BqSB3+0+EiLxFYdakIcOAwySaCMSTe7Nz6bv9/Jx75R7AuawT5KPsof7oS2AwEqDblQ8BkAg3WRsyq9oB7oO5f9Vv08kZsk8Qi0pQ1iTdLjDg2fhs/rBhzUqguiHn+msiF5WgOYZTBgQCQDbFmjQQpYijdDY9uVcdGThUzy1zhM8oiwKJgFRQ7tYfvS+BPmDv/Xe0ygwpABExKb1AMga5ncjvYB+XUrXhsdxYQJFditemX1MHZwJwR0yoa3N0l/qkdhjTwcqGfN1bN10GgIMvZWykM9GN5GJdM3CeXUqkqIdmLs3qwgYr6/rfA69qu0T8RUNFDkQDRkojxYHIQimG0gwGHbPvCD5O9kBqGQdyf78BDsmdM4e8kZky0mrV2312XZOlngLuUtzpmUbd5Nu9fivf1xdCmYFMCUCdndGtvz/6EuikBOj273//+7VMHFkbdDub2ulmlo3mzIehU+h2qe8yUZAIa7JuT9lN9rXgD4IWcG/UmK6T7921gFeZO0p7ZBQJiPBlRO3X1IGIlV2miaHou5IoJXjtZLIOVjay08ic/Nl3hJSMuv4YORLoA/aR864enanaIZFVKfLSh0T/KAOpSK3UCg3kkRkxCl59kgiz+3Dm16YUGkBRnTj5azAGwHA6ONpV51kORNbpN+TLgeDQOHJJ8x4EjZptBm9tGQgKjbqkDau1AijVhilVGEiTuWZyQ0gBioA5p056OCOrGQ6Du7YMzpRacdkbOscCj0gLJEortXHtyklKnkZm0vSkWdpXInEA0+1L2gAAIABJREFUpLS9tWXY5/Q7Z0rNuRIA65+T141BlzjiCVhXbyotVZ8Be60/+hLopgTodnolNXBlY9lUur3qeNXBzEd0mW53ugGym26na+idtUm3A5D2unRtfUj8NxAnCt+NbAe+o1NvlP/I3hJRVzaJmF2Tgz35WpU5ZY0r8VKvjigS+Gl0UsFg1jvb7XQDzQQF+NSps6kaMCol6Y+RJYE+YB9Z72uV2Yq0A8+AowiUFGLKUNRbWpcNKm0+NZhr9VEZT2BR13LXpNRdT3TRtfy7f1tbB9CsmQvZIzIAaIAOU00BA5QDiRQwalhQRo0R5VDokiurgnLVaGptTl0idxEB6x1xRO4aEDH+6ms5GwNx8hg1qfepe7ZaPe8XASYC5D56Eaytg1w5GvY+R0PjM+ARsNOFVnObqvPpq2TGWQNGrXHp1xw39XeuSW8hSsi9l89V7/Z6sAY50nS69SktHYniNAROntTKdrMe1J/SIZw4+gRYRzbSWYCLd0Lu/dGXwFBKINlU/go7qGEXP0YUkm63Pgdy8go9wqbS7aK4oov2lQCHCOPartvJna8iys2XQZoClDL4yNvn7fRMSmuGfWYz2QtZavwXjQb5kDIyZW+tzT4kWZCtLFVy4oMgUehiPo130C5xAgPIjLLGyV05E3kjxVxLcI/c16RSj6HUUb1wrz5g74W30KE5ANUi3xpSiEZydilHR6xxhv0N5Kcu8dLbOc42unQkv7GZKRGG02b3XQ4jEIOZ649VJUDWQPWll15aky1Fyej5W00wsC39j9FL3crJnKy9G0ZLeppaXe+Ig06ZJ0UOuCNN+qMsd04FIMngASJkxeCRO0LFOk7dysnU+rYvyD0ZN84b0Ol9cSw0Nuoz0OUVR6YcXqnbiD0OAJBHl3BAUjdhzXDom9TRFlBMXYTJnZPCQRFZ8BufA+9AZH+sLgGOnGwHOp7eAODJno7m3Gm05TNyT9kPqTu/PcFZA16sffoFCSMN1md0jDXfH30J9IIEkk215v13sqnsJH1Pt8ussvbp9tQlXqahQAPdDjACLvYEYotuZ3dljvR1e/kt0wdkRWZsJT0t24weIW++Jf2SupWnLvH8Q/qb7PmJshj4PEkvsakyMflFrtsfq0pAYIAtJFt+IV+QvPjeqTO/z9JaJ3cy9V2ZZ3S6LAV/2xuJZPG59b42ZY6s6WurD9jX0DfMWU5H/NjgqVbG3/6kf2PE6ju6++90VAdnrq9g21sggDungtFLxEiSN8dCFAtBkjr1J/lTwOkIpjWt8Up7EhzYt5PcESOIk7S+0ykIjF3qFp9knsgq6zwdNTawu6+9vxIB48ylIwvTWif3RA5y6NK544C9/wb2OdacOBG1/mhdAnQI8M4ppufplfr1Xg/Y6e9EzCYnTyQNSPde+qMvgV6XQNLtAGPS7da7P9a+PQCc5DaVjpEN2NftA3vDouyJFKHPk46h45POIfOkY9wl+Y+CO4D72lQyOTApr/orPiO55757sqs+J+N6e1qv3/mQSBbrvj/WPAn0Afua905rT8Spo2z9PVDAji0d6cezDfXrxVLXn1Pq/oksSU5GUrD+NvztDwcjZTMM9bxH+v0w1KIoAwXsIvT946raXwWDBeyi6hy7/mhdAgC5MpAqwF5/DnsVYF/Tmzy1Ls3Wv8mJ1rSLjuc41xPfdDswSd5ATL2OTwS4CJiyhv7oS2AkSCAH7PXrHWAH4vksVYAdMSjToT9al0AzwE7uifTmmyffMYF4gF32mr/7Y82TQB+wr0HvFEAHWDh0gF8nUuIpZey1KKS0p/5YVQKMGMeZE8dpk6JEWfobcK8vRUgsNSWbHDvviXzJljJ2HY6h70jfRpqsyd1TB7qeyApYdH49gCL9sT4lXpq79O0UIUjpe41S4jnj3oWaO1kO/aYsq78dmSNqqKU7WvuDSYkXOZMS7z2JCKg1XZNPPRjoWvc7ZR6aQkl9t0alxGtaRFfkKfGAo8GZFumqT4mnm8hdSrzIpFT5PfbYo7Z/+mN1CdAJ5EuXk52yAiBEqqoaa/rFZ3QQ/U5vA+yyecheGYhMEntF539/fEcKq1TVtamZYn999bYEHFUKpNPH7GUpJZ5/wqehY6xpfgz/pD4lHlCnp6Rmu5bPRX3Z1X4AaPU1IENNsEEGCd0BcJN9Son3794NuSeisFlKvPdEt0iv96c/1gwJ9AH7CH6PaUNzGChOjhlnjjPRqaZzACPnwvUoAUqa47I2dfbMl4gaLoaIkwZwJ4eM3ClXpIkU4XZH6jvAyfMuES6UOUXNyfNvazNzqqGcxn7kLyrriBIOdWo6B/wN5Mi31HTO0XEij9a85nYccvLWEI3DsbYOdY2ay3HiyEHTOe9BWjYQSe7tNp2jr4B9nYM1nUOQeK+a29FnHBZyX5vXOxnLHOHE6RPQraZznHS9M9gTWSZr83nr1qAmXPY+fax+GuDwb8hB+gbobreRq74DwL70bP0CyDk1a0y11WuzjllbdetwPzebqikZsol/0cmmc4Ci/UNv0feIQsDTXgDe12Yfkj7hq9j7ygbIqZNN55CBZMwXRQbwVREp/q3fdG64d93A798H7AOX3bD9sn+s2/CInjOXACFAIcqrYRY2eSAAvdlTcNRFwDTbQQpwFM3Bf69Nxo5DcfbZZz96rBuA6Ogfx4vJbuj04Dg7e9qxbv57bT/WDch4yUtessqxbintupOyF2F3vBK59491u6bWgI8D7Vg3679bx7ohvtKxbkCkTv1IrLXpWDfrDUmHHEUiyU7QndwxSAMhAZvtC7pdloTsBkQhooouS2C+2e/7n/clMBgJAIeaT/IjhuJYNz6M7Cnd+hFgyF5BiLX9WDc6JpHeg3mfVb9FBKRj3QTdnLbQP9atG5Iemmv2AfvQyLljd9EFUjqSRk3S8aQddQO0VE2YkgViRAuwg6lr8ZoMIAFzTLTn9dwcOH8GctzJQBeCSD65S5dCDmCqRYLX5GOvrGvn8VpbwMuXvvSl+NrXvlZb80M1RMKOOuqoOPbYY2tnkNtzACW2ek0djLqIugi4VPXTTz89vv71r9fW3FANx42R+0EHHRRnnXVWLcr8qle9aqhuPyz3ce68Uo5nPvOZtW6/X/nKV2okyVCOww8/vHbuvbTvc889t/Y38mpNHjIZRBhleigVcHQeQDNUg24HXBAnCFnELJKsn8o6VG9g7bmPDBEZNQA0HxJJpbRMac1QDWs7rXd7zd5b03tq0Cd0OkKOP5nknvobDYXsEYR0DL2CJBBp33fffYfi1v17dEgCfcDeIUF2+zJSoxlzSlY6tjSXoVSypeeTlozB40wDr1KqpDutSSOlPwLLUiJ1gO9GdLEdmSENRMCkDvsDPK5JtZDW+be//e1a/ado18c//vH4zGc+046IOv5dxu2Nb3xjvO1tb6uRCEiTV77ylWtUehmdwpGQwqgGl9y/973vdVyW7VyQc/HmN785XvGKV8R///d/1+T90pe+tJ1L9Px3AUYpkoA6Z/oTn/hErU/AcA4E2Vve8pbaWgDcpVKuaanyMgnochFGoOWnP/1prQRpOIcIJJJKHxrZW0izNZkcHE5Zr033Rn4jo/hs/shOo3eGc/AVn/vc58bBBx9cK2sTDFrTTsgB0mUI6hHCr/nJT35SK4UZzsGXPfDAA2u65cILL6wFRPT/6Y/el0AfsPf4O1I3TtnaVIw4h66dyC4wLQVGUxBOuHSkdPyJR0/HXnFcpAOKogEj7dToIRE4dMAjpSQKPNIbdklzJwv1Rf6b3NsB6qImSe5qIaVYpu7BWNV07JVrkpl7tRvBZATInVGwNtQtjfRj+L74xS/WZPOa17wm3ve+98WHPvShtnYogEcOSA2OrggxkGc9YratUX0GUlMcZ/2SX6vDtd773vfG6173uvjc5z5XI6jMdSQPzccQIvYxxv39739/nHHGGW09kgZoSCSlIhxCmR/WPSdMbTSdoi4YCElRHtk5rQ7EoPXAsUAiSBUHbEbykJL6wx/+MPbcc8+arE466aS20t7pc/tfxIqeYiOsx3RcG93CfugvYI0jGxED9HyrQ0SG3K0RWRdKFjh6I3kALjKkgGN/K6+hD1odyFERSuscqej/vT86hm6XAUenI9Stefa7HR1jHiKOhx12WNBP7L2zw9mQ/uhLoB0JWIsyd/giMkjozp///OftXKJWlucP/aKnCF+SHynjkK2mG/gu7KpgknPFZaK1OtgKWWtS5pFo7jXSm4/yx375y1/WZKaEkdyB41YHP45O58OkQBjfI+kAvgw9zq6SO6JRdlY7up2v9KIXvaimv/i3bCv73R+9K4E+YO/dd1Mz8hQu54BzJ9rbbHAaOBIUhY1uM3LaUpdJTlw6H9y1UrdyDkfqbOs3nATOBmePEm5lSPfxh0Pu3iP1LEjp7+RCQZI7OTQb5Efu0tQ9O3Cejnhj0CjwJPf6s6j9zn0YVMqY8nW/1OG82X3dhwPtvpxP7KlrjcTxkY98JKRCW+dvf/vbW1rvUtZFJjm4gI/9wvhYgxwHoJDzzMDZG9a292NPJcLDZ+edd14tyiaaqCN3s0HmH/vYx2qAlJNx8sknN/tJT34OwEn1P+aYY2q1+ieccMKjxxA2mrAI7P7771+LTqrDBcSBi9SxvL47P+fOmqSTOCHpXGS/IXdpkeecc05t7TcbQPopp5xSi8hwVt761rc2+0lPfg4kWmcpawP502zQSRr+AdHkL8VRsziZP/YMpy2d3+tagDsHm17iiCE9NK8DWK1Zcue8c7qbjeOOO64m909/+tO1fcPBHolDZJHOlTnwzW9+syaLZoPO4MwiR5CB7BrbDIjTL9YhRzkduUSPAzWAiDVP1/iN922PsCmibs0G3XLkkUfWdJvMF/vMtfqjL4FWJEC/0pMyY9jEb33rWzVb2GwIuLBv9ghd7TeuxRfkF6Zja+mN1K08nYiQjnKzH+glqeB0VCtBJr6j7Cn+jz31rGc9q9lUe/JzxKj9bf4/+MEPava1lYH09occ6Fgkoj/kTq97D6k7fzqJAkHL9yP3FFxKchfJ53c2G0h6/UpSmjzb0h+9KYE+YO/N91KLhjD4FJ8mW8Beo4GVtGFFyRLITsfOtPuImFORA84GZw+Qp7A5Kc2cag6i5lHmTaGPtM63npECBNqb1TGSE0dYnSd5ceAAbXJn1NodHD1gMsldtCbJvVn03Xsnd/PnYI6kNErgTrqz2lmR669+9asNRedZGXYRKPL62c9+VotMSiMeSEqrfcNoAaAiWfae2mEOfbOyE2nDwPqnPvWp+I//+I8R1VNAep71qukVuTdLkQRaAAhgDRkFZAN9QPdA1jsABIw84xnPqKXoeY/q1ZVDNBsArvRJ5QnvfOc7m329pz4/9dRTH+0BAgg3a2pGPkcccUQceuihNVuAVEIuaVg0kCGyTHYHHHBALVOBU0nmIkKNhqwVcpd9Zc7HH3/8QG4/bL+RzYDkAF7+67/+q+k8RCT9ISNyB7T9ViSr3YE8QZhY867Hpnp/dBZb02ggJV/96lfXABAH3TP0R18CjSSAiOKPAF/WOjDWaPAXfJduQAwCe/wfwHMgut31AE/An1+i3EpjReu9mS+rjwbiXkYPgnIkDTaUH8eHJPdmup1OIHfBBn67E1mQ6OSFAGx30NGIFsQs8E+G5K4vTaMhaETH8KcEO5Qq9EfvSaAP2HvvndRYeMwmhQk8NBqpOQ0mTZSFM9FMIbb7yDYzUAN8ixbb0M2cFs49pQUQUEojYXgmYFln4EaN/DhfGFApRcA5uYvmdnqIyiS5A6Lk3ijab15SyRAl1sNIaFrEseAEk6cmY40iTww/YIkN1gRNxEAEodMDM44QAEw1ugNSGu1DTg6SAeABfkeCQ22+9jMGn9wb6Qwkxmtf+9oa0CD3M888s+ZUdHKIGHDUXv7yl9eimEojANtGRJV14DnUfMsMGAnjP//zP2vgmxyVHjQa3gsSSBRLiQIyYyCEVKN7IGRf/OIX13oEcBC/8IUvNCXMpMhrAAjkv+Md7xgJYq+VHsjO8Hw6VFcN0Xf7X9YOne67CKmBOM+NBIPk5agjTjj1v/jFLxrWtgJR1gKbwLEHaPqjL4GSBKwlxA7gaL0jV6sGUI24468hAQHqVjLM2pW87BDZWKknBrK3Udo8W2+9A5zmNxKG0gMEBR9Gc9xGg8/guQTl+DDk3u7RqM1kghRMR9XK+EH0NiuHQJCwB96Pk0P6o7ck0AfsPfQ+OM2YNeAFI9ooFT3V6ko1AibaqQcdzCNLyUMSSNejmBrV/pmj6IDv9XLdozQjzyEyTe5VaWOcJgYOAaFTObkPhH1uV/5kTZZqhBk5hE6jyC/jK+LPuWcge3VwoqVLIyEAhqphP7zrXe+qRWFFsgHoZhkHnXhmUQJRRE3PAMgPf/jDlUbV2gFkOUccJbVhvToAXLXIQOMHP/jBymmKfotek4NU6GZOSKeeFzFA7rqTf/SjH62VHlQNjh25c5aQLDKNenUA6PofpCPyqubpc3KXXfPZz362qZPVqecFVN/whjfU0q4RCwixqoFcIfcPfOADTYmHTs1vINehL4FuzSvJstEJE5pf2ReiUbI9mkW+BzKf0m+kLCPF6HTH9yEwq8YhhxxSS3FGKtOH/dGXQL0EZMuIrsrGaNSHRCQWIJP+rtkigDYUHcsRhEAhQozOli7O/yoNAR/6SCCFnu/lE3HoSroDiQkYVw1kPrmTNR0z0Cypdlc9EpyO4UfyuxplU/HVyR24R3IiMfujNyTQB+y98R5qqeaiuiKqNnHVud5SVqS6iKIy7EMF1HMxiRAAg5yMSy+9tLLZBQcay8cJ4jT12iB34A/IEkmpMlreC7kjUci9neYenXxmoF1aJRac3KsGUoExRgAxdr02gG7ZAJzpRtFRwAWolHbu705HulqRi6jWe97znlpX+He/+93x+c9/vvJnjuLilCBVerG+GvGh0725VZUeKGvRT4Cx1gjty1/+citi6vh37DcA11o2byn8VY4dx09TH2fO9mINntIJ61xae1UHeI4SUgjZBgg3i4Z0XOD/vCCHmtzpRnKXCl4a5AwgIFWQQL02EMX0JMLPiQdVNpUTLesBaau3QLsN4jr13HoTIPrYSo5/FXEMsMtEUQ5i3v3RlwAJ0OdAmX4H1kZpIP+tGeScRmh6OgzHAMbpQjrPWtdTo2q+bBV/S/M2wLPXhiwGjWfpGERalY0id0QJufM1h2OwpTIHBUrInZ9SGsoOyZ1/xn8cKVmywyHTobxnH7APpbQr7iWyjhEV2eDMSTsvDUCN86GJR6vsv42JmZQiJS1G2jRwmrqJA0AYTgpRtFiEUNS+lUZE5pi6FKu9qZpTOkfbd3opXZhDhPBQiy71qjSk6or4kR+5t5q2pIyA3DVj8d/knrrzIwXIXdp66syP+Gi1s6p3ytC5vlqzqjR5awXA9168p14ZgBdQ62+AsDRkCehcbi0CmK2m6QF53hcDI+Xb2hP9llacupUjXaShcujVptp7rQxrNzn+GOiq9S6SJwvFuxUR65WhaZg0Q7Vq3/3ud4vTEiUgd5E+jf+qoh/1P7Z/pDxak9YbcguxaN37zDq3vlNnfun0SiFaLSMhQ3LnXJJ7adBpIkXKiESovfdeGUgnpRzqAqvA75ve9KbaM3KSZJG0MugkJKgsJns9NTdLERF2xP4Rqbd/yIZD2ShFtv6+rczJOyf30047rUby9MrwjGyptWheVUSf1H77WsPFVrs4I/CQoUhrIALBZa3T73S7xq5IYLYFCa9kSjZWKxFMekqmCOJJBkzVnKTU2suieTID+mPtlgB9rryCjpQSX+U/Ip3ZPj1jqgis/LfWOlsq+EKv82n4M3R76lZOv6cO8bJYWvWT6C6lTUgyGVxVgRB6X+8M+qaXjg4+/fTTa+VBdExVzyPvhdxF1Kvsbi5z9oxOT53ikbipOz/SJZ1EQb+TuywEJZOtvlOkH7nLrKiaEz2n5IlvTMdIse+P4ZVAH7APr/xrd8dyYbTUspSODuOApdpkAKPZ8WKAHOUKFFFuIiUUKkBOIdrsCZBzEADA1CGe8+H3FK6Uak51s86ilAkWjoNSdcYkB1qKLZDUKywpw8XJqkpLwgJz5jhdwHqzwXkjd3+ns+lTp3jvjNwZHQrX5+SeOsSTOSNI7u7HyW4WTabMzS81KSnNL9XamwcHc7iHuVqP1rooXmkwbqK6OmgDAo2G9Yuplx6qaZw1LkLlPhwHa5gRI0sytx+8I04IZwHg4UhzfDk7rUQcTjzxxHj9619fa5Inra80ROGtAwDWfYZ7eC5OvlRztdClIYtB5A4Q4Fw0Gp5Nah8Qqp4W6WHv02WIDOvYu7DerWvrO3Xm53QB+JwMziUZaozTaNgrIhmyesi9lF1iLYguef8i2r0wZJJIH7c2S2Cd3rXWrUlyb9Y9XEkOUkUU3PvkTCFCyZ886eDk9Lo2B9u+R2AhwTQ3ou9E76VGVkVYkuzoanJHtpB7yaH2Psldo0ZN9HphWO/SP63pEvlMdx577LE1PSsrplnfF/KjK6QbkykAnjrFp87ZrkG3s9dADfthzacjJjn07DcQ3ow0QTqSNz1JrqWhIZ4+B7KoeokI74X3vzbNgQ6wzqQ5V2XlsI+atAKYVRk+SWb0Nf1sTSHABRLY0tQp3tpFBtLtdC4fBrjjb9pX9h09wWeiixtlAqZ7sjt8SD1jqnSS0jR+VK+c1Y7UZgPpmKpnRI7ToXS8fdpo0BeIOnufz0DmfNR02g0/BvnNXwHoBSLIne3Q/FiQwDtiDxCzjcp/zIOvf/TRR9f8InIvdfJnt2UXKhXlZ/XH8EqgD9iHV/61DalGVMOPUl0uMEx5coIb1bZ5DCwo54DDYONysgaSMo85pXwpAs5eikg2asTm/pQNZW9zl46TQEowAkDUcJ/3SJlhLKualpkfB41z1ShFkrJjoMgeKCR3cmrmkJWWHVBC7uTkb5EZ82wUefcM5O47VWQJkIMwoeiHM/IIxHEWGCCAtzSkAqfmY40623KgHUUG3DNOUqI5K82aIZbuydBJJWSQvEeRLY6Nd1k1ACZROefEq+8uDSlnjCyANZxyl24IZIicM8z5kG0j4sIB0Eug0UkQGgcBEtL7AAmgD+huldmvv7f9xZGUoscRE2HRK6ARUQUQcpBEB0op8pyQ1CgMIBvOIV2cQ4eoLDnJ1jC5IyuQU42GVGnOH2dORETKa7Ou7lXX03VexIQDT2foZixNs9GwxgFE0d9SRor0eHK3D4fbsSMXstUcr0Q2Awb0D+JKhKlq2BdkJRpFzwNGMkNEstodyBNg35onR+vByRaNbLr9KDMDONKAEUDKh/nRRcixXiHC25VN//sDlwASiL8GMNI3pUFv8AuR3418OCQ2YpG+Avr4PvTDQHQ74G6fIQj5hLqn25eNSgnpEISyeVY1hkTy863soeEc5kcXs6elLBiEnWcxV8/TKLvGdZTDID6lyvNnkB3NAjal56cD+NjIXD4hHQNbNBrsr3dOx5RIBfhEJqQ10StkyXC+++G8dx+wD6P0AQKboapDJNCm/puT0OgMdsqYg8I54Uw0agQ3kMd1fZFaEWLOWqNOxZhBz0TxlJwl1wGGfTZcEV/poWTrSKoSsQDAkadIVBV4EUkR7RJBBUDJvZWzRluVP/DOgJIXoCvy1ogEoKAZharUfkqcYU/lEa3Oo5PfA2A5rgBsaTBsDA5wUiVLgFotMMDGwDCYrZaHtPIs1i+gx1GWoqz5VtVcrBNAB3iqyhYAxhhf0dPhGBw6uoPjhSnPB4CrblfEsNEc6SFyR/54TwiNTvZxEKV3f+uY3KtIEPNHrpgzwgbgzYc52gccWITOcAxEBkeMzEoRUiSbZ5D+3igF3l5QmoDQkLXRypF37Twv4sUJAJxqzf0aAXcp8v5w8EpOKqJNPbu1VrXH25nbQL7LOUVw6zVRItwQTtbNJz/5yVq0u2rIHNHDgQMr+6bZEZ/tzJVu56CrIzZHGSaNynJEwdhUfQJKe05XZ3oRKQco9cfaIQGBBH4HIqdExJICIpCv0kjHWDP2K9uHwALyBhJwqJI6O4lYsi/ZSrqxquTSd0XSZciUsrwAYb1sBLrYiuEYfFsZZkB7KaPBZzK86JeqbDbzlvGksaoMBaQ3uQ9mPGa3x8bMzTeKeZfdFnPvuD22327bWnM/wQJy5+9WjUTE04ulwI+SSqVdsMhwyX0wsllTftsH7MP0JjGdDDewUWLs07mYHP4qAC76ntJtpRG1Wjc00EcGtDnDQCxGt6rWPtUPIyKqIhzAI0U11JFHYB0BQdmWsg8AcEDZ3Ks6wCMayJ0cyL3bHcuBWHLnPDZyHJVNpOZ5pXcsUgR8eo/W3lAOKWHYWXMsMfYAoLXQyNFX3yuizXH1d7NSjcE8n/3H6ReFlAJvfqWBAOFcWE8adOUD4cLISbvliAzloA84PZycUtTTv4tSc0CqjueyR9XnAWNY9kYN9zrxbNYHedtj5FlVjylyY+5kKtMhH+reOR9+D6AN5eB40Y3SQUs9GoB1cwfEZXOUBjKQ3KW6yiioKr3o1HNxHBE6ACTHrCotFQEC2MuMKIF2nfCRg7K8gNKhHNLyRbGth1J2jiiS1FukQlV6KicaicE2IHyapZUO9vkc7YQAQQ7rNF0ikN3jyCOPrJHDCMSS3QUQ/HvqtzLYefV/39sSAKhlTgG4JSLW7NlLPoyspaqB7EFMIeoA6U6MbbffMW656frV1qmMTXrZOkY8VpUisr2ITvu5lEXFv0xp2vvuu28nptzyNfhf7KroN5ueD2Dd3BGHVY3/+Az6rHgOpG2jYyZbnlhEHHzw2+OWybfG/DEXxKaxedxz/fxYcPX8mDXzkQZ/hpM9qo6opbfZJDqmBNqRLoh1a68XGxm3I6uR+t0+YB+GN5cau2E+S10lMeUYLwocmSeOAAAgAElEQVStKoUpgThpKt12KnIRqWsCem3qqhRkyojTTRmVGldJveIcYneHqokIRlokCQFSUlqAOrlKky+BQe+LovJ+RE07fSZyo6Vo3pxRKfDkXhX1lXJpnlVpWhhXtbSuNVSDgy8tT7RQalw+sP8cj6pjihh40XRGkmParM63k88lKoAgkEUhHbvU4E/qqnQ/BlqX73wAu9Jzse1VTfY6Oed0LUBPQxypdqWyCmDWOmakS8NaIXeOk8Z/nYyoN3teMiN3EfQqMgHwNTdp/OoJ8+Fd0FMyT4aqmzaHTpQKwSZKmw960VqRkVEF1mV4aFzIKW10pF0zGQ7kc2vBupEyXhW1A9qVrnDgSpFhTej0kJCqPVT9G1IPBPuTU5oPa0XWjGeramAJFAMAAP9QdnFGssoYsk91+q7ql6IcAdmKrMwHuyAzhX4d7pKEgay7/m/ak4A1ar3Sy6VMEunYothVBCsiWf8DPoxrNTomtr2ZRbz20GNj5fLlsXjC2Ji/eH78/H9XTdVHiiHOkILWeynaDvjSf0gEOj4fsqz4OuY9VOnx/EckiQhzySbZg+ZMF1WBdZlq5I7U7WS21PY77hT7bLhN3PzHy2LiLvvEgo0nxTVjL471xy+P5TcvjfmX3hG77bpLzVYiIqvIGf4tElwWQ8nPSll4ykD72Tzt7ozBf78P2Acvw7avACxiGznMubKSMiwSKoJdqp0WmaaoREhF7ppFGdXeiVxqTgEYp47lqUu8RjnSLTGxlJ+ocSuRetcUDTPHqqgvYO+epfpN2QGcI0rB97o9pI0hNsi31OAKqytqx+EpGS/RyGQgyL3ZcB9NRMjdb/2/d+b9ARDkLiIiOg9Miei00iUeACF3RE9VKjgD5rqlJlcULSLF5wiKbg+kE1KHcRZ9yweHA+tuLZRqttTaMuqASyvgxVpyLWxxIo0w2vaB6BWiw5o1H+8RodSsGYw5i3aKhAHApfVs/TDmDF0JiIlyIK68u6FIKeOoiXByLErG2RzJW7ptaUh9Bip9XlUbWf87a84fzhiChX6z7q136xyQsl4BOWSSCITeGI0G3SGzwd/kXiIvgUbRZ9HTEvlp/QHQosZDkVUCyAK9ALu0zfpBByADAcqqFFVN6ughfQKqelKka3oeEQ/rCdiztzm6HEc6hk4nYxlcdIEygaoyoPp5itLKiPH9qiZyUm0BBnLPiRw6Sm22/VpVKtJJvUOXWuPWnqyYfJALosx8SjpRWYiyAOsUSdGMmLIe04ktdCk9b617H+yM39Pl1qs1j9RohWREDjoeyn6rOsLQ52x3qRknUkLkju8gct8fa6YEAFj6FalUOvMbsePzKntpz1rvdGsradj2j0BGap7Id6PLrMN08gr/hZ1/cMXDsew3f4tbPvfemPWkfWP09nvH5D32jHU3mxJf/fKpq7wQOs412aoS6aDMgz6lK0u6kO/gvoI/7Hu3hwwYPUkQwSWfgY2x36uAOBKab8IXaKXEhi/DliLplHDSU6k7P19G4I+vzp+ZssHsuPWDH407f/nDiFGjYsYT94wxTz0ulmy7SVw26eKYNX50LPjr/Fhy5321kj+/JfeSz2WOCG5BhjxAQc7eh+wxpEl/DK0E+oB9aOVd22AMO4emqsbOJimlJNqsnDOAspkzJ5USA6aBGactAUJOHIBuo4rE6vKZutoCNpwPDp+5UQRVR4YRm8gA55KDYgOXhs/dTyZAPkRfUnd69+7moEgpPjVHOcmBxOD4AnCl8gMy8Rycrqp0InNnwBgZThzlSu6pQ797UrIIGnInu/TsQD0CxL+Tu5rjRo1efN98EBAlR9A8gDVzzUGDeWruArAzBt0eHEtrttTFWCqetLLUVDGfC4MuaiRtr9GZ1NY55lgEX7QbKJESyyh6796B9W7fyY7wjhhD8yInjoY64zPOOKNhk0YABdBleDXXygeHGchx3Twl17tm5N2jlDrfyfdg7aRa5BIg51hwcqpSljl6SENGu9FxesgHziEig34BwoFmuotM6SkAxrMDkhw/oAqwF71HjnFuSint9fIAttyD3EuOjuwNx/6Qe7633cu7Ig8R1m4Oz8OBFV0pASoOH31aajBHH2gmR5cCXY2GyLW1yHmkd5FO6XhC+svepkvsBY67fS5yImvLO5ONgDRodhKA73h3ykJKWVL6DNCN5pIPska2cfCspW4OhEzqfZBH/O15EWnPWqrhpKuRU/ZtsyOXyM96YrcAf7qXrhaltNbp91TqBdSwwdY8cO9duAdSr1HTOo65tYzYKvVnIEckCFBeyioB6JE15NE/hqmbq274ro3Msa+lLueDHyOzh44v7VmlL0hODUgb+TLWLuBmHdHh9C5bwD+h6/mRfBl6C4HFf+Ff7frE/eLPx7467vzDvzLpZu69b4zd4Ukxce/9YvycafGVL/zr2Eq6DGEPBJYaMPIbrGlEXB5IYlM8B/3X7WZoqUu+Zy/VpfM/+HzmUxqegU6QOdWohFIpFD3DJ0L48Rluv2NejJswKW687fpYb8qUuGfBXTFz2uxYtnhJTJo4ITbcYFpMH7dJXPOWV8b911376O1Hjx0b03fZPUbt/6ZYtvtm8deHvxeT564Xcy+8JQ4/7EU1fEDupQAV20LPyUjKh7nxtTxHLx0XPHw7cuju3AfsQyfr2p2AYM5UqTkYEAE8lj4DqjkLHLJGnWWBEQ4axxFY4zi3eqZ6EoV72czYTw4kpdEo/Rt45CSU6gY5MAwEJ76UMUBhU0xSors1UmSVsi0BXAA21aPnc2CIyJ1jXJX+7xlFcz1DiiQ266hfelaGj9ET+faeOZ9VzV+8I/OWql1aD0A9Rxkbn1/DfRh2v+1mt36OtGeRXpvXIpMrgkSKVSmaJAIgOszpL5E95Getq9NjDEXGqmpXm60rcpKihxhgcAHWqpIDIBcgE/EtOfjAo2cCjPLBqEuHs6c0nOrW0PUbuLV/8z4NgDpyAnAurWfPz2kg96rjI6X1kTuCAuECWDQC9lXPyeiTo/sBf1XOjt8DgCIq5lWKkvqtKKfr5cNnABNHtps9M4B0kW4OVz6AQnMvgVdOrz4I9KxU1qqBtJCuCIR6x8iOVrJy6q+X6ifJiY1Q59+o0ZySCPYEuVYCAEgK+6GUMcCR9q66SZQgp5AVouNOGchHipyXPqP71JvK0KjqleB6bJS1Qyd73qra20b7GRAHgOgPe8X7rmo0h+QwL/q5NG+kIx1F5vlxUvaALA3RVzq+P9YsCdhTMv2QNnkjYj6b/gx6gJRIIfqDzvadqma6rkFPAcoILvdr1PA4l+5LDzoqbnv3sfHALTevJviZT9o3Jh9wZDyw5az48f/+q2yFPWEzzatEyAL0/CtZbvnQ80b0X4q/td+tIWAg86h0ug0/TBkK+1SKWPvN6DFj4ryrL4mF9yyIf5x/6WrTVKJIxyJAf//7P8SCxQ/EHQ/dEcvXWxG3r7gtNpq+cVx6199ixxk7xWXz/x6Pn/mEuHLe5fH0Wc+KK3/053j+rs+Mvx9zSDz80IrVrg24b3DAy2L5fi+KO3ecGysWzo15f7g1nvqU/WrvmdxLdgSxjCQplRixZ551qHsIdOv9jpTr9gH7EL4poJexlYaUR1CxhZQpkJOfCStiygkUsa0C6wAawI8MAI6bpZu2+thAEYea4885qHLigXYbuBRpp4QwtdK38t9zmgALkf5uRdkZHOxmKUrLEHDiRT7yYT7kDlhWHfGFiSZ3BhAZMJAjUPL7eoepR4FriraUBsddepsocilFC4EgVbvU1ISBkLHRzTokzqYoDyCcj29+85uPNrjKP1PPyYgAl1XrHWCUfs5p9d1O1OB5lyITgCRGX1pwaZA5IoSBLR0L5bmtB3PMhyi09dStBnRAuOwbafunnHLKKre3rtTHSukrRQn8Ox1E7qWBJCJrZADmHTDoxHBP8k7yL6V5ug+njhOBACyRf4Cb9WBt1Q+RD3KR3dAt8Aj0SYM3xzzNFIj3TkQjSoShdG7zqwLrdAFn1V615kuR1YG8B1EUzj1ZWvdVadtAu0h0qSGkudFPnNmcSAFOneFuD4vsdWMA2vYjuefZFXQ3oA385oMdVm+q3r5qvdGRskyQd2TeKCJZ9WxTp06LhQsXrPIxsg54Upol66JEhPgBUOaepRRbIAeQKekYgCulMLN7/bHmSIBeR8DTZfmwl+nAUuaM/jCi0FLMk48yder6sXDhvY9ehl63djRCo5Pyo8j22ucpsf60DWK9iVNizMPrxIrly2ODWTPi7gXz4o7bb4urr7osDtphv7j8+MMrBT5mwoTY+EVHxaRnPT/+55dnxaJF99W+y3+Uqs2ulHoyyUrjfyK68oGQ5f/QA90Y5iPow+bnfqLgRzrVpOSneaaJkybFOX/7TVw29dJ41vgTY+XCa+LXP32EsGCbZFTZr+f84ty4a8XCuHfywrh9ndvizgfmx7RFe8f6y3eI0UtmxtxbJ8S0SZPizruXx8abrIhlYxbENjOnxboP/jpmX3573Hb66r0t6uWx2XOfF8v2Ojr+vuU9MX3Sgrj11zfEvvs8qdbPiNxzPSR4iNBFROe6XeYumwRr0P39MTQS6AP2oZFz7S4cI2C8dJwMJxnjXop6AbsiCFWRRsAsOYXdakAHlALX5l7VtZ7CFGEugSzzE0kqAfrUebIbNdVSt0Q0gfa85lvUTa0fpy9PUzJX0TCGoJRW7n1SVIgW76UbDegAapFQQIncS9F25QvmCRBUlVh4X3kEFNgHOK23boB2dZgcZus6V/YAMeei1PjOb0SxZDWUMk2AOiAAwYPlbaU2tN0tznkQ8fXuS0DA9VJtPYY5L19hxP2WU54beM460GveUo07PcgGSCllTkgNJj+R/nx4Tn9S/4P8c+9FzZvnQTZUnRAxmOfhMKaz4tXPlQbHTTp9KQXSv4n2A845cYYQ8O/IAdGYTg9OTeqCnF9bBgkQX4pCIz2QrVVp8N4VuXO0rZuBjr322TfO/+PqpKTrAbTAoWh0CQj4jigL4FqqabcPgfNS00jlCPRPN4gSOjel6eYlKnQmeSMbSo60fhr0Uqm0xfPam4gh5NtgGtAd8ZQXx/jNNo6psyfFGV85LRYsuKf2CtkX75ajLkulqgQOQYNQKJEKZOqdlAC9NcNm2Cv9sWZIAMGTgG2u32SBKHspNST0G5ldCKoUyNlym23iwCcdFItWLo9f/e5HtZ4Z1pKSr3rye58nPz0eO+ff4qE75sfSm2+M+/96QayzcnEsu+euWLF0aUzabE4su+/+mPMfb4+rFt0Rk/7vz3HHt8pp4fVvYfZTnhbrv/wtMXfUgjj3Zz+qfZR0CF2U+2N0K/BI1+TZi/wfdhgJJ5Ol00OTUIGrUn8M2X3minjLB/sv2PXd3/8oLt/w8phzzyti5V93iufv/H8xb+aUuPn6q2o9Yv74//5fXHbDP2LB9HvjypWXx4wH946xc/eORdfsHDdcOy6mz1gZ08fcEhtMXBhTJ6+IBx9cGQ+NnhgPjV0/HvvUu2PiQ7fFkk9+MOZfcH7TR5+y7XYx6YiPxD17TI4HHrwsbvnVdfHc5zy7Fiwr2Sf+AD+x1GRPNiH/c6ia/jV9uLXgC33APkQvGTAS7WR480iAlEPKpuQYcDKx5KUIsKkDjTab2tFWjxcD1gCe1Pwsj+hXicT8pWNxLkrRBtfl5ACP0vnyAUiYZ16LJHqj1q8bUXYOHVBdioSqxSGzEsGAJAH285TD5Gz5LdbV8+RMdJX8AHDZEr6f6tlbWX4IGetAs65Sqr3nY5SBgvwoupQlILsgZ1CRKKn8oZV5tPMdDiPgqsY5HxxojblEt+qHlDbPCJyU0rA8I8Mo9b3VbuscYxkeZA9kpiNZWnkW4NE6UKNbWu+cB1HHErPPEMssKEWrpRqKlFQdx9PK3ErfIVd7k2OXn2MuuiuyL5slX0MMrjlJ4y+tdxkPHDllAyXHpDQXZBggqlyEvmulkaXreFdAoxS9Um207wBRrlkCj9adz6Qn1g/vn7MKIHe6h4CIfnKK84aEnsE8S40GOXvWSal8wtytcWsIsCuRV/XPt8de+8Q2j3lMbL3NtrH7HnvF1VddETNnbRT/8/3vxNnfPyvO/cbPIkaPjmVTJ8QnPv2h+L9fn7uKfMzfvrLvSs0hfRnZKuuk1D1emjjZ5utDuqimkeZvHXVyiHojwMgwt2HuxR6Vjl7iaPqsqoO2FFbRJSRMqxlTdJ01pvzM+qNrttthx9h1zKy466zPxfoHHBkTH/eEiC2nxv9862tx3z8jm4CG9eFepUwoZKpaZWshT6Gn28kc4ZKTtWyt7DGRMPa1P0a+BPiA9GLe2wBoUhstSpoHFwBYkVBgN+n25x16RMxYOTlu+/g7Y+y/7RtPPPGt8cc//mKVDMRnH/j82HTszLjnD3+Mh669MOb94bfx0JIlRSGOnzkrtjjla7F07Ki476Mnxj1/bd6U14XmHHJYTDz4FfHj838cC+55hMhCXJqz+eZD2jngjoTLB7Apnb7TzRYFwGSFCurkpTBqvJHcJTISMazs6LQzT48rNrwyNrzn0Jhxy+6x0V/fE0vP+27Medspsc/rXxZf/sJnY+K2G8avl/wipq/YLZZfeUBMuP/xcevVC2O/bf4SGy65JGaMuT7uvvC8Wuf90euuE0vmzYt1p06NaTvtHOu+7JgYe/+KuPGEo2LJvLktLfKp2z82Jh3x4fjLNvfElNF3xU2/ujpe97rX1nwc2RX5YEv5FXnposxU2QWIQRk//dF9CfQBe/dlXLuDzQA85MdtAamMq+7BeVov59VGoCxKqejAs3q3ZhEAgJ8SRApMmbp+RIyKB5eviHVGj6r9fsXyZXHvvQtq0XHOfCPgnxg1EetSdNN91MVgJXOACCyko95ysVO0IiadbITGuAGw0vnzCDPZUqo5aDQvAJlh8E7ywSnzTsiqBG7qv08W/pA/h44z5w8Qw2FMHeKBGQRHVWqkayJLACtGo0SGiNR4v6UO5kgd5Qr5fKWrkztnD4PcqZHOXAfwcqChoRKAK50zH+pyOciAcD5EeKUdS4muigL6jWcCogFl75dcrAMOtM8ASQSNeVmjVRG2dH/HyAFWUnpLxI7oFiepBAK9K8BZzXj98OzkwAEX2ejUALTIxzrI+1aQmah/KQKDdAIYSt3tzY8jSKaNQKPIvawD2TL2v/+378yDzJFUHCpkAvJIaUCjYQ3ZO9j9fEjtR04AMbls7WvrmTOVkywcV/vXWurkObIiQq6JrMyHPYecystxRF6UJyD+Sg1EOUL0O7lX1anvtvue8d73fThGz18SD82dGw9c84+I++bGhMkT4r4bbooJW24bs/beOzbYZ/e48vTvxm1fPDmm775HrH/gy2PuhLHx7bO/Hr+pA+4IFqmwbFQp1Zoe0adEZkweERbhU1ddOvHDPgNGEXGdGhxp+5Fey8k9utKRgPZtDrjpbhk+skRKRKtIEnnTRQ9HxEMrVq8J9QzWl+yndBKFf6NjELLWu2jl3fctiQtf9+a48xePHGtF9us8Zs/Y4DkHxc0P3BK/+dXPav/O5nGKreXSEVYyR+hpZQv5oEs8b97kkI1BlHCyu5HJ06n32L9OaxKQdWbtso15XxKkIL1mzebDeuanpZNCJkyYFIc948Wx6KzPxy0//XGMGjMmNnv9B2PFHtvFD3/w7djmMdvHk3baNx6+8oq47YzPxKKbVj3pojTb9XfcKR572jdj0S3z4qrXHxHL/plF0sqTzdr3yTH7jSfFl8867dGvy65ik0qp/Ug2gD3XP4g7tp7N6GSmpv1jn5dK2GQJsmf5UbV8ZOVoZ//wf+PCCZfEkrt2jMl/PyweN/f9seinj5ANE2bNjq3e85m4YvmdMXbG+Bg7aa8469QdYtPpC+JJG/0upv3jqzH/wj/Fg/fcXSnGmc85LPb70qlx6Zk/i3+csHrvlkbyn7rt9jH56I/H7+b8JWbeOzrmXnJzfOITH6/pzTwjiW8ouICYyHGIf5PBSv/3R/cl0Afs3ZdxLbIjkinClStbjpsNXjqSiPOreUip6QeHE+hr1AAHOy9yve7YCXHBjRfHDffeEPcsXRDLRi2P2ZM3juvuvjomrbNebD15q9h61Ca1SDRADUBydqs6xHsWDqq5lZpNcegQEaXjz9I54HkKOaeFwwgopyPnBvtqzI+yYax0Oq0fjF868qj+30VWOEei1XkKOqCQ0v6r6sqTA0buoujSQckzdcyuv5f3DlxxuDw34EfuVYSJ90PuiIRSxNLcgJW84Yz35QgO5ESucEXWEAXm26mhFlpkrRR5VpYg9TlvUKieFpiUSZAPmQCcfiC3VHvt++QHrB5zzDE10kKtm4hEDrK9Q+vT3IBwDreIIYa+Su4ibq4LkOXRae8PEEa65XsR2BL9KkVX7Rvp64BZJwaj6ZgeADkHWxwOmT2cmXwfAPn2Xikl23sSwZOqWGr0Zt6iw2qv1fp6N5wsBGJeY44sedsJ746n7fq02PzxW8d9C++Mz33mM5V9AlybfMgXwMqHdwHUWy/5MVzSiEUf88gHR46edd1SeuNA3oN1aYjk5k0IpaGae8mZoZPIqXT0EiICSEM6lbKf3nHiSbHLDrvH+FvvjHt/+s144NYbY9H11xWnv83Jp8foXbaOhR/9SMz7/T/PMx49OmbsvkdMO/y4OO+ua+KjH/7XcYsIXKARoVIqS0A+0J2lenakhAZ2gGL9ABjTaQUlUmMgchdddy2AJNeFIuii3LmuYC9F7uz30noGhvzuW986M/Y6+GkRizePX/1o1T4N3gkbRo8gNhAyyIOcbLVuD3rqi+KWd70m7rv26lUecfaTnxZTDnxVTNn3CfH5T5xU+0wJC+IH6CoR8HQfW5I3CATM7XtrPi/5kmWQTgwZiiMNB/Ie+79pTQIyBGWg5ZlTaqDps1QeUX8165Ttqc9Ge+1Rb4lbP35SzP31zx/96tgpU2POCR+PuTPXifVXrh/r/u7suP7Mb7Q2sYiY+fTnxpYfPDnu+vn5cd0H2j+JY6NDXhljD39RfO/7X6/dkw8qqwRIznsx8c2QgrndpLdkXvHbOgUe+W+yivhTeXQZeYkoKRGbSO6VD0dcsujSuHj+7bHJ1SfHrg9+I+7+0nHxcB0BOHmrbWLL93w6/nb3tbH5di+IxZfdEVOu+FrceOZ/FZvH5S9ks+NPjk2PPDCu/9ipMe9/VtW5rby86bvvGcuOPDmu3OJXMeHv42LjaTNqvm/JNiqX4rPnAQ4kiedFcvLT+qO7EugD9u7Kt3Z1Bh0YTc5d/S3V/QEWOTgU5QXQShFTIANAyZm9dF1KnFIbs+74OOcfv4y/3/v3GHv/DnH/HbNj8Z2zYvrEGTFl0ri4/sblMWHK4tht12UxcflfHp1WOnfTBuWQlCK/oggceVG3HHxzZgAYn+UEhSi7uednocs+EE1zLZ93YgDAoig5ccCZF60udScX1QIASoDcZwBRqQeB+Zo3uYvqiJ5WdRovPZvnB5wQOCKRpZpGvxO5BDi9+xyoWGOei+OcdytF8ADrOYAF4oAeDh0CYbADyWM9m0Oejspp945LDaj0AQAQRNHrh8iBPcAYl47K8l2AEdgHFDDEVd38S89G3owu54ahqjpijNPj/ZfOHk0R+JKjACD6bb7WPCunHigWFR7sYEhFtsk3z6Rw7qusjPyIFjrGOgUWcpm5lj3KgJcyTQAFNdWMNYKGI1mVIQI02Def+cxXYvZvfhYTt94xxu6wS0z9t21j3fHL481vfEPxHmSiFwL9mae4+wxQoV/y7AZytQ7tx5xgQVrZv6IjnRgcR5kkdHU+vHuRibwcB4AFfKtOErAOEWn1+uPV//66OPO/vxrv/+BHY+epc2LB2f8Vt/3ynFi5bFnlY4wZPz62P+27sWjlyrjr5DfEAzfftMp3x204PeYc+464efqGcfyb/xWhoUfobnuqlM3CiUU05ASFKJc1Zp/kg+Ntb5Uc3IG8B+sdGZsfbcX2WRdAe07AIZWAnlJKv9IduvC0z38+nn74gbFw6Vax3cL74oEpK+LbZ51e05FILVF0OqrZOcpjx46PV+5/WK1zs1TWfEx5zLYx5Zkvi8kHPiO+d9YXY/HiB2r3sC79yXvRWNP0H1IyX9NShb2zvEkmwh5h6FoyOfpjZErA++ZTWPN5Ng5CUPZebmuR9NLk6egUVHneoS+OdX59cdzy5dW7rU/ceJPY+r2nxu0Tl8WmD02Kq991bCy54/aWBLbxv78rZr30eXHbR06JO89ZPaW6lYts8c5Px4bPeVJ84bOPNEqlI635UtmK/Wvf5+n/SHX+XqdIQXoOMGfj8lJD+tvn+VGR/Ank2ifOPDWu3PDK2OTa98UO990ccearY/Htq5eJTnvczjH7zR+Ou9a9P6bfviSueufRq4D6RrJ77GfPihUbTY873/+muPfy1TvPtyL3mS95Szx4xGFxx4O/izt+fWP8+9GvrmV+5RlhfAQZPnydfLAF1lhVs9pW5tH/TmsS6AP21uQ0qG+lM4nzFHKbAJuYg3LOMGCAac9BH+de9LJUC2+SrvmEXXaN3155ftyy5Pa45M8rY+rCfWLissmx8tbLYqP15sa4FXfG6GX3x7KlD8XkOXNi2m5bxIIlqysTkTlODMWUA2/3Uh8HPIrI5M460O+3OTD3O6mzIjildEVAsxNHjXGs/AFe8ggMJWy+OShPgLfUiVSjKu+qiiRRI4yMKDXlm73pnFhnzNgYM2ZsjF1nXKwzdp1YvHhh3HT9P1ZbVyKR5of0IPdSKQTHDulQki0Q4LnzZ+PIAvOlEgCkEaLE/Ac7pIhzjIH/vFeD9SwSlKe6MQLmUGpaxTgDexjefKTjrbwXdaA5UJ2z5Vax/tT1Y+y4cTFtww1i+oYz4qILzo9rrl5d7jIXRJOty9LRLe4NPJKrSFg+vDEYVikAACAASURBVHfAPCcckBSpK3T9b5BuogH2TqkJXLvvgXMG5OWOuXUCLAGv+R4mW5+Vnse7AtZK4Oakk/8znv3s/eOKyy6rySrt48fvvGsc/IIXxl47PjGW331/jBsdMWr0qFgRo2P+fYtiyuSJcfuJr4klc++I8TNnx9SddokNDjsm9nrx/nHy+05cLXpEBhxP0VCgPI8u0j90K+CWR/SBNg5dfhQQcC06jMDqhJ5JnfLzDu+cRs5yKfUekAdsHYeWrwnkot+mbA1kx1e+eFZsfNedsWjOVrHZnM3j+o+8K275yarEVmm9TNps85h10mkxfvHiuOK4is7No0bF7ENeFesf8dI46IX/OgYs9cQw/7x2GuEGVJaAOUDBmc3J6VR3Wuo70O5aR8Z4tyLced23d6u20vuvH8qSOP9qTnOb6llTtGyHJ+8ck6btG+tffFMs+trrY4PnHx1bHPXC2OXxjzSHqyevttxqm1h33LgYtcHo2HizTSPGjIpRMTqWL14Wo+6NmP73m+PWL65+jnH9vOYc/4F46Ml7x/9854u1f/buZVeUolzIPeAsf7ZEQtA1uc5Fpsna6lTUsd131f/+4CXA5+CL6TieD2uansmzMAFeuj/p72c+53mx8aJ149r3vCaW3bvqqQXpmlMes13MefcnY5un7BJ/+fy34saPrX7KSelptv3YGbHulps9kk1yzarZJK0+fe3e7/1snPnLb9X8F/6PuScwWH8dJAX/Ij/yUJkKUs0e6QQJbq+zP3k0X9BEZlrKGqqfG4Ls6muui98/fF4snffE2Oq2XWPLi14bc3/3m0pRzNxr79jw+PfH5jttHX99zwdi3g8fyTRoNMauPy22+fS3YszDK+PK414cKx5Y1Ownxc9Hr7NuTD/hO3HtHvNiyj0r4u6rbquR4zI28rI62UzsUk7g07lscL+OfUCvoK0f9QF7W+Jq/8ucWenhHIuc8ddwRhpbHt0S+eJglGpGpcljzPP0NzPzO1HaCy+6OOYtXz8uumhiTLp3Usy6/7cx9eqvx/3XXRuLbrx+lYeY9ZQDYodPfTJuuKZ8dBinVrSNA1/qhM6QIBhKUWekA6cqBwpAPmWQRyncS1SgE50+pQ8C4CXwzeHkUOYRajXPMh1yBzWlyWNTS8eHcWplHFBmibjgaO+4855x84VXxgNX/SOWXPHnWOeh+0PU6+GVD8W0J+wZo/faJebPXZ0o8YIYH6ny5J47YT7n1AEpeSTGPKwREd1c4foN5y2vgTd/BrITtV8cCEAqT5nl3APzpQ7dQDADkdc1uwYmXdpVPhhlAFo6ej2YHzt2XDzzgOfErN02inEbjY9bH745Fq/7QIwbOy42HDcjtl76mLjk1xfGXdfOjz9ffGEsXbpqI51UE805zgcg4H4AeL43OQqazOTsvr1v33vuXO4IGdHXTqRnA9fWbQ5QARR6Jk95R6jZfxybPHog+i9SUDqO7wff+0Wsd/2NsWLONvHcFz+9JqK3v+t9scOcnWLWg8vjwSsuiqU3XRN3XfSnWL7o/lj54IMxafM5se2nzohF11wfV2e1duvN2SJmv+rtsf1LDozvnfX1Inkgyi/tEymWd6eX4mzP5V1sOQ8cvrymmqNnD8vGGGz/AFkw9IX3l0daXB/RkKewcqSB+9L5tSJo9GV91Pi0z50Rm9x4S1zz8RNj9hGvi4mHHhzr3vtg3PGfb10t1TpfrxvusltMf98pcd/3fxx3fPNTDY3XRi88OiYfeUQ87wWPvFODTOnEUr8JWTRIopxEEQGWGqkcoH7QScg6xKG1NZiB6NIZ+pWvfOVqhKYMG4A21+EAub2YZwzIbLKGgPH7ViyJ7fZ4foy+4J544PRXx+LbbgnHUM15y0fjoV22jO99+5E04U022zw232WbmDR7Utw6d/2Yue7WMTEmxJiVD8fKUQ/H5PUnxvpjborb3vOWmP+n8xo+6phx42KLt50SDzxhs/jxWY8c9USGdEUu21SnXEoVFtWzHvNu8kqNkHXdOvJqMO+x/9vWJIDUZcvzGnU2VSZj3iQSkS2rCsmZsjFe+NxXxOLTTo67Lrqg4U032HmX2ORtH4sHJ46Khad/Meb9/HsNv7/OpPVih9O+E6MfXhmXVmSTtPaUEdu9+b2xdO89anbAkC3GJ8yPD2WzkBSyaPI+FPY+uyaoNdgh609QJAeofAN6Iz8+lJ/Cj/nsj74Ul0+8MmZe/PnYbcFX4r5vvL3pVGY++4Ux89jXx7KFD8Rdn3xX3PO3f2W8ln5cIzg+enrcd94FcdPHm1+/agJjxo2PbV5xVCzd+2Xxt+vOiauvvKKmf/g5eWBFeQU9nvfBoV8QuEoI+H790T0J9AF792RbuzJQxUnROK5+pIZfpTN1peeKVOQ15Jx+YLaUJi86KvJKuXDAp8/aJO67anGs+NVX44bvnxXxsBY6q4+NX31CbPqqF8S822+ulIQNKXKHdHC+dP0A9ERGgdUcmCMPAKu8Ph/zyxHMZUIJMkAAzmDPZE+ERn5vCoUccyXsfQBiIqQ50BW1FukupUFyTj1jfRf/jTffMhb946649zc/i7t/eXYsvv3W1WT72M98O1ZOXT+22H2HuOP2G+LeBfNX+w4DYL7knteyNkp/FzEqNdoD0hBBeeNDxIB3BcyQw2CGNFngJY/MApKMa56+DAwwECLc+RBtrDp3WqYAB7U+xVaE94mH7xUPbbEy/nDnb+KaBVfVLjlj4syYtO56MW38BnH4xJfFjuvsFg9vOS1uuO28+M6p34xLLrggHnxw6aO359SbK0CQD+SANepPPtS6AQY5mHc96zB3PDThsnaqIvqtvgdyQioB2NLZ6gdnT3Qzj/wzuqIHeTMdawSpU4pan/aFr8Xsa26P6z/57pj5nMNjxUEviKtuviKe+7i9445vnBq3/9+vYuXSf8kxzWPaTo+PTT/8ubjz62fEvB98ZbXHWne9ybHVmz8YW7/k4PjG175YPL4MoEIY5qns5ms904v5HrE+vMO8XwJQ430Mtlu8NU7m9Hv9QNap6bOncpITQWM95EdxSWsG/Osj8u896SOxy/IJcc0H3/jo5Td93Ukx+um7xfhr7ozrTzouVix+oHKZzDzoyNjk+OPj5nccF3f/+eLGy2n06Nj8uA/E3zcYFR96/7sf/S4i1lpBjtUPWTRkm3dl9h6AZfop16OIEnXlpUhhq2vd99hM751uqB8Ia/szb1rpfUgX977z95He33l/ujimPn5OjLpkk9jgjx+K2395zqOXHj99Rmz57k/FdesuinuX3hNb7bF93H3HFhFXroxpS66NcQv/EeOX3BIr/z973wFeRdV1vdJ7ctN7SCchAUJAehUEpRdBkBJ6L1IE6b1KFaQpKEVQUQFBpKlIF6SXhBKSQBLSe6//sybcZO5JAkkQ/8/vy3keHt/3Zu7cmT1nztlr77XXzsuTShQU7XoBZmYIGv+hxCZ51aDKtuuibZKC/NdfbpbWaAaouC6I10s2DgNU4vwheFOWJMh/j4CH9uD+9U8EZF91L9V//2ctQH+LyQdlKY/87GSrEFiJQRq+kwyKKYOFbdp3hFN8AQJnDi/XD5Sf17p5KxiPngXNvAI8X/Uxku7fLfemDJ1d4b72K8Sd+g3hW6omKknROrOeo6Dr54srdy/g/t2b0u8p69I5f0VfmKVG9B9FX4bvP/eB16XFMxFCv5cAXEy0Ue+Ge7moFcTfjo1LwB+555Ab1QLu4c4wPzG4wnR1m/4TYDGgD9Qj4vFw5khkxcaUv7Y3bQHvTV8gcMoExJwp0lGp7LBs3BRWAyYhzcoIf549jrz8PCTExUpzh+wBCu6Kg3sXfQYRBzDoSdZTWYHoyl5X9fHlW6AasL/h2cEXn0JPYu0RN09GCkVnklk8ZqDLqndnxprHiy8LnSPWk9M5lysKW1u6IfTTlYg59n25d1lz5dfQ6uoMK01z5CRk4Vk5qqB04OmAMrshOmIEwLwXUXSLCy6z2QQLojNNih6PFzPWvA+yEl5XtZwZCgqwiVRZgm/+piiWR3BM0CPWu9MZZ3aC9FUxmssgCZ1E2l0u5mWuZYvYLz7Fs2OqlFflQ9A2MUGdbT8h9eED5Adfg4ZvK1i3aIDwiMBStiWDgRFzcZ7wXHTSGJwR692Vdeli1o8ZGm7mIngjQ4LAmRvQ6/SoZmCBNmH2S9zMmG3kJiBusGwjwkiuKFTFbDVBQVl9hLlh8j1Rtv1q1KQZfFrUgXkNC5zXPoNLEefQ2K45fDS7QTO5JjSyrVCYp4ka9rpoXd8WESsmI1vNCJr+7aDT2AtnL3yDH7fsQ2hICfuEz5RzXcxY0+6k3pM2JtYmk1pOZ5vZLvmgbZnNFWmpnFc8P9+NsgIWFV2a6DzwN8ToNuuquYmWFYQhhZJBBzEIRXBPB0UEs4OGjEQvtwYI/fRj5CQnS5dmO/AjGL7fBRoPnuLh7FEoyC27ntqqfXf4r1yLvwZ2R+Ld22Xelqa+AZynr0LjsR9i5LBBpZgxZN7QOSUAEYWIyKJhoEjMeDBTzai/KJ5G2iLLKF63NzjpxnRuxAw0A5h0dvgeyAePJYukrHp3ZnKYHVaK+kydMRvvuDXAY5YQxEQXn0bT0BBOU1dCp2ltJO3+Ac+/+azcaeI0ZQXsWjXHjSHdXqo2rDyBnq0taszdiIVfrcbfVy9LH/PeeC9l9drlcyBrR1x/SOHlvYi6Dbw3ami8LqOE7x33QHEdI3uBe47YWo7vFhkXYr07g2VkBPF9dWrkAVODzjD98zs83TS3lE0Na7jAbf5GJFlZIC/WGPl3LkDr4S94dvSQyrFq6urw//ooMmLjETi14m3sbFu3hdmEhdj1/UZpL+Hax/dWzKpy3rKWtKwSIbb74pwW9XAYWOL+QUBfPf5bFuBc557NvU7UpeGeyXdT7CLBQBb3VWaIpXf4vQHI+eJTxFw6X+Gbt+7cH1ajRqMgNBKPXkKjt2jYGA2/+A5XR32I2MsXKnx+Hmjk5g5F58HQbVAfLTo3x769e+DkVBMPg+/hyqVz0rm4bxKsK1XulT/AvZR7AZkE8kHAyOQSE0KvM5jQ4X4q7oP0bxhAEIPsynd1weZluGdxD1bX16NBwj4k7SwNesu7Lq4dDuMXwWlQdzzdfRDPPiu9Dim/S3Bfc9gwXBvSHWlhoZW6VbIozHuPgYa3Gxo2q4Ov9+xBLZe6SFergRTNizi152cpaM71RCwzJDuMpb0iPiGjioHR1w2UVOpG/g8eXA3Y3+BDJ7BlhJyUd5H2TnoJI6di7RHrl0n7FOvdCWBZO1NWdr08erSWrh4M0g0QtmRSmVE+TX19+Gz9EacU53Er8Ra6efRAQ4u3EH4/BLk52aUsw+wPnQnlRiA/gPQlZplFAE5HifcpUvh5n6Ski9RFBiv44r+OajkdSdb1EbCKtHdlCz2RBqxUwhYjubxOOv2iWBsXaIJJglSxJlJhZgmN8HTcnz4MWTJnW2kvY3cP+Hy+D8HLZyPmzEnQCbfv3g+mnfpCw04HcdGqYi+kIRF4iSIrr6pL57WJOgEUBmEWVrxP/gbnKAMEVR2s9SJdjOBKPvgsOW+ZyZcPXj+dDdpSpDozS80MtEjLIhgiqGTwiEC3QcPGaDKmBayM6kMnSh0Zjk/wNNIEGqHt8eiqM27dUIe5RQFbUMO9Zj4mDjqPsJljkPLoAQzsHWDYdgD0OnVFOO5i1eSFeP5CGIb3wLlJB4DUdflQgm8RqDF4Q7DC91Q+mMnmc2C5glyTgOwUOmGkNL5OyyvWzpNdI7ZvotPP5yGWJ3BTpVMn1rszCMJ3lQEfOVvGxESBfWv34umSiUiTBTWklkATFsOiWztEbNpeZvacdrAfPQ/2bVtLwJE0+fKGvq0dnOZthFd7f/jW8pLeO/kg3ZHrpUjJo2AYn4X4PAiYeZ8i2OSaxKAP39uqghg+R2b9+U6KPYN5bq5BIkAk0GLWRqx35zUQ/Muz619u3A+DX/cjvIygH1sCucxeD+0a9ghf+jHirhSBa3HU3vIDsuLi8Whu6drX8p6B24DByO7QC/0GlrTTY5adjqsYoOJ7yPkiBrVIpWdQQsx0MzNDh5eBOwYPqzK495AJpCwBkZ+DugDM4Iv6HWThlFXvzvlCYavfz5yFS7O20PorE6kbB5Qb3FDU8oXjJ5/CyEKB22P7lyov47Xw2Xhv3IeI7/ch+ofSbJKy7pmOumXjZnAaPQO7/ziEtLRk6R4J1rnWiGs45wrvU1S6ZxCRJVSitgmfA4PXZXVbqMozqP7Ov2cBttrkeiUyi7jeswuA2OqPew+PVYqDtXq7PVxyDRE0ZRAK8kqLH77sTmwDpsJl9GCEffUtIrYvLfNQ617D4Dp0OG4O71VhkTp9ewco2veDcau3EZYVjrzcPHg7+CD7YTDy752DdveB+Hr/Zun3eJ9c30XgzD2KAXIxcMX3mWs+EzWv48uQtUAmiyhCSz+X+6QYSGPwnUGCk0/P4WZ4HupE9ob9iV6vpLaLRtUyMpJ6tFu0bIgni+cg5rei1o/icF+wGcY1HHB9SNcKT0YTL2+YdhsOzdo+CAy/CxtbWzjq2iHx2jVkXTqKws6zEVH7LiKOPUGTxo2ktVG8TwY/WSLLPU4+OEf5j/4yg6bV481YoBqwvxm7Smel00YnnVkVsQ6ZLz6zeCJQYRad4EbcpLkgMCss1sEyU89FWhTf0Tc0hrqNDizMrZDwSyAezB5Zqj8m60fd1+3DtfxMnMlcj99CT6Crey+MqDsSWtFqiI9TpeQQSBMw8bfEqK6yVlSMyDHQwMVVpAnzmhkhFZ0LZhD4N4K7qrZ3I9Ai4BIzPHwWXHBE4TVm1gnYRREoZp7JEKBipij+RueagLGsXuzOTr7QzC/EowOH8XT9rFIzjCIjXos34vqwnirRUbt2HWA1ZCo07PQQF1tCpeTCyc2ADrPYlovzgtlsOmTywUWVmVJmJeWDARECITEgxM2Nc5G187zvqgxmMnl+0nvlg0JfnNdiTTTBJDdjsdc2F35mD8qqXScrgwCJ9Z1ONVzQYWonJOrpwurBDAAFGBpQgK2bLHHqhDqa+4bA3+kBTNQikZeWhBoNXWBoY4or/d5VUdd2HTwWWa16IqTgFpZNnIeM9CKasZKqX1YNL99P3qsYRCGThoBMDKxxntPBYNZePpj5olNWlhpuRZ4BnQp+l+uCKI5DVWmuGeLmyuMYWBMpxcwakIHC5yUf23fsh/7ho3j+8zelLknL2ATOM1bDuqE/AqePRPyNa6WOqbV+L7Lj4hAso3aXd2+OnbvBdvI8nD5zqJSqPa+NUX9xXvC9ZgCKGVMR5DMgwvIaOa2R6wrtxvkqKudXxOY8hg4df5cCa+KzJt2ec0Bc87hu8vfE7ASZATxW2QWhZ5++GOjbGsELx6EwP7/MSzJydYPnwk1Q19HGvcmDpXpr+dAxM4fP5/sRvufLlzKslN8x9qwJs67DoVnXF5cD/1Jp9casLctsCBDkg4EfUlNFdgiPJZgXRelYV0oRKT6LspgzFbE9NSYYmGIwSr4WMihGESpxjaHzyPeLQQJxr+V7QZsbuJnDSOs9WB//DM/2b3vpZTCj6D5nLRLu3MPjheNKqfSb+taB5/IteDhzTLlsEvkPUGfAqt8E5LnYISwqGOf/LFkfSHnm2i4qNnN95Z4lggkGo7nXik42RV75DjBTyzr+6vHfsADXLpY+kLXFOSwf1Cbg+lPWHGBmWClM2Ll7H2gfOYnwb7+o9E2ra2rCcdJSePTphjtTRyL6/NlS53D9ZC2MnJ1wa/T7rzw/u1IoWneHTffeiNVOl95f02x9pP39N1L/OFCcVKr1+QE8zI/DxXNFQm0MjJKVIzKr+O4yeCX6xGSUcE0W/YpXXuCLA+jXkWnJNVlsscigGM8tsknJ0gkJfYpTan/AInYI3CNTkbGmY7nr98uuRc/GFh4LNsHAzhr3pw1H8sOi0j7lUNfSgv/Ow4g4dRrPd6995W0ZOrtA8d4gmLRsgbj8BOjoGMAkrRCxp44j7dKx4iC8ot9cFA5pj5C/TyEzJkXSMBGDy5yLDNBSkV8+yLBl4oDPgn5R9XgzFqgG7G/GrtJZmbHkBirSeRg9J9ASgSOzwszolQUo6RyJ5+Fv0PFh1kFUQle318MXj7chMSseG1puR8j67xCxTbXmz6JBQ9RY/R1mzHCEk3cstP0O4qraBtSx8sc4v3FIuh+D/Pw8FQvRWeZGIdaG01kma0DMwtCRYlZXFH/j5wTJZYFqZsRIP6c9qjJYg8trlNeV8zwMEDAQIDrSLwsqMCAiBkPoLCnr3UWamlettxD6zXdIevgY7qNH49HKhYg5fUTlNmz6jYVLj5641KddqdvzGDICBp0HIjE/SuVvtC1BiUjlL6+0oryACD9nMEPciGgDLrqMHle1jp0bKOehmC2mOBWBrQgcCTQZUBCFuUjHIvAS1cvff/99CUQrBWWGzxsH7fraKLgyDr/sdsGYbpfg5/wYWg1bI+Wvu8g+vRnR584gLyNDsqXXii8l4Biy+pPSjsfYWcjp1B2XL/+EDYtXFP+dzBAKton2olNMpgLvTT4Ihpm5pSMhHwwykG0j9t2mY8V1oqoZdmacOSdoMxEIMhhAR0Kc72QMEAyIn5ORwuuXsxoIbo9s/QkR62aXW8vIzLj7wo3QN1Pg1rj+yIwumbtaRsaou/0Anm5fh5g/SuqCxQegY2YGRauuMO3UE/eTQzF0UD/pfRUZMqTw01kQnwedKDoMog14HLMzoqAhA22syy6r13hF1hxmeDkfub7L2Tp8dwhIxWAj10eyFsTsA3U7OF/4TiqZOls37YHeN1sRc+nlFFNqA9T4ZBXSHwXj0cJxKvWpJjW94bn0czyYNQYpZXRFUN4jBQFN3h0AnbcawsBFAc00DRRGRWHurvX46wWFliVXzFjxv2I3EDq3DCiKNGyyy7gGy58f9z2+A6TrVrUzAgN1ZIaI7eEoSEgQL2YiqTHCzDIDC/JBhg6zkPMXLETrgd2BS0ZI/awfMirQysqqbWc4fzQLYbu/QvQBVSBk1a4Lak6Zhct92r+UTcJsvWmPkVD38YSnvxcibj6BZmY6TgRdRMiTx9KlMihM0CHvo83PyeSh4JYotMh7oq6AmI2kDRh45lz9J9SzK/J+VB/z+hbgfk9mH/+J3Wk4/7nmiWu4CCj7dByExJUzkBx0v0oXpG2igMvMtTDz9sTdjwKQGhKscp4Gu44g4tgveP6iy0FZP0JhOrPm7WHTdyjgbApHK0eEX7mNqJ9/ROqVU8iIUE022AdMRtbbDfDri3IT7vn0ccU1nMwR7mWin8f5T+ZPWS1YK2IEgk6y3z799NMygwE8v1iWyn18095tuGZ+HRZXP0OjqM1I2l+1mn5eo5GbBzwWfIb89DTcnzYEuWklKvBsweezbjeerPwE8devlntLBP4mbXvD9J13YeJlC6QVIvluEOIP70HSzb9KJfAsGjRC+pi1SNP/G9d+Oi8FMwnOxWQQ/TYGnsX2kgyY0ieqVouvyCyr2jHVgL1qdqvQt+hM00kRa4kZASU1UMzMlAcceSyBlFjHzA2YjoqYtTOxssIPCQfwxe3P0cy2LTrm7EVD5yhErpqMmHNniq/dpsdguA0YgGM/a+FEUHMQH7t2PITTmI7mDq0xtd40PLyu2t+RjigzjsxGi9ksLpDMJIrOGz/noiqKdzDyTwdbzHzQwaJjV1W1eIJDAmmRuk8WAD8Xay7pGPHaCPTlg1lqZlLFz1mLSkqnqEtQy68hnnx/AsHLJksg0WHUHLj26opbEwKQ/CCw+NSeCz9HbnwsQj5bUOY88pm/Bubd3kHY45LIKp8/r1981gx8MJgjsgN4ffxcDJRwPjIoJGZtGDlVRkb5v6syWKPKDJjYn5kbLZ1O0engZksVczH4QwounWmx3p0BK4IsZiTbtX8PPkNqA/GtcWh1B3RufB+tcxcj8vdTcJu1DiZO9rgxpm8xvZVqz/7bf0TY5qXlAqHaW44g0rkQE3v3R9oL6jY3Z76vYr0zs1x0jsUoPt8NghGx1zyz1nweYpZSSROuarsrOmwMwjCgI26sfK+YWZOzQxgEI3AkUJQPPnM6OdRLkI+tO/bC7tEzPFgx86VTgn2lPeZtQMrDh3i0uKSGn3WK3ks24/7MUUgLDSl1DpblmDVrB+u+w5BtZwzddDXkpmUg1yRbmruitoEyQytmxvk5WQNioITiXaRIi4J/BH4MdIigp6LznrWTZBuRESQfZMIww0NqoHwwaMnggCjKw8Af55g8S338qyMImtQfuSkpr7wcsnUcJy9CxN6vEPXz3uLjrVq0gdfMpTjfvQ0KyihvotCZ4u1eULTviDxrXag9z0DmjetIO/MDtM2tUDhyLAYPKMmaMWhJ24oBWa7rfLfJFpMPro0UlxPfYQanGKQtq5/vK28WkILW3BfEMgTakc9C7EXOTCQDrGRmyAffXwZXzp67APP6HWBx6iaSdkypyCVIx9j0HgWXgQPxcMFHKoJ+TmPmwMjFGfemDy/zXEaurNsNgHHTxtC1USDnSfSLTNcv0PWsD8e5H2PbZ6uLv7tv3z4pQCWWcDHzyrpR+d6pZBMotT2UJ+G7TTYNA0IE+9Xjv2EBpd/B4KDIlGOgmO+jKEpI4EiNDiUDMqBtP4TMH4Os6BIdjMrePSnsXos/R35mBu5OGYz8F6VKuvRJ1u/G42XTy2STsGTKqnEzWA36CDpeTkiLTkJ+cBiSj3yFhFs3y21FZl6vPgymLcIPL9qbsV6de7DYa57vNt9hUbOC+y/9HyaEqjLoN5JxKJaYMWBJEM9gmXzw2liasPnoDtzMj4T9tcV4O2k8Qr4rzUirzPWY1a0Ht9mrEXX6NJ5tX178VX7uNX8tro3ojez4uFKn1FYoYNqyC6x69oWhtwMSgiKReecO0k5/HyZxCQAAIABJREFUW0TRL0eAmgwI/an7EFcnCEE/3sTwYUMlH1oUaOb8oi8nru0sVeN8rBaeq8xTrtyx1YC9cvaq1NEE7IzUiUCbPZjpGIs1aIyEM4Mh0pVJBeUCLAp5EWiSai+vA9fU0kasRRJmX5wOD7Oa8H72KQ6sb4Qls++jYa0E3Jo0BKkvIvjuM9cgLyEayRePo6DxSBwIGYZCdW34DdyPKK3fMKjeEKiH5yJBUIYnOGB0TaxLp7NKMCC2GmPEjRkaEVCwxpQZM7GemgCf56lqn2Q6hWWppPM6+ExEChWvgxk3UeWe7AUuSmUJ4zGSKB5vqWWH0KVTEfd3UesUDV09uH68EmbeHrg+qg9yU1OhpqmJhl8dxOP1ixB/TTU6asi+4R0D4NKtEzLz8xCbqqrcT4BAB1kMiCjbjInXSTBJgC9mKZkZpNKyXDyQ85H3y8hxVVpzKIX8CMDFmm8CQc5VuXNBaiadTW6s8utgto7PiE62fHCzVGYoefyw2WORXjsTOLEeyTEG6GO9AnE750hfMXBwhPeyzUh58BAPlxaJvjCT6Lt8C+5MG4GM56qt9JipNH9/NOzaNENQUijWL1iEGy9UtRlEY2BNrEvn9dChEoMbPJ6bmdjTnu8GacJi3Tjrywn8ybgR1cYrstgQ1NKhETO3FA8kiBLFG/kObNiwoRRdme8cBYxEJ+fbr35G2tq5SLyjqj5f1rVRzMb142WI+HYnnh8pErqkEm3NjxfjfC9V56mobrcpbAMmQ1HPG/FBYYj/43eknz8Mq77jodWiDnLTE0GnTD74DjB4Igr4kQXB+c4sq3yQYUANBVEkiACfQQtRILAiNucxDAAwwCXSwXkdDESK1GxmiXgdIsWQ+gV8dkohtlnzFqNhgQEeLak4eLR69304DxmNR0umFj8nhyFTQNp84NxxKrfEEgazFh3h8OFg6LjYIi0wFNFHfkLq1dPFmS4GWaxnrUWPYSX1kXTGmE0XW0hxTnNfElkyrLFmEJGAUz4I/Ll2VjVAxUAjr0ME4BSpJGVW1Lyg3bkeicFxOtgsa1C3NICNZWcY/rQCwV+/nA4vzg2nsfPh3LkDrg7pWcwqqfPZXsSf+AkRv/ykcri+Het2+8K+a1domOgj+fYDJBzeg0Rmul70xTar4wfLGauw51BJ1p4sI77jYnCYmS/SpEUNGGa/yNYRgRwBPp1vBqGrx3/DAgxkM8DCrLl8z+e6RSq8uMZw7+S8ULar9PapjdrZxghdXtJloqp3buzphZrz1yPmj9MI+7IooKTw8YX3/LX4e1gvybeRD4v6DWH54QTYNHsLCaERiD97TgoGvkxxXvl9AlL76Sux48V7wAQJ13WRcce9lOBQLAXj3kC2SVlCmRW5f/pY9NHFNYr19LwOka1Df5jXcTLsLO5GasDlXls4Hu9SaTG4sq7Nqmlz1JgwD6HrFyD2r6IWkdYd+8Cx5wf4e7hq6SFbBps3fRuOg8fD3K8mom8EIfrXY0i7fKzMYHlZv+cwdz/u1ktE2tnHeKuBv8RyFcVcmXRgIksU/eReSt/sdQR0K/J8/i8fUw3Y3+DTJ0hldktstcTsCzO6Ir2ZCwxBsAgo6URzwxbFzViTxgybfDE3t7TBkfRjWP/3Cgy334yH+0ZBXzMTAVYfQ9PcFtYN60sven5WFt7a8SOCNy1Dwo1r0NLXh2HAelzR7It272aiEOlIMj0PN2M3JNxXBTikYROwiMCMmwszuKJzUV4gggsuHQtReI8AmgCwqorlDCYwyy7akVku1iaJ9fd09Om8yRkDZBIQLJC+KR8EmNwQxHZ87jXrIOLnPxA0d4zK8ToWFvBasBFZkU/xYNkM6Nnaoe6qbbjx0ZDi6Cg/M233ARy6d4Omri6eHTsOSx8vmDb3w+OgElVt1oQSUIsBEdaMEhSLivi0I7OLYrkEwRkdZzFrQyBPu1Wl/Q9ZC6T90iGUO4uMgNPeYuaWGyKdb/G3KKBIcCButnxG3BD4DG1t7dBr/ofIKqiF8xsD0LvVLbheGyv1/lYOUoJrzl6FyO+/QvjRn2Be/y14fDQPl2ViWuxlatZtKMwaN4JmYQGyHtxGfJMOOHtmC7YuLqG6M4BGIMbMv3xw3jJrLmY/GHRjZluuW0GGBAN0ImuEz5Tgj/ThqvSnZnaBJQIiMOezJ7gS+y9zs2WAR8zCMWpOuqxINT6x+1c8mTumws6HdbOWcBn7CQIXT0VyUCDs+42GkbsnghaXANCiut1xMPB0R0FiEsL3f42U6+eK29jQSUnsG4CAge+Xau9I+/EdFoNKDAgxu8TgpnyQ6UAwJwrvcS5Rr4G1zVUZzHDxmYoBAmbs+expT/kgvZDviJjpJ2OEoFbZNm3h0lVw+f0MossRGyrvWu0GTIBLty74e1Q/iVXis3I7kn4/hIgTRaJF6trasGjaCo5DJ0HT2gpJN+8i8fBOKeOS90KzQX5u91W7MO2LJQh+wTpiRprvgKhPQaeW81ZkoLBEg++9KLxHIE9gXdVWhgxAMiArAnOCGjJ5RLYOf5/zQlwzyZAgaK/bsQlygrygvyMAKY9U9T5eNS/IDnGbsQo6xoa4PXkw2J7Q//O9uDd/crEgHbUETNt0h/37H0DH1AQRp/9E6qn9ZYpR8Xyuy3bi0O1TSEstYleQmcP9XXSOaT8CcLFci2wHMpxE4T3OP65j1dmvVz3V/zl/Z8CVYrAiMGdZHwN8IqAk25K6MEpg+9H0eYjZ9xMer5v/j9wUM99uUxYhdMtyxFw8D+u2HWH//iBcH9O3+PymPrVh0Xs0FP5+UMvKRNi+PUi98luZrW3LvSg1NdTZ+iN2nz2InJwsCTQSlIt10wyKk8UjsqToV3L/k4t4VsYA9AVZoiQGCAhEmXkXy+C4tyhMzXAi8Xeop7SC9R0jaG1tg8KCgsr8bLnHWnfqA7dBw3Fr2nCkP3sK18mLUZgUg5CvNhZ/h8Fvu4DJ0HetgfTgEER9vwNJN68WBwMreiHmA+bhadd6yLhzFRZGCqkLCFkF8kHcwQSGqJVB34JJh+o1pqLWrvxx1YC98jar8DcIoLjZihlzRuTodIgZ5/IAJZ1OOijy1mjMyjCTI/bH1bE3xroHaxCS9BjvpR/A9+vqY06fQ1D/dggKc3PhOWs1ClISEbpjHfxWb8e1CQES1cmiSQu4TZgFDX19RD3LwvnQ5njg2x9tnd+GR6orMtJK6Jl8KekYizRIbiRKRXAV58/dXQIkIpBnhopZVhHwEKwxgleW6NirjM/ad2Zi6bCImXtm5+jwyWmEBOZccEU7cpPgdYjUcaofM9Iq0rvr+jfH3bnT8WS/KvWS10txP5+F6xH54y6kh4VIdr46og+0TU1h1rornN7vC10TIzz4cvuLzS0CNm+3R51NW/DgbomIFwMYvC4ROBJ4UMBFVLIvLyBCJ4DgUWQIcD4xYEQwXdnBsg/aiwEbeV0/gSSdSlE5vjxASZonQaZY40raMAMCBELetXxRd3I9KOJG4petTTG70z6kbi7dQokg3X3iHDxYOQt6nv4wqemFoJWzYeDoBPOOA2DVsgWQm4unX29C0s0rMPGqhewPVyDe4hqWjJiLjPSiujGCYm7ipCbKB+cSM7XsBysfBAfc1MRSCs5NvreifXge2p3PpbKD9GuCfjFzRiePASc6cPJRHqDkeTiv+F/lGDJsDHr5NEPglAGVuiybLh+ixvt9cH3CILhNXoTUi8cRceo4WLdr1XskFLVqIS0sDDHfb5OokWI7OJtWb0M34CPUb+0r0c7Fec1ACB0GeeCN2SWydcSACN8BaieIdXUEnwxcEXBXRWSRLAWuHWLGnL/FdV/UayCVm/R+sXSFoIuOjlK88sihP5C8YSme/6FKMX/lA1BTkxw5I3tb3J01Dg227sOd2ROQERkBy4ZNYDd4EvRtbRF17gISj+97ZabLcfxCfPPsNo4cLuq/znIcZlpE5WWuGXxnxYAI60v5zotK8QxYcP5XhdnA94eZcu4jYsaclG++n+I7R4o8mSNyEVeydzjPhw0bjnZDukLtmg2SlnWttHNLu+haWsF7/jokX7uI2DPH4bNwDS4H9ADBt3mzd1Bj4AjomJvh8Z69SL14DGnltE1VPt8aM9Yg0Cgbd0ldBaQAJYOaShEx5XEMuPE9EHVtaG8y+kSNBwYuuC7xfNXjv2EBMisIEpUZc+VV0y+iWKuo10CgRJDKtYmj1wcDkfnZJsSdPfmP3TBLbdxGTcHNaSNh3WMI1FJjELL3S7DzjUX3obBoUB/ZCYl4vmcjEm6XHQysyMV4Ld2GRGczHDlUxNQiQ4Q+gVxDg4FRMgrE8hplxxQGEslwrezgGk1fVgSq3IuYqBKF/kiRT0pOxcnc32Ac2x+uocnI3tC5sj/70uMdBn8E6yZNcH3sh6i3YRdCv1gt7Z1ktdn2Hw8jVxck3LqDuMMsNyhaO6oynEdMQ3rvDxF44ycUxudIQRKxEwH3VPp6YlkS9wCu+UqNoar8fvV3Xm6BasD+BmcIHTeCIpHKzkWYVDZR9ZIOJLMEcgozqcME7CKgLE/kLdteDaPPDEZdq/qw/P0gwh8rMMljGqL3FbVhYO0ia6Qz7l2FvncDhO3eBIcB42BgbYWw779B3Lnj0H1vCk7lTINW6zXQsnyCAYp+SIiPLbYUr4mKtGLUvzwgz9pCtjMSSwO4sHJBFbMBpA+TgUAgWtlBME5WA7P/IkWcAIaLsZyCXZ4oHrNnvD5R6IRRXYIDMZNjb+qOR3PHI/ZyEW1JHAQrXh8vRPyV89AyNkX89Stw7j8M0NBE6LZPEX/9GvIyitTJOUjTdl66BQlZJYIsBCME7aKzys/KCoiQycEsuujEcmMnu0MUDSFzgFljRuorO1i7zgVbbNfEoAzpq8ouAsrzMlNHp1NUYCeg5DwSo+Z0sJlZpePatl0H1J/WBOkX++PpLRf0tV6OyO1l9yy1btUONfoPR2rYM2QGXkWergXsO3RAZnwiwnetlzY95dA1t4DJtP0Ir3UX++Z8jbsvaOCsl2awTBSG430RrIuUMc4NZj/E+c75yICWXLCGDoCyrylBZGUH+10TrIs9v7nRMqgmZiUYYGAgS3RGygKU73ToiAlNOyH0s/kSqC7IzZVUsctTLpdfu9OwqVB4uEHfygqPN6+CcYsusPKvh/i7dxH9406kPC4/m6ljagan5V/C0N1Yuk4xIML1lGulSAemM0cmB4GdcjD4RG0FcU6TscHsOm1XlRIQOitk5IgCX8w68P2kAI98MGjFOS0CKb6DXOeUc+LEj2fwfOUnEqNBsjftnlP031dlbNgSyPOTFUDCMxh6+ePRxmWw7TcaCldnPDt2FHGnDkoAviLDfcIsBLs7YNqksdLhLP1gQERszajsby7SIMlq4DpDMC8frLvlM6J2Q2UHGWYEnQxwcS2QDz4PZuHINJIPOvoiC0KZoZw+YwbakMURbI7nKwchPztLmt+i3cur+VT+DlWYfed/isRLv0PH1RdRR/ajxuCJ0DAwQNiuzYj/6zxykpIqdLseHy9FVkMf/Ph9Uf0r32G+2+L7ykAJg7diaQAzjnw/xGA69RPIniLoqB7/DQuQjcIMp8hG4b7OvVrU6+BnnNtK3Y++Hw6D1q8/S2UyyrVbnNv5svWFfyvMUxUZLstStt0HwvbtttK6FHP8ALRc68GmeTOkhj1F5L4tSAq899oGdhw7D4/sDXD7ZlFLVQbeGKyXs0xZGsC6drGriTLzTj+C+2tlBxkq9LVENhRr2pkYEVmXDD4+Dg5BtH0SFPHd4Jj8AHF7V6AgJ7N47Zav4+IzkOxeTjcQ5bWrqWvAbepi6OprwsjZDUHrFsOq2yCYeXsh+sIFxBz9psIsuJfZw7pFaySN/xSRUUeQHBQrsfREJgd9OWISscsMkxQsRajOsFd2xlX8+GrAXnFbVfpIZs0I2MXWT1yE6fyIGc6yqNl0bpSK5PILIGgkGBJFyNId8qXWLZr5hkgPaYDC7Gy4ZZ9HSmgY1HKzgbxs6CkM4fFBXxgpDJEaHom0oDtIDX1S7BAaefvjZk5nGLrfRKruPbQxb4OUFFWHgw6wCLR5rYywiQCRjgUXT5GyzXvgtYr1dnSgCbqrIjrHrBszZiwVEFvjESSKgQ9mhOlsihTL8tgCXJBI8xYF7RSwhGZaMjITkotADW2dk43CvBwU5mVDLS8HRnbW8O7TG+qF+Uh7HoOUO9eQEaXqYCqfMUGLSZtOyFbPLH7s/F3aRKR3MtLMv4klADyWwQmRacBnRPAo2ofAnxui6JRXZOJzc2MEXFT2Z/CFdEyxxRMzBHQwRGo2wTGBkLgZ0HnhRsl/DVs2xbBp46CR3gQGhgawz7iN5LBnKMzJAQhspHme8+JfNsx9asGr4zvISkpFRkwMkm9fRU5yctFtEdzJovCGrfoi2iIOgb9fR2JignQISw54X8yyK8EgA00MWnHuiuCBYIWMA7HUg3RzUnHlpQjMuDMDyDYxXBcqO+iIM9rNzVI+6OTxeYrOHmuOCXRFZ4Tij3QA5cyRzt16YuaYTxAbEQ31wkJoqAEa/BFS/fJykZ9ZBHCkOZ5NexfZvTA3BxqFuXDs0B5ODfyQGvEc6c/CkBp4B3mZRYr9ot3ln6lraMD8vfeRq1cgrTHKDDttT7szo8IAg7husLaQGRc5g4GBTc5LkcbIrCWZTjy2Kkwe/g7nqajgTTYGRdUIFOWDAUQGCMR1g4FJroPKcpxFs9fiLT8/aKlpIC0pudjmbLSolp8vsaTysjKluS794zznvM8vsr+2vg5ce/WCuY0F0iKjkfb4PlKDH5f0YBbme5nPorAQRh7eiLCywF8Xz0tznus0W9iJPde5xhA8ihlgBiG4VjJYIh9kz5CZUBWnjuse1yx2URHLzDivGVCTr3V06Jl1FwE7HXpS+EkrbtCqKZyN3FCYVwgdDS1oqqshJzMLGoWFUEch1GgvzvWcHElsq8ju2dIc51qjnPMGlqao2ac3dPR0kBbxHCn3biL9aajK2vLKd5t2r+WPbHcnhAQXCaCyTIWBY1H4qbJBWu5x9DeqEox95XVXH/BGLEDgTV0ZMbjFPZXvkRjEIYhi4F4ZxDEzt0DLNu+gtm8dxETFIjEuCeoFgFqBGtQLCmGop4/sjEwgPx9cX6T5XpCPQtnaXuTLcK5nF/2T9tVs2DRtArfWzZARFYuM6Cik3L2BXJZxyDPaFVxrir8jO96kfjPEm+gh+oV/9LIyPhFAc6/mnk0fkozIyg5qQzDJJGeb8Rz0VbheiywpluNw34x4HgV7eyfY2NpDW0cbDd9qjLs37yInMxfqdDMKaXfA2MAAGSmpYO5fo7BAsjvyXqztL4KGyM5BAffTF7bnOq+ppQbnrl1h4+6M9MgopIc8QsqjIKm89Z+yO7V+svzbITXnMTKep0jzTxQu5n5F0C6yTJXJLLE8r7L2rz6+fAtUA/Y3ODv+bcCeapINfVMjJD2pC7vUYOD5Y+SkJKMwKwMFmfyXjoKMVBg7WMNn5EjoqhUgJzMHaUG3VQF7LX/czP7vAnY6hARA/xZg10k3hLEmkBGXgPyMDOQRyLywdz5tnpmGwsx02NT3g0f3LtDU1EBWUkoRYC+njZC2qRkU/4sBOzc/bsIiYCdQJ0uCdezywQw+lb25OZsoTBGwYARsNIagrtZDFKYlIzeDds6U/uVnpUv2luZ7Zipcu3SGe9tWyMnIQGZsHJJvyQC78P4bvQDs98sB7PLDywPsFJEjM0MUZfy3ATuz+SL1mMCGGX1lz2/l/ZQF2Pk3BhuZRV360Qo42tsUKQTn56EwJxe56enIl+xdZHfam3bPz0iHWm4GvEeMgK27E3KycpAR/hQp92WA/SXrrhywE6yLgUEKG1JD4r8E2Mm6INtBLAti8EbeLm3lgk3w8aoJXQ1tpCUnSwESBkroUCMvDwXZ2ZLdC7KypLWmgGu79F/aPhW6xgaoNWoUjAy0kZedXxqwV3C/M3L3Kgbs/AqDoGQIiFk9AnYGmkV19jcF2Okw04EUBVsZgGI2SB4EfxlgHzt2rCTmJR/t+3ZGjRxH5OfnArl5UEOhFKgiSGdwKjczQ5rvXNtZRlYorfFp0j9zL3fU7PcBdDTUkZ2WUQTYn4VV0Nolhxl511MB7GR6MaAk1qpXA/ZKm/Y/94XKAnYy3FjuIaqmz5m/DHHR8UiIS4R6vhrUCiEBdgM9feRkZkpgsRiw5+dJQdjc9KK5XjLfZXtqRio8PuwH50b+yEnLQEbU8yLA/qKzyj9h6LIAe1mdhspKwjBowT2LfkRVADvZURQ8ZnBdPsoD7NzXGVDjGq+vb4Bavn5wdHZGo7ca487Nu8hVAnYGSgplgJ1BcK4xKJSYDQVZ2VJ3oTylH6P02V/4kBrIh8/4sTAzN0F+bkEJYH+h2v9P2P11ATsDjFUVi/4nrv9/+zmqAfsbfML/NiVe09oQywIXoW7BcDjcawiXqyMRe6VEiIu3qmdljTorNyPpwmmo2bgh7vgBOAwsgxKfOw1ardZAy+oJ+is+RGJcTLGlKkuJZ0aXWdv/rZR4G4UrnsybWC4dnoZjHanbmGnIePIQCUEPkJsU94ISr4XQbavKoMT7wWXpZsT/RyjxpJExwl9RSjyp8KzdFVXAX0aJZ5aSwMDQyAhDV45BZk4DOD2wg+JAT2TJ5qf8lXb5MABGfk2hpaeLiANfQ9PB+6WUeMW0/XhW6y6+mfM17sko8aRbi63EyqPEs7MAM9tij9yyKPGkGhOUksL6T1LiSY1lPSP/Kx+VocTzewSYZEOsnL0WkYunSD29C/NfTZusvXQj0p49g3WjRni8aQWMW3atOCXezAxOS3fA0MNIojmLrcSYaSXrqCyxP7FdHSnxBPfMUsoHqcGsDf03KfGsBWTbS/lg0IFZTyUl/vTBs3i6eIqk2F5pSryhEequ+QKJF07B2L85wnZuqDIl3mPCTDx2d1ShxDNwIrKeyO5g1r0sSjxrGcUWSG+KEk/NAGYcK0KJZ3kWSxlEqmevYQOgHm6O+GUByIqJLqazvooSz/rdWnNWIuXGBWRmaSD97iVVSvzl88hJriAlftoSZDX0xY8HqkaJZ1CIQTYG4OSDwQxS5cU2lG/Q/ak+9WtaoLKUeAbACVDl5TgtWreDe2w6oo9+q1ru8aK8Sb7GkB5fEUq856Q5gJ6hVGoTsnMj9Os0f+OUeDJ4uH7Ky8nI6OTnot4NM7wM6pJdVRVKPJMDXCMY3JaP8ijx3Oup/8JSKJ8GfrD1bQfH8FTEfDWv3FIEkSJfEUq837ovEX/tCuzatMXDdUtg+cYo8asRGfVzpSnxzMYzuFhdw/6aL/5Lvl4N2N+cbSUK+L8pOmdoYYo9cXuhn+MC/cuT0Sp6FEIOfFsCtA0MUe+z3Yj87TTiTx5A3dXbcV0mOldjxBToWVog+lkW/gxuWiQ659IWnsnOSE8vadtRLTqnKjrn6l4HEZvW4eHOstsCUXSu9vLP8fizZdDQ0YbFu31wd+aYl4vOtWmPOp//t0TnuFAzwl9R0TnSiUVHnzWv/IxZavmQi87x81HLJ8HQsT4cQprD6sxoRP5WWljHqlkLuIyYivuLp8G20wdIj41HxP6tMHCsAc9PliPHrhbUnt5DzMFdxaJzOR+uQBxF50bORUbay0XnCLLLq7Em3V8ElGWJzpFGRuea9Pl/S3SuPI0AUXSOdib1nA5gj04DkLt+4SvFyvgdl2GToPBrgLuzx6Huyq0I/XI94q5d+cdE56jxQYdKrlHx/0N0joFLEfSxlpqComWJztGOou4Hqd3M3LBEiuPnH35Dwuq5Lw3+lbllqamh7uodSAl7iqfbVuCt7ftxe+Z4VdE5G1tEna+M6NwtHDlcRGlnxpyZO5ZhyUd5KvwUPyOtVKTzvq7oHAMeSudYfh0vE53jNTAzrxxK0TkGouTjg4DBKEyxRuqaMaVabpbnJlB0zm/tDoTs3YnssAfwmDIfV0f1LRGdGzQCOmaVEJ2bvgaBxiWic+xCwTWioqJzbGPHTJ8YGKJqPwF7tejcG3T4/uFTV1Z0riwV84ZNmsPuYTwity76R67OoUsP2PcahNufjIXHlAWIPnFY6mjxJkTnElxNcfSnA9J1s8SIPoG8kw/BOJl4BOfyQbE5iq1WVXSOazT3l4qKztFnoRYJBYprevsgq6YzPG5bIWVlx3/E5jxJzZkroK5rgKBFH6Hhjh8QtGwmkh8GCaJzdxH3ovNHVX+4SHSuP+7f+AGIzy1TdI7lBmQwiKJz3AuYXa8G7FW1/qu/Vw3YX22jKh/xb7d109M3xF/qN3At/i843FsL/6TzSNtaAny8F22SVOAD54yV6l6a7j+GwGUzi3v3si2NWYt34TR4NNRcfRCUexKuxu5IvF8ifEZjVLd1U23rZmXrgNTTfyNo4cRSc4Vt3epv3o9nJ07g2Y7V0Le1Q+2VW3Fz8lChrVsfOHTrDk19XTz7hW3dasK0hT8eB5b0v2YdOGvMRRHD/+lt3QisxMwn61uZOa1KWzcaucugXrDu4QDfqBWwurYcEV+qOiRs61Zr0Xo8+XwVos/+BuuWbWD7/lDc/ng4rHqPx5G4Cbge7IReA5+joV8CjBOfouDZIyQ0eQ9n/tyMbYuKlHY5qtLWjc6EvFadVDEqgf9bbd0I/lnf/rpt3VgXTDp0bf+myNn3HUL3vrxXtW2rt+E4fAoeLJ2O5KD78JyyAJkp6Xj2ZUlrGHlbt/zEJESU09Zt0IBepTIkZOqQafG6bd2YFWEd3r/V1o1AlfNI1A5gjTeZGspa75WrN8H20PeIPn+2UvuOy/g5MPerhzszRiI7Ph6NvjqIkO1rEHPpvHSe8tu63UTei24I8h/0WLULU7cvRfALccDyRCIZsGBWRQxc/E9q68ZaVFFHRtnWTd5pwMHJGW+1HQb9A2vw6KuSXujvUrjPAAAgAElEQVTlPQgqwddesxOpoU/xeOV0qa1b/a37cHfOxOK+xyVt3fpCx9S4Ym3dbp1C2ouuLJVt68ZMOsuGlAEg5bWzPzvbClZFO6BSE7H64H/MApVt68agWu/evaV1Xzk6dekFy/hc3J9cuotKZS+Ubd3cpy3G47XzpYBWjQ8GQcejHh4umVx8KlPf2rB4fzRM/f2Af7CtG8VVRbV8+g5klLyJtm4EnmK/9Ze1daMWEtdxBkgMa7tC/YIp0pe3LSohe83h0Gco7Dr3wL3Z46S2bnVW70DMmVOIOlqSjPsn27o961YPabevwNLItMy2bmS3cf+tbuv2mg+2Cl+vBuxVMFpFv8KsGUWSRCo4aZqk84h1eMxeMIIotoGjUiwdCxGokfLK1i5KtWQ61qnmOVh7/1M0KBgPz5h34HxjEsKPHoRDwGTYte+AwLnjkPokWLqFuut3I+bSBTz/TtUJd5m9FTf0P4B7rXR42EQgUqjFo1gTI4pijS7FUFhDKIqikTZJW4ht7Kh+S8dCFEUjtYvnqWotDDNc/L7Y555RQV6HKM7G6yCYEkUASfEhvVlUm2/btq0keiQ/3izPDOHrZiP26l/F00NDVw/eS7ZAXUcHgbNGIjc1FWqammj23UkELptRKotj6OIKRccAuHTthIyCPMSlPlWZaqTxso6LrA354AJK+rV4naQ/UpRQ3nWA32O/ddKE5Wr5pLIzm0PKWVVUs/nbtDej3QRU8kGaKqnHclV66gxQFIa/K78OZkr5jJgFkw8CYNqbIm08/p0OneDY1wm6sQPg+jQDhr+MRmpI0bw2cHCE/+ZvEHb8NJ5uLgLyrM2qt+Fr3L+Sgp9vtMDh46bFpx8QkI8mXa6jjqcWbty+g6/WfoYb14vugfQ6Ut3YRky8Ht6vSLnj8RRjYVZMPvhuEKzxv/LBukNS+ig4x8x3ZQezMMzm0y7ywRpXOnyiAAzfAbb9EUUA+c5R/I5zWz44J1gKMG3aDHzccSAeziq/bzlbzHjOWY0n2zcg5uRh6TQMlDgMmoBrw3uqnJfromWTZrANmAJFPS/EB4Uh/o/fkX7+Z1j3HQutFn7ITosv1UWA7wDrj3m98sFyAs53UWCMNfys5RfF9wgoOfeq2g+cz5LrtcgQ4XVQhE3snczMJ69DbANHgMVMvbJF06q1m+AemYLg1bMqPBWsOvSC06ARCF4xozj4SrXx3Ox8hH42T+U8WsYmMGvREQ4fDoaOsy3SgkIRfeQnpF49LdHwOYzcPGA9aw16DOta/F1mstgpgdcrH6SNcl9av369yuek81KciT3m5YO12Fw7RYBf0ZtlFovlKWKdLoUe2XVFFA+l3bkeiZ01SK+liKRcMJIiXc16DUPevpOI/+rV9nefvhJmdWrjztShyIyOkm6hyXcn8GTbekT//qvKLenbOUDRvi8cunaFmok+Um4/QMLh3Ui8eaW4nZxpHT9YzViFPYdKggXsBc13XNQ+YJs21jiLLB5qU/B9FfUdmKGk4KHY/rGidq8+7t+3AJkSHh4ektaCfM9n8JutxcQ1hnsnS07EziDDOwbg/vgPkJde0oWmsndj7OmFOmu+RPDevXj+XVFtt8LHF54zVuDGuH6SbyMfFg0awrLfBNg0bYCEsEjEnz2HtDM/VIihZVa3Huw/Xokdh4veA2bKua6LfdHZXowBKJZNyQf3Q/rYYivPit4zfSx+X1yjWFbF6xCBPBMmvA5m5C0srWHf0RkaF96B2YH3kfK4SDyyqsOqaXM4T5qPkLXzEftXUQcixw+GwbBuI8mnlA8NXV2YN30bjoPHw9zPC9E3AhH96zGkXT5WHEB81XU4zNmPe/WTkHzmARq91UAS2xW74LCUkfpQIluMey1V9KuDgq+yctX/Xg3Yq267V36TwIORNypGywcBER160Ymgc80MnFj7ymMpPiMCfx7L+ke5UryJqTmOZ57CmYjf0DxpC8yeZKOR/kEYvd0NT1bPRcy5M8WX4tB/DEwbNcedif2LP3PqNwJXjWchwTgP9u2/R129uiiIfKHsTAEkDQ3JiaYzJqcn8QR0oknFEwElPy9LMISOLenAFAdhI6bc3HxoaWmgT+/eksNRFZV4XgezKaRli4rMzKjxc2Ya5IOBD1ImRXV7OjdcmMTPuYHQ2Zc7UTVcayL24AkELp1eYsux82DTpjUezBmH5Aclv1l34z7E37iO8J2qG43yi96zlsO6d1eEPCppj8Lnz+sXuwKwLR1BlahcqgTgosIn5yMXVGV/eaXdbWys4PeC7sq66qoMZglZ/8V6dvmgABvp76KqKB1pAnyxRR4pr1QCZ7BEPkjPpsq/cgMZtXQSMu0UaJg7CzpnliFp30JQrK/m4s3QVRjjyfoFiP+76Bwaenrw+/Iwlu9ui1MnJAkvaXh6FaDd0PO4bTYfmXmZaJTfDOHnn+LPY6eRnJwk1bryfaWqtHzwHSBIEGtC+TkBOOlh8sFMGQNAchquuoYmPpo0UVoLqgpguFYwmMAgmhgQY0CEdXzy95QbMAMfIuOBz5yBFQYSxcEAGKm08ycthfqxPXh2tAiMy4exhyd81+xA5JnzCF07s/hPRm7u8Fr8OQJnjS7TadDU04dZs3aw7jccWXaG0EkrRH56NvIUOZJDILZHo1PEd1LUE+DnDGqKomhbtmyRROvkmW3a/dtv9yP48eNS2ZmKzntmaBk8IO1bPhgIIX2ZrZfkQ7Lf/PmlnBkG2zjHlMDf0NAYP6zdjbtjer2y1Q/Pb9W4GVxmrkDol1sRfaSo7pnDulVbOI2YimtDe6Agp3SWh+09FW/3gqJ9R+RZ60LteQYyb1yXnGptMysUjhqHwQN6FZ+PQJu2FfUEuK7z3RbbiHFtJHCQv9u0e2jIE0nlXeydXFG7cw3gviDSMWlHvgds8yQf1Mhg8E9sf0bGADtriM7o8OkTkXAuE3HL+iMrrqSVqXh9Nr1HwrFPXzxZPh3xL4J7PMbjk1UoUNNA8PKpZd6Skas7FJ0DYNSkMfRsFch5Eo3YU8eRdukX6HrWh9Oc6di6sYSNwoAHdSjklH6emACcVFzuncrBoB0VruVCngWFgKWFudR1g+wsAsDq8d+wgNLvYKcDMTDDrhd8H8XADNcetj+TM0dGDpiE6A0L8Pz301W6cX17B9RZ/zWSHofg0YLxxVljXSsr+H2+Hw8WTkbi3dulzq2moQGrJs1gNWgydGo6Ii06CfnBYUg+8nVRj/YXJWfiF5nJN5i2CD8c+lr6EwE492Dx3eZeSz9HHhTkfB88OAB6urqlgs8VvXn6jX5+fmDNunwwOM99RtTl4LVxDaePQP+4yYC20Ep4Bw4XVuPBtk0V/dlSxzFwUXPxRmTcv4PgbZ8iLeSJdAw/d5u+HLcnDihmacq/rK1QQNGyM6x79oOhtyMSgiKQeecO0k5/W9SjXdb2VP49HXML6E/dh7g6QQj68SaGDxsq+dBihwrOL/pycv+Mdl+2dCmio6OqAXuVn/irv1gN2F9toyofQUeXzgWdDPkgaCJVlY6LfNCZJpgSP6fDQVAmnoffJQjgSxUTUyQKx8xVplkBfo49jLTsdLyTsxlNXGIReuAHRGxbovJ7jII6TF2CY/NnoGZeCrQb9MClgmFQs7eGfqM9yI1NRo/arZEQF4WCgkLcehCOAnUdGBro4+mzcJibGMDPywHq6moSMCBo2Pvtj1K7Cj1dLZy/HozWjbzRq3sXCVA+DIuBnZUCz2OTUderBnzr+OPyxXN4EBqNGnZmuH7/GUwVRhg3rB90dbRKtQir6IPgRkelUDqT8sGMPWuTqCAvH+UFSugAknYlKvTyeShb7cnrtc21bBG3az2eHvoR1r2GwX3UaDxatQgxp4+o/J7doEkwa9oCR+dOg3NsqMrfHD8chGd13oarh5GUSVbaXUffBLm5OYiJjVOxO6+PkfVjJ/9AVnYu7gc/R+O6LqhV011qsffVvoPFNvesYQV9IwV8vWvi6/2H4O5kKc2Xy7dC4GBvi67tm8LJ0UFyZKsymN3hPBT7ldO5YBBFrOslTZOOiJidY/aTIFOMqJMZwNpYMjY4OrzXBbUG1EZmfANYh/mhQf4XyNQyg9677+Pw9w5wxgVYp5+DUdIN9lSBZfdBOPjIH7t3RCMl9i341i5Ay743cNF0NG4/vwnDeAfAMRnz3Zdh2dh5yNdQYOLkj3H06BFEREQiOzMFyVGPpTZXpINdunoTu3ftQn5eNiwcayM+4j5WLF2E+IQEbNq2B5mpcdA1MkdafDgWLVmB1JQEbPvqO6QlRIARKjMHb/T7oDcMNLOxfJnqu1lR+zMoyEw/bSYKTZUnfsdACQMEYmCQmzAdEjFLyewq16yY+BTUSVHH0/WzVS5P39YeXiuKWDqB04cXZxv5/7WMjNHo+5O4t2ohbtwNVJnveeqaCDd3kD6za/cubMbORK+xw2Hr4IzBAQHYsHEjMlITim3O85GRM3zUeKmOWW73M7+dlLK/f914oGL3o7+exKcrl+PGvScqdp81cwYSIh9h8SLVjHFF7U4nmvOR67u89IHvDv8/2U7ywfVRyRCRf84ACYEUgb+yx/DOzd9Bbccaqe7/ZcO0dl14LPkccVf+RsiyySr951kSUmP+BpxasQDWt4syM8ohtzuZJz7zV2PZ0V9gaW0PKxMr5CYn48Kdy7hx8VfpnHRUWd5lbe+MXCqmy+Z7ZloyLCwsUaBppGL3yKg4eLg5Q0PfvNjuNq51sWL5UmQnR0jOYFUGO0Uws0ZlZvlg4JrZLyVTQfm3OnXqSDRhMSvGkhwGDcQae8+atVCrUV8Y/LoDjzaXHVC1atsZ7jMX4sm2rYg6oEqdt2rbBbYBo3F09lQ4Pgsq1+6KWr4w6TECtzS0UKCrhaz4VKkPfEx6NPLSIqU9lEEfBrVnzVssKdazW0BchiYa+Dph3OgRUrApOUsD6mqAkU4+HJxcMWrEUEyaPh+G2vnSbydkasHJ0Q7jh/dDDSdHqU1c9fhvWIDMQwqS8p8Y7Ob8Z8JHXMPZepH+ivzzLj36ALv3I/q4aovFilhB20QB93mfQdfGGo/mjC1msSm/2/zgGdz/5htc//NUKV9Guc64Z8RB0bw9ntVvgxjkwtzEDAlPI6Ed8hDOt39DVviz4ktJ1jeBTfcAoJU/vj90Emb6efh4yiTcuHETR0+eg55WATLz1GGknY+AoSPw+EEgfv39ksp87/ReB7g5KNC9WwlDqCL3qjyGDEz6RdwLRTYmy2sIzuXid/yeXBSv5tu1oaP/Dqx/P4fkXSUJnMpcA1lOHgs24E52HZw5Zov6it9hU3gLummPYKjQg02Pvrg9dyJuP40pd0/Vs7GFUdveeOJcEyka+dAq1JTaCes+vg3H238iLyFexe5mvnVQMHgB/go6gdyIUGzfsgnLli9HUPBzFbsvWLQMWzZvxKOwGBW7Dxk8CI6W+mjdqkVlbrX62EpYoBqwV8JYlT2UFD0CR2YYSV2XD2bmmJWQR8j5d2ajuRCLLckI8OmYiwsIARuBpRxUGhgaI0I3Gieij2N20wWI+eUOHsweiZwXfaWV10ExNN8t3+HskV+hrdYY15LbQscyEmme2+DnbAH9EAs4WupKh2dk5eB5bAqmjB8mAWE6l3xhLc0MEfQkGkYmRRRjbjKZWTkSaIyOTwWvpWWTegh5HCQdb2ZigOycPDT098GTiCQgJxlhkfGwMjdCeFQS3m7uj5CIJDSo5wOfmqq04oranyUCBKvshywffBbMZJUVECEVWMxS0+mmw3TixIlSz4lZeYJ1eVmDqbkV8sMzkXXmJ9QYNRUPv/0JT9eXplYy6uwwbSmOzZ0Om/slTrlt67ZQDPwIj3JTYG9WRHGm3VMzCzCkf08pu0XKkdzuVjZ2UjSdGZjUtEw4O1ggLy8fXd9tDT0dDfxy6nyxze2sTJCao4U6Xk44+ccl2FsroKWpgYehMejd7R2cuXQLrZs3hk9N54qaWuU4ZhBJE2b2Sj6YXea8Fil8FIZhxlnMUhOQM5pOJoM4GGwh8Fdm8UdMHY/M+hkwjw5AQyNT1Gqij6/vfYus4GYIO98C2tqFKChQQ0F2FnwapcPRKRnLFiWhkb8/bJqfQJjFVhwPOQL1fE0JsLf09YfpVTPs27sHfQcMQ68u7Ypp2cYWNaCtbwI1tria8Qm2btuK1LQMxEcEQtdAAQ1NXXz/zZdYNH82bt4PRU5WCjQ0tJCZGo91m3fhyI97cOVGEDJTY6XsqaG5A345+A3Wbf4aSxbMhrdHjUrbnfRgBj64LojUQAZQGLwSAyI8jiwYMUtNShvntai6SzDJ85ASuGHFdiSsmy+V0nCQYu08Yw0UPl54snAS4m9cK3UP9b74CTFBj3Bh95YynQsvZMBxyjI8VWhi1uw52Lx+mfR7vD5DMwdkZyTCyKIGHJ2cwRKCzZ9/Dg0tnWK7GxgqcPHP4/D2dIWWgaWK3Y+euogP3++EAg2DYrsbWzrheeh9jJo0E59Mm1Qlu5NOzfWEDrLIlGJWmVR7MTDINZr3JAZWmOWlg61stTcwYAR61qiDx4smlDsfjFzd4LVsm9Qf/MGsUUiXOb38Emuna+88hJObt8DspCotXSVQ0v49aA4Yj2EfjcLls8clJebElDTcvPOo2O6NuV7ZO+DgwZ9U7F6nrj+mTRqFHl07Ss9JOd/9fD3x4dAJmDR6EPRNbIrt3qBZO6xaMgsX/r6PHl3erZLdyeBh5ovgnGuhcpBpRDaGuMYos87UKhD3Wq4jtLm8dIpr/vsThyP7bB5St45BWphqQNWiYWPUWrYZzy9dRfDiiaXYC6a+deC88DOcXDoPltdVdQjkdud1Z2npILteEzTuPQR5LvYIe/4Yx0+fgY5GAVKyNVC/QUMkJrLU6BHyCtRgrp+H7Dw1+Pk3gLe7A44e/hEp2ZrQUCuEgXY+XGu9heZv+WDzF3ugp1kANbVCpOVooG+P9/AsJg09ur4LXy/XSq8x1V/4/2MB+hdkUjAgLzKNyBzh+kNqvHyw1SgzvnKRwjp+9eGnYYmgT4ZV6kbUNTXhOGkp3Hp0RsiGpQg5oLqO8GSeCz5HoYEBTq1aUC5gZ0CWcz3Z3g11GjSFTbfeiNVOx6PQKLjpW+L6hctIDr6DrNgYqBUWQv+d7nB0M8XFS5eRV6iGTWuXYdOGNQh+Fgdt9UIwFMX53av/SJz/7QiCn8aozPevtq3H9l0/oE/PzlVaY1j6w1IZMlpF8UaWJ3C9F9d27p30BRlYcfOqiSxPZ9QOdkXa+l7FJS8VNT6BtseCTUhzaYJPJtjg0UM1aGgAbh4FMDIEDAyBT+bHI3rncvx9/GC5gF25xqS5+8KvdWcoWrZEbH48nkalwFXHCJdP/YaUp4+k66PdC31aoN7gjrh/6Q+kxaVh9vSJWLponrSGKO3uYG2Kth1749vdW5GRq1Fsd3VdU6xftRA//XIGbVs1qZLdK2qf/8vHVQP2N/j06VCwbpeZdv6TD2ajSUFlhkw+GFWnYyHWsTMLTGAuOof8LutfmQGR147r6hnguU4snOMd8XTJR0i6d6fUnVI0x3fHQfx4UwNZKQ2g63ERilp/w0TNCD553rh26wF83G2l7+Xm5SMyMQ/WFgpEhj9Ddm4eEpMz8FbtGhLoI+gikFfWURNoRkQnYUCfrjj061ncCQyWsuaN6jjjRuAzeHt5ICYuEWFPI6CpoY70zBxEx6fA2dFOim6amZni4zF9YWKsWstckcfFQAnZCixFEOu3uaGR4iPPivGcBOxccMV6egIYUosZ5ZYPZtLIbqATrsyM8e8KUwvkxQPamekInDFcag8kDiqq1v7iexxduACmZw5D2hh79oVx5wHQtNfHub9uqNg9MUsLmmr5SEqIV7E7qY4Et8oAhNLmbo6W0DKyxm9/XpJ6fCptrqerDXuHGnj4+AkK8nNR18se568FS4wHT3cXyVbWVpZVtjuBIcE6gyXywdpdzlsKhsmHqampZDs627SxfHBDJLgRs718fqQ3M0PGjVVDQxMBH4+A2zueKLxpDW3veEy/MgEuCjc0tewE/eR6QIYNNAq1UdvVEhoZKbjxJBTxjpdxNu4HxGQU1Z4SsDfCe/DNdcYXKzbCqYYL5izZgC2b1uPhw0Coa2hBW88IiREPMHToYCkAQUoeB8GjnpElbM31MXfJOnw8az7y83KQEBEEhbUb1NUKsfLTNZg3fxGyszKQHBUMcydf6BmZo1ePrrh39y78/etV2e60E4W/RAofQQ0/E1vnkZ7NrDkzlfLBsguuScwai3oOzCqQ7r112w5M6DkcMVuWSLRGxwmLYdqpDaK27kD0j6p0ZOW57UfPg0nDt3Bi/scqWUclgGnWvR9M+3RCpw6t0bx9TwwN6I+PJk5AfiGKbV5QkAdmN7jO8drldu/WsTXcazXE1h27Vezu6eGKDu91xpZtX6IgL6fY7lZ2zmjgX1dirDg5OlbJ7mSAsMUgmSMiPZv/n+sI253JB8EwGT5iHTspn6Qsy+uLd33+HbQOfYWIU8dLrR961jZwmb0eataWiFkzu1TrTuUXfL44iL9v3IPe5jkq51Dava6ZPmwmLsSy/Zvg7FkP3h4uWLVqhcpcp93JZuDzV9LhlfN96YLp+Pv2E5z847yK3Tu+1wFaOnr45deTKnZ3q1kbFmbGcHdzh66uTpXsTq0RrhdkOCi1W5Q3RxsS4LAEQj6YjaTzLTKu+P4SDIkK7E2at4a9T3tk7NqDuD0lYpbMiteYvVbKaD+SSjyKKKrywWdTa/sPOP3lTpge2Vmm3ZWsKj6HIPuaMM5Kh4WnJ/Rad8XzwlykxT2UWAycX6TDK0vM8gvUpOziulUL8emGHXgYEi5dCwG7hjrQomUbBD18jOeR4TDRzUN8upZ0fG0fT2RmZMLNzbVKNi91k9Uf/GsWICBnjbTIHGHwlLXEXFPkgz4ijxVLTvp1HIz4VdORFKj6brzsRmwDpkKrUxvYO9ogPTAKWTcvIPbMr0i8fbP4a2QSWvb8ACcXzoDdwxvlznflXDfKTIWhqQLa9Voj08kF9i76QEEBvB18kf3wMfLunYN294HY+c0Wae429KsJR3c/7Np3QGKYmOvlIjFLE+ZmCrRs/TYO/HBQmvvK+Z6npo2GDfyQkZEJK0uLKs93BlUZDOc6Ix/0c7lPioJrTKhxf2QwnCwdx9buiLrkD9cTYyolIKplZIQaH38KnZYt8NlqVxw/WpQwE8fCteHw07qIk4tmvBSwy+2usLWFduMOSDI1g8IkBw4O9nDUtUPitWvIunQEhZ3m4on7dTw4EopO7ZriaXQajv92VsXuPt41YW5pg9/PnFWxu6aeCVxq2MHU1Ay6OtpVtvu/9mL9R3+oGrC/4QdHh47UZlE0hplx0tPEunQuBsxSilkYXiZBAo8X6TikLBJwMmMvr12yNHfB0zWfIuaYak2x/JZrrvwaibWaI1jvB7KG4ablCvMMI6SlpSI/v0AC0xwMGLD+7divJ5Cblwd1NTXo6GhJ1D0KXPFe5FFHUinV1TXQq1dPqRaV4Eo5SPNu2boN7ty6UeyM8LPUjCz07NZZYiOItaGVfUzMOLKmlw6+fFDATymQJv+cgIdUd7kIEf9OITAuxsy+857kg7XHtAntLs/2GBdaIGL5NCTcvF7mZWubmMB/1y+IvX4DeHINGj4tYNW8IaLjg5FNyqnM7qylYr3x2XMXUECbyuzODYKBB2VNPq8vv6AQDvZ2UjZUrp1A+6praqFL54448vPPKs8iPSsHQwb1l8Sj+CyrOkjBJiiniJ8okMhgCGu/xHp1Khoz4CBmEFgfTsDJoIg4mBnje6Ks1aR9ajWug/DApxgwcQjirGLxSO0B/oosygLraRpIlFJ3s5r4tttBzP5tBg4++U7ltF1desEs0Br71u1ATna29EypF7Dq0zWsM5HqvgjCOQgamFlV6gAAalLWfe6c2WAtOKPtysHgU9duPTBq5HAVoTR+3rzl21i5fLFU9yaK0VXmGdCxV2ZW5N9jT14G8UQBPx5DwUjWYItq0hQRI1uDAE0cXJNok4TkDHT1bYG8kAdQb9UMeX8HImTZR2Bv2bKGdfvuqDVvOf4e0xepL3rb8zi21zPqOACKTu3QpWsbKSBJuv7QYSNw4uRJFZszCMTyCZa1MCBXNIrs/vPhQxLjQl6PTPsuXLQEhQX5mD+/RHiNn0/4aCo83ZxL6RJUxuY8lpRJvi/KwI3y+3wWzMQwkCofZIyQbcXnIo6LFy9Kzp5SLX7x8jWop2+L4AXjVZhRmgaGcJq6EjpNfZG050c8/+azci/bacoKmDaoj6DxfZEtoz/yC/puHnAYMw/f3/4dCbFR0vvXtFkLhHG9lM113hvFCJVlKHK7Rz2PlO5RrglC+/5y7Dg2f75RheHEz3d+vRex0RGSbV5nkPHEgJIoekTGDgX8REE6sqooQEWhNvng2s4MO99XMUDVOeB96KV7In3bXMT9fhRko7kt2IRII03UyFRD1L6NCP9VlcElzUh1dTT45jiSnkXi0XTV1pT8e766BjQKiujqypGjqY0CNTVo6+rCZ+goFLQeAH3jBOTmZErCcvJhb++AWbNmqsxd7koFhWrYu2cXJk2cWBw05+d5+WrY+eVWKegiCkq+zjOo/u6/YwFmbOl/EJzLfSj+OucG3025z8fPGbjivirX8GE/dqewBDxapQrwy7sL684fQr//QHz3U9H8867lg+69+iL5cQwywyORl5SAvMxMmNd0h8LXF1fHByDxclFHCvkQ57tyrqsXFsK8hhMUnYdAt359tOzaDHt374ZTDS88Cr6HK5fOSaXWI0eOkIKf8nJQzuu2bd+Bh7urFMRVDn5er35DtGvT8rX2U56PmXUGrsWACH0+luWJYqVM4BDEk8lD/9WzTW0U/j/27gPsrqrKH/9KQhICJLQUSjCEFvSc41YAACAASURBVHo1MCJlBBUFsQAijCiII6hYcNTRUcdR7Doyo+I4o6NTVPiNBfkrKqOgDlhQitJ7C70EkkAgCSX/53Nxw83OPueet9y3JHc/z/tEufees886e6+1vt9V9sR9Ytsb7o75X3xTPPHos32gqmROd8x82ymxzsHPjyueuCpuvWr7mHfBfnHuz8ZFblqPeuMDceKhN8RVJx8Tj2XEYZ2OIfeNdtghNjzyrTFu2y1jz312jv/85jdj+813jkfGbh6Lxv0mfv7NH8VnP/uZVt8Pvk67fP/6TSfGrTffFOed92w/BHI//IijYsa09Vu+X290TwI9wN492bauDDhKXeJktA8b/KCDDmp1684HkALg59FeziElUoqyUyRAWooez5y1Vdx55i/j1s+Um99IUbpis53igH3+MrY6+fBY9OjCuPmPd8cmUyc9A9LN64EFi2PG9Onx8kOejibnZAFHjOMPrOdOjyio2s0cpImsAii5TAAvzi6F53cDGamDfX5v6WLkmDfS8D5SXXp713JzAPJFgHNw4zM1kuaaojcbb7J13HLql+LePxu6/BmS3F95wkmx9vobxHPmbh/n/+H3MW3dNVaS+5ZbbBHP3W3HltxzY42k4UQDje119O6HkS91yRfpBijzZm5AtnelTrm/9evpOTkKwG67IfWZaCNS44MfXLH+GSBgAEudRZEnnI/SHgHyAYW8ltW91LZP336jWG+r9eKhifNj6YQl8fjS5fHYVevG7s95Tty7xu3xjfv/NSbPnxnrzhoXr5hxWCz8w8L49pe/EeMnTYnPfPrTsf6USSudBe/aOpRbo/7ygaTQJTwn4TSC8izAcPtQ6w805BHXvq57RtXeAVh04G4f3oX75uBGlFqkMq/htUakCAPGOdnlM6Ddbx9evCz22/PAmDVl/Vh4xmlx93k/L07ber9h9wPiFX/7nlh8+ulxz/e/0apb32272TH9sBPiqe1mxuGHvyLWXmut+Pk5P2oB789+9rMrXUuJhAZLeaTJXpZObg3ne0RWjMZceZ2ndHZ72bobyNDsyDrIu/tLq+ZE6zScN4USpRa1EQluH+rhkSQyetL45Oe+ENvPXxo3fPrZOsiZJ30kxh44N9a8/r64+WNvK3Z+Tjpmv+3nxJZvfnPc9eF3xWW33RubPHRXCyxuuPvc2OD1747TLzkvbr3xuvjluT9tpZLnDSrNA9DzvjV7bB/INKUTdGb7YJ9EvumnXI8iSu1be2QgQ6kTAoduaB/IU/szf68IMaQW5/tZsufpX3pu708Twfax7nrrx8v++tWx5Iq1Yvn3Px2TX/SauGnCw/HbC/4v3vi2d8Zjtz8eS6++JsZe96t49O47Y/6fLo1HY1xcNmPrOPTo18e07baNG959XNzw+Lhn5J6ur05XCuqUxxatcE/R+QknnB7zdxoTL9l74/j6p09bab5kLrtDF/72wUYh9PP+IfYxebAReebTQN5B77dDIwF6RODBvrEX24c+JEhM+qx98CsFIJwG0j7+6sWvi/s++95YdMN1tZOfsc/+MeXE98e3f7giWZR+ROduueU2MX7NdeK8C6+IHbfYKDa74Z64/Ssfa+n2pGc6rff0+Xo77BQbHH5ixJyt4vIbL46rr3zahilnQSRav7kvrCcF/zH3ZTSx5ZPmZGlf3xbbJyigkVze8FHAQJZfHpSge2TS0qObz94ytj5k97jvp9vEzF+9Ne6/cMU+IqX5bPTat8c6h788rnnyijj1lk/H+LFrxCEbnxhj7torxs7fLu65btN44IEx8eRTj8Q6034cJ79ldsz/1Ifj3l+du5Lcq3RM+32n7bV3TH/dO+OR6ZPj/AvOaQXiHnzg/lYpIuIBGZQPtovPkOMAWWWyifPTZ/oq99736yXQA+xdXiGpARHQlW98IAWwzNPlOR6AVe5omqrzlUXN8iPVfOZ3gNclf/xTPHLFPbHgB/8ed/5sxeNl0uNy6u5bd3pM3PG5ceDfvzcenn/HCrXRjy19OiK+/nrrxVrrTIm5228SCxc8uJK0RIA5qLkx8UWpngBzDuRlEHDmcgDMufBXikD19TVJ7eU0lpxQHbwBjzxdHokg/TBPtRShZARFrPOj08yLkw3s3jLvrrj7JxfGLZ94ZzzVllHQPvck97Ve/JqYe9QL46kli4pyJ4Onlo+NXbba8JnIbvt1SmUQPkcOWSOc2txh9hu1wXkfBPNn5PIz0fsqc98HThEyao3bB0UOpJQi+NYB50P0sX24hmZqgE8+kCRABIeFoSyN9TfYINZff8MWobL+hjMixq/TKkHZ97A94/YtbogxN02JTcZMi2vOvz1u/XNpyquPOCIeXfJ4/Pe/fqqVzts+GHD3s67zGjYgRFaA5pDtA1iw7+3LvIt7Om6qPSLfH5n7DTYcQM3TsMlmn332WQkkAd/kLjMmLw/Ri4DRzuuB3cd7FAUWDeYQHnPsG+PV+70yFp//i3j4N2evdIyN9b5g1raxztEnxtaTJsT43/80rpm6XTw4Zb2Yv2RB/OynZ7fWy8GHHBpTxj0cp3z02TOEkyzsPd3eNRYr1SEDMPlZvCKqSCMnK7QP+9Qe1rys9Hx9kT9igyOJRMhPAhFtId+80aIGaKIzJYKKXDmg7ZHgr33ljJh69RVx45c+GRsd9dZY64hXxKRHn4wHvvrpylTLpGPW2HLb2OOdJ0ecc25cdPZ3Y/ZWs+LWWc+NJzbdNC646PxYe9KacdBLD4lrLzkvzjj9Wys9OpnSiXkGgS8iKDWTJMf24Rg1JCaipH2I7irdsN4GksXjmrIRkJLHHXfcSqU0zmv23vOu2rJxRN/zFFdEF2cTIZSfKjJnux3j+a86IJZfv3Y8Mv7O+O4Zz9YLT5s+I/bab9+YuOZmsfbix+OJBYti8cMPx7yFi2LsOmvGFnM2i0c/9/fxx+vnxbqPPhTzps4K0UUDWPeOdr/1TzGhTces/ZpTYsxhx8SU2X+KKfdNjP/+r6e7ZKehI7Z1xWHOiQdrit3KSXDlMDJXekct9WVnj6zvirIjI/Mu6XQxwjA/atE6QUDZv+2E4f4HvDiec/+yuO7DK5540v60jubc9L2fjR+c//148MEHagWhROPRx8dGjB0fxx14SNz5N6+LeZNnNF7v+cVnv+avYsIrjo1v/uDp0irp5/zB9hM+/Hc6hF8gYy/PelTeQi8jsAY6kN+CY3lwBzFOb+QnTCBJ+DHpxJdtX7hLjJmwT8y+9oGY//mjYvkTT1ROafpLXx0zTnx7/OLW/43bN7kjzrj62VT8GWtvHNttuGNsuOaMeOLRtWLx4sdiwmNrxI7Ld42t7nw4Fp72obh16qwA0p/6c7PTKh2TT2DcxImx4d4viI1fd1L8acFNcekffh9vf/vTRFBejqiMl2+ZStLStZR5sYFIwf6e7DTQd7W6/L4H2IfgTXPUMaV5XTplJPU7j5gDwNhyjkl7fXRSVhxwrGreyM7nrvnAsufEqadMi11m3RJbLzs7ptz107jr3BVZWA7DA5OnxfYbrR8PveG9ceMdt7RqzPfebYtnIr3AuA0IWOSg271Eq4FvUTz1Pu0DIPDbvGmH72jkBpzljfU42aKwA02Hdw+OvT/Rx9RBP81PnwDzzWsdU9S6BPI5meaVd2tN19x5593irktuies+cMJKjYra5ZLkvuvcvWLh4UfGlVddu4LcRbjND4Am97y227VkUgA5JdkyVJ47fzZRpPZ69/Y5yZBg2POzw/uzNZQOeL+AUb4+rWdRsdwQqNP0m1LUmvONeCiBch22ObDeiyh1ewPAlQzTn+vMFz90ZzzvkFfG2pOnxiMPLIwLz/t+K21a2qz0WO+36mxuBAG55t3r3Qth5XirPJL9pje9qRWFzBvxISGklyPl8s/6I3cRRHsxr0u3Tqx/Eeh8D5Mtx7/0PN6V+sk88pjWH+eRUScr+/h7Z50TY+9fGmPvuTvG3H9bLLvrllh04/XxyLLHY9HMreKAt54cZ/3qD/HQk4/H7XfeHD876z9acteQkNxFTPLmeO5lP3ivnE/ZG+2D/hEJUa6Tk56eDamZExhSS4EYQNTvBzrIh6OSZ0noEyBlPj/ezf2QmPZBvlasCZkYSJ9ECD1n89nxyQ+dGlPvuCkWb7VD7POi3eM3v78k1rhnWTx01hmx9KbLYuF1K3YjTzpm63XGxf3HvS8WPfJILF+wKPbea49Ysu7yeP1Rh7WOmLOnRFJK+g4gtj6ReTmBifDkoJWiKTLDlIvkJV2yPADm/h7n1v6e2EROOXIjP8HDu+XQ53XpatWtMxG43KZ6VoBetk5+VOmUddeLgw9+WRz80he3dE3uvJvXmmtOiq222S7GrjEh7n9ocTz60J0xYfLGseSW+bHs0v+LHW+/aqU0+HzdzX7ju+LqjU6IpXv8Xxy904Hx0UJJCqCAfMyfTb8W/827zMk3R38hKXvp8APd6cP3e7oAGGQn86HhKPCa90LSu4TuzzPdjnzFG2LJN74Q9/xixYxP13U056wP/FNsuucWseTRR1op9yW/L80h9VTQ8HDHHQ6MG3/0/YgH7m203kvS3PIT/x7XrrEg/njx71v+j7nLtmpvCul3SE/+RV5Gt+OOO7aIaX6cv4EONpDOypu5IsCQJPZbPug+xB//fONNZsZuRzwv7rlk15j+s0/Ggz9ZkYBLv9WEeMO3fyR23W+7uPKqq+Ly266N2yfNizvG3RE/uH7F0j2/Gff4xJj62Obx1p2OjzVunhxXfPdbscZjj/Rb7lPn7hVPnHhaPL711THvp9e0SpZkFuQBHzbYWsx1oMCKYA892hvdlUAPsHdXvq2rcxwBplJdOrAkWpGfXS5aLspaSn/n2GG1SuBx2qZbxjfP2Dy+cdrTCmuf/Z6K7adfFzvPuCrWf/SP8fjVv4yx48fH8jFj4tEFC2Kt9daPWe/5RNy39M5nJAFsMxBAHMCbg3FfFMnlBAAcedonZQt8+SxX+EChuedgE2OJUQUuBoul0z8AA5vXpTNkwGveRd5zcUJF3nPAmz6jxErZBI5EGnPz/XHLv3wyHrio+jim5TGmxYJO22nnmP2P/xoPPPR000HPLworsikyl58Vn14OYwGYefd5hkBdmnxV8zyyRgAAv4zgQAdnGBkjVT+PCACv1nt+Rrl7cvQB3vzoQtECe4BxTl208zkCSwCQ6L4IW57K/fT3n653BhLbh2fnqANJUpJz1jx919ysDURaPoAQzyTyng/gjHHPTyYAmAALqcWD4VwgQUSg7aH2ujPzASplVeRd4ekYYAzJlwNeDdDsUdHtEkixxzlTztrGuAPb9MTcvZ4Xhx1xVOy47c7x0D0PtiJD68+YGn+66uI45cPvf0Y8dAfnhh4h9zy7In1R1JnD5rv5QFKIcOf19sCZ/07PSNNrH94D+ThLdjAGIApIlbKCvHtkyLO9Dp6+I2fa85SiQFKelY1wftqB5Tve8b742te+2NKNIvC77bZH3HjrXfHUrQ/G8nk3xoLzfxIP33xDLLn//lavCyTCpCmTY5evfj++8oP/avUk+fGPftA6lYHjRb/5l47MB/1IdwN7eUTadxGJQEIeXbf+pWSXgDxiSIf3gZZ/pLkiO6R454QMOwu8ir7lGW2ceestBzGuSS5kmzvn6X70hN8jQ5GS+R5L31N3q+XFhIlrxnEHHhmXn3BYZbZV+s3Ml74s5u1wSjy+5z3x4r02je//y+krNJD1vUQ4yGDI17RyCu/Mfmgf5GOdCxiUiKPBWP+9a3RfAnQZXUAX5r2QgFckTm5rlTvJgLFP2wHvpElrx1EHvDru/Nz7V2hEvNYmm8aWH/5SXPbwbXHxH37byqqRgeSedGa+l/L1/orDj4on//OMuO+cFUnVptLZ6BXHxKz3vCe+9MWnG4rSkdY8QiIf7Bnb095k2XfYIsEuUeDBGCLsbKrr5kQY/U0P5plV/Dd7FBnKV5yz107x8LRNYrMrd44t7v5y3PStFZvYrb/zrrHR33wyfnrxObH4kUUt4tBePfe8X8RV914XT05bHtcuvSruWDovlj65NJ546vG4d/F9MW3ijDhpm5Njk4WbxvyPvzsWXHVlvx554nobxDpv+1ZcsePNMeWhhXHo3INaBHlus/gI7GyJNPIuYJyBliH06wFWsx/1APsQvHAgFCAC9HIAa4MDSnmttWlRPOpkcvbUZwCYa7an5k5aa524b72Fcf1VM+KGc/eLM7877pmnmzxleez9/KdizLKFMWvag7H+ek/GooXLY+GSdeIVfz0+NtvgllbNjmgl5yqle5bEwxiISJpbzn76PkCJmcyBss/U51MIOcgHVgEXTrY04sEY5if6BgS2N4VzbdF8z5nXIaX0d9GlnEQBUjSAYUBLgH7jmbNj6Z2PxL0/+XEsufTcePCyZ7up5s/j7Oqt/umbsf4W67Sin56b8yxlvco4AgXkDkDlWQOub26cs/yZvC9Ak+HNI/aAAaCFpBmsAVCQr/nkw1rmZOS1ZyJjgB/HOB9SbJFdUsfz2s30XfLzOVLAnhA1FH3Lu/t7h9anuQHZyC8OvNTlKrmLIjPaQH3uLHMqRJoRVHmaPOaZwyyVLB/2TYogDIbcAQkOO4Cc1/XLlMH4AyT5PkAm2HulumJAVDqiaHFeG5/mDNiTD+IBIEMciEzkOkuknM5yLe+aMyPNPQcZ7bLgmNEJefd73/EuADMOVU5cIW8AGFGC9iEKQM9ybksEQH/eA+IMOBZ99fztQ1q4ued13r5DJ5FTqV7fO6H7kRp5XX66PmLG80n5v/Kam2LME2vEotvujYljIp56bElMmrx2PDFmbCwdNybO+sX3Yvfddm3tO7oX8VWKqrs2vU33IVCQSvkgN3s7L3nxPU4eEJ83SrOOAGjXHqymRAA7+ZTq0t1Ldk+uK9hL6e/2XSkbR62s3+UR7HYZuCcbxkbpVYFcBRzyyDy9cOgLXh23f+DNrUyTqrHRAQfFkhd9Ku6fvSD22GVc3PSra+KXvzhvpa/Tbcq8cpIEQLGHkHF5mZxsEjI3Z4Rwb4xeCdDf/MQ8CwlBRY9Kw87riq1T9j3va7DTrnvEXtPmxC2ffk88fPNNfz6a8x/jnulrxHk/+8kzQuKX8BusH76cP1miue9mje23/wEx465lcdMp1en2VdLfcLc9YurJH4szf/XdWPzII88QcaXSD8/EH8iJNXNA2NPHSObBGPwioJytzoM7bCqSr9RDhw+SOsyvMX58zH3VvvHU8t1iyuWPxBP/9cZYfPvTQZrJW2wVsz/0z/HrWy+Na695trkbm8ZmeM6LL7k05t1+Z9xy/y0xbp3xMXb82FiybElMGrtWPLn4idhpq13ioa+dXtkzqZMc1jvmY7Hw5QfGY+N+E5sumhb7PH/vlfoMuYbMJP5yaoqariuw53ll2Zl3b3RXAj3A3l35PnN1QIzRzIEKRZOOGsvro0XgOEfq0kqp0SIZGnNw/Fq1susvi1Mu//sYE2NjxzUPjk0fOiou/dHcuOrKsfHwiv1tVnjq955yT5z8prFx/713t5yCnE1s/zKjITrNIc9T/H0PKODEp2Mx2n8ruo4QyNMYfYeSZQiAh8EayhA8S6kBG9lKi80jn+4t8ihdthT1E/H1ToD2qijL9rvsFfMuvj6evOXmWHj+2fHEwvmxeN5trU7NY8aNjSeXLIkJ660fe3z9zJi5++Yt8C0CWspkSLJgPMkdKMxr0H2H4uQkljIyMLZART7f1PgQyEdsDNbgQHLMOYx5HwbsM9KhVBcL9FD8pWZgfgPk+KwU9UtzR04AhICh9wuQ21cArecVYQPizcsazQ1QLgMGGVgHUHLw77vq8hEtpa7q3hUHKwdyUuBFGgF9xm6wBqBHvtZBns5GZu6X15+5NxALxHF48mF+ALDnzwmJ9u/K/FDW4L3b/6J79h3ASeaIEutP1B6wq4qop2taQ3QJYJoP10KYyXrIZWtfW8/SI+nc9oFIooORNe3N3QYqf1F06zPvX+C6gCHSJo9YIGqlTnKo86iZ33FIrV9yz1O42+eLfGI/3J8TSdbWOxlx5pGOyBYkH11XVzaCHLHHrIdSwyF6xL5xnzwDSHQd+ZD3DDBX+4zOz4HDQOQOJNuP1nneFZ6ulGnDycxJV7pbRNrz5fWv5uNd+U2pFKR9vpxTcqBfrHXypmP8K0XdO5u/6LH4w0l/E/f974oN+1xHt/8pB0uBf1PcOPWqeOk+G8ddf7g5zv7Rsyd4pPuJXLGPecdqn9OjnjfPPgLkESeARonwGojse78degkAoohfIDYP+ojKpv4G+cxk0direfnNG098Zyy7/Na4458+EBse8ZZ4Yq85cdb3V2yEma7F5+Nr2tup1NEeQf4iwfiedO7NF94c177j6BVOtegkqclbbBkz3/2ZuOqxO+Pi3z/dZR5RSAflpXM+s8795baY/rEX2YzB6MWT5m3/2Od5c1afKwvie+dRdvJSDoX4o9unz9gotj5ox3hk/q4x9fI744lvP91zZ4sPfzGuWXZvXPjb84tiSr40XcN3lknBn6Xz+DL+veOuu+OGs34T173vDZ1EvdLnW7zlfTFv+0Pjtk3Pjqk3rBfvfOtJLb2ZB6NE19k4pFDeQ8Z/Q3KWsgv7PKHeDzpKoAfYO4pocL4g5ZRhLdWeA6mcbJs/HyKOGtDlZ8im73GiRJP+74rfxU8WnBNfv+zLz1xi+w13jE3H7RGzl70yFt82JxbdumUsXDAubr15bEybvjzuumNMzNj46cj7q4/4Q+vInbph/hQ3A5A7w35HeXNaKakSqORYUsR5dBiIZwiQF55lMAd2VGQ6nSHcfm31vqKqJSDGOFKOJVDO6fdbURXPU3L83Gfa9E1i3Q2mxt3X3R3jljweY59YFk8sWRYTJ68VT41bI9aYsk48uOSuePLJ6mYkroNAsA6QPXmE1+eeL9Wc5mQLeXLmAYacEMDgArjd6B4slY3jCrTng0EQqcvJEt/3jBx7Hbjz4Rk1V5O2Dqw1Gd4VEMehYWysvbyrftV1pBR6z5j00npHHgBUpUwC9W1SChEH+WDg7edS7XiTZ6r6Drnam0BxHolh9EVIGP58DSGCzEmKdmm9e3717OrNyb/J4LQAgPY0g543yaq6hneFXEC2pWP78u8qj3DN1Nyn/XPrzmf50WHev3cvhb1ErjR5pqrvWI/Wpoh6TpjJXEDOlLIspBciRKoaJFnjMhfIvdSAtDQfMufY0Umc6vzIp6pnMH9yF5UuRdb9TrQJkVJKKUfmyMbIwbO15X2Zf0kXDETuTo8QiUoRrfZrWbPeeZ4q7Dsi8GxVKd3W5zJGZFoBBnmflar50l3uR+50MF2jad1uyzeImz/29hV+prHXU3/5t3Hr9OfGhDl/jL/cdWZcc+7lcd65zx6VlH5ANyOarIW8lwDdbo50ad7Qkq3lVyDSBqMnzEDeU++3gyMBNsN+znUwXctWybLIS1z4bEpbZJbkuv3AFx0c26+7aWy0+47x6wvOWYlUrJq1vYMYRArxKVKg6cjDjo9Fn/lQPPinSxo98JStto5NT/pIXD92Qfzu1083nKXz+TPmmw9Et0y6/LQV32PvkJGlbKZGk6n4EmJQsEzQLCeskcJIwTyTy6WQrZrQIkzo4c1nbxW7HLpn3Hz9ZjFr3r0xfYMF8dzXvyK+9pUvFgnb0nT4avQSgoR+Sbrp2EPeELe+7/h47N57Gj/q9L33jUdedkr8aeufxrQ714oj9nt5y8fJ+8S4oKAF3ZNnZcnIRSzLHEaE9kb3JdAD7N2X8TN3UFsr4lSqgebY2xR5Lakfc/Zs0LyLbbowQLfjTjvHry7/dfzuvt/HV686Le54+Nnzx8fEmNhmw21j8oR1Y6dJB8UjC8fHehM3iMWPL4611nkqxq/1aByywd7x6PyFldLArmLazF0UvjRSungJAAOHwBOnLx/SPym1wWRG0z04T1JmZQTkKYOMjsgFZZynQ5uraCElltdKpWunpnzeS54mNhjLigPoHhQ1uefRIvdgrM0TSZI7bT4H1r2vvHSB0VVP7jfdAOwatFkP0unyqJ7UXOy06GA+zFc0QWPFUkSXAyoFEBAEmEtZHgOVPfDCARCRVp+ep1y7vmiyjADzzaONAJN1w8HIiTYOhbpC8+5G5ItsOOv2aj5E18lPnXQ+OB7+AKxSaYAu067teUQbcqZ9oDL3ewSHzvPuk3c+TtcHtqVFlurl/DfOLHIrB1rWm6g2R2qgXcpLzwo4cSZLmSOiNNLM847xrgPkAtlVR515V4AlEsu66cYQVUYeqbusyl5BoIkal0gSWR3sF32SDxks9E/JqR3os9C59BpyOD92js4kb859qXzJ+pJ5UDoy0rzoKOsM2VAi0pvO/Q0HHxc3vOuYWLbgodhg511j7P5vibsm7h3jdl0SG25xfewydfs4+1s/KPYsof9ltyD586O73J9MpUGXyoSsGTbDM/TGqiEBRCzbhOjL9ZsIp6yhUgZVIhM19syJ01mzt4rlTy5rNVCzv2VZlU7CaSLBF7zwpTHl/D/F3d/+YsevT9l6Tsw86R9i8l7bxZdO/WTr+3wFtgthmNsgutV+LvVw4P+wT4Jeg9X/qP0BNFVmT/MjaX2Hf8DHLBHZdIjMx9Q7Zsut5sQGe28UM544NMYvvSRuv+2GltxlH5UCFB2F+OcvHHHEcfHY5z8e9//hd41+MmOf/eKJV3w8Ltrkwpj62LLYe9M9WiRvyT7xB2S55aewuBHiE4HAV+uNoZFAD7APjZxbd+FgUCqct1zhYhU5kyLBed0iRg0woGxLYNi1OX2tdMQxa8SvbrwgLn3w0jjzpu/EDQ+t2EG49LizpsyOT+38uVjjwadW+liqNEdXGhaGtpSa70eMgnmX6tZFzZAOnI789xShqF83ouvpYYB18ilF2aVRYQpLGQwpOu2ZSmDY9QEgcuc4AWFNxXtcbgAAIABJREFUIzJ1y05aJUUPeLhmyeH0e6AbKEZE5McY+RyRg2EvlSAAyxzCboD19GyMv3uIEuZDVJJMS2meInHACRBQtd6ltHJOGBnf7a+T0T4v79J8pMwyzqXonO+TOSPOkJXWFCfffsmjvH4rNRlpVUqxGwxVhPBD3oj0SsvLB/JExKXk5PvvMgqqOkoDQaJ93icAmR+309/5uycgrgzFvyVw4toIBSSNLJ5SXw8AxXrIGwfax8hSYLQbwNHcpJzarxy4PEUSWemdyHIoEUzS0L23qoZsdIHmauns8SqQ2Vf5Kx1BZJCNdV9FfgG99obv58Pc6CeZXjkxh4iVWm4PlxpN9nW+pe8jW+1HayM/lYLNRCKU+hWwwwCMLJ+q9UZHWuup4VepX0unZ3jtkSfEU7/9QzwwYZe4f40tI7ZeHOtscltsu9mGsfaCteIrp32hshQKiYL4U3aTD46091GqoUUmei/squy83lh1JECvI+5LxJq9TAeWUsntA/uE3q7q1aLXhLUjykqf5f1OOklx6rTpceh2+8ZVbz+q9qvT99kvpr3u5Ljy4dvjoj+nwSciArgtBUjYBf0iNHzMB5KX/1PKdOs05yafpx4VbH7uJwK6oswI/pKfxh7w08zRmLnZrJgyY4O4+uI/tv6/siVZBfxQpGOpwWunOT5v37+Mja68K+786tMN++rGRoccGQ8//81x5axLY+qypbHLutvFDttv3yIG8z4cwLhMB2R0rtvZA/6CYEWvoWUnqQ/e5z3APniybHQlzpFUolL0EPCzSUrpj5xlRlq0ogrEmACALRVu2eNPxu9uuShuWHhj/PbeX8fYNcbF+fPOjfsevXeleW44aWp8eZ+vx9g7l7Y+S2nSDL7oImVYF0GmbKUCasKTD8/KwbaxS927McNSdIHLbg2KiNMFRJWcUgwhwF3qzA7MkzuQVcp+MGfPSOF6BrXtAHQpdb3T81H+CAyZBt6zjItSVD29I/MWXSqtBwQF5pmRya/hPpxpvy1FYjvNs+nnwKxSB1G53CkmV0QIR7vUrV+0D6vLgajKLDF3oFjEQb0YoNY0dbj9GchJJJPDwrCqxa2qGwZmpYY5A/o73/nOSqLAOnumqg7g0qbtqcFO3WufiMi/Z7F/83pHJIi6b5kbpfXs+RF05F5Fzkl/Q5gA2lKkpUH3B8yIQEgbBC44PNI6qwagDXghSUp12OYtYyY//9v10meiN9ZdtwbHBjgHFPOBaEg1/vlnsnmsKXq2ros6IgnRk44zBOSapryneyIvgFDrVDqrmsVSGmT6PrDOnpB7qceGbBhOdCk6gyj0rrpFkpgjgpQesVbzY558bi9WfUZ/WFNkXyLekgzYKGuHTva8db0c8ne71/P3jU23OjKufOii2Gm7MbHB2uvGRk9Oi/8545tFktXvrQfzop9Lz4RsoKPIPE9zlpqPSJMVMFjdsru1X3rX7bsE7CllicicnLRE6CGvAfe88aw70R+CQr6TN6hLM3ENe909+A7uVz51pTz3Yw49Pu784Imx+PZnMzzTN8ettVZMf9lrY9KLDo2r7rs6rvhz6jx7Yp+aF1CeD8RUIi3zz5Sk+UzWlLXfraGkEDAtHfnKD5NNZ8+WmoT6DR+xdGxpmi9ykNwFtwT0EDN1vUvan3PSpLXimP0Pj8tPeFUsf3LFU3DS9yZuODWmvPwdEfsfEhdM/F5stHhS7LHhTrHrLru05F66F5slSFiK/vtMaaHMht4YOgn0APvQybp1p9QxHsiqSmEG+krgUbRSpFo0sdSoqP1RMGCU78YbbxL3PTA/brjv5rjr4bti4dJFsWz5snjs8UdjjbHjY+LYCbHexPVjyoTJsc26s1oZANKszY2iNpeqwbEA1gGQUqq73/mcw1QCXWqANM+gaAe7dj2fMxDNQaN480gMkoRzw/ErpftTop4D2C/VMj9jkMaNaxEmagYxp5Qdw+h9uSfiQKMQEXSyS88OXAMS/ju5M8R1kXrfNx/Mb4mAkJEBmAEApWObGBgs+2A2+KtaI0CMuZYALAMFXHIi8nIF11Obir2WKp037Wq/n/cqKi/F3Fpi8FIHZ7L0DhhSQMf6BmSRY+YFgFvnwLeoRd25s5hwWQPAcKlZHQDLmbdHc/LKu7Z2OOCl1LrBVEPWTuomXTorVjTV+qiKpAMDSAzArg6Ie6dqhTmC5KaRnJ4OdBcywLoXpfHsMoiQN4gCBBgSz/dF+uuaCJKL9GXv1l/JoQM+ddFOuqhdlu7lXZFHN4Gje6aO8aJTpSMIERv0qbTOfNAH1iBdWpUen36jc7PvSL/X80HUR2QNwYcoTBE0BIYMG2SidFnOlb1GHuZSt6fci6OGvLXeS2CdA0o3lnoNkDWCQlPUweoMX7VHgG17jq7I67zteZk4oo555oPr0dXeh/1aIuDa7ymCZz3JlJBO7170FjIbKUq/073sici2jJGtt9kmlm48JrZYb1YsvGNBnP3DH1SWWLmXlF7zsc6r+kUAa4B6KdMinXNvL9h3vbHqSQDBLUVctlM++DHIJTq+tGdlutC99m6dbrd2EY/2FZ9F9Nj36XW6nj9Dt9NbbC79zg7vPnffuPTE4+O+C56uSTcm8O922S2mHf22mLzbnPjCqR975jNkGD2GfCoFHjQwtabZzLz3kXsiY5EK3T5SjK/FN/Pspew0hD8ftgqUewY6wXzrmjojy8mdL0GXk4l7I++A6lSeBwvwMel3/szUiTPjhncfGw/fdONKa2Lann8Ry1/0d3HP9tPjnrXOiknzJsRfbrtPzHrOc1pyL5G+3gk9lx8F6+LmhmxnZ3qd4YdWv/QA+9DKu3U3jjuFK50v7+bMyHJwGOQSs4mpw35yRADMHHzmj8NhAgZTM6K11l67laY8dsy41nmxy5Y9HsuWLWkpEQ42cFM6Miy/rmty2AGiqpRtoEg0t9S5nPLiQAKcpc7Cg/1aGBeKj3zzM+Ddi+Lj5HC6S+nVjBK5+6yU9p/P1304s+Tut/6/d+b9yUYAINUBU3oUJrk3YVRF3znfCJISyDWPVIdcikQCTZxU9+1Gz4BcDgAsIw/EleqSRcgZB2uh1AyO06/bMRBZOgIrv5+15FpkhHn3rAypkgsODBnbV+ZDhsBOqZwgv66UZMBURLi0nu1n12LgSt3WpQZz6K2hUgOywV7valgBclkK+dn27mWO1mBVl3oMOmAA8Of1waW5IoFESgDydMqCdW+9W+cp84SuADKB9U6N6OgOmRP+JfdS1grnE0AGpkpHY8q4AEw5sPZft4eUU2taeny+P+kAKY/AcpVjJzpKD3kvnUhZepyD7vsi+/YzwIdwNeh0YFK0jT0hC6C1KnMiyUYkSeaE75dq1n0PqATUyT3v8YC0tL/s18FurFh6f9Yx8GreJTKMztO0zXxKOpHjK6PHOtVQr9Szov2+vu/9iurRL2yhtQ68sOeuQ8+QPcKUfmnSayOlBct4KJ1eYg4cf6RAiRBCxiByvOvBOtqq2/uld/2+S0Dkm72RRVEq50Ci+rzKXgK3Itp0K3K707B/UomF6/JpkFICDPYeX4J+B2iXPrE8lv3ispj3zx+I8VOmxHo77RHTjjwhJs7ZPH7y8x/E7fNueeZ2dBywyVaVglcIAPoUyC31faJnAWjkMz+324PeFu2XCl7yGdgY/nBVPTrik2/CFygRz/n8BbSQreRAr/NjEKgGXwJJyFfnz0zZYKO44+Ofift+ftYzl5n63D1j/IveHg/OmB23TLsqNlhrUSy/6Yl45YsPaQWEyL2UEWCOgiT8tTxgR8cB+Wwt4rg3hlYCPcA+tPJu3c1GY9ApvJKTKQqIZQN2qlKrU42zyHVVU7RuPRpQRNFyKKvSxCmadIRbiemlZCkazh2HfCiG+3FyRdFLkXIOL7lyqktEiPcFCHo/IizdaDRXJQfzljbFGSf3KnAPEJpnfnyg63IqARwOXanhW7feAbArbV3aWOk4LwYAyCs1rTInmQBScwF6qdhNnN/BehZOtLRhDgXwUso4EcnkRAGOjHk+GD/1sgx+qSnQYM01v47mPZwiYK7EoiMMreOqM8k1rCJ3z8Y56gRkBvM5RNPVz4kylhreuBem35FhohulaKN1R78AUVUd5wdzzq4FECII6EiRrnzQi+YMyJaIHd+3V8hdamsTkmown8FaQDpJ4yx1g3cv5SAcabokj2j7HNikY0TPrL2hGMgy5JD9WXKYgVlRf89WFVkEdhEQMj4G0miur8/LCZYhRFbISXuyNHxH1lxJh6SjpACwbjSz7Osz9b7fXQnI1HJ6hB4GpRN5lNbQe1UnISCblA/xYZwAMhg9YNITv/u4d8Ud//ebWHfXXWPZ+hPi/355Ttxyy7ORX74Hnc2Oy7DLg1augwSjI5HN7E8+gEW+Dj9oqNKy+Y/8F+R0ySbZg3Q2vz0/Ri/NH6mNfEaclnpT9HfVbLvDTrHLsnXj3v/8bEyZe2As2/qQeGTmJjF/4/visfF/ivF3j4ttJ28VRx55RIuAL5H47i2jAVlPT5Z0O6JH8Mv66WY5ZX/lsKr/rgfYh+kNY+I4+qIwpXojEV+KQTS4qiu7KDUWzhDRaBIZH8jj2qAiC6LBHLKqTtGcUo6ySGQJ+AK9nCusqNT9oRycNWSDNKpS+jNwCLibe1XqEiKC3FPde1UTl8F6rkTOYHXrmFkZD5y/KmdT5gYD5z0ORbSx/fmBLynwDEJJXsCBFDc1aVWDc8JZBaD92ym7ZCDyt/9E6zi/jLBoRGlgvdXAWk+l48IYNhkZ5tz0KLqBzLv9t4g8oJxckSX5QOBIr7ReqkCxSArgKzpg/lUO4GDN2fpAbthj5F9VWyxLgdzVdHM48yFrw5pTr19FSAzWnPPriJAi2GRwlN458EjuurOXapRdT2okudOPwHGp2dJgzl+qLLmnRpClkiz342yqeUSulUhBJBE9JIovI2UoByeZQ2w9lPqpAONAjlTiqtKm9kZzHNuSbR7MZxIJJyd7ENGQN35K90I4sU3mXrK7iEyBAPO333tj1ZaA7CQ+ipTkqiwW9pIPI6JbNZDJ7LKSoSoQ11dJ7rDjrjFxzTXj0osvXOGnbCo7ZB1LK6/yU0ST2SNAvdTfhn9JV8mGHOpMEllHiGvBg1JTWkSDuQP2VTqbz4Ac9BxsRakpcF9l7vvHHvS6eGDxhrFo5ppx/5jLYlncGhPnT4ipS9ePA/5y/9YlkQRVGYVsL1tJx5Syu9LpLPBIqU9Lf+bc+03fJNAD7H2T16B+m9OQwGEJbFNcHBAOf6krcpoMAGrzAzAcjCqA39/Jm6O0KJFyrFtdZBmQpZixjCXAm5g5zwuIDscA2skWy1lykER7ydMzVDVnEcXmVDM+GG5yb5LS3vR5AWpyJy+ywkZXNaBzTQBGqn1V0zXKGEnCWAxVRkP+rNh02QlVoBwYJHf1UVWyRAQBOqJNopCAdKlOv6mc8+9ZvyKcUmSBbMarai7WCUcHcORAlAbCzV+pY3x/59iX33F6rHEGuDRH6b2cBkbcM1cNeojcOYjStqVMDyZhIrVbuq9yDt3t6xr0iFyT+wknnFCs8zXHdC546RSCvsivv9+1NpVzkBnSIB9AO7nLLik1bEvfRxhZOwCwNOhS/WR/5+h3+hR47wgG0fzU+6B0TZEXfwBmCawjdYB5jmpd87yBzLfTb9PZ7Ei2UvYXR9O6sbfrSg5E8Lw/+0LacZMU1k5zS5+nUgaNJ9kOQKkUzUrflyXDXplzKcslNZhEgA9FeVnT5+x9r7sSEDQRdBChriKUla7wVep0jKwNNpntQ5DK0qjzNfr6VHwYYE9GFFtpj5ai6q7LpiJhfa/U7R7JrKO5LJShBuvpue1XspLVU+oDgjDzDPRLnb5WPoYoRYoj1vmjfLj+jl333S/Gbbc8YtHyeGTegth00sbxF3vNbWUr0MmlHh7pXvQiPYPkLulFNpUtlR1Wyhzr75x7v+ubBHqAvW/yGvRvi2QA3Bi5UuRRFJ2iE4mv6w5vYsCMa6lzESkB3OuaaFU9DGDHQVCvJNKFzRWt65QCzgnljIhulICwRiaAI6IiZQYMukAbXtDzSGGqOkZDFFrKFce0rksqJwmZQfZYV3JXxtAfgwekkzs5+RdJY551naA9A7n7TpUDilhgRBiDbnbJ7iR6z2KO1mWp26rfiyYCKVLmSlGydA/AnuMtPVdZCSeAga8q0aibGyeBg4799x6lKov4l1IN03Wk+0qdlQJfBS6x2daB1OGh6BdQ9Yy654t6qgUspTmriZV6LuOH3KtIKtdPhl2EABDlvHDy+nOcof0lUgsApk7eokGlXgbp2ZQlSNdD2JSiLwgpe1padlXWQKd1OlifI3tELER2S30PrGFyR+iUGtG1z8OekMKqTltzNA4Y56k/w3oERl3TfkSk1QF197DGkSnqY0vgUjYYuQP9wy13a5KdEXkskUo+Qyhwpuu6w7ODKapENyNDkef9ORFB/wIOujWP/LIeAKM6m24/SuMXUXeCQsmZV1rGgUYY96Je/dkNo/s3qZ4deK/qNaIpJ78Q4Vd3eg0bpe8JfQUQ832UXPbHl0ECyKTku/JH+bf0VR3JS4fQ71/5ylcq/TJ7mh9q3Q/nYNvtO8R1yU+xd/k47CKCuw6I0+nkriRG1oHMLPIv1ZfXPfNaa68Tu+++R2yxxeax55/LBWQh+Ksb7K++BnRMKfouACdTDOCXudYbwyeBHmAfPtk/c2fsPQUnNaaU7kbhcbixkppvdGoaxGkFtoE+0dTUqVzEG0MvUp4YTs24OCOpY7mIm9+L6lKMQEunSBpSgXJGDlSBRkCRIWAAOC4jYYjMAtxVx/RoGse5Y+Sq6grbnwMoJnf/uq7ILGNH7t4Zuav/wXiTO3IDu5q65Pv/5O5+gH8dcHFfa8b8NPKqSnPCbiMUzAP5MtyD0vfsnPuqVD4gnCEEYkrNldqfAdgEtAE/QISsGTwySSQTo0mW3on94B1xTpBGHGjGVBQNq++v0xC9Y4wx0lW1arIFrAPvdridC8/DGAPZCaiUnhEQljKsTq0U3Wj/jf3MeCM6OBvWH92EgEQuWsfehfVuXdMp0rutR44JRw65IrJAhqVGkO33o6M4csgnRE1+nJXver+cQsBKZHskDI17RLCtzVLDM3rXWkfSyTDo1J/B84uGIYxk1XhWOhWIRizS9SkK69p0Mz2BHKB39WSg70SGANuq1PckO1lQ5I5ks95LEV7vk9yt+VJjyeF4D9YUIs6aLkXzyEQmDT0rtbWTc0x+bDAZyhJCOpM3XU3PW+uuQbez1/Y9+2HNA0ucXmuWfeTgdyK4OPHkTU+WMjTIFPAHxkT6eg2ghmOVjYx7IquR9nRpFQHFPiLoROJL5GH7k9DX9DOfTsaG+vbUJZ1e50vwU+l2tpwPoxEde2df0fH0BH3HFpf0Xi45dsf9EMpVOknU2n27fepE07eqnEmJEB1Tskeug2Sls+n4Ts1t6Qvv0d7nm5A5H5Xu1ZuDzhAI468ofRSsod/5MwJM9B2bylcVxOjU24qvr6msayHKS5mE7LbMPGtG+URvDK8EeoB9eOXfujswh7Vn3G2MqtpwaSmUoQ1Z1SE8fxyObkqDtsEpYxsU0DEAGUCSguV0pIZ4VSlL+fXNiaLgNFbNiXOPPRWdoJBGykBEIBlEUqpSyYEAChTQI/emfQIYMXLnuPnf5O5aqUs8uVO+5C6zglFseqayd8pJdn0OYNXRe9aKlH3vZSQdvyHiCwiIglbVdXOMRYQZESnBTaNaHAy/dX3RcmsP20321jmjJ2OEIQSO0nFYTdYkcsTRUa7hGLGq9Q4cJ+NZ1YW9yf0G+zvqi8mSk191hBUwSO6cQN/tBGTM0Zrm4FmT1htiiPNh3fvMOre+OR6cCGQKXVCXwdD+7IgBckemkHtp0Gki7shPaYbDmdGQz099sVRyEZkq59XnnlHdaV36avu16SSEE+fOXmc/OM6pk3DqVg6U2j9kw5FrGjFrMifv3D42ZynbI2XY48ACAKEXQBX5yeG2r9W9l9L8S89DxtZX6hBPD1vrdAxnmj2n09kWgJ6eIP8m6a7ssuwRdlKmT9WcgHUEjz2hhKg3Vm8JWL9IPJk3gHtp8AGQ4WyfzJ5OpFG6hrUOEAKG9DqfpnXS0NixrX3Fh6Hf+UZ0DR3f1E+iu4B12YQAcFVjU3ofQcC+jKQeDQIKCGQ6pqpsRvSa3JHgnY6OTDJnzwRaUod4wJwfw/dDCvJl+K/8I7oOUJdl0/SdIj3oGQRP1ZzoNWnwfGNra7hKKVfvnb3i0/cA+whZDTYeh5aDIQJStfGw+0AJQC2drj8p74PxyJwVDegoauxilaKl5DkXAD3gO9KGiBTnKjVrq3KqvBdypxzJfSg7ZrfLjMFieDmAVayu74sIMbRYXcz1SBuYfs6+rJK6aCiDoWbNHya7U9ZBN56Tg45lli4uul7XeE20TmYL41mV9t+NOTa9JoLEvABDHalLA/POAdGMyPdFB4Zj2G+yMKxlDf1KKfDmxYmUDgqM0jWiyCNtWMciRMiHqgiX/aDEgnNG7nXp2t18PrXVyB26kdyrSAYkLLkD69bLSBt0nz9kRiLaSnME2NXys7/6CtSVQHXzGWWqAN/ILA3oqjLb9HvgbAMAPbDezTcyuq4NtMvkkcVWlfnliWRa2eOp/8pwPCWdLRUbYFeaIkukNIBTtoq/JUuF/zPShpIikXQ6pnTqU7JRdIxsG3IfylMo2uWVegTxd6X1V2UzyPgid/6ZzCIBiN4Yfgn0APvwv4NnZgCES7WzqaXN1Z1TnM7GBPT9ZqiAuyiOzUuRilDWNbgzRwqZA8RpGqkDW+k5MJjkXuUoiX5Ib6L0sMjkXtVJfjCflazJkrEShadk645h0SkYsaOkAakyUocImOwAf8Bw1bB2AAcAEjjQ0KvbnfnNhYMghRzQkjIGTFVFDqwdTrbopfmKOI/UIcWWERbBQ4RUDSUsgCY5qGGu6mg+2M8pQwKpIFKuiVnd0WbIKHIHbkVqRAVG6lDLKD0+1f9XzVNHcHXgolWyHYYKuHPiRbLoePX3jiGsGhqdkTvyquqs9pHwHuhy9bPIYpkvdWmi6vplmNBLSgYGs5llnSxE4GRf0OkyW+rq2hE+omMIQeRUb/Qk0C4BJRTAlhIZPVaqBh/TmeJIfRkydEyTDJCBSpstEa1VJoZUOPPMMyuzuIB6+kiWCnsli2WkDvJzvBwQrLyuaiAHU9NdhFtVOeZgPye/ldz5kUqh6vqfII7ZX7XvfgPc98bIkEAPsI+M97DCLKQHUbpSbKqOn0k/AJ5tQmmnfic1pkkaa18em6IUYZZiLM2Ss9CpuRenm8L1fUp6NAzPJIUaS1rXnEU6GLkzdsAmuTdN7+2LHER2k9yBb3KvSn93XfNKvQ6sB+tipA9OMZJE6heWuq6GFzjThAkwAx4BiqqmgQN5bkYKaBIBUFMHaNXtQ7XEotXmokkVZ2ikDyBGiqF1K0W+TmeojwU0gR4gH1CT1j6YQzoxEChyyLlAkHQiZjRAI3eRJc8wGoaItD1q/XY65s9+IHepp55RJKpT48++ykA2iNpEewphrF69KvMiXVv0XSo5YFs6LrCvcxiK74s6IqA8X90xSsoJEBcilfaG74qGNS0Ra/osMtQ08QPW2Q9pzMpzqgayWG8JNgGBO5JKnJo+c+97QyMBGTEi0oCW9V5XAkPX6rbOX2MTRLq7cZQhAltTRPcDFgHcuhJAtt565wPbJ6NhyIyRHSWg0onc5jPwFXyf3PVwqQvQ9ef59TAhO3JXDotIKHW1b78234c94AP3mlj2R+rd/U0PsHdXvv2+uugKAEbxMuSdQLjUc+AO0BcFtPmBu6Z10e0T5SBSJMArh87GN5/U1KjuoaTTUraAunoboH00Dc9ozuoOOx3lQ06AJueLvID8JPf+RN4ZWJHxJHeMd5J7p4iy907u5i/aO1pIEmtDFAyQ0RQHIO8EGDwrsOb75IWp1nFZqnF/AI13KL03dVwWnVDXpda+LpPB3NUnS9UXzQA2R3IUIN+H9ArgDUCSe6duspw60WFpuJxAThcgBND0Z70DHUAUcKQpkvcIlIpSdBrAvNRgZA/wOJqGCIdmTfSH6HSnSC75SKdEIHEKgTtOXlXfjU6yUDIAKHLURXykgZN5p67ziCjkFaJHaUrV8Yyd7j9cn1vfsl9EsKWxdhqcXX+IKntFDxPOeCeyunRdtlxmljXvemyq9wcgdepH4zeaQwFSbM1oIAQ7ybb3eXclQKewY/a6Mq1O/Rn4CyLEgCRCSAmjkjvX6I9udz3gXLSWX6I0hZ1AgHUqa0Pc0u326WgB6+ltpuxH/iAd00m3y5rke3hPsmTJnU0m905yKq0guoG+kGXpX/YRGYBcrRv8FgQx3xNmGIllZd3dMaPj6j3APoLfEwAIsAMoWNO6s9jTY3AEgWwbD5gB3jjXAJ9raYgD/HO6DMy96JbIQuoU7zdS7QH+BP6biImCloIt7dAcsHqjcXCgyIUS46Q1KTcgP88M7JM7maYO8cgLEe8k99QlHkD3u9Qp3v9XN0rugH8TssV9GEX3ZRxkQWgKMxqHtGsOg3XuOKwm613JBaYa8PNbcmboObfIDvJECKQu8dak95M6ljNq3ovUNCAIC92kwR2ZS9X2LoGo4Trve6DvmYxkKmiKI4pL7k1GIjiw8KInrsNZSV1trV36hp5B3FmTdBJSUXaK+nS/4cQB/UBok30G2DunneNH9iOpqV8TuaXvIJg0jATY1Qp2Og0h6WoRELXO5M8RZhc4d/YKsgrBlE4RARIRqPQSUgpgtG6Bz3SsmIhLk+gxQkeNJqLEfc1hNA7HYBnsFELO3u002ENkFV1DhqLcqUO8NZu6ZtMx1qT1Ts8oz7Dm2W+/oVfsEe+s02kAaU6ISbqNbgKoXKc3ehJoIgH4VBduAAAgAElEQVQ+HBLOumETNZpr0ntHZh49wZ8DKAF2upovmE5EYGfpDf5mOhWBXaVrkEruQy8Bn0BoqQN5/gzuZ73bU8oUrfvROOhhul0AQCBC2n+TwSb6IwfEIv9flk8KvPFjyEUgh9/HX9cIjtxTwE5pJ7kjW8i9dLxyPhfrQ7BBVN21RmKvqSbyWx2+0wPsI/wtcwZsXIY/gZEmyi89lo3NWeZA2OCcidSt3HcoXYCFk5c6lmt4lwB9E/FwSDhAFIo/ykb0aDQPig/JAWD43wxep+P02p+Xs5zkzqAB4+TOoaNwyZ3ydU0yc69OUfRcnuQMcHIerQ2d0VP3/9Eqe6nQZKMDstTbT3ziE316lNTbIR2lhOm27jkWHGrOBxDPEAKXHOi+NJlCrmiEBsCINjKY5jqah3V46qmntoAFIOhoLuC9LyOBmdTVFlix7q13+oVO4YilbrZ9bZjJcbQegEXZD5wKPQ1G85DBw5kTzSArKfKAfNNhXacO8fQUG2E90j0G3cJ+cLSt8dQpvonTnuYAmJM70lFEWA21e47mAaTb+wg+/8owqOvFkj8rvY7w062afvH/vT86ht1MHZyRJ5xt9rsvOsb9gBWZLIA9e4+ocv3e6EmgLxJg8/RFsEZFq+nOvvbEAAbZBkEBBCBfMp005PrpVAR2VaCBbW0SbEjPwVbIHpLpJePE/fzv0TzYPCQ0nUxPaDTXKcuh/Xn5cYgPmQrkTq+nkyj41q5Pj7Or5I4kYFv7otv5SnQMQpI9ZlPZkd4YuRLoAfaR+25WmJkNCdhRnJSiFKNO6brdfjRsKkea8uZUYOdWtaMfRK4AbEAEc0nuTVjLbspeFF2kB/j0R6lTuqvKsM6l6HKGGW6RPQ2jhnMAR465Eg11lBJDKSo9mlLgO8nP2haBRAIBfeQOzAzn4FSQu7R3EVHyFoVZlYZUbQ6TTBEgHnnS6azkbj8/4kazReBc1glCdqScfzxYzw4cABuyRESwnUIw2HWkfZ0r8gYRxSHngIt0jqbypr4+b+/7QyMBpBGiyloCINmwTiVQ3Z4ZX1GzRc0e9X9B7irVWZUGog7pJrjCryF3ke/hHPxHcpc2j0RAKsgg6o2RL4EeYB/572iFGVIAGHwMP5As/byuQdpgPx6lasOLYGIBRRAoXpt+VR1Y5JQm79lFZfz1JdNhoLIBoNxbozuReIAR8zqSu2IP9JmtawbO2tIR2VFw6ts71YUN9L7tvwdY1HadeOKJrWioyIFowKrsRKt3U/sGLIiokLtmc/2pZezvuwAONZLjzCFvZKeMtlr1vj67rslSTwF3RKHj9Jqe29vXe1V9X/2oemkEJaDOzujWvyoPwEVWjwgkUCPLYbCbKtbJj24HVKTQipCxNamZ7Kos996zDb0ElIohB+1rwR8ErfVf15husGcJvKpRl72jHMrek1Ei+3NVHYhYBJwsSGQcHYMkHIrO/Emm+pWQO/mz78hv6fC9MXok0APso+ddPTNTaXe6Vov0Sh8S/aMMpCJJj+nGAFAoeGk6ohDuw5lfnVJoMKQJLHJoAXkOtnRKAHqwB5Di/ab0S068OWDIV2WCJJcjhlpan7RTtVacarVhP/zhD/vVZK7Te0KMACk6YCOmpIczssAMg7u6DM6UKCTwoHOs4+CQFkiUbmSZSMnTyAwhgpTUnE0qpzr1VSmDpNP6kUlAv3OmREGAduvf++jG4MQ54kkTRz070ju311aXIdIOvADMe+65Zyv9XAmAus5uEIR0Owda/wdkpMZQCEr1q6O95GB1WTOj+TkBSL0U+BL0jH0PxLGtVcfaDuR5+Y5z5859pvwHWJXajZhdnXwZ+5w+kSGpXl0PF1HuuhMiBiJ39yF35T98dmQ8m+rkl16JzUAkOzy/7QH24ZH7oNyVUws8i3xxAKSkY+tFvdWLigBLm+9LPbqJSXEHxjW4cU1K3fVEF13Lf/ffVtfBoJE7J4+8yYJcyJ1SJPf+AHiAVMScfFP0XCkEJ1Jmg3fhvayuQzaJJjrkjzjSPVtdrnQ6TeMYvf4418o6OM+MmkgX2bsPAsz7cB+ZDavr4MRxNEQDyErjMxECwA6o0WCn6nz6Kplx1kTwORMimxw369w17R9ECbmvyhkkndaTNciRTsc1AnNAu3R5Tp7Uyr5mPag/lf4IlEp7T92YvWP6DEFA7qvroFsAGeuZrBB0In+pczN9I8utrzZVFpo1jfxKoNy+QfbS7e6zOuuY1XW9Dfdzs6nWtvWsxBFp6r/p7YI09L/7k0nIPlvP6WQE4NC+4kPaC3T/6uxDkgXZkgu9wK4iUcidjuHH9JU4gQEEkkTQ6ROlbeTtmmyr4A+5r0plfMO9f4b6/j3APtQS7+L9gGqAUeQ3gT/KUcMgG9a/QH57t3KOs43OKUkdy6W6A/o2u+9yGIGY0dp9vIsib4EYkREpZYyeSCBQ7V/ONKXLESZ3qV++w0FL3fnJltw5h96b65C971Cs5L4qp4r1992QlWPAOBXkyjEARJAaDJ6ME6QKWVr7vpM6/wOBnIVk3HyX86yGmwHlUPcY6PKbIVNAUmYJYo8DAORZrxyQ1E3YOrbuU0db6xsRJVMnlXZwUJAsiBFrXb8CILI3VpYAp0tnfDqeTkcwkT0dzbkjQ58pl0nZD/QGPWRPiHBxDK19ziKA7h35LJ2P3JP7yhKQ3SONmEytXzKUVZaO76RfksxTl/jUwZm91IeDrrEPZEj58z3/3ftb1Xq+9NbQ6JUAfYAEpEfYSvaRrqZHBA74lr7DnvJn+DK+x4eh3/k99AkdzydKJ4awqfYMMmC0N8Xtxtulu9lCQR6+oL4t5MX3RhySezrlKR3vTKbkTr+n0yjIny+TSBbXQhCuTlmB3Xg/I+maPcA+kt7GIM4FOE9H/FCsqVbGv/7SfwPY2zu6+9+Uqs1O+fYUbN9eSjrKjYOXojDtsgccgRty9q/hX38AUCJH+nbX3rcdYwK8iwYkZ4L8/aWOqqlbfFrziayyztNRYz1J9k0CUhs5c5wNck66JZ2CkAi/dO54+5GGgAwnDpjsjeYSQIQA75xieh4ATPqc3NsBO/2d9E06golDDaSnbvLN77x6f5NuAULo+ER6t9tTeoeM/bXr+GRPOdaa9/VGTwKjQQJq3dPxnPRKu9+YdA5yKukYz5T8R2SViP3qVDI5GO+UXiH33HdPsk9ns6eTnpLvSO70DtCOZOkd/zgYb2PkXaMH2EfeOxmUGXHqKFv/Vv25UYrw+rf9D2AX3R3tx7MNijD7cJEE2OvknthRMs5l3gPsfRB221fbz7xvlz1Ak/5/knVJ7iIEvWhX32WfADvw6A94b//fIgMAoj8OXP6/RdX9995oLgGAXBlISd5J9q5WJ/dVvclTc2k2/yYnWrQ9ZZ+1/5v+Nx0DmHOcS//2AHtzeadvihoqHSjJnY/jv1fJ23+XCixFuzf6JoEE2Kvkzq6Sb9Uf/dOTe99k3g7Y09rO5e+KdXJXirA6l072TeKj69s9wD663lftbG3wdA5mf+qOShendBk8jUGAmt5YUQIpJT45z305B7NKlthTUcd0BmcvJX5lSZG7dDEAkTPX11rekuytb2sdgLTeUwZEb80/KwHpkukILE3hBqO7sMZbmvypnR7t5+92a60o89DNWSf5H//4x4NyG0f7kLv+Aeoee2NlCQDoSgg0a5LBM9Ahy0ffBiUNakxXp2aKTWUnW0RdtTIlTf8G46g92TzkLqOH3HuBiJXfBnKV3JXLkPtg+DI9uXde9XwYcifzwWo+J2OQLVV2I8W+N1YNCfQA+yh+j6nGRbMzgHEwQEudOFI9nsj76tTZM5dJajrHkfCX6oq6tZSAyCTz1Zk5JXdrHVC33qWgdmsoT0CYWOdkvzo3alHXCCz60yG+m4Ojoamd5n+A5Oq83skbOaJngKaK3RwaLiJMkty7ea+RfG06hvPsz7rv9pGpgLuu8ECkVNbVddDpSe5ASzd9GcTs7rvv3pK5v9XZl3GEILmroQbUuzl6cn9WummtIwP1zunm4Mfo75PW++rsy3RTzkNx7R5gHwopD/I90rFuGH8pv8Mx1MhwrlenGiXOHJkPRqSlv+9M5F00bHVyMjD/Ioz+hmuQub/VKSKmI/lpp53WOlJsOIa1/ra3vS1OOumk1UrujnUjd53gh2PoIE/uq9uxbuecc074G6zstL6+O3J/yUteslod6yY7Ksm9r/IarO+TuT/E+OoyAHRyHy4dQ84au/pbnXwZp62kZrnDsdb47UnuvWPdhuMNDOyePcA+MPkN+a91mQUYpb+PhMHIAe6rstLV6CMB9W6cP92f9ygaA0CuysdeqZFLQL3bWQxN3oFShQTcV+WGXdJ/Acb/+q//aiKWrn9H134A8q1vfWvX7zWcN5DuTu7OAx8J44UvfGFL7tLmV+Xxv//7v+HPCQcjYegvAECuyqms/BeAkdwHI/V6oO9NqcJBBx3UkvuqbFOVeJC7HhgjYegbkwDkqlz6hyAB1NnWkTCcdkHudE1vjB4J9AD7KHlX6lyARv+OxJHOmF3VGnfpCkzug1GrO9jvTY01AMmxW5UivwgSQJ1zMRKcufy9ce7InOxXJZZaat6Xv/zlFmjs6znTg722S9f7i7/4i1a0/ZhjjhmK2w3ZPaS+k/v3v//9IbtnX250+OGHt+SuRGFVGhdccEELvAxnxlSVPOn2FPmV0rqqDIR3iqg7rmqkDWV/Se6rEoBU2pHknk6tGUmyl6mpFOrAAw8cSdMa8FzmzZsXP/3pT+O8884b8LW6cQGp8oC7f3tj5EugB9hH+DsCFK+77rrW+a39GaKCjthQPwRoMELpSAjXc1yH6KVoJnAk/dgRTf1x2IGXdO7jaAcyUvU4cmrr+jNEYJPcdSVXE52OtmIw07FX5C7Vntz99WekyK9I5Gg/hg9IB9atwf4M6xx5oU4ryT0dO0PuyAC170pJyN19+ksKeL+JMOnPXEfKb8jik5/8ZAuo60jbn6EOd86cOa2zezXtU3tO3wAe5G1t6z8giukd60CsgV1/xotf/OJW5PfQQw/tz89HzG/UL/7zP/9z/Md//Ee/5kS+6hJTaZIsJ4Rpyv6gW9gPOozjSJ+pnezven/DG94QJ598cquR0WgeanWBl8suu6xfj2Hfz5w5s3W+OoDn/9M19Du7ab3TLfZS6i9D/v0Z9BgA+apXvaplQ0bz0IuB3HV9789w/KYyGXIXBafnrXX6PR1nqPZdSQO5O9+6vw3rdDcnd30dRvOwFpU0kbs12Z8hi5Lc9XIhd2uSH6lxH3tKz9DvCJjU9Li/GaDsCAA52puPIqbOPPPMVlS9P1mZ1jQSA1ln3Sd7mnQAn53dpt/JXSCPbe2vbhdpf9nLXtay370xciXQA+wj9920nCxOBYXYdHAaUpdrG51Rs6kpVJvZtdIZsq5JMQB8HA4OIOfDb5LR4+z11ei57y677DJqz4IEKPrarZP8yJ1R8/xkCgySO8VKaSe5t59F7XcMILlTxpQvZ4PM+2r03FszHdcajUO6mIyGvgwAhQPn2TnPHGbrnXOS5M6pANbTWaWcDXIH7snKZ+Se1npfGx7JLhmtDgYAJ3ra1xTJffbZJ6RMO89bl3fOwjXXXNN6f6I59Ad9Q7bWNTkDlJyQdOa936jpE2HmUPY14vapT30q3v/+9/dluYyY737ve99rgV+goumgq1MUivw1LGMfEqHLaUvn97omMMPRo5c4YggVehlg/fWvf92K+oj+ADtNB8cdyXDEEUc0/cmI+p6TDU4//fQ+zYk9FIFKpJQ6ULbZOkc60Td0DT1Dt1vvdAtwY82TGZuAMLFHEDXXXnttn+bgOLi//uu/bhEFo3H867/+a+iJ0Zdh3Vqvnt3atf6Bfeucrki21frl99Dr3pX3wyYA3X6TiCpy7ytZcMABB8Sb3/zmvkx7xHyXfv33f//3Fjnal+FYMKQcudPVbKlrJZ+E3PkzbC25s6X0uzXunZE73U8vpeaNfe0L8Vd/9Vfxyle+si/THjHftd7++7//u/X8fRk77bRT+BN4EQgQNPLHL6HX+SUImOQ/8tfpd3IH7Ol49oRukYKvaWZfyALXev3rXx9sS2+MTAn0APvIfC9xxRVX9MmoY0E5w5yDBDwAv76CPuIAbIAfzgYFTDFQ2JyUpk41wMrYAjOjaTAwTQ0cOVGSDBR5ceAYNXLvK+gjI44e5ZvkDuyQu+yKptfjpAOPoymNkhEC3JpGXDkI5M555aSRuzXv930ht9K6tL7JnZNHbhwSjh25N62d9/vnP//5oyoKdvbZZ8cJJ5zQuBM20MKRevWrX90CKUA2J/y3v/1t4/XZrgsAIIBfFAu7Lxrx//7f/4szzjijscoQ9f3GN77R+Psj4YuyGT74wQ82ngr5HH300SE1HZH4s5/9rNU9vr+d43WE1w1epgKCTyo+mYuANh2f+MQn4gMf+EDTr4+I733lK19pkUNNB8d17733bh0FhuQA+ADuvoI+96OXt9lmmxbot4+QtBdeeGGLOGlKUnKoTzzxxBZRM1oGsPfZz362Jbcmg1z23Xffltz5NNY7X8jvm9qH9vuQ2bbbbtsCQt4jEt2+UQ7RFEQCUH/7t387qk4KsV7/7d/+rXHGFD+P3OkGJIcj9YA+4K+p79Eud3aU3MjdelVuxU6cf/75LWKryVCC85a3vKXJV0fMd5CgmoY2jXQjovgN5M6HAbL5oOTVVE7tD49sQbTwvWVf/f73v2/5Vn2pnUeUsPO9MfIk0APsI++dtIx40+NkMKA2KdADYHAmmoKMpo/OiCIDNDoTSRCBbuq0mN9oqY/RMbVJ6QHnK8kdOPebvkTKmspdpCDJXVSB3N2vySBzcxzpA6FkvTcB2pwvzLN1yMlFIDWVR1/kkCKSCIGUot/EabEuOPmjoWnRF7/4xXjnO9/ZSCxSFDV8s6Y0ohOh5FQM5kDwveY1r2l1Jufoich96UtfalQmwuGxhkbDOO644xo38zv++ONbDqsoFrkjMwa7h4m1ftRRR8Wxxx7bchCB2qYEiN/853/+52gQe/z93/99o4gXMlAqNDIDWQpgABp9yUJoIhC6ha4ASugyzdeApCbDGrInR/q4+eabQxZMk/4vAF5KQUdkANRN5dEXOQAzgCnCyrsld/PsNGRy/d3f/V3L1xrpA/HZdF/StZrt0e1IQHq0G6exyMJCzrpfKo1oEkwCaD/2sY+NdJG35kfmZN9kIKToGD4euQPVfc1k7XQfgQi2kdxl/CB6ZVQ1GUiW973vfU2+2vvOEEqgB9iHUNidbgVo21RN2DlNrzDHWGIpOP1hnzvNp/Q5RwMQlJaDfZWy02mIGI/kbpTIDp2ZO9V4YZ4ZHEaEkSf3JkCuk3w6fU7W3rcIDSMn2tCk1nikkyUc4iZRQsbGWhdxIXMOxWCTUqV3kIgZcvS+yb1Jihm2fCSnrkrF/sIXvtBp2bX2LCeVMz2QWuuON8q+IBL29re/vdWd/DOf+UwrQtdpKIkQnRjJRzNx0pqsd9ENcrc/ECtNnaxOMur0uXR7JA4ZfvrTn26UOm6tA7QjddCX733vexv1xLDe/IlGcbydUT0UA2g/5JBDWrZcyn6TDC+AHXAfqcM6/6d/+qeO0wOE1efLIpHxY603sW0dL9zhC3S79U7uotHqvJuQYe9617ta0dCROpqCRpmP5I6A+PGPf9zKlhqKZnQIQnIHVq11cud/1Q3p9p/73OdGNBF+yimntDISOg1AmNzJmtyRU0Mx+K3kzo8k9ybZVGzqP/7jP7ZKHnpjZEigB9hHxntopZo3qfGSeivNCOM/kMZNA31saeDYasZVylonkkHq8stf/vKB3nbQf99U7iLd5I4FJfdOzzvoE/3zBYF2qU5AK7l3GsDWSKxJQvY0mT+gLo0UWCb3oXAqcpkqVWDwODnmLOreaVgr5j7Shj34ox/9qHZaMhlExjR1+8hHPtKqgxyOQYYf/vCHWwSZ9GsOfachMjcS1zu93amcSN2odHnlNRzAoQLquUw5duRuvuQuFbxumO9QEcad3n/753SM5+g0ONFKDpDPegv0t0Fcp/t0+lyHbOUmCANZLJ1szEiNgjme8Nvf/nanx21FdmV3iDAqyxgK8juflLI2pSZ6MshgASA7jde+9rUj8qhD5CbyoW4g/xGCZP+d73ynkU7tJI/+fA4MkjudpxyH3u406MSRaFPf9KY3dcwi8bx0jOxAOma4SE621Frnj5N7k1IVGQ5+1xvDL4EeYB/+d9CKFmK9Og1ATUqwRkNN2X8bU4ouJlukErMMgKRu4qlrNueAwZS+hulvmgKYuhSLbnWakxQdjPZIGSLqnVKYpOqK+JEfuTftGq+MgNyxw/43uafu/KlbuWht6syP+GiSIkZ23ilD5/rSBjulhWPRR1LdY5PIOtAoTQ/7DjA0dea8J79NneLTqQgcFU1yUlfb1JmfzJt25ydvcncN671TRsZIi7SrV//a175Wu/3Ur4m+c1xFJptkMnB6pTySDUIJmQeg0jc+s86tb4BIpoJ0eo5l0zKSww47rMX0IxqapPEj1WT1jJSh30InEChy9/nPfz7e/e53N4pMejZrfe7cuS1Ci12Q1SHFMkVElC/R5eQsM0UE6KKLLuroXCa59WVOCM0m5URD9U7YMY50p6EHAt2oSZSSqCaDjOlU69w6S52z6Xe63XpXK43EUNpGLuTfhGxU/uDYwj333LN1eoD3VTeAfHXtI2WombWO6wbwQu7WqXrfJinprifzA2mqTw+50/OpOz+dbL2Te+oQzx/ptO/SPEV+yZ3dIPdOvox9SueNlKFevdPRYXw1WRlKML71rW81yjrxfNY6oEn+9Dqfhj+TusTzYdhRvhFd43029ZPoLmVQ3hO5dyKp2K+RdHSwUrFOZKUMGnJHOH/3u99ttGT46HR66hRP51ib/Bm+DLvMJyJ3mSFKVAUSmp6uY07kLrMCcdNpyNzgv/fG8EqgB9iHV/6tu4uk1AESRkkjMSBaE5ZO9b4cCMqVEaLcREpSl0kKEQhKgDx1V00d4hlBv6dwORuc7E7ARIRF8yKKq1PdGQU0UgwdUFLX2INjwZkjhyZHAGlaRu7+5bxxljmO3q13Ru5AY+ryyeilDvFk7v8nuQO1nZqOkKX5pSYldUuZY8/oDvcgD2UfdcM8UwfsTvV0ZAmoyCQgdzJjxFKn+HQqQuoS772Qc+oQzxAaQF7qytpJRqLt0uRFwjqVhEj9GwkOhhroTim0mHRdYtVNdyKyyFpqHwJOJ2VNcugmjD2AYh1b9/QMeVvf3hMnBLCnAzgZakhF5NTw1Q2OivpqsgfE6tIPvdNO0exO73iwPhfNqmuiR+9yQoEQ3ag7dQ/3/EgVUXCEkJRK5JGOxKkpaHJ6XZtupidESBBgzrKXrszmIIk7RVjcj9w54uRe51CLIPW1A/tgyTm/jvr/OptKJoAuPUv+nXStyB4brJlT6vieOsXT8+7FiaaPrHd7nv3wXgEe+smatUeA2k6ONZKYvJ3e8D//8z+1YnLKw0goOSOP97znPbVzZYfI3foTVe802AFypzPIFihxn9Sx3Hr07vgxqWs2ME/XSP/1LhC+5G6vdDquVuSZngSARf7rBhLROhruYY18+ctfrp2Gpp5HHnlkfPWrX+3Y74O/ST/z6WQ5sadAuL1Cr6dTEciSPU3BCf4meZC798JnSs0aO8mI3XE/cq/TSex20x4bne450M8R253s1hvf+MZWVgAdw0bWDfoCUWfvIzLIHLnCx0BCCSzwZ9LJK2RBv9MtfCY+yR133hV/vPSSlm/SiQjj6zt5AjmgZ0xdE0bvVnlWbwyvBHqAfXjl3wK4daDEhqQ8Mb6dattsWgw0hUu52uid2L/S42NObVDgUxSBcUzHNdWJi7JhIDkkdbW+I6Ehmhqeulo5UTHOhahLHUvPYDFQZM9xIHcAv0mjnVyWQAm5c/L8C/hQunWRd0qb3H2nE1nCqRvOyKM1gWWuc5pEAaw5cq8zINjmxPynKCKmuRNDX1q/ZMjokbv/ba2Tu4hN1fB+yB3AqjPE9hJnybsdriHy4gi2qmGOUljJVCOxOrCrgQ0gAZwBEkAf0N0JgJTubX+RjRQ9jogIC8ehDjw5fx2xIDpQlyIvnf+HP/zhcIm8dV8OnX4BVQOIFuni9NV9z+8520AoZ05ExLM1qUMs3Vu9sNII6dec6q9//esdoyx6GGhgJApZd1yR7zXJgujmi+mUGgwE6pEgBVqEqWrIQiMr0Sh6HuADQJqUxOTXBCaBfTpDL4N0rF6dTbcfgXF6SAPGOr0p9Z+TP1yDvUP01e1d5B6S77TTTmuRTFWDz0NfsVf8F/4EwN20EW/7dV3LnuFDsdNAuH41dUQrUpGeQWzVkSVIAmTWcBKySCCp4nUDaOQXAvV1MmRPZWxoyMeXYIO9p/7odsAdACd3/qjTGeirOvuslIncybTumNGRUArSqbGfLAQ6xr4g97rsGuuT3JEj1pysGnq5E4mYv/NZm28Rcw/fNx5fsiT2nbN3PLbokTjv3J93JJ7YX+8cIK/zZZDEMmN6Y/gk0APswyf7luGvO+8bKGDcOQl16YaUMedPJNw1O0X9+vrIrs+IiRBz1uqas3AagB81OnWReYp8uNhpjlddl3tMJXlSnlXgBdsv+iQFWPSJ3JseE9NE/gAeA0ruWG3AsI4EEG1jFDo1MRnOiC8jXJcqx8BzUsm9qhENNh9jbe0gugDrThkgTeSdvsPQcuz8MV7kXjUX4J7cOUF1Ed/hbLpoXhyBqoFlV1MnZbfuCB1gzdFG+lZwQERq+kOOVM1DlN79yVPkCvCrGhx/qYVS/AHeqqH+2vFjwzFE1euOxgHcyF1jrrrmXIC60gSEBrkDmYM51BADhYhWjZ3q0iOlyPvj4NWlj4uyI3SGY5B7XR1yIpxOPfXUWqh/ZNQAACAASURBVILTGkP60AEygpo0lGr6vGRtveuKjuCVYVJHgiDI+AJSzev23HBGfD/60Y/WnhzhBAiRcs9Q5T/QpwA9Eg+RgmhsmtLeRPb0MCIA8NAhHtlYVU5mLn/zN3/T8qXqenggmP/hH/6hye0H/TtNMhoQgXyVOh3Dlmq2KItB5gNCoz8gveoB+VOILzpPWRO5V5Vc+i65+15dlpd1Mlw6BsFa17RV9pmSCX57HeEjcEXufBqkd6eShk4LaJ+XvD7unb9rLJ1ydSxd97LYZsP1Ys7UrWOHGXPih//fWbVHWjbViyLyfMjeGB4J9AD78Mi95eTXHUWUmoVRDlUAHHucWHVpRE3rhvr7yKLOHHYgVvOtqggksCvi7PnqwNRwRHw7nbMOgAPK5l6VUikCTO7kQO5Na6D7K3cAldw5j3WOI4dIelNdQxPpwpjsoY74StGqO28Ya86RrUsxs67InRzIva8MdF/kby4IGe+azKvSy0TeyFMkqK6JHtLL+xnKQR9wfqvqYJETotTWy/vf//7i1DgTGtBxuDnl//Iv/9LVRyCjD33oQy25A9wcmdIA7Dl1nDv1x1VjOCK+nTIaOK7k7tgcWQWlYe2Ru9ReEbRuZwtwHB19BkDqUF+VlipdWNd+66oOtHP6RY2GcnSKerE3Um91wEdQlQYnGhCwn6Vsd0orHejzScFGgNiDiI6qzDSNzug/c68C7chda2qoI76d6qfJk/0y9yp/AJBGHpHDmWee2dVO8XR7IgYQYHVNOJGUMvEQlFVjOPoIIO9lktRlZypPIG8R66pBr8u2QYA26aM0kPUuY1M/Ej4WYq3qxAzkFHskIq+TetUYjuMNO2U0AOvmroF01bpSHobMtZ+RtsijwRjHvODomH//+vG7qzeL+U9tHuvOuSwmbX5ZbD7zkdhto51j4/HT4/Rvf6tS9/HBrHf7tC5b0/MJrvTG0EugB9iHXuatSClAWGV41chhvCi0qhSmBOKkLHXbqchFJGIHgNjUVZFqyojTTRnVRUtF7obKwcBIS6+rGoA6uYoElxwLTDVF5f1IWWpyDMxgLS9OhpRKzD+5V0XzpRlLca57ToaT3IdqMHJ1dWmcZM9VRWCJuksbkxJK7t0mSNrlghQjd3uV3EsOtdRIYACxVvecQNhQpq0CYXVADxgmT0a6NDDpUnGBL1HewYyod1p7HEnROBH0KjJBlg6nThp/XVR1KCO+1joHuIqcohfNWVSuCqyr8SV3xEWTI+06ybIvn1sLH//4x+Md73hHqzyhNDjKSARRs6rIMPtg7Q3Veu8U9UKSSLc17yqQAxQ7oxsBNJRdnJGsiAR2VX1uVb8U5QhI87qsEYRX1X7uyzpo+t1OGQ0AmjkpYykR/EhDKduIZHKvIlKazqcv31MCRe7sJblX+Vr0j8/0AakaQx3xpReQ4FVDOrYodhXBitxRYsOH0fivacPbJvJ9zb5HxoSZG8ZdD94eF/zy3Fi2bMkKP2PvyZ2tJPdStB3wRSDS63WRZ+U3Q+XL8B/JvSowxocxZ7qoyu7KmJVWDtDX9TZpIuf272y7w86xy+NT4tbPvDvW23b7eHLHw+KeyQfGZQ89L9bd6uqYuPVvY7ct1o7XzH1VnH3WWa2sntLg38oOsF+r+qnwf+2J4cqQ7atsVqXv9wD7MLxNEa+qLqRq3dTMidaV0sEYF6BMhFTKTad0YBFAqWAMImCcOpanLvEa5Ui3FE3GJIsaN4nUuyZDLFVf1Lo0OCDuWZdJMFQdzIE9ir+qbl1Gg4ZMaq1K3+FYkLvPOh2dQhbeoyYi5O63/r935v1JXSd3DgzwyViK6DQxmuRFqTLWVWuIAXPduuOYsKmu1e3R6dg8AIbjRO6lOi/kArkzHnVpo+k5rDcGBYsN6JM7hzh1iUceAZ5S/pLcmxAA1rJop71b6guhTs++VZNa12FYKiwSoNtDnSinrWro+moNVnXSlvqsLlYKXJPmULIMOCOcMREU7826p2fIW+opudAVIrNqSfXGqBvepciWfzk5JYcaaOR8IEyqMgkQLgisocgq4QRXAXFrERmIQKhKUfXe6CHvpVNPCs9jPck2sD6VcYhOcRztJTqdjJXr0AXKZTiKdf1FvA/kmCZJZCZdvjSk2gK45F5F5HhnQ9EgyjqWjVFVNkYuskM42yWdqCxEt2f6WLS4EzFlPaYTW1KneGudngE+Und+69WaT6U1nfa8967xoGhnVWQRmYMgrGsyZg1Kt+/28FxIpaqhLtbRXfRIybYhx8ndumzSrJCNFqlnt9iMdBIFebDv1jt7o0SN3O9/4MG48orLY+nSFQFjPl/EJpJNJLoEgukwRI/9UEeAIrrovm4PBGpdxB+xQ/9WkX32LLm7RpM0bPvHu0LCuS6fhh+ZupWzn/S77JylTyyPp353bSz48Tdj6iuOjYlbbxfzJzwaP/nR91cK3ChpkomJVPDbfPiM3OnKKl2IwHIUJj+324O8yL5qyEyy7nIgPmnSWrF06rI4ar/XxN7Pe16LCG1SYkOnW0+ekV5PpyKkk1cE/uh3OGHKBhvFHR//TNz382dPm1pr05mx5l6vitvWfXVc9cjeMXvf38eELX4Re2+8V6z32Nrx5S+fVsxSZMtlACCVq0pG+Dp1JXTdfher6/V7gH2I3zwwXNdQQ2TdJilF6kRZOWdAYydnDrjAgDFsNnUChKljeUonpuiADQ4HkANkcvgoUIqg7sgwDgong4NTxfb6HCFQ12RGOpx7d3NwLqoiF4wPxxcQL5UfkInnABrrIgAMOyPDiaNcyT116EescJQ5dAwd2aXO/AwgAsR/J3eOZ10Nme+bj8yKEgtqHtL0zLUq0kfedY3IButdcHKq6hAZf6QPp6FEPHHM1NVx6OqyGciR3K15zps9ljr0p1MROHQMHZDjfXO6AWdy9x2ZIoxtVTYIedhPInUyX0pHknkv5O55qjIghuKUBGtH9LmKIedYePdVKcscPQZZKmtdyqV3xzmU0ku/AOFAM91FnvQUuXs/IiYcP4AeoSR6j6Th3NSltJO7s+A1SBN1Lzk6InQiLXRjFYGpvlfkoJvD89AjVUNjP/q01GCOPlA/bi3W1b67thpcYFlUj96VxaQXCh1Hf3Gg6RKEFZDD6UPQiR57Z1KOyb3TSQBAlHdH7iWQr9yAbjSXqoEgsJa6OaSeihKWhv0uIu1ZzSUfdDVyio7pdLwR22ztyhoA/O0vOoNu4jyTEd1Lv9AtbK81D9x7F+7hvOm6pnUcc+vDOq/qzwAAI/SrskroVSCm28cwaVJVRcaL4JoDIqWkQ+gnckc81J3BzS8hd2QggO65rXP6hZ631hE25E7G1qN3uuvuc+P2eDTGjn8kxi0aE5f84sK45qorK5chkorc6aISiHVdJSpAfRVhD+jITOn2EN2syqqkf/RfIPfSnnXCBN1v79bpdraU3PkZfBZEq+/zT+h6fiTdTm95R/R7q9Hcc/eLP77l+Ljvgqc77K85fUZs8srXxprP3T8enPx4/PDMFU88OPjgg1unXphPqQEjvYXE+uAHP1gZSNKAVL+Jbg7yrsr0cl9ZXny+vLZ97bXXidn7zon5Mx6MHR97XfzhZ1+MhQsWVE6VrrCO7A+EH5m4N73Op0AGtp+8Ql8gUqatuVnc8O5j4+Gbblzp2lO22ibGveCk+M2DL4vHN42YvMdPYu6sDeJ5Gz03Tv38PxYDVGwLPSfSXjUAevPtjaGTQA+wD52sW3fi7JfYRJ9h1Bj7UuMwoJqzYOPWdZYFXDhojBiwxrA1PVM9icK9KF+KgAPJQNYBJkpdRKeUhg0kcc7NuQq4dTvKznBVgULPTEGmevR8OQB05M4xrkr/94wixRqmpEhifzraApHYVPLwnkWUqxrNeUfmDTiW1gPwyFHGCFddo9tRdmumyhnjSIuOcn5KskqsvvSyqqwIe4XcyYtR4zz3p/Gfd0zuHD0kB7lXAXffJXfAtLQe7Blzr2PiASeGtluDo8zBKQ3OmkY4gHNp/hwOqfsiTlXHR3Ke0znEIrGAaKfj90pzAcJFYd1PFKXu2BiRXqm+HLNSlNS8OY5VXWzpRfqpm6ckIC6qshGAE5E8Ucd8cHqBTnq2LivC9dXs2zsi1wB1k6yc9vul+klyYiOUHaijrBreCXtiPZT2BJJC1LEqY0CEte76A90DyCngpCorLEXOS1kP9rw1RfZ13eKBCiCI3UZKVdXe1j2L/W7fI8nsFfesyhiyHtSiu19p3sgADQLJvKpvBrKN092tgYCnZ6qGOljN+kokCWLNe1GDXRVpFDSwX8heeYIgR5OoZJrP0Ue/Kda85/G4a9mEGLPtBrF8/WtivafWi8vPuSSuuboM3OkIckeElI4eZS9lHAFuVTbVWqRbuzXqout8NnKXll0ihegP2WoI2apmuq5hr3tWPhMysC+N/4552fFx54dOjMW3z1tBBJM22jhmHH58TNxrn/j1VefHLTc/CyzZE9HaqvVgHYvwI0xKg063Fun/bo266Dp/gJ5TNtbeV2fNSZNiy/23iwvH/y62ePjYeOrql8ceO/8ofnbuGStN05ph2+xtckeENdXtfMFj9j8iLj/hsFj+5BOVItjkoEPj6hnvieufnBtT9/te7Lp1xItm7xef/tQni/dCYPFn2ffSQCp0mwTv1vscrdftAfYhfHNAWFVTLQyl6B3HgSPVPrDH2E4R2yqwDqAB/CIrIlyd0k2bPjYjxqFOTbWqnHignbIqRdqx04w0I1j1+25G2esazQF8FH4JWHJuyR2orCJZMNHkzgCKuAxGd1XvMPUocM2qkgOOu/S2lHaZv1MEgghbVVOTbkfZGZ0q4sJaxxaXHE6OtMg6J61Knu0N6Mgo3zNN13f790SkyN07Na+q7ATr2bqwl0tEFqcISVRVkpAaSvZnjp1+A4Qndr70XXPi3JS6jfvv3ktV5gXHgEMIDEhVlL49GMN8Oboikv4tOcvuw6kDfBE9pfRnUWYgpiraKjIpNbobQ1q+SFFpWMsyokQjSlkPmj15b1VgPTmrnGlpt3X1+n15No6wlGYOuayLqowM79m7KQFAc6OfRCir1rvnA766MUTFqwgBexTQBsLyYQ97ds3/qo7HU0phrSMBZSX0h5Ta4wV7x/TZG8ftV98S991yV9x37z2tdHXgif7gDFeRgwl4ldLFgRz14VXnntPt9nO3ym/ogaoTbkQ8RbtL9dOACcArcldl15Aa5I4Ysdb7Q8Iee8jxcev73hDjJ0+OcVvuFWsdeHQsmL1BTJh1c0x5eHL8+L/PjEcfXbzSuqD76QnZDSW7KfuFTPWYKA3lanWR2IHugbrouvVMz5TKKTSJRBbS22zqtOkzYsct58Yvf3f2M1NKDejsJ3u27iiy0nNMnTY9XrbtvnH1O46qfMwN95gbm5zwdzF/vYizvvcscOU/KvewLkrZA+wCwqaqJMF+cqJGN0ZddF2QJZ1q0r6e+XBzXrBTXLT2RbHFomPj4m++Mg7c/tLYf9pZsei5z4/vfvfpZqOi8qmhJLI3z76VVbvO5CkxY+NNYumYpbHeBhvEoocXxAbrTI3777wnHl60KLbcek5sdNVdcedXO5+IsuHuc2Ph8z8av773xTHjBd+JXec8GfvP/Is45aMfWUkPCYg4TUMWTJVuR1Lwd3pjaCTQA+xDI+fWXRiAKiDNSca4l6JewC5wU5VWDpglp7BbDeiAUkCKka7qWg88YuRKpIL5iRxUpc53K8oudQtjWXKKsPicJ8238jpmcxWhFnGtkinnQ+TEe+lGAzrK2j0AJXIvsfqewTwZ6hKpwGn1vqqczW5F2a3jqiPmOEVqEUvAjCNtHYnclaIAZGHODCK5N6k/7+sW55CRu2sja0oZKqm23jxzUkGZibRlkaFSvbv5cFBE9Ad7cOhEKkpDajDZS9/LBzAs9VC0oCRT0UHpoIgtUd66M+r7+0wcRpFydcRVRyVx3GTslCLV/hsAhGAsET1ITVF26bqDPZAIVVkVQCEdVIpCA8PmVZUG710BPhztqvc60GcBaIEUUc+qxlpS6O1HjdvygUQBsoCC0mDb+ntmfN2z0bnWQ+k0D3oiZW2U7JEyCyVSVeQH5987FeEeSAO6lx39ibhy3sKYvPHdMW7SjTFu/ti47aIbY9HCh1r7EOHh2LCqEjgAhuxKulLWCTBb1bwKSVJXrtDfdQNIV2VU2HuiblLD814ASB/rWA1v3m8C2Fvy2KOhoSFCU4+N/jage86s2bHf1G3j+vcf/8wjTt5yy1hzm7kx4UXHxm2zIrbYbFncdv5NcdHvf7eSGGSUkLs1UnovABpwVZVpYT/w2QZ71EXX+THKXRB6+WBr9DVAAPE/52y7Qzxvm+dFXPyzeGyvF8bvLjm3lTlgf9v/VRltnZ7nBS98aUw5/09x97e/WPvVGfvuH+se9FexeJvp8YPvnv7Md+kQBBtdlO9p9hZ4JNtSEIAfhKDqRuZaXXSdzWQv8yj0ls/dNq6beX2sO/8lcc3pr48Dtrs45lx1ctx/0YWx2UkfjeX77xLzbr62JXe4oJ2UW2ONCTHzOc+JDbabHo+v80Tc9eSdcdtjN8eiJxbF7HW3jJsX3BA7TN0lHnz0gXj+8n1j0/Gz4rFTPx73F9Zy6UWsu+128fjBn4tf3v6SmPaib8Ve20yMORNnx6mnfn6lr8suFfmvIqHgAuuqN4ZGAj3APjRybkWEqo7BYSDUZ5UcA8AGgKhKLRbZwKYzgE3Bi8isWt/U/KxpdJIhFYHjAJWMaUpzBh5LNb6UsXlWpS92I8oO1FUZfpE9Mis5dAwuo1GKAAPzfiuK6nmaMtEAuGwJ30/17E2WH0LGOrB+SsZKdgajDBTkhi5lCThftURadCvKDshWgVVHGWFs82cBdP9/9r4Duqqq23qm994bSUgPhN5BUAGRDtJEEQGRIiAIKmJDRVEUBRUBEVABRUTEiqCoH4LSa2gJhBQS0nty05N/zBNuONnZJw14v+997DEcOHLPPXeffXZZc6651uKhrRU+QWDDcedaqi8sRD2m+rh1/suYOyo8Gvu+uLb0IE8GCrhu9QnzxPdIaTw9olr5Krjeb3VsLxl+jo8sjpvzh6QP+yWOOw9lSldp8MnmO+PUGdvJzL711T1XjwENKI4d9xmOXWMSWfL7JGxoNFIOqAU2CKL4jDLwSG8AgQKZf1ljrHt9Nd4bsx7Fa+jR59jIGp+B/ZQZ8PQoMbmcVrk/qgFY6orATov8En9Tn+SSc1yfWLExz8T9g+NO5YUWWUKylSEQJFTERvBCr6NW8jDOH3peb2UjqNOKw+dv8TyS1dBmzgN+ppVBm2CT3iXOpcYqpuhp0yc15He4z4SEtUIXj0747vdWqLDxQb5RHFr3joWZQySMkwxxZv8xdO1anb2exI3sjNfLnDkXRAk9925+Ty+fF8eW/SGIudXEIOeHVjUMgi0qq2RSeD4Dz0sSWOrm5d0CnUf0gp1haxjkRStgvTGNezrHnecxbRiOO1V+A4eMhPH3e5H67cY6t3FoHQHTe6bDoE8PGPjFIutgCvb/VR1vrW4kLum1JSEkEg/0onNPJHEpayQtboeSR8u7zr2WoSsE66JzgQCWUnKCXe7tnl4+GNB5IJLfWYisUyfgMfEpdHnpaRzYv0epwd6YxnlFBQVtGdoxeoA/dtQU5L31gnLfhpqJrS1aLngTheHe+PbrLTWXc7+k4lFGCFF2TuCupW5g+AQJn1vZ6vOuM8abRLeYmLOFX0sUdylD4jUrZO54Be08zqJL0hykHqgu32ZibQ3fZ95BrycfwSdrPqjJR2Xv4AgXdzcYB5kjsuIUnOxcEJV8FWHGQ2BZ5ouyAhtUlJqhpLQcZpYlaBVsDV3yKbSydkfcwikoSk1p9KPbhYShcMAK/JPdAy4DNmBYWBvkXs6QqpWo4uHeo1WmjvsXHUN32u0fgTuA/faPsfILWomoaNASyNKwF5lNGq+UvpFdl3m0KEUhyGnIA0DAz42bIIESHB50POD0yc+46dJApnec3lit+uN8Dh4ONPAJmmQSSv4OPaD0CogAkWBBX+pNNuy32svOZ+K4ywAax5bkg0w+RoDMg0EGtnhY8fk5VvXV3ebzcSz4H8ef8VUEjPTW6kEkx5keEoIZEhz1JTwjWcLf1Up4Rk8N368sCRCBJw0Zrf7eai87DzmtxDwcW469bM4SuLCfMiWJfi3QK1ZfFnYaEQTRJDEIXmhYcFw59vyM642GHb0J9DbIiCX13NTHyFO+KjPeCXQIHmVjywRAJIu0ch/c6nGn8aBViotgjDHSspJQNKIJTmSGMgElDUHKveuL3aXnnrGPJCH4XFznJGz4PvkOuNdwjDiODPshoVNfIzDk2pElE+K9SE7QKGY8vrpxnlBpQuafzys2vn962W9lHVmSJFpkLJ+ZcdKiMUyjnvOc80eWQJRePO7vlKHXJwmmbJvnBw0mqkK4z3Df4xhxr6cq58LFKCTmpeGnrd/hh+92ori4SDr0BICUwnI+yKTW3EdIHPB3RMBGRQljYznussa9tr5Sk009hrnHEExxXYuNeyVj8+n9Etcsz1MCMXqBZecCQRHHT0ZKqH/n7nv6IiQkFKbuFig2KkFhmQ75JXmwMrGCrYUtTKtM4GbkiaPznoVBYSbyXHohzWkg9l/uiJDul2EcuA8uhjnIPZMFMxMjhWAiWSJLeEblCElOhi2IjbJ4Pq9W1niqBLQqQTR1zPV2jNbYcGwJmmSZ4ylxJxATk3IFBofCs5cfzicaIKJkODzdT+CLbdo1z7nWqNbjOcI9h3YR93faQbRNaL9En03ClQVTkaMRq25qZwfH+ydA13skvPoYIvHvK/h97546w0HwR5JdtqdyfZA01iKMSMZpJfVszrjX510nyGU/N2zYUOfWnM+00/Q11h8aMhm5a15H+qF/lGsNjIzg8+TrKO8agu921I2t5jXcv7kXEaDqK1HoyRH+LvdUnnFXDl3BxSfHozQ7q1GPaGJtA9+nl8GgUyC++PyTmu+QEOJ+KiMQOM/5n4ywp11FgupWVr+pz7vOec7zTH2WWTKvztA2+E/uAVjvX4nKRGMMN30OGT9vqjUmFm7uaPnSB7hQlopD//wFdw8veHRugUjD04jXxSKsfAKMkrsicm9ruLgBsTGAh1cV7CyLwOF1dLeAg0sRnp2fh3PbfkXUwsmNGnP1RU7tO+Jy2w8Rb+8I/3478PRdc7FyxfI6oSpU1pKIIzCX4RB9gskmd+DOF5o8AncAe5OHrOlfIDDQiiOm4caDRlaSiAY/k4fI4jVpcBI81mdEk53nBstNlUasPnu26FHn53pQT0Ob1xFoaGWIp9yQBiL7JpNa04jkJi4DbZSz0rsqk5DzeWh86kvONX2ka3+DB5UWSKVxoS95pP4WPSs0jmg4iRJ0GsGUaxOI1JcAh55XjjsNCQJCjqc+Y7b6t/jeCbJpcJEgYMw0x11LKUGDh79PIkHmseRnfM9iwhm+LxpSJCdkOQT0CZFudrz1368vdp3vl3NWBCEE2TQIGJ4gNnpR+GwEOFoJcPiMNOJ4WPP90IvM+SsD2QQyBHYccxojNP4J7tQJY9R90N+X4y6OH+cs5Yh8ZlHCz2ci4Jd5m3j/WxnLTi8Q803I1iwBFgk0khgiwKHsk/NVJsmmRJ0ePCpftCosEJwz9prfJ3imAUsyRtyzmB+AexaNWIIM9oMS+/rKE9FQJukii00kEOF3GRcuesBIMBB8apUko9y1vnJUTVkHHFfuabJGGSoT6xHMio0GNMdJVnqJRARBGsddS/1EIoPPR4DMmFOuGxq5oqqF+8uHH62HjWELlLk6wNg6HpcOnsNz8+ejtLSkTr8IfAgOmFxN5mkn+cC9UxavTyKGMeVapdxIPPO93YrGmHJZHgbemx50kmji51yr9DQScMpiMukx5d6rkEUeXnAJ80DkH7VrXQ8bPhK+HQMRlROFndHfwN3GE1FZ51EFINSuPeLyogDDSkz0egyuOc64+vwM5F2uJo5cunRHccAgXLIci8ikQHQd8zccXM4j7VAiKspKFGkpFQGyM53KEIJRlnxTN55J7C/nvIzIJIFDgHOrShoyLEOLjCUZqCd81H3k/kKygcoF9dlmZ++AsCHtkZ7vAIe4e2F37G3YOBnB5P67sP3rGzXPubfz3ODc4XnK38/OzUdBQSEKywthY2sLMyNzpCUlw9TUGL0Du+HcE2NQXlg3Rl3dL/9Js5DZaSTMu2Uh73AW/vrP73WmJj29DDkQCTmCFM4XhpHIGvdFWe6E5s59jq1sD+bZyH2SYEo8f7gvUdmj9/Y/MHIiLI8cRvTK2rJ5E1s7+C1cjhRXY/z+666aLvJ8ot3AfYj2KRVaChnavgsSExIUGy8oNBx//bkHLf1awjW5DFdek5eB1HpuxrR7TX8eh9OjEHnquHIZ7VaqAih/F+0c2mbc80hoyhoVSTxfbkWjI4t7rMyGIHlJokQkNlt2C8Fp19MITV+Ev7/qimkRHyJnwzxpd2xaBsL/pZU4ePUUTAMtcRgH4VzQB1lH+6EyMwjZ6aXoH3EKboaXYJR0BA5WhSjNzkRRehosfQPhfFdfmHdtjyvLPkCKRE3SmDFw6Tccf9qvglvfWASGxuMenx54ftFzdb5KZwDtZe67ssbzlETanXZ7R+AOYL+946vcncaBVkZYxv1RCieCQ4IEGtgyjylBAMGGlpeKgISbGo0vglYx5tzMzAIwgOLtrawor2PE6zN0E1QT8Mo8vwQ6NL5lJbdoRPCA5WeiAamv5amVfI/GIIHOrWhaOQNozFPyJpP4kEkmAJAlxOFnHDOtZDt8Jxx3bvB8301JlkNZHw0bEjgkA7Qkh/QqkBDhuxeBCsENvfBkpkXwSbBEsKklJSeoIIFws42HHIkBWdw3wTSNANm7pzHGMRfnKskbem1pt0FMiwAAIABJREFUjGrF4dN4ItjXJ99rqI6y+hlp0OoTD3LctWo5ExhyfGWyVa4XvnvZZzR2+FyyUAY+G9fJrTCmeZBSMihrNOho6IolWrjHcH8g0BdVADQ4+Z5oIMmUJvRm0HhnLV0ak/Sc6csITZ0+CwMHDUdMTJQy57y9W+CXXT9g35+/Q1dYoCh4SEYS/HH86SklQJQ1fbIvXis2AhUSFPy+upF85L7DdyIbd5I/Wr/X1PlPo1yr3jGNXIIwMQM5QTy/J5PCU/7ODP/0vKv3DxKJJDn0ElfOdyb+akyIwteffIeiz96FaXAPVIb0QVGwN3xa5uGdZ5Zg7291CTLOc4JGeqtkMe2UxvOZxTJo3EMYo6yVhIjv8FbF4ZNoku1lPPtI5BC0i8QnvbycbzIPMSXOPG/pme/QqRssW9nCtqwfTEsu4rsdG9G+fQfcPfI+/J74O67kX8GVtGSEVTyIyvQQJF30gGGRC1r4ViE93QDGFjr0G3ABPro0JXNzpZBE1rV7TyS3WYy9V+5F+xEH4RsQjahfIuFob6e8e84ZUdpM4oXAm5mbxTnNdc93xvUga/qKDk2d2+L1PNdouMtIJO4XVC7IVABcn5wz6jh87h9tBndGmqElcGwcWqWsRO5XS2BoaooW85ZC19YXP333tULU8r2RrD0deQ55hgXwDPZBFdxRUmyJshJj2FhYw9TEAAaGZTDKvgyTo5eR8G7dRIOy53cZPAEmE+fBPDgdf2zYpSQFVDfOZa5X2f7Dv5E8kKkiaHuRkLwVmcv5vknYyBrHnPaM+O5JclAmz/XGc/PuvgPgnlSEuGVPo1JC1Fl6eiHg5Q9xuiAexw7/o4Begl/uv+fPR6Fzz94ojsuBUV4eqvKyURAfD1RWwsbXB3aBASj1cUHSm+8gbbd2xQmt+Wcf3hq+iz/Avsh9iI46r1xGsphzmmMoNq5f7n2ypLAM/eLecCsaFUHcD2SN755zWk3GOzm7wra/I6LiTZDy9Qt4oN3vsN01DQXxcZrdcWjTDu7zl+LY1VOw93oIn37gg4hWOnR33w/ryPUovhKJvMuXpN8P/+ArVHg4I/WVp5BzLrLZj2w9+UP8VjAT7kPWYky7Dog9frGOuoFedq5jKkdk7Xbly2j2Q/0f/eIdwP4/8GLphZEl8tCXkhJBOQ8zfTkTEfTRM0iwycNPFqvKe9IQJEmgj93m/Ryc3JBanoJyM8DQxBBlleWorKqArZk9KjOKYJBfUWck9EnVuDHJ4pEJrAke6ZERQb1eOiUDZ5TO0mCWMZf83q2Qq1K6I8bK6R+Q7Cj7K4JyPeCVAXmCQqoPtEgSAjqSEfUl5WvMVKMnkv0j6cFxl3nEeSjxkJaNLd89n118NhqyBPOyEAD2i+wogevNNoJmmVqE9yVIIxEhGpx85wTyMnKKhiClqzKShPOaBhWNE8qKtUrtiM9kZGyMivLa5U+4rjjuBIAyiTLvQTKJvyEjc7QIB5IUBAJaShj2n4D5Zhs9PTLjhvOEzDjXquh9p+HDzyh3Exu9v4w7lslBOf/oCaQqgV4zruNnX3gFQV7B8DGzRlHsFRhkp6Aw+gzKi4tg5RsIp0GjUWZsAjNU4qouH4dO/I1VHyxXYr8JRAhSZLHlXA/cyyjtFLOB85mouJARDgRtBD007GSN85R75c027lWy+cL5QFDLOSU2rg96RJlZXt24/ggA+F31fAkLb40P3liNcoMqtO8WorznxsbIevv44OOFy3F+9jjlp2wCAmEZ0Qcm9z4Co7YuOHvgW7z2Qt2kQfqcGFx/YugT92++Lxkw51hQ3i1LwMex0CI7m/IeOI+11BP0/FOJJCo39ICXgFM8U/msVIjQW2Zja4dWQzpCl9kBOFmC1s6nYN+vO4od8vDJyU9gWuUA++QRuLKvJzw9DFCVEQd/5yTYGGfDoFQHAzMzeEW0gEVLIGv7j0hcK69jbBccivLBy/B3xmB49vgLXp6XcO7nE+jcqaMCUmUKEIIYelTFZ9OTEExgJbMJ6GnlZzfbSNxpSe85dnz3InjlHCGoFL3NwZ1aITe8APYX5sI3bg/yNsxCZUm14sPMwRG+i96DZ7+OcHWyxVfbvoadrysqbG1Rnu8Ph8wKGFy7ivLkGFTmXIWlnQUMrR3h3DoIJq19EbvoWaT957dGP67TxFeQN7IfgrxLsGPtl0rmbXXj3sN1KSZO5NonsNVS63CO8l3ebGNmdC1iju+DJf5EdQVJBhKX3L9JDE+8fyKSV75Yb3y5bVAIfJ9/D95dAlCky8eOHd+iR8/7gJgU5OzZgbJrMci5cA6VpaW1Hin47c9g4t+iWk1yqW4YUmOe33P8DJiPG4GvvqiW9dP+4TzXEw7qe/DZ6FyQlTzkdRwTnuc323jGyZI90mlCUkBcUwG9w3DK7iTcI99G6hF7TDCfhmt7fmywGyTwnOa8At/OETj/x1WU//kp0n74DOU6neZ3Te0dELhyC4yqqnBh9oMoLyxo8He0LrD280fB6K9gHOaNDOP1mD9ktrK/ik4XrgOeSzICn7bvrSJjm/0g/wVfvAPYb/NLpjErk/nyZ5l5mRut6N2i54ubrSzREEGPvua02HV+j15ateTYydUDVw2uIb7kKvKu+qM0yxO2Rk6oKrdAeUU53N0N0TkkDcmJsdKRoFFLo40GvEzGTlBP4CQzxEg6yGSaBPncDGSycm7EMglpU19TfUn+yAby8BU9sYyzJCAT1RB6mTzZVBnxwoObigOOu1YcurmFFcwtLGFqZgbqJ/Nys5SsuFqNHjSCWI67zAijZJbzRpS/sx+cIyQrxA2X3yGJI4vb5gEny7zd1HEnKy2TresTxsni0ujF5fwRASUBGRULshrJ9GAQQNOL1lQQUGTrCg8nQ1RkFiM/L6fWI9J4Z5OtPXrCOTfpSRflh5TxETiKoS80PBiHzOeWxX/xe4zLvNnGtS9TIBCgMHyFXip1I0lC9QzBjZizglJognICBLHRAKfXZc3HH2Pp668jPCICy15ZiYrzl5GzaxOyz5yuYzywBq/PW+uB1DRcfnEaGDvnPO4JVAb64KGHhypeY0p9OWdlGWc5P5ggjGtCHENKVunZF7PYcm6QkNCKqeb9ODY300g+cZxkjbJwEg0iCUFjkyQH936xcVy5X6pJBidnF3z6/hZkrVoCI9+2MBl2Px58aGitr3KOjXvoEYx+aAJMje2AknIUF5ei3BQ4e+JvhMdmInnzilrfoVfLesxiFHYOgVHRBUweU/ddE2RxPcjKuXGeM1xC9LJTxsr3RA+3rNErThXRzTQa0bJkcrwnPWI09MU9nPJVSnhFxQCVTZTJ00N5/vwFdBnVB+lZIbA6a4mA2DeR9Nsv8F2wDMY9whCT4Yi/fg5CUZ4V7vH9A+75v6Ps1M8oLyhAQfyN89PjwZnwnT0dMU8/URMrLHteh4i2KBv4FmLQF+VBP8DVJB4xBy5gyuTJivRYJKgYusbnpsdcrDZDDyznowxgcH3R23qzjcm+ZCoi2ipU2JB8E0NuuJ5JcqvJWFc3d0SM6oyr0YHwjCmEwdbH6tTttvJpgeDXVuNw6gV4dfZDcV4Yqk7mwD5rP8pP70HG0SMoL659fga8thZWYSG4smAyChK0vZriOLD0m9uznyKlawUc0yvw03c7a11CMp7zWZZkjuPK/2R7L9e4VqnGprwLknNaij8qNMXQFZ5TBOr0iJIcHzJsDIy+343kb+om4RP74diuA7yeWYb9UX9jcJf7kPrzDsR9vhblkhJ4/K6xlTXCPtoGw8pKRE6vqyZp7HMaW1qh65afsOPQbiTEXlG+RmKQThKRJKKtQnDIdyLLQ0EgrRWm1Nj+8Dru0zKbl+ci9w11+VAHByfY3++CmDhbXN02H4/3+RGFqx9BWUF+o37SdeAYuE6fA8PySiQueQpZp0/W+z2FXHnrY+QdPIL45XXVZ436UQBGZmZw6nEPnEZNQZxxIQ7u36uEeZCMF/MzMLyCtqUsDw5/j2fxrVLHNrb//23X3QHst/mNc+LLYo/oOaIhKisrw82GbLUIYOjl5eEr80SS4aLxSPZLb4BXupoixyQfsWd9UBLbHo7IgUnOJdgZpcG4shCGJqbwaO0O63A7pF5L0BwJSksJKmikiUCFxiIPDYJV0QtP8oAeAdHjSq8fwbEWkXErssVrAUduKBxHkSXk+2AsMr1eItCl15qebhnBQPKBHg6ZIWNpbYNik1JkGeciuTgZuRW5KK0sgZWJNVrbRcAy2UAqHde/CCaSY3857qIMsT75O41svgvRiCBIo3GllSCL8myOw800qhNkqgACJx6u4hjy+ThPZMoFzgMaoTKCQV9+jGvL0soGpSUlKC+/wfxzXpqZW8LazhblZhUwMDKEuaE5jMqMkBFvivRKV+RUJsG/ZSqs882Qk51R89gEpfy+bJzqUwOQoOK8E9cI5zq9ejKjjka4LLFaU94BvT9amcbp6aShLXpzeehSmSAaoXw+kjokH0TihZ/xftt27ETngE7I1BWgMiUbRv/8gLgdtZO/qftPYOK9dBXSPvscqTvWKx8ZGBrCc+gYWA+fgLc/fxenTxxX5IUEKTKmnkCFxpPozWKfOOYkt8Q1wrnDxFGyZGc0BsUxacqY68GhLDkbPVp83/SYiwYf9zwm9xNLcVHWTDm0qC7a9f0+pK96F2m//aB0z3vWq4jxtsaLixYoXqbHps9Cv+5DUB4TByTHoCL5EkqzMlFVWQn71m1gNmg0EhbNRuaJ2rHYvJeVtw+cJi9FXtc2KEo8hCdn1JU7cm4xnlQEj5TLTp48WTnD1I3vgR557vGyhHCMPSXgvJlG5YKsPChJKxqbJA3Uje+DgJxybRHo8jmoPiLACeveFoUOgfCM7wzP0y8icWd1Ei5zZxf4v7ACCPdGfpwlcHI3Mneu1szK7L9oJew7tsXF2Q+hKCW53kf1GTYC0R7P4Fh2KwyY9idSDkYi41qyQlDJAANDJkhQifH5XP8kE8WwF/2PkwS62WRcTF4nUzHxd3lvEVhxXydgFUFr0N2tkGbuAPczQ9Ah4zXEfHEjXl09WHah4fBZ+A7KPNxhdP4yUj57E1lnTknH09DUDG3WfYsyhrM9MabJ08uxbXvYPvcxLCMKse2dz1AkeDcZ6kFCUTwTSITyrJBVR6DtoxWm0NgO8izRIhbpBeWZItpRXJMkxfRk4SN3j8O1d59D/pXLjfpZt159YDvjedjbWOLSopmayft4M2u/lgh871Nk/PY7Ete81qj7ixfZt4qA4wPTYd2pDXb9+R2uJV1VLiEophedZJRoW5II0uftEO/HtSALYWhK5+rLDk9gSrJS7Szx6xiESM9IeEe/gcS/XDDB5FEk//5rU34S7g/PgfOEcTBMykD0omkoTk/T/L5rj7sQtuoTXJg/p0lqEvUNXbr2gOuEuShws8G+/btRWVGJgJAwJJbFYP7YedJ9moQnbQZZyV1W5rhZW6ZJA/ZfePEdwH6bX7pWgjAecGQKRWOSHi+CQFndWi1AQPDGeHIa08xwq2+Wrl44fzYcBReT4Vv+O6yv/YnMk0dReLV6Q2QLffsz3PPEOKSmXlPid7VKcdGA5wFMyZsIaAmA+Syi7Jcbrt4wFo1pHvK8XuaxJqOt5blq7OsiESJLIsbNnL8pgieCY3rSxYQ6NOYoa6MsTWRzSZLQSOS4q41THuAWTra4XBGLA5n7sSvmO+jKCuFo7ggjQxPYm9lh3cBN8LH1gUFxFaLOn9HMzE8FAxlzGeggsCQ5I8a7k9Th+InJzggOeZhrARX+Fp+nuY0Ek1ZsMEkoGtmiHJWsLUGNGI/G+UbvsyxZo3pMPH1aIqPSGlZpacguS1GAIGPJdA6lyCkvwNUEQ5QWWKOqwgDebrboGtICV15/HlkV3ijy6QuTsBCUW0ejpX0pclPTax6dXmkmvJFVQuAYkigQwRjHnO9KlEiTlOB61yrNSGXDzUj4aKTLZO2U4nNcZSQMlT0k2kQCheCeqgUxLpwDwz2J87C9f2fkf7ka5Y7+sBk9FBUnohC7dB4qy2pLJfWD6XrfCHRY9h4OPzIC2WfP1Jpe9Og4TV2ElTvX4XLUBWX90UMihqVwLpD8pOJHBF28lp5etceDP0KQQnAjS57GMZEpV5oy97nnyhIKclwJSsWyfTSiuT74XsTG8BZ6h9VJfRYvWYbQxDwkfvxGzeX0aLVYsAx/F11Dn16DURV5ASVHfkbCD3WTAbWY/xa8+vTCicnDUZKVKX00Sw9POM34AGV3+eHbj97Gzh1f17qOkl+SElQsiI3znx4XMZacz0iZriz8htfLYn6bMu6MN5cpmZickMobsSYy1zL3GZEIIqAiMCYgMDQyRvCwNjBNGQGDXauR/9XiWl2y9vVHwOIPYeLlgoRXn0baP/ulXeb+0+Gzn6BLz8SFBY0rY+f38OP4qWwJrNoloNddKdj72Q8YMniQQqiJCfzocaSaRBYSQNk0/y4D1RwbStOb23jGaJX7417BM1AEsyR0qDBkzXJ9494cMjoCedF3wyPyH+SuvlErXdY3546d4TpvCYyqgPglc5F3KUo+j7190GbN14jfvh3Jm95r0mNauLrBru9oeI58AJ5tffHn77/WIZC5lhnSQTWGupEwJKCWEXe8jt7xm1GU0MupVeaOc4P7jNrm428y3IYEG+P+WeLO/Je/kPTV2iaNiduQh+E6fQYq467h0kszUJpzw65U38i5Szd0+WQbjk5/COmH/m7Sb9gEBMF+yCSYd+yA3sN64YvNm3H27BlkqfYq5kjhfi/aLLQfeRbIQrZodzYmt0d9neX4ieohXk+bj4QgyTR9o8I0YkwXHEi9hNwvPsKYDntg/OUElGQ1Llu+/j7cO7xnv4YWE0cgYdNOXP1Au745wX3wY4/hxOQR9cbIy56R5JTT2CdgFBqALr3a4LPNmxHq1wa6Ug/EZNjDMvAHjAwfiM2bPq+TtJnkG20iGT6hskpmhzRpUty5uN4RuAPYb+MEIbDVyqpIA4IJtsQkVzwUKPsUgQIBDGNnZN51Gvz0homJariRWBXbovi3bbj8ed2SH8aWlmi1ZgeMfCzg6uaKwJb+ijeTYESWNIzeHwJTWdktMmsEV6KxQEOPzynGWPE5KUmXJeOjF5iGXXNbfVn59SX0RBkwjW9KWEVVg1ayNhr8BKF8ZhGEmpqZAz7meHzvIzA3Nke4bXf4lQ0C8rxQUWKOFh6W6B7mjKpj+1Bk7Qy3Xq1ghxJEnpHXL+VYEHiJoLa+uHSCBvZNzBOgz/gtyyZ+s7J4SqxlAJeeQBo8Igijcc2YU64Rcb7xfVAGKIJievA4dygxd3b1QGyxEawOJ8LgygE4PTgeJa6FyCytQEykIzwMfFCZGIuKnHQYGZTBu7UnXAMscOrxsYrh59imHSo6TkRR+EMw8L2Glk4Z0GVWS+T1igt6/kWDiOCbpIhYmo7PybUo5k6gh4+yYpJIsnVFskhLut2YNcC9RCbhp/eH8j0xozfnAD3sohSfZCHXP8dYJO5olJMgKi0wgeGubxG3dWN1SaA5S+A0vB+urVpX4z0X++w14yV49r0HpyYPl0oEHdq0heuTSzDzlVno2KG9EvvNnAoiKKPEnfucKMkjgCOwFLMDc87ReGXuBlnjHKKqpjmNKhICKlmjB4ZkDz3T6kYPL9VKoseRfWCCN7V3PTAoBCufWor4pfOgS7xBsPJ+LAnk/8JK2IcHIvr52cg4ckjaj4i136A4PROXXpInCtJ/iZ5Mm7mrYdWxHA/0HIhyIUkaQ07o/RfDWSgF5vpk38Xn5F6iVaea5xvJw+Y0nj3i7+nvw3dN5YIoHyaYItEkEmacL+wn51Wnob2QpWsLz0sVMP9+Zk1md3Uf7Vu1Vjy+JibGiF40HQVx1dJddeO7CfvwSyR9/SVSv6lWkzTUaKgHv/cDCgPa41rCTpw4eAhmpqaK/J2ARTxT+fz0sIuZ7pk7gHuSLLcJiVgtKWtD/ePn9CDrS4Opryc4Yq4LetdEUp5girG+6j08uFdrpLI6ytHB6JixGHHfaCtz9L/jevd98Jj7Akoux+HyK7Ok8boMswlathaXnpspVZPInpHZ0R17D4brqIeQbl6M2CuX4ezthH7d+yjzXXxOgkCSECLRxxAMAhWZfJp7r6wCR2PGnNdo1bwnCUC1hRgKRBuR3md9crApI6cj7sXpKLgS09ifrLnO49EF8J8xCfEbtyLpk9prXH+R26jH0PKxqTj12CgUJV9r1G9YennD/r7xsO1zL+KLEpXQzDDPVrAuL8ZVw2Ls2La55j503jCcRSSQef5yzLWy9PN6EvvNbXz/+hxQ6nvQzuU5qS6h5+bhCV3PEpgk34/jXw7FLP9nkbFNnqyuof4wPIM12l16d0XMkheR9vvP0q8EvLIadr7eODF5WEO3rPmctdcdhk+FcUQ4LiSdg7uHB3wsPJF97Dh0f30LXZ/XsPGPe9Bj7hr0dfKHmYFRnVKBJD8ZIsszTtZIltKuu9NuzwjcAey3Z1yVu9YHHLnwyUqLMZn0ohOUi0CLXl56hUV5MMEDN2mZJ5IbS7uOXXFo88+IemFanfqY1r5+CFrxJeJMLWHrmgjrInOEePsrEm8aOGKMN4GHPqu9CFL1gEMso0aigZurCCjYZzKkWtniaUw1t7ybFnBkfDc3HNHzQ886ASK96OpGwoMKAUqvxPdE45oGiqxsXKuIdki7ko0zVmdw/qgvkv+5G+cijRFz2UC5fdfulXj7uUM4/+TDMHN0guP9D8GiRx+EtvPG4YN/1ZmRTJhEWTVjuUWZKecFpVmMeVQ3bqr0lIq1qKneoNdRBqz5fUpz+dzNafQ2yqRSfM8EgeIcoLeIn4kkFAkbgkNZ7DrJCz5TTl4Biu1NUbo/D9mrnlRYZs8pzyLi2adw4E8jVJ7dB6fYTUosY87Z6gyqXlOehe/QQTg07r6axDn0rHlNfQGnTR+DT78U+JvnIj+32ptQX814AnBZ4kcmDKOHXQS87De92bJyfDdDUBHUamWZp0SVe4Z4uFKWTBAgymfpNaAChbGo6sb3RONl81c74XYlDVGv3chYXF0S6F24dWmPC89OQ+bJ6tI86tZq5RcozkhHzOvy8ja81mPAUNjOmI9hI+9RAAB/T+wf5wQleaL6huuaBBQ9pvpM9frfp8qG8mxZqUQCaC3w19D857sX5eD67zAEiGMpKo64R/OZRO8ElQFcG2pJ8Z49B5Hx3uu4tkdusNm0DEDQq6tgZGaKc09Ngu66jFTfB+4rrT7aisTN65G2q7bXXPZsfjNegMmYOfhx68vYsL52HWx6bRlmQ1CmbiR+aDRzT1U3EkiMaeaeJWvcT5sbY0pALgsjI3lC+Swl7upG45EeSsa7iqE6emlrTm4e/IaEofz8BITGvIPYtXJwwvu6dOmGgBffQ1bkOVx+dVadBFwOrdsg+M01iF40s46aRDYWTh06wXX8k6gMaoG4xChklGcg6uAZZZ/nuJOkFWNJuUeTUBQVJSSjedbK6nHztwm6GcffnMZQFPEs4X147tN7L+aeIAnJsoZqaTJrVLcf1wM5iW3hGpkA3UcPoqqibrJbWf/cRk5Gmxeex9mVHyF5y8o6l7gOfhBBs+bh2CODUZIpV5Pov0T5vHOPPvCaPBeZVlUoKMiDk5EjbIvykBLqgj6BYVizelUdZwLBMdewSNQycz/3fFkyLqoSSSQ1p3Hv0gL7PH+473GvVDfOASq6SCL4twxEdys/XH65fsJOq2+GxsbwmfsGgsYOR+SCaUg9UNc2afnce7Dxa4HTMxpWb5g5OcP+nhFwHz4G6aaFyhx3KLFEwbGjyP/zG5RkpCPgvU3Y+F3tagecz9yrxbOT+yX3b1nIHMdHzNvS2HdAu44kgayRFKO9ot7b/TsE44xXJJxPvQVEG+GexPH1JvdrqB/M+RL0yipYebrh/NNTkRt9sdZXDE1M0GHj90jauxfJnzesJmFSOfuBE2HX+y5kVGbBzNQKtgVVyPhtDwoO/oyC6zkDbIfOwR7zFQi89wBcHSMxoc+YOuQybRUS0SQSZY1EB23MO+32jMAdwH57xlW5q1bGbHriCLRE4EigzEQlMkBJICBjuGn40OsgbmY0Xnv26oP/XD4Io9xgZH+xBkkf1z44nDt1RdCLy3E4sgWuFJrBLvgU2gWWobVLEJydHJXDSQSIjMtkP8W4dHp7adSJIIuGFA070bvKvxMka2VypzHc3JIo7JusJi1ltTzMREO6PlKBhIhIhhDg6+PdRdl9eOt2SDx0CWVH98BmzEy8/YEv/vObhQLS/a2j4elWDJ/ASgQ7J+GYih31GjwCdhMWoFWvIByRgHYawQQlopSf/SOgF+WIWoQI/85xEI0O/TK4mTh2GpYymTE94vy7aPCR9CCQEplselfpiRY9Zew7DSASA0YulqhIdkXFlteQuOsnpfvMycCSQC2HDcDpOZOQeb2uq/7Zwt7eiJL0NFx5p26dUfcn3kF84FS07nkeVdfSUXZd3q0vTygSEQSPDK0Q+87DiiBaDFPg3wkYZIoSzicSdc1pVOhoZZnnnCBwFIkShiawbq/4d44rwbwIEGgUESAEO4Yg/qUnaiXYYp8pqw58dRUsHe1wetbDtWJ7TWxs0WbddlxdtwJpf+7WfERmhm73/mf4aPd2nDx2WCHyOE9FooykB40Fcf7SiKI3T8xOzuu0ysbRW6ZVM7yhd0HigPHxYuM4Ub0jkl7cj0niiN4HeihJfvJZ9SSop5cXNry8CjEvz9SMk+bvMjeA73Nvo/BSDC69OguoYjXw6kZvSvAbHyHq+SeQJxh86j5btfCF3YAJsOrVE/mmOjjbW9VJ+smQKyob+K+oeqBxy/1H9ALz3OC8liVaJICmd7A5jRJ2WdgNPXE00MUcB9xLmOhPBJTcR2bMmKGoADrf2wvFNm1hfcIJCtLvAAAgAElEQVQQZlsfhK4BT6Frv6Hwm/s84jdtROr22uCCn4XMf14hBcvytRNOMemfwwPTYBgeguAOIciIvobUXFvk2hch6q9vkBB3RVESkTAWKwKQSCQBIXpX+Uyck7JwFo71zWTP5n4hIxuZwJVzWwSOJNz5/tWkgrePL4zuNUPxgXnoGr2wybWjvaYugt+DoxVVSfqRg7Wmj+9Tb8DGzxdn506od1q5dO0Ol4eeREULN7TpEoGLe48hc99/UHDgO5ja2MHw+RXw8qxCQWpGndAKngUknsWEh/w7w1xkewmdJox3bk6rrxoCVSPcI0VbRg0oBw0dBZNvfkDyD1825+eV75ja2cN/0XtwDAvC2XmTkB9b21Pf6fMflfM3ZdvHmr/BMB7HXvfB7cEpMPRzhLerFxKPRCLlhx3IP/IbdEk3nA2hS9chyqIEh/+5QQ5Qgk6Vj0iI8O88y2ShZlS6aXnfGxoMEgBiHgz9d6gaIShV2wPhg9rjUNVxFG36GkNb/wGTzx+od+039Pv8nOECQa98gIrCApx/ekotZRpL8LVa8TmuLFuEzBNHNW9H4G/Xdwwc+t8Pu1APoKAKuWcvIvP7zcg5dbiOA8+xTXv8E7IDec7l6DhwN6Z0G48331xaxxnEPZjEs6xk6q2qjNCYMfpvvOYOYL+Nb51eTJkHlqCRsTCiZ1ELOPJabvxiHDPZdBoqspjA3r3vxr6Ef3DoJGCXMRD3hh1C7IrFSNt/o96x+8jJ8B09BkmbP0J2y/GIsx0N88Dj6BBegLYeISgtLamTMI8MPdlLeqNFbxZBBw8R0Xjj37mpil4uGiP0NsmMOiYV4+HYnMbfksnT6A0gwBbBlBZwpJeaSgcRlFGORkmnGKtMEsKq3AnZ21bjyldb4DXtRbR4fA5i9kbD8NSXqIg7heKMTPjNeREFMVcQ+2HteqEtJ8+Gw6OzYGtTjCsxtWtv8v2z/+K75m+SzBHVAewf/y4SJSSLSArJsrVzrOkJJovanCaTtvM+PDwZ5yoafCRyeBCLag32m7HM4t8pbaaSIDklFQYuvij+4TAS3qrN9Jo6OCDwhZWw9fHEyZnjauLIjCws0HH9t4hb9TrSDtaNtaNH0veNnUi3C4W77THodNVlUugpIggTM9GTPOB6Fdcw1zb/LipHqCSgUSdLZEcliSjnbuz4E3STzJE1EgQk0tSeRZJgNDZE4Mh3ztAVmbeeBsza9Z8h7GoektYvk/6WbVAwAl9+H3nR0bi85IYH3qZlIMLeWI3zioS4biUKYwtLOPbsB7fxU1HiaYMvPt+Ar7/aonhROXdFI5ix0VyTovedMnoSKKLHnCXQSPzIjGaSblrroKHxZzy0CJj4HXqVKbEWy7lpeaPZBwIstZf6medewl2VZoh6+8WGugHXbj3hM/81JG3ZiJQfvqi53vWuexC66A0cGHGPtO6yuasb7O8dBfv7BqLczQI2RUbIs/dHl3BzDBl0f52wJ5KWHFuRkOXfmZBLJEpIIjNJmazEI3MLiGW+GnzQ6xewD7KQLMa0cu2JYIpnFYGjGNOq9lJ3G3cPrsX0QfjlX5H1Se2EdVr9ch8zHf6PPILoxfOQefJGQj+fmS/C1t8P556Vl1HjerAf8ihsenSDpbs9SmJTkf7rLyg8vBtlQ99HfqtgeLiexK4vqutZ0ytOebN4dlJpQA+2+uzUqwm0vIOUxDc3RwnvKau/zvAOhtCJpDY96yRW1Ptd1/t6o9TVDeX/CYP7rjHIjartOWxoDjCjte/8t+DZqwtOTh+PwsQbiXLbf/wNUn75Hsnf3ZBTq+/HuF3HMTNhGRGKKiMDIDEdqd9vRd7xv1CclqpcamJtA7e3tqM4JBd9AjrXmaOMV+ecFtc9bTCSQrL637KcCg09p/5z2h2iNF//GcNR6OkUQRM961xbDOMaM2wyyjd9gKTftInSxvSFEvbQJR+hokiHs/MnoeJ6+T1zF1dEvL8Jl5c+K1WTMGSK+5PrxKdgFuqDgpRsVMQkIPenz5Qs6LJSZK73DoLJzGnY+fWNvYz2I21BUTnCtc2zWcxZwWeiHF6LuGromWnXieFM/A4JS54/6goYrPoTPqo9jl3NQ+KWl/FY23XI/+Tmqo/o+8c5G/DCcqTs3Yur626EV/HvIYvfw4nHx6Ak80ayXP33TO3t4dB7CFwfGA/rMG9kXbyG4shI5O/9qjr7vIrYVY8F53/ZpO/x7ck+uGv+uxjdoi+OHK5bxo3zi6GCMluGihAxBK+h8b7zeeNH4A5gb/xYNflKGhayOBh6qWkYizFoWnJlylS5AYslvAg06bkUvXYEB2Zu1vj13EVEfT8MrYx+hp/pCbjf0xdn5j9Wky008Pl3UZ6ZhriPlylMqsWwhbjs/TRa9jwBH7Nc3Hf3PYo3UwTgBAg8KEQvNo1VepHEWHoCLXoCRdk2Y0zpMZPFU9PgZTK75jStuveMp2c/RAkV+0FiRZQxU73ATUlMjEdlAI0U8fpud/XHwcVvI+H65mpkboGWzyyDa7tWODJphMK6Ghgbo8unO3F55WvIPF6bHbX2b4mwl1fCf1BXHN63r86j68MRxPdBo5/ATewnwy4I8MXQBiYf0oqn5hg1pzQHjTmZAoQPwX7wnaiBIxPzEaQS5KuT+XFd0GMh5n6gJ5LeHCaDcW7hjfQEU+iWz0H64X/qjBOzX4e/uVYxCKNfr85ITU9ixFtrcWbBY3U8aPRUOo2ZiRb9+uBqoTXMKi7UlHujQaAvk6f+IfaHIEFMhkNwQPWM6KXmYc85rZVwi4dcc2K/OOaysltcOwRRoved75dyZbGGNo0iJjDi3FY3rgF6+K6cTUHVV2vqzXzLBHItn1mKpK82IvnHahm2S7ceCHlmCQ6Mqn1fxu3yM/dHn4Jjh3BkXIhFefQFGLZrj8Gj71WkzYy/F5+Na4CeE1GRQEOB80yUQTKhGA1tdZIg/fNxv5WBv8bsOZTBchzFxn6QiBSl2fTYUA0jxq/TyOd7Vxvm27fsQu6yRciOPN2YrsB1wCj4TZmJS68vqPmO9+T5oGz+wkuzat3DxNYWDncNgs9Dk2Hm54GCi7FI/XEnyuLOwGracjh0MMFfP+6uE+9MsMc1LoISJinkuSSWr9u2bZuyNmTZs/lOxOsb9aCAIrGWqaeolmAImrju+J7ohROJNRrzlOYnJSejw6ie0J3rB4fvHkbSnl8a2xW0eGIx/IYMwNHJD9QoIdp8sAWZe75F0s+1kwBaejJu90F4DxsGAztL5J2JQtb3m5B96khNQi+nsU/jL8eXcdcDP+PXDd8p6jaGHJC4Eslhkh4MARDPfnrRSWbJCGt6X8V135iHpY3B8ZU1AhsCKVH5xX5wrqjP9ojBnZGuC0RIrA2qNo5HsQRsNNQfEqtBL78PRm1FzpuoVEMwpTrng82IWrKgjnyYShP74Y/Bq28flBQXI/vYKeTt3qIAF7GeOH/bbe4alA/3xLju92POrJm1iBKqZggOSV6olYckRUng6ePGxWfge+K50NRGsosAUWzcL6hcEPcYKl34PkgqsE0ZMgXRc8ejNKd26dKm9oPX2waHImTxSqT9uRfx65crt2BOh7DF7+HYY6PqeJSdO3WBy/g5cO/ZGVmxicjcfwAF//mm3ozzvKf3wKFwmfkcPt58I+yBDhI+q5j0kDlY6HygKkxsPPdI4jancV+QhZUwFIvni1qt4+TkApO+FihJ6YwTm8dghtsTyP5RW23Q1P649ugF3zkvI27lKzW2jtugMfB5YDyOTX2g1u2MzM3h1ONe+EyaDce2oUg7dQGpv+xCwaFdUrJc1heHOZ9i1T8T0XPmJvT2sINFhXGd0BuGRpE0lyUv5rksU5419bnvXC8fgTuA/TbODIIoscY6f46GOxlz8ZAjsKUxIgJKGtE8sEWPI2Xj/A0RwPXpcw9+vrwXh34PgEmkCbokzkHawQPwe/I1uHXpiGNTR6GiuBidN+xAzKqlyLoed8qYdu+F62DcqgPyC3PRNqgKVRXldYgFGp4EIGJpHbL39OCKxoU+gZQYN80Nl4aFmHiPY0R5X3NjYbRKi9HLRc+tmESMhj5jUtWKAX2iMFktXAI1MY6Sh6h9lTNiX59fS6Zk5uyM0Fc+RPG1BEQtXQgLD0+0fftjnJw3uYYd5d8c+o2F94gRMLexRKajDZwq8hEfX7uWLI0tekdFQoShCPSOimW4SETQuyh6trmp0iMiJt7juJMEIsBpauMGLivTx3EkGFVnCua9GX/Hw1Y0sJkEikoCMfs2k3VxflEWZ93SFbl/6pD8EudxkbSrNNRCXnwH17ZtROJP38KpY2cEzVuMQ48MqbmetUydRjwGt969gLJSFB77CwnBTyC4fSzSom54g0mIUN0izhutBIb03vEwU4dLkIgg+BUVD/rONDcEhB5kmfSPJAMNHJIH6sbDls8jeuHImnPsxWzH9J6SXImwC0b84pl1ZHTi4Lv17A3/J57DBRrPFy/Aa/wM2AQG4+KS+TWXVsftzoJVcBAqsrORtPUz5J3Yr5SxCftwG6a9tQC6wgIlfpfx5+pGTwv3HZFU4ryld0ksb0eSh2BDxvpT8SADNo2Z+yQTZFmE6X1jn0UPMgEMlT2ip5/EFEGAen38uP4HXH1lFgqFZHP19ctzwmz4Dx+GY9PHKxnhWy1bh5w/vkPSnl3K1wxNTZW4XZ8pc2Hs5oqcU2eR/f3G656uQuUa57mfoOo+H3gZG9SJz+ecJhnBf9WNUmmqUPivuhHA8LySlehjzDMBfXOaVmkxAnnuGeKZRGBLxYOYsJN/47uys3eEYdsQWBxsD7efRjbasGXfmbQ1YOHbMLO1xpmnJike2g4fbcG5xU/VJKQjwHS4ZwS8Rj8IMwdbJO3dh/zftlaXJxM8XV73D0Jm/40wCb6IqD9/ROLVBCWfBM930TgmAUWySfRsk1zjvJTV7W5ufer6JMIsW0aiT51zh+ouKmPU8deubh4IG9Ie166Ew+PISRR/NqM5r1/5jpWPL1ov/Qipf/6GuI3vK2Cy1avv4cikkTXeX9oyDoMegXv/fjAyMEDCjz+hYP93yLsUXe/veo6fhdSxIzC0TQC+2Lypzjhy/VLlwfNW3UhMcZ8RVYe8prn1qWmTiIoR3o97IAk+cc3R0899iSRP9553IwiOuDhvfLPHWfwiE/sFzH8NcWveRNo/B+DWdxC8Rk/EiZk38kY4tI6A8+gZcOjQDigqQvzWzcg/8jt012rn2NHqlKm9AwKXb8Jne27E5jPkgsSFGDdN5SlJEpnS6WZK6pEMkZ3TVEHRc091g755t/BDSsdUuKRNxulvu2FKeX9lbG5lcxs8FgETp+L001NReDUBLZ9agsqcNMR9+mHNz5D89nz0KVi29EVhTCxSvt6AnFNHNbP7a/XPYeSTWJO4Ar0m7UGASwK6+XWoQxrRfuD5KyM16BAgSXqn3Z4RuAPYb8+4KnelJEzmPaaHmkBe9DhrAUoanQQ2akkaASI9OSIQokfw7nv7480/PkL+73MQlrsWBRvnKP0xtrJC8PPLUZmXjbgNK9Bu+Tocn/OoInVy7n4XfB+fDwtnJ+SdOYG08DHw9IlFe/9QBcyqGxllGsaiDJIHCcGe6M2gt48ATQTyBOSU9MmS2XBDkJUSauh10Vsrgmz9d+ido4dTLSPUApSUDvP3RQkojXwyrWLd8OCw1kj4+RCinqtbpobGQ6tXV+Lajs9RGB+LgDnP4+jjY0H5tuPdw9Bi9IMwt7NB1PpPYO9ujYLBs9GjrQ2OHKrtPeY4sl+iPJvlNMj4i+WVtAgRgjmqO2Ql/PhsPPib2kgKyJLu0LNA4kDMVUCJP39HHEcewvQUiFJasuyc8+fPX0CxkzNKvjyKjI9vgEBZfwnSA+e+iKi3nodFcAfYhYTi4rIXYOXTAk6DJ8C9z92oLCtBwsYPkXPqiJJ9WzdqC9z7V8I4M6HGi8JxpPdO9OwRDJOEEsuMaYWAUDbJuSmWB2TfeS+OSVMbjTNZ7WV6JOidpgGnblqAkgCG84r/qhuBQtTlePhnViBuaSPlwkMfgu/osTgxZyICnnoN+Qd3I+nX3WDcruuYabAPD0dBfDzSvv4YWadP1SoHF/jsW4h2s8bCBbMVYoprVpzXVIyQwFErSjhnqNZhmJC68d3RYNbaS5groTlJFvm+ZIk+WfaJe7uY6I9KCIIYMXSFoIskij50avLUmRgR0h3Rz9RO/NfgvDAwUAw5Gy8PnH1+Fjqt/RKRL8yB7lqSkijNc9I8WLp7IOXA38je/QVyzp+rc8sWU59F7uBRGN7DH25uteciSTQasmLmZS1ChLHhDBuRZYqn4SvbKxp6Rq4bcT7rv0MFAD2ZIglOQMk+qCXl3JM4z1ldoF3XrqjybAeLQ4ao+qh/o5Og6X+XsuCwxSuQe/wfpP9nN1q9+i4OPTpSAfNOPfvDd+LjMHN0xOXNW5D/z646+R/Uz0zpcfKgnTDonoeiC78hPi5GCWuit1Cs503CjZ5vUdVEJQfJRVmOEiqrSJY0tXFdkbgTG89OSvPFe8oApb29A3yHByPt9EC0OvUl8rbfKFXY1P7wevuwcIQsXIrY9StgUFUFj9GTceqpycoe7th/DDwHDoKxqQli1q9G3okD9da0Vv8+PcOVi1Yi1NcYp48cq3M+aREiJE65F8vsPf6dZ3RTG4kXmS1DgoxzV8zXQAKcxCWVP0EhYWgPF8S9Xm373arGUJuA6fNx6ulpYCJAg/w0xG5ZD9vAIDgPnwLnzh1RkpWN5M0fIusMZe/VZGBTWvj7X+JYfhzOUr59vXGeMe+FOocGiVGSJ1p16kkKkmxuamN5TVkZXZ5FdFSp8zUEBofidOgZuF16HoXHvdA/biByzlUnub2VzXvSPLh1744TTzyE9u9/jrhPlitnJ1VtHg/Pho2/P7LOnEXGdRK2ub8d8Og07MRH8Oh0HI4uBzG601Al4Z+60UHE81QscchraKeJOTea25c736s7AncA+22cFYyPlHkxabDQ0Jd5Pgny1RJmxozTKBKBORlEAn8RUPKwdGzhgc37TyJ933AMSB+P+O9u1EFlzdHwxe9Cd/4oLEM7IX7TKnhPmAVLN1ckbP8CGX/tBj2PZeM2wLlHAoa0v0dJgqdmjtknehdF1l8LyDOhEvslboIEh9xQZd4A3ovGSlMbwbhWIjt97L26tJZWUjyCJ/ZPTHCkBSi79LwXp99fh+i3n5d2mWAl9JlXkXnkAExsHZB54gj8Hn4MMDJG3MfvIPPEcZTrChVPsOnjy9F5aAuc/ru2ZJ5ghKC9sYQIlRycf2JYBg92GraypCFUTzB2v6mN3n3ZIcf3yFAJkfQhIcPQDdGwpDFCYC7mfmCf6OG+lpyCEmtfVG7dioR12tmc9f1369MPvg9PRX78VRRdOIpyc2d4DRiAosxsJH7+fnVMl6o5vfQLytp7wcv8GnQFeconJBYIFhpLiGjF5tPLS+JNVkOawJLrpKmNXgfRmOc96Hmg8SbKNCkTpFEpSi1p+JMxFz0LBJTbd/6INsmFSNr8PipLyxTVTUOtxWMLYB8UAEtXV1xe/TZs7xoK1w7tkXn2LFJ3bJSWzeI9/Sc8hvKRI/HgqCEKIch+isoNAnmy/CLRx3FlqIK6MfyIXmwtEoqkaXNCQKgAkoU7cQy5Pgke1Y3gnmSJON/p4Wff9EmM7u0/APPvHY24lS+hsqxMITM45vyX8t/6Gj28wYveArKuwjq0Ay59uBQe42fAvqUfru76CRm/7VQAvFYLmDAJlY8sQt9uXghs6VsrsRJzHBC4iXlFqAqjDFfMFM/4ahp19OqKjUoZGUnb0Jyix56J4mSNBAnniuj5pKEvhkmQ7KEknh7Kdn26wM6jH5yuZCFr5aTq8a4Z9+r/14r51PfD2q8lWi9+G9kH/4BZy9ZI+XErfCc9CSMra8R//hEyDx9olCyZktayKT9B184BBhm7ce7kKYUYJ+EprleS9SRvxdh8rneGKIhkOvtKpZ6WbLu+sed8VnsV9deShGdIhCiB5fvl+1cb+k7OLmj3UFcUnBuIlpEfIvPPnXXGWT3XlXFvoBFcB85aiMxTp2CQl4r8LB1ajByN8pJSxCuA5mT1+2tCI7llOPst2HgXQpecU4cQoQKJOXLEs44gj2MkUwtSDcGcPE1tJJVkIVQ816nyE/N18G9cnyQGI9p1RC+HFrj69WdASWH1WJeq5/b1vaWsDBXK36s/qypveG/3GPEIPO7tq+xLabu3w6Rle7gzaWV8Aq59uQY5F+qSgU159sBX12BfzmUkqXIU8IyjakmtMuVeTwWCWNVE/1tMEEeA3dTG3xEVObwHiSk6RtQkSmi7NvDs44OKywNhnJ0Gt1MrkX8tEyjJR2VpUT3jfmNfV8a9gWoJBoZGCFiwBOYWxrDxD8DFFUvgOnwiHENDkfrP30j76Ysm12OXjQvn/5eWuxB6fxw8A//C5LvG11FykLwlJpFVP+D8k4WKNfUd3LlePgJ3APttnBmUTYtZxPlzWjHTMmk2pbT6jOTqrtKjRA+1uKGTjS+yrkBCjDtM8ovhnH0KhSnJqCorg0FZCVBeAgt7GwSNGwcbe2vkJ15DwcVI5MddqTEITaytUdl2LEz9S9HKx0fxGIklcWhkikCbfSXoEA1ZGhYEbqJkm89A8C+TpZK9J3hraiOokxkrvA/lnCLxQQk/jU1Rmq2lFqChThWDGPvapUcfJB8+i/SLV2BgUIUqZhkvK1H+rSovgUF5KWw83RA2dgwMqypQkJyGvMjj0KXUltbRaDPvOQpubeyRebU6GY6+8XcJ2kVJPJlmfiaGUvBakhMi6893RO+kWDqQv0MjrDnAkQY44/rFxgOTwFF8J1okDj0R7LOYGJCsLsFVZlYOio1D4VmaBF1GjhLaoRx4NDpKS1DF/zj25Zzr1f86tQpH6KD+KM7Jhy49Dbmnj6I0N7e6q5Slqlh4s84jUOrjDkezPJRfzxRPsEISQZynNPy5LsRQFZI6JOPEjPkEj3x3suRNJIgoSW9q454hI6hoJFLtwnhhdaOBzbhXUZrN98MDWCSoqCpY+eEajOozFHnpWTDizSorgPJyVBQVV4+5Mv7V41099qUwqiqD94AB8O3UFvlJySi8Go/8C5EoL9JJx13/Lqh+yA9hIs3dSiIn7jF6ooSkCQk+elS4t4rvg7GFBI/qPZfEJj0zMsDB36THtjn7DNeJjIylvJ3vg0BR3SjVJngV9w16fjm/9CRO337349knFsGoEijIyVXGmzmyWGjRoKIcVWXlKC8uQhWJE44953hpKVBRPddNLc3QctQoOLk7o+BaKgoun0d+zCVU6g1xYb6r1wA98OgxGAH+dti4YUONgoHjzv2YhqyYjIl7DOegSBpxHXOvFHNR8Pe4lpqTEIprRyZ/5T05nxkzrVYN0aBnNn8RsHN9MpsxwZezpxsi2o+Bp2kxTA2NYWxggNKiYhhxrqEKhqgCroMdAkGOuRL7zLNUtc9YuTggZOwYmFmYoSApGXnnTqEwIa7W3tLQ2mZeB6Mu41HoZI0K3QVkp2YoqhvOT1HNoaVa0yJp+ds805oDHEniiSXkeD/u7Qw5EKXKtA0IbsSY4wcffgRungFIS0hCZWkFDKoMYFhZBUszc2V+VpSWKePOMTes4hlahvJijnexsr8rZ+n1c1UZ//JS2Pv7IGzsKJQXFKIwPQN5p4+gOD29SeOuPgMYwmDUYxCM7IthXGqgkFTqRmKVRLdoy2iRtPwuQwK59ze1MZyEIXxiIwFOhY9I4hBEcV/SkziDho1SCMzWrSKQkZqJrIxsGFYCBpXV425tYYmSomJlL+f+wnE3qKxQQHtFUVE1wL8+7tXz/caZ6t6jOwLu7gldSjp0KSnIO3cSZfl5tce9nr2m5pnU11z/f8fe9yOuNBf5edfPaEBxEFGVI+65VI1oKSpp11ER2dTG0AZZtRuqWrhfq1VSDP+Y99R8XLgYjYzMTFhZ2cDU1AymZqbo3Kkbzp0+i9KiMhjSzOC4VwG2VlbQ5RXAoKoSRtf3GAWwl5ahvIRnavWeTvWfssfQjiwvhbGJAfyGDYN7oB8Kr6WgMPYS8i5dVGwgtQ0j2jQyO6fWNap3wAz0503GwdZPBwf3OHT0a1uHxKfdTtAuqiP5O/qk1E0d8zvXN24E7gD2xo1Ts67SAuzMms2DQJQk3yrA7ubuhdP/ZMA48SR0qWmoLCpEZZGu+l9dPmy93dBq2jSYG1SitKgUBRfP3AHsu6pjPfWNxg2NIrFkiBZgJyg9lxuD9NgQ+GRHIv/iOWW8K5SxL0RVUQHcO7ZD0IihMDY2QnFOHvLOyAG7Wc9RcL8D2Gu9Dz1gV4eRmJtbotAkAs5xR6DLyFSMDIZ3VM/1guvzPh8thw5BYL8+KC3UoSg9ozZgF1a2DLBrEUv1AXaSJKJx8T8N2Dl/xWRrBOxU96hrfnMImBSQHhvxECZg1yeZ3PTOFnh5OKFMV6wY02UFhagsLlJAeCUNPGWeF6JCVwiDMh3Cpj0Oj4AWKC0uhS4xAXnnVYBdY0dlwkA9YKfRz31SVDbQy0pFwP8mwM4QDwIbMSyIc0Qsl0blCXOTvLlpBfo69YaFuTEqSwjIy1FZUoKyQo57MSp0OlQW61Cp/Muxz4e5rRXCp0+HjZUpyksq6gL2ek4yPWAP9LfH+vWf1MqNwrABgmXRq/dvAeyc15Rtq8lJLcBOUpvedX2+BhtbO7TuNhx+fsFwKslCfkZ2LcBeVVKK8uJilHOclT2G/3G89ftMAZxCAxEyfhzMjAxRUqCrBuxX45tkN8gAO0k8Kr3EEIJ/A2AnUUzFjj7Jmf5htQA7c3hwbm/89FNE9GiPAIc2sDEzg3EVFMBOjy2BukKUELBzrutu7C/Ve/t1W0ZXgKriAnjf3QvBgweiqrwCuqzsasCeUTdzdkBzhEwAACAASURBVGNfxA3AXgTjUsM6gF0rX8y/AbBTwcVwDzFrOnOckPjUFVWhdXAbFOfrFOBoZW6J0qIigGFBBOwc+0ruMaUo0+muz3Pu6/z/6r1db0MGPTQefl07oLRAB10yCaqTtUqPNXa8ZdfJALtWmNn/b8DO/jOZI89NkrI+LfzA/cTJxRWDh4zA3wePw9rIGFWl5SrAbg1dXh4MqnAdsFcqRCzHnSrLcuUs1dsy18e8qABGqECr2U/A0ckOFWWVNwD79az9NzPm+u/qAbudvw72bncA+60Y01t5jzuA/VaOpnCv+iTx9HLJYl9vhSQ+KDgcf/6TiKo1zyHp19pZb1nOp+2y1cj5ey8M3AOQsXs7vB+5Lon/egsy9u+BXVAISsdthEvPeAxu998riW9KjDWNqpTKbPx4OBl+551gvHlcLcPBpUt3BMx8Gror0ci6GIWynIw7kvhmSOLV6gJrW3vkGLuhcO9V5Lw9DJBIhv0fmgSbdt1hYmGBpO2fwtg7rFGSeG/zayi8Lolvao4ASk/pSRVrt/9PSuIJDimnFb1f9UnitWKs6Vmgwbfn6z8Q9+JM5EVHNbhrRrzxIQoSrsKtW1dcXvUWbHsPa6QkfirKR45QJPFUD7G/oiSekl/KP/+3SeIpERbL/YmSeA4sgRCl3e9/vR4uOV2A9dORfe5MoyTxbd/9BNl//wbbDr0Qv/H9JkriH0XlhBfQr4c3/H29aiVZJKlA1YvosdKSxNNLxdAbSqPFdjsk8YynZLboxkjixRhrGtled/fG6W8HYkDBDGTs3VEThtAYSTzjd8NfXIa8k3+jqMgIhecOwvfRJ2FkbYX4z1c3TRI/+Wfo2tvDIOMXnDt5usmSeK53ynlJwIntVkviqU6jsqExknj2hR5PqgJJroydOwX5x/1htO1xJUFfHcl2I6Ts3vcPhucDj6AsLxepe3aiytL5Fkjiu8Nw9puw8S6ALjm3jiSe4IzkiVjS6t8giSeo5foUw3G4BrkuPF2CkLt2OXKjL9Sa35TDU92ghN00QhIfPPdFwMJaCbWJ3fghLNv0uu2SeCYU5f6pPlP/DZJ4zmuq2AjWL1yMQtDI1sjMN0T894/j8iUDhIZXYkTZNGQcPXw9vEkeltAYSXy7FeuReewIPO/ti+gVr8PljiS+QTvk/9oFdwD7bXyj/7+SzvXvPwDf7j8PbP8WiR+/WvOExlbWaP/+Jlz7Yy8yf92Otu+sw4knmXSuCM7de8J36gKYOzsiL/IEMsLHwrNFHNr5hfyfSjpH6a9a3l9f0jkao2KdZq2kc4yD9fD3xYq/tsI3eiw890+vqX/KpHMRb36Eyx8shZGZKZzvH4uzi2ZKk845uFkjf8j/raRzVJQwD4K6NTfpnFgK0TE0CLG/GMDwi0nVmZdVzbXnXfB/fAHOL3kaHoPHoTA9E0lb12onnXN1R+GozfC4r6rRSedIvIme3n970jmGp4jSYsb70fsrSzpHIM98FevXfAXD9cuRefxG3WnZ9uk/ZS7s23fC2Rdmoe2ytYhbvxIZx4/APrwVXEZPh0OrcBQkxCNtm0bSOXdrLJyvnXSOckWut/9tSedoSIt5PxhGQkJElN5Sdrv2m8/hgH6w/mQqsoW5XWfcDQzQdvkG5MUnIOHjt9B53VacWTT7etK57vCcNBcW7h5IrSfpnO/UZ5E9ZBSGd/ODu3ttKSlJK3ruxModlOESsInl95j8jGEv/FdstyPpHMM5KH8Xw7EaSjrHvoW2ioB/746I2dcfwckrkLZuYaOtAiada/feBsRu2YiS+CgEzV+Mo9MfvGVJ5+i5ZV4RAhZ1qy/pHMGkSAzxu7c66RxVF1999VWjks7x9zl3OF+ohBg8ZQzKEzvAYutMXPujLrnQ0AtQks4tehPRyxfDPjgUBj7huLLiZUnSuTU1FSgauic/1yedC2lhjDNH6yadY9+ZzEwMB/w3JJ2TZTHnMzEUkGEopuZOKFj9HhJ//qExQyG9xnvoSHiNmogzzz2BoPmvIHXP90j9fVd10rkRU+Dc6eaTzoW9vxXH82Jx9kztpHPcZ9S5lP4NSec4SHpC5O+//4FdX1dE6qKQvno7Tp80ROculZjlMR3p369v9pjziyGL3oKhuRUuvjYPXTZ8g4tLFyklDGuSzrX0R9bpSGR8/2mdvDxN+WEmnfsWq+HV6RgcXQ5hVKchd5LONWUAb/O1dwD7bRzg/39l3frgZOJF5P4nDznrnkVe1AXlKcNeWwUjSytceHGmEvfSY+suXFh6o94vkxY53jUAPhOmwjikHVztCv6ry7qxTvj27dtrzRDGLGmVdRtw/2CsO7QR6Wd6w/P0fug2ToeZkzM6rtmKq3v24OqG5bD08ETEsrU49dQUoazbOHgPH66UdctysoZjRcFtLetGqb86c7L+IW91WTetpIlNLetGrxjDEURpqFd4EM6ecYPVzleQvP2GUcuybuGvvY8rHy1D6l+/w633PfAYPQWnnnyk5n3WLeu273pZt7hGl3VjbKk4jv+Gsm7Mk8GY3saWdWNZLJIoWmXdGB/+4dpPYf/LH0j5frPmrunR5174TJ2PqDeeRe7F8wie/wqK8gpxdf2NesI1Zd1CglCZlY1EVVm38FXb8Pib1WXdqKYQkwb9by3rRk8kQxFkZd0YcyrGejOZ6PEL59AiZDgMNq9E8tZV9Z5U/rNfhFO79ohcOA0lmZno+ulOxH7ybk2Jodpl3VyQc+ocsr/bWCuTM8u64T4feBhByZuibtwLmZma/6pbfWXdmE+EMc5iux1l3ej5JEEuVpfQKutGgooeO/bR0soa7cZ0w74vR+F+p9+R/0HtygpaA89M8BHvbkR+XAIuL3tWKevWce1WnH1xTk15OH1ZN+/RD8K0obJuAwYjo/8GmIZcQNSfPyPxarxSQUBW81irrBvXPGN6RQKIz3A7yrqRSODYq0vLysq68fe5drmPUKLddUgfFOTdD79v5yL9z9pkbkMmGcu6tf/gU1z+bCNSvt8C+9Bq8H5s2lhJWbf+Sg6Ixpd1ewKpY0diSEQAvtwiL+vGigRiwtZ/Q1k3kmrM+yHmDqDShWqrmLhrqNy8HWm/NK+kIsu6BT69BJffW4zM40fhO3YizILbI/r1G6ScQ6sIOI8Ry7rtrTfZpfp9y8q6MQcSFQxi6MW/oawb+64PRWBW/9AR7RFteBEVu97F1o12CAquwrw2r0L3zQ3HWUPzW/zce+xkeA55AOdemKWUdWuzfAPS/vMbUn76quZSpazbpKdg6X/zZd1WX12B3pP3oOWdsm5NfVW3/fo7gP02DjFlsbJMwoxlZYI20VuoVa+cmy0NC0pB1Y3git4mevnUjXFifv6BOHQxF/kbNyD5szfg/ehT8LxvAC68NBv5Vy4rl7dduQlpB/9G8rbapZy8Bw1Dcf8XYB/hBw/bJCTEVV+vb/qYVrHMFZOhMC5fTIpGTzWzp4pl7AgqaFjISqEweQ7j9JrTKAdUe9/092DWYvZDTM6mlQSQMXf0Voj3orSQnjExBwE9CPHF13AwJg1mZ3vD98Ji2HfsAUMzM1x4fhrK8vNhYGyMntt+xYWlC5VDT92s/VvCftBEuPfvD0NnI6ReS6j1OcuKECCKyeJoXJMcEvvJnAiUFaurDvCG9LQwv4I6W756jJqTNZuJ1MQSQ/p7sh98J2plA5OH6ZMAqsuccV0wwYwIYCh/o3dGLItm5+CEpBI34GgySrc8oSTYYhx0hzVbEb/7VyR8VF2OyKoFa/euQeQzU6FLrp3ozyGiLZzGzITX3b2QUmoPk/LzyM/LUb7HZH4sgycmdmN/SNyIHlPGEBIki0kMCTw5p2VZf/WHPr0gTW0cc9G7yXtw7VBNwnhddeMaYBbXzp071/o7VQEE63xWdeMaYJkWrvkpLDkW1gPRTz+Kqqq6GcvJ9ge/uBxX1r2PtF+/V25DosR74hwcn1ob6PH9u3TrCfdHn4Jjh3BkXIxFefR5GLXvgEGj7lUShdH4FAEi1wANfvZX3VjzmfNMTDBGuSKT74mx/Pwu16uYBK6x489as7JsuOwHM3izrJ668Xr2Y86c2mWWCLBIaoklmpiULTAoGHl2nnA6moGUNx/S7JrrgFFoMfFxxLy1ENmR1Ykfg555A2UlFYj74OVa3zOxtYPjXYPgPX4SzPw9UHAxFqk/7kRZXCSsp70D+w6m2PfDrjqx6vRgM5kf+6tulDfzXFq5cmWtv9PzyuRMBDJi4zsRr2/suJNYEs8dfpcSfIaYieuO4065qlhZg+PLUAt9Uq/eD96HmKjusI3JhetPo1CUmtJglwIXLoNjRAQiF0ypub77tj248vFKpP5ROxTN0tMb9v0fhPfwYTC0s0LumYvI+n4Tsk8dqamV7DRuAf5yWIy7HvgZv274TslIzZJgTPom5j4gEUHlixgWwtwULPMoS+RKYC2u+wYfElBsDI6vrDGnAfshltNjPzhXxLOd13It+oeGwqXlCFjt24PUVU82phvKNSRAIt77FLmx8bi8ZK4SJmLq4IgOq7/EhcXzFK+jupG4tR/+GLz69kFJcTGyj51C3u4t1RnkmdxLaG5z16BsuCce7DYAT86ZVeuspRqP5BrVDXw3+kbFEhPEaWXgp7KG50JTG8knMbEc78Gzh6XFxD2GuVb4PsQwKNqDLG24bv2naF9hh+hXZze1K0qt+zbvrkfMli1I3rZW+b59q9YIXvgW/h975wFdVZW98S+990JIIQRCR3oRUIoijhQFFXtvqGN37Dp2HZ0Zy9jL2NuMvSsqIoIoCCi9hhZaQkhI7/mv32Uuvndz7ksICbrWn7PWLMa8W87Z95x99v72t/dZ9OdTLdvGsyUOHKKk0y5XyvBB2rVxqwpmfa/Sme+oaLl3ET9nR9KPmajES27Us68+uvcnjgpDr7MWPBsFAAEjSIVxNvY90qla0tALpjPGSXukH4BOno29kWKOfKveEwfp3bK31G3p63r7yR4KC5MevvRDlfxzcku6ouThh6njFbdr/cO3K/+nPcf8Zpx8viL7DdWKmy7yeiYFixOGH6GMcy5TQt/u2vHLCu34/DOV/vjZXgCxqU7EXf6iHp9zlg7786s6PCVaYXWBjQpOuoGIPJt92Zki09Q7D/7efAkcdNibL6t9vpKIivN4Kh6CQwQ66DQiUDIU8cH58mxcS/TLeZQI15JnbXICoEdtLy7S4jkFSsqZrchBw5Xzj9uU9/3MvY9OP/0SxQ89TIuvOH3v36KyOqnq6L/p2dkn6IQLc5Q88Htl7k5RRVmpdY1dBRJjzJOeZC9WqHieaLv9d1NEF8MWR46j2BpEMd46BQUFiJMzUYDOI4Sa+wF4l8lgobIlRqezAjnAB1FSJ7jCUWI4x86/s4EQRXAaURwRd+TYo/Tmgve0bEWEBihLGbE7terWP2v3/1gOjKHvY2+oYNFC5b7QeKPhdxyZ1Gm3qKJTjKp27DmGie9P/53fmndy/J3zfGf6x9+dx3SRd8gmZ1P9nXLHYaNqdUsaTrYJBIAST+Ew5zGGboV66DeGtLP6Os4mYIvz6Jy0Xl30w4/RSlr4hXa/cZt63v+M/AICtPyGC1S1a5c1lICwMA3/z3Stuv9GC6QyteRhI9TujKtU17OL6kpyVVlZblVoxmnnjHLPxhnTrFfnGmZt83cnJRWjifVqr2FPuQcGBDRyTJsrf3QFBoOpsa6gDXoCJUQrAJqcx5/xzYkaOf/Oc5E535B18Pn7M1X49IPa8qV3kcboLl3V+6EXtHXm99rwz9/ObY3qnK3udz+hFTdfbDQaAsPCFT9irNLOuUTvz/taW7fk6v13/2OBP4AhznxMjCLWpPPseYwzACtnUTSoqtBXPSPb/gGBqq+rtaLIzpSX5sodA91UsRyHiKgj4IxnA+TDgWHteTb6QKTXyYQATPjss8/1/JevKz5/hFJ+fkwb3vauPG/phWEjlHXT37Thuae14+PX9z663agj1OHCv2jBeVOsSv7ORi2T2CNOUOxRx6g2JUxRFQEqjs3S0J6hGn/M0Y1OfAAoRLbOY0TRtYzLqZfQjTgwnrm+ttxxNqk435JGH0wgC3LMyMhoVK0ewIf16zz+DNASHWn/vcvAngpKHaXSRQM0dMOF2vi+N7PK2deUqdOUcdLJyrn/ehUs/C1FJPvGB9XgF6B1919rHF5Up2zFTjxb0cMPVWhKrKrX71D+9M9V9tOXqpn0iEp6dVH7pEX67I09R7ECeCBHJ4uHUwig4rLG7Qbg99JLL1kOpd3qGyT//x1FTWSY+gEtaTzTdLoFABSBByfzCWAFxoMz15vvzt/X5WxQ+2F/UsqqUJX+Y5LqKn8bh1v/AkJC1PnmhxSd3UkrbpimMo9jv4a/843Wvfisdnxqjh7H9+2v+KmXKLxPDzUgkNw87fjwTRUvmKXKvD2nsXA6Tsrf3lFFtyKNzh4qxuDZAEFhKTjXPTYY4KInmGXLnW/iLALXXPmjb2+55Rbj5Zx6wVpw2jnoHmRMgMezcfwZgM2UwRO08qrTVfs/e645fQlPS1efR15S0Zr1WnPnZXtZDFY6yJNvatWdV6tw6eJGj2IPTj50hJLPvkoh3TqodHuR6tZt1O5PoG3/YuxD8hETFHTxBXr/7d+APoBx9lXG4NkAqlnbnvK15d6vX78WnUTB89FdztMw+DugO/vP+eef79UP+oYOh23UZVgvfR76iYaUPKDnbjrCKqtz49k/KePrE1W+Jbc54t57DXO294PPaO0bb2nryw95/b3z9fdr8RVn7GVpej44ODZWcSMnKfn4UxTZI127Vm5V5ZIlKvn6rT10earCGxoMoZpzPtR7i0Zp5DUP6YQOR2jeT3MbrW3mF0X2PNe2LXcAaxgHB1vbSOCgw942crWeSiTASdHj7zhNGGjOvF6MaQw6599BZ3FiTBFMImAYME5niOOMeMf8tUvlvzteG195QVueucdrtORrpV9zjz674walrl5koXllAy7XOytPVGaXXdrZ7m+acvgARReGqLa2Tr+uylW9f4giI8K1aXOuEmIi1K97uvz9/WSfC//aW+9aDndYaJBmL1yn0UN76ITJkyyHcvXGPKUmx2pb/m717Z6p3n0G6McfvteqDTuUmRqvhcs3Kyw0WH26pmnSxPHWObMtacjcFIXBaQIEcAIibkAJThn5g84jdfge9lF7zmP7MBp79emv6StmKH5XmjY/eKvyvv7YaxipZ12l+OGH6ZPb/qKO+Ru8fqv1D9TuyVeoz0WXKToqR6WbCyy5h4THqKamWnn5O73kTv+oJPzplzNUWVWj5eu26dC+WerZLdvKIX3xjff3yrxrZrLCo2LVu0c3vfTmB8rukGQdk/Xjr+v3yn3K5GOtTbAljeiW6TgUnBf+7owGuQElME1w/J15gnwPaPEzZszw6l5YeIQC0xJVsDZNqQWzFZDcXmv+enkjI6Lf029rx+Jlmvv2S0a5lx17gbbF/E2r1ofr8usLtGrVRwoKjtDOvB0qLi3zkjuO2YrV6y3wwJ7ryP3w4UMtIOvDL77zkntaRpZV7fujL2Y1kvuw/l00+bhjWyJy6/3OKLr9IDZUolnO+U7EEePC+XfkCvXQqX8wDJnzREbHjjtGlx1xknLuuHSvkU1l2e6AJJKWX3+BV3QyKCpaQ/87XcsevFOLlq7wkjtzPTchXaNGDFTMWZfpTyccoZh22UpJ66jzzj1Hj/7rMZWVFGj39rWyWRjMifMuvNQyqupqq5SYcYgKtizXzG+mW0yAHxeuVEXJToVGJai0IFeffD5df3/gfi1alqPSXVsEMhif3kN1NVU69ugReunFF1okd/KlTZEE1g6V38nv9WzoRwomAXh6NhglAFPMbaeRzXrasHWbqmJ7KP77Jcp7dJrXvTBDutzzhHbO+1nr77t6r4y4iMhi5u2P6Ku/3al2i/dEZuxmyx3dA/MkatzpWpuarnV5W5SUEKs33nxLVRXFe+WOocoxVu3SOqqmutpL7pVlxUpISFR9YJSX3Ldu36kunTsqIDyhkdwfvPsGXXB+42J0zfkQTz75ZKOjB7kPp4nol5OpgC7BOXdG52C5EYm89to9jnWXbj0UNjBF8189XxPS31Pps+dalfhNLfnIScq+8Q7lPPuMtnuk4XBt8thJan/WxfrklmuVsdk72usp99ievRUz+UL9Ghik+tAg1RRXqKg8UOEpEQrctVybN+ZYoA+g9s1/vduqnA61e2d5oAb17qBLp11gOQm7KwMshzwqpE7pHTpp2oXn6crrb1dkcJ3V9V0VQQrwa1BMaK2eevKJFh0dyXPQF04bg7/DeiLCzHrwbAAl6AzncXA4X+grnK9JF52igl+6KeK1M7Xz53lNfv60C25S6rETteHevyj/p7le12ff+rDqA0M044kHjbodPcN8Txo6TAmnXaH5HEEWGqLizXkq2bBB4RuXqF9gtQJvekhp7etVlr9L/375DeGIFFcGKD68VpMn7Snq9uhTLyssqF4Vtf6KCq7TyDFj1TEjTY8/91ojuWdnxFlyb0mDncDxg6YGGwpQeO5cbzkAMmCvOHU7wAqBio7te2rX039X7mfNy2MPjolV9l//pdCUdlpz66UqWe/N8jzs/Zla/vrrWvjdV65yzy7fqdjDxmnzwDHKV63iY2K1a9M2Ba9frY6Lv1Fl7ua9Q0y45VGtD6vWskXzrbmO3K+75kotWvSLPpn+vZfczz7vQq1dtUKfz5jbSO4TjxquK6/YdyYBHQGgNtXe4DdSaQBRnAVlAUoAcqJj4/Vr98VKKB6n2f+8XJs3+WncESW6MGGaEXB1mxdRnbuo14PPqqqoSEuuPFO1pXsCZjT2275PvqVld1+rxZvyjHsqc52aJVFHTlVOx24qDqhTUEOgdZxw6NrFylj8nWp3Fex95u7wGMV266ElnZ7X+obvNebEcv157Fm67/77tHLdNi+533HXfXrqyce0ZmNeI7lff8X5OuqoI1sy3Q/e0wwJHHTYmyGkll4CRc/p7NnPgr4JZdUTIec3KCVE7Zy0Z5xvaGdOOjcOG8ae6T1EZfsPGqq5r3yqVbdcpOrCPdFGu1EMrdeTb+m7F59RZmSaNoSO1wc/D1VCSoW6T3lLDaXbNL7rEJWW7FZ5ZbW25RfrmsvOt446w8hkwSbFR2plzg5FxcRZj2WTqaistpzGHQUlioiM1shh/bV+7Urr+viYCFVV12rIgF7K2bpbqirSxq0FSk6IUu72InXtmKzl67br1KnHqVe3rBaJHlYD7AZnI28a5oEJECEC5oxSY3RjMEGRcn4nnE2cdWdaA+/km3Tu2luzHn5eq29vvGkQFUv/y7367LbrlbLc21BJnnK21vaboH7HRCmswF95+fkqqajXuacfb0W3oOJ5yj05JdUy9InAlJRWqGN6ogWuHPun0QoLCdCnX83eK/PU5BiVVAepT/cOmv7tXKW1i1VQYIBWb8jzkPtk9ermTaNu7kfA4XNuZNzrBpQAbvCbM0oNtY80EGc0j2fBACDysHnzb5s8f49PTFFtbJTaNcRqyV9v1o5PG0cj086/TgmHj9THN12tzG3eaR5xw0dqTsfL9NKbU5WS0qAzbvtSy0vf0uUTzld1TokqK8osMGRnUZnq6uqtyPv6nBztLinbO9eZ92eeMlnbt2zU3AXLveReHxyn+HA/zf91ZSO5b9pRquMmHKUeXTKbK+q913F+N06fqUFLRVZO+jEUQlgwzig1zj1yP+uss7wex3fiOVACSXd58O+Pq+u2Aq156HZBse54wz8U27uHcu64UgWLGp8b3P+595S3ao3mvPxUI+OioPdgHX7h1Xro3Wc0e85shUUl6clH7rPeR/8i49NVVV6oqMRMdcjMshyEJ594QgFBISrYskKhEbGKiIzVD999oR5dOykoIknVlcUKCAhSRUmBPvnqB5124gTVB0SooiRfVOONTEhXScFmnX7e5br5+qtaJPfp06fr6KOPNsodwBBZOo1pdDRjclbwJsr7ww8/CGfUs0H/t6rkL/5e4bsHK/LDe7T1s/esS6I6dVb3+56xqjuvuvkilXkYvfxuUYdf+EDTn3xS8dO914Kn48i1CROmKHfoWRo0OU6v3PeM3nrrTS+5H4q+SkvX+++/5yX3Pn0H6NorLtLxx02wrrfl3q93V5123uW68uKzFB6T0kju9/z9CU2Z9KcWyZ3IMuk8zgbTCDaGkyZMhBNnkmi0J9OE+1kXNqWf/x5x0pHakjtE+bNiNGb7WUYmTtKQQ9Xjvie1be58rbv78ka06rjefZR552P66t7blLRwllc3nXKvDApRVf9hOnTquarJStPm7eu0dMsG5a9Zr90VfhowaIiKCou0du0a1db7KSG8VlW1fuo3YLB6ZKfpkw/fVXFVoOWQRwTXqVPPwRoxqKeeev41hQXWy8+vQaXVAZZRzXUPPXiPenfvtM86hhsAQpyAK38nb/rkk09uRBNGPyJzZ5QacBlQEB3TdWAvRacep5QF85X3qDe919nJdlPO1cC7bteiBx/Rtle90y+4NnnCKWp3ytn6/PbrlJ7jTbt2yr0mIlqVg0dr1LkXa2dEvUpLi7Vza6U6hflrdlWZ2oVFacHP8629rKbOTxHB9YIAf90VF2n50l80feZPCvZvEJAIch5xxCQ1VBVp+rc/NJJ7eFy6brruyhbNdewLIpamRnQZewZqvGcjnYyIr7NIIcfREdz5+tvZSl2br02OVBnTO/wDA5Vx5X3qMHGcVt96hXbM8Z7P3NP1jifUEBGhrx68wydQwlzfndZZfQYOV8rkqcoPLtPaDdvVKTxJC+fM1e51S61jExOOnqL5yxfuneu1DX56/KH79Ngj/1BOboGX3E847ULN+fZTrd24o5Hcu/YeqjNPO7FFcodJ4slS8ZQNLAXsFaduB8wmTXLBwkWKP6qdfir+WXFfH56ksgAAIABJREFUfKSP3gtWp04Num7sv1X67IXNWns42l3ueFzV3UZo+/x8hax8X3VLPlXR0j3HovoHBenQt7/W6vc+1M+fv+fqsPMy5F6a3Vv9Rk9U7MjDlV+/S5u2FSsrJEo/fTVDxZtWWyk5fg0NqsfWj7pL8T2/UkjQOl16/Cm6966/WjrEnu/p7eJ05PipeuuVp1VeE9BI7qOPPl5HjhrWIrk3Szj/zy866LC34QTAuXr33T3UNmeDxspRG056L6g6zqHT4QSVxjF3Ojc8F7oqERBn7jg5V5HVsdp0z1UqWrakUR8omtP35Y/11YI8zZozVTU1fho0LkfJ/ecpLGSX/HOilZkcZt1XU1unrYW1apcYq625m1VVU6vC3eUafEim5fQBQODI23nUOPhbdhTpjJOO1Qefz9KSFesUGhKkoX06atGKzererYt2FhRpw6ZcBQb4q6yiWjsKihUTFaaQkFBlpKfpuktOUUz0vud++QJK2NCg7znPyMZhx/l25tzxPYiYOs+CJpLGBogR7qRuR0TFqLi2nwp+ylHshv+qfMF07V6xbK/8qah6yHNv65M7b1fczD25vn7+Aeo47QYV9hqvzUGrdVh2looK8i25F1YEKdC/TkW7CrzknpSYIOoD2ACELfPOGUkKimqnb76bK3817JU57IW09EytXpuj+roa9e2eptkL1lmMB+QeGhKq9P2QO/UInOkGjA1GCXUCnPR8jGnoUyYqPd8DmTuL+8CQ4JvY4IXnpO7Qqaty3/lW6//WuDK1ZdSNHKsO19+tT2++1ivqmDX1VC2OvVTPfRWsbRuG6OTLlqug//VaNGeDTh1wsjr5ZViAiD3fu3XtYtHbcbJottz79shSlV+EPp/+nddcjwgPVVbnLvpp3gKFBAc2kntMdIySkhJbPN9JHzFVhSbiSIEvZ447qQhEzak54dkA+AAEOV/euQ7I+YVVYD/rrRc/UtC3H6s2PktxE8Zo+9P/1o53zZVw0y6+TTFDhujL26/zijpG9emv/LGna03Rar3ywrPy9w/UYUcdr/PPOUNXXnmZ6uql4LAoFW5Zpfr6WssIRV9C7aXhtOPgHzd+tLJ7DtHT/35FdbXV2rVlpWLbdVa3Lp017pgJeuqZ51VfW63d29cpoUNvhUYmqKaq1AJ/OmRktEju6AQo1abGEWPIz0mrJCKKbJ157LB1+B6AgM5GLnj+zl0K6NBRoSuiFTrjPu36ZaGybnlEfilJyvvHLcqf551CZT+j13Pv6+dFyxT25K1ej/V0YIjSNxx3j5aE5ik91k933naL/AOCvOROOgjf3wbQbLnfe8f1+nlxjqZ/O9tL7lDqg4LD9OkX041yP+XkUxQaGtIiuQPGOoEme3D8HXk5mTlEI0lFYX/ybESBcSDtkxHS0jsoekRXVSw8Uxml30hvnKsqjzO9iYpn3vKQVF+ndbf92TqOzNnC2qWo57Pv6OvnX1Tcx/92lTs/8B1WpnVTdGWZErt2VdjoY7VNtdq1dYkC/WX16+KLL96bYlZX72dFdR/5+1168JHntXp9rhVdx2EP8JcOHzlGK1ev1batuVZEvaAsyLo+KKBe0dExGjRwQItkTl+Rq7OuCH9HhxNFxwEHPPRsRCOhiTtp23wPGDKLFy9V30njtGtGByV/dZ41r00tefQ4dbjuTpUuX621d/zZSKWmIFrm3Y9p+l23KnGeNwPL6bDbco/zq1N8r4EKGzpKGysLlRBep5TMJB05bNReKrot87jIAJ169p/18OPPqL62RglhNSqsDLTkPuWEqfr4k88tUNcpd8DOLtnZLZY7VelNBQRJy0Pm6BTPho0IuMK8cTYAQQDAMX2O1I5H/9okq6H92dcq+7ILlPPsq9ry3H3Gb9PuhPOVdPzJmn7nHpamZ/OUuy3zqIoSRcbFKrj/aFV0yFJaVrj8GurVPbWXomortcm/Uu/+51XZch/Sr5sysvvp5TfethgmttwT4mI0asxY/fed96xv4JR7796HKHk/9lQYOaagD3Yu+6Qzx52AGvsjYHi3cX00O3CWsjfdredvH2qJ5MpTF+uwmvu14Z3fCsWZBBoUFaXM6/4uDR2guXO66tnHYtR/QL0Gdlih9KhNCqrKV0CgvzL7xqu2plRf3HGDT4fdU+6xqe0VPPRoFcXFKzam2rL1MkJTVbhggSpmvafSUXfrhW8HqduUxzW1T18tX5mrL76e5SX3Xj26KSEpRTNmzjLKffjwEQoNCW7xfDdOsoN/3CuBgw57G08GHGyn08ErbSqzMy8dZUD+oukcVaLvXO+MYkJZxMEhYu9Jq0xKyNKmf/5deZ/913WU3R54SbX9xuvbubvV0H6h6trP1eDooUqva6+dedstZ5oGYED+22eff6ma2lr5+/kpJCTIosGS24Xh44k6QmH19w/QCSccb+Wieua/1dc3aOToMVry66K9xgh/KymvVExkmKAxQlncn0YUxklX53lEEAEVnEVyiAhA4bOLENnvhu6HMib67lkcjd+pLYBMkLtnERq/6P6658ZO2rTRX0cdXase0QuU7L9KcUEF8qspUVBsgtoNH6Dc7+Yo95/XqePUU1TbZYIKOvVQSp9Che6sV3npbqsL5GKRVzzr+zmqR6YecmeDAHiwnWT6V1ffoPS0VCsa6kkdR75+AYE6dtIEffzRb3Q4T7nzrpbmONJXgAu3omqAG1CxneAGwBUGHWcHezbmG5R+E3OEfhJV9lw7UdFxCtxeo9W3XOSaKxbTo6eGvvaxfr7tJu367L/CyAs97DT9uOsYvTG9uwoKanX08buUdOyjejXnfo3ucJT+nH6VyrYXesmdsQDu2IaoLfc+h/S2+uVZ2wD5JiQli43OE2zzlDtr11kNfV/mPnl1zkgW90PfBMQzFTwiZYQIrtMYJOLInHIagjwPncT3JQe5/6DBuvOG+xUYFarKH5do/X1XGos4cV/yuMnq9df79fMlp6jkf0XROp9xtgKGT9KbP3yqt1570RoukSHmyAUXTtMXX35p5drhgNOYC0T4YGQAyO1pfvLz99dHH34gKvR60m9J9bjzrnusXPU77rj9tw3Pz0+BweEKDlQj0G5fZM61yM/J1rH/jlMCkOrZMLLJ33WeZc41AC5EHp1OEToGeusDjz2sQw6brODldUoIyVVtdoqKXnlP217/rTiTs/8drrlfcYMGauVlp6rKg/7IdXX+AQqNjFTUGX9T0ISj1DG7UNOmnKfVa1Z7yR2nFto4wOBvbY/ct2/baulGT8MWubNHPPH4v7wKNfJ35D5u7OhGBRz3Ve4UPXLWT+EZgFOmnGFYVegZ6g54NtIUcGKIjtkFRA+bMlZby7K04tMjdHzKY8p/eg/4F5mZpc63P6a62Cjl/fNW5c3xdv7t5yKXQa9/oaLNW7Xm+nMaDQ25B9TvoavbrTowWPV+forumKWON72udUGlyorcZQFCFGnzbOnpGbrpphu9qNJkpNY3+On1117R5ZddtndP5e+1dX4KCmiwKvzDFmtpY78EtDE1/s4e6MxXp1AdTEFn0AL9zTdkXvU4tK8SO0xWxE9LVfzU+aotK/N6RcLAwWp/9T0WM2bzPVereI13gV37YqvQ6MsfaeXLryj/lYf3Se7hiUlKHj1ZiROOVfbwHvrqi4+tHF27kfJ7xBFjLKAYMG7v3y27qJMu+/MlVn64599tuQPEtbR4Ls9D3zqP2rTfw9xAhs5UGgpEUpzVWesBsBXAcOnKNUr4ZZNyn77bdTq0m3i6Uv98mUJ2l2jhxSfvLYzovCFx8KEa/Pxb+nHaGSr8cXaTcrfnun9DgxIyOyh24jkKHTRIIyeN0OuvvqqlSxdr1/90FXKfNu0iS997FndlXh955FHqkt3JSzb2fI8MD26UirGv8x57z1n3gmegj6HLO4uYEsDBiafGQWJKilb0WKWgwv7a8fYtmjvHX1mdGnTT6H9p9wtXuXYFHZl++d2KHD9CH+W/p4rgWkXmTta2+UO1anG01uf4KTpGaqhv0J+OL9B5x6zVsqtOV4UDOPSlY5B7Su/eVpHdgB6dNfSwvnrxlVfUo2MflVW319r8GIVmfagT+0zQq6+87FWDC/myN29cn6Ovv/7tKEZb7kMH9zfWddlX2R+83l0CBx32Np4dGMxOJ5BXssChVJrofTgEGP3OKBeKn8ieKcqOIsFJs6PH6ZnZ2vLet9rwgLn4DVSZJRmH6IjDR6vntWfp2x1fqnydn4Z3OUR+5bUWWkyDAtwuOVnHTtgTTXaCBSgZDFecdWfVdPKNMYqcefwUwiK6B9Xc1Bg/9+1Pw5mDdeBsOAXI0Vkkh+9h56U7C6fh5EOnNCHdgAv01Y7eRCTEam1xmFbPy9YX/03WunV7AI+0tAZ17d6gwKASldZ9psnHD9Dw9vnaunSHFpTWKPPQTHVOr1HNtlJVVJRZcu/cqZMG9e9tyd1Z8AcHzz4n3glMQH/jWzhBCapUU1zMaVjZMoJ90NL8dfsZVFN3pg/wGwXzcGydMuR7ME88DST7WUSCASOcaSD8TlSZqDc0NFqUklT23r+1/q3XjNOG+b686xCdfMMtCispVv6qLZpblKy5y07UwgXBioyUxhy3VZFDntG7Wx7RkK4DNC37MoUV+Km+7jcDGxkS5TetQTdADWAFo8r5PegoVF7Wz/40oo7MQ1PDkMYJd1azx6jjW1M92LMxPujoACbO9cNvPI9IJsZi127d9fD1D2rT3Ve6VqFF7msGHKHjrr9OVe+9o4CKncpJ7av0vt31zycoILZAweExioyI0JeffWgZmk7Hiv6R8wrw6azQS59Y63wT5xph7pBn7gRFeR5U05YWg7LlxRnfzorM/EYqDd8b0NEZXSRKDUUbardn48QEciNNUXYcLYqP3f6PezVwxKmqK1inqA1FWn/XZaot93ZweKat20f27KbO0y7W1tuv1q8bdyi1cOteZzGuTz8VDjpDASNHqe/wGr12/7/14oveEWGeRXQdRoPT6UJ+RPicx7+xP3FqCTreE8S0xwpLwnk8077OfQpumdYfYCMnCDjzT2Ga8a0AoX4De/a8FQo9oCzRYFpMbJwGnXCY1izpq20/tNOUDi9q++sPKeuWhxU5pIe2vPiOtj5/v6uOYU/905STlTagr1Zfe47W1AR4yZ0byReFghpdUez1nOQrntLWPmOUGD5P559yhuUUOPt79tlnW2AFEW/Pxh5Ffrgb+4DIH6DX/jSitk7AlecxB1iHpOB4NvQ6bBIno4RryPe1ouxLlqnPMYOVu3SIuq17S7lP/cYGieneUxk3/F31MeHa+diDyvvWu/K+/S7m+9KO/XTStTcqvL5WSy49yaqN4Tnffcndfk7G6Zcq5IybNX/pc1ozb7nXWIh0s7c59077VArneuZm9mh7XrVU7ugRt+rz1BVAVzvtKOxKAhDOUywAk1k7zIVRA8Zpy31/8SqYaPex3WGjFD3tRi1YM09HDjlKhTO/VfHsz5T3o3exVuS+qvdhOvHGm1Qxc5Y2P3V3i+Qe2+sQxR8/TeqercVrF1hpBzQCFaS5eAJqdh/ZBxi3yZbBNjCdCrIv34C9z3nEqX3/ww8/bBUxdZ7ahO4hVQ8d331yP31X/o0ylj+klx7sad163bS1GrjlOm3+5ANjV1JOu1yhU8ZrrVbps+KP9P3mGUoKb6dxnSYqcvdABZSmK6A2xqohUpy3SlPH9lHRA/dqx8yvGsndTcd4vpij4JLPuEqlyZGaNesL1dXXq3O3HsqtWadrTrpqb30Pz3vYu7AZTKmPzFOCDwdb20ngoMPedrK1nky0yq0SMQXmiHQ583ExPHCsnIVDeB40TkAAU1E17mOT/GXxUpWvKtDqmy90Pf8SZZsXk6yQ3gN11B03qb6qWEtXb1JMeICVk15RVWP1Py42VuGR0RrcM1W7i7xz4PkdtBwD1VlFm98wIHDWTcef4RSbHGAKzbnlhu7Lp4I66+aYkgdLtNB53BkgArm9zmPyiFDSJ9BuZwV8+oSRTT7ZL78u0by6Rbpr/i0a3P5Q9Sq7XLUbh+rnGWname+nbVv9FBBUovCYNTp68lZNntBegfEN2rxhhTrFp2jOj4v2yp0oXH2Dv/pmJ+yNMnqO3y0Ngn7Yx5A5gQe70rfJAYYh4YwI7ou87WuZB86NzDZeOIbFtBaQLfc5ASqceRx9Uy47kTSqxuO0b9i6XctX91LB4q1qv+NtRWz7Tttn/RYh4f32fE86/1qldxuol14droW/LlVVeap69V+gpM7rpORl+mXXHKWHdNaFU45TWnW8qjyqF2PwMKcBZ5wbFsYwTq6TEQCgRWSDcZuADAxdk5O2r7Kn6JYzbYNnYERgwDhzIXkvjj7f3VkokHN8iQY784F5HuADUWCMviNHTFLhI3fsPevb1GfkXpTZXZGnTlPnuBjFd07VP59+SkuWrbSitNbciIvT+InHKtJvt+6+y/vYMH5nflDtnTE6ZYjxhAPjrNzM3CAyxfwxNaLxRB33pwHAuDFSADSQL/3zbFSTxph0VovnGuSKzjKdXU5OJU7nVVdfq4mDj9G2B/6iYqLhhmbP9cDO3TXwyqukz7/W/E/fVkx5oTYlZiq0Rx/Vp/ZXXUqCgsILFVNVogfu23P8oWdDpuhE59F6XMMawPh/+23vauo4y+Q1Oysp28/FwdifiKP9bkAoU4OlACjg1OHIj4J/zuJoOAVETQGE7IhkRoeOan9EpjYuHK3aVbE6Zdwvqs9KVsWiHK297WJV795z5KOz7d1Th43TsAvOUMn9t2gRe+r/5E50kYazzrUDNvyi4P8xSJLHHKPNI/6prJFb1Tk6Shs3brDAK89GxJ1+ElV1OvI4NQBU1FZwNmjSnpHhls553m16Po4pcwEwwbnn4FgBxjoBFuwUIvP0OyIqWr2OmqD8WUlK/fEG7Zz5uSIyOqjrXU+qNiNGRR98q82Pex/p5TkGW+7RJ16oHgMOUck9V2tlaW2z5G4/hyKNAec8rfpBu7XgvS9UsDN/7yvQO8xnJ7jJBcxDaiGY9jwCD0Rc97ehD0z2FboYkN151CL7FEAB8nWyOyleDND/2utvaVTHAdr6zH1ex8tyNGfadQ/q/e/f1a6CnQLsGjf+OKUFJqpqzSrVrJpnHZ1atmmjqkIjVNCug2KOO10dIsO15ZoztSmq3T7J3VM2sCkST7lMVRnJ+nHBt+rX5xDr5AcnEMSeBajLN3GyHnkeAJFJv+7rd+B7O48i5hnUbEBvOAsqApJQJJD3Z/burEWZvyiu+HBtevNGzZvrr6TkBt1+1lcK++rGPdXaPVryn05U8sVX6IXXH1P71HQl9ktRTsg6zdg+XZuK9xQmDvAPVFhgqFQVqNSq7poYcaK676jU7sdv1YbETAsIrP/fnmrSMabxB4RwFNwYtT/rUm32L9WM6Z9YNgNsNucRmbCUsC3tlDTn89ABALYHW9tJ4KDD3nay3ftkX8W4UEjOzQwHmGgdObJORBtlhQHOxmmqyA1ltDJfyrnjcp85SmxyO6OS1DMlToXnXqe1ueutvNvh/TvtpcHjjLMAoak6nW4Gh0MFfZ+omzN/DYeAe025tUSMoIY6C+vxTKJSbtHCfflUGPbOs7Pt+6G20V9nrqMdtXbmWnMfRibfyhQJ5nc29cqoer2//EO9tOxZ5ZZskr/8NaXbyQoq66jw8u6KUDuVFNWorDRPhw/trfLcZVq/aZuCAvz2yp2oJ/3D0UPuzkJJvAsmBREsk2yJtDB259iIInnmuztl2RppCDyTDc5ZkMV+F8oeo9JpRPiKWnO0HpuyyWBhnWC0zCtcrOkbpit4wwTFl4xWzfrl6hS1QnFVy1S1er7KczerNjZOeWFxGjL5FC0OidTrr1bKT+Hqf2hv+Xf6TkUJX+r91f/VaT3P0ZikI9WxPkOFBXleYsIJBLBxypaLMIT4O3UpPBupL5757k65swliUO9vgxJvOrOXeUJ1Z1NeOg4thr+zgjZ9Qffg3JjomMw/jPfakiDt+PxL7fr0FZ/OY0FMOx39t8d02q3XKjgi1gKgCjYvU0N9nRWlhZZM3qXpbG7WA+kHOI9OBwb9QyQEoMQJeuK0kWZhOp7Hnqfcv7+NOWGa77BD+B7O4914HyAmDAcn6wHdxzwnSmECa2Fi3Hbj37Ty1muVN9PMTuL5tm7vEhmg/HNuUN62PJVMf08jwmoVffRFKkoZLPXyU5/uIXruvsf1ykt7UhI8G/MSUJP153R+ATz5XqYzvYmaQg9mTzA90677sD9yZ0805ejyTGpikFbmLLpFIUsM/0suuaTRngojCUCLfttU+xEjj1BVp1pFFUxVz06bVbe1VDl3XKai5b/VInGOwZZ73y4dtPOMS7Vyxk+qXvidem9e1ogG73lvwoBB0kmPq6hDvVIDtqh/vz6Nqt1zPY4CbC7n2AC5Wac4hyabgP12f8Ep3g9TBUDE1AARADycKVHMEar0m47xYzzsqYB/XQ/ppehuhyt+Q5Iiv71J4UdMVccJw5X/0ypt+tftKnDJb/ec7wMnnKgdhw7Rsv++q9oNa5qUuz0O/+BgRZ/7qIKmHKaKHQs045NPvYYIM4O92JmmCNAKmOU8mcC+GZkAUu9vYy05v7n9THQnzquzFhLpIeh+k/5mnqMb6/3DFPzrRm144BrV19Qouks3Zd78kNKGdFJleanFovK0+1gThw4bqeLcXSovLLbq6WwrLVVmZop+XbJGaz9+V9q5o9lyN8mFo+C6TbtcDUdP0shRA62xOZlpgJ7UxXEe+Wk/D7Bif1LM7OdAiXcWIuY39mtAEhMYwzxHh8/87jt1m9hHvzYsUuqWy/XCHcMFGerYyXUan/CMyl6+UvW1tdarKEKccPkd6jeyh8UY5GhG0r2GDDtMNQk12hW8S0UBRSpu2K1tJVtUsLtI7ao664Ru47X7l0otefs1BVaUtljuyDz+2rc0v+ZoRSau1fUXZ+nyP1/SCHxjD2avc7JTGQMAHHvawda2EjjosLetfK2nY8ibol/8hhFGtMIZuSVyQ5TVRP3DsMMANzmP7TO7qWLuEq269xpV5ns7HJ5DbZCfhcZFJMSryyNvqDjot3M7caCIsOFYESVyOuM8h0iubVg6aZ84myC/GJ1ORx/qPn03OZs8d3/OX3d+SqKdzkgE17CR4byaHHoMDCLvJqeMaBP0c5PzyHMZV4/effT9hh80c/O3+u+q17W11PvszSC/EEUERigjNlN3dr1LtYV7zp8FsUXpIXe34m32ZgGQAgjkZAj4osljXOD8u81DIsdsgvvbmCvI1XQeO84r1GXTt3dzeEH4KVgHo8REKbc2i27dFZAYqs9Wf66aqjBtX5ui0g091DO1g0p37lbhliLFxtdTpUxRyUkac9Rm/bwyQj+Xfqz5NS9qcd5ChQdF6Iye52l41DDFV8ao0kE1BpBBvs7CVbyf9cK3N/2G48ZcMtWxYGysf9PZ5/v6HUDDWXOmhgEDq8JJl0XHkH9scnhx1PhOdmFF53MBSzCmzjz/Ei38aJZK581R5dIflD93tmX82c3WM9k3PayHvntXP8z+zvoJ3QHIgB7BIDYZAVxH1JnvbsrRx4hFvzhza3HOYGvwTUxyZ0xu6Tj7KnfYCNBlTQ3HHDDEySrBmGY8gGvORpSS8eBEOnNTx084TleddKW2PnlLo2OtTLo9ODhIPZ74r2rDw1S5qUrlMe1VmRqgdh3yFFESqovOOrtR7QiewzxHd2OAOatQ8zspXkT9nNF1qNHcYxoX9yELjt5rjUaUx06H8Xye7aQQfXOeXQ592XZunX3AoQVYw3m0W+fsbopJiVO31D4qef5p5X1pLiDrnOuxHTuq/d1PKqyqWkumHe+1HpzvTRkzVtWjb1VR5xilhq3XCZMmWmkfzgKyNuBw1VVXNZrTOMSMGwaGqbG+TMDRvn4H2IIAJSZ7AH1BP0y1L5jPrAVTXR6uJzpNDYojj52o4uAM9WiI0a66HFUoS3O+6qsuofPVfuO/5bdlgQoX76FLm+Z76vDDlHrvgyr4aKY2/fOGZg8v87K7tGPgJDVE/qyfPpjpNT7sARxEk/7hb6wFU90WdDp6tzX2VF/Hu7l9e1KtiHiaHF7mEnsBgGzfwYer8MNvVfDes+p449/1a8lG/fzTDyJFBz2F/mU/NwFBCJg8cz8/6bgTTlHdS28q7wtvVkizP8L/LgxNTFLXB19QXftgK4AEs8rZACHQP866N1xHAMnt7Pp97Yvbeew8h28PiOM8Yhb7jTVKlDotI1M7++zSmrKNSp77b33w8h5g/qgjynVO7+e09V9XKa5PX6Vcfb8+X/CFykqLLWAN+w652+slIjLKOjqzfVaGKuoqVFFeoWCFqmRngYYPOEK77v2LipZ5n4ywL2NNHHuC3vV7Rv6pJao88nKd3OkMffGot64jEMg6dkvPYB4yXw62tpXAQYe9beVrPZ0Il5tBygJHqZvOayciyWbmRE95Jg4Y1CfP6E5cQrJ+Xt5Fn76domN7faXkFY+qfN1ylW3e6HOUfZ//QNG9Uyx6LIg3Ti5GspOibD+EzYBCPvTN5EShNKEfmnL3nQW7PDsG5Q9mAY5MazScEQAHUyMyxjidVDZf9HeACIosIReTQ2+/p2u3burQsZMWbF2kRdsWKbcsV0t2/qrNxRuVFpWusppSRQZF6+pe16m9X6zlxOJcsAFBGXUamvZziRzxfuaS6UxcfiPC7RwT3wu5UiDLFLHHUG0NCpndTxw9Z6TZ/g2nkjnrZI4Q7YRKa3KkiCoxNjZQZyTVc05279FLJSHl+nXbYi3avkh+9REKqkxXwa4aRYdEq9a/XIlxQTqifTdtbMjVWV9MVWhgmMZljdeEtGOVpY4qyrMLmv02a3BsARuQu1N+rEEcFYA1J02eMQGuOTd1+8l8c+9iXi2f9bAqAMNMABUGAJu/lWZRzwG8GQt7AAAgAElEQVRFvzUiBQBFpuODiICRq2efoGDqHc4ZFMDjjj9Zi75bpIrNW1S6apXCAmpUsmaZakpLFd39EMX27qN55QWqKC20UgToB9EhNyeDd9mREpMhAMDDvUT7ncAVTiMOjNsZxkTdnRT6lkoe0BQ9bWoca0XfnXneXEvtEtYBVZudDaeW9BTk7lmfokvX7rrm/r8qqb6HSr+fp6idc6yaDQ2Ob+r5vOy7n1VhxyQFp6YrLb1B1fml+s8Lb+iFF8wV/Uk1wQFhzjqptjwXQ5Xou/PkAX4DmIAF4aygbPeHZwK+tUb74IMPrLx+U8NZx8Fw5nmzVqGGY/CbjuOEzo9T6jkne/buq8M7DNSGf96gwqWLm9V1Kj13e+w/qg8PU+7N01S81py6kH3WedqccpaCBrdTaMMinfCniZbsTCwEqOPoVCdIAnBGf3HATGlyMKtYw60BCjJ4WCMmW4XfAFH4Ls7f0S845qSCOPc2+gdAwZwDdDzk0EEKDQhRUUmhdvcsUVD+aG2bfaRKi0I1osNsZQb+ouq5b1rsnIIF872+R0yPXsq47ykFFJdq2aVTGxWwM328hLFTVHbMXxQ3eId+fGeWdmzb4nUZKS3kpzvT62DcQZnGMTM1HH3PQnTNmjg+LnKjxbM3oifJZ3fuP9harFUTSEaqEHJn3vTqM1ix24u1JqBc30z/bG8v2J+wG9Bv2HIEKmDIOQM02HojRx2hdlurte4u87nxzR1/2oU3K+zYURo/brQlX6edQ3oUffcE1jyfzT4Gy6Y1GsAUcrVPPvJ8JgAYaTamPHdqdHAvgEj2YT01M3yGevgfp5UvXq0fZu9JA5s8vlAnd3lZCQO66ft187VyxW8ON8EBAij8yx4BcwWKurMfsM9OPOVMFT73hna8512csrnjj+naXVtHP6/35w9T7/Me08qgNzS+cpJWzvHWdTCTsC1MJ0XwLoBr+nuwta0EDjrsbSvfvU9nQzIVbEHZ2UeNORckDjSOJfR3U/4rmwIGFhs8Tm59u0gtXZKi6a/21vLlfho3pliHZ81TcuWPKp31jlWgqCRnXaMRd7z+Hxp+zVnK377VMgqcR5553gC4gJMBiGA69gLnD7QdB8GJxONQAAi4nU2PU8S9rdWIUCF3U54TsiVibqryjIPGZmUCWTD6GD9OuxsYYPcfWbRPTVVsXKIq/KpUWF4gbOsA/wDFR8Ypwi9MxUW7rE2JCKgpcmE/C6ee96LATTno5E+BnJsYGWwuGP5u/UXmyL61mluhRZ6PbJG9ySjF+aOfzuq23GevBaJqJsPU7jvrIDMrS4mJySr3r1BJXZmKKynuRLXkICWExat9WKKW7lij6eu/UIfgDmpf305+lfWqrCxvJAKMTSLogBCmFA4ioTgHJtm6nRlvv6S15c6m6lbkCOOBTd+Uf4aBDV14DxXPu2F8YNRhBJlo2vbVrGuOvMEhG3LoCEVEx6umqtIqZBMYHKxAvwatWbnUWvvUJHBLLbGfR/ScNWgqyAdwBmCGIfqf//zHq8OAWoA6gD+AX86GvoXa2xp1A+xnQ3t1q5eBYwhN0hllB6hlnjN/PE8VsJ8J9Zj1gNw9I+1RUdEaf/xkjT3+LIUUhChky3ZVLJiuqPAqbZ/5jVUNntoAdVVV4hzlDhffosxzJmvmN1/pzTff0MIFC1yXOZF1HC7GYjJE0SPMAQAg5/GNgBI4c241A9C1puJ/LdU56BgiPqbCduhK5Ec02Llm2U+JBkFXNu0LfCv2YZtKnJGZpcOPH6f6DSHa/fk3Cs79Xtu+/abJbvd46DV1PW605l56ZaPIfHB8vMJHnqmdnc9RzDB/+Zct0KmTT7AABlMqAeANjoopeg0lm/E683ztDgJs7W+RP8/B+qpajmxx8EwUcdgNrE1nITSeDcXYTqMgHS0xqZ16Txmoa3+8RBkxHdUhuK+ydp+rDd8fqox2ESrYmK/eGRuVEFqg8KBy+TXUqt4vRERnkzrWKiIpXOuuvUBFy31HHZOOOU3BU69WaXqulnzynbY7nHUKVhJEMOlU1gdsNWeery2r1i7A5YsWj+NIP01AGcAkdhrr2tnQW0SDWbdurEHuwebD1kSnAlQw32CEwqLDHkKnonNzfszRyitOVXVh41pHTS4YTjUZMVLh025Q9wGZlg4y1bsB5KVugOn4WMArqvK3pi3DPmRak4yHeY5d4NzLkBcy5d6VK1cpe1xPvb37TQ3zv0pr3z1TM772V3K7Bj385CZt3/Sxfvyh8fn2PJ/9DxsBUBrbGXYQtjk6D2edIqu527Zp7QdzteqGxidSNCXzkIREBZ/5lJ749niNPmuOZoRcpgs7XarF7/6skuI9pxTRiK7DjgK8MPkhzAnkfrC1vQQOOuxtL2PrDb6KoOEU4GyZnBgWKwXoTHRbnosRRTRp1pK5mlHynT5f/5HGhF+looVHaNeaLpo9i6PF6pSgHPXpvE2RfjvUULhVHCFcUVKtoIT2SumTofjeUdqyqbEz7ykeFDWGFxuVyRhGeWMgYICanEqACZwDU3SY90AfZiyt2TCKTX3lHWxYIP4mmjjINMrR5IgRreBe8h0Zj8nwM42BTRWHkuu510QbN92HQgS9ZBMzUXyJnGL4Y0w5wRbkCRuCzc8ECPA7cm/txiZmqnvAezA+cWScYwF8ss9fN1X4Zx0w/1hLbtR+5zjYxJmX/MtGR4Qc+QcGBSk4OFTVNVWqdZwfbD+DtYUTg6NhArFYt2yq1GNwNjZYCtG5MWtY760VbbTfjRPLvDTRF9EjGGX0yyl3gCCinziIpvnOEUw48+SbN7eyOkYLsmO+0x+3Ne+UG8AM78IgNEX9uZ7cSqLqGBDOhkHH+9yiW0QqTbny+zP/7XOoTc9gDEQWWZ/OhlFPlXk3kBJAgsJ/0OSdYEm7lPbqN3igzrjkQhWXJSmhLkR1BUVSRbWC6qtU6x+sgOAAxaQl6MNv39ZTj3sfaebsC/2D/k40kWiJqRFlwwg15cUCJBLJdZsfPJt51JqNeeLmMPEu1j21FpyNCDw63ES35Vq+F0wrnGAc/qjoGB161CgFxKYrdrtUNv8XheR+b9WIKd/infJkvytt2m2qHd1XEcu3K+fuPfM0MDxc6cdMVEnPcxXYf6CK65Yo2W+3pp4wxXJCTHs8OoToKnPBWUsA3U0fYT2YimMxfgxpwLTWbMwPk8PEOzDsAY1NrCLGwB5mAskBt5E7ezW5yT369lFDV399tutDLdg+T4nhSeoa10PZVacoovQQ7VyfqpTIFP26INRyfmgFu8t1yplFCtNP0jufacf7jWszcF1IXLxSzrpRO7IOV0jPbdq5MEeLFvzkJSJS82yKv9NJAeyDumwqQsdDAONaK/XDs1M4385UCX5H10J/B1h10sSRK4wimCUm3c5YYEiRkuBWHNk5d1g7pDKh27Ep7EDTScefp+IHbtWuX9xBQbd5SKX49lfdq6AOYYqKimhUrJP7oOmz37oVnAQsAmRpzYa83dhYABiA5CYmF3YKxxpyb1BwiNLGZGl+9U/KKD1BP780VWMnb9XV0+L0zJP/MgK2pjHgpKOXAKyZkzZb5ewJ52nDDeeqYsf2Zg89MCxcEafdqycXXaHuw9dp3SFnaUjiMEXMC9P6HG+gG3AK3WOq7cQL2YexMQ+2tpfAQYe97WW89w1uOdVcgNPEojBRfnEeWaCmyCP3ErU85JA++mHpfM3N+0nPrnhCsSFx6lp9qsLyDte6H/opP89Pa1f7KTW9XuVlfkpp36CCnX6Ki2tQeIR09wO/aveOta7SIHIC0obR70Z3tuniJmeKomYoevJ+TK21o+v2O3C0cGTd8vBxHqFhO6l69BWHCgPCtEnyfLsoH9/FSRNrjWmFg887oLQjd1OFejZr+glIYjLaUKR8L7f879aO8trjZh67RWSJqOBAmioO47Axj3D4TUeHIAv6zKaF3N3SB/ZH/gADyJ1n46SYgBUMBxxcU/FEgAcobQBwbqAFDlJrG9KMGQPBdCwavxFdR/Y4gM6G4UFE0j4uz/k78whnGKcCQ9WEtO+PzLkXCj4ROBxCN6eRqCpUT9OJBvyNQkHMLRMbwgZf9rdKuWmcAJVukRhyQNFBzorxPAcnl/lmHw/lfDYGKE4ZefKm7woQFZ+QoNS0dI04cpQaQhrUJbu7NuVuVFpSuubN/kHfTf9a+T7qmRBVxtGC3uusom73B/o5DDETSEKUjvG71VBgbzPlL+/vfEHnMh9MYBp6Anlj3JvSl6D7w9YxHatKv0hlYEw4jzaQTvX4mA4J6t5vsMrzghW9u1L1BUUKKN6p4g0bFJ0YoaIthQpNTVfKoEOUG7hbiVXh2vrQLYo5bJJ2xw9XYHYP7QzKV3jQUvVMyVanrEyL0m5iqzEGnDD0pElX4iigI53Uf1uuFAck+traDXDGNJd5D84q+gFgzJmqQooQ8xigxGQHADDABiAwwDwMDA5TQ7xUkVSpGUVf6Ze8Baqrr1V0SKwSwhI0KOVQbSnKV1xwkipUpJKaXRqb+CeFLgtSv+AUrb7xvEZDT/vTeFX3P1dl/XsqJnGV5rzzjXY61gZALHJnjpiACaKnUIPdiquSWoHN1trNV5Qdhgv7kanwFyAuBdKgwJvsFEAh5M5ehdxNFPDmjGXM2GMUPesXbXv9X825fO81UZ2zlfmXB1SdFqoB/ftYusi5ptlvAR2QrSlogR0EONUWVcp9RdnZM7ETTEAlgA/rgbmUmpahmGGJen/nf3V+4tMKKFii8pJd1nfBL3BL72mOIKdOPVfl/7hb+fPmNudyCziMOvFmvbruCkW0r1HNqJtUH7lJQwqGaO1PK7yeAZgPc84NtLBTK5r14oMX7bcEDjrs+y3C5j8Ax8mt2BpRUlA56KLO84RBMjGYySFxiyxijFp0RL9AzV47V78W/ar317+t2NA4qTpCPQKOU3hVliqLYlWUH67I0FAVFlcpJbVWick1ykwKUGTdqkaDoSAVSgdlDkJryoHmJhwQ+m3KW8cJYwPD6HC7vy2i6/ZgfBX9I8cYqp4pumFHpxmTyRnm+ThAyB3DCaPL5Cg0f4bsuRJnFIo7jgfPdMuXx8DBuYUiDt3Z2QByMH7cUhDaKrpu94NIi2lz5XfmOk6fCfUHGALgITrtJk++Gwg340ZGzjWzrzLnegxk5jrflH6ZitpwnQ0qMD6TAQR9EAaFKU+W+/kmOMZt0QBKMNDc5E6fMGxMRj5/57u4MS6QD9E+nEsMb5zN1mj0F8cLg55/Tc4J7wFUwGDDkTLV9QDUwpFwHrdj97E1i545x03Fd7fcSeYy4BIsGZMDgNOIfjGdV8170AVEyTCsMcjdnMx9/RbkoUPrhM0C3drkNPJMnF7WhClvnb6hn4jUmYrAcT90XJzHtmhEBp2nB9jvYc8kpcJUMIw1zNgBU9zABGqxMNcBKpC5zdQi3SYkNFRdB/RSTUitumT1VF5hmeKjElVYuktxUcGqKC/VvK++04gBY1W2PV3bQ8MVEr1dflqqjLD2GjPqMCsSjaFuApPZA3CweKfpjG8Mab6H21nR6HbWM2BQWzS3nGreBbuBCCwAn7MBhAIQ4cS42TKwrGCWwGxi7oSGRyosJUKBqcHaXL9JVSGV+mnbDyqvKVVpdalCAkNVWl2sqOAYHdPpWCX9FK8xvUdrw/W/RR0T+vWX/5DTVJp1qJKHxWtdzpdaPvMXVVbsKfpqN+Y5egLgz7RvwphBpm5RXtZBa9XHMH03tyg71zKfAe5NDAbANIB95G4C/rkfwJQTBVhP6DNTuomvuZSYlKxJPQ7XsstPafaUi87uqsxr71VFWrjGjhlpZAnwMPYF9mS3KG9bFj3zFWWnhgD59LC2THYaLCr2TX7Hae87cag2/rxGyxf8asmIGg6Aatgz7777risjz5dAhx02WinLtmrLs/c2KXfSRsKOu1GvrjhfofFBCh57n7aHzdAxARO1+uslXsEJovmAJKxjN90Ok810WkiTHTl4QYskcNBhb5HYWn4TqKyb84fjxyIxRSZZ9GzSOP2+6MA42CDE1TV1WrjxV60uWqtfdi1UrX+tZm76Wu0j06zK5WmRGdpetk2ZMVnaWpKre4f8Xdq8Z/PiXRiH0GdByXGKfEWQcdahGZtyFIkAYWBjqJpozryvraLr9lfCeSLC5VbpFOcJh9tkTOPMI3ciAm4FzxgjChcHmdx2HGg3h8nXzEH546wiD74zjAu3zRV6FP0i9cA0HwBw2KBB5d2e0VbRdXuMzBm3VA47fQIwxCQr8sZxBgC43BB/1gpyR15sqsjdVCeiqdXKN0buRLwxkJG7Wz0BrmW+kAphmg+sGfruFm2lLxT4a4tIgD1ODHW3Srk44+R9Q/c3rUci3IAWGG5u4Bq5qvaRRUQHiS64MTh8yZ7qy9AG+c4YNNA63RrRRBwv0H4TEEK/cRIo9GZq6EX0E9+vrRpGI0aXqQE04LSamAGweTBEmXfQgt0azyd6ydohXxVHzllJvqmxYSDidEALRy9ikLk5vDyLb8J+wnwwrQmYMBx95BZxhcbq6/lN9bep3wH0MObdUi5gDQAMmo6AYs0zp5A9QLlbgy2Dw4OuhVHjjKwGh4Sovq5OwaGhqquptfKJd//vrPbeffury5D+Kt6xXdlpndS/757aCrzTBLLSBxg6OLXYCaa6EqTTUKwQmbvVJQFoMAEsTcmzub8DQPnKW8WhB3gzUePRH3wXGCNu/Sdiypyzj7cFvGV9xMbFK759kvxi/BUZF62qhipLXqI2TH2A6svqtPyHXzRpwimq/ffjqiosUMDIi1Sc1EUx/ZNVqQVaO3OFNuSsaeSQoiOQO+CMCTTEGSeFhWvc9lTmIqBEWzVfUXY7fQKgx3QuPGsRcBS5m9hr9JlnIHei9QBZ7N9udptpjGdMOk9bbpmmss2bmhRBfN/+an/RzapMD9f4o4+0wGCT08s8tkFL00PR6cxFcrzbqvmKsmMPIFt0iSlwgE4HgDPVb7D7CzjI3sbaZs0A5jXXlsFeP2PUiVp80RQ11NW5iiC2Z2/5HXObHp9xotI7l8hvxD+UG/qljo85SWu/XKZyx8k4MKewZ93SnJhL2AEH24GTwEGH/cDJ2nqTr4rx/E7ElGtMziOGAJFqHBhToSLPoYAUo3xTU9OUl5+vTQVbtWn3ZguRrlW9yqpLFBYULr96KSo4WgmhccqIbGdFD9ksMRZQ1G6V4nkXhibOOk69G9Wd3zH83ej8PKcto+u2TDCO3FBCHD+7EqqJ7o9MGAcRKLd8eN4DE4JNH8cPwxhGBBsj3wuwwM5bR3kjO5xuNhmcazYd/o7ciR76itRzPf3BSTVFxegHUQr66hYlbuvoui13nCS3Dd+mlbuBKTi/bGQAWL4AI+SI3JnzFMBh/bDZYVQxN3E0iBbY+ex8b8ARIiXInWtwvpG7fQ6zSS2wnohAuxX+47sgd7cCk7ZB1Bpn8/pSW8wd3uEWMSWaypqjr6aGMwDYg9HvyxHHqCOXE0cSBg7ODEAGuot5zLyniCDfBwYRVHSMWYAmaO04ezidpqPDPPsFNRXnnggQRx46G84nFFx0oxsoRxSkrY0LXxXj6TOGD3Kir86GEw6QQv+bojHjQHINBceQN5FA2AXoOPQXFE3mO7qFNYbDjbNBxJn5C52XvjSVs8o1rBXkbloXgCzoRl/9bc3K8G5zHufXjVWBXEkFIdfd5DyiqwFT0DFE63019mbmLkwJQCPWFyAhep65jozQvcgM3QJjBPCO6wGTeAffyi3FincD5DE/AGF9MUVwdN2YFnxzHBjWXVs2wBxTkVPeCXiN3HFgTTqEeYjc7TQbt37aKV84+ciUcTPP2VPQ88x1nCScdq61T7oZNHSE8paUa01dkDI6h6iwYonWzl6mjevWGYEnAEwcFHSR6Zg2notMKUBnYhHSfxw3X4Bba30LX1F27BjAJeRuWrOAhgRQcB592TLspegLdCo6HEea74heR4dBWSdVDDsGPYN+BwAbOORwLZx2vvK+b1zXxXP8qWOPVvjxF8k/I0yjDh9ugU+mwANBBWjnANBuoByMDpzdtmy+ouy8lzQzbD43p5wxMH/53VdRZ1iVAPo2S469FPAFvY4tCfhIcAy9hg2HvsBOSgrL0JprzlbJusZprQEhoUoac4zWpV6ud+aP0iEjNyq/y4MqDlusiVHHaf3Xq1RaUuIlPkASGIzOo2A9LzpYGb4tZ5z52Qcd9gMvc8vIcqt0zSaLsczGZHJ0cDqgoLBg2TjcDFR7WGxkOCU4EzgpGBN28TOuqa6pUVVlpaVEMDpQCs0pEMUzMdhxctwo2zAGUGJuUVbe39bRdVsOGLBsxG7RWmjKOMEY3aZr2JSQO7+5bdieU4nvyCaP3LmX/7aLn6FwMTLswiFEyZB7cxBV5IXxDUDiNocwKjFk3CjZ9LOto+u2LBiX27FmXEOEHMMWuZuK92F8IneMY2fRJdPSZY6DUrOZYSQjd4wKwBDmAM47DjpOLXLH+GhOHjxzGSOGtWvKSwflZt1idPiqYo9B1VY0VU95QFd3o1hzHZE7DDFy6EwNYxpqKL+7RY0978NYxajGIbdPWeBb4MAwzwH+AI/QFRSewrk3HUHn+UzuJ7LBv0TiTUwMjE/omzhTbsdNAfoAHLH+2roR4TdFc3kvc5FIITRot4g0+eoYa+SUNgXKMh7mE3oL2j3OIYYzjgv7BDodoAuDD12Aw8hadGNO2LLBeYE5gczcjsbDucFRR+7OXGX7OXwzCgS2dUOX4qCY0iR4N3KhCBhAlEknskfZkXjqJ7iNxx4H8xEnHAAKhx89z9/QMzgx3I9uYb6iC9BbzdFdfHcMe9YbVH1T43fWlFtVeO5hDpqOEmzt74DjbKoIb78HNgmRR/SIiQlC1BS5My+bk8PLXgD7hz2QPQM9j44HpGUOYAux3+DcYDvVpAaqYEO+ijcWasP6daqtrTGKgIgyjqxbbj1riRQg9BZsErdGugrgWFs3X1F23g2IinzcapmwZpE7utUETjj7zzxnn8Yx5Btg06DLmIfInf0T/Y4zX1XboKpvftGmR242iiEyq5OSplygqh49lNIp2goqAdqYWKeA8KxbnFy3KvaABAApFsuijZuvKDuvBghHB7nNZYBPnHFAHxPw7Ow+DjNyZ4w45tg02Bk0wBhsGPZQ5np0fIpy731AedO9TwNIHDxUNcOv0oeLRyu3KFmjT5+v2eHXKjY8SofWDNPm2TmqKPc+HYe9HBYWDrlbwA5bhxS1g+3ASuCgw35g5W29jcgfSLub4cRGBLpJJM+NWm3nOBO59oXYt8XwcF5Q3r7OxUbR2Ee4udGLUT4oMIydA9FQbL6OFsIQQK4Y1SYgBKcPZ5nvQ7S+LQrNuckBkAXHA2Mcubs59zi3GBi+xtma538357thJPsyWHHyGJdbtIbfkDsON3JvjoPdnH415xqca+SOEY7cTVELDEaMIAxFt+rJvIs1gWN1oBqRWF9UX37j25hyfOkjBRmJomEgkivbFoXm3GSBccPRXOSSuuWEEqWjb0Q3fOV184ymotat9U2QJzRe0ykZ9hyAaoox5ObY45Qhd6JKFLg6kI25gONBpNDtiEAK4RF5ASxxY3HgMBDVPlDzHVDYLa8Y+TFXKJhHv90ii8wR9iOirKYTW9rqO+DoEyVEVgAcbkwwHDGMd9PRjHbf0KWAFweqwcIAMHNrsEAAh5G7yd4BzIYhgxOI3H1FfVt7TMxRTr5gv0TubrYW+oe93pSeYPeprQr8uY0ZJ9UXaxGwFvDIVEeAZ+KEA+wwLuTe0kJzpv5dMP5sLb/0JNVW/OYIhia3U9zhxyj6qONUlxqiQf0PsXQHqT2moq4Aj1D7qWHgK72McbJmD0TDfkTubrYXdgp9Jo3PDdgB1AbIBDg11aZo6Th69OqjPjXRWn/vlQqOiVFc774q73+R5m4arAUbstV1wDYF9/1AS4Kf08iUMYpaH6GN89c2SgvBzoKJxnp10+3Y6wB16KKD7cBK4KDDfmDlvfdtvo554yK7MBWL360qO84EKBwNR6E5kfH9GS4LFMoOKDYMADcDHscEdBQHzBcDALoVUcsD2XwVoKMfIOQ47vTdjboEEIHc7bz3tnYgbXCGiIYvZBbGA8afL2MTwwgE9UBEGz2/K31yc2K4DqMOUMKtKKPt7NiF5pjvRIjbqtEXojl8a2TuBoohbxgNdlFGt/5gHLJZH8hGn3Gq3PqOsUwkj2/j5hTDyKHgGQ400Q43A7C1xsUcxhhA7jgenOBgaugOqNDkdPui1LdloTm3MZOzDYXfreE8InecYzcnAD2LcYh+JLrnK7LXGrLH4cDYJNKF3N3qpOCsE6mmmJvb2fP05+2337ZSJQ5k81WAjn4AggPuEHl0yx/H4SUVhPVM6oApF7g1xwQohpxYg0Tm3FJyABPYm8jzddt3cXJYO/x7IBugkhu7hX4QrUOX0nc3e4AUHQrNIQfk3poOpFMW6HaABKjjFN90K2TGfRTVIpJpOsrQfi4gudsxkm31HYisAqz5YinheCFvN+CNviFz1jI6y3RWe0v6f+qU81Vw9zUqWrFcVICPOvRPih11lKrbhSg+NsyaxzirblX2sX3ZjwA23Zgm9KstC825jRs2CHU/3BrMU/oOg8xNZxMpZ01gJyN3t6LA+yr788afo+1zVyk/ZIBmrjhEm/Ni1aF7gTJGzNFPwfcpOCBYU1NP1bZZm7VpfU6jx2ODsSexTn2xuw4e47avX6b1rj/osLeeLPf5SU1FHqHBYORDwXaj+/FSot0sfpSzne+yz53xcQPPB5ElUk6k1FdkGYcKhYsy9pWrw3Vs4r9HQ+m6FZCjP1B6kSfGgxuaSrSd/rP54Igi9+ZQ2ps7XhxqgAPkDhAD2ulW6IZn4sBAKXc7Ss1+L7nDB4rR4Bwrzpev3HzQXSiOzF1aHisAACAASURBVB03VgYOJAAGVDpy6nBGm0oLaa7MuQ4nFgot/7Mr0Lv1BUQduROZ8QWk8EwM89+jEZ3AaXdr0IExGohs+aK4AUqwmUMFhm4PZbo15Q61m/cjT7vqrlufMbRxCCkARfTcrWGMtmYUY1++n6/CfzwHpx25Q413o8dzHceL4QzgpAGWuB3htS9987wW5xR6LE4MjpevPG5o8DgB0Jx9Oet27nJL+7Q/95FX7wuwxGln3mB0u9FseT9zjLxYdAAFyJpDYW1uvwH5WJPoBAASItS+GEikR2ALwDjxRdcHcLFOivkdGsCZWzFdugPgh0OA3N3sB/QpJy0gd/YKHDZf+/S+DpPUBfY/0gVwknBQ3Si/7DOMCd3+/PPPu74KQM2XA7evfdyX6wma+Mox5lmsWWwVXzqGvRS5Y5PBuoIm78vWaKqP4ycdr/Y5uaoOT1IdRT7j/RQXHWaltgGOIHdTVJ3nYnshd66DoePWsIsZ2+/RYHP52lcAzNCT6Bdf+hpwkHQM5j3zvTnpCb7GO2r8Ofrmk6O1Yb2fuo9cobBOC7Q45ClV11VrYvpxqltbqx1LclVWWtroMTAESX9Dx/hibrA2YQMdbL+PBA467L+P3Pe+1dfZ7FxEFJ3cNnLhfFWH51qi2jjXUM3ZPInMu50D7WvYUMQwEKBOE+kCxSX/tKnK5xihGH7QsX0V76Kfv/dREBgDvlB82AT0EcPUV5VUcqdw7hgTEV/kjpxasuHhpCN3orH8C0iDQ+qrEjTKHrkzFl8GKN8bpdyWVbKbWko4eBS6MuWq2/fiEDLnkLsvAATHHkADuXMdoAmGYFP5p6Y+IkNAJuTO/2euI3dfFHC+D3In0u+LxomxBDUdA/D3auTecbyMWyMXEccXmRKBdKsgzP04PDgQRAgokobxhZHXkuMMWV9Ed4iUQJeFIk40yBdzwqY1YzT4ir6Qh93Uemjr70E02u1cc94NKIjcYZU0ZXziuENhZVw41URvWnq2Oc4ihiLPJJICLRUAxFfDEQa0Qe5uVEnuZ/74og63tcx5PlW83Ypt8juOI1RajGlfKSOsC2RFviZ6HjAU8LwlUXf2ZFJr0Bk4GzC4MNB9pdCwHqkhgB4iRcKX3gSEcDuO8UDIHBuBOezmiNEHQBCKWQH4+XIKsHkYCznwgNXYE8zTpuwP0zh5FmsGueMMUisFENONtcgzAMnRMwDH6DhfepN1caAZDZ79aSqfnWtJOcAupO6BLxmynyJ37AS+D3swct9X3Z6Vla1hh49SoH+DenbvatmEyB195Wt/htqO3Omnr6gzY3HLzz8Qc5130EdSJ90aID06BjuQa32tXeYnBWBJiQFspD4R8t9XBmH/gUOV2H2c3tv2qDbX/6zwwHAd036iajfWqnBFvnbm7zB2l/2Xb05KkRvziBvpn6+aFQdK9v+f33PQYf8DfH3QRF+FgNjsoYqyGWKENlU0CMoNzjZOBdFUu1I5EW+7ara9sZJ/i6NoVywn4sb9bJQ4QDhCTUXS2BSJjgIONFUoiWuJpv0RGkipL6UIIo9xxybnllfoOQ42buTOvxh4dqVy5M43s6uV48QhdzYyHDmUOzLnv5E778Pxb0phg4zTP2j+vhQtfcQ5wrn9vRuGXVMUMPrJfGfTauq4MGRJlAOHG7kjMwAONkrmLXKnMA4bJkAU3wU545jbFfqRCf3CiPNlyNmyg1mB8cfG2tT1OLi/p0Fn9xmaXlNGDtEacjqJdPuKbvBMgB9opeRrY2ww/9BNOCCAi8xj5j11B5A385vvhDHMxg8ISfSMyAIRRl+pELwPHUVRKGSPc+J2HBTXsqZ8sXsO5BrAOXOjftIP9C5sBfQGcvflDHM94ycaBghkP5t1QoQWeaKDbaCJfYN6GwBggANEdGAwYBQCnAG2+HIYeR9sFuSOTiIC48vgtp99IOXr9i7msa99Et0JiIWeJYJqOo7J89nIDx2K041MAekAcpELeh5dYz+D+c6+y/4BCIiDwb/MWfZHHKGmKN8Y8QBjOAW+nEb6eKDzp91k3pyILzJE7ugXqO9NNfYB9jh0BroesIR5jr5GzzMf0fnodtYS9gu6iTmPA8oaoF8ALTj+vgAF+gLrAaANCjy0Zl/t92Q0eParqToCXAswCkAHeOtWK8Z+JvMX/YzcYWwgZwBs1gp6nb0VHYMs2U/Rt3bFctYVOp7vgs2E3H0Vv7XfyXrFhkTuvnQSfWvqVJGm5lRr/Y7z2pTdBViCDkXHN3Ut+gJgibUP2wGZAzzagTeAE3QatgwsHWwY7GlsH2ym7Owu+nTlDH2b85WyA7sqf/l27dywQ4W7CoxDZq2g0/mGyN1XgAR9xhgOtt9XAgcd9t9X/tbbWYS+8qjsLtqVaVGEvipRew7JPv6BBccCR+Gx2Ike0Njs7MrZGLkoYxZuUxubZ59wXjAam+oT78W4+KM0jKymHBOUGQoU+SH35tYJsDcxnEK7Mj/PwrBA4SJ3WAhsbOTAY8A190xlvikGDJskBqCvo/eQ9YGqxN/c78pG1FSlfTYTHAzmJht+cx0wvhP3Ep1C7sgKudtV4pE7641vj9yReXNrECBv5M4zmO9NAVkHqhJ/c+WOwdZUJBVnkKq8gFlQsZtyZHg3cxoDD9mQImJXzkb+/MY8Z35jePDtAZj4/r5qGniOCWAAmjw60nQkmnP8GPXM+T9Kw8HzxVqgn1Tlh44IldIXfdVzTMx1HBqMaoxknEK7gjPXoVts9gnAF44LIFNz2T9ETOkTBQeb6hOGY0vYXG31jXDofJ2SYL+XAlCsU45Q81Wo07OfyJj5BQAFGIdeYK6jZ9DtdgVn5IFDD1MK+QNeNdUAcikuh+EO48RXbjjPAiRh7vxRWnMivjgmyB1nGrk3t2guoJYNfvAM9DzPQGbIFieSuc1+iK7BHvGVSugpM4IbyJ19A7k3Zcv83owG5/dmffoCBrke+xEwAicQZk9zI+fMdRiHyB9dht6xTxpiL2QfRL9jG+HU8z2bayehu2Dt8J2Qe1MMOaLAfwQA3JY/DnlT9gNMEeT+6aefNrn/2s/FVoa5aVeIR78yN7FnsGXYl7GJsF8IrAFise+V1ZQrKbad8nZsV329+5nssIYASQBumzrOkj7hrP9eqZR/FN32R+jHQYf9j/AVJMuwak4OCwoTJYdDDUX+9zKSMMopjISixhBsStECFhAV+qO1po4ds/sLcozcMQSRe1Pjbatx4hCx8doGeFPvsYsXNnXdgf4dtLk5rAXQadBmUHfk7ota1lZjYPNkroNiM9ebQ4klEncgjvjZ1zGTS9rUBo0hTKE58tU4A91XDue+vn9frme9UTSO6CaF0HxR4O3nYrRyzNkfrWF4+Uqtob8AHuS+Y5xRaK6pc9Lbaozk+FLFnj0JuTe1TtGNzXWM2qrPpuc2deyYfQ8OO7n8OHnUFWjqO7XVGGCqUKwQUIUc2aYAwT+as27LBcfEVyqIfR3RbOpMEMnmKLvmgrKtKX8ARWoyQAsmRcLXaRP2e0n7gN7/R2vNcdpx9pjrrHHA2+YEitpinAAuyJy9Hbn7OvrXfv+BOjZvX8cLMNjUEaWMF7ljQ6BjDuQpFJ7jYS9F7jj+6JimGFbcS00SgnIH2+8vgYMO++//Dfb2ACec4x6aostxA+gbzgxGFfS8A+W4E1Vg8aL4oW82RQm2+wrd6Y/aiOISGWjKQIKVACUVpQeKjNwPhJGBrPneOIAgqijZ5swRvhNR6j9qay5IBdiD3AEfMMIBK5pKF2iNMRNFQIbIHScdufuqzWC/E8ObKNwftZEP25xINXltnC2L3MnVdDuGrLXHyZzlWDHYOND4qUreVCPyRtSeaOcftZH335wieFxHCgO6FbbDgXLcMeKZF+h4KgVDtW2qYYQ25wztpp7TVr+j08lpb07Ej7x+GCY4zMjcVx58a/aXaBepJeh0HMamatXwbiLUf0QA3JYLeyPHEjbViNqR106tAAA5ago0l2nW1LN9/Y5uR3443ugN5N6cY1r/6M4L87Y5evr/2DsP6Kqq7I1/qSQhHUgCBELoSG8CAirYe8XesIGo2AuWGevYFXVsMzqOjI4Ny9jGgmVAAREE6b3XBAikUZP81+/6v/hyOfe9+9IDb6+VhSa37nvOPvvb+9v7YC/RO9lzAiyUJnlhgFRG55zLWoLeqZWnFIqyiEAsLkocWAdqsw9MoPcmqE1zykBCcBC9k3iA3RmIFRHoel7/jv+E3vEjKYXy0v+EMUKZHAmLkNQNDYQAe934DuWegixeoFpG+wQABUYX0EmWA2pMIAMY7CtjKMmiEB2EdmbXkXm5DtS++rJfI7WFXjJFLPZQUDF+0O84xyu914vO7GMAfbbecSbQeyD6u30uoKc+REVxqKlp9xL4AIzZDf5wpsmEedVHMHqHHsmYBbigcwIEXp6PwAI163XZsbD1gGPs1eEHTND8CtYAmTMAGrT2qhToxGT/oUfiXNB8DvpjILohzwCVFWptfRAAeKAGc/Z70GSOunYov9RtAva9gIpg9MBYJ8tJ1tDet5k9qb0IQRwvgR8v16ruYxhLXrJ4NpADQGLTsU1kw7yWiHl9DxhqbK9JUAz6NYApUP8X+9qwHupyINZ+ToIkZEW9jFmAHAEjgBzN/fhW/hrTedWz8ziYUuidIAnfFjvoJTDDPKFmuTabtnp9Z/QGU8eLYGthOjCeaAxHfbsXBpmXa/seQ8kUayNJJpIjBBa8JB1oROeltCXY56mO4xlPNFT0IrBj0Ds+HgwTergEytJ7ua7vMZSL0CgUvUOnJ6DgNfhbV/piBPvOB/rxIcBeR7+wlzpf30envghwRx0jCyWTHzBTkWg1NDFomSxOLFQ0c6E2CYAUqBbTfia7cUl9WOB89Rhon3bfY9ETwA7nC31Rr2jr3QvAcw49IpmUPNh6Jwpr690LcOF66J26Vhyg+iJky8lyeKWishAx1tE71C4cQvQOyyRQQ0aTThjfUNbQO3pD1wS+CMR4DX7ZDQABV/VFaBJHNtffllK+74JTx37QUOqoFcXZhREEoKnIeKe0A8ACOKIpEhkH6JFestD2c0HZh75dn4T3Q+9eBRBDJhu9A+oAdzh5Fc3OUDJAXSUOI8wn6Mg8k5esi/3MBG14pvokUIAD9XDwfR+AHY396GFiN8+CZVORrcawyzCzoAAzj7A5fD8AUqB6afuZWOMJkJD5qi8CI4ngW6Cmkvb7EOwEYABoeF9sFAkM9F4RFiHlPYBEymv4jth27BUBAa/bsAJ6Ro4caa019UUIQhAc9MKA5J3QNeMdvcPow86wlSFrQ0VsO+sowQDKfLAxMOPQO00UvQa/KA/hpz4J/iOBTK99QmDvoXdsMv465UfoHX1VhEWIbSAoRXCdMU9fDuZeoF4Yvjqua/0Z6tP3r+5nDQH26tZwJa4PAGTBCqZeGsAAyAZ8AP6IrGE8WKi4jt01G6OJYYbmTXYLEGR3iuccFjMMiA3+g3kNmoJgpMk41kchwhzsllDoD70D/NA7OkXvLHawEnBcAH/Qzuwu8QB0zrM7xfP/BETQu90FNxj9cW/0TqO7+ihkBvxtkWZ6JyiVjDfenaAJ+qWZjq/eGev8ngCLvSsCerc7xRMYQe/2WA/WQanrpQf+xgIBIbpR+9veynQ+TgZAEuea7AnXwam2t3/EfmBv0DuOLmPS7t6Mk4IzQQYTZwLQDwgN1iFnX3J/e8fX5TlAvxL07iW7Z78H4xdWBCUXZJ6gV9KQEaca0EfgiqyVHbQCJAJYbMYIgBEHGttmbytGxsWrA81z4BDSgIhnqI9ClinYngysh4BswDY6JCtmd4hnzNpds3Gwse2Md7vpKLbJbgYIUwe6ezAMOlvH3B/QWJdLbfyNB7b6C9Tg1Xk+4xbgAQBB7/gqBEsY59hrfBrGOuOXucF451uhI/QOQ4p1GPCD3gFDwQZbYBfRMKw+CjaYYEmwTAVYbNgJ9M7axnqIfbd9EnvXG9ZNvglrKfYdv4dvRiAd5hx6B8Byf6/BEVvPdC8/9thj66ParfGJjfS3k4npxVgT+SHQAYPT3rUGvwS7jk5h0qJ3xjX+Ov4PercTdmAG2LmAfvQeTAKD67AmEdgKSd3UQAiw183vsu+pcAZwyLxQtU2vwsTGmAJOmOB212wWOITFDiDJxLY7lgN4KlLPBBjCwGPo7evXcfW6Ph7GEvDopfbRdBGcB1vvLGiAcbtbOQYXvWN8fTuWe82iO+/HdTHwGHq7+3991btNQffawdb5noxzu0M834Dxjk5wpO3u/OidIAoLIPcJJiDmez++r10aUV/1zXOjD2rVoPN5oSma3tUGM3ZXW8oXGPfYAa6PngE3OH42cAkWoNv3xZFjv16a4tVnwal6+umnPdWcmt4T/aJ3bC4MDwIidgdnjse2sH5gwwCY6J17VnS8Uzd98803W/esz0K2nABVoGZ6bu/IvLc7xBMk5P+xNax/2BjGu9052+5YHixQtO8N8IcqTmO0+sTeMekOBgd6r6guABQEP+zO/Nh5u1s56ylBcbtzNmOegGBFacaATvQO+6c+C0EkGDToPVCPHrf3ROcAQoLi9o4Idrdy9I6dwb4DytE3eq8Is5P7Y1sIksASrM+CT01zOYJUXvreON8VnwWbDlPB7syPLbDryfmu2HH0TvDK7hRfUdsO0431lHuGpO5qIATY6+63KfdkTEgApJd6sNp4JTIvOI4H2tYPZMDQu1eKU03qHhBqA0aclwNFWIwAF4D3ii5A1akLAl9kIdB9fXeiffVERuSFF16wgHtFAnbVqXOuDW2QWnpq1g8koXYUveNY10UBLKJ36n4PJIEWDZAJltVTEzrAtgMY+alP5U2BdAN4Qef8eC2vC3TNqvw7ARhb7/WJAh9IB2Rebb3Xxk4rgZ4PoGizhwIdW5/+TqAUFpOXHaBq471g7hAgqQ89MWpDP3XtniHAXte+SIDnIdOOg1HRCGZVvy6RV4B6fatVD0YPAEh0zk9FoqXB3MvrsTQABDDW5a7YXt/F7Tgi9wB3frzWklf2nv7Ot5kM6J3MzoEqdMkGtHvZmqkmdABzhIz6qFGjauJ2tXYPuiajd5oy1QWh5AG904DoQBbKMfiB/VEXhGwXoJGg4IEq+C8ASPReF4KyBGHp6YDeD+Q1lSA4eqeWvC4ICR4AIz8HUoDEqVuYTWTbWVvrgpBgQ+fYmpDUHw2EAHv9+Vb7npTslw0gofbWhlAnZlMxa+P+tXFPKGW23mvj/twTehqA8UAOkDh1S6mADdxrS+/onJ8DickQSJfUlgMgvexNHOhaFfk7Yx3ASHb3YNI7He/RO7tW1Iawswd6p2P/wSIEB+0MZLD1tlWlI/QOYKzvJQfB6IPSM1vvwZxXlcfaGXWSDweLACDRe23ZGPRsA/WDyZehZwvAvbZYPfjttt4PJHbgwTJvQ4C9Hn9pauWoGbKbZVW0RsmrCmhgRP2Y/eP1vAPtOPSM3u2f6s7+2vVjLGx8g4NValLvZNN9x3p92KqtusYFNb/Un5L5rW5qH8wR6kbJ7vLvgZztCvS9bJ3zr9ctvwJd0+3vNBry1XtFr1Pfz8PG0MiPH5pGVbSHiVc9AM5p8MUP27MerMJaauucf6sz6042HX3T4It/sfMHq7AbkT3eAfHVKSG9/6Fd37EeTOPRinwf/EZ7rDPeD2ZfpiL6q0vnhAB7XfoalXwWmjhRq2R3C67k5azT7a2u6P5ZX7uPV4Ue3K5BPRg6t/VeFY4GYJHsIrWLNHo5kKliFf021aF3HArGOXrnhzrSkJTXAI41GQJ+oLNWtFGi71Wpn6N+kcg/3edDsr8G6MBv6x3mQ1XI0KFD92VbKDsIyf4aoOMywRJ+vG6/5k+PNAqk8zm7eRAkOdB6vlTFGKKRma1z/q1oc0rfZ6FxF/q2f+p7c9aq0LPzGvTpQd/sIkFDxqpgb4b0HvhL0aQPndtb6QU+I/ARBL7tsc62hiE5MDQQAuwHxnfc7y0wtvYWP9D9TD+cRC0uTgT/+v7wO4xtaGELboDYW7m56ZzfQ0Uy6d3+DoD0kASnAd8t9Hx1zzyw/98e387xbm/xFnKeg9M5R7MfOAFC36CV738D6O0AiG8wxP5vnAqCUyHxrgHG88SJE/cFCU2652r+9M52fAdyHwbv2vR+JFR5smGsq9Rg+/5r/zc6hRUCE8r0LzuohCQ4Ddhb6Jn0bn8HN33ze+ZBqPt1cDrnaLbCc45z3//HDqFftx9sfEjvwekdtiZ6N9kW+3dc0Z/eAev1dfvH4LR18B0dAuwH6DfHmGJc/QHHQIAd4Fjft2c7QD9v6LUcGggB9toZEpUF7Gzfg2MXEu8aoPElTaNsVk9FADvNhkLMHe8650gcZpp2hQB7cHqr7NFsA0ete0UBOyVlbNMWkuA0UFnATqAkpPfgdF4VgJ3SmoO5dDI4jdevo0OAvX59L79PC0C398GsqsY5GF0WPKjx7HEdkpAG6oIGoMRTX0p2F2eO/XcrK4xvxjoAkvEeosTvr1HoqYD0zz77TB9//HGVbHfYr18/qxM5NdT1ff/dyo5Bt/Npusj2b3SS//zzz6vkNieddJKld7Zro6FiSPbXAACdelO6O1dFoyjKbvr27avevXurc+fOB1UzRa/ji6a68+bNsyjCv/zyS4X3Uve9H3Xq6B1GD3oPJSL2/xqwodA7PUvQe1WU94X0HnjU48Ogd3QONb4qhIbQrKXUrB/Iu01Uha7q0zVCgL0+fS3HsxKNA7Tk5uZa2ZaqAC3+1MEepRhgMu8HU2fPejxEDqhHpyEUY50xz3in6WJ1SXR0tEWlZJwz3g/mRi2zZs2ywCI/n376aXWp3Loujgb17EceeaQFJA/mTAH6JjhC07kpU6ZUq94HDBhgBUxsvVfrzerwxbExOM/8MO6xM9UpAHcazwEiobIerIJNt/UOaKlOX4bALD0E0Dk/B7MvQ18G9E7DOYB6dUpI739o1x7rBAMXL15cnWq3/Bj6xNjj/WD2ZapV0TVw8RBgrwElV/UtQtu6VbVGQ9eryxoIbetWO18ntK1b7eg9tK1bzes9tK1bzeucO4a2dasdvYe2dasdvYe2dasdvR8odw0B9nr2JVetWmVR86C/1wWBQkxW7GCOUteF73AgPgNOtL3/enVvnedFf3Tvt/djP5AbdkH/ZR/wN954w4taqv0YOpizL/ioUaOq/V61eQPo7uid7fPqgrC1HnqHNn8gC7sd8LN27do68Zr0F2Bv8AOZyor/wj7g6L0qqNeV/XCUKhx33HGW3g/krSQp8UDv9MCoC0KjV3tf8AO5pwYBEnb5YG2tC5KdnW3pHVsTkvqjgRBgryffijoXgDr/1kXBAADcQ5226+LXqV/PtHfvXguo41zUBWfOqT2cO5xpwDsd/w8UgZr3wgsvWKARFk9dk/79++vaa6/VRRddVNcerVLPA/UdvX/wwQeVuk51nXzWWWdZeqdE4UCSSZMmWeClKmrTq1ov9M8APPIDpfVAERomonN+tmzZUudei7I/W+8HEoCktMPWO/1f6prQTZ5SqKOOOqquPVqlnocdDv773//q22+/rdR1qutkqPIAd/4NSd3XQAiw1/FvRPfrRYsWicx6RYSsIPunUz8E0GAR4nd20xX2PCV7STYTcAT9OD8/v0IOO+AF0M6+jwcSkKmI3kPnVEwDgHTAOmOwIsI4T0hIsGrO2a6NWnS2JsQBxlEhGEDtO9u9Ua/KfSoaFGBeAdrreyYMXfzlL3+xgDqdmCsi1OF26NBBWVlZVtM+slToH72jb+wK/QfIYvKN6UBc0f2Vjz32WCvze8opp1TkUevMOdQvjh07Vq+//nqFngl7Tl0iNheHF5YTAVOb/YFNZ/2gPhjHkXlFpqei43348OG68cYbrUZG9Vmo1QW8sNd0RQT7Qvdr+rkA8LADjHXWPAJdjHdsC3PJ7i+D/isi2DEA5BlnnGHZsvos9GJA73R9r4iwzSxbQDLO2baK78BYx5dB7wQDqH0ne8+YZ39rmvBWRPi+6J2+DvVZGIsfffSRpXfGZEUEncOkpJcLdp01lrGIbcd/xM6wjtLo2G56XFEGKOsIALK+Nx9lLH744YdWVp3/DlbwWRiDBOvQO3YdW4Dvjt7xY7Dj6J3AF4k85lVFbTuZ9pNPPtlav0NSdzUQAux199tYThZOBQbRq+A02F2uWeBY1HDacJiZzFwLgG5n0DAMGAEcDhxAnA/OwfjaDb6CXfS4b/fu3UN7QXr9aKHjLA1AF2Of42CEhcxuhIjzzLhmvOOcAERZLFncAOs4dswPglb23uuMd/7GooeTx1gPtuER7JL66mDQ/IbsabAUyUGDBgnKNPt50+UdIL5gwQLr+1GXisOGvUG3OHfoGUcbYAnA7Nq1q3XO5MmTRa081NhgAfwjjzyiO++8M5jhUmeOHT9+vAV+ARVeBVtNFmro0KEaPHiw1Wmc9cEO6OK0ARLt9QIwQ9M+1gMcMQIqgG2aev34449W1ofsD063V8F5J8hw9tlnez2lTh3Hzgb//ve/g3om1kO7aRPBaMCivTc4YxZ7g61hXcXGYF9wrgE3jPnMzEzrHAImzBECNQsXLgzqGdi//corr7SuVR/l5ZdftuZ5MMK4xY/g3du3b2/ZbkAJ4xz/BLDCWGf8onfGO98KXbMmoCt8G5hDBAjRe7CBE+bayJEjg3nsOnMs9vXVV1+13j0YIQCNnaAUCb2zHnIt1kbsOr4k6yq2HZvEWop9x+/jmwE0sf3YJbt5Y7C7Fl1wwQU6/fTTg3nsOnMsjJ1x48ZZ7x+MsCbyg95JBMCKYH3AL8Gu49MQgEHvjGv8dfwf9E5AhbWVc7AtBGZpmhkMdmCtuOSSS8TaHpK6qYEQYK+b30Vz5swJalG3JywOlQ08ANwViXSy+AF+cDYwwBgGDDaLnVcaGwaFxRYwskpfGgAAIABJREFUE5KQBvxpgEWIZixeARsOAgAEhwznmEWKMc/5wSxQ9jMxvln0cPKIaOOQ4BjCavFaO8/5AwcOrFdZMLZmu/rqqz13wga04EgNGzbMAilkbXDCAd3BBjnQPdlhIvtksYjuk41455139Pbbb3ueMGR9//GPf3g+vi4cCJvh7rvv9vwo6Of8888X1HS2uiK4Qff4inaOp7SAbvDU7AL6oeIDYsmAepWHH35Yd911l9fD68RxL730krXTgVdhPvPDVmAEOQiOALgrkiEGTBIwYcxzPWwO34/ACZ26vQgO9YgRI6xvVl8EkPH4449bevMi6IUg4GGHHWaBEPRu+0L4M8EKOiPIAhBC79h29E45hFdfBgB1++2316udQmCRvPLKK54ZU6x7BAHZLYIMLmAPvQM6K2LbuR56Q++MV4ImrBMTJ060AuhehBKca665xsuhdeYYgqA0DfWa6cYmAJCxyfgw2BjANvryqiffl8ffJsCF743uf/75Z8u3Yss4r0KghHU+JHVPAyHAXve+ibWIe91OhmxV69atrcgbAANnwivI8PrqZAuI3rHtDJkEKK1enRaeL1Qf41XTB99xBJQY716ANhkrov+MQzK5BJAq4sQF0rKdkSQgYFP0vTgtOOUsvvWhadFzzz2nG264IZAqrL9DUaThGw7vP//5TwtQ41RUpRDgO/fcc3XxxRdbjh4Zueeff95ysAMJoIoxVB/ksssu89zM7/LLL7ccVjKLNAAkmFHVPUwIUhEMILNCphJQ6zUAcumll1rjoT7Ivffe6ynjRTAQKjRlFwSpARgAjWBYCF70QRaScUvgBMBOEIZgjBdhDDEn67osX75csGAI7gUSAB4BJIJTgAwAtVd9BLq279+xLQBTwCDflqCjF1YXmcwxY8ZYvlZdFwKfXucl+kDv+GgEs7CjrHlVLbCw0Dtg0i6N8JJMAtA++OCDVf041XI9dI7uvQiBEfSOrwC7DVAdLJM10H2wZdgYAmCUMaB3GFVehCDLHXfc4eXQ0DE1qIEQYK9BZQe6FUD766+/9hSdA7gQOYZqBAXHa3Yy0DME+jsgBhBOFBbqDfTXQEKmPtSNMpCWDr6/4xB7yRKy2OBY4NQReYZaWpHoc7AaBoAz1qEF4sSQJfJSj8ZiXJepq1Cxn3322YDqYM7ipKL3ytRaB7yR4wACA9dff73Vnfyxxx6zMnSBhDo/skJk5eqqkDX0Mt7JbqB36JB8J69OVmXfG7o9QRx0+Oijj3qijjPWAbR1VQAFt912m6eeGIw3fijNwfH2mvmu7LsD2k866SQrG0q9sRcKM4Ad4F5XhXH+zDPPBHw8qNRnnnmmBdQ///xza6x7AXIBLxzgADswg97JRqN3L8Gwm266ycpC11XxChrJxNIXgQAEeidwURPN6FhLsDOUU7ErBnXegRJMjJEnnniiTgfCH3jgAU9BbIAwekfX6H3q1Kk1MpTwn7AZfG/KgrywqVhTn3zySavkISR1QwMhwF43voNFz/JS4wX1FqoLEf/KNG6q7GuTISBaipMBdSoQBQjq8qmnnlrZ24bOP0A0QLCHcRNICErRiAawzHivCafC+UzUYDPWyezzzF4yEMxRnr2uCXPw008/9ftY0EjJjNHU7f7779ff//73WnkNdPinP/3JohJDIQ/03Dwkmbm6WIOH3Q5EwaVuFLo85Ug4gDUF1J0fF4cavfO80N6p/fUnPG9NBYyDGYjYGN4jkOBEwzIg+ExvgWDrnANd3+vf6ZBNuQkAkhKFQE3C6moWDCD21ltvBXxtMoznnXeeVd5BWYYXFlPAiwZ5ADXYlJrwA4MF4B5ILrzwwjq51SHBTcaOPyHRQkAQ3b/33nuiLKo2BDBIHwzWdvSO3Q4k2MS6uKZeddVVAVkkvC82Bh8CG1NbQU70h97xaWDKeSlVgeHAGhyS2tdACLDX/jewIoxEvQIJ9W80o6DOxWv0H6AM7QZKF5lKsoZ252zuZ3fNBnCzYEJfI2vvlQJodykmuxXomahPI6IdkoNbA14y64BGaHqUegAYvDpzjHPOJSrvuyuC3SXe3hEBZxi6td1Ex8sXYR5RG8Y1GO+BHOq6lmmnXj0Q+KZ+jawujit1m+g/kNDzAsojgBM2AuUzAFRKafgb5Q4E9ijzgSZLIyIcS68N18jAEekHsHuh8UMthNVTV4R+C4FAIKyHp59+WrfccounzCTvxljv27ev5fTCBKF/CQ237IwI5UvYcuab3SGeWkYvFGWuTzbxqaee8vRMfPOK7mRSHd+Jd8SRDiT0QAD40iRq2rRpgQ63/k6Aggyl3Skeu4CtoayDgCLjHdtCEIMxj15gwXkJNlL+wLaFhx56qEVrDvRMgHzq2uuKQGdnzPgTwAt6Z5xS74tN8CIwP9A745xrYOe5BqAb3TLe+e6USWFb8EcCzTv7vpRBoXea1rFrQyBfhnmKzasrQr16oK3D8NVgZVAC8Oabb3pinfB+ZGUBmugfu87aanfnt7uVY9+pwcbW8D35by9CUJYyKOYIeg+U+GH9qktbB1MqFihYSfkFeic48v7773tRi+Wj4+tjV2ElYHPw3/Hn7Z1X8D+w73aHeBIJXkrIeACeiTIomERenglbhI0LSe1qIATYa1f/1t3JpPgDJCxKdKEGRNOEJVC9Lw4ExpVFCONGpgSDyj0wiDjhNiC3u2bbHeJZBDkfg2t3qQxkRDEmvXr1sgxXoLozDFBdWujqwOc/qB4Bh4qyD3+Cc8B4BxQDNPwJixf0cxY16nFxIADhdqd4e1cEu0s8TjXOBosfjgcAB2HRY7x7KfGAXgZAgjob6HhqYeuCg0ENdCAKLZF06pLpihyoFg9ADJCGZgdooFQB20TEHmcX+4G9Qe84GegZRxu9AewBJDjT1O5+8sknVg2fP+EaL774otW0CyDmj53BvQJls2tq0pHN8tdED7uLE4puqFcPlPFg7BFUIQtOQAhKJfOE5lB2U1DbXnNtbDM2lwwJATCaG0FXZs0hSOzlftS1A4DQu7+1gAxSsB3Yq+s7UP/vb01FJwBdu5N2IFoumSlsEjq0O74DMuyO5dyLa2CPsC/MeUAl3xXAg32i7wNzBBAeKGhCWQj6pr713Xff9asmdnmoCyVnjL9bb73V77MSYELvjD+y6oGEYAp6x2agW7t/jt2xnPFod4nHT8J/sTvEUzbItyDgS4CQYIK9O47bfck8YycBwGT+/QlBRMZRbQtj5IUXXvD7GDT1POecc/S3v/0tYL8PdIaPhu4B1KyngHDmCnbd3hUBXeI/Epi1O/OjD4Am3wW9s0YGYujw4IBHfEj07s8msW577bFR3d+FwHagdeuKK66wWAHYeNZIf4K9YF1k7hOERecEV7C9+NbsimB35wfQE1zCvmNb8JlYW7FJrAcEZgMFnZgr2Bi+IXr318kfLEHfm5DUrgZCgL129W8BXH+ghAmJ8WTyBaptY9ISgWbhwrgCJgJF/0yvT1aMCQroJ4vA4ojhCNQID2ODsWdh9Ffri9ODcQnJwaUBxgRRZn9OE4CMMYdT628BYbGyI/8cx6KG8xwouGTSOE4Aix7AH5DDXGOxJGPjJswPxjvOBdkzN2Eu4SwBOGtLyLxQM+jvGcm4ADJwnPyBXRrYsMgDRAESgD7qH3EmghWcd3QDDRhd44jhOPjrT8D+6w899JCVDfNH54TOTyCgNgWHjsy5mwCi0Tv0yEDMAWiMbOuFMweVlXfzUodoujf1wpRG4MCz/qB3rulPeBdq8NG7v+2K6HUQ6F2q+5sEogYDROiRABWXsetvXhBwY2svnFqCIwA/LyUxzmuyJrPuMebtJonMS39rOnaJ8c7coAGjP7sJ9R8nv7YEEEfAyd/chV1H/e5f//pXC1S4CeAPe0UWEIDIWkCgI5D/YboeGWHmDLYaAA8InzBhgt9AK4ATvRPY8hcsYUwQzKrNgCxBIKji/gTQiF8IqPenQ45B7/RU4Pugd+xDRWw7wB0Aju/Kmkq5J3r3x0qjKR165zlpCOgmdaEUJFBjP5IB2BjmBe/jj13D+MTGwN5jLQBsw6INtk9P88yW6tSvi1o3yVKPbl0tpgl6D7RlK+sv6zqA3J8vQ5AYZkxIak8DIcBee7q3Fn4WIjcBFOAk4ST4oxtiaHH+MIZcM1DWL9hX5vosYmTmcdb8NWfBaQD8YHj8GWcMeV2ITgeri9DxFdcAC4c/qhwLPEAcR8mNik00n4g1Y4dAF8A6EDU9mCfG+SIQgHNHRJw6WLdnwaEmy8l8g+btJrXZdBGHjiyJm/C+ZLpYqP1toQPIgCJPLT8OCBmDqtQ7WXoy++iTzBXAz03I6kPj43gotW5C/TXbj9WGkFX3tzUOAIJaRhpz+WvOhTNF0zTGIAyDqs5gU0MMrROnmuZ+/oA7FHkCEAQP/G0TxDOSba8NQe/+6pBxTCkNgbbtjw3GGCOogQ2AEVSVuyIQvGO8042eQCNBL39BEAI1rKmUTPibc7WZ8aXXhT8byA4QAC3ewc1/wLYD6AniEYxC7153o/Ey1rDDAFL0Ts00enfbZQTbzngH4LKXuZsQYP7zn//s5fZVfowXRgPzFWaCPxvDWkqzRVgMBLAA1oEYIP5eJqtVG7Xs3VrrZ6/Wpg3r1bRphtVUEJ+PQCN6dyu5JJFDuQHH+WN5MU5qy8aQVffXtBWGB++Ab09Q0E0I4GFjGGswzQKVNAQaQD0HH6ut7VYpf9t2tQrPVuPSFPXv0lepKcmWPv1taQlDh8AO89NfMA1bRBAzJLWjgRBgrx29WwuBv62IWKBpnoRxcAPgZN/tqDqZPq91QxV9ZWoxcdjJwEFJdctAEjwg28/7+XMwMBJ1qda0onoJnRdYA1Dj/G2fgzMHO8MfxYxxxXjHiWa8BxuBDvyUfxzBs0A/JtuPs+5WZwk1DTALk8UfTZugF9TOmhTsAc6vG7giC0CWmgCJ2xYuONE0oMPhxikHNFanoKN77rnH0juAG0fGJFC7efabb77Zqj92k9rI+AZiNNiO65133mnVbZqEsUcDOpxpMmg08qpOwXEkSwszC727ZX7JsJDBZlz5q6/G6QeU1qQEynqx3sAg4fnd6Kk40QQxWOPoYF2RbHow7wwFmwAIc5BGbW7MNBqd0R+C7v1u6y5BdeZxTWd8A9VPE7hiPPPsbv4AYwUAhh7Qe3V2iidgQjkPLBwAlT8mDsEywCtUcjepjT4CPBPj2B87E9CIvtki002w68x9AqBe+ih5Gdsnnj5KpQmZWl7wq9JS8pW7dIO2LspVZESY1dyPcYze3Rqv4ftiGwna+GNR1cb2hoEYDYB1nh1w7DauKDllTuDPELT1xybwom/7mEuPvVjr8jKVlx6hzVEztS7ye2WXtVHansY6ptcQlZbstcqz3LLorL2UtBC49ZdI5P1IroSk5jUQAuw1r3NrAQDMutF3oXGRCWDxcqMwkWUEPBMN89q0papelYwdAIQMhVsEHGOE040x8pctBezUtINRVXoIXcebBljk/NWl4SQTZXYLYJF1hzYGJRSqmNfGKt6ezv9R0DOhquEkM95NDjXUSMAAgTV/74nTWpO0VbIm/pxRwDD6JHNuEiLpUHEBXyzk/koEqkLXvtfAkSTaTwYdB8EkZKl5Nuru/WVVazLjy1jHAXYLTmG3cUTZF9xtr2SYA9ATCVx42dKuKnUPQIGVMHr0aFdHH0eZIAJZM7fMMOsDY6+mxnugrBdjhVpv+jS4gRxAMbRcAkA12cWZoB+Nt8hwUp7AnDQJ5QgEzf2xRnC63eZzVY4T+1qBGA0AY4Kx6N3Ue4egIf0GSD6gd3+U3GCfPzW1sQoK87XHpXEm/QXQO03r0Lubr4X94W/0AXGTms74YhcIgrsJ1HJo2G617QR30DtsB2xsVQZIrr/gei1+90uVtj5C+amZ2pmep/Dk2dqxZotyZq9Xi8zmls1mrUTvpmw7iRxsJIFKbLybUH6DD1kTAqMBvbslxvBheGZske+6W5pQppSIVG3flmcxZgl6QlX319sk2Pfp1Lmbuu1JVM64p9Sw77Ha1fpEbU3JUn7LNVoaPV5dIrqrdVgLnX3S6Rajzi04g5/FGsB8dfNlwCfMiRBDNtivVPnjQ4C98joM+gr+GkJATaR2i2ydqcMpNbHUwRElhiofiJZKky2MH8ADYEzGjOwhixRid82maQ6N6cgseMnUc02cA57RjS4IsOee/pgE0I9Z0ENyYGog0HaFBHZwnIhIm+q86KPAeIea7o82amuP8caCQhQboM98wiGGFgjgJ3hEoIy6PJwUMuNeAgCMZWrcmbumvhDUqFL7Zzddc/ua1KrhnFa3UCdKDZ2bABZhKEBxMwl0UDKu/N1LcyicJn7s/hR8N74FdgagD/UUEAttlswstaT0xvAnnE9mi39xckwONaARp46AiRuTgIALfTVqoo8ATrBb1pyxSACTunU3yj8ONhl4+gQEauDJ+zCeYBswPinjoIzK7s6PTUfHZIlp/EQAGEfRX38RvgdOGyUP6AyQaxKotgBc9O4WeOab1USDKNYwWAFuZWPoBXYIzrapARa2grIA3oNscaA+GIxHe8cWgtI0iwJ4YmewYZyPbWG80g8Du4X9CiR8d4I1zDe3zCJ/Z075azLGGIT2Xd0CS4GgkptgD8moYkdMgJDgFXqnN4CXUg9sCkFPfAbWDOw8IImAKaAPX4j1hjIDxkJpiwbalLdREdvClbNovdasXml8VAJsNHKEPWQCweibABXzwV8AlN4aZI+rWwCw/jL+BHbQDxl4k/BdKH/iGl5o2MwfvhVBOLLf+JLYGPTOesr6iX0nebNrb5l2f/ebVo+9y7p1ao9eKh0wUntbD1BuWr7i02drw/Q1WjV7qWXjYGKid5g9TiE4hd6hn7tlfDkGJhJ+bnUL+vIXPBgzZow1332BeIf+XZSfXaTG+Y3Vo9Eh6ndoXysQ6qXEBpvOeOIdsev2rgi8JzacxB++Oj54UqMMrXv4cW36+v93mwoLU5ND+yvsyNHKSWmvpY1+1c7EX9RmZ2ud2fsUbduWZ9kQE0sRZi+2nVIPNywARvFXQlfd3+JgvX4IsNfwl2cC+GsCQWYd42eKbgG0qfEEWAdy5gAXRMAw3DhtgAwWTZw4It32RMXQATZwOHBccD5YBDGgGAK3Gi/UhoOCs4iD4hbt5e/cz19dDHVl3DskB54GcHLcttbBASPog9NgCjzhmJF1wqHz1zcBIMTCz5jHiWCO0YiOBY2xaXdWJdgFyMHZwOkGOBN44hicDZw8f2CG+USmDuBj2pIMRwZ6JO/j1jCvJnZJIBiB8+8GEnAsmHNulGWADQsyFFV/lEu+Hc4hlF7sCyAc0Iztwn5gp7AzfB8cDhw/AD3Anuw9QRqcG3+UdmYEYIt7kHU3OTrU3pFpwTa6BTCp74UiWp3C+wCg3QRQwtg0NaJjXNLgirHor/ada1Nfzbche4ndpR4XhxYABcsDB5rgFAEr5hhBMSiMrC18MyjHPEugfd45hm+H3k3zgqAD88ff8xIgYCxVp7Ddn1svA/RKRhq6PM/iFOYj3wMbE6jxHsEJxi5gHeDP/LI7xWNr0BE2xu7Oz9rLmO/cpYuSEhOtexCw8UezZ54wlglsEdgxCQCYgL4bq4RvDoip7m2YYIG4BeOpRUbvBFJMNgT7hN4Ba/724GYMAzDJTGKveW/GOfaauYStw8YAqjkW/4UgSveefTVzeYom5r2ttm3DtCl3nTJ3t9D2eXlavXLZfmrFLvE8jCMTiOW6lAbRZM5tr3OADsyU6haym26sSuYa5Sro3TRnCUxg+5m7/mw7ayn2Av8NW4Ld5XjsOrYeO4ve8QHxHaGCAyx79TlcM6+5XDmTynfYb9Srj0oHXqvdhxymFbG/KSFspVb/uFQDDxtgBUt4HlMZDskcglR33323K3iEJUF5Q3UK+nZjenFfWEf4FL617e37d9bslNn6at1nuq3ja+oWP1Bfj39E+fnbXB+VgBR6Z34Q8EMn3Bu7jk9hBxPBAgB4u0N84waZWnLLZSpYVr4BblhEhAXcdx85RnmHZOrXqLE6JLyzBqf1U0Z6E6u3gSmYBmOEgIG/hoYAemxhSGpOAyHAXnO6tu6Es2+KJvI3JghggoXdKYBqnAUmrr/OsgAXonJkHchosbB53VPdvif3wpEhooqBYIH0B5gw6mQWAGdOwYEhC4YT7wbcQln2Gh6ENXQ7xoybM4YjzbjA+TFlTu2oPvQygJ9JcEgBIxzLokZ0219nebfXBnTgbODoQckkI+ZWxsGxOGYAU1M5CHOG5/EXiYd2i2NeXYKzjoNjEpw1gCFZVNN8xOHAaSDr5LZ9JM4zFHmCFzRkAlgE2n7P9Cx0KcfR4X44Dv62jSHTC9UXx8yUJeW5cRzduthiF7FP1dkzg6CCGxsBxgI6NYFXnF5AJ+POn8NPAzpq9jmezDXBjmDHu10/SRYWh56yA+oo3YRvwhzj2U0AwK7VdGtqRYbV3/UrOwcAbIATt0wQGVwYHibWA3Oemm8YGm69Eng+AiR0OGfdJijFGo4kp/y+5z1NtnILctSocRNty9uq1PjGWrdmtQrztyuWJpnHdVfhpu3q06q3unXpaM0V+3ub3p8gOs9FUND03GSWCaqhc7e+GQR0cLqrSwjAY2fchHp1msaZgiQE1pjPZIDdnp+kASU96J41gCSHv6Z2zuc46fRL9MN3x2ve3HC16rpeGT1mKr3DKq3MXaAWRS21bcEWrV1TPuMeaDwAHmEcAdzcmrIxFgH/1SX+suv4bOidgI7JHjMXsdmMHbedQLgGc513JXBBgMnrXva880UnX65194xQ0ZrVRhWkH32qtve+Rbu6N1SD5Fla8tVcZbfKsrK1jAdTQJZxTIafgIlJsOmMRex/dYm/7Dr+ALqFSm4nwtr26qRFGYv16ZoPdUbqfdr0n9GKjpZOPvNH/fjla/s9JiwwAi28C3rHb/JaphAbG6eLjjhLs0ecqbK9e40qiElLV8NTbtLuvidrgt5Su9QYDU4coA7t2lh6N92LABYJO3prmISgQnUHwavre9bX64YAew1+OcC2W1MtIpQYU7p0OveEJXpM1I1MuRtYJ7sH4If6CzgORDf1+to4ujjUdlMtNyce0I6xMmXaiU6zSLOAu50fyrJ7/SL15ziyL251gYx1HGmTw4bjRGYdJ81tSxnfBnRkugLto+xFazjfjHWyC/4azTGemY/MZVMgCwo/gN+tFtVuKOnlmYI9hiCCHZ03nQvYxbkxda/l93wXty3g0A8OIU25qHGDdl8VwvPi6JKR5F/shElw6gC+BHpM9GeyzIAYt2wrjizZ+uoQQB+ZIpPgjPFsZCNMrAcypYAz6k5NYjurONPQbv3V6wfzbjjCUJpxyGFduDEy6GNAMMv0fjwbQIoMvtt4p14S8FUdQlbcLSDAHAVomxoqMod5988//9x1vPHdAL4ERWAlAIIA6e17dFZRw2IVRRdp9e4VimkYp7mbf1PLxFZatm2xWiZmq0VMlpqty1DTJj21IzJDy/dMlmJXKnVHI/VI7arBA/pbdfI4w27BQephycab6OIE7/l+bvueE5hhPldX+Q12wI2mTMaTbLepQSU6ZaxhP9wAuG8DOsaOCVwCUpo2b66iwiLFNWxoBZP27N6lgvx87dy5Q1efM0pb3n5V+ZknaX5eV/224RDFJhYoe+gPSuu0RHs279LOmYVatax8th3bj975LqZmYLBJ0ClzwiTMA3+Z2MrOAX/ZdcYzzEvGtFOYBwQLyZiyph5/8ulK2B2v97/+g8VhN6BjPqF3f1uRmd6jcZM0ndJxsOaNPs/vazbq2VtlR49RTqdDFNt0klZ9s0SZzZtqxIgR1rgwsQcYM4wXt5IEgqUEgKtD/GXXyXLD3mLdscdzdpt22tI5T68te0lnNLpXeZ/cqR++idOAgaV6YPh/lZcYrvff/73ZKOfbTRkJ9hIQ9BWCgDExsWqUmaZdYTuVlJyi/MLtim+QoKLNBSrMK1BmiyxlzFuvdX/zvyNKeHS0mhx3jjb3uE4zm/+k9JStGpJ4uNpkZ1l6d9ohkocEdJnHbradIAX+TkhqRgMhwF4zerbuwgLgBqRxksmwmLJ2gF3AjRutHPoZAAdjXV0N6AgGAKRYpN261kMZJCJnCirwfGSG3KjzoSx7DQ7EGrgV49jEFOHWOEU0TDQBMxxpxhGZO7OjFmtF/wlMMR+81J8H+7o4ZGRJuDbj3VTnZdfW85zOoAIZMvYsxSE31bvzPAS4AEFVLTh0brWLUFTRPQ1/nAIYhnpItsCkU1gB0EGJ/JPlrY4GdDiMZMqpI3bbKglAD50emqxT+B3ZfsaWKdBDUJMsOw2XqloIIrixKqhH5m+munWCHjyXG60cBgK1hjjabt/VfpfYuDiFh4VbTmBRcZFSUhppxfKlAV8VQEswg6ynWyM8QCNZGFNNO5kY3h9QYBLWtoruGe/v4QmWMR4o83IKwSWbtWFaj+677z7LCXULfuD8805kuJnHaRlN1bx7lrY03Ko5u3/T9A1TtHXnFtfHO6rF8eq9pJeO6TFUa5ZEKbektVbs2aWE1vO0I2Wimu/M1KCW/dUqK9PqF+BWAkeABjtpspUEeLAvbltHESShFrWqBYaBG6OCgCdZN5gizl4ABOQImDG/fftNpKU3VXzHJOXMWGsxbghoMg6dDei69+yj4uhiRafFKCI+UumNmmpx3gKlxKaqeM8Ole0uVWbDlsr9eb16RGdo8Z2XW6+e1KGjoodcrd8KjtDSom6Kbb5EezqPU8v0MsUsjdLy6YvKqQh/CgDDnDONHQAa4MpmWjj1S1ARn62qxV92nZ4FlLswXpzCWgOjhkAE/uepw85T4iapbPoXKjlumH6a/rVVT856S2M9N0ZboPcZcvQJSpw4Sxveei7QoYprlqno0+5V2NE0Jb9/AAAgAElEQVTHKT/uS636arE6dWxv2RBsv3MNYr1lzGFrTEkAGBkEqKqDueYvu866yVpjZ6EB2E2GNtezSx9Xv4SzFPnDo/rv+CYacFiJLmn7rHaO/5OaXn6Hyo7ortXLF1qMDXCBb1AutVETpWY0UsM2SdoWlad1peu0dsdq5RRtUFrDplqTv1JpDTOU3CBFx0eepOZRWdrx1EPK/fl35k8gyTh8iIqOe0w/pf6gFo126qjGhys2Jto4pwkMwmpzC0KBCxhXIakZDYQAe83o2coIuW2DA4UdmpupMy3OJwDCjVoMtZVoOgugV/ACHZlaXyKoZCa9ZidZSImm4VyYurnaNGcCB6YaX4wxz+lGXwxl2WtoMNbAbQCybmCVrYzI9DoXXoAu2RWcJBMNj3lANhbqu7+yEN/Xs+vW+ZdaPBgeXjMHgHbuCcgzgQLmLY6EMyrO/aHGkxF161fBfK/q2l4i/OjHVMdNdpfyA57LqXcWZairOHwmxgMZMxxogL5bXa1zSOFAAURhB/E8XhpZcg0CNtwLp9ENbEAHBwyYMtJkA7gfkX+TUB/sb4/3ikwNMvpsF2YS3oHnNDnwZJRwlN22+wPcwGZA727Br6OPPUG7w3apz1H9lZyeqojYCDVKbqwthZuVGJko7Q7TE7c8qF4n91H+knztLNqhyT9NNDr1OOuUSwDeTUKwlRII0zZRgBeCD270SfoUMI6qUhgnbns1cy/WI9Me2vQ84G9uWxQCNskuESjZtXu3WvfooD0tS/SfTeM1f/Mc6xXap3RUbFRDZZYMVrPIbooqSdGeXeFqGBeuksgCtU5tpLI1S5S1RVr5yI3KGHKMCjJP0M4WQ7SwJFYJnaYqKma5OoV30IWnD7PuZcro2jRnxoKz6SbrPudRKmIqs+MdATFVHRgEULl1kGbswDwy1YHzDqz/vg31KCdI6J2irfFbdVT8SEUWLyhXBhAVFa0WrVopuVsjFcQVKn9rmqILO2jrumQ1VIYWzY1VQlykysJ3aU/kNh03NFLJ0dOkD77Qpg/Lb5mY1OkQhR17t96deaKatW2okm7/UGn6FHUr7K5Z305TaUnJvuFJ4JKsLQEhZ+CBLDq9OwhcmoSgRXUwedyy69haSlcA686EDQAWKjmZUmz78aecrkZ5UVr3xK0qXrtaTS+5Sf3uvU2TJn0ZsKcF74o9J4McHhamiIhwpaQ00ayZv6i4uEjnnHm58h+7R1tnzfA0zaOTUhR73iPaeujhim82VXM/ma7jjzvWqofneZ0C7Zz11o3dQPkEAZ+qFH/ZdcAqQW7fIGaH47tpfPE7iomM0SEL39S/n+2o7j1LNbLXK9r59q3aW1ysqPh4Zd32hAaNvlh/f+m5ff2oWma1UmzjeJW0LNOUHT9p6fZFWptvLi3gHbul9dLJ20/VYU0P1co7LteOTRs9v3r64COUO+RxTW3xgXokpeukDsdo0cIFRrYSLB5sD2U8JmF9g80UkurXQAiwV7+OrTu4NaICOANkceydkU2cV+pFqa8zUckBz4CcQFvQ4DgDtgEJZF8AL4B0spRkvaGTkT0hO44z7w/4szjg4BOAMFEoWSDIgJJRcVJsAAv2Vm8mtYey7DU0GKv5Nixybo15yF4wrk1jFuBCNtvEJOEcxh1/A7C7CQ4FmRwWfcY91EzGIWCdvzHfiIiTTSDbYAos+V4bUE5NOk6oKWtL9gKAaAK6NCAjsOW29SHzhDFfVUK0323PXcAYvShMW0LhROP4m7KrAEqyTdCh3UAjz8+8JhJPEKJP30NF1ix/+zaVlJYoNjZe4WGlmjdvrn768Uer7IeAjj8hq4FzRl2fU7BblCzwXM7sIuME8IIzZdprm+9PAKYq95ElSOIWjGVcEDzgnX0Fp56xzPgxNRClzpTrondTfeGhAwaqz0n91LVff63bkKDM2PbKXVqkxJISJcdLuTklSmoeq5TmScputV3TVxdqZtnbismJUe6cHP3vowla66gzBQCScWbummoTCQ6jO2jNTsBGhu+JJ56w9G4SSi1MPU4qOvaxMYAp5rVTWOueeuopy5l2zlnWU4AY72cK3ME2YB1+8032RN+p7KM6anaDWfps2UfWbYa0PFaNi45Uav4QrZjWUaU7ErRoYbg25wJgpB07pbg46cmXcnRk/z2aOupG5Xz1R4+AlK7dVTbkFs3eeazCu8xVeqe5it4QritOvUTvvvOOEejCHCHICS3YKYAY1ly3rvGwBJjDVSX4MWTITYJu8WVM/TMoLaA+17cpV5O0DGUMbqG5mq1m66/RYQkxik7Zqrfe/X3P88yWrZTWu5ly4nIUtuEILfu5g7atbKlfpoWruFhq2bJMRcVSenqZGAYF+WF67MV1ahq1TstvvVLb5s/d7zEjYmKUft4N+rHwIv267hB1O/995Tf+XG02ttGSKfPKHU+gjD4pMIucAoghaOwWMCIY59bUsyLfwl92naAgTchee23/2mhAPn4aFPfBQ45R66hmWvvIDSpY/nspAE3JWox+SHv7ddDHH7xtfDQo18efeopiUjK1bU2RInYUa29RkcpKyxRBw+K0ZEU0ilDxnFVaOPp87c7b6vkVY9MzFHPhc9rWp41Kwn/S7M+macydd1qBHZNuGef8mAL2+LUEqKpyTfWXXacEAb/AXsuyOrfRguxF+nnjj7ok5gP96+FBio2R7j77Y+0eN0I7N+fu0wvv3fre57Rgz0ZNnTxJWdlt1KhPun7Y8a2+W/219pTs3n/shkWopKxEYQpTeHiETm13ph479AktHP+9Ft0RfKAi+5q7tKjV2ZqTPVZdi7tp9FkjLLvpLFWBWUsgDmBuYtbBWPPXz8LzYAgdGFADIcAeUEWVPwBgYIqec2UcN0CwaUsiDD51c6Z6TRxOIuhutCyuTXQesIExx4m1u2c7M+r8nUwiCz+ON8/Lfd06xEM3JKJGfZ2puQkOHY6xCbRBZyW7aqr95X1Y8O0t5yqv+dAVakMD/mrX+b6MWWezLEA2ezabmj/RfRWaPMDGDfwyJgkGsFhv3rxVObk52lK0Xdv2bFfh3gJFREQpUhGKCYtV/J5Ia7wDCAH0OP+AOxP1Hf3Z1yWo5gycMWYBK7yzk8LPO1Frb2q8xHWrspadLBD9JkxzFqYAlFrmtxPgQA0mKGGiZENRJ2sK88Wtho2gAxnJc849T19O/k4LcxZqbdEaKUbauHODivYUKju+jVontddv7/2stm2yrdpbGmHiCEMHdhOCDwRdTLWJABHOhTngZBSQaQJ8um1JBtD3tx1VMHOGwCQ2zSTQUGkUR3mEU3CgCVqZ9lkng4nO+XE2emvbrr0uuPFylTZuosyIw1U0Y5ualC1TTN5sFU2fIEWEKywsXEVrVyuueaYyr7pDRelx2ri4tXYmNNHK3b+qZYccLV81XYWzC/SvF18t15QUuw0ogzViKksgmwswM9Wz03We+lcTcOD9GYN8t6oQasrdqOBk0BkTzr8zV8ncAThNjQuhMsOk+eCDj3TcBeeqbN1u/TTjG+3ssVef536soxNvVNHso7RuVkdNmvj7tqhI4yZlot9VdpsybVgnlZSE6aZ7lqhF9DqtvWuk8pcuLv/KbLl04gUq6HOLlsSVKannV2qypZEuO+l8S3emYCbMEErR3n///XLXAqQwD6Bvm/wEGnEBcKpqS0PKMtyCsQQDGddOXwb7QrABO2EnA6jFbXl4W00q/UF9i/+slGVhavTdKDXoMVRRJxyur778WIddcrTmLAnThp8HacrXTbV6VZiOP7FEjSNWqUvWWiWGb1J4Ua6iYyNUGh6j+MymimpepoS9pZo3apgFKt0k44ihWtzxSX0zu7sOOf9NpbZaorj5MVow47dypzBeGEfOgBwghfHiZmOwi6beCRUd++jWZINZG7GjbOHpXH+wSzB7yPYnJ6foxEHnqPSrcVr+73HlHiM6KUlZtz+pjWmR+vbrL/b9rWfvPjrm9DO1blauSleuUOGMn1S29jeV7Nmj4rVrVVZWqgaJSWoyYKAaXXOtNv93qpY9YN4G0t97J7XvqJJzXtHajlulDb9p58YCixUAg8FZQkrgiqAgZQkmgZHE7hlVIdhevq8pUE/wkjXTZnLFxyeo1ckd9PjCB3VM7J1a+84YzZwRrnsvm6jmk0dp24LywSCeL6F1W2XfO1bTNsxVXLsEvZH7mmbn/Fru0Q9tNlDNI7oqpqijEspaKKKkoWIbRKq4ZLs6NU1X57RwbXj2VW388B8VeuXEix/X9uOP0vyIv+uYiKHq272HMeBGMoBvgd01CespZa8hqV4NhAB79erXujrOgdse0mSQoLs7u44CEsgSmrZNAQQANtyyVGTRMWpk34muutWcu7263aEbUE2GyNQUB6BDQMG05RYZMIAZf3PSosmy8+xuzfdwBgE6IamfGmCRo+mNaWcCwDQg1fTtceSJ7DrHKsEbsrbseOC2HRLOE2B/1arVWrN5k5btXK5ft0zXttLtWpa3WKvyVyghOsHKqB3e8mgNiz1dhQXbLQXj0DKfmGuMdbe9nAGGgEdTaQrzhTFt+hugi/cy1d3xbsyTqnCmWUjJtpkE4AuTAKDqK9gY7ANA3xkIweHkO+EgmWj9zHHA5uVXjtTrX/5Ti4sWaX3Mek1a852279q/q/9lTUbo8/s/Vm7O73uvYzsAf9gRMqWmsgKOs5t9caxTyH7gpDozjwRjsDt8E5PeCf643S/YWYdTbgLdXAfgQn2fM7tOAIL3MVHhodZzDpl3XwfcZkO98Pkb2pbbVskrpailX2rn/8btDwj//yXIJnZ64T0BW3aMe0Zqe6S2pByhuQUDFdXpK+1t8aXCF0Too+feUc7/fxdOJdiB7SZrAjPDKVDjeWfnNmgErgiWuFH8eedAdfhe9U+gyZRlY+1jXADanUwxsrzMd1OGGIozAa1XX/uHzrj8Cm2dmqeUZV+peNAxmr92ljKyhmncs9n6aVK49YgdO5XqhIEr1Sx6ieJ3r1SDPTmKiZF27yhRdHqmYru3UPyePZp99Zkq3bPH+FpN+h+mrQMf08bmKSrIflU99vbQ8NMusL6/k9oMOw7gbarhhTHAN3MLfsEmgK1RWQG44LibSuiwFzyHiQXA/GbM+Nbhtx/cRVuz8hS95lilLshQ6zm3aOPE70VjrJY3/kXF3bO0fXdLfflhb/3wfYS6di3Vqd0nKj3va0Uu/147t25WwbLy/RnSBx6uZg89pi2fTdTqp+4I+Lrpgw7XjBbPKieii0r6P66MlG2KmhWu1SuX7zuXsUzg0lRiw3gmeGGi/+N7AaSronM5NoyAjUncvj0BbGjyzDeSKmdeeJ32vPWONr2/P1uA68Y1a642f3pevxWs0qxfp2nELTeqeG2Etnw3SeELvtL6b8ozhHyfpdlVdyn9otO07pEnlPOl+44T/j5I+pHHaPvpz6m47XdaP2GZBg0cYDFCTWUrzF+aHuITOIUSUmxDVQiMIDLOJsHuE8SxffBWfdvpx5RJ2rpjs/ou/VRvPtdGpwxdr3OirtXGr/5/b3TDhVK69VDGzX/R9DUzVdi2WGOXPKaE6CQd0qSruuwYqYhNfTT9m2zlbArThvVhomqDRvCRkdLYv69WZtwi5T5wi7bN+71UJ1iJTUtX1JX/0sy2S5XecLvO6HCifv11xn7lEWTZmduwlkxSXf0ygn2fA/34EGCvgS9MFsbUyMPeSsoJyomaU49DpN2ZiYTySX0Vi5+pVpVrssgQJDDVmQfzumTmcGJYbE31yABrsunQtZygHhDDuSZwxrYhOMymyCXnVSVdNZj3DR1beQ1AVzexRbgyFHGotE4QxTcHyJuCUziCAG1TR2LmCWUhOCeLl63Q7OK5mpDzjb5Z8YWaxjdT1ya9tKcgWdG705UYnaiyqB3qk9lOmcUx2rVrR7mXZV4RNSdDbaIoczDBJAJrpu7GbgEHghQEA9yYMDw/gLmywvZVJuomjjyRccCrcw7j+PA3U80ytgewZgI3OEXUBq/P36wJa77VpF0/aN7m3xQdEa22KR3UP/l0hRU1U1RJkkVVjWywS5lqrIJtK1W0cY0+ev9drVm9ynplACpABJBiqi2Hkootg9rp7AaO/SHQgP6cPQ8AbYAeHDuTME6xlZUVbJVpvDAecJZNtoz5AbCls7yvEDgCAHCu73iBgXXJzVerbVZbDehzhrZOmqHccQ8pd9r+23/6Xq9hi5ZKv/8FxRQXa/5151p/SunSTeEdhig3+2Jty0jV9ubvKWpznn55Z0q52nYCBgARnt8ZbMZ+871M3YHRBeDG1ICP+eXWWTyY78AcdctskvmHes339xWCODj/AE7nmsq7ki3DIR105jFqsKKxIj57Ruu++VLNR9yjVlcM04ZtTXT3Denq0atU7WJnqHXp92qwbqK2/DpDO3NzytuSfgPU4tGx2vTuZ1r3cvkgmfM9mw49Wqs73aec1pEKb/2JDlM/dT2ko5EBAnAko+p8NzsIQQMrk09AppW/VVYI3LlR7wkKUOLhBK+MEUClb7a576GH6dcmM6X8bmq/+hx1yXlcq8b9seNEg5RUZY15WlknDNCcpcnaMHWDmm/9SEWT3tP2hQtcX6PpRTeq5bWXasWY25XzwzeeXrf1yNv1zurrVZhYphbnjFXL4qZa/M1c7YBz//+C7WHcOhv/MTfI5rqxdRijBAcrK3RGd+sdwpgmeOYsE4PZw5gnWNt/4BFquzdFy+6+XCW7drk+TmK7Dsq6+2llDeyk9ZOXaO3LDyhnyk8BH7/9428oKruF1sAmWeJgkwQ8+48DGl78jIpPOFJJ8fP1zZv/sdYe3s3J4uTdsImmLQ+5GmOU9byywhpnavZI41aCAvacahgfr8yT2uqR+X/WeXF/18+vXCr6YD447E3lv3ylSnfvT2/3fbY0GArX36f2g9ro+Zkvas/67lrx3VCtX5ShObN/DxA6JTm5TA+Mnaf2Zau04LrztLdo/8abXt+/Sf+BKrzoZW3t9JU2T1mrP19zr2VfnUkX5jBBDLeePVUVjPX63AfjcSHAXs1fHVDqtscrnZcxtM7sFpkvjK2pZhTQY+857Xx0zoN+ZqIcV/Q1cWoBTTjwJho7oB7gZHLEoILinDqBAiAfY2DacxNDbKKQVvT5Q+fVrAYw6KaGcWSnyfJAm3UKWVzGj5PODSCDKeLMUHI+GQwANFm0+QsWaVH8Ct03+Q41jc/U0IRRCtvQV9uWdNTSuUkq3hGmBtFlioqWbrorV4mRM7WjuNBYwwqFkACBae6RCWdskkl30g8pPwE4OktfyIxCAee9TfVfnFcV2S/mvqk8BYCCnXFS3gmSwCgA3Dgb6kGFplQHeqFTqEUGOEMV3Ra+Qws7ztPagtVqn9hb3fdcpV2ru2rLqgzNnhWunJww7d4dpjbtSnX9Hb+pgzYrd/lG7W3WXOv3rtBrz7+o2bN+tcp2oPrCzDB1nGV84JjConDqkM7BsDqcXWwZGzh8bjXVNnirzOwg+ETwwiQ0xiPQ4AxC4GxCDeabOIXO0wRHffcbjoiI1GW3X624Hq3Us+xqpTSYrsi8nVr/l5tdM+v2dRv16qPGf3pc+R98qg3/eqbc7VK791TR4Ps1N6q/0gf9V9vWzNU3L3+uhQvn7zsOnfK9TRRTxjnlEs4sOzRhvhMZbpOQFWdsVUZwok3N5LgmGTEArTPIQJ0vdH8nY4AeLoxlstORjeLUNmGgil66VTk/TbIekRrdrFseU8MhPbVtQ6KKJk2Spr6mrb/NdH2FjGFXq9UN12rZrdcod+rkgK/a4apRmhw+Sjt6LlWrzE0amNFXK5cv3Y/+Tuka7w04dlKFycAyHk0Ag8A52dbKCs2+TCwibDvXp+bb6eQzn8lC2sHY6AYN1OW03loeuUKN59+trEXjVDBu/waRDTNbqv2DL2hvZpJ2T52nRfdeE/Dx2zzwshp26qDltw5X4Sr3PifOC8Wd+xdNaXCbYjpM0vbs19R5bWfN++WP78scB5yZmszx3vyYbC9zHKp6ZQVKuylITDAEhpYzo8w6RfCWXgIEx886+WrtfPHPyv058FhM7dFLzW97XHsTorT1pb9q03/Ll2A43yWyYbw6vfCuwktLNWeEO5vEiw5anHqGEofdoOk50zRn6i9WTxT8T+f2oYBxwCE2xtSHgm/lVqbk5TnsY7DTJp+XwBl2w94+NKtbG01rNk2bijao57yv9M4rLXTV6bN12NqrtHn6NE+3TDvhbKWNGK1l22P06bu99NUXf5TcmC7Qtl2Z7n98pqJ++larntyffebppti3BjFqdNgQZVw4UvOKN2ja5P/p+uuvs0oEnT0ECGzCGDTtRMD9WItD7Fivmq/YcSHAXjG9eT6LgW+qPSJzhCNq2lYGY0OmwglgoP6y+JoykVDNWViIgps6WtsPDA2XiDxGHWNHTa6Tju98ObJzgAqcNCdQAZBA6ydI4ATmBA/ICDgzrmT9cATdAhmhbvGeh1edO5BOoqYGiQAnxpszSIOBZ5yYyjsYBzihpsZw9vZj9twqaxytaZvXaceiQVoxtbOWLglXh6zN6t5ypVLjCxRWukfRSfFq2bFEu1vHKDq6ULGFkdq+OXe/um7GJs9qYgr4YwPAiiFg4ZwjXI+snsmpwwnHMamMkJV1oyGT6cTRdmZzWXSxQU4nlPfjOXGUnIEX7A9sIaj1X371tfodPVDdBvdSVNyhmvFJL03/KV5r1oQrIZFu72WKjy9TWJjUomWZLr16una8/qo2ffCqsk4/W2FdjlZZl876duJ4vfLisxY1nuwcoNUUqQeo4Hw6AT3PCzURhoaT5cPYoWuwqdkZWWKnToL9BoBD0z7Y2FgaxTGunQ4fwSdA49tvl2/wRDkDmTqy0L5y+c2jlDAgU20Lr1D4D+8rrXGhSgd2VYPFm7Tigeu1t9i9Tjf9lAvV7LrrtXrMddry6/T9Xi8hu7X2nviofmtwuA454X+a+f0EvfPkG+X0SCANaryT3UAwZ/jw4dYa5it8B8ossPGmhnDUnpoa2gWje7Jupu1BCVrBNCFo4Ct8DwA5GXQn0OU9oNHPmb9YjVoPVsk/X1Xu+2PLnR/TuImy735GDQ/tqPWvj9f6V82sDfuk7DFjldy7hxZed4F2bFzv6dWSz7pFO45+WLPjn1CXiMa64fyRVmDHOX4AxQSonPX5zH+Cic6yF/vmME0q24yL5nUmX4FSCOahM/vO9+AdfEFrp77d9UvGL+qYf72yVkYp7vNR2m6o7+W5kzp2Uos7npRSE5Qz9hHlfL9/sNd+v/DoBur2tw+1p7jYql8PRuKat9Ce89/Ut0sG6sSRU7Rx1STN/7Z8QAbQTEDRWctOmQU+kO+2XPa98X389ejw8oysJQRdTUITMPxLZ5CG79GxY0crWDjw8KPUYkuYVj56g0p37vRyS6UPOkKJI+9S5N5SbXj8NmPzPvtC8a1aq+3Tr2vzN99q7UsPeLq+86Dkzl2VetYIhXVoo9+WztDihfO1d+8eKyhPFp357PSFWQfwH03NPpkLphKqYB7OX3d4gClBBLtEr/MZvfTs6ic0NPouzfv7TcrLC9PDZ72qvBeuDuaWyrjweiWde6ZWbmmlB27PshpZusmAw0r16FPztHLMrcr54eug7mMf3KTfYUq76AYVpido4qQvLb8trVmGIstkbQNoKgOhMS1rnolxy84clfVlKvQiB9FJIcBezR8bAG3a0ojFk0ih05kk40UG2rRvrRsgIMJNTSjOuamjMK8IMMIJB/BDm2NystDgtOPQUDtM/a7bVlxkD3FAcaqdUXQced7FSfvF4FLbgmPsrHvDueB4U6kA9cJumatq/lyhy1dCAyyqbrXBBKFwsp10VDLaOKXOejTGG9lnU7NGWB0EnHznTnJKY+Xv7aTnH0tTz8y56pY0RfEbvrUyLXlzfm8klNSps3q/8o62LFijTXtjFN42UXHxGxW9hQ7D5euuoTLi3Jt2QgCkEChwOtOMWSLvzi73zD3mu9vWjHSBrgyFDyfdRGuHio9emeNOgdnD4ursbg+4h7VA3alTsC/YpffGf6DRj9yuNjFHaNeuFVq8vqPuuzVLh3QuVb+2i9U7e5kiNs5UZOFqle3doyaHHqqsk4/Xzxefrry5s/ddNvuSEQo74gzllGzSNVdfatkogg8AA+cWMowFsqaMCyfogjIKoGTrMF8B+GPnTM3T0ImJPhzM8MfmmhoKEsAElDq37cOJZj3guziFICyOIAELW3r37aejbz9eTQouUdy0Sdr91miVlZaq5S2PqcHArto2brzfPY9b3vyImh0xWDOHn6ZdW817hsdntdKOE5/X4vRsNen3iZaPX6K3XvtjOyyy6zhoMBacwvjnHZ0d47EBdIwH4DgFhpip5jcYvVNvbuqrQm8A1hzn1nI0SOX5neURACqYFmSne594tBLmRWjTY8O1Ky9vv8dBT23+/FeFNUnW+kfH7MvAOw8MCw9Xr39+puLcLVpwi/dt7MjkN7zxQ5V2O0QRSZPUeGecNW+dDfxoCgvzwVQSAG2a35tANbqBml5R4Rub5hHXw1ZgG5zgiYAODEN7TEdGRumQM3pqQ3iRmi68VS2mjlLuZ+XnrPP5GvXuq/QbH1R4mbT6wRuUv6T8nun28XGZLdTtpfe0avz72vDG/luC+Xtv6njbXX29crudrD49EvW/7ydowoTylHrGLeuOc7sxAhUAalPgjnsC9CvDKCHLadq9g2vD4sHOOH0+grEwllijzjx9pPa8eL82GbZy9KcTgn1pV49U6cr1WnLvSO3etv+c4PzGh/ZX37+/q+kjLlDu1MD0ed97JrRpq+STL1NMn946/JRBevNf45TZvJ3WFTRX4c6v9euEydZagF9BM0NfwX/EnzXtisIa7HX7UTcdsJ442UMcS2KMAAKBKCQ9o6kK+u3Qp+s+0rm7v9JL9wB30BYAACAASURBVPbSWces0KlFlypn8u8sHa+C7ci87gGlDTtW73/STC898XsvJ5bvtu1K1bLJFjVNybO208vuEaGBXXI059rzgmKTcL3U7r3U6JxrFNGxjfoN7q7Xx41T4+Y9tK2oqeakPKO2m9rqwhPOttZTZ4KFIBHrsAmfwKxy2xLUqw5Cx/nXQAiwV+MIAdi6dVUEqNgg2fcRyLBA+3QCBQwFDq0pu47DTzbM2aiG69IdtEuXzlan+BUrV2nN5vXaHl6osohShStSceGxim7YQM3j0tUxq502bFhnGXpT0zBqtsiamLbdImMFuHICcBwl3tNZY8V70tna1IyPcgAWyJDULw0A/kwAlzIHHHsnCGNhJaDDHHGON3s/dme9Oxk8xg6ZSjuDl9w0XRtVoszobO2eOUtbxr+s9RO+2k95aYcfrc6PjNWM4WdZTXYie5+pgvbdldizSOk74pW76Y9sGM4ymQoy/06HCPBN4MvZzZn3ZC767jPMQxAQgxYPm8Y0rwBybtRtLyMAW2Ki8JP9gb7n7OgNc4GsKZl/XyFogL55N2fgDqccCiYZvnv++oiSSwcofvLHioiNUfTxg7RyTroS1/6ohDX/1aqPyjcean7Nn9Rs6JGaNfw07SksKHfP1hdcovCjLtTkpT/qiUceFHaEDCodZ52gDKozQUXn1nTQnQEj6NhXGHM4r2wHaBLKFPjGFRECAfROMAnAm6CCEyCS4YWt5KTJEgDiWN/selxcQ41+5nbFNThKqfN3KXHy/dr04+/7p7MlUPbdYxWd1VxrH75Nm11q2bu+9L52bt6qJfeO8PuKKd26a9PR47Sl/RqlpCzWy7c8o3Vr1+w7hyAK2X9nOQvBHWy7L4Wfk3hPxpLbPtWsb6xHFRHWHrcthPjWMBec9GHAFME9Z8CMYASNrX6eNkOdDjlBxc/caDU+c5PkQ7qoxR1PKCo6UovHjFChT3My+xy+Tafn/611772tTePdd0DwvQeOOnWk2TffryU7t2vm1O9VXFxo0d8BLM5eL7w/7+kMtpERwyaZ+saQ7TZt6ej1G5BBdoImzsWG49jTi8I5XwFT0LXtwGabdh01v/18tcy/Qm2WRSnhh9uV56e0wH62tCOPUdPR92jXspVaet+1xnrdRj17q91jL2vJndcY2SSm96Q7esrgk5R21gXKjdmpFcuXql3XwWrcNlxTv5mo2T/+wUqxQSBBCGegD7sEUDHRp7G9ph04vOrdbc97gsNkNJ1N/qivZq7SHKz/oCPUVhladsdFKvGYXfd9rqaX3qLskZdp1etva93f/mJ85PSzrlDry6/UrCvP0o4N3tgk7F6RfOx5SjzyKK3asdbanaVT887atXiZtGae5rS7RvFtv9Ov7/+k7FathH13BpDxA3hPt14WHE+ApaJCOYGpBxRBbpJqdiCtdZ8O+jrxK0WVJSj+o6/1w7cRGnv9Fyr9x3naU1B+rfPyLFEJCdYe7bGHD9YTj7ZWw6gSHdFyotKKpyhs9VTtLSySSkvU9LKbFBkXp1+Hn+rlstYxMFZSTr1Skd0O0YK185TRtKlaxDbXnrWr9cvGwzVtvbRh0Dk6PfVsdVS2EhLiraCQr1DmgR/gDFzZxxAsJWgakurRQAiwV49erav6286NiU9U2lmTSRYdUO5cpMn4QVV10oMBDxhpU+1sSnaGYlMTlLSzgVZsXavfCmbpl60/a3fpbhXtLlSTuDSN7vwnzfmlufLKlqpjl1z1adZV8bHRloMDoPYVgIfd1d6ZKbUBh9OJICMGAHACCp6ZCKlbt3icqdD2btU4OKvh0mQbnXRwbsN3ZoF1jgGyRfzNGYTCiYbWZqpdd+5tntE8Sz/nL1Bq3lFqlT9V6QP6aMZdY5Tz+Tv7vWGzy25Tq9NO0tRzj93XCKb9iBtU3PNM5bfbog5R6crZuG7fef72jAccmho/0jCMchYn4AU8AiRMbJvKBKhwkt26zENRxWYAIH0FWjJZOCd9lqwBesf59hW+E84LTuKpFw5T+54XKPV/32rNszcrKjFJre54Us0H99ecGy7Tlpkz9tN757FvaufmLVr2kLnTceuLr1LZyZfob68/qq+//NwCANzP+Xw8G5kTAhy+QqCEcUfG1FmOgTMIPdvZMZzzcXYrun8s395JB7efiVIKQLlzvJNdB1Q6sxPUQnKsL6X4yuuuVfzhrRXz0zD123a/lr5Rfo/lhNZt1O7+vyqyQbTm3nSZitf9AbB5jgapjdT5hXe09l9/V84X7wWc7S2ve1h7ho7U9uJP9OBtd2ujj/ONU0z9IgDBVxjrUFPJYPsKAST223YGhOxjoLJWtMYUoGoqIyN4An3W2XcB55EMJXWtpv4HUFvbDOyqxHkNlfPUCO3M/X0XAzcho9j2nqe1dc48Lb3/2v0aStHUr/0jL2nxmGvKsUncrkefgbTzr9fe7GbaWpirxg2bKC8uSb98+ZaGnX2mRbt1BkoonyCgaNfQ2temnpm11m1bPUA3dfwVEcAR9GunsO6TvXeWqjBHodX6UpO7Ht9Hm9I2KWv1GCV/85C2f/ys50dJP2O4ut19l+Y++4I2/Kt8yQIXSTvpPLW79kZNv/gk7dpiZpPYN4to0ECNBhyhzOE3aHNcmQqL8tUoIlWxBQUaP+c0FfV+SH0zmunX9yZr544/mpPCbMDPcgZq6dyPzTftpgEr0a3mN9DLY7vcwD7rD3bPOQbwz1hroeKfePbZivhoija9s7++At2bv4dHRqrFDQ+r3Tmnac4tI7Tpx//td1rrO59WQqsW+m1k4DKEBo0aK/nI05VxxjDlRrGPe6mSd8WpcPp0FXz/vtXpPDolVZHXfa7ifuuVM2m61cuBwBUA3Ll2wo4hCGUqmUM/BKwrIrBBCRKYhKAYgT/btnc+pZeeXf+Ejo35k6aOHS2w6pjeY7T1nccqcmvrnNiMpmp7318VnZau4infadWbL6vYxx6HR0Wp1z/+o3UTJnhik8S3ylbyCZco6fDB2lyyRQ0axCuxsEybv/lKRVM+tzL00df9R//6+UR1HzFWW8KmqX9uX116yUX7BZdh8xJcvvpqM92fQAcM4ZBUjwZCgL169Gpd1a1jNoYWAO6kDFJbTgTL+fuGDRtanYNNEW4cH7IOTmOW3jpL/8ufqOw9J6pp/ibNaDRXHy8br3aFl6nB9q4qyE1Wp7YNNaTtam358mOtiTpCa1J6q/Ehs3R8txZqmtLIWpycdYgsxNSbOut7cZZx1JwgC0eKjJ4zu8rvyaI6s5H258AZrootUarx84Yu7dAA9D0TzZjMIb93OnwwNgBSzkg22VUy0c5MGUEeHCCbhpyQlKqtSYXasqSH4id/rrzXbrK2BGpxzBDNvWn4fg5zp8f+oV2bc7X8ifJb/jQ96hhFXPiAorrkKW5LxL4t33g9tzIUwCOg1/nsLFaAaCdNmN9Te2piIDC/uU9FhIyzW5d5gm7QfZ3A0Q1Qolfqsp32B1ALQPjH62/ogjvuVsulkcp7eZSK1/+eUYlr2kxt739ecalJ+m3Uhdrhs0VYVEKiuv9tvFb/7Rm/Naht731JmzqlauQF51rb7BHEgQbvBFlQ9HAWnE4zThR7UTvBMMe5bRtHtsyZQfD6DahDpz7eKeiJMe0MNmIfCeI4sw9k7gh+8q52EJTfXT/2diVGn6aM3xar+PUR2kvbYYekdO2urDsfV9GSZVpy/7VSWdm+I5I6dFL7h1/QortGKX/xQtfXatgyS0nHXaiEww9XRHqMdoQl6a03H9VHb7y77xycNBqj8q9zX3icWwJsTho26wbj2tRoEQANU6MigpNuKruhjAoH3dmxG1tCoz8noGSMMY4eefQxHXfuTdr9+rNa9c/nPT1S2lEnq9WNd2n1uNe18f3yWfS0o09Rh5vvsoKC/jJsZOtTzrxa4Ye0V/veHbV25jLlz/hVkXmrteHoq5Wf9420bZdVtgKt2lcIJNJwy9loEdvImDSVs3B+ZbpnQ4U1BRthSDG2neUoBNz5/jagbBATY+1TPTenWJ3mXaSOv12tnCk/etK3fVDzK8co67yzteTu65T785Ry52bd9LASWmVp7g0X+b1mk34D1OSC0SppmaZuh3bTwgnTteV/P6jwx4+tINf7yV8q67gpat1zmfImbNLiRX80YSQgAhh2Njzk95S5mGwJ2Vhn0zSvL+1vNwRYI9hIp20nQILfxu/PPutaFT95u+fGZ6bnik5KVvaYp5Xaqb3m3nipClYsK3dYnzc+1bovPtOGd19xfS0a06UOOlYZ512usFapykxrrrXT5mjjJx+oYNo3Kl63tty58Ve8oIJjeqsg9xstnDjb2soQH9c576GmU2ZnKjWD6UY/i4oIAQBnHwz7OjQyZX4RIG4Yn6Amxza3tmIbnTxBT40erNOOXqfT8892ZT15fZ6ENu3U7r7nVFJUqPm3DtceH/sPO7DzM+O0/PE7tWXGL66XBPgnHTVMKcecoKSOGVJhmbbPXagt//mXts36Wbvztu47t9kVf9LTs/+s/ud/r8mxY3Ri8cm68ZJRxoAINphgumnL1KraGcGrng6240KAvRq/OM65M+PM7aC2Q3F3ZhbdstEci+F31rsTTcdRcdYEUs+7NH6NNq1opOz5JUpa/R/FnX2NflqQrfdeT9HCheFKSpZOG7ZdF3T5XHNuuFBxzTIVdeyN2txhuNJ6LtLRnbO0q7hwv4Z5OKIsxtSNOp03QAcZc6fzxu8xqs4sF/RXHGyTU0dTMRbHkNQfDZio7Tw9iyfdoZ0OH4Ecmlo52RoEp6DhOn8PtXnt2rX79kqPSk/QzJXRaj5vh8rG36iC5UutCH3bu59RYotmmnnNudq19fdFiRrR3q9+qJV/fci4VU32zY8q8vRztWfvHJVt/qM5DwEqQJhzFwS3OczvmcdO5ojdP8LUAM2eUxX50jhmBMpMwrwiu+ybdSbYhl6dwJEsPwswYNEp6Bxmw6EnDtaJA29VxFv3aPXHf9Rac3xiu/Zq++dnlb9osZY++EcmnTrFTg+/qPl3QiHef9/cyNg4pQ46Wi2vHK3Zm1fqhmt/336K4CQ2xukEQ5fHjjiz7/weu+Ok/dItmcCPyWmGDm/atcDLd6A+3gmYOI+sMk6ds3kcYx16q7M7PM+AA+ibpe7avadGv3C7imYOUep752nTpB9cH4ktgVrc9IDWvfm6Nn7y5r7j0gYPUccxD+vH04eodPf+WznFpKUreehZSj7mBO3NiFXY+iI1LCvRwoTOKtAXeuaGR5XrE3gBBBC4cQZksesASuc2bjjY0LlNjRvJ0Phu8+VF3/YxPIOpJIuaVuaeE0yRaQM4OmtaKaGAlj9z/ly1TjxURU9cbRyfbs+WMWyEsi+6WIvvv7EcBbvlNfcoIbuV5t1u3kYtoTV1u5cqYUB/xTZN1u4Vm5T79ZcqnPKFRbG36MK3/1t7Om/SV699aAFhAgvORrIwDchg+66dNpvALTvI3ADsV0S4pmn/dZgklNA5GX4ARwCWXdferkMnbe9RpD2rj1DPnBjtePY0lfhkr708E5nxLPoyDOynmSPPV9Ha1ftO6/nKeG3873+04eN/GS/Frgipw65RXLeOKgsPk9bmKuc/b2v7jIna+f/jPKZJmoov/FSTtjZW+HG3q8varloyfd6+69GrB6aGc97jgxEUMu3/beqp4OVdOYZgMBlLk9CZnrngpOGTWScLvHPnLp0z5AJteuo25VVwj277vozJjg++oJIdxZp783CV7Pp9fYxJS1PXseO09C+3G9kkYRERSus/UGmX3KgGHVuqcOM2lSxfpe2fvq6tv81y3YqsyZCTtOy0sUpt9a0mv/Wt1UzRNLfxQ0n8OHtW8GzQ4d0CV4H0D1vCWebDOQQs6c1h74DRtFmmNvTK0dQtP2rQyi/19nMddc/wKcr44kzt2LQx0G0C/p0x2+buJ7VxwgSt+dsj+46nk3/HPz2lGVcN064tm/e7TnRyslIOP1lpZ56v+E6Z2rpwvXbOmaOCCe/8vruFT2DXPhlm0HfZn2h3s91a2G2Yzkm6UEdlDzQyR7DdlAqaGv7BCHGW4AV80dABnjUQAuyeVRX8gTgWpjoYovvQWNn2x1fsuk1nFo5sHnW0dldK+xwylGQunXXgDbKT9PGS7zR042nSJ/dq4w/fKuO8UUoffqveejdTLUt/UmrEenXql6DCGT9pxSu/03cwsImXj5WOPE/NO83VMV0G6fvvv9sPgAMQcO6ddek4q2SRnLX01LFTY4/j7yvQhMmYOTuAcgwOLwvk/7H3HtBVVN378JPee++kktB76CBIEQSkC1IUpDcBQRERFJGiICqgIlIEK4gFpIN0pHcIhJBGeu/t5uZbz4SbzD2ZCyTI+3/f35e9lovlzcyZM3tO23s/+9m18r+hAR7mlBAg7D2jRHTMyA1HEh4S2klCInlpFs4LRixE7gdNvjvJYHi9pbUtEizTkH89FO6nP8T9rZW5VhaeXqi39Ctk3QnD3Q9nSwpkJLHhsq9w7c3XkR9fCXvn3xipdBnxBpxbNkW8aSJUcSz5pi6/z8JCyr8XkSDsDw8SItM4ryd6RiyJws2eY1oX4RY3uZrkflHnYu42+825QyNKjL5z7jL3WGSVp1ONBEZEvciFCB4aZD17voBPf9oKk/N6SF6uXPeVBwm/Nz9C3M8bkbCrHIbt1Lot6s5ZjJMDtdstz9ttC7fRs2DbNATZUfHQ1zfCtEVTcfPGNSlaSqit+G6EfNKLL5Z+5PWM9omQaCIMSAylIQmSvxtRD0rG35PMOEZ9CPsWhQcWOiLFfvB69kPMX+chn99dfjAfMn4knFp1gd+tAJj9Mhx5snxypb459xiIOmMmIfzD2RUEi56vzQJh87cXTNG6hSkM9h16wXP4qzCp44bcsEgk7foNOecPgfDs3H7rkOO/CxumrZW+g0YI6yVEVzRKOJa4L4nl637++WdpbiixZ/ObiNc/ic55DQ1Bcd/h70RLMAVNnHfUO6NwonOch3k6H9wa+sP8qh5i33/lsfWSxT56T34PdV7sifOvVR7QG32+DWn7f0PcX9oOLUbFmLfr0bcvDGwskHXtDtL/2IoMRroEQi+HGVuQ1t4Rkcf2YdKE8RI6jUaEXOj0oDNLRC0xik5nllI+NQ055p9WV3jGoH6VhEYj+yFWwGA/OFY0e3tQk/o453keIbHLUC/8AHK2lK/L1RVGwQPfWw19fT1cf2OUBKumk7bJ51txZ/FsZAloEiJNbPuNhUfXTtL+k3nhCrL3bZMMF6X62JaTNmN/8kh4D1sOtyJTXPq9MpLP8rU0Dum8kCMPWWWADrwJE5S5IpiqwX2hukJnFw1EUTS8AeIaQ6QLvwcdPPUaNEYjMz/cnzu8uo9VvN46KBh1F65G8t+HEL3hE+kasruHLFyJC2MHVkGTODZvBafh0+DatgXSo+ORdvwEco/ueCTjvObBXi/2Q3bXZcgKOYLb2y/D08Nd2g9EQjNWLqIDlCleonDfoxO3JsKUHaW0EqaEsR8atI5/3WAc9zmGAlUBHHYfwvGD1vhs+h7kftK7Jo9VvMe5bXv4THsPUasXVZTlc+k1BF4DX8aFsQO07jEwZYm2LvB6dSrsm4Qg+fJtJO3766EzsKqzXH4z50nyc+txPrkNkrv3RGe79mhcFgJzc7MqaRdMjWLKrlKVFZ4jlJBn/5pC/n/eUK3B/gwHAKNfYo11Po4Hd0aJxE2OEUQeRsScHB6iuWGLEUfCxvkMeUSbhkyk9QNkhAfC7+xJxK2bV/GGPtM/gG/3Lrg441XkRNxDy29/RcSaj5D+MO/UyNIK7gNGwq7Li1AHBaGOYxnK1KVVHAvMm6cBIpbWofeecH/xcKHLEcEFlwcLwnpFIbyvNhfmGQ7Of7lpLuBKZfqYM0lDSs5+zUcz0svNVjxgk6yKeZEi+zbJuji+NHmCNnYOOJmSDc8bFihePwKFqclab8QNqO67HyP+5414sHsnyDYc+MZC/DPyxYrrrAPrwuGlsXDp2B4oKUZRagYyAxvA0TAFyQmVziVGQRkZF8nn6FhgZElEjtARwc2MBo5G6Iig8Sumhmj+XtMUEEaQlaB/dDLwwEzngVy42dLYFXMj6TWn7kW2Y8LM6Vw5f/EK+k94D+pN3yP9F90HIZd2HVFn8tsI4+E57DY8hk2EVUAQwhbPquhGed7uFFgEBaA0IxNxP25G9qUT8J60EPdcDDF7ygSp1BYZ7okQkAtRN1x3xHqvdF4yutS8eXOt6zn2aGwoef0JY1UybJ5kapDMT4lFmNE39lmMINOAYZqEGOmnY4pGgHx+TFgyAx7uw+Fy4Tay11aF3Sv1z33EVPj264sLE4ZJjPD1l69H5pHfEbd/j3S5vrExHNt2gteYGTB0cULmlZvI+GOjZLio8spLwzHHtPjVP5DdKg6xJ45g05qvKh7FaBbZ2cWa7IRKE4XCf+VCA4b7lVKJPjpiaNDXRHSVFqMhzzVD3JNo2BLxIFah4G/ziGwYMByFP5xA+mblSOaj+kjSJ/+3VsDU2hJXZ74K7p/N1m7DzYUzKwjpaGDaPfcSPAYNhYmdDeIOHUPOwR+Rfu2KYqSLz/OZsghZPQcg/NRPaN+2teLhmA4oOpvEyDadaxyXSnW7a1qf+lEQYc45OvrknDtELtBIlecQN+vRFmF2t+F8fQmCjk9B5pHH8yro0r2Flw8afLQGSUcPIerbz0Bjsv77q3Du1f4oLSpHk5DV367XSLh2ex4GenqI2bUbuSd+R3Z41Tx8+XNcXpmDjQnL4PrSajT3M8alH85AVVJScQnnL41iki3KhY4prjMi6pDX1LQ+NXkyRMQI2+MaSAefOOfI0s1IP5E8I16bAJy7g7uLtB12NZlzmntI7Oc/6wNEfbkUyadPwqVrL3gMGoVLk16uaNaufkM4Dp4I22ZNoFdQgOgftyLn3GHkx2sHax7VD84ZjNuJhKbhyDtzA3m5OVKqFue+XHgOpXNCCen0NCX1mMahtE8TBcXIPdENlMAW9fG7xa9wNQxG5oafEPdAD4teWIfcTdpr4dPonPe69B4C/1FjcfXNcciLjYHfzMUoy0xG5KbKFB46v91Hz4S5nw/yIiKR+Mu3yLxyXie7v1KfrGb+irWHX4Lf+Pmws81Aq5ymaNG8WRWnEc9D3H+VnBoMztFJWivPRgO1Bvuz0avUKiFhStFjRrloyIsRZ8ImCQUWDQMeOmnYyCFpjMowkiMaQu4+vjiafwIWp9rCfs8crdIShhYWCHrnE6izMxD17adosnI9Lk4dLUGdHNu0h8+42TB1cEBOxH0k+XaCt3sCGgfUrWKI8TDNCJ0Ig+RGwiiSGM1gtI8GmmjI0yAnpE+JzIYLglIpoWf4uWqbfgoNEO6uRLrDyAIh8WJeNFM8CCUU66/TM86/iXArlsah8a9JMSl1MEBSShCsjx1F2pfTFHtOIz1gxru4s+wdmAU1g03dYIQtnw8e+Bx6vwLXTp2gLilGzMbPpc3NpUNnpA/8CIHB6ciIqTyQ0bHE6J0Y2aMxTHSLaPTpSgHhYUqDEBA7zLb43tUVRh2Uai8z+sLoNA1LuegyKGnAEPbPf+VCxwMjaHoWxuj+wjxYfj1TkXxIfo9rn+HwGTQEl6aNgv/MD5Bzeh/iDu6Dbb36cB48Abb16iE3OhrJv3wtQSP5DSh+w0bBbOIs9OpUzu5LpA4j6kynkAsjfuQzkK+TjC4RrcM0Ibnw2/HArGstIVcCI2fVFX4vpZKDZM/l2i4S/REJQT0S5i8XGl00hDXlc3z9/DFh6QyYFPaC7f4NSP3h0TW/K9rS05MOclYebrjxzhS0+OoHXJ8/TUKTOLVqA/dXZ0hkRkknTyFj3w86I132c3fiToAFYsN+wI+rtlQ0T2OAjgXRiarLIUKGeH4jJaZ4HnyV1orHfQMia8TxrLmHcG8aiaITnAYl+yB3qnFNIoP55ClT0WfULBRv2YiYjVWjdI/rD/9OGHXIwk+RdfE0Uo7uQ/33V+Kf0f0lBmeHdt3gM3IcTBzscW/rNuSc3oPc6EdHutgmD9/Zk9YhM2MfXMzspJKQZCKXC6O8nAciqom5t3QuihwPvJdpAHSWVFc4Num4E4WpPITmi20qGZRN+rTGibLj8D+7FaFXX6x2mTHx2bYh9VD3rY8QueFT6JWVwW3Qa7gy8zWpgoJ9t8Fwf6EXDI2NELHhS8kZWJii7dDVpQOmmPxgeRCB/Q7C2e8O8k5k4/69ylJyuhwidJxyLVY67/F3zp/qCh0v3C9EoYOMa4bI1yA3KPsOfRklPxxG2s511X3sI69nqo3/hFm48uZ4kAhQLycZkds2wDogEI4vjYFji+YoSs9AwtYvkH6t0hlY3U7YzvkNya2NkXH+BKIjIqRxxsit3CHCoBHnva469XQK0tlcXaFzQCl1jUhBOmM1fA3BHRtjS8kGNDEdiNurP5aQ5nMazUP2rzUnnNPVV89X34BLmza4NHk4mn62BVHffCLtnUS1ub0yFVZ+vki/egOpD52w1X1nXu8842vsjB0Lx66bkWSxB51S22NA/35VHCIkIOV+qsQUz3OayLlRk77U3qOsgVqD/RmODOZHirlnfBwXVh70xXrCPOjTyJezs+uKUOoiebP1c8HRxIsIvNQY2asGojhTu740cxfrL1yJ/JvnYR7SAtFb1sBz5BRYuDgj+pfvkXpiP5xahiKr/1q4NwnHC03LyfHkCyX7xOiiCInRZciTUImbuLgIEmLEBVUpGsC2mMtcK/8bGmDKg9Imx+/IVAlGC+TCwzzHhXiw5GGEziiR+4GRUxpomnQLQx9rJEfXhfuJL3Hni0dEfDs9D58RryMnKhYFt89DZeoIjx49UJCWgQdbPivP6XoozBnLH7IWPs/nozC6kpCFhy1CIEXDURdChIgYGmIiYz6jvHS8KdWQZlvUR3WFTvAOAQAAIABJREFUEQYaJaLwdzrVRDZXwgR5qBShlo8yKGkcdHu5L1p4DULpV9OR/AT1dr3HzoZtoB/MnV1wb90KWHfoA+dmTZF24waSft2I7HtVI10u7TvBduZHGPJKVwm+yvQB9ldEbhCCTZSA6OijQ5NwUXmKBdOPyCrOtUZJ6DQVo/VP8g2IAFJKd2LUgQ5LGo9yoXFPZ4k43unsoeNKM1acnV0w/au3UBL5MoKOTEXK8YNQF5dITg3Cfx8ljPAGzVsGpMfCMrgZwr/4CG7DJsLWrw5i9+xG6sHfqqSDiO05T1uHxJZtkZn3J5ZOeq9ybtjbS+NfdIgQFcZ8T5EpnvnVPNQxqisKkTJKTtrH6Z0Re5arUhI6SDimxcgnD/oiWzTROqwQ8N7CReg9/C2ovlyA5LOnK/SsLinXt0bvSjmf8j6QhbnBwo+RceZvmPjVR+KuH+EzejoMLC0QvWUd0s6erLIPP+pd3bp0Q/6QZcgwPomy5AIpTUWE99JZT1JWMTefsGzOD9GZzuexHV2w7Uf1h+NZE1WUX0cnPFMiRAgsvy+/v7zkWPcx/XErPw51wl+G29lZyLpzG6Ke5Trn3x4nji1aIWDKW0i7cgV62UnISc+Hd/9BUBUVI1oyaC5Lz6iOOLftgD12P8Dl+QgUef0Kg6NAiiwfmQgk8jaIex2NPOpICS1INAQ5eaordJ4qpVARTcQop1jhgudHooa49gx5bQIsTpxFypmjQFF+ua6LixV0XjnWS7nGyFBhuvrr9tJIuHXpKs2P5H3bYeTXFK7t2yEnOgbxP3yJzNuVef/VfWfN9bbTt+J+UweoYk4i6ka45LDieJLvqUSt8XddBJZ0ytGor64QHSUictgGnYVEzWmCZG36d0GCYTz8zHvi1slAGOgZoLvJZqScPgG9whyoiwsU9K78DcpKSx/ZTT19A/jPXgxTc0NY1fFH2KeL4dxvFOxDgpF06hSSd39f7Xrs4gNtB87BZ3eXo924X3HH8mt0TeqK8WPGVEFyEAFJR61S9QOe85VSxar7DWqvV9ZArcH+DEcGD4pyWKzmUYw40mstln6iB4+Gjdw45qLExVk0jhlRYrRDXNCNfCxQUuQB27BI5D14APKrQF2CspIS6JUUAaoimNlaIXDoUFjZWiLnQTxyw64jJ+p+xYGQUYOCoEGwC8lEgJOPFDESyyXxkCka2uwrjQ7xIMuDBQ03GnVy4TvQ+FeCpdJ7L5Zveoafqrbpp9QAD+AkHxKFGyYPGOIBUpcTh8Yxo54iyzq9ujSuNKiUfBc17Is7wy7zJnLik1BWXCQdSPhvGSO2Ko718n8d6tdDcK9uKMzMQX5KMrKunkdxVlZ5V+kWf+iFN7K0hF7zQTAPKEZZVnnUl0JCNjoRxHHKgz/nhZiqQpJIIg5Exnwaj3Q4KJE3MbpOSHp1hWuGUqUFHhKJbBFzt3nAprNQhGaTY4AHQBHxQFQBEUHdR/XBS3UHwdq0DCV5BYCqBKUFheU6VxWjrKhS59S/QVkJvHr0gHeLxsiJS0BebDRybl+HquBhqUiZ3jXvzPxqy+f6YMeuHyQHCREJXGM0jhIa4nTw0Wijg0H8How4EQItX3Pp2OSBTsng0BzCarLO0FhRcsYyCs3vQUNRLoRq03gVc+bZBueIxonj5uaOye/NQuvGI6B+cAvF2bkw0AOIAdArLZXWcVVhAcqksV6uexQXA6Xl+jc2N4HfwIFwcHVEbnwScu/dktKf1KqHhouC3uVzwLR+e2R4NQCMw3Dyz3KyO+qd6zEdDqKRQAOeY1B0GnEe06khclGwPc6lmhBCce4owV/ZJsczU0DkeyqdN2TzFw12zk+mkXC8tO8+HJ4WpigpKIaJgREM9fVRXFAAg7Iy6KNMit5KY724uBxuTaNHs8bI1hkLJzvUHTIYJmYmyI1LQPbNK8iLiapYW55oXj/8NkxNUDXti2KLOJRmFkrOJhGRoAu1xnQ7jiklZxIP0zUxHAkPFsuH8X10lXji2YBRd0KzNeLnH4Q27drB2d0fiZExKC1WQb9MD/rqMpibmEqGoqq4RFvv0ljnul5YPtZpUFLnPMdIZ5li2Pp6IWTIQKk+dV5KKrKvnkNhSkqN9M6+8uwTZTsE5r4FKLa5CoNofeTLGLrpWCV/j3iW0UWgyjaZEsi1v7rCdBIiLkWhA5wIH9HpSocw0SNcgxwdndGqbQfJgdmgfkOkJqUhPSUD+mo96JVB0rulmQWK8guAUpW0vkjjXV2KMtnaLq3vgs65zri2bQv/zm2Rn5iC/KREZN+4jJKcbG29P2atEfdf+TpkHtoXqU7WKCuIQmZCulRFRYm4WMODo6RbOhHpwKiuMLVBqdoNUQ1M/dCgpCytrGFoYICp02bg2vXriIqOgqurB4yNTWBsYoyWLVvj5pUbKC4sgb4a0ON4LwOszS2Qn50DPZTBgN8CakgGe3EJVEXle6q0zkjjvHy8c503NNJDnb594RpQB3nxiciLDEd2eBhKCwv/Fb2bh7TC6bQX4N30DpJNzsA31xdtW7WuggrjuZ1Gu3hWoJ55nlfi1KnuN6i9XlkDtQb7MxwZugx25pcygvgsDPY6ZJR3csH9qGgkwQRl0dawjfsbWRH3UVaQC3V+Lqw9XVB//HiY6qlRXFCM3LBrWga7GdlSgwbBNiQTgbUG+zMcIf93mq6uwa6LNf1JDXZDIyMUugLqxHYwy0+ARdpN5CcmSekdaum/XKgL8qAuyIFfnxcR8HwnFOfloyAlVdtgl30CjcFuEVgCdWYls/b/NYOdpJbymt9UweMMdh5SZ302H51susDSsAjFmTkoycuTmJ5LCwse6jwfZQV5KM3Pg15JPkLGj4ObvzeKC4uR/yAG2bdkBrvC0De2toGFYLDTWBcdg4RA0hAUEUokA2K097/RYGeKBx0NYrUBGleEWcqdOM91eR5zXl8AtSofZTRiHhrsUKlQVlSE4rw8qAsLUZqfD3VhPtTSv3koK8iBqbUF6k2YACsLY6iKSqsa7I9ZcjQGu57xHZz48++Kq5k28N9ssNMRRdi2HJL8OIOdJGy+AQHo3LI7ivKLYGxgBCN9PRQXFGoZjjRYVAWFUFHPHO8F+dJ/ZRXrTC4cggNQd9hQmBjooyg3v9xgj63KzfIkK77GYC+hwZ5VBMJM/xsNdo5bRv7F3GIlg53vTcScn18AIhMLYW9kAKjKKgx2tUqF0ocGOw0Z/bIyaayX5BdITj6N3svX9jzpHFNWmAvPzu0R1PsFlKlKkZ+eUW6wp1Zlzn4SvT+JwU7HMVEc/40GO6OedCRqUBc+vv6SATVg8HBkpaQjKyMXemoa5eWOEgszcxTnF2ob7KUqyWAsyeMY51gvX9tLC7i+cD+l7nMQOHwY6oQ2Q3FuPvITE8oN9tycJ1XzY6+rMNjzo5CZWG6wE6UkOkmZ5qGUNsAH/NsGO5FmTK0R05qIuuD8JEmgoaERPL28wTKGr42djKMn/kGxSg8elmZQFZY7RqzNLZGfna1tsJeooC4qhio/DyrqPJ/76sOxLuk9FwYoRf2pk2HvYIPSEnWlwf6Qt+GxSn3MBaLB7pfni9YtQqvk89ca7E+r6ZrfX2uw11x3j73zUZB4HprFMlf/BiSeEQ96cy9fvY6zZVeQd3Q6Wt4dhahff5L6a+bsgkbL1yHz1CHoufojdd92CRJv7uKMmO3fI/X4fji2bI3s/l/AvfE9vNDs6SHxXl5eYDSyFhL/2CHzP3vBfxoSb2JqhjynUpw44IucW954Ie1lxB/aX0V/vsNfhVWTNjAyM0Pc9k0w9AyRQeJXS3lgGiEkvuAhJL5ABonnAZRRxieFxOuKtvw3Q+LpXCSUUinHmgcVGs1LNq5GHf3nULph+mPz2Bsu+QK50bFwaROKe2uWwbpj38dD4jt0gs0bH2HoQ0g8URlkABZLiTHSStSRHFbNyDuRSWJZOq6FNO75DZXkPwWJ54GOUWWx3B9RAoygylEaTZs1x/IFaxE1bwzy42KrBYlvvPIbZJw6COtm7RG98bPqQ+KnrkNiaFtk5v6BpZMqI6SMplYHEs8oFUklCY0W5VlA4plPybHypJB4fguSdnXq2R3+ai9EfzQZpTpgw4+DxDN/t967y5F9+RQKCg2Qd+PMU0PiC4YsQ7rxSSClUKpSIUZTdUHimQJDOC8dcKL825B4EswS2fAkkHiNAdW6TTtcibKFbVws0teMeyRU+3GboWfP3hJJbkl2FpL2/4Yyc8d/ARLfHnvsftQJiaeTh3NZ5Fjh2KMulCoY/NuQeKIomBIkol34G1EUmlKY3cb2w4WCs9A7sgLP17uJ3G+nSKXUpNQDXRD5J4DEB814FzCzlFJtIjd+AfNG7Z8JJD6yqQNKYk4g6sY9CcFDqLp8neRaT1K+UaNGKQ6VfxsST9QIkV+ig4Dfl45Ypo4EBocgo0U2oDZAwe5luHpZH0F11RhsNBWppw7rTEt4Ekh8k083IO3CObh36Yq7n34Ip2cKiV+P55O74vVXX61S2aQWEv+4lenZ/b3WYH92uv1/QjrHmtFknN67dz+S7bNx/XgjBEReROE3o2FoYYmmn3+H+MOHkHZgOxp/sh6XpslI516fDVNHe+SQZdK3I7zdE9GklnTuGY6Q/ztN14R0joYKORvk8ijSOUJp5aUQi1yA85eccXNPBwy3exvpv2iXwHFu1wG+42bj1uI34dZ7KPJS0hD341cy0rnOEuxMTjqXNnAJgiTSuYSKbtWEdE4pGvDfQjrH9BQRWvw40jmm5IyaNQ4tm86E2+4liPz5e52D13fsDNg2aYEb86eg0fKvEL1hNVIvnisnnRs0Abb16yE3JhrJP9eMdI4cH3QAZsr4OZhOwLHBA6tc/ltI5+gQ2bx5c5XUJqaR0CGiIZ1j3xs1aYaPl21B4uIpSD51/MkWCT09NP7kW2RHxyDm62Vouf5HXJs39SHpXGu4v/oGzF3dkPgY0jm7uTtxt5qkczTYRBgkyc+Y9sJ/RXkWpHPMpyT8XYSC6yKd43gnxLVbzz5wzLdDxLQ+T6Zn4SpCqJus+haR2zaiKPoOAmctxPkJL/9rpHOu5vYghL86pHM0JkXHELv9b5POEXXx008/PRHpHJ/PFL4BAwdj9/l84Hw29Nc+91heBl0fRSKdm7cUdz9ZCJugYOh71sP91e/9e6RzLx2Es+8d5J/MRkR4JekcURwkMxNRP+vWrZNSMsQgDPv/b5PO0QlJI1Ws0U4HGdPPNDnEzfq3xc6cX2C9dwc6uMXD7sceKM6s5GapyYD37NMfHgNH4drbkxE4axGS9v+BpMN7/nXSOZs5vyMl1AgZFypJ55jaJOd/IcKDiCpdvBb/NukcCVDpuNSQzmn0R6ckHYV0LDP147z/eeSV5cF4+26cOGiLVqFqTAtegMQtH9VE5dI9dectg76pBcI+eAOtvt2BsKXzpLK1/y7p3FfY+eB1OHbdhGTzveiU1gEv9eujxUXBvtSSztX4Mz71jbUG+1OrUHcD/y/KurE3zG/iwSWhNB2n7+XC6EontEx8E2YN28HA3AK3350k5b20/XEPbn80r6J2L0mL7Dr0hPeIsTCqXx9O5oW1Zd2e4fj4v9S0rrJuzH1lZPnfLutG3Rnam+F2Vhn+2dobz3kdgMnO15EfV15jnWXd6n3wGe6vXY6k44fh0vE5uA0agyvTR1aoXWdZN4NUJCfGVlz3v1jWrUuXLlIOqVJZN74PjUS5PK6sG+Hmvfu8hA7DZ8H9xAUkrass0yZvx61TF3i9Pgt3lsxFVtgtBM1chIKcfMRuqCQGLC/rNlUq66bOyMADTVm3yQtxz9kAs6dMrHZZN5IS0ggT68sTJqpkULLP/8myboy+EVWlVNaNEFYx13vfmXDkf7MaERvXPtEy4Tv1XTg0aYrrc8dLZd1CN/2GyPUrkXzmpHS/dlk3Z2ReufGwrNsVKepG0ZR1ywqNx4NjR7Bp7ZcVz65JWTeSRJJTQJRnUdaNkU86/whLlcujyrrRaWVr74gWgV2RsmDUYwn5xPcgE3zDlRuRExWDe8vnSmXdmn/1A268Ox25UeVs8CYODrDrzLJuL8PEzhpxB48h59Cjy7rVmcyybgNx9/SP1S7rRqOREUC5A0jT72dR1o2OBOpeXlqWXDZ0ToncAXSmvbvgPWw9EIbME5Zw3fUi8uOevNyX5j1Y5aPp55twb8smJP6+FbbB5cb7hfFDhLJuox6WdcMTl3VzHj4HmxKXweWl1Wiho6wbmcmZIiSX/4aybkQRkRhNU6+8yQuhuGJ2GZZX5sMi3hj1T3ZHbuT9J1pPlC5iWbeANxfj3qqFSLt4Hj5DR8EksCnufljplLNr0BCOgybCrlkT4KnLut1F3plbyMvNltAzIoEqHVkkUfx/VdZNoyOeb4g24TrerEUo0oIycTX7MpwufI4fvvCDl3cZ3u70GfK3VnVePsnH8BzyGtxfHICb86dIZd0affItko8eROLuctQspWpZt43IvHKuxmXd7G0z0LK2rNuTfJ7/6DW1BvszVDcJhpTIX+gh5aYmjxayG7rqlfMQysMP2V/lQm8qyTFIIiUX5gdzMbt4+SqiTOJx67IXWpvZwtMmGbfnT0XO/XvS5Y1Xf4fkM6eQ8LN2KSdTRyfYPtcfvqNfg4mbOSIjtNsnCRU3LBH+RTIU5uVrmLw1fSKTMNlTxTJ2hPrxYKFUCoWwLxLr1Mr/hgaYgyuWGNL0nKRUhGjKiQsJYdYQxshZvTkvWIFANGAIf6PxJS+LZmpmgRSHbJzb1QKR590x2vVdxG/7FBaeXmj21Y+I3nsAMWvLyxFZeLN275e4PndclYO5XcPGcBg8CV5dOyLVJA05kUkoKytn5CZihcavSOzG/hCCKJJBkvSHRrJYX56eeY5pJdZfPoebPhEE1RXqXInkhXOHkHIiFuRC5m5GYFq2bKn1O9NxWE+ZsFm5sHY8o0r0qoe2boeR89+A0TknGO2ahbQrl7Supbc/6N1PcH/9Z0g+8If0NzpKPEdPw8WxA7Su5fd3at0OrqNnwq5ZPeRExkPPwBjTFk3BzRvXpMM+DTvx3RjlIGEY+ysX1pXnOBONhBkzZkhlsfivKIz4iSRwT6p/1ppVYsNlPwhXZlk9ufB6lrycNk27BCENLOaZiiWaft7/J4p330PiF8qOEXnbzj0GwnvUOEQse6vC+Ro4ZwlKilSI+rwS1s57SOxn1+EFeA0fA5M6rsgNi0TSrt+Qc/4QHJq1RG6/tcjx/xMbpq2TvoNGGMEmNwD7KxfmjnNfWr16tdbvjLwyvYKGjCj8FuL1T6p31ltXgh0Tgk9OA3HeUe8k/BNLjZJxmgSvkVHR6NN/Mgo3LnskakSpfwFzl8O+UUNcnz0GBQ+ZxNv8vB/3v16NpCN7tW4xd/eEbfeX4dGnLwxsLZB1LQzpf36HjMtVD9UOM7Ygrb0DIo/ux6SJ46UcUrEkKh0RhD6LbPvkpmCZRyUiVxrW4rx/Er3zjEH9Kglh2eyHWE6PjimuG2LEmdd+f+g0ki42Q+O4dxC+qWqFi0f1iTW6G67ahKzIaNxbPEOK0Bvb2aPZuh9we+EbyLobpnU7Hbe2/cbCo2snaf/JvHAF2fu2lTPIk9xLEMuJm7E/eSS8X1kOt0JTXPr9TMUVdD7TKKOzk9BojRCxxFx+0aDU/J2pRtwXqit0PompENIcNjKS+iGWOGRuMSPOGk6B4FYNsddqD0JzVuD6ny0xTr83Eo8dqW43pOtZ677Ryg2I2LYNCT9/Jf1mW78Bgt5ahstThqEkRzt/nQz+TsOmwbVtC6RHxyPt+AnkHt2hs5ykvFNevfsh5/mlyAw+grAdV+Dh4S6t6xpHhOZaoqeIKqAxLwr3PbGywpO+OKuSKNUYJyKQ/aDzWi7cG9kPfitrG1tYdbbHlgffYFDxbnzzXhuwaugnE/+C/tbh5cR81RDntu1RZ/pCRH66EClnT0t3er38OiwbtcLtd8ZrtWRgagqHtl3g9epUODQJRtLlMCTt+wu5Z/ZUOBB1PdomOARJndfjYnIbJHd7AZ3s26FxWQjMzc2qEE6OHDlSIt8Tzz5sm/uymCJTjdetvfQxGqg12J/hEGFERSxPxcexjBANavEQwUWGOeiMzMuF15JFWswB57X0qioZAYQd0qhOTklDolUW3FL8kPDxTCSfqIQge74yGXat2uH6DO1oG59t4ekNs/GbUVa3AWw8zsMkSx/5eTkVLJA8jMnZ7DWTlVA8ubdd87sSwycPtjTkWIu9DEBJSSmMjAxAYnuy2Yrw1mf4qWqb/hc0QCObDO+isCoC81/Fw5uuXG+SE5EdV2Rfp+OHTh956Zxie+Beqin2ru6N7k1voEnmJ7Du1Bd6Bga49dbrKEovhwAamJmhzS8HcPejeRVRR7GfAct3INmzHbzck1CYEQmVqkSqVECjXSQL0zWH+TvnsQhJFUn25OOdTLOMYNZEuFbQgaYkPKCSJV0+T1mxgaVxROcAifUI66PDRBTqnE4LGgdvfbwIfn4jYLZjHZJ+XFVxqXVgEBqs/Bbxx04iauW8it+t/AMQvHgtbr8zUfHQYGhmDvt2z8N56FicTQzDR4sXSLBHOiK4xmjyMTUN8hBG4h+x9jwPS3RqinmdrI9M+Ko8sq1vYAh1qUrKgyfPSE2EDM5KkR06LRnpp3NGLhzrPHCK5c/YB+ZTi78v/eRT1LOpjwcLX3tk5Jd1o33fXoaoDV8haVdlmoJLp67wHjcbF8f0l1jNRWF5T9suA+E2aAjSDPNhklICi7JShFnXR07ZXqyesRTJyUkVtzHFg7oV+QS4rtOIF/cgGpiMfslzfTV6p7FJREdNhH1QcrJQj+RKEdnqOa84f8XyZ3QW8neyn784eiLKftiPlB90l4cU++o6eDy8Br+M+8vmIu3ShYo/B769Amo9A0Qsna34elZ+AbB9cTSs2rSGuZstiiKTkHJgL3LP7EVu1H1YeHjBZu73UNVLxr6Nv0rwW+pRXkeeDbMKAaG43Ds1wjnNyLYcPaMmC/XDUtSMDJM/oCbCNpWqW9ABxcCDSIpHxwp/E88s/O73MuJwdH9bNIteiaztVREYuvpnYGIC/3dWwTrAH7ffGo+8B5VVZ9ruOIyITeuR9NfPireTn8R+8CSYNwpBGZm/HqQg+Y8fkXXxOAofjnOmN+S9sgsn0x2h12MuGsY1RPj5yhJldIISpSDOe57BmO4kd2Zp9M5vQtb2mgiDPSLsXdMOq17QOBcj/UQ8UMdcC33q+COlRRqMU9sh759X8Jx6KTK/ryzV+KR9MvfwRKPVm5EZHonw96dWoBikdJB1P+LO+zORIXPuadrlHsz1yXnUTJjU9UJuYiZK70cja9cmiTtGg+wR++H0XG9E9FsN+zqHcfr7w5JjnPsq89XlQmcu57Bcvxq9N2nSpEaVKNg+1y7qVhQ63bnPjB07VutP7BsdgOTEoDQd2AafxX6MPiar8PdnQxARoY8pQ6+j0cWByL4X/qRqB8dsgxVf494PPyF+S+Vey9/95y7FtekjUJRWlWDR2NYWdh1fhPOAYbAM8UJ6WBwKr19HzqGfysvYkr1fELsGjXDE908UuxcjrNFgDLEZji512klrrTi3Ob7IEC9f2zV6p8OawYdaeTYaqDXYn41epVYZCRAhevyd8BlG4VjfXC48TNNTJ/5O7yyNGKUIJiNgnFSiMcSDOp9BQ8PU0gFha7ci7usPtZ5HL6jn7A+xZ+FbcL9bWY9az8AQlq+vwl8ZLeHQ6yBOZG7DpAZvIOU8yzmZwNLCHDGxD+BgY4EmwZ7Q19eTIKz0NG776VfJ4DYzNcLJSxHoHBqCgS/1kQ7fd6OT4e5si4SULDQO9kGDRs3wz+kTuBOVBB93e1y6FQszU2M0CvJAnxd7SXVma+V/RwOMbimVQ6Hxwt/FaBARIjyIiigUIk1o+It5gqzdzlJRR45URgnMLCyRZpODG9dccedgO4zudQZODmqEvzetyiGiyVfbkXTtJs5s34w6KVFainV/dTp+yXwRKald0X/mcbi5ZOLuyXiYW9ggJTkJ2bl5WuOdqJew8CjJeaAZ660b+6JD21DJQP5j37GKsR7k4wwPL1+YmRriz33HEeDtJJUn++dqpDTe2zQNxEv9+tboQ/P5YhRd0xA3VBLiiA5ARhx5uBB/p14ZrRCjlDSSuAZJ0Wr/QMz94hPgogPsL32G6N+2w9zNA8HLvpbm/a25Y1GQVGnoGVlZI/SXA7i54gNcvnFLS+8qfUM8cPDEcz264ZTVB8iFPQpN1yLy9gVp/n/++RfIy0lHVuK9itrqdICOmzhNWtdKVUVw9GqItLhbOHr4gHRgPnv5DgpyUmFq5YDctAfYvfcAPl6+FJdv3kduehzoGbT3DEFpSRH69miHzZs21kjvzJdWiiTwAEkmY+b3yoXrMdFHoqOESA06ppjvLXdQGRga4vdDt6De8S3urlmu2EciQwI/XIvUsxdwf+lMrYMYI4s+C1fj4LL34XKtPDKjEY3eOQfcFu5EfkB7nL72GVQ5gLWjB65dPYUbF85V6J0HVZb2dPHwQXFRsZbeC/Oy4eDgCLWhlZbe4xNTEehfBwbmDlX0vmLxW3h9bFUyuif5EMwVFnkveB+NJka/RKQC1xLmbovROaLcGBElqmTo6DHQv1eI6PkjdRoR8r45d30RAW+/j/vrv0bi9vVa3XZ+vg/cRk3E7vmz4RWrHe2V6922XgPY9h+HKwZGUJsaoSA1G3nx8XAuzYVz/8nIzzoMZBZJqJF33ltcziitB6TmG6JFA29MmThOMhyzCg0kg9zKpBSe3n6YMG4MZsxdCEvjcsdpeoERDPTKYGOqwpfr1taodCTb4XqhlJ9N1BP3fs4HudCYImO5mO/LCFy9Bo1w+LI5TC5HAN8OUIx0K40Fj9ffhnvfPoha8iZSzlZGvnnIR9iKAAAgAElEQVRtwLufQm1kgiNrVlRZ2+V6dwptA4dh03CejOamJsiOTUZOVBTMo6+jqWkZfrXdA58eZ+DfNAIxu+MQEXEP2YUGsDdX4aU+5XXOP/tyC8yM1ChQ6cPKuBQdOz8PXx9PfLF+axW9B3jZSXqviRB5OGXKFMVbyUxOp/CZM9p6IIqCTjSu7Yz22nR1xNX0B8j5bjNGdzqCwlW9Kks8PkGnjG1sEfDe5zB1dUH4u5ORE6mN8mz/21Hc+v57XDp2UKfeA/JTYdu+O2KbP4cUqGBvY4f0mHgYR95FnWuHUfigMv0sy9wGFgPfQ0nX5rh06jcgPQFzZs3A5ctXsPvACS29jx4zDvfu3MbeI2eq6P3Fbm0xY3q5AV1diYuLU+TeYDt0xtLBKq8Hz9/pKOF85Boe2LY+dhpuh69eJ8R98wWuXdVH7z6leM3jPUR+9WR57Fb+gai/Yj2yYx4gfMEklMhKC5q7e6Dxup9wc/GbuBaTpLincm03c3WDVdfBuF+nLrINSmFUZojchGSY3rsGr2vHoEpPq1CNych52HxnKloMuIIzkV+im3dTvD1uGj5auhRhEQlaen9/8VKsXfMZ7sWkVNH73Olj0a2bNkqvuvqvvV63BmoN9mc4OgjRY2RCSbgRE7Iq95DzOm5ojLwTciIXGt+EnXExkQvhnjRklJ7DqHzTFqE4891fuDN/PIoztAlHLH3qoP66n7D3o4WwP1XOsG3l5w/9duOQFDQWV/K34rjdMuSX5GNRwxVAlDGmTxgpbQhcmMKjk+Fkb4mw+0mwsrGT7ucmU1BYDBovSWk5sLC0Rsc2TRF5L0y63t7GAkXFKrRqVh/347OAokxEx6fB2cEKDxIzEVTHGbciEjFscD/Ur+v7DL9ObdP/tgZo8IkbGZ/B6DLREqKByIgY/yYiTRjtJXRTjOaxLUZ6aeDTgNCIlbUdMh0KkHW/IUIDgOsL30HSbu062LzWY8wcOHTsiF3zZsInoTwthOL/ymgcxVT8drYM3UeqkOz/CYJNGqKhugW6tGuK06fLDZ5bEQlIzcxDaalairxH3r+PrJy8irHOcT/y5ZeQGBeNMxdvVYx1d2cbqI3tYG+uh/NXw+DhYgsjQwPcjUqWxntMUi769e6GkECfan8SRqOVouJsiPBY6kqEH9MoJwpGjFLTIKcTheQ+cuF3YjuEBDLdpfugFzF0zAcwvpQC9Z4PYdN7NGzrB+P++zOQdrlq3eCm3+xE8p17OLVlXZXDRWaLjrBs8SFW/9wGL804gIuq5ZjeYzwyzyVh1swZsLT3RFF+BqwcfeDlXUeCyK9dswYGRiZIi7sNUwtbWFja4vSxfQgJ8oORhROKC7NhYGCEgpw07D54GsMH9YbawAIFOSlSvVtLB0/kpMXilTHT8M7cN2qkd8KpSe6pJHTS0lEiHqa5br7//vvSui8XRnk5N8RSex99vBJ1zYKQ+uksZEdoR2a4Tgd/9LVUHzxs3gSJTV4uEnR40+84sHYd7A9ozwWNARPabQDCfRcgy28HCmOiMH3IcMx7+20Jgi3Xe+vWbeHp6YXfftuppfdGjZth9vTxGNCvt3S9Ru9NGgRh+JhpmDFxFMxtXKvo/cOP16J/n5410jsjyyTwE8XMzEyqciCmItBBQmOS0Wh5Sg7v57wgpD8lNQ1duo6F4c8fI+b3Xx85Bx1btUa9j9Yh4cx5RCyeVsXYZKTK5/3PcXDJe3C6pL33yw1HPqTQyARFTdug9eAxUPm6IT03FWkpxTDx8MThXdsRFFQXGRmZuHcvHCq1HhzMVShS6aFJs5YICfDA7j9+RXaRoWSQWxiXwq9eS7RrUQ9fbtgGM0M19PTKkFtsIB2qed2qFR+iQbBftdcY3kBHiOhw5e8sw0lotggT5vpInTPSLheeSZYt/xjf7j6H+wd80fz2KzoRT/L7XPq/huYfLMTlFauRsFU7/YLXOfd+GS7DRmPve3Pgef+G1jNFvZdYWKOwZWd0em0CUi3KkJubhdT4IngbGWDbeScUuOyDu4UVEm/HoqCwFBbGahAAP2f6eNy6cQUHjp6FsX4Z6BKhntt16YOyokwc+Pt0Fb2b23li3pwZNRrrTEFhxFJJdDlEmE7GiK+GpLBRn1Y4ULIHDaPWQy/WCM2uDET6laprtNIz9A0N4TXjI3i/2AN3352GJAUCzKBFa1BmYYmDKxY90lHCsZ7l4Y9GLdrCtd9gpBjnITwqEf7mTrh06h9kRVxHYUoyDE1NUdxsIIJ6uyDq2GXEJyRizaqPsOazlYiITdXS+8Dh43Dq779wLzqpit6DGoRi5PBBNdI7kSQix4tGP3KHiFxnTL1h4IzOxDq+/rhZ9zYy1OloFrUVa5f4wMISWDV5D4o2jKxA/emaiDS0gxavg6G1Ne4tmFIlzUPfyAittx/C3V9/x4V9v+k02DVrTG5AAzTp/CJsO3VAiioNMYnZ8DWxxtmDR5AdcxfFWZkwbPUyrsa5o+HgB0jKvAbvlDqYPnE0Pnx/gbSGaMa7p4sduvQajJ+/+wr5JQZV9N65xwB07dSmRnqv0cL0/7Obag32Z/jBmeckkm1pHkcYKyGocngv/8ZoJI14wunlwigaDXPRuOE1hByzrJaYO86cK8tiW8R8+AYyb16v8qYkzWm8ZTf+/mMPrLd9Aq8+LyHZawSK6/ZFWNkvOJv0La6b/I25zRegg0EHhEUmwcXRFvEPYlFUokJGVj5aNvSRjA86IOg00MDh8wuLEZeUiRFD+uL3vcdx/XYETE2MENqoDi7fjkVw3UCkpmUiKuYBDA30kVdQjKS0bNhYmcHExBRenh6YM+ll2FhXP/frGX7S2qYfoQHyEdy+fbvKFUSUkK+AhoBceJgmfEoJSs9casLoRcgfDX/OERrz8jxCaxt7OHi6I3rbfkQy2qggzh2fh/fcxfjrndlS1NHYzg5Wz41AhNtkbP7DFw0674Vz332IygnHmwFvIyWuBFnpSSgpKtQa70GBAZIDQmPIa8Z64xBfFOlZYO+BY1pj3cLcFL7+gTh77iJMjA3RONgDJy9GSEgTjncbaxs4OTnWeLwzfUSJFVpXHjjh2YyaE74tHqa5JjHVhtFguTCqQCeKJqd82uI5aNx0FLySYqHnbYfEr75F0q/akEXN/R4TF8CmVSvsXzhHK+po16YDLvqOwu9Hx+LFETG4WWcsjGPcMLBRHyyYMQelZYCxmRUy4u5ArVaBZXoIz2c+NYVGu5mVE/r16oyAeq3w1bffoVRVjPS4MNi6+KNuoD+6v9AbX369AWpVMbISI+Dg3UBCHJUU5UrOH28vrxrpnSgKU1NTxXH26aefStFIEVZJHVK3NOblQsgn34nEeXKxtbPHb4fOI2bNViRvqswdN3Nxhe/81dBzdULSJ/ORek47hUrTRv1vfsOFyzdhtu5drXZpwJQMGoNipzeQFhAJtflBmES6wd7GFB+vWAZ9AyMtvRPNwL5rHGgavS9ZNBcXrt3Hgb9Paum91ws9YGRshr/2HVDU+8tDX4apqUmN9E6Eheho0rwcf2fuvIjMYTSS0Gw6TOTCsUwDklGzVyZPRMk/KYhdNLoC8it+XObs+sxfBZSWImLBFAnCLgq/Tb31O3Bow0bY7dJGb4iGI/8/zKMurAvz4BgUBLPn+iKutBhlBXHIzc6Q4P1EAWic96VqPSmqu/rjD7Bi9QbcjXwgRddpsBvoAx06Poewu/eQEP9Aiqin5RlJ1xsZqGFtbYMWzZvVSOd8R+pV5BXh71zD6XAia7mcwZt/43ylg0pcw/k9IjLjEHWnLRzu7kfOutceyRbv3Lk7vOZ8gLxbd3BvUXlpMlFIiOazeA0OfDAfjue087R16d1OrxT29ZvDLLQjogsz4WBeiuDGneAYqI9/DhzHtVMXoNG5naUBho2egk/XfC1FqB3MSpBRaCjpvf+Awdj11z4UFuRW0TudnYEBATXWO3kAlAgEQ0JCJMeqCM/nGZHOFQ1zeouO7fC76a9oWDAFF7cOxsTGa5C5oSqfh9JC5jZ6NgKmjsX99dsQ941yZNhl4Fg4DRiKA+9rozTZnlzvmrFuVZADSztbGDftjAJvX3j4mgNqNUI866PobgQQcxPXgibByGM/zvxyDo2CveEd1BRbvt8uIUw0enews0Gn557HLzt2St9AHO8NGjSE81PsqUTkiGdwvhPPuVwzxBx3nsG5fq9cuRIeXj6wDrXHh2HvYoLdTuz4sC9SkvUwfUISQiNGIf7QAcV9Q5pPVlbwnvMx7EKbImbF+0g+vEfx2sAl62Fga4N9i956pMEu17utuxuMQ3sg084OtjYl8PT0gJeZB0oexOB8YkeciwfiWw5DaHE3dPSoh8iETOw7dFxL7/VD6sLByRVHjh5X1Hvbtu1gamJc4/GuUzG1f5A0UGuwP+OBQANb3LD4SEbGWYpIzPHiYkAyJKU6qoy+83oxiknIIg0cRm6Yu6QRJwdfxKz8GMl7ftH5lsEfb4GljydunsxGoWNzRJaUIM39R/yduxbJOckY32Qyulp1RR0bdyn/bc/e/ShRqaCvpwcTEyMJBsvcLr6LPKJEIjEDA0MMGNBfIqeQ57+p1WXo2Pk5XL96ucLA5285+YWwsTSTyPcIWayV/y0NEHWhi1SNqRuEYot56XRckSCJtYPlQgcVYcJKyBHmpzGqLJ87Vta2MEwswd35jDYqMw/bhNRD6LZduL5yBfSKCpHsMgBX8rrjyN8m6P7KHeSHfIlbuacwu95b6BHSCYmJSbh67TrUZWVa453vwrxNDbETx3qpugyNGjaQ6oDLc2w5rh2cnMGNTu5sk493zl3O4ZoK8+rESBbbInyTTjwlwiOm65DATTwMMuLINAUaaKJwTeL3ZQ6yh6cXRs8aD3/nBrC7l4jIJdOl2r5K4tztJdRfuBQXJg1DzvUrMLa1h+fg13DLeAjW7myCgaOyEem9CHlmYXij+Rz8tGxrea1b6lVVTgzFgy8RRkRkVBJq6UFPXx9//vE7fvnlFy1yHKYcfLB4CUpVJVi0qJJ4jb8bGpvD2BASdP1phPoT05fYHn8n1JpOKrkQoUAUCo12Uej84XcUo8c9evbGG9OWIGnVAqQc3iWV5vSevRwmbRsgc+uvSPj+c52v4D1rGexaNEPY1GESc7y04RsYwHvcPFxUDURJw3zkOP2EgLQAjBo0BG3bdUAMkSsyvTMHnO9C/ohKKdd7YkK85CyWO+moX+4Ra9d8rkXUqNF79+c7VyFwrO43IOmRyJ/CNkhSqJQzTH4ArjPkHZAL0xQIsSeyhPO3Z+/xwK7NiPimqk4tfXzhv+gLlNpYIXnlu0g+pW38a9qlXlp8vw+ZsfEIn/tqlVcr1TeAgVqb56PY0BhqPT0Ym5rCtc1zcH15DMyCvJCXm4SN336r1QaRDvPmva0FlWZGqrpMD99v+w7Tpk6t2FP5u6pUD0YGZVIJO3LG1FQ495TWBLbH33n2EGuTk6iOa4lYt5rr98jRr+HHw5FIPO6C1ilzEfPnTsWuOTRvCbdZSwCVCjEfzkS2rMSa/AaJaHTLnwjb/B1Stn5aLb2bOzrBuXM/uA8eCs+GXjh65CAOHaqsY8+U3y5dnpPQRzTINEL9+vj4YtrUyRJTvvx3jd7pGH0a8lyut3QoKQn5PTg35Wc+Xkfn3/bt28GSkVZW1nDt6YO/M46iwY3fYJMVgeDLr1WQU+oaDy4vvgL3KVNRfC8G4Qsm6mQbd2zZGq02/IQzE0Yg45/yihRyEce7Zqzrl5XBwccbti++BtPmzdCxb3t8v3Ur3D0CEZfjhtyCA7h06AzGjx8noTbl6aDUe9eu3RAY4KelG814tzQ3rkKUVt1xzxROkfeCbZBPiqUqRacr91ga8USVsOxoQNt62Ge6B3YGnvC/sg3frDOHjW0Zlo79C8XfjEBJdlaVLnHt8Jz6AbxHv4SYLb8h9nNtcjv5Da6vTIPPsFdwbepwFAiOw0etMdS7a/36cBgyGQbB/gjt0BibvvsOjh5NkJHnhhu2n8I3wQ8jeg2SCEPlxNjU77jxExEZcQ+HD1eixDR6D23ZVJHXpbq6r71etwZqDfZnPDp4YCaBliiaeulK8D4aBCS+ENnTufDzsKcUZaeBwzw+QnKYL+zpE4C4nX8jarky+Q0hSte9GqJLh84InvIGTlzIx4W4Hcj1O4nDsXtgZmiOqU1mwzc3EK5mjujTq5tkPInOAh7EeEClsS5G5ZhvzEORmMfP+pmM7pGNU0n4/ryvVv73NEA2dTHNg2/RsGFD6WVEEkbC9zhOSGIiCiPBNAbENBBeR64Hojk0G4q1vjMSlr+F1PNnFZXG8X4rqBWGvjUfpUXm+ONkKxw9fQtOtvXRauhJRDqvRkp+Ml62H4N2Pi3h5mynyD9Bpm9G15XmoC6HGiPTPFSJTMrsKKG8nD9PI9QpnVxKwoM0CYp4AJELCaj47FmztFnI+X4aw5ioHbnwbzTaeS8PJyH16uOT2UsRs3iGThZa6j28WRf0mzsHqj1/Qa8oB/+gMSLSB+Gfy07oOyoK922XI1b9D2Z3nAXVjSJMmaTNfss+kHCIhrqYo8w1kXByfhORFItjh3nmolOU7RFqWlMyKI1ONBFQUe9ENtExRaejyNZNKD0P2oxYyoV51iQuEqPsvGbJso/RyLstMr6cD6NGnaHXtSXMwpNx//2pUOXnVfnsmrW9Y7268J8wEfELZ+JqdBLadGyNHM++uJLfA6UhF5FnvgsOKY5YOudtydgVKyGwYUbX+b1FpBih59Qtyd7kwv2JVUu4xssRMJprCNXVsFjXdMxzPCvNPzqUWUFArP3O78FvRf0yTU0ufA/mYDMa3L7783At8kTRj8u14L+smuL7zqewDA1G/KYdiNugTJSm0XvPAUPh3rQxwme/ivASA7hnxGsZ6czT1Ssrg3VBVcZoxzYdkdF/M7x6RODuXxdxRUgxYVSVzgpx/JBTg0gNXegDpsHQAfo0wqit6HBlexwDXBvElA5+Dxo2YmUE3sPIcFRmIqIjG8H07m2ovxuNgkTtUmlkrvZ66xOobcyRumYFkgXmfc27UO836jTBkDffhlmpCjcmD5G4Maqjd+ZqOy7YhVjjejCxOYmIC0eQlBhfoS5GuumcE9cSoph4BlKqhkAnLMfV0wj3DZIOKgl5BZiqJJ6jmKrDCLwmFaplz/bYpfcHGuTMxLltvTCp1SZkrH1dZ7dc2neCzaT5MChRIWHFXJ3M7tT7nQbtMejtecg/ehwPvlxcbb2zE7b1G8L/zSWIsXLAqf1bJEcqCV/pfGOaC+ezeBZmCgbfW3QSsT0izkSDurrfgHsfkSBKQgQVHdsiopV8A7yPSEJ3T28YtjbBF3c/wQSbXdi2qBsy0vXQv38hepXORuaf66o0TSPcedTL0E/IQNicMVKKgJJQ7xGtX8CwD+Yj8f13kHT0UBW9P2qN0bTpFNoWziNmINfFCsdP7JNShpzdXWFYBmmNFs8GvI+cFPweSqmPHKdilZnq6r32+kdroNZgf8YjhIuPLiZiGh2MdMnzcdkdbnTM4xVzfvk3wji5UCiVtuF9NH4uXr6CnBupyNm9EbG7y8sricJJn2zjDJMGLdDzg3fxXdKX2Hl8H4osMhBU0AaNrVrCUc8eliZmMLe0Rst67sjK1M6BZ5v0lpNgSWTR5t94gKCxLhryRBCQVEwJ6kWiOV25oc/4U9U2/y9ogONALD/IZnl4YRkWpbnA7837xE2ZxjwNfaVcdm7mjJpxfqVlFuDuqvVI/OELnW+gGe9OY2bDuVEXHN4dArjugGlQOC6EHYWDvivq2zSAj70ncnLzEOJjA1OGYWXCqD7HNKG14obFwzCdZiIigIc5Qm/53kqODB50Gbl5WqGzjikEotCA4QFGzIXkczn/iIwRI82s384Dn5gPzLbpfCA0lgZA83odULZlNZJPV42saPpBvWf6BMNy2AR42rnj6MUeOHrmOjzqxMPeLwKJJkdhamQCP9Ng9GjQEKNHDK3yDhwfZHtnviyjF3Lh4YkHDRpjcmFEmPfocmQQxsuo49MIHRu6WLdplNOZJPIH0DDmQVtkhWc/6Lzlmi9Ggvm3rzZtRl3HRshDNtRJ2UhY9iay79195Npu6B+M5jPegNOdGzgSaQpjh9a4nH4ferZ3oUICLPLN0aBuQ4RdPISffqzKZE2jio5VpQoGHOdk3ieyQS48zPE7iUzKmmtoYDxNxJHtcP7xwKwkjIDSKSCWOmVOKsvnieRoRMSsWrVKMugZkXxt5lzkHAlH4sopKM7IkKpL+MxeDrseoSi4fB/3FkyScj6VpGJPbdMdbcaOQM6y+bh8NwY2+RmIcfQBo4sUGuu8tlnUFRg/RJDwd5JJ6Y3aguzmBvBxzMTOddol8ZiCQccVo6qi44EoATqo6BAShTBpvuPTCp+t1D7XdjpR6EwQq4TQsKIzVnSw8Jwyb947+OHQaZw72AZtSjcjY/30Cmi8hZc3gj5YB5WXDXL2nkbUSt1VBTR6tx40DiHNGiJnyUyE5aieWO/Ui+eMVfjq6gzU630MlsF/w+AMEBFenpbItZXjWcmA4XvzPyVnLAMPZJV/WiGiSel8xbWYOetiqUXuU3QUEPlAdKeNrR3su7riWPZhtIjcjoybKvTMGYekv6sGTFia02POchSa6CH726+RtHe7zu5T72nOPrB/dQaCXB0QN2skYqxcqqV3Ns40EvVrO6DfxhBpiX/jxqHycqGEnxNRJa/wwd+5Z3GN5DeRl4TVdJQOIp6tn1b4vcVSxGyT+6ImFUT+DPI20GjXOKgCOtTDboM/YWNij0bh32Pdchfp8rfH3ZBKGj7YU5ki6NxzEJwnTkd8sRVs41JRfOBzPNirnUKoeRb1nhvcFFbDx8M5LgFZa+YjytEHNNLVD8lOda0xok5YeYGl4NxGTUaGFfDnbz9j8uRJEl+FSD7LkrBEVImVWDRtch4oocee9jvU3l+pgVqD/T8wGh5FxkWop7iZ0QBmtI4wSdGjzcWKB3BunEqM3Fzg0oq9sGyBCxr7JyBYfx/s4/5A3P49EuGSfNKnWjmhnqsdMsfMxYXk60gojUXHjiFoZtcUpjmGCAr0lyYgocyi0c12aFDR+GYUT8xfo0HAe5VyawnNIxJAJNZjm4xK6Tpk/wc+Ve0jnlID3OBEsi1Nk3Q28VAppog8KmrNiCM3ZaUDC+dJqzbtceX7fYhYOBmqAm1jTv4q3OQ43tu8OhVRAX44ePcgUkvj4d7cCD08eqKlQwvU9wuQnAZizWNNO9ywGNUXc2T5d1Zx4O/MAZcLU184DzT57qJ66XTggfpphZB4pZq9PEzzcO/u7l7FIUKoJf8mMmizL/yGLBGlBMfkAXbH73txaelaxG9UZjCXrzNpNi7osewL7I3JxuVLath6ZcG5dSb+SFqDrj498Ur9EQg/eBuzZ1bNrSQKgIYvD5+EecqF6w8jGnSUiE5PGmB0HPGwqyQcp7z/aYVjQmm8czywBJ1Y3o3PoxOTkVAR9cC1j+OcUQolZ+3kKdMwYvDrCF80F8lHldFJbF8z1gMtDZDy6ttIKDJCWjZg11APDeurEXEpHMHmgRj4Ul8pkiL2g21wXBJNwfknGr9cvzlmGNUVhXOH8GCRWE/Tpq55UJ3vwD1Rk6Mr3kdODKaVaUi3NH9njWpGgCdNmlRlT2V1Ezq0GFEzNTVDz2FToX/iAmJWvgGX4W/Ad9wQlCTmIWLRDKRePKezqxq9Nw70RuqIyQg7chbFl46hQezNKjB4sRFTJyeYDF6KBw1bokFoLG7uuoxbQqkskrsReSa+G53cnKc0DpXOBPxeT+ucYn8ZXZZDwuXvQCcCv728ggf/TqOS6BGlMn58H7/AIJy8XYywQ95omvIhMv/4HCZ29vCZtwo+vdoiKcMB8fvPwOzKN48MPnBtb95rEJLatsLNn3+FKir8ifTOPrL02Lk63yDN0g6ufb+CU7o1rv51tsIYpOOKKEkxTZFzm+UBRdSPRi/UCZ3UTyucS+I317TJlA4aryIXEsvMMeijifC37Noe/9icgWlaKMK3Tkf/Fv/A4+JcJP9zqqJ71oF14fPOKvh1aoTYg/8gfPnbyLmvzQovfxfNeO/81mJcL1Lh7h+/AKlJT6x3TVtOM9Yjqm5HGHr8hcRDMRXIBr4z11DRGcJ3Iy8Oo+9Kwnd+mhQzTZuExCutjTyzc/1TQgpxnHMe8Hzu4OgM+07OWHpnEYbbf4Yb307B1Sv6sLUtw7yRJ+F2cT6STp+Qxp/DtEXwadEAa1Y74vQpfbQPuYumtsdhEbETaRfOo0hGGC05wd180XnRJ7gWGYPr27fBsCC32nqX6459KBq0DioXcwx6wRnTp0yo4nyjU5zneaU0RTrgNNwyTzvea+/XrYFag/0/MDp4kFeKfvHRhMMyYiDWLmfkhjmoStA/Hux4AFeCETu6e+DY8UZY/K4luTzQvKUawa4xaO51HY6lt6B3ez8MSJZkoI/cpCSY29rBc8YihJncgYeJB/QLy+Dq7CSxYBPOSbitaIyz3yzZojlYirBPRhXp+eWhUzT0mQPEvisZ8my3tv76f2BAPsNHcKwQWqtUj53GK6HLSt9el8FLOCtzgYkoETduYxMzmGUbI+r9qY+tb1oGPcn77N7nFdR7/22cyDwO41Ij1DHxRn2vYDg7OUhjXTz4aFRFI5WHAJG4in+nw4FjWulvhPVz/ivxWPDdOP8Z5XtaoTecc07XAYZpBSJclmsMjTEavCL8nYYavxOjROIG3a//IEzuNQK3Z49WzMWT90Gj94B5q3DVPBcxwdG4kHAWxgbGGBn0GprYNsKKd5dgn4566IRiE1EkzxHVtE+jnA4WMbeWxhlJ3/hNxLWJ9/KddKXjVPc7EI1AuKyS0DDnwU5ElTDKTgeLksHLKCVrL9OIFJ21r44dj1dCX8C9jzXLBcoAACAASURBVGbpTEFgPzQ6NzY2QsjaX3CuIAz5TnnIisyEl74n+vXuhZs3bkiwZJE7gvfzoE8nBA9gYlku/p0OXB6kxeg60SfUBY00JaEuSEL2bwhh+oyIi0J4Ow/6NF5FhzDhyxrjVryPefE09GmQhrbrCJ/6neCUEI90c308yMhD+J1uCCn9GxZnliH1wlmoVaoqz9bo3bZOHbh9uA7mRcW4Nn6ATm4HeQM2Q+cjv+t4WDU+h7xzKThxXDtFSONwIBu1uJbQIGYKgliDXtM+D9pKjqPqfgcicegoUToPcL3QpHWI7XJ+cswoRef5t+SsTFyNtoX6vhMcLy+BTbA/8hv7IEM/HZnG1jBLbYvkc4UIMjoB81vbkHn7lhZcuGJtb9MO7ktWIG3XMcQ8IiIv7x/L66V0XIM9tzrAb+gaONgkwCPZHWfPlHMUcCzTQFTiCOFvNOSVeFu4ptNwpGH5tPKo8m7UOce8WKOcjk5GPGnMc980NTNDYPcG+DP3VzTNXohLv/TAmI77YLBzGnKi7kvoDv+FXyASmdCz6IwDf3ijuf0JuEZ9A3XsNUVYvEbv3mPfgvPIfoj76GMk79tRrdd1YqWKxp+gNHQ/HNJUOHe4vLIC10iOeTokRKFzio5YpbWLASRdteur1bFH1GNnO/z2HNOig4rINM5RItt4BgpsXA/XPK7hXMpp9MNm7F7dAwnxeujaTY1+TU/C+c5qWPYfh4sxV6BuoIfIZGOYRvfDkR1+ICVM7y7J8Da9BXv9GFjpp6E0PQH56ZnQc/KBd7sGKLSxRPIHM5F5U7syQnXelazz5uM3Y+nuYejUOwl+fTfDIEEfdw/fQFFRodQUA4Gcq7rSMzgO+c1q5dlqoNZgf7b6lVrn4fHYsWOKT+IE56KuVK+dBjEXWyUjgjBaQp/k0R0zc0vcNgrHyfjLcE8cg7Pb20kePRruJiZAy1A1oC5BHedUuDqXgCkymQXWGDZZBR/H+9KBhd5DRt34XBGirHkBbgaEdDKCpQQF46JJ+KFS7r5I2CVXCiF/RBbQkKmV/10N0NATI82at6FRyTErGiOMdhJKq2RIMarEsob0XGuVc7Pxh+rSDcR88Q7y47XLHerSnmPzVgj+YgMsrQ0lFlkrK0vJICQEjGV0lIQQXhrlnMNiaSjOQeZw0rEmwuT5TnSuiZu65hk0KLXJvGr+zQm3pzNMhMqyRaatMDpEB6CYV0w4JftIY0YURsAIR+Q6pOEKMDU3x6dfH4d1qhoGpz9H7I7vtep/63oD16GTkPt8KAoCCuBgZg9vU08c//NvLHxPm8Fcfr8mUqJ0EKCDhwYKidxEmDwNTR5iCT1XErK3i+zKNdU8naZEjigJCYjYdzHPm9eSRInzRAkVwW/CNql3TV6+m7sHpi/4DVE3G8Kj5CLcYjfBIP4y0q6Uw0d1ScDi9TiaHoZGDRuhR/duuHHjuhRpFis2aO6nocGIHsesCLXlNTyoElXASLYoTF2hEc90ACVhmyIRX031Tv0p5Q2zPUJlGWkW87w5VwkN54FfTqak6QMhsCRJ47hycHSCf7OWyE9MgLXjFMybaY2mzdTwd4pBO69/YBu9HekXzyquO0aWVqj7xU8oszBD7DsTdaYu8Ln6xsZwHD4PiSEjkBVwDAF6ptj7Y9U0NkLeuaaKKBOijNhfOuOU0uQ4DziH/w2nIPvL8ap0VuHf6EThdxH/Xg5/nyflFVO/cqGjgbD5sNgYXLprDpdSK1jY3sUvP22Cj68/HFq4INUiFQWxDVAaFYoAKwuoE27BriwSFsUPUBx9A2Z2ligztYG+jSssO7WCUW4Bbk4eDFVeVX4H+bOdWrVGXucP8MOZrmg0aDfMfP6ByVUj3LtRWemEKTcsJSjmSnNP4HihYaYkNPSVnIw1He+6YPH8vkz94Von7j88axEpo3GSubh6wLytFY5kH0SDB58i6XJL9PLZCeOD78Fl9GwkOhsiUz8TEQ4RMI7rirv/H3vnAV1Xca3/T91Fki1b7g13jLENGIwNxoAhkNBJAgmE0AOEFAIhIZACD9LgBfKAFAh5qY+EEkoS+AMh9F4MBtyNe1OxbEm2LFlW+a/fIWOuj2fOOVe+V7qSz6yl5YR7ypw9M3v29+0yTxyj4YMKNDb/VQ3Lfk873npADeVlqlu7ZhcSasgpZ2rotddo4xOva9mN9nPjbd/NEYktn/6F3i9ZqQHdV2nhv99TQ329Z4PyvcjXv5+RHkWaHClZtkakjE03tUXuEFPItbp69xQYCDDeZRtjPO/ca9JvppxwqF7Mfk7rt67V1A136S83T/fA+IzDW/SdLz6m9zctVPY+ebqr7A6trV2tKQOm6pCWr6pm4TRtWTFOy5ZmqaIyS5Mmt3pRH+TCU+Jp+rHlOuXYNVr987tV/rBd50b57r6f+qIe2H67lq3trcO+/hs9uuVa/Wj/n+nNv72o+v+koBGZxFjYTorgHRDXODXill4JxIA9vfLd+XRYWFvBFoAtIAYw4FcMhL9jHAFi/ECBB7MpkEtDmCEgt7F/jn76wY16r+IdDSseoVlF56tX1XGqXTxVLzyTr/KyLDV+VHR5l/atG8v0jS9lq7J8g2cUBFVPhlwAZEAi2I69IPwXth2A4GfiARQoY9fZ9HhgbUWX2mmI4tekSAKuQos8Hq8u89oWGovHEdCcWGXddIl7mHf8hmFa1KtEyxpztezdfTRi04cq/uBXalz5gbYs+/h8ddvn9Bw+QhPu/KuGTezvbUC2gnaJ92FsAtYBV7YUDjyhgAN/MT2eYTszPvHZzHXmfKoam6qryBHGA6QERrW/YWDjybCFGGJ8AAYwgoiYue6Hd2nxexfpmadzdOaplTqg+Hn1WXW/NjzzVKCB3G/6YZp89x/19lsv6pGHHtITT9iPqzF9w0tKNAZ5jP5GBA/59+YYr8TfIR0Jd8d4IF/a39C3hPamom6AeTZhr7biR/wOMCRM0u9lh2hgLnOvLQUDg5T8ceTOvjHp4AN06tVnqEqtal1+jJrXHqyRra9qqN5W81v3q7WpyQreB59/tcZ+7Yt69KH7vZxE29oy30EECYAL+dgMUYxUfoOQ9R/fiHcdb54rnYlvsRX/a+vcR8fg8bEVtmPeAMzxBvsj19hP8QYRrmzLf4XIQd7MPypsj/vkJL3R+LYGbbhIr/5llua+m62+pa065aRtGqQPNKTnavVoXKOmsqXqPaSvatZWqqlbf42aPUn7fHKmXvvyFap4yn62O+ct9zrze1rS51gVHTJfA7N26J+/391DSd4oQMVfpwHZUV+A7/UXfDNyhdja0yJ/iWMUVLUc2UK420LEIQRZm7fffvtuQ05KEGvk7fnztHRZrV59+q87rxk2Yh91L+2plmHSuvx16tt4sJqr9lHz5mEa2W+g5s/tocGDspWdu0Ob67bp6KMb1bt5jZZffbGzWBoPByzWzrxRc7ccraL9XlLFoD9q/MZxWvDC3J3vpqgiTgSbTiV9gqhJf56vuTnVBbiCwuKpz0A//UeN0RfmM3aaqbI+etx4rR9bpsbujdIbX9fyVw/U9Rc8oepejXr0ob9q6PB9NHDaUK3rsV4LNizX6NrztfK1Q9Q7v48KszepJGuV+hVuUq/iZrU0t6huW7b6jR6okdO7q2HFai3++lm7hG+71veQ407QxgOuUeW4bPUdsFDL/r1AZf8h3QF/7Ek22bJPUb/Cdnws5BX51ancU9EDtvQevot5jl3gj3TFRobY4l50O8dzjjxmvH659ueaPeJ47Xj9Er35yMH6yjWrVb3uT1KfLP2r+5N6Y/3H6Qk8f3K/gzRE0zS05UjlbRuu5q0lam0q0MZNTRo0eIcmT+ypYw/O0/z7n9biay5okyrlOMRFk36t/7nvEJ33vTf0TPEXNbX3NI1eMlLL/nMiA951oqMgL2x1eCCvXHntbepUfJNTAjFgb6fJAcB1GXWAAsJ/bCAGw44QRVu4LV3HiIKlRsFl5eRpRe4aPbH+cf3jw482/r7d++nY4Scru2KK+jZP0o7q/ipb00P9S3pofdl29RtcrxkH99C4QWtUWR7spcQwwPBio7IZw3gwMBBQUjYgBDFBP4k4sDXCh/mWuHV+CbCJ2eoe8GUYnwAZf2gn5JM5f90fou3N5b59vfnHWnpvw0K9tvU1rdm2RuMbLlDBmoM0cNsHKlz/bzW+87h2bN2iutWrdhMkRaT2v+shVXcPP9ILzzTvZN36PUM8mHWLl5x6DP4GOUUhOldkDes9Vd5G825C7wGAtjxW9Aj50fTLL3cMbb4BAsFGPBAuTD77dd/9gVom5WjHloNV9vLxuv/efI0d16IJwys1c8xc9ap+TQOLNmrDs0+rqb5OWdk5XuGu7IJ89Z6wv7pf8m2dca49bN98A8QM74K8xBC1NTy4GA4U+PE3DDq+3+XdwlPpLwS3p6vNnENtew5eGIoQ4enyNwAlodu20HiuxTNGgSPC5CFLJu4/WTPOnKXtI7ZreM+Zql42WuOKD9D8V6o1tt9aFeZuVGv1BuXnNqmxvknZRX015KDRenX5U/rJTT8I/EyIJ8Lf8VrbPOvcTAgo3lxbXQOiZjCkXV5vns08SmVjnrgAEznbpkib/5144NmrbOG2XMsc4RSX+559SA2jGvXLD27ThNJJGqnZGlz9WX3w/w7VyhVZWr8+Sz16SPtNbNHWOvRBq1asyNKORukTp5Vr4qh/qd/qLVp+09d2++xhJ5+mbZMv0uYxk9Q06EWV1LXo5X88t9OjZW5Ah+BtZC74awmwVwLUiXqwFcfiGzGkIclT2QBUNsDEOzDsiTayRRXxDehS21GI6FHWCd/IuPoboKd08AB136enGro3qCqrSvsPPUBvrHtFAwsHq7mlWRvrK3Rkr9nKLctW9sNPqfwRe47zgGNP0qqx1+nJedM0/XMvqc/EudqxtEELn31PLf+p80Nqngnx94MUyD7ml60IHf0majJVqR+JcgB8+yuT8zsAkfB3CEx/mDgOFOYAkQJGtx86+0i9lv+K1res07k9/qpjZ3XXS08/upNUpMJ5Uf9iz+v7esPL6tOjv1oqxqvXtgPUUDlEBc2lWruyu5qbsjR2QqMaWrfogInVGlRQoS23fE9VvpMN/GPZf8ZMVc/8kbYfUKjmopdU9txqrV+7xrsMfUmfbUUSGQ9sUFfBScgiSJZUNuTtisYiIhCS3LYPYadwrCH3QhoOHjJMRdP66Ddr7/R0yaf1Z53z6SL94Xf3KG9ykW6cc6021lc6u16YX6ReBb01rGiEyuo2aESvkdrevF2zNx6jwwZN08prLlR9eVlSn148ZqzqT7xTP/7rcTpkdrm2HvllbWpZqdNzztDCZz4mriCnWJeuqCxXEdWkOhNfHEkCMWCPJKbUXIRn2RayytMBqywKf/EkfsPYY9NweUfwWuLZAChvrKrW1txtWt26Rvcv/4vmls/R9uaP8lCys7I1pf9U1TbWaHTvsVpdu1Il3fqoIKebrhp2lRo27xqulvjVhCHBtGH0u8KdCVsmjN6Wr0//CMvD6LO12LuemjmWKU9hHtsKZ9E/PCoASFtOI4CNeQTgtx0dQjoGwBIv64fLV2lewwI9sOo+7V96oHasPkgHls7U2ldqPc+XatarZ061tq9boeysVmUXlqhuR6FGzxqt5hE9Vbd192OV6B+eRsA6kSbMd1uoPAYmQMtWPBHiAY8jBJyLtAAgpdqQpu8YCLYq4/yGdx3ZAwD9DcODP6IYbOTECSecqPNv+rKuf+1aVdRt0JGln9eAjZ9TxZwZeuLxHOXnSb1LWjV1ylb1y1ujgaVb1SOvUc1NLWpoLtCO7F4aM32LLjxvmnOKEoKPBw5ACCiwNbyMED54Hf2N/0ahIAxm2zcwrnh597RKua1fEJUuTww1HfBMYjT7G+HK9Mtfxd9cx1gBLMkNZ1yJEJhy4FRN+/QM1fevV2H/ItWsHqaSlvHqtmOQKtd306B+hVq3YbtGj21RVl6Dqla/ov/5of1oKN6DdxOgRXivv4q66QdAHM+zLc2AyvAQba7jCdnb/AW7UqGnqE+Al90WEYaeMMcv2YpEQkqQA287VpW+kcrAmP7zqSe1qGWpHtv8iBe5Vtqjv2aUnqCBdccpt3q81i4crKLsfpo/L0sjR7Vq8eIsDR7cqgOnbdPQgfdqXOFwLb3ynJ3nWA85/kRt7X+EaoadoJb9tqvf2A+l5c164uHdw+D5BkAYetKmKwEK6Eh/6L+R7amnnuokvfZE/pAztrnMM1l7RC8Q/u5PVSFFiHlMCLfNDoBgIRoAwAZotzkFeAdVz7t376GRo8aooqZc3Xv2UEtjs3bUNWrLlhrl5xdoVum+WvKdC3f5TI6Jy/vkt/TUh8dqQ90QjTvtQW0b8JRGbRqtqnllqqz86Mg/iFjkzhyxERN4TwkNdhVXZT3YCLo9kTn3BnnZ2W8gEmwRVJC4EIOkHpiaHuMP3F89D+wtrWjWxmXrvN9Z36x/c657nz6lKhlUqm4je2hz3mbVFWzTstol6t9joLY21qq+qV5Di0doTe0qXTDiUtV9WKOiF+Zqw727R1HQf84Z73fCWWo+4iotLdmq4oHvqtuKPL368keEt9Eh6CK//mbuUF8C2drqwUBaQEyko0p5kJcd0pW+2o4IhWBgPZjaMcOG76Ne00q1LXebsua0qKRXoTff57wzV29Wvqun657UG2WvqL7JXTw3cQ4NLhyqLxVdrom9D9C2225S5RuvRZ5ihSNGKvfMn+vHD52iwUNaNfCMn+iFhjv0jVHXaNW/lqj6P0XusAeIcnORFuAC5lXc2kcCMWBvHzl7bwHouoqtkV8KK0ceoP88YcLdyRkH7LuK12H0sXgAMmwyW7c1qD6nQeXZG/V+9Xva3LxZb65/RRXbytXQVK+W1padXz6534G6YfKP1LRhd68jBalQOgAPGFpbaD4PAoAAbGwbMSCMDQyjw3V/7F1vx4nYTq/C02LbXHk9cx0SyubRhRiC4ME7bQtDN0YV833phx9qydrlWp9drifWPqbuBT1VXrlD4/OOU9+sUerWUqKamhzlZOcov6BJ21WrUUN6aVRxuao37cpoYyAz1wG1hFzbvBm825AKfJ+tqBmpKqSD2IpicT9eAjw46WgQJRhoLrkT2YBhYzPy+e/cy1q0hQsfOv1wXXTTpfr3pn/pgYX3alyf8RqWM02TdY5WvTtWa+cN9wrqrFub5dXN8Ldbfr1c/339Yaqs2PUsbOYChYKQO4DcBk54FsYRXi2AlK2uB4Qlnhk83raWyqJn/uf//e9/d+ZOGjKVMH1bGhGgEQ+p7bxq3kMBUPLu8baSn29A5uGzjlbxkCLtc8AoZfXO1oCBA/Vh7VJNGDhRCyo+0NQBh+rDtUu05cMa/emH9+wmEo4bJKyTaBbkbusbN+HRYmy43t/oG3sSBJctL5zrCccFPKajkTP/t7/ZC12xZ0Ii2AqGEeGCoYm31zXfCP0nlLu2dquef/9lbcgv14tbn9Piqnna3LDZSzsrzCvSwf2P0IaqbdqneJSXp1pY1Krm7DpNqThA+/WfrG2/+imVALVl5OmqGzBTeVOKVdH9RR0yfIheeeBZrV610jlfAa3kUPsbUTGEw7vOisb7znomQigdzZVTzbuIpKAorS2CgXkCQQSIcdkyADfkDiBm7tiI27BvOu/EC3Z6HYvH7aucwy/QkpbZemX5QZpy1HJVDf6revfeqFFbRuntpz8ORWaeMy8AYLbUPYg1ZOry8gKaU1Ufw/aNLi8717KWIZhtUSdENxLRhdxNmghVzKs2fhztCGHKiQIU+kTuJt0Em5L0kAEDByurOFt5xfnKystRS2uzuuf2UH1NnZqqd6iqolKn7DtL87+++9GcxWPGKfeEa7Ws4EhtG/uuhg+s0MpnlmjD+rXeZ2I/kkZA/2z7LsQctoLLy5vOomdBXnZqCEDgELVlIwb5JuwKE9XVf8AgL8Vj1fyPUvdYp8ypceMn6N+vPKsl25fpje2valH1fI8ICWp52fm6cfzNKijL18D567XuN7unu9nuLx47Ttmn36xbHj1VxcWtmviFP+vRhiv0xREXqds7uVq9aoV3W8+ePb39lHXssmWIZHMVGQ1bo/HvyUsgBuzJy2yP7mATsoWv8VAACIvE5plk0cN2AfpdGx3PAGDDEAMYyPUtK69QVla2Cnr3VFn9Bm3PbvQqxNc1blG3vB7KamlVUW6RWutblFfb6n0b78I4JHwWlpzcVxswMYJA2WLg23IUySvCwIZEsIU584zYu75HUypjb2bOuFI5TPoEhQlt4JK8ccAABJet6AsfTdgqBdO4dtny5araVK0ltctUl71Ni2oWaEntIjULD2+DsluzlJ9ToCY1a8bAwzUr+zDVVFd5siO3EpIAjzcGMpEutkrI5lrANqkdtmgY1gz9cXlbeQZnxKbDE2AmAoa6q1IuYPz+++/3Umls6xEPN9EPGG62fDW8Wqecfbr2OXKk3tr8lh5d+oCK84vVq6BEkwo/ofza8eqtfdRaXyS1FGjHjlZ167FDOT3qNLykUH++9QrNfeejKBuqLxM2CEmCx46wTlfDm4hxAPCzGQ/ci5eFQm+2hl5EPzHW6WoYjRi7toZnCJna0iCIPOL4IOaeC7TzTJ4PYcHaIS0AIGfqohQWFumwmbO0ds1qjdt3glYs+1DjJ0zU66++pMrKip2h1hiYGIiEhW/fvt0zyFyAl3cCTIjgou+2NUEkDH13eVw59iro+Xs6FhB6XqVxR5oVUSOQxLb6DKx5wCNkS9CpAYTaAnjWbyjTO4vf07rGMpVnl2lbfp3eKHtNjc3bVdWwUUV5RdrUUKXC/GINLx6hs4rPVUFtnobmj9eby0tVOqleFTlzdNDwQVr/9iq98vwL1tM0mA+QDKSV2foN2UCV/sQwZ78cAbw2gmVP5W3uJ9ovKG8VQA8RYguNh7xnPRMxYiNseQdrmbWO7NkDIG9tgMj1PWd+7mLlvfK6VteP19rWA/XKgjGaMHWjskY9q60Dn9L41gmqe6daK5d/XPMEHcF8gBCzkTiAcTyiJszZ9m7mIqREulqQlx2bDZkC3CkI7G+sRQhZrnGRIDwDjyogjHexf7tOTrF94zknX6h1371UdWtWez8XjRqtwk9eqnUFs9QyqUgbe/5LPbbUqeaDqp1gHfKJdUq/IMr9DWKKfR7S0tbQ6cxFToBIVwvysmMPIFv2J1s0HtEmkB62+g2mv8wZ5E5Uw1tz52hhzRJVZFV4UQ1vlL+iuh1bVVlXroLcbtrS+FFkICHyV+17rVY9sVinTT3eO5GitdleONe8p/Tgaaqd8QP9/LET1Ldvq6Z84W96dPvl+uSQkzVk+WCtnPdx3Req3RMxa4se4HnMJaJp4tZ+EogBe/vJ2ntTUMV4fscrwCKxhWIRMsZmB4BxnRVtPgemGOVLKBGeeTzkhDoRPogBg2IBTOcVFKggL89TdrB9eA/ZLCEVMOhdleJ5D4YFYB1Q7wp153feF1TsKPaut/MkbMfXAZJcRI0JKydc2JZ3DfjFywWBFUQYAdwxtpjzhAyzxmpqt2j79h3a3FCtbTs+iigpyClQcX6RCnLz1L17gUp69/YAHPMX8I1hAohxNdYT3mBIN1uNBqJc8A65CkzyXJ6RirN5g4YQEMM7XB5TvKmsOfpqa4ABCuaRP207BYJ7Ro4eo9mnHKupn5qmlc0r9eSKf3o5dYurFqgwv1Atra2eQVG/Y5t65hepYluZjhp0jE6oO0Gj9hnuHa2GEQ7odIVhm76RDwpYxQNkM+gI5zR54v4wXPMMiril27gIqhhPPwgrZ25iCPkbuhQiBZLEFR5v7iH8lWsAZBBeGNV41iCaIHQJ0YRAxcvJGoPAJY0Eooj5SzgvRpi/EJ6/T/QX8ha528A6XiP2C1etAZ6XysrwrjmP180VVQG5QVQCkWu247cg6SBT0DH+Y+r87yNVB9KcSIn58xdofVm5Vm5epaacFtU21EpZWcrOylK+8pXXmquSgl4a2Ke/6gqGq6bbuyrN6qtVby3TKy+9qKamHdbPgchjfjDPSe+wNSJFALqucH7GHACDXkxngySzHTvLOyF5CM8GwNp0CPMQueO9c5G6PIc5TKoLoA7PNt+NA8HYJug6IhLR+1wLmYGOPejgGXr65SH6fw/10pSjl6lpwFuqH/C8+u8Y4HkkG9Zt0+qVy3eKBwKT2gXMI9s8YZ4DGAnnt51+w4MAboCzdLcgLzt6G3IJHW9bs5AgOFAAj66UA/qP3Ygtir2Jpx2yhOuxC7El2a+xIdFbnOJiSO+DDpml+d+6QvVlG5R1xGWqyJmsnImlWtn6oob1q1XO2iy99eLLO733EDLoMcgnmyOKtLNLLrnEIyFcpBwRHbbipKkchyAvO+8hdQky1AXKISSwD/g9qKgzugU9zf4NQVhesVHz185Xg7arrqleO1p2KC8nTzmt2crPyldJQW/1aMpVacFQLf3mec6iuzkF3dTvE6frg15f0f8+eZj23a9Vo0+/V481XqnZg4/XyPUjtXLOkp0iY0zI0fcfBZso07gyfCpnWLRnxYA9mpxSehXeOdsRLLyETRYvDBuTDegAsmE/MUTYOGxAJ7Gz5NOiTFEWKFY8+AB/c3Qamx2AGiUCEQDz6lKMic/lmShTQI6L+SZiACUWtCHH3vWUTq2MexjzyXWsGZ2FOcc4AOzYwrAxPpnvgE9/0SXbxzLHMdognzDgWE8YFTDcGB4YMYA6DD0ILIwPW76z/9nMZQgB1q4tLx1gw7rF6HCtbZ6JQZWuMNXEPpMbHeStJUcUgwuwa2sY0wADPEpBHlL0yeix4zXzpCM06sAxyirKVn1WvVZtWa7ueT1V1VCp4vxe6pnTU/uVTNb2lVv1/D+e9sB6EAlDnxhLPBv8SzEh2/UYn3hIAVOu46YgfSCOZqWLIwAAIABJREFU0Jnpbnj4bV5Ro9sJswWIuQrfMW6QnMg9jJTle5hPXE/YPZEdpFZBuLJPoNORGd42wtUBpaxFV1qSkQ3gheJyXO86Gg9QCVBH7i6ShOgJ1xFvqRwH9jCAocsTiFwgfSCibGH77FF4fPkO6ie4vsf0mfmIYU0tBAA/YA7CGz2DDuN+dAuRQ16UW0WlFi9atDMv1PXtJiyY9WYrzMZ9pIWwd7uqwnMNc9B2lGAqZc6zAM62ivDmPQBtPI/oEZMXndgHIqiom8A8cxUrTLyevYBoHGwG9gz0PHMdGwddhi3EfgNphe20uXW63tbvVNynST22dFP3qm5qKm/cWf3aPJvoEYCsK7ceeZN7jw4hmsTVIIYgx9LdgrzsvBsAS9oV893WWLPIHd1qIyf897B+2Kch0BkDbEn0vncyUSN1A7Z4eyKk9/amVuVsLNRrS4er36QarWx+U4OK65VdKS19fZ5qaj4+Ig0gDtEOaWOLOuU35A6Yd+lComQgp5gD6W5BXnbeDUnCerelsPA7xCdgnFMHbMRzYv+xV7A5mE98I0QeNg22OzoGxwKpDdjqzPVefQdq7Q9vUcXTj+4mhj5TDlTzrCv1yAfH6bnXB+i40zYpd9o9enb7T3XCsNM0ZO1grZzzsWedPhKhAyB3OeywdSAh4ta+EogBe/vK23sbCw3DzWU4sRHBbuLJc+WistmZo4Fcubbp+jQUCcrbfy524vtQ8OYIN1d4MSAH5YABFLeuKwGM5CCwTTgYhpfLWwPwBkQAuAmHjgKwUyVNwDWADyOc+W7zwOPdwQjCUHRVT6Y/rAnXsVep6m/ic/DE4ll0NX5jbGw5vtyDF5yQaAxEwv3CgAz39OxZqENnHK61a1aJIjtlG9YrOyfHC8neWFmh6urNkT4V44YiQ4BbV04oXgiKmZ177rk7jy2yPZxnBHmBI3Uo4kXIE6+R67hA9DZ9Jk/WVg2b15D3iPeSa1xGd8TuJH0ZcwGvCp5CWzV4Hgh5giENWeJa1wAqcmnba75DCrvyiukzpB8EFt/m8iwyR9iPqGhvO7ElaWFGvAGgD8hCVhAcrnxRKpNjvNsKi5lXoUshL9qrEakBYeZqhDMT3YHcbfYORAcEA3oWuQd5fZP9pv2PnqpefUtUtbhcO+obtezDxbs8gjmK7oDcQu4uWwv9w29BkUDpKvDn+mZAalDUInO9ubnZeRICZBNyh9AjqsBGqCQrb3P9J868VmXdn1Hvpt6qWbFJqxcu34WsYo4id/ZK5E4//Q3iEf1HFEkQqcB3smbbowGMkbvteGbejw1Dn0nhcBE7RIpAZEKcuoB9W75lwsRJmtzYSyt+fMXO20v2n6zmg8/TB9tm65FXp6iwsFVHn/W+5pX8WEu3v6TPDjtb3RbnafW8jyNNWKuQ9ZBPrgg97HWIOnRR3NpXAjFgb19573xb0DFvXGQKU7H4XVXZ2eQIW6Gh/KJ4xvfkc1mgkASw2EQA2HJceT7ABHYUABYUAUC4FV7LuHV9CWAAB515zkYBe+wqymjmFfMdzw7z3ZYvlipJ0he8OZBOQQXoYPYJhTRFGV3vxzhks27PBpEHqHIRehjLVDBnbFygGE8KoaAAaLyUrqOwUvVdRO1gDCB3gIcrtxhvJKHQhLlj6LtaOgvNud6Jh5T8fFeDaMCgQ+YubzxzzxzJBdgJAkWpkD1eRmSFpwtPkYt4AqxDIlDMzXVMKf158MEHvTSG9mxBBejoByQ4oavkyqJDbA0wgXeJ9UzqgC0XOJXfxIkHyIk1iJfZlZIDmYC3jdxw174LyGHt8G97NopuuaJb6AfpG8xn+u6yB0jRIQUHJwVyTyWA9MsC3U7IL2HUFN8M8ppDVBKN5SKveDZkkOsYyXSNA2mOgCrXqUO8l4KEyJvIAVczheZYr+as9j3tc2m//srJzVVVZeUuqR945yFwmMeAVVeVfbzJ6EaIYvYnV0tnoTnXO4kGsR05Z65n7dF3U9vD9hxTaA47mb3CVtywLWNw4Qnna81Pr1be4FGq3+8Leq98ip5+lxNTpBmfKFevgx/XS/qxeheU6DMDztLmV8u1ZvXHBS+xwSBsWadB0V3xMW5tGZ3U3BMD9tTIsU1PCfM8orgw8gl9Dyr8gbebxY9yxsBwAfw2dZJ81ZEjvfA/POV4VIJCWQFUkA0YIEFgnevYxOO290gA8OWq+o4UKOqDN52N3BWVAYBkrkMekRsJGA1LC0lGwrDHhFwSBohRD8vs6guMOqQT3pegEDeAMYZ5RzSMHkC7qxEOjNGAZysoxA09REEmCDvCcQmZTqXcCe3m/bzHVN119RkPNgYm4cGu3GXuBQCk0ouRzPgFFf7jOeTwInfCPV0F27gO4I8RhXcSsiTV34OMCI8l2gm5B+VxEwZP0TsM5SCwbnKXk5FXqq4l1SDIO443jggGjG7y/l2NPGAAHTqAiAhXcbS29JtUBupHELYOQQIZExSBRNoKeyoRJ0FRLnj3iH7riMa8cBXTpT8AQwABcnfZD+jT0047zZM7ewW6y1X/pC3fSOoCupDII0ASANUV8ktf+CZsqd/+9rfO1+FwCAJwbeln1HuYk0E5xjyHNUt4dZCOIecfuWOTEXWF3IP26aj9M9dRzwC5o/MgWZG7zavO9VyL3LnOVu3ePJN9wlYLJNm+teV6vP5BehjQDpGMfnEduch7IQchSrF5zHxvS3/MPWecer42rR6m/3tiXy1alCtKWBwws0wDDnlV73b7mVbWLNMxgz+p0XWjVf72OtUmpCdAZpKigI4JAuusTaKB4tYxEogBe8fIfedbg85m5yK86HhkyI0Jqg7PtXi1AdcYX2yebDauc6CDPpsQMcgCGFE8XbC4K1ascIaMmWehkGGvyfUKKt5FP+OjIDp44nXA6wF4FLqy5aqb7pAbypwDELhCz7iWTQ5gzVziOrz3GIJRwrb9n45xhkGM8UXOO2sNIsDlyeJ+1gfzHU9kUBgnxhIGIkRDRzVy7wAprkYuImHjyBQPZNAxSmzs5FfjNcMYAWxg5LXFwEMHYAAAAJE13mby+4IiJ2D38SwRHhzkfSGFIgiQtcdY4I0OCqOFeELuAEwKXgU1gDuV3fkuyAq8gq7jyMK+jVQHDEXOGkdGhKWGFVwDCFNwDbkHgUvmjyvUP6xfqfodYon9ytUgBgmlpchfUMqIOeGEfE1ANkQi8nIVYgzqP3syBjpzHrBBJBGhvkF7OuuR3HrWBuH+5pgt23swtvFSd1TDRgBAuYAY/YIEwbNNnYagcG5ypAF4pBlhv2BPIHdXyHrQN2M/sWbQ1Tgdnn/+eQ+QBjk1AI3InfFmjgTpTdZFe0c0JPYnLJ+da9Eb7JXIPUiGXAORRO0BQBt7MOPUFt3uFf476CDPdmXu43GG+Aran4lUQ78TEUCNE1fDxiVKpiMbpHVQHyHp0TGkv3JtkM3D/ISwJvWOvYACzsg92QjCA6ceqmXrzteCOSUad+RctQx6Ux/k/a+Wb16qgwdN19E9jlXNu1Va5TtBgP2XMScNyxV5hKxJ2QmqWdGR47G3vDsG7Bkw0rCJQYWAUHiEirIZsnGFFQ0i5AawDajAY4gBTkE5ihChMPEYmo2V/FuMEYAKSgaPG/cTXo9yZ2ML86SxKaKc2VzDCiVxLcopbnunBDDswkLAAOHMdzatMOMYQAzQBnBjOLHJEU7JRsm8Za1QlIoN0zsVIS/PI5UA6cx3jEMaYN/M97CRITIEo46NNSyaBYDbkQad+RbC9MKMHLw15Bbi6Q7ybvBMik4S3oi3GyOPjR7dBIEB4YH+QN8AMpA3ciYtALmx8WNA4z3DswD4DEqF4H3oKDzMEDoQBkEeT8iRoEq8YeObyt8BZ67QT96D3iVaAdkg96AaCFxPDjygB+8sAJpns04A0RR9Qgcbo5hnUw8FAgxyAMBIRAiyhjjD0+XKUzQy4H0Y0Mxz5B5kcPPs9sz9Dhon5nHQPgmggMSC2MaDio4IasgPsI1RjUwh6Zi/6AwIQ+Ybz0AfsV+jW/DoMq4ADP5lzrI/AkDNWdiud2LEI29AQRBo5P72zp929TmKxxcZInfmn+sIxMTn45VnL0BnIFsiCJnn7CPoeeYjOh/SEbljv6Bv2ROIkkL30C+iFAlnDiI9eC/rCtKJEHjAfVDryIiGxH6F1RHgWsgSohzQNUFFgLkWOQK0semI2EDOENisFe8Elpoaj0RCltiP6Fv0O3JnXUGMMC5EkLJH2go9+uXKemWsIWyDdCDjGZQClUrdHfYswGsQwOV+yBJ0KHIPuxZ9wb7I2ifaAZlDPOKMQK9DnKDTWAfUvcCGwZ7G9sFmGj16rP7x4jr9euWV+nDru97JOAf1PUQzes5UzYIqrf9w9S6ONNYK0Ts8C7kHOUjAEXxD3DpWAjFg71j5e29nEQLaw5qpTEtRmqBK1InPwdAFgLPgWOAoPBaoqRLPZmcqZ2N0oIxZuEFMeeLz6RNGOEZjWJ94L8ZF3PZuCbARuY7GMZJhMwFgMDfZ8KMCMOY59+KdwpBg/gPSTZV45jvrDTBP8TqMkahF7FhHGOwY5sz3MCILAwSvRaY0PKp4Z4MaYBCvEWF/5GWGARmeBRGCgYdRTX6iqZyN/PmNaBtTNZux51QJxj+opkFiHyEGOJYNHRnmieY+jPpMkjsALyhqgT5T6IdwREIpg8JXE+XCXAfMYFRjJANSMJwxuGkY1ehyDG2IL4ALucZRPWb0CbmTCxvWJwzHtkRzpWttAOiCTkkw76UAFOuU1AqAdJSGjJlfzHOIK/QCcx09AzGIfjGVswH0pLMh/zCwyLsBQEQxYLgTqRCUesD1kCSMU6a0KB5fgAlyZ54i96hFc3FCGPIDuTP/IaWwZZAt8x37hTB3dAv2SNSQepwbhPpiIxHpE2bLdHREg3+8WZ9BxCDXY6sR9QMIJLInqh4wkWzIH10GGYUdiW5nPwWc4xACzKNrGM+o9ZQApsidcULuYRFyRJpkAgFu5A8gD7MfiNBB7kSEhe2/5rnYyuh0CBAAOfoVmwZ7Bh2DXYT9wb6KswESC7kPO3SM5vZ8V/topHo19FLD0jqtXbNyt7Q+POqQJEQYhUVX0SfAelwcuuO1bAzYO34MvB5gWEU5YgOFiYEGoCacrqOMJIwV8llR1BiCYYqWjZDQ4LjFEkACsM2uasiJEoKdZlOHdWe+B4WWpUuybJ7MdVhs5nqUQlQA+/Y44ifZb8bLErZBQ3hQaI5w9RtuuCEwhzPZ9ydzPXqOQmh4N7/73e9GIjUxWilIl2mNmgth4AHCg9x3dDwF/sLOSU/XN6KnkTskA4X/wjxkGJVBNVbS1c+w54YdO2buB7BTaI4oAuoKhI1T2Hvb+juRKqQ+4JUkRzaMEMw0sG6+myPpglJBzHXU9aCGAp5svO1RSdm2ytd2H2Cfo+f4I8XHdbZ94r144PFYZ1qLAtrpM+lMRBIAHqM4itLxnZA2yBwdj9zDvP70ob2OzUv2eyEGg4r/8Ty+Fx2DDYGOSVckUr/+A9S7b19VlpVZj5FkLyUEHuCPjgmL6KLv1CTBKRe3jpdADNg7fgx29gAQznEPgOCwRrgXYAagT3heewF3vDgsXjyWhFOGhQTzHfSV8Kq4xRJIlEBUkgqyhzB0mGaMcLxVyeZ3tUXyeBGY6wBvQDqbW1BtBvMODG8Tat+W96b7HnLVoniqySGlYjhyx+vuqmie6v4SEsixYuRZE8Yf5WgzPG947fF2ZmrDUI5SNI7rSGFAt95+++3tBtwB6swLwrchbKKcjY0RGuW6jhoTQC857VE8fsw3im8BmEkJCfOypuqb8MABAPGWARjDatXwXjzUmUyAY5NAsoU1vHZE9ZCzjgcSkiqK/RP23LDf8e4DWpE7egO5BxXTNc/LdPCC/KLoafQlcsd7DsGCp7U9yHD2EuYt9Raof4LcXUVdjcyJpmAf6Mg6MGHzibSaKDVFIAeRO7JGx4RFRYS9N+rvAHXS17BnSIWK0lfmCGlyOCzilhkSiAF7ZozDLr3AixeWW2huYAGidFF6eDkIjYkSxprMZ6Mo8aLADhJ2ZvLIojyD0L74vMYokto7r8GgJqc9incFMAb5wzwkrA9PmKvK755Ik/BI5izkFHMdgiBK/yAWyFnPZMPCyAUDLarBz0ZPESaiBvCcAdAIa09lwyjA+094JMYFOXUUSQoLN6QPhBAHVYtPZT/39FkA8KjVjQFl5LUjG+SOJ6othbeC+sxcB3QTHgkJRr46ReiiNEicKMRPlGel+xpCaaN48QyQozAfYdXkkOMNi5oiFvU70C0U2QKso8uo5RBW/8U8m6gH0oUyvUGS4BWNAoQBcgBogDu55oxVVHkkIweIX04KQO7sO+jBoAKF5tmsE3KWAY+Z3kjXIlInSkMeRDown4h04CjesLoxUZ7rvwY7kL2RSDWKzyH3KEf3MVZRUlva0qdU38N8Ys+K0oiOQcdA7KNjqCsS5qWP8tzEa0gXoYYKxDvh9ID0sKK/5v5MqYuR7Dd39etjwJ6hIxwlzzex6+QXAarxjrBRsvgBM1GUol8E5CaRM8PmxEbFwic3CYAUlotpnoV3krzWzrDBZegU2Gu6BVDAyxE1FBWj2gBqQrsAMcx5okzCCjLahGqKc5Ebh+EISIT4ggCLSn6x9mDPyUHtLI0icXhzg6p+J34LRh3nQRNSR64oRhcRQQCaKISGXy7kVGJMYKRzrjceBzzQQUfh+J9ByP7111/fWUTu9ZNvRO5RG94oQDUhpBjjgDuMa4BNW7xiGIvkMGKoE81AiCZ9Iv84aoO0oU+dqRECHDWHlO+iqB9/5sQBUniIskE3JNvYD4nUIb2HdQSpx/gBkKIARt7HHg9BguerszQikiDfwopKmu9BLoA0gAbfi44yDoy2kLOk9xCJSOg144hux6sJuAoqspUoX+YAR0iy13SWxpyCHIwSAck3Yechd3QDaQKQJRxViuOoLbqd50EGkOZDdCUkAPsE4DRqdBzpIfx1pgaRDZEZVlTSfBPkNMQdaVzYMOgY5E4kYVQ5JcoH3QApArnOnKcuB2uP2iVRW6bVZ4ja773huhiwZ/AoA0TYsMLywxM/AcCAsgQokwsJs4byYKPiOaZqtimAg3KmWA4gyFSK5x42MzZIA/6TERPAByWNxzFusQSiSgAwEnREmu05hFQy38gRg2RiXlNMByODaBAMRrxj/HeIKHMqAvPdVIoH9EBEmbmerIFClEtn8HjZ5AcRRzXqoOOtbPdhZAAk8ZpAzPEcwIw5/hH9gfyRPR5iChUxTtS+ALhgTHAPxgRH/vD+qGSg6Q9V44POjo867zriOuqVIPeoYI0+Mn+JiiDlAvlTcI78cggXwrchaQknNqQVAAPAYiJGMA4x5CDH8GBCtkCSRCmGZmSEQUgBIvrQGRtepqBztW3fxH7I+oZgAvzhFTMV4iEJTdVsyD3GCLkDPIkIYh+GRDeV5VkjANAouaOJfeH9gMZMTrUJmg8U0As7ecJ/P/OW+QoAQWeguyFL8NijX0zVbHQMcocUYaxMxXKiGLBtAD+kGbBWopLCpi9EF1EwrDM2ZARZEnSEnu27iNgEaCN39jai4EyFeJ6JLcm+yr7JmCB39DtznDFDx2NropcAsIDQZHU71cvxQHfGxvxERwadZGL7LvZE/iA6KDiH/U+UD3YJep1xIJIWuTOvsdexf7B9cDTgNICgQe6AfkiXKCl8pi+MH3sSxFbcMlMCMWDPzHHZ2SuMARZgW4v6sLBRpoATFripms0GR2Ozw9DAyEPJoox5Z1s8NyhvFDyK3jw/w8Ubdy/DJGBC0KNWsPV3n3luKsRjSDDfIaWoucCcNqciACbZAHlPMoRY4vtYV2yshOl35oYRQK4a4XxtzR/FcwggJPIBow2gCCmC7Hk+egUC0FQs35OCmRhynNdLUbzO3DCqbrvttkg5p7bvRL7IHZ2LkQwhggFnPIEYa+hyDD6ACmQYBnRb5zsh+ldddZX3zs7cICwgiKIUvbR9J+seMIi8IQn5/4wF+x/kh6ngzFpizmN4JwsUzXsB/oSKE13RmaJ3bHIzodBtiVDgeQAKyA9IEEC5qZptqsQz3yFbiSpkzgN22hpmzHoyIfqdea6z31HQj/keVsTQ9Z1EOvCXeCICOoY9FfsR25F9FDCPvJF7WyI7eT+6BZIEMrIzN2xqIpcgqZIBzeabmdPMQYA4gBy9bk6iQO48HxsGuUMaInfWVVt1O5Fu7KeA/rhlrgRiwJ65Y7NLz2DtMLii5IN1xCfhecFwjI9+6Ajpd613YmQQQgd4b+sGlE6JQHwB0gHrnd2ITpQTnqhf/vKXHnBPxuuaTlknPpuwQXLpyVnvSo0IA+Qe5VzqjvhuwCJyJ++3KzWiDAAyyUb1tIcMMMoBjPxhtHeVBnhB5m2JqGkPGUDAGLl3phD4MNlAGhm5t8UZE/b8Pf0doGiih/b0WZl0P0QdeeNRToDqiH4TuQNB0lkjBDtCZh35zhiwd6T02/BuPO0YGG1lMNvwysBbYF4B6nGueqolGz8P5h7gzl/UXPJ0So1oFUA6f3jvu2qjSjagPcrRTO0hA0IE8ahffvnl7fG6DnsHVZORezK55OnsLCkPyJ0CRF25UROAP6I/MqHh7QI0dvbInSBZYr8AIJF7JpCykLDUdEDumXzSxJ7OT0hw5E4ueSY0HDwARv66EkHily3RVHjb2VszoeFgQ+bomrh1HgnEgL3zjNXOnuL9ArTzR1hMRzRC0gDqcQhNR0h/73on4dQGuHfUlxugThjm3tLIcQZARjmbOB0yIfwVwIh3d2+SOxXvkfubb76ZDrGGPpOKzsidiv17S4McNB7IqMXIUi0b5A5g7OwpB8nIhZxbI/dk7kvltcajjvNhb2kASOTeUToGORugvjc5e6jZAnDvqKge7HYj964UHbi3rNsYsHfikSZXjtwVUyyrrTlKUUVAXip5e+Yv6n3xdbEEUiEB5jfz3fyl0+uONz1xrneGo9pSIWPbM8j5Jf8Uz2+6Q/s4so+q8Xh3+bcre7vCxsvInH/TccRV4vspNJQo97C+ddXf0TEUJ+OPolFRzm/fE1kAzinwxR/FvvbWhk43MuffdHrd8aYjbwp88S96fm9tnEZk5jsgPp0tlvvH0k2c68kUHm3L+ECImLnOfN+bbZm2yC+T7okBeyaNxh72heIT5CqR597W4lH+LrDYyaGjkBTFdeIWSyATJEAeHnPdzPdUGHgYFMxz5jt/5JHGbVcJYFjjIeCPcNYo56SHyZD8OfIXYf6pfh633SVAVXEjdyIfUtFmz56909tC2kHcdpcAx1pBlvBHJf49bRSno/I5p6hAksQ1X3aXKIXMjMz5F7tmTxsF65C3+aOoV9x2lQAFKpE3JxNRkDEV0Zux3MNnGUX6kLk5Si/8jvArIL7NXOdki7h1DQnEgL1rjONuX4GyNUf8EO5n++MmcnExIvg38Y//hrKNN7YuOkG62GdhbJij3BLnOuvA/H8zv/3z3RzxFhvPyU8KzgOHIEwkTxL/N4DeECCJZIj53xgVhL7HLboEmM+cI23IKpvseVqQ3DmOryvXYYguzehXEiqPN4x9lRzsxH/N/0amRIUQjWb7lxNU4pacBMwReja5m3FwyZv/bo68Su6t8dWc5OGf54n/Hz2EfF1/6Pg4ZTK5eUTUIHK36Rbz33hikNwB6531+MfkpLX3XR0D9i465ihTlKsLrJuzeoMAO8dJxMezJTdBDHAMkrs5u9QGHBkP5B635CQQA/bk5JWqqzm2irmeSIwk/n8q/gfpGEBNDByTGw1qmCB3v8wT5R5Gxsa6PTmZczUGM0W7YsCevOz25A6OqyLXva2Andx0jsiKWyyBTJdAKgA7qTUA+rh1PQnEgL0LjSkA3ZyDmarCObDT5gxOzriO264SSEdoNvnTeB3NGZxduXpqW+cTcie/FO8uxhze9T1tzG/mOp4BUkHikPjdJcqxTOZsaUL5UlFHAG8A851c0r05Zz1o/jK/me/MdTzqqWixbg+XIgCdfFOqO6eiUBRpN4cccoimTp2qiRMn7lXFFMOl/dEVEFLz58/3QoTfeuutNp+lnvg+dAtyJ6IHuceOiKijEV+XbglgwzDfmeuExqeiURCas+zJWe/Kp02kQlad6RkxYO9Mo+XrK8YyRpwxoFMBWoLEwRmlbHx4Z/amyp5+mbRn8TPeDYg0Mt+bmVPkzlxnzgNaKLqYrpafn+8RJsxzZL83F2rBs2X0DIAxnQ3SxBBVyB7yam9tRuaQsFVVVWkVQ6zbPxIvOgbjmb+5c+emjBxxDR7AncJzgEhCWffWxlw3cge0pNOWQcdQQwCZ87c32zJ763zr6O82cx0ycMmSJWntDvspdWLMfN+bbZm0CrodHh4D9nYQcqpfER/rlmqJRnsexpw5Ti/aHam/Ck8kR4ztTUZGfKxb6udRlCdiRHOcHp70jmikjJjj9PamI2hWrVrlyT1VUVLJjh0RD8h9xIgRyd7aaa+Pj3XrmKGLj3XrGLnHb+0YCcTHunWM3LvKW2PA3slGEmMO0Ej4eyY0vL+E33RlAEkergHqhARnQsMbg1HdlUOIMaLN+eupCL3e03HD22sAZFfOu0a3IPdUVMXeU5lzP6dTIPeuHtoHeEHueNQzoRFNhdy7+vnUnHbA39q1azNB7DryyCO989i78nxHx3AOOHJPxQkfezpwpCocf/zxnty78p66p3KK72+bBDgyj1M+SK3JhDZy5EjvhBB0Tdw6jwRiwN5Jxoo8F0Aj/2ZiQwEA3LtapW2qAiN3ipplWiPH2gCZoqKiTOtem/sDQQJwIX80E4w5/4dg3GFMI/uu5PklkgGZI3tqBGRaI2wbuXc1zy+RDMg9UwCjf9yHDh3qyb2rkbIvvfSSBxpTkZue6rWCbgc88kdIa1dpEN7InL90p3luRA5qAAAgAElEQVS0RWboGCP3uHZMWyQY35MoAU44eOKJJ/TMM89kpGAIlQe482/cMl8CMWDP8DECKC5evFh41tvS8ArioSJvC6DBJsR/M0VXOPMU7yXeTMARRnttba1X+CXZBngBtHPuY2cHMni7MOQwptvS8MAauRPaS040cscQAwwhd3KwkTuh9si9rWdaG88vZyl39mP4DGBkDralMc8hL8jTYgyQO3PRyB0yALlTYRu58562kgJdxfPLXOScb4B6WyMZIOqQOzrGyN3MRXQJcsdYR9ZG7m2NVukqnl90O/mLbY1kQL7IPVG3M9+NbkfuibqdvGDeyXi3pRHVM27cuE5Pys6ZM8cDjJw13ZbGPIfEoDgl6QPoAXQ8egbdjn5hjlP7wdSXwXBvS0OPASBPP/10T5d15vb00097cqfqe1sax8wmFqdkHNA1rAPmNPqEOY73nn2bVJ62RqtQVR65f+ITn2hLV+N79nIJMBcffvhhz6veln2OOc2ReJB1zHv0PLrA2JDodWwY9DnEF448CN+22jJ42k866aQuR4Z3tWkYA/YMHlE2eYwKcwRblK5iNJgq1yx0NjUWNWCQxcyzWOwGkKMYUAIYHBjbGB/cQ/6kKfCV7KbHe6dMmdJpz4IENCZbrRP5IXcKlPH9yBQwiNxRrChtI3fAI+OEAcZ9KGLkzv9H+SJ3ZJ5s2gPvppgOz+qMjXAxIhqSaWxkphAi3hHmNXI3Z7Ijd4w5/jtABrlDWpmz15EVRjZyx8hD7skWPCK6hIqsnbEhK+Y6cy6ZxhxH7vyL3A3ZB1BhvgNaDDA0cse4RscAMBk3rtu4ceNOuSdr2EyaNMkjBztjw7iiqBkyiNrQG0a3s9YJ3QUUJup25G50O3JHpxi5o9cpWoleMbodQy+ZaArWDd4YAGtnbI8++qj+8pe/JNV15GaKNo0fP96b7+ZscPQG+yvjiH5njJA5c5zxISoBWQHsIcQgxig0tWjRoqT6wPntF198caeV+1133aVnn302qW9mrmNHUCwLoghbBbDPnEXuZm9Fz/Ab85yxQtboJuSOvod4p8gXck+WLJg9e7Yuu+yypPodX7x3S4D59qc//clztCXT2M/4w/FC9B5OI/6wS9Dz7K2m0C7zmr0Ufc4eDLAn8gySivcSgs8pC8nsqTzr3HPP1cyZM5PpdnxtO0ogBuztKOxkXvXBBx8ktamTZwgjBwNtgAdGWbKgjz5i6GGUYGywaaIYMDAxUqKGsQFY2WwBM52psbEvWLAgUpeRE0oSNh55UbkcwIfckwV9vBBDD+Vr5I4hjdyJroj6PIwWwGNnCqNkE6IYC+AtSgM0IHcMMsA3cmfOc38y5JZ5F/PbAFDkhiGIYYfco3qcuf/www/vVF4w5AZJElVmbOjoGOSOXDCckTs6AQ96sg2yBOCJcY3+oj/IPRlvJF5fjmvqTA3QhkEVtSEfdAxyx3BD7uiYqLrY/x50FXJHtzOm6BjkngwxS2VzDMvO1H7961/rueeei9xl1jN/HAUGqQXgY29IFvTxQvQyYB+5Af7ROa+99ppefvnlyBEWjNWll17qHQnXWRog45ZbbvGIiigN8nrWrFk67LDDvD0MuWMLcX/U/SHxPcgMUg8gxDhCUCJ30iGiFnVknn/729/eq08KiTJ28TXyQt///Oc/R/Z0oxMAyNOnT/f2UkhcbFAir9qyp3IGO+Qex7kx59944w3PtuLIuKjttNNO09lnnx318vi6dpRADNjbUdhRX8UmHvWsXULQWaSAHgAGxkRUkBG1P2yiGOoYx3gS8EBHNVroX2fJj3nzzTcjpR6Y6tXIHcMZgJGO/FM8BUbuGOnIPaonFJkj+0xvEErM9yigEY8VubTMQzzxyD2qPJKRA0DGEAImRD8KYYJRzubbGYoW4QXAOIjSMJyRO8Yv4dvIva0pC673QX4BSpE7XrLly5d7nrEoRgtkydFHHx3lUzr8GgynqCHwkJ3IHa8tuh25R1knyXwkcxYdg9whCJnvUaNcOhNZ8v3vfz+Sxwvd/qlPfcoLhcZb9eKLL+rVV1+NNA+TkTtzHV1BKCpjS/G1qFFd559/vpd3mumNNfyTn/wkUv0XdAwh6Mcee6xef/11D1BH1U/JyAEwc8QRR3j64vnnn/fkHmW+ExF07bXXerZW3GIJ2CTwhz/8wQuBj9IgpI477jgvGoR5CKhOhjCN8g5IQd6DjiHih5QU8umjRFRBCl5zzTVRXhNf044SiAF7Owo77FUA7X/961+R2DkMOZhjWGIM27awz2H9sf2OlwcgiBFJWF+Uc5nxGGdyNUrIjn//+99eyFFQI+wOth1W1ACKKECuLXL230OIFGGBAFzkHiVyItPJEkgOvB1hjc2GuY4XFuaZ0NIoQC7suWG/A2aQIXIHyODliRJiNmPGjIwOXcUQjlJoCy8scgfE7EmudZic/b9DDCB3xpu5HiW0kEgLDKBMrt5PSHAUrzgAGrlDjrZnoVGIKuTOeCP3KJEOeOsJG87Uhp781re+FYlgOvXUU8UfpAqGbVRiZU+//aijjtKJJ57oRU888sgjkSK8AOwA90xt6PWf//znod0jyubTn/60R5A89thjXo57lL0t9MEhFzDHIQjI2yXKCLlHKeh75ZVXCv0et1gCiRK48cYbI0VNAYSpRwFofvzxxz1yqj0a+wk6A9zw97//3cMZYY39/2c/+5m3H8QtMyQQA/bMGAfPkIuS44U3iVAX8rYIz2svoO4XEx4C2GqMDELWwopdYFCfcsopGSLtj7sRVe4Y0cgdFhS5h31vuj4U8EhOH6AVuYc1PBeZmJMEIIjSfzYawkgBy8g9CjscJpNkfydVgbmOR5E+A97DWqbmV0eJ3iGdhf4DmAnPi+KBCpNHW37Hq4Xc8bgTQh6FHMRzho7MtIaRZPIPXX3je5E78425HgVApOM7Ae7Inf4y38NOyKC/AN1Ma+iYH/zgB6Hdwog+66yzvPn1t7/9LRJREfrQNlxwzDHH6IwzzhBF8cizDyOQM9ULxly/9957QyXAMWqf//znPQ/jQw89FDntK/TBSVwACf+Zz3zG+7vvvvs84B7WvvCFL2TkfA/rd/x7eiTwpS99KVRHAn7RMdgQ6Biidjqi4Wz67Gc/66US/vWvf42UqnLTTTd5Tqq4dbwEYsDe8WPghbBTDCesAdTwtFKILir7z8IkRNdUE/ZXcDZVswGgpoowXvuolYTpE14ZvHZhfSJEB09CpjQMorAQJsALuW/ID7lHrRpPGgFyx4NgKpab6vyAzsSq2eRMQ3xE9SwwpuQo8XwKi4SFhRPGl0l5j1E863hZCesHNJA7GjWSgXHiXlMp3pyKYKrEm6rZplK5KdoVZU4ib+oy8Azme5hBnWmedoAAkSFBjRoYyJ1wYOQe5bQIZEtoX2Kl+MTq/DzDnIjAOBJOz1yPWnCNPiF3AFWUMFmIwUw6kglPShjBBxHHN6JjiGaI0tAnpkq5qRSP3E11fnMShdHtyB3dHjVlij6hZ5gHYX3KNN0OyYAhHdYuuOACTzdSJIqUqCgNmaNTIa2JHkMvmArOzHWicJA1ZDCpbYS8EykRhWxk7L74xS9q2rRpIsQ2rE+AfPLaM6WRM3vrrbcGdgfwgtzx3JHvG6aTzMMgEEkTQR8gd/QN8w6ZIXdTNZv9EF1h0qaiyAaSCrmzjn7/+9+H2jLf/OY3deihh0Z5dHxNF5bA5ZdfHuo0I4KGaBj2gQcffDCSNNDj2PqmUjyRTNg07GuJJ1Gwj0LskqLKOoqaqgaxTYE5IokeeOCB0D6hi1hrcetYCcSAvWPl772dRRMESNjYKCSGAUaeW1geIwYEmxubEJsahgPAhHdgvCVWcDZVs02FeMAO9wNMMTbY+MKACcqE6uR4+wGQQQ0FlCkbHWx6UGg1hgXGHHKIcgSQKZ7FvxjTGMcYjsidMTMVnE2VeMgTUyEemfP/jdwBtWFh38iS/pkiJUFypzAX7G5HN+QRFo5FP/kuZE4kQVBDlqRpEEmA3JEZmxjvYd6aUxHY5MiTZlyQM4YZZArGN78ROWHme5iMSIuApCKUMszrS5g2a7CjG2RaWOEZIhnIZUbHhNXQwHAwR1shd0gn5M6/yB3QwlggWwxqcyKCqRCP3DGwMTaQYVikEGOHjkGWyD3I65tJHl8ATFBoObJBt6PjIVTCjnZkzqLbme/oXaPbTaV4dIzRG+YkCnS7qRBv7jFzPczA4z7WImOF3IOI3EzS7RdeeGHgnkpfAbro2d/+9rehJAaRPowTpAoRHABwUykePY+OhwhhnpojPdk/AJeAe8aLKBHWFiA8LGoBkhjC4YUXXtD9998fqD6+8pWvZETKGfK4+uqrA/vKPoTcsXnwqoc1ZM78gzhC15v6OeYUFewZ5jtyN1WzAfOQKYT/MhYQTsid8OMwAhKvP+DqN7/5TWiBQsKFmUdx2zslcPvtt3u550Htoosu8tKb7rnnnlDSE30BUcfaZy9mrrNvQ56zP6KrsWcST6JAn5sK8WPGjNVTS17U1qoaVc2v1LvvvKW6rVud3cPWR8ewT9x9992BRRjBEnfcccfeOdAZ9NUxYO/gwQDgBoESFiQAl4UbVr0coAMDjfGHIRLFELZ9PpsfCxTDkI2PzRG2OsyIR9mwQWKkBuX6ZkJBNApwQGK4GsAF4wLjKsjgBgCaQmgYDsgdOYUZZLb3AoKQO0Ye/+KZgTUN8rwDgJA714SRJdQRwJjpqMacIE8xyGgiYoM5h9yDqvgCJDCEmfNcx6YG+AvzZNq+HRmy6QFAMfpYa8g9yAPM+CB3QvWD8sFZS+RJdqTHFxIIw9/VMAD4FuYycg8K3caoQMdgqMLqm7OOo3ptE/sAaDdyZ06gYzBSgjyReB0wZtAxQfoI3UWF745sYYX9mMPodoyxsMgB5ibzHSMLuaPb21qkyBCLrDN0IHM9rGgmOhugityDSIVM0O0333yzR364GsTP17/+dS8EmpxpV2PtkltNjj5rA8DHc6OkxPifaY7DY0+hEBSGPnVTgqqnMz8A4+ihO++8M1BvEvrPuuioxn735S9/OZBkJrqO/N1f/vKXgXsVeoHic3gB0V3MOfa2MPvD9u3YTwAg1hn7NHoQuaO3XA0d89WvftWrrxJElgB0OHkgEwjZjhr3vfW9RGbidXY1iNWvfe1rnh3IfA/a05ifRMpAShEqD7GOsyLMYeN/95hx+2rHodI/Vj6gcX320ymjTld2hfT2U2+oamOFs6+k4XAyAzomKJKKYpxExsSt4yQQA/aOk7238QdVhgUUsLljJADeXA0DmhwTPFs8M8zrl+wn83w2MQx5CkAF5VZiNGCEo3iCPPNsoB3FTmN4BVW5x3uKPNmwXUWiADl4WgkbZfNH7lGPiYkifwAeBjpyx2ghHzOIBCD8mk0hrIhJR3p8MZaCUgowpDFSkbsLNBKRwNhAqEB0ATbCIkCiyNtcg/Fl5M5cR+6uvgD0kTuGZNAxXR1ZdDEsogEgwjfgIQzSRYA15I4hgtwB18kaFEHjgIwwqDGwkXsQCYJ+oc9hepH12VEgBpIPoOFqgBK+ge8MMpIA6sgdQgMdE6UQXDLzHR2M3PH0M9eDgDu6Dt3I+gzSdR2p28nLDMpDpkI4Ht7bbrstcL5ToInUCsYGcjdKvY2ocke3A0jx5iJvcr6DCiviBcMWINQ8iJDsSI/vf/3Xf3mRXq72uc99zotQQO4u4I0+5Uipk08+2avejtyjnkYTRfboGIARwIMq9KQhutLJ2Geuuuoqr69EYLgaBPP1118f5fXxNV1EApBteNddDUKUlAn2U0hBV4PcpPYHc435zpFwe9KO+OS5WvrhdGUPmKdVuf/SgpZH1T23u87e7zyVVPfSm4+9opoau5MKZ87FF1/s6Zgg8phrsCHj1jESiAF7x8jd2wgoAOVqplgYysEFwDFujUEKUx81v7qtnwxIohgRIBYDxuWBxMDE88n3BYGpjvD4hp2zjlEKYKPvrjQFPFPIHTkg97Aw1rbK29xHSBVyx3gMAoYYRIQDBxU0AShQhK69Pb6E0wYVLyPskeiMoBAzc44xckDuqQSM/jGiLwA+xhqZu/IskTeeXLykQUY9pBfj056NiAbmsQtcAdaZC8xjwkZtDS8ShdCQA2unLd7FZL6Z1BDmOh5J5O4iB9F99B3jIojM7AiPb1hEg1mDyNxV9wNiBB1DxAeRVakmYf1jQkQCcgcQIndXqDx6HU9Q0Lzi2R2h28O8XvTpvPPO009/+lMnSULIO8WhWDOEbKd7vgPaKQKFzqbQnCsyjUJn7E1ED7hAO+QuRzG1t8eXcNogsIE8mVvI3WUPAKS5DjLo4YcfjlzPJRndYq5l76MyPcQAgOof//iH8zGcMADpSYi8q2VaHYG2yCS+J5oE0I1UhA8C69/5zne8dArXvGKP45xz7BkK0HF0ZCra2UefpaffmqaX5gwSWXhDpixVt7Ev662c29Utt7su2f9ybZtXq9eeecn6OuwTUlrQMUHRmnwfzpW4tb8EYsDe/jL3NgAMHtfGizeLEBU2LxcbbUAcBmvUoi2p+lQMeAAIi9rFgKOMMPJRRkHeUsBOexkYYV4vgDpyxRNsMyzwqqOoGB9CltqzijMAEmMSLwRyd4EwQi7pZ1CxovYOF2aTCwr9BFTxXS4CC687YWN4GZF7ugmSxHUCuELukFPI3WZQA2oBA4CqoO9sb49vENnHN6JjCIl2gXW8eowNABS5Ry1EmQo9g+5A7oBxFxHC2CB35npQiGt7enzR7cjdBUyYy8gd8sMF1tFDzHfWTZQj7VIhb/MMQ4ox1137CqAdzyK63bUW8Rq1p24P83qR8kF4ORWPXSlogGI88BSga88qzpB+FIBiX/3d737nrJdyzjnneJFFP/rRj5xDjtH97W9/O5VTIvBZYRENhMCzJyF3G8EPMUW9AQg45B7luMlUfRypZxSaI7oEubtsLQAKv/3xj390vprvhHCIW9eVAPbjLbfc4nSModu/973vefrfBdaJmGW+Q3CxdlLVJkycrAOzS1X14F1qPfBM1ZYeqb+/NVUbNxdo0hEr1TruH3on+9eaOnCajul9jF5/4GVtqa3Z7fU4Tji68Ic//KEXcWVr2L+siY6KkE2VzDrjc2LA3gGjRo6Ky1jDo0LuFkaqLfyRvDo2QFhiQkLDwoHxohEKZqo4m4rlppKwqZqNNxnjHW9bFE89z8Q4wKB2hcJhgADGgyIJ2quCOWAPJenKWyeiYfr06R4zarsGwwK581tQfqSZTowj+b6mijP/nzFj/AhdR+4YMKZYFx7aKFXijac2aA5hKPNcFxCjjyhmZJ/uFnZsHgABwwm52/K8IBeQe9TzuJlvbCiw2GygyB2DGBLDVCuHKDOVypF7FAKAuUx4MnK3FUjDI8y6xRsadFoC+bAYp+lugJIglhwAgzyIfLA1vHl4xfg9LL+Z+5E532Uq9EMwoXuQO0AfogO5A2ghmwhFDSueyf3MU/5F7rbrCT9kvnM0lIvEok94wVh76W5B6xKdyxwxVcNtfQGoI0fkHlRjg3v5HvQw1yeeAgKBRCMCBZmxRyTq9rDCW8gL3c7adc0h5gekCnJ3ETkAe9Zuuhu69LrrrnNGWhDyT8g2xrZNJ6IrqPbM/MRbHFYHA1mbE1uQAXqe/QH9jiy4H10OyEMXQLpEIV7YfwjXx+tGRWlbu+yyyzyASV6sqwEIOGM83Y1IJwCKq1Edm+PSyK+37W2Q48idNC6iC8IaewGkJ/sWewY6B6IX/cBcZ54zZyFOIZvYM4Kib8z7SH0gNJl8dJs+RN54VUlxCfLGA3JYF3HrmhIgyoL6B6527bXXeuvdD8QLCrppR2mTPn/053XY9Om66667Qs9sZ9/E5mA+QdJBnqOnsDMST6KgjglOs+I+A7X2Rzer4l8fnTZVUNJHxdOOUc2Ei/TAm0epoTFP0z/zjt4tvEnbctfrq5Ou1LyH3tG6tat3+xxIS8gnUj1cKSPsY9SsiFv7SiAG7O0rbw8MBxWAwvvCIrF56jCCyXvE+AorMAa4gAFjY2NRG0BoKpabcGI2O5QABgcKAeODTRAjHcIg6MgwgBBGBgaKy/Dnd4zGoLwY8vl4dzobxoWr0jskBkAKIG4LPUUmfAcGQJAHgI0dIxUjDqMXuZsqzqZyNgadqfJpKvMD6jG8+e/IHSMjqHoz19MfY5T45UY/ACj01RWGjryRe7pbUJVsDDCAAUSKjXjCMCP8FoMuKJoBOSJ35jxghTVmKvSbUxHY5AA4GNWMN0Y3QAe5cw2bHnIPKpbIegLoEvli8+gyLsid73GBx/aopA2AoQ8uIgJDGaDr0kPIHLkg96DTK5hDGBPInSga5I5hztxFpvTDVIk3lfkNoYIBwvXomDCjGnDEO+iPrY4DJBa51c8++6wzTQJvfbqN6TDdjqef+WXThcxNdDt6OSj3nfWK7JhHyIR5ZnQ7442uNdX5WQvodogrxgqAwxw1uj0sQoj+8gzmuw3kE33Begrqb3uExv/zn//0jgezNfqHR5pweeaHvyHHb3zjG97cCjveiG+BHGI+AvwNIESO7MmsAXRvz56F6tOnxNt7IQu4njHgHUQlBEXEMbZXXHGFR4L/3//9n/WbAMAQ+q5cffTqj3/847Qfw0TVaBcZT3g+cv/ud79rjWhgbiH3X/3qV14+uashN4A/nkn0Nd/NXm5sE3QNeoZ5it3CXs3+e/Chh6l//8GSmvXqS895ui7oJAqIMvqDl98W3o8+RKaAehdhT4oOxQzj1vUkwJrFq+xqnCzA3ubPbe/eo6dGzRyvbsOGaWTrDD390M2qqdnsfA66AsDM+sDGwAHAu7FLsSVx8mAnsp9iY6Iv2P9KC4Zq6TfP05Zlu56qU9C3VD2mnah1wy/TfS8dqnEHbpQO+o3m5/5ZVxx0tTY+W6YF83ZPhyNihJQsImNcDUBPf+PWfhKIAXv7ydp7E8aPy2MFowaYsBUOw/DCWGDhBlWLB7hgmGI8wPYBRJINZeVdGDIoAgxvNsgg4w7wiGFuM9xMpV0ICFfBpHR72TGSXaCQMTF5vDaShI0auUNIuML/+UY8xYAGCA7k3paKtih8ABDyYJzxyrgKzTFG9Nsodf80xjCHBYURdj0j3V525ozLGMOQpgIzxo9NVhi6AEvCy1yeRoA6cudaNjXk3pbCf4wxcsfQg+RA7q40Dq5F7nhSbfOBNUN/gph4NmQ22nQ15rGr1gFAnfVKQSebJxEQBnmH3F16A8MZuTPHIIQA3EHA3vWdyBt9hVGO3IPIMDMfAAi2+Uy/jSfe9j70KmRKOms3BOl2dDJACo+0v6E/mFMA7iAiFoDOc7ieuY4+ZZ7m5/dQrz4lGjhkhKrKK9Wze7G2bKlRv0EDVFuzUVu31Kiqssx7LSQruh25A8LR7UERFAAZxge520A7YAod5Bo7+gwRka4GYMO77ooKw4OLkcvZ2v7Gmifnm6JvFH1yNYqUUeGc72T85s9fqIJu3TR83Ehtzdmqvv1L1ZTTouycbOVm5Sq7NUf1tXVat2Cl1i9b4z2W9c66N0QqJIOr2CDzmH4xLrZK1BAvRAv8/Oc/d6aL4CHD6E5Xg3QCwLoa+eoc32kjSZgPpCeQK+tKdwF84/Wm+B+6CMAdVNTO348vnH2psp58VA29Rqn/YdN00LGH6LWXP8ordjkhWBPIHSLEdvQo+yVFtwBurj2VuYguilvXkkCQdx3dTSQJ9Q4S6+rgWR995ASVd89VweJz9Mkh72lbkXTfo7/bTTjMGWoqsKeyZrCbwiKszEO6d++hc478jN6/5HS1NjdbBV88bryyTrhBT68/XeUVeRp+8p/0eu5PdfkBV6jm+SoraIfAQq+6ol8gFSiuF7f2k0AM2NtP1h4IcxXVwpDGe8cxM/4jkmDtYfcBQC6wzkIH8MO+YbC39cgfvzjYxAhDM0W1XGGsgACUlc3TDuvNJs0m6Lo/nV72oEJzAA9AmA1Y4pUi4gFQ6TJqMUiRO+wnHpewc42jTDfG0NQo4JkuQwXwwbzAeLcZfxAIhPq7ipqk28uOke8iLpjrGNI2gw1DGi8vRppLngAX5M53I6O2HCvmHwtIEOY6Y0q/XNEJzGfkzvfZiCzCgCGJXCkJpqBklLmQ7DWAcMgp1zqjwiv6wUY2wKgDxl2ed/QQMgfwoYeCjqNMpt/oLuQeVmgO0M6cZj7byAYIIOaDy2NPiH+6PAJBuh0ijr4BCm1RDxCCfI8LrAOYkTsEFWMHcOzeo1D7jJmgNW8vVXNFheqWLFL+9k2qXfieikePUfWiBSoeM047snto4GfPUWVz+W5DggcYufNu5rsrIgPQzrttexfkDoXT0O0uEMP3QVako+EVJ4Tc1tDdAG1AmL8Ber///e97oec2cMb1iQXoKIS2vbFJBf16aPDEYarJrdG4oqNVsaJKvZqy1LylQfk52drR2qr8om7qWdpLqytWaX35++ozsFSbPqzU2tWrVF+/zQtXp9Ac8rz33nut5CB7AP2DCLHluuJxpnCa69xzdDuAOl3pNwBy16kS5IUzZ/Ge+xvAhPHAc+eyZRIL0FHJ3XVSS9B8Ou+kC7Xy2xeovrxMPYYMVZ/jPquSI4/T9M/M1j8eeUAQJrYGiYjcidiw2QQUC0OmHIFla9S4CfLEpmMNxM9MrwSCvOt4uTmdgdMP/PN5/FGTVVWSq/wF52v8hkfV+OA16nviF1Vw+ol68MGPCETup3bGnhSgmzHzKA2cv17rfuOubcG7iseOU+70s/V4+UVaXT1Ykz7/gF7K+S9dedC3tOzRRVqzeuUugoTk5rtIv3HZMpAU7ZH2lN4R7jxPjwF7O44VhqYLSANY8ezZDGnALuDGFVaOEQvACSoUtKeficEIkGKTdlUsBsTAXts2YvqHd8cVOp8uLzuePwCMzWOKUYGxaYYzrPoAACAASURBVDOk6SseagCAC7hhfOA5YVzCwkvbIn/CnngHQAa52wxiPBH0k7G3kQoYrYyXC1yly8vOPHYdMQcgBjzZDGUDhslptxlqyII+Y9Ai9yj558nKHoMMufNsyBqbp9nk1tNPP6mAhwyvHIWrXGGYEFwYh6luAC9XsRhTddxWkBAwzJ8rrByAg9xZ3+kqQIc8kDsGkoukAmBCbto81cwdWH/Ws43AYU0DBlgzqW5Buh0PDHrf5oUGDNMvV1g5hCkgAJ3KuPYuKVVWU3c1LV+ryr/fq+3rlql64XyppcX6Sb32naB9bvmtqhvc504bchAd46q/gFyRqQ2kQZ5BerrCoxkv9FCqGzoXj6YtugM9gQeasG3bfnTDDTd489gVVn7mmWd6JAue+Y2bapTTN1f9JwxW9dbeGlNbrKal61Wwcb7q5r6glqYmbVu7Rnm9e6uhslLd+pZqwKyjtPW447WudoiWlTyq/fqNUn1lnXLKsvT+m3PU2tLiVaxH9hwbZovu4hsAtuhJm67ES42OdB0dhYcaMJDqRiQJsrU11ideN0LD/aQaBBG54K5ccQhojrCD0CSyICjiZszYfXXU7OO1Zs0q9S3t66VU1VRv1ppVK7VjR6Nmle6rJd+5cFcAMmy4Bp11uYpmzFTf0cW6+1e/su4xzGfkzhyxjQsAjRMEkIOtUbQrnVElqR7P+HnBEgjyrlNTAjsB4i2xjT5oXzXtl6umuedq/Ibn1fjXb6ix5qMib8O+eqNaj5yi1csXeREb7B1BNRy6deuuvv36q0/fUg0fMVrlZWs1dtwEvfj809pYUaGTTzlL9bfepMo37PPR/3V9TvqS5g36nl6cO1QTz/6jXsv5b3136vV68Xf/3q0QHWQrnn8XCQUugOCKW/tIIAbs7SNnz+vjqtzNBoFBbKtMC7DBA+UyhjD4YNMJ0Y0KXtgYyfkyxc+ieifZSPGMYgDZNlMT5gx4tOX44u2gn67wxXR42QF1ro0fIxSZ2Qw6cza1zQOMgW3yUfkeW7E027QCgOOl5Ho8sFFTFSBkmAfMH5vH2oQ5Q0z4jVcTJfDEE09YSYt0edkBsi6wCkkCY+v/FoAugIrxsKVPAKSZf6yloLSQRNmbvHX+NcXPoo4Xa4u1B5iygYKgMGdC4/FEu7zVrHeIllQ2iAPmgO24OzyhABA8in7vO3IltNmVPgFRh9yZf2H55uZ7GEuv6Fx2tlqaWzzPYpSGDoGxRye5QCy/8402jzTglt9cHgHWUqpDVoN0O3OAfF5baDAkJX+u9AmiASAx0DEAs9HjJ2nDi++r6i93qnrhPDVW28/UTZRz/1mzNfGOX2j5knmB4jdri3XnIkvQz5CXtqPOqAECKehKe2L+MI9S2QB15KbbGl5e5pLtDO2LLrrI+83mAeZZgE28S3iW+g8cor4HD1C/kgOU/e4m9Vj1nir//nttWbEs8FOGXPp9NR81RT3rB+n/vTFNgycv1HI9o8Gjq1Wypbe6bcjXqy8974XJf/WrX9UvfvELq0eX+YM3m6J5/sJ16G76SFV4G1nLN+JlTzUxSO6q6zQMjHfsGFseON+ADrEV1IP4Ru7s1bb0BYR93KdOUd+8virYUq+GtauV39qg6vffVX7P7mrJztOO7J4aNPtolfdsVssDj6n8kd3TIHhO/xkz1e+Cq3XQqUfojttvtdoHjAsRDBBC/ur26Bgq9nNOu61BWvCtcev8EgjyrkOAU3gN4iyxDR02Qn0/MUDVCz+h8ZXr1PiHL2nbhvU7L8ktLNQ+3/pvzfz6F3XPr++w7mOFRUU6+/wvqWJzi3o1tKp582a11tertX6bGhtblF/YXX3HDNfSmioNaM3Vymsu9KJJoraSky/RYw03aOP2Aer32R9qZd4/dcWYb+rx3zy82yOI4kH3uKJS0F/pIGSjfsvedF0M2NtptF2FqADOAFkMe3/OCh4jQt/wGNlCXDFcMYrDjqDBGGNDBCQQggN4wSA2xc8AjxSLwnsGiAoC/ninYN0wUm2ePN6DJ44cWb9XGxBjjnqziT3VXna+CbnbABqyxYi0GQ8Y9XhQbWAL0M2YIKugc7f5PmTBn6niDGDkz4BIUyEeAgOCw5U3zbMgS5C7q+AZnhrG10bsADwBMa7+ptrLzibnKsyDbJG9bc5SgI5+2iJJuIfv57egKuwQInhyIDEA20RRIFfyb/mN9QawBQDh9Qw6Dgy5E6rGvCR81Raej6cc745NtoAYDFBX7YNUyx3vp+vcaOY6881maEOScJ9Nrnw7wJHxCgpNJWR62PB9lF2Ur8odlapr2qb6HfXKzspWbnau+vccoDGFw1S1sdKLRgkqZonckQ0eRhdRCekDaeOXLSDlpJNO8jySNj2GzuN7U1nkMqjIICkIkAf+CBxDoLhOriAcmz4id+ZvdkOh8ue9qw/v+KGaG+oj71qDzvumjrnlOlWWr/N0uytsnQdCRLLGqANhK9Bpqu2j2/1rAT1HFJUrvNwUZIzc8ZAL0TGAKVtePbry1ltvFd4vfz/R3WeccYYHtmz7Ap4k9g2qxRcVFev4885UblkPNb32uirvu031ZRsifcKE2/5P4047Sh9c9x1tb87Xpv6flEYcqvl1W5Uz5jk15C5Uv/K+WvvOKg0fNtTLf8VTbgO6kGnMd6pQ+xugku91VY2HpMNrnapG/5CNrSFbbBkKzfkbOfVEYfiLcnEdEVd8/4Ily1S2vFJ/f+Lj464GDR6q6YfPUnF1lmpefl6ta+ap8s3X1FRXt9s7qIw94ZcPKLt3kZZffZGqF7hJqpKJkzT40ut08Dkn65e3/7eVAKaQGPs9Vb39DRCDLnVV86faP3ombp1bAkHedXOEG84J0/CG73/aVK0vG6fBiwvV55kvq3r+7vOw+4CBGvWDO7SwsVyvv/rxOezDR47SlBmHqmRbH+1Ytkxbn7tPObk5qnj1pd3m/KDTztHhd96qD/7yhBZfc35ygs7KUv/LfqY753xDg8dt0KaZl2hk6UDNqJmu5558epdnQbRS6BJiwoZDIKSD6lkk17H46iAJxIC9HeYHwMCVRwwbCwjGi+JvGPwY0javFiwvxqkrLItnwc4T5sqmAwNPPzBG/B51fjegHkDNdXhLXEY1hjSMGn2zhVpjbAKMbKDNZcDSX76HDd8cObenQwOh4AKpGBd8px/g4Fkhx9DmbQRomyr+QQVw8Lwid4gQwtEB5JAxfuOScQdkY3BBEGCEIk8XYYLBQ9oBRIItSoHfGGf/NzFeFO+xeVeRsSmItKfyNvcH5a4zvsxZf3E4QDaMta34EznAfBseVRf45RshAwCYePaRO//aQDbAAwIAmQPokTupDzbPNN9knovc/RsWc5b5wjf7AS3fBOC3eVd5bipz2SGCGF9blXu+l3kLQ+4HKYkVrP3jjy6A7EF3uQrg9C0t1bDRo7Vk21Ktr9mguWUfaEtZqQqaBqlHdi/vfQ2tWzR5xDBN7dddvYp6eoQK/515GlQxG9AOiLTpOAgZCB5qfvgjVZhH3OfKseV39G4qWpBuh6AEjNhyYdE/zBfbcV+MCfOT+WbGq6Rvf7Us26zF135J26s2Ru762B/do0HHH6SS4iKPLGUckbsrrSlMxzGf0Vm2fHa8kugfVwoRc5BxS0Ujp9wVCo4HHRLN/ztrlZxMAKctAgMQj+695557VNKnr4pHlGj8wIkaWtOieVeeG7nbeUVFGn/n/Wrp0U1rr7tMtR8u8SJNhhx/ojaPOVflvY7Tpv6vauCkxWpcuU0b55SpR/cCL7T0f//3f61kJpXjGbMHH3xwl34wXoAKjhSzEW4QQ4D5VBVbpFCci4ylKjw5535bhv0QsgEPun9vg5QC+KyvqFbV64vUtHaFGqZO1N8e+KMOPvRwTRq4n7Y895Q2PfOQtq7cNcfWPyC9xu2rATf9Qt0bGjX/8jOsoD7xnqLRYzTksu9rxsWf1k9/9F9WO4vQf2oI+KMjASnMF4oa2hq6y1Y7IfIkii/scAmwlwJSbTYEUVpEWfhrSOxzyFhtGVCqorfO1KQPv67yJ3f3WJsPKxo1RiO/9z96eeUcLVo4T8eecLKG9BytTf9+Vnlr3tDaJx4LlMGwr92koV84SctvuVPlD+9eyC5MgPm9S5T7hV/rrpfO1OFnvaZne16sbx18nd78w8uq3rxpl9uJJGCvQ+/aGmsYwjZu6ZVADNjTK1/v6RgHrnNY8QZh0Pk9H4AEjBubhwmjCbCRyOwlfgYGOrkleN95b5gX0S8CwCYGLR4ZAK8r/xsG2XbkFl4sgBm/+cOiMWLpu6v4HoYsBn0qmiuvFCMBT9Jjj+2uEIlaIPfOBsjxUgLqXECA70LuKHjknkzFcgAGhg1yp8K3K+QQAAAhwtj7cwTxYvFdhL/7wScED2DTFUpOznUqcnvZ5ACOtnD/oLHHE4TM/UDCnF3tCsVlnmA8AcJM8b2wc5QT5xYGLeuJtcZcd4V8A6KQrw18sV4Ye9tvhBHzXbZUBr6NdZIKY5o17oq0wXgkrNM/9ow34854+WXGGoEwZA3ZiDvW+AEHHaz59Yv0+NLH1X3ToWpaP1Er3thfpaVZ6l3cpC3ltarb1qLifkU69Jg6DS55R9u2bvHED/lEVAjEHnJ3kYPoA9IRbACL70I3+Uk51hL5uxAUNo8AYBivZSpakG5n7FnLfu86a5hvt4XCk7POb5A8fr07YvS+Wv77R7T2F9dH6npOt26adPfD2tx9687r8ZbwfPYb5GY7TtHk+qODbCDQVW8F4o916ArxZ52lyqgjv9imy9j7ALCAdj84xMvLerd5iAmhZ07imZ846UD12r+PcvP2V7eaGvXOyda2P/xWFU89FEnuRaNGa+CNv1LPHY16/5JPq2XHjp33MSa9jjtXdQd9TUu7bVf2/g+qf+0ALX16nkYMH+Z5pwHufiILkgTgTeVmvy6hQjW6CaLB1sgpJ4VrTxv7Goa7LYWO/YXIBVsUAJEQ1K6xRV9wfW3ddjUs3KCVt3xHdatXatg3fqz6KSNU0lSo+r/drdX//Ohs6bA24PBZGvzDm1X12ItafevuhQZt9xeO2EdDr75Fk085TNddd81uaw57gO8i7cDf+G+QF7aoCGwvcvWZb3HrnBIgJQt9YGuMPXM6kYyH5Bt12gRtWnCMxq58W7V3X6KWxsbAjy+ZfIAGXvVjzVk9V4cNmazVd/5Am+a+E0lgE++4T02DS1V+/ZWqnv9BpHv8F5VOPUSrDv21/vbygZpyyR1a3/MJXTrscj109645+ewbrFWilmwtXfUy2vRRXfimGLC3w+ASQmjzUJmjpPygHNYcjygGuB/0YWxSxIjNz2Zs8Uw8TxiSQUVbony2KaqGYrLlIwOsAY8YaH7jEhCDAWcD5qeccopXNMrGXHIfm/+eNgCKDZDzXLyGAEu/wWcAry1XB1CIh8pFkgDoAKRBRfmifBOhxfQPQITcbYCDfHYAlU22jD3f7iccMGQB864QPgxpDOo9bRj4tmgRngsABAT4DU7GHG+zjZwClOFltJEkrBMMKrzreN8TSa8ePYtUWNxbmxqrVN9ar5zcPOVl5Sm/KVf1VR8Vf0lsrCvkDnB0VesGPPIOG5njIhzw+EMGuCJh6D8gbU+bKxwe8EXRGNaC3/uObJlftu9hrCAvbCH2GKFTDz5ET658UW/ML9PGObM0omicGlbO14TSJeq9fZHytizTlqVLvPDtnvuM1JDzrtCG5ordPhN9xXoH2Nr0FaQGUTmAS3+eLuMO4WkjHPg29KOrAB9ECWttT5tLtzPmrCl+9zcAL7rHT04R7cE8wrNuSz9gjeSrjxZ9/ypVPO8+hsy8r+ew4Rp16x/VXLhddVtrd+kGOoR1h46xkUlEXOERR7f7gS/kFPfbgDn9Z++xFVdFB/H7njbWqD9v1DzztNNO84A3oD2x8T3krAM4/Xsq9UoA83jL8gsKNPFTU7WxYaAWPnKqLjj+BQ04sJ+2rdyk5dd/5aMCfyGt36EzNOwnt6v8gX9q3V32c4wHzJylikNv1sahRVo5+BZNqp+sD558R7NnH+VFE+Gx8rfPfe5z3lnP/m8zJAQFrGw2AeuH3/a0MS9dofeQAqQr+cEr+o2K+DZvM98zasy+2jBnhdbe/C3VLlnkdZHQ9hHX3qaRJ81U+Wvzteiai9WwsTK0+4PO+YaGf+U8rfjOt1Xxwu7rzvWAPpMP0LDrblPPEYX6n9v+e7fLACqsE/9aZr+ALLGNFQ9hjjKWceucEqD+hY1kMsUTIQUT28jDx6um2ygNen+yhr12qTa9OyfSh/efcbj6fu0GjZw8VnO+d4PKH/1D6H14x8f8z73KaW3Rwq9+Xk11H5OyoTf7Lij+5IV6NPtuzTxus3qMeEjnzPq8vvaVL+/mdGEdYHPaooWxfYm+iVt6JRAD9vTK1wOlrjNeCSE0Z6UndgPvOgaGrco2hrQ5c9rfde7DS2sLOW7rZ2JQY/xCHtgqoQPqAU42QAXpQCiZH+wD8vHA2s6K/v/sfQd0FVX3/U7vvffeCKH3joAoSFGKiIoiAiJFpIgUBUHpAoIgIIIigooNCyJVivTQQgkhvffe63/tCS957755kQT5/p+/L3ctF8uXefPunLlz5+xz9tlHkfVr6nwV32tICIrRQLk+1MygE5CJbAjS5FlDSGdErgaUgIPONu3eUB26eE16+gbQAlBeXqZ2ucxU0UGn3eWcMGYISQ8XARXnwTVCgCZmufkdgiI5xsU/lXVkVFpOeIrBEGZ5mP0XB23L9SNmWfliJGOBtGc12+npSVoCBBPKa49AvdSsElEl0QjLu4Hw7FvS+nQwcYSulh7G+LwAs2x9lJYUyVLgWZPOIffsMRPOjDQz6SKgUvS2Fl9mDLywHzKvWxQv4u/we/9E9ovnlxPGIyhjdk4UcFOsafYlFtkYBGMEAXI24H2k3fmM3EnQxvnjQTApugPvogPQuvYtcmTqRo0cneC7fg/ydbJkH2s+8wRNBI5yewIDf3zGuI+Ka5r7Dz8Ts+zcP7lvaaqp5vlom4cZDe3tBCoM0opBCGbXuU/LBf5oV4JJuSAD1wmDcRcvhaIgMhexS6cj/15Eg9O3adcBIZ/sRml0PCqMTWHuYYPoiPpMDPcX2p1ZQjlmCTPxvN9yzA0KJrJ8RyxR4fuHa0dTNxA+6w+bdeQ9lROTozGYESOgFfdwqqWTzfHFF1+o2IzPNL/D7DTr9tsO6opEGCL5twnobncclifnwvqZSbB6vBNKrsUi8p3XUJ7XsNif46hJ8HzjdUTNeR0Z589qvEcujz+JSJ93keZVhVyPz+Cd4I3wCzekLDr3aJH+ztI1XjfBsRgQIWWewVC59c7nh2r5DzvYykyORcQ1wvNT9V58PskW4FoXg7FcJ8y8//HjaRRuXYG0MydVpsdgk9/SLahyNUfugT+R8PG7fzt9n6VbYRoUgKjZ41EotKj6uy8HzFwE/ymT8fOBfWoBZwbjCc7kROZokw0bNsgGNunfTZ8+/e9+uvnv/6UWYAmHnM/LQBP3jd27d9fN3MLSCj5Pt0DmjScQdO835HzWuP7k9k+MhP1rM1CeX4TMDxcg+/rVBq1i7hcAj1XbkX/2AuLWqrM/HtSkOgaGcBjwFCyffBaxukU4e+oYXn/9NWlvFxNefD/Rh9RUr87ykX+KHfug8/9fO64ZsD/iO87aWDkBH2Z36LzItZVhRJxZPhHAMMvLl69cJpIRLjrajILLOe6Ky2TGig4TNxypvrS0FKXlFRKoKdEQpWNGhaCCYEQEKgQkzHIRrIrAnC9lZgTEjCuzwwTHmgIZ/4RavCbgyA2FdhQF5Xg/WIvMGjyx1pyOMu0kByaYReM1yjkyykuL9iYwIVWO5ycFucRGCwmFCXCADczLjFF0ny6s+B4dZs6XdhdpiA3R3wk6eS9EfQECFAIZTd0K/omsoyYaMoE3hwiseH1cJ3IAhtk4ZiLlAgx0hhg8UVCldXR0oWNjhNtld3A56yIyStLhWjwEDmiFqkJLVFbowMKiBl4OJjDyuIH8wlx46nmgPKcIlRWqtDWuTT4bckyBhtgADFBx3YnPCM9HICan90AnnBnwhxnUpdBEQ2aGh6BRzOYyIEQAIwr8NUST59+YdSUwYImCvqEhDDK1kfPNFiT9Ia/WzeuyCmkN3/U7UWVUgsricuTlqNdgcy6cK++1HGDV9AxyTizN4boTn1s+z1zrcqUp3NPIOHmYoWlv557IoCADTSJDhvZjkFYMahHIsxxGLiMv7r/2Tm7IP3cXUUumorJYXXxLcU0OQ55HyJLFuDpxLLR0dGDVbwTMO3VBtWUNsjNr+7JzH6ETxuCMXF07n0Heb5HdQLYR3zligIrrmXY/cOCArKgbg7V83h9mrF69WjYgwEAIa4rZVkt58J1HQM4MkQh0x4wZIwmxUljMv3UwSlpooeT8RLiXxMDmyETkhd+Goa0dvBash0mXQCR/9h2SP1vZ4PS95m+AZbs2CJ/+3N+K1PlNeA1ntGahotMNOLkmIeN4EoqLCiQ2gBxgICgmU0asz+fzwWAi25HJDSrNk+3zMIPidXIBa95v7oti9p33g9cgB1op7ldQXIn8I2dxd6nq/VLMkS0J3eatRY21GTI+WoH04+rBXsWx2voGaLX9B1QUF+HW66MbfZnaurpos+17+PZvjzlz1OfDdnRk8oiBTzIzOFjnLg76BZrKFBo9weYv/Ect0JA6vKI3uXKyxLOtH/IcnWB/qRe8z7+CrAfMritflOPz02H7wmhoJ2UhYv4klGaoM9IUx9t364mgjZ/izpwZSP/zcJNsY9e5G+xfeAOFDmY4dbo2GB4U0gE1LmUI8g3GZ+9tUnunMkjB/VWOAcayoof1ZZp0If9DX2oG7I/4ZmsSCOPLk1lN8QVAOh+dGjnHTRMgUCjw0mmn885BOnBVZSVKimupMgRGzJYT8DNjS0eSjiWB6pWkWNzLvQnTKiOY5RuhMF89g0DaLh0tZpnFKDoBMK9FpP0SnNJxpfMmAk46FzxerlSAEW0GHx5mMBAiJyJGx4a/KYIngmNmHUVBHTpzBBLMRIqCXXRY6ZTQ7gQLFlY2SNXLhFmOQR0I5H2mc0v70NmRFJ+1tWFkYoZvb/2ADZfWwM3cAz3t+sBXywvVuarZdmYQCfblWlwxi8fgjFjvzntM+4liZ6QQMxjE+yE3+Fu8nqYOBpjk+mPzfPxdZt3k6KiMYotCVVxvzCrK0a/kbGJoZIJKB118FfUF3HJeQHlMV+iX68GyKhqG1ZnQ1a6EvZcV/LpY4XpGKY5n74CjvT78DHzhDx/k5ahmf3nP6dzLgUcG2hiEE6PvtDnvlUip57PHdaApqEPAxPXR1MGghhytneCJe4acUAyDMwz8iQ54Qx0FCDYpdqhsEydXL2QeCUX0+9NVanWVr8V+wHB0XPcRUm5GI9fAFNZeNSjLyEd+rqqwDdcng3V8BkXwqAioyQnrsUSImV4xS8xgGvcqOdsQxFFh+2GGpr2dmWuWl4jPAgOlXFdyJTfMWDOwIgJj7kkMSDDwoLzePH1aIGL9dqTs0Zw5dZ+1Ei69e+LK+KEoy65d3879B8Js0DjYdA9CUlyk9Bn3CwaVuLeLbJ6GhBM1lTZxPTPDLUe1VwhnPozdKfYkx2Ri73S+c8SeyFy3zA4RtCoP7u0KYFxRWYXAYa0RebMVKkOd0SdjElL+PFZ3uKmHF3yWbIKWrSWSV85H+l+nZS+B4nLtPv8VxRlZuDP7xQe6TMep63DdchJyglegvZEvTuw9KFH0ueYpQqc8uCeSXi5XErBnzx7pczlQTduQmt7UwXcM27nJDWbK+Q4UA8Hjx4+XGFDfffedyte4f9O5v/b7VSR98EaD2XCb9h3hMHMZdGqAuGVvIP/eXdk5mLi6IeSTbxG3fz9Sdq9r1GUa2TvAot8oeI4dCxtfW5w4fkTt2eXzSVaOWNNM34d1vaL4mGICbO/2TwlcNuqimg9+KAtwzX777bdq56BfQqYFA1GKQT+63eiuyM/oCu+oeOSuG4Oa6upG/z7P4zp9GdzHDUf87h+RsFFzf3OCe/8JE3Bl/HAUxjUsxihOxLpNO9iMmgKdQF907N4SX+zZg0CPEOTX+OJGmCVCvZ9FoHUQgpMC8eeJ+j2Q5+F109+QSxAwCUA1+ebx6CzQDNgfnW0lZ1GTqiKpiHRKRSeTDjOpsyJQ4EbBLIxcdp0OEjM2CqEaG3sn3Ky+Ay8LH1gUG8LPx0tSile0mFLORFla2+HUX12Ra3gNpl534O2mC9cqZxQmq9NX+cLid+XabtF5k1OTpqPE6xTFi3idzDLLifExC0xad1NHQ8rNihZ6IguBTjGztSKrQVO9O50pglBeM0GomYUVruAGDib8jNe8psLLwFlqh8V7mZCQhKziXBRqFaOiphJmBmaw0rPFD/uDUGwVikSLr3Gt5ACG+45GT/Oe0MuuRlVVZd3l0xYEtCKobagunawHzk3UCSAgItiUE/l6WFo8s+dyAJdZUDo8IlChc82aUz4jYhCI94NASwTFBEO8J8xeKtaxmbkVSiwqYalnhYhbQYi+WgK30uNwqziNvFs3kHPrBmqqqmDfqz+ClqxC2JkiRBe3RKFlKO5ZbEFb+5boZtIVean1EW0FQGTmXxEEU9wQgm+CHJEqzOvksyhSyQgOSYtnEElOjI/BIgUDoSlrnoEZuYg3nXsGi0StA9ZX8+Uq1psy2MAIOe+TWO9Op1PRZkx5jnQyXFwDEbn2I6R9v0N2+q6vvQvXx/vh6oThcB8+ElUBj0G/WweYVKcgM121dyyzyYr2YGLGnBR37hligIrXyb1RvB8Eh7xOTSr9ZGnwPjZlNLS3E5AwICo+C7zPCr0F5d/kHHj/5YK0ZMvwGVbW2/APaoOsy+EwcnPB3QVTkXnxvOwltN72PUoysxGxULWtl7GzFAtFiAAAIABJREFUC9zfeB92j7VDfEwtAGqoDIJZdj7b4rOo6V3F6+RakmOW8bcYKGlqJxC+ezRRMpldZuZZDNAQTBFMisE/zoPlIqTQdxzYEzHaekj5dSKedvsM6R9NVrOpZXBLuM1bAz09XUTMn4zC2Gi1Y9iuKWjTXiR9uw9p38mLwIlfYgbfbeVBJOjYISttH26FXpHYWATrkyZNUgPgvH5mdEW2Eluj8RmQ0zZhIJYq7k0de/fuldhn4uAe/uWXX2LcuHFqQRSyFigOKK4b3o+C4goU/XYcEWv/3sG37/M4nGYsRFlULCLJKpFhAtq0bQ+/VVtx7+0pyLpy+YEuU9/CAlY9B8N+xFhkGJYiJjoSPp7+6NixpVprOmqBMCDCIIQY1OL6IfVfTreB77exY8c+0HyaD/rvsQDFH+U0Vfh+5HtFOZDm4OgEq0GOKDg9Ge2uTUHaQXWg/6BXxg4THnPXwK5XZ0QtW4T0Y7/JftV3yRaYe7hKwdgHHWSsWA17FbohwbiTeBOOTk5wM3JGzuVQlF04iJQ272HjD93Rd95mXKrZihWtV2PvJtV6egY/+R4m/V1uMFjKPaF5PBoLNAP2R2NX6awNAUc++IxSiXWtzIgRlItAi5kZZoVFejDBA51VhTNC4BiufQ8Xcy6iVc4itLFMg1uINW7flFeRdHELQPylcuw72hJmFnowb3sUWj6H8bjNAJQn1yo6KwadLAUQFEGMJsozAw10SMV6WM6ZGX9NavEP49RpAo6s7+aGIwqvKbJYzKIrD2bCGYggdV+8TwxeMINPkG9oZIxIgzisvbEC6UWpmB/yGfp5PAGjyjjEl6QhtiIO8aVxKMt0hqmuLezNzNG21BTX7/jg61/dENSiGsbtD+CU9rsIsGmBl11fQWVavYgInUpmwJRBqmKeXBekZomZOW6qzG6Qtqs8yN4gGNMkxkURHV53U4Ym4Mj7TKAtrgGCSf5NDELxehUtu8R5iL3NSaUusCxHonYqbFJGoHNAJVL37cDND1cAQpTb+eU58Bz2FMJmTYB5lyeQYDsa5T7+iLH+FCam+RjpMBJpSfF1P9lQz3gCcDnhR4IbZtjF8hDOmyUVcu34HiZARVD7/ffy6tUEVHQu5dYAGS+i6CKvl6BczJQxeEFGDNefsrNKsO4V3BH5f4XCxNsbt+a8KksFbPnRXkk0KnLZG5JtKSrlMmEBDPo/AQO9LORk1dKzFYNrnQE1OVFIskrEUhquATJ5CCjEgAizivxcjm3zMIGShvZ2BsW4BsQgCoNWvCbRsddUMqHoOqF8vUEhHRGz/3ek7t0E34XroWuoj7A3X0JxYoKKDQ2sbdBq237E7dqG9IPfqD3O1q3bwmnyIpi1dkNKUm2GhswR7p0iu4FZRLK4xHXBwA+BvljOwvXMtaepTONh2rsRqMqVkTEQsmvXLpDirjzoPH7++eeS6Jq4h9Pp/Pjjj5GWngH/YSFIDOsF28QauJx4AXl378hugXadusBn0Tpkh91C5HtT1VSgrVq2QsCKT3B3/hTk3Lzxt9sodQbsn5uOaj83RMbdga6lPjIL03Dnz+uYNm2aFIQ/eFC13IR7NJ9JAmXlwWA037ViVl5xDEE3n5WmDAqrifsIz8OAGGt6CViVB5+tV155RU1dnWuGJQ1Hv/0TyUtnoCC6luXxd8Ph6fFotXABbn60GSlfblA73H7wGPhNnYnLLw5GWZa8VobiSzoGBrDp2geu499Apkk1CgvzYatjjcrIKNj6e8H3sfb4ZPMmtWQCmQ1kSYmBQWoO8HkXy+z4e2QlsuVe8/j3WIDvRmpeyA0GxeivKLNJfdoGItvRDs6Xu8HpyNi/1Rb5O0tQ88VvyccwcXbE7TkTkHdfjFHxPW09PbTbeQBJR48h5Qt5FXvl3zD19ILlk+Ng0asnMquyYWBgAovCGmQcOYTCcwdRGFMbeDQZtRQ/FSyAR/dL+MXwGWwasB3fr/xK5Z3KvZ0Bw8mT1QOaPAcDHfQxm8ejsUAzYH80dpXOqkkxm9FzAi0ROJIyyayPHKAkEJCLcDPLy6yDAggU2VZid9zn8E18F+7ZFmhXtQu63Z9CoW6ObHbPvNIaSavmwMCnHSItXsS1/J5w6ngeLXqGw7XEERXZxWovYgJfsb6X9VpkDYgCYQqaq5hd5efMompScn8YcSLOTa4dkSbg2FBQgQERMTOj6NVOajmBQJWDHnZEb8OxuEN40fstGITOQVaGLiZPS8GN4vOIvuYOq6IuMMhLh752MZw8a+BhHIvkPRuR5/40TmcNR0yWIzqOPoq/DBainW0nvOj0ItKT651w2pZZcZHKz/kR4IrOtKaACD9nRlJTC7CHqWOnYyknkKcJODLowaCCGMnWRGXm3OkAKWdM9WyNcaniKvJv9EHs6S54dfApOHpb4uab49Uc5qDVO1GWkY7oNW9La9qxd1/khkzDbaPuQIft8LexQ1C1nwpVW9GeUARfmkTF+LIiXVfMAvNzZl3lGCVcTwzUNWUw46xJ+Z/PF/cGce6aACX3JDrlIpWZwTgG60RmTUCb9oj45hQKftgEt9ffgZG1Ja5NGYOS9HoArsfg1I4fELt1LdJPqIoHuk1ZCovnn4NOaQJys+vr2rm/ENzKtQfkvsDSigcFwwyUaGobx+ee97EpQ9PerqDai4JhivIgkR7M4BiDDbxWkeYt1ruzrVvu5UjErV8k1VZTG4DgMT88AhFLXgdqauouxSIgCC1WbsOteZPq1LfF63QdNBRuMxYhOb8WsGsSTmR2kc8B9zuR9cCAiFzJE1thyTFn+DsP0xmBFHa5shuymUgjFxW7uZdwLiKgZMkCs9cUcOvauw8qfKxw7tPRGGT6IfJ2N9wSzL7fEHjOnI+43buQtl81i27ffwgCZi3A+WcfR0WBasBb2f6WLVrC6ulJ0A72R0D7QKTcjEdhZgUSbW2QXPGzVMvu7eUpMV5Iq1YeDKxRBI114OLnBMlyrdV4HGvMm1p6w+CBXLCRa5dML1HMjwF37mtiUIH7XFBwK6QfvYK7C1SZH3/3HLq8Oh+eY0YiYuE0ZFw4p3K4x5sfwMzDAzdnvtDgaajgb/f8DFS5OaBVxxCEH7uMrJN/ovDMT8iPuAvbPk+i0/atuHf7qlppBZ8BBp5FwUMmMWhXBozEwWwsg0LN499jASbFRB0MxezJGiEoVX7/BA1sg4KKdgiKq0b+2mGoqaxnRzb1qs18/OC3ZCOqigpxe84rqFDSNyJDKnj9bkSvfhtZoZc0/gSBP0s9rAY8CYtAR6CwBnk37yDrwB7kXruAcqHXum3nrvjV9gDydXSRNegJDPAYCONLBrgZdl3lN9iukHuSnCBfc2eEpt7xB/teM2B/MDs16ShmMUXaGk/EukDWP4uZRU3Akcdy4xfrmBlNp6OioLY6OLtjR9J2GGb1hEPMk2iTtw4x21eDNaRO0+cgtzRZEorSMdRHoVYhzEytgXPJuDOr9iXn0LM3MkPm4lzWQNh2P4ge3athkWooieAohsIhZTZapM3yZcyMuVhDx88ZmRbbAzF7TRqonHo261L5cmzK4G/JbSYEHgTYIpjSBByZpSbTQQSUpAcz4EB1cnNLG5ysOIMVlxZjqN8I2Nxcgl0rWmL8s0kY0+YALJ8YjfDDUai5uh/aiZelTdJt8jwU3ItEzKYltXZ/5lWcqJ6N5HI/uD21G1d1tuH1oDdgnWWMivuCaLz/nL9IY+Y8GMwR2QEsgeDnYqCEwSIGheTU2jkXAhxGUZsyNDnopIkzsyg6fASOtKFY1855s45Z/JwiYWQSKMpIqBlwtvwiEmMccWvfSxjc6jz8EtfArPdwmLs54+qUZ1GWXVsnrWNkhPYEjh+/j/Rzf9VdHjNmOZ2XIC/QAzken6ODYXsYKJVWK99rZZsweMDnVXyG+Wzzc5E5wmARs0tygn8PU09Nx0ET5ZtOM8GUctaZwJHPnZiVV7R/k8vW0yFl9kj5+bW2c0DxvSJk71iKjIvnYe7nj4D3PkZueDjuLa2v7zPz9kXwik9wc94kFMbGqCwrfQtLeC7YAssngpB2957K33iv6TiJgTcCMGZAxGdY0+d8tvkMywn+cf/ks9CUoWlvZyaa+4ZIb9eUjeYcuMbELDVBEPdA5YCmlaErsj5djQSlvtT2XbrDc+5yxH/xKVJ/3lN3KfY9+yJo/gc4PbwvqmW6UBjaO8DysRHweHYMdJ3NkBhXa3/ea65pUVuEARTaXNxXNbEGND3D/A3uY8zANmUwuyNXkkXhMzJ2RJEvMmEIHElnVh7MUnPv5OctBrZFQUVblJwLRp+8mYg/8MPfTs1x1GR4vfgiIpbMVKFgu01ZBHMvT9x6S76NGp8Hy6deglm3LjBytEJ5dBoyjv6OwrMHUdNuLDJ6TIVtp0PIPpWOG1cvg1lxZrPEdyeZBgTnyu9OBZtAU3aQlPimapTwnHL91ykoR5aZmF1mn2oGVsT9jkGGvKJKJK1YjdTfH6yvfZ3vYWAAj1kr4Ny9M66+9hyKEuvZUG23fYfU3w8g5SdV1oHiu2SUWI+aAuNWQaghgSwxA+kH9iEv9BRKlQKM5j5+cFu2BYFdfNRa0VFYj8J7YqCEPhiDQqT/i0NOU+FvF1fzAf9fLUC2xIoVK9TmwL19zZo1UrBMMXh/O73QG0l3OsHv2iHkfTn/H5s716zPwrVIPXoUCdvr58Ma9MB3P0ToxFEoy1IXcNW3tIRVryGwf2YMTINckR2ejNKwMBQc/bpWfV4psKs8Wb4TMob8gP3nusBnytvIMw7Fa6aT8ZOgQUGmCd9Xcr4Myz9YBtI8Ho0FmgH7o7GrdFY6FnJ1MIzus8ZPoXCtmIImujLpwaSgiy286Iwyo6nI2pXaAfsSvkKHtK1wjT+G/E310WbHMa/DbcoEROvcw42UBFTlOKG3T2eUbF+L1G+21VnBsWcfZHRfi7jy1hj8fAz0C1ORnqZaZ6powSQ606R2kgqsqKVXnJR17KyxF2nbdPZIE5arp2ZWllTMpgxNvZE5D4I9sayA82BgRaQxk73ATUl0Xpm5ZH2mdLy9IVbd/QChKRcw0W43zm9/Hh6eNRhhswY5e5fCe+4qOLQLwYVxQ6WMC9VoO+76CZEb3lOJjtqOnoVQh/fh7FWFx4ZHIy8mC3nCZkxnmsEIMSBCZ5V0c3GezM4Q4DMLqzyYFdNUT00bNaU1B505OQYIf5fz4D1RVswmnZqAkiBfWcyPzwUzGaL2AwElsznMUCqOr7LSwZXK68g79hpy7mpjpPE8xH/zBShA1GLFVuTdvYuI92dJl27i7oGQlVtxY/YEFKckq9gjaNpMVPQYDwtvS6TnhkI7tz5CTmef60NkgnA+pImLAn48nplqkcbKlz3XtBhwUUyEL7mm1H5xLcuxJTSxeDTRlQkcuS+JjremencX/05I/mg9Ynd9VGdLOhK+81YgYd9OpPxcS8O269INAW8tw5ln+qnYnPffrmt3eM9cAqs2rZGUeht5qfWZeU116aSJ03EWBfx4PP8mll0QoNAWohAgJ/MwfcE17e2NnQedfdpC7EBBEM9nQQFOHZw9kHsqDBEL1IGg/cAR8Jn4OsLfm4Wc+9kQ1/GzYO7tg9vvTFWxu54563afhPvYV2DXyh+poTehlZ8Jw04tkRQfDdbfMxArBkRIfeZzJ9aHc02zfEF8z7H2ntR6uRaPvCf8naYMAkE59hRri1lqID53pCuTkSEG1piFZknLvcgotBjWFncv9kBAYTZ0dw5DeV7eA03N/fXF8HxqIC6NfwYl99+RrTbuQdYfPyDpN1XQb+zsCsvHx8Bl6BDoWJgg78ZdZB/4EjnXmemqFYp16NUXl/y/Ql63T+FRqoPwE9clEScGXcX1SwG9nTt3qtHUmUVnLb9cwJp03qYwSuhj0L5ygwEUzkMMiHEeBLDiu51Z6MNs5bZ9FdJO//lAdlY+iKUefu9ugLa2FsJmjpPEvfStrNFm45e4u2y2Gn2YTBPLYRPg0q83ykpLkXP5GvIP7ZGAS3W5ancQxe8Eb/4W/V4dhilTpqgESsiGYY0ugxcqOkCWllIPak00YV4z3wvN499hAZYgyZWVsPyHLB5lto6VlQ08nvZH+rln0eb8TGQe3v+PXqR9tx7wmP4uYjcsQcaF2haRDoNGw23EGFyeoCqaqmNoCJtuj8Ht5WmwaROEtKu3kfb7QRSeP6gWLNc0SePp32LZdyMx+O19+Ev7AywJfh/ff6LaAYGCkQyCy4kXMzn38ssv/6M2aD5ZvQWaAfsjXA10HsU+tfw5OjmMmIsvOWaV6IyIgJIAkS9sMeNIeih/gwCO/afPVl9Eepo1vBNGwv30OKQcP6JydW5T34PlszPw8VozQEsb0ydGIWH+yDonT8/UDNY9B8Jn8gyUO/khXe8y2poF4drVKyrnIQ2bAETstavJOWb2i3RPsW6areLoWMj1ACb1uam1MJpaiykUqMX6ewJKOm/KjAGFUJhIYWXmmkCNgFdXVw8pljmYeuoV9HHvj+DYT7BtuS/ef/UoLA5OlNRvDWxtEbhkE0qT43F3+TwYOzmj1eptuDpzfF101MjJGdaDXoDz4wNR7hKMSByFi7EjquIKUFlRUWd7OltcA2LgRpNzTKBJB1vMbHNTJc1frv1fU/tTa+pJTTsSjIqZW9Kemd0UHWxSC5mBE7PGBGNcXwpAyTZuGdb5uBhehpTfJmCw5wFUfP4SKgtra//pqAUsWoPkb3Yi8dcfQLVhv5mLcf7Fp+rsyV6mNsMmwKF3D+jr6SKuxg3VthdhkWmIgoJ6p50BEbJbxHWjScCQ2TtFuYTixwi+GACSUwjnMU0tAeFaUO5Dr/g9MjLoYIj0YUWnCJGtQ7DOtS0KhckBSlMzS1QkVSN15XTkR6pmxh2694LX1Pm4s3S2RNt2ee41mPn6I3xZbeCEg3W7jmOnw7JlC5SmpaE0IgymI59HevRlVN8XW2TwgutUdAo0ldKw9p6ZbbFumuuGDCU5rYyHaamnaW9n5pjBHDEYqynTrymYyWeD7wdFeYKbRwAS1q5E3H719lG0qfML0+E1bCguTx4jKcK3XLUdOcd/qmu3p62vD9tuveEx4U0Yu7kg7eIVZP/4GbJvXIVDzz5wnvUe0nOjJVYTA6ViQERTKQ2P5bMsAkpNez7nykw496ymDE2txQhGudbFUi0CW4qCiUFkUlsJ2tldwuQxS9z9dgYGGO9H4aeTHnhausbG8Jm3Ggbmprjx5svg+7Pd5j24tfjNOkE6AkyrvsPhMnIMDKzMkXT0JAqO7EP2jWtqmS7S5PMHbUe0dxIcrKIR9sNlSU1dzjmmWjODOWK5FkEy31lyLUhZx889qLGjIYowbUvbKweR+VwRxItia1xbBDtXDoXizpRRKjTfxszJxM0DLZd/jLQTxxC7cwMs/APR4r11uPjy06gqq+2yYurhCatB4+A4oB90tLQQ/8uvKDz90wPVF7tPew/tZ7+CLz/foaajQXo7gxSizgOZEAxqiKxDzqW5P3Vj7u7//2NZxiH3nmaJEgONGzfWd+ZwdnWD6eNWKDk0ESF/DUXm5Yv/+AU4DB4Nn3Gv4vqcV1GUEA/vN5ehJjcdMbs21f0WA+POL70JY28PFEXFIPXbz5B77RLKc2uDgQ86zMcuwwd/LcSIN8/i68pnsa77JvywTvWdQ3+ISR25oAbfZwySNo9HY4FmwP5o7CqdlQ6EXPaYGWoCeTHjrAlQMrNIYKNMSROpreaW1tid8yVMYp+Hd6weLH8br9YuRdfEBF5z18KyRQhyf/8cjoNG4fwro1BVUgLbrj3g8eosGNpao+DqBVzWn4bqgB8xtnM3XDqlWi/GzBSz/qJzzBcys19iNkOTU0dATkqfnJgNNwQ+/I0dzAKJIFtxDmaoOWflTK8mYE49Af6+WJOvTG01MjbFobIj2By2HhMDFyDj26WIuKuNBd3fR8r2evVbOg/B721A8vdfoCguBj7TF+DSxNHQt7KCdZ+hcB85BoYWZsg+9ydOar2FHNe9sPaIQW/tHsjPq99waUfOSwRozH4x4i+KdGkKiJD2TkAhMgpoJ4I8grTGDgYF5ER3NGWoCSj5OyIVmOCKNfmi482MI9e8AggZmZjimt5txF/shJhT3TDOeBLSftqpMm2CdN83FuHuygUw8m8Hi4BAhK9aCBM3d9gMfgGOvXujprwccbs2QquyDKVD1yO+1UH0NeiNrIx6VgntyOydmNljJp1BKFFETFMJCGmTygwB5cnyXLRJYwcDMuJ95zkIivgMiRlnAkraUSzVIdglQ0MMBjGIyO4Eyg6qb1BrxHx3AtHvvSY7XcchY+E5cjRCp4+D76xlyP/rdyQdOQTLFsGwHzUZ1sHByI+LR/o3n0jAxaZ1W1jNXg99qyIUKK13TQKcZGbQoVLeDzUFRBhYpJOlqWyAbBNmuBs7NO3tmvY0OTvyN0kdJ4tHZM0wiMhMj6Ku3VrPCckfLkTamVPyU9XSkhw5cxcnhC2Yig5b9yJs4XQUJyfBrlNXuIyfCWMnJ6Sc/gs5v+9B7u1bdedhyzLPJR+jwKRICjbQIRNLbKhRQgaVSPXXFBBhwJXCaHL09aZ2o+DeToEzuUFhL9ZRi5l+UuRZp64s4so9adu2bWB7uJDW7WDexRP5F0fAL/lDJH7cOEqroZ09ghavR17oWWT8eQjB732I8y89DYJ5m+4D4DFuIgysrRH55R4UnD2IwjjVshDxWkxnHUC4qzUMnY8g43ASunTpLAWcCIyVB7O8zHyLrCbW3nI9yQWouNbZ3q2xg+CffcjFwYwzVfnFc3JNMBgi9l/ns8FnN+7kHdycMqKx01A53jKoBQLmLUfMjvXQqqmB08jxuPbmeFCl33rAKDg/OQi6+nqI2vEJ8q+cbrCntTgRp2HPod2a5Thx5KBawJO1u2z3JTJNWNdLNoScv8fP+Y5uHv8OC7B1n1wbXe7JDAyzF7liePn4oayjMUxOPAuPw09JOgiPYri+PBMOXbviyutj0fajLxD76VpkX78Gstqcnp8GM28vZF8PQ+aBXbW09yYOz0lv48eSZTD2vIVfLQbhw96b8NPqr1XOxmArfWP2oxcH/TRRc6OJU2n+mowFmgH7I1wWrBOWy2IyUkcau5yjT0dQmcKsUEAWM5SiyJuJgzUOFRyGVdSrcIq4hMLN8iqXrFNpufhDFN26BOOgDojb/TFcX5gKYwc7xO/fi8xTh2Dq6Y2EXl+gODAeQ/pZIzMsSSVyzDkpRIiUzacJyJMmSjAvboIEh3SW5fokN5WuygCAJiE71jPSEVWu6dUkiqcpQ0nniQ4nnSILSxvszv0KX93eifFOG3Fh41QEuGdhVPVLSPrjd1UHo0VLBM59D1kXz0DP3ApZVy7C8/kJgI4uYretQdaVUAlQ3u34JQp8M5HoshHT7F9Hbk59jRJpywTtDxoQ0URXFbN3yhMle4LgrbGD1Fe5lxzvIx19MhiUB8Eks70inbshQMkMtyJTZmvvhIu4ioRjg1Edr49uMS8i9ZQ6xdKh9wB4PD8BBXEJKLlzCZWGtnAZOBAlWTlI/HxDbaYLADOQNvN+xCX/SAxw9kV5VlHddBsbENFUm0+mAQNvcj2kGRTgc9LYwVp/MXvIc/A+0rng35UHM5/MAonid3wBMyAhZo6YkSPoVwY8/m06In7HPtxdvUDjdN0nzIaVnw+M7O0QuWUNLHoOgV37tsgKu4m073ciP7K+e4G+tTXcP9gD65ZWSEupF1pkEIPzFOm9mhgiBCRisI7ZX16bqCyvmDiDeNwDGjs07e0MZDIQJgZ3yHZhsEkUy5Nj9xA0c16KshAGFU3yDHF7yjN1GUS5+TLDGzB/JWqyE2Aa1A73Ni6H83NTYOHtgYSDvyLzyI8SgJcbLTbshUErF2Rnpkmginuo8jrVFBBhcI2MGDHwRh0H7pNi4I2/zRIFspQaO8guYs9ruUHnce3atWrrl7XepLEqD76LKBxFIbUWbVtBPzgAsb8/jX5ZE5Bx8g9UV5Sjuryi9l8ynDTUfCrOSRXmlovXIOfccRh4t0TqL/vg8fIM6JiYIO6LLci6cAblubkPdLnWM3Yizq87yl32Ie9oBjw93KWSHNbOKg/qUDB4K9bmU0iPATa5FoFk6mmibTc0Ob5vlLOKdddtaioJqokUWAZr+Bn7sysP+j0dO3dByc1ERK59R7Jtra1r7axm97+xmG2HTvCdOg9Z165BKz8NBdnFcH96JCrLyhEnAZqrtfevkcOhR2/4r9uEyIgbagwftqQj+0R81xHk0UZybEGyIahH0Tz+HRZgjbbYQpczZ7CQGkjKvrh/cAv49x4A41gT4OK3KElKAEoKgbICVJeX1K5r2fWtusew7WxDQ0tbBz6zl8HQWBdmnj4IX78M9sPGwTooEGl//YX0X79qdD92ud9z6N0Pm0oPw79zNI6798GaPh/h59XfqpQtcr9nElGu+wH31o8+qi+T+3fc8X/PLJsB+yO8V6RNy7UToggXo9ZihlPOeaOjxIyHSA2lo8SItaImtty8BuZ2NihOCYFd+gUUpmagsqQYNaUl0DfUlTYOrYoyoLIMRpam8Ht2DMwsTVGQmIzC8DAUxEZL9WAcOoZGKAl8FqUOgI9PNbTzq1Wy0jyG2VERaHOuBB1iloOOBYGbWM/IayD4l6u3o5PaFGEigjpN7YRIVRYDH3Qe6UiI1GxNbAHSspmhYebIxMwcZTZATkk2qjI6oSTPBM7aSTAvjKgVO6soQw1F4ypp93KYuTggaNQoaNdUoTAlHfk3Q1XqqRV2zzUxRKHdcXQw7YCq0vo6O2asCNpFgEbbck5iKQWPZXBCjPrzHjGbKrYO5H0lwGkKcCRLQq7vMjOcpAOL90RTEIfgmHMWa2gZ1SUjRcFK0TM3hqGjOfISgmCcHwuD3CiU5+ahplzV5rS9TXCbgc8aAAAgAElEQVQLBA4agNLcAhRnpCPv+qX6OlU64/czrMZdhyPVHnAx14N2Sb3iNuu+mZUW1ykzSWRriKUqDOqQcSAq5nM9M4MtJ97EAFFTFJzpTIuq7ryPmspTGMThfRcz6XwGyBYQyycYmOMeo8xKsXQPgnlaNrJjEiVBM8nmrAfleq8sl9a8Tk0F3AYOhHuH1ihISkFRQhwK7oRJe5I0lOzO/7XsPwqGriYouV/SwM/IEuBcxewzg1ZcB8pz4vEMAPIalOtLCX4JHuVYPPwO1yHXfGOHpr2dgRfeD3GvYxCHJUSizgSDiKL6uhorRUsHxuk1MDDQRXVZuQTaJSdQsdYpKldVu8/oGxvAe8QI2DjaojAlDYX3bqMg6h6qFcrFgt0V98K671PQcbFEeVmZpGVAh1UZsDObys/F55L0ZwbfxPXEPYl7q8gik94vTdzbue+Jgl+K+7Zp0yYpC6y81/HeM+suAnauB4J1gi9raxsEtO8POzsPOGmVo7qsDOUlpdCpqYEWaqCNGqCiAlXltXbnOpdqn/kuVdrbTeysEDB6FAyMDFCYlIL8W9dQFB9bt7c80PqqqYFBmwFItQgCHC4BMVUwMTGW1rXIXtLEWtMUpOXv853WFOBINouo9s7zMSDIFm0sU1Ae3MMZPBNF2Bj88/b2Q1FhFcqKyqFdowXt6hoYGxiiuqISVRUV9XbnOq2oQGUp13qpZHfuK9L7VLJ97TvV0ssNQaNHoLKwCEUZmci/fhGlGRmNtrviHcDrMHFxg3nfx1FaXqBWWtDQ8y0noMrzMUjKZ6d5/DsswNIGuW43ZOTwfaTMPuIeM3feAkRGRSM1LRUG+obQ1zeAvoE+OnbsglvXbqK8pALadDOqtaR/zU1MUJxfIDFDdBR7TFUVasorUFlWWru/SCD//h5z/72qq6cFz6FD4ejriaLkVBTF3EP+vXBUlZaqrncNe7zyGld5/yodTzbopcqxMHcsRqLtLvR174+oc3dV3qmagrS8u/Tn+U5rHo/GAs2A/dHYVTrrPwXYmY0QqW8iYFdchqe3N+xtHXA96TYKdItRGtEfHvHbkBmdhpriIlSXFMDc1QHBkybBUKsa5SXlKAy/oQrYjYxQ4v8sSh1rAbtWXpVabda/FbCLImcNAXa5Wk5mD5iRE8Fpu3YdcC7rCsoSW8MhJw4V966hsiAPVSW0eSFqSorg2L4N/IYPga6uDkpz85EfJgB22j3gWeSaGKDQ7oQsYCclX4z+0nEimP9fAuxc72RnWIQ4Q+9kAvIz8lBVXIKqkmJU37d57b8F8B7yFHz790Z5UTFKMjJVAbvS82/cZThSHQBXc31oldQGrzg0BZYaAuwEDiK7hk4bQcd/ArA35NDL6Wcwm01qvRjcYTabdHKCY2o2VFt5wjErC4WpWaigvUtLUF1crGT3IlQVF0GrohhBkybC0ccdFaXlKE6MRz4BuyCAqLCxBNjdTFGi1AqLYJpgXQ6wc62L3SW4JxFQ/jcCdmY36dCLOghygJ3PMo//448j0M/Rga62NrRqqiWwUllSWrvOS0skW1bXrfci1JQUwNDcBC0mT4aZiT4qy6vUAbuG9511n8H/asDOTC8BonIQXBNgZ0CN7YeYZQ/p1gEOdu1hp1UJrYpq6GprqQH2GgZJSktRIdmbewz/o735/4XSfzaBvgh47lkY6GijrLC4FrAnxDXauzBo3f9fA9gZjKVGALP6yoPPIWnyixcvVvmc5R/tOnRBcnwmyovLoCUBdsDYwEAKKJHVoF1TGyThvwyecI9hkK/W7srrne/UQrj26QH/wU+iprIKxdk5yL92EaUyytmNuREE7GZ9H0d5RaFa6VAzYG+MJf+dxzYGsPMKGfhjQI1sIiMjYzg4OsPN0wuDnhiKOzdvo7SorBaw31/vEmAvuA/Y76/3mopKKRhbWVyEypISpfVOH6bWh9RBFYKnvQ5rGwtUVVTXA/b7ug3/hLUVgN3CsRgJ9wF75NlwlQw7ExgMQomsqmbA/k/cgYbP0QzYH6GN/5OUeMVlMIpOUHnuZii+y/4eTjFz4X/ze+TuXigdQkp861VbkPvXUWg5+iDz0H64vkhKvD3iv92DzFN/gBS/hF67URxESrwVMsOSH4oSz0wZwc2/jRLfmBprZkFuFUfh10txCIzoDvsj41TqRNn/1ee1OSiOjkB2+F1U5Gbep8TrIXbbalVKvE8mElxrKfF5/0cp8ZpErB6UEl+73rXg2t4PCV9HIH6hfG2m19iXYNamG/SMjJC0fxd0XYM0UuKt3/4Jl33vYYCLH8qzasXrOBpLidfU//y/mRLfUI01n1tmFnR09WDu7YX8r08jeuX0BnfOkA82oTA+AY5dOuPexyth0WuoRko8hbncln8Jq2ArpD8gJV6uTaQcg+Y/TYmnMCSDHiIlviFWlXKtOo2qoMQz825dYoKrE4ZLdGEFA0qT4fXMzNB67afI+esILNr1QOzOjx6YEh+0/isYtnbVSInnnCiMKIoxacq2EBTTsROFSTn3R0GJp7AXaeNiSUdDlPjVa9dBq7ceHFInwv3Uh8g89uN9GnzjKPHmvn5osWgV8q/+hZJSHRTdPAePl2ZAx7SJlHj/rih3/qZJlHhS3sl2kGOZ/dOUeD5bZDaIlHiye+T6wZPF0z64B+I+XILCmCgZGrxg97/xzVyfGAznZ15ERX4e0v74ETXGtv8oJT468qaUdFEezZT4R+gw/5ecujGUeE6ZJQ8MxpLtFtSuFQpbl8A2djJcSnOg/ctslGVmypZ81FLla8tBHoQS32b9DmSFXoRz336IWP8+7EiJDwxE2tlHR4lf3WcDfl71rcqdoT/EQDO7UYijmRL/aBdxM2B/hPb9T4rOKS6D2Rk6VkePncBvpX+gLK4zAqOsYHrwdYl+3fajL5F8/CiyDu9H6zXbcWXGS1LkulZ0bvZ90bnzuGQwHTUBP+G5Tl1x+f+Q6BzpvcqZOU0q5qTxE8SI/co19VMmLVTHwQTbL++FV9QS+IZOQuIPtb1/GbUMWbEZkRuXQ8dAH7ZPPIub819TE53LOX8Sf+ItZLt8BWuvaPTR6oX8vPqm4P/LonOa1LddQnyRfCYXOaunIO+equCLffee8Jo4G7eXzYHT4GdRlJGFpH1bNYvODVmH+DaH0Fe/1wOLzmmqsZYDlP9p0TkGRc6dUxWMbFxABNIzoCw6Z+Jtj6KDSYh7V14jg+vd65U3YNm2I24ufB2tV29D7KfrkRl68b7o3GuwbtkC+bH1onNSj+RGis49aI31f1p0jgJ31CARKfgNaQQwICInOkfdB6MiY4RPq1V+b3BoaaH12s9QEB+PuK0r0XH717gxf+qDic55esFz8WYUmBRKreTkuhk0JDpHirmoRaGJicRreBSic+wxzvZZYueVhkTn5r29AHq9jOFUNAYOFw8jeeObjfYGKDrXZt1niPlqJ8pi78Jv1mJcmjymXnTuxYkwsGm66Fznzp0kPYrGiM5xPcm1evynRef47mRARBSdU9YIUDYoS/ge7/cMbs0Yj8xLFxpta+UvSKJz81ciYu27sPQPhJZrC0RvePefEZ0bOhbt1n6Ak8cOqYlVUlBr//79alT5ZtG5h7qd/1VfbozoHCfO4BQDhRQo9g8MxiXfS3COng+bOEv4Hh+MwvjGM21Eg3CtaxuaIHzpTHT67DuEr5iPvLvhgujcTWQe2PnwonPF78PY6yZ+sxiEtb024qc1tS1aFYMsE5bW0E7iaBade7RLuRmwP0L7/ifbuilfBumtdFyul9zF8fTjCIhdB4+7u+DsawIdIxPcWTRFovh123cQd5bPV2vr5vbCqzBq2R5xVec1tnVj9kQUFPq/1taN4kt8OSsP5bZuyp+zxnnAwEFYcvw9lN96Gl5xyTD4dYZEcWq/ZR8S/vgDCZ+tldq6hazaimtvvqLS1s2q/2i4Dh8OLfdg3Cz/A67GjqiMKUBlpWpbN4pWiTXsTWnrJgcoeT3/rW3dFMwRsZbTx78F7qXXoOaTlUj88au6W8K2bi2WfoTozauQduqY1OPYaeQruDbjxbpjlNu66Ult3VxRY3MZ5tmGKMyvF4lqqK0b2yqRYq48/o1t3QjkCdb+rq2bvp0pqmKNkLNuZt2+oXztTr0fg/ursxH+wRzkhd+B/6wlKM0vRvyO1XWH1bd1C0JpWjpK74bBZNRYZESHqrR1Y/28WArE54/14KKw5H97WzdNrTwJ5ClUJZazKIQh9bWsELFgOlJPnWjwTeU17R3YtGmDsLcmSeC+864fEbP9Q6SfOyN9T2rr1rU3PF59E0ZuLkgX2rq5zF6CtJyYf21bN/ZnZ+mGmNHX1NaNKvHLV6xERZsamJQOhNulRBRubVz/YCrBh3y4EwWx8Yhc9ZbU1q391r24uWhGXd9jAxsbWPW539bN8n5bt6Oa27oVDNqOSO8kOFrGIOzHS41u66ZJxZxr4FG0dZMLiPAZZfBETuxv/jvv449nnkbG6WNN9rzY1q3txl2I/GIXUn/6EpaBBO8rcHnSaKGt24twHNC/aW3dZo3Hnt071XR6mtu6Nfm2/Wu+2Ji2brwoMufIGqIAZMcuPVAQWIiMu21Rc60NOt8ciqwrlx/q2l1Hj4fzU8/g1sKpUlu3Vms/Q/qfR5D6a716+z/a1u3MQoycfRZfV4zB2u4f4cd1qirxTAgyGdDc1u2hbmuTvtwM2Jtktgf7EoXJRAE2fpO1rHSOxV69jEBTwVnsV07lYdY+isI+dAKZzREVn6m+TUri7btR2Ju2F5lJ9hhsNAW+ZqG4s3AqCqIjpQtoveELpJ87i5RvtqmCUls7WPZ9Bk5Pj4JNS1fcC7+h8ne2paOwkkj7pBo4awhFQKmp1zDVbym+J9cKhdfGjHJTBhVyRXEnnkeTc8x5sM2VKALITBPV4MVzkVpIYCMez/t3o+AuzsVEwyxiMtyjNsO5pR209fRxZ8EkVLBuSVcX3b85jDvL5yEr9JLK5Zl6ecNy0EtwGNAfhs6GSIyNUvk7laMJEEWxOAJKBofEeVLEkIwC5a4DPCEzLaT6KavlK36INiJboLGDddkiuFKcg/PgPVEWCWP9uYLCzHZNisHngkBNoZCt+JyUXCqTim3RdPX1YRXkjLSfkpD1EdtYJcLE1Q3tPtmLuENHEL+5th2RiTt7936CsLcmqillW4W0hs2oKbDv0RU5eukoTqlvpaepLR3nQ20JUQySxzNgJooYMtPLNa0QiRTty5c+gz6NHQR6ctk0OhCcx2+//aZySgbaOA+5lozMiooBETJKWBqiaItmYWWL5EoLWPyyH1FbVqqcmy1mAhZ/iKhPNiD98AHpbwyUuL40A6ETVIVotLS1QSfD6eVZcOneARkFSUiPr1eIZxkN/xOvTVOfcNa7s+xGbGOnLBIp2rapnSh4Hk17e0Pz4D0R+5XL9bnn+RlAIfDJLShD+ne/4c6KtzUuDfuBI+D58mTcWz63LojiN3c5KsoqEbuxvr0kT6Bnbg7rnoPhOvZl2LcKQGroTWjlZ8CwUwiS4qOlFnh8TsV3EGmQfE5FoVFNImeagoicA+8Jf6cpg8BcfO/wPKw7ZdcV8bl74403pE4JYmcNth0jg6HCQwdppVZoFe2Dys9fblTdue9bq2HdqiXCZr+CkrTaNpBdv/kD0ds2IO24apcQY2dXWD4+Bq5Dh0Lb3AR5YeHI/nk3cq5dRHlO7X7j2KsPLvrvRV63T+FRoo3wP29IrcJYhiCuGwYi2OtcZHJs3rxZoqrKCbmyXzpLNho7KMBF+8oN9iTnPERmA4EtRQBFEcttn+7EobnLkfTpisZOQzqe5TMh63YhLyYOkcvekMpE9K2s0W7LXtxZPBN5EeEq52Xg1mrYBDj3642y0lLkXL6G/EN7ahXkKe4lM4I3f4vHJgyVdA6U37UUXvzqq6+kdoDK707uI6tWrdKowM/gBd8LzePfYQGWKMmBUZY9jhkzRnomlQf3OgZYWZJjY2uHmq66KM8PQcIv4/FC1UhkHP2pyRdu360HPGcsRsz6xci4cFY6j9uYCTBt1VnyKZWHjqEhbLo9BreXp8GmTSDSrt5B2u8HUXj+YF0A8e8mYjztW7z/w0g8OW8f/tL+AO8FL8P3n6gC9hdffFF6LkTfh+em5o1YIvN3v9n89we3QDNgf3BbNfpIOj1iv2OehICIgFp0IkgtpLK36HTyWKpIizXgPJYOnxwIYL0YQfWdzChEIBLdSvsjZfUcpJ+ub33l+vwUWHXqgbA35OmtBD6Oz02DUZt2gC2kHsmkwTHzTKVMBheUBx9W9n8V6Z2a+imzNQ2BHCnqhGwVFVXQ09MBuyKTckPnvCmD2WM5h4XtKKjaLyodM6vMLKkYXGF7M25M4uek/dCZFp0oitE91m8ANp3diqhIU3Q0eAIBphG4u2gq8u7eqbuU1pv2IvPKVSTtUm3VozjAtnMX2L3yDsq8vKBbGoWy0hLp/nP+4r3mb1LMR+ybzPnxc7HmlKCBLxcF1V+0O3u0E9Q1ZRBkywUBWL9LQTPRedPU/ozzppMtqq8zmECAKrbO8QlsgWvJZTA/chLJO5ehxfLt0NLVwe15r9aq9VOZ2sgIXb85jIgV8+uyjuI12nbsDMeXZ8MwwBMFxekoLS2WgBPLTFijpjwYYebzKj7DfLb5udgHmUE0Pq+KZ1jZ7rr3n6mm2JyMC009xvmc8qWqfE8YFOBzJ3ZLYACCgRXxc86JgSICeQWTwNzHAQVni5CzmVn029K0zf380Wr950g6cQoxH9aDSzMfXwR9sAW3354s6zToGhnDf8Jk6D45ATqGmcjJzpCAIe819y9RYJFiN3yGxd7z/JxBI7lnm8+wAlAo293J0VF6FpoyNO3tDMxw3xDbamkqpeGa4H4iCviQgq7oXmGWp4/YlXPVwAjnbd+1O/wWrUXk1o+R9ks9w4TteTwnzcGl8cMlNXlxUMvEfuiLMOrUC7at3ZAYd086hGuAQUFxD2dQk7YV91V+znshtigVn2Flu7cKCWlSBxDOjwBRrrc7g2d89nbs2KFyqay1JFgS258xWMjn+kLMVdy1i0bgpcUIvDoRKX8+WObXcdRkuI1+FtEr3lLJoPm9vRrVWjqIWjFbdlmZefvC8qmXYNa1C4ycLFAenY6Mo4dQePYgatqNRUaPqbDpfAg5f6bjxrXL2Lt3rwQERRYPqeik4iqXd/HZ/vzzz8Ee7YpRXQNo84UKgGUDDJY0ZfCccmKZ7LXO4DXXjPJgYIV7huizvPPOO0g+E46wqc/+bbs8cZ46BgbwWbAO5r4+uPP2JCnbqBjdvjuGqF3bkfabKn1X8XeW3TAoaxQSiBodLSAxA+kH9iEv9BRK09PqzmPm4wf3ZVsQ2MUHrGVWHj4+PpIivtipgD4Yy52UVfEVduc9IchvHv8eC9CvW7FCPaDEvZ1dEchUUR7cd9jCkAEeLS1ttBrZETFlhbC+tQDBRZ8hY9OUJl28das2aLn2U0R+tQ/JX9T3POda9nlrBW7MeKGOpan8A/qWlrDqNQT2z4yBaZAbssOTUBoWhoKjX9fS5TW0qeQ7IWPID/j2bBf4vT4fecahmGQ6EQe++15l/nwu+L5iMkvcZ8aOHSsxDprHo7FAM2B/NHaVzspMgKY+tHLZL9ZN04EUs2J0OOgAyWUwmQWmAyOCITp8/I0rV69J4jdRH3+DpG3vq1wt+5i6zlqGg0vehnPEVZW/VWrrItHGFZ3GzofWgAGwNo3GXyevo0bbQGo1E5+QCBsLE7QJdIW2thYUfeH3fP29BLiNDPVw5koU+nQOwojhQyRAGRGXDmd7S6Rk5KF1oAdatmqH82dP425sGjycrXHldgKMDPXRyt8FQ54aJPWZbcqgzeWyMMx+cXMV63o1BUoIylg/KDojvB+KVnti2z5mBb0CA/HjrQMILG6D+NXvIP3oLyqX4TzuDVh364lf35kDz4xYNbvnDp0Gl4GrcM9mPVzMDFF0Rw86VYaoqChDekamit05Pwo/HTx8AqVlFbgdlYIurb3QIsBXalm1a++PdTb397CHsZklWgYF4PN9P8HX3U5SWj9/PabO7k8PHyo5sk0ZzG7JtUNhFo6fi9kgTYESgi+CTDGbx/vBLLAcQHVu6Y20OAPYxN2Alr0r7r07HTk3VZkhbbbuR9qNWzi3/3NZu3O993rqGdxwWQa34BSkxP0BQxMLZGakI7+gUMXuzFTdiYiRggeKtU679+zWWQpkHTh0UsXuLm5eMDLUxc+HTqnZvWtbPwwfNrQpJpfYE+J+oTiRJvE7BkrolIg9wRlYIVtHbBPH7CodT0WAytbeGcmVhjA8ch4xq6ZJZR4tVtcCpVtzxqMkrd4B1jMzR9fvjyFsxWJcvXlbxe7cY3Lb94Rzj/kobGsKPdcrKL6kjYzsfPj5+OD2nXBYWxjX7TE8P/e734+cQG5Orordhz31pLReTl8MU7E795ikxDj8demmmt2HDOiKHt27NcnumvZ2BjQJEsV+8LSfgiGi/IPM2vFz3kPlNmo8hoCdv1OjZYKYVWuR9MMXKnMlM6TFym1IPXsBUctnqjhizCx6L92EQx+8C4cbtZkZxVDs7U9MmgKnUUMQGR6G63cTUVGtAxsba0THxKqsdQZzyHr57POvpGCK8np/5aUXpPfSrcgkFbv37N0Pp08ex+2oZDW7j39uCAID/Jtk9y1btoDaMOIgaCIFe9GiRSp/YpCTNdYEisqD+wh7um/a/AmsBzhAJ2EgzP/4Bvn7VJXN5SZp3/8p+M57D9HbtyF1/3aVQ+z7D4HTuNfw68LZcEtQzfYq7M4937JFS1gMn4jr7LxgqIeynEIUF1ZA28kZ5n6RyDqRAi9PDym4tuDdZVKLOeLMzGJddGjpjqmv1QLHvFIdCZCbGVTBzcMHEye8jJnzlsBUv7avc3aJHnS0amBhWIlPtmxuUutInodt8EQfg59z7fLdv3v3bhU7MFjI4LD4OYP3zsYeSFwxB9nXVIOgf7cgXF59G85Dn0LsB3ORcUFVm8N30XpU6xrg+ObVGvd22p3irzbPTcelwgJoGRogLyEdBbGxMI4Lg+v1M7Dv9QQ6f7oNEbevYOfufSDwzi/VgbVxJbjHMImwYcvnMNKrRkmlNsz0q9CrT394ebhi0/Yv1ezu62Yl2b15/HsswKTAm2/K61mwlIbgXHx3UmOCrB1+7t+nJS6YnIfx0U/R2+YutHcMQ2VRvYjtg1iCgaPg1duRH5+Ie+9MQYVSu1NjZxe03vI1bi2bgxvxaWrvVPoxXOtGjk4w6zcK0Z4ByNepgl6NrtTq0zAyDG43TqJSSRclz9gC1q1a45T1F0iuOInKQZ/i8aB+MLygh/Oht1TW+5Kly/HJlk24F5eutt7fmjEBAwb0e5BLbD6mCRZoBuxNMNqDfoVZBxHsKb7LTAZpqWJrIk3ZaEVduljrSMBGICP3O8zKtu3QGed2/4a7CyehPKdewIzzoBha8Jav8fvyxbD+6w81p674mcmw6fE6/HpmID8yC7GJaZg1bYL0W6To84G1szZFeHQazCyspO+T3l5SWi6BxrSsApiYmqNX17aIiQyXjre2MEFZeSU6tQtGdFIuUJ6HuOQs2NuYITE1F/6e9rgdlYrnRg1DcIDXg5pa5TiyGkRKJw+gqi2dYLmACMGNmKWmM02HiRQp8T4RbDLjIMeg4D3x8W+Jw++uQ/yGBWrXwKyY65wPcPCduXC8rUqLdxj+PK56Posi30L8UbEQiZnJeMt7FeaPfhWH/zgktaxStru9o7N0L5iBKSgsgaerLSorqzD0iT4wMtDBb0fO1Nnc2d4CBeV6aBXojsMnzsHFwRJ6ujqIiE1XsvtwBAd4NsnuBNLii4wnYnaZjo7IHGFwg38Ts9QMQLAMhCIu4iADgMBf7O9sYGgEmwAnmBTaIOzdBUj7bZ/ad10mzIVNz174Zf6b8EipLQtRDDrT5UPGoNRmJkp8jeHc+k84Frrhse5t62jZDIZk5hahqqpayhDGREcjr6Cobq1z3b84ZjhSk+JwLvS2it2r9a1gbayFS9fD1ewen1aIYYMHIMjPo9F253qQy4rzRJoCIizdIDgUs9HMvrEWXDlyzvOQxcEMJinEilZ1th7uSE4GTM6dgbYFX/bBUpAk62qo2jW03fEjMu7ew5nPt6g4FwZunojvMx1OfUci1HQJ+hj3Q8adXDw/6ilpPXN+ymsdWjpwcXFFVHSUyh5TVl6F1155DhfOncbdmFQVu5tYu6EgKxFR8Wlqds8t1kLfXl2aZPeG9nZNARFN2WiWEpFNItKKSfEn4Dx77jz0cnQQt/otZF+tBTlm3j4IWr4dVZUVuDNvIoqT6ssJ+HdSh9vs/hW/b9wI68OqzwLXesnjT6PvtFnILktGQVEJktJyMW3Si1KZFgM2ynY3MjGT1gCFlZT3dj19Qzz1eC/cuXVdZW8PCfJGVmENygszpL1d3GeqdS3Qvk2LJtmdmWVRuVuxRkk9JmVVebAvMHuxMysm7uFUlv/00x3Qa2mKW6na6JvTBUZHFzaoF2DbqQtaLN+ClHOXEbVsmhqt2qplK3i8txFHPngXdldUs87KgJ1zLNUzQFnbrugyajyq/dwRmxSBuJw8QL8IV09GoF2HTlJgKjLyHiqrtWBjXImySi20adcBQb6u+PXA98gv05UAuYl+FbxbdET3Di3wyY49MNKthpZWDQrLdSSnmsetW/0+WgZ6N3qP4RcYCBEDrvxcU0CE+yMZAMy0Kw/6JIvfX4NDL01E2s8Pnnl2eHo82i9djKurP0LKl+vV36mDx8BhzEv4ffFcuEbfVNvbFSCGfyg3NkdZpz7o9fJkZJrUoKgoD1nJZbDJy0W8ljYMnG0Qeumi9C6rqNKCiX412ORzzvSJ0lo//OcF6GvXgCER2rn7Y0NQU5aLwyfOqtnd2MoV89QjS4wAACAASURBVOe+0aS13qQb1fylh7YA/TplloryCVlWQgan6Muw9IZ7JzPP3v4BuO53Hb5Zs1F9yw/d48Yj+djhB54Xgbb/0i3QtTBH5DtT1ZhV2np66LL/KCK+/wmXD/2oEbAr9phC35Zo0+cpWPbqhYyqLMSn5sPLwAwXjhxDfvw9lOfmSD3hq1r0RnrVfFgG/IkrWuuwcNhsHP30J+SXoG69uzpYod+gUfh691YUV+iorfc+A59Bv95dm9f7A9/txh3YDNgbZ69GHd2QM806cDpAIr2X2Ug6FiLgZBaYwFwEN5wQM2Px8fFqtePM9piWWyL+/ZnIvRWmNneK5rT+4hecOPA7zPesVfm71aCxiGz1DAIfc4ITypCZmYbknEo42FoiOTEBZRWVyMkrRscQDwn0MQDBjUxRR11cWi45gS+MHoqffj+FsDtRMDTQQ+dWnrh6JwGBAX7IyMpBXHwSdHW0UVRSjrSsfFiYGcHAwBBuri6YO2UMLMwbX/vVkDPNTBGpemKPbAJ2gm8xi0DQw5pOkYLLLDSzfQxeiNRtS2s7aCUUIXzeBBW6ncLAbAMU8um3+OW9JbD+s7bWF1pa8Jr8NiKtRuNGzVVEeu/AxeSzGOg+DH3KR8LKQB+52VkqdreztZFUvBUBCIXNfdzsoGfmgGMnz0k9bRU2J3vBxdUDEZHRqK6qQOtAF5wJjZIYD7S7oYEhXB/C7tQjEEEgL42ZFoIVkZ6vqEuXo9LzftDmYraXwJ/PCCn9yrXv/B1XD18k/3QSMSvko+P2vfvDfe4y/LZgtlrW0faxAbji/hwsfEYg328n+jkFIyOpAvnZaSgvK1Wxe4C/n0RvV9RXK+zeOsgLZVom+P3wSZW1bmJsCC8fP1y4GAoDfV01u1uYW8DOzrbJ651OgqinQHuQYcE9Q6wDJz2bWXOxvIL6AXyOGbgSs710wFkqoUz1t/FyRXGWJTxcjHBtyQdI+16VjqxY765T3oVVl844uKg+62gV0gqV/d5CtK0jIp1+RA+3YHgUuuB6RBI6tA3Bnds3JcaI8h5DqjkZBYo1prD7Yz3a4158Nk6dvaxidwd7W5iaWeB62G3pc3G9EzyYm5k1ye4N7e2a6sBpQwJfsZSGa4nAR6TR036sjySlv6xKF2knryL6g1kAauDzzkYYebohZumbyLx4Xva9FLLzAC6FhsFws2rW2ap7L2Q/+TJCOrigID8PFZVViE8vhZe7E2JjotX2drK7uDcq6PAKu48YOgDH/7qGK9fDVezu4+WBotJyREbFytrdzc0dBvp6TbI75yHXTogGeP/99yXVcpGZw1ZcDEKJQW0yIbgGzt0ORVULLRRfHgHfy9uQ9129QKKyYZkV91i0DqiqQtQ7U1EYG61mdyMHR7TY/h2O7tgJq192NggcCeDDXQJgWVMBj0nLkKRlgfycqyjPiZRAOAXdSIdXlCdUVWtJWd0Na5Zi9YYdiIhJlLLrPFZHG+jZqy/CIyKRkpwoZdSzivSk4/V0qmFuboEO7ds1yea8iK+//lpNV4Sfcw9nFn3cuHFqe8bWrVtBETxxDyelNjM0HjEr56AwRt2GolHt+zwO97lLUXj7LiKXTJXNVtq0bQ+PZZtweOki2F48/kB2t9KqgnVwexh17oW40lzYGFfBzycQnTuFSFlUDoXNrUx18NxLU7H+422orqyAjVEFckp1Jbs/PWIUfvn1EEpLCtXszqC0n69vk+3eKIez+eB/zAKsU5dL+vD9yD1DrHFnQo2su7Vr18LHLxB67QxxK7UE+T8vwWj3LcjbMeOB5sbWnO5z18Cqc1vEr16K9GOqGjSKk/h9sB06lhY4tGReg4BdsceYlRTA0tkJ+p0HItfKGpYW5ZKv52bkjJzLoSi7cBApbZZi44+t0H7cJkTYf43RWlNw/OAZidmjWO/BQQGwsXPE8T9PSWtf3Ge6desOQwP95vX+QHe78Qc1A/bG26xR3yDAFl9YPAGzsGxvI9Z4cTNgBkzOeWP2nceLWUzW1hDgMGPPbKti2Nl4If7DtUg/KF/XxeMCV38BfXsb3Jz4jNQT0sI/ELo9x0O/x3DkWSUj0EJHanHFgAEzcAd//wMVlZXQ1tKCgYGeRH+nOByvRZlqTjClra2DESNq62iV69+qq2vQq09fhF2/WueM8LOC4lJYmBqBlGgK8z3MYBZGpKvzfMzcMqggZrPoTJPqztppFSfN0lIqLSCIEQEitQVoE9qdDrximNfYIqkByp++hQXaffEbEk+fQ+KHc+HxzCjkuw1BWMkAlAZdwnndJbiedQVdXXpifsd30MoqAKdOnUE1bapkd74gGHhQABjOr6q6Bq4uzqBAijJ1nPbV0tHF0CGD8cvPP9fNVdnuBBpNrXHkCRm40CSqxuAGFZzF4IYmAUOuNwJOOeYI50lwqfzsmJlbQTe1HBELJ6M4KVF26VgEtUDnPb/g8jvzkX2wvreoU9/+SGu9CNmWHZDv/j06eRvj8aBeSE1Nw/UbYWp257Uwmq4AMAq7twppKc1LGZDRvjZ29uCLTjnYpmx3Prt8hps6SGMXBSx5LuoYcM8QBfz4NwauGGATBQwZDOGzyuCLOMhOYUBL2ZFx8/JH6sHziH5/utRPVm7YDxiO4MUrcHnKcyhPjIdVz8HI9h+P0gBPnMcadHEPREh1IKoqyyUF+FNnzkp7pvJaZ4CMWX4GpxTihQq79+ndCwkJCSrBT9rXzz9ACpAoB9sUdrexNJOo6w8zNO3tDCpx/xKp2yzxYXBVZPJwDmSO8D6KDCruSVwfBJyW9q6IO3ACZP54DeuPK++tQcpXGzVegvuslbDq0A7h056TlOMNbO3w/9g7D/A6inMNf+qyrGLJttx7NzYGGzCmhZ4QSug1lACB0AmEEEpoAQIECC2QQg+QCwQMhJIA4dI7uBt3427Lli1bxeq6z7u+A8er2XKkc6Qj+8x99PiGszs7++3MP//3t+l97FnqeuhPVFa/VnV11c69jBdjyOv/3hJBEYk7KUS8S6QsMbgffdSRzjtGziHw3W3i7lq+bMlW+e4G95HDBjv1SVrTKHrkrp9Cf4S+23KGmbfURKBQW2QjlJsibVdfc61ydyvSkg05mrhmH2U8d3qzdJrcAYM05Ib71VCQp5K7rlXJRx9YX4Fiirs8/W+VLVup+b9uXnW+ITVNaY1bwtVN6/qza/Tsml/qs0876fd/XqmazHc0Jm+E6mo3OwXdIlvfvv101VW/cfJlTaM+QGNTip5+6klddOGF3+2p/Pf6hhRlpDU5hdKIFmtpY780JNbdB/+dPdAdmUOhOiJl3OkhyJhDf3yCZlxxkVa99brvkLpO2FW9LrtFTfUNWnbLpdo0b+ujO83NTqHRJ17RnMef1FqLB96Ge216phpTUpTTrbsGHvszVQ/eQTvsN9IxcEbWlCDld//993MiliKPsgLfAQMG6aILzxee18jvYXCn5kJLi+e29Fsl72s9Ashod90LekXnu/TSS4VHPbKxP0HiieQh/W/4D8bos9xPNWT+Peq2brMGf3qG1k+b6jswZEffC29S/9OP1NInXtKy+7Y2tEbe3POUizTgpFM0/cKTtdllOPSb66lNTeo5ZoxTzyFt1BBN3GucHnvySY0aMFZlTUM1bXqBpgw6WaO6jdSo5cP13rvfG7+Y7z8/5xdavHCB/vvft5vN94m77tysvkPrv0Syh0gEkoQ9zvOBiuluEsgjzXnptvA+CAFKv7t6OoIfb4zNy44ggaQZ7zHexhUv/q++vd1e/IZwvBn9xmr/vffVqOOP1aq/3K7pDT01eLdjlD5uhDp1n6Oi6kzNX7hIPYqLdcShW7zJbmMBOdAUpYKsu7185AmiFLnz+Am7JQyUUHNb4/25rzUNMkfUgbuhgIKjuxo234O8dPIxI8k390PyIQk2EoNxBUUc8kPr1XuYFt99v9a8uLWiZcZhcD/ynAvUb9RQzf1ojT5dk6W8oSNU1vNV/Wfj3VpZsVy75x+kn444VSfufpg+eP+9ZgV/IHjmnHi3YQKvHN/CbZSgaA5eUrdiZcYGiWtp/rrpg+O23KGn/IYHkeZOIeB7ME/cRbe4FvKGMcJNYvgNpR9l0BxDlp9arFW3X+l5vi+4zx6+m0648ho1LlqsBTecr4q9f6ieffbQ0sITVFXYVQ1DX9Lwwgzt0nusehcXWutPgCEEx7YGvQxqXiHPvAceV9ZPaxoeOMLVbQ1jE0UTieaJbHwPiJ/7GDeiIQwxdp8uYCrP48Ekt7pT51xlrUvRwuvOV8WSxdbng/v88fvrtJt/p/oZszVneS+VFGapqutGrSt+SRPyd1Hh2m6qrd6sY486zEl1sHk2vNYgY4LQEr3hXresZ+a620jEQDEGcZ5sa5qXbEcmkttLSkfkyQg8ixolYIeBIbIRCUHxOZuhltB41jTkOLdLdyf9aOHkd7QQb2NVZbNXMDJmn9EjtNvVV2vhLVdpXkZXjTvgEA0+aFfNmb4lDYf0ji4FBTr+mCOcEE/3HOEavOusQXcKCp5DjGpG7plBYCQy9T3cBk6uwTCAsbo17b777rOuP4yN559/frP8UyLN8FZDLN1F80444QTHWPb1nFma1W2mem/4mQYuXCm9ep3KZm8xWmV3665BV/9RuRNHasVjL2jlw/YK5wb3Hx11gnqPH6f5l5+h+XVp6r1h5VYknXxRQlDzN2/SkFNO1wcpl+qep3fSGedt0Iqdz1NZ0zL95ccP65HbHmxWzO/00093jBV4vCMb64N16xV9gOePOd+aRs6/bS3xvZGLGD8iG9/j4osvFoXp3O3aa6/X2ilLNPfqc52TPWytYOQo9bvyTjV2ydG6++9QiavyvrkH3GcO2knHX/YbdWqo08wLTnDq7/jh7n5e73OvU9Ex+2rE0IHNis1xLRXvMRa6HSzUTWC9UxzQ3ZhXRBkkW8dDAN2RyBxbI5Xm/vvvbxbRet555zlykr1owKDBqttFWrWip9a/cZGO7f2Ayh+/1BcISHjxaSdKy9Zp3lU/V/XaEuv1zPeFux+ik2+6RqtuvFpr3n272XyPlDFeD+WUluKfXqKK4jy9//5/1NDYoFFjd1FTnxqNGrqDHrnx/mZ7KtE05PfbUh+JBmIvTrb4IZAk7PHD1ukZj4WpyO1+lJfyxkYHsXLnyXA/nhgURVtRNe6D/EydPlNVc0s17+rmR1hFbnIlBcXKGjNBP/nDrVo9o1EzNq1Stz7S8gWzVFNep9raGhV26aKc3HztOrq3NpZtnQNPX3g7UfzdVbT5DQUCsm47/oyiYjYCDPnlnMfWNlINvIgpyjQeAXeBNIgV5Md9TB5eLsaEl8l2XByWd/LjFy1ZoVWvf6rFt1zi6W1E2IJ7zsEnaNfTTtWiVdn6YukL2tj9C3351Vyl1WdqWOEIjeu+s7pldNfOw7qpvq55lWevNAjGwRyBOLsrtnMP5M1GgImQ4PfWNuaB+/hB+kR5gSDZ1gLYcp/bQAWZh1jactnxpOE1g7SXlm3WvLv/qtXP3O85fIN797Mu19ixI1U+o1TvLO6koiGTtKjsX1LefPXoVKgBRX1UXlGlUQMKlJ2ZvlV/eM+Z05AU94aFMgyBcUcEoMzhyeW9bYYMFF3mT2sbxi+3t5w+6Z+aAG5FE6KLYQxPgtvgg+GPdWiTP3xHoiLIZy1ZUqHVd1ylko+3nPVta+BeNmCkik67UAUD9ta8mun6Zs2/lFdTpO6pPZRZk6q09DTlFxTpiAPGa9HCLdXKIxtGSjDiHd1zGvnDf3Mbgnhn7vEyZLDWqZ/QmuYn24l+QVa4T5iA6GIwtBmomM8QIpvBgrHyPp9/8ZUqFm7UtzdepE0L5nlijoxJHzJSP7r5VnWua9TS2io11mzU19PnanPNlkgI0gEg/3vtPEgla1Y164uoI7637dhAUlwwCLoND+w/zB33eeimc9YPc681jfWHwmxreEApAOWW4eSkmnz2yPsI6eaeRx99TDXFTcoemqv1n/5YA2e/pqonL3FOlxhw+e3q8sOJqp6yWAt++wvVbizzxT1r0sGadNYpKr/tWk2Zt1QFVRu0tNsA4dGlQdZZFz/qnafSsdfqT6/uo7xcaY8LHtfrVdfp1xOu1ZDK/nryice3eg7GEKrgX3755c2IPB4/DCu2+Y4x6O67v68y3VLsebatf+YIRhSMCe71SbE/5rrbwMk8ufSKq/XWr27Siodvbzakzn37a/jv/qS6fgXa+NK7WvbA1kdpRd5gZHv+sT/XqPFjVX7zLzWnot4T9/HfTlVm/fdHunWbsJv6XHe3dthlkEO83XoDBQ3POussXXYZ6ShbN96bP7dxnKuQr+6K4i3FPnlf2yPA93YbKhkFdTLQPzivPbIhL4l8MQaq4QeM1WfZn6jf3NvUZW2uxs049buj2dxvU/yjY1X8i4tVu6lS6+66eks1d4/GfK8YubPyTj5HxStWauMD1+rbbgMESW9MTd1KxrjnurvLtCyOgttPvU47XxvypNde+ad+8YtznX0LHTKysT+hIxI1YmusA/bqZIsfAknCHj9sv+vZrxgXCpx7M4MA461DUXJbtCFWeBfZOG0VuVHsqtdKi264SOu+/P7YBfdrsujX5XXX6J6F2njWlVq4cbm6ZOdpt5F91VC/hSCiDLMAUb5sObIQKjzMkF93zitEgXvdx1vRL6F57lBKMz7CLwmJb22DHLkFjumTkDy8FO68dOO1dudacx9KNt/Kpmjz+4477qzlXy7S/GvOVcWSrSu/R76LwX2nXXdXxQkn6eXpb2hq2ecq7T9LA4sG6oThp+qggQdqVJeh+vLLz5t56OgLQkWUgg1bPC28uzuPk7NiI/Pd3fjGIg2BPtng3FX4zbMwJKBUulNE/LzWeOTw1NkMQqyT3SbtrWlPv6EF15+v+s1Vvpsc833SGRdp+fAReue9cqXklmnXg7urT3GDdsgbqdGDhzhGA3eOsemUDQuDjhtbfscTyX93eymJfGEdeGEC+UWhbm0jJN5NUugTQsJ6Y067w4jBFg+w7X34VhgFMQ66G4Rsp10m6b9X3qqVjzRXtt3zvbSgh358x4P6rHa1pi+ap+65RTpyzz1UVrraIc0QUYx3bnJLP3hHUXwh5G7liegEokI4ncAdDcC7IR9t5Jd+iWrg/tY2L9lOnQDWlM1jTuQIssc9VzC2MY+I/rF5MPC0ZzR10ZzfXqaSd72LGBkZMyw3TRvPuU6L1y53csn32HmwUy+EBgnB041st6VsYTAmOoPxu48UYxzIIOS+uzF+5qL7mDeuo0/mVWsbeyLeXlvjSCHSyiDtkY1nU2EeL5h7TyV6AUJ/z30PKH/nIk2tWKKDs69WzSuPq1u3GvU/7ShVLS7VousvUNk3swJlzLhh/bXup+drzjufqfbr9zRm2azmYfDjd9GGvW/Xn/+9nwiSOPTit/R62jmaWDxJ1+9+o353dfNwWKIBiDxzvxvzhv/GkWPu2iwMlvVPSHxrG0a/yJDwyP4wIiA33Sd4YLg69thjrV5r3qdrp35a/+T9WvTsU991l1VYpAFX3a1Bh++tNR/P1Jwrz1b1urWBuE849Fit2X03zXruBdV/O9+Ku7uT3gcerMKTLlLuiK6q2VzZDFuupxo/UZLutYwewfGA7pMJzDPApLVRPK39Zsn7W44AIfG29CX0QHLcWW/uRn0G1gH6ec9efdR57wItWF+tTZNv1Q+Hv6PuU27RmoijlbmfIsRdL7pRA3ccoq9/e6PWTN7aUOd+hmME7zVQ+95wl6YvXqoZzz+l9M0Voea7FxqZBV3UZZ/D1OOYkzX+8D118QXnNjO+UQUfndOWpogBjhoiyRZfBJKEPb74Or2jELvJoXksiiMeA/e5t3jLUfpsobeQWpQmG3ns23eIyp79H826137Gt3luk1Ica1znrl01/J6ntTHj+9x3CBTWQsIHUZTdZJw+UBIIf8EL5w4zxKuIIs1vbqIPgWHsNrJJv605f939KREsNsURsgt5tRF6FAyUfxuJ4Tc8CDby2CWzl1bd/huVfPKR74wyuHcfu6MG3/lXfdX0qZ5Z+KRGF47V4UN+oiN3Okzz5sy2Fm+jY8gdRhK+vZuk+IXJexXPM4ONheeLvpgrNu8+v0EQCCe3fXsvwgthw5sHeXR7MTKzO6kTZ1TfeKE2LWjumY38EAb33kecorG/u1azqmcrvT5F+fWdNbr/CBV37+rMdXcRSNMHBAd83SHA/M56YU7bfoOcMZdspIh3Y/1Dqlvb6N8mK+gX8ooRxy2D/MLfWSOQK9aQO/Khe4/e2jx1meb99heq27Qx1HwfdvUflbfvWG2urFBNzWaHVCHH8FSAu/sZplOMJJAQW44+ximMEG7vOpEQxkjhDkmnX+Qqec2xaH6ynW+PIcItH1H4eHcb4SVKg9B4akG45e6AISO16NHJWv4n/6PHzFzPzMzQ2L+8qA2dvj9SCAMJsp39BtxsRl/mI7Id45otkov3wjjk9q5jmKKYoe29wBqSzzqKReNMcXc6B/1imIS84hF1GxoIX8bYxNFM7gahZfzPPv+CcnbN1/zKDTo4+xoVZW6pabLpb39WyX+2Po/Y3YfBvcvAgep184PKqanV9HOoDbN1bYfig36ibwdfpftf3M3xrB9xwed6M+tsDeoyVNfvfYNefOgfzQxlRIwQck7+rFuWQBoxSLiJvBkfijbksrWNdYihxKYPIGMg5jzL3UhFINLOZrzi7PJlU1ZozQM3qOTTj5Waman+l96qqnEDVNiQq7V3XqX10/1zf7+T7Xvspd4336HSf72rpXdtfYa67d3Jex9wxe3qtscYdSvq7Bz95z5rnj2fM9bd1e7pj/8GkbfVbWENEQ7f2miS1n6z5P0tR8DrPHZ6hJgzp90GKmQ3a5TUHHTF4buN0VfFX6l/2U+Vv/IoDdn0tKqf+D6VqXDHcep52W0qTS9X7rwSLb71UjXV14faU8fe87Tqe3RVyU2/VNms5jVnon3zzMIi9blxstJ26aJn/rg1+SaC8JprrnGKYNoaa58aIskWXwSShD2++Dq9U6jJnTNtHssCR6jbzmtHYSa82EYiIGAoppGeu8KuxVq6bqTmvLVeO+W8pY0v3qXK5c3zuN2vPO7hl5U/podTOA5lEpILOfJSovFMofAyNlsoGISS8ENb7r67YFfkWEyRLIhMLBreNduxa/QNEeA93eHb5ox1lE63EQVDBF4njBCR4fyDho3RvPse08rH/I0kke/EWZpD7/67Ng0sV+/CPtqp/zitWrHE8TK6FU1znyEazCXbmbiMDS+k+51sBbsix4KiSnpGrBqE3JYPS/8Ycpizbi8X0Roo+7a6BniVeDc20EiSUJjTRyv/cINK3nsr9NAJfxx5/yPKzU+TU0U8N9dRjgnxthUppGOMZxgbwN1NAFmD5HBClt1eUVvBrsiBQvIxHMWioRzgabYRVEgM6xUvuzuvGAIFBu6QecaELEDO8N4mFYS12bk6T0t/d6k2zpkdeug9TzhPY6+9WOkpDQIXGvPU5sE3ndpkXORagCTYwuTd58a7B0maBaQ1Fs1PtmOcxMBmM+Tw3ZEjtqgIvgmyGNzN90K2Ny7coLlX/Vw1petCD33YLX9Tr4N3VmFBvjMWZBoy22ZAolOiVlhrvJfNaImhAfJoM7ohQ5A/ixfb6xnQL4aaWDRqjdjyhukbso4hwp3nzVolNBzCbjMAkZsJKX3zrXc07KAdVFdSq8pVmzQ4f4LKn/ujSt95aauz7r3eIyM3TyPu/x81de6kZVf/4rvUBYpbbhpyvD4vP0xPPt9LB/2wQSMP/ERf5l+rphTp2j2u05L3F+idiIJO5hmEvCNTn3/++a0ey55Efj7eLZtxhbX/wAMPxMQoyIP/8Ic/WHUVfsOIwndx6zJ43yDy5LO79zYMg7+94Xf65u2vteS2K5Sz+4+Vfsg+ysrI1qbHn9Sal7Y+391v7hSMGKkeNz2gTtW1mnX+caqvbF7fwdyf06ef+l98k7J2Hardxo91cv9tNW/IV+bkAXeYPBF3hExDzGwNoh9ZiC4Wcz7ZR9sigGHqwgsvtKZBYgA7+eSTrd8Yzzv3cpwk++W4wydqSe4Spc09RvPfmaSThz2sdQ9eIApZDvrtPZpdvkwT+u+gmRefqsqlS0K/ZL+LblLfUw7Xoju8ayaF7kxS4bGXqf6UM1W68g1NfXfr6Fwik9CXbQVsecb1118fM2NsNGPe3q5NEvY2+uJYYW0FWyC25qgxd340ShvEEqXUpoizKeChInQewdDUK0vTllZr4bsTtXxuL/1o7JfqtuZVdV73udZ89IEaqjdb33bgr+/SHpedqrWrVzqKnBdh5GaUe5RNjAi2cFPIH4o01nS3JR4FFhLgdTY9pIh7Y9WomA/utuJHYEseq/tMdp4NQYNM2YwsKH28P8YMjAHde/ZR07dlmn7hSarbtCn00FPTMzTu0Zc17AdjVFKyxskrt3kuTId4pnkuZNeWgw4BQZG2eVn9zoyn/1gUgop8ca9iXAZbsLflxeIxhTRPndrco2LWAl41FFPH2/jIC1r+4I2hMXfmb/+BGnn/M+q3Q7GzAdmwjOwQgsK8hKDYcsQJp4Uc2AxDGNwwwLg9kab/WOPuVT+A5zHXzdnmbsDwmELibAo/axaCy/tjkOhaMEDL77pNJW9Ojgp3Ctzs9fQLqq/b6HicbQanyA7BBsOgV9QAdQ+IGHBjy/okagGZaQsPhuDgPYYoxKp5yXb69zJQ4uklqoR7bXUxMHoyRtYJciG/oUhlT9+vZa/+/zGQIQff6/TLdeAd12htyQpHttueZbrCK8h+g9z08l6DHbLdvRaQ+6QAeNUMMCeZhBx24GXIGDy37kKD3IisJHQbJdNtdOX98JhCtmz7Ap4zMJr80svKyMzSiJ0v0M1XDdDBB1RoQt6b6rn6n1r2+r+sB9vseAAAIABJREFUxf4iBz3qrqc0/Mh99eWV1yq1dqNKu/1Qy7N+oKdfH6GlS1I0ac9GjTnuRX2dfaea1KSb9rpVG6au0Ssvv9Ts3ckbZb7bvNdHH320s1dBym2NOWYL3Q0E2OMC5qstQoHLwZZUPluIONENGGvuvffeZj2jE1zx66u1+Kv52lBfq8efekBnHflzlTz9sNZEnOYRNGZC6Uf96TmlFuRq0RVnf1c00H1fzx/sp+4nXaDUYd21x8QJuuOOO6wRbWeccYZz0oatcBwFyYhAsekPPC9ZgCvoa3WM34la8YoYYp6zL7ojXdGRmVMY0nAydOterN77DtL7Ve9o6PLfacnHY3T80EfUc0wvzapcrq79dlXF3AKlffmIGj55WptXN68nYkOrxyHHa++/3qcZz7yhuVf+rFWAchpD1bF3qXCv9Xr7sX+povx7XZaoLFIAMF7Y6vBgvPLKa2/VoJI3N0MgSdjbaFL4FUHDAg3ZspEYwggJd7N5aRg6lj4UuylTp2l93mbd8PlvNLb7TupVepKq5k3SN1MKNHH4Yg3IW6C82oXKKP1GjctniCOuNkyfpsw+Q1U0cW/l77uLli/xDytGEULxR1G25ZuiLKMgIKRsRAjDBNZ3L2Ud4hBLRRp8IH+2sfIb+WWQGFu6ArnFKPw2IoZiy701NXX6eEa9NkyrUsanD6rq3b+rrqI89Iwact2flLPXSG0qK/W9BwMC8wArv80zhucd4ogy5SYp4Il3laJnNoMAv4N7rJvX2eA8B+UTD5f7XTA+mfPXbd4O1gHzb8XK1Vry7nSVPPOAVr/3v1ENPa1Tjsb8+QWVdQr+TqwtiAbeZxv5Y92iLLuP72JAEF3CyLwia1jvhPrHskGimAO2SAFDECOPRTPPZix4P21RJVzDhg3u38xbpNWv/1df/+o8NTVsfTRV0HvkDRmqQX94VBvrV/teigzBEEloqs3rz838zjvaag1gnOI3mweVe1lL1OaIZfOT7cwBFBp36CTPJ5WCeeKlEOJph8wgM1MzOql+5WZVff6Bljx+v3NMW5jWY58DNPq++7Vonn/IJGsLXDGA2DzrPAs5AVG2RUVgnMLoY1u33BuLIn/u93388cedqBJb4+g35hKF0twNDzy/kdNua3iCibT6eP7X2rRpH/3l1qFasjhF3bo36Zgfl2inHtOUt/Z91U79tzavWa2qlSuaddP/optUu+do5Wws1BOTd9a3qwo0fVqq9v5BowZOnK60Ua/q+ZW365BBR+iCiRdq3n9n6e23mtclYP5wHB3nmbujMfCeEyZPjrXNKMg7okgzh2LZ8KaZo0Td/aLYY2SzzXfegT3MRnLRLS795a8055uZeuyxx5yIgJNPPleN85Zq/XMPqWzWLNVushf7ixzDDn96Thu6pqnh2Ve1ZvJjWw0vNSND/U88U5n7HKruO/bT4AG9nIJxNv2A1DzCfDEKuVPPkDGkUNiK0PFAoiZ512Tr+Agg61hftoYhmxSRyCMWzXXIUuQM92IAHDBwsDIndNaXNZ9p8JKbtMuwvjrqkM565eXJKi2u1+zPh6pfykQVbPhI/Ta/rZJXHrfKlchxFO00Xvm/uVmdqqVvrzzTkUUtaZ379Vfns/+isnFZWvbxm1qyeOFW3WCcQvbYajtxIUQ+VilmLRn/9nRPkrC34df2yqk2ypAtL5DfII9YtmyeR35HCcW7MX3GTC0oW6L3St/VF+s+EbldOzeep+olY1Q6d5TKStPVp2+TMOCNG1urWTNTVVCYoYKiJp182kxtWOVN2BFOKO548bzCnVH68TzbCDDjYxP2qh4ca++6+awQLVs+KL+Thw95xBvnjipgrBAqQqW9QjyH7DRK777fRXde10cHHtyg3YvfU/GayVr9+nOqXutdJMeMredJF2jQJWdo5VJ7CCnWfcgFnkZwd3uL6AdrLuOEvNgqmiJI+V621AXuj7WX17wbCqStyji/E5qLAcLmjcOTzjyC8NsKb4FF79EDtWBRrr59p1w9N7ytytfvjSqUbPjvH1H6uD6qrLBHREBewJ05QVqHu/Ix7wBRJyLAVjwRwwM1ATDA2Yo1cj8Gllgr0vSLgcmr0Bqh4qRH2E5PgDzyh6JtI/x9+vbX6vIheumJDE3Me1V50x50ck7Dtoz8fI164DltzPaOQgEPcEdJ8iKNKMMYqGxGEuYOhjTWszsXlXGa3Ox45JX6yXaUf6I5bMQA5Z/54mWcIKeda5widavXqHvPflr35Xytf/s1lX34hioCQigLRo7WwDv+prLq5qTSfDuic1iPyBhblAXXgSsGP5uRxK/eCvfGsmZA5HwjUgNCZTOmISfM8Uu2uUTuNEYdrxDPM889R8+Xv6APl72nvTMu1+oPD9Ty2f00bUqqCoukPn0bteeY5erZaakKs0qVlVKhlMZa1TekKqVzkXqO7KXSjG9UnTpev796tHbauVFFo6er84hP9XbFH5WRmqHjh52sQwcfotefftlKgHkHQrWRkzZZCVEgao+QbVvjNBSK6cW6EeUFtrbG+oTIEsLvJrqkwnA82kMPPWTVAzAwEA0AeccYw3oZMWqMDvzBodo8d7FqZn6uNW+9rNoNGzyL0PW75BaVjemjXqWNmvebM50hpqSladgZP1faDnspZ9wIFRVnq76mxvGA2qIeMcSCO3PEZpggLYB541VIlNQKdLZk2zYQ8POyE8WDofzpp59u9rLUlmDPNcabQUOGKXXHTHUt6q7sRZmq3FSqs84+R2/OeVcfrHtPm1cNUv3cg9U1dZi6VX6u/lkzlT7zeadOzKb581S7cet6MQXDR6r/7/+sTfWVqrrrZq39/JOoAc8sKFCXM+/S+kk7qWzFvzX742lb9UHUDHKEyCNbgxdQ+yHZ2gaBJGFvG5ydp0CcvIqtodSYs8ndnlDC3SFeKH1exevwBLJ4CPlctHiJFlQt0Yzy6ZpdPkvzSmdrdNcdVV86QMVpI5XdWKTamlR1zklTVWOZuhalaHyvHmpa29xrY4ogQTwgA7bQfENAUPRthBxFmg0MpcPr/nh4182n9SsMRcgzoXq2CAbjnYa0uckw4ZLrulfosdl/1c71F2r2v/bXnCmF2nuvzdqlx+fqkzpVdZ89p6bGRpV+9YXzr7sV77GXht/7kJYt/marn/iGRomGfHmRFxQcyC1KNoYFd0ORRvnxSkGIl3fdjANPi1euLHMdI5QtggHDEAYevNO2MHT6H7PjeC2rrtHXX6YpZ36p8te8o7pP/xEqr7r3mVeo35nHaPXKres7QGbBHYMC4/Iy1BijAu/nLijG2LCus4ZtYcX8zjeBxMWjoSRjoPJaZ4Roo4TaPHLID+SILSogpWcnLShN0YcvjVBO9SD1TJujnbt+JH34V5VO2VKYK6iNvudpNQwpULWrmj/PRNGHoIC7rVAkfWNQYE4zn91kgN+J7mEdeBUOjGXRM/e7+sl2PKHIN5thkH5IdeF9vE4nwLDIt2F+8u0wivbqN1jlC0pVMXeeGpbN1savP1ZDVZWqVq9Uek6uajduUFpmlvCejLz1Qa2o3Prcd54LgQJ3ng3uXqlQRJrwbNveZYyehMnbDIrm/TBwxaM999xz+uc//2ntmj2T9AhbwTCiSlA08fbayPBOx+yuVza9qM9WfqS0lDTt1GOCxtdfrA0zd9P6hUP06Uepqvr/Qykg8LW1UpeCJlVWYQiW8vObdO6lrysjI001ud30wYa/a1rlm6qoLddRQ47XYSMOV5fyfD14/z2eqVB4qyGtNkKOIk04vNdZ0ch2vOsYH+PR8Prbiq/yLKIbmBe2CAYMcij/EGIvXYYoK0LoIcTkxGO47dGrt44+7hStn7dGmVVVqlu9SqnV5apcvEjpnTJVs7lO6YXF6r//3lrQsEndGwtUcu9vlTd2N2WP30sNvYvVpUe29pg00alt4OUtRPYzLyBgtn2TvGUw9TpWEOOal0c2Ht8h2Wf8EfDzsiPb77zzTqc2hm0+n3POOU60jjFw9e7bX5275mr+tC31X6jPc9ppp6t4UF9Nnv6SqjKrNX9umnpU7qeV00arKFfKKF+ovt3KlN9ps+orypWelaGq6nQ1ZBVq2Ph6fbthhnrOWqkVf70lKjDSO3dW0SnXqWK/H6uq8T198fL7W6UJIfMZN+vYS5ehTgP6TrK1DQJJwt42OH/3FDYhmyeUC1DKWNw2zyTKLIodiqHXRkcfEGwsxHiYli1fodWVpVpRu1Kra1bpm7LZSklP0ex1MzS4yzDNXT9bAwuGKKVROnHQT5Wxakt1Sp5FKB7hmihzKME2YmJeCm8h+YA2LxFFjFCkUTS9wiXj5V0346OSNCTGVhGZayBPKAU2azpkHtwxRLhJDmcYL89crS82fqG5JQs1uvICLf5gomZ+UaguXZo0qLhEu41apm4565RZs1b1ZSXqlJel8tIqZXbvo7z+/ZQ7IEVVTWu+E96QVfDgOxNx4aUE840YN6kHtvkACcLz7hXmzAPj5V03uDNnvFI5TPoExhAbqTcnFUASvPJuC4u6qmv/HvqWYwznZyhnda2yNixU6pKPlbbic1WvXePUFaivqlJTU6Oa6htEnmOv/Q5Qv8uu0KL5W8KE+cbgjocXBRncveoJcC24E6ZsI72sGcbuFebM8yjOFc/zSpnHkUURI0WcSZ+AYNlILwo14fMYIyLzgzt1ztWGnAota1yh9fNHasrLe6owt5Py6hZrfO/p6rz8beXUr9D6qV97hvINvPw2dfvJ3lq7eou3F7yRVyj34O6VusK1hJVjXGNctjXBuPFU24p3cj9yFSLAvItX85PtfukTyEjmFITZi7QzZsgE/XA9RjrkaVZ2jvoNGq6V81corbZBdeWVTrpCanq6UjLSpewsZXfL1er/j54iygDZDu58X2S7137EMyHrRCSwDm354uRXI6tsBkMz5nh6GzHo4WX3SrOiKBiGQcKs3Y01D3l8+eWXmxW7zM3L18DxQ1XVs1r/WPqElm7aclTnqK5jNDH3JHUu30l1JQO0ZFYv5WcWaO7cFPXr16RFC1M0eEiTMjpV67CjF2rGZ0+odHyZviz7TMcPPVkT++2ufil99Nw/nrIWHOQZzGPGhWy3jRtjAzmyKNNeRVUhvEcddVS8proT7eeXtwqhxxBiC41nPhAdcPvtt3uOnzmHZ4+ceOYeRsRIw/XQEaM0ZMhw55QI9oGqykrV1ddq8YJ5WrxogU466WwVZeSqtrOUn9dJu44f59Re4Jgur2K6rAlwnzx5stWIAxmHgHGN177MXIx1yk3cPmKy49AI+HnZkd140yGvtug0QsZxutnqN5gBULPkiJ8cqabcNH206BNVplTrs9Ufqm/DAapZ302q6q7y9TnKz85RWUWdevdp0qbaUo3sXaQVs57SD0fuqennHBU6VS2zS6EKj79SFXv9SA35X+iLyR9pM+dLRjSq3bNWbNEDXEbUFUcXJlvbIZAk7G2HtfMkv6rC/I5XgEViI4+ESLPZQWD8FDujKKGY4UXBY7W+rEzlmyrUmJKitZtKlJGVrZqaKnXJKVJaI3pdlvJyc5zqxGyWKHEohF6bG89A+YOso/h7hbrzO94+r3B++omnd918XhRKLyshyjw5mJBHW7g/mPAeeLvdpALSvjm9RgsbFmtWxQwtWD9Po+vOUP3KHbR61gitWNRZJSUpysiQON2nuEeTStelqGvXJm3eLN1672rtNHTLMVd41sEdD6GXZ5n3gYwzHiy/tvBnNgfICWP18hLH27tucMeI42WoMWHlXsYUDBd42m1HB0Yu2y6FRSru11uV6Q2aOr1eqbVdtPbbehXUblZjZZUyU6rVxA1pWWrKzFGnbjkaumumBvXYQtaZv5BvSJBf4T/WE5EBXoX/TGEtvyJk9BHvs3kx1jEGL48pUQQQd6/8ejBnzrtz99PS0tWlZ7EW1C7SwooVql6ykxZ9MkaZtb20aEGK9pu4SjnVS9S183plp1QovalGDfUNSs3JU43y1H1od004pFids9IcgwWykLnh5RE335hcbsgq88CmKGMkwfPOO9vSF+gHhQiyG88WJNu31L2oscpCSDiyHYXPKzzejJ0IDYwdYEJIL9FPFIojNBxySh8YUCloimEPgwjrHaLHHEXGMN+9ol/McxgvfTDfbWQdYoIBxG+8sawM7/Xt8Jb+/e9/t/7M+KheTq67jTyyHlFMmVt46yMb8rjfgEHKG9lFG/I36N+rXnWM3KYNKhii/KwCDckbJ2o09c3rrzWVq9S9sJPmbPpSF4z8pbpV5qq8uEYjuw9X+fJyvfavyZ7pSfTLuiCcHHLKOdC2hucdog6xtDXkKmQaD1k8G/nfXkUhWY/gDoG1pWMhRwkdx3vnZdRl7BgPmUNEFDB3MUSylxvdhH2S+c48RW8xJ93wfMKRWQ/MX2SdV3oSz8EwBe7MI9sxbfQLphTc89J1IG7UP0i2bQ8BPy87b0uBQrzlXqSc0HnmL7/bUngMYkQ8/WDffbXzhF319dIpWlCyUCsqVqhzTr6mr5uiIUXDNX/9bA0rGKXVG1dqUt+91H1TvnLqCjT/8tNVvnBBIPi5AwYq75irtWHC7mrM+URTXvlUlRXfH/1JB0ceeaSje5HC4tWSleEDoY75BUnCHnNIgzvEC+SVK8gmi2eUDdlGdFDsCEFBEYFgenmNzSiw1kNKEBYIFMgp97LB0VDuIdQIEQwBeJqDKjhzH32Sw8sYvbx5RAzwTK9NnX7i7V03OKBwelVk5hqUYEgwudM2jy6KA7jzm+24upycXFVl1qgss1zzKubp49Xva2D+EJWu7qzeqeOUn9pTqQ05qqltUkZmkzY3blRdxjodNGoXjS7M0Lp1a635dO7ZBF5Y+lEavOYQEQGQNa/CW/QZb++6GTfzyaYom9/xmmJUAndb1WaUT3DHMGE7AisSn5SUVCdcsUefAdqkMik9XWXlDaqpTlFTU4qys1NUkJeijNQUZTdmqHrDJkeJ8zsVwfTPXIYgsXZtih/GNNat19nVph8MQ/EKU43EAiXZz6gHpuDtpXxCblEebOkg6RmZyi0u1NK6ZVpUvUgbVhYru2KEqlb30cKpfVSYl6V5c1M0aLC0aBFnYzdp48YU7TShVmefV6L02pWOIdArbD9SdiFjkFXg7nWmOvOd+QNptTXCFjFgITvj3fxkO4Y05ggGCq9oAtY2sprv4lfRnffgfZDDzCfkLISFechzIJsQGTBjj4iU7TbyHYkLeIE7xgCvsGcIER5qcPcykuCxbItwSfYwiKGX4YeIF/JI8UrbZCLGDDzxGO4gZLbIk779Bih3SIHquzZqevUUra9br3nrZ6t0s/cRe7/f848aUtZPM6ZP86wrEYk7BhKKWL3wwgt69dVXrVOV3/m+FJvzameeeaZz1GS8G8TZVhHePJfoCzyPGBhsaxPDIbhjLPE6oi/yHdgLkEnsgewZGKCY88gH5iA6DPsNRndjzPYyFkf2e8QRRzgEBeOBTR6yziAurG2iMbwaR+vF2ygY72+a7N8bAT8vO3dxigM6mVdNiRNOOMGJruPUAS+dOfLpGJyYT4OHDFXPXn0dh1p6RpbS0lJUU1uryopyrVtbom8XL1Z+UU8tv/l2lbzV/JSJyD677ba70n50lVaP6KP6hvf0zVvTVO06PQrDE7UvIOReXIB9DCNEsrUtAknC3rZ4O0/DS0R+lJfCykaEpx3LsJcXxOQ447n2O8s4Hq8HecGr5T4XO/JZEDFzhJuX1xLvDwIMZbMtGpu3nzcIRQBcscbbDCEowSjUfB+89bY0AbyQnfPyVar1Kk+r1Pq6DVpVvVKLNi5QVUOVOmfkqry2XON77KKKzZu0e++91X19brO8XjceKOJ4CVFQwN1WLId7UJAZp62wmOkzlud/h/luKMl+ZBtPHe/lZdjBQ4gHBKIB7mEItm1c4CJB3pvXE/B6D8gQuJscYzyk7obCiBcIRdGrejL3sCawWrdVw3Pll8qCjIHIeRl28PaBOxE64O4mZiiyXYt7aUXNClWkVYn/W1K5RL0zd9D8lSXqlzdQy8tWKjO7UU2Zm1RYkKpJBZNUtTS4wjmyA9whYV5hvxBbcGeu+x3PBxHCk9oWDdkO7rbjb3g+cxnc8aB6GdyQQ+COUhdkpIr1OzFHURTZVxYu3LpasHkWRJyoB/Ywr7XY1rIdzL3yihk3Hl3CsMmd9irAiZLKfvTkk09aT2yhn+KevZSd3Uk9RvZRZVqFmjpJ6+tKVUMMSXae1leuV8+cXlLtFo/7zDe+Uum6Et/PRKQaed/IhkcffdQzEozK5BhJ8Fx7NWQpxou2aoTL+pFY8uwx/kB4bfoOhnCqabOWwd0vLSbW7wTpB3cMIODupWsRAo8MpBCeV4tXgb9Yv3Oyv5YjgP5IlIWX7oVsN0e9kXpha0SK/OxnP3OcGF7EviUjHLXDWO1YW6DFt15ivT27e7Hy9z9ZFTscoapRKdqw7F3N/+T7aCFzE/sOof3ISS9dBn2d90QWJVvbIpAk7G2L93dP8zsKiItMYSryt7yqskMmUK5oLK4wnvHWvC4LlMJNWLFRor2UUpQ+lDoImF8EACGgeC3bsvkVoGMcjkVz8GBn7F6hS5AJcDd5734EMj09wyHwjRyDlZKitPR0NTU0qlNOrjZtXK+62hrV1dX6QmCMM3g0/CyzKEYof7bjAc0DUIywoMYzl9f2MozJj1Th8cco4VWUkT4NmQAH5rstXyxWc4mx4M3hW4O5l1GMCBbwNEUZvZ6Pcshm3ZaNtedlfGIcYcaOMcJEF1ArwYvE0V9mVrbzl5GTpbKaDcrIylJNzWZlpGYqO6WTUuoanfnuLjoXiQneTmQMhA/cvQwOyD5wh1j6hdTHs9Cc17ck5NyrgjT3mDWIocSLtENkTFV/p0L8ypVxnToY8cDKFIL0SslBrkMskY9eiisDbQ/Z7leAjjFh3Dn99NOdY9K8cu4hvOR/s57xdAcZw3Nz87ZENKSmqqiomzZtLFO34h5aumSRk1cd1DilhOPDmC+QX5tBkD4odob8Y+xe+y5pLijS/NuWjarpXrUjzNjZw8hZ99IHSIs78cQTnb2LCuxB0SWteT/2PgwJhx9+uFOAzotc8QwKFmKE8zp7nmswkkNykm3bR4BoEArMeTXWHkUHIeRehQ3Z48x6pmCmV1HgaNE888dnaN6lp6h24/fHH1IFvnCXPdW090UqH9Vf2d1mavbrX2rZ0i01OSIbOhjznXXqFVnF9clj3KL9MrG7PknYY4dl1D0FeR7xcKHkE5bqp5Ti7WYzZzNEoY61ckf/FH3CU47Hx89rh5KJsYGN14+scx2EqD0aQtdWMMyMhXBP8ESJsh0txnV4axk/BB8iCu5+Cmy074lSgeEA3DHEEBLuVeiGvlGQCXH2OkrNPJ8q4W0V0eB+Z6pk++XmE72AlRrcvaIySOlA+cNjiqcMhTooLSQa7MHG4M5cB3evsRAVAO54ZvwMKZAvFPP2aHiG/BQCSDsyBqOT3yZNVAlrgncBd2ojxNJgQmg3ocsQcXD387QhX8A9SC5ibCHNpT2aX+E/xgNp5x14Ty/yyHUYNJnvRDcgY8KE+EbzvqwjcId0eh0ravpD1iEbWZ9+sq49Zfs999zja7DEg37uuec6SrfffD/00EMdQse3oXhamBDWsLgj2yGoyASMO3io/SIpzj77bOcYybvuustX1lHdHONaezSOcvMrXkg4MIQA3L30B+Qpoengzl5BkTi/fTra90TGgDvpAkRkUIHeq0YPY+Gd0KUefvhhz0exPv0IXLRjTF6f+AhQO8LPO47eTjE20iueffZZzxfCOEg6BnON+W6rnRANGiccfZY23naV1k+b4pwOkr3jfkrb7URt6tdDKd1LtGbRl1ry9XxtNsdbRHRO1BdHKjKX/VLpWJtEpSRb+yCQJOztg/t3T/U7v5eLUGAJ6cQT41cdnmvxfkCu8U6xebLZ+BVa8Xp1Ql0ROigJKL0o/SjoQUWKCDvEM0nYuZenwIyzLXIb/T4tyoCfFZ9oAsZIuK2fkgzhQeEFewgMuIOTH7n2GheKHLjjjeVfjDQQUq/cXPpB2IM71wQVImyLAlB+mEOs33jjDWuuurmPUFvmHLj7kQKIPcQa3LkOowmKoC3/NGiJgyEkEOWLGhKsNXD38mTRH98H3CFmfuQSww5nsmNoaK/Gu9jqLpjxMEZTYAzc/QrvUXwJ3PlGKNPgjnywnXse9L6QVoM7hBTcIaW2WgamLwxYEEJkjJ88Ig+b0ynas/nlszMu5jC4I6P9inJyLXMT2Y53BtyR7V7H3wW9M14gI9uRG8h2P7JFfyiXGG3A3S+iqK3y1v3ekRBmr2Kb3Idh8KKLLnKU6X//+9+eXWHEYA6Rr4mcxxjKOvKLMvHqjD0ZDNlTMJARoYAXzm9PRy7hzUIOEe7vV3uA6uWQ0fZqzEWK93nVM2BcGEGoXP/AAw/4znd0Ht6FHHiM1cw59rYg/cP27vRFmC/rjH2aiCNO8PCL9kLGgDuGKT/CxfzAQNTWEQ3t9Y2Tz/0eAWpIeBVt5SoM/8gY5KtfvQmuZX5SY4XIJRxd7BukoEVrED/g4EM1cOkqrSgrVk2PIUoZ1U0pOUu1btlMLft6sdaX2uttEOGDboiM8TMeMz6/mhXJ+RF/BJKEPf4YBz6B0Bm/Akxs9oQ7sxniFQgq1oRSh0IGqUBw4CWGnBLiDaFBITcbKyGvEEWICt4zFF3uZ6OEALGxBXkw2RRRglA8g0gj11J4KxEallI/oQg5wSuAouBVYT7yPYwizL8oeBBJiDu4883AHaULgsTv4A6RA3cwx9gB7jwPBTpIYOMdY3yE+fsJWsaIoogy3d4tyOPL+Bgn7wXmXvmm5j3AEjID8QN3MGOTBHfmLbhDJiGBGKLAHZxRhsEd0khjroN7mOgUIivwNGJBD7oey3X9/BldAAAgAElEQVQiKHSksNhOFIicDxBhDFXImCDlmLkL7sgY3g8SB+5EUCBjMNiZauUotqRqIMfAHZkE7hARcA9jWOTbMSf4ZuDuZxBDpsXzSKto1hCkzCtKh37ABtkONuDuF4HC9bw/sp35jiw1sh38De5GttO3ke0YB5Dt5h4z14Oex33gzrcCdz9Clkiy/bTTTvPdJzE4UcANOYsHNcjgRJQD34m6ChguMNJhyAVH5DyyxvSBfGGOs39gfMXQwjfDS883xigWZNBFicfjBSnwI43MiUTJn0bGkPvq19iHiHDAcEvKQVADc+YfZAFZj7EEgxVyA50G3E2VeHQY5jiedGQTBJ1vQSQjuGNwCSq4SNQDFb8JgX/33Xd9h9eeEQ1BuCV/jz8CkNcgvYv6DESm/e1vfwusz4C8wAnA2mcvxtCO4ZH9kUgQZLzR/dlP2UuRuewFW44DHqZPplVpTulU5XZap4VfztWqhcu0scy7GCvRO/RFITw/BwnyjHdItvZFIEnY2xd/5+ksQq98l8jh4X3E+guR8cp9dL8OChtkMLKKMAsUZY7GZgeRRNmDWKJIsHD9FDP3mCAveIiCxsRzUS4SpbHZc9yPX4PgIUDBD9zD1gmAiIM7Cjb/P4oDfUE8II/gDqkBdwQxyoefJz1yjHxTFBj6x0Did/Qe97VVJf6w3zXI40s/KF54pJibKFx+R6FEPpfvxL0QDXMiArij7KGsRVbONiQzbBE78AZ3+mC+Bxmy2qoSf1jc/c4JN31AMMAdQx24Bym43Ae25hQKcEdxjjyJAlkSeRoFJJG57hfBEPlOjAmihOIS5InmPs5ubs+IBvf3IOTZL2qB6wk35x2RMUFKoOmfeQ3uyBhwh/RHynZwj5Tt4I5sDyKnpn/kOmNiHgSNKdFkO4ZBPFxBDXIGKeQ4r6Dj9ExfYI5MhRRirEIuMN/MySvIdbDGgA2hJ1IKw2OYtUQfFJdDcafImV/xUMZDWgXHoyVKw3tNNW2/BjGh8BbzFdyD6gSYvjB6YPxAHkDKkfP0AWbIZOQJuLMfIr/QR8KmkGB4JNQXEvTYY48F6jLtHdGQKN97ex8HhDxIfyBCBznDyQ/PP/98KMiQp+j6OGWYmxBzZLypPYQMRydiH0XWYcTCmFVRU6luXYq1tmS1b6QaY2K+E2HkPs7SNkDIenulUoYCbDu5KEnYE+RDo0iFyWHBuk+eGsoY4XQtCXmPxSvjoaBIEUQTz0EQeWEjJDQ40VrQsWNmvAhOcEc4gntLQq9j8e4o9hhuUAC9qmdHPscUL4zFs2PZBwQgTNQCni2szYSeg7tfuHQsxxfZF5sncx3PP5iHCYlti3O/W/K+QfUb6BMiyFxHQSZ6wy+8uCVjCHsPCgK4o6iAe5DXn37b6ti8sO9grnvttdcCZQbvC+7MN+a6X62QaJ8fzfUoiOAO2Ue2BxUAw0BDuHOitaBjx8x4MaxRaA6DEEWgwpK8WL8vYbHHHXecE3bPMWdBe2qikfXIuf7EE08EwoM3m0JzeLLxtoc1ygZ2HMUFOC44eo4/CtB5nW0f2SWFCxNxvkfx2slLY4gAhsGg9CSMVBSawxMOafcrShrDoTXrCm8/IfAQf/Lw/U61MTdzKgXG22RrfwSShL39v8F3I4CEE0IZpCBxA+FekBmIPuF5bUXc8SqwePGqEWIbFBJsxkrIfKI2FFM8A0EKEps74dAIPbwC4N5WSgbWVsg6FlVwD+ON5zvhLU3UFtZIhbGHuQ6BBHP+gtIFYvHOREWAIbhD0tnc/GozmGeieJtQ+1iMI9Z9gF8YTzVKBrjjxYL8BEXQxGqceM7Ane/NXA9ztBkeTvJeIbuJ2vDghiGDGAfBHY8h36qtiDtEHdz53uAedqzkBydqQ6aT0x4mMsqcx03oPyHbbWWowttFVAj7PoQxqFYNWOOhTkQDuJkHzNtrrrkmcFpgpCJ9hVoBeCDx+IXZ2wI7DriAOU7xOYg3BhJwD7POkuSltchvm/eTVkNxyqBGNA+FFXE8YMQNKhIc1F/Y39FbkRfwBootUsMpqBHNQopLIu+pQe+wrf2eJOwJ+EXD5JuaYaNgEZ4H6ST0jtCYsCGPYV8dZRglEg8jSqTJIwtzP6F9HeW8RsIP/arxm/c1RA7cCb/jHr8iNmFwsl0D6TO4o0yAe1D4u+kHot4RrKIo1BReDGP4IPTUFPhDmYZQhMUjmm8AcWHOYpwCc6IZwowPwwI564kUju313swnKiWHaURpgDtE2oSZBuU+h+k38hpSRYjaAXc86sYgFsYwwz3ImY7QwhpLeBcUJnDHOIqMYb4H1S+JFgNkGbgj21Eime9hiWpHkTFgQkGlMPMdPFBsIZDIdGQThaDCpoiFxR/M99xzT6ewGmuKKtFB9V9M35yznsiGWDNOjCQ333xzKCKMjIFAY3TDsAXuYYyKYfE21xE5wkkB4E59AHAPM9/ZE8hZJhQ/2ZII2BBgzlJQMUwjOoYIE3Qa5iFFKMMYFcP0ba7BKIWMQSdhT8WggCEyTEuUuhhhxro9XZMk7An6tcPk+UYOHW8U5I78LhY+ITqQmZZYq1GeyZlhc2KjIuSR4jwojH4FlCLHg+KD56WjbXBB57S7SQZkAeULvAjZNbiHIXjuqYclk5QHgzsKNLijrIftD9yx4qIAdZQGKcPLEcajxzuxERlCTWgXuDPniTJpCaFhfuNNBndwIycNwxe4hzV+mQKAJo+1I2CPbAiq+h35HhB23hNDBrhA+sEdmRCGWLsxIfca3E2xRr4juIedB/TXHuest/bb8n5h86V5FvggY8AdLyy4I9vDymL3eJFV4I5s55tCTBlTUFhnZD/IduZCR2qEoobNIeW99tprL6eiOzVMkE/k8hNl05KjxpDLRGaRzkR/yBy8axgRwkausMdfcskljiGnozQikiho9dFHH4UaMsZOCAaEhvelWBwODHBvSRQh85toFVJNwB1DI+HI4B72GFZIDwUKTf5wqBdJXrRdIoD+yMkBQUUlDTjIBOQMx4+yl5ImSBoSEW0t2VORDeyJpOQx59lnWHtUng/bkvUZwiLV9tclCXvbYx76iSiwbFjR5EtDGFDEIB+QPyxrCA9TRdhUzTYFcAjzJmcVEmQqxXMPmxlKoSH/oQf9/womIfB4HDtiw8vkd0av7Z3AD9xRhMEdTE2FeKISUFwgOaZKPN/JVM42leL53yjh4I7yHK2xhWeDO0SoIzY8Kn5HpNneiZBKCA3vDhEBX5QyDBwGd7xjGD/wVJpTEUzFcrDiN3A3cz2sccSMJ9FTD/zmgqn+HSYcNLIf5ji48y+4m+KJREzQpzmJwl2dH9yRL3w3rkMJN7iHSTeIHANzHQ90R2y8M6HXQWk4ke/G/I2U7UTgQOAjZbs5iYL7MLwiUyCLyHZTKR65Au7IGL57NHUhkFUYBDuaIdbgiJfJ71xt21wCNzza1NJAwTZH67E/gyNynrmMgs03Mqd/cJ2pWM63IlIH4gnxDzqxwT0Ong9pTORUG791SAG9oAKv7vuZ6xAPjBykJaGrmArxyGtTNRv5zlxnnvOtwMgYubiHPYU0A8hQtMYWUhUoGJZsSQTCIoBMpUhbmBpDkX1CsPkjfJ0USOQLxlTjeGOvMPId/dKcisAebBx23INsgfSjT0XjwKAfTqbAsJVsiYlAkrAn5nf5blQoA+RwhgnVtr0KCxtSAnk21ZtNtXKuj6zgbJRuCE+Yirbu50GGIC9Y+NhAO3IjN5+NvqVhSigPBndTvdlUK0dBNhWcEagIYpSPoGqjXnjSLwIeQW+q/3dU7E0IektDrpnnpkI83wDlGUxQpCOr84M7xNyQnZbgxfcF945KGs07s9ZRaCEUYSMK3HhBwE2FeHCPrFZuqvNDyCE24M73jZagm2eijIM7SkpHbsj21tQGYF6b0z8iZbuRAUa2m9MozCkgLQ3vJmwe4tTRqwXjLSdXOkzRS9v8Yt2bCvEYq/jfyHhwR8agVCPTMaagbKNERxM1EvlMDCSEilMUrSNF79hwI28W3KMlzaYvCAURhKYyP/IGWQPuzGnmuamczb4N2YkmaiRyzES0gDupEcmWRCBaBNhHKWCJkaol+xxzmjlIxB/OCGQuMp59Fd2a/tlL2UMwXmEkYF1F49yLfCfOYT/88MM7XNRUtN+lo1+fJOwd5AuyINuyAFG0sBCKA1nv6Mqc+73JbwP3sCFO0eLWmushoYYworxsKw1PFeQR8t7SDSieWLBxQtLBvqMr0ZE4YbwwBpNovK7xxDqyb8gRuHeUmhhhcYFcgDvpL4nYzJnWHdWr7oUpYdEQyGijetriGyHbIYz8daT0piBsIC9gzl9LUzqCntGa35ExBvdkCHxrkEzeCwIY6sgbD3MCVHsgRuQOUSQdoSZGe+CTaM9MEvZE+yIB48HTjoIRbbh0vF4TLxdEfVtT5iLxgkCa6uQtsZbGA3u8XRBGwi631YYXHOLeGs9vLLExkQzgjmdnW23IFjAPm1sbbxy2lUiGIJyI6gH3lnoFg/qP9vdtJZIh6L0pPMZfohhM8HZBGjt65I4f7sgYSDu4J4JRFiMsRcDAfVveU4PWQvL3+CBAiDredtKgEqHhYIOoI2uSreMgkCTsHedbfTdSQkwNgSQspj0aeWIQ9Y5WeKg1WBHmaHBvTT+tuZeQQAjjtmwgceOD59cQ99Zg15p7wZy/bSmSIQgPPL/gHo8TEIKeze+EGRvct6VIhqB3xygL7mGLYgX1F+3vyHZw39YiGfxwwDhoPL/thTsnHUAYyZXfXhpGKoN7e72z8ah39BSb9sIv+dzwCFAADuLeXlE9yHaIOn/b054a/gsl9pVJwp7Y38d3dOTK4Y0xRZuiKWDUktem4ipeF/PXkj62hXvAGdzNX0vzfsNigSJhqpjzDbbX1pa4402PnOsd4ai2eM0LvGFmrre0pkPYsYEzuGOQ4t/t+QzYSBlDPnQ8W1K2b0EXGUNROP4oGhXv+Q4533HHHZ0/jgndXhtz3WDOv/H0uuNNB28KfPEvcibZkgi0JQKRcz3MsYKtGRt7qZnrzPftWZdpDY6JcG+SsCfCV4jRGKhYS4Eb8t1jpeCZo66o2NpRq4/HCF5rN+T6grnBPRaKBmQRT7opOJLMpWsOfTxwR5FjnoM7f+SRJtvWCOCJRL6Y+d6So2fcmEIWDe4Ulkq25ghQpM/gHisSmZTtwTONisucj85fLFJEiBqh8jknHFCNeVur+RKMaPAVFJAzmPNvS45zcz8FuQLe5q+jF2cNRjF5RUdBgAg2TiVirhM6H4tGyqSZ6xxrmGzbBgJJwr5tfMdmb0GoPKQdBdvrj5vIxUWJ4N/IP/4bm1xyY4tugpij3PxwJxTJhrv5DnjTky06BCKP0IvEnnVg/reZ3+75bo54SyrP0WHO1VTBBt9InCP/N4TeT8ZA1sE/2cIjAKGBxLgxj8Q9KdvD4xn2SkLl8YaxrxJ1Evmv+f+Z6+RAM69t/3KCSrJFhwCFuzAQ2nA338ELb/47xtftKXUvOnSTVycSAkRrcmKLTbaY/8Z4mddef5D1jnr8YyJ9i0QcS5KwJ+JXicGYUN7YzFpD2CGOHf14thhAGVUXScIeFVwxuzhJ2GMGZVQdtZawQ2q25QJ+UYEZ8mIKX7733nvfRTlERviY/5+uTKRIZNSI+f8pNpSM3AkJ+P9fRoQDRaNMdIkNd2pc2PDmW/Df99133+gemrzaOa6KXPeWEnZSyjgiK9miQwDi6DZMRf5vdEs/4sicT+IeHeaxIOyk1mzPqZPRId6xrk4S9o71vXxHa3JNCbGJVeEchC4bHuGTnHGdbFsjEI/Q7GRIfPAsA3dCg1GiUeY4f7e1jfnNXEexZr4nQ+KbIwpZNGdLI2diUb8Bb0Dk+cqt/Y7b4v0Uofvf//1fvfzyy3rttddi8oqHHnqofvKTn2i//fZziswlW3MEIOicHw7un332WashIornyCOP1GGHHeaQ92QKSHNIKao7a9YsJ0T4iy++iMmpCeSp77rrrk6Y8A477JB0RFhmMsVdwf2rr75ycI9Fel8S92CRgQ4D7mBOaHwsGgWhd9llF6dGw7Z82kQssOpIfSQJe0f6Wq6xoixDWowCHQvS4gcHZ5QigE0BtA4MXauG3pbFzxhosujcls8F7sx15jzeLYouxqtR7AxjFcSd+b49F2rBs2XkDMaReDaMJqZ2A9hjvNpeGwT93XffdQjjJ598ElcYJk2apIMOOsghkRD47bUx1w3unJ8c72rOhx9+uIM3f9vzWcjIF0gLf5CWeOoyyBhqCEDc+dueTlxxr2vqMoA5udMQ9Xi2JO7fo2vmOsXn5s2bF0/Ynf0U2WLm+/asy8QV6DboPEnY2wDkWD8ieaxbrBEN11/yWLdwOMX6quSxbrFGNFx/yWPdwuEU66v+/ve/64EHHtDnn38e665D9cfxYhdeeKFOPfXUUNdvCxchY/70pz85uLfXMYZHHXWUg/v++++/LUAa6h2Sx7qFginmF0HQOU6vvWQML2SOF9ueDCbJY91iPpW3qw6ThL2DfW7O6MXqT/h7IjS8v4TfbMtCl8JZ5vx1QoIToVFYhDBWcoC31UaOnDl/PRah163FCW+vORd8W867RraAeyyqYrcWc+7ndApw39ZD+wi7hjC+/fbbsYCt1X0ceOCBDoEkbH5bbg8++KCD+zfffJMQr3n66ac7uBPSuq02ZAyE8T//+U9MQq9bixMnhPzwhz8UZ7Jvy3vqwoULHdypgZEIjRQRQ9y35ZoaGEg4f50Um0RogwYNcnCnlkmydRwEkoS9g3wr8lwgjfybiA0BAHHf1iptUxUY3ClqlmiNHGtDZCh2tK00DCQQRpSLWOTRxRoXlDvII9hT8X9baXgZwRzsqRGQaI2UHHAfMGBAog2tVeMhBBvv7gsvvNCqfuJ18zHHHKMLLrhgmwuVf+qppxzcP/3003hB1+J+KfYKaQf34cOHt7ifRLsRgzeEkb/S0tJEG56QMZB2/rYlAkkKmcE9EWU7VfwPOeQQHXDAAQk3J1ozIE44ILXmv//9b2u6idu9hMpD3LfndJy4gRuHjpOEPQ6gxrJLiOLcuXOFZ70lDa8gHiryhyAabEL8N1P9nSOC8F7izYQcobTzzJYIdcgLpJ1zHzs6kSFUD6Le0jOP8cAa3Dm2ipxocIdkgy24k4MN7oTagzt/LWnG8ztq1KgOfwyfIYycO92SxjzHeEGelsGdowkN7hgDwJ0jscCd57TUKLCteH6Zi3gXIeotjWTAUAfuyBjmPvPdHAlJCg+4o6yDtcG9pdEq1NHAWEJ0T0du5C/ec889euyxx1r0GmBNXiIyF4WXKCe+g4n+QLYgy5FhKI7IM3InWzrff/azn+nSSy91Chl15Pavf/3L8ai/+eabLXoNCsVxPBvGo759+zo1Lpj7zHka+JILj3GdKBVyVGfMmNGiZ1HtGeJ+9dVXd/jjD6nFAGmk6ntLGrib4pQUqkTWM9eRM8gw5Am573jvmfOkNqxZs6Ylj3Kqm0PaqevQkRt73eTJkx3ckbstaWBu6ugQfQDuxpgB7sgZ9lEKHYM3uLc0AnTMmDEOgezo0SXMxRdffNHxqrdkn2NOMwdNPRfkOjqN0SHZT5Ez4M4Rn8ia5cuXt1i242mnEOa2ZgxvyXxP5HuShD2Bvw5K1rRp0xyBGLZBlE2VazY4FAmUNsggC5y+UMpRomkIBoQA5AYFEBLCPVi/EQRsfNFuejx33LhxHfYsSEhjtNU6wc/gjpUeTCOPGkNoG9whj3wnFDzuQxCDO/8b3CmsBubRbnoojhTToa+O2AgXI6IhmsZGZgohgjvzGtxRTiDl4M7mhpEEIxW4o2yYs9fBit/A3cz1aAseEV3SURUMNnzmOnMumsYaB3f+BXdj7DO4oyiizNEM7ijXyBgUPr4b3wcZw7NROKJVbMaOHesYBzti++c//+mQ32jypZHVxgu11157acKECc7+YAy6YAhRNPsFeEP4kEsoYiNGjHDkMsWlPvzwQ8frg/fHfKcwOKK8Y2Q49thjw1yecNfcdtttuuqqq6Ial/G6Uhhuzz33dEg6BBwDCHs0coN1ZIpgMschlCjbHLHEHMWgQpX5999/3ykiCP7RNBRqogEw0HTE9uc//1nvvPNOVENn3jJfeWeiDJj/kH3mOfIazJnrzF9+Y76ju4A9sonvxD6MwYQjylgr0RoLqCfwi1/8IqpxJ8rFELiHH37YefdoGoYojHIYpTAGsh/SFzoJpJz/bWQMuLOXso+yF/DNIJrsB8glDITgHm00xcknn+ycptARG3LhySefdN4/msZ+xh+OFwzSREWwPyBfkOvsrcgY9BXmNXKGfRS9D1mDjOd6not8mjp1alR7KnvFaaedJvaWZEtMBJKEPTG/i7Pg5syZE3p0WEBRClCoDPFAEY6W9BkFGyUFjw0CGMGAwEY5CSt4EShstpCZjtTYYMJucBARhCQbFHghYNnUwD1a0gdGEHY2PYM7ghncia4I2x9KC+QRAd5RGpsQxVggb2EaCgK4o5BBvsGdOc/90Ri3zLOY34aAghvGLRQ7cA/rceZ+lHnjZQvzHu19DbhhJAmLGRs6MgbcwQXFGdyRCRhFom0oeSgbKNfgTn/gjpwJ26jlwHFNHandeuutuuaaa0IPGS/fSSedJELTMa7gGaZ6fEsrx1MRnmrwBx98sGPgIxT/H//4h0Mkw7ZbbrnF8fp2pHbmmWdGFc1w4oknij+Ov+MoPXCHcJOPGm3DKIt8gPRjdGEtPf/883r66acdxTpMY4389a9/dTxhHaVBMu64447Q9QGQxRgnmKPoNMx3dCEigMLuD5HYgDMGE4gQR7pB8lk3H3zwQeijbyFQv/71rzvUSSEY5f7yl784RC9MY27tvffeDu44FJiT4A75C6t7RD6H/sAN3JExkNiPP/7YWT9h9wrWynnnnRdm+AlzDUZQioaGjWLCEAVB3n333Z35De7ooOAeFqfIl8dAiKEFgwvYk+6DbhVN7jyGEgwmyZZ4CCQJe+J9E8f6jjIdpmEBZZFCeiAYKLxhSUaY/rkGZQNFHeUYrxge6LCWasbXUfJjqJgaJvUAUmxwh5xzTzSesrC44ykwuENmwD2sJxTMGWOiNwxKzPcwpBHlC8sz8xBPPMQuLB7R4GA8khBTE6IfRmlhXrD5doSiRShQ0RAFvC7gT4gvaz/WNR0wfoE33xYvmcE9jNKCsaSjHEV2xhln6Iknngg1HSGY559/vhOhgMfmf/7nf2Jew4S5Diml0BlYP/TQQ3r00UdDjY97Hn/88VDXtvdFrEsU16DG3LvoooscryoGc5TvZ599NuZHSOI1xgjDfGAdUviO8Nkw7d5779XFF18c5tJ2vWbRokX6/e9/H0pWQPAo+oZxykQihJVP0bwkZAZiirzA6EXRuzBRXXgyicxA10r0xjwKuy4h1eCOvkAtDfZiZG+s28SJEx3cwd+kRoRxJhEV9Lvf/S7Ww4lLf2Aedg1jGAF3dDzmIbIp2kjWoJfA+LXHHns4BjCi2jA4ElEVphG9deWVV4a5NHlNGyKQJOxtCHbQoyDaLKow1jkUaCzHhCihfLfE+hw0HtvvKNUQQaywKDRhzmXGY5zI1SgxdlCZOSjHi/AvNjg2EZQRcA9D5FqCc+Q9YM33xhrLJoe3IYzlPNGNJUQPhPESstkw1/G4gHlrcq2j+RbGMAOOfG9wDxO2zWbMOknUhiIc5nxpvN/gTkQDYaVtVTUewwCY872RMWFCC4m0wGOcyNX7UZ7CzPdTTjlFv/nNb5zoGsgZ+adt0fD8XnLJJQ7uhI4/88wzgY9lruM5S9TG/gQZCWPYw4uKkkq1/vvvv19Tpkxpk9cytQEwyhJ9EaaCN9+J1IREbczzP/7xj4HDI8rm6KOPdog6UQwQijBELrDjgAsgM+SoEz2B95E87zAFfX/5y186XuhEbWFJI5GPHCOIAQLckTEtqVsULQ4YCJEzyOqXXnrJyfMOcjAxR/7whz8ktCH8pptuChV5AxE2of6Q+zD7QbQY265nH6c2AHokuIeJpmL/v/POOzt87YxY4JcofSQJe4J8CcJKw+R44U0i1IW8LUK324qou2EiDBxrKcSR0KkgIwMK9RFHHJEgaH8/jLC44+kGd6yg4B70vvF6UUg73hlIa5hCRnguEjEnCSIWZvxsNBSigSzzZ2ovxAtfW7+EuTPX8f4y5jAeiETNrw4TvUM6C+OHuDHXMVa0R8OrBe54PcE9TNQRnjNkZKI1xhSUTkQYI4SN9BoUwLDekFi/Kwr19ddf7+wthL1THM+vMd722of8xsVcx6sX1A4//HAR4o9hCNzDyKWgPlvy+9lnn60bbrhBFMXDmxtklGXcr7zySkseFdd7MHgQ6h/U8DAS3YGHkbSMtjB+u8eEEZ5UE/6IYIG4BzUMaol41OHtt9/u1KcIaoQ7Y6wgJYO51h4NMgjm7DPgTopCUGNtJmLNkp///OeBUSTIf3DHUALu7WXkxNlE/RH0cdKgwhxlSYQD9yVb+yOQJOzt/w0cCyNWr6AGUSMkmCIeYb1dLExCdFF+TVXVyArOpmo2BJQNk1BXvPZhCxGZKsV47YLGhFUbi3aiNDzqQSFMkBdy38AP3MNWjSeNANyxDvP/4/kz1fmxZEdWzSZnGuUsrGeBb4pyT/94gYK8R1jRsewmSgvjWcfLimeM6AcIQ1hlju/EveAeeSoCUQqmWnlkZX4wD1udH7zBnW/HfA+KyEg0TzvKXBD5pgYGuJPiAe5hDCRgS2hfZKV45qipzk8f5kQEviN5pOBOek2Yxpioh4G3NEyYLIbBRDqSiXoLQXn5eO7uuusuXX755aE8k+AG3uTvY9AiIgGc+A7MexoyHVnOtySigtzrL774IlC5NN/EjOmyyy4L9OZi0AyTThTme8fiGuQ0tYOc0qAAACAASURBVBGCGhEMEN9f/epXjrcvTANn5Cl7Hx4rjKLIHOYccx25gAGDb05kCuuIMO8wa4k9gpxvvM4UJQwikJAF8toTpfGezGO/BlkjqoDIHVIOgmSS6QsDIoQH/InaA3P6oJAo+gryBP2F/ZA5jz4StO5M33h+Tz31VEdH4tSGIF2GdUqYd6I08tWDjg7D+AnuvBu4hz2JBf0BGWYqxbO3os+QqmOqlaO/sObY20kxCBvejeyi0BmyA9yDHCF/+9vfEuroYFKWgoyV1Ash9QVd87nnngs1ZdDR0fWRq8gXjKLmJAr0RzgDcsZU5idNDUdCWF0Gwza4YxQOMyYiN8y+EuoFkhfFBYEkYY8LrNF1yqLxIyRsShQSY1OiCEtQvi/EAuHKJoRSh2cHgcozEIimgjOKNko1ioapEM8myP0IXzxaKMlBxARhQmERBFdQGCECKFE2OpQhvxxZFAsUM3CArAc1FERw518UL4SpqRTPNwN3lDZTJZ5Nz1SIB3P+t8GdjS8ofxcsGR9FSlAM/RqKPR7i9m7gEXScEuM0FbCJJPBrYEn4OZsauIMZZNBUijenIpgq8XwXcEYxQ/GA4NAIhzTzPQgj0iIgSIRSBqWEEPrHGmzvhpIGWfNrKE8oZsiYIG82MgPckTHgjqJgjB/IC3d1fnMiAkoHeIA7Cja4g2GQ0oNyiIzhXnD3y6HnWYniAcOrgifDqyF3UUIhIRRYCvJ4MPcIqcQLjkGIokIYMfAOQ07AEVyZ76aYInICDwmGGIobEYbJnoOROMzzyGuHAOEB9jOykJMdJoy+LdYCexLy16vh2QN3ZCdKd1CqCwXjmFN4hYkug5hCxDGEgA3Pog/mKbIFQokc43sxb4mMglChtGMYCDL88n2prE7tgt/+9re+kKFMU0+gvRvzD8NH0D507rnnOvMPr3pQYx9A98FQiqyHlPAcc4oK+gwyHz2G+Y7+YirEY0xB1vOdMFaGMZrwfSFXGEHI6fZrhAuzttq7kULBCQJ+DUfJCSec4Mz5IG82mKGjMW9ZJ+iOGFXQSZi3yF7kALoMxhLjnGAvAA+IJr+jM4F7GN0J8sjzMDz4ySTWVtgaG/H+Lhj7gupiUIcEGUC1/qDULvTN3XbbzXEQsRcz19m3kS/IdQwsyBjWAXscWCDnTIX4oUOH6T9z39eG9aXaMG+dvvl6pvP/ezXWCgY/viG4+8lLvu19990Xb0iT/QcgkCTs7TxFILh+pIQFifBk4QZVL0dBwAINwUe4hlGEba+P0sEChXyinLA5YjUNUuIRNgh7NkY/BSgRCqKRw+MXcghxgeRSiM7PSg8BRDEAexQHcAenlhTlggSBO8o7/2J1ZqP087wjtMGddwk6io46AiiS7dWYE6+++qqvpwmvFXMO3P02EIgfln9wN15EyF+Qhd727mDIpgcBRflgroO7Hznh+4A7of1+xhLWElWd29Pji5LllxeLAoCMYeMGd3M8lQ0rlApw5xth1UfGgHtQHqKtL3P0FbhjjETGoaT45VKiDKLMIGP85BGyC5LVng2FDi+pV4NEP/XUU054JDnJfu24447TWWed5ShzeEQIhQ6Th2jrk3xhohCOP/54x8CKAhzkZeFdMBD89Kc/9Z3v5FUHvUu8vwnv5hfqy3rEwwgR5jx2r8Z6gFyidLOnEsqK/AoyfNn6wzhIGDLGFogTRhzIk9+6ZO+nQCHGMHD3i3qjBssBBxwQb2g9+2e/w+DkZ2SGNJI3DeZ+kTLIBeYonklkF2udeRqkf9gGRygyawZZjdyChGM48esLGXPhhRc6xjDCtf3mB8as9jTIEjVDqLhfY/6io4C733ujOx544IFOvSFINnsB3ylSl4EoZmZlO3sFbUvUWp2j7zVEnBTC/gABZ19hTyXdE3nltz+TvgLuGB+oJu/VEqEgWlBhP/QTCkNCssHdb09jfnJ8IFFk7AXIF/APcti48dl5wkQVjzpU/17zuJS/XLsW76rCykLN/O9UrVqx3BNPQuT55tTt8NNlMCISoZFs7YdAkrC3H/aOcupHsiAFFCrCSukXboigRfnDs0WfQV6/aF+ZjQ6BjyKPldCvOAvKNOQHL45f1ACCvL2s02zEflXu8Z6CJ8LTizRCcrCc4jnBAgrufgQzWswheOCO8oDSAjH0MwKgTLMp8G5+rT09viinfp4lNng2OuaOF2nEi0IeGwYVDF0Q66AIkGiwR/ky853NC9y9xgLRB3eUIL+jntqz6GJQRAMGJ2QMpMBPFqH4siYgHuCOUSNahcLvO4ARMgaSgozxK4qHfAH3ILnI+kQetUeDkPkdjYMxkLPYIbh+xbkg6hRDI1KESuJ+3vqWvCc5xHiYIaQUdvIj7oTIY4BAwfMjrXjZ8ba3R+O4POoAeDWIL95T3sEvHYr3xFuMLMLTHRRuHM27QmCIVoCc4E0k99jPU8d3Z59hzH5GZnLv22u+33jjjU60glfDSAHRuvvuuz31B+QpBg1SFKjejhEibEh7GPyRMex/GE7ImyfCxCuyh29EKgi6DoYVr4aBmXoP7dHCRDRgPCP6ANy9GnoY0SNEMVB8DtzZN9BxunXvoc498pTeLUNZXTqpMaNRm+o3qrqBdKYUpaekKye1swrSuqhLRhd99erHKt+0catHoU9hgMFogiEN3L2MT8xzcMcg6bc+Mfy0l4xhrWLA9GrMM1ImMHb4yWsIOrij84C7n4xJSUlVamqKY/ivb2hQakqq6upqt8Jx7x+epjdeOkTLl6ZoxJ7zVTRqmkqLXtOI7kPUt7avZrzxtdatLbEOG8KOTCKdxc+YxjWsoWRrHwSShL19cHeUfIrieDWUUjxEkEYvAo5yazZoNv6gMLvWviokiTwoQuxRDrw8kCj2eD55Pz8y1R4e36Bz1tkwIGyM3cvggPUY3MEB3MPmDbUUfwgquEMg/YghoYNYwP0KmuC9oAhdW3t8CWP2Oz4HZY7oDD/FlXkF7uAA7rEkjO5vw1ggfHxrMPfKs4TwgieKn1+xKoxqfJ+2bHg9mMdehqQwY8eTQlgkXnAifMIU3GvNO5IawlyHQIK7l3EQ2QfuQfU82iOaB8ULT5VXM4orleDJ27Q15h5HYoE7RX8o5BXPhlf6uuuucyKEKHjmFZaKh4UK8pAqPHBerT08vkERDYSNo5DiYfcybBISDeHHoHvzzTdHdX5xS74PxhIIH0fHgbvXfgnmGNbA3ctwixGICIC2jqIKyp+GWLGmeQev92O9YDzCQELKQFA9F0goe116RqYTCt/UJPXo0VszpgcXXUO2QPjw+ONB94vGuOKKKxwvKe/o1YhsIBKjLRtzAEOPX3QmBifwJgrAq2FIYe0TPWLqKBV17aYug7qq84B8LapfoBX1y1XXVKeM2mL1TR+rmqpsdckqUmVNjdLS65SZU6Nvq6frJ4P308d/f1v9xw1WYdduKp23xiGVS77dUrSUqCdqM6BjQWS9KqSj+yIb8cgzn70aqQtUPm/LFhTRwNpj7DgnvGQ2exzGXPQZjLbuaIItaTV5GjBoiCqzqpTTrbOUlSplNKmqrkrpqelKV5o6peQopUZavWiFls/6Vmf++Ayt/GqlltXuoP9+M14rV2ZoyA7lGn7gJ1rT9VlN6DlOad+m6Ou3P7PqTugnzHfWqV9qK++HcyXZ2h6BJGFve8ydDRdF2is8CG/WPvvs4wg0rxAmQ+KwhoUt2hKrV0WBh4CwqL081QgjyA7CyMtDiRUbo0RbhZRhkSa8zqtB1MEVYWtTLBCkhC/xfSAKYY6BiRXmEEgssnghwN2LhKG0YRn3U6bbOlyYTc4vLw1SxXt5GbCwQIM74XfgHm8DSeQ3gxiCO2sV3G2pHpBajE8Y1vzes609vhg//KJtkDF47LyqgBPhA+6kxIB72EKUsZjzyA5wJ7LIyxCC8QncmetEuXi1tozmYa6jAHsZp5Av1HCAHHudlYzyT3jitdde6xQga2lDDkR7VBPefAwEhHN6kRRIOx5VvGZeeZnsD3jJ2srjGxTRAEEjvBxi6CUbUVQpPIaHDwLdVg0CST40Y+MMeK8aH8wF1gRGBa/G3Iu3cSfy2eDuVxgP3NmTmFM2Az8RO4RsI2fJ1/eKrCnoUqiRo8Zo1/F7aN2CVcpualQqHsbqasHWG5uk1OxspefnqSE7U/984xlVVGzy/YSknpE7zb5OWoiXrgVB4Tfmj1dra48vcwEjuFdjHiGvic6wNSL3wB0dhvQQDCTFPXqqy6juqiyq1Mya6eqVOUyZpROUuXG0CjVIyxYUaHi/Uq1fukHdu9errLRRDalZSu+cpw21XXXIMWv0zF9/pUmHXaJPsh9SWm26RmfuoJqlm1W1qlzLly1xhsJ+D+7slY888og1RQ7ii4zEiIDxz6sRQdBWqU/oj+Du5RhDh0Fmo7d7rUGMbshPUgTc3vfs7E7qM6i/Og3O1frM9VpQN19LKxZrZcUKlW5ea4Vg116TdLSO0+ZVFdqxtkCLb71E2cU9lDd2oqp3OktvzRyvKQt6a8xupcrf9RXV9XlP+xbup2mTv1Lpuubedog40QGsV6ILbQ39lzXRXhGybSWXE/E5ScLeDl+FcEKvKqRYi6ngiJJqCwdjc2EDxENKSGhQODBeNISfqeJsKpZjoaaRe0q4Jd5klHe8xmE89fSJRQ6F2isUDmIPGfeLJGirCuaQPTxfXiGFWHUpyESOm+0aFAtw57cwR6fwHcn3BffIiuV8P1PlEwXGFOsC9zAh9cZT6zeH2MDo1+84JjzaYB/vFnRsHoYdFCdwt5ELjAvgHvY8buYbGwpWbIg+38FU5zfVyiHfplI5nvEwBgDjZQZ3WxglBhXWLUqIX4VhctVQTuPd8Lz4WcnBFLy9lD68IHjF+B2va1ADc96LQjbgHnkqgjkRAVkF7sxzKjkHFc/kuzFP+RfcbddTYIr5Toir1/phTHjBWHvxbijBXl5z5iLGQI688jpDm/xNDAwUAwoq4AnGxxx7nPbZbz8VDipSQbci1afWKS09XalKUVZqtqo3V6l+Y52+evcTx6uMohiEO0YawoC5nrBtWyM8Hi8RRh+vSCsU07YoEIURDcy8ilsx1zEcQ2Ztef/Ifr4ZhvRzzjknsP4Ic478aiIldp+0l3r16afcvM5KSclUSkqDamobtWHdKs35ZrY+/+wTJ+LJbw80+HLMFcWpyEn2SpPgu+BZ9isyh7HH67vFcv4T6QRB8WpgxDtBvGwec4xXRBgwz7yKFe68y0SN6LuDMks3qWLql8qqKVHJJx+qasUKNdRUN3t0FgVw//ai5qyf7+wZYU4uICyZuQG5te3tyA0IDMZ+v2P0iMhAbsa7QWD9TgbA6MSc9jL2YeQEd/pAJ8Kb23vMAFX0rNSM2mkanHKQMlbspcoFu2hAzlz1yl6izpXfKGXhe8rMbNLGuXOVkZenmvWlSklPV0ZunvKGDlP3My/Txob1Sl+bqc8X9FfRuBp9umGyNhfM0Mi00Upd2qQ1c1Z+FzLPWiNqE9xtBleiNDEMEjnjla7F/UTEsEfEu4GXn/GACBnmm3suOzpflxSddMiJ2mPSJCfFJjJSMr+gi4qH9FJK/3R9VvOx5myYqRXlwXsu7zupz966aehNSk3N1vKbb1fJW9+fNpWamanuEyepetKv9NSHP9C6jZ21/0+naEWvh3Tg4D307avz9e3ihc1gI3IN2U7kj9cJROg61KxItrZFIEnY2xZvhwz7FZpBAWKR2Dx1KGjkbkIag5Q5QimxgEGG8JBBMtg0IeYobCjRplo5Fn5IJSQHkomlECUdg4HfkWEoDpBcCJCX4s/vPM8vLwbPAs+OZ0O58FLoMGJApNisbR5JMOE9UAD8cmsxgrDJ4B2EJIC7qdBvKmdj9TZVPk1lfkg9BhD+O7gj9P2OXOF6xkNkhc0KyjggKIzVy9MH3n5hu7H6Fig5XnmIkHGMPigNNsMTBgXy6lDo/KIZwJGNG9zZuMHdVOg3pyJA1tk4MXTxvSH2EExw5xoiRcDdr1giz2C8jMemYPBdwJ338SKPbXFKAkY4xuBliEBRhnR4ySEwBxfe068OBXMITJA14Ias4L03V9eoqrJSIs+utkaZWVlO/l1Op07OugB3vPfIQuZGkFJNnijPYDy2cGCMWORJQka90iTwTMZbmcbohBzxaihyvLOtEB3zEq8uc9Ev952+T/npqTr8lKNUMKCr5q6do4ayQVpfmqreeb20pqRJPQpztbq0Sj17pmpDVZl65uWpds2HGj1qhEMyCTnGaBB0zjvjZW1RnM4WJYUijaGGc6m9Gt8E5S6ejTB3r+rkrHU8XowVb567EQEA7oQEcwa6X8MreMHFl6lfv8H6+s1PlFZZocpvlyhl80ZVLVmszj26qnz5anUZPUbV9anqPGzY/7H3HtBVVlsX9kzvvRNKIPSmNAEVUbEriAVFwYoFQURFRSyo2K712vu1Y8MuInaxgvQSOoROekJ6zz+eEw+c7Ow3hOb4//9jj+G43xfOec9+d11zrrnWUnrNTlfoBvsJ+StJBpuK/8fzieeNtYTawdbY2wAHQiZsjf3NucudfigbWaOdiAjeg9r25BSwybYhWNgHgDVb1vLBJ56i5KAW8t60UblfvKncxXuXuvOuIS1bqe3jb8o/Ture/QhVVJS65p+zrilbBpKK/uBFZ82aDRuA8UZe7kTYM88oUw51w7vppKrk/EHqD3i07VnICZQx7Afsg9Zt2in5mBR9W/i1Wnj1lW/6Gard1E3dI+YpdNPn8s9eopz581RbWdHka8UeNUBtH31O0bFRWn7zBJXt2CbfwVcrP6S31DVZfxXOUGXMfHVXT1UuL1X6hnWu5yFpp08QmDabF8J27NixrnXk5EiCoCBU5FA2xptxd2oQaNxtZmw76rsOR3dTUdsSnZQ0RJ+++KEKdxXsfkyX7j3l3clP3xTO1Jq8FSoo3/Nv/j4B6pc0QLVV/uoUOEhlxYGK8I9UaWWFgoJrlVW1Ub1aJ6t3TTeF1ERq3aTLVLShcVUd/4hIRZ5wntJCrtTH8wao3wk7VXXEKzqyU4hqF1QpbVHjCkgoRjgbIaqcGoCeu/lw+/dG4DBg//fG2vVLXB5OHiu8eBgYtvg6QDWeJABlU9niAYwYphjtgDWAyL5KWfktgAWGMAYkYLcpwAR4xFtnk5sDkkhSQZ+dgNuh9rIDJpxAIXPCReuORzeXA4YW/46R5ST/B2hjJAEaMArwsO5PRltAJACI8WCekZs6xSsyR/QL4GhbD4BHDGV3AhnbMj/UXnbWjFMJGQAKhgPGj22sSEDGmCLrdlJFsFfw0DNeXKgAP+ZxXxtz7Ab8GDGMu1MYh9uj67Qe2DP0vSkmnmy4ANZD1TB8nHId0H/2q1PGXgxXPOSMu9O5AeBm3FljjHtmVrYqKipVHlitvJo8latCBVUF5CRSeXWZIgOiFOAVoJiAWIXk+aqior7+OgQL5xW/x7g3RYa51wMAwbYnkFm6PfG2cWWtQKYcytwNJAVzKlWFRxovng280ic8d5yzSFmd2vjrb9Apl5yuQu8yLV1Rq9TgXsqZX6aWIdtVk7dDwV75KtuwTJGt4rVrw2aFdjlC2Zm1Sj2+sy6+a6zycnNcRiUxxSQP4lwkGRVA0qnhreU+wSC27Ql38i4nxQAe1qaef6B7ACPeXUXF9iw8/BBXtsz1EFPEL+OJbKosFiDslsl3Ke33FapYu16Vy35T3qK/VJGbp8oCe+m4oIREJT3wss67+mxXt1i/JLxj3Dk7IBmc8nVAzLMe2Me2frNvIMCJP3Y6ZwDLd9xxx4EOr+P3+f2mkvsRXoC03wZ+kQXj4SUG2wx3adGylYYcc4a0eqMy3vmvdq1ZtU/vENOrj8Juf0B+AX4Kz8pXVWiUWvbtoPZtUHH94BpXJ+DOWTR58mSXDJukd2bjvmT+AG5O9zJjzll0qFpT3nVsNsYU1YMt1wh7kb3CZ9z3ZNvUDoo8Lk65W7qoPG2I2gf8pYhlz6t6y3LtWr2y2a+RcN4YlZ1+nBL94rX9rmtVsnWL67sQKNFDr9bOkBNU2S1W82teVnhgudoUpGjFnHoSBjsGRRFJL233FnHv3DdOBBX3N2vxUBJUTXnX6T9jS/y3J2GMXdhpUA/NDftT32/6RlO6v6zEXSn6ffZrCg4J0REn99ec8p80c/tnqqmt3j3W3eOOVD//yxRR0kelO9po1byWUp2Unu6l2Ng67dzhpbCwOnn5eGnilAylpz2jUzsfrWXXnKu6mj3PMScvpldfVZ44VU/OPFPtOlYobMjz6tSlXH6LvLVi0ZJGcw2BxfnqpH5hLSGfP9z+vRE4DNj/vbF2gTCnSxpDGu8HF4VpGOExxfOO59AJrGM8A/g5JLjo+ezBaO5asu6kWk5ySkAAh5XN0w47jTKAC9zp+4fSy95UojkuAg58G7DEg8i4AyqdSBY8f4w7FyDe7qY8482dDzcBgCSZZzqFHGDoI2+DILCV44BAQBrnVCLlUHvZAVdOxAVrHSmtLT4Z8IwxjVfEaTw9E9AxRvtTVsycD0gQ4syZ06YSzbGeGXfez0ZkIcFlDzspOpgTLvlD0SDYIKec9hnkGeeDjXxiHXOOOHneOYf4DIYh51BGVo6KvIuV51uo37PmaGX+cu0o3qbMkgzrq70w+HUl5EWqxjAq+E3GnfFnPTidXYAe1jTr2Zb/AwKIfeDksWc/HSqPADGLZLi2Nbz7SDr5bZsiBoAAmenknevVu7fue+IhVUbUadEyKdW7m6pXr1Zo5u8qnfupqktKVLwp3frbAdExav3o6xp+VT1w9Gx4UTDu+W08ck4xi4B2QKLt/Zg3zidAilMIDu+HF+1QNLw8TmWt8LxBlNgSJHHGcB9BNDgl5WKvPPXMC8pcn6WsH+fIa9Mibf5sRrNeI6p7T9WNm6KrxzXOlj9+/HiXTBzPPgDRKaQAcEa8vQ14k6CNv3NO2hpnDAQ683YoGoDcSabMuEPC2eKnIQRRDjBnNo/q9ReOU/rjdyl77h/71e2Esy5W9QVDFV8boU2Tr5SXt49CuvVV4vmXKqhzio7q30MzZjgnmkORyNygQLHdm6hfICzZE7bGWmvKE7tfL+Xxpaa86+xl5sSWXR2vO2QhHlOTbDj9/BtUnp4g/f2Wav/4n8oy7ed3U31Puf1JbYr3VTffeKXdMLLRR0Nbpyj4nCna6D9YG5N/VXi7NYraEaltc6nyUuwikcndQf9s6gHWOneDU4JAyFKUQIeiNeVdhwAl/wQhLKad1qF/Vy1LWKaZGz7T0LibVTXnFsVE+umkwfP03czpOmbESXpm22Nam7daEQFR6hTdRb0qJiprSX/tWNVK8/5qOoTLz1/676sbVFnwrRLTdmj7Kw/u9fVD26TIf9jdevaPyxUTU6eYoU+qRxep5OdCbVi3psH3IbkhdCEznc52SArsncPt3xmBw4D93xln169wATgZowBWPHs2Qxqwy6XuJCvHiOXiRiZ/qBLQYahj5HAhOCWyAsTAXttIBfqHhN5JOn+ovOxIegEwNu8QRgUJfCBJTPkwfeWCw+vnNKYYHxAtzMuhSECHpwVDGCDDuNtYfcIX6CdzbyMVIByYL6dssofKy846dsrEDCAGPNmSK7nBMJJQm7ecsaDPkBqMe3Piz/d1iwMgGXfWDuNuk1m75fx4GE1SAU8vNUuJXXUqG4SBciiMaYwaJ+CFxA2Jsy3pFmCY/5xk5UifGXdXuM7qNaoOkVaWr9K83LmatfELVddWNTnMYf7hembAywrJqc+dYWuMB+POfnMiqQCI7DnG3WysHVh/9rONwGFP42VnzxzsBlng5O38+uuvXYoGmxcaY8idNdjWJ6SWo++4RrMXrFXrqpMUuDpNQfOeUtGaFSrdsfc4x4jOXeR34326YqyzMQtoBKTg9XRKrIWXhXAHW2w0oJhxJfu6rXG37W/N+KbmiTON+baFn+Bt4x7Cq21bK/yN88fJS0zs7OVXjdfS92epcNbb2vmTc+IrWx/jTx6m9ccO1PPPPKm83MYJozjbMfJR2zDuNnDI/QQpSMyrjVRgrjjzkQvbGvMKsD7YDZWgU4w9+xOvG+STSaoBhgHqvIvNDoCAvu6ym7TurgnKnvfnfnW71Y0PqqBrspLyarX29it3PyMoMUkR3Xsp5oJr1OGkPtqVl+nK02BbO9hTAEf6arNlAGgoaZyynLMfsNkOdmvKu859A1mAssJs3DXk1rj77rsb2Z+ciZ27dtMJPQdrxcRLVbSxcUzzXt/Dy0tHvPa50usKFPLzIu2c7lzyLOmUoao8/g6tji7VmrCX1Luqj9LnrFVJcZHrDIFYgIQz73XuW8AjY2tzAnCms5cPhXKtKe86cdzc/xA8nq1dl47K7pGr19Ne0mmx18lrzj1aMCde1wxbpGM7L1dBm2hXnougvhF6cv6jOs5/otJ/OkGLfmqljAyvvQ45H2iRXKfJD/ytpOBclT75gLLn/dWs7wXExCr4/Hv1/PzrFJdcqvAzHtaQbh207IMFjcq+oepFXeVEQoELWFeH278zAocB+78zzi6vj1N2WiSHGMS2clwAGxhdJ2kxoBGDD5ldc8ELFyOxNe7kZ831TsLaw6bBjNvkq26ZM+DRFuPLYUw/nWKRDoWXHVDnJLXF2GPMbJcyFy6AzeYB5pLju0hKeZ/mZmLGSMNLyef5bnNDFTAgWAesH9tl5ZY5Q0yYMcdulQDxqjbS4lB52QHcTmAVkgTG1nwXgC6XtlP4BPvALX9tKizEc0u749b5X+LY8Tw3d74Aj/wmnipbLDf7FkPCBgiQxuOJdvJWs98PdmwvhgNrwEYwAGAAlYBH0/tOXyDbnMInIOpQRLD+8vILtT0wU19u/1xfrnOWUpvHarvIDnqo+yPyznOW7PEdzhDOGM4kp4oO/DvvaMvjgdHKvzl5BNhLB1uySpZl47piRgAAIABJREFU4pttjfhuQK7NgCc2E4mtU7k/QCOe1M9n/622wb2U/9lzKvnlbdWUljb71oofdIK2nTVMd06+qcnvYNSTpZv4aae60oAsQI4tezzgBa+jk3ySZ+N5PZgNyaZTPWTktXiIAMNme+6551z/RlI8W+MdCE/yqwjRzsfvVtafv+1zt5OvvUsrE4M1qFVX5XlLO4szdPMNYxs9h/XB2FCiinVkNgxixp3YZFOdx31M2Btr3nYe8o7soYOtKmF9OFXDwHjHjrHVlGY9c4ZwBpmNdwHkb922QxXphdo4ddxuWfW+DH635z9SXrSPaj/6Wpmfvd7oq2Ht2iv67CvUcvhZatsxXsTh28hsFFB4bfHsmsQD4w0RRDUBW4O04F0PdnPyrgNWeQ9IBjNnDQAWKTlg17RlwsLCdfLoYRrQ+VitW7VCpXPXauP9E+oz7+9DIyt5ymNvqNzfS4WP3qW8veQbiO1zlMpPeVjFPSL0ux5Vz+KeWv8zZVorXfkwsGdsdeOZD9aJk7qBeHj20cFsTXnX2Zuc4ShmPFt8QpJiT0nUI8vuV5/o45W46Hn99EmKJlywUG3mXavC9WuVcutjOnbCJZr55Wcq9T1OT9zTShs32IG6r6+UkFinqKg6JSXXKTvLS23b1qmoWBo+cqZSvPxdapJ9UUagvAq86HE9+dOl6nbMZnmdcJ9OTzxZP70+W5VGvgLyg+AEcCqxx/2GY+hwO/QjcBiwH/oxdv2CUyIqgDNAFsPejNXFY0S8Fx4jm8QVwxWQ01TdbX4bjyEHHYY5Eh7ACwaxO/kZ4JGEdHjP8MY2lWiKywHWDQLC5snjgsATh0fFBIiAGHepN9uwH2wvO+/EuNsAGmMLCLEZDxj1ADEb2AJQcJlDOjRVd5v3Yyz4D9AHYAIwupPOAd4ZZxh+nsW4N5XwjPlj3DGMbWQI8d7Mry0JEKQOIMapvwfby84l55SYh7Fl7G1rFuBCP21KEr7D+/NvTWVhhxDBk8Olz7rHS8U6ZOz5N/YbwBbvPWqXpsqBMYeAcjzPGMs2eT5Ah4R5trHFyIYscsp9cLDHHTWAU5101jrklM3QhijDaLWNK3sSzzzvz5gFxIXp3YzpmrHmXevJGRcc75L3dYvtqbLyOpVXl6tNTKKqair16OBHVFqwy6VG2VslCsYGNYVtPXNuufNimGPL/sTTi/fURmDyXUihg5nkEhLJiYxlXSAbnD17doPxgoBjLfNdG/GAF4/zHRk659jXH/ygnQ9NUv6yxgmCmrrCki6bpI43XKrPPv7AddY1VTmC/YJ8HRLSFpvIOYJqBsLDXEd4+IiNdZJos/6aKqm5r9cwa52xs5FTnDEoNFDymOuMuG8AJ2uaM8FsGKWcCchzBxx9rO4bc5vW3XmtyjJ27lMXuzz5rpJPOUrLb71DtQU75dO+vyIGD9acdX/riUcaekE5Qxh3wC6EiNkAIYACm/QU7zpnlFPWeABFU3W49+ml/rFjnMr9Yatgy9g8/uRNIPTMRrAwT8jksRmQPB8/5DQlbitV+sM3qq6mptldDIiKVpfnP5J3VKg2TrpKBStXWL/r7eurpLMvVvi5l2jg0AF69sknrIoexhRFkm38ADGQJDb5OT/K+uGcOVitKe86IBd7wpZUEZCPneause7uD7HrPU7uoy2ZsepZ7adC/wz5+vir8uOvlfGhc9122/tEduuhrs+9o+JtmVp9w0WqzLfndfD8buKgwSoZNFVb2vqoNOlbRaaHKe3Xxa6PsD85g2xjS5gFgN12j2HX4mU/mNVvmvKus1+5n3BOuJu3t4+6Deult7Jfk7eXj07In663H+mtq4cvV+8N1yjn77muj5Ljot3dT2tVVZYConvonRcHad7cPRL4sHCpd+9a9U5eptZhGxVcsl7BypVfbYlKs7IVmNJVkd06q8t5J2j5e7O0ZrKdfGxq/YW0bK26kS/psU9P0+lXzVVB+1d0dPlA/fpVQzURYbG8K2eQDYeQYLKpfBYHaw8cfo50GLD/C6sAYOAURwwbCwi2ZY7lwMeQtsVkwvJinDrJsngtPHyADQ5zpHMYLwBE06POv7szNwOo+RxAwyk5C4Y0jBrgwMZOE7MJMLKBNgxtjEabhJz34cJ3l5w70KnhonICqRgXzIsJcPBKnHbaaVZvI8Y+nkg8x05Jvdwgj0uDccb4YzwhY0wDkXkHZAPGAZkAXcbdSSmBwcPvQyTYAA9ldAAw5jsxX7DPNu8q/YVUQJp5sFpTsevML2vWlCLy/hjRtmQ/eLt4bwCOU+JC3hFDnXFnfvDes35tIBvSCgIAUgZAz7gT++yUYdz9XMbdvLBYs6wX3tmU8PNOxNrbEi8x1gczlh0iiPm1kT68L/sVY9gkr/C+sQ5tYIqzAJDGe7vDMdgDpTG1eijtPq3JrU9KFOofqi4xPdSz7kqFFHXXtlWJivJP0oa1fiopljp0rlaXHmU67cRNCgrwdQEp+sE6bSqEp6kzDkIGggcgbCpVWEeoYJxibPl3zt2D0QAZnGm2hgx1xIgRrvAIs2FAQ4LgCTYb3jnUF5z/7rP6pFNO16Rzr3KBx4rcnGZ3vf39r+j7zDR17pjq8hiSVwEZvpO3hHMbkhPViM3TDrDi7LTFszMXH330kWMpN0gUVB4Ho1FCy0mKiQed89YsOQb4AshTTsom0afvnEuAXHe7cdLtGqgobXlicrO7TcmrDk+9p8oAP2Xde4PLo0aL6d1XAUccr4iTT9HUJ+/WogXzdj+TOxNQhrfKVgMerz9nlJnJnruSu5RxdSI6IeJ494PRIGWcyFjk2ORyMMkrCAVyJOBBN+82iDPmkfnwrFpw/vlXqOL9D5T5+dvN7nZEp85KmPacgsorlTZuhCu3Q1MtdfQVCjxzlI498yiX/N1mZyH9R3VivhMgBQ+7TcHBb0I4EpJwsBpja8uJwtkOocC6Me8fziWUPaa338fHV0NGn6Hyqi7yXVKj0J8nK+zUUcqI91ViQKLyn56qnIXzm931+BPPUMoDDyh39l/aMK2ht7mph0Qf2VteI57VX5EbVBH+m1qva6k1q1a4nDqEcjC+Zggp6jzOb5I22hqKJJLUHYzGXQpItdkQ3E2QUJCxnq1Nj/Za3maF5mz9QZeGTNd3zwzXgCOydXbEo9r2VsM+o/Zoe/dTWpq7XsGxp+uRqR1UVyd16VCqUzr+oujNH8k7a7UK0parurw+UatnazXhfrUcdZY2PvqsMj9trCZpzhhEH9FLq3u+oi/+7qOB17+qrt3KtO3zdGXs3NHg60j/mQsqjNgaZ60TWducfhz+TPNG4DBgb944HdCnAKjEp9sa3iDk7mZ8MiABo9TmYQIEADY8mT3PZ3OII9fB+w5odYo5d3opd0ZmDAEAr1P8NwalreQWRj3AjH8zZdF42em7U/I9jEGAzsFoTjkDMBLw1tqMVrwYSOBsMbT8G+DACQjwXow7Bzzz3Zy66u73BGBg2AAkIAOcJIeAHYw75t6U6uEh470wfEzwyQUD2HSSkgMqDkZsL5ccwNEm929q7jE4GXNzrWKQAl4wOp3i8DGeuMTdyfc8xyUwKES1tTXy8/N3kUhFRbtU6+G1QfnAfmKvsdadEpYBbBlfW2gK+4W5t/0b3mveyxbKwLuxTw5G5nKIISeljdPcu3M44Mkw1xJ7BIUAe8gk7gKDgrUpaIfumn+rhrY/VzFZ52vb3P5aszhKaSvsiXJuf3C7ju21XKXFRa4lD/nEuHNGMe5O5CDnAUoUm2cYo5izySTl2EskOYOgsHkEIGsgtw5Gwyh3qncMCUtsuFk+jeRITsl68OrhocTrap4fU+6epp65tdr2QtPlx9zv5RMY6PI4PvPn/xSqMG1bvVnt26W44hEZM0CUrewjc8/ZjdfEFtOORBvgRik0z8YZAvBxSkIE2Od7B6MxfzYFFOQje405Nu8e3oe/k5HabMwh54jN2H/p+XcV9OVnyvr2k2Z1PaxdqiLueFwxXj5aPvY81VY1zO8Q2/coRY2+UZ8u/Ulvv/Ha7mdCSkJYcoaboBgQw/mGksoM8QLwcmd6Eg2eHSXe+mCAGO41DHdbCB1nDOQUa8psyMpZM7acJfwb5zpkibtdcckEZRdlKqo6VNlPTFHessYZrG0TkXDsYCU/8Ihyv5qjzc0kWBJPGaZ2k+9RUtsoF8Fjvhtr2b1fzd9kPTNPNvk/5xpA+mBkLmc926oF0B/GHEL7tdf2rCP+DoGNmoF1bd6bg4efqu1V8YpOS1LLtGnaNusrBbdIVuo9z2pHUKVa1oRo3R3XqtQAbU6LP/nqOxQ/+mxtf/gxZc1ufpgUz0sYfKLS+72glV3eUMfgMOX8lqGc7EzXmOPMsCUuxOvNXrYpwlAu7a08Y7M2seQisZ2IAc59SBxPGzw0LEwdz+2haUvu1NFho1T75YvKyvTSDf1fUPFbN6u2unGel6ieRyrxpoe0sWyrynWWtHazWuW8r5zvPlR5VlaTXe36zAeqTopV1r03qiDNriZpzrtGnXWN3il8WsFJuWox8iGdEn2aPn6uYXgOYXHsbaczhvu2qfKezenH4c/sfQQOA/a9j9EBfwL22Faayl1KygTlSHvwiGKAm0YbBgeSbC4/W+1qd61oDNymyiQ156WQPmIAcdna4pExEtyeARPUA2L4rg2YU97IlqyLPvE9W1bf5vTX8zMk6XPyIuE1pL8mKHcDXlsmUow5jCYnkgRAByBtKilfc94BTwj9g/Rg3G2Ag0sJo9o2tngdeXfz3SBxMARtIQD0C3YUAHWgjUvUqc4wABAiwgSvzDneZhs5BSjDG2sjSdgnGFQYJ8iK3aRXUHCo6kK9lVmTrZK6Uu0s3S4/Hz8F+4QoMThJMfmhu0uLud+XfcW4AxxtEmU+B3jkN2xkjhPhgMeffeAEpuk/krMDbU5yeMArSWPYC6b3nbFlfdneh7liLm0ecIzQ3n2P0qdz1+mHz1vo58+SlZvrnCjHx0d68d3t8or6UfGBCfItlUqKC12vzHnFfoeksp1XkBp4igCYZlJF5h3CkzVtEg68G+ejUwI+iJKD4XWk77b1wnrAWGZNmY19DbClxJRnY/8BAPiuTTnFPE6Z9IDW3Xubsn5pXHbK/J2QVq0Vd8+z2uwXom2xPyp/a678twfo5w++06iLR7rAF+DVdt5BGABEeD+TbMY4A9zYgDljARlhS8DHWDiRnfuy/iHVnPYMRiXnMF50z+YGvKjOzDAYlAd49DgDzXU0bsLNOmvo2fLPr1X6vderYFXaXrsa13+gQiffq8rvftf2l+x1jMPatlOridP0d9EO3Xf3nnrrSKkhbThrzMaagVjkM56NswuiExKM8AmzMc824LPXFzE+AEHiVP6OEAo8/CZ4ZY0wvjZvM+EJENCeoGjsFTcr663XFNxnkNoNHaSMP1Zo9e1XqTynceI+s/9Jl9yo1uMuVfqUycr65ftmv16Ly25Wt1uvU/bOTQIMmg2Ci3VrEg6sZ8p5mUoO9/fxzkLCHGjjnHj3XXsIEqQAa9ckmgHyqCZJWOjZkMLHHHOkwtf3UsQvU7X9i/d3/3N4h05qc+eTan98by1+fro2PXZLs7re8dE35de2tbbeMVaF6+rVJPvS4sc/pa3dz9T8iDvUu6C3Vvy8yPV1Qi8IDTLvBcA8Ssg33njD+jOsUfbEgTZIEBvJxFkCEWsSfyn9Our3qF+1addGDS//Um8+2Ft3XfaL4n+d4BieQR/jBx6jmAn3qm3P9lr59PPa9Orje+26f2SU2j81XT51tVp1/UhVI2Xbz+YbHKKISR/r95yjFdtqo269NkUTxl/XyOnC2YrNaVMLc+YeLDJ2P1/j/8TXDgP2QzzNsNI2mS8/iwwZo9iMw8S7zmFry7KNIY0RbWMX+R5eWpvkuKnXDI+IUklYlWJryVyZ0cCjjkGN8QvgsMnYAfUAJ5shhscF8GaCfUA+HlibrBwvr01Cuq/T1FSSPwxOWx1q4iwBZKaByuWAFAtjxJapHaMWbyXj7lS/29Z/pGlmiSv35/AYA2IZdxsxg4cJebgJqOgHawSAZnq5+Q6Xny1u+2B5HWGlbbJ1yBBiTk1vI+/L2LJ+TC8rhBCKBTP+l+/gwcCoRWLpXnuRUXHK9M7Wxsp0Lcj7W6uzV6isplwRARGKDY5TkG+wRrYbrZAMH9VZ4ld5LkCFZtt7eMJZm3jSTfkhQAAQYV5mEC+Uz+K9beWb+B7jcqCN59tyT0CG4KkwJe/sM4AwxqCpxoAQApTbxgCiiHHfsDFd63d669F7O2nun3u86qecVqOuKdmK9N6pIJ8iealOIfGRSu5UoR114cqP/FWVtXnqFNhR8XUxysvJcik7kG5C5NjOBAgP9hjnqLmmOX/4m+ll5/zk3LIZXIw1z2NsDqRBPjFWtkb9b0hTMzM8xqZTkh7khnhtbJm9SdiG8X31Nddo5AkXaucjt+zVOEaCHXP3o9qc0VGVdUFKr5qrnLjPlVQeraWfLVZgtY+rRjrg1sxyzDsBslibNu8se4BEV6aXnSzOnF1jxoyxjgsKnwMNRwCkOEmRWQcAWpMgY0zZv/TPs0H6sOYAV+Y589XsOdKKTfKurVFh21iFbS/WhnvGqXJXQZPLJnHENYq+8hJl3zdZ2XOds52Hp7ZXy4n3a3lllm6/ZeLuZ37wwQcuYtOUMrNPCIXiTDTDnpDMMye2eGvI5gMl7+kcscM2FRFnO2sBosHcn3j/IblNMhY7Be86nmP3nXr+OZercsbHyvjsDUE2dZz2gqpbhqvgi1+09bmpe92qqdNeUkiXTto46QoVb9m018+7P+ATEKj2D76sPqPP1PS3X29EOLPHSQ5pSzLHezslrsO+mzBhQrP74fRB1oGNVMVewbFjepQhaTkrIBI8FWshoWE6e9yFWvJXO7WY+74K32s8psjUk299ROXB3ip85SVlftN0GUPfkJD6vAG1tVp+7bmN1CTNefmA6Gj5X/epyvp6q85/pZZ8+JfKykpdRDN3qplkDmKKRHpOZwxz5RSm1Jz+uD9DCIfN5kV2j/3hmSQyKDhYXUb00tTFt+nU0Fu1Y/o0hfiXakz4NcqevYcUcfr9+NPOV/zYG1S5q0Q5T96hvKX18fxOzUWuPPKKCv+Yp81P7CH89uX9+CxrP+boE5R06ThtqivUnB+/0fjx47QzM1szPv1ANeV7ksRy72NDOsWrEz5ysNSx+/oe/1c+fxiwH+KZJu7MFnuEdweg8tlnnzXqAYcNngoTwHDxYrzaPJEwXFwssOClZWUuCXCFJe4FjxXGOMYLnks8bAV+ZXpp0wsK9QvVaUlnqltgF2V5lAxC7ovhBhgxgQqABC8XYNUE5lzKyLVMjytGv7vmvG34D0a2eCfgyIHCOJpySuaDWGRiS81Yc7zWjJMNTOCV4R2dsvi734/xxuDioOf5eHK2BeQoxj9GQSX+Ki5s7BlB/kh/GXdTqteU/B3QyVyYUjgACkDGKUHWwfA6OsmQMTJZb+YY8n6sE5tygXWA4WojGFCZANbdeysoOEQZEfl6cw3JXryVXD1IydWDlZWeqMq8GNXV+Co+qVb9BxYpoGJBk7uetUlfbUqBptQAGE+sO3OP4GXC82WT9JM/AsPkQBrPdiophocHY90MNQBUcRaYZ5ObMLN5rfk3YuE3btqqxYVpiq2N0o5t7fTA7W2U2r5OQ1LnqK3/ItWt+k7FmzerLHOn6qqqFdt/oDo88IxmzknWruwQlcfOVWD7eWoXG6qegT2Uu2O7K1yBvjLXNq+40x6kT4TmsO7Mfcv5ijfbVh6QMw3FyYE0PIMknzIb44oyCo+5afBBOuAZApR5Njx1SOFt6iLWB5+HiGN9jbz4Uo3seYLSp12v6lLnON34oaPUcuJEFU1/VVnBRysnZKBKIxO0LfQTtU7NUdrXy1SyMV+ffvqJ8HbaPO2QYRhoAHvPRj1qMuNzZno27icIT854W1I3PGa2hHb7Mg8QrqY6ge9zR7355puNCAHWFvGX7GsT6JJZm7VgGv9T7r5fx8SkavPjt6u2vEwpdzypsrYxqvr6V+14relSaSlTnlJYz+5af9Mle01W1+Lk0xRxwXW664X7tWRx/bkEiQfhzD1l9pfs2RB/ZmI3xgRwyJlpa+wDCKwDaXgUbYQ1a4Bz0fS+40AA9NhAK9461CRuQu30oecqes1OrXtwT+b1iM5d1er2x1QXFabspx5W1s/fOHbfJyBAPV7+VNWlpVoxbsQ+v2Zkl27q9OTratkpzqoGADRDipokJnHM2EC26gjYBbYkgvvSOc4uFBK2BvGHfWmSkpx72IJm6b2O/bqpNm6AUtN9VPXWNSrenG59LqEF4WPvkG91jXY+eluT3uHQlHZq/+Qbyvn+R217cdq+vNruz5K0rt1N07Q9OlG/zX5TxUVFqq6uct0JnJWQbKZtiYcbgs1my3BXEK5wIK2p7PCMKySCp7OkdZd2Wtx2iZZlL9aIyll67b4+enjMTAV8Mkbl2U1L2939TBw1QbGjL5T39hytnXJNk9+LP3qQujz7qlZNmrBPahLPMYnrf7TiR09UcUKYfv2NpKhe6tS9j6p8+qus3dcKL47Qn+//0IDQp6IF82G7UyGVD9SWOZA5+7/w3cOA/RDPslOCMKSyeDVNzxfsISDQZoA7AQLAG0Yr3ymvqFJZeLUCQoIVXOCr/Nz6wwJghLccgwqPLQCUiwagOv2LIi2s+kAb9K2WZi7UeakjdXLcqfLK2VN6DKYTYIWX2WTRMSx4F1PGCTjFkCARjQk48VTyeVuoAPJyJ89Vc6cLIsSWRIzDnN80wRPgGE+6GTuIlBwggYFoJuyCJMEoYdwxTsMjorXTL1sxJeEqL6s3pDFkkFDh5cTYwQOPIiEwOFQfLfpJf+V8o7iAWHUP6qGwogCVlzcs2YQHEbBvSwoGEMSrasa7M8eMn5nsDHDIZc582Bq/xfvsb4NgspU443mQUBiNZogHnlVAjRlLy3rDcLXJr2xjAkFVHFejpTuylbmwn9L/OsL1Gh2S85QQniM/rypFJQVr4DkR6pjs41K1cOE6JZpjzjHybeCRMQTommCMMce7YSZ/Yu+x351IHVjrA5Hw4bW0eWCYb84MW6IYyBmIP9MAb6qiAGA9N79Qs7Z+qwcX3aMxXcdqaPxoZaXtUs2SX1X4zf92J9jyXEPxJw9X38ef0vo339A2r776fVN/xaVESB2+UWCrhRocPlglGXmu0AYAB3vQJBjchJotsR7kDfNpykIhidiXtrEBVB9oXC9nri2hIAQmoNQs24dnmf2BrNlsSA0BY8Qbezb2ASCBBHbkGoiMjNK540ZqQOqxCv5pnnZOf8Zxu7a++WG1GHycFl8xTBV5uYrp00+Vx96mkrZDtc3vN8V2Xq6FH/2t8q2FrkRxEH2mcosxgpSwSbTZH6xd8/zhHQHmtpAkSAdbzO++nDmc06Z0ne8DqljzpvyaElx4xcw68dy1rBnOfs+106ZNil64+1kVfPC8dvxQn90/tE1btZ36tKrCQ5T31L3K+sNe6s3L21u935yp0uxcrZrUvDJ2bS8cJQ0fpfMvOmP3MECSoJYywS53I+uAu9xsjAl3kpmoi88hpz+QesnMsVO5Pzzl3IEmeKJsHqSqSfZwfmPcu4mbowYOUpeAJKXfd73KszIbvFZsn36Kv/F+eddJW+6fqMJ19lxAIS1bqceLH2nzjBna+faT+7KcXBm7I048Xy3OPVexHWNcsl+TQGadYzuwrj0btg9xvTbizr0mD0RRwlxDQtmaG8yaNhQkFOeI5z0UEhKq08edq01zuirp+5uV+Z3dBnD/TsLQUYq/ZqxqN+3QurvHqrKgsUOBz8b2G6CjXvtA868dpey5f+zTuIeltlfkWZcrsG9fHTf0GL37zttKiG2tHJ8g1fls1pwPZrtk59gVZpZ77Ef2gCn5pwPcwU4hBM3tIGvWM6+C+3vsL8pJmjkFug3rrRcznlGnwONVO+NdVZTX6fr4y5U10x7KYOsH9njLCfer9aXDteWtz7T1Wef65oD7jmPGaNEVw1W8uflqEn4XFUXMiOvk0zlV/Y7pobfena7ObbrLK6dMT312kvJz/dXxikfkH7VBsQujtG3r5t3dhYDD3rDhE5wAECmH26EbgcOA/dCNrQvYOmVVBKhglJpGJgYzDLoJFDDciPeyedc95dHVMd5aWbNGoRmnq2dglSJaeSmldbLLGHaXmPL0fMTGJ+mnuZ20dG6MknusVUXK1/qu4Gm1j+qka9tdp8A8r92gBu8P37Vlo4VZA5CYlweGHu9pGoK8JwaGLRkfXmAMu/1tTWXld5fQM+XDGN/IKc3s604JuwAQgFAAJSA0NDxS6/w3qTAvTr1ieivKf5sLNDOXkAMmuGuT2llLfovQ+upCpQd+qoCEzeod0Vvd1UW7CnIbvDp9A1yaoLapuHSMU/pmZjgFEAE2bUm+DlQWz/jZAC5eUMCL6cGD0CHbNHvEJIHc9djNeHfCBFg7sOumBy82oYWWreuoBb9FqWvQby5vr3/WYhWsWaW6mlqR7CllyhRtL9mkpNA4tU9IUdqK5daya26AiOFmxoU6xaXznuxFE6gADpHFQyLZkvEBGACX+9sAjTbGG8IDssjMdQBg5HI1gRNgh3XDPJnx7hidUdEx+nrNd3p57QvKLs3U2b7PKr66v4YOKdLyaQ8r85P/WV+h5dipannKEC289Cx5+fqo5fCR2hg5SnO3D1R0/28V2WmuTos+Tbnbt7u8nRCWeI3M+cVDyJlhAkQMN0gRUwbNemZcnbL0I1mF3NqfBuHJmWpreGA4R5Bteja8iryfCcIggJBs2+LdPeXRyC4vvfUqRQ+MUfy20eoas007Hp68u1SQ2ZceL85QeU6e1t29J+Y5pFUb+R57pTI6TlBu7HyFtVmgv175Tcf26e86r/C0mw1fenvOAAAgAElEQVQvO6DMlIzjZeJst70nY+9Up5ozkbW2P40+OIVMsc6RAZtgi/OFvWfWOeeduFfNePevPvtJpe+8pC2f7kmERl8ju3ZXi1v/owB/P6278zoVb9rY6BUAf52eekc7P/lQmR83TATm9L4ukP/C+3rtz9l67+36uFwIXu4MzjvzrIa85T3NTPeAGjLMk9XcbJAxTVWU2dtc4EE2QRPfcUuDUVuY4WCAKUgU8wwH3KIgdJ8/5551iSpfecyRBIk//hQlTbxTFes3af29463xujG9+qjDIy9r3e1jlbuoaQWV+139IyIUNehMxZ83StmBZUrfuF7H9D1B7bq01m2TbmgwJLwnIBAlhmk7EPcOULHJp7nfUKPsb3Oqec9ehfQwk/xhI0LMmHkOUnt0Ul3LAWq/zls1H01U0YZ1e+0SJSHbjr1cm19/X9tffcj6+YTzxqjtlVdp6VXnqayZSeqCk1sq8pSLFH78idpctk011dXqnNxNFWs3SIX5Wn/EYG2u+VBVv5cqPi7WlcyMverZ2BfsAbMGuvszfB5iaH8bChZbGAl2LkSfZwm9qKhoRZwRp8eWPKCrIz/Vp/cP140j5ynq0+aPibufVJhofetjij+uvzZMu1NZP82yvkLqvS8qok2yFl0xrNmvGNG5i6KGXSXfnl21attKJSYlqlVQsvIXLFDx9++rKuUEvZD+iJYu8dZ1//lDC6Nv08klp2rtn3sS2kHacw+b6g13JwitYq8cbodmBA4D9kMzrq6nNgUc2fiwVGZcKx4xQLkJtPD4AfxMeTDggUMacBYUGa4/q/9WwdpeapfbSR1zX1bIsWco8cgWWrliufVNk1t1Uv43P2lVThfN2XKiquu8lXLaZ5rv97jaRqTqgvgLpdwK13cBHu6s9qan1A04zFhSDCKMYlNKRp8xtJ2yxePZ2d/ybk7AEY8FB46ZeA2PDQDRlFniCSdBHjJWc54A8nhniVMNCAjUpuCdSttaqt61Y9Qy7yvF9OmquqCyRomy3JMQ5ZOgos/fUG5wf1WknKQNIVu1JuoZnZx0mnr6dlVuVsbu+cJ4Q85pA6msC2STZkIuDlW8G0jmPBv5AwBjTsm4kOby3vvTnIAj88wFa64BwCT/ZpJQvK+7ZJfZD4gc3sl8Xz7Xu08/FVcEaPvnM7XllYdVvKmh5K/F5beo9dnDtLI4UYXB29WmTYlO7nC8tm1Jt2blb6pmPADclviRhGEYo6aED8ICT6+tHN+BEFSAWtMr6x4z1ihrwDQ8WAMoXsyKAbwvJJAZCgB5AUia9fePemn9i/ph0ze6JOoVLXx9lDale+mF59aoXWK50m65SrmLFzZaOt2ffs+VNGr9/XvidJNOOFlZncbruy1DlXrGl0rptF29/Y5QbtZO11rHKDb7h5LIvQ88fwTpJEoeQJkJ8kl4BdCwKSkOhChh7gHatsb44YkwARJnNN4vE2gBJNkbpqQYcpHEdXhVaeeOGaleF/VTyYoh6lDjp66ddqmitExpN12u0u1bG3QlIDpG3Z7/QNveeU1Zsz5s1M24sf/V4uDrVdnlbQV5b9DnD83Ql1985gIAJrGG9JZxB5R5NtY64IAz1bNBRhPX65QtnvN0f2NMMcRNgoDf5myHWGMteDbUSahIIBDMkmKsL2qce3qGrx13g85sfYTWTLlKrhpLRos9aoDa3/WkcpeluUpY1VZWNvhEVPeeSn3gOW2463rlr1i212OUPAPxF01QScs4zV/yp37+6XstnF9f7o11Qd/MGF6ACvvU9Ori+WMPO4EYzn28j/vT+E3zLuE5EH+QPKb3nr2FKsSUJgN28FK711Jyq9Y6IaGHNj04UZWFuxy7lnDOFep55x1a8fTz2vnOU40+F3/mSHUYf6MWXHKmKnIbEt7mh5HPxww8Xi2vmKickFoVF+9SrE+MqtdtUM2KOUq4apJ++GtmozsS5QZ3lWmzMO6c+baqBagSKUG4P40zywnsc/9AEJskFGcG5KVn8jzu8/MnXqZt67op/MOpypv1VrO6Q736VhMfUocLhmn5pGuU+fuvjb7X7vYnFZbSWkvHnr/XZwbExCry+OFKHD5C2f4lqqutU2RFkIrnz1fRLx+7ypehZKm4+kOlH/mJgpcFaP3iVa4M+Ox78+4kkSJja6uCxPgQrrA/jbvRKeM5CTVxTHnaMm07d9BfKXOVXrBeJ+yYrR/e76y7T3lOJW82JH2a25egxCR1uPc5hbRI1MpbxmjX2tUNvurt56fer3+p7d9/3yw1SWhKW0Wefqkijxuk7NpcBfiHKqK4Ttk/fKviP79WcXo98RjVradWHfOZnnilnU4ZnqeCM4ZqeMT5WvrpvN33KrYK569Jcro7CNGBfXG4HZoROAzYD824up7qlDGbgxagZQJHYsvx+tgAJcaRjeHG8MHjXbCrUFvDMrV0Y6n85o7W8b5Pa8tL00ScStLND6rYN8/q3QuvjtaGSZfK299PAUedp3m6ShnVHZVw4kd6v2isbuo1WUd791fhrjzXO3ERYxyZRj3xWhhqphfGLXM1jUD+Dkh2yuSOMby/JVHomy0pnxNwbIpUgBAxZdnuWu1Iy7lUvRICtaJylSoXjla7rd+o6LXxij1rtFpdd62y8xrLlfz9gxSUUaVlY+vrhbY8fagyuk5SbodgZSa+owGRA5RUHqfiwj3JjRhbPC2mlJ/+AXBNOaITIcLf8bw6ZS0/kDh25Hu2BHl4Dvm7afA5AUo8rHiiTSkzfccgtcW7H9Grr5YUpylvTWd18duu9ffc0Mhg7vLo66otKVbZ4p9V1OUylfTspqj2y3RWp5O1aeN6a4y5uzyh6cGGUAAI2MAwnibTC9wUUcJ6gqjbn4bH2SnzP/uLs8HsOyoLDEzz76gDIHJMT5GrrnlgiD5c97Hu/GuSLmt3h3Z+MFXfzQrQ+Wfs0CXd31Zwh84Kio7QknEXqSxzj6zVLyxcvV77VJtfelyZP9fLi90t7qgByh7wsLb4HKvY4z5U98QY1Wwtcp0vEBy28oBOcel8HgBmyoEheJzKxrHvnUDl3uaCcmeAPbNBbkA2mKQX5yMkjul9AEBBfrInTRKU/YSHnbjBrt16aMS00SrMOFLJGSlKXnSrSrZsVpvbH1XJug1ad9/4BgAzolMXdXzwea25Y5wKDYOPPgfGxqrughe1IfJEtTz2I3352kdqE5ws5ONmXDpGGucphIkZ2sT/7w738RwLiBPuOZt0HYkvCcr2pwECbdmh3cmQTOk+a52kXIRNeDbOU4CAmwxx/9srz05X6Mzp2v6t3bPF5+KHDFXLCbdq+/R3lDnj1QbPjT9pqDreNEXzRp6qqqL6Eoa2hrc+6pyrVdampTr07qC81RkKLM7XqtoyjR9Xv644e1ApsI89G95yas1zBpl/hyiBXLE15tAmpW/OPEDa2MhGiDLIA7P8H4Q788/a9Wycc/TBnRzvyjETlfPwVGXM+Wmv3Ui+aopSRp6vtXder+x5fzX4fJubHlR4Shstnzi6yeeQwT9u1ETVtI5Xz749tPrHBcqd84uKf/9chWvr5fZdn3pPCccfoUcebFg+kb6jkDFLqOHEgBCyrUsICuZqfxr3vRP5AlkDeWCS4ABK/u5JFsbExqnj2cep8vuOivvpauVZSFWn/vlHRKrtlCcV3aWDVtx4uYrSNzT4aN+3vtL2WTO188OXHV/RNyRU0ceeosSRV0op0WoV31Lb/16mnV9+oqK/v1fp9m0Nvht3xyf6u9MOJahEK2YudEnQucfMcDtiqQmzs4WacR44Jabc21zgFDOTU7q/Q+Z6yAPPu7PT8T30buWbahHUQT7vzVJlRa3Ghw5T5o/OORf21oew1A7qcO8zqoG4vvUKVRXvyQJPCb5u/31bGx+5XbmL5js+CuAfMWSEok4+XRGdE6XiOu1asVq5X7yjgiXzVJlfb9N7tsCbZ+uW509VSttadR43VcnxJaqdU6lcjyoNECUQz7ZStQerMsLexuf/6r8fBuyHcOYxfk2PMz8HA0osjOlZdAKOfJaD34xjxnONwYG0zDs6UBv8tmjHnNPUJXueSl68fHfdx4RThivx+ltUUL6jwdsGh4ZJq3IaxNq1vugqLYiYojWZbdRt9Buq9tuszv6dFFYY4PquO/YTb7Qpm+VCg30242L5O4eq6eHAe423yZY9GwMLr+z+NH7LJk9DBQDANsGUE3DES43SwQRlyIMhHJCKhkVEabHXCuVvOEJJq2oV9sNNKlhZr2ZIvuZOtb/mIm3auLLBayS1bKstr3yoHW/uiYdLOvEk7Tr2Qa1rsVNlST/rtIhTVZW155Bm/um/KWOmH5A5pjoAySl/N4kSjChIIVu2djoJwMFA359mk7bzHC5PwJRp8GFMM4YmUKHfxDGbfydJGJ51M4ykTdtU7QzK1m9/1KlqzRCd2WmWgiNDtPi6C1WRV38p+QQFqc9rn2rTcw8q66/fxYXoe8J4ZfY7Q22OTNP5Rw7Tb7/+1Ej+7jnXnmPitIf5O/vY9MK480fYchEcSDw1hoOT5Bu1hOl1xgOJTNOMK8UTieFp89ajBpo1/wfdt+IeVddU6fiiV/Xinf019OwanZP4rHJeuknhHTqq033PqWD1aq2btsezENauvbo9/KJWTL6mkeKB8ex45bVa3fo2xXT2V4fkbcrJzlBNdZUrIRyGk0m8Qeawh03vO38HPNr2NnvYlvCP85O9sD+NEjaUezIbBADeLVPezlpH3mr+HuAYA9D0UrPX8eK7z8Cr750gv/atFb1+ojrvfFw7X66XiFISqBUJm959Qxlf7omXjB90vDpPeUi/Dz9BtZX1CqkGhll8gtqNHK2iXmcoo3SDCqqjVFi7WJMuGO8ij8xkhJypeLPMiieQmcRHmzGNEELIcm1JoZD/28p8NWceUHrYqkYAKLkLzQRdjC0J8AAyng2PMISw5987duysx8fdo3W3XrrXbNeJI65V61GjtGHazQ0k2K2uu0thKSlaOfkq6+uwHyLOvEyBffuoNtxXQbnlyv3xWxX/NUtVhYVq+/hbGj3pUu36x5iG/GOdmmchf4co8VTiudUETuEGgDh3FYzmjLXnZ/A42uqvE96Bysz0LuNZ52/mece8A7zcf7/89Mu0+Z5xKtm6Za9dwjPeZtJ/1OLoo7R47EUq2bbnO71e/lgZs7/Qzs8a1o92PzT6iF6KHnGdgnt2UR0Csm3ZyvzifRUu/LVR3Hzc0Et04stPatLEcQ36RD4aPIvm2oXQRMljq/8NQWerwLDXl5VcdoeZXND9PVQXDz74YCM7h7OH/nmGcQ0acpIqoroqZmmech8aLqmxcqSp/iBh73z/86ohod+ky1VTUX+eBMbFq8fTb2v9Q7dZ1SRePj6KH3CM4i+7UQGd2qg4I181GzZr18w3lLd0iWMpssjhE5R53gUq9PteWbO36rjjBrlsZpMogRTC/rGNL3J4U0bfnDHnM5xdNhUPhCWKJ7LQe7ajRg3Wnctv1lkRd2vJM3fq9H6rdHTOzdrx/d5LbzbVJ9Zs6p2PK+OHH7T1lT3hVcSgd5r6hBZdPUIVuTmNHuEfGamo44Yq/tyRCu3SUnmrd6h8+XIV/fBBffZ5i3LI/ZCIi6fpgT/uUl6ul0Y/+IXWhL2gfmv7Kt0jhIL1hdPEdrajCMG+ONwOzQgcBuyHZlxdT4UVtMXBkD2Yy5WLzrM5eeFg0jmAzYyxAE08lxvS07UtJEtLN5crdtGZGlD8oNa//XqDZyeOHKdWY69UVtZGFyDDWAmLjNP8Ox5SxoyGtUdT73hRc2pHauBx5WoZtUU7PJJO8FB3CSbTmIbZx4tklhrD60GpL1PGjFeMrOG2eGoMXhK67E9zqntPPwB7ZlgB/YBYMWXMqBc4lMy4fDweGLR83jchRLOzf1Z82lQdufNBpb/0yO4u+wQGqc2kh9XynBOUvytHpeEVqvWpVURpnLZOvF65Cxuyo11umaq8XmPUrm+Rdm3cppKi+lrV7uYORzAJEYx+mHaznwAtAL7p5cK4cIqnZoz2pzQHxpxNAULf6Qdz4llTngQrAEoAomcyP/YFniUz9wOeSLw5AE0z+V/7ft304fw/lf/L5epQ+60SVjym1tfepsI1q7XmgUmu4Qtp3UY9Hn5Jy269SqU7trv+hkQvaOSjCh42SFHxW9Q9pkMjjwXeb9aHqQShP4AHM4Efn0c9g3fUs3HZs6adEm5xye1P7Bdr2aaWcFLxsPfphwmwAIbIN03D253A8OPlMzV2zuW6uO0kbXjxUc2b661Hrv9FUT+M067Vq1yviiHRfvLD2vre69r5Vb0MO27A0ep02/36/dyGXkLmP27gMUq67Ga1PLafdixaoZ0tEhVfm6dd+bkujzOKCvPd6CfngulV4fN4v0yPE4oMxsJWKx3PIOTQ/jS8Pk8//XSjr2KwQESS5Myz8XkMfjN+HSOfeTcNc6TpvCvS+pNPPV19rhyoos0nqvXmCkV+P76B15ySQClXjNW6ByYpf/lS18+2vOJmhbVL1aq7xzfoh194hKIHnaGWF1+ugLZJKlu/TUXlkVpQFSDFf6NePj20aMG8RqV7AAfscROU4NElt4YZ04gyABLRlj2bhE1mubvmzgGGuK3qCnPBvWPOCfHckJZmP9ifeIo89/Utk+9W74wSbX+reUnLWo+bqpQzT9X8K89TWWZ9CFPPZ95V7refavvXnzZ4JbxikaeMVPKwYaoO9FPZ6o3K//Id5S/5u0FCrza3Pq5Xl/6o77+r985Bxj322GONCFZUZIyjuT+4kyGHbAQVZ/7+GNPYGCSQszWS45Gw0Pw9wjuIXzdJWj5LvyHvjxp4rDqWBWntndc0d/pFqEeHqU+LqK3lN17qKs/pHxWtI595R2vun9RIPozSJPLsMUoeMlgV5eXKX7BEhbPfdQEXM5zB3Qm88D2fflPPv/poA0IE1QzrCPLCMxcJhBAklBk37n4ennfuhX1tzDFzbzbuHpQL5hkDgQPQNOuDH3POEBWXDVTC9zNU8MH+yfMjOnZWx3ueUtbPP2jza/WOhshu3dXlnie1YMx5jdQksX2OUtzFE5R4dF/lbd6h3F9/UzGy95V74qGdxqPDldco87jrtTD4VQX+4avIiDCXvN1MaEZVCAhQMxEgz4U0B1zvT4OU9IxRdz+DvAGMuWc/KJXX5pwOum/RFI2N+Vjv3H6epl0zR14vna6asrL9+fkG34k/+li1mTBVm566V9nz6ktEJpxxgVqde6EWXHVeg8/6BFKi7US1uvx6xRzZWZmLVytz9tcuMtAMD3TqWMqIi/XE1rc0d66vxt6/UIvib9CJu4Zow/w9snxyJ0AU2pIXQ/balGcHPBCHH+AagcOA/RAuBIxHs8Y6P4fBzIVlXnJ4lbhwTUAJQMTgNFl25KH8ho9fgH4sm6OS1ScpNT1Hlc8Pt7JoLcffp8FTb5CvV5XKK6u1fUOu0q4fvdvI8wsNU/Sg05Ry5XXy7dBNayvnKDmkhQpW7mwAkpBhA0CQI3k2J+MY7xceATNumgMXT7jpMeWZgIf9jYVxKi3mzkBtJhEDUOLN8lQMuBOFmZ5IvBcANYwfLvDcmFLNT6tV100dFPLFlY2y2AbExir1zqdV1e8offRxlcJr2uv8o//SyuvP282OBiW1UNRJHMLnqqZFF62smaljQvpp7ZqGnnm8d3hUTUIErwlxXGb9c6e4aSfFA+O+v/WpOcBN7xvPYxwxEk3PLbJnLlsT2DolCgOMAdTM8ISWrVprW1COfvkmWrVpiToua7y2f/eNMNQ63fWYdnz4P22b+ZkrQ3aHG+/R3EvO2r1kqWXacsytCu/eTRn+cRp6XGv9/POPjZQgECJ4hMx1A7FAf0zlCESEO1zC/WMQERBAttJZfGZ/Q0Ag8dx16D33IooMDAxTRujk6SfUhT6aYAjvka9/kF5b/boeXXC/rov5RB/ec45OOrVWZwXco8w3H2xwBiQcc5zajp+iVdNudgH55IvGKrx9R626f0+5JuJ2Ey+eoMjuXVWemamt772hsDattOusGxQVt1aVWwtdIJZ1ahoF7D/2sUmgYDSjiDGJCNYNCiVbrowDKalH3K4tizBed/pieuEAMHj/TXksxBQeInN/oIDhs4QFDBt5vqJGRCt5xRPqmfOStj7b0FvMBLQYPUFtzx6qBdde5MoI3+2RV1Tw0+e7pd3e/v6KPXqwWl05Ub4JcSpYkqb8z19X3rLFihvzkOYGXKJd/W9V3KIYnXLciY1k8axpgIqZWR/PNioUU7qLAoH9YqspTy16kqPtT4NAsmVB5zxGlm2ShtxReEXNPcIdy3rxVGI9/dRriv36Y+34vmHohlM/fYODlTr5UQWGh2rpTZeL+7P38+8q7Z6bdiekA2BGnjBcyedeIL/IcGX89JuKfnhfecuWWO/oTtffqvITj9cF557p+llKB/K+JvhgzaA0MGOY2e8oHmyqGwgKpxJhTc1FUxJhPLqoFDxJZPYVINWMIYaAQtngliqffPowBc6a0+zkfO4+Qr52f/B5Zf7yvTb972kBJrve96T+vvyc3d7f0DYpijrjUiWePEQ+Xl7a8tVMFf/2uQrXNczpYntvEge2f/wtzds4t1EZUvYkJIUZNw0xRJiHmXiP5+9vfWpsEtOr7NrrLVq4ck3YKghwLnkCSj9/fw0bO1KrF3VXmw+vUM6fv+zPtnN9h8R+qTdP06YXH1bWn78rYcgZSj7/Ui26bg85GdWth2JHjFVU7yOlsjJtfv8dFf39w26SvDk/Tsx1+WXTtbD7/5S0LF55O7Jc+8AkIrBD2ds2pdOBlNRjT9nuaVRQEIaQlO4WF5+ouhO89daa13RlwDf6bfoxuuboGSp9viFh25z3dvpMwpkXKPXSq7T0lqtcSpR2N92vuoJMpb+xJ9QCYrzFZTcpuF0blWxIV8ZH/1PBkvmO2f2dfgsS5tfUL/TOl+104dhNSu89SifXnqq1P+4hWrBVINNtpAYOH8jpw+3QjMBhwH5oxtX1VC5Pm/cYDzVA3vQ4OwFKPIsAG09JGgYtnhwMveCoCL2Z+5ZSNzyu7tveUcaLk61vRSxRyq2PKvrCAfpf2gu6pHSE0saPUE1ZqWIHDlKbq25WYGy0itKW6Neyq7Wj5bNKTfXSEWXdVFK0JyEMnim8/jYvHV4kU+oP0AKgmV4uADlyeFsyG7y8tlJCe5suvK8myHZ/Bw+1q/RdefnuxzgBShQIECimdJwM2wAhJEGBQcH6y2uhfLcOVYulS1X8kt0LgfHQcdqLKq6OV9X21YpNDtD8MefLPypK0ccPU+vzRyowIky5P3yhgh7X68/oV3Vux9OVk1bvCXY3xpF+mcYnoIqYUVMm7ESIIHtH3WEqCvgd3s2M69zbmPPveFJsSXecPNQASn7HjEeHGeffTLkVoAA5txli0qvvAH217RvNfeUSDQr/SuUvjtxtCAPS20+8S2v+c4eCOvZWRKfOWv3InSJTdsyZo5Q4+HjVVlWo6M9vVXvSGHXqG6GyvMYl/xhHjGZTUYInnSoHZvgFQBMgb2YTHjFihGu/2upT8yzee18bcf7mvPMMEvqxh0yPM8AcD42p7gG8ALBMMog9sCM7RzcvuElr8tJ0dsnXevW+Ppo0drOOXHm5Mn5tbAAmDrtYKeddoIUTLlX7m+9X4R/faPv3sxXZtZviR4xVdLeuKty8WVkfvuSSRtZWVSqqx5EKGP+GAnvvlM+2cpfs3SkBJ6ARwO5pHDsRIhCLGFlOYQOoTfD272tjvmwlBynNxtluepwBkngXzdAVVFh4LMx1TXwgRCf3xyW3X6WILn2UuvNstVp0i9I/eq9xd7281O6mBxSWnKgVd4xX35fe0/I7J7gM5bijBqrF5RMVlJSkzN/+UP7s6SpYmbb7Ge0uukTbBzynHS0+UvaSRXrg+qmNwpE4YwCJJonKHURcuem5JQYU1YMtFhTD13ZW7G0O2DdOiUjxNPNbpgSbvUnfPc86CBXuXtPrOevDH7Vj2o3KT7MnaLX1D1lwl3v+q10L/1T2L7PV7b4nNPeycwSYjznmZLW+5GoFxkRp/TvTVfTnLMfa1+5nI4OtumqSxk6oj8XGawuJanpvIUJQVJmECEQI5AUKB7MBlgHz+9pQwdm+B2HN70DAeDaAOYoRyBzPxtrBlnE/68ZJd2vH4w9p08eN+7q3Prrqpk9+UOmv/Revk5LOv0JLbrrCVaIt+uQRanH6GfL199OG115Q4aLfm10L2/27PV/5TPkR1frk44aVAlANzJgxoxGQJyYfoGyz9/g7a3BfG4SgzZbhDCfXBIkAPRsEOGvFU2VCQtzTxp2jdbO6K+W7y5Tzd8PY/33tU/ygE5R67c1acss1IhGgV1GW0t99TeHtOyh2+JWK7dtHlXn52vHOsy4ysLqkvrztvjTf4BBF3/mVVh45V3UrSpS+YK2r8gGeW0+nCvsY8sSJhGIv7M/ZDjlgC13DscNveuZlaNU6RVt7b9ec7T/p9PyZ+ml6b00+5gmVvd+YVN2XMTA/2/LyG5UwcKAWjbtYvZ55S5teedx1d6JqSxp1vcLatVXe0hXK+eL1etn7frawdu20dcgMPfhqb50+vEi5Z5ym0wLP1Kqvlux+IvYQIauMk9mw09gjh9uhGYHDgP3QjKvrqYA902jn7xgsGPqmpwADFZDvKWF2Z0A2PTCeSd5840L0R9mfarFuqtovu0Fr/+ecACQoPkGpU59RxeBY1by3TIU/fKCWo8crOCFeW2ZMV86vsxXRuauWd39TRZ2WKzfxA41NuFa52XsSSdEnvIum98sJyAMeYIXNQxBwyIFqq5O8v3JVCACnRHZkDsVg9pSzOSXFcwKUeOuQniFXI359rvciRW8fpYRF07X1GTtRwpyTZKjL5GnKmfub/MKjlLvob6WMGiP5+GnTy48qd9FC+cpRtDMAACAASURBVAYFyffqDzS/3WoNG9helasaSuLxLgHam0uIoORg/ZlhGVzsqDtsSUNgrQFv+9rw7tsuOeaRUAm8BZ4NMIm315R0YoxARpkAxglQdhvQW58sWKwVH5+j02pvV+4HDevkJgw+SW1GXaWizVtVtmq+qgNjlXzqqSrPzdfWt552XW7+4ZGKu+NdJZwZrZTgBFf8vGfbV0LEKTYfUAPxZvPCcAkCcPa10VcTZPMM5hHjwnwXQCBGj1lOEWCOtNn0HCEZ/3v1Et297C6Ba3uufV+vPt5K0679Q1GfnutoCLceM0lRHVIVFB+n9S88pohBQxXXp5dyl69Q5ievN6rX7hsSoqgpM+U1uFyJZf6u0oZNESK2nBiAb9PAhSiE+LOpPxgnSDyn8mxNzQUKIFu4E14H9qeZgApwjyfIXO8ASogrzyRGzBvz4O7XxKcnq8LvCLVY2Vnxsy9U0Xp7SSZKAnW8/T9S3laFdu6tdc8+pKSLxiqyXYq2zpqpnO8/s3q6SEy67bjXtTX1L1XnLdCzNz7mIns8FSUQHxBDZhk8xhZvuhmbj4SavwHmzYYSy0bS7m3t4+nFs2Nr3CEQOZ7rmruFvWaGmhCSxj6EXPZsP3/yi9bcdrVLoQCJVFtZ5frfpmI++T4ewe5TH1P+3J8V0K6rMr76QG0uu0E+oSHa/NYLyp33uyoL9iQQbeo98WLGT/6PzhpZH6rhRIjg1UaNZGZhJykWhC7/azY8lJ7Zw/c23u5/Zz17ehXdfyfUBI+zKYFlfpl3s+QY64E7yf2sKy+ZoLynH1DBqjRXzgDPMef/31ujTGf78ZOVu3SJvHZlqiivVK3POV/VFZXa/CqAZvFecxE4/Uan/7yums6xem96w5h4kr1x9ph3HeCF97KpBQlrMZMe7u3d+Hfm0BZCBSjHy2nGWaP8gyyBGHS34JAQnTNxtAp+b62AWTe7pNHmOBMaUPPP+NdVV++1a0nDL1HSiUNc+yNr9gz5teulxGOPUdHmLdrx3ouu+TyQRpnD2Kmz9F3rn9W6KEAbfl/lWresJ89zEpKWvzslsKSsIOfWvjbUUWYJXZ6BegEi2dMWb9e+o4KGhKuopFAtMm5Q2rIAndtihvK+/UC1lWX167qy0rK+95wvfKaupqbJbnp5+yh10v0KDPZVWEqqVv/3fsWffamiu3RW5h9/KGvm9H2ux277QeLfCy/8Qne/fJyOP7FG5SNO0WlRpyjtkz02EfYQtjSJ58zG+rOFiu3rHBz+vH0EDgP2Q7gyYLpt5YRIwgVrbXo4bdJsDiUOYlPqB2iEseZALwmrUmhoO4WXxCq4eKsKt2WourRU1WVl8vUi7oHLsEpeVRVSdYUCI8PUadQoBflKpTl5Kl69XEWbNrriwWj+YeHKT7lAFXE1yg//TYOiB6mksGHGW4xME2jTV0CHacjiFQa4mZJt3gHwb0sQhycF8LavDSPT9Py7n+GOmfZ8JkYHBIopzebgsakFMNTJBI1njNrr3olBqsztpKj8NO3asl3VpWWqLS+Tr5+3VFWhuqpK1VVXyKu6UmEtEtTlghHyrqtR8c4sFa5YqFKjdql///O1M7pWKa195ZuvBt5YfhcPv3mZYODzb2YoBcY15ITJ+jNHeGfM0oGMCwBnf4AjBrgttpQLEwPDnBN+gzE2DR8uA/psJg9D9o9XzFSltOnbUWtXBkuV0UrO/VXF27apzrXOK//5r0Ix3bqq8xknq7ygSKXZWdq1dL4qd/2jGCEBi5eXQo89TwFdQ9UiNKbROiXuG6PfXKeQUKg1zFAVSB0UB2bGfIAC4NqWvAmCCAN8XxvGtI14wWjGg8g69WxO4TjsAUJWzJhTSMSZf30r72B/+fj4qirnCO0qrFObssWqKypUTWW56iorVEd5q3/WOmvep65KLU89VW36HqGi7TtVsnWzilYtV3VZaX13/hl3z76FHD9KBfHlSvINUFVlpWsdIrU1czZAWrHWzWSVEIC8g6eCATUBqg0ngMhvsOb3tfEdGxmLFxrC0KyFjTSbZEXmfPAM9q/nmoDIQhnB/uB8vPS+q9UubKyODNwm/7oKVRYXucbb9V91lURSuRrWe4X8gwPU7rzzFJMYq+IdmSpev1JFG9bvTkBqG3ek3EUdRqo0IV++Xjt1bNcBLimue9xRLXEeQzjg0fJsnEd4TU0gyD7mrDRzUfBd9tL+JISCfDIzo7v7QmgIyiFPwAThwTuYpcw4jwA1Zp3md5//WAlxsSopLJQP4Tz8h/iipkq1FZWqKa9wgR33Wq8/Y+rPmpC4KHW6YIQCggJUvH2nCtOWqGTLJtfZ0uxWVyf/8AgFDjpVn8ya4QpD4ywB6JrSd8KjuD9NBRjhO9yBNvKUM2F/aoIjDzZ/n3di3SLVN6XK2AZ43Umy6Nkg/3gf91oZ2G+IenburpryKgEUayqr5F1XJ2/Vuf63rqpK1Yy564yprL9LOdshUf454yPbtlKXC85TdXGJSrJzVLj0b5VnZ+/zuDeYp7o6xZx4lnxaRGnx4kUN3gFilfPWtGWc1JF8GZKUs39fG0SYSbjyDKfYbfYh5xL14j3bTbdNVlGJVJKdp7qqWnnVSd61dQoNCnGVhVRtze5x96qtqZ+LsrJ6oPnPuLvGe/e9WqHEowcq9fhjVJqRrdKMDBWmLVYVOXc817vljG90/nh+5p//mx0TPHik1oZtV3Stt/I2ZbvUVjaS1mbTud+dO43zaV8bZKOt2g2qBmwmUyU1ZcqdmjtvnnLz8+XvF6DEpGT5B/irf78BWrZkharKWNfY4V7yrpXCQ0JUWlTkmgefulrXeq+rrpFY7xXl9bkVKipVy9nyz1qvq66Ur5+XUoYNU2L7FJXsyFBJ+joVrlutGhSjB2HcGScSO1Z1v0A/LmynVq3rVNf9fbUPaaOstD0Jq7GHWNO2aj3cV4D5w+3QjMBhwH5oxtX11H8LsHu+QkpqquJj4rVm7VoVxJRJK7sqbOt32rVhg+pKS1RbVqTwlgnqds01CvSqVWVZpYpXL2sCsP+uQdHHHgbs/wyyJ2D3HPfevfu5YpnXlKWrruBIxaV9rbz0naopY8yLVVdWosQ+R6rD8KHy9fVReUGhCpctVGlGw8z9/keN0M4YALuPFbADwk2PqhNg57ICvPz/GbCfdPIp+nHVGoWsK1HVplUuT1ZtWalrzGtdY1+kdkPPUvshg1VZWqqy7JyGgP2fSawH7GFqERrdbGKpKcDOmJuADgIKYPH/JcCOksbl5fHyVkFtV7Uu3aDKklIXeAF8Y9iRPbh+zBnvEtWUlsirqlRdrrlaSamtVVleqdJtW1S40gOwW85dE7CjzMFAsgF2iBvP0BYeB1CA6Pl/I2AnxGPs2LGNwllYI5BanqqLkWMv0eVn3YqFraqiEhdoJLG1qqtVV1HhGv9axp0xLy/bPe6s9aDwEHW99lqFhfiruqKmMWC3jLsJ2I/p0t8FaD2TWCJ/xvNkevU4jyCaX321YXmzfxuwcyZChHsCKWKpOZNNDzukFfHuGJ2RUdH670Mvy9/HW6GBwQrw81d5SclusA5odxnSZeUuEpwxr3GNeanqdp8zxYrp3F6dLrpQAT7eqigurQfsRrLW5pgakOVuwM7nIZsAHmZ5tKYAOwSiLYPzwQbsrFsk+WZNZqes6RMn3SF/H39t2rBZ3rVeuwFMcECAaqurXR5bN2BH5s5aryotc50zu9e7+5wpLVZdebFaHn+sOp55ugvwlObl1wP2nMaZs5sz9p6fiTnhTHknRWrJkoby4qYAu63iyaEA7CjWUB+ZCencgP2LL79S/6MHyT8gQP5+/urWrYdyM3OVl5Mv7xrG3Q3Yg1VRVu46VzhfAI5eNTUuwFhVUlJ/tgPcXed8icuGcZ3xpUXqcPFFSunfW5XFpSrdCUG1WFXFzmUM92X8bYCde4gwGvNO/X8DYL99yh1asGChsnJyXIDdz89fScnJ6tdvgNKWrFBleZULqHvVernGOTw4RKWF/wB2yCnVukiS2vJKVZXWj/ue9f7PmJcVy0c16nb9OEXHRKimqnYPYP8na/++jLHTZz0Be+s2daruMl2dwlOVuWJP6T2IQqqYHAbsB2PE9+0ZhwH7vo3XPn3635LEe3bKne157ry/tTU0SwXrB6rz9/crfcb7ro8FxifoiEdeUMEfP8grMVU5s2eo5SX/D3vvAV1V8X2P7/Tee09IQkJIofeOKIIgCChYQAVE6QKiIEgVpCkdRRBUioiKiHQLgkjvAUJL74X03v5r3/jCe5N5IQTw/1m/L7OWy0XevXPnnjvllH32+RcS//0WpB89COvAIFwO+Rq5AZdx12UHRjm+9VCQeG3R1P91SLyMtEsdEq8ud15LpfZM0mXcTjaE/4kEpKweV30J80h935mCgsibuBtxA6VZ6f9C4vUR/cWSaki83sgdONvgOvq28UNJxBNIvEqA2iDxHTp2wj9JFxC90wUOR8YqJdvUm8/Lr8OiSVsYmJggYecm6Ls3UiDxhRmZiN+8XCF/Yq1ZQuKde9nBy9TxoSHx2uqf/y9D4gltZo6+CIknUR6jvcUlpSg080b5obNIXCTnalCXe8jHq5AXGwfnNq1xa/UnsOrUt46Q+EI4FxkpTPEPyhEgU97+a0g8DV1GgmSQeEI6RfI7GSR+3IdT0Krxa6hYNQaZ4ZeqodkqBJS2Q4iQ+LClXyLz+GFYNuuAmK9W1BkSn9D5K8QSEp9xFivGL1LSVdThp4yqEFElQuKZSkEjXixLR0g0fxs+fHiN4T4OSDzh+lxfIpKC6R803NUrS9DpSsI2po2wHf/pT1yePLxazvfg2VVQ1vtB4pm/GzRjEXIuHEdhkR7yw088Mkg8nSGUocgRoA0Sz+g10Rwy6PujhsRzbbG8WF0g8YGNgtHFpSFiv1peZ5jw/ZQt95694frCayjNyUbKwV2oNLV/pJD40gBbfLdtq8YwtEHiyVTO9ACR54Q3P2pIPB1ORF2KaBcVJP52SjyaWAUh8vNlQHEeUJxfi8xLUa5Atqvmel0g8Q0nzABMzJVUm6ivVsE0tMPjg8TnGeHOseuKQ5DpH+ppOv8LkHh+36HT38aF1AvIOTIW128VwcneAP2sV+Pukd11nut1gcQ3+WwDMs6dhmvX7rj52Xw4PGZIfNfu5cgf2B3P2fbGlR/uVTSisU7nEMt8iu0JJP5+u9bD/f7EYH84+dV6939FOqc+CEKjmd/E6H6RQyWuRZvC91I2slYOVXKkm674Fol//IaMQzsRtmQ9zo8f9i/pXAd4jZiskM7lhF/EsaIq0jm/BkBYUTDy/h8hnWO0UB1Kq40Nvi6kc+pyZ84nobr/XDyNCxV34HG8Mcq2jFLYgkk6F7JwDW6vXAA9I0PY93wR4dPekZLOZYaOw0mb9ej//xDpHCNfZLtWb/UhnWOkTCRLYzQnriIdJw67IOjEXMR8fy/n0LF9R/iMnIxr86bApfdLyE/LQML2z2Hm4Qm73q/CuVNnEGqWe/wgyp4agUYtLZGfUbN8Yn1I52TwPZLOycrSUS7/JemcNo4ARlTF0pGq3HbybRRYO6DyaC7S5vdFRS05dz7DJ8C6SUuEfzgaYYu/QPSXnyH93Ol/SedGwTa4MXKia5LOGY7ZBJPmSdCLuz/pHGG66kiF/xXSOZLNMcorks5xP968eXMN3g9C5Am1ZIqUqo15dwraPPUO9NdMQvy+3XU7oXR0ELZ0I3JiYhH7xSdouX47Lk8b+y/pXBu4vj4Rpi4uSFZI57ZplFeqIp1bhUTXH5B68RwWjp9dA0pKJY2waBFGTsWNEFLRoJw0aZKSb87/i+1xkM6xxjjLhYmRZXXyPtU4mJ5FxxTPSsLmd6zagTvjXlJSyB60kXSuyacbEbXlKxTH3IDfpFk4O2rwPdK5oSNhbPugpHOT8Pa415ShPCjpHInKmGMrY+F/1KRzPDuZ+iGSzslYzH18/NDGwgd3Zta9hFtt38K6URACpi3EzaWzFJZ4XY8gRH72kYR0bh1yzh+rF+lchkUpdv20U2MYJNSijMV0QDLws+ShmFLEmx816Rzh9UOHDq1RClJFOnfs9Ck00GuIhKkDq1nzH3Rea7vevU9/uA0YissfjIb/pNlIObgbKb/vewykc7/iapMT0AkvQOTZGwq5Id9ZHYlEhAfLTf7/STpHOfUZPwhrr6+Exd5dOLzbHg0DKjAxcBryd9evrJxM9gHTPoGusRki5k5Eq40/IGLhNGTfiBBI564gfTdr3D8E6ZyPL+Ke+l4hnevVPxfpPXuip8lzuL7nXp9MT6SDnwSrYntCOveoVpq8nycG+2OU739V1k2EjFL5Zx55cVkljpUch/HF5+B7bgFMGreFnqk5rs94R8l7abd9H64vmCaUdXsGHq+OgHFwM9woPgI3MzdkXUt8Utbt33miXtZNferQCCKB1R9/HsFVvVsoTGgO94O7kX1wPZqv3Y64gwcRt3EpTF1cEbJoHS6+O1yzrFuPl+D+/POocAvCtYq9aGfWArduVNW3VjXCIAl3FI2q+pR1k7GY8zmPuqybNtLE+pR1Y2ROZJdm3rdHI1/89Fc87E7HInPla0ruI8u6Bc1dgcg1i5By9Hc4deoKl4Fv4uL4KkWYjWXdbPsNh0unDsi1dUfX5s7/Z8u6UQnk3BZ5CAgzJ3kXDUpLX2fc3KsL810TkXFBs6SjSqYunbvBc8RkRHz8HrIjrqHhpNkoyilA7IZ7yktVWbexsA5ujKKUVKVuu6WXJ7KeGwsbhzsoictSYMyEQYrcHTSwiGD4Xy7rRoNQLDXE6Bvz6+tS1i2ocQgmL/kGZgcO1Upkqb43+IydAbsmTXFl6lsKaVrrTbsQ9eUypfwSm1LWrW1neAxnWTfHqrJuuzcqyh3Lup0yeg2ZLOt2zg49u3RXnL7qjegF5j/z/+qNTOBM9RAZwZl/y72K/xfb4yjrxnlCVINIhEpyUKYiiLnA5EBgPjwN+u1f/ozsBZORG3XngbQBMsGHLPsKudGxuL1oqlLWrfm6bQifOb667rGRnR2su/SD24AXYWBVt7Juhd264KV/y7oxcsv0GlGO5EogkaIIlef+SMNRBld9HGXdGPmcPHmyBh8K9xEiTdTz5QMaBaOdayiuvv3w+a2s8tF05Sbc/vorJP+8RUEE0ng/+9aLQlm31+Dco4eSUlKfsm4nbv9TowKHtrJurM9Ox5U6i7lqMj3qsm7aWPi5V5MYbdv2nQhybYX0j4ahKPUeWfADTW7JxSRE9JsyD7c/nYWMc2fg9dJQGPk3xc3571Zf/SjLup0N3gC3y864m5SqwP/F1Iv/hbJufPHeI/tjXfQauJ3ZhJ++9EfHzhUYFvYtMle+/rAiV+53f/ENuD73Aq5+OEYp6xa6dCNSjxxG8q/3qisoZd1efxemPg9f1u0v393YUktZN/JkMED1pKzbI/m8D9TJE4P9gcT1YBczeiJjEqZyzIiQGC0kiRw3fLFeORULQoFEQ43GFckxRMZnwhkJ3aZRlm1djKvJRWhb0hqOJvG4/uFY5EbeVl4kbPk3SD1xHEk7NBllje0dYN31Bbj0HwSHMA/cuHpJ48VZlo6Kjgj/Ym4VifRkpaFIBiQShrFOOA0BWSkUwr4Ysa5PO3z4sEb+paoPegU5DpGcjeMgK7lIAkg4MCM26rmc7IsGAw0b8XpVyaOI5CicL70Ix/CuCLFLQ2FWLq5PfwulJBrR10e7HQcRseAD5dBTb+Y+DWDdaxicejwFfUd9JMfHaPxOhwAjt6KDhhsonUPiOAmnJKJAveoAOySbNiN+6mz56jLiZvygjdFO0bhS9cFx8Juo5xzTCFRBmNXhqlwXNNREsioSRzGaJ4tQd+nSDX/FnUbcCX+4X9qI9P1b0ezz7YjZfwixa6rKGCm1exesw5X3RqIgSbNcnk1IGOwHvQPnzu2QnhePgvy86tdnFI5kVqKByPEQgigaCCR6o8NMJDFkNIBzWsb6y4cxQinm2tblG3Aui8zjvI9kihyHiGwgtJnjEEkACXXmviQ6RMiDQBQDx+3i3QC3kuyh8/kMpO/XJDbiM1liJmDWMtxZtxyph6oiw3SUuA8bj3PDNRV1HR1dOLRtB49R0+DUNAjJl24gwcUJTpV3FTg889f5n/hujN6RDJLrQL0x7Ya/iWXs6OShLMSSkry3vpUoeC9rzcrYcFmrnPN98GDNOry8nuMWayfTuOJ3ZxksVXNz88DMDetgdrICyXP63ncaOD4zAJ5DR+LOJ+9XO1/93/sYpcXliF75kcb9BpaWsOnYCx5D3oRxA2cU3I5HbrE1zpYYAg4H0EQ/BBfPnVYiV+qN/+Ya53jVGyHRPJeWL1+u8XdGeLk2aMiIjZFw8fr7vuS/FzDCLyO3JEM3xyF+E0aAicYQx8F0tTVr1ijres++Iyjd/jXufLuprsNQrvOdugi2ocEInzwchSnJyt/a7jiIyC+WI+WP/Rp9mbq5w7rHYLj37YMyYwMUREQi85dvkXnxtEatZK+pS7H+4u/47VDV/Vx3ZCAX9xM6IihHcX3wTCYBGquAiI17voiEqMsLU8egMSprTIeg4i4+j7LlXFE/21/r/Qbipo2oQbRalzGormFd+5BPNyE7Kga3501QiHINbWzRbO02XJ81Edk3IzS6o+PW5vnhcO3eGcVFRcg8exE5B7ZUMciT3EvSHFq3RejKzVj9xSKFA0HVmPJGRwnXuDpPBvcROlTE0nuq++hIEksI1uWd+Y3FPHXex/2CaBdxj+HeTk6BD2fMRPvWg5C/cLQGkqYuz9R2jWXDQIQu24A7W7YgacfnymWs2d3w/U9wYcwQRbdRb/bNW8Hh5XFwad8SGdEJyDh6DHlHfqjTePzffAvJncbivOmXMD6uD2srCwwZMkSjvjyfVVt5MXI/kBCxPo2OMJkxyrRHjoNIFfX21IvPYlPWJgQnLMWG2a2gbwCsfPcwCpY9e1/29/uNz7FdB3iPn4Woz2Yh7dQ/yuUeg0fAPLSVolOqNz1jY9i16waP18fCNiwQqRcjkHJgL/JO7Kt2IN7ved6DXsbSuK9x6qQ+3p53FhedJqJzVjdEnrm3rliGlNwyou7DvkkOKKbI3O+ZT36vuwSeGOx1l9UDX0nDWyxPxU5oENGgFstzcZOh4iwqnbyWEGKR+ZXX0qsqMwIIO1TYTOPiUeqgC8t0JyQtfg+px/6sfg/3V96BTasOuDLhFem7mbl7wOqZl2HXvQfMvK2QFB+lsAWzfA6ZMkVvMhcrczRFg1IbwydL1tCQI0S9UuH2KYeBgR5IOsIyKPQk16dRmZcxzxPWSdZ+kYGcjg8ezKJzhXnT3JjEvxP2w0ifWA+dfyMT7qlTZxBTkYgimMI3xQx3Zo1Btlq0PGzVNmScP4/4TZolyFTvSrifTb+RsO3YFuVGRcjMSFW+P8cvfmvVM0XmUkY5OBYqq+qNxguhcyp2YVHuNE558Nen0ciWOQEIiWeOqQgX1Fb+jONmRExkXyc8m04fsXSOYmyGBmPn3xdhHecKb/t4hdTv2vsjUHz3rvIqeiYmaPf9IdxY8IHipBJbwFujofP8O8gxvwWDlHulbRg9pNEufmtta5h/5zoWc5XpROM4VWtYXe76/66p+sicecbaaoxznfJQVf8mVPa47sQykXRA0NAU/84x0VFEQ76oqBjFNm4oPpqOvM+HoyDxHmGipX9DhH62GQl/HkXUsg+qX8XC1w+NPl6Lax8wPSSqxit6TVmBP4tHomm7DDRpmIXEuEiUlBQrkDvuX2JFBDrFCIsU1zAJxGhQytY217DKoFCXu4uzc41yZHX9BlTQxSg676XTkuWY6BRRb5zrZM0Wy5/R2UbGdDEHfO3OzbDJb4y8JW8iq5a64I5t28Png08QveFzpOy5l2/r1Lk7PEdOxrk3+6OCLPJC8xk4BNZDp+Dz7Z/CwswSnqHdkVt2HpNeHK18b5HNns5f5swy91u9ca8lTFh0APF+5kzT6FA1XT19VJSXKUYFCezq0+gkE8fAfugI4b48evRojW4pW5JyMudbvRGmzL2QebHP9x+IIe6hiFul6dyobXzOg0bBbeAgRC/6ABnn76FN/D5YjAodPUQunCy93aKBH6x6D4PjU11wKfIaAi1ckPH7QUWpLs3JQYOlm/HKpGHIzqrat3jG0hGlzifAv3MNkPxJvdIH93w69tXLFKpkznuYNkA0Vn0ajVQZWSblTgcK54d6o1yZEqieojB+7HQkr/wE0T/uqM8QFAZr3+mfwtKvAa6/Pwr58bHV/bT74Xfc2bQeKXvlfbO+ve3Ad2AaGohKhtzj05C6ezuyzx2tEYV26PMaun3xKSZP0JxLdLhxTovrnjoY053UnVkVJHbTqTKuaeTXp1HvUHfkqfdBBxXXo6jncO+ZPWcOmj/9BnQ+m46U3/bV59Ea99DZFLp8M7JuR+HW7LHVKAYlHWTtdtyY8y4ywy/XeI6Onh4c27SH47CJMArwRF5yFsrvxCD7V8K2L6JMzTGufrN1v/FIGTAI2foHkX4oER07dlB0ZlauUG883zjn1Z1xKrnTsVefShTsn85dkVyTf6fTnQ4UkZejVZt22Ge7D43zJmDDe71B0vaPRl+C76XxSD2uuS4e5GNwzgYv/gK3t32HxK/vwc/5d9+pC3F5/KvVKE31flmazaZTHzi+MBjmjdxxNyIRRVeuIPe376rg8mTj19KsXp6L+cdnICNDB0M/3o0bluvQ/EYzRN+55wDk3k0Ej/raVsmdqJr6OAUfRC7/l699YrA/xq9Pb7e6wqJ6lLboF/OmqdCJUTF6Z2nEyCKYjAJTORKNIdZpZ4SNhoahqTVurtuGhC80SSJYx9R90jzsm/0BXG9q5r2U6eoj3s4d3mnR8B40GHhhFq6k/IPS/BKYmhgpjgA7KzM0CXSHrq4OVHXht3z3o2JwDCRS+QAAIABJREFUmxgb4O/zd9CldSMM6NdHMfBvxqTC1dEaSWnZCAv0QnBoM5z85xhuRKfAy9UW56/FwcTYEKEN3dDnuV6gPOrTKHMZ+QuNJio/VFzUmzZHCXMwCbsSlRF+DyraNIbEsn2MClJZP/b339CtsED84vlI/U3TaHYdOgG27Tri15lTFPmqN5XcffPT4P3JHqTaBCAhbTf0yg1RWlqC1LR0DblzfISF7z34B4qKS3HtThLahPkgKMBPKYu1aduuapk39HKEqYU1ghsFYPP2n+Hn6aDAnU9eiqqWe/9+fRUDtT6NUSBZORTKg38XCaG0OUpofNHIFPME+T0YMZXBPak0lZvp41JECdxyMxA5Z3wNJaLJup1IuXIVJ3Zu1pC7fas20Hv5I9yxjEN7T39k3U1HRUUlLt2Ih6WtE9LTUpGTm6chd6JeIm5FK84D1Vyn3Du2a60o2bsP/KUhdzcPH5gY6+OXA0dryL1tU3/0e/7+kVTZNyF6QtwvVNdpI7+j8UilRDQCuF/wG4ll4hhhp+LJe4wcLVFQEIzCr1cgY8cS5VFM8whaXKVMXZ3yZnW0kf82sLBE2x9/x5WFH+FC+HUNuTv37o/95q9j246+sLGpxNwVcUjI2o2i1DJ4e3rgekQEbCxNq/cY9keo9r6DfyhoEnW5P//cs8p8OXb6iobcucckxMfg+JnwGnLv06MtOrRvV5+prrCMyyIJXDt0/tGxqd64PxKRI6Io6CihY4prVd1B1ax5K4ycuQ42R/5C3PKaeeDsm8gQ//lrkH76LCIXvKuhiDGy6DVrOQ5/MgdOl6siM6pm1igIyT3eRkjfUAzt0wtFRYWwcvJDs5ZtERoSjO3f7UBxYQ6yk28rqVBUVJmX7+TmrZTbKy8rhr1HCDISrqEwLxv29g6o0LdAYW46jC3skJcRj8TkdPg18IK+mT3y7iaAHllb90YoLy3G4nnvY8TwmvXZ6/IhSGYnEvrxPjoFiQKgU0+9ca7TkBLrYPM61mmmE9TewQFfzV+PmJlv1wlC7Nj9OfhMmYGYr75C8s71Gs9zfKoPnF97G3tnTIZHnGa0V7W3tw70gueU+ejarxMcPBrhpVeHQ7ewUmHhLjM3xLpl0xW509FNkrOez/VXvq1K7l6ORli7egVatGgJK0cfVFSUITc9Fq3adsBny5bg2ecH15B5dmokIu/cVsgE69OY8iDLzybqiXNbhObTmOI5qV4OrkPn7nA4cwMJX39WnyHAbcQ0uPZ9DtEfT0HaKc0z3G/GZ6gwMMIfqxdrPVN51jJ6bjdkHM6Q0dzYCDnxqciNioZpzBW4X/pbYakPWr4VTl2aYO7cuaAhklOkB1vTMvTr00txui5fuxkmBhUoLNOFhWE5OnV5Cj5e7li1/luYG1bV075baAA9nUr4edhg3do19XpfohPGjBkjvZfzggEfMbhDxxT/bt3QDwa/Xkfy5/VzjKkeSuPPb+YqGDs74taM0TXSRjrsOoJrW7fi/F+HtcrdryAd1h2eRlzzrkhFKewsbXA3LgmGUTfhffl3FMXHVb9jtqkVbEetxLXADNy9Eo+KpHi8N2kCLly4iF8PHdOQ++vD38LN61dx4M+TNeT+XI92mDB+bL3kTtTau+/eg/mrd8I9g04UDUJOIlL7OeBGhB7C18zArZs66NYxF6+jD1KO/VWvMVj4+qPx4vXIiY3HrZmjNRj4TV3dELb2O1ydNwWXY1M05K6ut5s4u8Ci+yBEegcgR68cBpX6Sjlh49uX4XH5L5TdzdCQOyszWI78Fp8dKIS5/lNo9PZncHUoQPrefJQVZlXP9znzFmLN6hW4HZtWQ+5Txw9Hjx7d6/XOT266vwSeGOz3l1G9ryBRk2jsqTpjNItRCbGWMA9pbrhijWwq04wSiXBuGmw0ZGTPYVS2aYvWOPHtXtyY/hZKMqu89qpGMrTGa7/D/gWzYHv8oMZvqoUfamOMsn6rEONTgkKdc/hk6FT8c/yY4sm/FZMKB1tzRESmwMLKRrmfh0xhUYliNKZk5MLM3BKd2jZF1O0I5XpbKzMUl5ShVbPGiEzMBoqzEJOYAUc7C8QnZ6GhtyOu3UnGkEHPo3GAT71kT1SDmFbAjpg3zUiWzCFC40aMUhMCx2gkIzpiCSkam4w4yBAU9MQ3aNgYh2Z+itjl02u8A6NiblM+xv6ZU+F87bRU7mHtn0fJs/MQY7UZ3sWOGDbgOWUchOKpy93R2VX5FjQScvMK4e1uj7KycvTt2QUmRnrYe/jvapm7Oloht8QAoYGeOPTnCbg5WcNAXw83o1PV5N4PjQO86yV3RnpFI5AdUUkkWkJULujc4G8i0oQRfubryyJpRADQqBTTK/gcRl+LCvRxacYMpOytqoqg3tzefA92HTthz/R34ZVU5TFu8MpQlDR9CTG++dBLKYKXrbHy94KiElTqmaJH51bVsFM6Q9Kz8lFeXqHk7UZFRiI7N796rnPevza4H5ITYnDi3DUNuVcY2sDWVAdnLkXUkHtsSh6e790DjfwfXJnmfJBFxfkOnKMsgyM6Signzl2iHtQbU1BonInEXYzYMbJ56NAhlJVXotjeACXhjqjcNgXp587A54NlsA0Jwq2PxiHjwrkacm+64Wek3biJvzevrVYuvF96FecsxmHTYR2kxLREj16FcOo/D0dv7cOr3QegpU0zlEYXaMx16OorDjem3KjvMcUl5Xj7zSE4deIYbkQla8jdzNYDuRnxuBObUkPuWQU66NqpTb3kTlmIed6qF6fDkJFHcb5zj543b56CKlJvNHYoczG/fc3uTdC95gPL3xYg8fdDGvdYNPBF4IIvFIbniOmjUKCm9PJCBTq86WccWrMOtofuwdKZGmLz2gxcd7DC3q2f4tyZk9AzMIKJhQNOHTuoRL4JEze3dUdxQSYs7L3Qpm17uLu5Y9eun5RrMxKuw9jMGqFhzTBlwij079tLub6kKAd6egZoEtwQL78xFhPeGQZTK2cU5qYp0FBzO3fkZsRh/pI16N+nZ73kzqiZLPrFvZ37IDkz1BtTbIj4olNTHd7Ma3hGkPCPrOoLFq6A36VziPnum1r3Pjr3ghasReI/pxE5f3wNWLVNcCg8Zi3H7wtnw+G8ZnSNZ2p6YDN0fmMMrurkYMa0KfDxD0H4+b8VR2Sb9p1wKyoZVy+dVOQ+YMCLSEpOwqmTVd9IJXciAvw9HTFr5jRYOvqgvLQI+ZlJGDxsNNo0a4QZcxbVkLmlgzeO/nEAoUH1SzObMWNGjX2EgqLDg5wEIkyY+yOdK4y0q5qtrR36NO6CiIkvK1D2B2lO/d9A87mzcGHxciR9q5l+wX4cew+G05Bh2D/zPbhH3SNw5G/qRgz/XWJmieKWXdDp9VHIMKtEXn4OMhKLYJeVhavhZ6HXpB0i428iIz0dpeU6MDOsAEf73vi3cC38Ig4dOQVD3UrQNDfRr0D7bn1QWZyFQ3/+o/xbR6cSeSV6ijFjauOOae9NqNdcZzBAnQdAXV6sdc3Aj7pDhL9Tf+S5euLaeQSUBSBxNln0NavN1FXuuvr68Ji4AJ69n8bNmeOR8nfNaHHD2atRaWaOw4tn1+ooKTIwQrabL0Kbt4Nzv0FIM8zH7ehkNDB1wPnjJ5B9J1whBjSyskZ+SB9Y90xC6VkdxN2Jx+pPF2D1imW4E5euIfcBr7yFv3/fgzuxqTXk3jC4NV57eWC95M6zkYgSWVM5RNSDPnTOPjPueXwevhaWPx/C4f3G8PauxEe91iFjrdzhUts3oKHdcO5a6FtZ4vbMMTXSPHQNDNBm52+4+ePPOHtgl1aDnc+g3PP8gtGky3Ow7tQRaRUZiE3KRQMjC5z87Q/kxNxUUnJorMPJDVaN5+HbPUBoyxSUPL0Y/Vz74vj2MzDQqVDmu7uTDbr1GoQd33yOglK9GnLv8swL6N65bb3kXtd5+X/5uicG+2P8+rUp08wDJ1OtCO9lNJJGvGhwEhZPWJBo3HD4qvqzYu44NxLzEmvEzp8ohVWSNCfs6z34c/d+WG7RhGfzkEvxCUJw36m427gtzpvOg39aW/g7uyIxPg7FpWXIzC5AyxAvxeijA4LwSFUeNQ2ehJQsvPpiX/y8/yiuXL8DYyMDtA71xoXrcQgM8Ed6RhaiY+Ohr6eL/MISpGTkwMrCBEZGxvBwd8N77wyGlaXZA3+h2hwl2up50mAnp4CYT0+jh8a6aNwwkkZ0A5VwEbptbesAnbg8RLw/QhqxYRmgkC+/x545s2F7RJMFmnIv6DkYTh1nIdbpOoK9S5ATBejrliPrboaG3B3s7ZSIksoBoZK5r4cDDCyc8PtfJ5TaqiqZE73g5u6Fm7cjUVFeirBAN/x97o6CeKDcjY2M4f4QcicfgQhJ5sejYkGeABGez2gj4VMyKD2/B2UuRntp+HONENKvnvvO57h5+SLp56OIWij3jjt2egqeU+dh7/TJCKzMh2mLnigM7Q6TVsYwKSrAxVM30NivKg3DgApyoT5y7qagpLhIQ+4BDf2VSIsqf1Ql97BGPijWMcP+Q39pzHUzU2P4+Prj1OlzMDLUryF3K0srODjY13u+E3Eg8inwHRi1pfImwvPV89JF44brmI4rdTZeXkMFnI4U9mVlY48UmEInXBcOiIDrUx1xcfbHSPlRE7Ko6tv9nY9g06Y19s2YjJbeztBpOgDH0p7Ftr0e0DG6BC/X5mg96ltsTRsD0xhvDGoxAI10/ZS9RH2PYYoKEQWqOaaSe7cOzXEr9i6O/nNWQ+5OjvYwt7DCpSvXlL+L850OTUsLi3rJXVUuTLY5kWSKexCh3+qNZd3ocBDz2InWIbyVe4166/7UM3hr+qco3HcB+VunVuf+mjg5w+fD5dBxckDqsg+RdvqkdI9s/OUunL1wFSZrZyi/uz7dC4YdXkVaoCcO/LgZv+yo+l66uvp48fWxaOTvg8WLP4GungEMTSyQmXBDid4SWUEYMHM72VQG/sezp+Ls5Ugc+vNvlJeV4G5CBKydfNHr2WdgYGiCvQcOoaKsBNnJd2DnGQxjczuUFudh8EuDYWxsVC+508lNtJmscW4y+kUotnrj/sL8bdG44bVcI8w9DmvaHJ+Mmo6b77+Jkuxsaf/WQcHw+GAJdCoqEDl7nFIBRGz8NgGff48/v9oMmz1fafysa22Dolcnwb6pD0YNf1WR+8TpC5GZlojvv/9OQ+62ttYK3JnzRRXZVsn98N6dmDJjIW5HJyr7ONMMykqKMPKtt3H2/CWEX7lUQ+Z0WPTu1ateMudLkKVb5BXh34kQocOJea0iZJ7RSKZLqO/hA/sOQ+Gq+VrnrEzwjl16wHPKXORdv4nbs8dIodQkRPOatxqH5n4I+9N/aHQjGuz8d4RbAGx0ymHbuDnsnu6FIxdPI8jXCZ3bdINPoBemTh6v9FFeoaNEFm3M9TBk2Bh8tvoLVJSVws6kFJlF+tDTBfoPGIQ9vx5AUWEerIzLkJFvoNxjoFeh7L/+fn71ljuj/OoVJFQvxnxqypx7inqjjsjUm+kfzkCb1i+hcs37SDutiUaQTm7JH12HTYbvmDcRuWErEtYvkN7mNGA4HF54CYfmvF8rSlMlc4vCXJjbWMOwaRcUevrAzccUqKxAI9fGKL51B5XZmYgM64zbBduR/mceArwd4dmwKb7eulMhD1TJ3c7WGp26dMPOH3Yp30CUe3BwCBwf4kxlyows6MPzkeeGmOPe7ZWe2Jz6FZomr8TnHzWDnj4wa8Rx2O0ZjIKEezXM7yd7lub0em8JrFs3ReziuUj9XbO6jur+hvPXQ9fGCgdmv1+rwa4ud2tXFxi2fgZZNrawtipRdD0PEzdknj2LvMPbUerdFWujZ+JOTDRemZKNM3kL4JHSENlJ6dVyb9woAHYOzvjjyFGp3Nu1aw9jI8N6z/f7yef/+u9PDPbHPANoYItGBx+pgjKLeencDBgBE6MwvIfeU14vRjEZFaOBQ2VGvU6lg10DxC5bgtR92nPGAhd/DUNHO4SPfEGpxalqds1borDFSBS36IvThgvQy78Dnmv0NPbvP4DSsjLo6ujAyMhAgb8zMkeFQN3rSGNKV1cPAwZU5dGqH+aEG3fq0hVXLl2oznfn33ILimBlbgJCokmA9TCNCpoIV2d/hDLTEBBJcmiQEMInsgmTUIboBhoxooFIJwojI5S7OgmNZaU9EhZOwd2L56WvYGhlhWZf70X8sX8Qv+xeBAI6OvB8YxLi3YbirmcWAhqloK1LSxjo6eDoseOooEzV5M4oNCOoKgOG4yuvqIS7myt4oKvnNlO+uvoGSqrBnl9+qR6XutyZ98X3qW+j40IbqRqdG4xkic4NOq6omIq5ykxToDItQ45wnIycqa8dC0tr6CeX4eaHb2k9IK0aBaH1lj2IO3IS2foOqAhyhalNPEyzaJjfVSLndB6x8ZsnJ6fg0uUrNeTOyCrzNlX5gyq5E05MBVY9/5fytXNwBA86dWebuty5drmG69tIOikSWLIv5vdxz5Ap2nRccTwi3wSdIVw3MuQI0Sk0HqjI2Du6IFvXDt725ojeua8q2qi2f6i/i2OPfgiZuxi3/ziPi5EN8Ft4M5w+Rch4JZo0LUGLYb/gl9LxSM1PRmfP7pjs9wHuRqdozHU6yBjlp3NKhXZRyb1L506Ii4vTcH5Svv4NAxQHibqzTSV3O2sLMEr1MI253rJ0BP6dzNl0Uqk35ljTuSLWMuc1NDZJLiZ+q4kfv492Ld5BzldfIHPHQuibmcNzyiIYtQ1G1rc/ImnrSq2v4DnpE9i2aoHM79ej0qstShsGo8SlHN+sXIa/jvyByooq+C7lSph5u/YdERMb+y/8uuosIDEkS7NpQs11oKOri+SkRMVZrO6kY4rNvv0HsXrVCg3Z8O/6hqZ4+qkuNQgcH/Qb0AEoS72hccP1J+YYM4pOgi5+F/VGxxUd5qzLTsj/qtWb4HnrNm6u0CTc4z1Eo/l8tBKFJobIWfMxUo9rkh6q+qVcWmw9gKy4RNyaeo8lmqRdjq9OQIRpKaZNqTIGGX3u8fTT6NmzF7j3V8Heq+ROBw5RA5rOHR00Dg7Gvr2/akDbKVs6WbKzM+HboIHiLGJTyby0OF8h4BLz+B9E7jwvteUE8+88A0VkDonqiGogUaiqNWocimawxa3ZdYs8Ug9xefdjBaERN38icm7dkA6bfDvNvv4FEV9/g7RvakLuy3X1oPfvfFd1UKJvCBgYInjJRpxNjUDE9XAQScB9Ud3pw+Bjt25dFYca16iqMRPYy8sH48aO1pAt/15WrgMDvUrlO9aXPJfP4XnKvHRZ45oldFskm+U6oP5j1zgUFr9FIGHVlAf51Mq1Tn1egevosSi5HYtbM9/WIEZU78y+ZRu03PAdTo56FZknqypSqDdR7pR5BedrZSUc/PzgNnEREiwdMbBXELZt2QIHO3ek65mgXDcaR787iJEjRyjOaPV0UMq3e/ce8PP1wfr191JSVHI3NzWs4Zx7UAFQ39uypSaxKvUS7ofjx1etYVXz8w9AUotUFEQH4/y6sbh9SwfNW5Rjku9YJP5L0ne/MXDvcB87F57D+iH2612IW6lJbqd+v/Mr4+A15BVcHvsyCgXHoba5rpK7c3Aw7Aa9A71GvmjZLgRfb9mCQK9Q6KQXYPmu7ribrovA4Z/BwPo27M/ZID6uivyY8qVTMOrObfz++28a64DzvXXLplJel/u995Pf6y6BJwZ73WVVrysZ9RaNQHakXi9d7JjGDaMaYrSXGz+VPVmUncYjjTSSQ9GIc/fyQ8JPRxC9SJ7/SKjMFY8QdOvQBY1eGojrE4fh2t0CuGYmwm/Ai8j0H4ZcvyCcLFiBZq5+mNh7OI7/fayGs4BKARUhGutilI+KEPPbxDx+kgCRnEkVsZG9P+97mEZjjkqY2FT10kU2bH4PRrp4MKgb37yfRj6NBJmnm84FjlXFWu3i6o+oT1ch5SfN6IpqHCq593trDBxcnXFl9IuINrJGY1c76Hceg0jDXqgMioCdQyzCrBuhabC/YrSK0QsaeFSiGWkWHRMkFuK3EJ0ShOozSioqVqqx0Yirb/66qg/CacU0D/5G6CQNLFGG/B6cJ7K8dOaf0hgQ00DYH7keaGyqDFUrXUckLnof6WdOSacN5X6tYSsMnPw+9Bv6ocI4FjfOx8LP3l6JAqoaIe9hoaFwdbKV8k9Qhozyy9agNocaHSt0pMmYmwk3Fw2JB533lAMh2rKmKvFINI96Y146ETgi4zaNIZVhLFYX4G802vlN6GCxtLKFbnIp7swarZWFlnK/1awbBs+ciR8PNMLG1VawsLuEotxgPP1cIVyf+gF7UubhbmEGAr19Mbf1ApTHFKK87B7xX21rkGOiw4PoDXHdcj1zrotOIvZHZxBZhh+msaSVWGqI/VGu/N6c1yIpFPc8KtqMWKo3GsaM+IpRdhc3N8xYMx+2JS2Rv3UdzNwdodO9BUxupSJyzliUFeTXeAXVHtMpKAD+o0ahUscCx26FoyInGt98uR4J/8LnDU2tEBoSgiO/H1Cgt2JKEDsmBwpzw8W0CxrAzOGnjNUb1wYdOtzjxe/B66hgk7jrYRrhqjL2ee57lC0dI+qNMHkasTxzxEor8+fPV87UESNGKMb+tlU7UPTdGiT9eU8hZdUU72mforCBHUr3HkXiBk3khLi3P9P/JTiHNkbk+yMQZWiFFm3bwbRzL/xy4Td89eU6UO4v9O+PTz6eLWV059ykI4HnvTheoje4v4rGM3PJadxzz5Q17pPcgx+msTyebC1xv2AAgszw6o3OXzLZiyX/Bj7zKvLXztMg65ONyyqwETzeX4oKK1Okr1qM1D81mffV5R7u0wQvTvoAphVlyplK/h3qMupGOvOjlTzdwnsQcc9h4+E4fCjWrlqkzA/m3svIJIkUIEeLGGAhazh1INl85BlNlMHDNO4j2tjnKVemO4l7P/VHroH9f/6GEJuWyFk1WanZXdfm1KEzrN75ELqlZUhePFUrszv3mRvBHTDwg2koPHIUcevm1VnuHIvj82/g+8LPYG5njp4jjuH2paO4eSIc+voGKCsrVdYj1zMrbIi6MCPgTJmT6TLkqxAN6rq+u+o66o7kCZA11h/nXFdfm9zzu4/pjS+vrYP78Z/w0zdO0NUFlrxzEEY/vK7B66JtLDTCHYcOBuLScHPaW0qKgKxR7nfaPIuX585A0pxpSDnyWw25y+a62BdLwTm+OhEFzlY4cPBHGBubICC4OUr1WqPIdx8sci1xfNtvKC+/dxYTTUMnkSz1kfOUZ/GT9vgk8MRgf3yyVXqm8axi5BYfRaOD5GiMDokHHQ0rMQeS1zCHl04AGakaD0gqiRcvh6PgRjpuTn8LBYmaJazUD7lUK0cYBTfH80sWIHbBQkSXlsLIpSPO5VugzD4LWcaX4G3hAw9zT7Ru7FrNXKs+VkY7mestsmjzGh7kNNZl5c9IKiYzgEk0py039EE+FRUebYYplRtGBMQoDQ9sGj9imTxG3jkmRqxFbzbHRCWb0ZDImAQk7TuJqI8noKK0VOtmS7mbPv0i2g/si+Jt63DJKBhmHh1wJiMROpaRsLEAPMxdUF4BhPnZVUdd1DtkZIvzRlToaMBQaaPhLBryvIcHvGi8sV8iJPj7wzbOA3FM7JPKCw0k2VqgbHmfeCjTmKeSKctlJ5yeTOKM4GRkFeLmp18gedtqrcPnIUe5O7w5GX4tvWFqoIOrt+KqORgKi6u+FyGMuXkFaORlBWPDmvmwnNN0zogHFpVset9FRACVOUZy+d4yRwYdAKKRVp9vQENQ5L1gP+yf31bcSzhPqNjRSBPnCR1/XIey/YffkXLnGkmNyUPy4mnVtb61KRdZXoGwfnU0Co3b4tPZIWjc9DRcQ86g0OwaLmeeBLNBnfQ98N6wYbDKMFRY4tUbDSrKiO8oViHg/sO/iYgAMmjzHm2ODK71+hJwqcZGB4w2RArrUNNIEsuXMd+XirbICs8+GV3nniVC6bt064E3po2CfXEYysrjoZOWi6RFU5Bz62ate4y+byBcXxyM77Z/gfScYiTG3lZyo/UYWQQUqO4zz/bGjfN/YNvWb2v0RcNFZcSIP3KeM+f++++/1/iJyhydQSKTsuoiMl8/TMSR/TDyRTiwrHEeUHEUy51RpkTliGRSdJiRrPCdd95R5tf4SVPRu1FbheipMDlJqS7hNXkRisK8YJWQrzinSrKzapW7Udun0ezVQbCNjMKVIh04Bbhhxtz5KCyqmtdtWrdGcGgT/P7LNzgtkKfxdzpz6BSjkajeeMZwj+T6FNPfaDByX1q3bl2NsfF6kcCzPnsMWbpl64m6CsvpDR06tIaThhFrOsfVyzCGNWmBUANH3Jw2QmvZKzN3T/jPW4MyDytk/3wEcau1M/ir9nbLgSPRqFkIcue/i4i8MlgVZCLW3gtKJJ2Ig8pKJae3WfRFGJaVoMGQ16Dfcwi27/9G2UP4DpxbYoCB8qNDh5FVsZGtnf/JnLHcX3nfwzbOXZl+xbVJJ7FYapHznI6CmTM/QuOuL8Dkl8NI3KA5l7SNiaU53d5bhCJjHeRs+AIp+3dqHT5lmeHoBZvXxyPA2R4Jk15DrIXTfeXODq0CApH69DfY+kcL9Bh1CLE2XyE0LgTXL9xjmyd/EM9j0RFEFCp5LLTtMXRcidU46vMN+L1lXDmsdU8Zi0SLrZ/pgF90diMgZyx+XdIPSYk6aN2mDG+7vov0n7TrJhybY89BcHx7HEqy85H+6fQqNnctTclLD2wKi1fegmN8ErJXf4hoey/QSK+gl0Ay17X1RS4Umyk7kGFui4qCI/j7yCHF2ZGUkoadP32H8qJ7xjrPfeqIRI3IGteBDD1WH9k/uUcugScG+38wM2oj4+KGJEbraABzI6bSIXq0qXzTg8iDUwYLpBJalAYlxy79rCahmfqrctGnWzhWN5GwAAAgAElEQVQgyNkGeaOm4/b1GBTCAw6BvtBxvQQ982R0cu2Itj4tcP7cWWmOLA0qwvdp/Io5rzQUuHjF/FmOgRsxIWcyA4NQeEatH7bROBJrZ6v6JOyXOahiXroqai3mWvM+Kpn8VrJIMH8PDW2K+DORuDVjFPJiNJnfZXJv0rI1Soa+gWNHkqFnoQ+rAGP4BxbAS98NzX1ClFQDQshFsjv2RQWCESyZbIkG4LuLChqh/er57qJ8H0UaAvvkASey8KueRWcTFVExRYTRGeZqyqLWzFtmZF6msHCdtGrbERe37lcU6bLCgloPOc73tq+PRbSXE25Hxip5ze2aNlBg8FxXnBdUiGU1u9kxDyw6dGTKL/Nq+XfRGULkC6OOslrp7JMpASSNfNhG41B0NLFPVbk2rgWxDCNly/klex9+Kzq9ZM4XGvNNWrTF71MXIPGrRbUOXVHqrJzQa/FaHEkvQ0TsbaTpRSCtwSlEZF5R7n3apzdGB49DZVwxSgVjnZELKr40xETlicYWUSGMfIloAL4b90dZHiKfSVSDevmr+sqfc0I23zkfWPpN5oyhQUDyOTGizb2PaCzeK/bp5u6JoePeQJ/WL+DW7KlIPaJJEirbY/zN9ZD86hR8ueNrxemXEXe1GgbPCBUZqGlQyPY7RqsJx+X4xXnF/ZskY0SOiI1rh9Brscybaq5rWwcPIn8ibrStGeb0cs2JyAfu3XRy07EmInYGDhyoOEm4B3IeTZj8Pro5BiJm8XuwHzAK1i/0gFF2JSJnj0XW9av33WPC/D1xpfsLuBh+DalJcbh2rir9gOuGSi2/M+UuW3d0NhC5wH1BbJwz3KcY6VZv/Bv3HRoy6ilxqmv4Pepbk1r9OYwuq0PC1X9jNJLfXkyJ4nnEkmdiGb+BA15H6Y6dSNq1ucZ7GtnYwmvap/Dp0xEpx8MR8cEIFKWn3VfuzXsPRErb1ri64weURd9CcNzVGjB4VSc2wWFwnTgPVzLv4Ozpf5TvQecqUTNio+OK61JMU6SzkHOHTglZY1rMw6J42C/Xkjr0W/1ZdNBwnxEDOHQMUkc4cuo4gm1bI//zabUagezT0j8AXtM/hW/Xpri4Zhuil9QOpVfpkF3en4crxWW4uft7ID2lVrnzOSRVK++/Asv2DUSzp2/Avc8GuOd5IHzf2eozit+C78x3E50hnE90OMuqRbB/OiseJsVMJV86b2SoI+q9TDsQHQamZuZoM6IzNl/bCJdjO/Hzt04wNwemDjsLlz9e17p3kITYbtwceIc0wPmZc5Hyc801Ie7vWS4+6Dp7KS5FxeLKzi3QL8y7r9xlc9Rk0DxsuDMdLq7laDliEzISr2HuS1Vng+gc595KnVOWpshAIdFKT9rjlcATg/3xylfpnQezaByqHkvFkYaKGLll5IY5djIjhgc+DRyZ8ejp0wi3Pv0cydtrLyVSCR3FG2dmZwv/5dsQpeeM8/qb4Gxmi8a2wXg2qAfSU5MVRVk0xjl2evsJf2EUToR9crOlIs3fxOg6lSmOXWZsst+Hqb8ufkpuLKp8PvXfeJDReJUZ9FRCqbTJlCn+xk1MZjxaGbggebG8xrf6s1VydwgJhd+nG5BtUYGMkkiYlRqhiUcY/H29FeSBjLyN/VBRpZOE3140UlQOB0akRQi9NvI81dgYOeYh+LCNc4VyldVjr+3b00jhGhGVaRpszAWmQiIe3IbGJjDJNkT0nLHIuX2r1qGr5O7a5xU0nPEuYqOqrqcSzfVEZZdyF0kgVZ2ybBzlqx4pUv1G5xTntOw3oh04l2Q8Fnw3rn8a1Q/b2L9sr2C/2r59bfB3rhHKne8kIh8cnFxReDEON2e+jdIcOUGX6n1Ucvef/hnsnmuFDy5PwcnEqlzHVi5tMTjoNTTSD0B+QqYUQk2DmCglWY4+jXLONzG6zugHjUoaojKHF/dVWYS7Pt+ABE9U3mSNDjcq8yJChMo085dpzIht2LBhCjSeBrPorP1g5hyEZVQifu3sOs11Q0MDNFrzPZ4dfq9kIOHkNEC41vh/kTuCHfPbc+9mJIXl68TG96IBKEbXCY+nUSkz5NkHnQRi1Lg+Muc9ROXIor10EnMt0IgVzx6+D/8ug+TzfeiUJSSaber0WXi+SQfcKchFQX4BTH7ZhdSDP9ZJ7tbe3rD4YDFeeWuAcj3XN2G9hLHTIKTxKksX4JykUcg5L6bR0dHAPZB7FVEK6o3OExoRoiGvuoY8CwwAPGzjOuQzZPoA9xgaUiIJGp/J96aTSjR4Rwx6Bymr5miUvtI1NITnxAUoCPOCdZk50pdNw93LF+skd9d27eH68WLc/eUvxCzTXs6M5RCd3vkIV/NicO7MCSWtg5FDylE8NzmX+V7qbPeqwdARQieFzDnFb07D8VGcqbWVd6PDgOtVdDTQGUnnEA1enzZtYXkuE4mL30Z5UaFUliwV5jtrFZJMiuGlb4vrk9+oJrnUJnzV3u45fCocX+uHhAVLkHrgHl+B7D4jGzvoD/gY606PRJv2pUgNmQlvSx3oXwRiY6Kqb2EUm+etDDHCnH462GR7F3UjbbXrH3T+a6vHzn64hjmn1XmC+Pe2PTtij84euGW/hDNfvIEbEbrw8KzEhwN+gs4v05BzR3Pt2oQ2gfOkBcjQz4PFzVRELpiISiEdTBy3Su4hy7eizMkOqXPfRdZVzcoIdXlXQuKvhG3Flt1eeHHGr0i3/BHTm0/DmVP/1EBCEj3I80LbHsN5yHPtSXu8EnhisD9e+Sq9k6hJzJlWPZa5RtzUZfXaGeVihEtmRPCApGKqHolxdvVERUwWzo/oj/JC+cYse92wDT9DN8wWJhZmCPFojOy7aYpxJCrqqnt5GFC54NhkUDBumswblOXuM1pG5Vs08tm3iiRLrGFc30/E6JqMPIv9USmiMS9GEFU11nkIi4RcdEQwJ5iKoDqc38c/GDdXbkLipqq61HVprF3t99kWOAbagfBdVxdn5QCiMiaWH1L1pzI0OJdkNXE5NkYhxXfi96LCpk7YpT5GKrmPAkKm6pPOGBnsnr/TkcM5KxojtcHfyRHAd+MBqp4+YmPqhsQls5H6l2aZrNrkb9+8FRqu/BKmphWKka2kMkRGKqkCMpJC9kVFnkY55S4agFTM6OygsSzC5PlOVLDFQ101Pj5frBtdl7kju4YOEkaaZQYq0RVcrzRgReJEOiK4/4i5mXwGo5LcZ/jeKoci16ZZoQViP56I7OuaZeFqG7vzS++gyezJ+C5mG04mnUBXr25oZt0M5YnFKCzIk95Kg5ypDzJoPtcCDV4aw6JzSL1uvKxjplmQZPJRNDrOuE/LGiMwVGQ4P8RGrgyukyVLau4ZhLiyTzpEVQZE96d7YsoLI3Hrw1Eozkiv89B9563HbynhCPD3VQwP7oeEmMoiR+yU+zajpERA0RkhNhopnLOs7iA2pn3s3LkTTAeQNa4DkYivzi8iXEiFXWYc8jJC9Tlfxcgn+TnoPGP0XUbqSgeEes5wl+490KRJc7SFDWJrMQDFdyDTM53gW37bpnx75vtv375dMaBkZyLv55yk3AlHFfkN+DvvJ9JBhD9zPfIspcNTnexSNSauE54rjwJNwj45X2W6Cn8j1wEJZsVUNEbf+K34bupnm5ePL3oEdUT8ipm4e6GKoNX1zanQf7YTUKGL4u3fIeXn2svsqcveqmEgnOathklhCa6OGYSy/Jr8Di5du8Nu2GScjDmPa+GXlAABnWR0NMk4b8gZQNmL78QzgZDp0aNHS6cwDf2HIfkTO9UGi+fZSMcA02zE84e6FpEan3/xJVp2GgJs24jUXTURBCTB9Zq6DMmOetC3aAz7nAoU/DAHCYfknAHi2By79YLPx/OQvv8k7szVTiZo7uUDPDMdx4tex/Vrugh8bR3sPeNgfMkAkVfvkQnSOUXnGuUr6jl01HGtLF2qWdVINSZyccj2pvrsM3RMUa6yNEii8fgs8RsbGhqh66ieWB+xFk2TVmHTx81QUgL07FWOftaLkLvtw+qhWDTwg8/M5biWG4dGFh6InDUG+bFVBG91aR7j5sH9lecQuVg7Z5K2ftx79UGU12R8sq0Ter9+DXktZ+E5mz7o6t9O6vDgPKcjlGSGssazgrrEk/Z4JfDEYH+88q3unYexjLCFChKNKUaDxY2B0QAalsytkyniPBSo0BJmaGBoiLsloTh/2BJhpgehc3ihVrIQ8ZW9py5Fu0lDkZacqCxKbQYj76NyT4WNTgQZ3JTGHxVtKkSiJ54RVhoB2mrTExrNex9Vo/JFuYtGCvunbJkDJmN5JrqBxpTMyUInCd+fzgwqvw7Obig4H4NbHzHaWPd6p6xxGrZxD/y7BCmHEiPLssiFShaEVfO5NHZlJGw0QGj4y6KsPFxo1MiilOyfMqfsH1XTRrTI/ilbyl4GjaUBRqNZpnjyHr4/f2Okycs3EJEbf0T82rrl5qnezdzTC4GrtsOjsaPisJHJUl0OVDZprNO4kqVwEPJIpIPMMUSjiw4YkaNC1f+jlrs2/gA+T6wooP6ORAHQ8SbjxeCapYLE96dCaGflhYRlC5Fy6OcHmi4Obdqjw9YfcDbjJBwq7VCWXSLlxFCXDY0MbagBKm6MEouy5fokaoF7JiOCYqPTjYYwo1KPqnEOaOPL4LygUidG2ZnWwrnMPUg236mQ8jcqnzw3fvhyN7JWfYTMy5ceaNguwyaj4fih+PnHHQryRdsewE4pEzoSGEEnnFds3Efo2CEUWESMMUpJY04bsRnfReYUeqCXUbuYc51ylznZuMfQocqzRlT4GbmjckmnjizKTUcG9wVG4du07YA5I6YqThLmsz9Ia/Tpt0BDe+zbt0dxjshyYVX90aii3BnhlUGfCZEnRFWGXGA0kXsUjU5ZY0RMFqV8kHdRv7Y21nLqKnTIyiKcNG64hzNPXL31fv5FOBcaIGrBJJiFdoDJS0OQmpMI5/gCRC2cqDXHXTZ+QumJKNG1MUfk5BEa+o+Zhxc8Xp+IIl9//HXuEFKSkxQnMJnsaQzLdBnKnUEEGXEc1wfvkekPHNujJuCqDRZP1AzHKZYa4zgYFeU4I1Pi0dC6BYo2zEbqP/cqHOjo6cNj/DyUtQ5AVm4B/jz2DI4esMPLz8ehYeUB2KUfQtwvu1BZwUr08mbdOARBq79FXnwKIsYPQUnm3RoX2oY1RW67Gfjir34KTDx06BZkWu1HYGoAbp3UdPzSKcW9QsZ3Q2cjHXIyBCJT5GjoP0pdhutRhqDgC9IhyHNRRLo2DAxCeXvgnztXYXF0LfbucFDk0b93Bgb7bULsivfA8o8NPlqJ6yUpaODgj4q9WxG5vSaPSG3r1LHXi+j0xUpc2bYfN95/o85L2tTFDXqvrMNXf/eGmVUxrPrNRJiDPSY/Mw7Lli6psbczus69iXuQzA6h80pbXnudB/XkwjpJ4InBXicxPfxFtZGg8cClsSUzYqjYkdRFBrflqKhEUdE6cTkdi2Y3wN9HDdC5awXCXMIRankcuqc2IvPKZaV2qLbm1P8N+H0wHvExtcOKaTRS8aKyJsLy2DeVZXr6GQmVGUI8zOmdl0WHeT8Nh0epSLNPKsOysfI3Knx0TsjSFahEUeGXGWKMqvLe4uJSRByPQOy8CciOuP7Ak8T3ozUw7RCInKyMWu/lhkjvJY0CGbSacG6Ol8qUaKRQnoyu8vCTOQT4uzZm4Qd+IbUbtNUG5yU0tmg4iO9C55Oq/ros2sF1wPmXmJyG6D8u4sb0kSjOqF124juQRCr48x+RZSKP6qpfT8OEz6TyIDP+aBgwRUGWmkJDl5ECbcgarvdHFW1UjZkOBc4BmRFD6D/XJqPwIvkdx0LlVYYqYd8qRvWIW9G48vkOxHz6wQNPDQtfP/gs+QrZZcm13ss9hIYJI8vaDDz+zneUcQ0QEcDftBmm/Gb8ro+ysb43Cbdkjco0ozSynGQaU4zCa4OQEz5OFuqTJ8KBH39Cyi81ywzd7z0cO3VDfO+++PD9ibVeSgg+4e+M7soi67yZhjyJx2QGDB2JVKS3bt0qfY6qVvf9xvsgvxNmLhqAqvvpPCBaShYB5Tj5G401WeM7cF/MTypF7pr5yDh/5kGGpVzrNmoGdmVHYed3cnmoOmTJOcqG80dWRooOEMqdzj8xjYznMaPnnPOyM4zvyDX0qCNfnB/aUrao2FOPkZX35HzmGSYaue06dkE7v6YoNzRBsX4uiqNyEPnRaOTH1azycr8P0Xj198i010P5jr1I2fUVLP38YdWpL8zbd0GKXg4O7K1yNBL5wj1v1apVCrpKbEScMT2CcH5xv6S8+d1kJHTsh6jJR5X6oT4uGt8i2SB/ZxCF6A2iBESYOAMoJGgjs7ldQ3fYpjuj4MsPq/PZXYZOQquZk3Hhwgmk6Nrg7z/c8edOf6Sl6SCsaQXCPCLRyusKjKMPwMayGEl/HEZRaioqKyuAf414C19fNPhkI7LLC5GzaAbuXjhXPWxjB0dYdn8FN81fxoZfm6PvgELk+H+JUrsTaFHUCpd+O63hOKNc6dghskFsrKTBQAq/mawx8EUny6NslLesagCfwbXJPZyGrNi6DHgaOwu+h0N+N8Rum4pTJ3RhYAAM6p2Mp4xXwCbIGx3GvYrjx47h9+PNYZYWj6YWvyF165Ja+RrUn0OCQMtp82FSCES//2admOjpuNLp9wlWH3kRZqaA7+B1MHYMx8SwcbgefqVGNRA+jw5nrndtnFDaSFQf5Xd40leVBJ4Y7P/hTNCWU80h0Ggi5E0WjaOyx0NDFonhvUHBoTh+pxDfb3DF77sdq9/I06sSXZrFoLX/bZhmXoR+5O/Q09NRapkaOzkjPz4Ops6usG4UBPu3xiMpSbvBzs2JhHaMbGiDO/MAZORZpjyQ0IeGLpUPWXvU0XXVM2hoUXnQlodP45HROBFVwLHSoOJhLsuVYv9e7o1xe9F8JO7eXq9Z5DJkDLwnvIHE2Ejp/fSa07hgpJFyFyH6vIlKGZU5Gi+yKA6NdX4vWeoC73/UUV7Vi3Aey6DM/J1GLh1RshxUHtacRzSCZaVDKAuTIgtEz52AzCsPFm1Uja3hwo3QD3NDfp4cEUEjnXLnnKDcZQYwFQcaWhynGHmn44FQWBox2tJKaCAxAvioGx1M2ojWGFUkLFgWDSaKgP8Rtix7X0/vBii8mYark9+ok2IgvpeBpSUarf4e2cbaUSiUB+VOJUkbqzWVYcJ81eskq57FuUNHGtezmIvKa7im6RB6FHml4vvRGaItEkNFh3uQTAllxIgpCzTsZe3LTd/C9k4mopjbWEuUS9s8Ymksg4lz8Mbb2vMLmY+pIqHbvFlOeEQjlggwmXJK5nXKVVt5Qp5tMgj6w8597mn83jLkGh1UPIdoAMjmCv/G/UdbZGj/wWNI37gFyd/La2Dfb+yOPfridoe2mDdrmvRS7mM0omgYkqFe5pBnug4RJnSQyKLkdLBwz9eWs8vvKlYcuN+46/I79zXZXOa9XJ+MPhP+LnKscN8n3wPnvJgaEBTSBGkpiXi535uIWTQdib9pJ1WsbYweEz5GVmNXhFi5Iin8FsyCApBcmo59e35SbmOaEtEIRFcw71t2xjCAQuOXkV6ZY4LOIFZ00EauyvUgc9DVRba1XVNblJ3nDR0JTEsQG9cISfXmzJ2L0G6tYRpljtz102HoGQSzV4bh9OUjaD2oEyYfGwcnM1c0L5qC6/u6IuaWGe7c1oWvbwWMTYBurZNgUZEAO4tcGBuUQEcHKCjURTEsEdgaSC+9BbM/ziNp6wqYeXjCOLgzMhq8ih/OPYXcXCCsx3Xk+W+Aj5MBTKOMEXnmhgb6kfsE34MOIdFBzvOW64WylQUtuKdzLT8OlvLaouxcuzz/RUcldYCn3uyNL6M+R6OiN3Fu41BcuqiryGzF6ig4OF5BaXE+0gu6YtZkZwU237xlBfo3PQqX7P3IObLjvvB4Uzd3uC/8EkVGFSj8dD7SJBUn1OeCY9sOKGo/BWsO94GuHtDstZ3IddyDIW6D4WxoJ13TRDX26dOnVqcFnXRP2n8jgScG+38jZ+UpNJy0ka1RCWX0UEYYxjw1Gl6E6onGsJGxCRLN0zHjzFQ0t+uMgJxxOPldB1wN10XBv6TZrPTQtHkF9HQq0SokGeW5WbCxqUReXiX0TC2QU2KNZ4ekoiKnpgFEOAwPYeZt0xiQQWL4bjRAqCTLcvSoSPMAo4Kk7f7HEV1XfdraSP9UhGMyhUkVneY7icawo4s7zlzxg3HEP7C+vBLJR/544JnEDdR/xRrER9/L32InhO1yXIyM0IkjK3/H6xiNpHFLKLMsSsBoIqMw2lIQHld0XSUIKpuyw5W/c67TCSVDMNAxRAcPo9OiMezk5IeYpcuQsqf2yFVtH8P1zffg8eZAJCdq5ovRmGVqARVLjkubo4bzmeuRa1nGxUBDng4isca5akz8JsydfByNSjKNQ23rjHmNVEJljkE65Uj0I0MF6Fo1gW74baSunYBcgTinru8RtHwrKnytUCiw+fOZ3GNoxFDuMqJIPoMOBc5pzmfRGODvNJq5DrQRB9JJ9Kijjap3Z+6uttxJzmU61PhsmTOFcGgiSsTawSFNmmLRuDmInjUW+fEPHm1U9gg7O3gu2oR+I+4Rz6nGzHKDhHXy2cwx1uboYfSOa5LlMMXG9cL9lUgvbagGvp/s3rrOm9quq430j6XfqODLmPr5PnQi0PAUjeGgoBCsGT8dEQs+QN4D5JSqj9MmOBSVY6Zh5DtDagyfESkquTt27FDIq2TlHnkTDTQ618Sa6/yNefH8u7aKKtxjGF1/HE5BPl9bTjV/o9zpbFi7dm2Nd+c8YcSOBrHMGH5+wGDYZwGZv2xG/L49DzxFnHoPQflLfZGfn4fUlGRcv1pVJoyOba5PRmGJIpFVRuB1lBe/DVEzMp2A0H46dLVFeTnXtEVkH/hlJDdoi7LzUq5lOpiJohIb0Y0MQCxdugwtenaER7EbsvNzsO2XjQhoG4I/LX/H8fi/lNvMDS3Q1ulpNCx4HdEnmiA90hXhV3QhUgJQr7SwBFjlcNKsWFjpbUPXwJa4sucq0kxb4eAVlskF3H1z0fCZI9D1+gemeSaouFqGqAhNVAP1QzoVyDQuO3c513k2aPtuj5P0rLYoO52tTF+iM0HUzS2trNHp9aew9tpKhJWMwakNL6Fhkwx0bH8EJ/7YhSZd3saNKyHYvNZGBVZQareHNalAv3aX4Fh6ERZZp1By6xzK8vMUEkA9YxOU5uYoOqKxvQMaL/8GZ+PD4RyeiIT1NZ01qnng1LEzUsJmYcXuLnBxrUTo4B+Q6bwLfW37oo1XM2U9ikEtrhlVzXltezvXsjaE2KOY70/60JTAE4P9P54R9Mpqy2ejwsxFIotMUpmlt4tGv/rGUGwPfHJtPq6mVx1MLuZuaGrSD/7FQ3Dh1+aIizJEVFRVbUZtzdQUWPFVDKx0q8rA8VmEwRLWS8WYSrDMMFH1R2OdeeIyCCvziqhI83CWwZzZx+OKrqvGx3JWNGJkZfB4DY0netplCgTh5pQ7kQEqI8fM3BIJ2cGYMdEVxsbAS8/chk/+bljE70fyX3U33C39GsJ76UZkl1TlR5JAhook5cHvTGNdFlVXfSOOm6kHMkQDjSAe0NpgzuzjcUXXVXLnnNGWyqFKn6AzRGbU0zijMUCjWMXt4ODkhuLrKYhe+j5y78MKX9t8d+zSA40/W4HIW1XMqvzGlDuVNaZPUO7a+AR4LeXO1A6Z0cs1w7Fri7byeYyqPY5IgOqdOY+1OXlU6RM0VmRGLyPcjE5S7ioyNxsnX6xb741Lp2ww9NlLcIzciIoLu1CQmPBAu6f76FlwHvw00pKr7qO8KXc+j3LXlrrCa5kWQicWnUCyNcFxM6qhjRCL+yqjwJx3j6tRafzxRzmTOA1HMtfL0iA4JiqiNJjVjfat639E6cal942c3O99Gq/diVdnvI27dzMUqDeNDsLB6WClQkaiOG2NhgnlziiLWBaQ9xBhwhxtbRFXwlh/+KF25uj7jb+235lexQiijH+B97H0E51+EyZMqNENjV3KnQzxYq3nSe9NR8/gDsg9tBNR279+YHQDc1Rd5n+BASOrnBycv0RRMDeeRjiVfG0l7oisoky5jmXj5tlMBxBZmWXQcz6PkVaZof8wsla/l2i/2vJWadDTQS8j3GSuO5EaZDCXGQKhTZqjQ9POyDh6AmVXjyJuT935MuyaNof5+/Ow88dNynDp4KNTmwEBjoffWxvqiXsRHSh0MMnQXzwvaVTSaNZ2LlPmjzrlRl3utUXZOS8oUxrusnKcXItcK8tXrEAKUmFdbANLKytUtNTF0is1S3Lp6uihm/czsMhtDrfydihIcUVWghNSo21haKCH/DzA0roSpXqZ6NW7HOW5W+Hk0w3rloUqv7kGJCOo20XoeJ5GSlY0wnSaIOF0NFKSEzWmIecDI9WcMzJkFVMTuAcR2i9rPNM4F3mOPK5WW5Sd+gBlS+NVRKfZ2Tug/WtdsTp8OQbbfQLdrAL8fWADGrYMxgnbf6BTaY7AuxPx57ftcC1cU0+3tatEu/YVMC5ORID3XZjq5kBPpwR6+vooKjFAVqEFQrvp40r413g6sD0uv/UCKsvv1U2nLIh0sOw/BX8l9sCWfYHo0KkM9k9vRKnTUTxn/xw6+rVW5oysHCRTjrhWtKU5cS7JuE4e1zd40u8TSPx/PgdqY4znYBi54yKRGY88yOmJpAHDA1tPTx93nQox59Q0xOdqRmCsjWzQxL49fIsHwDC7MQqTvHDtrD30dIGEBB04OFQq/7e1qQSLfk+dnY52Ybmws7NRIKN0KtDA1na4cayEmNJYp+KvDerO3xnt0wbnZz+PM7qu+sB0OmiLeKpg5TQeZXB/RlT5HlSoaVQk5vvjxOFg7NimXz1//BtWYlD3a/AsOw7bjJWFtgQAACAASURBVN+QcvTIfXORDK2sFZKcBm0aKEYjvaaUOyOEMoIz1cNojHM89PzKomJEZNA44Vi1RYkfd3RdNVY6cbQ5aghzI9GcNmcKHRdUqunAysrJRUpeCDatdkPP0LMIxH4kfrMUpRJisfstautGjdFwxdfwDnBQ5M75S+ObcpcZJar+qBARGcDxyJxu/C6UuzaCSfajyge/3xgf5ncaYhyDNvJIOkKI6NGWX0+ZUy58T0NjMxw954tPPnRTYHuWVkBAQAUGtT0B24SfUX5hd41SNdrG7vhMf7T/YjVMDKA4LLgXcm5oi4ir+mFkmqgHjkemKNNJQsVcG5yf/bByBaGuj7PVxhjP51Lx4X5KRUhsNNoZcaVTkYbdgsUr4HklCknfLn/oIXu++wmKmnvB26NqvRHOS+ZrWSRO/WHbtm1TUihoGMocWMuXL1fyTbXB+dnXo2SG1yYI1gZnHXBZ495OJzlz3WWkXEwTITs8/xMZ2Ie8Ngw9OvWGQ04xKm+cROS2b1Cal1un76Gjq4uwjbsRkRetOOjIE0HHBfPUtZ2V7JiGPb8N55KslBiv4dqm4abNgOH65r77OA0YjoPIC22kkHwPOg1oPMoccdxH6cQiukEbAqxF6/Zo7t8CBVcjUH7zFBIPH0BBUkJ17rT0e7t7wGfpZhg56ijEgkQv8PszBUIGf1f1QSOb65LfR+ZsVRmFHK82pn8abiJKpk6T5QEvqi3KzvQ4RtOJmJGtWSJdGEDh2mVKiaOTMzzb+OFo8Z/4PekAisqKtI7G3tQRgXZBKC0vhaWuIwrLiqFvVIr8kjw4m7viTds34OnWEP9cBc5m7YO5exzu3k1HI73GyL2cieio2zX6JgSeBjkdfrLAA/crVnXgPNLGfUREBx2Kj7PVFmXnc5k7z4CLjFODRnuvkS9ArxL4ad0OWNvYIi+kAF9EVuXiN3dqBe+KZ+B4tz/O7AnDpQu6KNVOOaXxmoOHp2H4K9egm2OAW5OHIfdOlYwJl7frMwK3KrrihzMdkJ6mg24D7yDbdwOsrNPxvMfzCHL0U+QuY8En+orrh5F3be3/a+/Mo+yq6nz/vXVrHjOQmSQkBAiEmTALMrSKIKLPRlTs9qEutR+y6OXEa2xcYrdT24snaGPTf/R7z6Gln+3zQeOs4MwkBBMyAAkJmZNKVaVSSc1V963PhRNuKvece6pITTvfvda1DPfcc/b+7H32/k37t50ZfjRHXPF728M+9szzXqA4jwACEl4Ywn+KKTp4rAlBQcDLLxyZrHbXtOp7m/9dj2z5ubr6X4mDL2hXU/VUzaqdrbmVJ2tx1XJ1dJRpSvUUdfYeUFVtv3b2vaArl56tN8+8Ih9GFjcxFqJiAWMyRdiO229KxACTWNyizv1G27se1Zk9awg6xSYnriGEECUYQanYNQg/cN/V3qr/8fTdats1Q1p1g373wInauSNzEM28Y3O65g1tOrb8Wc2u3KjynU+pYs+z6tvXof7OA6qcMlXdzbtVe+yxGuzt1aJbP6upy+Zq164dRa2cQ4cnvAi7Q+iLG0NEBKCsJWWEHm3velRvhKS4Y824Bss5+wrhXiybf7RX/Ie/2aqvf3mhHv5FVk1TpHOX9+ltZ/1as1sf0o7/vF/du3elfpMJJVv6tfs1ZUljfqtH0qkI0U0ZyyiNvLtDz3fmGoxpvLcY2uL6hesQqAipHO2CMFYsKVv0XMYyvOOUB5TbpUtP0Xce3KG/u22+Nm18dYxH91h22qDevHy1FtetVs3WX6kuu1fNj/1Bndu3SrncYU2cfdnlOvELX9NgpiOvuMaF7Uc/xGPOHMNJGnCPO1Od8Y5AXmwvM/cibBFDCnPnaJf3v//9ea9uscLcjpEERTjOI42n9/Ir36jNDz+jtZ+8KR8K+VrLzLe+V9P+6n2695678u9iklGKZxG2zP5eDCSEbxcrKFt46vFeFovU4Dd48eOOeHutbSr8Pe3B2xNnkGWsoxQi1BdTxpj76TOMQSgHQ41Cl1x6md5zwwe1qLJefRvWaNdD9+f7pWNj8dwjUd0Wf/pu7ZhTqfvv/07iGhhdj5eOpH7s844bH3zP+5CUXIuoiLh+O5LcMYIPPTqv8P6cbU6byI9QzIOHYQHPKsYF3om4ctLSZbryz67VvvU7pD0t6tr4vHK7Nqh7y4v5LPKZigoNdHaqftFi9WdqNe89N2l9x6a8MTvOWFz4LCJfCJcnhL/YfIgBnD6hnnHHIXI/wrlH2yjIc5K87HxP3gbWTSJHihX6Be54jZGJaN/ipSep+pQ6/aj9QT214wn1DfYOa6gc17RY/3jOV7VvQ6vaFnVp57btmtozRXufb9HGmC1URJtgbMUIUixaje2Y0bsQt5YRFYF3nbVitEuSl51nYyRh7cfgVqy858YbddGFF+nHa36lTz75UTV37j7ksrNmLdfsgQt1fP912vTkSdr+3FxxJPvKZ+LXrQsvHtRX7lqlnu4u7bzra+reuEblr/+QXuo7Sz948jytW1OmC183oJOu/om2zvyfWl53nt6y5Cp1tu3Lj/di+WowPDG3o5DHOeyQdRhDLmNLwAr72PLOPw2BAAEiTmDFGo+nHctw3B5gFrvoaKBNm15SZWONtlc06/6N39KKXU+pvadtWC27YsGb9KljP6l9ew8/kmPojVBemGiHnotdeB2KWHSEW1x4MaH3eB9Q6seisHgnHS2EMgxXhOpi4fP5UPgpzbr5lx9Q30Cvzpy1XBf036aXfv16Pf27Y7Rr56FKzazZUmNjTksWd6mpvFXV2c68h7Kzs0xVTQ1avWGaLrumTRee8azaS2SKRyHES0j0A9zjlBOEUxSTpHYeyfO/0/QbhgPCzOMK3g3aFWfYmTV3nn7b86ha152h3/yvK/THJ19ewGpqpDdf1anz5z6umZ2/1+BT38+HaXfvaS5ZrTP+5QfqmJ7RwECyYILXHO54auBeTNlBgEZxITojLnsyFeKdiNtzWrLCI7iA7QhJW1l495iL4gw7dQum6qdbn9D+VVfqN/92nta/cLjSTrUam3KaOzenM47fruOmbde02r1qrOvVQNcBZcuz6stVKlfdpP7yJi06Z1D9gxtKtoa5A+4YBIvlOeAG9A3cCTFOOp4PZY7IhrEosGSfbFx9GANsR0AYKqbYN02Zos/f8zs17jqg3IO3a/dvf/maqz397HN14KabdcstpTMo49VF8bjlllt0333FE66hiJMFG09d3HuNEQ4P/liNd6IXUFTiCh4jEupR57gj+AjJ5R6EeRLtMLTMnXesPnHbZ9SoOs3IVkmtLTqw4XkN7NokdbapeuYsdW7bqoZlZ6mjvV+L33KVvvvkI7r3a4dnvC68N+sgIfLUDe4kTSxWUMDgyRF6cYXvih2H9ZoHUcwN4E7+hiTurEl46ort1ccQjpELIybZ8pO2xUTv/HGLT9SZZ5+rfa37NNibU0V5uTLlZZo9f47Wr1+nbds2a8UfHy/ZZMYo2flZLzEsxclaeLT5jiR/cQXPdVKkScnKDPMClNSkqEXGEVuaiuUR4FFEQMCd9QHuOCkaGho164R5qj2hQb/t+JVWt67Uto4tqWpWV1Gvv1n4Wf3pgcd13OIlatmzWx0xx9wyr8OduYOol2jrVeGDiAAjlwDnfsdt++B62sk6NhYF+RHucbIXMgx1ZjtZnGGH8P/l116if3z0S/rRxgfUN3i4K31h0yLBc37udZrZf66m6Xj172/Snl3VaqytVktbn2rqe6Wqdp1xWpUG2zerc/cqnTnnAt3/0Gl6ac9MrV2T0Zln5bT87Y/qhepvq6G+RxdPuVjvv+Iv9P3vfy/2ncUZxPzHGhAnyyCvY6jDWOIytgSssI8t74NPSzrmjYuic7fZ5xaXlZ1FjrAVCi9Xa2ubMnUV2l3eoidaH9MTux/Txvb12t9bOozv5Omn6nNLP69cW08sEV5QjAR4TRGi45LlIJRiHUUBi9s3zkMI78drOZYlKQEd9cBCjuJO3Ysd5TU4r0rfWHePfr3lZUG6vKxCZ886T6d33ap9a8/V2scWaP3zZerqSteqN127X7fftlq7tscnlcKIUCoBHU/DG8k2hbi9kZHAgwV1NPfyFms5dUpSqvD4Y5QYmpSxprZOz1W+qM88+d9VV1Gni2pvUtPmd+vxB0/Tc+tetTxf/64BlXds1anz1mtO/Q4NvvSUpjf1aO+qp1VWUaH+A53KDQ7kj/lp76jU8de/TYMnzFLrnuKeeepCIjQUR/aDFztOh3Zi2YdnlJQxrtcRDlmsx7Lw7sUZn0rVvXHKND3Y8ZDuXfVVLZl6oi4q+5jan3qznvjZfO3YXlxxj9qGs4OE5mQWZktdNit1vxJp+Y1vb9WU7KOxGNiqwRyDEgP3OIMDcx/cEVqTQupHM9FcXCMIfb7++utj20g4MJnjUY6HZmX/1J336fHf/KWeeqJaV1+6TZfP+7Eqfn+P2lavGvHQ4Sif6XfcrRs+9LbYe6BwIGyy1QNPUZywhmcXxZGM8HGKLw9hXzx7+seyJCWgox5kByd8nrrHnWDBqSEI5Xj8EFqTwteXnrJMb7n2baqsrFK2vEInLFmqrds365Rlp+nnP/mRnl25Qo8++gf19sQvBhw7hweakHy4x62XGBNYL4kSiNsuxbqFMehInkOdpv/Imh6XO4LfczQh7yF7ZYutqVxDBAzX4aRgy0Yxj3yauqS5hrmdMGxCx5MS0HEv9iVj1MS7GlcwSHDdWBYSczI+4xJ0Uhe2iTCeip0wENWV5IW8D8xZ7N2nVNfUaPb8eapeVKfuhh6t7lqlrZ0v5T3Cbd2t6u4/fDw3Vjbp08v+Ts9+/4/qjhF+kGnhjjyDFzpOTmG7FLkEiCSIO+eeeo5morm4vmTeIO9HXMHQQN1Zd+MMWTjk3vVf36sXchv1Tyvu1opdycdGVmWrhBLf2dep+Y0LtfPADmUzZfl/Ewlxy8xPaNUPn9Sl13xW377vJM1dtlHzzlyjTdX/T9XVPbq46RK96cQrNdDbk+ceZxRDBmNN4j0leWFc8TFuY/mmH/osK+zjxz7v2UryPDJxIeQT+p4klOLtRklmcibZyPbtO1RbV6+28nbtL+/Stq6tWtu+Rts7t2pfT7u6+rvUn7fsZVSZrVBtRZ0WNi3WO2b9uWpbs4cR4f5YZPGUU98krx0GBCZmFt64xZkHcB0K0XgUJt1iIVhRXdgPC0/aMHTfG3kDco3lWtf/nP5twze1Zs+rgvSJ007WCQPXabHeoNYNx2nbmoXavSuj1taMOjoy6u6SBgaUzwRK7qu6upzOu2BQH751lXraDj1SD4UawQvubFEgvC8u0Q31RpgjxDlOEI3aRpbwsYpoGNq3eI6S9uZj3SW7MNwZa3g+ttU06z92fk+/3fJqMr8lU0/SOfqQqra+Sat+eXL+RAT2V0elvkF5j++5FwyoZct+NdZ1q693ULlslabOrtefVlbozPM69BfvWn0wAVr0W9hE3BnrcI+LEMGiDne8L3FJ3rgvXiQUgfEoCHRxe0SpDwYH5pjoCLu8wFZdq5dqd+hvn/yk2nv2Hqz2WbPO1Tm9H1fLMxdr1e/mxXrck9r5N1/YpovPWKXOA4caEdliQ7I+FHG4J3namF/gXmpexNjCNpfxKCh9ccdtUR+UdoRkQp+j8Oc3XnWNrnrrN/WZT01TlJrhuEU5vfX8P+nUmkeUXfFtta18ZtgJ0MgsvPSf/l1Xf+DwTPEoSSiNKDEo4kkJ6Njjy9nTCMpJyvpoJzxL6k/agxIWV/Cgo3zRhqQ9/LQVhYe5iGPVkrx8wx1fbI0gHBjBF8MIAnLc6THcGy8phmTqHLeli+tQ1skHMx6FcRGXTJf6kAcBxRZlJ86TzXxKaDpGCdYKmJfKbzGctpJvgfWPKIRIoYoL+SX3AW2irmxDiCs4HJIUuOHUb7jX4jRJ2mPM/RjHrKNJdST6CO7IZJxShKIcrdP19Q2aNv0YZWdUqmJqpSrrq5StyqpnoEeDgwN5h0W1qtXX2afqgSqt+MVjh4VZI8MQPcJcTNI/vObFvOrUF9kL7hg0k5R11qxiuUCGy3Ak11P/uLB37sdahpeaiLykuejiiy/RqZedqZXtz+q7676llbtXqGcgPodAXF3vPPnLeu6BlTrlvGvVNrdFz/c9ohkDx+isaefo9Ysu1rSmJj344AP5bYdxhUg1Eipi0EyK3ODdJGeAy/gQsMI+PtwPPjXpbHYuQoCNsuAWS8pRWH282ijXeKdYPPHM4/mrqKzKewF6ynrVnenRQGZQuUxOZSpTVllVq0o1uRr19/XmBWkmeIwFhE4j9CL0k7wsbqGN6oAQiuBHOHbSPknqOd5HQSDcJAk/RBNQRwTTYvvgqmvqtLe6Q2u71+qhzQ9oVfMzB7sio4yObVygOVUn6JjeczRFi1WfmaHqsnplM1kNql+9mQ4dULMapvTowrnzVLknl/d6wx1vLH/ZDwX3JG8DQg7caUuSVZTKMSmzmIxXwaBEuGaxvepRnYgkYMzBndCz2roGNde06bubv61fvvRTDeQGDlYfI9Oysndoqa7Ti0+cqI2rp2vL5pcNJKXK2csH9fdfeUb7mzfkw/FRAhG+ENRgjkc9LoKEe9M/cEehL3akXvR8EgmSWIf7jlehLXGJkqgTdWSOifaKtzd06wurP6d1LauLVvnUGWfolN73afqBS7X+D6dp04YKbduSOXiMZFI7r39fi/7qprXas3tHPqQ94o4Ax3jH4Jg0PhD+ECyZY5LmI/atIySOZ8EbnRRGi1GQJFcoa1/68j/o3Xe8T+vqV2vJno/pt9+6RM+seDWCBMX9ytPX6IIla1W97j/UtX6l9m96UQM98RFRhW1f8vf/os/8n29o1coVeS541IkCQKgkLDVJUec+JKkiVwAKb5KRGS923FnuY9UXGP6S8jfgUeTYLiIKvv71r8dWi/fhwx/+cD50mDUVAwsKR5I3Oe5mGCJRFFGMbrjhhrzAjyIYl/gxWvsZPxjT4B6n5HAt2xfYfz9eBRkBBSqpjmwVYU87zJP6h3mBMcp6hfzCu87aVkr+KNZ25CdyMjC/YRBEaUEhTboXcwzGFIw1xbZGRM9h7zfvBV7V8Sql9rNTL8YvbYd7UrsxVGPwgTv9wxqM8jbUyF6Wzao8W66ysowGBgfV39d32JyNEYD3EO68O+QYQeZKirgkYgruRAQkvRfIuBi5xrOQaySpjrzvJCCEHdyT1rTXXXKpll64TG0VHXpw3Q/0zJ6ntKn9RXX2HUjVxA8df4syv+9XTU2tll/3OtXlKnThsvPV1rInb/RKqicPwBBIn5P7IkmWYTtOUs6KVJX1Ra+JgBX214TvyPwYISApARMTHuHOLIYsXKWSNRFWirKNUoHHEC8xCh0ebxIE4THkXgjqLDooilj98QQi6PJ7vLp40gljTppkI8GCyZnFNWkhjq4l8dZEKFhKiyXdiOpG6BLcWeTiEhoRss1E21zWop9u/5Geb12nTe2l9+hGz6goq9B33/IDveH4S/LGDrjzPAwuSXXj9yyKhDER5p800XItxgcMJeNdSnl8qR/1hDvCAsnTEBCyjVXakNuo72z431qx64+HNKMqW63FU5ZoYf8bNS93kWp6jlPLlmlq3zlNB9oa8t53QrQ5IaGyvlP1x7TpxGVdWn56ha67/GVhi7EO97jtJ4UPJDIETwBKcFKYP78hF8V4CnRRvfHGxJ2zHV2DIlwxvU5//dNb9cMXSx+lNLV6uhY3LtWC7ms0R+eov22OWrZO175d09TZUam+3pdzz2XLpWq4z2rRhRcN6p1vrtOCOVPycxHjITIsJo1NjIiMdQQhuCdFm6BosWd5IhQ8QQj+cYV5lwRvVYsadeeKO/KGP47mvKjqQ6p68R164qFTDolkIHpkyQkDunjRCi1buF3VbWtUsftpDbZuV+++fRro6tQgmYqk/FaQ8ppaVTQ0as7bbtSsay7XsqVL8gYCPGnMf6XGBOGrCND0EV7huARzPI+oh6TtOGPZHxjhktYt8rDgacfDTfKkUon4MFaQnIxIGeZdlBki5IgEYQ7AuMi6zJrKszGMMo8xV7A2whHhGa8+Id9JocxwQrmFO/uLMSwkFUJwCZkf75LG48u8jhGE8Rd3BGJhO3jn+aAsIKuwHhAdBz8M2YxH1km+Q05CfmG+xfiKksqaSj8hN6H4JxkUeC5GFYxOGEBQMpMK/cI4Gu9SKo8A9SP8H0MRc03cUatRO+CIos24pX2MbYy+yCREJDD3YswmkS9zLcZojCzIm7wbcKdf4M6WkqTkt9Ez2dNOPxPNkpQHhv7knZgIBeW1lNyFsYQ5AO6lrp07d54uvexyVc+vUVdlr9Y1r9PK3c9o24Et+chYFPhoz3t5Wbmqy2tUX9mgq4+7Tjcs+C9adNz8fB8hN2FUjNvGF7HjXcGrTpQd4z1ubz7Xo0fQBpfxJWCFfXz555/OQo/SXqrgfcT6i/KYlIm68D4o4yjgvHAIEkx47HNmgaOw2KHAM8Gi0DMZ8+KWWtiiZ1AnlBcmiVJ14rl4diZKQaArdbQRkxkWevjBPS6Dfnl5hbK1ldpd1qLObJeebVupde1r1dLVrL3dbTrQtz8f7jQwiKGkTJXZStWW16qxaoo+ff7ndFzXLDU3H5o1NI4TfYoAQ79iIEk6eo97jFUm/rT9Wsrjy31YTEhGx9hkwWdsVlXXaH9Ntzb2b9IDm/+vVjWvKHoMDXvdp1Yfo8aqRtVmG1SZa1JZpkwDZV3qzR3IL3yE9H3hgq+oqa0qVZZ46gRvuPPOMN5LGbLGKhN/Wu4ojklhq1VV1do5s10ff+S/pcp7MfS5U6uniU9DZaNqNF0Vqlcmk9NA2QF15/bl34Gmqqm644zPKLe7JzGCofDeRJyQqAilMSlcL/oNys54RjQM5YLhL+lIKa7/15/cr+/u+qZ+vvFHB39+0rRTtDx3s3IbrtTKR07Qs6sOzxY8Z05Ox8zIad7UZs2o36v6mi5VZgc0qKy6+6vU3l2vXR0zNH9xmU4/7T59/nN3JBo7CuuOxzQ6Mi0ua3l0PZ7MYqcnpB2bR/o65hgUh1KFY5gI8yT8HUU6TWE88m6z9jG3EiXC3MC8jCeNeYE5GcUyOk4UBT/Nmsp6w9YE9vrCH6NKUiFKgv3vE6Wk8fgSmk7iQhRDIh1KKRZR23BC4F2FPwYR1mQMXsgysEWJxKMJe4woyCNpssRzf5RNQn2ZN4gQKSXLEM0wXtsPivU172eSYZDfkEcA7rQN7knb0wqfwXtExCH8mctw7CBHYkRlLUR2xHiCbAR3+jPNSUM8AyMx3OknknAmGQS5Hi/wRDCAR3w+8IEPlJQfyMpPtBWyZtp3FVn51NNOz89h9TOalKnNSBWZPPNMWUZlg2XKDmaV7c6otblVa55dmeeeZMgu7FOyvMMdw1maOqGsj9dWyokyt02Eelhhnwi9IOWV5DT75JgwsXqyQBEiP15CEmHLLAB47rGsl5poMRYQGjzRSqljx6L6YjmGO5Z9LMBJylpZWVZV1dXqKx/UAR3Ib0UYKMtJZWQNyKgs/ylTea5c1blK1atB+1tLZ+enLuxlRFDE0xCXPbuQMcIkoWYTrUSCbKl64ZliUYc54x2BuKqqRgequ7W3cr8e2fELrWp5Ri/uXa/egXThwdEz/+HCu7XkwAL19ycfesriyVjHYwZzwrZLlbE497tUHYp9Xyp/Q9PU6dqQfUn/vO7rWrk7PvHMSJ7NbxqrmnTP+f+s2j2H58oYek8EBLjjVYd7mpDYsTo2b7jtR+BNUh5QPN7z4fdp4RsX6ZvP/6teaFt38BHHTz1Rpw6+Vwt6r9LzvzldG56vzB+z94ojPVVVTlo6qLe/91v60t+WzhSPl5EEbqxJt99+e2x0UeHceCT3GqdqUIqLGOt4/UsVQuTZd8+cxJ7gNB7BUvccyfd4uzgLHuM9CeiStmxxf/aFJ4Vsj6QOR+I37D1O2goSPYNoBZKe4clmu0EpA+iRqNvQe6DsE6aPgYT9xlHitaRn4YHHYz3RShqlnTpzZBfvOIoae8XHo2C0gTsyFdxLef2p41gdmzdcHmSqLxUxQ3vJr4EMwVgfr0gktmERAo9xkW05SdEMEQfmRpxyLuNPwAr7+PfBwRqghHNObqmFmh9geUOZQagiLG+sFHdCzXh5Cf0jnDJNCDF1Jbxqoha8uHgGSgkMLO6ENzHpYc2Ee1JivSPVXljDEGUdSzaTbJoxQj/hpZ6oJa2RCmMP3DE+IFRjrMCyj2GE5Io7y5rVVdGjdfvWanXbKjV37lJrd8srCRY71T/4cogwhSQ5eOBRHD+47Gad3XequjqLn3WNFwGGcEdJh3up0FmeQcZjQgQnamHcJnmqMYjsr+vW051P63vr79fmfRuPaFPuft19Orb9mFiPI9EVcMejwxyTtGc6qhieMTxeGFcmakFQTkpWRL2XnHCi3nvbTdozo1kPbvjBIewZs0saT9Wi7ndoQdkF2r1+rna+cKxamjPauzeTT1TX3ZVR38v5RFXBVoTqnAijX7BwUFf9+WO6/aPxxjuE+FtvvTUfTkyINaG2pQpCaNIZ2qV+P9rfM1/iDScvRalCpm/Cy1GY77nnnpLbu0rdL+33eN/wpiP0f/GLXywZis19iQxgj+xELcwxSUkXo3pjlENZZs5EecTjl2Zte63txkDGeEfxJmw7zTYFnjnRlRdyxBQ7LnIoLyIV2DZEhAgGFrgn7bN+rbyj3xPJgOOG5H8YR+Del5+w4gvRFOxZn0hRU0NrSz6Kn/3sZyUxMRfBHdZwL5UkuOQNU16ArkDkGXIk2evT1JUxggFzIq+pKZsfzGVW2CdgV6bZbxpVG8GWlxBFAi8HYXilJsDhNpmJEg8z1kHCzlBekrKsF96fxFyT5bxGwhbTeIoiRY7FjvA7flNqL/NwmXM9J2CzvwAAFT9JREFUSl/EnT3WcC8V/h49B0V9MlhFMZKQeDGN4YOw0yg8Lwp3PMgjkxEh3aooU3um45WohgHlyjLKZNhLnVO2rFxluYyyuawqByvUWNagrj3th3UNQgVjFsUF5hgI0tQPwwJ71ieyYBE1lvFUyqtRV9+onVUterz9Uf3spR8PKzdD0nj/6zNu0xXll6i7q/PgZYT6EbUDdzzqEfdSeRy4Ab9hnpkMBUUrTXbj004/U9d/4t1qbmrWLzb/RGtbnj2keexhnF03VzOrFmha35lqyh3H6eCqLmtQeaZCygyqP9Olbu3VgcwO7St/QX825ULd8ZcfP+TUA8Y6Xk72kLInlX3TJKFLU0i4hYI/GQrhnyT4K1V4h/GYfeQjH8kb6AgdxoudZhyWunfh90QNYezAW8tWK5JYldqeFf0epSzpLPbh1GM0ryUsGq9o0qky0fMxztEmks0R2s3cVCofzkjqTsQOEWdE4uDZJxt9GmMO7wl7lsczaWva9mKM5ZSKNAVDOJEOyAvwgHuaCLI09x4qB3JeOuMeZREDQZqj+/gN7+NkKMgxSUksC9tA5A/ckWlICscxwmm3EaRlgVGK3BsklEMmIelfqaS/0b3ZunrjjTemfZSvGyMCVtjHCPRwH5Nmn2/hPVnwUO7Y38WLj7UeZSbNpDi0bgjP7ElkcWKh4sVn7yshnaX2Ykb3QqklcclkWOAK21/qnPbCa+GEsoCiAS9CdiPuaRS8odyxZLLlIeKOkhlxJ1NwmgJ3EvvgjZ4sBWGYRGJp9xuy9zFSqAntgjtjniiTYgkZiVCgkABNyv/PIYXxDXf2xsEN1hikMMSkNX5FCQBJwjNZCnMDiZhKja36hiZtL9+t9b3r9YstP9VzrWvU0btvxM28etF1umX2R5XJDYhQwYg7gj3c044DKjAe56yPuOGv/BAvO972NOWkpafo6g9eq5mnztbDu36uDW3P5zMID+YG0/z8kGtuPOYmPfLFn2vhgvl5IQ6BEY8PIZrUCYEubcGrjsI5mcqdd96ZDzlPW+gjjBkoknh/4YNQzhox3IIhAOGZvaPcD88ymfnhmCYvA88jsovrJ3K02lAuOBJIJJZ0bF3hb+CEQk2yRmQaksXhwMB4MpIoQhQiuBF6TS4a5jrCkVFMk5JsFdaJfsOAw1ozWQpGCIyDaSIgaRPrHsoxiiTrJcYSjiolumkksgxyI8YAcr4wXjF6w533J+2aSn4GPpOpMDdgyEy7l5yxyXjnyDtkGOaCKInwSIyEOJFYE9mSx9ZJ1nfePaJI0paJlp8hbb2PhuussE/gXkYRYcEqtT+8sAkoDEyWKH0oIXirCjPEo9AwYRZmiSfRDUpQlCme36CYs0BGyv9wMCGAM0mz+E7GgoW51BFpQ9sFv4g7yjtMmbRZ7IhKQHCBO14sFkT6CQWd32H9JJEL/4Y7hpYoC+5w+KH8wJ17TcbCYpV0/naxNiH4Mt5oO9zhSzKdQu4sfBg/MLDAHcEL7oxPWPEd3KOxPlwBZaJvPUgaC4xNFvM0XrDqmlrtq+xUe3mH1nQ8q6eb/6gt+17S9v3bNFhw3F6psXfajDP1wDv/U8dUNeXnGMY7z0+z3aDw3oz1NInFStVnPL4nXwlZ19N496jflClTdeJpJ+vSd16mOSfM0wtdz2lN6+pXtn/sUXtPu7r7u4o2hWzCTVVTdM3xb9c33nKPVv5pRd6jQx3wuKRJhhbdmDBJEhARwjwZCxEEnDs/nMI6ipKNso3yhiKJEslchXGJeYM5h61VUbby6MhCBGjCUYnWQXhGYWH7FfyHU3g+3LnPZCwkcksbQRC1j/UUxQMFBMUGthj0mCuYr1G+mb8Yv8zrGKuRXWAfZYrnN/QT+U+IZEgbGRjVgTBitixMxoJBAmNJWoNQ1EbmVBRtuLO2sR7iOIhkErgzV0dZ4llLWUdZf6NM8cisbF9D+eT5aR09UR3I50DY/GQsjE/e1TQ5hgrbh1GJD4YOkksj/xO5yfqIDE80InNMYXZ+5B/mJ+YknBhczzYyjC1wH86ayn1YkzBsuUxMAlbYJ2a/HKwVSh9WzjSh2sWaguLIZIpygkKOssJ/Q3mhsNihSKLIM8kyGfPMkexnYtFkgmeij+4/wfHGVg/LNAv9SMOUEB4i7ixoKONwR1mHLdyZfOHORAz3Up7OuMpyXyZ4Jvoo+/9k5R6FQqfNYDu0nYxzhDaMIPQB4x0mEffoVAQEPbjznOEYxAqfR//CfbIqjVFbEAAQaPGCpPV+VNfU6UB5l9qzHeovH9CWzs3atH+jdnbuyGeD7+7vVv9gn3LKKZvJqipbpZryWs1vWKBlU0/XrMFjNLVjZAY9hHG4I6RM5oJQddddd6Xac1rYTuaSufPma/5JC3Ty+ado5sLZapjWoIqaKvXlejWQe/nIzgpVqCpTpb7OPnW07NO+7fv0jS99dcTjnQzTH/vYx/JhrZO5sEed0NU0+ziLtRPjIGsc7z0KNP9mzqFfomzlCNgI7mzdQXGhr0dSyOfA2dQcITbZ95ISoUAo9HCV5ogbCgURhLz/KOXRqTfM78zrKCcol1HGctbwUsnA4vqEqLkoRH8k/TZRfgMXjs+De6kcPXF1hjlzLeOciAW4MxaR8aLxjuyCgQDeKPcjiezk+cwtGEmIEpzMhXWUyCWMVMNRmqM2M6YZg0Q+MO6ZB5DfI+7cHxkGWR1jSBSdNlJZhogrTssgUtBl4hKwwj5x++aQmvFCokCm8YSNR5PwvKCsh3b0Ax4wuKcNcRpL9gjlkcKIwBhKQchAeUR5H+kCNJosWDgR1mE/mULgSzFB6IoMJsMx2OWVw4pKlVdUaiA7oB71qj8zkN98wHdZZVWpClWrWrmBgXxW/sL966XqFX2PByfKYZD2N5PhukceeSS/hznNudRJ7UHII49DZLQbGHhZiRmOB73Y/cnmfPPNN+c9zCEV9rTDfawSPw2HHcoQijrcSXoZSmE8ojzyGa7XdSwYMMegqPOZTCHwpdjgrY24D2duL3XfI/U9iiLJ6CZr5E4cByJwiGJKcwLUkWI5nPuQuwADyUROTjyc9oR+rRX2SdbDeNpRIEdqwTzSzcXyiqI+2faqD4cDCiTM+YzEWjqcZ6W9lgSAKIxYvEMtRB+guA/H8zuaLKJIBrjjvQ+1MLfAvNRZxGPV/lAiGUrxInsvnl9CpidCIes+SiMJiEIu9957b557miOOxoIDiejgPtm9jEmsmGNQIEn6NhGMshhhyemAoh7ymopBFu4kOpsIBQcPCiOfkAwkQ9kSYYO3fTh7yUezf3CwwRzPusvkIWCFffL01cGaEsIaKZCExYxHISQNRf1oCqEhpCziPh7MeSbhaSiMIRtIhrLF8xsp7uPFHeZ8QopkKMWS7SBwH40TEEo9m+/ZShJxDymSoVTbyUyOAsmpFeNRyLiPwkhm9aOlMMfgbYf7eI13jnuCOxnMj5ZC2Hrk+R2vNkce9cm+xWY4/FAg4T5ecwx1jRT1o0mWIQEcivtwc/UMp2+TrkVuj7gfTWvqkeI33vexwj7ePfAans8eaPYMRcmyRrpHKW0V2EfD/rHok/Z3oV0HZ7hHn7T7fkfKIdo/xsJGHxytZSy5400vHOuT4ai20RoXeMOisT7SnA5p6wZnuDPW+TvZ9+2mbXex69jzi7edv6NxxFXhM0k0xJFaeNX5e7QWxnoh99GOMiEEOGJOxv6jtTC/rFy5Mp+oi7+j6XXHm05SNRJ88Zd55mgtnEYEbz4jzbOQlp25v0qqcKynTTyalvPQ61hLo7HOeD+aZZmRMpwov7PCPlF64gjUg4zL7FVinztJb45E4WUn8QXZPydr9vEjwSHuHuwHg3nE/UgIGiiLeNLhTqKXkEPFRto3o8EdgYJxDnc+0XFwI61jiL9jmwLzSzTeR3L0zFAuGKEi7iTYcTmcAOHaeGb4PPzww0cEEZ7cyNtCwkqXwwmQzR3m7EMdbrbtYjyJ0CH0OuJ+NCuLceONnAsYqKLPSI5zG3pv5hWMUtFnsidnHY13lTw9MOeEHDLqH4noTXMv3VNE9MA8Okqv9C9KX8GWyWisc0qFSxgErLCH0Y+HtYLJFqUdATvuw4/Yi0voKX8LP/w3JlsvbMMbINFRbkncoyNohnKP/o2S7jI8AoVH6BWy5z2I/h2N72LcyXwbWsLE4REc2dUcOQPfQs6F/0ahT5pjUNbpD5f0BODL8WCR0aTQYBj9f+4WGZ4KjVDR/7/00kuDzsOQnmb6KxGsEaqTuKOQF+MdGb0vu+yy9A/0lXkCJO6COfIMERDF/jKPsPe82F/YH01b947UsOHkkDje/HfmIXjHfaIj3o5UfY6G+xCtCffCMT50vMMhiTvKOqHvLuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuERsMIeXp+6RSZgAiZgAiZgAiZgAiZgAiZgAgEQsMIeQCe6CSZgAiZgAiZgAiZgAiZgAiZgAuER+P9wn2gD8fQPzQAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def plotDistributionOfDataInClusters(som, data, columns, plottype='barpolar'): \n", + " size=som.distance_map().shape[0]\n", + " clusters= np.array(np.arange(0,size*size)).reshape(size,size)\n", + " distributionMapData=pd.DataFrame(columns=['col', 'row', 'min', 'mean', 'max', 'bgcolor'])\n", + " labels_map = som.labels_map(data, [label_names[t] for t in target])\n", + " win_map=som.win_map(data)\n", + " for position in win_map.keys():\n", + " label_fracs = [labels_map[position][l] for l in label_names.values()]\n", + " bgcolor = label_fracs.index(np.max(label_fracs))*255//len(label_fracs) \n", + " winner=win_map[position]\n", + " minima=np.min(winner, axis=0)\n", + " means=np.mean(winner, axis=0)\n", + " maxima=np.max(winner, axis=0)\n", + " row=int(position[1]+1)\n", + " col=int(position[0]+1)\n", + " distributionMapData=distributionMapData.append(\n", + " {'col': col,\n", + " # row needs to be shifted because all the other plots (heatmaps) are shown with row 0 at bottom \n", + " 'row': size-row+1, \n", + " 'min': minima, \n", + " 'mean': means, \n", + " 'max': maxima,\n", + " 'bgcolor' : bgcolor}, \n", + " verify_integrity=True, ignore_index=True)\n", + "\n", + " noClusters=np.max(clusters).item()+1\n", + " clusterData=pd.DataFrame(columns=['col', 'row', 'min', 'mean', 'max'])\n", + " \n", + " maximum=max([l.max() for l in distributionMapData['max'].values])\n", + " minimum=min([l.min() for l in distributionMapData['min'].values])\n", + " \n", + " distributionMap(distributionMapData, clusters, size, columns, minimum, maximum, plottype)\n", + "\n", + "plotDistributionOfDataInClusters(som, data, columns[:-1], plottype='barpolar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Starburst Gradient visualization\n", + "This visualization can be used to find similaraties between neurons resp. between the samples that are represented. the black lines follow the maximum gradient between nodes, the stars separate regions of neurons with smaller distance towards each other from others.\n", + "\n", + "If you image the UMAT (distance values) being plotted as 3 dimensional plot lile mountains and valleys the starburst map shows the at the center of the stars the position a ball would end up when it started rolling at the begin of one of the corresponding lines. \n", + "\n", + "From Hamel, Brown: Improved Interpretability of the Unified Distance Matrix with Connected Components (https://homepage.cs.uri.edu/faculty/hamel/pubs/improved-umat-dmin11.pdf)\n", + "\n", + "\"At the core of the implementation is the function find.internal.node which, given the map coordinates of a neural element, will find the corresponding internal node of the associated star. [...] Given a position on the map this function first searches the adjacent nodes for the minimal UMAT value using the function find.min. If an adjacent node with a smaller UMAT value than the value of our current node exists and if this UMAT value is smaller than the UMAT values of all other adjacent nodes, then that node lies along the maximum gradient of the surface and we make this node our new current position. If no such node exists, then the gradient at our current position is zero and we are at an internal node.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def findMin(x, y, umat):\n", + " newxmin=max(0,x-1)\n", + " newxmax=min(umat.shape[0],x+2)\n", + " newymin=max(0,y-1)\n", + " newymax=min(umat.shape[1],y+2)\n", + " minx, miny = np.where(umat[newxmin:newxmax,newymin:newymax] == umat[newxmin:newxmax,newymin:newymax].min())\n", + " return newxmin+minx[0], newymin+miny[0]\n", + "\n", + "def findInternalNode(x, y, umat):\n", + " minx, miny = findMin(x,y,umat)\n", + " if (minx == x and miny == y):\n", + " cx = minx\n", + " cy = miny\n", + " else:\n", + " cx,cy = findInternalNode(minx,miny,umat)\n", + " return cx, cy" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib\n", + "from matplotlib import cm\n", + "import numpy as np\n", + "\n", + "def matplotlib_cmap_to_plotly(cmap, entries):\n", + " h = 1.0/(entries-1)\n", + " colorscale = []\n", + "\n", + " for k in range(entries):\n", + " C = (np.array(cmap(k*h)[:3])*255)\n", + " colorscale.append([k*h, 'rgb'+str((C[0], C[1], C[2]))])\n", + "\n", + " return colorscale" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "colorscale": [ + [ + 0, + "rgb(255.0, 255.0, 255.0)" + ], + [ + 0.003937007874015748, + "rgb(253.63281200781202, 254.125, 254.1249998031251)" + ], + [ + 0.007874015748031496, + "rgb(252.265624015624, 253.25, 253.2499996062502)" + ], + [ + 0.011811023622047244, + "rgb(250.89843602343603, 252.375, 252.37499940937533)" + ], + [ + 0.015748031496062992, + "rgb(249.53124803124803, 251.5, 251.49999921250046)" + ], + [ + 0.01968503937007874, + "rgb(248.16406003906005, 250.625, 250.62499901562555)" + ], + [ + 0.023622047244094488, + "rgb(246.79687204687204, 249.75, 249.74999881875067)" + ], + [ + 0.027559055118110236, + "rgb(245.42968405468406, 248.875, 248.8749986218758)" + ], + [ + 0.031496062992125984, + "rgb(244.06249606249605, 248.0, 247.9999984250009)" + ], + [ + 0.03543307086614173, + "rgb(242.69530807030807, 247.125, 247.124998228126)" + ], + [ + 0.03937007874015748, + "rgb(241.32812007812007, 246.25, 246.24999803125112)" + ], + [ + 0.04330708661417323, + "rgb(239.9609320859321, 245.375, 245.37499783437625)" + ], + [ + 0.047244094488188976, + "rgb(238.59374409374408, 244.5, 244.49999763750137)" + ], + [ + 0.051181102362204724, + "rgb(237.2265561015561, 243.62499999999997, 243.62499744062646)" + ], + [ + 0.05511811023622047, + "rgb(235.85936810936812, 242.75, 242.74999724375158)" + ], + [ + 0.05905511811023622, + "rgb(234.4921801171801, 241.875, 241.8749970468767)" + ], + [ + 0.06299212598425197, + "rgb(233.1249921249921, 241.0, 240.99999685000182)" + ], + [ + 0.06692913385826771, + "rgb(231.75780413280413, 240.125, 240.1249966531269)" + ], + [ + 0.07086614173228346, + "rgb(230.39061614061615, 239.25, 239.24999645625203)" + ], + [ + 0.07480314960629922, + "rgb(229.02342814842814, 238.375, 238.37499625937713)" + ], + [ + 0.07874015748031496, + "rgb(227.65624015624016, 237.5, 237.49999606250228)" + ], + [ + 0.0826771653543307, + "rgb(226.28905216405215, 236.625, 236.62499586562737)" + ], + [ + 0.08661417322834646, + "rgb(224.92186417186417, 235.74999999999997, 235.7499956687525)" + ], + [ + 0.09055118110236221, + "rgb(223.55467617967616, 234.875, 234.87499547187758)" + ], + [ + 0.09448818897637795, + "rgb(222.18748818748819, 234.0, 233.99999527500273)" + ], + [ + 0.09842519685039369, + "rgb(220.82030019530018, 233.125, 233.12499507812782)" + ], + [ + 0.10236220472440945, + "rgb(219.4531122031122, 232.25, 232.24999488125295)" + ], + [ + 0.1062992125984252, + "rgb(218.0859242109242, 231.375, 231.37499468437804)" + ], + [ + 0.11023622047244094, + "rgb(216.7187362187362, 230.5, 230.4999944875032)" + ], + [ + 0.11417322834645668, + "rgb(215.3515482265482, 229.625, 229.62499429062828)" + ], + [ + 0.11811023622047244, + "rgb(213.98436023436022, 228.74999999999997, 228.7499940937534)" + ], + [ + 0.1220472440944882, + "rgb(212.61717224217224, 227.87499999999997, 227.8749938968785)" + ], + [ + 0.12598425196850394, + "rgb(211.24998424998424, 227.0, 226.99999370000364)" + ], + [ + 0.12992125984251968, + "rgb(209.88279625779626, 226.125, 226.12499350312874)" + ], + [ + 0.13385826771653542, + "rgb(208.51560826560825, 225.25, 225.24999330625386)" + ], + [ + 0.1377952755905512, + "rgb(207.14842027342027, 224.375, 224.37499310937895)" + ], + [ + 0.14173228346456693, + "rgb(205.78123228123226, 223.5, 223.49999291250407)" + ], + [ + 0.14566929133858267, + "rgb(204.41404428904428, 222.625, 222.6249927156292)" + ], + [ + 0.14960629921259844, + "rgb(203.04685629685628, 221.75, 221.7499925187543)" + ], + [ + 0.15354330708661418, + "rgb(201.6796683046683, 220.87499999999997, 220.8749923218794)" + ], + [ + 0.15748031496062992, + "rgb(200.3124803124803, 219.99999999999997, 219.99999212500455)" + ], + [ + 0.16141732283464566, + "rgb(198.9452923202923, 219.125, 219.12499192812965)" + ], + [ + 0.1653543307086614, + "rgb(197.5781043281043, 218.25, 218.24999173125477)" + ], + [ + 0.16929133858267717, + "rgb(196.21091633591632, 217.375, 217.37499153437986)" + ], + [ + 0.1732283464566929, + "rgb(194.84372834372834, 216.5, 216.49999133750498)" + ], + [ + 0.17716535433070865, + "rgb(193.47654035154034, 215.625, 215.6249911406301)" + ], + [ + 0.18110236220472442, + "rgb(192.10935235935236, 214.75, 214.74999094375522)" + ], + [ + 0.18503937007874016, + "rgb(190.74216436716435, 213.87499999999997, 213.87499074688031)" + ], + [ + 0.1889763779527559, + "rgb(189.37497637497637, 212.99999999999997, 212.99999055000544)" + ], + [ + 0.19291338582677164, + "rgb(188.0077883827884, 212.12499999999997, 212.12499035313056)" + ], + [ + 0.19685039370078738, + "rgb(186.64060039060035, 211.24999999999997, 211.24999015625568)" + ], + [ + 0.20078740157480315, + "rgb(185.27341239841238, 210.375, 210.37498995938077)" + ], + [ + 0.2047244094488189, + "rgb(183.9062244062244, 209.5, 209.4999897625059)" + ], + [ + 0.20866141732283464, + "rgb(182.53903641403642, 208.625, 208.624989565631)" + ], + [ + 0.2125984251968504, + "rgb(181.17184842184838, 207.75, 207.74998936875613)" + ], + [ + 0.21653543307086615, + "rgb(179.8046604296604, 206.875, 206.87498917188123)" + ], + [ + 0.2204724409448819, + "rgb(178.43747243747242, 206.0, 205.99998897500635)" + ], + [ + 0.22440944881889763, + "rgb(177.07028444528444, 205.125, 205.12498877813147)" + ], + [ + 0.22834645669291337, + "rgb(175.70309645309644, 204.24999999999997, 204.2499885812566)" + ], + [ + 0.23228346456692914, + "rgb(174.33590846090843, 203.37499999999997, 203.37498838438168)" + ], + [ + 0.23622047244094488, + "rgb(172.96872046872045, 202.5, 202.4999881875068)" + ], + [ + 0.24015748031496062, + "rgb(171.60153247653247, 201.625, 201.62498799063192)" + ], + [ + 0.2440944881889764, + "rgb(170.23434448434446, 200.75, 200.74998779375701)" + ], + [ + 0.24803149606299213, + "rgb(168.86715649215645, 199.87499999999997, 199.87498759688214)" + ], + [ + 0.25196850393700787, + "rgb(167.49996849996847, 198.99999999999997, 198.99998740000726)" + ], + [ + 0.2559055118110236, + "rgb(166.24999999999997, 198.0468537988413, 198.12498720313238)" + ], + [ + 0.25984251968503935, + "rgb(165.375, 196.84372900391912, 197.2499870062575)" + ], + [ + 0.2637795275590551, + "rgb(164.49999999999997, 195.6406042089969, 196.3749868093826)" + ], + [ + 0.26771653543307083, + "rgb(163.62499999999997, 194.4374794140747, 195.4999866125077)" + ], + [ + 0.27165354330708663, + "rgb(162.75, 193.23435461915247, 194.6249864156328)" + ], + [ + 0.2755905511811024, + "rgb(161.875, 192.03122982423028, 193.74998621875793)" + ], + [ + 0.2795275590551181, + "rgb(161.0, 190.82810502930806, 192.87498602188305)" + ], + [ + 0.28346456692913385, + "rgb(160.125, 189.62498023438587, 191.99998582500817)" + ], + [ + 0.2874015748031496, + "rgb(159.24999999999997, 188.42185543946366, 191.1249856281333)" + ], + [ + 0.29133858267716534, + "rgb(158.375, 187.21873064454147, 190.2499854312584)" + ], + [ + 0.2952755905511811, + "rgb(157.49999999999997, 186.01560584961922, 189.3749852343835)" + ], + [ + 0.2992125984251969, + "rgb(156.62499999999997, 184.812481054697, 188.49998503750862)" + ], + [ + 0.3031496062992126, + "rgb(155.74999999999997, 183.6093562597748, 187.62498484063372)" + ], + [ + 0.30708661417322836, + "rgb(154.875, 182.4062314648526, 186.74998464375884)" + ], + [ + 0.3110236220472441, + "rgb(154.0, 181.2031066699304, 185.87498444688393)" + ], + [ + 0.31496062992125984, + "rgb(153.125, 179.9999818750082, 184.99998425000908)" + ], + [ + 0.3188976377952756, + "rgb(152.25, 178.796857080086, 184.1249840531342)" + ], + [ + 0.3228346456692913, + "rgb(151.375, 177.59373228516378, 183.24998385625932)" + ], + [ + 0.32677165354330706, + "rgb(150.49999999999997, 176.3906074902416, 182.3749836593844)" + ], + [ + 0.3307086614173228, + "rgb(149.62499999999997, 175.18748269531937, 181.49998346250953)" + ], + [ + 0.3346456692913386, + "rgb(148.74999999999997, 173.98435790039713, 180.62498326563463)" + ], + [ + 0.33858267716535434, + "rgb(147.87499999999997, 172.78123310547494, 179.74998306875975)" + ], + [ + 0.3425196850393701, + "rgb(147.0, 171.57810831055272, 178.87498287188484)" + ], + [ + 0.3464566929133858, + "rgb(146.125, 170.37498351563053, 177.99998267500996)" + ], + [ + 0.35039370078740156, + "rgb(145.25, 169.17185872070831, 177.1249824781351)" + ], + [ + 0.3543307086614173, + "rgb(144.375, 167.96873392578615, 176.24998228126023)" + ], + [ + 0.35826771653543305, + "rgb(143.5, 166.7656091308639, 175.37498208438532)" + ], + [ + 0.36220472440944884, + "rgb(142.62499999999997, 165.56248433594172, 174.49998188751044)" + ], + [ + 0.3661417322834646, + "rgb(141.74999999999997, 164.3593595410195, 173.62498169063554)" + ], + [ + 0.3700787401574803, + "rgb(140.87499999999997, 163.15623474609728, 172.74998149376066)" + ], + [ + 0.37401574803149606, + "rgb(139.99999999999997, 161.9531099511751, 171.87498129688575)" + ], + [ + 0.3779527559055118, + "rgb(139.125, 160.74998515625285, 170.99998110001087)" + ], + [ + 0.38188976377952755, + "rgb(138.25, 159.5468603613307, 170.12498090313602)" + ], + [ + 0.3858267716535433, + "rgb(137.375, 158.34373556640847, 169.24998070626114)" + ], + [ + 0.38976377952755903, + "rgb(136.5, 157.14061077148625, 168.37498050938623)" + ], + [ + 0.39370078740157477, + "rgb(135.625, 155.93748597656403, 167.49998031251135)" + ], + [ + 0.39763779527559057, + "rgb(134.74999999999997, 154.73436118164184, 166.62498011563645)" + ], + [ + 0.4015748031496063, + "rgb(133.87499999999997, 153.53123638671963, 165.74997991876157)" + ], + [ + 0.40551181102362205, + "rgb(132.99999999999997, 152.3281115917974, 164.87497972188666)" + ], + [ + 0.4094488188976378, + "rgb(132.12499999999997, 151.12498679687522, 163.99997952501178)" + ], + [ + 0.41338582677165353, + "rgb(131.25, 149.92186200195297, 163.1249793281369)" + ], + [ + 0.41732283464566927, + "rgb(130.375, 148.7187372070308, 162.24997913126205)" + ], + [ + 0.421259842519685, + "rgb(129.5, 147.51561241210857, 161.37497893438714)" + ], + [ + 0.4251968503937008, + "rgb(128.625, 146.31248761718638, 160.49997873751227)" + ], + [ + 0.42913385826771655, + "rgb(127.75, 145.10936282226416, 159.62497854063736)" + ], + [ + 0.4330708661417323, + "rgb(126.87499999999997, 143.90623802734197, 158.74997834376248)" + ], + [ + 0.43700787401574803, + "rgb(125.99999999999997, 142.70311323241975, 157.87497814688757)" + ], + [ + 0.4409448818897638, + "rgb(125.12499999999999, 141.49998843749754, 156.9999779500127)" + ], + [ + 0.4448818897637795, + "rgb(124.24999999999999, 140.29686364257535, 156.1249777531378)" + ], + [ + 0.44881889763779526, + "rgb(123.37499999999999, 139.09373884765313, 155.24997755626296)" + ], + [ + 0.452755905511811, + "rgb(122.49999999999999, 137.89061405273094, 154.37497735938803)" + ], + [ + 0.45669291338582674, + "rgb(121.62499999999999, 136.6874892578087, 153.49997716251318)" + ], + [ + 0.46062992125984253, + "rgb(120.74999999999999, 135.48436446288653, 152.62497696563827)" + ], + [ + 0.4645669291338583, + "rgb(119.87499999999999, 134.2812396679643, 151.7499767687634)" + ], + [ + 0.468503937007874, + "rgb(118.99999999999999, 133.0781148730421, 150.87497657188848)" + ], + [ + 0.47244094488188976, + "rgb(118.12499999999999, 131.87499007811988, 149.9999763750136)" + ], + [ + 0.4763779527559055, + "rgb(117.24999999999999, 130.67186528319766, 149.12497617813872)" + ], + [ + 0.48031496062992124, + "rgb(116.37500000000001, 129.4687404882755, 148.24997598126387)" + ], + [ + 0.484251968503937, + "rgb(115.49999999999999, 128.26561569335325, 147.37497578438894)" + ], + [ + 0.4881889763779528, + "rgb(114.62499999999999, 127.06249089843105, 146.49997558751406)" + ], + [ + 0.4921259842519685, + "rgb(113.74999999999999, 125.85936610350885, 145.62497539063918)" + ], + [ + 0.49606299212598426, + "rgb(112.87499999999999, 124.65624130858663, 144.7499751937643)" + ], + [ + 0.5, + "rgb(111.12499999999999, 122.24999171874222, 142.9999748000145)" + ], + [ + 0.5039370078740157, + "rgb(110.24999999999999, 121.04686692382, 142.12497460313963)" + ], + [ + 0.5078740157480315, + "rgb(109.37499999999999, 119.84374212889782, 141.24997440626476)" + ], + [ + 0.5118110236220472, + "rgb(108.49999999999999, 118.64061733397561, 140.37497420938985)" + ], + [ + 0.515748031496063, + "rgb(107.62500000000001, 117.43749253905342, 139.499974012515)" + ], + [ + 0.5196850393700787, + "rgb(106.74999999999999, 116.23436774413118, 138.6249738156401)" + ], + [ + 0.5236220472440944, + "rgb(105.87499999999999, 115.03124294920897, 137.7499736187652)" + ], + [ + 0.5275590551181102, + "rgb(105.0, 113.82811815428676, 136.8749734218903)" + ], + [ + 0.5314960629921259, + "rgb(104.12499999999999, 112.62499335936457, 135.99997322501542)" + ], + [ + 0.5354330708661417, + "rgb(103.24999999999999, 111.42186856444236, 135.12497302814052)" + ], + [ + 0.5393700787401575, + "rgb(102.37499999999999, 110.21874376952015, 134.24997283126567)" + ], + [ + 0.5433070866141733, + "rgb(101.5, 109.01561897459794, 133.37497263439076)" + ], + [ + 0.547244094488189, + "rgb(100.625, 107.81249417967574, 132.49997243751588)" + ], + [ + 0.5511811023622047, + "rgb(99.74999999999999, 106.6093693847535, 131.624972240641)" + ], + [ + 0.5551181102362205, + "rgb(98.87499999999999, 105.40624458983132, 130.74997204376612)" + ], + [ + 0.5590551181102362, + "rgb(97.99999999999999, 104.20311979490911, 129.8749718468912)" + ], + [ + 0.562992125984252, + "rgb(97.125, 102.9999949999869, 128.99997165001633)" + ], + [ + 0.5669291338582677, + "rgb(96.24999999999999, 101.79687020506469, 128.12497145314143)" + ], + [ + 0.5708661417322834, + "rgb(95.37499999999999, 100.59374541014249, 127.24997125626658)" + ], + [ + 0.5748031496062992, + "rgb(94.49999999999999, 99.39062061522027, 126.37497105939168)" + ], + [ + 0.5787401574803149, + "rgb(93.62500000000001, 98.18749582029811, 125.49997086251682)" + ], + [ + 0.5826771653543307, + "rgb(92.75, 96.98437102537586, 124.6249706656419)" + ], + [ + 0.5866141732283464, + "rgb(91.87499999999999, 95.78124623045365, 123.74997046876703)" + ], + [ + 0.5905511811023622, + "rgb(90.99999999999999, 94.57812143553144, 122.87497027189214)" + ], + [ + 0.5944881889763779, + "rgb(90.12499999999999, 93.37499664060924, 121.99997007501725)" + ], + [ + 0.5984251968503937, + "rgb(89.25, 92.17187184568702, 121.12496987814235)" + ], + [ + 0.6023622047244095, + "rgb(88.37499999999999, 90.96874705076482, 120.24996968126749)" + ], + [ + 0.6062992125984252, + "rgb(87.49999999999999, 89.76562225584262, 119.3749694843926)" + ], + [ + 0.610236220472441, + "rgb(86.62499999999999, 88.56249746092041, 118.4999692875177)" + ], + [ + 0.6141732283464567, + "rgb(85.74999999999999, 87.35937266599821, 117.62496909064281)" + ], + [ + 0.6181102362204725, + "rgb(84.87499999999999, 86.15624787107598, 116.74996889376791)" + ], + [ + 0.6220472440944882, + "rgb(83.99999999999999, 84.95312307615377, 115.87496869689305)" + ], + [ + 0.6259842519685039, + "rgb(83.12499999999999, 83.74999828123157, 114.99996850001816)" + ], + [ + 0.6299212598425197, + "rgb(82.24999999999999, 82.54687348630937, 114.12496830314326)" + ], + [ + 0.6338582677165354, + "rgb(81.375, 81.37496815757687, 113.21739130434786)" + ], + [ + 0.6377952755905512, + "rgb(80.49999999999999, 80.49996849996852, 112.00000000000003)" + ], + [ + 0.6417322834645669, + "rgb(79.62500000000001, 79.62496884236019, 110.78260869565224)" + ], + [ + 0.6456692913385826, + "rgb(78.74999999999999, 78.74996918475182, 109.56521739130437)" + ], + [ + 0.6496062992125984, + "rgb(77.87499999999999, 77.87496952714346, 108.34782608695654)" + ], + [ + 0.6535433070866141, + "rgb(76.99999999999999, 76.99996986953511, 107.13043478260873)" + ], + [ + 0.6574803149606299, + "rgb(76.12499999999999, 76.12497021192675, 105.9130434782609)" + ], + [ + 0.6614173228346456, + "rgb(75.24999999999999, 75.2499705543184, 104.69565217391307)" + ], + [ + 0.6653543307086615, + "rgb(74.37499999999999, 74.37497089671005, 103.47826086956525)" + ], + [ + 0.6692913385826772, + "rgb(73.49999999999999, 73.4999712391017, 102.26086956521742)" + ], + [ + 0.6732283464566929, + "rgb(72.62499999999999, 72.62497158149334, 101.04347826086959)" + ], + [ + 0.6771653543307087, + "rgb(71.74999999999999, 71.74997192388498, 99.82608695652178)" + ], + [ + 0.6811023622047244, + "rgb(70.87499999999999, 70.87497226627664, 98.60869565217395)" + ], + [ + 0.6850393700787402, + "rgb(69.99999999999999, 69.99997260866829, 97.39130434782611)" + ], + [ + 0.6889763779527559, + "rgb(69.125, 69.12497295105993, 96.1739130434783)" + ], + [ + 0.6929133858267716, + "rgb(68.24999999999999, 68.24997329345156, 94.95652173913047)" + ], + [ + 0.6968503937007874, + "rgb(67.37499999999999, 67.37497363584323, 93.73913043478264)" + ], + [ + 0.7007874015748031, + "rgb(66.49999999999997, 66.49997397823486, 92.52173913043481)" + ], + [ + 0.7047244094488189, + "rgb(65.62500000000001, 65.62497432062654, 91.30434782608702)" + ], + [ + 0.7086614173228346, + "rgb(64.74999999999999, 64.74997466301815, 90.08695652173915)" + ], + [ + 0.7125984251968503, + "rgb(63.874999999999986, 63.8749750054098, 88.86956521739134)" + ], + [ + 0.7165354330708661, + "rgb(62.999999999999986, 62.99997534780145, 87.65217391304351)" + ], + [ + 0.7204724409448818, + "rgb(62.12499999999999, 62.1249756901931, 86.43478260869567)" + ], + [ + 0.7244094488188977, + "rgb(61.24999999999999, 61.24997603258475, 85.21739130434786)" + ], + [ + 0.7283464566929134, + "rgb(60.374999999999986, 60.37497637497639, 84.00000000000003)" + ], + [ + 0.7322834645669292, + "rgb(59.499999999999986, 59.49997671736804, 82.7826086956522)" + ], + [ + 0.7362204724409449, + "rgb(58.62499999999998, 58.624977059759686, 81.56521739130437)" + ], + [ + 0.7401574803149606, + "rgb(57.74999999999998, 57.74997740215134, 80.34782608695653)" + ], + [ + 0.7440944881889764, + "rgb(56.87499999999998, 56.87497774454298, 79.13043478260872)" + ], + [ + 0.7480314960629921, + "rgb(55.999999999999986, 55.999978086934625, 77.9130434782609)" + ], + [ + 0.7519685039370079, + "rgb(55.124999999999986, 55.12497842932627, 76.69565217391306)" + ], + [ + 0.7559055118110236, + "rgb(54.24999999999999, 54.24997877171791, 75.47826086956523)" + ], + [ + 0.7598425196850394, + "rgb(53.37499999999999, 53.374979114109564, 74.2608695652174)" + ], + [ + 0.7637795275590551, + "rgb(52.5, 52.49997945650121, 73.04347826086958)" + ], + [ + 0.7677165354330708, + "rgb(51.625, 51.62497979889288, 71.82608695652179)" + ], + [ + 0.7716535433070866, + "rgb(50.75000000000001, 50.7499801412845, 70.60869565217395)" + ], + [ + 0.7755905511811023, + "rgb(49.87500000000001, 49.874980483676154, 69.39130434782611)" + ], + [ + 0.7795275590551181, + "rgb(49.00000000000001, 48.9999808260678, 68.17391304347828)" + ], + [ + 0.7834645669291338, + "rgb(48.125, 48.12498116845945, 66.95652173913047)" + ], + [ + 0.7874015748031495, + "rgb(47.25, 47.24998151085109, 65.73913043478264)" + ], + [ + 0.7913385826771654, + "rgb(46.37500000000001, 46.37498185324274, 64.5217391304348)" + ], + [ + 0.7952755905511811, + "rgb(45.49999999999999, 45.49998219563438, 63.304347826086975)" + ], + [ + 0.7992125984251969, + "rgb(44.625, 44.62498253802603, 62.08695652173915)" + ], + [ + 0.8031496062992126, + "rgb(43.75, 43.749982880417676, 60.869565217391326)" + ], + [ + 0.8070866141732284, + "rgb(42.875, 42.87498322280933, 59.6521739130435)" + ], + [ + 0.8110236220472441, + "rgb(42.00000000000001, 41.99998356520097, 58.43478260869567)" + ], + [ + 0.8149606299212598, + "rgb(41.12499999999999, 41.12498390759262, 57.21739130434784)" + ], + [ + 0.8188976377952756, + "rgb(40.25, 40.24998424998426, 56.000000000000014)" + ], + [ + 0.8228346456692913, + "rgb(39.375, 39.37498459237592, 54.78260869565219)" + ], + [ + 0.8267716535433071, + "rgb(38.50000000000001, 38.499984934767554, 53.565217391304365)" + ], + [ + 0.8307086614173228, + "rgb(37.62499999999998, 37.62498527715922, 52.34782608695657)" + ], + [ + 0.8346456692913385, + "rgb(36.749999999999986, 36.74998561955085, 51.13043478260871)" + ], + [ + 0.8385826771653543, + "rgb(35.874999999999986, 35.87498596194249, 49.91304347826089)" + ], + [ + 0.84251968503937, + "rgb(34.999999999999986, 34.99998630433414, 48.695652173913054)" + ], + [ + 0.8464566929133858, + "rgb(34.12499999999999, 34.12498664672579, 47.47826086956524)" + ], + [ + 0.8503937007874016, + "rgb(33.24999999999999, 33.24998698911743, 46.260869565217405)" + ], + [ + 0.8543307086614174, + "rgb(32.375, 32.37498733150908, 45.04347826086958)" + ], + [ + 0.8582677165354331, + "rgb(31.5, 31.499987673900726, 43.82608695652175)" + ], + [ + 0.8622047244094488, + "rgb(30.625000000000004, 30.624988016292374, 42.60869565217393)" + ], + [ + 0.8661417322834646, + "rgb(29.750000000000007, 29.74998835868402, 41.3913043478261)" + ], + [ + 0.8700787401574803, + "rgb(28.874999999999982, 28.87498870107567, 40.17391304347828)" + ], + [ + 0.8740157480314961, + "rgb(27.999999999999986, 27.999989043467306, 38.95652173913044)" + ], + [ + 0.8779527559055118, + "rgb(27.12499999999999, 27.12498938585896, 37.739130434782616)" + ], + [ + 0.8818897637795275, + "rgb(26.249999999999993, 26.2499897282506, 36.52173913043479)" + ], + [ + 0.8858267716535433, + "rgb(25.374999999999996, 25.374990070642255, 35.304347826086975)" + ], + [ + 0.889763779527559, + "rgb(24.499999999999996, 24.499990413033895, 34.08695652173914)" + ], + [ + 0.8937007874015748, + "rgb(23.625, 23.62499075542557, 32.869565217391354)" + ], + [ + 0.8976377952755905, + "rgb(22.750000000000004, 22.749991097817183, 31.652173913043477)" + ], + [ + 0.9015748031496063, + "rgb(21.875000000000007, 21.874991440208838, 30.434782608695663)" + ], + [ + 0.905511811023622, + "rgb(20.999999999999982, 20.99999178260048, 29.21739130434783)" + ], + [ + 0.9094488188976377, + "rgb(20.124999999999986, 20.124992124992133, 28.000000000000014)" + ], + [ + 0.9133858267716535, + "rgb(19.24999999999999, 19.24999246738378, 26.782608695652183)" + ], + [ + 0.9173228346456693, + "rgb(18.374999999999993, 18.37499280977542, 25.56521739130435)" + ], + [ + 0.9212598425196851, + "rgb(17.499999999999993, 17.499993152167068, 24.347826086956534)" + ], + [ + 0.9251968503937008, + "rgb(16.624999999999996, 16.624993494558716, 23.130434782608702)" + ], + [ + 0.9291338582677166, + "rgb(15.75, 15.749993836950363, 21.91304347826089)" + ], + [ + 0.9330708661417323, + "rgb(14.875000000000004, 14.87499417934201, 20.695652173913043)" + ], + [ + 0.937007874015748, + "rgb(14.000000000000007, 13.999994521733656, 19.478260869565226)" + ], + [ + 0.9409448818897638, + "rgb(13.12500000000001, 13.124994864125304, 18.260869565217394)" + ], + [ + 0.9448818897637795, + "rgb(12.249999999999984, 12.249995206516951, 17.043478260869577)" + ], + [ + 0.9488188976377953, + "rgb(11.374999999999988, 11.374995548908599, 15.826086956521745)" + ], + [ + 0.952755905511811, + "rgb(10.499999999999991, 10.499995891300246, 14.608695652173916)" + ], + [ + 0.9566929133858267, + "rgb(9.624999999999995, 9.624996233691908, 13.391304347826127)" + ], + [ + 0.9606299212598425, + "rgb(8.749999999999996, 8.749996576083541, 12.173913043478267)" + ], + [ + 0.9645669291338582, + "rgb(7.875, 7.8749969184751745, 10.956521739130437)" + ], + [ + 0.968503937007874, + "rgb(7.0000000000000036, 6.999997260866835, 9.73913043478262)" + ], + [ + 0.9724409448818897, + "rgb(6.125000000000006, 6.1249976032584685, 8.521739130434774)" + ], + [ + 0.9763779527559056, + "rgb(5.25000000000001, 5.249997945650116, 7.304347826086958)" + ], + [ + 0.9803149606299213, + "rgb(4.375000000000012, 4.3749982880417635, 6.086956521739126)" + ], + [ + 0.984251968503937, + "rgb(3.4999999999999876, 3.499998630433411, 4.86956521739131)" + ], + [ + 0.9881889763779528, + "rgb(2.6249999999999907, 2.624998972825058, 3.652173913043479)" + ], + [ + 0.9921259842519685, + "rgb(1.7499999999999938, 1.7499993152167055, 2.434782608695648)" + ], + [ + 0.9960629921259843, + "rgb(0.8749999999999969, 0.8749996576083527, 1.2173913043478168)" + ], + [ + 1, + "rgb(0, 0, 0)" + ] + ], + "type": "heatmap", + "z": [ + [ + 0.14996269126881714, + 0.33268717863503666, + 0.41888357014306976, + 0.4867580071514521, + 0.6662786820377489, + 0.6668716015810111, + 0.5299462499739006, + 0.4398362823105039, + 0.2331428344377867 + ], + [ + 0.2983126461820526, + 0.5666680686441888, + 0.646069446486447, + 0.760612203645955, + 1, + 0.9692469074380373, + 0.7945726140069775, + 0.7263071224680495, + 0.4184388820053774 + ], + [ + 0.32826645990474557, + 0.5520813913181656, + 0.623215399877841, + 0.7962754267790337, + 0.9536318256886233, + 0.7984006587242218, + 0.7119823992465217, + 0.6934524950410541, + 0.37355441690489055 + ], + [ + 0.2931947262389132, + 0.5098445036106718, + 0.5867694348941817, + 0.7943997581053676, + 0.8698543309992347, + 0.6961527633574802, + 0.7153033664988595, + 0.6557910909279174, + 0.30990059223828476 + ], + [ + 0.3234892314640736, + 0.5490913858960474, + 0.6278631871564606, + 0.7233321486762553, + 0.7478486778877065, + 0.7226828731073255, + 0.8348390880663833, + 0.7093904560442705, + 0.29695409672295464 + ], + [ + 0.34767537227860135, + 0.6167910783968077, + 0.6572350243908494, + 0.6095494556664844, + 0.5883054262290828, + 0.7346398631282108, + 0.9114643318102098, + 0.690410200215863, + 0.2583350175506853 + ], + [ + 0.31370294904108814, + 0.582771980872214, + 0.6349673937713344, + 0.5327904956726568, + 0.4864957701292342, + 0.6721194600390763, + 0.8949503952098127, + 0.643334911931204, + 0.22555045980833122 + ], + [ + 0.2579789118376374, + 0.5150219117438072, + 0.5652315145940713, + 0.48545148167725816, + 0.44539429967101946, + 0.5629529849830822, + 0.806569549098955, + 0.6542757069137387, + 0.24992044309750866 + ], + [ + 0.1646656341581343, + 0.30692055481313124, + 0.31402535446161517, + 0.2929718094425597, + 0.25362096463863876, + 0.3145271652378206, + 0.47899311444103565, + 0.4315565612221584, + 0.12445795422944142 + ] + ] + } + ], + "layout": { + "height": 500, + "shapes": [ + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 2, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 3, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 4, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 5, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 6, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 0, + "x1": 0, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 2, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 3, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 4, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 5, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 6, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 1, + "x1": 0, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 3, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 3, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 3, + "y0": 2, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 3, + "y0": 3, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 3, + "y0": 4, + "y1": 5 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 3, + "y0": 5, + "y1": 5 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 6, + "y0": 6, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 6, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 2, + "x1": 6, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 3, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 3, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 3, + "y0": 2, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 3, + "y0": 3, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 3, + "y0": 4, + "y1": 5 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 3, + "y0": 5, + "y1": 5 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 6, + "y0": 6, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 6, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 3, + "x1": 6, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 3, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 3, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 3, + "y0": 2, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 3, + "y0": 3, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 8, + "y0": 4, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 8, + "y0": 5, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 6, + "y0": 6, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 6, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 4, + "x1": 6, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 8, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 8, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 8, + "y0": 2, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 8, + "y0": 3, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 8, + "y0": 4, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 8, + "y0": 5, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 6, + "y0": 6, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 6, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 5, + "x1": 6, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 8, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 8, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 8, + "y0": 2, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 8, + "y0": 3, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 8, + "y0": 4, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 8, + "y0": 5, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 8, + "y0": 6, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 6, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 6, + "x1": 6, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 2, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 3, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 4, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 5, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 6, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 7, + "x1": 8, + "y0": 8, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 0, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 1, + "y1": 0 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 2, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 3, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 4, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 5, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 6, + "y1": 4 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 7, + "y1": 8 + }, + { + "line": { + "color": "Black", + "width": 1 + }, + "type": "line", + "x0": 8, + "x1": 8, + "y0": 8, + "y1": 8 + } + ], + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "starburstMap" + }, + "width": 500, + "xaxis": { + "autorange": true, + "range": [ + -0.5, + 8.5 + ] + }, + "yaxis": { + "autorange": true, + "range": [ + -0.5, + 8.5 + ] + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAH0CAYAAACnw6dXAAAgAElEQVR4XuydB3xV5fnHHwJZZO+EJBAghBH2XiIgigrOFle12lp3q9Za62irrVZtrXVW62j/1jpwURdURUBlb5BAIASy9947+X+e9w5ukpvcc+459809N7/z+eRzc8O7zvc9QL73ed/nHdLV1dVFuEAABEAABEAABEAABEAABEAABEAABNyKwBAIu1vNBwYDAiAAAiAAAiAAAiAAAiAAAiAAAoIAhB0PAgiAAAiAAAiAAAiAAAiAAAiAAAi4IQEIuxtOCoYEAiAAAiAAAiAAAiAAAiAAAiAAAhB2PAMgAAIgAAIgAAIgAAIgAAIgAAIg4IYEIOxuOCkYEgiAAAiAAAiAAAiAAAiAAAiAAAhA2PEMgAAIgAAIgAAIgAAIgAAIgAAIgIAbEoCwu+GkYEggAAIgAAIgAAIgAAIgAAIgAAIgAGHHMwACIAACIAACIAACIAACIAACIAACbkgAwu6Gk4IhgQAIgAAIgAAIgAAIgAAIgAAIgACEHc8ACIAACIAACIAACIAACIAACIAACLghAQi7G04KhgQCIAACIAACIAACIAACIAACIAACEHY8AyAAAiAAAiAAAiAAAiAAAiAAAiDghgQg7G44KRgSCIAACIAACIAACIAACIAACIAACEDY8QyAAAiAAAiAAAiAAAiAAAiAAAiAgBsSgLC74aRgSCAAAiAAAiAAAiAAAiAAAiAAAiAAYcczAAIgAAIgAAIgAAIgAAIgAAIgAAJuSADC7oaTgiGBAAiAAAiAAAiAAAiAAAiAAAiAAIQdzwAIgAAIgAAIgAAIgAAIgAAIgAAIuCEBCLsbTgqGBAIgAAIgAAIgAAIgAAIgAAIgAAIQdjwDIAACIAACIAACIAACIAACIAACIOCGBCDsbjgpGBIIgAAIgAAIgAAIgAAIgAAIgAAIQNjxDIAACIAACIAACIAACIAACIAACICAGxKAsLvhpGBIIAACIAACIAACIAACIAACIAACIABhxzMAAiAAAiAAAiAAAiAAAiAAAiAAAm5IAMLuhpOCIYEACIAACIAACIAACIAACIAACIAAhB3PAAiAAAiAAAiAAAiAAAiAAAiAAAi4IQEIuxtOCoYEAiAAAiAAAiAAAiAAAiAAAiAAAhB2PAMgAAIgAAIgAAIgAAIgAAIgAAIg4IYEIOxuOCkYEgiAAAiAAAiAAAiAAAiAAAiAAAhA2PEMgAAIgAAIgAAIgAAIgAAIgAAIgIAbEoCwu+GkYEggAAIgAAIgAAIgAAIgAAIgAAIgAGHHMwACIAACIAACIAACIAACIAACIAACbkgAwu6Gk4IhgQAIgAAIgAAIgAAIgAAIgAAIgACEHc8ACIAACIAACIAACIAACIAACIAACLghAQi7G04KhgQCIAACIAACIAACIAACIAACIAACEHY8AyAAAiAAAiAAAiAAAiAAAiAAAiDghgQg7DpNyt9e/UC0dM/Na3RqEc2AAAiAAAiAAAiAAAiAAAiAAAgMZgIQdp1m3wjC3tzcSr//679o/de76Knf30YXLp9n9+7zi8rotvufoebmFnrlL7+iMaNG6EQJzYAACIAACIAACIAACIAACIAACCglMKiEvauri557/SNaNHcyzZk2QSkjReXcTdjXbdgqxn35hWdZx28R9sLiCooMD6bHH7iJhvv79bq/DZt3059ffIeCAofT84/+AsKu6AlAIRAAARAAARAAARAAARAAARDQl8CgEvbK6jr6xUPP0d03/9Cjhd0i5vNnptoV9pjIMNq2N40e/uX1NH1ycrcnqrGpmR584jUalRBLuw+m0+P3/wzCru/fObQGAiAAAiAAAiAAAiAAAiAAAooIeJSwN7e00tsfbaT3P/uGeFl3cFAAzZ0+gW6/4VIqr6ym3z/1f1RcWmkFs2rFfPrjvT8lX19v2nvoOL297mvac+g41dY1UGpKEt110w9o4ezJNGTIEFGHo+hJCbE0PjmRnv7He7T7QDo9et+NQor5zzo7Omla6lh66Y2PKeN0PiUlxtLN115Eq1fMp6FDh1rbKC6tEP36+flYx7L38HH62z8+oJeevJvCQoKoqqZOiPMvb1pD6Zm59Pw/PyKvIUPEEvVRCTH0+de76I33v6CMU3nk6+NNs6aNpxuuWEnRkWF036P/EP1brqkTx4p2/X19xZJ4Xl1wMiufIsJC6OZrV1vvj8sfSsukv/7jPbr9+kvo+X+t6ybszPfjL7bRZ1/toLQTWTTUy4vOWTyTfnnLFTQiJkJ0Zxn3rT++hLbtOUJvfbSR+EOAuTMm0t03/VBwxQUCIAACIAACIAACIAACIAACIOCYgMcIOy93/+e7G+jA9xl0721XUlhoENU3NIko8Vlzp1BMVDidzimkW+57mh5/8KZeEXYW0eH+vjRj8jhBjaV/w6Zd9I8/30OJI6Ktss0yX1peTddcdg6NGx0vlpTz0nEW9rfXbaSLz1tE169ZSSHBAXT46Cn603P/oRuuvECUZ/HnckqF/TePvUqJI6Kos6uLrr5kuWgzLDSYtmw/SG9+8CX9+raraFRiDHFEnT9oSB2fRMlJ8UKab7//WVpz0VK7EXaOvEdHhtKL//dfev7RO8X3fDHDV9/6XHy/4qxZ9NCfX+8m7HUNTbT2402CHfdbVV1HT7zwNsVGh9Pvfnk9+XgPE33//MHnqLyyhn5y1QVC6NvbO+itdRvpiy176IXH7qJJKaMcP5koAQIgAAIgAAIgAAIgAAIgAAKDnIDHCHtLaxv94ek3aELySLruh+d1ixpb5rg/Ye/5HJSUV9Ht9z9D9//iGqvcs2z/b9MueunJX9K40QndqvCfpR0/Tc888nMh1paL94O/8d4X9OKf7hJirEbYWboT4iLpD7/+Sbe95i/8cx3V1DXQA7+4xhq5tx2MEmEXkfFHXqQfrl5qTT7HH0Tc//grdP8d19CwYUPpwSe7C7u9vyvf7jpM//j3p91WBvC4ly6c3i16b1mmHxkeSr+6ZY3dcQ/yv4u4fRAAARAAARAAARAAARAAARDoRsBjhJ3vateBY/Sbx16hS1YuoisuWkbxcZHdxF2NsFuk955b13QTds6c/ps7ru4lnCzi9v6M+7zzdy/Q4w/8jHhpulphv/X6i+ns+dO6TVpmdgHd/fsXadqksfTjNSvFhwdeXqZl+3wpEXZexv/qW58Rt2VZns8fLnz1zR6RjI63DigRdntL+VnYeTvB/JmTuo37w8+/pS+/2UN/e+QOsSoBFwiAAAiAAAiAAAiAAAiAAAiAQN8EPErY+TYLisvpvU+30AeffUOxUWF0zy1X0KI5U4TQ9iXsnZ1dtOdQuljunZldSFm5RVZibzx3fzdh5z+wd9Z6X1nie/apVthtPzCwnUaW8v/+b5tYhs/XL356OV14znzrsnRHS+JZ2Hn/+2/+9Ar9+aFbaGR8jNjfvnThDBFx53H3FPam5hb6+H/b6Kvv9ok/52XvfFn2yFv23nPf9sbNmet5Xiz79PEXEwRAAARAAARAAARAAARAAARAYBAJu+VWOUHahk276cV/raPf/PwaWrl0jl1ht+x9/+//ttKDd/6IpqeOo4DhftYodc8Ie3/Cbi/CzhHsu373Aj3x4E39Rth7yqy9CL+9aezo6BAZ35984R36waoldOPVF1J1bb3DPews7K1t7fToM/+mhLhosYT9z39/h5588BaxdL+nsNfUNtC9j75MQQH+dOeNP6D42Ejy9h5GfUXY7a0MQIQd/xSBAAiAAAiAAAiAAAiAAAiAgHICHhdht711lvGn//E+eQ31ElHx7LxiuvU3f6NHf/NTa9Tcsrd6yoQxYu+75corLBVlH7n3BsURdiV72HkZOmdwf/S+n5K/n6/ojqX7qZffE0nqbLPE9xWptje9LMO8SoCXt/N+/jsefJYuv3BJn0nnLOezf/XtXvq/tV+IzPehwYF0189+ILYR9BR2fv+rP74sktBNHHcmaRwvo//PB19hD7vyv3MoCQIgAAIgAAIgAAIgAAIgAAKKCHiMsLN4v/b255Q6IYmmT0qmIV5D6FhGNj3xwjtiuThH2OvqG+meR/5OY5PiRSTax9tbJHN75rUP6Ptjp+jhX11PkeEhVFRSKTKo7z54TGSJ56zofPW17N3yZx99/i2dt3ROtyzxnEX91h9fTJeev1iIMB+bdtfvX6Cf/+QykUG9o7OTPlr/ndjb7efrq0jYOYkdJ7ZbPHeKSA5XWFwu7pOj5HxfnJX9sef+QzW19XTvbVdRUMBwCgzwo7a2DrHs3fZ8dk409/OHnqPsvCJ69S/3Ws9l7ynslnJ8TN71V6wUR7rtP5JBf3vlAwoPDaIXH7/Lehwdf9BQUlZJN193Ubcs8d/uPEzP/vHnIpM9LhAAARAAARAAARAAARAAARAAgf4JeIywc5R643f76V/vbqCjGdnirvnM7xuuuoBWnj3bmiTuwJEMsXycyyycM5n++rvbRIT7zy+9Sxu/3ScEms8M/8VPL6PPN+6kc8+erVjYp6eOpeaWNnrNHEW3dw4775fftG2/9ax2/oDgxz88j2ZOTaEX//Vf+uvDt3UTX3t7wfccTKeX3/yU+F5YzrmfKy9ZTldctJT8fE1nu2flFdPjz79FXHbMyDh67tFfUHREWC9htxzlln4yWySb4w8w+LK3h92WHZ9xf+nKRXTJ+YtF8rrf/fLH3cb9k6vOp+OZufTux5txDjv+FQIBEAABEAABEAABEAABEAABJwh4jLA7ce+o4gICSvfeu6BrNAkCIAACIAACIAACIAACIAACHkUAwu5R0znwNwNhH/g5wAhAAARAAARAAARAAARAAAQ8gwCE3TPm0W3uAsLuNlOBgYAACIAACIAACIAACIAACBicAITd4BPobsOHsLvbjGA8IAACIAACIAACIAACIAACRiUAYTfqzGHcIAACIAACIAACIAACIAACIAACHk0Awu7R04ubAwEQAAEQAAEQAAEQAAEQAAEQMCoBCLtRZw7jBgEQAAEQAAEQAAEQAAEQAAEQ8GgCEHaPnl7cHAiAAAiAAAiAAAiAAAiAAAiAgFEJQNiNOnMYNwiAAAiAAAiAAAiAAAiAAAiAgEcTgLB79PTi5kAABEAABEAABEAABEAABEAABIxKAMJu1JnDuEEABEAABEAABEAABEAABEAABDyaAITdo6cXNwcCIAACIAACIAACIAACIAACIGBUAhB2o84cxg0CIAACIAACIAACIAACIAACIODRBCDsHj29uDkQAAEQAAEQAAEQAAEQAAEQAAGjEoCwG3XmMG4QAAEQAAEQAAEQAAEQAAEQAAGPJgBh9+jpxc2BAAiAAAiAAAiAAAiAAAiAAAgYlQCE3agzh3GDAAiAAAiAAAiAAAiAAAiAAAh4NAEIu0dPL24OBEAABEAABEAABEAABEAABEDAqAQg7EadOYwbBEAABEAABEAABEAABEAABEDAowlA2D16enFzIAACIAACIAACIAACIAACIAACRiUAYTfqzGHcIAACIAACIAACIAACIAACIAACHk0Awu7R04ubAwEQAAEQAAEQAAEQAAEQAAEQMCoBCLtRZw7jBgEQAAEQAAEQAAEQAAEQAAEQ8GgCEHaPnl7cHAiAAAiAAAiAAAiAAAiAAAiAgFEJQNiNOnMYNwiAAAiAAAiAAAiAAAiAAAiAgEcTgLB79PTi5kAABEAABEAABEAABEAABEAABIxKAMJu1JnDuEEABEAABEAABEAABEAABEAABDyaAITdo6cXNwcCIAACIAACIAACIAACIAACIGBUAhB2o84cxg0CIAACIAACIAACIAACIAACIODRBCDsHj29uDkQAAEQAAEQAAEQAAEQAAEQAAGjEoCwG3XmMG4QAAEQAAEQAAEQAAEQAAEQAAGPJgBh9+jpxc2BAAiAAAiAAAiAAAiAAAiAAAgYlQCE3agzh3GDAAiAAAiAAAiAAAiAAAiAAAh4NAEIu0dPL24OBEAABEAABEAABEAABEAABEDAqAQg7EadOYwbBEAABEAABEAABEAABEAABEDAowlA2D16enFzIAACIAACIAACIAACIAACIAACRiUAYTfqzGHcIAACIAACIAACIAACIAACIAACHk0Awu7R04ubAwEQAAEQAAEQAAEQAAEQAAEQMCoBCLtRZw7jBgEQAAEQAAEQAAEQAAEQAAEQ8GgCEHaPnl7cHAiAAAiAAAiAAAiAAAiAAAiAgFEJQNiNOnMYNwiAAAiAAAiAAAiAAAiAAAiAgEcTgLB79PTi5kAABEAABEAABEAABEAABEAABIxKAMJu1JnDuEEABEAABEAABEAABEAABEAABDyaAITdo6cXNwcCIAACIAACIAACIAACIAACIGBUAhB2o84cxg0CIAACIAACIAACIAACIAACIODRBCDsHj29uDkQAAEQAAEQAAEQAAEQAAEQAAGjEoCwG3XmMG4QAAEQAAEQAAEQAAEQAAEQAAGPJgBh9+jpxc2BAAiAAAiAAAiAAAiAAAiAAAgYlQCE3agzh3GDAAiAAAiAAAiAAAiAAAiAAAh4NAEIu0dPL24OBEAABEAABEAABEAABEAABEDAqAQg7BpnrrqxQWMLqK6GwK7MU2qKo6xGAh2dnRpbQHU1BPy8vdUUR1mNBEIDAjS2gOpqCBRXV6spjrIaCRzefUxjC6iuhkBgWKCa4iirkcCdV1yssQVUBwHjEICwa5wrCLtGgCqrQ9hVAtNYHMKuEaDK6hB2lcA0FoewawSosjqEXSUwjcUh7BoBqqwOYVcJTGNxCLtGgKhuKAIQdo3TBWHXCFBldQi7SmAai0PYNQJUWR3CrhKYxuIQdo0AVVaHsKsEprE4hF0jQJXVIewqgWksDmHXCBDVDUUAwq5xuiDsGgGqrA5hVwlMY3EIu0aAKqtD2FUC01gcwq4RoMrqEHaVwDQWh7BrBKiyOoRdJTCNxSHsGgGiuqEIQNg1TheEXSNAldUh7CqBaSwOYdcIUGV1CLtKYBqLQ9g1AlRZHcKuEpjG4hB2jQBVVoewqwSmsTiEXSNAVDcUAQi7xumCsGsEqLI6hF0lMI3FIewaAaqsDmFXCUxjcQi7RoAqq0PYVQLTWBzCrhGgyuoQdpXANBaHsGsEiOqKCJzOKaQHn3ydHr//ZzRm1AhFdVxRCMKukSqEXSNAldUh7CqBaSwOYdcIUGV1CLtKYBqLQ9g1AlRZHcKuEpjG4hB2jQBVVoewqwSmsTiEXSNAVHdIwCLrIUEB9Js7roawOyTmxgUg7HInB8IulzeEXS5vCLtc3hB2ubwh7HJ5Q9jl8oawy+UNYZfLezD29upbn9GKs2bR11v3i1dE2A38FEDY5U4ehF0ubwi7XN4Qdrm8IexyeUPY5fKGsMvlDWGXyxvCLpf3YO2tubmVnnp5Lf3o8hUQdiM/BBB2ubMHYZfLG8IulzeEXS5vCLtc3hB2ubwh7HJ5Q9jl8oawy+U9WHuDsHvIzEPY5U4khF0ubwi7XN4Qdrm8IexyeUPY5fKGsMvlDWGXyxvCLpe3zN6GDBkiuuPXrq4ua9eufm/bl6VTCLvMmXdhXxB2F8K10zSEXS5vCLtc3hB2ubwh7HJ5Q9jl8oawy+UNYZfLG8Iul7fM3ry8vGR2Z+2rs7OzV78Q9gGZCv07hbDrz7S/FiHscnlD2OXyhrDL5Q1hl8sbwi6XN4RdLm8Iu1zeEHa5vGX2NnToUBFZt0TUZb1C2GXOsgv6qqqpo9vvf5a+Tz8lWn/0vhvp8gvPEt9D2F0AvJ8mIexyeUPY5fKGsMvlDWGXyxvCLpc3hF0ubwi7XN4Qdrm8ZfY2bNgw0R2vhjevjpfyvr29vddtIsIuc+Y19vW3Vz+gpIRYIeks7w8+8Rr9+rarRLZACLtGuCqrQ9hVAtNYHMKuEaDK6hB2lcA0FoewawSosjqEXSUwjcUh7BoBqqwOYVcJTGNxCLtGgG5cfdgwH9Z1mz3svKfd9e/b29vclsqQLns77N12uPIHZu+TFRb4s+ZNoTnTJkDYJU8JhF0ucAi7XN4Qdrm8IexyeUPY5fKGsMvlDWGXyxvCLpe3zN5Mwi7/am9vld+pwh4h7ApA7T18nD747Bv6470/pSMnTlu/9/PzgbAr4KdnEQi7njQdtwVhd8xIzxIQdj1pOm4Lwu6YkZ4lIOx60nTcFoTdMSM9S0DY9aTpuC0Iu2NGRi3h4+MnNTu8ZY98W1uL2yKDsCucGpb2G+56klatmC/EnWWdLyMuiX/04Ufo+WefpZmzZlFQcLBCAu5RrLqx0T0GonIUj730ksoa7lHcqML+8B13uAdAlaMYqMyoKofZq3jG0aNamxiQ+pajYwakcw2d1tfVaag9gFVtjucZwFGo7rqjo0N1HVRQTsD0WJw5uunW3/yBEkcnK2/ATUoaVdj/8cQf3ISgumGMio1WV2GAS9fW1lJWVhatW7eO5s+fP8Cjce/uWdgH4mptbR6IbhX1CWFXgImXwPN1z81r6HROIT345Ov0+P0/M+we9uSRo6iiooK8vb1p9JgxdPayZbTk7LPJ339g/oIomAJrkeOFRWqKu03ZWYsWuc1Y1AzEqMK+f8cONbfpNmV9hg51m7GoGYhRhd3fZ2CW3alha69sbna21iYGpH5Tq/suN+wPSEVp6YDw0tppfY3cD7i7qJPa29qpvaONOtraqaOjnVpbWqitrZXa29rE+86ODlPkjDNJ9fEBTlTsCLr7kae03r70+kYV9vRDB6Sz0qPDS5a4v/Q2NTXRli1baNOmTVRZWUlRUVG0dOlSev755/VA4LFt+PoON3+IZzqH3fThOn+o59r3LS1NbssUwu5gajjJ3BMvvE0P/OJHFBYSJEpztD2voEwkoTNihH3axEnU3NxMZWVlFBUdTZMmTaJt27bRlVddSVdcdRUtWbrUbR9YLImXOzVGFXa5lPTrDUvi9WOppCUsiVdCSb8yWBKvH0slLem1JL6psYHqaqqpvrZavNbV1FCd+fuaynKqqa6khrpaIevePt40ZIgX8fFIba0t5DV0qHjf1dlJHZ0dQtKH8BnL5lcW+OEBgeJn0+cuIj9//kWdaPnqy5XcoluVMaqwuxVEFYNx5yXxLOhvv/02vfXWW3T55ZfTtddeS6tXr6Y//MG0muHhhx9WcaeDr6ifX8CA3HRzc8OA9KukUwi7AmG3zQrPxW2zxhtV2Pk+Hnr4Ybr/1/dSTXUN/fFPfxIfeL/37lpqbW0V4s5f8QnxSp4jaWUg7NJQi44g7HJ5Q9jl8oawy+UNYZfLuz9h56iVScDPyHd3Ka+2SjmfiezrN9xGxjuorbWVWOSHDfOmkLBw8vHzo472dmpqaKDGhnpqbTEtLfX28RHCzu8jYkZQV2c7VVdUkNdQL0qeOJlGjBxNm9f/ly6/7iaauWAJbf58HYRd7mNi2N7cTdjz8vKEoLOo+/j4CEm/7rrrRFTdckHYlT1u/v6BA3IOO4Rd2fy4bSleBn/LfU9TYUmFGOON16wSy+P5MrKwH04/Rs898wx98O5a8Sn4/AUL6C9/e5p27dxJ77+7lt5fu5aWLl9OV1x9FV18ySVuMT8QdrnTAGGXyxvCLpc3hF0ubwi763m3NDdTVXm5+Dq485BVukVkvLaG6sWrKVIeFBJKgUEh5Os/XGyR42WnnZ0dYhk7y3h9bQ3x/v3wyCgKi4iisMgoCo2IotqqSqooK6HKshKqqaqg5qYmYqn3Gx5Afn7+1EVdVF1RLvahj06ZRBWlRZSdeUL0GR0XT/OXnUfzlqygz9a+QTmnMoSss7jzBWF3/TPiKT24i7B/9NFHQtQ3btwoBJ1FfVEf2yAh7MqePhZ2y2VJCCfjfVNTvbIBDkApRNg1Qje6sPPtP/Dr+6igIJ8CAwMpJzuHnn/p7zQ2OZna2tqEtLO8n8zIEOLOUfdJqakaqTlfHcLuPDtnakLYnaHmfB0Iu/PsnKkJYXeGmvN1IOzOs+NIOEt4pVnGxfcVFVY5t/ycI9/hkZEUFhlJXl4+Qso5Cs5L6FjG28wyzvJeVVEmpNwi42deo8XP/Pz9KSvjOJ3OOEpF+blUU1khlrkP8/am4JAwCgmLIF9/f9FmXvYp4r3no1Mmiq/W5ibasflLys85LSR+0vTZtPqq68nHx5fKS4vpv/95TfTBss4BA8sFYXf+GRlsNQdS2I8cOSIknb8mTJggJJ2/+IOv/i4Iu7KnNCAgeEAi7I2N7pvQFcKu7Nnps5QnCDvf3A3XXkuxsXGUMDKR/vrkn4W0X3zppdb7Pp6eLpbLs8CPGTvGumTe19dXI0F11SHs6nhpLQ1h10pQXX0IuzpeWktD2LUSVFcfwt6dF+/ztkTDHYm4r5+fVcRZxi1Szt+zJLS3t1NzYyPVVFVRSWEhlRQUUO7pbKquKKOg0LDuUh4RLaLlLMyh4RFiUBwtP3poH2WfPE4lhXlUV11N7e1t5OPrK8Q8LmEURcbECeFmOc86mU5BwaFWQR+TMpG8hnnT+vf+TemH91NLcxPFjxpDS86/mCZNm2W98aMH9tC6/7xGy1ZdRotXXNjrAYKwq/s7NZhLyxb2lpYWq6RnZmZaJT1VRRALwq7siWVhH4iroaF2ILpV1CeEXRGmvgt5irDzf/arzltJF65eRVOnT6c7b7+Drrn2R/TAb3/b6+Y///RTIe6bNn5tFfcFixZqJKmsOoRdGSe9SkHY9SKprB0IuzJOepWCsOtFUlk7g0XYeYm4XRHn6Lg5Ks6CXlNZKSLhtvJt73veD8vlLSLe7bWwkPz9/SlmxAiKiY/v9lpZ3iSknJer214FuVl0/PBByj19gkqLCqm+rkZkb+eEbyzy8YlJlDxpKsWNTKKsjHTz1zHy9vEVgs5yzq/BoeGi2V3fbKRd33xFZcWFFBwaJpLHrbz86l4PxabPPqQDO7+jy667iZInTrH70EDYlf1dQikiWcK+detWq6iffyN49FcAACAASURBVP75QtQvu+wyp6YAwq4MW2BgqPkcds4ObzlUwpQl3pXvGxpqlA1wAEpB2DVC9xRhZwx5ubm0auVK+u3vH6al5ywX0j5s2DARbQ8PN/3HbHsVFRbSe+Yl81xOJKq7+iqKjnbd2ZgQdo0PrMrqEHaVwDQWh7BrBKiyOoRdJTCNxY0u7LXV1b2XpVuWqFdUWJerc/I1W/G2K+UREULW+eI94xwR7ynilp/xPnIh5HaknCXdf7gps3rPi5POnT5xlE6kHaa8rEwqLykSCeE4Q7t/QABFRMVSQtJYSkmdSimTp1N1ZYVVzjmC3tHe0U3Qw6NirF2UFOTRV5+8T6fS08Qv1mPGT6IVl/yQ4keO6TUO7pOXwPOHAizrgcEhfT5JEHaNf8kGUXVXCntJSYlV0jmgZVnyHh+vLREzhF3ZAxoYGKasoM6l6uurdG5Rv+Yg7BpZepKwM4o9u3eLSPtHn34izmZ/9JFHaN2HHwlpP2vJkj5pbf3uO2uiugsvWk1XXnUVnX9h7+VuGnEThF0rQXX1IezqeGktDWHXSlBdfQi7Ol5aS7ujsLMM9xkNN0fELcvVWYwdRcPDIiIoIMh0BKzlYqG1Gx03SzovP+8ZHbe+HzGCgsOU/fK6c8sWOrBjB508doyK8/Opoa5OJJILCAoWy9lHjhlHE6bMoJFjU8TQ6utqKSvjmDWK3lBf103Qo+MSek35159+QAd2bhXJ5iKjY2nukhW0aMUFfT4ap08cE7I+Zc4COu+SKxw+QhB2h4hQwEzAFcL+2WefCVH/+OOPrZK+bNky3ZhD2JWhDAoKH5A97BB2ZfNjyFKeJuw8CZ/892P69T2/pPVffkXjUsbRug8/FNH23z7yMN16++39zlNjY6MQd468FxbkW5fMj0sx/YKg9YKwayWorj6EXR0vraUh7FoJqqsPYVfHS2tpmcLe1NioSMRZlpUsS2cR5yPK+roqy8rORMnNe8htJT0qLq7PKHlkzJnItRLGnFhu61df0aHdu+nU8eNUWlQkjlPjZHA8zpFjx1LqjBkUGp5IMSPOSHdzU+OZJe4n06mitMS6vJ2zuY8YmWS3+5NHD9M3//uEck9nCgYTps6kVWuuFR8E9Hft2PwFbfzkfRFVnzp7gZJbQ5Z4RZRQiAnoJewnTpywRtMTEhKsoh4QoP9Z4BB2Zc8uC7slO7zM19pa02lg7nghwq5xVjxR2BnJP156id59621a/9WXInv8iePHhbSnTBhPL7z0kiJq3x8+bM0yP3nqVCHvV159lfhL6OwFYXeWnHP1IOzOcXO2FoTdWXLO1YOwO8fN2Vp6CDsnVes3Im7Ont7V2alIxEPtbPeyd3+cpb2vPeS8dD0gMLDfKLltJnQ1/KrLy2nbpk10ZN8+ysrIoIrSUuKj2zgZXER0NI0eN46mzJ5NC5cvp4ge4r9/+2GbPejpxHvXTfvPJ4lIOkfc+7o4Id5n775BaQd2iyPe4hKT6KzzVikWb04sV1ZUIGSdj3JTeiHCrpQUymkRdl71YsnyfujQIaukz5gxw6VgIezK8IaERA5IhB3Crmx+DFnKU4WdJ+Ph3/6OThxPp7Uffmidm3vuvIv4H7cXXvo7pU6erHjO/vvRRyLyvnPHDute99lz5iiubykIYVeNTFMFCLsmfKorQ9hVI9NUAcKuCZ/qyn0JO+8RdSjh5uXpLMZ9LUu3jZQPVxkd40RxtkJe2iNKzumObJep91zCzkegab3ys7Jo5zff0NEDByj31CnBhI9X5aX4UbGxNHbCBJo2bx4tPvdcceSavevI/v1C7tP27SP+Pil5gjWTO0u6ow/M923/hnZu/pKKC/MoMDCYps5ZQKuuuE7xrRXn54ol8CNGjaZLrvmp4nqWghB21cgGbQVnhH3Xrl309ttvC1lfvHixEPUrr7xSGkMIuzLULOxnLg7y8b/Alst172tqypUNcABKIcKuEbonCzujufnGGylgeAA988LzVlL/fPU1euj++8W+do6aq7lyc3Ksx8MFBweLJHW83z1U4R49CLsa2trLQti1M1TTAoRdDS3tZSHs2hn210JDfT2Vl5WJqDC/ZuXk2E3axnutlS5L52XfzlwcMe6V2M2S6K2wUOz3tpvUzZzoLSik70RpzoznRFoa7fn2W0o/fJjys7NFxnge4/DAQIqNj6fkSZNo1sKFtPCcc/pt/sSRI0LQLaI+OiWFpsyaJaLuXV0B5O3d9zJ+S8OV5aX0xbp3iZe+c6K5pOTxtHz1Dyhp3HhVt3Zo9zYh6xeuuZbmnX2uqrqWwhB2p7ANykpKhb2ystIaTa+pqaHrrrtOiHpSkv0tIK6ECWFXRjc01JS82rIc3qrqQ4aYs8ebfqL3n1dXlyob4ACUgrBrhO7pws54Lr7gQlq85Cy674EHrLR27dhBv7j9DnEM3B8ee8wpipu/3mRaMr92La258goh/+ec2/9/8hB2p1A7XQnC7jQ6pypC2J3C5nQlCLtz6DgJm62IV5SVUblZyi1yzu/5l6nI6GiKjIoSy7f9g4PtRsdDFH5g62i05SUlfWZa533etpnWY80iHm1+jYiKctS8039+cNcu2rdtG7FcF+blUX2N6egg/hAgbuRIGj95Ms1ZvJimz5/vsI/TJ050E3S+p8lmQWdRDww+s6+cs8T3d/G+9H3bt1BVeZk4zm3O4mV09vmXOByDvQIs/Hz++uXX3USjktWJvm17EHan8A/KSo6E/YsvvhCi/s4771iXvJ933nkDygrCrgx/WJi6vB7KWnVcqqqqxHGhASoBYdcIfjAIe2lJiTju7c67f0nX3XC9lVhdba2Q9vq6OhFtH+HkcRc11dVC2jlRXXVVtXXJvL1PPyHsGh9YldUh7CqBaSwOYdcIUGV1CPsZYJzIzFbCWbiFiJtl3FbKQ0JDhYSzjLPo2r4KOTf/rOeydK172PlYtf6OP2MB7i9K7mg5uMrHx27x7V9/TQd37jRlai8ooMb6euL96/yhRMLo0TRx2jSad/bZlJKaqqi7vKws0xJ381J3zkDP0XPxNWuW9Wg4e43ZE/bsk8dp0+frKCfzBA0dNkwc6Xb+D64R57U7c9VWVRLvV/f18xey7qtxawCE3ZlZGJx17An76dOnrdF0Po7YchxbaGioW0CCsCubhvDwWOsedksNzjtg+2+4K95D2JXNjyFLDQZh54k5fOiQOO7tjbf+Qyt6fEL51JN/pn+99ho9/9JLdO5KbZ9e7t+3z5qobu78+SJJ3eU//KH12YCwy/1rAmGXyxvCLpf3YBB2/kDVKt92ouAWKWextCvflgi5WcJZyFn0nLkcCTtndrcKuZ1M60O9vPpO7BYfLxKxybp4rNs2bqTDe/bQac7UXlxMzY2N5M2Z2qOiaBRnap85kxYsXUrxKpbe8v1blrezqPMvqLaCzisClF62wr7+/Tfp+707iY9uixmRSAvPOZ9mLTxbaVN2y2WkHRKyPu/sFbTswss0tWWpDGHXBeOgaMRW2NeuXStEfceOHVZJnzt3rttxgLArm5Lw8DhzQd67bpuo2rXvKyuLlA1wAEohwq4R+mARdsb0xYYNdMvPfkYbvvyKUqd0Tzi34fP1dOcdt9PP77yL7v7VPRqpmqqLqPu7a+n7Q4fEXndeMt8U2P18W106QiN9EoCwy304IOxyeRtZ2C2ibbsE3RIFt42GDx06tNuydLuR8agoUpotXcsMFZSX95tpnSW413nk5iXrHDm3Xe6tZRxq65YXF9OOzZuFSGefPCn25Le2tJCvnx/xkWxJKSk0dfZsWnTOORQaEaGqeT4OzlbQ+Xi2yeboOYt6ggrZ79nxmy++Tts2bqCivGzyDwikyTPn0iVX/4Q3fqoao73C3335GW3buF5kgZ84bZbm9iDsuiEcNA0tTk6wRtNnzpxpFXV3BgBhVzY7EREjqKvL9E+VzNfKykJlAxyAUhB2jdAHk7Azqv/75z/plZdeFse9RfT4xSQnO0dIe3R0jFgi769xaZxlajJPZlr3ugeEhtLy1atp+apVInMuLtcSgLC7lm/P1iHscnm7m7CzBPZcgt7X/nA+b9u6P7yfZemy/50sLiykwvx8sVe75ytHoe0uWY+PFz/nxHMDfeWcPEm7vv2Wjh08SLmnT1NVRQW1c6b2gACKiYujMRMn0vR582jJeeeJc8/VXnw8HAu6JYt7WXGxdXk7CzonjdNyVVdW0mt//Svt/e47am5qppFjkmnphZfSuElTtTRrrdvW1ioSy/E+fJZ13vuu54UIu540Pa8tPtJw39ZvxFdXa7NV0lM0/r2RRQrCrox0RES87gnllCSoKy/PVzbAASgFYdcIfe/p0xpbkF/9kiVLRKeffPedU52/8swzdOTgQXrxzTft1n/mscdoz/bt9NATT9Dk6dOd6qOvSk//6Tk6cmAnHT9ygKbMnE9TZi0Qx9bgcg2B2opa1zSMVu0SiErU95dfYO6fQEBwgBREHDWtrami2uoqqqvm12rT9+af8Xv+eWtrCwWHhFFQaCgFh4aJr6AQfg2lIPP74BDT915eXlLG3rOT+toaqiwrFV8VZSXW7y0/CwwJofAo3tseTeGR0RQeFSPe81ddWdOAjLmvTgvzTlNW5jEqKsimqspScd44h3N8ff0pJCyCYuJG0qgxE2hMivIjTHv2xYJbkJtJ+TmnKD83kyrKiihhZDIljEqm+JFjKXbEKF2YHNi9hY4c3EnVlWUUFBxKk6bOpdaGTl3atjTS0FBDubnpFBwcTvHx2j5Y6GtgRUWm36ni4sboOnYZjaVM1G+lgYzxGqmPkpIcysk6SjnZRykhcTyNSkqlZ//9lJFuQYz11WefE683332X4cY+c5S8rPpRUYkDcg47hN1wj6XyAQ9GYWc6j91/P3V0dNDDT9n/B/OzDz+kxx54gB547DG6VMczLj/97xYxObwPL+3ATjqyfxd1tLfT5FnzacrMBeIXXFz6EYCw68dSSUsQdiWU9CujVdhZurtJeI1FyE1SbhHyYcO8z0i4EHKThPcU8gA32PLT3NTYQ8JLqMIs6Czlw7yHdZPwiB5S3l/UOedYjn6Tp7Kl7FPpxF8lhTlUXVVBLc2NYm8kr0AIDY+muBGjKCl5khBpLVdXV6dVzgtyMqkwP8ss58mUMHKskHS9rpKiPNr57QbxQcAQGkIjR4+nhUtXUURUrOjiu/+t16srqqgoELI+cuQk4uWqrrog7K4ia7x2GxvrhKCzqHt5DaVRo1MpKSmVfP1Mqyvve/xWw90UhF3ZlLGwD8RVVpY3EN0q6hMRdkWY+i40WIWdidz1k5/Q+NRUuv3ee+0CSk9Loz/dfz9NnzOH7n34YY2kTdUtwm7bWF7WSTpyYBel7d9Fo1Mmiaj7hCkzdelvsDcCYZf7BEDY5fK2J+ycLd0q4SICbop+Cznv8d4k3DbRcBZxcwTcFCEPFRFymcnQHBFsb2+nyl6RcVOknMW8va3VHBE3R8aFkJu+IqJiyE/DViQ5wt5FGccOUW7WCSotzqea6gpqbWkWv/APDwgSUf+4hDE0dlwqRcUmOMKl6M9ZylnO83NNUXSOzLOcm6LoycR5BPS8tm3+jI6n7aeG+hoKj4yhabMW09RZi3t1oZew5+efoPr6aho5ciINH37m2Dg978nSFoTdFVSN1WZ+XgZlZx2lkuIsEUlPGp1KkVG9/65C2OXOq8wIe3T0SLk3Z+6ttDR3QPpV0imEXQmlfsoMZmHnY91uueoquuzqq2nNddfZpcR7/zjSzsfb8BL5RA0JdPoSdkvHHPFP279TyHtFWbFYMj951gKKjo3XOMuDtzqEXe7cQ9hdx5uXpdfVVlN9LUe+q6mutoZamhtMIm4j5fxvVrcl6WYJF3LeQ8hlHBPmDBE+V7v3cnWTlNfWVJuWq4uv3lLOH0C46tJb2JubGykz/TDl5ZykspICMbe8BJ2z2AcGhlBEVJyIaI9NmSKWuOt1lRblWeWcRT00POpMFH3UWPLx8dOrK2s7p04coX07NxFH1fkDIL6npeddTt4+fWfG1yrsLS2NIqrO98ORdRnPO4Rd90fHEA3WVJdRtjmaHhQcQUmjJwlZ5w/a+rog7HKnVqawx8Tos1VILSHeeuGuF4Rd48wMZmFndKdPnhTSzjK+tMdxb7Zo33r9dfq/v/+dfvvkk7Rs5UqnqduLsNtrrKy4QIg7L5nniApH3VngnT2OyOkBG7wihF3uBELY1fHmc1hZvoWE19ZQvRBxFvKabmLOP/f28aHAYI54h4g9voEhoRQRHWWW8DP7xIcHBKobxACU5ns27Rnvvlzd8rPgsPAz+8h7SLneScLU3L4WYa+trqTME4epIPeU+EC2vr5GbIfy9jbNa1RMPCWOGkfJE6eRn3nJrJqx9VeW951z9NwURc8UkXqOnHMEnSPp/sNd88xwToNvv1pHpzKOiKz0fBzb7AXnCFlXcmkR9urqUsrNPUaxsaMpOlreL88QdiUz6xllOjs7RCSdl73X1VWJ5e687D0kRFnySQi73OdAprDzvzumc9YtWeKHSHlfUpItF6qK3iDsKmDZKzrYhZ2Z7N62jX518830yrvvUuq0aX0S3b11q4i2X7RmDd18l3MJN5QKu+0gOEFd2oFddOpEmtjnPmXWfEocPU7jzA+O6hB2ufMMYTfxbmttEdItIuIWCbcRcs5QzX/WUFdLgcEhYlm6kHHb70NCzD9jOQ8RYtfz0rqH3VVPByc/syRxsyxft91HzhFWyzJ1S6TctJfc9OWuH0wqFXaOlp/OSBP7vyvLi6mxoZ74l3sfXz8KDgmn6LhEGpmUQuNTXbP1qbqqnPJzMq3J4oYNG2YW9LEiYRw/a668vt+/nQ7v30qV5SUUEBhMEybPpsXLL1LdpbPCztLMxxvxEvigIP1WJii5AQi7EkrGLlNWlm9NIBcbN1pE0hMS1ScxhLDLfQ5kC7slq7vMV8u/P3LJKusNwq6MU5+lIOwmNJ9/9BH988UXhbRHx5oS3ti7+IgilnZvb2/67RNPiD2eai5nhN3SPieAskTdOcOyiLrPmi9+IcJlnwCEXe6T4enCzuJljYj3jIKbl6pztJy3t1ii4Czhpsi4Scg5Mm77My0zNFDCzsu2zwi5KVJ+JvN6KXV2tHdL7GaV88gYsZzdV6cjM7Wwc6auPWFnMc46dYyKC3JEhnORqZ26RGKp0LBIihlhytQ+OnmSM10qqsMf/thmcufIfcIok5zHj0oW43D1VVFeTDu2fE652RnU1dklovcLllwg7t/ZS62wd3S0iSXwnZ2dYgm8vQ+5nB2L0noQdqWkjFWuublBSDove+/q7LQmkPMfHuT0jUDYnUbnVEWZwh4Xx8k5OcJuiqxzglAZ7yHsTj0axqgEYT8zT//30ku087vvhLQ72uv20l//Sl+vX08PPfkkzZo3T/FkaxF2206yM4+LqDsvmR8/eYYQ93GT+l4doHiAHlYQwi53Qo0o7PzLve2+cEtE3BIFN0XJTRFxjpB2i4JbBdy0VN0UJQ/VlNhMzYy5Uth7L1c/I+X1dbXmfeRnjjwTUm7OuB4Y7JkfIm75ZD3lnD5OJYW5VMOZ2luaxP8Vfv4BFBYRTXHxSTQ6OZVGJI5WM42qyzY11osIuljmnpspIvgig7tY4p5szbKuumEnKuz87gtK/34P1dVWib3wU2YspJnzljrRUu8qaoS9vr5KLIEPDY2hESO0ZcrXMngIuxZ67le3sCBTLHsvyD9plfToGOc/hLK9Qwi73PmWL+xy7497Kyo6Jb9ThT0iwq4QVF/FIOzdyfzl4Yepprqa/vSc6azJ/q6vPvtMRNvv+PWv6crrr3dUXPy5XsJu6YyX3rK0c+SdI/CTxdnu86X+wqboxgeoEIRdLnh3EnbOrG3dC95jXzifxW1K3FZNjfX1Z2S7WxScl6lblqub9o33d+SXXNKm3rQIOyers7dc3fKz0IhIa2b1bsvXI6OJ/8yTr46Odjq0cztlHD1M+dmniZPgNTc1kdfQoRQgMrXHCinnvdicGM7VFz/LFjlnUedIvkXOOZIeHSv3CCH+0GLv9o3i/Pdh3j7iQ4olKy4Re+P1vJQKOx9lVFiYKZbAh4X1vUJOz7H11RaEXQZl1/ZRV1tpTSDHEXTO8s7L3vl4Sz0vCLueNB23JVPY4+PHmSPrpnGdibS79j3/O+iuF4Rd48xA2HsD/PWtt1LCyJF014MPOqTLSev+9MADNGbcOJG4ztGlt7Db9ldckGs9Ho6T+7C4c6I6kfVikF4QdrkTL0PYG+rrrPvCbcXbEgU3RchriM+TtuwLNy1D7x4F533hYtl6cIhcSDr21p+wc9S1733kJeTnP7z3PnJL9vXIaCGng+HiZ+jwnp2UeSyNCvOyqbqiQuQg4CR/nPxuROIoGjsxlabMnk+1Jbzc3fUXb6kwLXE3RdFLinJF5NwSRR+R4NoIvv077KLNX3xIJ9MPizPgOUnezHnLXLYPn8egRNh5CXxzc71YAu/nF+D6yXHQA4R9wKfA6QFYEshVV5UIQecEcmFhMU6356gihN0RIX3/XK6wW3IaWJbDW+7Fte8LCjL0haZjaxB2jTAh7L0BtjQ30y1XX03nrV5N19x4oyLCT/z2t5Rx7JiQ9uTx4/us40pht+302KG9Qt75jHdL1D1+5BhF9+JJhSDscmfTWWHv7OjolR1dyLjNvnBLEjcWTds94JYouEW+TQncQoSQevLF5603t/SWcst55NTV1UPIux+D5uun/9Fd7s67tLiQ0vbtptPHj1Fxfp44Eq+9vY2YRWhEFMWPGk3jUqfQ9HkLydfPv9ftKE065wwHzh7PGdwLckyvIxLGULx5HzpH0YcM8XKmWc11jh7eQ4f2fkvlpUXEJxCkTJpBZ597meZ2lTTQn7A3NdWLJfDDhwdRYuJEJc1JKQNhl4JZt04qKgqte9OjohJpVNIkGjlKzvMEYddtGhU1JFPYExLGm7PCW7LDy3mFsCt6FIxZCMJuf97yc3KEtN/94IN07urViib3g//8h5574gmRjO78Sy6xW0eWsFs6r64sF0vm0w7sFEmQRNR91gKPlxnL/UPYFT26uhXqKewtzU3djiuz7gsXR5mdyaLOibqsmdJ7ZEcXkXFxjJkpIu6uGcR1g2huiBPVVFWUieXY1fxq/SoX75lZhOXIM+u55GekPCBQ3+XJet+fq9vLPXWSjh3cR1knj1NpYYF4Djlfgb9YWRBDiWPG0vgp02na3AWKh6KnsBcX5ljlnAWdl9aLKLr5qDVeaj5QFx9Bt23zp5R96jh1dLZTfOIYmrd4pTgTXubVl7BXVhZTXt4xGjEihaKiEmQOyWFfEHaHiAa8QGtrs1XS29paRDSdj2QLCJS72grCLvdRkC3strmwTEe8nVnt6qr3eXnH5UJV0Rsi7Cpg2SsKYe8b4ME9e4S0v7p2LU2fM0cR6UN794p97UvPPZd+/pvf9KojW9htB3D6xFE6cmCnEHheKj951nwaO36yovsyaiEIu2tmrrGxnhrra6mhvpYaG+pMr/W11N7ZajrKzLxnnHvvnh29x75w81L1gCDPTFLmiD5HeFnErUJezmJuEnL+eVhElPgKjeTXSNP35p8Fh4Zp2sPuaGxG+vOMtMOUfvgA5WRmUHlxETU01HNCXhoeGEhRsXE0cuw4mjhtphB0LZcWYS8rKTQtcxdL3U+JD58scs5norvDipC927+mo4d3UU11BQWHhtPk6fNpzsJztSDTVNeesBcWnqTq6jKxBD4wUN0pLZoGo7AyhF0hqAEoVlyUZT033bIvnY9lG6gLwi6XvExh53waFimX+Qphl/tMSe0Nwt4/bk4s9/yTT4rM8fEjlWUGra+rE9Le1Ngoou1RMWf2QA2ksFvutLmp0Rp1b2pqFPLOUffQcM9LJAVhV/7PCe+bFRLewPJdJ15NIm763iTopu/9/IYTR3CHBwSLYwU52RS/xo6K73acmb1lxcpHZPySvI+8d4ScBb1c/Nw/gLOLWyTcRsiFoEc5PK1CS9I5o9L9fu8uOvH9IcrLyqSKshJqbmykIV5eFBgUTNEj4ikpZQKlzphDo8aO0/0W1Qh7VUWpWc75PPRT4oQBsQfdHEV3l+M4C/JO0+6tXxC/DvUaSqPGTqDFyy+mkFC555fbmyxbYedIKC+B9/IaKmR96NBhus+vHg1C2PWgqF8bDfXV1gRyPj5+Yl86R9T5+4G+IOxyZ0C2sFvuTlbCOe6Pc3q464UIu8aZgbA7Bvj266/T1xs2CGn38fV1XMFc4p8vvEDr3n1X7GtfePbZ4qfuIOy2N1CQmyWWy3PUPTEpWUTdU6fPVXyP7l4Qwk7EGaZZvK0iLqLiJvm2CDp/z+WEfAcGUUCA+TUw+Mz34mcs6EHil2Z7l7N72N39OeprfK0tLXYi5GYhrygTwm0V8sjuEXL+OSc203J5srAz20O7t9PJo0eoIMeUqZ3ziwwbNoyCQsMoNiGRxoyfRFNmzaXoEXKWRfcn7LU1lSJJnNiLnmPK1MtLyE1R9GQRsXan69uN/6WMYwfFkXCR0XE0fc4SSp2m/IhSGfdiEfba2goh65GRCRQbO3ARUSX3DGFXQsn1ZXJz0ikn+yiVlxVYE8hFRLj+RAc1dwZhV0NLe1mZws5bLGRG1i0fCuTkHNMOykUtQNg1goWwKwP47J/+RIX5+fSXl19WVsFc6tuNG0W0/bqbbqIf33KL2wm77c0c2b9TJKrjbPOWqHtsvLJVBaqgSCzsycJuXYpusyS9ocf3LOQcfeSjqIRs24i4JSpuipIHkf/wQM0z42nC3tnZYVqiLpaqn/kSS9bLy8U53LbL1LstW4+MIv/hrs1a7SnCzmeaf79nF51KP0qFeTnijHNOqscfaISGR9CIxCRKnjSZps6dT0EhYZqfU2cbsBV2/hDMIue8zJ3zNVjknJPF6n2zpgAAIABJREFUhUe4Lru0s+PPOHaA9u/aQmUlBSKnybgJU2nZ+WscruRwtj+t9VjYS0qyqbQ0R0TVQ0KitDbp8voQdpcj7rODqqoS6950zu4u9qaPTh24ATnoGcIud2rkCvvAbDfNzk6TC1VFbxB2FbDsFYWwKwf44J13Ulh4OP36kUeUVyKigrw8cfRbZHQ0TZ9/vtud5dzzZirKiinNfLY77z+eMnOBiLz7+ChfXaAKkAsLG1HYmxrrqaaq3Lr83BQFN0fDbb5nGey5JN0k5abl6ZZIubfEeTOisNdUVfYZJWdxPBMh772PnP9+DORlRGEvzs+ltAN76fSJY1TCmdprqqmjvV1kZQ+PjKL4pDGUMnkqTZ+3yK3+rWxqqKedX31jyuSee4o4os6Rc0smdz7mzB0vzjfx3caPKSvzKLW3tVJsfBLNXXiuWPruzhdn73/ntb9Re3uLkHUfn95Z+91x/BB2ubPCz0lO1lGx7L2pqU4kj2NRDwp2rxUt9qhA2OU+KzKFffToKaYIO5kTzQ0hKe8h7HKfKam9GVHYrzr/fMFo7RdfSGXV1dlJN199NS1aupRuuO021X3/7dFHafOXG2n1mhtoxEj3XtZnubmTxw6LqPvl196i+n7doYIRhZ25vf/v56zLz61RcZsl6SzqXl4Dc8xTf/NqRGHn+3nt6UfNCd567yN3h+e4rzG4u7DzqoSCnCwqyM4Wy9oLc7KoqalJ3E5EdAyNHJNM46fMoCmz3W8bDkf4M9PTRNT/VDqf0Z5DIxLHin3oLOqx8aPc+dEQy/KPp+2j42n7xXFsE6fOoQVLLnTrMVsGV1yYS5vWr6Uh5E0JCZbzjA0xdKquLhUDDQ2NNsaAbUaZMnGW4cbMA965/VNxHNuI+GRDjd+Iwr7pf/8TjM+54AJDsebByhX2qQPCJyvr+wHpV0mniLArodRPGSMK+23XXCPu6OV33tF49+qrlxYVCWm/6c47adXll6tu4I8PPEqff/BvWvXDH9OMeWepro8K6ggYVdjV3aX7lDaqsLsPQXUjcSdhLysqNMm5zRfvq+OzzcVXkuk1Msa99pFaiHM0hMU8Uwj6UbECYOzEVBo7cTIlT+DXVFKTdE7dTOpTur6uRgj6ibR9NMRrCE2YPFt88fYXo1xph3bRpg3v04pVV1JFYblRhu0R4zSqsBsVvhGF3aisZQv7mDHTBmQPO4TdyE+og7FD2NVPbtqhQ+K4t2def53mLlqkqgFOOleUly2kfeSYFFp56dWq6qOwOgIQdnW8tJaGsGslqK7+QAl7YS5HzM1ynm16DQgKOiPnZkkPCR/4TOP9Ec0+eaJbFD1h9Fgh5skTJ9PYCam9luS7q7CfyjgiounZmelmSZ8l/cx0dU+u/dLffrWO8nNP0YpVV1FMXCL1dQ67Hn2hjd4EIOxynwoIu1zeMiPsLOyWRHAyX0+dOiQXqoreEGFXActeUQi7cwC3fPklPfHQQ/TK2rU0Oln5MixLlnjes8nSXltdSavXXE9hkcZbPuccObm1IOxyeUPY5fJ2tbC3t7X1ipqznEfFxNGIHpFzTlzo7ld+9uluUfTImNgzUfSJqQ7PQncnYa8oL7ZG0/kINks0fegw9zzurL9no7qqnDatf48Cg0NFZN1yZBuEXe7fKAi7XN4Qdrm8ZQp7cvKMAYmwQ9jlPlNSe4OwO4/7/TffpE/ee09Ie2CQsl9Wex7rtvObL2nH5g20as31NGHKTOcHg5p2CUDY5T4YEHa5vPUU9qbGBquc815zFvOi/LxeUXNe1q7meEu5RLr3VlyQ103QA4KCKdmyzH1iKgUGh6ga3kALO59awEveOZpeWV5ijaZHRo9QdR/uVPjUie/p6/Xv0eyFK2jW/GXdhgZhlztTEHa5vCHscnnLFfaB+X0+M/OAXKgqekOEXQUsRNg1wrJT/e9PPUUn09Pp2X/9S1Hj9s5hP33iKH3+wRs0fe5ZtOS8ixW1g0LKCEDYlXHSqxSEXS+SytpxVtjraqqpwLyU3bK0nTPiW/ebiz3nY8R7Xs5nlKu8pNiUJO64aS86R2pNgm7ai87H7mm5BkrYC/Oz6IRZ1BOTUmjC5FmUPGGalltxi7q7t35JaYd30YoLr6RRY3pnrYewy50mCLtc3hB2ubxlCvu4cQOTwPHkyf1yoaroDcKuAhaEXSOsPqo/cu+95O3tTQ898YTDDuwJO1eqr60R0j5smDetvuIGh0szHXaEAoIAhF3ugwBhl8tbibBXlpX2Wtbe1tLSLREci3lMfKLcwevQW01lhTlJXBplHj9KfF8iSZxZ0KNi9U1wJ1PY+XhHSzSdj64yLXmfRUHBA3cOvQ5TJppoaW4UUfX29naxBJ6PobR3Qdj1Iq6sHQi7Mk56lYKw60VSWTsyhT0lZbayQelcKiNjn84t6tcchF0jSyyJ1wjQXP2O666jabNm0c13391vg30Ju6XS5g0f0fHv99OqNTfQqLHGOs5GH5L6tgJh15eno9Yg7I4I6fvnPYW9pDDffIzamWztw7y9e0TOR1NEVIy+A5HUWkNdrVXQOZJeW1NFYydYBD2V4hJde9SaDGHPyjwmRD3z+CGrpHNU3VMuPsP+6/VrxQqBRctW93tbEHa5sw5hl8sbwi6Xt0xhHz9+zoDsYYewy32mpPYGYdcHd1VlJd1y1VV09U9+Qpdd3Xfmd0fCzqM5enA3ff7+v2n5qh/QnMXn6DPAQdoKhF3uxEPY5fDmI8iK83Oosry4W/Q8KCSsV+Q8ONS4EdmW5iaxxN101FoalRYViAg6Z3DnKHriGOUJP/WYGVcJe3VlmTWaPjwwyCrqPj5+egzbbdo4vG8rbdvyGa248Coan+p4jyeEXe7UQdjl8oawy+UtU9gnjJ8rbq6LiGw3lbn6/fETe+RCVdEbIuwqYNkrCmHXCNCmekZ6upD2R595hhYvX263YSXCzhXLigtEFvno2HiRkA6XcwQg7M5xc7YWhN1Zcn3Xa2ttpaL8HPFVnGd6LcrLoajYeEocw/vMTXvN+cs/IED/AUhssaOjwyZJXBrlnDrZLUnc6JSJEkfTuyu9hf34UU4gt59KC3Otkh4dZ7ytCUomZdOG96i8rEjIekRUrJIqONZNESX9CkHY9WOppCUIuxJK+pWRKuwT5hN1dVmPdiPOBSPh/fETu/UDpnNLEHaNQCHsGgH2qL79m2/ooTvvpFfefZfGp6b2alypsFsqrv/wTSotzKNVV9wg5B2XOgIQdnW8tJaGsGsj2NRQT0X5uVYpZzkvLymiuIRRYrm37SsvdVeyh13biFxf+/SJY92i6Enjxpui6OI89FTy8hrq+kEo7EEPYS8pyrVG02NHjBKiriTarHCIblesoqxI7FePjBlB51xwharxIcKuCpfmwhB2zQhVNQBhV4VLc2Hpwq55xOobOH58l/pKkmpA2DWChrBrBGin+sfvvUdvv/66kPbwyO5ZidUKOze/b/tm+vrzD2j1mhto8sx5+g/Yg1uEsMudXAi7ct611VViWbslYs6vvEebpTy2h5z31aoRhT339Mlugs7J7pJtBN3H132XgTsr7C0tTWZJ30/NjfXWaHpImLas9cqftoEpeeLofiHri5dfTNNmL1Y9CAi7amSaKkDYNeFTXRnCrhqZpgoyhX3SpIViD7vl4tNWZLxPT9+piZErK0PYNdKFsGsE2Ef1155/ng7u2UMvvfVWtxLOCDs3kHs6Q+xr57PaeW87LmUEIOzKOOlVCsJunyRnau+5rJ2Xf/eMnEfGqMtqbgRhL8zNEcesmfaip1FIWIR1mTtH0QMCg/R6/Fzejlphz806YY2mp0yaIUQ9aezALut3OSRzB9u3fE6ZJ74XR7bFjxzrVLcQdqewOV0Jwu40OqcqQtidwuZ0JdnC7vRANVQ8dmyHhtqurQph18gXwq4RYD/VH3/oIWppbqY/PP20tZSzws4NNDc1in3t7a2ttOqK6ykoONR1g/eQliHscicSwk5UWphvlfOiPNPydh9f315yHhquPbrqjsJeVlQoxFwI+vGj5OvrZ17eblrmHhIWLveh1LE3JcJeW1Npjab7+PhYo+l+/sbOL6AUY0N9jYiq85YN3q/u6+evtGqvchB2p9E5VRHC7hQ2pytB2J1G51RFmcKemrpoQLLEQ9idejSMUQnC7tp5+uXPfkZjU1Lo5/fdJzrSIuyWkW7d+Bkd2PUdrb7ieho7frJrb8DgrUPY5U7gYBL2zs7OXongWM45gmwbOefl7YFB9s+Z1jo77iDsVeVl3Y5aYy6W/ee8Fz0i2phHyNmbm/6E/WT6ISHq+bmZ4rx0jqbHxSdpnWJD1c85fVwc2TZ5xgKat3il5rFD2DUjVNUAhF0VLs2FIeyaEapqQKawT56sfguQqpvpo3Ba2jY9mnFJG4iwa8QKYdcI0EH1hvp6kTn+ojVr6Mrrr9dF2LnLE2kH6fP336CFyy6gBcvOd+1NGLh1CLvcyfNUYW9taTbvNTdFzC3Z2nn/dc9l7VoiimpnayCEva6m2rq8naPojQ31QtBNR61Nppj4BLW3YZjyPYW9rKTAFE0/up8io2JpQupsIetDvLwMc096DXT/rs20b+cmEVUfO36KLs1C2HXBqLgRCLtiVLoUhLDrglFxIzKFfcqUJQMSYU9L26qYh+yCEHaNxCHsGgEqqJ596pSQ9t88+ijVN/kqqKGsSFVFmZD24JAwsUR+2DBvZRUHUSkIu9zJ9gRhb6yv65YIjo9Q4yhyXOJIihXZ2pOskj506MBmMJch7E2NDd0EvaKs5EySuAmTKT5ptNyHbAB7Y2Fvb2uj40f3CVGvra60RtPDIz1nJYEaxB3t7fT1hrVUX1cjZJ1XmOh1Qdj1IqmsHQi7Mk56lYKw60VSWTuyhd0yKlkJ57i/I0e+UwZjAEpB2DVCh7BrBKiw+t4dO+iun/6Urrv1Xoof5VwCnr66+uqTdyk784RYIj8icfD88qwEPYRdCSX9yhhN2GuqKnsta2dB7XmEGkfS3fFyhbC3tbUKQbckiSvIybIKOkfSk5LHuyMKl4+JeXyzfj0dT9tHY5JTxZL3MSmDe0sSH1HH+9UTRiXT2edepvscQNh1R9pvgxB2ubwh7HJ5yxT2qVOXEpHNOew0RMr777//Vi5UFb1B2FXAsld0/aFDGluQX/2Bm24SnT7x2mvyO9fQ4+bPP6fXnvobXXblbRSoc8K49CN7aMtXH9Ky835IE6fM1TBKz6paV1nnWTfk5ncTPy7ebUdYWV5KpUV5VMJfhaZXvmLiEilmRKL1NSwi2m3voefAAkL1SWSWlZFOWSfTKTvjuHgdPW4iJaVMEK+jUwZHVnN7k87L/w/v2S6++IoKH00jR00iPz99uBvmQbMz0OysI7R//1c0a9Z5lDRanyXwPbvZueNTIyMy3NiXrlhjuDEbecC/e/LnRh6+4cY+IU7dKSxabtAk7PKv77//Rn6nCnuEsCsE1VcxCLtGgCqrP3bng5R9Kp0uu/JW3fc5lhbnCWmPTxxLi5ddrHJknlkcwi53Xt1F2EuLC0xybhZzfvXzH95NzFnUg0LC5ALSuTdnhT0vK5NsJZ1XFNhKOmf4HsxX+uH9dHjPDpErZNrcRTR97iJKGjeBDm023gfcrpjHw4e2UFlZnpD1sPBYV3Qh2oSwuwyt3YYh7HJ5Q9jl8pYp7NOmLbfuYbfcJZ/DzsvjXfn++++3yIWqojcIuwpY9opC2DUCVFl9w1sbaevmT6ixoY5WXnStytqOi3d0tNOWLz8kPlqHo+3BofrtJ3Tcu/uVgLDLnRPZws7Pe0lhfq/IOR+Z1jNy7j88UC4MCb0pFXbeh8+Rc5b07JPHKSwyyiTo4yaICDp/mDHYr7KiAjq0d4eIpodFRAlRnzZ3IXl7+1jRDHZhb2iopv37viJ//0CaNXsleXm5NocDhF3u30oIu1zeEHa5vGUK+/Tp58i9OXNvhw5tGpB+lXQKYVdCqZ8yEHaNAFVWZ2Hn64tP36TAoFCXRcIP7v2GDu75hpat/CGNTh68+ywh7CofUI3FXSnsLc1NVFqU321Je1lxAUXHJZyRc/PSdm8f/ZI7akTi0up9CTtzyTIvb8/OSCf/gEAh5km8xH3cBAoMDnHpuIzSOB9BZ1nyXlJYQNPnLhSiHpsw0u4tDGZhLyzIpP37v6Tx4+dSyvg5UqYYwi4Fs7UTCLtc3hB2ubxlCvuMGSsGJEt8T2E/nVNIt9z3NBWWVNDUiWPppSfvprCQoF7g9x4+Tjfc9aT4+YiYCHrlL7+iMaNG6DpBEHaNOCHsGgGqrG4R9o6ODvr4vZdpzLgpNGPO2SpbUVY8N/uEiLZPmjqP5ixYoaySh5WCsMudUL2EvaG+1iTnNkvaa2uqzGJuI+hxibpvLZFLTFtvFmHn/fkcObcsc/fy8rLuP+coOq84wHWGQO7pk2ZR3yE+yGBJnzzTce6PwSrs6cd2UlbW9zRr1kqKiZV3tjyEXe7fWgi7XN4Qdrm8ZQu7JTu8zNcDB0xBQb6am1vpqZfX0o8uXyHkm6V86+4jdM/N3XNVVNXU0YNPvEa/vu0qa7kPPvuG/njvT8nP78wKM62zBWHXSBDCrhGgyuoWYedqtTWVQtrnn3UhpUycobIlZcVZfHhfOx/5xtF2X19/ZRU9pBSEXe5EOiPsNdUVVFrYPXLe2tJis9/cJOiRMfp+2iuXjL691ddWU25WBhUWZAlJZ16jzUniOIoeGeO6fcX63om81vi4Pt6XfmjPdmprbbEueVfzYcZgE/a2thbav+9L4q0nvF/dz1/uthIIu7y/H9wThF0ubwi7XN4yhZ3/vbTsWZf5aivsHF1/e93XQsRZvHuKuYW+vXJPvPA2PfCLH9mNxjs7axB2Z8mZ60HYNQJUWd1W2LlqUUG2kPaL19wsksW56tq5dQOdPpkm9rWPSBjjqm7crl0Iu9wpcSTsFWXF3SPnRXliH2zP/eZqJEruHQ5Mb3zUHAt67ukM8crCPnJ0CiWnThbL3GPd9Ni5gaHVvdeMo4dFNP3Ivt00bd5CkUBu7ATntgkNJmEvL88X+9Xj48fR5ClnDchUQtjlYoewy+UNYZfLW7awn7k705FuMt7zyR2Wq2dEvWfE3Zb+3179gJISYunyC88i2+/1nCEIu0aaEHaNAFVW7ynsXD3zxGHatuVTuvTK2yg0zHVLV0+mHxTR9gVLVtGUGQtVjtyYxSHscufNVtj52LRSsaT9zNL24QFBvTK1Yz917zniCLCtoJeXFglBHzkmRbzGJZiWJStNOif3KRj43irLSkQknSPqAYFB5mj6IvLz17bCaLAI+6nMg3TkyHciqp44cuCO9YOwy/27BGGXyxvCLpe3TGGfPft8uTdn7m3fvi+6CXteQZmQcMvFMn7WvCk0Z9qEXuPjP/vnO+vp0ftu7FZHrxuBsGskCWHXCFBldXvCzk0c3r+VMtIPiuPehtlkJVbZvMPileXFQtojouJo6bk/cFje6AUg7K6fQV4uW1lRTFWVJdTSXmdKCleUR+GRMb0i58hGbn8+OPmZraAX5p6mRBtBT0xKtlsRwt4dy/d7d4poen72KeuS9/hR+q0oGgzCfmD/RqqpKROyHhziug+QlfzLBGFXQkm/MhB2/VgqaQnCroSSfmVkCvucORfoN3AVLe3d+79uwm67Z72vCDsvlb/9/mfpnlvXCJFft2Er7TpwFHvYVXCXUhTCLgWztZO+hJ0L7Ph2PVVXldGFl97g8kF989WHVFFeLJbIh0d67n5XCLu+j1Jra7NZzoupsqKEKiuLqaa6nMIjYig8PJZGT5hgjaAP9rO8HZHPz840SbpY6n6SRiQmWSPoHEX3Gur4yCwIO1FBTpY103t80hiTqM9xzQoiTxb22tpysQQ+JCSSZs46z9HjK+XPIexSMFs7gbDL5Q1hl8tbprDPnXuhaQ87DaEuMp2/LuO9rbAr3cNuLxndq299RivOmqVrpnhE2DU+7xB2jQBVVu9P2LmpjevfIR9fPzp7xeUqW1Zf/MjB7bTzuw20bOUaGjdhuvoGDFADwu78JDU11gshr6o8I+dNTfVCzMPDYygsgl9jKTzizAc+jvawOz8a49csys+xCnre6QwKj4rtJug+vuqPohusws5H/HEk/dCeHdRQW2Nd8h4RHePSB8VThT0v77hILjdlyhIam+yaBKjOTAyE3RlqzteBsDvPzpmaEHZnqDlfR66wrzINtKuLaAjvYTdfLn6/Z896a1ccUf/9X/9Fay5aKiLnLOaW7O+FJeUig/zjD9xEmdkF1p/3l5zOefKmmhB2jQQh7BoBqqzuSNi5uY/f+wcljBpHs+efo7J19cUL80+Lo9/Gpkyh+WcNzBIe9aNWXgPCroxVfV0VVVaWnImeV5aIzNAWIbcIOkff+rsg7Gfo8FnothH0wKDgboLOZ6NrvQabsJ86nib2pbOsT545j6bNXUgpk+V92OiJwp52ZCsVFGSII9sioxK0PpK61oew64rTYWMQdoeIdC0AYdcVp8PGZAr7vHmrByRLvK2wM5C+zmHnn1uEnc9l52Xwv/vLP60M33jufrv73B1C7qcAhF0LPSKCsGsEqLK6EmHno9g4c/zMectp4uQ5KntQX5yjVVu++oA62tvF0W/DA4LVN+KmNSDsvSemprqsu5xXlNCwYcMozBwtZ0kPi4ihwMBQ1bM6mIWdz0LPsy5xzxC5KCxJ4vg1KFg9T0cTMBiEvbqywrrk3dvHxxpN52Rysi9PEvbm5gYRVR86dJhYAu/j4ycbp8P+IOwOEelaAMKuK06HjUHYHSLStYBsYSeyZIeX97p792e6MtOzMQi7Qpp9fcoCYVcIUKdiSoSduyotzhfSfv4l19PIpBSdeu+/mb07N1L6kT207Lw1lCipT1ff2GAWdt4vZVrOXiwE3fL98OFB3Zazs6j7+wfoMhWDSdhrqyu7RdA7O9qtgp44JoXCwqN0YdpfI54s7EcP7BHR9NMZR62SPnLMOJcz7a8DTxH2kpJssV999OgpNHHSggFl2l/nEHa5UwNhl8sbwi6Xt0xhX7DgEhFht1yWPeyufr9r16dyoaroDcKuABbL+oNPvk6P3/+zXgkEIOwKAOpYRKmwc5dZmUdp85fvi+PeIiQlhuOz2jmL/Ky5y2j6nLN1vPOBaWqwCHt7e5tpv7lFzsVrMYWGRoto+Zml7bHk7aN+r7TS2fNkYW+sr+uWyb2xob5bBD0yOk4pJt3KeZqwFxfkWpe8R8XG0/S5C4WsK0nApxvUfhryBGHPyNhLJ47vEVngR8QP7AcgjuYMwu6IkL5/DmHXl6ej1iDsjgjp++eyhV3f0StrbefOT5QVHIBSEHYF0Ps7dw/CrgCgjkXUCDt3m3ZoJ6Ud3kmXXnkr+fkN13EkfTdVU10hlsgHBoWKLPK8ZNKolycKe0tLU7e95hxBr6utFMnfeiaD8/JynGlcz7n1JGHnrSJnjlo7SdUVpULQLcetxY4YqSc6p9ryBGFvb2szn5m+narKS63R9Oi4eKeYuLKSkYW9s7NDRNWbmurEEnhntry4kq29tiHscolD2OXyhrDL5S1T2BcuvNR6cyI7vE3iOVe+37HjY7lQVfQGYXcAi7MEvvTmJ5SakkT3PPJ3UfrGa1bRPTevEd9D2FU8bToUVSvs3OXubV9SaUkeXfSDn+kwAuVNbN38CXFSOl4iHx3rXsmIlN6F0YW9saG223J2Xtre0txolnPTXnOx5zzctdmxlfI2srBzDgfbs9A52mu7Bz1+pH7neSvl6aickYU9++Rx8970HZQyeZoQ9YnTZjm65QH9c6MKe1VVsZD1qKgEmjZ9+YAyVNM5hF0NLe1lIezaGappAcKuhpb2sjKFfdGiy7QP2IkWtm//rxO15FSBsDvgXFVTR7ff/yzNmTFBSHrPNP8QdjkPqqUXZ4Sd627+4n1xNMTylaYPWmRdx47sIT6z/dxV1xjy6DcjCntzcyPt2PqJEPWurk7rcnZTUrgYCg6OkDX9qvsxorDX1lTR5x+8IWQ9MSmZ+Ax0i6jbfiquGoaECkYU9pLCPPrwjX9QV2eXyPI+bd4iCg4Jk0BLexdGFHY+sm3P7vUiqs571o10GVXY6+uriHOFeHkZa3WaUYX9VOZhGps8zUiPthirEYW9uKhIjD02Tv4WMK0TLFPYFy/+gTlLvOVkN/M57ENc+3779nVaMbmsPoRdgbA/8cLb9MAvfkScup8vPotv6+4jQuCNKOzvvPKKuI9rbrnFZQ+Wqxp2Vth5PJ99+DpFxyXSvEUrXTU8u+2WFudRdGyi1D716syIws73np+bIRLDBRgsY78RhZ15c2KzkaPHiczuRrqMKOzMNysjnUanTDQSajFWIwo7j5vzWfBKHKNdRhR23rLU1FQrth74+QWQv3+weDXCZURhrygvpN07N1BM7CiaNedcI2C2jtGIwv73p58W47/jV78yFGserGxhPwPIkiXe8hPXvd+27SO3nRcIu4Op4Yg6n7X3o8tXWBPOsbDnFZTR5ReeBWGX/GhrEXaOvH689mWaPGMhTZ7mvpl9JSPttzujCrs7MVQzFqMKu5p7dKeyRhV2d2KoZixGFXY19+hOZY0o7BZ+vDqKpb2xsY46Otpo+PBg8vcPomHD3PdDQSMKO/Pu6Gin3TvWU1NTPc1buMoQ+Rl43BB2uf/ayBT2s85aMyDnsG/b9qFcqCp6g7ArgLVuw1bKzi/2mCXxgzXCzlNdUV4spH35BVfS6LGTFMz+4C4CYZc7/xB2ubwh7HJ5Q9jl8jaysNuSamtrMct7LXl7+wpxZ4F3t8uowm7heCxtJ6Uf3SWkPSFRznG4WuYQwq6Fnvq6soVd/Qi119i69QPtjbioBQi7QrCcKf6f76wXpR+970YRXecLS+IVAtSpmJYIu2UIudkn6ItP3xTHvUXHGDMZnE46NLyjAAAgAElEQVQ4HTYDYXeISNcCEHZdcTpsDMLuEJGuBSDsuuJ02JinCLvtjXLUnb9aW5uEuPOSeR8fP4csZBQwurAzo8KCU2KJ/LiUGTR56mIZ2JzuA8LuNDqnKsoU9iVLrnBqjForfffd+1qbcFl9CLtGtBB2jQBVVtdD2LnL9LS9dGDPFnHcm9H2OatEpqk4hF0TPtWVIeyqkWmqAGHXhE91ZQi7amSaKniisFuA8DJ5Xi7P8j5kiJdIUscCL/soTtsJ8gRh5/tpaqwT0j5smDfNW7CKvH18NT2HrqoMYXcVWfvtyhT2s8++Uu7NmXv79tv3BqRfJZ1C2JVQ6qcMhF0jQJXV9RJ27nbfrq8pPzeTLr3iVpWjGDzFIexy5xrCLpc3hF0ubwi7XN6eLOy2JFtaGs3yXmteLh9Evr7yE9V5irBb2B46sIXyck8IaY+Ocb/EuRB2uf+eyBT2pUuvHpA97N9+u1YuVBW9QdhVwLJXFMKuEaDK6noKO3f97dfrqLWlhc5ddbXKkQyO4hB2ufMMYZfLG8IulzeEXS7vwSLsFqqdnZyozpRhvrOzQyyXNyWq85YC3tOEnaFln04T0fYZs8+hlPGzpHBU2gmEXSkpfcrJFnY+Frarq4tkvm7Z8o4+sFzQCoRdI1QIu0aAKqvrLezc/YaP36DQsChaePYqlaPx/OIQdrlzDGGXyxvCLpc3hF0u78Em7LZ0W1ubhbjzF+9xN+13Nx3N66rLE4WdWVVXlQppDwuPobnzL3AVPtXtQthVI9NUQaawL1/+I+myzh8OQNg1PSLuXRnCLnd+XCHsbW2t9PF7L1PKxJk0bZYpmSAuEwEIu9wnAcIulzeEXS5vCLtc3oNZ2G1Jm46HqyXONm/JMM/Z5vW+PFXYLZxY2muqy8QS+ZDQSL3xqW4Pwq4amaYKsoXdMlhLhF3G+82b39bEyJWVEWHXSBfCrhGgyuquEHYeQnVVuZD2xcsuoeTxU1WOynOLQ9jlzi2EXS5vCLtc3hB2ubwh7N15t7e3Ws92Hzp0qFgyz8nqOGmdHpenCzszOnF8Hx0+sEVI+6jRA3s0LoRdj6dWeRsyhf2cc64VA5Mp69zfpk1vKQciuSSEXSNwCLtGgCqru0rYeRgFeafo0w9eFce9xcUnqRyZZxaHsMudVwi7XN4Qdrm8IexyeUPY++bd3NxgXjJfb80w7+s7XNMEDQZhZ0ClJbm0a8d6GjVqIk2buVQTMy2VIexa6KmvK1fYf6x+gDrU2LTpTR1acU0TEHaNXCHsGgGqrO5KYeehZKQfpF1b/yeOewsOCVc5Os8rDmGXO6cQdrm8IexyeUPY5fKGsDvmzcnpTMfD1Yo9s6bj4YJp6NBhjiv3KDFYhP3/2TsP+Kiq7I8fSnojDdIgQCD0LkUUREFFEFhhwY5gB+tfXcuqy+raVld3xV7BgooFFSwoWBAF6RA6BAikkd47Sf6fcydvMpNMuXfue3dmkvM+n/lMJjm3/e4L5PvOuefgsmtrqti59vqGehh79jQICAgW1ku2AQG7rIJi7VUC+5Qp15nPsGuz1BLQGfmZgF3snvAqawJ2tdtlNLDjanZt+xWOH93HPO0YNteeLwJ2tbtPwK5WbwJ2tXoTsKvVm4BdTO/a2ipzyDx62xHe/f35QbQ9Abum7N49G+FY6h4WIh8b10tMcElrAnZJAQWbqwT2Cy9cwGanAtIx7F671q1bLqiKOnPysEtqTcAuKaBgcxXAjlP6/ZfVUF5WAlNnXis4w7ZlTsCudj8J2NXqTcCuVm8CdrV6E7C7pjdCgpZhHs+9axnmnSWqa4/AjgpjrfYtm76FQUPOgQGDxromugutCNhdEE2iiUpgv+iihW7JEk/ALnGDeHpTAna1O6QK2HFVP6z5EAKDQmDCBbPULtKDRiNgV7sZBOxq9SZgV6s3AbtavQnY5fVGYMcM8wjwWM9dq+1u6ZXTRmmvwI7rLysrYtAeFBQGY8dPg44djY9OJGCXv79FelAN7Crrr2ue/B9+eFdEEqW25GGXlJuAXVJAweYqgb2hoYFlju+ZNBBGjjlfcKZtw5yAXe0+ErCr1ZuAXa3eBOxq9SZg11fv6upydt69pqbCnGHe1zfAPEh7BnZNhO1bf4S83HR2rj0iMlbfDWjRGwG7ofK26lwlsE+deoNbPOwE7GrvKaWjEbArlRtUAjt7alxazKB9zDkXQ7+BI9Uu1gNGI2BXuwkE7Gr1JmBXqzcBu1q9CdiN0bu+/kzTWfdSVnZKq+1+wUVXGDOgl/WaenQ3bPvzewbtvfsMM2z2BOyGSWuzY7XAfqPaxTWNtnbt224Zl2dQ8rDzqOTAhoBdUkDB5qqBHad3Ouskg/ZL59wICT36CM7Yu80J2NXuHwG7Wr0J2NXqTcCuVm8CduP1rqnBRHWmkPnuif2hV6/BEN+9r/EDe/gIBflZLES+W2wvGDV6iiGzJWA3RFa7naoE9ksuuUnt4ppG+/77t9wyLs+gBOw8Kjmw+XjzZske1Df/4p132KBzbrhB/eCSI657b51kD641Tzt+ADb//g1Mm3k9hHWJcq0TL2xVWVrhhbP23ikHh4d47+S9cOY+fj5eOGvvnfLRlAPeO3kvnPm+fRu8cNbeOWU8AxsbmwQZGYehqqocEhL6Qffu/SE4ONw7F6TDrDESYffunwBr3o8YMQUCA0N16LW5i4dfuEvX/lR09tbSpWyYm+68U8Vwuo4xundvXftz1Nm0aTcrG8tyoO++e9Mt4/IMSsDOo5IDGwJ2SQEFm7sL2HGaB/b9CUcP74ZpMxaCj6+f4My905yAXe2+EbCr1ZuAXa3eBOxq9SZgV6v3uHGmBLUlJXmQnn6IwXtYWBQkJPSH7t37AUBz+Si1M3PvaEeP7oDU1J0wYsRkiInRD/oI2NXuq0pgnz79FnaG3fQ708iOnqj4TMCu9p5SOhoBu1K5wZ3AjivdvmUdFBfmwpRLrla7cDeNRsCuVngCdrV6E7Cr1ZuAXa3eBOxq9daA3XLUzMwjDNwLCrLMXvfw8Bi1E/OA0XJy0pi3vWfPIdCv3xhdZkTArouM3J2oBPZp024xQ7rKbPHffvs6tx6qDcnDLqk4AbukgILN3Q3sON3ffv6ClXcZP3Gm4Oy9z5yAXe2eEbCr1ZuAXa3eBOxq9SZgV6u3LWDXZoCl4Uxe90OA9dw1r7uPj7/aSbpxNDwqgNCOfz9hiHznzr5SsyFgl5JPuLFKYL/00kVuyRJPwC58W3hPAwJ2tXvlCcCOK167ZjnExPWE4aMmqRVA8WgE7GoFJ2BXqzcBu1q9CdjV6k3ArlZvR8BuOZPc3JPM644Ar51179o1Ue1k3Tja/v1/wOnTx2H48MkQGRnn8kwI2F2WzqWGaoF9sUtzlG30zTevynZhWHvysEtKS8AuKaBgc08BdnxS/P3qd2Hw0HMgecAowVV4jzkBu9q9ImBXqzcBu1q9CdjV6k3ArlZvXmDXZlVXV2P2uuPXmtc9MDBM7cTdMBpGGuza9RMMHjwBevUa6tIMCNhdks3lRiqBfebM25vOrJum23yG3djPa9a84rI+RjckYJdUmIBdUkDB5p4C7DjtgvxsBu2TpsyDhB5ts4wLAbvgDSppTsAuKaBgcwJ2QcEkzQnYJQUUbE7ALiiYpLkosFsOV1R02ux1j4iIY0nq4uOTJWfk2c1LS/MZtHfpEg3Dhl0gPFkCdmHJpBqoBnapybrYePXql11saXwzAnZJjQnYJQUUbO5JwI5TTz95mJ1pv2Tm9RAR2fYSyRCwC96gkuYE7JICCjYnYBcUTNKcgF1SQMHmBOyCgkmaywC75dDaWXfMNq953cPCukrOznOb47n2srJCFiIfEhLBPVECdm6pdDFUCeyzZt3hljPsBOy63Cqe2QkBu9p98TRgx9UfPrCdlXy7ZOZC8PcPUiuIwaMRsBsscIvuCdjV6k3ArlZvAna1ehOwq9VbL2DXZl1eXmT2uvv7BzOvOwI8Jm1ra9fx47vh4MHNDNp5IwsI2NXeBWqB/U7oYFEFESu8qfj81VdL1YoqMBp52AXEsmVKwC4poGBzTwR2XMKu7b9A7ulTcPGl1wmuyLPNCdjV7g8Bu1q9CdjV6k3ArlZvAna1eusN7JazP336BMswn519rMnr3h+iohLULtDg0fLzM1gW+fj4vjBgwHinoxGwO5VIVwOVwH7ZZXe7xcP+1Vcv6qqZnp0RsEuqScAuKaBgc08FdlzGHxu+hoaGBphw/mWCq/JccwJ2tXtDwK5WbwJ2tXoTsKvVm4Bdrd5GAru2kpqaSkhPP8zgHf/e0LzuAQHBahdr0Gi1tdUM2nFtI0ZMBj+/QLsjEbAbtAl2ulUN7M3TQFd7o8WsjPv85Zf/UyuqwGgE7AJi2TIlYJcUULC5JwM7LmXddx9CRFQMjBozRXBlnmlOwK52XwjY1epNwK5WbwJ2tXoTsKvVWwWwW66ooCCLgTsCfNeuPaB79/4QG5ukdtEGjXbo0J9w6tRBBu3R0T1sjkLAbpD4HgDss2ff4xYP+5df/letqAKjEbALiEXALimWDs09Hdjx6fB3X78L/QaMggGDx+qwYvd2QcCuVn8CdrV6E7Cr1ZuAXa3eBOxq9VYN7NrqGhrqm8rDHYby8mKz1z00NFKtADqPlpWVyrztycmjoU+fka16J2DXWXAn3an0sCOwu+NateoFdwzLNSYBO5dM9o3Iwy4poGBzTwd2XE5xUR58t/pdOGfiTEjsNUBwhZ5lTsCudj8I2NXqTcCuVm8CdrV6E7Cr1dtdwG65ytLSArPXPTi4C/O6JyT0g44dO6kVQ6fR8AEEQntgYCjztnfo0NHcMwG7TiJzdqMS2Of89V6zh51Fw3cAJZ9XfUHAznk7eJ8ZAbvaPfMGYEdFsjKOwfq1H7HM8dFdvTcxDAG72vubgF2t3gTsavUmYFerNwG7Wr09AdgtV4we6oyMw5Cbe8rsdY+MjFMrik6jpaT8CoWF2SyLfJcuphJ3BOw6icvZjUpg/+vc+zhnpa/Z55/9R98OdeyNPOySYhKwSwoo2NxbgB2XlXp4N+ze+Sur0R4UFCq4Us8wJ2BXuw8E7Gr1JmBXqzcBu1q9CdjV6u1pwK6tvqqqvMnrfoh52jWvu6OEbmqV4xvt5Ml9sGfPLwzae/QYSMDOJ5tuViqBfe68v7nlDDsBu263i+d1RMCudk+8CdhRmZRdv0HGqVTmae9gWURSrWwuj+atwF5XV+Pymt3ZMKiLd2b69fX1d6dsLo/trcDe2NAAHTo2h4a6LIDiht4L7E0xmYr1kh2OgF1WQbH2ngrslqvIy0tnXndMVocJ6rCue0xML7GFutG6qOg07Nr1E0uy9/GPn7txJq4N/dZSU53vm+6807UO3NhKNbDj38yNjY3sb2dV75+ufNaNCjsemjzsklvjjcD+/cqVbNWXXH655OrVN/c2YEeFNv/+LQwZdg4Eh3RRL5jkiN4K7Ks+99xamo62xJse6uB/oJjsqL7+DAwdORFGj7tQ8m5T39wbgR11f/PFh8E/IBACA0MgMMjxy8fHT72wdkb0RmBHvX/++QPAsln+/sFW79r3PNVT6Z3A3gi5uenQubMv+Pj4snfta4+5ke1MxBuAXZv6mTN1DNoxE3txcS5ERMSw5G5duyZ6uszs/5zdu9dDbI8oeOTppyE2wXuOHS666iqm72sffeTxOrecoEpgv/yKB5RBuuXDAAJ2r7st+SfsjcDOvzrPs/RGYPc8Ffln5K3Azr9Cz7L09JB4/I/t2JE9kHpkDxTmZ0NS8nA4c6YWAgKDYeToCzxLTI7ZeCOwa8uqqiyHyooy61dlaavvQYcOzVBvBvxQ8/eCmoDfPyCIQzE5E28Edlwx3vfV1eWAocX40r7W3tnvgAXQt4R7dz008U5gR70boK6uFhAqUVvT17VWEG+CeR+rJGRyd6d8a28CdsvVosf92LFdUFKSB3ivxsX1gWHDzjdl+vLgKyHZDz565x14+JlnYOLkyR480+apEbDzbRMCuzuulZ/82x3Dco1JHnYumewbEbBLCijYnIBdUDBJcwJ2SQEFm3sqsOflZEDqkd0M1GNiEyEpeRj07jOErW7ntp/ZOwG74GYrMq+trYHKitYgz2C/shn4a2uqIDCoGeSZ596OB9/VjNPeCuzOtgo9fo6AHts7AvpOnTo7G8Kln3srsNtaLD40QWhHiNcAHj+jdpZeeIR4V+9Pl0S2aOStwG657r17N0Bm5lGoqamE0NAoSEoaBj16DJKVxpD2mHTuj19/hScffBD+eu21cP1ttxkyjp6dErDzqXnFVRqw40MjPJKkXcZ+/uQjAna+HfJCKwJ2tZtGwK5WbwJ2tXp7ErDX1FSZvOmH90BtbTX0SR7GQD0kNNxKFAJ2tfeIUaPh8YZWHnuzB7/UCu59/QJshuIHBVoDv4+vdTh+WwV2Z3uCOTUcAT0CJwK9rbB7DMN39ahMWwJ2exq3hHiE+Y4dO7YIqfdhYG/01RaAXdMoPz8TDh/eCoWFmewBCIbKDxp0Liuv5imXliU+JzsbnnzoIQgOCYGHn34agoI9NxcMATvf3XPF1Q/yGeps9cmKZ3TuUb/uyMMuqSUBu6SAgs0J2AUFkzQnYJcUULC5JwB7xqmj5rB3hPQ+/YZDfPc+dldCwC64yW3AvKqyAipthN9bAX9lGcY2N4G9CeRrq+rA1zcA/PwCrN69NWmhXluJ3kxbofYa5Gtn520BvaPz8+0B2G3tQX09euFN4fRaSD3aWZ+JR4j30WsLWT9tCdgthTlyZBucPLmf/c4jsCcmDobk5LN01c6VzlqWdVv6zDOw8aef4JFnnoFho0a50qXhbQjY+SS+8pqH3HKGnYCdb3+80oqAXe22EbCr1ZuAXa3e7gL2stIiFu5+7MhuQO8pA/XkYexrZxcBuzOF2u/P61g4fnPo/cmjGGpbBbW1VeZ3/Bo90K1BPtAG2Acw72n7uhrtnp1HoEePsj2gT0tLaYd62b476uvrrQAeQb6hoaEVxGO0g6tXWwV2TY+KihI4cOAPyMk5yfIMRETEQv/+YyEyMt5VyaTa2arD/t1XX7EQ+XsefRTmXH21VP9GNCZg51P1qmv/zgy1hHBaK6M/f/TBU3wTdIMVedglRSdglxRQsDkBu6BgkuYE7JICCjZXDezHU/cyUM/JPgl9koczSI/uJpZxl4BdcJPbsbm9kHj8498WyLf8Hn7GM8qah94R5KNde7jwKIN1Mrwyc/h9RUUxBjmwcHB7L1fD7duCtgjslknt8GvMR9B8Jt7H/DWPTm0d2C33/NSpA3Ds2G4oLc0HjPKIj0+GIUMmKr0tbAE7TuDowYPwxEMPwYAhQ+DBf/1L6ZycDUbA7kwh08+vnv+wWzzsBOx8++OVVgTsareNgF2t3gTsavVWAewFednmBHKRUbEmb3q/4S4vlIDdZenaXUM9zrDX1VW3gnsN7C099+iJsRV+bwv22+pGYEg8QmlDwxkGorZeHTp0dAD0nTw+U7jee6clt9MS27XOUG+CeAyvR+0sr/YE7Nq6Ua+UlF8hK+soi5QJC4uGPn1GMoA3+rIH7DguzgvPtacdO8ZC5HsmJRk9Ha7+Cdi5ZGLAzooUYL45he8r3nuSb4JusCIPu6ToBOySAgo2J2AXFEzSnIBdUkDB5kYB+5m6WuZJx1dleSkk9TOFvId1iRKcYWtzAnZpCdtNB3oAO69YCKfWIF9pFYqv/axlOL4jyHdX9nHeNbe04znDjh56ezCP32/pme/YEb31nczfd3Vu3tbOMjO99jVqoZWXw/exY2cyb3N7vXJzTwKedy8sPM3uj5iYXjBkyATw9TVGE0fAru3BJ8uXw+svvMCS0V04fbrbt4aAnW8Lrl34KHvool0Y4aLi84fLn+CboBusCNglRSdglxRQsDkBu6BgkuYE7JICCjbXG9izM4+bQP3wHujZewCrm96jZz/BWTk2J2DXVc423ZlKYOcVEv8ItPTMW4fhW0M+Jinj8drLnIPmnTePHQ+wO+vHEczjUQYTwFu+mmHe2x5wONOi5c9b1onHn+M9gl7m5leUR2VWF12jq/YHD26G9PRDUFVVBkFBXaBXryGQlDTC1e5stuMBdmy4ffNm5m2/aMYMWHTvvbrOQbQzAnY+xRDY3XF9sMyzjlBYakDALnlHELBLCijYnIBdUDBJcwJ2SQEFm+sB7BUVpXDsMHrTd7NyPKwcW79hrGSUERcBuxGqts0+PRHYRZRGb7yt8PuWkK+F4zuCey00X2R8UVs9gN3RmLhOS6BvGXrf+vx8M8wj5LcMKRddn6fZY0g8JmYrKcmzeOVDY2N9C4iPhuBg6/KYnrYWveZTVlYABw5sgry8dOYhjYpKgAEDxkGXLt2kh+AFdhyouKiIQXtDfT08/MwzEBEZKT2+Kx0QsPOpNv/6f5gNjU40Z9n/++8+zjdBN1gRsEuKTsAuKaBgcwJ2QcEkzQnYJQUUbC4D7GnHD7BybFiWDc+kY830mNhEwRmImxOwi2vWXlt4O7Dz7htCrH2vvXWWfBO4286Ib1n+zhVvtdHA7kwP9MA78tBbn5+3hnn03PMkenM2B5U/t3eGvbq6ogXE57EHPyYvfJQVzKucr+qxTpzYA8eP74Xy8kLw9w+C7t37w8CB57g8DRFg1wZ547//hW+//BIeefppGHOO62O7OmkCdj7lrruhGdj5Wuhj9d47BOz6KOmBvRCwq90UAna1ehOwq9VbFNiLCnOZJx1BPTQs0uRNTx7OzpiqugjYVSnt/eO0F2Dn3SktHN8R3Gvee/ydRo99s9e+NeQj4FuG47sb2J3pwHd+vpONsHtTCL6nXSJJ52prq5sgPt8M8+XlRa088Qj0nrhWGe0xG39KygY4ffo4y9KP3vbk5FEQEyOWGM4VYMd5//T998zbfuMdd8BVN9wgsxThtgTsfJItuHGJ6cx6hw6YQZA9vFPxmYCdb3+80oqAXe22EbCr1ZuAXa3ePMCOf+TimXQ8m15SnG+umR4eKR9i6MpqCdhdUa19tiFgd33fMRzfFti3/B7++6B55tGzi6CP3nnLl/Y912ejpqU977wp9L7BKvld6+R46h5aamqIALstBXG91uH0GFqfDyEh4a1A3sfHT80mGDxKdnYqHD26E4qLc9jDptjYJBgyZBJ07uz8gYyrwI5LOnXiBCv9Ft+9O8sir+ohNwE73w113U1LTIaM2TtAI0sXb/zn9956jG+CbrCikHhJ0QnYJQUUbE7ALiiYpDkBu6SAgs0dATvWSkdIR296XEISC3vv2Xug4Aj6mxOw669pW+2RgN34ndXC8RHkjx7dAQjwlq/6+ubPGsS3hPqWnz0xNF07P2+vZB3+3HH9eeuSbHrsjCyw255DI4P2liDv5xfUKqQew8y9+dq//3fIyDgM+KApJCQCevceCj17DrW7JBlg1zp9dskS2LtrFwuR7zdokOHyEbDzSbzwlsfcUod9+Zv/5JugG6wI2CVFJ2CXFFCwOQG7oGCS5gTskgIKNm8J7NVVFU3l2HYD/qHNaqYnD4Og4DDBno0zJ2A3Ttu21jMBu9oddRYSbwpJtwZ6W9/DQsjOoN4E//pDsKuKOT4/X88ibW2XrDOF27vykMIYYLetQFlZYauQetyj1hnqPef/Ct69LCo6DYcObYH8/Ay2D9HRPWDgwPEM4i0vPYAd+/vy448BwR1Lv106Zw7vNF2yI2Dnkw2B3R3XsjeaPPvuGNzJmATskptCwC4poGBzAnZBwSTNCdglBRRsrgF7+snDLOw97fh+diYdIT0uobdgb2rMCdjV6NwWRiFgV7uLzoCddzYNDQ0OPfWaBx+92rZC7z0xHN/2+fnmmvSdOnW0e3be3plylcBua+8qK0tbeeIx4sIa4qNbgS/vfeAOu9TUnZCWtpdl3w8ICIEePQZA//7j2FT0AnbsC73seK593MSJcPff/27YUgnY+aS9/lb3JH9793X3JLvjUYWAnUclBzYE7JICCjYnYBcUTNKcgF1SQIHm6DHJPp3KPOqBgSGsFFuf5OHg4+Mr0It6UwJ29Zp764gE7Gp3Ti9g5501Aru98Hvt+5pH3144Pn7f0pvviqebd76O7KzL1TWDvPZ9W+H2Q4eez2que1JoenV1JYP40tLmUnNVVRU2M9S7S2ue/cIw+X37NkJOThqrPBAREQtLXngKxp17Lk9zLpuqqip48sEHWQk49LbHxsdztRMxImDnU+uGRe6ph/7Oa+6p/86jCgE7j0oObL7esUOyB2ouosDGbzaLmJOtpAJ56XmSPVBzZwocT90Lx4+lQGF+NnTr1gtiY/tAaKh7asQ6m6utnx87tot9OylphCvN3doGz/nSpU4BzHBOlzoFMjIOqRtMcCTMDn7mTB3LEt76vfl7GI6PDy0xIVnnzj523n2VZlLHBxN1ddVQW1sDmAxQ+xqPBFRWlkF9fR3zBuODV3xv+bW7E8bV1dVCWVk+lJYWNL3yATPU4/87ISFR7N308swM9ZmZR5nXHWu8h3bpAhMvvBDufFQ/0Pr47bdh1QcfwL2PPQbjJk0SvLMdm997/fXM4Pl339W1XxWdTRk8WMUwbIwbFz/hljPsLYH9+MksuOX+5yErpwCGDkiCV5+5G8LDQmzqsOq7jfDos++wn91w1XS45+a5uupFwC4pJwG7pICCzQnYBQWTNCdglxTQTvP8vEwwgfpeiO6aAL37DIFevQfD6fQMYwY0sFcCdgPFbWNdE7Cr3VBPBnZeJdCb6gjotZ+hB98E9bbA3vp7RnmSExNNQINzqqoqYy8E+JZf4/j2YB7h3h1l3FA/E8CbQB5hGL8ODAwzw7sG8j4+/rzbZ6jdPc/eAa889RT8+sMPUFJUBL2Sk2HOtdfCRbNmSY+75bff4PklS+AvV14JV918s3R/WgcE7HxS3njbEymzq9MAACAASURBVNABTNnhVb6/9crD5glWV9fCc699AlfPngK9E+Ng255DsHHLXpsgjrD+58798Ph914O/vzFRkQTsfPeOXSsCdkkBBZsTsAsKJmlOwC4poEVzrLuredNrqqugd5+hDNSxZI92EbDrpzdPT+Rh51FJPxsCdv205OmpLQA7zzrRBpPM2QN79Cg3/6zWoafe0ouP4fkilwbsztrg/wUtIb4Z7EsBf080z3xAQHAT3IeaPfXO+tfz55bwrnnkfX39m7zxJi88grw7jgEgsGvX7q1b4cPXX4f9u3aBj68vjD73XLj5vvugW2ysy3Lknj4NLyxZAsEhIXDv449DQGCgy30RsItJd/MdTzV52FkZdnMd9qay7IZ9fuvlZmBH7/qKVevhb4uuYBBeVFIGf3/6LfYZAV678PtPv7QCHrrjarved7HV27YmYJdUkYBdUkDB5gTsgoJJmhOwSwoIAFmZxxionzi2F3r2HswgPT6hj82OCdjl9RbpgYBdRC15WwJ2eQ1FemhPwC6iC4/HHkP1MRzflsfeFKLfHJ7fqZMPG54X2J3NFc9rt/bOlzZBfoVd7zx67f385KHS2fwqKoqtwukR5DFqQIN3LZwez/MbeVkCu+U4H77xBqz98kvIycyE2IQEmDZnDlxx440uT+XN558H9Ljf89hjMGj4cJf7wYbkYeeT7+Y7nuQz1NnqzZeagb2lR72lx10bGsF+/cYdUF5ZDe989C379vIXH4TRw/rrOjsCdkk5CdglBRRsTsAuKJikOQG7awKWlxebID01BTr7+DFIR4+6n5/jM7wE7K7p7WorAnZXlXOtHQG7a7q52oqA3VXlTO0wTBzB3dpD3/LcfS2zQ7APCgpjwIz/zpveW74CoEMHudJ3eH7ePsyXsUgCW+fmtXP0Rp2fr6oqZyH0plB6Uzg9zkWD95AQ07n4lqXZZHbIHrBrfWaeOgVvv/ACbN+0Cc6cOQNDRo2C+YsXw+AR4vlW1q1ezbzttz30EFw6b57L0yZg55PuljufYob4IAjvee0y+vMbS5srBCCwp2fmwexpE8zjv/DmZzBh7BArGEe7BXc9Y4Z0BHgMpX/qoZt09bgTsPPdO3atCNglBRRsTsAuKJikOQG7mIBpJw7A8dQUyDl9EnonmULe8Yw670XAzquUPnYE7ProyNsLATuvUvrYEbDro6OzXhAoEOyjorpDTU2lxauqxedKwPPftoHeGvLRg+/KhWf+TUBv8si3PEOPwGML6LUz9Xqen8d/Xy3PxePX1dXloMG7pUfelQcZzoDdUr/vvvgCvlqxAtJSU6FLRAScP20aLLr/fiGJjx06xM619x8yBO585BGhtpoxATufbLfc9TSfoc5Wb7z4kLlHXg+7rbPttsBedqoE7JIKErBLCijYnIBdUDBJcwJ25wIWFpxmyeNOpO6FLhFdoXeSyZvuSmIjAnbneutpQcCup5rO+yJgd66RnhYE7Hqq6bwvnpB4/DfHBPXWMI/l1yy/j2d1rT30trz2Aey8u8iFGe1tJcLT4B498I4y3Lvy/5rl/NDr3jKxHYK8JbxrmeqdPbQQAXZtDuhpf+nJJ2HjunVQUVYGfQYMgLkLFsCkqVO5ZGxoaGCe9oyTJ1kW+e69enG1I2AXkgluvfsZc5Z4rSU+GLO8/4z4bAnsvGfYW9rhfN/8cA1MmTDK6qy7mAKtrQnYJRUkYJcUULA5AbugYJLmBOy2BcQ/Okzn0lOgvLzElEAuaQiEdYmSUpyAXUo+4cYE7MKSSTUQhQupwagxELCrvQl4gJ13Rvh/jLW33hrotZ9huL6jEHxL6Meyc84u7fy8vQz3jmDe1cRzmDCwpSfelKE+pFWZOUx4p12uALvl+vFcOpZwO5SSAv4BAayE2+IHHmCl4pxdWPbtvVdeYefaz7v4Ymfm5p+Th51PqkX/929mqGWJN0N7U9Z4oz6/9t8HzBPEM+v/+M+7MHfGJBYCj570z9b8yjLBZ+Xkm8PeA/z8rOwoJJ5vj5VbEbCrlZyAXa3eBOzWep/OTmOedPSoJ/RIZiHv3Xv0021TCNh1k5KrIwJ2Lpl0MyJg101Kro4I2Llk0s1IT2DnnRTCrgbv1dWtQ/AtvfaYLI/Ha4/n8W1d2vl5ezCPNekty9W1hHtL2OZZX1lZoRnktbPxODetvNy1d1wHSf37Q1eJTPDaPN5duhTWr14NeTk5kNCzJ8yYNw9mX3utw2nu2rKFedsnT58OC+5ozljvqBEBO8/OAyy+91m31GF/7YVmYMeZ2qvD3hLKMVP84gf/BykHj0Fct0h449l7dfWu41zIw85379i1ImCXFFCwOQG7oGCS5gTswMIHNW86Zg3WyrFhuR29LwJ2vRV13B8Bu1q9CdjV6k3ArlZvdwC7yAqxnByP1x5zfNnz2vv7N4fmt/x91s7P2wN6BH579efx+1q2fUdrqqgoMSe2i4wLhtRDhxjY9enfn8G79p6QmCgijdn2+OHDgPCOMI7X8DFjYOEdd7DQeVsX1n/Hc+1Yewy97Xg+noDdJemtGiGwG51gzlb/r/znb/KTN6gHAnZJYQnYJQUUbE7ALiiYpHl7BvZTJw8xb3pG+lEzpHeLce2PAN5tIGDnVUofOwJ2fXTk7YWAnVcpfewI2PXRkbcXTwd23nVYh+Pb99rjeXhbmfBtfQ9r2qMH3h7M4/fxzLqjDPctE9NpIfHoFceEcAjv7P3gQSgrLTXDuwbyvZOTeSVgdl+uWAFrVq6E9BMnIKprV5gyYwbccPfdNvtY/vLLsH7NGnaufcS4cXbHIQ873xbc/rf/uMXDTsDOtz9eaUXArnbbCNjV6t3egL24OM8U8p6aAsEh4eZybHpmznW0gwTsau9vAna1ehOwq9WbgF2t3m0F2HlVM4Xj2wL61t/r1AnD8QPA3992uTtT/fgOgFEACO+2wD4gIMgqId5lC2ZDTHw8e0XHxFhNu6S4mMG7GeQPHoSsjAwrL7zmjffxcZyRv7y0FF79979h0y+/QFVlJfQfPJjVdT970iSrMX/78UfmbZ+/aBHMmT/fpowE7Hx3FwK7O66Xn7vPHcNyjUkedi6Z7BsRsEsKKNicgF1QMEnz9gDsmPUVk8dh2DsCu1aOLTyim6R64s0J2MU1k2lBwC6jnnhbAnZxzWRaELDLqCfetr0Bu4hC1uH49r32+BDA3jl7BHr8eX19HfPWJ/aPg9OZmexVWlTEwL1bE8BrIM++FxfHQtWrq6qsvPAazPdKTm4VUh8UbPvIG0L5p8uWwdEDByAoJATOnTwZbn/oIfD1NyXDS09LY+fa43r0YN72lon+CNj57po77teAvQNLPdd8Gfv5pWcJ2Pl2yAussLYeXvfcPJe9E7Cr3TQCdrV6t2Vgz81JhxPHTN70mLheLMt7Yq+BagVuMRoBu1r5CdjV6k3ArlZvAna1ehOwy+uNMO7Ma48l8DAcPyI6GiKioth7l/Bw8PHzg44dOgCWbkM4Ly8pgcKCAsjNyoIz9fUmb3xcnNkrj3CPCesqKyogMy2tGeYPHWIee8sz8eiND4+MtFrgG889Bz9/9x0UFRRAYlISzLrqKrh0rokNXnriCTi4dy87145ttYuAne8eueOB5/H5jInVFb6/9My9fBN0gxV52AVEx5T+a3/eCt2iw+Hma2YQsAtop5cpAbteSvL109aAHf+jN2V5TwE8p6eVYwsKDuMTxGArAnaDBW7RPQG7Wr0J2NXqTcCuVm8CdnV6Y6K56+67HArz802vvDy7X/sHBjIPO3rNff38WDKzeoT66mrAcPei/HxAm9iEBDPMd/b1hbqaGsCkcujBx2R0aNMS4tF7f2DPHlbibe/27dCxUyc4a/x4dtZ9z7Zt8PLTTzNP+4UzZzJxCNj57pE7H3rBLWfYCdj59sejrTBl/9MvrWD1+HbtPUrA7qbdImBXK3xbAfbM9KOsFFva8f3mBHKxcb3ViskxGgE7h0g6mhCw6ygmR1cE7Bwi6WhCwK6jmBxdEbBziKSjCW8d9tLi4maYtwP3BXl5UFdba4Z6DGWvr683eepLS1lt9nCE/pAQBuWV5eWQn5vLoLLvwIHmkPoj+/fDpp9/hqz0dBaKP3LcONi/ezeMmTABbrnvPgJ2zv1HYNeyuKt8f/Gp/+OcoXoz8rBzav7mh2tgyoRRzHr9xh0E7Jy66W1GwK63oo7782ZgLystZOfS0Zvu7x9k9qb7+PqpFVFgNAJ2AbF0MCVg10FEgS4I2AXE0sGUgF0HEQW6IGAXEEsHU15g5x2qprraylOPEK958LMzMiA/JwdKCguhorwc/Pz92fl0DL8/U1fHPPedOnVikI/e+6joaKhvaIDioiJoqK+HkLAwFmbfuXNnFrr//Lvv8k7LY+ymDB6sbC53P/w/t3jYCdiVbbExA2EofHpmHsyeNgGOn8wiYDdGZq5evRHYUw/thT79h3Ctz9OMvBHY8/MyYc/ODYDvWs30yKg4T5PW5nwI2NVuk7cCe1raXrVC6TQaT51lnYbStZvCwmxd+1PVGdbc9sYLE4p544Vlybzxqqur9cZpg1+A+x6+NzY0MKDEFyauxc8N+Nni+/ZExfD8zzZs8DrNVQO7OwT635O2y/a5Yy4txyQPu5NdwFD4ZSvXwuL5s8Df37dNAPsnb77JVn3FzTd7wj0oNAdvA3b8x3vZK0/AeRddBkn9vA/avRHY8YbCZHK9krxPb28EdqFfYA8zJmBXuyEE7Gr1JmBXqzcBu1q93QnsVitFaG+CdQ3e0buuwXtLVTC8/ouNG9WKpcNoKoH9nkeXQqNFdvgOWCFAwef//usuHZQypgsCdie6rvpuIzz67DutrIYOSIJXn7kbfks9YszOGNgrAbuB4rbo+tcfVkFdbQ1cOONKdYPqOJK3AruOEijtioBdqdzgrcCuViX9RqOQeP205OmJQuJ5VNLPhkLi9dOSpye9Q+IdjZmTlWUuIaeVksN3PKuOYfJ4th3PWuOZdzwL36lzZxYar134c8xSTyHxPDsLcM8/lvIZ6mz1wuN36tyjft0RsAtq2RZC4gnYBTfdRfNTJ47A96vehwW3PQx+/gEu9uLeZgTsavUnYFerNwG7Wr0J2NXqTcCuVm8CdrV66wnsmCneEsRbfh3VrRtEREaCX0AAC4HHpHN5OTns/DqeT6+tqWFn26O6doXysjLARHeYdG7E2LEsizwlnRO7N+5d8pJbzrATsIvtk0dbE7C7d3u8KST+wzeehVFnXwADhp7lXtEkRidglxDPhaYE7C6IJtGEgF1CPBeaErC7IJpEEwJ2CfFcaErA7oJoEk1EgB0hGiE8JzPTJpj7BwSYS7oxT7iNsm4I69HdurEs8VjuLTs9HYaNHg0xCQmQevAgK/1GZd0kNtSiKQJ7B6y/3nQ1NoKSz//55x36LMCAXsjDLinq1zt2SPagvjl52I3XfNMv30FRQS5M/+sC4wczcAQCdgPFtdE1AbtavQnY1epNwK5WbwJ2tXoTsKvV2xLY0cNtz0OOkH6mvt4E5HFxZjDvFh8PXWNjobKiAjLT0iD10CE4dugQe8eM7lhzPTgkBDB7/OmMDOYpHzRiBAw76ywYOno0bPntN/jlO/xbrwASk5Jg1lVXwaVz5zIRXnriCTi4dy/c89hjrOSbdlEddr575G+Pvcw87IzSGxvNJd6M/kzAzrc/XmlFwK5227zBw3468yR89v7LLBQ+JLSLWoF0Ho2AXWdBnXRHwK5WbwJ2tXoTsKvVm4Bdrd4E7MbqXVVVBpWVZYDv+ErsH2eG9NKiIgbiCOEMzC1eGJqOmdnxfLkZyg8eNMN5r+Rkcx11H19fKC4ogEN798KebdugV9++MPSss5gnHd+3btwIny5bBkcPHGDn1s+dPBluf+gh8PX3Z4tPT0uDF5YsgbgePeDexx5jpd8sLwJ2vnvkvsdeNhtqddi1bxj5+T9LbueboBusyMMuKToBu6SAgs29AdhXLn8R+g8eBcPOOldwdZ5nTsCudk8I2NXqTcCuVm8CdrV6E7Cr1ZuAXU5vrGpgCeQtvw4ICIKAgBAIDAxh75ctmG0Gc/SIW14lxcUMyDWP+bGDByErI4N5zdHjrb0jUO/ftQv2bN8OKdu2Mc86g/PRo5knHc+nl5eWwqv//jds+uUXqKqshP6DB8MVN94IZ0+aZDXmbz/+CM8vWQLzFy2COfPn2xSDgJ3vHrn/X6+65Qz7c/+4jW+CbrAiYJcUnYBdUkDB5p4O7Ns3/QTpaalw2VW3CK7MM80J2NXuCwG7Wr0J2NXqTcCuVm8CdrV6E7A71ruuroZ5xu1BOZbFQxC3hHLLzx06WHurtZB4TP5mBnMMaT94EMpKS81grsF57+RkSD9xwgznCOmBQUEM0LUw98joaPMivlyxAtasXMnaYDK5KTNmwA13267Tvfzll2H9mjXMqz5i3Di7QhCw8/1O3v/Eq3yGOls9+8hinXvUrzsCdkktCdglBRRs7snAXpifA8tefgIW3vYwRERbP+0VXKbHmBOwq90KAna1ehOwq9WbgF2t3gTsavVu78BeX3/GHK5uC8rxTLLmHW8J5fj9Tp18nG5YRUUJlJUVQGlpAUTGBbMQd+zX0muOgJ6QmMj6wnJsGNqOr5Tt25mtBucsYVx8vNWYx48cgXdffBF2bdnCvj98zBhYeMcd0GfAAJtzw+Rz6FXHc9Z4Xh1D7x1dBOxOt5gZPPDka2YPu9YC9w7D4Y38TMDOtz9eaUXArnbbPBnYv/zoDUjo2QdGj5+sVhQDRyNgN1BcG10TsKvVm4Bdrd4E7Gr1JmBXq3dbB3YEJu38uC0gRw+6JZC3hHJfX9M5b96rrKyQgXlpab4Z0jt39oXQ0Ej2uvaO61hoOyaO067C/HwznCOkY3Z4BHQtzL1Hr142h3936VJYv3o1K9WW0LMnzJg3D2Zfe63DqSLU43n1ydOnw4I7+LKLE7Dz7f6DT73OZ6iz1TN/v1XnHvXrjjzskloSsEsKKNjcU4F9z/bf4dC+HXD5grsEV+TZ5gTsaveHgF2t3gTsavUmYFerNwG7Wr3bArBXV1c4hHJbnnEtbN3fP8glwRsbG8xgbgJ0E6Qj/IeERJkBPTQ0CiyhH0Pi8Xw586A3nUFHjzo7f94U5o5Ab+/CLO8fv/02HEpJASzrNm7SJFj8wAMQ2sV5suBVH3wA773yCvOqn3fxxdzrJmDnk+qhp99wyxl2Ana+/fFKKwJ2tdvmicBeVloMy19+AuZedwfExJvCsNrKRcCudicJ2NXqTcCuVm8CdrV6E7Cr1dsbgL2urtphYjcfH79WZ8gtveaWIcmuqHvmTB2DcYRyU2i76WuEcc1zrkE6nmlveWHYfWFhNhQWZoFvUANgCLvlGfQBQ4c6nNaZM2fgpSefhI3r1kFFWRkLdZ+7YAFMmjqVazkNDQ3Mq55x8iQ7r97djsfeXmcE7FwyAwK7lg1e5ftTD97MN0E3WJGHXVJ0AnZJAQWbeyKwf/v5cgiP7Arjz58muBrPNydgV7tHBOxq9SZgV6s3AbtavQnY1ertCcCunSOvrCy1meAN4cdWYjcNyjt16qybaPjvq+Yt1zzn1dXlEBJiCmm3hPSWCeWaJ9EIBQUmQDeBejZERsZBREQs3Pr321mpNZ7ruy++gK9WrIC01FR2zvz8adNg0f338zQ122BiOzyv3n/IELjzkUeE2mrGBOx8sj3877eaPOwsPYAFvBv7mYCdb3+80oqAXe22eRqwH0zZDjs2/wzX3CL2D79a1VwfjYDdde1caUnA7opqrrchYHddO1daErC7oprrbQjYXdfOlZYqgF07R259htwE5/hCD7ajTOvoQTfiqqoqtzprjp5znIsG5hqkh4Q4TsqGcysqyrECdAT7yMhYiIgwgXrHjp3YErQs8fbWk3nqFLz9wguwfdMmQM/6kFGjYP7ixTB4xAhhCdatXs0867c99BBcOm+ecHsCdjHJHn72TbEGOlk/eT952HWS0vO6IWBXuyeeBOw11VWw7JUnYdrs+dCjV7JaIRSNRsCuSOimYQjY1epNwK5WbwJ2tXoTsKvVWy9g186R24byCoeZ1v38Ag1fdEVFcZPnvDmkHT33lh5z/DowMJRrLgj3BQXNHnRsh2CuedIx0Zytyx6wf/jGG7D2yy8hJzMTYhMSYNqcOaxuuqvXm88/D3jeHc+rDxo+3NVuWDvysPPJ9/BzbzFDzAnfaNHE6M9P/u0mvgm6wYpC4iVFJ2CXFFCwuScB+7o1H4OPrx9Muni24Cq8x5yAXe1eEbCr1ZuAXa3eBOxq9SZgV6s3L7DX1la3SuzWDOelgL8nmpc8ICC4CdBDzWfLVa6q5Vlz/IyJ39BzbvKam86eiyScKy8vYh50U6h7NusPAR096OhJ5/13whLYd2/dCh++/jrs37ULfHx9YfS558LN990H3SwyyIvqlnv6NPOqB4eEwL2PPw4BgfIPQwjY+Xbhkf+8zWeos9UT97n+YEfnqbTqjoBdUmECdkkBBZt7CrAfO7wXNvz4FSy47WHo2LGj4Cq8x5yAXe1eEbCr1ZuAXa3evH+Iq51V2x2NgF3t3mrAjqHgjsqfoTfaXj1yBHU9z5HzKtDQUG913lxLCBcYGNbqvLmPj1h5NjxPryWKQ0jHv5k0QMd3fCjhyoXA/spTT8GvP/wAWA+9V3IyzLn2Wrho1ixXurNqgx51PK/+lyuvhKtu1i9MmoCdb2seff4dt2SJJ2Dn2x+vtCJgV7ttngDseIZs2ctPwMQLZ0Gf/o4zkqpVR//RCNj119RRjwTsavUmYFerNwG7Wr0J2I3RG/8GwGzrtbU1gLXHta8RRNFTXl9vOkduD8qNOkfOu9q6ulooKzNlZ9eSwqHX2+Q1ty6j5srDAwzptwT0hoYzVoAeFBTGO1WbdpmZqZCWlsKyzGMJtokXXgh3PvqoVJ+WjbHUG5ZtwyzwWOpNz4uAnU/Nf7zwLjPE3zXLygRGf378nuv5JugGK/KwS4r+0/79kj2ob/7+q6+yQTH5hrddG37Y4vYpr1u9EmpqquHSude5fS5GTyA/M9/oIah/CwW2//Yr6aFQgfyCTIWj0VCDB08gERQqcOZMrcLR2tZQmM28OUy9+Wv8Xk1Nhc3EbtHd4iAoqAv4B7hWj9wIBaurKlgSt+Ki3Kb3HMAEcV3Cu0F4eFerd1dLttXUVEFuzinIyz0FubnpUF1VDtFde0DXbt2ha9ceENYlWnppOOfdO3+G7KxjgJnwI6Pi4c7H/g4jzz5bum+tg+qqKlj62GPMW3/XP/8JXSXC6e1N6sGms/TPvO2ekG8ZsaYNGybTXKjtkv8uc4uHnYBdaJu8y5iAXe1+uRvY01IPwZcr3oRF9z8B/gHy55nUqic+GgG7uGYyLQjYZdQTb0vALq6ZTAsCdhn1xNsSsNvXDKNrTEBebrP8mZ+f6Rx5s5c82OqzrZ5Dw51nQBffRf4WFeUlreAc4bYlnIeGRfF3asMS7ysEdITzvJxTUFpayODcBOk9ICIiRqp/y8aHDm6FY6m7obysCAKDQqFXryEweOi5zGT+/VfqN05KCrz42GMwavx4uPHee3Xrt2VHBOx80i753zI+Q52tHrt7oc496tcdedgltSRglxRQsLm7gf3t/z4OYydeBENGjROcuXeaE7Cr3TcCdrV6E7Cr1ZuAXa3e7RnYce0I49aZ1k2lz/CFpcGsy59ZA7lWOkxkx1QCe2lJQQs4z4VOnTq1gvOg4C4iS7Bp29DQYPKeN0E6ZnRHz3nXrt0ZoEdFJ0iPYdkB9r8v5Xc2Hnr9Y2J7wdBh50FoWKTVOHoB+/effw6vPf003LlkCUyZOVPXtRCwuybnY0vfYx527cL7QMXnf961wLUJK2hFwC4pMgG7pICCzd0J7Bt++BoK8k7D7GtuEZy195oTsKvdOwJ2tXoTsKvVm4Bdrd5tGdgRIh0ldsMkaq0zrYeYveT2SoXJ7JAxwN4IRUW5UFyYY3ovMr1j2H14eDfoEt7V/O5q8jZba87LzYDc3KYw95x0iIqKg+huCOmmUPcOHfRPtrtn1y+QlnaAhdRjFEDf5JHQp6/9mul6ADuC+sE9e1gIfFL//jLbz9WWPOxcMgECuzuuJXd67lFXAnbJO4KAXVJAwebuAvas9DT44LXnYNH9/4LQLu4NexOUTMqcgF1KPuHGBOzCkkk1IGCXkk+4MQG7sGRSDbwd2O2FqyOo47lpe+HqCOoY0q76kgV2DF9n581bwDl6lpvPm5sgHUuh6XkVFmQzQM/NSWfedARm9KBrkN65s4+ew5n7ykg/AocObGFJ6jAZX3z3ZBg5agrwjCcD7JknT7IQeKzTjp51jE5QcRGw86n8+EvoYQcWYWFKNIcJ6Iz/TMDOtz9eaUXArnbb3AXs77/6LAwaPgZGjdc3Y6ha9cRHI2AX10ymBQG7jHribQnYxTWTaUHALqOeeFtPB3aEbkdecj+/IAgMNIWqt8y6rqc3WVxZ2y1EgB1rsZuSweVAUaHJc15WVtgipN0E565kane2puLiPHb+XIP0gMBgs/ccvei+Bj7wwCz1O3esh6yMoyzLfkRkLAwYOA7iE/o6m7bVz10F9t/XrWPJ5a685Ra47NprhcaUNSZg51PwXy+/z2eos9Wjt8/XuUf9uiMPu6SWBOySAgo2dwewb/71Bzh57BBcccNdgrP1fnMCdrV7SMCuVm8CdrV6E7Cr1dvdwI7j2ztDjt/v1MmH1eC2V/4My6R502UP2DFSwJypvdAE6TU1lTYztRu13rLSwqYQ93R2NhyPBFgmilPxAOTokZ2QemQnKyWH4yX2HATDRrjuBHEF2D989VX4ac0auGvJEhg+Tn0uIgJ2vjv8iVc/MJ1Zb3Ktm8+wG/z50dsI2Pl2yAutCNjVbppqYM/PzYbX/v0IC4WP6handrEeMBoBu9pNIGBXSPzJEwAAIABJREFUqzcBu1q9CdjV6m00sOM5cUdA3tjYYMMz3px5nSfsWa1icqMhsJeXF5vPmZtC23OgobGh1XlzrHlu5FVRUWqVKA73Qjt/jtncg3VIRscz/5KSPEjZ/RvknE5j5tHdusPQIRMhPFI+k7wIsJcWF7MQeMx9gLDeJcI9RxsJ2HnuGoB/vfqB2VBVwjkc8NHFaiMu+NQwWZGHXUQtG7YE7JICCjZXDeyfvLMUEnsnw9nnTxWcadswJ2BXu48E7Gr1JmBXqzcBu1q99QB2DFlvDeWmUmhYGs1WuLrmMdf7nLVa9ZyPVl5exLzFplc+lJUVQWcfn1ZwHhQU5rwzSYvq6oqmWugmDzqG3Ec3ZXFHUG+ZYV1yOKfN96ZshLTj+6CyshRCQiIgqe9w6Nd/tNN2Iga8wJ6ybRu8+M9/wnmXXALzb79dZAjdbQnY+SR98vUVbqnD/siia/gm6AYrAnZJ0QnYJQUUbK4S2Hdu3gD7dv0J8xc/IDjLtmNOwK52LwnY1epNwK5WbwJ2tXrzADuGZreGchOQ48vfP8gOlAeDv3+w2gW5aTQMzW2Gcg3QC5g26CkPDY1i73Hdk9j3VFx1tTWm8+eYyT0nnXn2scSaligOM8irvrKzjsOB/ZuhID+LJY2Li0+C4SMng79/oCFT4QH2r1esgA9eeYUllpt48cWGzEOkUwJ2PrUQ2N1xPXzr1e4YlmtMAnYumewbEbBLCijYXBWwl5UUwav/fgSuufU+iO/RS3CWbcecgF3tXhKwq9WbgF2t3gTsavVGYMekXtZAbl2bHMGqufyZFq7eXJPciPJdalUQG62+vs7Ca94M5+glNsF586tlaTiRpHNiswLADPKmWujpDNKLi3KtPOiRUe45socPM3Zs+xEy0g8zr36X8G7Qb8BoSEwcKLpEYXtHwI7zwhD4jBMnWMm27r084+84Ana+bX7qjY/MHnathSlbfAdzB0Z8JmDn2x+vtCJgV7ttqoD9yw/fhPCorjBp6l/ULtDDRiNgV7shBOxq9SZgV6s3Abv+eiPIYdixKWwd301fm95L2R+9rZO6NQM5Jn5rrxcCJnrOy8qaw9pRO0soDwkxedB5EuDpDewY2q550PEdQ9vxDLjpLHoPt27b8WMpcPTwdsBs8xhV0D1xAIwcNVnpnOwB+4kjR1gIfN9Bg+C2hx9WOidngxGwO1PI9POn3/y42RAZvdGinYGfH7r5Sr4JusGKPOySohOwSwoo2FwFsO/b+Sds3vAj3PR//xCcXdszJ2BXu6cE7Gr1JmBXqzcBuyt6N1oBuCWMm86RV0NgYCiDctN7aFOit1BWq7utnyPnVRTPeOM58+Yz5wUs+qAZzk1h7ehJd/WSBXYMJTeVWTsFebnprKSbBud4Ht2I8m4ia60oL4E9u36B7OzjLHlbVHQCDB5yDvP0u+OyBew/f/MN86zf/Le/wfR589wxLYdjErDzbckzb3/iljPsD91EwM63Q15oRcCudtOMBvaa6iqWFX7WVTdCr74D1C7OA0cjYFe7KQTsavUmYFerNwG7bb0RJi094yZPebOXXIPxgABrMMfvOzpHznOGXe0doGa0iooSC6+5yXuOLjrtrLnJax4JeieDEwV2zCBvqoVuShSHmdvNHvSuPcDH10+NYE5GObB/Exw/thcqyoshODgMeiUNg4GDznb73FoC+7v//S9s2bCBhcAPHD7c7fOzNQECdr5tQWBvquCm9P2BG67gm6AbrMjDLik6AbukgILNjQb2bz97H3x8feGiWZ77SysomZQ5AbuUfMKNCdiFJZNqQMAuJZ9w4/YK7OgFN50j10LWrYHcx8fP7B1vhvNmj7nluU0R0dsDsJeVFVp5zcvK8qFzZ79W581VJMhzBuylJQVWHnSMfsDQdi2bu6qEdTz3ED5E2L/3D8jPy2DHAWLjesPQ4ZOUlYPjmaMG7Pk5OcyrHhQczJLLBQapSfzHM8eWNgTsfKo9++5Kt3jYCdj59scrrQjY1W6bkcB+ZP9uWLf6U1j0wL+gY8dOahfmoaMRsKvdGAJ2tXoTsKvVu60COyYqs/SItzxPjiprYesmL7m1p9yoUOe2BOwYgm06a24d1o4POEyh7M3Z2t11DKAlsGPmdstEcZjAD7O4myC9BwQFhar9BeQYbdeO9XDq5EGorq6CLl2ioW//s6B37yEcLdWbILBv27gRlj72GEy//HK44qab1E9CcEQCdj7BENjdcd1//eXuGJZrTPKwc8lk34iAXVJAweZGATsm5sFQ+MmX/hX6DR4hOKu2a07ArnZvCdjV6k3ArlZvbwV2/P9B845be8pNXnMEY1Nit9YwjhnY3QWQ3grsOG/Ls+ZaUjjLEmoapGOWe0+5fPx9m86fm7K54zrMHvSuPSAk1PXz8Uau8VTaQTh0aCsUF+WwezWhez84a8xFANCckdvI8V3tOyCqCr784AO4a8kSGDtpkqvdKG1HwM4n97PLPmWGBuaXs9n//Qs9L++BphgBO9+9Y9fKG4H9oVtuYet5+o03JFevvrlRwL5u9Uqoqa6GS+ddp/uivl/1IZw9aSp0iYjSvW+jO/RGYC8rLYLd2zfAhAu8L8O/NwJ7Tk4auw27detp9O2oe//eCOwFBZkQFhYNLUtK6S6OAR16I7AjrH/zzas2QtabveSeFMpsuW3eCOyNjQ2wbt17TR5z6zJqnlZirq6uGgoKsqGw0PSqqamCrk1Z3KO79WAeak+98N5IO7Ef0k7sg8LC0xAVGcfOpcfE9fbUKZvnVX+mDrZuWQsRMSEsBL5bnHtK2rkiFAE7n2rPvfcZn6HOVn+7bq7OPerXHQG7pJbeCOz3LlzIVv38smWSq1ff3AhgT0s9BFjGbdEDT4B/QKCui/p9/bdw7NBemH/bA1b1I3UdxMDOvBHY8Q/srz99HXr07Acjx15goDr6d+2NwJ6ZdZQJER/XV39BDO7R24C9uDiXnYWOjU0yWBljuvdGYDcpgTWFPNvbaGvHvBHYjbnz9OkVjz4gmGuQXl5eBBERsRAREQeRkbHQvWc/fQYysJecnJNw8sR+OJm2n3nSE3sOhLj4PgaOqG/XmEl/25bvoVtsL/jvJ2/p27mC3j56/XU2ylW33qpgNH2HmDZsmL4dOujtP+9/7pYz7ATsyrZY/UAE7Go1NwLY3/7vv2DsxCkwZJS+WU/3bPsDNq5bA/MXPwChXcLVCqXTaN4I7Lj08rISBu1njZsC/QaN0kkN47shYDdeY8sRvAnYEQ4wqzTCuieFAYvsmPcCu8gqPceWgF1uL9DbbwnoxcU5VoAeHh5jNYCzpHNys3G9NeZUQEBHUMf8PIm9BkFiz0Hg76+vg8L1GfK1PJa6B3Zs+wFGj70EevUeAvbqsPP15h4rAnY+3Z//4AtmiA4Yy6SbRn++99o5fBN0gxV52CVFJ2CXFFCwud7AvuGHr6Eg9zTMvtZ0TECv6/iRA7DynaUw/7b7Ib6H54eY2Vu3twI7rifndDp8vfJ1mPaXBZCQ6B3eXwJ2vX4D+frxFmCvqiqHnJwTDNb9/Lzrj2zLnSBg57sv9bIiYBdXsqjotBWkY1g7etDRk45edEdh+Z4G7BnpRxiknz59ggE6gnp0dIK4KB7QYuf2dZCflwmjx06F8AjTgxICdrUbo9LD/sKHq9ziYSdgV3tPKR2NgF2p3KAnsGenp8H7rz7LQuFDu+iXDCYvJwvee+XfcOnc66D/kJFqBdJ5NG8GdpTiROo++HXdF/CXebdCeGQ3ndXRvzsCdv01ddSjNwA7npPNyjoGUVEJuteNVqs2AAG7WsUJ2J3rXVKSZz6DjqHuWGdcA3SEdJFoFk8A9pLiPEhr8qZjkrueTaDurZVvysqKWAh8UFAY86xjiTntImB3fn/raaEa2PWcO29f91wzm9dUuR152CUlJ2CXFFCwuZ7A/v6rz8Gg4WfBqPHnC87Cvnl1VSWD9ZHjzoPR53rX+Wlbq/J2YMc17du9CQ6kbIW/XH4r+Pr567bXRnREwG6Eqvb79HRgb2ioh+zsY+YEXGrV0X80Anb9NXXUIwF7a3WwbruWJA7fMWLFdA7d9JLJ6O8uYMd/JzCBHIa9I+AySO85EMI8OOkdz29CRvph2Lrlexg0aDz0GzCmVRMCdh4V9bNRCez/++gr5mHX0sRjWLyKz/939WX6CaZzTwTskoISsEsKKNhcL2D/89cfAJPNXXHjXYIzcGz+0Vv/g5j47nDBNM89ByOy4LYA7LjeLb+vhfzcLJg++3qR5Su3JWBXK7mnAzuGsvr5BUDLs7JqVdJvNAJ2/bTk6YmAHaCiosQK0Dt27MxC2zVA1zPDv2pgz8vLMCeQi4ntxcLeE7on89waHm+zL+V3OHFiL/Oqx8TYrkBCwK52G5UC+8dfql1c02h3X0nA7hbhVQxKwK5C5eYx9AB2PLP+2rOPwC1/exyiu+lXDuSbT5dDfX09zLryBrWiGDhaWwF2lOjntZ+ycLpJF/3VQMXkuiZgl9NPtLUnA3t+fgbzKERHdxddlsfaE7Cr3Zr2COyY78HSg97Q0GAF6IGBoYZtggpgr66uNCeQQ8+6lkAuMDDEsHWp7Li2pop51THhH8K6owcqBOwqdwZAJbC/+MlX5sUZnWjOsv+7rvDccsDkYZe83wnYJQUUbK4HsK98dyl075UM48+fKji6ffMNa7+C9LRjcM2t9+rWpyd01JaAHfVc8/lbEBOXCKPHX+QJ8raaAwG72m3xVGDHbPA1NRUQE+O9CStt7SQBu9r7uz0Ae21tlVUt9NraanOCOPSiBwerq9BiJLBnZaays+mZ6UdZuDuCerduiWpvKINHy805xc6rd08cAEOHTXQ6GgG7U4l0NVAK7Cu/1nXuvJ3ddfksXlPldgTskpITsEsKKNhcFth3bt4Ae3f+Cdfd9oDgyPbNsc8tG9fBdYsfgMDgtvGUW1ttWwP2qqoKljl+6MhzYeDQsbrdA3p1RMCul5J8/XgisJeVFUBJST7LCN+pU2e+hXiJFQG72o1qi8COa7IstVZZWWoOb8dQ99DQKLUiW4ymN7CXlRaaE8gFBIY0JZAbCJ07+7ptjUYNfOTwdti75zfmVe+ROIBrGAJ2Lpl0M1IJ7Es/Xe2WLPEE7LrdLp7XEQG72j2RAfaykmIWCn/1LffoVmrt6IE98OWKt9gDgG5xbSd0ta0CO64rPy+b1WifcskVkNib7w8DVXc5AbsqpU3jeBqwI3zk5aVDbGxv8PUNUCuGgtEI2BWIbDFEWwB2DPvWQtwxi3tpab5VkrjwcM+p/qEXsGsJ5DDSxpRAbhCER3jOOvW+i9GrXlpSwGA9NCySu3sCdm6pdDFUDezapM0J55q+YeTnO+fN1EUrIzohD7ukqgTskgIKNpcB9i9XvAnhkV1h0lR9zqiczjzJMsLPufZW6DNgqOBKvMO8rXnYNdVPnTgEP36zgmWOj+oa7zGbQcCudis8CdgxtBczwkdHJ0JbOY/acjcJ2NXe394K7JZn0AsKsqwAHcPc8Q92T7xkgB0fRmDNdMz0HhUdzyCd19PsiVrwzKm4OBe2bVkL+NDlrDEX8zSxsiFgF5ZMqoFKYH/582/c4mG/Y+4MKY2MbEzALqkuAbukgILNXQX2fbu2wOZf1sJN9ywRHNG2eUVZKYP1syddDCPGOT9rpcugbuikrQI7Snlw71bYvf03Bu0BgcFuULf1kATsarfBU4C9vv4Mg/WwsGgICYlQK4LC0QjYFYoNAN4C7AhuzV70LAgNjbSCdG85GiIK7HjeHgEdQb22tgYSew1koB4c3EXtjeKG0XDdmFxuxMgLoE/fkS7NgIDdJdlcbqQU2L/4xuV5yjS8fc6lMs0NbUvALikvAbukgILNXQH2mupqeO3Zh1n29l59BwqOaNv8g9eeg8SkfjDxIs8Nn9FjoW0Z2FGf7ZvXQ1bGcZg592Y95JLug4BdWkKhDjwF2LOzj0NAQBB06dJ2w15xYwjYhW5PaWNPBfbS0gKLTO5ZEBAQYgXoPj5+0mt3Rwe8wH46+4T5bDoCes9egwDLsrWXa8+uXyEz8ygLgY+OTnB52QTsLkvnUkOVwP7Kqm9dmqNso9tmT5ftwrD2BOyS0hKwSwoo2NwVYP/28/fBx8cXLpp1heBots2/+ugtwD8ops+dr0t/ntxJWwd21H7DulXMEzX5En3uD5n9JGCXUU+8rScAO55ZxxDfqCjX/3AVX7l7WhCwq9XdU4C9vLzYCtA7d/azKrXm5xeoVhiDRnME7BXlJWZI9/H1a0ogNwh8ff0Nmo3ndVtVWca86vj3GMK67IMZAna1e6wS2F/98ju1i2sabfFl09wyLs+gBOw8KjmwIWCXFFCwuSiwHzmwB9Z9/Qksuv8J6Nipk+Borc1/+uZzyMvJhCtuuEu6L2/ooD0AO+7Dd18tg4jIGBg34RK3bgsBu1r53Q3sGAZcV1cD3br1VLtwN41GwK5WeHcBe1VVmUWptSwA6GBVag096m3xsgXsp04ehJNpB1gySS2BXGRUXFtcvsM1ZWcdZyXbkvqOgEGDx+uyfgJ2XWTk7kQlsL/21XfQ2AjsYbapTjoo+UzAzn07eJ8hAbvaPRMC9sZGePXZR2Dy9L9Cv8EjpCe6deN62LPtD5i/+AHw828fT8XbC7Dj+UHMHN9/0FkwZMQ50veKqx0QsLuqnGvt3AnsmO26rKyIlW/r2LGjawvwslYE7Go3TBWw19RUWpRay4IzZ+qsSq0FBbX9M9m4sxqwY3Z3LYFcl/BuprrpPQd5bLI8o+/Kgwf+hMMHtzKvenxCX92GI2DXTUqujlQDuwWla7Ru+PuiWdZOm+Mns+CW+5+HrJwCGDogCV595m4ID7P/wLGopAwWP/g/uOfWuTB6WH8uXXmNyMPOq5QdOwJ2SQEFm4sA+7o1n0JNVSVcOm+B4CitzQ+m7IDvv/gQ5t92P0R1jZXuz1s6aC/AjvtRVJgLX3/6Bkyc/Bfo3XeIW7aIgF2t7O4C9oqKEigoyGSwLhsWqlYxudEI2OX0E21tFLBjVEhzLfQsqK6usAL0kBD+0lyia/JUe0wcWVicBViSDUO/E3sNYh71kNC2m0TS2V6gJuhVr66qYLAeFBzmrInQzwnYheSSNlYJ7K+vXuuWLPGWwF5dXQvPvfYJXD17CvROjINtew7Bxi174Z6b59rV8s0P10BOXhFMvWAMAbv0HadzB19u365zj8Z39+itt7JB/vX668YPpvMIf3yzmavH9LSj8O0Xy2HB4ofBP0DufFxWxglYuWwpzLlmEfTolcw1flsxys8qaCtL4VpHdtYJWP/9hzD10oUQ3U39meL9u7ZwzdOTjLKyUtl04uL6eNK0uOZy8OCfXHZ6GjU0nIGqqnLw9w8Gb8l+rdf6+/cfq1dX1A+HAl27JnJYOTdhMFqYZYb08vLCJkCPY+9dunR13kkbtcCyc1lZR9krJqY3JCT0g5iY9pNAzt62YpTB7t0/s6RyRj2om33XX73urvrq/eVszn+ZL+9IUr346y44T9mQr69Zq2wsy4FunTHV/BG96ytWrYe/LboC/P19Ab3nf3/6LfYZAb7lpQF9z4QY6B4fTcDulh10MCgBu9od4QX2FW/9B0aMPQ8GDh0tNcHSkiJYufxFOOf86dJ9SU3ETY3bG7CjzMeOpsDu7b/A1BkLdPcIONtGAnZnCun7c9XA3tjYwGAdE0117uyr72K8oDcCdrWb5Cqw45lRDdDRk15UdNoK0BHS2/OFEQUmSE9lYe5xcX3ZK1hnD7K3anzy5H5ISfkVhg27AHr0GGDYMgjYDZPWZscqgf2Nb35gc9DOsGsTMvrzLZdebF57S496S4+7pUgI88tWroXF82fBdz9vIWBXe2vyjUbAzqeTXlY8wL55w/dQkJcDl/5V7glmQ0MDg/Wk5CEw5twpei3Bq/ppj8COG7R3z++QcfIIg/YOHdSdLyZgV/vroRrYEdY7d+4MPj7tIwdGy90kYFd7f4sAO0K5VgsdYT0sLBoiIkwedHxvL3kWHO1QTk4aK0eWn59uhvSIiBhzE8x+3t6vvXt/Yw97ENaNjrwgYFd7t6kE9je//VHt4ppGu3n6RVbAnp6ZB7OnTTB/74U3P4MJY4e08p5jKPyUCaOY533VdxsJ2N2ye04GJWBXuyvOgD0nK51B9oLbHobQsHCpya357F0ICg6FCy7xvrArqYVbNG6vwI4SbN30PVRWlsOkKfbPK+mls9YPAbveijruTyWw19RUsIc/vr4BahfpQaMRsKvdDEfAXlKSb+FFz4KgoDArQO/c2UftZD10tPLyIgbp6FEPDAyD+Pg+DNY7dmxddaY9Azvm5cAQ+MDAEAbrKh7wELCr/aVRCexvfbfOfIZdW6UpW3wH86KN+NwS2C3PrNvzsKMn3hLsCdjV3pfcoxGwc0uli6EzYP/0vZcgeeAIGD76XKnxflm7CspKi2DmvBuk+vH2xu0Z2HHvfl3/KQQGhcKYs5vPNRm5pwTsRqrbum9VwF5bWwUYDu/nF6R2gR42GgG72g2xBHasSNAc5p7FHhxFRjZ70NtTPXBnu4C/qxqkYw35+HhTyHtIiOMEcu0V2LOzjzFYT04+C5KS5CvyONsf7ecE7LxK6WOnEtjf/n49m7QRUO4I+m+8pDmalucMO0L8P/7zLny7vnU+nBuumu4wQZ3orlCWeFHFWtgTsEsKKNjcEbBv3/wLnDpxGGZfZUqq5+q17Y+f4OihPXD5gjvbXVKolpq1d2BvaKiHtWuWQ4+e/WHwMOPLvRGwu/pb61o7FcCOGbWxzFVAQLBrk2xDrQjY1W0mllrD+uemMPcs5hHG0PbISFOIu79/+354ZGsn8FgAetIzM1MhKiqeQbpIArn2COyHD2+FU6cOwPDhF0B0dA91NzgAELArlRtUAvs7a3+CRmiEDtBB6fuNU5uBXYPxuTMmsRB49KR/tuZXePy+6yErJ59lkH/qoZtalXkjD7va+5J7NAJ2bql0MbQH7EUFubDslSfhukUPQmS06wlxDu7dDht/WsNgPaxL+ytNQ8De+jYtLyuGtd8sh5GjJ0PvPsaWeyNg1+WfCe5OjAZ2LKtVW1vNYF1lLgRuARQbErAbJzjeZ5i9HT3pZWWFLKIjKqo7O4OOkI7h3HS1VgB1M0H6UcAHtAjpGPaOVRxEr/YE7HV11cyrjrl+ENb9/OSq8YhqjfYE7K6o5nobpcD+w0/mMuzajDEavrGxef5GfL7+oslWAtmrw47fJ2B3/V5yS0sCdrWy2wP2rz55E+K794bR57ieHA5LwX32/isM1uN79Fa7MA8drb172LVtyc05xTztF02fDzGxPQ3bLQJ2w6S12bGRwI6lsKqr22f5Nnu7SMCu3/2ND4MQzBHQEdTr6mohJCSchW0HB0ewh0QiSef0m5l39JSbe4qB+unTJ8zn0iMj46Um316AvaAgk8E6lvIcMOBsKc1kGhOwy6gn3lYlsC9b9zMLh9eo3ZwdvonSjfrcEtjFVTKuBYXES2pLwC4poGBzW8CesmMTHEzZBpcvvEuwt2Zz9NCvXL4Uzp86B/oNUncGy+UJK2pIwN4sdNrx/bB101qWOT40zJjoCwJ2RTd20zBGATt6naqry8DXNxAoeVfznhKwu35/4wMgTIBmgvRCwJD34GAToOMrMDC0VecE7NaSYGI0rWY6eoS1cmx6/Y62B2A/fjwFDh7cBMOHT2Zn+915EbCrVV8lsL+77me1i2sa7foLL3DLuDyDErDzqOTAhoBdUkDB5i2BvbysBJa/8iTMuWYxxCa45vmsq61lmeUHDB0No8ZNEpxR2zYnYLfe3wP7/oTjR1MYtBtRR5uAXe3vkzHA3shqreP94ePjp3ZBHj4aATv/BmFIuxbejh70iopSKw96cHAXp50RsJsk0s6ll5bmmSE9LCzKqX6iBm0d2NGrjg+LMATeWQI+Ue1csSdgd0U119uoBPZl639xfaISLRdOOV+itbFNCdgl9SVglxRQsHlLYP9u1fsQFh4J55w/XbCnZvOvPn4TwqO6wXkXznK5j7bakIC99c5u37IOSkvy4YKLrtR92wnYdZfUYYdGAHt1dQUradSey7fZE52A3fH9belBR1hHKDd50MNZmLtldmOe35T2DOwlJXnmTO9dunRj3uDY2CQe2Vy2aavAXlpawELg8SHHsGGeAzQE7C7fqi41VAnsy3/61aU5yjZaMNlznXYE7JK7S8AuKaBgc0tgP7RvB2BG92tvuV+wl2bz9d+uhJqaapg++zqX+2jLDQnYbe/ub7+sAl8fPxh3rusPimz1TMCu9rdJb2CvqanCQjRuScCkVjnXRiNgt9YNQ7TRY6kli8Nz5wjm2ll0W7W+RZRvb8CO5/q1cmy1tTXms+m2jguI6Mhr2xaBPSPjMIP1QYPOhV69jE26yquzZkfALqqYnL1KYH/vlw2mkm5alvgOHZR8XnABAbvcXeLBrQnY1W6OBuz4nzFmhZ8662pI7N3PpUn8+dsPcOr4YZi34E6X2reHRgTs9nf5h2+WQ2x8bxg6YqJutwIBu25ScnWkJ7Bj1mQ8Z+xKdmmuybYBo/YO7FVVZeZEcQjqWPvc0oOu11lq7VZpL8Cen59hDnuPi0tiYe/R0d2V/8a0NWA/cGATnD59HIYNuwAiI+OU6+lsQAJ2Zwrp+3PVwK4lllP5Pn+Sfn/P6as+AHnYORS1TOuP5stffJDV5MOLgJ1DQB1NNGBf/81K6NTZB86fOtul3vft+hO2/r6OZYQPCqFyN/ZEJGC3f3tVVZaxzPGDh58Lffvpk6iQgN2lX2eXG+kF7OjZQ2BHWKfybfa3o70BOx6PMHnQTcniOnXqbJUozugcB20Z2PHhR1ZWKvOo44MOUzm2vm7NG9FWgB3vW/Sqd+7cGYYNmwyeui4Cdpf/63OpoUpg/2DDRpNHXfPjwpznAAAgAElEQVSsK3onYHfp1vCMRtXVtfDq+1/DwsunQnhYCLSsvUfArnafENiPH9kHv/ywChYufhg6duokPIG01IOw+tN3GKx3i+sh3L49NSBgd7zbBXlZrEb7pAvnQXxCH+lbg4BdWkKhDvQAdlP5tgpWRks2hFlo8l5o3NaBvba2ysqDjltkWWrNzy9A6a61RWDPzj7OvOmFhdkM0LG0GJ5R94TLU8FWRJvc3JMM1nv2HAzJyaNFmiq3JWBXK7lqYFe7OtNo1543wR3Dco1JHnYumZqNEOCfe+0TuHr2FOidGEcedkH9ZM0R2DEUfsLkGdCn/1Dh7vJzs+CTZS/CJX+5BpL6edZ5LOHFKGhAwO5c5PSTh+H3DV/B1EsXQnhEV+cNHFgQsEvJJ9xYFtgbGupZrXUsEdWpk4/w+O2tQVsD9rq6GnMddPSg48Mby1Jr/v5Bbt3itgLsmPRMK8eGRwi0cmyiSfiM3gxvB/bU1J2AL8wCHxPT22i5pPsnYJeWUKgDlcC+YuMfpjrsTZe57rrBn6+ZeK6QJiqNCdgF1S4qKYOnX1oBD91xNfO4k4ddUEBJ86fuegCqqyrh4plXCfdUXVUBnyxbCiPGTIBhZ3nuL6XwwgxsQMDOJ+7hA9vh0IGtMHXGQpDxohGw8+mtl5UMsOMfEwjrVL6Nfze8Hdjr6+vMpdYQ0Gtrq6086IGBIfxiKLD0ZmDHhx8apGOZRA3SecrZKZDW5hDeCuz19fWwZ89PUF1dyWBdVZI+2X0iYJdVUKy9WmD/XWxyOllfPcFz2YCAXXCTX3jzM5gwdgidYRfUTQ/z/Tt3wtP33AcLb3sY/AMChbv8/MNXITY+UaoEnPCgAHA68yTExCe60tTtbbwV2PPzMiEqOl6pfru2/wI47oWXXOPyuATsLkvnUkMZYEdY79ixM0scpvJCr763ht57I7AjLBYWZrFQdzw3bcribsrkHhTkvBa6ynuj5VjeCOwY6q5lesf5Y9i7t6zDG4G9qCgH9uz5GaKiEmDwYM8NB7b1e0TArvZfF6XA/scfABZn2KFDByWfrz6XgF3tXWXQaKu+28h6nj2t+R81b/Sw3zJzJlvHG6tXG6SUMd3ef9110Dd5JAwcNkZ4gLVfr2DlIS6eJe6ZFx7MosHenZvhxzWfwPQ510H/wSNlunJLW28E9hPH9sFvP38B4yfMgL791Wr+x4av2T6dc94sl/bLG4H98OGtbK39+on/Xrokko6NXAX2mppKNgsMhVd5YXI7HBvHRc++t13eCOyocXb2MXOouzdp7i2g21LTEydS2Nl01b9fsnvrjcCOaz516gD06DFQdvnK23sjsBfl5TGdwqOjleslO6BqYLc88qIloNPWYNTnq8aPl5XJsPbkYeeUFmE9LeM03HPzXKsWBOycAkqaffrWW5B+/DiMO8f0sEHk+v3nbyAn6xTMuWaxSDNp25+//wIyTqbCRTOvhBgvTW7njcCOG4fJ4P7YuBpiYhJhzPhLpPdSpIN1338IUdFxMOKsC0SaMVsCdmHJpBq4AuwYBt3QoL58GyY0wzBhhBjysEtte7tp7K3A7q0b5K3A7q16eyOwe6vWOG+VwP7x5s1uyRJPwO7NdygA2IN1XBYBu/Gbe+zQIXjkpptg6WefwZHtJ4QG3L3td9izfSNcvuAul8LohQZrMi4uzIcf13wEIaHhDNaxlI+3Xt4K7Kh3Q309g/bK8lIYP3EGhIRGKNmGmpoqVu6t/8CzoN9AsSy7BOxKtsg8iCiwY5Ix9HKbyrd1UDLZhoYGqK2tZOXivM3j2FIgb/WwK9loAwYhYDdAVAddErCr1ZuAXa3eqoFdW52qhHM43pVnn61WVIHRyMPuRCxMMrf4wf9BysFjVpb/uv8GFhpPwC5wt7loumTRIjj7ggtg6ty5oNVh5+kq9fBe+OHrFax8W1TXOJ4m0jZHD+6BH9d8DGPOvRBGj58s3Z+7O/BmYNe025+yCfbu/p1Be4+eA5RIWlSYy8q9nXveLOie2I97TAJ2bql0MRQBdkw4huHoCOuqPNxnztQxWPfx8XdrfWldxAYAAna9lOTrh4CdTye9rAjY9VKSrx8Cdj6d9LJSCewrt2xxi4f9inHj9JJL934I2CUlJWCXFNBJ89UffQQpW7bAIy++yCx5gf101ilYufxFmHX5jdAzSQ2kbd7wPeCZdfSqqxrTWPUB2gKwo0ZZGcdg02+r2Zn2YSPPM1o21n9mxjH4Zd1KuOTSBRAZzffAiIBdydaYB+EFdkz0hsnHsEyXqoiZurpqqKurbSoZ571ROpY7SsCu9v4mYFerNwG7Wr0J2NXqrRLYP92yRe3imkabN3asW8blGZSAnUclBzYE7JICOmiedeoU3Dl3Lrzw0UfQIymJG9jLy0pg5fKlMPbcC2HwCOOflmEplB9XfwzoDcNyc0HBocaJorjntgLsKFtVZTmDdgSu8RNngq+f8dm9Uw/vgpTdv8PUGQuAp+QTAbvaG5wH2BsbG1j5NvRyq0j0hsl00KuOJWixRCCGwreVi4Bd7U4SsKvVm4Bdrd4E7Gr1Vgnsn23davawa6s0KtGcZf8E7GrvKaWjEbAbJ/cz994L/YYOhcuuu848CI+HHWE9sXc/GDfxYuMm19QzJpX7YfXHkDxwOEyYPMPw8VQP0JaAXdNu59afIO3EAThn4kzoFmt8ub2UXb9BVuZxmHrpAqfbR8DuVCJdDXiAHWEdH/IgsBt9YVI5hPVOnXyVl4szem3YPwG7CpWbxyBgV6s3AbtavQnY1eqtEtg/37bNvDjMFtNosVQjP/91tFjeIZU7QB52SbUJ2CUFtNN83Vdfwa/ffgtPvvWWlYUzYP/2i/fAzz8ApkyfZ8zELHrdtfU3+G39arh45pXQf/Aow8dzxwBtEdhRRyz9ht72kWOmwIBBxpcj+/P3bwGzi0+8YI7DbSRgV3uXOwN2U/m2DszTbfSFCe3wHsGxVHjyjV6Prf4J2NWqTsCuVm8CdrV6E7Cr1VslsK/avo1FmWkJ55rKsBv+eQ4Bu9qbSuVoBOz6q12Un89C4R9duhSShwzhBvYN676CooI8+MsVN+k/qRY9Ym31/NwsuGjGlRDVNdbw8dw1QFsFdtSzuCgXNv22BrpEdGU1242+fv7xEwgNi4Szxl5odygCdqN3wbp/R8COZdQwQzueWzf6wgcDeE7em0u28WhEwM6jkn42BOz6acnTEwE7j0r62RCw66clT0+qgb0DdIBGaASV75eddRaPFG6xIQ+7pOwE7JIC2mj+v3/8A7rGxsJVixa1+qk9D/uOP3+Bgynb4fKFd4GR/2nm52bDj6s/guhu8XDhjCv0X7yH9diWgV2TevPGNVBYmAPjJ8yE8Iiuhu0A5jhYu2YZ9O4zFAYOsZ1bgYDdMPltdmwP2LXybQEBwczDbtSFkI6wjlnnvb1kG49GBOw8KulnQ8Cun5Y8PRn5twfP+O3NhoBd7Y6rBPavduxwS5Z4Ana195TS0QjY9ZX79x9/hFXvvQcvrFhhs2NbwH54/y74Ze0XrNZ6eGS0vhOy6O3g3u0sudzEC2fBiDETDRvHkzpuD8COeh/avxW2b1nHktH17mMd1aHnfpSWFLByb2POngo9ew9q1TUBu55qO+/LFrCbSqlVNZVvMy7hG9Zzr6mpYmfVfXz8nE+2DVgQsKvdRAJ2tXoTsKvVm4Bdrd4qgf3rHTvULq5ptFmjPPd4K3nYJW8JAnZJAS2aV1dWwh3z5sHtjz4Kw+yUVmgJ7JmnjrPybXPn3w7de/bVbzItetq4fjVgjXUs2ZaQ2MewcTyt4/YC7Kh7TvZJ2LRxNavVPmrMFMO24nR2Gvz47fssCV3XmB5W4xCwGya7zY5bAjsmfcMkc1hr3cjybfhAAOu6+/oGGjqOWjWdj0bA7lwjPS0I2PVU03lfBOzONdLTgoBdTzWd96US2Ffv3Ol8QgZYzBw50oBe9emSgF1SRwJ2SQEtmr/xzDPQ2ccHbrj3XrudWgJ7SXEBrFz2IkyYMhMGDDHm3AmWiEOvOs4LS7ZhQrv2dLUnYMd9xaRfmIwOvazobecpxebK/XA8dS/s3Loeps5YCMEhXcxdELC7oqbrbSyBHcu3Ya119HgblfQNx0CvOibQQVjHhDrt6SJgV7vbBOxq9SZgV6s3AbtavVUC+5pdu9Qurmm0GSNGuGVcnkEJ2HlUcmBDwC4pYFPzHb//Du88/zws/fRTBsf2Lg3Y0RO2ctlS6DtwGIweP1mfSbToJS31IPyw5mMYOnI8nH3eVEPG8PRO2xuwa/uxZ+cGOHJoJ4yfOAPiE4yJqNiXsglOnTgAUy9dCB07dWJDE7Cr/Y2wBPaqqjIG6kaFp+O/WXheHf+oV1EiTq2SfKMRsPPppJcVAbteSvL1Q8DOp5NeVgTseinJ149KYP929263nGG/lICd72bwRisCdn127c5581iSuXHnn++wQw3YV3/6DoSEhcP5F8/WZwItetn2x0+w9Y/1rGRbn/5DDRnDGzptr8COe3Mq7RDztg8edg57GXFt2/wDlJeXwPkXmsoQErAbobL9PjVgr6mpgA4dOoKvrzERNJjErq4OS7ZhCLz9B5JqV69+NAJ2tZoTsKvVm4Bdrd4E7Gr1Vgns3+3ZwxbX2NhoFYlm9Odpw4apFVVgNPKwC4hly5SAXVJAgP9v7zzAq6jSP/xJCT0khBRCSUhCTQICgoqgKFhAFHQXxbL+Lbjr2rHs2ta167qWdd21s4vdFWyoKFakKV2SAAmkN0J6bxD4P9+5mZub5JaZOzMn905+8zx5kpBT5rxnSO57v3O+Q2/9859UU1VFN/3lLx4bY2H/4avVVFdbQxcsucZjea0FWo4epXWfv0e11VViv3pQ8FCtTViqfHcWdp7ImuoKIe39BwSKaLsZ+5p/+n4V9e03kE6eOR/CLvl/Dws77yfnpep9+phzfBtH1bl9XgLfo4d5Sewko/OqOwi7V9i8rgRh9xqdVxUh7F5h87oShN1rdF5VlCnsXyUldUmEHcLu1aPhH5Ug7Prmae+uXfTMPffQP1etokGDB3ts7Pl7HqGMAykiI7zRL36LCnPFkW2cvO7M837j8V66Q4HuLuzKHG/7+WsqKswW+9qHhkYaOvUsc19/vpJGjBpLPY77X/Q1LW2b4DFu3AxDuchoLClpPfFSdU4yZ/SlHNnGb/KYFbk3+p7Nbg/Cbjbh9u1D2OXyhrDL5Q1hl8tbprB/nZQkd3CtvZ03yXdX1CLCrvORgLDrA/jnq6+m+UuW0Jzzz/fY0Pq1a2nl8y8IWQ8cHOyxvJYCybt/FsnlOKqeOOVULVUtXRbC3ja9B9N2i2g7S/uYccYmJqmrrRLHvYUOHUUhIca+IWD2A+qvwl5WVkjZ2SnEZ63zcngjL9uRbfViCbxZCeyMvF9ZbUHYZZG29QNhl8sbwi6XN4RdLm+Zwv5NSrKIsCsXJ2iV8f25iRB2uU+VxN6+TUmR2JsxXf3u3HNFQ2+vW2dMg1628s4rr1D2wYP0wLPPemxh99atdP8NN9DFl99EEcOjPJbXUmDDt59Qfm4GzV1wCYUPa3/MlpZ2rFi2NL/UisPyekxlZYdo689fUnh4FE2bfrbX7TirWFpSQN+ue5vi42dRUFCYoW2b2Vhy8k+i+cTEM8zsxtC2KyuLae/eTWKpOi55BPr2NWfbgbwR+FdPiQmn+9cN+/ndBgWH+/kI/Ov2F/9xiX/dsJ/f7Y0XLZA2gm+Sk6X15djROYmJXdKvmk4RYVdDyU0ZCLt3ANP376flV11Fb3z2GYVHuo8o5mVl0Z1XX023PPAAVZV415+zWnws3Pdr/0cDBw6muQsupZ69ehnXuEVagrB3nkheQr3157XUUF9DJ5+6gAYOMm61x67tP1JGxi6aNGkO9es3yC+eIn8Tds4Gz0vhY2OnUmrqz37B2Co3CWGXO5MQdrm8IexyeUPY5fKWKezfpaQQx9f54FMl0ZyM789OSJALVUNvEHYNsJwVhbB7B/BPy5bRrHnz6MKlS902UF9XJ2T93MWLafEVV9AX733rXYcdamUcSBayPu2UuTTtFPeZ6Q3p0E8bgbC7nrj9e3+hfXt/FtI+YuQ4Q2Y4N+sAFRam0+HD2TRp0hl+kVHcn4S9peUIJSX9ROHh0RQZGUebNq02ZN7QiDoCEHZ1nIwqBWE3iqS6diDs6jgZVQrCbhRJde3IFPbv9+5Vd1MGl5obH29wi8Y1B2HXyRLCrh3gx2+/TTu3bKHHX37ZY+UHbrqJRsfF0XXLl4uyRgj7tk3fUMqvP4uoelTMeI/30J0LQNjdz/6hwkyxRD52zBRKnDRL96PCws5XdnYy1ddX08SJ5hwnp/tGHRrwJ2Hft28z9e8fSNHRtmVvEHYjnwTPbUHYPTMysgSE3UiantuCsHtmZGQJCLuRND23JVPYf9i3r0uyxEPYPT8HflsCwq5t6gpycmjZokX08urVFB0X57byPx5+mJoaG+nPTz5pL6dH2JsaG0RU/ejRI0LWBwwM1Hbz3bA0hN3zpDc01App5/O1OdoeENDXcyUXJRRh5x8fOLCNevToSXFx07xuT0ZFfxH29PSdxJnbx45ty2YPYZfxhLT1AWGXyxvCLpc3hF0ubwi7XN4yhf3HffvE4MQy+BNO4HXxUr4/c+JEuVA19IYIuwZYzopC2LUBfOi222jCpEl06XXXua349ssvU/KOHfT0ihXtynkr7AV5GfT92g8pdmwinXbmQm033Y1LQ9jVT/6vu36kvLw0OvmUBRQW7l3yQkdh556TkzfQ4MFDadQo3/0j4g/Cnpu7j6qqSikxsX0SLgi7+ufbiJIQdiMoqm8Dwq6elRElIexGUFTfBoRdPSsjSsoU9p9SU7skwj5nwgQjUJnSBoRdJ1YIu3qAX330EX3z2Wf0/Ftvua209qOP6KOVK+mZlSspOCREt7An7dxEm374XETVx8VPVX/DKEkQdm0PQXbWXhFtnzLtLBo77iRtlYmoo7AfOdIkEqQNHz6WIiJGa25PRgVfF/aioiwqKDggEvn17t2nHRIIu4wnpK0PCLtc3hB2ubwh7HJ5Q9jl8pYt7HJHZ+vtjPG+u00Wwq7ziYCwqwNYXlpKyy68UOxbnzB5sstK2zZupMfvuoueXbmS4py806U1wv7DVx9SaXGhkPWQ0GHqbhal7AQg7NofhsrKEiHtwcHhNOOU+Zoa6CjsXLm2tpKSk9fT+PGnUHBwhKb2ZBT2ZWGvqCii1NRfKDFxDg0cGNQJB4RdxhMCYZdLua03CLtc8hB2ubwh7HJ5yxT2DWlp9gi7MkolW7yZ30PY5T5TUnuDsKvD/bd776WwYcPomltvdVkhIy1NZIS/96mn6OQznJ/prFbYy0qKxH71kLBhNHf+JepuEqU6EYCwe/9QbP1lLVVVlIh97YODQlU15EzYuWJ5+SFKS9smMscPGNBZPFU1blIhXxX2urpKkRF+3LgZNGSI8zfrIOwmPRQumkWEXS5vCLtc3hB2ubwh7HJ5yxT2jQfSbEe6KUe7Sfo8a6wxJ/6YMTOIsOukCmH3DHD911/TB2+8Qa+sdn2EUlVFhZD1i668ks5fssRlo2qEPW3fLiHrp81ZSJNPmu35BlHCJQEIu76H40DqDtq9+0exrz16tOfjQlwJO99FUVEmFRYeFNHijku79d2lvtq+KOy8lYBXJURGjqGIiBiXA4Sw65t7rbUh7FqJ6SsPYdfHT2ttCLtWYvrKQ9j18dNaW6awbz5wgI7TcZFwTkTW6QQp30PYtT4VflQewu5+shrr6+m6RYvojkceoWmnnuqy8J+vv57iTzyRrrrpJrcNehL2Leu/pPTUPWIJ/PBRsX70JPnmrULY9c9L8eFcsUR+ZNR4OnHKmW4bdCfsXJGTp1VXl1JCQvvkafrv0vsWfFHYU1I2UGCg52R9EHbv592bmhB2b6h5XwfC7j07b2pC2L2h5n0dCLv37LypKVPYtxw4wOnhbdnhJX6eOWaMN2ik1EGEXSdmCLt7gP987DHq1asX3XjPPS4LPn3//dS7Vy9a/vDDHmfDlbDX1VaLqHrPXr1p3oJLqE/f/h7bQgHPBCDsnhmpKdHc3CikvaXlKJ186vnUr99Ap9U8CTtXOnhwJx0/fozGjp2upmvTy/iasB84sJ1OOKEHjRnj+Tg8CLvpj0e7DiDscnlD2OXyhrDL5Q1hl8tbprD/kp7eJVniT4Wwy32oZPYGYXdNe+uGDfTSk0/SG2vWUO/evZ0W/M8LL1BGaqpIRqfmcibsOZlpQtbjTzyZTp51rppmUEYlAQi7SlAqiyUnbaSMg3vEvvZhkZ2XaqsRdu5q795NYi97dHSCyp7NK+ZLwp6dnUK8dz0+fpaqAUPYVWEyrBCE3TCUqhqCsKvCZFghCLthKFU1BGFXhcmwQrKF3bAb19DQKXFxGkrLLYoIu07eEHbXAJctXkxX33wzzZo3z2mhz95/n75avVpkhB8waJCqmego7Lu2/kg7tnwvlsDHjktU1QYKqScAYVfPSm3JvNw0EW2PT5hJE+JPaVdNrbAfPXpE7NHmo96GDevaPzC+IuyHDqUTH+HGe/x79XL+BmHHOYKwq31qjSkHYTeGo9pWIOxqSRlTDsJuDEe1rUDY1ZIyppxMYd+akWHMTWts5eRY391KC2HXOJkdi0PYnQN847nnSCSSe/RRpwU2f/89Pf/QQ0LWozT8B1GEnZcWf7/2Q6qprqB5Cy6lwcFDdc4kqjsjAGE357moqakQ0j5gQKBYIt+jR0/RkVph57L19dXEshwXN5VCQoabc6MqWvUFYS8rK6D09F2UmHgG9e8fqOKubUUg7KpRGVIQwm4IRtWNQNhVozKkIITdEIyqG4Gwq0ZlSEGZwr49M9OQe9bayPQY10lqtbZldHkIu06iEPbOAJN37qRH7riDVnz2GQUGdT6CKjU5WWSEf/Rf/6KpbhLROZsaFvbDh/LEEnhOKnfG2RfpnEFUd0cAwm7u87Fz+zfESelY2oeEDNMk7HxnlZWHad++zSKqPGjQEHNv1kXrXS3sNTXlYrXBxImnUVBQuCYGEHZNuHQXhrDrRqipAQi7Jly6C0PYdSPU1ACEXRMu3YVlCvuOrKwuOYcdwq77MfHdBiDsnefm1ssvpwsuvZTOXrSo0w9LDh8Wsv67P/6Rzr7wQs0T+/SfH6Pv1n5IcxcsofjJ7ZcTa24MFTwSgLB7RKS7QEb6r7T157VC2nv37Ke5veLiHJE9nqW9Tx/t9TV32KFCVwp7U1ODkPVRoyZSWFiU5qFA2DUj01UBwq4Ln+bKEHbNyHRVgLDrwqe5MoRdMzJdFWQK+87sbHGv4kg3zhLfepn9/bToaF2MzKyMCLtOuv4o7EtOtx0JtWrDBp2j71z93VdfpcwDB+gvzz7b6Yf8H41lffrs2XTZsmWa+375b3+jDeu+F0vgwyNHaa7fFRWy0vdSaspOmr/4qq7oXnef/irsmzd+Ks49Hz7Cd4/ocJycstJCsUS+f/8giomZrHne8vJSqaKiiCZNOoOI2v64aW7Iiwq7dn0jak2deo4XtfVUOU5JST9RcHAEjRw5XnNDmZl7xLn2uOQR8Fdh51Me+EWj7aNHu8/y6GnvyV+FPe3ANrG1pX+/QPHZ1aka2omYW8NfhZ1/jw4bFkOhoSPNBWRw6/4o7Lt/3iwoTDn1NINpmN+cTGHflZNNdJxfzrSew84vayR8PxXCbv6D1FU9+KOwXzRzpsD1yZYthmJL37+fbv/d72jFmjUUHhnZqe3H776bBgcH08333aep30P5+fT8X/9KQ0JDafzE01UnlNLUiYGFK8pLKC1lB6Xu3UkDBw6mcQnTaHz8SdQ7IMDAXuQ05Y/CfvRoM2VlplB2Vgo11NdS9OgEio5JoMDArlkyrnamOC/DD99+QCwHfCSZVrnJyNhNR4400fjxcleebN++Vgxx+vQFaodqSLnU1F+od+8+FBs7RVN7jY114mi8gIC+VFKSq6kuCusjoPWZ1tebMbX5jWY+RtH22fFr2785k3jHfzPmLrxrxR+FnX+HcX6O+oYa2+f6avE7UQi8+BhkF3nHyJt3hIyt5Y/Czn93Dh3KEB9NTfU0bFis+NCSC8RYiupb80dhX/u/98QAF1x6ufqB+khJmcK+OyebTqAT6LiwdNsl4/sTo7Sv1JM1PYiw6yQNYW8D+Ofrr6eZZ51Fiy67rBPVV/7+dzqcn09/feEFTcS3/PADPffXv9Il11xDl1x7Lbk6h11ToyYV5kh66t4dVFJUQOOFpE+j0IgRJvUmp1l/FHZHMhXlRXZ5Dx4SIeR9dEzXH4XmavY46Vx+fhoVFKRRXNxJFBLS+Y0vdzO/f/8WIfqjR2uP0nv7RHWFsGdl7SEW7wkTbG8+qr3KygopPX0HDR8+jkaMGIekc2rBGVTOH4Xd09DdybxN6NtH5NsLvrmrYfxR2J3xZqlU5N0m8yzyNQ4SH0gDWoVeSeDpad7M+Lk/Crsjh5qaMjp0KFPI+6BBISLqzvLuqxeEXe7MyBT2Pbm5tjdE7YH11ki7yd9D2OU+U1J7g7DbcH/89tu0Y/NmeuKVVzrxX/3mm/TT11+LjPABffqonp93X3mFvli1iu54+GGaPst2rrKvCXtRYa49mh45YjSNi59GYydqi/ipBtIFBf1d2B2R5WTvE1H3kuJ8EXEfPTqBQoZqE2Kzp0DJEs/L2zkKHBERQ6NGTVDd7bFjLSJz/NChI2j48LGq6+kpKFvYCwoOUGlpvsgIr+XFeW7ufioqyhSrF3gZPV/Yw65n5rXXtaKwu6egROXbR+aPHbP9O2/N7CjwjoKvnXD7GlYRdmcc+I0Sm8S3ReLr6qupb5/+7aPx/QOpVy85q9v8XdgdOfMRmSzuVVXFFBHBUfcYGjw4VO8jaWh9CLuhOD02JlPYk3K7ZvXbpLxSpUcAACAASURBVFG+u90WEXaPj6j7AhB2ooLcXFq2aBG99OGHNHpM+z3DP65dS68/+6yQ9WEj1e2PqqupEVH1xoYGWv7wwzQ0LMw+Cb4g7E2NDWJfetreHdTY2CAi6RxRDwwK0fk0+V51Kwm7Qre2tpKyM1MoKytFLItmcWeB56+7+nI81q25uUFIe8+evSgubprqrSAceU5KWk+jR0+SsidRprCXlORRVlYSTZo0R/WWAT6zPj19J3GUjmU9IKAtMR+EXe4T3/2E3YPOd1pm317sXe2bVyTf0+xZWdhdjd1xKb0Sle/Vq3e7PfG83NuM3/dWEnaFb0NDjT3qzluQWNxZ4Hv3lvMmiLtnHMLu6TeAsT+XKezJeXnG3rzK1hJVeorK5gwtBmHXiRPCTvTQbbfR+MREWtohkVzyjh105zXX0HNvvkkJU6eqIs1HwvF+9Zlz59Ky5cs71elKYc/JTBOSzrLOks5706NitCe7UgXCRwpZUdgd0R4qzLQvmeel8rxkflhk153D6ewc9uzsZOKl3CybgYFDVT0Z1dWlQto5Cm12VESWsFdVlYjVAyzrWjjwmx68tSA6OrETOwi7qsfJsEIQdm0o9e6f747C7owwv4nZcV88l+u4L17v82lFYXfkWVZW0LrfPbN1r3sMhYQM1/ZQG1gawm4gTBVNyRT2lPx8FXdkfJGEEb67jRXCrnO+u7uwf/Xxx/TNp5/S82+91Y5kYW6ukPU/3H03zTnvPFWU13zwAb32zDNiCfxZ55/vtI5sYa+uLBfJ4ziJXECffra96QnTqE/f/qrG5O+FrC7syvxwUiMlUd2R5kZ7orqBA4OkTqEzYecb4ORoLJ4cNVe7p7AtGn0G9e070LRxyBD2xsZakRFey6oBXs7J0Xh+oyM01PkyNwi7aY+F04b1CpHcu/X93jztn+f/93zUo/gI6C/+hvUJsH0va5m4r1Lk3/kd98UfPXrUltTOnuCOM9UPUj0Eqwu7AuLIkWYh7kVFGcRfK4nqZGfzh7CrfjQNKShT2PcVFIhtQ2LfUGtyTxnfx0PYDXlWfLKR7izsFaWldN2iRfTYSy/RxMltSa6amprE8W1nzp9Pv7lK3XFmLzzyCHGWeZb10WNd772VJewH9v8qJL0wL0sIOkfTIyJ9N3ukWf85uouwt4silBba5T00bISQ96joiWYhbteuK2HnQnV1VWJp94ABQRQXp27FCu/3ZnHnqLSW/d5aBmu2sPO+fF4twEcOqd2Xn56+i+rqKsVWggEDBrscDoRdy0zrLwth189QSwtxsVOpqbmBmpvqqampQXzNmcCbmxpE9uU+ffrbBT7A4Wv+d7N+X2i5f9ll+YSRNom37Y1nXu0EvlXoOddAx6u7CLvjuHnlk5KoLjg4XORdiYgYLWXqIOxSMNs7kS3svPVHOYlD1ucJTk64kkvZdW+IsOucie4s7E/fdx+FRkTQNbfe2o4iL5Hn/ep/uOsuj3RzMjLEfvXo2FixX93TZaawlxwusO1NT9lBQ8OH26Ppss+19sRA5s+7o7A78s3KTBb73Ssqiu2J6oKHhJs2Be6EXemUI+38QpIjx2qO3uEoM0eotWZUVztIs4Xdlvl+oIiue7qYC/NhLszH0wVh90TI2J9D2I3l6ak1d0viObcD58lgIW0n8+LfGkTuDI7Gi6i8E7H3tSPVPLHw9uctx1raR+Jbj5pzPF5OEfqQoV23PNzb8RlZTzkerqam3B51HzTIvONUIexGzp7ntmQKe+qhQ9Jlnd8UgLB7fg78tkR3FXbO+v7+66/TKx991G7uXnzsMaqprqb7nn7a45yu/+orIevX3nYbLb7iCo/luYDRws7LudL4OLaUHVRbU2U7Mz1hGgUPaUt0p+rGLFqouwu7Mq3V1WX2RHX84kxJVMfJjIy81Ag791dYmE45OSkigsyRZ09XWtpWsQRW65nlntrln5sp7Hy2PEe9xo072eOt8EoCXoEQFZVAkZFxHstzAQi7KkyGFYKwG4ZSVUN69rDzeehC5lsFXkTpW7/mf+fkjbbl9rYofdty+/6mJHRTNWBJhfiFfdvxcm2Z6vmNxcDAIcSSqnw4JrmUdHtd3g2vBuMTOVjg+/QZYD8ejt8EMvKCsBtJ03NbsoXd8x0ZX2L8sGHGN2pQi4iw6wTZHYWds7dzVvjlDz1E02a2nYP8/muv0Y4tW+jZ//7Xtu/EzfWfF16gDevWiaj65OnTVc+CUcKen5Nuz/QeMzZRSProuHjV99FdCkLYO890Qf5BsWQ+P++AONOdl8yHRxizXUKtsPNd8VJEjibzEW7R0Z7Pludl5Xyc2ciRxiZKNEvY8/JSiY+34+X8nq7s7BRx1BtH1bUk2YOweyJr7M8h7Mby9NSaHmH31LYtKm9bXq98zZ/5+yNHm13sne9v6f3zvXr3IT7LnCPMygdLKp9p7ijxsvd6e5pLM3/Ob6SyuHMeFuV4uCFDjJEiCLuZM9e5bZnCfqCoSGzbaTOJE6R8Py7CmGfTjJmBsOuk2h2FnaPoPXv2pBvvvddOjxPPvfvaa+L4Nsdj2DriLS8tFVnge/XuLfarDxrsen+ps6nRI+wcQRfR9L07xP48EU2Pn0b9B6hPKqPzcfG76hB211PGmYeVRHXHjh2zyzsvlfT20iLs3AdHn1naOfkUR9vdHVXEy19Z2keOnEDh4dHe3mKnemYI++HD2ZSXt1/IursIFSeO4qg67ydlWdeaSAvCbthjoKohCLsqTIYVMlPY3d0k/z5sbm5dat8q9orMs+RzhNoWlbcJvC0RXltSPKMjsYYB9dCQsz3sfCxadTULfJvI8+9rm8C3iby7XBuy7t/Mfvjvj7LXncevJKrjeff2grB7S867ejKF/WBRkXc3qbPWmIgInS2YVx3CrpNtdxP2bRs30r8ef5xWrFlDvQNs53Du3LKF/nrrrULWxyW4jvRxOV4Cf95FF9HvbrzRK/LeCHtGWrLI9J6TmWrblx4/jSJHdt3RXV4NvIsqQdjVgS8pzrPLOx8Lx1H3kaPGqavsUEqrsCtVc3P3EUsuS2tQkOs99hz14aPRJk6c6baclhs3WtgrKw/Tvn1bxJF07vY/cjl+s4LffBg1yrukgBB2LTOtvyyEXT9DLS10lbB7useWliO2qLxjlN5hPz2/oe643J6/dkyK5yzhm6c+ZfxcbdI53lLQFoW3iTy/+dgWhW8TeRn3LbsP/t2tyDsfC8dnu4eFaV+lBmGXO3MyhT398OEu2cMOYZf7TEntrbsJ+/WLF9P/3XQTzTr7bME5Jz1dZIRf/sgjdNpZZ7lkv3rlSnrv9ddFVH3WvHlez5FaYS8rKaK0vba96UFDQmlcvG1vur++c+81MJ0VIezaAHJGcxF1z0wRL8KiYxLEfvfBQaGqGvJW2LlxPiP34MEdIoLuLps6n+nO5Th6rSZpnacbN1LYeV8orwIYM+YkcXa6q4uz33ME3lbO+0RPEHZPs2vszyHsxvL01JqvCrun+xb750V2+9akeA575zlS27t3n/Z75x2T4gX089S8aT9XK+zOboDH7LiUniPydXXVdom37Y23ibxVMvjzSgwlUR3/7lei7mqPU4Wwm/YoO21YprBnHD7cfmutcsSbcmcmfR8b1j5/VWZOIf3hT89S4eEymjQhll566nYKHtx5FeXHazfSX55eIe7OXTk9M4YIux56RNSdhP2N55+nyvJyuuvRRwW12upqIevnX3IJXbh0qVOSR48cEVH14kOHxH714aOcn4esdhrcCfuxlhYRSWdJrygvEZF0lvSQUN/dk6J23F1VDsLuPfnKyhJ7ojp+saUkqnP3YkuPsPOdNjTUiiXivMyQo+2uIlG2M3QzKTFxDulNnGeUsHPW6uTk9eJYIFdnzfNSSo6qc4SKtwDo3QsKYff++famJoTdG2re1/FXYfc0YmcyryTFY/EVy+uVpHgBtmX3SlI8ln2zLj3C7uyeWlqOdpB429J6PtrTcU88i3zv3rYVj/561dZW2KPuvD2Ao+68571Hj87H5yljhLDLnW2Zwp5VUtIlEfYYB2FvbGymv7/8AV1x8TyKiYqk7XtSaePWZLrj90vagWep/27jTvr9lReIf2d5z84v6lRO72xB2HUS7C7CnrxzJz2yfDm9sWYNDQ4KEtTuu+EGGjNxYqdj3RSkB/fto+cefJASpk2jmxz2u+tB7kzYC/Oz7JneR40eJ/amx43zfASUnvvoLnUh7MbMdF5umoi8Fx3KtEfdQ8M6Z3fXK+zK3WZk/ErV1aVC2gcODHY6CM4yX1tbSfHxs3QN0ihh37t3E3FkhbO8O7v4BR3LemDgUIqNPVHXPSuVIeyGYFTdCIRdNSpDClpV2N3B4Tf1bMvtbVntOybF41VQIrO9k73z/O96VuEZLeyuxum4H962P75cjKe9xA8R4/THq7g4R0TeeTWYEnUPCup8cg+EXe7syhZ2Tjh3nDjQ3noeu4Tvo0PbVkOyiL/78Xd09x+XUt++AVRRVUP3Pfm6+J4F3tXVsZ5RswRh10myuwj7rVdcQQsvuYTOWbRIEGMRbzl2jO5+7DGnBNd9+qmIrN/24IO04De/0Um5rboi7A31tSLLO0fTW1pa7GemDxxkezMBlzEEIOzGcFRa4WV/vFw+KyuFevToZU9U17ev7YWVUcLObRUVZVF6+i4h7a6SzB04sF38MeSl5d5eRgg7L9HnRFRjxzo/MYL357Osx8VNpYiI0d7eaqd6EHbDUKpqCMKuCpNhhbqjsHuCx1FrkQBPSYrnsHeel9vzqiRF5jslxQvo5zbiK0vYnY2Rj1LrmKGexxIY2DFDvfdJUT2xNfrnnNiV97oXFWXQCSf0tB8PpyRXhbAbTdx9ezKFPae0VNyMIuvKnZn9fdTQoXYIHSPqHSPurmi5isTrnS0Iu06C3UHY3331VcpMS6O/PPecoPXmv/5F+5OS6KnXXnNK75Wnn6ZdP/8s9quPn2RspPvFR14Q0fT0tCQh6RxNHxk1RucsororAhB2856Nw0XZ9kR1I0eNF4nqWo4cM7RDjrywDHMiupiYyU7bTknZKCIzUVHeHWuoV9hzcvaKCFFCwmyn95eZuYc4SRG/qeAuCZ034CDs3lDzvg6E3Xt23tSEsGunxkfSieX1IiGeLVIvovStX/OS+o5n0Isl9wH9KTzCuNM3tN955xq8Rcq2L74tQz2/YdExQ73aPeNG3JO3bZSXH2rd755J4eFRYuvU9Q/e4W1zXVZv7f/eE30vuPTyLrsHbzuWKey5ZWXe3qaueqNCQtoJe15BCV28oO21yXOvraLZJyfS9MnOj8flKPyTL75L995yhdO97npuDsKuhx4R1Tc362xBfvXI1j0ahcXFHjvfs2cPnTl7Nu1OSqKo6Gha8frr9NK//03ffP89hTg82NxQdnY23XTDDRQWHk4vvfIK9etnTPKXgwcP0gfvvSc++g4eTKfPn09nzD+P+vb3z+VeHqH7UIGivBIfuhtr3kpTYwNt++lH8VFRUkKTTz6NJs84jYaGGXO8yJEjzfTpO29QbXUVLb5yGQWHtE+AV19bQ288/zidOuccmj7bdeJIV/SffWC5+NGdjz2veYK2b/yBfl7/DS1bfj/1H9g+8lNRViLue2DgYHHfRu3RLC0uoj3bNtOerZup5wkBNCpqIkVFTdR8JJzmwaICCEgmEHtirOQerd9ddWU5VVWUUWVFGVVVlLZ+bftcU11JIaFhNCQ0jELCwsVnx68Dg5xvT5JJraaykvJzsqggO5MKsrPE11XlZTQ8ejSNiIoRn4dHjRaf3e0fl3nPjn01NTbSjk0/0Y5N66m5vo4uuPhiWnjxxRQd4x8n/7z0vO3v5I3LbX83/emKHzFC2u3mlZfb97ArnfIqPI6wm/l9R2F33LPuKcLu6ed64UHYdRK0urAvnD+fFl5wAd1w44209ssvadk119C677+nxMTEduS++PxzIeu33n473Xn33Tqp2qqzoL//3nv066+/0mWXXUZLL7+cinq6TkBiSKdopB0BCLvcByJl+y4hkiyUw0ZF04kzbPJuxLXxmy9o03dr6aIrl9H4SVPbz3NBLq147nH67dU30LjEKZq681bY05J30+qVr9B1d9xPEcPbJ6NMTdpFn7zzBs2at4Bmn7NQ0/24KsxMf922mQ7lZgum/MZIaUa1IW2jERDwRQIQdrmzEjpqKJWXHKby4mIqKykWX5cV82fb1yybQuBDw2lIWKvMO3zdf8BAuTfc2ltDfb1N4IXIZ1F+dhYdysuh4dExNMJB4PnrgD59u+QenXUaObgPffHJJ/TFxx/ThIQEIe4s8L58QdjVzU5+Rbmt4HFbsnjeyy7j+xHBQ+w3qGUPO8v6g8/8h5ZcMMdl9F3dyF2XgrDrJGhlYf/3iy/SN+vW0WdffEG/7t5N58ydS++8/z6dc+657ag99cQT9Pprr4mo+rnnnaeL6I7t2+2ifsqpp9Jll19Ov73kEnubXyft0dU+KmsjAGHXxktv6fKi1j9SRJS84xch7rmZB22COWMmjYjWFzE7sHePiFrPOH0uzZm/uN3tHty7hz5440W6bvkDFDlK/dJOb4S9MDebVjz/GC1ddguNiW+/VH/9V5/Stg3fi6j62A4/08o3PzuD9mzbIjiOihkjOCaedIq9maT1SVqbRHkQ8BsCEHa5UxUxOtxth7yaiuXdJvGHbVLv8DVHtIeEhtui9GGtYu/wde8AeZng+dQOlnclCm/7OpOGhg+zReFFRN72ecCgQLmgW3ubN6st98pXa9bQ5x9/TL/u2GGPuieeaExyUiMHB2FXR7OwooKOky2iLiLrdIKU74c7CHtHCee96as+X0+P3HUtFR4uFRnkn7j3eurXp4/pss7UIOzqnh2Xpawq7JkZGTR18mTa9MsvFBoaSufOnUu333knXX3NNXYW1dXVdOMNN1BNTY2Q9eHDvTsPubKy0r7kvaKiQkTSWdSjR3dOLgVh1/nAaqwOYdcITGdxR2FXmqooLaZfW6WzX/8BQjo58u7tlhBe0vnpOyuoT9++Qor79G3burJz83ra9O2XdN0dD4il6GourcLOS/NXPPcYzTr7fJp22hx7F/xilt9M4CjU4iuvo8Cgtne61dyHUqaxvl5E0lnSG+rrWnnNpOChnbMMQ9i1kEVZfyMAYZc7Y56E3dPd1NVUu5R5Fn3eNuRuyb3jcmFPfXn788Kc7NYl9VkiIp+fnUkDBg6yL6O3ReRjKKjDlklv+3NXz1HYlXL5ublC3DnqHhgUZJP3iy6iwMHq/p6ZcZ+ObULY1RFmYbfLuiLtEj4Paz0FS7lLV+ew878rwp6eXUBX3/ZUu4FFhofQq0/f6TabvDoSbaUg7FqJdShvVWG/7JJLaNpJJ9Fdf/oTzT/nHDr9jDPo3vvvt49+y+bNQtYXLlxIjz35pFcUv/v2W5uov/8+Xbp0qRD1s885x21bEHavUHtdCcLuNTqvKjoTdseGDu5Lsu2/3rbFtlz+5NMobkL77SlqO173yQfES89Z2qNix9qr/bj2E8o6sJ+uvf0+VU1pFfb//OMJGj12Ap254CJ7+zkZB4Ss81L9cy9aqqrfjoXS9yeL7QQs67wagd/YGDPRfdJLCLtXqFHJTwhA2OVOlF5h93S3leVlrcvtD9uW2Yul961flxTb9807W3I/2CFy6KkfrT8vOVQoltHbltRniq9ZtkQUvlXg+evQiGFam3Zb3pmwO1bYtH69EHdeNs/izh8zzzjD0HvQ2hiEXR2xoqqqLjmHvaOwq7tbOaUg7Do5W1HY31y5kt5auZK+X7+errv6auo/YAC9+O9/20m99uqrdM/dd4uoOku2lisnO1vsS2dJDwwMFJF0biM4WF0yFgi7Ftr6y0LY9TPU0oInYVfa4sixIqccmVYEtWNCOU99s/yzKM//7RU04/R59uJr3vsPNTc30W+v/qOnJkiLsK9e+TIFBPShCy+/1t7utg3f0Ver3xVvHGjdr8+J6ZQ3MHilgPImBq9EUHNB2NVQQhl/JQBhlztzZgu7u9EcO3asVeJbl9qLpfdtMt9QV9e6zJ6X29sS4gmxb11yz1FyI6+KstLWJfWZ9og8/92yLaNvS24XOSrK6249CbvScFVlpRD3zz/5hGqrq+1L5oePHOl1395WhLCrI3e4qkpdQYNLhfvISgxnw4Kw65xsqwl7cXExTZ00iVZzIo/PP6fU/fvF18p16803i/3sLOsJHRLPuUP50erVQtS3bNpkX/I+fcYMzfQh7JqR6aoAYdeFT3NltcLu2HBeVrp9n3ZU3DghrQnTTlbdd1FBrlgiz/vWL7ysbcvLOy89S6HDhnuMeKsVdo7olxwqoCtvvLPtjYH3/0u8n52XwHdMPOduACk7t4pIek56mn1//8jRcarHrBSEsGtGhgp+RADCLneyulLYPY20uampXRI8EZlvTYjHX/PlmBDPtvTelhyPvzYi2RzLckFOa3b61og8v6kwggW+dT+8kuSuZ69enoZEaoXdsaGk3bvtS+anzZghEtWdd8EFHvsyqgCEXR3J4uquSQgbFtg1+RjUUIGwq6HkpozVhP36a6+lyOHDKTw8nN55+21xfNvAgQOFuPMS+PHjx9NLr76qihofCadkep80aZJd1PXss4Kwq0JvWCEIu2EoVTXkjbArDXNiFiXafCg/x55hfthIdREMjrQXFxXSRVdeR6ERw6m5qZHeeO4xmnLKbDr1zPaJJh0Ho0bYf/5xHe3+ZSMtu+MB8cKvpKiAPnlnBYVFRIrIupqLsxYrmd6HjYiyryrQ8/sEwq6GPMr4KwEIu9yZ82Vh90SCj/dUkuDZl9k7LLnnnClKRD5EZLhvjdK3fu3tEXC8QkzJTN+WpT7TLvCOye369mt/lK83wu7491LZ6566b599yfz4+HhPqHT9HMKuDl9JTY26ggaXCh1k7EoTI28Pwq6TppWEnaPgf3vySbFX/Y7bbhPHt40dO5ZWr1pFN/7hD/TQI4/QjTff7JZYfV0dvf/++0LUC/LzhaTzB7djxAVhN4Ki+jYg7OpZGVFSj7A79l96+JBdbgcHDbGf7c7L0d1dLNbfrVklJDpx2inE7XCCuIVL/4/ipzhfEeNJ2Pfu3kZffPCmSGTHGYaTd/4iluHPu3CJ2zcC+D55Wb5yZnpVZbn9TQhux4gLwm4ERbThqwQg7HJnxp+F3ROpqory1gz3bcvsHZfcBw8NbY3QOy65t30dNCTEU/Ptfn6spaUtsZ2IxNv2xXMfHIkXUfjo0XTZJRdRyNChmtp2VjgrI8O2ZP7jjykiMtKeqK5f//ZvEOjuiIgg7OooltXWdske9qEQdnUT5I+lrCLs9fX1Iiv8zbfcQvffey+t+fJLOmPOHHrowQdp9Ycfiqg6J55zdW346Sfb3vT33qMLLrxQSPqC8883fEoh7IYjddsghF0ub6OE3fGuU5N3C+ndv2enPcM8J31zdXHCORZqPv6MpTozbR+9+eLT4rx0Phqt4+VO2PlIOj7f/f9u+RPFjJso3gzg4+r4DQFP96Bkep8weZq47/Eaz4dXM3MQdjWUUMZfCUDY5c6clYXdHUle3aWcNa+cO++45L6upqZt/7zDMntxhF1YmOpj4Q7l5TqcFZ9JxQV5IsfShPh44si48hE5YoTXE7/+22+FuP+wbp19r/uMmTO9bq9jRQi7OpTldXWioDjSjQ9ib73M/n7IAHX5b9SNwthSiLDr5GkVYV9+221UV1dHG3/6iR58+GGaO3euWALfq1cvIetDhnQ+YqmwsNC+5J3LiePYLruMwsLdn0WqBzmEXQ897XUh7NqZ6alhhrAr98PHqSlL5o8da2nd+30aBQZ1TvhYX1crpJ0TGS2+4jrKSE2h79asFtIeNKR9RMOVsFeWlwpZn3fhbyl2fAJ9+u4K4mWTLOv9BwzshKm6sqL1/jZTjx497Uve1R4v5w13CLs31FDHXwhA2OXOVHcVdk+UjzQ3d9g/bzuH3pblvpg4ou547nzHJfeOR4869sVL4vNycmh/Sgql7t1r/zja0tJJ4kfHxnq6zXY/LyspEUnqOPLecvSo2OvOWebDIiI0tQNh9w5XRX0dHT9ODke7sbyb/z2E3bv58otaVhD2b9ato9tvuUWI9oWLFtGJU6aIJfBXXnUVPfDgg53mYc1nnwlR//abb2xL3i+7jE6bNUvKfEHYpWC2dwJhl8vbTGF3HAkna7NFsLfQmImJQt4nnnhSp8H+8MVHtOuXjXTRFcuoMC+b9iftomXL76cePXvayzoTdn4B9sbzj9OESVMpcmQ0ffLuGzT1lNl01sLfdOpj3687hKgf3JcsJJ2T5nHyPBkXhF0GZfTRVQQg7HLJQ9i9480Z7JWIvNhH33pUnS1af1jkPVEkXiTDa81yf8H8ucSZ3jlg5HgVFxXRfgeBZ5kvLyvrJPFq96vv3LbNvmR+1pw5QtznnneeV4NFhF0dtsp6W4Rd9hWk8oQZ2ffF/SHCrpO6FYR9+pQpNHDQIHHu+qhRo+ipJ54QUfXFF7Wdk7x/3z77kvfYuDgh6Szrffq43xOrE2+n6hB2o4m6bw/CLpe3LGFXRnX06FF7VJv3I9qORZtJYcPalhTu3b1dRNvnzF9MHDWvqaqkpdff4lbYP3j9RRo0OEhE49d/9amIqsdPmW6vU3won/Zs3SLeNAgJC7dH+zu+8DKbPoTdbMJovysJQNjl0oewm8ObV1/xkntF4MXXJcXUUFNFBXl5Ikkyi7uzj2HDh4ub4qPdWNztIp+SQtlZWWIZfccl9a5e1zY3N9vFPTc7275kPk5DjiYIu7pnpLqhQSyHVy5eFi/j+8Em5C1QN2LPpSDsnhlRY2MzPfjMf+jL734RpVe+cA9NnzxefO3vwv6X+++ntV98QWPHj6dBAwdSdna2OLItbswYOnLkiH3J+4EDB8RyZYE3JgAAFG5JREFUd5b0+IQEFdTMKQJhN4erq1Yh7HJ5yxZ2x9EdLsyzHw/HSd046s4fPXv2pLLiIiHtnPSnqbGRBgeH0IIlV4rqHSPsa1e9Q1UVZdSnb1+qKC0Rsh4SFkEtLS32Nwc4mZ2t/ZkUHin/LFxl3BB2uc83epNLAMIulzeEXS5vJUs8S7v4yM+3fXb44KXtzkR+xMiRNDQ0lA47icbHjBnTSeIDO5zPfTA11XY83Cef0OiYGPuS+V69e7uFAGFX94ywsHfFFdivX1d0q6pPCLsKTB+v3ShKXbxgNlVU1dCTL75L995yBQUPHuTXws7nqy9auFBE1QMCAujU006j5/7xD/p5yxZ7NP2sefOEqC9yiLarQGZaEQi7aWidNgxhl8u7K4XdcaT7dm8X0W/eu85izZH3UbFj6Yv/vUU5GWninW7+99lnn99O2Dd++6WQcn43PCp2HC289CrKzTjQuvx+s9jLzm1NdIi2yyXcvjcIe1fSR99mE4Cwm024ffsQdrm81RzrxlHxjhLv+H1TU5MQehZ4/qwkrKutraWSw4cp4+BBEZlnuReR+IQEe3K70LAwMeBv164V4v7zhg12cZ8yvW1FmSMVCLu6Z6S2sbFLssQPgrCrmyBfLMXR9b+//AFdcfE8iomKFLf43GurKHpEhBB4f46wDx06lIqKiqixsZEee+IJ8SKbM73zLzhlyfsIHdk2zZhPCLsZVF23CWGXy9tXhF0ZNR/lY0tUt5l69upNJ86YKRK/rPv0A+rXrz8tWPI7kfmdL84ov3bV29TQUE/nLl5KnNj1121bqOXoEXu0fnBw5+SVcglD2LuSN/qWSwDCLpc3hF0ubzXC7umOamtq7EKf3yE6z2LPy+NZ5IOCg8Ve+abmZqosLxd1+vXrJwReWVIfEhpKO7duFZF3DoLxXndOVjckpO1YOwi7pxmx/byuqUldQYNLDZC8zVfL7SPC7oFWx4g6F3eMuPursDc0NAgx50RzCfHxtHHjRrukzznzTC3PkNSyEHapuAnCLpe3rwm74+gz0/aKJfMceR89ZgLxEvq6mmrbkTzHiepqbV/zEvesg/tbz0yfSTHj4uVC1NAbIuwaYKGo3xGAsMudMgi7XN5GCLunOy4rLXUZoc/PzaVBgYHE57XziSp1tbXic3RMDHH0nb/fvXMnnbNggRD3M+bOxTnsnoC3/pzdSjnCTeZnCLvKCfLFYizs//3f13TjVYuob98AcYvb96TSxq3JdMfvl/hlhH1IYCDxMiB+tzA2NpbOnDtXnLnO7xb6+rUjK9PXb9Hp/U059VS/vG9/FfZ9u3f6Je+aihqfv+8jR5opK20fZaTuFRl8eW86X7zXnc/VjR0fT6PHTaTevW2/L335ykrK8uXbc3lvERGj/fK+/fWmi4r88zkZFjPML5EXFeT45X0PCh7kl/ddUlTol/cdEdYWue6qAXDwq6G2VhyL3FBfT9XV1cRRe/6a80ApZ4grn3sHBNDpc+fS86+80lW37HW/8RJX3DY0N4v75LRzgl1rAjqzv+8X4LuvWxBh9/DoWjHC/vtly+j9d9+l6TNmUGBgoNf/ebuiYmmN7wuNMy4P/POFrsClu09/FfZ/P9r5OELdMCQ0cKTpiIRejOuiqbGB8nNsb6KNiIohV+flGtejsS3VlPvn75PZp//WWBBozS2BjRtW+yWh/oH9/fK+/VXYe/To4Ze8eRuTP149WOR8/OLocMeP9z77jCZNnerjd9759mQKe9PRo10SYe/rIWlgV04ahN0DfSvuYe/KB05v31gSr5egtvr+KuzaRuk7pX15SbzvUDLuTrAk3jiWaMn3CGBJvNw5wZJ4ubxlLImXOyLf7k22sHcFjT69enVFt6r6hLCrwMR71rPzi8QSeI643/fk63T3H5eKJHT+uIddxZB9tgiEXe7UQNjl8oawy+UNYZfLG73JJQBhl8sbwi6XN4RdLm+Zwn6kpaU1wt66LJ5s57CL1fG8TN6k7wMg7HIfKqN7s9o57EbzkdkehF0mbULSObm4CcIuFziEXS5v9CaXAIRdLm8Iu1zeEHa5vGUK+9HW3DhyR0jUq2dP2V2q7g8RdtWonBdEhF0nQI3VIewageksjgi7ToAaq0PYNQLTWRzCrhMgqvs0AQi73OmBsMvlDWGXy1umsLccO9Yle9gh7HKfKam9Qdil4iYIu1zeEHa5vCHscnlD2OXyRm9yCUDY5fKGsMvlDWGXy1umsPPxeLb178elfvblRIaIsOt83iHsOgFqrA5h1whMZ3EIu06AGqtD2DUC01kcwq4TIKr7NAEIu9zpgbDL5Q1hl8tbprDzyGSev85Hxyn9yaWqvjcIu3pWTktC2HUC1Fgdwq4RmM7iEHadADVWh7BrBKazOIRdJ0BU92kCEHa50wNhl8sbwi6Xt2xhlzs63+8Nwq5zjiDsOgFqrA5h1whMZ3EIu06AGqtD2DUC01kcwq4TIKr7NAEIu9zpgbDL5Q1hl8sbwi6Xd8feIOw6+UPYdQLUWB3CrhGYzuIQdp0ANVaHsGsEprM4hF0nQFT3aQIQdrnTA2GXyxvCLpc3hF0ubwi7wbwh7AYD9dAchF0ubwi7XN4Qdrm8IexyeaM3uQQg7HJ5Q9jl8oawy+UNYZfLG8JuMG8Iu8FAIexygXroDcIudzog7HJ5Q9jl8kZvcglA2OXyhrDL5Q1hl8sbwi6XN4TdYN4QdoOBQtjlAoWw+xRvCLvc6YCwy+WN3uQSgLDL5Q1hl8sbwi6XN4RdLm8Iu8G8IewGA4WwywUKYfcp3hB2udMBYZfLG73JJQBhl8sbwi6XN4RdLm8Iu1zeEHaDeUPYDQYKYZcLFMLuU7wh7HKnA8Iulzd6k0sAwi6XN4RdLm8Iu1zeEHa5vCHsBvOGsBsMFMIuFyiE3ad4Q9jlTgeEXS5v9CaXAIRdLm8Iu1zeEHa5vCHscnlD2A3mDWE3GCiEXS5QCLtP8Yawy50OCLtc3uhNLgEIu1zeEHa5vCHscnlD2OXyhrAbzBvCbjBQCLtcoBB2n+INYZc7HRB2ubzRm1wCEHa5vCHscnlD2OXyhrDL5Q1h71re6B0EQAAEQAAEQAAEQAAEQAAEQAAEVBE44fjx48dVlUQhEAABEAABEAABEAABEAABEAABEAABaQQg7NJQoyMQAAEQAAEQAAEQAAEQAAEQAAEQUE8Awq6eFUqCAAiAAAiAAAiAAAiAAAiAAAiAgDQCEHZpqH2jo+deW0Ur3vtS3Myjf7qOLl4w2zduzMJ3wcz5uuP3Syw8yq4fWkVVDd14zz8oaX8Gnm8J05GZU0h/+NOzVHi4TPR23eXn4xmXwJ27+HjtRvpl11565K5rqW/fAEm9dq9uOj7fkybE0ktP3U7Bgwd1LxASR+v4OzwyPIReffpOiomKlHgH3aOrjn8rlVGfP+8U/E4x6RFobGymB5/5D3353S/4e2kSY6s3C2G3+gw7jG/7nlTauDVZvKjmXx5/f/kDuuLiefiDaOIzwLK+bfd+Ouu0KfT7Ky8wsSc0/do7n9O82dPE88wvSO578nW6+49L8Xyb9Gi8+/F3tGDuyUJglBcjSy6YQ9MnjzepRzTLBFgkmf2AAf3oxqsWQdhNeiwc/16a1AWadSCgSOQdNyzB75AueDL4TUC+EMQxBz7zzc4vsr/+ZnnH30tzWFu1VQi7VWfWybhYHmefnGj/Y+j4C6QbYZA2VH5h/d3GnUIi+TOEXRp60VHH511u792vN/A2f86VN1rPO2uGePMVwm4ecxb2vIISCIx5iNu1DGGUBNpJN/xmyZMvvkv33nIFVpCYNA3OXn/jDRKTYFu0WQi7RSe247CcRdQRQZAz+eAsh7NjL1hBIpc5vznFK3aeuPd6vOAzET1LzcjhoRQXPZz++7+vIewms/7L0yvsPWDLh4mwiYhXSEWNiKBnXv5AbLPB8mxzeTu2jtco5rN2/BtZUVmDv5fmI7dcDxB2y02p8wGxwLz01md0zaXn2V9QK0sredkw9kGa9yDgj6F5bF21jGiNHOZKTgzsNzWft7Jih1fqcEQMwm4+c6UHZcvHKVPjEXE3AbvCl5tW8jLw75boERHgbQJvvLltMlQXzSt5MYYOCUI+jK6ZAr/uFcLu19On/uYRYVfPyuiSEHajibpvD7zl8ubeIDTmMu/4hiuE3VzezlrH7xXzmDt7fYKAgnm8HVvm53rV5+uRbM5k3I6JQhuamkSCXORrMBm6xZqHsFtsQt0NB3vYu2ay8UJPHne8+JDHumNPeM7NY89sr77tqU4dYGWDeczxfMtjyz11fH3iuKJE7p10r96Qe8T8+Xb1hhRyG5nP3ko9QNitNJsexuIoM1wUWSrlTD5ERh5nRArksOYXIBwlUI64QoRdDnelF0TY5fNGRMxc5h3fbMWSeHN5c+tYxWA+Y+7B2SkqSPosh72VeoGwW2k2VYwF57CrgGRwEQi7wUCdNNfxjFOlCBJFmcPeGW+wNoe1s1Yh7Oazdvxbyb2tfOEeHDdmMnaWGCXRH36fmAy7dVUD8gSYz5l7UI4tTNqfITpEUkU53K3UC4TdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGAITdMlOJgYAACIAACIAACIAACIAACIAACFiJAITdSrOJsYAACIAACIAACIAACIAACIAACFiGwP8DRs34HMqlEj8AAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def plotStarburstMap(som):\n", + " boner_rgb = []\n", + " norm = matplotlib.colors.Normalize(vmin=0, vmax=255)\n", + " bone_r_cmap = matplotlib.cm.get_cmap('bone_r')\n", + "\n", + " bone_r = matplotlib_cmap_to_plotly(bone_r_cmap, 255)\n", + "\n", + " layout = go.Layout(title='starburstMap')\n", + " fig = go.Figure(layout=layout)\n", + " fig.add_trace(go.Heatmap(z=som.distance_map().T, colorscale=bone_r))\n", + " shapes=[]\n", + "\n", + " for row in np.arange(som.distance_map().shape[0]):\n", + " for col in np.arange(som.distance_map().shape[1]):\n", + " cx,cy = findInternalNode(row, col, som.distance_map().T)\n", + " shape=go.layout.Shape(\n", + " type=\"line\",\n", + " x0=row,\n", + " y0=col,\n", + " x1=cx,\n", + " y1=cy,\n", + " line=dict(\n", + " color=\"Black\",\n", + " width=1\n", + " )\n", + " )\n", + " shapes=np.append(shapes, shape)\n", + "\n", + " fig.update_layout(shapes=shapes.tolist(), \n", + " width=500,\n", + " height=500) \n", + " fig.show()\n", + " \n", + "plotStarburstMap(som)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here you can see that the samples at (4,4) belong to the same cluster like (8,6). They are in some sense more similar than (4,4) and (8,8).\n", + "\n", + "Compare it with the distance plot that is also given in the basic example:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAIMCAYAAAAHCo5eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABotUlEQVR4nO3deZxbd33v/9dH0kizL17G+5o4iZ2QDccJCWFfQqBAoGVr4ZYupr1laUt/bSi97e2SAr3Qe6GlcF1IKWVvQygXDAHKlpDNzp7YieN4HW9je/YZjTSSvr8/pCNr5LFGMx7NOZLezzz0sDT6Hs1nnLHe+pzzPd9jzjlERESkNoT8LkBERETmjoJdRESkhijYRUREaoiCXUREpIYo2EVERGqIgl1ERKSGlBXsZvYBM3vSzJ4ys9+vcE0iIiI1z8xuN7NeM3vyHM+bmX3KzPaa2eNmdnU5rzttsJvZZcBvA1uAK4DXmdmGmRQvIiIiZ/kCcFOJ518DbMjdtgKfKedFy+nYNwL3O+fGnHMp4GfALeW8uIiIiEzNOfdzoK/EkDcAX3RZ9wOdZrZsutctJ9ifBF5kZgvNrBm4GVhVTtEiIiIyayuAwwWPe3JfKyky3QDn3G4z+xjwQ2AEeAxIFY8zs61kdxXQ0tLy/A0XXVRe2QEwmkj4XcKMVOMywCEzv0uYsXA47HcJMzKROuufZeCNjY77XcKMhSPVNee4u6vT7xJm7KGHHjrlnFtcye9hZvPxRvoUUPhLvs05t20G20/1xjlt3dMGO4Bz7vPA5wHM7G/JfmooHrMN2AZw1dVXu5/ec085Lx0I9+3d63cJM5LOZPwuYcYaGxr8LmHGOlta/C5hRo4PDPhdwow99sAuv0uYsdauVr9LmJH3v+X1fpcwY2Z20O8a5si4c27zeWzfw+Q95CuBo9NtVO6s+O7cn6uBNwFfnUWBIiIigWFmFb3NgW8D78rNjr8OGHTOHZtuo7I6duAOM1sITAC/55zrP49CRURE6p6ZfRV4CbDIzHqAvwAaAJxznwW2k53XthcYA95dzuuWuyv+xpmXLCIiElxz1FWf03TzoZxzb5/meQf83ky/b3XNAhEREZGSyt0VLyIiUlPMKt3b+jPRWR27iIhIDVHHLiIidciY+jTx6qeOXUREpIaoYxcRkbpU6VnxflHHLiIiUkPUsYuISN0xq92OXcEuIiJ1qfKnu/mjNn8qERGROqWOXURE6tCcXaglcNSxi4iI1BB17CIiUpfUsYuIiEjgqWMXEZG6VKsde1UE+yf/ay//77ETJFIZYpEQv3TFEj7w8gv9LqukHz89xC/2jZGYyBBrCHHD+mZedkm732Wd05ce6OPhw+NkMo5QyLh6VSO/du0Cv8vKe/m/Xz+r7f7rV+6d40rqS9B/L6ayfzTC3pEGEhkjFnJc2DrBupaU32Wd06k4HBo2kmmIhmF1m2NRk99VFfifHbPcbnBu65CyBTrY3/uVx7h7b99ZX7/9F4e5/ReHufHCBfzjO67wobJz+9IDfdy7b5SMK/xqmm88PMh/PDLI9etbAvXG+Hc/6OVg38TkL2Yc9+2Pc9/+I6xZ0MAfv6rbn+LEN9X4e/HYQJRHBhpJusld2P6xKFFzXNU5zhWdSZ+qO9uhIbjveIgjI2d3jStaHS9YmmF1cHuBqqcFanzw2n+4j57+8fzjcMiIRYxEypHOpebde/t43T/cx3fe9wK/ypzk735wgn2nzrxxxCJGU4MRn3AkUo6Mg3ueG+XY4AT/36uW+Fhp1p988ygjyUmfQAgbpAu+dLBvgj+58ygfu2X5PFc3tf955V386wOncS7797t5TQudTWEG4ml2HhwlkXKYwf7YO/wutWpV4+/FT0428uxIlOzVuhztkQxNYUc8bQylQiSd8UB/I/0TIV6yeHy6l6u4J04ZPzpkOIyGkOOiTkdLA4xOwJ4B48iIccfeEK9c7bhskZv+BedDuR34bDt8mTOBDPb3fuWxfKg3R0N8/l1XsWn5mY+uu44O8ZtffISxZIbD/eO89yuP+d65f+mBvnyodzaF+IOXLWZJRzT//InBJP/7xycZiGd47lSSLz3Q52vn/nc/6M2/eYcN3vfSBWzoPrP/79neOP/wkz7SDkYSjr/7QW8gOjQv1G++rIObL+ugqeHM/M+3X7OA7U8Osv1J7QKcrWr8vXhsIJoP9e5Yild2j9JS8M42moIf9rbQm4iwZyRKV0PG18790BD5UN+yJMOWpY5o+MzzL007HjxuPHgixA8PQXvUqXOvCKNW548H8qfydr83R0Pcd+uLJ4U6wKbl7dx364tpjoYmjffTvftGgWyof/SWFZNCHWBJR5SP3rKCzqbQpPF+8Xazhg0+9dYVk968ATZ0N/Gpt64gbJPH+80L9Tdf1TUp1AGaGkK8+aoubr5MHcNsVePvxSMDjXih/sblk0MdoCUCb1w+SncsBVhuvH/uOx7Kh/oLV0wOdcgeZ3/hCseWJRkcxv3HA/k2LQEWuN+YT/7X3vz9z7/rqpJj//mdV0653Xz78dND+WPqf/CyxSXHfiD3fMZlt/PDlx4480HofS8tvdfg917cNeV2folFbNrgvvnSM88fGQjOMdWgq8bfi/2jkdwxdccru0t/WH5F9yjgSDpj/6g/OytPxeHISHb3+5alpXexX7PU0RBy9IwYp+LzVGCdMbOK3vwSuGD/f4+dALLH1Is79WKXreggHJq8nR9+sW8MyIZOcadebFlHlFjEJm033x4+fOYYY3FHVuzipc1TbueXzWtazurUizVFzzy/+5j/NVeLavy92DvSAEB7JHNWp16sNZIdV7jdfDs0nP23f1Hn2Z16sVgYNnS6SduJlCNwx9gTqew/PC/8phOLhBhLZvLb+SExkf3eTQ3l1dzUkJ0E6G033zKZM8dQy+FNnMpk/J/E09k0zbthkbhPf8fVqBp/LxKZbLFN4fJqaAw7hlJntptvyXT2z5YyP1e0NkzeTuZWrc6KD1zHHotkS0qkyvuHeuaDgH8/SizXQcYnyqvZGxebpvOslFAo+8ucLvP92BvnbeengfjM3uGm6+7ljGr8vYiFskXE0+XVMJ4b520337wufbTMqQkjE5O3EylH4N71fumK7Glg6Yxj19HSx6CfPDJIOjN5Oz/csD67WzKRcpwYLH1M99hgMv+hxdtuvl296szkoWd7Sx+8e+b4mcMFhdv5ZefB0Wm78HjyzPMbl/lfc7Woxt+LC1uzyTeUCjE6zRo0I6nsuMLt5tvqtuy//T0DNm0XnkjDswM2aTuZWzrGPk8KV5T7zS8+UnLsb//bo1NuN99edkk7XtPyv398suTYT+aeDxm+rURXeJrdP/yk9MSnT/+sf8rt/JJIuWlPZ9v+1JnnV3SWnvMgZ1Tj78W6lhRRc4Dxw96WkmN/1NsCGFFzvq1Et6gpu/jMRMZ48HjpN/4dx42JjLGyNWAr0UngBS7YAW68MPtGMZbM8IKP/ownj0x+I3/yyCAv+OjPGMt1Zt54P12/PvumMhDPcOudRzhW1LkfG0xy651HGIhnJo33y5oF2YN3aQfv//qRSR0YZDuy93/9SH53qzfeb2aw/clB7nikf1JnDtlO/Y5H+nUe+3moxt+LqzrHAUdvIsK3jrYwUpTZIyn41tHseezgcuP984KlGQzHgydC3HPESBR17ok03HMkex674bhuqeaJVEqtduzm3Nzv4rnq6qvdT++557xe4+yV57LH0ROpTH73O8CqrsbzXnnuvr1zc6rcdCvPeS5YFD2vlefSmbn5h17OCmMArTE77xXGGhvOLwD8WCu+s8XfD18zdXxgYE5eZz5/Lx57YNd5be+ZauW5xrBjPLfynPf1i1qT573yXGtX63nXW7zy3IZOR2tD9pj6swPZTt1wc7Ly3Pvf8vrzK9aHteLN7CHn3OZZv0AZwuGIa23trOS3YGjodMV/jqkEsmMH+O77XjCpE09nsh18YajfeOGCwCwnC/DHr1rCCy9oye+WT6QcA/FMPtRDBi+8oCUQy8kCfOxNy8/quIrfvNcsaAjMsqEyP6rx9+Kli8e5tms8v1t+KBWmNxFhKBXG2/1+bdd4IJaTBXjeIsebL8ywMrdbfldfiAdPhNjVF8rvfn/zhZngLCdbg7JddaiiN99+tqB27IUqfXW3uerYC1Xy6m5z1bEXqvRVvM63Y5/KkYEku4+NE5/I0NQQYuOyxjk9pl6vHXuhSv9ezFXHXqjSV3ebi469UKWv7nbeHbsP5qNjj0QaXFtbZQ/jDgz0+tKxV0WwV1olgr2SKhHslVaJYK80BXvlVSLYK22ug73SFOxTq+VgD9wCNSIiIvNBC9SIiIhI4KljFxGROqWOXURERAJOHbuIiNQh8/WUtEqqzZ9KRESkTqljFxGRuqRZ8SIiIhJ46thFRKTumKljFxERkSqgjl1EROqSOnYREREJPHXsIiJSh0wdu4iIiASfOnYREalLdb3ynJn9gZk9ZWZPmtlXzayx0oWJiIjIzE0b7Ga2Ang/sNk5dxkQBt5W6cJEREQqycwqeiuzhpvM7Bkz22tmt07xfJeZ3Wlmj5vZg2Z22XSvWe5+iAjQZGYRoBk4WuZ2IiIiMgUzCwOfBl4DbALebmabiob9KfCoc+5y4F3AJ6d73WmPsTvnjpjZx4FDQBz4gXPuB1MUuBXYCrB0+XL2HD8+3UsHxj0/eNDvEmZkpH/E7xJmbNHKRX6XMGMt7S1+lzAjB3cd9LuEGfv5977rdwkzdvGmzX6XMCM3Xnu53yUEmO+z4rcAe51z+wDM7GvAG4BdBWM2AR8BcM49bWZrzWyJc+7EuV60nF3xXblvtA5YDrSY2a8Vj3PObXPObXbObe5csGAGP5eIiMj8qvRu+Nyu+EVmtrPgtrWojBXA4YLHPbmvFXoMeFOu5i3AGmBlqZ+tnFnxrwD2O+dO5l74m8D1wJfK2FZERKRenXLOldrFM9UuA1f0+KPAJ83sUeAJ4BEgVeqblhPsh4DrzKyZ7K74lwM7y9hOREQksAJwulsPsKrg8UqK5rA554aAdwNYdjfA/tztnKb9qZxzDwD/ATxM9tNCCNg2g8JFRETkbDuADWa2zsyiZM84+3bhADPrzD0H8FvAz3Nhf05lLVDjnPsL4C9mXrOIiEgw+b2krHMuZWbvBe4ieyr57c65p8zsd3LPfxbYCHzRzNJkJ9X95nSvq5XnREREfOKc2w5sL/raZwvu3wdsmMlrKthFRKQu+d2xV4rvMwdERERk7qhjFxGROqTLtoqIiEgVUMcuIiJ1x0zH2EVERKQKqGMXEZG6FICV5yqiNn8qERGROqWOXURE6pL5f9nWilDHLiIiUkOqpmMfSg4A0B7t9LWOmUjYGAAx1+xzJSIiMpllp8bXoKro2IeSA/zdE3/G3z3xZ/mAD7qEjfGLzjv4Recd+YAXERGptMAHuxfqR8cOc3TscFWEuxfqw5E+hiN9CncRkQAys4re/BLoXfGFod4eWk7GwdGxw9z26If58JW3BXK3fGGoR5OLcMBw9BQ/7/gmLxp8U2B3y+9Nd3CIdlKEiJBhNUNcGB70u6ySdvTF2DMaI+2MsDkuaklwzYKE32Wd03ODxu6BEMk0RMOwsTPDBR3O77JKGnJRTrqm/O/FYovTbkm/yyopsWgdyRWbcOEYlk4QPbKL2Kn9fpdVta76lytmtd0j735sjiuRcgU22IeSA/zVw39K38QR0olujh78DQCa1mzjJD380b1/wm+u/wuuXb3c50rPSNgYP+v4JvFIH+lEN30HtwLZmsdivdzV9i2u7PsVVkcafK70jEfSizlIBxTNDn2SRp5ML2YNg1wVPulPcefw/RMt9Iw3MKlmB48NN/PYcBMrGye4acmob/UV23kyxI7eMMnM5L/j54bCREOOa7rTbF6c8am6qZ10TTydWcBpij6IOljIGJeE+lhscX+KO4f4mquJr78WGmKTvj6xZAOjEwma9j1A08GHfapOgqhWV54LZLAPJQf4i50fYjB9lHSim8zR3+HFFyyjqzlC79gHeSzx96Rix/mnPX/B6ZH/wc2bVvtdMgkb4ycdd5JoOE060U3y0G+xLhKiOZRh5Ng7Obns3wjFetm54D8YO/VWLon6fxTkZ+kV9NNENiAdETJEyJAiRIoQYBykg+F0lBeFj/hcbdbXe9oYTofxajYgjCONke19jZ7xBr7e08ZbVw77WSoAPzgcZvdA9u8SHB1RR3MExlIwmDSSGeMXx8P0jRuvWpX2u1wADmTaedR1A0aEDMtthEZSjBPhqGvlNM38ItPEVdbLmtCQ3+UCMHLpK0ku35SdDOUcobEBLBnHRZvINHdCQ4z4RTeSbllA664f+V1uVSq3A59thy9zJ3DB7nXqXqi/tO1PeOvb1tEUDedGdNM7+hH++pEPMxo7xteP/jULW//S187d69S9UF994le5on2MhtCZ3awjg2/k553fhFgvuxZ9nea+X/a1c38kvTgf6o1McAOHaQufCZbhdJhfsIpxGuijiUfSi33v3L9/oiUf6hEyvHbJIIsbzzx/chy+e6KDFCGG02G+f6LF185958lQPtSXNmV47eoUrdEzz48k4buHIhyPZ8ctaHS+d+4nXVM+1C+yPjZYHw125vf4ea6XZ90C9rgFPOK6aXYTvnfu8TVX50M93H+Utse+Qyh5Zk5LJtrM8BWvI921nOSKS4mP9qlzl9xa8f43WJUQqJ/KO6bu7X5/aduf8OvXXlgQ6lndLQu5bctHabFlhGO9fH7fX/o2oc47ph4vCPXNTZlJoQ7Qak28fOgWGpKLCMd6eXTBv/s6oc7b/d7IBDeFD0wKdYC2cJqbwgdoZAKvc/ebt/s9QoZfXzM51AEWN8KvrxkkQgavc/fTjt7sh5ClTRneeuHkUAdojcJbL0yxtClbb3a8v57OLMAL9U2h05NCHaDBHJtCp7nI+gDLjfdXfP21+VDv2PGNSaEOEEqO0bHjG4T7j4JZdrwIlZ045+du/sAEe+FEOW/3+1uvWnfO8e3RTv7sqttwiSWkwse57dEPz3u4F06U83a/XxE792SomGvmxoE3kUl042In+XnHN30J971p75i64wYOlxx7PT2AAyy3nT929MXwan7tktKT+m5eMohXc3a7+ffcoOWOqTteuzpVcuzNq1OAI5kxnhv0781gyEU5TTMRMmywvpJjN1g/ETKcppkhFy05tpISi9Zlj6k7R9tj3yk5tu2x74Jz0BDLbidSowIR7MWz3+MHt3Ld6mVnderFlrQs5PLIH5JOdHMy0TOvp8IVz36PH9zK6nDkrE69WJs1sfjYO0knuhlrOO3LqXCHaAcgQuasTr1YezhFmMyk7fywZzQb0AZnderFuhvPTKvztptv2V3w0BF1Z3Xqxdqi0NHgJm3nh5OuCYDlNnJWp16swTIss5FJ2/khuWITAKGxgbM69WKh5CihscFJ20l9U8c+TzK595Ou5vIO/3c1+T9NwHsLbA6Vd3y0scxxlZLK/W+PUF4dDblxKR9/XdIu+48kTHmnh3njvO3mWzL3eanMX2O8X+Okj/PnvP+/jZTew+Bpyo3z8/fChXMf+JLlHee3XPh724nUokAEe3u0kz9+3t+wvHkVI+4oTWu20TtWelcgZDv9BxMfJxzrpT20nD9+3t/M27ntMdfMDQNvpi21gInoKZrWbGOE6d9cEjbG8aVfIhzrJZpcxA0Db573c9sjMwzqiRl+EKiEcK6DTJd50QZvXHiazrNSvJ1NY+VlJPHU5O384P3/HS9zTm08N87P3wtLZ9ctcNHy9hq4aPOk7aS+qWOvMC/cF8dWEo718ljq7+kdPX3O8UPJAT76+J8xbsdIJ7p5z4a/nPcFa7xwb55YSDjWy8ll/8aIO3e4J2yMezrvIB09STrRzfP7f8WXBWtWkz1FyZs9XspQOkI692vibeeHi1pyb+BkZ7+X0jt+Zi+Kt91829iZDbvBpDEyzXouw0kYnLBJ2/nBm91+1LUyMc2ejgkX4phrnbSdH6JHdgGQae4kEy39bykTbSHT3DFpO5FaFJhgh2y4f/jK24ikl2KxE/z1I1NPiPOOyR+PZyfarRr/ABu7u+e/YLLh/qLBN2GJxYRivfy8c+oJcd4x+ZHcRLuWI/+N7pA/k46yK8plJ5f9glUlx97LSrxJa36uRJddUS5b83dPlJ7Et/3EmcmBfq1Ed0GHIxrK1XuodAe8/VAEMKIh5+tKdO2WZCFjpAjxrCs92/1Z10WKEAsZ83Ulutip/TCRADOGr3hdybHDV7w2e47TREIr0QkARqiiN78EKtghG+6/uf4vSCe6GXXH+PCDt3KioHP3OnVv9vz4oa0lZ8/Ph5hr5sq+XyGd6GYieor/ar+T4YLO3evUvdnz4wd/m8t9PsS3hmy4j9PA99NrGUpPDp+hdITvp9cyTgPgcuP9tbJxAnCkCPGFgx30FnXuvePwhYMduUMMLjfeP9d0pwHH8XiIr++NMFyUf8NJ+Pre7Hns4HLj/XVJqA9w7HEL2JVZyISb/BYx4ULsyixkj1sAuNx4fzXtewCcI921nMFr3kIm2jLp+Uy0hcFr3kK6azk4lx0vUsP8n3k2hWtXL+fUyP/gG0f/mtHYMW6970NcHvlDupoiPJj4eH73+/ihrbzn+g08b0XL9C9aYasjDYydeiu7Fn0dYr38qONbLD72ThpDGY4v/RbpglDf0pRmWdTf9bavCp9kKB2lnybGaeDHrCWcztBAhglCud3v2a53AXHfF6cBuGnJaH7luRQhvn2ic8qV58Blz8P3eVnZzYsz9I1n14c/Hg9x+zMNdDQ4miLZY+rZ3e/Zejd2ZnxfnAayu9WvtF4edd3scQvY5zpZZiM0kSJOhGOuNf/B6Srr9X1xGoCmgw+Tbl1Icvkm0l3LGXjxbxEaG8SSY7hoc3b3e25FuuiRp7Q4zSzV3opytXvZ1kAGO8BrN61mUetf8vl9f0kqdpxHE5+AYQjHevO739/66nWBCHXPJdEQzX2/zKML/p1QrJfeZf8GQDh3TL3lyH/jBS1J30Pd8+LwkUlrxacJk6bwmLsL3Frxb105PGmteAekJk2oc4FaK/5Vq9IsaHT5teIHJ4zBgh0JQVwrfm1oiBY3kV8r/rCbfJpjENeKb33qh8RHTufXis+0dEJL55kBWite6khggx2ynfvGpR/jtkc/zEl6AGgPLec9l/+lb8fUp7M60sCS4Tfy89A3GYv1AhBNLuL5A2+muy0YgV7oqvBJruJkVV3dzQvtarm62+bF2W68mq7uttjiLA4fqaqruzUdfJimgw/r6m5zrFav0pZdUlYduy+8CXV/98SfAczrKW2z5U2o+0XnHQDcMHQLMZ8mypXrwvAgFwbgOPpMXLMgmEF+Lhd0OC7o8P84+ky0WzKwQX4usVP7FeRS1wIf7HDmVDjvfjXwToXz7ouISLCoY/dZtQR6IQW6iIjMt6oJdhERkblUqx174M5jFxERkdlTxy4iInXIMKvN3rY2fyoREZE6pY5dRETqko6xi4iISOCpYxcRkbqjledERERqTm0Gu3bFi4iI1BB17CIiUod0upuIiIhUAXXsIiJSl2p18pw6dhERkRoybbCb2cVm9mjBbcjMfn8eahMREakYM6vozS/T7op3zj0DXAlgZmHgCHBnZcsSERGR2ZjpMfaXA8855w5WohgREZH5omPsWW8DvjrVE2a21cx2mtnOgb6+869MRESkxpnZTWb2jJntNbNbp3i+w8z+n5k9ZmZPmdm7p3vNsjt2M4sCrwc+NNXzzrltwDaADZs2ud6hoXJf2nf9x/v9LmFGhvuG/S5hxhpbGv0uoeb17Onxu4QZO3Gi+nb+bbr8Wr9LmJGmaMzvEgIpCEvK5g5vfxp4JdAD7DCzbzvndhUM+z1gl3Pul8xsMfCMmX3ZOZc81+vOpGN/DfCwc+7ELOoXERGRybYAe51z+3JB/TXgDUVjHNBm2U8hrUAfkCr1ojM5xv52zrEbXkREpLrMy8pzi8xsZ8Hjbbm9254VwOGCxz1A8S6hfwS+DRwF2oC3Oucypb5pWcFuZs1kdxW8p5zxIiIiwinn3OYSz091LMAVPX418CjwMuAC4Idmdrdz7pzHu8v6uOKcG3POLXTODZYzXkREJOgCcB57D7Cq4PFKsp15oXcD33RZe4H9wCWlXlQrz4mIiPhjB7DBzNblJqi/jexu90KHyJ5qjpktAS4G9pV6Ua0VLyIidcl8vh67cy5lZu8F7gLCwO3OuafM7Hdyz38W+GvgC2b2BNld93/inDtV6nUV7CIiIj5xzm0Hthd97bMF948Cr5rJayrYRUSkPmnlOREREQk6dewiIlKH/L0CWyUp2EVEpO5kl5StzZ3WtflTiYiI1Cl17CIiUpdqdVe8OnYREZEaoo5dRETqkjp2n41MDDIyUV1L1SfDcZLhuN9liIhIHamKjn1kYpBtz30EgK0XfIjWhg6fK5peMhzn8fU/AODyfa8imm7yuSIRETmjdk93C3zH7oV6b+IIvYkjbHvuI4Hv3L1QH2scZKxxkMfX/0Cdu4iIzItAd+yFod6QXopzjl6O8KlnbuP9F384kJ17Yag3j2fr88I9yJ17T2M3x5u6SVuYsEuzNN7LyvFev8uqKU8NRnl6NEYqY0RCjktaElzakfS7rJL6mxdyum0p6VCEcCbFwuHjdI2d9rusvCO/fWJW26345yVzXEl5vrT2H2a13a8deN8cV1K+S/5vySuEntPT73l6jiuZe7V6Hntgg31kYpD/vfs2Rt0x0oluRg7+FgBNa7YxFDvGXz/yV7yo9YO8dtNynys9ozjUL9+XXbff+1oQw31P61qON3WftWbyvoZ17Gtby9J4LxeNHPCnuBpx96km9ozGcIVXkkrDfQMR7h9o5qKWBDcuCtYeneMdqzjatZZMePJbxEBrN6F0iuX9B1g6eNin6kSklEAG+8jEIP/ryb8hETpOOtFN/OBWFjV10NYYYujU7zK26DOEY738dOQT9D7wft597Rq/S54y1L0Av3zfqwIZ7o90bmK4oTUb6s4RdmnCLk3awqQtDGYcb+pmLNLMlQO7/C63Kn37WCu9yQjZqy06IuaImiPpjJQzHMYzozH6J8K8ftmI3+UCsG/xJfS1Lc3/XsQm4kTSSVLhKImGJjLhCD0LLyAebWbdyWf8LhcovwOfbYc/18rtwGfb4VdCuR34bDt8f9TmMfbABbvXqXuhvnjov7P1tWvobPZK7ebI0If5p2f/FmIn2JX4FN/d5W/nXirUAaLppsCF+57WtflQj6YTXD6wi+b0md3CY+Eoj3duIhmOMdTQyp7WtercZ+juU035UG8Opbl5yRCd0TPPDyRh+4l2xjJhepMR7j7V5HvnfrxjVT7UW+KDXHD8SaKZM78XyVCU55ZexmhTB6fbltGUHFPnLhIwgTrA4B1T93a/Lx767/zxKy4oCPWsFe0L+NDl/4NwagnhWC8/H/mEbxPqpgt1jxfuzeMdgZhQ5+1+j6YTXHf60UmhDtCcTnLd6UeJphP5zl1mZs9oDC/U37FqcqgDdEbhHauGaA6lAcuN99fRrrX5UN949OFJoQ4QzSTZePRhWuKDYMbRLv/3lonMhplV/OaXwAR74UQ5b/f71uvP/abR2tDB7274U9KJbizWy6eeuW3ew73cUPcEJdx7Grvzu1kvn2YX+/MGdoNzYJbdTsry1GA0d0zdcfOSoZJjX7NkCHA4jKcGoyXHVlJ/88LsMXXnuOD4kyXHXnD8SXCOTLiB/uaF81ShiJQjEMFePPvdO6Ze3KkXW9m+gKaTv0s60c1Q+ti8ngo301D3BCHcve477NJnderFWtIJQi4zaTuZ3tO57jti7qxOvVhXNDuucDs/nG5bCkBsIn5Wp14smkkSm4hP2k6k2qhjnyfOZd/g2hrLK601VpuTHyopbWEgG+zliLjUpO1keqlM9vcymgvs6XjjvO38kA5lP0hHpvmw54mkJyZtJyLBEIhgb23oYOsFH6I7toJU5ET2lLZk6d2XkO30+zuyM+Qb0kvndVW62Xbes+3055IX6OUGdcoik7aT6UVC2aBOuvKC2hvnbeeHcCb7AS4VLu9wQCrcMGk7kWqjjr3CvHBvDy8jHOtlbNFnODLUd87xIxODfGbv3+KiJ0gnunndoj+a9wVrZhruQQh1gKXx7MIzaQszNs2b+Gg4Ria3iIO3nUzvkpYEAClnDEzTAPcns+MKt/PDwuHjACQamkiGSv9eJEPZU98KtxORYAhMsEM23N9/8YdxiW7CsV7+6dm/nfKYuXdM/nTyKOlEN+7oe7h2tT8rSZUb7kEJdSC7olxuQtzjnZtKjn2ic2N+op1WoivfpR1JDAcY20+0lxz7vRPtgGE4X1ei6xo7TSidAjOeW3pZybHPLb0MzAilJwK1Ep3ITJiFKnrzS6CCHbLh/qLWD5JOdJOOnOAjj/81PQWdu9epF86ef/XFy3ysePpwD1Koe5bGs+GeDMe4f+GVjIYnT9oazX09GY6Bc+rWZ+GilgTgGMuE+crhdvqLMrs/CV85nD2PHVxuvL+W9x8A5xht6mD38qvP6tyToSi7l1/NaFMHOMfy/oP+FCoi5xTIWS+v3bScE/e/n92JT0HsBJ98+jaaTv4urTGjv+Mz+d3v8YNbuXb1Yl65sc3vks+5CA0QuFAHuGjkAKORZoYbWkmGYzy04ApCLkPEpUhZJLv7Pdept0+MaHGaWbhxUZz+ieziM2OZMHcc6zxr5TlvRbruaMr3xWkAlg4eZizaQl/bUkabOnh87fW5lecmSIUbsrvfc78XC4ePBWZxmqCsKFeuIK0oV67qWlGuHLV7dbdABjvAb1y3hu/u+iA/H/kE4Vgv8cWfIQ6Eo7353e9vuGxZIELdM1W4A4ELdc9VA7smrRWfsTBJCibU5Tp1hfrsvX7ZyKS14lPOSBXMj7Ncpx6EUPesP/k0zclRjnatIRNuIBFtpnBfQig9wfL+g4EJdZHZMEPB7ofXblrOiyf+nE89cxtDsWMANKSXcsvSP+LaLf4cU59OcbgDgQx1z0UjB7ho5ICu7lZBNy6Kc+OieFVd3W3p4GGWDh4O/NXd/LpK22z5eZW22aqGq7TJZIEOdjgzoW7bcx8BmNdT2marMNyBwIZ6oZXjCvJKu7QjGdggP5eusdOBCnKRuaSO3UfeqXDe/Wrghbt3X0REZD5URbBD9QR6IQW6iEiQBe7EsDlRmz+ViIhInaqajl1ERGTu1O7pburYRUREaog6dhERqUvq2EVERCTw1LGLiEhdUscuIiIigaeOXURE6k4trxWvjl1ERKSGqGMXEZE6ZJjVZm9bmz+ViIhInVLHLiIidUnH2EVERCTwygp2M+s0s/8ws6fNbLeZvaDShYmIiFSSmVX05pdyd8V/Evi+c+6XzSwKNFewJhEREZmlaYPdzNqBFwG/DuCcSwLJypYlIiJSafV7jH09cBL4FzN7xMw+Z2YtFa5LREREZqGcXfER4Grgfc65B8zsk8CtwP8oHGRmW4GtAIuWLGEoHp/rWitmfHTc7xJmJJmovh0mp4+e9ruEGRs6PeR3CTMy0H/S7xJmLJVK+F3CjI0MDPtdwowMV9F78Xyr51nxPUCPc+6B3OP/IBv0kzjntjnnNjvnNrd1dc1ljSIiInMqO8EtVNFbmXXcZGbPmNleM7t1iuf/PzN7NHd70szSZrag1GtO+52dc8eBw2Z2ce5LLwd2lVWxiIiITMnMwsCngdcAm4C3m9mmwjHOuf/lnLvSOXcl8CHgZ865vlKvW+6s+PcBX87NiN8HvHuG9YuIiARKAHbFbwH2Ouf2AZjZ14A3cO7m+e3AV6d70bKC3Tn3KLC5rDJFREQEYJGZ7Sx4vM05t63g8QrgcMHjHuDaqV7IzJqBm4D3TvdNtaSsiIjUpXno2E8550o1xVMV4M4x9peAX0y3Gx60pKyIiIhfeoBVBY9XAkfPMfZtlLEbHtSxi4hInQrAMfYdwAYzWwccIRve7ygeZGYdwIuBXyvnRRXsIiIiPnDOpczsvcBdQBi43Tn3lJn9Tu75z+aG3gL8wDk3Ws7rKthFRKQOWdnnmleSc247sL3oa58tevwF4Avlvqb/P5WIiIjMGXXsIiJSd8wCcYy9ItSxi4iI1BB17CIiUqfUsYuIiEjAqWMXEZG6pGPsIiIiEnhV07GfTBwBYHFshc+ViIhI9TMspI7dNycTR7j90G3cfui2fMCLiIjI2QIf7F6op12KtEsp3EVE5PzlzmOv5M0vgd4VXxjqRgQcpEnx+YO38ZtrPhzo3fIjoUb6I22kLEzEpelKDdOaGfe7rHMaizQz2NhJOhQmnEnTMT5Ac2rM77JKOhRZyJGGhaQJEybNionTrE6d9rusc9rPAnrCnaQIESHDyvQA65j2CowyQ6FVlxO+8Fos2ohLjpPe+wCZw4/7XRYA37ryC7Pa7o2P/vqc1jET13zxqlltt+Ndj8xxJVKuwAb7ycQRPn/wNjKkcJkwo/vfB0Dzuk+RCaX45wN/w6vbP8Tzl632udLJ+sJt7G9cykCk7aznOlPDrBs/zoL0sA+VTW0w1klP+2qGGzvOeq5tfJCVQ4foSAzMf2ElPBVdydGGhdmlowo8E27mGbeS5ROnuTTZ41N1Z3s8tIyeUNdZ9e4ONbHbLWVlpp/LM8d8qq52hC99BQ1X3oRFmyd9PbL2KlxyjIlHv0/6qR/5VJ0EjVG7s+IDGewnE0f43MHbcLlQTx56P1ctWUVbY4hT8T/kQNPfY6E03x/8CEPjf8JL1631u2QAjjYsZHfTajAj7NJ0TwwQy0yQCDXQ29DJQKSNR1pa2Rg/xPIJ/zvL3pYl7OvaAGaEMikWxk/RkE4yEY5yumkRw40d7I5dxvr+Z+kePeF3uQA82Hghg+GWbEg6R5g0EZchZSHShMGMow0LGQ01smV8r9/lcm94LQPWXFBvhghpUoRJEwIzekJdjFiM69MH/C63ajW88J2EL7wOM8M5hxs+iYsPY01tWNtiLNpMwzW3EOpaysQ9X/K73LI78Nl2+JVQbgc+2w7fDwr2eeJ16l6oX5r5I17z0vXEGrz/ARs4MvpnfLHnNgiluDfxMdqP+d+594Xb8qG+Zvw4axPHiZDJP39R/DAHYks52LiU3U2racwkfe3cB2Od+VBfPnSIFUM9hF06//xa28eR9pUcbV/Nvq4NxFIJ3zv3p6Ir86EeyyS5emwvrSTzz48Q5eHmC0mEogyGW3gqutLXzv3x0LJ8qMfcBNem9tPKREG9DTwQWUfCGhigmcdDy9S5z0L40lfkQz194jmSP/5nGB86M6CxnejLfpvwkgsIX/gCMv3H1blLTQvU5DnvmHqmINTfuOmCglDPWtGygt9a+2HMRbBQmruGPuL7hLr9jUvzoX5h4uikUAeIkOHCxFHWjB8Hs+x4H/W0r86H+urBg5NCHSDs0qwePMjyoUPZrrJ9lU+VnuHtfo9lkrxobNekUAdoJfv1WCaZ79z95O1+j7kJXp7aMynUAVrJfj3mJvKdu8xcw5U3nQn17Z+YHOoA40Mkt3+C9InnMDMarrjJn0IlcGp18lxggr1wopy3+/01G9afc/zi2AretfLDuEwYLM3nD/o3W34k1MhApI2wS7M2cbzk2LWJ44RdmoFIGyOhxnmqcLKxSDPDjR2EMilWDJXuaJcP9RDKpBhu7GQs0lxybCUdiizM786+eqz0Lvarx/aCc2CW3c4H+1mQr/fa1P6SY7ekDuTr3c+C+SmwRoRWXY5Fm3HOZTv1EpI//RzOOSzWTGjV5fNUocj8C0SwF89+H9v/fp63aNVZnXqxFS0rWBP/Q1wmTAb/ToXrz02U654YOKtTLxYhQ/fEwKTt5ttgYycAC+OnzurUi0VcmgXx05O288ORXPcdJn1Wp16slSTh3P+HIz517T3hTgDCZM7q1Iu1FdTrbSflCV94LQBu+OTZnXqxscHsuILtpI4ZWKiyN78EItgncdk/2hrLK6015v+PkLIwALFM6TdwTzQ3zttuvqVD2e/bkC4dkJ5oOjFpOz+kyX7viCv9wckTyX1g8babb6ncP60IpT84ebwPhKkA/pMMMotm93q5eHnzVbxx3nYitSgQ7yKLYyv4jdUfJmwRnKVoXvcpTpXReZ9MHGF3+ONYKI0R4TdW+3NuuxciiVBDWeOTuXGRabrlSglnst93Ihwta3wyHJu0nR/CuYBMlfkx2PvQFC4zWOfamaAu74PFmQ8C5X1wkSyXzK4NYU3l7f3yxnnbST2z7OGySt58EohghzPhHiI7Ie5A099zZPTc4X4ycYTbD96GszQuE+aWhR/ybcGarlS2C+ht6Jy240oRorehc9J2861jfACA002LSE+z1yBlYfqaFk7azg8rcqcHpgkzQukPJCNEs6eSFWw331amBwBIE2KE0h/4hgvq9baT8qT3PgCAtS2GxvbSg5s7suMKthOpRYEJdsiG+2+u+TC4MBZK88WeqY+Z54/J52bPd/X9AZcs9G/WdmtmnM7UMGkLcyBWerb7gdhS0ham08eV6JpTY7SND5IJRTjSvrLk2KPtK8mEIrT5vBLd6tTp/ASzh5svLDn24eYL8xPX/FqJbh19+XofiKwrOfbByNp8vVqJbmYyhx/HJccwM6Iv++2SY6Mv+a3see6JscCsRCf+0qz4ebI4toJXt38IlwnjLMXnDtw2qXP3OnVv9vzY/vfzqg2l3zjnw7rx4+AcBxuXsje2/KzOPUWIvbHlHGxcmn0DHy89e77SVg4dAuc42r6aQx1rzjren7IwhzrWcLR9NTjHyqHDPlV6xvKJbLgnQlF+3rzprM59hOzXE6EoOOf7IkArM/3Zeq2B/4pcxHBRvcNE+a/IRSSsIft3nOn3qdLqNvHo93HOEV5yAdGbPwjNRasoNncQvfmDhJdcgHOOice+70+hIvMkcAvUADx/2WqGxv+EexMfg1CKLxz+G9bE/5DWWIjd4Y/nd7+P7X8/t2xaz4WLyzu2XUkL0sNsjB9id9NqDjYupSe2mO6JAaKZCZK5lefSFgbn2Bg/5Puysh2JAdb3P8u+rg0cbV/N8dblLIifJppOkAzH6GtaSCYUAedY3/+s74vTAFya7GE01MhguIVEKMp9LRuzK7m5NCk7s5IbztGRHvV9WdnLM8cYsRgDNJOwBu6OXJhbeS5DitCkejvdmBanmaX0Uz8i1LWM8IXXEV5yAY1v+duzV57LrUiX3ntfIBanCdKKcuWqphXlyqElZX3w0nVraT/2Ie4a+ggWSnOw6e8BsFyod/X9AW/dvC4Qoe5ZPnGaxkwyv1b8sejkU62CtlZ89+gJYqkEPe2rGG7s5FTLkknPt40PsHLocCBC3bNlfO+kteLThCfPE8h16n6Huuf69IFJa8WnCU+eqZ/r1BXq52finn8j03+MhituwmLNWHs3tHfnn3eJMSYe01rxUh8CG+yQ7dxXL/iz7MVgQikAjAhvWvwhLrnE/5XQprIgPcyC0eGqubpbR2KAjpMDVXV1t0uTPVya7Kmaq7tdnjnG5ZljurpbhaWf+lG2ew/w1d38vErbbNXyVdrUsfvEm1B3+6HbAHw7pW2mWjPjtFbRKTXNqTGaR4IZ5OeyOhXMID+XdfSxLq0gr7TM4ccDE+Qifgh8sMOZU+G8+yIiIufFwELq2H2lQBcREZle1QS7iIjI3PH3XPNKCtx57CIiIjJ76thFRKQuqWMXERGRwFPHLiIidSe78pzfVVSGgl1EROpPDSe7dsWLiIjUEHXsIiJSl2p1gRp17CIiIjVEHbuIiNQlne4mIiIigaeOXURE6pCWlBUREZEqUFbHbmYHgGEgDaScc5srWZSIiEhFWe0eY5/JrviXOudOVawSEREROW86xi4iInUnu/BcfXfsDviBmTng/zrnthUPMLOtwFaAxUuX0hyNzl2VFda1pNPvEmYkNZHyu4QZO/Tsc36XMGPJ5LjfJcxILNbsdwkztmjRSr9LmLFq+70YHBvzuwSZZ+UG+w3OuaNm1g380Myeds79vHBALuy3AVy4aZOb4zpFRETmVF2vPOecO5r7sxe4E9hSyaJERERkdqYNdjNrMbM27z7wKuDJShcmIiJSSWaVvZVXg91kZs+Y2V4zu/UcY15iZo+a2VNm9rPpXrOcXfFLgDtzkwwiwFecc98vr2QRERGZipmFgU8DrwR6gB1m9m3n3K6CMZ3APwE3OecO5Q6JlzRtsDvn9gFXzLZwERGRwAnGeexbgL25nMXMvga8AdhVMOYdwDedc4cgf0i8JK08JyIiUhmLzGxnwW1r0fMrgMMFj3tyXyt0EdBlZj81s4fM7F3TfVOdxy4iInVoBgfCZ+/UNCu1TlVA8VllEeD5wMuBJuA+M7vfObfnXC+qYBcREfFHD7Cq4PFK4OgUY04550aBUTP7OdnD4+cMdu2KFxGRumRmFb2VYQewwczWmVkUeBvw7aIx/wncaGYRM2sGrgV2l3pRdewiIlJ3DP8XqHHOpczsvcBdQBi43Tn3lJn9Tu75zzrndpvZ94HHgQzwOedcyVPOFewiIiI+cc5tB7YXfe2zRY//F/C/yn1NBbuIiNSfYJzuVhE6xi4iIlJD1LGLiEhdUscuIiIigaeOXURE6lDZp6RVnarp2HcNPsyuwYf9LmNGEqE4iVDc7zLKNtEwzkTDuN9liIjIeaiKjn3X4MN85fCnAHgH72dTx9U+VzS9RCjOjmXfAeCaY68jlmnyuaLSJhrGefZ5dwOw4YkbaZho9LkiEZHKqtGGPfgde2GoA3zl8KcC37l7oT4a7Wc02s+OZd8JdOfuhfp4yzDjLcM8+7y71bmLiFSpQHfsxaHu+crhTwW2cy8M9ZZkF0A+3IPYuReGusUX4swYbznF05ffyyWPXx/ozj3R2MZYWzeZUAOhzATNw73Exof9Luuckk0dxNuXkgk3EEpP0DR0nGh80O+y8r5/3b/Parub7v+VOa6kdm3f8rVZbXfzg2+b40rK94r/uGFW2/3ol38xx5XMMQN8XnmuUgIb7MWh/o5V7wfIfy2I4V4c6tccex1A/mtBC/eJhnF2XXEf6aZh0olu4oezVxRsWrMNmnt57MqdLNp9M2tHhnyudLLR1sWcXrqReNvis55rGj7JwuO7aRk56UNlU4u3L2FgxfMYb19y1nONQyfoPPIETUMnfKhMRGpRIIN9qlD3AvwdvD+Q4T5VqHsBfs2x1wUu3CcaxnnyigdwTf3ZUD/w28SSEaJuguRz74L1XyTc2MvJjduJ73kzGweDETwDC9ZyYvXVYIalJ2gbOEJkYpxUQyPDnSuIty2mp3URSw89REffQb/LZXjxBZxatwUshKUnaOk7RDgZJx1tYnTBasbbl3C8bTGL9j9A28l9fpcLlN+Bz7bDl/I78Nl2+JVQbgc+2w5/vhm1ex574IK9VKgDbOq4OnDhXirUAWKZpkCFu9epe6Ee3vsOtvQ/S6NL5ceMDF/HnivuJdzYy8hFd3AgAJ37aOvifKgvOP40C088QyhzpuYlPY9xesnF9C29hOOrn08kOeZr5x5vX5IP9Y4jT9J59KlJ9S48sJOB5ZcyuOIyTq27lkhiVJ27iJy3QE2emy7UPZs6rs7vmgd/J9RNF+oeL9xbkl2+TqjzjqmnC0L96r5Dk0IdoDUZ4XmPboHxRYQbezm1cbvvE+pOL92YD/XFxyaHJEAok2LxsadYcPxpMMuO99HAiuflQ31Bz2NT1rug5zE6jjwJFsqOF5F5E4DLtlZEYIK93FD3BCHcyw11j9/hXjhRztv9vqn/6DnHN0w0ctHj15Me7ybU2MvTl9/rW7gnGtuIty3G0hMsPPFMybELTjyDpSeIty0m0dg2TxVOlmzqYLx9CZaeoPPoUyXHdh57CktPMN6+hGRTxzxVKCK1KhDBPtNQ9/gZ7jMNdY9f4V48+z1+cCuxZMNZnXqx1kSEzP53kU50M9E84NupcGNt3QC0DRw5q/MtFs6kaBs4Mmm7+RZvXwpAS9+haesNpVO09B2atJ2IVJ46dqkZLvcLF3UTZY1vmCaY5kMm1ABAZKK8DxXeOG+7+ZYJZ79vOFnehzZvnLediMhsBSLYZ9t5z7bTnwuz7bxn2+mfr4aJRjY8cSONo23QeIqmNdtIRhLTbjfRMI674MuEY71YfKFvq9KFMtkPIamG8r63N87bbr6F0tnvm46W9//WG+dtJyKVVtluXR07Mw93P0PdM9Nw9yvUPV64N4x1Eo71Elr/RUai5+7GJxrG2XP5PVjjSdKJbpY/9SrfFqxpHu4FYLhzBZlQ6ZM50qEIw50rJm0335qGjgMwumD1tPVmwhFGF6yetJ2IyGwFJtih/HAPQqh7yg13v0Pd0zDRyCWPX09mvJtwYy97rph6Qpx3TD7RPEQ60U1i/2+wJD59h18psfFhmoZP4sINnF5yccmxfUsuxoUbaBo+6dtKdNH4II1DJ3DhBgaWX1py7MCyS3HhBhqHTgRqJTqRmmZgIavozS+BCnaYPtyDFOqe6cI9KKHuaZhoZNHum0mPd0PjKZ648kFGYmc6d69TL5w9v3rY/9XnFh7fDc7Rt/QSTi67lHRRJ5wORTi57FL6ll4CzmXH+6jzyBPgMgyuuIy+lVeQCU+uNxOO0LfyCgZXXAYukx0vInKeArdADZx7ERrvvicIoe451yI0QKBC3bN2ZIj4s29mZMMdhBt72X35/WT2v4uGTAp3wZexxqF8qHePjrN63P9dxC0jJ1ly6GFOrL6avqWX0L/4grNWnnPhBnCOpYce8n1Z2aahEyza/yCn1m1hcMVlDC29+KyV57L1Zli0/4HALE6jFeUqL0grypWrWlaUK5dWnvPBVOFeKEih7pkq3IHAhbpn48AJDuy+mVMbtxNu7IX1XyQNhGMn87vf1w73ByLUPZ19B2hIjubXih9auHbS80FbK77t5HNEEiP5teJHFl8w6XmtFS/inxrN9eAGO5wd7p4ghrqnONyBQIa6Z+3IECse3czTl98LzdmJZhZfyOqnXs6S+B6fq5tay8hJWvaerJqruzUNnaBp6ETgr+6mq7RVnp9XaZutwF+lTc4S6GCHs8M9yKHuKQx3ILCh7vEm1D37vLsB2PDEtTRM+DdRrlyx8eFABvm5ROODgQpykbpXoy174IMdzoS7d78aeOHu3Q8671Q4776IiFSnqgh2qJ5AL1QNgV5IgS4idcNqd/Jc4E53ExERkdmrmo5dRERk7vi7iEwlqWMXERGpIerYRUSkLukYu4iIiASeOnYREak7tbykrDp2ERGRGqKOXURE6o/OYxcREZFqoI5dRETqkjp2ERERCTx17CIiUpesRlvbGv2xRERE6lPZHbuZhYGdwBHn3OsqV5KIiEilWc1ej30mHfsHgN2VKkRERETOX1nBbmYrgdcCn6tsOSIiIvMgdx57JW9+KXdX/P8B/hhoO9cAM9sKbAVYvHTpeRcmIiJSKbW8pOy0wW5mrwN6nXMPmdlLzjXOObcN2AZw8aWXutbGxrmqseKa21v8LmFGWjrifpcwY/2PHfe7hBk7dfqI3yXMyGWX3eh3CTO2Zs2lfpcwY+1dXX6XMCPJdNrvEmSeldOx3wC83sxuBhqBdjP7knPu1ypbmoiISOXUasc+7TF259yHnHMrnXNrgbcBP1aoi4iIBJMWqBERkbpkoTrt2As5536qc9hFRETmhpndZGbPmNleM7t1iudfYmaDZvZo7vbn072mOnYREak/Pp+Sli3BwsCngVcCPcAOM/u2c25X0dC7Z9JUa0lZERERf2wB9jrn9jnnksDXgDec74sq2EVEpC7NwwI1i8xsZ8Fta1EJK4DDBY97cl8r9gIze8zMvmdm054jql3xIiIilXHKObe5xPNTHQtwRY8fBtY450Zyp51/C9hQ6puqYxcRkbqTXXmusrcy9ACrCh6vBI4WDnDODTnnRnL3twMNZrao1Isq2EVERPyxA9hgZuvMLEp2rZhvFw4ws6WW269vZlvI5vbpUi+qXfEiIlKX/D6P3TmXMrP3AncBYeB259xTZvY7uec/C/wy8LtmlgLiwNucc8W76ydRsIuIiPgkt3t9e9HXPltw/x+Bf5zJayrYRUSk/ngH2WuQjrGLiIjUEHXsIiJSh/xfea5S1LGLiIjUkKrp2B/v2wnA5QtKnesfLEOh7BkJ7ZmFPldSnlOthwBYNLLa50pERCqvVjv2qgj2x/t2cvu+jwPwG/xRVYT7UOg0P+n8MgAvHfjVwIf7qdZD7F73MwA27n+xwl1EpEoFfld8YagD3L7v4/nuPai8UM9Ymoyl+Unnl/PdexDlQ90Ag93rfpbv3kVEatU8rBXvi0B37MWh7rl938cD27kXhnrIhQHy4R7Ezn1SqHtLHuTCPeide6plAcmulbhIA5aaINrfQ2S0z++yzimz/BJYezVEGiE1DgceJnT0ab/Lyvv21f82q+1e//A757iS8m3f8vVZbXfzg2+d40rK87UNn5nVdm979nfnuJLy3Xzni2a13fZbfj7HlcwtM/8XqKmUwAZ7caj/xvo/Ash/LYjhXhzqLx34VYD814IW7oWh7hyMHX4XAM2rvojlwn3FgVezfrjb50onS3atZHTdZia6zr4IUkP/EVr27yTa3+NDZVPLXPRC2PRSiDZNfmLlZWSScdj1E0J77vGnOBGpOYEM9qlC3Qvw3+CPAhnuU4W6F+AvHfjVwIV7cajHD/0qy0aW0ehSDB28hfiaOzGDnrV3kTxwM5cMB+PDSHzZRoY3vgQshKWSxHqfI5QYJRNrIdF9ARNdKxjoXEbb7p/SdGy33+WSuebN2S7dcn/RI6dhfAQaW6F1YTbsr3gNmY5uQju+6Xe5QPkd+Gw7/EootwOfbYc/18rtwGfb4VdCuR34bDt8P2jy3DwpFeqQnRUftHAvFeqQnRUfpHAvDvWOg6/n+qEIEe+iQkOtnNj/Evas+ylm0Lt2O9EAdO7JrpX5UG8+8BDNBx4ilJ7IP5/Zczdja5/P2NrnM7zxJYTHh33t3DMXvfBMqJ86CPd+mdD4yJnnG1vh+l+FRWtg7fPJDPaqcxeR8xaoyXPThbrn8gWb87vmwd8JddOFuscL95AL+zqhbqpQv2KogwiZSeOWjKxi4/4Xg8vm0pG1d/k+oW503eZ8qLc+d/+kUAcIpSdofe5+mg88BBbKjvfTppfmQz304/87KdQBQuMjhH78f7Ohb5YdLyLzJgCXba2IwAR7uaHuCUK4lxvqHr/Dfard75cOdZ1z/KKR1Vy0/yU4h++z5VMtC5joWoGlktngLqH5wENYKslE1wpSLQvmqcLJMssvye5mdw7u/XLpwfd+JTsu2pTdTkTkPAQi2Gca6h4/w32moe7xK9yLZ7+PHX4XS0dWntWpF1sysoqmg7f4Hu7JrpUA2WPqRZ16sVB6gljvc5O2m3drr87+OXL6rE69WGh8OHvsvXA7Eamwyp7q5ufx+0AEu/ij0aXKGhclXeFKpuciDQCEEqNljQ8lxyZtN+8ijdk/pwn1PO/n8rYTEZmlQAT7bDvv2Xb6c2G2nfdsO/3ztWhkdf6YOZY9pW2odd+0251qPcTQmm9njxc5/1als1S2S8/EWsoan4k2T9pu3qXGs382tpY33vu5vO1EpPJq9CB7IIIdZh7ufoa6Z6bh7leoewrD3Qzia+7kROvhc44vPia/Zv8rfFuwxpvdnui+gEy4dBeeCTeQ6L5g0nbz7sDD2T9bF2Znv5eQaWzLnvpWuJ2IyCwFJtih/HAPQqh7yg13v0PdUxzue9b9dMpj5sWhHjr4FlaPLJv3ej2R0T4a+o/gIlHG1j6/5Nixtc/HRaI09B/xbSW60NGnIRnP/iVf/6ulB1//juy4ZDxQK9GJ1LTcynOVvPklUMEO04d7kELdM124ByXUPYtGVrPiwKsnTYgr7NzPWpHu0Du5ZNif2eWFWvbvBJdhbO3zGbngurM690y4gZELrssGv8tkx/tp10+yf4GL1pB52XuynXmBTGMbmZe9J3seu3PZ8SIi5ylwC9TAuReh8e57ghDqnnMtQgMEKtQ964e7SR64md612zGDZ9b9lEMHbyFKmqE1k0P90qFOFrkBv0sm2t9D2+6fMrzxJYytfT7xlc/LzpJPjpGJNpPovgAXiYLL0Lb7p74vKxvacw+ZjiXZme6L1sAv3Upm5HR2olysJbv73VuR7sBDgVmcJkgrypUrKCvKlStIK8qVq5pWlCuHoZXn5t1U4V4oSKHumSrcgcCFuueS4YVED7yaI2vvyh9zj3Mma0IH38Lm4ZZAhLqn6dhuwuPD+bXix5dvnPR80NaKD+24g8zgiTNrxbctyt48WiteROZYYIMdzg53TxBD3VMc7kAgQ92zfrib9v0vZve6n52ZxOlg7f5XsHokBpR3etl8ivb3EO3vqZqru4X23AN77gn81d38vErbbPl1lbbZ8vMqbbMV9Ku0nQ917D4pDvcgh7qnMNyBwIa6x5tQt3vdzwDvlDb/JsqVKzLaF8ggP5fQ0achQEEuIrUp8MEOZ8Ldu18NvHD37gddfrZ87r6ISE3zeXW4SqqKYIfqCfRC1RDohRToIiLVr2qCXUREZC7VasceuPPYRUREZPbUsYuISF2yGm1tFewiIlJ3anmBmhr9vCIiIlKf1LGLiEj9ybbsfldREerYRUREaog6dhERqUs6xi4iIiKBp45dRETqUO0uKauOXUREpIaoYxcRkbpkoTrt2M2s0cweNLPHzOwpM/vL+ShMREREZq6cjj0BvMw5N2JmDcA9ZvY959z9Fa5NRESkMqx2Z8VPG+zOOQeM5B425G6ukkWJiIjI7JR1jN3MwsBDwIXAp51zD1S0KhERkQqq5bXiywp251wauNLMOoE7zewy59yThWPMbCuwFWDx0qUMxeNzXWvFjA6O+l3CjMRHqufv1uOqcCdPb+8hv0uYkaNH9/pdwox1d6/xu4QZi49U1/vFyb4Bv0uQeTaj092ccwPAT4Gbpnhum3Nus3Nuc3tX19xUJyIiUiFmlb35pZxZ8YtznTpm1gS8Ani6wnWJiIjILJSzK34Z8K+54+wh4BvOue9UtiwREZEKq9dj7M65x4Gr5qEWEREROU9aUlZEROqPGRaq7K28MuwmM3vGzPaa2a0lxl1jZmkz++XpXlPBLiIi4oPcIe5PA68BNgFvN7NN5xj3MeCucl5Xa8WLiEhdCsB57FuAvc65fQBm9jXgDcCuonHvA+4ArinnRRXsIiJSlwIQ7CuAwwWPe4BrCweY2QrgFuBlKNhFRER8tcjMdhY83uac21bweKpPFsWref0f4E+cc+lyP4go2EVEpO7M05Kyp5xzm0s83wOsKni8EjhaNGYz8LVcrYuAm80s5Zz71rleVMEuIiLijx3ABjNbBxwB3ga8o3CAc26dd9/MvgB8p1Sog4JdRETqlN/H2J1zKTN7L9nZ7mHgdufcU2b2O7nnPzub11Wwi4iI+MQ5tx3YXvS1KQPdOffr5bymgl1EROqPlb+ITLXRAjUiIiI1RB27iIjUJf9PY6+MqunY7zv5Q+47+UO/y6hpfZ1H6Os84ncZM+Ka0rimtN9liIgERlV07Ped/CHf6/1K/vELFr/Sx2pqU1/nEfZtvC/7YPcLWDCwwt+CyuCa0iTfeBKA6LcWY/GwzxWJSFWp0ZY98B17cah/r/cr6tznWD7UDTDYt/G+wHfuXqi7hSncwlT2vjp3EZFgd+zFoe7xvqbO/fxNCnVvIcNcuAe1c58U6kOt2U/dC4dJvKmP2DcXBLZzb1h3NY0XvxCLNeMSY4w/cw8T+x/2u6y8na+7b1bbbf7OC+a4kvJt3/K1WW1384Nvm+NKyvOfV31xVtu94ZF3zXEl5ftvP3v9rLb71xd/e44rmXt+n8deKYEN9uJQf013djEe72sK9/NXHOrrd2ffoL2vBTHcXVOaxJsHoDNFOtFN/PhWAJqi2wh39RJ/e4Lw9nXEjp/wt9ACjVfeTPM1byAUa5n09diFW8gkRhnb8Z+MP7r9HFuLiMxMIIN9qlAvDHCF+/mbKtTzAb77BYEMd9eUZvxXhrD2OOlEN+PP/TrRY4cJJ0ZJH38JbPkJ4eaTpF4XIfOjjTQdeM7vkml92VZiG2/EzHDOkR48gYsPYU3thDuWEIq10HLD2wkvWMHoj//Z73KB8jvw2Xb4lVBuBz7bDn+ulduBz7bDr4RyO/DZdvjzzUwd+7yZLtS9+wr32SsZ6pC9H7Bw9zp1L9TdPVvo2vPvhNIT+THpfU0k39xOuK2X9Csg8Z1VvnbujVfenA/1iWN7GPreJ3Fjg/nnrbmD9td8gIZlF9G48UWk+46ocxeR8xaoyXPThbrnBYtfmd81D5pQNxPThbpnwcCK7K55h+8T6vKz3zvPhHrr7kcnhTpAeCRD4zdacMPthBt7Sd+839cJdc3XvCEf6oN3/NWkUAdwY4MM3vFXTBzbg5nRfM0bfKpUpD5ZyCp680tggr3cUPco3Geu3FD3BCHcCyfKebvfm/c8dc7xFg8TvaOT9PhiQs19JN7U50u4N6y7mlCsBeccQ9/7ZMmxw9/7B5xzhGItNKy7ep4qFJFaFYhgn2moexTu5ZtpqHv8DPfi2e/xg1tpOHbirE69WHgkQ/rBl5JOdENXwpdT4RovfiFA9ph6UadeLDPWT2bwxKTtRKTSDLPK3vwSiGAXmVbuH0k4MVrW8NDEWCWrmZbFmgFw8aGyxmdy47ztRERmKxDBPtvOe7adfj2abec9205/Llg8nF1R7nQEaxumac020q3T/8q6pjSha+8mHOvFDbX6siqdS2Q/WFhTe1njQ7lx3nYiUnnq2CtspuGuUJ+5mYa7n6Hu8cKd/hjhWC/hLT8pGe6uKU3yllOEWgdJJ7qJfHe1LwvWjD9zDwDhjiVYc0fJsaHmLkIdSyZtJyIyW4EJdig/3BXqs1duuAch1D0WDxP75gIyYwsIN54k+eaBKY+Z54/JL5ggnehm4vFfouF0ebvC59rE/ofJJEYxM9pf84GSY9te8z7MjExiNFAr0YnUMu88dnXs82C6cFeon7/pwj1Ioe6xeJjw9nWkx7uxtiHG3zI6qXP3OnVv9nz8wG+VnD0/H8Z2/CfOORqWXUTHm/+cUHPXpOdDzV10vPnPaVh2Ec45xnb8p0+VitSnbLhX7uaXwC1QA+dehKb4vkJ99s61CA0QuFD3xI6fIPOjjaRfAeG2XsbfFiP94EsJTYwRuvZuQq0T+VBveXIH0f4eX+sdf3Q7kQUriW28kYZlF9H17k+RGTxBJj5EqKmdUMeS/Ip047t/HpjFaYK0oly5grKiXLmCtKJcuaplRTkJaLBD6XAHhfpcmDLcIZCh7mk68ByJ76wifXOKcPNJuPanAIRig/nd7+17fux7qHtGfryNVF9Pfq34cOdSwp1L889rrXgRH/m4iEwlBTbY4exw9yjU505xuAOBDXVP7PgJ3FdjJN4UI9zVC5Cd/f7dRbScvsvn6s42/uh2xh/dHviru/l5lbbZ8usqbbPl51XaZqsartImkwU62OHscFeoz71J4U6wQ93jTahLvvEkALFvtWFlnjPul4n9DwcqyEXqnS4C46OpLgIjc8sL9/z9KpA/FS53X0REqiTYQYE+H6ol0Asp0EVkVnw+Ja2SAne6m4iIiMxe1XTsIiIic0kdu4iIiASeOnYREak7BoTUsYuIiEjQqWMXEZG6pGPsIiIiEnjq2EVEpC7pGLuIiIgEnjp2ERGpO35fM72S1LGLiIjUEHXsIiJShwyjNlt2dewiIiI1ZNqO3cxWAV8ElgIZYJtz7pOVLkxERKSSanVWfDm74lPAB51zD5tZG/CQmf3QOberwrWJiIhUTN0uUOOcO+acezh3fxjYDVTfhbtFRETqwIwmz5nZWuAq4IEpntsKbAVYvHTpXNQmIiJSEUbtduxlB7uZtQJ3AL/vnBsqft45tw3YBnDRpZe6tsbGOSuy0lITKb9LmJFkPOl3CTPW2NjqdwkzNjo64HcJM/Lkk3f7XcKMXf686pu/27WguhqX0YFRv0uQeVZWsJtZA9lQ/7Jz7puVLUlERKTyanXy3LQfly27r+LzwG7n3N9XviQRERGZrXI69huAdwJPmNmjua/9qXNue8WqEhERqSSz+j3G7py7B2p0eR4REZEaoyVlRUSk7hh1fIxdREREKsPMbjKzZ8xsr5ndOsXzbzCzx83sUTPbaWYvnO411bGLiEhd8rthN7Mw8GnglUAPsMPMvl20sut/Ad92zjkzuxz4BnBJqddVxy4iIuKPLcBe59w+51wS+BrwhsIBzrkR55zLPWwBHNNQxy4iInUpAJdtXQEcLnjcA1xbPMjMbgE+AnQDr53uRdWxi4iIVMai3HFx77a16PmpPlmc1ZE75+50zl0CvBH46+m+qTp2ERGpS/MwK/6Uc25zied7gFUFj1cCR8812Dn3czO7wMwWOedOnWucOnYRERF/7AA2mNk6M4sCbwO+XTjAzC7MrQCLmV0NRIHTpV5UHbuIiNSdIFzdzTmXMrP3AncBYeB259xTZvY7uec/C7wZeJeZTQBx4K0Fk+mmpGAXERHxSW559u1FX/tswf2PAR+byWsq2EVEpP7U8FrxVXOM/fH+nTzev9PvMmbkaOuzHG191u8yyjbSfoqR9nPOxwikxMohEiuH/C6jbOG2MOG2sN9liEgNq4qO/fH+nfzLvk8A8O71H+TyrlKTDIPhaOuzPL387twDWD6ywd+CpjHSfop9m+8FYP3O62kdWuRzRdNLrBwi/urcBNK7INbT7m9B0wi3hVl36zoA9n90P+nhtM8VidQ3rRXvk8JQB/iXfZ8IfOeeD3UDDJ5efnegO/d8qOfq3bf53sB37vlQz9Ucf/XRQHfuXqg3rmikcUUj625dp85dxGeW2x1fqZtfAt2xF4e651/2fSKwnfukUPfmLebCPYid+6RQL6h33+Z7A9u5Twr1gprjrz4ayM69MNTHj4wD5MM9SJ37+K2zezto/Ghqjisp34Ov/cWsttvy3RvmuJLa9d8fe/ustvunK746x5VIuQLbsReH+rvXf5B3r/9g/nEQO/fiUL/k6I1ccvTGbPgEsHMvDvX1O69n/c7r8/UGsXMvDvWmu5bTdNfyfM1B69yLQ33/R/ez/6P7GT8yrs5dxEfe6W7q2OfJVKHudefvXv/B/HNB6tynCvV8d36U/HNB6dynCnWvO1+/8/r8c0Hq3KcK9Xx3fhf554LSuU8V6l53vv+j+/PPBa1z7/p/N9L+8vdgoRCZZJzxZ+8nM9pPqKWLxg3XEYo24TIZDjb/mt+l5pXbgc+2w5fyO/DZdvgydwLXsZcKdYDLuzYHrnMvGepkQzxInXupUAdoHVoUuM69ZKiTDfEgde6lQh0gPZwObOfuhfrIg3dy8p/fw9APP8PIvV9j6Ief4eQ/v4eRB+/EQoF76xCZsZBV9ubbz+Xftz7bdKHuCVK4TxfqnqCE+3Sh7glSuE8X6p6ghPt0oe4Jarh7oT5y71dxE+OTnnMT44zc+1VGHrzTp+pEZDqBCfZyQ90ThHAvN9Q9fod7uaHuCUK4lxvqHr/DvdxQ9wQx3DPJOKM7Sgf36M5v5e9HFqyscEUilWEV/s8vgQj2mYa6x89wn2moe/wK95mGusfPcJ9pqHv8CveZhronaOE+/uz9Z3XqxVwynr8fXf28SpckIjMQyMlzIuKfzGj/jMZbtKlClYhUjplpgZpKmm3nPdtOfy7MtvOebad/vmbbec+2058Ls+28Z9vpn6/Zdt6z7fQrJdTSNaPxhd27iPgvEMEOMw93P0PdM9Nw9yvUPTMNdz9D3TPTcPcr1D0zDfeghTpA44brsIbGkmMKu/TkoScqXZJIRdTqeeyBCXYoP9yDEOqecsPd71D3lBvuQQh1T7nh7neoe8oN9yCGOkAo2kTLNbeUHNOy+Y35+6m+ngpXJCIzEahgh+nDPUih7pku3IMS6p7pwj1Ioe6ZLtyDEuqe6cI9qKEO4DIZWrfcQuv1bz/r+LlFm2i9/u20bikd/CLVoFY79kBOnvPCvXiFOe++Jwih7lk+smHKFeaAQIW6xwv34hXmgMCFuifW0z7lCnNAoELd44V78QpzQGBDHTizotyLcrdJbxMTwL/nbsGhFeUqTyvKVY9ABjtMHe6FghTqninDHQIX6p6pwh0IZKh7pgx3CFyoe6YKdyCwoS5ST2p1Vnxggx3ODndPEEPdUxzuQCBD3VMc7kBgQ91THO5AIEPdUxzuQCBDfaqrtEUWrCS6+nlYtAmXjJM89ESgjqnrKm2Vp6u0VZ/AHWMvVnzMPcih7pl0zD3Aoe6ZdMw94KHumXTMPcCh7ik85h7EUD+XVF8PY49+j9EHv8nYo98LVKiLnA9d3c1nheEe9FD3eJ17/n7A5cM9d78aeJ17/n7AeeHu3RcRqYSqCHaonkAvVA2BXqhaAr1QNQR6IQW6SED43FVXUuB3xYuIiEj5qqZjFxERmUt+XjO9khTsIiJSl/y8tGolaVe8iIhIDVHHLiIidceo3QVq1LGLiIjUEHXsIiJSl3S6m4iIiASeOnYREalL6thFREQk8NSxi4hI3TEzzYoXERGR4FPHLiIidaluj7Gb2e1m1mtmT85HQSIiIjJ75eyK/wJwU4XrEBERmVeWu3RrpW5+mTbYnXM/B/rmoRYRERE5T3N2jN3MtgJbAbqXLZurlxUREakIXbZ1Gs65bcA2gKuf/3x3/UUXzdVLV9zQm+J+lzAjxw71+l3CjG08sdHvEmZs2fJ1fpdQ8y648gK/S5ixJWu7/S5hRl6y5Qq/S5B5plnxIiJSdwxdj11ERESqQDmnu30VuA+42Mx6zOw3K1+WiIhIZdXqrPhpd8U7594+H4WIiIjI+dMxdhERqT9aK15ERESqgTp2ERGpS3W7VryIiEitMSCU2x1fqVtZdZjdZGbPmNleM7t1iud/1cwez93uNbNpFyZQsIuIiPjAzMLAp4HXAJuAt5vZpqJh+4EXO+cuB/6a3EJwpWhXvIiI1KUA7IrfAux1zu0DMLOvAW8AdnkDnHP3Foy/H1g53YuqYxcREfHHCuBwweOe3NfO5TeB7033ourYRUSkLs1Dx77IzHYWPN6Wu65KvoQptnFTvZCZvZRssL9wum+qYBcREamMU865zSWe7wFWFTxeCRwtHmRmlwOfA17jnDs93TdVsIuISN0xC8RlW3cAG8xsHXAEeBvwjsIBZrYa+CbwTufcnnJeVMEuIiLiA+dcyszeC9wFhIHbnXNPmdnv5J7/LPDnwELgn3KHDlLT7AVQsIuISD2yQFy21Tm3Hdhe9LXPFtz/LeC3ZvKaVTMr/hvPfJVvPPNVv8uYkV2DD7Nr8GG/yyjb/old7J/YNf3AANnHE+zjCb/LKFsqmiAVTfhdhojUsKro2L/xzFf5xMMfzz9+y8XBv+DcrsGH+XrPPwLwVt7Lpo6rfa6otP0Tu7hr/IsAvJp3sa6heI2E4NnHE+xoyn3QjcN6nudvQdNIRRMcvPZBANY8sIVIMuZzRSL1LQDnsVdE4Dv24lD/xMMfD3znXhjqAF/v+cdAd+6FoQ5w1/gXA9+550PdAIMdTdsD3bl7oZ5sGyHZNsLBax9U5y4iFRHojr041D3e14LYuReHuufrPf8YyM69ONQ9d41/MbCd+6RQ9874zIV7EDv3wlAPjXaCGcm2fg5ct4O1918T6M59rKGZoaYu0qEw4Uya9ng/zRNjfpeV95HEH89quw/F/m6OKynP7z/z67Pa7v9c/IU5rWMmNv3z7N4Ddv12sJsDoGYv2xrYYC8O9Q9e/UfAmVAPYrgXh/pbV74XIP+1oIV7cai/uvFdAPmvBTHci0P9mvjNAPmvBS3cU9EE+6/bSap1hHSim5EjWwFoWrMNWnt59obHWbLzRhYMj/tc6WSDjZ0c7VzDcFPnWc+1xQdYPnCQjvGBea9LRKYXyGCfKtQLAzyI4T5VqHsB/lbeG7hwnyrUvQB/Ne8KZLhPFer5AI8HL9xT0QT7XvAw6ZYh0oluxvf/BguHRmhIJ0iOvJHxTd8i1NTL0Wt+wcQjL2NJ/6Cv9XpOti5l/6KLwIxQJsWC0VM0pBNMhGP0tSxiuKmTZxo7WHdqD4tHjvtdLlB+Bz7bDn+ulduBz7bDr4RyO/DZdvjzzdAx9nkzXai/5eK357t3CMYx91KhDrCp4+p89w7+H3MvFeoA6xo25bt3CMYx95KhTjbEr4nfnN01H4Bj7l6nnm4ZIJ3opu3xm7lq/5OsP/UMq/oPcMHxw1z4iysIjXURbuzl5FU/pq+t0bd6PYONnflQXzZwiKsO3Z+vef2pZ7jq0P0sGzgEZuxfdBGDjZ1+lywiRQIV7NOFuidI4T5dqHuCEu7ThbonSOE+Xah7ghLu3jH1VOtQPtTXnDxB2KUnjYslIlxw71X5cD+x+W7fJ9Qd7VyTD/VV/fvPqjns0qzq358P96Oda3yqVOQ8mWEVvvklMMFebqh7ghDu5Ya6x+9wLzfUPUEI93JD3eN3uBdOlPN2v688deqc4yPJGGvv20xmvBuaTnHguh2+hftYQzPDTZ2EMimWDxwqOXb5wCFCmRTDTZ2MNTTPU4UiUo5ABPtMQ93jZ7jPNNQ9foX7TEPd42e4zzTUPX6Fe/Hs9/jBrSwYGj+r6y0WS0Ro3PVG0oluJlqHfTsVbqipC4AFo6emrTns0iwYPTVpO5FqEzKr6M23n8u37yxSy3L/qBvS5QV0JJ2sZDVlSYfCQPk1N+Rq9rYTkWAIRLDPtvOebac/F2bbec+20z9fs+28Z9vpz4XZdt6z7fTPVyQZY80DW4gOt5Jp7qdpzTaSsdKdL2Q7/fil3yYc6yU02unbqnThTLbWiXB533siHJ20nUi10TH2CptpuPsZ6p6Zhrtfoe6Zabj7GeqemYa7X6Hu8cK9YaSNcKyX8U3fIhFLnXO8t/veNfeRTnSzfMcNvi1Y0x7vB6CvZRFpK92Fpy1MX8uiSduJVBMje9nWSt78Ephgh/LDPQih7ik33P0OdU+54R6EUPeUG+5+h7onkoyx9v5rIL6IUGMvB16wc8pj5sUT7cLPvJW2scy81+tpnhijLT5AJhThaOfqkmOPdq4mE4rQFh8I1Ep0IhKwYIfpwz1Ioe6ZLtyDEuqe6cI9SKHumS7cgxLqnkgyxpKdN5Ie7ybT3M9z1z8yqXMvDvX4gd9meYnZ8/Nl+cBBcI5jnas53LXurM49bWEOd63jWOdqcC47XqRKWYX/80sgV57zgrp4hbni+0EIdc+mjqunXGHOu+/xO9Q96xo2TbnCnHffE4RQ96zneVOuMAcEKtQ9C4bHmXjkZZy86sfQ3MveGx6jcdcbiaSTxC/9Nq75TKivPXE0EEu0dowPsO7UHvYvuohjnas50b48t/JckolwlL6WRWRCEXCOdaf2BKJmCM6KcuUK0opy5aqWFeUkoMEOpcMdghXqnqnCvVBQQt0zVbgXClKoe6YMdwhcqHuW9A/SsOMGTmy+m1BTL/FLvwVAONaX3/1+0al9gQlIgMUjx4mmxvNrxZ9qWzrpea0VL7WiVpeUDWyww9nh7gliqHuKw90TtFD3FIe7J4ih7ikOdyCQoe5ZMDxO+y8u58B1O6C1F4DQaCcrd1xD29hen6ubWsf4AB3HBwJ/dTe/rtI2W35epW22quEqbTJZ4I6xFys+5h7kUPcUH3MPaqh7io+5BznUPZOOuQc41D3ehLrocCvR4VYuuO9qXyfKlat5YoylQ0dYMXCIpUNHAhXqIufDKrw4jZ8L1AS6Y/cUXwSmGnidu3c/6LzO3btfDbzOPX8/4LxT4bz7IiKVUBXBDtUT6IWqIdALVUugF6qGQC+kQBcJjlo9xh74XfEiIiJSvqrp2EVEROaSOnYREREJPHXsIiJSd7JrxatjFxERkYBTxy4iInVJx9hFREQk8NSxi4hI/fH5mumVpI5dRESkhqhjFxGROuTvNdMrSR27iIhIDVHHLiIidceo81nxZnaTmT1jZnvN7NZKFyUiIlJptXrZ1mmD3czCwKeB1wCbgLebWfVdBkxERKQOlLMrfguw1zm3D8DMvga8AdhVycJEREQqqZ53xa8ADhc87sl9TURERAKmnI59qo807qxBZluBrbmHiZZY7MnzKWyeLQJO+V3EDFVbzdVWL6jmyvtGldWbpZor7+JKf4OHHnroLjNbVOFv48vfeTnB3gOsKni8EjhaPMg5tw3YBmBmO51zm+ekwnlQbfVC9dVcbfWCap4P1VYvqOb5YGY7K/09nHM3Vfp7+KWcXfE7gA1mts7MosDbgG9XtiwRERGZjWk7dudcyszeC9wFhIHbnXNPVbwyERERmbGyFqhxzm0Hts/gdbfNrhzfVFu9UH01V1u9oJrnQ7XVC6p5PlRbvYFizp01D05ERESqlNaKFxERqSFzGuzVtvSsmd1uZr1mVhWn5pnZKjP7iZntNrOnzOwDftc0HTNrNLMHzeyxXM1/6XdN5TCzsJk9Ymbf8buWcpjZATN7wswenY8ZxXPBzDrN7D/M7Onc7/QL/K6pFDO7OPf3692GzOz3/a6rFDP7g9y/uyfN7Ktm1uh3TdMxsw/k6n0q6H+/QTVnu+JzS8/uAV5J9hS5HcDbnXOBXaHOzF4EjABfdM5d5nc90zGzZcAy59zDZtYGPAS8MeB/xwa0OOdGzKwBuAf4gHPufp9LK8nM/hDYDLQ7517ndz3TMbMDwGbnXNWcq2xm/wrc7Zz7XO6Mm2bn3IDPZZUl9353BLjWOXfQ73qmYmYryP572+Sci5vZN4Dtzrkv+FvZuZnZZcDXyK54mgS+D/yuc+5ZXwurMnPZseeXnnXOJcn+z3nDHL7+nHPO/Rzo87uOcjnnjjnnHs7dHwZ2E/BVAF3WSO5hQ+4W6IkdZrYSeC3wOb9rqVVm1g68CPg8gHMuWS2hnvNy4LmghnqBCNBkZhGgmSnWIAmYjcD9zrkx51wK+Blwi881VZ25DHYtPTuPzGwtcBXwgM+lTCu3W/tRoBf4oXMu6DX/H+CPgYzPdcyEA35gZg/lVoEMuvXASeBfcoc8PmdmLX4XNQNvA77qdxGlOOeOAB8HDgHHgEHn3A/8rWpaTwIvMrOFZtYM3MzkBdKkDHMZ7GUtPSvnz8xagTuA33fODfldz3Scc2nn3JVkVy3cktvdFkhm9jqg1zn3kN+1zNANzrmryV6F8fdyh5mCLAJcDXzGOXcVMAoEfl4OQO6wweuBf/e7llLMrIvsXtN1wHKgxcx+zd+qSnPO7QY+BvyQ7G74x4CUr0VVobkM9rKWnpXzkztOfQfwZefcN/2uZyZyu1p/CgR5KccbgNfnjll/DXiZmX3J35Km55w7mvuzF7iT7KGxIOsBegr23vwH2aCvBq8BHnbOnfC7kGm8AtjvnDvpnJsAvglc73NN03LOfd45d7Vz7kVkD5Xq+PoMzWWwa+nZCstNRPs8sNs59/d+11MOM1tsZp25+01k32ye9rWoEpxzH3LOrXTOrSX7O/xj51yguxwza8lNpiS3O/tVZHdpBpZz7jhw2My8i328nOq5FPTbCfhu+JxDwHVm1px773g52Xk5gWZm3bk/VwNvojr+rgOlrJXnylGNS8+a2VeBlwCLzKwH+Avn3Of9raqkG4B3Ak/kjlkD/GluZcCgWgb8a24WcQj4hnOuKk4hqyJLgDtz15aOAF9xzn3f35LK8j7gy7lGYB/wbp/rmVbuuO8rgff4Xct0nHMPmNl/AA+T3Z39CNWxotsdZrYQmAB+zznX73dB1UYrz4mIiNQQrTwnIiJSQxTsIiIiNUTBLiIiUkMU7CIiIjVEwS4iIlJDFOwiIiI1RMEuIiJSQxTsIiIiNeT/B9IDDuUHsdIPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.figure(figsize=(9, 9))\n", + "\n", + "plt.pcolor(som.distance_map().T, cmap='bone_r') # plotting the distance map as background\n", + "plt.colorbar()\n", + "\n", + "# Plotting the response for each pattern in the iris dataset\n", + "# different colors and markers for each label\n", + "markers = ['o', 's', 'D']\n", + "colors = ['C0', 'C1', 'C2']\n", + "for cnt, xx in enumerate(data):\n", + " w = som.winner(xx) # getting the winner\n", + " # palce a marker on the winning position for the sample xx\n", + " plt.plot(w[0]+.5, w[1]+.5, markers[target[cnt]-1], markerfacecolor='None',\n", + " markeredgecolor=colors[target[cnt]-1], markersize=12, markeredgewidth=2)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/BasicUsage.ipynb b/examples/BasicUsage.ipynb new file mode 100644 index 0000000..c82ffa9 --- /dev/null +++ b/examples/BasicUsage.ipynb @@ -0,0 +1,323 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook we will see the basics of how to use MiniSom.\n", + "\n", + "Let's start importing MiniSom:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "MiniSom relies on the Python ecosystem to import and preprocess the data. For this example we will load the seeds dataset dataset using pandas:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "columns=['area', 'perimeter', 'compactness', 'length_kernel', 'width_kernel',\n", + " 'asymmetry_coefficient', 'length_kernel_groove', 'target']\n", + "data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt', \n", + " names=columns, \n", + " sep='\\t+', engine='python')\n", + "target = data['target'].values\n", + "label_names = {1:'Kama', 2:'Rosa', 3:'Canadian'}\n", + "data = data[data.columns[:-1]]\n", + "# data normalization\n", + "data = (data - np.mean(data, axis=0)) / np.std(data, axis=0)\n", + "data = data.values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can initialize and train MiniSom as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " [ 1000 / 1000 ] 100% - 0:00:00 left \n", + " quantization error: 0.6426435848319221\n" + ] + } + ], + "source": [ + "# Initialization and training\n", + "n_neurons = 9\n", + "m_neurons = 9\n", + "som = MiniSom(n_neurons, m_neurons, data.shape[1], sigma=1.5, learning_rate=.5, \n", + " neighborhood_function='gaussian', random_seed=0)\n", + "\n", + "som.pca_weights_init(data)\n", + "som.train(data, 1000, verbose=True) # random training" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To visualize the result of the training we can plot the distance map (U-Matrix) using a pseudocolor where the neurons of the maps are displayed as an array of cells and the color represents the (weights) distance from the neighbour neurons. On top of the pseudo color we can add markers that repesent the samples mapped in the specific cells:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAIMCAYAAAAHCo5eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABotUlEQVR4nO3deZxbd33v/9dH0kizL17G+5o4iZ2QDccJCWFfQqBAoGVr4ZYupr1laUt/bSi97e2SAr3Qe6GlcF1IKWVvQygXDAHKlpDNzp7YieN4HW9je/YZjTSSvr8/pCNr5LFGMx7NOZLezzz0sDT6Hs1nnLHe+pzzPd9jzjlERESkNoT8LkBERETmjoJdRESkhijYRUREaoiCXUREpIYo2EVERGqIgl1ERKSGlBXsZvYBM3vSzJ4ys9+vcE0iIiI1z8xuN7NeM3vyHM+bmX3KzPaa2eNmdnU5rzttsJvZZcBvA1uAK4DXmdmGmRQvIiIiZ/kCcFOJ518DbMjdtgKfKedFy+nYNwL3O+fGnHMp4GfALeW8uIiIiEzNOfdzoK/EkDcAX3RZ9wOdZrZsutctJ9ifBF5kZgvNrBm4GVhVTtEiIiIyayuAwwWPe3JfKyky3QDn3G4z+xjwQ2AEeAxIFY8zs61kdxXQ0tLy/A0XXVRe2QEwmkj4XcKMVOMywCEzv0uYsXA47HcJMzKROuufZeCNjY77XcKMhSPVNee4u6vT7xJm7KGHHjrlnFtcye9hZvPxRvoUUPhLvs05t20G20/1xjlt3dMGO4Bz7vPA5wHM7G/JfmooHrMN2AZw1dVXu5/ec085Lx0I9+3d63cJM5LOZPwuYcYaGxr8LmHGOlta/C5hRo4PDPhdwow99sAuv0uYsdauVr9LmJH3v+X1fpcwY2Z20O8a5si4c27zeWzfw+Q95CuBo9NtVO6s+O7cn6uBNwFfnUWBIiIigWFmFb3NgW8D78rNjr8OGHTOHZtuo7I6duAOM1sITAC/55zrP49CRURE6p6ZfRV4CbDIzHqAvwAaAJxznwW2k53XthcYA95dzuuWuyv+xpmXLCIiElxz1FWf03TzoZxzb5/meQf83ky/b3XNAhEREZGSyt0VLyIiUlPMKt3b+jPRWR27iIhIDVHHLiIidciY+jTx6qeOXUREpIaoYxcRkbpU6VnxflHHLiIiUkPUsYuISN0xq92OXcEuIiJ1qfKnu/mjNn8qERGROqWOXURE6tCcXaglcNSxi4iI1BB17CIiUpfUsYuIiEjgqWMXEZG6VKsde1UE+yf/ay//77ETJFIZYpEQv3TFEj7w8gv9LqukHz89xC/2jZGYyBBrCHHD+mZedkm732Wd05ce6OPhw+NkMo5QyLh6VSO/du0Cv8vKe/m/Xz+r7f7rV+6d40rqS9B/L6ayfzTC3pEGEhkjFnJc2DrBupaU32Wd06k4HBo2kmmIhmF1m2NRk99VFfifHbPcbnBu65CyBTrY3/uVx7h7b99ZX7/9F4e5/ReHufHCBfzjO67wobJz+9IDfdy7b5SMK/xqmm88PMh/PDLI9etbAvXG+Hc/6OVg38TkL2Yc9+2Pc9/+I6xZ0MAfv6rbn+LEN9X4e/HYQJRHBhpJusld2P6xKFFzXNU5zhWdSZ+qO9uhIbjveIgjI2d3jStaHS9YmmF1cHuBqqcFanzw2n+4j57+8fzjcMiIRYxEypHOpebde/t43T/cx3fe9wK/ypzk735wgn2nzrxxxCJGU4MRn3AkUo6Mg3ueG+XY4AT/36uW+Fhp1p988ygjyUmfQAgbpAu+dLBvgj+58ygfu2X5PFc3tf955V386wOncS7797t5TQudTWEG4ml2HhwlkXKYwf7YO/wutWpV4+/FT0428uxIlOzVuhztkQxNYUc8bQylQiSd8UB/I/0TIV6yeHy6l6u4J04ZPzpkOIyGkOOiTkdLA4xOwJ4B48iIccfeEK9c7bhskZv+BedDuR34bDt8mTOBDPb3fuWxfKg3R0N8/l1XsWn5mY+uu44O8ZtffISxZIbD/eO89yuP+d65f+mBvnyodzaF+IOXLWZJRzT//InBJP/7xycZiGd47lSSLz3Q52vn/nc/6M2/eYcN3vfSBWzoPrP/79neOP/wkz7SDkYSjr/7QW8gOjQv1G++rIObL+ugqeHM/M+3X7OA7U8Osv1J7QKcrWr8vXhsIJoP9e5Yild2j9JS8M42moIf9rbQm4iwZyRKV0PG18790BD5UN+yJMOWpY5o+MzzL007HjxuPHgixA8PQXvUqXOvCKNW548H8qfydr83R0Pcd+uLJ4U6wKbl7dx364tpjoYmjffTvftGgWyof/SWFZNCHWBJR5SP3rKCzqbQpPF+8Xazhg0+9dYVk968ATZ0N/Gpt64gbJPH+80L9Tdf1TUp1AGaGkK8+aoubr5MHcNsVePvxSMDjXih/sblk0MdoCUCb1w+SncsBVhuvH/uOx7Kh/oLV0wOdcgeZ3/hCseWJRkcxv3HA/k2LQEWuN+YT/7X3vz9z7/rqpJj//mdV0653Xz78dND+WPqf/CyxSXHfiD3fMZlt/PDlx4480HofS8tvdfg917cNeV2folFbNrgvvnSM88fGQjOMdWgq8bfi/2jkdwxdccru0t/WH5F9yjgSDpj/6g/OytPxeHISHb3+5alpXexX7PU0RBy9IwYp+LzVGCdMbOK3vwSuGD/f4+dALLH1Is79WKXreggHJq8nR9+sW8MyIZOcadebFlHlFjEJm033x4+fOYYY3FHVuzipc1TbueXzWtazurUizVFzzy/+5j/NVeLavy92DvSAEB7JHNWp16sNZIdV7jdfDs0nP23f1Hn2Z16sVgYNnS6SduJlCNwx9gTqew/PC/8phOLhBhLZvLb+SExkf3eTQ3l1dzUkJ0E6G033zKZM8dQy+FNnMpk/J/E09k0zbthkbhPf8fVqBp/LxKZbLFN4fJqaAw7hlJntptvyXT2z5YyP1e0NkzeTuZWrc6KD1zHHotkS0qkyvuHeuaDgH8/SizXQcYnyqvZGxebpvOslFAo+8ucLvP92BvnbeengfjM3uGm6+7ljGr8vYiFskXE0+XVMJ4b520337wufbTMqQkjE5O3EylH4N71fumK7Glg6Yxj19HSx6CfPDJIOjN5Oz/csD67WzKRcpwYLH1M99hgMv+hxdtuvl296szkoWd7Sx+8e+b4mcMFhdv5ZefB0Wm78HjyzPMbl/lfc7Woxt+LC1uzyTeUCjE6zRo0I6nsuMLt5tvqtuy//T0DNm0XnkjDswM2aTuZWzrGPk8KV5T7zS8+UnLsb//bo1NuN99edkk7XtPyv398suTYT+aeDxm+rURXeJrdP/yk9MSnT/+sf8rt/JJIuWlPZ9v+1JnnV3SWnvMgZ1Tj78W6lhRRc4Dxw96WkmN/1NsCGFFzvq1Et6gpu/jMRMZ48HjpN/4dx42JjLGyNWAr0UngBS7YAW68MPtGMZbM8IKP/ownj0x+I3/yyCAv+OjPGMt1Zt54P12/PvumMhDPcOudRzhW1LkfG0xy651HGIhnJo33y5oF2YN3aQfv//qRSR0YZDuy93/9SH53qzfeb2aw/clB7nikf1JnDtlO/Y5H+nUe+3moxt+LqzrHAUdvIsK3jrYwUpTZIyn41tHseezgcuP984KlGQzHgydC3HPESBR17ok03HMkex674bhuqeaJVEqtduzm3Nzv4rnq6qvdT++557xe4+yV57LH0ROpTH73O8CqrsbzXnnuvr1zc6rcdCvPeS5YFD2vlefSmbn5h17OCmMArTE77xXGGhvOLwD8WCu+s8XfD18zdXxgYE5eZz5/Lx57YNd5be+ZauW5xrBjPLfynPf1i1qT573yXGtX63nXW7zy3IZOR2tD9pj6swPZTt1wc7Ly3Pvf8vrzK9aHteLN7CHn3OZZv0AZwuGIa23trOS3YGjodMV/jqkEsmMH+O77XjCpE09nsh18YajfeOGCwCwnC/DHr1rCCy9oye+WT6QcA/FMPtRDBi+8oCUQy8kCfOxNy8/quIrfvNcsaAjMsqEyP6rx9+Kli8e5tms8v1t+KBWmNxFhKBXG2/1+bdd4IJaTBXjeIsebL8ywMrdbfldfiAdPhNjVF8rvfn/zhZngLCdbg7JddaiiN99+tqB27IUqfXW3uerYC1Xy6m5z1bEXqvRVvM63Y5/KkYEku4+NE5/I0NQQYuOyxjk9pl6vHXuhSv9ezFXHXqjSV3ebi469UKWv7nbeHbsP5qNjj0QaXFtbZQ/jDgz0+tKxV0WwV1olgr2SKhHslVaJYK80BXvlVSLYK22ug73SFOxTq+VgD9wCNSIiIvNBC9SIiIhI4KljFxGROqWOXURERAJOHbuIiNQh8/WUtEqqzZ9KRESkTqljFxGRuqRZ8SIiIhJ46thFRKTumKljFxERkSqgjl1EROqSOnYREREJPHXsIiJSh0wdu4iIiASfOnYREalLdb3ynJn9gZk9ZWZPmtlXzayx0oWJiIjIzE0b7Ga2Ang/sNk5dxkQBt5W6cJEREQqycwqeiuzhpvM7Bkz22tmt07xfJeZ3Wlmj5vZg2Z22XSvWe5+iAjQZGYRoBk4WuZ2IiIiMgUzCwOfBl4DbALebmabiob9KfCoc+5y4F3AJ6d73WmPsTvnjpjZx4FDQBz4gXPuB1MUuBXYCrB0+XL2HD8+3UsHxj0/eNDvEmZkpH/E7xJmbNHKRX6XMGMt7S1+lzAjB3cd9LuEGfv5977rdwkzdvGmzX6XMCM3Xnu53yUEmO+z4rcAe51z+wDM7GvAG4BdBWM2AR8BcM49bWZrzWyJc+7EuV60nF3xXblvtA5YDrSY2a8Vj3PObXPObXbObe5csGAGP5eIiMj8qvRu+Nyu+EVmtrPgtrWojBXA4YLHPbmvFXoMeFOu5i3AGmBlqZ+tnFnxrwD2O+dO5l74m8D1wJfK2FZERKRenXLOldrFM9UuA1f0+KPAJ83sUeAJ4BEgVeqblhPsh4DrzKyZ7K74lwM7y9hOREQksAJwulsPsKrg8UqK5rA554aAdwNYdjfA/tztnKb9qZxzDwD/ATxM9tNCCNg2g8JFRETkbDuADWa2zsyiZM84+3bhADPrzD0H8FvAz3Nhf05lLVDjnPsL4C9mXrOIiEgw+b2krHMuZWbvBe4ieyr57c65p8zsd3LPfxbYCHzRzNJkJ9X95nSvq5XnREREfOKc2w5sL/raZwvu3wdsmMlrKthFRKQu+d2xV4rvMwdERERk7qhjFxGROqTLtoqIiEgVUMcuIiJ1x0zH2EVERKQKqGMXEZG6FICV5yqiNn8qERGROqWOXURE6pL5f9nWilDHLiIiUkOqpmMfSg4A0B7t9LWOmUjYGAAx1+xzJSIiMpllp8bXoKro2IeSA/zdE3/G3z3xZ/mAD7qEjfGLzjv4Recd+YAXERGptMAHuxfqR8cOc3TscFWEuxfqw5E+hiN9CncRkQAys4re/BLoXfGFod4eWk7GwdGxw9z26If58JW3BXK3fGGoR5OLcMBw9BQ/7/gmLxp8U2B3y+9Nd3CIdlKEiJBhNUNcGB70u6ySdvTF2DMaI+2MsDkuaklwzYKE32Wd03ODxu6BEMk0RMOwsTPDBR3O77JKGnJRTrqm/O/FYovTbkm/yyopsWgdyRWbcOEYlk4QPbKL2Kn9fpdVta76lytmtd0j735sjiuRcgU22IeSA/zVw39K38QR0olujh78DQCa1mzjJD380b1/wm+u/wuuXb3c50rPSNgYP+v4JvFIH+lEN30HtwLZmsdivdzV9i2u7PsVVkcafK70jEfSizlIBxTNDn2SRp5ML2YNg1wVPulPcefw/RMt9Iw3MKlmB48NN/PYcBMrGye4acmob/UV23kyxI7eMMnM5L/j54bCREOOa7rTbF6c8am6qZ10TTydWcBpij6IOljIGJeE+lhscX+KO4f4mquJr78WGmKTvj6xZAOjEwma9j1A08GHfapOgqhWV54LZLAPJQf4i50fYjB9lHSim8zR3+HFFyyjqzlC79gHeSzx96Rix/mnPX/B6ZH/wc2bVvtdMgkb4ycdd5JoOE060U3y0G+xLhKiOZRh5Ng7Obns3wjFetm54D8YO/VWLon6fxTkZ+kV9NNENiAdETJEyJAiRIoQYBykg+F0lBeFj/hcbdbXe9oYTofxajYgjCONke19jZ7xBr7e08ZbVw77WSoAPzgcZvdA9u8SHB1RR3MExlIwmDSSGeMXx8P0jRuvWpX2u1wADmTaedR1A0aEDMtthEZSjBPhqGvlNM38ItPEVdbLmtCQ3+UCMHLpK0ku35SdDOUcobEBLBnHRZvINHdCQ4z4RTeSbllA664f+V1uVSq3A59thy9zJ3DB7nXqXqi/tO1PeOvb1tEUDedGdNM7+hH++pEPMxo7xteP/jULW//S187d69S9UF994le5on2MhtCZ3awjg2/k553fhFgvuxZ9nea+X/a1c38kvTgf6o1McAOHaQufCZbhdJhfsIpxGuijiUfSi33v3L9/oiUf6hEyvHbJIIsbzzx/chy+e6KDFCGG02G+f6LF185958lQPtSXNmV47eoUrdEzz48k4buHIhyPZ8ctaHS+d+4nXVM+1C+yPjZYHw125vf4ea6XZ90C9rgFPOK6aXYTvnfu8TVX50M93H+Utse+Qyh5Zk5LJtrM8BWvI921nOSKS4mP9qlzl9xa8f43WJUQqJ/KO6bu7X5/aduf8OvXXlgQ6lndLQu5bctHabFlhGO9fH7fX/o2oc47ph4vCPXNTZlJoQ7Qak28fOgWGpKLCMd6eXTBv/s6oc7b/d7IBDeFD0wKdYC2cJqbwgdoZAKvc/ebt/s9QoZfXzM51AEWN8KvrxkkQgavc/fTjt7sh5ClTRneeuHkUAdojcJbL0yxtClbb3a8v57OLMAL9U2h05NCHaDBHJtCp7nI+gDLjfdXfP21+VDv2PGNSaEOEEqO0bHjG4T7j4JZdrwIlZ045+du/sAEe+FEOW/3+1uvWnfO8e3RTv7sqttwiSWkwse57dEPz3u4F06U83a/XxE792SomGvmxoE3kUl042In+XnHN30J971p75i64wYOlxx7PT2AAyy3nT929MXwan7tktKT+m5eMohXc3a7+ffcoOWOqTteuzpVcuzNq1OAI5kxnhv0781gyEU5TTMRMmywvpJjN1g/ETKcppkhFy05tpISi9Zlj6k7R9tj3yk5tu2x74Jz0BDLbidSowIR7MWz3+MHt3Ld6mVnderFlrQs5PLIH5JOdHMy0TOvp8IVz36PH9zK6nDkrE69WJs1sfjYO0knuhlrOO3LqXCHaAcgQuasTr1YezhFmMyk7fywZzQb0AZnderFuhvPTKvztptv2V3w0BF1Z3Xqxdqi0NHgJm3nh5OuCYDlNnJWp16swTIss5FJ2/khuWITAKGxgbM69WKh5CihscFJ20l9U8c+TzK595Ou5vIO/3c1+T9NwHsLbA6Vd3y0scxxlZLK/W+PUF4dDblxKR9/XdIu+48kTHmnh3njvO3mWzL3eanMX2O8X+Okj/PnvP+/jZTew+Bpyo3z8/fChXMf+JLlHee3XPh724nUokAEe3u0kz9+3t+wvHkVI+4oTWu20TtWelcgZDv9BxMfJxzrpT20nD9+3t/M27ntMdfMDQNvpi21gInoKZrWbGOE6d9cEjbG8aVfIhzrJZpcxA0Db573c9sjMwzqiRl+EKiEcK6DTJd50QZvXHiazrNSvJ1NY+VlJPHU5O384P3/HS9zTm08N87P3wtLZ9ctcNHy9hq4aPOk7aS+qWOvMC/cF8dWEo718ljq7+kdPX3O8UPJAT76+J8xbsdIJ7p5z4a/nPcFa7xwb55YSDjWy8ll/8aIO3e4J2yMezrvIB09STrRzfP7f8WXBWtWkz1FyZs9XspQOkI692vibeeHi1pyb+BkZ7+X0jt+Zi+Kt91829iZDbvBpDEyzXouw0kYnLBJ2/nBm91+1LUyMc2ejgkX4phrnbSdH6JHdgGQae4kEy39bykTbSHT3DFpO5FaFJhgh2y4f/jK24ikl2KxE/z1I1NPiPOOyR+PZyfarRr/ABu7u+e/YLLh/qLBN2GJxYRivfy8c+oJcd4x+ZHcRLuWI/+N7pA/k46yK8plJ5f9glUlx97LSrxJa36uRJddUS5b83dPlJ7Et/3EmcmBfq1Ed0GHIxrK1XuodAe8/VAEMKIh5+tKdO2WZCFjpAjxrCs92/1Z10WKEAsZ83Ulutip/TCRADOGr3hdybHDV7w2e47TREIr0QkARqiiN78EKtghG+6/uf4vSCe6GXXH+PCDt3KioHP3OnVv9vz4oa0lZ8/Ph5hr5sq+XyGd6GYieor/ar+T4YLO3evUvdnz4wd/m8t9PsS3hmy4j9PA99NrGUpPDp+hdITvp9cyTgPgcuP9tbJxAnCkCPGFgx30FnXuvePwhYMduUMMLjfeP9d0pwHH8XiIr++NMFyUf8NJ+Pre7Hns4HLj/XVJqA9w7HEL2JVZyISb/BYx4ULsyixkj1sAuNx4fzXtewCcI921nMFr3kIm2jLp+Uy0hcFr3kK6azk4lx0vUsP8n3k2hWtXL+fUyP/gG0f/mtHYMW6970NcHvlDupoiPJj4eH73+/ihrbzn+g08b0XL9C9aYasjDYydeiu7Fn0dYr38qONbLD72ThpDGY4v/RbpglDf0pRmWdTf9bavCp9kKB2lnybGaeDHrCWcztBAhglCud3v2a53AXHfF6cBuGnJaH7luRQhvn2ic8qV58Blz8P3eVnZzYsz9I1n14c/Hg9x+zMNdDQ4miLZY+rZ3e/Zejd2ZnxfnAayu9WvtF4edd3scQvY5zpZZiM0kSJOhGOuNf/B6Srr9X1xGoCmgw+Tbl1Icvkm0l3LGXjxbxEaG8SSY7hoc3b3e25FuuiRp7Q4zSzV3opytXvZ1kAGO8BrN61mUetf8vl9f0kqdpxHE5+AYQjHevO739/66nWBCHXPJdEQzX2/zKML/p1QrJfeZf8GQDh3TL3lyH/jBS1J30Pd8+LwkUlrxacJk6bwmLsL3Frxb105PGmteAekJk2oc4FaK/5Vq9IsaHT5teIHJ4zBgh0JQVwrfm1oiBY3kV8r/rCbfJpjENeKb33qh8RHTufXis+0dEJL55kBWite6khggx2ynfvGpR/jtkc/zEl6AGgPLec9l/+lb8fUp7M60sCS4Tfy89A3GYv1AhBNLuL5A2+muy0YgV7oqvBJruJkVV3dzQvtarm62+bF2W68mq7uttjiLA4fqaqruzUdfJimgw/r6m5zrFav0pZdUlYduy+8CXV/98SfAczrKW2z5U2o+0XnHQDcMHQLMZ8mypXrwvAgFwbgOPpMXLMgmEF+Lhd0OC7o8P84+ky0WzKwQX4usVP7FeRS1wIf7HDmVDjvfjXwToXz7ouISLCoY/dZtQR6IQW6iIjMt6oJdhERkblUqx174M5jFxERkdlTxy4iInXIMKvN3rY2fyoREZE6pY5dRETqko6xi4iISOCpYxcRkbqjledERERqTm0Gu3bFi4iI1BB17CIiUod0upuIiIhUAXXsIiJSl2p18pw6dhERkRoybbCb2cVm9mjBbcjMfn8eahMREakYM6vozS/T7op3zj0DXAlgZmHgCHBnZcsSERGR2ZjpMfaXA8855w5WohgREZH5omPsWW8DvjrVE2a21cx2mtnOgb6+869MRESkxpnZTWb2jJntNbNbp3i+w8z+n5k9ZmZPmdm7p3vNsjt2M4sCrwc+NNXzzrltwDaADZs2ud6hoXJf2nf9x/v9LmFGhvuG/S5hxhpbGv0uoeb17Onxu4QZO3Gi+nb+bbr8Wr9LmJGmaMzvEgIpCEvK5g5vfxp4JdAD7DCzbzvndhUM+z1gl3Pul8xsMfCMmX3ZOZc81+vOpGN/DfCwc+7ELOoXERGRybYAe51z+3JB/TXgDUVjHNBm2U8hrUAfkCr1ojM5xv52zrEbXkREpLrMy8pzi8xsZ8Hjbbm9254VwOGCxz1A8S6hfwS+DRwF2oC3Oucypb5pWcFuZs1kdxW8p5zxIiIiwinn3OYSz091LMAVPX418CjwMuAC4Idmdrdz7pzHu8v6uOKcG3POLXTODZYzXkREJOgCcB57D7Cq4PFKsp15oXcD33RZe4H9wCWlXlQrz4mIiPhjB7DBzNblJqi/jexu90KHyJ5qjpktAS4G9pV6Ua0VLyIidcl8vh67cy5lZu8F7gLCwO3OuafM7Hdyz38W+GvgC2b2BNld93/inDtV6nUV7CIiIj5xzm0Hthd97bMF948Cr5rJayrYRUSkPmnlOREREQk6dewiIlKH/L0CWyUp2EVEpO5kl5StzZ3WtflTiYiI1Cl17CIiUpdqdVe8OnYREZEaoo5dRETqkjp2n41MDDIyUV1L1SfDcZLhuN9liIhIHamKjn1kYpBtz30EgK0XfIjWhg6fK5peMhzn8fU/AODyfa8imm7yuSIRETmjdk93C3zH7oV6b+IIvYkjbHvuI4Hv3L1QH2scZKxxkMfX/0Cdu4iIzItAd+yFod6QXopzjl6O8KlnbuP9F384kJ17Yag3j2fr88I9yJ17T2M3x5u6SVuYsEuzNN7LyvFev8uqKU8NRnl6NEYqY0RCjktaElzakfS7rJL6mxdyum0p6VCEcCbFwuHjdI2d9rusvCO/fWJW26345yVzXEl5vrT2H2a13a8deN8cV1K+S/5vySuEntPT73l6jiuZe7V6Hntgg31kYpD/vfs2Rt0x0oluRg7+FgBNa7YxFDvGXz/yV7yo9YO8dtNynys9ozjUL9+XXbff+1oQw31P61qON3WftWbyvoZ17Gtby9J4LxeNHPCnuBpx96km9ozGcIVXkkrDfQMR7h9o5qKWBDcuCtYeneMdqzjatZZMePJbxEBrN6F0iuX9B1g6eNin6kSklEAG+8jEIP/ryb8hETpOOtFN/OBWFjV10NYYYujU7zK26DOEY738dOQT9D7wft597Rq/S54y1L0Av3zfqwIZ7o90bmK4oTUb6s4RdmnCLk3awqQtDGYcb+pmLNLMlQO7/C63Kn37WCu9yQjZqy06IuaImiPpjJQzHMYzozH6J8K8ftmI3+UCsG/xJfS1Lc3/XsQm4kTSSVLhKImGJjLhCD0LLyAebWbdyWf8LhcovwOfbYc/18rtwGfb4VdCuR34bDt8f9TmMfbABbvXqXuhvnjov7P1tWvobPZK7ebI0If5p2f/FmIn2JX4FN/d5W/nXirUAaLppsCF+57WtflQj6YTXD6wi+b0md3CY+Eoj3duIhmOMdTQyp7WtercZ+juU035UG8Opbl5yRCd0TPPDyRh+4l2xjJhepMR7j7V5HvnfrxjVT7UW+KDXHD8SaKZM78XyVCU55ZexmhTB6fbltGUHFPnLhIwgTrA4B1T93a/Lx767/zxKy4oCPWsFe0L+NDl/4NwagnhWC8/H/mEbxPqpgt1jxfuzeMdgZhQ5+1+j6YTXHf60UmhDtCcTnLd6UeJphP5zl1mZs9oDC/U37FqcqgDdEbhHauGaA6lAcuN99fRrrX5UN949OFJoQ4QzSTZePRhWuKDYMbRLv/3lonMhplV/OaXwAR74UQ5b/f71uvP/abR2tDB7274U9KJbizWy6eeuW3ew73cUPcEJdx7Grvzu1kvn2YX+/MGdoNzYJbdTsry1GA0d0zdcfOSoZJjX7NkCHA4jKcGoyXHVlJ/88LsMXXnuOD4kyXHXnD8SXCOTLiB/uaF81ShiJQjEMFePPvdO6Ze3KkXW9m+gKaTv0s60c1Q+ti8ngo301D3BCHcve477NJnderFWtIJQi4zaTuZ3tO57jti7qxOvVhXNDuucDs/nG5bCkBsIn5Wp14smkkSm4hP2k6k2qhjnyfOZd/g2hrLK601VpuTHyopbWEgG+zliLjUpO1keqlM9vcymgvs6XjjvO38kA5lP0hHpvmw54mkJyZtJyLBEIhgb23oYOsFH6I7toJU5ET2lLZk6d2XkO30+zuyM+Qb0kvndVW62Xbes+3055IX6OUGdcoik7aT6UVC2aBOuvKC2hvnbeeHcCb7AS4VLu9wQCrcMGk7kWqjjr3CvHBvDy8jHOtlbNFnODLUd87xIxODfGbv3+KiJ0gnunndoj+a9wVrZhruQQh1gKXx7MIzaQszNs2b+Gg4Ria3iIO3nUzvkpYEAClnDEzTAPcns+MKt/PDwuHjACQamkiGSv9eJEPZU98KtxORYAhMsEM23N9/8YdxiW7CsV7+6dm/nfKYuXdM/nTyKOlEN+7oe7h2tT8rSZUb7kEJdSC7olxuQtzjnZtKjn2ic2N+op1WoivfpR1JDAcY20+0lxz7vRPtgGE4X1ei6xo7TSidAjOeW3pZybHPLb0MzAilJwK1Ep3ITJiFKnrzS6CCHbLh/qLWD5JOdJOOnOAjj/81PQWdu9epF86ef/XFy3ysePpwD1Koe5bGs+GeDMe4f+GVjIYnT9oazX09GY6Bc+rWZ+GilgTgGMuE+crhdvqLMrs/CV85nD2PHVxuvL+W9x8A5xht6mD38qvP6tyToSi7l1/NaFMHOMfy/oP+FCoi5xTIWS+v3bScE/e/n92JT0HsBJ98+jaaTv4urTGjv+Mz+d3v8YNbuXb1Yl65sc3vks+5CA0QuFAHuGjkAKORZoYbWkmGYzy04ApCLkPEpUhZJLv7Pdept0+MaHGaWbhxUZz+ieziM2OZMHcc6zxr5TlvRbruaMr3xWkAlg4eZizaQl/bUkabOnh87fW5lecmSIUbsrvfc78XC4ePBWZxmqCsKFeuIK0oV67qWlGuHLV7dbdABjvAb1y3hu/u+iA/H/kE4Vgv8cWfIQ6Eo7353e9vuGxZIELdM1W4A4ELdc9VA7smrRWfsTBJCibU5Tp1hfrsvX7ZyKS14lPOSBXMj7Ncpx6EUPesP/k0zclRjnatIRNuIBFtpnBfQig9wfL+g4EJdZHZMEPB7ofXblrOiyf+nE89cxtDsWMANKSXcsvSP+LaLf4cU59OcbgDgQx1z0UjB7ho5ICu7lZBNy6Kc+OieFVd3W3p4GGWDh4O/NXd/LpK22z5eZW22aqGq7TJZIEOdjgzoW7bcx8BmNdT2marMNyBwIZ6oZXjCvJKu7QjGdggP5eusdOBCnKRuaSO3UfeqXDe/Wrghbt3X0REZD5URbBD9QR6IQW6iEiQBe7EsDlRmz+ViIhInaqajl1ERGTu1O7pburYRUREaog6dhERqUvq2EVERCTw1LGLiEhdUscuIiIigaeOXURE6k4trxWvjl1ERKSGqGMXEZE6ZJjVZm9bmz+ViIhInVLHLiIidUnH2EVERCTwygp2M+s0s/8ws6fNbLeZvaDShYmIiFSSmVX05pdyd8V/Evi+c+6XzSwKNFewJhEREZmlaYPdzNqBFwG/DuCcSwLJypYlIiJSafV7jH09cBL4FzN7xMw+Z2YtFa5LREREZqGcXfER4Grgfc65B8zsk8CtwP8oHGRmW4GtAIuWLGEoHp/rWitmfHTc7xJmJJmovh0mp4+e9ruEGRs6PeR3CTMy0H/S7xJmLJVK+F3CjI0MDPtdwowMV9F78Xyr51nxPUCPc+6B3OP/IBv0kzjntjnnNjvnNrd1dc1ljSIiInMqO8EtVNFbmXXcZGbPmNleM7t1iuf/PzN7NHd70szSZrag1GtO+52dc8eBw2Z2ce5LLwd2lVWxiIiITMnMwsCngdcAm4C3m9mmwjHOuf/lnLvSOXcl8CHgZ865vlKvW+6s+PcBX87NiN8HvHuG9YuIiARKAHbFbwH2Ouf2AZjZ14A3cO7m+e3AV6d70bKC3Tn3KLC5rDJFREQEYJGZ7Sx4vM05t63g8QrgcMHjHuDaqV7IzJqBm4D3TvdNtaSsiIjUpXno2E8550o1xVMV4M4x9peAX0y3Gx60pKyIiIhfeoBVBY9XAkfPMfZtlLEbHtSxi4hInQrAMfYdwAYzWwccIRve7ygeZGYdwIuBXyvnRRXsIiIiPnDOpczsvcBdQBi43Tn3lJn9Tu75z+aG3gL8wDk3Ws7rKthFRKQOWdnnmleSc247sL3oa58tevwF4Avlvqb/P5WIiIjMGXXsIiJSd8wCcYy9ItSxi4iI1BB17CIiUqfUsYuIiEjAqWMXEZG6pGPsIiIiEnhV07GfTBwBYHFshc+ViIhI9TMspI7dNycTR7j90G3cfui2fMCLiIjI2QIf7F6op12KtEsp3EVE5PzlzmOv5M0vgd4VXxjqRgQcpEnx+YO38ZtrPhzo3fIjoUb6I22kLEzEpelKDdOaGfe7rHMaizQz2NhJOhQmnEnTMT5Ac2rM77JKOhRZyJGGhaQJEybNionTrE6d9rusc9rPAnrCnaQIESHDyvQA65j2CowyQ6FVlxO+8Fos2ohLjpPe+wCZw4/7XRYA37ryC7Pa7o2P/vqc1jET13zxqlltt+Ndj8xxJVKuwAb7ycQRPn/wNjKkcJkwo/vfB0Dzuk+RCaX45wN/w6vbP8Tzl632udLJ+sJt7G9cykCk7aznOlPDrBs/zoL0sA+VTW0w1klP+2qGGzvOeq5tfJCVQ4foSAzMf2ElPBVdydGGhdmlowo8E27mGbeS5ROnuTTZ41N1Z3s8tIyeUNdZ9e4ONbHbLWVlpp/LM8d8qq52hC99BQ1X3oRFmyd9PbL2KlxyjIlHv0/6qR/5VJ0EjVG7s+IDGewnE0f43MHbcLlQTx56P1ctWUVbY4hT8T/kQNPfY6E03x/8CEPjf8JL1631u2QAjjYsZHfTajAj7NJ0TwwQy0yQCDXQ29DJQKSNR1pa2Rg/xPIJ/zvL3pYl7OvaAGaEMikWxk/RkE4yEY5yumkRw40d7I5dxvr+Z+kePeF3uQA82Hghg+GWbEg6R5g0EZchZSHShMGMow0LGQ01smV8r9/lcm94LQPWXFBvhghpUoRJEwIzekJdjFiM69MH/C63ajW88J2EL7wOM8M5hxs+iYsPY01tWNtiLNpMwzW3EOpaysQ9X/K73LI78Nl2+JVQbgc+2w7fDwr2eeJ16l6oX5r5I17z0vXEGrz/ARs4MvpnfLHnNgiluDfxMdqP+d+594Xb8qG+Zvw4axPHiZDJP39R/DAHYks52LiU3U2racwkfe3cB2Od+VBfPnSIFUM9hF06//xa28eR9pUcbV/Nvq4NxFIJ3zv3p6Ir86EeyyS5emwvrSTzz48Q5eHmC0mEogyGW3gqutLXzv3x0LJ8qMfcBNem9tPKREG9DTwQWUfCGhigmcdDy9S5z0L40lfkQz194jmSP/5nGB86M6CxnejLfpvwkgsIX/gCMv3H1blLTQvU5DnvmHqmINTfuOmCglDPWtGygt9a+2HMRbBQmruGPuL7hLr9jUvzoX5h4uikUAeIkOHCxFHWjB8Hs+x4H/W0r86H+urBg5NCHSDs0qwePMjyoUPZrrJ9lU+VnuHtfo9lkrxobNekUAdoJfv1WCaZ79z95O1+j7kJXp7aMynUAVrJfj3mJvKdu8xcw5U3nQn17Z+YHOoA40Mkt3+C9InnMDMarrjJn0IlcGp18lxggr1wopy3+/01G9afc/zi2AretfLDuEwYLM3nD/o3W34k1MhApI2wS7M2cbzk2LWJ44RdmoFIGyOhxnmqcLKxSDPDjR2EMilWDJXuaJcP9RDKpBhu7GQs0lxybCUdiizM786+eqz0Lvarx/aCc2CW3c4H+1mQr/fa1P6SY7ekDuTr3c+C+SmwRoRWXY5Fm3HOZTv1EpI//RzOOSzWTGjV5fNUocj8C0SwF89+H9v/fp63aNVZnXqxFS0rWBP/Q1wmTAb/ToXrz02U654YOKtTLxYhQ/fEwKTt5ttgYycAC+OnzurUi0VcmgXx05O288ORXPcdJn1Wp16slSTh3P+HIz517T3hTgDCZM7q1Iu1FdTrbSflCV94LQBu+OTZnXqxscHsuILtpI4ZWKiyN78EItgncdk/2hrLK6015v+PkLIwALFM6TdwTzQ3zttuvqVD2e/bkC4dkJ5oOjFpOz+kyX7viCv9wckTyX1g8babb6ncP60IpT84ebwPhKkA/pMMMotm93q5eHnzVbxx3nYitSgQ7yKLYyv4jdUfJmwRnKVoXvcpTpXReZ9MHGF3+ONYKI0R4TdW+3NuuxciiVBDWeOTuXGRabrlSglnst93Ihwta3wyHJu0nR/CuYBMlfkx2PvQFC4zWOfamaAu74PFmQ8C5X1wkSyXzK4NYU3l7f3yxnnbST2z7OGySt58EohghzPhHiI7Ie5A099zZPTc4X4ycYTbD96GszQuE+aWhR/ybcGarlS2C+ht6Jy240oRorehc9J2861jfACA002LSE+z1yBlYfqaFk7azg8rcqcHpgkzQukPJCNEs6eSFWw331amBwBIE2KE0h/4hgvq9baT8qT3PgCAtS2GxvbSg5s7suMKthOpRYEJdsiG+2+u+TC4MBZK88WeqY+Z54/J52bPd/X9AZcs9G/WdmtmnM7UMGkLcyBWerb7gdhS0ham08eV6JpTY7SND5IJRTjSvrLk2KPtK8mEIrT5vBLd6tTp/ASzh5svLDn24eYL8xPX/FqJbh19+XofiKwrOfbByNp8vVqJbmYyhx/HJccwM6Iv++2SY6Mv+a3see6JscCsRCf+0qz4ebI4toJXt38IlwnjLMXnDtw2qXP3OnVv9vzY/vfzqg2l3zjnw7rx4+AcBxuXsje2/KzOPUWIvbHlHGxcmn0DHy89e77SVg4dAuc42r6aQx1rzjren7IwhzrWcLR9NTjHyqHDPlV6xvKJbLgnQlF+3rzprM59hOzXE6EoOOf7IkArM/3Zeq2B/4pcxHBRvcNE+a/IRSSsIft3nOn3qdLqNvHo93HOEV5yAdGbPwjNRasoNncQvfmDhJdcgHOOice+70+hIvMkcAvUADx/2WqGxv+EexMfg1CKLxz+G9bE/5DWWIjd4Y/nd7+P7X8/t2xaz4WLyzu2XUkL0sNsjB9id9NqDjYupSe2mO6JAaKZCZK5lefSFgbn2Bg/5Puysh2JAdb3P8u+rg0cbV/N8dblLIifJppOkAzH6GtaSCYUAedY3/+s74vTAFya7GE01MhguIVEKMp9LRuzK7m5NCk7s5IbztGRHvV9WdnLM8cYsRgDNJOwBu6OXJhbeS5DitCkejvdmBanmaX0Uz8i1LWM8IXXEV5yAY1v+duzV57LrUiX3ntfIBanCdKKcuWqphXlyqElZX3w0nVraT/2Ie4a+ggWSnOw6e8BsFyod/X9AW/dvC4Qoe5ZPnGaxkwyv1b8sejkU62CtlZ89+gJYqkEPe2rGG7s5FTLkknPt40PsHLocCBC3bNlfO+kteLThCfPE8h16n6Huuf69IFJa8WnCU+eqZ/r1BXq52finn8j03+MhituwmLNWHs3tHfnn3eJMSYe01rxUh8CG+yQ7dxXL/iz7MVgQikAjAhvWvwhLrnE/5XQprIgPcyC0eGqubpbR2KAjpMDVXV1t0uTPVya7Kmaq7tdnjnG5ZljurpbhaWf+lG2ew/w1d38vErbbNXyVdrUsfvEm1B3+6HbAHw7pW2mWjPjtFbRKTXNqTGaR4IZ5OeyOhXMID+XdfSxLq0gr7TM4ccDE+Qifgh8sMOZU+G8+yIiIufFwELq2H2lQBcREZle1QS7iIjI3PH3XPNKCtx57CIiIjJ76thFRKQuqWMXERGRwFPHLiIidSe78pzfVVSGgl1EROpPDSe7dsWLiIjUEHXsIiJSl2p1gRp17CIiIjVEHbuIiNQlne4mIiIigaeOXURE6pCWlBUREZEqUFbHbmYHgGEgDaScc5srWZSIiEhFWe0eY5/JrviXOudOVawSEREROW86xi4iInUnu/BcfXfsDviBmTng/zrnthUPMLOtwFaAxUuX0hyNzl2VFda1pNPvEmYkNZHyu4QZO/Tsc36XMGPJ5LjfJcxILNbsdwkztmjRSr9LmLFq+70YHBvzuwSZZ+UG+w3OuaNm1g380Myeds79vHBALuy3AVy4aZOb4zpFRETmVF2vPOecO5r7sxe4E9hSyaJERERkdqYNdjNrMbM27z7wKuDJShcmIiJSSWaVvZVXg91kZs+Y2V4zu/UcY15iZo+a2VNm9rPpXrOcXfFLgDtzkwwiwFecc98vr2QRERGZipmFgU8DrwR6gB1m9m3n3K6CMZ3APwE3OecO5Q6JlzRtsDvn9gFXzLZwERGRwAnGeexbgL25nMXMvga8AdhVMOYdwDedc4cgf0i8JK08JyIiUhmLzGxnwW1r0fMrgMMFj3tyXyt0EdBlZj81s4fM7F3TfVOdxy4iInVoBgfCZ+/UNCu1TlVA8VllEeD5wMuBJuA+M7vfObfnXC+qYBcREfFHD7Cq4PFK4OgUY04550aBUTP7OdnD4+cMdu2KFxGRumRmFb2VYQewwczWmVkUeBvw7aIx/wncaGYRM2sGrgV2l3pRdewiIlJ3DP8XqHHOpczsvcBdQBi43Tn3lJn9Tu75zzrndpvZ94HHgQzwOedcyVPOFewiIiI+cc5tB7YXfe2zRY//F/C/yn1NBbuIiNSfYJzuVhE6xi4iIlJD1LGLiEhdUscuIiIigaeOXURE6lDZp6RVnarp2HcNPsyuwYf9LmNGEqE4iVDc7zLKNtEwzkTDuN9liIjIeaiKjn3X4MN85fCnAHgH72dTx9U+VzS9RCjOjmXfAeCaY68jlmnyuaLSJhrGefZ5dwOw4YkbaZho9LkiEZHKqtGGPfgde2GoA3zl8KcC37l7oT4a7Wc02s+OZd8JdOfuhfp4yzDjLcM8+7y71bmLiFSpQHfsxaHu+crhTwW2cy8M9ZZkF0A+3IPYuReGusUX4swYbznF05ffyyWPXx/ozj3R2MZYWzeZUAOhzATNw73Exof9Luuckk0dxNuXkgk3EEpP0DR0nGh80O+y8r5/3b/Parub7v+VOa6kdm3f8rVZbXfzg2+b40rK94r/uGFW2/3ol38xx5XMMQN8XnmuUgIb7MWh/o5V7wfIfy2I4V4c6tccex1A/mtBC/eJhnF2XXEf6aZh0olu4oezVxRsWrMNmnt57MqdLNp9M2tHhnyudLLR1sWcXrqReNvis55rGj7JwuO7aRk56UNlU4u3L2FgxfMYb19y1nONQyfoPPIETUMnfKhMRGpRIIN9qlD3AvwdvD+Q4T5VqHsBfs2x1wUu3CcaxnnyigdwTf3ZUD/w28SSEaJuguRz74L1XyTc2MvJjduJ73kzGweDETwDC9ZyYvXVYIalJ2gbOEJkYpxUQyPDnSuIty2mp3URSw89REffQb/LZXjxBZxatwUshKUnaOk7RDgZJx1tYnTBasbbl3C8bTGL9j9A28l9fpcLlN+Bz7bDl/I78Nl2+JVQbgc+2w5/vhm1ex574IK9VKgDbOq4OnDhXirUAWKZpkCFu9epe6Ee3vsOtvQ/S6NL5ceMDF/HnivuJdzYy8hFd3AgAJ37aOvifKgvOP40C088QyhzpuYlPY9xesnF9C29hOOrn08kOeZr5x5vX5IP9Y4jT9J59KlJ9S48sJOB5ZcyuOIyTq27lkhiVJ27iJy3QE2emy7UPZs6rs7vmgd/J9RNF+oeL9xbkl2+TqjzjqmnC0L96r5Dk0IdoDUZ4XmPboHxRYQbezm1cbvvE+pOL92YD/XFxyaHJEAok2LxsadYcPxpMMuO99HAiuflQ31Bz2NT1rug5zE6jjwJFsqOF5F5E4DLtlZEYIK93FD3BCHcyw11j9/hXjhRztv9vqn/6DnHN0w0ctHj15Me7ybU2MvTl9/rW7gnGtuIty3G0hMsPPFMybELTjyDpSeIty0m0dg2TxVOlmzqYLx9CZaeoPPoUyXHdh57CktPMN6+hGRTxzxVKCK1KhDBPtNQ9/gZ7jMNdY9f4V48+z1+cCuxZMNZnXqx1kSEzP53kU50M9E84NupcGNt3QC0DRw5q/MtFs6kaBs4Mmm7+RZvXwpAS9+haesNpVO09B2atJ2IVJ46dqkZLvcLF3UTZY1vmCaY5kMm1ABAZKK8DxXeOG+7+ZYJZ79vOFnehzZvnLediMhsBSLYZ9t5z7bTnwuz7bxn2+mfr4aJRjY8cSONo23QeIqmNdtIRhLTbjfRMI674MuEY71YfKFvq9KFMtkPIamG8r63N87bbr6F0tnvm46W9//WG+dtJyKVVtluXR07Mw93P0PdM9Nw9yvUPV64N4x1Eo71Elr/RUai5+7GJxrG2XP5PVjjSdKJbpY/9SrfFqxpHu4FYLhzBZlQ6ZM50qEIw50rJm0335qGjgMwumD1tPVmwhFGF6yetJ2IyGwFJtih/HAPQqh7yg13v0Pd0zDRyCWPX09mvJtwYy97rph6Qpx3TD7RPEQ60U1i/2+wJD59h18psfFhmoZP4sINnF5yccmxfUsuxoUbaBo+6dtKdNH4II1DJ3DhBgaWX1py7MCyS3HhBhqHTgRqJTqRmmZgIavozS+BCnaYPtyDFOqe6cI9KKHuaZhoZNHum0mPd0PjKZ648kFGYmc6d69TL5w9v3rY/9XnFh7fDc7Rt/QSTi67lHRRJ5wORTi57FL6ll4CzmXH+6jzyBPgMgyuuIy+lVeQCU+uNxOO0LfyCgZXXAYukx0vInKeArdADZx7ERrvvicIoe451yI0QKBC3bN2ZIj4s29mZMMdhBt72X35/WT2v4uGTAp3wZexxqF8qHePjrN63P9dxC0jJ1ly6GFOrL6avqWX0L/4grNWnnPhBnCOpYce8n1Z2aahEyza/yCn1m1hcMVlDC29+KyV57L1Zli0/4HALE6jFeUqL0grypWrWlaUK5dWnvPBVOFeKEih7pkq3IHAhbpn48AJDuy+mVMbtxNu7IX1XyQNhGMn87vf1w73ByLUPZ19B2hIjubXih9auHbS80FbK77t5HNEEiP5teJHFl8w6XmtFS/inxrN9eAGO5wd7p4ghrqnONyBQIa6Z+3IECse3czTl98LzdmJZhZfyOqnXs6S+B6fq5tay8hJWvaerJqruzUNnaBp6ETgr+6mq7RVnp9XaZutwF+lTc4S6GCHs8M9yKHuKQx3ILCh7vEm1D37vLsB2PDEtTRM+DdRrlyx8eFABvm5ROODgQpykbpXoy174IMdzoS7d78aeOHu3Q8671Q4776IiFSnqgh2qJ5AL1QNgV5IgS4idcNqd/Jc4E53ExERkdmrmo5dRERk7vi7iEwlqWMXERGpIerYRUSkLukYu4iIiASeOnYREak7tbykrDp2ERGRGqKOXURE6o/OYxcREZFqoI5dRETqkjp2ERERCTx17CIiUpesRlvbGv2xRERE6lPZHbuZhYGdwBHn3OsqV5KIiEilWc1ej30mHfsHgN2VKkRERETOX1nBbmYrgdcCn6tsOSIiIvMgdx57JW9+KXdX/P8B/hhoO9cAM9sKbAVYvHTpeRcmIiJSKbW8pOy0wW5mrwN6nXMPmdlLzjXOObcN2AZw8aWXutbGxrmqseKa21v8LmFGWjrifpcwY/2PHfe7hBk7dfqI3yXMyGWX3eh3CTO2Zs2lfpcwY+1dXX6XMCPJdNrvEmSeldOx3wC83sxuBhqBdjP7knPu1ypbmoiISOXUasc+7TF259yHnHMrnXNrgbcBP1aoi4iIBJMWqBERkbpkoTrt2As5536qc9hFRETmhpndZGbPmNleM7t1iudfYmaDZvZo7vbn072mOnYREak/Pp+Sli3BwsCngVcCPcAOM/u2c25X0dC7Z9JUa0lZERERf2wB9jrn9jnnksDXgDec74sq2EVEpC7NwwI1i8xsZ8Fta1EJK4DDBY97cl8r9gIze8zMvmdm054jql3xIiIilXHKObe5xPNTHQtwRY8fBtY450Zyp51/C9hQ6puqYxcRkbqTXXmusrcy9ACrCh6vBI4WDnDODTnnRnL3twMNZrao1Isq2EVERPyxA9hgZuvMLEp2rZhvFw4ws6WW269vZlvI5vbpUi+qXfEiIlKX/D6P3TmXMrP3AncBYeB259xTZvY7uec/C/wy8LtmlgLiwNucc8W76ydRsIuIiPgkt3t9e9HXPltw/x+Bf5zJayrYRUSk/ngH2WuQjrGLiIjUEHXsIiJSh/xfea5S1LGLiIjUkKrp2B/v2wnA5QtKnesfLEOh7BkJ7ZmFPldSnlOthwBYNLLa50pERCqvVjv2qgj2x/t2cvu+jwPwG/xRVYT7UOg0P+n8MgAvHfjVwIf7qdZD7F73MwA27n+xwl1EpEoFfld8YagD3L7v4/nuPai8UM9Ymoyl+Unnl/PdexDlQ90Ag93rfpbv3kVEatU8rBXvi0B37MWh7rl938cD27kXhnrIhQHy4R7Ezn1SqHtLHuTCPeide6plAcmulbhIA5aaINrfQ2S0z++yzimz/BJYezVEGiE1DgceJnT0ab/Lyvv21f82q+1e//A757iS8m3f8vVZbXfzg2+d40rK87UNn5nVdm979nfnuJLy3Xzni2a13fZbfj7HlcwtM/8XqKmUwAZ7caj/xvo/Ash/LYjhXhzqLx34VYD814IW7oWh7hyMHX4XAM2rvojlwn3FgVezfrjb50onS3atZHTdZia6zr4IUkP/EVr27yTa3+NDZVPLXPRC2PRSiDZNfmLlZWSScdj1E0J77vGnOBGpOYEM9qlC3Qvw3+CPAhnuU4W6F+AvHfjVwIV7cajHD/0qy0aW0ehSDB28hfiaOzGDnrV3kTxwM5cMB+PDSHzZRoY3vgQshKWSxHqfI5QYJRNrIdF9ARNdKxjoXEbb7p/SdGy33+WSuebN2S7dcn/RI6dhfAQaW6F1YTbsr3gNmY5uQju+6Xe5QPkd+Gw7/EootwOfbYc/18rtwGfb4VdCuR34bDt8P2jy3DwpFeqQnRUftHAvFeqQnRUfpHAvDvWOg6/n+qEIEe+iQkOtnNj/Evas+ylm0Lt2O9EAdO7JrpX5UG8+8BDNBx4ilJ7IP5/Zczdja5/P2NrnM7zxJYTHh33t3DMXvfBMqJ86CPd+mdD4yJnnG1vh+l+FRWtg7fPJDPaqcxeR8xaoyXPThbrn8gWb87vmwd8JddOFuscL95AL+zqhbqpQv2KogwiZSeOWjKxi4/4Xg8vm0pG1d/k+oW503eZ8qLc+d/+kUAcIpSdofe5+mg88BBbKjvfTppfmQz304/87KdQBQuMjhH78f7Ohb5YdLyLzJgCXba2IwAR7uaHuCUK4lxvqHr/Dfard75cOdZ1z/KKR1Vy0/yU4h++z5VMtC5joWoGlktngLqH5wENYKslE1wpSLQvmqcLJMssvye5mdw7u/XLpwfd+JTsu2pTdTkTkPAQi2Gca6h4/w32moe7xK9yLZ7+PHX4XS0dWntWpF1sysoqmg7f4Hu7JrpUA2WPqRZ16sVB6gljvc5O2m3drr87+OXL6rE69WGh8OHvsvXA7Eamwyp7q5ufx+0AEu/ij0aXKGhclXeFKpuciDQCEEqNljQ8lxyZtN+8ijdk/pwn1PO/n8rYTEZmlQAT7bDvv2Xb6c2G2nfdsO/3ztWhkdf6YOZY9pW2odd+0251qPcTQmm9njxc5/1als1S2S8/EWsoan4k2T9pu3qXGs382tpY33vu5vO1EpPJq9CB7IIIdZh7ufoa6Z6bh7leoewrD3Qzia+7kROvhc44vPia/Zv8rfFuwxpvdnui+gEy4dBeeCTeQ6L5g0nbz7sDD2T9bF2Znv5eQaWzLnvpWuJ2IyCwFJtih/HAPQqh7yg13v0PdUxzue9b9dMpj5sWhHjr4FlaPLJv3ej2R0T4a+o/gIlHG1j6/5Nixtc/HRaI09B/xbSW60NGnIRnP/iVf/6ulB1//juy4ZDxQK9GJ1LTcynOVvPklUMEO04d7kELdM124ByXUPYtGVrPiwKsnTYgr7NzPWpHu0Du5ZNif2eWFWvbvBJdhbO3zGbngurM690y4gZELrssGv8tkx/tp10+yf4GL1pB52XuynXmBTGMbmZe9J3seu3PZ8SIi5ylwC9TAuReh8e57ghDqnnMtQgMEKtQ964e7SR64md612zGDZ9b9lEMHbyFKmqE1k0P90qFOFrkBv0sm2t9D2+6fMrzxJYytfT7xlc/LzpJPjpGJNpPovgAXiYLL0Lb7p74vKxvacw+ZjiXZme6L1sAv3Upm5HR2olysJbv73VuR7sBDgVmcJkgrypUrKCvKlStIK8qVq5pWlCuHoZXn5t1U4V4oSKHumSrcgcCFuueS4YVED7yaI2vvyh9zj3Mma0IH38Lm4ZZAhLqn6dhuwuPD+bXix5dvnPR80NaKD+24g8zgiTNrxbctyt48WiteROZYYIMdzg53TxBD3VMc7kAgQ92zfrib9v0vZve6n52ZxOlg7f5XsHokBpR3etl8ivb3EO3vqZqru4X23AN77gn81d38vErbbPl1lbbZ8vMqbbMV9Ku0nQ917D4pDvcgh7qnMNyBwIa6x5tQt3vdzwDvlDb/JsqVKzLaF8ggP5fQ0achQEEuIrUp8MEOZ8Ldu18NvHD37gddfrZ87r6ISE3zeXW4SqqKYIfqCfRC1RDohRToIiLVr2qCXUREZC7VasceuPPYRUREZPbUsYuISF2yGm1tFewiIlJ3anmBmhr9vCIiIlKf1LGLiEj9ybbsfldREerYRUREaog6dhERqUs6xi4iIiKBp45dRETqUO0uKauOXUREpIaoYxcRkbpkoTrt2M2s0cweNLPHzOwpM/vL+ShMREREZq6cjj0BvMw5N2JmDcA9ZvY959z9Fa5NRESkMqx2Z8VPG+zOOQeM5B425G6ukkWJiIjI7JR1jN3MwsBDwIXAp51zD1S0KhERkQqq5bXiywp251wauNLMOoE7zewy59yThWPMbCuwFWDx0qUMxeNzXWvFjA6O+l3CjMRHqufv1uOqcCdPb+8hv0uYkaNH9/pdwox1d6/xu4QZi49U1/vFyb4Bv0uQeTaj092ccwPAT4Gbpnhum3Nus3Nuc3tX19xUJyIiUiFmlb35pZxZ8YtznTpm1gS8Ani6wnWJiIjILJSzK34Z8K+54+wh4BvOue9UtiwREZEKq9dj7M65x4Gr5qEWEREROU9aUlZEROqPGRaq7K28MuwmM3vGzPaa2a0lxl1jZmkz++XpXlPBLiIi4oPcIe5PA68BNgFvN7NN5xj3MeCucl5Xa8WLiEhdCsB57FuAvc65fQBm9jXgDcCuonHvA+4ArinnRRXsIiJSlwIQ7CuAwwWPe4BrCweY2QrgFuBlKNhFRER8tcjMdhY83uac21bweKpPFsWref0f4E+cc+lyP4go2EVEpO7M05Kyp5xzm0s83wOsKni8EjhaNGYz8LVcrYuAm80s5Zz71rleVMEuIiLijx3ABjNbBxwB3ga8o3CAc26dd9/MvgB8p1Sog4JdRETqlN/H2J1zKTN7L9nZ7mHgdufcU2b2O7nnPzub11Wwi4iI+MQ5tx3YXvS1KQPdOffr5bymgl1EROqPlb+ITLXRAjUiIiI1RB27iIjUJf9PY6+MqunY7zv5Q+47+UO/y6hpfZ1H6Os84ncZM+Ka0rimtN9liIgERlV07Ped/CHf6/1K/vELFr/Sx2pqU1/nEfZtvC/7YPcLWDCwwt+CyuCa0iTfeBKA6LcWY/GwzxWJSFWp0ZY98B17cah/r/cr6tznWD7UDTDYt/G+wHfuXqi7hSncwlT2vjp3EZFgd+zFoe7xvqbO/fxNCnVvIcNcuAe1c58U6kOt2U/dC4dJvKmP2DcXBLZzb1h3NY0XvxCLNeMSY4w/cw8T+x/2u6y8na+7b1bbbf7OC+a4kvJt3/K1WW1384Nvm+NKyvOfV31xVtu94ZF3zXEl5ftvP3v9rLb71xd/e44rmXt+n8deKYEN9uJQf013djEe72sK9/NXHOrrd2ffoL2vBTHcXVOaxJsHoDNFOtFN/PhWAJqi2wh39RJ/e4Lw9nXEjp/wt9ACjVfeTPM1byAUa5n09diFW8gkRhnb8Z+MP7r9HFuLiMxMIIN9qlAvDHCF+/mbKtTzAb77BYEMd9eUZvxXhrD2OOlEN+PP/TrRY4cJJ0ZJH38JbPkJ4eaTpF4XIfOjjTQdeM7vkml92VZiG2/EzHDOkR48gYsPYU3thDuWEIq10HLD2wkvWMHoj//Z73KB8jvw2Xb4lVBuBz7bDn+ulduBz7bDr4RyO/DZdvjzzUwd+7yZLtS9+wr32SsZ6pC9H7Bw9zp1L9TdPVvo2vPvhNIT+THpfU0k39xOuK2X9Csg8Z1VvnbujVfenA/1iWN7GPreJ3Fjg/nnrbmD9td8gIZlF9G48UWk+46ocxeR8xaoyXPThbrnBYtfmd81D5pQNxPThbpnwcCK7K55h+8T6vKz3zvPhHrr7kcnhTpAeCRD4zdacMPthBt7Sd+839cJdc3XvCEf6oN3/NWkUAdwY4MM3vFXTBzbg5nRfM0bfKpUpD5ZyCp680tggr3cUPco3Geu3FD3BCHcCyfKebvfm/c8dc7xFg8TvaOT9PhiQs19JN7U50u4N6y7mlCsBeccQ9/7ZMmxw9/7B5xzhGItNKy7ep4qFJFaFYhgn2moexTu5ZtpqHv8DPfi2e/xg1tpOHbirE69WHgkQ/rBl5JOdENXwpdT4RovfiFA9ph6UadeLDPWT2bwxKTtRKTSDLPK3vwSiGAXmVbuH0k4MVrW8NDEWCWrmZbFmgFw8aGyxmdy47ztRERmKxDBPtvOe7adfj2abec9205/Llg8nF1R7nQEaxumac020q3T/8q6pjSha+8mHOvFDbX6siqdS2Q/WFhTe1njQ7lx3nYiUnnq2CtspuGuUJ+5mYa7n6Hu8cKd/hjhWC/hLT8pGe6uKU3yllOEWgdJJ7qJfHe1LwvWjD9zDwDhjiVYc0fJsaHmLkIdSyZtJyIyW4EJdig/3BXqs1duuAch1D0WDxP75gIyYwsIN54k+eaBKY+Z54/JL5ggnehm4vFfouF0ebvC59rE/ofJJEYxM9pf84GSY9te8z7MjExiNFAr0YnUMu88dnXs82C6cFeon7/pwj1Ioe6xeJjw9nWkx7uxtiHG3zI6qXP3OnVv9nz8wG+VnD0/H8Z2/CfOORqWXUTHm/+cUHPXpOdDzV10vPnPaVh2Ec45xnb8p0+VitSnbLhX7uaXwC1QA+dehKb4vkJ99s61CA0QuFD3xI6fIPOjjaRfAeG2XsbfFiP94EsJTYwRuvZuQq0T+VBveXIH0f4eX+sdf3Q7kQUriW28kYZlF9H17k+RGTxBJj5EqKmdUMeS/Ip047t/HpjFaYK0oly5grKiXLmCtKJcuaplRTkJaLBD6XAHhfpcmDLcIZCh7mk68ByJ76wifXOKcPNJuPanAIRig/nd7+17fux7qHtGfryNVF9Pfq34cOdSwp1L889rrXgRH/m4iEwlBTbY4exw9yjU505xuAOBDXVP7PgJ3FdjJN4UI9zVC5Cd/f7dRbScvsvn6s42/uh2xh/dHviru/l5lbbZ8usqbbPl51XaZqsartImkwU62OHscFeoz71J4U6wQ93jTahLvvEkALFvtWFlnjPul4n9DwcqyEXqnS4C46OpLgIjc8sL9/z9KpA/FS53X0REqiTYQYE+H6ol0Asp0EVkVnw+Ja2SAne6m4iIiMxe1XTsIiIic0kdu4iIiASeOnYREak7BoTUsYuIiEjQqWMXEZG6pGPsIiIiEnjq2EVEpC7pGLuIiIgEnjp2ERGpO35fM72S1LGLiIjUEHXsIiJShwyjNlt2dewiIiI1ZNqO3cxWAV8ElgIZYJtz7pOVLkxERKSSanVWfDm74lPAB51zD5tZG/CQmf3QOberwrWJiIhUTN0uUOOcO+acezh3fxjYDVTfhbtFRETqwIwmz5nZWuAq4IEpntsKbAVYvHTpXNQmIiJSEUbtduxlB7uZtQJ3AL/vnBsqft45tw3YBnDRpZe6tsbGOSuy0lITKb9LmJFkPOl3CTPW2NjqdwkzNjo64HcJM/Lkk3f7XcKMXf686pu/27WguhqX0YFRv0uQeVZWsJtZA9lQ/7Jz7puVLUlERKTyanXy3LQfly27r+LzwG7n3N9XviQRERGZrXI69huAdwJPmNmjua/9qXNue8WqEhERqSSz+j3G7py7B2p0eR4REZEaoyVlRUSk7hh1fIxdREREKsPMbjKzZ8xsr5ndOsXzbzCzx83sUTPbaWYvnO411bGLiEhd8rthN7Mw8GnglUAPsMPMvl20sut/Ad92zjkzuxz4BnBJqddVxy4iIuKPLcBe59w+51wS+BrwhsIBzrkR55zLPWwBHNNQxy4iInUpAJdtXQEcLnjcA1xbPMjMbgE+AnQDr53uRdWxi4iIVMai3HFx77a16PmpPlmc1ZE75+50zl0CvBH46+m+qTp2ERGpS/MwK/6Uc25zied7gFUFj1cCR8812Dn3czO7wMwWOedOnWucOnYRERF/7AA2mNk6M4sCbwO+XTjAzC7MrQCLmV0NRIHTpV5UHbuIiNSdIFzdzTmXMrP3AncBYeB259xTZvY7uec/C7wZeJeZTQBx4K0Fk+mmpGAXERHxSW559u1FX/tswf2PAR+byWsq2EVEpP7U8FrxVXOM/fH+nTzev9PvMmbkaOuzHG191u8yyjbSfoqR9nPOxwikxMohEiuH/C6jbOG2MOG2sN9liEgNq4qO/fH+nfzLvk8A8O71H+TyrlKTDIPhaOuzPL387twDWD6ywd+CpjHSfop9m+8FYP3O62kdWuRzRdNLrBwi/urcBNK7INbT7m9B0wi3hVl36zoA9n90P+nhtM8VidQ3rRXvk8JQB/iXfZ8IfOeeD3UDDJ5efnegO/d8qOfq3bf53sB37vlQz9Ucf/XRQHfuXqg3rmikcUUj625dp85dxGeW2x1fqZtfAt2xF4e651/2fSKwnfukUPfmLebCPYid+6RQL6h33+Z7A9u5Twr1gprjrz4ayM69MNTHj4wD5MM9SJ37+K2zezto/Ghqjisp34Ov/cWsttvy3RvmuJLa9d8fe/ustvunK746x5VIuQLbsReH+rvXf5B3r/9g/nEQO/fiUL/k6I1ccvTGbPgEsHMvDvX1O69n/c7r8/UGsXMvDvWmu5bTdNfyfM1B69yLQ33/R/ez/6P7GT8yrs5dxEfe6W7q2OfJVKHudefvXv/B/HNB6tynCvV8d36U/HNB6dynCnWvO1+/8/r8c0Hq3KcK9Xx3fhf554LSuU8V6l53vv+j+/PPBa1z7/p/N9L+8vdgoRCZZJzxZ+8nM9pPqKWLxg3XEYo24TIZDjb/mt+l5pXbgc+2w5fyO/DZdvgydwLXsZcKdYDLuzYHrnMvGepkQzxInXupUAdoHVoUuM69ZKiTDfEgde6lQh0gPZwObOfuhfrIg3dy8p/fw9APP8PIvV9j6Ief4eQ/v4eRB+/EQoF76xCZsZBV9ubbz+Xftz7bdKHuCVK4TxfqnqCE+3Sh7glSuE8X6p6ghPt0oe4Jarh7oT5y71dxE+OTnnMT44zc+1VGHrzTp+pEZDqBCfZyQ90ThHAvN9Q9fod7uaHuCUK4lxvqHr/DvdxQ9wQx3DPJOKM7Sgf36M5v5e9HFqyscEUilWEV/s8vgQj2mYa6x89wn2moe/wK95mGusfPcJ9pqHv8CveZhronaOE+/uz9Z3XqxVwynr8fXf28SpckIjMQyMlzIuKfzGj/jMZbtKlClYhUjplpgZpKmm3nPdtOfy7MtvOebad/vmbbec+2058Ls+28Z9vpn6/Zdt6z7fQrJdTSNaPxhd27iPgvEMEOMw93P0PdM9Nw9yvUPTMNdz9D3TPTcPcr1D0zDfeghTpA44brsIbGkmMKu/TkoScqXZJIRdTqeeyBCXYoP9yDEOqecsPd71D3lBvuQQh1T7nh7neoe8oN9yCGOkAo2kTLNbeUHNOy+Y35+6m+ngpXJCIzEahgh+nDPUih7pku3IMS6p7pwj1Ioe6ZLtyDEuqe6cI9qKEO4DIZWrfcQuv1bz/r+LlFm2i9/u20bikd/CLVoFY79kBOnvPCvXiFOe++Jwih7lk+smHKFeaAQIW6xwv34hXmgMCFuifW0z7lCnNAoELd44V78QpzQGBDHTizotyLcrdJbxMTwL/nbsGhFeUqTyvKVY9ABjtMHe6FghTqninDHQIX6p6pwh0IZKh7pgx3CFyoe6YKdyCwoS5ST2p1Vnxggx3ODndPEEPdUxzuQCBD3VMc7kBgQ91THO5AIEPdUxzuQCBDfaqrtEUWrCS6+nlYtAmXjJM89ESgjqnrKm2Vp6u0VZ/AHWMvVnzMPcih7pl0zD3Aoe6ZdMw94KHumXTMPcCh7ik85h7EUD+XVF8PY49+j9EHv8nYo98LVKiLnA9d3c1nheEe9FD3eJ17/n7A5cM9d78aeJ17/n7AeeHu3RcRqYSqCHaonkAvVA2BXqhaAr1QNQR6IQW6SED43FVXUuB3xYuIiEj5qqZjFxERmUt+XjO9khTsIiJSl/y8tGolaVe8iIhIDVHHLiIidceo3QVq1LGLiIjUEHXsIiJSl3S6m4iIiASeOnYREalL6thFREQk8NSxi4hI3TEzzYoXERGR4FPHLiIidaluj7Gb2e1m1mtmT85HQSIiIjJ75eyK/wJwU4XrEBERmVeWu3RrpW5+mTbYnXM/B/rmoRYRERE5T3N2jN3MtgJbAbqXLZurlxUREakIXbZ1Gs65bcA2gKuf/3x3/UUXzdVLV9zQm+J+lzAjxw71+l3CjG08sdHvEmZs2fJ1fpdQ8y648gK/S5ixJWu7/S5hRl6y5Qq/S5B5plnxIiJSdwxdj11ERESqQDmnu30VuA+42Mx6zOw3K1+WiIhIZdXqrPhpd8U7594+H4WIiIjI+dMxdhERqT9aK15ERESqgTp2ERGpS3W7VryIiEitMSCU2x1fqVtZdZjdZGbPmNleM7t1iud/1cwez93uNbNpFyZQsIuIiPjAzMLAp4HXAJuAt5vZpqJh+4EXO+cuB/6a3EJwpWhXvIiI1KUA7IrfAux1zu0DMLOvAW8AdnkDnHP3Foy/H1g53YuqYxcREfHHCuBwweOe3NfO5TeB7033ourYRUSkLs1Dx77IzHYWPN6Wu65KvoQptnFTvZCZvZRssL9wum+qYBcREamMU865zSWe7wFWFTxeCRwtHmRmlwOfA17jnDs93TdVsIuISN0xC8RlW3cAG8xsHXAEeBvwjsIBZrYa+CbwTufcnnJeVMEuIiLiA+dcyszeC9wFhIHbnXNPmdnv5J7/LPDnwELgn3KHDlLT7AVQsIuISD2yQFy21Tm3Hdhe9LXPFtz/LeC3ZvKaVTMr/hvPfJVvPPNVv8uYkV2DD7Nr8GG/yyjb/old7J/YNf3AANnHE+zjCb/LKFsqmiAVTfhdhojUsKro2L/xzFf5xMMfzz9+y8XBv+DcrsGH+XrPPwLwVt7Lpo6rfa6otP0Tu7hr/IsAvJp3sa6heI2E4NnHE+xoyn3QjcN6nudvQdNIRRMcvPZBANY8sIVIMuZzRSL1LQDnsVdE4Dv24lD/xMMfD3znXhjqAF/v+cdAd+6FoQ5w1/gXA9+550PdAIMdTdsD3bl7oZ5sGyHZNsLBax9U5y4iFRHojr041D3e14LYuReHuufrPf8YyM69ONQ9d41/MbCd+6RQ9874zIV7EDv3wlAPjXaCGcm2fg5ct4O1918T6M59rKGZoaYu0qEw4Uya9ng/zRNjfpeV95HEH89quw/F/m6OKynP7z/z67Pa7v9c/IU5rWMmNv3z7N4Ddv12sJsDoGYv2xrYYC8O9Q9e/UfAmVAPYrgXh/pbV74XIP+1oIV7cai/uvFdAPmvBTHci0P9mvjNAPmvBS3cU9EE+6/bSap1hHSim5EjWwFoWrMNWnt59obHWbLzRhYMj/tc6WSDjZ0c7VzDcFPnWc+1xQdYPnCQjvGBea9LRKYXyGCfKtQLAzyI4T5VqHsB/lbeG7hwnyrUvQB/Ne8KZLhPFer5AI8HL9xT0QT7XvAw6ZYh0oluxvf/BguHRmhIJ0iOvJHxTd8i1NTL0Wt+wcQjL2NJ/6Cv9XpOti5l/6KLwIxQJsWC0VM0pBNMhGP0tSxiuKmTZxo7WHdqD4tHjvtdLlB+Bz7bDn+ulduBz7bDr4RyO/DZdvjzzdAx9nkzXai/5eK357t3CMYx91KhDrCp4+p89w7+H3MvFeoA6xo25bt3CMYx95KhTjbEr4nfnN01H4Bj7l6nnm4ZIJ3opu3xm7lq/5OsP/UMq/oPcMHxw1z4iysIjXURbuzl5FU/pq+t0bd6PYONnflQXzZwiKsO3Z+vef2pZ7jq0P0sGzgEZuxfdBGDjZ1+lywiRQIV7NOFuidI4T5dqHuCEu7ThbonSOE+Xah7ghLu3jH1VOtQPtTXnDxB2KUnjYslIlxw71X5cD+x+W7fJ9Qd7VyTD/VV/fvPqjns0qzq358P96Oda3yqVOQ8mWEVvvklMMFebqh7ghDu5Ya6x+9wLzfUPUEI93JD3eN3uBdOlPN2v688deqc4yPJGGvv20xmvBuaTnHguh2+hftYQzPDTZ2EMimWDxwqOXb5wCFCmRTDTZ2MNTTPU4UiUo5ABPtMQ93jZ7jPNNQ9foX7TEPd42e4zzTUPX6Fe/Hs9/jBrSwYGj+r6y0WS0Ro3PVG0oluJlqHfTsVbqipC4AFo6emrTns0iwYPTVpO5FqEzKr6M23n8u37yxSy3L/qBvS5QV0JJ2sZDVlSYfCQPk1N+Rq9rYTkWAIRLDPtvOebac/F2bbec+20z9fs+28Z9vpz4XZdt6z7fTPVyQZY80DW4gOt5Jp7qdpzTaSsdKdL2Q7/fil3yYc6yU02unbqnThTLbWiXB533siHJ20nUi10TH2CptpuPsZ6p6Zhrtfoe6Zabj7GeqemYa7X6Hu8cK9YaSNcKyX8U3fIhFLnXO8t/veNfeRTnSzfMcNvi1Y0x7vB6CvZRFpK92Fpy1MX8uiSduJVBMje9nWSt78Ephgh/LDPQih7ik33P0OdU+54R6EUPeUG+5+h7onkoyx9v5rIL6IUGMvB16wc8pj5sUT7cLPvJW2scy81+tpnhijLT5AJhThaOfqkmOPdq4mE4rQFh8I1Ep0IhKwYIfpwz1Ioe6ZLtyDEuqe6cI9SKHumS7cgxLqnkgyxpKdN5Ie7ybT3M9z1z8yqXMvDvX4gd9meYnZ8/Nl+cBBcI5jnas53LXurM49bWEOd63jWOdqcC47XqRKWYX/80sgV57zgrp4hbni+0EIdc+mjqunXGHOu+/xO9Q96xo2TbnCnHffE4RQ96zneVOuMAcEKtQ9C4bHmXjkZZy86sfQ3MveGx6jcdcbiaSTxC/9Nq75TKivPXE0EEu0dowPsO7UHvYvuohjnas50b48t/JckolwlL6WRWRCEXCOdaf2BKJmCM6KcuUK0opy5aqWFeUkoMEOpcMdghXqnqnCvVBQQt0zVbgXClKoe6YMdwhcqHuW9A/SsOMGTmy+m1BTL/FLvwVAONaX3/1+0al9gQlIgMUjx4mmxvNrxZ9qWzrpea0VL7WiVpeUDWyww9nh7gliqHuKw90TtFD3FIe7J4ih7ikOdyCQoe5ZMDxO+y8u58B1O6C1F4DQaCcrd1xD29hen6ubWsf4AB3HBwJ/dTe/rtI2W35epW22quEqbTJZ4I6xFys+5h7kUPcUH3MPaqh7io+5BznUPZOOuQc41D3ehLrocCvR4VYuuO9qXyfKlat5YoylQ0dYMXCIpUNHAhXqIufDKrw4jZ8L1AS6Y/cUXwSmGnidu3c/6LzO3btfDbzOPX8/4LxT4bz7IiKVUBXBDtUT6IWqIdALVUugF6qGQC+kQBcJjlo9xh74XfEiIiJSvqrp2EVEROaSOnYREREJPHXsIiJSd7JrxatjFxERkYBTxy4iInVJx9hFREQk8NSxi4hI/fH5mumVpI5dRESkhqhjFxGROuTvNdMrSR27iIhIDVHHLiIidceo81nxZnaTmT1jZnvN7NZKFyUiIlJptXrZ1mmD3czCwKeB1wCbgLebWfVdBkxERKQOlLMrfguw1zm3D8DMvga8AdhVycJEREQqqZ53xa8ADhc87sl9TURERAKmnI59qo807qxBZluBrbmHiZZY7MnzKWyeLQJO+V3EDFVbzdVWL6jmyvtGldWbpZor7+JKf4OHHnroLjNbVOFv48vfeTnB3gOsKni8EjhaPMg5tw3YBmBmO51zm+ekwnlQbfVC9dVcbfWCap4P1VYvqOb5YGY7K/09nHM3Vfp7+KWcXfE7gA1mts7MosDbgG9XtiwRERGZjWk7dudcyszeC9wFhIHbnXNPVbwyERERmbGyFqhxzm0Hts/gdbfNrhzfVFu9UH01V1u9oJrnQ7XVC6p5PlRbvYFizp01D05ERESqlNaKFxERqSFzGuzVtvSsmd1uZr1mVhWn5pnZKjP7iZntNrOnzOwDftc0HTNrNLMHzeyxXM1/6XdN5TCzsJk9Ymbf8buWcpjZATN7wswenY8ZxXPBzDrN7D/M7Onc7/QL/K6pFDO7OPf3692GzOz3/a6rFDP7g9y/uyfN7Ktm1uh3TdMxsw/k6n0q6H+/QTVnu+JzS8/uAV5J9hS5HcDbnXOBXaHOzF4EjABfdM5d5nc90zGzZcAy59zDZtYGPAS8MeB/xwa0OOdGzKwBuAf4gHPufp9LK8nM/hDYDLQ7517ndz3TMbMDwGbnXNWcq2xm/wrc7Zz7XO6Mm2bn3IDPZZUl9353BLjWOXfQ73qmYmYryP572+Sci5vZN4Dtzrkv+FvZuZnZZcDXyK54mgS+D/yuc+5ZXwurMnPZseeXnnXOJcn+z3nDHL7+nHPO/Rzo87uOcjnnjjnnHs7dHwZ2E/BVAF3WSO5hQ+4W6IkdZrYSeC3wOb9rqVVm1g68CPg8gHMuWS2hnvNy4LmghnqBCNBkZhGgmSnWIAmYjcD9zrkx51wK+Blwi881VZ25DHYtPTuPzGwtcBXwgM+lTCu3W/tRoBf4oXMu6DX/H+CPgYzPdcyEA35gZg/lVoEMuvXASeBfcoc8PmdmLX4XNQNvA77qdxGlOOeOAB8HDgHHgEHn3A/8rWpaTwIvMrOFZtYM3MzkBdKkDHMZ7GUtPSvnz8xagTuA33fODfldz3Scc2nn3JVkVy3cktvdFkhm9jqg1zn3kN+1zNANzrmryV6F8fdyh5mCLAJcDXzGOXcVMAoEfl4OQO6wweuBf/e7llLMrIvsXtN1wHKgxcx+zd+qSnPO7QY+BvyQ7G74x4CUr0VVobkM9rKWnpXzkztOfQfwZefcN/2uZyZyu1p/CgR5KccbgNfnjll/DXiZmX3J35Km55w7mvuzF7iT7KGxIOsBegr23vwH2aCvBq8BHnbOnfC7kGm8AtjvnDvpnJsAvglc73NN03LOfd45d7Vz7kVkD5Xq+PoMzWWwa+nZCstNRPs8sNs59/d+11MOM1tsZp25+01k32ye9rWoEpxzH3LOrXTOrSX7O/xj51yguxwza8lNpiS3O/tVZHdpBpZz7jhw2My8i328nOq5FPTbCfhu+JxDwHVm1px773g52Xk5gWZm3bk/VwNvojr+rgOlrJXnylGNS8+a2VeBlwCLzKwH+Avn3Of9raqkG4B3Ak/kjlkD/GluZcCgWgb8a24WcQj4hnOuKk4hqyJLgDtz15aOAF9xzn3f35LK8j7gy7lGYB/wbp/rmVbuuO8rgff4Xct0nHMPmNl/AA+T3Z39CNWxotsdZrYQmAB+zznX73dB1UYrz4mIiNQQrTwnIiJSQxTsIiIiNUTBLiIiUkMU7CIiIjVEwS4iIlJDFOwiIiI1RMEuIiJSQxTsIiIiNeT/B9IDDuUHsdIPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.figure(figsize=(9, 9))\n", + "\n", + "plt.pcolor(som.distance_map().T, cmap='bone_r') # plotting the distance map as background\n", + "plt.colorbar()\n", + "\n", + "# Plotting the response for each pattern in the iris dataset\n", + "# different colors and markers for each label\n", + "markers = ['o', 's', 'D']\n", + "colors = ['C0', 'C1', 'C2']\n", + "for cnt, xx in enumerate(data):\n", + " w = som.winner(xx) # getting the winner\n", + " # palce a marker on the winning position for the sample xx\n", + " plt.plot(w[0]+.5, w[1]+.5, markers[target[cnt]-1], markerfacecolor='None',\n", + " markeredgecolor=colors[target[cnt]-1], markersize=12, markeredgewidth=2)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To have an overview of how the samples are distributed across the map a scatter chart can be used where each dot represents the coordinates of the winning neuron. A random offset is added to avoid overlaps between points within the same cell." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAIMCAYAAAAqztwVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACcTElEQVR4nOzdd3hc1bX4/e8+00eSLeOu4m5scKUECN0FMIEA1ySEkMZteSEkuQk3hXAJXEoICVwHQo1JCPwSSkIJJhQDbhhDIGBwt8HGsq3mbtmSps/Z7x8jy7I0qlPOnJn1eR4/yHNGoyVjS0vrrLW20lojhBBCCGE1w+oAhBBCCCFAkhIhhBBC5AhJSoQQQgiREyQpEUIIIUROkKRECCGEEDlBkhIhhBBC5IQeJSVKqf9SSq1TSq1XSv0gwzEJIYQQIocppR5TSu1WSq3r5LpSSv1WKbVFKbVGKXViT16326REKTUZ+E/gFGAacLFSanxvghdCCCFEXnkcmNPF9QuB8S2/vg083JMX7Uml5DjgPa11QGsdA94C/qUnLy6EEEKI/KO1Xg7s7+IplwL/Tye8B5QqpYZ397o9SUrWAWcrpQYqpfzAF4DKngQthBBCiIJUDlS3+X1Ny2Ndcnb3BK31RqXUr4A3gSZgNRBr/zyl1LdJlGjwer0njRgxomdh5yjTNDEMe/cBa0Dnwech/y9yR758HqZpopS9PwfQaK1RNv9/kQ9/nwA+/fTTvVrrwdn6eKeffrpuaGjI2Otv3LhxPRBq89B8rfX8XryESvJYt+fadJuUAGit/wD8AUApdSeJjKf9c+YD8wEmTJigN2zc2JOXzlnLli3j5NNOszqMlDSFQmxatcr2n8c///EPTj39dKvDSEkoGmXdypW2/zwag0HWf/SR7f9OvffOO0ydfpLVYaTkQGMTdVWbmXqCvT+PtR9/xKxZM60OI2VKqe3Z/Hg7d+7ktttuy9jrf+Mb3whprU9O4SVqOPquSgVQ19079SgpUUoN0VrvVkqNAOYCn+9TiEIIIYRImdfr5bjjjrM6jK68BHxXKfUMcCpwUGtd39079SgpAZ5XSg0EosB1WusDfY9TCCGEEKkIhUJstPCOhFLqaeBcYJBSqga4BXABaK0fAV4l0YO6BQgA/9qT1+3p7Zuzeh+yEEIIITLB6kqJ1vqr3VzXwHW9fd2eVkqEOEpzOMbr63ezY3+AEcf4uWDSEIo88tdJiFwVj8c4eGA/sWjU6lCOcswxAyz9ib+3vF4vFRUVuFwuS+OwulKSKfJdRPTaRzsauO6pNWitCUZNfC6Du9/YwoNXTeXEEaVWhyeESOLggf0M6F/KgGMGoFSywQhrBAMB+vXrZ3UYPaK1Zt++fdTU1DB69GhLY7G6UpIpkpSIXmkOx7juqTUEIvHWx4JRE4DrnlrD4utPx++Wv1ZC5JpYNJpzCYndKKUYOHAge/bssTqUlkrJJqvDSDv57iF65fX1u0ncKuxIa83C9buZe0JZVmJpDsdYuH43O/YFGDHQzxy5hSREl2ydkJhxCB6AeBgcHvANAMOR9TBy5c9QKiVCADv2B1orI+0FoybV+4NZieOjHQ1c9+RqzDa3kO55fTMPfm2a3EISIkcNKC3lQMvCr9dee43/vv56XnzxRSZNmtT1O4abYP9nibe1CcqAQ7VwzFjwFGc26BwllRIhgBHH+PG5jKSJic9lUHmML+MxNIdjXPfkapojcYoI8hXHe4zSO9lmDuPHTwb5+3/PlltIQqSoKRzj1bU72bavmVEDi/jClGEUp6kSuWTJEn74gx/wyquvUja8m+NQzHgiIdFtvuYcfnv/ZzB0siUVE6slKiUTrQ4j7TL+lbspHOOVNfWtf7Evmjo8bX+xRfZdMGkId7+xJek1pRRzJg0BMjuds3D9bkytOVlt4nH3r1FoilSYZu3h5/yJ5W8/yJmzLkrLxxKiEH247QD/8f9WYgLBSByf28Gdr27i9988iZNHDUjptVesWMG111zDgpdeYuzYsQQDAR599FHmz59PJBJh3Lhx/OlPf8Lv93P11Vfjcyo2bVzH9pp6/jjvf3ni2b/zj5VrOPWEKTx+3+0QPMC1P/o5H3zwAcFgkC996Uvceuut6fmDyGGhUIhNm/KvUpLRAwc+3Laf0+9awu2vbGT+8ipuf2Ujp9+1hA+3dXWwoMhlRR4nD141Fb/bgc+V+Ovjcxn43Y6Wx518tKOB2b95l1+/vpk/vlvNr1/fzOzfvMtHOxrSEsOOfQGMaDOPu39NsQpRpMKJ2FSYYhVi1kffg0hzWj6WEIWmKRzjP/7fSpojcYItDe3BSJzmSDzxeLjD0Wc9Fg6HuXzuXJ597jkmTjzyU/7cuXP54IMPWL16Nccddxx/+MMfWq8dOLCfJX/9Hb/53//mi1f/gB/+59dYv/Q51m7azKq1GyEe4Re/+AUffvgha9as4a233mLNmjV9/wOwEaUy98sqGStZNIVj/NsTH9IcbjOl0fIX/N+e+JB/3DBTmhJt6sQRpSy+/nQWrt9N9f4glcf4mDNpCH63MyvTOSMG+pnrfh/VydlOBhrXxgVEp12V0scR6SW7bezh1bU7Sd41BmbL9S+fXNGn13a5XHz+85/n8T/+kXm/+U3r4+vWreOmm26ioaGBpqYmLrjggtZrX7zoQpThYMrEcQwddAxTjhsPwKRjx7Ktpp7pDjd/feqvzJ8/n1gsRn19PRs2bGDq1Kl9itEuvF7vUYldvsjYV4RX1tRjdnIeoKnhlbX1XHFyZfIniJzndzuTTtn0dTqnN9+w5kwawitv7GytkLTnMoOYDVW9+GxEpsluG/vYtq+59QfI9oKRONv3Bfr82oZh8NTTTzPnggu46667uOGGGwC4+uqrefHFF5k2bRqPP/44y5Yta30fT/Exre/r8biPeq1YPE7VzgbuuecePvjgAwYMGMDVV19NKBQi3yVu33xidRhpl7GkpNu/2Hv7/hdb5K6+TOf09htWkcfJWad+jsD7r+NPkpholx+z1NrFRuII2W1jL6MGFuFzO5J+/fa5HYwc6E/p9f1+Py8uWMCMGTMYOmQIV155JY2NjQwfPpxoNMqTTz5JeXn5kXcwjMSUTXXtkceUAQooHsahpmaKioro378/u3bt4rXXXuPcc89NKUY7kEpJL3X7F3tQan+xRW7q7XROT75hJTP89K/i/fguiCapliiD6HGXpvBZiHTKpd02ontfmDKMO19N3kBptFxP1THHHMPLL7/MrJkzKSkp4fbbb+fUU09l5MiRTJkyhcbGxqPfwVMMgyaA4YLioeBwg3cAuLxMmzaNE044gUmTJjFmzBjOOOOMlOOzg3xtdM1YUnLR1OH84tXke/kNBRdN6WYMTNhST6dzDuvJN6ykd689xQSveAr/s18DbaKiAbTLD8og8OUnwV2U4mci0iVXdtuInin2OPn9N0/qMH1jAL//5kkp9QEd3lECUFlZyaebN7eumb/22msTFw4vSTtUy+MP3pNYkgaMGjOWdRuOfE95/Iknjrz9+ON9jsmupFLSS8UeJ49962T+7YkPMXWbv9gKHvvWydLglqcOT+e0vx2jlGqdzmmrJ9+wKjopqsUrTqXxutW4Ni7AaKjCLB2dqJBIQpJTcmG3jeidk0cN4J2fnsura3eyfV+AkQP9fGHKsMx/3ZYlaT0mPSV9cPKoY/jHDTN5ZW092/cGGDnIz0VThktCkue6ms5pr0ffsLrqWXMXyZRNjrtg0hB+/frmpNeSVc9EbijyOPs8ZdMnsiStVxKVkglWh5F2Gc8OijxOmbIpQJ1N57TXk9s961ZuT3d4IgM6m6D6ZFdT0uFtj9NIWj0TBSp4oPvrRYOyE4sNhEIhPvlEKiVZIVtgC0dvb/eI3NTZBNU9X57Ej55dTyhJJcxhKCYOk5K8aBEPH10laUubEI9kN54cJ5WSLPlw2/4OfSi/eHUjj33rZE4edYzV4YkM6M3tHpF7upqg+sEzazGM5OshZfJGHMXhSfSQJEtMlJGYuBGtQqEwmzZ9anUYaZdTX/VlC2zh6untHpF7upqgipuaSDz5tXyfvGmOxFm8aS/VDSEqS73MmjiIIrf0RHTKNyDR1NrVddHK6/VIpSTTCm0LbC6t3c6lWIS9dDVBFdfgNBSxJP+w83nyZnXNIa5/YSMmEIqaeF0G9y3bxry5xzGtop+lsZmm5lAoRiSucTsU/bzOTqtZ6eb1eJg8eTKxeJxRo0bx+OOP43G3VEAMR2LKpv30DSQelybXoyQqJdJTklGFtAU2l9Zu51Iswn66mqDyOhUmimQ/beTr5E1zJM71L2wk0ObP43BPzfUvbOTv15yM36KKSSASp/pAYpzN1BpDKXY1Rqgc4O0YU7gRteFF1P6t6GPGoI+/DDwlKX18n8/HhytXAvBv//qvPPzww/zgv/7ryBM8xYkpm+CBRA+Jw52okEhC0oFUSrKgULbA9mSLqdZkpXIhK8BFqrqaoDIMg3u/PInrn11fMI3Mizft7fJAu0Wf7OWSKUOzGRKQ6OGpPhDCbHOr7fDb1QdCjB9SxOGCidrxHo5nvnL0YsI3byJ+5V/QI05LSzynnXYaa9euBWDVqlVcc801BAIBxo4dy2OPPcaAAWX89re/5ZFHHsHpdHL88cfzzDPP8M9//pMf/OAHBINBfD4ff/zjH5kwIf++OXcnFArL9E2mFcoW2O62mM5fvp2/fFiblcqFrADvpXATrk0LMA5sxRwwhujESwt+qVN3E1SF1shc3RBKOm0EiYpJTYM1h8UFoyZd/Vh3KBSj1OeEcCOOZ76CijS1XlPRRJXa8cxXiP1gPbhT+zsfj8dZsnQp//qv/wrAN7/5Te6//37OOeccbr75Zm699Vbuvfde7rrrLqqqqvB4PDS0bIOdOHEiy5cvx+l0smjRIm688Uaef/75lOKxI6/Xk5fJWE59VSiULbDdbTH903s7iJlHPwaZqVzICvCec9S832GtvXfJLQS+/CTxilOtDs9S3SUehdTIXFnqxesykiYmXpdBRanXgqgSTcdmJz+AmFoTafmioza82OVorlr/IvqEr/cphmAwyMknncT27ds58cQTmT17Nnt276ahoYFzzjkHgG9961t8+ctfBmDq1Kl87Wtf47LLLuOyyy4D4ODBg3zrW99i8+bNKKWIRqN9isXuEpUSmb7JuELYAtvVPXiX43DDWccvHpmoXMgK8B4KN+F/9mtJf3r0P/s1Gq9bXfDr7fM58ejNJM2siYO4b9m2pNcMYPYEaxaAOQyFoVTSxMRQCrcz0VSq9m9t/bvdnooGUAe2Jl2G1xOHe0oOHjzIZZdeysMPPcSXvvSlTp//yiuvsHz5cl566SVuv/121q9fz89//nNmzJjB3/72N7Zt21YQJwInk6iUHGt1GGmXk9/p830LbFf34NEQ7WQEKROVi94eoFeoXJsWdPnTo2vjAll3n6d6O0lT5HYwb+5xHd7HAObNPc6yJlefy+jyej9v4tuBPmYM2uVPmpholx89YEzKsfTv3595v/kNX7r8cr75zW8yYMAA3n77bc466yz+9Kc/cc4552CaJtXV1cyYMYMzzzyTp556iqamJg4ePEh5eTlQmAfxHSaVEpE2Xd2D/8rJZTzzQW2XlYt0ju/KRtWeMQ50/dOj0VCV5YhENvR1kmZaRT/+fs3JLPpkLzUNISpKvcyeMMiyhAQSP2RUDvB2mL4BqBzgbW1y1cdfBm/e1MmLGOhJl6UlnhNOOIEpU6fy/PPP88QTT7Q2uo4ZM4Y//vGPxONxvv71r3Pw4EG01vzwhz+ktLSUn/zkJ3zrW99i3rx5zJw5My2x2JFUSkRadXYPXmv4y4d1Sd9HKcXwfh5m/+bdtDbBFlojYl+YA7r+6dEsHW1BVCLTUpmk8bsdlkzZdMXvdjB+SFFiT0nMxO00EntK2q4p8ZQQv/IvHadvlEH8yr+k1OR6oKVZ9bAXX3yRYCBAv379eO+99zo8f8WKFR0e+/znP8+nnx6pENx+++19jsfOwuEwn36a/KBLO5PvOhbq7B58Z5WLe1pGKzMxvpvP/QDpEJ14Kd4ltyS/qAyix12a3YBEVuTqJE0qDEViyqYLesRpxH6wHrX+xUQPyYAxiQpJilM3QnRHkpIc1FnlYuE6Gd+1jKeYwJef7DB9gzIIfPnJgm9yzVe5OkmTFe5i9Alf73NTq8gsj8crt2+yqdBPCk5WuZDxXWvFK06l8brVuDYuwGiowiwdnaiQSEKSt3J1kkaIcDgkja7ZIicFJyfjuznAXSRTNgUkVydphJBKSZbIScGdk/FdYSf5cshjLk7SCBEOh6TRNRsK7aTg3sil8d18+YYjMiPfDnnMxUkaUdg8Hi/HHjve6jDSLue+ixTSScF9kQvju/n2DUeklxzyKDqzc+dO/vu//5uVH36I2+Nh1MiR/OIXv+DEE0/MyMcrLi6mqamJuro6vv/97/Pcc89l5ONYIVEp6WQJp43l3FeGQjkpOBVWju/KNxzRHTnkMT80R5t5Y/vr7GisZkRJJeePvIAiV9+burXWfPlLX+Ib3/gGTz75JJA4HXj37t3pCrlTZWVleZWQgFRKsubcCYO59e8bkl7Lp5OC7Uq+4YjuyJSY/X28+2O+t/S7aDTBWBCf08f/rfw/7p/xACcMOaFPr7ls2TJcLhff/v/+v9bHpk+fzp7du5k1axYHDhwgGo1yxx13cOmll7Jt2zYuvPBCzjzzTN59913Ky8tZsGABPp+PRx99lPnz5xOJRBg3bhx/+tOf8Pv9VFVVcdVVVxGLxZgzZ07rx9m2bRsXX3wx69atY9u2bXzjG9+gubkZgAceeIDTTz+dZcuW8b//+78MGjSIdevWcdJJJ/HnP/8ZpVSHzyUXSE9JFhyeumn/Lc/jNHA6VF6dFGxX8g1HdEemxOytOdrM95Z+l0DsyK3yYCzx7/p7S7/LG3PfxO/qfcV6/bp1SW/TeL1e/va3v9GvXz/27t3LaaedxiWXXALA5s2befrpp3n00Ue54ooreP755/n617/O3Llz+c///E8AbrrpJv7whz/wve99j//6r//i2muv5Zvf/CYPPvhg0jiGDBnCm2++idfrZfPmzXz1q1/lww8/BODjjz9m/fr1lJWVccYZZ/DOO+9w5pln9vpzzQaplGRYsqmbwzSaxdefw+CSPF5UZBPyDUd0R6bE7O2N7a+jO1mZptG8sf11Lhv3L2n7eFprbrzxRpYvX45hGNTW1rJr1y4ARo8ezfTp0wE46aST2LZtGwDr1q3jpptuoqGhgaamJi644AIA3nnnHZ5//nkAvvGNb/DTn/60w8eLRqN897vfZdWqVTgcjqNW1p9yyilUVFQAiSrOtm3bcjYpCYdDbN4slZKM6WrqxmEYLP1kT8FO3eQS+YYjutPbKTGZ5MotOxqrWysj7QVjQXY0VvfpdY+fNIkXXnihw+N//etf2bNnDytXrsTlcjFq1ChCocT6fo/H0/o8h8NBMJiI6+qrr+bFF19k2rRpPP744yxbtqz1ed3dbvnNb37D0KFDWb16NaZp4vUe+WG3/ceLxWJ9+lyzweuVSklGydSNPeTSWLLIXT2dEpNJrtwzoqQSn9OXNDHxOX2MKOnbD4czZszg5zfdxB9+/3v+/T/+A4APP/iA6upqhgwZgsvlYunSpWzfvr3b12psbGT48OFEo1GefPJJysvLATjjjDN45pln+PrXv97aTNvewYMHqaiowDAMnnjiCeLx5N93cl0oJD0lGSVTN/aRC2PJIvd1NyUmk1y56fyRF/B/K/8v6TWF4vyRF/TpdZVSPPvcc/z3f/83d999Nx6vl1EjR/LjH/+YG2+8kZNPPpnp06czceLEbl/r9ttv59RTT2XkyJFMmTKFxsZGAO677z6uuuoq7rvvPi6//PKk7/ud73yHyy+/nGeffZYZM2ZQVGTPYyKkUpJhF00dzi9e3Zj0mkzd5B45VVikSia5clORq4j7ZzzQYfpGobh/xgN9anI9rKysjKeffvqox4KBAP/4xz+SPn/dunWtb//oRz9qffvaa6/l2muv7fD80aNHH/VaN9xwAwCjRo1qfa3x48ezZs2a1uf88pe/BODcc8/l3HPPbX38gQce6OmnZYlQKCx7SjKp2OPksW+d3OHMG0MhUzdC5CGZ5MpdJww5gTfmvtlhT0kqCYlIL6/XI5WSTDt51DH844aZvLK2nu17A4wc5OeiKcMlIREiD8kkV27zu/xpnbIR6SWVkiwp8jhlykaIAiCTXEL0XaJSMs7qMNKuR0mJUuqHwH8AGlgL/KvWOpTJwIQQ+U0mubJPa52zG0rtorM+qGwLhcJs3lyAlRKlVDnwfeB4rXVQKfVX4Erg8QzHJoTIczLJlT1Ol4sD+/cz4JhjJDHpI601+/btO2q3iVW8Xg/jx1tbKVFKzQHuAxzA77XWd7W7PgB4DBgLhIB/01qv6/BCbfT0X74T8CmlooAfqOvuHYKRSA9fOjdFY3H27GuwOoyU7Nx/gFgszs7d+60OJSWRaJS9Bw5aHUZKDjY3E4/H2X+w0epQUlK3Z19G/k6dXu6F8sQX+kMNhziU1lfvKBQMU7W1+30Yuax21z6K3HFq6np2oJ3WJqFdu9m5c1eGI+udeDyWE9/ke8rt8TB0+HDLv8dZXSlRSjmAB4HzgBrgA6XUS1rrtofX3Qis0lr/i1JqYsvzZ3X1ut0mJVrrWqXUPcAOIAi8obV+I0mA3wa+DTB48GD+2cmIl11EwiGqPkl+MKBdRKNx4rEIOzZvsjqUlMQjET7bsN7qMFISj8eJRsJ8sna11aGkJBqNEYva/+8UOs6hA5k/nTaTvCpGLGKyt87eyVUoFKK4pNjqMHplx44dVocAdL+9NsNOAbZorbe2xPIMcCnQ9hvn8cAvAbTWm5RSo5RSQ7XWnWbGPbl9M6DlA40GGoBnlVJf11r/ue3ztNbzgfkAEyZM0KeefnovPrfcs2L5co6fPN3qMFKyc/c+9u+qZuLxU6wOJSXr1q5i8rTpVoeRkv2HGqnf9hlTpnc8kMxO6nftY0/tNtv/nVr18YeMGDHa6jBSUl+/l3i8mXHjj7c6lJRs3ryB02z+/cIKWbh9M0gp9WGb389v+T5/WDnQ9syBGuDUdq+xGpgLrFBKnQKMBCqAviclwGygSmu9B0Ap9QJwOvDnLt+rl5qjzSza8SY1jdVUlFQye8R5FLnsuWlPCCGEyKQs3L7Zq7U+uYvryco07buA7wLuU0qtIjEk8zHQ5YFCPUlKdgCnKaX8JG7fzAI+7PpdemfVnlVc/9b3MbUmFA/idfi47+N5zDvnt0wfPD2dH0rkseZInMWb9lHdEKSy1MesiQMpcjusDitnNUfiLNq0l+oDQSoH+Jg9cZD8eQlhEznQ6FoDtN3fUUG7flOt9SHgXwFU4l5TVcuvTvWkp+R9pdRzwEckMpyPablNkw7N0Wauf+v7BGJHDtwLxRObHK9/6/u8fOlC2SIourW65hDXv7AJEwhFTbwug/uWbWPe3IlMq+hndXg5Z1XNIX74/AZMfeTP696lVfzm8uOZLn9eQuS8RKXkMytD+AAYr5QaDdSSmMq9qu0TlFKlQEBrHSGxVmR5S6LSqR5N32itbwFu6UPQ3Vq0403MTua+Ta1ZtOMNLhl7WSY+tMgTzZE417+wiUCbzaChlrevf2ETf7/mJPxSAWjVHInzw+c3EIh0/PP64fMbeOXaz8mflxA5LlEpGWvZx9dax5RS3wVeJzES/JjWer1S6pqW648AxwH/TykVJ9EA++/dva7lywBqGqtbKyPtheJBqpuqk14T4rBX1+8hGu8ksQUWfbKPS6bIdtDDFm3ai9nJ/idTJ65fMnVodoMSQvRKDlRK0Fq/Crza7rFH2rz9D6BXB/RYnpRUlFTidfiSJiZeh4/KYlk5Lzq3uuYQv126jVgn32RDUZOaBlk+3Fb1gWBrZaS9UNSkWv68hMh5VldKMsXypGT2iPO47+N5Sa8ZSjF7xPlZjkjYxeHbNp0lJABel0FFqX0WM2VD5QAfXpeRNDHxugwq5c9LiJyXqJRstTqMtLM8KSlyFTHvnN92mL4xlGLeOb+VJlfRqcWb9pH85/0jDGD2hIHZCMc2Zk8cxL1LkzfAGypxXQiR26RSkkHTB0/n5UsXsmjHG1Q3VVNZXMnsEedLQiK6VN3Q+W0IAKehmDd3ojRttlPkdvCby4/vMH1jKPjN5cfLn5cQNhAOh9myxdqekkzIiaQEwO/yy5SN6JXK0s5vQzgdiv86Z6SMA3diekU/Xrn2c4k9JQ0hKku9zJ44SBISIWzC45FKiRA5ZdbEgdy3bFvSa25D8YVJg7MbkM343Q6ZshHCpqRSIkSOKXI7mDd3YoelaQZk7LaNbI0VQuQCj8fDuHFSKREip0yr6MffrzmJRZ/so6YhREWpl9kTBmYkIZGtsULksXATjo0vYhzYijlgDPHjLgNP7p5eHA5H2LJFpm9EjmmOxFn86T5qDoSoGOBl1rGF95O73+3I+HI02RorRP4yqt/D89erQJuoaADt8sPimwlf8RRm5WlWh5eUx+Nm3LgxVoeRdpKU2Njq2kZ+9OLRP7nf/9Z27rlsItPKS6wOL690NX4sW2OFsLFwE56/XoWKNLU+pKKJs9g8f72K4PfWgDv3KiaJSkmXZ9vZkiQlNtUcifOjF5P/5P6jFzex4D9PtCq0vNTV+LFsjRXCvhwbXwTdyY8c2sSxcQHxaV/Lakw9kegpkUqJyBGLP+36J/fFn+7jc0P6fjshEImzePP+1j6NWeOPKejbE12NH8vWWCHsyziwtbUy0p6KBjAOVBHPckw9kZi+kZ4SkSNqDoS6/cn9c0OK+vTaa+oa+fFLmxOLtWImXqfBA29Xc/cl45laVpi3hboaP5atsULYlzlgDNrlT5qYaJcfc8BoC6LqnlRKRE6pGODNyE/ugUicH7+0+ejbQrHE2z9+aTN/+7dpBVkxsWL8WAiRefHjLoPFNye/qAzix12a1Xh6SiolIqfMOnYg97+1Pek1o+X6oYaGXr/u4s37uzzWfsnm/VxcoEvJsjl+LITIEk8x4Sue6jh9owzCVzyVk02uIJUSkWOK3A7uuWxih+kbA7jnssRP7of68Lo1DaHWykh7oZhJzcFwKmHbXjbGj4UQ2WVWnkbwe2twbFyAcaAKc8DoRIUkRxMSSFRKPvtMKiUih0wrL2HBf56Y2FNyuCH12NR+cq8o9eJ1GkkTE6/ToKK/J5WQhchLgajJ8m2N1B2KUtbPxdmjSvC7DKvDEr3hLiY+7Ws52dTaufz7OyZJic353Q6+ODl9P7nPGn8MD7xdnfSaoWDm+GPS9rGEyAfrdwW5eXEtGgjFNF6n4tEP9nDbrHImDfVZHZ7IU4nbN7nZhJsKSUrEUfxuB3dfMr7D9I2h4O5Lxkv/hBBtBKImNy+uJRg70ogVann75sW1/PnLY/BJxURkQOL2jSxPEwVgalkJf/u3aSzZvJ+ag2Eq+nuYmcE9JbITRdjV8m2NdNIXjm65fsH4/tkMSRQIj8fD2LFSKREFwu92ZGXKRnaiCDurOxRtrYy0F4pp6hqjWY5IFAqplAiRZrITRdhdWT8XXqdKmph4nYqyEpcFUYlCIJUSIdJMdqIIuzt7VAmPfrAn6TXVcl2ITJBKSY5rDsd4bd0utu8LMHKgnwsnD6XIkzefXl6SnSjC7vwug9tmlXeYvlHAbbPKpclVZIxUSnLYyu0NXPvnjzG1Jhg18bkMfr3wUx7++gmcNLI0q7EEYgHe2rmUuuYayooqOGfYDPxOf1ZjsAvZiSJ6KxeboicN9fHnL49J7ClpjFJWkthTIgmJyKREpWSb1WGkne2TkuZwjGv//DHNkSMrb4ItPQrX/vljlv7orKxVTNYdWMvPV96AxiQUD+F1eJm/6SFuP+kuJg+YkpUY7ER2oojeyOWmaJ/LkCkbkVVSKclRr63bhamTNyaYWrNw3S4uP6k843EEYgF+vvIGgvEjJ02G4iEAfr7yBp469zl8Tlmk1JbsRBE9JU3RQhwtHI6wdes2q8NIO9snJdv3BVorI+0FoyY79nc8jjoT3tq5FE3yODQmb+1cwpyKi7ISi52kcydKcyTO4k37qG4IUlnqY9bEgRTJN6q8IE3RQhzN43Ezduwoq8NIO9snJSMH+vG5jKSJic9lMOKY7PRz1DXXtFZG2gvFQ9QF6rIShx2lYyfK6ppDXP/C0YcT3rdsG/PmTmRaRb/0BCosk09N0XJOjkiHcDgiPSW56MLJQ/n1wk+TXjOUYs7koVmJo6yoAq/DmzQx8Tq8lPnLshJHIWqOxLn+hU1Hl/Zb3r7+hU38/ZqTpLRvc/nSFC3n5Ih0kUpJjiryOHn46yd0mL4xlOLhr5+QtSbXc4bNYP6mh5JeUxicM2xmVuIoRIs37evkxhmYwKJP9nHJlPQdWiiyLx+aouWcHJFOUinJYSeNLGXpj85i4bpd7NgfYMQxfuZkeU+J3+nn9pPu6jB9ozC4/aS7pMk1g6obgq2VkfZCUZOahuS31YR95ENTtJyTI9JJKiU5rsjjzMqUTVcmD5jCU+c+x1s7l1AXqKPMX8Y5w2ZKQpJhlaU+vC4jaWLidRlUlHotiEqkW7YPikw3OSdHpFMkEmHr1u1Wh5F2eZOU5Aqf0ydTNlk2a+JA7lu2Lek1A5g9YWBW4xGZk62DIjNBzskR6eR2uxkzZpTVYaSdJCXC9orcDubNndhh+sYA5s2daJufpEV+k3NyRDolKiXbrA4j7SQpEXlhWkU//n7NSSz6ZF/rCvLZEwbmdULSHImzaNNeqg8EqRzgY/bEQbKXJYfJOTkinaRSIkSLXDx/BBKl/UKZsllVc4gfPr8h0fTZUhm6d2kVv7n8eKbLXpacJefkiHSJRCJUVUlPiShwuXz+SKFojsT54fMbCEQ67mX54fMbeOXaz+VEkiiSk3Ny0iTchGPjixgHtmIOGEP8uMvAU2x1VCJFkpSIHpPzR3LDok17u1y5vmjTXi6Zmp2lgUJYwah+D89frwJtoqIBtMsPi28mfMVTmJWnWR1eVng8bsaMGWl1GGknSYnoMTl/JDdUH+h6L0u17GUR+SzchOevV6EiTa0PqWjijDPPX68i+L014M7/ikniQL4dVoeRdpKUiB7Lp/NH7KxyQNd7WSplL4vIY46NL4LuZIezNnFsXEB82teyGpMVpFIiCl6+nD9id7MnDuLepVVJrxkqcV2IfGUc2NpaGWlPRQMYB6qIZzkmKyQqJdLoKgpYPpw/kg+K3A5+c/nxHaZvDAW/ufx46esRec0cMAbt8idNTLTLjzlgtAVRZZ9USkTBy4fzR/LF9Ip+vHLt5xJ7ShpCVJZ6mT1xkPw/EHkvftxlsPjm5BeVQfy4S7Maj1UKtlKilJoA/KXNQ2OAm7XW92YqKJG77H7+SD7xux0yZSMKj6eY8BVPdZy+UQbhK54qiCZXKOBKidb6E2A6gFLKAdQCf8tsWCKX2fn8ESGE/ZmVpxH83hocGxdgHKjCHDA6USEpkIQEEpWSqiqZvpkFfKa1zr+akRBCCPtwFxOf9rWCaGpNxuNxM3r0CKvDSLveJiVXAk8nu6CU+jbwbYDBgwfzjxUrUgzNWqFgkNUff2h1GCkJh6MYhmbN6o+tDiUl0WiYVSvt/f8iGouBGefjDz+wOpSUhMIRlDZZs+ojq0NJSSwaYfPmTVaHkZJwOIrH42LDhjVWh5KSeDzKP955x+owbCccjrBtm7WVEqXUHOA+wAH8Xmt9V7vr/YE/AyNI5Bv3aK3/2NVr9jgpUUq5gUuAnyW7rrWeD8wHmDBhgv7c5z/f05fOSf94ewXHT5pqdRgpqa3bTWPDLsYfO8nqUFKyccMapkw70eowUrK34SB7arczedp0q0NJyY4d9TTsrWfcuOOsDiUl69d/zKhR9p7S2LlrP+gw44893upQUvLppxs446yzrA7DdqyulLS0czwInAfUAB8opV7SWm9o87TrgA1a6y8qpQYDnyilntRaRzp73d5USi4EPtJa7+pD/EIIIYRIk3A4SlVV8hUNWXIKsEVrvRVAKfUMcCnQNinRQIlSSgHFwH4g1tWL9iYp+Sqd3LoRQgghRPZkoVIySCnV9r75/JY7IoeVA22zohrg1Hav8QDwElAHlABf0bqzdbwJPUpKlFJ+EiWa/68nzxdCCJEaI9pMac1i3M01RIoqaKiYhekqsjoskSOyMH2zV2t9chfXVZLH2p+OdgGwCpgJjAXeVEq9rbU+1NmL9igp0VoHgIE9ea4QQojU+PeuZvS7P0qc5RIPEXd4Gb72fqpOv4fAoGlWhydygNU9JSQqI5Vtfl9BoiLS1r8Cd2mtNbBFKVUFTAT+2dmLykZXIYTIIUa0mdHv/ghH7MgadUc8cfLz6Hd/xMYvLMB0+q0KT+SIHNhT8gEwXik1msT+siuBq9o9ZweJVSJvK6WGAhOArV29qCQlQgiRQ0prFnd5Cm7/msUcGPXF7AYlco7VlRKtdUwp9V3gdRIjwY9prdcrpa5puf4IcDvwuFJqLYnbPT/VWu/t6nUlKRFCiBzibq5prYy054iHcDfVZDkikYsSlRJLp2/QWr8KvNrusUfavF0HnN+b15SkRAghckikqIK4w5s0MYk7vESKKyyIKs+EG3FseBF1YCt6wBjix18GnhKro+qVRKWksvsn2owkJUIIkUMaKmYxfO39yS8qg4MVs7IbUJ5R1e/hfubKow7zcy76OZErn0FXnmZ1eD2WqJTkX9XMsDoAIYQQR5iuIqpOv4e400/c4QUSFZK400/V6fdIk2sqwo24n7kSFWlCRRONxCoaQEWaEolKpMniAHtHqcz9sopUSoQQIscEBk1j4xcW0L9mMe6mGiLFFRysmCUJSYocG17ssonYseFF4tO/ntWY+kpu3wghhMga0+mXKZs0Uwe2tlZIOlyLBlAHqrIcUd9FIhG2bbO20TUTCjYpCUSbWVy9iJqmaiqKK5lVORu/bEsUeaA5Emfxpn1UNwSpLPUxa+JAitwOq8MSwnJ6wBi0y580MdEuP3qAfQ5pdLvdjBollZK8sHrvKn789g8xtUkoHsLr8HL/6nu5+6zfMG3QdKvDE6LPVtcc4voXNmECoaiJ12Vw37JtzJs7kWkV/awOT+Q4FW2mqOo1XIe2E+03kubRF6Lz6Ie1+PGX4Vz08+QXlZGYwrEJqZTkiUC0mR+//UMCbbYlhlpG73789g958Yuv4Jf7tsKGmiNxrn9hE4HokXvmoZa3r39hE3+/5iT8UjERnfDsWsmwRdeANjFiQUynj4Ef/Iqdsx8hPPQkq8NLD08JkSuf6TB9gzKIXPkMuIs7vk+Ojg9LpSRPLK5ehNlJo5OpTZZUL+Li0ZdkOarcEojEWfrZAWoOhqno72HG2AHyzcwGFm/aR2fHb5rAok/2ccmUIdkMSdiEijYzbNE1GNHm1seMWBCAYYuuYccVy/KmYqIrTyP8X+taEo0q9IDRiUQjSUKSy+PDiUpJ/o0EF1xSUtNU3VoZaS8UD1HTmH/lsN5YW9/EDa9+hqkhFDPxOg0eereWu74wlinDk/wUIXJGdUOwtTLSXihqUtOQ/O+9EEVVr3U5lVJUtZCmYy/PblCZ5C7ufsqmzfjwYYd7UdzPXEn4v9Ylr6xkiVRK8kRFcSVehzdpYuJ1eKkoyb//yT0ViMS54dXPji7/xxJv3/DqZzz3zcn4XFIxyVWVpT68LiNpYuJ1GVSUei2IStiB69D21spIe0YsiKtxe5Yjsl6ujw9LpSRPzKqczf2r7016zVAGMytnZzegHLL0swOYOvk1U8OSLQ1cdNzA7AYlemzWxIHct2xb0msGMHuC/L8TyUX7jcR0+pImJqbTR7RkpAVRpVkve0NyfXw4USnJvyMHCi4p8buKuPus33SYvjGUwd1n/aagm1xrDoZbKyPthWImdQfDWY5I9EaR28G8uRM7TN8YwLy5E6UvSHSqefSFDPzgV8kvKoPm0XOyG1Ca9aU3JNfHh6VSkkemDZrOi198hSXVi6hprKaipJKZlbMLOiEBqOjvwes0kiYmXqdBWX+PBVGJ3phW0Y+/X3MSiz7ZR01DiIpSL7MnDJSERHRJu4rYOfuRDtM3KIOdsx+xd5NrH3tDcn18WColecbv9Bf8lE17M8YO4KF3a5NeMxTMHFea3YBEn/jdDpmyEb0WHnoSO65YRlHVQlyN24mWjKR59Bx7JySk0BvSl/HhLIpEImzfLpUSkcf8bgd3fWFsh+kbQ8FdXxgrTa5C5DntKsqvKRtS6w3pzfhwtkmlxKaawzFeX7+bHfsDjDjGzwWThlDkye1POxAL8PauZdQF6ijzl3HW0HOzdmtpyvBinvvmZJZsaaDuYJiy/h5mjiuVhEQIYUsp94b0ZHzYApFIlG3bkle27Sy3vzun6KMdDVz31Bq01gSjJj6Xwd1vbOHBq6Zy4ohSq8NLan3DOm5ZdSNaa0JmCK/h5dHNj3Dr9DuZVDo5KzH4XA6ZshFC5IWUe0NydqOrSyoldtIcjnHdU2sIROKtjwVb9jdc99QaFl9/On53bn36gViAW1bdSDB+ZCwvZCb2qdyy6kb+dOZf8Dl9VoUnCoAc5ifyTgq9Ibm90TUqPSV28vr63WidfOmG1pqF63cz94SyLEfVtbd3Lesy5uW7l3FB2YVZjkoUCjnMT+SrPvWG5PxGVxcjR0qlxDZ27A+0VkbaC0ZNqvcn315opbpAXWtlpL2QGaI+UJfliEShkMP8RN7rZW9I7m90jbJ9u/SU2MaIY/z4XEbSxMTnMqg8Jvdug5T5y/Aa3qSJidfwMtyfW5UdkT/kMD8hjpb7G11djBxZbmkMmZC3SckFk4Zw9xtbkl5TSjFnUu59gT1r6Lk8uvmRpNeUUpw95NzsBpRGcvJwbpPD/IQ4Wu5vdM3PSolhdQCZUuRx8uBVU/G7HfhciU/T5zLwux0tj+dePuZ3+rl1+p34HD68RuLwNK/hxefwJR63WZNrIBLnlY17+cWibfzLE2u5f0UNz6zazQPv1PLlP61jbX1T9y8isuLwYX7JyGF+ohDFj78MVCffInNgoyskfljN1C+r5N535jQ6cUQpi68/nYXrd1O9P0jlMT7mTBqSkwnJYZNKJ/OnM//C8t3LqA/UMdxfxtlDzrVdQrK2vqllCZsmFDu6eVdOHs49+XKYXyASZ+nWBmoPhSnv52HGmFKpyIm+yfGNrnL7xqb8bmeHKZtcX6jmc/psPWUTiMS54dXPjmqaTEZOHs4d+XCY39qdTfxsYVVix09M43UqHn6vjl/OGc2UYdZv4BT2k8sbXfP19k3ufCfOEjsuVLObpZ8dwEw+2XwUOXk4t9j5ML9AJM7PFlYd1dieqNBpfrawime/drxU5ETfFqHl6EZXqZTkATsuVLOjmoPhpCcNtycnD+ceux7mt3RrQ5c7fpZ+1sAXJkpFrpDl8iK0vpBKSR6w40I1O6ro78HrNLpNTOTkYZEutYfCHXqXDgvFNHWHIlmOSOSUHF+E1hdSKckDdlyoZkczxg7goXc7z+A9DoXDUHLysEib8n4evE6VNDHxOhVl/dwWRCVyRa4vQuuLRKUk/xZqFlRSYseFanbkdzu46wtjW6ZvEr0jXqfC1HD26FKml5fIycN5yqrplxljSnn4vTqgY1KilGLG2NKMxyByV64vQuuLRKUk/yr7BZWU2HGhml1NGV7Mc9+czJItDdQdDFPW3yOJSJ6zcvrF73bwyzmjO3x8pRS/nDNa/t4VuFxfhNYXkUiUHTvqrQ4j7QoqKTm8UK399I1SKmcXqtmZz+WQcd8CkQvTL1OGFfPs145n6WcN1B2KUNbPzYyxkgiLxCI056KfJ7+YI4vQesvtdjNihFRKbM+OC9VEYWmOxFm8aR/VDUEqS33MmjiQohwfy82V6RefyyFTNvmuL2O9Ob4IrS8ikQg7dkhPSV5ItlBNiFywuuZQhwVm9y3bxry5E5lW0c/q8Dol0y8iG1IZ683lRWh9IZUSIURGNUfiXP/CpqM24R4+JO/6Fzbx92tOytlFZjL9IjIuHWO9OboIrS+i0QjV1VIpEUJkyOJN++hss4sJLPpkX84uNpPpl9ymos0UVb2G69B2ov1G0jz6QrSryOqweiUfx3pTIZUSIURGVTcEWysj7YWiJjUNoSxH1HMy/ZK7PLtWMmzRNaBNjFgQ0+lj4Ae/YufsRwgPPcnq8HosH8d6UyE9JUKIjKos9eF1GUkTE6/LoKLUa0FUPSfTL7lHRZsZtugajGhz62NGLLEkctiia9hxxTLbVEzycaw3FVIpEUJk1KyJA7lv2bak1wxg9oTcnyqR6ZfcUlT1Wpe3PIqqFtJ07OXZDaqP8nGsNxWJPSU7rQ4j7SQpESJHFLkdzJs7scP0jQHMmzsxZ5tcRe5yHdreWhlpz4gFcTVuz3JEKcjDsd5UuN0uRowYbnUYaSdJiRA5ZFpFP/5+zUks+mQfNQ0hKkq9zJ4wUBIS0SfRfiMxnb6kiYnp9BEtGWlBVH2Xb2O9qSjoja5KqVLg98BkEu31/6a1/kcG4xKiYPndjpydshH20jz6QgZ+8KvkF5VB8+g52Q0oHfJorDcVhV4puQ9YqLX+klLKDfgzGJMQQog00K4ids5+pMP0Dcpg5+xHbNPkKjqKRKJUVxdgpUQp1Q84G7gaQGsdAWQ9oxBC2EB46EnsuGIZRVULcTVuJ1oykubRcyQhsTm320VlZWFWSsYAe4A/KqWmASuB/9JaN3f2DlprDgaSz5PbRSQao65+r9VhpOTTT3cwcICD2rpdVoeSklA4ws6d9v5/sb1uF34jxs6d+6wOJSWbNm3jmH6KHTtqrQ4lJYFAkE8/TX5iuF1UbdvJcRNHUF3dw3/fvjMTvwB2NgFNXT49W6KxGMGI/JzbWwVbKWl5zonA97TW7yul7gNuAI6azVJKfRv4NsDgwYPZvGZNumPNLjPGoQP2/h8+cIADMx4j0GTvb+gOA/bvqbE6jJR4VZxoLMqenTusDiUlA/sbmGaMSOSg1aGkxOfz4Hbbe/X9hGPLMc04wYC9E10zFuXjf/7T6jBsSSlldQhp15OkpAao0Vq/3/L750gkJUfRWs8H5gNMmDBBn3DKKWkL0grvr3iHYydMtjqMlNTU7iLQtIdx44+zOpSUbNywlgkT7f3/YueufRxs2MlEm38e27bVEAzsZ/To8VaHkpKNG9dSVlZhdRgpqavbi2HEGDt2otWhpGTLZxs59fTTrQ7DdnLh9o1Sag6JnlMH8Hut9V3trv8Y+FrLb53AccBgrfX+zl6z26REa71TKVWtlJqgtf4EmAVs6OPnIIQQQogUJW7fWLc8TSnlAB4EziNRvPhAKfWS1ro1P9Ba3w3c3fL8LwI/7CohgZ5P33wPeLJl8mYr8K+9/xSEEEIUEhVtpmTbazgbdxArGUHjKPsdBJirEpWSYVaGcAqwRWu9FUAp9QxwKZ0XLb4KPN3di/YoKdFarwJO7lGYQgghCp5390eULbkWODKKPGjl3dTNfJjQkBOtDs/2slApGaSU+rDN7+e3tGkcVg5Ut/l9DXBqshdSSvmBOcB3u/ugstFVCCFEWqloM2VLrsWIdTwIsGzJtVRdvjSxIl70WRYqJXu11l0VI5J12epOnvtF4J3ubt2AJCVCCCHSrGTba0AnBwFiUrz9NRrH2eMgwFxldU8JicpIZZvfVwB1nTz3Snpw6wYkKRFCCJFmzsYd3RwEaO/R+FyQAz0lHwDjlVKjgVoSicdV7Z+klOoPnAP06GwASUqEEEKkVaxkRDcHAY6wIKr8kqiUWLcYU2sdU0p9F3idxEjwY1rr9Uqpa1quP9Ly1H8B3uhq4WpbkpQIIYRIq8ZRFzJo5d2dXDVoGnlhVuPJRzlQKUFr/SrwarvHHmn3+8eBx3v6mpKUCFHAApE4S7YcoKYhREWpl5njBuB3O6wOS9icdhVRN/PhDtM3YFA382Fpck2DSCRKTY2lPSUZIUmJEAVqTV0TP3l5M6aGUMzE6zR4YEU1v754PFPLiq0OT9hcaMiJVF2+lOLtr+Fq3EG0ZARNIy+UhCRNcqFSkgmSlAhRgAKROD95eTOB6JEJiVAs8fZPXt7MC1dPlYqJSJl2+WXKJkMikRg1NfY+bDUZSUqEKEBLthzA7GSjgKkT1y8+flB2gxJC9Jjb7aSiYqjVYaSdJCVCWMDqXo6ahlBrZaS9UMyk9mAoa7EIIXpPKiVCiLTIhV6OilIvXqeRNDHxOBTl/b1ZiUMI0TdSKckBgWgzS2oWU9NUTUVxJTMrZuGXw51EFh2pcISpKPX0usKRK70cM8cN4IEV1UmvheOaIcWujMcghOg7qZRYbM3e1fz0nesxtUkoHsLr8PLgmvv41RnzmDpomtXhiQKwpr6Jn7685agKx4Pv1PCri8cxdXjPKhy50svhdzu47YKx/OjlzUmv37xwqzS7CpHDpFJioUC0mZ++cz2BWKD1sVA8cc/7p+9cz/MX/R2/U8bMROYEInF++vKWpBWOn768heevnoLf1f038Fzq5djdHMHrVIRiHbMkaXYVIrclKiW7rQ4j7WyRlCypWYypk38hN7XJ0upFXDT6kixH1bXDZf7ag2HK+/e+zC9yS3cVjqWbD3BRD76Bd9XL4XUaWe3lSCRIyT8paXYVIrdJpcRCNU3VrZWR9kLxEDVNNVmOqGtr6pu44ZWjy/wPvVvDXRf1vMwvcktNQ7jLCkfNwXCPXqerXg5DJa5nSy4lSEKI3olEY9TU5l9PiWF1AD1RUVyJ15H8C6TX4aWiuCLLEXUuEIlzwyuJMv/hL/ahmEkgarY8Hrc4wsIRiMR5ecNeHnm3lpc37CUQ6fuffUWpB68z+T8Xr9Ogor+nR6/jdzv49cXj8buM1tfzOg38LiPxeBaraTPHDcBQya9lO0ESQvSOyvAvq9iiUjKzYhYPrrkv6TVDGcyonJ3liDrXbZl/ywEuOk7u02daOppS25o5bgAPvpO8ImcomDG+59/Ap5YV88LVU1tu74Uo72/NmTOHE6T248mGIusJkhBpE27CufFF1IGt6AFjiB13GXjyr0LtcsntG8v4XUX86ox5HaZvDGXwqzPm5VSTa+3Brsv8tT0s84u+S1dTalt+t4NfXTyuQ6JjKPjVxeP69Hq50ESaKwmSEEfpY2JhVL+H969XgTZR0QDa5ce9+GZCVzyFWXla5uPOomg0Rk2tNLpaZuqgaTx/0d9ZWr2ImqYaKoormFE5O6cSEoDy/p5u7tP3rMwv+i5dTantTR1ezPNXT2Hp5gPUHAxT0d/DjPEDep2Q5JpcSZCEgBQSi3AT3r9ehYo0tT6koomJTe9fryLwvTXgzp+KicvlpKJ8iNVhpJ1tkhIAv9PfqykbK5atzRw3gIfe7aLML/fpMy5dTanJ+F2OPiU0wr4CUZMVOwLUN0YZXuLizBF+/C5btOPZTwqJhXPji9DJlCbaxLlxAbFpX0t3xJaJRmPUSqXEPqxatuZ3O7jronEdpm8MBXdd1Psyv+i9w02pnVWretqUKsSGPSFuW7YHUyc23Xocisc+OsDN5w7m+MEynZRuqSQW6sDW1gSmw7VoAHWgKk1R5gaXy0m5VErswepla1OHF/Pct6awtM2ekhnj7FfmD0TiLP2s4cjnMLbUFr0G6WxKFYUrEDW5bdkegm12uYTjibdvW7aHP15Wjk8qJmmVSmKhB4xBu/xJ31+7/OgBo9MWZy6IRmPU1kmlxBZyYdma3+Ww9ZTN2vomfvZaFabWhGIar1Px8D/q+OWFo5mS47tW0t2UKgrTih2BLnuTVuwIcN7Y3P63YDepJBax4y7Dvfjm5BeVQey4S9MVZk6QSomN2G3ZWq4JROL87LWqdtMrGtD87LUqnv3G8fhy/Bt7vjaliuypb4y2VkbaC8c19Y3RLEeU/1JKLDzFhK54qkOTLMogdMVTedXkCod7SvZYHUba5WVScnjZWrLEJNeWreWipZ81YOrkX4xNrVn6WQNfmDgwy1H1njSlilQML3HhcaikiYnHoRheIicpp12KiYVZeRqB763BuXEB6kAVesDoRCKTZwkJgMvlkkqJXdhp2VouSuxa6exMFE3twUiWIxIi+84c4eexjw4kvWaoxHWRfiknFu7ivJqy6Uw0GpXpG7uw07K1XJTYtZL89FivU1He321BVEJkl99lcPO5gztM3xgKbj53sDS5ZlKBJBapkEqJzdhl2VoumjG2lIf/UQd0TEoMpZgxtjTrMQlhheMHe/njZeUd9pRIQiKsFo1GqZPpG3vp7bI1keB3O/jlhaM7TN8YSvHLC0fnfJOrEOnkcxkyZSNyjsvlorxMKiWiQEwZXsyz3zi+ZU9JhPL+bmaMLZWERAghckA0GqW2XiolooD4XA5bTNkIIUShcbmlUiKEEEKIHBCNRKmtkz0lQgghssDOBwGqaDMl217D2biDWMkIGkddiM7wYaiFJlEpGWx1GGknSYkQQuQYOx8E6N39EWVLrgVMjFgQ0+lj0Mq7qZv5MKEhJ1odXt6IRmLU1e21Ooy0s21S0hyO8caGPezYH2TEMT7OP34wRR7bfjpCCAHY+yBAFW2mbMm1GLHm1seMWBCAsiXXUnX50sSGVpEyl9tJmVRKcsPHOw7yvWfWorUmGDXxuQz+783PuP/KKZwwor/V4QkhRJ/Z+SDAkm2vAckPQwWT4u2v0Tju8myGlLcSlZL86ynJzXS7C83hGN97Zi2BSJxgy4FxwahJIBJvfVwIIezKzgcBOht3tFZG2jNiQVyNO7IcUR5TGf5lEdtVSt7YsAfdyWFxWmveWL+by04YnuWohBAiPex8EGCsZASm05c0MTGdPqIlIyyIKj+5XE7KhsvtG8vt2B9srZC0F4ya7DiQPEsXhSsQibNkywFqGsJUlHqYOW4AfrcsgRO5yc4HATaOupBBK+/u5KpB08gLsxpPPotGY9TvzL/bN7ZLSkYc48PnMpImJj6XwYgBPguiErlqTX0TP315C6aGUMzE6zR48J0afnXxOKYOz8378qKw2fkgQO0qom7mwx2mb8CgbubD0uSaRm6plOSG848fzP+9+VnSa0opzp+UfxvuRN8EInF++vIWAm0S2FAs8fZPX97C81dPwS9r80UOsvNBgKEhJ1J1+VKKt7+Gq3EH0ZIRNI28UBKSNItEY9TVS6XEckUeJ/dfOaXD9I1SivuvnCJledFqyZYDXU4xLN18gIuOH5TdoIToITsfBKhdfpmyyTCplOSQE0b0540ffJ431u9mx4EgIwb4OH/SEElIxFFqGsKtlZH2QjGTmoPhLEckhBDpIZWSHON3O2TKRnSpotSD12kkTUy8ToOK/h4LohJCiNRJpUQIm5k5bgAPvlOT9JqhYMb4AVmOSAgh0iNRKSnQNfNKqW1AIxAHYlrrkzMZlBDp4Hc7+NXF4zpM3xgKfnXxOGlyFULYllRKYIbWOv/SMpHXpg4v5vmrp7B08wFqDoap6O9hxvgBkpAIIWwtsack/74ly+0bkff8LodM2Qgh8orL5WT48Pz7utbTpEQDbyilNPA7rfX89k9QSn0b+DbA4MGD+fif/0xflBaIRsJs/nS91WGkJBKNEY9F2bJ5o9WhpCQWi7Jp41qrw0hJJBJF6zgbN6yxOpSUHP48qqo2Wx1KijT19bVWB5GSaDQGmHz2mb3/fUfCId5/912rw7CdaDTGzgKulJyhta5TSg0B3lRKbdJaL2/7hJZEZT7AhAkT9EmnnprmULPrvRXvcNykqVaHkZLaut0c3F/P+GMnWR1KStavW8WYMcdaHUZKtm+vJR5vZtSocVaHkpLq6nri8Wbb///YuHEtlZWjrA4jJTU1u4AwY8ZMsDqUlHy29RNOPu00q8OwHZfLyfBhBVop0VrXtfx3t1Lqb8ApwPKu30sIIbqmos2UbH+9dfNn48gL0K4iq8MSIucVbE+JUqoIMLTWjS1vnw/clvHIhBB5zbv7I8qXXgfo1jNSBq+8m9oZDxIacqLV4QmR03KhUqKUmgPcBziA32ut70rynHOBewEXsFdrfU5Xr9mTSslQ4G9KqcPPf0prvbA3gQshRFsq2kz50uswYoHWxw4fd1++9Dq2zl0sZ6UI0QWrKyVKKQfwIHAeUAN8oJR6SWu9oc1zSoGHgDla6x0tLSBd6jYp0VpvBab1NXAhhGivZPvrJPrnk9GUbF/IoXFzsxmSELaSA5WSU4AtLTkCSqlngEuBDW2ecxXwgtZ6ByRaQLp7URkJFkJknatxR2tlpD0jFsTVWJ3liISwl2g0Rv2ujFZKBimlPmzz+/ntJm/Lgbb/UGuA9hMuxwIupdQyoAS4T2v9/7r6oJKUCCGyLloyAtPpS5qYmE4f0ZJKC6ISwj6yUCnZ2832dpXksfblTydwEjAL8AH/UEq9p7X+tLMXlaRECJF1jSMvYPDKuzu5qmgcOSer8QhhN4mekn1WhlADtP3poQKoS/KcvVrrZqBZKbWcRDtIp0mJke4ohRCiO9pVRO2MBzGdfkynD0hUSEynn9oZD0qTa5aoaDP9tjzPwI9/Q78tz6OizVaHJHpKZfhX9z4AxiulRiul3MCVwEvtnrMAOEsp5VRK+Unc3uly259USoQQlggNOZGtcxdTsn0hrsZqoiWVNI6cIwlJlhwZyTbbjGTfIyPZNuFyOhk+1LpGV611TCn1XeB1EiPBj2mt1yulrmm5/ojWeqNSaiGwBjBJjA2v6+p1JSkRQlhGu/wyZWOBIyPZRyojMpJtL9FYjJ27LL19g9b6VeDVdo890u73dwOd3avtQJISIYQoMCXbF5L4wTUZU0aybSBRKRlodRhpJ0mJEEIUmO5HsndkOSLRW9FYjJ27ra2UZIIkJUIIUWC6H8keYUFUojdcTifDpFIihBDC7hpHzmHwyns6uWrISLYN5EJPSSZIUiKEEAXm8Eh2++kbMGQk2yakUiKEECJvHD2SvYNoyQgZybYRqZRkQSDazOKaRdQ01lBRUsGsitn4XUVWhyWEEHlJRrLtSyolGbZm7yp+vOJ6TG0SiofwOrw8sPo+7j5zHlMHTbc6PCGEECJnRGNxdu7eb3UYaZcTSUkg2syPV1xPIBZofSwUDwHw4xXX87eLX8bvlJKiEEIIAeByOhg2RColGbG4ZhGmTr7Ix9QmS6oXcfHoS7IclRBCiIITbsK1aQHGga2YA8YQnXgpeIqtjqqDaCzOzj3SU5IRNY01rZWR9kLxEDVN1VmOSAghRE7LQPLgqHkf/7NfA22iogG0y493yS0Evvwk8YpT0xR4erhcUinJmIqSCrwOb9LExOvwUlFcmeS9hBBCFKKMJA/hJvzPfg0VaWp9SEUTLQX+Z79G43WrwZ07gxfRaJxdstE1vQ5P21QdrOr09o2hDGZWzs5yZEIIIXJShpIH16YF0Mn3IbSJa+MCotOu6lPImSCVkjRrP23jNtwAuA03ETOC1+HFUAZ3nzlPmlxFzghE4iyrOkTdoTBl/TycO7offrfD6rCEKBiZSh6MA1tbk5v2VDSA0VDV69fMpGhUpm/SJtm0TcSMtL79lfFfZVS/0cysnC0JicgZ63Y2c+MbO9BaE4ppvE7FI+/v5M7zRzB5WO6UdYXIZ5lKHswBY9Auf9LX1i4/ZunoPr1upiQqJcdYHUbaWZKUdDVtYyiDUf1Gy7SNyCmBSJwb39hBMHrk720opgHNjW/s4C9fPRafSyomQmRappKH6MRL8S65JflFZRA97tI+vW6mxKJxdkmlJD1k2kbYzbKqQ2itk17TWrNs6yEunDAgy1EJUXgyljx4igl8+ckODbQog8CXn8ypJlcAp8vBUKmUpIdM2wi7qTsUbqmMdBSKaeoORZJeE0KkWQaTh3jFqTRetxrXxgUYDVWYpaMTSU6OJSTQUinZc8DqMNLOkqRkVsVsHlh9X9JrMm0jclFZPw9ep0qamHidirJ+bguiyj8q2kzJ9tfbHBB3AVrOvxLtZDR5cBfl1JRNZ5wup1RK0sXvKuLuM+d1OOtGpm1Erjp3dD8eeX8n0DEpUUpx7ph+2Q8qz3h3f0T50usAjRELYjp9DF55N7UzHiQ05ESrwxO5xibJQ6bEYjF27ZGekrSZOmg6f7v4ZZZUL6KmqZqK4kqZthE5y+92cOf5IzpM3yiluPP8EdLkmiIVbaZ86XUYbSbyjFgQgPKl17F17uJEiV4I0UpZHUAGWLo8ze/0y5SNsI3Jw4r4y1ePZdnWQ9QdilDWz825Y/pJQpIGJdtfJ1kVKkFTsn0hh8bNzWZIQuQ0p9PJ0MFy+0aIguZzOWTKJgNcjTtaKyPtGbEgrkaZyBOiLbl9I4SwlUA0zltVh6g7FKWsn4tzRvfDn6NVnWjJCEynL2liYjp9REtkIk+ItqRSIkSaBSJxln52gJqDYSr6e5gxdoCsbE+TdbsC3PRm9VH9L7/7527uOK+SyUNzrzejceQFDF55dydXFY0j52Q1HiFynVRKhEijtfVN3PDqZ5gaQjETr9PgoXdruesLY5kyPLXjxwtdIBrnpjerk26fvenNap7+ynh8LsO6AJPQriJqZzzYYfoGFLUzHpQmVyHakUpJGh0+HbimsYaKkgpmVczGL7sICkYgEueGVz8jcNQ3zcTbN7z6Gc99c7I0j6bgrW62z75VdYg5x5ZmN6geCA05ka1zF1OyfSGuxmqiJZU0jpwjCYlIXbgJ16YFGAe2Yg4YQ3TipeCx9w8/sViMXXtleVrK2p8O7HV4eWD1fdx95jymDpqe7XCEBZZ+dgCzk0ELU8OSLQ1cdFz+HcmdLXWHorbdPqtdfpmyEWnlqHm/w/ZX75JbCHz5SeIVp1odXp8lKiX513Sf1aQk2enAh1fN/3jF9fzt4pdlT0kBqDkYbq2MtBeKmdQdDGc5ovxS1s8l22eFAAg34X/2a6hIU+tDhw/y8z/7NRqvW52TK+R7IhaLsXtvg9VhpF1Wk5KuTgc2tcmS6kW22VsSiAVYvnMpdYFayvzlnD1shiRU7QRiAVbseYu6YB1lvjLOHHwOfqefiv4evE4jaWLidRqU9fdYEG3+OGd0P373z910tn32nNGyfVYUBtemBdDJ9xy0iWvjAttuhXU6nQwZJJWSlGTrdOBM96ysO7CWmz/+WWKywQzhNbzM//Rhbjvhl0weMCVtH8fONhxcx61rb8LUmrAZwmN4+cNnv+OWKXcwY+xxPPRubdL3MxTMHFea3WDzjN/l4I7zKjtM3yiluOO8ypxrchUiU4wDW1srI+2paACjoSrLEaVPolIiPSUpycbpwJnuWQnEAtz88c8Ixo/sUwiZic/n5o9/xpNnP4vP6Uv549hZIBbg1rU3HfVnFG75M7p17U08/vmnuesLYztM3xgK7vrCWGlyTYPJQ/08/ZXxLXtKEttnzxndTxISUVDMAWPQLn/SxES7/Jiloy2IKj2kUpIGmT4dOBs9K8t3Lu1ysmH5rqVcUP6FlD6G3S2pX0o03tltOs3bu9/i/OFzeO6bk1mypYG6g2HK+nuYOa5UEpI08rmMnJyyEaJXUpiciU68FO+SW5JfVEbiZGGbisVi7JFKSWoyfTpwNnpW6gK1rZWR9kJmiLpAXUqvb3dr65t45MM1GMckb1YNmyHqg4k/I5/LIVM2QohOpTw54ykm8OUnO7wGyiDw5Sdt2+QK4JJKSXpk8nTgbPSslPnL8RrepImJ1/BS5i9L+WPY1eH9I9GiY/CYbpTRcfTUY3gZ7ivcPyMhRA+laXImXnEqjdetxrVxAUZDFWbp6ESFxMYJCUA0FmP3PqmUpEWmTgfORs/K2cNmMP/Th5NeU0px9tAZKX8Muzq8fyR6aBqeIa8kfY6hFGcNOSfLkQkh7CatkzPuIttO2XRGKiU2kOmeFUgkVLed8MsO0zdKKW474ZcF3eR6ZP+Ih2D1v+Kr/CMojTIiaNONyzC4Zcod+ByF+2ckhOiZfJ6cSYeoTN/kvkz3rBw2ecAUnjz7WZbvWkpdoI4yfxlnD51R0AkJcNT+kXhwFE2bb8TVbw3KvRdHfDD/PukLHN+/3OowhRA2kM+TM+kglRKbyGTPSls+p6/gp2zamzF2wNH7R7SH6MHPAeB3GVxw7DCLIhNC2E0+T86kQ8H3lCilHMCHQK3W+uLMhZS6TPWsiK753Q7ZPyKESI88npxJB5fTyZCBhV0p+S9gIyA7qkWnpgwvlv0jQoi0yNfJmXSIxuLs3tdgdRhp16OkRClVAVwE/AK4PqMRCduT/SNCiLTJw8mZtFCJic9809NKyb3AT4CSzp6glPo28G2AwYMH88F776UcnJXC4RBr13xsdRgpCYUiGEqzYf1qq0NJSTQaYePGdVaHkZJAIIjP52bTpvVWh5KSUCiM1+uy/ecRj8f47LPNVoeRklAogsfj4pNP7P7/Isr7775rdRi243I4GDyw1Oow0q7bpEQpdTGwW2u9Uil1bmfP01rPB+YDTJgwQZ96+unpitES/3h7BVOmnWB1GCmp37mXfbtrmDhxstWhpGT16pWMG3us1WGkZPPmz3C5oKJihNWhpKS2djdKRRg7dqLVoaRk48a1tv93UVu3h0j4AOPGH2d1KCn59NMNnPL5z1sdhu3E4nH2FujtmzOAS5RSXwC8QD+l1J+11l/PbGhCCCGESMZZqJUSrfXPgJ8BtFRKfiQJiRDCKiraTMm2hTgbtxMrGUnjqDlolzQ+isISi8fZU6CVEiGEyAne3R9RtuQ7gIkRC2I6fQxaeTd1Mx8iNOREq8MTuaD1VOEqzAGje3WqcErvm2UFWylpS2u9DFiWkUiEEKILKtpM2ZLvYMSaWx8zYkEAypZ8h6rLlyT2WIiC5ah5n6Lnvn7UXhPf0v+l+Ut/7vZU4VTe1wqxeJw9+xssjUEpNQe4D3AAv9da39Xu+rnAAuDwmQAvaK1v6+o1pVIiOhWIBXh797LWVfpnDTk37Ztxheipkm0LgU4OaMOkePtCGsfNzWZIIpeEmyh67utJTxUueu7rHPrOqs73m6TyvhZxOhwMPqbUso/fslD1QeA8oAb4QCn1ktZ6Q7unvt2bhauSlIik1jes45bVNx516OCjmx/h1ml3MqnU3lMLwp6cjdtbKyPtGbEgrsYdWY4ov6hoM8VVr7X26jSNvtBWvTrdniq8aQHRqcn3nXT5vtEQ3jd/Rmj2nTl1KycWj7PnwEErQzgF2KK13gqglHoGuBRon5T0iiQlooNALMAtq28kGD/yDSBkhgC4ZfWN/OmMvxT84YMi+2IlIzGdvqSJien0ES2x97i1lTy7VjJ80bW07dUZ+MGvqZ/9MOGhJ1kdXo8YB6q6PlX4QOenCnf5vjqGe+PfcG9+Ladu5TidGa+UDFJKfdjm9/NbVn8cVg5Ut/l9DZDsD+fzSqnVQB2JQZkuF+tIUiI6eHv3MrTWSa9prVm+exkXlF2Y5ahEPunLBE3jqDkMWnl3J1cNmkbOSX+gBUBFmxm+6NqkvTrDF13L9iuW2qJiYg4Y3fWpwgM6P1W4q/cFUGYMIk05dSsnFst4T8lerfXJXVxPtk62/TeOj4CRWuumlrUiLwLju/qgkpSIDuoCda2VkfZCZoj6QF2WIxKpCkRN3t7eTH1jlOElLs4aWYTfZVgSS18naLSriLqZD3V4XzCom/mQNLn2UXHVa3TZq7NtIY3jL89mSH0SnXgpvqX/m/yiMhKTNH1537a6uQ2UTVmolHSnBqhs8/sKEtWQVlrrQ23eflUp9ZBSapDWem9nL2r7pKQ52szi6jepaayhoqSCWZXnUWSDrD6XlfnL8BrepImJ1/Ay3F9mQVSir9bvDnHr0p2YQDim8TgVf1i5j1tmDGPSEG9WY0l1giY05ESqLl9C8faFuBp3EC0ZQdPIOZKQpKC7Xh3nIZv06niKaf7SnztM0KAMmr/0566rG23fNxpC6VjSp3V3GyibYrE4e62dvvkAGK+UGg3UAlcCR2VrSqlhwC6ttVZKnQIYwL6uXtTWScnqPav40ds/wNSaUDyI1+Hj/lX3cs9Z9zJt8HSrw7Ots4acy6ObH0l6TSnF2UPOzW5Aos8CUZNbl+4kGDtSVQ23vH3r0p08MXcEvixWTNIxQaNdfpmySaPuenVi/ezTqxOvOJVD31nVcddID263HH5f75s/w73xb4lbNu10dxsom6yulGitY0qp7wKvkxgJfkxrvV4pdU3L9UeALwHXKqViQBC4UnfWG9DCtklJc7SZH739AwKxI/cAQy2NmT96+wcs+OKr+OWnpz7xO/3cOu3ODtM3SilunXanNLnayNvbm7tIARLXzx/X6TmbaScTNLmnafSFDPzg151cNWgaZbNeHXdR32+vuIsIzb4T9+bXoM14cKtubgNlUywWZ6+10zdorV8FXm332CNt3n4AeKA3r2nbpGRx9ZuYnSRcptYsrn6TL47Jjb88djSpdDJ/OuMvLN+9jPpAHcP9ZZw95FxJSGymvjHaWhlpLxzT1DdGsxqPTNDkHu0qon72wx2mb8CgfvbDtmhyTatUbgNlkdPpYNCA/laHkXa2TUpqGmtaKyPtheJBapqqk14TPedz+mTKxuaGl7jwOFXSxMTjVAwvcWU1HpmgyU3hoSex/YqlFG9biPPQDmL9RtBUwGcKpXIbKFtisTh7G6ytlGSCbZOSipIKvA5f0sTE6/BRUVyZ5L2EKCxnjSziDyuT95UZLdezqdAnaFS0mZI2TbqNI3PnG792FdliyiZrUrkNlAVSKckxsyrP4/5V9ya9ZijFrMrzshuQEDnI7zK4ZcawDtM3BnDLjGFZbXI9rFAnaLy7P6J86XW0TcYGr7yH2hkPymGCotdyoackE2yblBS5irjnrHs7TN8YSnHPWfdKk6sQLSYN8fLE3BEd9pRYkZAcVmgTNCraTPnS65KOQpcvvY6tcxfnfVIm0ksqJTlo2uDpLPjiq4k9JU3VVBRXMqvyPElIhGjH5zKyOmUjjlayvetR6JLtCzlUQEmaSF2iUnKo+yfajK2TEgC/y9/rKRtZuCaEyCZX4w4Zhc6WcFPHBtUcOkhPdM32SUlvycI1IURnMtWIGi0ZIaPQWeCoeb/DKK9v6f/m1EF66SK3b/KALFwTQnQmk42ojSPnMHjlPZ1cNWiUUejUhRMH5qk2S88OH7CXSwfppUssHmefjATbWy4sXAvEArxVv5S6QA1l/grOGT4Dv1MSISGslOlGVO0qonbGgx2SHjConfGgNLmmgWvTAtCd9O3k0EF66eJ0SKXE9qxeuLbuwFpu+vAGNCaheAivw8vvNj3EHSffxeQBUzL6sYUQnctGI2poyIlUffElBq+6F9ehbUT7jWLP9B9g+gen9LoiwThQ1VoZaS+XDtJLl1jcZG+DNLrampUL1wKxADd9eAPBeNtbR4lTeG/68AaenvGcrHAXwiLZaERtf3vIc3ALxdVLZE9JmpgDRqNd/qSJSS4dpJcuTofBoNJ+VoeRdgWVlFi5cO2t+qXoTn4S05i8tXMJcyouytjHz5RALMDbu5dRF6ijzF/GWUPOldtRwnYy3Ygqe0oyLzrxUnxL/zf5xRw6SC9dYnGTfVIpsTcrF67VBWpaKyPtheIh6prrMvaxeyIQibNkywFqGkJUlHqZOW4Afrejy/dZ37Cuw0nCj25+hFun3cmk0slZilyI1GW6EVX2lGSBTQ7SSxenw2CgVErsz6qFa2X+CrwOb9LExOvwUlZUltGP35U1dU385OXNmBpCMROv0+CBFdX8+uLxTC1LPt8fiAW4ZfWNBNvcCguZic/tltU38qcz/iK3o0RWqGgzJdsW4mzcTqxkJI19OEgu042osqckO+xwkF66SKUkj/Rl4Vqqzhk+g99teijpNYXBOcNmZjWewwKROD95eTOB6JGf4kKxxNs/eXkzL1w9NWnF5O3dy9CdTDJprVm+e5mcMCwyzrv7ow6H+w1aeTd1Mx/qdZ9GaMiJbJ27OMmektR/YJE9JVmU4wfppYtUSvKAlZtc/U4/d5x8V4fpG4XBHSffZVlVYcmWA5jJcwtMnbh+8fGDOlyrC9S1VkbaC5kh6gPW3o4S+U9Fmylb8p2kfRplS75D1eVLep1QaJc/I7dRZE+JSLdY3GTfwUarw0i7gklKcmGT6+QBU3h6xnO8tXMJdc11lBWVcc6wmZbe5qhpCLVWRtoLxUxqDyZPPMr8ZXgNb9LExGt4Ge637naUKAwl27ru0yjevjBnDv2TPSVZVgCr5p0Oh1RK7CqXNrn6nL6cmrKpKPXidRpJExOv06C8vzfp+5015Fwe3fxI0mtKKc4ecm46wxSiA2fjdlv1aWTy9pA4olBWzSc2ukpPiS3lwibXXDVz3AAeWJF8aZyhEteT8Tv93Drtzg7TN0opbp12pzS5ioyLlYy0XZ9Gpm4PiRYFtGpeKiU2ZvUm11zmdzv49cXjO0zfGAp+ffH4LseCJ5VO5k9n/IXlu5dRH6hjuL+Ms4ecKwmJyIrGUXMYtPLuTq4aNEmfRsEppFXz8Xic/QelUmIL7Rtah/iHWLbJ1Q6mlhXzwtVTWbLlALUHQ5T379meEkjcjpIpm8wKRE3e3t5MfWOU4SUuzhpZhN9lWB2W5bSriLqZD3WYvgGDupkPyW2RAlRIq+YdDgcD+0ulJOcla2hVgCb57ZtMb3K1C7/bkXTKRlhr/e4Qty7diQmEYxqPU/GHlfu4ZcYwJg1J3u9TSEJDTqTq8iUUt+nTaJI+jYJVSKvm4/E4+6RSktu6amj1ODz4nP5E/0MWN7mK/BaImiyvaqSuMUJZiZuzR5ekrYoRiJrcunQnwdiRhDrc8vatS3fyxNwR+KRignb5c2bKRlirkFbNS6XEBrpqaFUYXDvlOtwOd1Y3udpJts6xyZfzctbtCnLzoho0EIppvE7F/A92c9vsCiYPTb2v5u3tzV0MvCaunz+uJOWPI0TeKKBV84lKiewpyWndNbTuDu7i2qnfzXJU9pCtc2zy5bycQNTk5kU1R1UxQi1v37yohievGJtyFaO+MdpaGWkvHNPUN0ZTen0h8lGhrJpPVEry74eSvEpKKkoqpKG1D7J1jk0+nZezvKqxky4l0MDybY1cML5/Sh9jeIkLj1MlTUw8TsXwEldKry9E3iqAVfPxeJz9h/KvUpJXN6RnVZ6HoVTSa9LQ2rmenGNjp4+TDXWNkdbKSHuhmKbuUCTlj3HWyKJO/4EaLdeFEIVMZfCXNfKqUlLkKuKes+7tMH0jDa1dy9Y5Nvl0Xk5ZiRuvUyVNTLxORVk/d8ofw+8yuGXGsA7TNwZwy4xh0uQqRAFzOBwcI7dvct+0wdNZ8MVXE3tKpKG1R7J1jk0+nZdz9ugS5n+wO+k1BZw9Kj1fLCYN8fLE3BEd9pRIQiJEYYub+Xn7Ju+SEgC/y2+LtfGBWIC36pdSF6ihzF/BOcNnWDKFkq1zbPLpvBy/y+C22RUdpm8UcNvsirQmDT6XIVM2QoijOAwHx/TLv68LeZmU2MG6A2u56cMb0JiE4iG8Di+/2/QQd5x8F5MHTMlqLNk6xybfzsuZPNTHk1eMZfm2RuoORSjr5+bsUSVSxRBCZFzcjHNAKiUiHQKxADd9eAPBeNslb4lbGjd9eANPz3gu69+gs3WOTb6dl+NzGSlP2QghRG85pVIi0uWt+qXoTtZiaUze2rmEORUXZTmq7J1jI+flCCFEamJmnP2NUikRaVAXqGmtjLQXioeoa7bPFIoQQojsczqkUiLSpMxfgdfhTZqYeB1eyorsM4UihBAi+2J5ujxNkhILnDN8Br/b9FDSawqDc4bNzHJEQggh7KRgKyVKKS+wHPC0PP85rfUtmQ4sn/mdfu44+a4O0zcKgztOvsu2TZ9CCCGyI1EpabI6jLTrSaUkDMzUWjcppVzACqXUa1rr9zIcW16bPGAKT894jrd2LqGuuY6yojLOGTZTEhIhhBDdKthKiU4cVnI4HXO1/OrsLDLRCz6nz5IpGyGEEPYWi5scaCzMSglKKQewEhgHPKi1fr+r52ugMdjxpF47icZi7Nyz3+owUvLZ1lqKPFHqdu6xOpSUhIJhqqqqrQ4jJR9++DEnnHAcn3zyidWhpOSTT7Yzdeo4qqp2WB1KSoLBENXV9VaHkZJPPtlGZWU/qqt3Wh1KSiLRKAcDge6fKI7idBgMKCm2Ooy061FSorWOA9OVUqXA35RSk7XW69o+Ryn1beDbAIMHD2bTqlVpDjW7zFiUffX2/sJb5IkRj8U4dMDeX7TcbgeGEbU6jJSceOLxGIbC63VZHUpKJk0ajdYm8Xiz1aGkxONxEo0esjqMlFRUlGCaMUJBe//whBln85o1VkdhO7G4SUNTgVZKDtNaNyillgFzgHXtrs0H5gNMmDBBn3jqqemK0RLvr3iHiZOmWh1GSurq9nBwfx3HTphkdSgpWbvmY0aOHGN1GCnZuHEjHo+LYcOGWx1KSrZvr8Htdtn+/8fmzZ8wZswEq8NISU3NTiKRg4wdO9HqUFKyectGpn/uc1aHYTsFWylRSg0Goi0JiQ+YDfwq45EJIUSBUNFmSrYvxNW4g2jJCBpHzkG7iqwOS+SwQu4pGQ480dJXYgB/1Vq/nNmwhBCiMHh3f0T50usAEyMWxHT6GLzyHmpnPEhoyIlWhydyVMFWSrTWa4ATshCLEEIUFBVtpnzpdRixIz06RiwxJFC+9Dq2zl2MdvmtCk/ksEKulAghhMiAku0LoZPDOcGkZPtCDo2bm82QhE3kQqVEKTUHuA9wAL/XWt/VyfM+B7wHfEVr/VxXrylJiRBCWMTVuKO1MtKeEQviarT3BKDIHKsrJS0tHQ8C5wE1wAdKqZe01huSPO9XwOs9eV1JSoQQwiLRkhGYTl/SxMR0+oiWjLAgKmEHOVApOQXYorXeCqCUega4FNjQ7nnfA54HejRiZaQzQiGEED3XOHIOnX8ZNlquC9EJpTL3q3vlQNutljUtj7UJT5UD/wI80tNPKecrJYFoM0tqFlHTWENFSQUzK2bjl1E5IQqCEW2m3443cTVVEy2u5NCI8zDz6N+/dhVRO+PBDtM3YFA740Fpck1VpAnPppcwGrZhlo4iPPEScOfHxErMNDmQ2eVpg5RSH7b5/fyWfWSHJctc2h9Bcy/wU611XPUs0cntpGTN3lX8ZMX1mPrISboPrL6PX585j6mDplsdnhAig3x7VlG5/PsorTHiQUyHjyGr5lF99m8JDp5udXhpExpyIlvnLk6yp0QSklQ4a/5JyQvfQKFR0QDa5ce/7FYa5/6JWMUp3b9Ajic0TsNgQHFG49mrtT65i+s1QGWb31cAde2eczLwTEtCMgj4glIqprV+sbMXzdmkJBBt5icrricQO3ImQigeAuAnK67nhYtfxu+Uf7SidwJRk+VVjdQ1RigrcXP26BL8LrmLmWuMaDOVy7+Po82/fyOe6LuoXP59Nl+yMK++aWuXX6Zs0inSRMkL38CIHhm1VtEACih54RscuOYjcHdecUs5ocmCuGnS0GTpcQ8fAOOVUqOBWuBK4Kq2T9Bajz78tlLqceDlrhISyOGkZEnNIkydfFTO1CZLqhdx8ehLshyVsLN1u4LcvKgGDYRiGq9TMf+D3dw2u4LJQ31Whyfa6LfjTZROfhi50pp+1W9wcMxl2Q1K2IZn00uoTg6zV2g8n7xEeMpXk79ziglNtjgMgwHF1sWhtY4ppb5LYqrGATymtV6vlLqm5XqP+0jaytmkpKaxprUy0l4oHqK2yd6nxorsCkRNbl5UQzB25AtVqOXtmxfV8OQVY/FJxSRnuJqqWysj7RnxIO5G+fcvOmc0bENFk588rKIBjIZtnb5vSglNFuVApQSt9avAq+0eS5qMaK2v7slr5mxSUlFSgdfhTZqYeB1eyosrk7yXEMktr2rs5MtMojNr+bZGLhjfP5shiS5EiysxHb6kiYnp8BEpkX//2aSizZRsW4izcTuxkpE0jsrts3nM0lFolz9pYqJdfszSUZ2+byoJTTY5DINSCyslmZKzScnMitk8sPq+pNcMZTCzcnaWIxJ2VtcYaa2MtBeKaeoORbIcUd8EoyYrdgSpb4oxvNjJmSN8eVnhOTTiPIasmpf0mlaKQ5XnZzmiwuXd/RFlS75D2+mgQSvvpm7mQzl7Nk944iX4l93ayXiIIjyh81v/qSQ02RQ3TRqara2UZELOJiV+VxG/PnNeh+kbQxn8+sx50uQqeqWsxI3XqZImJl6noqyf24KoemfDnjB3LN+HqTXhOHgc8MdVB7np7IEcP9hjdXhpZbqKqD77tx2mb7RSVJ/927xqcs1lKtpM2ZLvJD2bp2zJd6i6fElu/r9wF9M4908dmlU1isa5f+qyJySVhCabpFJigamDpvPCxS+zpHoRtU3VlBdXMrNytiQkotfOHl3C/A92J72mgLNHlWQ3oF4KRk3uWL7vqJ6YcBxAc8fyffzhkmF5VzEJDp7O5ksW0q/6DdyN1URKKjlUeX5ufhPMUyXbuj6bp3j7QhpzdGooVnEKB675CM8nbcZ6J1zSfZNqCglNNuVCT0km5HRSAuB3+mXKRqTM7zK4bXZFh+kbBdw2uyLnv6Gv2BHE7GQaxdSad6qDzB6TG18s00m7/DJlYyFn43Z7n83jLupTU2qfE5oskkqJjclW2N4JxAK8vfst6oN1DPeVcdaQc/KiOjV5qI8nrxjL8m2N1B2KUNbPzdmjSnI+IQGob4q1VEY6CsehvjGW3YBEQYiVjCzcs3n6mNBkS6KnJHlDrp3lfVIiW2F7Z33DOm5de1Oib8EM4TG8/OGz33HLlDuYVDrZ6vBS5nMZtpuyCUZNDgTjOBTEkxRLPA4YXpL3/5SFBRpHzWHQyrs7uWrQJGfzWMZhOCgtyr8frvP6K5lshe2dQCzArWtvIthmDDNsJv68bl17E098/ml8Tlkylk2Hm1vjpk6akAAYSnFGpfx/sZKKNidZE2//bxjaVUTdzIc6TN+AQd3Mh6S/x0JxMy7TN3YjW2F75+3db3XZt/D2nrc4f7j8ZJQtyZpb2/I4EgnJTWcPtMUtqHzl3f1RhwP1Bq+8h9oZD+bsyGxvhIacSNXlSyhuk3Q1ydk8lpNKiQ3JVtjeqQ/WtVZG2gubIeoD7c9aEpnUVXOrAZxe6eM/TyyVhMRCKtpM+dLrko7Mli+9jq1zF+fFN2/t8ufslE2hiptxDgakUmIrshW2d4b7yvAY3qSJicfwMtxfZkFUhaur5lYTGOB15HxCYkSb6bfjTVxN1USLKzk04jzMPLitcVjJ9q5HZku2L5SD9kRGOBxSKbEd2QrbO2cNOYc/fPa7pNcMpThr8Dk9ep18nd7JtuHFTjwOkiYmdmhu9e1Z1WH52ZBV86g++7cEB0+3Ory0cDXusPfIbL6KNOHZ1Gacd+Il4C62Oqq0isfjMn1jN51thTW1yenDz2JJ9ZsyHtyG3+nnlil3dJi+MZTilil39KjJNRemd4LxIO/uW0F9qJ7h3uGcPvBMfA77NYKeOcLHH1cdhCSn9uR6c6sRbaZy+fdxtGkyP3yOTeXy77P5koV5cVsjWjKicEdmc5Sz5p8dFp/5l91K49w/Eas4xerw0iZRKbH/v6H28jopgaO3wn68eyVv1S5FoVhU/Tor6t6S8eB2JpVO5onPP83be96iPlDHcH8ZZw0+p0cJSS5M72xq3Midn9yBxiRshvEYHp7Y8Tg3TriJiSXHZfRjp5vPZXDT2QM7rJa3Q3Nrvx1vojrph1Fa06/6jbxYitY4cg6DV97TyVWDRhmZza5IEyUvfAMjeqTXQkUDKKDkhW9w4JqPcmoBWiri8TgHpVJiT36nn5kVs3hg9b1EzCMHr8l4cHI+p69PUzZWT+8E40Hu/OQOQmbbpCgMwJ2f3MH8E36P12YVk+MHe/jDJcN4pzpIfWOM4SVOzqjM/UP4XE3VSU/4hUTFxN2YH03m2lVE7YwHO0zfgEHtjAfzohpkJ55NL6E6OQ9cofF88lJOL0TrDYfDQX+plNiXjAdnntXTO+/uW4HupOlQY/Lu/neYOdh+fUQ+l2G7FfLR4kpMhy9pYmI6fERK8qfJPDTkRLbOXZxkT0n+fcPIdUbDtqSn+0KiYmI0bMtuQBkUj5scDCRP/O2sYJISGQ8+WiaaUa2e3qkP1bdWRtoLm2F2huoz+vHFEYdGnMeQVfOSXtNKcajy/CxHlFna5Zcpmxxglo5Cu/xJExPt8mOWjsp+UKJXCiYpkfHgIzLVjJqu6Z2+Gu4djsfwJE1MPIaHYd7hGf344gjTVUT12b/tMH2jlaL67N9KFUFkRHjiJfiX3YpKck2jEofq5QmHw6C/P//+HRVMUiLjwQmZbEZNx/ROKk4feCZP7Hg86TWFwenHnJHRjy+OFhw8nc2XLKRf9Ru4G6uJlFRyqPJ8SUhE5riLaZz7pw7TNxpF49w/5U2TKyQO5DsYlEZX2+psPNhQBr8+c17BNLlmuhk1lemdVPkcPm6ccFOH6RuFwY0TbrJdk2s+0C5/XkzZCPuIVZzCgWs+wvNJmz0lEy7Jq4QEwGFIpcT22o4H1zZVU15cyczK2QWTkEB2mlH7Or2TDhNLjmP+Cb/n3f3vsDNUzzDvcE4/5gxJSISt5OsBf1njLsqbKZvOxE2TQwGplNie3+kv6Ckbq5tRs8Hr8NlyykYIyP8D/kR6SKVE5AWrm1GFEJ0rlAP+ROripslBqZSkJhBtZknNImoaa6goqZAV7xawuhlViELX1a0ZOeBP9JRUSlK0Zu+qDk2msuLdGlY2owpRyLq7NSMH/GWZjQ/uS0zfyPK0PglEm/nJiusJtDmcq6cr3qW6khlWNqMKUSjaVkVi/qEMWvVbjLaHFLa7NSMH/GWP3Q/ucxgG/X3594NkVpKSvq54l+qKEMKuOlRFDBfKjHby7MStmUwe8KeizZRsW4izcTuxkpE0jirgiZ48OLjPNE0OhZJPUtpZVpKSvqx4T6W6IoQQVkrasNppQnLk1kymDvjz7v6IsiXfOeo1B628m7qZDxXkRE8+HNxnGAb9pFLSN31Z8S4H6Akh7KrrhtWO2t6aSfcBfyraTNmS7ySd6Clb8h2qLl9ScBM9+XBwn2maNEpPSd+cNvR07tX/l/RaZyve5QA9IYRdddWwmtzRt2bSecBfybauJ3qKty+kscAmevLh4D6HVEr65nBfSHtuw43TcHa64l0O0CscmTixWAgrddWwqgFtuDDMaFpuzXTH2bhdJnraT9mMmWn7g/vipskhqZT0TrK+kLaenPMsA70Dk16TA/QKQ6ZOLBbCSl01rGqHnz0n/ABXYGfKt2Z6IlYysqAnejqbsgmcdSP+t++07cF9Uinpg676Qgxl8I/6dzrtC5ED9PJfJk8sFsJK3TWsZrO5tHHUHAatvLuTqwZNKUz05Lwupmz8b9/JgX97G0/VYlse3CeVkj5ItS9EDtDLb5k+sVgIK6W7YbWvtKuIupkPdZi+AYO6mQ/ldZNrt1M2VYtzfsqmM1Ip6YN09IUU+gF6+SwbJxYLYaV0NqymIjTkRKouX0JxmwSpyYIEKdvyYcqmM3GZvuk96QsRXSmEE4uFyBXa5ZcpmzbsMmXTGYdhUJKHlRIjky9+uC/E7/TjdXiBRIXE7/RLX4jgrCHnYKhk/e9yYrEQInXhiZegk87Y2GfKpjNx06QpGMzYL6t0WylRSlUC/w8YRmLYfb7WOnn5IwnpCxGdkROLhRAZ5S6mce6fOkzf2GnKpkud/FBnZz25fRMD/ltr/ZFSqgRYqZR6U2u9oacfRPpCRGfkxGIhRCbFKk7hwDUf4fnkJVtO2XQmX2/fdJuUaK3rgfqWtxuVUhuBcqDHSYkQXZETi4UQGeUusu2UTWfipkljoR/Ip5QaBZwAvJ/k2reBbwMMHjyYD997Lx3xWSYcCrF29UdWh5GSUCiCw4D161ZbHUpKYrEomzdvsjqMlASDzRiGj6qqrVaHkpJAIAQU8ckn9v6ZRGuTjRvXWh1GSkKhMB6P0/afR9yM2f77hRUchkGJ12t1GGnX46REKVUMPA/8QGt9qP11rfV8YD7AhAkT9Kmnn562IK3w7ttvM2nSNKvDSElN7W4aG3YyfvzxVoeSknXrVnHssROtDiMl69atw+12MXToUKtDScmmTZ/gdrsZNmyY1aGkZMeOHYwfP8HqMFJSXV2P1iHGjDnW6lBSsnnLJk44+RSrw7CduGnSVKiVEqWUi0RC8qTW+oXMhiSEEEKIrhRspUQppYA/ABu11vP6+oGao80srn6TmsYaKkoqmFV5HkUuezcaCSGEEFYwC7hScgbwDWCtUmpVy2M3aq1f7ekHWb1nFT96+weYWhOKB/E6fNy/6l7uOetepg2e3vuohchzwXiQfx78J7siuxjqHsop/U/B58i/TnshRN8YhkFxIVZKtNYroJPtMz3QHG3mR2//4KiTgkMtB7D96O0fsOCLr+LP81XHIjOC8SDv7FtBfbCO4b4yzhh4Zl584/60+VPmbZ+H1pqwDuNRHp7e+TTXj7yeY4vs3T8ghEiPQq6UpGRx9ZtdHrq2uPpNvjjm0kyHIfLMxkMb+MWm29GYhM0wHsPD49se438m/pzj+tm3sTcYDzJv+zxCbVbvh3UYNMzbPo97J9zbuh1Z5DYj2ky/HW/iaqomWlzJoRHnYcota5EmBVspSVXipODkK2tD8SA13ZwULCAQC7B81zLqArWU+cs5e+i5Bb0RNxgP8otNtxMyj/y9CpthAH6x6XYePekx21ZM/nnwn+hOknitNe8ffJ9zjpH1+7nOt2cVlcu/j9IaIx7EdPgYsmoe1Wf/lqDcshZpYGqTprC1lRKl1BzgPsAB/F5rfVe765cCt5PYBh8jMb27oqvXzHhSkjgp2Jc0MfE6fFT04KTgQra+YS03f3wjWmtCZgiv4eXRTx/mthPuZFLpFKvDs8Q7+1agMZNe05i8u28Fs4acl+Wo0mNXZFeiMpJEWIfZHdmd5YhEbxnRZiqXfx9Hm1vWRsvXv8rl32fzJQvz/nRekXmGsrZSopRyAA8C5wE1wAdKqZfabXtfDLyktdZKqanAX4Eu9ztkPCmZVXke96+6N+k1QylmVdrzm0c2BGIBbv74RoJtErrDZf2bP76RP5/1V1uuYw/EAqzY8xZ1wTrKfGWcOficXlV+6oN1rZWR9sJmmJ2h+nSFmnVD3UPxKE/SxMSjPAxxD7EgKtEb/Xa8ieqk2qW0pl/1Gxwcc1l2gxJ5x9Sa5lDyr4NZcgqwRWu9FUAp9QxwKW22vWutm9o8vwhI/g+jjYwnJUWuIu45694O0zeGUtxz1r151eSa7tssy3ct67KUv3zXMi4ov7DPr2+FDQfXceu6nx91AN8fts7nlsm3c3z/yT16jeG+MjyGJ2li4jE8DPMOT3fYWXNK/1N4eufTSf/pKqU4tf+p2Q9K9Iqrqbq1MtKeEQ/ibpRb1iJ1hlJW95SUA23/MtcAHb5AKaX+BfglMAS4qLsXzXhSAjBt8HQWfPHVxJ6SpmoqiiuZVXmepQlJuvemZOI2S12g9qiGx7ZCZoi6QG2f47VCIBbg1nU/P6ryE275/G5d93MeP+2pHvWCnDHwTB7f9ljSawqD0weemZ6ALeBz+Lh+5PUdpm+UUlw/8nppcrWBaHElpsOXNDExHT4iJXLLOl1UpAnPp3/H0bCNeOkowsd+Ee0utjqsrDC1zvT0zSCl1Idtfj+/ZXP7Ycmmcjv8OKW1/hvwN6XU2ST6S2Z39UGzkpQA+F3+nJmySffelEzdZinzl+M1vEkTE6/hpcxf3uvXtNKKPW91OYn19u63enQwn8/h438m/rzD9I3C4H8m/ty2Ta6HHVt0LPdOuJf3D77P7shuhriHcGr/UyUhsYlDI85jyKrkeya1UhyqPD/LEeUnV+0/6b/gW6A1RiyA6fRTvPw2Dl76BNHy/F9bn4VKyV6t9cldXK8B2mbYFUBdZ0/WWi9XSo1VSg3SWu/t7HlZS0pyRSb2pmTqNsvZQ8/l0U8fTnpNKcXZQ8/t9WtaqS5Y11oZaS9shqgPdfr3uYPj+h3Poyc9xrv7VrAzVM8w73BOz5M9JQBeh9cWUzZGLMCA2iV4mmsJF5VzoHwmZgFPhgGYriKqz/5th+kbrRTVZ/9WmlzTQEWa6L/gWxjR5tbHjJav6f0XfIt9//Eh2p3f49em1jSHLe0p+QAYr5QaDdQCVwJXtX2CUmoc8FlLo+uJgBvY19WLFkxScvh2zbLqpUTNaNLn9HVvSqZus/idfm474c4Ot4WUUtx2wp22a3It85XhMbxJExOP4WW4t6xXr+dz+Gw7ZZMPivatYdz7N4A2ccRDxB1eKtY/xJZT76J54FSrw7NUcPB0Nl+ykH7Vb+BurCZSUsmhyvMlIUkTz6d/h05+EERrPJ/+ndDkK7MbVJYZSlHk8Vj28bXWMaXUd4HXSYwEP6a1Xq+Uuqbl+iPA5cA3lVJRIAh8RXf2E3yLgkhK2t+u6Uxf96Zk8jbLpNIp/Pmsv3ZooLVbQgJw5uBz+MPW+UmvGUpx1pDcrwyIBCMWYNz7Nxw19uqIJ/7+j3v/Btae/1zBV0y0yy9TNhniaNjWWhlpz4gFcBzclt2ALJADlRJajpt5td1jj7R5+1fAr3rzmnmflCS7XdOZvu5NyfRtFp/TZ7spm2T8Tj+3TL69w/SNoRS3TL49b269FIIBtUtAJ98VgzYZULuUfSO7bbQXok/ipaMwnf6kiYnp9BPvPyr7QWWZ1ZWSTMn7pKSrNfft9XVvSqq3WQppY+vx/Sfz+GlP8fbut6gP1THcW8ZZQ86RhMRmPM21rZWR9hzxEJ5me02GCXsJH/tFipfflvyiUoSP/WJ2A7KAqTUBiyslmZD3SUlXa+4PS8felL7eZrFqY2uqC8xS4XP4ejRl05l8PYjPTsJF5cQd3qSJSdzhJVxkr8kwYS/aXczBS5/oMH2DUhy89Im8b3Jtpfp8Vm7OyvukpKs1907l4uShn+Pcihlp2ZvS29ssVm1sTccCM6vk60F8dnOgfCYV6x9KflEZHCifkd2ARMGJlp/Cvv/4MLGn5OA24v0P7ykpjITEYRhy+8aOulpz73a4uP3zd1q2xM2Kja3pWmBmhXw+iM9uTKefLafe1WH6BmWw5dS7Cr7JVWSHdhfl/ZRNZ+KmKbdv7CiX19xbsbE1XQvMrJDPB/HZUfPAqaw9/zkG1C5ts6dkhiQkQmSBwzDwS6XEnnJxzT1Ys7E1nQvMsi2fD+KzK9PplykbISxgmiZBqZTYVy6tuT/Mio2t6V5glk35fBBfIZEtsEKkzpBKiUg3Kza22nmBWT4fxFcoZAusEOlhmiaBiFRKRJple2OrnReY5ftBfPlOtsAKkT6GYeB3S6VEZEC2N7baeYFZvh/El89kC6wQ6ZOolESsDiPtJCkpUKkuMLN6+ZpM2diPbIEVIn0SlRK31WGkXU4kJYdP8K1prKGipIJZledR5CqMBTh2ZOfla8I6sgVWiPQxTZOgVErSr/0Jvl6Hj/tX3cs9Z93LtMHTrQ5PtGPn5WvCWrIFVoj0MQwDXx5WSgwrP3jbE3wPr4EPxYMEYoHE49HuT/YV2dWT5WtCJHN4C2zc6U9sfyVRIYm3PC5NrkL0nKk1oWg0Y7+sYmmlpKsTfE2tWVz9Zs7tFil0dl6+JqwnW2CFSA9DqbyslFialHR1gm8oHqSmqTrLEYnu2Hn5msgN6d4CK8vYRCEytZaeknTr6gRfr8NHRXGlBVH1TCAW6LBbJFvTJ1ay8/I1kX9kGZsoVFIpyYCuTvA1lGJWZW6Ofa5vWNthC+ujnz7MbSfcyaTSKVaHl1F2Xr4m8ossYxOFTColGZDLJ/h2JhALcPPHNx41fXL4QL2bP76RP5/114xtY80Vdl6+JvKHLGMThUwqJRmSqyf4dmb5rmXoTppztdYs37Usq9tZrZLq8jUhUiXL2EQhk0pJBuXiCb6dqQvUtlZG2guZIeoC8oVQiGyQZWyikEmlRABQ5i/Ha3iTJiZew0uZX74QisIVjJqsqA5S3xhjeImTMyt9+FyZWYcky9hEITu8pyTfSFLSS2cPPZdHP3046bWoGSUSDxOIBQpiEkeItjbuCXPH2/sTDdBx8Djg8VWHuOmsYzhucPpPMz28jK399A3KkGVsIu8ZSuFzuawOI+0s3ehqR36nn9tOuBOfw4fX8B51LU6cP275Pd94+yusb1hrUYRCZF8wanLH2/sJxhIJCUA4DsGYTjwe7aQhNUWHl7HVTP4eO8ddRc3k77H2/OdkHDjPqUgT3nVPU7Til3jXPY2KNFkdkkgTqZT0waTSKfz5rL+yqO4NHt38MDEda71WaJM4QgCsqA52uZ35neogs8dk5pDNdC9jE7nNVftP+i/4FmiNEQtgOv0UL7+Ng5c+QbT8FKvDyxpTa0KxWPdPtBlJSvrI5/ThcrhwKudRSclhhTSJk2uC8SDv7FtBfbCO4b4yzhh4powrZ1h9Y6y1QtJeOA71Tfn3xVNkn4o00X/BtzCiza2PGS17avov+Bb7/uNDtLswTpg3lMKbh7dvJClJgUzi5J6Nhzbwi023ozEJm2E8hofHtz3G/0z8Ocf1O97q8PLW8BInHgdJExOPA4YXy5cakTrPp3+HTipyaI3n078TmnxldoOyiNaasDS6irZkEie3BONBfrHpdkLmkcV2YTMMwP9u+DlXj/o3zh08U6omGXBmpY/HVx0COn7DMJTijEr5MxepczRsa62MtGfEAjgObstuQBZSeVopkUbXFJw99FyUUkmvKaU4e+i52Q2owL2zbwWa5A2VceI8sf2P/OfKf2PjoQ1Zjiz/+VwGN511DD6nwuNIPOZxgM+pEo9naCxYFJZ46ahOp6pMp594/1HZDchCumUkOFO/rCKVkhQcnsRpfw6OUioxoSNNrllVH6xrrYwkE9MxYjrGLzbdzqMnPSYVkzQ7brCH339xKO9UB6lvijG82MkZGdxTIgpP+NgvUrz8tuQXlSJ87BezG5CF8rVSIklJig5P4rQ/MVgSkuwb7ivDY3i6TEwANCbv7lvBrCG5eeCjnflcRsambITQ7mIOXvpEh+kblOLgpU8UTJMrSE+J6ILP6ZMpmxxwxsAzeXzbY90+L2yG2Rmqz0JEQoh0i5afwr7/+BDPp3/HcXAb8f6jCB/7xYJKSCBRKfFIpUSI3OVz+PifiT/nF5tuJ6ajSUe1ATyGh2He4VmOTgiRLtpdVDBTNp2RSokQNnBcv+N59KTHWLZnCU9s/2PSxERhcPrAMy2ITggh0qNgKyVKqceAi4HdWuvJmQ9JiNT4HD4uHHYRo/yjO+wsURj8z8SfS5OrEMLWtNZECnSj6+PAA8D/y2woQqTX4arJu/tWsDNUzzDvcE6X7a5CiDxgFGqlRGu9XCk1KguxCJF2PodPpmyEEHnH1JpwgVZKekQp9W3g2wCDBw/mg3/8I10vbYlIKMT6dautDiMl4XAEhcnGTeusDiUl8XiMLVs+sTqMlMRiEaJRqKmx99EDShlEoxGqq6utDiUlWpt89tlmq8NISTgcweky+HTzRqtDSUksGmX1yg+sDsN2DKXwOPOvLTRtn5HWej4wH2DChAl6xrnnpuulLbF02TJOPPVUq8NIyf6DjVRtXM/UE0+2OpSUfPTP95l24klWh5GS6h07adhXx7hxx1kdSkpqancTCu6z/eexcdM6pp9g779TBxqb2Fm9lSknnGh1KClZ89FHnHn2WVaHYTtmAfeUCCGEECKHGErhlkqJyLRAtJklNYuoaayhoqSCmRWz8bsKaymQELlARZrwffYKzoPbifUfSXDsRWh3sdVhCQEUcKVEKfU0cC4wSClVA9yitf5DpgMrRGv2ruInK67H1CaheAivw8sDq+/j12fOY+qg6VaHJ0TBcNd/yMDX/h20iRELYjp99P/Hney78A9Ehtv7dmhbKtKE99OXcTRsI146itCxF0viZRMFWynRWn81G4EUukC0mZ+suJ5Am2O5Q/EQAD9ZcT0vXPwy/k5OxxRCpI+KNDHwtX/HiDa3PmbEggAMfO3f2fmNd9F5UL101X1A6YKrjzpDpvjt22m49HGiZZ/r1WtJcpN9WmuihVgpEdmxpGYRpjaTXjO1yZLqRVw8+pIsRyWsEIgFWLF3OfXBOob7yjhz0NmSkGaR77NXoJN/i2gT32evEJh4RXaDSjMVaaJ0wdXtEq/ED0SlC65m77//s8dnyaQzuUlZuAnHxr+h9lehjxlN/Lh/AU9+JkeqUCslIjtqGmtaKyPtheIhapvsPYIpembDwXXctv7mxA4CM4TH8PLY1vncPOk2RvmOY+nWBmoPhinv72HGmFL8bofVIecd58HtrZWR9oxYEOfB7VmOKP28n74MWie/qDWezS8TmvSVbl8nnclNqozq93D/5augTVQ0gHb5cS26mchXnsasPC0rMWRTIW90FVlQUVKB1+FNmph4HV7KiystiCq9ArEAS2sXU9tcQ3lRBTPKZ0kFoI1ALMBt628mGD/yDTFsJv4+3LL25wS3/A+m6SYU03idiof/UccvLxzNlGH5+ZOgVWL9R2I6fUkTE9PpI9Z/pAVRpZejYVtr8tCeEQvgaNjWo9dJV3KTsnAT7r98FRVpan1IRROfn/svXyX0/bWQb7eTlEr8yjNGtj5Qc7SZFza/wL0f3csLm1+guU1mLWBmxWwMlfx/h6EMZlbOznJE6bV232queOMyHlp3H3/Z8iQPrbuPK964jLX77L2gLp1W7F2O2ckX+HDcJOpbRSiWuB6KaQJRk5+9VkUwGs9mmHkvOPYi6OTfIspIXLe5eOkozE5+IDCdfuKlo3r0OulKblLl2Pi3Lm+5OTa8mJU4skkBbqczY796FINSc5RSnyiltiilbkhy/WtKqTUtv95VSk3r7jWzkpR8tPsjZj83m19/+Gv+uP6P/PrDXzP7udl8tPujDs8t1OTF7yri12fOw+/043V4gUSFxO/0tz5uV4FYgJ+9/2OCsUBrJSgUDxFs87iA+mBda2WkPWVEUO69HR43tWbpZw0ZjqywaHcx+y78A6arCNOZOCfJdPowXUXsu/APedHkGjr24s5/ylaK8PiLe/Q66UpuUqX2V7VWRjpciwZQB6qyEkc2aSAWi2XsV3eUUg7gQeBC4Hjgq0qp49s9rQo4R2s9FbidlgWrXcn47ZvmaDPXLb7uqKmSYEtZ9LrF17H4S4vxuxJ/qT/a/RHXLb4OjSYYC+Jz+rj7w7t5cNaDnDjE3lsLe2LqoOm8cPHLvLbtFd6rfwcNfH74GYzrP97q0FKytHYxupOfYrQ2WVq7hC+M7NkXwXw23FeGx/AmTUy06UZHBnV4PBTT1B6MZCO8ghIZfjI7v/Fuxz0leZCQQCLxarj08Q4NqihFw6WP97gPJHTsxRS/fXvyi71IblKljxmNdvmTJiba5UcPGJ2VOLJJAS5rG11PAbZorbcCKKWeAS4FNhx+gtb63TbPfw+o6O5FM/4Zvb7tdTTJS9IazcJtC5k7fm6vkpd8tqXhUx5d93DrrpI1e1fx6LqHbb2rpLa56ybeuuaaLEeUm84cdDaPbe3sBwlF9NDUDo96nYry/u7MBlagtKvI9lM2XYmWfY69//5PPJuPjPKGx1/cq8bUdCU3qdL9yqGTSgnKIH78ZR0ft/mkjgaicUtv3ZYDbScwaoCuzmb5d+C17l4040nJjsYdrclFe8FYkOrGxOfU0+Qln+XrrpLyoq6beMuKuk2eC4Lf6efmSbd1mL5RKJprrgbt6fA+hlLMGFua9VhFftDuopQbUdOR3KQk3IT7hX8n2c0oDUTmPtahyTUfJnUU4HJkdPpukFLqwza/n99yxl3bENpL+k1cKTWDRFJyZncfNONJyYiSEficvqSJic/po7IkMVXS0+Qln+XrrpIZ5bN4eP39Sa8pZTCjfGaWI8pdx/efzB9PfZIVe9rsKRl8NlvGxvnZa1WYWrdO3xhK8csLR+NzyViwsFY6kpu+6rLJ1elDHWp3MneeTOpkoVKyV2vd1friGqDtWGgFUNf+SUqpqcDvgQu11vu6+6AZT0ouGHUBd394d9JrCsWcUXOAnicv+Sxfd5X4nX5+eerd/Oz9H6PbrNBXyuCXp96Nz4bVn0zyOXycN+yCox6bMgye/frxLP2sgdqDEcr7u5kxtlQSElHwumxyjQU7NLn2ZFInPv3r6Q4z7bJQKenOB8B4pdRooBa4Eriq7ROUUiOAF4BvaK0/7cmLZjwpKXIV8eCsBzs0sCoUD856sLVPpKfJSz7L510lUwZO49nzX2Rp7RLqmmsoK6pgRvlMSUh6wedy8IWJA60OQ4ic0tsm13yZ1LG6p0RrHVNKfRd4HXAAj2mt1yulrmm5/ghwMzAQeEglpr1i3VRfsrM87cQhJ7L4S4tZuG0h1Y3VVJZUMmfUnKMaV3uavOSzmRWzeWD1fUmv5cOuEp/TL1M2Qoi0ih/3L7gW3Zz8YpIm13yZ1MmBSgla61eBV9s99kibt/8D+I/evGbW5on8Ln+3jao9SV7y2eFdJe1PCjaUYftdJUIIkRGeYiJfebpD4yrKIPKVpzv0h/Q2iclVGohZO32TETm3Zr4nyUs+O7yrZEn1ImqbqikvrmRm5WxJSIQQohNm5WmEvr8Wx4YXUQeq0ANGJ5KLZA2rvUxiclUuVEoyIeeSkkITiDazpGYRNY01VJRUMLNiNn5XkS2nbHpLzsIRQqSNu7jHDaq9SmJylAZiZicNuzYmSYmF1uxd1eFWzQOr77P1orSeWrtvdYdpnIfX388vT72bKQO7PR5BCJFmKtKE99Mju0ZCx16MttE36V5LlsTYaKGaUgqnVEpEuuTrorSeCCQ58+bw5/6z93/Ms+e/KFM5QmSRq+6DDltZi9++nYZLHyda9jmrw8sKuy1U01rnZU9J1k4JFkfryaK0fNWTs3CyLRAL8Fr1y/x+0+94rfrlo5JFIfKZijRRuuBqjGhz64m/RiyAEW2mdMHVqEgBHIraZqHa4akcFQ2gIonHabNoLVccrpRk6pdVslIpaY428/q219nRuIMRJSO4YNQFFOXJwVZ9la+L0noi187CWbd/Df/zwQ1ojtxKemTDQ/zic3cx+ZiO580cFogFeKt+CbXNtZQXlXPO8Jl5W90S+cv76cugkx/xgdZ4Nr9s2bbWbLHjQrV8rZRkPCkp9JN/O5PPi9K6k0tn4QRiAf7ngxsIxjveSvqfD27gmVnPJb2V1NdERohc42jY1lohac+IBXA0bMtuQBbo0UK1HOs3ydeekozevml78u/h9fHBWJBALJB4vLNTHQvAzIrZGCr5H38+LErryozyWahOPvdsn4XzVv0SNJ3cSsJkWf3SDo+3TWQOJzCheIhgvOVxufUjbCReOipxsm8SptNPvHRUdgOywOGFakmvufygNd77p+B68yZc792P682b8N4/BaP6vSxH2jYwTdw0M/bLKhlNSnpy8m+hOrwoze/043V4gUSVwO/05/2itMNn4fjafe6+No9nS21zbTe3kmo7PN6XREaIXBU69mJQyQ58TQiPz/8tzPHj/gU6+UEJFM6PHsu9fhOlcBpGxn5ZJaO3b+Tk364V8qK0XDkLp7yovJtbSeUdHu9LIiNErtLuYhoufZzSv30DFQ+1nkef+HHSxLl3Q/5P4HSxUC124tU4Vz6W/P2s7DdpqZTkm4wmJXLyb/f8Tn9BLEpLJhfOwjln+Ewe2fBQ0msKg3OHz+jweF8SGSFyWWzQcWA4UG36JhWgYiFKF1zN3n//J9qd38MJnS1Uc66Yl7sH+HVe4LKtjNZoLhh1AaqTP7VCOflX5Da/088vPncXPke7W0mOlsed/g7jwqcMPg2zk2kFU+ukiYwQuawnEzgFoWWhWmzGzxPVD3dxt/0mlh3gpxQOw8jYL6tktFIiJ/8KO5j8/7d39zFSlVccx7+/3VnYnbVCK32BxUYwVkttU421LyZUQJsiRG1DUBr7R2NiY6jR9o+mNmka0z9M06ZpEykJEatNKRRBE+srBpdqY0UERRBoVXzpLlgQCxYp7i57+sfcoQvsjDN3585z753zSSa87Gb2PBlmOfs8zznnI59j1Zw1bNjby573+pnS3cOlk2fRVSiOXmXDkop9VnL4g4trAV6BU1lqB/iZMTxcIZHMsMRLglt98q/Lhq5Ckblnzjvh76qVC1ciiQ17e095LufSrFyBM1pi0ioVOBWldICfop2SvGlK87RQk3+TbtpWaZieG13WBvBVq7KpxC+6uiw6+qn5nPbUz0b/oNQSFTjVpHGAn/lF1+QkkTwk3bStlYfpxZHFAXzVqmwq8YuuLosKb++E4WMYnFB9Y4VODl51d/MuuaasQdkJ6phC3Ay+U5KQJJKHkU3bysoVQIvXL2b9gvVjOj5q5WF6cSQxgK8ZLd6rVdlUUqlix7m0Oj775qR/5wKMNoYmzWhKHFkbiBdaXndKgqZZSXV8TbppWysP04uj2gC+oWOD3PbcT3jojT/XPARv+zsvsmj9ApbuuIPVu1eydMcdLFq/gO3vvNjIsPnq5NmowltkfNt4Otu6KlbsOJcVVStvoDmVNxkciBeaclp9EzQpSSp5SLppWysP04uj2gC+QRtk076N/Hb7b1i47mq2Hdha9bma2eK9Wrnw7Rf/gj9dtpYbZ9zENdO/xY0zbmLVnDU+98ZlThoqb2oZiOdOZGYMDw8n9ggl6PFNUslD0k3bWnmYXhzVBvCV1XqcU0uL90ZWvlQrFwa8ysZlXhoqb2oaiOdOIIm2HN4pCbqicvIwmrEkD0k3bWvlYXpxVBvAdzKzYXr7n6j48RAt3svlwtefdwNzz5znxzMpcGTgGA/tOsCyjXt4aNcBjgzkb4R7s1SdfdOkypvUNihLMaO0W5LUI5SgSUlSyUO5aVuxUDye9HQVuigWig1p2tbKw/TiGG0AXyWlxKKv4sfLl09H45UvrWHbW4dZuGIHS57uZ9XW/Sx5up+FK3aw7S2/dxBHefbNcEf38WnBw4Uiwx3dTau8qToQL2SDshQT0CYl9ggl6PFNkh1fk27a1srD9OIYOYDvyb0beH7/cwzZ0CmfV0osplZ8njizalx+HBk4xq2PvMaRwf8f4R0dMsC49ZHXuPe6GXR1tIcLMKMGp3yBt69/lvEvP0j7wdc5NvEs3j9nfvNKgVPaoCzNDOrsopQNwUuCk0wekm7a1srD9OIoD+C7tGc2C9ddzdDQqUmJ1MasntkVn6N8+fTk1u+izStfWkDv7oNV5w71vnqQK847o8lR5YON6+boZ64J9vXT2KAszco7JXkTPCmBcB1fXRjl45yTm6lJbcePear5oMunLr/6D70f7Yyc6uiQ0X9ooMkRuYZKWYOyNDOomKBnWSqSkrFKup28a7yRxzl73utjSvdUZvXMrjmxGG1Wjcu/ngnj6Sxo1MSksyB6JowLEJVzzec7JSmVdDt5l5zycY5ztZo1fSJL/7YHRulv1CYx6+yJTY/JuVBCVskkJdNFzkl1hHXOpVNxXDu3z51GsaONzkLpp8TOgih2tHH73Gl+ydW1FK++SZlaOsL6XRXn8uWznziNe6+bQe+rB+k/NEDPhHHMOnuiJySu5eRxpyTTSUnS7eSdc+nU1dHuVTau5cnvlKRL0u3knXPOubTK405Jpu+UJN1O3jnnnHPNU1NSIunrkv4u6RVJP0o6qFol3U7eOeecSytJiT1C+cDjG0ntwBLgcqAP2CTpATPbkXRwtUi6nbxzzjnnmqOWOyUXA6+Y2W4ASauAq4BUJCXgHWGdc861njxedK3l+KYHGFnG0hf9nXPOOedcw9SyUzJaKnbKlV9JNwA3RH98v729fftYAkuBScDboYNogDysIw9rAF9HmuRhDZCPdeRhDQDnNvOLbd68+TFJkxL8EkFek1qSkj5gZG3tVGDPyZ9kZsuAZQCSnjOzixoSYSB5WAPkYx15WAP4OtIkD2uAfKwjD2uA0jqa+fXMLJflpbUc32wCzpE0TdI44FrggWTDcs4551yr+cCdEjMbkvQ94DGgHbjLzF5KPDLnnHPOtZSaOrqa2cPAw3U877J44aRKHtYA+VhHHtYAvo40ycMaIB/ryMMaID/rCEp5bFPrnHPOuezJdJt555xzzuVHQ5OStLajr4ekuyTtk5TZkmZJZ0rqlbRT0kuSbg4dUxySOiU9K2lrtI7bQscUl6R2Sc9LejB0LHFJel3SNkkvNLvSoJEkTZS0RtKu6D3y5dAx1UPSudFrUH68K+mW0HHFIen70Xt7u6SVkjpDx1QvSTdH8b+U1dchTRp2fBO1o/8HI9rRA4vS0o6+VpJmAoeB35vZ+aHjiUPSZGCymW2R9CFgM3B1Bl8LAd1mdlhSB/BX4GYzeyZwaHWT9APgIuB0M5sfOp44JL0OXGRmme4pIeke4CkzuzOqKCya2cHAYcUSfd/tB75oZm+EjqceknoovadnmNl/Ja0GHjazu8NGVjtJ5wOrKHU+HwAeBW40s5eDBpZhjdwpOd6O3swGKL1QVzXw+ZvCzJ4E3gkdx1iY2V4z2xL9/j/ATjLYhddKDkd/7IgembsEJWkqMA+4M3QsrU7S6cBMYDmAmQ1kNSGJzAFezVpCMkIB6JJUAIqM0gMr5T4NPGNmR8xsCPgL8I3AMWVaI5MSb0efQpLOAi4ANgYOJZbo2OMFYB/wuJllcR2/Bn4IDAeOY6wMWCdpc9TBOYumA/uB30XHaXdK6g4d1BhcC6wMHUQcZtYP/BJ4E9gLHDKzdWGjqtt2YKakMyQVgSs4sdmoq1Mjk5Ka2tG75pF0GrAWuMXM3g0dTxxmdszMPk+pk/DF0XZpZkiaD+wzs82hY2mAS8zsQmAusDg66syaAnAhsNTMLgDeA7J6/20ccCVwb+hY4pD0YUq76dOAKUC3pOvCRlUfM9sJ/Bx4nNLRzVZgKGhQGdfIpKSmdvSuOaI7GGuBFWZ2X+h4xiraYt8AZK218iXAldF9jFXAbEl/CBtSPGa2J/p1H3A/pSPbrOkD+kbsuK2hlKRk0Vxgi5n9K3QgMV0GvGZm+81sELgP+ErgmOpmZsvN7EIzm0np6N/vk4xBI5MSb0efEtEF0eXATjP7Veh44pL0UUkTo993UfomtitoUHUys1vNbKqZnUXpPfGEmWXqp0EASd3RpWmi446vUdq6zhQzewv4p6Ty8LQ5QKYugI+wiIwe3UTeBL4kqRh9z5pD6f5bpkj6WPTrJ4Fvku3XJLiaOrrWIi/t6CWtBC4FJknqA35qZsvDRlW3S4BvA9ui+xgAP44682bJZOCeqMKgDVhtZpktqc24jwP3l/7voAD80cweDRtSbDcBK6IfnnYD3wkcT92i+wuXA98NHUtcZrZR0hpgC6Ujj+fJZlfUtZLOAAaBxWb279ABZZl3dHXOOedcKnhHV+ecc86lgiclzjnnnEsFT0qcc845lwqelDjnnHMuFTwpcc4551wqeFLinHPOuVTwpMQ555xzqeBJiXPOOedS4X/wUZsDG4A/DAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w_x, w_y = zip(*[som.winner(d) for d in data])\n", + "w_x = np.array(w_x)\n", + "w_y = np.array(w_y)\n", + "\n", + "plt.figure(figsize=(10, 9))\n", + "plt.pcolor(som.distance_map().T, cmap='bone_r', alpha=.2)\n", + "plt.colorbar()\n", + "\n", + "for c in np.unique(target):\n", + " idx_target = target==c\n", + " plt.scatter(w_x[idx_target]+.5+(np.random.rand(np.sum(idx_target))-.5)*.8,\n", + " w_y[idx_target]+.5+(np.random.rand(np.sum(idx_target))-.5)*.8, \n", + " s=50, c=colors[c-1], label=label_names[c])\n", + "plt.legend(loc='upper right')\n", + "plt.grid()\n", + "plt.savefig('resulting_images/som_seed.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To have an idea of which neurons of the map are activated more often we can create another pseudocolor plot that reflects the activation frequencies:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAGfCAYAAABFkEUFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZxElEQVR4nO3df6zldX3n8edrhqEwwBQr4E4ZKZq2syqJSCcUS5ZtQY0/WGvrssVGU03T2WzEBVdrajeN6R/9Y6NrNCnZ5BZUdkWs8iPZEqWSKGVNy7QzI+gMA/2BVEewA0E6ovgD+t4/zuHu7Mz33nvuzLnn87lznw9yMvfO/Z5zXnOZOe/7fn8/389JVSFJ0uHWtQ4gSeqTBUKSNMgCIUkaZIGQJA2yQEiSBlkgJEmDJioQSa5OsifJ3iTXrHAmSdIKSHJ6kpuTPJBkX5JXLnb8kgUiyXnA7wAXAi8HLk/yc9OJK0maoY8Cd1TVv2b0er5vsYMn6SBeAtxTVd+vqmeAvwB+7ZhjSpJmJskm4BLgeoCq+lFVPbnYfU6Y4HH3AH+U5PnA08DrgZ0DT74d2A6w7sSTfuHkM89ZVviVsPGkDa0jzHviO99vHQGAn3rextYR5r3wJ09qHWHefQ8/0ToCAD/zr05rHWHeySesbx1h3tPPPNs6wryH7v/q41V15rQeb/2mn6l65umpPFY9/dhe4AeH/NZcVc2NP34x8Bjw8SQvB3YBV1fV9xZ6vEyy1UaS3wbeCTwF3A88XVXvXuj4U7dsrfOumlvoyzPzC1vPah1h3qdu2d06AgC/+eYLWkeY99//3UtaR5i3+e03to4AwJ/87qWtI8x72VmbWkeYt/fAwdYR5l1x/k/vqqpt03q8dRvPqp/Y+h+m8lg/uPfaBbMl2QbcA1xcVTuSfBQ4WFV/sGC2SZ60qq6vqguq6hLgCeDvjiK7JOkIgaybzm1x+4H9VbVj/PnNwKI/MU66iums8a/nAL8O3DTJ/SRJfaiqbwPfTLJ1/FuXMZoILWiScxAAt4zPQfwYeGdVfefoY0qS5gVIZvVs7wJuTHIi8BDwjsUOnqhAVNW/mUIwSdKQpcdDU1FV9wITnz/xSmpJ0qBJR0ySpJUyuxHTslggJKmpzGzEtFx9ppIkNWcHIUmtOWKSJB0hOGKSJK0udhCS1FQcMUmSFuCISZK0mthBSFJrjpgkSUfyQjlJ0ipjByFJLc12u+9lsUBIUmuOmCRJq4kdhCQ11e9JaguEJLW2rs9zEH2WLUlSc3YQktRSx7u5WiAkqbVOl7n2WbYkSc3ZQUhSU65ikiQtxBGTJGk1sYOQpNYcMUmSjhDfclSStJBOO4g+U0mSmrODkKTWHDFJko7U73UQfaaSJDVnByFJrXU6Ypqog0jy7iR7k+xJclOSk1Y6mCStCc/t5jqN25Qt+YhJzgb+M7Ctqs4D1gNXTj2JJKkrk46YTgBOTvJjYCPwyMpFkqS1ZBWfpK6qbwEfAr4BPAr8c1V9YaWDSdKa8dzV1Md6m7IlO4gkzwN+FXgR8CTw2SRvrapPHnbcdmA7wBmbz+a9r/v5qYdd1d58QesEAOx68EDrCPNuf/HprSPM+8sPvql1BAD2HjjYOsK8F515SusI83r6vqwlk/Q1rwK+XlWPVdWPgVuBXzr8oKqaq6ptVbVt0/OeP+2cknT86vQk9STnIL4BXJRkI/A0cBmwc+pJJGmtWq3LXKtqB3AzsBv42vg+cyucS5LU2ESrmKrqA8AHVjiLJK096XcVk1dSS1Jrq3XEJElam+wgJKmxdNpBWCAkqaHQb4FwxCRJGmQHIUktZXzrkAVCkpqKIyZJ0upiByFJjfXaQVggJKmxXguEIyZJ0iA7CElqrNcOwgIhSS25zFWS1FqSh4HvAs8Cz1TVtsWOt0BIUkOZ/XUQv1JVj09yoAVCkhrr9RyEq5gk6fhxRpKdh9y2H/b1Ar6QZNfA145gByFJjU2xg3h8ifMKF1fVI0nOAu5M8kBV3b3QwXYQktRYkqncllJVj4x/PQDcBly42PEWCElaA5KckuS05z4GXgPsWew+jpgkqaXZXQfxAuC2cadxAvCpqrpjsTtYICSpsVmsYqqqh4CXL+c+jpgkSYPsICSpoQYXyk3MAiFJjfVaIBwxSZIG2UFIUmt9NhAWCElqKo6YJEmrjB2EJDXWawdhgZCkxnotEI6YJEmD7CAkqSEvlJMkLazP+rD0iCnJ1iT3HnI7mOSaGWSTJDW0ZAdRVQ8C5wMkWQ98i9EbTUiSjlXH10Esd8R0GfAPVfWPKxFGktai46VAXAncNPSF8Rtgbwc49czNfOmhJ48t2RRcddE5rSPM6+H7AXDXe/9t6wjz3vNn+1pH6M7LztrUOsK82/c+2jrCvLe9/Y9aR1iTJl7mmuRE4I3AZ4e+XlVzVbWtqradvOmnppVPko57s3pP6uVaTgfxOmB3Vf3T1FNI0lrW54RpWQXiLSwwXpIkHb1ez0FMNGJKshF4NXDrysaRJPViog6iqr4PPH+Fs0jSmrNS5w+mwSupJamxXguEm/VJkgbZQUhSY712EBYISWqtz/rgiEmSNMwOQpIac8QkSTpSx7u5OmKSJA2yg5CkhgJ02kBYICSprX6vpHbEJEkaZAchSY112kBYICSpNUdMkqRVxQ5CklqKIyZJ0oAA69b1WSEcMUmSBtlBSFJjjpgkSYNcxSRJWlXsICSpJVcxSZKGjDbr67NCOGKSJA2yg5CkpvrdzdUCIUmNdVofHDFJkobZQUhSY46YJElH6niZqyMmSdIgOwhJaqjn6yAsEJLUWKf1wRGTJGmYHYQkNdbriGmiDiLJ6UluTvJAkn1JXrnSwSRprUimc5vsubI+yVeS3L7UsZN2EB8F7qiqf5/kRGDjhPeTJPXlamAfsGmpA5fsIJJsAi4Brgeoqh9V1ZPHGFCSBOPrIDKV25JPlWwB3gBcN0m0SUZMLwYeAz4+bkuuS3LKwBNvT7Izyc6nDz4xyXNL0po3WuY6tRHTGc+9Do9v2w97uo8A7wP+ZZJsk4yYTgAuAN5VVTuSfBT4PeAPDj2oquaAOYCzfva8muTJ15KrLjqndQQA3vNn+1pH6NLlL9vcOgIAt+99tHWELv2vT/zX1hHmXXH+ta0jLObxqto29IUklwMHqmpXkl+e5MEm6SD2A/urasf485sZFQxJ0jGbznhpghHTxcAbkzwMfBq4NMknF7vDkgWiqr4NfDPJ1vFvXQbcv+SfWZI0kVmsYqqq91fVlqo6F7gS+GJVvXWx+0y6iuldwI3jFUwPAe+Y8H6SpFVqogJRVfcCg3MtSdKxmfWFclV1F3DXUsd5JbUkteR235Kk1cYOQpIacrtvSdKCei0QjpgkSYPsICSpsU4bCAuEJLXmiEmStKrYQUhSSx1fB2GBkKSGwmTv5dCCBUKSGuu0PngOQpI0zA5Ckhpb12kLYYGQpMY6rQ+OmCRJw+wgJKmh0bvB9dlCWCAkqbF1fdYHR0ySpGF2EJLUmCMmSdKgTuuDIyZJ0jA7CElqKIz2Y+qRBUKSGnMVkyRpVbGDkKSW4nbfkqQFdFofHDFJkobZQUhSQ8HtviVJC+i0PjhikiQNs4OQpMZcxSRJOsLo/SBapxjmiEmSNGiiDiLJw8B3gWeBZ6pq20qGkqS15HhYxfQrVfX4iiWRpDWqz/LgiEmStIBJC0QBX0iyK8n2oQOSbE+yM8nOpw8+Mb2EknScy3g/pmO9TdukI6aLq+qRJGcBdyZ5oKruPvSAqpoD5gBO3bK1dj14YMpRj8JF57ROMO+P7/lG6wgAXNXR96Qnt+99tHUEAC5/2ebWEeZ9/bHvtY4w7x037GwdYcWMrqRunWLYRB1EVT0y/vUAcBtw4UqGkiS1t2SBSHJKktOe+xh4DbBnpYNJ0powpfFSqxHTC4Dbxk9+AvCpqrpj6kkkaY3qdJXr0gWiqh4CXj6DLJKkjrjVhiQ15l5MkqQjrPpVTJKktccOQpIac8QkSRrUZ3lwxCRJWoAdhCQ1lBwf231LklZAp/XBEZMkaZgdhCQ15iomSdKgTuuDIyZJ0jA7CElqKGQmq5iSnATcDfwEo9f+m6vqA4vdxwIhSS1lZiOmHwKXVtVTSTYAX07y+aq6Z6E7WCAkaQ2oqgKeGn+6YXyrxe7jOQhJamxW7yiXZH2Se4EDwJ1VtWOx4y0QktTYuindgDOS7Dzktv3Q56mqZ6vqfGALcGGS8xbL5YhJko4fj1fVtqUOqqonk9wFvBbYs9BxdhCS1FCYzYgpyZlJTh9/fDLwKuCBxe5jByFJjc3oHeU2AzckWc+oOfhMVd2+2B0sEJLU2CwKRFV9FXjFcu7jiEmSNMgOQpIaStysT5K0gBmdg1g2R0ySpEF2EJLUWKcTJguEJLUU+n1PakdMkqRBdhCS1FivP6lbICSpsU4nTN0WLklSY3YQktRQMpu3HD0aFghJaqzT+uCISZI0bOIOYrxF7E7gW1V1+cpFkqS1pdetNpYzYroa2AdsWqEskrTmrPoL5ZJsAd4AXLeycSRJvZi0g/gI8D7gtIUOGL859naAE09/wTEHm4a9Bw62jjDvU7fsbh0BgKsuOqd1hHk9/f/50kNPto4A9JMD+vq78uCe/a0jrKhOG4ilO4gklwMHqmrXYsdV1VxVbauqbRtO+cmpBZSk41pG5yCmcZu2SUZMFwNvTPIw8Gng0iSfnH4USVJPliwQVfX+qtpSVecCVwJfrKq3rngySVojMqX/ps0L5SSpodEqptYphi2rQFTVXcBdK5JEktQVOwhJauy46CAkSdOXTte5uheTJGmQHYQkNXTcnKSWJE1ZVvGV1JKktckOQpIa63U3VwuEJDXU8zkIR0ySpEF2EJLUWKcTJguEJLUV1q3ARnvT4IhJkjTIDkKSGgqOmCRJQ1bo3eCmwRGTJGmQHYQkNeaFcpKkI/R8DsIRkyRpkB2EJDXmiEmSNKjT+uCISZI0zA5CkhoK/f6kboGQpJYC6XTG1GvhkiQ1ZgchSY312T9YICSpqdE7yvVZIhwxSZIG2UFIUmN99g8WCElqrtMJkyMmSdIwOwhJairdXgdhgZCkhrySWpK0oF47iCULV5KTkvx1kvuS7E3yh7MIJkmaniQvTPKlJPvGr+VXL3WfSTqIHwKXVtVTSTYAX07y+aq655gTS5Jmtcz1GeA9VbU7yWnAriR3VtX9C91hyQJRVQU8Nf50w/hW00grSWvejDbrq6pHgUfHH383yT7gbODoCwRAkvXALuBngWurasfAMduB7QBsOJX7/vSzy80/dZe/949bR5i39bwtrSMAsPfAwdYRuvQrLz69dQQAfueDX2wdYV4v3xMtyxlJdh7y+VxVzR1+UJJzgVcAR7yWH2qiAlFVzwLnJzkduC3JeVW157Bj5oA5gHUbz7LDkKQJTHkV0+NVtW3R50tOBW4BrqmqRX9iXNYqpqp6MsldwGuBPUscLkmawKxWMY3PI98C3FhVty51/CSrmM4cdw4kORl4FfDAMeaUJM1QRlXoemBfVX14kvtM0kFsBm4Yn4dYB3ymqm4/+piSpEPNaBXTxcDbgK8luXf8e79fVZ9b6A6TrGL6KqOTGZKkFTCLCVNVfZll1qJer/CWJDXmVhuS1NBoFVOfW21YICSpsU63YnLEJEkaZgchSU2FOGKSJA1xxCRJWlXsICSpIVcxSZKGxRGTJGmVsYOQpMZ67SAsEJLUWK/LXB0xSZIG2UFIUkMB1vXZQFggJKk1R0ySpFXFDkKSGnMVkyRpkCMmSdKqYgchSQ25ikmStIB+3w/CEZMkaZAdhCS11PFurhYISWqs0/rgiEmSNMwOQpIaGq1i6rOHsEBIUmN9lgdHTJKkBdhBSFJrnbYQFghJaswL5SRJq4odhCQ11ukiJguEJLXWaX1YesSU5IVJvpRkX5K9Sa6eRTBJUluTdBDPAO+pqt1JTgN2Jbmzqu5f4WyStDZ02kIsWSCq6lHg0fHH302yDzgbsEBI0jEK/a5iWtY5iCTnAq8Adgx8bTuwHYANp04hmiSppYkLRJJTgVuAa6rq4OFfr6o5YA7g1C1b67zfuGJqIY/W5rff2DrCvN988wWtIwDwoc//besI8z7+W9taR5j3jht2to4AwF9+8E2tI8x70ZmntI4w709+99LWEeZdMe2XldW+3XeSDYyKw41VdevKRpKktaXT+jDRKqYA1wP7qurDKx9JktSDSa6kvhh4G3BpknvHt9evcC5JWjsypduUTbKK6csr89SSpNEapj5fYt2LSZI0yK02JKmxVb2KSZK0Mlbo9MFUWCAkqbVOK4TnICRJg+wgJKmxXlcxWSAkqbFeT1I7YpIkDbKDkKTGOm0gLBCS1FTH61wdMUmSBtlBSFJjva5isoOQpIbCaBXTNG5LPlfysSQHkuyZJJsFQpLWjk8Ar530YAuEJDU2q7eDqKq7gScmzeU5CElqbXqnIM5IcugbrM9V1dzRPpgFQpKOH49X1bZpPZgFQpIa63UVkwVCkhpzLyZJUlNJbgL+CtiaZH+S317seDsISWpsVg1EVb1lOcdbICSpNUdMkqTVxA5CkhoaXeTWZwthgZCklibcR6kFR0ySpEF2EJLUWKcNhAVCkprrtEI4YpIkDbKDkKSm4iomSdIwVzFJklYVOwhJamjSd4NrYckOYrlvci1JWqZZvefoMk0yYvoEy3iTa0nS8WHJEVNV3Z3k3BlkkaQ1yVVMkqRBva5imlqBSLId2A7AhlO5708/O62HPmov/40rWkeYt+vBA60jAPDgnv2tI8zbe+DnW0eY9/Hfmtr7vB83Nr/9xtYR5v1g71+1jrAmTa1AVNUcMAewbuNZNa3HlaTjXacNhCMmSWpqNW/3vdw3uZYkHR8mWcW0rDe5liQtV58thCMmSWoorOIRkyRpbbKDkKTGOm0gLBCS1JojJknSqmIHIUmNuReTJGlYn/XBEZMkaZgdhCQ11mkDYYGQpJaymvdikiStTXYQktSYq5gkScP6rA+OmCRJw+wgJKmxThsIC4QktdbrKiYLhCQ1lW5PUnsOQpI0yA5CkhryHeUkSauOBUKSNMgRkyQ11uuIyQIhSY25ikmStKrYQUhSSx1v922BkKSGQr9bbThikiQNsoOQpNY6bSEsEJLUmKuYJEmrih2EJDXmKiZJ0qBO64MjJknSMDsISWqt0xZiog4iyWuTPJjk75P83kqHkqS1JFP6b8nnWeZr+ZIFIsl64FrgdcBLgbckeekEf2ZJUieO5rV8kg7iQuDvq+qhqvoR8GngV481rCTp/72j3DRuS1j2a/kk5yDOBr55yOf7gV884g+ZbAe2jz/94Q/uvXbPBI+9onbce+0ZwOOtc4yZ5TBX3NhHjjGzDOslSy85ALZO88F279715ydvyBlTeriTkuw85PO5qpobfzzRa/mhJikQQ3WpjviNUYg5gCQ7q2rbBI+9onrJAWbpOQeYZSG9ZOklB4yyTPPxquq103y8RUz0Wn6oSUZM+4EXHvL5FuCRZYSSJLW37NfySQrE3wA/l+RFSU4ErgT+91FHlCS1sOzX8iVHTFX1TJKrgD8H1gMfq6q9S9xtbomvz0ovOcAsQ3rJAWZZSC9ZeskBfWWZ2NG8lqdq0RGUJGmNcqsNSdIgC4QkadBUC0QvW3Ik+ViSA0maX4uR5IVJvpRkX5K9Sa5ulOOkJH+d5L5xjj9skeOwTOuTfCXJ7Y1zPJzka0nunfYSxmXmOD3JzUkeGP99eWWjHFvH34vnbgeTXNMiyzjPu8d/Z/ckuSnJSY1yXD3OsLfl92OWpnYOYnwZ998Cr2a0nOpvgLdU1f1TeYLlZbkEeAr4n1V13qyf/7Asm4HNVbU7yWnALuBNs/6+JAlwSlU9lWQD8GXg6qq6Z5Y5Dsv0X4BtwKaqurxhjoeBbVXV9EKsJDcA/6eqrhuvMtlYVU82zrQe+Bbwi1X1jw2e/2xGf1dfWlVPJ/kM8Lmq+sSMc5zH6MrjC4EfAXcA/6mq/m6WOWZtmh1EN1tyVNXdwBMtnvtwVfVoVe0ef/xdYB+jKxpnnaOq6qnxpxvGt2YrFJJsAd4AXNcqQ0+SbAIuAa4HqKoftS4OY5cB/9CiOBziBODkJCcAG2lzHdZLgHuq6vtV9QzwF8CvNcgxU9MsEEOXcc/8hbBnSc4FXgHsaPT865PcCxwA7qyqJjnGPgK8D/iXhhmeU8AXkuwabxnTwouBx4CPj8du1yU5pVGWQ10J3NTqyavqW8CHgG8AjwL/XFVfaBBlD3BJkucn2Qi8nv//orPj0jQLxLIv415LkpwK3AJcU1UHW2Soqmer6nxGV1BeOG6bZy7J5cCBqtrV4vkHXFxVFzDa5fKd4xHlrJ0AXAD8j6p6BfA9oOnW+uMx1xuBzzbM8DxGk4gXAT8NnJLkrbPOUVX7gP8G3MlovHQf8Mysc8zaNAuEW3IsYDzzvwW4sapubZ1nPLq4C5jVHjCHuxh443j2/2ng0iSfbJSFqnpk/OsB4DZG49JZ2w/sP6Sru5lRwWjpdcDuqvqnhhleBXy9qh6rqh8DtwK/1CJIVV1fVRdU1SWMRtjH9fkHmG6BcEuOAeOTw9cD+6rqww1znJnk9PHHJzP6h/dAiyxV9f6q2lJV5zL6e/LFqpr5T4UASU4ZLx5gPNJ5DaNxwkxV1beBbyZ5bqfQy4CZL/A4zFtoOF4a+wZwUZKN439LlzE6jzdzSc4a/3oO8Ou0/96suKm95ehRbsmxIpLcBPwycEaS/cAHqur6FlkY/bT8NuBr4/k/wO9X1edmnGMzcMN4Vco64DNV1XR5aSdeANw2eu3hBOBTVXVHoyzvAm4c/4D1EPCORjkYz9lfDfzHVhkAqmpHkpuB3YxGOl+h3VYXtyR5PvBj4J1V9Z1GOWbGrTYkSYO8klqSNMgCIUkaZIGQJA2yQEiSBlkgJEmDLBCSpEEWCEnSoP8LmDZ6BFXmmmUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(7, 7))\n", + "frequencies = som.activation_response(data)\n", + "plt.pcolor(frequencies.T, cmap='Blues') \n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When dealing with a supervised problem, one can visualize the proportion of samples per class falling in a specific neuron using a pie chart per neuron:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAISCAYAAAB74T3GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACwBklEQVR4nOzdd5jdxNnw4d96XbFBFNNLRDNgEMY4oYUWQgsCQgkvLcmhmN5DUwgEEUgQndC7OfSaEECU0EMLBNMExtgU0YspFu5t9/1jtHi93nLKjKRdP/d1+fq+N6yemTlHR3o0TQ3Nzc0IIYQQQtSrV94VEEIIIUTPIEmFEEIIIbSQpEIIIYQQWkhSIYQQQggtJKkQQgghhBa9O/uPo0ePXqp3797XAesgCYgQRdAEvDV79uyRI0aM+DrvygghRGudJhW9e/e+bplllllrySWX/L5Xr16y9lSInDU1NTVMmDBh6JdffnkdsHPe9RFCiNa66n1YZ8kll/xBEgohiqFXr17NSy65ZILqPRRCiELpKqnoJQmFEMWS/iZlOFIIUThyYRJCCCGEFp3OqWjL9sIROguPA3d0V3+z0EILDZ86deprAHfeead10kknrfj444+PW3311WfqrIsRvqX188JPuvy8GhsbR6y++urT5syZ07DiiivOuOuuuz4cPHjwHK310MQpO1o/n6gUdfn5AHz88ce9Dz/88JXeeOONhfr27du8wgorzLj00ks/WXfddWforE+LlnM4juM+hx566IqPPPLIBybKEUKIvHWbnop//etfC59wwgkrPvTQQ+O7RUKRk379+jWNHTt2zPjx499edNFFZ5933nlL5l2nImlqamLnnXdebfPNN5/0ySefvPX++++/ffbZZ3/2+eef9zFdtm3bsyShEEL0ZN0iqXjkkUcGHXHEEfb999//3tprrz0D4IILLhi8zjrrrLXGGmsM3W677VadNGlSL4Ddd9/d3nfffVfacMMNh6ywwgpOGIaD9thjD3uVVVZZe/fdd7dbYu67774rrbPOOmutttpqax933HHL5dQ0ozbaaKMpn332WV+AF154YcCwYcPWHDJkyNBtttlm1QkTJjQCnHXWWUutuuqqaw8ZMmTojjvuuArAU089tdDw4cPXXGuttYYOHz58zTfeeKNfnu3Q6cEHH1y4d+/ezSeddNKElv9tk002mbbxxhtP3XjjjYcMHTp0rSFDhgy95ZZbFgV49913+66yyipr77XXXj9ZbbXV1v75z3+++uTJkxug43Nw7Nixfddbb70111lnnbWOOeaYH8+td999t+/qq6++dsv/f8SIEWsMHTp0raFDh6712GOPDWyp3wYbbLDG9ttvv8rKK6+89s4777xyU1NThp+QEELUrvBJxcyZMxv23HPP1e699973hg8fPr3lf993332/f+utt9559913x6yxxhrTLrnkksEt/y1Jkt4vvvjiuCAIPtlzzz1XP/HEE78aP37822PHjh3wwgsvDAC48MILP3vrrbfeGTt27NvPP//8wi+99NKAPNpnyuzZs3nqqacW3mWXXSYC7Lfffiv/7W9/+3TcuHFj1l577Wknn3zycgCXXHLJMm+99daYcePGjbnxxhs/Ahg2bNj0l19+eew777wz5vTTT//spJNOWiHHpmj15ptvDhg2bNjUtv/7Qgst1BSG4Xtjxox555lnnhl3yimnrNByM//444/7H3300V+/9957b1uWNeemm25aDDo+Bw8//PCVRo4cOeGtt956Z5lllpnVXj2WW2652c8+++y4MWPGvHPnnXd+cNxxx63U8t/eeeedAZdffvkn77333tsff/xxv8cee2yQkQ9DCCE0K3xS0adPn+b1119/8lVXXTW49f8+evToASNGjFhjyJAhQ++9994l3n777f4t/8113Ym9evVi/fXXn7rEEkvM2mCDDaY1NjYyZMiQae+//34/gHK5vHj6lDh0/Pjx/d94443+bcvujmbMmNFrzTXXHLrYYoutN3HixN677LLLD99++23jpEmTGl3XnQxw0EEHffvf//53EMAaa6wxbdddd135iiuuWLxPnz7NAN99913jDjvssOrqq6++9kknnbTiuHHjesRn05mmpqaGY489doUhQ4YM/cUvfjHk66+/7vvpp5/2Blh++eVnbLLJJtMAhg8fPjWO437Q8Tn46quvDjrooIO+AzjkkEO+ba+8mTNnNuyzzz72kCFDhu6xxx6rvv/++z9+xo7jTFl11VVnNTY2svbaa099//33+5puvxBC6FD4pKKhoYH777//g9dff32g53nLtPzvBx988MqXXXbZx+PGjRtz8sknfz5jxowf29K/f/9mgMbGRvr27fvjkthevXoxe/bshrFjx/a97LLLln7mmWfGjRs3bsxWW22VTJ8+vfCfRSVa5lTEcRzNnDmzIQiCpTr7+6eeemr8EUccMWH06NEDhw0bNnTWrFmcfPLJy2+xxRaTxo8f//YDDzzw3syZM3vEZwPgOM60N954Y6G2//vVV1+9+Lfffts7iqJ3xo4dO2aJJZaYNW3atF7APOdQY2Nj8+zZsxug83Owq6XYf/3rX5deaqmlZr3zzjtjoigaM2vWrB+P7devX+vyaClPCCGKrlvcLBZeeOGmRx55ZPw999yzxEUXXTQYYOrUqb1WWmmlWTNmzGi44447Fq8m3vfff984YMCApsUXX3zOJ5980vvpp5+2zNQ8P0ssscScSy655OPLL7986UGDBjUtssgicx555JFBANdff/0SG2+88eQ5c+bw/vvv991pp50mXXHFFZ9OmjSpMUmSxh9++KFxhRVWmAlw9dVXD+68pO5lp512mjRz5syGCy644Md2PfPMMwt99NFHfQcPHjyrX79+zQ888MDCn3/+eZe9Ax2dg+uvv/7ka6+9dnGAa6+9don2jk2SpHHZZZed1djYyBVXXLHEnDmFXKAjhBBVqWpJaSVLQE1Zeuml5zzyyCPjtthiizWXXHLJ2Z7nfb7BBhustfzyy89ca621pk6ePLmx0lgbb7zxtHXWWWfq6quvvvZKK600Y8SIEZONVLqCJaAm/fznP5+21lprTbvuuusWGzVq1IeHHXbYT44++uheK6200ozbb789nj17dsM+++yz8qRJkxqbm5sbDjnkkK8GDx485+STT/5y5MiRK19yySXLbLbZZj+Yql+lS0B16tWrF/fff//7hx9++IoXX3zxMv369WteYYUVZpxxxhmfH3PMMSuts846a6299tpTV1555eldxeroHLziiis+3muvvVa54oorlt55552/b+/YY4899uvdd9991fvuu2+xTTfddNKAAQNkNqYQottraG7uuJf2jTfeiIcNG/ZNhvURQlTgjTfeGDxs2DA773oIIURr3WL4QwghhBDFJ0mFEEIIIbToKqloampqkpnnQhRI+puUORhCiMLpKql4a8KECZYkFkIUQ1NTU8OECRMs4K286yKEEG11uvpj9uzZI7/88svrvvzyy3WQoRIhiqAJeGv27Nkj866IEEK01enqDyGEEEKISknvgxBCCCG0kKRCCCGEEFpIUiGEEEIILSSpEEIIIYQWklQIIYQQQgtJKoQQQgihhSQVQgghhNBCkgohhBBCaCFJhRBCCCG0kKRCCCGEEFpIUiGEEEIILSSpEEIIIYQWnb6ltEhsL+wLrAuMSP+tBQwEGoDpwEfA6JZ/ceAmOVW1ZrYXLgSsz9w2rgYMSP/zVGA8c9v4Why40/KoZz1sL1yUue0bAfwE6I96++YUYAxz2/hmHLiz8qlp7Wwv7ANsAmwN/AxYBFgImIlq4wfA48DjceBOyKueonO2F67B3PN0GLAo0AeYAXwNvIo6T1+JA/eznKpZM9sLG4G1mdvGdYCFgUZUGz9j7m/xlThwv8mpqjVL7xvrMbeNa6J+iy33jQ+Z974xKZ+a1sG3BjLvfWNV5r1vjKPVfQM/mW6yOoV/S6nthUOBw4G9gcUrPGwWEAJXxYH7qKm66WJ74SbAYcBuqBO+ElOAe4Ar4sB92VTddLC9sAHYATg4/X8rTWa/BW5FtfFdQ9XTIk0kSsCuwBaohLcrzcAbwKOoNn5sroaiErYXDkadp/ujkvpKvQRcB9wSB67Ri3a9bC/8Ceqa+jtg2QoPawKeAK4B/hkH7hxD1dPC9kIH1ca9UMlgJWYCD6DuG48bqpo+vrU5cCjqmtO/wqMmAXcDV+Ano01Uq7BJhe2FKwKXAjujsspaRcCRceD+R0vFNLK9cF3gCuDndYZ6Bjg8Dtwx9ddKL9sLt0J9j0PrCNMM/AM4Og7cz7VUTCPvT8fvfsecrc4DVq4jzAzUBduPA/c7PTUTlbK9cABwBnAkc5/yajEBOB11YyrUxdX2wiWA81HJRGMdoT4E/hAH7n066qWT7YU2cBng1hnqNeCIOHBfrLtSuvnW+qj7xoZ1RnoCOAI/0frAVsikwvbCkcAFqG5jHZpRN7Y/xoE7VVPMmtle2Bs4BTgV1Z2qwwzAB84rwlOE7YWDgPOAQ6gvKWxtInBsHLhlTfHq41urAlfPaW5YZ90Z1w2cwoBBGqJ+DRwTB+4dGmKJCqQ9haOAIRrDPgkcGAdurDFmzWwv3AW4ClhaY9jbgKOKkASnvaGHAecAOn6HoHpnLgJOLUTvk2/1BU4DPPRNXZiOug9dhJ806QhYqKQinVNwB7CToSLeA9w4cMcZit8l2wuXQXWx/dRQEf8Fds5zrD4dsnqQ+p7cO/MPYN9cf+i+NQJ4DFgM4Ik5w585cNaJW2gs4aw4cE/TGE+0w/bC01DJuIlJ65OB38eB+08DsSuSPsBcBRxoqIivgF3iwP2vofhdsr1wYVSX/naGihiLum98YCh+13xredSQ/jBDJTwL/Bo/+b7eQIVJKtIT4xHUBDeTvga2jgM3MlzOfNIhnSepbqy2FmOBreLA/cJwOfOxvXA46ma7hOGingF2yKXnqU1CAdDczIytZp7/1YfNy62ksSRJLAyyvfBC4DjDxcwB9o8D92bD5cwnnedzF7CL4aKmADvGgfu04XLmk078/jdqQrRJX6CuqWMNlzM/37KBpwDbcElvAVvhJ3U9kBZiSanthf1RT++mEwqApYB/2164agZl/SidAPYY5hMKUDOc/2174WJd/qVGtheuifqBm04oQE2G/Gc6uzs77SQUAA0N9Lupzzm6k7hTbS88U3NMAaSfq+mEAtTchVG2F+6WQVk/sr2wF3AT5hMKUJOSH7C9cIMMyvpR2rP9IOYTClATWh9PJ7lmx7eWQa0UszMobR3gUXzLqidIIZIK4GzUTSIrywB3pV2DWbkRWCPD8tYBrs2qsPTmfjcwOKsygW1RXdfZUE8M8yUULVbsNWHD7Xq9/JrmUk+1vfBYzTEXaLYX7ogaR85KI3CT7YWmhgPbcwxq5UNWBgH32F6oax5cJc6n/knu1VgeuCNdipuVm1FLRLMyHLi8ngC5JxW2F24KHJ1D0esDf8yiINsLS9Q/G7kWu9teuGdGZZ2OSmSydpLthVk8qYAam+609+fiPlcM6kWT7omyf8u6Z62nSrvLr86h6IHADemEQqNsLxwC/NV0Oe1YETXB3rh0VdmhWZTVxkbAHzIpybcOQe11k7V98a1f13pwrklFuoxrVI71OC1d1mmM7YXLARebLKMLl9teuJTJAmwv/ClwsskyOtEI3Gh7YT+jpfjW/1HBRLABDTNX93rf/rzm0geglsmJ+v0dWC6nsrdE7Z1gTDrsMYr6lsXWY6TthaYmTAI/riy7Hn2ryqr1F9sL1zJagm/9BLV6Li9X41uV7gs1j7x7Kg4hmzkGHekD/M1wGadS+eYrJiyBWoJkUkB9697rNRS1WZEZvtUbOKvSPx/Z+NA6FpMnaq7F9rYXZjlE2OOkGyL9PudqnJHOBTBlF7KZm9aZcw3HP5Js5hh0pD9geq7T6ajdTfOyNHBCLQfmllSkGfUxeZXfyg7pdrza2V64OLCfidhVGpmurtEu7en5pYnYVTrOYNfy3sDqlf5xr4bmxa/pe+GbBupxuoGYC5IsJmZ2ZQnUzqumFKGN69peaOSakM6DO8pE7CrtamyOjG8tBexrJHZ1DsW3qk6A8+yp2Jp8s80WDcABhmLvQ37dkK0tDJiaWzHSUNxqDQE2MxS76vHFDRrGbjK0IX5fcz02T+cEiCqlSXVW84u6YuQ3k66+2tRE7BqYui7sQH7DV631wlzv6O+BbFe1tW8x1KsjqpJnUvGbHMtuy1RdFoQ27m4obi30t9G3egG/qPawhgZ639j3nImaa9NYS10EAL+i8vfqmLa+oafcIl1vfp3uk6Fbkdoo19R25JlUZDVjvxKrpEMV2qTDOyN0xqyT9h0800moRXhqaGHinBpB5S+ym8dSDcmIPRqf/p/m+myjOd6CokjXGzBTnyK1cQDqDai6FamNa6STRvVR87fW0xqzPlV/3rkkFelMfRMnXD10JwBD0LcHvQ5LGNi4pUhJE8AwA2vI61rS9dfeNyzZh9kzdVWGfJaY9QRFO1dN1KdHtzG9get8P0u9eqH2ddBpbSp/42gWlks34KpYXj0VDvpepKXL+gWPp0NPb+MAQPdSr7oujH0bZttn9h6l802Hq5uadNvDFe1c1VqfdNn48jpjaqD7M1+P/FcsttXTr6lQZZ3y+oJ0vilPF911kjbmQ3ed6u5t2rPxqeGDmajzBW9F6gErvLRntK6thw2Q32L+8XSQNraR5TbVrRVhZmtbujdPKmIbdXermd1wqja661T35L6GBhb5Z98/v3TbnF9qeTvuN1j989mgtdtaEM7TIl5vFoQ2yjW1jbySitk5lduZWZrjFbGNOsf2Qf9npoPuOs3QEWTFXt9seHKvO3WEApiV72Z73c6CcJ4W8XqzILRRrqlt5DX8keRUbmd+0BxP2pgP3W2cojmeDkWsU5FNR//Fv17yW6yetDEfVbUxr6QiyqnczryhOZ6JHRXr1dPb2AS8pTnme5rj1esbYGLelehO4sBtpnjXHN2/xY/Qf4OrV0+/3oC0cT65JBVx4H4PfJBH2Z0YrTnemxSru24aMEZzTN2fWb3GxoGr+yn+cc3x6vUkftKcdyW6oaKdq1rrkyZOr+qMqYHuNn4JfK4zpga6z6vXUA9HRfEDML6aA/JcnlOkH/l3ceDGOgPGgTsdeFtnzDq9GQeu7ldyjwMma45ZDxPn1H/QNK9Ck8fyrkA31aNvuAZj1qoZdYPUrUht/CJNdPTxk8lUeRM37LVqH2LyTCoeyrHsth42FLdIbdRelzhwm4BHdcetg/7P20+mAjr3maiXJBW1eRh1oyuCzzDTzV2k682zceBOMhC3SG00VZdu3cY8k4q7ARMnXS1GGYxbhAtZE1A2FPsGQ3Gr9T1wn6HYjxiKW6138ZOP8q5EdxQH7sfAE3nXI3WTgV5DgKeA2EDcWpi6pt6BGsotApP3jSKYDdxc7UG5JRXp2HcRbkhRHLhGLjZx4I6nGDekf8WBa+pm9AhqGCRv16RDTkZiU4xZ2bKOtD6X5F0B1PK8K0wETudVXGoidpW+Bm43ETgO3InATSZiV+mVOHCfNxLZTyJUgpi3u/GTL6o9KO8tT88n/zH5v2QQP8+JN3OAs0wFT4dAzjQVv0IJcLGx6H7yPepczdN4zPU2LSgeBF7JuQ7Xx4H7qcH415L/ZMZz4sA1OQ/pHPLvrTgjg/h59nLPAv5Wy4G5JhXpj+ukHKtwbxy495gsIA7c/wJ/N1lGF86NA9foJLU4cG9BXbDzcqz2CVPzuwB433AZnTkSPynSaqJuJ32S35/89qz4GMPXu3Qew8Emy+jCfzGZ4ANx4H4InGKyjC7cGgeu2eudnzwDXGW0jM6dhZ/UtDw/754KUB/ckzmU+w1weEZl/Yl8hgjeBvyMyjqEfPZPeCgO3BuNl+In01AX6zyeHm7BT/6dQ7k9Thy4b2H+KbMjIw1NXpxHHLgh+fRqTQf2S3svTbsEeC6Dctr6Ejg6o7JOIp85Mq9RYy8FFCCpaPX0YPpJs7U5wP5x4H6dRWFx4E4DfgtMzaK81CTgt3HgZvJUFgfu58BIsh3q+QQ4KLPS/ORJ4AiyTSyeRiVsQp9zyP5B5oI4cLNcuXMsMDbD8kD1GL6bRUFp4lICdL6oryuzgFIcuN9lUppaXvpbVLKWlYnA7+rpFc09qYAfZ2ZvA3ybQXFNwAHGu6/aiAP3f8CuZHOCTAV2jgP39QzK+lEcuPcCh5LNTfdrYJs0mcmOn1xJdonF04CbLmsVmqQrL36N6qrPwijgxIzKAn6c0LgN8GFGRf4pDtyrMyoLgDhwPwC2I5se0jnA7+LAzbbH0E+eB/YgmyG7ycCO+Eld+ysVIqmAH7slN0Ot4TZlFrBvHLi5zB5OT8gdMLuUNgG2iwP3aYNldCgO3GtRTxAmx/8/BjbN6qloPtkkFk8jCYUxceBORt10Tc+yvxw4MO2RzVQ6Z20z9O+k21oz8Ic4cGvuLq9HHLivAVtgtqd7BrBHHLja3ghYFT95ENgJsz3d3wFbp0lMXQqTVADEgfsOsB5qDwvd3gQ2jAP3DgOxKxYH7lPAcNROjbo9AQyLAzePscYfxYF7M7AJZi5mtwLD0+W6+VGJxb6oH6Nuo5CEwrg0sdgW+DP63w75LbBPHLhH5pFQtIgD9zNgQ+BK9CfBMfDLOHAv0hy3ukoE7puo+8Z9BsK/CvwsDtx/GohdOTWnajhmNuJ7FBiGn7ykI1hDc3MR9maan+2Fe6Cy/CXrDDUbOBs4Mw7cwrxW1vbCBuAoVN0WqjPcZNSknqvyvIC1ZXthP9RE0ROBxjrDfQUcGgfufXXG0cu3lkItN92X+pP0McBR6dwNkSHbC9cFbkRduOt1H+pc/UpDLG1sL9wKuB6w6wzVjJpgf1KamBWG7YX7oPbqWLzOUDNRS/HPjgO3OKuufKsXcByqbv3rjPYDcDx+cl3d9WqlsEkFgO2Fg1CT/w4HVq/y8O9QM6AvTudsFJLthUuiutIPApar8vBPURszXREHbhbzUWpie+HKqIljvwcWrfLwsajk8oY4cIv75O5b66CeeF2qSxKbUW8BvBC4FT8p0suEFii2F/ZCzbU4BtgcaKji8JnA/cCFceAWaVv3eaSJ/r6oB5r1qjx8CmpTqwvTXuVCsr1wEdT19HBglSoP/wbVU3iJ4f1E6uNbS6O+w5HA0lUe/TFwNXBlugePVoVOKlqzvXBjYEtgBPBT4Cdt/uQ71MtmRqMmYD2c1coHHWwvbAS2AjZFtXEEsEybP/ucuW18Dngqo+VbWthe2B/YHtiIuW1crM2ffcjcNj4VB66WLrnM+FZf1NDP1qgx+xHM30vzKeodHo8Dj+MnmaxCEpWzvXBV4FfMPU+HMu/3OA2VDI5Gbaj1QJET+/bYXjgMdZ62XFNXY95E6gfU8sLRwMvAgwbeAmxM2hv8c9Sci5bvcaU2f/YNc683LwKPFqlHu0u+1Rv1HW7C3Da2TTI+Y24bnwWeNvmm426TVLRle+EA1BNhL2B6Fuu/s2Z74UBgQPp/TutOP+hK2V64MKobrwmYmi6/7Tl8qwF1ni6EepqdIptYdT+2F/YBBgF9UBP3Jht6f0du0l6MgUBv1Cq1SUUaTtVhQbhv4FuDUPeNZmBq1nOzum1SIYQQQohiKdTqDyGEEEJ0X5JUCCGEEEILSSqEEEIIoYUkFUIIIYTQQpIKIYQQQmghSYUQQgghtJCkQgghhBBaSFIhhBBCCC0kqRBCCCGEFpJUCCGEEEILSSqEEEIIoYUkFUIIIYTQQpIKIYQQQmghSYUQQgghtJCkQgghhBBaSFIhhBBCCC16512BatleOAAYBqwJDAQagOnAR8DoOHC/y7F6WtheuDCwPrAaMCD9n6cB44HX4sCdlFfddLG9cAlgBPAToD/QBEwBxgBvxoE7PcfqaWF74fKo73E5oC8wB/gBeBMYEwfu7Byrp4XthasAw4ElUW2cCXwPvA6MiwO3Ob/a1c/2wl6oa80wYFGgDzAD+Bp4NQ7cj/KrnR62F/YB1kn/LQw0otr4Geqa+mWO1ROV8q1FUNebVZl735gKjANew0+mZFGNhubm4v/mbS9cAzgE+CUwlM6ToRh4Abg+DtwnzddOD9sLNwAOAjYHVkclS+1pQp0k/wGujgP31WxqWB/bC3sDLrA3sDGwUid/Pht4G3gSKMeB+4b5GtbP9sKFgN2BPYANgKU7+fPpwBvAo6g2fmC+hvWzvXBx1He4CyopXKyTP58EvAY8ANwcB+5Xxiuoge2FKwC/B3YA1kM9vHTkW+AV4B/AHXHg/mC8ghqk19T9gK0BB+jXyZ9/DrwE3An8qyck/D2CbzWg7on7ApuikonO7hvvou4bN+Mnz5uqVqGTCtsLdwSORX1wtRgLXIG6+c7UVS9d0qeg3wFHAj+tMczLwCXAbUV8KrS9sD9wFHAMsHyNYZ4H/hYH7kPaKqaR7YWLASehEt/ObrIdaQZC4Kw4cF/SWTddbC9cCTgFdbMd0MWft2cWcAfw1zhw39VZN11sL3SAU1GJYWMNISYDNwBnF/Xp3vbCzVFt3KbGEBOAy4ELe0KPabfkW43AgcDxwJAao7wBnIuf3KatXqlCJhW2Fy6FSgZ21xQyAvaPA3e0pnh1s71wNWAUKsPU4SngwDhwP9QUr262F24I3IjqPtbhTuCIOHC/1RSvbrYX7gxcDSyjIVwT8HfgT3HgTtMQTwvbCw8BzkN1jddrOnA6cH4cuE0a4tUt7f7/Eypp6qMh5PfA0XHg3qIhlhbpkOr5wMGaQn4EjIwD93FN8UQlfGtN1DV1Q00RHwNG4icfa4pXvKTC9sLdUBfpwZpDzwYC4PS8L2a2Fx4FnENtT3ydmQIcHwfu1ZrjViUd6jgLOIHanvg68xVwUBy4D2iOW5X0In05qqdJt3HA7+LAfdlA7IrZXrgc6gJW61NtZ/4L/DYO3PcNxK6Y7YVDgVtRwxy6/Qt14/3GQOyK2V64BVBGzV/S7WrgWBkSyYBvHY+6rvbXHPkH4Fj8ZJSOYIVKKtKb7d/peFxIh7tQF7NZBstol+2FDcBFqKEAk86NA/dkw2W0y/bCfqhu7l0MFtMEHBYH7jUGy+hQOsn0YeBnBouZBuwWB+4jBsvokO2FqwKPA7bBYr4Gts1rzozthRsDD6EmYJoyFtgmDtxPDZbRIdsLf4NKmvoaLOYZYCcZDjHEt3qhHmAONVzSmfjJn+sNUpglpbYXHomaG2AyoQD4P+A22wt1P0FX4mLMJxQAJ9leeE4G5cwj7aG4G7MJBajz9mrbC0caLmc+thdaqC5DkwkFqF6sf9leaKKXoFO2F/4EeBqzCQXAUsATtheubbic+dhe+DPUJNlFDRe1JvCU7YWdTdo1wvbCXVEJvsmEAmAL4KF0ZZ7Q7wrMJxQAp+FbZ9QbpBBJRToh85IMi/wNcG6G5WF74bHA0RkWeVI6Fp6lvwM7ZVje1bYXbp1VYWlP092oJZRZ6Av80/ZCXXNSupTeGB4BVsioyCWAR9NVJZlIh3UeRs8ckUqsBoRp0p0J2wtHALejf/ixI5sCN2dU1oLDt05GTQDPyp/xrf3qCZB7UpHOnL8G8z0UbR1ne+FmWRSULt86O4uy2rjA9sKVsygovbkfnkVZrfQCrre9cJGMyjsUM/MLOjMQGJVhz9pf0TextlLLk+1DxTWoZCZLI1ATQY2zvbAvai5MZ8tETdjd9sK9My6z5/KtdYC/5FDyxfhWzQ8VuScVqIvJsjmU24C6WC9kspB02ego9E+uqcRA4Ib0CduYdNLi9SbL6MRKqFntRtleaJNx71YrGwF/MF2I7YWbks3wXHv2tb3w16YLsb2whNovJQ+n2l44LINyTkdtZJWHS/MY6ulxfKs3KjE0PXTVHgu4ttaDc00q0jXTv82xCqsCnuEyDkBt9pSXLVGbo5h0Op1vZmXaQemkO5P+DgwyXEZn/pLu0GlEmnheTb7XhCvTib5GpD1aF5mKX4E+wFUmC0h7RXOZpJ1aArX8WNTncFTvVl62x7f+r5YD8+6pyHKOQUcOTrsLTTnKYOxKGauD7YWLku2YX0dOMhXY9sK1yHauSHv6Y7YXYUfUbrV5WhYzS3RbHERtm5PptFH6MGXKH8huHkVH9ra9cMWc69B9qV4K4z2TFagpOc0tqUgnSxnv7qzA0ujbZGseaXfyuiZiV2mDdOKWCb8j3yf4FjsbfJI/jOzn/LTnQIMJ8BGG4lbLyLyctCcm6zk/HTHVxoXJt+e3RW9UAidq42JmT5FqrY9vVb3JVp49FQdQnBea6dplLqu4tTBVF5NPltXohYFhnnSC5D6649ZocQzMB7C9cBmyn4DakeGGlphuAqxiIG4tfm1ocvHugNE5YlUoynWhOyrSZ1d1XfJMKrbIsey2Nk636tWtSG3UXpd0kuv6uuPWwcRqnrXIfqVAZ3Rt697aJuQ/FNqaie8xk5VeFepP7e/66UyR2minL2YT1SvS91h1XfK8kBTpZtQPzbOlbS8cTL6TF9saknaP6rQe+Y/ftmZiiCfPyVLtkTYWJ2Y9pI1ifmop51J5V6OVofhWVSsXc0kq0r0TMtvspkK6fwBF+0E1oH/TpiIlhgDL2l6oe3ly0b7H4QaWCBetjSbOq6Kdq1o/8/RtwJnvTNqFop1X3UHRztPeQFXLoPPqqVg9p3I7U+srZDsibcxHT2/jIuh5I2prRWuj1u8wnRdTlPkULXSfpzbFmaPWQncbFwRF+y1Cld9jXklFUSYTtaZ73/oitlF3nYrYxgXhe+zpbdTdviK+k6Knf4dQzM+96Lr995hLZjtozT82QXPmbwntXEOTzon1C0IbKcYyS9Hz6D6v5DwV3UW3P1dzSSoaGppnoHaXK5DmGTqjNTQ0T6eHtxGYqjmeDtMKHk+Hnt7Gnt4+kDaK9nX7a2pewx/v51RuZ3TXqYhtfE9zvAWhjbrj1Wsy8JXmmEVro9b6xIE7G/hIZ0wNdH/mMTBHc8x6Fe286g66/TU1z6RiYk5ld2R0wePVqxl4VXPMorXxqzhwP9Mcs2htfC0O3CbNMYvWRhP16dFtjAN3GjBGZ0wNivaZdwdF+8zmAG9Uc0AuSUVUikzc4OoxE3hTZ8CoFH0NfKozZp3ei0pRojnma4DuG1w95GZUnJj1kDYWJ2Y9ilaf4vOTj4Fv8q5GK+/gJ1UNyeS5+dWzOZbd1stRKZppIG6R2qi9LnHgTgFe1x23Ds8biDkG+N5A3FqZaOMLFCs5NNHG5wzErNVM4H8G4hapjZ/Ggftx3pXopor0PVb9W8wzqbiB4owB1vzu+Jzi1sJUXW4xFLdazRioSzoef4fuuDWaCDyoO2gcuJ8DT+mOW6M348Ctqru1Qs9SnHkVD8SBq7vXEOAeYLqBuLW4Oe8KdGNFuaZCDd9jbklFVIo+BsK8ym/lW+BOE4GjUvQU8I6J2FV6NSpF/zUUu0wxZiw/bPDJ6CpDcatVjgPX1E3jSkNxq3W1iaBx4Dabil0DI+dTmqjcbiJ2leZQrAeq7uZ+QPfcsFpE+Em36qkAuDTn8gGujUqR7qWWrV1mMHaljNUhDtzvgOtNxa/CuaYCx4H7JvCIqfgVmgVcZDD+P4HxBuNXYgIwymD8q4BJBuNX4tU4cB83GP8C8h/KuicO3A9zrkP35SezgIvzrgZwXi0H5ZpURKXocVSXXV4+Av5muIxryHfC0guo3gST/gx8briMztwcB+4zhss4mnzX3Z8ZB66x7vt0RcmhqGGkvByVrmIwIg7c74ETTcWvwBzUZ2xMHLhvk+8NKQGOz7H8nuISIMqx/KeocRgm754KgMNRTyh5GBmVIqNPLlEpmg3sh5qclbVpwP5RKTL65BIH7kTgYJNldOIL4BjThcSBOx74k+lyOvAqcLbpQuLAfZL8hnrujQPXyDBka3HgXg2Y7CnozLlx4JqYoNnWqcC4DMppz3EGlnUvePxkJuq+MTuH0qcAB+InNT1g5J5URKVoAnBYDkVfmfaUGBeVorcAP4uy2jglKkWZXFziwA0x23XdnmbgoPQJNAt/B/6TUVktpgP7pRNGs3AS2W/A8zXq4SIrB6KeqLMUkdE1IO3t2Y/sb0hhHLhZXwN6Lj95FfhrDiWfgJ/UPHyVe1IBEJWie4GTMywyJIOn29aiUnQ2cF2GRV4WlaKLMywPVNfuYxmWd2yazGQiHSLYDXg7oyJnA/8XB25m3aBx4E4Gtkf/rp0dSYDt48D9OqPySCf07kh2w1kfATvEgZtZb2UcuC8CJbKbX/E/YO+MylqQnEG2K2kuwE/q6q0sRFIBEJWic4FTMijqQeA3USnK42Vfh5BNYnE5ag5AptKL5i7Avw0X1Qz8IQ7cSwyXM584cL8Ffon58c6ZwJ5x4D5guJz5xIH7HrAV5ufJfA9sFwfua4bLmU8cuM+h3q432XBRHwBbxYGb+UZ4ceDeBuyP+aX7L6G+x7wnwfY8aghif+CmDEq7ED85od4gDc3Nec7Lmp9Tdn6HWhViaQ7dhJr8cmI6zyE3Ttn5I6ortK/m0DOAP0Wl6ALNcatie2Ff4EJUl7but+59DxyWxfh7Z2wvXAyVIO5mIPzHwO8zmHzaKdsLfwLcCvzcQPg3gH3iwM11a2nbC9dHtXFNA+EfR32PXxiIXTHbC3+F2hdoGQPhb0H9Hk0nZws232oATkPNl9H9osppwMn4iZbVmIVLKgCcsrMCap3z9ppCvoeasFiYncqcsuOg5iCM0BTyJVQbi7AvBgC2F26JupitrCnkA8AheV+kW7O9cC/Ukt0lNIW8BjihKE99thf2Qg0V/hUYoCHkLNSKq7/GgZtHb+F8bC/sD/wFtWpBR+/tJODEdFJoIaRJ8CXAbzWF/BL1W7xfUzxRCd9aD7gRGKYp4vPA/viJtuXkhUwqWjhlZ0/gWGCjGkN8hJrN/veoFBXuNbxO2emNWjVxJLBWjWHeQt3UrotKUVF2KP2R7YUDgRNQbRxcY5jXgLPjwL1bW8U0sr1wadTQ3YHAwBrDPIlaNvq0rnrpZHvh6qgnpb2o7UmpCbUXxl/SfT8Kx/bCn6GWR7vU1sM2AzX+fZbJ5b/1sL1we9TTbq29Twkq8T07wwnSojXf6oO6nh4LrFRjlHHA+cD1+InWeTeFTipaOGVnfdQkwK2AVbv48wmovRmuB0LTyyl1ccrOL1AJxmbA8l38+SeoVQjXRKUo69UINUmfBncF9kEliZ0lGM2oFQhPATfGgfuC+RrWz/bCRVE33f9D9UAt0smfz0Httvooqo1vGa+gBrYXLgv8DvVdDqPz3ouZqLkn96N2Ay3kjbYt2wtXQ62ecIG16TyJmoJKeu8Fbo0DN6/l8VWxvXA4aqx+a2ANOu+hmYiaiHkHcJcMdRSEb/UGdkD9Hn8OLNvFER+jtqsvA0/oTiZadIukojWn7CwGrI96sl8I9WOYDsTA6KgUfZJf7fRwys7SqJvSasy9aE9D7Xg4On0Dardme+FKqDb+BOiPepKdgnqB16uG3o2QGdsLG4DVUW1cFuiHWs3xA+qNuG/EgVuE7c1rZnthb9TvcH1UktgXlUh8j3rR3FtZrngwwfbCfsC6qARqUVSCMQO1DPZVYKyBV9FnyvbCQcB6gAMMAnqjrqmfAaPjwM16ibGohW8ti/otttw3mlGvUBgHjMZPMnn7abdLKoQQQghRTIVZUiqEEEKI7k2SCiGEEEJoIUmFEEIIIbSQpEIIIYQQWkhSIYQQQggtJKkQQgghhBaSVAghhBBCC0kqhBBCCKGFJBVCCCGE0EKSCiGEEEJoIUmFEEIIIbSQpEIIIYQQWkhSIYQQQggtJKkQQgghhBaSVAghhBBCC0kqhBBCCKFF77wrUA/bC/sBveLAnZZ3XUxwyk4DMCD9P6dFpag5z/qYYHthL6A/0BQH7vS86yNqY3thH6AfMDMO3Jl518cE2wv7An2AGXHgzs67Pkb4Vj/UfWE6fjIn7+po51sNqOtNA6qNTTnXSD/VxgFAM6qNmd43Gpqbu8d9yvbCpYGt039bAcsxNylqAiYCzwGPA4/FgTs2h2rWLE0gNgE2BdYHRgCroE5+UCfI+8Do9N9zUSl6MYeq1sz2wt6o724jVPtGAMu3+pM5wDuo9r0KPBkH7ltZ11N0zvbCRYFfAT9FfYfrAVarP5kCvI76DkcDD8eB+3WmlayT7YXLAduj2rc+MIy5CT7A98BrqPa9gmrjpKzrWRffWh11PW35La6NSppafMXc3+JLwGP4yYysq1kX3xoObMnca+oazNtD/zFzr6kvAk93q0RDJRCbAj9n7ve4cqu/aAbGM/d7/A9+8rLJKhU6qUiffkYChwIOc2+wlfgUuAM4Jw7cbwxUTwun7FjAwag2rlLl4eOBK4HrolJU2Aua7YXLAkcBBwBLV3n4aOBy4Nae+gTcXdhe+FPgD8BuqF6JSs0CQuDiOHCfMVE3XWwv3BY4BtgOaKzi0KnAXcBFceC+aaJuWvhWI/Ab1O/x51Ue/R1wE/B3/CTWXDN9fGsAUAIOR903qvEZcC1wOX5S2PsGvrUYcEj6z67y6LGo+8b1+MkUzTUrblJhe+FuwPnMm3XVYhJwLnBu0W5KTtk5ELiAeZ/yavE9cGxUim6qv1b6pD0THnAq1d2E2vMxMDIO3MfqrpioStpLeAUqmajX46jv8SMNsbSxvXAIcAPV32jbcytwdBy432mIpY9vbYxq45p1RpoDXASchp8Ua8jSt36NumEuW2ekqcBpwMWF6rlQPROHoO5pC9cZ7RvgaPzk9rrr1UrhkgrbC5dEZYq/1hz6bWC/OHBf0Ry3ak7ZWQHVxu01h34AOCQqRV9ojls12wvXAW5EdcfpdA1wQrfrau6mbC/cC7gMWEJj2EnAiXHgXq0xZk3SOT3HAmcx7/BGvb4EDokD936NMWvjW/2BM1G9TDon548F9sdP/qsxZm18a3HgEmBfzZGfR7VxvOa41fOtnwDXA7/UHPkfwGH4iZYhykIlFbYXLgU8BQw1VMRkYPs4cJ83FL9LTtnZGNUVvJihIr4BfhWVotySJ9sLfwPcQv29Ex0ZD2xTtKfdniS92V4GHGawmDuB38WBO8tgGR2yvXAAcDfgGizmnDhwPYPxO+dbSwKPAsMNlTAHOBw/ucZQ/K751hrAY8CKhkqYCuyOnzxiKH7XfGtz4H7q79XuyFfAdvjJG/UGKkxSkUFC0SK3xMIpO5sDDwEDDRc1Cdg2KkWZP0HYXrgPaty1mvHoWnwKbB4H7oeGy1ng2F7YgOpl+n0GxT0I7JZ1YpEmFA+hJvGZdlkcuEdlUM68fGsp4BnqH+6oxLH4yd8zKGdevjUUeBpY0nBJM4E98JPse55865eoXmidPWntmQhsjZ+MridIIfapyDChABgEPGJ7oY6x04o5ZWcY6sQwnVCAGmt7yCk7WXyeP7K9cAegjPmEAmAF4PF0uEzodTHZJBQAO6KS0MykvTD3kE1CAXCk7YV/yagsxbcGAf8mm4QC4CJ8K6tzRvGtFVE9FFlcA/oCd+FbW2RQ1ly+9VPgPswnFACLAo+kq4JqlntSkf7A7yObhKLFICC0vXD5Lv9SA6fs9ENN3loki/JSiwG3OGWnT5d/qUGaGJbJdu+TVYCrMiyvx7O9cCfg6IyL3cv2wgMzLO84YIcMywM41fbCzTMs7wLUMtisNABX4FurZlKamrA4CrW1QFb6AbfgW6aGIOalVrHchrpfZWUwcHO6SqgmuScVqGU/G+dQroUaM86Cj1oDnrXhwCkZlXUl6oTM2m62F+6dQ7k9ju2FiwF5TZ680PZCU2PiP7K9cA3UpMysNQCjbC8031PpW9uglqlnbSBwQ3rDN+1Q9E9YrMQKwIUZlfU3oK5egxptCJxQ68G5JhW2Fy4B/DXHKuxie+GvTBbglJ0RwIkmy+jCn5yyU+1a7arYXrgHepYb1uoyGQbR4iLqX4pXq0VQK3tMuwG1o2IeVkHdKMzxrYHAdUbL6NzmwBFGS/CtlVBLKvNyAL61rdES1PLfrHsMWzsjnQBbtbx7Kv5ItkMC7TkrnZhmyp/JZo5BR/qg9okwIv3sfFPxK7Q4+f4Auz3bC1cDfpdzNba3vXAjU8FtL9wetWttng61vXAZg/EPAFYyGL8Sp+BbfQ3GP5FshwTac4bh+D753p/7UWMvd26Vtr1wEGroI2/rA9uYCOyUnVWAnUzErtLu6d4YJmxDtvNhOnJY+m4GUZujyP8hA9Rult0xdqX6YmqZrhp2KEJyvSywh5HIvrUwsL+R2NXZCN/awEhk31oLMNsTUpm90xVEVcnzIrIF2cxorYTuTaha7Ed1W4ub0oi52fwHGIpbrSWAnfOuRHeUJmO6Nw2q1a7pu0W0SidlF+FCDbCfod7RzYDVDMSthanrwp5ks4KuEqbaWISkCVQv92+rPSjPpGLrHMtuy1RdTG6qUy3tdUkvjEbnpFSpSJ93d7IRenfMrEc/zPwef0UxemJADU+YmOdUpPN/y3R+h25FaqOpunTrNub5IzMy5FAjJ32/gb6AZacvsI7OmHVazyk7uud2rE7+c2Ja070l+IKiaJ+bifpIG7PVC/X2Wt2K1MYVahke6JRKxLLaW6QS61d7QC5JRTpRKY8llp3R/XTkoMZPi2Ih9J+sRfqBAwxNd0oU1Sna99jTb7hgpj5V3wAM09tGteW48WXHVdL9Pa5HcXrUABatdu+RvCpf01IVw3TXKcuNZyqlu07rao5Xr0aK1TvUXRTtXNVan3SYzuiy6hqspzWaWmZp6n1CtVpPc7yinafQ86+pUOX3mFdSUZSJNq3prlPRfuCgtmHVaUFo44KgaN/joprj9Se/vSk6sqjmeEX7DkHaWItu38Yst1RuTc/bKxtmTRuw0vUvN9BUd3LUNGfhHzTPj8lke+wq6R6OKWIbi1inoivaZybnaf7xdFgQ2ijnaht5JRXTdATpv9xdL/VeKN5SR6xGeElHnFZmaI6nw3TN8YrYxiLWqeiK9pnJeZp/PB0WhDbKudpGXsMfk+sN0NDnu897Lxzp3Hyk7jq1MUFzPB1012lBaOOCoGifmdb6xIE7A/hBZ0wN5LeYfzwdpI1t5JVURMCcegIMWHFU3NDAQprqA/CaxlgAr2qOp4PuOhWtjdOBMXlXohsq2vdooj66f9/10ttGP/kS+EJrzPrp/h5fB5o1x6xXT7+mQpV1yiWpiAM3Af5X6/GNA999s7HfBJ17+M8GntYYD2AsMEVzzHp8H5WiDzXHLNoP4M04cGfnXYluaHTeFWjDxHlVtHPVxGdetO9Rb3385AdgvNaY9WlGf7L6FjBTc8x6fImffF7NAXmuh32stsOamgascKvuySwvR6VIa/doVIqaKNbTkfYLThy4nwBf6Y5bh1fyrkA3VbTPzUR9pI3ZmoG6QepWpDaOTxMdffxkFvCm1pj1qfrzzjOpeLyWg/oOfuL5hl4z1ypCXSpwr6G4tTBVl38YiluLIn3e3cloIM67EqmJwJMG4j6E/kl1tXozDtz3DMQt0vn/AH5i4om7SG00VZdu3cY8k4oXgW+qOqLX9El9Bz9pYgvTBwzEBLiFYlzIpgB3GIp9naG41foAeCrvSnRHceA2AzfkXY/UrXHgav/NxIE7EbhHd9waXW8kqp+8BbxsJHb1zLRRXauL0DvaDIwyFPsmYJah2NX4gRp+M7klFXHgzgKCao4ZsPxtrzY0NC+puSoPR6XISJdaVIq+QSUWeRsVlaKJJgLHgfsq8B8Tsat0cXpzFLW5Ck1LvevQBFxsMP5FBmNXaiJmE7gitHEM8KiRyGp44HIjsavzAH5iZn6HmsNwp5HY1bkGP6l6VWTee4xfDnxayR/26vv1R40Dx22sufwm4E+aY7Z1FjDJcBmdmQicbbiMP6I+y7yMpzg9Jt1SHLgTgAtyrsZ1hoYFgB8T4LtMxa/QWXHg6l6+3trd5D/v4I/4ickE/xLgM4PxuzILOM1wGWcAUw2X0ZlvgPNqOTDXpCLt5jyikr8dsNINXzU0aN+97PKoFBmdTBmVoo+AE02W0YVjo1JU1ezdasWB+wJmnzA70wTsHwdu3k/ZPcGZqOXeefgIOCGDco4Avs6gnPa8gOmeBD+ZA+xHfpso3YKf3G+0BD9JgIOMltG5M/ETs5Mp/eQ94BSjZXTuSPykpt9J3j0VxIF7P3B7Z3/Te+E3R/fqM1HnRlegxuAz+dKiUnQ15iaDdubBqBSVMyrrVGBcRmW19vc4cJ/PodweJw7cmagbUh7LckfGgWu8Ry8O3G+Aw02X045pqOTXfI+en7yNetLN2hfA0ZmU5CcPY25OQ2dexXzPb4tLgGczKqu1e/GTmodfck8qUvujZme3Y87s/svdZWku7yPgl1EpMtkN2dbvAd37RHRmHHBgVoWlPQV7oIZbsvIf8s3me5x0iOCojIv148DNLOmOA/desp170IxKmrJMus8F/pVhedOAPfGT7zMs8xiy3ZvjK2Av/CSbpFsNIe0LfJJJecoY4OB6AhQiqUi30d2NdhKLfks/9EJDr9mraSzuI2DLqBTFGmN2KSpFXwBbAx9nUNwHwDZRKcq0mzcO3DeBHYAkg+JeAnYysVJgQRcH7lXASRkVd34cuHk8VR8PXJNBOc3AYXHg3pZBWXOpYZA9MTVhcl7Tgd3xk2yfqv1kErA92QzZfQNsZ2xyZkf85BPUfcPoEHZqPLANfvJdPUEampuLM2He9sJ+qH0PdgBoaJzy3cDVz+zV0KDt9bK5JBStOWVnRVTytI6hIl4HdkiTmFzYXjgceBBYzlARjwB7GJ7wtsCzvfBQVBesiTcnNgGnxYH7NwOxK2Z7YYBKoBoMhJ+O6qG41UDsyvhWX6AM7GWohO+A3fCTZwzF75pvLQbcB2xuqIQPgR3wk7GG4nfNt2zgYcDElgqgJve6tc6jaK0QPRUt0h6LXYG/ADP7r3DTWxoTinuBjfJMKACiUvQJ8FPgHOp8/0kbs1ErTTbMM6EAiAP3NVTSdJPm0JNR4+E7SEJhXtpj8VP07ww7Dtgs74QCIA5cD9gG9cCh04vAerkmFAB+MhM/2Rv4LSoB0OlfwNq5JhRAOuTyC9SEeJ09l82opdbr5ppQAPhJDKwPXIjelXazgD8DG+tIKKBgPRWt2af8Y81BQ04/p6GBnesMNQbwolJkaoOrmjllZ0PUSbtenaFGA4dEpahoe/9je+GOwKWAXWeoR1HdyFnOSxGA7YV9UMuGTwQG1RFqBnAZqoeiUKt1bC8chEr0D6K+npkEldxfmMmkzGr41jKo3+Lu1Ncz8wVwIn6Sb8LUHt9aE3VN3aLOSOOAw/GTJ+qvlGa+9XNUG+vt7X4JOAQ/eaP+Ss1V2KSihVN2NgEORY0rLVvhYZOBZ1C7SN6WvoejsJyysw1wGLAjlV/QZgL3A1dGpcjEtsba2F7YiLqQHQxsReUXtEmodfeXpb0fIke2Fy6GuukeAKxRxaExcCNwVRy4RdgNsUO2Fy6P6g0rActXcehbqF0kr89iFUtd1I33SGAfYLEqjnwBuBa4zdAW3Pr41kao5cO7QcVvs56DeifVVajNrYp73/CtBtR8kkNR0wV6V3jkDNRQ0RX4iZFNCwufVLTmlJ21UV2Vv0QlGAOBRtQ21N8Dz6FOiv9GpagI25xWxSk7iwEbACPSf6sBA9L/PA2VPY9O//3P1C6ZJtleuAzztvEnQH9Ul94UVM9SSxtfiQM3zw1gRAdsLxzK3O9wfWAw0BeV7H6PmtvT8j2+2d12O00T4WHMbeMwYFFU0j8DtdfFq8w9T/NYTl0f3+qH+u5a2uigeqJ6o4YRPmPud/hyOmmwe/GtQcDPmNvGNVFJRi9UGz9g3jZOyKmmtfOtxWn/vtGM2kCr9X3jZe0vQWujWyUVQgghhCiuQk3UFEIIIUT3JUmFEEIIIbSQpEIIIYQQWkhSIYQQQggtJKkQQgghhBaSVAghhBBCC0kqhBBCCKGFJBVCCCGE0EKSCiGEEEJoIUmFEEIIIbSQpEIIIYQQWkhSIYQQQggtJKkQQgghhBaSVAghhBBCC0kqhBBCCKGFJBVCCCGE0EKSCiGEEEJo0TvvClTD9sI+wEbAVsBywECgEZgCfA88BzwVB+4PuVWyTrYXDgZGpP9WAwak/2kqMB4YDYyOA/e7fGpYP9sLl2duG38C9AeaUN/jGFQbX4sDd1JulayT7YWrotq3Pupc7QvMAX4A3kS18c04cKfnVsk62F7YC1gT1cbhwJKoNs5E/RZfR7Xx7ThwZ+dUTdEF2wsXAoahvsd1gIVR19QZwGfMvd7EedWxbr5loX6HI1Dn7EJAAzAd+JC0jfjJl7nVsV6+tSRzr6mrMu99Yxxz2/i96ao0NDc3my6jLulNdl9gG2ALYFAXh8wG/gc8BtwZB+4YszWsn+2FywAHAr8D1qjwsHeAm4Ab4sD92lTddLG9cHVgJLAPsEIFhzQBrwBl4ObukGDYXjgCOAj4DbBEBYfMBp4BRgF3x4E702D1tLC98Jeoc3Unuv4tgrpwPwzcADwUB26TweqJCtheOADYC9gP+DkqiejK18CdwLVx4EbmaqeJby0KlNJ/66GSiK7EwK3AtfjJR6aqpo1vLY/6Lf4WWL3Co95C3TdG4SffmKhWYZOKoddsNXDqB8efDByLyp5r0QTcAZwWB+4Huuqmi+2FSwJno5KJvjWGmY668Z5SxN6L9In9fGBnah9uS4DLgLOK+GRve+EGwHnA5nWE+QI4B7i0iDde2wtd4G/AunWEGQecHgfuHXpqJaphe2Fv4Pj035J1hPo3cGIcuG9qqZhOvjUI8IFDqCzpbc8c4G7gJPzkE00108e3lgEC1ANanxqjTEMl+qfiJxM11QwoaFLhlJ2dgcunff6bL2YnP/2ZhpDTgTOA84vSFWt74R7A5dT3427tK+DQOHDv0xSvLrYXNgBHoZKmhTSFfRfYPw7cFzXFq4vthf1Q59UJVPa0V4kXUG0cpyleXWwvXBS4GPXEp8t9qHP1K40xRSdsL1wXuBE1VKXDLOBM4OyiXFPxra2A6wFbU8QfgOPxk+s0xaufb+0DXAosrini58BB+MlDmuIVL6lwyk4AnAzQ3NQYT373jOWgd61P8W09A7hx4E7RFK9qadfjDajuRxNuAg6OA3eGofhdSntg7kYNV+nWhMrST40DN7eT1/bCNYB/AEMNhJ8GHBcH7tUGYlfM9sJNUV3eyxkI/y1QigM3NBBbtGJ74fGo5L7Wp9rOvArsFgdufsMFvtUIXIh6iKlkmKNajwB74SeJgdiV8a2BqGv7boZKuB44DD+ZVW+gQiUVrROKFjO//9kzM77cXefNKbfEwvbChYEQ2MxwUU8AO8eBO9VwOfOxvXAF4HEqnxtSqxuBA/MYKrC9cD1UF7CuXqaOnBYH7lmGy2iX7YU7APcwd8KXCbNRicVtBstYoNleeB6qJ82kT4Gt48B913A58/OtPsDtwO6GS3od2BY/mWC4nPmpiaYPAxsbLukRYFf8pK4h5sIsKW0voQDos+j/hjf0/kHnF7kFENpeOFBjzC7ZXtgfeADzCQXAL4F/2l6oq4enImkPRRYJBahJZldlUM48bC9cCzUJ2HRCAXCm7YUnZlDOPGwv/AWqF8ZkQgFq9dlNtheaevpaoNle+FfMJxSgJl4/YXuhnUFZc/lWL+BmzCcUoCZ7Ppre4LPjWwsBD2E+oQDYHrgb36prVWghkgqn7JxGOwkFQEMDiwxYoTxWc5FbAA+ky+Ky8nfMDAd0ZFvU5MFMpHMo7iSbhKLFQbYXHpFVYenyu/uBwVmVCZxre+F2WRWWLvf9B9AvoyIbgVvTZE1oYnvh/wGnZFjk8sB96bL/rPwR2DPD8oajekizdCWwSYbl7Qj8tZ4AuScVTtlZHzi9s7/p1f+znzcOiN/RXPQvgGM0x2yX7YXbAAdnUVYbR9leWM+KhGocjvpMs3aO7YWrZFTW31B7h2TtOtsLs3pCugZYNKOyWvQHRtleqGuy6wLN9sKlUJPAszYMODWTknzLAf6cSVnz2gXf2jeTknxrJ+D3mZQ1r+PxrY1qPTjXpMIpOw2oi1inF5OGBnoNWLFc9wSSdpxpe+GKBuL+yPbCRVCTYPLQgLpYGx3qSW/q55gsoxMDgRvSnhJjbC/cDDjaZBmdWAE1Ec0o2wv3B3YwXU4HNiSbrvoFwZVk25vW2im2F+paYdI+1T1/I7Uvw6/XJemyTnN8azEgr4najcCN+Fb/Wg7Ou6diT9QOYF1qaJy2bp/Fn9W9lHAg5rPdEwGjiUsXVgGOM1zG2ajPMi9bAHsYLuPvmJlZXqkDTF6s01VJ55qKX6HT083uRI1sL9wScysEKtEb8wnw/qgdMvOyOPAXw2WcAixruIzOrAEcWcuBuSUVaS/FGdUc02+ph39Cw6xpmquyn6nu8/RCfbiJ2FU6Mt1TQbt0clYWE6W6crypwOnERbNPX5Ux1kZUN2veN/Si/F66sz/kXQFgS9sLzdz0fauBYrTxd+nW2Pr51sLkM1ze1jG1TNrMs6diGDCkmgMaGpqW67/cXS9prkdvYFfNMVv8Bn2blNRjadSOliYciL6Nn+qxge2FwwzFPsRQ3Gr9Jt2MyoSitHFkxhOoe4x0kq2bdz1Spm6Km6Pe35G3/pib77AXsIih2NVYAfhVtQfl+ePdppaDei8cbdDQ57vPi1CXCpja4KoWpupSpDburTtg2tv0a91xa9QPA13bthcOoRg9MaCGCrOc7d6T/B/5D2m32NNQclik641cU9uR5wm4dS0HNTSw0IAVR8Wa67KZoeGBmmfQGrCh7oC2Fy5OPqshOqK9jagetZomLBlioo1FOk/BTBsXBEX6Hhelyp7oChWpjcPwLb33DTW8o+PVFLpU/VvMJalwyk4/6tgEqrHfhE0aB76r82U2C6H56Sida1CEoY8Wy9teuLTmmBVNss3Q+gZWgRStjSbqsyC0cUFQtM9Nb33UDXxtrTHr04f6XrDXniHU/gJNE1ZJV6JULK+eimHUuVvfgBVu7QNNOrdo1r1jWZ6zkzui+6JTtDYugv6ek6K10TGwU2rR2li0m2PhpXNtVs27Hm3o/h4dzLy/pB49/ZoKVdYpr6Ri0XoDNPSauVbfwU88r6EuLXRvLrSS5ng66F7aKm3MXl9gKc0xi9bGPJdgd1cr5F2BdvT03yJIG+dT1x7fddDyKuy+g59cc85U+y1orD85au6le3OtrLY5robudzkUaa5BC911KuL32NPbWMTzquiK9h1Czz9PQa6p88krqZitI0hDQ/OSC/3kel1rhf8NWl8jkfnbMyug5XNvZY7meDrorlMRv8ee3sYinldFV7TvEHr+eQpyTZ1PXsMfmb92vAK66zRZczwddNdJ2piPnt7GotWnOyjiZ9bTz1OQNs4nr6Tik5zK7cynmuO9rTmeDrrrVMQ2jtEcr2htnBAH7gTNMYvWxqLVpzv4ANC923C9FoTrjbSxjVySiqgUvQd8nEfZnXhcc7zXgGbNMesxC9C5DBdgtOZ49fogDtzvNccsWhtN1GdBaGOPFgfuHOCNvOvRht7v0U9i4DutMeun+1wt2rk/nSof1PLc/Er3TbwecZro6AsYuJOAcTpj1mlMHLgzNMd8G9Adsx5ywy1OzHq8mncFuqmifY89/Vz9Lk109PGT74CPtMaszxv4SVXzRvJMKh7Lsey2TCU4RUqcntAdMA7cWcB/dMetg4k2vg98qDtuHbS3EXie4nSdNwFP5V2JbqpI15s34sD91kDcIrXxSUNxi9TGqq83eSYVT1Cc2bymEpwbDcWtxY3dLG61pgN3GIpdNhS3Wh8BT+sOGgfuD8A/dcet0VNx4BZtaLS7CAHd821qdaOhuLdQnBUSN3azuLW4sdoDcksqolI0Abgrr/Jb+QT4l4nAceC+AvzXROwqPRMHbmQo9j3Al4ZiV+PmOHATQ7GvAWYail2Ny+PANTVP51JDcatVlHp0O2nP4TV51wO1WuBGI5H95HPgH0ZiV+c94GEjkf3kOeB1I7Gr8yh+Mr7ag/J+o92f0b/Ot1p/iUqRyXkBfzMYu1LG6hAH7kzgfFPxK2S0DnHgfgGMMhW/Qt9g8IYRB+5/yX/Y4S3g/pzr0N1dCkzKuQ5XxoE70WD8gPx7uc/BT0zWodveN3JNKqJSNB64JMcqvIrhm0UcuA8Ad5ssows3x4H7b8Nl/B14xXAZnTkzDlzTk2I94HPDZXTmSIM9MS0OAaYaLqMjs4H9DfbELBDiwP0KODHHKrwH+EZL8JNXgYuMltG5p4DrjZbgJ3eTb4J9LX5S03y5vHsqQPVWxDmUOxsYGZWiLMbnDge+zqCctj4HjjZdSBy4s4H9yGclyGjUk4tR6ZPXQabL6cA9ceDeabqQOHDHA6eYLqcD56bDhaJOceBeTT4T4ZtQiWEWiempwNgMymlrMnAAfpJF8nsI+Syh/Qg4vtaDc08qolI0BdiNbD+8ZuCwqBS9lkVhceB+A4wk2y67OcABhrshfxQH7tvAH7Moq5VJQClNaoyLA/ch4KosymrlU1RSmpVLyP6GNBo4I+Mye7qRZD9p89w4cJ/LpCQ/mQ6UUBO0s3SM9mWkHfGTL1GJRZa9d7OA/fGTmofQck8qANKb+zaA7o2L2tMMHByVousyKOtH6TDIoRkV14xKKB7NqDwA4sC9CDgvo+KmAzulyUyWjgTuzaisCcDWBnbQ7FA6/LAb8HJGRb4DbJ/OzRGapCtotgMmZlTkjWTdy+UnLwN7oG6EWfgTfnJDRmUpfnIPGfQ2p5qA3+Mndc2tKkRSARCVoleBrTGbWOSSULSIA/da4EDMLomaDfwuDtybDJbRoThwT8L8JKNJqBvRM4bLmU+6c+FewO2Gi/oU2DwO3HcNlzOfOHAno5L8Zw0X9TqwZdqTJzSLA/c1YCvM91hcDRyYy3wYP3kQ2AXz+6ycjJ/kM3nSTy5D9Vaa/HxnAnvhJ3Uvy29obi7WvCin7KyHmti4mubQk4AjolJ0s+a4VbO98BfADYCtOfT7qDFN0zeDLtleuDdwGbC45tAvA/vFgfuO5rhVsb2wF3AccBb6X1ccAgelq05yY3thf+BM4A/ofwC5Fjg+3XlWGGR74U9Q15utNIeeDJwYB27WQ4Lz8631UPvJrKs58pfAofiJkW0HquJb26AmiK6oOfK7wH74iZbtDwqXVAA4Zac/agLn8UBfDSHvA46KSpHul4bVzPbCQcC5qCGRhjrDNaOWkv0xo0lSFbG9cGnUHIRdNISbAZwOnJ/2FhSC7YVroFYQbawh3ETg2Dhwi7LZFgC2F26CauMQDeE+AUZmsCJJtGJ7YQPqWnMuMEhDyCdRvROxhlh6+FYf4DTU3K7eGiLeBhyVbp1dDL61CHABas5MvZqAC4HT0jkqWhQyqWjhlJ2VUMnF76gtuXgKODUqRS9orZhGthf+FDgB2J3qfwizUL0658WB+7rmqmlje+E2qDZuQ/UJ1BTUeO2FceB+oLlqWqS9Fnugnug3qCHEN6jk69I4cPNYJdSltNdiP+BYYI0aQnyEmgR6TTq8InJge+FyqO/wIGDRGkI8h7qp/auwy399aw3U9WZfYECVRzehegrPr3VJZSZ8a0PU0uFdgMYqj54J3Amch59o3xSx0ElFC6fsDAQ2R92UtgacDv70M9S+6Y8BT0SlqAg7PVbE9sKlUGP1mwLrA6u282fNqCGO0agf9x3daTza9sKVUW3cCBgBLN/On81BTd57FZUU3tOdbkK2F64L/B/wM9T3OLidP5sJRKjv8VHgwe40UdH2wk2BXVHf4XBgkXb+bArqrZmjUevtn4wDN+8Ni0QqTRJ3QV1PRwBrA33a+dOvUL/Fl1HXmzyWcdbGtyzUb3ELVBuH0P4w3seo8/RF4Hb8pDA92l3yrWWAvYFNUG1cuZ2/agbGo77HZ4E7TPa+dIukoi2n7CwJLIvqxmtEje19H5WiOM966WR74aKoeSUtmfZU4L0MNkDKTDo8shKqjXNQN6JxRRrCqZfthSuhztX+qJ6lH1Bt7DZJRGfSbvVVUclTP1TC9B0wXpKI7sP2wn6oHqhBqORiGvBZHLif5VoxnXxrELA6MBCVXEwDPsRPus2DWZd8azHU73EAKpmYCryHn/yQVRW6ZVIhhBBCiOIpzJJSIYQQQnRvklQIIYQQQgtJKoQQQgihhSQVQgghhNBCkgohhBBCaCFJhRBCCCG0kKRCCCGEEFpIUiGEEEIILSSpEEIIIYQWklQIIYQQQgtJKoQQQgihhSQVQgghhNBCkgohhBBCaCFJhRBCCCG0kKRCCCGEEFpIUiGEEEIILXrnXYFaOGVnUWBNYCDQAEwHPopK0Sd51ksnp+wsDawGDEj/p6nA+KgUTcivVvrYXtgLWANYFPU9zgGmAJ/Ggft5jlXTxvbCBtR3uBzQF9XGH4C348CdlmfddLG9sBH1W1wS1caZwPfAmDhwZ+VZN218qx8wFHWu9gFmAF8D7+InTTnWTFTDtxZDnasLMfe+8SF+8lmu9dLJt5YBVmXe+8Y4/OSbrKrQ0NzcnFVZNXPKzmLAnsAvgBGoD609E4DRwIvAbVEpei+bGtbPKTvLA/sAm6LauHwHf/oJqo3Podr4RTY1rJ/thSsD2wBbA1sBS3Twp+8CjwOPAU/FgftDNjWsn+2FPwP2ADYAhgOLtPNnc4B3UN/jo8A/48Cdnlkl65AmSlsBuwA/BYYx9wLW2kwgQrXxfuCROHDnZFTN+vhWH2BHwEX9FtdGJRNtTQFeB14B7sVPns2qiqICvrUEsBewJep7XLmDv/yKufeNW/GTDzOpnw6+tSLqvvFz1O9x2Q7+8mNUG/8D3I6ffGWqSoVOKpyysxZwErA30K+GEE8A50el6BGtFdPIKTubACcCO1P9cNQc4J/AeVEpell33XSxvXBb4EzUjbZas4HbgNPjwI111kuX9Gl9X+APqJtstSYC1wIXxYFbyCTR9sKFgIOAY+j44tyZz4HLgCviwE101k0bdRM6CjgMWKqGCO8CFwOj8JMZGmsmquFb66DuG3uies+q0Yx6mDkPP3lcd9W08a3NUPcNl+rvG7OBe1FtHK27aoVMKpyy0xf4M3AyeoZo7gcOiUrRlxpiaeGUHQu4EDhAU8irgROjUjRJU7y62V64KnAVqmeiXrNQn9cZRRo6sL1wbeBG1FNCvSYBJ8SBe42GWNrYXrgFcAOwioZwXwAHx4H7oIZY+vjWnqikZ7CGaO8A++EnhU30eyQ1TPUX4HigUUPEe4HD8ZOvNcTSQw3hXAL8VkO0ZuBywMNPpmiIBxQwqXDKzvqoi7SjOfT3wFFRKbpVc9yqOWVnO+A6YAXNoT8CDohK0ZOa41bN9sJDUUlAe13j9Xgf+E0cuK9rjluVtHfiZOB0qn8a6spjwIFx4OY6RyjtnTgHOAI1Bq3TzcDRceBO1By3Or61JHAlsLvmyHOAC4A/S69FBnxrA9R9Yy3Nkb9BJRZ3a45bPd/aEbiGjoc4avUBsD9+8h8dwQqVVDhlZwfgHvTfiFr7W1SK/mQwfqecsnMYKjvUfZFuMQc4KCpFowzF75LthX9AXVBN+Q74ZV6Jhe2FfVFDMrpvRK19CWwTB+5bBsvokO2FiwEPARsZLOZtVBvzGfLxLRs1d6ejOVo6PAHsgp9MNljGgs23dgHuoLYh8kr9GT8502D8zvnWMcBFmLtvzEYlFrfUG6gwSYVTdlzU/ID2JkTpdm5Uik7OoJx5OGXnCFQXq2nNwMFRKboug7LmkUFC0SKXxML2wt7AP4CdMijuW2CLOHDfzqCsH9leuAjwFLB+BsWNBzaLA9fYxLF2+dZPgGeBFTMo7TlgW/ykMMN2PYZv7QrcjZ7hjq78BT85PYNy5uVbWV1Tm4ESfnJzPUEKsU+FU3Z+ijoxskgoAE5yys7RGZUFgFN2dgMuzai4BuDqNFHLjO2Fx5HNyQ+wOPCE7YXrZVRei6vIJqEAtTrm37YXLp1ReS1Lfe8jm4QCYHXgEdsL+2dUHvjWwsC/ySahALWi646Mylpw+NbGwO1kk1AA/BnfOjijshTf2pvsrqkNwA341jb1BMk9qXDKTj/gJswOebTnHKfsrJlFQU7ZWQo1kdJU11V7egHXOWVn8SwKs71wU7I7+VssDtxre2Em547thTsDB2ZRVivLoRKZrByHWrqdpfWAMzIs73xgSIblAeyMb2V97vRcvjUAKGN2yKM9F+FbJofL5vKt5YErMilrrt6oxMKqNUDuSQXqYqJ7ck0l+gM3OmUniyz3SvTMKq/WMmQw3JLOMbiGbJOmFquQwQ3J9sLFUYlhHnaxvXBf04XYXrgGcJbpcjpwvO2FJudvKOopLNunzbkuTPcVEPU7G9XLlbWFgFH4VhbXumtQG65lbQXU/I2a5JpUOGVnXeCEHKuwIXCkyQKcsrMrsJvJMrqwt1N2fmW4jMPJJzFscWy6sZZJ56KStLxcYnvhoobLuBaVbOehEbghHX4xw7f6olZd5WUR1CRtUQ/f+hmQ6fB1G5thOjFVwx47GC2jc/vjW1vVcmDePRUnk914WEdOcMqOybkcpxiMXSljdbC9cCDwR1PxK9QH8E0Ft71weeD3puJXaHHgUFPB0+GrzUzFr9BaqJ06TfktsJLB+JXYCd/SvVx+QeORT69oayfhWybvXXlfU6HGOuSWVKTzDPbIq/xWVsDQhcwpOxuiZ1Okem3qlJ1adnqsxB7UtvugbvsafJI/hOwmEXfmcINP8kZ77Kpgsh5FaeMReVeg2/ItY9frKq2CqZ4E39oC/fs01WJrfKvqeYd59lTsSzEu1AAlQ3H3MxS3FvsZilvXTGGNGjEwwTB914Wp86NaK2KmjYtSjAs1wJa2F9rao/rWuqh3sRTBXvhWXsNM3d3vyL+HvcV+3SxuLaq+9uX55dQ0XmPIlk7ZMfFZFKmN2uuS3nB1bMGti4kEZ1Xy7zJvzcQ5tQnZz6LvSAPqBVC6Fem3aJHdkt2epkjfo6lVUkVqY9V1yTOpGJFj2W0NRL2GWxun7CxCPrOTOzLUKTu6n44cijH00cJEUlGk8xTM1EfamL2i1ae7KFIythi+peN9OHP51mCK9RCzLr5V1fu3ckkqnLKzLPr3L6+X7h/5cPKfTNRab2BdzTF/qTlevVazvVD3D7JoF/8F4YZr4sZRpJsRFO8zLz7fWhk1YblIdJ9XRTtP+wNrV3NAXj0VQ3MqtzNVfXAVWBDaqPuFaDosrzle0b7HwbYX6u4dKlob9Z6nvtULyGSjuyro/i0uCIp2noLcN+aTV1IxKKdyOzNQc7wFoY264+kg32P1itZG3e0bQHEm97Uo4m+n6Ip2nkLP/y1ClW2saqxEo6L9wEF/nYrYRt3rqrWcP30We/G//ZZ6aAkdsZpnL9IAWl95UsTvsaefq7rP07z3wmlP0T7z7qCIn5mcq23klVRMz6nczuiuUxHbqPstiVPqjtAwc2q/pR9YqaGhaTkN9aGh77cLwvfY09uo+zwt4ttBi/aZdwdF/MzkXG0jr8zv45zK7YzuOhWxjZ9ojvd9vQH6L3f3y7oSilSiMRYU73ucAXytOWbR2qj3PPWTWcCXWmPWr2ifeXdQxM9M9zVVdzwdqvrc80oqxgJTcyq7I6MLHk8H3XV6sZ6DG/p893nvhaMNdVUGmAi8rTEeFO97fDMO3FmaYxatjSbq86qBmPUo2mfeHUTAzLwr0UZPv280U+VvJ5ekIipFc4DX8yi7A01ork9Uij4GvtEZs06fRqVI9xPuf1BPzjVZaMUbPmpo0PrK+6fTc0unov3ITdRH2pi9otWn+PxkJvBW3tVoZRYq0dFpPPCD5pj1eB8/qar3N8+JL//Nsey23opKUf3zA+ZXpDa+pDtgHLjTgBdqObZx4Ltv9ur3zcaaq/SY5ngAb1KscU7t3yPFOk+h57exCfhf3pXopor0Pb6On9T8UNUuP2kGXtYasz5V/xbzTCpuz7HstkzVpUhtvM1Q3Bpu5E1NA1a41cR7X7QnFXHgTgf+qTtujYzUJQ7c94BXdMetUUyNiWoXHqM4PYdP4idf5V2JbmpBuKZ26zbmllREpegV4LW8ym9lJlA2FPsfFONC9gXwoKHY9wJVDTn0Hfz48w29Zq6luR6vR6VovOaYLa4xFLdad8WBq3siaouitPG6OHCbtUdVkzVv1B63NkX5rLsfP3kOGJN3NVC9l7cYin0Xan5Y3j4CHq32oLzX/Z6fc/kAt0al6AsTgaNSNB243ETsKl0SlSIjE5ziwB1HNT+uXtN/6Dv4KRO7G55mICYAceA+QzGe5C8wGPtmIO+n5ynAlQbj/x01Dp6nD1EPG6J2Jn8HlboRPzHzwOgnk4GrjcSuzsX4SdVz1PJOKu4Ansux/InAqYbLOB/VpZuXcaiLqUmnU+FqngHL3/paQ0PzkprLfzYqRaZ6YlocjRoLz8vVceC+aSp4Osxzgqn4FfpzHLjfGYvuJ58CgbH4lTm6lgu1mEeZfOcdfAP4hss4G/jUcBmdeRu4opYDc00qolLUBOxPfhPhjolK0ecmC4hK0WTgANTSnKw1AftHpcjo5xsH7kdU8CPr1feruHHgeN2TM2cAB2uOOZ84cF8ELjJdTgc+Ak40XUgcuLcA95supwPPAxdnUM6ZqMm3ebgJPzGd/PZ8KinbjzpWntXpCPxE90q6eakVFwcZLaNjs4H90tU2Vcu7p4KoFL0HnJJD0Q9GpeimLAqKStFTmO3W7cjFUSkyMemtPRcCz3T2BwNWuuHrhgb6ai7Xi0rRWM0xO3Iq8G5GZbVoBg6MA3dSRuUdApjrLWjfNOCAOHDN9wSpuRX7kf0wyOfAMRmX2XP5yTuoHtKs3YOf3JVJSX7yCHBDJmXN61z8pObh3tyTCoCoFF0MXJdhka8Dv82wPIA/AI9nWF4IeFkVFgfuHNRLN55t77/3XuSN0b36JBtoLvZP6bmTiXSIYCeynXtwbBy4T2RVWBy4XwK7kF3v4Wxgz3RuTjb85DVUYpHVcNYPwE74ycSMyltQnIuaC5SV/6F6nbN0JF08rGn2T+DP9QQoRFKROoRsZme/AWwXlSJTs+jbFZWiGaiLdRY3iEeAPaJSlOnTWBy4U4BfMV9iMWd2/2XvXlRzcX+KStHfNMfsUhy444GtyWbb55PjwL0kg3LmEQfus8DO6Hi3S+dmAfvEgfuA4XLm5ye3ASMxn1hMBH6FnxRtR8/uT+3pcADZLMF8BdgeP8mqx1Dxk2moB5l2H9Y0ux/Yu945P4VJKtL5FQcAf6XKJYpVeBjY0sDOkhVJN9hyAZPDLtcBO5ueR9GRVonFj9l1v6XDFxp6zV5VYzGn5JFQtIgD9y1gM1SCasIU1HDAuYbidykO3MdRyZOp9y18DewYB+7dhuJ3zU9GAb9BwztsOjAe2BI/yWoIcsHjJ7NRvc7nYS5BvB/YCj/JelhQUYnMdphNnq4AdtexmVdDc3Me8wc755SdjVC9FmtoCpkAf4hKUR7jU+1yys7OqGVDy2gK+RlwUFSKHtYUry62F/YGjmtonHzMwNXPGtjQwKIawr4HHJzOUcmd7YV9UPMsTkHfG3+fQSUUH2iKVxfbCxdGrWDSORn2TuDIOHCLsIcL+NayqL0jdtQUsQm4BDglfdIUWfCtTYFRwGqaIn4PHIOfZDnE0jnf2h01P0/XCrqPgQPxE21D84VMKgCcstMfdbE+Cmq+Ic1GXcC8qBTluTynXU7ZWRw4CzW+W+s7MKYC1wN/jkrRRD0102foVb9aqXHAp2einiZq7Rn7DjgHtd9G4V5/bHvhcFT9tqkjzMeoZWRXG9n8qU62F24D/A34aR1h3kYtGy3mPg2+tS9q8t/qdUR5HvDSTZpE1nxrIVSifzhg1RhlFqpXwMNPjOxhVBffGozq0S8B/WqMMhm4Fjhd95BOYZOKFk7ZGQTsA/we2JDKngjHo7YXvSF9sVehOWVnSdQJ8ltgXaChi0OaUF3vNwM3RaXoW7M1rJ9TdtZEdTVvA2wEXa4C+Q41/+Rx4I6oFBXpJTvtsr3QAQ4E/g9YtoJDpgNPop6u7osDd7bB6mlhe+GmqGHKXYDFKjhkEmrS8A1x4Jp4N4tevtULNXx3AKrLeWAFR32D2tDqevykSO9tWHD51sKo6+nvgZ8BjRUcNZb0voGffGawdnr41tKoB9LfAmtT2X3jNdTw+834iZFhv8InFa05ZWcA6qY7AhgKLIR6+p2O2mBqNPBqd7jJdsQpO4sAw1FtXI25PRjTUBtZjUZtSZ3thCGNnLIzENgC2ATVCzUQNY9mCmoY5wngtXSeTbdke+HyqO9wBCrB6IfqOfsBtU/CaGBMd0gkOmJ74Sqo9q0PDEYlijNR3cavo9o4rog9LxVRCcaaqDYOQ52rfVD7I3yNeiX0aPzko7yqKCqgei+Gob7HNZn3vvEB6X3D1E02E75lMf99oxnVk/3jfSPdrdOobpVUCCGEEKK4CrP6QwghhBDdmyQVQgghhNBCkgohhBBCaCFJhRBCCCG0kKRCCCGEEFpIUiGEEEIILSSpEEIIIYQWklQIIYQQQgtJKoQQQgihhSQVQgghhNBCkgohhBBCaCFJhRBCCCG0kKRCCCGEEFpIUiGEEEIILSSpEEIIIYQWklQIIYQQQgtJKoQQQgihRe+8K1App+wsAmwEjEj/rQUMBBqA6cBHwOj033+jUvRpTlWtmVN2lmLeNq4GDEj/81RgPPO28Zs86lkPp+wsD2wHrAusCawC9AeagQR4FxgLvAw8EZWiqTlVtWa2F64BbID6DtcHlgP6AnOAH4A3mfs9vhwH7oycqloT2wsbgGHAT1FtHA4siWrjTOB74HXmtnF0HLhzcqlsrXyrN/Az5v4WhwGLAn2AGcDXwKuo9r2Cn0T5VLQOvjUA2JC5bVwHWBhoRLXxM+Z+hy/hJ+/nVNPa+daizHtNXRNYiLn3jQ9pdU3FTz7Pp6J18K2lmbeNqzLvfWMcc9v4In7yncnqNDQ3N5uMXzen7GwGHA7sgrr5VKIZeA64CrgrKkWzzdSufk7ZaQB2BA4DtkX9oCsxG3gEuAJ4JCpFhf0inbLTCOwLHAJsjPpBd2nGN794YuaE7SYAF8aB+z+DVayb7YWDgAOAA1EJU6W+B+4ALo0D9x0TddPF9sIlgUOB/YGVqzj0c+Am4PI4cIud7PvWysCRwG+Bpao4chxwA3ANfvK9iapp41vDgKOA/0MlEZUaDVwL3ISfTDNRNW18a0vUfWNnoF+FRzUDz6DuG/fgJ8VNhH2rF/Br1O9xayofdZgFPARcgZ/820TVCptUOGVnLeAaYNM6Q30MHB2Von/VXyu90oTpKmBonaEi4JCoFL1Yf630csrO3oAPDKnmuOZmZk8ef9ok5gxcLP2fHgT+FAfum5qrWJf0qf1I4C+oJ9laNQP3AEfFgfuVhqppY3thP+B04DgqT+zbMwv1m/biwJ2so27aqCfa84H9qDyxb88UIAAC/KRYDzO+tSJwObBTnZG+ATz85Pr6K6WZbzmoc2yjOiN9CByJnzxUf6U0861foO4bVV1T2/EacDB+8kr9lZqrcElF+lR7AnAGlWeYlbgVlVwY7fqphFN2FgL+BhxNhU/tFWgCLgROi0rRdE0xa+aUnWWAG1FDHVVrmj3o1SnjT12/zf88CzgVOC8O3NxPXNsLV0E9nW6hMey3wJFx4N6hMWbNbC/8Kep7XFtj2A+BA+LAfVpjzNr51g6oG9HyGqOOBvbDT97SGLN2vnUg6vqwiMaojwAH4Sf59z6p4SoPOA01DKfLKOA4/CTRGLM2vjUQOA/VO6HrvjEHOBfw8ZOZOgIWKqlwys6iwP3AZoaK+AJwo1L0mqH4XXLKjo36Ma5hqIi3gV9FpegTQ/G75JSdn6G+x2VqjTHj283/M/PrHTbv4D//G/hNHLiTao1fL9sLdwFuQc3rMeEm4MA4cHN72rW98GjgAszMvWoGzooD988GYlfGtxpQN9pjDZUwEzgUPxllKH7XfKs/cBuwq6ESEmAP/OQxQ/G75ltLoHoy6+2d6MinwK9yTRB9azXUfWNVQyW8gWrjF/UGKkxS4ZSdJYAnqW48uhYJsH1Uiv5ruJz5OGVndeAp9D4RtedjYMuoFH1ouJz5OGVnA9RN36o1RnMzTVPeO+Xb5tmLLNnJn70IbJdHYmF74T6om3493eSVeADYPQ7cWYbLmY/thacCZ2ZQ1CVx4B6TQTnzUgnFDajhDpOagWPwk0sNlzM/NRHzQWArwyXNQCUWDxguZ35qkuKT1D+E3JXvgG3xk9GGy5mfbw1FtXFpwyV9AGyJn9T1QFqIJaVO2RmEysJMJxSgbnYPOWXHyaCsHzllZwXgccwnFAArAY+nQxCZccrOetSZUAAwZ0DURUIBasLno7YX1jPGXzXbC3cCyphPKECNfd+SztvIjO2Fx5BNQgFwtO2Ff82orNYuxXxCAaqb+u/4VhZlzaWGA+7FfEIBapj6bnwri7Lm8i0LeBTzCQXA4sAj+NaaGZQ1l2/ZwGOYTyhArcR7HN/q6trbqUIkFcBFqOVpWVkMuMspO5nckNIVHregbvZZWQV188tEOnT1D+pNKIBZPwyfWOGfboy6OWTC9sIVgJvJdin2/6Fm6mfC9sINUEMeWTrF9sJfZVaab+0FHJFZeSqxuCp94szKKUB2n6lKLG7HtwZnWOZlqKW+WRkM3Ilv9cmkNLXC4zbUkvSsDAGuqydA7kmFU3a2A0bmUPSaqBn7WTgCvZP5KrWtU3ay+mwvpbplhu1qbqZ55rebVTOreWQ6vyEL16IhaarB2bYXrma6kHSVx41k0wvT1rW2F5r/bFV3+WXGy5mf+mx9y/xnq5aMnmq8nPktRVafrW/tjFr2m7V1UZNBs/AH1INT1nbGt2r+bHNNKpyyszDqQp2X452yY2pyDwBO2VkZtcQsLxc4ZWdFkwWkn6GeH3hTvzHNsxdbtsqjLrK90OjTg+2F+wPbmyyjEwsBN2QwDOKjNpXLw/KoSZOmXQEskUE57fkZamWbOWrY40bUJl152BPf2t1oCb61GHC10TI690d8a7jREnxrCNkNQbbnEnyrpuHzvHsqjgCM3vC60As4y3AZp2FuhUAlFgH+aLgMbSf/rB/WnVDDYTZq4ykj0oQlq16tjmwG7GAquO2FS6P2ocjT/rYX1rv2vmO+9TNgN2PxK3MKvqVzWWdbewLrGYxfib+mE2FNOYY6VpZp0BvzN3yf+vaEqddiwEm1HJhbUuGUnd5kOFbciV86ZcfIBNF02+19TcSu0n5O2VncROC0l2JrXfFmfrf5KjUeeorthabO5z2AFQzFrsYfDMY+DL37wtSiAbOJTd5JE6gk/0CD8YvQxjUwlQD7Vj/UTpl52wHfMrMtgG+tgLrm5G0kvlXNjqtAvj0VvyLbCSidMfWU+zv0bsRSqwHA3oZil3QFam7qO7Z55pK1TmZdCfi5rrq0kcecn/b8wvZCW3fQNBkz1tNTpb1tLxzQ9Z9VSXWZ591L0cLMZ63mUowwErt6phKnnVHvmclbA+Z+MyWK8V6uhVETxauSZ1JhajOWWpi62PToNqarWnbRFW/2pKFf1hlC+1iu7YWLAVvqjlujBsycUyPIdxiyNQv4pYG4O5B/T0yLddIxc92KdL1x8S0TD1RFaqPcN9qRZ1KR5RLSrqzolB2t2W+63bjZyTzVabvltQ5D0Ti2OfPbLepdclvTluBdWB99W+LqYOJJtEi/RZA21qpIbewLmNgLqEhtXDXdK0MflYhluodSF6o+T3NJKpyyM4BsNiyphu4fecsrdotiUafs6N7iVdt32NzU+/2mGcvWOp+ixWoGVoEUpTu5hYn6SBuzJ22slprganxpdRUa0P+w5lCMIfMWS+NbVW3YmFdPxbrksxa+M7pPDhM9A/XS3XOibXe52ZPX0PGukt7A6hritFa073GI7YW6VxMVrY0mevjWMxCzHno/c99alnxXRLRH93k1nGL1GoL+c7VIvdstqvoe80oqijDRpi3ddVoQ2qhty/GZ325R7d4UHdG9DXrRvsde6N9noWht1Fsf9VKtqmexGybXm/zj6SBtbCOvGaZF6t5pobtORWyj7olqWtrY3MzUPtZrX2K99lXdsWZbzeDqqFaLIn6PPf1c1X2eFmWCZms9/TuEBaONcq62kVdSkflbFyugu05FbONMzfG0vJa7oYGF+i7+oq5tzHvBeZpCAcX8Hnv6uar7PNUdT4ee/h3CgtFGOVfbyGv44/ucyu2M7jotCG2sdwmoCXX3drRRxO9xouZ4RWuj7vpMT/8ViVxv8o+ng7SxjbySijeB5pzK7sjrBY+nw+ua443VHK9eTcC7mmO+rjlevT6MAzfRHPN1zfHq9brWaH7SDLyhNWb9XtcazU8+Br7TGrN+rxc8ng6vFzyeDq9X88e5JBVRKfoBGJ9H2Z0YrTneWxSrK2sK+m+472iOV684KkW6n0h1nxf1MlGforXx1W4Ssx4mPvOe3UY/+Qb4WGvM+un+zN8A5miOWY/v8ZMPqjkgz82vinQh+zoqRZ/qDBiVoplApDNmnV6PSlGT5pgRxequ+4+BmEU6T2HBSCqkjcWJWas5mHnqLlIbP8FPankBYsf8ZCrF6gGuOmnKM6l4IMey23rQUNwitVF7XaJSNBtzn10t/qU7YBy4XwH/0x23DiY+7/8Cei+OtZsGPG4g7kMU5wnwQ1RPpm5Fut48md4gdStSG03VpVu3Mc+k4p8U5yn3BkNxb0SN8+dtNnCzodi3GIpbrW9RNw4TTJ0f1fpfHLjab0Zx4M6iON/jPwzMGQE/+QJ4RHvc2tyYzvPQy0+eR/8QZ61M/WbuBiYZil0tU20cRTHmHM4Abq32oNySinTs++q8ym/llagUPW8icFSKPgLuMxG7SndFpehzE4GjUvRv4BUTsat0QTrkZMJNFGMS3MUGY19KMZ7kL+6msSs1HbjKYPxLDMau1KfAvUYi+8lk4HojsavzHH5iZijGT8YBDxuJXZ1b03ksVcmzpwLUjzzv3orTDcf/C5r2c6jRTOCvhsv4s+H4XZmAwYtpHLhTgXNMxa/Q28BdpoLHgfshqmctTw/EgWsuQfWTxzEz76Yal+MnXxuMPwo1vJKns/ATk3tKnA/8YDB+JUzfN84g317uacDZtRyYa1IRlaKvgKNzrEI5KkWmuswBiErRG9T45WhyRlSKxpgsICpFDwOPmiyjC6dGpWiK4TIuAF42XEZHZgOlOHBNJ6fHo54y8zARODSDcg4ATIz1V2IccJrREvxkGqqNeXWfPwlcY7QEP/kMda7m5Wr85EmjJfjJy6hrTl5OxU/eq+XAvHsqiErRLcD9ORT9OXBsRmWdidqbI2uvkN0T9oFA1V1lGjwYlSKzFzEgDtw5wP6occasnRMHrvFZ7+lchoNMl9OBY+LANTJENw8/eR/4o/Fy5tcE7J/e9M3yk6eBK4yXM7/JwIFG5ou05SfXkc+DzEfAiRmV9WfyWQnyPHUMFeaeVKQOJtsuuxnAvlEpmphFYVEpmgXsg/6dEDvzDfDbqBRlMk4elaLPUG3Mcivd8cDvsyosDtwxwDFZlZf6D2oILRNx4D5C9k9IN8WBe1OG5V1K9nOdTsdPXsiwvJPJdvllM3AwfhJnWOYBgI63G1dqGrAPfpLNRFE/mQ7sTbZDPV8Bv8dPah56KURSkQ6DbA18lkFxs4A9o1L0dAZl/SgqRW+j3nSVxQk5EfhVVIoynQkelaLHgN+QTWIxHvhFVIoynZMTB+7VgJdRcf8DdooDN+tN1E4ku8lw/0T1cmVHPUnvBTyWUYkX4idnZVSW4idTgO1Rc3FMawaOwE9uz6Csufzkc2AbsnldwAxg94wTQ/CT14GdUJsXmvYdsF21m121VYikAiAqRR8Am2J2p82pwK+jUqR9P4NKRKXoBeCXmB0m+Ap1s81lRUZUiu4HdsfsuPUYVBuzSELnEwfuOageC5MTqZ4GfhkHbuYT0uLAbUYNg/zdcFG3AP+XwVyR+fnJDNTF+j7DJZ2Jn+Qz/q9m7m+B2blAs1FDHlcaLKNjfvIusBlme7onAy5+ks+KDD/5Dyp5MvkA9TmwOX5S93b2Dc3NRVgOO5dTdgahXjN5CNCgMfRzwP5RKapp8olOTtlZBrWcdmfNoe8BDo9KUe4bGTllZ23gDmAdzaHLwBEZTMzsku2FP0fNtl9dY9iZgA+cm87jyJXthbuilkAupTFsAhwbB+6NGmPWxrcagMNRc48Gaoz8KXAQfpL/3hi+1Rc1Pn8yet9MHaHmieS/y6VvWcCFqCERnZ5CJU15r6gB31oeuBb4lebItwNH4Sff6ghWuKSihVN2fon6AFeuM9QU4E/ApQa2qa6LU3Z+i5oQs0SdoSYAR0Wl6M66K6WRU3b6ASegZmovVme4CDglKkVF2sET2wsHoJbsHg001hnuf8D+ceBm0WVdMdsLl0DNQ9hbQ7gQOCQO3Fx6mTrkWysD1wFb1RmpGZVo/gE/0b+JVz18awRqw6Z164w0C5WEnYmfFOn9RuBb26NWn6xYZ6RJqGHOKzOZeFoN39ofNe+p3mvql8Dh+Mk/66/UXIVNKgCcstMHNfZ5BLBhlYd/hEpKroxKURE2LmqXU3YGorLrw4C1qjz8LeBK4MaoFOW1TK5LTtmxgOOAkcDyVR7+EuoJ5O6oFBX2ZLW90EYlFr+nuiRxDvBv4JJ0kmRh2V64LmrF1P9R3VP9DNTciYvjwH3JQNX08a3NUUNbOwF9qjjyB9QT30Vpl3wxqZ6ZnYGjUAlUNb3BX6H2Mrk0XdZZTKpnZh/UfeOnVR79ASopuRo/mai5Zvr41sKo6+mhwJAqj34Ddd8op5NBtSp0UtGaU3bWRI0Pjkj/DQX6p/95NhCjZjuPRr3L4Lki34Ta45SdEah5JS1tXA3om/7nmah17i1tfC4qRa/lUc9aOWWnF7AxsB3qaWlNYFXmdslOQm0zPBY1DvxgVIry73asgu2FfVHzZn7G3O9xWebOX5qEWl7c8j0+Ubin9i7YXjgI2Ja57VsflUj1Qj2pf496mVRLG/8dB27em9xVx7cGM28bhwEW6ibcBHyNetnSaNTS7ccyWS6qk2/9BJVYtLTRYW6yOAc1cb7lO3wZeAo/yXMjv+r51lDmvW+sybz3jQ+Y28YXgRcL1zPRFd/aANiEee8bLQnxDOa9bzyrY95EZ7pNUtEep+w0AL2yWjaZB6fsNALNRRu60ckpO72Bpp7cRtsLewNz0kmQPZLthb1zmXSZJd/q3e1urNVQPRmNPbyNvYAG/KTH3jfwrUaguZ6lobXq1kmFEEIIIYqjMEtKhRBCCNG9SVIhhBBCCC0kqRBCCCGEFpJUCCGEEEILSSqEEEIIoYUkFUIIIYTQQpIKIYQQQmghSYUQQgghtJCkQgghhBBaSFIhhBBCCC0kqRBCCCGEFpJUCCGEEEILSSqEEEIIoYUkFUIIIYTQQpIKIYQQQmghSYUQQgghtOiddwWq5ZSdpYERwJrAIKABmA7EwGjg/agUNedWQdElp+w0AKujvseVgP5AEzAFGAOMjkrRhPxqWD/bCxuBoag2Lgv0A2YDPwAR8GocuEl+Nayf7YX9gHWB9YAlUW2cCXwHvA68EQfu1Lzqp4VvDUK1bxiwKNAHmAF8DbwGRPjJrLyqp4VvLYY6T9cGFkbdF6YDn6GuqWPxk6b8KqiBby3D3PvGQNR9Yxot9w0/eT+/ymniWzaqjasACwHNwFRgHKqNn2VRjYbm5mLff9Mb0C+BEvALYPkuDkmAl4DbgLujUtS9L2o9hFN2BgL/B+wDbAAs0sUhnwJPAmXgqe6QKNpeOAjYF/gdsD4woJM/bwbeA0Lgyjhwx5mvYf1sL1wJ2A/YBVgHdZPtyBxgLHA/MCoO3PGm66eFbw0FDgBcYAid9+jOBN4E7gXK+MkX5iuogW9tjPoetwFW7uKvp6CSizuB2/CTiUbrpoNv9UK1rQRsiUrsOzMR+C9wK3AvfjLNZPW08K2+qN/hb4FNgCW6OOIr4FngJuAh/GSOiWoVNqlIk4kS4AFr1BjmO+AK4JyoFE3WVTdROafsLAL8ETgU9aRXi7eBICpFt+iql062Fy6HauPv6TpZak8zKoE6Nw7cf+usmy62Fw4FfGA3oLGGEM3AQ4AfB+4rGqumj2/9HNXGrWuMMAt14/UL++TrW78GTgV+WmOEKcD1wFn4SfF6E32rATgQOAnVG1qLb4DLgPPwk+I9lPpWP+A44BhgmRqjxMAFwJW6k4tCJhVO2bGBG1A9EzrEwIFRKXpSUzxRAafsbAtcB6yoKeS/gZFRKfpEU7y62V64H3ARtSdMbd0EHBMH7kRN8eqSDuOcBJyOGt6o1xzgfOD0OHBnaIhXP99aCAiAI1Hd4vWaikoyL8VPinGB9a0lUQ9Yv9EUcQJwBH5yt6Z49fOtVYFRwGaaIr4P7I+fPKspXv18awPgRmAtTRH/B5Twk3c0xSteUuGUnQOAv6PmS+jUDFwJHBeVopmaY4tWnLLTD7gUOMhA+B+AI6NSdLOB2BWzvXAJVAKwg4HwnwOlOHAfNxC7YrYXrooaRtzAQPi3gX3iwH3TQOzKqYv0bcCqBqL/B9gXP/nUQOzK+dbOqOR+SQPR7wZG4ic/GIhdOd86DJWsLqQ5cjPqfnQifjJbc+zKqeGcM4GTqa2nsDMzgFPxk/N1BCtUUuGUndNR3Y8mPQrsJnMtzHDKziDgX8BWhov6Y1SKAsNltCsd7ngMNRHTlFnA7+LAvdNgGR2yvXBdVM/Q0gaLSQA3DtznDZbRMd/aFvgn+m9ErX0MbI2f5DOfxLdGAldjdqXfaGB7/OQbg2V0zLfORg2Tm/QA8H/4yXTD5czPt3oDNwN7GS7pcuCoenvXCrOk1Ck7p2E+oQDYDvinU3b6ZlDWAsUpO/1RPz7TCQXA2U7ZOSGDcuZhe+GSqPkPJhMKUBMgb7W9cDfD5czH9sI1gScwm1AAWMAjthea6AnpnG/9ApX8mkwoQK1uehLf+onhcubnW/sB12D+Oj8C+De+ZRkuZ36+dRbmEwqAnYC70xt8dlQPRRYJBcARqF6ZuhQiqXDKzl7AXzIscltUVib0uhY10zor5zllZ5esCkvnF9xH7ROHq9UI3G574fCMysP2wkWAh4HBGRU5CAhtL6x1wln1fGtlVELRP6MSVwAexreyKg98azPUkIeOOSKVGI6apJod3yoBf8qwxB1R86eydCbZJBQtjsK3jqonQO5JRbrvxGU5FD3SKTu/yqHcHim9uf82h6KvcspOV0updPkDaulWlvoCo2wv7Gzppk4XAHZGZbUYjOqiN0+tDhiF2o8hS2uhbhDmqYmno9A/9t6V7fCtgzMpybdWQMNTdQ2OSHu5zFPzfU7OpKx5BfjWarUenHtSAVxF1+trTbnWKTvZd9n1MOlN/aqcis8kKU2HBLLsTWttGGoZoFG2F24HjDRdTgd2tr0wi6T0CGCLDMppzx/S/SFMCzAz8bQS52c01HMtavgsaw3ADemmaOaoZaM3kn1iCGpIcFQ69FK1XJMKp+zsgNq8Iy/Lo5bKifqcifnx987s5ZQd0/M4LiK77vL2nJJuPGVEOrRzhan4FbrY9sKBxqL71hLA2cbid60XagWaOb61LmppbF4WRvV2meNbuwHbGy2jczZwiuEyjkPfstFabIrad6dqefdUnJhz+QAHOWVn0bwr0V05ZWcwame+vBk7l2wvXB01wTdPvYFDDMbfHbW9b56WAPY3GP8w9C9Vr9awdNWJKceT3TyKjuya7hlhShHuG4cZ661QO2UebSR2dWr6nHNLKpyysybZTurrSMvWyqI2JTrfjjor2zllp6vthmt1OPlfqAFG2l5oatXSoYbiVstMPVRXbjbj/V0z1cbFgD2NxK5OL8zsUQO+NQzYyEjs6iyKuc/613S9rXgWhqYTfquSZ09FHpP6OlKkunQ3RfnsGjCQHNpe2BuVOBXBUsDOuoPaXrgCxUjwAdY2tNplc/Tt7FqvHdMEQLc90LPrqQ6/62Zxa2GqLkW5pkINbcwzqfh5jmW3NSLdBVJUId3oat2869GKiXNqHcDEDaBWurYgbm0TitET08LECpsiXW/6AD8zELdIbVwufWumbkVq4wb4lomJlEVqY9V1ySWpSF8Wtn4eZXegD8W6OXYXw8l/Xk5rI7pJzHpIG4sTsx7SxmqpG/gwrTHrMwDdm+CplTN5rYZsz5r4VlWTp/O6IaxGbW9zNKloP8juoGif2ZJO2dHdxV20Nq5ne6Hu323R2ig33GqpvSnW1Bqzfro/86EUY/5Wa7rbWLTztBewXrUH5CGvNdSdKWKdiq6In5nuOhWtjQOp/XXHHSlaG/XWR22tbGw5bo10f+Y2+exp0Jme/lsEaeN8st3HfK481/t3pGgZcHdQxM9Mb50aZjTQwBStMevV3Ev3/J+i/R51n1c9/zwt3ncI0sYixNOhqjrllVQUUXFe19p9FPEz01qnhdc8vR+qd6BIGvLdM8443edVjz9PC0ramH88HaqqU17DH0V87XgR61R0RfzMdNepiG2cpjle0dqouz7TKN7FekE4T6WN+cfToao65ZVUjMup3M4UsU5FV8TPTHeditbGH4AvNccsWhv11sdP5gAfaI1ZP92f+YfALM0x69XTf4sgbZxPLklFVIpi4Ls8yu7E6Lwr0A0V7TP7PCpFum+4RWvjq1Ep0v3UXbQ2mqhPz26jn8wA3tYas366P/NxwGTNMeulu41FO09nA29Wc0CeewwU6cMr4g+yO3gDmJN3JVqRm1FxYtbj1W4Ssx4LwveoO3FqAl7TGrM+k9Hfq/Y5+nsi6/E2fjK9mgPyTCr+k2PZbb0YlaKidR0WXlSKpgGv5F2PVkycU+8AXxmIW6unDcR8gWIlh88aiFmk642p302R2vgBfvKZgbhFauPzaaKjm4nzv1ZVf955JhW3UJzJUzfnXYFu7Ka8K5CaA9yqO2hUipqA63THrdHHwMO6g8aB+xXwqO64NXolDtwx2qP6yYvAeO1xa/NP/GSSgbj/gMIsfzZ1XSjK9Qakje3KLalI51WEeZXfynfAnXlXohu7BTV5MG/3RaXoC0Oxr6YYT/LXRKXIVD0uNxS3Wld009jVMFMPP5lMMW5IszCViPvJOOBxI7Gr8xVwr6HYD6Mm3ubtf/hJ1T1qeb+34dycywe4LCpFRcnuu52oFP0AXJVzNZoxeC5FpegT4D5T8Ss0DbM9Jg8DkcH4lfgUA71NrVwHfGswfiWex0+eNxj/QtTkujzdamjoo0UR7ht/TyfH6qdWK11gJHZ1zqnloFyTiqgUPQvcmGMVxgFBjuX3FH8h38z6qqgUvWy4jOPIt0fmlKgUGZvbEQduM3AwYGKMuFKHxoE701h09SR/jLH4XZsJHGq0BD95D/ib0TI6NwE4yWgJfvIYcLvRMjr3FuZv+lcBLxkuozMP4ic19cTk3VMBcCxgMqvtSBOwfzrZUNQh7ek5gHzmyMSYvojxY2/F8abL6cBzwCWmC4kD97/k94RUjgPX/HCon9wK/Mt4Oe07Az95K4NyzkKtzMrDEfjJhAzKOYp8JlDPBvbDT8wlv9DSW7E/amVi1iYCh9R6cO5JRVSKEmAk2T8hnR+VohcyLrPHikrR02Rw42tjDioxzGTtelSKrgMeyqKsViYBB6QTRrPwZ9STWJY+Rj1cZOUQ4OsMywP11FlTd3LV/GQWsB9Q1VJADe7AT+7OpCQ/+RbVs5b1g8zf8JNslu76yTvAKZmUNa8j06WtNck9qQCIStEjmO4WnNftwB8zLG9BcTzmJi+11Yy62T6dUXkt9gRMD7W0mA7sFJWizFYtxIE7Hdge1QOUha+BbePAnZhReeAnX6HamGRU4jvAjunTZzb85HVgD7LbZfNJ1JN1dvzkfrIdzhoF+BmWB35yIdk+rJ2a9ubVrBBJBUBUiq5FPUGYfiK7Ffh9hk9+C4x0ZcLewF2Gi5qDSigyn+me9opsh9rbwaTJwI5RKXrGcDnziQP3M2BL4D3DRX0ObBUH7ruGy5mfn7wGbI35iZsRsBV+8o3hcubnJw8Cv8F8F/rjwM7VbpKkhZ9cChyN+R6LG4CD8JM8hniPBf6eQTl/wk/+Wm+QwiQVAFEpugbYGTM7is0ETgN+F5WivGdH91jpJmJ7oyZvmvicPwPcqBTdaCB2RaJSNBHYFnOrMcYAW0Sl6AlD8bsUB+5HwM+BBw0V8R9gkzhw89vJVi2X2wRzPU93AVvgJ/ntkKie5rcC3jcQvRl1s9sRP8lvBZ1KLHZHTRLVbQZwMjAy056m1vykGT85FjgSMy8c+x7YFz/RMsG3obm5KPtPzeWUncWBS4F9NIV8FdgvKkV5L5lboDhlZzhqdc+6mkLeCByX3tQLwSk72wHXAitqCDcHOA/wo1KUxwStdtleWAIuBhbVEG4q4AGXpStO8udbjcCJqK7tfhoiTgAOx0/u0RBLD99aCDgbNcGxQUPE94H98ZPi7P7oW0ui9lvZQ1PEl1Ft1L8ZW618a1XUMMxmmiI+CBxSzxyKtgqZVLRIL9h/BLaoMcR7qHXb10rvRD6cstMHNV/mOGDlGsM8AZyd55N7Z5yyswjqKeIQYKUaQswA7gYujEpRkd5t8CPbC5dDrbI5EBhUQ4jpqJ1rgzhwi/bGUMW31kBNjNsb6FNDhAS1Udr5Ga2AqJ5vbYRq447Ullx8jnrguwQ/KeJrusG3XFTiummNEcahVkFdn1vvRGd8qwH4PXACsE6NUV4Gzq112WhnCp1UtHDKztpACTXOuy4dP000obbi/S9q7sQTMneiGJyy0wvYBtX7tBGwOh1f1Kaj3oz3FFCOStE7mVSyTk7ZaQRc4HfABnSeYExCvRzpIeD6qBRlP+ZeA9sLFwH+D9gVGAEs3cmff4vqJbwfuC0O3KK9mbh9vrUU8FvUd7k+nffQfI56j8e9wL25DgNUw7dWRl1TtwbWAwZ28tcfom5CdwBhurqk+HxrXVQbtwAcoG8Hf9kEvAu8iLpvPJXT3Inq+damqOvNJsBaQGMHfzkL9dLMZ4GyyRUs3SKpaC198l0b9QEORM0LmYaarf56VIpM7KkvNEuf7oejbrwDUF3/U1DzCcb0hJ4lp+wMRt2UlgX6o37Yk1AJ0zgDrzDPnO2Fy6O+x8GoZH8mauv719N5Gd2fb60CDEMlF31RSe/XwGu5zpfQxbd6AWuinnoHoXpppqHmL72Kn3yfY+308K0+qPatybz3jQ+B19ON0bo3NcQ1DFgVdU1tRg03jgMiYzuAttHtkgohhBBCFFOhVn8IIYQQovuSpEIIIYQQWkhSIYQQQggtJKkQQgghhBaSVAghhBBCC0kqhBBCCKGFJBVCCCGE0EKSCiGEEEJoIUmFEEIIIbSQpEIIIYQQWkhSIYQQQggtJKkQQgghhBaSVAghhBBCC0kqhBBCCKGFJBVCCCGE0EKSCiGEEEJo0TvvCtTKKTuLAgOBBmA68F1UippyrZRmTtlZAhiQ/p9To1L0XZ710c0pO72AJYD+QBMwOSpFSb610sspO32AxYG+wBzgh6gUTc63Vno5ZacfsBiqjTOBJCpF0/KtlWa+1RcYfPqsUq/ynO1mAhPjwJ2Zd7W08q2FgYWBRmAG8C1+MiffSomq+dY89w38JNP7RkNzc3OW5dXEKTsNwJbpvxHpv2Xa/Nlk4DVgNPAi8EB3urClN5/tgU1R7VsfdaFu7VvgVVQbnwMejUrR7CzrWQ+n7AwEdgI2QrVxPWBQmz/7AtW+0cCTwLNRKSr+SZpKE8FfAxug2ugA/dr82YfMbeOjUSl6LdNK1skpOysCOwM/RbVxKOpG1KIJGMfcNj4QlaL3sq5nXXxrFVQbtwbWAn4CNF4++9fPnjd7z82AWcDbqPb9D/hHHLgT8qpuTXxrA2Ab1Hf4U2DFNn8xDXgT1caXgH/hJz0q6e/2VLL7K+DnzL1vLNrmr75h7n3jP8BjJpPFQicVTtmxgEOBw1A/6mr8ANwMXBSVovd1100Xp+wsBxwFHAgsWeXhXwHXApdFpegr3XXTxSk7Q4A/APsyfxLRlQ+AK4BrolI0SXfddHHKzs+A44FdUU/s1XgDuAS4JSpFhX36dcrOdsBxqBtRtUOn/wEuBv5V2B5F32oAdgFOBjZs709aJRVtzQDuAa6IA/cFY3Wsl28NAPYDjkQlg9WYDtwFXIifvKG5ZqIavrUCcDRwAKq3txpfANcAl+Mn2hPhwiYVTtn5LfB3VNdxPeYAFwB/jkrRjLorpkna9X888BdU9389pgGnAJcU6YLtlJ0BwF+BY6h//s43wJFRKbqz7opplPZMXAbspSHcB8ABUSl6RkMsbZyyszJwA6qnsF6vAPtFpehtDbH08a3NUcnr2p39WSdJRWsPAwfFgfuZrupp4Vvbox5CVtAQ7QbgD9JzkTHfakQlvadT/cNLW1PSWFfgJ9oSgcIlFU7ZWQa4CtWFrNM7qIvZy5rjVs0pO2sAN6KGAXR6Fti/CD0zTtnZBBgFDNEc+h7g8KgU5d7V7JSd3YArgaU0hm1GJSleVIqmaoxbtXTY8TDgXNT8JV1mAGcA50alKN8xe9V9fC7qqa+hqz+vMKkAmAj8IQ7cUfVVUAPfsoALUU+1On0KjMRPHtUcV7THt9ZG3Td+qjnyU8AB+EmsI1ihkgqn7KwLPMr88yV0mQ0cGJWimwzF75JTdrYF/oHei3Rrk4BfR6XoKUPxu+SUnZHA1ZhbXfQZsE1Uit4xFL9LTtk5G/AMFvEmsG1ew1rpHJ+b0NMD05FHgd1yS558axDqt7hNpYdUkVS0uBY4NA7cfHoQfWsl4DH0J/etnYKfnG0wvvCtHYG7qb9XuyMJsCN+8ly9gQqzpNQpO+sBT2MuoQC12uXG9KaXOafsuMADmEsoQM3efsgpOxVfKHVyys4RqAupyXNreeA/TtnptKvaFKfsXIzZhAJgXeDZtOcuU07Z6Y3qETKZUABsBzySDpNly7cWRT2hmf6dHATcZHth9tda3/oJakK3yYQC4G/4lm+4jAWXb+0K/BNzCQWABTyKb21Rb6BCJBXpmO2jzL/awYQG4Gqn7OyaQVk/csrOxqhMs95xsEr0B/7plJ0RGZT1I6fs7AlcmlFxg4F/O2VHx/hwxZyy8yfUHJEsrA48mq6aydJ1qJUPWdgMuCcdasmGGpe+Hf3dyB3ZFzVJNTu+tTiqh6Ltig5TTse3jsyorAWHusnfTjbbPywEPIBvrVtPkNyTivRiMgq949Jd6QVcl9VTYHpTuJm5a4ezMBC4xSk7JrPbH6XLDK+mgnFpjZYDrs+qMKfsbIiaC5CldVFj/plwys7eQCmr8lI7oOY0ZOVs1PLtLB1le6GbYXmXopLSLJ2fjvsLHXxrEdQQZNsl6SYtDNyczjWqSe5JBWppU91dLjVYHHUTzEIArJpRWa2tCZyZUVnXobrQsratU3YOMl1IusHTKObdj+H/2zvzODuKao9/hxDC6mXTqCxeUVTAYgs+HvoCyCLIKIJsikAnCImyyOZy4SEUD4QBDaKyyJ4WVJBFEC6KgMriCoFoKSBhGWXf6QAhCUnm/VE9zjCZzNy+XaerZlLfzyd/Zfp36tzurj596tTpqviyStXHpY2oVI2nukzTQE5VqXq/uBVdm4DddeWDC+qN5qriVnRtN2BfcTuLMw6Yjq6N2KaKgTENWNeD3Y2Bb7Z7sNegQqXqPdgHri92VakSXTdWqfoYcKikjWE4Ou+hIIZK1STgE5I2hmFa3u9DkhOwTZB80AFcUkHW6WyK73l3xYpIZ51sH4pz8TfvvRv4tqgFu9Pjh6I2hmYLbE+aSBl0bTvAS+1fTgNd26SdA31nKr6KnUx88k3h9dwTqHZJYCDLAMdLief9NsT0W2QVbFMmEfKW8FWm5wejDhwgJZ4Xve4hpd8iW6tUbSuovxu206lPknqjOV5Qfwogqd8KX8ubbEXa50TP9pfF9j4qjLegQqVqFWCyL/v92BDbitc5KlUfwu8bfC+fzothJejEz9LOQA4W3EVwIMU7gUogGdgcjt/gtxfJItjDBbVbZSx2R4h7dG0Z7HKyb9bEz/LL6MBmCLb2PQxgD3RtraIH+cxU7IXs1soiSAU3k4R0i9KB3FhCCAzB1nN8Vkg7FB83kljKyoMx6e2jrdKpUlW0Xf3w6FodNx1BXTCl3mhK1OZsh581+MEI5Z4ZiYTy242hjeyoz6Dikx5tD2QnId2QfHRe7Z4vfYSQielFwse1gQ+71i2BxK6FrfBTZDsYY4HtBXR3IIxMDNhtnm2tVw9DSPPNR/PdC5HihHQeC883PoOKSnsoDMPqrpcH8qK6oh/skWTjvKmRSz5EONkmkLmmQrpOIfrYLtsKaJZhtJ/HDmAz34MYcdjPz1e9FXgoNssLnFvGS1ChUrU6ILXG3y6ub8hNqKZhSatIBDmbO9YrywdVqlzXPoQ0UcPofxiBzHUV2rXq9je3E39oD/HQrquRwGaEk1EDWwRfqCOrr0yF8mR3KEp1EatAzwWj3cdlGOYrk20Qmo9rq1S57jwbmo8S45HeclwU1z7WgdCWG0K7rkYCIf5mhcbkK6gI7eIH92MK0UfX6+ahrMP3Z2k4j6PdR7fXld3eGNq1OtrPIYQ5ptAJ7TqFgufRV3p+rCe7Q+F6TNFHP0Qf/euVxfV4nO20mDTm5jV3WebPfyyrM5flnrW7sZ0R2jmEMMcUOiH+ZoXG5CuomOfJ7lC4HlOIPs4NXM8FS8N5HO0+ur6uXgd6cLBWvVLH3A3e2/FM+RGBcSHSj9DOIYQ5ptAZ8XOqr+WPpz3ZHQonM0U/lgYfXeu5YLSfx4XAC441Q/PR7TnUWQ8w26lmef7tWG9puBeXBkL8zQqNyVdQ8XdgvifbS2KGY717Heu5wPWYQvNxDvCgY83QfLzfJOYNx5qh+Sgxnn8KaJbhIadqOnseeNypZnlcz6lLA6Hdi1DwPHoJKkxi5mMDi5BwfTJnEdbb0QsmMa7fjkKbNGaaxCx0rBmajxLjiT5Wj+vlDwjPx9DGMxK4n7CWQJ5AZ88VOcBn86u7PdoeyCMmMS+7FDSJ6SGsm+oe14ImMU8DT7rWLYFzH4H7sEsOoSDhY0j3Isj4eJuAZrv0AL8U0A3pPM7BPiAjRdDZAuycEwqF70WfQcVVHm0PRGosIfn4MyHdUe2jScyrwK9c67bJQuBa16ImMX/FdTq+fZ4Hfiug2wQyAd12uBudSaydh3Qv/jx/QEaKE9J5LDyn+gwqfgM86tF+Lz3AJULaP8VWnvtmNnIX6kVCukV50CTm90Laofh4U54dkuBiId2i/Mgk5k3nqjqbSziTtcz1pLNZwB0i2sUJ5Z4ZiVxOGEsgLwI/L3qQt6AiXx44y5f9ftxgEjNLQtgk5hXgUgntglxgEvOahLBJzD+AX0toF+RMQe1fAA8L6reKpI8XACLXSAEWAN8X1P92bsMnTwGpoL7kNdIq96Gz3/kexIjFFt1e7nsYwHl5MF4In5kKgAtxX61fhHnAccI2vgW8JGxjKJ4DThe28Q38TtYGwYnaJGYR8DUp/Ra50STmd1LieQB8ipR+i3xfoJi4D509hP8g/zR0Jrnz7Rf4zVb04P9eGQ2chN9C/6eAae0c6DWoMImZi/12/CJPQzgpf9MWwyTmGeArkjaG4RCTGNd9Dd6CScxM4FRJG0OwAJiU7ygSwyTmOuxylg9eBqZUYOc7wJ8rsDMYDwHHV2Dnm9hA2wd/Ac4VtWB7chyILZT0wfnoLKSi2JGJzp4AjvY4gino7JV2DvSdqcAk5k/4SdndDZxRhSGTmB8D11dhawBXmsRcU5GtU4C/VmSrP6eZxFS1t/tw4NmKbPXnCMFaiv+Qb8edTPWdEBcBkwX6byyOzp4FDsC+UVfJq8D+6Ez+BUpnjwANcTuL003MUrhDZxfjp0g8RWfNdg/2HlTk/C9wS4X2ngT2FuhpMBQHAqJZkQHMBKZWZSwvrtuTajvCNYGTqzJmEvMi1kf5h18f55jEXFaVMZOYB7DXapXZw6NMYv5QmTWd3QycWJk92+jvs/nyS1WcDVR23WB31uyBznzX5Yw2DqDaxm13Y1+e2iaIoCJPXe8O3F6BuaeAHU1iuiuw9R9MYl4CdqSaGhID7GQSU+kWOpOYh4FPUE16+VZgL5GdAkNgEnMXsBvVBBYXU/IGbweTmJ8AX6KawOJYkxjJ4szB0dnJyNcagV2eOwCd3VqBrT7sMshk5LaS92c20InOQuwGObKxRZs7Uk2h+H3AJ9HZq2VEgggqAExiXgd2BiTT9Q8CE/O3scrJU9hbA6W/cjgEdwDbmMR4WTc2iTHARGxHUSl+CnyqknT5IJjE/BrYCbngqQf7wDs43yVVOSYxFwL7Irclej623qdLSH94dNbArltLBaYvATuhsyuF9IdGZwuBzyNbx/EksB06k9rOHdHZ49g5VbK52W3Ax9HZi2WFOnp6vMxZQ6JStT/wPWA1R5KLsJWsJ+TFoV5RqRoDHAP8HzDOkewb2GWk7+W7FbyiUrUCtnjzK7gLXl8EDjWJ8TNJD0Clak3gHGBvh7KPAQdK7vQogkrVetg+Lts4lJ2BLa4No1W/rm0JXAHUHareCUzO6xv8o2u7YLcNr+VQ9VLgKHQWSlOx0Y2uLYvdaXcCsJwj1ddzzXPz7FZpggwqAFSq3oUNLPag3ENpBnBYXhAaFCpVG2AfSh8vKXUL1sdQuiL+B5WqicAPgE1KyCzEpnGPMonxUSg5JCpVe2KLft9bQmYucD5wvFRPkXZRqeoADsVOZm8vIZVhf6czTGJ894t4K7q2InAEdoKtlVB6GvgGOquynqE1dG1VbAZsMjC2hNJD2GDiJhfDihRE1xT2uTGxpNIvgcPQmdMmlMEGFb2oVK0PfBn4AvCOFg+bC1yHbfok0fLXKSpVW2DXsPcGVmnxsAy4EvihSUxIveIHRaVqB+y2yF1pPTvzDLYJzHkmMSF0X10iefZpd+Ag7Bpoq4HwI8B07LXqa6tjS6hULQ/shy3k3KrAoTOx2Y7pedvzcNG11bHFcfsBE1o8ahHwB2zfnSuE+1CUR9fWwhZxJ8C6LR61APsQugi4wdVbbaQENsP2JWzx+MotHvUyNit3HjqT+Khd+EFFL/mkvQH2Rp8AbAishJ2838BuZ5qR/5tpEuNrn3bbqFQtB2xMn4/rAyvk/z0H+4bQ6+PfpXszSKBStRKwKX0+vgfr40JsKu5++nx8IISlnKKoVK0GbE6fj+8Clseu3c8G/kbuo0lMGOnxgqhUjafPv82BNbHB4nxsLcFM+nx8wtMwy6Fr78O+DW6KXRpZJf/3GjYj8Tg2mLij3T39XtG1Duwc03seFfbhNBY7pz5J3714LzoL6avLkV50bRxvfW68Hzun9jDIcwOdiRa3j5igIhKJRCKRSNgEs/sjEolEIpHIyCYGFZFIJBKJRJwQg4pIJBKJRCJOiEFFJBKJRCIRJ8SgIhKJRCKRiBNiUBGJRCKRSMQJMaiIRCKRSCTihBhURCKRSCQScUIMKiKRSCQSiTghBhWRSCQSiUScEIOKSCQSiUQiTohBRSQSiUQiESfEoCISiUQikYgTYlARiUQikUjECTGoiEQikUgk4oQYVEQikUgkEnFCDCoikUgkEok4YVnfAyiCStW6wIT83wbASkAHMBf4FzAj//eAScxCX+NsF5WqDmB9+nx8P7BC/t9zgFn0+fiISUyPj3GWQaVqDLAhfT6+B1geWAS8DtxP7qNJzOO+xlkGlapxwMZY/zYH3g0sBywEZgN/o8/H532Nswz1RnMlrG8TgM2ANbE+vgm8BMzE+nhvd1dn5mmYpag3mqvRd51uAqwKjAXmAc8B92J9nNnd1fmGp2GWQ9feSZ+PHwZWAcZgfXySvvnGoLM3fQ2zFLpWp8/HDwEr0vfceIw+Hx9EZ4s8jbJ9dK0D+AB9Pr6Ptz43HqLXR509Ij2cjp6esJ9LKlXvBg4CEmC9Fg/LgCuB801i7pUamytUqj4ATAW+AIxv8bCngcuxPopfKGVRqfoIMAXYG3hbi4c9DKTAhSYxz0qNzRUqVTsCBwO7AuNaPOw+4FIgNYmZLTU2F9QbzQ5gJ+AQYBfsw2c4eoDbgHOBX3R3dQYd7NcbzRWw9+GBwFYtHrYA+CVwEXBjd1dn2A8mXVsN698kbCDRCnOAnwMXoLM7hEbmDl1bG3svJtgXl1Z4GbgC+CE6+5vU0Jyhaxtgnxv7Am9v8agngcuA89FZt8Swgg0qVKpWB04HDsC+AbXLb4EjTGKMk4E5RKWqDnwX+Aw2cm6HRcC1wNEhvtmrVG0GnAVsXUJmHvbBe6xJzCsOhuUUlapPAN8BVAmZ2cD3gFNMYuY7GZhD6o3m/sCJ2LegdnkCOA04r7urM6iJp95ojgGOAr6Bzbq0yyzguO6uzqudDMwlurYioLFB4UollO4BjkZnd7oYllN07e3AGdjAcGwJpVuAI9DZA07G5RJdex92Tu2k/efGQuAq4Bh09pSjkQGBBhUqVZ8Bfgi805HkfOBkoMskZoEjzbbJlzmmAt8GVnYkOxsbWFzsSK8UKlVjgeOB43C3zPYkMMUk5iZHeqVQqVoFmIZ9I3LFP4BJJjH3ONRsm3qj+S7gAuBTDmV/B3yxu6vzUYeabVNvNDcApgP/5VD2Z8Ch3V2dLzjUbB9dmwhcgl1SdcEi4AfAcehsjiPNcujantiMWKtv7cMxDzgBmIbO/GfY7DLH4djAfEVHqi8DR6KzHznSCyuoyB9E5wOThUzcA+xmEvOkkP6wqFTVsBPOJ4RMNIHPmcS8JqQ/LHnty/XApkImzgcO9Vk3o1K1OTYdvK6A/ALgRJOYUwW0W6beaO6CXWJbTUD+dWBqd1fnjwW0W6beaE7FZohaXa4qwnPAPt1dnb8T0G4N+yD6FjYDI1GYPwvYDZ3dL6DdGro2DrgYm52Q4E9YH/0twdolq2uAjwtZ+Dmwn4sAMZigIi9uuxa7VivJY8D2JjGPCdtZDJWqNbBptc2ETf0F2MnHUoFK1frYNfR1hE1dB+xtElN58ZhK1f9gg7dWa0Pa5bsmMUcL2xiUeqP5Oezaq2Qxdw9wWHdX57mCNpZIvdFsYN/6JJkL7NXd1XmjsJ3FsQHFhcAXhS29AOyEzqqvX9O1FbAvMDsKW5oFbI/Oql9i1rV3ALdSbnm1FX4P7ILOStV2BbGlVKVqWWyBjHRAAfBe4Na8ALQy8lT5r5APKMCmcW9SqSqzbloYlap1sBe/dEABsBtwuUpVpdewStUEqgkoAI5Sqao8W1FvND+DfEABdj347HqjKZWZXCL1RvNI5AMKsDubrq43mttVYGsgZyMfUICtQbk5LxysDl0bi317lw4owO7KuzV/wFeHrq0K/Br5gALgY8ANeaDWNkEEFcA3sQ+JqlgPuCKvbaiK84EtKrS3FXbNsxLyraJXI7McsCT2Br5elTGVqrdhMyRVBBS9HKtStUdVxuqN5nrAj6luu3kHcEG90dy8InvUG81tgDOrsoddWrk6r0+pBl37IrYgsyrWBK4r+0AqyMnAJyu09wHsvVEll2C3M1fF1tg6sbbxHlSoVG0KHOvB9ETgK1UYUqnaHfh8FbYGMFmlqorsD8BXcVvo1ipapWqjimydCaxdka3+nKtSVWZHQkvkW0YvodzOgHZYFphebzTLVOu3RN5f4xLar5pvl9WwLxby6No6VBs09fIB4JRKLOnaltg5p2p2QNemVmJJ1z4P7F6JrbfyJXSt7cya16AiL8ycTrmtP2U4VaXKVTX0oOR1FOdJ2hiGC1SqVpU0oFK1IXCSpI0hGAdcmmdKxFCp2plqUsmD8Q7gnArsHAZsU4GdwVDYjKU0XbTe78Y1n8635kpzEdVm0/pzJLr2MVELtjDzUlrrkyLBt9G1VntftIeujafCTPMAOoCL0bW2dib6zlRMotrUzkBWBKTXrBu03tBKgrWQj+hPQ6Z6vlU+glzld+8W4FIpQQfsrVLVajOmwuRNn3wFhr18vd5outoOuBj1RnN9ql0SGIzT641mmb47Q6NrOyO3s6wVlkH+XpmC7ajsi1WwSy+SHA+sIWxjKOrAke0c6C2oyCdqL5XtA/hs3oTKOXlx5hQJ7YJ8WaVKZK0z7wb6aQntghwjqL0ztrW4byR93BeZraNFGIdsNuhI/L9IvQv7W0sheY20ypbo2kdFlHVtGWyTMt98Dl2TKfbv63jqm8PQtcIBsM8bbCK2D7tvxiDXF2Mf/KUh+7M6IFXsdxDVr08PxsYqVVI1HSEEhgC7qlRJvcn7foPvZWq90XQ+L+WZmP1c67aJy2Zpfejae4HtRbSLI+Mj7IDdweebsdhMuwRfwF1zqzKMx35yoBA+g4q9PdoeiNRYoo/V4nws+bbcTte6bTIWgcKteqO5IfbjYCFQp1xL9yWxM2EE+AAfrTeaEgW/exFGgA+wB7omUfMwqucbYd12KDwWn0GFj50CS+KD+XZB13xEQLNdnP/eKlXvoPWP9VSBxDW1Kf4KiQdDwsctBTTLIOFjSPMNyMwNIfm4CjKZ6JB8/HD+PRV32EBsglPNchT+vb0EFfmuj4192F4CHTh+U1Opeh/2U8mhMF6lai3HmiFd/ACbCTTDCs1HifGE5qNEP5fQfFwazqPb8dgeGCHUNvUyBvcbDXo/zR4K70HXChWM+spUbITf3QKD4fqGDO0GB/djCiVl3svK2L3yLgntPG6Ut7R3SWjnUeI3H90+6trq2KWjkHB9HjfB3zbSJTHa51Qo6KOvoKLSFtkt4npMIfrouqNfiD6O9vM4FndfYewlNB+dXqf5Fk6f2/MGY7Rfp7B0+Bjn1AFU1Yp3IKFlKcD26HdJiD663lbq+jdzwdJwHp36uOwqf3uEjkVhfKIbgI5Fjmtj43Xqh6XBxzinDsBXUOH/2/SLs8CxXog+uv6ip+vfzAVLw3l06uMKa//kg9gmaaHwJhznUi9ep35YGnyMc+oAfC1/vOrJ7lC4HlP00Q/RR/96ZXE9njcIb7Ie7ecQoo8h6Lmg0Jh8BRXGk92hcD2m6GP19AD/cKwZmo9Pm8S86Fjz7471yuL0N+/u6pS4Lsri+rp6DHjNsWZZRvt8A9HHxfASVJjEvAD824ftIZjhWG8mYaXr5uP+4XGvY72yzDKJme1Y0/V1URaJ8SwNPoZ2rbr1UWeLsHNOSLj28QngOaea5XF9Xd2LfTkKhdeBB4sc4LP5VUgTWQY84lLQJGYOBU+GMMYkxvX63/3Y1HIoxAduOJpliD6Go1kGiUAuJB+fR2ePO1XUWQY86lSzHDPzgLVlfAYVN3u0PZBbTGIkosOQfPy1a0GTmIXAba51SyDh47+Af7rWLYFzH4HfYwPrEJiPzDUl8bu1y/PIZBVCmm/+gs5eEdANyUepa2pE++gzqLgSmOvRfn+mjzDddpg+wnSL8hpwtZD2dCHdoswyifmDa9E8q/Yj17ptcq1JzLOuRbu7Omdhg6cQuLy7q9N11hDsA+ApAd12uFRI9ye433HRLlI+ThfSLcoiIC16kLegwiTmFeAyX/b78TDwSwlhkxgD3C6hXZCbTWIeEtK+njDqYy41iZEqVLuIMJZ5fiCofa6gdhEkxyH5+7XKIuAcEWWdLQTOE9EuxivA5SLKOnseuEJEuxj/AH4joqyzu4E/iWgX4wZ09q+iB/nMVACcAczzPIZTTWIKrRkV5GRB7VboAU6REjeJWQCcJqXfInOAaVLieWGx78n6KeASKXGTmAeBG6X0W+TPJjF3CupfDTwgqN8KP+3u6nRavzWAc4GXBPVb4Sx0JrkTpQv/2YpvoTPJgkrfz41FwLfaOdBrUGES8zBwosch3GISI5XCAsAk5jYEHwYtcJ5JzF3CNs4H7hC2MRTH5bUPkpyA3wKqg01iXhe2cQjgevdMq8wDvihpoLurcyEwGX+7sp4DjhS1oLOXgMNFbQyNQfolQ2f30+YDzxE3orOfilrQ2U3YpR5fnJVnTArjO1MB8B3gLx7szgYOqsjW0cATFdnqz2PA16WN5EWuB2IzBlVzJ/B9aSP5A/1A/Gz3mm4Sc5O0EZOYx4FjpO0sgZNMYsR7SXR3df4ZwazWMBzS3dUp3w5dZz8BrhO3szgLgEnobH4Ftk7Fzxbal4EpFdk6HHimIlv9eQg4vt2DvQcV+Q6CBLsOVxU9wKEmMZXUApjEZFgfq0zZzQMOqODtFgCTmEeAr1Rhqx8vApOFdu4shknM7dgluyqZBRxVlTGTmIuAa6uyl1P173oCcE+F9gAu7e7qvKZCe18C3G53HJ4T0Fk1/UB09iawP9V2oOwBpqKzpyuxZrNOk6m2G+wbwP7orO0aMu9BBfxnPXcXbKONKjjGJEamkGgJmMT8BnsTVJF6XQB8roJlj7dgEnMxjj/aMASzgZ3zYKZKjqW65ax/AzvkRc1Vsi/VbRW+B9g1f7mohO6uznnAJ7F9VqrgF1T3dmvR2bPADoDznTRL4Cx0Vm1tlc7+Dnya6oqoD0NnV1Vky6KzX2EzpJJ1f73MB/ZEZ6VWDoIIKgBMYv6IvQleFjTTAxxmEvNdQRtLxCTmSmAf7MmTYi6wu0nMdYI2lohJzGnAV4XNvABsZxJT9dtm71LPQcgXbs4CJlaVTeuPScw84FPIF27ehQ2aKq/jyJchtgXuEzZ1JbBnd1dn9d8e0dlDwNbIZyy60Fll2bS3oLPbgZ2QrQVaBByMzvzskNLZZcB+yGYs5gC75rUcpQgmqAAwifkTMAH4rYD8v4AdTWJktnO1iEnMNcBWyHxvYSbw3yYxXqv4TWKmYd8EJepIbgEmmMR466xnEtNjEnMI9g1ComnUZcCWPgKKXkxi5gK7YTNProPghcDp2IDCW9Ot7q7O54GJwNm4r5WZgy3K/LxQT4rWsIHFFoDE0ssLwD7o7FgB7dbR2Z3Y54ZEZvZRYDt0dpGAduvYwtCPIbN76R7gv9CZk6ZbHT09IbUZt6hUdWAr0U8HVnIgeT7wNZOYYL4Ap1K1HHZt9xuU/wT9m9hq6FMFWnG3jUpVDTgT+/Aty6vYZasLHWg5Q6VqbeACbBBVlqeBqSYxNzjQcoZK1UbYhjxbOJB7AJhkEuOjOHuJ1BvNbYGLgfUcyN0FTO7u6nzYgZY7dG0fbAC1pgO1a4BD0Fk43+LQtWWwdV2nAiuUVOvB9hNpoLOqluWHR9eWB07CFlSPKak2H9DAGXmPEycEGVT0olL1TmwF7BSK3wjzgKuAaSYxMx0PzRkqVe/HFuIdAKxc8PDZ2I5nZ5nEhNQv/i2oVE3A3gR7AMsVPPxZbFB4jklMOBPYAFSqdsDu8tmJ4hnAR7GT/UUhBb79Uakag10SOQTYEegoKHEntofCNSEFvv2pN5rLY+/DI4AN25C4HRtE35B/GTU8dG1VYCpwKLBOwaMXYpfEpuXZgTDRtbWwz42DgDUKHj0X21zrTHQW4hdDLbr2Iexz4wsUf/F+BfuScFY7za2GI+igoheVqrHYQs5tsWmuzVj8AbwA2+VsBrYb2dUmMZL1GU5RqVoJm27+H6yPGwPjBvzZXOCvWB/vAq7PWyyPCFSq1sAGFv+N9XFDFs/SvIpd556B7Vj3q7zB1ohApWodYE/gI1gf12fxB/CLWP9mYPv831HVDhYX5IHwXvT5uO4gf/YUfT5eYxIT2ufVh6TeaG4JdGL9mwCMH+TPHsX6dw9wjXBTK7fYt/rtsXVsvT6uOuCvFmG/ezMDu+3/KnTmY4tje+jacthAeBusf5uy+AP4TexS9Azgj8A1+Ue9Rga6tjLwWeCj9D03Br64vUHfc+NO4Hp0JvaJjBERVAxEpWoZbJS9IvatcC7wZL4OPCrIA6m16UvjvQE8PpIesMOhUrUC8G5geewE9jrWx5F3US4Blaq3YR9I47CB72yTmFC+z+CEPFhcAzuZvQm8HHJWqR3qjeZ47EN3LDYL+nx3V+crPsfkHF1bG/uytix2Tn1GuDNmtdhAauBz4wl05rurszt0bSzWxxWwSzhzgMddLm8Mx4gMKiKRSCQSiYRHULs/IpFIJBKJjFxiUBGJRCKRSMQJMaiIRCKRSCTihBhURCKRSCQScUIMKiKRSCQSiTghBhWRSCQSiUScEIOKSCQSiUQiTohBRSQSiUQiESfEoCISiUQikYgTYlARiUQikUjECf8PuG+FX2q7RMIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.gridspec as gridspec\n", + "\n", + "labels_map = som.labels_map(data, [label_names[t] for t in target])\n", + "\n", + "fig = plt.figure(figsize=(9, 9))\n", + "the_grid = gridspec.GridSpec(n_neurons, m_neurons, fig)\n", + "for position in labels_map.keys():\n", + " label_fracs = [labels_map[position][l] for l in label_names.values()]\n", + " plt.subplot(the_grid[n_neurons-1-position[1],\n", + " position[0]], aspect=1)\n", + " patches, texts = plt.pie(label_fracs)\n", + "\n", + "plt.legend(patches, label_names.values(), bbox_to_anchor=(3.5, 6.5), ncol=3)\n", + "plt.savefig('resulting_images/som_seed_pies.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To understand how the training evolves we can plot the quantization and topographic error of the SOM at each step. This is particularly important when estimating the number of iterations to run:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABM8klEQVR4nO3dd3yUVbrA8d+TSS/U0AMEEEG6EDrSVJoioq6KWLCx2O+61r13FdvqKuuq61qwV3QVsRfEVSmiNOlIDxCCJNQkkJB27h/nnclMMkkmkElC8nw/n3xm3jrnnZm8z5wuxhiUUkqp4kKqOwFKKaVqJg0QSiml/NIAoZRSyi8NEEoppfzSAKGUUsqv0OpOQGWKj483iYmJ1Z0MpZQ6aSxfvnyfMaaJv221KkAkJiaybNmy6k6GUkqdNERkR2nbtIhJKaWUXxoglFJK+aUBQimllF+1qg5CKRW4vLw8UlJSyMnJqe6kqCoQGRlJQkICYWFhAR+jAUKpOiolJYW4uDgSExMRkepOjgoiYwz79+8nJSWFdu3aBXycFjEpVUfl5OTQuHFjDQ51gIjQuHHjCucWNUAoVYdpcKg7juez1gABPPPdZn7clF7dyVBKqRpFAwTwwo9bWbhZA4RStdFTTz3F0aNHPcvjxo3j0KFD1Xaek4kGCCA0RMgr0ImTlKqNit/Yv/zySxo0aFBt5zke+fn5ZS4HelxFaYAAwkNDyC0orO5kKFXnPPLII3Tq1ImzzjqLSZMmMWPGDACGDx/uGTZn3759uMdYS05O5owzzqB379707t2bn376CYAffviB4cOHc9FFF9G5c2cmT56MMYZnnnmG1NRURowYwYgRIwA7JM++fft44YUX6NWrF7169aJdu3ae7TfccANJSUl07dqV+++/H6DM8wA8+eSTdOvWjW7duvHUU0950nraaadx/fXX07VrV0aNGkV2dnaJ9yA9PZ0LL7yQvn370rdvXxYtWgTA9OnTmTp1KqNGjeLKK68ssbxjxw7OPPNMevTowZlnnsnOnTsBmDJlCrfffjsjRozg7rvvPqHPJ2jNXEXkVeBcIM0Y083P9juByV7pOA1oYow5ICLJQCZQAOQbY5KClU6AMFcI+RogVB32wGfrWJ+aUann7NKyHveP71rq9uXLl/Pee+/x66+/kp+fT+/evenTp0+Z52zatCnffvstkZGRbN68mUmTJnkCya+//sq6deto2bIlgwcPZtGiRdx66608+eSTfP/998THx/uca9q0aUybNo28vDxGjhzJ7bffDtig1ahRIwoKCjjzzDNZvXp1medZvnw5r732Gr/88gvGGPr378+wYcNo2LAhmzdvZtasWbz00ktcfPHFzJ49m8svv9zn+Ntuu40//elPDBkyhJ07dzJ69Gg2bNjgOffChQuJiopi+vTpPsvjx4/nyiuv5KqrruLVV1/l1ltv5eOPPwZg06ZNzJs3D5fLVf4HVYZg9oN4HXgWeNPfRmPME8ATACIyHviTMeaA1y4jjDH7gpg+j1CXFjEpVdUWLFjAxIkTiY6OBuC8884r95i8vDxuvvlmVq5cicvlYtOmTZ5t/fr1IyEhAYBevXqRnJzMkCFDyj3nbbfdxsiRIxk/fjwA//nPf5g5cyb5+fns2bOH9evX06NHj1KPX7hwIRMnTiQmJgaACy64gAULFnDeeefRrl07evXqBUCfPn1ITk4ucfy8efNYv369ZzkjI4PMzEzAvidRUVGebd7Lixcv5qOPPgLgiiuu4K677vLs94c//OGEgwMEMUAYY+aLSGKAu08CZgUrLeUJc4WQpzkIVYeV9Us/mEprehkaGkphof2f9G67/89//pNmzZqxatUqCgsLiYyM9GyLiIjwPHe5XAGVv7/++uvs2LGDZ599FoDt27czY8YMli5dSsOGDZkyZUq5fQeMKf3HZfE0+StiKiwsZPHixT6BwM0ddEpb9ub9Xpa1X0VUex2EiEQDY4DZXqsNMFdElovI1HKOnyoiy0RkWXr68bVECgvRAKFUVRs6dChz5swhOzubzMxMPvvsM8+2xMREli9fDsCHH37oWX/48GFatGhBSEgIb731FgUFBeW+TlxcnOcXubfly5czY8YM3n77bUJC7K0wIyODmJgY6tevz969e/nqq6/KPc/QoUP5+OOPOXr0KEeOHGHOnDmcccYZAb8Po0aN8gQogJUrVwZ03KBBg3jvvfcAeOeddwLKLVVUtQcIYDywqFjx0mBjTG9gLHCTiAwt7WBjzExjTJIxJqlJE79zXpQrLFSLmJSqar179+aSSy6hV69eXHjhhT431TvuuIPnn3+eQYMGeSqCAW688UbeeOMNBgwYwKZNmwL6pTx16lTGjh3rqVx2e/bZZzlw4AAjRoygV69eXHfddfTs2ZPTTz+drl27cs011zB48OByz9O7d2+mTJlCv3796N+/P9dddx2nn356wO/DM888w7Jly+jRowddunThhRdeCPi41157jR49evDWW2/x9NNPB/yagZKyskcnfHJbxPS5v0pqr33mAB8YY94tZft0IMsYM6O810tKSjLHM2HQxOcWERsRylvX9q/wsUqdrDZs2MBpp51W3cnwmD59OrGxsdxxxx3VnZRay99nLiLLS2sIVK05CBGpDwwDPvFaFyMice7nwChgbTDTkZ55jAWb95Gbr8VMSinlFsxmrrOA4UC8iKQA9wNhAMYYdx5qIjDXGHPE69BmwBynwiUUeNcY83Ww0gmQctBWHP28bT9DTz2+Yiql1ImZPn16dSdBFRPMVkyTAtjndWxzWO9124CewUlV2eIidfRzpZRyqwmV1DVGROiJtxtWSqnaQgOEl8IgVtgrpdTJRgME0LN1AwAKCjVAKKWUmwYI4E9ndQQgt6CQlxdsIyev/M43SqkTc+jQIZ577rnqTkaFJCcn062b/1b79913H/PmzaviFAWXBgjAFWK7qH+4LIWHv9hA579+zWerUqs5VUrVbtUdIE50KOziHnzwQc4666xKO58xxjPciL/l0gTSuzxQGiAAlzOGyZHcoi/MPbNXV1dylKoT7rnnHrZu3UqvXr248847McZw55130q1bN7p37877778P2KG8hw4dysSJE+nSpQvTpk3z3ChnzZpF9+7d6datm8/Q1q+88gqnnnoqw4cP5/rrr+fmm28GSg6FvWTJEgYNGsTpp5/OoEGD2LhxI2DHaJowYQJjxoyhU6dOPPDAA55zFxQU+B3Ce8qUKZ5hQZYuXcqgQYPo2bMn/fr18ztExxNPPEHfvn3p0aOHZ1hx9xDhN954I71792bBggU+y7t27Sr1PRoxYgSXXXYZ3bt3r7TPSNt1UpSD8B7sqlFseHUlR6mq99U98Puayj1n8+4w9rFSNz/22GOsXbvWM/bQ7NmzWblyJatWrWLfvn307duXoUPtKDtLlixh/fr1tG3bljFjxvDRRx8xaNAg7r77bpYvX07Dhg0ZNWoUH3/8Mf369eOhhx5ixYoVxMXFMXLkSHr2LGo57z0UdkZGBvPnzyc0NJR58+bxl7/8hdmzZ3tec+3atURHR9O3b1/OOecc4uPjyx3COzc3l0suuYT333+fvn37kpGRUWIgvrlz57J582aWLFmCMYbzzjuP+fPn06ZNGzZu3Mhrr73Gc889R3Jyss9yee/R2rVradeuXaV8fKABAigKEN4aRmuAUKoqLVy4kEmTJuFyuWjWrBnDhg1j6dKl1KtXj379+tG+fXsAJk2axMKFCwkLC2P48OG4x2CbPHky8+fPB2DYsGE0atQIsENfew8L7j0U9uHDh7nqqqvYvHkzIkJeXp5nv7PPPpvGjRsDdgjvhQsXcv7555c7hPfGjRtp0aIFffv2BaBevXolrnXu3LnMnTvXM2ZTVlYWmzdvpk2bNrRt25YBAwZ49vVeLu89qszgABogAAhxAoR3nOiZ0KB6EqNUdSjjl35VKWtcuOLDgotIqfuXN76c9wB/f/3rXxkxYgRz5swhOTmZ4cOHl/maUP4Q3saYUocx997n3nvv5Y9//KPP+uTk5DKH+C7r2ipriG9vWgdBUR2EdzPXUFfZH7BS6sQUHz576NChvP/++xQUFJCens78+fPp168fYItPtm/fTmFhIe+//z5Dhgyhf//+/Pjjj+zbt4+CggJmzZrFsGHD6NevHz/++CMHDx4kPz/fU2Tkz+HDh2nVqhVg6x28ffvttxw4cIDs7Gw+/vhjn5Fdy9K5c2dSU1NZunQpAJmZmSUqxEePHs2rr75KVlYWALt37yYtLa3cc5f1HgWD5iAoKmLybt6qfSKUCq7GjRszePBgunXrxtixY3n88cdZvHgxPXv2RER4/PHHad68Ob/99hsDBw7knnvuYc2aNZ4K65CQEB599FFGjBiBMYZx48YxYcIEAP7yl7/Qv39/WrZsSZcuXahfv77fNNx1111cddVVPPnkk4wcOdJn25AhQ7jiiivYsmULl112GUlJSX5nhCsuPDyc999/n1tuuYXs7GyioqKYN28esbGxnn1GjRrFhg0bGDhwIACxsbG8/fbb5c4CN3HixFLfo2AI6nDfVe14h/vesCeDsU8vYPApjVm0ZT8Ak/u34ZGJldcaQKmapqYN912aH374gRkzZvD5558HfExWVhaxsbHk5+czceJErrnmGiZOnBjw8a+//jrLli3zmcinNjiphvuuKdw5iOxcm4OIDAvRYTeUOolNnz6dXr160a1bN9q1a8f5559f3Uk6KWkRExDi1EFk59m21VFhLvJ1hjmlaoThw4f7VB4HYsaMcucXK9OUKVOYMmXKCZ2jNtAcBCXrICLDXBRoDkLVAbWpiFmV7Xg+aw0QQKgTILKO5RMaIoSHhmgltar1IiMj2b9/vwaJOsAYw/79+4mMjKzQcVrERFE/iPTMY7RqEIVLRAOEqvUSEhJISUkhPT29upOiqkBkZCQJCQkVOkYDBEX9IABaNYjiwNFcraRWtV5YWFil97xVtYsWMQEhXu9Cq4ZRhIaIVlIrpeq8oAUIEXlVRNJEZG0p24eLyGERWen83ee1bYyIbBSRLSJyT7DS6BbqFSFaNYgiRERzEEqpOi+YOYjXgTHl7LPAGNPL+XsQQERcwL+BsUAXYJKIdAliOn2KmFo2iMIVonUQSikVtABhjJkPHDiOQ/sBW4wx24wxucB7wIRKTVwx3kVMsZGhuEKEfA0QSqk6rrrrIAaKyCoR+UpEujrrWgG7vPZJcdb5JSJTRWSZiCw73tYY0eFFdfWRoSG4QrSISSmlqjNArADaGmN6Av8CPnbW+xtGtdS7tTFmpjEmyRiT5B4XvqJcIULzerZ9cESYS4uYlFKKagwQxpgMY0yW8/xLIExE4rE5htZeuyYAQZ8g2l0NERkaov0glFKKagwQItJcnFk1RKSfk5b9wFKgo4i0E5Fw4FLg06pKl+YglFLKClpHORGZBQwH4kUkBbgfCAMwxrwAXATcICL5QDZwqbF9/vNF5GbgG8AFvGqMWResdHrS6zxGhtk6CO0GoZSq64IWIIwxk8rZ/izgd7B1p8jpy2CkqzwRoe4cRGF1vLxSStUY1d2KqcZwzyEbGiLak1oppdAA4REfGw7Ygfsiwlzk5msOQilVt2mAcMy8MomHJnSlVYMoIkJDOJZfyOGjeTw9bzPH8gvKP4FSStUyOpqro1m9SK4YmAhARGgIuw9l0/PBuQDERLi47oz21Zg6pZSqepqD8CMi1OWzrMNuKKXqIg0QfkSE+b4t7hnnlFKqLtEA4UdEqO/bEubSt0kpVffonc+P4kVMGiCUUnWR3vn8KJ6DCHVpEZNSqu7RAOFH8TqIENEAoZSqezRA+FGiFVOBdppTStU9GiD8KF7ElKfNXJVSdZAGCD+KBwjNQSil6iINEH5EhBUvYtIchFKq7tEA4Yc7B+GehjRPh/5WStVBGiD8cAeIsFDbeklzEEqpuqjMACEiLhF5oqoSU1O4WzGFhdi3R+sglFJ1UZkBwhhTAPRxzx1dV4S5O8Y5D1+v+736EqOUUtUkkCKmX4FPROQKEbnA/VfeQSLyqoikicjaUrZPFpHVzt9PItLTa1uyiKwRkZUisizwy6kcxQuUNu3NqtDxuw4cpcf0b9i+70jlJUoppapYIAGiEbAfGAmMd/7ODeC414ExZWzfDgwzxvQAHgJmFts+whjTyxiTFMBrVarYCDtNRreW9WkaFwGAMYHXQ3z8624ycvL5cPmuoKRPKaWqQrkTBhljrj6eExtj5otIYhnbf/Ja/BlIOJ7XCYaWDaL4zx8H0r1Vfd75ZQcPf7GBjOx8Hvv6Nwa0b8SEXq0COo9Qp0rmlFK1TLk5CBFJEJE5TnHRXhGZLSKVfTO/FvjKa9kAc0VkuYhMLSd9U0VkmYgsS09Pr7QE9WvXiKhwF02cHMTezBxmLdnJbe+tLPdYbfOklKoNAilieg34FGgJtAI+c9ZVChEZgQ0Qd3utHmyM6Q2MBW4SkaGlHW+MmWmMSTLGJDVp0qSykuXRoUksAFvSKlYPoZRSJ7tAAkQTY8xrxph85+91oFLuxCLSA3gZmGCM2e9eb4xJdR7TgDlAv8p4vePhDhCbK1hRDXAkN7+yk6OUUlUmkACxT0Qud/pEuETkcmyl9QkRkTbAR8AVxphNXutjRCTO/RwYBfhtCVUVosJdhLmEvZk5Ze73xDe/8e36vQC467NfW5TMhj0ZwU6iUkoFRbmV1MA1wLPAP7HF6z8568okIrOA4UC8iKQA9wNhAMaYF4D7gMbAc043i3ynxVIzYI6zLhR41xjzdYWuqpLFRoSSlnGs1O3pmcf49/dbAUh+7Byfbb9s289pLeoFNX1KKRUMZQYIEXEBfzPGnFfRExtjJpWz/TrgOj/rtwE9Sx5RfWIjQ0nPKj1AJO+3/R3qR4WV2Lb/SG7Q0qWUUsEUSE/qJiISXkXpqZFiI8JIzyi9iCkjOw8oGsPJeLVjys3XYTqUUienQIqYkoFFIvIp4OkabIx5MliJqmliI1xs2FNGgMhxAoQzVWmh1wRD+TrZkFLqJBVIJXUq8Lmzb5zXX53h7lntLS0jh5+32br6w0fdOQg7yN8xr8H9juYWVOi11qdmMOjR7zigRVNKqWoWSB1ER2PM5VWUnhopNtK3biHxni88z5MfO4eMHNucNcxl4+3ew0W5jaMVbOr6zHebST2cw+Kt+zmnR4vjTbJSSp0wrYMIgL8chLdj+TaX4C5a8h6k78gxu62g0JAcwOB9h536DH8V3kopVZW0DiIAsRGuUrcVFBpPPUOOEyj2H8nlgtNbsfPAUbLzbA7itUXbefiLDXx56xl0aVl6s9dDToAIdek4Tkqp6qV1EAGIjSj913xufiEFzoxzOXk2QBzLLyQizEVMRCiZTvHT+lTbYW7lrkMlzpGZk8c+pxltplPhnaeTFCmlqlkgo7k+ALZXszGmTk5wEBdZ9DZd2rc17y0tGsY7N7/Qk4PI9woUEaEhxMdGsDrlEADN6tv5rVMPZZc4//AnfmD/kVySHzvHE2Q0QCilqlsgo7kOFJH1wAZnuaeIPBf0lNUgbRpFe55fPqCtz7YjufmeiugCZ4yNY3mFRIa5MBgOHs3juR+2UOAEka3pJcd0cnemS8vM8bR6ys3X5rFKqeoVSB3EU8Bo7IiuGGNWlTW6am3UoWms53lUuG99xKDH/ut5XlBoKCg05BYUEhkWQky4fXsf/3qjZ5+v1v7OKwu3c+2QdiVep98j33meb96byZ7D2Vw9uOR+SilVFQKpg8AYU3xqtIo17j/JNYopasQVFVZ6hXVhofH0nI4IdXHXmE70at2gxH4Pfb6+3Nf8x7ebeOCz9Z4ip4rKzi3g/aU7KzQTnlJKeQskQOwSkUGAEZFwEbkDp7iprojzaubaMDqcyDD/b1uBMZ4bemRYCHGRYZxbTl+GzXszy9yee5x1ETe8s5y7Z69h2Y6Dx3W8UkoFEiCmATdhJwtKAXo5y3VGSEhRk9OocBer7h/Fy1eWnCq7sLCoqWukk9MoXiTllu/c+M/+5/wyX/tYXuABwp1bSMvI4YeNdna9PB0LSil1nAJpxbQPmFwFaTlpRIS6CA8tGVttDsJdxGS3l1Yk9eS3m7hrTOdyX8vdCa88xhhGPzWfU5rGEhVW9LG6O94ppVRFBVQHoSA+NoIzOsZ7lv0GiELDkWO2RVOMUyxVWoB47oetPssTerX0u9+xAHMAGTn5bNqbxZdrfmf2ihTPeg0QSqnjFUgrJgUs+7+zfJb9BQiAQ0d9h8qILKWICWDB5nTP845eLaW8BVrEtL+U+Sq+Xvc7l/RtjTMBk1JKBUxzEMcp3OX/rTtw1PZpcAcI7xzEa1f35YmLeniWr3hlCZ2axRHuCuGmEafw+S1D+PimwT7nC7SIaV+WfV13TiQ+NoKRnZvyw8Z00jJLn+yoLBt/z/QZuvxErEs9zFuLkzHGsOvAUQb87TvOe3ZhwNenlKp65eYgRCQCuBBI9N7fGPNg8JJV80WUkoM4eKT0ANEroQENY8I5nJ3Hw1/YhmBHcvM5t2cLRIRureqXOF+gEw7967+bAbhlZEcePK8bR/PyWb7jIP/9LY0taVk0qxcZ+MUBV7+2hO83pvPSlUmc3aVZhY71549vLSflYDYD2jfmH3M38XtGDr9n5LDx90x6JDQ44fMrpSpfIDmIT4AJQD52sD73X5lE5FURSRORtaVsFxF5RkS2iMhqEenttW2MiGx0tt0T2KVUrdKKmHbsP4qIbQ4LRY8ADaJt0Cj06puQdSzfpxltcYHUQXy7fi8LNu8DoH18DPWjw2hRP4p6zjDlk1/+pdxzeMsvKOR7pxXUvjKmWq0I95zeW9OP4F3atftgyaFHlFI1QyB1EAnGmDHHce7XgWeBN0vZPhbo6Pz1B54H+jtzUPwbOBvbrHapiHxqjCm/d1kVKi1ALNySTlLbhp7mrU3iIjzb3PUA3l0bDh3NIzay9I+hvI5yq3Yd4vo3lwFwTo8WPk1y63kNGW6MCbgeYo/XfBZZORWbz6I08bHhpB7O4aet+/hxU1Hdy/b9dXJ4L6VOCoHkIH4Ske4VPbExZj5woIxdJgBvGutnoIGItAD6AVuMMduMMbnAe86+NYp79rjiNu3NomWDKM+yv34QVw9OJD62KGcRVqw+4+lLe3HVQDvmU3ZeAWtSDrMm5bDf19tzuOgX+AWnt/LZFuoVLHIq0J/Cu+XToezKmdnOPaDhm4t3+Myy9/jXG1m7+3Cl1XUopSpPIAFiCLDcKfJZLSJrRGR1Jbx2K8B7CI8UZ11p62uU0nIQYCt3vd05uhOvTinqWBcZ5vIZ9K/4tKQTerXiphGnALBhTybjn13I+GcXlnidrelZntnsAM7o2MRne9eW9Tw5mOxiOZHs3AKWJvuP3z4B4uiJN5M1xnA4O49+7Rr5rJ/Urw0A5/5roadORilVcwQSINxFQaOA8cC5zuOJ8lfeYcpY7/8kIlNFZJmILEtPTy9tt0rn3YppQq+WnvoFgINHfX913zTiFEZ29q3ojfbKWbj7TnhzFzu9tGCb39f/YvUezvzHj7zvNfR48aAlItw5qhMA8zbs9dn24Ofr+MMLi9nhp4gnwytAZPlJW0WtS83gWH4hF5zeyjN0+oK7RvDoBUUZ01cXbT/h11FKVa5yA4QxZgfQABsUxgMNnHUnKgVo7bWcgJ2cqLT1paVvpjEmyRiT1KRJk9J2q3RhXjO+PX3p6dzh3IgBZvyhZwDHeweYkhkkd+sn9zDhjWN8Z339dacdY2l5OWMtufth3PXhap9inE177bDjuw74VhIbY3j2+y2AbYlVPHcTiOIDBH65Zg+hIcKYbs354pYzWHDXCFo7Q6h7dz5UStUsgcwHcRvwDtDU+XtbRG6phNf+FLjSac00ADhsjNkDLAU6ikg7Zy7sS519a5TiFb4ur/L+IaeUf9Mb1bU5jWLCefva/iWKXvyd/0iu7y/5QAfxi/ZqZrvzwFHPc3dP792Hjvrsv/9ILutSM+jash4dmsR45roIVMrBo3S57xu+XLPHs27Dngw6NoujQXQ4bRpHe4IDwD8utsE0royKeqVU9QikiOlaoL8x5j5jzH3AAOD68g4SkVnAYqCTiKSIyLUiMk1Epjm7fAlsA7YALwE3Ahhj8oGbgW+wo8b+xxizroLXVWUu6G1//bu8buiBtBZq1SCKFX89myEB/IL+n7M6kpNXyM3vrmDt7sNs3pvJm4uLMnFndIzn05sH+z3Wu5J818GiYFBQaANMZrFWSu4Z7247syMxEaEcORZ4DuLiFxYz5O/fk51XwHM/2FyIMYbNaVkkNo72e0zTuEiuP6OdJ6eklKo5AvnZJvjO/1CA/3oCH8aYSeVsN5QyKqwx5ktsAKnRtj86zvPcu3lpZZn7p6E0iA7jm7W/A/D56j18vnoPvds08Nnv5auSSm1VFeIVrO7/dB2zpw2iYUy4p1VT8QCwZLutuG7dKJqoMBcLNu8rtYns0/M2M6RjPH3aNrTHelV6u4vIftyUTsrBbG4cfkqp1xkXaYuy1u4+TNeW9coMsHsOZ/PRit3cOLwDIsK36/fSN7EhDaLDSz1GKXV8AslBvAb8IiLTRWQ68DPwSlBTdZIQEc/NzB0fKnPIo1ObxdE0LtKnPwPAip2HfJZLCw4AA9o34qlLegGwLf0IrzmVwe6WSkdy89mbkcOx/AJW7TrEw19soHWjKDo3j2PueluxPd/phOctr6CQf87bxIXP/+T3ddMzj1FQaJi/aR+RYSFc1Ceh1DS6h9s4918Leeyr30rdD+Dmd3/liW828tXa3/lsVSrXv7mMp+ZtLvMYpdTxCWS47ydF5Adsc1cBrjbG/BrshJ1s3HUQseGVX5bu7hENdvKizGP5DD21CfM3ld9qS0Q4//RWHDiSy2Nf/cbsFbs5rUU9DjhDgsycv42Z87dx1mnNPC2dCgpsjiHMJeQVGLL91EPsz/JtqVW8H0Na5jGmvrmM735LA8puFjyoQzz//t6Obvvi/G3cemZHosJcPrmylbsOcf6/F3mWb3xnhd+6G6VU5Sn1v1ZE6jmPjYBk4G3gLWCHs055cRflePecriz1ooqCjrsT3mkt4ip0jmuGtKNvu4bsPpTNDe+s8AQIN+9msKlOT+oPpw0CIMtPPcTnq30blt3wznLP8x4J9TmaW+AJDuUZXKxSv+v93/DPeZsAWJ+awU9b9/HBsuKz3sKG1AzA9ulQSlW+sn7uvovt87Ac334I4iy3D2K6TjruHER8MAKEk4NoEB3GhX1a8cXqPZzbvSXje7Rk/5HAezon7zta/k5A60Y2CLV1Kpb9zSnxy/ai+oZt6Vl8s84GmD+ffSoJjaL40/urALj1zI6MCmCwv9eu7subPyV7xoB68cdt/HlUJ8Y9swCAYaeWbMKc6fTRKN7vxNvCzftoEB3mdyBEpVTZSg0Qxphzncd2VZeck5d71NWmQQgQ7eJjuGJAW64enEj7JrFMHdrhuM5z15hO3PbeSs/yZf3b8O4vOz3LIQKzrh9AGycwxEWGIQIvzd/GeT1bYjDUiwwjMszlM4jghj2Z9Eioz+qUw9w88hQWbdnv2XbFgLYB5apGdGpKdJjLEyByCwp9hhFZvLXonLNvGMiFzy8GbBBbuesQBYXGp6mx2+Wv2IEK10wfRWxEqM6LoVQFBNIP4rtA1tV17lFPg1HEFOoK4aHzu9G+if9JhQI1oVcrnry4qBPf3yZ2Z/X0UXx+yxCnqewQ+rdvTIv6NgfhChE6NYvj94wc7v1oNf0e+Y4/f7CKX7btJz3zGGd0jCciNIS/f/0bq1MOc17PlogITesVvQfFO/iVpXidwsBH/+t57u73cUrTWPq0bcTie0ey+ZGxXD0okbTMY+w/UnLUWe9JlLpPn8uVry4JOC1KqbLrICKduoZ4EWkoIo2cv0TA//yYdZi7HLyV10B9NVGs00Gua8t6gC2+6taqPm9d299vMczMK+wYUvM22PqEL1bv4ZKZP7NhTwYJDaPp376xpwPeqc1sAPPORVWk+a+IsOR/z+Qv4/zP1f3kxT356EZbL9KifhRhrhAaOgEoo1gxWHZuAX0enuezbsHmfaxOOeR3aJNgeGreJhLv+YILnlvEjG82VslrKlWZyqqD+CPwP9hgsJyivg8Z2OG4a5cj+yGm8XEffs2QduTkF3DFwLbl71yN3JXcE08PbPzDNo2jeeC8rtz/acm+ik3iIkhsHO1pTXVeT3tO92RJxxMsm8ZF0rtNQ8/ygxO60rl5PZrVi6Bt45gS+7tf6+NfU7ljdNFwJ8mlDCN+3rO2JdTjF/Xg4qTWGGO4/s1lXNSnNWO6NQ8ojTl5BTz8xXr2HMrh2ct6k19YyNx1e3n+x60kNIxiyqBEOjSJ9TS/XbHzECt2HvJJH+DMrpftKdJTqqYpqw7iaeBpEbnFGPOvKkxT1fv2flj0FPx5I8QFdpMoLiYilDtH+//lW5N0a1WfxfeO9BQjBeKqQYl+A0TTuAj+kJTAsh0H+Xb9XhIa2nOKCJ/fMsSzXFHuYUCaxEVw5cDEMveNcyrwn/1+i88NeFu6DRAXJyUw/byuvL90Fw98VjSlyP/NWUtsRCib92Yxb0Ma8zakcceoU7lpxCnl1lN8tiqVt3+2dTen3fe1z7YtaVn8sLGo+fHYbs3ZkpZF8v4jng6HBYWGlINHufW9lazadQiwdSRxkb79XZSqboEM1vcvEekmIheLyJXuv6pIXJVZ9JR9zD5UnamoMhUJDm7d/RQ/tW4UTUSoi5euTGL7o+N8ipO6tap/3L2bWzeKpn5UGI9OLH8aEn91HMYYPlqRQky4i4fO70Z0eKhnaHG33IJCbnxnhac5LcCMuZvYfajsGe4+W5XKnR8GNtr9OT1a8Nzk3lzQO4G8AsPyHQcxxnDJi4sZ9sQPnuAAcPt/VgV0TqWqUiBzUt8PDAe6YIe/GAsspPSZ4k5eRtvTl+bt6/qzJS2LJdsP8PevfyMiNMRnUMLKbB0UGxHKqvtHBbRvYnwMnZrFeYJTYaHhs9WpfPdbGhcnJXh6mUd6DVp4Ye8EZq9I8Xu+9am2bqW4zXszufr1paQ4U6Q+fH43urasx+wVKfxxaAfSs47x1Zo9JO8/yn3ndmFzWiaDOsQjIp6h3S96YbHPOds2juZPZ53K/7y/UqdeVTVSIN1+LwJ6Ar8aY64WkWbAy8FNVjUp1ABRmvpRYfRp25A+bRsybVj7GtVctGureny0YjeTZv5MTISLeRvSEIEHJ3Tz2e/DaQOZvSKF+8d39QSIb/5nKC0aRLJudwaTXvrZZ7pVb7OW7PIEhycv7skFve3QIac79SWtG0X71J14j1jrr57+uz8Po4PTKu1vX2447uI4pYIpkACRbYwpFJF8p3d1GrW1k1xh1bRuOdnVpOAARR0JF28r6ivx4bRBPrkGgKTERiQl2qa02x8dR0ZOvqeSu3+7RrhChLTMHNIyc2gUHU6oM2fHutTDngmNmsRFMK57iwql7+K+rWkcG8GN76wAYOn/nuXTHLpjs9hSA5NS1SmQALFMRBpgh+ReDmQBtbNBuQl83mZVcxQPBM9N7u0ZYbY0IuIJDmCb4zaNi+Df32/1jAs1uX8bHj6/G/d9YivoH5rQlUv7tSkxh3h5IkJdjOvegnN7tKBRTHiJvjKDOsTzxDcbuemdFQw+JZ5hnZoQHebyNOFVqroEMljfjc7TF0Tka6CeMaYy5qSuebSI6aRUv9hot8XHdgrUQxO6cd2byzzL7/yykwNHclm+4yCnNovlinJaVJXn2ct6+10/qV8bnvhmI1+s2cMXXhMtrfjr2TSq4iCRmZPHjv1HaV4/kvjYyu/0qU4uAfWkFpFxAMaYZGPMahGZGfykVQOtpD4pXT6gDZf2bc2pzWKJjQgtETACdVaXZmx5ZCwPnd/NM1/2V85cHPed27XS0ltco5hw3p86wGdec4B/f7+F7zem8ekqOzBi8RFzK2rP4ewyz3HfJ2vpPn0u5/5rIUkPzyt3OltV+wVSxNQOuFtE+hpjHnDWJQUxTdVH6yBOSnGRYTx2YQ8KCs0Jz0wX6grhigFtMcbw2apUfnLGgBp8yvF3ogxE//aNWXlfUcutK175hVcWbueVhbbu49EvN7DncA7zbh/GKU1t5bYxhn1ZucTHhvPnD1Yxqktzn85+GTl57DmUQ1SYiwc/X8e8DWn8bWJ3Luvv2+QXYMXOgz6zFAJ8tWZPuUV1qnYLJEAcAs4EnhGRz4DLg5qi6qRFTCc1V4j4HbDveIgI71zXn5vf/ZWRnZtWecX8hF6tWOA1UZO7EnvlrkOc0jSWlINHGfL3732O+WjFbrY/Oo5j+YUczs6j/99KDpn22qLtiMDQU5sQHxvuaQbsDkRnndaMZyb14trXl7FwS+mzCZ6o9akZPPT5eh6e2M3TmkvVPAFNOerME32jiEzB9oGoXT8rxj8Dn92qRUzKh4jw78n+6w2CbWy35mzam8mYbs0Jd4Xw4vxtfLYqlTs+WMVri7b7jKbrrd29/mfqnXh6Kw5n5/Hf39K496M1nvUfThtIRk4eX6zew1mnNePlq2zhwKiuzXjgs/V8vzGNkZ3LH669It79ZSd/mWPT8MPG9BIBYteBo7RqEBWUaXxVxYidGrqMHUT+aIx50Wu5D3CTMeaack8uMgZ4GnABLxtjHiu2/U5gsrMYCpwGNDHGHBCRZCATOwd2vjGm3GKtpKQks2zZsvJ2KyllObw8Ei77AE4NrIOWUlXtpndW+FRij+jUhJev6sv2fUdIzzzGtW8s5WixyZM+nDaQNo2iaVovkv/+tpdpb6/wDE3vrUF0GIvvOZMop1NfXkEhQx//nqZxEcyaOgBj7BAo2bkFzJi7kb0ZOaVWurtt2JNB83qRLE0+QLv4GF5dlMysJTtL7NcgOoxbR3bk0NFcGsdGcP+n63jgvK5cNSjxON4lVVEisry0+2upAUJE6hljMkqbPc4Yc8Dfeq/jXcAm4GwgBVgKTDLGrC9l//HAn4wxI53lZCDJGFNyQuRSHHeASP0VZg6HS2dB53EVP16pKmCMYf+RXB78bD2b9mby5jX9aFov0rM9PfMYxhjCQ0MwBtbvyfDbomt9agZN60WQV1DIv/67hdRD2Vzat02JwQqf/2Erf//ad45wEXDfMpb85UwaxoQTIkVFe7OXp/D8j1spNMYzHlZxfRMbcteYzjzw2TrW7s7wu0/vNg2YNqwDp7WoR+tG0RQWGub8upvocBfxcRFMeXUJVwxM5OrBiezPyqVeVCh5BYZ28SUHdFRlO94A8bkx5lwR2Y6dQc47v2eMMWV2lhORgcB0Y8xoZ/le58BHS9n/XeB7Y8xLznIyVRUg9qyGF8+AS96G08ZX/HilaqGcvAJmzt/GV2t/Z8Oeoht5o5hwz5S1rRpE0bJBJC0bRJGdW8Dc9Xt9zjGma3PaNYkhOsxFz9YN6NQ8jmZOUMsvKOTz1XuIiQjln99uYmCHxny4PIWktg0Dnq62uPl3jmBJ8gH++e0m3rimH4mNoz0dHpV/xxUgKuFFLwLGGGOuc5avAPobY272s280Npdxijtn4gSmg9jg9KIxxm/TWhGZCkwFaNOmTZ8dO3b4261se9fB84PgD29A1/MrfrxStdybi5OZu24vZ57WlIEdGjPmqQV+9+uRUJ8Ppg0kNCSEEKl4r/uCQsOWtCxGPzWfmHAXrhAhI8e2LjyvZ0tPk98Ppg1k14Gj/GfZLlo2iOKjFbtLPeevfz1bOx2W4YQChIh8Z4w5s7x1fo77AzC6WIDoZ4y5xc++lwCXG2PGe61raYxJFZGmwLfALcaY+WW95nHnINI3wr/7wYWvQPeLKn68UnXM9n1H+J/3VzL81Ca8uTiZhjHhNImN4KlLex3XaMHFLUs+QNvGMcRFhhLqtE4TEdakHCYkBLq29B1dODe/kEVb9/Gfpbvo1qo+jWLCfSrjYyNCuWJgW+4a3anGDRVT3coKEKW2YhKRSCAaZ0Y5ioqY6hHYjHIpQGuv5QQgtZR9LwVmea8wxqQ6j2kiMgfoB5QZII6bOEM16FAbSgWkXXwMn9w0GIAbR3QgNCSk0poYA54xs4rrnlBy2HmA8NAQRnRqyohOTT3rLuydwKerUvl+YxpfrN7D8z9s5as1e/jkpiHsP3KMZvUiPXOPAHy6KpWFm9O5dkh7EhpGIQLvLdlFp+Zxx907/2QXzBnllgIdRaQdsBsbBC4rvpOI1AeG4dW/QkRigBBjTKbzfBTwYACveXxCnDJK7QehVIW5+1LUNOGhIVzUJ4GL+iTw7CTD2KcX8NvvmfR8cK5nn37tGjG0YzzvL9vFrgN2tN7/LEshNiKULK+pacd1b06L+lH8ISmBzs3r+bxOfkEhP25KJ6+gkDHdKjaQY00XtBnljDH5InIz8A22meurxph1IjLN2f6Cs+tEYK4xxrvJQzNgjpMVDAXeNcb4Tt1VmTw5CA0QStVGIsKs6wcw9PHvyTyWz9ldmrE1PYsVOw6yZPsBosJcXH9GO+Iiw3jy202e4NCifiR7Dufw5Ro75MpbP+/ggfO6kl9oGNetOcn7j3DP7DVsTssC4Poz2nHP2NP4dedBFmzexw3DO/gMJrlk+wFeWbiNsd1acEbHeBrX8PGuAqqkFpFBQCJeAcUYU+MmDDruOojDu+GfXWD809BnSqWnSylVc+QVFHpG5D10NJdfth9gUIfGxEWGYYxh96FsWjWIoqDQEOoKwRjDmt2H2bAng7tnrylxvphwF30SG3nmZm/dKMqTG2lWL4Jm9SLJzS/EFSKsSy1qDeYKERrHhNO3XSMOHc1l6tAODGjfqMpzZMdVB+F18FtAB2AlttMa2JZFNS5AHLcQ5wPRIialaj3v4dobRIczumtR/w8R8cwoGOoSz7oeCQ3o3qo+hcYWKeUVGGavSGFc9xacf3orWjWIIiMnj6/X/M4/vt1I+/gY2jeJYd6GNPZmHAOgfXwMt599Kn0TG7ElPYsFm9JZsHkfX6y2nR8XbbHjfl01sC3H8gtpEhdBXGQoy5IPcuhoHq0aRjF9fFfqR1fd3OWBtGLaAHQxwWoPW4mOOweRlQ4zToFxM6Df9ZWfMKVUnWGMwRg77/mKnQfp1boB+YWGmPDQEhX5eQWF7M/K5Vh+AQ99voF5G/aWclYrNEQ4t0cLHp7YndiIUDb+nsmHy3fRq3VDRndtdlx9Pk4oBwGsBZoDe8rb8aSlOQilVCUREUQgMsTFoA5lt34Kc4XQvL7tOPjyVUkYY8gvNKxOOUTjmAi2pGXRPaE+IvDxr7uZ8c0mPl6ZyscrU4kOd3mGVmlebw9ji/WErwyBBIh4YL2ILAGOuVcaY86r9NRUF0+A0OG+lVLVR0QIcwl92tpmvoleQ4dMHdqBqwe3496P1vDh8hSa1YtkfI8WTB7Qlpy8gqAMbhhIgJhe6a9a04Q4b4MGCKVUDRbmCuGJi3owdWh7OjaNDXqnv0CmHP0xqCmoCVxOU7OC3OpNh1JKlUNEOLVZXJW8ViBTjg4QkaUikiUiuSJSICL+h2A8WblCbS4iP6e6U6KUUjVGIFXezwKTgM1AFHCds652CY2E/GPl76eUUnVEIHUQGGO2iIjLGFMAvCYiPwU5XVUvNALysqs7FUopVWMEEiCOikg4sFJEHsc2d619s3JoDkIppXwEUsR0BXYspZuBI9gRWi8MZqKqRWik1kEopZSXQFoxuWfgyQYeCG5yqpEGCKWU8hHIWEzuKUd9lDfl6EknNEIDhFJKeQmkDsJ7jI5I4A+A/9k8TmZhUVoHoZRSXsqtgzDG7Pf6222MeQoYGfykVTFtxaSUUj4CKWLq7bUYgs1RVE03vqoUGgn56dWdCqWUqjECKWL6h9fzfCAZuDgoqalOWkmtlFI+AmnFNKIqElLtNEAopZSPQIqYbi9ruzHmyTKOHQM8je1H8bIx5rFi24cDnwDbnVUfGWMeDOTYSqetmJRSykegrZj6Ap86y+OB+cCusg4SERfwb+BsIAVYKiKfGmPWF9t1gTHm3OM8tvJoKyallPIR6IRBvY0xmQAiMh34wBhzXTnH9QO2GGO2Oce9B0wAArnJn8ixx0dbMSmllI9AhtpoA3hPlJALJAZwXCt8cxkpzrriBorIKhH5SkS6VvBYRGSqiCwTkWXp6SfQCik0EgrzdNpRpZRyBJKDeAtYIiJzsD2qJwJvBHCcv6mOivfIXgG0NcZkicg44GOgY4DH2pXGzARmAiQlJfndJyChdl5Y8o9BePRxn0YppWqLQDrKPQJcDRwEDgFXG2MeDeDcKdiB/dwSgNRi584wxmQ5z78EwkQkPpBjK12oM6ucVlQrpRQQ+HwQK7C/9itiKdBRRNoBu4FLgcu8dxCR5sBeY4wRkX7YgLUfG4jKPLbSucLtY0FeUF9GKaVOFgEFiONhjMkXkZuBb7BNVV81xqwTkWnO9heAi4AbRCQfO1rspcYYA/g9NlhpBbwChM5LrZRSEMQAAZ5ioy+LrXvB6/mzlDJ9qb9jg0oDhFJK+QikFVPd4Aqzj1rEpJRSgAaIIpqDUEopHxog3LSSWimlfGiAcPMUMWkOQimlQANEES1iUkopHxog3NwBYteS6k2HUkrVEBog3NxFTN8/XL3pUEqpGkIDhJs7QCillAI0QBTRMZiUUsqHBgi3+q3L30cppeqQoA61cVKJbQqJZ0BhfnWnRCmlagTNQXgLCdWOckop5dAA4c0VZmeVU0oppQHCR0gYFGgRk1JKgQYIX65QzUEopZRDA4S3kDCtg1BKKYcGCG+uMG3FpJRSDg0Q3rQVk1JKeQQ1QIjIGBHZKCJbROQeP9sni8hq5+8nEenptS1ZRNaIyEoRWRbMdHpoKyallPIIWkc5EXEB/wbOBlKApSLyqTFmvddu24FhxpiDIjIWmAn099o+whizL1hpLEFbMSmllEcwcxD9gC3GmG3GmFzgPWCC9w7GmJ+MMQedxZ+BhCCmp3yag1BKKY9gBohWwC6v5RRnXWmuBb7yWjbAXBFZLiJTg5C+krQOQimlPII5FpP4WWf87igyAhsghnitHmyMSRWRpsC3IvKbMWa+n2OnAlMB2rRpc2IpDouyOYjCAghxndi5lFLqJBfMHEQK4D1EagKQWnwnEekBvAxMMMbsd683xqQ6j2nAHGyRVQnGmJnGmCRjTFKTJk1OLMVh0fYx98iJnUcppWqBYAaIpUBHEWknIuHApcCn3juISBvgI+AKY8wmr/UxIhLnfg6MAtYGMa1WuBMg8o4G/aWUUqqmC1oRkzEmX0RuBr4BXMCrxph1IjLN2f4CcB/QGHhORADyjTFJQDNgjrMuFHjXGPN1sNLqERZjHzUHoZRSwZ0PwhjzJfBlsXUveD2/DrjOz3HbgJ7F1wedJweRXeUvrZRSNY32pPbmzkFoEZNSSmmA8BGuldRKKeWmAcJbmFZSK6WUmwYIb+HuSmoNEEoppQHCmycHoUVMSimlAcKbpw5CcxBKKaUBwpunFZPmIJRSSgOEt9BwO2Cf5iCUUkoDRAlhMdqKSSml0ABRUliU9oNQSik0QJQUHq05CKWUQgNESWExVVMHUZAPH98Ir50DWWnBfz2llKogDRDFhUfbVkzZh4L7OskLYOU7sGMhLPhHcF9LKaWOgwaI4gryYPt8+HtbyNgTpNfIh7fOL1p29+BWSqkaRANEcakrip5n7Q3Oa2Qf9F2Oahj4sYUFlZsWpZQqhQaIsuQfC2y/g8nw3mT4fU3JbcbYXIm37AP2sc8U+xjoTX/TXHiwEXx9L2SlB3YMwLo58HvwJ+RTStUuGiCKG3BT0fPP/wTT6/tu37MKti8oWjYGnu4Jv30OLwzx3ffnF+CBBvBQPOxYDMtes+c7nGK3dx5vH4/us+uXvVoyPXtWw6ZvYOkr8NVdznmfg49v8N0vL8fuU1jou/5YJnwwBV4/xwaqpS9DzuFA3om6xxh4sDF891B1p6Sk/Fz7+Xr/2Mg+BCvetOlWVWf/VljzYXWnokpogCjurOlFz9PW2ce3JsLjHSBtA7w4FN44t2ifvet8j3ffoNM3wdd3F63f8Cn8/Lx9/vYF9jG6EYRGFf26n++nsnrWJHj3Yvjidji4vWj9lm/hya5FN4fvHrT7bP7G9/i0DfbxWKYNLF/8GWZdZtetnW3XA2z4DI4e8PuWBGTBk/BIi6LgV9kK8mHedPjkJsj8veT23CP2egryyz/Xzl/gsbawd73v+qw0KMyHBTNgyUuw/lPYvQJWvRf4TfjwbnvciTAGVs6yAcAYeP8KeLiJ/XzfGG9znLuW2HqyT2+BXb/AyncDu/ZgKyywac/P9V1vjH0fixevBtv2BfaGXpnmTIPZ19ofddPrwyMtYd4DJa+5FgjqlKMnpdBwGDcDvryjaN3W/9rH5wYUrTuwDZ45veTxqb8CBl4+03f9/q0Q1xz2bSxa1/Q022pq2/d2OSPFFmuFRvimpzQZKbB3LTTtAsteses2fA4/PApdzoczboej++16UwAL/2mf71hoA97RfdB2CLQfDt8/DKecBZfPLv31Du6w9TKt+xWt2zQXWve1N6i8o7ZF1qlj4dRR9kaZth4G3gwRsSXPt+Ez+9oRcb7r966H/Bxo1bto3doPi9JfkA8XvFi0befPNreXth7O/SckXVP6NRTkwyc3Qs4h+O9DNoBeMNNeU/qGov28P3+ARh3sdXrb9A1ENoA2/e3nu/Nnm8vLzbLXfPZDEFLOb7CcDJu7G3QrNEyElKWw/UfY5EzBLiFgvHKFOxfD84N90/rqaPu4+Dk4vBP6XA1nP2DXLXsVfnkR+k2Flr2gVZ+y0+OWlQ6bvoIelxZ9Bzd/a4tTTaFN95A/gcvrFrJjMbw2xj5f8wGcdi7EtbSf7+r3bG6nfmu4ZbnvdxxsYNn8LXQYUXKbt9SVcGgHdJkAW7+Hb/4C13wNmXthyzxo1B5mXQKNO8L+zUXH/V+a73kLC+G9SfZ9Do+D08bDkXRo3R9WvQvxnaDzOPv/2P0iW094YJvNfRf/EeQKhYVP2r9uF0GjdtBhpG0u32aA/+9+cYUF9n/olLNg50/QvAd8dhucOgYG31r+8UEiJojZUxEZAzwNuICXjTGPFdsuzvZxwFFgijFmRSDH+pOUlGSWLVt24gkvLIQHy6k4doVDQbFfDGEx9guRm2V/1YH9J9qx2P7jnzYe1n9s1186y34Bn+kNB7x+4bQZBL+vhknv2X+smcPKT++Vn8Kb55Vc/+eN8I9O5R/vbfJsG0xOObvkzc1d3Hb3DnszPrwbProOOo629SopS4v2veAl+Oh6+/zUMdB/ms0xtehpbzKr3rOBDOD674uCwe4V8NII+zzpWkgcDB3OtLmvH52vQFg0TP7AKbZ7FTJTvRIp9kYoIdD7Soisb//ZNn0D9VrAkX0lb/71WkHXibD8DcjNLP29+b/0opvlsSx4tFX572fPy2Di8zaH8/o50P1iGHhj0bV+fU/Rd6X4dyq+k/1B0eMSaNYNvv1r+a/n1rgjTJoFzyb5rr9lhb3B/+dKGP0IxDSxxZUNE8EVARNfAFeYzSnvWQWjH7U3rQZt4G8t7XfD21kP2M9x8G3w498DS1urPnDN3KLgsmkuvD+56Nov+wASkmDbD/Zzb9DGfn/2bbQ5SIBRD8Pc/7PPk66BfZtt0/HiwuPsZ3rxmzaoABzaZa/fu0FKWZp0hs7n2pyl26hHYIDzOYrYXMXq90oe22mc/RzA/vA5ug/aDS25n/sHmz+dz4XEM2xrxy7n2e+0W2Gh/cHXZqD93I6DiCw3xiT53RasACEiLmATcDaQAiwFJhlj1nvtMw64BRsg+gNPG2P6B3KsP5UWIAD+3q6oMrksbQbC7uVw1zb7C7d4n4bph23xj/f6U86Gy50yzNfPtV/sfn+EJS9SqkvehvSN0KIXvHNhhS/Ho+0Q+4UKRN/r7C++HT/B4V02KIC9qRzxqiQPCYWYplCvJRQc819Z73bKWfaXXnFtBtpfa/7+aZt0hvTf7PMOI4tydMEy+lEbCL74M0z5El4fV7Qt8Qybk8o+WHow8b55AST0g5QlRcuucJvr27Oy5LE3L4fNc+HU0dC4gw1E7l+gO36yN81fXrBFob2n2Fztvo2A2BzpwJuKbqLladLZBtI0r3+rXpNtQPUuHgWIamT/H5p28d2/uMQzim7Usc18WwKOm2G/R4uett/ngjx7PSvecMZAO8EhbjqdAxu/KFq+N8UW4T6aAPnZNog1bGc/V1Ngf2jkHbW5q5SlTu4fu74w3was1gNg188lX+uOLRDbpGjZGPv93fCprY/My7HFwO7cX/sRRSUF5z9vc64/PWOXS3uN0tRvDYh9nrXX/s9FNoB7dgR+Di/VFSAGAtONMaOd5XsBjDGPeu3zIvCDMWaWs7wRGA4klnesP5UaIPZtsb8y3PUQSdfaYhz3rzq3v+63X76IOFvM8K/evueZfth+eT6+0WZdm3SGG3+2vzoAdi2FNf+BEf8LM061H3Zx0xZC8+5Fy+kbbfFMu6Hwytl23dA77a/psGjodiEseqrkeSLq2XM93cMeO/lDm7XN2F3yl2aghtxus9YAZ/wZht1t6wp+fs6uu+g1+PDq0o/33h4Saq+z5enQsrf9Rzu0q+gz6HwujHkMnupWtP/Fb9ry+L7XwY5FMOePvud3/4L0Nvwv9tfrdw/CH163lfhu7l/8UFTc98QpvgHRrd9Ue1P+/E8QHms/57wjcHey/RyWvwFf3Vn2+xffyRbr/fqWDSQdzyp7f7A3VvevRXcLuMICuy4vG757wBYtrvnA97iOo20dVVxLW/dU/H1p3sPmXsG+b01OtT9+AGKb2xzwWdNh3yZb1NWqT1HxFkD/G+DsB+FImm0MMeweuz4s0t4w3Y9PnFLytUc9AqdPhvkz7I35WJYt/gmNgEynP9KgW2wup/80ewMPCbWv8+Nj9gfKzUtsbiSqgW8OeMWbtq7GLTQKrpgDbQfa91JcNmAU5tvn7mK9kFA4lGwbm/S42H43f/sCQiNt7r88uUfg01tt8Wh5EvrC6VfAZ7fCxJk2vZ3Hwf4t9gfXsLttWhc+af83mnQuOnbXL/aH17jHy38dP6orQFwEjDHGXOcsXwH0N8bc7LXP58BjxpiFzvJ3wN3YAFHmsV7nmApMBWjTpk2fHTuOL4qWavFztoy5xen25h0aaaP2wqeg/x9teaO3NR/aG0vuEfsPlOBV5pt90N5ISssK5h6B/z5is5HvXQY9J9lfo+5gUpwx8P3foNNYW0STfcgONhgSZm9UxzJt2WlhPiD2phUSYstGQyMgxOV7rmMZtow+LNLu/8vztry112RYNcsWl4Eth132qg0O9VraMuHCAltM4X3OnAyIrAc/PWuDUGEBDLjB5kB++8JeV4+L4ZOb7Zd8xP9C1/NLXufh3fafNibevndZ6fa8xzLtOu9ryEqz9Tru1j5RDZ16GIH1c2wF9dkP2vqgY5n2PNkHbVpj4u2v++Kfj7u5c/pvtgL2SLotl+40tmRa3dfsTs+hHbD+E1tElJAEGan2F/TBHfba+0wp/fM9UUf22ff899VwaKf9Pv7yor3Ju8JsHUxkA1skl3PY3qAObrfpjm5sf1AUHLNBJ6Keb32D29ED9n8CE3iHz03f2FEEEs+AU860uYeYJiWLNAsL7eu7Iuz3uXhdlVvm7/b/qqyy/tRf4ad/2eLE4fdUbefU3KPO/360DZDusd5imzn1OYdsMRrYzyGyvr0XuMKdxhGmqP7kyD7f73wlqK4A8QdgdLGbfD9jzC1e+3wBPFosQNwFtC/vWH8qNQehlFJ1QFkBIpitmFKA1l7LCUBqgPuEB3CsUkqpIApmP4ilQEcRaSci4cClQPEG4p8CV4o1ADhsjNkT4LFKKaWCKGg5CGNMvojcDHyDbar6qjFmnYhMc7a/AHyJbcG0BdvM9eqyjg1WWpVSSpUU1H4QVU3rIJRSqmLKqoPQoTaUUkr5pQFCKaWUXxoglFJK+aUBQimllF+1qpJaRNKB4+1KHQ+UMlpWraXXXDfoNdd+J3K9bY0xTfxtqFUB4kSIyLLSavJrK73mukGvufYL1vVqEZNSSim/NEAopZTySwNEkZnVnYBqoNdcN+g1135BuV6tg1BKKeWX5iCUUkr5pQFCKaWUX3U+QIjIGBHZKCJbROSe6k5PZRGR1iLyvYhsEJF1InKbs76RiHwrIpudx4Zex9zrvA8bRWR06Wev2UTEJSK/OjMW1vprFpEGIvKhiPzmfN4D68A1/8n5Xq8VkVkiElnbrllEXhWRNBFZ67WuwtcoIn1EZI2z7RmRCkxhaIyps3/YocS3YmewCwdWAV2qO12VdG0tgN7O8zhgE9AFeBy4x1l/D/B353kX5/ojgHbO++Kq7us4zmu/HXgX+NxZrtXXDLwBXOc8Dwca1OZrBloB24EoZ/k/wJTads3AUKA3sNZrXYWvEVgCDAQE+AoYG2ga6noOoh+wxRizzRiTC7wHTKjmNFUKY8weY8wK53kmsAH7jzUBe0PBeTzfeT4BeM8Yc8wYsx07R0e/Kk10JRCRBOAc4GWv1bX2mkWkHvZG8gqAMSbXGHOIWnzNjlAgSkRCgWjsjJO16pqNMfOBA8VWV+gaRaQFUM8Ys9jYaPGm1zHlqusBohWwy2s5xVlXq4hIInA68AvQzNhZ+3Aemzq71Zb34insvOaFXutq8zW3B9KB15xitZdFJIZafM3GmN3ADGAnsAc7E+VcavE1e6noNbZynhdfH5C6HiD8lcXVqna/IhILzAb+xxiTUdauftadVO+FiJwLpBljlgd6iJ91J9U1Y39J9waeN8acDhzBFj2U5qS/ZqfcfQK2KKUlECMil5d1iJ91J9U1B6C0azyha6/rASIFaO21nIDNqtYKIhKGDQ7vGGM+clbvdbKdOI9pzvra8F4MBs4TkWRsceFIEXmb2n3NKUCKMeYXZ/lDbMCozdd8FrDdGJNujMkDPgIGUbuv2a2i15jiPC++PiB1PUAsBTqKSDsRCQcuBT6t5jRVCqelwivABmPMk16bPgWucp5fBXzitf5SEYkQkXZAR2zl1knDGHOvMSbBGJOI/Sz/a4y5nNp9zb8Du0Skk7PqTGA9tfiasUVLA0Qk2vmen4mtY6vN1+xWoWt0iqEyRWSA815d6XVM+aq7pr66/4Bx2BY+W4H/re70VOJ1DcFmJVcDK52/cUBj4Dtgs/PYyOuY/3Xeh41UoKVDTfwDhlPUiqlWXzPQC1jmfNYfAw3rwDU/APwGrAXewrbeqVXXDMzC1rHkYXMC1x7PNQJJzvu0FXgWZwSNQP50qA2llFJ+1fUiJqWUUqXQAKGUUsovDRBKKaX80gChlFLKLw0QSiml/NIAoWotEfnJeUwUkcsq+dx/8fdalXDeB0XkrAoekywi8ZXx+kp502auqtYTkeHAHcaYcytwjMsYU1DG9ixjTGwlJO+EOT3Hk4wx+6o7Lap20RyEqrVEJMt5+hhwhoisdOYRcInIEyKyVERWi8gfnf2Hi51D411gjbPuYxFZ7sw9MNVZ9xh2JNGVIvKO92uJ9YQzT8EaEbnE69w/SNG8De/4G5dfRF4XkYuc58ki8oCIrHDO1dlZ31hE5jqD872I13g7InK5iCxx0vaic619neuMFJEY51q6BeVNV7VKaHUnQKkqcA9eOQjnRn/YGNNXRCKARSIy19m3H9DN2CGTAa4xxhwQkShgqYjMNsbcIyI3G2N6+XmtC7A9m3sC8c4x851tpwNdsWPhLMKOHbWwnLTvM8b0FpEbgTuA64D7gYXGmAdF5BzAHbhOAy4BBhtj8kTkOWCyMeZNEfkUeBiIAt42xqz1+2pKedEAoeqiUUAP9y91oD527Jpc7Pg12732vVVEJjrPWzv77S/j3EOAWU7x1F4R+RHoC2Q4504BEJGVQCLlBwj3IIvLscEH7PwPFwAYY74QkYPO+jOBPtigBDYYuAdzexA79lgOcGs5r6kUoAFC1U0C3GKM+cZnpa2rOFJs+SxgoDHmqIj8AEQGcO7SHPN6XkBg/3/uY4rv76/yUIA3jDH3+tnWCIgFwrDXcMTPPkr50DoIVRdkYqdddfsGuMEZDh0ROVXsJDvF1QcOOsGhMzDAa1ue+/hi5gOXOGX/TbC/9it75ND5wGQn7WOxg/OBHbztIhFp6mxrJCJtnW0zgb8C7wB/r+T0qFpKcxCqLlgN5IvIKuB14Gls8c4Kp6I4Hf/TMH4NTBOR1dgRMn/22jYTWC0iK4wxk73Wz8HO/7sK+yv/LmPM7+4K5kryADBLRFYAP2KHv8YYs15E/g+YKyIh2FFAbxKRYUC+MeZdEXEBP4nISGPMfysxTaoW0mauSiml/NIiJqWUUn5pgFBKKeWXBgillFJ+aYBQSinllwYIpZRSfmmAUEop5ZcGCKWUUn79P4XZ18vEUrxeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "som = MiniSom(10, 20, data.shape[1], sigma=3., learning_rate=.7,\n", + " neighborhood_function='gaussian', random_seed=10)\n", + "\n", + "max_iter = 1000\n", + "q_error = []\n", + "t_error = []\n", + "\n", + "for i in range(max_iter):\n", + " rand_i = np.random.randint(len(data))\n", + " som.update(data[rand_i], som.winner(data[rand_i]), i, max_iter)\n", + " q_error.append(som.quantization_error(data))\n", + " t_error.append(som.topographic_error(data))\n", + "\n", + "plt.plot(np.arange(max_iter), q_error, label='quantization error')\n", + "plt.plot(np.arange(max_iter), t_error, label='topographic error')\n", + "plt.ylabel('quantization error')\n", + "plt.xlabel('iteration index')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice that in the snippet above we have to run each learning iteration in a for loop and saved the errors in separated lists." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/Classification.ipynb b/examples/Classification.ipynb new file mode 100644 index 0000000..005379d --- /dev/null +++ b/examples/Classification.ipynb @@ -0,0 +1,122 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This examples show how to use MiniSom to solve a classification problem. The classification mechanism will be implemented with MiniSom and the evaluation will make use of sklearn.\n", + "\n", + "First, let's load a dataset (in this case the famous Iris dataset) and apply normalization:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom\n", + "import numpy as np\n", + "\n", + "data = np.genfromtxt('iris.csv', delimiter=',', usecols=(0, 1, 2, 3))\n", + "data = np.apply_along_axis(lambda x: x/np.linalg.norm(x), 1, data)\n", + "labels = np.genfromtxt('iris.csv', delimiter=',', usecols=(4), dtype=str)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's naive classification function that classifies a sample in `data` using the label assigned to the associated winning neuron. A label $c$ is associated to a neuron if the majority of samples mapped in that neuron have label $c$. The function will assign the most common label in the dataset in case that a sample is mapped to a neuron for which no class is assigned." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def classify(som, data):\n", + " \"\"\"Classifies each sample in data in one of the classes definited\n", + " using the method labels_map.\n", + " Returns a list of the same length of data where the i-th element\n", + " is the class assigned to data[i].\n", + " \"\"\"\n", + " winmap = som.labels_map(X_train, y_train)\n", + " default_class = np.sum(list(winmap.values())).most_common()[0][0]\n", + " result = []\n", + " for d in data:\n", + " win_position = som.winner(d)\n", + " if win_position in winmap:\n", + " result.append(winmap[win_position].most_common()[0][0])\n", + " else:\n", + " result.append(default_class)\n", + " return result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can 1) split the data in train and test set, 2) train the som, 3) print the classification report that contains all the metrics to evaluate the results of the classification." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " setosa 1.00 1.00 1.00 13\n", + " versicolor 0.92 1.00 0.96 12\n", + " virginica 1.00 0.92 0.96 13\n", + "\n", + " accuracy 0.97 38\n", + " macro avg 0.97 0.97 0.97 38\n", + "weighted avg 0.98 0.97 0.97 38\n", + "\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import classification_report\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(data, labels, stratify=labels)\n", + "\n", + "som = MiniSom(7, 7, 4, sigma=3, learning_rate=0.5, \n", + " neighborhood_function='triangle', random_seed=10)\n", + "som.pca_weights_init(X_train)\n", + "som.train_random(X_train, 500, verbose=False)\n", + "\n", + "print(classification_report(y_test, classify(som, X_test)))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/Clustering.ipynb b/examples/Clustering.ipynb new file mode 100644 index 0000000..b244730 --- /dev/null +++ b/examples/Clustering.ipynb @@ -0,0 +1,632 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we will see how to use MiniSom to cluster the iris dataset.\n", + "\n", + "First, let's load the data and train our SOM:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 0 / 500 ] 0% - ? it/s\r", + " [ 0 / 500 ] 0% - ? it/s\r", + " [ 1 / 500 ] 0% - 0:00:00 left \r", + " [ 2 / 500 ] 0% - 0:00:00 left \r", + " [ 3 / 500 ] 1% - 0:00:00 left \r", + " [ 4 / 500 ] 1% - 0:00:00 left \r", + " [ 5 / 500 ] 1% - 0:00:00 left \r", + " [ 6 / 500 ] 1% - 0:00:00 left \r", + " [ 7 / 500 ] 1% - 0:00:00 left \r", + " [ 8 / 500 ] 2% - 0:00:00 left \r", + " [ 9 / 500 ] 2% - 0:00:00 left \r", + " [ 10 / 500 ] 2% - 0:00:00 left \r", + " [ 11 / 500 ] 2% - 0:00:00 left \r", + " [ 12 / 500 ] 2% - 0:00:00 left \r", + " [ 13 / 500 ] 3% - 0:00:00 left \r", + " [ 14 / 500 ] 3% - 0:00:00 left \r", + " [ 15 / 500 ] 3% - 0:00:00 left \r", + " [ 16 / 500 ] 3% - 0:00:00 left \r", + " [ 17 / 500 ] 3% - 0:00:00 left \r", + " [ 18 / 500 ] 4% - 0:00:00 left \r", + " [ 19 / 500 ] 4% - 0:00:00 left \r", + " [ 20 / 500 ] 4% - 0:00:00 left \r", + " [ 21 / 500 ] 4% - 0:00:00 left \r", + " [ 22 / 500 ] 4% - 0:00:00 left \r", + " [ 23 / 500 ] 5% - 0:00:00 left \r", + " [ 24 / 500 ] 5% - 0:00:00 left \r", + " [ 25 / 500 ] 5% - 0:00:00 left \r", + " [ 26 / 500 ] 5% - 0:00:00 left \r", + " [ 27 / 500 ] 5% - 0:00:00 left \r", + " [ 28 / 500 ] 6% - 0:00:00 left \r", + " [ 29 / 500 ] 6% - 0:00:00 left \r", + " [ 30 / 500 ] 6% - 0:00:00 left \r", + " [ 31 / 500 ] 6% - 0:00:00 left \r", + " [ 32 / 500 ] 6% - 0:00:00 left \r", + " [ 33 / 500 ] 7% - 0:00:00 left \r", + " [ 34 / 500 ] 7% - 0:00:00 left \r", + " [ 35 / 500 ] 7% - 0:00:00 left \r", + " [ 36 / 500 ] 7% - 0:00:00 left \r", + " [ 37 / 500 ] 7% - 0:00:00 left \r", + " [ 38 / 500 ] 8% - 0:00:00 left \r", + " [ 39 / 500 ] 8% - 0:00:00 left \r", + " [ 40 / 500 ] 8% - 0:00:00 left \r", + " [ 41 / 500 ] 8% - 0:00:00 left \r", + " [ 42 / 500 ] 8% - 0:00:00 left \r", + " [ 43 / 500 ] 9% - 0:00:00 left \r", + " [ 44 / 500 ] 9% - 0:00:00 left \r", + " [ 45 / 500 ] 9% - 0:00:00 left \r", + " [ 46 / 500 ] 9% - 0:00:00 left \r", + " [ 47 / 500 ] 9% - 0:00:00 left \r", + " [ 48 / 500 ] 10% - 0:00:00 left \r", + " [ 49 / 500 ] 10% - 0:00:00 left \r", + " [ 50 / 500 ] 10% - 0:00:00 left \r", + " [ 51 / 500 ] 10% - 0:00:00 left \r", + " [ 52 / 500 ] 10% - 0:00:00 left \r", + " [ 53 / 500 ] 11% - 0:00:00 left \r", + " [ 54 / 500 ] 11% - 0:00:00 left \r", + " [ 55 / 500 ] 11% - 0:00:00 left \r", + " [ 56 / 500 ] 11% - 0:00:00 left \r", + " [ 57 / 500 ] 11% - 0:00:00 left \r", + " [ 58 / 500 ] 12% - 0:00:00 left \r", + " [ 59 / 500 ] 12% - 0:00:00 left \r", + " [ 60 / 500 ] 12% - 0:00:00 left \r", + " [ 61 / 500 ] 12% - 0:00:00 left \r", + " [ 62 / 500 ] 12% - 0:00:00 left \r", + " [ 63 / 500 ] 13% - 0:00:00 left \r", + " [ 64 / 500 ] 13% - 0:00:00 left \r", + " [ 65 / 500 ] 13% - 0:00:00 left \r", + " [ 66 / 500 ] 13% - 0:00:00 left \r", + " [ 67 / 500 ] 13% - 0:00:00 left \r", + " [ 68 / 500 ] 14% - 0:00:00 left \r", + " [ 69 / 500 ] 14% - 0:00:00 left \r", + " [ 70 / 500 ] 14% - 0:00:00 left \r", + " [ 71 / 500 ] 14% - 0:00:00 left \r", + " [ 72 / 500 ] 14% - 0:00:00 left \r", + " [ 73 / 500 ] 15% - 0:00:00 left \r", + " [ 74 / 500 ] 15% - 0:00:00 left \r", + " [ 75 / 500 ] 15% - 0:00:00 left \r", + " [ 76 / 500 ] 15% - 0:00:00 left \r", + " [ 77 / 500 ] 15% - 0:00:00 left \r", + " [ 78 / 500 ] 16% - 0:00:00 left \r", + " [ 79 / 500 ] 16% - 0:00:00 left \r", + " [ 80 / 500 ] 16% - 0:00:00 left \r", + " [ 81 / 500 ] 16% - 0:00:00 left \r", + " [ 82 / 500 ] 16% - 0:00:00 left \r", + " [ 83 / 500 ] 17% - 0:00:00 left \r", + " [ 84 / 500 ] 17% - 0:00:00 left \r", + " [ 85 / 500 ] 17% - 0:00:00 left \r", + " [ 86 / 500 ] 17% - 0:00:00 left \r", + " [ 87 / 500 ] 17% - 0:00:00 left \r", + " [ 88 / 500 ] 18% - 0:00:00 left \r", + " [ 89 / 500 ] 18% - 0:00:00 left \r", + " [ 90 / 500 ] 18% - 0:00:00 left \r", + " [ 91 / 500 ] 18% - 0:00:00 left \r", + " [ 92 / 500 ] 18% - 0:00:00 left \r", + " [ 93 / 500 ] 19% - 0:00:00 left \r", + " [ 94 / 500 ] 19% - 0:00:00 left \r", + " [ 95 / 500 ] 19% - 0:00:00 left \r", + " [ 96 / 500 ] 19% - 0:00:00 left \r", + " [ 97 / 500 ] 19% - 0:00:00 left \r", + " [ 98 / 500 ] 20% - 0:00:00 left \r", + " [ 99 / 500 ] 20% - 0:00:00 left \r", + " [ 100 / 500 ] 20% - 0:00:00 left \r", + " [ 101 / 500 ] 20% - 0:00:00 left \r", + " [ 102 / 500 ] 20% - 0:00:00 left \r", + " [ 103 / 500 ] 21% - 0:00:00 left \r", + " [ 104 / 500 ] 21% - 0:00:00 left \r", + " [ 105 / 500 ] 21% - 0:00:00 left \r", + " [ 106 / 500 ] 21% - 0:00:00 left \r", + " [ 107 / 500 ] 21% - 0:00:00 left \r", + " [ 108 / 500 ] 22% - 0:00:00 left \r", + " [ 109 / 500 ] 22% - 0:00:00 left \r", + " [ 110 / 500 ] 22% - 0:00:00 left \r", + " [ 111 / 500 ] 22% - 0:00:00 left \r", + " [ 112 / 500 ] 22% - 0:00:00 left \r", + " [ 113 / 500 ] 23% - 0:00:00 left \r", + " [ 114 / 500 ] 23% - 0:00:00 left \r", + " [ 115 / 500 ] 23% - 0:00:00 left \r", + " [ 116 / 500 ] 23% - 0:00:00 left \r", + " [ 117 / 500 ] 23% - 0:00:00 left \r", + " [ 118 / 500 ] 24% - 0:00:00 left \r", + " [ 119 / 500 ] 24% - 0:00:00 left \r", + " [ 120 / 500 ] 24% - 0:00:00 left \r", + " [ 121 / 500 ] 24% - 0:00:00 left \r", + " [ 122 / 500 ] 24% - 0:00:00 left \r", + " [ 123 / 500 ] 25% - 0:00:00 left \r", + " [ 124 / 500 ] 25% - 0:00:00 left \r", + " [ 125 / 500 ] 25% - 0:00:00 left \r", + " [ 126 / 500 ] 25% - 0:00:00 left \r", + " [ 127 / 500 ] 25% - 0:00:00 left \r", + " [ 128 / 500 ] 26% - 0:00:00 left \r", + " [ 129 / 500 ] 26% - 0:00:00 left \r", + " [ 130 / 500 ] 26% - 0:00:00 left \r", + " [ 131 / 500 ] 26% - 0:00:00 left \r", + " [ 132 / 500 ] 26% - 0:00:00 left \r", + " [ 133 / 500 ] 27% - 0:00:00 left \r", + " [ 134 / 500 ] 27% - 0:00:00 left \r", + " [ 135 / 500 ] 27% - 0:00:00 left \r", + " [ 136 / 500 ] 27% - 0:00:00 left \r", + " [ 137 / 500 ] 27% - 0:00:00 left \r", + " [ 138 / 500 ] 28% - 0:00:00 left \r", + " [ 139 / 500 ] 28% - 0:00:00 left \r", + " [ 140 / 500 ] 28% - 0:00:00 left \r", + " [ 141 / 500 ] 28% - 0:00:00 left \r", + " [ 142 / 500 ] 28% - 0:00:00 left \r", + " [ 143 / 500 ] 29% - 0:00:00 left \r", + " [ 144 / 500 ] 29% - 0:00:00 left \r", + " [ 145 / 500 ] 29% - 0:00:00 left \r", + " [ 146 / 500 ] 29% - 0:00:00 left \r", + " [ 147 / 500 ] 29% - 0:00:00 left \r", + " [ 148 / 500 ] 30% - 0:00:00 left \r", + " [ 149 / 500 ] 30% - 0:00:00 left \r", + " [ 150 / 500 ] 30% - 0:00:00 left \r", + " [ 151 / 500 ] 30% - 0:00:00 left \r", + " [ 152 / 500 ] 30% - 0:00:00 left \r", + " [ 153 / 500 ] 31% - 0:00:00 left \r", + " [ 154 / 500 ] 31% - 0:00:00 left \r", + " [ 155 / 500 ] 31% - 0:00:00 left \r", + " [ 156 / 500 ] 31% - 0:00:00 left \r", + " [ 157 / 500 ] 31% - 0:00:00 left \r", + " [ 158 / 500 ] 32% - 0:00:00 left \r", + " [ 159 / 500 ] 32% - 0:00:00 left \r", + " [ 160 / 500 ] 32% - 0:00:00 left \r", + " [ 161 / 500 ] 32% - 0:00:00 left \r", + " [ 162 / 500 ] 32% - 0:00:00 left \r", + " [ 163 / 500 ] 33% - 0:00:00 left \r", + " [ 164 / 500 ] 33% - 0:00:00 left \r", + " [ 165 / 500 ] 33% - 0:00:00 left \r", + " [ 166 / 500 ] 33% - 0:00:00 left \r", + " [ 167 / 500 ] 33% - 0:00:00 left \r", + " [ 168 / 500 ] 34% - 0:00:00 left \r", + " [ 169 / 500 ] 34% - 0:00:00 left \r", + " [ 170 / 500 ] 34% - 0:00:00 left \r", + " [ 171 / 500 ] 34% - 0:00:00 left \r", + " [ 172 / 500 ] 34% - 0:00:00 left \r", + " [ 173 / 500 ] 35% - 0:00:00 left \r", + " [ 174 / 500 ] 35% - 0:00:00 left \r", + " [ 175 / 500 ] 35% - 0:00:00 left \r", + " [ 176 / 500 ] 35% - 0:00:00 left \r", + " [ 177 / 500 ] 35% - 0:00:00 left \r", + " [ 178 / 500 ] 36% - 0:00:00 left \r", + " [ 179 / 500 ] 36% - 0:00:00 left \r", + " [ 180 / 500 ] 36% - 0:00:00 left \r", + " [ 181 / 500 ] 36% - 0:00:00 left \r", + " [ 182 / 500 ] 36% - 0:00:00 left \r", + " [ 183 / 500 ] 37% - 0:00:00 left \r", + " [ 184 / 500 ] 37% - 0:00:00 left \r", + " [ 185 / 500 ] 37% - 0:00:00 left \r", + " [ 186 / 500 ] 37% - 0:00:00 left \r", + " [ 187 / 500 ] 37% - 0:00:00 left \r", + " [ 188 / 500 ] 38% - 0:00:00 left \r", + " [ 189 / 500 ] 38% - 0:00:00 left \r", + " [ 190 / 500 ] 38% - 0:00:00 left \r", + " [ 191 / 500 ] 38% - 0:00:00 left \r", + " [ 192 / 500 ] 38% - 0:00:00 left \r", + " [ 193 / 500 ] 39% - 0:00:00 left \r", + " [ 194 / 500 ] 39% - 0:00:00 left \r", + " [ 195 / 500 ] 39% - 0:00:00 left \r", + " [ 196 / 500 ] 39% - 0:00:00 left \r", + " [ 197 / 500 ] 39% - 0:00:00 left \r", + " [ 198 / 500 ] 40% - 0:00:00 left \r", + " [ 199 / 500 ] 40% - 0:00:00 left \r", + " [ 200 / 500 ] 40% - 0:00:00 left \r", + " [ 201 / 500 ] 40% - 0:00:00 left \r", + " [ 202 / 500 ] 40% - 0:00:00 left \r", + " [ 203 / 500 ] 41% - 0:00:00 left \r", + " [ 204 / 500 ] 41% - 0:00:00 left \r", + " [ 205 / 500 ] 41% - 0:00:00 left \r", + " [ 206 / 500 ] 41% - 0:00:00 left \r", + " [ 207 / 500 ] 41% - 0:00:00 left \r", + " [ 208 / 500 ] 42% - 0:00:00 left \r", + " [ 209 / 500 ] 42% - 0:00:00 left \r", + " [ 210 / 500 ] 42% - 0:00:00 left \r", + " [ 211 / 500 ] 42% - 0:00:00 left \r", + " [ 212 / 500 ] 42% - 0:00:00 left \r", + " [ 213 / 500 ] 43% - 0:00:00 left \r", + " [ 214 / 500 ] 43% - 0:00:00 left \r", + " [ 215 / 500 ] 43% - 0:00:00 left \r", + " [ 216 / 500 ] 43% - 0:00:00 left \r", + " [ 217 / 500 ] 43% - 0:00:00 left \r", + " [ 218 / 500 ] 44% - 0:00:00 left \r", + " [ 219 / 500 ] 44% - 0:00:00 left \r", + " [ 220 / 500 ] 44% - 0:00:00 left \r", + " [ 221 / 500 ] 44% - 0:00:00 left \r", + " [ 222 / 500 ] 44% - 0:00:00 left \r", + " [ 223 / 500 ] 45% - 0:00:00 left \r", + " [ 224 / 500 ] 45% - 0:00:00 left \r", + " [ 225 / 500 ] 45% - 0:00:00 left \r", + " [ 226 / 500 ] 45% - 0:00:00 left \r", + " [ 227 / 500 ] 45% - 0:00:00 left \r", + " [ 228 / 500 ] 46% - 0:00:00 left \r", + " [ 229 / 500 ] 46% - 0:00:00 left \r", + " [ 230 / 500 ] 46% - 0:00:00 left \r", + " [ 231 / 500 ] 46% - 0:00:00 left \r", + " [ 232 / 500 ] 46% - 0:00:00 left \r", + " [ 233 / 500 ] 47% - 0:00:00 left \r", + " [ 234 / 500 ] 47% - 0:00:00 left \r", + " [ 235 / 500 ] 47% - 0:00:00 left \r", + " [ 236 / 500 ] 47% - 0:00:00 left \r", + " [ 237 / 500 ] 47% - 0:00:00 left \r", + " [ 238 / 500 ] 48% - 0:00:00 left \r", + " [ 239 / 500 ] 48% - 0:00:00 left \r", + " [ 240 / 500 ] 48% - 0:00:00 left \r", + " [ 241 / 500 ] 48% - 0:00:00 left \r", + " [ 242 / 500 ] 48% - 0:00:00 left \r", + " [ 243 / 500 ] 49% - 0:00:00 left \r", + " [ 244 / 500 ] 49% - 0:00:00 left \r", + " [ 245 / 500 ] 49% - 0:00:00 left \r", + " [ 246 / 500 ] 49% - 0:00:00 left \r", + " [ 247 / 500 ] 49% - 0:00:00 left \r", + " [ 248 / 500 ] 50% - 0:00:00 left \r", + " [ 249 / 500 ] 50% - 0:00:00 left \r", + " [ 250 / 500 ] 50% - 0:00:00 left \r", + " [ 251 / 500 ] 50% - 0:00:00 left \r", + " [ 252 / 500 ] 50% - 0:00:00 left \r", + " [ 253 / 500 ] 51% - 0:00:00 left \r", + " [ 254 / 500 ] 51% - 0:00:00 left \r", + " [ 255 / 500 ] 51% - 0:00:00 left \r", + " [ 256 / 500 ] 51% - 0:00:00 left \r", + " [ 257 / 500 ] 51% - 0:00:00 left \r", + " [ 258 / 500 ] 52% - 0:00:00 left \r", + " [ 259 / 500 ] 52% - 0:00:00 left \r", + " [ 260 / 500 ] 52% - 0:00:00 left \r", + " [ 261 / 500 ] 52% - 0:00:00 left \r", + " [ 262 / 500 ] 52% - 0:00:00 left \r", + " [ 263 / 500 ] 53% - 0:00:00 left \r", + " [ 264 / 500 ] 53% - 0:00:00 left \r", + " [ 265 / 500 ] 53% - 0:00:00 left \r", + " [ 266 / 500 ] 53% - 0:00:00 left \r", + " [ 267 / 500 ] 53% - 0:00:00 left \r", + " [ 268 / 500 ] 54% - 0:00:00 left \r", + " [ 269 / 500 ] 54% - 0:00:00 left \r", + " [ 270 / 500 ] 54% - 0:00:00 left \r", + " [ 271 / 500 ] 54% - 0:00:00 left \r", + " [ 272 / 500 ] 54% - 0:00:00 left \r", + " [ 273 / 500 ] 55% - 0:00:00 left \r", + " [ 274 / 500 ] 55% - 0:00:00 left \r", + " [ 275 / 500 ] 55% - 0:00:00 left \r", + " [ 276 / 500 ] 55% - 0:00:00 left \r", + " [ 277 / 500 ] 55% - 0:00:00 left \r", + " [ 278 / 500 ] 56% - 0:00:00 left \r", + " [ 279 / 500 ] 56% - 0:00:00 left \r", + " [ 280 / 500 ] 56% - 0:00:00 left \r", + " [ 281 / 500 ] 56% - 0:00:00 left \r", + " [ 282 / 500 ] 56% - 0:00:00 left \r", + " [ 283 / 500 ] 57% - 0:00:00 left \r", + " [ 284 / 500 ] 57% - 0:00:00 left \r", + " [ 285 / 500 ] 57% - 0:00:00 left \r", + " [ 286 / 500 ] 57% - 0:00:00 left \r", + " [ 287 / 500 ] 57% - 0:00:00 left \r", + " [ 288 / 500 ] 58% - 0:00:00 left \r", + " [ 289 / 500 ] 58% - 0:00:00 left \r", + " [ 290 / 500 ] 58% - 0:00:00 left \r", + " [ 291 / 500 ] 58% - 0:00:00 left \r", + " [ 292 / 500 ] 58% - 0:00:00 left \r", + " [ 293 / 500 ] 59% - 0:00:00 left \r", + " [ 294 / 500 ] 59% - 0:00:00 left \r", + " [ 295 / 500 ] 59% - 0:00:00 left \r", + " [ 296 / 500 ] 59% - 0:00:00 left \r", + " [ 297 / 500 ] 59% - 0:00:00 left \r", + " [ 298 / 500 ] 60% - 0:00:00 left \r", + " [ 299 / 500 ] 60% - 0:00:00 left \r", + " [ 300 / 500 ] 60% - 0:00:00 left \r", + " [ 301 / 500 ] 60% - 0:00:00 left \r", + " [ 302 / 500 ] 60% - 0:00:00 left \r", + " [ 303 / 500 ] 61% - 0:00:00 left \r", + " [ 304 / 500 ] 61% - 0:00:00 left \r", + " [ 305 / 500 ] 61% - 0:00:00 left \r", + " [ 306 / 500 ] 61% - 0:00:00 left \r", + " [ 307 / 500 ] 61% - 0:00:00 left \r", + " [ 308 / 500 ] 62% - 0:00:00 left \r", + " [ 309 / 500 ] 62% - 0:00:00 left \r", + " [ 310 / 500 ] 62% - 0:00:00 left \r", + " [ 311 / 500 ] 62% - 0:00:00 left \r", + " [ 312 / 500 ] 62% - 0:00:00 left \r", + " [ 313 / 500 ] 63% - 0:00:00 left \r", + " [ 314 / 500 ] 63% - 0:00:00 left \r", + " [ 315 / 500 ] 63% - 0:00:00 left \r", + " [ 316 / 500 ] 63% - 0:00:00 left \r", + " [ 317 / 500 ] 63% - 0:00:00 left \r", + " [ 318 / 500 ] 64% - 0:00:00 left \r", + " [ 319 / 500 ] 64% - 0:00:00 left \r", + " [ 320 / 500 ] 64% - 0:00:00 left \r", + " [ 321 / 500 ] 64% - 0:00:00 left \r", + " [ 322 / 500 ] 64% - 0:00:00 left \r", + " [ 323 / 500 ] 65% - 0:00:00 left \r", + " [ 324 / 500 ] 65% - 0:00:00 left \r", + " [ 325 / 500 ] 65% - 0:00:00 left \r", + " [ 326 / 500 ] 65% - 0:00:00 left \r", + " [ 327 / 500 ] 65% - 0:00:00 left \r", + " [ 328 / 500 ] 66% - 0:00:00 left \r", + " [ 329 / 500 ] 66% - 0:00:00 left \r", + " [ 330 / 500 ] 66% - 0:00:00 left \r", + " [ 331 / 500 ] 66% - 0:00:00 left \r", + " [ 332 / 500 ] 66% - 0:00:00 left \r", + " [ 333 / 500 ] 67% - 0:00:00 left \r", + " [ 334 / 500 ] 67% - 0:00:00 left \r", + " [ 335 / 500 ] 67% - 0:00:00 left \r", + " [ 336 / 500 ] 67% - 0:00:00 left \r", + " [ 337 / 500 ] 67% - 0:00:00 left \r", + " [ 338 / 500 ] 68% - 0:00:00 left \r", + " [ 339 / 500 ] 68% - 0:00:00 left \r", + " [ 340 / 500 ] 68% - 0:00:00 left \r", + " [ 341 / 500 ] 68% - 0:00:00 left \r", + " [ 342 / 500 ] 68% - 0:00:00 left \r", + " [ 343 / 500 ] 69% - 0:00:00 left \r", + " [ 344 / 500 ] 69% - 0:00:00 left \r", + " [ 345 / 500 ] 69% - 0:00:00 left \r", + " [ 346 / 500 ] 69% - 0:00:00 left \r", + " [ 347 / 500 ] 69% - 0:00:00 left \r", + " [ 348 / 500 ] 70% - 0:00:00 left \r", + " [ 349 / 500 ] 70% - 0:00:00 left \r", + " [ 350 / 500 ] 70% - 0:00:00 left \r", + " [ 351 / 500 ] 70% - 0:00:00 left \r", + " [ 352 / 500 ] 70% - 0:00:00 left \r", + " [ 353 / 500 ] 71% - 0:00:00 left \r", + " [ 354 / 500 ] 71% - 0:00:00 left \r", + " [ 355 / 500 ] 71% - 0:00:00 left \r", + " [ 356 / 500 ] 71% - 0:00:00 left \r", + " [ 357 / 500 ] 71% - 0:00:00 left \r", + " [ 358 / 500 ] 72% - 0:00:00 left \r", + " [ 359 / 500 ] 72% - 0:00:00 left \r", + " [ 360 / 500 ] 72% - 0:00:00 left \r", + " [ 361 / 500 ] 72% - 0:00:00 left \r", + " [ 362 / 500 ] 72% - 0:00:00 left \r", + " [ 363 / 500 ] 73% - 0:00:00 left \r", + " [ 364 / 500 ] 73% - 0:00:00 left \r", + " [ 365 / 500 ] 73% - 0:00:00 left \r", + " [ 366 / 500 ] 73% - 0:00:00 left \r", + " [ 367 / 500 ] 73% - 0:00:00 left \r", + " [ 368 / 500 ] 74% - 0:00:00 left \r", + " [ 369 / 500 ] 74% - 0:00:00 left \r", + " [ 370 / 500 ] 74% - 0:00:00 left \r", + " [ 371 / 500 ] 74% - 0:00:00 left \r", + " [ 372 / 500 ] 74% - 0:00:00 left \r", + " [ 373 / 500 ] 75% - 0:00:00 left \r", + " [ 374 / 500 ] 75% - 0:00:00 left \r", + " [ 375 / 500 ] 75% - 0:00:00 left \r", + " [ 376 / 500 ] 75% - 0:00:00 left \r", + " [ 377 / 500 ] 75% - 0:00:00 left \r", + " [ 378 / 500 ] 76% - 0:00:00 left \r", + " [ 379 / 500 ] 76% - 0:00:00 left \r", + " [ 380 / 500 ] 76% - 0:00:00 left \r", + " [ 381 / 500 ] 76% - 0:00:00 left \r", + " [ 382 / 500 ] 76% - 0:00:00 left \r", + " [ 383 / 500 ] 77% - 0:00:00 left \r", + " [ 384 / 500 ] 77% - 0:00:00 left \r", + " [ 385 / 500 ] 77% - 0:00:00 left \r", + " [ 386 / 500 ] 77% - 0:00:00 left \r", + " [ 387 / 500 ] 77% - 0:00:00 left \r", + " [ 388 / 500 ] 78% - 0:00:00 left \r", + " [ 389 / 500 ] 78% - 0:00:00 left \r", + " [ 390 / 500 ] 78% - 0:00:00 left \r", + " [ 391 / 500 ] 78% - 0:00:00 left \r", + " [ 392 / 500 ] 78% - 0:00:00 left \r", + " [ 393 / 500 ] 79% - 0:00:00 left \r", + " [ 394 / 500 ] 79% - 0:00:00 left \r", + " [ 395 / 500 ] 79% - 0:00:00 left \r", + " [ 396 / 500 ] 79% - 0:00:00 left \r", + " [ 397 / 500 ] 79% - 0:00:00 left \r", + " [ 398 / 500 ] 80% - 0:00:00 left \r", + " [ 399 / 500 ] 80% - 0:00:00 left \r", + " [ 400 / 500 ] 80% - 0:00:00 left \r", + " [ 401 / 500 ] 80% - 0:00:00 left \r", + " [ 402 / 500 ] 80% - 0:00:00 left \r", + " [ 403 / 500 ] 81% - 0:00:00 left \r", + " [ 404 / 500 ] 81% - 0:00:00 left \r", + " [ 405 / 500 ] 81% - 0:00:00 left \r", + " [ 406 / 500 ] 81% - 0:00:00 left \r", + " [ 407 / 500 ] 81% - 0:00:00 left \r", + " [ 408 / 500 ] 82% - 0:00:00 left \r", + " [ 409 / 500 ] 82% - 0:00:00 left \r", + " [ 410 / 500 ] 82% - 0:00:00 left \r", + " [ 411 / 500 ] 82% - 0:00:00 left \r", + " [ 412 / 500 ] 82% - 0:00:00 left \r", + " [ 413 / 500 ] 83% - 0:00:00 left \r", + " [ 414 / 500 ] 83% - 0:00:00 left \r", + " [ 415 / 500 ] 83% - 0:00:00 left \r", + " [ 416 / 500 ] 83% - 0:00:00 left \r", + " [ 417 / 500 ] 83% - 0:00:00 left \r", + " [ 418 / 500 ] 84% - 0:00:00 left \r", + " [ 419 / 500 ] 84% - 0:00:00 left \r", + " [ 420 / 500 ] 84% - 0:00:00 left \r", + " [ 421 / 500 ] 84% - 0:00:00 left \r", + " [ 422 / 500 ] 84% - 0:00:00 left \r", + " [ 423 / 500 ] 85% - 0:00:00 left \r", + " [ 424 / 500 ] 85% - 0:00:00 left \r", + " [ 425 / 500 ] 85% - 0:00:00 left \r", + " [ 426 / 500 ] 85% - 0:00:00 left \r", + " [ 427 / 500 ] 85% - 0:00:00 left \r", + " [ 428 / 500 ] 86% - 0:00:00 left \r", + " [ 429 / 500 ] 86% - 0:00:00 left \r", + " [ 430 / 500 ] 86% - 0:00:00 left \r", + " [ 431 / 500 ] 86% - 0:00:00 left \r", + " [ 432 / 500 ] 86% - 0:00:00 left \r", + " [ 433 / 500 ] 87% - 0:00:00 left \r", + " [ 434 / 500 ] 87% - 0:00:00 left \r", + " [ 435 / 500 ] 87% - 0:00:00 left \r", + " [ 436 / 500 ] 87% - 0:00:00 left \r", + " [ 437 / 500 ] 87% - 0:00:00 left \r", + " [ 438 / 500 ] 88% - 0:00:00 left \r", + " [ 439 / 500 ] 88% - 0:00:00 left \r", + " [ 440 / 500 ] 88% - 0:00:00 left \r", + " [ 441 / 500 ] 88% - 0:00:00 left \r", + " [ 442 / 500 ] 88% - 0:00:00 left \r", + " [ 443 / 500 ] 89% - 0:00:00 left \r", + " [ 444 / 500 ] 89% - 0:00:00 left \r", + " [ 445 / 500 ] 89% - 0:00:00 left \r", + " [ 446 / 500 ] 89% - 0:00:00 left \r", + " [ 447 / 500 ] 89% - 0:00:00 left \r", + " [ 448 / 500 ] 90% - 0:00:00 left \r", + " [ 449 / 500 ] 90% - 0:00:00 left \r", + " [ 450 / 500 ] 90% - 0:00:00 left \r", + " [ 451 / 500 ] 90% - 0:00:00 left \r", + " [ 452 / 500 ] 90% - 0:00:00 left \r", + " [ 453 / 500 ] 91% - 0:00:00 left \r", + " [ 454 / 500 ] 91% - 0:00:00 left \r", + " [ 455 / 500 ] 91% - 0:00:00 left \r", + " [ 456 / 500 ] 91% - 0:00:00 left \r", + " [ 457 / 500 ] 91% - 0:00:00 left \r", + " [ 458 / 500 ] 92% - 0:00:00 left \r", + " [ 459 / 500 ] 92% - 0:00:00 left \r", + " [ 460 / 500 ] 92% - 0:00:00 left \r", + " [ 461 / 500 ] 92% - 0:00:00 left \r", + " [ 462 / 500 ] 92% - 0:00:00 left \r", + " [ 463 / 500 ] 93% - 0:00:00 left \r", + " [ 464 / 500 ] 93% - 0:00:00 left \r", + " [ 465 / 500 ] 93% - 0:00:00 left \r", + " [ 466 / 500 ] 93% - 0:00:00 left \r", + " [ 467 / 500 ] 93% - 0:00:00 left \r", + " [ 468 / 500 ] 94% - 0:00:00 left \r", + " [ 469 / 500 ] 94% - 0:00:00 left \r", + " [ 470 / 500 ] 94% - 0:00:00 left \r", + " [ 471 / 500 ] 94% - 0:00:00 left \r", + " [ 472 / 500 ] 94% - 0:00:00 left \r", + " [ 473 / 500 ] 95% - 0:00:00 left \r", + " [ 474 / 500 ] 95% - 0:00:00 left \r", + " [ 475 / 500 ] 95% - 0:00:00 left \r", + " [ 476 / 500 ] 95% - 0:00:00 left \r", + " [ 477 / 500 ] 95% - 0:00:00 left \r", + " [ 478 / 500 ] 96% - 0:00:00 left \r", + " [ 479 / 500 ] 96% - 0:00:00 left \r", + " [ 480 / 500 ] 96% - 0:00:00 left \r", + " [ 481 / 500 ] 96% - 0:00:00 left \r", + " [ 482 / 500 ] 96% - 0:00:00 left \r", + " [ 483 / 500 ] 97% - 0:00:00 left \r", + " [ 484 / 500 ] 97% - 0:00:00 left \r", + " [ 485 / 500 ] 97% - 0:00:00 left \r", + " [ 486 / 500 ] 97% - 0:00:00 left \r", + " [ 487 / 500 ] 97% - 0:00:00 left \r", + " [ 488 / 500 ] 98% - 0:00:00 left \r", + " [ 489 / 500 ] 98% - 0:00:00 left \r", + " [ 490 / 500 ] 98% - 0:00:00 left \r", + " [ 491 / 500 ] 98% - 0:00:00 left \r", + " [ 492 / 500 ] 98% - 0:00:00 left \r", + " [ 493 / 500 ] 99% - 0:00:00 left \r", + " [ 494 / 500 ] 99% - 0:00:00 left \r", + " [ 495 / 500 ] 99% - 0:00:00 left \r", + " [ 496 / 500 ] 99% - 0:00:00 left \r", + " [ 497 / 500 ] 99% - 0:00:00 left \r", + " [ 498 / 500 ] 100% - 0:00:00 left \r", + " [ 499 / 500 ] 100% - 0:00:00 left \r", + " [ 500 / 500 ] 100% - 0:00:00 left \n", + " quantization error: 0.864828807271489\n" + ] + } + ], + "source": [ + "from minisom import MiniSom\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt', \n", + " names=['area', 'perimeter', 'compactness', 'length_kernel', 'width_kernel',\n", + " 'asymmetry_coefficient', 'length_kernel_groove', 'target'], usecols=[0, 5], \n", + " sep='\\t+', engine='python')\n", + "# data normalization\n", + "data = (data - np.mean(data, axis=0)) / np.std(data, axis=0)\n", + "data = data.values\n", + "\n", + "# Initialization and training\n", + "som_shape = (1, 3)\n", + "som = MiniSom(som_shape[0], som_shape[1], data.shape[1], sigma=.5, learning_rate=.5,\n", + " neighborhood_function='gaussian', random_seed=10)\n", + "\n", + "som.train_batch(data, 500, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we will consider all the sample mapped into a specific neuron as a cluster. To identify each cluster more easily we will translate the bidimensional indexes of the neurons on the SOM into a monodimentional indexes:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# each neuron represents a cluster\n", + "winner_coordinates = np.array([som.winner(x) for x in data]).T\n", + "# with np.ravel_multi_index we convert the bidimensional\n", + "# coordinates to a monodimensional index\n", + "cluster_index = np.ravel_multi_index(winner_coordinates, som_shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot each cluster with a different color:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO29e3Qc1Zmv/ezuVqt1s3Uz+CJk2dhgbMcYsA1OgMiGyZWBD8LFwLFhkiw44ctEMZcZEmZOkrPgJHMGcEzmEMIa8gWHzNhAhgwhyRdCsGIYcLBNjPENDLJs5Bu6WLZaUqvV3fv8USqp1Op7V3VXde9nLa2WqrurdpekX+169+99XyGlRKFQKBTOxZXvASgUCoUiO5SQKxQKhcNRQq5QKBQORwm5QqFQOBwl5AqFQuFwPPk4aH19vWxqasrHoRUKhcKx7Nixo0tKOSV6e16EvKmpie3bt+fj0AqFQuFYhBCHYm1XoRWFQqFwOErIFQqFwuEoIVcoFAqHk5cYuaL4GB4epqOjg0AgkO+hFAQ+n4+GhgZKSkryPRSFDVBCrsgJHR0dVFVV0dTUhBAi38NxNFJKuru76ejoYNasWfkejsIGqNCKIicEAgHq6uqUiJuAEIK6ujp1d6MYRc3I7U776/DWk3DyENTMhGV3QNOl+R5VRigRNw91LhVG1IzczrS/Dr9/APq7oPIM7fH3D2jbFQqFYgQl5HbmrSfBWwGlVSBc2qO3QtuuyJrvfve7PPzww2m/r7e3l8cff9yCEcHQ0BA33XQTc+bM4eKLL6a9vd2S4ygKCyXkdubkIU24jXgrtO2KvJGJkEspiUQiSV/31FNPUVNTwwcffMDatWv5+7//+0yHqSgilJDbmZqZEOwfvy3Yr21PRvvr8Owa+MmntUeHhWO2tnVz1y92cNWPXuOuX+xga1t31vvcsGEDixYt4vzzz2f16tXjnmtubh4tG9HV1YVeC2jPnj0sW7aMxYsXs2jRIg4cOMD999/Phx9+yOLFi7nvvvsA+Od//meWLl3KokWL+M53vgNAe3s75557LmvWrGHhwoV89NFHScf4n//5n9x2220AXH/99fzxj39EdfFSJEMtdtqZZXdoMXHQZuLBfu1rxbcTv0+PrXsrxsfWP/uQIxZKt7Z18+BLeyn3ephSWUpXX5AHX9rLP1w1n0tm12W0zz179vDggw/yxhtvUF9fT09PD4899ljS9z3xxBO0tLRw6623EgwGCYfD/OAHP2D37t3s3LkTgJdffpkDBw7w1ltvIaXk6quvZsuWLTQ2NnLgwAGefvppLrnkEgBuuukm3nvvvQnHufvuu1mzZg1HjhzhrLPOAsDj8TB58mS6u7upr6/P6HMrioOshVwI4QO2AKUj+3teSvmdbPerQBPdzz403rWy4tvJxdgYW4exx7eedISQb3iznXKvhyqf9uepP254sz1jIX/11Ve54YYbRgWxtrY2pfctX76chx56iI6ODq677jrmzp074TUvv/wyL7/8MhdccAEAfr+fAwcO0NjYyMyZM0dFHGDTpk0ZjV+hSIQZM/IhYKWU0i+EKAFeF0L8Tkq51YR9K5ouTV98Tx7SZuJGHBRbP9wzwJTK0nHbKkrdHO4ZsOyYHo9nNIZt9GffcsstXHzxxfzmN7/hC1/4Aj/5yU+YPXv2uPdKKfnWt77FnXfeOW57e3s7FRXj1ziSzchnzJjBRx99RENDA6FQiFOnTlFXl9nFS1E8ZC3kUgvg+Ud+LBn5UkG9fFIzUwun6DNxSD22bgMaa8vp6guOzsQB+ofCNNaWZ7zPlStXcu2113L33XdTV1dHT0/PuOebmprYsWMHy5Yt4/nnnx/d3tbWxuzZs/nGN77B4cOH2bVrF+effz59fX2jr/nsZz/LP/7jP3LrrbdSWVnJkSNH4qbOJ5uRX3311Tz99NMsX76c559/npUrVyrPuCIppix2CiHcQoidwMfAH6SUfzZjv4oMWXaHJtxDfSAj2mOwX9vuANYsb2IgGKIvECIiJX2BEAPBEGuWN2W8zwULFvDAAw/w6U9/mvPPP5+777573PP33nsvP/7xj7ngggvo6uoa3f7ss8+ycOFCFi9ezO7du1mzZg11dXV86lOfYuHChdx333185jOf4ZZbbmH58uV84hOf4Prrrx8n9Onwla98he7ububMmcOjjz7KD37wg4w/s6J4EGauiAshqoEXgL+VUu6Oeu4O4A6AxsbGiw4dcsZtvmOxWUbovn37OO+881J+/da2bja82c7hngEaa8tZs7wp4/h4oZLuOVU4HyHEDinlkujtprpWpJS9QojNwOeA3VHPPQk8CbBkyRIVerGaTGLrNuKS2XVKuBWKFMk6tCKEmDIyE0cIUQb8FbA/2/0qFAqFIjXMmJFPA54WQrjRLgzPSilfMmG/CoVCoUgBM1wru4ALTBiLQqFQKDJApegrFAqFw1FCrlAoFA5HCbmiaLFjGdstW7Zw4YUX4vF4xiUmKRSJUEKuUKSJlWVsGxsb+dnPfsYtt9yS6fAURYgScoU9saAMrxPK2DY1NbFo0SJcLvWvqUgdVcZWYT8sKMPrlDK2CkUmKCFX2A8LyvCqMraKQkYJucJ+5KEMr13K2CoUmaCEXGE/LCjD65QytgpFJhTviorDe1oWNBaU4XVKGdtt27bR0NDAc889x5133smCBQsy/syK4sHUMrapsmTJEqk7BPKCcTHN2AvTIT0tnUjaJVdtVobXjqgytsVHTsrYOgaH97QsChxehlehyCXFGVo5eUgTciMO6mmpUCgURopTyGtmaqEUIw7qaalQKBRGilPIHd7TUqFQKIwUp5A3XaotbFbUg/9j7VEtdCoUCodSnIudoBbTFApFwVCcM3KFAnuWsX300UeZP38+ixYt4oorruDQIbUAr0iOEnKFIk2sLGN7wQUXsH37dnbt2sX111/P3/3d32U6TEURoYRcYUu2Hd/GPa33cNOvb+Ke1nvYdnxb1vt0QhnbFStWUF5eDsAll1xCR0dH1p9bUfgUb4xcYVu2Hd/Gw9sepsxTRn1ZPd2D3Ty87WHuXXovS6cuzWifTixj+9RTT/H5z38+o8+rKC6UkBcLDkp537h/I2WeMiq9lQCjjxv3b8xYyJ1WxvaZZ55h+/bt/OlPf0rp9YriRgm52dhRMC1o1GAlHX0d1JfVj9tWUVJBh9+6MIOdyti+8sorPPTQQ/zpT3+itLTUlM+nKGxUjNxMdMHs7xovmPmurGisLSNc2qO3QttuQxqqGugfHp952z/cT0NlQ8b7XLlyJc899xzd3d0AccvYAnHL2F5zzTXs2rWLqqqqCWVsf/rTn+L3+wE4cuQIH3/8ccxxbNq0iZ07d0740kX8L3/5C3feeScvvvgiZ5xxRsx9KBTRKCE3E7sKpsNqy6yat4rB0CD+oB8pJf6gn8HQIKvmrcp4n04pY3vffffh9/u54YYbWLx4MVdffXXGn1lRPBRnGVur+MmntZm4MFwfZUTLHr0zj7HOZ9dMbNQw1KdltN64ISdDSLfk6rbj29i4fyMd/g4aKhtYNW9VxvHxQkWVsS0+VBnbXGBBZxtTWHaHFuKB8fXXV3w7v+NKwNKpS5VwKxQpokIrZmLXYlyqtoxCUdCoGbmZ6IJpdK2s+LY9BFPVllEoCpbCF/Jc2wGVYCoUihyTtZALIc4CNgBnAhJ4Ukq5Ptv9mkK2/mk7esKdQKzzRl2+R6WwEaOL2X0dNFSpxexsMSNGHgLukVLOBy4B/l8hxHwT9ps92dgB7eoJtzvxzlsokPy9iqJAL8HQPdg9rgSDGfV0ipWshVxKeUxK+fbI933APmBGtvs1hWz803b1hNudeOdtyJ/S2zdv3kw8S6yUks2bN5s52rTIpnztJz/5yZjbb7/99nEJSMWAsQSDEIJKbyVlnjI27t+Y76E5FlNdK0KIJuAC4M8xnrtDCLFdCLG9s7PTzMPGJ5venA5LorEN8c5bJJT0rZs3b2blypWsXbt2gphLKVm7di0rV67Mm5gnEvJQKPHne+ONN6wYkiPp6OugomT834jVJRgKHdOEXAhRCfwS+KaU8nT081LKJ6WUS6SUS6ZMmWLWYROTjR1QNWjOjHjnzZV8Oaa5uZmWlhbWr18/Tsx1EV+/fj0tLS00NzdnNLToMradnZ186UtfYunSpSxdupT/+q//ArSGE1/+8pdpbm5m9uzZo1USo8vXtra2ctlll3H11Vczf74WTXz00UdZuHAhCxcu5Ic//OHosSsrK0c/y9e//nXOPfdcrrzyyrip/IWMFSUYih4pZdZfQAnwe+DuVF5/0UUXyZxx8DUpN62W8onLtceDr6X+vicul/Knn5fymeu1xycuT/39xUqc87Z319spvT0SiciWlhYJyJaWlpg/Z8Lu3bvl3LlzZWdnp5RSyu7ubnnzzTfL117Tfp+HDh2S8+bNk1JK+Z3vfEcuX75cBgIB2dnZKWtra2UwGJQHDx6UCxYsGN3n5s2bZXl5uWxra5NSSrl9+3a5cOFC6ff7ZV9fn5w/f758+23tc1dUVEgppfzlL38pr7zyShkKheSRI0fk5MmT5XPPPZfRZ9q7d29G78s3bx17S9744o3ytt/eJu/6w13ytt/eJm988Ub51rG38j002wNslzE01QzXigCeAvZJKR/Ndn+mk6kd0M6ecDsT77wN+lJ6uxCCdevWAbB+/XrWr9cMUC0tLaxbtw7tzy19YpWxfeWVV9i7d+/oa06fPj1a+OqLX/wipaWllJaWcsYZZ3DixImY+122bBmzZs0C4PXXX+faa68drXh43XXX8dprr42WtwXYsmULN998M263m+nTp7Ny5cqMPo+TWTp1KfcuvVeVYDARM3zknwJWA+8KIXaObPu2lPK3Juw7vyhPeGbEOm/79qX8dl3MdREHshLxeEQiEbZu3YrPN/EiYywf63a748bAo8vUKlJDlWAwFzNcK69LKYWUcpGUcvHIl31FvP11rYjUTz6tPSo7oe2QIzFxI7EWQNMhVhnbz3zmM/zoRz8afY3e8Sce0eVro7nsssv41a9+xcDAAP39/bzwwgtcdtll415z+eWXs2nTJsLhMMeOHcurC0dROBRXrRXlDbc9uojrC5uRSCTmAmi6xCpj+9hjj7F9+3YWLVrE/PnzeeKJJxLuI7p8bTQXXnght99+O8uWLePiiy/mq1/96riwCsC1117L3LlzmT9/PmvWrGH58uUZfR6FwkhxlbG1QTnXYiWVkqvRIq6HU+JtL3ZUGdviQ5WxBW3xrTKq64ryhtuG1tbWmGIdvQB6zTXXsGLFinwOVaGwFcUl5HatF64AYMWKFbz66qs0NzdPmHHrYq5EXKGYSHHFyI0JQv3d8NFbcORtTdydFCd36IJtKmG8FStWxA2bCCGUiI+Qj5Cowr4Ul5DrHmcEnNgNQsCZC7TnnLLo6dAFW5/PR3d3txIgE5BS0t3dHdM2qShOiiu0ApqYV9TBjAvHh1hAS2Kxu2/cWJQKxh5tPvaGhgY6OjrIWZ2dAsfn89HQoFLaFRrFJ+Tg7EVPh469pKRkNANSoVCYS3GFVnScXBDLyWNXKBSWUJxCbtcmyamQ6dgdukCqsC/bjm/jntZ7uOnXN3FP6z2qMUQeKU4hd3JX+UzG7tAFUoV9UV1+7EVxxsjB2QWx0h27QxdIFfbF2OUHGH3cuH+jI4phFVrP0OKckSej0MIQqtuRwmSc3OWnEO8mlJBHU4hhCLVAqjAZJ3f5KcSeocUp5Ilm3IXYdNnJi7sKW7Jq3ioGQ4P4g36klPiDfgZDg6yatyrfQ0tKLu8mcrUgXHxCnmzGXYhhCCcv7ipsid7lp66sjq5AF3Vlddy79F5HxJlzdTeRyxBO8S12Jlv4K9TCWk5e3FXYEqd2+Vk1bxUPb3sY0Gbi/cP9ltxN5HJBuPhm5Mlm3CoMoVAUNLm6m8hlCKf4ZuTJZty5aLrc/vr4/S+7Q82WFYockou7iYaqBroHu0dn4mDdgnDxzcgTzbj1RdDfP6C99rMPaZ2DzBbxQnPFOBSVmaiwklwuCBefkMdb+IPcCGwhumIcSCF6iRX2IpcLwsUXWoHYC3/PrslN9qNDqxcWGlYuRBVa1qAic3K1IFw4Qp5t3NlqgdXH13MQeg9D3Rxte+8hGPKDb5L2mmQ1U1Rs3RQ6+jqoL6sft82MhSh9pl/mKRs303eKNU/hTAojtGJG3NnK7Efj+OrnQmgIju+C4+/C8AC43FBWm3jMKrZuKlZ5iQsxa1BhfwpDyGPFncPD8Muvpl4vJXoRtLdDawd3fHf29VaM46uohzPnQyQC4SCUlMOUc6H6rMSxchVbNxWrFqKcXINE4VwKQ8ijveED3XDqIwicTn32alwE7WnT3j+pAerOzn72Gz2+8jooKdVEfPoF2s+QOJRTiBmnecSqhah81CBR7htFYcTIo73hvYcBCaWVY7NXmLhwGSvmfOMGbQZe2WXewmcs77rbC9GNiBOFcgo14zSPWLEQlausQR07xeTVIm/+KIwZeXRYJOgHCVQbRC569poo5mz27DeWd91XDeW1qWeQJss4LbTSuw4l1zVI7BKTV3bO/CJk9KwwByxZskRu377d3J0aZ9f+E1BWB9WG29mhPi1scuMG7edn10yc4eqvgfjP6e/PZnz67B/Sc6HEc63oFyVvhfYV7Ne+rCqMpdwztuGmX99EfVk9QojRbVJKugJdbLpqU87GcU/rPROyGP1BP3VldTzS/EjOxlHoCCF2SCmXRG83JbQihPgpcBXwsZRyoRn7TBujN1wXtqG+8cK24ttjr09kN/zsQ2PZnfr7+44DQpvxZiLE8YpWpSOA8faRyw5AxouG8U5GVVPMC7lMA0+EVXZORWqYFVr5GfA5k/aVOcYUe28FIOKXbU1kN4zO/gQQApBj4vXrFnjxG/awA+ZyIVS5Z2yFXeqCO6nRRCEuDpsi5FLKLUCPGfvKmOiYN2ix8nj1UpLFnJsu1d535580Qa88c7x4DfRAoNcegpbLDkDKPWMr7FIX3C4XlGQUaiw/Z64VIcQdwB0AjY2N5h8g3fBCOlUOY4VhwsMgol6XL0FbdsfEUFB0KMkslHvGdtihLrh+Qdm4fyMd/g4aKu3pWnF60+h45EzIpZRPAk+Ctthp+gEySbFPtdlCTPtgyUi4xUC+BC0XpXd1cnnRUDiKeBcUO9kSCzWWXxg+crB2phhLvMprNR94ogXVXJKrDkC5vGgoHI+dfO5g/uKwXS5SzhPyeNY3M2aK8fYdT7wgvqClY9Fzmp3PYW3j7PLPVozYLZRhZsKWnS5SpvjIhRD/DjQD9cAJ4DtSyqfivT5jH3kyv3Q2gmimFzudfbW/rjlgBnq0uLu7RJvt//V6R4mlXTH+sxn/cVXmY2pkO2a7+NyNjH6mLGP5+fDOW+ojl1LebMZ+kpJsQTObmWImXux4F4509rX5+3D6GHi8Wv2VSFj7efP34W9+k9lnUYxilxmhnWZvqWLGmO3iczdi1uKwneLtzkrRT2Z9yyZNPV1bXbop/qEh+LB14thOvKvNwl0eQGiP7hJte6xjqjT8tLBLNUK7pNKngxljdootMRPs5J13lpAn8ktnW687XS92osQY474GeuDwVjiyY6T2eMn4sUkm2hhHco/GoeqRZ4Rd/tnsckFJBzPGbBefuxXY6SLlLCFPlMSz+fta1cPj78Kxd7R4czoJOskShKJJNIPX99XbAR/v0xKThAs8pdD13vixTV0IoWGIhDQXTCSk/Tw1qtKByqjMCLv8s9nlgpIOZo156dSlPNL8CJuu2sQjzY8UhIiDvS5SzhLyRI2Tj+zQBNjj1Ro2dO6HUDD1BJ14+44XH08lxX+wG4hoz3kroKRME+tj78CxXdDWCvP+GqqmauIcHtIeq6ZOdNuojMqMsMs/m10uKOngxDHnGrtcpJxf/bD9da0TkP9jLUHHW6HV+o6EAAGzLsu8YmGy4yZzpvzk01oY5Ng72sVF950D+KpAuGHyWbBoFXz0ZmK3TaJqjVZ8vgLAbi4Rs9wSucSJYy5k4rlWnC3kuph2HdBmssMD2nZvBbhcMDwE/+1562x8yeyOuviGg9D5njY+GdHGqrd4c3tTE2Mz7JFO86tngZ1sh7HGZqcLjCJ7cvU7jSfkzgqtRDMaN64Etwe8lWOCLtww40JrhcpYWCtRYS63F+rPGesIVFqliXh5XerhkXRDP9EU2WKpXV0ihVq0qZixw+/UeZmdRvT6KtUztZi4yw2+SRAKaCGLfNf/iM4IrTwDymq1Rss66ZQRyLVP3sHYyeNrxC6+doV52OF36mwh1+urlNfClHnQewiG/JqY26XRQboNL6wik6JiTiFGyMiOiSiQ2QVGhWLsjR0mDc4OrRgtg2XVUDcH6ufCl/7VHiIeTbbhkWzIZc3yXBInZLRq8gJbOi7StfTZ4bZdkRg7WEudLeT5FEbILNMyWVzdKtL1yTuFaH99OAinPmLp77/Lvf4gdRGZd4+vkXQtfXaN9Rcj8ToL2cGm6WzXSj4xu+GxHh44vltbrPVWwJkLzHWWFKJrRbd4ChcMdGvuIJcLwmGYtsjaJtQZko6lz45Fp4qRZC6oXNk0LS2aVXTo3vWh05pTprpRc6BAZouH+kUhPAz9nYDUYv1un7mNjR1WfjYljHXoew9rC94A3nLbLuimU7TJrrF+I8UQw0+2oJnvLk3ODq2YSaphEl10A6fB4xvziA90Z754qIcHBro0IfL4NDvlQKdKw0+GMWQ0PDBS5iCsOZnA8Qu6drhtT0QqMfxCaHZs91o5xSvk7a/D//dF+EEj/K/p8MwN0PVBco+10bsuI1q1Qpdbmw1muniop98PD2r+d9D2OTzoeCGyHOM6CS4txDJlnuZkAscv6GZSYmDz5s3EC5lKKdm8ebNp40sWw892sdYuFwE7LGgmojiFXG/mcPQvgNBKzIYD0NMGgycTF6TSRbd6pjbzi4Q08Qj6xxYP010E1R0lJWUgw9q2SFj72eFClBP0BeSb/00Lc7lLTF/Q/fmen3PFc1ew9JmlXPHcFfx8z89NGHhqpFPPY/PmzaxcuZK1a9dOEHMpJWvXrmXlypWmiXmymWo2i7V2cuzY/c6oOIX8rSe18rIer/ZPD5oYR0LazBriz4R10dW9624vDAegdNJYAa90Myj18EB5vSbgoQCEQ1A+pTCcJbnCIhfTz/f8nMf+8hgDwQHKPGUMBAd47C+PjYq5XWaNAM3NzbS0tLB+/fpxYq6L+Pr162lpaaG5udmU4yWbqWYTkrCTY8cuxdfiUZiLncncGScPaQuLJaXaz8IFkQgQ0cIZEH8mbOwNWlatXQiMzohn16SfQWnMAA0Fxlwr9WcXhrMkFlY5aCxY0P3Z3p/hER68Hi+A9hjSts+rm2erzj9CCNatWwfA+vXrAVi3bt04EV+3bt04F0w2GHtgDkeGOdx3mEAowMK6hWw7vi2rxVo7JNoYyfeCZiIKT8iNtkDjjNg4M6uZqc28I2Etxl1Srt2GCwElvrFb8lgZl8m6yBszKAe6teMMDwAubWyJxNxswbar3TCV35GNOD10mjJP2bhtJe4STg+dtkV6djTRYq4LutkiDmMz1cd3Ps77J9/H5/FxTvU5SCQPb3uYq2ZfxUttLwHpNzt2gmPHLhSejzyVcq96jPz0MW1GLdDCI8IFVdO0pg6Zil50xUOXW3NSCJcWv820mXO6gmy2z90M9M/R1qpdQGtnj9k2bVyS94rnrmAgODA6IwcIhoKUe8up99Xb1uctpcTlGoueRiIRU0XcSKJGxKvmrcrIY23nCpb5ojCrH8YilQYMTZdqXeqnXwBIiEiYcRHc+hx84+3xGZfpLlzq8e6eNi0xBbSFt7o5mVkJM61aaLeOQsbPEYloi7q6bRNs7c65ff7thGSIYCiIlJJgKEhIhrh9/u22czPo8fobX7yRi264aNxzsRZAzSJRLDzT5gt2j0vbicILrRgTRHSi4936zDDoh9nNY4uJbz2piY0+64X0QwB66GXjLZpgecuhbqa2OCoj6YtVplUL7VYky/g5vOXaHYtu2yyvs7U7Z/WC1YAWEz89dJpJpZO4ff7trF6wmnnH543GiNMNHZiNPoP1uX2897P32PXCLub+9Vye+ckz/Ns//du4mLnZM3OrwiB2jkvbicITcuNiZKwKg8aQg6sEDr4G7/3/mn+7dhZMnjEm2N7KzES06VLtApHsgpIKmQpyKhe0dMgm3t7+uhZO0S9sZTVw+uhY7fhEaxI2YfWC1aOCbkSfNaYTOrAqE3Lj/o343D52PrWTXS/sYtF1i1j8lcVsem9TzAVQM8XcuOiZ7wtaMVJ4oZVkFjR9Zhge1hohI7Xb/IhWbGmcj/zEu5n3yTSrSFWmVQvNLJKVTVMK/b0uD7jd2kz89FGYNF0Tcly5L3ZmMumEDqz0Rnf0dXBq7yl2/Ycm4pd+7VIqvZV0+DtGF0B1a2Jra2vWxzOiwiD5pfAWO5MR3UfT5dE85QLNC+72arFzGYHDf9YWPjPtk5lsFpvKLDebRUuzXCvxFpBBOxep9Bo1c/HXwSRaFHyk+RFT9t27t5cZ589ACDFh31JKWltbWbFiRVbHUuSH4lnsTIY+wx0eHCuwJARaerd7vI986sLsZrWJStamOsvNJsklzvHTTuGOtYAcGoIjbycfv/7e8rqxHqUyrFk/i0zEwdqaHXr2YfX8aoCY2YdCCCXiBUjxCbkecnB5tOzJSEgTF5cHwkMTfeRW1TtPx1ViYg3zjFK4Y4V3Th7USggkG7/xveV12t3O1EVwdnPRiThkV7MjWQapCm8UL4W32JkMfYa7+ftwZIe2+HbGfM1Hfvoj8FZpgm1M8rFCcPLkKjGmcMPYolfCFO6YC8gDcObC5ONPtvhcZGS6KGj0VCfKIFUuj+Kk+IQcNGH+m9+MjyHXnw1f+KfczRLNdpWkSEYp3LGyWWdcBESFZ2KNP1kmrMPI1nGSicsFUm/wWwy1wRUTMWWxUwjxOWA94Ab+VUr5g0SvL4gOQdmS58xL4wxcJ60UbjtmjlpMPjMNU+kUpDIhC594i51ZC7kQwg28D/wV0AFsA26WUiF9TRkAAB2cSURBVO6N9x4l5CPkuRZK1incdq3lYhFmOk7SnTmncmwrHTHZks7nVXcV8bGy1dsy4AMpZdvIgTYC1wBxhbyoSNaLM0/Cp8/Ijaxduza9RJFCbB2XALOq8aUa7zaSSmzdbtUCdUF+r+c9egI9TC2fyrTKaQk/bybnRmGOa2UG8JHh546RbeMQQtwhhNguhNje2dlpwmFtwps/hkfmwYNTtcc3fzz2nB5+6PpA68UZ9EPfCej6MPWEGguIXtiMRCIxa1jnhHRr2eR6fwbMqquSSZ3tVBwpVjpi0sWY+OQf1poxHBs4Ru9Qb8LPa6ca5E4iZ/ZDKeWTUsolUsolU6ZMydVhreXNH8Mfv6cJtLdce/zj98bE3Ia9OKNFXJ+BG7P+cibm2WSM5mJ/UZjVJSZTL3myDNJMx2dFtqlRkIfCQ3g9XlzCxdH+owk/r917Y9oVM4T8CHCW4eeGkW32J9vZ2xvrNWH2+DQvtS7Ub4wsIJrVi9PEWWZra6sm4p+fx7p5byOeuw3aX7c8hTsmZldotLjio1k+batmzpmOz4pZsFGQfR4f4UgYt3ATCAUSfl67VZN0CmbEyLcBc4UQs9AEfBVwiwn7tRYzmhsM9mozcSNur7YdxiyGJWVairrwpN+L0+QmDCtmlfDq2kU0L5yOKK0ctz/RdCnr1q3jmmuuyU32n9le+hx4883waVvpJc9kfFbE1o3VEGdUzuDD3g8JR8L4PL64dwrbjm+jZ7CHPd178Hl8NFY1UuIqUcW3UiDrGbmUMgR8Hfg9sA94Vkq5J9v9Wo4Zs7eyak2gjYSD2nYwpxenBbPWFZ+YgfBNirm/nKZwZ1oQLFf7swg7zZzBmlmwMcwz2TuZ6ZXTcQkXFSUVMT+vfpGSSM6pPgeA90++jxBCLXSmgCkJQVLK3wK/NWNfOcOM2dsnW7SYOAFtJh4OakL9yRbteTN6cTpw1poyZmd9Ru/v1FEtW7e8XgtJ2cgeaZeZM1hTgjY68alpUhP3L7s/7meOTniqKavBH/RT66tVIp4CxZnZCeMzKwd6oPcQDPnBNylxb00jy7+mPb6xXgunlFVrIq5vh+wteuk0ykjFz52njNKYmJ31adzfiT3g74TJDeNrzDs4YcnK5g2ZZJumst+lU5eO2hAf3vbwBF+4/tyWji1UllQyvXI6Nb4aQC1ypkPxlbEFTfg2/y+tep97pHiW2wMImHyW1sfTLv/wyTIo082wzFVGZr6ThVLp3RoHuyakODFzM9GYgdHn2k+3MxQaAgGzJ8+mxldjm2QmO6HK2OroQgZaYs7wkFaS1eXRyqxWn5Xf3pbGcT67ZqxTESRulJFqDD2bsrjpjN1CG2BKpNK7NQZWNn7IFidWN0wU1zc+11DVoPUEkHDUfzRja2exUnyhFaPwlVZpZWuFS4tx6x3d890IOLod3cd7NcvijAsnzmwziXlbnZGZaZ9RM8kwhJRqcap84YTqhsY7mo/8HzFr0qxxz4+GTCSjMf/q0mrOrj6bjr4O/MPaTDzTOyG73lFZSfHNyKNnaiVl2kxAbygBuYkZJ/KGx2pHV1IKnfsnzmzt6NTIcDZsKhm2ulMJKdkRfUfjFm4O9B6gd6h39DV6XD/aLVNdWk3TpCYub7g8acu8VI9vpzsqKyk+IY8WvupGCA1roZVse1umSrLQgy6EvYe0BCKXR/Ogh4cnhk3M7M1pFna4uGQYQlIJKdkRHUpprGpEIDh0+tCEbFOzMmUTHb9YUvyLL7QSbVFze6FqKlRN0/7hc1EvO1noQQ8LDA+Cx6s9J0cSiaJntlbW+850wTIbW6EZfU51MgghqW7w2fFez3v4h/0MhYfweXzMqJzBnMlzONh3kK5A1wRHjNluGbsVDssVxetayaejQm8ALQw3RDIC3R9qfUKP79bqs8iIltovhJZQpPe8TLX5czak426JdT4h/XNstkMnQ0ZjrCZa8YqBbce30fJqC1JKvB4v4UiYsAwzvXI6TZOaJrhPrIhl27mUrxlYVo88E/Iu5PkmljWu9yM43aG1T/NWwKkj0NuuhVNKq6BmFnhKc9e8IVX7npnimuyYWVgKFdZzT+s9HOw9yLGBY7iEC7dwMxwexiVc/HDlD2NmcpptpYze7zH/MY4PHKfWV8u5tec6/qKs7Id2IlZc+1QHTDprzEZYfRZMWwwNyzRBjISssQrGI9UFSzNLCCQ7ph0WURVx6ejrYFrlNGZPno3X7WU4MozP46PGVzNBPK2KZRstmodOH+LEwAmmVU5j5qSZBb3wWXwxcjsQK65dOQUmTx//Om+FFrf/m9/kfoyp2vfMTPmPd0xvhTYbP3kQTn0EtbPHrKL5duiYjF2tc6mMS888rfHVjGZn6mGNaNKJZad7TnSLZnSYxW5WUjNRM/J80XSpFg6480/a45kL8u/00Gl/Hfq7tczXjm2auMZzw5jpUIl1p9J3HPwntDHUnQPDATixN/GYHIpdrXOpjisdF0p5STm7unax48QO9nTvoXeoN6Y7KJtzUkxWUiXkdsEuNsLRzFepxeul1OqWQOywjpnjjmUZrJoGlWdqs/SKOu2C5ymFrgO5DTXlALta51IdV7zMU2BcDfWf7/k5nf2dBMNBXMJFMBTk/ZPv0xXomiD62ZyTYrKSqtCKXbDSRpgO4zJf0cRTX1CMNRYrCl8Z36s7fHTKa6FsiSb0BbbAqYcbTgZOcrT/KIFQAJ/bR9dgV06OHx3CWDxlMTs7d6ZV0Cq6UNb3/ut7nBw6ydTKqUwtn0r3YDdPvPMEZ5afyZzqOaOfs9RdyhTflAkhj2zshMVkJVVCbicS+Z5zZZm0KOV/a1s3G95s53DPAI215axZ3sQlsyfGTidgo2qNGX+GFGmoahjn+ihxlRAIBQiGg2w7vs3SuG5004qDvQfZ0rGFxkmNVJRUEAgFaDvVxmy0glaJZrbGffWH+onICEf9RynzlFFdWs2wHObk0EmmV41dGKSUdAUmXrCyqfhoVVVHO6JCK04gl0WoLMjK3NrWzYMv7aWrL8iUylK6+oI8+NJetrZ1J3+zTUJOWX2GFFk1bxXHB46DBI/LQ0RGQMDUyqmWh1eiQxgngyfxCA89gZ60C1oZ9xUIByhxl+AWbo74tQ6Q5Z5yBkID494TT5yzzf5M1ue0UFBC7gQs7kU5jjSFc2tbN3f9YgdX/eg17vrFjpjCtuHNdsq9Hqp8HlxCUOXzUO71sOHN9uTjMalaYyrjTERWnyFFlk5dSq2vllJPKcFwkBJ3CWdXn83U8qmWL9BFLwwGQpoAB0KB0YJWpZ7S0YJWifzeE/p1yjBu11i/zrqyOtzCnZI4O7HiYz5QoZUorL59zohcdvVJI+a9ta2bb27aSbd/iFBY8t7xPt4+3Msdl81i+6GTo+dw37HTNNVFuQdK3RzuGZiwv5jnPstqjfpsutzrGTeb/oer5qf8uz3cM8CUytKknyFbzq09N2ZmotULdNEhDJ/HR2A4gK/EB2gFrTzCk1KGpHFf0yum03aqjWAoqF0Ign48wsPXzv8aOzt3phTycELFx3yjZuQGcnH7nBG5LkIVbY2MI6Lf+/UeTpwKEJHgcQkiEo6fCvBPv9s/7hx2+4McOxUY997+oTCNtWONq60892bMphtry+kfCif8DGZgRSGpTI5b460hJEPU+mrTHodxX9Wl1UwrnzbqONFn1KsXrC6KkEeuUEJuIBe3zxlhkzhxNAdO+BECXALQH4GhsBx3DqdP9nG0d5C+QIiIlPQFQgwEQ6xZ3jS6LyvP/b5jpznY5eet9h7ePXKKkwPBtGfTa5Y3MRAMJfwMZpCvUEL0cWdVz+IbF3yDpklNaY8j1r7Wr1zPS9e+pETbIlRoxUCubp/TxkJrYjahpIiUKc0EplWXEQiFqa/yGo5zzrjjWHXut7Z10+0PIiV4PS6CoQgHTviZUVPG7CkVyXcwwiWz6/iHq+ZHnatzLAm75SuUEOu4q1lt2r4U1qGE3EBjbTldfUGqfGOnxYrb54ywoKtPtrHjyT4PpwIhXFGF19xRr+sfCjN/+mQev/WiuPuy6txveLOd6ZN9HOkNEI5EcAtBGDjaO8h3r16Q1r4umV2X//USh2DXUgOFigqtGMjV7XO6ZOu4iEe24Yy/vWIubheAQNNygVtAfaU37XNo1bk/3DPAtOoy5pxRgdftJhiW+Epc1FaUKFG2CLuWGihklJAb0G+f66u8dPqHqK/ypuVssIJMFgFTFf7DPQNUlI6fP6cTzvjypbP51ufPo77SS4nHRX2llwe+eB7rb7lw9BwKIako9fDgb/YmHItV515fpKytKOUTDZNZNquWWfWVzJ8+Oav9KuJj11IDhYyqR25z7vrFjgkhh75AiPoqb8xQhTFcUlHqpn8ozEAwFFMU0913uqQzFquwwxicSDahkZt+fRP1ZfUIIUa36Zmbm67aZNWQiwJVj9yhpDtrTidcYnUoyQ4uIDveZdmdbEMjxVSsyi6oxU6bE2sR8FjvIL2Dw1z1o9cmOE3ScX9Y7cSwiwtILVKmhzE0AunX8S6mYlV2QQm5jdGtc7uO9FJW4mZmbTmB4TDtPQM01VXEdJqk6/6wUuRs7QJSxCXbBsbFVKzKLhStkNsyFd+AMbZ73tQqDnUPsP9EH2UeF011FcyoLgMYFckNb7Zzyew61ixv4sGX9gKMiwmvWX5OxuPI9DyZPZZ8Yfe/lUxIFAPPpuKgjvKR55aiXOxMtAAG2OKfNt5C5P7jp7loZg0uw0JSREo6/UO89LeXAakLT7LXxTtP1104Y1wtlUTnKBciaOUxCnGxNFnj43jPXzX7Kq0+ShbecOUvz454i51ZCbkQ4gbgu8B5wDIpZUrqnG8hjyeSQkj6h8Km/dNmIzBX/eg1plSWThDsHYdOMm/qpKydJqkIVKzzdOTkAEdPBZg3dZIthM1qobXa2ZMPontZwlhvTb0g1qjgjoRGFk9ZzEttLyXsep9MpJNdQBTJscq1shu4DtiS5X5ySjwnyL5jfaa5LLItAhWvSNN50yaZ4jRJxVES6zx19wcJRaRt6tFY7YzJ1mtvR1LpZRldx3tn586E3vBkTpdtx7dx/2v3c/D0QQ71HeJU8JTyl5tIVjFyKeU+YJxf1AnEW4QDTPunNQoMTIxlJyNefDl2+Cd9p0kqjpLo89TTP0RPfxCAd4+coqGmjJpyr+nCFu9OJtZ2q50xhbhgm0kMPNkCaCKnC8DD2x7GH/Tjc/sYDg/zfs/7eN1eQpEQLpfL8g5IhU7OfORCiDuEENuFENs7OztzddiYxPNPnzdtkmmlSrOdySXyP18yu47Hb72Il/72Mh6/9aKMQgiplGU1nqdu/xDvnfAjAV+Je7T41MmBoKnCFu9O5qevt8XcXuF1W1pe1q5lG7Jh1bxVdAW6eKfzHbYf3847ne/EbHxsJJk3PNEsXxf58pJywjJMREYYigzRH+rH7XLjFm6Vwp8lSYVcCPGKEGJ3jK9r0jmQlPJJKeUSKeWSKVOmZD5iE4gnkmv/6hzT/mnNqF9thmDHIxWBMp6ntq5+fB4XZ9dXjMTtJS4B7V39OUkienJLW8ztICwV2mwSiqyqkWMKEe1h9G46kvjlyeqkJxJ6XeSnV0wnIiMMhgYRUhCJRIjICI1VjSrEkiWmuFaEEK3AvU5Z7EyEWQ4IJ7gd0vmsxsXXnv4hjpwMMDgcQgjBk2uWmPaZ4i3yvtnWzfLZdTHdOv/wxbGkpgqvGxD0B0N5dR3Z+fefymJnLKIXQI2LmYkWMjfu3zh6vJOBk+zp3oOUEo/Lw7zaedT4alQKf4rEW+wsWh95PMxKkMll/epM0T/r5s2baW6+MOZah5SS1tZWGmsnjcaKaytKqa0oHXVvmPmZ4sWkq8tK6B8Kx4xV65/DjJZumRJ9Uez2D2W1RmIlmSb8JPKGJ0sC0jM9q0urqfJWMRQe4pyac6gurQasT+EvdNtjVkIuhLgW+BEwBfiNEGKnlPKzpoysAHBCavjmzZtZuXIlLS0trFu3bkKho7Vr17J+/Xr+5ZkX+F1Q+yxWJvfEW+T9zPwz+dXOo4Qikgqvm7oKLx63a9zxs11gzpRYF5BdR04x78wqjP9idnG7mJHwE4t4Qh8t8nMmz6Ez0IlHeJBSWp7Cr98tDIeHOTl0kvbT7bx59E2+dv7XWL0gs8YZdiNb18oLwAsmjUWRB5qbm2lpaWH9+vUAo2JuFPGWlhbuuuUaLjrYY/kdRqw7mSUzz+Q/3j7C9Ooyuv1D9AfDDIUCfPPKuTnpMpSMWBeQ8hI3h3oGqDOMxy5ul3zUQokW+URhGrPZuH8jw+Fhjg0cwyVclLpLGQ4P88Q7TzCvbl5BzMxVaKXIEUKwbt06gHFibhRxXdxzdYcRfZy7frFjVCj10gR9gRDbD53ky4amSfmyCsa6gMysK2ff8T76AiHblSewQy2UXKbwd/R1cHLoJC7hwuPS/ja8Hi+DocGUC4HZHSXkiglirgt6rHBLPth37DT+QIhAKEJZiZuGmjIml5VMmGnnq7ZLrAtIidvN+Q3V1FXG71OaT4qpFkpDVQPtp9spdY9dbMORMOWe8pQLgdmdoqy1ooiNlBKXa8yRGolEciLiidwzW9u6uWPD9tHmyeGIJByRo82To9Pk81Hgys4OFYUWxml5tQUpJV6Pl3AkTFiGmV45naZJTQmdOnZDuVYUCdFj4kbWrl0bd0ZuhU0zltMk3ebJ+VhgdoJDyWycVBFy6dSlfO38r/HEO08wGBqk3FPOmWVn4hGegqmRroRcMWFh0xgjByaIuZk2v2ROE715cpnXPeJdD+MrcVFR6raVcDjBoWQW+bR5ZsrqBauZVzevYGukKyHPEXadwcQS8XgLoLqYm2nzS+Y00ePPuncdxqoPKvJDqr9/u3m3C3ldQPXszAHZVkK0ktbW1gkiDmMLoLo1sbW1dfQ9ZlYETFbKwIpaJ7ZOnXcAqfz+s+37qUgPJeQ5wA5NiOOxYsUKXn311Zix8D8f7GFoyX/j4q//kOeOThoVPDPqyOgkE2qzmyfb+aLqFFL5/RurIcYqe6swFyXkOcDuNa1XrFgxQcR1wev2D3PehcvHCZ6Zs+RUhNrM4mF2vqg6hVR+/6nUPFeYh4qRW8hoXLx7gKMnB2mqr6CmXIvt2iXLLx6J4qCP33pRxi6NeGsFuVovyFf2ZyGRikvHijIAdou52wkl5BZhXNmfXV/B+x/72X+sj3OnVlLidtsmyy8eyQQvFfGNFu0lM2v4j7eP5NXtUIiNIvJBst+/2WUAjNUVjTF31SZOQ4VWLGLdH97naO8g+46f5uipADMm+ygtcfFhZ3/Wcd5ckG0cPFYs+oevHCAUjuQ1rFGIjSLsiF4GoK6sjq5AF3VldVmJroq5J0bNyC1ga1s373T0Uup24XW7CIYiHD89xJwzKhiOSEc07c023T1WaCYUkXT3B5lRM3YxMDOskYrFM5PkHbtaR+2OmXa/TEvvFgtKyC1gw5vtlJW4kVIiAI9LW0g81D3AJWc7QwCyzVaMVR+lwuumP2hNW7Z0klTSick7MfmlELGq9G6hoITcAg73DDCztpwPO/sBLa1cIhkYjjjqFj7TRcitbd10+4Oj9VH0/p41FSUMhSKWVAS0qhZ5vmqcK8aTj9K7TkLFyC2gsbYcr8fNnDMq8LrdBMMSlxCc3zC5KP759foowEh9FG1778Aw37xyrmmecCNWWTztbh0tFsyOuRcaakZuAXp8udzrYcGMSaMzz7V/dW6+h5YTEtVH+fKls8fVEDcLq9woyuViHwo5xT5b1IzcAszORgRnpZXrjpfailI+0TCZZbNqmVVfyfzpky07plVuFOVyUTgBVY/cATit3rVZ403XLWKVu0S5VhR2IV49ciXkDuCuX+yYcHuvVwC0q5UxW/Fz2sVLocgFqrGEg3FiWnm2affKLaJQpI4ScgdQjAtuqfbpVCgUarHTERTbgpvuQw8MR0YzYw+c8HPsVKCgL14KRaYoIXcAVrhg7Ew8H/rR3sGCvXgpFNmgQisOoZh6Qtq1T6dyryjsihLyAsTpgmPHPp2q5orCzqjQSoFRCK3M7LgmoDoLKeyMmpEXGIVg28u28mImJLuLcaIFVFE8KCEvMApFcHK5JpBK2KQYLaAK55BVaEUI8c9CiP1CiF1CiBeEENVmDUyRGWZ2uC8WUgmb2DHco1DoZBsj/wOwUEq5CHgf+Fb2Q1JkgxKc9EmlVG2xWUAVziKr0IqU8mXDj1uB67MbjiJb8hFfdjqphk2KyQKqcBZmxsi/DGyK96QQ4g7gDoDGxkYTD6uIRglOemTbn1ShyDdJqx8KIV4BpsZ46gEp5X+OvOYBYAlwnUyhnKKqfqiwG0733iuKg4yrH0opr0yy49uBq4ArUhFxhcKOqLsYhZPJKrQihPgc8HfAp6WUzvK3KRQKRYGQrWvlX4Aq4A9CiJ1CiCdMGJNCoVAo0iBb18ocswaiUCgUisxQtVYUCoXC4SghVygUCoejhFyhUCgcTlIfuSUHFaITOJTBW+uBLpOHYwVOGKcaozmoMZqDGmNqzJRSTonemBchzxQhxPZYZni74YRxqjGagxqjOagxZocKrSgUCoXDUUKuUCgUDsdpQv5kvgeQIk4YpxqjOagxmoMaYxY4KkauUCgUiok4bUauUCgUiiiUkCsUCoXDsbWQCyFuEELsEUJEhBBxbT9CiHYhxLsjhbtyXug8jXF+TgjxnhDiAyHE/TkeY60Q4g9CiAMjjzVxXhceOY87hRAv5mhsCc+LEKJUCLFp5Pk/CyGacjGuNMd4uxCi03Duvprj8f1UCPGxEGJ3nOeFEOKxkfHvEkJcmMvxpTjGZiHEKcM5/B95GONZQojNQoi9I//TLTFek/dzOQEppW2/gPOAc4FWYEmC17UD9XYeJ+AGPgRmA17gHWB+Dsf4v4H7R76/H/inOK/z5/jcJT0vwF3AEyPfrwI22XCMtwP/kse/wcuBC4HdcZ7/AvA7QACXAH+24RibgZfydQ5HxjANuHDk+yq0XsTRv+u8n8voL1vPyKWU+6SU7+V7HMlIcZzLgA+klG1SyiCwEbjG+tGNcg3w9Mj3TwP/Tw6PnYhUzotx7M8DVwghhM3GmFeklFuAngQvuQbYIDW2AtVCiGm5GZ1GCmPMO1LKY1LKt0e+7wP2ATOiXpb3cxmNrYU8DSTwshBix0hvUDsyA/jI8HMHE/9ArORMKeWxke+PA2fGeZ1PCLFdCLFVCJELsU/lvIy+RkoZAk4BuWznk+rv7ksjt9rPCyHOys3QUibff3+pslwI8Y4Q4ndCiAX5HMhICO8C4M9RT9nuXJrZfDkjUukJmgKXSimPCCHOQGtysX/k6m8aJo3TUhKN0fiDlFIKIeL5TmeOnMvZwKtCiHellB+aPdYC5NfAv0sph4QQd6LdQazM85icxttof39+IcQXgF8Bc/MxECFEJfBL4JtSytP5GEM65F3IZZKeoCnu48jI48dCiBfQboVNFXITxnkEMM7SGka2mUaiMQohTgghpkkpj43cBn4cZx/6uWwTQrSizUisFPJUzov+mg4hhAeYDHRbOKZoko5RSmkcz7+irUnYCcv//rLFKJhSyt8KIR4XQtRLKXNaqEoIUYIm4r+QUv5HjJfY7lw6PrQihKgQQlTp3wOfAWKuiueZbcBcIcQsIYQXbdEuJ66QEV4Ebhv5/jZgwl2EEKJGCFE68n098Clgr8XjSuW8GMd+PfCqHFl1yhFJxxgVI70aLbZqJ14E1ow4Li4BThlCbbZACDFVX/sQQixD06dcXrAZOf5TwD4p5aNxXma/c5nv1dZEX8C1aPGnIeAE8PuR7dOB3458PxvNRfAOsAct1GG7ccqx1e730Wa4OR0nWkz5j8AB4BWgdmT7EuBfR77/JPDuyLl8F/hKjsY24bwA/xO4euR7H/Ac8AHwFjA7D7/jZGP8/sjf3zvAZmBejsf378AxYHjkb/ErwH8H/vvI8wL4PyPjf5cELrA8jvHrhnO4FfhkHsZ4Kdqa2y5g58jXF+x2LqO/VIq+QqFQOBzHh1YUCoWi2FFCrlAoFA5HCblCoVA4HCXkCoVC4XCUkCsUCoXDUUKuUCgUDkcJuUKhUDic/wuwrcFn+A3K9AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "# plotting the clusters using the first 2 dimentions of the data\n", + "for c in np.unique(cluster_index):\n", + " plt.scatter(data[cluster_index == c, 0],\n", + " data[cluster_index == c, 1], label='cluster='+str(c), alpha=.7)\n", + "\n", + "# plotting centroids\n", + "for centroid in som.get_weights():\n", + " plt.scatter(centroid[:, 0], centroid[:, 1], marker='x', \n", + " s=80, linewidths=35, color='k', label='centroid')\n", + "plt.legend();" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/ColorQuantization.ipynb b/examples/ColorQuantization.ipynb new file mode 100644 index 0000000..fc7c0ec --- /dev/null +++ b/examples/ColorQuantization.ipynb @@ -0,0 +1,10201 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we will load an image and then buil a matrix that we will call `pixels` and will look like this:\n", + "\n", + "\\begin{bmatrix}\n", + "r_1 & g_1 & b_1\\\\\n", + "\\vdots & \\vdots & \\vdots\\\\\n", + "r_n & g_n & b_n\n", + "\\end{bmatrix}\n", + "\n", + "In this matrix each row represent the color of a given pixel in the image in the RGB space and the columns represent the intensity in a specific color.\n", + "\n", + "We will use this matrix to train our SOM and then we will quantize the original set of colors to obtain a smaller set of colors that will segment the image into uniform areas." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "training...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 0 / 10000 ] 0% - ? it/s\r", + " [ 0 / 10000 ] 0% - ? it/s\r", + " [ 1 / 10000 ] 0% - 0:00:03 left \r", + " [ 2 / 10000 ] 0% - 0:00:03 left \r", + " [ 3 / 10000 ] 0% - 0:00:03 left \r", + " [ 4 / 10000 ] 0% - 0:00:02 left \r", + " [ 5 / 10000 ] 0% - 0:00:03 left \r", + " [ 6 / 10000 ] 0% - 0:00:03 left \r", + " [ 7 / 10000 ] 0% - 0:00:03 left \r", + " [ 8 / 10000 ] 0% - 0:00:03 left \r", + " [ 9 / 10000 ] 0% - 0:00:03 left \r", + " [ 10 / 10000 ] 0% - 0:00:02 left \r", + " [ 11 / 10000 ] 0% - 0:00:02 left \r", + " [ 12 / 10000 ] 0% - 0:00:02 left \r", + " [ 13 / 10000 ] 0% - 0:00:02 left \r", + " [ 14 / 10000 ] 0% - 0:00:02 left \r", + " [ 15 / 10000 ] 0% - 0:00:02 left \r", + " [ 16 / 10000 ] 0% - 0:00:02 left \r", + " [ 17 / 10000 ] 0% - 0:00:02 left \r", + " [ 18 / 10000 ] 0% - 0:00:02 left \r", + " [ 19 / 10000 ] 0% - 0:00:02 left \r", + " [ 20 / 10000 ] 0% - 0:00:02 left \r", + " [ 21 / 10000 ] 0% - 0:00:02 left \r", + " [ 22 / 10000 ] 0% - 0:00:02 left \r", + " [ 23 / 10000 ] 0% - 0:00:02 left \r", + " [ 24 / 10000 ] 0% - 0:00:02 left \r", + " [ 25 / 10000 ] 0% - 0:00:02 left \r", + " [ 26 / 10000 ] 0% - 0:00:02 left \r", + " [ 27 / 10000 ] 0% - 0:00:02 left \r", + " [ 28 / 10000 ] 0% - 0:00:02 left \r", + " [ 29 / 10000 ] 0% - 0:00:02 left \r", + " [ 30 / 10000 ] 0% - 0:00:02 left \r", + " [ 31 / 10000 ] 0% - 0:00:02 left \r", + " [ 32 / 10000 ] 0% - 0:00:02 left \r", + " [ 33 / 10000 ] 0% - 0:00:02 left \r", + " [ 34 / 10000 ] 0% - 0:00:02 left \r", + " [ 35 / 10000 ] 0% - 0:00:02 left \r", + " [ 36 / 10000 ] 0% - 0:00:02 left \r", + " [ 37 / 10000 ] 0% - 0:00:02 left \r", + " [ 38 / 10000 ] 0% - 0:00:02 left \r", + " [ 39 / 10000 ] 0% - 0:00:02 left \r", + " [ 40 / 10000 ] 0% - 0:00:02 left \r", + " [ 41 / 10000 ] 0% - 0:00:02 left \r", + " [ 42 / 10000 ] 0% - 0:00:02 left \r", + " [ 43 / 10000 ] 0% - 0:00:02 left \r", + " [ 44 / 10000 ] 0% - 0:00:02 left \r", + " [ 45 / 10000 ] 0% - 0:00:02 left \r", + " [ 46 / 10000 ] 0% - 0:00:02 left \r", + " [ 47 / 10000 ] 0% - 0:00:02 left \r", + " [ 48 / 10000 ] 0% - 0:00:02 left \r", + " [ 49 / 10000 ] 0% - 0:00:02 left \r", + " [ 50 / 10000 ] 0% - 0:00:02 left \r", + " [ 51 / 10000 ] 1% - 0:00:02 left \r", + " [ 52 / 10000 ] 1% - 0:00:02 left \r", + " [ 53 / 10000 ] 1% - 0:00:02 left \r", + " [ 54 / 10000 ] 1% - 0:00:02 left \r", + " [ 55 / 10000 ] 1% - 0:00:02 left \r", + " [ 56 / 10000 ] 1% - 0:00:02 left \r", + " [ 57 / 10000 ] 1% - 0:00:02 left \r", + " [ 58 / 10000 ] 1% - 0:00:02 left \r", + " [ 59 / 10000 ] 1% - 0:00:02 left \r", + " [ 60 / 10000 ] 1% - 0:00:02 left \r", + " [ 61 / 10000 ] 1% - 0:00:02 left \r", + " [ 62 / 10000 ] 1% - 0:00:02 left \r", + " [ 63 / 10000 ] 1% - 0:00:02 left \r", + " [ 64 / 10000 ] 1% - 0:00:02 left \r", + " [ 65 / 10000 ] 1% - 0:00:02 left \r", + " [ 66 / 10000 ] 1% - 0:00:02 left \r", + " [ 67 / 10000 ] 1% - 0:00:02 left \r", + " [ 68 / 10000 ] 1% - 0:00:02 left \r", + " [ 69 / 10000 ] 1% - 0:00:02 left \r", + " [ 70 / 10000 ] 1% - 0:00:02 left \r", + " [ 71 / 10000 ] 1% - 0:00:02 left \r", + " [ 72 / 10000 ] 1% - 0:00:02 left \r", + " [ 73 / 10000 ] 1% - 0:00:02 left \r", + " [ 74 / 10000 ] 1% - 0:00:02 left \r", + " [ 75 / 10000 ] 1% - 0:00:02 left \r", + " [ 76 / 10000 ] 1% - 0:00:02 left \r", + " [ 77 / 10000 ] 1% - 0:00:02 left \r", + " [ 78 / 10000 ] 1% - 0:00:02 left \r", + " [ 79 / 10000 ] 1% - 0:00:02 left \r", + " [ 80 / 10000 ] 1% - 0:00:02 left \r", + " [ 81 / 10000 ] 1% - 0:00:02 left \r", + " [ 82 / 10000 ] 1% - 0:00:02 left \r", + " [ 83 / 10000 ] 1% - 0:00:02 left \r", + " [ 84 / 10000 ] 1% - 0:00:02 left \r", + " [ 85 / 10000 ] 1% - 0:00:02 left \r", + " [ 86 / 10000 ] 1% - 0:00:02 left \r", + " [ 87 / 10000 ] 1% - 0:00:02 left \r", + " [ 88 / 10000 ] 1% - 0:00:02 left \r", + " [ 89 / 10000 ] 1% - 0:00:02 left \r", + " [ 90 / 10000 ] 1% - 0:00:02 left \r", + " [ 91 / 10000 ] 1% - 0:00:02 left \r", + " [ 92 / 10000 ] 1% - 0:00:02 left \r", + " [ 93 / 10000 ] 1% - 0:00:02 left \r", + " [ 94 / 10000 ] 1% - 0:00:02 left \r", + " [ 95 / 10000 ] 1% - 0:00:02 left \r", + " [ 96 / 10000 ] 1% - 0:00:02 left \r", + " [ 97 / 10000 ] 1% - 0:00:02 left \r", + " [ 98 / 10000 ] 1% - 0:00:02 left \r", + " [ 99 / 10000 ] 1% - 0:00:02 left \r", + " [ 100 / 10000 ] 1% - 0:00:02 left \r", + " [ 101 / 10000 ] 1% - 0:00:02 left \r", + " [ 102 / 10000 ] 1% - 0:00:02 left \r", + " [ 103 / 10000 ] 1% - 0:00:02 left \r", + " [ 104 / 10000 ] 1% - 0:00:02 left \r", + " [ 105 / 10000 ] 1% - 0:00:02 left \r", + " [ 106 / 10000 ] 1% - 0:00:02 left \r", + " [ 107 / 10000 ] 1% - 0:00:02 left \r", + " [ 108 / 10000 ] 1% - 0:00:02 left \r", + " [ 109 / 10000 ] 1% - 0:00:02 left \r", + " [ 110 / 10000 ] 1% - 0:00:02 left \r", + " [ 111 / 10000 ] 1% - 0:00:02 left \r", + " [ 112 / 10000 ] 1% - 0:00:02 left \r", + " [ 113 / 10000 ] 1% - 0:00:02 left \r", + " [ 114 / 10000 ] 1% - 0:00:02 left \r", + " [ 115 / 10000 ] 1% - 0:00:02 left \r", + " [ 116 / 10000 ] 1% - 0:00:02 left \r", + " [ 117 / 10000 ] 1% - 0:00:02 left \r", + " [ 118 / 10000 ] 1% - 0:00:02 left \r", + " [ 119 / 10000 ] 1% - 0:00:02 left \r", + " [ 120 / 10000 ] 1% - 0:00:02 left \r", + " [ 121 / 10000 ] 1% - 0:00:02 left \r", + " [ 122 / 10000 ] 1% - 0:00:02 left \r", + " [ 123 / 10000 ] 1% - 0:00:02 left \r", + " [ 124 / 10000 ] 1% - 0:00:02 left \r", + " [ 125 / 10000 ] 1% - 0:00:02 left \r", + " [ 126 / 10000 ] 1% - 0:00:02 left \r", + " [ 127 / 10000 ] 1% - 0:00:02 left \r", + " [ 128 / 10000 ] 1% - 0:00:02 left \r", + " [ 129 / 10000 ] 1% - 0:00:02 left \r", + " [ 130 / 10000 ] 1% - 0:00:02 left \r", + " [ 131 / 10000 ] 1% - 0:00:02 left \r", + " [ 132 / 10000 ] 1% - 0:00:02 left \r", + " [ 133 / 10000 ] 1% - 0:00:02 left \r", + " [ 134 / 10000 ] 1% - 0:00:02 left \r", + " [ 135 / 10000 ] 1% - 0:00:02 left \r", + " [ 136 / 10000 ] 1% - 0:00:02 left \r", + " [ 137 / 10000 ] 1% - 0:00:02 left \r", + " [ 138 / 10000 ] 1% - 0:00:02 left \r", + " [ 139 / 10000 ] 1% - 0:00:02 left \r", + " [ 140 / 10000 ] 1% - 0:00:02 left \r", + " [ 141 / 10000 ] 1% - 0:00:02 left \r", + " [ 142 / 10000 ] 1% - 0:00:02 left \r", + " [ 143 / 10000 ] 1% - 0:00:02 left \r", + " [ 144 / 10000 ] 1% - 0:00:02 left \r", + " [ 145 / 10000 ] 1% - 0:00:02 left \r", + " [ 146 / 10000 ] 1% - 0:00:02 left \r", + " [ 147 / 10000 ] 1% - 0:00:02 left \r", + " [ 148 / 10000 ] 1% - 0:00:02 left \r", + " [ 149 / 10000 ] 1% - 0:00:02 left \r", + " [ 150 / 10000 ] 2% - 0:00:02 left \r", + " [ 151 / 10000 ] 2% - 0:00:02 left \r", + " [ 152 / 10000 ] 2% - 0:00:01 left \r", + " [ 153 / 10000 ] 2% - 0:00:01 left \r", + " [ 154 / 10000 ] 2% - 0:00:01 left \r", + " [ 155 / 10000 ] 2% - 0:00:01 left \r", + " [ 156 / 10000 ] 2% - 0:00:01 left \r", + " [ 157 / 10000 ] 2% - 0:00:01 left \r", + " [ 158 / 10000 ] 2% - 0:00:01 left \r", + " [ 159 / 10000 ] 2% - 0:00:01 left \r", + " [ 160 / 10000 ] 2% - 0:00:01 left \r", + " [ 161 / 10000 ] 2% - 0:00:01 left \r", + " [ 162 / 10000 ] 2% - 0:00:01 left \r", + " [ 163 / 10000 ] 2% - 0:00:01 left \r", + " [ 164 / 10000 ] 2% - 0:00:01 left \r", + " [ 165 / 10000 ] 2% - 0:00:01 left \r", + " [ 166 / 10000 ] 2% - 0:00:01 left \r", + " [ 167 / 10000 ] 2% - 0:00:01 left \r", + " [ 168 / 10000 ] 2% - 0:00:01 left \r", + " [ 169 / 10000 ] 2% - 0:00:01 left \r", + " [ 170 / 10000 ] 2% - 0:00:01 left \r", + " [ 171 / 10000 ] 2% - 0:00:01 left \r", + " [ 172 / 10000 ] 2% - 0:00:01 left \r", + " [ 173 / 10000 ] 2% - 0:00:01 left \r", + " [ 174 / 10000 ] 2% - 0:00:01 left \r", + " [ 175 / 10000 ] 2% - 0:00:01 left \r", + " [ 176 / 10000 ] 2% - 0:00:01 left \r", + " [ 177 / 10000 ] 2% - 0:00:01 left \r", + " [ 178 / 10000 ] 2% - 0:00:01 left \r", + " [ 179 / 10000 ] 2% - 0:00:01 left \r", + " [ 180 / 10000 ] 2% - 0:00:01 left \r", + " [ 181 / 10000 ] 2% - 0:00:01 left \r", + " [ 182 / 10000 ] 2% - 0:00:01 left \r", + " [ 183 / 10000 ] 2% - 0:00:01 left \r", + " [ 184 / 10000 ] 2% - 0:00:01 left \r", + " [ 185 / 10000 ] 2% - 0:00:01 left \r", + " [ 186 / 10000 ] 2% - 0:00:01 left \r", + " [ 187 / 10000 ] 2% - 0:00:01 left \r", + " [ 188 / 10000 ] 2% - 0:00:01 left \r", + " [ 189 / 10000 ] 2% - 0:00:01 left \r", + " [ 190 / 10000 ] 2% - 0:00:01 left \r", + " [ 191 / 10000 ] 2% - 0:00:01 left \r", + " [ 192 / 10000 ] 2% - 0:00:01 left \r", + " [ 193 / 10000 ] 2% - 0:00:01 left \r", + " [ 194 / 10000 ] 2% - 0:00:01 left \r", + " [ 195 / 10000 ] 2% - 0:00:01 left \r", + " [ 196 / 10000 ] 2% - 0:00:01 left \r", + " [ 197 / 10000 ] 2% - 0:00:01 left \r", + " [ 198 / 10000 ] 2% - 0:00:01 left \r", + " [ 199 / 10000 ] 2% - 0:00:01 left \r", + " [ 200 / 10000 ] 2% - 0:00:01 left \r", + " [ 201 / 10000 ] 2% - 0:00:01 left \r", + " [ 202 / 10000 ] 2% - 0:00:01 left \r", + " [ 203 / 10000 ] 2% - 0:00:01 left \r", + " [ 204 / 10000 ] 2% - 0:00:01 left \r", + " [ 205 / 10000 ] 2% - 0:00:01 left \r", + " [ 206 / 10000 ] 2% - 0:00:01 left \r", + " [ 207 / 10000 ] 2% - 0:00:01 left \r", + " [ 208 / 10000 ] 2% - 0:00:01 left \r", + " [ 209 / 10000 ] 2% - 0:00:01 left \r", + " [ 210 / 10000 ] 2% - 0:00:01 left \r", + " [ 211 / 10000 ] 2% - 0:00:01 left \r", + " [ 212 / 10000 ] 2% - 0:00:01 left \r", + " [ 213 / 10000 ] 2% - 0:00:01 left \r", + " [ 214 / 10000 ] 2% - 0:00:01 left \r", + " [ 215 / 10000 ] 2% - 0:00:01 left \r", + " [ 216 / 10000 ] 2% - 0:00:01 left \r", + " [ 217 / 10000 ] 2% - 0:00:01 left \r", + " [ 218 / 10000 ] 2% - 0:00:01 left \r", + " [ 219 / 10000 ] 2% - 0:00:01 left \r", + " [ 220 / 10000 ] 2% - 0:00:01 left \r", + " [ 221 / 10000 ] 2% - 0:00:01 left \r", + " [ 222 / 10000 ] 2% - 0:00:01 left \r", + " [ 223 / 10000 ] 2% - 0:00:01 left \r", + " [ 224 / 10000 ] 2% - 0:00:01 left \r", + " [ 225 / 10000 ] 2% - 0:00:01 left \r", + " [ 226 / 10000 ] 2% - 0:00:01 left \r", + " [ 227 / 10000 ] 2% - 0:00:01 left \r", + " [ 228 / 10000 ] 2% - 0:00:01 left \r", + " [ 229 / 10000 ] 2% - 0:00:01 left \r", + " [ 230 / 10000 ] 2% - 0:00:01 left \r", + " [ 231 / 10000 ] 2% - 0:00:01 left \r", + " [ 232 / 10000 ] 2% - 0:00:01 left \r", + " [ 233 / 10000 ] 2% - 0:00:01 left \r", + " [ 234 / 10000 ] 2% - 0:00:01 left \r", + " [ 235 / 10000 ] 2% - 0:00:01 left \r", + " [ 236 / 10000 ] 2% - 0:00:01 left \r", + " [ 237 / 10000 ] 2% - 0:00:01 left \r", + " [ 238 / 10000 ] 2% - 0:00:01 left \r", + " [ 239 / 10000 ] 2% - 0:00:01 left \r", + " [ 240 / 10000 ] 2% - 0:00:01 left \r", + " [ 241 / 10000 ] 2% - 0:00:01 left \r", + " [ 242 / 10000 ] 2% - 0:00:01 left \r", + " [ 243 / 10000 ] 2% - 0:00:01 left \r", + " [ 244 / 10000 ] 2% - 0:00:01 left \r", + " [ 245 / 10000 ] 2% - 0:00:01 left \r", + " [ 246 / 10000 ] 2% - 0:00:01 left \r", + " [ 247 / 10000 ] 2% - 0:00:01 left \r", + " [ 248 / 10000 ] 2% - 0:00:01 left \r", + " [ 249 / 10000 ] 2% - 0:00:01 left \r", + " [ 250 / 10000 ] 2% - 0:00:01 left \r", + " [ 251 / 10000 ] 3% - 0:00:01 left \r", + " [ 252 / 10000 ] 3% - 0:00:01 left \r", + " [ 253 / 10000 ] 3% - 0:00:01 left \r", + " [ 254 / 10000 ] 3% - 0:00:01 left \r", + " [ 255 / 10000 ] 3% - 0:00:01 left \r", + " [ 256 / 10000 ] 3% - 0:00:01 left \r", + " [ 257 / 10000 ] 3% - 0:00:01 left \r", + " [ 258 / 10000 ] 3% - 0:00:01 left \r", + " [ 259 / 10000 ] 3% - 0:00:01 left \r", + " [ 260 / 10000 ] 3% - 0:00:01 left \r", + " [ 261 / 10000 ] 3% - 0:00:01 left \r", + " [ 262 / 10000 ] 3% - 0:00:01 left \r", + " [ 263 / 10000 ] 3% - 0:00:01 left \r", + " [ 264 / 10000 ] 3% - 0:00:01 left \r", + " [ 265 / 10000 ] 3% - 0:00:01 left \r", + " [ 266 / 10000 ] 3% - 0:00:01 left \r", + " [ 267 / 10000 ] 3% - 0:00:01 left \r", + " [ 268 / 10000 ] 3% - 0:00:01 left \r", + " [ 269 / 10000 ] 3% - 0:00:01 left \r", + " [ 270 / 10000 ] 3% - 0:00:01 left \r", + " [ 271 / 10000 ] 3% - 0:00:01 left \r", + " [ 272 / 10000 ] 3% - 0:00:01 left \r", + " [ 273 / 10000 ] 3% - 0:00:01 left \r", + " [ 274 / 10000 ] 3% - 0:00:01 left \r", + " [ 275 / 10000 ] 3% - 0:00:01 left \r", + " [ 276 / 10000 ] 3% - 0:00:01 left \r", + " [ 277 / 10000 ] 3% - 0:00:01 left \r", + " [ 278 / 10000 ] 3% - 0:00:01 left \r", + " [ 279 / 10000 ] 3% - 0:00:01 left \r", + " [ 280 / 10000 ] 3% - 0:00:01 left \r", + " [ 281 / 10000 ] 3% - 0:00:01 left \r", + " [ 282 / 10000 ] 3% - 0:00:01 left \r", + " [ 283 / 10000 ] 3% - 0:00:01 left \r", + " [ 284 / 10000 ] 3% - 0:00:01 left \r", + " [ 285 / 10000 ] 3% - 0:00:01 left \r", + " [ 286 / 10000 ] 3% - 0:00:01 left \r", + " [ 287 / 10000 ] 3% - 0:00:01 left \r", + " [ 288 / 10000 ] 3% - 0:00:01 left \r", + " [ 289 / 10000 ] 3% - 0:00:01 left \r", + " [ 290 / 10000 ] 3% - 0:00:01 left \r", + " [ 291 / 10000 ] 3% - 0:00:01 left \r", + " [ 292 / 10000 ] 3% - 0:00:01 left \r", + " [ 293 / 10000 ] 3% - 0:00:01 left \r", + " [ 294 / 10000 ] 3% - 0:00:01 left \r", + " [ 295 / 10000 ] 3% - 0:00:01 left \r", + " [ 296 / 10000 ] 3% - 0:00:01 left \r", + " [ 297 / 10000 ] 3% - 0:00:01 left \r", + " [ 298 / 10000 ] 3% - 0:00:01 left \r", + " [ 299 / 10000 ] 3% - 0:00:01 left \r", + " [ 300 / 10000 ] 3% - 0:00:01 left \r", + " [ 301 / 10000 ] 3% - 0:00:01 left \r", + " [ 302 / 10000 ] 3% - 0:00:01 left \r", + " [ 303 / 10000 ] 3% - 0:00:01 left \r", + " [ 304 / 10000 ] 3% - 0:00:01 left \r", + " [ 305 / 10000 ] 3% - 0:00:01 left \r", + " [ 306 / 10000 ] 3% - 0:00:01 left \r", + " [ 307 / 10000 ] 3% - 0:00:01 left \r", + " [ 308 / 10000 ] 3% - 0:00:01 left \r", + " [ 309 / 10000 ] 3% - 0:00:01 left \r", + " [ 310 / 10000 ] 3% - 0:00:01 left \r", + " [ 311 / 10000 ] 3% - 0:00:01 left \r", + " [ 312 / 10000 ] 3% - 0:00:01 left \r", + " [ 313 / 10000 ] 3% - 0:00:01 left \r", + " [ 314 / 10000 ] 3% - 0:00:01 left \r", + " [ 315 / 10000 ] 3% - 0:00:01 left \r", + " [ 316 / 10000 ] 3% - 0:00:01 left \r", + " [ 317 / 10000 ] 3% - 0:00:01 left \r", + " [ 318 / 10000 ] 3% - 0:00:01 left \r", + " [ 319 / 10000 ] 3% - 0:00:01 left \r", + " [ 320 / 10000 ] 3% - 0:00:01 left \r", + " [ 321 / 10000 ] 3% - 0:00:01 left \r", + " [ 322 / 10000 ] 3% - 0:00:01 left \r", + " [ 323 / 10000 ] 3% - 0:00:01 left \r", + " [ 324 / 10000 ] 3% - 0:00:01 left \r", + " [ 325 / 10000 ] 3% - 0:00:01 left \r", + " [ 326 / 10000 ] 3% - 0:00:01 left \r", + " [ 327 / 10000 ] 3% - 0:00:01 left \r", + " [ 328 / 10000 ] 3% - 0:00:01 left \r", + " [ 329 / 10000 ] 3% - 0:00:01 left \r", + " [ 330 / 10000 ] 3% - 0:00:01 left \r", + " [ 331 / 10000 ] 3% - 0:00:01 left \r", + " [ 332 / 10000 ] 3% - 0:00:01 left \r", + " [ 333 / 10000 ] 3% - 0:00:01 left \r", + " [ 334 / 10000 ] 3% - 0:00:01 left \r", + " [ 335 / 10000 ] 3% - 0:00:01 left \r", + " [ 336 / 10000 ] 3% - 0:00:01 left \r", + " [ 337 / 10000 ] 3% - 0:00:01 left \r", + " [ 338 / 10000 ] 3% - 0:00:01 left \r", + " [ 339 / 10000 ] 3% - 0:00:01 left \r", + " [ 340 / 10000 ] 3% - 0:00:01 left \r", + " [ 341 / 10000 ] 3% - 0:00:01 left \r", + " [ 342 / 10000 ] 3% - 0:00:01 left \r", + " [ 343 / 10000 ] 3% - 0:00:01 left \r", + " [ 344 / 10000 ] 3% - 0:00:01 left \r", + " [ 345 / 10000 ] 3% - 0:00:01 left \r", + " [ 346 / 10000 ] 3% - 0:00:01 left \r", + " [ 347 / 10000 ] 3% - 0:00:01 left \r", + " [ 348 / 10000 ] 3% - 0:00:01 left \r", + " [ 349 / 10000 ] 3% - 0:00:01 left \r", + " [ 350 / 10000 ] 4% - 0:00:01 left \r", + " [ 351 / 10000 ] 4% - 0:00:01 left \r", + " [ 352 / 10000 ] 4% - 0:00:01 left \r", + " [ 353 / 10000 ] 4% - 0:00:01 left \r", + " [ 354 / 10000 ] 4% - 0:00:01 left \r", + " [ 355 / 10000 ] 4% - 0:00:01 left \r", + " [ 356 / 10000 ] 4% - 0:00:01 left \r", + " [ 357 / 10000 ] 4% - 0:00:01 left \r", + " [ 358 / 10000 ] 4% - 0:00:01 left \r", + " [ 359 / 10000 ] 4% - 0:00:01 left \r", + " [ 360 / 10000 ] 4% - 0:00:01 left \r", + " [ 361 / 10000 ] 4% - 0:00:01 left \r", + " [ 362 / 10000 ] 4% - 0:00:01 left \r", + " [ 363 / 10000 ] 4% - 0:00:01 left \r", + " [ 364 / 10000 ] 4% - 0:00:01 left \r", + " [ 365 / 10000 ] 4% - 0:00:01 left \r", + " [ 366 / 10000 ] 4% - 0:00:01 left \r", + " [ 367 / 10000 ] 4% - 0:00:01 left \r", + " [ 368 / 10000 ] 4% - 0:00:01 left \r", + " [ 369 / 10000 ] 4% - 0:00:01 left \r", + " [ 370 / 10000 ] 4% - 0:00:01 left \r", + " [ 371 / 10000 ] 4% - 0:00:01 left \r", + " [ 372 / 10000 ] 4% - 0:00:01 left \r", + " [ 373 / 10000 ] 4% - 0:00:01 left \r", + " [ 374 / 10000 ] 4% - 0:00:01 left \r", + " [ 375 / 10000 ] 4% - 0:00:01 left \r", + " [ 376 / 10000 ] 4% - 0:00:01 left \r", + " [ 377 / 10000 ] 4% - 0:00:01 left \r", + " [ 378 / 10000 ] 4% - 0:00:01 left \r", + " [ 379 / 10000 ] 4% - 0:00:01 left \r", + " [ 380 / 10000 ] 4% - 0:00:01 left \r", + " [ 381 / 10000 ] 4% - 0:00:01 left \r", + " [ 382 / 10000 ] 4% - 0:00:01 left \r", + " [ 383 / 10000 ] 4% - 0:00:01 left \r", + " [ 384 / 10000 ] 4% - 0:00:01 left \r", + " [ 385 / 10000 ] 4% - 0:00:01 left \r", + " [ 386 / 10000 ] 4% - 0:00:01 left \r", + " [ 387 / 10000 ] 4% - 0:00:01 left \r", + " [ 388 / 10000 ] 4% - 0:00:01 left \r", + " [ 389 / 10000 ] 4% - 0:00:01 left \r", + " [ 390 / 10000 ] 4% - 0:00:01 left \r", + " [ 391 / 10000 ] 4% - 0:00:01 left \r", + " [ 392 / 10000 ] 4% - 0:00:01 left \r", + " [ 393 / 10000 ] 4% - 0:00:01 left \r", + " [ 394 / 10000 ] 4% - 0:00:01 left \r", + " [ 395 / 10000 ] 4% - 0:00:01 left \r", + " [ 396 / 10000 ] 4% - 0:00:01 left \r", + " [ 397 / 10000 ] 4% - 0:00:01 left \r", + " [ 398 / 10000 ] 4% - 0:00:01 left \r", + " [ 399 / 10000 ] 4% - 0:00:01 left \r", + " [ 400 / 10000 ] 4% - 0:00:01 left \r", + " [ 401 / 10000 ] 4% - 0:00:01 left \r", + " [ 402 / 10000 ] 4% - 0:00:01 left \r", + " [ 403 / 10000 ] 4% - 0:00:01 left \r", + " [ 404 / 10000 ] 4% - 0:00:01 left \r", + " [ 405 / 10000 ] 4% - 0:00:01 left \r", + " [ 406 / 10000 ] 4% - 0:00:01 left \r", + " [ 407 / 10000 ] 4% - 0:00:01 left \r", + " [ 408 / 10000 ] 4% - 0:00:01 left \r", + " [ 409 / 10000 ] 4% - 0:00:01 left \r", + " [ 410 / 10000 ] 4% - 0:00:01 left \r", + " [ 411 / 10000 ] 4% - 0:00:01 left \r", + " [ 412 / 10000 ] 4% - 0:00:01 left \r", + " [ 413 / 10000 ] 4% - 0:00:01 left \r", + " [ 414 / 10000 ] 4% - 0:00:01 left \r", + " [ 415 / 10000 ] 4% - 0:00:01 left \r", + " [ 416 / 10000 ] 4% - 0:00:01 left \r", + " [ 417 / 10000 ] 4% - 0:00:01 left \r", + " [ 418 / 10000 ] 4% - 0:00:01 left \r", + " [ 419 / 10000 ] 4% - 0:00:01 left \r", + " [ 420 / 10000 ] 4% - 0:00:01 left \r", + " [ 421 / 10000 ] 4% - 0:00:01 left \r", + " [ 422 / 10000 ] 4% - 0:00:01 left \r", + " [ 423 / 10000 ] 4% - 0:00:01 left \r", + " [ 424 / 10000 ] 4% - 0:00:01 left \r", + " [ 425 / 10000 ] 4% - 0:00:01 left \r", + " [ 426 / 10000 ] 4% - 0:00:01 left \r", + " [ 427 / 10000 ] 4% - 0:00:01 left \r", + " [ 428 / 10000 ] 4% - 0:00:01 left \r", + " [ 429 / 10000 ] 4% - 0:00:01 left \r", + " [ 430 / 10000 ] 4% - 0:00:01 left \r", + " [ 431 / 10000 ] 4% - 0:00:01 left \r", + " [ 432 / 10000 ] 4% - 0:00:01 left \r", + " [ 433 / 10000 ] 4% - 0:00:01 left \r", + " [ 434 / 10000 ] 4% - 0:00:01 left \r", + " [ 435 / 10000 ] 4% - 0:00:01 left \r", + " [ 436 / 10000 ] 4% - 0:00:01 left \r", + " [ 437 / 10000 ] 4% - 0:00:01 left \r", + " [ 438 / 10000 ] 4% - 0:00:01 left \r", + " [ 439 / 10000 ] 4% - 0:00:01 left \r", + " [ 440 / 10000 ] 4% - 0:00:01 left \r", + " [ 441 / 10000 ] 4% - 0:00:01 left \r", + " [ 442 / 10000 ] 4% - 0:00:01 left \r", + " [ 443 / 10000 ] 4% - 0:00:01 left \r", + " [ 444 / 10000 ] 4% - 0:00:01 left \r", + " [ 445 / 10000 ] 4% - 0:00:01 left \r", + " [ 446 / 10000 ] 4% - 0:00:01 left \r", + " [ 447 / 10000 ] 4% - 0:00:01 left \r", + " [ 448 / 10000 ] 4% - 0:00:01 left \r", + " [ 449 / 10000 ] 4% - 0:00:01 left \r", + " [ 450 / 10000 ] 4% - 0:00:01 left \r", + " [ 451 / 10000 ] 5% - 0:00:01 left \r", + " [ 452 / 10000 ] 5% - 0:00:01 left \r", + " [ 453 / 10000 ] 5% - 0:00:01 left \r", + " [ 454 / 10000 ] 5% - 0:00:01 left \r", + " [ 455 / 10000 ] 5% - 0:00:01 left \r", + " [ 456 / 10000 ] 5% - 0:00:01 left \r", + " [ 457 / 10000 ] 5% - 0:00:01 left \r", + " [ 458 / 10000 ] 5% - 0:00:01 left \r", + " [ 459 / 10000 ] 5% - 0:00:01 left \r", + " [ 460 / 10000 ] 5% - 0:00:01 left \r", + " [ 461 / 10000 ] 5% - 0:00:01 left \r", + " [ 462 / 10000 ] 5% - 0:00:01 left \r", + " [ 463 / 10000 ] 5% - 0:00:01 left \r", + " [ 464 / 10000 ] 5% - 0:00:01 left \r", + " [ 465 / 10000 ] 5% - 0:00:01 left \r", + " [ 466 / 10000 ] 5% - 0:00:01 left \r", + " [ 467 / 10000 ] 5% - 0:00:01 left \r", + " [ 468 / 10000 ] 5% - 0:00:01 left \r", + " [ 469 / 10000 ] 5% - 0:00:01 left \r", + " [ 470 / 10000 ] 5% - 0:00:01 left \r", + " [ 471 / 10000 ] 5% - 0:00:01 left \r", + " [ 472 / 10000 ] 5% - 0:00:01 left \r", + " [ 473 / 10000 ] 5% - 0:00:01 left \r", + " [ 474 / 10000 ] 5% - 0:00:01 left \r", + " [ 475 / 10000 ] 5% - 0:00:01 left \r", + " [ 476 / 10000 ] 5% - 0:00:01 left \r", + " [ 477 / 10000 ] 5% - 0:00:01 left \r", + " [ 478 / 10000 ] 5% - 0:00:01 left \r", + " [ 479 / 10000 ] 5% - 0:00:01 left \r", + " [ 480 / 10000 ] 5% - 0:00:01 left \r", + " [ 481 / 10000 ] 5% - 0:00:01 left \r", + " [ 482 / 10000 ] 5% - 0:00:01 left \r", + " [ 483 / 10000 ] 5% - 0:00:01 left \r", + " [ 484 / 10000 ] 5% - 0:00:01 left \r", + " [ 485 / 10000 ] 5% - 0:00:01 left \r", + " [ 486 / 10000 ] 5% - 0:00:01 left \r", + " [ 487 / 10000 ] 5% - 0:00:01 left \r", + " [ 488 / 10000 ] 5% - 0:00:01 left \r", + " [ 489 / 10000 ] 5% - 0:00:01 left \r", + " [ 490 / 10000 ] 5% - 0:00:01 left \r", + " [ 491 / 10000 ] 5% - 0:00:01 left \r", + " [ 492 / 10000 ] 5% - 0:00:01 left \r", + " [ 493 / 10000 ] 5% - 0:00:01 left \r", + " [ 494 / 10000 ] 5% - 0:00:01 left \r", + " [ 495 / 10000 ] 5% - 0:00:01 left \r", + " [ 496 / 10000 ] 5% - 0:00:01 left \r", + " [ 497 / 10000 ] 5% - 0:00:01 left \r", + " [ 498 / 10000 ] 5% - 0:00:01 left \r", + " [ 499 / 10000 ] 5% - 0:00:01 left \r", + " [ 500 / 10000 ] 5% - 0:00:01 left \r", + " [ 501 / 10000 ] 5% - 0:00:01 left \r", + " [ 502 / 10000 ] 5% - 0:00:01 left \r", + " [ 503 / 10000 ] 5% - 0:00:01 left \r", + " [ 504 / 10000 ] 5% - 0:00:01 left \r", + " [ 505 / 10000 ] 5% - 0:00:01 left \r", + " [ 506 / 10000 ] 5% - 0:00:01 left \r", + " [ 507 / 10000 ] 5% - 0:00:01 left \r", + " [ 508 / 10000 ] 5% - 0:00:01 left \r", + " [ 509 / 10000 ] 5% - 0:00:01 left \r", + " [ 510 / 10000 ] 5% - 0:00:01 left \r", + " [ 511 / 10000 ] 5% - 0:00:01 left \r", + " [ 512 / 10000 ] 5% - 0:00:01 left \r", + " [ 513 / 10000 ] 5% - 0:00:01 left \r", + " [ 514 / 10000 ] 5% - 0:00:01 left \r", + " [ 515 / 10000 ] 5% - 0:00:01 left \r", + " [ 516 / 10000 ] 5% - 0:00:01 left \r", + " [ 517 / 10000 ] 5% - 0:00:01 left \r", + " [ 518 / 10000 ] 5% - 0:00:01 left \r", + " [ 519 / 10000 ] 5% - 0:00:01 left \r", + " [ 520 / 10000 ] 5% - 0:00:01 left \r", + " [ 521 / 10000 ] 5% - 0:00:01 left \r", + " [ 522 / 10000 ] 5% - 0:00:01 left \r", + " [ 523 / 10000 ] 5% - 0:00:01 left \r", + " [ 524 / 10000 ] 5% - 0:00:01 left \r", + " [ 525 / 10000 ] 5% - 0:00:01 left \r", + " [ 526 / 10000 ] 5% - 0:00:01 left \r", + " [ 527 / 10000 ] 5% - 0:00:01 left \r", + " [ 528 / 10000 ] 5% - 0:00:01 left \r", + " [ 529 / 10000 ] 5% - 0:00:01 left \r", + " [ 530 / 10000 ] 5% - 0:00:01 left \r", + " [ 531 / 10000 ] 5% - 0:00:01 left \r", + " [ 532 / 10000 ] 5% - 0:00:01 left \r", + " [ 533 / 10000 ] 5% - 0:00:01 left \r", + " [ 534 / 10000 ] 5% - 0:00:01 left \r", + " [ 535 / 10000 ] 5% - 0:00:01 left \r", + " [ 536 / 10000 ] 5% - 0:00:01 left \r", + " [ 537 / 10000 ] 5% - 0:00:01 left \r", + " [ 538 / 10000 ] 5% - 0:00:01 left \r", + " [ 539 / 10000 ] 5% - 0:00:01 left \r", + " [ 540 / 10000 ] 5% - 0:00:01 left \r", + " [ 541 / 10000 ] 5% - 0:00:01 left \r", + " [ 542 / 10000 ] 5% - 0:00:01 left \r", + " [ 543 / 10000 ] 5% - 0:00:01 left \r", + " [ 544 / 10000 ] 5% - 0:00:01 left \r", + " [ 545 / 10000 ] 5% - 0:00:01 left \r", + " [ 546 / 10000 ] 5% - 0:00:01 left \r", + " [ 547 / 10000 ] 5% - 0:00:01 left \r", + " [ 548 / 10000 ] 5% - 0:00:01 left \r", + " [ 549 / 10000 ] 5% - 0:00:01 left \r", + " [ 550 / 10000 ] 6% - 0:00:01 left \r", + " [ 551 / 10000 ] 6% - 0:00:01 left \r", + " [ 552 / 10000 ] 6% - 0:00:01 left \r", + " [ 553 / 10000 ] 6% - 0:00:01 left \r", + " [ 554 / 10000 ] 6% - 0:00:01 left \r", + " [ 555 / 10000 ] 6% - 0:00:01 left \r", + " [ 556 / 10000 ] 6% - 0:00:01 left \r", + " [ 557 / 10000 ] 6% - 0:00:01 left \r", + " [ 558 / 10000 ] 6% - 0:00:01 left \r", + " [ 559 / 10000 ] 6% - 0:00:01 left \r", + " [ 560 / 10000 ] 6% - 0:00:01 left \r", + " [ 561 / 10000 ] 6% - 0:00:01 left \r", + " [ 562 / 10000 ] 6% - 0:00:01 left \r", + " [ 563 / 10000 ] 6% - 0:00:01 left \r", + " [ 564 / 10000 ] 6% - 0:00:01 left \r", + " [ 565 / 10000 ] 6% - 0:00:01 left \r", + " [ 566 / 10000 ] 6% - 0:00:01 left \r", + " [ 567 / 10000 ] 6% - 0:00:01 left \r", + " [ 568 / 10000 ] 6% - 0:00:01 left \r", + " [ 569 / 10000 ] 6% - 0:00:01 left \r", + " [ 570 / 10000 ] 6% - 0:00:01 left \r", + " [ 571 / 10000 ] 6% - 0:00:01 left \r", + " [ 572 / 10000 ] 6% - 0:00:01 left \r", + " [ 573 / 10000 ] 6% - 0:00:01 left \r", + " [ 574 / 10000 ] 6% - 0:00:01 left \r", + " [ 575 / 10000 ] 6% - 0:00:01 left \r", + " [ 576 / 10000 ] 6% - 0:00:01 left \r", + " [ 577 / 10000 ] 6% - 0:00:01 left \r", + " [ 578 / 10000 ] 6% - 0:00:01 left \r", + " [ 579 / 10000 ] 6% - 0:00:01 left \r", + " [ 580 / 10000 ] 6% - 0:00:01 left \r", + " [ 581 / 10000 ] 6% - 0:00:01 left \r", + " [ 582 / 10000 ] 6% - 0:00:01 left \r", + " [ 583 / 10000 ] 6% - 0:00:01 left \r", + " [ 584 / 10000 ] 6% - 0:00:01 left \r", + " [ 585 / 10000 ] 6% - 0:00:01 left \r", + " [ 586 / 10000 ] 6% - 0:00:01 left \r", + " [ 587 / 10000 ] 6% - 0:00:01 left \r", + " [ 588 / 10000 ] 6% - 0:00:01 left \r", + " [ 589 / 10000 ] 6% - 0:00:01 left \r", + " [ 590 / 10000 ] 6% - 0:00:01 left \r", + " [ 591 / 10000 ] 6% - 0:00:01 left \r", + " [ 592 / 10000 ] 6% - 0:00:01 left \r", + " [ 593 / 10000 ] 6% - 0:00:01 left \r", + " [ 594 / 10000 ] 6% - 0:00:01 left \r", + " [ 595 / 10000 ] 6% - 0:00:01 left \r", + " [ 596 / 10000 ] 6% - 0:00:01 left \r", + " [ 597 / 10000 ] 6% - 0:00:01 left \r", + " [ 598 / 10000 ] 6% - 0:00:01 left \r", + " [ 599 / 10000 ] 6% - 0:00:01 left \r", + " [ 600 / 10000 ] 6% - 0:00:01 left \r", + " [ 601 / 10000 ] 6% - 0:00:01 left \r", + " [ 602 / 10000 ] 6% - 0:00:01 left \r", + " [ 603 / 10000 ] 6% - 0:00:01 left \r", + " [ 604 / 10000 ] 6% - 0:00:01 left \r", + " [ 605 / 10000 ] 6% - 0:00:01 left \r", + " [ 606 / 10000 ] 6% - 0:00:01 left \r", + " [ 607 / 10000 ] 6% - 0:00:01 left \r", + " [ 608 / 10000 ] 6% - 0:00:01 left \r", + " [ 609 / 10000 ] 6% - 0:00:01 left \r", + " [ 610 / 10000 ] 6% - 0:00:01 left \r", + " [ 611 / 10000 ] 6% - 0:00:01 left \r", + " [ 612 / 10000 ] 6% - 0:00:01 left \r", + " [ 613 / 10000 ] 6% - 0:00:01 left \r", + " [ 614 / 10000 ] 6% - 0:00:01 left \r", + " [ 615 / 10000 ] 6% - 0:00:01 left \r", + " [ 616 / 10000 ] 6% - 0:00:01 left \r", + " [ 617 / 10000 ] 6% - 0:00:01 left \r", + " [ 618 / 10000 ] 6% - 0:00:01 left \r", + " [ 619 / 10000 ] 6% - 0:00:01 left \r", + " [ 620 / 10000 ] 6% - 0:00:01 left \r", + " [ 621 / 10000 ] 6% - 0:00:01 left \r", + " [ 622 / 10000 ] 6% - 0:00:01 left \r", + " [ 623 / 10000 ] 6% - 0:00:01 left \r", + " [ 624 / 10000 ] 6% - 0:00:01 left \r", + " [ 625 / 10000 ] 6% - 0:00:01 left \r", + " [ 626 / 10000 ] 6% - 0:00:01 left \r", + " [ 627 / 10000 ] 6% - 0:00:01 left \r", + " [ 628 / 10000 ] 6% - 0:00:01 left \r", + " [ 629 / 10000 ] 6% - 0:00:01 left \r", + " [ 630 / 10000 ] 6% - 0:00:01 left \r", + " [ 631 / 10000 ] 6% - 0:00:01 left \r", + " [ 632 / 10000 ] 6% - 0:00:01 left \r", + " [ 633 / 10000 ] 6% - 0:00:01 left \r", + " [ 634 / 10000 ] 6% - 0:00:01 left \r", + " [ 635 / 10000 ] 6% - 0:00:01 left \r", + " [ 636 / 10000 ] 6% - 0:00:01 left \r", + " [ 637 / 10000 ] 6% - 0:00:01 left \r", + " [ 638 / 10000 ] 6% - 0:00:01 left \r", + " [ 639 / 10000 ] 6% - 0:00:01 left \r", + " [ 640 / 10000 ] 6% - 0:00:01 left \r", + " [ 641 / 10000 ] 6% - 0:00:01 left \r", + " [ 642 / 10000 ] 6% - 0:00:01 left \r", + " [ 643 / 10000 ] 6% - 0:00:01 left \r", + " [ 644 / 10000 ] 6% - 0:00:01 left \r", + " [ 645 / 10000 ] 6% - 0:00:01 left \r", + " [ 646 / 10000 ] 6% - 0:00:01 left \r", + " [ 647 / 10000 ] 6% - 0:00:01 left \r", + " [ 648 / 10000 ] 6% - 0:00:01 left \r", + " [ 649 / 10000 ] 6% - 0:00:01 left \r", + " [ 650 / 10000 ] 6% - 0:00:01 left \r", + " [ 651 / 10000 ] 7% - 0:00:01 left \r", + " [ 652 / 10000 ] 7% - 0:00:01 left \r", + " [ 653 / 10000 ] 7% - 0:00:01 left \r", + " [ 654 / 10000 ] 7% - 0:00:01 left \r", + " [ 655 / 10000 ] 7% - 0:00:01 left \r", + " [ 656 / 10000 ] 7% - 0:00:01 left \r", + " [ 657 / 10000 ] 7% - 0:00:01 left \r", + " [ 658 / 10000 ] 7% - 0:00:01 left \r", + " [ 659 / 10000 ] 7% - 0:00:01 left \r", + " [ 660 / 10000 ] 7% - 0:00:01 left \r", + " [ 661 / 10000 ] 7% - 0:00:01 left \r", + " [ 662 / 10000 ] 7% - 0:00:01 left \r", + " [ 663 / 10000 ] 7% - 0:00:01 left \r", + " [ 664 / 10000 ] 7% - 0:00:01 left \r", + " [ 665 / 10000 ] 7% - 0:00:01 left \r", + " [ 666 / 10000 ] 7% - 0:00:01 left \r", + " [ 667 / 10000 ] 7% - 0:00:01 left \r", + " [ 668 / 10000 ] 7% - 0:00:01 left \r", + " [ 669 / 10000 ] 7% - 0:00:01 left \r", + " [ 670 / 10000 ] 7% - 0:00:01 left \r", + " [ 671 / 10000 ] 7% - 0:00:01 left \r", + " [ 672 / 10000 ] 7% - 0:00:01 left \r", + " [ 673 / 10000 ] 7% - 0:00:01 left \r", + " [ 674 / 10000 ] 7% - 0:00:01 left \r", + " [ 675 / 10000 ] 7% - 0:00:01 left \r", + " [ 676 / 10000 ] 7% - 0:00:01 left \r", + " [ 677 / 10000 ] 7% - 0:00:01 left \r", + " [ 678 / 10000 ] 7% - 0:00:01 left \r", + " [ 679 / 10000 ] 7% - 0:00:01 left \r", + " [ 680 / 10000 ] 7% - 0:00:01 left \r", + " [ 681 / 10000 ] 7% - 0:00:01 left \r", + " [ 682 / 10000 ] 7% - 0:00:01 left \r", + " [ 683 / 10000 ] 7% - 0:00:01 left \r", + " [ 684 / 10000 ] 7% - 0:00:01 left \r", + " [ 685 / 10000 ] 7% - 0:00:01 left \r", + " [ 686 / 10000 ] 7% - 0:00:01 left \r", + " [ 687 / 10000 ] 7% - 0:00:01 left \r", + " [ 688 / 10000 ] 7% - 0:00:01 left \r", + " [ 689 / 10000 ] 7% - 0:00:01 left \r", + " [ 690 / 10000 ] 7% - 0:00:01 left \r", + " [ 691 / 10000 ] 7% - 0:00:01 left \r", + " [ 692 / 10000 ] 7% - 0:00:01 left \r", + " [ 693 / 10000 ] 7% - 0:00:01 left \r", + " [ 694 / 10000 ] 7% - 0:00:01 left \r", + " [ 695 / 10000 ] 7% - 0:00:01 left \r", + " [ 696 / 10000 ] 7% - 0:00:01 left \r", + " [ 697 / 10000 ] 7% - 0:00:01 left \r", + " [ 698 / 10000 ] 7% - 0:00:01 left \r", + " [ 699 / 10000 ] 7% - 0:00:01 left \r", + " [ 700 / 10000 ] 7% - 0:00:01 left \r", + " [ 701 / 10000 ] 7% - 0:00:01 left \r", + " [ 702 / 10000 ] 7% - 0:00:01 left \r", + " [ 703 / 10000 ] 7% - 0:00:01 left \r", + " [ 704 / 10000 ] 7% - 0:00:01 left \r", + " [ 705 / 10000 ] 7% - 0:00:01 left \r", + " [ 706 / 10000 ] 7% - 0:00:01 left \r", + " [ 707 / 10000 ] 7% - 0:00:01 left \r", + " [ 708 / 10000 ] 7% - 0:00:01 left \r", + " [ 709 / 10000 ] 7% - 0:00:01 left \r", + " [ 710 / 10000 ] 7% - 0:00:01 left \r", + " [ 711 / 10000 ] 7% - 0:00:01 left \r", + " [ 712 / 10000 ] 7% - 0:00:01 left \r", + " [ 713 / 10000 ] 7% - 0:00:01 left \r", + " [ 714 / 10000 ] 7% - 0:00:01 left \r", + " [ 715 / 10000 ] 7% - 0:00:01 left \r", + " [ 716 / 10000 ] 7% - 0:00:01 left \r", + " [ 717 / 10000 ] 7% - 0:00:01 left \r", + " [ 718 / 10000 ] 7% - 0:00:01 left \r", + " [ 719 / 10000 ] 7% - 0:00:01 left \r", + " [ 720 / 10000 ] 7% - 0:00:01 left \r", + " [ 721 / 10000 ] 7% - 0:00:01 left \r", + " [ 722 / 10000 ] 7% - 0:00:01 left \r", + " [ 723 / 10000 ] 7% - 0:00:01 left \r", + " [ 724 / 10000 ] 7% - 0:00:01 left \r", + " [ 725 / 10000 ] 7% - 0:00:01 left \r", + " [ 726 / 10000 ] 7% - 0:00:01 left \r", + " [ 727 / 10000 ] 7% - 0:00:01 left \r", + " [ 728 / 10000 ] 7% - 0:00:01 left \r", + " [ 729 / 10000 ] 7% - 0:00:01 left \r", + " [ 730 / 10000 ] 7% - 0:00:01 left \r", + " [ 731 / 10000 ] 7% - 0:00:01 left \r", + " [ 732 / 10000 ] 7% - 0:00:01 left \r", + " [ 733 / 10000 ] 7% - 0:00:01 left \r", + " [ 734 / 10000 ] 7% - 0:00:01 left \r", + " [ 735 / 10000 ] 7% - 0:00:01 left \r", + " [ 736 / 10000 ] 7% - 0:00:01 left \r", + " [ 737 / 10000 ] 7% - 0:00:01 left \r", + " [ 738 / 10000 ] 7% - 0:00:01 left \r", + " [ 739 / 10000 ] 7% - 0:00:01 left \r", + " [ 740 / 10000 ] 7% - 0:00:01 left \r", + " [ 741 / 10000 ] 7% - 0:00:01 left \r", + " [ 742 / 10000 ] 7% - 0:00:01 left \r", + " [ 743 / 10000 ] 7% - 0:00:01 left \r", + " [ 744 / 10000 ] 7% - 0:00:01 left \r", + " [ 745 / 10000 ] 7% - 0:00:01 left \r", + " [ 746 / 10000 ] 7% - 0:00:01 left \r", + " [ 747 / 10000 ] 7% - 0:00:01 left \r", + " [ 748 / 10000 ] 7% - 0:00:01 left \r", + " [ 749 / 10000 ] 7% - 0:00:01 left \r", + " [ 750 / 10000 ] 8% - 0:00:01 left \r", + " [ 751 / 10000 ] 8% - 0:00:01 left \r", + " [ 752 / 10000 ] 8% - 0:00:01 left \r", + " [ 753 / 10000 ] 8% - 0:00:01 left \r", + " [ 754 / 10000 ] 8% - 0:00:01 left \r", + " [ 755 / 10000 ] 8% - 0:00:01 left \r", + " [ 756 / 10000 ] 8% - 0:00:01 left \r", + " [ 757 / 10000 ] 8% - 0:00:01 left \r", + " [ 758 / 10000 ] 8% - 0:00:01 left \r", + " [ 759 / 10000 ] 8% - 0:00:01 left \r", + " [ 760 / 10000 ] 8% - 0:00:01 left \r", + " [ 761 / 10000 ] 8% - 0:00:01 left \r", + " [ 762 / 10000 ] 8% - 0:00:01 left \r", + " [ 763 / 10000 ] 8% - 0:00:01 left \r", + " [ 764 / 10000 ] 8% - 0:00:01 left \r", + " [ 765 / 10000 ] 8% - 0:00:01 left \r", + " [ 766 / 10000 ] 8% - 0:00:01 left \r", + " [ 767 / 10000 ] 8% - 0:00:01 left \r", + " [ 768 / 10000 ] 8% - 0:00:01 left \r", + " [ 769 / 10000 ] 8% - 0:00:01 left \r", + " [ 770 / 10000 ] 8% - 0:00:01 left \r", + " [ 771 / 10000 ] 8% - 0:00:01 left \r", + " [ 772 / 10000 ] 8% - 0:00:01 left \r", + " [ 773 / 10000 ] 8% - 0:00:01 left \r", + " [ 774 / 10000 ] 8% - 0:00:01 left \r", + " [ 775 / 10000 ] 8% - 0:00:01 left \r", + " [ 776 / 10000 ] 8% - 0:00:01 left \r", + " [ 777 / 10000 ] 8% - 0:00:01 left \r", + " [ 778 / 10000 ] 8% - 0:00:01 left \r", + " [ 779 / 10000 ] 8% - 0:00:01 left \r", + " [ 780 / 10000 ] 8% - 0:00:01 left \r", + " [ 781 / 10000 ] 8% - 0:00:01 left \r", + " [ 782 / 10000 ] 8% - 0:00:01 left \r", + " [ 783 / 10000 ] 8% - 0:00:01 left \r", + " [ 784 / 10000 ] 8% - 0:00:01 left \r", + " [ 785 / 10000 ] 8% - 0:00:01 left \r", + " [ 786 / 10000 ] 8% - 0:00:01 left \r", + " [ 787 / 10000 ] 8% - 0:00:01 left \r", + " [ 788 / 10000 ] 8% - 0:00:01 left \r", + " [ 789 / 10000 ] 8% - 0:00:01 left \r", + " [ 790 / 10000 ] 8% - 0:00:01 left \r", + " [ 791 / 10000 ] 8% - 0:00:01 left \r", + " [ 792 / 10000 ] 8% - 0:00:01 left \r", + " [ 793 / 10000 ] 8% - 0:00:01 left \r", + " [ 794 / 10000 ] 8% - 0:00:01 left \r", + " [ 795 / 10000 ] 8% - 0:00:01 left \r", + " [ 796 / 10000 ] 8% - 0:00:01 left \r", + " [ 797 / 10000 ] 8% - 0:00:01 left \r", + " [ 798 / 10000 ] 8% - 0:00:01 left \r", + " [ 799 / 10000 ] 8% - 0:00:01 left \r", + " [ 800 / 10000 ] 8% - 0:00:01 left \r", + " [ 801 / 10000 ] 8% - 0:00:01 left \r", + " [ 802 / 10000 ] 8% - 0:00:01 left \r", + " [ 803 / 10000 ] 8% - 0:00:01 left \r", + " [ 804 / 10000 ] 8% - 0:00:01 left \r", + " [ 805 / 10000 ] 8% - 0:00:01 left \r", + " [ 806 / 10000 ] 8% - 0:00:01 left \r", + " [ 807 / 10000 ] 8% - 0:00:01 left \r", + " [ 808 / 10000 ] 8% - 0:00:01 left \r", + " [ 809 / 10000 ] 8% - 0:00:01 left \r", + " [ 810 / 10000 ] 8% - 0:00:01 left \r", + " [ 811 / 10000 ] 8% - 0:00:01 left \r", + " [ 812 / 10000 ] 8% - 0:00:01 left \r", + " [ 813 / 10000 ] 8% - 0:00:01 left \r", + " [ 814 / 10000 ] 8% - 0:00:01 left \r", + " [ 815 / 10000 ] 8% - 0:00:01 left \r", + " [ 816 / 10000 ] 8% - 0:00:01 left \r", + " [ 817 / 10000 ] 8% - 0:00:01 left \r", + " [ 818 / 10000 ] 8% - 0:00:01 left \r", + " [ 819 / 10000 ] 8% - 0:00:01 left \r", + " [ 820 / 10000 ] 8% - 0:00:01 left \r", + " [ 821 / 10000 ] 8% - 0:00:01 left \r", + " [ 822 / 10000 ] 8% - 0:00:01 left \r", + " [ 823 / 10000 ] 8% - 0:00:01 left \r", + " [ 824 / 10000 ] 8% - 0:00:01 left \r", + " [ 825 / 10000 ] 8% - 0:00:01 left \r", + " [ 826 / 10000 ] 8% - 0:00:01 left \r", + " [ 827 / 10000 ] 8% - 0:00:01 left \r", + " [ 828 / 10000 ] 8% - 0:00:01 left \r", + " [ 829 / 10000 ] 8% - 0:00:01 left \r", + " [ 830 / 10000 ] 8% - 0:00:01 left \r", + " [ 831 / 10000 ] 8% - 0:00:01 left \r", + " [ 832 / 10000 ] 8% - 0:00:01 left \r", + " [ 833 / 10000 ] 8% - 0:00:01 left \r", + " [ 834 / 10000 ] 8% - 0:00:01 left \r", + " [ 835 / 10000 ] 8% - 0:00:01 left \r", + " [ 836 / 10000 ] 8% - 0:00:01 left \r", + " [ 837 / 10000 ] 8% - 0:00:01 left \r", + " [ 838 / 10000 ] 8% - 0:00:01 left \r", + " [ 839 / 10000 ] 8% - 0:00:01 left \r", + " [ 840 / 10000 ] 8% - 0:00:01 left \r", + " [ 841 / 10000 ] 8% - 0:00:01 left \r", + " [ 842 / 10000 ] 8% - 0:00:01 left \r", + " [ 843 / 10000 ] 8% - 0:00:01 left \r", + " [ 844 / 10000 ] 8% - 0:00:01 left \r", + " [ 845 / 10000 ] 8% - 0:00:01 left \r", + " [ 846 / 10000 ] 8% - 0:00:01 left \r", + " [ 847 / 10000 ] 8% - 0:00:01 left \r", + " [ 848 / 10000 ] 8% - 0:00:01 left \r", + " [ 849 / 10000 ] 8% - 0:00:01 left \r", + " [ 850 / 10000 ] 8% - 0:00:01 left \r", + " [ 851 / 10000 ] 9% - 0:00:01 left \r", + " [ 852 / 10000 ] 9% - 0:00:01 left \r", + " [ 853 / 10000 ] 9% - 0:00:01 left \r", + " [ 854 / 10000 ] 9% - 0:00:01 left \r", + " [ 855 / 10000 ] 9% - 0:00:01 left \r", + " [ 856 / 10000 ] 9% - 0:00:01 left \r", + " [ 857 / 10000 ] 9% - 0:00:01 left \r", + " [ 858 / 10000 ] 9% - 0:00:01 left \r", + " [ 859 / 10000 ] 9% - 0:00:01 left \r", + " [ 860 / 10000 ] 9% - 0:00:01 left \r", + " [ 861 / 10000 ] 9% - 0:00:01 left \r", + " [ 862 / 10000 ] 9% - 0:00:01 left \r", + " [ 863 / 10000 ] 9% - 0:00:01 left \r", + " [ 864 / 10000 ] 9% - 0:00:01 left \r", + " [ 865 / 10000 ] 9% - 0:00:01 left \r", + " [ 866 / 10000 ] 9% - 0:00:01 left \r", + " [ 867 / 10000 ] 9% - 0:00:01 left \r", + " [ 868 / 10000 ] 9% - 0:00:01 left \r", + " [ 869 / 10000 ] 9% - 0:00:01 left \r", + " [ 870 / 10000 ] 9% - 0:00:01 left \r", + " [ 871 / 10000 ] 9% - 0:00:01 left \r", + " [ 872 / 10000 ] 9% - 0:00:01 left \r", + " [ 873 / 10000 ] 9% - 0:00:01 left \r", + " [ 874 / 10000 ] 9% - 0:00:01 left \r", + " [ 875 / 10000 ] 9% - 0:00:01 left \r", + " [ 876 / 10000 ] 9% - 0:00:01 left \r", + " [ 877 / 10000 ] 9% - 0:00:01 left \r", + " [ 878 / 10000 ] 9% - 0:00:01 left \r", + " [ 879 / 10000 ] 9% - 0:00:01 left \r", + " [ 880 / 10000 ] 9% - 0:00:01 left \r", + " [ 881 / 10000 ] 9% - 0:00:01 left \r", + " [ 882 / 10000 ] 9% - 0:00:01 left \r", + " [ 883 / 10000 ] 9% - 0:00:01 left \r", + " [ 884 / 10000 ] 9% - 0:00:01 left \r", + " [ 885 / 10000 ] 9% - 0:00:01 left \r", + " [ 886 / 10000 ] 9% - 0:00:01 left \r", + " [ 887 / 10000 ] 9% - 0:00:01 left \r", + " [ 888 / 10000 ] 9% - 0:00:01 left \r", + " [ 889 / 10000 ] 9% - 0:00:01 left \r", + " [ 890 / 10000 ] 9% - 0:00:01 left \r", + " [ 891 / 10000 ] 9% - 0:00:01 left \r", + " [ 892 / 10000 ] 9% - 0:00:01 left \r", + " [ 893 / 10000 ] 9% - 0:00:01 left \r", + " [ 894 / 10000 ] 9% - 0:00:01 left \r", + " [ 895 / 10000 ] 9% - 0:00:01 left \r", + " [ 896 / 10000 ] 9% - 0:00:01 left \r", + " [ 897 / 10000 ] 9% - 0:00:01 left \r", + " [ 898 / 10000 ] 9% - 0:00:01 left \r", + " [ 899 / 10000 ] 9% - 0:00:01 left \r", + " [ 900 / 10000 ] 9% - 0:00:01 left \r", + " [ 901 / 10000 ] 9% - 0:00:01 left \r", + " [ 902 / 10000 ] 9% - 0:00:01 left \r", + " [ 903 / 10000 ] 9% - 0:00:01 left \r", + " [ 904 / 10000 ] 9% - 0:00:01 left \r", + " [ 905 / 10000 ] 9% - 0:00:01 left \r", + " [ 906 / 10000 ] 9% - 0:00:01 left \r", + " [ 907 / 10000 ] 9% - 0:00:01 left \r", + " [ 908 / 10000 ] 9% - 0:00:01 left \r", + " [ 909 / 10000 ] 9% - 0:00:01 left \r", + " [ 910 / 10000 ] 9% - 0:00:01 left \r", + " [ 911 / 10000 ] 9% - 0:00:01 left \r", + " [ 912 / 10000 ] 9% - 0:00:01 left \r", + " [ 913 / 10000 ] 9% - 0:00:01 left \r", + " [ 914 / 10000 ] 9% - 0:00:01 left \r", + " [ 915 / 10000 ] 9% - 0:00:01 left \r", + " [ 916 / 10000 ] 9% - 0:00:01 left \r", + " [ 917 / 10000 ] 9% - 0:00:01 left \r", + " [ 918 / 10000 ] 9% - 0:00:01 left \r", + " [ 919 / 10000 ] 9% - 0:00:01 left \r", + " [ 920 / 10000 ] 9% - 0:00:01 left \r", + " [ 921 / 10000 ] 9% - 0:00:01 left \r", + " [ 922 / 10000 ] 9% - 0:00:01 left \r", + " [ 923 / 10000 ] 9% - 0:00:01 left \r", + " [ 924 / 10000 ] 9% - 0:00:01 left \r", + " [ 925 / 10000 ] 9% - 0:00:01 left \r", + " [ 926 / 10000 ] 9% - 0:00:01 left \r", + " [ 927 / 10000 ] 9% - 0:00:01 left \r", + " [ 928 / 10000 ] 9% - 0:00:01 left \r", + " [ 929 / 10000 ] 9% - 0:00:01 left \r", + " [ 930 / 10000 ] 9% - 0:00:01 left \r", + " [ 931 / 10000 ] 9% - 0:00:01 left \r", + " [ 932 / 10000 ] 9% - 0:00:01 left \r", + " [ 933 / 10000 ] 9% - 0:00:01 left \r", + " [ 934 / 10000 ] 9% - 0:00:01 left \r", + " [ 935 / 10000 ] 9% - 0:00:01 left \r", + " [ 936 / 10000 ] 9% - 0:00:01 left \r", + " [ 937 / 10000 ] 9% - 0:00:01 left \r", + " [ 938 / 10000 ] 9% - 0:00:01 left \r", + " [ 939 / 10000 ] 9% - 0:00:01 left \r", + " [ 940 / 10000 ] 9% - 0:00:01 left \r", + " [ 941 / 10000 ] 9% - 0:00:01 left \r", + " [ 942 / 10000 ] 9% - 0:00:01 left \r", + " [ 943 / 10000 ] 9% - 0:00:01 left \r", + " [ 944 / 10000 ] 9% - 0:00:01 left \r", + " [ 945 / 10000 ] 9% - 0:00:01 left \r", + " [ 946 / 10000 ] 9% - 0:00:01 left \r", + " [ 947 / 10000 ] 9% - 0:00:01 left \r", + " [ 948 / 10000 ] 9% - 0:00:01 left \r", + " [ 949 / 10000 ] 9% - 0:00:01 left \r", + " [ 950 / 10000 ] 10% - 0:00:01 left \r", + " [ 951 / 10000 ] 10% - 0:00:01 left \r", + " [ 952 / 10000 ] 10% - 0:00:01 left \r", + " [ 953 / 10000 ] 10% - 0:00:01 left \r", + " [ 954 / 10000 ] 10% - 0:00:01 left \r", + " [ 955 / 10000 ] 10% - 0:00:01 left \r", + " [ 956 / 10000 ] 10% - 0:00:01 left \r", + " [ 957 / 10000 ] 10% - 0:00:01 left \r", + " [ 958 / 10000 ] 10% - 0:00:01 left \r", + " [ 959 / 10000 ] 10% - 0:00:01 left \r", + " [ 960 / 10000 ] 10% - 0:00:01 left \r", + " [ 961 / 10000 ] 10% - 0:00:01 left \r", + " [ 962 / 10000 ] 10% - 0:00:01 left \r", + " [ 963 / 10000 ] 10% - 0:00:01 left \r", + " [ 964 / 10000 ] 10% - 0:00:01 left \r", + " [ 965 / 10000 ] 10% - 0:00:01 left \r", + " [ 966 / 10000 ] 10% - 0:00:01 left \r", + " [ 967 / 10000 ] 10% - 0:00:01 left \r", + " [ 968 / 10000 ] 10% - 0:00:01 left \r", + " [ 969 / 10000 ] 10% - 0:00:01 left \r", + " [ 970 / 10000 ] 10% - 0:00:01 left \r", + " [ 971 / 10000 ] 10% - 0:00:01 left \r", + " [ 972 / 10000 ] 10% - 0:00:01 left \r", + " [ 973 / 10000 ] 10% - 0:00:01 left \r", + " [ 974 / 10000 ] 10% - 0:00:01 left \r", + " [ 975 / 10000 ] 10% - 0:00:01 left \r", + " [ 976 / 10000 ] 10% - 0:00:01 left \r", + " [ 977 / 10000 ] 10% - 0:00:01 left \r", + " [ 978 / 10000 ] 10% - 0:00:01 left \r", + " [ 979 / 10000 ] 10% - 0:00:01 left \r", + " [ 980 / 10000 ] 10% - 0:00:01 left \r", + " [ 981 / 10000 ] 10% - 0:00:01 left \r", + " [ 982 / 10000 ] 10% - 0:00:01 left \r", + " [ 983 / 10000 ] 10% - 0:00:01 left \r", + " [ 984 / 10000 ] 10% - 0:00:01 left \r", + " [ 985 / 10000 ] 10% - 0:00:01 left \r", + " [ 986 / 10000 ] 10% - 0:00:01 left \r", + " [ 987 / 10000 ] 10% - 0:00:01 left \r", + " [ 988 / 10000 ] 10% - 0:00:01 left \r", + " [ 989 / 10000 ] 10% - 0:00:01 left \r", + " [ 990 / 10000 ] 10% - 0:00:01 left \r", + " [ 991 / 10000 ] 10% - 0:00:01 left \r", + " [ 992 / 10000 ] 10% - 0:00:01 left \r", + " [ 993 / 10000 ] 10% - 0:00:01 left \r", + " [ 994 / 10000 ] 10% - 0:00:01 left \r", + " [ 995 / 10000 ] 10% - 0:00:01 left \r", + " [ 996 / 10000 ] 10% - 0:00:01 left \r", + " [ 997 / 10000 ] 10% - 0:00:01 left \r", + " [ 998 / 10000 ] 10% - 0:00:01 left \r", + " [ 999 / 10000 ] 10% - 0:00:01 left \r", + " [ 1000 / 10000 ] 10% - 0:00:01 left \r", + " [ 1001 / 10000 ] 10% - 0:00:01 left \r", + " [ 1002 / 10000 ] 10% - 0:00:01 left \r", + " [ 1003 / 10000 ] 10% - 0:00:01 left \r", + " [ 1004 / 10000 ] 10% - 0:00:01 left \r", + " [ 1005 / 10000 ] 10% - 0:00:01 left \r", + " [ 1006 / 10000 ] 10% - 0:00:01 left \r", + " [ 1007 / 10000 ] 10% - 0:00:01 left \r", + " [ 1008 / 10000 ] 10% - 0:00:01 left \r", + " [ 1009 / 10000 ] 10% - 0:00:01 left \r", + " [ 1010 / 10000 ] 10% - 0:00:01 left \r", + " [ 1011 / 10000 ] 10% - 0:00:01 left \r", + " [ 1012 / 10000 ] 10% - 0:00:01 left \r", + " [ 1013 / 10000 ] 10% - 0:00:01 left \r", + " [ 1014 / 10000 ] 10% - 0:00:01 left \r", + " [ 1015 / 10000 ] 10% - 0:00:01 left \r", + " [ 1016 / 10000 ] 10% - 0:00:01 left \r", + " [ 1017 / 10000 ] 10% - 0:00:01 left \r", + " [ 1018 / 10000 ] 10% - 0:00:01 left \r", + " [ 1019 / 10000 ] 10% - 0:00:01 left \r", + " [ 1020 / 10000 ] 10% - 0:00:01 left \r", + " [ 1021 / 10000 ] 10% - 0:00:01 left \r", + " [ 1022 / 10000 ] 10% - 0:00:01 left \r", + " [ 1023 / 10000 ] 10% - 0:00:01 left \r", + " [ 1024 / 10000 ] 10% - 0:00:01 left \r", + " [ 1025 / 10000 ] 10% - 0:00:01 left \r", + " [ 1026 / 10000 ] 10% - 0:00:01 left \r", + " [ 1027 / 10000 ] 10% - 0:00:01 left \r", + " [ 1028 / 10000 ] 10% - 0:00:01 left \r", + " [ 1029 / 10000 ] 10% - 0:00:01 left \r", + " [ 1030 / 10000 ] 10% - 0:00:01 left \r", + " [ 1031 / 10000 ] 10% - 0:00:01 left \r", + " [ 1032 / 10000 ] 10% - 0:00:01 left \r", + " [ 1033 / 10000 ] 10% - 0:00:01 left \r", + " [ 1034 / 10000 ] 10% - 0:00:01 left \r", + " [ 1035 / 10000 ] 10% - 0:00:01 left \r", + " [ 1036 / 10000 ] 10% - 0:00:01 left \r", + " [ 1037 / 10000 ] 10% - 0:00:01 left \r", + " [ 1038 / 10000 ] 10% - 0:00:01 left \r", + " [ 1039 / 10000 ] 10% - 0:00:01 left \r", + " [ 1040 / 10000 ] 10% - 0:00:01 left \r", + " [ 1041 / 10000 ] 10% - 0:00:01 left \r", + " [ 1042 / 10000 ] 10% - 0:00:01 left \r", + " [ 1043 / 10000 ] 10% - 0:00:01 left \r", + " [ 1044 / 10000 ] 10% - 0:00:01 left \r", + " [ 1045 / 10000 ] 10% - 0:00:01 left \r", + " [ 1046 / 10000 ] 10% - 0:00:01 left \r", + " [ 1047 / 10000 ] 10% - 0:00:01 left \r", + " [ 1048 / 10000 ] 10% - 0:00:01 left \r", + " [ 1049 / 10000 ] 10% - 0:00:01 left \r", + " [ 1050 / 10000 ] 10% - 0:00:01 left \r", + " [ 1051 / 10000 ] 11% - 0:00:01 left \r", + " [ 1052 / 10000 ] 11% - 0:00:01 left \r", + " [ 1053 / 10000 ] 11% - 0:00:01 left \r", + " [ 1054 / 10000 ] 11% - 0:00:01 left \r", + " [ 1055 / 10000 ] 11% - 0:00:01 left \r", + " [ 1056 / 10000 ] 11% - 0:00:01 left \r", + " [ 1057 / 10000 ] 11% - 0:00:01 left \r", + " [ 1058 / 10000 ] 11% - 0:00:01 left \r", + " [ 1059 / 10000 ] 11% - 0:00:01 left \r", + " [ 1060 / 10000 ] 11% - 0:00:01 left \r", + " [ 1061 / 10000 ] 11% - 0:00:01 left \r", + " [ 1062 / 10000 ] 11% - 0:00:01 left \r", + " [ 1063 / 10000 ] 11% - 0:00:01 left \r", + " [ 1064 / 10000 ] 11% - 0:00:01 left \r", + " [ 1065 / 10000 ] 11% - 0:00:01 left \r", + " [ 1066 / 10000 ] 11% - 0:00:01 left \r", + " [ 1067 / 10000 ] 11% - 0:00:01 left \r", + " [ 1068 / 10000 ] 11% - 0:00:01 left \r", + " [ 1069 / 10000 ] 11% - 0:00:01 left \r", + " [ 1070 / 10000 ] 11% - 0:00:01 left \r", + " [ 1071 / 10000 ] 11% - 0:00:01 left \r", + " [ 1072 / 10000 ] 11% - 0:00:01 left \r", + " [ 1073 / 10000 ] 11% - 0:00:01 left \r", + " [ 1074 / 10000 ] 11% - 0:00:01 left \r", + " [ 1075 / 10000 ] 11% - 0:00:01 left \r", + " [ 1076 / 10000 ] 11% - 0:00:01 left \r", + " [ 1077 / 10000 ] 11% - 0:00:01 left \r", + " [ 1078 / 10000 ] 11% - 0:00:01 left \r", + " [ 1079 / 10000 ] 11% - 0:00:01 left \r", + " [ 1080 / 10000 ] 11% - 0:00:01 left \r", + " [ 1081 / 10000 ] 11% - 0:00:01 left \r", + " [ 1082 / 10000 ] 11% - 0:00:01 left \r", + " [ 1083 / 10000 ] 11% - 0:00:01 left \r", + " [ 1084 / 10000 ] 11% - 0:00:01 left \r", + " [ 1085 / 10000 ] 11% - 0:00:01 left \r", + " [ 1086 / 10000 ] 11% - 0:00:01 left \r", + " [ 1087 / 10000 ] 11% - 0:00:01 left \r", + " [ 1088 / 10000 ] 11% - 0:00:01 left \r", + " [ 1089 / 10000 ] 11% - 0:00:01 left \r", + " [ 1090 / 10000 ] 11% - 0:00:01 left \r", + " [ 1091 / 10000 ] 11% - 0:00:01 left \r", + " [ 1092 / 10000 ] 11% - 0:00:01 left \r", + " [ 1093 / 10000 ] 11% - 0:00:01 left \r", + " [ 1094 / 10000 ] 11% - 0:00:01 left \r", + " [ 1095 / 10000 ] 11% - 0:00:01 left \r", + " [ 1096 / 10000 ] 11% - 0:00:01 left \r", + " [ 1097 / 10000 ] 11% - 0:00:01 left \r", + " [ 1098 / 10000 ] 11% - 0:00:01 left \r", + " [ 1099 / 10000 ] 11% - 0:00:01 left \r", + " [ 1100 / 10000 ] 11% - 0:00:01 left \r", + " [ 1101 / 10000 ] 11% - 0:00:01 left \r", + " [ 1102 / 10000 ] 11% - 0:00:01 left \r", + " [ 1103 / 10000 ] 11% - 0:00:01 left \r", + " [ 1104 / 10000 ] 11% - 0:00:01 left \r", + " [ 1105 / 10000 ] 11% - 0:00:01 left \r", + " [ 1106 / 10000 ] 11% - 0:00:01 left \r", + " [ 1107 / 10000 ] 11% - 0:00:01 left \r", + " [ 1108 / 10000 ] 11% - 0:00:01 left \r", + " [ 1109 / 10000 ] 11% - 0:00:01 left \r", + " [ 1110 / 10000 ] 11% - 0:00:01 left \r", + " [ 1111 / 10000 ] 11% - 0:00:01 left \r", + " [ 1112 / 10000 ] 11% - 0:00:01 left \r", + " [ 1113 / 10000 ] 11% - 0:00:01 left \r", + " [ 1114 / 10000 ] 11% - 0:00:01 left \r", + " [ 1115 / 10000 ] 11% - 0:00:01 left \r", + " [ 1116 / 10000 ] 11% - 0:00:01 left \r", + " [ 1117 / 10000 ] 11% - 0:00:01 left \r", + " [ 1118 / 10000 ] 11% - 0:00:01 left \r", + " [ 1119 / 10000 ] 11% - 0:00:01 left \r", + " [ 1120 / 10000 ] 11% - 0:00:01 left \r", + " [ 1121 / 10000 ] 11% - 0:00:01 left \r", + " [ 1122 / 10000 ] 11% - 0:00:01 left \r", + " [ 1123 / 10000 ] 11% - 0:00:01 left \r", + " [ 1124 / 10000 ] 11% - 0:00:01 left \r", + " [ 1125 / 10000 ] 11% - 0:00:01 left \r", + " [ 1126 / 10000 ] 11% - 0:00:01 left \r", + " [ 1127 / 10000 ] 11% - 0:00:01 left \r", + " [ 1128 / 10000 ] 11% - 0:00:01 left \r", + " [ 1129 / 10000 ] 11% - 0:00:01 left \r", + " [ 1130 / 10000 ] 11% - 0:00:01 left \r", + " [ 1131 / 10000 ] 11% - 0:00:01 left \r", + " [ 1132 / 10000 ] 11% - 0:00:01 left \r", + " [ 1133 / 10000 ] 11% - 0:00:01 left \r", + " [ 1134 / 10000 ] 11% - 0:00:01 left \r", + " [ 1135 / 10000 ] 11% - 0:00:01 left \r", + " [ 1136 / 10000 ] 11% - 0:00:01 left \r", + " [ 1137 / 10000 ] 11% - 0:00:01 left \r", + " [ 1138 / 10000 ] 11% - 0:00:01 left \r", + " [ 1139 / 10000 ] 11% - 0:00:01 left \r", + " [ 1140 / 10000 ] 11% - 0:00:01 left \r", + " [ 1141 / 10000 ] 11% - 0:00:01 left \r", + " [ 1142 / 10000 ] 11% - 0:00:01 left \r", + " [ 1143 / 10000 ] 11% - 0:00:01 left \r", + " [ 1144 / 10000 ] 11% - 0:00:01 left \r", + " [ 1145 / 10000 ] 11% - 0:00:01 left \r", + " [ 1146 / 10000 ] 11% - 0:00:01 left \r", + " [ 1147 / 10000 ] 11% - 0:00:01 left \r", + " [ 1148 / 10000 ] 11% - 0:00:01 left \r", + " [ 1149 / 10000 ] 11% - 0:00:01 left \r", + " [ 1150 / 10000 ] 12% - 0:00:01 left \r", + " [ 1151 / 10000 ] 12% - 0:00:01 left \r", + " [ 1152 / 10000 ] 12% - 0:00:01 left \r", + " [ 1153 / 10000 ] 12% - 0:00:01 left \r", + " [ 1154 / 10000 ] 12% - 0:00:01 left \r", + " [ 1155 / 10000 ] 12% - 0:00:01 left \r", + " [ 1156 / 10000 ] 12% - 0:00:01 left \r", + " [ 1157 / 10000 ] 12% - 0:00:01 left \r", + " [ 1158 / 10000 ] 12% - 0:00:01 left \r", + " [ 1159 / 10000 ] 12% - 0:00:01 left \r", + " [ 1160 / 10000 ] 12% - 0:00:01 left \r", + " [ 1161 / 10000 ] 12% - 0:00:01 left \r", + " [ 1162 / 10000 ] 12% - 0:00:01 left \r", + " [ 1163 / 10000 ] 12% - 0:00:01 left \r", + " [ 1164 / 10000 ] 12% - 0:00:01 left \r", + " [ 1165 / 10000 ] 12% - 0:00:01 left \r", + " [ 1166 / 10000 ] 12% - 0:00:01 left \r", + " [ 1167 / 10000 ] 12% - 0:00:01 left \r", + " [ 1168 / 10000 ] 12% - 0:00:01 left \r", + " [ 1169 / 10000 ] 12% - 0:00:01 left \r", + " [ 1170 / 10000 ] 12% - 0:00:01 left \r", + " [ 1171 / 10000 ] 12% - 0:00:01 left \r", + " [ 1172 / 10000 ] 12% - 0:00:01 left \r", + " [ 1173 / 10000 ] 12% - 0:00:01 left \r", + " [ 1174 / 10000 ] 12% - 0:00:01 left \r", + " [ 1175 / 10000 ] 12% - 0:00:01 left \r", + " [ 1176 / 10000 ] 12% - 0:00:01 left \r", + " [ 1177 / 10000 ] 12% - 0:00:01 left \r", + " [ 1178 / 10000 ] 12% - 0:00:01 left \r", + " [ 1179 / 10000 ] 12% - 0:00:01 left \r", + " [ 1180 / 10000 ] 12% - 0:00:01 left \r", + " [ 1181 / 10000 ] 12% - 0:00:01 left \r", + " [ 1182 / 10000 ] 12% - 0:00:01 left \r", + " [ 1183 / 10000 ] 12% - 0:00:01 left \r", + " [ 1184 / 10000 ] 12% - 0:00:01 left \r", + " [ 1185 / 10000 ] 12% - 0:00:01 left \r", + " [ 1186 / 10000 ] 12% - 0:00:01 left \r", + " [ 1187 / 10000 ] 12% - 0:00:01 left \r", + " [ 1188 / 10000 ] 12% - 0:00:01 left \r", + " [ 1189 / 10000 ] 12% - 0:00:01 left \r", + " [ 1190 / 10000 ] 12% - 0:00:01 left \r", + " [ 1191 / 10000 ] 12% - 0:00:01 left \r", + " [ 1192 / 10000 ] 12% - 0:00:01 left \r", + " [ 1193 / 10000 ] 12% - 0:00:01 left \r", + " [ 1194 / 10000 ] 12% - 0:00:01 left \r", + " [ 1195 / 10000 ] 12% - 0:00:01 left \r", + " [ 1196 / 10000 ] 12% - 0:00:01 left \r", + " [ 1197 / 10000 ] 12% - 0:00:01 left \r", + " [ 1198 / 10000 ] 12% - 0:00:01 left \r", + " [ 1199 / 10000 ] 12% - 0:00:01 left \r", + " [ 1200 / 10000 ] 12% - 0:00:01 left \r", + " [ 1201 / 10000 ] 12% - 0:00:01 left \r", + " [ 1202 / 10000 ] 12% - 0:00:01 left \r", + " [ 1203 / 10000 ] 12% - 0:00:01 left \r", + " [ 1204 / 10000 ] 12% - 0:00:01 left \r", + " [ 1205 / 10000 ] 12% - 0:00:01 left \r", + " [ 1206 / 10000 ] 12% - 0:00:01 left \r", + " [ 1207 / 10000 ] 12% - 0:00:01 left \r", + " [ 1208 / 10000 ] 12% - 0:00:01 left \r", + " [ 1209 / 10000 ] 12% - 0:00:01 left \r", + " [ 1210 / 10000 ] 12% - 0:00:01 left \r", + " [ 1211 / 10000 ] 12% - 0:00:01 left \r", + " [ 1212 / 10000 ] 12% - 0:00:01 left \r", + " [ 1213 / 10000 ] 12% - 0:00:01 left \r", + " [ 1214 / 10000 ] 12% - 0:00:01 left \r", + " [ 1215 / 10000 ] 12% - 0:00:01 left \r", + " [ 1216 / 10000 ] 12% - 0:00:01 left \r", + " [ 1217 / 10000 ] 12% - 0:00:01 left \r", + " [ 1218 / 10000 ] 12% - 0:00:01 left \r", + " [ 1219 / 10000 ] 12% - 0:00:01 left \r", + " [ 1220 / 10000 ] 12% - 0:00:01 left \r", + " [ 1221 / 10000 ] 12% - 0:00:01 left \r", + " [ 1222 / 10000 ] 12% - 0:00:01 left \r", + " [ 1223 / 10000 ] 12% - 0:00:01 left \r", + " [ 1224 / 10000 ] 12% - 0:00:01 left \r", + " [ 1225 / 10000 ] 12% - 0:00:01 left \r", + " [ 1226 / 10000 ] 12% - 0:00:01 left \r", + " [ 1227 / 10000 ] 12% - 0:00:01 left \r", + " [ 1228 / 10000 ] 12% - 0:00:01 left \r", + " [ 1229 / 10000 ] 12% - 0:00:01 left \r", + " [ 1230 / 10000 ] 12% - 0:00:01 left \r", + " [ 1231 / 10000 ] 12% - 0:00:01 left \r", + " [ 1232 / 10000 ] 12% - 0:00:01 left \r", + " [ 1233 / 10000 ] 12% - 0:00:01 left \r", + " [ 1234 / 10000 ] 12% - 0:00:01 left \r", + " [ 1235 / 10000 ] 12% - 0:00:01 left \r", + " [ 1236 / 10000 ] 12% - 0:00:01 left \r", + " [ 1237 / 10000 ] 12% - 0:00:01 left \r", + " [ 1238 / 10000 ] 12% - 0:00:01 left \r", + " [ 1239 / 10000 ] 12% - 0:00:01 left \r", + " [ 1240 / 10000 ] 12% - 0:00:01 left \r", + " [ 1241 / 10000 ] 12% - 0:00:01 left \r", + " [ 1242 / 10000 ] 12% - 0:00:01 left \r", + " [ 1243 / 10000 ] 12% - 0:00:01 left \r", + " [ 1244 / 10000 ] 12% - 0:00:01 left \r", + " [ 1245 / 10000 ] 12% - 0:00:01 left \r", + " [ 1246 / 10000 ] 12% - 0:00:01 left \r", + " [ 1247 / 10000 ] 12% - 0:00:01 left \r", + " [ 1248 / 10000 ] 12% - 0:00:01 left \r", + " [ 1249 / 10000 ] 12% - 0:00:01 left \r", + " [ 1250 / 10000 ] 12% - 0:00:01 left \r", + " [ 1251 / 10000 ] 13% - 0:00:01 left \r", + " [ 1252 / 10000 ] 13% - 0:00:01 left \r", + " [ 1253 / 10000 ] 13% - 0:00:01 left \r", + " [ 1254 / 10000 ] 13% - 0:00:01 left \r", + " [ 1255 / 10000 ] 13% - 0:00:01 left \r", + " [ 1256 / 10000 ] 13% - 0:00:01 left \r", + " [ 1257 / 10000 ] 13% - 0:00:01 left \r", + " [ 1258 / 10000 ] 13% - 0:00:01 left \r", + " [ 1259 / 10000 ] 13% - 0:00:01 left \r", + " [ 1260 / 10000 ] 13% - 0:00:01 left \r", + " [ 1261 / 10000 ] 13% - 0:00:01 left \r", + " [ 1262 / 10000 ] 13% - 0:00:01 left \r", + " [ 1263 / 10000 ] 13% - 0:00:01 left \r", + " [ 1264 / 10000 ] 13% - 0:00:01 left \r", + " [ 1265 / 10000 ] 13% - 0:00:01 left \r", + " [ 1266 / 10000 ] 13% - 0:00:01 left \r", + " [ 1267 / 10000 ] 13% - 0:00:01 left \r", + " [ 1268 / 10000 ] 13% - 0:00:01 left \r", + " [ 1269 / 10000 ] 13% - 0:00:01 left \r", + " [ 1270 / 10000 ] 13% - 0:00:01 left \r", + " [ 1271 / 10000 ] 13% - 0:00:01 left \r", + " [ 1272 / 10000 ] 13% - 0:00:01 left \r", + " [ 1273 / 10000 ] 13% - 0:00:01 left \r", + " [ 1274 / 10000 ] 13% - 0:00:01 left \r", + " [ 1275 / 10000 ] 13% - 0:00:01 left \r", + " [ 1276 / 10000 ] 13% - 0:00:01 left \r", + " [ 1277 / 10000 ] 13% - 0:00:01 left \r", + " [ 1278 / 10000 ] 13% - 0:00:01 left \r", + " [ 1279 / 10000 ] 13% - 0:00:01 left \r", + " [ 1280 / 10000 ] 13% - 0:00:01 left \r", + " [ 1281 / 10000 ] 13% - 0:00:01 left \r", + " [ 1282 / 10000 ] 13% - 0:00:01 left \r", + " [ 1283 / 10000 ] 13% - 0:00:01 left \r", + " [ 1284 / 10000 ] 13% - 0:00:01 left \r", + " [ 1285 / 10000 ] 13% - 0:00:01 left \r", + " [ 1286 / 10000 ] 13% - 0:00:01 left \r", + " [ 1287 / 10000 ] 13% - 0:00:01 left \r", + " [ 1288 / 10000 ] 13% - 0:00:01 left \r", + " [ 1289 / 10000 ] 13% - 0:00:01 left \r", + " [ 1290 / 10000 ] 13% - 0:00:01 left \r", + " [ 1291 / 10000 ] 13% - 0:00:01 left \r", + " [ 1292 / 10000 ] 13% - 0:00:01 left \r", + " [ 1293 / 10000 ] 13% - 0:00:01 left \r", + " [ 1294 / 10000 ] 13% - 0:00:01 left \r", + " [ 1295 / 10000 ] 13% - 0:00:01 left \r", + " [ 1296 / 10000 ] 13% - 0:00:01 left \r", + " [ 1297 / 10000 ] 13% - 0:00:01 left \r", + " [ 1298 / 10000 ] 13% - 0:00:01 left \r", + " [ 1299 / 10000 ] 13% - 0:00:01 left \r", + " [ 1300 / 10000 ] 13% - 0:00:01 left \r", + " [ 1301 / 10000 ] 13% - 0:00:01 left \r", + " [ 1302 / 10000 ] 13% - 0:00:01 left \r", + " [ 1303 / 10000 ] 13% - 0:00:01 left \r", + " [ 1304 / 10000 ] 13% - 0:00:01 left \r", + " [ 1305 / 10000 ] 13% - 0:00:01 left \r", + " [ 1306 / 10000 ] 13% - 0:00:01 left \r", + " [ 1307 / 10000 ] 13% - 0:00:01 left \r", + " [ 1308 / 10000 ] 13% - 0:00:01 left \r", + " [ 1309 / 10000 ] 13% - 0:00:01 left \r", + " [ 1310 / 10000 ] 13% - 0:00:01 left \r", + " [ 1311 / 10000 ] 13% - 0:00:01 left \r", + " [ 1312 / 10000 ] 13% - 0:00:01 left \r", + " [ 1313 / 10000 ] 13% - 0:00:01 left \r", + " [ 1314 / 10000 ] 13% - 0:00:01 left \r", + " [ 1315 / 10000 ] 13% - 0:00:01 left \r", + " [ 1316 / 10000 ] 13% - 0:00:01 left \r", + " [ 1317 / 10000 ] 13% - 0:00:01 left \r", + " [ 1318 / 10000 ] 13% - 0:00:01 left \r", + " [ 1319 / 10000 ] 13% - 0:00:01 left \r", + " [ 1320 / 10000 ] 13% - 0:00:01 left \r", + " [ 1321 / 10000 ] 13% - 0:00:01 left \r", + " [ 1322 / 10000 ] 13% - 0:00:01 left \r", + " [ 1323 / 10000 ] 13% - 0:00:01 left \r", + " [ 1324 / 10000 ] 13% - 0:00:01 left \r", + " [ 1325 / 10000 ] 13% - 0:00:01 left \r", + " [ 1326 / 10000 ] 13% - 0:00:01 left \r", + " [ 1327 / 10000 ] 13% - 0:00:01 left \r", + " [ 1328 / 10000 ] 13% - 0:00:01 left \r", + " [ 1329 / 10000 ] 13% - 0:00:01 left \r", + " [ 1330 / 10000 ] 13% - 0:00:01 left \r", + " [ 1331 / 10000 ] 13% - 0:00:01 left \r", + " [ 1332 / 10000 ] 13% - 0:00:01 left \r", + " [ 1333 / 10000 ] 13% - 0:00:01 left \r", + " [ 1334 / 10000 ] 13% - 0:00:01 left \r", + " [ 1335 / 10000 ] 13% - 0:00:01 left \r", + " [ 1336 / 10000 ] 13% - 0:00:01 left \r", + " [ 1337 / 10000 ] 13% - 0:00:01 left \r", + " [ 1338 / 10000 ] 13% - 0:00:01 left \r", + " [ 1339 / 10000 ] 13% - 0:00:01 left \r", + " [ 1340 / 10000 ] 13% - 0:00:01 left \r", + " [ 1341 / 10000 ] 13% - 0:00:01 left \r", + " [ 1342 / 10000 ] 13% - 0:00:01 left \r", + " [ 1343 / 10000 ] 13% - 0:00:01 left \r", + " [ 1344 / 10000 ] 13% - 0:00:01 left \r", + " [ 1345 / 10000 ] 13% - 0:00:01 left \r", + " [ 1346 / 10000 ] 13% - 0:00:01 left \r", + " [ 1347 / 10000 ] 13% - 0:00:01 left \r", + " [ 1348 / 10000 ] 13% - 0:00:01 left \r", + " [ 1349 / 10000 ] 13% - 0:00:01 left \r", + " [ 1350 / 10000 ] 14% - 0:00:01 left \r", + " [ 1351 / 10000 ] 14% - 0:00:01 left \r", + " [ 1352 / 10000 ] 14% - 0:00:01 left \r", + " [ 1353 / 10000 ] 14% - 0:00:01 left \r", + " [ 1354 / 10000 ] 14% - 0:00:01 left \r", + " [ 1355 / 10000 ] 14% - 0:00:01 left \r", + " [ 1356 / 10000 ] 14% - 0:00:01 left \r", + " [ 1357 / 10000 ] 14% - 0:00:01 left \r", + " [ 1358 / 10000 ] 14% - 0:00:01 left \r", + " [ 1359 / 10000 ] 14% - 0:00:01 left \r", + " [ 1360 / 10000 ] 14% - 0:00:01 left \r", + " [ 1361 / 10000 ] 14% - 0:00:01 left \r", + " [ 1362 / 10000 ] 14% - 0:00:01 left \r", + " [ 1363 / 10000 ] 14% - 0:00:01 left \r", + " [ 1364 / 10000 ] 14% - 0:00:01 left \r", + " [ 1365 / 10000 ] 14% - 0:00:01 left \r", + " [ 1366 / 10000 ] 14% - 0:00:01 left \r", + " [ 1367 / 10000 ] 14% - 0:00:01 left \r", + " [ 1368 / 10000 ] 14% - 0:00:01 left \r", + " [ 1369 / 10000 ] 14% - 0:00:01 left \r", + " [ 1370 / 10000 ] 14% - 0:00:01 left \r", + " [ 1371 / 10000 ] 14% - 0:00:01 left \r", + " [ 1372 / 10000 ] 14% - 0:00:01 left \r", + " [ 1373 / 10000 ] 14% - 0:00:01 left \r", + " [ 1374 / 10000 ] 14% - 0:00:01 left \r", + " [ 1375 / 10000 ] 14% - 0:00:01 left \r", + " [ 1376 / 10000 ] 14% - 0:00:01 left \r", + " [ 1377 / 10000 ] 14% - 0:00:01 left \r", + " [ 1378 / 10000 ] 14% - 0:00:01 left \r", + " [ 1379 / 10000 ] 14% - 0:00:01 left \r", + " [ 1380 / 10000 ] 14% - 0:00:01 left \r", + " [ 1381 / 10000 ] 14% - 0:00:01 left \r", + " [ 1382 / 10000 ] 14% - 0:00:01 left \r", + " [ 1383 / 10000 ] 14% - 0:00:01 left \r", + " [ 1384 / 10000 ] 14% - 0:00:01 left \r", + " [ 1385 / 10000 ] 14% - 0:00:01 left \r", + " [ 1386 / 10000 ] 14% - 0:00:01 left \r", + " [ 1387 / 10000 ] 14% - 0:00:01 left \r", + " [ 1388 / 10000 ] 14% - 0:00:01 left \r", + " [ 1389 / 10000 ] 14% - 0:00:01 left \r", + " [ 1390 / 10000 ] 14% - 0:00:01 left \r", + " [ 1391 / 10000 ] 14% - 0:00:01 left \r", + " [ 1392 / 10000 ] 14% - 0:00:01 left \r", + " [ 1393 / 10000 ] 14% - 0:00:01 left \r", + " [ 1394 / 10000 ] 14% - 0:00:01 left \r", + " [ 1395 / 10000 ] 14% - 0:00:01 left \r", + " [ 1396 / 10000 ] 14% - 0:00:01 left \r", + " [ 1397 / 10000 ] 14% - 0:00:01 left \r", + " [ 1398 / 10000 ] 14% - 0:00:01 left \r", + " [ 1399 / 10000 ] 14% - 0:00:01 left \r", + " [ 1400 / 10000 ] 14% - 0:00:01 left \r", + " [ 1401 / 10000 ] 14% - 0:00:01 left \r", + " [ 1402 / 10000 ] 14% - 0:00:01 left \r", + " [ 1403 / 10000 ] 14% - 0:00:01 left \r", + " [ 1404 / 10000 ] 14% - 0:00:01 left \r", + " [ 1405 / 10000 ] 14% - 0:00:01 left \r", + " [ 1406 / 10000 ] 14% - 0:00:01 left \r", + " [ 1407 / 10000 ] 14% - 0:00:01 left \r", + " [ 1408 / 10000 ] 14% - 0:00:01 left \r", + " [ 1409 / 10000 ] 14% - 0:00:01 left \r", + " [ 1410 / 10000 ] 14% - 0:00:01 left \r", + " [ 1411 / 10000 ] 14% - 0:00:01 left \r", + " [ 1412 / 10000 ] 14% - 0:00:01 left \r", + " [ 1413 / 10000 ] 14% - 0:00:01 left \r", + " [ 1414 / 10000 ] 14% - 0:00:01 left \r", + " [ 1415 / 10000 ] 14% - 0:00:01 left \r", + " [ 1416 / 10000 ] 14% - 0:00:01 left \r", + " [ 1417 / 10000 ] 14% - 0:00:01 left \r", + " [ 1418 / 10000 ] 14% - 0:00:01 left \r", + " [ 1419 / 10000 ] 14% - 0:00:01 left \r", + " [ 1420 / 10000 ] 14% - 0:00:01 left \r", + " [ 1421 / 10000 ] 14% - 0:00:01 left \r", + " [ 1422 / 10000 ] 14% - 0:00:01 left \r", + " [ 1423 / 10000 ] 14% - 0:00:01 left \r", + " [ 1424 / 10000 ] 14% - 0:00:01 left \r", + " [ 1425 / 10000 ] 14% - 0:00:01 left \r", + " [ 1426 / 10000 ] 14% - 0:00:01 left \r", + " [ 1427 / 10000 ] 14% - 0:00:01 left \r", + " [ 1428 / 10000 ] 14% - 0:00:01 left \r", + " [ 1429 / 10000 ] 14% - 0:00:01 left \r", + " [ 1430 / 10000 ] 14% - 0:00:01 left \r", + " [ 1431 / 10000 ] 14% - 0:00:01 left \r", + " [ 1432 / 10000 ] 14% - 0:00:01 left \r", + " [ 1433 / 10000 ] 14% - 0:00:01 left \r", + " [ 1434 / 10000 ] 14% - 0:00:01 left \r", + " [ 1435 / 10000 ] 14% - 0:00:01 left \r", + " [ 1436 / 10000 ] 14% - 0:00:01 left \r", + " [ 1437 / 10000 ] 14% - 0:00:01 left \r", + " [ 1438 / 10000 ] 14% - 0:00:01 left \r", + " [ 1439 / 10000 ] 14% - 0:00:01 left \r", + " [ 1440 / 10000 ] 14% - 0:00:01 left \r", + " [ 1441 / 10000 ] 14% - 0:00:01 left \r", + " [ 1442 / 10000 ] 14% - 0:00:01 left \r", + " [ 1443 / 10000 ] 14% - 0:00:01 left \r", + " [ 1444 / 10000 ] 14% - 0:00:01 left \r", + " [ 1445 / 10000 ] 14% - 0:00:01 left \r", + " [ 1446 / 10000 ] 14% - 0:00:01 left \r", + " [ 1447 / 10000 ] 14% - 0:00:01 left \r", + " [ 1448 / 10000 ] 14% - 0:00:01 left \r", + " [ 1449 / 10000 ] 14% - 0:00:01 left \r", + " [ 1450 / 10000 ] 14% - 0:00:01 left \r", + " [ 1451 / 10000 ] 15% - 0:00:01 left \r", + " [ 1452 / 10000 ] 15% - 0:00:01 left \r", + " [ 1453 / 10000 ] 15% - 0:00:01 left \r", + " [ 1454 / 10000 ] 15% - 0:00:01 left \r", + " [ 1455 / 10000 ] 15% - 0:00:01 left \r", + " [ 1456 / 10000 ] 15% - 0:00:01 left \r", + " [ 1457 / 10000 ] 15% - 0:00:01 left \r", + " [ 1458 / 10000 ] 15% - 0:00:01 left \r", + " [ 1459 / 10000 ] 15% - 0:00:01 left \r", + " [ 1460 / 10000 ] 15% - 0:00:01 left \r", + " [ 1461 / 10000 ] 15% - 0:00:01 left \r", + " [ 1462 / 10000 ] 15% - 0:00:01 left \r", + " [ 1463 / 10000 ] 15% - 0:00:01 left \r", + " [ 1464 / 10000 ] 15% - 0:00:01 left \r", + " [ 1465 / 10000 ] 15% - 0:00:01 left \r", + " [ 1466 / 10000 ] 15% - 0:00:01 left \r", + " [ 1467 / 10000 ] 15% - 0:00:01 left \r", + " [ 1468 / 10000 ] 15% - 0:00:01 left \r", + " [ 1469 / 10000 ] 15% - 0:00:01 left \r", + " [ 1470 / 10000 ] 15% - 0:00:01 left \r", + " [ 1471 / 10000 ] 15% - 0:00:01 left \r", + " [ 1472 / 10000 ] 15% - 0:00:01 left \r", + " [ 1473 / 10000 ] 15% - 0:00:01 left \r", + " [ 1474 / 10000 ] 15% - 0:00:01 left \r", + " [ 1475 / 10000 ] 15% - 0:00:01 left \r", + " [ 1476 / 10000 ] 15% - 0:00:01 left \r", + " [ 1477 / 10000 ] 15% - 0:00:01 left \r", + " [ 1478 / 10000 ] 15% - 0:00:01 left \r", + " [ 1479 / 10000 ] 15% - 0:00:01 left \r", + " [ 1480 / 10000 ] 15% - 0:00:01 left \r", + " [ 1481 / 10000 ] 15% - 0:00:01 left \r", + " [ 1482 / 10000 ] 15% - 0:00:01 left \r", + " [ 1483 / 10000 ] 15% - 0:00:01 left \r", + " [ 1484 / 10000 ] 15% - 0:00:01 left \r", + " [ 1485 / 10000 ] 15% - 0:00:01 left \r", + " [ 1486 / 10000 ] 15% - 0:00:01 left \r", + " [ 1487 / 10000 ] 15% - 0:00:01 left \r", + " [ 1488 / 10000 ] 15% - 0:00:01 left \r", + " [ 1489 / 10000 ] 15% - 0:00:01 left \r", + " [ 1490 / 10000 ] 15% - 0:00:01 left \r", + " [ 1491 / 10000 ] 15% - 0:00:01 left \r", + " [ 1492 / 10000 ] 15% - 0:00:01 left \r", + " [ 1493 / 10000 ] 15% - 0:00:01 left \r", + " [ 1494 / 10000 ] 15% - 0:00:01 left \r", + " [ 1495 / 10000 ] 15% - 0:00:01 left \r", + " [ 1496 / 10000 ] 15% - 0:00:01 left \r", + " [ 1497 / 10000 ] 15% - 0:00:01 left \r", + " [ 1498 / 10000 ] 15% - 0:00:01 left \r", + " [ 1499 / 10000 ] 15% - 0:00:01 left \r", + " [ 1500 / 10000 ] 15% - 0:00:01 left \r", + " [ 1501 / 10000 ] 15% - 0:00:01 left \r", + " [ 1502 / 10000 ] 15% - 0:00:01 left \r", + " [ 1503 / 10000 ] 15% - 0:00:01 left \r", + " [ 1504 / 10000 ] 15% - 0:00:01 left \r", + " [ 1505 / 10000 ] 15% - 0:00:01 left \r", + " [ 1506 / 10000 ] 15% - 0:00:01 left \r", + " [ 1507 / 10000 ] 15% - 0:00:01 left \r", + " [ 1508 / 10000 ] 15% - 0:00:01 left \r", + " [ 1509 / 10000 ] 15% - 0:00:01 left \r", + " [ 1510 / 10000 ] 15% - 0:00:01 left \r", + " [ 1511 / 10000 ] 15% - 0:00:01 left \r", + " [ 1512 / 10000 ] 15% - 0:00:01 left \r", + " [ 1513 / 10000 ] 15% - 0:00:01 left \r", + " [ 1514 / 10000 ] 15% - 0:00:01 left \r", + " [ 1515 / 10000 ] 15% - 0:00:01 left \r", + " [ 1516 / 10000 ] 15% - 0:00:01 left \r", + " [ 1517 / 10000 ] 15% - 0:00:01 left \r", + " [ 1518 / 10000 ] 15% - 0:00:01 left \r", + " [ 1519 / 10000 ] 15% - 0:00:01 left \r", + " [ 1520 / 10000 ] 15% - 0:00:01 left \r", + " [ 1521 / 10000 ] 15% - 0:00:01 left \r", + " [ 1522 / 10000 ] 15% - 0:00:01 left \r", + " [ 1523 / 10000 ] 15% - 0:00:01 left \r", + " [ 1524 / 10000 ] 15% - 0:00:01 left \r", + " [ 1525 / 10000 ] 15% - 0:00:01 left \r", + " [ 1526 / 10000 ] 15% - 0:00:01 left \r", + " [ 1527 / 10000 ] 15% - 0:00:01 left \r", + " [ 1528 / 10000 ] 15% - 0:00:01 left \r", + " [ 1529 / 10000 ] 15% - 0:00:01 left \r", + " [ 1530 / 10000 ] 15% - 0:00:01 left \r", + " [ 1531 / 10000 ] 15% - 0:00:01 left \r", + " [ 1532 / 10000 ] 15% - 0:00:01 left \r", + " [ 1533 / 10000 ] 15% - 0:00:01 left \r", + " [ 1534 / 10000 ] 15% - 0:00:01 left \r", + " [ 1535 / 10000 ] 15% - 0:00:01 left \r", + " [ 1536 / 10000 ] 15% - 0:00:01 left \r", + " [ 1537 / 10000 ] 15% - 0:00:01 left \r", + " [ 1538 / 10000 ] 15% - 0:00:01 left \r", + " [ 1539 / 10000 ] 15% - 0:00:01 left \r", + " [ 1540 / 10000 ] 15% - 0:00:01 left \r", + " [ 1541 / 10000 ] 15% - 0:00:01 left \r", + " [ 1542 / 10000 ] 15% - 0:00:01 left \r", + " [ 1543 / 10000 ] 15% - 0:00:01 left \r", + " [ 1544 / 10000 ] 15% - 0:00:01 left \r", + " [ 1545 / 10000 ] 15% - 0:00:01 left \r", + " [ 1546 / 10000 ] 15% - 0:00:01 left \r", + " [ 1547 / 10000 ] 15% - 0:00:01 left \r", + " [ 1548 / 10000 ] 15% - 0:00:01 left \r", + " [ 1549 / 10000 ] 15% - 0:00:01 left \r", + " [ 1550 / 10000 ] 16% - 0:00:01 left \r", + " [ 1551 / 10000 ] 16% - 0:00:01 left \r", + " [ 1552 / 10000 ] 16% - 0:00:01 left \r", + " [ 1553 / 10000 ] 16% - 0:00:01 left \r", + " [ 1554 / 10000 ] 16% - 0:00:01 left \r", + " [ 1555 / 10000 ] 16% - 0:00:01 left \r", + " [ 1556 / 10000 ] 16% - 0:00:01 left \r", + " [ 1557 / 10000 ] 16% - 0:00:01 left \r", + " [ 1558 / 10000 ] 16% - 0:00:01 left \r", + " [ 1559 / 10000 ] 16% - 0:00:01 left \r", + " [ 1560 / 10000 ] 16% - 0:00:01 left \r", + " [ 1561 / 10000 ] 16% - 0:00:01 left \r", + " [ 1562 / 10000 ] 16% - 0:00:01 left \r", + " [ 1563 / 10000 ] 16% - 0:00:01 left \r", + " [ 1564 / 10000 ] 16% - 0:00:01 left \r", + " [ 1565 / 10000 ] 16% - 0:00:01 left \r", + " [ 1566 / 10000 ] 16% - 0:00:01 left \r", + " [ 1567 / 10000 ] 16% - 0:00:01 left \r", + " [ 1568 / 10000 ] 16% - 0:00:01 left \r", + " [ 1569 / 10000 ] 16% - 0:00:01 left \r", + " [ 1570 / 10000 ] 16% - 0:00:01 left \r", + " [ 1571 / 10000 ] 16% - 0:00:01 left \r", + " [ 1572 / 10000 ] 16% - 0:00:01 left \r", + " [ 1573 / 10000 ] 16% - 0:00:01 left \r", + " [ 1574 / 10000 ] 16% - 0:00:01 left \r", + " [ 1575 / 10000 ] 16% - 0:00:01 left \r", + " [ 1576 / 10000 ] 16% - 0:00:01 left \r", + " [ 1577 / 10000 ] 16% - 0:00:01 left \r", + " [ 1578 / 10000 ] 16% - 0:00:01 left \r", + " [ 1579 / 10000 ] 16% - 0:00:01 left \r", + " [ 1580 / 10000 ] 16% - 0:00:01 left \r", + " [ 1581 / 10000 ] 16% - 0:00:01 left \r", + " [ 1582 / 10000 ] 16% - 0:00:01 left \r", + " [ 1583 / 10000 ] 16% - 0:00:01 left \r", + " [ 1584 / 10000 ] 16% - 0:00:01 left \r", + " [ 1585 / 10000 ] 16% - 0:00:01 left \r", + " [ 1586 / 10000 ] 16% - 0:00:01 left \r", + " [ 1587 / 10000 ] 16% - 0:00:01 left \r", + " [ 1588 / 10000 ] 16% - 0:00:01 left \r", + " [ 1589 / 10000 ] 16% - 0:00:01 left \r", + " [ 1590 / 10000 ] 16% - 0:00:01 left \r", + " [ 1591 / 10000 ] 16% - 0:00:01 left \r", + " [ 1592 / 10000 ] 16% - 0:00:01 left \r", + " [ 1593 / 10000 ] 16% - 0:00:01 left \r", + " [ 1594 / 10000 ] 16% - 0:00:01 left \r", + " [ 1595 / 10000 ] 16% - 0:00:01 left \r", + " [ 1596 / 10000 ] 16% - 0:00:01 left \r", + " [ 1597 / 10000 ] 16% - 0:00:01 left \r", + " [ 1598 / 10000 ] 16% - 0:00:01 left \r", + " [ 1599 / 10000 ] 16% - 0:00:01 left \r", + " [ 1600 / 10000 ] 16% - 0:00:01 left \r", + " [ 1601 / 10000 ] 16% - 0:00:01 left \r", + " [ 1602 / 10000 ] 16% - 0:00:01 left \r", + " [ 1603 / 10000 ] 16% - 0:00:01 left \r", + " [ 1604 / 10000 ] 16% - 0:00:01 left \r", + " [ 1605 / 10000 ] 16% - 0:00:01 left \r", + " [ 1606 / 10000 ] 16% - 0:00:01 left \r", + " [ 1607 / 10000 ] 16% - 0:00:01 left \r", + " [ 1608 / 10000 ] 16% - 0:00:01 left \r", + " [ 1609 / 10000 ] 16% - 0:00:01 left \r", + " [ 1610 / 10000 ] 16% - 0:00:01 left \r", + " [ 1611 / 10000 ] 16% - 0:00:01 left \r", + " [ 1612 / 10000 ] 16% - 0:00:01 left \r", + " [ 1613 / 10000 ] 16% - 0:00:01 left \r", + " [ 1614 / 10000 ] 16% - 0:00:01 left \r", + " [ 1615 / 10000 ] 16% - 0:00:01 left \r", + " [ 1616 / 10000 ] 16% - 0:00:01 left \r", + " [ 1617 / 10000 ] 16% - 0:00:01 left \r", + " [ 1618 / 10000 ] 16% - 0:00:01 left \r", + " [ 1619 / 10000 ] 16% - 0:00:01 left \r", + " [ 1620 / 10000 ] 16% - 0:00:01 left \r", + " [ 1621 / 10000 ] 16% - 0:00:01 left \r", + " [ 1622 / 10000 ] 16% - 0:00:01 left \r", + " [ 1623 / 10000 ] 16% - 0:00:01 left \r", + " [ 1624 / 10000 ] 16% - 0:00:01 left \r", + " [ 1625 / 10000 ] 16% - 0:00:01 left \r", + " [ 1626 / 10000 ] 16% - 0:00:01 left \r", + " [ 1627 / 10000 ] 16% - 0:00:01 left \r", + " [ 1628 / 10000 ] 16% - 0:00:01 left \r", + " [ 1629 / 10000 ] 16% - 0:00:01 left \r", + " [ 1630 / 10000 ] 16% - 0:00:01 left \r", + " [ 1631 / 10000 ] 16% - 0:00:01 left \r", + " [ 1632 / 10000 ] 16% - 0:00:01 left \r", + " [ 1633 / 10000 ] 16% - 0:00:01 left \r", + " [ 1634 / 10000 ] 16% - 0:00:01 left \r", + " [ 1635 / 10000 ] 16% - 0:00:01 left \r", + " [ 1636 / 10000 ] 16% - 0:00:01 left \r", + " [ 1637 / 10000 ] 16% - 0:00:01 left \r", + " [ 1638 / 10000 ] 16% - 0:00:01 left \r", + " [ 1639 / 10000 ] 16% - 0:00:01 left \r", + " [ 1640 / 10000 ] 16% - 0:00:01 left \r", + " [ 1641 / 10000 ] 16% - 0:00:01 left \r", + " [ 1642 / 10000 ] 16% - 0:00:01 left \r", + " [ 1643 / 10000 ] 16% - 0:00:01 left \r", + " [ 1644 / 10000 ] 16% - 0:00:01 left \r", + " [ 1645 / 10000 ] 16% - 0:00:01 left \r", + " [ 1646 / 10000 ] 16% - 0:00:01 left \r", + " [ 1647 / 10000 ] 16% - 0:00:01 left \r", + " [ 1648 / 10000 ] 16% - 0:00:01 left \r", + " [ 1649 / 10000 ] 16% - 0:00:01 left \r", + " [ 1650 / 10000 ] 16% - 0:00:01 left \r", + " [ 1651 / 10000 ] 17% - 0:00:01 left \r", + " [ 1652 / 10000 ] 17% - 0:00:01 left \r", + " [ 1653 / 10000 ] 17% - 0:00:01 left \r", + " [ 1654 / 10000 ] 17% - 0:00:01 left \r", + " [ 1655 / 10000 ] 17% - 0:00:01 left \r", + " [ 1656 / 10000 ] 17% - 0:00:01 left \r", + " [ 1657 / 10000 ] 17% - 0:00:01 left \r", + " [ 1658 / 10000 ] 17% - 0:00:01 left \r", + " [ 1659 / 10000 ] 17% - 0:00:01 left \r", + " [ 1660 / 10000 ] 17% - 0:00:01 left \r", + " [ 1661 / 10000 ] 17% - 0:00:01 left \r", + " [ 1662 / 10000 ] 17% - 0:00:01 left \r", + " [ 1663 / 10000 ] 17% - 0:00:01 left \r", + " [ 1664 / 10000 ] 17% - 0:00:01 left \r", + " [ 1665 / 10000 ] 17% - 0:00:01 left \r", + " [ 1666 / 10000 ] 17% - 0:00:01 left \r", + " [ 1667 / 10000 ] 17% - 0:00:01 left \r", + " [ 1668 / 10000 ] 17% - 0:00:01 left \r", + " [ 1669 / 10000 ] 17% - 0:00:01 left \r", + " [ 1670 / 10000 ] 17% - 0:00:01 left \r", + " [ 1671 / 10000 ] 17% - 0:00:01 left \r", + " [ 1672 / 10000 ] 17% - 0:00:01 left \r", + " [ 1673 / 10000 ] 17% - 0:00:01 left \r", + " [ 1674 / 10000 ] 17% - 0:00:01 left \r", + " [ 1675 / 10000 ] 17% - 0:00:01 left \r", + " [ 1676 / 10000 ] 17% - 0:00:01 left \r", + " [ 1677 / 10000 ] 17% - 0:00:01 left \r", + " [ 1678 / 10000 ] 17% - 0:00:01 left \r", + " [ 1679 / 10000 ] 17% - 0:00:01 left \r", + " [ 1680 / 10000 ] 17% - 0:00:01 left \r", + " [ 1681 / 10000 ] 17% - 0:00:01 left \r", + " [ 1682 / 10000 ] 17% - 0:00:01 left \r", + " [ 1683 / 10000 ] 17% - 0:00:01 left \r", + " [ 1684 / 10000 ] 17% - 0:00:01 left \r", + " [ 1685 / 10000 ] 17% - 0:00:01 left \r", + " [ 1686 / 10000 ] 17% - 0:00:01 left \r", + " [ 1687 / 10000 ] 17% - 0:00:01 left \r", + " [ 1688 / 10000 ] 17% - 0:00:01 left \r", + " [ 1689 / 10000 ] 17% - 0:00:01 left \r", + " [ 1690 / 10000 ] 17% - 0:00:01 left \r", + " [ 1691 / 10000 ] 17% - 0:00:01 left \r", + " [ 1692 / 10000 ] 17% - 0:00:01 left \r", + " [ 1693 / 10000 ] 17% - 0:00:01 left \r", + " [ 1694 / 10000 ] 17% - 0:00:01 left \r", + " [ 1695 / 10000 ] 17% - 0:00:01 left \r", + " [ 1696 / 10000 ] 17% - 0:00:01 left \r", + " [ 1697 / 10000 ] 17% - 0:00:01 left \r", + " [ 1698 / 10000 ] 17% - 0:00:01 left \r", + " [ 1699 / 10000 ] 17% - 0:00:01 left \r", + " [ 1700 / 10000 ] 17% - 0:00:01 left \r", + " [ 1701 / 10000 ] 17% - 0:00:01 left \r", + " [ 1702 / 10000 ] 17% - 0:00:01 left \r", + " [ 1703 / 10000 ] 17% - 0:00:01 left \r", + " [ 1704 / 10000 ] 17% - 0:00:01 left \r", + " [ 1705 / 10000 ] 17% - 0:00:01 left \r", + " [ 1706 / 10000 ] 17% - 0:00:01 left \r", + " [ 1707 / 10000 ] 17% - 0:00:01 left \r", + " [ 1708 / 10000 ] 17% - 0:00:01 left \r", + " [ 1709 / 10000 ] 17% - 0:00:01 left \r", + " [ 1710 / 10000 ] 17% - 0:00:01 left \r", + " [ 1711 / 10000 ] 17% - 0:00:01 left \r", + " [ 1712 / 10000 ] 17% - 0:00:01 left \r", + " [ 1713 / 10000 ] 17% - 0:00:01 left \r", + " [ 1714 / 10000 ] 17% - 0:00:01 left \r", + " [ 1715 / 10000 ] 17% - 0:00:01 left \r", + " [ 1716 / 10000 ] 17% - 0:00:01 left \r", + " [ 1717 / 10000 ] 17% - 0:00:01 left \r", + " [ 1718 / 10000 ] 17% - 0:00:01 left \r", + " [ 1719 / 10000 ] 17% - 0:00:01 left \r", + " [ 1720 / 10000 ] 17% - 0:00:01 left \r", + " [ 1721 / 10000 ] 17% - 0:00:01 left \r", + " [ 1722 / 10000 ] 17% - 0:00:01 left \r", + " [ 1723 / 10000 ] 17% - 0:00:01 left \r", + " [ 1724 / 10000 ] 17% - 0:00:01 left \r", + " [ 1725 / 10000 ] 17% - 0:00:01 left \r", + " [ 1726 / 10000 ] 17% - 0:00:01 left \r", + " [ 1727 / 10000 ] 17% - 0:00:01 left \r", + " [ 1728 / 10000 ] 17% - 0:00:01 left \r", + " [ 1729 / 10000 ] 17% - 0:00:01 left \r", + " [ 1730 / 10000 ] 17% - 0:00:01 left \r", + " [ 1731 / 10000 ] 17% - 0:00:01 left \r", + " [ 1732 / 10000 ] 17% - 0:00:01 left \r", + " [ 1733 / 10000 ] 17% - 0:00:01 left \r", + " [ 1734 / 10000 ] 17% - 0:00:01 left \r", + " [ 1735 / 10000 ] 17% - 0:00:01 left \r", + " [ 1736 / 10000 ] 17% - 0:00:01 left \r", + " [ 1737 / 10000 ] 17% - 0:00:01 left \r", + " [ 1738 / 10000 ] 17% - 0:00:01 left \r", + " [ 1739 / 10000 ] 17% - 0:00:01 left \r", + " [ 1740 / 10000 ] 17% - 0:00:01 left \r", + " [ 1741 / 10000 ] 17% - 0:00:01 left \r", + " [ 1742 / 10000 ] 17% - 0:00:01 left \r", + " [ 1743 / 10000 ] 17% - 0:00:01 left \r", + " [ 1744 / 10000 ] 17% - 0:00:01 left \r", + " [ 1745 / 10000 ] 17% - 0:00:01 left \r", + " [ 1746 / 10000 ] 17% - 0:00:01 left \r", + " [ 1747 / 10000 ] 17% - 0:00:01 left \r", + " [ 1748 / 10000 ] 17% - 0:00:01 left \r", + " [ 1749 / 10000 ] 17% - 0:00:01 left \r", + " [ 1750 / 10000 ] 18% - 0:00:01 left \r", + " [ 1751 / 10000 ] 18% - 0:00:01 left \r", + " [ 1752 / 10000 ] 18% - 0:00:01 left \r", + " [ 1753 / 10000 ] 18% - 0:00:01 left \r", + " [ 1754 / 10000 ] 18% - 0:00:01 left \r", + " [ 1755 / 10000 ] 18% - 0:00:01 left \r", + " [ 1756 / 10000 ] 18% - 0:00:01 left \r", + " [ 1757 / 10000 ] 18% - 0:00:01 left \r", + " [ 1758 / 10000 ] 18% - 0:00:01 left \r", + " [ 1759 / 10000 ] 18% - 0:00:01 left \r", + " [ 1760 / 10000 ] 18% - 0:00:01 left \r", + " [ 1761 / 10000 ] 18% - 0:00:01 left \r", + " [ 1762 / 10000 ] 18% - 0:00:01 left \r", + " [ 1763 / 10000 ] 18% - 0:00:01 left \r", + " [ 1764 / 10000 ] 18% - 0:00:01 left \r", + " [ 1765 / 10000 ] 18% - 0:00:01 left \r", + " [ 1766 / 10000 ] 18% - 0:00:01 left \r", + " [ 1767 / 10000 ] 18% - 0:00:01 left \r", + " [ 1768 / 10000 ] 18% - 0:00:01 left \r", + " [ 1769 / 10000 ] 18% - 0:00:01 left \r", + " [ 1770 / 10000 ] 18% - 0:00:01 left \r", + " [ 1771 / 10000 ] 18% - 0:00:01 left \r", + " [ 1772 / 10000 ] 18% - 0:00:01 left \r", + " [ 1773 / 10000 ] 18% - 0:00:01 left \r", + " [ 1774 / 10000 ] 18% - 0:00:01 left \r", + " [ 1775 / 10000 ] 18% - 0:00:01 left \r", + " [ 1776 / 10000 ] 18% - 0:00:01 left \r", + " [ 1777 / 10000 ] 18% - 0:00:01 left \r", + " [ 1778 / 10000 ] 18% - 0:00:01 left \r", + " [ 1779 / 10000 ] 18% - 0:00:01 left \r", + " [ 1780 / 10000 ] 18% - 0:00:01 left \r", + " [ 1781 / 10000 ] 18% - 0:00:01 left \r", + " [ 1782 / 10000 ] 18% - 0:00:01 left \r", + " [ 1783 / 10000 ] 18% - 0:00:01 left \r", + " [ 1784 / 10000 ] 18% - 0:00:01 left \r", + " [ 1785 / 10000 ] 18% - 0:00:01 left \r", + " [ 1786 / 10000 ] 18% - 0:00:01 left \r", + " [ 1787 / 10000 ] 18% - 0:00:01 left \r", + " [ 1788 / 10000 ] 18% - 0:00:01 left \r", + " [ 1789 / 10000 ] 18% - 0:00:01 left \r", + " [ 1790 / 10000 ] 18% - 0:00:01 left \r", + " [ 1791 / 10000 ] 18% - 0:00:01 left \r", + " [ 1792 / 10000 ] 18% - 0:00:01 left \r", + " [ 1793 / 10000 ] 18% - 0:00:01 left \r", + " [ 1794 / 10000 ] 18% - 0:00:01 left \r", + " [ 1795 / 10000 ] 18% - 0:00:01 left \r", + " [ 1796 / 10000 ] 18% - 0:00:01 left \r", + " [ 1797 / 10000 ] 18% - 0:00:01 left \r", + " [ 1798 / 10000 ] 18% - 0:00:01 left \r", + " [ 1799 / 10000 ] 18% - 0:00:01 left \r", + " [ 1800 / 10000 ] 18% - 0:00:01 left \r", + " [ 1801 / 10000 ] 18% - 0:00:01 left \r", + " [ 1802 / 10000 ] 18% - 0:00:01 left \r", + " [ 1803 / 10000 ] 18% - 0:00:01 left \r", + " [ 1804 / 10000 ] 18% - 0:00:01 left \r", + " [ 1805 / 10000 ] 18% - 0:00:01 left \r", + " [ 1806 / 10000 ] 18% - 0:00:01 left \r", + " [ 1807 / 10000 ] 18% - 0:00:01 left \r", + " [ 1808 / 10000 ] 18% - 0:00:01 left \r", + " [ 1809 / 10000 ] 18% - 0:00:01 left \r", + " [ 1810 / 10000 ] 18% - 0:00:01 left \r", + " [ 1811 / 10000 ] 18% - 0:00:01 left \r", + " [ 1812 / 10000 ] 18% - 0:00:01 left \r", + " [ 1813 / 10000 ] 18% - 0:00:01 left \r", + " [ 1814 / 10000 ] 18% - 0:00:01 left \r", + " [ 1815 / 10000 ] 18% - 0:00:01 left \r", + " [ 1816 / 10000 ] 18% - 0:00:01 left \r", + " [ 1817 / 10000 ] 18% - 0:00:01 left \r", + " [ 1818 / 10000 ] 18% - 0:00:01 left \r", + " [ 1819 / 10000 ] 18% - 0:00:01 left \r", + " [ 1820 / 10000 ] 18% - 0:00:01 left \r", + " [ 1821 / 10000 ] 18% - 0:00:01 left \r", + " [ 1822 / 10000 ] 18% - 0:00:01 left \r", + " [ 1823 / 10000 ] 18% - 0:00:01 left \r", + " [ 1824 / 10000 ] 18% - 0:00:01 left \r", + " [ 1825 / 10000 ] 18% - 0:00:01 left \r", + " [ 1826 / 10000 ] 18% - 0:00:01 left \r", + " [ 1827 / 10000 ] 18% - 0:00:01 left \r", + " [ 1828 / 10000 ] 18% - 0:00:01 left \r", + " [ 1829 / 10000 ] 18% - 0:00:01 left \r", + " [ 1830 / 10000 ] 18% - 0:00:01 left \r", + " [ 1831 / 10000 ] 18% - 0:00:01 left \r", + " [ 1832 / 10000 ] 18% - 0:00:01 left \r", + " [ 1833 / 10000 ] 18% - 0:00:01 left \r", + " [ 1834 / 10000 ] 18% - 0:00:01 left \r", + " [ 1835 / 10000 ] 18% - 0:00:01 left \r", + " [ 1836 / 10000 ] 18% - 0:00:01 left \r", + " [ 1837 / 10000 ] 18% - 0:00:01 left \r", + " [ 1838 / 10000 ] 18% - 0:00:01 left \r", + " [ 1839 / 10000 ] 18% - 0:00:01 left \r", + " [ 1840 / 10000 ] 18% - 0:00:01 left \r", + " [ 1841 / 10000 ] 18% - 0:00:01 left \r", + " [ 1842 / 10000 ] 18% - 0:00:01 left \r", + " [ 1843 / 10000 ] 18% - 0:00:01 left \r", + " [ 1844 / 10000 ] 18% - 0:00:01 left \r", + " [ 1845 / 10000 ] 18% - 0:00:01 left \r", + " [ 1846 / 10000 ] 18% - 0:00:01 left \r", + " [ 1847 / 10000 ] 18% - 0:00:01 left \r", + " [ 1848 / 10000 ] 18% - 0:00:01 left \r", + " [ 1849 / 10000 ] 18% - 0:00:01 left \r", + " [ 1850 / 10000 ] 18% - 0:00:01 left \r", + " [ 1851 / 10000 ] 19% - 0:00:01 left \r", + " [ 1852 / 10000 ] 19% - 0:00:01 left \r", + " [ 1853 / 10000 ] 19% - 0:00:01 left \r", + " [ 1854 / 10000 ] 19% - 0:00:01 left \r", + " [ 1855 / 10000 ] 19% - 0:00:01 left \r", + " [ 1856 / 10000 ] 19% - 0:00:01 left \r", + " [ 1857 / 10000 ] 19% - 0:00:01 left \r", + " [ 1858 / 10000 ] 19% - 0:00:01 left \r", + " [ 1859 / 10000 ] 19% - 0:00:01 left \r", + " [ 1860 / 10000 ] 19% - 0:00:01 left \r", + " [ 1861 / 10000 ] 19% - 0:00:01 left \r", + " [ 1862 / 10000 ] 19% - 0:00:01 left \r", + " [ 1863 / 10000 ] 19% - 0:00:01 left \r", + " [ 1864 / 10000 ] 19% - 0:00:01 left \r", + " [ 1865 / 10000 ] 19% - 0:00:01 left \r", + " [ 1866 / 10000 ] 19% - 0:00:01 left \r", + " [ 1867 / 10000 ] 19% - 0:00:01 left \r", + " [ 1868 / 10000 ] 19% - 0:00:01 left \r", + " [ 1869 / 10000 ] 19% - 0:00:01 left \r", + " [ 1870 / 10000 ] 19% - 0:00:01 left \r", + " [ 1871 / 10000 ] 19% - 0:00:01 left \r", + " [ 1872 / 10000 ] 19% - 0:00:01 left \r", + " [ 1873 / 10000 ] 19% - 0:00:01 left \r", + " [ 1874 / 10000 ] 19% - 0:00:01 left \r", + " [ 1875 / 10000 ] 19% - 0:00:01 left \r", + " [ 1876 / 10000 ] 19% - 0:00:01 left \r", + " [ 1877 / 10000 ] 19% - 0:00:01 left \r", + " [ 1878 / 10000 ] 19% - 0:00:01 left \r", + " [ 1879 / 10000 ] 19% - 0:00:01 left \r", + " [ 1880 / 10000 ] 19% - 0:00:01 left \r", + " [ 1881 / 10000 ] 19% - 0:00:01 left \r", + " [ 1882 / 10000 ] 19% - 0:00:01 left \r", + " [ 1883 / 10000 ] 19% - 0:00:01 left \r", + " [ 1884 / 10000 ] 19% - 0:00:01 left \r", + " [ 1885 / 10000 ] 19% - 0:00:01 left \r", + " [ 1886 / 10000 ] 19% - 0:00:01 left \r", + " [ 1887 / 10000 ] 19% - 0:00:01 left \r", + " [ 1888 / 10000 ] 19% - 0:00:01 left \r", + " [ 1889 / 10000 ] 19% - 0:00:01 left \r", + " [ 1890 / 10000 ] 19% - 0:00:01 left \r", + " [ 1891 / 10000 ] 19% - 0:00:01 left \r", + " [ 1892 / 10000 ] 19% - 0:00:01 left \r", + " [ 1893 / 10000 ] 19% - 0:00:01 left \r", + " [ 1894 / 10000 ] 19% - 0:00:01 left \r", + " [ 1895 / 10000 ] 19% - 0:00:01 left \r", + " [ 1896 / 10000 ] 19% - 0:00:01 left \r", + " [ 1897 / 10000 ] 19% - 0:00:01 left \r", + " [ 1898 / 10000 ] 19% - 0:00:01 left \r", + " [ 1899 / 10000 ] 19% - 0:00:01 left \r", + " [ 1900 / 10000 ] 19% - 0:00:01 left \r", + " [ 1901 / 10000 ] 19% - 0:00:01 left \r", + " [ 1902 / 10000 ] 19% - 0:00:01 left \r", + " [ 1903 / 10000 ] 19% - 0:00:01 left \r", + " [ 1904 / 10000 ] 19% - 0:00:01 left \r", + " [ 1905 / 10000 ] 19% - 0:00:01 left \r", + " [ 1906 / 10000 ] 19% - 0:00:01 left \r", + " [ 1907 / 10000 ] 19% - 0:00:01 left \r", + " [ 1908 / 10000 ] 19% - 0:00:01 left \r", + " [ 1909 / 10000 ] 19% - 0:00:01 left \r", + " [ 1910 / 10000 ] 19% - 0:00:01 left \r", + " [ 1911 / 10000 ] 19% - 0:00:01 left \r", + " [ 1912 / 10000 ] 19% - 0:00:01 left \r", + " [ 1913 / 10000 ] 19% - 0:00:01 left \r", + " [ 1914 / 10000 ] 19% - 0:00:01 left \r", + " [ 1915 / 10000 ] 19% - 0:00:01 left \r", + " [ 1916 / 10000 ] 19% - 0:00:01 left \r", + " [ 1917 / 10000 ] 19% - 0:00:01 left \r", + " [ 1918 / 10000 ] 19% - 0:00:01 left \r", + " [ 1919 / 10000 ] 19% - 0:00:01 left \r", + " [ 1920 / 10000 ] 19% - 0:00:01 left \r", + " [ 1921 / 10000 ] 19% - 0:00:01 left \r", + " [ 1922 / 10000 ] 19% - 0:00:01 left \r", + " [ 1923 / 10000 ] 19% - 0:00:01 left \r", + " [ 1924 / 10000 ] 19% - 0:00:01 left \r", + " [ 1925 / 10000 ] 19% - 0:00:01 left \r", + " [ 1926 / 10000 ] 19% - 0:00:01 left \r", + " [ 1927 / 10000 ] 19% - 0:00:01 left \r", + " [ 1928 / 10000 ] 19% - 0:00:01 left \r", + " [ 1929 / 10000 ] 19% - 0:00:01 left \r", + " [ 1930 / 10000 ] 19% - 0:00:01 left \r", + " [ 1931 / 10000 ] 19% - 0:00:01 left \r", + " [ 1932 / 10000 ] 19% - 0:00:01 left \r", + " [ 1933 / 10000 ] 19% - 0:00:01 left \r", + " [ 1934 / 10000 ] 19% - 0:00:01 left \r", + " [ 1935 / 10000 ] 19% - 0:00:01 left \r", + " [ 1936 / 10000 ] 19% - 0:00:01 left \r", + " [ 1937 / 10000 ] 19% - 0:00:01 left \r", + " [ 1938 / 10000 ] 19% - 0:00:01 left \r", + " [ 1939 / 10000 ] 19% - 0:00:01 left \r", + " [ 1940 / 10000 ] 19% - 0:00:01 left \r", + " [ 1941 / 10000 ] 19% - 0:00:01 left \r", + " [ 1942 / 10000 ] 19% - 0:00:01 left \r", + " [ 1943 / 10000 ] 19% - 0:00:01 left \r", + " [ 1944 / 10000 ] 19% - 0:00:01 left \r", + " [ 1945 / 10000 ] 19% - 0:00:01 left \r", + " [ 1946 / 10000 ] 19% - 0:00:01 left \r", + " [ 1947 / 10000 ] 19% - 0:00:01 left \r", + " [ 1948 / 10000 ] 19% - 0:00:01 left \r", + " [ 1949 / 10000 ] 19% - 0:00:01 left \r", + " [ 1950 / 10000 ] 20% - 0:00:01 left \r", + " [ 1951 / 10000 ] 20% - 0:00:01 left \r", + " [ 1952 / 10000 ] 20% - 0:00:01 left \r", + " [ 1953 / 10000 ] 20% - 0:00:01 left \r", + " [ 1954 / 10000 ] 20% - 0:00:01 left \r", + " [ 1955 / 10000 ] 20% - 0:00:01 left \r", + " [ 1956 / 10000 ] 20% - 0:00:01 left \r", + " [ 1957 / 10000 ] 20% - 0:00:01 left \r", + " [ 1958 / 10000 ] 20% - 0:00:01 left \r", + " [ 1959 / 10000 ] 20% - 0:00:01 left \r", + " [ 1960 / 10000 ] 20% - 0:00:01 left \r", + " [ 1961 / 10000 ] 20% - 0:00:01 left \r", + " [ 1962 / 10000 ] 20% - 0:00:01 left \r", + " [ 1963 / 10000 ] 20% - 0:00:01 left \r", + " [ 1964 / 10000 ] 20% - 0:00:01 left \r", + " [ 1965 / 10000 ] 20% - 0:00:01 left \r", + " [ 1966 / 10000 ] 20% - 0:00:01 left \r", + " [ 1967 / 10000 ] 20% - 0:00:01 left \r", + " [ 1968 / 10000 ] 20% - 0:00:01 left \r", + " [ 1969 / 10000 ] 20% - 0:00:01 left \r", + " [ 1970 / 10000 ] 20% - 0:00:01 left \r", + " [ 1971 / 10000 ] 20% - 0:00:01 left \r", + " [ 1972 / 10000 ] 20% - 0:00:01 left \r", + " [ 1973 / 10000 ] 20% - 0:00:01 left \r", + " [ 1974 / 10000 ] 20% - 0:00:01 left \r", + " [ 1975 / 10000 ] 20% - 0:00:01 left \r", + " [ 1976 / 10000 ] 20% - 0:00:01 left \r", + " [ 1977 / 10000 ] 20% - 0:00:01 left \r", + " [ 1978 / 10000 ] 20% - 0:00:01 left \r", + " [ 1979 / 10000 ] 20% - 0:00:01 left \r", + " [ 1980 / 10000 ] 20% - 0:00:01 left \r", + " [ 1981 / 10000 ] 20% - 0:00:01 left \r", + " [ 1982 / 10000 ] 20% - 0:00:01 left \r", + " [ 1983 / 10000 ] 20% - 0:00:01 left \r", + " [ 1984 / 10000 ] 20% - 0:00:01 left \r", + " [ 1985 / 10000 ] 20% - 0:00:01 left \r", + " [ 1986 / 10000 ] 20% - 0:00:01 left \r", + " [ 1987 / 10000 ] 20% - 0:00:01 left \r", + " [ 1988 / 10000 ] 20% - 0:00:01 left \r", + " [ 1989 / 10000 ] 20% - 0:00:01 left \r", + " [ 1990 / 10000 ] 20% - 0:00:01 left \r", + " [ 1991 / 10000 ] 20% - 0:00:01 left \r", + " [ 1992 / 10000 ] 20% - 0:00:01 left \r", + " [ 1993 / 10000 ] 20% - 0:00:01 left \r", + " [ 1994 / 10000 ] 20% - 0:00:01 left \r", + " [ 1995 / 10000 ] 20% - 0:00:01 left \r", + " [ 1996 / 10000 ] 20% - 0:00:01 left \r", + " [ 1997 / 10000 ] 20% - 0:00:01 left \r", + " [ 1998 / 10000 ] 20% - 0:00:01 left \r", + " [ 1999 / 10000 ] 20% - 0:00:01 left \r", + " [ 2000 / 10000 ] 20% - 0:00:01 left \r", + " [ 2001 / 10000 ] 20% - 0:00:01 left \r", + " [ 2002 / 10000 ] 20% - 0:00:01 left \r", + " [ 2003 / 10000 ] 20% - 0:00:01 left \r", + " [ 2004 / 10000 ] 20% - 0:00:01 left \r", + " [ 2005 / 10000 ] 20% - 0:00:01 left \r", + " [ 2006 / 10000 ] 20% - 0:00:01 left \r", + " [ 2007 / 10000 ] 20% - 0:00:01 left \r", + " [ 2008 / 10000 ] 20% - 0:00:01 left \r", + " [ 2009 / 10000 ] 20% - 0:00:01 left \r", + " [ 2010 / 10000 ] 20% - 0:00:01 left \r", + " [ 2011 / 10000 ] 20% - 0:00:01 left \r", + " [ 2012 / 10000 ] 20% - 0:00:01 left \r", + " [ 2013 / 10000 ] 20% - 0:00:01 left \r", + " [ 2014 / 10000 ] 20% - 0:00:01 left \r", + " [ 2015 / 10000 ] 20% - 0:00:01 left \r", + " [ 2016 / 10000 ] 20% - 0:00:01 left \r", + " [ 2017 / 10000 ] 20% - 0:00:01 left \r", + " [ 2018 / 10000 ] 20% - 0:00:01 left \r", + " [ 2019 / 10000 ] 20% - 0:00:01 left \r", + " [ 2020 / 10000 ] 20% - 0:00:01 left \r", + " [ 2021 / 10000 ] 20% - 0:00:01 left \r", + " [ 2022 / 10000 ] 20% - 0:00:01 left \r", + " [ 2023 / 10000 ] 20% - 0:00:01 left \r", + " [ 2024 / 10000 ] 20% - 0:00:01 left \r", + " [ 2025 / 10000 ] 20% - 0:00:01 left \r", + " [ 2026 / 10000 ] 20% - 0:00:01 left \r", + " [ 2027 / 10000 ] 20% - 0:00:01 left \r", + " [ 2028 / 10000 ] 20% - 0:00:01 left \r", + " [ 2029 / 10000 ] 20% - 0:00:01 left \r", + " [ 2030 / 10000 ] 20% - 0:00:01 left \r", + " [ 2031 / 10000 ] 20% - 0:00:01 left \r", + " [ 2032 / 10000 ] 20% - 0:00:01 left \r", + " [ 2033 / 10000 ] 20% - 0:00:01 left \r", + " [ 2034 / 10000 ] 20% - 0:00:01 left \r", + " [ 2035 / 10000 ] 20% - 0:00:01 left \r", + " [ 2036 / 10000 ] 20% - 0:00:01 left \r", + " [ 2037 / 10000 ] 20% - 0:00:01 left \r", + " [ 2038 / 10000 ] 20% - 0:00:01 left \r", + " [ 2039 / 10000 ] 20% - 0:00:01 left \r", + " [ 2040 / 10000 ] 20% - 0:00:01 left \r", + " [ 2041 / 10000 ] 20% - 0:00:01 left \r", + " [ 2042 / 10000 ] 20% - 0:00:01 left \r", + " [ 2043 / 10000 ] 20% - 0:00:01 left \r", + " [ 2044 / 10000 ] 20% - 0:00:01 left \r", + " [ 2045 / 10000 ] 20% - 0:00:01 left \r", + " [ 2046 / 10000 ] 20% - 0:00:01 left \r", + " [ 2047 / 10000 ] 20% - 0:00:01 left \r", + " [ 2048 / 10000 ] 20% - 0:00:01 left \r", + " [ 2049 / 10000 ] 20% - 0:00:01 left \r", + " [ 2050 / 10000 ] 20% - 0:00:01 left \r", + " [ 2051 / 10000 ] 21% - 0:00:01 left \r", + " [ 2052 / 10000 ] 21% - 0:00:01 left \r", + " [ 2053 / 10000 ] 21% - 0:00:01 left \r", + " [ 2054 / 10000 ] 21% - 0:00:01 left \r", + " [ 2055 / 10000 ] 21% - 0:00:01 left \r", + " [ 2056 / 10000 ] 21% - 0:00:01 left \r", + " [ 2057 / 10000 ] 21% - 0:00:01 left \r", + " [ 2058 / 10000 ] 21% - 0:00:01 left \r", + " [ 2059 / 10000 ] 21% - 0:00:01 left \r", + " [ 2060 / 10000 ] 21% - 0:00:01 left \r", + " [ 2061 / 10000 ] 21% - 0:00:01 left \r", + " [ 2062 / 10000 ] 21% - 0:00:01 left \r", + " [ 2063 / 10000 ] 21% - 0:00:01 left \r", + " [ 2064 / 10000 ] 21% - 0:00:01 left \r", + " [ 2065 / 10000 ] 21% - 0:00:01 left \r", + " [ 2066 / 10000 ] 21% - 0:00:01 left \r", + " [ 2067 / 10000 ] 21% - 0:00:01 left \r", + " [ 2068 / 10000 ] 21% - 0:00:01 left \r", + " [ 2069 / 10000 ] 21% - 0:00:01 left \r", + " [ 2070 / 10000 ] 21% - 0:00:01 left \r", + " [ 2071 / 10000 ] 21% - 0:00:01 left \r", + " [ 2072 / 10000 ] 21% - 0:00:01 left \r", + " [ 2073 / 10000 ] 21% - 0:00:01 left \r", + " [ 2074 / 10000 ] 21% - 0:00:01 left \r", + " [ 2075 / 10000 ] 21% - 0:00:01 left \r", + " [ 2076 / 10000 ] 21% - 0:00:01 left \r", + " [ 2077 / 10000 ] 21% - 0:00:01 left \r", + " [ 2078 / 10000 ] 21% - 0:00:01 left \r", + " [ 2079 / 10000 ] 21% - 0:00:01 left \r", + " [ 2080 / 10000 ] 21% - 0:00:01 left \r", + " [ 2081 / 10000 ] 21% - 0:00:01 left \r", + " [ 2082 / 10000 ] 21% - 0:00:01 left \r", + " [ 2083 / 10000 ] 21% - 0:00:01 left \r", + " [ 2084 / 10000 ] 21% - 0:00:01 left \r", + " [ 2085 / 10000 ] 21% - 0:00:01 left \r", + " [ 2086 / 10000 ] 21% - 0:00:01 left \r", + " [ 2087 / 10000 ] 21% - 0:00:01 left \r", + " [ 2088 / 10000 ] 21% - 0:00:01 left \r", + " [ 2089 / 10000 ] 21% - 0:00:01 left \r", + " [ 2090 / 10000 ] 21% - 0:00:01 left \r", + " [ 2091 / 10000 ] 21% - 0:00:01 left \r", + " [ 2092 / 10000 ] 21% - 0:00:01 left \r", + " [ 2093 / 10000 ] 21% - 0:00:01 left \r", + " [ 2094 / 10000 ] 21% - 0:00:01 left \r", + " [ 2095 / 10000 ] 21% - 0:00:01 left \r", + " [ 2096 / 10000 ] 21% - 0:00:01 left \r", + " [ 2097 / 10000 ] 21% - 0:00:01 left \r", + " [ 2098 / 10000 ] 21% - 0:00:01 left \r", + " [ 2099 / 10000 ] 21% - 0:00:01 left \r", + " [ 2100 / 10000 ] 21% - 0:00:01 left \r", + " [ 2101 / 10000 ] 21% - 0:00:01 left \r", + " [ 2102 / 10000 ] 21% - 0:00:01 left \r", + " [ 2103 / 10000 ] 21% - 0:00:01 left \r", + " [ 2104 / 10000 ] 21% - 0:00:01 left \r", + " [ 2105 / 10000 ] 21% - 0:00:01 left \r", + " [ 2106 / 10000 ] 21% - 0:00:01 left \r", + " [ 2107 / 10000 ] 21% - 0:00:01 left \r", + " [ 2108 / 10000 ] 21% - 0:00:01 left \r", + " [ 2109 / 10000 ] 21% - 0:00:01 left \r", + " [ 2110 / 10000 ] 21% - 0:00:01 left \r", + " [ 2111 / 10000 ] 21% - 0:00:01 left \r", + " [ 2112 / 10000 ] 21% - 0:00:01 left \r", + " [ 2113 / 10000 ] 21% - 0:00:01 left \r", + " [ 2114 / 10000 ] 21% - 0:00:01 left \r", + " [ 2115 / 10000 ] 21% - 0:00:01 left \r", + " [ 2116 / 10000 ] 21% - 0:00:01 left \r", + " [ 2117 / 10000 ] 21% - 0:00:01 left \r", + " [ 2118 / 10000 ] 21% - 0:00:01 left \r", + " [ 2119 / 10000 ] 21% - 0:00:01 left \r", + " [ 2120 / 10000 ] 21% - 0:00:01 left \r", + " [ 2121 / 10000 ] 21% - 0:00:01 left \r", + " [ 2122 / 10000 ] 21% - 0:00:01 left \r", + " [ 2123 / 10000 ] 21% - 0:00:01 left \r", + " [ 2124 / 10000 ] 21% - 0:00:01 left \r", + " [ 2125 / 10000 ] 21% - 0:00:01 left \r", + " [ 2126 / 10000 ] 21% - 0:00:01 left \r", + " [ 2127 / 10000 ] 21% - 0:00:01 left \r", + " [ 2128 / 10000 ] 21% - 0:00:01 left \r", + " [ 2129 / 10000 ] 21% - 0:00:01 left \r", + " [ 2130 / 10000 ] 21% - 0:00:01 left \r", + " [ 2131 / 10000 ] 21% - 0:00:01 left \r", + " [ 2132 / 10000 ] 21% - 0:00:01 left \r", + " [ 2133 / 10000 ] 21% - 0:00:01 left \r", + " [ 2134 / 10000 ] 21% - 0:00:01 left \r", + " [ 2135 / 10000 ] 21% - 0:00:01 left \r", + " [ 2136 / 10000 ] 21% - 0:00:01 left \r", + " [ 2137 / 10000 ] 21% - 0:00:01 left \r", + " [ 2138 / 10000 ] 21% - 0:00:01 left \r", + " [ 2139 / 10000 ] 21% - 0:00:01 left \r", + " [ 2140 / 10000 ] 21% - 0:00:01 left \r", + " [ 2141 / 10000 ] 21% - 0:00:01 left \r", + " [ 2142 / 10000 ] 21% - 0:00:01 left \r", + " [ 2143 / 10000 ] 21% - 0:00:01 left \r", + " [ 2144 / 10000 ] 21% - 0:00:01 left \r", + " [ 2145 / 10000 ] 21% - 0:00:01 left \r", + " [ 2146 / 10000 ] 21% - 0:00:01 left \r", + " [ 2147 / 10000 ] 21% - 0:00:01 left \r", + " [ 2148 / 10000 ] 21% - 0:00:01 left \r", + " [ 2149 / 10000 ] 21% - 0:00:01 left \r", + " [ 2150 / 10000 ] 22% - 0:00:01 left \r", + " [ 2151 / 10000 ] 22% - 0:00:01 left \r", + " [ 2152 / 10000 ] 22% - 0:00:01 left \r", + " [ 2153 / 10000 ] 22% - 0:00:01 left \r", + " [ 2154 / 10000 ] 22% - 0:00:01 left \r", + " [ 2155 / 10000 ] 22% - 0:00:01 left \r", + " [ 2156 / 10000 ] 22% - 0:00:01 left \r", + " [ 2157 / 10000 ] 22% - 0:00:01 left \r", + " [ 2158 / 10000 ] 22% - 0:00:01 left \r", + " [ 2159 / 10000 ] 22% - 0:00:01 left \r", + " [ 2160 / 10000 ] 22% - 0:00:01 left \r", + " [ 2161 / 10000 ] 22% - 0:00:01 left \r", + " [ 2162 / 10000 ] 22% - 0:00:01 left \r", + " [ 2163 / 10000 ] 22% - 0:00:01 left \r", + " [ 2164 / 10000 ] 22% - 0:00:01 left \r", + " [ 2165 / 10000 ] 22% - 0:00:01 left \r", + " [ 2166 / 10000 ] 22% - 0:00:01 left \r", + " [ 2167 / 10000 ] 22% - 0:00:01 left \r", + " [ 2168 / 10000 ] 22% - 0:00:01 left \r", + " [ 2169 / 10000 ] 22% - 0:00:01 left \r", + " [ 2170 / 10000 ] 22% - 0:00:01 left \r", + " [ 2171 / 10000 ] 22% - 0:00:01 left \r", + " [ 2172 / 10000 ] 22% - 0:00:01 left \r", + " [ 2173 / 10000 ] 22% - 0:00:01 left \r", + " [ 2174 / 10000 ] 22% - 0:00:01 left \r", + " [ 2175 / 10000 ] 22% - 0:00:01 left \r", + " [ 2176 / 10000 ] 22% - 0:00:01 left \r", + " [ 2177 / 10000 ] 22% - 0:00:01 left \r", + " [ 2178 / 10000 ] 22% - 0:00:01 left \r", + " [ 2179 / 10000 ] 22% - 0:00:01 left \r", + " [ 2180 / 10000 ] 22% - 0:00:01 left \r", + " [ 2181 / 10000 ] 22% - 0:00:01 left \r", + " [ 2182 / 10000 ] 22% - 0:00:01 left \r", + " [ 2183 / 10000 ] 22% - 0:00:01 left \r", + " [ 2184 / 10000 ] 22% - 0:00:01 left \r", + " [ 2185 / 10000 ] 22% - 0:00:01 left \r", + " [ 2186 / 10000 ] 22% - 0:00:01 left \r", + " [ 2187 / 10000 ] 22% - 0:00:01 left \r", + " [ 2188 / 10000 ] 22% - 0:00:01 left \r", + " [ 2189 / 10000 ] 22% - 0:00:01 left \r", + " [ 2190 / 10000 ] 22% - 0:00:01 left \r", + " [ 2191 / 10000 ] 22% - 0:00:01 left \r", + " [ 2192 / 10000 ] 22% - 0:00:01 left \r", + " [ 2193 / 10000 ] 22% - 0:00:01 left \r", + " [ 2194 / 10000 ] 22% - 0:00:01 left \r", + " [ 2195 / 10000 ] 22% - 0:00:01 left \r", + " [ 2196 / 10000 ] 22% - 0:00:01 left \r", + " [ 2197 / 10000 ] 22% - 0:00:01 left \r", + " [ 2198 / 10000 ] 22% - 0:00:01 left \r", + " [ 2199 / 10000 ] 22% - 0:00:01 left \r", + " [ 2200 / 10000 ] 22% - 0:00:01 left \r", + " [ 2201 / 10000 ] 22% - 0:00:01 left \r", + " [ 2202 / 10000 ] 22% - 0:00:01 left \r", + " [ 2203 / 10000 ] 22% - 0:00:01 left \r", + " [ 2204 / 10000 ] 22% - 0:00:01 left \r", + " [ 2205 / 10000 ] 22% - 0:00:01 left \r", + " [ 2206 / 10000 ] 22% - 0:00:01 left \r", + " [ 2207 / 10000 ] 22% - 0:00:01 left \r", + " [ 2208 / 10000 ] 22% - 0:00:01 left \r", + " [ 2209 / 10000 ] 22% - 0:00:01 left \r", + " [ 2210 / 10000 ] 22% - 0:00:01 left \r", + " [ 2211 / 10000 ] 22% - 0:00:01 left \r", + " [ 2212 / 10000 ] 22% - 0:00:01 left \r", + " [ 2213 / 10000 ] 22% - 0:00:01 left \r", + " [ 2214 / 10000 ] 22% - 0:00:01 left \r", + " [ 2215 / 10000 ] 22% - 0:00:01 left \r", + " [ 2216 / 10000 ] 22% - 0:00:01 left \r", + " [ 2217 / 10000 ] 22% - 0:00:01 left \r", + " [ 2218 / 10000 ] 22% - 0:00:01 left \r", + " [ 2219 / 10000 ] 22% - 0:00:01 left \r", + " [ 2220 / 10000 ] 22% - 0:00:01 left \r", + " [ 2221 / 10000 ] 22% - 0:00:01 left \r", + " [ 2222 / 10000 ] 22% - 0:00:01 left \r", + " [ 2223 / 10000 ] 22% - 0:00:01 left \r", + " [ 2224 / 10000 ] 22% - 0:00:01 left \r", + " [ 2225 / 10000 ] 22% - 0:00:01 left \r", + " [ 2226 / 10000 ] 22% - 0:00:01 left \r", + " [ 2227 / 10000 ] 22% - 0:00:01 left \r", + " [ 2228 / 10000 ] 22% - 0:00:01 left \r", + " [ 2229 / 10000 ] 22% - 0:00:01 left \r", + " [ 2230 / 10000 ] 22% - 0:00:01 left \r", + " [ 2231 / 10000 ] 22% - 0:00:01 left \r", + " [ 2232 / 10000 ] 22% - 0:00:01 left \r", + " [ 2233 / 10000 ] 22% - 0:00:01 left \r", + " [ 2234 / 10000 ] 22% - 0:00:01 left \r", + " [ 2235 / 10000 ] 22% - 0:00:01 left \r", + " [ 2236 / 10000 ] 22% - 0:00:01 left \r", + " [ 2237 / 10000 ] 22% - 0:00:01 left \r", + " [ 2238 / 10000 ] 22% - 0:00:01 left \r", + " [ 2239 / 10000 ] 22% - 0:00:01 left \r", + " [ 2240 / 10000 ] 22% - 0:00:01 left \r", + " [ 2241 / 10000 ] 22% - 0:00:01 left \r", + " [ 2242 / 10000 ] 22% - 0:00:01 left \r", + " [ 2243 / 10000 ] 22% - 0:00:01 left \r", + " [ 2244 / 10000 ] 22% - 0:00:01 left \r", + " [ 2245 / 10000 ] 22% - 0:00:01 left \r", + " [ 2246 / 10000 ] 22% - 0:00:01 left \r", + " [ 2247 / 10000 ] 22% - 0:00:01 left \r", + " [ 2248 / 10000 ] 22% - 0:00:01 left \r", + " [ 2249 / 10000 ] 22% - 0:00:01 left \r", + " [ 2250 / 10000 ] 22% - 0:00:01 left \r", + " [ 2251 / 10000 ] 23% - 0:00:01 left \r", + " [ 2252 / 10000 ] 23% - 0:00:01 left \r", + " [ 2253 / 10000 ] 23% - 0:00:01 left \r", + " [ 2254 / 10000 ] 23% - 0:00:01 left \r", + " [ 2255 / 10000 ] 23% - 0:00:01 left \r", + " [ 2256 / 10000 ] 23% - 0:00:01 left \r", + " [ 2257 / 10000 ] 23% - 0:00:01 left \r", + " [ 2258 / 10000 ] 23% - 0:00:01 left \r", + " [ 2259 / 10000 ] 23% - 0:00:01 left \r", + " [ 2260 / 10000 ] 23% - 0:00:01 left \r", + " [ 2261 / 10000 ] 23% - 0:00:01 left \r", + " [ 2262 / 10000 ] 23% - 0:00:01 left \r", + " [ 2263 / 10000 ] 23% - 0:00:01 left \r", + " [ 2264 / 10000 ] 23% - 0:00:01 left \r", + " [ 2265 / 10000 ] 23% - 0:00:01 left \r", + " [ 2266 / 10000 ] 23% - 0:00:01 left \r", + " [ 2267 / 10000 ] 23% - 0:00:01 left \r", + " [ 2268 / 10000 ] 23% - 0:00:01 left \r", + " [ 2269 / 10000 ] 23% - 0:00:01 left \r", + " [ 2270 / 10000 ] 23% - 0:00:01 left \r", + " [ 2271 / 10000 ] 23% - 0:00:01 left \r", + " [ 2272 / 10000 ] 23% - 0:00:01 left \r", + " [ 2273 / 10000 ] 23% - 0:00:01 left \r", + " [ 2274 / 10000 ] 23% - 0:00:01 left \r", + " [ 2275 / 10000 ] 23% - 0:00:01 left \r", + " [ 2276 / 10000 ] 23% - 0:00:01 left \r", + " [ 2277 / 10000 ] 23% - 0:00:01 left \r", + " [ 2278 / 10000 ] 23% - 0:00:01 left \r", + " [ 2279 / 10000 ] 23% - 0:00:01 left \r", + " [ 2280 / 10000 ] 23% - 0:00:01 left \r", + " [ 2281 / 10000 ] 23% - 0:00:01 left \r", + " [ 2282 / 10000 ] 23% - 0:00:01 left \r", + " [ 2283 / 10000 ] 23% - 0:00:01 left \r", + " [ 2284 / 10000 ] 23% - 0:00:01 left \r", + " [ 2285 / 10000 ] 23% - 0:00:01 left \r", + " [ 2286 / 10000 ] 23% - 0:00:01 left \r", + " [ 2287 / 10000 ] 23% - 0:00:01 left \r", + " [ 2288 / 10000 ] 23% - 0:00:01 left \r", + " [ 2289 / 10000 ] 23% - 0:00:01 left \r", + " [ 2290 / 10000 ] 23% - 0:00:01 left \r", + " [ 2291 / 10000 ] 23% - 0:00:01 left \r", + " [ 2292 / 10000 ] 23% - 0:00:01 left \r", + " [ 2293 / 10000 ] 23% - 0:00:01 left \r", + " [ 2294 / 10000 ] 23% - 0:00:01 left \r", + " [ 2295 / 10000 ] 23% - 0:00:01 left \r", + " [ 2296 / 10000 ] 23% - 0:00:01 left \r", + " [ 2297 / 10000 ] 23% - 0:00:01 left \r", + " [ 2298 / 10000 ] 23% - 0:00:01 left \r", + " [ 2299 / 10000 ] 23% - 0:00:01 left \r", + " [ 2300 / 10000 ] 23% - 0:00:01 left \r", + " [ 2301 / 10000 ] 23% - 0:00:01 left \r", + " [ 2302 / 10000 ] 23% - 0:00:01 left \r", + " [ 2303 / 10000 ] 23% - 0:00:01 left \r", + " [ 2304 / 10000 ] 23% - 0:00:01 left \r", + " [ 2305 / 10000 ] 23% - 0:00:01 left \r", + " [ 2306 / 10000 ] 23% - 0:00:01 left \r", + " [ 2307 / 10000 ] 23% - 0:00:01 left \r", + " [ 2308 / 10000 ] 23% - 0:00:01 left \r", + " [ 2309 / 10000 ] 23% - 0:00:01 left \r", + " [ 2310 / 10000 ] 23% - 0:00:01 left \r", + " [ 2311 / 10000 ] 23% - 0:00:01 left \r", + " [ 2312 / 10000 ] 23% - 0:00:01 left \r", + " [ 2313 / 10000 ] 23% - 0:00:01 left \r", + " [ 2314 / 10000 ] 23% - 0:00:01 left \r", + " [ 2315 / 10000 ] 23% - 0:00:01 left \r", + " [ 2316 / 10000 ] 23% - 0:00:01 left \r", + " [ 2317 / 10000 ] 23% - 0:00:01 left \r", + " [ 2318 / 10000 ] 23% - 0:00:01 left \r", + " [ 2319 / 10000 ] 23% - 0:00:01 left \r", + " [ 2320 / 10000 ] 23% - 0:00:01 left \r", + " [ 2321 / 10000 ] 23% - 0:00:01 left \r", + " [ 2322 / 10000 ] 23% - 0:00:01 left \r", + " [ 2323 / 10000 ] 23% - 0:00:01 left \r", + " [ 2324 / 10000 ] 23% - 0:00:01 left \r", + " [ 2325 / 10000 ] 23% - 0:00:01 left \r", + " [ 2326 / 10000 ] 23% - 0:00:01 left \r", + " [ 2327 / 10000 ] 23% - 0:00:01 left \r", + " [ 2328 / 10000 ] 23% - 0:00:01 left \r", + " [ 2329 / 10000 ] 23% - 0:00:01 left \r", + " [ 2330 / 10000 ] 23% - 0:00:01 left \r", + " [ 2331 / 10000 ] 23% - 0:00:01 left \r", + " [ 2332 / 10000 ] 23% - 0:00:01 left \r", + " [ 2333 / 10000 ] 23% - 0:00:01 left \r", + " [ 2334 / 10000 ] 23% - 0:00:01 left \r", + " [ 2335 / 10000 ] 23% - 0:00:01 left \r", + " [ 2336 / 10000 ] 23% - 0:00:01 left \r", + " [ 2337 / 10000 ] 23% - 0:00:01 left \r", + " [ 2338 / 10000 ] 23% - 0:00:01 left \r", + " [ 2339 / 10000 ] 23% - 0:00:01 left \r", + " [ 2340 / 10000 ] 23% - 0:00:01 left \r", + " [ 2341 / 10000 ] 23% - 0:00:01 left \r", + " [ 2342 / 10000 ] 23% - 0:00:01 left \r", + " [ 2343 / 10000 ] 23% - 0:00:01 left \r", + " [ 2344 / 10000 ] 23% - 0:00:01 left \r", + " [ 2345 / 10000 ] 23% - 0:00:01 left \r", + " [ 2346 / 10000 ] 23% - 0:00:01 left \r", + " [ 2347 / 10000 ] 23% - 0:00:01 left \r", + " [ 2348 / 10000 ] 23% - 0:00:01 left \r", + " [ 2349 / 10000 ] 23% - 0:00:01 left \r", + " [ 2350 / 10000 ] 24% - 0:00:01 left \r", + " [ 2351 / 10000 ] 24% - 0:00:01 left \r", + " [ 2352 / 10000 ] 24% - 0:00:01 left \r", + " [ 2353 / 10000 ] 24% - 0:00:01 left \r", + " [ 2354 / 10000 ] 24% - 0:00:01 left \r", + " [ 2355 / 10000 ] 24% - 0:00:01 left \r", + " [ 2356 / 10000 ] 24% - 0:00:01 left \r", + " [ 2357 / 10000 ] 24% - 0:00:01 left \r", + " [ 2358 / 10000 ] 24% - 0:00:01 left \r", + " [ 2359 / 10000 ] 24% - 0:00:01 left \r", + " [ 2360 / 10000 ] 24% - 0:00:01 left \r", + " [ 2361 / 10000 ] 24% - 0:00:01 left \r", + " [ 2362 / 10000 ] 24% - 0:00:01 left \r", + " [ 2363 / 10000 ] 24% - 0:00:01 left \r", + " [ 2364 / 10000 ] 24% - 0:00:01 left \r", + " [ 2365 / 10000 ] 24% - 0:00:01 left \r", + " [ 2366 / 10000 ] 24% - 0:00:01 left \r", + " [ 2367 / 10000 ] 24% - 0:00:01 left \r", + " [ 2368 / 10000 ] 24% - 0:00:01 left \r", + " [ 2369 / 10000 ] 24% - 0:00:01 left \r", + " [ 2370 / 10000 ] 24% - 0:00:01 left \r", + " [ 2371 / 10000 ] 24% - 0:00:01 left \r", + " [ 2372 / 10000 ] 24% - 0:00:01 left \r", + " [ 2373 / 10000 ] 24% - 0:00:01 left \r", + " [ 2374 / 10000 ] 24% - 0:00:01 left \r", + " [ 2375 / 10000 ] 24% - 0:00:01 left \r", + " [ 2376 / 10000 ] 24% - 0:00:01 left \r", + " [ 2377 / 10000 ] 24% - 0:00:01 left \r", + " [ 2378 / 10000 ] 24% - 0:00:01 left \r", + " [ 2379 / 10000 ] 24% - 0:00:01 left \r", + " [ 2380 / 10000 ] 24% - 0:00:01 left \r", + " [ 2381 / 10000 ] 24% - 0:00:01 left \r", + " [ 2382 / 10000 ] 24% - 0:00:01 left \r", + " [ 2383 / 10000 ] 24% - 0:00:01 left \r", + " [ 2384 / 10000 ] 24% - 0:00:01 left \r", + " [ 2385 / 10000 ] 24% - 0:00:01 left \r", + " [ 2386 / 10000 ] 24% - 0:00:01 left \r", + " [ 2387 / 10000 ] 24% - 0:00:01 left \r", + " [ 2388 / 10000 ] 24% - 0:00:01 left \r", + " [ 2389 / 10000 ] 24% - 0:00:01 left \r", + " [ 2390 / 10000 ] 24% - 0:00:01 left \r", + " [ 2391 / 10000 ] 24% - 0:00:01 left \r", + " [ 2392 / 10000 ] 24% - 0:00:01 left \r", + " [ 2393 / 10000 ] 24% - 0:00:01 left \r", + " [ 2394 / 10000 ] 24% - 0:00:01 left \r", + " [ 2395 / 10000 ] 24% - 0:00:01 left \r", + " [ 2396 / 10000 ] 24% - 0:00:01 left \r", + " [ 2397 / 10000 ] 24% - 0:00:01 left \r", + " [ 2398 / 10000 ] 24% - 0:00:01 left \r", + " [ 2399 / 10000 ] 24% - 0:00:01 left \r", + " [ 2400 / 10000 ] 24% - 0:00:01 left \r", + " [ 2401 / 10000 ] 24% - 0:00:01 left \r", + " [ 2402 / 10000 ] 24% - 0:00:01 left \r", + " [ 2403 / 10000 ] 24% - 0:00:01 left \r", + " [ 2404 / 10000 ] 24% - 0:00:01 left \r", + " [ 2405 / 10000 ] 24% - 0:00:01 left \r", + " [ 2406 / 10000 ] 24% - 0:00:01 left \r", + " [ 2407 / 10000 ] 24% - 0:00:01 left \r", + " [ 2408 / 10000 ] 24% - 0:00:01 left \r", + " [ 2409 / 10000 ] 24% - 0:00:01 left \r", + " [ 2410 / 10000 ] 24% - 0:00:01 left \r", + " [ 2411 / 10000 ] 24% - 0:00:01 left \r", + " [ 2412 / 10000 ] 24% - 0:00:01 left \r", + " [ 2413 / 10000 ] 24% - 0:00:01 left \r", + " [ 2414 / 10000 ] 24% - 0:00:01 left \r", + " [ 2415 / 10000 ] 24% - 0:00:01 left \r", + " [ 2416 / 10000 ] 24% - 0:00:01 left \r", + " [ 2417 / 10000 ] 24% - 0:00:01 left \r", + " [ 2418 / 10000 ] 24% - 0:00:01 left \r", + " [ 2419 / 10000 ] 24% - 0:00:01 left \r", + " [ 2420 / 10000 ] 24% - 0:00:01 left \r", + " [ 2421 / 10000 ] 24% - 0:00:01 left \r", + " [ 2422 / 10000 ] 24% - 0:00:01 left \r", + " [ 2423 / 10000 ] 24% - 0:00:01 left \r", + " [ 2424 / 10000 ] 24% - 0:00:01 left \r", + " [ 2425 / 10000 ] 24% - 0:00:01 left \r", + " [ 2426 / 10000 ] 24% - 0:00:01 left \r", + " [ 2427 / 10000 ] 24% - 0:00:01 left \r", + " [ 2428 / 10000 ] 24% - 0:00:01 left \r", + " [ 2429 / 10000 ] 24% - 0:00:01 left \r", + " [ 2430 / 10000 ] 24% - 0:00:01 left \r", + " [ 2431 / 10000 ] 24% - 0:00:01 left \r", + " [ 2432 / 10000 ] 24% - 0:00:01 left \r", + " [ 2433 / 10000 ] 24% - 0:00:01 left \r", + " [ 2434 / 10000 ] 24% - 0:00:01 left \r", + " [ 2435 / 10000 ] 24% - 0:00:01 left \r", + " [ 2436 / 10000 ] 24% - 0:00:01 left \r", + " [ 2437 / 10000 ] 24% - 0:00:01 left \r", + " [ 2438 / 10000 ] 24% - 0:00:01 left \r", + " [ 2439 / 10000 ] 24% - 0:00:01 left \r", + " [ 2440 / 10000 ] 24% - 0:00:01 left \r", + " [ 2441 / 10000 ] 24% - 0:00:01 left \r", + " [ 2442 / 10000 ] 24% - 0:00:01 left \r", + " [ 2443 / 10000 ] 24% - 0:00:01 left \r", + " [ 2444 / 10000 ] 24% - 0:00:01 left \r", + " [ 2445 / 10000 ] 24% - 0:00:01 left \r", + " [ 2446 / 10000 ] 24% - 0:00:01 left \r", + " [ 2447 / 10000 ] 24% - 0:00:01 left \r", + " [ 2448 / 10000 ] 24% - 0:00:01 left \r", + " [ 2449 / 10000 ] 24% - 0:00:01 left \r", + " [ 2450 / 10000 ] 24% - 0:00:01 left \r", + " [ 2451 / 10000 ] 25% - 0:00:01 left \r", + " [ 2452 / 10000 ] 25% - 0:00:01 left \r", + " [ 2453 / 10000 ] 25% - 0:00:01 left \r", + " [ 2454 / 10000 ] 25% - 0:00:01 left \r", + " [ 2455 / 10000 ] 25% - 0:00:01 left \r", + " [ 2456 / 10000 ] 25% - 0:00:01 left \r", + " [ 2457 / 10000 ] 25% - 0:00:01 left \r", + " [ 2458 / 10000 ] 25% - 0:00:01 left \r", + " [ 2459 / 10000 ] 25% - 0:00:01 left \r", + " [ 2460 / 10000 ] 25% - 0:00:01 left \r", + " [ 2461 / 10000 ] 25% - 0:00:01 left \r", + " [ 2462 / 10000 ] 25% - 0:00:01 left \r", + " [ 2463 / 10000 ] 25% - 0:00:01 left \r", + " [ 2464 / 10000 ] 25% - 0:00:01 left \r", + " [ 2465 / 10000 ] 25% - 0:00:01 left \r", + " [ 2466 / 10000 ] 25% - 0:00:01 left \r", + " [ 2467 / 10000 ] 25% - 0:00:01 left \r", + " [ 2468 / 10000 ] 25% - 0:00:01 left \r", + " [ 2469 / 10000 ] 25% - 0:00:01 left \r", + " [ 2470 / 10000 ] 25% - 0:00:01 left \r", + " [ 2471 / 10000 ] 25% - 0:00:01 left \r", + " [ 2472 / 10000 ] 25% - 0:00:01 left \r", + " [ 2473 / 10000 ] 25% - 0:00:01 left \r", + " [ 2474 / 10000 ] 25% - 0:00:01 left \r", + " [ 2475 / 10000 ] 25% - 0:00:01 left \r", + " [ 2476 / 10000 ] 25% - 0:00:01 left \r", + " [ 2477 / 10000 ] 25% - 0:00:01 left \r", + " [ 2478 / 10000 ] 25% - 0:00:01 left \r", + " [ 2479 / 10000 ] 25% - 0:00:01 left \r", + " [ 2480 / 10000 ] 25% - 0:00:01 left \r", + " [ 2481 / 10000 ] 25% - 0:00:01 left \r", + " [ 2482 / 10000 ] 25% - 0:00:01 left \r", + " [ 2483 / 10000 ] 25% - 0:00:01 left \r", + " [ 2484 / 10000 ] 25% - 0:00:01 left \r", + " [ 2485 / 10000 ] 25% - 0:00:01 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 2486 / 10000 ] 25% - 0:00:01 left \r", + " [ 2487 / 10000 ] 25% - 0:00:01 left \r", + " [ 2488 / 10000 ] 25% - 0:00:01 left \r", + " [ 2489 / 10000 ] 25% - 0:00:01 left \r", + " [ 2490 / 10000 ] 25% - 0:00:01 left \r", + " [ 2491 / 10000 ] 25% - 0:00:01 left \r", + " [ 2492 / 10000 ] 25% - 0:00:01 left \r", + " [ 2493 / 10000 ] 25% - 0:00:01 left \r", + " [ 2494 / 10000 ] 25% - 0:00:01 left \r", + " [ 2495 / 10000 ] 25% - 0:00:01 left \r", + " [ 2496 / 10000 ] 25% - 0:00:01 left \r", + " [ 2497 / 10000 ] 25% - 0:00:01 left \r", + " [ 2498 / 10000 ] 25% - 0:00:01 left \r", + " [ 2499 / 10000 ] 25% - 0:00:01 left \r", + " [ 2500 / 10000 ] 25% - 0:00:01 left \r", + " [ 2501 / 10000 ] 25% - 0:00:01 left \r", + " [ 2502 / 10000 ] 25% - 0:00:01 left \r", + " [ 2503 / 10000 ] 25% - 0:00:01 left \r", + " [ 2504 / 10000 ] 25% - 0:00:01 left \r", + " [ 2505 / 10000 ] 25% - 0:00:01 left \r", + " [ 2506 / 10000 ] 25% - 0:00:01 left \r", + " [ 2507 / 10000 ] 25% - 0:00:01 left \r", + " [ 2508 / 10000 ] 25% - 0:00:01 left \r", + " [ 2509 / 10000 ] 25% - 0:00:01 left \r", + " [ 2510 / 10000 ] 25% - 0:00:01 left \r", + " [ 2511 / 10000 ] 25% - 0:00:01 left \r", + " [ 2512 / 10000 ] 25% - 0:00:01 left \r", + " [ 2513 / 10000 ] 25% - 0:00:01 left \r", + " [ 2514 / 10000 ] 25% - 0:00:01 left \r", + " [ 2515 / 10000 ] 25% - 0:00:01 left \r", + " [ 2516 / 10000 ] 25% - 0:00:01 left \r", + " [ 2517 / 10000 ] 25% - 0:00:01 left \r", + " [ 2518 / 10000 ] 25% - 0:00:01 left \r", + " [ 2519 / 10000 ] 25% - 0:00:01 left \r", + " [ 2520 / 10000 ] 25% - 0:00:01 left \r", + " [ 2521 / 10000 ] 25% - 0:00:01 left \r", + " [ 2522 / 10000 ] 25% - 0:00:01 left \r", + " [ 2523 / 10000 ] 25% - 0:00:01 left \r", + " [ 2524 / 10000 ] 25% - 0:00:01 left \r", + " [ 2525 / 10000 ] 25% - 0:00:01 left \r", + " [ 2526 / 10000 ] 25% - 0:00:01 left \r", + " [ 2527 / 10000 ] 25% - 0:00:01 left \r", + " [ 2528 / 10000 ] 25% - 0:00:01 left \r", + " [ 2529 / 10000 ] 25% - 0:00:01 left \r", + " [ 2530 / 10000 ] 25% - 0:00:01 left \r", + " [ 2531 / 10000 ] 25% - 0:00:01 left \r", + " [ 2532 / 10000 ] 25% - 0:00:01 left \r", + " [ 2533 / 10000 ] 25% - 0:00:01 left \r", + " [ 2534 / 10000 ] 25% - 0:00:01 left \r", + " [ 2535 / 10000 ] 25% - 0:00:01 left \r", + " [ 2536 / 10000 ] 25% - 0:00:01 left \r", + " [ 2537 / 10000 ] 25% - 0:00:01 left \r", + " [ 2538 / 10000 ] 25% - 0:00:01 left \r", + " [ 2539 / 10000 ] 25% - 0:00:01 left \r", + " [ 2540 / 10000 ] 25% - 0:00:01 left \r", + " [ 2541 / 10000 ] 25% - 0:00:01 left \r", + " [ 2542 / 10000 ] 25% - 0:00:01 left \r", + " [ 2543 / 10000 ] 25% - 0:00:01 left \r", + " [ 2544 / 10000 ] 25% - 0:00:01 left \r", + " [ 2545 / 10000 ] 25% - 0:00:01 left \r", + " [ 2546 / 10000 ] 25% - 0:00:01 left \r", + " [ 2547 / 10000 ] 25% - 0:00:01 left \r", + " [ 2548 / 10000 ] 25% - 0:00:01 left \r", + " [ 2549 / 10000 ] 25% - 0:00:01 left \r", + " [ 2550 / 10000 ] 26% - 0:00:01 left \r", + " [ 2551 / 10000 ] 26% - 0:00:01 left \r", + " [ 2552 / 10000 ] 26% - 0:00:01 left \r", + " [ 2553 / 10000 ] 26% - 0:00:01 left \r", + " [ 2554 / 10000 ] 26% - 0:00:01 left \r", + " [ 2555 / 10000 ] 26% - 0:00:01 left \r", + " [ 2556 / 10000 ] 26% - 0:00:01 left \r", + " [ 2557 / 10000 ] 26% - 0:00:01 left \r", + " [ 2558 / 10000 ] 26% - 0:00:01 left \r", + " [ 2559 / 10000 ] 26% - 0:00:01 left \r", + " [ 2560 / 10000 ] 26% - 0:00:01 left \r", + " [ 2561 / 10000 ] 26% - 0:00:01 left \r", + " [ 2562 / 10000 ] 26% - 0:00:01 left \r", + " [ 2563 / 10000 ] 26% - 0:00:01 left \r", + " [ 2564 / 10000 ] 26% - 0:00:01 left \r", + " [ 2565 / 10000 ] 26% - 0:00:01 left \r", + " [ 2566 / 10000 ] 26% - 0:00:01 left \r", + " [ 2567 / 10000 ] 26% - 0:00:01 left \r", + " [ 2568 / 10000 ] 26% - 0:00:01 left \r", + " [ 2569 / 10000 ] 26% - 0:00:01 left \r", + " [ 2570 / 10000 ] 26% - 0:00:01 left \r", + " [ 2571 / 10000 ] 26% - 0:00:01 left \r", + " [ 2572 / 10000 ] 26% - 0:00:01 left \r", + " [ 2573 / 10000 ] 26% - 0:00:01 left \r", + " [ 2574 / 10000 ] 26% - 0:00:01 left \r", + " [ 2575 / 10000 ] 26% - 0:00:01 left \r", + " [ 2576 / 10000 ] 26% - 0:00:01 left \r", + " [ 2577 / 10000 ] 26% - 0:00:01 left \r", + " [ 2578 / 10000 ] 26% - 0:00:01 left \r", + " [ 2579 / 10000 ] 26% - 0:00:01 left \r", + " [ 2580 / 10000 ] 26% - 0:00:01 left \r", + " [ 2581 / 10000 ] 26% - 0:00:01 left \r", + " [ 2582 / 10000 ] 26% - 0:00:01 left \r", + " [ 2583 / 10000 ] 26% - 0:00:01 left \r", + " [ 2584 / 10000 ] 26% - 0:00:01 left \r", + " [ 2585 / 10000 ] 26% - 0:00:01 left \r", + " [ 2586 / 10000 ] 26% - 0:00:01 left \r", + " [ 2587 / 10000 ] 26% - 0:00:01 left \r", + " [ 2588 / 10000 ] 26% - 0:00:01 left \r", + " [ 2589 / 10000 ] 26% - 0:00:01 left \r", + " [ 2590 / 10000 ] 26% - 0:00:01 left \r", + " [ 2591 / 10000 ] 26% - 0:00:01 left \r", + " [ 2592 / 10000 ] 26% - 0:00:01 left \r", + " [ 2593 / 10000 ] 26% - 0:00:01 left \r", + " [ 2594 / 10000 ] 26% - 0:00:01 left \r", + " [ 2595 / 10000 ] 26% - 0:00:01 left \r", + " [ 2596 / 10000 ] 26% - 0:00:01 left \r", + " [ 2597 / 10000 ] 26% - 0:00:01 left \r", + " [ 2598 / 10000 ] 26% - 0:00:01 left \r", + " [ 2599 / 10000 ] 26% - 0:00:01 left \r", + " [ 2600 / 10000 ] 26% - 0:00:01 left \r", + " [ 2601 / 10000 ] 26% - 0:00:01 left \r", + " [ 2602 / 10000 ] 26% - 0:00:01 left \r", + " [ 2603 / 10000 ] 26% - 0:00:01 left \r", + " [ 2604 / 10000 ] 26% - 0:00:01 left \r", + " [ 2605 / 10000 ] 26% - 0:00:01 left \r", + " [ 2606 / 10000 ] 26% - 0:00:01 left \r", + " [ 2607 / 10000 ] 26% - 0:00:01 left \r", + " [ 2608 / 10000 ] 26% - 0:00:01 left \r", + " [ 2609 / 10000 ] 26% - 0:00:01 left \r", + " [ 2610 / 10000 ] 26% - 0:00:01 left \r", + " [ 2611 / 10000 ] 26% - 0:00:01 left \r", + " [ 2612 / 10000 ] 26% - 0:00:01 left \r", + " [ 2613 / 10000 ] 26% - 0:00:01 left \r", + " [ 2614 / 10000 ] 26% - 0:00:01 left \r", + " [ 2615 / 10000 ] 26% - 0:00:01 left \r", + " [ 2616 / 10000 ] 26% - 0:00:01 left \r", + " [ 2617 / 10000 ] 26% - 0:00:01 left \r", + " [ 2618 / 10000 ] 26% - 0:00:01 left \r", + " [ 2619 / 10000 ] 26% - 0:00:01 left \r", + " [ 2620 / 10000 ] 26% - 0:00:01 left \r", + " [ 2621 / 10000 ] 26% - 0:00:01 left \r", + " [ 2622 / 10000 ] 26% - 0:00:01 left \r", + " [ 2623 / 10000 ] 26% - 0:00:01 left \r", + " [ 2624 / 10000 ] 26% - 0:00:01 left \r", + " [ 2625 / 10000 ] 26% - 0:00:01 left \r", + " [ 2626 / 10000 ] 26% - 0:00:01 left \r", + " [ 2627 / 10000 ] 26% - 0:00:01 left \r", + " [ 2628 / 10000 ] 26% - 0:00:01 left \r", + " [ 2629 / 10000 ] 26% - 0:00:01 left \r", + " [ 2630 / 10000 ] 26% - 0:00:01 left \r", + " [ 2631 / 10000 ] 26% - 0:00:01 left \r", + " [ 2632 / 10000 ] 26% - 0:00:01 left \r", + " [ 2633 / 10000 ] 26% - 0:00:01 left \r", + " [ 2634 / 10000 ] 26% - 0:00:01 left \r", + " [ 2635 / 10000 ] 26% - 0:00:01 left \r", + " [ 2636 / 10000 ] 26% - 0:00:01 left \r", + " [ 2637 / 10000 ] 26% - 0:00:01 left \r", + " [ 2638 / 10000 ] 26% - 0:00:01 left \r", + " [ 2639 / 10000 ] 26% - 0:00:01 left \r", + " [ 2640 / 10000 ] 26% - 0:00:01 left \r", + " [ 2641 / 10000 ] 26% - 0:00:01 left \r", + " [ 2642 / 10000 ] 26% - 0:00:01 left \r", + " [ 2643 / 10000 ] 26% - 0:00:01 left \r", + " [ 2644 / 10000 ] 26% - 0:00:01 left \r", + " [ 2645 / 10000 ] 26% - 0:00:01 left \r", + " [ 2646 / 10000 ] 26% - 0:00:01 left \r", + " [ 2647 / 10000 ] 26% - 0:00:01 left \r", + " [ 2648 / 10000 ] 26% - 0:00:01 left \r", + " [ 2649 / 10000 ] 26% - 0:00:01 left \r", + " [ 2650 / 10000 ] 26% - 0:00:01 left \r", + " [ 2651 / 10000 ] 27% - 0:00:01 left \r", + " [ 2652 / 10000 ] 27% - 0:00:01 left \r", + " [ 2653 / 10000 ] 27% - 0:00:01 left \r", + " [ 2654 / 10000 ] 27% - 0:00:01 left \r", + " [ 2655 / 10000 ] 27% - 0:00:01 left \r", + " [ 2656 / 10000 ] 27% - 0:00:01 left \r", + " [ 2657 / 10000 ] 27% - 0:00:01 left \r", + " [ 2658 / 10000 ] 27% - 0:00:01 left \r", + " [ 2659 / 10000 ] 27% - 0:00:01 left \r", + " [ 2660 / 10000 ] 27% - 0:00:01 left \r", + " [ 2661 / 10000 ] 27% - 0:00:01 left \r", + " [ 2662 / 10000 ] 27% - 0:00:01 left \r", + " [ 2663 / 10000 ] 27% - 0:00:01 left \r", + " [ 2664 / 10000 ] 27% - 0:00:01 left \r", + " [ 2665 / 10000 ] 27% - 0:00:01 left \r", + " [ 2666 / 10000 ] 27% - 0:00:01 left \r", + " [ 2667 / 10000 ] 27% - 0:00:01 left \r", + " [ 2668 / 10000 ] 27% - 0:00:01 left \r", + " [ 2669 / 10000 ] 27% - 0:00:01 left \r", + " [ 2670 / 10000 ] 27% - 0:00:01 left \r", + " [ 2671 / 10000 ] 27% - 0:00:01 left \r", + " [ 2672 / 10000 ] 27% - 0:00:01 left \r", + " [ 2673 / 10000 ] 27% - 0:00:01 left \r", + " [ 2674 / 10000 ] 27% - 0:00:01 left \r", + " [ 2675 / 10000 ] 27% - 0:00:01 left \r", + " [ 2676 / 10000 ] 27% - 0:00:01 left \r", + " [ 2677 / 10000 ] 27% - 0:00:01 left \r", + " [ 2678 / 10000 ] 27% - 0:00:01 left \r", + " [ 2679 / 10000 ] 27% - 0:00:01 left \r", + " [ 2680 / 10000 ] 27% - 0:00:01 left \r", + " [ 2681 / 10000 ] 27% - 0:00:01 left \r", + " [ 2682 / 10000 ] 27% - 0:00:01 left \r", + " [ 2683 / 10000 ] 27% - 0:00:01 left \r", + " [ 2684 / 10000 ] 27% - 0:00:01 left \r", + " [ 2685 / 10000 ] 27% - 0:00:01 left \r", + " [ 2686 / 10000 ] 27% - 0:00:01 left \r", + " [ 2687 / 10000 ] 27% - 0:00:01 left \r", + " [ 2688 / 10000 ] 27% - 0:00:01 left \r", + " [ 2689 / 10000 ] 27% - 0:00:01 left \r", + " [ 2690 / 10000 ] 27% - 0:00:01 left \r", + " [ 2691 / 10000 ] 27% - 0:00:01 left \r", + " [ 2692 / 10000 ] 27% - 0:00:01 left \r", + " [ 2693 / 10000 ] 27% - 0:00:01 left \r", + " [ 2694 / 10000 ] 27% - 0:00:01 left \r", + " [ 2695 / 10000 ] 27% - 0:00:01 left \r", + " [ 2696 / 10000 ] 27% - 0:00:01 left \r", + " [ 2697 / 10000 ] 27% - 0:00:01 left \r", + " [ 2698 / 10000 ] 27% - 0:00:01 left \r", + " [ 2699 / 10000 ] 27% - 0:00:01 left \r", + " [ 2700 / 10000 ] 27% - 0:00:01 left \r", + " [ 2701 / 10000 ] 27% - 0:00:01 left \r", + " [ 2702 / 10000 ] 27% - 0:00:01 left \r", + " [ 2703 / 10000 ] 27% - 0:00:01 left \r", + " [ 2704 / 10000 ] 27% - 0:00:01 left \r", + " [ 2705 / 10000 ] 27% - 0:00:01 left \r", + " [ 2706 / 10000 ] 27% - 0:00:01 left \r", + " [ 2707 / 10000 ] 27% - 0:00:01 left \r", + " [ 2708 / 10000 ] 27% - 0:00:01 left \r", + " [ 2709 / 10000 ] 27% - 0:00:01 left \r", + " [ 2710 / 10000 ] 27% - 0:00:01 left \r", + " [ 2711 / 10000 ] 27% - 0:00:01 left \r", + " [ 2712 / 10000 ] 27% - 0:00:01 left \r", + " [ 2713 / 10000 ] 27% - 0:00:01 left \r", + " [ 2714 / 10000 ] 27% - 0:00:01 left \r", + " [ 2715 / 10000 ] 27% - 0:00:01 left \r", + " [ 2716 / 10000 ] 27% - 0:00:01 left \r", + " [ 2717 / 10000 ] 27% - 0:00:01 left \r", + " [ 2718 / 10000 ] 27% - 0:00:01 left \r", + " [ 2719 / 10000 ] 27% - 0:00:01 left \r", + " [ 2720 / 10000 ] 27% - 0:00:01 left \r", + " [ 2721 / 10000 ] 27% - 0:00:01 left \r", + " [ 2722 / 10000 ] 27% - 0:00:01 left \r", + " [ 2723 / 10000 ] 27% - 0:00:01 left \r", + " [ 2724 / 10000 ] 27% - 0:00:01 left \r", + " [ 2725 / 10000 ] 27% - 0:00:01 left \r", + " [ 2726 / 10000 ] 27% - 0:00:01 left \r", + " [ 2727 / 10000 ] 27% - 0:00:01 left \r", + " [ 2728 / 10000 ] 27% - 0:00:01 left \r", + " [ 2729 / 10000 ] 27% - 0:00:01 left \r", + " [ 2730 / 10000 ] 27% - 0:00:01 left \r", + " [ 2731 / 10000 ] 27% - 0:00:01 left \r", + " [ 2732 / 10000 ] 27% - 0:00:01 left \r", + " [ 2733 / 10000 ] 27% - 0:00:01 left \r", + " [ 2734 / 10000 ] 27% - 0:00:01 left \r", + " [ 2735 / 10000 ] 27% - 0:00:01 left \r", + " [ 2736 / 10000 ] 27% - 0:00:01 left \r", + " [ 2737 / 10000 ] 27% - 0:00:01 left \r", + " [ 2738 / 10000 ] 27% - 0:00:01 left \r", + " [ 2739 / 10000 ] 27% - 0:00:01 left \r", + " [ 2740 / 10000 ] 27% - 0:00:01 left \r", + " [ 2741 / 10000 ] 27% - 0:00:01 left \r", + " [ 2742 / 10000 ] 27% - 0:00:01 left \r", + " [ 2743 / 10000 ] 27% - 0:00:01 left \r", + " [ 2744 / 10000 ] 27% - 0:00:01 left \r", + " [ 2745 / 10000 ] 27% - 0:00:01 left \r", + " [ 2746 / 10000 ] 27% - 0:00:01 left \r", + " [ 2747 / 10000 ] 27% - 0:00:01 left \r", + " [ 2748 / 10000 ] 27% - 0:00:01 left \r", + " [ 2749 / 10000 ] 27% - 0:00:01 left \r", + " [ 2750 / 10000 ] 28% - 0:00:01 left \r", + " [ 2751 / 10000 ] 28% - 0:00:01 left \r", + " [ 2752 / 10000 ] 28% - 0:00:01 left \r", + " [ 2753 / 10000 ] 28% - 0:00:01 left \r", + " [ 2754 / 10000 ] 28% - 0:00:01 left \r", + " [ 2755 / 10000 ] 28% - 0:00:01 left \r", + " [ 2756 / 10000 ] 28% - 0:00:01 left \r", + " [ 2757 / 10000 ] 28% - 0:00:01 left \r", + " [ 2758 / 10000 ] 28% - 0:00:01 left \r", + " [ 2759 / 10000 ] 28% - 0:00:01 left \r", + " [ 2760 / 10000 ] 28% - 0:00:01 left \r", + " [ 2761 / 10000 ] 28% - 0:00:01 left \r", + " [ 2762 / 10000 ] 28% - 0:00:01 left \r", + " [ 2763 / 10000 ] 28% - 0:00:01 left \r", + " [ 2764 / 10000 ] 28% - 0:00:01 left \r", + " [ 2765 / 10000 ] 28% - 0:00:01 left \r", + " [ 2766 / 10000 ] 28% - 0:00:01 left \r", + " [ 2767 / 10000 ] 28% - 0:00:01 left \r", + " [ 2768 / 10000 ] 28% - 0:00:01 left \r", + " [ 2769 / 10000 ] 28% - 0:00:01 left \r", + " [ 2770 / 10000 ] 28% - 0:00:01 left \r", + " [ 2771 / 10000 ] 28% - 0:00:01 left \r", + " [ 2772 / 10000 ] 28% - 0:00:01 left \r", + " [ 2773 / 10000 ] 28% - 0:00:01 left \r", + " [ 2774 / 10000 ] 28% - 0:00:01 left \r", + " [ 2775 / 10000 ] 28% - 0:00:01 left \r", + " [ 2776 / 10000 ] 28% - 0:00:01 left \r", + " [ 2777 / 10000 ] 28% - 0:00:01 left \r", + " [ 2778 / 10000 ] 28% - 0:00:01 left \r", + " [ 2779 / 10000 ] 28% - 0:00:01 left \r", + " [ 2780 / 10000 ] 28% - 0:00:01 left \r", + " [ 2781 / 10000 ] 28% - 0:00:01 left \r", + " [ 2782 / 10000 ] 28% - 0:00:01 left \r", + " [ 2783 / 10000 ] 28% - 0:00:01 left \r", + " [ 2784 / 10000 ] 28% - 0:00:01 left \r", + " [ 2785 / 10000 ] 28% - 0:00:01 left \r", + " [ 2786 / 10000 ] 28% - 0:00:01 left \r", + " [ 2787 / 10000 ] 28% - 0:00:01 left \r", + " [ 2788 / 10000 ] 28% - 0:00:01 left \r", + " [ 2789 / 10000 ] 28% - 0:00:01 left \r", + " [ 2790 / 10000 ] 28% - 0:00:01 left \r", + " [ 2791 / 10000 ] 28% - 0:00:01 left \r", + " [ 2792 / 10000 ] 28% - 0:00:01 left \r", + " [ 2793 / 10000 ] 28% - 0:00:01 left \r", + " [ 2794 / 10000 ] 28% - 0:00:01 left \r", + " [ 2795 / 10000 ] 28% - 0:00:01 left \r", + " [ 2796 / 10000 ] 28% - 0:00:01 left \r", + " [ 2797 / 10000 ] 28% - 0:00:01 left \r", + " [ 2798 / 10000 ] 28% - 0:00:01 left \r", + " [ 2799 / 10000 ] 28% - 0:00:01 left \r", + " [ 2800 / 10000 ] 28% - 0:00:01 left \r", + " [ 2801 / 10000 ] 28% - 0:00:01 left \r", + " [ 2802 / 10000 ] 28% - 0:00:01 left \r", + " [ 2803 / 10000 ] 28% - 0:00:01 left \r", + " [ 2804 / 10000 ] 28% - 0:00:01 left \r", + " [ 2805 / 10000 ] 28% - 0:00:01 left \r", + " [ 2806 / 10000 ] 28% - 0:00:01 left \r", + " [ 2807 / 10000 ] 28% - 0:00:01 left \r", + " [ 2808 / 10000 ] 28% - 0:00:01 left \r", + " [ 2809 / 10000 ] 28% - 0:00:01 left \r", + " [ 2810 / 10000 ] 28% - 0:00:01 left \r", + " [ 2811 / 10000 ] 28% - 0:00:01 left \r", + " [ 2812 / 10000 ] 28% - 0:00:01 left \r", + " [ 2813 / 10000 ] 28% - 0:00:01 left \r", + " [ 2814 / 10000 ] 28% - 0:00:01 left \r", + " [ 2815 / 10000 ] 28% - 0:00:01 left \r", + " [ 2816 / 10000 ] 28% - 0:00:01 left \r", + " [ 2817 / 10000 ] 28% - 0:00:01 left \r", + " [ 2818 / 10000 ] 28% - 0:00:01 left \r", + " [ 2819 / 10000 ] 28% - 0:00:01 left \r", + " [ 2820 / 10000 ] 28% - 0:00:01 left \r", + " [ 2821 / 10000 ] 28% - 0:00:01 left \r", + " [ 2822 / 10000 ] 28% - 0:00:01 left \r", + " [ 2823 / 10000 ] 28% - 0:00:01 left \r", + " [ 2824 / 10000 ] 28% - 0:00:01 left \r", + " [ 2825 / 10000 ] 28% - 0:00:01 left \r", + " [ 2826 / 10000 ] 28% - 0:00:01 left \r", + " [ 2827 / 10000 ] 28% - 0:00:01 left \r", + " [ 2828 / 10000 ] 28% - 0:00:01 left \r", + " [ 2829 / 10000 ] 28% - 0:00:01 left \r", + " [ 2830 / 10000 ] 28% - 0:00:01 left \r", + " [ 2831 / 10000 ] 28% - 0:00:01 left \r", + " [ 2832 / 10000 ] 28% - 0:00:01 left \r", + " [ 2833 / 10000 ] 28% - 0:00:01 left \r", + " [ 2834 / 10000 ] 28% - 0:00:01 left \r", + " [ 2835 / 10000 ] 28% - 0:00:01 left \r", + " [ 2836 / 10000 ] 28% - 0:00:01 left \r", + " [ 2837 / 10000 ] 28% - 0:00:01 left \r", + " [ 2838 / 10000 ] 28% - 0:00:01 left \r", + " [ 2839 / 10000 ] 28% - 0:00:01 left \r", + " [ 2840 / 10000 ] 28% - 0:00:01 left \r", + " [ 2841 / 10000 ] 28% - 0:00:01 left \r", + " [ 2842 / 10000 ] 28% - 0:00:01 left \r", + " [ 2843 / 10000 ] 28% - 0:00:01 left \r", + " [ 2844 / 10000 ] 28% - 0:00:01 left \r", + " [ 2845 / 10000 ] 28% - 0:00:01 left \r", + " [ 2846 / 10000 ] 28% - 0:00:01 left \r", + " [ 2847 / 10000 ] 28% - 0:00:01 left \r", + " [ 2848 / 10000 ] 28% - 0:00:01 left \r", + " [ 2849 / 10000 ] 28% - 0:00:01 left \r", + " [ 2850 / 10000 ] 28% - 0:00:01 left \r", + " [ 2851 / 10000 ] 29% - 0:00:01 left \r", + " [ 2852 / 10000 ] 29% - 0:00:01 left \r", + " [ 2853 / 10000 ] 29% - 0:00:01 left \r", + " [ 2854 / 10000 ] 29% - 0:00:01 left \r", + " [ 2855 / 10000 ] 29% - 0:00:01 left \r", + " [ 2856 / 10000 ] 29% - 0:00:01 left \r", + " [ 2857 / 10000 ] 29% - 0:00:01 left \r", + " [ 2858 / 10000 ] 29% - 0:00:01 left \r", + " [ 2859 / 10000 ] 29% - 0:00:01 left \r", + " [ 2860 / 10000 ] 29% - 0:00:01 left \r", + " [ 2861 / 10000 ] 29% - 0:00:01 left \r", + " [ 2862 / 10000 ] 29% - 0:00:01 left \r", + " [ 2863 / 10000 ] 29% - 0:00:01 left \r", + " [ 2864 / 10000 ] 29% - 0:00:01 left \r", + " [ 2865 / 10000 ] 29% - 0:00:01 left \r", + " [ 2866 / 10000 ] 29% - 0:00:01 left \r", + " [ 2867 / 10000 ] 29% - 0:00:01 left \r", + " [ 2868 / 10000 ] 29% - 0:00:01 left \r", + " [ 2869 / 10000 ] 29% - 0:00:01 left \r", + " [ 2870 / 10000 ] 29% - 0:00:01 left \r", + " [ 2871 / 10000 ] 29% - 0:00:01 left \r", + " [ 2872 / 10000 ] 29% - 0:00:01 left \r", + " [ 2873 / 10000 ] 29% - 0:00:01 left \r", + " [ 2874 / 10000 ] 29% - 0:00:01 left \r", + " [ 2875 / 10000 ] 29% - 0:00:01 left \r", + " [ 2876 / 10000 ] 29% - 0:00:01 left \r", + " [ 2877 / 10000 ] 29% - 0:00:01 left \r", + " [ 2878 / 10000 ] 29% - 0:00:01 left \r", + " [ 2879 / 10000 ] 29% - 0:00:01 left \r", + " [ 2880 / 10000 ] 29% - 0:00:01 left \r", + " [ 2881 / 10000 ] 29% - 0:00:01 left \r", + " [ 2882 / 10000 ] 29% - 0:00:01 left \r", + " [ 2883 / 10000 ] 29% - 0:00:01 left \r", + " [ 2884 / 10000 ] 29% - 0:00:01 left \r", + " [ 2885 / 10000 ] 29% - 0:00:01 left \r", + " [ 2886 / 10000 ] 29% - 0:00:01 left \r", + " [ 2887 / 10000 ] 29% - 0:00:01 left \r", + " [ 2888 / 10000 ] 29% - 0:00:01 left \r", + " [ 2889 / 10000 ] 29% - 0:00:01 left \r", + " [ 2890 / 10000 ] 29% - 0:00:01 left \r", + " [ 2891 / 10000 ] 29% - 0:00:01 left \r", + " [ 2892 / 10000 ] 29% - 0:00:01 left \r", + " [ 2893 / 10000 ] 29% - 0:00:01 left \r", + " [ 2894 / 10000 ] 29% - 0:00:01 left \r", + " [ 2895 / 10000 ] 29% - 0:00:01 left \r", + " [ 2896 / 10000 ] 29% - 0:00:01 left \r", + " [ 2897 / 10000 ] 29% - 0:00:01 left \r", + " [ 2898 / 10000 ] 29% - 0:00:01 left \r", + " [ 2899 / 10000 ] 29% - 0:00:01 left \r", + " [ 2900 / 10000 ] 29% - 0:00:01 left \r", + " [ 2901 / 10000 ] 29% - 0:00:01 left \r", + " [ 2902 / 10000 ] 29% - 0:00:01 left \r", + " [ 2903 / 10000 ] 29% - 0:00:01 left \r", + " [ 2904 / 10000 ] 29% - 0:00:01 left \r", + " [ 2905 / 10000 ] 29% - 0:00:01 left \r", + " [ 2906 / 10000 ] 29% - 0:00:01 left \r", + " [ 2907 / 10000 ] 29% - 0:00:01 left \r", + " [ 2908 / 10000 ] 29% - 0:00:01 left \r", + " [ 2909 / 10000 ] 29% - 0:00:01 left \r", + " [ 2910 / 10000 ] 29% - 0:00:01 left \r", + " [ 2911 / 10000 ] 29% - 0:00:01 left \r", + " [ 2912 / 10000 ] 29% - 0:00:01 left \r", + " [ 2913 / 10000 ] 29% - 0:00:01 left \r", + " [ 2914 / 10000 ] 29% - 0:00:01 left \r", + " [ 2915 / 10000 ] 29% - 0:00:01 left \r", + " [ 2916 / 10000 ] 29% - 0:00:01 left \r", + " [ 2917 / 10000 ] 29% - 0:00:01 left \r", + " [ 2918 / 10000 ] 29% - 0:00:01 left \r", + " [ 2919 / 10000 ] 29% - 0:00:01 left \r", + " [ 2920 / 10000 ] 29% - 0:00:01 left \r", + " [ 2921 / 10000 ] 29% - 0:00:01 left \r", + " [ 2922 / 10000 ] 29% - 0:00:01 left \r", + " [ 2923 / 10000 ] 29% - 0:00:01 left \r", + " [ 2924 / 10000 ] 29% - 0:00:01 left \r", + " [ 2925 / 10000 ] 29% - 0:00:01 left \r", + " [ 2926 / 10000 ] 29% - 0:00:01 left \r", + " [ 2927 / 10000 ] 29% - 0:00:01 left \r", + " [ 2928 / 10000 ] 29% - 0:00:01 left \r", + " [ 2929 / 10000 ] 29% - 0:00:01 left \r", + " [ 2930 / 10000 ] 29% - 0:00:01 left \r", + " [ 2931 / 10000 ] 29% - 0:00:01 left \r", + " [ 2932 / 10000 ] 29% - 0:00:01 left \r", + " [ 2933 / 10000 ] 29% - 0:00:01 left \r", + " [ 2934 / 10000 ] 29% - 0:00:01 left \r", + " [ 2935 / 10000 ] 29% - 0:00:01 left \r", + " [ 2936 / 10000 ] 29% - 0:00:01 left \r", + " [ 2937 / 10000 ] 29% - 0:00:01 left \r", + " [ 2938 / 10000 ] 29% - 0:00:01 left \r", + " [ 2939 / 10000 ] 29% - 0:00:01 left \r", + " [ 2940 / 10000 ] 29% - 0:00:01 left \r", + " [ 2941 / 10000 ] 29% - 0:00:01 left \r", + " [ 2942 / 10000 ] 29% - 0:00:01 left \r", + " [ 2943 / 10000 ] 29% - 0:00:01 left \r", + " [ 2944 / 10000 ] 29% - 0:00:01 left \r", + " [ 2945 / 10000 ] 29% - 0:00:01 left \r", + " [ 2946 / 10000 ] 29% - 0:00:01 left \r", + " [ 2947 / 10000 ] 29% - 0:00:01 left \r", + " [ 2948 / 10000 ] 29% - 0:00:01 left \r", + " [ 2949 / 10000 ] 29% - 0:00:01 left \r", + " [ 2950 / 10000 ] 30% - 0:00:01 left \r", + " [ 2951 / 10000 ] 30% - 0:00:01 left \r", + " [ 2952 / 10000 ] 30% - 0:00:01 left \r", + " [ 2953 / 10000 ] 30% - 0:00:01 left \r", + " [ 2954 / 10000 ] 30% - 0:00:01 left \r", + " [ 2955 / 10000 ] 30% - 0:00:01 left \r", + " [ 2956 / 10000 ] 30% - 0:00:01 left \r", + " [ 2957 / 10000 ] 30% - 0:00:01 left \r", + " [ 2958 / 10000 ] 30% - 0:00:01 left \r", + " [ 2959 / 10000 ] 30% - 0:00:01 left \r", + " [ 2960 / 10000 ] 30% - 0:00:01 left \r", + " [ 2961 / 10000 ] 30% - 0:00:01 left \r", + " [ 2962 / 10000 ] 30% - 0:00:01 left \r", + " [ 2963 / 10000 ] 30% - 0:00:01 left \r", + " [ 2964 / 10000 ] 30% - 0:00:01 left \r", + " [ 2965 / 10000 ] 30% - 0:00:01 left \r", + " [ 2966 / 10000 ] 30% - 0:00:01 left \r", + " [ 2967 / 10000 ] 30% - 0:00:01 left \r", + " [ 2968 / 10000 ] 30% - 0:00:01 left \r", + " [ 2969 / 10000 ] 30% - 0:00:01 left \r", + " [ 2970 / 10000 ] 30% - 0:00:01 left \r", + " [ 2971 / 10000 ] 30% - 0:00:01 left \r", + " [ 2972 / 10000 ] 30% - 0:00:01 left \r", + " [ 2973 / 10000 ] 30% - 0:00:01 left \r", + " [ 2974 / 10000 ] 30% - 0:00:01 left \r", + " [ 2975 / 10000 ] 30% - 0:00:01 left \r", + " [ 2976 / 10000 ] 30% - 0:00:01 left \r", + " [ 2977 / 10000 ] 30% - 0:00:01 left \r", + " [ 2978 / 10000 ] 30% - 0:00:01 left \r", + " [ 2979 / 10000 ] 30% - 0:00:01 left \r", + " [ 2980 / 10000 ] 30% - 0:00:01 left \r", + " [ 2981 / 10000 ] 30% - 0:00:01 left \r", + " [ 2982 / 10000 ] 30% - 0:00:01 left \r", + " [ 2983 / 10000 ] 30% - 0:00:01 left \r", + " [ 2984 / 10000 ] 30% - 0:00:01 left \r", + " [ 2985 / 10000 ] 30% - 0:00:01 left \r", + " [ 2986 / 10000 ] 30% - 0:00:01 left \r", + " [ 2987 / 10000 ] 30% - 0:00:01 left \r", + " [ 2988 / 10000 ] 30% - 0:00:01 left \r", + " [ 2989 / 10000 ] 30% - 0:00:01 left \r", + " [ 2990 / 10000 ] 30% - 0:00:01 left \r", + " [ 2991 / 10000 ] 30% - 0:00:01 left \r", + " [ 2992 / 10000 ] 30% - 0:00:01 left \r", + " [ 2993 / 10000 ] 30% - 0:00:01 left \r", + " [ 2994 / 10000 ] 30% - 0:00:01 left \r", + " [ 2995 / 10000 ] 30% - 0:00:01 left \r", + " [ 2996 / 10000 ] 30% - 0:00:01 left \r", + " [ 2997 / 10000 ] 30% - 0:00:01 left \r", + " [ 2998 / 10000 ] 30% - 0:00:01 left \r", + " [ 2999 / 10000 ] 30% - 0:00:01 left \r", + " [ 3000 / 10000 ] 30% - 0:00:01 left \r", + " [ 3001 / 10000 ] 30% - 0:00:01 left \r", + " [ 3002 / 10000 ] 30% - 0:00:01 left \r", + " [ 3003 / 10000 ] 30% - 0:00:01 left \r", + " [ 3004 / 10000 ] 30% - 0:00:01 left \r", + " [ 3005 / 10000 ] 30% - 0:00:01 left \r", + " [ 3006 / 10000 ] 30% - 0:00:01 left \r", + " [ 3007 / 10000 ] 30% - 0:00:01 left \r", + " [ 3008 / 10000 ] 30% - 0:00:01 left \r", + " [ 3009 / 10000 ] 30% - 0:00:01 left \r", + " [ 3010 / 10000 ] 30% - 0:00:01 left \r", + " [ 3011 / 10000 ] 30% - 0:00:01 left \r", + " [ 3012 / 10000 ] 30% - 0:00:01 left \r", + " [ 3013 / 10000 ] 30% - 0:00:01 left \r", + " [ 3014 / 10000 ] 30% - 0:00:01 left \r", + " [ 3015 / 10000 ] 30% - 0:00:01 left \r", + " [ 3016 / 10000 ] 30% - 0:00:01 left \r", + " [ 3017 / 10000 ] 30% - 0:00:01 left \r", + " [ 3018 / 10000 ] 30% - 0:00:01 left \r", + " [ 3019 / 10000 ] 30% - 0:00:01 left \r", + " [ 3020 / 10000 ] 30% - 0:00:01 left \r", + " [ 3021 / 10000 ] 30% - 0:00:01 left \r", + " [ 3022 / 10000 ] 30% - 0:00:01 left \r", + " [ 3023 / 10000 ] 30% - 0:00:01 left \r", + " [ 3024 / 10000 ] 30% - 0:00:01 left \r", + " [ 3025 / 10000 ] 30% - 0:00:01 left \r", + " [ 3026 / 10000 ] 30% - 0:00:01 left \r", + " [ 3027 / 10000 ] 30% - 0:00:01 left \r", + " [ 3028 / 10000 ] 30% - 0:00:01 left \r", + " [ 3029 / 10000 ] 30% - 0:00:01 left \r", + " [ 3030 / 10000 ] 30% - 0:00:01 left \r", + " [ 3031 / 10000 ] 30% - 0:00:01 left \r", + " [ 3032 / 10000 ] 30% - 0:00:01 left \r", + " [ 3033 / 10000 ] 30% - 0:00:01 left \r", + " [ 3034 / 10000 ] 30% - 0:00:01 left \r", + " [ 3035 / 10000 ] 30% - 0:00:01 left \r", + " [ 3036 / 10000 ] 30% - 0:00:01 left \r", + " [ 3037 / 10000 ] 30% - 0:00:01 left \r", + " [ 3038 / 10000 ] 30% - 0:00:01 left \r", + " [ 3039 / 10000 ] 30% - 0:00:01 left \r", + " [ 3040 / 10000 ] 30% - 0:00:01 left \r", + " [ 3041 / 10000 ] 30% - 0:00:01 left \r", + " [ 3042 / 10000 ] 30% - 0:00:01 left \r", + " [ 3043 / 10000 ] 30% - 0:00:01 left \r", + " [ 3044 / 10000 ] 30% - 0:00:01 left \r", + " [ 3045 / 10000 ] 30% - 0:00:01 left \r", + " [ 3046 / 10000 ] 30% - 0:00:01 left \r", + " [ 3047 / 10000 ] 30% - 0:00:01 left \r", + " [ 3048 / 10000 ] 30% - 0:00:01 left \r", + " [ 3049 / 10000 ] 30% - 0:00:01 left \r", + " [ 3050 / 10000 ] 30% - 0:00:01 left \r", + " [ 3051 / 10000 ] 31% - 0:00:01 left \r", + " [ 3052 / 10000 ] 31% - 0:00:01 left \r", + " [ 3053 / 10000 ] 31% - 0:00:01 left \r", + " [ 3054 / 10000 ] 31% - 0:00:01 left \r", + " [ 3055 / 10000 ] 31% - 0:00:01 left \r", + " [ 3056 / 10000 ] 31% - 0:00:01 left \r", + " [ 3057 / 10000 ] 31% - 0:00:01 left \r", + " [ 3058 / 10000 ] 31% - 0:00:01 left \r", + " [ 3059 / 10000 ] 31% - 0:00:01 left \r", + " [ 3060 / 10000 ] 31% - 0:00:01 left \r", + " [ 3061 / 10000 ] 31% - 0:00:01 left \r", + " [ 3062 / 10000 ] 31% - 0:00:01 left \r", + " [ 3063 / 10000 ] 31% - 0:00:01 left \r", + " [ 3064 / 10000 ] 31% - 0:00:01 left \r", + " [ 3065 / 10000 ] 31% - 0:00:01 left \r", + " [ 3066 / 10000 ] 31% - 0:00:01 left \r", + " [ 3067 / 10000 ] 31% - 0:00:01 left \r", + " [ 3068 / 10000 ] 31% - 0:00:01 left \r", + " [ 3069 / 10000 ] 31% - 0:00:01 left \r", + " [ 3070 / 10000 ] 31% - 0:00:01 left \r", + " [ 3071 / 10000 ] 31% - 0:00:01 left \r", + " [ 3072 / 10000 ] 31% - 0:00:01 left \r", + " [ 3073 / 10000 ] 31% - 0:00:01 left \r", + " [ 3074 / 10000 ] 31% - 0:00:01 left \r", + " [ 3075 / 10000 ] 31% - 0:00:01 left \r", + " [ 3076 / 10000 ] 31% - 0:00:01 left \r", + " [ 3077 / 10000 ] 31% - 0:00:01 left \r", + " [ 3078 / 10000 ] 31% - 0:00:01 left \r", + " [ 3079 / 10000 ] 31% - 0:00:01 left \r", + " [ 3080 / 10000 ] 31% - 0:00:01 left \r", + " [ 3081 / 10000 ] 31% - 0:00:01 left \r", + " [ 3082 / 10000 ] 31% - 0:00:01 left \r", + " [ 3083 / 10000 ] 31% - 0:00:01 left \r", + " [ 3084 / 10000 ] 31% - 0:00:01 left \r", + " [ 3085 / 10000 ] 31% - 0:00:01 left \r", + " [ 3086 / 10000 ] 31% - 0:00:01 left \r", + " [ 3087 / 10000 ] 31% - 0:00:01 left \r", + " [ 3088 / 10000 ] 31% - 0:00:01 left \r", + " [ 3089 / 10000 ] 31% - 0:00:01 left \r", + " [ 3090 / 10000 ] 31% - 0:00:01 left \r", + " [ 3091 / 10000 ] 31% - 0:00:01 left \r", + " [ 3092 / 10000 ] 31% - 0:00:01 left \r", + " [ 3093 / 10000 ] 31% - 0:00:01 left \r", + " [ 3094 / 10000 ] 31% - 0:00:01 left \r", + " [ 3095 / 10000 ] 31% - 0:00:01 left \r", + " [ 3096 / 10000 ] 31% - 0:00:01 left \r", + " [ 3097 / 10000 ] 31% - 0:00:01 left \r", + " [ 3098 / 10000 ] 31% - 0:00:01 left \r", + " [ 3099 / 10000 ] 31% - 0:00:01 left \r", + " [ 3100 / 10000 ] 31% - 0:00:01 left \r", + " [ 3101 / 10000 ] 31% - 0:00:01 left \r", + " [ 3102 / 10000 ] 31% - 0:00:01 left \r", + " [ 3103 / 10000 ] 31% - 0:00:01 left \r", + " [ 3104 / 10000 ] 31% - 0:00:01 left \r", + " [ 3105 / 10000 ] 31% - 0:00:01 left \r", + " [ 3106 / 10000 ] 31% - 0:00:01 left \r", + " [ 3107 / 10000 ] 31% - 0:00:01 left \r", + " [ 3108 / 10000 ] 31% - 0:00:01 left \r", + " [ 3109 / 10000 ] 31% - 0:00:01 left \r", + " [ 3110 / 10000 ] 31% - 0:00:01 left \r", + " [ 3111 / 10000 ] 31% - 0:00:01 left \r", + " [ 3112 / 10000 ] 31% - 0:00:01 left \r", + " [ 3113 / 10000 ] 31% - 0:00:01 left \r", + " [ 3114 / 10000 ] 31% - 0:00:01 left \r", + " [ 3115 / 10000 ] 31% - 0:00:01 left \r", + " [ 3116 / 10000 ] 31% - 0:00:01 left \r", + " [ 3117 / 10000 ] 31% - 0:00:01 left \r", + " [ 3118 / 10000 ] 31% - 0:00:01 left \r", + " [ 3119 / 10000 ] 31% - 0:00:01 left \r", + " [ 3120 / 10000 ] 31% - 0:00:01 left \r", + " [ 3121 / 10000 ] 31% - 0:00:01 left \r", + " [ 3122 / 10000 ] 31% - 0:00:01 left \r", + " [ 3123 / 10000 ] 31% - 0:00:01 left \r", + " [ 3124 / 10000 ] 31% - 0:00:01 left \r", + " [ 3125 / 10000 ] 31% - 0:00:01 left \r", + " [ 3126 / 10000 ] 31% - 0:00:01 left \r", + " [ 3127 / 10000 ] 31% - 0:00:01 left \r", + " [ 3128 / 10000 ] 31% - 0:00:01 left \r", + " [ 3129 / 10000 ] 31% - 0:00:01 left \r", + " [ 3130 / 10000 ] 31% - 0:00:01 left \r", + " [ 3131 / 10000 ] 31% - 0:00:01 left \r", + " [ 3132 / 10000 ] 31% - 0:00:01 left \r", + " [ 3133 / 10000 ] 31% - 0:00:01 left \r", + " [ 3134 / 10000 ] 31% - 0:00:01 left \r", + " [ 3135 / 10000 ] 31% - 0:00:01 left \r", + " [ 3136 / 10000 ] 31% - 0:00:01 left \r", + " [ 3137 / 10000 ] 31% - 0:00:01 left \r", + " [ 3138 / 10000 ] 31% - 0:00:01 left \r", + " [ 3139 / 10000 ] 31% - 0:00:01 left \r", + " [ 3140 / 10000 ] 31% - 0:00:01 left \r", + " [ 3141 / 10000 ] 31% - 0:00:01 left \r", + " [ 3142 / 10000 ] 31% - 0:00:01 left \r", + " [ 3143 / 10000 ] 31% - 0:00:01 left \r", + " [ 3144 / 10000 ] 31% - 0:00:01 left \r", + " [ 3145 / 10000 ] 31% - 0:00:01 left \r", + " [ 3146 / 10000 ] 31% - 0:00:01 left \r", + " [ 3147 / 10000 ] 31% - 0:00:01 left \r", + " [ 3148 / 10000 ] 31% - 0:00:01 left \r", + " [ 3149 / 10000 ] 31% - 0:00:01 left \r", + " [ 3150 / 10000 ] 32% - 0:00:01 left \r", + " [ 3151 / 10000 ] 32% - 0:00:01 left \r", + " [ 3152 / 10000 ] 32% - 0:00:01 left \r", + " [ 3153 / 10000 ] 32% - 0:00:01 left \r", + " [ 3154 / 10000 ] 32% - 0:00:01 left \r", + " [ 3155 / 10000 ] 32% - 0:00:01 left \r", + " [ 3156 / 10000 ] 32% - 0:00:01 left \r", + " [ 3157 / 10000 ] 32% - 0:00:01 left \r", + " [ 3158 / 10000 ] 32% - 0:00:01 left \r", + " [ 3159 / 10000 ] 32% - 0:00:01 left \r", + " [ 3160 / 10000 ] 32% - 0:00:01 left \r", + " [ 3161 / 10000 ] 32% - 0:00:01 left \r", + " [ 3162 / 10000 ] 32% - 0:00:01 left \r", + " [ 3163 / 10000 ] 32% - 0:00:01 left \r", + " [ 3164 / 10000 ] 32% - 0:00:01 left \r", + " [ 3165 / 10000 ] 32% - 0:00:01 left \r", + " [ 3166 / 10000 ] 32% - 0:00:01 left \r", + " [ 3167 / 10000 ] 32% - 0:00:01 left \r", + " [ 3168 / 10000 ] 32% - 0:00:01 left \r", + " [ 3169 / 10000 ] 32% - 0:00:01 left \r", + " [ 3170 / 10000 ] 32% - 0:00:01 left \r", + " [ 3171 / 10000 ] 32% - 0:00:01 left \r", + " [ 3172 / 10000 ] 32% - 0:00:01 left \r", + " [ 3173 / 10000 ] 32% - 0:00:01 left \r", + " [ 3174 / 10000 ] 32% - 0:00:01 left \r", + " [ 3175 / 10000 ] 32% - 0:00:01 left \r", + " [ 3176 / 10000 ] 32% - 0:00:01 left \r", + " [ 3177 / 10000 ] 32% - 0:00:01 left \r", + " [ 3178 / 10000 ] 32% - 0:00:01 left \r", + " [ 3179 / 10000 ] 32% - 0:00:01 left \r", + " [ 3180 / 10000 ] 32% - 0:00:01 left \r", + " [ 3181 / 10000 ] 32% - 0:00:01 left \r", + " [ 3182 / 10000 ] 32% - 0:00:01 left \r", + " [ 3183 / 10000 ] 32% - 0:00:01 left \r", + " [ 3184 / 10000 ] 32% - 0:00:01 left \r", + " [ 3185 / 10000 ] 32% - 0:00:01 left \r", + " [ 3186 / 10000 ] 32% - 0:00:01 left \r", + " [ 3187 / 10000 ] 32% - 0:00:01 left \r", + " [ 3188 / 10000 ] 32% - 0:00:01 left \r", + " [ 3189 / 10000 ] 32% - 0:00:01 left \r", + " [ 3190 / 10000 ] 32% - 0:00:01 left \r", + " [ 3191 / 10000 ] 32% - 0:00:01 left \r", + " [ 3192 / 10000 ] 32% - 0:00:01 left \r", + " [ 3193 / 10000 ] 32% - 0:00:01 left \r", + " [ 3194 / 10000 ] 32% - 0:00:01 left \r", + " [ 3195 / 10000 ] 32% - 0:00:01 left \r", + " [ 3196 / 10000 ] 32% - 0:00:01 left \r", + " [ 3197 / 10000 ] 32% - 0:00:01 left \r", + " [ 3198 / 10000 ] 32% - 0:00:01 left \r", + " [ 3199 / 10000 ] 32% - 0:00:01 left \r", + " [ 3200 / 10000 ] 32% - 0:00:01 left \r", + " [ 3201 / 10000 ] 32% - 0:00:01 left \r", + " [ 3202 / 10000 ] 32% - 0:00:01 left \r", + " [ 3203 / 10000 ] 32% - 0:00:01 left \r", + " [ 3204 / 10000 ] 32% - 0:00:01 left \r", + " [ 3205 / 10000 ] 32% - 0:00:01 left \r", + " [ 3206 / 10000 ] 32% - 0:00:01 left \r", + " [ 3207 / 10000 ] 32% - 0:00:01 left \r", + " [ 3208 / 10000 ] 32% - 0:00:01 left \r", + " [ 3209 / 10000 ] 32% - 0:00:01 left \r", + " [ 3210 / 10000 ] 32% - 0:00:01 left \r", + " [ 3211 / 10000 ] 32% - 0:00:01 left \r", + " [ 3212 / 10000 ] 32% - 0:00:01 left \r", + " [ 3213 / 10000 ] 32% - 0:00:01 left \r", + " [ 3214 / 10000 ] 32% - 0:00:01 left \r", + " [ 3215 / 10000 ] 32% - 0:00:01 left \r", + " [ 3216 / 10000 ] 32% - 0:00:01 left \r", + " [ 3217 / 10000 ] 32% - 0:00:01 left \r", + " [ 3218 / 10000 ] 32% - 0:00:01 left \r", + " [ 3219 / 10000 ] 32% - 0:00:01 left \r", + " [ 3220 / 10000 ] 32% - 0:00:01 left \r", + " [ 3221 / 10000 ] 32% - 0:00:01 left \r", + " [ 3222 / 10000 ] 32% - 0:00:01 left \r", + " [ 3223 / 10000 ] 32% - 0:00:01 left \r", + " [ 3224 / 10000 ] 32% - 0:00:01 left \r", + " [ 3225 / 10000 ] 32% - 0:00:01 left \r", + " [ 3226 / 10000 ] 32% - 0:00:01 left \r", + " [ 3227 / 10000 ] 32% - 0:00:01 left \r", + " [ 3228 / 10000 ] 32% - 0:00:01 left \r", + " [ 3229 / 10000 ] 32% - 0:00:01 left \r", + " [ 3230 / 10000 ] 32% - 0:00:01 left \r", + " [ 3231 / 10000 ] 32% - 0:00:01 left \r", + " [ 3232 / 10000 ] 32% - 0:00:01 left \r", + " [ 3233 / 10000 ] 32% - 0:00:01 left \r", + " [ 3234 / 10000 ] 32% - 0:00:01 left \r", + " [ 3235 / 10000 ] 32% - 0:00:01 left \r", + " [ 3236 / 10000 ] 32% - 0:00:01 left \r", + " [ 3237 / 10000 ] 32% - 0:00:01 left \r", + " [ 3238 / 10000 ] 32% - 0:00:01 left \r", + " [ 3239 / 10000 ] 32% - 0:00:01 left \r", + " [ 3240 / 10000 ] 32% - 0:00:01 left \r", + " [ 3241 / 10000 ] 32% - 0:00:01 left \r", + " [ 3242 / 10000 ] 32% - 0:00:01 left \r", + " [ 3243 / 10000 ] 32% - 0:00:01 left \r", + " [ 3244 / 10000 ] 32% - 0:00:01 left \r", + " [ 3245 / 10000 ] 32% - 0:00:01 left \r", + " [ 3246 / 10000 ] 32% - 0:00:01 left \r", + " [ 3247 / 10000 ] 32% - 0:00:01 left \r", + " [ 3248 / 10000 ] 32% - 0:00:01 left \r", + " [ 3249 / 10000 ] 32% - 0:00:01 left \r", + " [ 3250 / 10000 ] 32% - 0:00:01 left \r", + " [ 3251 / 10000 ] 33% - 0:00:01 left \r", + " [ 3252 / 10000 ] 33% - 0:00:01 left \r", + " [ 3253 / 10000 ] 33% - 0:00:01 left \r", + " [ 3254 / 10000 ] 33% - 0:00:01 left \r", + " [ 3255 / 10000 ] 33% - 0:00:01 left \r", + " [ 3256 / 10000 ] 33% - 0:00:01 left \r", + " [ 3257 / 10000 ] 33% - 0:00:01 left \r", + " [ 3258 / 10000 ] 33% - 0:00:01 left \r", + " [ 3259 / 10000 ] 33% - 0:00:01 left \r", + " [ 3260 / 10000 ] 33% - 0:00:01 left \r", + " [ 3261 / 10000 ] 33% - 0:00:01 left \r", + " [ 3262 / 10000 ] 33% - 0:00:01 left \r", + " [ 3263 / 10000 ] 33% - 0:00:01 left \r", + " [ 3264 / 10000 ] 33% - 0:00:01 left \r", + " [ 3265 / 10000 ] 33% - 0:00:01 left \r", + " [ 3266 / 10000 ] 33% - 0:00:01 left \r", + " [ 3267 / 10000 ] 33% - 0:00:01 left \r", + " [ 3268 / 10000 ] 33% - 0:00:01 left \r", + " [ 3269 / 10000 ] 33% - 0:00:01 left \r", + " [ 3270 / 10000 ] 33% - 0:00:01 left \r", + " [ 3271 / 10000 ] 33% - 0:00:01 left \r", + " [ 3272 / 10000 ] 33% - 0:00:01 left \r", + " [ 3273 / 10000 ] 33% - 0:00:01 left \r", + " [ 3274 / 10000 ] 33% - 0:00:01 left \r", + " [ 3275 / 10000 ] 33% - 0:00:01 left \r", + " [ 3276 / 10000 ] 33% - 0:00:01 left \r", + " [ 3277 / 10000 ] 33% - 0:00:01 left \r", + " [ 3278 / 10000 ] 33% - 0:00:01 left \r", + " [ 3279 / 10000 ] 33% - 0:00:01 left \r", + " [ 3280 / 10000 ] 33% - 0:00:01 left \r", + " [ 3281 / 10000 ] 33% - 0:00:01 left \r", + " [ 3282 / 10000 ] 33% - 0:00:01 left \r", + " [ 3283 / 10000 ] 33% - 0:00:01 left \r", + " [ 3284 / 10000 ] 33% - 0:00:01 left \r", + " [ 3285 / 10000 ] 33% - 0:00:01 left \r", + " [ 3286 / 10000 ] 33% - 0:00:01 left \r", + " [ 3287 / 10000 ] 33% - 0:00:01 left \r", + " [ 3288 / 10000 ] 33% - 0:00:01 left \r", + " [ 3289 / 10000 ] 33% - 0:00:01 left \r", + " [ 3290 / 10000 ] 33% - 0:00:01 left \r", + " [ 3291 / 10000 ] 33% - 0:00:01 left \r", + " [ 3292 / 10000 ] 33% - 0:00:01 left \r", + " [ 3293 / 10000 ] 33% - 0:00:01 left \r", + " [ 3294 / 10000 ] 33% - 0:00:01 left \r", + " [ 3295 / 10000 ] 33% - 0:00:01 left \r", + " [ 3296 / 10000 ] 33% - 0:00:01 left \r", + " [ 3297 / 10000 ] 33% - 0:00:01 left \r", + " [ 3298 / 10000 ] 33% - 0:00:01 left \r", + " [ 3299 / 10000 ] 33% - 0:00:01 left \r", + " [ 3300 / 10000 ] 33% - 0:00:01 left \r", + " [ 3301 / 10000 ] 33% - 0:00:01 left \r", + " [ 3302 / 10000 ] 33% - 0:00:01 left \r", + " [ 3303 / 10000 ] 33% - 0:00:01 left \r", + " [ 3304 / 10000 ] 33% - 0:00:01 left \r", + " [ 3305 / 10000 ] 33% - 0:00:01 left \r", + " [ 3306 / 10000 ] 33% - 0:00:01 left \r", + " [ 3307 / 10000 ] 33% - 0:00:01 left \r", + " [ 3308 / 10000 ] 33% - 0:00:01 left \r", + " [ 3309 / 10000 ] 33% - 0:00:01 left \r", + " [ 3310 / 10000 ] 33% - 0:00:01 left \r", + " [ 3311 / 10000 ] 33% - 0:00:01 left \r", + " [ 3312 / 10000 ] 33% - 0:00:01 left \r", + " [ 3313 / 10000 ] 33% - 0:00:01 left \r", + " [ 3314 / 10000 ] 33% - 0:00:01 left \r", + " [ 3315 / 10000 ] 33% - 0:00:01 left \r", + " [ 3316 / 10000 ] 33% - 0:00:01 left \r", + " [ 3317 / 10000 ] 33% - 0:00:01 left \r", + " [ 3318 / 10000 ] 33% - 0:00:01 left \r", + " [ 3319 / 10000 ] 33% - 0:00:01 left \r", + " [ 3320 / 10000 ] 33% - 0:00:01 left \r", + " [ 3321 / 10000 ] 33% - 0:00:01 left \r", + " [ 3322 / 10000 ] 33% - 0:00:01 left \r", + " [ 3323 / 10000 ] 33% - 0:00:01 left \r", + " [ 3324 / 10000 ] 33% - 0:00:01 left \r", + " [ 3325 / 10000 ] 33% - 0:00:01 left \r", + " [ 3326 / 10000 ] 33% - 0:00:01 left \r", + " [ 3327 / 10000 ] 33% - 0:00:01 left \r", + " [ 3328 / 10000 ] 33% - 0:00:01 left \r", + " [ 3329 / 10000 ] 33% - 0:00:01 left \r", + " [ 3330 / 10000 ] 33% - 0:00:01 left \r", + " [ 3331 / 10000 ] 33% - 0:00:01 left \r", + " [ 3332 / 10000 ] 33% - 0:00:01 left \r", + " [ 3333 / 10000 ] 33% - 0:00:01 left \r", + " [ 3334 / 10000 ] 33% - 0:00:01 left \r", + " [ 3335 / 10000 ] 33% - 0:00:01 left \r", + " [ 3336 / 10000 ] 33% - 0:00:01 left \r", + " [ 3337 / 10000 ] 33% - 0:00:01 left \r", + " [ 3338 / 10000 ] 33% - 0:00:01 left \r", + " [ 3339 / 10000 ] 33% - 0:00:01 left \r", + " [ 3340 / 10000 ] 33% - 0:00:01 left \r", + " [ 3341 / 10000 ] 33% - 0:00:01 left \r", + " [ 3342 / 10000 ] 33% - 0:00:01 left \r", + " [ 3343 / 10000 ] 33% - 0:00:01 left \r", + " [ 3344 / 10000 ] 33% - 0:00:01 left \r", + " [ 3345 / 10000 ] 33% - 0:00:01 left \r", + " [ 3346 / 10000 ] 33% - 0:00:01 left \r", + " [ 3347 / 10000 ] 33% - 0:00:01 left \r", + " [ 3348 / 10000 ] 33% - 0:00:01 left \r", + " [ 3349 / 10000 ] 33% - 0:00:01 left \r", + " [ 3350 / 10000 ] 34% - 0:00:01 left \r", + " [ 3351 / 10000 ] 34% - 0:00:01 left \r", + " [ 3352 / 10000 ] 34% - 0:00:01 left \r", + " [ 3353 / 10000 ] 34% - 0:00:01 left \r", + " [ 3354 / 10000 ] 34% - 0:00:01 left \r", + " [ 3355 / 10000 ] 34% - 0:00:01 left \r", + " [ 3356 / 10000 ] 34% - 0:00:01 left \r", + " [ 3357 / 10000 ] 34% - 0:00:01 left \r", + " [ 3358 / 10000 ] 34% - 0:00:01 left \r", + " [ 3359 / 10000 ] 34% - 0:00:01 left \r", + " [ 3360 / 10000 ] 34% - 0:00:01 left \r", + " [ 3361 / 10000 ] 34% - 0:00:01 left \r", + " [ 3362 / 10000 ] 34% - 0:00:01 left \r", + " [ 3363 / 10000 ] 34% - 0:00:01 left \r", + " [ 3364 / 10000 ] 34% - 0:00:01 left \r", + " [ 3365 / 10000 ] 34% - 0:00:01 left \r", + " [ 3366 / 10000 ] 34% - 0:00:01 left \r", + " [ 3367 / 10000 ] 34% - 0:00:01 left \r", + " [ 3368 / 10000 ] 34% - 0:00:01 left \r", + " [ 3369 / 10000 ] 34% - 0:00:01 left \r", + " [ 3370 / 10000 ] 34% - 0:00:01 left \r", + " [ 3371 / 10000 ] 34% - 0:00:01 left \r", + " [ 3372 / 10000 ] 34% - 0:00:01 left \r", + " [ 3373 / 10000 ] 34% - 0:00:01 left \r", + " [ 3374 / 10000 ] 34% - 0:00:01 left \r", + " [ 3375 / 10000 ] 34% - 0:00:01 left \r", + " [ 3376 / 10000 ] 34% - 0:00:01 left \r", + " [ 3377 / 10000 ] 34% - 0:00:01 left \r", + " [ 3378 / 10000 ] 34% - 0:00:01 left \r", + " [ 3379 / 10000 ] 34% - 0:00:01 left \r", + " [ 3380 / 10000 ] 34% - 0:00:01 left \r", + " [ 3381 / 10000 ] 34% - 0:00:01 left \r", + " [ 3382 / 10000 ] 34% - 0:00:01 left \r", + " [ 3383 / 10000 ] 34% - 0:00:01 left \r", + " [ 3384 / 10000 ] 34% - 0:00:01 left \r", + " [ 3385 / 10000 ] 34% - 0:00:01 left \r", + " [ 3386 / 10000 ] 34% - 0:00:01 left \r", + " [ 3387 / 10000 ] 34% - 0:00:01 left \r", + " [ 3388 / 10000 ] 34% - 0:00:01 left \r", + " [ 3389 / 10000 ] 34% - 0:00:01 left \r", + " [ 3390 / 10000 ] 34% - 0:00:01 left \r", + " [ 3391 / 10000 ] 34% - 0:00:01 left \r", + " [ 3392 / 10000 ] 34% - 0:00:01 left \r", + " [ 3393 / 10000 ] 34% - 0:00:01 left \r", + " [ 3394 / 10000 ] 34% - 0:00:01 left \r", + " [ 3395 / 10000 ] 34% - 0:00:01 left \r", + " [ 3396 / 10000 ] 34% - 0:00:01 left \r", + " [ 3397 / 10000 ] 34% - 0:00:01 left \r", + " [ 3398 / 10000 ] 34% - 0:00:01 left \r", + " [ 3399 / 10000 ] 34% - 0:00:01 left \r", + " [ 3400 / 10000 ] 34% - 0:00:01 left \r", + " [ 3401 / 10000 ] 34% - 0:00:01 left \r", + " [ 3402 / 10000 ] 34% - 0:00:01 left \r", + " [ 3403 / 10000 ] 34% - 0:00:01 left \r", + " [ 3404 / 10000 ] 34% - 0:00:01 left \r", + " [ 3405 / 10000 ] 34% - 0:00:01 left \r", + " [ 3406 / 10000 ] 34% - 0:00:01 left \r", + " [ 3407 / 10000 ] 34% - 0:00:01 left \r", + " [ 3408 / 10000 ] 34% - 0:00:01 left \r", + " [ 3409 / 10000 ] 34% - 0:00:01 left \r", + " [ 3410 / 10000 ] 34% - 0:00:01 left \r", + " [ 3411 / 10000 ] 34% - 0:00:01 left \r", + " [ 3412 / 10000 ] 34% - 0:00:01 left \r", + " [ 3413 / 10000 ] 34% - 0:00:01 left \r", + " [ 3414 / 10000 ] 34% - 0:00:01 left \r", + " [ 3415 / 10000 ] 34% - 0:00:01 left \r", + " [ 3416 / 10000 ] 34% - 0:00:01 left \r", + " [ 3417 / 10000 ] 34% - 0:00:01 left \r", + " [ 3418 / 10000 ] 34% - 0:00:01 left \r", + " [ 3419 / 10000 ] 34% - 0:00:01 left \r", + " [ 3420 / 10000 ] 34% - 0:00:01 left \r", + " [ 3421 / 10000 ] 34% - 0:00:01 left \r", + " [ 3422 / 10000 ] 34% - 0:00:01 left \r", + " [ 3423 / 10000 ] 34% - 0:00:01 left \r", + " [ 3424 / 10000 ] 34% - 0:00:01 left \r", + " [ 3425 / 10000 ] 34% - 0:00:01 left \r", + " [ 3426 / 10000 ] 34% - 0:00:01 left \r", + " [ 3427 / 10000 ] 34% - 0:00:01 left \r", + " [ 3428 / 10000 ] 34% - 0:00:01 left \r", + " [ 3429 / 10000 ] 34% - 0:00:01 left \r", + " [ 3430 / 10000 ] 34% - 0:00:01 left \r", + " [ 3431 / 10000 ] 34% - 0:00:01 left \r", + " [ 3432 / 10000 ] 34% - 0:00:01 left \r", + " [ 3433 / 10000 ] 34% - 0:00:01 left \r", + " [ 3434 / 10000 ] 34% - 0:00:01 left \r", + " [ 3435 / 10000 ] 34% - 0:00:01 left \r", + " [ 3436 / 10000 ] 34% - 0:00:01 left \r", + " [ 3437 / 10000 ] 34% - 0:00:01 left \r", + " [ 3438 / 10000 ] 34% - 0:00:01 left \r", + " [ 3439 / 10000 ] 34% - 0:00:01 left \r", + " [ 3440 / 10000 ] 34% - 0:00:01 left \r", + " [ 3441 / 10000 ] 34% - 0:00:01 left \r", + " [ 3442 / 10000 ] 34% - 0:00:01 left \r", + " [ 3443 / 10000 ] 34% - 0:00:01 left \r", + " [ 3444 / 10000 ] 34% - 0:00:01 left \r", + " [ 3445 / 10000 ] 34% - 0:00:01 left \r", + " [ 3446 / 10000 ] 34% - 0:00:01 left \r", + " [ 3447 / 10000 ] 34% - 0:00:01 left \r", + " [ 3448 / 10000 ] 34% - 0:00:01 left \r", + " [ 3449 / 10000 ] 34% - 0:00:01 left \r", + " [ 3450 / 10000 ] 34% - 0:00:01 left \r", + " [ 3451 / 10000 ] 35% - 0:00:01 left \r", + " [ 3452 / 10000 ] 35% - 0:00:01 left \r", + " [ 3453 / 10000 ] 35% - 0:00:01 left \r", + " [ 3454 / 10000 ] 35% - 0:00:01 left \r", + " [ 3455 / 10000 ] 35% - 0:00:01 left \r", + " [ 3456 / 10000 ] 35% - 0:00:01 left \r", + " [ 3457 / 10000 ] 35% - 0:00:01 left \r", + " [ 3458 / 10000 ] 35% - 0:00:01 left \r", + " [ 3459 / 10000 ] 35% - 0:00:01 left \r", + " [ 3460 / 10000 ] 35% - 0:00:01 left \r", + " [ 3461 / 10000 ] 35% - 0:00:01 left \r", + " [ 3462 / 10000 ] 35% - 0:00:01 left \r", + " [ 3463 / 10000 ] 35% - 0:00:01 left \r", + " [ 3464 / 10000 ] 35% - 0:00:01 left \r", + " [ 3465 / 10000 ] 35% - 0:00:01 left \r", + " [ 3466 / 10000 ] 35% - 0:00:01 left \r", + " [ 3467 / 10000 ] 35% - 0:00:01 left \r", + " [ 3468 / 10000 ] 35% - 0:00:01 left \r", + " [ 3469 / 10000 ] 35% - 0:00:01 left \r", + " [ 3470 / 10000 ] 35% - 0:00:01 left \r", + " [ 3471 / 10000 ] 35% - 0:00:01 left \r", + " [ 3472 / 10000 ] 35% - 0:00:01 left \r", + " [ 3473 / 10000 ] 35% - 0:00:01 left \r", + " [ 3474 / 10000 ] 35% - 0:00:01 left \r", + " [ 3475 / 10000 ] 35% - 0:00:01 left \r", + " [ 3476 / 10000 ] 35% - 0:00:01 left \r", + " [ 3477 / 10000 ] 35% - 0:00:01 left \r", + " [ 3478 / 10000 ] 35% - 0:00:01 left \r", + " [ 3479 / 10000 ] 35% - 0:00:01 left \r", + " [ 3480 / 10000 ] 35% - 0:00:01 left \r", + " [ 3481 / 10000 ] 35% - 0:00:01 left \r", + " [ 3482 / 10000 ] 35% - 0:00:01 left \r", + " [ 3483 / 10000 ] 35% - 0:00:01 left \r", + " [ 3484 / 10000 ] 35% - 0:00:01 left \r", + " [ 3485 / 10000 ] 35% - 0:00:01 left \r", + " [ 3486 / 10000 ] 35% - 0:00:01 left \r", + " [ 3487 / 10000 ] 35% - 0:00:01 left \r", + " [ 3488 / 10000 ] 35% - 0:00:01 left \r", + " [ 3489 / 10000 ] 35% - 0:00:01 left \r", + " [ 3490 / 10000 ] 35% - 0:00:01 left \r", + " [ 3491 / 10000 ] 35% - 0:00:01 left \r", + " [ 3492 / 10000 ] 35% - 0:00:01 left \r", + " [ 3493 / 10000 ] 35% - 0:00:01 left \r", + " [ 3494 / 10000 ] 35% - 0:00:01 left \r", + " [ 3495 / 10000 ] 35% - 0:00:01 left \r", + " [ 3496 / 10000 ] 35% - 0:00:01 left \r", + " [ 3497 / 10000 ] 35% - 0:00:01 left \r", + " [ 3498 / 10000 ] 35% - 0:00:01 left \r", + " [ 3499 / 10000 ] 35% - 0:00:01 left \r", + " [ 3500 / 10000 ] 35% - 0:00:01 left \r", + " [ 3501 / 10000 ] 35% - 0:00:01 left \r", + " [ 3502 / 10000 ] 35% - 0:00:01 left \r", + " [ 3503 / 10000 ] 35% - 0:00:01 left \r", + " [ 3504 / 10000 ] 35% - 0:00:01 left \r", + " [ 3505 / 10000 ] 35% - 0:00:01 left \r", + " [ 3506 / 10000 ] 35% - 0:00:01 left \r", + " [ 3507 / 10000 ] 35% - 0:00:01 left \r", + " [ 3508 / 10000 ] 35% - 0:00:01 left \r", + " [ 3509 / 10000 ] 35% - 0:00:01 left \r", + " [ 3510 / 10000 ] 35% - 0:00:01 left \r", + " [ 3511 / 10000 ] 35% - 0:00:01 left \r", + " [ 3512 / 10000 ] 35% - 0:00:01 left \r", + " [ 3513 / 10000 ] 35% - 0:00:01 left \r", + " [ 3514 / 10000 ] 35% - 0:00:01 left \r", + " [ 3515 / 10000 ] 35% - 0:00:01 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 3516 / 10000 ] 35% - 0:00:01 left \r", + " [ 3517 / 10000 ] 35% - 0:00:01 left \r", + " [ 3518 / 10000 ] 35% - 0:00:01 left \r", + " [ 3519 / 10000 ] 35% - 0:00:01 left \r", + " [ 3520 / 10000 ] 35% - 0:00:01 left \r", + " [ 3521 / 10000 ] 35% - 0:00:01 left \r", + " [ 3522 / 10000 ] 35% - 0:00:01 left \r", + " [ 3523 / 10000 ] 35% - 0:00:01 left \r", + " [ 3524 / 10000 ] 35% - 0:00:01 left \r", + " [ 3525 / 10000 ] 35% - 0:00:01 left \r", + " [ 3526 / 10000 ] 35% - 0:00:01 left \r", + " [ 3527 / 10000 ] 35% - 0:00:01 left \r", + " [ 3528 / 10000 ] 35% - 0:00:01 left \r", + " [ 3529 / 10000 ] 35% - 0:00:01 left \r", + " [ 3530 / 10000 ] 35% - 0:00:01 left \r", + " [ 3531 / 10000 ] 35% - 0:00:01 left \r", + " [ 3532 / 10000 ] 35% - 0:00:01 left \r", + " [ 3533 / 10000 ] 35% - 0:00:01 left \r", + " [ 3534 / 10000 ] 35% - 0:00:01 left \r", + " [ 3535 / 10000 ] 35% - 0:00:01 left \r", + " [ 3536 / 10000 ] 35% - 0:00:01 left \r", + " [ 3537 / 10000 ] 35% - 0:00:01 left \r", + " [ 3538 / 10000 ] 35% - 0:00:01 left \r", + " [ 3539 / 10000 ] 35% - 0:00:01 left \r", + " [ 3540 / 10000 ] 35% - 0:00:01 left \r", + " [ 3541 / 10000 ] 35% - 0:00:01 left \r", + " [ 3542 / 10000 ] 35% - 0:00:01 left \r", + " [ 3543 / 10000 ] 35% - 0:00:01 left \r", + " [ 3544 / 10000 ] 35% - 0:00:01 left \r", + " [ 3545 / 10000 ] 35% - 0:00:01 left \r", + " [ 3546 / 10000 ] 35% - 0:00:01 left \r", + " [ 3547 / 10000 ] 35% - 0:00:01 left \r", + " [ 3548 / 10000 ] 35% - 0:00:01 left \r", + " [ 3549 / 10000 ] 35% - 0:00:01 left \r", + " [ 3550 / 10000 ] 36% - 0:00:01 left \r", + " [ 3551 / 10000 ] 36% - 0:00:01 left \r", + " [ 3552 / 10000 ] 36% - 0:00:01 left \r", + " [ 3553 / 10000 ] 36% - 0:00:01 left \r", + " [ 3554 / 10000 ] 36% - 0:00:01 left \r", + " [ 3555 / 10000 ] 36% - 0:00:01 left \r", + " [ 3556 / 10000 ] 36% - 0:00:01 left \r", + " [ 3557 / 10000 ] 36% - 0:00:01 left \r", + " [ 3558 / 10000 ] 36% - 0:00:01 left \r", + " [ 3559 / 10000 ] 36% - 0:00:01 left \r", + " [ 3560 / 10000 ] 36% - 0:00:01 left \r", + " [ 3561 / 10000 ] 36% - 0:00:01 left \r", + " [ 3562 / 10000 ] 36% - 0:00:01 left \r", + " [ 3563 / 10000 ] 36% - 0:00:01 left \r", + " [ 3564 / 10000 ] 36% - 0:00:01 left \r", + " [ 3565 / 10000 ] 36% - 0:00:01 left \r", + " [ 3566 / 10000 ] 36% - 0:00:01 left \r", + " [ 3567 / 10000 ] 36% - 0:00:01 left \r", + " [ 3568 / 10000 ] 36% - 0:00:01 left \r", + " [ 3569 / 10000 ] 36% - 0:00:01 left \r", + " [ 3570 / 10000 ] 36% - 0:00:01 left \r", + " [ 3571 / 10000 ] 36% - 0:00:01 left \r", + " [ 3572 / 10000 ] 36% - 0:00:01 left \r", + " [ 3573 / 10000 ] 36% - 0:00:01 left \r", + " [ 3574 / 10000 ] 36% - 0:00:01 left \r", + " [ 3575 / 10000 ] 36% - 0:00:01 left \r", + " [ 3576 / 10000 ] 36% - 0:00:01 left \r", + " [ 3577 / 10000 ] 36% - 0:00:01 left \r", + " [ 3578 / 10000 ] 36% - 0:00:01 left \r", + " [ 3579 / 10000 ] 36% - 0:00:01 left \r", + " [ 3580 / 10000 ] 36% - 0:00:01 left \r", + " [ 3581 / 10000 ] 36% - 0:00:01 left \r", + " [ 3582 / 10000 ] 36% - 0:00:01 left \r", + " [ 3583 / 10000 ] 36% - 0:00:01 left \r", + " [ 3584 / 10000 ] 36% - 0:00:01 left \r", + " [ 3585 / 10000 ] 36% - 0:00:01 left \r", + " [ 3586 / 10000 ] 36% - 0:00:01 left \r", + " [ 3587 / 10000 ] 36% - 0:00:01 left \r", + " [ 3588 / 10000 ] 36% - 0:00:01 left \r", + " [ 3589 / 10000 ] 36% - 0:00:01 left \r", + " [ 3590 / 10000 ] 36% - 0:00:01 left \r", + " [ 3591 / 10000 ] 36% - 0:00:01 left \r", + " [ 3592 / 10000 ] 36% - 0:00:01 left \r", + " [ 3593 / 10000 ] 36% - 0:00:01 left \r", + " [ 3594 / 10000 ] 36% - 0:00:01 left \r", + " [ 3595 / 10000 ] 36% - 0:00:01 left \r", + " [ 3596 / 10000 ] 36% - 0:00:01 left \r", + " [ 3597 / 10000 ] 36% - 0:00:01 left \r", + " [ 3598 / 10000 ] 36% - 0:00:01 left \r", + " [ 3599 / 10000 ] 36% - 0:00:01 left \r", + " [ 3600 / 10000 ] 36% - 0:00:01 left \r", + " [ 3601 / 10000 ] 36% - 0:00:01 left \r", + " [ 3602 / 10000 ] 36% - 0:00:01 left \r", + " [ 3603 / 10000 ] 36% - 0:00:01 left \r", + " [ 3604 / 10000 ] 36% - 0:00:01 left \r", + " [ 3605 / 10000 ] 36% - 0:00:01 left \r", + " [ 3606 / 10000 ] 36% - 0:00:01 left \r", + " [ 3607 / 10000 ] 36% - 0:00:01 left \r", + " [ 3608 / 10000 ] 36% - 0:00:01 left \r", + " [ 3609 / 10000 ] 36% - 0:00:01 left \r", + " [ 3610 / 10000 ] 36% - 0:00:01 left \r", + " [ 3611 / 10000 ] 36% - 0:00:01 left \r", + " [ 3612 / 10000 ] 36% - 0:00:01 left \r", + " [ 3613 / 10000 ] 36% - 0:00:01 left \r", + " [ 3614 / 10000 ] 36% - 0:00:01 left \r", + " [ 3615 / 10000 ] 36% - 0:00:01 left \r", + " [ 3616 / 10000 ] 36% - 0:00:01 left \r", + " [ 3617 / 10000 ] 36% - 0:00:01 left \r", + " [ 3618 / 10000 ] 36% - 0:00:01 left \r", + " [ 3619 / 10000 ] 36% - 0:00:01 left \r", + " [ 3620 / 10000 ] 36% - 0:00:01 left \r", + " [ 3621 / 10000 ] 36% - 0:00:01 left \r", + " [ 3622 / 10000 ] 36% - 0:00:01 left \r", + " [ 3623 / 10000 ] 36% - 0:00:01 left \r", + " [ 3624 / 10000 ] 36% - 0:00:01 left \r", + " [ 3625 / 10000 ] 36% - 0:00:01 left \r", + " [ 3626 / 10000 ] 36% - 0:00:01 left \r", + " [ 3627 / 10000 ] 36% - 0:00:01 left \r", + " [ 3628 / 10000 ] 36% - 0:00:01 left \r", + " [ 3629 / 10000 ] 36% - 0:00:01 left \r", + " [ 3630 / 10000 ] 36% - 0:00:01 left \r", + " [ 3631 / 10000 ] 36% - 0:00:01 left \r", + " [ 3632 / 10000 ] 36% - 0:00:01 left \r", + " [ 3633 / 10000 ] 36% - 0:00:01 left \r", + " [ 3634 / 10000 ] 36% - 0:00:01 left \r", + " [ 3635 / 10000 ] 36% - 0:00:01 left \r", + " [ 3636 / 10000 ] 36% - 0:00:01 left \r", + " [ 3637 / 10000 ] 36% - 0:00:01 left \r", + " [ 3638 / 10000 ] 36% - 0:00:01 left \r", + " [ 3639 / 10000 ] 36% - 0:00:01 left \r", + " [ 3640 / 10000 ] 36% - 0:00:01 left \r", + " [ 3641 / 10000 ] 36% - 0:00:01 left \r", + " [ 3642 / 10000 ] 36% - 0:00:01 left \r", + " [ 3643 / 10000 ] 36% - 0:00:01 left \r", + " [ 3644 / 10000 ] 36% - 0:00:01 left \r", + " [ 3645 / 10000 ] 36% - 0:00:01 left \r", + " [ 3646 / 10000 ] 36% - 0:00:01 left \r", + " [ 3647 / 10000 ] 36% - 0:00:01 left \r", + " [ 3648 / 10000 ] 36% - 0:00:01 left \r", + " [ 3649 / 10000 ] 36% - 0:00:01 left \r", + " [ 3650 / 10000 ] 36% - 0:00:01 left \r", + " [ 3651 / 10000 ] 37% - 0:00:01 left \r", + " [ 3652 / 10000 ] 37% - 0:00:01 left \r", + " [ 3653 / 10000 ] 37% - 0:00:01 left \r", + " [ 3654 / 10000 ] 37% - 0:00:01 left \r", + " [ 3655 / 10000 ] 37% - 0:00:01 left \r", + " [ 3656 / 10000 ] 37% - 0:00:01 left \r", + " [ 3657 / 10000 ] 37% - 0:00:01 left \r", + " [ 3658 / 10000 ] 37% - 0:00:01 left \r", + " [ 3659 / 10000 ] 37% - 0:00:01 left \r", + " [ 3660 / 10000 ] 37% - 0:00:01 left \r", + " [ 3661 / 10000 ] 37% - 0:00:01 left \r", + " [ 3662 / 10000 ] 37% - 0:00:01 left \r", + " [ 3663 / 10000 ] 37% - 0:00:01 left \r", + " [ 3664 / 10000 ] 37% - 0:00:01 left \r", + " [ 3665 / 10000 ] 37% - 0:00:01 left \r", + " [ 3666 / 10000 ] 37% - 0:00:01 left \r", + " [ 3667 / 10000 ] 37% - 0:00:01 left \r", + " [ 3668 / 10000 ] 37% - 0:00:01 left \r", + " [ 3669 / 10000 ] 37% - 0:00:01 left \r", + " [ 3670 / 10000 ] 37% - 0:00:01 left \r", + " [ 3671 / 10000 ] 37% - 0:00:01 left \r", + " [ 3672 / 10000 ] 37% - 0:00:01 left \r", + " [ 3673 / 10000 ] 37% - 0:00:01 left \r", + " [ 3674 / 10000 ] 37% - 0:00:01 left \r", + " [ 3675 / 10000 ] 37% - 0:00:01 left \r", + " [ 3676 / 10000 ] 37% - 0:00:01 left \r", + " [ 3677 / 10000 ] 37% - 0:00:01 left \r", + " [ 3678 / 10000 ] 37% - 0:00:01 left \r", + " [ 3679 / 10000 ] 37% - 0:00:01 left \r", + " [ 3680 / 10000 ] 37% - 0:00:01 left \r", + " [ 3681 / 10000 ] 37% - 0:00:01 left \r", + " [ 3682 / 10000 ] 37% - 0:00:01 left \r", + " [ 3683 / 10000 ] 37% - 0:00:01 left \r", + " [ 3684 / 10000 ] 37% - 0:00:01 left \r", + " [ 3685 / 10000 ] 37% - 0:00:01 left \r", + " [ 3686 / 10000 ] 37% - 0:00:01 left \r", + " [ 3687 / 10000 ] 37% - 0:00:01 left \r", + " [ 3688 / 10000 ] 37% - 0:00:01 left \r", + " [ 3689 / 10000 ] 37% - 0:00:01 left \r", + " [ 3690 / 10000 ] 37% - 0:00:01 left \r", + " [ 3691 / 10000 ] 37% - 0:00:01 left \r", + " [ 3692 / 10000 ] 37% - 0:00:01 left \r", + " [ 3693 / 10000 ] 37% - 0:00:01 left \r", + " [ 3694 / 10000 ] 37% - 0:00:01 left \r", + " [ 3695 / 10000 ] 37% - 0:00:01 left \r", + " [ 3696 / 10000 ] 37% - 0:00:01 left \r", + " [ 3697 / 10000 ] 37% - 0:00:01 left \r", + " [ 3698 / 10000 ] 37% - 0:00:01 left \r", + " [ 3699 / 10000 ] 37% - 0:00:01 left \r", + " [ 3700 / 10000 ] 37% - 0:00:01 left \r", + " [ 3701 / 10000 ] 37% - 0:00:01 left \r", + " [ 3702 / 10000 ] 37% - 0:00:01 left \r", + " [ 3703 / 10000 ] 37% - 0:00:01 left \r", + " [ 3704 / 10000 ] 37% - 0:00:01 left \r", + " [ 3705 / 10000 ] 37% - 0:00:01 left \r", + " [ 3706 / 10000 ] 37% - 0:00:01 left \r", + " [ 3707 / 10000 ] 37% - 0:00:01 left \r", + " [ 3708 / 10000 ] 37% - 0:00:01 left \r", + " [ 3709 / 10000 ] 37% - 0:00:01 left \r", + " [ 3710 / 10000 ] 37% - 0:00:01 left \r", + " [ 3711 / 10000 ] 37% - 0:00:01 left \r", + " [ 3712 / 10000 ] 37% - 0:00:01 left \r", + " [ 3713 / 10000 ] 37% - 0:00:01 left \r", + " [ 3714 / 10000 ] 37% - 0:00:01 left \r", + " [ 3715 / 10000 ] 37% - 0:00:01 left \r", + " [ 3716 / 10000 ] 37% - 0:00:01 left \r", + " [ 3717 / 10000 ] 37% - 0:00:01 left \r", + " [ 3718 / 10000 ] 37% - 0:00:01 left \r", + " [ 3719 / 10000 ] 37% - 0:00:01 left \r", + " [ 3720 / 10000 ] 37% - 0:00:01 left \r", + " [ 3721 / 10000 ] 37% - 0:00:01 left \r", + " [ 3722 / 10000 ] 37% - 0:00:01 left \r", + " [ 3723 / 10000 ] 37% - 0:00:01 left \r", + " [ 3724 / 10000 ] 37% - 0:00:01 left \r", + " [ 3725 / 10000 ] 37% - 0:00:01 left \r", + " [ 3726 / 10000 ] 37% - 0:00:01 left \r", + " [ 3727 / 10000 ] 37% - 0:00:01 left \r", + " [ 3728 / 10000 ] 37% - 0:00:01 left \r", + " [ 3729 / 10000 ] 37% - 0:00:01 left \r", + " [ 3730 / 10000 ] 37% - 0:00:01 left \r", + " [ 3731 / 10000 ] 37% - 0:00:01 left \r", + " [ 3732 / 10000 ] 37% - 0:00:01 left \r", + " [ 3733 / 10000 ] 37% - 0:00:01 left \r", + " [ 3734 / 10000 ] 37% - 0:00:01 left \r", + " [ 3735 / 10000 ] 37% - 0:00:01 left \r", + " [ 3736 / 10000 ] 37% - 0:00:01 left \r", + " [ 3737 / 10000 ] 37% - 0:00:01 left \r", + " [ 3738 / 10000 ] 37% - 0:00:01 left \r", + " [ 3739 / 10000 ] 37% - 0:00:01 left \r", + " [ 3740 / 10000 ] 37% - 0:00:01 left \r", + " [ 3741 / 10000 ] 37% - 0:00:01 left \r", + " [ 3742 / 10000 ] 37% - 0:00:01 left \r", + " [ 3743 / 10000 ] 37% - 0:00:01 left \r", + " [ 3744 / 10000 ] 37% - 0:00:01 left \r", + " [ 3745 / 10000 ] 37% - 0:00:01 left \r", + " [ 3746 / 10000 ] 37% - 0:00:01 left \r", + " [ 3747 / 10000 ] 37% - 0:00:01 left \r", + " [ 3748 / 10000 ] 37% - 0:00:01 left \r", + " [ 3749 / 10000 ] 37% - 0:00:01 left \r", + " [ 3750 / 10000 ] 38% - 0:00:01 left \r", + " [ 3751 / 10000 ] 38% - 0:00:01 left \r", + " [ 3752 / 10000 ] 38% - 0:00:01 left \r", + " [ 3753 / 10000 ] 38% - 0:00:01 left \r", + " [ 3754 / 10000 ] 38% - 0:00:01 left \r", + " [ 3755 / 10000 ] 38% - 0:00:01 left \r", + " [ 3756 / 10000 ] 38% - 0:00:01 left \r", + " [ 3757 / 10000 ] 38% - 0:00:01 left \r", + " [ 3758 / 10000 ] 38% - 0:00:01 left \r", + " [ 3759 / 10000 ] 38% - 0:00:01 left \r", + " [ 3760 / 10000 ] 38% - 0:00:01 left \r", + " [ 3761 / 10000 ] 38% - 0:00:01 left \r", + " [ 3762 / 10000 ] 38% - 0:00:01 left \r", + " [ 3763 / 10000 ] 38% - 0:00:01 left \r", + " [ 3764 / 10000 ] 38% - 0:00:01 left \r", + " [ 3765 / 10000 ] 38% - 0:00:01 left \r", + " [ 3766 / 10000 ] 38% - 0:00:01 left \r", + " [ 3767 / 10000 ] 38% - 0:00:01 left \r", + " [ 3768 / 10000 ] 38% - 0:00:01 left \r", + " [ 3769 / 10000 ] 38% - 0:00:01 left \r", + " [ 3770 / 10000 ] 38% - 0:00:01 left \r", + " [ 3771 / 10000 ] 38% - 0:00:01 left \r", + " [ 3772 / 10000 ] 38% - 0:00:01 left \r", + " [ 3773 / 10000 ] 38% - 0:00:01 left \r", + " [ 3774 / 10000 ] 38% - 0:00:01 left \r", + " [ 3775 / 10000 ] 38% - 0:00:01 left \r", + " [ 3776 / 10000 ] 38% - 0:00:01 left \r", + " [ 3777 / 10000 ] 38% - 0:00:01 left \r", + " [ 3778 / 10000 ] 38% - 0:00:01 left \r", + " [ 3779 / 10000 ] 38% - 0:00:01 left \r", + " [ 3780 / 10000 ] 38% - 0:00:01 left \r", + " [ 3781 / 10000 ] 38% - 0:00:01 left \r", + " [ 3782 / 10000 ] 38% - 0:00:01 left \r", + " [ 3783 / 10000 ] 38% - 0:00:01 left \r", + " [ 3784 / 10000 ] 38% - 0:00:01 left \r", + " [ 3785 / 10000 ] 38% - 0:00:01 left \r", + " [ 3786 / 10000 ] 38% - 0:00:01 left \r", + " [ 3787 / 10000 ] 38% - 0:00:01 left \r", + " [ 3788 / 10000 ] 38% - 0:00:01 left \r", + " [ 3789 / 10000 ] 38% - 0:00:01 left \r", + " [ 3790 / 10000 ] 38% - 0:00:01 left \r", + " [ 3791 / 10000 ] 38% - 0:00:01 left \r", + " [ 3792 / 10000 ] 38% - 0:00:01 left \r", + " [ 3793 / 10000 ] 38% - 0:00:01 left \r", + " [ 3794 / 10000 ] 38% - 0:00:01 left \r", + " [ 3795 / 10000 ] 38% - 0:00:01 left \r", + " [ 3796 / 10000 ] 38% - 0:00:01 left \r", + " [ 3797 / 10000 ] 38% - 0:00:01 left \r", + " [ 3798 / 10000 ] 38% - 0:00:01 left \r", + " [ 3799 / 10000 ] 38% - 0:00:01 left \r", + " [ 3800 / 10000 ] 38% - 0:00:01 left \r", + " [ 3801 / 10000 ] 38% - 0:00:01 left \r", + " [ 3802 / 10000 ] 38% - 0:00:01 left \r", + " [ 3803 / 10000 ] 38% - 0:00:01 left \r", + " [ 3804 / 10000 ] 38% - 0:00:01 left \r", + " [ 3805 / 10000 ] 38% - 0:00:01 left \r", + " [ 3806 / 10000 ] 38% - 0:00:01 left \r", + " [ 3807 / 10000 ] 38% - 0:00:01 left \r", + " [ 3808 / 10000 ] 38% - 0:00:01 left \r", + " [ 3809 / 10000 ] 38% - 0:00:01 left \r", + " [ 3810 / 10000 ] 38% - 0:00:01 left \r", + " [ 3811 / 10000 ] 38% - 0:00:01 left \r", + " [ 3812 / 10000 ] 38% - 0:00:01 left \r", + " [ 3813 / 10000 ] 38% - 0:00:01 left \r", + " [ 3814 / 10000 ] 38% - 0:00:01 left \r", + " [ 3815 / 10000 ] 38% - 0:00:01 left \r", + " [ 3816 / 10000 ] 38% - 0:00:01 left \r", + " [ 3817 / 10000 ] 38% - 0:00:01 left \r", + " [ 3818 / 10000 ] 38% - 0:00:01 left \r", + " [ 3819 / 10000 ] 38% - 0:00:01 left \r", + " [ 3820 / 10000 ] 38% - 0:00:01 left \r", + " [ 3821 / 10000 ] 38% - 0:00:01 left \r", + " [ 3822 / 10000 ] 38% - 0:00:01 left \r", + " [ 3823 / 10000 ] 38% - 0:00:01 left \r", + " [ 3824 / 10000 ] 38% - 0:00:01 left \r", + " [ 3825 / 10000 ] 38% - 0:00:01 left \r", + " [ 3826 / 10000 ] 38% - 0:00:01 left \r", + " [ 3827 / 10000 ] 38% - 0:00:01 left \r", + " [ 3828 / 10000 ] 38% - 0:00:01 left \r", + " [ 3829 / 10000 ] 38% - 0:00:01 left \r", + " [ 3830 / 10000 ] 38% - 0:00:01 left \r", + " [ 3831 / 10000 ] 38% - 0:00:01 left \r", + " [ 3832 / 10000 ] 38% - 0:00:01 left \r", + " [ 3833 / 10000 ] 38% - 0:00:01 left \r", + " [ 3834 / 10000 ] 38% - 0:00:01 left \r", + " [ 3835 / 10000 ] 38% - 0:00:01 left \r", + " [ 3836 / 10000 ] 38% - 0:00:01 left \r", + " [ 3837 / 10000 ] 38% - 0:00:01 left \r", + " [ 3838 / 10000 ] 38% - 0:00:01 left \r", + " [ 3839 / 10000 ] 38% - 0:00:01 left \r", + " [ 3840 / 10000 ] 38% - 0:00:01 left \r", + " [ 3841 / 10000 ] 38% - 0:00:01 left \r", + " [ 3842 / 10000 ] 38% - 0:00:01 left \r", + " [ 3843 / 10000 ] 38% - 0:00:01 left \r", + " [ 3844 / 10000 ] 38% - 0:00:01 left \r", + " [ 3845 / 10000 ] 38% - 0:00:01 left \r", + " [ 3846 / 10000 ] 38% - 0:00:01 left \r", + " [ 3847 / 10000 ] 38% - 0:00:01 left \r", + " [ 3848 / 10000 ] 38% - 0:00:01 left \r", + " [ 3849 / 10000 ] 38% - 0:00:01 left \r", + " [ 3850 / 10000 ] 38% - 0:00:01 left \r", + " [ 3851 / 10000 ] 39% - 0:00:01 left \r", + " [ 3852 / 10000 ] 39% - 0:00:01 left \r", + " [ 3853 / 10000 ] 39% - 0:00:01 left \r", + " [ 3854 / 10000 ] 39% - 0:00:01 left \r", + " [ 3855 / 10000 ] 39% - 0:00:01 left \r", + " [ 3856 / 10000 ] 39% - 0:00:01 left \r", + " [ 3857 / 10000 ] 39% - 0:00:01 left \r", + " [ 3858 / 10000 ] 39% - 0:00:01 left \r", + " [ 3859 / 10000 ] 39% - 0:00:01 left \r", + " [ 3860 / 10000 ] 39% - 0:00:01 left \r", + " [ 3861 / 10000 ] 39% - 0:00:01 left \r", + " [ 3862 / 10000 ] 39% - 0:00:01 left \r", + " [ 3863 / 10000 ] 39% - 0:00:01 left \r", + " [ 3864 / 10000 ] 39% - 0:00:01 left \r", + " [ 3865 / 10000 ] 39% - 0:00:01 left \r", + " [ 3866 / 10000 ] 39% - 0:00:01 left \r", + " [ 3867 / 10000 ] 39% - 0:00:01 left \r", + " [ 3868 / 10000 ] 39% - 0:00:01 left \r", + " [ 3869 / 10000 ] 39% - 0:00:01 left \r", + " [ 3870 / 10000 ] 39% - 0:00:01 left \r", + " [ 3871 / 10000 ] 39% - 0:00:01 left \r", + " [ 3872 / 10000 ] 39% - 0:00:01 left \r", + " [ 3873 / 10000 ] 39% - 0:00:01 left \r", + " [ 3874 / 10000 ] 39% - 0:00:01 left \r", + " [ 3875 / 10000 ] 39% - 0:00:01 left \r", + " [ 3876 / 10000 ] 39% - 0:00:01 left \r", + " [ 3877 / 10000 ] 39% - 0:00:01 left \r", + " [ 3878 / 10000 ] 39% - 0:00:01 left \r", + " [ 3879 / 10000 ] 39% - 0:00:01 left \r", + " [ 3880 / 10000 ] 39% - 0:00:01 left \r", + " [ 3881 / 10000 ] 39% - 0:00:01 left \r", + " [ 3882 / 10000 ] 39% - 0:00:01 left \r", + " [ 3883 / 10000 ] 39% - 0:00:01 left \r", + " [ 3884 / 10000 ] 39% - 0:00:01 left \r", + " [ 3885 / 10000 ] 39% - 0:00:01 left \r", + " [ 3886 / 10000 ] 39% - 0:00:01 left \r", + " [ 3887 / 10000 ] 39% - 0:00:01 left \r", + " [ 3888 / 10000 ] 39% - 0:00:01 left \r", + " [ 3889 / 10000 ] 39% - 0:00:01 left \r", + " [ 3890 / 10000 ] 39% - 0:00:01 left \r", + " [ 3891 / 10000 ] 39% - 0:00:01 left \r", + " [ 3892 / 10000 ] 39% - 0:00:01 left \r", + " [ 3893 / 10000 ] 39% - 0:00:01 left \r", + " [ 3894 / 10000 ] 39% - 0:00:01 left \r", + " [ 3895 / 10000 ] 39% - 0:00:01 left \r", + " [ 3896 / 10000 ] 39% - 0:00:01 left \r", + " [ 3897 / 10000 ] 39% - 0:00:01 left \r", + " [ 3898 / 10000 ] 39% - 0:00:01 left \r", + " [ 3899 / 10000 ] 39% - 0:00:01 left \r", + " [ 3900 / 10000 ] 39% - 0:00:01 left \r", + " [ 3901 / 10000 ] 39% - 0:00:01 left \r", + " [ 3902 / 10000 ] 39% - 0:00:01 left \r", + " [ 3903 / 10000 ] 39% - 0:00:01 left \r", + " [ 3904 / 10000 ] 39% - 0:00:01 left \r", + " [ 3905 / 10000 ] 39% - 0:00:01 left \r", + " [ 3906 / 10000 ] 39% - 0:00:01 left \r", + " [ 3907 / 10000 ] 39% - 0:00:01 left \r", + " [ 3908 / 10000 ] 39% - 0:00:01 left \r", + " [ 3909 / 10000 ] 39% - 0:00:01 left \r", + " [ 3910 / 10000 ] 39% - 0:00:01 left \r", + " [ 3911 / 10000 ] 39% - 0:00:01 left \r", + " [ 3912 / 10000 ] 39% - 0:00:01 left \r", + " [ 3913 / 10000 ] 39% - 0:00:01 left \r", + " [ 3914 / 10000 ] 39% - 0:00:01 left \r", + " [ 3915 / 10000 ] 39% - 0:00:01 left \r", + " [ 3916 / 10000 ] 39% - 0:00:01 left \r", + " [ 3917 / 10000 ] 39% - 0:00:01 left \r", + " [ 3918 / 10000 ] 39% - 0:00:01 left \r", + " [ 3919 / 10000 ] 39% - 0:00:01 left \r", + " [ 3920 / 10000 ] 39% - 0:00:01 left \r", + " [ 3921 / 10000 ] 39% - 0:00:01 left \r", + " [ 3922 / 10000 ] 39% - 0:00:01 left \r", + " [ 3923 / 10000 ] 39% - 0:00:01 left \r", + " [ 3924 / 10000 ] 39% - 0:00:01 left \r", + " [ 3925 / 10000 ] 39% - 0:00:01 left \r", + " [ 3926 / 10000 ] 39% - 0:00:01 left \r", + " [ 3927 / 10000 ] 39% - 0:00:01 left \r", + " [ 3928 / 10000 ] 39% - 0:00:01 left \r", + " [ 3929 / 10000 ] 39% - 0:00:01 left \r", + " [ 3930 / 10000 ] 39% - 0:00:01 left \r", + " [ 3931 / 10000 ] 39% - 0:00:01 left \r", + " [ 3932 / 10000 ] 39% - 0:00:01 left \r", + " [ 3933 / 10000 ] 39% - 0:00:01 left \r", + " [ 3934 / 10000 ] 39% - 0:00:01 left \r", + " [ 3935 / 10000 ] 39% - 0:00:01 left \r", + " [ 3936 / 10000 ] 39% - 0:00:01 left \r", + " [ 3937 / 10000 ] 39% - 0:00:01 left \r", + " [ 3938 / 10000 ] 39% - 0:00:01 left \r", + " [ 3939 / 10000 ] 39% - 0:00:01 left \r", + " [ 3940 / 10000 ] 39% - 0:00:01 left \r", + " [ 3941 / 10000 ] 39% - 0:00:01 left \r", + " [ 3942 / 10000 ] 39% - 0:00:01 left \r", + " [ 3943 / 10000 ] 39% - 0:00:01 left \r", + " [ 3944 / 10000 ] 39% - 0:00:01 left \r", + " [ 3945 / 10000 ] 39% - 0:00:01 left \r", + " [ 3946 / 10000 ] 39% - 0:00:01 left \r", + " [ 3947 / 10000 ] 39% - 0:00:01 left \r", + " [ 3948 / 10000 ] 39% - 0:00:01 left \r", + " [ 3949 / 10000 ] 39% - 0:00:01 left \r", + " [ 3950 / 10000 ] 40% - 0:00:01 left \r", + " [ 3951 / 10000 ] 40% - 0:00:01 left \r", + " [ 3952 / 10000 ] 40% - 0:00:01 left \r", + " [ 3953 / 10000 ] 40% - 0:00:01 left \r", + " [ 3954 / 10000 ] 40% - 0:00:01 left \r", + " [ 3955 / 10000 ] 40% - 0:00:01 left \r", + " [ 3956 / 10000 ] 40% - 0:00:01 left \r", + " [ 3957 / 10000 ] 40% - 0:00:01 left \r", + " [ 3958 / 10000 ] 40% - 0:00:01 left \r", + " [ 3959 / 10000 ] 40% - 0:00:01 left \r", + " [ 3960 / 10000 ] 40% - 0:00:01 left \r", + " [ 3961 / 10000 ] 40% - 0:00:01 left \r", + " [ 3962 / 10000 ] 40% - 0:00:01 left \r", + " [ 3963 / 10000 ] 40% - 0:00:01 left \r", + " [ 3964 / 10000 ] 40% - 0:00:01 left \r", + " [ 3965 / 10000 ] 40% - 0:00:01 left \r", + " [ 3966 / 10000 ] 40% - 0:00:01 left \r", + " [ 3967 / 10000 ] 40% - 0:00:01 left \r", + " [ 3968 / 10000 ] 40% - 0:00:01 left \r", + " [ 3969 / 10000 ] 40% - 0:00:01 left \r", + " [ 3970 / 10000 ] 40% - 0:00:01 left \r", + " [ 3971 / 10000 ] 40% - 0:00:01 left \r", + " [ 3972 / 10000 ] 40% - 0:00:01 left \r", + " [ 3973 / 10000 ] 40% - 0:00:01 left \r", + " [ 3974 / 10000 ] 40% - 0:00:01 left \r", + " [ 3975 / 10000 ] 40% - 0:00:01 left \r", + " [ 3976 / 10000 ] 40% - 0:00:01 left \r", + " [ 3977 / 10000 ] 40% - 0:00:01 left \r", + " [ 3978 / 10000 ] 40% - 0:00:01 left \r", + " [ 3979 / 10000 ] 40% - 0:00:01 left \r", + " [ 3980 / 10000 ] 40% - 0:00:01 left \r", + " [ 3981 / 10000 ] 40% - 0:00:01 left \r", + " [ 3982 / 10000 ] 40% - 0:00:01 left \r", + " [ 3983 / 10000 ] 40% - 0:00:01 left \r", + " [ 3984 / 10000 ] 40% - 0:00:01 left \r", + " [ 3985 / 10000 ] 40% - 0:00:01 left \r", + " [ 3986 / 10000 ] 40% - 0:00:01 left \r", + " [ 3987 / 10000 ] 40% - 0:00:01 left \r", + " [ 3988 / 10000 ] 40% - 0:00:01 left \r", + " [ 3989 / 10000 ] 40% - 0:00:01 left \r", + " [ 3990 / 10000 ] 40% - 0:00:01 left \r", + " [ 3991 / 10000 ] 40% - 0:00:01 left \r", + " [ 3992 / 10000 ] 40% - 0:00:01 left \r", + " [ 3993 / 10000 ] 40% - 0:00:01 left \r", + " [ 3994 / 10000 ] 40% - 0:00:01 left \r", + " [ 3995 / 10000 ] 40% - 0:00:01 left \r", + " [ 3996 / 10000 ] 40% - 0:00:01 left \r", + " [ 3997 / 10000 ] 40% - 0:00:01 left \r", + " [ 3998 / 10000 ] 40% - 0:00:01 left \r", + " [ 3999 / 10000 ] 40% - 0:00:01 left \r", + " [ 4000 / 10000 ] 40% - 0:00:01 left \r", + " [ 4001 / 10000 ] 40% - 0:00:01 left \r", + " [ 4002 / 10000 ] 40% - 0:00:01 left \r", + " [ 4003 / 10000 ] 40% - 0:00:01 left \r", + " [ 4004 / 10000 ] 40% - 0:00:01 left \r", + " [ 4005 / 10000 ] 40% - 0:00:01 left \r", + " [ 4006 / 10000 ] 40% - 0:00:01 left \r", + " [ 4007 / 10000 ] 40% - 0:00:01 left \r", + " [ 4008 / 10000 ] 40% - 0:00:01 left \r", + " [ 4009 / 10000 ] 40% - 0:00:01 left \r", + " [ 4010 / 10000 ] 40% - 0:00:01 left \r", + " [ 4011 / 10000 ] 40% - 0:00:01 left \r", + " [ 4012 / 10000 ] 40% - 0:00:01 left \r", + " [ 4013 / 10000 ] 40% - 0:00:01 left \r", + " [ 4014 / 10000 ] 40% - 0:00:01 left \r", + " [ 4015 / 10000 ] 40% - 0:00:01 left \r", + " [ 4016 / 10000 ] 40% - 0:00:01 left \r", + " [ 4017 / 10000 ] 40% - 0:00:01 left \r", + " [ 4018 / 10000 ] 40% - 0:00:01 left \r", + " [ 4019 / 10000 ] 40% - 0:00:01 left \r", + " [ 4020 / 10000 ] 40% - 0:00:01 left \r", + " [ 4021 / 10000 ] 40% - 0:00:01 left \r", + " [ 4022 / 10000 ] 40% - 0:00:01 left \r", + " [ 4023 / 10000 ] 40% - 0:00:01 left \r", + " [ 4024 / 10000 ] 40% - 0:00:01 left \r", + " [ 4025 / 10000 ] 40% - 0:00:01 left \r", + " [ 4026 / 10000 ] 40% - 0:00:01 left \r", + " [ 4027 / 10000 ] 40% - 0:00:01 left \r", + " [ 4028 / 10000 ] 40% - 0:00:01 left \r", + " [ 4029 / 10000 ] 40% - 0:00:01 left \r", + " [ 4030 / 10000 ] 40% - 0:00:01 left \r", + " [ 4031 / 10000 ] 40% - 0:00:01 left \r", + " [ 4032 / 10000 ] 40% - 0:00:01 left \r", + " [ 4033 / 10000 ] 40% - 0:00:01 left \r", + " [ 4034 / 10000 ] 40% - 0:00:01 left \r", + " [ 4035 / 10000 ] 40% - 0:00:01 left \r", + " [ 4036 / 10000 ] 40% - 0:00:01 left \r", + " [ 4037 / 10000 ] 40% - 0:00:01 left \r", + " [ 4038 / 10000 ] 40% - 0:00:01 left \r", + " [ 4039 / 10000 ] 40% - 0:00:01 left \r", + " [ 4040 / 10000 ] 40% - 0:00:01 left \r", + " [ 4041 / 10000 ] 40% - 0:00:01 left \r", + " [ 4042 / 10000 ] 40% - 0:00:01 left \r", + " [ 4043 / 10000 ] 40% - 0:00:01 left \r", + " [ 4044 / 10000 ] 40% - 0:00:01 left \r", + " [ 4045 / 10000 ] 40% - 0:00:01 left \r", + " [ 4046 / 10000 ] 40% - 0:00:01 left \r", + " [ 4047 / 10000 ] 40% - 0:00:01 left \r", + " [ 4048 / 10000 ] 40% - 0:00:01 left \r", + " [ 4049 / 10000 ] 40% - 0:00:01 left \r", + " [ 4050 / 10000 ] 40% - 0:00:01 left \r", + " [ 4051 / 10000 ] 41% - 0:00:01 left \r", + " [ 4052 / 10000 ] 41% - 0:00:01 left \r", + " [ 4053 / 10000 ] 41% - 0:00:01 left \r", + " [ 4054 / 10000 ] 41% - 0:00:01 left \r", + " [ 4055 / 10000 ] 41% - 0:00:01 left \r", + " [ 4056 / 10000 ] 41% - 0:00:01 left \r", + " [ 4057 / 10000 ] 41% - 0:00:01 left \r", + " [ 4058 / 10000 ] 41% - 0:00:01 left \r", + " [ 4059 / 10000 ] 41% - 0:00:01 left \r", + " [ 4060 / 10000 ] 41% - 0:00:01 left \r", + " [ 4061 / 10000 ] 41% - 0:00:01 left \r", + " [ 4062 / 10000 ] 41% - 0:00:01 left \r", + " [ 4063 / 10000 ] 41% - 0:00:01 left \r", + " [ 4064 / 10000 ] 41% - 0:00:01 left \r", + " [ 4065 / 10000 ] 41% - 0:00:01 left \r", + " [ 4066 / 10000 ] 41% - 0:00:01 left \r", + " [ 4067 / 10000 ] 41% - 0:00:01 left \r", + " [ 4068 / 10000 ] 41% - 0:00:01 left \r", + " [ 4069 / 10000 ] 41% - 0:00:01 left \r", + " [ 4070 / 10000 ] 41% - 0:00:01 left \r", + " [ 4071 / 10000 ] 41% - 0:00:01 left \r", + " [ 4072 / 10000 ] 41% - 0:00:01 left \r", + " [ 4073 / 10000 ] 41% - 0:00:01 left \r", + " [ 4074 / 10000 ] 41% - 0:00:01 left \r", + " [ 4075 / 10000 ] 41% - 0:00:01 left \r", + " [ 4076 / 10000 ] 41% - 0:00:01 left \r", + " [ 4077 / 10000 ] 41% - 0:00:01 left \r", + " [ 4078 / 10000 ] 41% - 0:00:01 left \r", + " [ 4079 / 10000 ] 41% - 0:00:01 left \r", + " [ 4080 / 10000 ] 41% - 0:00:01 left \r", + " [ 4081 / 10000 ] 41% - 0:00:01 left \r", + " [ 4082 / 10000 ] 41% - 0:00:01 left \r", + " [ 4083 / 10000 ] 41% - 0:00:01 left \r", + " [ 4084 / 10000 ] 41% - 0:00:01 left \r", + " [ 4085 / 10000 ] 41% - 0:00:01 left \r", + " [ 4086 / 10000 ] 41% - 0:00:01 left \r", + " [ 4087 / 10000 ] 41% - 0:00:01 left \r", + " [ 4088 / 10000 ] 41% - 0:00:01 left \r", + " [ 4089 / 10000 ] 41% - 0:00:01 left \r", + " [ 4090 / 10000 ] 41% - 0:00:01 left \r", + " [ 4091 / 10000 ] 41% - 0:00:01 left \r", + " [ 4092 / 10000 ] 41% - 0:00:01 left \r", + " [ 4093 / 10000 ] 41% - 0:00:01 left \r", + " [ 4094 / 10000 ] 41% - 0:00:01 left \r", + " [ 4095 / 10000 ] 41% - 0:00:01 left \r", + " [ 4096 / 10000 ] 41% - 0:00:01 left \r", + " [ 4097 / 10000 ] 41% - 0:00:01 left \r", + " [ 4098 / 10000 ] 41% - 0:00:01 left \r", + " [ 4099 / 10000 ] 41% - 0:00:01 left \r", + " [ 4100 / 10000 ] 41% - 0:00:01 left \r", + " [ 4101 / 10000 ] 41% - 0:00:01 left \r", + " [ 4102 / 10000 ] 41% - 0:00:01 left \r", + " [ 4103 / 10000 ] 41% - 0:00:01 left \r", + " [ 4104 / 10000 ] 41% - 0:00:01 left \r", + " [ 4105 / 10000 ] 41% - 0:00:01 left \r", + " [ 4106 / 10000 ] 41% - 0:00:01 left \r", + " [ 4107 / 10000 ] 41% - 0:00:01 left \r", + " [ 4108 / 10000 ] 41% - 0:00:01 left \r", + " [ 4109 / 10000 ] 41% - 0:00:01 left \r", + " [ 4110 / 10000 ] 41% - 0:00:01 left \r", + " [ 4111 / 10000 ] 41% - 0:00:01 left \r", + " [ 4112 / 10000 ] 41% - 0:00:01 left \r", + " [ 4113 / 10000 ] 41% - 0:00:01 left \r", + " [ 4114 / 10000 ] 41% - 0:00:01 left \r", + " [ 4115 / 10000 ] 41% - 0:00:01 left \r", + " [ 4116 / 10000 ] 41% - 0:00:01 left \r", + " [ 4117 / 10000 ] 41% - 0:00:01 left \r", + " [ 4118 / 10000 ] 41% - 0:00:01 left \r", + " [ 4119 / 10000 ] 41% - 0:00:01 left \r", + " [ 4120 / 10000 ] 41% - 0:00:01 left \r", + " [ 4121 / 10000 ] 41% - 0:00:01 left \r", + " [ 4122 / 10000 ] 41% - 0:00:01 left \r", + " [ 4123 / 10000 ] 41% - 0:00:01 left \r", + " [ 4124 / 10000 ] 41% - 0:00:01 left \r", + " [ 4125 / 10000 ] 41% - 0:00:01 left \r", + " [ 4126 / 10000 ] 41% - 0:00:01 left \r", + " [ 4127 / 10000 ] 41% - 0:00:01 left \r", + " [ 4128 / 10000 ] 41% - 0:00:01 left \r", + " [ 4129 / 10000 ] 41% - 0:00:01 left \r", + " [ 4130 / 10000 ] 41% - 0:00:01 left \r", + " [ 4131 / 10000 ] 41% - 0:00:01 left \r", + " [ 4132 / 10000 ] 41% - 0:00:01 left \r", + " [ 4133 / 10000 ] 41% - 0:00:01 left \r", + " [ 4134 / 10000 ] 41% - 0:00:01 left \r", + " [ 4135 / 10000 ] 41% - 0:00:01 left \r", + " [ 4136 / 10000 ] 41% - 0:00:01 left \r", + " [ 4137 / 10000 ] 41% - 0:00:01 left \r", + " [ 4138 / 10000 ] 41% - 0:00:01 left \r", + " [ 4139 / 10000 ] 41% - 0:00:01 left \r", + " [ 4140 / 10000 ] 41% - 0:00:01 left \r", + " [ 4141 / 10000 ] 41% - 0:00:01 left \r", + " [ 4142 / 10000 ] 41% - 0:00:01 left \r", + " [ 4143 / 10000 ] 41% - 0:00:01 left \r", + " [ 4144 / 10000 ] 41% - 0:00:01 left \r", + " [ 4145 / 10000 ] 41% - 0:00:01 left \r", + " [ 4146 / 10000 ] 41% - 0:00:01 left \r", + " [ 4147 / 10000 ] 41% - 0:00:01 left \r", + " [ 4148 / 10000 ] 41% - 0:00:01 left \r", + " [ 4149 / 10000 ] 41% - 0:00:01 left \r", + " [ 4150 / 10000 ] 42% - 0:00:01 left \r", + " [ 4151 / 10000 ] 42% - 0:00:01 left \r", + " [ 4152 / 10000 ] 42% - 0:00:01 left \r", + " [ 4153 / 10000 ] 42% - 0:00:01 left \r", + " [ 4154 / 10000 ] 42% - 0:00:01 left \r", + " [ 4155 / 10000 ] 42% - 0:00:01 left \r", + " [ 4156 / 10000 ] 42% - 0:00:01 left \r", + " [ 4157 / 10000 ] 42% - 0:00:01 left \r", + " [ 4158 / 10000 ] 42% - 0:00:01 left \r", + " [ 4159 / 10000 ] 42% - 0:00:01 left \r", + " [ 4160 / 10000 ] 42% - 0:00:01 left \r", + " [ 4161 / 10000 ] 42% - 0:00:01 left \r", + " [ 4162 / 10000 ] 42% - 0:00:01 left \r", + " [ 4163 / 10000 ] 42% - 0:00:01 left \r", + " [ 4164 / 10000 ] 42% - 0:00:01 left \r", + " [ 4165 / 10000 ] 42% - 0:00:01 left \r", + " [ 4166 / 10000 ] 42% - 0:00:01 left \r", + " [ 4167 / 10000 ] 42% - 0:00:01 left \r", + " [ 4168 / 10000 ] 42% - 0:00:01 left \r", + " [ 4169 / 10000 ] 42% - 0:00:01 left \r", + " [ 4170 / 10000 ] 42% - 0:00:01 left \r", + " [ 4171 / 10000 ] 42% - 0:00:01 left \r", + " [ 4172 / 10000 ] 42% - 0:00:01 left \r", + " [ 4173 / 10000 ] 42% - 0:00:01 left \r", + " [ 4174 / 10000 ] 42% - 0:00:01 left \r", + " [ 4175 / 10000 ] 42% - 0:00:01 left \r", + " [ 4176 / 10000 ] 42% - 0:00:01 left \r", + " [ 4177 / 10000 ] 42% - 0:00:01 left \r", + " [ 4178 / 10000 ] 42% - 0:00:01 left \r", + " [ 4179 / 10000 ] 42% - 0:00:01 left \r", + " [ 4180 / 10000 ] 42% - 0:00:01 left \r", + " [ 4181 / 10000 ] 42% - 0:00:01 left \r", + " [ 4182 / 10000 ] 42% - 0:00:01 left \r", + " [ 4183 / 10000 ] 42% - 0:00:01 left \r", + " [ 4184 / 10000 ] 42% - 0:00:01 left \r", + " [ 4185 / 10000 ] 42% - 0:00:01 left \r", + " [ 4186 / 10000 ] 42% - 0:00:01 left \r", + " [ 4187 / 10000 ] 42% - 0:00:01 left \r", + " [ 4188 / 10000 ] 42% - 0:00:01 left \r", + " [ 4189 / 10000 ] 42% - 0:00:01 left \r", + " [ 4190 / 10000 ] 42% - 0:00:01 left \r", + " [ 4191 / 10000 ] 42% - 0:00:01 left \r", + " [ 4192 / 10000 ] 42% - 0:00:01 left \r", + " [ 4193 / 10000 ] 42% - 0:00:01 left \r", + " [ 4194 / 10000 ] 42% - 0:00:01 left \r", + " [ 4195 / 10000 ] 42% - 0:00:01 left \r", + " [ 4196 / 10000 ] 42% - 0:00:01 left \r", + " [ 4197 / 10000 ] 42% - 0:00:01 left \r", + " [ 4198 / 10000 ] 42% - 0:00:01 left \r", + " [ 4199 / 10000 ] 42% - 0:00:01 left \r", + " [ 4200 / 10000 ] 42% - 0:00:01 left \r", + " [ 4201 / 10000 ] 42% - 0:00:01 left \r", + " [ 4202 / 10000 ] 42% - 0:00:01 left \r", + " [ 4203 / 10000 ] 42% - 0:00:01 left \r", + " [ 4204 / 10000 ] 42% - 0:00:01 left \r", + " [ 4205 / 10000 ] 42% - 0:00:01 left \r", + " [ 4206 / 10000 ] 42% - 0:00:01 left \r", + " [ 4207 / 10000 ] 42% - 0:00:01 left \r", + " [ 4208 / 10000 ] 42% - 0:00:01 left \r", + " [ 4209 / 10000 ] 42% - 0:00:01 left \r", + " [ 4210 / 10000 ] 42% - 0:00:01 left \r", + " [ 4211 / 10000 ] 42% - 0:00:01 left \r", + " [ 4212 / 10000 ] 42% - 0:00:01 left \r", + " [ 4213 / 10000 ] 42% - 0:00:01 left \r", + " [ 4214 / 10000 ] 42% - 0:00:01 left \r", + " [ 4215 / 10000 ] 42% - 0:00:01 left \r", + " [ 4216 / 10000 ] 42% - 0:00:01 left \r", + " [ 4217 / 10000 ] 42% - 0:00:01 left \r", + " [ 4218 / 10000 ] 42% - 0:00:01 left \r", + " [ 4219 / 10000 ] 42% - 0:00:01 left \r", + " [ 4220 / 10000 ] 42% - 0:00:01 left \r", + " [ 4221 / 10000 ] 42% - 0:00:01 left \r", + " [ 4222 / 10000 ] 42% - 0:00:01 left \r", + " [ 4223 / 10000 ] 42% - 0:00:01 left \r", + " [ 4224 / 10000 ] 42% - 0:00:01 left \r", + " [ 4225 / 10000 ] 42% - 0:00:01 left \r", + " [ 4226 / 10000 ] 42% - 0:00:01 left \r", + " [ 4227 / 10000 ] 42% - 0:00:01 left \r", + " [ 4228 / 10000 ] 42% - 0:00:01 left \r", + " [ 4229 / 10000 ] 42% - 0:00:01 left \r", + " [ 4230 / 10000 ] 42% - 0:00:01 left \r", + " [ 4231 / 10000 ] 42% - 0:00:01 left \r", + " [ 4232 / 10000 ] 42% - 0:00:01 left \r", + " [ 4233 / 10000 ] 42% - 0:00:01 left \r", + " [ 4234 / 10000 ] 42% - 0:00:01 left \r", + " [ 4235 / 10000 ] 42% - 0:00:01 left \r", + " [ 4236 / 10000 ] 42% - 0:00:01 left \r", + " [ 4237 / 10000 ] 42% - 0:00:01 left \r", + " [ 4238 / 10000 ] 42% - 0:00:01 left \r", + " [ 4239 / 10000 ] 42% - 0:00:01 left \r", + " [ 4240 / 10000 ] 42% - 0:00:01 left \r", + " [ 4241 / 10000 ] 42% - 0:00:01 left \r", + " [ 4242 / 10000 ] 42% - 0:00:01 left \r", + " [ 4243 / 10000 ] 42% - 0:00:01 left \r", + " [ 4244 / 10000 ] 42% - 0:00:01 left \r", + " [ 4245 / 10000 ] 42% - 0:00:01 left \r", + " [ 4246 / 10000 ] 42% - 0:00:01 left \r", + " [ 4247 / 10000 ] 42% - 0:00:01 left \r", + " [ 4248 / 10000 ] 42% - 0:00:01 left \r", + " [ 4249 / 10000 ] 42% - 0:00:01 left \r", + " [ 4250 / 10000 ] 42% - 0:00:01 left \r", + " [ 4251 / 10000 ] 43% - 0:00:01 left \r", + " [ 4252 / 10000 ] 43% - 0:00:01 left \r", + " [ 4253 / 10000 ] 43% - 0:00:01 left \r", + " [ 4254 / 10000 ] 43% - 0:00:01 left \r", + " [ 4255 / 10000 ] 43% - 0:00:01 left \r", + " [ 4256 / 10000 ] 43% - 0:00:01 left \r", + " [ 4257 / 10000 ] 43% - 0:00:01 left \r", + " [ 4258 / 10000 ] 43% - 0:00:01 left \r", + " [ 4259 / 10000 ] 43% - 0:00:01 left \r", + " [ 4260 / 10000 ] 43% - 0:00:01 left \r", + " [ 4261 / 10000 ] 43% - 0:00:01 left \r", + " [ 4262 / 10000 ] 43% - 0:00:01 left \r", + " [ 4263 / 10000 ] 43% - 0:00:01 left \r", + " [ 4264 / 10000 ] 43% - 0:00:01 left \r", + " [ 4265 / 10000 ] 43% - 0:00:01 left \r", + " [ 4266 / 10000 ] 43% - 0:00:01 left \r", + " [ 4267 / 10000 ] 43% - 0:00:01 left \r", + " [ 4268 / 10000 ] 43% - 0:00:01 left \r", + " [ 4269 / 10000 ] 43% - 0:00:01 left \r", + " [ 4270 / 10000 ] 43% - 0:00:01 left \r", + " [ 4271 / 10000 ] 43% - 0:00:01 left \r", + " [ 4272 / 10000 ] 43% - 0:00:01 left \r", + " [ 4273 / 10000 ] 43% - 0:00:01 left \r", + " [ 4274 / 10000 ] 43% - 0:00:01 left \r", + " [ 4275 / 10000 ] 43% - 0:00:01 left \r", + " [ 4276 / 10000 ] 43% - 0:00:01 left \r", + " [ 4277 / 10000 ] 43% - 0:00:01 left \r", + " [ 4278 / 10000 ] 43% - 0:00:01 left \r", + " [ 4279 / 10000 ] 43% - 0:00:01 left \r", + " [ 4280 / 10000 ] 43% - 0:00:01 left \r", + " [ 4281 / 10000 ] 43% - 0:00:01 left \r", + " [ 4282 / 10000 ] 43% - 0:00:01 left \r", + " [ 4283 / 10000 ] 43% - 0:00:01 left \r", + " [ 4284 / 10000 ] 43% - 0:00:01 left \r", + " [ 4285 / 10000 ] 43% - 0:00:01 left \r", + " [ 4286 / 10000 ] 43% - 0:00:01 left \r", + " [ 4287 / 10000 ] 43% - 0:00:01 left \r", + " [ 4288 / 10000 ] 43% - 0:00:01 left \r", + " [ 4289 / 10000 ] 43% - 0:00:01 left \r", + " [ 4290 / 10000 ] 43% - 0:00:01 left \r", + " [ 4291 / 10000 ] 43% - 0:00:01 left \r", + " [ 4292 / 10000 ] 43% - 0:00:01 left \r", + " [ 4293 / 10000 ] 43% - 0:00:01 left \r", + " [ 4294 / 10000 ] 43% - 0:00:01 left \r", + " [ 4295 / 10000 ] 43% - 0:00:01 left \r", + " [ 4296 / 10000 ] 43% - 0:00:01 left \r", + " [ 4297 / 10000 ] 43% - 0:00:01 left \r", + " [ 4298 / 10000 ] 43% - 0:00:01 left \r", + " [ 4299 / 10000 ] 43% - 0:00:01 left \r", + " [ 4300 / 10000 ] 43% - 0:00:01 left \r", + " [ 4301 / 10000 ] 43% - 0:00:01 left \r", + " [ 4302 / 10000 ] 43% - 0:00:01 left \r", + " [ 4303 / 10000 ] 43% - 0:00:01 left \r", + " [ 4304 / 10000 ] 43% - 0:00:01 left \r", + " [ 4305 / 10000 ] 43% - 0:00:01 left \r", + " [ 4306 / 10000 ] 43% - 0:00:01 left \r", + " [ 4307 / 10000 ] 43% - 0:00:01 left \r", + " [ 4308 / 10000 ] 43% - 0:00:01 left \r", + " [ 4309 / 10000 ] 43% - 0:00:01 left \r", + " [ 4310 / 10000 ] 43% - 0:00:01 left \r", + " [ 4311 / 10000 ] 43% - 0:00:01 left \r", + " [ 4312 / 10000 ] 43% - 0:00:01 left \r", + " [ 4313 / 10000 ] 43% - 0:00:01 left \r", + " [ 4314 / 10000 ] 43% - 0:00:01 left \r", + " [ 4315 / 10000 ] 43% - 0:00:01 left \r", + " [ 4316 / 10000 ] 43% - 0:00:01 left \r", + " [ 4317 / 10000 ] 43% - 0:00:01 left \r", + " [ 4318 / 10000 ] 43% - 0:00:01 left \r", + " [ 4319 / 10000 ] 43% - 0:00:01 left \r", + " [ 4320 / 10000 ] 43% - 0:00:01 left \r", + " [ 4321 / 10000 ] 43% - 0:00:01 left \r", + " [ 4322 / 10000 ] 43% - 0:00:01 left \r", + " [ 4323 / 10000 ] 43% - 0:00:01 left \r", + " [ 4324 / 10000 ] 43% - 0:00:01 left \r", + " [ 4325 / 10000 ] 43% - 0:00:01 left \r", + " [ 4326 / 10000 ] 43% - 0:00:01 left \r", + " [ 4327 / 10000 ] 43% - 0:00:01 left \r", + " [ 4328 / 10000 ] 43% - 0:00:01 left \r", + " [ 4329 / 10000 ] 43% - 0:00:01 left \r", + " [ 4330 / 10000 ] 43% - 0:00:01 left \r", + " [ 4331 / 10000 ] 43% - 0:00:01 left \r", + " [ 4332 / 10000 ] 43% - 0:00:01 left \r", + " [ 4333 / 10000 ] 43% - 0:00:01 left \r", + " [ 4334 / 10000 ] 43% - 0:00:01 left \r", + " [ 4335 / 10000 ] 43% - 0:00:01 left \r", + " [ 4336 / 10000 ] 43% - 0:00:01 left \r", + " [ 4337 / 10000 ] 43% - 0:00:01 left \r", + " [ 4338 / 10000 ] 43% - 0:00:01 left \r", + " [ 4339 / 10000 ] 43% - 0:00:01 left \r", + " [ 4340 / 10000 ] 43% - 0:00:01 left \r", + " [ 4341 / 10000 ] 43% - 0:00:01 left \r", + " [ 4342 / 10000 ] 43% - 0:00:01 left \r", + " [ 4343 / 10000 ] 43% - 0:00:01 left \r", + " [ 4344 / 10000 ] 43% - 0:00:01 left \r", + " [ 4345 / 10000 ] 43% - 0:00:01 left \r", + " [ 4346 / 10000 ] 43% - 0:00:01 left \r", + " [ 4347 / 10000 ] 43% - 0:00:01 left \r", + " [ 4348 / 10000 ] 43% - 0:00:01 left \r", + " [ 4349 / 10000 ] 43% - 0:00:01 left \r", + " [ 4350 / 10000 ] 44% - 0:00:01 left \r", + " [ 4351 / 10000 ] 44% - 0:00:01 left \r", + " [ 4352 / 10000 ] 44% - 0:00:01 left \r", + " [ 4353 / 10000 ] 44% - 0:00:01 left \r", + " [ 4354 / 10000 ] 44% - 0:00:01 left \r", + " [ 4355 / 10000 ] 44% - 0:00:01 left \r", + " [ 4356 / 10000 ] 44% - 0:00:01 left \r", + " [ 4357 / 10000 ] 44% - 0:00:01 left \r", + " [ 4358 / 10000 ] 44% - 0:00:01 left \r", + " [ 4359 / 10000 ] 44% - 0:00:01 left \r", + " [ 4360 / 10000 ] 44% - 0:00:01 left \r", + " [ 4361 / 10000 ] 44% - 0:00:01 left \r", + " [ 4362 / 10000 ] 44% - 0:00:01 left \r", + " [ 4363 / 10000 ] 44% - 0:00:01 left \r", + " [ 4364 / 10000 ] 44% - 0:00:01 left \r", + " [ 4365 / 10000 ] 44% - 0:00:01 left \r", + " [ 4366 / 10000 ] 44% - 0:00:01 left \r", + " [ 4367 / 10000 ] 44% - 0:00:01 left \r", + " [ 4368 / 10000 ] 44% - 0:00:01 left \r", + " [ 4369 / 10000 ] 44% - 0:00:01 left \r", + " [ 4370 / 10000 ] 44% - 0:00:01 left \r", + " [ 4371 / 10000 ] 44% - 0:00:01 left \r", + " [ 4372 / 10000 ] 44% - 0:00:01 left \r", + " [ 4373 / 10000 ] 44% - 0:00:01 left \r", + " [ 4374 / 10000 ] 44% - 0:00:01 left \r", + " [ 4375 / 10000 ] 44% - 0:00:01 left \r", + " [ 4376 / 10000 ] 44% - 0:00:01 left \r", + " [ 4377 / 10000 ] 44% - 0:00:01 left \r", + " [ 4378 / 10000 ] 44% - 0:00:01 left \r", + " [ 4379 / 10000 ] 44% - 0:00:01 left \r", + " [ 4380 / 10000 ] 44% - 0:00:01 left \r", + " [ 4381 / 10000 ] 44% - 0:00:01 left \r", + " [ 4382 / 10000 ] 44% - 0:00:01 left \r", + " [ 4383 / 10000 ] 44% - 0:00:01 left \r", + " [ 4384 / 10000 ] 44% - 0:00:01 left \r", + " [ 4385 / 10000 ] 44% - 0:00:01 left \r", + " [ 4386 / 10000 ] 44% - 0:00:01 left \r", + " [ 4387 / 10000 ] 44% - 0:00:01 left \r", + " [ 4388 / 10000 ] 44% - 0:00:01 left \r", + " [ 4389 / 10000 ] 44% - 0:00:01 left \r", + " [ 4390 / 10000 ] 44% - 0:00:01 left \r", + " [ 4391 / 10000 ] 44% - 0:00:01 left \r", + " [ 4392 / 10000 ] 44% - 0:00:01 left \r", + " [ 4393 / 10000 ] 44% - 0:00:01 left \r", + " [ 4394 / 10000 ] 44% - 0:00:01 left \r", + " [ 4395 / 10000 ] 44% - 0:00:01 left \r", + " [ 4396 / 10000 ] 44% - 0:00:01 left \r", + " [ 4397 / 10000 ] 44% - 0:00:01 left \r", + " [ 4398 / 10000 ] 44% - 0:00:01 left \r", + " [ 4399 / 10000 ] 44% - 0:00:01 left \r", + " [ 4400 / 10000 ] 44% - 0:00:01 left \r", + " [ 4401 / 10000 ] 44% - 0:00:01 left \r", + " [ 4402 / 10000 ] 44% - 0:00:01 left \r", + " [ 4403 / 10000 ] 44% - 0:00:01 left \r", + " [ 4404 / 10000 ] 44% - 0:00:01 left \r", + " [ 4405 / 10000 ] 44% - 0:00:01 left \r", + " [ 4406 / 10000 ] 44% - 0:00:01 left \r", + " [ 4407 / 10000 ] 44% - 0:00:01 left \r", + " [ 4408 / 10000 ] 44% - 0:00:01 left \r", + " [ 4409 / 10000 ] 44% - 0:00:01 left \r", + " [ 4410 / 10000 ] 44% - 0:00:01 left \r", + " [ 4411 / 10000 ] 44% - 0:00:01 left \r", + " [ 4412 / 10000 ] 44% - 0:00:01 left \r", + " [ 4413 / 10000 ] 44% - 0:00:01 left \r", + " [ 4414 / 10000 ] 44% - 0:00:01 left \r", + " [ 4415 / 10000 ] 44% - 0:00:01 left \r", + " [ 4416 / 10000 ] 44% - 0:00:01 left \r", + " [ 4417 / 10000 ] 44% - 0:00:01 left \r", + " [ 4418 / 10000 ] 44% - 0:00:01 left \r", + " [ 4419 / 10000 ] 44% - 0:00:01 left \r", + " [ 4420 / 10000 ] 44% - 0:00:01 left \r", + " [ 4421 / 10000 ] 44% - 0:00:01 left \r", + " [ 4422 / 10000 ] 44% - 0:00:01 left \r", + " [ 4423 / 10000 ] 44% - 0:00:01 left \r", + " [ 4424 / 10000 ] 44% - 0:00:01 left \r", + " [ 4425 / 10000 ] 44% - 0:00:01 left \r", + " [ 4426 / 10000 ] 44% - 0:00:01 left \r", + " [ 4427 / 10000 ] 44% - 0:00:01 left \r", + " [ 4428 / 10000 ] 44% - 0:00:01 left \r", + " [ 4429 / 10000 ] 44% - 0:00:01 left \r", + " [ 4430 / 10000 ] 44% - 0:00:01 left \r", + " [ 4431 / 10000 ] 44% - 0:00:01 left \r", + " [ 4432 / 10000 ] 44% - 0:00:01 left \r", + " [ 4433 / 10000 ] 44% - 0:00:01 left \r", + " [ 4434 / 10000 ] 44% - 0:00:01 left \r", + " [ 4435 / 10000 ] 44% - 0:00:01 left \r", + " [ 4436 / 10000 ] 44% - 0:00:01 left \r", + " [ 4437 / 10000 ] 44% - 0:00:01 left \r", + " [ 4438 / 10000 ] 44% - 0:00:01 left \r", + " [ 4439 / 10000 ] 44% - 0:00:01 left \r", + " [ 4440 / 10000 ] 44% - 0:00:01 left \r", + " [ 4441 / 10000 ] 44% - 0:00:01 left \r", + " [ 4442 / 10000 ] 44% - 0:00:01 left \r", + " [ 4443 / 10000 ] 44% - 0:00:01 left \r", + " [ 4444 / 10000 ] 44% - 0:00:01 left \r", + " [ 4445 / 10000 ] 44% - 0:00:01 left \r", + " [ 4446 / 10000 ] 44% - 0:00:01 left \r", + " [ 4447 / 10000 ] 44% - 0:00:01 left \r", + " [ 4448 / 10000 ] 44% - 0:00:01 left \r", + " [ 4449 / 10000 ] 44% - 0:00:01 left \r", + " [ 4450 / 10000 ] 44% - 0:00:01 left \r", + " [ 4451 / 10000 ] 45% - 0:00:01 left \r", + " [ 4452 / 10000 ] 45% - 0:00:01 left \r", + " [ 4453 / 10000 ] 45% - 0:00:01 left \r", + " [ 4454 / 10000 ] 45% - 0:00:01 left \r", + " [ 4455 / 10000 ] 45% - 0:00:01 left \r", + " [ 4456 / 10000 ] 45% - 0:00:01 left \r", + " [ 4457 / 10000 ] 45% - 0:00:01 left \r", + " [ 4458 / 10000 ] 45% - 0:00:01 left \r", + " [ 4459 / 10000 ] 45% - 0:00:01 left \r", + " [ 4460 / 10000 ] 45% - 0:00:01 left \r", + " [ 4461 / 10000 ] 45% - 0:00:01 left \r", + " [ 4462 / 10000 ] 45% - 0:00:01 left \r", + " [ 4463 / 10000 ] 45% - 0:00:01 left \r", + " [ 4464 / 10000 ] 45% - 0:00:01 left \r", + " [ 4465 / 10000 ] 45% - 0:00:01 left \r", + " [ 4466 / 10000 ] 45% - 0:00:01 left \r", + " [ 4467 / 10000 ] 45% - 0:00:01 left \r", + " [ 4468 / 10000 ] 45% - 0:00:01 left \r", + " [ 4469 / 10000 ] 45% - 0:00:01 left \r", + " [ 4470 / 10000 ] 45% - 0:00:01 left \r", + " [ 4471 / 10000 ] 45% - 0:00:01 left \r", + " [ 4472 / 10000 ] 45% - 0:00:01 left \r", + " [ 4473 / 10000 ] 45% - 0:00:01 left \r", + " [ 4474 / 10000 ] 45% - 0:00:01 left \r", + " [ 4475 / 10000 ] 45% - 0:00:01 left \r", + " [ 4476 / 10000 ] 45% - 0:00:01 left \r", + " [ 4477 / 10000 ] 45% - 0:00:01 left \r", + " [ 4478 / 10000 ] 45% - 0:00:01 left \r", + " [ 4479 / 10000 ] 45% - 0:00:01 left \r", + " [ 4480 / 10000 ] 45% - 0:00:01 left \r", + " [ 4481 / 10000 ] 45% - 0:00:01 left \r", + " [ 4482 / 10000 ] 45% - 0:00:01 left \r", + " [ 4483 / 10000 ] 45% - 0:00:01 left \r", + " [ 4484 / 10000 ] 45% - 0:00:01 left \r", + " [ 4485 / 10000 ] 45% - 0:00:01 left \r", + " [ 4486 / 10000 ] 45% - 0:00:01 left \r", + " [ 4487 / 10000 ] 45% - 0:00:01 left \r", + " [ 4488 / 10000 ] 45% - 0:00:01 left \r", + " [ 4489 / 10000 ] 45% - 0:00:01 left \r", + " [ 4490 / 10000 ] 45% - 0:00:01 left \r", + " [ 4491 / 10000 ] 45% - 0:00:01 left \r", + " [ 4492 / 10000 ] 45% - 0:00:01 left \r", + " [ 4493 / 10000 ] 45% - 0:00:01 left \r", + " [ 4494 / 10000 ] 45% - 0:00:01 left \r", + " [ 4495 / 10000 ] 45% - 0:00:01 left \r", + " [ 4496 / 10000 ] 45% - 0:00:01 left \r", + " [ 4497 / 10000 ] 45% - 0:00:01 left \r", + " [ 4498 / 10000 ] 45% - 0:00:01 left \r", + " [ 4499 / 10000 ] 45% - 0:00:01 left \r", + " [ 4500 / 10000 ] 45% - 0:00:01 left \r", + " [ 4501 / 10000 ] 45% - 0:00:01 left \r", + " [ 4502 / 10000 ] 45% - 0:00:01 left \r", + " [ 4503 / 10000 ] 45% - 0:00:01 left \r", + " [ 4504 / 10000 ] 45% - 0:00:01 left \r", + " [ 4505 / 10000 ] 45% - 0:00:01 left \r", + " [ 4506 / 10000 ] 45% - 0:00:01 left \r", + " [ 4507 / 10000 ] 45% - 0:00:01 left \r", + " [ 4508 / 10000 ] 45% - 0:00:01 left \r", + " [ 4509 / 10000 ] 45% - 0:00:01 left \r", + " [ 4510 / 10000 ] 45% - 0:00:01 left \r", + " [ 4511 / 10000 ] 45% - 0:00:01 left \r", + " [ 4512 / 10000 ] 45% - 0:00:01 left \r", + " [ 4513 / 10000 ] 45% - 0:00:01 left \r", + " [ 4514 / 10000 ] 45% - 0:00:01 left \r", + " [ 4515 / 10000 ] 45% - 0:00:01 left \r", + " [ 4516 / 10000 ] 45% - 0:00:01 left \r", + " [ 4517 / 10000 ] 45% - 0:00:01 left \r", + " [ 4518 / 10000 ] 45% - 0:00:01 left \r", + " [ 4519 / 10000 ] 45% - 0:00:01 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 4520 / 10000 ] 45% - 0:00:01 left \r", + " [ 4521 / 10000 ] 45% - 0:00:01 left \r", + " [ 4522 / 10000 ] 45% - 0:00:01 left \r", + " [ 4523 / 10000 ] 45% - 0:00:01 left \r", + " [ 4524 / 10000 ] 45% - 0:00:01 left \r", + " [ 4525 / 10000 ] 45% - 0:00:01 left \r", + " [ 4526 / 10000 ] 45% - 0:00:01 left \r", + " [ 4527 / 10000 ] 45% - 0:00:01 left \r", + " [ 4528 / 10000 ] 45% - 0:00:01 left \r", + " [ 4529 / 10000 ] 45% - 0:00:01 left \r", + " [ 4530 / 10000 ] 45% - 0:00:01 left \r", + " [ 4531 / 10000 ] 45% - 0:00:01 left \r", + " [ 4532 / 10000 ] 45% - 0:00:01 left \r", + " [ 4533 / 10000 ] 45% - 0:00:01 left \r", + " [ 4534 / 10000 ] 45% - 0:00:01 left \r", + " [ 4535 / 10000 ] 45% - 0:00:01 left \r", + " [ 4536 / 10000 ] 45% - 0:00:01 left \r", + " [ 4537 / 10000 ] 45% - 0:00:01 left \r", + " [ 4538 / 10000 ] 45% - 0:00:01 left \r", + " [ 4539 / 10000 ] 45% - 0:00:01 left \r", + " [ 4540 / 10000 ] 45% - 0:00:01 left \r", + " [ 4541 / 10000 ] 45% - 0:00:01 left \r", + " [ 4542 / 10000 ] 45% - 0:00:01 left \r", + " [ 4543 / 10000 ] 45% - 0:00:01 left \r", + " [ 4544 / 10000 ] 45% - 0:00:01 left \r", + " [ 4545 / 10000 ] 45% - 0:00:01 left \r", + " [ 4546 / 10000 ] 45% - 0:00:01 left \r", + " [ 4547 / 10000 ] 45% - 0:00:01 left \r", + " [ 4548 / 10000 ] 45% - 0:00:01 left \r", + " [ 4549 / 10000 ] 45% - 0:00:01 left \r", + " [ 4550 / 10000 ] 46% - 0:00:01 left \r", + " [ 4551 / 10000 ] 46% - 0:00:01 left \r", + " [ 4552 / 10000 ] 46% - 0:00:01 left \r", + " [ 4553 / 10000 ] 46% - 0:00:01 left \r", + " [ 4554 / 10000 ] 46% - 0:00:01 left \r", + " [ 4555 / 10000 ] 46% - 0:00:01 left \r", + " [ 4556 / 10000 ] 46% - 0:00:01 left \r", + " [ 4557 / 10000 ] 46% - 0:00:01 left \r", + " [ 4558 / 10000 ] 46% - 0:00:01 left \r", + " [ 4559 / 10000 ] 46% - 0:00:01 left \r", + " [ 4560 / 10000 ] 46% - 0:00:01 left \r", + " [ 4561 / 10000 ] 46% - 0:00:01 left \r", + " [ 4562 / 10000 ] 46% - 0:00:01 left \r", + " [ 4563 / 10000 ] 46% - 0:00:01 left \r", + " [ 4564 / 10000 ] 46% - 0:00:01 left \r", + " [ 4565 / 10000 ] 46% - 0:00:01 left \r", + " [ 4566 / 10000 ] 46% - 0:00:01 left \r", + " [ 4567 / 10000 ] 46% - 0:00:01 left \r", + " [ 4568 / 10000 ] 46% - 0:00:01 left \r", + " [ 4569 / 10000 ] 46% - 0:00:01 left \r", + " [ 4570 / 10000 ] 46% - 0:00:01 left \r", + " [ 4571 / 10000 ] 46% - 0:00:01 left \r", + " [ 4572 / 10000 ] 46% - 0:00:01 left \r", + " [ 4573 / 10000 ] 46% - 0:00:01 left \r", + " [ 4574 / 10000 ] 46% - 0:00:01 left \r", + " [ 4575 / 10000 ] 46% - 0:00:01 left \r", + " [ 4576 / 10000 ] 46% - 0:00:01 left \r", + " [ 4577 / 10000 ] 46% - 0:00:01 left \r", + " [ 4578 / 10000 ] 46% - 0:00:01 left \r", + " [ 4579 / 10000 ] 46% - 0:00:01 left \r", + " [ 4580 / 10000 ] 46% - 0:00:01 left \r", + " [ 4581 / 10000 ] 46% - 0:00:01 left \r", + " [ 4582 / 10000 ] 46% - 0:00:01 left \r", + " [ 4583 / 10000 ] 46% - 0:00:01 left \r", + " [ 4584 / 10000 ] 46% - 0:00:01 left \r", + " [ 4585 / 10000 ] 46% - 0:00:01 left \r", + " [ 4586 / 10000 ] 46% - 0:00:01 left \r", + " [ 4587 / 10000 ] 46% - 0:00:01 left \r", + " [ 4588 / 10000 ] 46% - 0:00:01 left \r", + " [ 4589 / 10000 ] 46% - 0:00:01 left \r", + " [ 4590 / 10000 ] 46% - 0:00:01 left \r", + " [ 4591 / 10000 ] 46% - 0:00:01 left \r", + " [ 4592 / 10000 ] 46% - 0:00:01 left \r", + " [ 4593 / 10000 ] 46% - 0:00:01 left \r", + " [ 4594 / 10000 ] 46% - 0:00:01 left \r", + " [ 4595 / 10000 ] 46% - 0:00:01 left \r", + " [ 4596 / 10000 ] 46% - 0:00:01 left \r", + " [ 4597 / 10000 ] 46% - 0:00:01 left \r", + " [ 4598 / 10000 ] 46% - 0:00:01 left \r", + " [ 4599 / 10000 ] 46% - 0:00:01 left \r", + " [ 4600 / 10000 ] 46% - 0:00:01 left \r", + " [ 4601 / 10000 ] 46% - 0:00:01 left \r", + " [ 4602 / 10000 ] 46% - 0:00:01 left \r", + " [ 4603 / 10000 ] 46% - 0:00:01 left \r", + " [ 4604 / 10000 ] 46% - 0:00:01 left \r", + " [ 4605 / 10000 ] 46% - 0:00:01 left \r", + " [ 4606 / 10000 ] 46% - 0:00:01 left \r", + " [ 4607 / 10000 ] 46% - 0:00:01 left \r", + " [ 4608 / 10000 ] 46% - 0:00:01 left \r", + " [ 4609 / 10000 ] 46% - 0:00:01 left \r", + " [ 4610 / 10000 ] 46% - 0:00:01 left \r", + " [ 4611 / 10000 ] 46% - 0:00:01 left \r", + " [ 4612 / 10000 ] 46% - 0:00:01 left \r", + " [ 4613 / 10000 ] 46% - 0:00:01 left \r", + " [ 4614 / 10000 ] 46% - 0:00:01 left \r", + " [ 4615 / 10000 ] 46% - 0:00:01 left \r", + " [ 4616 / 10000 ] 46% - 0:00:01 left \r", + " [ 4617 / 10000 ] 46% - 0:00:01 left \r", + " [ 4618 / 10000 ] 46% - 0:00:01 left \r", + " [ 4619 / 10000 ] 46% - 0:00:01 left \r", + " [ 4620 / 10000 ] 46% - 0:00:01 left \r", + " [ 4621 / 10000 ] 46% - 0:00:01 left \r", + " [ 4622 / 10000 ] 46% - 0:00:01 left \r", + " [ 4623 / 10000 ] 46% - 0:00:01 left \r", + " [ 4624 / 10000 ] 46% - 0:00:01 left \r", + " [ 4625 / 10000 ] 46% - 0:00:01 left \r", + " [ 4626 / 10000 ] 46% - 0:00:01 left \r", + " [ 4627 / 10000 ] 46% - 0:00:01 left \r", + " [ 4628 / 10000 ] 46% - 0:00:01 left \r", + " [ 4629 / 10000 ] 46% - 0:00:01 left \r", + " [ 4630 / 10000 ] 46% - 0:00:01 left \r", + " [ 4631 / 10000 ] 46% - 0:00:01 left \r", + " [ 4632 / 10000 ] 46% - 0:00:01 left \r", + " [ 4633 / 10000 ] 46% - 0:00:01 left \r", + " [ 4634 / 10000 ] 46% - 0:00:01 left \r", + " [ 4635 / 10000 ] 46% - 0:00:01 left \r", + " [ 4636 / 10000 ] 46% - 0:00:01 left \r", + " [ 4637 / 10000 ] 46% - 0:00:01 left \r", + " [ 4638 / 10000 ] 46% - 0:00:01 left \r", + " [ 4639 / 10000 ] 46% - 0:00:01 left \r", + " [ 4640 / 10000 ] 46% - 0:00:01 left \r", + " [ 4641 / 10000 ] 46% - 0:00:01 left \r", + " [ 4642 / 10000 ] 46% - 0:00:01 left \r", + " [ 4643 / 10000 ] 46% - 0:00:01 left \r", + " [ 4644 / 10000 ] 46% - 0:00:01 left \r", + " [ 4645 / 10000 ] 46% - 0:00:01 left \r", + " [ 4646 / 10000 ] 46% - 0:00:01 left \r", + " [ 4647 / 10000 ] 46% - 0:00:01 left \r", + " [ 4648 / 10000 ] 46% - 0:00:01 left \r", + " [ 4649 / 10000 ] 46% - 0:00:01 left \r", + " [ 4650 / 10000 ] 46% - 0:00:01 left \r", + " [ 4651 / 10000 ] 47% - 0:00:01 left \r", + " [ 4652 / 10000 ] 47% - 0:00:01 left \r", + " [ 4653 / 10000 ] 47% - 0:00:01 left \r", + " [ 4654 / 10000 ] 47% - 0:00:01 left \r", + " [ 4655 / 10000 ] 47% - 0:00:01 left \r", + " [ 4656 / 10000 ] 47% - 0:00:01 left \r", + " [ 4657 / 10000 ] 47% - 0:00:01 left \r", + " [ 4658 / 10000 ] 47% - 0:00:01 left \r", + " [ 4659 / 10000 ] 47% - 0:00:01 left \r", + " [ 4660 / 10000 ] 47% - 0:00:01 left \r", + " [ 4661 / 10000 ] 47% - 0:00:01 left \r", + " [ 4662 / 10000 ] 47% - 0:00:01 left \r", + " [ 4663 / 10000 ] 47% - 0:00:01 left \r", + " [ 4664 / 10000 ] 47% - 0:00:01 left \r", + " [ 4665 / 10000 ] 47% - 0:00:01 left \r", + " [ 4666 / 10000 ] 47% - 0:00:01 left \r", + " [ 4667 / 10000 ] 47% - 0:00:01 left \r", + " [ 4668 / 10000 ] 47% - 0:00:01 left \r", + " [ 4669 / 10000 ] 47% - 0:00:01 left \r", + " [ 4670 / 10000 ] 47% - 0:00:01 left \r", + " [ 4671 / 10000 ] 47% - 0:00:01 left \r", + " [ 4672 / 10000 ] 47% - 0:00:01 left \r", + " [ 4673 / 10000 ] 47% - 0:00:01 left \r", + " [ 4674 / 10000 ] 47% - 0:00:01 left \r", + " [ 4675 / 10000 ] 47% - 0:00:01 left \r", + " [ 4676 / 10000 ] 47% - 0:00:01 left \r", + " [ 4677 / 10000 ] 47% - 0:00:01 left \r", + " [ 4678 / 10000 ] 47% - 0:00:01 left \r", + " [ 4679 / 10000 ] 47% - 0:00:01 left \r", + " [ 4680 / 10000 ] 47% - 0:00:01 left \r", + " [ 4681 / 10000 ] 47% - 0:00:01 left \r", + " [ 4682 / 10000 ] 47% - 0:00:01 left \r", + " [ 4683 / 10000 ] 47% - 0:00:01 left \r", + " [ 4684 / 10000 ] 47% - 0:00:01 left \r", + " [ 4685 / 10000 ] 47% - 0:00:01 left \r", + " [ 4686 / 10000 ] 47% - 0:00:01 left \r", + " [ 4687 / 10000 ] 47% - 0:00:01 left \r", + " [ 4688 / 10000 ] 47% - 0:00:01 left \r", + " [ 4689 / 10000 ] 47% - 0:00:01 left \r", + " [ 4690 / 10000 ] 47% - 0:00:01 left \r", + " [ 4691 / 10000 ] 47% - 0:00:01 left \r", + " [ 4692 / 10000 ] 47% - 0:00:01 left \r", + " [ 4693 / 10000 ] 47% - 0:00:01 left \r", + " [ 4694 / 10000 ] 47% - 0:00:01 left \r", + " [ 4695 / 10000 ] 47% - 0:00:01 left \r", + " [ 4696 / 10000 ] 47% - 0:00:01 left \r", + " [ 4697 / 10000 ] 47% - 0:00:01 left \r", + " [ 4698 / 10000 ] 47% - 0:00:01 left \r", + " [ 4699 / 10000 ] 47% - 0:00:01 left \r", + " [ 4700 / 10000 ] 47% - 0:00:01 left \r", + " [ 4701 / 10000 ] 47% - 0:00:01 left \r", + " [ 4702 / 10000 ] 47% - 0:00:01 left \r", + " [ 4703 / 10000 ] 47% - 0:00:01 left \r", + " [ 4704 / 10000 ] 47% - 0:00:01 left \r", + " [ 4705 / 10000 ] 47% - 0:00:01 left \r", + " [ 4706 / 10000 ] 47% - 0:00:01 left \r", + " [ 4707 / 10000 ] 47% - 0:00:01 left \r", + " [ 4708 / 10000 ] 47% - 0:00:01 left \r", + " [ 4709 / 10000 ] 47% - 0:00:01 left \r", + " [ 4710 / 10000 ] 47% - 0:00:01 left \r", + " [ 4711 / 10000 ] 47% - 0:00:01 left \r", + " [ 4712 / 10000 ] 47% - 0:00:01 left \r", + " [ 4713 / 10000 ] 47% - 0:00:01 left \r", + " [ 4714 / 10000 ] 47% - 0:00:01 left \r", + " [ 4715 / 10000 ] 47% - 0:00:01 left \r", + " [ 4716 / 10000 ] 47% - 0:00:01 left \r", + " [ 4717 / 10000 ] 47% - 0:00:01 left \r", + " [ 4718 / 10000 ] 47% - 0:00:01 left \r", + " [ 4719 / 10000 ] 47% - 0:00:01 left \r", + " [ 4720 / 10000 ] 47% - 0:00:01 left \r", + " [ 4721 / 10000 ] 47% - 0:00:01 left \r", + " [ 4722 / 10000 ] 47% - 0:00:01 left \r", + " [ 4723 / 10000 ] 47% - 0:00:01 left \r", + " [ 4724 / 10000 ] 47% - 0:00:01 left \r", + " [ 4725 / 10000 ] 47% - 0:00:01 left \r", + " [ 4726 / 10000 ] 47% - 0:00:01 left \r", + " [ 4727 / 10000 ] 47% - 0:00:01 left \r", + " [ 4728 / 10000 ] 47% - 0:00:01 left \r", + " [ 4729 / 10000 ] 47% - 0:00:01 left \r", + " [ 4730 / 10000 ] 47% - 0:00:01 left \r", + " [ 4731 / 10000 ] 47% - 0:00:01 left \r", + " [ 4732 / 10000 ] 47% - 0:00:01 left \r", + " [ 4733 / 10000 ] 47% - 0:00:01 left \r", + " [ 4734 / 10000 ] 47% - 0:00:01 left \r", + " [ 4735 / 10000 ] 47% - 0:00:01 left \r", + " [ 4736 / 10000 ] 47% - 0:00:01 left \r", + " [ 4737 / 10000 ] 47% - 0:00:01 left \r", + " [ 4738 / 10000 ] 47% - 0:00:01 left \r", + " [ 4739 / 10000 ] 47% - 0:00:01 left \r", + " [ 4740 / 10000 ] 47% - 0:00:01 left \r", + " [ 4741 / 10000 ] 47% - 0:00:01 left \r", + " [ 4742 / 10000 ] 47% - 0:00:01 left \r", + " [ 4743 / 10000 ] 47% - 0:00:01 left \r", + " [ 4744 / 10000 ] 47% - 0:00:01 left \r", + " [ 4745 / 10000 ] 47% - 0:00:01 left \r", + " [ 4746 / 10000 ] 47% - 0:00:01 left \r", + " [ 4747 / 10000 ] 47% - 0:00:01 left \r", + " [ 4748 / 10000 ] 47% - 0:00:01 left \r", + " [ 4749 / 10000 ] 47% - 0:00:01 left \r", + " [ 4750 / 10000 ] 48% - 0:00:01 left \r", + " [ 4751 / 10000 ] 48% - 0:00:01 left \r", + " [ 4752 / 10000 ] 48% - 0:00:01 left \r", + " [ 4753 / 10000 ] 48% - 0:00:01 left \r", + " [ 4754 / 10000 ] 48% - 0:00:01 left \r", + " [ 4755 / 10000 ] 48% - 0:00:01 left \r", + " [ 4756 / 10000 ] 48% - 0:00:01 left \r", + " [ 4757 / 10000 ] 48% - 0:00:01 left \r", + " [ 4758 / 10000 ] 48% - 0:00:01 left \r", + " [ 4759 / 10000 ] 48% - 0:00:01 left \r", + " [ 4760 / 10000 ] 48% - 0:00:01 left \r", + " [ 4761 / 10000 ] 48% - 0:00:01 left \r", + " [ 4762 / 10000 ] 48% - 0:00:01 left \r", + " [ 4763 / 10000 ] 48% - 0:00:01 left \r", + " [ 4764 / 10000 ] 48% - 0:00:01 left \r", + " [ 4765 / 10000 ] 48% - 0:00:01 left \r", + " [ 4766 / 10000 ] 48% - 0:00:01 left \r", + " [ 4767 / 10000 ] 48% - 0:00:01 left \r", + " [ 4768 / 10000 ] 48% - 0:00:01 left \r", + " [ 4769 / 10000 ] 48% - 0:00:01 left \r", + " [ 4770 / 10000 ] 48% - 0:00:01 left \r", + " [ 4771 / 10000 ] 48% - 0:00:01 left \r", + " [ 4772 / 10000 ] 48% - 0:00:01 left \r", + " [ 4773 / 10000 ] 48% - 0:00:01 left \r", + " [ 4774 / 10000 ] 48% - 0:00:01 left \r", + " [ 4775 / 10000 ] 48% - 0:00:01 left \r", + " [ 4776 / 10000 ] 48% - 0:00:01 left \r", + " [ 4777 / 10000 ] 48% - 0:00:01 left \r", + " [ 4778 / 10000 ] 48% - 0:00:01 left \r", + " [ 4779 / 10000 ] 48% - 0:00:01 left \r", + " [ 4780 / 10000 ] 48% - 0:00:01 left \r", + " [ 4781 / 10000 ] 48% - 0:00:01 left \r", + " [ 4782 / 10000 ] 48% - 0:00:01 left \r", + " [ 4783 / 10000 ] 48% - 0:00:01 left \r", + " [ 4784 / 10000 ] 48% - 0:00:01 left \r", + " [ 4785 / 10000 ] 48% - 0:00:01 left \r", + " [ 4786 / 10000 ] 48% - 0:00:01 left \r", + " [ 4787 / 10000 ] 48% - 0:00:01 left \r", + " [ 4788 / 10000 ] 48% - 0:00:01 left \r", + " [ 4789 / 10000 ] 48% - 0:00:01 left \r", + " [ 4790 / 10000 ] 48% - 0:00:01 left \r", + " [ 4791 / 10000 ] 48% - 0:00:01 left \r", + " [ 4792 / 10000 ] 48% - 0:00:01 left \r", + " [ 4793 / 10000 ] 48% - 0:00:01 left \r", + " [ 4794 / 10000 ] 48% - 0:00:01 left \r", + " [ 4795 / 10000 ] 48% - 0:00:01 left \r", + " [ 4796 / 10000 ] 48% - 0:00:01 left \r", + " [ 4797 / 10000 ] 48% - 0:00:01 left \r", + " [ 4798 / 10000 ] 48% - 0:00:01 left \r", + " [ 4799 / 10000 ] 48% - 0:00:01 left \r", + " [ 4800 / 10000 ] 48% - 0:00:01 left \r", + " [ 4801 / 10000 ] 48% - 0:00:01 left \r", + " [ 4802 / 10000 ] 48% - 0:00:01 left \r", + " [ 4803 / 10000 ] 48% - 0:00:01 left \r", + " [ 4804 / 10000 ] 48% - 0:00:01 left \r", + " [ 4805 / 10000 ] 48% - 0:00:01 left \r", + " [ 4806 / 10000 ] 48% - 0:00:01 left \r", + " [ 4807 / 10000 ] 48% - 0:00:01 left \r", + " [ 4808 / 10000 ] 48% - 0:00:01 left \r", + " [ 4809 / 10000 ] 48% - 0:00:01 left \r", + " [ 4810 / 10000 ] 48% - 0:00:01 left \r", + " [ 4811 / 10000 ] 48% - 0:00:01 left \r", + " [ 4812 / 10000 ] 48% - 0:00:01 left \r", + " [ 4813 / 10000 ] 48% - 0:00:01 left \r", + " [ 4814 / 10000 ] 48% - 0:00:01 left \r", + " [ 4815 / 10000 ] 48% - 0:00:01 left \r", + " [ 4816 / 10000 ] 48% - 0:00:01 left \r", + " [ 4817 / 10000 ] 48% - 0:00:01 left \r", + " [ 4818 / 10000 ] 48% - 0:00:01 left \r", + " [ 4819 / 10000 ] 48% - 0:00:01 left \r", + " [ 4820 / 10000 ] 48% - 0:00:01 left \r", + " [ 4821 / 10000 ] 48% - 0:00:01 left \r", + " [ 4822 / 10000 ] 48% - 0:00:01 left \r", + " [ 4823 / 10000 ] 48% - 0:00:01 left \r", + " [ 4824 / 10000 ] 48% - 0:00:01 left \r", + " [ 4825 / 10000 ] 48% - 0:00:01 left \r", + " [ 4826 / 10000 ] 48% - 0:00:01 left \r", + " [ 4827 / 10000 ] 48% - 0:00:01 left \r", + " [ 4828 / 10000 ] 48% - 0:00:01 left \r", + " [ 4829 / 10000 ] 48% - 0:00:01 left \r", + " [ 4830 / 10000 ] 48% - 0:00:01 left \r", + " [ 4831 / 10000 ] 48% - 0:00:01 left \r", + " [ 4832 / 10000 ] 48% - 0:00:01 left \r", + " [ 4833 / 10000 ] 48% - 0:00:01 left \r", + " [ 4834 / 10000 ] 48% - 0:00:01 left \r", + " [ 4835 / 10000 ] 48% - 0:00:01 left \r", + " [ 4836 / 10000 ] 48% - 0:00:01 left \r", + " [ 4837 / 10000 ] 48% - 0:00:01 left \r", + " [ 4838 / 10000 ] 48% - 0:00:01 left \r", + " [ 4839 / 10000 ] 48% - 0:00:01 left \r", + " [ 4840 / 10000 ] 48% - 0:00:01 left \r", + " [ 4841 / 10000 ] 48% - 0:00:01 left \r", + " [ 4842 / 10000 ] 48% - 0:00:01 left \r", + " [ 4843 / 10000 ] 48% - 0:00:01 left \r", + " [ 4844 / 10000 ] 48% - 0:00:01 left \r", + " [ 4845 / 10000 ] 48% - 0:00:01 left \r", + " [ 4846 / 10000 ] 48% - 0:00:01 left \r", + " [ 4847 / 10000 ] 48% - 0:00:01 left \r", + " [ 4848 / 10000 ] 48% - 0:00:01 left \r", + " [ 4849 / 10000 ] 48% - 0:00:01 left \r", + " [ 4850 / 10000 ] 48% - 0:00:01 left \r", + " [ 4851 / 10000 ] 49% - 0:00:01 left \r", + " [ 4852 / 10000 ] 49% - 0:00:01 left \r", + " [ 4853 / 10000 ] 49% - 0:00:01 left \r", + " [ 4854 / 10000 ] 49% - 0:00:01 left \r", + " [ 4855 / 10000 ] 49% - 0:00:01 left \r", + " [ 4856 / 10000 ] 49% - 0:00:01 left \r", + " [ 4857 / 10000 ] 49% - 0:00:01 left \r", + " [ 4858 / 10000 ] 49% - 0:00:01 left \r", + " [ 4859 / 10000 ] 49% - 0:00:01 left \r", + " [ 4860 / 10000 ] 49% - 0:00:01 left \r", + " [ 4861 / 10000 ] 49% - 0:00:01 left \r", + " [ 4862 / 10000 ] 49% - 0:00:01 left \r", + " [ 4863 / 10000 ] 49% - 0:00:01 left \r", + " [ 4864 / 10000 ] 49% - 0:00:01 left \r", + " [ 4865 / 10000 ] 49% - 0:00:01 left \r", + " [ 4866 / 10000 ] 49% - 0:00:01 left \r", + " [ 4867 / 10000 ] 49% - 0:00:01 left \r", + " [ 4868 / 10000 ] 49% - 0:00:01 left \r", + " [ 4869 / 10000 ] 49% - 0:00:01 left \r", + " [ 4870 / 10000 ] 49% - 0:00:01 left \r", + " [ 4871 / 10000 ] 49% - 0:00:01 left \r", + " [ 4872 / 10000 ] 49% - 0:00:01 left \r", + " [ 4873 / 10000 ] 49% - 0:00:01 left \r", + " [ 4874 / 10000 ] 49% - 0:00:01 left \r", + " [ 4875 / 10000 ] 49% - 0:00:01 left \r", + " [ 4876 / 10000 ] 49% - 0:00:01 left \r", + " [ 4877 / 10000 ] 49% - 0:00:01 left \r", + " [ 4878 / 10000 ] 49% - 0:00:01 left \r", + " [ 4879 / 10000 ] 49% - 0:00:01 left \r", + " [ 4880 / 10000 ] 49% - 0:00:01 left \r", + " [ 4881 / 10000 ] 49% - 0:00:01 left \r", + " [ 4882 / 10000 ] 49% - 0:00:01 left \r", + " [ 4883 / 10000 ] 49% - 0:00:01 left \r", + " [ 4884 / 10000 ] 49% - 0:00:01 left \r", + " [ 4885 / 10000 ] 49% - 0:00:01 left \r", + " [ 4886 / 10000 ] 49% - 0:00:01 left \r", + " [ 4887 / 10000 ] 49% - 0:00:01 left \r", + " [ 4888 / 10000 ] 49% - 0:00:01 left \r", + " [ 4889 / 10000 ] 49% - 0:00:01 left \r", + " [ 4890 / 10000 ] 49% - 0:00:01 left \r", + " [ 4891 / 10000 ] 49% - 0:00:01 left \r", + " [ 4892 / 10000 ] 49% - 0:00:01 left \r", + " [ 4893 / 10000 ] 49% - 0:00:01 left \r", + " [ 4894 / 10000 ] 49% - 0:00:01 left \r", + " [ 4895 / 10000 ] 49% - 0:00:01 left \r", + " [ 4896 / 10000 ] 49% - 0:00:01 left \r", + " [ 4897 / 10000 ] 49% - 0:00:01 left \r", + " [ 4898 / 10000 ] 49% - 0:00:01 left \r", + " [ 4899 / 10000 ] 49% - 0:00:01 left \r", + " [ 4900 / 10000 ] 49% - 0:00:01 left \r", + " [ 4901 / 10000 ] 49% - 0:00:01 left \r", + " [ 4902 / 10000 ] 49% - 0:00:01 left \r", + " [ 4903 / 10000 ] 49% - 0:00:01 left \r", + " [ 4904 / 10000 ] 49% - 0:00:01 left \r", + " [ 4905 / 10000 ] 49% - 0:00:01 left \r", + " [ 4906 / 10000 ] 49% - 0:00:01 left \r", + " [ 4907 / 10000 ] 49% - 0:00:01 left \r", + " [ 4908 / 10000 ] 49% - 0:00:01 left \r", + " [ 4909 / 10000 ] 49% - 0:00:01 left \r", + " [ 4910 / 10000 ] 49% - 0:00:01 left \r", + " [ 4911 / 10000 ] 49% - 0:00:01 left \r", + " [ 4912 / 10000 ] 49% - 0:00:01 left \r", + " [ 4913 / 10000 ] 49% - 0:00:01 left \r", + " [ 4914 / 10000 ] 49% - 0:00:01 left \r", + " [ 4915 / 10000 ] 49% - 0:00:01 left \r", + " [ 4916 / 10000 ] 49% - 0:00:01 left \r", + " [ 4917 / 10000 ] 49% - 0:00:01 left \r", + " [ 4918 / 10000 ] 49% - 0:00:01 left \r", + " [ 4919 / 10000 ] 49% - 0:00:01 left \r", + " [ 4920 / 10000 ] 49% - 0:00:01 left \r", + " [ 4921 / 10000 ] 49% - 0:00:01 left \r", + " [ 4922 / 10000 ] 49% - 0:00:01 left \r", + " [ 4923 / 10000 ] 49% - 0:00:01 left \r", + " [ 4924 / 10000 ] 49% - 0:00:01 left \r", + " [ 4925 / 10000 ] 49% - 0:00:01 left \r", + " [ 4926 / 10000 ] 49% - 0:00:01 left \r", + " [ 4927 / 10000 ] 49% - 0:00:01 left \r", + " [ 4928 / 10000 ] 49% - 0:00:01 left \r", + " [ 4929 / 10000 ] 49% - 0:00:01 left \r", + " [ 4930 / 10000 ] 49% - 0:00:01 left \r", + " [ 4931 / 10000 ] 49% - 0:00:01 left \r", + " [ 4932 / 10000 ] 49% - 0:00:01 left \r", + " [ 4933 / 10000 ] 49% - 0:00:01 left \r", + " [ 4934 / 10000 ] 49% - 0:00:01 left \r", + " [ 4935 / 10000 ] 49% - 0:00:01 left \r", + " [ 4936 / 10000 ] 49% - 0:00:01 left \r", + " [ 4937 / 10000 ] 49% - 0:00:01 left \r", + " [ 4938 / 10000 ] 49% - 0:00:01 left \r", + " [ 4939 / 10000 ] 49% - 0:00:01 left \r", + " [ 4940 / 10000 ] 49% - 0:00:01 left \r", + " [ 4941 / 10000 ] 49% - 0:00:01 left \r", + " [ 4942 / 10000 ] 49% - 0:00:01 left \r", + " [ 4943 / 10000 ] 49% - 0:00:01 left \r", + " [ 4944 / 10000 ] 49% - 0:00:01 left \r", + " [ 4945 / 10000 ] 49% - 0:00:01 left \r", + " [ 4946 / 10000 ] 49% - 0:00:01 left \r", + " [ 4947 / 10000 ] 49% - 0:00:01 left \r", + " [ 4948 / 10000 ] 49% - 0:00:01 left \r", + " [ 4949 / 10000 ] 49% - 0:00:01 left \r", + " [ 4950 / 10000 ] 50% - 0:00:01 left \r", + " [ 4951 / 10000 ] 50% - 0:00:01 left \r", + " [ 4952 / 10000 ] 50% - 0:00:01 left \r", + " [ 4953 / 10000 ] 50% - 0:00:01 left \r", + " [ 4954 / 10000 ] 50% - 0:00:01 left \r", + " [ 4955 / 10000 ] 50% - 0:00:01 left \r", + " [ 4956 / 10000 ] 50% - 0:00:01 left \r", + " [ 4957 / 10000 ] 50% - 0:00:01 left \r", + " [ 4958 / 10000 ] 50% - 0:00:01 left \r", + " [ 4959 / 10000 ] 50% - 0:00:01 left \r", + " [ 4960 / 10000 ] 50% - 0:00:01 left \r", + " [ 4961 / 10000 ] 50% - 0:00:01 left \r", + " [ 4962 / 10000 ] 50% - 0:00:00 left \r", + " [ 4963 / 10000 ] 50% - 0:00:00 left \r", + " [ 4964 / 10000 ] 50% - 0:00:00 left \r", + " [ 4965 / 10000 ] 50% - 0:00:00 left \r", + " [ 4966 / 10000 ] 50% - 0:00:00 left \r", + " [ 4967 / 10000 ] 50% - 0:00:00 left \r", + " [ 4968 / 10000 ] 50% - 0:00:00 left \r", + " [ 4969 / 10000 ] 50% - 0:00:00 left \r", + " [ 4970 / 10000 ] 50% - 0:00:00 left \r", + " [ 4971 / 10000 ] 50% - 0:00:00 left \r", + " [ 4972 / 10000 ] 50% - 0:00:00 left \r", + " [ 4973 / 10000 ] 50% - 0:00:00 left \r", + " [ 4974 / 10000 ] 50% - 0:00:00 left \r", + " [ 4975 / 10000 ] 50% - 0:00:00 left \r", + " [ 4976 / 10000 ] 50% - 0:00:00 left \r", + " [ 4977 / 10000 ] 50% - 0:00:00 left \r", + " [ 4978 / 10000 ] 50% - 0:00:00 left \r", + " [ 4979 / 10000 ] 50% - 0:00:00 left \r", + " [ 4980 / 10000 ] 50% - 0:00:00 left \r", + " [ 4981 / 10000 ] 50% - 0:00:00 left \r", + " [ 4982 / 10000 ] 50% - 0:00:00 left \r", + " [ 4983 / 10000 ] 50% - 0:00:00 left \r", + " [ 4984 / 10000 ] 50% - 0:00:00 left \r", + " [ 4985 / 10000 ] 50% - 0:00:00 left \r", + " [ 4986 / 10000 ] 50% - 0:00:00 left \r", + " [ 4987 / 10000 ] 50% - 0:00:00 left \r", + " [ 4988 / 10000 ] 50% - 0:00:00 left \r", + " [ 4989 / 10000 ] 50% - 0:00:00 left \r", + " [ 4990 / 10000 ] 50% - 0:00:00 left \r", + " [ 4991 / 10000 ] 50% - 0:00:00 left \r", + " [ 4992 / 10000 ] 50% - 0:00:00 left \r", + " [ 4993 / 10000 ] 50% - 0:00:00 left \r", + " [ 4994 / 10000 ] 50% - 0:00:00 left \r", + " [ 4995 / 10000 ] 50% - 0:00:00 left \r", + " [ 4996 / 10000 ] 50% - 0:00:00 left \r", + " [ 4997 / 10000 ] 50% - 0:00:00 left \r", + " [ 4998 / 10000 ] 50% - 0:00:00 left \r", + " [ 4999 / 10000 ] 50% - 0:00:00 left \r", + " [ 5000 / 10000 ] 50% - 0:00:00 left \r", + " [ 5001 / 10000 ] 50% - 0:00:00 left \r", + " [ 5002 / 10000 ] 50% - 0:00:00 left \r", + " [ 5003 / 10000 ] 50% - 0:00:00 left \r", + " [ 5004 / 10000 ] 50% - 0:00:00 left \r", + " [ 5005 / 10000 ] 50% - 0:00:00 left \r", + " [ 5006 / 10000 ] 50% - 0:00:00 left \r", + " [ 5007 / 10000 ] 50% - 0:00:00 left \r", + " [ 5008 / 10000 ] 50% - 0:00:00 left \r", + " [ 5009 / 10000 ] 50% - 0:00:00 left \r", + " [ 5010 / 10000 ] 50% - 0:00:00 left \r", + " [ 5011 / 10000 ] 50% - 0:00:00 left \r", + " [ 5012 / 10000 ] 50% - 0:00:00 left \r", + " [ 5013 / 10000 ] 50% - 0:00:00 left \r", + " [ 5014 / 10000 ] 50% - 0:00:00 left \r", + " [ 5015 / 10000 ] 50% - 0:00:00 left \r", + " [ 5016 / 10000 ] 50% - 0:00:00 left \r", + " [ 5017 / 10000 ] 50% - 0:00:00 left \r", + " [ 5018 / 10000 ] 50% - 0:00:00 left \r", + " [ 5019 / 10000 ] 50% - 0:00:00 left \r", + " [ 5020 / 10000 ] 50% - 0:00:00 left \r", + " [ 5021 / 10000 ] 50% - 0:00:00 left \r", + " [ 5022 / 10000 ] 50% - 0:00:00 left \r", + " [ 5023 / 10000 ] 50% - 0:00:00 left \r", + " [ 5024 / 10000 ] 50% - 0:00:00 left \r", + " [ 5025 / 10000 ] 50% - 0:00:00 left \r", + " [ 5026 / 10000 ] 50% - 0:00:00 left \r", + " [ 5027 / 10000 ] 50% - 0:00:00 left \r", + " [ 5028 / 10000 ] 50% - 0:00:00 left \r", + " [ 5029 / 10000 ] 50% - 0:00:00 left \r", + " [ 5030 / 10000 ] 50% - 0:00:00 left \r", + " [ 5031 / 10000 ] 50% - 0:00:00 left \r", + " [ 5032 / 10000 ] 50% - 0:00:00 left \r", + " [ 5033 / 10000 ] 50% - 0:00:00 left \r", + " [ 5034 / 10000 ] 50% - 0:00:00 left \r", + " [ 5035 / 10000 ] 50% - 0:00:00 left \r", + " [ 5036 / 10000 ] 50% - 0:00:00 left \r", + " [ 5037 / 10000 ] 50% - 0:00:00 left \r", + " [ 5038 / 10000 ] 50% - 0:00:00 left \r", + " [ 5039 / 10000 ] 50% - 0:00:00 left \r", + " [ 5040 / 10000 ] 50% - 0:00:00 left \r", + " [ 5041 / 10000 ] 50% - 0:00:00 left \r", + " [ 5042 / 10000 ] 50% - 0:00:00 left \r", + " [ 5043 / 10000 ] 50% - 0:00:00 left \r", + " [ 5044 / 10000 ] 50% - 0:00:00 left \r", + " [ 5045 / 10000 ] 50% - 0:00:00 left \r", + " [ 5046 / 10000 ] 50% - 0:00:00 left \r", + " [ 5047 / 10000 ] 50% - 0:00:00 left \r", + " [ 5048 / 10000 ] 50% - 0:00:00 left \r", + " [ 5049 / 10000 ] 50% - 0:00:00 left \r", + " [ 5050 / 10000 ] 50% - 0:00:00 left \r", + " [ 5051 / 10000 ] 51% - 0:00:00 left \r", + " [ 5052 / 10000 ] 51% - 0:00:00 left \r", + " [ 5053 / 10000 ] 51% - 0:00:00 left \r", + " [ 5054 / 10000 ] 51% - 0:00:00 left \r", + " [ 5055 / 10000 ] 51% - 0:00:00 left \r", + " [ 5056 / 10000 ] 51% - 0:00:00 left \r", + " [ 5057 / 10000 ] 51% - 0:00:00 left \r", + " [ 5058 / 10000 ] 51% - 0:00:00 left \r", + " [ 5059 / 10000 ] 51% - 0:00:00 left \r", + " [ 5060 / 10000 ] 51% - 0:00:00 left \r", + " [ 5061 / 10000 ] 51% - 0:00:00 left \r", + " [ 5062 / 10000 ] 51% - 0:00:00 left \r", + " [ 5063 / 10000 ] 51% - 0:00:00 left \r", + " [ 5064 / 10000 ] 51% - 0:00:00 left \r", + " [ 5065 / 10000 ] 51% - 0:00:00 left \r", + " [ 5066 / 10000 ] 51% - 0:00:00 left \r", + " [ 5067 / 10000 ] 51% - 0:00:00 left \r", + " [ 5068 / 10000 ] 51% - 0:00:00 left \r", + " [ 5069 / 10000 ] 51% - 0:00:00 left \r", + " [ 5070 / 10000 ] 51% - 0:00:00 left \r", + " [ 5071 / 10000 ] 51% - 0:00:00 left \r", + " [ 5072 / 10000 ] 51% - 0:00:00 left \r", + " [ 5073 / 10000 ] 51% - 0:00:00 left \r", + " [ 5074 / 10000 ] 51% - 0:00:00 left \r", + " [ 5075 / 10000 ] 51% - 0:00:00 left \r", + " [ 5076 / 10000 ] 51% - 0:00:00 left \r", + " [ 5077 / 10000 ] 51% - 0:00:00 left \r", + " [ 5078 / 10000 ] 51% - 0:00:00 left \r", + " [ 5079 / 10000 ] 51% - 0:00:00 left \r", + " [ 5080 / 10000 ] 51% - 0:00:00 left \r", + " [ 5081 / 10000 ] 51% - 0:00:00 left \r", + " [ 5082 / 10000 ] 51% - 0:00:00 left \r", + " [ 5083 / 10000 ] 51% - 0:00:00 left \r", + " [ 5084 / 10000 ] 51% - 0:00:00 left \r", + " [ 5085 / 10000 ] 51% - 0:00:00 left \r", + " [ 5086 / 10000 ] 51% - 0:00:00 left \r", + " [ 5087 / 10000 ] 51% - 0:00:00 left \r", + " [ 5088 / 10000 ] 51% - 0:00:00 left \r", + " [ 5089 / 10000 ] 51% - 0:00:00 left \r", + " [ 5090 / 10000 ] 51% - 0:00:00 left \r", + " [ 5091 / 10000 ] 51% - 0:00:00 left \r", + " [ 5092 / 10000 ] 51% - 0:00:00 left \r", + " [ 5093 / 10000 ] 51% - 0:00:00 left \r", + " [ 5094 / 10000 ] 51% - 0:00:00 left \r", + " [ 5095 / 10000 ] 51% - 0:00:00 left \r", + " [ 5096 / 10000 ] 51% - 0:00:00 left \r", + " [ 5097 / 10000 ] 51% - 0:00:00 left \r", + " [ 5098 / 10000 ] 51% - 0:00:00 left \r", + " [ 5099 / 10000 ] 51% - 0:00:00 left \r", + " [ 5100 / 10000 ] 51% - 0:00:00 left \r", + " [ 5101 / 10000 ] 51% - 0:00:00 left \r", + " [ 5102 / 10000 ] 51% - 0:00:00 left \r", + " [ 5103 / 10000 ] 51% - 0:00:00 left \r", + " [ 5104 / 10000 ] 51% - 0:00:00 left \r", + " [ 5105 / 10000 ] 51% - 0:00:00 left \r", + " [ 5106 / 10000 ] 51% - 0:00:00 left \r", + " [ 5107 / 10000 ] 51% - 0:00:00 left \r", + " [ 5108 / 10000 ] 51% - 0:00:00 left \r", + " [ 5109 / 10000 ] 51% - 0:00:00 left \r", + " [ 5110 / 10000 ] 51% - 0:00:00 left \r", + " [ 5111 / 10000 ] 51% - 0:00:00 left \r", + " [ 5112 / 10000 ] 51% - 0:00:00 left \r", + " [ 5113 / 10000 ] 51% - 0:00:00 left \r", + " [ 5114 / 10000 ] 51% - 0:00:00 left \r", + " [ 5115 / 10000 ] 51% - 0:00:00 left \r", + " [ 5116 / 10000 ] 51% - 0:00:00 left \r", + " [ 5117 / 10000 ] 51% - 0:00:00 left \r", + " [ 5118 / 10000 ] 51% - 0:00:00 left \r", + " [ 5119 / 10000 ] 51% - 0:00:00 left \r", + " [ 5120 / 10000 ] 51% - 0:00:00 left \r", + " [ 5121 / 10000 ] 51% - 0:00:00 left \r", + " [ 5122 / 10000 ] 51% - 0:00:00 left \r", + " [ 5123 / 10000 ] 51% - 0:00:00 left \r", + " [ 5124 / 10000 ] 51% - 0:00:00 left \r", + " [ 5125 / 10000 ] 51% - 0:00:00 left \r", + " [ 5126 / 10000 ] 51% - 0:00:00 left \r", + " [ 5127 / 10000 ] 51% - 0:00:00 left \r", + " [ 5128 / 10000 ] 51% - 0:00:00 left \r", + " [ 5129 / 10000 ] 51% - 0:00:00 left \r", + " [ 5130 / 10000 ] 51% - 0:00:00 left \r", + " [ 5131 / 10000 ] 51% - 0:00:00 left \r", + " [ 5132 / 10000 ] 51% - 0:00:00 left \r", + " [ 5133 / 10000 ] 51% - 0:00:00 left \r", + " [ 5134 / 10000 ] 51% - 0:00:00 left \r", + " [ 5135 / 10000 ] 51% - 0:00:00 left \r", + " [ 5136 / 10000 ] 51% - 0:00:00 left \r", + " [ 5137 / 10000 ] 51% - 0:00:00 left \r", + " [ 5138 / 10000 ] 51% - 0:00:00 left \r", + " [ 5139 / 10000 ] 51% - 0:00:00 left \r", + " [ 5140 / 10000 ] 51% - 0:00:00 left \r", + " [ 5141 / 10000 ] 51% - 0:00:00 left \r", + " [ 5142 / 10000 ] 51% - 0:00:00 left \r", + " [ 5143 / 10000 ] 51% - 0:00:00 left \r", + " [ 5144 / 10000 ] 51% - 0:00:00 left \r", + " [ 5145 / 10000 ] 51% - 0:00:00 left \r", + " [ 5146 / 10000 ] 51% - 0:00:00 left \r", + " [ 5147 / 10000 ] 51% - 0:00:00 left \r", + " [ 5148 / 10000 ] 51% - 0:00:00 left \r", + " [ 5149 / 10000 ] 51% - 0:00:00 left \r", + " [ 5150 / 10000 ] 52% - 0:00:00 left \r", + " [ 5151 / 10000 ] 52% - 0:00:00 left \r", + " [ 5152 / 10000 ] 52% - 0:00:00 left \r", + " [ 5153 / 10000 ] 52% - 0:00:00 left \r", + " [ 5154 / 10000 ] 52% - 0:00:00 left \r", + " [ 5155 / 10000 ] 52% - 0:00:00 left \r", + " [ 5156 / 10000 ] 52% - 0:00:00 left \r", + " [ 5157 / 10000 ] 52% - 0:00:00 left \r", + " [ 5158 / 10000 ] 52% - 0:00:00 left \r", + " [ 5159 / 10000 ] 52% - 0:00:00 left \r", + " [ 5160 / 10000 ] 52% - 0:00:00 left \r", + " [ 5161 / 10000 ] 52% - 0:00:00 left \r", + " [ 5162 / 10000 ] 52% - 0:00:00 left \r", + " [ 5163 / 10000 ] 52% - 0:00:00 left \r", + " [ 5164 / 10000 ] 52% - 0:00:00 left \r", + " [ 5165 / 10000 ] 52% - 0:00:00 left \r", + " [ 5166 / 10000 ] 52% - 0:00:00 left \r", + " [ 5167 / 10000 ] 52% - 0:00:00 left \r", + " [ 5168 / 10000 ] 52% - 0:00:00 left \r", + " [ 5169 / 10000 ] 52% - 0:00:00 left \r", + " [ 5170 / 10000 ] 52% - 0:00:00 left \r", + " [ 5171 / 10000 ] 52% - 0:00:00 left \r", + " [ 5172 / 10000 ] 52% - 0:00:00 left \r", + " [ 5173 / 10000 ] 52% - 0:00:00 left \r", + " [ 5174 / 10000 ] 52% - 0:00:00 left \r", + " [ 5175 / 10000 ] 52% - 0:00:00 left \r", + " [ 5176 / 10000 ] 52% - 0:00:00 left \r", + " [ 5177 / 10000 ] 52% - 0:00:00 left \r", + " [ 5178 / 10000 ] 52% - 0:00:00 left \r", + " [ 5179 / 10000 ] 52% - 0:00:00 left \r", + " [ 5180 / 10000 ] 52% - 0:00:00 left \r", + " [ 5181 / 10000 ] 52% - 0:00:00 left \r", + " [ 5182 / 10000 ] 52% - 0:00:00 left \r", + " [ 5183 / 10000 ] 52% - 0:00:00 left \r", + " [ 5184 / 10000 ] 52% - 0:00:00 left \r", + " [ 5185 / 10000 ] 52% - 0:00:00 left \r", + " [ 5186 / 10000 ] 52% - 0:00:00 left \r", + " [ 5187 / 10000 ] 52% - 0:00:00 left \r", + " [ 5188 / 10000 ] 52% - 0:00:00 left \r", + " [ 5189 / 10000 ] 52% - 0:00:00 left \r", + " [ 5190 / 10000 ] 52% - 0:00:00 left \r", + " [ 5191 / 10000 ] 52% - 0:00:00 left \r", + " [ 5192 / 10000 ] 52% - 0:00:00 left \r", + " [ 5193 / 10000 ] 52% - 0:00:00 left \r", + " [ 5194 / 10000 ] 52% - 0:00:00 left \r", + " [ 5195 / 10000 ] 52% - 0:00:00 left \r", + " [ 5196 / 10000 ] 52% - 0:00:00 left \r", + " [ 5197 / 10000 ] 52% - 0:00:00 left \r", + " [ 5198 / 10000 ] 52% - 0:00:00 left \r", + " [ 5199 / 10000 ] 52% - 0:00:00 left \r", + " [ 5200 / 10000 ] 52% - 0:00:00 left \r", + " [ 5201 / 10000 ] 52% - 0:00:00 left \r", + " [ 5202 / 10000 ] 52% - 0:00:00 left \r", + " [ 5203 / 10000 ] 52% - 0:00:00 left \r", + " [ 5204 / 10000 ] 52% - 0:00:00 left \r", + " [ 5205 / 10000 ] 52% - 0:00:00 left \r", + " [ 5206 / 10000 ] 52% - 0:00:00 left \r", + " [ 5207 / 10000 ] 52% - 0:00:00 left \r", + " [ 5208 / 10000 ] 52% - 0:00:00 left \r", + " [ 5209 / 10000 ] 52% - 0:00:00 left \r", + " [ 5210 / 10000 ] 52% - 0:00:00 left \r", + " [ 5211 / 10000 ] 52% - 0:00:00 left \r", + " [ 5212 / 10000 ] 52% - 0:00:00 left \r", + " [ 5213 / 10000 ] 52% - 0:00:00 left \r", + " [ 5214 / 10000 ] 52% - 0:00:00 left \r", + " [ 5215 / 10000 ] 52% - 0:00:00 left \r", + " [ 5216 / 10000 ] 52% - 0:00:00 left \r", + " [ 5217 / 10000 ] 52% - 0:00:00 left \r", + " [ 5218 / 10000 ] 52% - 0:00:00 left \r", + " [ 5219 / 10000 ] 52% - 0:00:00 left \r", + " [ 5220 / 10000 ] 52% - 0:00:00 left \r", + " [ 5221 / 10000 ] 52% - 0:00:00 left \r", + " [ 5222 / 10000 ] 52% - 0:00:00 left \r", + " [ 5223 / 10000 ] 52% - 0:00:00 left \r", + " [ 5224 / 10000 ] 52% - 0:00:00 left \r", + " [ 5225 / 10000 ] 52% - 0:00:00 left \r", + " [ 5226 / 10000 ] 52% - 0:00:00 left \r", + " [ 5227 / 10000 ] 52% - 0:00:00 left \r", + " [ 5228 / 10000 ] 52% - 0:00:00 left \r", + " [ 5229 / 10000 ] 52% - 0:00:00 left \r", + " [ 5230 / 10000 ] 52% - 0:00:00 left \r", + " [ 5231 / 10000 ] 52% - 0:00:00 left \r", + " [ 5232 / 10000 ] 52% - 0:00:00 left \r", + " [ 5233 / 10000 ] 52% - 0:00:00 left \r", + " [ 5234 / 10000 ] 52% - 0:00:00 left \r", + " [ 5235 / 10000 ] 52% - 0:00:00 left \r", + " [ 5236 / 10000 ] 52% - 0:00:00 left \r", + " [ 5237 / 10000 ] 52% - 0:00:00 left \r", + " [ 5238 / 10000 ] 52% - 0:00:00 left \r", + " [ 5239 / 10000 ] 52% - 0:00:00 left \r", + " [ 5240 / 10000 ] 52% - 0:00:00 left \r", + " [ 5241 / 10000 ] 52% - 0:00:00 left \r", + " [ 5242 / 10000 ] 52% - 0:00:00 left \r", + " [ 5243 / 10000 ] 52% - 0:00:00 left \r", + " [ 5244 / 10000 ] 52% - 0:00:00 left \r", + " [ 5245 / 10000 ] 52% - 0:00:00 left \r", + " [ 5246 / 10000 ] 52% - 0:00:00 left \r", + " [ 5247 / 10000 ] 52% - 0:00:00 left \r", + " [ 5248 / 10000 ] 52% - 0:00:00 left \r", + " [ 5249 / 10000 ] 52% - 0:00:00 left \r", + " [ 5250 / 10000 ] 52% - 0:00:00 left \r", + " [ 5251 / 10000 ] 53% - 0:00:00 left \r", + " [ 5252 / 10000 ] 53% - 0:00:00 left \r", + " [ 5253 / 10000 ] 53% - 0:00:00 left \r", + " [ 5254 / 10000 ] 53% - 0:00:00 left \r", + " [ 5255 / 10000 ] 53% - 0:00:00 left \r", + " [ 5256 / 10000 ] 53% - 0:00:00 left \r", + " [ 5257 / 10000 ] 53% - 0:00:00 left \r", + " [ 5258 / 10000 ] 53% - 0:00:00 left \r", + " [ 5259 / 10000 ] 53% - 0:00:00 left \r", + " [ 5260 / 10000 ] 53% - 0:00:00 left \r", + " [ 5261 / 10000 ] 53% - 0:00:00 left \r", + " [ 5262 / 10000 ] 53% - 0:00:00 left \r", + " [ 5263 / 10000 ] 53% - 0:00:00 left \r", + " [ 5264 / 10000 ] 53% - 0:00:00 left \r", + " [ 5265 / 10000 ] 53% - 0:00:00 left \r", + " [ 5266 / 10000 ] 53% - 0:00:00 left \r", + " [ 5267 / 10000 ] 53% - 0:00:00 left \r", + " [ 5268 / 10000 ] 53% - 0:00:00 left \r", + " [ 5269 / 10000 ] 53% - 0:00:00 left \r", + " [ 5270 / 10000 ] 53% - 0:00:00 left \r", + " [ 5271 / 10000 ] 53% - 0:00:00 left \r", + " [ 5272 / 10000 ] 53% - 0:00:00 left \r", + " [ 5273 / 10000 ] 53% - 0:00:00 left \r", + " [ 5274 / 10000 ] 53% - 0:00:00 left \r", + " [ 5275 / 10000 ] 53% - 0:00:00 left \r", + " [ 5276 / 10000 ] 53% - 0:00:00 left \r", + " [ 5277 / 10000 ] 53% - 0:00:00 left \r", + " [ 5278 / 10000 ] 53% - 0:00:00 left \r", + " [ 5279 / 10000 ] 53% - 0:00:00 left \r", + " [ 5280 / 10000 ] 53% - 0:00:00 left \r", + " [ 5281 / 10000 ] 53% - 0:00:00 left \r", + " [ 5282 / 10000 ] 53% - 0:00:00 left \r", + " [ 5283 / 10000 ] 53% - 0:00:00 left \r", + " [ 5284 / 10000 ] 53% - 0:00:00 left \r", + " [ 5285 / 10000 ] 53% - 0:00:00 left \r", + " [ 5286 / 10000 ] 53% - 0:00:00 left \r", + " [ 5287 / 10000 ] 53% - 0:00:00 left \r", + " [ 5288 / 10000 ] 53% - 0:00:00 left \r", + " [ 5289 / 10000 ] 53% - 0:00:00 left \r", + " [ 5290 / 10000 ] 53% - 0:00:00 left \r", + " [ 5291 / 10000 ] 53% - 0:00:00 left \r", + " [ 5292 / 10000 ] 53% - 0:00:00 left \r", + " [ 5293 / 10000 ] 53% - 0:00:00 left \r", + " [ 5294 / 10000 ] 53% - 0:00:00 left \r", + " [ 5295 / 10000 ] 53% - 0:00:00 left \r", + " [ 5296 / 10000 ] 53% - 0:00:00 left \r", + " [ 5297 / 10000 ] 53% - 0:00:00 left \r", + " [ 5298 / 10000 ] 53% - 0:00:00 left \r", + " [ 5299 / 10000 ] 53% - 0:00:00 left \r", + " [ 5300 / 10000 ] 53% - 0:00:00 left \r", + " [ 5301 / 10000 ] 53% - 0:00:00 left \r", + " [ 5302 / 10000 ] 53% - 0:00:00 left \r", + " [ 5303 / 10000 ] 53% - 0:00:00 left \r", + " [ 5304 / 10000 ] 53% - 0:00:00 left \r", + " [ 5305 / 10000 ] 53% - 0:00:00 left \r", + " [ 5306 / 10000 ] 53% - 0:00:00 left \r", + " [ 5307 / 10000 ] 53% - 0:00:00 left \r", + " [ 5308 / 10000 ] 53% - 0:00:00 left \r", + " [ 5309 / 10000 ] 53% - 0:00:00 left \r", + " [ 5310 / 10000 ] 53% - 0:00:00 left \r", + " [ 5311 / 10000 ] 53% - 0:00:00 left \r", + " [ 5312 / 10000 ] 53% - 0:00:00 left \r", + " [ 5313 / 10000 ] 53% - 0:00:00 left \r", + " [ 5314 / 10000 ] 53% - 0:00:00 left \r", + " [ 5315 / 10000 ] 53% - 0:00:00 left \r", + " [ 5316 / 10000 ] 53% - 0:00:00 left \r", + " [ 5317 / 10000 ] 53% - 0:00:00 left \r", + " [ 5318 / 10000 ] 53% - 0:00:00 left \r", + " [ 5319 / 10000 ] 53% - 0:00:00 left \r", + " [ 5320 / 10000 ] 53% - 0:00:00 left \r", + " [ 5321 / 10000 ] 53% - 0:00:00 left \r", + " [ 5322 / 10000 ] 53% - 0:00:00 left \r", + " [ 5323 / 10000 ] 53% - 0:00:00 left \r", + " [ 5324 / 10000 ] 53% - 0:00:00 left \r", + " [ 5325 / 10000 ] 53% - 0:00:00 left \r", + " [ 5326 / 10000 ] 53% - 0:00:00 left \r", + " [ 5327 / 10000 ] 53% - 0:00:00 left \r", + " [ 5328 / 10000 ] 53% - 0:00:00 left \r", + " [ 5329 / 10000 ] 53% - 0:00:00 left \r", + " [ 5330 / 10000 ] 53% - 0:00:00 left \r", + " [ 5331 / 10000 ] 53% - 0:00:00 left \r", + " [ 5332 / 10000 ] 53% - 0:00:00 left \r", + " [ 5333 / 10000 ] 53% - 0:00:00 left \r", + " [ 5334 / 10000 ] 53% - 0:00:00 left \r", + " [ 5335 / 10000 ] 53% - 0:00:00 left \r", + " [ 5336 / 10000 ] 53% - 0:00:00 left \r", + " [ 5337 / 10000 ] 53% - 0:00:00 left \r", + " [ 5338 / 10000 ] 53% - 0:00:00 left \r", + " [ 5339 / 10000 ] 53% - 0:00:00 left \r", + " [ 5340 / 10000 ] 53% - 0:00:00 left \r", + " [ 5341 / 10000 ] 53% - 0:00:00 left \r", + " [ 5342 / 10000 ] 53% - 0:00:00 left \r", + " [ 5343 / 10000 ] 53% - 0:00:00 left \r", + " [ 5344 / 10000 ] 53% - 0:00:00 left \r", + " [ 5345 / 10000 ] 53% - 0:00:00 left \r", + " [ 5346 / 10000 ] 53% - 0:00:00 left \r", + " [ 5347 / 10000 ] 53% - 0:00:00 left \r", + " [ 5348 / 10000 ] 53% - 0:00:00 left \r", + " [ 5349 / 10000 ] 53% - 0:00:00 left \r", + " [ 5350 / 10000 ] 54% - 0:00:00 left \r", + " [ 5351 / 10000 ] 54% - 0:00:00 left \r", + " [ 5352 / 10000 ] 54% - 0:00:00 left \r", + " [ 5353 / 10000 ] 54% - 0:00:00 left \r", + " [ 5354 / 10000 ] 54% - 0:00:00 left \r", + " [ 5355 / 10000 ] 54% - 0:00:00 left \r", + " [ 5356 / 10000 ] 54% - 0:00:00 left \r", + " [ 5357 / 10000 ] 54% - 0:00:00 left \r", + " [ 5358 / 10000 ] 54% - 0:00:00 left \r", + " [ 5359 / 10000 ] 54% - 0:00:00 left \r", + " [ 5360 / 10000 ] 54% - 0:00:00 left \r", + " [ 5361 / 10000 ] 54% - 0:00:00 left \r", + " [ 5362 / 10000 ] 54% - 0:00:00 left \r", + " [ 5363 / 10000 ] 54% - 0:00:00 left \r", + " [ 5364 / 10000 ] 54% - 0:00:00 left \r", + " [ 5365 / 10000 ] 54% - 0:00:00 left \r", + " [ 5366 / 10000 ] 54% - 0:00:00 left \r", + " [ 5367 / 10000 ] 54% - 0:00:00 left \r", + " [ 5368 / 10000 ] 54% - 0:00:00 left \r", + " [ 5369 / 10000 ] 54% - 0:00:00 left \r", + " [ 5370 / 10000 ] 54% - 0:00:00 left \r", + " [ 5371 / 10000 ] 54% - 0:00:00 left \r", + " [ 5372 / 10000 ] 54% - 0:00:00 left \r", + " [ 5373 / 10000 ] 54% - 0:00:00 left \r", + " [ 5374 / 10000 ] 54% - 0:00:00 left \r", + " [ 5375 / 10000 ] 54% - 0:00:00 left \r", + " [ 5376 / 10000 ] 54% - 0:00:00 left \r", + " [ 5377 / 10000 ] 54% - 0:00:00 left \r", + " [ 5378 / 10000 ] 54% - 0:00:00 left \r", + " [ 5379 / 10000 ] 54% - 0:00:00 left \r", + " [ 5380 / 10000 ] 54% - 0:00:00 left \r", + " [ 5381 / 10000 ] 54% - 0:00:00 left \r", + " [ 5382 / 10000 ] 54% - 0:00:00 left \r", + " [ 5383 / 10000 ] 54% - 0:00:00 left \r", + " [ 5384 / 10000 ] 54% - 0:00:00 left \r", + " [ 5385 / 10000 ] 54% - 0:00:00 left \r", + " [ 5386 / 10000 ] 54% - 0:00:00 left \r", + " [ 5387 / 10000 ] 54% - 0:00:00 left \r", + " [ 5388 / 10000 ] 54% - 0:00:00 left \r", + " [ 5389 / 10000 ] 54% - 0:00:00 left \r", + " [ 5390 / 10000 ] 54% - 0:00:00 left \r", + " [ 5391 / 10000 ] 54% - 0:00:00 left \r", + " [ 5392 / 10000 ] 54% - 0:00:00 left \r", + " [ 5393 / 10000 ] 54% - 0:00:00 left \r", + " [ 5394 / 10000 ] 54% - 0:00:00 left \r", + " [ 5395 / 10000 ] 54% - 0:00:00 left \r", + " [ 5396 / 10000 ] 54% - 0:00:00 left \r", + " [ 5397 / 10000 ] 54% - 0:00:00 left \r", + " [ 5398 / 10000 ] 54% - 0:00:00 left \r", + " [ 5399 / 10000 ] 54% - 0:00:00 left \r", + " [ 5400 / 10000 ] 54% - 0:00:00 left \r", + " [ 5401 / 10000 ] 54% - 0:00:00 left \r", + " [ 5402 / 10000 ] 54% - 0:00:00 left \r", + " [ 5403 / 10000 ] 54% - 0:00:00 left \r", + " [ 5404 / 10000 ] 54% - 0:00:00 left \r", + " [ 5405 / 10000 ] 54% - 0:00:00 left \r", + " [ 5406 / 10000 ] 54% - 0:00:00 left \r", + " [ 5407 / 10000 ] 54% - 0:00:00 left \r", + " [ 5408 / 10000 ] 54% - 0:00:00 left \r", + " [ 5409 / 10000 ] 54% - 0:00:00 left \r", + " [ 5410 / 10000 ] 54% - 0:00:00 left \r", + " [ 5411 / 10000 ] 54% - 0:00:00 left \r", + " [ 5412 / 10000 ] 54% - 0:00:00 left \r", + " [ 5413 / 10000 ] 54% - 0:00:00 left \r", + " [ 5414 / 10000 ] 54% - 0:00:00 left \r", + " [ 5415 / 10000 ] 54% - 0:00:00 left \r", + " [ 5416 / 10000 ] 54% - 0:00:00 left \r", + " [ 5417 / 10000 ] 54% - 0:00:00 left \r", + " [ 5418 / 10000 ] 54% - 0:00:00 left \r", + " [ 5419 / 10000 ] 54% - 0:00:00 left \r", + " [ 5420 / 10000 ] 54% - 0:00:00 left \r", + " [ 5421 / 10000 ] 54% - 0:00:00 left \r", + " [ 5422 / 10000 ] 54% - 0:00:00 left \r", + " [ 5423 / 10000 ] 54% - 0:00:00 left \r", + " [ 5424 / 10000 ] 54% - 0:00:00 left \r", + " [ 5425 / 10000 ] 54% - 0:00:00 left \r", + " [ 5426 / 10000 ] 54% - 0:00:00 left \r", + " [ 5427 / 10000 ] 54% - 0:00:00 left \r", + " [ 5428 / 10000 ] 54% - 0:00:00 left \r", + " [ 5429 / 10000 ] 54% - 0:00:00 left \r", + " [ 5430 / 10000 ] 54% - 0:00:00 left \r", + " [ 5431 / 10000 ] 54% - 0:00:00 left \r", + " [ 5432 / 10000 ] 54% - 0:00:00 left \r", + " [ 5433 / 10000 ] 54% - 0:00:00 left \r", + " [ 5434 / 10000 ] 54% - 0:00:00 left \r", + " [ 5435 / 10000 ] 54% - 0:00:00 left \r", + " [ 5436 / 10000 ] 54% - 0:00:00 left \r", + " [ 5437 / 10000 ] 54% - 0:00:00 left \r", + " [ 5438 / 10000 ] 54% - 0:00:00 left \r", + " [ 5439 / 10000 ] 54% - 0:00:00 left \r", + " [ 5440 / 10000 ] 54% - 0:00:00 left \r", + " [ 5441 / 10000 ] 54% - 0:00:00 left \r", + " [ 5442 / 10000 ] 54% - 0:00:00 left \r", + " [ 5443 / 10000 ] 54% - 0:00:00 left \r", + " [ 5444 / 10000 ] 54% - 0:00:00 left \r", + " [ 5445 / 10000 ] 54% - 0:00:00 left \r", + " [ 5446 / 10000 ] 54% - 0:00:00 left \r", + " [ 5447 / 10000 ] 54% - 0:00:00 left \r", + " [ 5448 / 10000 ] 54% - 0:00:00 left \r", + " [ 5449 / 10000 ] 54% - 0:00:00 left \r", + " [ 5450 / 10000 ] 54% - 0:00:00 left \r", + " [ 5451 / 10000 ] 55% - 0:00:00 left \r", + " [ 5452 / 10000 ] 55% - 0:00:00 left \r", + " [ 5453 / 10000 ] 55% - 0:00:00 left \r", + " [ 5454 / 10000 ] 55% - 0:00:00 left \r", + " [ 5455 / 10000 ] 55% - 0:00:00 left \r", + " [ 5456 / 10000 ] 55% - 0:00:00 left \r", + " [ 5457 / 10000 ] 55% - 0:00:00 left \r", + " [ 5458 / 10000 ] 55% - 0:00:00 left \r", + " [ 5459 / 10000 ] 55% - 0:00:00 left \r", + " [ 5460 / 10000 ] 55% - 0:00:00 left \r", + " [ 5461 / 10000 ] 55% - 0:00:00 left \r", + " [ 5462 / 10000 ] 55% - 0:00:00 left \r", + " [ 5463 / 10000 ] 55% - 0:00:00 left \r", + " [ 5464 / 10000 ] 55% - 0:00:00 left \r", + " [ 5465 / 10000 ] 55% - 0:00:00 left \r", + " [ 5466 / 10000 ] 55% - 0:00:00 left \r", + " [ 5467 / 10000 ] 55% - 0:00:00 left \r", + " [ 5468 / 10000 ] 55% - 0:00:00 left \r", + " [ 5469 / 10000 ] 55% - 0:00:00 left \r", + " [ 5470 / 10000 ] 55% - 0:00:00 left \r", + " [ 5471 / 10000 ] 55% - 0:00:00 left \r", + " [ 5472 / 10000 ] 55% - 0:00:00 left \r", + " [ 5473 / 10000 ] 55% - 0:00:00 left \r", + " [ 5474 / 10000 ] 55% - 0:00:00 left \r", + " [ 5475 / 10000 ] 55% - 0:00:00 left \r", + " [ 5476 / 10000 ] 55% - 0:00:00 left \r", + " [ 5477 / 10000 ] 55% - 0:00:00 left \r", + " [ 5478 / 10000 ] 55% - 0:00:00 left \r", + " [ 5479 / 10000 ] 55% - 0:00:00 left \r", + " [ 5480 / 10000 ] 55% - 0:00:00 left \r", + " [ 5481 / 10000 ] 55% - 0:00:00 left \r", + " [ 5482 / 10000 ] 55% - 0:00:00 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 5483 / 10000 ] 55% - 0:00:00 left \r", + " [ 5484 / 10000 ] 55% - 0:00:00 left \r", + " [ 5485 / 10000 ] 55% - 0:00:00 left \r", + " [ 5486 / 10000 ] 55% - 0:00:00 left \r", + " [ 5487 / 10000 ] 55% - 0:00:00 left \r", + " [ 5488 / 10000 ] 55% - 0:00:00 left \r", + " [ 5489 / 10000 ] 55% - 0:00:00 left \r", + " [ 5490 / 10000 ] 55% - 0:00:00 left \r", + " [ 5491 / 10000 ] 55% - 0:00:00 left \r", + " [ 5492 / 10000 ] 55% - 0:00:00 left \r", + " [ 5493 / 10000 ] 55% - 0:00:00 left \r", + " [ 5494 / 10000 ] 55% - 0:00:00 left \r", + " [ 5495 / 10000 ] 55% - 0:00:00 left \r", + " [ 5496 / 10000 ] 55% - 0:00:00 left \r", + " [ 5497 / 10000 ] 55% - 0:00:00 left \r", + " [ 5498 / 10000 ] 55% - 0:00:00 left \r", + " [ 5499 / 10000 ] 55% - 0:00:00 left \r", + " [ 5500 / 10000 ] 55% - 0:00:00 left \r", + " [ 5501 / 10000 ] 55% - 0:00:00 left \r", + " [ 5502 / 10000 ] 55% - 0:00:00 left \r", + " [ 5503 / 10000 ] 55% - 0:00:00 left \r", + " [ 5504 / 10000 ] 55% - 0:00:00 left \r", + " [ 5505 / 10000 ] 55% - 0:00:00 left \r", + " [ 5506 / 10000 ] 55% - 0:00:00 left \r", + " [ 5507 / 10000 ] 55% - 0:00:00 left \r", + " [ 5508 / 10000 ] 55% - 0:00:00 left \r", + " [ 5509 / 10000 ] 55% - 0:00:00 left \r", + " [ 5510 / 10000 ] 55% - 0:00:00 left \r", + " [ 5511 / 10000 ] 55% - 0:00:00 left \r", + " [ 5512 / 10000 ] 55% - 0:00:00 left \r", + " [ 5513 / 10000 ] 55% - 0:00:00 left \r", + " [ 5514 / 10000 ] 55% - 0:00:00 left \r", + " [ 5515 / 10000 ] 55% - 0:00:00 left \r", + " [ 5516 / 10000 ] 55% - 0:00:00 left \r", + " [ 5517 / 10000 ] 55% - 0:00:00 left \r", + " [ 5518 / 10000 ] 55% - 0:00:00 left \r", + " [ 5519 / 10000 ] 55% - 0:00:00 left \r", + " [ 5520 / 10000 ] 55% - 0:00:00 left \r", + " [ 5521 / 10000 ] 55% - 0:00:00 left \r", + " [ 5522 / 10000 ] 55% - 0:00:00 left \r", + " [ 5523 / 10000 ] 55% - 0:00:00 left \r", + " [ 5524 / 10000 ] 55% - 0:00:00 left \r", + " [ 5525 / 10000 ] 55% - 0:00:00 left \r", + " [ 5526 / 10000 ] 55% - 0:00:00 left \r", + " [ 5527 / 10000 ] 55% - 0:00:00 left \r", + " [ 5528 / 10000 ] 55% - 0:00:00 left \r", + " [ 5529 / 10000 ] 55% - 0:00:00 left \r", + " [ 5530 / 10000 ] 55% - 0:00:00 left \r", + " [ 5531 / 10000 ] 55% - 0:00:00 left \r", + " [ 5532 / 10000 ] 55% - 0:00:00 left \r", + " [ 5533 / 10000 ] 55% - 0:00:00 left \r", + " [ 5534 / 10000 ] 55% - 0:00:00 left \r", + " [ 5535 / 10000 ] 55% - 0:00:00 left \r", + " [ 5536 / 10000 ] 55% - 0:00:00 left \r", + " [ 5537 / 10000 ] 55% - 0:00:00 left \r", + " [ 5538 / 10000 ] 55% - 0:00:00 left \r", + " [ 5539 / 10000 ] 55% - 0:00:00 left \r", + " [ 5540 / 10000 ] 55% - 0:00:00 left \r", + " [ 5541 / 10000 ] 55% - 0:00:00 left \r", + " [ 5542 / 10000 ] 55% - 0:00:00 left \r", + " [ 5543 / 10000 ] 55% - 0:00:00 left \r", + " [ 5544 / 10000 ] 55% - 0:00:00 left \r", + " [ 5545 / 10000 ] 55% - 0:00:00 left \r", + " [ 5546 / 10000 ] 55% - 0:00:00 left \r", + " [ 5547 / 10000 ] 55% - 0:00:00 left \r", + " [ 5548 / 10000 ] 55% - 0:00:00 left \r", + " [ 5549 / 10000 ] 55% - 0:00:00 left \r", + " [ 5550 / 10000 ] 56% - 0:00:00 left \r", + " [ 5551 / 10000 ] 56% - 0:00:00 left \r", + " [ 5552 / 10000 ] 56% - 0:00:00 left \r", + " [ 5553 / 10000 ] 56% - 0:00:00 left \r", + " [ 5554 / 10000 ] 56% - 0:00:00 left \r", + " [ 5555 / 10000 ] 56% - 0:00:00 left \r", + " [ 5556 / 10000 ] 56% - 0:00:00 left \r", + " [ 5557 / 10000 ] 56% - 0:00:00 left \r", + " [ 5558 / 10000 ] 56% - 0:00:00 left \r", + " [ 5559 / 10000 ] 56% - 0:00:00 left \r", + " [ 5560 / 10000 ] 56% - 0:00:00 left \r", + " [ 5561 / 10000 ] 56% - 0:00:00 left \r", + " [ 5562 / 10000 ] 56% - 0:00:00 left \r", + " [ 5563 / 10000 ] 56% - 0:00:00 left \r", + " [ 5564 / 10000 ] 56% - 0:00:00 left \r", + " [ 5565 / 10000 ] 56% - 0:00:00 left \r", + " [ 5566 / 10000 ] 56% - 0:00:00 left \r", + " [ 5567 / 10000 ] 56% - 0:00:00 left \r", + " [ 5568 / 10000 ] 56% - 0:00:00 left \r", + " [ 5569 / 10000 ] 56% - 0:00:00 left \r", + " [ 5570 / 10000 ] 56% - 0:00:00 left \r", + " [ 5571 / 10000 ] 56% - 0:00:00 left \r", + " [ 5572 / 10000 ] 56% - 0:00:00 left \r", + " [ 5573 / 10000 ] 56% - 0:00:00 left \r", + " [ 5574 / 10000 ] 56% - 0:00:00 left \r", + " [ 5575 / 10000 ] 56% - 0:00:00 left \r", + " [ 5576 / 10000 ] 56% - 0:00:00 left \r", + " [ 5577 / 10000 ] 56% - 0:00:00 left \r", + " [ 5578 / 10000 ] 56% - 0:00:00 left \r", + " [ 5579 / 10000 ] 56% - 0:00:00 left \r", + " [ 5580 / 10000 ] 56% - 0:00:00 left \r", + " [ 5581 / 10000 ] 56% - 0:00:00 left \r", + " [ 5582 / 10000 ] 56% - 0:00:00 left \r", + " [ 5583 / 10000 ] 56% - 0:00:00 left \r", + " [ 5584 / 10000 ] 56% - 0:00:00 left \r", + " [ 5585 / 10000 ] 56% - 0:00:00 left \r", + " [ 5586 / 10000 ] 56% - 0:00:00 left \r", + " [ 5587 / 10000 ] 56% - 0:00:00 left \r", + " [ 5588 / 10000 ] 56% - 0:00:00 left \r", + " [ 5589 / 10000 ] 56% - 0:00:00 left \r", + " [ 5590 / 10000 ] 56% - 0:00:00 left \r", + " [ 5591 / 10000 ] 56% - 0:00:00 left \r", + " [ 5592 / 10000 ] 56% - 0:00:00 left \r", + " [ 5593 / 10000 ] 56% - 0:00:00 left \r", + " [ 5594 / 10000 ] 56% - 0:00:00 left \r", + " [ 5595 / 10000 ] 56% - 0:00:00 left \r", + " [ 5596 / 10000 ] 56% - 0:00:00 left \r", + " [ 5597 / 10000 ] 56% - 0:00:00 left \r", + " [ 5598 / 10000 ] 56% - 0:00:00 left \r", + " [ 5599 / 10000 ] 56% - 0:00:00 left \r", + " [ 5600 / 10000 ] 56% - 0:00:00 left \r", + " [ 5601 / 10000 ] 56% - 0:00:00 left \r", + " [ 5602 / 10000 ] 56% - 0:00:00 left \r", + " [ 5603 / 10000 ] 56% - 0:00:00 left \r", + " [ 5604 / 10000 ] 56% - 0:00:00 left \r", + " [ 5605 / 10000 ] 56% - 0:00:00 left \r", + " [ 5606 / 10000 ] 56% - 0:00:00 left \r", + " [ 5607 / 10000 ] 56% - 0:00:00 left \r", + " [ 5608 / 10000 ] 56% - 0:00:00 left \r", + " [ 5609 / 10000 ] 56% - 0:00:00 left \r", + " [ 5610 / 10000 ] 56% - 0:00:00 left \r", + " [ 5611 / 10000 ] 56% - 0:00:00 left \r", + " [ 5612 / 10000 ] 56% - 0:00:00 left \r", + " [ 5613 / 10000 ] 56% - 0:00:00 left \r", + " [ 5614 / 10000 ] 56% - 0:00:00 left \r", + " [ 5615 / 10000 ] 56% - 0:00:00 left \r", + " [ 5616 / 10000 ] 56% - 0:00:00 left \r", + " [ 5617 / 10000 ] 56% - 0:00:00 left \r", + " [ 5618 / 10000 ] 56% - 0:00:00 left \r", + " [ 5619 / 10000 ] 56% - 0:00:00 left \r", + " [ 5620 / 10000 ] 56% - 0:00:00 left \r", + " [ 5621 / 10000 ] 56% - 0:00:00 left \r", + " [ 5622 / 10000 ] 56% - 0:00:00 left \r", + " [ 5623 / 10000 ] 56% - 0:00:00 left \r", + " [ 5624 / 10000 ] 56% - 0:00:00 left \r", + " [ 5625 / 10000 ] 56% - 0:00:00 left \r", + " [ 5626 / 10000 ] 56% - 0:00:00 left \r", + " [ 5627 / 10000 ] 56% - 0:00:00 left \r", + " [ 5628 / 10000 ] 56% - 0:00:00 left \r", + " [ 5629 / 10000 ] 56% - 0:00:00 left \r", + " [ 5630 / 10000 ] 56% - 0:00:00 left \r", + " [ 5631 / 10000 ] 56% - 0:00:00 left \r", + " [ 5632 / 10000 ] 56% - 0:00:00 left \r", + " [ 5633 / 10000 ] 56% - 0:00:00 left \r", + " [ 5634 / 10000 ] 56% - 0:00:00 left \r", + " [ 5635 / 10000 ] 56% - 0:00:00 left \r", + " [ 5636 / 10000 ] 56% - 0:00:00 left \r", + " [ 5637 / 10000 ] 56% - 0:00:00 left \r", + " [ 5638 / 10000 ] 56% - 0:00:00 left \r", + " [ 5639 / 10000 ] 56% - 0:00:00 left \r", + " [ 5640 / 10000 ] 56% - 0:00:00 left \r", + " [ 5641 / 10000 ] 56% - 0:00:00 left \r", + " [ 5642 / 10000 ] 56% - 0:00:00 left \r", + " [ 5643 / 10000 ] 56% - 0:00:00 left \r", + " [ 5644 / 10000 ] 56% - 0:00:00 left \r", + " [ 5645 / 10000 ] 56% - 0:00:00 left \r", + " [ 5646 / 10000 ] 56% - 0:00:00 left \r", + " [ 5647 / 10000 ] 56% - 0:00:00 left \r", + " [ 5648 / 10000 ] 56% - 0:00:00 left \r", + " [ 5649 / 10000 ] 56% - 0:00:00 left \r", + " [ 5650 / 10000 ] 56% - 0:00:00 left \r", + " [ 5651 / 10000 ] 57% - 0:00:00 left \r", + " [ 5652 / 10000 ] 57% - 0:00:00 left \r", + " [ 5653 / 10000 ] 57% - 0:00:00 left \r", + " [ 5654 / 10000 ] 57% - 0:00:00 left \r", + " [ 5655 / 10000 ] 57% - 0:00:00 left \r", + " [ 5656 / 10000 ] 57% - 0:00:00 left \r", + " [ 5657 / 10000 ] 57% - 0:00:00 left \r", + " [ 5658 / 10000 ] 57% - 0:00:00 left \r", + " [ 5659 / 10000 ] 57% - 0:00:00 left \r", + " [ 5660 / 10000 ] 57% - 0:00:00 left \r", + " [ 5661 / 10000 ] 57% - 0:00:00 left \r", + " [ 5662 / 10000 ] 57% - 0:00:00 left \r", + " [ 5663 / 10000 ] 57% - 0:00:00 left \r", + " [ 5664 / 10000 ] 57% - 0:00:00 left \r", + " [ 5665 / 10000 ] 57% - 0:00:00 left \r", + " [ 5666 / 10000 ] 57% - 0:00:00 left \r", + " [ 5667 / 10000 ] 57% - 0:00:00 left \r", + " [ 5668 / 10000 ] 57% - 0:00:00 left \r", + " [ 5669 / 10000 ] 57% - 0:00:00 left \r", + " [ 5670 / 10000 ] 57% - 0:00:00 left \r", + " [ 5671 / 10000 ] 57% - 0:00:00 left \r", + " [ 5672 / 10000 ] 57% - 0:00:00 left \r", + " [ 5673 / 10000 ] 57% - 0:00:00 left \r", + " [ 5674 / 10000 ] 57% - 0:00:00 left \r", + " [ 5675 / 10000 ] 57% - 0:00:00 left \r", + " [ 5676 / 10000 ] 57% - 0:00:00 left \r", + " [ 5677 / 10000 ] 57% - 0:00:00 left \r", + " [ 5678 / 10000 ] 57% - 0:00:00 left \r", + " [ 5679 / 10000 ] 57% - 0:00:00 left \r", + " [ 5680 / 10000 ] 57% - 0:00:00 left \r", + " [ 5681 / 10000 ] 57% - 0:00:00 left \r", + " [ 5682 / 10000 ] 57% - 0:00:00 left \r", + " [ 5683 / 10000 ] 57% - 0:00:00 left \r", + " [ 5684 / 10000 ] 57% - 0:00:00 left \r", + " [ 5685 / 10000 ] 57% - 0:00:00 left \r", + " [ 5686 / 10000 ] 57% - 0:00:00 left \r", + " [ 5687 / 10000 ] 57% - 0:00:00 left \r", + " [ 5688 / 10000 ] 57% - 0:00:00 left \r", + " [ 5689 / 10000 ] 57% - 0:00:00 left \r", + " [ 5690 / 10000 ] 57% - 0:00:00 left \r", + " [ 5691 / 10000 ] 57% - 0:00:00 left \r", + " [ 5692 / 10000 ] 57% - 0:00:00 left \r", + " [ 5693 / 10000 ] 57% - 0:00:00 left \r", + " [ 5694 / 10000 ] 57% - 0:00:00 left \r", + " [ 5695 / 10000 ] 57% - 0:00:00 left \r", + " [ 5696 / 10000 ] 57% - 0:00:00 left \r", + " [ 5697 / 10000 ] 57% - 0:00:00 left \r", + " [ 5698 / 10000 ] 57% - 0:00:00 left \r", + " [ 5699 / 10000 ] 57% - 0:00:00 left \r", + " [ 5700 / 10000 ] 57% - 0:00:00 left \r", + " [ 5701 / 10000 ] 57% - 0:00:00 left \r", + " [ 5702 / 10000 ] 57% - 0:00:00 left \r", + " [ 5703 / 10000 ] 57% - 0:00:00 left \r", + " [ 5704 / 10000 ] 57% - 0:00:00 left \r", + " [ 5705 / 10000 ] 57% - 0:00:00 left \r", + " [ 5706 / 10000 ] 57% - 0:00:00 left \r", + " [ 5707 / 10000 ] 57% - 0:00:00 left \r", + " [ 5708 / 10000 ] 57% - 0:00:00 left \r", + " [ 5709 / 10000 ] 57% - 0:00:00 left \r", + " [ 5710 / 10000 ] 57% - 0:00:00 left \r", + " [ 5711 / 10000 ] 57% - 0:00:00 left \r", + " [ 5712 / 10000 ] 57% - 0:00:00 left \r", + " [ 5713 / 10000 ] 57% - 0:00:00 left \r", + " [ 5714 / 10000 ] 57% - 0:00:00 left \r", + " [ 5715 / 10000 ] 57% - 0:00:00 left \r", + " [ 5716 / 10000 ] 57% - 0:00:00 left \r", + " [ 5717 / 10000 ] 57% - 0:00:00 left \r", + " [ 5718 / 10000 ] 57% - 0:00:00 left \r", + " [ 5719 / 10000 ] 57% - 0:00:00 left \r", + " [ 5720 / 10000 ] 57% - 0:00:00 left \r", + " [ 5721 / 10000 ] 57% - 0:00:00 left \r", + " [ 5722 / 10000 ] 57% - 0:00:00 left \r", + " [ 5723 / 10000 ] 57% - 0:00:00 left \r", + " [ 5724 / 10000 ] 57% - 0:00:00 left \r", + " [ 5725 / 10000 ] 57% - 0:00:00 left \r", + " [ 5726 / 10000 ] 57% - 0:00:00 left \r", + " [ 5727 / 10000 ] 57% - 0:00:00 left \r", + " [ 5728 / 10000 ] 57% - 0:00:00 left \r", + " [ 5729 / 10000 ] 57% - 0:00:00 left \r", + " [ 5730 / 10000 ] 57% - 0:00:00 left \r", + " [ 5731 / 10000 ] 57% - 0:00:00 left \r", + " [ 5732 / 10000 ] 57% - 0:00:00 left \r", + " [ 5733 / 10000 ] 57% - 0:00:00 left \r", + " [ 5734 / 10000 ] 57% - 0:00:00 left \r", + " [ 5735 / 10000 ] 57% - 0:00:00 left \r", + " [ 5736 / 10000 ] 57% - 0:00:00 left \r", + " [ 5737 / 10000 ] 57% - 0:00:00 left \r", + " [ 5738 / 10000 ] 57% - 0:00:00 left \r", + " [ 5739 / 10000 ] 57% - 0:00:00 left \r", + " [ 5740 / 10000 ] 57% - 0:00:00 left \r", + " [ 5741 / 10000 ] 57% - 0:00:00 left \r", + " [ 5742 / 10000 ] 57% - 0:00:00 left \r", + " [ 5743 / 10000 ] 57% - 0:00:00 left \r", + " [ 5744 / 10000 ] 57% - 0:00:00 left \r", + " [ 5745 / 10000 ] 57% - 0:00:00 left \r", + " [ 5746 / 10000 ] 57% - 0:00:00 left \r", + " [ 5747 / 10000 ] 57% - 0:00:00 left \r", + " [ 5748 / 10000 ] 57% - 0:00:00 left \r", + " [ 5749 / 10000 ] 57% - 0:00:00 left \r", + " [ 5750 / 10000 ] 58% - 0:00:00 left \r", + " [ 5751 / 10000 ] 58% - 0:00:00 left \r", + " [ 5752 / 10000 ] 58% - 0:00:00 left \r", + " [ 5753 / 10000 ] 58% - 0:00:00 left \r", + " [ 5754 / 10000 ] 58% - 0:00:00 left \r", + " [ 5755 / 10000 ] 58% - 0:00:00 left \r", + " [ 5756 / 10000 ] 58% - 0:00:00 left \r", + " [ 5757 / 10000 ] 58% - 0:00:00 left \r", + " [ 5758 / 10000 ] 58% - 0:00:00 left \r", + " [ 5759 / 10000 ] 58% - 0:00:00 left \r", + " [ 5760 / 10000 ] 58% - 0:00:00 left \r", + " [ 5761 / 10000 ] 58% - 0:00:00 left \r", + " [ 5762 / 10000 ] 58% - 0:00:00 left \r", + " [ 5763 / 10000 ] 58% - 0:00:00 left \r", + " [ 5764 / 10000 ] 58% - 0:00:00 left \r", + " [ 5765 / 10000 ] 58% - 0:00:00 left \r", + " [ 5766 / 10000 ] 58% - 0:00:00 left \r", + " [ 5767 / 10000 ] 58% - 0:00:00 left \r", + " [ 5768 / 10000 ] 58% - 0:00:00 left \r", + " [ 5769 / 10000 ] 58% - 0:00:00 left \r", + " [ 5770 / 10000 ] 58% - 0:00:00 left \r", + " [ 5771 / 10000 ] 58% - 0:00:00 left \r", + " [ 5772 / 10000 ] 58% - 0:00:00 left \r", + " [ 5773 / 10000 ] 58% - 0:00:00 left \r", + " [ 5774 / 10000 ] 58% - 0:00:00 left \r", + " [ 5775 / 10000 ] 58% - 0:00:00 left \r", + " [ 5776 / 10000 ] 58% - 0:00:00 left \r", + " [ 5777 / 10000 ] 58% - 0:00:00 left \r", + " [ 5778 / 10000 ] 58% - 0:00:00 left \r", + " [ 5779 / 10000 ] 58% - 0:00:00 left \r", + " [ 5780 / 10000 ] 58% - 0:00:00 left \r", + " [ 5781 / 10000 ] 58% - 0:00:00 left \r", + " [ 5782 / 10000 ] 58% - 0:00:00 left \r", + " [ 5783 / 10000 ] 58% - 0:00:00 left \r", + " [ 5784 / 10000 ] 58% - 0:00:00 left \r", + " [ 5785 / 10000 ] 58% - 0:00:00 left \r", + " [ 5786 / 10000 ] 58% - 0:00:00 left \r", + " [ 5787 / 10000 ] 58% - 0:00:00 left \r", + " [ 5788 / 10000 ] 58% - 0:00:00 left \r", + " [ 5789 / 10000 ] 58% - 0:00:00 left \r", + " [ 5790 / 10000 ] 58% - 0:00:00 left \r", + " [ 5791 / 10000 ] 58% - 0:00:00 left \r", + " [ 5792 / 10000 ] 58% - 0:00:00 left \r", + " [ 5793 / 10000 ] 58% - 0:00:00 left \r", + " [ 5794 / 10000 ] 58% - 0:00:00 left \r", + " [ 5795 / 10000 ] 58% - 0:00:00 left \r", + " [ 5796 / 10000 ] 58% - 0:00:00 left \r", + " [ 5797 / 10000 ] 58% - 0:00:00 left \r", + " [ 5798 / 10000 ] 58% - 0:00:00 left \r", + " [ 5799 / 10000 ] 58% - 0:00:00 left \r", + " [ 5800 / 10000 ] 58% - 0:00:00 left \r", + " [ 5801 / 10000 ] 58% - 0:00:00 left \r", + " [ 5802 / 10000 ] 58% - 0:00:00 left \r", + " [ 5803 / 10000 ] 58% - 0:00:00 left \r", + " [ 5804 / 10000 ] 58% - 0:00:00 left \r", + " [ 5805 / 10000 ] 58% - 0:00:00 left \r", + " [ 5806 / 10000 ] 58% - 0:00:00 left \r", + " [ 5807 / 10000 ] 58% - 0:00:00 left \r", + " [ 5808 / 10000 ] 58% - 0:00:00 left \r", + " [ 5809 / 10000 ] 58% - 0:00:00 left \r", + " [ 5810 / 10000 ] 58% - 0:00:00 left \r", + " [ 5811 / 10000 ] 58% - 0:00:00 left \r", + " [ 5812 / 10000 ] 58% - 0:00:00 left \r", + " [ 5813 / 10000 ] 58% - 0:00:00 left \r", + " [ 5814 / 10000 ] 58% - 0:00:00 left \r", + " [ 5815 / 10000 ] 58% - 0:00:00 left \r", + " [ 5816 / 10000 ] 58% - 0:00:00 left \r", + " [ 5817 / 10000 ] 58% - 0:00:00 left \r", + " [ 5818 / 10000 ] 58% - 0:00:00 left \r", + " [ 5819 / 10000 ] 58% - 0:00:00 left \r", + " [ 5820 / 10000 ] 58% - 0:00:00 left \r", + " [ 5821 / 10000 ] 58% - 0:00:00 left \r", + " [ 5822 / 10000 ] 58% - 0:00:00 left \r", + " [ 5823 / 10000 ] 58% - 0:00:00 left \r", + " [ 5824 / 10000 ] 58% - 0:00:00 left \r", + " [ 5825 / 10000 ] 58% - 0:00:00 left \r", + " [ 5826 / 10000 ] 58% - 0:00:00 left \r", + " [ 5827 / 10000 ] 58% - 0:00:00 left \r", + " [ 5828 / 10000 ] 58% - 0:00:00 left \r", + " [ 5829 / 10000 ] 58% - 0:00:00 left \r", + " [ 5830 / 10000 ] 58% - 0:00:00 left \r", + " [ 5831 / 10000 ] 58% - 0:00:00 left \r", + " [ 5832 / 10000 ] 58% - 0:00:00 left \r", + " [ 5833 / 10000 ] 58% - 0:00:00 left \r", + " [ 5834 / 10000 ] 58% - 0:00:00 left \r", + " [ 5835 / 10000 ] 58% - 0:00:00 left \r", + " [ 5836 / 10000 ] 58% - 0:00:00 left \r", + " [ 5837 / 10000 ] 58% - 0:00:00 left \r", + " [ 5838 / 10000 ] 58% - 0:00:00 left \r", + " [ 5839 / 10000 ] 58% - 0:00:00 left \r", + " [ 5840 / 10000 ] 58% - 0:00:00 left \r", + " [ 5841 / 10000 ] 58% - 0:00:00 left \r", + " [ 5842 / 10000 ] 58% - 0:00:00 left \r", + " [ 5843 / 10000 ] 58% - 0:00:00 left \r", + " [ 5844 / 10000 ] 58% - 0:00:00 left \r", + " [ 5845 / 10000 ] 58% - 0:00:00 left \r", + " [ 5846 / 10000 ] 58% - 0:00:00 left \r", + " [ 5847 / 10000 ] 58% - 0:00:00 left \r", + " [ 5848 / 10000 ] 58% - 0:00:00 left \r", + " [ 5849 / 10000 ] 58% - 0:00:00 left \r", + " [ 5850 / 10000 ] 58% - 0:00:00 left \r", + " [ 5851 / 10000 ] 59% - 0:00:00 left \r", + " [ 5852 / 10000 ] 59% - 0:00:00 left \r", + " [ 5853 / 10000 ] 59% - 0:00:00 left \r", + " [ 5854 / 10000 ] 59% - 0:00:00 left \r", + " [ 5855 / 10000 ] 59% - 0:00:00 left \r", + " [ 5856 / 10000 ] 59% - 0:00:00 left \r", + " [ 5857 / 10000 ] 59% - 0:00:00 left \r", + " [ 5858 / 10000 ] 59% - 0:00:00 left \r", + " [ 5859 / 10000 ] 59% - 0:00:00 left \r", + " [ 5860 / 10000 ] 59% - 0:00:00 left \r", + " [ 5861 / 10000 ] 59% - 0:00:00 left \r", + " [ 5862 / 10000 ] 59% - 0:00:00 left \r", + " [ 5863 / 10000 ] 59% - 0:00:00 left \r", + " [ 5864 / 10000 ] 59% - 0:00:00 left \r", + " [ 5865 / 10000 ] 59% - 0:00:00 left \r", + " [ 5866 / 10000 ] 59% - 0:00:00 left \r", + " [ 5867 / 10000 ] 59% - 0:00:00 left \r", + " [ 5868 / 10000 ] 59% - 0:00:00 left \r", + " [ 5869 / 10000 ] 59% - 0:00:00 left \r", + " [ 5870 / 10000 ] 59% - 0:00:00 left \r", + " [ 5871 / 10000 ] 59% - 0:00:00 left \r", + " [ 5872 / 10000 ] 59% - 0:00:00 left \r", + " [ 5873 / 10000 ] 59% - 0:00:00 left \r", + " [ 5874 / 10000 ] 59% - 0:00:00 left \r", + " [ 5875 / 10000 ] 59% - 0:00:00 left \r", + " [ 5876 / 10000 ] 59% - 0:00:00 left \r", + " [ 5877 / 10000 ] 59% - 0:00:00 left \r", + " [ 5878 / 10000 ] 59% - 0:00:00 left \r", + " [ 5879 / 10000 ] 59% - 0:00:00 left \r", + " [ 5880 / 10000 ] 59% - 0:00:00 left \r", + " [ 5881 / 10000 ] 59% - 0:00:00 left \r", + " [ 5882 / 10000 ] 59% - 0:00:00 left \r", + " [ 5883 / 10000 ] 59% - 0:00:00 left \r", + " [ 5884 / 10000 ] 59% - 0:00:00 left \r", + " [ 5885 / 10000 ] 59% - 0:00:00 left \r", + " [ 5886 / 10000 ] 59% - 0:00:00 left \r", + " [ 5887 / 10000 ] 59% - 0:00:00 left \r", + " [ 5888 / 10000 ] 59% - 0:00:00 left \r", + " [ 5889 / 10000 ] 59% - 0:00:00 left \r", + " [ 5890 / 10000 ] 59% - 0:00:00 left \r", + " [ 5891 / 10000 ] 59% - 0:00:00 left \r", + " [ 5892 / 10000 ] 59% - 0:00:00 left \r", + " [ 5893 / 10000 ] 59% - 0:00:00 left \r", + " [ 5894 / 10000 ] 59% - 0:00:00 left \r", + " [ 5895 / 10000 ] 59% - 0:00:00 left \r", + " [ 5896 / 10000 ] 59% - 0:00:00 left \r", + " [ 5897 / 10000 ] 59% - 0:00:00 left \r", + " [ 5898 / 10000 ] 59% - 0:00:00 left \r", + " [ 5899 / 10000 ] 59% - 0:00:00 left \r", + " [ 5900 / 10000 ] 59% - 0:00:00 left \r", + " [ 5901 / 10000 ] 59% - 0:00:00 left \r", + " [ 5902 / 10000 ] 59% - 0:00:00 left \r", + " [ 5903 / 10000 ] 59% - 0:00:00 left \r", + " [ 5904 / 10000 ] 59% - 0:00:00 left \r", + " [ 5905 / 10000 ] 59% - 0:00:00 left \r", + " [ 5906 / 10000 ] 59% - 0:00:00 left \r", + " [ 5907 / 10000 ] 59% - 0:00:00 left \r", + " [ 5908 / 10000 ] 59% - 0:00:00 left \r", + " [ 5909 / 10000 ] 59% - 0:00:00 left \r", + " [ 5910 / 10000 ] 59% - 0:00:00 left \r", + " [ 5911 / 10000 ] 59% - 0:00:00 left \r", + " [ 5912 / 10000 ] 59% - 0:00:00 left \r", + " [ 5913 / 10000 ] 59% - 0:00:00 left \r", + " [ 5914 / 10000 ] 59% - 0:00:00 left \r", + " [ 5915 / 10000 ] 59% - 0:00:00 left \r", + " [ 5916 / 10000 ] 59% - 0:00:00 left \r", + " [ 5917 / 10000 ] 59% - 0:00:00 left \r", + " [ 5918 / 10000 ] 59% - 0:00:00 left \r", + " [ 5919 / 10000 ] 59% - 0:00:00 left \r", + " [ 5920 / 10000 ] 59% - 0:00:00 left \r", + " [ 5921 / 10000 ] 59% - 0:00:00 left \r", + " [ 5922 / 10000 ] 59% - 0:00:00 left \r", + " [ 5923 / 10000 ] 59% - 0:00:00 left \r", + " [ 5924 / 10000 ] 59% - 0:00:00 left \r", + " [ 5925 / 10000 ] 59% - 0:00:00 left \r", + " [ 5926 / 10000 ] 59% - 0:00:00 left \r", + " [ 5927 / 10000 ] 59% - 0:00:00 left \r", + " [ 5928 / 10000 ] 59% - 0:00:00 left \r", + " [ 5929 / 10000 ] 59% - 0:00:00 left \r", + " [ 5930 / 10000 ] 59% - 0:00:00 left \r", + " [ 5931 / 10000 ] 59% - 0:00:00 left \r", + " [ 5932 / 10000 ] 59% - 0:00:00 left \r", + " [ 5933 / 10000 ] 59% - 0:00:00 left \r", + " [ 5934 / 10000 ] 59% - 0:00:00 left \r", + " [ 5935 / 10000 ] 59% - 0:00:00 left \r", + " [ 5936 / 10000 ] 59% - 0:00:00 left \r", + " [ 5937 / 10000 ] 59% - 0:00:00 left \r", + " [ 5938 / 10000 ] 59% - 0:00:00 left \r", + " [ 5939 / 10000 ] 59% - 0:00:00 left \r", + " [ 5940 / 10000 ] 59% - 0:00:00 left \r", + " [ 5941 / 10000 ] 59% - 0:00:00 left \r", + " [ 5942 / 10000 ] 59% - 0:00:00 left \r", + " [ 5943 / 10000 ] 59% - 0:00:00 left \r", + " [ 5944 / 10000 ] 59% - 0:00:00 left \r", + " [ 5945 / 10000 ] 59% - 0:00:00 left \r", + " [ 5946 / 10000 ] 59% - 0:00:00 left \r", + " [ 5947 / 10000 ] 59% - 0:00:00 left \r", + " [ 5948 / 10000 ] 59% - 0:00:00 left \r", + " [ 5949 / 10000 ] 59% - 0:00:00 left \r", + " [ 5950 / 10000 ] 60% - 0:00:00 left \r", + " [ 5951 / 10000 ] 60% - 0:00:00 left \r", + " [ 5952 / 10000 ] 60% - 0:00:00 left \r", + " [ 5953 / 10000 ] 60% - 0:00:00 left \r", + " [ 5954 / 10000 ] 60% - 0:00:00 left \r", + " [ 5955 / 10000 ] 60% - 0:00:00 left \r", + " [ 5956 / 10000 ] 60% - 0:00:00 left \r", + " [ 5957 / 10000 ] 60% - 0:00:00 left \r", + " [ 5958 / 10000 ] 60% - 0:00:00 left \r", + " [ 5959 / 10000 ] 60% - 0:00:00 left \r", + " [ 5960 / 10000 ] 60% - 0:00:00 left \r", + " [ 5961 / 10000 ] 60% - 0:00:00 left \r", + " [ 5962 / 10000 ] 60% - 0:00:00 left \r", + " [ 5963 / 10000 ] 60% - 0:00:00 left \r", + " [ 5964 / 10000 ] 60% - 0:00:00 left \r", + " [ 5965 / 10000 ] 60% - 0:00:00 left \r", + " [ 5966 / 10000 ] 60% - 0:00:00 left \r", + " [ 5967 / 10000 ] 60% - 0:00:00 left \r", + " [ 5968 / 10000 ] 60% - 0:00:00 left \r", + " [ 5969 / 10000 ] 60% - 0:00:00 left \r", + " [ 5970 / 10000 ] 60% - 0:00:00 left \r", + " [ 5971 / 10000 ] 60% - 0:00:00 left \r", + " [ 5972 / 10000 ] 60% - 0:00:00 left \r", + " [ 5973 / 10000 ] 60% - 0:00:00 left \r", + " [ 5974 / 10000 ] 60% - 0:00:00 left \r", + " [ 5975 / 10000 ] 60% - 0:00:00 left \r", + " [ 5976 / 10000 ] 60% - 0:00:00 left \r", + " [ 5977 / 10000 ] 60% - 0:00:00 left \r", + " [ 5978 / 10000 ] 60% - 0:00:00 left \r", + " [ 5979 / 10000 ] 60% - 0:00:00 left \r", + " [ 5980 / 10000 ] 60% - 0:00:00 left \r", + " [ 5981 / 10000 ] 60% - 0:00:00 left \r", + " [ 5982 / 10000 ] 60% - 0:00:00 left \r", + " [ 5983 / 10000 ] 60% - 0:00:00 left \r", + " [ 5984 / 10000 ] 60% - 0:00:00 left \r", + " [ 5985 / 10000 ] 60% - 0:00:00 left \r", + " [ 5986 / 10000 ] 60% - 0:00:00 left \r", + " [ 5987 / 10000 ] 60% - 0:00:00 left \r", + " [ 5988 / 10000 ] 60% - 0:00:00 left \r", + " [ 5989 / 10000 ] 60% - 0:00:00 left \r", + " [ 5990 / 10000 ] 60% - 0:00:00 left \r", + " [ 5991 / 10000 ] 60% - 0:00:00 left \r", + " [ 5992 / 10000 ] 60% - 0:00:00 left \r", + " [ 5993 / 10000 ] 60% - 0:00:00 left \r", + " [ 5994 / 10000 ] 60% - 0:00:00 left \r", + " [ 5995 / 10000 ] 60% - 0:00:00 left \r", + " [ 5996 / 10000 ] 60% - 0:00:00 left \r", + " [ 5997 / 10000 ] 60% - 0:00:00 left \r", + " [ 5998 / 10000 ] 60% - 0:00:00 left \r", + " [ 5999 / 10000 ] 60% - 0:00:00 left \r", + " [ 6000 / 10000 ] 60% - 0:00:00 left \r", + " [ 6001 / 10000 ] 60% - 0:00:00 left \r", + " [ 6002 / 10000 ] 60% - 0:00:00 left \r", + " [ 6003 / 10000 ] 60% - 0:00:00 left \r", + " [ 6004 / 10000 ] 60% - 0:00:00 left \r", + " [ 6005 / 10000 ] 60% - 0:00:00 left \r", + " [ 6006 / 10000 ] 60% - 0:00:00 left \r", + " [ 6007 / 10000 ] 60% - 0:00:00 left \r", + " [ 6008 / 10000 ] 60% - 0:00:00 left \r", + " [ 6009 / 10000 ] 60% - 0:00:00 left \r", + " [ 6010 / 10000 ] 60% - 0:00:00 left \r", + " [ 6011 / 10000 ] 60% - 0:00:00 left \r", + " [ 6012 / 10000 ] 60% - 0:00:00 left \r", + " [ 6013 / 10000 ] 60% - 0:00:00 left \r", + " [ 6014 / 10000 ] 60% - 0:00:00 left \r", + " [ 6015 / 10000 ] 60% - 0:00:00 left \r", + " [ 6016 / 10000 ] 60% - 0:00:00 left \r", + " [ 6017 / 10000 ] 60% - 0:00:00 left \r", + " [ 6018 / 10000 ] 60% - 0:00:00 left \r", + " [ 6019 / 10000 ] 60% - 0:00:00 left \r", + " [ 6020 / 10000 ] 60% - 0:00:00 left \r", + " [ 6021 / 10000 ] 60% - 0:00:00 left \r", + " [ 6022 / 10000 ] 60% - 0:00:00 left \r", + " [ 6023 / 10000 ] 60% - 0:00:00 left \r", + " [ 6024 / 10000 ] 60% - 0:00:00 left \r", + " [ 6025 / 10000 ] 60% - 0:00:00 left \r", + " [ 6026 / 10000 ] 60% - 0:00:00 left \r", + " [ 6027 / 10000 ] 60% - 0:00:00 left \r", + " [ 6028 / 10000 ] 60% - 0:00:00 left \r", + " [ 6029 / 10000 ] 60% - 0:00:00 left \r", + " [ 6030 / 10000 ] 60% - 0:00:00 left \r", + " [ 6031 / 10000 ] 60% - 0:00:00 left \r", + " [ 6032 / 10000 ] 60% - 0:00:00 left \r", + " [ 6033 / 10000 ] 60% - 0:00:00 left \r", + " [ 6034 / 10000 ] 60% - 0:00:00 left \r", + " [ 6035 / 10000 ] 60% - 0:00:00 left \r", + " [ 6036 / 10000 ] 60% - 0:00:00 left \r", + " [ 6037 / 10000 ] 60% - 0:00:00 left \r", + " [ 6038 / 10000 ] 60% - 0:00:00 left \r", + " [ 6039 / 10000 ] 60% - 0:00:00 left \r", + " [ 6040 / 10000 ] 60% - 0:00:00 left \r", + " [ 6041 / 10000 ] 60% - 0:00:00 left \r", + " [ 6042 / 10000 ] 60% - 0:00:00 left \r", + " [ 6043 / 10000 ] 60% - 0:00:00 left \r", + " [ 6044 / 10000 ] 60% - 0:00:00 left \r", + " [ 6045 / 10000 ] 60% - 0:00:00 left \r", + " [ 6046 / 10000 ] 60% - 0:00:00 left \r", + " [ 6047 / 10000 ] 60% - 0:00:00 left \r", + " [ 6048 / 10000 ] 60% - 0:00:00 left \r", + " [ 6049 / 10000 ] 60% - 0:00:00 left \r", + " [ 6050 / 10000 ] 60% - 0:00:00 left \r", + " [ 6051 / 10000 ] 61% - 0:00:00 left \r", + " [ 6052 / 10000 ] 61% - 0:00:00 left \r", + " [ 6053 / 10000 ] 61% - 0:00:00 left \r", + " [ 6054 / 10000 ] 61% - 0:00:00 left \r", + " [ 6055 / 10000 ] 61% - 0:00:00 left \r", + " [ 6056 / 10000 ] 61% - 0:00:00 left \r", + " [ 6057 / 10000 ] 61% - 0:00:00 left \r", + " [ 6058 / 10000 ] 61% - 0:00:00 left \r", + " [ 6059 / 10000 ] 61% - 0:00:00 left \r", + " [ 6060 / 10000 ] 61% - 0:00:00 left \r", + " [ 6061 / 10000 ] 61% - 0:00:00 left \r", + " [ 6062 / 10000 ] 61% - 0:00:00 left \r", + " [ 6063 / 10000 ] 61% - 0:00:00 left \r", + " [ 6064 / 10000 ] 61% - 0:00:00 left \r", + " [ 6065 / 10000 ] 61% - 0:00:00 left \r", + " [ 6066 / 10000 ] 61% - 0:00:00 left \r", + " [ 6067 / 10000 ] 61% - 0:00:00 left \r", + " [ 6068 / 10000 ] 61% - 0:00:00 left \r", + " [ 6069 / 10000 ] 61% - 0:00:00 left \r", + " [ 6070 / 10000 ] 61% - 0:00:00 left \r", + " [ 6071 / 10000 ] 61% - 0:00:00 left \r", + " [ 6072 / 10000 ] 61% - 0:00:00 left \r", + " [ 6073 / 10000 ] 61% - 0:00:00 left \r", + " [ 6074 / 10000 ] 61% - 0:00:00 left \r", + " [ 6075 / 10000 ] 61% - 0:00:00 left \r", + " [ 6076 / 10000 ] 61% - 0:00:00 left \r", + " [ 6077 / 10000 ] 61% - 0:00:00 left \r", + " [ 6078 / 10000 ] 61% - 0:00:00 left \r", + " [ 6079 / 10000 ] 61% - 0:00:00 left \r", + " [ 6080 / 10000 ] 61% - 0:00:00 left \r", + " [ 6081 / 10000 ] 61% - 0:00:00 left \r", + " [ 6082 / 10000 ] 61% - 0:00:00 left \r", + " [ 6083 / 10000 ] 61% - 0:00:00 left \r", + " [ 6084 / 10000 ] 61% - 0:00:00 left \r", + " [ 6085 / 10000 ] 61% - 0:00:00 left \r", + " [ 6086 / 10000 ] 61% - 0:00:00 left \r", + " [ 6087 / 10000 ] 61% - 0:00:00 left \r", + " [ 6088 / 10000 ] 61% - 0:00:00 left \r", + " [ 6089 / 10000 ] 61% - 0:00:00 left \r", + " [ 6090 / 10000 ] 61% - 0:00:00 left \r", + " [ 6091 / 10000 ] 61% - 0:00:00 left \r", + " [ 6092 / 10000 ] 61% - 0:00:00 left \r", + " [ 6093 / 10000 ] 61% - 0:00:00 left \r", + " [ 6094 / 10000 ] 61% - 0:00:00 left \r", + " [ 6095 / 10000 ] 61% - 0:00:00 left \r", + " [ 6096 / 10000 ] 61% - 0:00:00 left \r", + " [ 6097 / 10000 ] 61% - 0:00:00 left \r", + " [ 6098 / 10000 ] 61% - 0:00:00 left \r", + " [ 6099 / 10000 ] 61% - 0:00:00 left \r", + " [ 6100 / 10000 ] 61% - 0:00:00 left \r", + " [ 6101 / 10000 ] 61% - 0:00:00 left \r", + " [ 6102 / 10000 ] 61% - 0:00:00 left \r", + " [ 6103 / 10000 ] 61% - 0:00:00 left \r", + " [ 6104 / 10000 ] 61% - 0:00:00 left \r", + " [ 6105 / 10000 ] 61% - 0:00:00 left \r", + " [ 6106 / 10000 ] 61% - 0:00:00 left \r", + " [ 6107 / 10000 ] 61% - 0:00:00 left \r", + " [ 6108 / 10000 ] 61% - 0:00:00 left \r", + " [ 6109 / 10000 ] 61% - 0:00:00 left \r", + " [ 6110 / 10000 ] 61% - 0:00:00 left \r", + " [ 6111 / 10000 ] 61% - 0:00:00 left \r", + " [ 6112 / 10000 ] 61% - 0:00:00 left \r", + " [ 6113 / 10000 ] 61% - 0:00:00 left \r", + " [ 6114 / 10000 ] 61% - 0:00:00 left \r", + " [ 6115 / 10000 ] 61% - 0:00:00 left \r", + " [ 6116 / 10000 ] 61% - 0:00:00 left \r", + " [ 6117 / 10000 ] 61% - 0:00:00 left \r", + " [ 6118 / 10000 ] 61% - 0:00:00 left \r", + " [ 6119 / 10000 ] 61% - 0:00:00 left \r", + " [ 6120 / 10000 ] 61% - 0:00:00 left \r", + " [ 6121 / 10000 ] 61% - 0:00:00 left \r", + " [ 6122 / 10000 ] 61% - 0:00:00 left \r", + " [ 6123 / 10000 ] 61% - 0:00:00 left \r", + " [ 6124 / 10000 ] 61% - 0:00:00 left \r", + " [ 6125 / 10000 ] 61% - 0:00:00 left \r", + " [ 6126 / 10000 ] 61% - 0:00:00 left \r", + " [ 6127 / 10000 ] 61% - 0:00:00 left \r", + " [ 6128 / 10000 ] 61% - 0:00:00 left \r", + " [ 6129 / 10000 ] 61% - 0:00:00 left \r", + " [ 6130 / 10000 ] 61% - 0:00:00 left \r", + " [ 6131 / 10000 ] 61% - 0:00:00 left \r", + " [ 6132 / 10000 ] 61% - 0:00:00 left \r", + " [ 6133 / 10000 ] 61% - 0:00:00 left \r", + " [ 6134 / 10000 ] 61% - 0:00:00 left \r", + " [ 6135 / 10000 ] 61% - 0:00:00 left \r", + " [ 6136 / 10000 ] 61% - 0:00:00 left \r", + " [ 6137 / 10000 ] 61% - 0:00:00 left \r", + " [ 6138 / 10000 ] 61% - 0:00:00 left \r", + " [ 6139 / 10000 ] 61% - 0:00:00 left \r", + " [ 6140 / 10000 ] 61% - 0:00:00 left \r", + " [ 6141 / 10000 ] 61% - 0:00:00 left \r", + " [ 6142 / 10000 ] 61% - 0:00:00 left \r", + " [ 6143 / 10000 ] 61% - 0:00:00 left \r", + " [ 6144 / 10000 ] 61% - 0:00:00 left \r", + " [ 6145 / 10000 ] 61% - 0:00:00 left \r", + " [ 6146 / 10000 ] 61% - 0:00:00 left \r", + " [ 6147 / 10000 ] 61% - 0:00:00 left \r", + " [ 6148 / 10000 ] 61% - 0:00:00 left \r", + " [ 6149 / 10000 ] 61% - 0:00:00 left \r", + " [ 6150 / 10000 ] 62% - 0:00:00 left \r", + " [ 6151 / 10000 ] 62% - 0:00:00 left \r", + " [ 6152 / 10000 ] 62% - 0:00:00 left \r", + " [ 6153 / 10000 ] 62% - 0:00:00 left \r", + " [ 6154 / 10000 ] 62% - 0:00:00 left \r", + " [ 6155 / 10000 ] 62% - 0:00:00 left \r", + " [ 6156 / 10000 ] 62% - 0:00:00 left \r", + " [ 6157 / 10000 ] 62% - 0:00:00 left \r", + " [ 6158 / 10000 ] 62% - 0:00:00 left \r", + " [ 6159 / 10000 ] 62% - 0:00:00 left \r", + " [ 6160 / 10000 ] 62% - 0:00:00 left \r", + " [ 6161 / 10000 ] 62% - 0:00:00 left \r", + " [ 6162 / 10000 ] 62% - 0:00:00 left \r", + " [ 6163 / 10000 ] 62% - 0:00:00 left \r", + " [ 6164 / 10000 ] 62% - 0:00:00 left \r", + " [ 6165 / 10000 ] 62% - 0:00:00 left \r", + " [ 6166 / 10000 ] 62% - 0:00:00 left \r", + " [ 6167 / 10000 ] 62% - 0:00:00 left \r", + " [ 6168 / 10000 ] 62% - 0:00:00 left \r", + " [ 6169 / 10000 ] 62% - 0:00:00 left \r", + " [ 6170 / 10000 ] 62% - 0:00:00 left \r", + " [ 6171 / 10000 ] 62% - 0:00:00 left \r", + " [ 6172 / 10000 ] 62% - 0:00:00 left \r", + " [ 6173 / 10000 ] 62% - 0:00:00 left \r", + " [ 6174 / 10000 ] 62% - 0:00:00 left \r", + " [ 6175 / 10000 ] 62% - 0:00:00 left \r", + " [ 6176 / 10000 ] 62% - 0:00:00 left \r", + " [ 6177 / 10000 ] 62% - 0:00:00 left \r", + " [ 6178 / 10000 ] 62% - 0:00:00 left \r", + " [ 6179 / 10000 ] 62% - 0:00:00 left \r", + " [ 6180 / 10000 ] 62% - 0:00:00 left \r", + " [ 6181 / 10000 ] 62% - 0:00:00 left \r", + " [ 6182 / 10000 ] 62% - 0:00:00 left \r", + " [ 6183 / 10000 ] 62% - 0:00:00 left \r", + " [ 6184 / 10000 ] 62% - 0:00:00 left \r", + " [ 6185 / 10000 ] 62% - 0:00:00 left \r", + " [ 6186 / 10000 ] 62% - 0:00:00 left \r", + " [ 6187 / 10000 ] 62% - 0:00:00 left \r", + " [ 6188 / 10000 ] 62% - 0:00:00 left \r", + " [ 6189 / 10000 ] 62% - 0:00:00 left \r", + " [ 6190 / 10000 ] 62% - 0:00:00 left \r", + " [ 6191 / 10000 ] 62% - 0:00:00 left \r", + " [ 6192 / 10000 ] 62% - 0:00:00 left \r", + " [ 6193 / 10000 ] 62% - 0:00:00 left \r", + " [ 6194 / 10000 ] 62% - 0:00:00 left \r", + " [ 6195 / 10000 ] 62% - 0:00:00 left \r", + " [ 6196 / 10000 ] 62% - 0:00:00 left \r", + " [ 6197 / 10000 ] 62% - 0:00:00 left \r", + " [ 6198 / 10000 ] 62% - 0:00:00 left \r", + " [ 6199 / 10000 ] 62% - 0:00:00 left \r", + " [ 6200 / 10000 ] 62% - 0:00:00 left \r", + " [ 6201 / 10000 ] 62% - 0:00:00 left \r", + " [ 6202 / 10000 ] 62% - 0:00:00 left \r", + " [ 6203 / 10000 ] 62% - 0:00:00 left \r", + " [ 6204 / 10000 ] 62% - 0:00:00 left \r", + " [ 6205 / 10000 ] 62% - 0:00:00 left \r", + " [ 6206 / 10000 ] 62% - 0:00:00 left \r", + " [ 6207 / 10000 ] 62% - 0:00:00 left \r", + " [ 6208 / 10000 ] 62% - 0:00:00 left \r", + " [ 6209 / 10000 ] 62% - 0:00:00 left \r", + " [ 6210 / 10000 ] 62% - 0:00:00 left \r", + " [ 6211 / 10000 ] 62% - 0:00:00 left \r", + " [ 6212 / 10000 ] 62% - 0:00:00 left \r", + " [ 6213 / 10000 ] 62% - 0:00:00 left \r", + " [ 6214 / 10000 ] 62% - 0:00:00 left \r", + " [ 6215 / 10000 ] 62% - 0:00:00 left \r", + " [ 6216 / 10000 ] 62% - 0:00:00 left \r", + " [ 6217 / 10000 ] 62% - 0:00:00 left \r", + " [ 6218 / 10000 ] 62% - 0:00:00 left \r", + " [ 6219 / 10000 ] 62% - 0:00:00 left \r", + " [ 6220 / 10000 ] 62% - 0:00:00 left \r", + " [ 6221 / 10000 ] 62% - 0:00:00 left \r", + " [ 6222 / 10000 ] 62% - 0:00:00 left \r", + " [ 6223 / 10000 ] 62% - 0:00:00 left \r", + " [ 6224 / 10000 ] 62% - 0:00:00 left \r", + " [ 6225 / 10000 ] 62% - 0:00:00 left \r", + " [ 6226 / 10000 ] 62% - 0:00:00 left \r", + " [ 6227 / 10000 ] 62% - 0:00:00 left \r", + " [ 6228 / 10000 ] 62% - 0:00:00 left \r", + " [ 6229 / 10000 ] 62% - 0:00:00 left \r", + " [ 6230 / 10000 ] 62% - 0:00:00 left \r", + " [ 6231 / 10000 ] 62% - 0:00:00 left \r", + " [ 6232 / 10000 ] 62% - 0:00:00 left \r", + " [ 6233 / 10000 ] 62% - 0:00:00 left \r", + " [ 6234 / 10000 ] 62% - 0:00:00 left \r", + " [ 6235 / 10000 ] 62% - 0:00:00 left \r", + " [ 6236 / 10000 ] 62% - 0:00:00 left \r", + " [ 6237 / 10000 ] 62% - 0:00:00 left \r", + " [ 6238 / 10000 ] 62% - 0:00:00 left \r", + " [ 6239 / 10000 ] 62% - 0:00:00 left \r", + " [ 6240 / 10000 ] 62% - 0:00:00 left \r", + " [ 6241 / 10000 ] 62% - 0:00:00 left \r", + " [ 6242 / 10000 ] 62% - 0:00:00 left \r", + " [ 6243 / 10000 ] 62% - 0:00:00 left \r", + " [ 6244 / 10000 ] 62% - 0:00:00 left \r", + " [ 6245 / 10000 ] 62% - 0:00:00 left \r", + " [ 6246 / 10000 ] 62% - 0:00:00 left \r", + " [ 6247 / 10000 ] 62% - 0:00:00 left \r", + " [ 6248 / 10000 ] 62% - 0:00:00 left \r", + " [ 6249 / 10000 ] 62% - 0:00:00 left \r", + " [ 6250 / 10000 ] 62% - 0:00:00 left \r", + " [ 6251 / 10000 ] 63% - 0:00:00 left \r", + " [ 6252 / 10000 ] 63% - 0:00:00 left \r", + " [ 6253 / 10000 ] 63% - 0:00:00 left \r", + " [ 6254 / 10000 ] 63% - 0:00:00 left \r", + " [ 6255 / 10000 ] 63% - 0:00:00 left \r", + " [ 6256 / 10000 ] 63% - 0:00:00 left \r", + " [ 6257 / 10000 ] 63% - 0:00:00 left \r", + " [ 6258 / 10000 ] 63% - 0:00:00 left \r", + " [ 6259 / 10000 ] 63% - 0:00:00 left \r", + " [ 6260 / 10000 ] 63% - 0:00:00 left \r", + " [ 6261 / 10000 ] 63% - 0:00:00 left \r", + " [ 6262 / 10000 ] 63% - 0:00:00 left \r", + " [ 6263 / 10000 ] 63% - 0:00:00 left \r", + " [ 6264 / 10000 ] 63% - 0:00:00 left \r", + " [ 6265 / 10000 ] 63% - 0:00:00 left \r", + " [ 6266 / 10000 ] 63% - 0:00:00 left \r", + " [ 6267 / 10000 ] 63% - 0:00:00 left \r", + " [ 6268 / 10000 ] 63% - 0:00:00 left \r", + " [ 6269 / 10000 ] 63% - 0:00:00 left \r", + " [ 6270 / 10000 ] 63% - 0:00:00 left \r", + " [ 6271 / 10000 ] 63% - 0:00:00 left \r", + " [ 6272 / 10000 ] 63% - 0:00:00 left \r", + " [ 6273 / 10000 ] 63% - 0:00:00 left \r", + " [ 6274 / 10000 ] 63% - 0:00:00 left \r", + " [ 6275 / 10000 ] 63% - 0:00:00 left \r", + " [ 6276 / 10000 ] 63% - 0:00:00 left \r", + " [ 6277 / 10000 ] 63% - 0:00:00 left \r", + " [ 6278 / 10000 ] 63% - 0:00:00 left \r", + " [ 6279 / 10000 ] 63% - 0:00:00 left \r", + " [ 6280 / 10000 ] 63% - 0:00:00 left \r", + " [ 6281 / 10000 ] 63% - 0:00:00 left \r", + " [ 6282 / 10000 ] 63% - 0:00:00 left \r", + " [ 6283 / 10000 ] 63% - 0:00:00 left \r", + " [ 6284 / 10000 ] 63% - 0:00:00 left \r", + " [ 6285 / 10000 ] 63% - 0:00:00 left \r", + " [ 6286 / 10000 ] 63% - 0:00:00 left \r", + " [ 6287 / 10000 ] 63% - 0:00:00 left \r", + " [ 6288 / 10000 ] 63% - 0:00:00 left \r", + " [ 6289 / 10000 ] 63% - 0:00:00 left \r", + " [ 6290 / 10000 ] 63% - 0:00:00 left \r", + " [ 6291 / 10000 ] 63% - 0:00:00 left \r", + " [ 6292 / 10000 ] 63% - 0:00:00 left \r", + " [ 6293 / 10000 ] 63% - 0:00:00 left \r", + " [ 6294 / 10000 ] 63% - 0:00:00 left \r", + " [ 6295 / 10000 ] 63% - 0:00:00 left \r", + " [ 6296 / 10000 ] 63% - 0:00:00 left \r", + " [ 6297 / 10000 ] 63% - 0:00:00 left \r", + " [ 6298 / 10000 ] 63% - 0:00:00 left \r", + " [ 6299 / 10000 ] 63% - 0:00:00 left \r", + " [ 6300 / 10000 ] 63% - 0:00:00 left \r", + " [ 6301 / 10000 ] 63% - 0:00:00 left \r", + " [ 6302 / 10000 ] 63% - 0:00:00 left \r", + " [ 6303 / 10000 ] 63% - 0:00:00 left \r", + " [ 6304 / 10000 ] 63% - 0:00:00 left \r", + " [ 6305 / 10000 ] 63% - 0:00:00 left \r", + " [ 6306 / 10000 ] 63% - 0:00:00 left \r", + " [ 6307 / 10000 ] 63% - 0:00:00 left \r", + " [ 6308 / 10000 ] 63% - 0:00:00 left \r", + " [ 6309 / 10000 ] 63% - 0:00:00 left \r", + " [ 6310 / 10000 ] 63% - 0:00:00 left \r", + " [ 6311 / 10000 ] 63% - 0:00:00 left \r", + " [ 6312 / 10000 ] 63% - 0:00:00 left \r", + " [ 6313 / 10000 ] 63% - 0:00:00 left \r", + " [ 6314 / 10000 ] 63% - 0:00:00 left \r", + " [ 6315 / 10000 ] 63% - 0:00:00 left \r", + " [ 6316 / 10000 ] 63% - 0:00:00 left \r", + " [ 6317 / 10000 ] 63% - 0:00:00 left \r", + " [ 6318 / 10000 ] 63% - 0:00:00 left \r", + " [ 6319 / 10000 ] 63% - 0:00:00 left \r", + " [ 6320 / 10000 ] 63% - 0:00:00 left \r", + " [ 6321 / 10000 ] 63% - 0:00:00 left \r", + " [ 6322 / 10000 ] 63% - 0:00:00 left \r", + " [ 6323 / 10000 ] 63% - 0:00:00 left \r", + " [ 6324 / 10000 ] 63% - 0:00:00 left \r", + " [ 6325 / 10000 ] 63% - 0:00:00 left \r", + " [ 6326 / 10000 ] 63% - 0:00:00 left \r", + " [ 6327 / 10000 ] 63% - 0:00:00 left \r", + " [ 6328 / 10000 ] 63% - 0:00:00 left \r", + " [ 6329 / 10000 ] 63% - 0:00:00 left \r", + " [ 6330 / 10000 ] 63% - 0:00:00 left \r", + " [ 6331 / 10000 ] 63% - 0:00:00 left \r", + " [ 6332 / 10000 ] 63% - 0:00:00 left \r", + " [ 6333 / 10000 ] 63% - 0:00:00 left \r", + " [ 6334 / 10000 ] 63% - 0:00:00 left \r", + " [ 6335 / 10000 ] 63% - 0:00:00 left \r", + " [ 6336 / 10000 ] 63% - 0:00:00 left \r", + " [ 6337 / 10000 ] 63% - 0:00:00 left \r", + " [ 6338 / 10000 ] 63% - 0:00:00 left \r", + " [ 6339 / 10000 ] 63% - 0:00:00 left \r", + " [ 6340 / 10000 ] 63% - 0:00:00 left \r", + " [ 6341 / 10000 ] 63% - 0:00:00 left \r", + " [ 6342 / 10000 ] 63% - 0:00:00 left \r", + " [ 6343 / 10000 ] 63% - 0:00:00 left \r", + " [ 6344 / 10000 ] 63% - 0:00:00 left \r", + " [ 6345 / 10000 ] 63% - 0:00:00 left \r", + " [ 6346 / 10000 ] 63% - 0:00:00 left \r", + " [ 6347 / 10000 ] 63% - 0:00:00 left \r", + " [ 6348 / 10000 ] 63% - 0:00:00 left \r", + " [ 6349 / 10000 ] 63% - 0:00:00 left \r", + " [ 6350 / 10000 ] 64% - 0:00:00 left \r", + " [ 6351 / 10000 ] 64% - 0:00:00 left \r", + " [ 6352 / 10000 ] 64% - 0:00:00 left \r", + " [ 6353 / 10000 ] 64% - 0:00:00 left \r", + " [ 6354 / 10000 ] 64% - 0:00:00 left \r", + " [ 6355 / 10000 ] 64% - 0:00:00 left \r", + " [ 6356 / 10000 ] 64% - 0:00:00 left \r", + " [ 6357 / 10000 ] 64% - 0:00:00 left \r", + " [ 6358 / 10000 ] 64% - 0:00:00 left \r", + " [ 6359 / 10000 ] 64% - 0:00:00 left \r", + " [ 6360 / 10000 ] 64% - 0:00:00 left \r", + " [ 6361 / 10000 ] 64% - 0:00:00 left \r", + " [ 6362 / 10000 ] 64% - 0:00:00 left \r", + " [ 6363 / 10000 ] 64% - 0:00:00 left \r", + " [ 6364 / 10000 ] 64% - 0:00:00 left \r", + " [ 6365 / 10000 ] 64% - 0:00:00 left \r", + " [ 6366 / 10000 ] 64% - 0:00:00 left \r", + " [ 6367 / 10000 ] 64% - 0:00:00 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 6368 / 10000 ] 64% - 0:00:00 left \r", + " [ 6369 / 10000 ] 64% - 0:00:00 left \r", + " [ 6370 / 10000 ] 64% - 0:00:00 left \r", + " [ 6371 / 10000 ] 64% - 0:00:00 left \r", + " [ 6372 / 10000 ] 64% - 0:00:00 left \r", + " [ 6373 / 10000 ] 64% - 0:00:00 left \r", + " [ 6374 / 10000 ] 64% - 0:00:00 left \r", + " [ 6375 / 10000 ] 64% - 0:00:00 left \r", + " [ 6376 / 10000 ] 64% - 0:00:00 left \r", + " [ 6377 / 10000 ] 64% - 0:00:00 left \r", + " [ 6378 / 10000 ] 64% - 0:00:00 left \r", + " [ 6379 / 10000 ] 64% - 0:00:00 left \r", + " [ 6380 / 10000 ] 64% - 0:00:00 left \r", + " [ 6381 / 10000 ] 64% - 0:00:00 left \r", + " [ 6382 / 10000 ] 64% - 0:00:00 left \r", + " [ 6383 / 10000 ] 64% - 0:00:00 left \r", + " [ 6384 / 10000 ] 64% - 0:00:00 left \r", + " [ 6385 / 10000 ] 64% - 0:00:00 left \r", + " [ 6386 / 10000 ] 64% - 0:00:00 left \r", + " [ 6387 / 10000 ] 64% - 0:00:00 left \r", + " [ 6388 / 10000 ] 64% - 0:00:00 left \r", + " [ 6389 / 10000 ] 64% - 0:00:00 left \r", + " [ 6390 / 10000 ] 64% - 0:00:00 left \r", + " [ 6391 / 10000 ] 64% - 0:00:00 left \r", + " [ 6392 / 10000 ] 64% - 0:00:00 left \r", + " [ 6393 / 10000 ] 64% - 0:00:00 left \r", + " [ 6394 / 10000 ] 64% - 0:00:00 left \r", + " [ 6395 / 10000 ] 64% - 0:00:00 left \r", + " [ 6396 / 10000 ] 64% - 0:00:00 left \r", + " [ 6397 / 10000 ] 64% - 0:00:00 left \r", + " [ 6398 / 10000 ] 64% - 0:00:00 left \r", + " [ 6399 / 10000 ] 64% - 0:00:00 left \r", + " [ 6400 / 10000 ] 64% - 0:00:00 left \r", + " [ 6401 / 10000 ] 64% - 0:00:00 left \r", + " [ 6402 / 10000 ] 64% - 0:00:00 left \r", + " [ 6403 / 10000 ] 64% - 0:00:00 left \r", + " [ 6404 / 10000 ] 64% - 0:00:00 left \r", + " [ 6405 / 10000 ] 64% - 0:00:00 left \r", + " [ 6406 / 10000 ] 64% - 0:00:00 left \r", + " [ 6407 / 10000 ] 64% - 0:00:00 left \r", + " [ 6408 / 10000 ] 64% - 0:00:00 left \r", + " [ 6409 / 10000 ] 64% - 0:00:00 left \r", + " [ 6410 / 10000 ] 64% - 0:00:00 left \r", + " [ 6411 / 10000 ] 64% - 0:00:00 left \r", + " [ 6412 / 10000 ] 64% - 0:00:00 left \r", + " [ 6413 / 10000 ] 64% - 0:00:00 left \r", + " [ 6414 / 10000 ] 64% - 0:00:00 left \r", + " [ 6415 / 10000 ] 64% - 0:00:00 left \r", + " [ 6416 / 10000 ] 64% - 0:00:00 left \r", + " [ 6417 / 10000 ] 64% - 0:00:00 left \r", + " [ 6418 / 10000 ] 64% - 0:00:00 left \r", + " [ 6419 / 10000 ] 64% - 0:00:00 left \r", + " [ 6420 / 10000 ] 64% - 0:00:00 left \r", + " [ 6421 / 10000 ] 64% - 0:00:00 left \r", + " [ 6422 / 10000 ] 64% - 0:00:00 left \r", + " [ 6423 / 10000 ] 64% - 0:00:00 left \r", + " [ 6424 / 10000 ] 64% - 0:00:00 left \r", + " [ 6425 / 10000 ] 64% - 0:00:00 left \r", + " [ 6426 / 10000 ] 64% - 0:00:00 left \r", + " [ 6427 / 10000 ] 64% - 0:00:00 left \r", + " [ 6428 / 10000 ] 64% - 0:00:00 left \r", + " [ 6429 / 10000 ] 64% - 0:00:00 left \r", + " [ 6430 / 10000 ] 64% - 0:00:00 left \r", + " [ 6431 / 10000 ] 64% - 0:00:00 left \r", + " [ 6432 / 10000 ] 64% - 0:00:00 left \r", + " [ 6433 / 10000 ] 64% - 0:00:00 left \r", + " [ 6434 / 10000 ] 64% - 0:00:00 left \r", + " [ 6435 / 10000 ] 64% - 0:00:00 left \r", + " [ 6436 / 10000 ] 64% - 0:00:00 left \r", + " [ 6437 / 10000 ] 64% - 0:00:00 left \r", + " [ 6438 / 10000 ] 64% - 0:00:00 left \r", + " [ 6439 / 10000 ] 64% - 0:00:00 left \r", + " [ 6440 / 10000 ] 64% - 0:00:00 left \r", + " [ 6441 / 10000 ] 64% - 0:00:00 left \r", + " [ 6442 / 10000 ] 64% - 0:00:00 left \r", + " [ 6443 / 10000 ] 64% - 0:00:00 left \r", + " [ 6444 / 10000 ] 64% - 0:00:00 left \r", + " [ 6445 / 10000 ] 64% - 0:00:00 left \r", + " [ 6446 / 10000 ] 64% - 0:00:00 left \r", + " [ 6447 / 10000 ] 64% - 0:00:00 left \r", + " [ 6448 / 10000 ] 64% - 0:00:00 left \r", + " [ 6449 / 10000 ] 64% - 0:00:00 left \r", + " [ 6450 / 10000 ] 64% - 0:00:00 left \r", + " [ 6451 / 10000 ] 65% - 0:00:00 left \r", + " [ 6452 / 10000 ] 65% - 0:00:00 left \r", + " [ 6453 / 10000 ] 65% - 0:00:00 left \r", + " [ 6454 / 10000 ] 65% - 0:00:00 left \r", + " [ 6455 / 10000 ] 65% - 0:00:00 left \r", + " [ 6456 / 10000 ] 65% - 0:00:00 left \r", + " [ 6457 / 10000 ] 65% - 0:00:00 left \r", + " [ 6458 / 10000 ] 65% - 0:00:00 left \r", + " [ 6459 / 10000 ] 65% - 0:00:00 left \r", + " [ 6460 / 10000 ] 65% - 0:00:00 left \r", + " [ 6461 / 10000 ] 65% - 0:00:00 left \r", + " [ 6462 / 10000 ] 65% - 0:00:00 left \r", + " [ 6463 / 10000 ] 65% - 0:00:00 left \r", + " [ 6464 / 10000 ] 65% - 0:00:00 left \r", + " [ 6465 / 10000 ] 65% - 0:00:00 left \r", + " [ 6466 / 10000 ] 65% - 0:00:00 left \r", + " [ 6467 / 10000 ] 65% - 0:00:00 left \r", + " [ 6468 / 10000 ] 65% - 0:00:00 left \r", + " [ 6469 / 10000 ] 65% - 0:00:00 left \r", + " [ 6470 / 10000 ] 65% - 0:00:00 left \r", + " [ 6471 / 10000 ] 65% - 0:00:00 left \r", + " [ 6472 / 10000 ] 65% - 0:00:00 left \r", + " [ 6473 / 10000 ] 65% - 0:00:00 left \r", + " [ 6474 / 10000 ] 65% - 0:00:00 left \r", + " [ 6475 / 10000 ] 65% - 0:00:00 left \r", + " [ 6476 / 10000 ] 65% - 0:00:00 left \r", + " [ 6477 / 10000 ] 65% - 0:00:00 left \r", + " [ 6478 / 10000 ] 65% - 0:00:00 left \r", + " [ 6479 / 10000 ] 65% - 0:00:00 left \r", + " [ 6480 / 10000 ] 65% - 0:00:00 left \r", + " [ 6481 / 10000 ] 65% - 0:00:00 left \r", + " [ 6482 / 10000 ] 65% - 0:00:00 left \r", + " [ 6483 / 10000 ] 65% - 0:00:00 left \r", + " [ 6484 / 10000 ] 65% - 0:00:00 left \r", + " [ 6485 / 10000 ] 65% - 0:00:00 left \r", + " [ 6486 / 10000 ] 65% - 0:00:00 left \r", + " [ 6487 / 10000 ] 65% - 0:00:00 left \r", + " [ 6488 / 10000 ] 65% - 0:00:00 left \r", + " [ 6489 / 10000 ] 65% - 0:00:00 left \r", + " [ 6490 / 10000 ] 65% - 0:00:00 left \r", + " [ 6491 / 10000 ] 65% - 0:00:00 left \r", + " [ 6492 / 10000 ] 65% - 0:00:00 left \r", + " [ 6493 / 10000 ] 65% - 0:00:00 left \r", + " [ 6494 / 10000 ] 65% - 0:00:00 left \r", + " [ 6495 / 10000 ] 65% - 0:00:00 left \r", + " [ 6496 / 10000 ] 65% - 0:00:00 left \r", + " [ 6497 / 10000 ] 65% - 0:00:00 left \r", + " [ 6498 / 10000 ] 65% - 0:00:00 left \r", + " [ 6499 / 10000 ] 65% - 0:00:00 left \r", + " [ 6500 / 10000 ] 65% - 0:00:00 left \r", + " [ 6501 / 10000 ] 65% - 0:00:00 left \r", + " [ 6502 / 10000 ] 65% - 0:00:00 left \r", + " [ 6503 / 10000 ] 65% - 0:00:00 left \r", + " [ 6504 / 10000 ] 65% - 0:00:00 left \r", + " [ 6505 / 10000 ] 65% - 0:00:00 left \r", + " [ 6506 / 10000 ] 65% - 0:00:00 left \r", + " [ 6507 / 10000 ] 65% - 0:00:00 left \r", + " [ 6508 / 10000 ] 65% - 0:00:00 left \r", + " [ 6509 / 10000 ] 65% - 0:00:00 left \r", + " [ 6510 / 10000 ] 65% - 0:00:00 left \r", + " [ 6511 / 10000 ] 65% - 0:00:00 left \r", + " [ 6512 / 10000 ] 65% - 0:00:00 left \r", + " [ 6513 / 10000 ] 65% - 0:00:00 left \r", + " [ 6514 / 10000 ] 65% - 0:00:00 left \r", + " [ 6515 / 10000 ] 65% - 0:00:00 left \r", + " [ 6516 / 10000 ] 65% - 0:00:00 left \r", + " [ 6517 / 10000 ] 65% - 0:00:00 left \r", + " [ 6518 / 10000 ] 65% - 0:00:00 left \r", + " [ 6519 / 10000 ] 65% - 0:00:00 left \r", + " [ 6520 / 10000 ] 65% - 0:00:00 left \r", + " [ 6521 / 10000 ] 65% - 0:00:00 left \r", + " [ 6522 / 10000 ] 65% - 0:00:00 left \r", + " [ 6523 / 10000 ] 65% - 0:00:00 left \r", + " [ 6524 / 10000 ] 65% - 0:00:00 left \r", + " [ 6525 / 10000 ] 65% - 0:00:00 left \r", + " [ 6526 / 10000 ] 65% - 0:00:00 left \r", + " [ 6527 / 10000 ] 65% - 0:00:00 left \r", + " [ 6528 / 10000 ] 65% - 0:00:00 left \r", + " [ 6529 / 10000 ] 65% - 0:00:00 left \r", + " [ 6530 / 10000 ] 65% - 0:00:00 left \r", + " [ 6531 / 10000 ] 65% - 0:00:00 left \r", + " [ 6532 / 10000 ] 65% - 0:00:00 left \r", + " [ 6533 / 10000 ] 65% - 0:00:00 left \r", + " [ 6534 / 10000 ] 65% - 0:00:00 left \r", + " [ 6535 / 10000 ] 65% - 0:00:00 left \r", + " [ 6536 / 10000 ] 65% - 0:00:00 left \r", + " [ 6537 / 10000 ] 65% - 0:00:00 left \r", + " [ 6538 / 10000 ] 65% - 0:00:00 left \r", + " [ 6539 / 10000 ] 65% - 0:00:00 left \r", + " [ 6540 / 10000 ] 65% - 0:00:00 left \r", + " [ 6541 / 10000 ] 65% - 0:00:00 left \r", + " [ 6542 / 10000 ] 65% - 0:00:00 left \r", + " [ 6543 / 10000 ] 65% - 0:00:00 left \r", + " [ 6544 / 10000 ] 65% - 0:00:00 left \r", + " [ 6545 / 10000 ] 65% - 0:00:00 left \r", + " [ 6546 / 10000 ] 65% - 0:00:00 left \r", + " [ 6547 / 10000 ] 65% - 0:00:00 left \r", + " [ 6548 / 10000 ] 65% - 0:00:00 left \r", + " [ 6549 / 10000 ] 65% - 0:00:00 left \r", + " [ 6550 / 10000 ] 66% - 0:00:00 left \r", + " [ 6551 / 10000 ] 66% - 0:00:00 left \r", + " [ 6552 / 10000 ] 66% - 0:00:00 left \r", + " [ 6553 / 10000 ] 66% - 0:00:00 left \r", + " [ 6554 / 10000 ] 66% - 0:00:00 left \r", + " [ 6555 / 10000 ] 66% - 0:00:00 left \r", + " [ 6556 / 10000 ] 66% - 0:00:00 left \r", + " [ 6557 / 10000 ] 66% - 0:00:00 left \r", + " [ 6558 / 10000 ] 66% - 0:00:00 left \r", + " [ 6559 / 10000 ] 66% - 0:00:00 left \r", + " [ 6560 / 10000 ] 66% - 0:00:00 left \r", + " [ 6561 / 10000 ] 66% - 0:00:00 left \r", + " [ 6562 / 10000 ] 66% - 0:00:00 left \r", + " [ 6563 / 10000 ] 66% - 0:00:00 left \r", + " [ 6564 / 10000 ] 66% - 0:00:00 left \r", + " [ 6565 / 10000 ] 66% - 0:00:00 left \r", + " [ 6566 / 10000 ] 66% - 0:00:00 left \r", + " [ 6567 / 10000 ] 66% - 0:00:00 left \r", + " [ 6568 / 10000 ] 66% - 0:00:00 left \r", + " [ 6569 / 10000 ] 66% - 0:00:00 left \r", + " [ 6570 / 10000 ] 66% - 0:00:00 left \r", + " [ 6571 / 10000 ] 66% - 0:00:00 left \r", + " [ 6572 / 10000 ] 66% - 0:00:00 left \r", + " [ 6573 / 10000 ] 66% - 0:00:00 left \r", + " [ 6574 / 10000 ] 66% - 0:00:00 left \r", + " [ 6575 / 10000 ] 66% - 0:00:00 left \r", + " [ 6576 / 10000 ] 66% - 0:00:00 left \r", + " [ 6577 / 10000 ] 66% - 0:00:00 left \r", + " [ 6578 / 10000 ] 66% - 0:00:00 left \r", + " [ 6579 / 10000 ] 66% - 0:00:00 left \r", + " [ 6580 / 10000 ] 66% - 0:00:00 left \r", + " [ 6581 / 10000 ] 66% - 0:00:00 left \r", + " [ 6582 / 10000 ] 66% - 0:00:00 left \r", + " [ 6583 / 10000 ] 66% - 0:00:00 left \r", + " [ 6584 / 10000 ] 66% - 0:00:00 left \r", + " [ 6585 / 10000 ] 66% - 0:00:00 left \r", + " [ 6586 / 10000 ] 66% - 0:00:00 left \r", + " [ 6587 / 10000 ] 66% - 0:00:00 left \r", + " [ 6588 / 10000 ] 66% - 0:00:00 left \r", + " [ 6589 / 10000 ] 66% - 0:00:00 left \r", + " [ 6590 / 10000 ] 66% - 0:00:00 left \r", + " [ 6591 / 10000 ] 66% - 0:00:00 left \r", + " [ 6592 / 10000 ] 66% - 0:00:00 left \r", + " [ 6593 / 10000 ] 66% - 0:00:00 left \r", + " [ 6594 / 10000 ] 66% - 0:00:00 left \r", + " [ 6595 / 10000 ] 66% - 0:00:00 left \r", + " [ 6596 / 10000 ] 66% - 0:00:00 left \r", + " [ 6597 / 10000 ] 66% - 0:00:00 left \r", + " [ 6598 / 10000 ] 66% - 0:00:00 left \r", + " [ 6599 / 10000 ] 66% - 0:00:00 left \r", + " [ 6600 / 10000 ] 66% - 0:00:00 left \r", + " [ 6601 / 10000 ] 66% - 0:00:00 left \r", + " [ 6602 / 10000 ] 66% - 0:00:00 left \r", + " [ 6603 / 10000 ] 66% - 0:00:00 left \r", + " [ 6604 / 10000 ] 66% - 0:00:00 left \r", + " [ 6605 / 10000 ] 66% - 0:00:00 left \r", + " [ 6606 / 10000 ] 66% - 0:00:00 left \r", + " [ 6607 / 10000 ] 66% - 0:00:00 left \r", + " [ 6608 / 10000 ] 66% - 0:00:00 left \r", + " [ 6609 / 10000 ] 66% - 0:00:00 left \r", + " [ 6610 / 10000 ] 66% - 0:00:00 left \r", + " [ 6611 / 10000 ] 66% - 0:00:00 left \r", + " [ 6612 / 10000 ] 66% - 0:00:00 left \r", + " [ 6613 / 10000 ] 66% - 0:00:00 left \r", + " [ 6614 / 10000 ] 66% - 0:00:00 left \r", + " [ 6615 / 10000 ] 66% - 0:00:00 left \r", + " [ 6616 / 10000 ] 66% - 0:00:00 left \r", + " [ 6617 / 10000 ] 66% - 0:00:00 left \r", + " [ 6618 / 10000 ] 66% - 0:00:00 left \r", + " [ 6619 / 10000 ] 66% - 0:00:00 left \r", + " [ 6620 / 10000 ] 66% - 0:00:00 left \r", + " [ 6621 / 10000 ] 66% - 0:00:00 left \r", + " [ 6622 / 10000 ] 66% - 0:00:00 left \r", + " [ 6623 / 10000 ] 66% - 0:00:00 left \r", + " [ 6624 / 10000 ] 66% - 0:00:00 left \r", + " [ 6625 / 10000 ] 66% - 0:00:00 left \r", + " [ 6626 / 10000 ] 66% - 0:00:00 left \r", + " [ 6627 / 10000 ] 66% - 0:00:00 left \r", + " [ 6628 / 10000 ] 66% - 0:00:00 left \r", + " [ 6629 / 10000 ] 66% - 0:00:00 left \r", + " [ 6630 / 10000 ] 66% - 0:00:00 left \r", + " [ 6631 / 10000 ] 66% - 0:00:00 left \r", + " [ 6632 / 10000 ] 66% - 0:00:00 left \r", + " [ 6633 / 10000 ] 66% - 0:00:00 left \r", + " [ 6634 / 10000 ] 66% - 0:00:00 left \r", + " [ 6635 / 10000 ] 66% - 0:00:00 left \r", + " [ 6636 / 10000 ] 66% - 0:00:00 left \r", + " [ 6637 / 10000 ] 66% - 0:00:00 left \r", + " [ 6638 / 10000 ] 66% - 0:00:00 left \r", + " [ 6639 / 10000 ] 66% - 0:00:00 left \r", + " [ 6640 / 10000 ] 66% - 0:00:00 left \r", + " [ 6641 / 10000 ] 66% - 0:00:00 left \r", + " [ 6642 / 10000 ] 66% - 0:00:00 left \r", + " [ 6643 / 10000 ] 66% - 0:00:00 left \r", + " [ 6644 / 10000 ] 66% - 0:00:00 left \r", + " [ 6645 / 10000 ] 66% - 0:00:00 left \r", + " [ 6646 / 10000 ] 66% - 0:00:00 left \r", + " [ 6647 / 10000 ] 66% - 0:00:00 left \r", + " [ 6648 / 10000 ] 66% - 0:00:00 left \r", + " [ 6649 / 10000 ] 66% - 0:00:00 left \r", + " [ 6650 / 10000 ] 66% - 0:00:00 left \r", + " [ 6651 / 10000 ] 67% - 0:00:00 left \r", + " [ 6652 / 10000 ] 67% - 0:00:00 left \r", + " [ 6653 / 10000 ] 67% - 0:00:00 left \r", + " [ 6654 / 10000 ] 67% - 0:00:00 left \r", + " [ 6655 / 10000 ] 67% - 0:00:00 left \r", + " [ 6656 / 10000 ] 67% - 0:00:00 left \r", + " [ 6657 / 10000 ] 67% - 0:00:00 left \r", + " [ 6658 / 10000 ] 67% - 0:00:00 left \r", + " [ 6659 / 10000 ] 67% - 0:00:00 left \r", + " [ 6660 / 10000 ] 67% - 0:00:00 left \r", + " [ 6661 / 10000 ] 67% - 0:00:00 left \r", + " [ 6662 / 10000 ] 67% - 0:00:00 left \r", + " [ 6663 / 10000 ] 67% - 0:00:00 left \r", + " [ 6664 / 10000 ] 67% - 0:00:00 left \r", + " [ 6665 / 10000 ] 67% - 0:00:00 left \r", + " [ 6666 / 10000 ] 67% - 0:00:00 left \r", + " [ 6667 / 10000 ] 67% - 0:00:00 left \r", + " [ 6668 / 10000 ] 67% - 0:00:00 left \r", + " [ 6669 / 10000 ] 67% - 0:00:00 left \r", + " [ 6670 / 10000 ] 67% - 0:00:00 left \r", + " [ 6671 / 10000 ] 67% - 0:00:00 left \r", + " [ 6672 / 10000 ] 67% - 0:00:00 left \r", + " [ 6673 / 10000 ] 67% - 0:00:00 left \r", + " [ 6674 / 10000 ] 67% - 0:00:00 left \r", + " [ 6675 / 10000 ] 67% - 0:00:00 left \r", + " [ 6676 / 10000 ] 67% - 0:00:00 left \r", + " [ 6677 / 10000 ] 67% - 0:00:00 left \r", + " [ 6678 / 10000 ] 67% - 0:00:00 left \r", + " [ 6679 / 10000 ] 67% - 0:00:00 left \r", + " [ 6680 / 10000 ] 67% - 0:00:00 left \r", + " [ 6681 / 10000 ] 67% - 0:00:00 left \r", + " [ 6682 / 10000 ] 67% - 0:00:00 left \r", + " [ 6683 / 10000 ] 67% - 0:00:00 left \r", + " [ 6684 / 10000 ] 67% - 0:00:00 left \r", + " [ 6685 / 10000 ] 67% - 0:00:00 left \r", + " [ 6686 / 10000 ] 67% - 0:00:00 left \r", + " [ 6687 / 10000 ] 67% - 0:00:00 left \r", + " [ 6688 / 10000 ] 67% - 0:00:00 left \r", + " [ 6689 / 10000 ] 67% - 0:00:00 left \r", + " [ 6690 / 10000 ] 67% - 0:00:00 left \r", + " [ 6691 / 10000 ] 67% - 0:00:00 left \r", + " [ 6692 / 10000 ] 67% - 0:00:00 left \r", + " [ 6693 / 10000 ] 67% - 0:00:00 left \r", + " [ 6694 / 10000 ] 67% - 0:00:00 left \r", + " [ 6695 / 10000 ] 67% - 0:00:00 left \r", + " [ 6696 / 10000 ] 67% - 0:00:00 left \r", + " [ 6697 / 10000 ] 67% - 0:00:00 left \r", + " [ 6698 / 10000 ] 67% - 0:00:00 left \r", + " [ 6699 / 10000 ] 67% - 0:00:00 left \r", + " [ 6700 / 10000 ] 67% - 0:00:00 left \r", + " [ 6701 / 10000 ] 67% - 0:00:00 left \r", + " [ 6702 / 10000 ] 67% - 0:00:00 left \r", + " [ 6703 / 10000 ] 67% - 0:00:00 left \r", + " [ 6704 / 10000 ] 67% - 0:00:00 left \r", + " [ 6705 / 10000 ] 67% - 0:00:00 left \r", + " [ 6706 / 10000 ] 67% - 0:00:00 left \r", + " [ 6707 / 10000 ] 67% - 0:00:00 left \r", + " [ 6708 / 10000 ] 67% - 0:00:00 left \r", + " [ 6709 / 10000 ] 67% - 0:00:00 left \r", + " [ 6710 / 10000 ] 67% - 0:00:00 left \r", + " [ 6711 / 10000 ] 67% - 0:00:00 left \r", + " [ 6712 / 10000 ] 67% - 0:00:00 left \r", + " [ 6713 / 10000 ] 67% - 0:00:00 left \r", + " [ 6714 / 10000 ] 67% - 0:00:00 left \r", + " [ 6715 / 10000 ] 67% - 0:00:00 left \r", + " [ 6716 / 10000 ] 67% - 0:00:00 left \r", + " [ 6717 / 10000 ] 67% - 0:00:00 left \r", + " [ 6718 / 10000 ] 67% - 0:00:00 left \r", + " [ 6719 / 10000 ] 67% - 0:00:00 left \r", + " [ 6720 / 10000 ] 67% - 0:00:00 left \r", + " [ 6721 / 10000 ] 67% - 0:00:00 left \r", + " [ 6722 / 10000 ] 67% - 0:00:00 left \r", + " [ 6723 / 10000 ] 67% - 0:00:00 left \r", + " [ 6724 / 10000 ] 67% - 0:00:00 left \r", + " [ 6725 / 10000 ] 67% - 0:00:00 left \r", + " [ 6726 / 10000 ] 67% - 0:00:00 left \r", + " [ 6727 / 10000 ] 67% - 0:00:00 left \r", + " [ 6728 / 10000 ] 67% - 0:00:00 left \r", + " [ 6729 / 10000 ] 67% - 0:00:00 left \r", + " [ 6730 / 10000 ] 67% - 0:00:00 left \r", + " [ 6731 / 10000 ] 67% - 0:00:00 left \r", + " [ 6732 / 10000 ] 67% - 0:00:00 left \r", + " [ 6733 / 10000 ] 67% - 0:00:00 left \r", + " [ 6734 / 10000 ] 67% - 0:00:00 left \r", + " [ 6735 / 10000 ] 67% - 0:00:00 left \r", + " [ 6736 / 10000 ] 67% - 0:00:00 left \r", + " [ 6737 / 10000 ] 67% - 0:00:00 left \r", + " [ 6738 / 10000 ] 67% - 0:00:00 left \r", + " [ 6739 / 10000 ] 67% - 0:00:00 left \r", + " [ 6740 / 10000 ] 67% - 0:00:00 left \r", + " [ 6741 / 10000 ] 67% - 0:00:00 left \r", + " [ 6742 / 10000 ] 67% - 0:00:00 left \r", + " [ 6743 / 10000 ] 67% - 0:00:00 left \r", + " [ 6744 / 10000 ] 67% - 0:00:00 left \r", + " [ 6745 / 10000 ] 67% - 0:00:00 left \r", + " [ 6746 / 10000 ] 67% - 0:00:00 left \r", + " [ 6747 / 10000 ] 67% - 0:00:00 left \r", + " [ 6748 / 10000 ] 67% - 0:00:00 left \r", + " [ 6749 / 10000 ] 67% - 0:00:00 left \r", + " [ 6750 / 10000 ] 68% - 0:00:00 left \r", + " [ 6751 / 10000 ] 68% - 0:00:00 left \r", + " [ 6752 / 10000 ] 68% - 0:00:00 left \r", + " [ 6753 / 10000 ] 68% - 0:00:00 left \r", + " [ 6754 / 10000 ] 68% - 0:00:00 left \r", + " [ 6755 / 10000 ] 68% - 0:00:00 left \r", + " [ 6756 / 10000 ] 68% - 0:00:00 left \r", + " [ 6757 / 10000 ] 68% - 0:00:00 left \r", + " [ 6758 / 10000 ] 68% - 0:00:00 left \r", + " [ 6759 / 10000 ] 68% - 0:00:00 left \r", + " [ 6760 / 10000 ] 68% - 0:00:00 left \r", + " [ 6761 / 10000 ] 68% - 0:00:00 left \r", + " [ 6762 / 10000 ] 68% - 0:00:00 left \r", + " [ 6763 / 10000 ] 68% - 0:00:00 left \r", + " [ 6764 / 10000 ] 68% - 0:00:00 left \r", + " [ 6765 / 10000 ] 68% - 0:00:00 left \r", + " [ 6766 / 10000 ] 68% - 0:00:00 left \r", + " [ 6767 / 10000 ] 68% - 0:00:00 left \r", + " [ 6768 / 10000 ] 68% - 0:00:00 left \r", + " [ 6769 / 10000 ] 68% - 0:00:00 left \r", + " [ 6770 / 10000 ] 68% - 0:00:00 left \r", + " [ 6771 / 10000 ] 68% - 0:00:00 left \r", + " [ 6772 / 10000 ] 68% - 0:00:00 left \r", + " [ 6773 / 10000 ] 68% - 0:00:00 left \r", + " [ 6774 / 10000 ] 68% - 0:00:00 left \r", + " [ 6775 / 10000 ] 68% - 0:00:00 left \r", + " [ 6776 / 10000 ] 68% - 0:00:00 left \r", + " [ 6777 / 10000 ] 68% - 0:00:00 left \r", + " [ 6778 / 10000 ] 68% - 0:00:00 left \r", + " [ 6779 / 10000 ] 68% - 0:00:00 left \r", + " [ 6780 / 10000 ] 68% - 0:00:00 left \r", + " [ 6781 / 10000 ] 68% - 0:00:00 left \r", + " [ 6782 / 10000 ] 68% - 0:00:00 left \r", + " [ 6783 / 10000 ] 68% - 0:00:00 left \r", + " [ 6784 / 10000 ] 68% - 0:00:00 left \r", + " [ 6785 / 10000 ] 68% - 0:00:00 left \r", + " [ 6786 / 10000 ] 68% - 0:00:00 left \r", + " [ 6787 / 10000 ] 68% - 0:00:00 left \r", + " [ 6788 / 10000 ] 68% - 0:00:00 left \r", + " [ 6789 / 10000 ] 68% - 0:00:00 left \r", + " [ 6790 / 10000 ] 68% - 0:00:00 left \r", + " [ 6791 / 10000 ] 68% - 0:00:00 left \r", + " [ 6792 / 10000 ] 68% - 0:00:00 left \r", + " [ 6793 / 10000 ] 68% - 0:00:00 left \r", + " [ 6794 / 10000 ] 68% - 0:00:00 left \r", + " [ 6795 / 10000 ] 68% - 0:00:00 left \r", + " [ 6796 / 10000 ] 68% - 0:00:00 left \r", + " [ 6797 / 10000 ] 68% - 0:00:00 left \r", + " [ 6798 / 10000 ] 68% - 0:00:00 left \r", + " [ 6799 / 10000 ] 68% - 0:00:00 left \r", + " [ 6800 / 10000 ] 68% - 0:00:00 left \r", + " [ 6801 / 10000 ] 68% - 0:00:00 left \r", + " [ 6802 / 10000 ] 68% - 0:00:00 left \r", + " [ 6803 / 10000 ] 68% - 0:00:00 left \r", + " [ 6804 / 10000 ] 68% - 0:00:00 left \r", + " [ 6805 / 10000 ] 68% - 0:00:00 left \r", + " [ 6806 / 10000 ] 68% - 0:00:00 left \r", + " [ 6807 / 10000 ] 68% - 0:00:00 left \r", + " [ 6808 / 10000 ] 68% - 0:00:00 left \r", + " [ 6809 / 10000 ] 68% - 0:00:00 left \r", + " [ 6810 / 10000 ] 68% - 0:00:00 left \r", + " [ 6811 / 10000 ] 68% - 0:00:00 left \r", + " [ 6812 / 10000 ] 68% - 0:00:00 left \r", + " [ 6813 / 10000 ] 68% - 0:00:00 left \r", + " [ 6814 / 10000 ] 68% - 0:00:00 left \r", + " [ 6815 / 10000 ] 68% - 0:00:00 left \r", + " [ 6816 / 10000 ] 68% - 0:00:00 left \r", + " [ 6817 / 10000 ] 68% - 0:00:00 left \r", + " [ 6818 / 10000 ] 68% - 0:00:00 left \r", + " [ 6819 / 10000 ] 68% - 0:00:00 left \r", + " [ 6820 / 10000 ] 68% - 0:00:00 left \r", + " [ 6821 / 10000 ] 68% - 0:00:00 left \r", + " [ 6822 / 10000 ] 68% - 0:00:00 left \r", + " [ 6823 / 10000 ] 68% - 0:00:00 left \r", + " [ 6824 / 10000 ] 68% - 0:00:00 left \r", + " [ 6825 / 10000 ] 68% - 0:00:00 left \r", + " [ 6826 / 10000 ] 68% - 0:00:00 left \r", + " [ 6827 / 10000 ] 68% - 0:00:00 left \r", + " [ 6828 / 10000 ] 68% - 0:00:00 left \r", + " [ 6829 / 10000 ] 68% - 0:00:00 left \r", + " [ 6830 / 10000 ] 68% - 0:00:00 left \r", + " [ 6831 / 10000 ] 68% - 0:00:00 left \r", + " [ 6832 / 10000 ] 68% - 0:00:00 left \r", + " [ 6833 / 10000 ] 68% - 0:00:00 left \r", + " [ 6834 / 10000 ] 68% - 0:00:00 left \r", + " [ 6835 / 10000 ] 68% - 0:00:00 left \r", + " [ 6836 / 10000 ] 68% - 0:00:00 left \r", + " [ 6837 / 10000 ] 68% - 0:00:00 left \r", + " [ 6838 / 10000 ] 68% - 0:00:00 left \r", + " [ 6839 / 10000 ] 68% - 0:00:00 left \r", + " [ 6840 / 10000 ] 68% - 0:00:00 left \r", + " [ 6841 / 10000 ] 68% - 0:00:00 left \r", + " [ 6842 / 10000 ] 68% - 0:00:00 left \r", + " [ 6843 / 10000 ] 68% - 0:00:00 left \r", + " [ 6844 / 10000 ] 68% - 0:00:00 left \r", + " [ 6845 / 10000 ] 68% - 0:00:00 left \r", + " [ 6846 / 10000 ] 68% - 0:00:00 left \r", + " [ 6847 / 10000 ] 68% - 0:00:00 left \r", + " [ 6848 / 10000 ] 68% - 0:00:00 left \r", + " [ 6849 / 10000 ] 68% - 0:00:00 left \r", + " [ 6850 / 10000 ] 68% - 0:00:00 left \r", + " [ 6851 / 10000 ] 69% - 0:00:00 left \r", + " [ 6852 / 10000 ] 69% - 0:00:00 left \r", + " [ 6853 / 10000 ] 69% - 0:00:00 left \r", + " [ 6854 / 10000 ] 69% - 0:00:00 left \r", + " [ 6855 / 10000 ] 69% - 0:00:00 left \r", + " [ 6856 / 10000 ] 69% - 0:00:00 left \r", + " [ 6857 / 10000 ] 69% - 0:00:00 left \r", + " [ 6858 / 10000 ] 69% - 0:00:00 left \r", + " [ 6859 / 10000 ] 69% - 0:00:00 left \r", + " [ 6860 / 10000 ] 69% - 0:00:00 left \r", + " [ 6861 / 10000 ] 69% - 0:00:00 left \r", + " [ 6862 / 10000 ] 69% - 0:00:00 left \r", + " [ 6863 / 10000 ] 69% - 0:00:00 left \r", + " [ 6864 / 10000 ] 69% - 0:00:00 left \r", + " [ 6865 / 10000 ] 69% - 0:00:00 left \r", + " [ 6866 / 10000 ] 69% - 0:00:00 left \r", + " [ 6867 / 10000 ] 69% - 0:00:00 left \r", + " [ 6868 / 10000 ] 69% - 0:00:00 left \r", + " [ 6869 / 10000 ] 69% - 0:00:00 left \r", + " [ 6870 / 10000 ] 69% - 0:00:00 left \r", + " [ 6871 / 10000 ] 69% - 0:00:00 left \r", + " [ 6872 / 10000 ] 69% - 0:00:00 left \r", + " [ 6873 / 10000 ] 69% - 0:00:00 left \r", + " [ 6874 / 10000 ] 69% - 0:00:00 left \r", + " [ 6875 / 10000 ] 69% - 0:00:00 left \r", + " [ 6876 / 10000 ] 69% - 0:00:00 left \r", + " [ 6877 / 10000 ] 69% - 0:00:00 left \r", + " [ 6878 / 10000 ] 69% - 0:00:00 left \r", + " [ 6879 / 10000 ] 69% - 0:00:00 left \r", + " [ 6880 / 10000 ] 69% - 0:00:00 left \r", + " [ 6881 / 10000 ] 69% - 0:00:00 left \r", + " [ 6882 / 10000 ] 69% - 0:00:00 left \r", + " [ 6883 / 10000 ] 69% - 0:00:00 left \r", + " [ 6884 / 10000 ] 69% - 0:00:00 left \r", + " [ 6885 / 10000 ] 69% - 0:00:00 left \r", + " [ 6886 / 10000 ] 69% - 0:00:00 left \r", + " [ 6887 / 10000 ] 69% - 0:00:00 left \r", + " [ 6888 / 10000 ] 69% - 0:00:00 left \r", + " [ 6889 / 10000 ] 69% - 0:00:00 left \r", + " [ 6890 / 10000 ] 69% - 0:00:00 left \r", + " [ 6891 / 10000 ] 69% - 0:00:00 left \r", + " [ 6892 / 10000 ] 69% - 0:00:00 left \r", + " [ 6893 / 10000 ] 69% - 0:00:00 left \r", + " [ 6894 / 10000 ] 69% - 0:00:00 left \r", + " [ 6895 / 10000 ] 69% - 0:00:00 left \r", + " [ 6896 / 10000 ] 69% - 0:00:00 left \r", + " [ 6897 / 10000 ] 69% - 0:00:00 left \r", + " [ 6898 / 10000 ] 69% - 0:00:00 left \r", + " [ 6899 / 10000 ] 69% - 0:00:00 left \r", + " [ 6900 / 10000 ] 69% - 0:00:00 left \r", + " [ 6901 / 10000 ] 69% - 0:00:00 left \r", + " [ 6902 / 10000 ] 69% - 0:00:00 left \r", + " [ 6903 / 10000 ] 69% - 0:00:00 left \r", + " [ 6904 / 10000 ] 69% - 0:00:00 left \r", + " [ 6905 / 10000 ] 69% - 0:00:00 left \r", + " [ 6906 / 10000 ] 69% - 0:00:00 left \r", + " [ 6907 / 10000 ] 69% - 0:00:00 left \r", + " [ 6908 / 10000 ] 69% - 0:00:00 left \r", + " [ 6909 / 10000 ] 69% - 0:00:00 left \r", + " [ 6910 / 10000 ] 69% - 0:00:00 left \r", + " [ 6911 / 10000 ] 69% - 0:00:00 left \r", + " [ 6912 / 10000 ] 69% - 0:00:00 left \r", + " [ 6913 / 10000 ] 69% - 0:00:00 left \r", + " [ 6914 / 10000 ] 69% - 0:00:00 left \r", + " [ 6915 / 10000 ] 69% - 0:00:00 left \r", + " [ 6916 / 10000 ] 69% - 0:00:00 left \r", + " [ 6917 / 10000 ] 69% - 0:00:00 left \r", + " [ 6918 / 10000 ] 69% - 0:00:00 left \r", + " [ 6919 / 10000 ] 69% - 0:00:00 left \r", + " [ 6920 / 10000 ] 69% - 0:00:00 left \r", + " [ 6921 / 10000 ] 69% - 0:00:00 left \r", + " [ 6922 / 10000 ] 69% - 0:00:00 left \r", + " [ 6923 / 10000 ] 69% - 0:00:00 left \r", + " [ 6924 / 10000 ] 69% - 0:00:00 left \r", + " [ 6925 / 10000 ] 69% - 0:00:00 left \r", + " [ 6926 / 10000 ] 69% - 0:00:00 left \r", + " [ 6927 / 10000 ] 69% - 0:00:00 left \r", + " [ 6928 / 10000 ] 69% - 0:00:00 left \r", + " [ 6929 / 10000 ] 69% - 0:00:00 left \r", + " [ 6930 / 10000 ] 69% - 0:00:00 left \r", + " [ 6931 / 10000 ] 69% - 0:00:00 left \r", + " [ 6932 / 10000 ] 69% - 0:00:00 left \r", + " [ 6933 / 10000 ] 69% - 0:00:00 left \r", + " [ 6934 / 10000 ] 69% - 0:00:00 left \r", + " [ 6935 / 10000 ] 69% - 0:00:00 left \r", + " [ 6936 / 10000 ] 69% - 0:00:00 left \r", + " [ 6937 / 10000 ] 69% - 0:00:00 left \r", + " [ 6938 / 10000 ] 69% - 0:00:00 left \r", + " [ 6939 / 10000 ] 69% - 0:00:00 left \r", + " [ 6940 / 10000 ] 69% - 0:00:00 left \r", + " [ 6941 / 10000 ] 69% - 0:00:00 left \r", + " [ 6942 / 10000 ] 69% - 0:00:00 left \r", + " [ 6943 / 10000 ] 69% - 0:00:00 left \r", + " [ 6944 / 10000 ] 69% - 0:00:00 left \r", + " [ 6945 / 10000 ] 69% - 0:00:00 left \r", + " [ 6946 / 10000 ] 69% - 0:00:00 left \r", + " [ 6947 / 10000 ] 69% - 0:00:00 left \r", + " [ 6948 / 10000 ] 69% - 0:00:00 left \r", + " [ 6949 / 10000 ] 69% - 0:00:00 left \r", + " [ 6950 / 10000 ] 70% - 0:00:00 left \r", + " [ 6951 / 10000 ] 70% - 0:00:00 left \r", + " [ 6952 / 10000 ] 70% - 0:00:00 left \r", + " [ 6953 / 10000 ] 70% - 0:00:00 left \r", + " [ 6954 / 10000 ] 70% - 0:00:00 left \r", + " [ 6955 / 10000 ] 70% - 0:00:00 left \r", + " [ 6956 / 10000 ] 70% - 0:00:00 left \r", + " [ 6957 / 10000 ] 70% - 0:00:00 left \r", + " [ 6958 / 10000 ] 70% - 0:00:00 left \r", + " [ 6959 / 10000 ] 70% - 0:00:00 left \r", + " [ 6960 / 10000 ] 70% - 0:00:00 left \r", + " [ 6961 / 10000 ] 70% - 0:00:00 left \r", + " [ 6962 / 10000 ] 70% - 0:00:00 left \r", + " [ 6963 / 10000 ] 70% - 0:00:00 left \r", + " [ 6964 / 10000 ] 70% - 0:00:00 left \r", + " [ 6965 / 10000 ] 70% - 0:00:00 left \r", + " [ 6966 / 10000 ] 70% - 0:00:00 left \r", + " [ 6967 / 10000 ] 70% - 0:00:00 left \r", + " [ 6968 / 10000 ] 70% - 0:00:00 left \r", + " [ 6969 / 10000 ] 70% - 0:00:00 left \r", + " [ 6970 / 10000 ] 70% - 0:00:00 left \r", + " [ 6971 / 10000 ] 70% - 0:00:00 left \r", + " [ 6972 / 10000 ] 70% - 0:00:00 left \r", + " [ 6973 / 10000 ] 70% - 0:00:00 left \r", + " [ 6974 / 10000 ] 70% - 0:00:00 left \r", + " [ 6975 / 10000 ] 70% - 0:00:00 left \r", + " [ 6976 / 10000 ] 70% - 0:00:00 left \r", + " [ 6977 / 10000 ] 70% - 0:00:00 left \r", + " [ 6978 / 10000 ] 70% - 0:00:00 left \r", + " [ 6979 / 10000 ] 70% - 0:00:00 left \r", + " [ 6980 / 10000 ] 70% - 0:00:00 left \r", + " [ 6981 / 10000 ] 70% - 0:00:00 left \r", + " [ 6982 / 10000 ] 70% - 0:00:00 left \r", + " [ 6983 / 10000 ] 70% - 0:00:00 left \r", + " [ 6984 / 10000 ] 70% - 0:00:00 left \r", + " [ 6985 / 10000 ] 70% - 0:00:00 left \r", + " [ 6986 / 10000 ] 70% - 0:00:00 left \r", + " [ 6987 / 10000 ] 70% - 0:00:00 left \r", + " [ 6988 / 10000 ] 70% - 0:00:00 left \r", + " [ 6989 / 10000 ] 70% - 0:00:00 left \r", + " [ 6990 / 10000 ] 70% - 0:00:00 left \r", + " [ 6991 / 10000 ] 70% - 0:00:00 left \r", + " [ 6992 / 10000 ] 70% - 0:00:00 left \r", + " [ 6993 / 10000 ] 70% - 0:00:00 left \r", + " [ 6994 / 10000 ] 70% - 0:00:00 left \r", + " [ 6995 / 10000 ] 70% - 0:00:00 left \r", + " [ 6996 / 10000 ] 70% - 0:00:00 left \r", + " [ 6997 / 10000 ] 70% - 0:00:00 left \r", + " [ 6998 / 10000 ] 70% - 0:00:00 left \r", + " [ 6999 / 10000 ] 70% - 0:00:00 left \r", + " [ 7000 / 10000 ] 70% - 0:00:00 left \r", + " [ 7001 / 10000 ] 70% - 0:00:00 left \r", + " [ 7002 / 10000 ] 70% - 0:00:00 left \r", + " [ 7003 / 10000 ] 70% - 0:00:00 left \r", + " [ 7004 / 10000 ] 70% - 0:00:00 left \r", + " [ 7005 / 10000 ] 70% - 0:00:00 left \r", + " [ 7006 / 10000 ] 70% - 0:00:00 left \r", + " [ 7007 / 10000 ] 70% - 0:00:00 left \r", + " [ 7008 / 10000 ] 70% - 0:00:00 left \r", + " [ 7009 / 10000 ] 70% - 0:00:00 left \r", + " [ 7010 / 10000 ] 70% - 0:00:00 left \r", + " [ 7011 / 10000 ] 70% - 0:00:00 left \r", + " [ 7012 / 10000 ] 70% - 0:00:00 left \r", + " [ 7013 / 10000 ] 70% - 0:00:00 left \r", + " [ 7014 / 10000 ] 70% - 0:00:00 left \r", + " [ 7015 / 10000 ] 70% - 0:00:00 left \r", + " [ 7016 / 10000 ] 70% - 0:00:00 left \r", + " [ 7017 / 10000 ] 70% - 0:00:00 left \r", + " [ 7018 / 10000 ] 70% - 0:00:00 left \r", + " [ 7019 / 10000 ] 70% - 0:00:00 left \r", + " [ 7020 / 10000 ] 70% - 0:00:00 left \r", + " [ 7021 / 10000 ] 70% - 0:00:00 left \r", + " [ 7022 / 10000 ] 70% - 0:00:00 left \r", + " [ 7023 / 10000 ] 70% - 0:00:00 left \r", + " [ 7024 / 10000 ] 70% - 0:00:00 left \r", + " [ 7025 / 10000 ] 70% - 0:00:00 left \r", + " [ 7026 / 10000 ] 70% - 0:00:00 left \r", + " [ 7027 / 10000 ] 70% - 0:00:00 left \r", + " [ 7028 / 10000 ] 70% - 0:00:00 left \r", + " [ 7029 / 10000 ] 70% - 0:00:00 left \r", + " [ 7030 / 10000 ] 70% - 0:00:00 left \r", + " [ 7031 / 10000 ] 70% - 0:00:00 left \r", + " [ 7032 / 10000 ] 70% - 0:00:00 left \r", + " [ 7033 / 10000 ] 70% - 0:00:00 left \r", + " [ 7034 / 10000 ] 70% - 0:00:00 left \r", + " [ 7035 / 10000 ] 70% - 0:00:00 left \r", + " [ 7036 / 10000 ] 70% - 0:00:00 left \r", + " [ 7037 / 10000 ] 70% - 0:00:00 left \r", + " [ 7038 / 10000 ] 70% - 0:00:00 left \r", + " [ 7039 / 10000 ] 70% - 0:00:00 left \r", + " [ 7040 / 10000 ] 70% - 0:00:00 left \r", + " [ 7041 / 10000 ] 70% - 0:00:00 left \r", + " [ 7042 / 10000 ] 70% - 0:00:00 left \r", + " [ 7043 / 10000 ] 70% - 0:00:00 left \r", + " [ 7044 / 10000 ] 70% - 0:00:00 left \r", + " [ 7045 / 10000 ] 70% - 0:00:00 left \r", + " [ 7046 / 10000 ] 70% - 0:00:00 left \r", + " [ 7047 / 10000 ] 70% - 0:00:00 left \r", + " [ 7048 / 10000 ] 70% - 0:00:00 left \r", + " [ 7049 / 10000 ] 70% - 0:00:00 left \r", + " [ 7050 / 10000 ] 70% - 0:00:00 left \r", + " [ 7051 / 10000 ] 71% - 0:00:00 left \r", + " [ 7052 / 10000 ] 71% - 0:00:00 left \r", + " [ 7053 / 10000 ] 71% - 0:00:00 left \r", + " [ 7054 / 10000 ] 71% - 0:00:00 left \r", + " [ 7055 / 10000 ] 71% - 0:00:00 left \r", + " [ 7056 / 10000 ] 71% - 0:00:00 left \r", + " [ 7057 / 10000 ] 71% - 0:00:00 left \r", + " [ 7058 / 10000 ] 71% - 0:00:00 left \r", + " [ 7059 / 10000 ] 71% - 0:00:00 left \r", + " [ 7060 / 10000 ] 71% - 0:00:00 left \r", + " [ 7061 / 10000 ] 71% - 0:00:00 left \r", + " [ 7062 / 10000 ] 71% - 0:00:00 left \r", + " [ 7063 / 10000 ] 71% - 0:00:00 left \r", + " [ 7064 / 10000 ] 71% - 0:00:00 left \r", + " [ 7065 / 10000 ] 71% - 0:00:00 left \r", + " [ 7066 / 10000 ] 71% - 0:00:00 left \r", + " [ 7067 / 10000 ] 71% - 0:00:00 left \r", + " [ 7068 / 10000 ] 71% - 0:00:00 left \r", + " [ 7069 / 10000 ] 71% - 0:00:00 left \r", + " [ 7070 / 10000 ] 71% - 0:00:00 left \r", + " [ 7071 / 10000 ] 71% - 0:00:00 left \r", + " [ 7072 / 10000 ] 71% - 0:00:00 left \r", + " [ 7073 / 10000 ] 71% - 0:00:00 left \r", + " [ 7074 / 10000 ] 71% - 0:00:00 left \r", + " [ 7075 / 10000 ] 71% - 0:00:00 left \r", + " [ 7076 / 10000 ] 71% - 0:00:00 left \r", + " [ 7077 / 10000 ] 71% - 0:00:00 left \r", + " [ 7078 / 10000 ] 71% - 0:00:00 left \r", + " [ 7079 / 10000 ] 71% - 0:00:00 left \r", + " [ 7080 / 10000 ] 71% - 0:00:00 left \r", + " [ 7081 / 10000 ] 71% - 0:00:00 left \r", + " [ 7082 / 10000 ] 71% - 0:00:00 left \r", + " [ 7083 / 10000 ] 71% - 0:00:00 left \r", + " [ 7084 / 10000 ] 71% - 0:00:00 left \r", + " [ 7085 / 10000 ] 71% - 0:00:00 left \r", + " [ 7086 / 10000 ] 71% - 0:00:00 left \r", + " [ 7087 / 10000 ] 71% - 0:00:00 left \r", + " [ 7088 / 10000 ] 71% - 0:00:00 left \r", + " [ 7089 / 10000 ] 71% - 0:00:00 left \r", + " [ 7090 / 10000 ] 71% - 0:00:00 left \r", + " [ 7091 / 10000 ] 71% - 0:00:00 left \r", + " [ 7092 / 10000 ] 71% - 0:00:00 left \r", + " [ 7093 / 10000 ] 71% - 0:00:00 left \r", + " [ 7094 / 10000 ] 71% - 0:00:00 left \r", + " [ 7095 / 10000 ] 71% - 0:00:00 left \r", + " [ 7096 / 10000 ] 71% - 0:00:00 left \r", + " [ 7097 / 10000 ] 71% - 0:00:00 left \r", + " [ 7098 / 10000 ] 71% - 0:00:00 left \r", + " [ 7099 / 10000 ] 71% - 0:00:00 left \r", + " [ 7100 / 10000 ] 71% - 0:00:00 left \r", + " [ 7101 / 10000 ] 71% - 0:00:00 left \r", + " [ 7102 / 10000 ] 71% - 0:00:00 left \r", + " [ 7103 / 10000 ] 71% - 0:00:00 left \r", + " [ 7104 / 10000 ] 71% - 0:00:00 left \r", + " [ 7105 / 10000 ] 71% - 0:00:00 left \r", + " [ 7106 / 10000 ] 71% - 0:00:00 left \r", + " [ 7107 / 10000 ] 71% - 0:00:00 left \r", + " [ 7108 / 10000 ] 71% - 0:00:00 left \r", + " [ 7109 / 10000 ] 71% - 0:00:00 left \r", + " [ 7110 / 10000 ] 71% - 0:00:00 left \r", + " [ 7111 / 10000 ] 71% - 0:00:00 left \r", + " [ 7112 / 10000 ] 71% - 0:00:00 left \r", + " [ 7113 / 10000 ] 71% - 0:00:00 left \r", + " [ 7114 / 10000 ] 71% - 0:00:00 left \r", + " [ 7115 / 10000 ] 71% - 0:00:00 left \r", + " [ 7116 / 10000 ] 71% - 0:00:00 left \r", + " [ 7117 / 10000 ] 71% - 0:00:00 left \r", + " [ 7118 / 10000 ] 71% - 0:00:00 left \r", + " [ 7119 / 10000 ] 71% - 0:00:00 left \r", + " [ 7120 / 10000 ] 71% - 0:00:00 left \r", + " [ 7121 / 10000 ] 71% - 0:00:00 left \r", + " [ 7122 / 10000 ] 71% - 0:00:00 left \r", + " [ 7123 / 10000 ] 71% - 0:00:00 left \r", + " [ 7124 / 10000 ] 71% - 0:00:00 left \r", + " [ 7125 / 10000 ] 71% - 0:00:00 left \r", + " [ 7126 / 10000 ] 71% - 0:00:00 left \r", + " [ 7127 / 10000 ] 71% - 0:00:00 left \r", + " [ 7128 / 10000 ] 71% - 0:00:00 left \r", + " [ 7129 / 10000 ] 71% - 0:00:00 left \r", + " [ 7130 / 10000 ] 71% - 0:00:00 left \r", + " [ 7131 / 10000 ] 71% - 0:00:00 left \r", + " [ 7132 / 10000 ] 71% - 0:00:00 left \r", + " [ 7133 / 10000 ] 71% - 0:00:00 left \r", + " [ 7134 / 10000 ] 71% - 0:00:00 left \r", + " [ 7135 / 10000 ] 71% - 0:00:00 left \r", + " [ 7136 / 10000 ] 71% - 0:00:00 left \r", + " [ 7137 / 10000 ] 71% - 0:00:00 left \r", + " [ 7138 / 10000 ] 71% - 0:00:00 left \r", + " [ 7139 / 10000 ] 71% - 0:00:00 left \r", + " [ 7140 / 10000 ] 71% - 0:00:00 left \r", + " [ 7141 / 10000 ] 71% - 0:00:00 left \r", + " [ 7142 / 10000 ] 71% - 0:00:00 left \r", + " [ 7143 / 10000 ] 71% - 0:00:00 left \r", + " [ 7144 / 10000 ] 71% - 0:00:00 left \r", + " [ 7145 / 10000 ] 71% - 0:00:00 left \r", + " [ 7146 / 10000 ] 71% - 0:00:00 left \r", + " [ 7147 / 10000 ] 71% - 0:00:00 left \r", + " [ 7148 / 10000 ] 71% - 0:00:00 left \r", + " [ 7149 / 10000 ] 71% - 0:00:00 left \r", + " [ 7150 / 10000 ] 72% - 0:00:00 left \r", + " [ 7151 / 10000 ] 72% - 0:00:00 left \r", + " [ 7152 / 10000 ] 72% - 0:00:00 left \r", + " [ 7153 / 10000 ] 72% - 0:00:00 left \r", + " [ 7154 / 10000 ] 72% - 0:00:00 left \r", + " [ 7155 / 10000 ] 72% - 0:00:00 left \r", + " [ 7156 / 10000 ] 72% - 0:00:00 left \r", + " [ 7157 / 10000 ] 72% - 0:00:00 left \r", + " [ 7158 / 10000 ] 72% - 0:00:00 left \r", + " [ 7159 / 10000 ] 72% - 0:00:00 left \r", + " [ 7160 / 10000 ] 72% - 0:00:00 left \r", + " [ 7161 / 10000 ] 72% - 0:00:00 left \r", + " [ 7162 / 10000 ] 72% - 0:00:00 left \r", + " [ 7163 / 10000 ] 72% - 0:00:00 left \r", + " [ 7164 / 10000 ] 72% - 0:00:00 left \r", + " [ 7165 / 10000 ] 72% - 0:00:00 left \r", + " [ 7166 / 10000 ] 72% - 0:00:00 left \r", + " [ 7167 / 10000 ] 72% - 0:00:00 left \r", + " [ 7168 / 10000 ] 72% - 0:00:00 left \r", + " [ 7169 / 10000 ] 72% - 0:00:00 left \r", + " [ 7170 / 10000 ] 72% - 0:00:00 left \r", + " [ 7171 / 10000 ] 72% - 0:00:00 left \r", + " [ 7172 / 10000 ] 72% - 0:00:00 left \r", + " [ 7173 / 10000 ] 72% - 0:00:00 left \r", + " [ 7174 / 10000 ] 72% - 0:00:00 left \r", + " [ 7175 / 10000 ] 72% - 0:00:00 left \r", + " [ 7176 / 10000 ] 72% - 0:00:00 left \r", + " [ 7177 / 10000 ] 72% - 0:00:00 left \r", + " [ 7178 / 10000 ] 72% - 0:00:00 left \r", + " [ 7179 / 10000 ] 72% - 0:00:00 left \r", + " [ 7180 / 10000 ] 72% - 0:00:00 left \r", + " [ 7181 / 10000 ] 72% - 0:00:00 left \r", + " [ 7182 / 10000 ] 72% - 0:00:00 left \r", + " [ 7183 / 10000 ] 72% - 0:00:00 left \r", + " [ 7184 / 10000 ] 72% - 0:00:00 left \r", + " [ 7185 / 10000 ] 72% - 0:00:00 left \r", + " [ 7186 / 10000 ] 72% - 0:00:00 left \r", + " [ 7187 / 10000 ] 72% - 0:00:00 left \r", + " [ 7188 / 10000 ] 72% - 0:00:00 left \r", + " [ 7189 / 10000 ] 72% - 0:00:00 left \r", + " [ 7190 / 10000 ] 72% - 0:00:00 left \r", + " [ 7191 / 10000 ] 72% - 0:00:00 left \r", + " [ 7192 / 10000 ] 72% - 0:00:00 left \r", + " [ 7193 / 10000 ] 72% - 0:00:00 left \r", + " [ 7194 / 10000 ] 72% - 0:00:00 left \r", + " [ 7195 / 10000 ] 72% - 0:00:00 left \r", + " [ 7196 / 10000 ] 72% - 0:00:00 left \r", + " [ 7197 / 10000 ] 72% - 0:00:00 left \r", + " [ 7198 / 10000 ] 72% - 0:00:00 left \r", + " [ 7199 / 10000 ] 72% - 0:00:00 left \r", + " [ 7200 / 10000 ] 72% - 0:00:00 left \r", + " [ 7201 / 10000 ] 72% - 0:00:00 left \r", + " [ 7202 / 10000 ] 72% - 0:00:00 left \r", + " [ 7203 / 10000 ] 72% - 0:00:00 left \r", + " [ 7204 / 10000 ] 72% - 0:00:00 left \r", + " [ 7205 / 10000 ] 72% - 0:00:00 left \r", + " [ 7206 / 10000 ] 72% - 0:00:00 left \r", + " [ 7207 / 10000 ] 72% - 0:00:00 left \r", + " [ 7208 / 10000 ] 72% - 0:00:00 left \r", + " [ 7209 / 10000 ] 72% - 0:00:00 left \r", + " [ 7210 / 10000 ] 72% - 0:00:00 left \r", + " [ 7211 / 10000 ] 72% - 0:00:00 left \r", + " [ 7212 / 10000 ] 72% - 0:00:00 left \r", + " [ 7213 / 10000 ] 72% - 0:00:00 left \r", + " [ 7214 / 10000 ] 72% - 0:00:00 left \r", + " [ 7215 / 10000 ] 72% - 0:00:00 left \r", + " [ 7216 / 10000 ] 72% - 0:00:00 left \r", + " [ 7217 / 10000 ] 72% - 0:00:00 left \r", + " [ 7218 / 10000 ] 72% - 0:00:00 left \r", + " [ 7219 / 10000 ] 72% - 0:00:00 left \r", + " [ 7220 / 10000 ] 72% - 0:00:00 left \r", + " [ 7221 / 10000 ] 72% - 0:00:00 left \r", + " [ 7222 / 10000 ] 72% - 0:00:00 left \r", + " [ 7223 / 10000 ] 72% - 0:00:00 left \r", + " [ 7224 / 10000 ] 72% - 0:00:00 left \r", + " [ 7225 / 10000 ] 72% - 0:00:00 left \r", + " [ 7226 / 10000 ] 72% - 0:00:00 left \r", + " [ 7227 / 10000 ] 72% - 0:00:00 left \r", + " [ 7228 / 10000 ] 72% - 0:00:00 left \r", + " [ 7229 / 10000 ] 72% - 0:00:00 left \r", + " [ 7230 / 10000 ] 72% - 0:00:00 left \r", + " [ 7231 / 10000 ] 72% - 0:00:00 left \r", + " [ 7232 / 10000 ] 72% - 0:00:00 left \r", + " [ 7233 / 10000 ] 72% - 0:00:00 left \r", + " [ 7234 / 10000 ] 72% - 0:00:00 left \r", + " [ 7235 / 10000 ] 72% - 0:00:00 left \r", + " [ 7236 / 10000 ] 72% - 0:00:00 left \r", + " [ 7237 / 10000 ] 72% - 0:00:00 left \r", + " [ 7238 / 10000 ] 72% - 0:00:00 left \r", + " [ 7239 / 10000 ] 72% - 0:00:00 left \r", + " [ 7240 / 10000 ] 72% - 0:00:00 left \r", + " [ 7241 / 10000 ] 72% - 0:00:00 left \r", + " [ 7242 / 10000 ] 72% - 0:00:00 left \r", + " [ 7243 / 10000 ] 72% - 0:00:00 left \r", + " [ 7244 / 10000 ] 72% - 0:00:00 left \r", + " [ 7245 / 10000 ] 72% - 0:00:00 left \r", + " [ 7246 / 10000 ] 72% - 0:00:00 left \r", + " [ 7247 / 10000 ] 72% - 0:00:00 left \r", + " [ 7248 / 10000 ] 72% - 0:00:00 left \r", + " [ 7249 / 10000 ] 72% - 0:00:00 left \r", + " [ 7250 / 10000 ] 72% - 0:00:00 left \r", + " [ 7251 / 10000 ] 73% - 0:00:00 left \r", + " [ 7252 / 10000 ] 73% - 0:00:00 left \r", + " [ 7253 / 10000 ] 73% - 0:00:00 left \r", + " [ 7254 / 10000 ] 73% - 0:00:00 left \r", + " [ 7255 / 10000 ] 73% - 0:00:00 left \r", + " [ 7256 / 10000 ] 73% - 0:00:00 left \r", + " [ 7257 / 10000 ] 73% - 0:00:00 left \r", + " [ 7258 / 10000 ] 73% - 0:00:00 left \r", + " [ 7259 / 10000 ] 73% - 0:00:00 left \r", + " [ 7260 / 10000 ] 73% - 0:00:00 left \r", + " [ 7261 / 10000 ] 73% - 0:00:00 left \r", + " [ 7262 / 10000 ] 73% - 0:00:00 left \r", + " [ 7263 / 10000 ] 73% - 0:00:00 left \r", + " [ 7264 / 10000 ] 73% - 0:00:00 left \r", + " [ 7265 / 10000 ] 73% - 0:00:00 left \r", + " [ 7266 / 10000 ] 73% - 0:00:00 left \r", + " [ 7267 / 10000 ] 73% - 0:00:00 left \r", + " [ 7268 / 10000 ] 73% - 0:00:00 left \r", + " [ 7269 / 10000 ] 73% - 0:00:00 left \r", + " [ 7270 / 10000 ] 73% - 0:00:00 left \r", + " [ 7271 / 10000 ] 73% - 0:00:00 left \r", + " [ 7272 / 10000 ] 73% - 0:00:00 left \r", + " [ 7273 / 10000 ] 73% - 0:00:00 left \r", + " [ 7274 / 10000 ] 73% - 0:00:00 left \r", + " [ 7275 / 10000 ] 73% - 0:00:00 left \r", + " [ 7276 / 10000 ] 73% - 0:00:00 left \r", + " [ 7277 / 10000 ] 73% - 0:00:00 left \r", + " [ 7278 / 10000 ] 73% - 0:00:00 left \r", + " [ 7279 / 10000 ] 73% - 0:00:00 left \r", + " [ 7280 / 10000 ] 73% - 0:00:00 left \r", + " [ 7281 / 10000 ] 73% - 0:00:00 left \r", + " [ 7282 / 10000 ] 73% - 0:00:00 left \r", + " [ 7283 / 10000 ] 73% - 0:00:00 left \r", + " [ 7284 / 10000 ] 73% - 0:00:00 left \r", + " [ 7285 / 10000 ] 73% - 0:00:00 left \r", + " [ 7286 / 10000 ] 73% - 0:00:00 left \r", + " [ 7287 / 10000 ] 73% - 0:00:00 left \r", + " [ 7288 / 10000 ] 73% - 0:00:00 left \r", + " [ 7289 / 10000 ] 73% - 0:00:00 left \r", + " [ 7290 / 10000 ] 73% - 0:00:00 left \r", + " [ 7291 / 10000 ] 73% - 0:00:00 left \r", + " [ 7292 / 10000 ] 73% - 0:00:00 left \r", + " [ 7293 / 10000 ] 73% - 0:00:00 left \r", + " [ 7294 / 10000 ] 73% - 0:00:00 left \r", + " [ 7295 / 10000 ] 73% - 0:00:00 left \r", + " [ 7296 / 10000 ] 73% - 0:00:00 left \r", + " [ 7297 / 10000 ] 73% - 0:00:00 left \r", + " [ 7298 / 10000 ] 73% - 0:00:00 left \r", + " [ 7299 / 10000 ] 73% - 0:00:00 left \r", + " [ 7300 / 10000 ] 73% - 0:00:00 left \r", + " [ 7301 / 10000 ] 73% - 0:00:00 left \r", + " [ 7302 / 10000 ] 73% - 0:00:00 left \r", + " [ 7303 / 10000 ] 73% - 0:00:00 left \r", + " [ 7304 / 10000 ] 73% - 0:00:00 left \r", + " [ 7305 / 10000 ] 73% - 0:00:00 left \r", + " [ 7306 / 10000 ] 73% - 0:00:00 left \r", + " [ 7307 / 10000 ] 73% - 0:00:00 left \r", + " [ 7308 / 10000 ] 73% - 0:00:00 left \r", + " [ 7309 / 10000 ] 73% - 0:00:00 left \r", + " [ 7310 / 10000 ] 73% - 0:00:00 left \r", + " [ 7311 / 10000 ] 73% - 0:00:00 left \r", + " [ 7312 / 10000 ] 73% - 0:00:00 left \r", + " [ 7313 / 10000 ] 73% - 0:00:00 left \r", + " [ 7314 / 10000 ] 73% - 0:00:00 left \r", + " [ 7315 / 10000 ] 73% - 0:00:00 left \r", + " [ 7316 / 10000 ] 73% - 0:00:00 left \r", + " [ 7317 / 10000 ] 73% - 0:00:00 left \r", + " [ 7318 / 10000 ] 73% - 0:00:00 left \r", + " [ 7319 / 10000 ] 73% - 0:00:00 left \r", + " [ 7320 / 10000 ] 73% - 0:00:00 left \r", + " [ 7321 / 10000 ] 73% - 0:00:00 left \r", + " [ 7322 / 10000 ] 73% - 0:00:00 left \r", + " [ 7323 / 10000 ] 73% - 0:00:00 left \r", + " [ 7324 / 10000 ] 73% - 0:00:00 left \r", + " [ 7325 / 10000 ] 73% - 0:00:00 left \r", + " [ 7326 / 10000 ] 73% - 0:00:00 left \r", + " [ 7327 / 10000 ] 73% - 0:00:00 left \r", + " [ 7328 / 10000 ] 73% - 0:00:00 left \r", + " [ 7329 / 10000 ] 73% - 0:00:00 left \r", + " [ 7330 / 10000 ] 73% - 0:00:00 left \r", + " [ 7331 / 10000 ] 73% - 0:00:00 left \r", + " [ 7332 / 10000 ] 73% - 0:00:00 left \r", + " [ 7333 / 10000 ] 73% - 0:00:00 left \r", + " [ 7334 / 10000 ] 73% - 0:00:00 left \r", + " [ 7335 / 10000 ] 73% - 0:00:00 left \r", + " [ 7336 / 10000 ] 73% - 0:00:00 left \r", + " [ 7337 / 10000 ] 73% - 0:00:00 left \r", + " [ 7338 / 10000 ] 73% - 0:00:00 left \r", + " [ 7339 / 10000 ] 73% - 0:00:00 left \r", + " [ 7340 / 10000 ] 73% - 0:00:00 left \r", + " [ 7341 / 10000 ] 73% - 0:00:00 left \r", + " [ 7342 / 10000 ] 73% - 0:00:00 left \r", + " [ 7343 / 10000 ] 73% - 0:00:00 left \r", + " [ 7344 / 10000 ] 73% - 0:00:00 left \r", + " [ 7345 / 10000 ] 73% - 0:00:00 left \r", + " [ 7346 / 10000 ] 73% - 0:00:00 left \r", + " [ 7347 / 10000 ] 73% - 0:00:00 left \r", + " [ 7348 / 10000 ] 73% - 0:00:00 left \r", + " [ 7349 / 10000 ] 73% - 0:00:00 left \r", + " [ 7350 / 10000 ] 74% - 0:00:00 left \r", + " [ 7351 / 10000 ] 74% - 0:00:00 left \r", + " [ 7352 / 10000 ] 74% - 0:00:00 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 7353 / 10000 ] 74% - 0:00:00 left \r", + " [ 7354 / 10000 ] 74% - 0:00:00 left \r", + " [ 7355 / 10000 ] 74% - 0:00:00 left \r", + " [ 7356 / 10000 ] 74% - 0:00:00 left \r", + " [ 7357 / 10000 ] 74% - 0:00:00 left \r", + " [ 7358 / 10000 ] 74% - 0:00:00 left \r", + " [ 7359 / 10000 ] 74% - 0:00:00 left \r", + " [ 7360 / 10000 ] 74% - 0:00:00 left \r", + " [ 7361 / 10000 ] 74% - 0:00:00 left \r", + " [ 7362 / 10000 ] 74% - 0:00:00 left \r", + " [ 7363 / 10000 ] 74% - 0:00:00 left \r", + " [ 7364 / 10000 ] 74% - 0:00:00 left \r", + " [ 7365 / 10000 ] 74% - 0:00:00 left \r", + " [ 7366 / 10000 ] 74% - 0:00:00 left \r", + " [ 7367 / 10000 ] 74% - 0:00:00 left \r", + " [ 7368 / 10000 ] 74% - 0:00:00 left \r", + " [ 7369 / 10000 ] 74% - 0:00:00 left \r", + " [ 7370 / 10000 ] 74% - 0:00:00 left \r", + " [ 7371 / 10000 ] 74% - 0:00:00 left \r", + " [ 7372 / 10000 ] 74% - 0:00:00 left \r", + " [ 7373 / 10000 ] 74% - 0:00:00 left \r", + " [ 7374 / 10000 ] 74% - 0:00:00 left \r", + " [ 7375 / 10000 ] 74% - 0:00:00 left \r", + " [ 7376 / 10000 ] 74% - 0:00:00 left \r", + " [ 7377 / 10000 ] 74% - 0:00:00 left \r", + " [ 7378 / 10000 ] 74% - 0:00:00 left \r", + " [ 7379 / 10000 ] 74% - 0:00:00 left \r", + " [ 7380 / 10000 ] 74% - 0:00:00 left \r", + " [ 7381 / 10000 ] 74% - 0:00:00 left \r", + " [ 7382 / 10000 ] 74% - 0:00:00 left \r", + " [ 7383 / 10000 ] 74% - 0:00:00 left \r", + " [ 7384 / 10000 ] 74% - 0:00:00 left \r", + " [ 7385 / 10000 ] 74% - 0:00:00 left \r", + " [ 7386 / 10000 ] 74% - 0:00:00 left \r", + " [ 7387 / 10000 ] 74% - 0:00:00 left \r", + " [ 7388 / 10000 ] 74% - 0:00:00 left \r", + " [ 7389 / 10000 ] 74% - 0:00:00 left \r", + " [ 7390 / 10000 ] 74% - 0:00:00 left \r", + " [ 7391 / 10000 ] 74% - 0:00:00 left \r", + " [ 7392 / 10000 ] 74% - 0:00:00 left \r", + " [ 7393 / 10000 ] 74% - 0:00:00 left \r", + " [ 7394 / 10000 ] 74% - 0:00:00 left \r", + " [ 7395 / 10000 ] 74% - 0:00:00 left \r", + " [ 7396 / 10000 ] 74% - 0:00:00 left \r", + " [ 7397 / 10000 ] 74% - 0:00:00 left \r", + " [ 7398 / 10000 ] 74% - 0:00:00 left \r", + " [ 7399 / 10000 ] 74% - 0:00:00 left \r", + " [ 7400 / 10000 ] 74% - 0:00:00 left \r", + " [ 7401 / 10000 ] 74% - 0:00:00 left \r", + " [ 7402 / 10000 ] 74% - 0:00:00 left \r", + " [ 7403 / 10000 ] 74% - 0:00:00 left \r", + " [ 7404 / 10000 ] 74% - 0:00:00 left \r", + " [ 7405 / 10000 ] 74% - 0:00:00 left \r", + " [ 7406 / 10000 ] 74% - 0:00:00 left \r", + " [ 7407 / 10000 ] 74% - 0:00:00 left \r", + " [ 7408 / 10000 ] 74% - 0:00:00 left \r", + " [ 7409 / 10000 ] 74% - 0:00:00 left \r", + " [ 7410 / 10000 ] 74% - 0:00:00 left \r", + " [ 7411 / 10000 ] 74% - 0:00:00 left \r", + " [ 7412 / 10000 ] 74% - 0:00:00 left \r", + " [ 7413 / 10000 ] 74% - 0:00:00 left \r", + " [ 7414 / 10000 ] 74% - 0:00:00 left \r", + " [ 7415 / 10000 ] 74% - 0:00:00 left \r", + " [ 7416 / 10000 ] 74% - 0:00:00 left \r", + " [ 7417 / 10000 ] 74% - 0:00:00 left \r", + " [ 7418 / 10000 ] 74% - 0:00:00 left \r", + " [ 7419 / 10000 ] 74% - 0:00:00 left \r", + " [ 7420 / 10000 ] 74% - 0:00:00 left \r", + " [ 7421 / 10000 ] 74% - 0:00:00 left \r", + " [ 7422 / 10000 ] 74% - 0:00:00 left \r", + " [ 7423 / 10000 ] 74% - 0:00:00 left \r", + " [ 7424 / 10000 ] 74% - 0:00:00 left \r", + " [ 7425 / 10000 ] 74% - 0:00:00 left \r", + " [ 7426 / 10000 ] 74% - 0:00:00 left \r", + " [ 7427 / 10000 ] 74% - 0:00:00 left \r", + " [ 7428 / 10000 ] 74% - 0:00:00 left \r", + " [ 7429 / 10000 ] 74% - 0:00:00 left \r", + " [ 7430 / 10000 ] 74% - 0:00:00 left \r", + " [ 7431 / 10000 ] 74% - 0:00:00 left \r", + " [ 7432 / 10000 ] 74% - 0:00:00 left \r", + " [ 7433 / 10000 ] 74% - 0:00:00 left \r", + " [ 7434 / 10000 ] 74% - 0:00:00 left \r", + " [ 7435 / 10000 ] 74% - 0:00:00 left \r", + " [ 7436 / 10000 ] 74% - 0:00:00 left \r", + " [ 7437 / 10000 ] 74% - 0:00:00 left \r", + " [ 7438 / 10000 ] 74% - 0:00:00 left \r", + " [ 7439 / 10000 ] 74% - 0:00:00 left \r", + " [ 7440 / 10000 ] 74% - 0:00:00 left \r", + " [ 7441 / 10000 ] 74% - 0:00:00 left \r", + " [ 7442 / 10000 ] 74% - 0:00:00 left \r", + " [ 7443 / 10000 ] 74% - 0:00:00 left \r", + " [ 7444 / 10000 ] 74% - 0:00:00 left \r", + " [ 7445 / 10000 ] 74% - 0:00:00 left \r", + " [ 7446 / 10000 ] 74% - 0:00:00 left \r", + " [ 7447 / 10000 ] 74% - 0:00:00 left \r", + " [ 7448 / 10000 ] 74% - 0:00:00 left \r", + " [ 7449 / 10000 ] 74% - 0:00:00 left \r", + " [ 7450 / 10000 ] 74% - 0:00:00 left \r", + " [ 7451 / 10000 ] 75% - 0:00:00 left \r", + " [ 7452 / 10000 ] 75% - 0:00:00 left \r", + " [ 7453 / 10000 ] 75% - 0:00:00 left \r", + " [ 7454 / 10000 ] 75% - 0:00:00 left \r", + " [ 7455 / 10000 ] 75% - 0:00:00 left \r", + " [ 7456 / 10000 ] 75% - 0:00:00 left \r", + " [ 7457 / 10000 ] 75% - 0:00:00 left \r", + " [ 7458 / 10000 ] 75% - 0:00:00 left \r", + " [ 7459 / 10000 ] 75% - 0:00:00 left \r", + " [ 7460 / 10000 ] 75% - 0:00:00 left \r", + " [ 7461 / 10000 ] 75% - 0:00:00 left \r", + " [ 7462 / 10000 ] 75% - 0:00:00 left \r", + " [ 7463 / 10000 ] 75% - 0:00:00 left \r", + " [ 7464 / 10000 ] 75% - 0:00:00 left \r", + " [ 7465 / 10000 ] 75% - 0:00:00 left \r", + " [ 7466 / 10000 ] 75% - 0:00:00 left \r", + " [ 7467 / 10000 ] 75% - 0:00:00 left \r", + " [ 7468 / 10000 ] 75% - 0:00:00 left \r", + " [ 7469 / 10000 ] 75% - 0:00:00 left \r", + " [ 7470 / 10000 ] 75% - 0:00:00 left \r", + " [ 7471 / 10000 ] 75% - 0:00:00 left \r", + " [ 7472 / 10000 ] 75% - 0:00:00 left \r", + " [ 7473 / 10000 ] 75% - 0:00:00 left \r", + " [ 7474 / 10000 ] 75% - 0:00:00 left \r", + " [ 7475 / 10000 ] 75% - 0:00:00 left \r", + " [ 7476 / 10000 ] 75% - 0:00:00 left \r", + " [ 7477 / 10000 ] 75% - 0:00:00 left \r", + " [ 7478 / 10000 ] 75% - 0:00:00 left \r", + " [ 7479 / 10000 ] 75% - 0:00:00 left \r", + " [ 7480 / 10000 ] 75% - 0:00:00 left \r", + " [ 7481 / 10000 ] 75% - 0:00:00 left \r", + " [ 7482 / 10000 ] 75% - 0:00:00 left \r", + " [ 7483 / 10000 ] 75% - 0:00:00 left \r", + " [ 7484 / 10000 ] 75% - 0:00:00 left \r", + " [ 7485 / 10000 ] 75% - 0:00:00 left \r", + " [ 7486 / 10000 ] 75% - 0:00:00 left \r", + " [ 7487 / 10000 ] 75% - 0:00:00 left \r", + " [ 7488 / 10000 ] 75% - 0:00:00 left \r", + " [ 7489 / 10000 ] 75% - 0:00:00 left \r", + " [ 7490 / 10000 ] 75% - 0:00:00 left \r", + " [ 7491 / 10000 ] 75% - 0:00:00 left \r", + " [ 7492 / 10000 ] 75% - 0:00:00 left \r", + " [ 7493 / 10000 ] 75% - 0:00:00 left \r", + " [ 7494 / 10000 ] 75% - 0:00:00 left \r", + " [ 7495 / 10000 ] 75% - 0:00:00 left \r", + " [ 7496 / 10000 ] 75% - 0:00:00 left \r", + " [ 7497 / 10000 ] 75% - 0:00:00 left \r", + " [ 7498 / 10000 ] 75% - 0:00:00 left \r", + " [ 7499 / 10000 ] 75% - 0:00:00 left \r", + " [ 7500 / 10000 ] 75% - 0:00:00 left \r", + " [ 7501 / 10000 ] 75% - 0:00:00 left \r", + " [ 7502 / 10000 ] 75% - 0:00:00 left \r", + " [ 7503 / 10000 ] 75% - 0:00:00 left \r", + " [ 7504 / 10000 ] 75% - 0:00:00 left \r", + " [ 7505 / 10000 ] 75% - 0:00:00 left \r", + " [ 7506 / 10000 ] 75% - 0:00:00 left \r", + " [ 7507 / 10000 ] 75% - 0:00:00 left \r", + " [ 7508 / 10000 ] 75% - 0:00:00 left \r", + " [ 7509 / 10000 ] 75% - 0:00:00 left \r", + " [ 7510 / 10000 ] 75% - 0:00:00 left \r", + " [ 7511 / 10000 ] 75% - 0:00:00 left \r", + " [ 7512 / 10000 ] 75% - 0:00:00 left \r", + " [ 7513 / 10000 ] 75% - 0:00:00 left \r", + " [ 7514 / 10000 ] 75% - 0:00:00 left \r", + " [ 7515 / 10000 ] 75% - 0:00:00 left \r", + " [ 7516 / 10000 ] 75% - 0:00:00 left \r", + " [ 7517 / 10000 ] 75% - 0:00:00 left \r", + " [ 7518 / 10000 ] 75% - 0:00:00 left \r", + " [ 7519 / 10000 ] 75% - 0:00:00 left \r", + " [ 7520 / 10000 ] 75% - 0:00:00 left \r", + " [ 7521 / 10000 ] 75% - 0:00:00 left \r", + " [ 7522 / 10000 ] 75% - 0:00:00 left \r", + " [ 7523 / 10000 ] 75% - 0:00:00 left \r", + " [ 7524 / 10000 ] 75% - 0:00:00 left \r", + " [ 7525 / 10000 ] 75% - 0:00:00 left \r", + " [ 7526 / 10000 ] 75% - 0:00:00 left \r", + " [ 7527 / 10000 ] 75% - 0:00:00 left \r", + " [ 7528 / 10000 ] 75% - 0:00:00 left \r", + " [ 7529 / 10000 ] 75% - 0:00:00 left \r", + " [ 7530 / 10000 ] 75% - 0:00:00 left \r", + " [ 7531 / 10000 ] 75% - 0:00:00 left \r", + " [ 7532 / 10000 ] 75% - 0:00:00 left \r", + " [ 7533 / 10000 ] 75% - 0:00:00 left \r", + " [ 7534 / 10000 ] 75% - 0:00:00 left \r", + " [ 7535 / 10000 ] 75% - 0:00:00 left \r", + " [ 7536 / 10000 ] 75% - 0:00:00 left \r", + " [ 7537 / 10000 ] 75% - 0:00:00 left \r", + " [ 7538 / 10000 ] 75% - 0:00:00 left \r", + " [ 7539 / 10000 ] 75% - 0:00:00 left \r", + " [ 7540 / 10000 ] 75% - 0:00:00 left \r", + " [ 7541 / 10000 ] 75% - 0:00:00 left \r", + " [ 7542 / 10000 ] 75% - 0:00:00 left \r", + " [ 7543 / 10000 ] 75% - 0:00:00 left \r", + " [ 7544 / 10000 ] 75% - 0:00:00 left \r", + " [ 7545 / 10000 ] 75% - 0:00:00 left \r", + " [ 7546 / 10000 ] 75% - 0:00:00 left \r", + " [ 7547 / 10000 ] 75% - 0:00:00 left \r", + " [ 7548 / 10000 ] 75% - 0:00:00 left \r", + " [ 7549 / 10000 ] 75% - 0:00:00 left \r", + " [ 7550 / 10000 ] 76% - 0:00:00 left \r", + " [ 7551 / 10000 ] 76% - 0:00:00 left \r", + " [ 7552 / 10000 ] 76% - 0:00:00 left \r", + " [ 7553 / 10000 ] 76% - 0:00:00 left \r", + " [ 7554 / 10000 ] 76% - 0:00:00 left \r", + " [ 7555 / 10000 ] 76% - 0:00:00 left \r", + " [ 7556 / 10000 ] 76% - 0:00:00 left \r", + " [ 7557 / 10000 ] 76% - 0:00:00 left \r", + " [ 7558 / 10000 ] 76% - 0:00:00 left \r", + " [ 7559 / 10000 ] 76% - 0:00:00 left \r", + " [ 7560 / 10000 ] 76% - 0:00:00 left \r", + " [ 7561 / 10000 ] 76% - 0:00:00 left \r", + " [ 7562 / 10000 ] 76% - 0:00:00 left \r", + " [ 7563 / 10000 ] 76% - 0:00:00 left \r", + " [ 7564 / 10000 ] 76% - 0:00:00 left \r", + " [ 7565 / 10000 ] 76% - 0:00:00 left \r", + " [ 7566 / 10000 ] 76% - 0:00:00 left \r", + " [ 7567 / 10000 ] 76% - 0:00:00 left \r", + " [ 7568 / 10000 ] 76% - 0:00:00 left \r", + " [ 7569 / 10000 ] 76% - 0:00:00 left \r", + " [ 7570 / 10000 ] 76% - 0:00:00 left \r", + " [ 7571 / 10000 ] 76% - 0:00:00 left \r", + " [ 7572 / 10000 ] 76% - 0:00:00 left \r", + " [ 7573 / 10000 ] 76% - 0:00:00 left \r", + " [ 7574 / 10000 ] 76% - 0:00:00 left \r", + " [ 7575 / 10000 ] 76% - 0:00:00 left \r", + " [ 7576 / 10000 ] 76% - 0:00:00 left \r", + " [ 7577 / 10000 ] 76% - 0:00:00 left \r", + " [ 7578 / 10000 ] 76% - 0:00:00 left \r", + " [ 7579 / 10000 ] 76% - 0:00:00 left \r", + " [ 7580 / 10000 ] 76% - 0:00:00 left \r", + " [ 7581 / 10000 ] 76% - 0:00:00 left \r", + " [ 7582 / 10000 ] 76% - 0:00:00 left \r", + " [ 7583 / 10000 ] 76% - 0:00:00 left \r", + " [ 7584 / 10000 ] 76% - 0:00:00 left \r", + " [ 7585 / 10000 ] 76% - 0:00:00 left \r", + " [ 7586 / 10000 ] 76% - 0:00:00 left \r", + " [ 7587 / 10000 ] 76% - 0:00:00 left \r", + " [ 7588 / 10000 ] 76% - 0:00:00 left \r", + " [ 7589 / 10000 ] 76% - 0:00:00 left \r", + " [ 7590 / 10000 ] 76% - 0:00:00 left \r", + " [ 7591 / 10000 ] 76% - 0:00:00 left \r", + " [ 7592 / 10000 ] 76% - 0:00:00 left \r", + " [ 7593 / 10000 ] 76% - 0:00:00 left \r", + " [ 7594 / 10000 ] 76% - 0:00:00 left \r", + " [ 7595 / 10000 ] 76% - 0:00:00 left \r", + " [ 7596 / 10000 ] 76% - 0:00:00 left \r", + " [ 7597 / 10000 ] 76% - 0:00:00 left \r", + " [ 7598 / 10000 ] 76% - 0:00:00 left \r", + " [ 7599 / 10000 ] 76% - 0:00:00 left \r", + " [ 7600 / 10000 ] 76% - 0:00:00 left \r", + " [ 7601 / 10000 ] 76% - 0:00:00 left \r", + " [ 7602 / 10000 ] 76% - 0:00:00 left \r", + " [ 7603 / 10000 ] 76% - 0:00:00 left \r", + " [ 7604 / 10000 ] 76% - 0:00:00 left \r", + " [ 7605 / 10000 ] 76% - 0:00:00 left \r", + " [ 7606 / 10000 ] 76% - 0:00:00 left \r", + " [ 7607 / 10000 ] 76% - 0:00:00 left \r", + " [ 7608 / 10000 ] 76% - 0:00:00 left \r", + " [ 7609 / 10000 ] 76% - 0:00:00 left \r", + " [ 7610 / 10000 ] 76% - 0:00:00 left \r", + " [ 7611 / 10000 ] 76% - 0:00:00 left \r", + " [ 7612 / 10000 ] 76% - 0:00:00 left \r", + " [ 7613 / 10000 ] 76% - 0:00:00 left \r", + " [ 7614 / 10000 ] 76% - 0:00:00 left \r", + " [ 7615 / 10000 ] 76% - 0:00:00 left \r", + " [ 7616 / 10000 ] 76% - 0:00:00 left \r", + " [ 7617 / 10000 ] 76% - 0:00:00 left \r", + " [ 7618 / 10000 ] 76% - 0:00:00 left \r", + " [ 7619 / 10000 ] 76% - 0:00:00 left \r", + " [ 7620 / 10000 ] 76% - 0:00:00 left \r", + " [ 7621 / 10000 ] 76% - 0:00:00 left \r", + " [ 7622 / 10000 ] 76% - 0:00:00 left \r", + " [ 7623 / 10000 ] 76% - 0:00:00 left \r", + " [ 7624 / 10000 ] 76% - 0:00:00 left \r", + " [ 7625 / 10000 ] 76% - 0:00:00 left \r", + " [ 7626 / 10000 ] 76% - 0:00:00 left \r", + " [ 7627 / 10000 ] 76% - 0:00:00 left \r", + " [ 7628 / 10000 ] 76% - 0:00:00 left \r", + " [ 7629 / 10000 ] 76% - 0:00:00 left \r", + " [ 7630 / 10000 ] 76% - 0:00:00 left \r", + " [ 7631 / 10000 ] 76% - 0:00:00 left \r", + " [ 7632 / 10000 ] 76% - 0:00:00 left \r", + " [ 7633 / 10000 ] 76% - 0:00:00 left \r", + " [ 7634 / 10000 ] 76% - 0:00:00 left \r", + " [ 7635 / 10000 ] 76% - 0:00:00 left \r", + " [ 7636 / 10000 ] 76% - 0:00:00 left \r", + " [ 7637 / 10000 ] 76% - 0:00:00 left \r", + " [ 7638 / 10000 ] 76% - 0:00:00 left \r", + " [ 7639 / 10000 ] 76% - 0:00:00 left \r", + " [ 7640 / 10000 ] 76% - 0:00:00 left \r", + " [ 7641 / 10000 ] 76% - 0:00:00 left \r", + " [ 7642 / 10000 ] 76% - 0:00:00 left \r", + " [ 7643 / 10000 ] 76% - 0:00:00 left \r", + " [ 7644 / 10000 ] 76% - 0:00:00 left \r", + " [ 7645 / 10000 ] 76% - 0:00:00 left \r", + " [ 7646 / 10000 ] 76% - 0:00:00 left \r", + " [ 7647 / 10000 ] 76% - 0:00:00 left \r", + " [ 7648 / 10000 ] 76% - 0:00:00 left \r", + " [ 7649 / 10000 ] 76% - 0:00:00 left \r", + " [ 7650 / 10000 ] 76% - 0:00:00 left \r", + " [ 7651 / 10000 ] 77% - 0:00:00 left \r", + " [ 7652 / 10000 ] 77% - 0:00:00 left \r", + " [ 7653 / 10000 ] 77% - 0:00:00 left \r", + " [ 7654 / 10000 ] 77% - 0:00:00 left \r", + " [ 7655 / 10000 ] 77% - 0:00:00 left \r", + " [ 7656 / 10000 ] 77% - 0:00:00 left \r", + " [ 7657 / 10000 ] 77% - 0:00:00 left \r", + " [ 7658 / 10000 ] 77% - 0:00:00 left \r", + " [ 7659 / 10000 ] 77% - 0:00:00 left \r", + " [ 7660 / 10000 ] 77% - 0:00:00 left \r", + " [ 7661 / 10000 ] 77% - 0:00:00 left \r", + " [ 7662 / 10000 ] 77% - 0:00:00 left \r", + " [ 7663 / 10000 ] 77% - 0:00:00 left \r", + " [ 7664 / 10000 ] 77% - 0:00:00 left \r", + " [ 7665 / 10000 ] 77% - 0:00:00 left \r", + " [ 7666 / 10000 ] 77% - 0:00:00 left \r", + " [ 7667 / 10000 ] 77% - 0:00:00 left \r", + " [ 7668 / 10000 ] 77% - 0:00:00 left \r", + " [ 7669 / 10000 ] 77% - 0:00:00 left \r", + " [ 7670 / 10000 ] 77% - 0:00:00 left \r", + " [ 7671 / 10000 ] 77% - 0:00:00 left \r", + " [ 7672 / 10000 ] 77% - 0:00:00 left \r", + " [ 7673 / 10000 ] 77% - 0:00:00 left \r", + " [ 7674 / 10000 ] 77% - 0:00:00 left \r", + " [ 7675 / 10000 ] 77% - 0:00:00 left \r", + " [ 7676 / 10000 ] 77% - 0:00:00 left \r", + " [ 7677 / 10000 ] 77% - 0:00:00 left \r", + " [ 7678 / 10000 ] 77% - 0:00:00 left \r", + " [ 7679 / 10000 ] 77% - 0:00:00 left \r", + " [ 7680 / 10000 ] 77% - 0:00:00 left \r", + " [ 7681 / 10000 ] 77% - 0:00:00 left \r", + " [ 7682 / 10000 ] 77% - 0:00:00 left \r", + " [ 7683 / 10000 ] 77% - 0:00:00 left \r", + " [ 7684 / 10000 ] 77% - 0:00:00 left \r", + " [ 7685 / 10000 ] 77% - 0:00:00 left \r", + " [ 7686 / 10000 ] 77% - 0:00:00 left \r", + " [ 7687 / 10000 ] 77% - 0:00:00 left \r", + " [ 7688 / 10000 ] 77% - 0:00:00 left \r", + " [ 7689 / 10000 ] 77% - 0:00:00 left \r", + " [ 7690 / 10000 ] 77% - 0:00:00 left \r", + " [ 7691 / 10000 ] 77% - 0:00:00 left \r", + " [ 7692 / 10000 ] 77% - 0:00:00 left \r", + " [ 7693 / 10000 ] 77% - 0:00:00 left \r", + " [ 7694 / 10000 ] 77% - 0:00:00 left \r", + " [ 7695 / 10000 ] 77% - 0:00:00 left \r", + " [ 7696 / 10000 ] 77% - 0:00:00 left \r", + " [ 7697 / 10000 ] 77% - 0:00:00 left \r", + " [ 7698 / 10000 ] 77% - 0:00:00 left \r", + " [ 7699 / 10000 ] 77% - 0:00:00 left \r", + " [ 7700 / 10000 ] 77% - 0:00:00 left \r", + " [ 7701 / 10000 ] 77% - 0:00:00 left \r", + " [ 7702 / 10000 ] 77% - 0:00:00 left \r", + " [ 7703 / 10000 ] 77% - 0:00:00 left \r", + " [ 7704 / 10000 ] 77% - 0:00:00 left \r", + " [ 7705 / 10000 ] 77% - 0:00:00 left \r", + " [ 7706 / 10000 ] 77% - 0:00:00 left \r", + " [ 7707 / 10000 ] 77% - 0:00:00 left \r", + " [ 7708 / 10000 ] 77% - 0:00:00 left \r", + " [ 7709 / 10000 ] 77% - 0:00:00 left \r", + " [ 7710 / 10000 ] 77% - 0:00:00 left \r", + " [ 7711 / 10000 ] 77% - 0:00:00 left \r", + " [ 7712 / 10000 ] 77% - 0:00:00 left \r", + " [ 7713 / 10000 ] 77% - 0:00:00 left \r", + " [ 7714 / 10000 ] 77% - 0:00:00 left \r", + " [ 7715 / 10000 ] 77% - 0:00:00 left \r", + " [ 7716 / 10000 ] 77% - 0:00:00 left \r", + " [ 7717 / 10000 ] 77% - 0:00:00 left \r", + " [ 7718 / 10000 ] 77% - 0:00:00 left \r", + " [ 7719 / 10000 ] 77% - 0:00:00 left \r", + " [ 7720 / 10000 ] 77% - 0:00:00 left \r", + " [ 7721 / 10000 ] 77% - 0:00:00 left \r", + " [ 7722 / 10000 ] 77% - 0:00:00 left \r", + " [ 7723 / 10000 ] 77% - 0:00:00 left \r", + " [ 7724 / 10000 ] 77% - 0:00:00 left \r", + " [ 7725 / 10000 ] 77% - 0:00:00 left \r", + " [ 7726 / 10000 ] 77% - 0:00:00 left \r", + " [ 7727 / 10000 ] 77% - 0:00:00 left \r", + " [ 7728 / 10000 ] 77% - 0:00:00 left \r", + " [ 7729 / 10000 ] 77% - 0:00:00 left \r", + " [ 7730 / 10000 ] 77% - 0:00:00 left \r", + " [ 7731 / 10000 ] 77% - 0:00:00 left \r", + " [ 7732 / 10000 ] 77% - 0:00:00 left \r", + " [ 7733 / 10000 ] 77% - 0:00:00 left \r", + " [ 7734 / 10000 ] 77% - 0:00:00 left \r", + " [ 7735 / 10000 ] 77% - 0:00:00 left \r", + " [ 7736 / 10000 ] 77% - 0:00:00 left \r", + " [ 7737 / 10000 ] 77% - 0:00:00 left \r", + " [ 7738 / 10000 ] 77% - 0:00:00 left \r", + " [ 7739 / 10000 ] 77% - 0:00:00 left \r", + " [ 7740 / 10000 ] 77% - 0:00:00 left \r", + " [ 7741 / 10000 ] 77% - 0:00:00 left \r", + " [ 7742 / 10000 ] 77% - 0:00:00 left \r", + " [ 7743 / 10000 ] 77% - 0:00:00 left \r", + " [ 7744 / 10000 ] 77% - 0:00:00 left \r", + " [ 7745 / 10000 ] 77% - 0:00:00 left \r", + " [ 7746 / 10000 ] 77% - 0:00:00 left \r", + " [ 7747 / 10000 ] 77% - 0:00:00 left \r", + " [ 7748 / 10000 ] 77% - 0:00:00 left \r", + " [ 7749 / 10000 ] 77% - 0:00:00 left \r", + " [ 7750 / 10000 ] 78% - 0:00:00 left \r", + " [ 7751 / 10000 ] 78% - 0:00:00 left \r", + " [ 7752 / 10000 ] 78% - 0:00:00 left \r", + " [ 7753 / 10000 ] 78% - 0:00:00 left \r", + " [ 7754 / 10000 ] 78% - 0:00:00 left \r", + " [ 7755 / 10000 ] 78% - 0:00:00 left \r", + " [ 7756 / 10000 ] 78% - 0:00:00 left \r", + " [ 7757 / 10000 ] 78% - 0:00:00 left \r", + " [ 7758 / 10000 ] 78% - 0:00:00 left \r", + " [ 7759 / 10000 ] 78% - 0:00:00 left \r", + " [ 7760 / 10000 ] 78% - 0:00:00 left \r", + " [ 7761 / 10000 ] 78% - 0:00:00 left \r", + " [ 7762 / 10000 ] 78% - 0:00:00 left \r", + " [ 7763 / 10000 ] 78% - 0:00:00 left \r", + " [ 7764 / 10000 ] 78% - 0:00:00 left \r", + " [ 7765 / 10000 ] 78% - 0:00:00 left \r", + " [ 7766 / 10000 ] 78% - 0:00:00 left \r", + " [ 7767 / 10000 ] 78% - 0:00:00 left \r", + " [ 7768 / 10000 ] 78% - 0:00:00 left \r", + " [ 7769 / 10000 ] 78% - 0:00:00 left \r", + " [ 7770 / 10000 ] 78% - 0:00:00 left \r", + " [ 7771 / 10000 ] 78% - 0:00:00 left \r", + " [ 7772 / 10000 ] 78% - 0:00:00 left \r", + " [ 7773 / 10000 ] 78% - 0:00:00 left \r", + " [ 7774 / 10000 ] 78% - 0:00:00 left \r", + " [ 7775 / 10000 ] 78% - 0:00:00 left \r", + " [ 7776 / 10000 ] 78% - 0:00:00 left \r", + " [ 7777 / 10000 ] 78% - 0:00:00 left \r", + " [ 7778 / 10000 ] 78% - 0:00:00 left \r", + " [ 7779 / 10000 ] 78% - 0:00:00 left \r", + " [ 7780 / 10000 ] 78% - 0:00:00 left \r", + " [ 7781 / 10000 ] 78% - 0:00:00 left \r", + " [ 7782 / 10000 ] 78% - 0:00:00 left \r", + " [ 7783 / 10000 ] 78% - 0:00:00 left \r", + " [ 7784 / 10000 ] 78% - 0:00:00 left \r", + " [ 7785 / 10000 ] 78% - 0:00:00 left \r", + " [ 7786 / 10000 ] 78% - 0:00:00 left \r", + " [ 7787 / 10000 ] 78% - 0:00:00 left \r", + " [ 7788 / 10000 ] 78% - 0:00:00 left \r", + " [ 7789 / 10000 ] 78% - 0:00:00 left \r", + " [ 7790 / 10000 ] 78% - 0:00:00 left \r", + " [ 7791 / 10000 ] 78% - 0:00:00 left \r", + " [ 7792 / 10000 ] 78% - 0:00:00 left \r", + " [ 7793 / 10000 ] 78% - 0:00:00 left \r", + " [ 7794 / 10000 ] 78% - 0:00:00 left \r", + " [ 7795 / 10000 ] 78% - 0:00:00 left \r", + " [ 7796 / 10000 ] 78% - 0:00:00 left \r", + " [ 7797 / 10000 ] 78% - 0:00:00 left \r", + " [ 7798 / 10000 ] 78% - 0:00:00 left \r", + " [ 7799 / 10000 ] 78% - 0:00:00 left \r", + " [ 7800 / 10000 ] 78% - 0:00:00 left \r", + " [ 7801 / 10000 ] 78% - 0:00:00 left \r", + " [ 7802 / 10000 ] 78% - 0:00:00 left \r", + " [ 7803 / 10000 ] 78% - 0:00:00 left \r", + " [ 7804 / 10000 ] 78% - 0:00:00 left \r", + " [ 7805 / 10000 ] 78% - 0:00:00 left \r", + " [ 7806 / 10000 ] 78% - 0:00:00 left \r", + " [ 7807 / 10000 ] 78% - 0:00:00 left \r", + " [ 7808 / 10000 ] 78% - 0:00:00 left \r", + " [ 7809 / 10000 ] 78% - 0:00:00 left \r", + " [ 7810 / 10000 ] 78% - 0:00:00 left \r", + " [ 7811 / 10000 ] 78% - 0:00:00 left \r", + " [ 7812 / 10000 ] 78% - 0:00:00 left \r", + " [ 7813 / 10000 ] 78% - 0:00:00 left \r", + " [ 7814 / 10000 ] 78% - 0:00:00 left \r", + " [ 7815 / 10000 ] 78% - 0:00:00 left \r", + " [ 7816 / 10000 ] 78% - 0:00:00 left \r", + " [ 7817 / 10000 ] 78% - 0:00:00 left \r", + " [ 7818 / 10000 ] 78% - 0:00:00 left \r", + " [ 7819 / 10000 ] 78% - 0:00:00 left \r", + " [ 7820 / 10000 ] 78% - 0:00:00 left \r", + " [ 7821 / 10000 ] 78% - 0:00:00 left \r", + " [ 7822 / 10000 ] 78% - 0:00:00 left \r", + " [ 7823 / 10000 ] 78% - 0:00:00 left \r", + " [ 7824 / 10000 ] 78% - 0:00:00 left \r", + " [ 7825 / 10000 ] 78% - 0:00:00 left \r", + " [ 7826 / 10000 ] 78% - 0:00:00 left \r", + " [ 7827 / 10000 ] 78% - 0:00:00 left \r", + " [ 7828 / 10000 ] 78% - 0:00:00 left \r", + " [ 7829 / 10000 ] 78% - 0:00:00 left \r", + " [ 7830 / 10000 ] 78% - 0:00:00 left \r", + " [ 7831 / 10000 ] 78% - 0:00:00 left \r", + " [ 7832 / 10000 ] 78% - 0:00:00 left \r", + " [ 7833 / 10000 ] 78% - 0:00:00 left \r", + " [ 7834 / 10000 ] 78% - 0:00:00 left \r", + " [ 7835 / 10000 ] 78% - 0:00:00 left \r", + " [ 7836 / 10000 ] 78% - 0:00:00 left \r", + " [ 7837 / 10000 ] 78% - 0:00:00 left \r", + " [ 7838 / 10000 ] 78% - 0:00:00 left \r", + " [ 7839 / 10000 ] 78% - 0:00:00 left \r", + " [ 7840 / 10000 ] 78% - 0:00:00 left \r", + " [ 7841 / 10000 ] 78% - 0:00:00 left \r", + " [ 7842 / 10000 ] 78% - 0:00:00 left \r", + " [ 7843 / 10000 ] 78% - 0:00:00 left \r", + " [ 7844 / 10000 ] 78% - 0:00:00 left \r", + " [ 7845 / 10000 ] 78% - 0:00:00 left \r", + " [ 7846 / 10000 ] 78% - 0:00:00 left \r", + " [ 7847 / 10000 ] 78% - 0:00:00 left \r", + " [ 7848 / 10000 ] 78% - 0:00:00 left \r", + " [ 7849 / 10000 ] 78% - 0:00:00 left \r", + " [ 7850 / 10000 ] 78% - 0:00:00 left \r", + " [ 7851 / 10000 ] 79% - 0:00:00 left \r", + " [ 7852 / 10000 ] 79% - 0:00:00 left \r", + " [ 7853 / 10000 ] 79% - 0:00:00 left \r", + " [ 7854 / 10000 ] 79% - 0:00:00 left \r", + " [ 7855 / 10000 ] 79% - 0:00:00 left \r", + " [ 7856 / 10000 ] 79% - 0:00:00 left \r", + " [ 7857 / 10000 ] 79% - 0:00:00 left \r", + " [ 7858 / 10000 ] 79% - 0:00:00 left \r", + " [ 7859 / 10000 ] 79% - 0:00:00 left \r", + " [ 7860 / 10000 ] 79% - 0:00:00 left \r", + " [ 7861 / 10000 ] 79% - 0:00:00 left \r", + " [ 7862 / 10000 ] 79% - 0:00:00 left \r", + " [ 7863 / 10000 ] 79% - 0:00:00 left \r", + " [ 7864 / 10000 ] 79% - 0:00:00 left \r", + " [ 7865 / 10000 ] 79% - 0:00:00 left \r", + " [ 7866 / 10000 ] 79% - 0:00:00 left \r", + " [ 7867 / 10000 ] 79% - 0:00:00 left \r", + " [ 7868 / 10000 ] 79% - 0:00:00 left \r", + " [ 7869 / 10000 ] 79% - 0:00:00 left \r", + " [ 7870 / 10000 ] 79% - 0:00:00 left \r", + " [ 7871 / 10000 ] 79% - 0:00:00 left \r", + " [ 7872 / 10000 ] 79% - 0:00:00 left \r", + " [ 7873 / 10000 ] 79% - 0:00:00 left \r", + " [ 7874 / 10000 ] 79% - 0:00:00 left \r", + " [ 7875 / 10000 ] 79% - 0:00:00 left \r", + " [ 7876 / 10000 ] 79% - 0:00:00 left \r", + " [ 7877 / 10000 ] 79% - 0:00:00 left \r", + " [ 7878 / 10000 ] 79% - 0:00:00 left \r", + " [ 7879 / 10000 ] 79% - 0:00:00 left \r", + " [ 7880 / 10000 ] 79% - 0:00:00 left \r", + " [ 7881 / 10000 ] 79% - 0:00:00 left \r", + " [ 7882 / 10000 ] 79% - 0:00:00 left \r", + " [ 7883 / 10000 ] 79% - 0:00:00 left \r", + " [ 7884 / 10000 ] 79% - 0:00:00 left \r", + " [ 7885 / 10000 ] 79% - 0:00:00 left \r", + " [ 7886 / 10000 ] 79% - 0:00:00 left \r", + " [ 7887 / 10000 ] 79% - 0:00:00 left \r", + " [ 7888 / 10000 ] 79% - 0:00:00 left \r", + " [ 7889 / 10000 ] 79% - 0:00:00 left \r", + " [ 7890 / 10000 ] 79% - 0:00:00 left \r", + " [ 7891 / 10000 ] 79% - 0:00:00 left \r", + " [ 7892 / 10000 ] 79% - 0:00:00 left \r", + " [ 7893 / 10000 ] 79% - 0:00:00 left \r", + " [ 7894 / 10000 ] 79% - 0:00:00 left \r", + " [ 7895 / 10000 ] 79% - 0:00:00 left \r", + " [ 7896 / 10000 ] 79% - 0:00:00 left \r", + " [ 7897 / 10000 ] 79% - 0:00:00 left \r", + " [ 7898 / 10000 ] 79% - 0:00:00 left \r", + " [ 7899 / 10000 ] 79% - 0:00:00 left \r", + " [ 7900 / 10000 ] 79% - 0:00:00 left \r", + " [ 7901 / 10000 ] 79% - 0:00:00 left \r", + " [ 7902 / 10000 ] 79% - 0:00:00 left \r", + " [ 7903 / 10000 ] 79% - 0:00:00 left \r", + " [ 7904 / 10000 ] 79% - 0:00:00 left \r", + " [ 7905 / 10000 ] 79% - 0:00:00 left \r", + " [ 7906 / 10000 ] 79% - 0:00:00 left \r", + " [ 7907 / 10000 ] 79% - 0:00:00 left \r", + " [ 7908 / 10000 ] 79% - 0:00:00 left \r", + " [ 7909 / 10000 ] 79% - 0:00:00 left \r", + " [ 7910 / 10000 ] 79% - 0:00:00 left \r", + " [ 7911 / 10000 ] 79% - 0:00:00 left \r", + " [ 7912 / 10000 ] 79% - 0:00:00 left \r", + " [ 7913 / 10000 ] 79% - 0:00:00 left \r", + " [ 7914 / 10000 ] 79% - 0:00:00 left \r", + " [ 7915 / 10000 ] 79% - 0:00:00 left \r", + " [ 7916 / 10000 ] 79% - 0:00:00 left \r", + " [ 7917 / 10000 ] 79% - 0:00:00 left \r", + " [ 7918 / 10000 ] 79% - 0:00:00 left \r", + " [ 7919 / 10000 ] 79% - 0:00:00 left \r", + " [ 7920 / 10000 ] 79% - 0:00:00 left \r", + " [ 7921 / 10000 ] 79% - 0:00:00 left \r", + " [ 7922 / 10000 ] 79% - 0:00:00 left \r", + " [ 7923 / 10000 ] 79% - 0:00:00 left \r", + " [ 7924 / 10000 ] 79% - 0:00:00 left \r", + " [ 7925 / 10000 ] 79% - 0:00:00 left \r", + " [ 7926 / 10000 ] 79% - 0:00:00 left \r", + " [ 7927 / 10000 ] 79% - 0:00:00 left \r", + " [ 7928 / 10000 ] 79% - 0:00:00 left \r", + " [ 7929 / 10000 ] 79% - 0:00:00 left \r", + " [ 7930 / 10000 ] 79% - 0:00:00 left \r", + " [ 7931 / 10000 ] 79% - 0:00:00 left \r", + " [ 7932 / 10000 ] 79% - 0:00:00 left \r", + " [ 7933 / 10000 ] 79% - 0:00:00 left \r", + " [ 7934 / 10000 ] 79% - 0:00:00 left \r", + " [ 7935 / 10000 ] 79% - 0:00:00 left \r", + " [ 7936 / 10000 ] 79% - 0:00:00 left \r", + " [ 7937 / 10000 ] 79% - 0:00:00 left \r", + " [ 7938 / 10000 ] 79% - 0:00:00 left \r", + " [ 7939 / 10000 ] 79% - 0:00:00 left \r", + " [ 7940 / 10000 ] 79% - 0:00:00 left \r", + " [ 7941 / 10000 ] 79% - 0:00:00 left \r", + " [ 7942 / 10000 ] 79% - 0:00:00 left \r", + " [ 7943 / 10000 ] 79% - 0:00:00 left \r", + " [ 7944 / 10000 ] 79% - 0:00:00 left \r", + " [ 7945 / 10000 ] 79% - 0:00:00 left \r", + " [ 7946 / 10000 ] 79% - 0:00:00 left \r", + " [ 7947 / 10000 ] 79% - 0:00:00 left \r", + " [ 7948 / 10000 ] 79% - 0:00:00 left \r", + " [ 7949 / 10000 ] 79% - 0:00:00 left \r", + " [ 7950 / 10000 ] 80% - 0:00:00 left \r", + " [ 7951 / 10000 ] 80% - 0:00:00 left \r", + " [ 7952 / 10000 ] 80% - 0:00:00 left \r", + " [ 7953 / 10000 ] 80% - 0:00:00 left \r", + " [ 7954 / 10000 ] 80% - 0:00:00 left \r", + " [ 7955 / 10000 ] 80% - 0:00:00 left \r", + " [ 7956 / 10000 ] 80% - 0:00:00 left \r", + " [ 7957 / 10000 ] 80% - 0:00:00 left \r", + " [ 7958 / 10000 ] 80% - 0:00:00 left \r", + " [ 7959 / 10000 ] 80% - 0:00:00 left \r", + " [ 7960 / 10000 ] 80% - 0:00:00 left \r", + " [ 7961 / 10000 ] 80% - 0:00:00 left \r", + " [ 7962 / 10000 ] 80% - 0:00:00 left \r", + " [ 7963 / 10000 ] 80% - 0:00:00 left \r", + " [ 7964 / 10000 ] 80% - 0:00:00 left \r", + " [ 7965 / 10000 ] 80% - 0:00:00 left \r", + " [ 7966 / 10000 ] 80% - 0:00:00 left \r", + " [ 7967 / 10000 ] 80% - 0:00:00 left \r", + " [ 7968 / 10000 ] 80% - 0:00:00 left \r", + " [ 7969 / 10000 ] 80% - 0:00:00 left \r", + " [ 7970 / 10000 ] 80% - 0:00:00 left \r", + " [ 7971 / 10000 ] 80% - 0:00:00 left \r", + " [ 7972 / 10000 ] 80% - 0:00:00 left \r", + " [ 7973 / 10000 ] 80% - 0:00:00 left \r", + " [ 7974 / 10000 ] 80% - 0:00:00 left \r", + " [ 7975 / 10000 ] 80% - 0:00:00 left \r", + " [ 7976 / 10000 ] 80% - 0:00:00 left \r", + " [ 7977 / 10000 ] 80% - 0:00:00 left \r", + " [ 7978 / 10000 ] 80% - 0:00:00 left \r", + " [ 7979 / 10000 ] 80% - 0:00:00 left \r", + " [ 7980 / 10000 ] 80% - 0:00:00 left \r", + " [ 7981 / 10000 ] 80% - 0:00:00 left \r", + " [ 7982 / 10000 ] 80% - 0:00:00 left \r", + " [ 7983 / 10000 ] 80% - 0:00:00 left \r", + " [ 7984 / 10000 ] 80% - 0:00:00 left \r", + " [ 7985 / 10000 ] 80% - 0:00:00 left \r", + " [ 7986 / 10000 ] 80% - 0:00:00 left \r", + " [ 7987 / 10000 ] 80% - 0:00:00 left \r", + " [ 7988 / 10000 ] 80% - 0:00:00 left \r", + " [ 7989 / 10000 ] 80% - 0:00:00 left \r", + " [ 7990 / 10000 ] 80% - 0:00:00 left \r", + " [ 7991 / 10000 ] 80% - 0:00:00 left \r", + " [ 7992 / 10000 ] 80% - 0:00:00 left \r", + " [ 7993 / 10000 ] 80% - 0:00:00 left \r", + " [ 7994 / 10000 ] 80% - 0:00:00 left \r", + " [ 7995 / 10000 ] 80% - 0:00:00 left \r", + " [ 7996 / 10000 ] 80% - 0:00:00 left \r", + " [ 7997 / 10000 ] 80% - 0:00:00 left \r", + " [ 7998 / 10000 ] 80% - 0:00:00 left \r", + " [ 7999 / 10000 ] 80% - 0:00:00 left \r", + " [ 8000 / 10000 ] 80% - 0:00:00 left \r", + " [ 8001 / 10000 ] 80% - 0:00:00 left \r", + " [ 8002 / 10000 ] 80% - 0:00:00 left \r", + " [ 8003 / 10000 ] 80% - 0:00:00 left \r", + " [ 8004 / 10000 ] 80% - 0:00:00 left \r", + " [ 8005 / 10000 ] 80% - 0:00:00 left \r", + " [ 8006 / 10000 ] 80% - 0:00:00 left \r", + " [ 8007 / 10000 ] 80% - 0:00:00 left \r", + " [ 8008 / 10000 ] 80% - 0:00:00 left \r", + " [ 8009 / 10000 ] 80% - 0:00:00 left \r", + " [ 8010 / 10000 ] 80% - 0:00:00 left \r", + " [ 8011 / 10000 ] 80% - 0:00:00 left \r", + " [ 8012 / 10000 ] 80% - 0:00:00 left \r", + " [ 8013 / 10000 ] 80% - 0:00:00 left \r", + " [ 8014 / 10000 ] 80% - 0:00:00 left \r", + " [ 8015 / 10000 ] 80% - 0:00:00 left \r", + " [ 8016 / 10000 ] 80% - 0:00:00 left \r", + " [ 8017 / 10000 ] 80% - 0:00:00 left \r", + " [ 8018 / 10000 ] 80% - 0:00:00 left \r", + " [ 8019 / 10000 ] 80% - 0:00:00 left \r", + " [ 8020 / 10000 ] 80% - 0:00:00 left \r", + " [ 8021 / 10000 ] 80% - 0:00:00 left \r", + " [ 8022 / 10000 ] 80% - 0:00:00 left \r", + " [ 8023 / 10000 ] 80% - 0:00:00 left \r", + " [ 8024 / 10000 ] 80% - 0:00:00 left \r", + " [ 8025 / 10000 ] 80% - 0:00:00 left \r", + " [ 8026 / 10000 ] 80% - 0:00:00 left \r", + " [ 8027 / 10000 ] 80% - 0:00:00 left \r", + " [ 8028 / 10000 ] 80% - 0:00:00 left \r", + " [ 8029 / 10000 ] 80% - 0:00:00 left \r", + " [ 8030 / 10000 ] 80% - 0:00:00 left \r", + " [ 8031 / 10000 ] 80% - 0:00:00 left \r", + " [ 8032 / 10000 ] 80% - 0:00:00 left \r", + " [ 8033 / 10000 ] 80% - 0:00:00 left \r", + " [ 8034 / 10000 ] 80% - 0:00:00 left \r", + " [ 8035 / 10000 ] 80% - 0:00:00 left \r", + " [ 8036 / 10000 ] 80% - 0:00:00 left \r", + " [ 8037 / 10000 ] 80% - 0:00:00 left \r", + " [ 8038 / 10000 ] 80% - 0:00:00 left \r", + " [ 8039 / 10000 ] 80% - 0:00:00 left \r", + " [ 8040 / 10000 ] 80% - 0:00:00 left \r", + " [ 8041 / 10000 ] 80% - 0:00:00 left \r", + " [ 8042 / 10000 ] 80% - 0:00:00 left \r", + " [ 8043 / 10000 ] 80% - 0:00:00 left \r", + " [ 8044 / 10000 ] 80% - 0:00:00 left \r", + " [ 8045 / 10000 ] 80% - 0:00:00 left \r", + " [ 8046 / 10000 ] 80% - 0:00:00 left \r", + " [ 8047 / 10000 ] 80% - 0:00:00 left \r", + " [ 8048 / 10000 ] 80% - 0:00:00 left \r", + " [ 8049 / 10000 ] 80% - 0:00:00 left \r", + " [ 8050 / 10000 ] 80% - 0:00:00 left \r", + " [ 8051 / 10000 ] 81% - 0:00:00 left \r", + " [ 8052 / 10000 ] 81% - 0:00:00 left \r", + " [ 8053 / 10000 ] 81% - 0:00:00 left \r", + " [ 8054 / 10000 ] 81% - 0:00:00 left \r", + " [ 8055 / 10000 ] 81% - 0:00:00 left \r", + " [ 8056 / 10000 ] 81% - 0:00:00 left \r", + " [ 8057 / 10000 ] 81% - 0:00:00 left \r", + " [ 8058 / 10000 ] 81% - 0:00:00 left \r", + " [ 8059 / 10000 ] 81% - 0:00:00 left \r", + " [ 8060 / 10000 ] 81% - 0:00:00 left \r", + " [ 8061 / 10000 ] 81% - 0:00:00 left \r", + " [ 8062 / 10000 ] 81% - 0:00:00 left \r", + " [ 8063 / 10000 ] 81% - 0:00:00 left \r", + " [ 8064 / 10000 ] 81% - 0:00:00 left \r", + " [ 8065 / 10000 ] 81% - 0:00:00 left \r", + " [ 8066 / 10000 ] 81% - 0:00:00 left \r", + " [ 8067 / 10000 ] 81% - 0:00:00 left \r", + " [ 8068 / 10000 ] 81% - 0:00:00 left \r", + " [ 8069 / 10000 ] 81% - 0:00:00 left \r", + " [ 8070 / 10000 ] 81% - 0:00:00 left \r", + " [ 8071 / 10000 ] 81% - 0:00:00 left \r", + " [ 8072 / 10000 ] 81% - 0:00:00 left \r", + " [ 8073 / 10000 ] 81% - 0:00:00 left \r", + " [ 8074 / 10000 ] 81% - 0:00:00 left \r", + " [ 8075 / 10000 ] 81% - 0:00:00 left \r", + " [ 8076 / 10000 ] 81% - 0:00:00 left \r", + " [ 8077 / 10000 ] 81% - 0:00:00 left \r", + " [ 8078 / 10000 ] 81% - 0:00:00 left \r", + " [ 8079 / 10000 ] 81% - 0:00:00 left \r", + " [ 8080 / 10000 ] 81% - 0:00:00 left \r", + " [ 8081 / 10000 ] 81% - 0:00:00 left \r", + " [ 8082 / 10000 ] 81% - 0:00:00 left \r", + " [ 8083 / 10000 ] 81% - 0:00:00 left \r", + " [ 8084 / 10000 ] 81% - 0:00:00 left \r", + " [ 8085 / 10000 ] 81% - 0:00:00 left \r", + " [ 8086 / 10000 ] 81% - 0:00:00 left \r", + " [ 8087 / 10000 ] 81% - 0:00:00 left \r", + " [ 8088 / 10000 ] 81% - 0:00:00 left \r", + " [ 8089 / 10000 ] 81% - 0:00:00 left \r", + " [ 8090 / 10000 ] 81% - 0:00:00 left \r", + " [ 8091 / 10000 ] 81% - 0:00:00 left \r", + " [ 8092 / 10000 ] 81% - 0:00:00 left \r", + " [ 8093 / 10000 ] 81% - 0:00:00 left \r", + " [ 8094 / 10000 ] 81% - 0:00:00 left \r", + " [ 8095 / 10000 ] 81% - 0:00:00 left \r", + " [ 8096 / 10000 ] 81% - 0:00:00 left \r", + " [ 8097 / 10000 ] 81% - 0:00:00 left \r", + " [ 8098 / 10000 ] 81% - 0:00:00 left \r", + " [ 8099 / 10000 ] 81% - 0:00:00 left \r", + " [ 8100 / 10000 ] 81% - 0:00:00 left \r", + " [ 8101 / 10000 ] 81% - 0:00:00 left \r", + " [ 8102 / 10000 ] 81% - 0:00:00 left \r", + " [ 8103 / 10000 ] 81% - 0:00:00 left \r", + " [ 8104 / 10000 ] 81% - 0:00:00 left \r", + " [ 8105 / 10000 ] 81% - 0:00:00 left \r", + " [ 8106 / 10000 ] 81% - 0:00:00 left \r", + " [ 8107 / 10000 ] 81% - 0:00:00 left \r", + " [ 8108 / 10000 ] 81% - 0:00:00 left \r", + " [ 8109 / 10000 ] 81% - 0:00:00 left \r", + " [ 8110 / 10000 ] 81% - 0:00:00 left \r", + " [ 8111 / 10000 ] 81% - 0:00:00 left \r", + " [ 8112 / 10000 ] 81% - 0:00:00 left \r", + " [ 8113 / 10000 ] 81% - 0:00:00 left \r", + " [ 8114 / 10000 ] 81% - 0:00:00 left \r", + " [ 8115 / 10000 ] 81% - 0:00:00 left \r", + " [ 8116 / 10000 ] 81% - 0:00:00 left \r", + " [ 8117 / 10000 ] 81% - 0:00:00 left \r", + " [ 8118 / 10000 ] 81% - 0:00:00 left \r", + " [ 8119 / 10000 ] 81% - 0:00:00 left \r", + " [ 8120 / 10000 ] 81% - 0:00:00 left \r", + " [ 8121 / 10000 ] 81% - 0:00:00 left \r", + " [ 8122 / 10000 ] 81% - 0:00:00 left \r", + " [ 8123 / 10000 ] 81% - 0:00:00 left \r", + " [ 8124 / 10000 ] 81% - 0:00:00 left \r", + " [ 8125 / 10000 ] 81% - 0:00:00 left \r", + " [ 8126 / 10000 ] 81% - 0:00:00 left \r", + " [ 8127 / 10000 ] 81% - 0:00:00 left \r", + " [ 8128 / 10000 ] 81% - 0:00:00 left \r", + " [ 8129 / 10000 ] 81% - 0:00:00 left \r", + " [ 8130 / 10000 ] 81% - 0:00:00 left \r", + " [ 8131 / 10000 ] 81% - 0:00:00 left \r", + " [ 8132 / 10000 ] 81% - 0:00:00 left \r", + " [ 8133 / 10000 ] 81% - 0:00:00 left \r", + " [ 8134 / 10000 ] 81% - 0:00:00 left \r", + " [ 8135 / 10000 ] 81% - 0:00:00 left \r", + " [ 8136 / 10000 ] 81% - 0:00:00 left \r", + " [ 8137 / 10000 ] 81% - 0:00:00 left \r", + " [ 8138 / 10000 ] 81% - 0:00:00 left \r", + " [ 8139 / 10000 ] 81% - 0:00:00 left \r", + " [ 8140 / 10000 ] 81% - 0:00:00 left \r", + " [ 8141 / 10000 ] 81% - 0:00:00 left \r", + " [ 8142 / 10000 ] 81% - 0:00:00 left \r", + " [ 8143 / 10000 ] 81% - 0:00:00 left \r", + " [ 8144 / 10000 ] 81% - 0:00:00 left \r", + " [ 8145 / 10000 ] 81% - 0:00:00 left \r", + " [ 8146 / 10000 ] 81% - 0:00:00 left \r", + " [ 8147 / 10000 ] 81% - 0:00:00 left \r", + " [ 8148 / 10000 ] 81% - 0:00:00 left \r", + " [ 8149 / 10000 ] 81% - 0:00:00 left \r", + " [ 8150 / 10000 ] 82% - 0:00:00 left \r", + " [ 8151 / 10000 ] 82% - 0:00:00 left \r", + " [ 8152 / 10000 ] 82% - 0:00:00 left \r", + " [ 8153 / 10000 ] 82% - 0:00:00 left \r", + " [ 8154 / 10000 ] 82% - 0:00:00 left \r", + " [ 8155 / 10000 ] 82% - 0:00:00 left \r", + " [ 8156 / 10000 ] 82% - 0:00:00 left \r", + " [ 8157 / 10000 ] 82% - 0:00:00 left \r", + " [ 8158 / 10000 ] 82% - 0:00:00 left \r", + " [ 8159 / 10000 ] 82% - 0:00:00 left \r", + " [ 8160 / 10000 ] 82% - 0:00:00 left \r", + " [ 8161 / 10000 ] 82% - 0:00:00 left \r", + " [ 8162 / 10000 ] 82% - 0:00:00 left \r", + " [ 8163 / 10000 ] 82% - 0:00:00 left \r", + " [ 8164 / 10000 ] 82% - 0:00:00 left \r", + " [ 8165 / 10000 ] 82% - 0:00:00 left \r", + " [ 8166 / 10000 ] 82% - 0:00:00 left \r", + " [ 8167 / 10000 ] 82% - 0:00:00 left \r", + " [ 8168 / 10000 ] 82% - 0:00:00 left \r", + " [ 8169 / 10000 ] 82% - 0:00:00 left \r", + " [ 8170 / 10000 ] 82% - 0:00:00 left \r", + " [ 8171 / 10000 ] 82% - 0:00:00 left \r", + " [ 8172 / 10000 ] 82% - 0:00:00 left \r", + " [ 8173 / 10000 ] 82% - 0:00:00 left \r", + " [ 8174 / 10000 ] 82% - 0:00:00 left \r", + " [ 8175 / 10000 ] 82% - 0:00:00 left \r", + " [ 8176 / 10000 ] 82% - 0:00:00 left \r", + " [ 8177 / 10000 ] 82% - 0:00:00 left \r", + " [ 8178 / 10000 ] 82% - 0:00:00 left \r", + " [ 8179 / 10000 ] 82% - 0:00:00 left \r", + " [ 8180 / 10000 ] 82% - 0:00:00 left \r", + " [ 8181 / 10000 ] 82% - 0:00:00 left \r", + " [ 8182 / 10000 ] 82% - 0:00:00 left \r", + " [ 8183 / 10000 ] 82% - 0:00:00 left \r", + " [ 8184 / 10000 ] 82% - 0:00:00 left \r", + " [ 8185 / 10000 ] 82% - 0:00:00 left \r", + " [ 8186 / 10000 ] 82% - 0:00:00 left \r", + " [ 8187 / 10000 ] 82% - 0:00:00 left \r", + " [ 8188 / 10000 ] 82% - 0:00:00 left \r", + " [ 8189 / 10000 ] 82% - 0:00:00 left \r", + " [ 8190 / 10000 ] 82% - 0:00:00 left \r", + " [ 8191 / 10000 ] 82% - 0:00:00 left \r", + " [ 8192 / 10000 ] 82% - 0:00:00 left \r", + " [ 8193 / 10000 ] 82% - 0:00:00 left \r", + " [ 8194 / 10000 ] 82% - 0:00:00 left \r", + " [ 8195 / 10000 ] 82% - 0:00:00 left \r", + " [ 8196 / 10000 ] 82% - 0:00:00 left \r", + " [ 8197 / 10000 ] 82% - 0:00:00 left \r", + " [ 8198 / 10000 ] 82% - 0:00:00 left \r", + " [ 8199 / 10000 ] 82% - 0:00:00 left \r", + " [ 8200 / 10000 ] 82% - 0:00:00 left \r", + " [ 8201 / 10000 ] 82% - 0:00:00 left \r", + " [ 8202 / 10000 ] 82% - 0:00:00 left \r", + " [ 8203 / 10000 ] 82% - 0:00:00 left \r", + " [ 8204 / 10000 ] 82% - 0:00:00 left \r", + " [ 8205 / 10000 ] 82% - 0:00:00 left \r", + " [ 8206 / 10000 ] 82% - 0:00:00 left \r", + " [ 8207 / 10000 ] 82% - 0:00:00 left \r", + " [ 8208 / 10000 ] 82% - 0:00:00 left \r", + " [ 8209 / 10000 ] 82% - 0:00:00 left \r", + " [ 8210 / 10000 ] 82% - 0:00:00 left \r", + " [ 8211 / 10000 ] 82% - 0:00:00 left \r", + " [ 8212 / 10000 ] 82% - 0:00:00 left \r", + " [ 8213 / 10000 ] 82% - 0:00:00 left \r", + " [ 8214 / 10000 ] 82% - 0:00:00 left \r", + " [ 8215 / 10000 ] 82% - 0:00:00 left \r", + " [ 8216 / 10000 ] 82% - 0:00:00 left \r", + " [ 8217 / 10000 ] 82% - 0:00:00 left \r", + " [ 8218 / 10000 ] 82% - 0:00:00 left \r", + " [ 8219 / 10000 ] 82% - 0:00:00 left \r", + " [ 8220 / 10000 ] 82% - 0:00:00 left \r", + " [ 8221 / 10000 ] 82% - 0:00:00 left \r", + " [ 8222 / 10000 ] 82% - 0:00:00 left \r", + " [ 8223 / 10000 ] 82% - 0:00:00 left \r", + " [ 8224 / 10000 ] 82% - 0:00:00 left \r", + " [ 8225 / 10000 ] 82% - 0:00:00 left \r", + " [ 8226 / 10000 ] 82% - 0:00:00 left \r", + " [ 8227 / 10000 ] 82% - 0:00:00 left \r", + " [ 8228 / 10000 ] 82% - 0:00:00 left \r", + " [ 8229 / 10000 ] 82% - 0:00:00 left \r", + " [ 8230 / 10000 ] 82% - 0:00:00 left \r", + " [ 8231 / 10000 ] 82% - 0:00:00 left \r", + " [ 8232 / 10000 ] 82% - 0:00:00 left \r", + " [ 8233 / 10000 ] 82% - 0:00:00 left \r", + " [ 8234 / 10000 ] 82% - 0:00:00 left \r", + " [ 8235 / 10000 ] 82% - 0:00:00 left \r", + " [ 8236 / 10000 ] 82% - 0:00:00 left \r", + " [ 8237 / 10000 ] 82% - 0:00:00 left \r", + " [ 8238 / 10000 ] 82% - 0:00:00 left \r", + " [ 8239 / 10000 ] 82% - 0:00:00 left \r", + " [ 8240 / 10000 ] 82% - 0:00:00 left \r", + " [ 8241 / 10000 ] 82% - 0:00:00 left \r", + " [ 8242 / 10000 ] 82% - 0:00:00 left \r", + " [ 8243 / 10000 ] 82% - 0:00:00 left \r", + " [ 8244 / 10000 ] 82% - 0:00:00 left \r", + " [ 8245 / 10000 ] 82% - 0:00:00 left \r", + " [ 8246 / 10000 ] 82% - 0:00:00 left \r", + " [ 8247 / 10000 ] 82% - 0:00:00 left \r", + " [ 8248 / 10000 ] 82% - 0:00:00 left \r", + " [ 8249 / 10000 ] 82% - 0:00:00 left \r", + " [ 8250 / 10000 ] 82% - 0:00:00 left \r", + " [ 8251 / 10000 ] 83% - 0:00:00 left \r", + " [ 8252 / 10000 ] 83% - 0:00:00 left \r", + " [ 8253 / 10000 ] 83% - 0:00:00 left \r", + " [ 8254 / 10000 ] 83% - 0:00:00 left \r", + " [ 8255 / 10000 ] 83% - 0:00:00 left \r", + " [ 8256 / 10000 ] 83% - 0:00:00 left \r", + " [ 8257 / 10000 ] 83% - 0:00:00 left \r", + " [ 8258 / 10000 ] 83% - 0:00:00 left \r", + " [ 8259 / 10000 ] 83% - 0:00:00 left \r", + " [ 8260 / 10000 ] 83% - 0:00:00 left \r", + " [ 8261 / 10000 ] 83% - 0:00:00 left \r", + " [ 8262 / 10000 ] 83% - 0:00:00 left \r", + " [ 8263 / 10000 ] 83% - 0:00:00 left \r", + " [ 8264 / 10000 ] 83% - 0:00:00 left \r", + " [ 8265 / 10000 ] 83% - 0:00:00 left \r", + " [ 8266 / 10000 ] 83% - 0:00:00 left \r", + " [ 8267 / 10000 ] 83% - 0:00:00 left \r", + " [ 8268 / 10000 ] 83% - 0:00:00 left \r", + " [ 8269 / 10000 ] 83% - 0:00:00 left \r", + " [ 8270 / 10000 ] 83% - 0:00:00 left \r", + " [ 8271 / 10000 ] 83% - 0:00:00 left \r", + " [ 8272 / 10000 ] 83% - 0:00:00 left \r", + " [ 8273 / 10000 ] 83% - 0:00:00 left \r", + " [ 8274 / 10000 ] 83% - 0:00:00 left \r", + " [ 8275 / 10000 ] 83% - 0:00:00 left \r", + " [ 8276 / 10000 ] 83% - 0:00:00 left \r", + " [ 8277 / 10000 ] 83% - 0:00:00 left \r", + " [ 8278 / 10000 ] 83% - 0:00:00 left \r", + " [ 8279 / 10000 ] 83% - 0:00:00 left \r", + " [ 8280 / 10000 ] 83% - 0:00:00 left \r", + " [ 8281 / 10000 ] 83% - 0:00:00 left \r", + " [ 8282 / 10000 ] 83% - 0:00:00 left \r", + " [ 8283 / 10000 ] 83% - 0:00:00 left \r", + " [ 8284 / 10000 ] 83% - 0:00:00 left \r", + " [ 8285 / 10000 ] 83% - 0:00:00 left \r", + " [ 8286 / 10000 ] 83% - 0:00:00 left \r", + " [ 8287 / 10000 ] 83% - 0:00:00 left \r", + " [ 8288 / 10000 ] 83% - 0:00:00 left \r", + " [ 8289 / 10000 ] 83% - 0:00:00 left \r", + " [ 8290 / 10000 ] 83% - 0:00:00 left \r", + " [ 8291 / 10000 ] 83% - 0:00:00 left \r", + " [ 8292 / 10000 ] 83% - 0:00:00 left \r", + " [ 8293 / 10000 ] 83% - 0:00:00 left \r", + " [ 8294 / 10000 ] 83% - 0:00:00 left \r", + " [ 8295 / 10000 ] 83% - 0:00:00 left \r", + " [ 8296 / 10000 ] 83% - 0:00:00 left \r", + " [ 8297 / 10000 ] 83% - 0:00:00 left \r", + " [ 8298 / 10000 ] 83% - 0:00:00 left \r", + " [ 8299 / 10000 ] 83% - 0:00:00 left \r", + " [ 8300 / 10000 ] 83% - 0:00:00 left \r", + " [ 8301 / 10000 ] 83% - 0:00:00 left \r", + " [ 8302 / 10000 ] 83% - 0:00:00 left \r", + " [ 8303 / 10000 ] 83% - 0:00:00 left \r", + " [ 8304 / 10000 ] 83% - 0:00:00 left \r", + " [ 8305 / 10000 ] 83% - 0:00:00 left \r", + " [ 8306 / 10000 ] 83% - 0:00:00 left \r", + " [ 8307 / 10000 ] 83% - 0:00:00 left \r", + " [ 8308 / 10000 ] 83% - 0:00:00 left \r", + " [ 8309 / 10000 ] 83% - 0:00:00 left \r", + " [ 8310 / 10000 ] 83% - 0:00:00 left \r", + " [ 8311 / 10000 ] 83% - 0:00:00 left \r", + " [ 8312 / 10000 ] 83% - 0:00:00 left \r", + " [ 8313 / 10000 ] 83% - 0:00:00 left \r", + " [ 8314 / 10000 ] 83% - 0:00:00 left \r", + " [ 8315 / 10000 ] 83% - 0:00:00 left \r", + " [ 8316 / 10000 ] 83% - 0:00:00 left \r", + " [ 8317 / 10000 ] 83% - 0:00:00 left \r", + " [ 8318 / 10000 ] 83% - 0:00:00 left \r", + " [ 8319 / 10000 ] 83% - 0:00:00 left \r", + " [ 8320 / 10000 ] 83% - 0:00:00 left \r", + " [ 8321 / 10000 ] 83% - 0:00:00 left \r", + " [ 8322 / 10000 ] 83% - 0:00:00 left \r", + " [ 8323 / 10000 ] 83% - 0:00:00 left \r", + " [ 8324 / 10000 ] 83% - 0:00:00 left \r", + " [ 8325 / 10000 ] 83% - 0:00:00 left \r", + " [ 8326 / 10000 ] 83% - 0:00:00 left \r", + " [ 8327 / 10000 ] 83% - 0:00:00 left \r", + " [ 8328 / 10000 ] 83% - 0:00:00 left \r", + " [ 8329 / 10000 ] 83% - 0:00:00 left \r", + " [ 8330 / 10000 ] 83% - 0:00:00 left \r", + " [ 8331 / 10000 ] 83% - 0:00:00 left \r", + " [ 8332 / 10000 ] 83% - 0:00:00 left \r", + " [ 8333 / 10000 ] 83% - 0:00:00 left \r", + " [ 8334 / 10000 ] 83% - 0:00:00 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 8335 / 10000 ] 83% - 0:00:00 left \r", + " [ 8336 / 10000 ] 83% - 0:00:00 left \r", + " [ 8337 / 10000 ] 83% - 0:00:00 left \r", + " [ 8338 / 10000 ] 83% - 0:00:00 left \r", + " [ 8339 / 10000 ] 83% - 0:00:00 left \r", + " [ 8340 / 10000 ] 83% - 0:00:00 left \r", + " [ 8341 / 10000 ] 83% - 0:00:00 left \r", + " [ 8342 / 10000 ] 83% - 0:00:00 left \r", + " [ 8343 / 10000 ] 83% - 0:00:00 left \r", + " [ 8344 / 10000 ] 83% - 0:00:00 left \r", + " [ 8345 / 10000 ] 83% - 0:00:00 left \r", + " [ 8346 / 10000 ] 83% - 0:00:00 left \r", + " [ 8347 / 10000 ] 83% - 0:00:00 left \r", + " [ 8348 / 10000 ] 83% - 0:00:00 left \r", + " [ 8349 / 10000 ] 83% - 0:00:00 left \r", + " [ 8350 / 10000 ] 84% - 0:00:00 left \r", + " [ 8351 / 10000 ] 84% - 0:00:00 left \r", + " [ 8352 / 10000 ] 84% - 0:00:00 left \r", + " [ 8353 / 10000 ] 84% - 0:00:00 left \r", + " [ 8354 / 10000 ] 84% - 0:00:00 left \r", + " [ 8355 / 10000 ] 84% - 0:00:00 left \r", + " [ 8356 / 10000 ] 84% - 0:00:00 left \r", + " [ 8357 / 10000 ] 84% - 0:00:00 left \r", + " [ 8358 / 10000 ] 84% - 0:00:00 left \r", + " [ 8359 / 10000 ] 84% - 0:00:00 left \r", + " [ 8360 / 10000 ] 84% - 0:00:00 left \r", + " [ 8361 / 10000 ] 84% - 0:00:00 left \r", + " [ 8362 / 10000 ] 84% - 0:00:00 left \r", + " [ 8363 / 10000 ] 84% - 0:00:00 left \r", + " [ 8364 / 10000 ] 84% - 0:00:00 left \r", + " [ 8365 / 10000 ] 84% - 0:00:00 left \r", + " [ 8366 / 10000 ] 84% - 0:00:00 left \r", + " [ 8367 / 10000 ] 84% - 0:00:00 left \r", + " [ 8368 / 10000 ] 84% - 0:00:00 left \r", + " [ 8369 / 10000 ] 84% - 0:00:00 left \r", + " [ 8370 / 10000 ] 84% - 0:00:00 left \r", + " [ 8371 / 10000 ] 84% - 0:00:00 left \r", + " [ 8372 / 10000 ] 84% - 0:00:00 left \r", + " [ 8373 / 10000 ] 84% - 0:00:00 left \r", + " [ 8374 / 10000 ] 84% - 0:00:00 left \r", + " [ 8375 / 10000 ] 84% - 0:00:00 left \r", + " [ 8376 / 10000 ] 84% - 0:00:00 left \r", + " [ 8377 / 10000 ] 84% - 0:00:00 left \r", + " [ 8378 / 10000 ] 84% - 0:00:00 left \r", + " [ 8379 / 10000 ] 84% - 0:00:00 left \r", + " [ 8380 / 10000 ] 84% - 0:00:00 left \r", + " [ 8381 / 10000 ] 84% - 0:00:00 left \r", + " [ 8382 / 10000 ] 84% - 0:00:00 left \r", + " [ 8383 / 10000 ] 84% - 0:00:00 left \r", + " [ 8384 / 10000 ] 84% - 0:00:00 left \r", + " [ 8385 / 10000 ] 84% - 0:00:00 left \r", + " [ 8386 / 10000 ] 84% - 0:00:00 left \r", + " [ 8387 / 10000 ] 84% - 0:00:00 left \r", + " [ 8388 / 10000 ] 84% - 0:00:00 left \r", + " [ 8389 / 10000 ] 84% - 0:00:00 left \r", + " [ 8390 / 10000 ] 84% - 0:00:00 left \r", + " [ 8391 / 10000 ] 84% - 0:00:00 left \r", + " [ 8392 / 10000 ] 84% - 0:00:00 left \r", + " [ 8393 / 10000 ] 84% - 0:00:00 left \r", + " [ 8394 / 10000 ] 84% - 0:00:00 left \r", + " [ 8395 / 10000 ] 84% - 0:00:00 left \r", + " [ 8396 / 10000 ] 84% - 0:00:00 left \r", + " [ 8397 / 10000 ] 84% - 0:00:00 left \r", + " [ 8398 / 10000 ] 84% - 0:00:00 left \r", + " [ 8399 / 10000 ] 84% - 0:00:00 left \r", + " [ 8400 / 10000 ] 84% - 0:00:00 left \r", + " [ 8401 / 10000 ] 84% - 0:00:00 left \r", + " [ 8402 / 10000 ] 84% - 0:00:00 left \r", + " [ 8403 / 10000 ] 84% - 0:00:00 left \r", + " [ 8404 / 10000 ] 84% - 0:00:00 left \r", + " [ 8405 / 10000 ] 84% - 0:00:00 left \r", + " [ 8406 / 10000 ] 84% - 0:00:00 left \r", + " [ 8407 / 10000 ] 84% - 0:00:00 left \r", + " [ 8408 / 10000 ] 84% - 0:00:00 left \r", + " [ 8409 / 10000 ] 84% - 0:00:00 left \r", + " [ 8410 / 10000 ] 84% - 0:00:00 left \r", + " [ 8411 / 10000 ] 84% - 0:00:00 left \r", + " [ 8412 / 10000 ] 84% - 0:00:00 left \r", + " [ 8413 / 10000 ] 84% - 0:00:00 left \r", + " [ 8414 / 10000 ] 84% - 0:00:00 left \r", + " [ 8415 / 10000 ] 84% - 0:00:00 left \r", + " [ 8416 / 10000 ] 84% - 0:00:00 left \r", + " [ 8417 / 10000 ] 84% - 0:00:00 left \r", + " [ 8418 / 10000 ] 84% - 0:00:00 left \r", + " [ 8419 / 10000 ] 84% - 0:00:00 left \r", + " [ 8420 / 10000 ] 84% - 0:00:00 left \r", + " [ 8421 / 10000 ] 84% - 0:00:00 left \r", + " [ 8422 / 10000 ] 84% - 0:00:00 left \r", + " [ 8423 / 10000 ] 84% - 0:00:00 left \r", + " [ 8424 / 10000 ] 84% - 0:00:00 left \r", + " [ 8425 / 10000 ] 84% - 0:00:00 left \r", + " [ 8426 / 10000 ] 84% - 0:00:00 left \r", + " [ 8427 / 10000 ] 84% - 0:00:00 left \r", + " [ 8428 / 10000 ] 84% - 0:00:00 left \r", + " [ 8429 / 10000 ] 84% - 0:00:00 left \r", + " [ 8430 / 10000 ] 84% - 0:00:00 left \r", + " [ 8431 / 10000 ] 84% - 0:00:00 left \r", + " [ 8432 / 10000 ] 84% - 0:00:00 left \r", + " [ 8433 / 10000 ] 84% - 0:00:00 left \r", + " [ 8434 / 10000 ] 84% - 0:00:00 left \r", + " [ 8435 / 10000 ] 84% - 0:00:00 left \r", + " [ 8436 / 10000 ] 84% - 0:00:00 left \r", + " [ 8437 / 10000 ] 84% - 0:00:00 left \r", + " [ 8438 / 10000 ] 84% - 0:00:00 left \r", + " [ 8439 / 10000 ] 84% - 0:00:00 left \r", + " [ 8440 / 10000 ] 84% - 0:00:00 left \r", + " [ 8441 / 10000 ] 84% - 0:00:00 left \r", + " [ 8442 / 10000 ] 84% - 0:00:00 left \r", + " [ 8443 / 10000 ] 84% - 0:00:00 left \r", + " [ 8444 / 10000 ] 84% - 0:00:00 left \r", + " [ 8445 / 10000 ] 84% - 0:00:00 left \r", + " [ 8446 / 10000 ] 84% - 0:00:00 left \r", + " [ 8447 / 10000 ] 84% - 0:00:00 left \r", + " [ 8448 / 10000 ] 84% - 0:00:00 left \r", + " [ 8449 / 10000 ] 84% - 0:00:00 left \r", + " [ 8450 / 10000 ] 84% - 0:00:00 left \r", + " [ 8451 / 10000 ] 85% - 0:00:00 left \r", + " [ 8452 / 10000 ] 85% - 0:00:00 left \r", + " [ 8453 / 10000 ] 85% - 0:00:00 left \r", + " [ 8454 / 10000 ] 85% - 0:00:00 left \r", + " [ 8455 / 10000 ] 85% - 0:00:00 left \r", + " [ 8456 / 10000 ] 85% - 0:00:00 left \r", + " [ 8457 / 10000 ] 85% - 0:00:00 left \r", + " [ 8458 / 10000 ] 85% - 0:00:00 left \r", + " [ 8459 / 10000 ] 85% - 0:00:00 left \r", + " [ 8460 / 10000 ] 85% - 0:00:00 left \r", + " [ 8461 / 10000 ] 85% - 0:00:00 left \r", + " [ 8462 / 10000 ] 85% - 0:00:00 left \r", + " [ 8463 / 10000 ] 85% - 0:00:00 left \r", + " [ 8464 / 10000 ] 85% - 0:00:00 left \r", + " [ 8465 / 10000 ] 85% - 0:00:00 left \r", + " [ 8466 / 10000 ] 85% - 0:00:00 left \r", + " [ 8467 / 10000 ] 85% - 0:00:00 left \r", + " [ 8468 / 10000 ] 85% - 0:00:00 left \r", + " [ 8469 / 10000 ] 85% - 0:00:00 left \r", + " [ 8470 / 10000 ] 85% - 0:00:00 left \r", + " [ 8471 / 10000 ] 85% - 0:00:00 left \r", + " [ 8472 / 10000 ] 85% - 0:00:00 left \r", + " [ 8473 / 10000 ] 85% - 0:00:00 left \r", + " [ 8474 / 10000 ] 85% - 0:00:00 left \r", + " [ 8475 / 10000 ] 85% - 0:00:00 left \r", + " [ 8476 / 10000 ] 85% - 0:00:00 left \r", + " [ 8477 / 10000 ] 85% - 0:00:00 left \r", + " [ 8478 / 10000 ] 85% - 0:00:00 left \r", + " [ 8479 / 10000 ] 85% - 0:00:00 left \r", + " [ 8480 / 10000 ] 85% - 0:00:00 left \r", + " [ 8481 / 10000 ] 85% - 0:00:00 left \r", + " [ 8482 / 10000 ] 85% - 0:00:00 left \r", + " [ 8483 / 10000 ] 85% - 0:00:00 left \r", + " [ 8484 / 10000 ] 85% - 0:00:00 left \r", + " [ 8485 / 10000 ] 85% - 0:00:00 left \r", + " [ 8486 / 10000 ] 85% - 0:00:00 left \r", + " [ 8487 / 10000 ] 85% - 0:00:00 left \r", + " [ 8488 / 10000 ] 85% - 0:00:00 left \r", + " [ 8489 / 10000 ] 85% - 0:00:00 left \r", + " [ 8490 / 10000 ] 85% - 0:00:00 left \r", + " [ 8491 / 10000 ] 85% - 0:00:00 left \r", + " [ 8492 / 10000 ] 85% - 0:00:00 left \r", + " [ 8493 / 10000 ] 85% - 0:00:00 left \r", + " [ 8494 / 10000 ] 85% - 0:00:00 left \r", + " [ 8495 / 10000 ] 85% - 0:00:00 left \r", + " [ 8496 / 10000 ] 85% - 0:00:00 left \r", + " [ 8497 / 10000 ] 85% - 0:00:00 left \r", + " [ 8498 / 10000 ] 85% - 0:00:00 left \r", + " [ 8499 / 10000 ] 85% - 0:00:00 left \r", + " [ 8500 / 10000 ] 85% - 0:00:00 left \r", + " [ 8501 / 10000 ] 85% - 0:00:00 left \r", + " [ 8502 / 10000 ] 85% - 0:00:00 left \r", + " [ 8503 / 10000 ] 85% - 0:00:00 left \r", + " [ 8504 / 10000 ] 85% - 0:00:00 left \r", + " [ 8505 / 10000 ] 85% - 0:00:00 left \r", + " [ 8506 / 10000 ] 85% - 0:00:00 left \r", + " [ 8507 / 10000 ] 85% - 0:00:00 left \r", + " [ 8508 / 10000 ] 85% - 0:00:00 left \r", + " [ 8509 / 10000 ] 85% - 0:00:00 left \r", + " [ 8510 / 10000 ] 85% - 0:00:00 left \r", + " [ 8511 / 10000 ] 85% - 0:00:00 left \r", + " [ 8512 / 10000 ] 85% - 0:00:00 left \r", + " [ 8513 / 10000 ] 85% - 0:00:00 left \r", + " [ 8514 / 10000 ] 85% - 0:00:00 left \r", + " [ 8515 / 10000 ] 85% - 0:00:00 left \r", + " [ 8516 / 10000 ] 85% - 0:00:00 left \r", + " [ 8517 / 10000 ] 85% - 0:00:00 left \r", + " [ 8518 / 10000 ] 85% - 0:00:00 left \r", + " [ 8519 / 10000 ] 85% - 0:00:00 left \r", + " [ 8520 / 10000 ] 85% - 0:00:00 left \r", + " [ 8521 / 10000 ] 85% - 0:00:00 left \r", + " [ 8522 / 10000 ] 85% - 0:00:00 left \r", + " [ 8523 / 10000 ] 85% - 0:00:00 left \r", + " [ 8524 / 10000 ] 85% - 0:00:00 left \r", + " [ 8525 / 10000 ] 85% - 0:00:00 left \r", + " [ 8526 / 10000 ] 85% - 0:00:00 left \r", + " [ 8527 / 10000 ] 85% - 0:00:00 left \r", + " [ 8528 / 10000 ] 85% - 0:00:00 left \r", + " [ 8529 / 10000 ] 85% - 0:00:00 left \r", + " [ 8530 / 10000 ] 85% - 0:00:00 left \r", + " [ 8531 / 10000 ] 85% - 0:00:00 left \r", + " [ 8532 / 10000 ] 85% - 0:00:00 left \r", + " [ 8533 / 10000 ] 85% - 0:00:00 left \r", + " [ 8534 / 10000 ] 85% - 0:00:00 left \r", + " [ 8535 / 10000 ] 85% - 0:00:00 left \r", + " [ 8536 / 10000 ] 85% - 0:00:00 left \r", + " [ 8537 / 10000 ] 85% - 0:00:00 left \r", + " [ 8538 / 10000 ] 85% - 0:00:00 left \r", + " [ 8539 / 10000 ] 85% - 0:00:00 left \r", + " [ 8540 / 10000 ] 85% - 0:00:00 left \r", + " [ 8541 / 10000 ] 85% - 0:00:00 left \r", + " [ 8542 / 10000 ] 85% - 0:00:00 left \r", + " [ 8543 / 10000 ] 85% - 0:00:00 left \r", + " [ 8544 / 10000 ] 85% - 0:00:00 left \r", + " [ 8545 / 10000 ] 85% - 0:00:00 left \r", + " [ 8546 / 10000 ] 85% - 0:00:00 left \r", + " [ 8547 / 10000 ] 85% - 0:00:00 left \r", + " [ 8548 / 10000 ] 85% - 0:00:00 left \r", + " [ 8549 / 10000 ] 85% - 0:00:00 left \r", + " [ 8550 / 10000 ] 86% - 0:00:00 left \r", + " [ 8551 / 10000 ] 86% - 0:00:00 left \r", + " [ 8552 / 10000 ] 86% - 0:00:00 left \r", + " [ 8553 / 10000 ] 86% - 0:00:00 left \r", + " [ 8554 / 10000 ] 86% - 0:00:00 left \r", + " [ 8555 / 10000 ] 86% - 0:00:00 left \r", + " [ 8556 / 10000 ] 86% - 0:00:00 left \r", + " [ 8557 / 10000 ] 86% - 0:00:00 left \r", + " [ 8558 / 10000 ] 86% - 0:00:00 left \r", + " [ 8559 / 10000 ] 86% - 0:00:00 left \r", + " [ 8560 / 10000 ] 86% - 0:00:00 left \r", + " [ 8561 / 10000 ] 86% - 0:00:00 left \r", + " [ 8562 / 10000 ] 86% - 0:00:00 left \r", + " [ 8563 / 10000 ] 86% - 0:00:00 left \r", + " [ 8564 / 10000 ] 86% - 0:00:00 left \r", + " [ 8565 / 10000 ] 86% - 0:00:00 left \r", + " [ 8566 / 10000 ] 86% - 0:00:00 left \r", + " [ 8567 / 10000 ] 86% - 0:00:00 left \r", + " [ 8568 / 10000 ] 86% - 0:00:00 left \r", + " [ 8569 / 10000 ] 86% - 0:00:00 left \r", + " [ 8570 / 10000 ] 86% - 0:00:00 left \r", + " [ 8571 / 10000 ] 86% - 0:00:00 left \r", + " [ 8572 / 10000 ] 86% - 0:00:00 left \r", + " [ 8573 / 10000 ] 86% - 0:00:00 left \r", + " [ 8574 / 10000 ] 86% - 0:00:00 left \r", + " [ 8575 / 10000 ] 86% - 0:00:00 left \r", + " [ 8576 / 10000 ] 86% - 0:00:00 left \r", + " [ 8577 / 10000 ] 86% - 0:00:00 left \r", + " [ 8578 / 10000 ] 86% - 0:00:00 left \r", + " [ 8579 / 10000 ] 86% - 0:00:00 left \r", + " [ 8580 / 10000 ] 86% - 0:00:00 left \r", + " [ 8581 / 10000 ] 86% - 0:00:00 left \r", + " [ 8582 / 10000 ] 86% - 0:00:00 left \r", + " [ 8583 / 10000 ] 86% - 0:00:00 left \r", + " [ 8584 / 10000 ] 86% - 0:00:00 left \r", + " [ 8585 / 10000 ] 86% - 0:00:00 left \r", + " [ 8586 / 10000 ] 86% - 0:00:00 left \r", + " [ 8587 / 10000 ] 86% - 0:00:00 left \r", + " [ 8588 / 10000 ] 86% - 0:00:00 left \r", + " [ 8589 / 10000 ] 86% - 0:00:00 left \r", + " [ 8590 / 10000 ] 86% - 0:00:00 left \r", + " [ 8591 / 10000 ] 86% - 0:00:00 left \r", + " [ 8592 / 10000 ] 86% - 0:00:00 left \r", + " [ 8593 / 10000 ] 86% - 0:00:00 left \r", + " [ 8594 / 10000 ] 86% - 0:00:00 left \r", + " [ 8595 / 10000 ] 86% - 0:00:00 left \r", + " [ 8596 / 10000 ] 86% - 0:00:00 left \r", + " [ 8597 / 10000 ] 86% - 0:00:00 left \r", + " [ 8598 / 10000 ] 86% - 0:00:00 left \r", + " [ 8599 / 10000 ] 86% - 0:00:00 left \r", + " [ 8600 / 10000 ] 86% - 0:00:00 left \r", + " [ 8601 / 10000 ] 86% - 0:00:00 left \r", + " [ 8602 / 10000 ] 86% - 0:00:00 left \r", + " [ 8603 / 10000 ] 86% - 0:00:00 left \r", + " [ 8604 / 10000 ] 86% - 0:00:00 left \r", + " [ 8605 / 10000 ] 86% - 0:00:00 left \r", + " [ 8606 / 10000 ] 86% - 0:00:00 left \r", + " [ 8607 / 10000 ] 86% - 0:00:00 left \r", + " [ 8608 / 10000 ] 86% - 0:00:00 left \r", + " [ 8609 / 10000 ] 86% - 0:00:00 left \r", + " [ 8610 / 10000 ] 86% - 0:00:00 left \r", + " [ 8611 / 10000 ] 86% - 0:00:00 left \r", + " [ 8612 / 10000 ] 86% - 0:00:00 left \r", + " [ 8613 / 10000 ] 86% - 0:00:00 left \r", + " [ 8614 / 10000 ] 86% - 0:00:00 left \r", + " [ 8615 / 10000 ] 86% - 0:00:00 left \r", + " [ 8616 / 10000 ] 86% - 0:00:00 left \r", + " [ 8617 / 10000 ] 86% - 0:00:00 left \r", + " [ 8618 / 10000 ] 86% - 0:00:00 left \r", + " [ 8619 / 10000 ] 86% - 0:00:00 left \r", + " [ 8620 / 10000 ] 86% - 0:00:00 left \r", + " [ 8621 / 10000 ] 86% - 0:00:00 left \r", + " [ 8622 / 10000 ] 86% - 0:00:00 left \r", + " [ 8623 / 10000 ] 86% - 0:00:00 left \r", + " [ 8624 / 10000 ] 86% - 0:00:00 left \r", + " [ 8625 / 10000 ] 86% - 0:00:00 left \r", + " [ 8626 / 10000 ] 86% - 0:00:00 left \r", + " [ 8627 / 10000 ] 86% - 0:00:00 left \r", + " [ 8628 / 10000 ] 86% - 0:00:00 left \r", + " [ 8629 / 10000 ] 86% - 0:00:00 left \r", + " [ 8630 / 10000 ] 86% - 0:00:00 left \r", + " [ 8631 / 10000 ] 86% - 0:00:00 left \r", + " [ 8632 / 10000 ] 86% - 0:00:00 left \r", + " [ 8633 / 10000 ] 86% - 0:00:00 left \r", + " [ 8634 / 10000 ] 86% - 0:00:00 left \r", + " [ 8635 / 10000 ] 86% - 0:00:00 left \r", + " [ 8636 / 10000 ] 86% - 0:00:00 left \r", + " [ 8637 / 10000 ] 86% - 0:00:00 left \r", + " [ 8638 / 10000 ] 86% - 0:00:00 left \r", + " [ 8639 / 10000 ] 86% - 0:00:00 left \r", + " [ 8640 / 10000 ] 86% - 0:00:00 left \r", + " [ 8641 / 10000 ] 86% - 0:00:00 left \r", + " [ 8642 / 10000 ] 86% - 0:00:00 left \r", + " [ 8643 / 10000 ] 86% - 0:00:00 left \r", + " [ 8644 / 10000 ] 86% - 0:00:00 left \r", + " [ 8645 / 10000 ] 86% - 0:00:00 left \r", + " [ 8646 / 10000 ] 86% - 0:00:00 left \r", + " [ 8647 / 10000 ] 86% - 0:00:00 left \r", + " [ 8648 / 10000 ] 86% - 0:00:00 left \r", + " [ 8649 / 10000 ] 86% - 0:00:00 left \r", + " [ 8650 / 10000 ] 86% - 0:00:00 left \r", + " [ 8651 / 10000 ] 87% - 0:00:00 left \r", + " [ 8652 / 10000 ] 87% - 0:00:00 left \r", + " [ 8653 / 10000 ] 87% - 0:00:00 left \r", + " [ 8654 / 10000 ] 87% - 0:00:00 left \r", + " [ 8655 / 10000 ] 87% - 0:00:00 left \r", + " [ 8656 / 10000 ] 87% - 0:00:00 left \r", + " [ 8657 / 10000 ] 87% - 0:00:00 left \r", + " [ 8658 / 10000 ] 87% - 0:00:00 left \r", + " [ 8659 / 10000 ] 87% - 0:00:00 left \r", + " [ 8660 / 10000 ] 87% - 0:00:00 left \r", + " [ 8661 / 10000 ] 87% - 0:00:00 left \r", + " [ 8662 / 10000 ] 87% - 0:00:00 left \r", + " [ 8663 / 10000 ] 87% - 0:00:00 left \r", + " [ 8664 / 10000 ] 87% - 0:00:00 left \r", + " [ 8665 / 10000 ] 87% - 0:00:00 left \r", + " [ 8666 / 10000 ] 87% - 0:00:00 left \r", + " [ 8667 / 10000 ] 87% - 0:00:00 left \r", + " [ 8668 / 10000 ] 87% - 0:00:00 left \r", + " [ 8669 / 10000 ] 87% - 0:00:00 left \r", + " [ 8670 / 10000 ] 87% - 0:00:00 left \r", + " [ 8671 / 10000 ] 87% - 0:00:00 left \r", + " [ 8672 / 10000 ] 87% - 0:00:00 left \r", + " [ 8673 / 10000 ] 87% - 0:00:00 left \r", + " [ 8674 / 10000 ] 87% - 0:00:00 left \r", + " [ 8675 / 10000 ] 87% - 0:00:00 left \r", + " [ 8676 / 10000 ] 87% - 0:00:00 left \r", + " [ 8677 / 10000 ] 87% - 0:00:00 left \r", + " [ 8678 / 10000 ] 87% - 0:00:00 left \r", + " [ 8679 / 10000 ] 87% - 0:00:00 left \r", + " [ 8680 / 10000 ] 87% - 0:00:00 left \r", + " [ 8681 / 10000 ] 87% - 0:00:00 left \r", + " [ 8682 / 10000 ] 87% - 0:00:00 left \r", + " [ 8683 / 10000 ] 87% - 0:00:00 left \r", + " [ 8684 / 10000 ] 87% - 0:00:00 left \r", + " [ 8685 / 10000 ] 87% - 0:00:00 left \r", + " [ 8686 / 10000 ] 87% - 0:00:00 left \r", + " [ 8687 / 10000 ] 87% - 0:00:00 left \r", + " [ 8688 / 10000 ] 87% - 0:00:00 left \r", + " [ 8689 / 10000 ] 87% - 0:00:00 left \r", + " [ 8690 / 10000 ] 87% - 0:00:00 left \r", + " [ 8691 / 10000 ] 87% - 0:00:00 left \r", + " [ 8692 / 10000 ] 87% - 0:00:00 left \r", + " [ 8693 / 10000 ] 87% - 0:00:00 left \r", + " [ 8694 / 10000 ] 87% - 0:00:00 left \r", + " [ 8695 / 10000 ] 87% - 0:00:00 left \r", + " [ 8696 / 10000 ] 87% - 0:00:00 left \r", + " [ 8697 / 10000 ] 87% - 0:00:00 left \r", + " [ 8698 / 10000 ] 87% - 0:00:00 left \r", + " [ 8699 / 10000 ] 87% - 0:00:00 left \r", + " [ 8700 / 10000 ] 87% - 0:00:00 left \r", + " [ 8701 / 10000 ] 87% - 0:00:00 left \r", + " [ 8702 / 10000 ] 87% - 0:00:00 left \r", + " [ 8703 / 10000 ] 87% - 0:00:00 left \r", + " [ 8704 / 10000 ] 87% - 0:00:00 left \r", + " [ 8705 / 10000 ] 87% - 0:00:00 left \r", + " [ 8706 / 10000 ] 87% - 0:00:00 left \r", + " [ 8707 / 10000 ] 87% - 0:00:00 left \r", + " [ 8708 / 10000 ] 87% - 0:00:00 left \r", + " [ 8709 / 10000 ] 87% - 0:00:00 left \r", + " [ 8710 / 10000 ] 87% - 0:00:00 left \r", + " [ 8711 / 10000 ] 87% - 0:00:00 left \r", + " [ 8712 / 10000 ] 87% - 0:00:00 left \r", + " [ 8713 / 10000 ] 87% - 0:00:00 left \r", + " [ 8714 / 10000 ] 87% - 0:00:00 left \r", + " [ 8715 / 10000 ] 87% - 0:00:00 left \r", + " [ 8716 / 10000 ] 87% - 0:00:00 left \r", + " [ 8717 / 10000 ] 87% - 0:00:00 left \r", + " [ 8718 / 10000 ] 87% - 0:00:00 left \r", + " [ 8719 / 10000 ] 87% - 0:00:00 left \r", + " [ 8720 / 10000 ] 87% - 0:00:00 left \r", + " [ 8721 / 10000 ] 87% - 0:00:00 left \r", + " [ 8722 / 10000 ] 87% - 0:00:00 left \r", + " [ 8723 / 10000 ] 87% - 0:00:00 left \r", + " [ 8724 / 10000 ] 87% - 0:00:00 left \r", + " [ 8725 / 10000 ] 87% - 0:00:00 left \r", + " [ 8726 / 10000 ] 87% - 0:00:00 left \r", + " [ 8727 / 10000 ] 87% - 0:00:00 left \r", + " [ 8728 / 10000 ] 87% - 0:00:00 left \r", + " [ 8729 / 10000 ] 87% - 0:00:00 left \r", + " [ 8730 / 10000 ] 87% - 0:00:00 left \r", + " [ 8731 / 10000 ] 87% - 0:00:00 left \r", + " [ 8732 / 10000 ] 87% - 0:00:00 left \r", + " [ 8733 / 10000 ] 87% - 0:00:00 left \r", + " [ 8734 / 10000 ] 87% - 0:00:00 left \r", + " [ 8735 / 10000 ] 87% - 0:00:00 left \r", + " [ 8736 / 10000 ] 87% - 0:00:00 left \r", + " [ 8737 / 10000 ] 87% - 0:00:00 left \r", + " [ 8738 / 10000 ] 87% - 0:00:00 left \r", + " [ 8739 / 10000 ] 87% - 0:00:00 left \r", + " [ 8740 / 10000 ] 87% - 0:00:00 left \r", + " [ 8741 / 10000 ] 87% - 0:00:00 left \r", + " [ 8742 / 10000 ] 87% - 0:00:00 left \r", + " [ 8743 / 10000 ] 87% - 0:00:00 left \r", + " [ 8744 / 10000 ] 87% - 0:00:00 left \r", + " [ 8745 / 10000 ] 87% - 0:00:00 left \r", + " [ 8746 / 10000 ] 87% - 0:00:00 left \r", + " [ 8747 / 10000 ] 87% - 0:00:00 left \r", + " [ 8748 / 10000 ] 87% - 0:00:00 left \r", + " [ 8749 / 10000 ] 87% - 0:00:00 left \r", + " [ 8750 / 10000 ] 88% - 0:00:00 left \r", + " [ 8751 / 10000 ] 88% - 0:00:00 left \r", + " [ 8752 / 10000 ] 88% - 0:00:00 left \r", + " [ 8753 / 10000 ] 88% - 0:00:00 left \r", + " [ 8754 / 10000 ] 88% - 0:00:00 left \r", + " [ 8755 / 10000 ] 88% - 0:00:00 left \r", + " [ 8756 / 10000 ] 88% - 0:00:00 left \r", + " [ 8757 / 10000 ] 88% - 0:00:00 left \r", + " [ 8758 / 10000 ] 88% - 0:00:00 left \r", + " [ 8759 / 10000 ] 88% - 0:00:00 left \r", + " [ 8760 / 10000 ] 88% - 0:00:00 left \r", + " [ 8761 / 10000 ] 88% - 0:00:00 left \r", + " [ 8762 / 10000 ] 88% - 0:00:00 left \r", + " [ 8763 / 10000 ] 88% - 0:00:00 left \r", + " [ 8764 / 10000 ] 88% - 0:00:00 left \r", + " [ 8765 / 10000 ] 88% - 0:00:00 left \r", + " [ 8766 / 10000 ] 88% - 0:00:00 left \r", + " [ 8767 / 10000 ] 88% - 0:00:00 left \r", + " [ 8768 / 10000 ] 88% - 0:00:00 left \r", + " [ 8769 / 10000 ] 88% - 0:00:00 left \r", + " [ 8770 / 10000 ] 88% - 0:00:00 left \r", + " [ 8771 / 10000 ] 88% - 0:00:00 left \r", + " [ 8772 / 10000 ] 88% - 0:00:00 left \r", + " [ 8773 / 10000 ] 88% - 0:00:00 left \r", + " [ 8774 / 10000 ] 88% - 0:00:00 left \r", + " [ 8775 / 10000 ] 88% - 0:00:00 left \r", + " [ 8776 / 10000 ] 88% - 0:00:00 left \r", + " [ 8777 / 10000 ] 88% - 0:00:00 left \r", + " [ 8778 / 10000 ] 88% - 0:00:00 left \r", + " [ 8779 / 10000 ] 88% - 0:00:00 left \r", + " [ 8780 / 10000 ] 88% - 0:00:00 left \r", + " [ 8781 / 10000 ] 88% - 0:00:00 left \r", + " [ 8782 / 10000 ] 88% - 0:00:00 left \r", + " [ 8783 / 10000 ] 88% - 0:00:00 left \r", + " [ 8784 / 10000 ] 88% - 0:00:00 left \r", + " [ 8785 / 10000 ] 88% - 0:00:00 left \r", + " [ 8786 / 10000 ] 88% - 0:00:00 left \r", + " [ 8787 / 10000 ] 88% - 0:00:00 left \r", + " [ 8788 / 10000 ] 88% - 0:00:00 left \r", + " [ 8789 / 10000 ] 88% - 0:00:00 left \r", + " [ 8790 / 10000 ] 88% - 0:00:00 left \r", + " [ 8791 / 10000 ] 88% - 0:00:00 left \r", + " [ 8792 / 10000 ] 88% - 0:00:00 left \r", + " [ 8793 / 10000 ] 88% - 0:00:00 left \r", + " [ 8794 / 10000 ] 88% - 0:00:00 left \r", + " [ 8795 / 10000 ] 88% - 0:00:00 left \r", + " [ 8796 / 10000 ] 88% - 0:00:00 left \r", + " [ 8797 / 10000 ] 88% - 0:00:00 left \r", + " [ 8798 / 10000 ] 88% - 0:00:00 left \r", + " [ 8799 / 10000 ] 88% - 0:00:00 left \r", + " [ 8800 / 10000 ] 88% - 0:00:00 left \r", + " [ 8801 / 10000 ] 88% - 0:00:00 left \r", + " [ 8802 / 10000 ] 88% - 0:00:00 left \r", + " [ 8803 / 10000 ] 88% - 0:00:00 left \r", + " [ 8804 / 10000 ] 88% - 0:00:00 left \r", + " [ 8805 / 10000 ] 88% - 0:00:00 left \r", + " [ 8806 / 10000 ] 88% - 0:00:00 left \r", + " [ 8807 / 10000 ] 88% - 0:00:00 left \r", + " [ 8808 / 10000 ] 88% - 0:00:00 left \r", + " [ 8809 / 10000 ] 88% - 0:00:00 left \r", + " [ 8810 / 10000 ] 88% - 0:00:00 left \r", + " [ 8811 / 10000 ] 88% - 0:00:00 left \r", + " [ 8812 / 10000 ] 88% - 0:00:00 left \r", + " [ 8813 / 10000 ] 88% - 0:00:00 left \r", + " [ 8814 / 10000 ] 88% - 0:00:00 left \r", + " [ 8815 / 10000 ] 88% - 0:00:00 left \r", + " [ 8816 / 10000 ] 88% - 0:00:00 left \r", + " [ 8817 / 10000 ] 88% - 0:00:00 left \r", + " [ 8818 / 10000 ] 88% - 0:00:00 left \r", + " [ 8819 / 10000 ] 88% - 0:00:00 left \r", + " [ 8820 / 10000 ] 88% - 0:00:00 left \r", + " [ 8821 / 10000 ] 88% - 0:00:00 left \r", + " [ 8822 / 10000 ] 88% - 0:00:00 left \r", + " [ 8823 / 10000 ] 88% - 0:00:00 left \r", + " [ 8824 / 10000 ] 88% - 0:00:00 left \r", + " [ 8825 / 10000 ] 88% - 0:00:00 left \r", + " [ 8826 / 10000 ] 88% - 0:00:00 left \r", + " [ 8827 / 10000 ] 88% - 0:00:00 left \r", + " [ 8828 / 10000 ] 88% - 0:00:00 left \r", + " [ 8829 / 10000 ] 88% - 0:00:00 left \r", + " [ 8830 / 10000 ] 88% - 0:00:00 left \r", + " [ 8831 / 10000 ] 88% - 0:00:00 left \r", + " [ 8832 / 10000 ] 88% - 0:00:00 left \r", + " [ 8833 / 10000 ] 88% - 0:00:00 left \r", + " [ 8834 / 10000 ] 88% - 0:00:00 left \r", + " [ 8835 / 10000 ] 88% - 0:00:00 left \r", + " [ 8836 / 10000 ] 88% - 0:00:00 left \r", + " [ 8837 / 10000 ] 88% - 0:00:00 left \r", + " [ 8838 / 10000 ] 88% - 0:00:00 left \r", + " [ 8839 / 10000 ] 88% - 0:00:00 left \r", + " [ 8840 / 10000 ] 88% - 0:00:00 left \r", + " [ 8841 / 10000 ] 88% - 0:00:00 left \r", + " [ 8842 / 10000 ] 88% - 0:00:00 left \r", + " [ 8843 / 10000 ] 88% - 0:00:00 left \r", + " [ 8844 / 10000 ] 88% - 0:00:00 left \r", + " [ 8845 / 10000 ] 88% - 0:00:00 left \r", + " [ 8846 / 10000 ] 88% - 0:00:00 left \r", + " [ 8847 / 10000 ] 88% - 0:00:00 left \r", + " [ 8848 / 10000 ] 88% - 0:00:00 left \r", + " [ 8849 / 10000 ] 88% - 0:00:00 left \r", + " [ 8850 / 10000 ] 88% - 0:00:00 left \r", + " [ 8851 / 10000 ] 89% - 0:00:00 left \r", + " [ 8852 / 10000 ] 89% - 0:00:00 left \r", + " [ 8853 / 10000 ] 89% - 0:00:00 left \r", + " [ 8854 / 10000 ] 89% - 0:00:00 left \r", + " [ 8855 / 10000 ] 89% - 0:00:00 left \r", + " [ 8856 / 10000 ] 89% - 0:00:00 left \r", + " [ 8857 / 10000 ] 89% - 0:00:00 left \r", + " [ 8858 / 10000 ] 89% - 0:00:00 left \r", + " [ 8859 / 10000 ] 89% - 0:00:00 left \r", + " [ 8860 / 10000 ] 89% - 0:00:00 left \r", + " [ 8861 / 10000 ] 89% - 0:00:00 left \r", + " [ 8862 / 10000 ] 89% - 0:00:00 left \r", + " [ 8863 / 10000 ] 89% - 0:00:00 left \r", + " [ 8864 / 10000 ] 89% - 0:00:00 left \r", + " [ 8865 / 10000 ] 89% - 0:00:00 left \r", + " [ 8866 / 10000 ] 89% - 0:00:00 left \r", + " [ 8867 / 10000 ] 89% - 0:00:00 left \r", + " [ 8868 / 10000 ] 89% - 0:00:00 left \r", + " [ 8869 / 10000 ] 89% - 0:00:00 left \r", + " [ 8870 / 10000 ] 89% - 0:00:00 left \r", + " [ 8871 / 10000 ] 89% - 0:00:00 left \r", + " [ 8872 / 10000 ] 89% - 0:00:00 left \r", + " [ 8873 / 10000 ] 89% - 0:00:00 left \r", + " [ 8874 / 10000 ] 89% - 0:00:00 left \r", + " [ 8875 / 10000 ] 89% - 0:00:00 left \r", + " [ 8876 / 10000 ] 89% - 0:00:00 left \r", + " [ 8877 / 10000 ] 89% - 0:00:00 left \r", + " [ 8878 / 10000 ] 89% - 0:00:00 left \r", + " [ 8879 / 10000 ] 89% - 0:00:00 left \r", + " [ 8880 / 10000 ] 89% - 0:00:00 left \r", + " [ 8881 / 10000 ] 89% - 0:00:00 left \r", + " [ 8882 / 10000 ] 89% - 0:00:00 left \r", + " [ 8883 / 10000 ] 89% - 0:00:00 left \r", + " [ 8884 / 10000 ] 89% - 0:00:00 left \r", + " [ 8885 / 10000 ] 89% - 0:00:00 left \r", + " [ 8886 / 10000 ] 89% - 0:00:00 left \r", + " [ 8887 / 10000 ] 89% - 0:00:00 left \r", + " [ 8888 / 10000 ] 89% - 0:00:00 left \r", + " [ 8889 / 10000 ] 89% - 0:00:00 left \r", + " [ 8890 / 10000 ] 89% - 0:00:00 left \r", + " [ 8891 / 10000 ] 89% - 0:00:00 left \r", + " [ 8892 / 10000 ] 89% - 0:00:00 left \r", + " [ 8893 / 10000 ] 89% - 0:00:00 left \r", + " [ 8894 / 10000 ] 89% - 0:00:00 left \r", + " [ 8895 / 10000 ] 89% - 0:00:00 left \r", + " [ 8896 / 10000 ] 89% - 0:00:00 left \r", + " [ 8897 / 10000 ] 89% - 0:00:00 left \r", + " [ 8898 / 10000 ] 89% - 0:00:00 left \r", + " [ 8899 / 10000 ] 89% - 0:00:00 left \r", + " [ 8900 / 10000 ] 89% - 0:00:00 left \r", + " [ 8901 / 10000 ] 89% - 0:00:00 left \r", + " [ 8902 / 10000 ] 89% - 0:00:00 left \r", + " [ 8903 / 10000 ] 89% - 0:00:00 left \r", + " [ 8904 / 10000 ] 89% - 0:00:00 left \r", + " [ 8905 / 10000 ] 89% - 0:00:00 left \r", + " [ 8906 / 10000 ] 89% - 0:00:00 left \r", + " [ 8907 / 10000 ] 89% - 0:00:00 left \r", + " [ 8908 / 10000 ] 89% - 0:00:00 left \r", + " [ 8909 / 10000 ] 89% - 0:00:00 left \r", + " [ 8910 / 10000 ] 89% - 0:00:00 left \r", + " [ 8911 / 10000 ] 89% - 0:00:00 left \r", + " [ 8912 / 10000 ] 89% - 0:00:00 left \r", + " [ 8913 / 10000 ] 89% - 0:00:00 left \r", + " [ 8914 / 10000 ] 89% - 0:00:00 left \r", + " [ 8915 / 10000 ] 89% - 0:00:00 left \r", + " [ 8916 / 10000 ] 89% - 0:00:00 left \r", + " [ 8917 / 10000 ] 89% - 0:00:00 left \r", + " [ 8918 / 10000 ] 89% - 0:00:00 left \r", + " [ 8919 / 10000 ] 89% - 0:00:00 left \r", + " [ 8920 / 10000 ] 89% - 0:00:00 left \r", + " [ 8921 / 10000 ] 89% - 0:00:00 left \r", + " [ 8922 / 10000 ] 89% - 0:00:00 left \r", + " [ 8923 / 10000 ] 89% - 0:00:00 left \r", + " [ 8924 / 10000 ] 89% - 0:00:00 left \r", + " [ 8925 / 10000 ] 89% - 0:00:00 left \r", + " [ 8926 / 10000 ] 89% - 0:00:00 left \r", + " [ 8927 / 10000 ] 89% - 0:00:00 left \r", + " [ 8928 / 10000 ] 89% - 0:00:00 left \r", + " [ 8929 / 10000 ] 89% - 0:00:00 left \r", + " [ 8930 / 10000 ] 89% - 0:00:00 left \r", + " [ 8931 / 10000 ] 89% - 0:00:00 left \r", + " [ 8932 / 10000 ] 89% - 0:00:00 left \r", + " [ 8933 / 10000 ] 89% - 0:00:00 left \r", + " [ 8934 / 10000 ] 89% - 0:00:00 left \r", + " [ 8935 / 10000 ] 89% - 0:00:00 left \r", + " [ 8936 / 10000 ] 89% - 0:00:00 left \r", + " [ 8937 / 10000 ] 89% - 0:00:00 left \r", + " [ 8938 / 10000 ] 89% - 0:00:00 left \r", + " [ 8939 / 10000 ] 89% - 0:00:00 left \r", + " [ 8940 / 10000 ] 89% - 0:00:00 left \r", + " [ 8941 / 10000 ] 89% - 0:00:00 left \r", + " [ 8942 / 10000 ] 89% - 0:00:00 left \r", + " [ 8943 / 10000 ] 89% - 0:00:00 left \r", + " [ 8944 / 10000 ] 89% - 0:00:00 left \r", + " [ 8945 / 10000 ] 89% - 0:00:00 left \r", + " [ 8946 / 10000 ] 89% - 0:00:00 left \r", + " [ 8947 / 10000 ] 89% - 0:00:00 left \r", + " [ 8948 / 10000 ] 89% - 0:00:00 left \r", + " [ 8949 / 10000 ] 89% - 0:00:00 left \r", + " [ 8950 / 10000 ] 90% - 0:00:00 left \r", + " [ 8951 / 10000 ] 90% - 0:00:00 left \r", + " [ 8952 / 10000 ] 90% - 0:00:00 left \r", + " [ 8953 / 10000 ] 90% - 0:00:00 left \r", + " [ 8954 / 10000 ] 90% - 0:00:00 left \r", + " [ 8955 / 10000 ] 90% - 0:00:00 left \r", + " [ 8956 / 10000 ] 90% - 0:00:00 left \r", + " [ 8957 / 10000 ] 90% - 0:00:00 left \r", + " [ 8958 / 10000 ] 90% - 0:00:00 left \r", + " [ 8959 / 10000 ] 90% - 0:00:00 left \r", + " [ 8960 / 10000 ] 90% - 0:00:00 left \r", + " [ 8961 / 10000 ] 90% - 0:00:00 left \r", + " [ 8962 / 10000 ] 90% - 0:00:00 left \r", + " [ 8963 / 10000 ] 90% - 0:00:00 left \r", + " [ 8964 / 10000 ] 90% - 0:00:00 left \r", + " [ 8965 / 10000 ] 90% - 0:00:00 left \r", + " [ 8966 / 10000 ] 90% - 0:00:00 left \r", + " [ 8967 / 10000 ] 90% - 0:00:00 left \r", + " [ 8968 / 10000 ] 90% - 0:00:00 left \r", + " [ 8969 / 10000 ] 90% - 0:00:00 left \r", + " [ 8970 / 10000 ] 90% - 0:00:00 left \r", + " [ 8971 / 10000 ] 90% - 0:00:00 left \r", + " [ 8972 / 10000 ] 90% - 0:00:00 left \r", + " [ 8973 / 10000 ] 90% - 0:00:00 left \r", + " [ 8974 / 10000 ] 90% - 0:00:00 left \r", + " [ 8975 / 10000 ] 90% - 0:00:00 left \r", + " [ 8976 / 10000 ] 90% - 0:00:00 left \r", + " [ 8977 / 10000 ] 90% - 0:00:00 left \r", + " [ 8978 / 10000 ] 90% - 0:00:00 left \r", + " [ 8979 / 10000 ] 90% - 0:00:00 left \r", + " [ 8980 / 10000 ] 90% - 0:00:00 left \r", + " [ 8981 / 10000 ] 90% - 0:00:00 left \r", + " [ 8982 / 10000 ] 90% - 0:00:00 left \r", + " [ 8983 / 10000 ] 90% - 0:00:00 left \r", + " [ 8984 / 10000 ] 90% - 0:00:00 left \r", + " [ 8985 / 10000 ] 90% - 0:00:00 left \r", + " [ 8986 / 10000 ] 90% - 0:00:00 left \r", + " [ 8987 / 10000 ] 90% - 0:00:00 left \r", + " [ 8988 / 10000 ] 90% - 0:00:00 left \r", + " [ 8989 / 10000 ] 90% - 0:00:00 left \r", + " [ 8990 / 10000 ] 90% - 0:00:00 left \r", + " [ 8991 / 10000 ] 90% - 0:00:00 left \r", + " [ 8992 / 10000 ] 90% - 0:00:00 left \r", + " [ 8993 / 10000 ] 90% - 0:00:00 left \r", + " [ 8994 / 10000 ] 90% - 0:00:00 left \r", + " [ 8995 / 10000 ] 90% - 0:00:00 left \r", + " [ 8996 / 10000 ] 90% - 0:00:00 left \r", + " [ 8997 / 10000 ] 90% - 0:00:00 left \r", + " [ 8998 / 10000 ] 90% - 0:00:00 left \r", + " [ 8999 / 10000 ] 90% - 0:00:00 left \r", + " [ 9000 / 10000 ] 90% - 0:00:00 left \r", + " [ 9001 / 10000 ] 90% - 0:00:00 left \r", + " [ 9002 / 10000 ] 90% - 0:00:00 left \r", + " [ 9003 / 10000 ] 90% - 0:00:00 left \r", + " [ 9004 / 10000 ] 90% - 0:00:00 left \r", + " [ 9005 / 10000 ] 90% - 0:00:00 left \r", + " [ 9006 / 10000 ] 90% - 0:00:00 left \r", + " [ 9007 / 10000 ] 90% - 0:00:00 left \r", + " [ 9008 / 10000 ] 90% - 0:00:00 left \r", + " [ 9009 / 10000 ] 90% - 0:00:00 left \r", + " [ 9010 / 10000 ] 90% - 0:00:00 left \r", + " [ 9011 / 10000 ] 90% - 0:00:00 left \r", + " [ 9012 / 10000 ] 90% - 0:00:00 left \r", + " [ 9013 / 10000 ] 90% - 0:00:00 left \r", + " [ 9014 / 10000 ] 90% - 0:00:00 left \r", + " [ 9015 / 10000 ] 90% - 0:00:00 left \r", + " [ 9016 / 10000 ] 90% - 0:00:00 left \r", + " [ 9017 / 10000 ] 90% - 0:00:00 left \r", + " [ 9018 / 10000 ] 90% - 0:00:00 left \r", + " [ 9019 / 10000 ] 90% - 0:00:00 left \r", + " [ 9020 / 10000 ] 90% - 0:00:00 left \r", + " [ 9021 / 10000 ] 90% - 0:00:00 left \r", + " [ 9022 / 10000 ] 90% - 0:00:00 left \r", + " [ 9023 / 10000 ] 90% - 0:00:00 left \r", + " [ 9024 / 10000 ] 90% - 0:00:00 left \r", + " [ 9025 / 10000 ] 90% - 0:00:00 left \r", + " [ 9026 / 10000 ] 90% - 0:00:00 left \r", + " [ 9027 / 10000 ] 90% - 0:00:00 left \r", + " [ 9028 / 10000 ] 90% - 0:00:00 left \r", + " [ 9029 / 10000 ] 90% - 0:00:00 left \r", + " [ 9030 / 10000 ] 90% - 0:00:00 left \r", + " [ 9031 / 10000 ] 90% - 0:00:00 left \r", + " [ 9032 / 10000 ] 90% - 0:00:00 left \r", + " [ 9033 / 10000 ] 90% - 0:00:00 left \r", + " [ 9034 / 10000 ] 90% - 0:00:00 left \r", + " [ 9035 / 10000 ] 90% - 0:00:00 left \r", + " [ 9036 / 10000 ] 90% - 0:00:00 left \r", + " [ 9037 / 10000 ] 90% - 0:00:00 left \r", + " [ 9038 / 10000 ] 90% - 0:00:00 left \r", + " [ 9039 / 10000 ] 90% - 0:00:00 left \r", + " [ 9040 / 10000 ] 90% - 0:00:00 left \r", + " [ 9041 / 10000 ] 90% - 0:00:00 left \r", + " [ 9042 / 10000 ] 90% - 0:00:00 left \r", + " [ 9043 / 10000 ] 90% - 0:00:00 left \r", + " [ 9044 / 10000 ] 90% - 0:00:00 left \r", + " [ 9045 / 10000 ] 90% - 0:00:00 left \r", + " [ 9046 / 10000 ] 90% - 0:00:00 left \r", + " [ 9047 / 10000 ] 90% - 0:00:00 left \r", + " [ 9048 / 10000 ] 90% - 0:00:00 left \r", + " [ 9049 / 10000 ] 90% - 0:00:00 left \r", + " [ 9050 / 10000 ] 90% - 0:00:00 left \r", + " [ 9051 / 10000 ] 91% - 0:00:00 left \r", + " [ 9052 / 10000 ] 91% - 0:00:00 left \r", + " [ 9053 / 10000 ] 91% - 0:00:00 left \r", + " [ 9054 / 10000 ] 91% - 0:00:00 left \r", + " [ 9055 / 10000 ] 91% - 0:00:00 left \r", + " [ 9056 / 10000 ] 91% - 0:00:00 left \r", + " [ 9057 / 10000 ] 91% - 0:00:00 left \r", + " [ 9058 / 10000 ] 91% - 0:00:00 left \r", + " [ 9059 / 10000 ] 91% - 0:00:00 left \r", + " [ 9060 / 10000 ] 91% - 0:00:00 left \r", + " [ 9061 / 10000 ] 91% - 0:00:00 left \r", + " [ 9062 / 10000 ] 91% - 0:00:00 left \r", + " [ 9063 / 10000 ] 91% - 0:00:00 left \r", + " [ 9064 / 10000 ] 91% - 0:00:00 left \r", + " [ 9065 / 10000 ] 91% - 0:00:00 left \r", + " [ 9066 / 10000 ] 91% - 0:00:00 left \r", + " [ 9067 / 10000 ] 91% - 0:00:00 left \r", + " [ 9068 / 10000 ] 91% - 0:00:00 left \r", + " [ 9069 / 10000 ] 91% - 0:00:00 left \r", + " [ 9070 / 10000 ] 91% - 0:00:00 left \r", + " [ 9071 / 10000 ] 91% - 0:00:00 left \r", + " [ 9072 / 10000 ] 91% - 0:00:00 left \r", + " [ 9073 / 10000 ] 91% - 0:00:00 left \r", + " [ 9074 / 10000 ] 91% - 0:00:00 left \r", + " [ 9075 / 10000 ] 91% - 0:00:00 left \r", + " [ 9076 / 10000 ] 91% - 0:00:00 left \r", + " [ 9077 / 10000 ] 91% - 0:00:00 left \r", + " [ 9078 / 10000 ] 91% - 0:00:00 left \r", + " [ 9079 / 10000 ] 91% - 0:00:00 left \r", + " [ 9080 / 10000 ] 91% - 0:00:00 left \r", + " [ 9081 / 10000 ] 91% - 0:00:00 left \r", + " [ 9082 / 10000 ] 91% - 0:00:00 left \r", + " [ 9083 / 10000 ] 91% - 0:00:00 left \r", + " [ 9084 / 10000 ] 91% - 0:00:00 left \r", + " [ 9085 / 10000 ] 91% - 0:00:00 left \r", + " [ 9086 / 10000 ] 91% - 0:00:00 left \r", + " [ 9087 / 10000 ] 91% - 0:00:00 left \r", + " [ 9088 / 10000 ] 91% - 0:00:00 left \r", + " [ 9089 / 10000 ] 91% - 0:00:00 left \r", + " [ 9090 / 10000 ] 91% - 0:00:00 left \r", + " [ 9091 / 10000 ] 91% - 0:00:00 left \r", + " [ 9092 / 10000 ] 91% - 0:00:00 left \r", + " [ 9093 / 10000 ] 91% - 0:00:00 left \r", + " [ 9094 / 10000 ] 91% - 0:00:00 left \r", + " [ 9095 / 10000 ] 91% - 0:00:00 left \r", + " [ 9096 / 10000 ] 91% - 0:00:00 left \r", + " [ 9097 / 10000 ] 91% - 0:00:00 left \r", + " [ 9098 / 10000 ] 91% - 0:00:00 left \r", + " [ 9099 / 10000 ] 91% - 0:00:00 left \r", + " [ 9100 / 10000 ] 91% - 0:00:00 left \r", + " [ 9101 / 10000 ] 91% - 0:00:00 left \r", + " [ 9102 / 10000 ] 91% - 0:00:00 left \r", + " [ 9103 / 10000 ] 91% - 0:00:00 left \r", + " [ 9104 / 10000 ] 91% - 0:00:00 left \r", + " [ 9105 / 10000 ] 91% - 0:00:00 left \r", + " [ 9106 / 10000 ] 91% - 0:00:00 left \r", + " [ 9107 / 10000 ] 91% - 0:00:00 left \r", + " [ 9108 / 10000 ] 91% - 0:00:00 left \r", + " [ 9109 / 10000 ] 91% - 0:00:00 left \r", + " [ 9110 / 10000 ] 91% - 0:00:00 left \r", + " [ 9111 / 10000 ] 91% - 0:00:00 left \r", + " [ 9112 / 10000 ] 91% - 0:00:00 left \r", + " [ 9113 / 10000 ] 91% - 0:00:00 left \r", + " [ 9114 / 10000 ] 91% - 0:00:00 left \r", + " [ 9115 / 10000 ] 91% - 0:00:00 left \r", + " [ 9116 / 10000 ] 91% - 0:00:00 left \r", + " [ 9117 / 10000 ] 91% - 0:00:00 left \r", + " [ 9118 / 10000 ] 91% - 0:00:00 left \r", + " [ 9119 / 10000 ] 91% - 0:00:00 left \r", + " [ 9120 / 10000 ] 91% - 0:00:00 left \r", + " [ 9121 / 10000 ] 91% - 0:00:00 left \r", + " [ 9122 / 10000 ] 91% - 0:00:00 left \r", + " [ 9123 / 10000 ] 91% - 0:00:00 left \r", + " [ 9124 / 10000 ] 91% - 0:00:00 left \r", + " [ 9125 / 10000 ] 91% - 0:00:00 left \r", + " [ 9126 / 10000 ] 91% - 0:00:00 left \r", + " [ 9127 / 10000 ] 91% - 0:00:00 left \r", + " [ 9128 / 10000 ] 91% - 0:00:00 left \r", + " [ 9129 / 10000 ] 91% - 0:00:00 left \r", + " [ 9130 / 10000 ] 91% - 0:00:00 left \r", + " [ 9131 / 10000 ] 91% - 0:00:00 left \r", + " [ 9132 / 10000 ] 91% - 0:00:00 left \r", + " [ 9133 / 10000 ] 91% - 0:00:00 left \r", + " [ 9134 / 10000 ] 91% - 0:00:00 left \r", + " [ 9135 / 10000 ] 91% - 0:00:00 left \r", + " [ 9136 / 10000 ] 91% - 0:00:00 left \r", + " [ 9137 / 10000 ] 91% - 0:00:00 left \r", + " [ 9138 / 10000 ] 91% - 0:00:00 left \r", + " [ 9139 / 10000 ] 91% - 0:00:00 left \r", + " [ 9140 / 10000 ] 91% - 0:00:00 left \r", + " [ 9141 / 10000 ] 91% - 0:00:00 left \r", + " [ 9142 / 10000 ] 91% - 0:00:00 left \r", + " [ 9143 / 10000 ] 91% - 0:00:00 left \r", + " [ 9144 / 10000 ] 91% - 0:00:00 left \r", + " [ 9145 / 10000 ] 91% - 0:00:00 left \r", + " [ 9146 / 10000 ] 91% - 0:00:00 left \r", + " [ 9147 / 10000 ] 91% - 0:00:00 left \r", + " [ 9148 / 10000 ] 91% - 0:00:00 left \r", + " [ 9149 / 10000 ] 91% - 0:00:00 left \r", + " [ 9150 / 10000 ] 92% - 0:00:00 left \r", + " [ 9151 / 10000 ] 92% - 0:00:00 left \r", + " [ 9152 / 10000 ] 92% - 0:00:00 left \r", + " [ 9153 / 10000 ] 92% - 0:00:00 left \r", + " [ 9154 / 10000 ] 92% - 0:00:00 left \r", + " [ 9155 / 10000 ] 92% - 0:00:00 left \r", + " [ 9156 / 10000 ] 92% - 0:00:00 left \r", + " [ 9157 / 10000 ] 92% - 0:00:00 left \r", + " [ 9158 / 10000 ] 92% - 0:00:00 left \r", + " [ 9159 / 10000 ] 92% - 0:00:00 left \r", + " [ 9160 / 10000 ] 92% - 0:00:00 left \r", + " [ 9161 / 10000 ] 92% - 0:00:00 left \r", + " [ 9162 / 10000 ] 92% - 0:00:00 left \r", + " [ 9163 / 10000 ] 92% - 0:00:00 left \r", + " [ 9164 / 10000 ] 92% - 0:00:00 left \r", + " [ 9165 / 10000 ] 92% - 0:00:00 left \r", + " [ 9166 / 10000 ] 92% - 0:00:00 left \r", + " [ 9167 / 10000 ] 92% - 0:00:00 left \r", + " [ 9168 / 10000 ] 92% - 0:00:00 left \r", + " [ 9169 / 10000 ] 92% - 0:00:00 left \r", + " [ 9170 / 10000 ] 92% - 0:00:00 left \r", + " [ 9171 / 10000 ] 92% - 0:00:00 left \r", + " [ 9172 / 10000 ] 92% - 0:00:00 left \r", + " [ 9173 / 10000 ] 92% - 0:00:00 left \r", + " [ 9174 / 10000 ] 92% - 0:00:00 left \r", + " [ 9175 / 10000 ] 92% - 0:00:00 left \r", + " [ 9176 / 10000 ] 92% - 0:00:00 left \r", + " [ 9177 / 10000 ] 92% - 0:00:00 left \r", + " [ 9178 / 10000 ] 92% - 0:00:00 left \r", + " [ 9179 / 10000 ] 92% - 0:00:00 left \r", + " [ 9180 / 10000 ] 92% - 0:00:00 left \r", + " [ 9181 / 10000 ] 92% - 0:00:00 left \r", + " [ 9182 / 10000 ] 92% - 0:00:00 left \r", + " [ 9183 / 10000 ] 92% - 0:00:00 left \r", + " [ 9184 / 10000 ] 92% - 0:00:00 left \r", + " [ 9185 / 10000 ] 92% - 0:00:00 left \r", + " [ 9186 / 10000 ] 92% - 0:00:00 left \r", + " [ 9187 / 10000 ] 92% - 0:00:00 left \r", + " [ 9188 / 10000 ] 92% - 0:00:00 left \r", + " [ 9189 / 10000 ] 92% - 0:00:00 left \r", + " [ 9190 / 10000 ] 92% - 0:00:00 left \r", + " [ 9191 / 10000 ] 92% - 0:00:00 left \r", + " [ 9192 / 10000 ] 92% - 0:00:00 left \r", + " [ 9193 / 10000 ] 92% - 0:00:00 left \r", + " [ 9194 / 10000 ] 92% - 0:00:00 left \r", + " [ 9195 / 10000 ] 92% - 0:00:00 left \r", + " [ 9196 / 10000 ] 92% - 0:00:00 left \r", + " [ 9197 / 10000 ] 92% - 0:00:00 left \r", + " [ 9198 / 10000 ] 92% - 0:00:00 left \r", + " [ 9199 / 10000 ] 92% - 0:00:00 left \r", + " [ 9200 / 10000 ] 92% - 0:00:00 left \r", + " [ 9201 / 10000 ] 92% - 0:00:00 left \r", + " [ 9202 / 10000 ] 92% - 0:00:00 left \r", + " [ 9203 / 10000 ] 92% - 0:00:00 left \r", + " [ 9204 / 10000 ] 92% - 0:00:00 left \r", + " [ 9205 / 10000 ] 92% - 0:00:00 left \r", + " [ 9206 / 10000 ] 92% - 0:00:00 left \r", + " [ 9207 / 10000 ] 92% - 0:00:00 left \r", + " [ 9208 / 10000 ] 92% - 0:00:00 left \r", + " [ 9209 / 10000 ] 92% - 0:00:00 left \r", + " [ 9210 / 10000 ] 92% - 0:00:00 left \r", + " [ 9211 / 10000 ] 92% - 0:00:00 left \r", + " [ 9212 / 10000 ] 92% - 0:00:00 left \r", + " [ 9213 / 10000 ] 92% - 0:00:00 left \r", + " [ 9214 / 10000 ] 92% - 0:00:00 left \r", + " [ 9215 / 10000 ] 92% - 0:00:00 left \r", + " [ 9216 / 10000 ] 92% - 0:00:00 left \r", + " [ 9217 / 10000 ] 92% - 0:00:00 left \r", + " [ 9218 / 10000 ] 92% - 0:00:00 left \r", + " [ 9219 / 10000 ] 92% - 0:00:00 left \r", + " [ 9220 / 10000 ] 92% - 0:00:00 left \r", + " [ 9221 / 10000 ] 92% - 0:00:00 left \r", + " [ 9222 / 10000 ] 92% - 0:00:00 left \r", + " [ 9223 / 10000 ] 92% - 0:00:00 left \r", + " [ 9224 / 10000 ] 92% - 0:00:00 left \r", + " [ 9225 / 10000 ] 92% - 0:00:00 left \r", + " [ 9226 / 10000 ] 92% - 0:00:00 left \r", + " [ 9227 / 10000 ] 92% - 0:00:00 left \r", + " [ 9228 / 10000 ] 92% - 0:00:00 left \r", + " [ 9229 / 10000 ] 92% - 0:00:00 left \r", + " [ 9230 / 10000 ] 92% - 0:00:00 left \r", + " [ 9231 / 10000 ] 92% - 0:00:00 left \r", + " [ 9232 / 10000 ] 92% - 0:00:00 left \r", + " [ 9233 / 10000 ] 92% - 0:00:00 left \r", + " [ 9234 / 10000 ] 92% - 0:00:00 left \r", + " [ 9235 / 10000 ] 92% - 0:00:00 left \r", + " [ 9236 / 10000 ] 92% - 0:00:00 left \r", + " [ 9237 / 10000 ] 92% - 0:00:00 left \r", + " [ 9238 / 10000 ] 92% - 0:00:00 left \r", + " [ 9239 / 10000 ] 92% - 0:00:00 left \r", + " [ 9240 / 10000 ] 92% - 0:00:00 left \r", + " [ 9241 / 10000 ] 92% - 0:00:00 left \r", + " [ 9242 / 10000 ] 92% - 0:00:00 left \r", + " [ 9243 / 10000 ] 92% - 0:00:00 left \r", + " [ 9244 / 10000 ] 92% - 0:00:00 left \r", + " [ 9245 / 10000 ] 92% - 0:00:00 left \r", + " [ 9246 / 10000 ] 92% - 0:00:00 left \r", + " [ 9247 / 10000 ] 92% - 0:00:00 left \r", + " [ 9248 / 10000 ] 92% - 0:00:00 left \r", + " [ 9249 / 10000 ] 92% - 0:00:00 left \r", + " [ 9250 / 10000 ] 92% - 0:00:00 left \r", + " [ 9251 / 10000 ] 93% - 0:00:00 left \r", + " [ 9252 / 10000 ] 93% - 0:00:00 left \r", + " [ 9253 / 10000 ] 93% - 0:00:00 left \r", + " [ 9254 / 10000 ] 93% - 0:00:00 left \r", + " [ 9255 / 10000 ] 93% - 0:00:00 left \r", + " [ 9256 / 10000 ] 93% - 0:00:00 left \r", + " [ 9257 / 10000 ] 93% - 0:00:00 left \r", + " [ 9258 / 10000 ] 93% - 0:00:00 left \r", + " [ 9259 / 10000 ] 93% - 0:00:00 left \r", + " [ 9260 / 10000 ] 93% - 0:00:00 left \r", + " [ 9261 / 10000 ] 93% - 0:00:00 left \r", + " [ 9262 / 10000 ] 93% - 0:00:00 left \r", + " [ 9263 / 10000 ] 93% - 0:00:00 left \r", + " [ 9264 / 10000 ] 93% - 0:00:00 left \r", + " [ 9265 / 10000 ] 93% - 0:00:00 left \r", + " [ 9266 / 10000 ] 93% - 0:00:00 left \r", + " [ 9267 / 10000 ] 93% - 0:00:00 left \r", + " [ 9268 / 10000 ] 93% - 0:00:00 left \r", + " [ 9269 / 10000 ] 93% - 0:00:00 left \r", + " [ 9270 / 10000 ] 93% - 0:00:00 left \r", + " [ 9271 / 10000 ] 93% - 0:00:00 left \r", + " [ 9272 / 10000 ] 93% - 0:00:00 left \r", + " [ 9273 / 10000 ] 93% - 0:00:00 left \r", + " [ 9274 / 10000 ] 93% - 0:00:00 left \r", + " [ 9275 / 10000 ] 93% - 0:00:00 left \r", + " [ 9276 / 10000 ] 93% - 0:00:00 left \r", + " [ 9277 / 10000 ] 93% - 0:00:00 left \r", + " [ 9278 / 10000 ] 93% - 0:00:00 left \r", + " [ 9279 / 10000 ] 93% - 0:00:00 left \r", + " [ 9280 / 10000 ] 93% - 0:00:00 left \r", + " [ 9281 / 10000 ] 93% - 0:00:00 left \r", + " [ 9282 / 10000 ] 93% - 0:00:00 left \r", + " [ 9283 / 10000 ] 93% - 0:00:00 left \r", + " [ 9284 / 10000 ] 93% - 0:00:00 left \r", + " [ 9285 / 10000 ] 93% - 0:00:00 left \r", + " [ 9286 / 10000 ] 93% - 0:00:00 left \r", + " [ 9287 / 10000 ] 93% - 0:00:00 left \r", + " [ 9288 / 10000 ] 93% - 0:00:00 left \r", + " [ 9289 / 10000 ] 93% - 0:00:00 left \r", + " [ 9290 / 10000 ] 93% - 0:00:00 left \r", + " [ 9291 / 10000 ] 93% - 0:00:00 left \r", + " [ 9292 / 10000 ] 93% - 0:00:00 left \r", + " [ 9293 / 10000 ] 93% - 0:00:00 left \r", + " [ 9294 / 10000 ] 93% - 0:00:00 left \r", + " [ 9295 / 10000 ] 93% - 0:00:00 left \r", + " [ 9296 / 10000 ] 93% - 0:00:00 left \r", + " [ 9297 / 10000 ] 93% - 0:00:00 left \r", + " [ 9298 / 10000 ] 93% - 0:00:00 left \r", + " [ 9299 / 10000 ] 93% - 0:00:00 left \r", + " [ 9300 / 10000 ] 93% - 0:00:00 left \r", + " [ 9301 / 10000 ] 93% - 0:00:00 left \r", + " [ 9302 / 10000 ] 93% - 0:00:00 left \r", + " [ 9303 / 10000 ] 93% - 0:00:00 left \r", + " [ 9304 / 10000 ] 93% - 0:00:00 left \r", + " [ 9305 / 10000 ] 93% - 0:00:00 left \r", + " [ 9306 / 10000 ] 93% - 0:00:00 left \r", + " [ 9307 / 10000 ] 93% - 0:00:00 left \r", + " [ 9308 / 10000 ] 93% - 0:00:00 left \r", + " [ 9309 / 10000 ] 93% - 0:00:00 left \r", + " [ 9310 / 10000 ] 93% - 0:00:00 left \r", + " [ 9311 / 10000 ] 93% - 0:00:00 left \r", + " [ 9312 / 10000 ] 93% - 0:00:00 left \r", + " [ 9313 / 10000 ] 93% - 0:00:00 left \r", + " [ 9314 / 10000 ] 93% - 0:00:00 left \r", + " [ 9315 / 10000 ] 93% - 0:00:00 left \r", + " [ 9316 / 10000 ] 93% - 0:00:00 left \r", + " [ 9317 / 10000 ] 93% - 0:00:00 left \r", + " [ 9318 / 10000 ] 93% - 0:00:00 left \r", + " [ 9319 / 10000 ] 93% - 0:00:00 left \r", + " [ 9320 / 10000 ] 93% - 0:00:00 left \r", + " [ 9321 / 10000 ] 93% - 0:00:00 left \r", + " [ 9322 / 10000 ] 93% - 0:00:00 left \r", + " [ 9323 / 10000 ] 93% - 0:00:00 left \r", + " [ 9324 / 10000 ] 93% - 0:00:00 left \r", + " [ 9325 / 10000 ] 93% - 0:00:00 left \r", + " [ 9326 / 10000 ] 93% - 0:00:00 left \r", + " [ 9327 / 10000 ] 93% - 0:00:00 left \r", + " [ 9328 / 10000 ] 93% - 0:00:00 left \r", + " [ 9329 / 10000 ] 93% - 0:00:00 left \r", + " [ 9330 / 10000 ] 93% - 0:00:00 left \r", + " [ 9331 / 10000 ] 93% - 0:00:00 left \r", + " [ 9332 / 10000 ] 93% - 0:00:00 left \r", + " [ 9333 / 10000 ] 93% - 0:00:00 left \r", + " [ 9334 / 10000 ] 93% - 0:00:00 left \r", + " [ 9335 / 10000 ] 93% - 0:00:00 left \r", + " [ 9336 / 10000 ] 93% - 0:00:00 left \r", + " [ 9337 / 10000 ] 93% - 0:00:00 left \r", + " [ 9338 / 10000 ] 93% - 0:00:00 left \r", + " [ 9339 / 10000 ] 93% - 0:00:00 left \r", + " [ 9340 / 10000 ] 93% - 0:00:00 left \r", + " [ 9341 / 10000 ] 93% - 0:00:00 left \r", + " [ 9342 / 10000 ] 93% - 0:00:00 left \r", + " [ 9343 / 10000 ] 93% - 0:00:00 left \r", + " [ 9344 / 10000 ] 93% - 0:00:00 left \r", + " [ 9345 / 10000 ] 93% - 0:00:00 left \r", + " [ 9346 / 10000 ] 93% - 0:00:00 left \r", + " [ 9347 / 10000 ] 93% - 0:00:00 left \r", + " [ 9348 / 10000 ] 93% - 0:00:00 left \r", + " [ 9349 / 10000 ] 93% - 0:00:00 left \r", + " [ 9350 / 10000 ] 94% - 0:00:00 left \r", + " [ 9351 / 10000 ] 94% - 0:00:00 left \r", + " [ 9352 / 10000 ] 94% - 0:00:00 left \r", + " [ 9353 / 10000 ] 94% - 0:00:00 left \r", + " [ 9354 / 10000 ] 94% - 0:00:00 left \r", + " [ 9355 / 10000 ] 94% - 0:00:00 left \r", + " [ 9356 / 10000 ] 94% - 0:00:00 left \r", + " [ 9357 / 10000 ] 94% - 0:00:00 left \r", + " [ 9358 / 10000 ] 94% - 0:00:00 left \r", + " [ 9359 / 10000 ] 94% - 0:00:00 left \r", + " [ 9360 / 10000 ] 94% - 0:00:00 left \r", + " [ 9361 / 10000 ] 94% - 0:00:00 left \r", + " [ 9362 / 10000 ] 94% - 0:00:00 left \r", + " [ 9363 / 10000 ] 94% - 0:00:00 left \r", + " [ 9364 / 10000 ] 94% - 0:00:00 left \r", + " [ 9365 / 10000 ] 94% - 0:00:00 left \r", + " [ 9366 / 10000 ] 94% - 0:00:00 left \r", + " [ 9367 / 10000 ] 94% - 0:00:00 left \r", + " [ 9368 / 10000 ] 94% - 0:00:00 left \r", + " [ 9369 / 10000 ] 94% - 0:00:00 left \r", + " [ 9370 / 10000 ] 94% - 0:00:00 left \r", + " [ 9371 / 10000 ] 94% - 0:00:00 left \r", + " [ 9372 / 10000 ] 94% - 0:00:00 left \r", + " [ 9373 / 10000 ] 94% - 0:00:00 left \r", + " [ 9374 / 10000 ] 94% - 0:00:00 left \r", + " [ 9375 / 10000 ] 94% - 0:00:00 left \r", + " [ 9376 / 10000 ] 94% - 0:00:00 left \r", + " [ 9377 / 10000 ] 94% - 0:00:00 left \r", + " [ 9378 / 10000 ] 94% - 0:00:00 left \r", + " [ 9379 / 10000 ] 94% - 0:00:00 left \r", + " [ 9380 / 10000 ] 94% - 0:00:00 left \r", + " [ 9381 / 10000 ] 94% - 0:00:00 left \r", + " [ 9382 / 10000 ] 94% - 0:00:00 left \r", + " [ 9383 / 10000 ] 94% - 0:00:00 left \r", + " [ 9384 / 10000 ] 94% - 0:00:00 left \r", + " [ 9385 / 10000 ] 94% - 0:00:00 left \r", + " [ 9386 / 10000 ] 94% - 0:00:00 left \r", + " [ 9387 / 10000 ] 94% - 0:00:00 left \r", + " [ 9388 / 10000 ] 94% - 0:00:00 left \r", + " [ 9389 / 10000 ] 94% - 0:00:00 left \r", + " [ 9390 / 10000 ] 94% - 0:00:00 left \r", + " [ 9391 / 10000 ] 94% - 0:00:00 left \r", + " [ 9392 / 10000 ] 94% - 0:00:00 left \r", + " [ 9393 / 10000 ] 94% - 0:00:00 left \r", + " [ 9394 / 10000 ] 94% - 0:00:00 left \r", + " [ 9395 / 10000 ] 94% - 0:00:00 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 9396 / 10000 ] 94% - 0:00:00 left \r", + " [ 9397 / 10000 ] 94% - 0:00:00 left \r", + " [ 9398 / 10000 ] 94% - 0:00:00 left \r", + " [ 9399 / 10000 ] 94% - 0:00:00 left \r", + " [ 9400 / 10000 ] 94% - 0:00:00 left \r", + " [ 9401 / 10000 ] 94% - 0:00:00 left \r", + " [ 9402 / 10000 ] 94% - 0:00:00 left \r", + " [ 9403 / 10000 ] 94% - 0:00:00 left \r", + " [ 9404 / 10000 ] 94% - 0:00:00 left \r", + " [ 9405 / 10000 ] 94% - 0:00:00 left \r", + " [ 9406 / 10000 ] 94% - 0:00:00 left \r", + " [ 9407 / 10000 ] 94% - 0:00:00 left \r", + " [ 9408 / 10000 ] 94% - 0:00:00 left \r", + " [ 9409 / 10000 ] 94% - 0:00:00 left \r", + " [ 9410 / 10000 ] 94% - 0:00:00 left \r", + " [ 9411 / 10000 ] 94% - 0:00:00 left \r", + " [ 9412 / 10000 ] 94% - 0:00:00 left \r", + " [ 9413 / 10000 ] 94% - 0:00:00 left \r", + " [ 9414 / 10000 ] 94% - 0:00:00 left \r", + " [ 9415 / 10000 ] 94% - 0:00:00 left \r", + " [ 9416 / 10000 ] 94% - 0:00:00 left \r", + " [ 9417 / 10000 ] 94% - 0:00:00 left \r", + " [ 9418 / 10000 ] 94% - 0:00:00 left \r", + " [ 9419 / 10000 ] 94% - 0:00:00 left \r", + " [ 9420 / 10000 ] 94% - 0:00:00 left \r", + " [ 9421 / 10000 ] 94% - 0:00:00 left \r", + " [ 9422 / 10000 ] 94% - 0:00:00 left \r", + " [ 9423 / 10000 ] 94% - 0:00:00 left \r", + " [ 9424 / 10000 ] 94% - 0:00:00 left \r", + " [ 9425 / 10000 ] 94% - 0:00:00 left \r", + " [ 9426 / 10000 ] 94% - 0:00:00 left \r", + " [ 9427 / 10000 ] 94% - 0:00:00 left \r", + " [ 9428 / 10000 ] 94% - 0:00:00 left \r", + " [ 9429 / 10000 ] 94% - 0:00:00 left \r", + " [ 9430 / 10000 ] 94% - 0:00:00 left \r", + " [ 9431 / 10000 ] 94% - 0:00:00 left \r", + " [ 9432 / 10000 ] 94% - 0:00:00 left \r", + " [ 9433 / 10000 ] 94% - 0:00:00 left \r", + " [ 9434 / 10000 ] 94% - 0:00:00 left \r", + " [ 9435 / 10000 ] 94% - 0:00:00 left \r", + " [ 9436 / 10000 ] 94% - 0:00:00 left \r", + " [ 9437 / 10000 ] 94% - 0:00:00 left \r", + " [ 9438 / 10000 ] 94% - 0:00:00 left \r", + " [ 9439 / 10000 ] 94% - 0:00:00 left \r", + " [ 9440 / 10000 ] 94% - 0:00:00 left \r", + " [ 9441 / 10000 ] 94% - 0:00:00 left \r", + " [ 9442 / 10000 ] 94% - 0:00:00 left \r", + " [ 9443 / 10000 ] 94% - 0:00:00 left \r", + " [ 9444 / 10000 ] 94% - 0:00:00 left \r", + " [ 9445 / 10000 ] 94% - 0:00:00 left \r", + " [ 9446 / 10000 ] 94% - 0:00:00 left \r", + " [ 9447 / 10000 ] 94% - 0:00:00 left \r", + " [ 9448 / 10000 ] 94% - 0:00:00 left \r", + " [ 9449 / 10000 ] 94% - 0:00:00 left \r", + " [ 9450 / 10000 ] 94% - 0:00:00 left \r", + " [ 9451 / 10000 ] 95% - 0:00:00 left \r", + " [ 9452 / 10000 ] 95% - 0:00:00 left \r", + " [ 9453 / 10000 ] 95% - 0:00:00 left \r", + " [ 9454 / 10000 ] 95% - 0:00:00 left \r", + " [ 9455 / 10000 ] 95% - 0:00:00 left \r", + " [ 9456 / 10000 ] 95% - 0:00:00 left \r", + " [ 9457 / 10000 ] 95% - 0:00:00 left \r", + " [ 9458 / 10000 ] 95% - 0:00:00 left \r", + " [ 9459 / 10000 ] 95% - 0:00:00 left \r", + " [ 9460 / 10000 ] 95% - 0:00:00 left \r", + " [ 9461 / 10000 ] 95% - 0:00:00 left \r", + " [ 9462 / 10000 ] 95% - 0:00:00 left \r", + " [ 9463 / 10000 ] 95% - 0:00:00 left \r", + " [ 9464 / 10000 ] 95% - 0:00:00 left \r", + " [ 9465 / 10000 ] 95% - 0:00:00 left \r", + " [ 9466 / 10000 ] 95% - 0:00:00 left \r", + " [ 9467 / 10000 ] 95% - 0:00:00 left \r", + " [ 9468 / 10000 ] 95% - 0:00:00 left \r", + " [ 9469 / 10000 ] 95% - 0:00:00 left \r", + " [ 9470 / 10000 ] 95% - 0:00:00 left \r", + " [ 9471 / 10000 ] 95% - 0:00:00 left \r", + " [ 9472 / 10000 ] 95% - 0:00:00 left \r", + " [ 9473 / 10000 ] 95% - 0:00:00 left \r", + " [ 9474 / 10000 ] 95% - 0:00:00 left \r", + " [ 9475 / 10000 ] 95% - 0:00:00 left \r", + " [ 9476 / 10000 ] 95% - 0:00:00 left \r", + " [ 9477 / 10000 ] 95% - 0:00:00 left \r", + " [ 9478 / 10000 ] 95% - 0:00:00 left \r", + " [ 9479 / 10000 ] 95% - 0:00:00 left \r", + " [ 9480 / 10000 ] 95% - 0:00:00 left \r", + " [ 9481 / 10000 ] 95% - 0:00:00 left \r", + " [ 9482 / 10000 ] 95% - 0:00:00 left \r", + " [ 9483 / 10000 ] 95% - 0:00:00 left \r", + " [ 9484 / 10000 ] 95% - 0:00:00 left \r", + " [ 9485 / 10000 ] 95% - 0:00:00 left \r", + " [ 9486 / 10000 ] 95% - 0:00:00 left \r", + " [ 9487 / 10000 ] 95% - 0:00:00 left \r", + " [ 9488 / 10000 ] 95% - 0:00:00 left \r", + " [ 9489 / 10000 ] 95% - 0:00:00 left \r", + " [ 9490 / 10000 ] 95% - 0:00:00 left \r", + " [ 9491 / 10000 ] 95% - 0:00:00 left \r", + " [ 9492 / 10000 ] 95% - 0:00:00 left \r", + " [ 9493 / 10000 ] 95% - 0:00:00 left \r", + " [ 9494 / 10000 ] 95% - 0:00:00 left \r", + " [ 9495 / 10000 ] 95% - 0:00:00 left \r", + " [ 9496 / 10000 ] 95% - 0:00:00 left \r", + " [ 9497 / 10000 ] 95% - 0:00:00 left \r", + " [ 9498 / 10000 ] 95% - 0:00:00 left \r", + " [ 9499 / 10000 ] 95% - 0:00:00 left \r", + " [ 9500 / 10000 ] 95% - 0:00:00 left \r", + " [ 9501 / 10000 ] 95% - 0:00:00 left \r", + " [ 9502 / 10000 ] 95% - 0:00:00 left \r", + " [ 9503 / 10000 ] 95% - 0:00:00 left \r", + " [ 9504 / 10000 ] 95% - 0:00:00 left \r", + " [ 9505 / 10000 ] 95% - 0:00:00 left \r", + " [ 9506 / 10000 ] 95% - 0:00:00 left \r", + " [ 9507 / 10000 ] 95% - 0:00:00 left \r", + " [ 9508 / 10000 ] 95% - 0:00:00 left \r", + " [ 9509 / 10000 ] 95% - 0:00:00 left \r", + " [ 9510 / 10000 ] 95% - 0:00:00 left \r", + " [ 9511 / 10000 ] 95% - 0:00:00 left \r", + " [ 9512 / 10000 ] 95% - 0:00:00 left \r", + " [ 9513 / 10000 ] 95% - 0:00:00 left \r", + " [ 9514 / 10000 ] 95% - 0:00:00 left \r", + " [ 9515 / 10000 ] 95% - 0:00:00 left \r", + " [ 9516 / 10000 ] 95% - 0:00:00 left \r", + " [ 9517 / 10000 ] 95% - 0:00:00 left \r", + " [ 9518 / 10000 ] 95% - 0:00:00 left \r", + " [ 9519 / 10000 ] 95% - 0:00:00 left \r", + " [ 9520 / 10000 ] 95% - 0:00:00 left \r", + " [ 9521 / 10000 ] 95% - 0:00:00 left \r", + " [ 9522 / 10000 ] 95% - 0:00:00 left \r", + " [ 9523 / 10000 ] 95% - 0:00:00 left \r", + " [ 9524 / 10000 ] 95% - 0:00:00 left \r", + " [ 9525 / 10000 ] 95% - 0:00:00 left \r", + " [ 9526 / 10000 ] 95% - 0:00:00 left \r", + " [ 9527 / 10000 ] 95% - 0:00:00 left \r", + " [ 9528 / 10000 ] 95% - 0:00:00 left \r", + " [ 9529 / 10000 ] 95% - 0:00:00 left \r", + " [ 9530 / 10000 ] 95% - 0:00:00 left \r", + " [ 9531 / 10000 ] 95% - 0:00:00 left \r", + " [ 9532 / 10000 ] 95% - 0:00:00 left \r", + " [ 9533 / 10000 ] 95% - 0:00:00 left \r", + " [ 9534 / 10000 ] 95% - 0:00:00 left \r", + " [ 9535 / 10000 ] 95% - 0:00:00 left \r", + " [ 9536 / 10000 ] 95% - 0:00:00 left \r", + " [ 9537 / 10000 ] 95% - 0:00:00 left \r", + " [ 9538 / 10000 ] 95% - 0:00:00 left \r", + " [ 9539 / 10000 ] 95% - 0:00:00 left \r", + " [ 9540 / 10000 ] 95% - 0:00:00 left \r", + " [ 9541 / 10000 ] 95% - 0:00:00 left \r", + " [ 9542 / 10000 ] 95% - 0:00:00 left \r", + " [ 9543 / 10000 ] 95% - 0:00:00 left \r", + " [ 9544 / 10000 ] 95% - 0:00:00 left \r", + " [ 9545 / 10000 ] 95% - 0:00:00 left \r", + " [ 9546 / 10000 ] 95% - 0:00:00 left \r", + " [ 9547 / 10000 ] 95% - 0:00:00 left \r", + " [ 9548 / 10000 ] 95% - 0:00:00 left \r", + " [ 9549 / 10000 ] 95% - 0:00:00 left \r", + " [ 9550 / 10000 ] 96% - 0:00:00 left \r", + " [ 9551 / 10000 ] 96% - 0:00:00 left \r", + " [ 9552 / 10000 ] 96% - 0:00:00 left \r", + " [ 9553 / 10000 ] 96% - 0:00:00 left \r", + " [ 9554 / 10000 ] 96% - 0:00:00 left \r", + " [ 9555 / 10000 ] 96% - 0:00:00 left \r", + " [ 9556 / 10000 ] 96% - 0:00:00 left \r", + " [ 9557 / 10000 ] 96% - 0:00:00 left \r", + " [ 9558 / 10000 ] 96% - 0:00:00 left \r", + " [ 9559 / 10000 ] 96% - 0:00:00 left \r", + " [ 9560 / 10000 ] 96% - 0:00:00 left \r", + " [ 9561 / 10000 ] 96% - 0:00:00 left \r", + " [ 9562 / 10000 ] 96% - 0:00:00 left \r", + " [ 9563 / 10000 ] 96% - 0:00:00 left \r", + " [ 9564 / 10000 ] 96% - 0:00:00 left \r", + " [ 9565 / 10000 ] 96% - 0:00:00 left \r", + " [ 9566 / 10000 ] 96% - 0:00:00 left \r", + " [ 9567 / 10000 ] 96% - 0:00:00 left \r", + " [ 9568 / 10000 ] 96% - 0:00:00 left \r", + " [ 9569 / 10000 ] 96% - 0:00:00 left \r", + " [ 9570 / 10000 ] 96% - 0:00:00 left \r", + " [ 9571 / 10000 ] 96% - 0:00:00 left \r", + " [ 9572 / 10000 ] 96% - 0:00:00 left \r", + " [ 9573 / 10000 ] 96% - 0:00:00 left \r", + " [ 9574 / 10000 ] 96% - 0:00:00 left \r", + " [ 9575 / 10000 ] 96% - 0:00:00 left \r", + " [ 9576 / 10000 ] 96% - 0:00:00 left \r", + " [ 9577 / 10000 ] 96% - 0:00:00 left \r", + " [ 9578 / 10000 ] 96% - 0:00:00 left \r", + " [ 9579 / 10000 ] 96% - 0:00:00 left \r", + " [ 9580 / 10000 ] 96% - 0:00:00 left \r", + " [ 9581 / 10000 ] 96% - 0:00:00 left \r", + " [ 9582 / 10000 ] 96% - 0:00:00 left \r", + " [ 9583 / 10000 ] 96% - 0:00:00 left \r", + " [ 9584 / 10000 ] 96% - 0:00:00 left \r", + " [ 9585 / 10000 ] 96% - 0:00:00 left \r", + " [ 9586 / 10000 ] 96% - 0:00:00 left \r", + " [ 9587 / 10000 ] 96% - 0:00:00 left \r", + " [ 9588 / 10000 ] 96% - 0:00:00 left \r", + " [ 9589 / 10000 ] 96% - 0:00:00 left \r", + " [ 9590 / 10000 ] 96% - 0:00:00 left \r", + " [ 9591 / 10000 ] 96% - 0:00:00 left \r", + " [ 9592 / 10000 ] 96% - 0:00:00 left \r", + " [ 9593 / 10000 ] 96% - 0:00:00 left \r", + " [ 9594 / 10000 ] 96% - 0:00:00 left \r", + " [ 9595 / 10000 ] 96% - 0:00:00 left \r", + " [ 9596 / 10000 ] 96% - 0:00:00 left \r", + " [ 9597 / 10000 ] 96% - 0:00:00 left \r", + " [ 9598 / 10000 ] 96% - 0:00:00 left \r", + " [ 9599 / 10000 ] 96% - 0:00:00 left \r", + " [ 9600 / 10000 ] 96% - 0:00:00 left \r", + " [ 9601 / 10000 ] 96% - 0:00:00 left \r", + " [ 9602 / 10000 ] 96% - 0:00:00 left \r", + " [ 9603 / 10000 ] 96% - 0:00:00 left \r", + " [ 9604 / 10000 ] 96% - 0:00:00 left \r", + " [ 9605 / 10000 ] 96% - 0:00:00 left \r", + " [ 9606 / 10000 ] 96% - 0:00:00 left \r", + " [ 9607 / 10000 ] 96% - 0:00:00 left \r", + " [ 9608 / 10000 ] 96% - 0:00:00 left \r", + " [ 9609 / 10000 ] 96% - 0:00:00 left \r", + " [ 9610 / 10000 ] 96% - 0:00:00 left \r", + " [ 9611 / 10000 ] 96% - 0:00:00 left \r", + " [ 9612 / 10000 ] 96% - 0:00:00 left \r", + " [ 9613 / 10000 ] 96% - 0:00:00 left \r", + " [ 9614 / 10000 ] 96% - 0:00:00 left \r", + " [ 9615 / 10000 ] 96% - 0:00:00 left \r", + " [ 9616 / 10000 ] 96% - 0:00:00 left \r", + " [ 9617 / 10000 ] 96% - 0:00:00 left \r", + " [ 9618 / 10000 ] 96% - 0:00:00 left \r", + " [ 9619 / 10000 ] 96% - 0:00:00 left \r", + " [ 9620 / 10000 ] 96% - 0:00:00 left \r", + " [ 9621 / 10000 ] 96% - 0:00:00 left \r", + " [ 9622 / 10000 ] 96% - 0:00:00 left \r", + " [ 9623 / 10000 ] 96% - 0:00:00 left \r", + " [ 9624 / 10000 ] 96% - 0:00:00 left \r", + " [ 9625 / 10000 ] 96% - 0:00:00 left \r", + " [ 9626 / 10000 ] 96% - 0:00:00 left \r", + " [ 9627 / 10000 ] 96% - 0:00:00 left \r", + " [ 9628 / 10000 ] 96% - 0:00:00 left \r", + " [ 9629 / 10000 ] 96% - 0:00:00 left \r", + " [ 9630 / 10000 ] 96% - 0:00:00 left \r", + " [ 9631 / 10000 ] 96% - 0:00:00 left \r", + " [ 9632 / 10000 ] 96% - 0:00:00 left \r", + " [ 9633 / 10000 ] 96% - 0:00:00 left \r", + " [ 9634 / 10000 ] 96% - 0:00:00 left \r", + " [ 9635 / 10000 ] 96% - 0:00:00 left \r", + " [ 9636 / 10000 ] 96% - 0:00:00 left \r", + " [ 9637 / 10000 ] 96% - 0:00:00 left \r", + " [ 9638 / 10000 ] 96% - 0:00:00 left \r", + " [ 9639 / 10000 ] 96% - 0:00:00 left \r", + " [ 9640 / 10000 ] 96% - 0:00:00 left \r", + " [ 9641 / 10000 ] 96% - 0:00:00 left \r", + " [ 9642 / 10000 ] 96% - 0:00:00 left \r", + " [ 9643 / 10000 ] 96% - 0:00:00 left \r", + " [ 9644 / 10000 ] 96% - 0:00:00 left \r", + " [ 9645 / 10000 ] 96% - 0:00:00 left \r", + " [ 9646 / 10000 ] 96% - 0:00:00 left \r", + " [ 9647 / 10000 ] 96% - 0:00:00 left \r", + " [ 9648 / 10000 ] 96% - 0:00:00 left \r", + " [ 9649 / 10000 ] 96% - 0:00:00 left \r", + " [ 9650 / 10000 ] 96% - 0:00:00 left \r", + " [ 9651 / 10000 ] 97% - 0:00:00 left \r", + " [ 9652 / 10000 ] 97% - 0:00:00 left \r", + " [ 9653 / 10000 ] 97% - 0:00:00 left \r", + " [ 9654 / 10000 ] 97% - 0:00:00 left \r", + " [ 9655 / 10000 ] 97% - 0:00:00 left \r", + " [ 9656 / 10000 ] 97% - 0:00:00 left \r", + " [ 9657 / 10000 ] 97% - 0:00:00 left \r", + " [ 9658 / 10000 ] 97% - 0:00:00 left \r", + " [ 9659 / 10000 ] 97% - 0:00:00 left \r", + " [ 9660 / 10000 ] 97% - 0:00:00 left \r", + " [ 9661 / 10000 ] 97% - 0:00:00 left \r", + " [ 9662 / 10000 ] 97% - 0:00:00 left \r", + " [ 9663 / 10000 ] 97% - 0:00:00 left \r", + " [ 9664 / 10000 ] 97% - 0:00:00 left \r", + " [ 9665 / 10000 ] 97% - 0:00:00 left \r", + " [ 9666 / 10000 ] 97% - 0:00:00 left \r", + " [ 9667 / 10000 ] 97% - 0:00:00 left \r", + " [ 9668 / 10000 ] 97% - 0:00:00 left \r", + " [ 9669 / 10000 ] 97% - 0:00:00 left \r", + " [ 9670 / 10000 ] 97% - 0:00:00 left \r", + " [ 9671 / 10000 ] 97% - 0:00:00 left \r", + " [ 9672 / 10000 ] 97% - 0:00:00 left \r", + " [ 9673 / 10000 ] 97% - 0:00:00 left \r", + " [ 9674 / 10000 ] 97% - 0:00:00 left \r", + " [ 9675 / 10000 ] 97% - 0:00:00 left \r", + " [ 9676 / 10000 ] 97% - 0:00:00 left \r", + " [ 9677 / 10000 ] 97% - 0:00:00 left \r", + " [ 9678 / 10000 ] 97% - 0:00:00 left \r", + " [ 9679 / 10000 ] 97% - 0:00:00 left \r", + " [ 9680 / 10000 ] 97% - 0:00:00 left \r", + " [ 9681 / 10000 ] 97% - 0:00:00 left \r", + " [ 9682 / 10000 ] 97% - 0:00:00 left \r", + " [ 9683 / 10000 ] 97% - 0:00:00 left \r", + " [ 9684 / 10000 ] 97% - 0:00:00 left \r", + " [ 9685 / 10000 ] 97% - 0:00:00 left \r", + " [ 9686 / 10000 ] 97% - 0:00:00 left \r", + " [ 9687 / 10000 ] 97% - 0:00:00 left \r", + " [ 9688 / 10000 ] 97% - 0:00:00 left \r", + " [ 9689 / 10000 ] 97% - 0:00:00 left \r", + " [ 9690 / 10000 ] 97% - 0:00:00 left \r", + " [ 9691 / 10000 ] 97% - 0:00:00 left \r", + " [ 9692 / 10000 ] 97% - 0:00:00 left \r", + " [ 9693 / 10000 ] 97% - 0:00:00 left \r", + " [ 9694 / 10000 ] 97% - 0:00:00 left \r", + " [ 9695 / 10000 ] 97% - 0:00:00 left \r", + " [ 9696 / 10000 ] 97% - 0:00:00 left \r", + " [ 9697 / 10000 ] 97% - 0:00:00 left \r", + " [ 9698 / 10000 ] 97% - 0:00:00 left \r", + " [ 9699 / 10000 ] 97% - 0:00:00 left \r", + " [ 9700 / 10000 ] 97% - 0:00:00 left \r", + " [ 9701 / 10000 ] 97% - 0:00:00 left \r", + " [ 9702 / 10000 ] 97% - 0:00:00 left \r", + " [ 9703 / 10000 ] 97% - 0:00:00 left \r", + " [ 9704 / 10000 ] 97% - 0:00:00 left \r", + " [ 9705 / 10000 ] 97% - 0:00:00 left \r", + " [ 9706 / 10000 ] 97% - 0:00:00 left \r", + " [ 9707 / 10000 ] 97% - 0:00:00 left \r", + " [ 9708 / 10000 ] 97% - 0:00:00 left \r", + " [ 9709 / 10000 ] 97% - 0:00:00 left \r", + " [ 9710 / 10000 ] 97% - 0:00:00 left \r", + " [ 9711 / 10000 ] 97% - 0:00:00 left \r", + " [ 9712 / 10000 ] 97% - 0:00:00 left \r", + " [ 9713 / 10000 ] 97% - 0:00:00 left \r", + " [ 9714 / 10000 ] 97% - 0:00:00 left \r", + " [ 9715 / 10000 ] 97% - 0:00:00 left \r", + " [ 9716 / 10000 ] 97% - 0:00:00 left \r", + " [ 9717 / 10000 ] 97% - 0:00:00 left \r", + " [ 9718 / 10000 ] 97% - 0:00:00 left \r", + " [ 9719 / 10000 ] 97% - 0:00:00 left \r", + " [ 9720 / 10000 ] 97% - 0:00:00 left \r", + " [ 9721 / 10000 ] 97% - 0:00:00 left \r", + " [ 9722 / 10000 ] 97% - 0:00:00 left \r", + " [ 9723 / 10000 ] 97% - 0:00:00 left \r", + " [ 9724 / 10000 ] 97% - 0:00:00 left \r", + " [ 9725 / 10000 ] 97% - 0:00:00 left \r", + " [ 9726 / 10000 ] 97% - 0:00:00 left \r", + " [ 9727 / 10000 ] 97% - 0:00:00 left \r", + " [ 9728 / 10000 ] 97% - 0:00:00 left \r", + " [ 9729 / 10000 ] 97% - 0:00:00 left \r", + " [ 9730 / 10000 ] 97% - 0:00:00 left \r", + " [ 9731 / 10000 ] 97% - 0:00:00 left \r", + " [ 9732 / 10000 ] 97% - 0:00:00 left \r", + " [ 9733 / 10000 ] 97% - 0:00:00 left \r", + " [ 9734 / 10000 ] 97% - 0:00:00 left \r", + " [ 9735 / 10000 ] 97% - 0:00:00 left \r", + " [ 9736 / 10000 ] 97% - 0:00:00 left \r", + " [ 9737 / 10000 ] 97% - 0:00:00 left \r", + " [ 9738 / 10000 ] 97% - 0:00:00 left \r", + " [ 9739 / 10000 ] 97% - 0:00:00 left \r", + " [ 9740 / 10000 ] 97% - 0:00:00 left \r", + " [ 9741 / 10000 ] 97% - 0:00:00 left \r", + " [ 9742 / 10000 ] 97% - 0:00:00 left \r", + " [ 9743 / 10000 ] 97% - 0:00:00 left \r", + " [ 9744 / 10000 ] 97% - 0:00:00 left \r", + " [ 9745 / 10000 ] 97% - 0:00:00 left \r", + " [ 9746 / 10000 ] 97% - 0:00:00 left \r", + " [ 9747 / 10000 ] 97% - 0:00:00 left \r", + " [ 9748 / 10000 ] 97% - 0:00:00 left \r", + " [ 9749 / 10000 ] 97% - 0:00:00 left \r", + " [ 9750 / 10000 ] 98% - 0:00:00 left \r", + " [ 9751 / 10000 ] 98% - 0:00:00 left \r", + " [ 9752 / 10000 ] 98% - 0:00:00 left \r", + " [ 9753 / 10000 ] 98% - 0:00:00 left \r", + " [ 9754 / 10000 ] 98% - 0:00:00 left \r", + " [ 9755 / 10000 ] 98% - 0:00:00 left \r", + " [ 9756 / 10000 ] 98% - 0:00:00 left \r", + " [ 9757 / 10000 ] 98% - 0:00:00 left \r", + " [ 9758 / 10000 ] 98% - 0:00:00 left \r", + " [ 9759 / 10000 ] 98% - 0:00:00 left \r", + " [ 9760 / 10000 ] 98% - 0:00:00 left \r", + " [ 9761 / 10000 ] 98% - 0:00:00 left \r", + " [ 9762 / 10000 ] 98% - 0:00:00 left \r", + " [ 9763 / 10000 ] 98% - 0:00:00 left \r", + " [ 9764 / 10000 ] 98% - 0:00:00 left \r", + " [ 9765 / 10000 ] 98% - 0:00:00 left \r", + " [ 9766 / 10000 ] 98% - 0:00:00 left \r", + " [ 9767 / 10000 ] 98% - 0:00:00 left \r", + " [ 9768 / 10000 ] 98% - 0:00:00 left \r", + " [ 9769 / 10000 ] 98% - 0:00:00 left \r", + " [ 9770 / 10000 ] 98% - 0:00:00 left \r", + " [ 9771 / 10000 ] 98% - 0:00:00 left \r", + " [ 9772 / 10000 ] 98% - 0:00:00 left \r", + " [ 9773 / 10000 ] 98% - 0:00:00 left \r", + " [ 9774 / 10000 ] 98% - 0:00:00 left \r", + " [ 9775 / 10000 ] 98% - 0:00:00 left \r", + " [ 9776 / 10000 ] 98% - 0:00:00 left \r", + " [ 9777 / 10000 ] 98% - 0:00:00 left \r", + " [ 9778 / 10000 ] 98% - 0:00:00 left \r", + " [ 9779 / 10000 ] 98% - 0:00:00 left \r", + " [ 9780 / 10000 ] 98% - 0:00:00 left \r", + " [ 9781 / 10000 ] 98% - 0:00:00 left \r", + " [ 9782 / 10000 ] 98% - 0:00:00 left \r", + " [ 9783 / 10000 ] 98% - 0:00:00 left \r", + " [ 9784 / 10000 ] 98% - 0:00:00 left \r", + " [ 9785 / 10000 ] 98% - 0:00:00 left \r", + " [ 9786 / 10000 ] 98% - 0:00:00 left \r", + " [ 9787 / 10000 ] 98% - 0:00:00 left \r", + " [ 9788 / 10000 ] 98% - 0:00:00 left \r", + " [ 9789 / 10000 ] 98% - 0:00:00 left \r", + " [ 9790 / 10000 ] 98% - 0:00:00 left \r", + " [ 9791 / 10000 ] 98% - 0:00:00 left \r", + " [ 9792 / 10000 ] 98% - 0:00:00 left \r", + " [ 9793 / 10000 ] 98% - 0:00:00 left \r", + " [ 9794 / 10000 ] 98% - 0:00:00 left \r", + " [ 9795 / 10000 ] 98% - 0:00:00 left \r", + " [ 9796 / 10000 ] 98% - 0:00:00 left \r", + " [ 9797 / 10000 ] 98% - 0:00:00 left \r", + " [ 9798 / 10000 ] 98% - 0:00:00 left \r", + " [ 9799 / 10000 ] 98% - 0:00:00 left \r", + " [ 9800 / 10000 ] 98% - 0:00:00 left \r", + " [ 9801 / 10000 ] 98% - 0:00:00 left \r", + " [ 9802 / 10000 ] 98% - 0:00:00 left \r", + " [ 9803 / 10000 ] 98% - 0:00:00 left \r", + " [ 9804 / 10000 ] 98% - 0:00:00 left \r", + " [ 9805 / 10000 ] 98% - 0:00:00 left \r", + " [ 9806 / 10000 ] 98% - 0:00:00 left \r", + " [ 9807 / 10000 ] 98% - 0:00:00 left \r", + " [ 9808 / 10000 ] 98% - 0:00:00 left \r", + " [ 9809 / 10000 ] 98% - 0:00:00 left \r", + " [ 9810 / 10000 ] 98% - 0:00:00 left \r", + " [ 9811 / 10000 ] 98% - 0:00:00 left \r", + " [ 9812 / 10000 ] 98% - 0:00:00 left \r", + " [ 9813 / 10000 ] 98% - 0:00:00 left \r", + " [ 9814 / 10000 ] 98% - 0:00:00 left \r", + " [ 9815 / 10000 ] 98% - 0:00:00 left \r", + " [ 9816 / 10000 ] 98% - 0:00:00 left \r", + " [ 9817 / 10000 ] 98% - 0:00:00 left \r", + " [ 9818 / 10000 ] 98% - 0:00:00 left \r", + " [ 9819 / 10000 ] 98% - 0:00:00 left \r", + " [ 9820 / 10000 ] 98% - 0:00:00 left \r", + " [ 9821 / 10000 ] 98% - 0:00:00 left \r", + " [ 9822 / 10000 ] 98% - 0:00:00 left \r", + " [ 9823 / 10000 ] 98% - 0:00:00 left \r", + " [ 9824 / 10000 ] 98% - 0:00:00 left \r", + " [ 9825 / 10000 ] 98% - 0:00:00 left \r", + " [ 9826 / 10000 ] 98% - 0:00:00 left \r", + " [ 9827 / 10000 ] 98% - 0:00:00 left \r", + " [ 9828 / 10000 ] 98% - 0:00:00 left \r", + " [ 9829 / 10000 ] 98% - 0:00:00 left \r", + " [ 9830 / 10000 ] 98% - 0:00:00 left \r", + " [ 9831 / 10000 ] 98% - 0:00:00 left \r", + " [ 9832 / 10000 ] 98% - 0:00:00 left \r", + " [ 9833 / 10000 ] 98% - 0:00:00 left \r", + " [ 9834 / 10000 ] 98% - 0:00:00 left \r", + " [ 9835 / 10000 ] 98% - 0:00:00 left \r", + " [ 9836 / 10000 ] 98% - 0:00:00 left \r", + " [ 9837 / 10000 ] 98% - 0:00:00 left \r", + " [ 9838 / 10000 ] 98% - 0:00:00 left \r", + " [ 9839 / 10000 ] 98% - 0:00:00 left \r", + " [ 9840 / 10000 ] 98% - 0:00:00 left \r", + " [ 9841 / 10000 ] 98% - 0:00:00 left \r", + " [ 9842 / 10000 ] 98% - 0:00:00 left \r", + " [ 9843 / 10000 ] 98% - 0:00:00 left \r", + " [ 9844 / 10000 ] 98% - 0:00:00 left \r", + " [ 9845 / 10000 ] 98% - 0:00:00 left \r", + " [ 9846 / 10000 ] 98% - 0:00:00 left \r", + " [ 9847 / 10000 ] 98% - 0:00:00 left \r", + " [ 9848 / 10000 ] 98% - 0:00:00 left \r", + " [ 9849 / 10000 ] 98% - 0:00:00 left \r", + " [ 9850 / 10000 ] 98% - 0:00:00 left \r", + " [ 9851 / 10000 ] 99% - 0:00:00 left \r", + " [ 9852 / 10000 ] 99% - 0:00:00 left \r", + " [ 9853 / 10000 ] 99% - 0:00:00 left \r", + " [ 9854 / 10000 ] 99% - 0:00:00 left \r", + " [ 9855 / 10000 ] 99% - 0:00:00 left \r", + " [ 9856 / 10000 ] 99% - 0:00:00 left \r", + " [ 9857 / 10000 ] 99% - 0:00:00 left \r", + " [ 9858 / 10000 ] 99% - 0:00:00 left \r", + " [ 9859 / 10000 ] 99% - 0:00:00 left \r", + " [ 9860 / 10000 ] 99% - 0:00:00 left \r", + " [ 9861 / 10000 ] 99% - 0:00:00 left \r", + " [ 9862 / 10000 ] 99% - 0:00:00 left \r", + " [ 9863 / 10000 ] 99% - 0:00:00 left \r", + " [ 9864 / 10000 ] 99% - 0:00:00 left \r", + " [ 9865 / 10000 ] 99% - 0:00:00 left \r", + " [ 9866 / 10000 ] 99% - 0:00:00 left \r", + " [ 9867 / 10000 ] 99% - 0:00:00 left \r", + " [ 9868 / 10000 ] 99% - 0:00:00 left \r", + " [ 9869 / 10000 ] 99% - 0:00:00 left \r", + " [ 9870 / 10000 ] 99% - 0:00:00 left \r", + " [ 9871 / 10000 ] 99% - 0:00:00 left \r", + " [ 9872 / 10000 ] 99% - 0:00:00 left \r", + " [ 9873 / 10000 ] 99% - 0:00:00 left \r", + " [ 9874 / 10000 ] 99% - 0:00:00 left \r", + " [ 9875 / 10000 ] 99% - 0:00:00 left \r", + " [ 9876 / 10000 ] 99% - 0:00:00 left \r", + " [ 9877 / 10000 ] 99% - 0:00:00 left \r", + " [ 9878 / 10000 ] 99% - 0:00:00 left \r", + " [ 9879 / 10000 ] 99% - 0:00:00 left \r", + " [ 9880 / 10000 ] 99% - 0:00:00 left \r", + " [ 9881 / 10000 ] 99% - 0:00:00 left \r", + " [ 9882 / 10000 ] 99% - 0:00:00 left \r", + " [ 9883 / 10000 ] 99% - 0:00:00 left \r", + " [ 9884 / 10000 ] 99% - 0:00:00 left \r", + " [ 9885 / 10000 ] 99% - 0:00:00 left \r", + " [ 9886 / 10000 ] 99% - 0:00:00 left \r", + " [ 9887 / 10000 ] 99% - 0:00:00 left \r", + " [ 9888 / 10000 ] 99% - 0:00:00 left \r", + " [ 9889 / 10000 ] 99% - 0:00:00 left \r", + " [ 9890 / 10000 ] 99% - 0:00:00 left \r", + " [ 9891 / 10000 ] 99% - 0:00:00 left \r", + " [ 9892 / 10000 ] 99% - 0:00:00 left \r", + " [ 9893 / 10000 ] 99% - 0:00:00 left \r", + " [ 9894 / 10000 ] 99% - 0:00:00 left \r", + " [ 9895 / 10000 ] 99% - 0:00:00 left \r", + " [ 9896 / 10000 ] 99% - 0:00:00 left \r", + " [ 9897 / 10000 ] 99% - 0:00:00 left \r", + " [ 9898 / 10000 ] 99% - 0:00:00 left \r", + " [ 9899 / 10000 ] 99% - 0:00:00 left \r", + " [ 9900 / 10000 ] 99% - 0:00:00 left \r", + " [ 9901 / 10000 ] 99% - 0:00:00 left \r", + " [ 9902 / 10000 ] 99% - 0:00:00 left \r", + " [ 9903 / 10000 ] 99% - 0:00:00 left \r", + " [ 9904 / 10000 ] 99% - 0:00:00 left \r", + " [ 9905 / 10000 ] 99% - 0:00:00 left \r", + " [ 9906 / 10000 ] 99% - 0:00:00 left \r", + " [ 9907 / 10000 ] 99% - 0:00:00 left \r", + " [ 9908 / 10000 ] 99% - 0:00:00 left \r", + " [ 9909 / 10000 ] 99% - 0:00:00 left \r", + " [ 9910 / 10000 ] 99% - 0:00:00 left \r", + " [ 9911 / 10000 ] 99% - 0:00:00 left \r", + " [ 9912 / 10000 ] 99% - 0:00:00 left \r", + " [ 9913 / 10000 ] 99% - 0:00:00 left \r", + " [ 9914 / 10000 ] 99% - 0:00:00 left \r", + " [ 9915 / 10000 ] 99% - 0:00:00 left \r", + " [ 9916 / 10000 ] 99% - 0:00:00 left \r", + " [ 9917 / 10000 ] 99% - 0:00:00 left \r", + " [ 9918 / 10000 ] 99% - 0:00:00 left \r", + " [ 9919 / 10000 ] 99% - 0:00:00 left \r", + " [ 9920 / 10000 ] 99% - 0:00:00 left \r", + " [ 9921 / 10000 ] 99% - 0:00:00 left \r", + " [ 9922 / 10000 ] 99% - 0:00:00 left \r", + " [ 9923 / 10000 ] 99% - 0:00:00 left \r", + " [ 9924 / 10000 ] 99% - 0:00:00 left \r", + " [ 9925 / 10000 ] 99% - 0:00:00 left \r", + " [ 9926 / 10000 ] 99% - 0:00:00 left \r", + " [ 9927 / 10000 ] 99% - 0:00:00 left \r", + " [ 9928 / 10000 ] 99% - 0:00:00 left \r", + " [ 9929 / 10000 ] 99% - 0:00:00 left \r", + " [ 9930 / 10000 ] 99% - 0:00:00 left \r", + " [ 9931 / 10000 ] 99% - 0:00:00 left \r", + " [ 9932 / 10000 ] 99% - 0:00:00 left \r", + " [ 9933 / 10000 ] 99% - 0:00:00 left \r", + " [ 9934 / 10000 ] 99% - 0:00:00 left \r", + " [ 9935 / 10000 ] 99% - 0:00:00 left \r", + " [ 9936 / 10000 ] 99% - 0:00:00 left \r", + " [ 9937 / 10000 ] 99% - 0:00:00 left \r", + " [ 9938 / 10000 ] 99% - 0:00:00 left \r", + " [ 9939 / 10000 ] 99% - 0:00:00 left \r", + " [ 9940 / 10000 ] 99% - 0:00:00 left \r", + " [ 9941 / 10000 ] 99% - 0:00:00 left \r", + " [ 9942 / 10000 ] 99% - 0:00:00 left \r", + " [ 9943 / 10000 ] 99% - 0:00:00 left \r", + " [ 9944 / 10000 ] 99% - 0:00:00 left \r", + " [ 9945 / 10000 ] 99% - 0:00:00 left \r", + " [ 9946 / 10000 ] 99% - 0:00:00 left \r", + " [ 9947 / 10000 ] 99% - 0:00:00 left \r", + " [ 9948 / 10000 ] 99% - 0:00:00 left \r", + " [ 9949 / 10000 ] 99% - 0:00:00 left \r", + " [ 9950 / 10000 ] 100% - 0:00:00 left \r", + " [ 9951 / 10000 ] 100% - 0:00:00 left \r", + " [ 9952 / 10000 ] 100% - 0:00:00 left \r", + " [ 9953 / 10000 ] 100% - 0:00:00 left \r", + " [ 9954 / 10000 ] 100% - 0:00:00 left \r", + " [ 9955 / 10000 ] 100% - 0:00:00 left \r", + " [ 9956 / 10000 ] 100% - 0:00:00 left \r", + " [ 9957 / 10000 ] 100% - 0:00:00 left \r", + " [ 9958 / 10000 ] 100% - 0:00:00 left \r", + " [ 9959 / 10000 ] 100% - 0:00:00 left \r", + " [ 9960 / 10000 ] 100% - 0:00:00 left \r", + " [ 9961 / 10000 ] 100% - 0:00:00 left \r", + " [ 9962 / 10000 ] 100% - 0:00:00 left \r", + " [ 9963 / 10000 ] 100% - 0:00:00 left \r", + " [ 9964 / 10000 ] 100% - 0:00:00 left \r", + " [ 9965 / 10000 ] 100% - 0:00:00 left \r", + " [ 9966 / 10000 ] 100% - 0:00:00 left \r", + " [ 9967 / 10000 ] 100% - 0:00:00 left \r", + " [ 9968 / 10000 ] 100% - 0:00:00 left \r", + " [ 9969 / 10000 ] 100% - 0:00:00 left \r", + " [ 9970 / 10000 ] 100% - 0:00:00 left \r", + " [ 9971 / 10000 ] 100% - 0:00:00 left \r", + " [ 9972 / 10000 ] 100% - 0:00:00 left \r", + " [ 9973 / 10000 ] 100% - 0:00:00 left \r", + " [ 9974 / 10000 ] 100% - 0:00:00 left \r", + " [ 9975 / 10000 ] 100% - 0:00:00 left \r", + " [ 9976 / 10000 ] 100% - 0:00:00 left \r", + " [ 9977 / 10000 ] 100% - 0:00:00 left \r", + " [ 9978 / 10000 ] 100% - 0:00:00 left \r", + " [ 9979 / 10000 ] 100% - 0:00:00 left \r", + " [ 9980 / 10000 ] 100% - 0:00:00 left \r", + " [ 9981 / 10000 ] 100% - 0:00:00 left \r", + " [ 9982 / 10000 ] 100% - 0:00:00 left \r", + " [ 9983 / 10000 ] 100% - 0:00:00 left \r", + " [ 9984 / 10000 ] 100% - 0:00:00 left \r", + " [ 9985 / 10000 ] 100% - 0:00:00 left \r", + " [ 9986 / 10000 ] 100% - 0:00:00 left \r", + " [ 9987 / 10000 ] 100% - 0:00:00 left \r", + " [ 9988 / 10000 ] 100% - 0:00:00 left \r", + " [ 9989 / 10000 ] 100% - 0:00:00 left \r", + " [ 9990 / 10000 ] 100% - 0:00:00 left \r", + " [ 9991 / 10000 ] 100% - 0:00:00 left \r", + " [ 9992 / 10000 ] 100% - 0:00:00 left \r", + " [ 9993 / 10000 ] 100% - 0:00:00 left \r", + " [ 9994 / 10000 ] 100% - 0:00:00 left \r", + " [ 9995 / 10000 ] 100% - 0:00:00 left \r", + " [ 9996 / 10000 ] 100% - 0:00:00 left \r", + " [ 9997 / 10000 ] 100% - 0:00:00 left \r", + " [ 9998 / 10000 ] 100% - 0:00:00 left \r", + " [ 9999 / 10000 ] 100% - 0:00:00 left \r", + " [ 10000 / 10000 ] 100% - 0:00:00 left \n", + " quantization error: 0.17677845009409074\n", + "quantization...\n", + "building new image...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":20: DeprecationWarning: 'shape' argument should be used instead of 'dims'\n", + " clustered[np.unravel_index(i, dims=(img.shape[0], img.shape[1]))] = q\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "done.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGiCAYAAAALPdTuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9ebRd2V3f+fntfc69b9DT+DTWINUg1eTZxmWwAdMY24kNhCSLZZoAnUXiTujQ3YlpQvfqpL0ckpCBNKSTADYhpIMT4pWENgEz2ibGBS6Xa3BVqWapSqWSVCoNT9Kb7z17//qPvfc5+w6SnoYnPZXvd6237n3nnrPPPvucs7/7N4uqMsIII4wwwggjvL5grncHRhhhhBFGGGGEq48RwY8wwggjjDDC6xAjgh9hhBFGGGGE1yFGBD/CCCOMMMIIr0OMCH6EEUYYYYQRXocYEfwII4wwwggjvA4xIvgRaojIL4rI37na+16knT0ioiJSXGlbI4wwwupCRD4uIr92vfsxwsowmlRHqKGqf2019h1hhBFefxCRPcCLQKmq1fXtzQjDMJLgRwBAROz17sMII4xwdTDSiI0AI4J/3UNE7hGRPxKRMyKyX0S+J27/VRH5BRH5nIjMA98Rt/10duxPisgxETkqIn8lqtLvzI7/6fj9vSLyioh8TERei8f85aydD4nIoyJyTkQOi8jHr+0ojDDC6x8i8pKI/G0ReRyYF5FbReQ/i8gJEXlRRP7nbN93isjX4jt5XET+Wdz+XhF5ZUi77xtyyi/FzzMiMici37xqFzfCZWFE8K9jiEgJ/Ffg94FtwI8DnxaRu+Iu/z3w94Ep4Mt9x34Q+FvA+4A7gfde5HQ7gA3ATcCPAv9SRDbF3+aBHwY2Ah8C/rqI/LkrubYRRhhhKH6A8I5tBn4D+DrhnfxO4H8VkQ/E/X4e+HlVXQ/cAXzmMs71bfFzo6quU9U/vaKej3DVMSL41zfeBawDfkZVO6r6BeC3CJMAwGdV9QFV9aq61Hfs9wP/RlX3q+oC8PGLnKsLfEJVu6r6OWAOuAtAVf9IVZ+I53kc+A/At1+VKxxhhBFy/HNVPQy8Adiqqp+I7/5B4FPAR+J+XeBOEZlW1TlV/cr16vAIq4cRwb++sQs4rKo+23aIsKIHOHyxY7P/L7QvwKk+R5sFwuICEblfRL4YVYVngb8GTK/kAkYYYYRLQnpPdwO7omnujIicAf4PYHv8/UeBfcAzIvKQiHz4OvR1hFXGyBHj9Y2jwC0iYjKSvxV4DtgDXKiU4DHg5uz/W66gH/8e+BfAn1HVJRH5OUYEP8IIq4H0Th8GXlTVvUN3Un0e+AERMcCfB/6TiGwhmNMm0n7R+XbrRc41whrFSIJ/feNBgiT9kyJSish7ge8Gfn0Fx34G+MvRSW8CuJKY9yngdCT3dxJs/yOMMMLq4avAbHS6GxcRKyJvEJFvAhCRvyQiW+PC/0w8xhMW/2PRMbYE/k+gfZ5znIjH3L66lzLC5WJE8K9jqGqHQOh/BjgJ/Cvgh1X1mRUc+zvAPwe+CLwAJBvd8mV05ceAT4jILPB3uTyHnhFGGGGFUFUHfBh4CyFW/STwywRHWIAPAvtFZI7gcPcRVV1U1bOE9/WXgSMEif4VhiD65vx94IFoBnjXKl7SCJcBUR1pWUa4OETkHuBJoD1KajHCCCOMsPYxkuBHOC9E5PtEpB3D3f4R8F9H5D7CCCOMcGNgRPAjXAj/I/AacABwwF+/vt0ZYYQRRhhhpbimBC8iHxSRZ0XkBRH5qWt57hEuHar6QVXdoKqbVfX7VPXY9e7TCGsPo/d6hBHWJq6ZDT6GWzwHfBfBaeMh4AdU9alr0oERRhjhqmP0Xo8wwtrFtYyDfyfwQsyohIj8OvC9wNCJYNPGjbprxy4gBVv2L0Qk+67Ztri3Dt+z/4ie/wZOIThpcsR49WEfkbivDhyi9XZh2B7a112LIEYQhLTYUhSR0G8jgojUR6f2RCU0YJqrE6jbyEYCRJr/VZEhI+JUm0GT3t8VzcYmXVd2QdJcu6rG/ks8Tzxb1qZIOMgYpXd9ObjYVG0O1b4+hG7F683GqG+v5jeph2PglPk1Dl/z+sHe6bAe5w1Ic/+zfS+0qE73KByeP5fpbkrPKfJrOfzioZOqer6Y5dXCJb3XABs2btBtO3Zco+6tDM77i+807DjnzvubtReu32TN9beQXu5151it60h9W+1xutIxuNAzcLXw8sEXL+vdvpYEfxO92dBeAe7PdxCRjwIfBdi5fQef/tf/DshIS6TnfwBDIEBVHRjoZv/mmPrTC4qL24LfWMd5vIAKqAntdm0HL+DU06m6eO/BFIHIVPHe43xv31SVjo+/o1Tq8SiiUh+T+jdZtDHZAywiGOsQEawoZWGw1jJWlnit4rGelhkL+xYWBbxAVVVUVbgWYwzeewoTtnvvQ5vWBjLvg6qp+2WMQbNraa419M9j8AhehUq17r/3HuccxgiFWAwWg6AqmEJi21AUNo7Xcn0+ay2oGbhPXquesfXeo972jHVoo0BEw+JBPKpKIXE8jWn6qGFs0zNjaJ6dqqpie4MLICs+nDt7Fr2j7kf6rCqX9cnQ9RWq4KowfhCepf7+55/9C4B8WxX7MGyR8Dd/+K8cGti4+rjoew297/bW7dv5uV/55LXp3QoxuzB3SfvPnJ296D6bNkxddJ+piXWXdN5+5P2+UFtpv6mJdZd8rZeCK72eHHmfr1Zbq4GVPAtXih/7iz9wWe/2mspkp6qfBD4JcO/d96rvn8T6CAdAPGAMDmU5ETBQiKEQgxHB9Z4DVUW84MVHcvQ4lKVWF6+KD6JzILq4f+UdTrWWo5xvJnIvEiRuiVK1KqUNhOnU41yQjhNR5YTeAdS5mohQRboea2CsVYIYnIe5pQpVF0jMgBCOKXyUkFWpCH8iUi9SOpVDxIIxeFW6nQpnB1fExjWrWOfDQicbdkAQY/ESidKF5VFHQXyukigojA2St4mb4phBHCPxIIoxZSBtVfAgDBK34mm0BmH8tW6x0Who1BYkqVdRHEFb4bM+1poFBe+VMi1mkNhh7bk/zRgInqDFERGMGNQkoo4ELYJtlT3XkBQjGheOAGm4tB6V3s/mqS8GrtPT7dknLFRWX4K4UuTv9t6771pTsbmXM/kn8r7Q5J7/lu+fE/+wc6+U0GYX5noIeyXXcaOQ+9VGGqfz9XE1x+V64loS/BF6053eHLcNRZCGgjRaq1j7pB2AbuXxVvCqdNRR4TFJVSwavscJu0dKwtQk4CR8dsWhJkjDiCCiWC94FBelcQS8hv9VGzJN/BI7jBVbd9mowXvFSCMlp+vS2J6RcB5VxXgPGFQMTgWDZ6kKkru1ggG63gXJ1HusMYiCNYJG6dTGxcmyrzBG0Eho3cphTGtgvAcU0EP02IKASBg748H7+p4kqThJ+NYoaoKGxVgT8l2hiNGmaWMTO6LSmCiQnPBM3RdFe4iyhyAl9Vni8S70U0O/k1nCiNTq7aCBCCf0YvAS768M4R8Pzivea32avB+pj0ZsuA5VvHP42DcvcQg4T/8Z3JZbjvLxULReaISF1DAj1DXDJb3X36jIyb6f5PtxISIatu/1xFom9X6sBrlfC+n9SnAtCf4hYK+I3EaYAD7CBVKWeu+ZW1yoyV1EKJAeIgFY7izTFcUbwVnJVLFByrYKxg2qQl0hODzeQMcEiXWJCvWBRDACxjApJeqDariWapVaXWuMQU2wtea2Ikl9jSrgZJvuV692q6ROFrwLKu6WVWxUGVfe4b2nUoOx0DItBEPXdTBqGk0FgvVJVIQikrq2WnS73XqxVJYl1RCBr9FAhDESm19LVElXitdgyHY+SLWF2mjXDmNvjaWrQQ1tBcQaytKCi+NAl0R1ncrHexmO89qpz9/YrouanDXK8xqDP3LJNhprkOgzEfaJJEijQUkLrNq8MiSq3w3ZaJHMBBFU/kVZNP2tfR/CIs57X495P1ZM8FINtO+8hH2y98JcX4K/pPf6euFKJOXVxjDCXwnJXy11++W2s1bGbxjON34rvc507PVeQF0prhnBq2olIn8D+D2C1vZXVHX/+fb3RplvV83EKUIRiSkn+M547yTq4/YKkm6YsWowlXKnnI1SeiAApx6qQI5GBBwYJ3RNFQjCCFbj4kGgKBo7vESCS7pXVcWbCq8OMJRlC+06cAVB0dtFcXjvMLFN7VZYYyhsgZPgiLZUeQoxQXXsLaij2+2ieLpOMAYEj6PCIjiBoiziwsKDq/AGpDAYKVAN5CC170FOTM2jYIxBq8ZPIIy1YqTAO4dTjzoNdnixFGJQ9WjlAKVlFBuJ3Zhgd1d1kaZL0KC7L6mwaSGhvlbR59qQ4DsQdyHY2CuJ5hFpFiZGXVhoBPULRjLJv77OIIGn6wJLFdXbPrNtJ7t8fv2V86jaqFUBX4EahxilNIKJ2qLKm7jYE1plEe6XBDtFWuBJWmBdhOFV0+IwDQqUScsQfTxQEHf9CP5S3+scF7Ox9k+ul0so55ukr8bkvWnD1GVJcTmpn0+av1Yk36/qXwlWk9xX6ldwoeOG/X85feg/f3+bKzHVXE9cUxu8hjrhn1vRvkCVSWhC5AXSpB6+V312+mFTXWUHJalA7EE17Rh0Wup3moNchSw95Di0/5nUXndWNPhVa7qYqHJO0mW0JAc1cFDb17bWSCYiyYnPUWJZ7HboOENZltE7HQprIvkFYh52bemcl45MCyFKmNOj17yEz6KwGCPnPX+CtXbIOPeiv4+h774m3tzWPXh9g9sSGkm+IfbGfCIDphRJdvZsm/ceg0ElaWcaTUZve5eH/Hz5gmPY9uuJS3mvE/KJ8lIdxXKsZSnycpGT/6Wo668VVpvc8/av9/Vf7/NfKdaUk12OfoJHlUqz8KtkR+2zl/aWPg8QOzgJGk0e4cGprFIfpD4aUgmTeJLwFI26Vd9HRomo8sk3eWTnSmSJkmcIHVZQQxUJhj7CFQlObEURJPJ2qyBYAOL+LYcxBZ2uY2lhiVYLxgy4UimdUBYWMChV1qb0fK99CLQ3dO58pNFqB22CVtD1waHRY1ArgEeMYiwUJl6fD0p177UOGdKMKLvq6/N677HnWXDk/U59NsbUffeZL8DFjsuvLxB7Uhfk/hlSS8/x6J7Ih2T71sphjGKwcRHncdFL/0LjeDWQrjuZiW4kXCgs6VKlrvPtfyOrWHOJvl8yXE2yWYkUv9pk19/+WiDXG/EZSlizBC+A8b0Tqw9xWj0OYELfZDFkUu3q4AQoVGFiFAkhcZgeVeeghCi1etfTTN4pHC19z6XBfgleTIijVyeB5BVUOkGT4BuyqwkytmmMoSx8XBhYut0ubcA7BxRURugsK1KEBYSzgoue+VL2Dkl+XT2SfEZo55PunetirUFsgRqh6yq6FVgb7OilCK1WifExtl904Jyp/TCOWsf5G2MxQ/iwvy8h1K8ZZ0jxxo1U3+yrA8fn9whAo2OFeh+0KlEboF56FiNaO0gGHbqIUtrQjsM3PgvSnONKidcMcw7Nvqfn7ko1Ba9H3MiTco5kAsgl+oR+Qr4ai5oLkfxaINsL4UrMFcMiHs53Drhxnq+1u/TXENpklPoPBlW5ZgV/eB34y22uMKgKHujOBaSx5FSV/13omH7JctgEnvZLf8vLy6RwqLIs8ZWDyiEKBUV9TSkuv9LgELaSPqwUKc+AMYFUrbUY2yxCrLXYotcRMo9BP18/com8/28Y+okvPzZvc9h19rcdlSfn/fPRc96L4CV4LziCaSgsArJFi5qea748E8jwvp5vPNaCin6E1ccwG+/VJOLrLblfLVxKP2fOzg4d17VqT78crFkJXlGq6FCUtiDJ1hv3UKXqkzxrK6rYKPECvjNAJOpLQui3B9cFUUzcP7cdJ9VyTtwgqE/q/JKiqGL7FlcF730ETHZsgSf5d9dxyyKUBHt5D7lXwTbvgcVO6HshFo9QliEMqyuKYEjcWYhBu2263uOMoi0oSqiWWhSFjUlyQj8Lq5GQTZO8RXtJ09EJ28QGJz8ATEjW4hWrQfo2GKyAtQXGavQyV0xcAKTxrHwI7fLq62WlSIGooYgpcTDBrNF1HpVg9lCRWqVrjEVFMBrOV1UVaPRwLzPtSTLTaLpHpnZwQ3tDL9UEzVDlHcnhUvGE1EQh1FJEcK4LacFJeI6cgnrDsgOjCuJoqcOrDZod7aI2xMWLc9G5UbESE/pIk+lOU7RFDIFTVbxNv/UuRIOfQ1FrCka4MbFSqfFCGBYHPzWxrkfSvJDUOYwQz6cZuFGwEkm+P2xxpbhRJPeENUvwSdWZI6lbe53EeqUazZynEqw0x6eMbukzqFt7288/6+5IE4InRuqsZEHNnuzBzb5NnHKWnIdEoLl39CDCeWLmtEgA3hgc0K2vLxCg0aDq9gKqFd4poop2LU4FrZbxviBkd3NYa2u7fq/qvP/TRoI0iDTk3y9FWmvrRUa9iKJ3v6Su7pesnYRoxKDKj2ru6A+gKebeQZP2N2yvNMb+F0XqROijKup9+NMQKDfwvGTfg7rf1mNemw76MtYFM0xYbIYnLo1dMw7BfOTpqsdrME841xsWWZsHZHC8w+ManqFaQ5E9l/lnfEp6+jnCjY1cDX++OPlERBdKlHMhG3Y/0V+IuC+WGOZGRv/Cqp/gL3extRaxdgn+Iugn4GGof5dBj+RmAh885nxe5nWMvSRv9mhnloawV+LhfCmTcj25Y0IMuk/XbsLiIvrep8x1wf8wqJNRU2fUQzzGCK1WK9rM+x3O+m3kWhP8hbobiDuNVXKC7HVUzMcyV12rZGRJdrwkMicmoIkni98DeZtm8aMpSVCwwKTFwbB+kG0bdi3Nwq93QSkS/ApyCT5ENTQOemkck6tI+D5orklE37OYpHecwkKgeQYu9FyOSP71gZWQ/IWwUjK+2vvdaOj3a+j/7fWENUvwggxI8GnyvZAE39hnm98uTLrJaerCEnxuS1apYsy7Rge5cB7nfEzupjFmewUS/BCuSfnmA3EmFTeIKsREK+lA8dF5T0BMojyD8wbFUIiGkDVjKIoQTmfMYD7zcGmNVCmk3PBCHT2QkV9znEWzZMA5wQ9zbiP7zZio5o+kWUWnOCMmeOCrEjK3pTsVvjv1SHR6DH1SVBpnzHpsZAih90nw3vn6/6CNMJiots/HqCzLARV9Q/A+LO6IuQF8GHNleBIaVVcvmtJneIR6/QZSopw8FsPTPBO59mWE64Orba+9XNXxCJeGnMivBqlfSONyPbF2newugvNJYSt1bBqu9ry4Y1w/8fc7yPU7zV0O+k0DaVvuxJcTb/+xqop34F3jGJdC+YY5BDbJZDT7XNk4DtvvYvemX5rvWQxIiGpYCepr9b6HkC/koHe+NlK/cge5vI3chyP9fiHnvvy4HidEm/IG0PfZ/KXFXfDC6PuT3j8x2vw/whXhRpFY1wJxjHBxrAVtwJqV4JUhiULEIXGiTJKaVpJN9BoE8ui85DV4kXspB0g3n5S9KOodRtO2RnXfxFunsCmPN0klHNSxTjs14aZCIp5B6d0nr/ZalW9Qn5F5uvYoiStNxTLytYKC2PiDFzSq7Y3YLOo+xIarOoyUFMYionjXrcVG5xxFUUTSsbVkmE6n0rt4sdZm4xdJznYzVb6gXvBS0SrLHiJXdTX5FkU41uJDERwXxssTswP6YJNO2pCUNdB7H5zLitgPaSr02ZQFLxvJDiHKoJRkFlBECsTEeyMCdKLErlRVF1WlIqb/NUKriCp2sRRlyCxgkECsvttoAnwYA0fjjGmLAmMbwq8XIbaI35MNvXHq7HlGKfucOwnaEgkamRRiqP3vyQ2O6xWKdCnnu94km9vjz5eS9UZZsKwGriRk7mqlAL7ezwisZYJXoduXgtNYg/ch8j0RsDqfTYzgSbnoPXVhDu8HJs+iTrwSHbOyRDeDfek91jmPd/F8PsXFE0kpqlIzcuxX9+afbkhinuHTdWaHJRU9keCUFj/JnN3qMDYHiGG5U4GEYjVlGRPzGIOYAolFX3Jp2g+1+faWtRURipIYSx4IHjVgm4pqxhharTbed+rjkqnDGovGKALvwUpKXNN4uqcFiKo2eeCltwaziDQq/XycCWaBSokFiEIa4t5Y+LSoC+l2IToORi1GYU29QLESsgQWsdKgc43pptPp1JoVExegw5xE+/t4vmesf9/83uf/h3G8YRVxQ7FWPZXXwoQNg5LhMI/3b2RyvxScz5nwSvLYryWsYYJXqm5vVRTjCdJWVGsCGHo9ifMJsEkEMuhgp9EzOqhCV6ZK73VIi58+EXLmZKcG7PDJvHciH0jTE34bol0OEmuy+ium/t5I/qnOu2R/460xnOvGGuyWquogElLJBu1ESSDnTn2uftt504fBHO1BkdKcsR4DetXfdQRC3rYUMbd7WJxoVoK3KAqCB38vIRtjoh260cCE35voiJ77BLW9XpRUiyeMvUrM0Z/0JeF6fOZHYExYZKjzGAulCaGJNl5zsLE36vSQO6lJ05sWRcPMNRd+Ni6OtN8o0U3AMC/zq932Wsc3uuR+KbiUxdCFwgaHEf9aeV7WMMFD1SfBi3pEmvAzgML2HudqUm+k5pww60m12w2lVw3YYtBZb7A/DVmHsqGNxO6zfZJKXcUPIbqVSfDIYF8ScSaVbLqm5NQGUGeuVwXvQp59sXgVOlVVmzU6XR896T0uqplbhevxcJf8e01Ywx3lQhhblODF0Kl8aCsMBN7B2Hirbq8mYRP6hgHvfE3k1oJYizFFTeq5bd1Ir6mlKAqkoJbyU4Ifr1EzgYRog5g6tyZdCVn46nsX+yVWMXHBUBSWVqtFGZ3qSgEIRYC60QzT7XaDwx1KaYv6+Qz9aK459WulEnyPB38yd4gZOOYbERerw341SH6tTNL9uNhCZiVhcN8I6M9pf7XauhrtXSusWYI3AtY0RKbSOLj5jBQrtT1k7iSV8MzISPuKzYjQ9WC9YsUypgZrWzhXRe9oU3tbd7XJH+812ot9bl/3aE+SmOgk5QPtqWrMwidZ3vlEKlCoDaFftWQJ6hoVdW4Tzx3u0JRExtSTvromykDUIGroKng1CBYjwX/BuS5VN2oCEl+0WxSlQaIauuzxeo/OZKbJs54cxIy0oH+RFSVhipjwpRCstOowtCTlLnvoaliIqBFEx0ObplkE2DJ5uwcTjTEFXhylKchJ3moyCXiMiZoA1wk1BLoVhQhiBZfdKxHBFI0UHKw2gtcqLIBQbOFot6DE9SSX8d7TkmhLdw61Nkj+kiRqwUpRF0PKvd6HS+ppvDPPeAlag9pnQBVrW0MXA69nKf5yq7XB2nB0ul4YEX2DYYl/rrS9G4Hk1yzBQ0hQ4xPxCZiY2S5XA4uGhCaJWnOlfr/Hez/qBUMKv8t+G1SdpsQ0DcleTIIa9ns45wUPq/dbSds9/VDtOS6XSvN9+/slEnPXmziKYrBRdd1jh9cQE98sNEBNr7o8SdQQVd3xr/IOk/lDiAhI0dOH1K1cLe9cB+eC2aMoQsW84dcxOF61RkKlSXrTN2ZWGrJPKK3BxsI+hY3+DNg6jC7fP/k79PoEhP6kRdmw8c7HNm0bdn/zY75RcbklWUcIGKntG1zNcbgRSH7NEnyQJFOyk6hOlUFyVe39qwvBSPY5ZPIPdciD1FNVFc45WtE7u2fyTRoEjTnJXbPAqCfhuqJdE08/TAVbJ8qpbQaxxGr4Wp9LGKxq10j9vdJbTuBGmpKzxEptnagNMMYgXkMWuCw+PKULyM0Iqspyt6qJtjD1TtRdzbQLqf1EgEXLUFVVqBYX2+iIifZz6nMb15sYJ2lp8jKyZdkmqf+rrqeqKozYnusGEFeFkYuJd1RDSlgA07JYkrd774LHSGPfT/fd+S4ta0A8hTGU1tIu2j0V7PL9k2TvnIux6zGMMWpx0nnT/U91FXql7sEiQPUv+SJr6Dvw+lfVX27d7cuR5G+UxcRIS3H9cT6SXyuL0rVL8EDLmprcPWCl8XxuhFaJpVwj8fo+clelGiL9iJiG9nVwkhyUen1MrEJMcNLIjFIvAppP9XZgAg7FyoKKPrQJKZlNfdGxwR5yJ3qcn0cCT/+76PAlBH8FFEpJC4s0QPVaoXF8Y5DgNVW7i4NvyO3Cwdkx1OAblOCV4ImuydadxltMvQCqHdQkmGNC7vqyXhCkvnWrJVplo463RUnX9WomRISy1dgJapONWQ7XqSDRy970FYhJ9vykVgeovKVVlMHBDg35/y9SRKi3AE4In1TTOF7mWfJSety8rz3PSbZ4qG3vsX3nmwVD/zHfCLhQKdUrRbLdr9WkJefD1chpP8LlYy2T/Jol+CTRJCIN89ygdAO96sucy8MkefEz5ZPzMAk+kXH6NH2NihmUrkM+chloaxA+XW52DUV9XfW1DZHq8utsrrd3v1qizyW/zK8hSfBGTL0QMMagtiHnwPEhm5oQrj8dl/ejJp3YVhHHpVJPYRJ5N+NrCRnfMNJTnCYnwLHxKWZnZ1EfpPmq8rV/QH6dhXQz6TqOgQmOfUZBq+hL4RpiTASf+p76VVJircEg4KsYpd471j3X20fIdXQBzQKk5/f+e5u10dM3M6jJaRZI33jk3o+VTKBXi/BWc2Fxpbhc7cYIawertRhYuwQvirE+FE6JkmfKQ45qndzDmnadytOrr8khSWWqih0y/xnVWqIMJO5qEs+lpk4nqH6FYK+1BZRRokwTa9EKcd/eg6uSs1/v5J++I2CLkNrUOYfD9Puo0WEQJqpnk69BTtj1kPksjSmRWIzg6nS8MfZdUtEcg5igDncFFIWlLCzt0tKtbcomMnxI/IJqSNlqo5NdXrgmOicKDmuF8VaW7AbBlgUd7+gS1NXt1hbm5k8zNdVmaXmG6Q17mT0HWzfAv/7/foJWMcX+p77CYnWQdmm469YPMcW38aZ3vZFtO2/j5MxxJlrChrHNjI0XnDi9gEGZW3iWbTvWc/pExVirzcaJzXTmPAsLS5jJxZ5xU23Vz0r9vJgmJa9zhk5V1RK4z8g8teOca7ZbG+6V91gBcY32oSl01CHqTQgVDxXJMtHVi7TaITBsj/qVAel+mFbnG2n2znkAACAASURBVBmXS+orPW6tSfgX0jzA2nOye/nYMQB+77d+tt72gQ9/DIBbd+68Ln1aLayUuFfr+Vm7BI+gKTNbUqNqUKOmJDYQ8pLXkneW/a5RuxITsfQiZDFLanIhlEQdzEWfHMZyDCvTmaT7/m3QTNgpYUs+IQ9znrKZDT6X4PN4cL9KE3oat6ZfUv9Za2L8PHXd9yT556p176vajl4TvLWoEQpT0G6VGGOYaM+C20S1VLJ+3TQHTv0bHviTP+LAK38A9jTLC+N0OuM8s/8Y7VZB1f0cC/P/ns9+YQ4pb+IDH/5uxsYmOXO8zZ989ddRtfyTn/5lbtlwD1QlW9bP4PwS2DOMbzJoMYfYDT33IDnH5QRPLOebTBaJhLNRIjp3hIWfMZjM+S+ljlWR+Jw197Iek/p+Djrd1QuIFd7ifm3AWsfrLTEPjKToleDlY8d6SB3g5LHwrvVvT4Sf//ZX/+o/XeUeXj4u5HB3PZ+NNUvwClS+lwx98mDPKonRZ4NPGeTCIiAdPziheGJpUpPUzhbBDezXbwvv/+yXns6nNs09w/OiOXk7w85Z/97328Bq4ioiEHcijFRNLs/FHm3wfQSfnOxEUr35TDcRVf5lUVAWZShbqxbxC+zcNM0Lp77Gf/lPn+XIsefQ1kk2bdzMwllYmFPe8x03s37K8NhDTzN7fAtHX5jFtZ6hmDpFe6Lgka8c4/Zbt7N332382I//ef7h3/kMt+66l0ImWD+1gRaW46fmmBi/iS4negh+mL0bhplDzj/ete/BkHvbfy9zgocwjrlGIGGYueX8Zp4bC85feUjfxeLgE0Y26bWBT33qJ4Zun97ZzBEnjzkO7H8u/hdI/cE/fJr733dP3cZaJvmL4XrY5NcswaPQdb3kWflBAk61v2uJzDTJROqc4NqvBA8hXCG7mWALBREKBtWeeSa3XkeqZtJutAj0HNvrG9BM9Ll067L963OmY2jm8xRPvZqq2ETKZVkikZxDPvioBREfU+BKLcEXkeB7i6kUFEVRaz9Ula4xGA0Z6goEnEdL+NznP8HXn/wi84sv8+qr5xibhJtvneDkQWFpUXnDW8d44munOHp4jr23vpUTMwfZtWUXM8sncHOLHH1ljntv3sfRY6/x+898hXd/yxv46Ee/g5079nD67FOMjbV4y5u/lQ998G/w7re9j3OdopbUk2f7AIl6g/MumIE0LP68drORChL84CKvv0BNcqKUmviNMVgsKlI79vXb3ntCCel9PoY5ldxoEvzl4HInxquV9GalGEnyDXKJ/eQx10PmOXISv+O+fTXJnzzmuP9999TEf//77uEffuJvMr3T1pL/9E67Zkh/JWFzeanaa/GMrArBi8hLwCwhLL1S1XeIyGbgPwJ7gJeA71fVmfO14VXpdKqeyS9p2vuJ02cTYErXmkvwRgcnP68aw9U8ogYrqSZ5L5IKtz+v+PlCmvpt7vnkmwglV2n7LH66bs/F9jKG9yvV114m0rlzgg/XEjUkXlAcZVlirVCU0YzgdYDgrS2yIjah7QoNYWMiVJ0uVVXxkR/fw77b2/ilFvu/sJ6b97bYvXEHX/rsfjaOvZHJKcMfPtbh5SMvsWVri88/9ijWreMd719i24abOPHacY6/DIvdTWy5b54d09vozm1mae4VfLfgyNNbMOUyRw49wPPPdXnlL7zKd3/oI1kFvV4HwXSvq06TGCndP1+ZZASP2pPG4c17F7VI6XmIhYf8cG1Mv4oemlr0+XnXGq7Gez0MF5K4b1SiXAse1AnXIw4+ETH0EviDf/g0d9y3r94vkfmDf/g0APe/7x6md96TSfP7mN5pmd55T73/9M576uMO7Af4CT7w4Y+97uz3VwOrKcF/h6qezP7/KeDzqvozIvJT8f+/fb6DFViSFmpAFIxXvO9E0mliioN9tLFt40L8dmnK4MTmHR11A+pwcckZzYI3VB2h3SqCmr/OXd/EL6soFWHiL6Xs6WutnkVxJtj3tTMowSsueKLXKt/ehUHt2FUMMRU4GzzZJeScN9prpw/agGSbb7zdcVntdWOC9O2l9qSvYjhdUbQxZUHRsrTaUER/hsppqNNuQpGaogg5BFL2vMp41ARnPikstixZ7pa0yxZIBwrL3PIiRbdDq5xkU2uSn//0/8ZXvvpFvumtb+L4C0/z4jNnoBA271nHV77+JKfOwByPsM1t5pu+eQev/sdpOqc2cdOOU0zvdCycGePAc6c4s7TI29+5kxMnnmZ+fpLTy6c5ujTH9M5l3v7uMexEh8kNG5id9zzxyJfw1Tm+/7t/hNnlZdrjcHbmNEU72uRFcDZK80YwhUU0xLZ772uNRrxZIalSMg2JIcbb4bzHBz9EPIIhLRBDWlxV6Loyu//R3u+FGEdZ/7mmykHji+LDcxkWBkmjNPi8rCKu6L2G3kJB0EuGq0GKV1uKv9ZagSvFtST3JLUnck+SNjQkfmD/c9xxXyDuQNABd9y3r0dNn6T3vI20OEgLhqbdn10TkvxKk99cq8XftVTRfy/w3vj93wJ/xAUmAu+VpaWlkPxECZ7wJpOMNWWfawqUBEe7GGtMcJwTK7gq6Zmb9m2S1+NkLSLMLiz1qJa991gxYdKutJ5ITWEGFgzNH3V7/fZ1WzSq+VqNPyQ/ubWDPgMaQ9g0RRJkc2Q6T27zrs/jU1+b7a1Wq06Nm/sfJq1CURRYjUReaLCV99mQk5khVVvLt01scBTaoXAGv+zYSImbmObM7Mv88F95D/PzRzh58gyeDbx6YBPeLLLz3mXconDzjk1sm5xmw+Q25mZnODM3wdu+Yyvjk55udwMnjqzj6UNP8I4338v8/AnOHl/Cnxtn253TuEo4dmielm/x5d9/ikMH5mhNzqGFZ+8tdzDz2mt89G99H7/0z36Hk2dPsnXTHmaXzgXtSCx1q6qobdTq6Z4453oWbPl9H5YtsNkn2ebTd8J97NvvSnEdJf5Leq8TrrV0ezWTwtxI5H4t8alP/USPOj0RcyLjtC1XsedE3X9sroZPv+f7JaSFwY1uo18NrBbBK/D7Ekq1/ZKqfhLYrqrH4u+vAtv7DxKRjwIfBdg0vTWoTdXHRHFCDGHuUX2L9KrEQzvBu96kkDDTW7I1qEhN7agmUWK3IoSyoYHcu91uJD1oW0tZFNisrGjsc6Z6jSZSAUrbYzpQ9bSqot4nCWr9Mfjh++CA9stoOdkmgnVoTxY4VcWk5DG2keCLougheFWlsEUPUY+V4aXqVj6YPbTJ4kbKty+mTmpjrQ1FX0RAJ9COYbJl8NJFimUeOfZFDh1+mG03zSDL62jbRR75feWd7x9n9z1tTs0u8upjc1gzhlSWP/7Sn7Bz53bOLL/MC095Jic20p5YQMxrvPP+m3nwj5/ibW/aw8EXXmLPjjfx+KOP02qVsLyZIy8dZ+v2cWZeNWzeOcnEJuXllw6xa8cuPv97v8tnf/szlK0xPvRd30PLhlegi8dEHw8vmeSe2c8HisVkpNpP8DX5V01FQ9/nNNq7sLt8gu43E60iLuu9jn2s3+3N09PXoq/nRf/i4koI+0ILh9VW0w875/UKiUuhb4GM9/Wo5WFQku+X1hPuf9899e9J0k+S//mQ7/eBDx9j04ap6zYOay117WoR/HtU9YiIbAP+QESeyX9UVY2TBH3bPwl8EmD3nXf2/J5PYr1zWb/N2+RaTpKjXH8xjgHHKkCKoLIWH9XTMSzPqqEA2lLEtjq9BBv7ZmLwXr+9vHbq0sbDup7YTUPSCcO8jGsPAQlUUKc9zb3VhR6C995TRAJLBJ8KvaQkNSlJjzW9UnpQJ0ssutLcg4Q6JA5bE3zq0zpTsIxybuEUf/rg53HlaX7tN3+B48dfYl3hOfz8HFPr1lFoweLycQ48f5Yjhz1v3PEOntr/HOMT63jX/e8JC7zyFaY3tjl9apFWW3jjm25nbv4sN+2YZsOGTYi8BKVj583bmJ07x9jkGLfveyNjY57CLrJ+S5vT80fAl8wuzrFnx3b+xf/995iZO8dnPvMZ/vUv/SKqMVeCiYmBbHO9+XOTnqVGcu91thxGsqmaXLLJJyK/2oR8jST4y3qv42/Nu33H7ddkNTIMwwh3NVXuV5Pk15rmIJHZr3/647Vk3m9jBy4otcO+HpU8MKC+z8l+mOo/HX/Hffv49Kf+MbC2nO+uJ1aF4FX1SPx8TUR+A3gncFxEdqrqMRHZCbx24VaasCODJCtkaL93t57taaJ1MSmJSCx+kibgKEL3x5GrKlXHIeIyJ7gCscG5Sn0o0+ppJvREckltngheBKqUFIVYKVyVMvwaOx1WIGleLrKEMf02SohV86KK3mQq+iY0TcCanopnzjmMDBK8NbbOHiex3q5RGvInEZDSapfYooUxFlXf08/gd1DWC4yUi/3U4lG2Tq3jn/yrn+Cxp7/I+PbTnD65xLnjXebnbmLpyGbmluG7PiJ84YFDzJ9dx4b2BA/sf5KuV9Qc5+FHnmfHju20yzHaEyfYsmOG9/53b+ahB04ye+o0rfHN7N//BPe+5U4OHHiJW+7YTscscO7kcTqnTrBxU5s5nePk8S7bdk2x46ZbOPXaDPum38wffPn3uWnPeg4+/UQdky1eQkpeacIx83sxNNuh9v0vvSlkc2m9p3xx3+LyRpHgr857/Y2HlRDz+RYBl0Lq18PWDvQ4xAG1mj2XvHNbe/49IfeWT/ukNgLx7xs4BwRSz1X/uXZghFUgeBGZBIyqzsbv7wc+Afwm8CPAz8TPz66grSAlqjLnu4yXsVRmsmOi4CsStXoRXHSyC/Z5grPScsoNl8hrUA0ethmssRjiOapuSFQigkpBVywF4I1QFlF16yqMCcNoBUz0E2gZwMQiKWpw6nFFU+q2Ua2njHqZdJzF7SdisTTbvPdNFTdLqJ9uPBMCrbFA+B0HUODV4RRs0ULF0HWKKcpgJsDFPhvato0UDqxhvGwzNhFStZamxKbUuWaMwlgKhBYh7K3jKlQtXgyLtmBJSja2N/CDP/Y2jr26n6WzXeY+L0xua/Hso/DWtxnau08w0drEqeWz6IKl7RfZe+8+Dh8+wl13voGvfvUh7rhtO9MbbgVRTp3tcuL4DE8+eQYz0WH7xAbUW1rlXg49fYKdW2+hO9th8/humDjHtu2bOHfuDDNHzrJucisnnu4wfscp3NIpvvTcl/im999L1RW2b7yHKSaYnZvl3OIcW7buZN4v4E2FIRabKQXXrXAa8+XH8sTee5ytgqbHgNMsqiK4O4axT572EusqoHgtQpSHKp6YzCkn/pR0qTbMZEWMkoCc+WhqVghotXA13+vXE1YjFe75sFYy0uW29mHol+D7Cbh/nwP7n6sJOd+ek3VS/eeagHRsIv+0KFjruJZpj1dDgt8O/EYkrAL496r6uyLyEPAZEflR4BDw/RdsRWCsVbC4vIziaRUmEG8msUP0ZK69jAedoM6HfpV9v4ozLBCEQK0CGNQLlQBYKg3hd6HG+mC8e3DICwRfa9+zsLdegu9V8arpzXQXnAYbSc2I4KP9vmwVQY0uymRZ0mqPhf1dqGjmcUE1bFLxl25IOhNNC6YMWoiyEExRMFZYWq0WE4VBxAaC16T2D6RvEYp4KdYGcifWwCtUKOmy/8nHmBgbY9uGO7llcpoNt88yRoeXXn6Kb/3Qdm7Zs4Pf/e2jdCq46942Dz/4BLfsmeKBB77Aju13gj1HVZ7hyAuGW27fycRUyelTh1m3sc3ZM2Mszi9y223buPmWdZw6fZyl0/OU5RJnz56luzjH1NQ6Jicn2bxlksVFGG9tZ+6cYefN65mZn2X9+vWc9a8xszjD1LopxtZN0kHRJYdthygDY0yIECgMUl0egfbb5M8nwQuXL4kHjc2q14O/Ou/1CJeEtULqOfpJOpFuktz790lEPSxE7o779vWo4IdJ5jmJJwk+7ZPvDxeOt19trDX7O6wCwavqQeDNQ7afAr5zpe2IKm1joAwOYa1Wi263STaSVJ5F2aZyivPQ9T6Tc7PJ8zz2ycY5riklmv4PxVICyakqlQcXw+0KKfACRj1lYfDWD7QV9beIaEgK46UubNLsF/La93vjVzSVzZL6vczs9KqKN0JhLOsmxmjHpDPjLaEs2mAsncoFe7KEWuxOBa9CpyN0sTFsywYVvLVMlCCF0BLLRKvFejMOQEkRHBU1SLQ1XIhMKIoQCGYQ2h6sGqrlgh/5oR/hdz73BRa7ysy5xzh3co7J3coH372dL/3OcZ59uMvkxB289Ts9Lz57mrvvfDsvHvkCu2/dihjLHW/aw4GDz3BueYmtu97BS4fmue2We5mf9VR2mZtv2ciGjVv46kMPsH7DOKcPQ1l6Op2SsruexZOe6elpJteVnDh5hFOvTYPbyYlnXqZiidtvn+S1+ef5nh/8Tt5w9xvpLBp+5u/9PFvWreeUm8dLWDQ6MVRGQRRvwBvFI3gEcRp9I1JBYsUJOAk5G5woFZJcEvHx+7CnMZF77rQ5bM+0EMjhfShRu5q4Wu91Qm6bXgsx46tRerWfnC9EAGuRyM+Hv/tzv1zbuoEe23pO7In4cwIHBhLV5Alt8n3yBUGjuu8l9ByNRiH8lsfir7Y9/nLJfbUTI63ZTHZGBPGO8bIAI6h61DYk51wg+bzWV3KyS9+HSUwJvZ74DTmnNowxlKUFH1SyzjsqH9znxDpsGZTmSoVI2WOXD42Z6PAX2ktJT3LJ3BhDYTPS1qChoDB1/1J7ZUGjCUCgCPncx1uWDeNtSlugLNFul2CEyhexKI2n6wpUTFgEdS3qQ6KasiwYG2thrQ0FaYxQYmjZglTRDorMySEzEyR1s+tGTYFSYCik4KS+wIPP/Fs2797GqeOzvOEdhhPHN1JOdHjx8Gm2bd7JsUOneOe7dvPgFw+yXHWZuuULTN+6ga27buLlQ8+zMNtFuiWVzNPxC9x19x08/fgLvPzCGbbfto1Th06w0D3Jn/3e9zJz9iiHJ2aYmZlh99YdHHtljptuuZWjr76A+inG2utRe4qpDRPsum83j/3Jszy1/yAbWuNI6xzPPTeDdxsxLccSXawUgdzxYMNiSqqUW16zHPPJaTLoy0WIv8dwRlHEFnGh5xEJiyLTFyanqiFwPnsu032u1f7JnyT6O+TPrfchT8GNAmvtUMe2a5kF7nznupDDXSLhPHHM+Sb2YYTdHyN9I5F6jhTn3i8t52Seq+OhIfwH//DpOmlNQq4BaKTyfZm6vVfC718wJKQFRr4IuFa2+PxeXg7ZX2hheSXvw5oleDGGVlFAjB3vuipWS+tVh3vXmyY2x4Uk+P40pb2SU9O+aJCNagIGVD0iKZK+SWeb1zHvIXgEkSarW8/CQpLWgOBKqBqS79CvYeiV3MQkp7jGk141eslbG3OgGJxWlHicWIxRvDfYwmALodUytFuGorAsu3BNRrPzDtS5SycnLqQUrcLYS3IAFJidE149Bs8/8xq7d93LM0+/xOYtU7hqjPm5Jdav89yxr8XDDz/KZHkft95Zsfc9i7zy7EZeePFFtk2vw3vH8mLF9q138vBDT/KWt9zJy4dP8Za33c3mm3bw/PPP8+rxV3jk0Xkwi4yNT7JzaoKF+Rk2bJng0cf/FPXKxPgiIo4t29axbj1Ukwvc8/a7OXX0NFPFOFVxFKGL0OE//Mdf40d+6KMYKRB8yLMPiANq2bv/LwxIutd1Dd7sr46AqJ+FQfNQ40LK4G/Zw50/O/V9Mk1RmxsF5yP3tYp8Aj/f95VkjEskf6OSO9BDxsNU4v3q+DyjXU7Kab/733dPn5f8cHV8+uyX5vNz5PH3OV4+duyaZbpbabKbleJK3o01S/AGz8b1QoWj60AqQ3ehi3eesiwhpkLtLi4g3iLqsdpmLOai9wrLXqgqpdWWOq99Q16N+r3bdcE73MeyoCY8LIvLHms9RjzjLSgkLDbUCK2Y7KYwRW1HN+IoxAcJzZZhgYHicBhRhDaKgyjNBQm9IfO6GE2WHMVIqGluxccqbMGJy9lQ59xQIaaisBZbTobB03RjPWIsai1GFU/w1sfYOpxOxeAUJloTlFiI+fnL2ILi6eoyhSlYWj6Dr8aYmJwKkQFeOLpwgkdf/K888NU/5o13vZvHv/YYryx9lg++71u4b98RxtYvYSY34lzF5EbH1jsNyydbnDg6wzvfvIedu5ZYN7GFhx8oObvwIrvvnmLTljE6Jy3bpreyuPAMe27dxtmzM7zhnTtY8IeZef4c66danDnlKN0Y1dIEpxdPc+b0EuI3sn6qxd7b3szc4qvs3nsfW+9a4I+/9CBL87cx9ycHectb38FTx48zfttObLEFLyWHjx5i581TeM4gsp5Jxjn02mtMbdnCZKvNks7ju13Gx6Zw3YrFxWXEOLxzoeyuKt65umIgRMk8LSDjXzD3uCYzXSw2Y0wJuOBs5x3gcbU3f5O1sDR9piCg0hJZZRX91Ua/BJyryK+FJH8pBWlWSsZXe7+1gNmFOX790x/nAx/+WO01n6eOzZETff/vSQ2fI18k5Db0fvQntUkk32vvb7b1S/cH9j93zRaQa80Ov2YJ3hqLrxxqw9Q1M3uOrk6C8bRwFNrFYJgqWjirdAvDUqfLYjcURBFjES+0yxZL3UUm2gUGpes8lfN4V9bJWwSLq8CIBxUqp4j3mJh2trSWoixAQ91vF7UGxhhsuwyhdFCraPtNp2kitnFSD/2LDmr0TtaqSteF2vRBcxBSyVpbxHjzUMPdSzBjtFolag3L6mgNuZ3GFLVkbeqY93JA66AYqq4yXk7guw410Fl2tMcWKXxYnBi7ld/8w89yy90b+X8/93GefvErbJjYSVlYXjr4Gk88/DSvHH6cLTdNsXPra7jxQ5xcgtv23MmpFw+x6AuWToxz7NCrzJzuMr1hnD/4zEE2r+/w0JcP821/bjeFL9g+to/f+fIf02I9W+7Yw/jYFAsLSxw/MsP09G5wr7F+/Th3vW2azdtaHHjxIFNMsPWOzSzNF6AdvO+wZ+M6zi1+npmH9mLOClNbDrD7jfcxe3qR7etu5uj+Gca3eu68azcyPs9/+cLP8ov/+afYPr6Hv/A9f5vv+tbvwwEnFs4yPjFOd7nD3NwcVVVReWgXZTDnqOKlCtEQruotSjQkHDN3qmzuQ3DoVE2yvGCyvAnpOSqGaJwKU6DuxiF4a0zPRJiT7bUm+ovhRiLjK0XSLPRXfjt5zPF7v/WzA8lrhiG3recJawZTyw560ucSf1og5OSfY5ikntvx89j6A/tDrH7CR37w46t2Xy9murnWWLMED4q4mKhFDG1bMDs7BwW0xsbZODnJRLvF8vwsTsFVnrZ1zLsQq97tdqiqQPbtwrBxskVpDAvLyyx2PHMLTTWxJDlL9C7XKG55lKpyiJRUHsS76AQnqPNYVapK0GiDx/gopjUOdflEbKKa3URfgpBMxkc1exPCV5qQE99JSnHam/lMCORuTMiB7qN6f9gcrzY6dkmM5zfBXND4B1hAKCnxUtGpOkyU43jnaI8JMMbyMpSFQdvH+aNHf4Wnf+Nh9t7f5u63beArv3eYHdO7WDpXMb1rJ+dmX6bbbfPl//YCu/e2uO++u3nk68+wpdzGzMklXnxqmTMzjqKEE0c90t3Ezdvv5MSthzl8cI6bd+3itx98gLOnlzg7M8f3fPu38vVHvs7yUpdWOclLB4/yoY/sZX7pDBUb2bhlK7x6gtJNgBi27pxg27ZtLC4u8uTXjlK4t3PL7Sd58QXHkWd34fYcZ9xOs7S0hDGCXZzi3DHHxmIbh546QjlRMrFzgeOnnuIrj6/nppvuZcuWFidmzjA2MU7llqnUU5YF2nUxpYEPEQoCKY8C9JqBep6DbFu6tyauBcQ05qZSbQ+5h2doiElJNHfQuGFwPlVmykSWfruYE97VXAj0O9vd6Or0S0FOgjDokZ7btId5quehc4mgU8KanOwT+u30/QuBHP3ny/txYD89Kv38HInw8/1nzs6u+j0d1v5KSf9q9k2uRYKMy8Hd99yl/+oXf57xVhuhoFqCM+UiyxpIdn0XxkzB+Nh6us7htYqJZQoq9cx2O5zpLLFUdZlotdi1oaBl4NzCEovO8vIZF3Ldq4bUraqo9Nq+AQoTkru0ygLjgxe/N5bCChZFUGz0hG+VwlgZ0tkWtrcMKMBYEYqMpIQytkjk26SbVdWgmlVDVTm63ZAytd1uY60EUipiMRQRisJQtGI+eFoD41iY4HQnKQ++MVhtkvSkxDiPPvo13vW2d6LOM2nHGVMBCroelu1pjp7dz9/7tW9j67pbOXzwHIunNuM7LQ6/PMfZmVfYunmMYnwamezwxIHXuGf7Hg4/f5K779nO4TMHeM83v4OTr8zgzm2jnKqY3Oh57KtP0bbbmTk9x9vf8VaOvHyCM6dnWF46xZ1vn2bHbRsYG7ccPfIS01s345c8+x8/yLLCXfvu4sjLp0DbnDg6y33ftJldu3bxxOPPcOq1DmfPLLCptYH77r6Vxx48zvi057a7N3Ly6GlaY5Mcf22Ot7z1Hp597gBzc+fYfds2Zs6dZdvWYAY4+eoi27fuYby1nSOHX+Xb3/vD/C8f+1tUxjI3P8+y97RdExNfVSEmXqrFOs1tVVV1OeO0X/g+qIY0tYrdhz/xiO8tKBQeJjdA+ogD5/kz93/Xw6r6jst/664N9t59l/7cr3xyYHuaAC82weVq/Twtab+6/0rRr9Z9PRP9sHrtua09YZiz2zBS7pfe+4vIDENeUS4Rct5+f+x9ntY298zvP2d/Dvz+Nn/wr/7kmq9E9+F3v/ey3u01K8GLCK2ixDjFqEe70B4LMeClbbPOCONSYPx6jO/gcGCEMb+IU6HdalMYYXbZgPEYXyG+i/EuJGppFXQ64JzH+1iWtq/eO4DYJqNenXbU+1BPHhCt6nSz3hR4m5Ld9DoDqipFSmAi4c+oetoB9gAAIABJREFUgG3yvyd43xTNSQgLgMwBLp5iwBu7D6nmuNGQN95oSLGa+pSOeehrf8q73vY2xu04Xe1gFgrmF7tMbRnnX/67f8Cse5IdO/byyJcPMlls4/QrMyyeq8DfyjvfspnCOio7wSMvPM5dt9/MTZs3MyEVB549wA/8wF/ka89+ni0T25k7u8wjjzxCawp2b/kWnnr6UaY2jbOoxzn16kk2btrA7Nwhbt13B4dnnubVx0tuvmkTrtvipYMvMTcLY8U088cNpw+eZWpyE3s23MqLLz7J4ZdfYt34Tm67+Y281DlGde4UTzz0MuPtKTqdOR577AXuf+sbOXHmNDtu2syzhx5n3/17efGlRWRdh5u37WBudhHj1rP3zluZn1/m6aeeoLvc4sSJExTG4CLZtlotzHIz3o1zZd99Z9CBc9h3G73yIWhXkFSDodfZMq0DeiI/wreBe3+jYa3ZsG+0qnHnw4UczPKMdAm56rtftd7vCNdP1rn6PSfj/jj3dJ7+1LN5jvpkb8+d83LizqvTpSQ3ucSe+gmNBiBX/6fjf++31kYlutXAmiV474MzkinGgBYyVtBSwfouVjyYMbwZo5AupUChBnXQxSJSMu4VU1SsKw0tnUSMx4un1e6gXWW9WUJbBQudkk4llFZwWZa59Nl1DvEep03ImtcKcWkfS6tSjAnFcKpIzOuUAVXtXHcp1FqP3tVWDBPYkCxHbKaCT975nlYr3iIREBN0Bmroegde8WrxGkO1TJNmN12Dsx7LBPNz54IDYTXJps0TrJ8Y4x/+4k+yWC2zbnKKZ4//Gv/T//Vpbt21l5kz8O3ffAfL/gyPv/h5OpWnWjT85i+9zOZ1U0y0LMaU7Lp9E8deOcHDX3sNY6A1Oc7E2BTzh19h/4tHef+H38IH/vw9/OIv/Cfe856befJPX2WyPc73/7XbkMlZdPkk937QsWmqxQN/8DiLjHPLrnH27d7A7GnDluIN3PJGy/4XnuTgoVf4lre/jaUzT+CLWQ4fXeSW2/by1FNPsf2WzUy7O6iqDqYynF18nlZ7nkOnFtm0cZpz868y91qHrVtu5eBLMxQTZ2lPLLJj+24++2sPM70Npu4ucE5o0+aVgzPY20rWbYFv+c47uH3zh/kfPvpR/vE//Rif+N9/gY7C4tICY2PrOTu7wPj6CpnzzJ2uaE1NUhRV8NfodugSJHffCT4jKb1tYRQxSmnSgg+Cl4ZrnDYJKZJDSETKgd8UvGm0PuBufH6/ZPQT/dX2XoZelf1KNQxrAYm4c+e4hA98+GMAPdv7PdyTtNsf6paT6fTOJpXssDzzuR09b6P/HM1CoVGx92oHmmMuFPaW/5ar/3OHv9yP4P733VPXkX+9VqJbsyr62/ft05/71L9gfdtSekGqmvZo2UkKP0araGHF0/XdoBL1XbzrYNRgKKikQ2UrCu/RFnSk4vRyh2WnnJ5d5tyyslQJroLChASjg+Fyydu9IU7J7KAQaqenrHKx0iylNGVngyq9oGU7IQIgwhhDq84R3xQxKYpyMPtZWfb0SxmsB29tu/aOTxoBlYJ2u2R+rmJsrM3C8lE+/8VfZWLDLE8f+B0Mk8wtOF5+6SA//pd+lX/w9/8p3/L+aZ579b8xNTXO1q1befDzh+ichXWboDvbxi2tY6wYZ/2mgjOnPNWS58ALr/D+D30zx88d5aWvz7J37x08+cxD7LvnZmYX5nn1lTa3796Bn9zP29/7Bh569An22PsZmxhnYXGWl489i3Q24YszbL9FeP7ZBQq7jh07tzA5McXCwgJHDx/nrtvuprXjSR764jjv+9BubHGWJx5y7LzdsmH9Jg4ceJHx8Um8U9Q4Nm6a5NXDzzN7aBtnXivZfc8GOv4EFct0KseeHTfhfcWxI7OcPbPIhk2w7023cWpGOfTKC7z57duZmTnHQtXh3jfcxv6Hz/K9f/aHOHn8HLfefi/t8e285zu+FeMU3y1Y9gvgHeor1FV0YplhrRyoD2WKTUPwbRsyHdaEbYIK3/uY4cFLrEIXNC5VzI2fR4QYC1VV8e67331DqOhv37dX/59f/f/Ze+8wydKrzPP3XRM+MiK9z6w0ZbJMl+mq9i3bUstCC8QAQkirAQE7sDswaJjhmUHMwD7M0CDcamCG1jJokZBYWEZC3raq1a2u7q7qslk+Kyu9C+8jrvn2j4ibefNmZBupTbVmz/PcJyK/uOa7kRHxfuec97znEy/5eV/qEL3Xnq8+/lYwp6ubG7wTSxa/8pHf5eN/+FtNc9nNVOTc5g15b6c8Bxug7a2Pd8wrV7udCp47hO728rebf7N5u4/zNqtpdg0nXO+2WyV0/0MXopeNuuq6Z0o9X20JNKnhk3rDo5XYwkYKG1uxsESd/Y10QtgKQlGQQmJgUTEtyoaBiU7FlBhmXerWaeOJurXmGLaGwb18JrshdGLZ9nqDdSlt7HUhlAa73imTdohVjR9zRZEoLnlas9F7vL4pjbGNxjSwuSGKs1lSosp6NMFh59u2QKg1VC1EIBhkNTfHN779Ge66d5xkchGzAsk12Dl8N//x33+MufmbdI5PE+vqp6OjjVw2h0+EUVSNkJ5HibVhh0JkkyVSqxVS6RyqDLJzbJB0ag1bzzKwv5WcdZ34CCzX5ukc0BlrU4h1XOGON8TJZSGbslioTaFpcQaG+rGsKnNTa7R0wOBoJ109GtWKgVTKzM8t49MClPNpFL/F4myW3q4xrl27BlqGXLGD8dAwhmHQ0tJCLBZjeXmZaDhIqZyhZ6CD1culhlxtEcO2qNaqCFVy8uYkfX1tCDtKrVRAbQ3w9NPPMr7jDoa7dnFz6hL9Q52ERBszNybZtXucf/ryn5JOZoi3j9LdfZh733A3pqFhGwLV1yhZsOvVC5as59JtVTbaEUt0VUVRJaoCemPcZiMNY9smlk1dXEcRWJZE2o2Ws+ud7hTXZ9Jumtf//+2lte1K624lz/7Tjzy8BVw7elU+/oe/1RCg2Zr/dteYu62ZYMxzMd83H7cxvplYN7HpHF6P3EuKc1szoHd3nXPPuf586z05kQp3GN99rk8/8vCmxcBr3au/ZQFeE4KoT0UV9fptqet18prU0YWgShFDk9iWhqFUsISNKaqUpIkiFTTTj2UbmNLGtC1UTaWqWOQqNQzLpGzaGFLFtCVCSqQ0sZ06dxfDeaPkaUPYZCOH3QBRUW+tipSs/86qG2QoGmFZo2qjWd4Qq7rJgwdAkevMekVxIgr2eg6+zp5vXEatH6sIBbBQRB1ghFo/PuTvoGbPIi2dZHaNP/3EP8cfXSOV9JNbClArWRzadxtPfPcEnT0RXv/WcYzAPJIlaoUV5qYMhnt2s1QuIQs7QUuye9cA505fRRpxzFqWWKSLzFoRLVCi5s9w37vbKBhpUsn6Ouy2o3HWlhRGB97CX378n9g9WuGNd02Qz4aYmkxy4qnT+EQbWmCBAwcPcvHcNSYO7KK1Q3Lhyll6ujvIJXP09IaoGMtYyX5K5TlSCYtoayfRlgpPH7/M+Pgo5WqVoFohl0hRmm9hx8QubkxfoFAoEPe3oNiwOJ2lUqmwY7yfzq5WfAGFaExlbjFHMNxFhyY5c/wM/X09RDo7SM9FmL42z4MPHeS7Tz7DxN4xqmaefDLHr/ziT6MRwtJr+P0qdYZHXU8AW6l3q7MtFHQ01UJRQddEnW2PRBEWCjZC9a9zQaRUQPgQpo1l2Zhmo7mNKcClmuiQ9izLwLZfOzF61btCfgksXyq86nK3L0bV7uWwRx75SFNwd0DNmy/3tnEFtvy9HaHOu1B48F2/zu/86s9z5wMTmzxjd4h/c3e47UP3Xo/cnQbwgvxzheybldd5ow7u6IG7cx3Uy+le63brAryq4FcVDGxUCbZVRdNCCLNeWqYKC9s0Sal5bLteN2/UIGMWUYWGbZrUCmDbYAWLtMoAmtCoGpA3baqGQMr6j6zQBLbQcZrI1RXmGmDuESqpP1/XJqs/SrUuUGKxrranKAqWYa+Hy6VVV5+zZP0DWe/DbtdbtNgW2O4FwUaDmfWfQpd0rSYEPuqLEUWoaGqdxR+JxKhU06CY6H4/4VAcxZ8jro6ztjzJtamv09liY/kGuXxxkYndh/nSZ05z5amrCFXiG4/yD393hnseGKaUyxEKxugNhlmcnWNhucQb3m5QruXIizx6Z4zpq2V27B+lnCsjzRqq1kJnXCG9kqdWjfDGu+7l1MlzzD4ZYHlpkWL3U4zGx5m9kOD8iYsMj/gZ3z1Gb7/gseM3uPeevVw4f4WVmSq9IZ1z35ri7jvvY3UtSXLBRKp+Zq8n0cstmEqaiduHaO9sY2ExAYUyZ747hy2LtMQKhII9lMo1vvnlk4wfbCccqlHMZigago6OELFYD7asMDO3zPBwL2tlwbG7DmPIPAvns/hDrWSKQfKGTtlM0t/TTmZmgJiVwU7EOdAzwYKS4dih2ymXawRDPiqVIopfRZo2mqJi2fVoCgpoqopPN1EUga7Z+LQACIlVq6IIiWHV0HWNWq2Gv/H/lNQ9f6ka2KaJKQx02ehcqKvrTYmE1KhUXjsA//3a82m5v5IA/2K065vN+6UGfSc0Dxvg5+TLHfPWsTcLjzvWTAq2GWA61/vaFz+2Tohz9nUIbc51nde87HZ3i1j3tdwAvkGo28wFeK6FgfsevNdqtr83zXArRGR+ULtlAV5KiYGNZdc1wIUNpm1hy7oKnSUtLFnPsxqGiW3rSCnqnc+oa78b2HVHyoKaYWMJG8uU2JaCl3tQ/1ts+ruZxO3Gvs8/fy9TvdmxUtpbruNNDTgem5dA5+zrvJbNpmnviGBLA9sSFPIVqmkTVT3DN771X6lWk6wuCM58b45oK+jiOkeP7mJpLodEMjuziM8PVhVmr4TwBbPs3dvL6RM3GdrRTiZtEI51oio+xnf0ophJJnaOU6icZWklgQ+FaGQXmdQimXSBf/z7rxPQIhQLOcKhANevrpBLVKmUJDvHxjHsNVZX0sTjbbzudftYXl4m4FPo7etgcWmGilFgbn6ZxZVldoyOsLCyTFdvK4mZMn0DAwR9YWanlyjkDTRd0NoaY3E5RSjUTqwlzFqxSHtbC8KyqRRL2FUf0XicSDQASA4cOIgvqJBIpOgf3MG5s5dobW9DEQGSqRUOHR6nb3AH6dwaPV1BbEtH1eHq9cu0xoo8c/oSf/2pz/BL//I3qdZq+PBjCxuhCWqVKtK2URUdBFiWhYmNooK0JbZtIC0b26yhINB8/gb3QoC0MA0Dv+LHVgR+oaKq9fJI25SNyggboTQ+sZarB8L/RNaMAPdasZeyvt7NhN/wmHdtIr+5gc1djtas5au7Natzru1y6u6x7Tq7eUVpnP22y+m7j/fOb7tFhvd1N9O/WSc79wLCfW/u8r5XUt725bJbFuAtaZOpVRGqgoqCX1HwqaCpNkKYlBose8Oob6Zpg1TQRbDeNc0wKJgmtlAQ5Xr5mq5IqqaKaW5UM7lD4w72bm7wsTEnt27985kbnJ0yu3UHXdZz9u58vgPeUBexcZ8D6qp3zj6KojTOtyGcoigK7R0tVKtVpBQEA0EsCzpb+/jE33yUU2f+htZoN4n5MLXVBD5/N4WVPEuZK5RyEGyxuOvoBKV8heqCn1hLlrbOCEurk0wc8XP7XT3UbEklH+TsmWtE/DnisSCPf+M43b09mOZ+Tpy9wNt+PExivsD46G4mz0wR7e6lIxrHtjPEO3dwfmEavxbg6cevs3N3N6GQj+uLiwwM9oJh0N/XTSpRwTJMhsZ20NG5i6xZxVIl4/sGKJWzRFp6qVXynD5zlYGeYarpHHoQuju7ERjoqp/lhQTtsVZmF5fp7OglHtaYWU7Qs2OAVCLJ6uoKVy8nOHzkNjShkEzN094Rw7b8mLLEHfcc5Nq1s8zOTzM0sI/vTk1y//13M75vDMQIAXWYz39zEhVIWFAwKoRDPox8Gdu08PsDDXU5GykVLNPANiTCkmCBbVeRloltGXXinWYTiwo0XUXXJX5dQzPr/2PfOotepSRNarUahmmiqHXCZrVSX7i+luyFAtx2wN1M/e7VsFe7lM5dv+4FXm94PLFkree43Z3emgFcs+fevu5bvX7n8eqW42CrZ+0uY/N2k/NGELwa9N6Su637NPfk3fs5+zhzdJfQ/eZHv7TdW/6aslt22S8lWLbAlkp9o9HVDZOKKJGrlkmXK2RrkjI6RVsnU4V8VZCvQcVWsEW9lakp/JQsScGWoCloutroFqevb47oS10OVt3kGTub85p3az5/uUXgxDLBtpyQvorSyKe6z69p2pZruz16x9yNbZxrlUoFAoEQ8XgcSZXWdpXF1Bc5/cwZrp+zSC2rlMszPPCj+wm3WYzs2Et2IUyHfpg94/fx+BOXWE6s8ez5y9x3z+2s3Wzj/PdC7D/Sx9JyjuNfvUh6eZWBzn5SyzWSy9DWuo8bC5eJDVznAx/ex42r0/T39nHq6SvcdedRLKPE9SvnWFlMcuqpy/T0RklnVunpbqFWUllbzlMuSMyqyvJMEaOgYdYMFE0hXy6ylLzC2995P929LRRSKcyiQTK5RiKRQtUV8tU0/lYbLexjbnUBW7dZSa+ykFhkemGZaLybmzeWSBVzHLjjICNju1hdy9I/MM57fuz9VEtBygWdSlmAUkAPJTh23y6S6ST/8lf/NUIqvOVNdzI2GubEd5/iXQ98gORCjeX5BfxAFbBsg3A4TK1qEwhFCYaiVA0byxaouoLmU/GFQmh6veTTEgpSqCiaH58/iNB9WLZNOl8gkyuRzVYxLR3FHwDdh6770XU/QX9ofaEHKtLWkbaOqta314pZ9vPL6uZLhdeUV/5iFxkvZfjXXQ9+5wMTm0Dbyb07XdacTm+Od+xmlXtlXt2d4ZxzuMHdybE7j95wuddTd8a9Hr5XpKZZa1jvWLN93AuVZikH9/hH/6RexfEzH/6NdZB3ygd/mOyW9eCh3mMcNkRdFAGqkPXwvG1imBYVtDq72JbYlsC0qw1AVJBWvZjMVhrheuqsexUF6QLPDU9ZuDz3rf25mwGte9xtXm/f3fFuU8hd2citr5e2ufZxX9sN+KqyIZDjjPt8OrZtUyqViMY0Tp1+jE9+6ne5OX+KI0dHCIdCdLXvZ25hGemHCxfO0NPZx+L0DRbzRWwF3vSO21lcyfDNrzzJ4oKBZancmMowfTNNTyBKMVnDkinKtTRDbT1MXnuat7xzkFJljccfnaSjdYjZqVWEDaeeOkc00sbw0Bg3p5YJqF1kkgXuPHqU7x4/w20HhwkG/VQqFawa9HfvxKwphEOttHe3kk6nOXRwhEcf/QqVUpW2SBdm2cYsW6wsZRkaibP30C50n2R2bo5sNUl7ZwsTt+9GEX5W5woEfdF6M5n5ebLGTbRsjV37OxkdGeJbj/0jOwa76OpTQG1HKlUMs0IyN8vKWpqvfvk4nW3dXLp8koWlC/z4e36T4b79/LMf+yD/x+/9FgJYWlqgv7efm2sJujo7KJTLYFgojcWflNVGW2C13jTJpjEmUVQVTShYZg2hNXgaQmCZEsMUlBQLIUEXCpqioipaXbrYVkCK+mIRBSHMl+ord0tYM2B/tQl0z2XO3F5Jb95pAuOt696as97Iw29uzlK3ZmFwx7yla252u5tV7wZbt7qc29x5bndovJlanmNeMp4bxL0hf4e5725L67Dl3eZc79OPPMzYvl187YsfY2ryKh/9k08w1Nu7Thb88IebviWvObt1AV7UGeaaXWeKq6qC7lPqZDZTwUIHRUE1qtRqElOCaTfqiE2wbQNNVVEQlM16s5R6dzZAB73RslNKG5D1Mjx7c7/2eh93+znz8QCKuvmY+vQ3VpP1DuAKKGY9aarI9UfFBdTrqmabau4biwFVRW0Q8/z6hqe/3oBGCDRFp2qatHd0c3PmLH/5V/+afOIaB3fuolxa5vppg323tbBwMkE0cIiuoRGuZZ9hx739+CIlBid28dWnj/PB97+H1p0FrlyZQg8a7J3oZF+xj5UzFZ44nubosYN0DYY49dQl3nDPBOe+e5NKGWqVMNVEgdAOiaIFWFs2yGs5MAtY0kfNStI+2EWBAu0jPi5MXibk6yCVzLNn/AA3r8wQDocw7TyyoKBoFqeefIpqXoIdIp8DVQ1gWkUeeM8BfJEaYX+N4oqkb8hPZ08fS4trLK1cZcfIIPnIAolyho7AEEG9k3y2SEmtsryQYmH+GwwN95JaMxkea+fchafpbN2NZUPZrPLAg2/h7DNT7OgdBruCEozx2c9+gvxKgUw+w7/7d79Lxagy1NtPxTJo9VfQjVWe+NY3+OTf/Dfe9NZDDPYe4D1v/UmyORvbF0QL51haWqUt2kmxkCMeDlHIFmiLd5DLp+r/d0Wgaxq5fBVEXSBJVwS6phANh7AUH/hUFIxGMxqJYYhGXv61YaqivGAP9lYGdsccrfwXAu4vlef+2U//h00d2tzEOnfHNXdO+qlvXmp4rpuFb9zKbl4BG69WvDvs7TX3AsDbAW7z/tvn2GGr9+2Ezp0UgwPy3nt1xpqR79zvR7NGNU4FAGx4916bXVri0488vF4r/1rIz9+yQjdje3bLP3jkv6CpAk3Uc9ABXUFtlIqlSgY1w0LXFGyhUbMluWKFfNmoE5oMG0XxbQ/OyuYGLvU/NsRm3KVI4Gkao2yIzEBdaMS7j2Obw/z2JjB3PDvHe3ef3wvwCIGuqQghCQV8+HwBgE0pBZ/mxx/xsbqWpqvNz5/9nx9mev5znH5MRxitBHx+7n77Esf/IYoh0/SOtDO8V6Gl1SadTRLrDGGaBiElQC1/kNNnn+Du1w0xc3OVfEZQSca47x1R1hIZnv6mRFYCrC3Ms3ffHgYH+7kweZahoQGG71wlORvh2pkKQX8Iw8gjtRJ33X2Mbx3/GoeOHCYYjtIS1njy0YtEQ+1cvzzNPXe+g/PnJ3nnO97NV7/+OYqlDNF2P4WcRbFQQ1F8KApMTLSSqt1kbH8v6XSa61eStPl7CIdaWF3JEAwGSaeTBMPQ3dNGpVKls1vS3uXn+BcSBANx2jsDLC7N0d95J6pe4/rUJOFQHEsWaelTCOoR4i0dPHX8ImODE5StLN1dnahakA986JdYSlZ573t/nM72CDdXU3zqk4/whc9/nngwSyY3hynzHD50mEjXCFgRHv5Pj7CYWaQ3voPVXIZyqYCiCDTFRjTU7lQh0RS1LolrGziiSqqo18qHg0FQG1oMlkRr/N8z5SKFQoH9vQdfE0I322nRu82bo78VyuC2s+cC9peLie3k3puVocHWkLXXmpWrucP1jnk94mYetHOsNy/v1Yb3Lhq2y6N75+LNpTcT13HP27u48S423PP17tsMvB1gd5/LfZ+vRK389yt0c8vm4OudyEW9PSt1oDWs+pjj1WhqvaWmKkAX4F+vCa/3PDcB0wXa7q3pFT2CNm6g94bpvY9eawb23uO2KuRtHnPn/5vxANycAVVVKVeqzM/P09HWTq1iENKj6EonozsHqBklhF4msWqy50g3E3cEGNoVBcXEFzJARIhFu7BqGgER51tfeRphBkgsp8inKhSzJfbdnaaj7U4Syy3s2GOx84BGX+8IuVyObC5BT1+UlbXrnDu9QDZdo1gsUq5l6RnU6eyLsJS4SawtiJQWk+fPsra2hj8YwBfw09ffzbe/e5xkNscXvvxtpIgRjQ2xlknij/g5es8R1IDEHxWcOjPJjoFdFLMSs+bnjruOMj62k97eXqrVKuPj44yMjBHXRlmb1skud5DJRPD5BrCwCIQDLK8m6BsYplDMMDIyRku0k1gsRrFYwqeEqVaKqGqNQFDl4qVpov52bs5cZTUzSyCqoftCqKLIzcVpkqkZjh09QLWaI7WqUsqFCKgDnD21wImnvsoT3/syheIin/uHv2MpvVRvjGRDIBDEtm2q1TKaVueEaJqKpiv4fBq6rqLraiOCVV/c+RUNv6Lh03V8qvNcxadv/2N+q5ll28+bX/9hKFF6Je6hWSj8hYC7Y+5cvJODdtfMT01e3ZSbd7xod67cOxcv+LvL55xzuYHaDZZuXoATofCK0biPd+bkvlYzAZ7t2PfeRUOzxZp3zLkfh38Am8sUbyW7ZT340d275O/95V/g05R6rTqNrm4KhHSoWVAzbaRlYEoFC0HNglLVxrIkhbJJzVKwbAUhjK0XaOLBOyF6L7A/H7g38+Dd5LsNQpy5TuZzPHnHC3N78I7E7SZmvaqiqQqKwiYPfhPZztbwh+uiPOdOnOCXf+Ft9I/upH/3dZZmJTuG27lypsqbHmrl+o05MH0Y1QiLSylmr8Bb37WHqRvXqWUErS27SOQm+bl/cQ9//Pvf4777RlCN21izPs/+w51cPFkktVxi6WqUQ7fvwLAyBEKCdCpLYi1IrWai+ooEwjW6+iSxtjEuXrzGoX0HWJjJINCpZnRqho7qFwzvjtE2NEVH+wBnTs6wb99eMrllQoFhFhdW8PkCxOIhKtU8mWSJyVNXifi7qNagq7+fUnmaru44ll1ZrzLo6lEIBFu4fDmHVHMo/jKt/nGqJR/pzCqXLs3znje9mZnpFLYRoWKsUi5XWV6Zpa+/naWlNe67+w1cPD9PIbvEvQ8eJVvO85Y3/wh/+gefxFZmGduzE8Xn46fe+35qFYPPfO4R+gZiLMyvUiit0dvRRzlrUc1IRvcf4K7XvYuf+OmfxU+MZDaHbVYQwkAoJj5VQ2CjING0+sJUUQXCthDY+DUdv17/vwsamgsSaqpBoVBgMLr7NeHBj+7aKX/vz//kRQHgdv3jX217Nbz3fKnAr33oJ7fks5sx290lcV4Pt5nwjDsv7uwLbBl3zO3hNwt9O8e+GGvmWW93Dq9IjzPmrrN3m3v+7vfEeQ+cHLxzb7Dh1Tsqgc3O7yyQXq6w/Q+dBy9lvR+7lHWv3bKpN3P8HHIXAAAgAElEQVQxTQzDQEgbTYFI0Ec8GiIS8oNtEVFtgopFUNhowkbF3ALW23ndmqZt2Zod6/aeNU3bxMZ3tmZse/frfr8fn8+37fHezdm/7uVp6968OwLgC4SoVMpoAl537/2cPXmWN79zD22dAl3VuTmfZM9tPXzxH+foj72N5dkag507Gek4yl2Hezl95jKDw23oEVhcLGGYChcuzBIKhEB2I5VJnv02fOcfNHxGF30th2jv6EYofnI5k4W5CqPD93PPHa/nR979RgaG2lEIs6PvbVhCcOjwQebmU/i1DsoFncSNImbN5L3ve4iZ3LPcnBEsLvooFDtZWBLEWidYSS+AzwBflXxtlYpM0HtbnkP3dXPb/p3cdegwF09e4PAd92EIQaw7hBKuUSZNUY9R0C2GD7Vw5I3jjBzopH9fiXD/Ep0787zrfeMkspOsJq9TLOZZXVukp7ufrng3Lb5Betp2M3VtlkzxBvuO9XPi9FMUC1X+4uN/zKGJGPFoN9FgnIvnLvOnf/AX/O1//3/xGzrnnrhEdTUA2RiKHeXZpxdojUQwygm+8PlP8W/+3a/wRx9/GNM00bUw2P7GZ0SgqvWwvKZpIOocDVVrkClVqNomNWkBCoqio6g6Qkq0/wnr4F9Ja41Fm25ei4Yi69vLZdFQhE/83Ze21Ka7AcsNXO5SMGieP3fGHZD3EtTcNe3OOWEDVLerdf+ZD//GpvHnUp5zzPHanTr97XrBO9d3e/jOmPdevWF6r/yu443/zq/+/KZ7cwh5TojeHf3wnvfTjzzMI4985Jby5r/vXwUhxF8JIVaFEBdcY21CiG8IIa41Hlsb40II8WdCiOtCiHNCiCPPd35pC4olSbEiMaqgWTo106JoCjKmj5IIUlNDGLase/MWVKWgjIqtBxAhP5ZiYqsmmmKiaVAvspNYAkybuq8kVISqg6LVZeRVBVQFqQhMaaNpOqqqrT+qqoaisr4JpSE32thUxUZVbDRVomusb5pab3XrbG5lPG/UwCH+CZdcbZ1gV+9eZ0kVy9YoVQx8QR9oVaRWwJYair9EyUyQNSr82u//JtdXv8D85RZWLnRTXQMwOXRfJyfOf5VodJipm1eZT57EkAp97a0szpS588F+HvrFFD/xoUHmZhLs3t1NpZykdbCVnj4F1aqxeqlKfi5Lan6BxRtrpBZVVudNuntsTl74NhfOXSK/6ieg9XP1+hqar8bJx8+Tmy1y6cJpkEXUjhp9uwY4deY0ASMK6V6unVoEc57du/zEIlXG+2LMXlvDH1AZmdCo5FrIPx5g8ulVzi3dIBfI4YuV0DvOMrpfMn3zKhoR2lr6WVk6R8QvuXH5Msn5MjfOZ1mdrWHn+sjOdXLjbB57WBDbFyDaHadUacEXixCKduHT2pCGRTCep6Vbp1ysMNQ6wszZZYykxuSZecZv209NUxmf2Mni3DSLM1NMn1/BTPlZnJohlS5QzOrsnthJy1AbaqhGKb/AzSenqCwXGWqPU5HzFMwkugDbsrBtQNHrjHshsW0TGwVbUalKBcsEy4SqbVGhSoUaZaD6EgXiXu7vtdvcpXAvpizuh6GF6w9qTg7eGy53s9jdUrHO3w5AO4DcrJzMzcB3Hp3n7rC0GyTdZXhucwR4nNC+15qNua/RbF93WZ330Xst9yLFWbi4782xZtUA7vFm5XvNdAReyALmlbTvO0QvhHgdUAD+bynl/sbYw0BKSvmfhRD/FmiVUv4bIcQ7gP8NeAdwJ/CnUso7n+v8Q+O75K9+7I/rbUgVhZCqo+o2lmVhWda6FxvQFSxUaragVDOhZoAisGxJ1ah7OroqEapO1TAxLFcXLk+NuWVZm0LeAKqnqQs0gN0VpleVDSJeM1a8uxzPm3d3jnPup37s5hy8+3VVVfH7/SRS0wz0j1IpaUTCccrlEmpAJVc4z9zsBf76rz+KPzzH8nSUGxfyKIafw3d0k0hVQa/gD6hEIwrRiI6QFs98Cwhlee8H9nLimbOQHyOTzuNTQrS1BalVc2SzFvk0VMsga5DOrOFvCRDvNOjp6SGXlywlZ9izd4i2UAeFbIV0NkPJLjE8MERY7eH65A1C4QD5YoW2boWaL8HeA+Ok1hZZuqIRjuhogSKmYrK4sEqLGicQ3EPRyNA5kCeiDkCln5Q4wYF7Qii2TX6xgh3rJZNJI60sipoi2hKgYsPo6C7mbqaItXTT0d7F5PnztLd2MD8zz9pygsGeQbriQ3z+Uyfoau2nWMpRtiVB0YOqCgIxi6nZZeItgq7OdqIRhWtXr9PfrxNo6aVcyzM41kO1UiaxssbydJDujih6ECJdJqOjh3jqxElGx7uIxGyy6Ro/+rZ/xf33v5vB3l7m09cJR9rANNcrNtY/b9TWPwfOGFZjUanUu9AJITCkQbVUZiy25wcO0b/c32uA4bFR+W8f/r31v18oYL9SofkXu4Bw2tS+Ejl3pzwOXlgnNdjszT8XAG3n2TcTqHET6LxEvGah9e1C5V4AdvZ9sWF9r7nP4fW63ffVTN7W/XezjnTu+Xrn+nKF6b/fEP0PlIMXQuwAvuj6IbgCvEFKuSSE6AW+I6XcLYT4b43nn/Hut925B8d3yn/x8B9hCQVVCAJCQ1XsdeEYR5zGtOsNXmwBEoHSYL0roh7uBFAwUTTfOsA3y7M7ojReoRshrU2gXJ+/3ATSitgsJ+t6f7aQ5pq8h65yN/V5AV7TNPx+P4oC5XKV8b5eTk59nkTmEsef+iiFlTEyy4LMaoL+Ph+L1yXlis2eQ1GuXZ2hnNUpF2xi8RC+gIZZC1AuGfh9Ffbfr6P5NRavlpi+UqBUMrBrPloj7STWUlTLVe697w1881uPceTY7ag+m0SxiqrOMD46xMkz03QPD5BYXiK/bPFHv/dx/tVHfo2xiSH6erp49Nvf4957byObybAws0r/0E4s/yzBkEp+rUYtr1OrlRnd1cf0zUU6u/oxqjXUQJzx8RGeeebraJaP5fIKP/2h2zn+nVNYJT8it5cjD1UJ6DFSq1nSmTl6ejoJhIKEQy3kMhaZdJkTT57HVmBoUKe9LY6uKhQNg2Q6RWtrjPZ4P1YVMje7uHl1Ht1XRo8tEu6IUiuVqZQM9owfIJXIs7acJbVYxOfX8EdUop0BItEQyfQKIfooFw0W1haItNr0dvdy+PBhzk5+m/b2DiKRg3zyz79IIpehoyVIwSxRs+uLV+dzCKBiuT5zzmfZ+cxaNCoyqVpVquUK+9r3vSQ5+Jfzew1bAf4HNadM7Qc5/vuxV4oI6Jaiha2NVrbLm4NXNe6569694Owc744KOMd+9E8+sR7OdoO7+5pu84rWeIHy+60GcGy7/b0A7L1/L9nvueRxmynoNZO8fTlY9bdKu9hu15d7GehuPO8H5lz7zTfGNv0QCCF+AfgFgNaOToRU6pqyUsWwwTCcVaBAUm+xasHmWnWhrUvBqigo0kbiFp3Z3A7WnY93s9XXf1jXQ+WNDrVCrIfO18Hbdbx7wfBcuX+vd+8GePe5nUWBd16RSAzLzDOfWeSTf/v7xLvyzE/aWKUCFy/O09cPs3Ng5MNkiyrZQo211RotIRWkRiFnkF1I0tXTR2tXnEzmIvNrMDQwSqmY5x3vvp9rV6epFFTmp9Oousb+PT0kMysMDvUwsXeMYEjj0ZOnCWoBzp+eRNoaWqhC72AHRyZ209e7gwfe9HYMWcKv9fFTP3UX16dP8I53vJOpqwucPfskS/OrdHa1Efd1kq+kkEJhaSVBMNTCwvwa4U6LvXtaOHX5HxncOYRd1OmPqnz7C/PsnXiQtdQU/pGrtAT2kFzLs3gzR3KthF2q0Ducx67myWVKSFPhHW/bx43rZaauTmNkawwMxgjHggyODvC9M+c4fPdtXDp7k+VEjvaeFgyjyN6jO8hUsnR37iS1liOdWKNqQVdfP6XEGkalyvxSht3hGNGOHlrHAsxcLFHO17j9tjsoVK+QXM2wPJvCKEqyMkcsbPKJT/5ffOiDP0eJDCWjiiL0Rs93p3NhvRWR09Ro/WPbKJ0TCGjIFVumxLJeVrLsD/S9rk9747vd1tHx8s30ZbRXg9nvlqKFzYIzDtB09G7WlHeD6YYa3UYo3k2qez5P2s2Ad/br6FUZ6u3dFN53wPFnPvwbfO2LH3vO6IIb5L0EPQcsvd3j3PNtBvqbwXnjdS/4NosuOO9NM/Ee93vi1OK778l5b93XvZU07F82oRsppRRCvKhfHSnlXwJ/CTAwMiaFKVF9PrAEhinRA4F1oDQtq6FUJ+tgL0HaFpYWxJZmPdyOjWVbIEyEqm+qid9OBtYL0g6wK8oGqCPY5GULuRXIm22WtRENgI3QvBfgnV/zDVlSNoX8ATLZZTo6u6lUBLlskas3L9BWhmLSpiPUS29PlPOTc7RZgqAyxrmzp9HtbmLhID4RQKg6R+6PYYfOg7pE+UyMgcFjLKfOYhgRvvClZ/HrGuOjg6ihRexKibMXixw+cBRLFvm7v/kf+P0aP/LP30Vy+jqD8RGi3REKkaskEmucn5zjw7/0LJrqY9fEDmbzp7ETFq39Nb535SLZtTL5sslt+24nsZqgkMqQSBc4cuwgmfwSUmjkyyne+d7bsSNnee+DPbSI3fztnz9G8cwg+++qEeo6SU+rj0r5EKe+c5FsykKREXSCpGYTXHxC5dix3Vy+fJmdu0Y4eXKBaFuU4vwA5UUw0hkspcr+w37Gu1SMdJ7+aDdt95WxSzEySZvZuQRaoJOs30fFsLnjdRPkMnlOPHkKLdKNaQnCmo6RMTlx7Sk6hvoIGGFCGuRTV8jn8/S2juCrxammJCvTObpb02AaZHM5fC0qSsCHWd4aordsxb0erXv3wqyH6YWsy+JhY9g2pvXKCN18P9/rxnHr3+3hsdGXdDXyYr33FypMc6uU6nnLwNwerxuAm4F03bb2RAen2Ux9zA18Xma5e3Hg5PWf+uY7m17TDe7bhb29c7zzgQkefNev8+lHHt5EBtwuPO6I2WynmudV72smYevO07sXA+77b3Y+77g32uFto/tq20sN8CtCiF5XKG+1Mb4ADLr2G2iMbWtSUbCEht0ARVtv/MDZbtW4erU8iDpBDhWFCooCUkgMBEJVQIYafdoVVLUuSetTfVvqzW27vCVHLuXGh8MB441e7o3GL+5ucTSa1UizAc51dTshFJeHvlHT7vbQN0L6Tj5/w5vXhYKqaUhFYCnQE+1hbSnFbOIrxEOzLFyE6/Nw/4PtFMoFrlyYJXW1wujBgwT8S9x7x1EmJycZ6O3ki5+9wF2v62Y5NY+ZqbCWknSG/Zx77HGkVUGU2gnoYSZ2jnP21NPE2uIEeluIHYnh85e4c38f2ZJJNKah+GewYzanzj1LJAeHD97HULyD64mb6FqNofE4t903yONPXsKqqcyeSVDJqvR17mR0Z4iO4SD+rgizU2nuGDlCInkdowhaqJ13/9RhRDXN8rxBfq7GzIXjBIvtKK0Visk2SgWbpZVlFFYppDTa2towrQrR0BDFQplQIM+5M5PEO6NkKqsMjLexspxhdL/Gvv27mF95htWkj4WlIsWiApVVarJMz2CUnhGJnkqxt3OEx4+fY26mimIFOP61Z0lnsjz49mMc/+JNKnmL0YmDtA0Ihg73UEgssWNgmO9+5xR9vcdYnHsUv2pwY/oJ9JBg9+5DXD2f5sKZP6NUNPiJ/+X9WIqNpvkAG5z+BZZNQ2xxUzMky8PfkFJStcpUKi/2q/qi7CX7Xr8S9kJC7tsx4F+pXPoLMYd06K0X9wK6twmMV1FuOy/cC47uZitucwN+nVm++TxeedyttfhbUwZecp/DUnfmvl1O3w3y7vl7m+e4yXdu0pz7Xp3Xvex/b4rAfX5vOsEN/hv18T+/Ln37attLXVvzT8AHG88/CHzeNf4BUbe7gOzz5ekaWq4IVJBON63NbVefjz/QLAfulL/5/Aq6T6xvms6mkjavsIyTA3cDs9sT37o53dyV9efuiIH3HjYL7IhNm23XxUFMWffwFAkz82UCkU6yhTWySZNqHmwVrl66yZXza8RDY0zs3ceZy2fxR1WuXLvG4duPUTPgoZ88QiAsyGXyjPXvIaJASImxfLNCPDiIT9fJp0tcnJyiWhLEwl0UCyZ2yxrBbptTF0/Q0dXD9M0VZm5M4lMNRob7GeoZJ7sC6cQKLXGdN7zlXoJxP+lillKhyuEDdxAL96HKHqqFFp49dYb+gU7aOoLsGGvjxvSzKIqgJTbOzNwSU1PXibft4dKJAivnfQTNQVLFCjdvTHN58hrSCFPOSzQs/LEQsc5OIEgpr1EpBhA+hUwhj9CCaHqM5ZU8K4spVLVKKjVPZ+sQYV8IXep0RAdILpjkVnWSySSnTl+kvaeDhfQc44eHOHr/AdSQIBKLMDY2jLCD7DzYixIp0jns58zlZ/BHNA7fdxslucr9bzmEoks6WnvRlQBHjhwh3hHEUDJ0d/fwC7/0i/zoj/8YmWyWaCSOZYMtBbYU688tKTBtNm/SXt8M26o/N2xM+2UN0b+E3+uXz7YrXXsh5oD6rQLusDUy4W7q4g4ju0PQbo/VzRqHzSF7L0h5vVcvE90LkF7P2Hstd4jbKTdzzuUWp3Ez5t1s9WZRi+cyb+7cvb+zaGjGuPeW2Ll1/b334n6P3ef2vse3CrjDD+DBCyE+A7wB6BBCzAO/Dfxn4P8RQvwcMAP8s8buX6bOtL0OlIAPvaBroLoar9TDkm7P5bk04t3gLu3N4/Wa4nqevh5yl3UpWF1f38f7uJlktzms33ShIdaT9o0e9g0dfGfutl339hu7uyMBinTC8ut6PHUvvvG6JgVqdAX8ArN4iKnJEKOjPejBBN97NENP+zDp7DxH7o7RMbyb2bUr9A0PsDifYmEmx4ULs+wej5BZCPD03ByhSCezM8tE1HaCDDM99zSGGmB2dZnWYJxqUUETIVavzjJ8eD/RaponP3eT0eH9rKylWRAZduzuxTYTXJu8zOLCGoPDo/TuDKNkNapMs3/wR7g5meeXf+Hf89nPfIalhRQfeN+v8/WvfZJUZpX3PvR2cjdbqMokwa6L3DkaIZlM8q1vPk53eA+z59YQgQpH33YQkV3m4tky2bRJW2sPul9BqDXyxiJVq0xmaYWh/lEC3YKh3aPUSjbRsE4qkadaklQrWeZm0+wYOEIxvQS2wK8EyFc1FJ+f2opJNBbniRur5K0inT0B4kM1dh+cYPrCLFevLtAS6GCtcI03vmcfpUKOPdoQM/NTLK+0EAobTC9dpKejmx6lnZXVAqfPnWbiSDupTJJIYCd33H8/7f19JKansAHD3CB/Wg4R1LK3fsYsp4Xxxv6mKTDMl0bJ7pX4Xr+adisB+PNZayy6qZTN7dE6mvFucHeHst2a7M3y815zQuOOF+oO128XOXDM8W5/5sO/se6Ju3Pi7rp592tuhTxn3LkP73W8EYntSHru8H0zYp+Xw+AsHpx7cPMBNoB8V1Mv34lMeEP1twq4ww8A8FLKn97mpTc32VcCv/xizu9UigsEyK3d1BzGsTcdKD3a8ULUG7XU6Xgugh0ub1rWR3ABsPvR6Rm/3aLCbgbwqubE6x2cB7uuqKeqKoqoswfsxuqj3n+msYCwHR38OsfACdv7FQVN1PXrY2orqrQ5fGQfv/P7H+O/fPwjiGIZnyoo56sMje1geXWRUrrGyMAu/D4/X//KeXb1j9AZUqDio5Qv0TvSg02RdK1CpN0kVVxAj7bjEyW62ruxizoXzp1mdM8A4+N3cfncddrb4uw9EGV4dIBHv1wg3uUjZVxjfKydWGCQ8ZExltMF0qsFJp+dpjM6wOyNExhVnceOhzj57NPcfuQu/umLn2FgXwBVD/Pd4yc5NnGU6zMl/BGVvQeHyCS6WZpaJbq7neGDQ9y4fgOzUGRpqUDWyOO3KuzaPYZR9bN0dYX2nnaK9jz+oI2t5inlLOxyjWwij12EAyO38fjKs3TGB5idneVqbgYlHCQY9NHR2sLc+ZPEO+NE2hSiLTqFpQTdrTEyK/P4xAS+vIFdq3Lnnfu5cvkawUiYpcU1WjtjtESi9LUPkMlcYvqGpFjSOXbXHsxaltVTGXa0jvDko2fx65AIXWZgdIRstUq8u5uqZWFY9f+3lGDb9edYrHcgXP+IifUP7HrO3jQtjJeoH/zL/b1+tc1ba38rA340FOFXPvK7fPwPf2t9zA0m3lKwZmS257NmpW9uoHWHzL1ldl7lO6czmxtI3ce757vZ+5/Y5F03A3z3/NzzdshtXqb/drn5ZiV9blJes1LC7SoQ3GmB7RZOr7a9JuSv3J6zN0f+XMd4meruzbbBsurekvPcq1fv/IB69em3G990LPVNiroinyVtLGmvj7tfcz86z72b+74URcGutqIRJNZW4+P/9Q+ZmV9hx9gQPp+Pvt5BLk8u8uwzayzPrxLQAzz+2Hn6uwIEtAC9ne0kV1LsmRgjU1yhYqVp62wn1ALTs9NYtkJHZxxFkRhmmbHxQQaHejl78TRLmUWUlgpmNMVj5z5Ha7eBL5Jl54F2KkaG02efRYosoYhgbTlNQHRw40yWUnmevr4Wvva1r9Ea66VcVPAFa+zcPci7f/QBhGJx/PGvsLg4z4WzaeZnsszOTUMVEvkEN9dmsFTB7NQ8hq2za2KMA0d2cd/r7+Spk8+wNJUhn7BQ8WFYktb2Tko5ydJcloDWxuVz17lw9hqGUcW2dKTtY3U1wfziAraAycvnaO+OMrCjG71lkOnFCmW7jf6h27HsdpLzBewq1CpVMtk0yWSOUr5KtWygqipnTk1y/fIUXaGDVPN+WuPtFLlCsFWhsz8GiiAaCjHcs5v3ve99+AMhiuUSpiVZXFpqALjDot/8fPO28Rl0NsuyXlPd5F5K+2EXvfnsp//DphC6G8Dc4jOOub1VJ9ztDem7PWA34Lmv44CqO4TdrJ7cOc6b5we2HOtNDXjNvcBwiHfOcc0kad332ey8XmGaZs11mi2C3KkPZ+7uxcl2ZEYnPH8r2S0N8Kqq1LW4FVBUAVJD2irSVlGED0X4qOfmN/LVQgQQIgBCR9LwroWFqiqNPLqGbOQ3LVlX/nYeqybrW80SWGiYCGq2pGrZVC2bmi035UltKbDRsNGwpIppK5i2glGTmAYYNYllCmxLQdo60taxTBXTUKhVwTIFprH50bIVJBq2VLGlikTDsgWmIqipUBIGvniJZDHJ4jw89M4P0uLv5alvZti7+13cdc+bOXRkkN7gDkbadjI9v8zB8QPcNnKMc9cusf/oMTpHdnB+ZpJYvI1CMkg6nSO7FCZID2FdJRr3YygWWW2VoWMgY6v0dPbQ3hLh2rkZrp3Icf5bcO3qLDIRZuo7JWae8qPIOJG2Dvy0MXfNIhSc4CO/8zGqRpxcMUNbW5y9RwcJD2R46H89Rq5ocu3aEgPj8NafHeHQm2M8+M49ZPOrFEsGHX09PPXFKxQnTVYvLtDV3c+xBwbJm4uY1Rp//6m/J2SHWF3LsbRaIBILEoqohMI+hvt6iEfClIoGh29/Mz19ewn4w0yeXSCf1rGNEB3BVoyMJB7ci5HtYu5SmcpagtTsMvOXlzjz5ONE/WDnsty8aBONRgkETMyMj4CI0x0bYunaIm984xGi7Spf+srj7BwfIhpQmH6qwne+8DRri7N07Mjw1vccZveRDkYP3MFcPkdNVRA1iLZ2UzZqlGpVSrUqxWqFQqVMxapRtY1NjyUTSiZUbIWqVKlKlRoaNfnShOhfi/aD5N4dBb0XoqT3Qvd7Ke3Bd/36Onje+cAEP/Ph39iksuZWp3MA2ktMa6Yw580ru0PyjqfqPG/GOHcAzwtobplZx9wSt16QdV/PHSqHDeKde76OeWvTvYz9Zvt6FfrcfzcTAHKX7Dn7u6MnTsMZ5/5+UHGel8Nu2X7wTq7cEfOwkPWgvaeWXGnUvXs7xXl9+61kNjbVqzfLpzv19N7X5ZaxJtdwnds7h+c7VgiFrVED5/4AqVAqmkip0tbdzv1veohdew7zzc8/yVvf8DYe/oPfxqdWsewVovFharrN6soKS8U1hgZ7OHvuWdZWkxy7fYSrZ6fB1olGO6lWTNq72ujsilOtLRJvibJjpJdMcgZLgu4L4dPDxKIhpK1y8OA4CwtL3Li+SKVi4veF2blzN3OTqwyN3sGe/XsZHd+BLxahozdCLK4TbwkT8fmIxft4+rGnUM09nD7zFHe8QVCyilSlRW9slG/81RLvf989lFJFDtw2SsgXA71K/2AbZ545QbyllaNHxjjzzCSKHefuN+6kVqtRqqzS1dXG0tIS6SWT1tgOdh46yLe/808oqoWq62iaQFF8qKqKT/eTSuZJplaJxn2Uqjni8VYOHdqHZdmsrC5y553H+NaXv0y5Esaq6gjLT/9gWz3cvrRER18bmcoMPWMhLp3WWV5ZIxrTWF1L094bRNVVitUKidUpzIJkLZujZNa7HwrLRtQsTNN2hdwdXYetnw0La9NnSEqJaVsY9q0lkflate1Y9F5Qf6XY9kO9vfzmR/94vbb6P/3Or62/5gCQVzq2GRPcmyf2huWdMfdz78LAHW53Os+1xqJbGO5u264BjnuR4n701qw3m5c3f/5cUYHnAnxnUTE1uTn10Wwu7uoB59hmHIFbzW7ZbnKD43vkr33sE9gNgLcF6K7X3SF4Jx9vWRtvsqqJjf7rykaI3zGnYxtsBfXN4fwNeVn3fpuuL7ae35KuTnAe9nwzqVr3PlqTkjqhQSjsazSyEYT0KMl0Ai2iEfL5ySZz7B7U+N9//f0oZoWpycuENA2fXkXvDLF4vkg81MHN4iKqoRHQophGGsOw0NUWNKEQjoUolLIUayX62vsoFDP4Q5JiJU80HiQcDJBas6mUBIcPHyRfTFAspSjmLfL5Mq3xdqZuXCdOH6EBlTvf+nqm5ya57cJboRsAACAASURBVJiKondx6cqzzE8luH3/Ub796Ani6hADe1bRfZJ8qgMbP5W8JJ8uosgKXW2DGKV2JnZO8Kn//j/o6x8j0DFD73A7Ha0hpm+cJeLvYO1GO4Rq9Pb2ksxcY+raKn6tHX/QxqzpxGKtxNor+IM2whYk10qN1IyNbUvK5TKt7e3E20PcmLnO2PAIc3OLBINB2tpirCUW2H1bL+dPrhGLxkEpY4sKut1CNB6jfTBCTV8iFFaZv14ltVJjeLgbnyaJx9qxFYtHT3yP0eFBMqsFDh35RX7xt3+bQr5Kmx6iVCtRqVTWQ+9OyF1la7WI3fhM43qtVqtg1Gr87LHbXxPd5J5Pyc7tjT9fjfurHaJ/JXP4bv15x7bmk5ubN0TvDm97vd9mjWO8xzfzVr3lbds1ifGKzXjL3bz36LbtPPkXss9297xdPb17Pu45ee/LO/8fZiW7l9Tq9eYudTcXgG/ou9dfq/8IKsh1aVnQtEZ5nNh8zvqj92+3B71OgEdR6mS/eoqz4TU1+HjOac11z3wD5G1ZJwgKIdafr3v00iEOgpMlUdxiOTiRg40fcUWrpwWEVc/Jp2op2np7MAwTo3SD1aVn+MCPvZ8H3j5EqVSmXC5SNE2wNPSSSWdLL9NTNxh//RABM8TFU9NM7NzNqTPn6emNsbY8gxoyGNvfympSUJwXZLIFxnYPkFyVRIIh1jJlQmE/sViAU88+g98XZv9tI1xOLOJTwwR87ezfF6F9oIvhY2s8+8yXaA318uTnLtIx0sNDP/EWvvbtx+kb7OA9P3Yf1SI88WiCgO7n9fftJRhSyeQqPP7Ed3jgwftIpassXVZ47Mm/4+DtI5x+9gofeO8oNxdS5Et+rlyp8M4HR1icmaWWD/GNc4/y0E/cjUob+awkW0ii+muowSSJVI1wKIomqmiaD9MwAMny0hpdXR2EwjrpTN37z2YqFPM2mqJRrSj49Cgzc4JQWCeg6ayt5fBFNVp7g9xcuEiq4ses+f8/8t48zLK7qvv97PnM86k6NVdXV89zZhJIAgkkgTC8gFwwPipIfHG8euHlikqM+KjvRbigL6K+AQQ1GgwIYgyZSEJIyNidnsfqrrlODafOPO35/lF9qnefPtVpECF4Vz37Ofvs/du/PZzav+9vrfVdaxGLJQnFZQqmi1WRmF+Ywu71MTF9iohfo1lpsm5oBLE2wdLkcZq6guXvxpAc1LMlbh1HwLaFlU/HvuD/0xY7afAu1n9uJrv/NHklgF4rDe1PGth/nNIqD9upGpyXKd+Jbe/VxNdKxdrqs1OimxaJDDoDu1ejb6XT7eTrbn22a/TtkQHe6/FaIc71e6Epvl2bXkvaw/i8JMD2SY6XgNeSdotJu/Xg1Wiif1X74M9jwrdpwe0asHdZa9t5x7ni6uI6Aq4jdP6+CuXCOfLT2cVxV/Lfr6QWFduWteVCN0B7HLzbsU0rF4DjOEiqRL5QRHQkDL3Avz/w9yRCXex7cWrFAiALaAGJUCDJ3GyFWqWOIAiYVpNjJw7jCnVk0aKvP0OjUWXHtu1EImGqtTyKT2LLpp3cfvtbWbduhN7MOpp1k0i4i56ebo4cnWB4eBC/L8T3vvsSoUA3M1MFbnnjO1haqLJQnePw6ZeJxdPMnanxmq23ETBC7HtyH9lTs/zrfQ9w8LlD1PUKglTn8iu38dV/fJTHHnqSsC/K8MB2Tp4oMjVusf/wk7zu9RvJ9Etk+lUmZl/CFzY5cHg/v/Fbv4g/pGCLZQyjTjwZ5uX9z1Nr5MnOTxDwxRkZWU9XV4rF+Qo+NYVjqzRqLpIYolw0UeUo9ZpNtaITj3UhoFLIlwkGw0iixonjJ9kwuoVmQ2FyKke1XKRR15ElP6gGQ+tTDA4mkAWZ/HwZvxqlsFhn8vQ8ubkKE6cmiIWT7Nq+E9eGSrHCoZe+z4d//df4m8//JT6fD0XRVglznYia3sW2V6wOjnNu/VJyQrwa5VJBur3d/5/AHVaIdp1IbO2g1vILe/e3AxmcI7G1++tb8eqt9l4fdasmeicWPbCawa49rr0Fgu0MfThnqu+kEbeb9VvbW/22h8q15JXAvh3Ave6AdpeAd0LjJey1ltbkpD073p9+4rcvSDH8k5JXtYn+Nz/7JQRJRHBBdsARO5hthPPTe+LYHdj2F86sXOFC1rGIcF5foiiuMtjPmyg47nkTCcdTce7cNvGCvmpmg0g4iWU5GEZzxScsKeC4uKaFhITf78eQnFUOgiStXLvPt2KeF4SV9LaxiIFuJ4hFZT7/J6/n8UeeIRKA3t5+pqYm6O7u4eSxeTZs7mZyYh6/FKZarRKNBDh1uMrmzeuoGyXWb1rHUm4BWzAIhByOHcmxe+duDr00T7FQYWgkzrpRDUnUODPuEItEue0tr+c73/03RkZ2MX7wKAu5KqlMF1q0iWnpIM7i6hKJWB/LxQKJ3jTNWg2jJjJ5Yh5FtAmHfKzbsQVfuMDxo0fxq/2Mbhti37599PX0c/zgJMODm6hXckAIRfajhUUcyixNh1i3tcr0+CyVksPISA/PPbGE60T4mfe+kYe++Q0y6SHy+hxdmSj1egWBANm5RUTDJRKJoesGAX+IXL6CosiEIxqW00DTZGQlgG5UMU2dSDiJ3gRDmUUxw6gEqFRK9A53YUoOpVKJcMBHIq4xPnGadcPr2f9sFgkfkqQjClHy5Tn61geRlATRyABf/OfvYsVl8nWTymQO1xUxFAecs4VmHAfXds5Ge7Slr7XN1f/X1QkBNs1mk1+5/sqfKhP9pQB1S3v3avKvNoBvz4DX8tev9f0HkXvu+ch5Ju8W+Hk/O5ncvRp7S9bWis8BdyuWvd0/v9b3TiFkXmD0arvtJnyvtJP3OnEJOt2v994uRTq5Kjq1afXZyby/Vr8AH7vrM5d0HT+IVOpV3vfG23+od/tVq8G3fOotf6R9tlZ2+9KucbuCiMMK6NouK4tz4XJBhjCH1fbe4zu1a+3ztmllHVv99Cwt1n042EepXMS0qmiahqVHME0J3RRx5QB1R2ChVMW03PMWy4ZmU6TREKjXodEQaNRNTL3JX332E4wf3kdEgaFNJmMnliksRDl2dI7RTd3svCxDMBhEEdNUii7VSp3RgUGmz0xjN11mJ8ZZnJlFrxhEfb3s2rSH4/tnuWzPDq68Yg+Zrm5sW2V8aonl5UWuvvodlApJfu49H2Vpsoah9PCaG7dTa4wxdvgwerVObhrquQzjR03sepTJM2eoZV2K8w2uuvY6Nl+2CzkZYezgIR66/yCjfa9heXGJo4efZee2zZw+XEE2M0ycyJGMDxKPpalUSqTScWr1CpFImYkTZWbmalx9w1UMbA9z3Vt6uOzmAF9/5Mukh7qpuVVufd/VrNuTYPTKLnbdsJ5gn8BVV9+MIEtEEn5sOUdPbwKfXyQQ9GMaLkuLReo1E0UO4PdFcLFQNJNgJIQ/KJMrzBBLKTSseUrFZSQRGtU61XKdRCxJfsHFtAVquo5pyzSMBTKZNJrUSyzaheVUePyZJzg8laXcsJB9IWxBxOXc/61hOZiexTBtDNNGNywMy15dTHslg53eNLHMn74wuUKpctHlp0Va4N5i2HuBvRPwX6pMZbPnpV9tAV0nkhpcCEJe0G1p696ENl4ymVdLb322jmuds3WO1jGtz3bLQGt7i2HeYqm3x423Z5FbK71sq1/vxKCl+Xv7WIu41+kZtaT1HNrbtofYXcwq4N03lf3RJnL8j0ZsvGoB3iurVoZWoLhn8ZrH3bPhbq3Qt9VUn+6FiyuIFyzesLlzCxdOGM7bL6wMzq2QuVa6UcARBBxhZd0GatUGiuxDECQcx6FWL6CKSQQniGE6hKMBUl2x1VDA1uLY4mrMvm2vsKyb1W6CIY1i5SRTYwaKGCAeGaSYA78vwuVX9dHXn2Ts1BSO7ZLP58hkMgwPj1CpVEgmujENkVSij1AwjmtL7N97lNMnZ9EbNkcOHeL4sSNMTEwQikbw+Xy87vo9xFIqo1v7+d7Tj1Ot5Nm44XKOHT6CY9i87ro3IasKWsBHwyih20XK1Sybtw8ysrGbZEZlavEQ/RtizC6NsXnrdpLJbr77xD5cK8j0mMjzj88g6FEaVYN0KoFu1BifPEqpMocgVXn9TVcztBtuesfreOM7bkOXHb71yAFEyeZ1r9/Nzbe8ltPjY/j8Ct9/9hm+9/SL5HJLzMzMkEwmOT0+RrlaQvMrbN+5BRcLy9YRRZFgIIQsadiOsZofwTBMbEcnGg2j+FQSyQiyT6Rcq+A6Fjgu4XAYTdOoVuqUSw1kGWx0QvEwIxu6iKdU8sUsTb1EIuXnr3/vbvxVEyo6+UIFNG3l/8UF1zmbc54VbkdrMZ2VojKm7a5OJFdDPZ1zFej+K4kX5NvXX22TgPaBuFCqEA6EztPuf1ANvpU4xitek3BLOsW6t+9vj5tvZ8h7+2yZ2zslv2kHQC/ItpvmW+dqj1VvXW9rEtCpr/bsea1r8E4wvKZ/rwui/X46PY/W51rPqyUXCzVsf+apHum80L5Xg7x6SXZeHzpnCWmdTO2OfV6WL+c8Rl2rq06pZC8cECUPEa71ZznnCHfn2p01x58NtbO9ZvzWqd1z5n5RPNub1MS1gxhmA3/QxB+bwXWzqJoPVUlj6CKlmoEaCJw9+0oe/laq3tZ5cB0cn8z43AKjo8OMhUKYlsHpE2VqjTJ96wRMp8ZTD4sEIgKCJJDuAVVZmRwke7qp12zecMPb+eYDXyMQDBLRREJygOxsiWAwQEDVCCgBBjelmM+NoUVUFhbn2KblePzZJ1EFl0ggyDVXjmA3EtQrYWLxJL1dFk5+I8tL44QiCtmlAuu37eD+++9ldLSPnnSaxcYZ3vq+G/n2N57kbT9zG9nJJY69sMDmoWuZz05jmnmCPpmJkxNkhruJRZMEQili8TD1ehXDMHjgG4+STkYQsEg7QxzZP8OpU6dxzBDpeBK9UWTDug1k/DXMmk2zplJebDC8Lk6iqWCaOmcmsiiqQiCoUCzmEQU/AX8MLVhHb9RxnJVnr6gCvqCEYEkIVhzdbBIIxJFdie7uPmamZqiWDCLhKCdmFrnmup00DJ39B47hU8I09AZXXr2bI8dmaIyL3P0nnyOcTDGXqxKJJHEkB1OvrZjl3ZU8C26Lb3HW+uPNaHeO4HmOXCqKr95X+VKkk9n9UgD81UTAa4F5SzqZ6n8QkL/l9g+Ty64ARjurfC1TdTs7vbWtE5B5TfitzxZRrp0419rWats69pbbP8wnfuuD5/nSvS6EVvtOmvFafnSvpt6Je9DS7lsZ8Lxhc16rhLf9xcRrWXilZ+glKnqjDlbabeTXP/JHFz3Xj1te1T743/jzL+IIK8ArO+fC0byhbO0JvEzRuqAvVwggiRaC6yAKDpIgUDMsNEUF10VBplGtIUckXFdAkhRMw8Ln81ExXURXQhJkVNlGlBxwJCzdQRZFJEmkITj4/QKO0cC1/DSaJSR/DUmIYZkC0XAE1WdTqVvEQw1K88/y8kvfYeLUi2TPKCwv5QnGhnn/x/4XoWQfPgB3JVQulgxQbVRR3CCyKmG5IBChrupEJT9DSYUP/dYtLE1O8rGP/S6PP/R5Js68SDzgY/xwiv5Bh1gqBsEpZsernNnvw6eqdGc2M5/VGe6PsLw4RaI7wNziGRTZj8/Xg1Wp4GKihQy2XjlMzaxw7KUxhoZuxnE1NKXI8SP7CA0E6eruZn55gcxwgGpzDk3uo1rJce3Vr6NRcSnnRCK9OWrFSRZPAP4kjtTgil2DnDgxxo7tl/HYQ/twUTD0Jru2bmX6dI6FbBmz5LL9td08d+BF3vXuN/DcE/tJxKIs5VwiqRQNJ0+63ySWVpGcAMszDTRhpaBQUa+jqhKhiERAlZmenGT+ZIW5RUjGu0iG/UjBIuuGt/DU40fw+/34gyLDm5JMnFnCdVROn5phYGAIJa4jWzqLUxb+YIyKniUe9aE3ZEJKmrnZU6TSUVxTQ5QcTFNn85YNjJ+cZG5hmb7hKL2jXSzl55nE5MEHy0xMN/DFwoyNjzEYjGNZ1jlmvGXhCufcVHA2ZbIJ4CCIFi4GLjaiK2KbFr9x00+XD/5ishZ7/mJtW8DeWvd+dmp7KSVj26WdB9AO3lPZ7CooeoHnjjs/Sjwa/oG1+Fbcu7fOOpyfdtV7LugcBreW37lTEhdv/y3x+tC9vnevdMo212l7ezpab/73drlUZnp7dMBaIN1uafC2XcsffynbvX184av/vrr9h82X0G4R+mF98K/qab+7Umlmlb3emUXvnk+y62CqdN0adqvdWdZxKByl2WhgGAa2IOEP+zDOVmuzTBvbdjFNl7DqICLiWgZGo4rh6IhKCEXWwLVpNJtYooijqDQaOmF/HFszkIUUglDHFzSoVvez98nvUtbn6U4LOI0ZlvNZ8oVFAv4tKBmV8dl5ms0i67u2UMlX8PtCOI5LudpAkEUc28ERJEQkXBeSkSCNYoOx2QK/d/dfUp2bZ9MGg//95ycoLkNiWKOQz+NX/UxOj7FpdxDBFdk8uoPDh14Gu0p/3x4sTuKoFSxXYuvWzZRKFeZmSwQkEUXRUHwi8/M51KBCb7qfkD9KuqePr97/F2zd3E90wMe60QyjbhJXNjCsBNV8ke2j65k6+SLZmWW2bHwNtmmRjvYwXcty7Ogxrrh2Ey/vPUEuV8RsnsC2ZERBYtfOy3jx+y8QUtLEomkWyzleevEA2/dsxNAF+vtGyC0uEo6EmJo5Qf9wmp7MANNzkyiugECA5aUisigR703SMGrUSjpiSCIay+BmevGHbUbWbeXAvmdZ39tFOBRjaHgA0zSwnRqFQgHLMojHYvQPdKP5QJE1oqEw82eyNCsNuvsy5Jdm0JQ4xw6dYvOWXiyrSSAcolQqoKoBJibniMViSKqEYTaolBqEA0muHU7xt5/5c+74xY8wMZdl57oN5BeXVtIVn/2z3XOlY1v/347jrBQuElbiODibEMm0bWz7wontT4u0x73/sKDbiZDXDvLtYN/eh3d7e3+dioh4Ad0rXtNxCwh+mIH+Y3d9ZhUkvBMGOL+wivdcnZjknUDMa9b2ThbWimNvzyPfCejbtdz2jHbt1fA6lXxt9dNJu18rFn3le+fYem8/7c+w0zm8v1n782q3QLSD/9U3b1lNSgQ/+VoHr1qAd1nxM6742UF0wD1bWk0QhZUUtO5KNXj7bBYvSZI6+iJVBWx7JfUrZ8u+Nuo2oBEOR6lUStTKdQIBH6KoICAhSyCJCtgOhmXhGg6KGEKTIyALVKoFLNfBHwiR0AQqlRKxeC+VikE0FkBzLfbu/wbz2YMc2fskiuPDMELYIxq5pSw4EZqF3aiSiWGIpJIx/uGeP6baMPnAh+5m3YYtCGoISfITi4RxGjq2wMqgjoWsC/glGycZR1Q1EpLFn33yzUSUBAPrNnDyyEkGeocpLE/TxKCaj7A87/CuW/cwOzPBdTdcyTcfephf+bV38uhjCyRSGoGAxvTcNKZh4E/0spjP0tsVwTCgXGxgFUB0i5TKy2zalSbSJRBMajhCjqNHD6E6SU4fL6P5HEbWSywvmjhmnNK8SXnyDDF/D5VFhTddfyPF6jw+tZvE8AiioDBVOUEiEuHpR/dSKlosGDkkqUhTL3HTrddz8MheKksCRsPF54tjuktcc/UIjgCHX5ygu7ubsRNn6Er04Jp+uvv7OXDoEMMDw5SrAtNTRaLRMKalE0jFmVrM8Qvv/xjf+PrnyC+dplarEIooyKJIIppmfvYkrmPS0xtkOT+PWUmzsLBARIti2aA4EvFgmsWFZXbv3sDk+Awhf4BCI8fo6EYM3WHb1p0c3f8UwVCERtFlaqxMKBJhafwlXjAbXL79eqR4nJmxSdSQD8sTJmc5DqKnBsFqKJwg4QorJYVXfO8ijm1jOz+9PvhOGvYPK+1s+3Zf/VqugE5g7wX6wZ6e87SxFrBfjGnulZZv9o47P/oDVxsLB0KrYVftTHI4n5TWAvxzJvJLM9l7Y77bwb1d412r6IwX3Fd86efi9tvD7lriNW97pb3QTPtE4GJafy5rc9dnv8C993zyAkD3ZqTrZOFol06g3urHSxg81waef+yDfOZvv/pDg/uPMhXyqxzgAaflc1wJETpnmj+bzhNp1UFuOQ6ucCFvsFmXUGQfmiQgCXUEt47kVyiVG4RiGRxLoea6q8lxdN1AQKLZtBAUP7Ks4g86CK6D6zqUFvNoIRWf5KfeUNAdB02LkytU6e9WOXr423z7wbsJqgFUAsj1XvpTl7NxV5hHH/8XHFdAEk0alVmkUC+uo1KtFAi4IplgELs+gyz2YzgyQTWAXjVABMteyafvD6pogQr7XvgWX7/3b/jVj/4s//pvf0JfpJesWeL5A3sZGe0mkhC47IZ1TOePIgkybh5y5ktc9sYM3RumuF6xmJg4TCzQhS2XOHriOEbTIZFIML+Yp27XCGWSZKfmMUoisiZTs2YpLi+xYY+fVF+M7EQNtxxFagxRLoNfUtAG5th6XZzslEthuUxXv0h0dgcv7z1NkwaHjxxE84XIZGTK9QrFYpF1I2kqWZNkKIJRrSD4TEY2pvEneygUZ9mzYwfT0zPML2XZvHkrthtgYmwBUVCJhXqxyhZd0S7CQR/HJk+ynF+iK5Nm5vQMAX+cHVdcQ7lZY7L0EEMDcbDC/NVff4lYQKNSLaL5DWpVl1KxgtkUCGtJ7IaEJqpYdRE1JKLbFn6/jGDajI1P0pWJMbyxH8dq0t3bjd50iPsFmrUm1WqVwwdfZmJqlnQ6TTyWojI1gyqoWNEhHnv0MAfOZKm5Fqqk4Lqr+Y9WYF0UVsMxW1kUHccBaYXfYdsClrVSdU4SFJyfYoD3yg8L7p3M860BtpNm7z1mLXBv9RWPhle1sqls9gIiVafsa53CuFrfL8Vs2zpPyzTfknYm+bn+OW9bp/Sw3mvptN763g6uXvECXEvaGf7tfnBvwpz2UDqvP9/7jNonEN5IglZyn3ZLg9fv/4nf+uAamnhnv3/7M/Dea+f9nd0e67dt/E8Jlfth5VXNondZIZatVF11z1Z1XWG8tQZC23VWBkNRWFnvJJKBIuuIVCgsvMzU6Sf4ypf/kGee/ifm5/eRTEJXt4bj2iDYiKKDrICsiMS0PJJ1huz0Y5w4+nVOHLqfroyA4qthucv4QhKCHESQ/ciqQj43zuzEiyQC3cxP1pifaYAoMzb9MpPZMzhOjHohjVHuwW2mqJSrVGpNwoE4jg71QpUzJw8gODVi0QDNagXRsc/mTfehan4QXYr6SRYW99IrNnj8q/ehNIs8+PB+GuYigSSM7vJhapNUzQVufdtrKVTLIMHJiaMYvnnGpk9z5FCO7OwEqlql2qgSisTp7R1EECTi8QSprjT9Q11kepJEwz62XDmMSZGNm/uIR/00qzV8osDY0QlcPUAqlSKYdPhvt72O0wfPMHtqmfxUneypAs98bz+BUIyKXmTzjs00mjA7WaCcN9m17RoW5paZnDiNY+tomky6248t5Cg3Z3Co0GwWcB2dLduGQazh94XwySkUMcr0xCyFeZ1GxWVuagkcP67to1YtkIgECQWC6IZBNBHFroWYPDPFmbETNOuL9GSGiITjGIaF3xchHuvFdSVcR2Z6apGpiZX+yvUq60ZHqDQrNK0G6zd3Y7omi4V5oqkwk3NTyH6VRrlONBBAARyzhs8fQvMFWVpaQlEkdL1BOr2BfQdOkezqIR6NkgxHVwG8vVJce3VD0zSxLMvDnBdpNnUajeaP5Z18NUq7pv65T32chx/4NFPZLOFAqGOiHO+EwLu0TxS8x7S09pa22pK1CF3t5vLTR052NOd3kla71ufFMqa1E+Va7dvzzLeT2lqhc15mfieTurcP72TGWzCmfdLRHv/eyV/dft2dAHWt57xWe+91edu03/v5WndnouKlxNZfTPv/QWStQkb/0WiRV60G7wgWghjCbtap6RW6UwPUK6Bpyzz/1F+Sn52gsFzkV//o40yOvcz0RJkNO28lYl2BKU2Ta44RUa9CVW2E4hP867fvxzZqLExlsRoO/lAftdnvcPC79xMMJJAVm7xt8fMf/DyJ1BZ0fYYH/uX38RsVamWJ4rKDP9zEF3A58OTXqVUMlooGv3rX31AWMshmhFTE4Wtf/VNmTk4z2r8Fp6dOcUljy+gbmal8mZo1w5bd/UycalCv5RFdG0mJEg0EiEYjZLOzCKLLs4/8K6fO7GXbte/hrW/975iGiWCIBPw2zUYVVRLZ973n+P4T/0zxSIRr9hyhOxrnhqBJId8kWIe8WWFoaz/oee79mycxTNi6I4I/kmD+RIHxU0tsGt7CzOQc6aTCZTdcxfce+T6SplHNN6lbBus2+2lWasxP+igX87y+p5vFMyVqzWVUXWTidJmwEmPTxl6mJueplCSuuW4TLz6SY3kqhE+NMjNxlL7BCGr0FJJ/gZvf8DoEQWDnjh5OHZrAqMKD3/gu4XAUyZdmrjTD5l3dLC9XsFWLyzZu5cC+KU7NTTA4lKZcNPBpA2zf3sfDj91PrWoRDQ1x+vACgWAYX0Rlz1UjqJrLbHYGw2hgOA7CjMvRR47T19fPmcNjbNowyG//5v/NcnaBaCjNqXEdy6ximDWa9SD15jKbtoxw4vgEma6dVN0p6lWIRZPkc0v4rQT+ZJWtW3ewPJvnpluvY252CdMWGJ87gaoEmJ8p4w/KTEyeIplW2b37nSjaMNvueAPauj5m61UU24dhOdg+mbrVXCmeJMg4gogkJTHtErZbBQQcW6Hb7KfRXKRcGsMyLARHYO7kCzSXcj/pV/aHFq9m7TV7//pH/ohCqcLDD3yaW27/8JqEufvuvfsCklkua69qcbAyWN/12S+sHuMlwnWSVvvWebzX5i0z6jXLe/3AretoX18B3o9f1FTfin9fCTdrB97zNWhvFOiRVQAAIABJREFUEpjW/bQT7Drlq28Hu9Z5OoXHtfu9zw+HOzchaF2D9/h2y0En4l6n7Wu5E9onEGvdc+u3W/mdO/MPOgF7+7naLQztFgGv2wJYLcJzqeIFdK/7xyuXOinsJK9aFn00nXa1DX6GNvsZHt7NhoGfZe+xe1laHEPQF2kW6vR09VOp1NHry4RDfUzNNrj8hpto2gYbN91MKpXiuZe+wtSBlwmHRJp6DZ8apVRskk7FqDWnUVUfRlNDVnXGT1d5zy98kJnFMfy+Ji8+8wButQfDbJJIJNCbNpqmYTZWyoY2bZEt172ZjdvfTbq7waf/5AOkpG5cdxZckwMvzRFPRNi8I0w8EWF5eYn52SbFZRFZ8iOgoggaqqoiyStFQ/x+P45sUULnK998meMnCgiOTSQawu8LU6mUSKSCzI8/yOP//heY8w6JPUc4uDdPiCHKhSb1SpNqoUIkHMTQKqzr2YQv4KCGwJYkpvaXqJYaCI6GY1k4jkVmpJtGyWXi9AyDmRFmshOkBwVspUpPbAflUp78vEqhOsFrXrsBOaRz4sgSESWD7Va56Q238uwzB3GlHIIto0oRqpUGVb2KKdUZzqxHbzqMnZrC7/ej+RT0WhVNCZFIpJifn6NZl7DdKqOb+3CQqDYXscw6ghNlZnaKd7zzTRw5OMt8boyrX7MNRB3XlsnO1qguO9RrOjYuakBH8UlElI0YZo1ApAliGVmBhTmd6197G2OnJiiVl1mcyREM+VBUaOp1REFGb0IsoWGaDRoNk+KyQWYoSb1soogajVqFVGolEmBmbpotO0YRBZnB4WHO7IdSdZLF3DRDwz1YRpTc0gI333QNDz/9IJFElC/+0yzTs6dArBANLhINg+gUqNSWMK0qy8XTIDYYzUAooiBKNoXCMkeOHKO7t4d4XKOrW8WnqIiiTNUtIjZ1tiae+6lg0cdSQdfvF1bBpxWOdTF/ttd03BpE249Z69jW8Xd99gvnacSdBvn2floTi8996uMX9AdrM7Nb+9aSi5lxK/Uq99179+r3dtBdK3691bZTvHbruIuxv739rUV+88paLPSLsfY7uS0uRsz7QZ6rt5+1rudSv3uvr/0ZtFtlvLyItX7XFpB3ysboncS272vJfzkWvWM2iMp+qotLPH3mW5xILpFKhNnYu4vi4iLLxTK1nILtTGLqMnXBRnIFHn/0fgYGBwn602zf9DbqhQZ6rcz64Q3k8iCIARBdCsUcTaNOMKCiiEHq1TpX7t7G0098HUesUq+VGUj3M9fwoagSobCGiEStahD2J5iZnUcNhTCbVQTZRFVV8otlBoYzvLz/DNt3jXDjDe/CZolw92EmT9XxSVEaZRPZDaKJQRwHLMNCU0RwwDZXwvwcx2W5XGF2ZolQMEk0HCC3PIeihvH7gzQqRe77+7/l0AvfJQRcMajSKEIg6EOv6MhWgLAsUZ0vEF6nMTdZQvXp9K9LoQsmVl1haX6ecDiMLIKmacxNZjEbMgEtQKNRI51OIwt10l1h9IqJJocxjCo7d23CH1AYnygguikUVaCnq4dHH3sISQghyDXsuo+qm0fz+chkMiA76E0bny9ILBbHH1BRVZmqIxKNRpFlgXJ1maAcJxoMY1QtbNFCsDWS8QTTUzlGRzcwMTFBuaQTj8col+pkelLMziwAoARdRgaGmZyY5oqrdjKXnaaQrWJZOuGYH9vVqZRqbBjdxoljs9i2iG5UyfSFqNVqCKJMOtWNJMnMzS4CDrZjkkgkaFQLNKsmtm0TjwSwbZPZ+SwD3d3EfHEmTk0wvGGQeqNEpifN0SfGyPSkqJTyuIDPp/DUd5/HtR3iET8jg5+iq9tEtDVefPIQubrF3oNPks74iSdV0j0OXZkAw30h5udnUVSB/nSIzbcPUijKyKJFsz5HxVzhpFQsGX25+JN8XX8gsUyX9VdsAloa7SfPy0jWbmaF832uDz/wad57x92r+9pDuDqB0dU3bznPd95eSMUr7aAfDoQuGMgvBkKdAKJ9/WJy3713X6CZdxIvC/5i4WTtboO1ANJrOn8lcPe27/T9lfzcrTat6/Fq4e0TGm/btYh1cCH5r5PFohOwt08E1vrdvJYFbz9rlattaeJeDdyr4XvB3vv//KNM4PSqBXhBMkkHN3JmYpzhjQNooZMcfHEWRVa5/baf4+Dew8iySiDchRYb5da3vIvTY8coL51iuZxj6syTPPZgnQ/d8fv86afezemJU+SXS8hCF826iM/fQJKi1IwIG9ZvxhKCnBx/if6BXhYXoS++ncKiQLrLoV4vU8w3cMwQihQhHEqwsFxE04Ic2f8st7zvQyyNl3nPmz/EIw/9MdddeyPjczmachl/sElUUKgXBBYKNfSmSjgUxbEc6vUKoUgQyzGxzCaKKiEpIrrZJNPdh94ERIO5uTzpVAzJJ6I3dQbSCls2BChN9lIvL9Ad2YHRXWZpyiA7MY9twLqBHnzxBLFwkkJVoDA3TaU4gyNLKJUw8VCCQEgBSaS7q4d6pc7keKscqo7o+okH04wdOcJAJk0uW0MLllku5AmGNnDDNR8gHk/z+OOfp7cvwdLSApqikujqZu4YLFZmyWdn0FSF0cGtLOVOU600GR4eod5Yplw3CAX6V3IGSCI9PT3MT08jyV0YyzWiXSrBQBRFCpFKimR6osRTEs3aMtWKillL8Oi/HyIaDTK8ro+Z0jQzM5Ns2riRw/v2gWAT8K/ksD+87yj9fevJL+vEVBHX0Dh14hibt/ewmDuNbbv0ZAaZmpok09NFOAamWSUWC1MqNFGVMKJtkYj4yBVnMU2T0S0bUVyTXNGiOzOAXjepFavcdOMG8qUBsrN5ZqaLXHZNF4VcCVUSMfINBDPPseefQRIWGRqI8N/ebCHh8MZ3Xw40kLBokAWW0XFw4rBYLDGfzyMUTdJiN4omE4gEkJQAAHLJRFKTwOxP8I29dJGVFUJguwkZzs9W1hpYW0Qzb2KT++69mzvv/BR/+onf9mitFw7o7QSsTuDRLl6gaxHr7vrsF1YTungnEe3FSF4J3L1tLiZecGr3Y7cfvwJKne/B22atbV5zc6pny2qq2k5kwk7+9Ivde3ubTvvOTU7ObW+vaNe+3vke1rZUtLatxZxfy33hXW8lHmqfEHiPbYF6PBpedcF4y8d2Ysi3A/qPMlHTq9ZEr4V9rtQrMTKiYlpNHD1Cf38/szMlNm28imSmi6effgq75NC/cSOVqkU0aFCqHmN0w2sYnzSYWnyIwXUaXX0hfIoP2ZV57junUd0Yqf4gPi2MZfhZWlpGDkwhaGk0SSYcDrC4NE8gqjE/lkNTYlh6iMGBYRRV4szJE6BpJDNdTE+P86E/fJTB3gaf/fi7EOoqobjI7ivvRNEWOXHiefRykVMHc0jISKJ/xS1gNFE1qAs2iqIgisJKXW9Lx6/5mKvW+Mu/f55a0yUR8+NTfSjhAJZd4mtf/H1yE1/n9MslbrvlzTy1/2HkpkphRkZTAxTLFQJhH4lkEN2eoboUIBBU6B/p5sSZabp9YZp6FcknIMhBQGb82Gm6uteRy+VYt6ELvZ5H9QWQglApVSnO22zdeRm5wjS1isumbTuR/Qsc2zeLz+/S3dWPJIYoVs5g5TV0tUzVKpGKZGjkBWynSSyaZGZmhs1b11OvV6hUqoTCGvPzi0TDGQyrhNn0053p5cTU95HFEIloD8GQD9WnEwgbTI/r2LqMYwsUy1nWj/aSykhUSzECWoiluXluvfUaevtSfPnvH+TkyeP8v5/5M+65569IJBI0GwLT0xP09vaSzWYp5psEg0EEQcByy0SiGqrPZGBggGgkxb9943l8ch+us0CyO4ig2ZQqVSQ5gCsXiYW6KC3p7NyyjWefe4Z4uBcBBctuUizPs2nrLkqlKRKJAk88+jm+8q9f4q23DxOUFKr1OlOLNQo1k/kzL5BIpEilUiSTKVxHIBReRhSCNBsrpW2DYQmzWEXXdZA1dFvHMJo4wSB23eby4ZM/FSb6UDTghiPieQOjF3xhbd94u9/Wq7l6/bZrySuZ09uB+a7PfoHBnp7VhDNwLld7y0Wwlm+3k9be2u5NhuKVVjhcexhYJ7P7pZy3032udV2t75dipu80gbmUScRaQNpO6Gvt75Rg55bbP8y993xy9ffxFsfpBN6d+mzd38XEazXo1NZ7zx+76zPcc89HzgPzdg2+5e65FGkH/V999/v+axWbkZDYNjBKTOslKPUQUENUihVcq8Hk6QM8/chDaLbL4Egv0ZiPdE+Y4R03UajEMHQ/zeoJfv49N+K3bOZOT0A5xRPfOk1vaiMDAxsp5UROHzUpLKpgB5DcDFZNRZR0lhYWCGohqrllgsEhUsl19PYMsP/gKcanCwSCYRSfQq1awCcJfOEv3opZ2ks6HiUSEbli5zVQaCD7bc5MPU8tfwJRjmNKEsGQRm5hDlybQs2guytJo9GgVqqT8askHANNifCed/wSmiAxGIug1AyKdVhYLhOPxRk7dZTciwppdQNHTxcJSn2UF1cmak0jjz9gUCnNUcwVKC/KOK7F4nyZ6VNVUuoAC+UGczmLRiXCwniO2ZPjvO71P49ebxAJaeTma+h2jImpEun4OhqNBuu3JZibniESaRAIFDm+7xjf/bdjOHWT4nyBxewU+eUpygWBoa0JXKdJTyxJuTBHz7BAKClz4vQU/sAwpXoBwVfDMG2q+Tp3/MwdTM+dxidFcS2TudkFIsEBNmwaJYCDJkvUGi6uFEELlxkcSSPKKnYjgt1IMHawTCGb50/++G66BlTe/o7bqJcqLM3muO2NN/H8sw9RKU+hSHVcu841V11Gf2+GRCxCJC4Tior0DcYJBoO4joqFAE6ap544SUDz09OvE4pEKCzX0YigWH40W6U/voH1/Rsx7QIv7N2LbUWR1BqCk2Igcy2KDwS1jC8QoVSBsnmQX3z7ldh6k7HsIgs1G13XCaDz+uuv5ubr9rBlU4JgsEQi0UQRRES3jiTVsJwSC0tZTjeWmXWazFsmi7qMrnUzmfNxdH5tjfTVKO3s5tbg3G5ib5nuvQVQ4EKylTeBCqxtBm/3o3q1Ou91teTeez7JVDZ7QZKX1jnb76ldU203+Xqvfa3ra93LWuDeaVsnbby1tNdZb3227qUdEJ9/7NiaxWVaEQSdQLt9UtE698UmFO3Pr3176zruvPNTpHqkVQBt9d2er99bBnetPr39rqWtrzURaO/P+xzuvPNTHdnw771jxdp0sfwHFyu09BMh2QmC8CXgdmDRdd3tZ7fdDdwJLJ1t9ruu6z54dt/HgF9ipY7Gb7qu+/DF+lc01V23q4toWsCwDJoNk4A/jiQqKHKAudkcgUAQW3RRNY1qXWfb9ssZHn4DL+59iorxGKHwHL09KSoli/rSBvbsuJ6Hv/0t/H4NQRbYs+t6SuUGsWSAyewhLtuT5PkXHyUW2YDeFKnUisjmIHPT86QiXfQMjZLq6uLhb99Hz8gAumlQL5dpqDo7t2/k8L5neMutb+bo8TM0K3E2X7mdowe/T2N2GkfbSF93iL3PPs9ATy/Ly8t09/Xi79rDL//qb3B87ARf/MKnWD8yQGgoxeWvvYnekV2EA35cyyaj9NK0HHyqzvEX7uefv/JJ4vEBdl9xOeNj3yI3c4bsmQhLuSzBoI9Mppf8cgVF0ahVG8iySiFfZMeOHRw4+SKqqtKVSeKPiIyMDLG0lOf0gTmCwRBNp0xA6qJSKZHJdNHU68TjMY4cmGD9xjjVap3FbJOR9UOcOX2Q/oFuZE2hXKmi+cPUCgqO26ShF+jpTaOqIqVak6a5yMhoN47eTSLWxze/9u+MDvUwM5NlcP0gsqhgWw6NpoMtNImnglx31QZe2HuQ0Y1bOH74MGFFYnE5iISKKNg4rs7tt9/Al//pH+jKxHnLW2/m6/feRzwS5aa3v5716zfwv/78SyhikvnsMumkSrNhI4katiXij6zEmS8sLNDV1YWiKExkT/KW297ASy+9gFFzUKQIji0hiqDrTUzTRPNJpDM9zM3Os2V7L9978jCxSAZVFNh9dZCtW/bw5Xse5s3vSvA/fue/E03uo5w/RVAexBdS0B2YnJymqdcY6OlCDuo09SrNZgPTcGg2XHTZplqvYZ0N/7RsG9WREUV55XoEH64DMU1AVVWu3njsP6zB/2e/1wCKKrmpbv+aJt1OmqBXc/NugwtJaN59XrmYhaA9i1v7vnaNutP5OhH3PnbXZ86LnW/dx8UY9C2N1Es+vBgprNP2ds37Ylo8rK1pd9LSvf209rWf82KTn9b3du3ce57Weqdysa117//DK13fWn2uJWtp717rxtU3b1mdcLTXHfCa6lvSybfeDt5rsfB/WA3+PwLw1wNV4O/aBoKq67qfamu7Ffgn4CqgF3gM2Oi67ppqhz8YdN96x/Uslo5jOzCfLeFXUxSLRVKpbuazORRFITO4k2gkwcGDB7n66teQGEhTKM0yu/gAqYTM5KkaI0NDvPz9OlghRtalWVjI4jiwmCty+dVXMj43wwc++H4OHvwahp3niYf2c9VlN+LzKxzaf4y+TB8njp3isitfwwsvvcjv/cGneezpp0imU8iuRK5kcustr0cVq/zO736My6+8hu17trP78jciNS0OPvM4e25+C4sTJ/jDu+6iKxYjGglx6vBhfuGu3yKVGSXdt4doJI1t25iNKqbjUq5UiIZ8mKZBqDuKT/WTjIbQazP4kgGMKiycOsnH/set3PKma3n5kUOYZpNwOMzs7DzN+kpFtHA4iKwIhEIBHNdA9cnImoAtNfCFVTS/yvTJBWpzQXxalFi3RjVfBFdkcTHHQP8ghmHhWAZTk3OMjo6QTPsplUoYuku93kQ3LTJ9GRZyCwQ0H/6ASCgiEY74MMwq+RJ0pQeZzy6xkDvDZVdsZOfW7dTLNd79rvfw+f/9BfY+P0koFEaTNfKFJQyjyQff/7N85R/uJxiIUV+usb6vj4W6wdTkMQaH4qTSMfRmjfVbt1DTq+h6g6GuAcymyVRumdm5abq7U8xlJxheN8SpI1nCoRT1mk4hXyfdpVKv1wkGgxiGsZI8SRW4+eYrQDB47qmXUKUuKtUiAiqypBIIqlTrS8wvVPBpIYIRm1rVoFGDwcwIO/eMsPelfVz92hF+++Mr71dXvIeQHESgiY6ObhuILhQqOQTRQg6L1OoVBEHAdWSWl6pE/WFCoRAN08BxHDS/j1KhiGFY1Gs6oWAMy7KwHBPTNHnTzjM/CoD/T32vYcVEf/M7t10wqHcCGS+4egHPCw6dtDEvIcubLMabDMULyK2B3Mu0b0lr0G354FsAXalXV7PcTWWzHcPygI5gfinJbir1Kr/9/v/jgkQwa4F7J+kUy/5Kk4WLEdIudq7WMV6LwXvvuHuVNNjeb4vX8Epug7UIhN7/n04Z/tbyt7dbfy7m0mh/Lt7/uxYxbq3fca2MdJ2Y9N7tneTHbqJ3XfcpIH+Jzd8O3Oe6ru667jgwxsqgcFExzCbFYhlJ0rBNFb3pYJkCPi2ELCtIosrb3/ZOCsUGN7zhrdhCgMe/8y327X2GQq7G+LFF6kWJ3ILFFVdcwdZt65mZnSQcjnPV5dfh92vkcots3LSFJ596iRtv+SXSmV1ce+1tKGoYvdqgq6eXWrPB0LpBDh0/QCQZ5XsvvsQ73/dzXPm6N/Dam2/jtre9F9MN8Ojjz/HGN72Det3himtvolJ38Idj/Mu3HqRpS2T6N7DrqtdhyD727T1AJNFNJrmZmG8ApxGktGgxeWKBJXTqfgdfjx+1WyYyFCQsdKM4Kk8/+SCz889w6Pjf8cjjf8Rc9h94w01xBHWCarVELB4iEg2gKArhcJhoLITPL6GbRfxBh2J5kcXcAkv5HLFYlFKuTCSQQLbD+LUA0WCQar6O2TBRRImerjRGs4Hg2jQbRXq6hhg7OYEouGiqSqPRwOfzIwgSsqTQ3d2N4zYIBFVkBZLJOJqmMD2TZXGhwMz0Em++/UZGRnt48eVn8AckJiZPkivMgyjgCi6SKqEoCrKocN8/fotGDUTZz/TCPI4MM4sTbNk9TDglkukPU67nWcgtUas3KRSrjI1NcejwGLWii2sEKOSKxKIateoioVAERVEQBIFgyEelUkOWVcrl6mqhIVXx851Hn+fev3sUnCC5XA5JVGg2LAzDplE3qdUaiKJMKBQhv1xCEARMS2dpsUgqY/EHf/x+/uVbT6GoDkPpDIIQJLtcwUBnLHuS5cIyDaOJg4vi89OoNXAsGxEBHBtVETFqJZqVArVijvLyAsvzM6iahKKCqrm4Qh1RNinWSiyXL/VVvLj8ON7rS5U77vzoahwysJp6FM6VPG3t95Lz2jV7bwiSF3y8ZtwWCLYY+rfc/mHee8fdq4P4ww98ehVovWlrWxrkYE/Pat9egPAO4t745k6gMJXNUqlXmcpmmcpmKZQq5/V5MWBttWktnUCxE5ivBWadpJNlw9uHF9xbv1OhVFmTT/GJ3/pgx3tomcE7JRTyLt7r6hQR4b0ub9t2F4TXlXKx+23tv+POj64e7y02BOd+w0tJN7tWkiWvPPzAp39ycfCCIAwDD7TN9H8RKAMvAR92XbcgCMLngOdc1/2Hs+2+CHzbdd2vtfX3y8AvAyiqcvmt770a3SmTzZawGnEazTqCIBAKhahWavT395OrF9CdCL/0y79G3XVYOHESTZaZnXsGwzpDs6Zz4riAadTp6YkS0AIIdpr5uUVi3WEK1SKbd17Btt2vQ0xsQWESa2mWmbGTHHjh2/RuupFIMISIwO4rrmR080Ym8zUarkskFic/XyCciOCYNRJ+k/v+9ku87W3vwAlvxbR0tgx28T/v+h3e+ku/R3c4RKVZIRHyoZeLfPruu/k/f/8D+MMBBH+FQHARVbGJGAU02SURBVEwSCRivONDf8DJQw2G+lWqVYNbbttKdXmJP7/rQ/iELr7+wJP8X7//TQYG+imXK9iWjN4QkRQDx9UZGu7CdpvU6kVsNwWutWINqNjMTGVxzBBBpYltWyznm3RlBiiVStiOya5dO5icnCCZ8lPJpTCtJoMjClOTC0TTNoLrY35xmb7BHmYXJggpQywvL9HX30OlUsZxLNJDaXZd3ovpLvDN+w+ycXQrpl4hGUqTSqZ56tmXCAZSuK6LIgpguviVAIvzsziqRN+6PvKVWW68/nIeeex5dl8+yOL8KUDGryQ4c7LI7MIy173mKl5+9jCJcAJZMVHVAI4NPX0JpqbO4Kh+otE4jUaDXC7HYG8f5XKZcDhMLpejXq+DpCFYYcKhBLZRoWnO4/P5KBUswqEYomTT3eunUGxSLNTo6vFRrZaJRtLU6uMElSHWbYjz0U9DUr2GdFInZz6LxhC6brBQn2EoPUyzotO0LBS/D8moIqsWiiLS1Ov4fUFK9SqFQgFRlnAFgVqjTlT1IwgCsdiK9q4oGtVyBdM0uWJw+kdCsvtRv9ft77bmUy6/9b27gLW1KK+0+9/bU7fCxTXYdrOn1wrQkpZW7jWttledu+/eu88jSrVyxL/3jrvPq/teqVf53Kc+vlpBrpN4Af6eez5ygTUBzrGv260DrefVkk733sk030leiRznXX8lSwtcSMxr39Z+Du/1r+UKWSvpTafncbFr7nTfF3sm7c+n9dnuZvGC+Q9SLGktjb2TWf/HbqKHjgNBN5BjJYvsHwE9rut+4AcZCFoSCIbc0d2DFMoSgWCaarPCr3zkd9kweiVPfOMfOT7zErtecxWuG+Xlw8fZtG0Xmb5tuE4Zw7ZIpJKYxSpGtc7Rg1/n6MEDnDx+gkQ4iCJAuH8Tc4U823fv4d0//yFKNVDVFJILglEmHJT568//P/zmR/+MA4f3U52a4OrXX8lcKUdXM0wgqCDJDoJoQmgZWQRVruFTaiiySzg+wZmJl9E0h1qlRNAXB0vHbNaIhQ1ct0Iy4RL3bUb+/7h77wDJzurM+3dzqtg5T08O0iQhEAIkEYQAk9YGG4wXG9tgm7W9NsFe8BpWH7ZhyXhtw7fAZ/DagDA2GINBApEEKCAJjUYzmjw9nVN15bo57B81NaopVfeMQHwIzj/dXfXe9966fes97znnOc8jS0hygiBEpFIpqvUqaTOFnhhYWpaV6io3/ad/gaCfIIgwEp3Z+QUGRiR6xiNETaZSCdk1fpBT5+aRFZ2pkzPs37WD4ydPkhnWGN6qkk3nOfz9VTYNDyGgc+LYDDt3bWZmdoqd+3Zy8tAMgRMj6xaiAvgieiJzdvYMuXw/ghhjaHk8L8IwZRI8rr1+Pw8dvRtJNPBdFUFqYJhjrC4VqJTKaIpEylKxRgLUnIKVzrB2IsQthwxM5DBTErfddj/7r9xN/4DK4nwF35cRNRsrlaPecLnppVdyyz/dxk2/uItySeDoXac5cOAAhx86xMBAL719WWQhRf9gnrMLJ7nqKU8mnc3xf977L1hWCiFSWJhbIomgd7iXVNpgrbhMJmtRWqnjeQGSqKMoCrZTxTRNwiDG90M0zUBApF5vbi51o8mJICk+9YqPpmmkMgaF0hqKprJjxziNaJXtm7fxh783xtB4E0hnZRQUMSTAxwnWUCQRP3ARIg9BECjV7CY6nqZoUm9vL56zShxBFCVIkowkSazaEbqskdJTBKKI47k06s1r+YX9P36K/if9vYZmiv7AtbsuciItZrcWHWw7mU2ng+7GfNctnXzNjbt55a/d3HXR/dv3ve1CfbxzzstZoC+nV7lznvZNQLu99hUvXNdxtqxbnbo1rhvqvX3MpVDg672+Xs/5epFutw6Hdr749UiJOssm7en2bpmIlgb9ein9jUoZj9U673N7er7b//OxtMF1EzXq9jf86A7+ce2DT5JkufW7IAgfA758/s95YLxt6BiXatoVRHr6JlBUkUMPHGPT5BCHTh+hikycSuid6MNTfDwaDO4DlzyqAAAgAElEQVQaoWe8j1AIyY4q1GoudcqoGYVMTy8v3vI2lhf/hm3hZobyBmdPnSCf2YyVm2D75F4iN0YVdcLiQ6iGRj6nIMsBL3vZfsaFu+jfVaVinGDvRMCKU8KMTQQxJI59wshhvvEfhFGMa1cpuWVEIYKpHEFQJDEVxodGUaSEtKKQ+AL5TAZR1OnJqgSe3pS5FWI0LYUsyORymxBJiJOQhldBlgRufP5Wbv1iieWlInndQksrFCsBub4hIjvBSCROnDiOIOt4UYSRAj0b0DMGvYN5/EaJueV5/IaM6yQ4dgMQCaOAwcF+jh45hlON0GUL17VJif2MT2xi5uxJtuwYZa3ooioxihZTLJXJ9w4gSiq3/tv36R0KKZdXefLB5/L9O79LrNWaqm5JxK4rrqSvxyJJVSjUClh6mtOls/SY/ayuVJFLEc942n4KKy4z51YZHBxheu4UPX0Gguixbf8AM8vH2L13C7qk4ZTq5PJDqCZMbM0yNDjA8WPTbBob5vTUDGZW59Chu5lbmEfSTFQtobhSoqcnRxg2udwFwSSVSmGaBklepFyqEoUCYRhCIhIGIAgSEOM6HppmgBCg6SaKIpIkEVEUACFBEFMqOaQzFg3b5syDc+h9Aqcbs5x8yGDLlieTMZZZqt1FT3orceTghcskKIRxiERTSCmVgp6e9AX9d9ctYBoKnhcgSgK+72BZeXqVfgLHxa77LJdKrJVKyFaOyP/Jic08rt/rNmt3at0cOVwMOurknM9n07zude8731r2aNKV9UhF4JGsQKcwTae1byS6WbfNR8u6zdnttXYHvJ5T6gYKbCnHXaqnvxvgrXWubtFqt+Par7Ezmm239k1be9q8GwCxdWy3skmn4E17xqUdaNl+v9rT+52f50e1zu6CVjmg9cyst2lrt/U2jJ26B52OvfWdeCKl6IeTJFk8//sbgGuSJHmlIAhXAJ/mETDON4DtG4FxhrfuSX773R9mbaHMzu07qNWnSRub8XyJL/2f/5erb9hHqKpM9G5HNxzsxir5vIEleqTSJp6zgqQ2CCMHKTODVy/QkzWxlAZRYJOVSyRiQCLGZPMZCmtlctYgjlemUJnFSOnMzZ/jpC3gxSHDqknVtRHTOtvkLIIYoSgSPT05xtLbEEURRVTQVQNVVQnFOQLfJUkSJEEl9gWwQuI4RkaBWEIUFEQ9JgxDXNdH181mTZs0khCQsnSKtQaKpvOmd/8bZ49u4+TRWaQ4IjtioIoGSzM2PZaBpiWIlsr0uXkGhgZJ9UWkeyIGJnr47ldPM5QZo7xaxa9ZbNrZy/JSAVmWSWVjRCki3TPA6nQFIYZUPkvQCJldWCQ/DP0jMqqWIa6IzM9UURWLaq1MLm9RK4i89Ff2MbFpiA+855NMbtpJseEwObmFB488yJat4yC4rFXmMK009YpPVutjaX6ZTJ/OgYN7WVxcRJFVFDlDpVIh3R8hqg2OHD7Lk5/7DAzN5eH7q4z0pDnxQB0pKyCbC+zYPcDsTAGCQXpTKY4eO8xVTz5AqVhlaXGFvh4LTTZYmCkhxgaBH1GzG4yNj7C6ukoQeFx7zVXMzy1z5vQ8qmIiyyKu2wTbSZJCHCW4ro+kePT2DNCwayRJyOh4Hymz+YUsltcYnRhldW0F24/ID2VYWJriygMWtZkar/+jJ/H061cRwgkCoUYkNNAklTCKEaKmkFIUNaN327aRZRnf9/G9hHw+T6XSQFEUojBBNCOESCAJYxpBgON7ZPQ8di3k2l0nflIR/OP2vQbYtHVL8pb3vBO4OBUOXEhtd1p7WryT9nMj60y1t+xyFs3OvuVLRWrdxrXGrhfttdL83Yhs1otM4dHp7/WcdGtsN4KY1phuPeTtUXxnxNwp39pp6zn/difdHrWv1wXRmaZfT8im8/N0RtyX4+Q3AhGudy0tAGc+m77oubyUdVMs7BQ66rT/3yN4QRA+AzwT6BMEYQ74H8AzBUE4QDOVdw74XYAkSY4KgvDPwMNACPz+pRYBWRQxJYHezeMszp7E9aZZ8j5JLjfETTeuUvaO0pcbYtdEkZ4+nzipkgg1nPJZsmmDmjiDlY8QlRDb7ydWbDJpDc8uYpkCa5GAYYmUSqssLi8T+CFHZk4TxDZOYCMIIMkSV07spFypsqN3M5meEUqhw7ieRlVlRAkEIUFOpgCRIIiouBGJLZDu6cENm7rdhiwSElNr1BGEGFGUSWIREgU5jEmSqCkFGiUE+PRnepBFkYQAQRIp1xt4rs5aqYCgRLgVj7UTHgP9LnGY4LgRpVIdLZfC1FJ4dZ+RLXkGxhRKpTK1QoJm+2halorfYGFhjlrNZs+ePRw/+QB9/Sn0dG+TNlaQGBgd4ttfu52BkWF6x+DgU7dy6vgctTUfQYzI5tKEkU8YxGimwtGHj1Ot1RgaHuXo8SMMjm7G9300Q2Z4dICHHr6fyclNLC2uMTywCafqsO/gPmYXTvHAA/fjui62Xed5L3gJx04eYd/oNn7wwANcsXc3lVKFmdIMUTjI2bPT+GEP+7ZMsFaxOXt8Hkk0cWoOC1PLjI1tZXWxzvJShVx2mGJxBsuMeeazb+CB+x7G9wOCJGBpaQnDMBBFkSNHD9PXO4Qkic32N80knTGoVRvEsU+CgKpJ+EGE4zgEfoQogaoYnDp5GsMwCKKAWJjHDwI8yWM8N8DmzBj1uMTcaoOp2ZibhJ3UhQaSrBK4MbGgEoUBsRcQxwmaphFFEYpkEAYhrh2iqmlkyUQgQJENPMcmcetkzQySqiGEEqomoQsigv74JON+0t9raJYg4OK0eKu+3Q6K61w4W2O7LYDr6ci3z99preioXcimdc6WtS/ana1Q61m3hX69xb/b6xsB4TpR6t3eh87o9dGEMpdCqLfmKCxG3Pbl91/k+DsdbKdzbmf7a3e2TfDf7q7OunPO9vk6eQFa1n7udqBc6/eNNiGdtjH48JENVt/w7ouAj7d9+f0Xkdv8ONYtkl/vub5ce8Iy2e3d25v8+1eux/dCGk4RlDmWlzchyRpqY5mByUHWHI++njyO30BSZBJUAqtMuVimseqwUrQRdJOU0ODc3GLTaesqwyMjZESdJLLJZdOMDI1iaWkkX0ckQE4kJFEncBTWdAfEhEwUUnZKRIZC2vWAGFEU0TSNlaDSRIDHEg3XIwxiPDxkWcV3PSbGhnDsGhmhH1kLESSfRJCaHQG+g6rJaDogBEiSRNUJMHSJtVIZxRzj5JkZ/uTPT+K5Jo1GjYySwy2ZVKpFNJ3zwMM0uWGP+alVqlUYv1Lk6uduxV+L+eE3q5QWaiRSQM9oH3u2bSPw4eiRU+w/uIMHD9+LqKaprzpEfoigSvSa/Zi5FPTVUAyXRgUsr6mqt7S4xoH9V3F26iQRFgk+jh3yqlf+Bl/79iepFGImJjfx8KkjbNk+ipvUUIHB/DjHj8yyZcsk585NIclNBjlVlekfyLF1r8E3v34fz3j6i/CYZ88V2/nat25jYnMGp9RDrT5PtZClUVmir3cAw0ixtFggl+1H0RMkSaCwukzkSciywrU3HOD2279Jykzh1hx6e/sJA4Fjx07Q29tL4EeMjaUACVMb5PCDx9A0jUxOQlE0klhgcXEZQRDJpHMUi1UsM4WsSFgphWq5zMDAALqpcfz0cYZHh2gUVxkaGyDdJzNfXqLiOEhhxC2f+C16Rh/GiRLCWp1M2kQQIwxVQBQhpcoU60UkScLzvKY8sGZSqzZQVR1BkLDMFI16hOe4FJeLuHFMEEdgpWlUA37xmnM/E0x2W3ZsT9754Q8BGzvrzsimffxGEXin44buTrndYV8u6rnbtV7KukXt7ZuWjXq5oXtE394psB7YbaN+70uB3jqvYb0U/XpgvM5zdUbhrWvvplB3OU55Pd6BS4Hw2l+/FMhuPcBeJ4Dxg5/47IVjHwvIbj17PCP4J6yD33dVPvn816/H8SKiKCGKBebnZ0mShDCJiGk+EL7fBDopioJlWeTTOYgTDFUjm0o3x3s+giAgJJxXT4uJw5g4bs4hyQmSJOH7DoIkESQxiSggSgqxHwDgRSGIAoIg0KhXUDSVRDhf9wxjRFHAMDRMS0eWZdYKi2iaduEakyQha6aJk6AZ/YsygR+TCA6KpuLHMQ3bJkyac/lehUSQ6Rl5Et++4z7ee/MZgorVFOExckzPrGKaOpqaagqqZAyq0Qq6oaKZAldeNckd3zrBWO8Yvr9MYGcQIwM/cPnTN7+au+67m4dOniU9oCBrMYfvWiL0JDJWmlzKpFbx2XvVNqReFyud49y5cyi2wlqhiiQp1Ko+SSxhVxMSXNJZlaFRE9MS2LH1qXzzm98miUVSqRRxDIIe4jgeZ4/PMDE8SblcZngiy+LyAv19V5AbKnHNk67mO9++k5GxSTTLJxFivnX7Azzt2iczNzdHyujj3Klldu4ZJk4MZufm2bJ9gsFhi5MPL2I3PHQthevV0XUNNeNTL7qEdZCMCCOt4ZclMlmDlZUCmpLBi338wKEnp6MJaY4fm2LzjkHOzp4hnc2Q0XI01lysdIpGLUQUNFZWl9ixczNnpk4RxzFXXrkH13WZnZ3F8xtk8jlkVSaRbbbu3o2oFEkclX/+9NOROEPRAUmIEMUEWY1IkgCRJlGQIAj4UUylWkfWDWpVl0qlgqJIKFpMWm86i5ZGvO/71J0Q10n4xacVfuYcfMvWIwHprMG3rLM96cexS6VHO8/dbfylFvVu804MD19A0D8W69bz3bJWH383FDpcDKBr2Xrp+3br3FR0s25Ax84yQScTYCcd70bytD+KbbQBWQ9l3y1d3+2etN/DTsKbjayzVHQpidnbvvx+vvjJ+376ILvH02zb5YdHjxEnCaIoIikyQ9k+iBMUWcC0dBRRQs9kEMVmO38cx8iBQBzHKJIEfkTg+RiJQERMHMcEgU8URdSCEF1Xm/XOKMJ3bRRNJvADIqEZFSdhhF9vLroBMYIoIooiVtpEkWQkUSRJEjKZDHEc43kOlVIRP3CR1IhEFJAkCUWEKIrx4wRJlgmIiYOQMEzwwgAxiImSBNv1CcMQWU+QpAQra7BWnaZ/RCWXNbDDNJ4j0rB9RkcHCMMEuxEQxwK1qgcpSCJIQhkxsogDiWq1hmnK2LaNV7dRNZFYinjyM3ZQ9RXuuPcOdu5TiQKFfK6PwPXwwxhdybO25LE2O8Pk9gDf9qgUfaJYxAtCkAREOUGWJRTNQJJECis1FFUkl5lH12WymX4kSeXUySn6xzMkUVPxTtFlUtk0S3NrZPqG8cKYvk1Zjh+do16NmJ5aYnisFz/ySWKZ06dmGRoc4fjRc4wPb6FRb3Du7DRD48PUqxUy+Zg4jFicX2B8fDNxmBD6IUHFo79niDMrU4wODjIyMsidp+5DEPuI45ipqSmGxoeJoqgpXKSZaJpGwy6yd98OqvUaUhhTiSvYDQVQKBQKWGaamekFctl+crkcJ0+eob+/hzgJMU0TVVVRdZWGZ1MsLNA/aOG5MkeOldmx3USTGsRCBIQ4vksYeSzMlQmDGEGScb2Amt2gLzsCqOhyGklqKixint+QJwlRGBIlIZIQY2jKT+ur+pgtiqILKfNui1vLWbaQytBdN3sjIpGNHHI3Z345jvqxlAbaz7XecTW7fkHABB5bT/pG41sZjKZj797+djkqdC17xOFtDKprH9sNL9Btjs7IvZuqXLfztOZtR9tvpHnfAiV2vv7IdT367/VaCFuvt5cINgLadaOebT33l6Mf/7wXvYkvfvJXLzmumz1hI/j9B3qTW79xE0HsESUxURQgJhpxEpJ4HkngA5CoehP9DMiyTD0Km2xwYYiuN1ufsD3COCYmIRCan1eSVOr1KkEQoCgy6YxFECWEoY9hamiyBEICfvM8fhyB2KQ1tZ0qiiAhCQJyIpAfGSYMQ2y7ThC6AMSY+H5zM9H6KekqceLieQ4gNuurikAQBEhiTCaTQpJEiqU6mqlhpQ1WVpdIopivfM7l61+tEIUqjeWmIzWNNIaepVwuEyc+MSn8wEU2XHbus/A8iemTNa69diff+/ZDqEKa0bE+XvWaX+Yb3/ouI1sFTp5Z4KFDs+wc3cny8jL1eo2G73H1k0SKxZi1ChiGgkIfppGlUFghnUmdxw2ENIogKwm6IaOqOiIaRqaOaWT5wd1HuPKK/XhuiO1VsVIGSZJQKK3heR5akCYzMMqpmfv5T6/ZS+2sxanTh+np70MUclhZAUQHQ206VCFRWFlcwXdiNk1sZ6WwSH7ApH9Yp7oiIUsaS4trqJpEKmVSqhWJo4Qtk5OcmzrN5PgYbuCzVqjQ29uL47iU6zUEEZx6A3yZTDqPpEG612KtVMBSNBanlqg3Qnp6erBtG10ziSJAkKhWy0xMDtKwywwODrK6ukQqmycBSrUVZNllaHgSVckw0Ffgjf/tGYxtPtYUiSFCkpubSUXME4YxUQyVeoNEgP6sRaPhUa9XUTURVUsII4koihDPbzYFQcBzXOq1gGfvXfmZiOC379qZfOjvP/qYo+/2hfJSEfdG9lgYxC5FNfp42CPO+GLbqI0NHk27uvWKHRex9q3HfrdRX/h6EWs3p9gN/LdeuyJ075FvXWf7ses51vWAhJdzLd3u3WNB2a93f9o/z+WIyXQC7C7Xfu7EZsLIZ624SLlSo15zadiwvLLI8uoSy/UiVSGgJkeUnQZlp0HNd/GFBNd1iaIIQZaoOg2WSmusunVKvk3dd4njGAFwnTLZjMHwcJ5sVsNuFKlU1wh9m1pxiZXlKVYXzhJGLnHiI8lNJ2aYCrJg4EciNT+h4AacWy4ws7rGXLHEYrnGUqXOcnGFQmWNil0llhIEVcRDoOaHhJJCour4gogXROi6jqGp+HYVt1YmbYlk0yZ23abX0BjPW/zqb2zF6nOI5DpWJkXKyhAEAX5QY2xTir5BEU0PSFs62VSaWilifrqKKGgcOvQQY6MTqKqK7/u88b++m5WFRXqtIb7zhSlG0mNMnzvKyITC4ATsPiDwh3/26+y6aitDk5sY2TRIGCVUl1fA8XHWqsT1AEtIEUUJ6YxOJqsRhDbVWoXQMzl9cpHxsUlKpQq2baMKOtVSA1GR6OlLc83TDzKzuMStX/srtARS9m7mpx0sswfTyDN9xuXo4Xn6+gZYXFgj8EVEDJJY4Ird2/Adm+HBEVJ6jqX5Mmura5w5dZZ8tge77mDXHXRJQTcUbL8CoUPkNjhz9gSZTJalpWXOTZ9hZXUFURTp6x3GMEwajQaOHbO8VMQyM0yMb0ZVVZ570zNJZyWGR7M0nAJ+0CCdlcj3GhSLq+RzvRw/dqqZ7fEjHMfDc2M2j+6gMO8yMAK2PcShBwKwNLA0ZN3AkA0sQSfy1wj9VYS4REr3MFWPWmMG0wwZ6M+TTWcIPQE1idCFhJQiIUcBShwShzGKpP60v7KXbVEcP8q5d7J6bSS+0T5+I1tvse02dzu4ab2xj5d1nme9KG6jenTLwXQCyd7xx69dlwIYHtkEXHPj7otaylrzdUbfrTGt1zvn7Zb2bjn0t779gxeuq71lrgWAa73ebu3nbf+s3TIF62062q91o7m6tel1s/bP1z536/XLyYJ0Pj/tgLrO5+HxlIt9wjr4mISKb7NSq7JcLbNaqyLJMqqhoxo6tcCl1Kgh6yqxCF4UUK5XcYoVGsUKbqlK7PrIUYKuqBiKiiYrmKJCSlIxdJVatcTy4iLVyhqmoSEICSlLZ7A/z+jgIFsmRtF1FUkScJwGhcIKy8uLuK6H4/n4YYiXxBSrNUq1Bg0vwAlCnCBEUiMEOSARPRy/Qqm6TLlWpVKvYXsutudSrlWRBRFJAEkAVZEwNRXHLuC6ZVynhCJ6ZDMym7fkyOZ1+vvzxEmIqmpkMhkEMWF5ZZ5avU42G+D4a6wV13BsiL0sIOLYCWtra6TTaWZn59iza5RszuP/+9//Sv+Ayrbtg0xuziFKHps2D/C06w/wta/fz/fvPINtw+Gjc8SCRxIHjAwPkbIsQj+iUbMJ/KjZ5hU3+8L7+3upVlw01UIQJMKgKYfrOA6SpBAEAY5n4zgOr3rVDXzuM1/iIx/573zuH/8V1xZZXqxy6sQMlWJEyhygsFKjUvJxbYHAF/FcKKwusmXrJFNT06wVyuRSeQBUVaXRaFCv15mcnGyWRxSJpaUFBvr7yGUyZLNZJicnUVUV09TZtGkMx3apVGr05Jupez9oMLFpmFRaY+rccfygwYkTx6jXyxiGwu49O+jtzeMHdfoHsgRBQD6fJ53O4Ps+uVyOkZERRkZGmJteRkpkllbPcfL0DB/96Beam9EgIAxDoiAm9CMUKUJVBHRNQFOBxCeTzuG6IdPnFjlzep5zU8tEvgdRiJjE+I6N26gThs3y08+KRVF0SQfeaZfrYC8Vcbcvqp1jf1Qn3oqY22lFNwIBdmYi8tl0V4cFP5qSHDzC8NeurNZSWmvPGFwOKK39/fUi/87jrrlxNzOLi7z9Qx+/6Fzdatudx7coatdLnbc71E5n3f5et6i+/fV22uPW693GdX7e9k1Pa557bj/WlXq3Za1nrf1n65m75VM3/1i97hvZE7YGH0cJcSSgK010tGGINOo+oRMShmGzZSkICNwmCllVVTRdQR9MNwFzgY0gxISRi90oN7nNZZVGIKIKGoIYkj9PLGLbdlNwRJcII59iNSCOQxJiPFcmEQX8MMD1m6IfGVNA1jUkWSTwPUQiBFEgiJtfXtu26cuNIwgSggiyDLJmMJzPosr9iHEEcUgUeoiaSBg6uM4a/X19qIqKJJtoqsT4xHbq9Tq57AC//ye30zcywFpxicA1oLeA3RCplhJSGQXTSKPLFj25IvsPPJ2V8iyvfPVujpz6Ai940ZP450/MM3OmgtEDg5PbmZo5xvhknsK8hyQtkig6tWiJbcN5hJLJcnGFrJli9tg0Nz33aRx7+CS+KlFq1LFtG9NMUW80kBQdRclQWKmSJDqCMsXcvMfeK3fju3VGB0dYmFsklR6kVJln/7XjXHPdk7nv/rv4rVdfxd9/+Dt86lNHeOtbXsJn/uFuNMEickSG+xLCapUHvhkzNB5iZfOcPVVHs1LkRsc4cfYkg0O9hFFEz+AmyqsCqhzg+lW2bhujYZcxVJ3ATxgZztHTn2PLth38xQf+K896+m+TTQ/w1KsP8rWv3cXOXZvpHzQZGhzFj4pEsYoXVkEM6Rvux6lEaJrC6opAQfBZWJjhqdfuZWUlQpP6GBwqctddP2RseJxf+sXr+Pev3IbtwZZdY4yMyJw5VSEJDPxKhcltY+QCG0mSkFQJURSI44SlhSLpdBYniPADiJEIHJl8JkUu3czWLC8vs1pz8YMERZWwHQVRkBnozVAP7J/2V/ZHtm7pyssBH3WzS6VA13Pi7Zrd69l6Y7rVU9fDFnTW+lt98N0U2NqtPd3dCVYD1kW4b2SdKf71xrdHr61zdDtXU9b34xcRtKyH5m868Is/W+v39lp683Ne/H4nD33rXnz8s//Ba1/xQuBiIOIj96p7NqQz6t9o09K5GWgft14mYD0sRjvWpBu5zY/y/HfaE7YGv22Xkfz1J3ciK80apShCTyZzoZ7daDSa9XNNRpIEJLnZbmWfRyJLkoiu6wCIkk4URSSxQKPhkCSA2GQ1k+UmBagoisRBiCiK51nKYkQJgkQnSmJiIBGaPbzFWpEwjFGUprpYuj9H4PvUSxUMRcXUDeLAJp1OAzFJ0iQscWoVothDVURkWUaWFRQlRRAHVJ0GUaIShjH9/RqBp7MyZ3LiSIWZ6SXuPXwKP1YJGmPs3TFKJTiBW9OYOx0Rug59PYMUKzZmtsZvvfblZDbfit/oZeZEkXyfwK1fmuLMaXjVq57PXQ9+l7S2FVk7jpnspLC6zC2fuoF3/e3XSeIMT3v6dr7zjYRP/eM3UZM++nrSlNbKyLqJKArNbEDGaLZ04fEnb7+JqXPH+OIt0/Snn8nM9HdRRYskFpAVkcnNwxx66AibJ7czv7yK49mEYcCzXmgheCZDqafylS/cRqZ/ENf1KRWrZHMpRDHG8zwa9RhVSxPEHpt3pXAaBiNDAps399M/MMHnPv9tcpaG5zkEocvAQA9h5ONUZMbHJ1goHiGdNxFQ8RohxfIiz37WjZw+NU/NW2Hrts2cOHGUqTNr9ObHyCmDLK1NESUepqVi6Gnskofrukxu2sJacZWFhQVe+rKns/dgP3/1329l775dNMKjjA0c4Navf4/JzZtJZQ0Wp1fpHZaJxTpX7byWnqGT/Jc3N1vhwjBs1t8VBc20WC2s4foBupGlbjsosUSSNEGjstQsrwiigR+GRITolo7v+8hKgiJrXL/58aGq/UlbO9HNE83aI6n2BXajBXejxRvWxw6018pb1lmb7ow+WzX2Toazzha0dnuE7a8TgNe9nt1uLVT+eqj99TYU7dey3rGd1gmKa92D9awTmd+6X90IdC6FE2g/f2uOSxH8dAMStjvrlv24vezwBKGqfTxNFEV0vRmVC0JCHMcUCivIsnxeKa3ZQy3JCbZdx/ddqpUGm8YniaImcUySJMRxgh8EuK4LiARRiChIpFIZ6vU6giiSCAKKpiMqCXEcIkRc6M92as2FOBEE6q5NkiRYmdT5xVnENE1Wl5aQZZl8Loul6oiCgFsvoMpyc8MQxiRhDVUDVWsC/4IgYa1oI2kLRDFESQrbTXDsiDu/JnPi2EPMnqsRhykG+kfYs+2pbNm5hc99+oecOjvF5is0jj40jRgMEngOV+zZwTe+dxc98lZ86X5GtswzlruBY8oy116/m107jnPy5CxPe/o2pgvHkaMsm7Zcyf3fm+U1v/VK5qp3cdWTdiKQobdHRNVdnnrtDkqLGR4++kN6c32sFFfYtGkcUcqfB3qB7YTYZZP+7H4G+lyOH/syhiTgBzAytB3XrXPq7GkGx22yfVUqbsi+rXs5cuPlhEEAACAASURBVOQIWnI1dnQ/itGgr3eEQrVCEjc3UUkSEScRnu8QBRYeEX3DBvV6HQmFcrGMP5xiaWEOu97Ara2RTqdoNGqcmy6Ty2WRyHLnnXeyY98QsmRw/NgUupyifyjPrbd9hcDV2XlggrvuuRtdl3neC57Ll//9GySGQLVYZXCoB0GKCfCZOjvH6NgAtXqFgwcP4rkB99x5hDvuWOOap17P/fcdZmJyjJue/1z6hnr418/dytKSRE9mEMctMDw0SijOsHmbgOtHZLI9TcCm3eSgrxYKlCo1wiAGSScKm+WiOALXDfD8iGq1QSYvoRkiMQKyEuCFDkEgUVh9fNTknqj2eEU0G80Pj468Lyey74bAX29Bb3UPtKPY27XuOyVwW2NajqV1HyaGhzsEct5/QZq13Z73ojddQOu3X+N6LG/dHHYL6d8tnd95fLdo/bE693ZbD1gHF+MP2jcsnfrxLVxA+/j1ztdC2zcV51570XHNe3gxILJzA9atg6N9M7fec7TR8/1To6r9SdqO3Uby4X/cgm40a+BJklyQ+RTPt6clSYKuKYRhgO/7zQguiPF9H0lUEAQFAYl0X7qpEoZI4EeAgO175zcROo7jYJomru8higJh1EzFC0KCRLPHXpQlvDjEsiwWZwrouoiqgKkJxL4PgoCmaaRzWVRdw3NsbNsFBCRROy8vqlO1K3iuTBAYVCsah+5fQBITZDEmm+lHFmUOPrNEvscEqY4gRFSrdQaHetHTMTOzC4yOPJ03vf5uVuY9Vs/AtU/exo3PfgYf+Mit+PE5PvLx1yNKUxx+8BAv/QWDwYFBisEKQaBw61dP8E8fG2bzpq18+xvf461/+husVr7Ds268jq0HC2SwWF1q8PBMDw89sMy//MODlIsFBgeHufapB5mbW6RUrHHyxDS6ZuLVYl74kuvo7+/n07d8knd/8HWMj2zmv/zOeykVU2SzGVZKZ7n22n08cOhedh7I82u/fS3LhbP83Z9PYVgwvimP63pMn9BJkub/OpvTiWKf0JdJYp1Mr8ymHQqNWoaYGRamFhkb3sLyShFR1ymv1TEtHUGIyeYsZFmksFxEV7N41OjpHWXq7AI5XcBKmXieR7FYJNFMRkb7CaICZ86ucMP1VzF7fIltk5s5fPgwajaFmrc4dc80+/bvZG5uBk0zkCWLk2fO8upfv4lbPvM1DLWZIXjydVt5zrOfwbe/cS8PHjqB76+xaeswjXKGT906QSo9jes0+eabvPhCk1UvcTFSafwgxHYCohBUy0DTDOxGU/99ZmaO3t4sSZLgBiFBGBIlMTlVRVFUnrln7ucqgn88Ip/HapeK1OHy8ACXy13fPne7al17NNqKJIELGvOdRD7AheNaG4JW9N3JCthyOJ3CMMCjnH47Av7tH/o4+WyaN/zmK4CLywatDEK3DAGsHzW3/l5PTGcjRH03zMB6KPfO8sZ6wjzdPlf7vVjv8/3Bm/8C6C4scynehNb/ozNjBI88Lz93RDdX7rOST94yTqq3l1gAN4yI3OhC/T0MQzKZDJVSHctMIwgSqVQaIgk/DllxS/i+gyQkKJJMo9Fo8sUrCr7vY3tN595M50tYlkWU1NFEGVVQCBJYLq6RV/IgBFgp+TxCP6G/x4JEQVMNbKdKw2s6/qlzs+hmhlrdZqhnjJXlEpaVxnZKIDpYlkEQayyvlUmEmL6hLNlUAVlRWF4rksgyhmmiRCYAhqnhOA1c18ZUVRLZRdMURNHk0F1P4UufvQ/RG+AXXr6dO+88xBc+8TDbdu8BdQEz2cE1L/4ef3rzFWiYEChECMyvLvI375ylv+8gjpOnVP0+f/6+K0ipEAchuiHiRGn+8i/L3H/n/VBUWVv2uerq/aQ3RZw9LJK2MqzOP4SYaPzKy7fx+2/JECTLlFau5vP/usw733A7dx/5KL/2n99IeU3FDQWExCOf68d1fVyvTP9ADwODPUyfLVKruuSHKgjBGNVqlSiKyGaz+L5P6LkEYsTAcA/V+hl+6aXXsTNvcqYoc3SmSqGwQuSu8fznPYO//l+3cNXBYXIDuzh64jippJel5VVkTSbdE5PJGgiVEFFWWVhaxrLyREJAqbzC3oNXs7paQTVc0j1LDPXv4s9vfiU3XP0WnnL1dobHI+6/Q2bvvl18765bSUKDPQdU3vM3v8CLbvgMe64Z547b6+TFLD15hbp9jq1bexnevIUw8HjKdQIvfgVkTIVSpUgU+whCgqaLSJJAPYmIoyYbYq3qUq+7yEqOkydPks/nkWUZy7IYytLULohjqraDLKl4pSKSpPD8J1V/Jhz8lh3bkz951188Joe50dhui+PlkIdsNKYbd3232mjnQtwtUtsoelvvOlrsdq2UfCdrW0vRrN3aI8WWdY6B5kagk/ymG6/7NTfu5nWve9+FjofWce217vY51nOyne93Wmc7Xcs6yXpa17lRv3vnebu93zcs8brXvY/XvuKFj0rnt0f/r/y1m3nDb77isoR22tXlNrL19BAuFb3/3BHdCECMSL3hEEYJXhziN1x0XUfXdYIgwLZtEknETyKiICRxJJJQwA09vNhHN3QUQSTwXFRVvQCoi+OYoYExXLfZNqdpCqosEsUybsMhlbeoV6pkU2mkKEAQI0zLwLIMQMTzHBYXlkil0thOBc+NUNUajuNQc1yiMGE+PIvnhahWQiqvYFoqjuMgBC7pbBM3kLIE7IaIrElYZl+TbQ8JUUjwfZe1Qol0OoVp6OQsFT9OmmpjcUgqd5ZEPcnokMhXb/0epjXMa954FbWSx/0PLbNp0w5GRvuZOzWGJJ9C1csIgsXYyDXMnJvCroX8/ttUiquDqMEwq5VDjA2Psbq6zNahA0yd/gJxJBH4ErIkUq9XYU3AD+qEQYgX+KiKz9CmCEHI4NYi7v3BD9FSMc//5b288U//G7WqiCTr6MoqcajRsEuEYYysJCyvzFEozhJ6KZy6RLKUwrRqiFKMJIs4bq2Jj1AbbN9xFatrK7z+D17J777+KWSZ5a3v+jyDw5soVxx2Tm5H0ld4x1+9mMmRG3jLn38Y1wXD8EBsECYBUTCE71gMZGFqdg7DMJBkgVJ5jYNXXcn0zCl6+0dJJJ+Fs70c/cEJyuX38Nrfew7XP3uMT/yvU6zW7uT3/uTFBB84zPe+uI352R/w26/6B37tP7+c09Pz7LvKobI8hShmmBjKM7llJ7d/5+v85Xt+h5teXGC+9E1sz8BQ8qjniWnqjWYbYaIo+F5EGMZUKw5hAP09CpuHepptlIYBQKMREEUQI5N4Cm4UoqYGzqvfVX9q39cfxR5LdL7R2I2c66WOaVnnBqIT9NQ+f/t5LqWAt971tObd6Fr7hiU+9bH30DcstfGfP1Lv7bwnE8PDFxxVe42+HeTVGvNYrZX6v+bG3bzrHW941PvdQGnrvd9uLef79g99/IK+egsvABcrzrXKGN3m7ha5t0fhF6P2Ad58UUR+5uhJ/uDNnwVuPp+eP0Zh8W0X7nvnhqI9S9Iqk6xHq9xul3p2Oq015ueO6GbXFUbysc9uJ0EkTJq9s4YuX6B9tSwLz/OohwEg4nshpmkBEMQRURwjKxLECUloo+t6k6I2jptp+YqPLMuoapPNznVd/DiiJ5XFqTsYKYtSvUGttorr2sSxiIiJLOksr9romsXo6CiV6gqG4lOrVxkc6adYXcMwNap2DVEUUVUVz/OQFREpbmYQNK3ZkhcRcXZ6BSGJyVgSaVNFTCA7mEGSJFy3jmkZNBoNDCnAMNOEASAYZPpEKkUPBQXd6OX0iTqfvuUEa0uweWIvP/z+DHuuknjWC/Zz/XMCzi18nXxuE4d+KPG/3+k3Nc+9Cv/xjSGKtVUEfRghksjpw/zdRw9z+sQwRx+cIqrnqVQW6e3XWJxyuPIpCkvzdXRtE1dcrfFn/+MAk5lxfnDofg4euJZv3X077/27e3nKwWfx6Y/eTj47wMriAv09W1ldXWVwcBhBSKjVarz+TU/hnnvuQWKAe767SCqVam6Czpc7wjAkbeosl5foH7Yo1pZ4xzuexUte9Dw+8uFDvO8d30QRdfrSOqV6mWxWIAiKHLxuhGfe+CTe/+7PMzo6wdyMixuEZDIponqJsYktFAoFEilh59admCmBc3OnqddEjLTCmbOn6E0P4DgN9u0f4znP28zpH47wpS//O6/5/Z2cOnsvJ474yMoYiRvxkU/ewIl7DzI1ex9/97d3opkltu/MsnvPIMO5vWg99/Li16xSWeknbWUImG2S2oQCAiqKrJHJ5HBdD88NqFRqaJrRZB48vzEVRZFqtYorqgSeT2AHWKpJEAQUPA/fC3j9S/2fiQj+iQKyuxSfffu49uj9ctPv3cZdzqLeibZvT6m3A8taqfeWUE87RS08kjZuWQuxD49mkOv82YpyAWYWFy84sdaGozOj0OlkNwLZdTvuzNGTFznL9VrOOsFv3eZsWTeg3kZAwG6EPH/w5r+4cP/bo/jO6P1SSPmWXWpTu96z9aNG8E9YB79jj5587PO7UBQNEpFarYaoNBW/LMuiXq83nWfUdPB2w0XTdAICdFUjpZqEXgCijKyKuO556VZJaqKSxSYC2XXdpgM1DCJRR/ATIj9C1lTqnockKYgizX7kqVU8N0JSwDRTbN4ygWGKJMEStuNgpHQiovOUuCIJEWHoE/gJvpdQKpUYG+ujvy+FIsmYRgo7WCQhwnVqzVq8LGOaPc0OAVVAUeSm+EgSIqtpkligatfJpoepVUsM9Kj4iYcfBjS8Cb7yGZ/bv3Kcl/3S9UzuPcN1L/RIHIvAUUBM2JQb4/6jDg8euYdXvuKXKa/ew6b+7Zyrn6FRq7Bl+Cre+Mf3cuoIFNZKaFYGRRaREDj3sMfIeBME99wXXE09uJ/n3nCQfG9MLJRZKii8568OMzq+B8mYp3+4zvy5CuM9L+O+u+9CECRkMY3bULGsDKsra0hqjSuveBJ33Xk/uV4udDUUCk05W10YZql+mJ1XDGDpeZbPCsyuHOeqqzezd/8Id9/9fT7w12/hir0yvj+HoST4sYyhqHzui2f4wmdOMnWiHzs5gmI4POual/HgQycJAg/FCFH8AeaXjvGRj7+HN73xf/Lil/wSn/7UJ5jcNMjSnMv/8z9fxMLKIURvkn/4h3/kd/7wOdx/32Hu+47AdTc8hTfdPMRg5gfMOGvg7+P73z3ENU/Zx/hAP1/+6jd4zvMmUEWXgl1gyNzJgncYt6GjyDpRlNCohSSJQC7bQ71uEwQBlUoF13UZGNvK3Fwz2+D7PoqiEDqrpEyLtJVBFGXiIEJIRMIg5un7fjbEZh6rg/9xAHbrpe+7Rebttt4xl7L1ovWN3r9ca287g0en39NmipnFxQsKZ+3CNq3ovV2adr0adst5dV5ry7l3WreMwHqtZZ3n6nYd7RHyBz/x2a4UsK3P2alY141X/4Of+OwFGeL2jUE7RuEdf/zai3j8Wxuc9pT7LZ+6+UIq/mMfe/NF97/9Pnc6+kuVey6nNe7nrga/4wo9+Zt/3owkNBf8cqnKwMAAtm1fACe1wHayrOI4HpqqUwtrGIpOTrEI/JhYAC9OLtDZCkKz7UgQFWq1Gp7nXcgIuLGO4MVEQYyVTlGoVbHrJer1Ko7jkcsMkkrlyPc0HRFCTLk6jyZKaJqO63tIioYfRgSeC0JEFAUYegbfk+gbyCFJHqLgkMQxcQBWuklVG8YRPX15DMNgdbmIqqqkUiblcpEw8klbGSQl1UTl41OpeqR0hcpaBcdzMdMykTjE235nhXKpytX7n8yzfnGN619YRIk1NNkiZ2U5V5wmp6dIm1tYbnwLI9hKLj1ENSqSRA69xlae/cz/QLCzRGKE3gvlgoscm+zYvpfvfP37+D588au/i5Ut4hRLxJHCU697Ku/64D9xz129zJx+iPFNPdz4kmEGh/Lc/4MKP/j2IQRBJm2OMnfORZYsMuleTpx4GEPPYVoKquEgSRJhGFIsFjFNk6zZx0q5iG7qxLHNcF+G3uGY937gDchmkeMnjnHHHT/g1a94KTu2yIhUUdnOHXfdwb/dfh9HDxVRkv3MLkyzbfsmFmaX0Y1ezs1McdU1uyicreHFBdxokSv3PJdDDzxMZPfQP+oS2Ca//Jo8E+N5/vrmFX7ltwd43stlDt27yD9+MM2H/n6SQPkWYVhETIcI5MjJE1TrpxDkCoamk9IzLCwvs2PwAGerZ0mEmHpdJYoSAj8kDEFVdFwnwHGcZlZJU5rENcEjYkqyLKNpGros4bkBiShRrtSabIaux8pKjde/kp9LB/+j2KXa3S4nCn8s6OX1au6PF3q6lZ5uj447kfHtcrczi4uPih7TZuqi2nl7BNzuiFtAvpZ12xi0lwHWax27FCnOemC79szBbV9+/0WaBO2vd2Y01hOt6fy7Ze3dCy1d95a631vf/sELDrvzHnf+/Ugnw/rW7f98qY1r+///5y6C37pHTj7wmW1MDu+muLJCWkooeqtEUYxlpnFd/3waV8VIi9heA98XiKL4ghO3bZswDFlcnSVjjRIFKqGvNQF1YpFcegghUpk+XeTc1DJGqsTWbRPoRoIghmSyOo7Q5KtXVQ1BkIjChEbJQFYTkiQAIUAmARIQQmTlfIufKGNZJn5gEwQuhqlR9yIEQSCbzTbT9rKMojR1wFvEPa0sg67rmEaaOGpmLSq1MqIUgRCCEOA5MrlcjsGhPJ5fRxRBkWUSeZC7vleguqLxopeX0Yw+CivL5LJWk+/etAhI0NGw3RqNwENSZBQhC0JAkgjYa1t4wx99idnpCtc8Yy/TUw+zdC7i1jtu5s/+7Csc3A9vfe0LCFyJe4+cYXzPAGdPp3j3Oz/G9MNVfuctT+PvP3grv/nHv8oP7v0Or3rOTfT2pXjStVv5g5vfgVq5hju/dYia3YMvhowM9aBLIWV7jXw+z8z0AvWaQ3//IPOz04xv6qV/IEOxPI8sy0xuOcjb3/EbvPoVr+cZT7uOvU/Ksn2zz8EDvWiigKEquEkJUVAR2cYfvekzzExVGR8d4fv3TNM3MMLDx05iZWVe8pz9bNk1xnN+3eP7XxjhW7fdxWK1xuy5RXbtGedt77qRvpFzGIlLoxYjijKiFBDEBVJ6D3EUoCoJkhDiui6WqlC3q8RCjKKJJEGM7fooepZqLaHh+PhJSM4wEJOYsFFBE+X/y96bR0uS3fWdnxv3xp7b2+pVVXdXV++L1EKoERKyEAKzGjBmGDzAAMMqsIwPYljFGWwMtmFGLAYkNiFjZCMjMMzRgDzIGJABYbRrkLrVre6u7trr7ZkZGXvEvfPHzcx+/fRe1avq6lZL6HfOO90VGREZGRkZv/j9ft+FTE9pn1KgTWP5/2VFnmrStERKw2AxJE07xJ0QrSscafA8hakniKLmFS++8EmR4AfLsfmpX3vT00LJXyn5Xq46n73+dOhHu/d/2ES+d9v9Xtu9zn6V4GwWPqser8We9PU/82NPSXqPPfAxfuOtb5+37/e25pNsMgfY/fN/+xtPqXZ3I/Rn2+8F8O2Og6r3vaOBGQBudq5m8/m9sXtevx9IcPd53F3xz0B01yuu5Tq+ms7Op1wFf9c9HfMbf/A83E7NJB0RKg+je2gNTdOCcRiNRrS0ZOWESZpjhEed2+p6ZWXFOoOlKZPUkE1apPR48IGHiOOYI0dX8H1DN/YYLEiSySadhQGTSYIQBkdC01RIfZyyLMnyBG0qQNONIwsGk4Io9mnqHNeV+L6HNla8xFSVBZQpRafTY21tDS+K0FoThuH0ocFDKlulPcnb1/Z9pUXpdzpd61RXl0hlMMYalNSVxvNc6ian1RVxHLK40GVUDOn1TlKnMbX+H/SXbgRtaMqaMIzpqx7DKkNX4DkhjfCo2oZBEKBNCqKhp55HUR7nd3/nvzEernLziZBv/uov5857/jde+LJX8E3fdgOf/9k93vXXjxIurvJ//pt3cOqJLdz2Vr7re1/EO9/5bt7yxp/gnQ/9EbqVfOnz/hGPbf8+o2TAL/3cn/Et33wfr7j/Fj74oOE1r/kD1i4JYm+FcbYGQF1PwWbjMb1wlazYYHmlzys+7yXUdc3j587yvPtW8KQijgI+/NE/482//qt0exfIswfIc8uMWB7cys//6u/we2+9gC4H5JOcF3/hLcSB5Nyjgm/41pOcPfUEneUxP/baD/DaH/s6Br0BH3n/R1g7o1k6lvAjP73CeJTQGfRA+3jKoyUjydbwXB9HQFWmSKHRuqHVNY7y0FqzMxzTGkMUxEySDN8NkDgcWVlkOBxS1y1SKpRSJElFWZZE02skyzLi/gJ1JebXRqtzjNG0bUvTtIRhjOu6rF3aIhKKL3zZ2idFgr+aCv5y7fPDtsyvpsW+37a733Pv++7d7+WQ9vt9hivFQZa5BznkXSlmlfBu4ZsTx449JaHurkh3V+gzRP93fufPzF+fPQAAcyzAbNnsQeIwPPi9aPbdMXvg2BuzrgJ8/Nx/9/cyezCZfZ5Z7G2xz+JqLV93x5Xa81cbs+//U07oRjoCx5TkRQ5CkeaKZDxGCIGSPpubG7iuy4ULF1hePYqnQhaXj87d26xk7AZlWZKMbGW8unqMz7z/blxXgTQ4osFTDXWbUjUjJplDkiYEQYTneDhOxKWzlxCOIQglx44dIQg82ibH0CKEIYoDsqxBuQ5CGJrSJvimLYmiHm1r2BlN0MbF90OapsFxFK7r4LoeRT6c38A9z0NKD0fFGGMoy5K8mFBVFZ1ul6YtMEZTljWdTkQQBHheB4N1zkuSFM8V1OU6vcFxJmmXS5fWWOgvIo2HbiXrWYLvu1PEvo9pFLQONCGdIKYhpdYZ//E/vo7bTn4uH1h/hNXjR/jIqf/KD37/9/DTv/DvKMq/4B/+vbewsxHx67/5NspKE3t3E/W3iXs+n/059/Crb3oTpW+IOpL36d/hpttu481v+kNWF+7g3Jkd1u9e5sjRBV7wgrt5wOywtVEjhDudwWuytGDQX8RzPbaTgoXlk3z4wQcQwqHV8LcfeowX3HcbR1ZCqlLwtf/42/jJf/P13HtvxuLSMSDkUv4wr/nub+exx3+LJu+zvb7N8RuO8aH3vIc6lZy8+Va++MtuYGPks3XxK3jbf/5LNtcTFhcbXvqif4DX+RhZfZYbF1/IdrOB0RVpkVlTncmQuBMihYOgRSmF1oqqKmjbBm0EjhfQ1i0ol36/j6krdNugy3QuV1w0LTQta1uXLO1zMqLb7eOFAXXdkkwSdAtSCQCydIx0FK6KmYwKtC4IghBRXbtn9nMtDjMTv9p9HbbiP+z7Xg65v98DyLW06Gfb7U4S1+JFDzyFwvXGN/7AUxJgkk3mlTn87DyhzirevVX47qp5ltB3L5u930xmdhYHJfq98rN71el+6ie+j+/5gZ/8uFn8boW+5WNP9bdf6Hd3zdB/fD7e2AuQm52X3Un9arsiV7IMPiyGZD/K5dMVd3rOVvB33u2af/0rxzl1IcVVEY989CzHT/RYWFhCKY+lxRW01qSjilGScfHSeYSqWVrxiaJoDsRr25ayyOj1fRBWU7zXG7C5c55uPEAJRV0YmhqE50ylag1G23m971Z4nqLTDXCkraCLdCZpa8VKwo5vTUrKZl6RgUOe57SNne9nWYGhtDS3qdIewE3Hl3AcCyK0eAJFZ9C3KPoyBzSTyRg/6EwpfT5SSvJihOu6SCnxffuZN7YS6nzCsaMrxN0ORaMpk5TtrSGRH7HQH9CLu7h+S6gCHONT4djEavpIIaj0DuCw5HwWF8oP0/c3mDQxsTzJ5778Z3jtv/gRVPRfuf8zOqjoXr79m/6Um5bvo9XnSSc7vOALzvLvf87j9//g1fzyf/hNep1jfNbNK3zBl91EN3YZVj51scT5i2v82GvfQpGvUOaKdDtlNKlZPbqCUg6PPPIwx44dI80zdkaXWFjsEEUBJ06cZGFhgQ+850EcucmrXvXN7GwV3P38JV7xubdQ6P8ComFl6RZG44TREH7/9/6GV7z0C/irv/hLJnnA133t1/OC+wIEZ1hPH0XpOzD+A5w/dwe/9dt/iNM+n5d//iKf/fcGnL70dm678aU01VlA2xHJdBwjJDRVjYPATCmYQoB0bQU/Sia0Gsois0C5IseVDhifTq+PEZDkBVJ5SF2DcRiPM4x2iOMuVSHQpsaYFmMETW0YTSyepKk1ZVlNWSEVHeXz1V+080lRwQ+WY/PKr7z3wNevpkLfb9trnZ3vjb1AvCvN2Q/a97Xw4HfHflUh7C+BCxzoS365+I7/5cvnVe7elvvumAHfZqOCWYLfHbPqfRb78eP3S/a7UezAU8YAuzsFs883Gx3s/g52z+t3gwyBjzvm3SOIK8VBs/jrGZe7bj/1ZvB3heZ1v/WF/H8ffoyjxyI0j7FxSTJJrNFJFHXodrvEQYsf+ZRNDt4Y3Yo5PS3Pc4qiwGkixskGS8t9qrJBCBffW6SuUzxl6PclmhxPRhZd7Skcx7boqxq01nheQFNb/XpH1ywuLgIOk0mGUS1VVdM0Gt+LqauWySTn2LFV6rqiaiYsLy9SNxlKqTlAUGtNpKTdp+MwmUzI85zl48cQDkwmQ1zPJv/FJct1rqoK3wsJIx/HcSjyijwvcByH7fxj3Hfzy6jymuXViNRIjoqITE8QrVX663ZC2iJEGoFyHPCURbcTklQFabbJ9s4a2gu5/4bn8+DkND11D4Hb8Nv/ecwH3nOe7/veF3Gs11Cpk/zc6/8LRxcmfOivN/hH//BLObc+Iqlqbrmx4vSaz3vf+17+2bee5PPufwWTMuXdHxzza29+J6XWOP4xTj36MK7xSc8KFlZX2dnZoapzlIvtlrRHWNs4zcKCpQ56Xkinv4kpVok6CUbndPw7eOFLF/mZn/pDmvznGfEgTSvpywHb4zFRZ4DbFrRNQesWVGYNQYQWNdI4g+OmcAAAIABJREFUaHOBSN3LdjPmj9+e83//2p/z1j9+GaPsMSJehB/lDKsRjrROc3U9lS+WElcqhHEIPet1HymPrEgwjsEPXXY2NlG+R1pWCOWRFQXDxGMyGdPqmsC31MnQUdSVQUpbnV+6uEE+MSwtd3Ckpq4MZQHDqkQpB9cTBKGLUg7J5oS+F/IVn/fJMYOfteivpsV+pWVX2v5yyPn92ux719lvv7N1rqU62738sNvvh5rfLzkdlOB3g8ZmiW227n6Atr2V+kHgwVmCn+1jFvtR6XbHfiC7/WKGqP+Nt75939cvF3s/424A3e4HgWuJg6hxV+rcHCSOtDd2n+dPuQR/022BefWPL9HoCUGgcD1BHMdzfrTruniex2SygedOBWiKBrwaYYytrIwFvAlRzYVCqqoijmOays7ALaWtJooiyiqbJ985Sl9UVnLWKBYWlpFSMlqbYIwmigOMsUpoQRAgpQsIHKEYVjUL/RjPdXCcGleCbq1XuOcFGGOYTCZ0Fvo4DpRlThhZ6l5TW1ne8WREd9Czs1l/9qDh2Yp/VBMGPoPIxcgGv+Ph+YLQ89FVjSsktBrXMQipyOsGI8DzQ0xmzXW6YZ9xmhCGMWt5geOOcRyHSB0npiWloaxGLJib2Jks84ZfeIQTx1Puvtfnpa+4ndPbQ3bKI/zKTz/GX7/zQ/xPX3MbRXKKm+8/zktf8nK+4xt/kf/9+17DmYvv5qs+5346iz3+1S/8Og8+XnD7HZ+BPyk4u7bG+TMpfbPKwtElJknBY49/hJe87C4eevA0ee5z9JYBYUexfWGIk/qkxQ6Imnufdzfnz13E80Lue9EtlKNt3vSmr6PQH0PKiNofo3BomwJpGqQUjMuEtjXW5EV5SL+DaBWB1rQqodI+b3jde/imV30mq4uakX4cz1lAosnKAj3Vyve8gNZUSCEw5NQmtbRI7VBWDVHYIS0Kts5dxPOsV/uF81tgPFaWV5FS0raatrWjmWSSMZlkTLIchIsfdnBNTeCFUBvCICAdTRiSTxkhmlbXdLtdVGCv56/9JJnBX6mCh6cPgrvSvq6U1A9z871cHAYhfdj267X4g8+S/96HgL2z5oNm8nvV63bPt2cKb7MKezd1bD/zl700uMtR52axn2LcQbP43Z9nv8+5O2b0tt3nZb9zdLVz+KsBWc7iMGOn2XX6KZfgT94Zmtf+/DGqeoJwNIaabmdh3uKeuXHFoQ9oHMfB9z0mqTXdCD2fOAhtUoxDHMeZ0+qklCTjDdTUDAbAGINDTNM0Ux16C9RqtaSqGvKsJAgiXNclDlukFLRtjXCgKKxSHkZQ1y1ta4iXF6jyDKMblNS4UoBrjWbSNKVt7dw2DDs4jqAsc6QSVFVFf2EFXVcU2Q6h6+D5LmVhwXkzydK23sJTLh3Xo6grKt3SUxleEFk9dxRNq3GiDlVVgevSNprxJEXUFb4fzCV+jTEIx0cYKwZUtxMG4ghR2GOzPkXgRDxwKqG3FNKRE472l5mkq2zvxHzzP/kl7nve7Xz+57+Qbg8efl/ESz7f4fRDCzz4+O9w8tZV/v3rH+X7f/hbiLoBb3jjG+kNbqYsDFvnEk6fP0MnWKXj9qmcSwz6qwx3xtRNzmRsCIKIzsDDGMPFM9vIKkYNtjlx8w1sbW5jjCT0B9x4Q8xP/Ph38bqfeC0/9yvfxvrOBzm6chSERigBzuw7dpCOvWFoo6nFNrQKx9Q0YozWAeNkg5XFFVxcSjSTpMT1HMBeh8bY/w63t+b0yyiKLPuhqhksr+DLiI+ceQTpL4LQNG0ORuIIj2KS0OsNqOuarc0hUkrSidVcqOqGqgHXC1Gxi9GaPC1IdsasrKwy3kopy3LeAQKI/YZu3OErXrn+KZPgDxtX4p3vXu9aeOz7Vf1Xqt6fzux0r3b51cRhZ/J7W9i7KXW7X3v9z/zYnEq2N2bnYvNiy//6nT/0lGWz5ftpyMP+HvSXc3ibIevf+MYfeAq//7BxUJfjckn8coI1s3N22DgMUPRK1+ezmuCFEDcBbwZWAQP8ujHmF4QQi8BbgZPAE8A/NsbsCCEE8AvAPwAy4FuMMR+43HucuF2Zf/GGFTqdEG0amqaiKZ6sYGf89U63h1QghEE4Lb7vY1rNcGubsiiIogjhxXPuvHVyqzGN7QDUdU2apnQ6Hao6sdtPAW5JktDp245BVVUMBn3CMMRMb6zGGBwh6Xa71HVNnpf0ugPa1jAuxwhtcJVCOYKqyPHi7hScx5NI/RK0bmlai4SXUhJ1YhwMi5GPiyaKAkbpJnme4ziOXSf2ENrgoTA4lLohrRqEcjE4JHlJ3WgWusLSBhuLKQiCCCXtw1GRNywtLtM0DZHsQduzn8mdoIuCuLPMSJecfzzlt37vr9g4M+Df/fK3kORnWQnv5vxkm/c+dJrffdOf8EPf92rcaJsoupfB4haPnv4QJ298Cb48xj979T/n7e/c5q67F3neXXfzvv/xAaRU1E1E4Pk88dg6N998A9o/xS03P48Pf+hxjhxZQckOo9GIZDSmKTW+7OO7A5JmnbhjHdeqqmV7M2V1qcDxK778i7+Sv/8lAa98+TJFfpFGtxhPoQ00uiVSAU1TYYxGOC21KRB44GhwEpToMJBdNvIxTdMSdaDWW2C6CKelqlOMsXRIqoq6bqftc4tuj7oeazvbZFVNd2GRJvFo2xrX1/R6PXZ2RmSjlEmS4Xk+y8tHMMaQjCZgHIqqoqoNQnp4jZ7iLWrLhZceTmSQjstwOGJhsEJZltSeIk8zvuHznr7ZzLPx2z5sgr+aami/ba9HB2C/ZH61YKj9Xr+cwtl+CXo/cN3e2CuTut9cfm/Vulu/fm+FvLttv3sfs9k12Ip4P534Wey1VN3v9VnsR53bHbtR/ntjv6S/N4EfdA4uF/sh4q9Gu2DvsoNiP62G3f9+trXoG+D7jTEfEEJ0gfcLIf4E+BbgT40xPy2E+BHgR4AfBr4MuGP69xLgV6b/PfjApMR3FbppKSurGR96Cs+zCc53rVFMGIdo3dC0FVlWsrU9tOAzR9JqmKQ5PtZgBqxRR9M0pKMM3/fnqHuBIogEWjdPWtX6i/iRNaLxA5fRaIe6rgBF07QIIRFSMUrGdkbfGs5fvITrugxW+lR5QdM01K2GFnwZok2FcDSgaZsaX0q0ANdxiDwL0GuLnJaW7XxCNknwlKKz6OF63vyYdyYVQhucpqDWLVXbUAoPqWxnoGwbHFciHIMrJQhQjmLQ6ZKkNZ70CXoxXdXBKEOtJZp6CgA0dDurnM+GLETHWFpZ4aYTG8ThGRI+wKkLj/JgPsLvLvPwxzK++59+Pa3zKDcsd3nNq/8VC7el/OBrv5FfesNbue+eV5JUE269a8B4kvHwx57gttufxxOPn+HOe+7k/X/9frKktK5o3RXWLg4x2rVJLxlSVgZdOZRJSWnGBB2HshH4rkMY+tRlygs/4z7Wzj9IMqr4kz97F1/5P389j5zbZrVfowWI2oBxrM6/q5FOC0LjuRJXxxjhU5uSps0wRrKRVYRhD+G3tGYLdEVWjIjjENeVFoRpNCrwqE2FIwRxIAGH2mlZWj0Kwx2ruugHGKNIsyG18gikz8LxFSaTCZMk4/FTZ9Ha0Ak8jJAYA3HcQzoeoRG0BoRTEUddJnmGkA610ewkGRfXHwPAGyzSVPU1/pSf/d/25eKgxHy1yfpqZvQHbXPQ3P5qQYD7JYP9kvSVEvjlttlv+UEJb3f7fm/LfncXYPdn3w26m1XTs9eerLjv/DjHtt1xJQ38gxD2s+UzdPx+rfj9Kvr9qG9XO3vfe34X+t0rsh5mcRh65OW6QNcjrkuLXgjxNuD1079XGmMuCiGOAe80xtwlhPi16f//p+n6D8/WO2ifJ+/0zE+98Ti9Xm+enGkS0jS1VDmlbDKiwXNDpHRRMqD0FHmaMhkn9GL7RZp2xh1uUErZyr8j51x0z/NYX1+n043nFXxVVaRpShTcYCswT6CURJsG1xMUuUUyR1GMJqdtLTe/31uiKArOrT/OyuIKvudBK6CF2I1YXOxTNyna1HS6AXmWIKWcet43SCnpxC5lbUhT6wPeNJq6sZK1QggWFxfZrhMC32UQ+zQmp9QlgQHXNUSBwncaet2AvHVpa4uaV1Kiaw2ONTpxhMIYgeMo8sbDD3Na3VLlEb/39nOs7+zgeRlf9SWv4IlLCX/9tjE/+S9fzkfPfpQ3vflBgpUlMv0wG+9v+cHv/g7uvTunRvDaf/s+3vlHDasnJtRmjVtvfCXv+eCfcc/dt3L+dI5oQ7a3xkSDhrCM6HVu4NGzj9BfUCSjhqYWvOwVd/HoYx9j/bxEpC1KOKweO0rWFCx0u2hSLq6d4sSJG3nkkSf4mq/6dt7yn/6El/79o3zZlyzz3vf+Ff/X674IT3q4eJY1gMeEc7SmmAIoU5RQGMencEradkhAjCsHFPU6UjVEXsz2sCTot4zH43lL/ciRo3ihZVIIYUhT2zrPRiXHVo5SpSWiMgyb0RzrEUeLpJOaWluGBzhI6VLkJaFbU1Q1jTZoI1m7tEn/xlV2RgnakaR5hnJ99Mg+SIxHOQKfPCs4OgjxlMs/+cZL171F/0z8tmcV/NVQ364VWX81rfn9RGsOS407bBxEqbqafV5L+3537PaMn+moz/jtM2T67tgLvNudqGeJfK9y3H5V/F5J2csB7HZvs58d7eXm8ZdL3Jer2i834tjrDbA3DsN3fzpJ+xM2gxdCnAT+Ang+cMYYM5guF8COMWYghPgj4KeNMX81fe1PgR82xrxvz75eBbwKYOmIvP9n/8My3W7XVtxpCtKZW77OkOe6zJDSgsbCMASp517xQtj2NCawlXRdWq94KXGkxhEKx7EockdIyrqc28nOHiAaU+MIRVGUeF6A7/s4aPK8ohP32NoacuZ8yo1HVxnEPkq2LB9bZjj6W5a6fRw0SEEtLNUJAGNHBVmWYdplPM+jqjNcz1LrhNFzrICDFe5xFbSNAdESxqCkh3AMUaymHveKKkvoL/btsZuWtY1LuH4PpRzCyMNxNI6EqkhxXYkQEk91cV2fWKxwPin4f//0/Zw6M+CBj51iuXcj2fYOt9zl0u/eim62OHX6NDfedDPnL27yvvemvPizl1k747K64vPiFy/ytrc8iBwsMN5q6LhHGG2nDHoLbGSn6HYCTCMYbTpsbyWsdI+jdUOe1egmID66yR133MF73vMeer0e3W6fMmlZWTlK2xje/Tcf4Lbb7uLCubN0+x7dzgIOEWsXSrodwS233sz73v8u7v+sz+COO27nG76pYWlRc88dAZvjbfKyZWGpQ1GOEE5LWY3xOgFZltGNOwgjiEUHQ0ahM4xpqeqcJBmhlIfrSgy1VZvTLcLv4qmAC5fOsHq0R6MrRsMWcPDcgJ2dIcONkKpOqaqKza2E1eOwtHAn5y9eAuXiRj0MirWLm3hujOMoNtcT8qyiEwSUZUmn05liQhSdjrLXvlBoDWEY8vhjNQ8/sMObf3Hjuib4Z+q3Hcbe/V/8tS+4Lm30w+zj6YrczP49i+vBTz5MHESPg4Nb+vvN72dJbW/ivlzsBdYBHycJe1Ac1GbfD1y3d5vL+brvlcnd7XG/+3Pujcu17q+EdzhId2C32+Du2E8c6Vqv8U84il4I0QH+O/CvjTF/IIQYzm4C09d3jDELh70J7I5b7/TMv3zDCsH0JpckyTRJ2QRvBWMcAs+CjWbc8rgXT9XgGtq2xRjDeNLMVeLAoqB7/YidnRGeG6CnWvV+FOL7/pTPbLsEkbsw3X9NEFpN8PHmJsYY+v0+ruuTNmssLy4RYNjeWaPb76FbQ6gUptXgtBS6IdXuVASnwnEcmqZivCVRykFKB4TGdV10kRF4ijjw8KRFWXf7IW3jYNB0ez7j1CruhZFLnpWWotfvceHSGkVRsHLkKL3BApPtC4ShC8JWmlJBPw4QwpAXObpROI5L2ZxGxDeythXwa288x8MPbdL1BOm64Qu/9B4urFld/uWVWzl77hJVW9Ab+By7WfLoR0qaKifyaiYbx/EGCZsXC9qiR5VrHOHROPahwjSSyY7LoL/Cxx76MCtHLL2sbSS33buMqzqcPpVQ5BVBqKjTln5/gTwvicI+62ubNOIsL/zM+/jA+z5KFCwyHgpWjjQEoSLuKupmQpom/Pabv5csPc3td2oWBgE1DS4ujc5wHIOmxKVHTopEkGQj0A1pvk5Zlvi+S3/QY2dni5UjCxRFRieIMRiyasIEhzyrSZKUvBixtdWwsrxMXTco5VHkFcVIUjcFR1dvQskQIxLS5gmeONOgNZQNRF0P1cYo5VmvhSldbtA5yubmNoP+CkJYiujpJ8aUZU3baLSGtm3ZvrjIR/824W/fc/148M/kb/taQXbXE1k/2x8cfr5+NYn9SkC/vep0+yWPg1zldovfHAaUt3u9mXjNbg33w8ZBCX4/ydmDPNkvh5bfm8z32362j5//zbc+RXv/SnFQUr/cudubxK8kerR3+WHjStf1u//bR7l0Ln12E7wQwgX+CHiHMebnpsvm7bmn28a75U7P/OjP9qfta0Gv16OpUgBc151baLa0cxBclmXE3d7s+J48Vlch5TS51oam0U+uH4dz6twMdOd5npWbNQZPuAjH4PsK4bQYWpxaE3dC2rahKDKku0hbVsRuaLnybcOkyBFNja4blC8pTYvvB1OQnKXh+YHLZHx2TvlTyn4uryuRjmCh41KnI3TTkhmPpnKR0qNpahxfYkyN50vqukXg0DZjjhy7EYzD9njCeDxBKWEphh0f3/dI04Qblm9HKgdHahQhDgqD4r2PfYhhonjb27Z48N0Z9939Ofzx770fP2y5696bObP+EPff/yIef/winQWIui1Ftc2gcwvZuKbKO7zvXRdYPYJlFTgl9z7vNlAFaQJJkjAZNlSZSxR1OHrrNjfdvES3G+IHLtLfRjchjzxQMugvUVQjPvDnsL1lcRVBEDEajegsKbp9iR/lrG+c49X/9Luoqws88MCH+eqv+TL+/J3vYHl5kc/9opAbVo9Q5WM2drap2wbpWXMfbSwbIzcBum6II5+6ymjaiu2t8VSZzmrPTyYT+t0jjEYjjBFzsOPO5hhX+UThAkVRsLq6QpKlNrEXFUtLy7jyAtJxOfVQw9++L+e2229knF/E5QR1FXLhwjmWj3XZOV/geYput8v6xkWkFFStQgiXphbUlcFVAcKvp9d7gxCSZJyyshRSV/C+P7s+Cf6Z/m3vTfDXO3EfNq61Cj/MbHX3eter2j+MyMpBgje7pWf3zsh3t8Ivl/T3W38W+xm5XCl2t+kPcpabUfHg4x+QrkV05pm6zvY7b3sfiA7T/dgdu8/Hu97xwWcVRS+A3wK2jTGv2bX8dcDWLiDOojHmh4QQXw58DxZp+xLgF40xn3259zh5h2t+/JdW58YxURRRVdm89V7XtXWZGw/pdDrWWjQIyIr8KVx2YwzaVLYNrA3S8XEcRb83QBsLSBuPh/iBiysdKwvbsT+MpmnA2GpbuQ5tW1s1OeXiecEcG5DUUKU5i+GAZJyRVTWrJ11cLdBNhfIVxnMY+BFFXtK2hrY1OI7D0uLK9DMpyqKmKAomJgFtWOhG1GVG21QYd4FJ0uC5PlI5SKXQpkEqi+IWQkJt5/lpXtAaWD6ywvbI0u+CQOEHip2dLRyzjDYVZZlR1y3GwGAJPvLIaaKepCiPMN5aIh1W6HHAI48+xK1330inm5EXDn7Q4cgNfYaji7h+Q683YDzKyZOQ049vccdNR+n0I7RMuft5J3DcDNyLGC2Igh5l0pIkCasnelTNNk1bEEUB/d5JtrcSFrq38dijp2l1yeiioG1bVlZWGAwGnD9/HsMqmoQbTgQIWeD6DcLZpKoKDDXHb1hlZ2eLze2KxXiJM49eQqiQweIC68kl2sagNWhtQMSUZYnnSpLxCFpNMrGI97pqkNJFa8C4lEVNmuZUUw2FgeqitR03KOVYPYO6pG211UQwDlXuUFYJYdAnjhYxYowKdmirGIFVQAxCh2zYUJQZ3W6XS5cu4rqStKwIw4imtvr83W6PZCwtVbQBISR5ntMLu5RVwv/zm8PrgaJ/xn/b15Mmt1/sN0/f/dosDkocu+Ny6zxbrfqDjudq1n0mEtvVfPa9HYe9x3e1+5nFM/0ZnyvxbNPkXg78JfBhQE8X/yjwbuB3gRPAaSyVZnt603g98KVYKs23Xq6FB3Dz7cr86M8uWOGXpqHf7zOaVk5WVEailKLOijmATmsNXjtfx3Vt1b4Y+RR5gzGA8dCtwHV9fN9F6wZDw2QyJg7kk1KweW47BcICqSZJSV1NneqUh5Ih6cQucxZ6PPbQo8SqRzde5omz5xDC0A8CdNtihEHFPuMENjdGSNGhrgRt4xAsbDKZ5Nxw/CYuXtiwHPciRTouyvORylb3ZTXGGOtlnxdjpA5wHIg7HlVVo1sHLUPCOMDQYpT1opd1wOLSgLqxFWJeTGgdB+Fo/MBBKZuI4m7OoHOE4faIxYWQx9dbBgMPT5fo1qUVJcdWXLJqhyB2GU8KVpZuZONCTrxY0O93KQpoRULopdSNB6JLVlZIpQg625RpSScOkY41U1HejQhZEHd8dnZ26Ia3kGZDJtlFgiAgDHp4jouUFkvheS5FUTDKxvheh7JoqeuW2267jbNPnCZNM44ePc7pJ86zuLiIiAWT7RxPBJTtmN5Ch2x9Ql1pa2hTO4Rel8lkQuhFTMY5oR+xk2wQhjFV2dDtDjBaMEzOEYUd2hZ8LyTLCqqsRODStoaqnhB3IvJMoVsoyxpjQAU1ZZlT5RG+PIbrN1w4v8XyEd+C/ByJcgK0U6O1pV66KmA4HBO4XYbDIf1+F20axuMhsVoBmIvkSMcl6Nlu1B/8cnY9Evwz/tu+3jz4yyVxuDYRkr/rcaVZ8pUS6kGYhcN8F5dTzTusGuGnWnzKCd3cdGtgXvV/rMwFZ4QQbKxv4vkC4RiK1Ee3kq2tDYIgmLfsHb8G45GOBZ6vaHUG0iOdZDiOom0NTa2RTvAUj/i6rok7tl3veR5N09Dr9SiKFBBWEEbbFkxRFAShBfzp1urOz0B/M+Ecra0BzOzfZVlitEMQSsuhBqTjk+f5/BhmIaWLocZ1JXUl8LyAopjgSKZYg5rBQm9O8Zs97FRtgeu6IAxtW1twXbAIokQ4VivdEQFR17afpbRcfGMMcRyS59mUYx8glMUxxJ0Qb4pzqCcZbuBhaJEBSOVQFhW9fnf62SGOY9a3zhHHMZ1OhHJtVyQMPdJJhSN8XM/iDzYuneWee+6hqiryPEc7Ymo2I/H9yHZisMY929ub9HuLTJKK1WNHKMuSthWcPXuWQX8BTDMfr8y+C8/z2NzcYWtjQqfToWlrjh+7gdFOxcWLa1RVwdHVEyRJgutJqiojjmPSke3aZFlGllkZ4CytWV7pW+lj4bGxPkZJQRR2qGtN20y/vxY816coCjuHL7LpMRlc5dO2Giqb/JumwRiBbkHjI4RhPB4hlaBpKjphBDgYrajrFkcosrLAcSS6hapq5oBSY1r+5C3XNqd7tuOZruA/Hdc3rgVgeK3djb0V/pX0BfY7zk/FRP9s8+Cf8ZhMKv7mXecwBhzH3jxbBJ5vZ9hNZTBG4piQPHPnjmx+7NA2gO4ySQqE46M8l6ayiXY2u5ReiHKYJ2WHmmS8TRAEGC1RUlEWLW3jWL67kDS1BfI1taGWAscRtE1LEFpFvJnOvDEGjAtGYvR0TNBaFLQxmrq2N3aBmM55nfkowgIBbddASkHTGKDCSrHZs9C2mkmSzd/LaE1TV7TCICX2PZoWx1E0tUE4Dk1bkqUNgoLeYIla1xhtcJQCgW1DIzAGmzxqm9iMFpSlHU24nk8cR7SmwcgWNU3wSroIBzxPUZY5vhexuLhMVWUAOA4kSUYyTgFl58tVwQ3HTyBQ5NmEPK9ohcKYhiiKyDOr1e5gPdLBIUsbitxw8eJFqqqiqjTD4RCMYNDvTVHlMZAjpeTs2bMsDJY5fnxAtxuTTMbs7OxYKt704c5Q4/kOdd3guR1cFVGWCXHcRakA35NEUYTvT1CuQDUOVVUgnBopBjjCJwysQmJd14hW0TSaIOiQjFPKqqFpwHMD6toC64zWSMelaiqiqGdn6qmmrHJmUseukhR1Yw2MHOssp3WJ53m4yqdsa8v+cMQU1yGA9Fn7fX46/m7EtYIKr3V0sbd9fzVqgZ+Kif3pxnM2wbetoKmtwQjGittUTUvdONRNg9YOGAenlTSNwBibwLNqjKs86iqh3x+gdQtGWylYKW2FCxjKaUK2CHwrfNIl8CPyPMf3fcqipiwNQrS4roPvh9aEpi4wGrQRGC3n6HxgnqRd2aHIK+q6nlZqBqkaAi2RqrWiKw4YI6dJXE/pfgohHKBFOj5Q0TY2t9uHAUm3258712mtcactAd2UCBMALa70CPyA8U5N1HFA+DgYPDdkY32M53m0bYXrySlPWxCGPcA+gDQalHKYTKyjnVIS7Wjq4RDHlfQXOjSmoa6ENdwxLX7gUNU5dWO19A0NnU5EmuX0ust04kWybEK3a6l5eTphklUoL+LY4hEuXFzHkYp+9yh5OcSRDb6KSDNLU6tKrMNcsUUYhjiOx1133cVoOKaurOlOkkzY2dlheXkZ6Xg4jkdZNWzvbJGmCUqGJEnK0aPHmUwmKNcQd3o88fh5yjxDyhS0YXNjSNuCdELWRgme5zHa1kgnpqoq2kowLlqqosHz7bU3mUwIVIeiqAlDy1Xvdq28clbVTCYTS+f0IyaTEb4fUI9y2tawOFgiWyvw/a61Cc5zllYWLO4EF2PU9MGuomkyHKHseAVDXRfWAvnT8em4znGlpDlLtJdL6Nfiib6bKbDf+x32OD/ZWve7AXmzf18N02FvPGfvCsZoNNUUEGVn351OB8cxtpCVFY4UZKmZw/tAAAAgAElEQVSVoJVK2gQubWtXepDXE3QLnvTwfSsDq3VlW9jNk3KzTdNMk6u0c2tpFe183yXwIwwtbVvT6oJWM72ZVmhtwXJgk/xckAdo6oQwDAlC2/Yfj8eEbh9HaJraVsRGt3MjEoDW2M+ZlTkIe1xZWqJUgFLQamuYYlvQljKY5yVZVlmZ1E6H0TCf0u0kRZ5Q1wYvCEHUNG2FUi5RHExBiV2EY9u7aZpSVw2e7+I40OlbBkNdV4Shj+cr6rpAmwqDQSPQwkEpe257vYiiGrG03KPW1pwH41PkMNxq0XVOrx9gjOWJYwSalqqcahO4DlG3oalbzp47jec5IGocU7G4HCIV1M0O4/QcjhMwHo9x3ZD19XXKosK0lv5YVy0nbjrJxYsXicI+YdAhGW+CsJLEceTT7y8wSTLG4wlbWyUrKyt04j5S1Liuy9qFNaKoi9FQlw6e26dtJwx3Jhgt6XQ6+L7PaHuI1obhjka3DqNRykJfoJTH9tYGURizvZmilCLLU4LARQhotQThkeeapqkBh62NR2kbQxRZR0JhBOOkmLf+20bg+x3yeoTnutZZsLRUUM+z6oafLNHUT44F997QPh3PvXi6QMJrtVbdLaO7+1gOmsPvF8+F5H7Ya3yvUc/e7a8lnGve8lkIKdXUX93FdT3qsqYua5qqRbcturFzSem4KOnhuQECj6YWU5CURmtBXTlIEeEIfw5uM9qb/2F8pBPNufKzmXxd26qrKAq0bmjb2uqY086xAZ6v5vPz2TwUbFu6bWvqukQIQxQF80peKaueF4bhvPqfGeHYG7YV1PE8bwoG9OcsgTAM5//2PI84jonjmCiKcF3PPuQonzjuEkUdwtAnDIPpNg5K2Xl909S0uqYoMsbjMUEQsLi4yNLSEmEYTqlehdU6r2vKwiY/P4xwXX9+nqIwnlMONzY2KKucKPJp25qyrKmrloXBkTleoCgzhsMh6+vrbO1s4gUuK6vLlHWBI1sMFXmeEobxtEpXFEXFaLRDUSZ4vsUrzHQQVldXCYKAwWDA8vLy/DxduHCBoqjY2NiasyriOEQ6LqPRiDCM6Pf7+F6IQJIkCesblxgOh0RRRDrJKUvrMjhJMoSsuOHGZW67/QRlPUa6DYuLiywuLtLtLNCJF+h2FuYjl7Ko5t0YpVyrqRBFeK5PU2tc5VMUVr9Aa43nBkRRB6U8jLGo+WqqdZ9nBWmakmclUlpzoEmS0TQWrW+94vWBv6Pnciwfk59O7p8EcZgKefc6B61/mOV7wXO7/3av81xI3oeJvdf43uS9X9V+veI5m+Adx4FWQ6ut7auBomyZpCWtFhSFIcs0QRDMk2Se5+ha4xiHZCfFMaCEQMiCqkmo6pQw8gmCwLacdQsYlJIURU5dGYyWtmoyCqMlwmlpmmJqCNIy3NIUmWFzI2E0LCiLmuFOQlPbObvnhnhuOK2qBU0DdT3FCzgOdWOr7TTNwXiAsm3ksrRVe1uzs53Q1ortzZx0UpKlBXXdMh7lTMYtO1s1F84NOfPEJnUFa2trFEXGaDTEUKLJSNMRa5e2mKQ7lEXDpQsjHEKq2laFSZJRV62lWfV6KKWYpAnb29sURUHdFORZiefGdDo96ianGwZcOnuerY1NsqRge22Hje01hITWtAgRM9yWfPiD6xSTLsuLNwOC85cexg9cHEdx/OgtNtl2IspJj8lY8NCDZzl9OqHvniSSK/QWArZ3NjCV4MQtRxiORkBA4K/Q7Ryj3x3Q7fqk45rhZk5/4OBFmkoPWVzpcPrMBVaO3ASA60o6nYA8zxmPMzzloCvBaDuhrXNuuukEeV6B8QncI5S5z3g4ptft0lQlxhQoVbF2IWM0LDhz5jzKidm4lJPlE/I8A6egrLfpLyj6XR9JzdEjCyhhaNocbUq6vYBWV7S6QJgax2gW+12WBj0W+z3CyD6AGVPT6gzPbwlUgCcVvnJxHUmVZ9RFSVM2BK4HrUYJB+kqlOd+on6qVx3KFR+3bPeN7hMVs/f/RB/HJyIOA2bbL6nurqYPap2/449+ds5Z3/1AsJuzP2vJX0nrfe8xH1YX/rkUu5P97qS+32/g6T78PmdR9P1lZV7+Fd2n2Lm201Z4FAXkRWI56VPlOdd1n6JUB8wR8XlWz/nzVrL2SWc5a9lq7WSrOptT62bVeDopQVhEvG6trK1t6Yupqp4kL4fz+f5cMU8/aWQz07sHyPLJXAbXaAusU67dTxSFc+tZrbWdEStFr9djbf0Sg0GfumqJonjqb28YJ0OWlwdsbGyg/ADlWgS9EBLd2mOKooi2raibFC8wVJWDcAxxHKBNRVHkVtjFNPNKd+GIOzVVwQLCqopurAkiH6RDSz019fFwZAtojh27gQvnN7jtziUANjbW6A96uK6gmFafR48ts7GxRhRFxO4Ck8zOzG+5/TaaImc82UEEDlEQkWyPGU5ynv/853PhwgWiKCJJEvJE4agJJ266g/X1TWq9RhzdSF3XVGVDkmREYQcoOHXqFK6KrOxtURO4ARvrQ8qyJIwcTCUp8orBYIksrfHcgKJJ8b0IISSbG0NWVo6ysT6iyEvSNCeKIrKsQKHQ2nLqs7SwnQIDSlmhpKIoqBpJtxvz6KOP0+93qOsaGgsG1FqTZTkCiXQb2kZgtEPbSMqyoakERZmzsNC3ok66xtGuRd1ry7bIsgw/knS6Me94y4W/cyj6KyXjy90g92udXs3Mc++6+ym9HbSvve3Y53oXY7/W+H4OeVdS5Nsbnyht9+sZB31/V6rMD7LT3RvLx+SnHoreaD2nO8EswUPTVASBh9YWET8zjwGeRLBP/39Gr5sh5aWU87b4bkrbLCnPEutse+sxb93qjNHTtvCMVmbFcIoiIwziKZrdWBoUgjAIGA6HBEEwp29VVQVGIXBR0kWLZoq4dwAHre1DxcwOd/YAYh3wmHqA1xbk1Voan+u6jMcT2tYQKh+oieOA8WjC8tIqrmc5/Z7nMViIKOuxHRO4jnWm09A09gFoMBhYcGGZUxS2Pb2wsEAyTnEchascAj+i0ZqqSGlrjSNzbrjxCJPJmNFoxGOPPYYKRpw8eQLPF3Q6ATs7OywuLLC1tcXFixdZWVmybfTT51k+skoUHyNJRlRZipAgpWA8HpFOUvr9ZdbWNtjc3MZ1E0s9FB7dbp/t7W3aRuN6AWuXNhiPk6kwzVTL32lZWlpic2NkH5zcgKWlBYIgJJ3kSAWbF7fn4xA777b88n6/z6lTZ/D9mOFwyEI/ZL1M6MQSrXM6kWK8bUGUcdyn15maFBU1Td0gHINSiqJqUcpjaWmRMIgZjUZE3WAKctRgJFK6NG2KwHaQHCHBuASewg/sg2Fd1wjHIJAIoTFmiiHRIIyhLspn5Xd5PWL3DH537Jf0DpP8rjU5HtQ2PUxc7vj2VmX7Hd9zPaHPYpbY96LaL+eQtzc5Xy5RH9Y57yBp2L3Hunfdg9a7ng8HB32Xl7su4OP1+A+Kp9NReu5W8EvKvORLo10zbYdGS4QDvu9iTGtBc8ZSnnzfco9nlfxMS96GJs/zqfOXmD4I2OofpuIirovWYkpPs1+EVbJTSGUIQovmV8plc2OI50/pdY6lv9W1tevcTXur65put2tHB9oi0dvGdgGUcnBkTVk2uK6kaWqC0PLvfS+kLEuiKAIsOjuKPcqyJgxi0jRjcanLzs7OlDduuw4aSVEm1ka1bgmDHsbZpm2YJq0uODUIgTYNvV5MMtkhCALAtk6VUvYhhgBHaqpmBBhWVo7Qj2O2djZxXIebbr6RoihI8w26vZCqysnzinvuvs8C4WSDUg7JOMcRId3Qt5LD/Q5CGILAY5SNeeKJdY4ePco4HfHie1/IpY2LbCbr3HryNs6eOocWitFoxPHjxynLksXFRVyxxOnz7+fhj55jefEG4q6iaVt2dsbcdOPNVE2CUkAbsL29zeLiAITh9OnTDLodJkmJkhHbmxlh3J9eGxb/0Ol0Udrn9OmzLC+vcO7sOseP3cB4e8dazgpJWdoHz4XeEltbW7huOB93aC2mRj5QVjlVY7tOO9tjotCOQprK6g0I5FTcxl4rM5Cmq/ypeqL93toGS73zI+rCAjSL3HZpAKLQp65L/vsfPn0lu2cj9qvgn24Ve70q4k+GavqZjoMS5WGtTvfzTT+oot+7DjwVXHcllcHnAvf9MNfMQV2dw8rYXqtU7XN2Bm+rG6s/bkyL5zscWYzpxR6uAkfavyAO8CMfJEzyCVo2ZFWNES5BpDG6tEhlo+D/b+/+4+yq6zuPvz6ZyUwC+U0Qwg9BFKuoVTGLaH1YtuouUoQ+VlpRW6HVB6uuXd3abXHxgT+6tupu3ValZVlF1LWIv1qj4lIouP5akDyQ34gEiiYh4UcC+QlJJvPZP8439GaYyUwyd+7c+53X8/G4jzn3njPnfM7J/dz3PT9yJvub+74P9pXQbvaOcrif3UP9zBrog/5mL25goJ/IYfr6mz8du3toFtu2PcG2bY8ze6CPObMHOHjO3OYOepEMB+wcGmZW/xyYNUD0zWbuvIPYuXsXw8xi9/AcZg8EW7c9xtatm9m8eTO7d0P0zWbbE48zeNBgM13O4tGNG+mfPYvHdz7OLx94iN0MsvaBjWx8dBur165n59Awj27aziMbNzM0DJu3Ps627cNs3ryJx7fvYmhX84Xo4UfWsGXTEJl9T34B6os55f9i97F9+w7mDM5n107KKYgkmEVmMDgXdg8/wdy5A+zatYNZs4INmzYyeFA/Rz/9aWx4ZB3r163h0MPmsWv3BnL3XJYdeTAPb/glu3YOMTw0yJ0/ewD6FjBv8VJ+sXo9W3fs5v71D7Lxsa1s3LCV3QHzD55FX/YxZ3AhP7x+Jat/+ThzZi/kvvvvZcu2g1iz9p/Jvn4e3bKdiNnMzuCXa29j0ZLDOPkVyznmuCU875nHELvm8JITj2b9Aw/SH4voHxzmaYcs4elHHsGjG9dz6CHzOPxpC1k4/3AGBuYw7+BDWLjgUObTz+K5B3PUEU8jh4bZsWWI/ujnkMPmsn3XZhbMX8ysXZvZMdzP7tlD7Ngxm02PzmLHE8P8Yt2DbNg0xJZtjzUXUA4P8Nij29j02ONs3LCF3UOz2L1zBwcNDnD4oYcyd2CQBQcvYMn8xQzv2M1Af3PfgOhr/sjQ/AULGBgcZHd/MrhgLkMM8cSOHQwPDzNv3jx2bH+cXbvh4Ue2snMo2LxtM7Nmw5atW9m2/Ynpbdj9cCBX0e/P+fHJBPRkv2Tsz7UEres08vem6zqA1j321kAdudc7Wrju+TnaXnnrX7Ib6y+xtY7bc5Rgzzn5se5YONqefafPve/rNEzrNGNdbNca7nvuzT/yj+0cqK7dg4+Ih2nu3PHIdNfSQUtxfWs21et7TGYeOoXzb4uI2ALcPd11dJjv9bp1ZW93bcADRMTKXjjk2C6ub91m2vqOZSZuh5m2zq5vd+jaQ/SSJOnAGfCSJFWo2wP+kukuoMNc37rNtPUdy0zcDjNtnV3fLtDV5+AlSdKB6fY9eEmSdAAMeEmSKtSVAR8Rp0bE3RGxKiLOn+562iUiLo2IhyLi9pbXlkTE1RFxT/m5uLweEfHJsg1ujYgTp6/y/RcRR0fEdRFxZ0TcERHvLq9Xub4AETEnIn4SEbeUdf5Qef0ZEXFDWbcrImKgvD5Ynq8q44+dzvo7ocbenkl9DTOvt3u6r/f8UZVueQB9wL3AccAAcAtwwnTX1aZ1eyVwInB7y2sfB84vw+cDHyvDpwHfBQI4Gbhhuuvfz3VdBpxYhucDPwdOqHV9yzoEMK8MzwZuKOvyFeDs8vrFwDvK8DuBi8vw2cAV070OU7x9quztmdTXZR1mVG/3cl9P+8YbZWO+DLiq5fn7gPdNd11tXL9jR3wQ3A0sK8PLgLvL8P8E3jjadL34AL4JvGYGre9BwE3AS2nucNVfXn/y/Q1cBbysDPeX6WK6a5/CbVJtb8/Uvi7rMGN6u9f6uhsP0R8JrG55vqa8VqvDMnNdGV4PHFaGq9kO5RDVi2m++Va9vhHRFxE3Aw8BV9PssT6WmUNlktb1enKdy/hNwCGdrbijqvg3nqCq3+d7zJTe7tW+7saAn7Gy+cpX1f9bjIh5wNeB92Tm5tZxNa5vZu7OzBcBRwEnAc+Z5pI0zWp8n8PM6u1e7etuDPi1wNEtz48qr9XqwYhYBlB+PlRe7/ntEBGzaT4AvpSZ3ygvV7u+rTLzMeA6mkN3iyJiz98ubl2vJ9e5jF8IbOhwqZ1U1b/xOKp+n8/U3u61vu7GgL8ROL5coThAc5HCimmuaSqtAM4pw+fQnM/a8/pbyhWoJwObWg5/db2ICOCzwF2Z+YmWUVWuL0BEHBoRi8rwXJrzknfRfCCcVSYbuc57tsVZwLVlz6dWM6m3a36fz6je7um+nu6LFsa4kOE0misz7wUumO562rhelwPrgF0052zeSnNu5p+Ae4BrgCVl2gAuKtvgNmD5dNe/n+v6CppDdLcCN5fHabWub1mHXwV+Wtb5duDC8vpxwE+AVcBXgcHy+pzyfFUZf9x0r0MHtlF1vT2T+rqsw4zq7V7ua29VK0lShbrxEL0kSZokA16SpAoZ8JIkVciAlySpQga8JEkVMuAlSaqQAS9JUoUMeEmSKmTAS5JUIQNekqQKGfCSJFXIgJckqUIGvCRJFTLgJUmqkAEvSVKFDHhJkipkwEuSVCEDXpKkChnwkiRVyICXJKlCBrwkSRUy4CVJqpABL0lShQx4SZIqZMBLklQhA16SpAoZ8JIkVciAlySpQga8JEkVMuAlSaqQAS9JUoUMeEmSKmTAS5JUIQNekqQKGfCSJFXIgJckqUIGvCRJFTLgJUmqkAEvSVKFDHhJkipkwEuSVCEDXpKkChnwkiRVyICXJKlCBrwkSRUy4CVJqpABL0lShQx4SZIqZMBLklQhA16SpAoZ8JIkVciAlySpQga8JEkVMuAlSaqQAS9JUoUMeEmSKmTAS5JUIQNekqQKGfCSJFXIgJckqUIGvCRJFTLgJUmqkAEvSVKFDHhJkipkwEuSVCEDXpKkChnwkiRVyIDvARFxR0Sc0o5pI+K7EXHOBOd1f0S8emJVTsxUzFPqdr3yvo+IcyPih90+T01M/3QXoPFl5vMOZNqI+CDwrMz83Zbxr21vdZKkbuQevHpCRPhlVBohIvqmu4apEg0zahLceD2g9fBeRHwwIr4SEV+IiC3lkPzykdNGxKnAfwHeEBFbI+KWMv57EfG2MvzMiLg2IjZExCMR8aWIWDTBmuZGxF9GxC8iYlNE/DAi5pZxZ5S6HivLe+4Y8xiMiL+KiAfK468iYrCMOyUi1kTEn0bEeuBzEbE0Ir5d5rsxIn7gB4B6TUTMiojzI+Le0ntfiYglLeO/GhHrS199PyJaj8pdFhF/GxFXRsQ24F+X1y6KiO+Uz4QbIuKZLb/znIi4uvTM3RHxOy3jDomIFRGxOSJ+Ajz5e2PU/oqI+HHpwdURcW55fWH5THq4fCa8f6zejIiXR8SNZf1ujIiXt4z7XkR8JCJ+BGwHjiuH+O8r6/bPEfHm/d7oM5Qfjr3pDODLwCJgBfDpkRNk5v8B/hy4IjPnZeYLR5lPAH8BHAE8Fzga+OAEa/jvwEuAlwNLgD8BhiPi2cDlwHuAQ4ErgW9FxMAo87gAOBl4EfBC4CTg/S3jDy/zPgY4D3gvsKbM9zCaLzA5wXqlbvGHwG8Bv07Te48CF7WM/y5wPPA04CbgSyN+/03AR4D5wJ5z22cDHwIWA6vKeCLiYOBq4O/K/M4G/iYiTii/dxHwBLAM+IPyGFVEHFNq+xRND74IuLmM/hSwEDiurNdbgN8fZR5LgO8AnwQOAT4BfCciDmmZ7Pdo+n0+8HCZ9rWZOZ/m8+ZmNCEGfG/6YWZemZm7gS/ShON+y8xVmXl1Zu7IzIdpmu3Xx/u98s38D4B3Z+bazNydmT/OzB3AG4DvlPnuovkiMJemMUd6M/DhzHyoLP9DNM29xzDwgVLf48Aumg+iYzJzV2b+IDMNePWatwMXZOaa0jMfBM7acxoqMy/NzC0t414YEQtbfv+bmfmjzBzOzCfKa3+fmT/JzCGaLwQvKq+fDtyfmZ/LzKHM/CnwdeC3y+H91wMXZua2zLwd+Pw+6n4TcE1mXl76b0Nm3lzmczbwvlL3/cBfsncv7/GbwD2Z+cVSz+XAz4DXtUxzWWbeUdZliOZz4PkRMTcz12XmHeNsXxUGfG9a3zK8HZhzIOeoI+KwiPhyRKyNiM3A/waWTuBXlwJzgHtHGXcE8Is9TzJzGFgNHDnetGX4iJbnD7d8gAH8N5q9k38sh+zOn0CtUrc5Bvj7cpj7MeAuYDdwWET0RcRHy+H7zcD95Xda+3L1KPMc+Zkwr2VZL92zrLK8N9McHTuU5kLr1vm19uNIRzN6zy8FZvPUXp5Iz4827ZP1ZOY2mp2GtwPrymmI5+yjRrUw4Os23t7tn5dpXpCZC4DfpTlsP55HaA7rjXa+7gGaDxWguVCG5oNh7XjTAk8vr+2xV/1l7+C9mXkczWmKP4qIV02gXqmbrKY55Lyo5TEnM9fS7CWfCbya5pD3seV3Wvtyf45arQb+74hlzcvMd9Ac/h6i6c89nj7OvEbr+Udojq6N7OWJ9Pxo047s+6sy8zU0R+9+BvyvfdSoFgZ83R4Ejt3HhWjzga3Apog4EvjPE5lp2Su/FPhERBxR9jpeVi6Q+wrwmxHxqoiYTXPefAfw41FmdTnw/og4NCKWAhfSHEUYVUScHhHPKl8aNtHs9QxPpGapi1wMfKSc06a8/88s4+bT9MsG4CCaL+GT8W3g2RHxexExuzz+VUQ8t5zi+wbwwYg4qJyX39c9Mr4EvDoifici+ssFei8q8/lKWaf5Zb3+iNF7+cpSz5vKPN4AnFDqfIpylPHMci3BDprPK3t+ggz4un21/NwQETeNMv5DwIk0YfkdmmafqD8GbgNuBDYCHwNmZebdNEcCPkXzzf51wOsyc+co8/ivwErg1jKvm8prYzkeuIamyf8f8DeZed1+1Cx1g7+muTj2HyNiC3A98NIy7gs0h6zXAneWcQcsM7cA/4bmHPkDNIfyPwYMlkneRXM4fz1wGfC5fczrl8BpNF/aN9Jc7Lbn+p8/BLYB99Fc+Pd3NDsBI+exgea6gPfSfIn5E+D0zHxkjMXOovmy8EBZ5q8D7xhvvdUIr1GSJKk+7sFLklShSQV8RCwpN1C4p/xcPMZ0uyPi5vJYMZllSpp69rbU+yZ1iD4iPg5szMyPlv+ytDgz/3SU6bZm5rynzkFSN7K3pd432YC/GzglM9dFxDLge5n5K6NM54eA1EPsban3TTbgH8vMRWU4gEf3PB8x3RDNFZdDwEcz8x/GmN95NLcopK9/1kvmLZxzwLXVZtvmJ8afaAYZnDs4/kQzzLbNjz+SmYe2Y172dufY23uzt5/qQHt73LufRcQ1NHc9GumC1ieZmREx1reFYzJzbUQcB1wbEbdl5lPuiJSZlwCXACxaenCe8roTRk4yY91wzV3TXUJXeebznj3dJXSdH131033dhewp7O3uYG/vzd5+qv3t7T3GDfjMfPVY4yLiwYhY1nIY76Ex5rG2/LwvIr4HvJjRb3koqUPsbaluk/1vciv4lzsfnQN8c+QEEbE4/uVPgC4Ffo3mBg6Supe9LfW4yQb8R4HXRMQ9NPdO/ihARCyPiM+UaZ4LrIzm75FfR3Oezg8BqbvZ21KP2++/QNaq3HbwKX/sIzNXAm8rwz8GXjCZ5UjqLHtb6n3eyU6SpAoZ8JIkVciAlySpQga8JEkVMuAlSaqQAS9JUoUMeEmSKmTAS5JUIQNekqQKGfCSJFXIgJckqUIGvCRJFTLgJUmqkAEvSVKFDHhJkipkwEuSVCEDXpKkChnwkiRVyICXJKlCBrwkSRUy4CVJqpABL0lShQx4SZIqZMBLklQhA16SpAq1JeAj4tSIuDsiVkXE+aOMH4yIK8r4GyLi2HYsV9LUsrel3jXpgI+IPuAi4LXACcAbI+KEEZO9FXg0M58F/A/gY5NdrqSpZW9Lva0de/AnAasy877M3Al8GThzxDRnAp8vw18DXhUR0YZlS5o69rbUw9oR8EcCq1uerymvjTpNZg4Bm4BD2rBsSVPH3pZ6WFddZBcR50XEyohYufOJoekuR1Kb2NtS57Uj4NcCR7c8P6q8Nuo0EdEPLAQ2jJxRZl6Smcszc/nAnP42lCZpEuxtqYe1I+BvBI6PiGdExABwNrBixDQrgHPK8FnAtZmZbVi2pKljb0s9bNJfpTNzKCLeBVwF9AGXZuYdEfFhYGVmrgA+C3wxIlYBG2k+KCR1MXtb6m1tOVaWmVcCV4547cKW4SeA327HsiR1jr0t9a6uushOkiS1hwEvSVKFDHhJkipkwEuSVCEDXpKkChnwkiRVyICXJKlCBrwkSRUy4CVJqpABL0lShQx4SZIqZMBLklQhA16SpAoZ8JIkVciAlySpQga8JEkVMuAlSaqQAS9JUoUMeEmSKmTAS5JUIQNekqQKGfCSJFXIgJckqUIGvCRJFTLgJUmqUFsCPiJOjYi7I2JVRJw/yvhzI+LhiLi5PN7WjuVKmlr2ttS7+ic7g4joAy4CXgOsAW6MiBWZeeeISa/IzHdNdnmSOsPelnpbO/bgTwJWZeZ9mbkT+DJwZhvmK2l62dtSD5v0HjxwJLC65fka4KWjTPf6iHgl8HPgP2Xm6lGmedKCxUfyG//uz9pQXh0+9MkXTHcJXaVveNF0l9B1XrBoXrtnOSW9vXDhYfzb09/bvip73Nlvnj/dJXSV+Qe1/X3c806/6pQD+r1OXWT3LeDYzPxV4Grg86NNFBHnRcTKiFi5ddOmDpUmaRL2v7c3b+logdJM1Y6AXwsc3fL8qPLakzJzQ2buKE8/A7xktBll5tfraBQAAAfdSURBVCWZuTwzl89buLANpUmahKnp7QXusUqd0I6AvxE4PiKeEREDwNnAitYJImJZy9MzgLvasFxJU8velnrYpM/BZ+ZQRLwLuAroAy7NzDsi4sPAysxcAfzHiDgDGAI2AudOdrmSppa9LfW2dlxkR2ZeCVw54rULW4bfB7yvHcuS1Dn2ttS7vJOdJEkVMuAlSaqQAS9JUoUMeEmSKmTAS5JUIQNekqQKGfCSJFXIgJckqUIGvCRJFTLgJUmqkAEvSVKFDHhJkipkwEuSVCEDXpKkChnwkiRVyICXJKlCBrwkSRUy4CVJqpABL0lShQx4SZIqZMBLklQhA16SpAoZ8JIkVciAlySpQga8JEkVMuAlSapQWwI+Ii6NiIci4vYxxkdEfDIiVkXErRFxYjuWK2nq2NdSb2vXHvxlwKn7GP9a4PjyOA/42zYtV9LUuQz7WupZbQn4zPw+sHEfk5wJfCEb1wOLImJZO5YtaWrY11Jv69Q5+COB1S3P15TX9hIR50XEyohYuXXTpg6VJukATaivYURvb97SkeKkma6rLrLLzEsyc3lmLp+3cOF0lyOpTfbq7QXzp7scaUboVMCvBY5ueX5UeU1S77KvpS7WqYBfAbylXHV7MrApM9d1aNmSpoZ9LXWx/nbMJCIuB04BlkbEGuADwGyAzLwYuBI4DVgFbAd+vx3LlTR17Gupt7Ul4DPzjeOMT+A/tGNZkjrDvpZ6W1ddZCdJktrDgJckqUIGvCRJFTLgJUmqkAEvSVKFDHhJkipkwEuSVCEDXpKkChnwkiRVyICXJKlCBrwkSRUy4CVJqpABL0lShQx4SZIqZMBLklQhA16SpAoZ8JIkVciAlySpQga8JEkVMuAlSaqQAS9JUoUMeEmSKmTAS5JUIQNekqQKGfCSJFWoLQEfEZdGxEMRcfsY40+JiE0RcXN5XNiO5UqaOva11Nv62zSfy4BPA1/YxzQ/yMzT27Q8SVPvMuxrqWe1ZQ8+M78PbGzHvCR1B/ta6m3t2oOfiJdFxC3AA8AfZ+YdIyeIiPOA88rTHe8+47WjHhqcBkuBR6a7CKxjJOvY269MwzLH7Wt4am+/86w3dkNvd8u/m3XsrVvqgO6p5YB6OzKzLUuPiGOBb2fm80cZtwAYzsytEXEa8NeZefw481uZmcvbUtwkdUst1mEdna6j3X09VXUeCOuwjvF0Sy0HWkdHrqLPzM2ZubUMXwnMjoilnVi2pKlhX0vdrSMBHxGHR0SU4ZPKcjd0YtmSpoZ9LXW3tpyDj4jLgVOApRGxBvgAMBsgMy8GzgLeERFDwOPA2Tn+uYFL2lFbm3RLLdaxN+vYW1vrmKK+bnudk2Ade7OOp+qWWg6ojradg5ckSd3DO9lJklQhA16SpAp1TcBHxJKIuDoi7ik/F48x3e6WW2OuaOPyT42IuyNiVUScP8r4wYi4ooy/ofz3obabQB3nRsTDLdvgbVNUx3i3KY2I+GSp89aIOHGa6ujI7VIj4uiIuC4i7oyIOyLi3aNMM+XbZIJ1dNUtZO3tCddhb+89fsrfx9X3dWZ2xQP4OHB+GT4f+NgY022dgmX3AfcCxwEDwC3ACSOmeSdwcRk+G7himuo4F/h0B/49XgmcCNw+xvjTgO8CAZwM3DBNdZxC8/+0p3p7LANOLMPzgZ+P8m8z5dtkgnV0ZJvsR832tr19IHVM+fu49r7umj144Ezg82X488BvdXDZJwGrMvO+zNwJfLnUM1Z9XwNeFdH8F6EO19EROf5tSs8EvpCN64FFEbFsGuroiMxcl5k3leEtwF3AkSMmm/JtMsE6uo29bW8fSB1Trva+7qaAPywz15Xh9cBhY0w3JyJWRsT1EdGuD4ojgdUtz9fw1I375DSZOQRsAg5p0/L3pw6A15dDRV+LiKPbXMNETbTWTnhZRNwSEd+NiOdN9cLKIdwXAzeMGNXRbbKPOqDD22Qc9ra9faA69j6usa87eS96IuIa4PBRRl3Q+iQzMyLG+v97x2Tm2og4Drg2Im7LzHvbXWsX+xZweWbuiIh/T7Pn8RvTXNN0uonmPbHndqn/AIx7u9QDFRHzgK8D78nMzVO1nEnW0dFtUuqxtyfP3t5bx97HtfZ1R/fgM/PVmfn8UR7fBB7cc9ij/HxojHmsLT/vA75H801nstYCrd+WjyqvjTpNRPQDC2n/XbvGrSMzN2TmjvL0M8BL2lzDRE1km0257ODtUiNiNk3zfSkzvzHKJB3ZJuPV0clt0rJMe3uSddjbe+vU+7jmvu6mQ/QrgHPK8DnAN0dOEBGLI2KwDC8Ffg24sw3LvhE4PiKeEREDNBfajLyKt7W+s4Brs1z50Ebj1jHi3M8ZNOdqpsMK4C3lCtOTgU0th2E7Jjp0u9SyjM8Cd2XmJ8aYbMq3yUTq6NQ22Q/2tr293zrxPq6+r8e6+q7TD5pzXv8E3ANcAywpry8HPlOGXw7cRnMF6m3AW9u4/NNorly8F7igvPZh4IwyPAf4KrAK+Alw3BRth/Hq+AvgjrINrgOeM0V1XA6sA3bRnHN6K/B24O1lfAAXlTpvA5ZPUx3vatke1wMvn6I6XgEkcCtwc3mc1ultMsE6OrJN9qNme3tiddjbHX4f197X3qpWkqQKddMhekmS1CYGvCRJFTLgJUmqkAEvSVKFDHhJkipkwEuSVCEDXpKkCv1/u4tBHGpUJbMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from minisom import MiniSom\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "# read the image\n", + "img = plt.imread('tree.jpg')\n", + "\n", + "# reshaping the pixels matrix\n", + "pixels = np.reshape(img, (img.shape[0]*img.shape[1], 3)) / 255.\n", + "\n", + "# SOM initialization and training\n", + "print('training...')\n", + "som = MiniSom(2, 3, 3, sigma=1.,\n", + " learning_rate=0.2, neighborhood_function='bubble') # 3x3 = 9 final colors\n", + "som.random_weights_init(pixels)\n", + "starting_weights = som.get_weights().copy() # saving the starting weights\n", + "som.train(pixels, 10000, random_order=True, verbose=True)\n", + "\n", + "print('quantization...')\n", + "qnt = som.quantization(pixels) # quantize each pixels of the image\n", + "print('building new image...')\n", + "clustered = np.zeros(img.shape)\n", + "for i, q in enumerate(qnt): # place the quantized values into a new image\n", + " clustered[np.unravel_index(i, dims=(img.shape[0], img.shape[1]))] = q\n", + "print('done.')\n", + "\n", + "# show the result\n", + "plt.figure(figsize=(7, 7))\n", + "plt.figure(1)\n", + "plt.subplot(221)\n", + "plt.title('original')\n", + "plt.imshow(img)\n", + "plt.subplot(222)\n", + "plt.title('result')\n", + "plt.imshow(clustered)\n", + "\n", + "plt.subplot(223)\n", + "plt.title('initial colors')\n", + "plt.imshow(starting_weights, interpolation='none')\n", + "plt.subplot(224)\n", + "plt.title('learned colors')\n", + "plt.imshow(som.get_weights(), interpolation='none')\n", + "\n", + "plt.tight_layout()\n", + "plt.savefig('resulting_images/som_color_quantization.png')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/ColorSpaceMapping.ipynb b/examples/ColorSpaceMapping.ipynb new file mode 100644 index 0000000..75ba737 --- /dev/null +++ b/examples/ColorSpaceMapping.ipynb @@ -0,0 +1,130 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we will take a small set of colors in the RGB space and use the intensity values to train a SOM. After the som is trained we will plot the map coloring each neuron using its weights as RGB coordinates.\n", + "\n", + "Let's first define our colors:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "%load_ext autoreload\n", + "\n", + "#Training inputs for RGBcolors\n", + "colors = [[0., 0., 0.],\n", + " [0., 0., 1.],\n", + " [0., 0., 0.5],\n", + " [0.125, 0.529, 1.0],\n", + " [0.33, 0.4, 0.67],\n", + " [0.6, 0.5, 1.0],\n", + " [0., 1., 0.],\n", + " [1., 0., 0.],\n", + " [0., 1., 1.],\n", + " [1., 0., 1.],\n", + " [1., 1., 0.],\n", + " [1., 1., 1.],\n", + " [.33, .33, .33],\n", + " [.5, .5, .5],\n", + " [.66, .66, .66]]\n", + "color_names = \\\n", + " ['black', 'blue', 'darkblue', 'skyblue',\n", + " 'greyblue', 'lilac', 'green', 'red',\n", + " 'cyan', 'violet', 'yellow', 'white',\n", + " 'darkgrey', 'mediumgrey', 'lightgrey']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's initialize our SOM and plot the colors without training:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "som = MiniSom(30, 30, 3, sigma=3., \n", + " learning_rate=2.5, \n", + " neighborhood_function='gaussian')\n", + "\n", + "plt.imshow(abs(som.get_weights()), interpolation='none')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now train the SOM and check how the organization of the weights has changed:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "som.train(colors, 500, random_order=True, verbose=True)\n", + "\n", + "plt.imshow(abs(som.get_weights()), interpolation='none')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using a different neighborhood function the weights be less smooth across the map:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "som = MiniSom(30, 30, 3, sigma=8., \n", + " learning_rate=.5, \n", + " neighborhood_function='bubble')\n", + "som.train_random(colors, 500, verbose=True)\n", + "\n", + "plt.imshow(abs(som.get_weights()), interpolation='none')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/DemocracyIndex.ipynb b/examples/DemocracyIndex.ipynb new file mode 100644 index 0000000..ae4759d --- /dev/null +++ b/examples/DemocracyIndex.ipynb @@ -0,0 +1,1594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "In this example we will see how to use MiniSom to draw some insights from the Democracy Index data from Wikipedia.\n", + "\n", + "First, let's load the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.patches import Patch\n", + "%matplotlib inline\n", + "\n", + "from minisom import MiniSom\n", + "from sklearn.preprocessing import minmax_scale, scale\n", + "\n", + "# download from wikipedia and reorganization\n", + "import os.path\n", + "if not os.path.isfile('democracy_index.csv'):\n", + " wikitables = pd.read_html('https://en.wikipedia.org/wiki/Democracy_Index',\n", + " attrs={\"class\":\"sortable\"}, header=0)\n", + " democracy_index = wikitables[0]\n", + " democracy_index.columns = [c.lower().replace(' ', '_') for c in democracy_index.columns]\n", + " democracy_index.rename(columns={'score': 'democracy_index', \n", + " 'functioning_ofgovernment': 'functioning_of_government',\n", + " 'politicalparticipation': 'political_participation',\n", + " 'politicalculture': 'political_culture',\n", + " 'civilliberties': 'civil_liberties'}, inplace=True)\n", + " democracy_index.category = democracy_index.category.replace('Flawed democracy[a]', 'Flawed democracy')\n", + " democracy_index = democracy_index[:-1]\n", + " democracy_index.to_csv('democracy_index.csv')\n", + " print('data downloaded from Wikipedia')\n", + "else:\n", + " # pre-downloaded file\n", + " democracy_index = pd.read_csv('democracy_index.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0rankcountrydemocracy_indexelectoral_processand_pluralismfunctioning_of_governmentpolitical_participationpolitical_culturecivil_libertiescategory
001Norway9.8710.009.6410.0010.009.71Full democracy
112Iceland9.5810.009.298.8910.009.71Full democracy
223Sweden9.399.589.648.3310.009.41Full democracy
334New Zealand9.2610.009.298.898.1310.00Full democracy
445Denmark9.2210.009.298.339.389.12Full democracy
\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 rank country democracy_index \\\n", + "0 0 1 Norway 9.87 \n", + "1 1 2 Iceland 9.58 \n", + "2 2 3 Sweden 9.39 \n", + "3 3 4 New Zealand 9.26 \n", + "4 4 5 Denmark 9.22 \n", + "\n", + " electoral_processand_pluralism functioning_of_government \\\n", + "0 10.00 9.64 \n", + "1 10.00 9.29 \n", + "2 9.58 9.64 \n", + "3 10.00 9.29 \n", + "4 10.00 9.29 \n", + "\n", + " political_participation political_culture civil_liberties category \n", + "0 10.00 10.00 9.71 Full democracy \n", + "1 8.89 10.00 9.71 Full democracy \n", + "2 8.33 10.00 9.41 Full democracy \n", + "3 8.89 8.13 10.00 Full democracy \n", + "4 8.33 9.38 9.12 Full democracy " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "democracy_index.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we can see the dataset contains a set of of social metrics related to the democracy level for each country. The goal is to use these metrics as features for our SOM so that we can create a bidimensional space where each country is mapped according to their democracity level.\n", + "\n", + "Let's define a set of color for the categories in which the countries are classified and also a country codes for each country. These will become handy when we will visualize the results on the map." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "category_color = {'Full democracy': 'darkgreen',\n", + " 'Flawed democracy': 'limegreen',\n", + " 'Hybrid regime': 'darkorange',\n", + " 'Authoritarian': 'crimson'}\n", + "colors_dict = {c: category_color[dm] for c, dm in zip(democracy_index.country,\n", + " democracy_index.category)}\n", + "\n", + "country_codes = {'Afghanistan': 'AF',\n", + " 'Albania': 'AL',\n", + " 'Algeria': 'DZ',\n", + " 'Angola': 'AO',\n", + " 'Argentina': 'AR',\n", + " 'Armenia': 'AM',\n", + " 'Australia': 'AU',\n", + " 'Austria': 'AT',\n", + " 'Azerbaijan': 'AZ',\n", + " 'Bahrain': 'BH',\n", + " 'Bangladesh': 'BD',\n", + " 'Belarus': 'BY',\n", + " 'Belgium': 'BE',\n", + " 'Benin': 'BJ',\n", + " 'Bhutan': 'BT',\n", + " 'Bolivia': 'BO',\n", + " 'Bosnia and Herzegovina': 'BA',\n", + " 'Botswana': 'BW',\n", + " 'Brazil': 'BR',\n", + " 'Bulgaria': 'BG',\n", + " 'Burkina Faso': 'BF',\n", + " 'Burundi': 'BI',\n", + " 'Cambodia': 'KH',\n", + " 'Cameroon': 'CM',\n", + " 'Canada': 'CA',\n", + " 'Cape Verde': 'CV',\n", + " 'Central African Republic': 'CF',\n", + " 'Chad': 'TD',\n", + " 'Chile': 'CL',\n", + " 'China': 'CN',\n", + " 'Colombia': 'CO',\n", + " 'Comoros': 'KM',\n", + " 'Costa Rica': 'CR',\n", + " 'Croatia': 'HR',\n", + " 'Cuba': 'CU',\n", + " 'Cyprus': 'CY',\n", + " 'Czech Republic': 'CZ',\n", + " 'Democratic Republic of the Congo': 'CD',\n", + " 'Denmark': 'DK',\n", + " 'Djibouti': 'DJ',\n", + " 'Dominican Republic': 'DO',\n", + " 'Ecuador': 'EC',\n", + " 'Egypt': 'EG',\n", + " 'El Salvador': 'SV',\n", + " 'Equatorial Guinea': 'GQ',\n", + " 'Eritrea': 'ER',\n", + " 'Estonia': 'EE',\n", + " 'Ethiopia': 'ET',\n", + " 'Fiji': 'FJ',\n", + " 'Finland': 'FI',\n", + " 'France': 'FR',\n", + " 'Gabon': 'GA',\n", + " 'Gambia': 'GM',\n", + " 'Georgia': 'GE',\n", + " 'Germany': 'DE',\n", + " 'Ghana': 'GH',\n", + " 'Greece': 'GR',\n", + " 'Guatemala': 'GT',\n", + " 'Guinea': 'GN',\n", + " 'Guinea-Bissau': 'GW',\n", + " 'Guyana': 'GY',\n", + " 'Haiti': 'HT',\n", + " 'Honduras': 'HN',\n", + " 'Hong Kong': 'HK',\n", + " 'Hungary': 'HU',\n", + " 'Iceland': 'IS',\n", + " 'India': 'IN',\n", + " 'Indonesia': 'ID',\n", + " 'Iran': 'IR',\n", + " 'Iraq': 'IQ',\n", + " 'Ireland': 'IE',\n", + " 'Israel': 'IL',\n", + " 'Italy': 'IT',\n", + " 'Ivory Coast': 'IC',\n", + " 'Jamaica': 'JM',\n", + " 'Japan': 'JP',\n", + " 'Jordan': 'JO',\n", + " 'Kazakhstan': 'KZ',\n", + " 'Kenya': 'KE',\n", + " 'Kuwait': 'KW',\n", + " 'Kyrgyzstan': 'KG',\n", + " 'Laos': 'LA',\n", + " 'Latvia': 'LV',\n", + " 'Lebanon': 'LB',\n", + " 'Lesotho': 'LS',\n", + " 'Liberia': 'LR',\n", + " 'Libya': 'LY',\n", + " 'Lithuania': 'LT',\n", + " 'Luxembourg': 'LU',\n", + " 'Macedonia': 'MK',\n", + " 'Madagascar': 'MG',\n", + " 'Malawi': 'MW',\n", + " 'Malaysia': 'MY',\n", + " 'Mali': 'ML',\n", + " 'Malta': 'MT',\n", + " 'Mauritania': 'MR',\n", + " 'Mauritius': 'MU',\n", + " 'Mexico': 'MX',\n", + " 'Moldova': 'MD',\n", + " 'Mongolia': 'MN',\n", + " 'Montenegro': 'ME',\n", + " 'Morocco': 'MA',\n", + " 'Mozambique': 'MZ',\n", + " 'Myanmar': 'MM',\n", + " 'Namibia': 'NA',\n", + " 'Nepal': 'NP',\n", + " 'Netherlands': 'NL',\n", + " 'New Zealand': 'NZ',\n", + " 'North Macedonia': 'NM',\n", + " 'Nicaragua': 'NI',\n", + " 'Niger': 'NE',\n", + " 'Nigeria': 'NG',\n", + " 'North Korea': 'KP',\n", + " 'Norway': 'NO',\n", + " 'Oman': 'OM',\n", + " 'Pakistan': 'PK',\n", + " 'Palestine': 'PS',\n", + " 'Panama': 'PA',\n", + " 'Papua New Guinea': 'PG',\n", + " 'Paraguay': 'PY',\n", + " 'Peru': 'PE',\n", + " 'Philippines': 'PH',\n", + " 'Poland': 'PL',\n", + " 'Portugal': 'PT',\n", + " 'Qatar': 'QA',\n", + " 'Republic of China (Taiwan)': 'TW',\n", + " 'Republic of the Congo': 'CG',\n", + " 'Romania': 'RO',\n", + " 'Russia': 'RU',\n", + " 'Rwanda': 'RW',\n", + " 'Saudi Arabia': 'SA',\n", + " 'Senegal': 'SN',\n", + " 'Serbia': 'RS',\n", + " 'Sierra Leone': 'SL',\n", + " 'Singapore': 'SG',\n", + " 'Slovakia': 'SK',\n", + " 'Slovenia': 'SI',\n", + " 'South Africa': 'ZA',\n", + " 'South Korea': 'KR',\n", + " 'Spain': 'ES',\n", + " 'Sri Lanka': 'LK',\n", + " 'Sudan': 'SD',\n", + " 'Suriname': 'SR',\n", + " 'Swaziland': 'SZ',\n", + " 'Sweden': 'SE',\n", + " 'Switzerland': 'CH',\n", + " 'Syria': 'SY',\n", + " 'Tajikistan': 'TJ',\n", + " 'Tanzania': 'TZ',\n", + " 'Thailand': 'TH',\n", + " 'Timor-Leste': 'TL',\n", + " 'Togo': 'TG',\n", + " 'Trinidad and Tobago': 'TT',\n", + " 'Tunisia': 'TN',\n", + " 'Turkey': 'TR',\n", + " 'Turkmenistan': 'TM',\n", + " 'Uganda': 'UG',\n", + " 'Ukraine': 'UA',\n", + " 'United Arab Emirates': 'AE',\n", + " 'United Kingdom': 'GB',\n", + " 'United States': 'US',\n", + " 'Uruguay': 'UY',\n", + " 'Uzbekistan': 'UZ',\n", + " 'Venezuela': 'VE',\n", + " 'Vietnam': 'VN',\n", + " 'Yemen': 'YE',\n", + " 'Zambia': 'ZM',\n", + " 'Zimbabwe': 'ZW'}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We are now ready 1) isolate our features, 2) scale the feature and train our SOM:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 0 / 1000 ] 0% - ? it/s\r", + " [ 0 / 1000 ] 0% - ? it/s\r", + " [ 1 / 1000 ] 0% - 0:00:01 left \r", + " [ 2 / 1000 ] 0% - 0:00:01 left \r", + " [ 3 / 1000 ] 0% - 0:00:00 left \r", + " [ 4 / 1000 ] 0% - 0:00:01 left \r", + " [ 5 / 1000 ] 0% - 0:00:01 left \r", + " [ 6 / 1000 ] 1% - 0:00:01 left \r", + " [ 7 / 1000 ] 1% - 0:00:01 left \r", + " [ 8 / 1000 ] 1% - 0:00:01 left \r", + " [ 9 / 1000 ] 1% - 0:00:01 left \r", + " [ 10 / 1000 ] 1% - 0:00:01 left \r", + " [ 11 / 1000 ] 1% - 0:00:01 left \r", + " [ 12 / 1000 ] 1% - 0:00:00 left \r", + " [ 13 / 1000 ] 1% - 0:00:00 left \r", + " [ 14 / 1000 ] 1% - 0:00:00 left \r", + " [ 15 / 1000 ] 2% - 0:00:00 left \r", + " [ 16 / 1000 ] 2% - 0:00:00 left \r", + " [ 17 / 1000 ] 2% - 0:00:00 left \r", + " [ 18 / 1000 ] 2% - 0:00:00 left \r", + " [ 19 / 1000 ] 2% - 0:00:00 left \r", + " [ 20 / 1000 ] 2% - 0:00:00 left \r", + " [ 21 / 1000 ] 2% - 0:00:00 left \r", + " [ 22 / 1000 ] 2% - 0:00:00 left \r", + " [ 23 / 1000 ] 2% - 0:00:00 left \r", + " [ 24 / 1000 ] 2% - 0:00:00 left \r", + " [ 25 / 1000 ] 2% - 0:00:00 left \r", + " [ 26 / 1000 ] 3% - 0:00:00 left \r", + " [ 27 / 1000 ] 3% - 0:00:00 left \r", + " [ 28 / 1000 ] 3% - 0:00:00 left \r", + " [ 29 / 1000 ] 3% - 0:00:00 left \r", + " [ 30 / 1000 ] 3% - 0:00:00 left \r", + " [ 31 / 1000 ] 3% - 0:00:00 left \r", + " [ 32 / 1000 ] 3% - 0:00:00 left \r", + " [ 33 / 1000 ] 3% - 0:00:00 left \r", + " [ 34 / 1000 ] 3% - 0:00:00 left \r", + " [ 35 / 1000 ] 4% - 0:00:00 left \r", + " [ 36 / 1000 ] 4% - 0:00:00 left \r", + " [ 37 / 1000 ] 4% - 0:00:00 left \r", + " [ 38 / 1000 ] 4% - 0:00:00 left \r", + " [ 39 / 1000 ] 4% - 0:00:00 left \r", + " [ 40 / 1000 ] 4% - 0:00:00 left \r", + " [ 41 / 1000 ] 4% - 0:00:00 left \r", + " [ 42 / 1000 ] 4% - 0:00:00 left \r", + " [ 43 / 1000 ] 4% - 0:00:00 left \r", + " [ 44 / 1000 ] 4% - 0:00:00 left \r", + " [ 45 / 1000 ] 4% - 0:00:00 left \r", + " [ 46 / 1000 ] 5% - 0:00:00 left \r", + " [ 47 / 1000 ] 5% - 0:00:00 left \r", + " [ 48 / 1000 ] 5% - 0:00:00 left \r", + " [ 49 / 1000 ] 5% - 0:00:00 left \r", + " [ 50 / 1000 ] 5% - 0:00:00 left \r", + " [ 51 / 1000 ] 5% - 0:00:00 left \r", + " [ 52 / 1000 ] 5% - 0:00:00 left \r", + " [ 53 / 1000 ] 5% - 0:00:00 left \r", + " [ 54 / 1000 ] 5% - 0:00:00 left \r", + " [ 55 / 1000 ] 6% - 0:00:00 left \r", + " [ 56 / 1000 ] 6% - 0:00:00 left \r", + " [ 57 / 1000 ] 6% - 0:00:00 left \r", + " [ 58 / 1000 ] 6% - 0:00:00 left \r", + " [ 59 / 1000 ] 6% - 0:00:00 left \r", + " [ 60 / 1000 ] 6% - 0:00:00 left \r", + " [ 61 / 1000 ] 6% - 0:00:00 left \r", + " [ 62 / 1000 ] 6% - 0:00:00 left \r", + " [ 63 / 1000 ] 6% - 0:00:00 left \r", + " [ 64 / 1000 ] 6% - 0:00:00 left \r", + " [ 65 / 1000 ] 6% - 0:00:00 left \r", + " [ 66 / 1000 ] 7% - 0:00:00 left \r", + " [ 67 / 1000 ] 7% - 0:00:00 left \r", + " [ 68 / 1000 ] 7% - 0:00:00 left \r", + " [ 69 / 1000 ] 7% - 0:00:00 left \r", + " [ 70 / 1000 ] 7% - 0:00:00 left \r", + " [ 71 / 1000 ] 7% - 0:00:00 left \r", + " [ 72 / 1000 ] 7% - 0:00:00 left \r", + " [ 73 / 1000 ] 7% - 0:00:00 left \r", + " [ 74 / 1000 ] 7% - 0:00:00 left \r", + " [ 75 / 1000 ] 8% - 0:00:00 left \r", + " [ 76 / 1000 ] 8% - 0:00:00 left \r", + " [ 77 / 1000 ] 8% - 0:00:00 left \r", + " [ 78 / 1000 ] 8% - 0:00:00 left \r", + " [ 79 / 1000 ] 8% - 0:00:00 left \r", + " [ 80 / 1000 ] 8% - 0:00:00 left \r", + " [ 81 / 1000 ] 8% - 0:00:00 left \r", + " [ 82 / 1000 ] 8% - 0:00:00 left \r", + " [ 83 / 1000 ] 8% - 0:00:00 left \r", + " [ 84 / 1000 ] 8% - 0:00:00 left \r", + " [ 85 / 1000 ] 8% - 0:00:00 left \r", + " [ 86 / 1000 ] 9% - 0:00:00 left \r", + " [ 87 / 1000 ] 9% - 0:00:00 left \r", + " [ 88 / 1000 ] 9% - 0:00:00 left \r", + " [ 89 / 1000 ] 9% - 0:00:00 left \r", + " [ 90 / 1000 ] 9% - 0:00:00 left \r", + " [ 91 / 1000 ] 9% - 0:00:00 left \r", + " [ 92 / 1000 ] 9% - 0:00:00 left \r", + " [ 93 / 1000 ] 9% - 0:00:00 left \r", + " [ 94 / 1000 ] 9% - 0:00:00 left \r", + " [ 95 / 1000 ] 10% - 0:00:00 left \r", + " [ 96 / 1000 ] 10% - 0:00:00 left \r", + " [ 97 / 1000 ] 10% - 0:00:00 left \r", + " [ 98 / 1000 ] 10% - 0:00:00 left \r", + " [ 99 / 1000 ] 10% - 0:00:00 left \r", + " [ 100 / 1000 ] 10% - 0:00:00 left \r", + " [ 101 / 1000 ] 10% - 0:00:00 left \r", + " [ 102 / 1000 ] 10% - 0:00:00 left \r", + " [ 103 / 1000 ] 10% - 0:00:00 left \r", + " [ 104 / 1000 ] 10% - 0:00:00 left \r", + " [ 105 / 1000 ] 10% - 0:00:00 left \r", + " [ 106 / 1000 ] 11% - 0:00:00 left \r", + " [ 107 / 1000 ] 11% - 0:00:00 left \r", + " [ 108 / 1000 ] 11% - 0:00:00 left \r", + " [ 109 / 1000 ] 11% - 0:00:00 left \r", + " [ 110 / 1000 ] 11% - 0:00:00 left \r", + " [ 111 / 1000 ] 11% - 0:00:00 left \r", + " [ 112 / 1000 ] 11% - 0:00:00 left \r", + " [ 113 / 1000 ] 11% - 0:00:00 left \r", + " [ 114 / 1000 ] 11% - 0:00:00 left \r", + " [ 115 / 1000 ] 12% - 0:00:00 left \r", + " [ 116 / 1000 ] 12% - 0:00:00 left \r", + " [ 117 / 1000 ] 12% - 0:00:00 left \r", + " [ 118 / 1000 ] 12% - 0:00:00 left \r", + " [ 119 / 1000 ] 12% - 0:00:00 left \r", + " [ 120 / 1000 ] 12% - 0:00:00 left \r", + " [ 121 / 1000 ] 12% - 0:00:00 left \r", + " [ 122 / 1000 ] 12% - 0:00:00 left \r", + " [ 123 / 1000 ] 12% - 0:00:00 left \r", + " [ 124 / 1000 ] 12% - 0:00:00 left \r", + " [ 125 / 1000 ] 12% - 0:00:00 left \r", + " [ 126 / 1000 ] 13% - 0:00:00 left \r", + " [ 127 / 1000 ] 13% - 0:00:00 left \r", + " [ 128 / 1000 ] 13% - 0:00:00 left \r", + " [ 129 / 1000 ] 13% - 0:00:00 left \r", + " [ 130 / 1000 ] 13% - 0:00:00 left \r", + " [ 131 / 1000 ] 13% - 0:00:00 left \r", + " [ 132 / 1000 ] 13% - 0:00:00 left \r", + " [ 133 / 1000 ] 13% - 0:00:00 left \r", + " [ 134 / 1000 ] 13% - 0:00:00 left \r", + " [ 135 / 1000 ] 14% - 0:00:00 left \r", + " [ 136 / 1000 ] 14% - 0:00:00 left \r", + " [ 137 / 1000 ] 14% - 0:00:00 left \r", + " [ 138 / 1000 ] 14% - 0:00:00 left \r", + " [ 139 / 1000 ] 14% - 0:00:00 left \r", + " [ 140 / 1000 ] 14% - 0:00:00 left \r", + " [ 141 / 1000 ] 14% - 0:00:00 left \r", + " [ 142 / 1000 ] 14% - 0:00:00 left \r", + " [ 143 / 1000 ] 14% - 0:00:00 left \r", + " [ 144 / 1000 ] 14% - 0:00:00 left \r", + " [ 145 / 1000 ] 14% - 0:00:00 left \r", + " [ 146 / 1000 ] 15% - 0:00:00 left \r", + " [ 147 / 1000 ] 15% - 0:00:00 left \r", + " [ 148 / 1000 ] 15% - 0:00:00 left \r", + " [ 149 / 1000 ] 15% - 0:00:00 left \r", + " [ 150 / 1000 ] 15% - 0:00:00 left \r", + " [ 151 / 1000 ] 15% - 0:00:00 left \r", + " [ 152 / 1000 ] 15% - 0:00:00 left \r", + " [ 153 / 1000 ] 15% - 0:00:00 left \r", + " [ 154 / 1000 ] 15% - 0:00:00 left \r", + " [ 155 / 1000 ] 16% - 0:00:00 left \r", + " [ 156 / 1000 ] 16% - 0:00:00 left \r", + " [ 157 / 1000 ] 16% - 0:00:00 left \r", + " [ 158 / 1000 ] 16% - 0:00:00 left \r", + " [ 159 / 1000 ] 16% - 0:00:00 left \r", + " [ 160 / 1000 ] 16% - 0:00:00 left \r", + " [ 161 / 1000 ] 16% - 0:00:00 left \r", + " [ 162 / 1000 ] 16% - 0:00:00 left \r", + " [ 163 / 1000 ] 16% - 0:00:00 left \r", + " [ 164 / 1000 ] 16% - 0:00:00 left \r", + " [ 165 / 1000 ] 16% - 0:00:00 left \r", + " [ 166 / 1000 ] 17% - 0:00:00 left \r", + " [ 167 / 1000 ] 17% - 0:00:00 left \r", + " [ 168 / 1000 ] 17% - 0:00:00 left \r", + " [ 169 / 1000 ] 17% - 0:00:00 left \r", + " [ 170 / 1000 ] 17% - 0:00:00 left \r", + " [ 171 / 1000 ] 17% - 0:00:00 left \r", + " [ 172 / 1000 ] 17% - 0:00:00 left \r", + " [ 173 / 1000 ] 17% - 0:00:00 left \r", + " [ 174 / 1000 ] 17% - 0:00:00 left \r", + " [ 175 / 1000 ] 18% - 0:00:00 left \r", + " [ 176 / 1000 ] 18% - 0:00:00 left \r", + " [ 177 / 1000 ] 18% - 0:00:00 left \r", + " [ 178 / 1000 ] 18% - 0:00:00 left \r", + " [ 179 / 1000 ] 18% - 0:00:00 left \r", + " [ 180 / 1000 ] 18% - 0:00:00 left \r", + " [ 181 / 1000 ] 18% - 0:00:00 left \r", + " [ 182 / 1000 ] 18% - 0:00:00 left \r", + " [ 183 / 1000 ] 18% - 0:00:00 left \r", + " [ 184 / 1000 ] 18% - 0:00:00 left \r", + " [ 185 / 1000 ] 18% - 0:00:00 left \r", + " [ 186 / 1000 ] 19% - 0:00:00 left \r", + " [ 187 / 1000 ] 19% - 0:00:00 left \r", + " [ 188 / 1000 ] 19% - 0:00:00 left \r", + " [ 189 / 1000 ] 19% - 0:00:00 left \r", + " [ 190 / 1000 ] 19% - 0:00:00 left \r", + " [ 191 / 1000 ] 19% - 0:00:00 left \r", + " [ 192 / 1000 ] 19% - 0:00:00 left \r", + " [ 193 / 1000 ] 19% - 0:00:00 left \r", + " [ 194 / 1000 ] 19% - 0:00:00 left \r", + " [ 195 / 1000 ] 20% - 0:00:00 left \r", + " [ 196 / 1000 ] 20% - 0:00:00 left \r", + " [ 197 / 1000 ] 20% - 0:00:00 left \r", + " [ 198 / 1000 ] 20% - 0:00:00 left \r", + " [ 199 / 1000 ] 20% - 0:00:00 left \r", + " [ 200 / 1000 ] 20% - 0:00:00 left \r", + " [ 201 / 1000 ] 20% - 0:00:00 left \r", + " [ 202 / 1000 ] 20% - 0:00:00 left \r", + " [ 203 / 1000 ] 20% - 0:00:00 left \r", + " [ 204 / 1000 ] 20% - 0:00:00 left \r", + " [ 205 / 1000 ] 20% - 0:00:00 left \r", + " [ 206 / 1000 ] 21% - 0:00:00 left \r", + " [ 207 / 1000 ] 21% - 0:00:00 left \r", + " [ 208 / 1000 ] 21% - 0:00:00 left \r", + " [ 209 / 1000 ] 21% - 0:00:00 left \r", + " [ 210 / 1000 ] 21% - 0:00:00 left \r", + " [ 211 / 1000 ] 21% - 0:00:00 left \r", + " [ 212 / 1000 ] 21% - 0:00:00 left \r", + " [ 213 / 1000 ] 21% - 0:00:00 left \r", + " [ 214 / 1000 ] 21% - 0:00:00 left \r", + " [ 215 / 1000 ] 22% - 0:00:00 left \r", + " [ 216 / 1000 ] 22% - 0:00:00 left \r", + " [ 217 / 1000 ] 22% - 0:00:00 left \r", + " [ 218 / 1000 ] 22% - 0:00:00 left \r", + " [ 219 / 1000 ] 22% - 0:00:00 left \r", + " [ 220 / 1000 ] 22% - 0:00:00 left \r", + " [ 221 / 1000 ] 22% - 0:00:00 left \r", + " [ 222 / 1000 ] 22% - 0:00:00 left \r", + " [ 223 / 1000 ] 22% - 0:00:00 left \r", + " [ 224 / 1000 ] 22% - 0:00:00 left \r", + " [ 225 / 1000 ] 22% - 0:00:00 left \r", + " [ 226 / 1000 ] 23% - 0:00:00 left \r", + " [ 227 / 1000 ] 23% - 0:00:00 left \r", + " [ 228 / 1000 ] 23% - 0:00:00 left \r", + " [ 229 / 1000 ] 23% - 0:00:00 left \r", + " [ 230 / 1000 ] 23% - 0:00:00 left \r", + " [ 231 / 1000 ] 23% - 0:00:00 left \r", + " [ 232 / 1000 ] 23% - 0:00:00 left \r", + " [ 233 / 1000 ] 23% - 0:00:00 left \r", + " [ 234 / 1000 ] 23% - 0:00:00 left \r", + " [ 235 / 1000 ] 24% - 0:00:00 left \r", + " [ 236 / 1000 ] 24% - 0:00:00 left \r", + " [ 237 / 1000 ] 24% - 0:00:00 left \r", + " [ 238 / 1000 ] 24% - 0:00:00 left \r", + " [ 239 / 1000 ] 24% - 0:00:00 left \r", + " [ 240 / 1000 ] 24% - 0:00:00 left \r", + " [ 241 / 1000 ] 24% - 0:00:00 left \r", + " [ 242 / 1000 ] 24% - 0:00:00 left \r", + " [ 243 / 1000 ] 24% - 0:00:00 left \r", + " [ 244 / 1000 ] 24% - 0:00:00 left \r", + " [ 245 / 1000 ] 24% - 0:00:00 left \r", + " [ 246 / 1000 ] 25% - 0:00:00 left \r", + " [ 247 / 1000 ] 25% - 0:00:00 left \r", + " [ 248 / 1000 ] 25% - 0:00:00 left \r", + " [ 249 / 1000 ] 25% - 0:00:00 left \r", + " [ 250 / 1000 ] 25% - 0:00:00 left \r", + " [ 251 / 1000 ] 25% - 0:00:00 left \r", + " [ 252 / 1000 ] 25% - 0:00:00 left \r", + " [ 253 / 1000 ] 25% - 0:00:00 left \r", + " [ 254 / 1000 ] 25% - 0:00:00 left \r", + " [ 255 / 1000 ] 26% - 0:00:00 left \r", + " [ 256 / 1000 ] 26% - 0:00:00 left \r", + " [ 257 / 1000 ] 26% - 0:00:00 left \r", + " [ 258 / 1000 ] 26% - 0:00:00 left \r", + " [ 259 / 1000 ] 26% - 0:00:00 left \r", + " [ 260 / 1000 ] 26% - 0:00:00 left \r", + " [ 261 / 1000 ] 26% - 0:00:00 left \r", + " [ 262 / 1000 ] 26% - 0:00:00 left \r", + " [ 263 / 1000 ] 26% - 0:00:00 left \r", + " [ 264 / 1000 ] 26% - 0:00:00 left \r", + " [ 265 / 1000 ] 26% - 0:00:00 left \r", + " [ 266 / 1000 ] 27% - 0:00:00 left \r", + " [ 267 / 1000 ] 27% - 0:00:00 left \r", + " [ 268 / 1000 ] 27% - 0:00:00 left \r", + " [ 269 / 1000 ] 27% - 0:00:00 left \r", + " [ 270 / 1000 ] 27% - 0:00:00 left \r", + " [ 271 / 1000 ] 27% - 0:00:00 left \r", + " [ 272 / 1000 ] 27% - 0:00:00 left \r", + " [ 273 / 1000 ] 27% - 0:00:00 left \r", + " [ 274 / 1000 ] 27% - 0:00:00 left \r", + " [ 275 / 1000 ] 28% - 0:00:00 left \r", + " [ 276 / 1000 ] 28% - 0:00:00 left \r", + " [ 277 / 1000 ] 28% - 0:00:00 left \r", + " [ 278 / 1000 ] 28% - 0:00:00 left \r", + " [ 279 / 1000 ] 28% - 0:00:00 left \r", + " [ 280 / 1000 ] 28% - 0:00:00 left \r", + " [ 281 / 1000 ] 28% - 0:00:00 left \r", + " [ 282 / 1000 ] 28% - 0:00:00 left \r", + " [ 283 / 1000 ] 28% - 0:00:00 left \r", + " [ 284 / 1000 ] 28% - 0:00:00 left \r", + " [ 285 / 1000 ] 28% - 0:00:00 left \r", + " [ 286 / 1000 ] 29% - 0:00:00 left \r", + " [ 287 / 1000 ] 29% - 0:00:00 left \r", + " [ 288 / 1000 ] 29% - 0:00:00 left \r", + " [ 289 / 1000 ] 29% - 0:00:00 left \r", + " [ 290 / 1000 ] 29% - 0:00:00 left \r", + " [ 291 / 1000 ] 29% - 0:00:00 left \r", + " [ 292 / 1000 ] 29% - 0:00:00 left \r", + " [ 293 / 1000 ] 29% - 0:00:00 left \r", + " [ 294 / 1000 ] 29% - 0:00:00 left \r", + " [ 295 / 1000 ] 30% - 0:00:00 left \r", + " [ 296 / 1000 ] 30% - 0:00:00 left \r", + " [ 297 / 1000 ] 30% - 0:00:00 left \r", + " [ 298 / 1000 ] 30% - 0:00:00 left \r", + " [ 299 / 1000 ] 30% - 0:00:00 left \r", + " [ 300 / 1000 ] 30% - 0:00:00 left \r", + " [ 301 / 1000 ] 30% - 0:00:00 left \r", + " [ 302 / 1000 ] 30% - 0:00:00 left \r", + " [ 303 / 1000 ] 30% - 0:00:00 left \r", + " [ 304 / 1000 ] 30% - 0:00:00 left \r", + " [ 305 / 1000 ] 30% - 0:00:00 left \r", + " [ 306 / 1000 ] 31% - 0:00:00 left \r", + " [ 307 / 1000 ] 31% - 0:00:00 left \r", + " [ 308 / 1000 ] 31% - 0:00:00 left \r", + " [ 309 / 1000 ] 31% - 0:00:00 left \r", + " [ 310 / 1000 ] 31% - 0:00:00 left \r", + " [ 311 / 1000 ] 31% - 0:00:00 left \r", + " [ 312 / 1000 ] 31% - 0:00:00 left \r", + " [ 313 / 1000 ] 31% - 0:00:00 left \r", + " [ 314 / 1000 ] 31% - 0:00:00 left \r", + " [ 315 / 1000 ] 32% - 0:00:00 left \r", + " [ 316 / 1000 ] 32% - 0:00:00 left \r", + " [ 317 / 1000 ] 32% - 0:00:00 left \r", + " [ 318 / 1000 ] 32% - 0:00:00 left \r", + " [ 319 / 1000 ] 32% - 0:00:00 left \r", + " [ 320 / 1000 ] 32% - 0:00:00 left \r", + " [ 321 / 1000 ] 32% - 0:00:00 left \r", + " [ 322 / 1000 ] 32% - 0:00:00 left \r", + " [ 323 / 1000 ] 32% - 0:00:00 left \r", + " [ 324 / 1000 ] 32% - 0:00:00 left \r", + " [ 325 / 1000 ] 32% - 0:00:00 left \r", + " [ 326 / 1000 ] 33% - 0:00:00 left \r", + " [ 327 / 1000 ] 33% - 0:00:00 left \r", + " [ 328 / 1000 ] 33% - 0:00:00 left \r", + " [ 329 / 1000 ] 33% - 0:00:00 left \r", + " [ 330 / 1000 ] 33% - 0:00:00 left \r", + " [ 331 / 1000 ] 33% - 0:00:00 left \r", + " [ 332 / 1000 ] 33% - 0:00:00 left \r", + " [ 333 / 1000 ] 33% - 0:00:00 left \r", + " [ 334 / 1000 ] 33% - 0:00:00 left \r", + " [ 335 / 1000 ] 34% - 0:00:00 left \r", + " [ 336 / 1000 ] 34% - 0:00:00 left \r", + " [ 337 / 1000 ] 34% - 0:00:00 left \r", + " [ 338 / 1000 ] 34% - 0:00:00 left \r", + " [ 339 / 1000 ] 34% - 0:00:00 left \r", + " [ 340 / 1000 ] 34% - 0:00:00 left \r", + " [ 341 / 1000 ] 34% - 0:00:00 left \r", + " [ 342 / 1000 ] 34% - 0:00:00 left \r", + " [ 343 / 1000 ] 34% - 0:00:00 left \r", + " [ 344 / 1000 ] 34% - 0:00:00 left \r", + " [ 345 / 1000 ] 34% - 0:00:00 left \r", + " [ 346 / 1000 ] 35% - 0:00:00 left \r", + " [ 347 / 1000 ] 35% - 0:00:00 left \r", + " [ 348 / 1000 ] 35% - 0:00:00 left \r", + " [ 349 / 1000 ] 35% - 0:00:00 left \r", + " [ 350 / 1000 ] 35% - 0:00:00 left \r", + " [ 351 / 1000 ] 35% - 0:00:00 left \r", + " [ 352 / 1000 ] 35% - 0:00:00 left \r", + " [ 353 / 1000 ] 35% - 0:00:00 left \r", + " [ 354 / 1000 ] 35% - 0:00:00 left \r", + " [ 355 / 1000 ] 36% - 0:00:00 left \r", + " [ 356 / 1000 ] 36% - 0:00:00 left \r", + " [ 357 / 1000 ] 36% - 0:00:00 left \r", + " [ 358 / 1000 ] 36% - 0:00:00 left \r", + " [ 359 / 1000 ] 36% - 0:00:00 left \r", + " [ 360 / 1000 ] 36% - 0:00:00 left \r", + " [ 361 / 1000 ] 36% - 0:00:00 left \r", + " [ 362 / 1000 ] 36% - 0:00:00 left \r", + " [ 363 / 1000 ] 36% - 0:00:00 left \r", + " [ 364 / 1000 ] 36% - 0:00:00 left \r", + " [ 365 / 1000 ] 36% - 0:00:00 left \r", + " [ 366 / 1000 ] 37% - 0:00:00 left \r", + " [ 367 / 1000 ] 37% - 0:00:00 left \r", + " [ 368 / 1000 ] 37% - 0:00:00 left \r", + " [ 369 / 1000 ] 37% - 0:00:00 left \r", + " [ 370 / 1000 ] 37% - 0:00:00 left \r", + " [ 371 / 1000 ] 37% - 0:00:00 left \r", + " [ 372 / 1000 ] 37% - 0:00:00 left \r", + " [ 373 / 1000 ] 37% - 0:00:00 left \r", + " [ 374 / 1000 ] 37% - 0:00:00 left \r", + " [ 375 / 1000 ] 38% - 0:00:00 left \r", + " [ 376 / 1000 ] 38% - 0:00:00 left \r", + " [ 377 / 1000 ] 38% - 0:00:00 left \r", + " [ 378 / 1000 ] 38% - 0:00:00 left \r", + " [ 379 / 1000 ] 38% - 0:00:00 left \r", + " [ 380 / 1000 ] 38% - 0:00:00 left \r", + " [ 381 / 1000 ] 38% - 0:00:00 left \r", + " [ 382 / 1000 ] 38% - 0:00:00 left \r", + " [ 383 / 1000 ] 38% - 0:00:00 left \r", + " [ 384 / 1000 ] 38% - 0:00:00 left \r", + " [ 385 / 1000 ] 38% - 0:00:00 left \r", + " [ 386 / 1000 ] 39% - 0:00:00 left \r", + " [ 387 / 1000 ] 39% - 0:00:00 left \r", + " [ 388 / 1000 ] 39% - 0:00:00 left \r", + " [ 389 / 1000 ] 39% - 0:00:00 left \r", + " [ 390 / 1000 ] 39% - 0:00:00 left \r", + " [ 391 / 1000 ] 39% - 0:00:00 left \r", + " [ 392 / 1000 ] 39% - 0:00:00 left \r", + " [ 393 / 1000 ] 39% - 0:00:00 left \r", + " [ 394 / 1000 ] 39% - 0:00:00 left \r", + " [ 395 / 1000 ] 40% - 0:00:00 left \r", + " [ 396 / 1000 ] 40% - 0:00:00 left \r", + " [ 397 / 1000 ] 40% - 0:00:00 left \r", + " [ 398 / 1000 ] 40% - 0:00:00 left \r", + " [ 399 / 1000 ] 40% - 0:00:00 left \r", + " [ 400 / 1000 ] 40% - 0:00:00 left \r", + " [ 401 / 1000 ] 40% - 0:00:00 left \r", + " [ 402 / 1000 ] 40% - 0:00:00 left \r", + " [ 403 / 1000 ] 40% - 0:00:00 left \r", + " [ 404 / 1000 ] 40% - 0:00:00 left \r", + " [ 405 / 1000 ] 40% - 0:00:00 left \r", + " [ 406 / 1000 ] 41% - 0:00:00 left \r", + " [ 407 / 1000 ] 41% - 0:00:00 left \r", + " [ 408 / 1000 ] 41% - 0:00:00 left \r", + " [ 409 / 1000 ] 41% - 0:00:00 left \r", + " [ 410 / 1000 ] 41% - 0:00:00 left \r", + " [ 411 / 1000 ] 41% - 0:00:00 left \r", + " [ 412 / 1000 ] 41% - 0:00:00 left \r", + " [ 413 / 1000 ] 41% - 0:00:00 left \r", + " [ 414 / 1000 ] 41% - 0:00:00 left \r", + " [ 415 / 1000 ] 42% - 0:00:00 left \r", + " [ 416 / 1000 ] 42% - 0:00:00 left \r", + " [ 417 / 1000 ] 42% - 0:00:00 left \r", + " [ 418 / 1000 ] 42% - 0:00:00 left \r", + " [ 419 / 1000 ] 42% - 0:00:00 left \r", + " [ 420 / 1000 ] 42% - 0:00:00 left \r", + " [ 421 / 1000 ] 42% - 0:00:00 left \r", + " [ 422 / 1000 ] 42% - 0:00:00 left \r", + " [ 423 / 1000 ] 42% - 0:00:00 left \r", + " [ 424 / 1000 ] 42% - 0:00:00 left \r", + " [ 425 / 1000 ] 42% - 0:00:00 left \r", + " [ 426 / 1000 ] 43% - 0:00:00 left \r", + " [ 427 / 1000 ] 43% - 0:00:00 left \r", + " [ 428 / 1000 ] 43% - 0:00:00 left \r", + " [ 429 / 1000 ] 43% - 0:00:00 left \r", + " [ 430 / 1000 ] 43% - 0:00:00 left \r", + " [ 431 / 1000 ] 43% - 0:00:00 left \r", + " [ 432 / 1000 ] 43% - 0:00:00 left \r", + " [ 433 / 1000 ] 43% - 0:00:00 left \r", + " [ 434 / 1000 ] 43% - 0:00:00 left \r", + " [ 435 / 1000 ] 44% - 0:00:00 left \r", + " [ 436 / 1000 ] 44% - 0:00:00 left \r", + " [ 437 / 1000 ] 44% - 0:00:00 left \r", + " [ 438 / 1000 ] 44% - 0:00:00 left \r", + " [ 439 / 1000 ] 44% - 0:00:00 left \r", + " [ 440 / 1000 ] 44% - 0:00:00 left \r", + " [ 441 / 1000 ] 44% - 0:00:00 left \r", + " [ 442 / 1000 ] 44% - 0:00:00 left \r", + " [ 443 / 1000 ] 44% - 0:00:00 left \r", + " [ 444 / 1000 ] 44% - 0:00:00 left \r", + " [ 445 / 1000 ] 44% - 0:00:00 left \r", + " [ 446 / 1000 ] 45% - 0:00:00 left \r", + " [ 447 / 1000 ] 45% - 0:00:00 left \r", + " [ 448 / 1000 ] 45% - 0:00:00 left \r", + " [ 449 / 1000 ] 45% - 0:00:00 left \r", + " [ 450 / 1000 ] 45% - 0:00:00 left \r", + " [ 451 / 1000 ] 45% - 0:00:00 left \r", + " [ 452 / 1000 ] 45% - 0:00:00 left \r", + " [ 453 / 1000 ] 45% - 0:00:00 left \r", + " [ 454 / 1000 ] 45% - 0:00:00 left \r", + " [ 455 / 1000 ] 46% - 0:00:00 left \r", + " [ 456 / 1000 ] 46% - 0:00:00 left \r", + " [ 457 / 1000 ] 46% - 0:00:00 left \r", + " [ 458 / 1000 ] 46% - 0:00:00 left \r", + " [ 459 / 1000 ] 46% - 0:00:00 left \r", + " [ 460 / 1000 ] 46% - 0:00:00 left \r", + " [ 461 / 1000 ] 46% - 0:00:00 left \r", + " [ 462 / 1000 ] 46% - 0:00:00 left \r", + " [ 463 / 1000 ] 46% - 0:00:00 left \r", + " [ 464 / 1000 ] 46% - 0:00:00 left \r", + " [ 465 / 1000 ] 46% - 0:00:00 left \r", + " [ 466 / 1000 ] 47% - 0:00:00 left \r", + " [ 467 / 1000 ] 47% - 0:00:00 left \r", + " [ 468 / 1000 ] 47% - 0:00:00 left \r", + " [ 469 / 1000 ] 47% - 0:00:00 left \r", + " [ 470 / 1000 ] 47% - 0:00:00 left \r", + " [ 471 / 1000 ] 47% - 0:00:00 left \r", + " [ 472 / 1000 ] 47% - 0:00:00 left \r", + " [ 473 / 1000 ] 47% - 0:00:00 left \r", + " [ 474 / 1000 ] 47% - 0:00:00 left \r", + " [ 475 / 1000 ] 48% - 0:00:00 left \r", + " [ 476 / 1000 ] 48% - 0:00:00 left \r", + " [ 477 / 1000 ] 48% - 0:00:00 left \r", + " [ 478 / 1000 ] 48% - 0:00:00 left \r", + " [ 479 / 1000 ] 48% - 0:00:00 left \r", + " [ 480 / 1000 ] 48% - 0:00:00 left \r", + " [ 481 / 1000 ] 48% - 0:00:00 left \r", + " [ 482 / 1000 ] 48% - 0:00:00 left \r", + " [ 483 / 1000 ] 48% - 0:00:00 left \r", + " [ 484 / 1000 ] 48% - 0:00:00 left \r", + " [ 485 / 1000 ] 48% - 0:00:00 left \r", + " [ 486 / 1000 ] 49% - 0:00:00 left \r", + " [ 487 / 1000 ] 49% - 0:00:00 left \r", + " [ 488 / 1000 ] 49% - 0:00:00 left \r", + " [ 489 / 1000 ] 49% - 0:00:00 left \r", + " [ 490 / 1000 ] 49% - 0:00:00 left \r", + " [ 491 / 1000 ] 49% - 0:00:00 left \r", + " [ 492 / 1000 ] 49% - 0:00:00 left \r", + " [ 493 / 1000 ] 49% - 0:00:00 left \r", + " [ 494 / 1000 ] 49% - 0:00:00 left \r", + " [ 495 / 1000 ] 50% - 0:00:00 left \r", + " [ 496 / 1000 ] 50% - 0:00:00 left \r", + " [ 497 / 1000 ] 50% - 0:00:00 left \r", + " [ 498 / 1000 ] 50% - 0:00:00 left \r", + " [ 499 / 1000 ] 50% - 0:00:00 left \r", + " [ 500 / 1000 ] 50% - 0:00:00 left \r", + " [ 501 / 1000 ] 50% - 0:00:00 left \r", + " [ 502 / 1000 ] 50% - 0:00:00 left \r", + " [ 503 / 1000 ] 50% - 0:00:00 left \r", + " [ 504 / 1000 ] 50% - 0:00:00 left \r", + " [ 505 / 1000 ] 50% - 0:00:00 left \r", + " [ 506 / 1000 ] 51% - 0:00:00 left \r", + " [ 507 / 1000 ] 51% - 0:00:00 left \r", + " [ 508 / 1000 ] 51% - 0:00:00 left \r", + " [ 509 / 1000 ] 51% - 0:00:00 left \r", + " [ 510 / 1000 ] 51% - 0:00:00 left \r", + " [ 511 / 1000 ] 51% - 0:00:00 left \r", + " [ 512 / 1000 ] 51% - 0:00:00 left \r", + " [ 513 / 1000 ] 51% - 0:00:00 left \r", + " [ 514 / 1000 ] 51% - 0:00:00 left \r", + " [ 515 / 1000 ] 52% - 0:00:00 left \r", + " [ 516 / 1000 ] 52% - 0:00:00 left \r", + " [ 517 / 1000 ] 52% - 0:00:00 left \r", + " [ 518 / 1000 ] 52% - 0:00:00 left \r", + " [ 519 / 1000 ] 52% - 0:00:00 left \r", + " [ 520 / 1000 ] 52% - 0:00:00 left \r", + " [ 521 / 1000 ] 52% - 0:00:00 left \r", + " [ 522 / 1000 ] 52% - 0:00:00 left \r", + " [ 523 / 1000 ] 52% - 0:00:00 left \r", + " [ 524 / 1000 ] 52% - 0:00:00 left \r", + " [ 525 / 1000 ] 52% - 0:00:00 left \r", + " [ 526 / 1000 ] 53% - 0:00:00 left \r", + " [ 527 / 1000 ] 53% - 0:00:00 left \r", + " [ 528 / 1000 ] 53% - 0:00:00 left \r", + " [ 529 / 1000 ] 53% - 0:00:00 left \r", + " [ 530 / 1000 ] 53% - 0:00:00 left \r", + " [ 531 / 1000 ] 53% - 0:00:00 left \r", + " [ 532 / 1000 ] 53% - 0:00:00 left \r", + " [ 533 / 1000 ] 53% - 0:00:00 left \r", + " [ 534 / 1000 ] 53% - 0:00:00 left \r", + " [ 535 / 1000 ] 54% - 0:00:00 left \r", + " [ 536 / 1000 ] 54% - 0:00:00 left \r", + " [ 537 / 1000 ] 54% - 0:00:00 left \r", + " [ 538 / 1000 ] 54% - 0:00:00 left \r", + " [ 539 / 1000 ] 54% - 0:00:00 left \r", + " [ 540 / 1000 ] 54% - 0:00:00 left \r", + " [ 541 / 1000 ] 54% - 0:00:00 left \r", + " [ 542 / 1000 ] 54% - 0:00:00 left \r", + " [ 543 / 1000 ] 54% - 0:00:00 left \r", + " [ 544 / 1000 ] 54% - 0:00:00 left \r", + " [ 545 / 1000 ] 54% - 0:00:00 left \r", + " [ 546 / 1000 ] 55% - 0:00:00 left \r", + " [ 547 / 1000 ] 55% - 0:00:00 left \r", + " [ 548 / 1000 ] 55% - 0:00:00 left \r", + " [ 549 / 1000 ] 55% - 0:00:00 left \r", + " [ 550 / 1000 ] 55% - 0:00:00 left \r", + " [ 551 / 1000 ] 55% - 0:00:00 left \r", + " [ 552 / 1000 ] 55% - 0:00:00 left \r", + " [ 553 / 1000 ] 55% - 0:00:00 left \r", + " [ 554 / 1000 ] 55% - 0:00:00 left \r", + " [ 555 / 1000 ] 56% - 0:00:00 left \r", + " [ 556 / 1000 ] 56% - 0:00:00 left \r", + " [ 557 / 1000 ] 56% - 0:00:00 left \r", + " [ 558 / 1000 ] 56% - 0:00:00 left \r", + " [ 559 / 1000 ] 56% - 0:00:00 left \r", + " [ 560 / 1000 ] 56% - 0:00:00 left \r", + " [ 561 / 1000 ] 56% - 0:00:00 left \r", + " [ 562 / 1000 ] 56% - 0:00:00 left \r", + " [ 563 / 1000 ] 56% - 0:00:00 left \r", + " [ 564 / 1000 ] 56% - 0:00:00 left \r", + " [ 565 / 1000 ] 56% - 0:00:00 left \r", + " [ 566 / 1000 ] 57% - 0:00:00 left \r", + " [ 567 / 1000 ] 57% - 0:00:00 left \r", + " [ 568 / 1000 ] 57% - 0:00:00 left \r", + " [ 569 / 1000 ] 57% - 0:00:00 left \r", + " [ 570 / 1000 ] 57% - 0:00:00 left \r", + " [ 571 / 1000 ] 57% - 0:00:00 left \r", + " [ 572 / 1000 ] 57% - 0:00:00 left \r", + " [ 573 / 1000 ] 57% - 0:00:00 left \r", + " [ 574 / 1000 ] 57% - 0:00:00 left \r", + " [ 575 / 1000 ] 58% - 0:00:00 left \r", + " [ 576 / 1000 ] 58% - 0:00:00 left \r", + " [ 577 / 1000 ] 58% - 0:00:00 left \r", + " [ 578 / 1000 ] 58% - 0:00:00 left \r", + " [ 579 / 1000 ] 58% - 0:00:00 left \r", + " [ 580 / 1000 ] 58% - 0:00:00 left \r", + " [ 581 / 1000 ] 58% - 0:00:00 left \r", + " [ 582 / 1000 ] 58% - 0:00:00 left \r", + " [ 583 / 1000 ] 58% - 0:00:00 left \r", + " [ 584 / 1000 ] 58% - 0:00:00 left \r", + " [ 585 / 1000 ] 58% - 0:00:00 left \r", + " [ 586 / 1000 ] 59% - 0:00:00 left \r", + " [ 587 / 1000 ] 59% - 0:00:00 left \r", + " [ 588 / 1000 ] 59% - 0:00:00 left \r", + " [ 589 / 1000 ] 59% - 0:00:00 left \r", + " [ 590 / 1000 ] 59% - 0:00:00 left \r", + " [ 591 / 1000 ] 59% - 0:00:00 left \r", + " [ 592 / 1000 ] 59% - 0:00:00 left \r", + " [ 593 / 1000 ] 59% - 0:00:00 left \r", + " [ 594 / 1000 ] 59% - 0:00:00 left \r", + " [ 595 / 1000 ] 60% - 0:00:00 left \r", + " [ 596 / 1000 ] 60% - 0:00:00 left \r", + " [ 597 / 1000 ] 60% - 0:00:00 left \r", + " [ 598 / 1000 ] 60% - 0:00:00 left \r", + " [ 599 / 1000 ] 60% - 0:00:00 left \r", + " [ 600 / 1000 ] 60% - 0:00:00 left \r", + " [ 601 / 1000 ] 60% - 0:00:00 left \r", + " [ 602 / 1000 ] 60% - 0:00:00 left \r", + " [ 603 / 1000 ] 60% - 0:00:00 left \r", + " [ 604 / 1000 ] 60% - 0:00:00 left \r", + " [ 605 / 1000 ] 60% - 0:00:00 left \r", + " [ 606 / 1000 ] 61% - 0:00:00 left \r", + " [ 607 / 1000 ] 61% - 0:00:00 left \r", + " [ 608 / 1000 ] 61% - 0:00:00 left \r", + " [ 609 / 1000 ] 61% - 0:00:00 left \r", + " [ 610 / 1000 ] 61% - 0:00:00 left \r", + " [ 611 / 1000 ] 61% - 0:00:00 left \r", + " [ 612 / 1000 ] 61% - 0:00:00 left \r", + " [ 613 / 1000 ] 61% - 0:00:00 left \r", + " [ 614 / 1000 ] 61% - 0:00:00 left \r", + " [ 615 / 1000 ] 62% - 0:00:00 left \r", + " [ 616 / 1000 ] 62% - 0:00:00 left \r", + " [ 617 / 1000 ] 62% - 0:00:00 left \r", + " [ 618 / 1000 ] 62% - 0:00:00 left \r", + " [ 619 / 1000 ] 62% - 0:00:00 left \r", + " [ 620 / 1000 ] 62% - 0:00:00 left \r", + " [ 621 / 1000 ] 62% - 0:00:00 left \r", + " [ 622 / 1000 ] 62% - 0:00:00 left \r", + " [ 623 / 1000 ] 62% - 0:00:00 left \r", + " [ 624 / 1000 ] 62% - 0:00:00 left \r", + " [ 625 / 1000 ] 62% - 0:00:00 left \r", + " [ 626 / 1000 ] 63% - 0:00:00 left \r", + " [ 627 / 1000 ] 63% - 0:00:00 left \r", + " [ 628 / 1000 ] 63% - 0:00:00 left \r", + " [ 629 / 1000 ] 63% - 0:00:00 left \r", + " [ 630 / 1000 ] 63% - 0:00:00 left \r", + " [ 631 / 1000 ] 63% - 0:00:00 left \r", + " [ 632 / 1000 ] 63% - 0:00:00 left \r", + " [ 633 / 1000 ] 63% - 0:00:00 left \r", + " [ 634 / 1000 ] 63% - 0:00:00 left \r", + " [ 635 / 1000 ] 64% - 0:00:00 left \r", + " [ 636 / 1000 ] 64% - 0:00:00 left \r", + " [ 637 / 1000 ] 64% - 0:00:00 left \r", + " [ 638 / 1000 ] 64% - 0:00:00 left \r", + " [ 639 / 1000 ] 64% - 0:00:00 left \r", + " [ 640 / 1000 ] 64% - 0:00:00 left \r", + " [ 641 / 1000 ] 64% - 0:00:00 left \r", + " [ 642 / 1000 ] 64% - 0:00:00 left \r", + " [ 643 / 1000 ] 64% - 0:00:00 left \r", + " [ 644 / 1000 ] 64% - 0:00:00 left \r", + " [ 645 / 1000 ] 64% - 0:00:00 left \r", + " [ 646 / 1000 ] 65% - 0:00:00 left \r", + " [ 647 / 1000 ] 65% - 0:00:00 left \r", + " [ 648 / 1000 ] 65% - 0:00:00 left \r", + " [ 649 / 1000 ] 65% - 0:00:00 left \r", + " [ 650 / 1000 ] 65% - 0:00:00 left \r", + " [ 651 / 1000 ] 65% - 0:00:00 left \r", + " [ 652 / 1000 ] 65% - 0:00:00 left \r", + " [ 653 / 1000 ] 65% - 0:00:00 left \r", + " [ 654 / 1000 ] 65% - 0:00:00 left \r", + " [ 655 / 1000 ] 66% - 0:00:00 left \r", + " [ 656 / 1000 ] 66% - 0:00:00 left \r", + " [ 657 / 1000 ] 66% - 0:00:00 left \r", + " [ 658 / 1000 ] 66% - 0:00:00 left \r", + " [ 659 / 1000 ] 66% - 0:00:00 left \r", + " [ 660 / 1000 ] 66% - 0:00:00 left \r", + " [ 661 / 1000 ] 66% - 0:00:00 left \r", + " [ 662 / 1000 ] 66% - 0:00:00 left \r", + " [ 663 / 1000 ] 66% - 0:00:00 left \r", + " [ 664 / 1000 ] 66% - 0:00:00 left \r", + " [ 665 / 1000 ] 66% - 0:00:00 left \r", + " [ 666 / 1000 ] 67% - 0:00:00 left \r", + " [ 667 / 1000 ] 67% - 0:00:00 left \r", + " [ 668 / 1000 ] 67% - 0:00:00 left \r", + " [ 669 / 1000 ] 67% - 0:00:00 left \r", + " [ 670 / 1000 ] 67% - 0:00:00 left \r", + " [ 671 / 1000 ] 67% - 0:00:00 left \r", + " [ 672 / 1000 ] 67% - 0:00:00 left \r", + " [ 673 / 1000 ] 67% - 0:00:00 left \r", + " [ 674 / 1000 ] 67% - 0:00:00 left \r", + " [ 675 / 1000 ] 68% - 0:00:00 left \r", + " [ 676 / 1000 ] 68% - 0:00:00 left \r", + " [ 677 / 1000 ] 68% - 0:00:00 left \r", + " [ 678 / 1000 ] 68% - 0:00:00 left \r", + " [ 679 / 1000 ] 68% - 0:00:00 left \r", + " [ 680 / 1000 ] 68% - 0:00:00 left \r", + " [ 681 / 1000 ] 68% - 0:00:00 left \r", + " [ 682 / 1000 ] 68% - 0:00:00 left \r", + " [ 683 / 1000 ] 68% - 0:00:00 left \r", + " [ 684 / 1000 ] 68% - 0:00:00 left \r", + " [ 685 / 1000 ] 68% - 0:00:00 left \r", + " [ 686 / 1000 ] 69% - 0:00:00 left \r", + " [ 687 / 1000 ] 69% - 0:00:00 left \r", + " [ 688 / 1000 ] 69% - 0:00:00 left \r", + " [ 689 / 1000 ] 69% - 0:00:00 left \r", + " [ 690 / 1000 ] 69% - 0:00:00 left \r", + " [ 691 / 1000 ] 69% - 0:00:00 left \r", + " [ 692 / 1000 ] 69% - 0:00:00 left \r", + " [ 693 / 1000 ] 69% - 0:00:00 left \r", + " [ 694 / 1000 ] 69% - 0:00:00 left \r", + " [ 695 / 1000 ] 70% - 0:00:00 left \r", + " [ 696 / 1000 ] 70% - 0:00:00 left \r", + " [ 697 / 1000 ] 70% - 0:00:00 left \r", + " [ 698 / 1000 ] 70% - 0:00:00 left \r", + " [ 699 / 1000 ] 70% - 0:00:00 left \r", + " [ 700 / 1000 ] 70% - 0:00:00 left \r", + " [ 701 / 1000 ] 70% - 0:00:00 left \r", + " [ 702 / 1000 ] 70% - 0:00:00 left " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 703 / 1000 ] 70% - 0:00:00 left \r", + " [ 704 / 1000 ] 70% - 0:00:00 left \r", + " [ 705 / 1000 ] 70% - 0:00:00 left \r", + " [ 706 / 1000 ] 71% - 0:00:00 left \r", + " [ 707 / 1000 ] 71% - 0:00:00 left \r", + " [ 708 / 1000 ] 71% - 0:00:00 left \r", + " [ 709 / 1000 ] 71% - 0:00:00 left \r", + " [ 710 / 1000 ] 71% - 0:00:00 left \r", + " [ 711 / 1000 ] 71% - 0:00:00 left \r", + " [ 712 / 1000 ] 71% - 0:00:00 left \r", + " [ 713 / 1000 ] 71% - 0:00:00 left \r", + " [ 714 / 1000 ] 71% - 0:00:00 left \r", + " [ 715 / 1000 ] 72% - 0:00:00 left \r", + " [ 716 / 1000 ] 72% - 0:00:00 left \r", + " [ 717 / 1000 ] 72% - 0:00:00 left \r", + " [ 718 / 1000 ] 72% - 0:00:00 left \r", + " [ 719 / 1000 ] 72% - 0:00:00 left \r", + " [ 720 / 1000 ] 72% - 0:00:00 left \r", + " [ 721 / 1000 ] 72% - 0:00:00 left \r", + " [ 722 / 1000 ] 72% - 0:00:00 left \r", + " [ 723 / 1000 ] 72% - 0:00:00 left \r", + " [ 724 / 1000 ] 72% - 0:00:00 left \r", + " [ 725 / 1000 ] 72% - 0:00:00 left \r", + " [ 726 / 1000 ] 73% - 0:00:00 left \r", + " [ 727 / 1000 ] 73% - 0:00:00 left \r", + " [ 728 / 1000 ] 73% - 0:00:00 left \r", + " [ 729 / 1000 ] 73% - 0:00:00 left \r", + " [ 730 / 1000 ] 73% - 0:00:00 left \r", + " [ 731 / 1000 ] 73% - 0:00:00 left \r", + " [ 732 / 1000 ] 73% - 0:00:00 left \r", + " [ 733 / 1000 ] 73% - 0:00:00 left \r", + " [ 734 / 1000 ] 73% - 0:00:00 left \r", + " [ 735 / 1000 ] 74% - 0:00:00 left \r", + " [ 736 / 1000 ] 74% - 0:00:00 left \r", + " [ 737 / 1000 ] 74% - 0:00:00 left \r", + " [ 738 / 1000 ] 74% - 0:00:00 left \r", + " [ 739 / 1000 ] 74% - 0:00:00 left \r", + " [ 740 / 1000 ] 74% - 0:00:00 left \r", + " [ 741 / 1000 ] 74% - 0:00:00 left \r", + " [ 742 / 1000 ] 74% - 0:00:00 left \r", + " [ 743 / 1000 ] 74% - 0:00:00 left \r", + " [ 744 / 1000 ] 74% - 0:00:00 left \r", + " [ 745 / 1000 ] 74% - 0:00:00 left \r", + " [ 746 / 1000 ] 75% - 0:00:00 left \r", + " [ 747 / 1000 ] 75% - 0:00:00 left \r", + " [ 748 / 1000 ] 75% - 0:00:00 left \r", + " [ 749 / 1000 ] 75% - 0:00:00 left \r", + " [ 750 / 1000 ] 75% - 0:00:00 left \r", + " [ 751 / 1000 ] 75% - 0:00:00 left \r", + " [ 752 / 1000 ] 75% - 0:00:00 left \r", + " [ 753 / 1000 ] 75% - 0:00:00 left \r", + " [ 754 / 1000 ] 75% - 0:00:00 left \r", + " [ 755 / 1000 ] 76% - 0:00:00 left \r", + " [ 756 / 1000 ] 76% - 0:00:00 left \r", + " [ 757 / 1000 ] 76% - 0:00:00 left \r", + " [ 758 / 1000 ] 76% - 0:00:00 left \r", + " [ 759 / 1000 ] 76% - 0:00:00 left \r", + " [ 760 / 1000 ] 76% - 0:00:00 left \r", + " [ 761 / 1000 ] 76% - 0:00:00 left \r", + " [ 762 / 1000 ] 76% - 0:00:00 left \r", + " [ 763 / 1000 ] 76% - 0:00:00 left \r", + " [ 764 / 1000 ] 76% - 0:00:00 left \r", + " [ 765 / 1000 ] 76% - 0:00:00 left \r", + " [ 766 / 1000 ] 77% - 0:00:00 left \r", + " [ 767 / 1000 ] 77% - 0:00:00 left \r", + " [ 768 / 1000 ] 77% - 0:00:00 left \r", + " [ 769 / 1000 ] 77% - 0:00:00 left \r", + " [ 770 / 1000 ] 77% - 0:00:00 left \r", + " [ 771 / 1000 ] 77% - 0:00:00 left \r", + " [ 772 / 1000 ] 77% - 0:00:00 left \r", + " [ 773 / 1000 ] 77% - 0:00:00 left \r", + " [ 774 / 1000 ] 77% - 0:00:00 left \r", + " [ 775 / 1000 ] 78% - 0:00:00 left \r", + " [ 776 / 1000 ] 78% - 0:00:00 left \r", + " [ 777 / 1000 ] 78% - 0:00:00 left \r", + " [ 778 / 1000 ] 78% - 0:00:00 left \r", + " [ 779 / 1000 ] 78% - 0:00:00 left \r", + " [ 780 / 1000 ] 78% - 0:00:00 left \r", + " [ 781 / 1000 ] 78% - 0:00:00 left \r", + " [ 782 / 1000 ] 78% - 0:00:00 left \r", + " [ 783 / 1000 ] 78% - 0:00:00 left \r", + " [ 784 / 1000 ] 78% - 0:00:00 left \r", + " [ 785 / 1000 ] 78% - 0:00:00 left \r", + " [ 786 / 1000 ] 79% - 0:00:00 left \r", + " [ 787 / 1000 ] 79% - 0:00:00 left \r", + " [ 788 / 1000 ] 79% - 0:00:00 left \r", + " [ 789 / 1000 ] 79% - 0:00:00 left \r", + " [ 790 / 1000 ] 79% - 0:00:00 left \r", + " [ 791 / 1000 ] 79% - 0:00:00 left \r", + " [ 792 / 1000 ] 79% - 0:00:00 left \r", + " [ 793 / 1000 ] 79% - 0:00:00 left \r", + " [ 794 / 1000 ] 79% - 0:00:00 left \r", + " [ 795 / 1000 ] 80% - 0:00:00 left \r", + " [ 796 / 1000 ] 80% - 0:00:00 left \r", + " [ 797 / 1000 ] 80% - 0:00:00 left \r", + " [ 798 / 1000 ] 80% - 0:00:00 left \r", + " [ 799 / 1000 ] 80% - 0:00:00 left \r", + " [ 800 / 1000 ] 80% - 0:00:00 left \r", + " [ 801 / 1000 ] 80% - 0:00:00 left \r", + " [ 802 / 1000 ] 80% - 0:00:00 left \r", + " [ 803 / 1000 ] 80% - 0:00:00 left \r", + " [ 804 / 1000 ] 80% - 0:00:00 left \r", + " [ 805 / 1000 ] 80% - 0:00:00 left \r", + " [ 806 / 1000 ] 81% - 0:00:00 left \r", + " [ 807 / 1000 ] 81% - 0:00:00 left \r", + " [ 808 / 1000 ] 81% - 0:00:00 left \r", + " [ 809 / 1000 ] 81% - 0:00:00 left \r", + " [ 810 / 1000 ] 81% - 0:00:00 left \r", + " [ 811 / 1000 ] 81% - 0:00:00 left \r", + " [ 812 / 1000 ] 81% - 0:00:00 left \r", + " [ 813 / 1000 ] 81% - 0:00:00 left \r", + " [ 814 / 1000 ] 81% - 0:00:00 left \r", + " [ 815 / 1000 ] 82% - 0:00:00 left \r", + " [ 816 / 1000 ] 82% - 0:00:00 left \r", + " [ 817 / 1000 ] 82% - 0:00:00 left \r", + " [ 818 / 1000 ] 82% - 0:00:00 left \r", + " [ 819 / 1000 ] 82% - 0:00:00 left \r", + " [ 820 / 1000 ] 82% - 0:00:00 left \r", + " [ 821 / 1000 ] 82% - 0:00:00 left \r", + " [ 822 / 1000 ] 82% - 0:00:00 left \r", + " [ 823 / 1000 ] 82% - 0:00:00 left \r", + " [ 824 / 1000 ] 82% - 0:00:00 left \r", + " [ 825 / 1000 ] 82% - 0:00:00 left \r", + " [ 826 / 1000 ] 83% - 0:00:00 left \r", + " [ 827 / 1000 ] 83% - 0:00:00 left \r", + " [ 828 / 1000 ] 83% - 0:00:00 left \r", + " [ 829 / 1000 ] 83% - 0:00:00 left \r", + " [ 830 / 1000 ] 83% - 0:00:00 left \r", + " [ 831 / 1000 ] 83% - 0:00:00 left \r", + " [ 832 / 1000 ] 83% - 0:00:00 left \r", + " [ 833 / 1000 ] 83% - 0:00:00 left \r", + " [ 834 / 1000 ] 83% - 0:00:00 left \r", + " [ 835 / 1000 ] 84% - 0:00:00 left \r", + " [ 836 / 1000 ] 84% - 0:00:00 left \r", + " [ 837 / 1000 ] 84% - 0:00:00 left \r", + " [ 838 / 1000 ] 84% - 0:00:00 left \r", + " [ 839 / 1000 ] 84% - 0:00:00 left \r", + " [ 840 / 1000 ] 84% - 0:00:00 left \r", + " [ 841 / 1000 ] 84% - 0:00:00 left \r", + " [ 842 / 1000 ] 84% - 0:00:00 left \r", + " [ 843 / 1000 ] 84% - 0:00:00 left \r", + " [ 844 / 1000 ] 84% - 0:00:00 left \r", + " [ 845 / 1000 ] 84% - 0:00:00 left \r", + " [ 846 / 1000 ] 85% - 0:00:00 left \r", + " [ 847 / 1000 ] 85% - 0:00:00 left \r", + " [ 848 / 1000 ] 85% - 0:00:00 left \r", + " [ 849 / 1000 ] 85% - 0:00:00 left \r", + " [ 850 / 1000 ] 85% - 0:00:00 left \r", + " [ 851 / 1000 ] 85% - 0:00:00 left \r", + " [ 852 / 1000 ] 85% - 0:00:00 left \r", + " [ 853 / 1000 ] 85% - 0:00:00 left \r", + " [ 854 / 1000 ] 85% - 0:00:00 left \r", + " [ 855 / 1000 ] 86% - 0:00:00 left \r", + " [ 856 / 1000 ] 86% - 0:00:00 left \r", + " [ 857 / 1000 ] 86% - 0:00:00 left \r", + " [ 858 / 1000 ] 86% - 0:00:00 left \r", + " [ 859 / 1000 ] 86% - 0:00:00 left \r", + " [ 860 / 1000 ] 86% - 0:00:00 left \r", + " [ 861 / 1000 ] 86% - 0:00:00 left \r", + " [ 862 / 1000 ] 86% - 0:00:00 left \r", + " [ 863 / 1000 ] 86% - 0:00:00 left \r", + " [ 864 / 1000 ] 86% - 0:00:00 left \r", + " [ 865 / 1000 ] 86% - 0:00:00 left \r", + " [ 866 / 1000 ] 87% - 0:00:00 left \r", + " [ 867 / 1000 ] 87% - 0:00:00 left \r", + " [ 868 / 1000 ] 87% - 0:00:00 left \r", + " [ 869 / 1000 ] 87% - 0:00:00 left \r", + " [ 870 / 1000 ] 87% - 0:00:00 left \r", + " [ 871 / 1000 ] 87% - 0:00:00 left \r", + " [ 872 / 1000 ] 87% - 0:00:00 left \r", + " [ 873 / 1000 ] 87% - 0:00:00 left \r", + " [ 874 / 1000 ] 87% - 0:00:00 left \r", + " [ 875 / 1000 ] 88% - 0:00:00 left \r", + " [ 876 / 1000 ] 88% - 0:00:00 left \r", + " [ 877 / 1000 ] 88% - 0:00:00 left \r", + " [ 878 / 1000 ] 88% - 0:00:00 left \r", + " [ 879 / 1000 ] 88% - 0:00:00 left \r", + " [ 880 / 1000 ] 88% - 0:00:00 left \r", + " [ 881 / 1000 ] 88% - 0:00:00 left \r", + " [ 882 / 1000 ] 88% - 0:00:00 left \r", + " [ 883 / 1000 ] 88% - 0:00:00 left \r", + " [ 884 / 1000 ] 88% - 0:00:00 left \r", + " [ 885 / 1000 ] 88% - 0:00:00 left \r", + " [ 886 / 1000 ] 89% - 0:00:00 left \r", + " [ 887 / 1000 ] 89% - 0:00:00 left \r", + " [ 888 / 1000 ] 89% - 0:00:00 left \r", + " [ 889 / 1000 ] 89% - 0:00:00 left \r", + " [ 890 / 1000 ] 89% - 0:00:00 left \r", + " [ 891 / 1000 ] 89% - 0:00:00 left \r", + " [ 892 / 1000 ] 89% - 0:00:00 left \r", + " [ 893 / 1000 ] 89% - 0:00:00 left \r", + " [ 894 / 1000 ] 89% - 0:00:00 left \r", + " [ 895 / 1000 ] 90% - 0:00:00 left \r", + " [ 896 / 1000 ] 90% - 0:00:00 left \r", + " [ 897 / 1000 ] 90% - 0:00:00 left \r", + " [ 898 / 1000 ] 90% - 0:00:00 left \r", + " [ 899 / 1000 ] 90% - 0:00:00 left \r", + " [ 900 / 1000 ] 90% - 0:00:00 left \r", + " [ 901 / 1000 ] 90% - 0:00:00 left \r", + " [ 902 / 1000 ] 90% - 0:00:00 left \r", + " [ 903 / 1000 ] 90% - 0:00:00 left \r", + " [ 904 / 1000 ] 90% - 0:00:00 left \r", + " [ 905 / 1000 ] 90% - 0:00:00 left \r", + " [ 906 / 1000 ] 91% - 0:00:00 left \r", + " [ 907 / 1000 ] 91% - 0:00:00 left \r", + " [ 908 / 1000 ] 91% - 0:00:00 left \r", + " [ 909 / 1000 ] 91% - 0:00:00 left \r", + " [ 910 / 1000 ] 91% - 0:00:00 left \r", + " [ 911 / 1000 ] 91% - 0:00:00 left \r", + " [ 912 / 1000 ] 91% - 0:00:00 left \r", + " [ 913 / 1000 ] 91% - 0:00:00 left \r", + " [ 914 / 1000 ] 91% - 0:00:00 left \r", + " [ 915 / 1000 ] 92% - 0:00:00 left \r", + " [ 916 / 1000 ] 92% - 0:00:00 left \r", + " [ 917 / 1000 ] 92% - 0:00:00 left \r", + " [ 918 / 1000 ] 92% - 0:00:00 left \r", + " [ 919 / 1000 ] 92% - 0:00:00 left \r", + " [ 920 / 1000 ] 92% - 0:00:00 left \r", + " [ 921 / 1000 ] 92% - 0:00:00 left \r", + " [ 922 / 1000 ] 92% - 0:00:00 left \r", + " [ 923 / 1000 ] 92% - 0:00:00 left \r", + " [ 924 / 1000 ] 92% - 0:00:00 left \r", + " [ 925 / 1000 ] 92% - 0:00:00 left \r", + " [ 926 / 1000 ] 93% - 0:00:00 left \r", + " [ 927 / 1000 ] 93% - 0:00:00 left \r", + " [ 928 / 1000 ] 93% - 0:00:00 left \r", + " [ 929 / 1000 ] 93% - 0:00:00 left \r", + " [ 930 / 1000 ] 93% - 0:00:00 left \r", + " [ 931 / 1000 ] 93% - 0:00:00 left \r", + " [ 932 / 1000 ] 93% - 0:00:00 left \r", + " [ 933 / 1000 ] 93% - 0:00:00 left \r", + " [ 934 / 1000 ] 93% - 0:00:00 left \r", + " [ 935 / 1000 ] 94% - 0:00:00 left \r", + " [ 936 / 1000 ] 94% - 0:00:00 left \r", + " [ 937 / 1000 ] 94% - 0:00:00 left \r", + " [ 938 / 1000 ] 94% - 0:00:00 left \r", + " [ 939 / 1000 ] 94% - 0:00:00 left \r", + " [ 940 / 1000 ] 94% - 0:00:00 left \r", + " [ 941 / 1000 ] 94% - 0:00:00 left \r", + " [ 942 / 1000 ] 94% - 0:00:00 left \r", + " [ 943 / 1000 ] 94% - 0:00:00 left \r", + " [ 944 / 1000 ] 94% - 0:00:00 left \r", + " [ 945 / 1000 ] 94% - 0:00:00 left \r", + " [ 946 / 1000 ] 95% - 0:00:00 left \r", + " [ 947 / 1000 ] 95% - 0:00:00 left \r", + " [ 948 / 1000 ] 95% - 0:00:00 left \r", + " [ 949 / 1000 ] 95% - 0:00:00 left \r", + " [ 950 / 1000 ] 95% - 0:00:00 left \r", + " [ 951 / 1000 ] 95% - 0:00:00 left \r", + " [ 952 / 1000 ] 95% - 0:00:00 left \r", + " [ 953 / 1000 ] 95% - 0:00:00 left \r", + " [ 954 / 1000 ] 95% - 0:00:00 left \r", + " [ 955 / 1000 ] 96% - 0:00:00 left \r", + " [ 956 / 1000 ] 96% - 0:00:00 left \r", + " [ 957 / 1000 ] 96% - 0:00:00 left \r", + " [ 958 / 1000 ] 96% - 0:00:00 left \r", + " [ 959 / 1000 ] 96% - 0:00:00 left \r", + " [ 960 / 1000 ] 96% - 0:00:00 left \r", + " [ 961 / 1000 ] 96% - 0:00:00 left \r", + " [ 962 / 1000 ] 96% - 0:00:00 left \r", + " [ 963 / 1000 ] 96% - 0:00:00 left \r", + " [ 964 / 1000 ] 96% - 0:00:00 left \r", + " [ 965 / 1000 ] 96% - 0:00:00 left \r", + " [ 966 / 1000 ] 97% - 0:00:00 left \r", + " [ 967 / 1000 ] 97% - 0:00:00 left \r", + " [ 968 / 1000 ] 97% - 0:00:00 left \r", + " [ 969 / 1000 ] 97% - 0:00:00 left \r", + " [ 970 / 1000 ] 97% - 0:00:00 left \r", + " [ 971 / 1000 ] 97% - 0:00:00 left \r", + " [ 972 / 1000 ] 97% - 0:00:00 left \r", + " [ 973 / 1000 ] 97% - 0:00:00 left \r", + " [ 974 / 1000 ] 97% - 0:00:00 left \r", + " [ 975 / 1000 ] 98% - 0:00:00 left \r", + " [ 976 / 1000 ] 98% - 0:00:00 left \r", + " [ 977 / 1000 ] 98% - 0:00:00 left \r", + " [ 978 / 1000 ] 98% - 0:00:00 left \r", + " [ 979 / 1000 ] 98% - 0:00:00 left \r", + " [ 980 / 1000 ] 98% - 0:00:00 left \r", + " [ 981 / 1000 ] 98% - 0:00:00 left \r", + " [ 982 / 1000 ] 98% - 0:00:00 left \r", + " [ 983 / 1000 ] 98% - 0:00:00 left \r", + " [ 984 / 1000 ] 98% - 0:00:00 left \r", + " [ 985 / 1000 ] 98% - 0:00:00 left \r", + " [ 986 / 1000 ] 99% - 0:00:00 left \r", + " [ 987 / 1000 ] 99% - 0:00:00 left \r", + " [ 988 / 1000 ] 99% - 0:00:00 left \r", + " [ 989 / 1000 ] 99% - 0:00:00 left \r", + " [ 990 / 1000 ] 99% - 0:00:00 left \r", + " [ 991 / 1000 ] 99% - 0:00:00 left \r", + " [ 992 / 1000 ] 99% - 0:00:00 left \r", + " [ 993 / 1000 ] 99% - 0:00:00 left \r", + " [ 994 / 1000 ] 99% - 0:00:00 left \r", + " [ 995 / 1000 ] 100% - 0:00:00 left \r", + " [ 996 / 1000 ] 100% - 0:00:00 left \r", + " [ 997 / 1000 ] 100% - 0:00:00 left \r", + " [ 998 / 1000 ] 100% - 0:00:00 left \r", + " [ 999 / 1000 ] 100% - 0:00:00 left \r", + " [ 1000 / 1000 ] 100% - 0:00:00 left \n", + " quantization error: 0.4245385409165895\n" + ] + } + ], + "source": [ + "feature_names = ['democracy_index', 'electoral_processand_pluralism', 'functioning_of_government',\n", + " 'political_participation', 'political_culture', 'civil_liberties']\n", + "\n", + "X = democracy_index[feature_names].values\n", + "X = scale(X)\n", + "\n", + "size = 15\n", + "som = MiniSom(size, size, len(X[0]),\n", + " neighborhood_function='gaussian', sigma=1.5,\n", + " random_seed=1)\n", + "\n", + "som.pca_weights_init(X)\n", + "som.train_random(X, 1000, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A social map of countries\n", + "----\n", + "\n", + "Here we will plot each country in a cell that represent the winning neuron on the SOM. The country codes will be used instead of the full names of the countries to make the map more readable. The name of the countries will be colored according to their democracy status." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAMcCAYAAABkfTkQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeVxUVRsH8N+9s8IwrCIIipgKyCIKikuaS2655Zqappa7+ZppqWVp2fb6llZkJWlpueSambYouYDljriwL+KK7NvArHfmvn+MjKIgoAMz4PP9fPg499xzzn0OzIzz3HPuHYbneRBCCCGEEEIIIQ0Va+kACCGEEEIIIYSQx0GJLSGEEEIIIYSQBo0SW0IIIYQQQgghDRoltoQQQgghhBBCGjRKbAkhhBBCCCGENGiU2BJCCCGEEEIIadCqTWwZhvmBYZgchmHi7il7j2GYWwzDXLjzM7huwySEEEIIIYQQQipXkxnbTQAGVVL+Oc/zHe78/GHesAghhBBCCCGEkJqpNrHleT4aQEE9xEIIIYQQQgghhNTa41xjO49hmEt3lio7mS0iQgghhBBCCCGkFhie56uvxDDeAA7wPB94Z9sNQB4AHsAHAJrxPP9KFW1nApgJAFKpNNTLy8ssgVsDg8EAlm0899+i8Vg3g8EAhmEsHYbZ8Dzf6MbTmJ5vPM83qjE11vHQa8g6NdbnG43HejW2zzwpKSl5PM+7WjoO0rA8UmJb03338/X15ePj42sdpLU6duwYOnbsaOkwzCYmJgadO3e2dBhmc/bsWYSFhVk6DLM5ffp0o3q+xcbGIiQkxNJhmE1sbCy6du1q6TDMRqVSIT4+vtG8hkpLSxEfH49OnTpZOhSzKCwsRFpaGjp06GDpUMxCoVDgypUrjeY9QalUIjk5udE835RKJRISEhrN+4FSqURcXFyjGQ8AnDlzBn369LF0GGbDsmwMz/ON4wVE6s0jndphGKbZPZsjAcRVVZcQQgghhBBCCKlLwuoqMAzzM4DeAJowDHMTwAoAvRmG6QDjUuSrAGbVYYyEEEIIIYQQQkiVqk1seZ6fUEnx93UQCyGEEEIIIYQQUmuN5ypzQgghhBBCCCFPpGpnbAkhhBBCCCHEkmJiYpoKhcINAAJBk3NPIgOAOI7jpoeGhuZUVoESW0IIIYQQQohVEwqFG9zd3du5uroWsixb/de6kEbFYDAwubm5/llZWRsADK+sDp3tIIQQQgghhFi7QFdX1xJKap9MLMvyrq6uxTDO2Fdepx7jIYQQQgghhJBHwVJS+2S78/evMn+1msRWn1OA3NkrcavrRNweMBPZE5dCl34D11sNRGb/GbjVcwpuPzcHpTv+snSoNWLIK0LZotUo6TcLilELoRi3BNrIU1CMfB1c4hUAAM/pURQyHtrfjpnaKUYtBBefbqGonxyGvEIoXv8UhX2mo2jEAhSPfQOaQycf2qZk+nswlJTWT4A1xBcpUDZqEcpGLULpM9NQ2meGaZvX6iwd3iNrss3b9FhQkg77wxPgtLcLHA88C3nUdDCqSi+tsFri2E8h29UFsj3dIdvTA4Kcc7A9MARs7nlLh/ZI7CLkkByefrfAwEH2ozekf455aDtB5nFTHcHV3yGKXV2HUdbclsItePn6y5h+Yzpm3JiBRHUiXr/1OmbfnG2qk6xOxuu3XrdglDX3/I3nK2wfKj2EtQVrAQCf5X+G48rjD61vbYZeHYosXRb6ZfTDDwU/mMqL9cUYmDEQX+V9ZcHoau/ZtGcx/fp0TLs+DTNvzEScKg4AkKXLwsD0gZh+fbrp52DJQQtHWzP5XD7ev/0+JmRMwIxrM7D45mL8VvQblt5aWmn9/2X9D1c1VwEA466MQ5G+qB6jfTj563JM33L3/Y3Tc/B+xxtj1hvfuz7+62N8efTLCm0CVgYgrzSvXuOsKXYmi5e+f8m0zek5NF3YFMO+GvbQdseSj5nqHEs+hhPpJ+o0TkLMwSquseV5HjmvvAu7sQPhum45AEAbnwZ9biGELT3gEbkeAKC7loncacsBnofd+OcsGfJD8TyPslc/gXhkH8hWLwIAGG7lQHfkDAQd20EfmwRhu6egT8qAwNsDXGwSxMN7g1eqob+RBYGft2UH0MjxPA/FnI8gGfks5J+/CQDQ38qB9vDph7az3/BePURXO4yjHLJfjMmB5usdYGylEL9s3R9Sa0Wvhv3hF1HWaSW0LQYCAERZ/4JV50Nv09TCwdWMIPsMhNcPomxUNCCQgFHnA3qtpcN6LLxQBrYwAeBUgNAGgptHYJB51KoPvfcQ6L2H1FGENRevjsepslOIaBEBMSNGsb4YOt54UqhIX4TTZafRRdbFwlESAHAXuuO06jRewSsAgKiyKHiLvS0b1CMQM2Js8NoAADhTdgbr89fjy+bGRMlD5GHa11DwPI93Mt/BIPtBWNFsBQAgTZOGf0v/rbLNYvfF9RVercnEMiTcToBKq4KN2AZHUo7Aw6F272/WRCaRIe5WnGk8kQmR8HT0rFUfx5KPwU5qh+6tu9dRlI9GpVMF24hszJbLqHQqzkZkc/FhdQQCQWjbtm1V5dv79u1L8/X1rfI/dU9Pz6Bz584lNmvWjLO1te2oVCpjH9b/woULPezs7PQrV67Mrv0IiFUktup/Y8EIhZBPuXsdsDigDbgbWRXqiVp6wOm9uSh8/1urTmy5U5cAkRCS8YNMZaxnU0heGgrt/ijoos9D8uJg6GOTIB43ENq9R4ztLqVCGNAajEBgqdCfCNxJ499H+uLd55DAsylsJg+Des/f4OLSYLfCOFNTMuN92EwfBVGXIBT2ngaHX9aAV6qhmPYehJ38wZ1PBOvmAvm6d8BIJdBfu42y99fBUFAMxkYCuw/nQdC6BbSHz0D1zQ7wOg6skxx2qxeBbeJUp+PUfP8ruDurAUQvDIB44mBj+drt0P35L1hnBzBNnSAI9oV48lDoE65AvfI7QKMB69UM0g9fBSOX1WmM1ZFe+QWcaydTUgsAOvenLRhR7THKLPBSF0AgAQDj40ZA32IABNcPQv/UCAjTdoNrMwaC28Yz+mzOOUj+XQzoNYBQCnXvb8E7+lRoL0zeAjY3Ftoelp21zefyYS+wh5gRAwAcBA6mfS84voCtRVspsbUSUkYKL5EXkjXJ8JX44ljZMfSS9UI+l2/p0B6ZkldCLpBbOozHEquKhZAR4nnHuydV20jaQKFX4LzyPJZnLkeGJgM+Uh+84/4OGIbBazdewxzXOfCT+lXo61DJIewp3AMOHNpJ2+H1pq9DwNT/Z6IB/gNwMOEgRnQYgd3nd2NMyBicuNJwZyyfC3oOv1/+HWNCx2D72e0YHzYe/6T+AwA4k3EGC3YsgFqnho3IBj9M/QG+7r6mtlfzriIiOgICVoCtp7YifEI4ipRF+Oj3j6DVa+Eic8GW6VvgZu9W7+OyEdkImRmM2frj1/PV5kUSicSQlJSUYLaDWiGdTgeRSGTpMB6JVSxF1iVlQNzep/qKACRBPuDSrtdxRI/HkHoDwoCnKt0nDDHO2AIAF5sMYecAMGIR+FIV9BeSIOjoV2k7Yj5c6jUIA1o/Vh/6a5mQThwCxz+/AWMvg/ag8T+80nfXQrZ8Fhx//QK2S15B6XvrAADCTv6w3/0ZHH/7EuIhPaFa/8tjj+Oh8V1KAXcgGrY7VsF22yfQbf8L+pRr0F9MARcVA9neNbD59m3o49JMbdRLvoRk8VTI9n4OtpUnNOt212mMNSEoSgTnEmzpMB4L17wv2NJbkO0IgfSfhRDc/sfSIZkF12YMRGm7AU4NtiAOhqadTfsMjj5QPX8IqjH/QtvpHUjOvG/BSB+us21n5HK5mHx9Mr7I/QIXVXdP1gdIAiCEELGqh55gtzpaXos5t+eYfn4q/snSIZlNH1kfHCs9hhwuBwII4CJoeCeKtLwW069Px+Rrk/FZzmd4yenuMtFMXWaFpciXVJcsGGnNXNFcga/Et9J9qZpUzHOdhx+9f0SmLhOX1Zer7Oeq5iqOKI7ga6+v8X3L78GCRaQisq7CfqgxHcdgd+xuqHVqxGXGoXPLztU3smLjO4/HjrM7oNapcenmJXRpdfdknZ+7H6LfjMb5d8/j/eHvY9neZRXaejfxxqxnZmFBvwWIXR6Lnm17okebHjj51kmcf/c8xnUeh/8d/F99D8mqhIeHu0yePNmrfLtPnz5tDhw4UOMzVkuWLHH39vYODA0N9U1NTZWUl8fHx0t69uzZNiAgoF1oaKhvbGysFABGjx7tPXHiRK/g4GC/5s2bBx04cEA+duxY76eeeipg9OjR3uXtIyIinH18fPzbtm0bMGfOHNM0/e7du+39/f3b+fr6+nfr1s0HMM4UjxgxolVISIjfqFGjWiUnJ4tDQ0N9/f392/n7+7eLjIw0zXQsW7bM3cfHx9/X19d/7ty5nvHx8RJ/f/925fsvX75cYbs+WcWMbW3wfMO7Zly5MgJcTCIYkRDy3Z+B13Ew5BbCkHETbCtPCILagLuUAi42CZJJll+a96Qpfe9bcDEJxlnciTX7/bPN3SD0N568EAa0gf5mDvgyFbjzSVD85793K965ztWQlQfla6tgyC0Er+MgaF63Zzb155Mg7N8VjNT4/ijsGwZ9TCKg1kDYNwyMWASIRRD26gTAeK0ur9VCGGI8sSJ6vjdUS8PrNMYnhsgOZSOjIMg6AeHt47A5/DI0Ye9ZOqrHZnAJBKO4DmHaLuhbDKiwj9GWQHJ0FpjidIBhwBis93pvG9YG65qvw2X1ZVxQXcDK7JWY4TzDtH+S0yRsKdyCmc4zLRhl7YgZMb5t9q1p+1DpIaRoU6qsz8B8Mx51rbNtZ2wq2gRHgSN6yXpZOpxHcu9S5HhVPD7J+QQbW2wE0DCXIj+Mn9QPTUXGy0baSNogS5eF9jbtK617XnkeKeoUzLo+CwCgMWjgJKjblU1VCfQIxPWC69h1fhcG+N/3/lbF64VhrPd11L55e1zNv4qfz/yM54IqrngsVhVj6sapSM1JBQMGOn3179c3C29i/Hfjcbv4NrR6LVo1aVVXoVsdjUbD+vn5+QNAixYtNJGRkY91Y5zjx4/b7t271/ny5csJOp0OHTp08O/YsaMSAKZPn97yu+++uxYUFKQ5cuSIbM6cOV6nTp1KAYDi4mJhbGxs0rZt2xzHjx/f5siRI0mhoaGq9u3btztx4oSNh4cH995773nGxMQkurq6cj179vTZvHmz47PPPls6b94872PHjiX5+flps7OzTUsiUlNTpadPn06ys7PjFQoFe/z48RRbW1v+8uXLkgkTJjwVFxeXuHPnTvs//vjDMSYmJkkulxuys7MFbm5uerlcrj9x4oRN9+7dVREREU0mTpxokaU0VpHYiny9oTwQXaO62rhUiNq0rOOIHg/btgW099yIyHb5LBgKS6AYbbzeVtjRF7q//gXj6gSGYSAI9oX+fCL0l1Ih7FD5WU9iPsK2LaE8eHdJkd17c2AoKEbxqIVghALAYLhbuYobMDHie5ZoCFhAowVv4MHYy+C4/8GEsGxlBGxeGQHxs12gO30ZyvBtZhtPY6Z39IMou+Eu/zJhBdB79DT+OPlDlPqzpSMyC857MCSnlkE17E8wmgJTufjsB9B7PAPdwJ/BKK7B5rfBFoyyegJGgA42HdDBpgNaiVvhoOLuDXtCbEPwQ8EPSNA0jpVn9qw9FAaFabtEXwJ71t6CEdWOiBGhrbgtdpfsxvee3+Ok8uE3/bN2ATYBKNGXWNXNk2qrlaQVokqjKt1XvsQfAAQQQM/rq+yHB49B9oMw09U6TiINDhyMZb8tw5+v/okC5d33N2eZM7JKKl4qp9Ao4GjjWN8h1sqw4GF4c/ebOLroKPLL7uYcy/ctR2/f3vhl7i+4mncVfVb3qbav+dvn4/V+r2N4h+E4lnwM7++33lU55mbupchHjx61Gzx4cJFcLjcAwIABA4oAoLi4mI2NjbUbO3asaYmhVqs1nT0ZMmRIEcuyCAkJUbq4uOjCwsJUAODj46NKT0+XXLlyRdK1a1eFh4cHBwDjxo0riIqKshMIBHxYWJjCz89PCwBubm6mF+WgQYOK7Ozs+PJjTZs2rWVCQoINy7K4du2aBAAiIyPtJ02alFceb3n7qVOn5q1fv75JWFjYjX379jmdPXs20Vy/o9qwiqXI0h4h4LVaKDbvN5VpE9LB3ap451PuRhaK3l8H+bSR9R1irQi7tge0Wmh+/vNuoUpjeijo6AfNT/tNSaywgy+0+46CaeJo8WsanwTCbu0BjQ7qrX+Yyni18e/DejaFPjEDvMEA/e1ccBernuW4Hyu3haC5GzR/Gpea8jwPLjHD+FihBOtmXDKn+eWwuYZSJUFIO3CHz4BXa4wzyUfOQhDaDoKOfuCOngWv1RnLo4135WUc5WAkYtMyed1vURB09q/zOKujbjUKotyzEN+8uxxNlH0SgkKLvF8+ErYoFWzx3RO6gvzL4O1aWDAi8+F8X4I29C0YXAIqlDPaEtPNpETJWy0RWo1d117HTe1N03aaJg1uwoorKiY5TcKOoh31HVqdaC9tj6iyKNMNsiLLIhEsbVjL/cc6jMUMpxmwFzSchLwq17XXoef1DXosITYh0PE6/Fb0m6ksXZNe62XUobahOFZ6DIVcIQDjSZcsXVY1rerOS11ewlsD30KAR8X3t6dbP40/4v+AQm08QbTv0j4EeQRBwFr3/VFeefoVLB+6HEHNgyqUF6uKTTeT2nRiU6Vt5VK5abymNk7GNj+dbDyXOjwqoVDIG+6ZFNFoNI+dX+n1esjlci4pKSmh/OfKlSvx5fulUikPAAKBAGKx2LSclWVZcBz3SMsHZDKZaRAfffSRW9OmTXWJiYkJd2aTHzqmKVOmFB49etRh+/btjkFBQUp3d/eqz2LVIauYsWUYBq4/fIDC5WtR8vV2MBIRhC3c4bRyHrhrmcjsPwO8WgvWzhby6aNgN25Q9Z1aEMMwkK19C6r//gDNhr1gnB3A2Ehg88YUAMbrbNWf/ABBB+OyT7apM3i9ASK6vrZeMAwD+bfLUPbxBqg27Lnz95HC9s2pEIb6g23uhqLn5kLQugUEtbwW1271IpSt+Baqb3YAOj3EQ3pC2K4VbOdPgOI//wXjYAdR1/bAzbq92Z2gfVsIB/eActwSAIBo/EAIfIwrHYQ9OqJsxOtgXRwh8PECI7cFAEj/+9oDN4+yOKENivtuhd3ZdyA7+w7AisA5+aO084eWjqzmdKWQnlgMRlsMsEIY7FtB3TMcNn9Phu3BFwDWOPuvb9oZqn4N6wMCb+cJXdCcB8q1wQsgPTYL/Pn/Qe81sJKW1kPNqxGeG44yQxkEjAAeIg8scl2E97LeM9XpKusKhwKHqjtpQLradEWaNg3zsuaBBYtmwmaY7zzf0mFVSc/rIWIq3sTEW+zdIO+GXK78GlvAOEu51G2p6QZJ5dfYlnvO/jmMdhxtkThrimEYfOjxIb7K+Qo/F/4MMSOGu8gdPWQ9atWPt8Qb05tMxxu33oCBN0DICLGg6QK4i9zrKPKH83T0xJxnHnx/C/QIxKweszDgqwFgwMDVzhVrx621QIS109ypOeY/++Br/c2Bb2Lqxqn46I+PMDio8tU1w4KHYey6sfjtwm8InxCOFcNW4IWIF+Bk64Q+fn2QkZdR1+FbtdatW2vXr19vq9frkZGRIbp06VKNZ6n69u1b+sorr3h/+OGHt3U6HRMZGek4ZcqUXGdnZ0Pz5s21P/zwg9Mrr7xSaDAYcPr0aZtu3bqpqu8V6NmzZ9nixYtb3L59W+jq6srt2rXLee7cuTm9e/cuW7hwYcukpCRx+VLke2dtyxUXFwuaN2+uFQgEWLt2rYteb6wycODAko8++shj5syZBfcuRba1teV79epVvHDhQq+1a9deren4zY2pz2tWfX19+fj4+OorNhDHjh1Dx44dLR2G2cTExKBz54Z9g4R7nT17FmFhYZYOw2xOnz5tlucbX6YCI7MBr1RD+dI7kH48DwJf78cPsJZiY2MREhJS78etK7GxsejataulwzAblUqF+Pj4RvMaKi0tRXx8PDp16mTpUMyisLAQaWlp6NChg6VDMQuFQoErV6488J6QrknHmrw1+NrzawtF9miUSiWSk5MbzfNNqVQiISGh0bwfKJVKxMXFNZrxAMCZM2fQp0/1y4gbCpZlY3ier/ACunjx4tXg4GDTFwZb4ut+KvvKHoPBgBEjRrS6fPmybZs2bdTFxcXC5cuXZw4dOlRRk6/7WbJkifuOHTuauLi46Dw8PLQdO3ZUrly5MjspKUk8Y8aMljk5OSKO45iRI0cWfPbZZ7dHjx7tPXTo0OKXX365MDk5WTx06NC2qamp8YDxxlLl+yIiIpxXr17tzvM8069fv6Jvv/32FgDs3LnTfsWKFc0NBgNcXFx0J06cSL3/a4YuX74sGT16dGuGYdC3b9/iH3/8sWl57G+//bb7jh07XEQiEd+vX7/itWvX3gKAw4cPy1588cXWt27duiQU1t3c6cWLF5sEBwd7V7bPKmZsCSH1R738GxgyMgGtFsKRz1okqSWEkOrsL9mPvSV7Mdd5rqVDIYRYoeqS0Efor9o6lSWmLMvit99+q3Ta+tatW6ZbgVf1HbarVq3KWrVq1QPr7v38/LTHjx9Pvb98z549V8sf+/r6asuT2vv3zZo1q2DWrFkFuM8LL7xQ8sILL1S4TnjNmjWZ924HBQVpUlJSTHXKk2IA+Pjjj7M+/vjjB+KNioqyGz9+fF5dJrXVocSWkCeMzepFlg6BEEKqNcx+GIbZD7N0GIQQQqrRv3//1teuXZNERUXV/OY0dYASW0IIIYQQQgghj+Rxv/bIXKzirsiEEEIIIYQQQsijosSWEEIIIYQQQkiDRoktIYQQQgghhJAGjRJbQgghhBBCCCENGt08ihBCCCGEENKgaAyaYAkrMVsuozFoOAkreehXCAkEgtC2bduqyrf37duXlpqaKlm9erXb0aNH08wVS1Xu/77ZqlT1nbmNndUktvqcAhQsXwvthWSw9jKwrs5wXvkqbvebDmHrFqZ6zf74FoxYZMFICSGEEEIIIZYkYSXC0POhZusvJiSm2rxIIpEYkpKSKnwHbGpqqsRsQTQiHMehvr/T1iqWIvM8j5xX3oW0Wwd4ntqKZoe+g9Pb06HPLYSwpQc8/t5g+qGklhBCCCGEEGJtjh49atuhQwe/du3a+Xfs2NHv4sWLEgDo3bt3m9OnT9sAQLt27fzfeOONZgCwYMECj9WrVzcBgHfffdctMDCwnY+Pj//rr7/uUd7nkiVL3L29vQNDQ0N9q0qik5KSxB06dPDz8fHxnz9/vse9+yrrNzk5WdyqVauA0aNHe3t7ewcOHz681a+//ioPCQnxa9myZeDRo0dtASA7O1vQr1+/1j4+Pv7BwcF+5WMoLi5mx4wZ4+3j4+Pv4+Pjv2nTJkfAOFM8Y8aM5r6+vv6HDx+2e+ONN5oFBga2a9u2bcCECRNaGgwGAEBcXJyke/fuPr6+vv7+/v7t4uPjJSNHjvTevHmzY3ncw4cPb7VlyxZH1IJVJLbqf2PBCIWQTxluKhMHtIHQs6kFoyKEEEIIIYQQI41Gw/r5+fn7+fn59+/fv/X9+4ODg9Vnz55NSkxMTFixYsWtxYsXNweA7t27lx45csQuPz9fIBAI+FOnTtkBwMmTJ+369eun+OWXX+zT0tKkly5dSkxMTEy4cOGC7Z9//ml3/Phx27179zpfvnw5ITIyMvXixYuyyuKaO3eu1/Tp03NTUlISmjVrpisvr6pfALhx44Z0yZIl2enp6XHp6enSrVu3upw7dy7po48+uvnRRx81A4DFixd7BAcHK1NSUhI++OCDW1OmTGkFAEuXLm1mb2+vT0lJSUhJSUkYMmSIAgBUKhXbpUuXsuTk5ISBAweWvvnmmzlxcXGJqamp8SqVit2+fbsDALz44outZs+enZOcnJxw7ty5JC8vL9306dPzfvzxRxcAyM/PF8TExNiNGzeuqDZ/H6tYiqxLyoC4vU+l+7hrmcjsNx0AIOkcCJdPFtRnaIQQQgghhBBS6VLkexUUFAjGjRvX6urVq1KGYXidTscAQO/evRVffvml21NPPaUdMGBA8bFjx+wVCgV78+ZNSXBwsObrr792jY6Otvf39/cHAKVSySYlJUkVCgU7ePDgIrlcbgCAAQMGVJronT9/3u7PP/9MB4BZs2blf/DBB80B4K+//rKvrN+nnnpK6+npqQkLC1MBgI+Pj6pv374lLMsiJCRE+eGHH3oAwJkzZ+R79uxJA4Dhw4crZs6cKSwoKGCjo6Ptt2/ffqX8+K6urnoAEAgEmDp1amF5+Z9//ilfs2aNu1qtZouKioT+/v6qwsJCRXZ2tnjy5MlFAGBra8sD4IcMGVL62muvtczMzBRu2bLFaciQIYUiUe1W6lpFYvsw5UuRCSGEEEIIIcRaLVmyxLNXr16KyMjI9OTkZHHfvn19AeCZZ55RTps2zTY6OlozcODAkry8POEXX3zRJDAwUAkYL8tcsGDB7TfffDPv3v5WrlxZ4+WrLMvy95dV1W9ycrJYLBbz97SFVCrlAWNyqtfrmdqN3EgsFhvKr6tVKpXMokWLWp4+fTqhTZs2uoULF3qo1eqHrhYeN25c/vr165337NnjvHHjxqu1Pb5VLEUW+XpDeynF0mEQQgghhBBCyCMpKSkRNG/eXAsAERERTcrLpVIp36xZM93+/fud+vbtW9qzZ0/F119/7d6jRw8FADz33HMlmzdvblJcXMwCQEZGhujWrVvCvn37lv7xxx+OpaWlTGFhIRsZGVnpNachISGl69evdwaA9evXu5SXV9VvTcfTpUsXxcaNG10A4MCBA3InJyfO2dnZ0KtXr5LPP//clHTn5uYK7m+rVCpZAHB3d+eKi4vZ/fv3OwGAk5OTwd3dXVt+Pa1KpWIUCgULALNnz86LiIhwA4DQ0FB1TeMsZxUzttIeISj6ZAMUm/dD/tIwAIA2IR2GkjILR0YIIYQQQgixNhqDhqvJnYxr05+EfbwbHC9ZsiRr+vTprVatWuXRv3//CsuGu3XrpoiOjiASRVQAACAASURBVLa3s7Pj+/fvXzpz5kxRnz59SgFg1KhRJfHx8dLOnTv7AYCtra1h69atGT169FCOHDmyIDAwMMDFxUXXvn37SpOjb7755vr48eOf+uKLL9wHDRpkOm5V/QqFwgdmdyuzatWqzIkTJ3r7+Pj429jYGDZt2pQBAJ988sntl19+2att27YBLMvyb7/9duaUKVMqjLdJkyb6iRMn5rZr1y7A1dWVCw4ONsW+ZcuWjBkzZrT84IMPPEQiEb9r1650f39/bYsWLbjWrVurhw0bVqtra8sxPF+jcZmFr68vHx8fX+k+LisPhcvXQnspFYxEBGELdzitnIfcV96Fx7GN9RZjbRw7dgwdO3a0dBhmExMTg86dO1s6DLM5e/YswsLCLB2G2Zw+fbpRPd9iY2MREhJi6TDMJjY2Fl27drV0GGajUqkQHx/faF5DpaWliI+PR6dOnSwdilkUFhYiLS0NHTp0sHQoZqFQKHDlypVG856gVCqRnJzcaJ5vSqUSCQkJjeb9QKlUIi4urtGMBwDOnDmDPn36WDoMs2FZNobn+QovoIsXL14NDg7Oq6oNafgUCgXr7+/vf+HChUQXFxd9ZXUuXrzYJDg42LuyfVYxYwsAQvcmcP3uvQfKrTWpJcRaKAJGQzRlGKSLpwIAtBv3gVeqIXl1HLQ7DoKRSiB6vrdFYyTEmg2+Mhh/PPVHhbJNBZtgw9pgnOM4aA1aLMtahgBpAKY6T7VMkE+oYn0xFmctBgAU6AvAgoWjwLgS76buJn73/t2S4RFCCDGTX3/9VT537lzv2bNnZ1eV1FbHahJbQsgjEovA/X0ahhmjwDrZV9w1bqBZDsFzejDCBy6fIKTR0/E6rMhegbaStpTUWoCDwAERnhEAgB8Lf4QNa4MXHF4AAAy9OtSSoRFCCDGjESNGKEaMGHH5cfqgxJaQhk4ggGhsf+h+2g/JaxMr7NJ8vQOMrRTil5+H/nIa1Mu/BhgWgu7toT8eC9m+L8Dr9dB8vgX6M/GATgfRhOcgfmEAuDNx0H61HbCXwZBxC3Z/rLXQAAmxDD2vx8rslfAUeWKmy0xLh0MIIYSQh7CKuyITQh6PeMIg6A4cB6+o+oZr6nfWQrpiNmS/rAbD3n3p6/YcBmMng2zn/2C743/Q7f4bhpvZAAB94hVI33qFklryRNpRtAMiiDCvyTxLh0IIIYSQatCMLSGNAGNnC9HwXtBu+QOMVPzAfr6kDHyZCoIOvgAA4ZCe4KJiAAD6ExehT7kG7tBJY91SJQzXbgMiIQSBbcA2d6u/gRBiRQKlgYhXx+OG9gZaiFtYOhxCCCGEPAQltoQ0EuKXhqJs7JsQjexbu4Y8D+nb0yDsUfGOy9yZOMBWasYICWlY2tu0x0D5QCy9vRThnuFwEbpU34gQQgghFkFLkQlpJBhHOYQDu0O35/CD++xlYGQ20F9KAQBwf/5r2id4ugN0Ow6C13EAAMPVTPDKWn8nNiGN0jN2z+AFxxew5PYSlOpLLR0OIYSQcpwqGECo2X6M/T2Ura1thVmA8PBwl8mTJ3s9rE1YWJhvdHS0bXV9R0dH206dOrXS5UGenp5Bt2/fNvuE5MOO2RDRjC0hjYh46nDofv6z0n3SD+ZCveJb482jOvsDdsb3WNGYfuAzc6Ec+ybA82Cc7GHz1ZL6DJsQi9LwGrxw9QXT9ljHsRX2P+/wPAr1hViWtQyfNvsUYvbB5f6k/ml4DcZfH2/aHuMwBmMcxlgwIkJIvRLaCLGaMV9/i3iL5UU6nQ7PPPOM8plnnlE+ah8cx0EorN0QHveY1oYSW0IaOPm5rabHbBNHyGN+Nm1LXh13d1/rFpDt/RwAoFn/CwSBrQEADMtCsmAiJAsq3lFZGBYIYVhgXYZOiFU43PrBVQ73m+o8FVMxte6DIVWa4jSlwnZkq0gLRUIIIRUVFhaygYGBAVeuXImTSCR8QUEBGxQUFHDlypU4ANi4caPLzJkzvfV6PfPdd99l9OnTR7lw4UKPK1euSK5fvy7x9PTUzJo1K2/16tVuR48eTcvKyhKMHj36qezsbHFoaGgpz/OVHtfW1rbjxIkTc6Ojo+3Dw8Ov29raGhYuXNhCqVSyTk5O3NatW6+2bNlSFxUVZTtjxgxvlmXRq1evkiNHjjikpqbGHzhwQF5+zIULF3pcvXpVfO3aNcnt27fFn3zyyY2TJ0/aHTlyxN7NzU33999/p0kkEv748eO2lR2jXn/hVbCapcj6nALkzl6JW10n4vaAmcieuBSKzfuR89Jbj9wndyMLmb1fNmOUhDRcXPR5lI1ahLLnF0B/PhHiWTSzQQghhBBSUxqNhvXz8/Mv//nkk088AMDJycnQrVs3xc6dOx0A4IcffnAePHhwoUQi4QFApVKxSUlJCeHh4ddmzpzZqry/1NRUaXR0dPL+/fsz7j3O0qVLPbp161aalpYWP3LkyKLbt29XulRIpVKxXbp0KUtOTk7o3bt32fz587327duXHh8fnzhlypS8N954wxMApk+f3uqbb765lpSUlCAQCCrPkgFcu3ZNcuLEiZQ9e/akzZ49u1Xfvn1LUlJSEqRSqWHnzp0OGo2GqeoY1sAqZmx5nkfOK+/CbuxAuK5bDgDQxqdBefCEhSMjpPEQPfc0RM89bekwCCGEEEIaJIlEYkhKSkoo3w4PD3c5d+6cDABmzpyZu2rVKveXXnqpaMuWLU3Wr19/tbzeiy++WAAAzz33XGlpaSmbl5cnAIBBgwYV2dnZPZBonjp1Sv7LL7+kAcD48eOLZ82apa8sHoFAgKlTpxYCwKVLlySpqak2ffv29QEAg8EAV1dXXV5enqCsrIzt169fGQBMmTKlIDIy0rGy/vr161cskUj4sLAwlV6vZ8aMGVMCAAEBAaqMjAxxVceo9S+yjlhFYqv+NxaMUAj5lOGmMnFAGxiKS6H+5zxyp6+ANikD4vY+aPL1MjAMg6I1P0J16CR4tQaSTgFw/nQRGIaB5mIy8hf+DwBg06uzpYZECCGEEEIIeUIMGDCg7D//+Y/kwIEDcr1ez3Tu3Nl0J06GqXgtcPm2TCYzPM4xxWKxofy6Wp7nmTZt2qguXLiQdG+d8iS6JspnmAUCAYRCIc+yxsW9LMuC4zimqmNYi2qXIjMM8wPDMDkMw8RVsm8RwzA8wzBNHicI3Z2ktTLauDQ4rZwHj+hN4K7fhuaMMQz5yyPR7K918Di2EbxaC1Wk8Ts481//H5w/nA+Pw98/TkiEEEIIIYQQUmPjx4/Pf+WVV1pNmjQp797yn3/+2QkADh48aCeXy/UuLi6VzsCW69q1q2LTpk0uALBz5077kpKSapPT9u3bqwsKCoR///23DAA0Gg1z7tw5aZMmTfQymcxw5MgRGQBs3rzZ+VHHV9UxHrU/c6vJjO0mAGsB/HRvIcMwLQAMAHDd/GHdJenoB6GHKwDjLC53IwvoEgT1v7Eo+WY7eJUGhiIFRL7eMHRpD0NxKaTdjHfrlo3pD9WR03UZHiGEEEIIIaS+cSrOrHcy5lQchDaP1cW0adPyV61a5Tlt2rSCe8ulUinfrl07f47jmO+++y6jqvbl/vvf/2aOHj36qTZt2gR06tSptFmzZtrq2kilUn779u3p8+fP91IoFAK9Xs/MmTMnu1OnTuqIiIirs2fPbsmyLLp166aQy+UPTawf5RiP0p+5Vftk4Hk+mmEY70p2fQ5gMYB9jxuEyNcbygPRle5jxKK7jwUsoNeDV2tR8NaXaPbXOgg9m6Los03gNdX+vQkhhBBCCCGNgdDmopn7q7aKUqmMvXd7/vz5+QDyy7cPHz4sHzRoUGGTJk1MieOZM2eSK+trzZo1mfduDx06VDF06FAFALi7u+v//fff1NrG0717d9W5c+ceOF5oaKgqJSUlAQDefvttdwBl9x/z/nju7fvefVUdwxo80lkOhmGeB3CL5/mL968Zr6TuTAAzAcDV1RVRUVEPVuJ5NMvLx613V6O0XycAgOhaFmzPJUOSn4/EO22cb92CVsJDKQc8dVqcSLgExBnQbMcfUHbxR9GFGHgIgVMRP0Hj1xJOWyNhU1ZW+THNQKlU4syZM3XStyVotVqcPt14Zrg1Gk2jGo9arca5c+csHYbZaLVanD171tJhmI1Op8PJkyctHYbZ6PV6cByHEycax038dDod9Hp9o/kbabXGk7mN5f8gjuMAoNG8Z3McB4PB0GiebxzHQa/X499//7V0KGbR2MYDGD/zHD161NJhPNGmTJnS4ujRow4HDhyoNiGtbzt37nRYvXp1M71ez3h6emq2bdt21dIx1YVaJ7YMw9gCeBvGZcjV4nn+OwDfAYCvry8fGhpaaT3Dj60g/2g9uDfXgZGIwHq6Qdy/K7S5CrS406b0wFkIvb0hfaYHlC9moNWy78G6OkEQ1h4OHk3ROjQU3JdvweatLwEwEPXoCJ3NDVR1zMd18uRJ+Pr61knflpCQkAAfn8qvdW6IEhMTERAQYOkwzObChQto06aNpcMwm6SkJLRq1ar6ig1Eeno6/P39LR2G2RQUFCA3NxdBQUGWDsUsbty4gYKCArRt29bSoZhFRkYGtFotvL29LR2KWeTk5ECtVsPPz8/SoZhFdnY2ioqKGs14MjMzUVxc3Gg+I2RlZaGkpKTR/H0A42e4kJAQS4fxRPvxxx9vALhh6TgqM2PGjMIZM2YUWjqOuvYoM7atAbQCUD5b2xzAeYZhwniez3rUQFg3F8jDlz5QLh030PTYbsVs02PbhS/BduFLD9QXBraB4/6v7hYsoe+xJYQQQgghhJDGrNaJLc/zlwE0Ld9mGOYqgE48z+dV2YgQQgghhBBCCKkjNfm6n58BnATgyzDMTYZhptV9WIQQQgghhBBCSM3U5K7IE6rZ7222aAghhBBCCCGEkFqqdsaWEEIIIYQQQqyJQa0JBhBqrp87/VVr8+bNjgzDhMbGxkqrq7ty5cqmCoXClG/Z2tp2rPEAK7F161aHO1/Xg82bNzvGxMRUG8PD+mhszPelxoQQQgghhBBSD1ipRJju2tNs/bXOPV6jvGj79u3OISEhpT/99JNzx44dMx9WNyIiwm3GjBkFcrnc8Ljx6XQ6TJw4sRhAMQD8+uuvjhzHFYeGhqoftY/GhhJbQgghhBBCCKlGcXExe/bsWbu///47efjw4W0///zzzAMHDshXr17tdvTo0TQAmDx5slenTp3KSkpKBDk5OaJevXr5ODk5cadPn04BgP/85z+ehw4dcpBKpYYDBw6ktWjRgktOThZPmTLFu6CgQOji4sL99NNPV9u2basdPXq0t0QiMcTFxdmGhYWVtm/fXnXu3DnZSy+9lP/33387njp1Sr5q1apme/bsSf/rr7/kGzdudNXpdIy3t7dm9+7dGXK53FBVHz/99NP1bdu2Ofz3v/9tptPpWCcnJ27Hjh1XWrRowS1cuNDjxo0b4mvXrkkyMzPFs2fPzn7nnXdyLPvbrx4tRSaEEEIIIYSQamzbts2xd+/exe3bt9c4OTlxx48ft62q7jvvvJPTtGlTXVRUVEp5UqtSqdhu3bqVJicnJ3Tr1q30q6++cgWAOXPmeE2cODE/JSUlYdy4cflz5sxpUd7P7du3xefPn0/asGHDzfKy/v37l/Xr16/oww8/vJmUlJQQEBCgmThxYmFcXFxicnJygq+vryo8PLzJw/q400/phQsXkhITExPGjBlTsHLlStMS5bS0NGlUVFTK2bNnEz/77DMPjUbDmOe3WHcosSWEEEIIIYSQauzcudN5woQJhQAwevTogs2bNzvXpr1IJOLHjx9fDAChoaFl165dEwNAbGysbObMmQUAMGfOnIKYmBi78jajRo0qFAqrX2QbExNjExoa6uvj4+O/Z88el/j4eNP1t1X1kZGRIe7Zs2dbHx8f//DwcPekpCSb8n0DBgwosrGx4Zs1a8Y5Ozvrbt68afUrfa0isc0PHmt6rD12DoX9Z0F/KwfK8G0o6DEFRcPmo2jwq9AePm3BKJ9cfLep4Ce9C37C2+AXfQ5eUWa+vhMzwK/eYrb+CLFGnr/4Vdi2zdgFx/PvPrSN9NYhyBO/BgDY3DoIYXGKaZ993GpIso+bP9AactviDvt/Xr1bYODgussfjkcnPbSdKOvfautUh1VmwSGavnXuSTIh76FfzlBBnDYOSbqkauttK9uGi9qLjxMWueNm0U0M/G5ghbIvor9AxMkIzPtlnqlMoVGg19e9cL3wen2H+ERrvqz5A2Vzt8/Fvkv7qq1HKsrOzhacOnVK/uqrr7b09PQMWrt2rfv+/fudhEIhbzDcvYT2YTObQqGQZ1m2/DE4jqt2FtTOzq5G1+fOnDmz1dq1a6+npKQkLFmyJFOj0ZjyvKr6mDdvntfcuXNzUlJSEtauXXvt3jYSiYQvfywQCGoUq6VZRWJbTnfiIso++A72G96DwLMpAMBm6vNw3B8Ou/ClKH3rS/CGx772mtSWRAxmywdgfv4YsJcBuw+brWumXSswix7vgy4hjZHacwAU7YzJo82tgxCVpJr2lQQugsbNfDfMqC2D0BbC4iSAUwEAxLejoLdtVj/HtnVH8TPf18uxSMMTp6tZYvui7EUEi2t0A1TyGG6X3MY/Gf8AAD6P+hxjg8fCy8nLwlER8mg2b97sNHLkyILMzMzLt27dupyVlXWpefPmWr1ej7S0NBuVSsXk5eUJ/vnnH/vyNjKZTF9cXFxtvtWxY8eyDRs2OAFARESEc6dOnUqra2NnZ6cvKSkx9a1UKlkvLy+dRqNhtm/fXqOZZIVCIfDy8tIBwKZNm1xq0saaWc2Usu5MHEqXfQX7DSsgaPngByRhmxaAQAC+sASMi6MFIiQAgKA2QNoNAAAfkwhs/RPMmoXG7U9/Atq1AjO0J/ivdwLRsYCQBcICwbw2AfzhM8CGXwGWBexswEQsq9AHH58OrNkKaHWARAy8Ox1MJc8FQhoTaWYk7BO+AmPQwSB2RH7XcBikrrDN2AVx4SUovZ6HNDMSktzTsE/8Cnnd18EhIRyqZs9C1WKIxeLWejwLya2/oWk5DNKre6H2HgFxjnFVjTDvPOTn3gWj14AXSFHS7QvoHdpUaF9VHccjE1HacRk4J384/94PmhbPoaz9IsguroLB1hOaZs/A6ehLyB8WZYlhEytxVnMWu1S7wPEc5Kwcr8tfh5bX4qD6IFiGRZQmCtPspiFcEY51TuvAMizUvBrzCudhndM6fFP6DTqJO6G7pDt2KHfgnPYcNLwGfkI/zLGbA4ax+okJq8cwDD587kMs2LcAnw79FCeunsBv036zdFikETGoNVxN72Rc0/5YqaTK/bt27XJ+8803s+4te/755wu3bdvmPGzYsEI/P7+A5s2bawICApTl+6dMmZI3aNAgHzc3N235dbaVWbdu3fXJkyd7f/nll+7lN4+qLt6JEycWzJkzx3vdunVuu3fvTl+6dGlmWFhYO2dnZy4kJKS0tLRUUF0fy5Yty5wwYUJrBwcHrkePHorr169X/QtoAKwjsdXqoJj7Eey3fAxB6xaVVtFdSAZYFoyzQz0HR8rxegNwNgEY/szD6xWXAsdigJ3/BcMwd5cuf78P+PINME2dK1/O3NIDiFgGRigAfyYe+GY3sOo/dTASQuoXo1fD7dAg0zarLYLKoz8AQNOkM3Ke3QcwDGRXfoZ90joUdbi7TFnbpBPUHv0tnsjeT+09ArLLq6Fp3h/CokSoWk8wJbZ6+7YoHLAPYIUQ346G3YVPUNyr4ixrVXW0TbtClHMKellzgBFAlHsWACDOOY2SsP/V+ziJdWonaodV4lVgGAaR6kjsVe7Fy3YvY6B0IKSMFCNsRwAAvIXeiNfFI0gchHPac+go6gghU/Gjz2DpYIyzHQcA+ELxBc5pz6GzpHO9j6kxaufWDj2f6olJ2ybhu7HfQSwQWzok0oiwUolZryd4WFILAJUlpvfdKfjm/fuXLVuWs2zZMlMdpVIZW/745ZdfLnz55ZcLAcDHx0d76tSpB/rfs2fP1Xu358+fnw8gHwAGDBhQlp6eHl++LyAgIHfJkiW5telj0qRJRZMmTSq6v82aNWsqfI1Rampq/P11rJF1JLZCAYQd/aDZFQnhuzMr7FJt2gfNvmNg7Gwg/2IxnUW1BI0W/KR3gdxCwLsZEBb48PoyG0AsAj78HnyPDkCPDsby9m2BDzaAfzYM6NPpwXZlSmDld+BvZAMMA3B684+FEAvgBVJkD/jLtF0+GwsAQmUWHC++CladA8agAyer/OSeteGc/CEovQHp1b3QejxbYR+jK4H9yfkQllwBzzBgDNwD7auqo2vaBbbJG6C384LGsx/EWdEAp4Sg9Dr0Dm3AltL1eQTIN+Tjs7LPUGgoBAcObqxbpfV6iHvgH+0/CBIH4R/NPxgkHfRAnThdHPaq9kLDa1DKl6KFoAU6gxLbGqviYxlzZ8fk0MmISo9C15Zd6zEo8jCVfZamz9ekMbCOa2xZFvLwJeAupUD57c4Ku8qvsXX4eRVEnQMsFOAT7s41tti3GuAB7P7bWC4QAAb+bj2tDgDACAXAxhVA387APxeA1z4zli+dCswaDWQXAFNWGGd27xXxCxDazngt72cLTP0R0pg5xi6Hos0UZA+MRGHoJ2D0GkuHVGOa5gMhj1kJtffICuV2F1dB6/Y08odFoaj3T2D0D353fFV1dC4dIMy/CHHOaWjduoFzCoRN2lbonOl6SHLX+tL1GCwdjC+dvsQc2RxoeW2l9TpLOiNWGwuFQYF0Lh1BoqAK+7W8FhGlEVgsX4wvnb5Ef0l/6Hj6v6c2nGycUKwqrlBWpCqCs63xEj+WYcEy1vFxkxg52zqjSHV3kq5QWWj6exHSkFnNOw1jI4V8/QpofzsG9a5Dlg6HVIKRSoBFk4Btf4Hn9EAzF+BqJnitzri0+GwCAIBXqoFSFZing4HXXwRSjTMs/M1sMIGtwcwaBTjKgez8igcoVQKuTsbHv/9Tn0MjxGJYnQJ6G+PXxsmu7q60jkFoB5Yz393IzUXVegJK2y8C59SuQjmjU8BgaxyTTfqOSttWWUcghsHWA5Jr+6FrEgpt0y6QJXwLrRvN9pC7lLwSLgLjfU6Oao6aym0YG6h4VYXtNsI2+L7se3QSd4KAqXjJWXkSK2flUPEqnNCeqIfoGxeZWIamdk1x4qrxd1ekKkLUlSh0alHJyixiFZ5u/TT2XtgLLWc8IbTt7Db0bGO5GxLWgsFgMNDU8hPszt+/yjsJW8dS5DtYRznkP7yPkheXgqVraa0S49sSfJsWwKFTYAY/bVxWPGEZ4NEE8G1prKRUA29+AV6rM87wLnjRWP7VDuMyY54HOvkDbb2A8/fcvfKlIcD734Hf+BvwNM3OkCdDccDraHJyDgxiB6ibPg1B2Y0H6ii9hsH53BLYpW5EXvdvLRBl5QwyD6j8pj9QrvR/FfYn5kN2+QtoPPtV2vZhdbRNu0KcdRwQ2kDXtCsEykzoXLvUyRiI9dNAg+kFd59nw2yGYZztOHxa8ilkjAxB4iBk67MBAJ0knfBpyac4oz2DGXYz4C/yRw9JD3yq+BQfOHzwQN8yVob+0v54rfA1OLFOaCtsW2/jakxWD1+N5QeX48PIDwEAr/V8DS2dWlo4KgIASp0SAR/eXfE4t+dcvNrrVVy8eRG9v+wNASNAK5dWWDN6jQWjrLG43Nxcf1dX12KWZfnqq5PGxGAwMLm5uQ4A4qqqw/B8/T0vfH19+dOnG8930Z48eRK+vr6WDsNsEhIS4O/vb+kwzCYxMRHBwY0nQb5w4QJ8fHwsHYbZJCUloW3bxvMhMj09vVE93woKCpCbm4ugoKDqKzcAN27cQEFBQaN5zmVkZECr1cLb29vSoZhFTk4O1Go1/Pz8qq/cAGRnZ6OoqKjRjCczMxPFxcWN5v+grKwslJSUNJq/D2D8DNe1a+NZ2eLk5BTD83yFaf+YmJimQqFwA4BAWNGqU1JvDADiOI6bHhoamlNZBauasSWEEEIIIYSQ+91JZoZbOg5ivehsByGEEEIIIYSQBo0SW0IIIYQQQgghDRoltoQQQgghhBBCGjRKbAkhhBBCCCGENGiU2BJCCCGEEEIIadAosSWEEEIIIYQQ0qBRYksIIYQQQgghpEGjxJYQQgghhBBCSINGiS0hhBBCCCGEkAaNEltCCCGEEEIIIQ0aJbaEEEIIIYQQQho0SmwJIYQQQgghhDRolNgSQgghhBBCCGnQKLElhBBCCCGEENKgUWJLCCGEEEIIIaRBE1o6ANIw8FExwOJwYMcnYLw9wGfmAuPfArya3a20cQUYET2lCGnMJNf/gOzy6gplwsIEFPXZAq3ns4/cr+zip+BFMij951YoZ5VZkJ9bhuJnvn/kvgkhhBDS+FEWQmrm0Ckg2Mf478xRxjLPpmC2fGDZuAgh9UrjNRgar8GmbZvUzZBm7IHWo0+dHM9g605JLSGEEEKqRUuRSbV4pRq4mAK8Mw2IPG3pcAghVkJQkg7Z5TUofnotGE4Fx7/HwPn3/nA+0BuSG38BANjS63D5rQfsT8yHy77usP9nLsS3o+F0cBhc9nWDMO+8qT9hYQKc/hoCl33dYJO65W77/b1Mj50OPm88xu/9Ico9W/+DJoQQQohVohlbUr3o80DX9mC83ME72IFPzAAc7IBbOeAnvWus074tmMWTLRsnIaT+GHRw+GcOFCErYJA1Bwwcip/ZCF4sB6POh/NfQ6BpPhAAIFBkoLjnenDdfOH85yBIr/6CwgG/QXLzIGRx4SjuvQmAMbEtGPQ7GE4Jlz/6Q+PZr+IhpU1Q2G8HIJBCUHIFDv/MRsHgQ/U9ckIIIYRYIUpsSfUOnQLGDTA+7t/FuD22Hy1FJuQJZndxFThHX2i8R9wp4WF34WOIck4BDAuBKgusOhcAoLfzAufUDgDAOfhA694TYBhwju0gPcsWQwAAIABJREFUKLth6lPTYiAgtAEvtIHWrTtE+bHQOQWY9jMGDvKzb0NYGAcwAghLrtTbeAkhhBBi3SixJQ/FF5cC5xKB9JvgGQbQGwAGxsSWEPJEEmX9C8n131EwONJUJs3YA1aTb5xBZUVosrcToFcbd7Liu40ZFvydbZ5hwBi4e3pm7jtSxW3bxAgYpE1QMOQIwBvQ9OeWZhwVIYQQQhoyusaWPNyRs8Bz3cHsWwPm19Vg9n8OeLgC2fmWjowQYgGMpggOJxegpPtX4EV2d8t1ChikTQBWBFHWPxCU3ax135KbBwG9GoymAOLsk9C5dKh4bJ0CBhs3gGEhzdgFhtc/9ngIIYQQ0jjQjC15uEOngMlDKpb16QT8eMAy8RBCLMom9Sew6jzIzyypUF4W8B8Ir/4K5wO9wTkHg7NvW+u+Ocd2cIocDVZTgLKg12GwdQdbet20X+UzFQ7R0yC9sgtajz4wCG0fezyEEEIIaRwosSUPxXz71oNl4wbcveaWEPJEUQbOhzJwfqX77l5vW1H+sCjT45Lu4abHBjsv076y4DcrbXtvHb39UygYetS0rzTk3doFTwghhJBGi5YiE0IIIYQQQghp0CixJYQQQggh5P/s3Xd4FWXexvHvM+ecFEpCgIBAqAFCk6I0AUXFAnbktYCuXayo2HXXXsAGNpYVV8WG3UXEzlpQ6UqHBGmhhQTS66nz/hH3IIJSPMkkh/tzXVyeeZ5nZu4xySS/qSJSq6mwFRERERERkVptn4WtMeZlY0yOMWbFb9oeMsYsM8YsMcZ8aYxpXrUxRURERERERPZuf87YTgWG/q7tCdu2u9u23ROYCdwb6WAiIiIiIiIi+2Ofha1t27OBvN+1Ff1msi5gRziXiIiIiIiIyH4xtr3vmtQY0waYadt2t9+0PQJcBBQCx9m2veMP5h0NjAZITk4+8o033vjrqWuI8vJyXC6X0zEixu/34/F4nI4RMYFAgJiYGKdjRIzP54uq77dAIIBlRc9t/qFQKKq+3/x+P5ZlRc0+oaysDLfbjTHG6SgRUV5eTlxcnNMxIsbv9xMTE4PbHR1vIfR6vbhcrqjZnvLyctxud9T8DvJ6vbjd7qj5+kDl79Q6daLn3d4nnXTST7Zt93Y6h9QuB13Y/qbvLiDOtu379rWctLQ0e+7cuQcRs2aaN28eHTp0cDpGxGRkZNClSxenY0RMeno6PXr0cDpGxCxZsoSOHTs6HSNiVq9eTWpqqtMxImb9+vV067bHLrLW2r59O8XFxXTq1MnpKBGRnp5OMBikRYsWTkeJiHXr1hEfH09KSorTUSKioKCA8vLyqPkZysrKYufOnVHz87NhwwYqKipo06aN01EiIjs7m4qKCtLS0pyOEjHp6ekMGDDA6RgRk5CQoMJWDlgkTpe8CYyIwHJEREREREREDthBFbbGmN+epjwTSI9MHBEREREREZEDs8+bC4wxbwHHAo2NMVuA+4BTjDFpQAjIBK6uypAiIiIiIiIif2Sfha1t2yP30vxSFWQREREREREROWDR80hSEREREREROSSpsBUREREREZFaTYWtiIiIiIiI1GoqbEVERERERKRWqzGFbfnkdyk89XqKTr+BojNvIrA0A4BQXhH5Xc/G+9ZnDifcf2bINU5HkH2wdxbgu+MZvKfdgHfkXfiuG08ocxuhzCx8Yx7b1X7Fg4R+Wu103D+12/fbnGWY8+6CrJ2Yf0/HGnAZbMne1f/Ol5VtqzdUf1CJGq7SzRz2xYm7tSWunEj9jBeqbJ2xOXNJ/uHSKlu+1Fz/t/3/dpt+q/gtxuwYw5gdYzgj64zw55mlMx1KeGBG7BzB2PyxjM0fyy35t5Dur3xj4vii8cz3zg+Puy7/Ot4rey88/VjRY8z1zq32vIeiLzK+oM3DbVi7cy0AczfO5bK3L9ttzC0zbuHT1Z86Ee+AZRdlc8lrl9D9ke4cM+EYRkwZwS85v9Dv8X67jXv080d59ptnHUop8tft86nI1SGwOB3/t4tI+M9ETIyHUF4R+P0A+D//EXePNHyffE/syGEOJ/0LAkFwu5xOIYBt2/hufgrX6cfgfuxGAEIZmZBbiP/+F3DffCGuY3tXtq/dTGjlOqwjOzsZef8sWoWZOA174s3QrDEAdmoKfLUALj0dAPP1Iuy2LZxMKSLyl4ysP5KR9UcStIOMyh7Fc8nPOR3pgMQQw8SkiQAs9i3m9dLXeaTBI3RydyI9kE6/2H4UhYqII44Mf0Z4voxABqPrjXYq9iFlxsoZ9GnZhxkrZ3Dz4JudjvOX2LbNqFdGMarPKKZeNBWA5VuXs6Nkh7PBRKpAjShsQzvysZISMDEeAKyGCeE+3yezib/zUkpveYrQ9p1YhzV2KuaB+zkd8+J/oH5dyMzCfmcc5o7nICcPfH7sc06As44Ffj3rds4JMGcpxMZgPzYGGiY6mz9KhRauBLcL9zm7zjhZaa0J/OdrTPeO4aIWwGrfEqt9SydiHpjFGZjxU7GfHAspTXa1H9ML8/1i7EtPhy05UC9eB1ikSsXkLaXhotsBi4qmg4jb/i3bT/4KV+lmGi0YixUoAyCv14P4GvcmNmcuiaueJhSThKdoDb6kbuT2fQaMIW77tyQteRDbFYe3cZ/frGMJSYvvx4S82K44cvs8SaB+qkNbLHLwyuwy6ln1AOjk6cSrpa8CkOHPoHdMb372/4xt2+SEcoghhiQrycm4h4RSXymLNi/irQvf4op3rqj1he3stbPxuDxcPuDycNvhLQ4nMy/TwVQiVaNGFLaegT2pmPQOhSdfg+eoHnhOGYSnbzdCWTsI7cjH3b0jMcMG4fv0B+IuO8vpuAcmIxP7jYegeTIA9t8vhYR64PVhLnsI+7jekFgPU+4l1C0Vrh6BmfQufDQ7fJZNIsteuxmrc9s929dtwercpvoD/VW+AObO57En3Q5tmu3WZdeNxzRtCOu2wPeLsYf0xXzyg0NB5VDQcOGt5PUej6/RkSQuGx9uD8U2JueYN8AVh7t4A43mjyH7hMpLR2PyV5J18lcE45vS9Ouzic1dhDfpcBouupOcwW8RqNeGRvOuCy/LXz+V7OPeB8tNbPYPNFj+ODsHVN1l0CKR5MPH2Pyx+PGTH8rnwcQHAUh1p7IpuAm/7Sc9kE5XT1eyQ9lsCW5hfWA9nTydHE5+aPgq4ysGtxtMu0btaFCnAcuzljsd6S9ZlbWKnik999q3YecGBj45MDydXZzNDcfeUF3RRCKuRhS2pm489T98isCiVQTmL6d07BPE33IRdn4RMcMqf+A8pxxN2d3P1r7Ctku7cFELYN6dBbN/rpzIyYPN2ZBYD9vjhoE9ALDT2mAWrsR2Iq+E+cY+hb0pC9O6GTETbnE6zh9zu+DwVMzH32OPHbVHt31CX8ysBTB/BfZzt4EKW/nLzB+2W4FSfI2OBKCs1ZnEZ/23ssv20+ine/EUrALjwl2yPjyXt2EPgnUqD8r4GnTFVboZj7sOgbotCdSvPAhV1no49dZPA8DyF5O04BbcJRsAg7EDVbKVIlXht5cip/vTeab4GZ5p8Awe46GVqxXrA+tZE1jD8PjhZAezSQ+kVxa2bhW21WHGyhlc2rfyfv7Tu5zOjJUzGNJhyF7Hmj/cF9YObRu35cdbfwxPP/r5ow6mEfnrakRhC2BcLjz9DsfT73BcHVvjm/4NoZw8Qjvy8X08G4BQTh7BjdtwtWnucNoDEBez6/PP6bBoFfaUv0NcLOa6x8BXeS8xbheYX3eQlgXBUPVnPUSY1BSCs+bvtT30U3p4OmbiLYRWrsM/4Y3qjHfgLIP98DWYMU/CqzPh4tN27x/YA55/Dzq3gbrxjkSU6BKKTcLyFe7WZvkKCNT948v2E9a8RDCuMbknfQ52iJYfdtzV6frNftJYGDv4p+tPXPEUFU2OomTgFFylm2n67fkHtR0iTuvk6URRqIhCu5AGpgGdPJ1Y5V9FuV1OPaseHT0d+bT8UzYENnBy3MlOx416BeUFzNk4h4ycDDAQCoUwxjCi+wgKK3bf5xWWF5JUp+ZfGt75sM58tOwjp2OIVIsa8VTk4PotBDdu2zW9egN2MIRdWk6D718h8esXSfz6ReJGj8A3c7aDSf+ikvLK+23jYmFjFqxc53SiQ5LVtxv4/ATenxVuC63JxGrdDHtpBsFvF+0aXOFzIOFBiIvFfupGzJfz4OPZe/Zd+3/Yvy94RQ6S7a5LML4JsTmVR/otXwFx27/D27gPIXddYnIXA1Bn88fheYy/mGBcEzAWdTM/3Gfx6q+firt0C+6SyvvA6myaEe6z/MUE45sCUG/j+xHdNpHqtCWwhRAh6pv6AHRyd+KLii9o42oDQBtXG9YE1rAjtINWrlYOJj00fLr6U4YfPpwfb/iRH8f8yNwb55LSIIWC8gKyi7PDT0neUrCF1dmr6dK0i8OJ921wh8F4A15emftKuG3FthVsLdjqYCqRqlEjztjaZRWUPTwFu6gU43JhtW6Gu0dH7LTWu43znDSg8jLl62vp0fn+3WD6N5iRf4dWh0FXPezECcYYYibcgv+J1/BOnQExMZjmybhvuwjPs7cTePJ1Ak+8Bo0SMXXicF95ttOR909CPewJN2OuHY/doP7ufSf22/s8Igcpt+8EGv58D9aShwEo7HIjgXqtyev9OA1/uhOw8Cb3w/ZUfi+WpP6NxnOvpm7mh1QcNpiQq86fr8AVR17vcST/cOmvD4/qixUoAaCo01U0WnALiaufo7zZ8VW5mVIDeG0vF2dfHJ4+q+5ZDK833MFEf83/7rH9nxvq34DLVD7UL82TRnYomxGeEQC4jItEk0hjd2MsUyPORUS1GStncPWAq3drG9ZpGB+v/Jinz3qaWz++FW/Ai8fyMP608STEJfzBkmoOYwzTLp3GndPvZOLXE4lzx9GqYSvGnzV+3zOL1DLGtqvvTs60tDR77tzoeQfbvHnz6NChg9MxIiYjI4MuXWr+0cf9lZ6eTo8ePZyOETFLliyhY8eO+x5YS6xevZrU1Og5uLN+/Xq6devmdIyI2b59O8XFxXTqdGD39ZlAKba7LgAJ6f/EVZ5Dfq/7qyDhgUlPTycYDNKiRXS87mrdunXEx8eTkpLidJSIKCgooLy8PGp+hrKysti5c+cB//zUVBs2bKCiooI2bdo4HSUisrOzqaioIC0tzekoEZOens6AAQOcjhExCQkJP9m23XvfI0V2qRFnbEVEJDrEZ31Nwup/gh0gWKcFuX2fcjqSiIiIHAJU2IqISMSUtTydspZ6VZmIiIhUL92wISIiIiIiIrWaClsRERERERGp1VTYioiIiIiISK2mwlZERERERERqNRW2IiIiIiIiUqupsBUREREREZFaTYWtiIiIiIiI1GoqbEVERERERKRWU2ErIiIiIiIitZoKWxEREREREanVVNiKiIiIiIhIrabCVkRERERERGo1FbYiIiIiIiJSq6mwFRERERERkVpNha2IiIiIiIjUam6nA4jIX2MNuAz7pP7Y94+ubAgEMWeMhS7tsJ+8CT75ATPpXUhOAq8f+6xj4fyTHM0sInKoGrFzBK1crQgSJMWVwuV1L+fhoocBKAgVYBmLBJMAwOMNHsdjPE7GlVqu2Z3NyBqfRWZeJn3G96FDkw7hvusGX8eoPqMcTCcSWSpsRWo5Oz4WNmwFrw9iY2Dhysoi9reG9MW+5UIoLMGcfzf2cb2haUNnAouIHMJiiGFi0kQAJhZP5AffD+Hpt0vfJs7EcVads5yMKFGqbeO2/Hjrj07HEKkyuhRZJBoc1R1+XAaA+Wo+9gn99j4usR6kNIHcgmoMJyIie9PZ3Zntwe1OxxARiQoqbEWigH1CX8ys+eD1w7ot0LXd3gduzwWfH1JbVm9AERHZTdAO8rP/Z1q7WjsdRQ4RG3ZuYOCTA8P/5qyf43QkkYjSpcgi0aB9S9i+E76aV3n29vf+uwCzZA1kZmHffAHE6p4tEREn+PAxNn8sAF08XRgSN8ThRHKo0KXIEu1U2IpECXtQL8zz72JPugMKS3bv/N89tqs3YG6agH10L2iU6ExQEZFD2G/vsRURkcjRpcgi0eK0QdiXnQGpKX88pnNbGHoU5t2vqi+XiIiIiEgVU2ErEi2aNIRzT9znMPvCYfDJD1BaXg2hREREpCb4/T22k2dPdjqSSETpUmSRWs7+715+MR3RCfuITpWfTx2EfeqgXX3JSdgzn66ecCIispu3Gr/1h33n1z2/GpPIoSBrfBYArRu2JufxHIfTiFQtnbEVERERERGRWk2FrYiIiIiIiNRq+yxsjTEvG2NyjDErftP2hDEm3RizzBjzH2NMg6qNKSIiIiIiIrJ3+3PGdiow9HdtXwHdbNvuDqwB7opwLhEREREREZH9ss/C1rbt2UDe79q+tG078OvkPOBP3i8iIiIiIiIiUnUi8VTky4B39megbdsUFhZGYJU1g9frZdOmTU7HiJiKigqysrKcjhExXq+XnTt3Oh0jYrxeL9u3b3c6RsRUVFSwefNmp2NETEVFBVu3bnU6RsT88ssvJCcnR80+btGiRXTu3JnVq1c7HSUiFi9eTP/+/Vm7dq3TUSIiPz+fZs2akZeXt+/BtUBmZiaxsbFRs8/OyMigWbNmUbPP3rZtG8nJyeTn5zsdJWKCwSCBQGDfA0Wi2F8qbI0xfwcCwJt/MmY0MBogOTmZ9evX/5VV1igulyuqdiIej4fS0lKnY0SMy+UiJyd6Hm3vdrspL4+ed8/GxsZijHE6RsTExMRQVlbmdIyISU5OJhQKRc0+oUuXLliWRf369Z2OEhH9+vXDsiw8Ho/TUSKiSZMm+P3+qDm4GhcXRyAQiJqD+c2bNycUChEMBp2OEhHJyckEAoGoOvgdDAZZsmSJ0zFEHHXQha0x5hLgNGCIbdv2H42zbXsKMAUgLS3N7tmz58GussaZP38+7dq1czpGxGRkZNCxY0enY0TMqlWr6Natm9MxImbx4sV06tTJ6RgRs2zZsqj7+Wnfvr3TMSJm06ZNeL3eqPkarVixArfbTdOmTZ2OEhHr1q0jLi6OlJTouBOouLiYsrIyunfv7nSUiMjKyiInJydq9tmZmZmUlpaSmprqdJSIKC4uJjc3lx49ejgdJWKWLl3KoEGD9j1QJIodVGFrjBkK3A4Mtm07ek5RiIiIiIiISK2zP6/7eQuYC6QZY7YYYy4HngfqA18ZY5YYY/5VxTlFRERERERE9mqfZ2xt2x65l+aXqiCLiIiIiIiIyAHbn/fYioiIiIiIiNRYKmxFRERERESkVlNhKyIiIiIiIrWaClsRERERERGp1VTYioiIiIiISK12UO+xlUOP/e0iQrc9g/XeY5g2zQm9+xX29G93DQgGYf1WrHfHY9q2cCrmfrN3FuB7fCqhFeugfh1MowbE3H4xFWfchPvKs4kZc37luPwiyodchfv/TiDm7ssdTr13/j4XQvuW4WnrpKNwXXpGxJZvZ2zE3lGANahnxJZ5qGn7nw74EtPAtsG42NnjPryNjsRduoWUWSfhr98uPHbrsR+CFeNgWpGaJS+YxwsFL7DGt4Z6Vj0auBpwZOyRfFX2VXhM0A6SGcjkhaYv0MrTysG0+yenJIcHvniApduWkhCXQHLdZO47+T5OfuFkUhul4gv66N68O0+c/gQel8fpuIec7OJs7pl5D4u3LiYxLpHkesk8fNrDpDZOrZL1tbm/DRvv31gly467Lo5uLbrhD/pxW24u7HchNx5/I5Zl8d2a75g4ayLTr50OwL0z7uXnTT/zwVUfEOuJrZI8IlVJha3sF/uLedCzI/YXczFXjcA690Q498Rwf2jSu9Cxde0oam0b701P4DpjMLGP3wRAKGMjdm4hpkUTgt//DL8WtoEv52FSU5yMu2+xMXjeGldli7czMrFXbwAVtgfNdsWx9fiZAMRnz6bhyifJOuYtAAJ1W4X7RGR3tm3zUO5DnFDnBO5qdBcA633rKbPLOKv+WeFxUwun0i7YrlYUtbZtM/qd0YzoMYJJIyYBsGr7KnaU7KB1Ums+v+pzgqEgF7xxATNXzWT44cMdTnxosW2bS964hPOOOI8pI6cAsCJrBTuKd1RZYVuV4mPiWXT3IgByinO46OWLKKoo4r7T7ttt3KOfPcrcdXOZcd0MFbVSa6mwlX2yyyqwl67BmnwXoZsnwFUjdu//OR171nys1x92KOGBCS1YCW43nnNPCrdZaW0Ibc2BuFisti0IrlyHq2sqwS/m4D7pKOwd+Q4mPjihH5YQnPAGxMdi9eiIvTUH18RbCJx9K+5X7sckJWCHQgSG34p76v0En56GifVgr9qAXVqOa+wFmKO6E/zXB+D1EVqSgevSM7BOOsrpTavVrEAJoZgEp2OI1ApLvUtx4+bUeqeG29rFtNttzHLvcmaXzea5ps9Vd7yDMmfjHNwuN3/r/bdwW5fDurC5YHN42mW56NG8B9uLtjsR8ZD2w/of8Lg8XNLvknBbt2bdKPGWMOLfIyioKCAQDHDniXcyrMswNuVvYuTUkfRr3Y+FmxZyWMJhvPa314j3xPP6wtd5fcHr+II+2jZqy6RzJlEnpg6ZeZlc/c7VlPnKGNp5aHg9Jd4SLn794j3WESlN6jfhnxf8kwGPDeDeU+8Nt0+cNZEvVn7BJ9d/QnxMfMTWJ1LdVNjKPtnf/YQ56nBM62aQWA979QZM57aVfcWlhB6YgvXg1Zh6tWNnGFq7CatL2z/sdw0dSPCzHzGNEsGyME0a1uzC1uvDP/Ku8KTr0jMwg48k+OhLuF+8B9OiCYG7nwfAWBbWKQMJffYjrlHDsOevwHRshUmqLLTsbTtxvfYgbMkhcNXDuKdPwHX1COzVG3DdcYkTWxcVTLCCFl+fhgl6cVfksG3QG+E+d+kmWnx9GgAVDY8kt+cDTsUUqXEy/Zm0j2n/h/0loRIm5E3g1oa3UteqW43JDl5GTgaHNzv8T8dUBCpYsnUJ9w+9v3pCSVh6djo9WvTYoz3OHcfUC6dSP64+uaW5DJs8LFyUrs9dz7/O+xcTzp7AFdOuYOaKmZzT6xxO7Xoqf+tTeQBj3JfjmLZoGlcMuIJ/zPwHl/SrPCv80tyX9rkOY0zEtq9d43YEQ0FyinMAmLNuDmuy1zDvznnUi6sXsfWIOEGFreyT/eU8rPMrz26ak/pXXo78v8J23CuYUwZienR0MmJEuQb1xD/pHUyjBriHDnA6zr7t5VJkO2MjpkUTTIsmAFgnH0Xow68rP59xLIGbJ+AaNYzQjO+wTj8mPJ91Yj+MZUGrwyrn3bit+rYjiv32UuTY3J9p8tNtbBnyGaBLkUX+iufyn+P4OsfTNbar01EiIjM/k6EvDGVzwWaO73A8nZt2djqS/MrG5pEvH2HuxrlYxmJ70XZySiqLw1ZJrTi8eeXBiu4turM5v/Lse/r2dMZ9NY6iiiJKfaUc2+FYABZkLuDlC14G4Nxe5/LQFw/96Tqa1m9aZduVmpxKQXkBs9JncXavs6tsPSLVQU9Flj9lF5bAwlWEHn6J4BljsV//FHvWAmzbJjTze+ztuZjLz9r3gmoQK7UloVUb/rDfeNxYXdrif+1jXCf2r8Zk1cMc1gjTKIHQgpXYK9dhBv7m3tnfHxWO4FFiqeRtdASWLw/Ll+t0FJEar5WnFWt9a/fa91XpV+QEcxiVMKqaU/01HZM7sjxr+V77/neP7fdjvmd51nK+zPiymtNJWpM0lm5dukf7B0s+ILc0l1nXzeKbMd+QXC8Zb8ALQKxr1z2pLstFIBQA4IYPbmDcGeP47sbvuPX4W8PjAQx7/n79s3VEyvqd63FZLprUrzzw3TShKR9d+xG3vncr32Z8G9F1iVQ3Fbbyp+z/LsCcMhDXx0/jmjER1yfPQPPGsDgD+5/vYT14DcbtcjrmAbH6dQOfn8D7s8JtoTWZ2Nt3FRqei04n5qYLMIm19LKc1s2xt+Zgb9sBQOjLebt1W2cdR/Cef2Kd0A/j2rUbCM2ajx0KYW/Oxt6aA62bQd147NKKao0fzTzF6zB2iFBMktNRRGq8nrE98dt+Pi35NNy2wbeBZd5lvFr4Krc3vB2XqV2/gwa2HYgv4OPNn94Mt63OXs22wl1XyDSs05A7h9zJP3/4pxMRD2lHpx6NL+DjtQWvhdtWZq1kc8FmGtdtjMfl4Yd1P+x2T/QfKfGW0LR+U/xBP+8vfT/c3rd1X/6z7D8AvL9kV3tRRdEBr+NA7CjewfXTrueawdfsdnlzx6YdeXf0u1wy9RKWbF4S0XWKVCddiix/yv5yHtZFp+3WZo7vg/3xbKjwErr9md36rNsuwvRKq86IB8wYQ8zTt+J/fCr+lz+CWA+meTIxt18SHmO1b4n1m1fo1Gi/u8fWOqoHrhvOx3XnpQSuf6zy4VFd22H/ZhZzzBHwwAtYpw/ebVHmsEYEL7q38uFRd12GiY2B3l1g6sf4R96lh0cdpP/dYwuAbZNz5BNQy/4YF3GCMYZ7Gt/DCwUv8F7xe8SYGJq6m+KzfXhtLw/n7v7QwmsaXEO32G4Opd0/xhimnDeFB754gMlzJhPrjqVlYkvuO3n3p9SenHYyE7+byPzM+fRr3c+htIceYwxTL5zKP2b+g+dmP0ecO46WSS25bcht3P3x3Qx+ZjA9WvSgQ3KHfS7rjhPuYNjkYTSq24gjUo6gxFcCwMOnPczV71zN87Of3+3hUSN6juDC1y48oHXsS7mvnN6P9g6/7ueCvhdw05Cb9hjXu01vXvzbi4z41wi+vOlLUpNr3xOgRYxt2/seFSFpaWn2nDlzqm19VW3+/Pl06PDXdzo1RUZGBt261ew/CA7EqlWr6NWrl9MxImbx4sUH9PWxyyowdeIqLxsfPxVaHYbrgsqnK4ZWrSf01Bu4X9r1VMTAff/COroX1gnV8wfUsmXLSEur2QdBDkRGRgZdunRglo97AAAgAElEQVRxOkbEbNq0Ca/XS7t27fY9uBZYsWIFsbGxNG1adfeqVad169ZRv359UlJq+OvI9lNxcTFlZWV0797d6SgRkZWVRU5ODp06dXI6SkRkZmZSWlpKamp0FDvFxcXk5ubSo8eeD4mqrZYuXcrgwYP3PbCWiImJ+cm27d5O55DaRWdsRaJU6D/fEJo5G/wBTFobXGcfD0DwlRmE3p+F6+HrHE4oIiIiIhIZKmxFopTrgmHhM7S7tV96Bq5Lz9ij3f3A1dURS0REREQk4vTwKBEREREREanVVNiKiIiIiIhIrabCVkREREQkSo37bBw9HurBEQ8fQe9He7Ngw4KILTtprF5dJzWH7rEVEREREYlC89bP49MVn7LgzgXEemLZWbITX8DndCyRKqEztiIiIiIiUSirMItGdRsR64kFoHG9xmwr2MY5L5wDwIylM0i4MQFfwEeFv4K0eypfw7duxzpOe/40+o3rx3FPHUf69nQANuzcwNFPHE2vh3tx74x7d1vXU189xVHjj+KIh4/ggZkPALAxdyOHP3A4V795NT0e6sEpz55Cua+8ujZfDjEqbEVEREREotCJnU9kS8EWutzfhTFvjWH2mtn0bNmTZVuWAfDj2h/p2qwrizIXsWDDAvq07QPAtdOuZeK5E5l/13weO/sxbnj7BgBufu9mRh89msX/WEyzxGbh9Xy16ivW5qxlzh1zWHT3IhZvWsz3v3wPwNoda7n6mKtZes9SEusk8uHiD6v5/4IcKnQpsoiIiIhIFKoXV4/5d87nh7U/8O2ab7ng5Qt45MxHaJfcjtVZq1mYuZAbh9zI9798T9AOMih1ECUVJcxdP5eR/x4ZXo7X7wVg7vq5vDv6XQAu6HsBd0+/G4BZq2cxa/Us+oyrLIxLvaWszVlLy4YtaduoLT1b9gTgiFZHkJmXWZ3/C+QQosJWRERERCRKuSwXgzsOZnDHwXRr3o3X573OoPaD+GLVF3hcHoZ0GsIVr11B0A4ybvg4QnaIBvENWHT3or0uz2D2aLOxuf3k27ny6Ct3a9+Yu5EYd8yuLMZFeVCXIkvV0KXIIiIiIiJRKCM7g19yfglPL92ylNaNWjOo/SCe+/o5+rXtR3L9ZHJLc1mTvYZuzbuREJ9Am0ZteP/n9wGwbZulW5YCcFS7o3hn0TsAvLXwrfByT+x8IlPnTqWkogSArQVbySnOqa7NFAF0xlZEREREJCqVeku56Z2bKCgvwG25SU1OZfIFk6kbU5fs4myObn80AIe3OJztRdsxpvJs7KuXvsqYt8cw7rNx+IN+zu19Lj1SejDhnAlc9MpFPPnVk5ze/fTwek7sciLp29M5+snK5dWLrcfUS6bislzVv9FyyFJhKyIiIiIShY5odQSzb5u9176SZ0vCnydfMHm3vraN2zLz+pl7zNO2cVu+v+378PSDZzwY/jzm+DGMOX7MHvMsuWdJ+PPNJ968/+FFDpAuRRYREREREZFaTYWtiIiIiIiI1GoqbEVERERERKRWU2ErIiIiIiIitZoeHiUiIiIiEoWSxiaRPzGfUCjELe/fwjcZ32CMIc4dx7QrptG2cVunI4pEjApbEREREZEo9u5P77KtcBs///1nLMtiS/4W6sbWdTqWSESpsBURERERiWLbi7bTLKEZllV5F2JKUorDiUQiT/fYioiIiIhEsf874v/4ZPkn9H60N7d/cDuLNy92OpJIxKmwFRERERGJYilJKay4bwUPn/kwlrEY+sxQvk7/2ulYIhGlS5FFRERERKJcrCeWoV2HMrTrUJrUb8KMpTM4vtPxTscSiRidsRURERERiWKLNy1mW8E2AEKhEMu3LqdVw1YOpxKJLJ2xFRERERGJYjnFOVz95tV4A14A+rTpw7XHXutwKpHIUmErIiIiIhKF8ifmA3By15M5uevJDqcRqVq6FFlERERERERqNRW2IiIiIiIiUqvts7A1xrxsjMkxxqz4Tds5xpiVxpiQMaZ31UYUERERERER+WP7c8Z2KjD0d20rgLOB2ZEOJCIiIiIif13MtTHc/sHt4ekJX03gwZkPOphIpOrss7C1bXs2kPe7ttW2bWdUWSoREREREflLYt2xTF8ynZ0lOw9q/kAwEOFEIlWnWp+KbNs2JSUl1bnKKuXz+cjKynI6RsR4vV62b9/udIyI8fl87Nx5cDvymsjv90fV9ni9XrZt2+Z0jIipqKhgy5YtTseImFWrVtGyZUs2bdrkdJSIWLx4MT179mTNmjVOR4mIxYsXM2DAANatW+d0lIgoKCjgsMMOIzc31+koEbF582YsyyInJ8fpKBGxbt06GjVqxNatW52OEhF5eXnEx8dHzfcbQCAQwOv17tHuttxc3P9iJnw5gftOvY9AMEAwGMTr9ZKZl8m1b11Lbmkujes1ZvLIybRMaslV064izh3Hsq3L6Ne2H9+s+YYvxnxBYlwirf/RmvFnjWdUn1GMfnM05/c+n9TkVK5840rKfGUAPDniSfq37c/oN0dzevfTOf3w0wG4/PXLGd5zOKcdflq1/r+RQ0eVF7bGmNHAaIDk5OSo+SUMYFkWFRUVTseIGI/HQ1FRkdMxIsayLLKzs52OETHGmKj6JezxePb6S7i28ng8lJeXOx0jYlq2bIlt2wQC0XG0/sgjj8QYQ3x8vNNRImLAgAFYlkVMTIzTUSIiOTkZv98fNYWTy+UiEAiQl5e378G1QOPGjcPFUDSIjY3F7/dH1cFIv9/PwoUL92gPhoL0rtObK769gmMaHMPmzZsp95ezcOFC7v72bga3GszJfU/ms3WfceXLV/LQMQ+RuzOXQm8h444Zh8tysWnrJl7/4nWa1m1Kk7gmfDT/IzrQgdnps7mw3YVsytvEfX3vI8YVw5aiLVz3xnX8a+i/6JvYl0lfTuKwisMo8ZUwO2M2V3a8cq85RSKhygtb27anAFMA0tLS7N69o+dZU3PmzCEtLc3pGBGzcuVKOnXq5HSMiFm5ciXdunVzOkbELF68mK5duzodI2KWLFlChw4dnI4RMStXrqR9+/ZOx4iYzMxM/H4/bdu2dTpKRKSnp+PxeGjevLnTUSJi/fr1xMTEkJKS4nSUiCgsLKS8vDxq9tk5OTlkZ2fTpUsXp6NExJYtWygsLIyafXZ+fj55eXlR8/0GsHz5cvr3779Hu+t9F0OOHsKlRZeysGwhrVu1psRbQv/+/fnlo1/44rwv8Lg8HNnnSNr9ox39+/cneW0yIzqMYGC/gQAMdw1nxbYVxNeN56aTb+LlOS/TslNLDvvhMI4bdByF5YXc/N7NLNu6DMuy2Fy8mf79+9Of/kx5dAqpXVOZvnQ65/U7j4EDBlb3/xo5hOh1PyIiIiIiUez6Y6/n1XmvUuor3a/xdWPqhj8Paj+IH9f9yJx1czimwzE0rteY6UumMzC1skh97pvnaJLQhPl3zOfHW3/EF/SF5x3VZxRvL3qb1+e/zkX9LorsRon8zv687uctYC6QZozZYoy53Bgz3BizBTgK+MQY80VVBxURERERkQPXsG5DRvQawavzXg239Wvbj/d+eg+Atxe9zYDUAXudNyUphdzSXNbuWEvbxm0Z0G4AT3/9dLiwLaoo4rCEw7Asi2kLpxEMBcPzXtjvQp7/9nkAOjfrXFWbJwLs31ORR9q23cy2bY9t2ym2bb9k2/Z/fv0ca9t2U9u2T66OsCIiIiIicuBuOO4Gckt2Patjwv9N4PX5r9N3fF/eWvgWT5795B/O26d1Hzo0qbwUfWDqQLYVbgsXwqMHjebNBW/Sb3w/1mSv2e1sb9OEpqQ1TeNv/f5WRVslsku1PhVZRERERESqx44nd4Q/N01oSu5TuwrbVg1b8dmYz/aYZ8qFU/Zoe+mil8Kf+7frT+kzuy5pbt+kPQvuXBCefvjMh8Ofy3xlrNuxjnOPPPfgN0JkP+keWxERERERiaivM76m1yO9uOaYa0iMT3Q6jhwCdMZWREREREQi6vi048l4IMPpGHII0RlbERERERERqdVU2IqIiIiIiEitViMK2+CWbPKGXrtbW+kzb1L2wnvknXb9bv929h5J0ZjxDiXdP4GjL3c6QkT5+1yIf+Rd+M+/C/+ovxNaugYAe9sO/OfesdvY4AsfEHztEydiHpDQznwqbptI2bDrKT/3diqueZTQxm1/OL7s5Gux84uqMeGhLTT4yvBn+8elhEbchp21s2rWddOT2MWllf/enxXx5Vu+fFK+Pp2Ur0+n9Wf9af35wPB024+77Ta2fuYHNF56f8QzRFrHj9NovHLXfjhp3Us0yngu4utp/2mviC9zb64JXrPb9A+hH3gj9AYA00PT+Tz0OQB+28+TwSeZHppeLbkkep2bowfp1FQt7m3BCZNOCP/bnL+ZORvm8LfX9VRfkZquZt9ja1k0nPl8eDKYk0fB8LHUuf58B0MdgmJj8Lw1DoDQnGWEnn8H68V7HA518GzbxnvjE7jPPJa4J8YCEMzYiJ1bCG2aO5xOfstesBL7qdcxz96Gada4StZhPX1r5bq27cB+/7+Y/zshossPxSSx5fiPAUha/Qwhd10KO1wBQNuPu0d0XdUlZMVQP+tL8tqPJhTb0Ok41SJgB5gUmkRr05qzrLOcjiMiVSTOE8es63Y/yLm5YLNDaUTkQNTswvY3bNum+LYJxF85AndaG6fjHLDQ7J8JvfQR+AOYBvWwHroW0ygRu7CE0IMvYm/NgbgYXH+/HNOhFfZPqwk+9fqvcxtcL/4DUzfe0W0AoLQc6tfd97gaLLRgBbjdeM49KdzmSmtDcOFKKq4bR9ykuwDwPvJvrK6peM46DgD/Kx8R+H4xJi6G2MduxGrVjMC3i/BP+QD8AUisT9z4GzCNGziyXdHG/jkd+9GXMU/fgklpCkDogSmYQT0xQ/pWTg++Euu7Fwk9/iqm/+GYY44gdNszkFAH654rsWd8h70lB+vacwjd+jTk5IHXjzn/JMzwyq9r6MybMa8+gD3pXdiaQ+iCf0C/rlg3jHRs22s846ag9XkkrX+V3M5jd+tyefNosuw+POWVV0DkdLubioZH0ijjOTylm/CUbcLlyyc/9QoKW5+LCZTSYuG1WL4ijB1gZ6cbKT0ssgcX/qogQSaHJtPENOEc6xyn40iUKA+V80jhI5SESggS5IK6F9A/rj/ZwWzuz7+f9p72rPOvo5W7FWMTxxJrYnm75G0WeBfgs310iunEdfWvwxjD3Xl309HTkeW+5ZTapYxJGEPXmK5Ob6KISLWqNYVt+cvTMS4X8Ref7nSUg2J6puGaej/GGELTvyH02kxcYy8g9MIHmLTWuJ4aS2jhSoL3/Qv3tEcJvfEprtsvwfTsiF1WATEe58J7ffhH3gVeP+wswP3C33f1bcmu7Puf3EKsC0+t/owHILR2M1aXdgc+Y7061PnPBPwzvsP32FTiJt2Fq1cnXG8+ijEG/wf/xffKR8TednHkQx9qfAHs25/BTL4Lsx9n0U3PNOwlGZhjjoAd+ZBbAIC9ZA3mxH6VY+65ApNYD7vCh33JfXBcb0yD+ruWcd252Ou2YL358F7XURVMsIKUr3ft0yx/AWWHDam29f8VhW0uoPV3Z5Df/ord2pNXPkJ+u4upaNQbd9k2Wsy/nMzjKt+TGFucwaZB72ICZbSePZySpoMJxjRiW+9JhDz1sLx5tPrhPEqbDgFjqm1bfPi4L3hfeLqUUnqanuHpz+3P6WK6MMoaVW2ZJPrFmBjuTrybOlYdikJF3Jp3K/1iK/dXW4NbGZMwhi6JXXim8Bk+LfuU4XWHc2qdUzm/XuVVaxMKJ7DQt5C+sZUH+oIEearRUyzyLuLt0rd5KOYhx7atNqvwV3DCpMqDay2TWvLKqFccTiQi+6tmFLZ/9AfMr+2B1espf+UjkqZPxFTjHzsRlZNH6K7nsHcWVJ61bZEMVP7hbT1+IwBWn66ECkuwS8owPToQnPgm1rABmON6Y5o2ci77by9FXvYLgXsn4373scq+lKbhPqi8xzZauYcN+vW/A/E9PhUAOzsX720TsXfkQyCA1aKJgwmjiNsFh7fHnjEbc8uF+x7fsyO8/QX2+q3QtjkUl1b+rC1fC7/Ob7/zJfa3P1WOz86Dzdnwm8LWCbYrLnyZMlTeYxtbsNzBRPsv5KlHUcqZNNjwGrYrLtxeZ8ccYorXhqddgRJMoBSAkqZDsF1x2K44yhv3Iy5/OaVNB9M4fQLxuQuxjYW7IhuXdyfBuORq25YYYnjA9UB4+ofQD2xkY3i6Ax1Ya69lu72dw8xh1ZZLopuNzWslr7HSvxILi7xgHgWhyoNyja3GdInpAsCx8ccys2wmwxnOct9yPiz9EC9eikPFtHK3Che2R8UeBUCqO5XsYLYzGxUF9nYpsojUDjXi4VFWg/rYRSW7tdkFxVhJCdgVXorGPkm9h67FapzkUMK/Lvj4q5hzT8T9znisuy/D9vr/dLx1yRm47rkCKnwEL38Q+08ebFSdrO4doKAYavGDlKzUloRWrd+zw2VByN417fvd1+i3x1R+PcDiHfcynpFDqfOfCcTee9U+v66ynyyDGXc9rFyH/cqMXe0uV/hrZIdClZeAA6ZJQygug7nLML3SMD3TYNZ8iI/F1I3H/mk1LFyJeflerGmPQFrrPb++csDy211M4qYPMIHycJuxQ2we9C6bBn/EpsEfsf7E77Hdv96+8PsDkwYStn6My5dH5jEfsmnwRwRjG2NC3mrcin3raDoy0hrJxNBECuwCp+NIlPiu4juKQkVMbDiRZxo9QwOrAT58ABh2/1kxGHy2j8nFk7mjwR081+g5Too/CZ/tC4/xmMoru1zGRcgOVd+GiIjUEDWisDV147GSk/DNWQpAqKAY3+yf8PTuSsm4l/D060bscX0dTvkXlZRX/vEN2J98H242vdKwP/8RgNCiVZBYH1OvDvaWbEz7lliXnI7p0q7GFLb2hm0QDEGis2e6/gqrXzfw+/G/91W4LZSRCTaE1m/B9vmxi0oJzt/9zFng8zkABD+fg6tHx8rGkrLw1zXw0bfVkv9QYeJiMRNvwf58LvZH31W2NWuMnb6xcsDsxRAI7pqhWyr2219Ar07QMw37jc+gZ1plX0kZ1K+LiYut/FlasW7PFdaJg7KKqt2oKBOKaUBx86Ekbno/3FbaZBANNrweno4tXB3+XHf7fzFBL5Yvn/idC6hocDiWv5hATCOwPMTvnIenfGu1bsP+6m16M9QMZUJoAmV2mdNxJAqU2qUkWom4jZtlvmXkhHLCfTtCO0j3pQMwu3w2nT2dw0VsgpVAeaicORVzHMktIlJT1YxLkYH6T95CyX3/pOTRFwGoc8MoiIuh4o1PcKWmkHfa9eGx7g6tSZh4m1NR963CR+CUMeFJa9QwrNFnE7zz2co/rvt0ga07KvtGn03owRcJnH9X5cOjHrgKgNC0z7EXra48c9WuBWZAD0c2Bdh1jy2ADa4Hrsa4LOw/n6vGMsYQ+/Rt+B6biv/ljyDWg9U8mZg7LsV98lGUD78Z06IJVqe2u89YVErZ2bdgYjzE/nr5uOeac/HeMgGTUBdXv26wNWcva5SDZRLrwbO3Yo9+BJLqw1nHwm1PExr1dziqO8TH7hrbMw17/gpMy6bYzRpBUQmm168HII7qDh9+Q+jcO6BVM+iWuue6GtTH7t6B0Pl3wYDuenjUfspPvYwGG94MT+d0/TtNVzxI629PBztIeaPe5HR/EABfQhopcy/C5csnr+O1BOOaUtTidFosvIbW355ORYNueOsdxP3v1eQ46zgKQ4U8G3qWW6xbwmfIRA5E0A7iwcOxccfyUMFDjMkdQ3t3e1JcKeExLVwt+KT8E54tepaW7pacUucUYk0sJ8efzJjcMTSwGtDB08HBrRARqXmMbVdfeZKWlmYvXLiw2tZX1ebMmUPnzp2djhExK1eupFu3bvseWEusXLmSXr2q5z2Y1WHx4sX06OHgAY4IW7JkSdT9/ETT9mRmZuL3+2nbtu2+B++HRhnPEXLXIT/Vmfd8p6en4/F4aN48Ol7ptX79euLj40lJSdn34FqgsLCQ8vLyqPkdlJOTQ3Z2Nl26dNmjb4N/A88XPc9TjZ7a67zZwWweyn+I5xs/v9d+J2zZsoXCwkI6dIiOYjo/P5+8vLyo+X4DWL58OYMGDXI6RsTUqVPnJ9u2ezudQ2qXGnPGVkRERCSafVb2GTPLZnJF/Sv2PVhERA6IClsREalyuWlj9j1IJMoNqzOMYXWG/emYpq6mNepsrYhIbVEjHh4lIiIiIiIicrBU2IqIiIiIiEitpsJWREREREREajUVtiIiIiIiIlKrqbAVERERERGRWk2FrYiIiIiIiNRqNaawLZ30NnlDryHvlOvIO+16/EvS93ve3GMuJZRXWIXpREREREREpKaqEe+x9f+8Gt83C0n66FlMrIdQXiG2P+B0LBEREREREakFakRhG9qRh5WUgIn1AGA1TAQqz8QmTX8aq2Ei/mW/UDr+JRpMG08ov4iimx4nlJ2Lp1cnsO3wsgqveohQ1g5sn5/4i88gfmTli9B3HD6COhefgfebhZi4GBJfuAercVL1b6yIiIiIiIhEVI24FDlm0BEEs3aQN+RKiu+dhG/+8j8dX/bsNDy9u9Dw88nEnHQUoW07wn31H7uJpBnPkjT9acpf/ZhQftGvM1Xg7tWJhp88j6dPN8rf/qIqN0lERERERESqSY04Y2vqxpP00TP4F67EP28ZRTeMp95tl/zheN/CFST+8+8AxB7XF5NYL9xX/uoMvF/OBSCUtYPgxm1YSQkQ4ybm+L4AuLu1x//j4qrbIBEREREREak2NaKwBTAuFzH9uxPTvzvutDZUfPhfcLkg9Otlxj7fPpfhm7cM349LSHr/SUx8HAWj7sT2/jqf240x5td1WdiBYFVtioiIiIiIiFSjGnEpcmD9FgIbtu6aXrUeq0UTXClN8K9YC4D38x/D/TF9ulEx47vK9m8XYReWAGAXl2Il1sPExxFYtxn/4v1/srKIiIiIiIjUTjXijK1dWk7JA//CLi4FlwtX62bUf2QMgXWbKbnzGcomvo6n3+Hh8XVuGEXRTY+TN/QaPL06YzVPBiDmmN6UT/uMvJOuwtU2pfLBUiIiIiIiIhLVakRh6zm8A0nvP7VHe0zDRBr+98U92q2kBBq8+vBel9XglQf32p68/IPw59hhg4gdNugg04pIVQsNvhLruz1/9vdr3ikfYurEYS48JcKpRET+unNzzuXdJu8CsMi7iH8X/5sHkx5kVvksviz/kkQrkYAd4Ny65zI4frDDaQ89ze5pxlUDruL+YfcDMPmHyZT6Srn1+Fs5/9Xz2VmyMzx2Z+lOmic259OrPnUorYj8Vo0obEVEDoYdCGLcLqdjiIgcsKXepUwpnsIDDR6giasJAGfWOZPhdYezLbCNsXljGRg3ELfRn2rVKdYdy6erPmXMMWNoVLfRbn1vX/x2+HOZr4yTJp/EHUPuqO6IIvIHtLcUkRrJtm3s596GOcvAGMxlZ2BO7I/902rsf30ACXVh4zbMB09gvzwD+5PvoWECNG0EndpULmP6N9j/+Rb8AWjZFPPAVZi4WEIPTIG68bB6A+QWYsachxnS19HtFZFDxwrfCp4vfp77GtxHM3ezPfqbu5sTa2IpsUtoYBo4kPDQ5bJcXNj7QqbMmcJdJ971h+Pu+fQehnQcwuD2OqsuUlOosBWRmumbRbBmE+bNR6CgGPuS++B/981nbMS8NQ7TIhl79Qbsr+Zh3nwYAiHsi+4JF7Yc2xvrrOMACE1+Hz76Ds47qbJvZwHmxX/AxizsWyeqsBWRauG3/Txa8CiPJD1Cijtlr2PW+dfR3NWcBpaKWidc2u9Sjp90PNcdfd1e+z9Z+QlLty7lk6s+qeZkIvJnVNiKSI1kL1mDOak/xmVBo0TsIzrBqvWVZ1q7pmJaVD40jiUZcOyRmLjYyvmO7rVrIeu3Vha0JWVQVoHd/3DMr13m2CMxlgXtWmDnFVXvxonIIcuFi06eTswqn8WVnit36/uo7CNmlc9iW3Ab/2jwD4cSSv24+pzT8xz+PfffxHvid+vLKsri3k/vZdrF04h1xzqUUET2pka87kdE5IDExezXMPuBKZjbLsJ661HMlcPB59/V6fnNcT3bjnBAEZG9s4zFHQ3uYE1gDe+Wvrtb35l1zmRS40ncmXgnzxU9h8/2OZRSrjzqSt76+S3KfGXhNtu2ufGDG7n+mOtJa5LmYDoR2RsVtiJSI5leHbG/mo8dDGHnF8HiDOjSbs+BvTrBdz9jV/iwS8vhhyW7+soqoHED7EAA+/M51RdeRORPxJpY7m1wL9+Vf8eX5V/u0d8vrh/tPe35uvxrB9IJQFKdJM7odgbTfp4Wbpv842Ri3bFc2u9SB5OJyB/RpcgiUqPYgWDl2dRje8PytdgX/L3y4VFjzsM0boCdmbXbeNOpDZzQr3JcwwTo3HZX31UjsC+9H5ISoGu7ykJXRKQGqG/V5/6k+7kr7y4STeIe/efXPZ+nCp/ipPiTsIzOQzjh6oFX8/L8l8PTj816jGYJzThh0gnhtsT4RD647IO9zS4i1UyFrYjULOu3QkpTjDGYG0bCDSP/n737jq+iyt84/jlzS246hCJF6QJBihQRsGEFBezYsBfsvWBdy6qrq6til7W3FV17we7+EFGw0EEBQw2QQBLSc+v5/RENIGgCXDK54Xnva1/emTkz8xxyc3O/M2dmNlls+mdj+mdvOu/sIzFnH7nZpszxB2OOP3iz+c6tYzed3sZn5oqIbK3fn2EL0MLTgqdbPA3A3uy9Sbsuvi480fyJes0m8Ostv9a8bpHWgiV/W1Izvey2ZW5EEpE6ahCHANf2Om6zeZWvfkTVW18AsP6U6wnPXlTfsUSkntk3v8Te8jjmgs0/E0RERERE/kyDPWObfMoRbkcQkRDMKuEAACAASURBVHpmjjsIc9xBbscQERERkQTTIM7Ybkn5+Feo+PeGaxaC73xJ4chLKBx+EeFZv2BjMQoPOo9YQTEANhaj4MBziRUUE/xiGkXHXknRqEtZf9qNxNYVudUNERERERER2cFqLWyNMc8aY/KNMXM3mpdljPnMGLPot/823bExwVYGyfrgUdLuuIjSceMxjkPS0QdS9d5XAIS/mYk3uyNOs0x8A3rQ5M0HaPr+IySNPICKCbqoX0REREREpLGqyxnb54Hhf5h3PfCFtXZ34IvfpneopFEHAOAf2BNbVkGspIzA8YcSfLv6VvhVb3xG4PhDAYitKaD4zFsoPPwiKv/9JpGFuthfRERERESksaq1sLXWTgYK/zD7KOCF316/ABwd51ybM3+cNnjatMA0a0Jo6izCs3/Bf0B/AMpuf5Lk00aSNelx0u68BELhHR5PRERERERE3LGtN4/axVr7+8Mk1wC7/FlDY8xYYCxAixYtmD59+mZt2kejm81vkptLLOCnZPp0WpWUUPDcmxR4giT9vJzmXsMPC+YBkNKvE80uvZuy/Xrz648/AtBmzVqWrltDaPp0mk94F29JCQu3sN/tFQwGmTdvXty365ZQKMTcuXNrb5ggwuEwM2fOdDtG3IRCIWbNmuV2jLgJhUKN6vcnHA43qv5UVlYSCAT4+eef3Y4SF+Xl5aSkpLB06VK3o8RFVVUVjuOQk5PjdpS4CIfD+Hw+ZsyY4XaUuAiFQhhjmD17tttR4uL399v8+fPdjhIXoVAIj8fTaN5vUP079M0337gdQ8RVxlpbeyNjOgAfWGt7/ja93lrbZKPlRdbaWq+z7datm93Sh8jqDsNxdmlWM5167rHYsgpMSoC080dTcOK1eHt0IvTdHIhEyLzvKvx7dgfAhiPk7Tma5u+Ox9ulHQBVn06l5I6nMJlpJA3Zk/DshTSbeF+t/dxaX3/9NT169Ij7dt0yZ84cevfu7XaMuJkzZw59+/Z1O0bczJgxg169erkdI25mzpxJ165d3Y4RNwsWLKBz585ux4ibpUuX4vV6ad++vdtR4mLZsmUYY+jQoYPbUeJi+fLlxGIxOnbs6HaUuCgoKKCsrIw99tjD7ShxUVBQQF5eHj179nQ7Slzk5uZSUFDQaD6z8/PzKS4uJjs7u/bGCWLevHkMGjTI7Rhx06RJkx+ttQPcziGJZVvP2OYZY1pba1cbY1oD+dsTovXSj/9y+V8VpeEFOXizO9YUtQCBw4YQOGzI9kQSERERERGRBLGtj/t5Dzjjt9dnAO/GJ87WKXt8Iusv+DsZ4852Y/ciIiIiIiLSANR6xtYY8x9gKNDcGLMSuBW4B3jdGHMOsAw4YUeG/DNpF51I2kUnurFrERERERERaSBqLWyttSf/yaKD45xFREREREREZKtt61BkERERERERkQZBha2IiIiIiIgkNBW2IiIiIiIiktBU2IqIiIiIiEhCU2ErIiIiIiIiCa3WuyLvaLGiEgpOGVf9em0ROA5Os0wAIvNzCBx9EE3HVy+3kSj5e52Mb89uZD33d9cy1yY0YAymS7uaaWfYYDxnHUn4vL9j163H+H3g8+K55Vycbh3cC7oVIk+/TWzSN+BxwDh4rz2dyH0vbtLG5ubjGX0I3stPcSll3UW+mE7wivtIfvchnE5tieXmU3nUFTgd2tS08Z4+Ct+RB7iYsm6C/U+pfr9Fo5i2LfHeeREmPbV+9j3kTJKmPl8v+xLZUd4JvcM3kW9wcHCMwzn+c+jodOSN8BtMi0wjYAIA7O3Zm6P9R7ucVhqDwmgh/y7+NwvDC0l1UmnqNOXH4I882fJJdvXuWtNuQvEEmjpNGZ0+2sW0O5f2d7Sne8vuRGIRPI6H43ofx3mDz8MxDt8u/ZZzXjuH3ZrsVtP+5sNuZr9O+7mYuHb5pfnc+N6NfL/se5okN8Hv9XPZ0MtoktyEMc+PoV1WO2I2Rou0Fjx9ytO0SG/hdmSRbeJ6Yes0zaDFpCcAKH3wJUxKgLTzqz/A12QfRWThUmxVEBNIIvj1TzitmrkZt26S/Phe+8cWF3nvuhinRyei7/6P6EOv4jxxYz2H23qxWQuJTZ6B7z//wPh92KISCEfwT7xnQ5tFywlfei+eMUe4mLTuIpOm4PTrTmTSFPwXVz8L2ezWiuT/3u9ysm2Q5K/5WYRveZzoxE/xnnuMy6FEEsPC6EJ+iv7E3cl34zM+SmwJURvl9fDrFNti7k2+F7/xU2kr+TD8odtxpRGw1nJX4V0cnHIw47KqD9znhHMIFgeZXDmZU9KrDw7HbIwplVO4v3kC/l1KYAFvgE8u+ASAdeXruPTNSykLlnH1gVcDMLDdQJ4/5XkXE24day1jnh/Dyf1P5ukxTwOwvHA5k+ZPoklyEwZ3HMzEcyYCcPtHt/Pvqf/mxmEN/7upyJY0+KHISQfuRdUX0wGoeu8rko8c6m6gOHF6747NL3I7Rp3YdesxTdOrzzQDpmkGpmXWhuXBEJEbH8V7/VmY5k3cillntqKS2IyfSbr9QiIff+N2nLiqfl8VAhD+x7NE//dD9eur/kX4ticBiL7zFZFHq/+Iha/8F6FTbiR03DVE3/yiZjvBIWcSeXQioRPGETr9FmzBeqD6rHzo9L8RGn0dkccm1rS3FVWEzr+T0Mk3EBp9HdGvfqiX/opsr/V2PekmHZ+p/nzLMBmkmBS+Cn/FGf4z8Bs/AMkmmeP9x7sZVRqJ2aHZeIyHI1I3HAju5OvEBZkXMLlycs28uaG5tPS0pKW3pRsxBWie2px7Rt3D898/j7XW7TjbZPLiyfg8Ps4ecnbNvHZZ7Th/3/M3aWetpayqjCbJDf97nMifcf2MbW2SRw2lbPwrBA7em/DPS0g+YRih6XPdjvXXgiHCJ91QM+mcdSSeYYM3aRKbOhtnaP96DrZtnMG9iU54i9BRV2L27onnsME4A3rULI8+9Cpmz254hg5wMWXdRb/8Ac8+e+J0aIPJTCc671dMk3TsijVUHn9NTTv/Defg6Z/tYtKtY6MxYtPn4Tl6KABO3+7YGb/A0AHVB1HWVRensRm/1Lwfvbedj8lMw1aFCJ96E87BAzFN0qEyiOnVBf8lJxJ56BWib32J97xjifzzBTyjD8Ezan+iEz/dsHO/D9+/rsKkpWCLSgid8Tecof0xxtTvP4LIVurt6c3b4be5quIqenp6Mtg7mFSTSjOnGckm2e140ggtCy+ji6/LZvM7+Drg4JATzqGTrxOTKydzQErDvxymsWvftD2xWIx15esAmL58OsOeHFaz/KkTnqJDVgeX0tVuwZoF9Gnb50+Xf7vkW/Z9YF+KyotI8adwyxG31GM6kfhq8IWtL7sT0ZV5VL73FUkH7uV2nLr5i6HIkZseg3AEKqr+tE1DY1IC+F69GzvjZ2LfzyN8/cN4LzsZz5EHEJ0yk9i0ufhevdvtmHUWmTQF329Dpr2H70Nk0jf4Th6euEORgyFCJ16PzS/EdGyLGdQbAKdfd8KvTiL260pMp7ZQUo5dW4SdvQhz3RkARP/zMbEvvwfA5hVgl6+pLmx9Xpz9+wFgsjsR+24OUD0s3Xv/ldXbH7EvjH+1OoO1RB6diP1pARgH8guhoBgS4Ay+7NwCJsBdgbv4OfYz86PzeTj4MEf5jtqkzf/C/+OTyCeU2lJuD9xOMycBLomRhLR/8v5MrpxMe297vq36ljHpY9yOJH+QaEOR/+iat67h2yXf4vf4uWPkHZsMRX7oy4e49YNbefD4B11OKbJtGvxQZICkQwdRcte/ST7yQLejbDfvXRfje/8hnFH7E7n3Bbfj1JnxODgDeuC9cDTecWcR+2I6trCYyF1P4737YkzA73bEOrHFpUSnzyV425NUDLuI8HPvEf1kKiToECOg5hpb/0ePALbmTKppmQWlFcSmzsLp1x3TrzvRz76D5CRMajKxH+ZXH5R44Q78r9+L6dYBQuHqbXo9G862Og5Eoxv2t4WzsLFJ30BRCb5X7q6+3jcrc8O2RBo4xzj08PTgeP/xnOk/k58iP1EQK6DSVgIw1DeUfyT/gxRSiBFzOa0kuna+diwOL97isgOSD+Dryq+ZEZxBR19Hmnqa1nM6+aNlRctwHIfmqc3djrJNsltlMyt3Vs30/cfez3sXvFdzBnpjh+9xOFNzptZnPJG4SojCNuWEYaRfcSq+7h3djhIXxhg8F47GzlmEXZLrdpxaxZauIrZsdc20XbgUWjcncttTeE4ahpNAP5fIp9/hHbk/KZ8+Qconj5Py+ZOYti2xawrcjrbdTHIS3uvOIPrSh9hIdSFqenUh+uoknH7ZOH27E33xA5x+3QGwpRWYjFRMchKxJbnYOVv+orUxp09XYp9U/9GLfbTh+mRbVgFNMzA+L7Hv58Hqzf9gijREq2KrWB3b8Pm2LLaM1k5rhvqG8nzoeUI2BFTfyCdCxK2Y0oj08fchbMNMKp9UM29JeAlzg3Np7W1NhpPB8yXPc0CyhiG7raC8gBs+uIEz9zozYS+t2b/L/gTDQZ6Z+kzNvIpQxRbbfrfkOzo061BPyUTir8EPRQbwtG5B6lkJ9IiFP1xja4b0xnvZyZs0MQE/ntNGEH3xQ7y3jq3vhFunoorIvc9DaQV4HcxurfCMOYLwObdj1hQQ2qjAcQb1wntlwx06FZn0Db6zNx1m6D10EOGn397sGlvvMQfVDFlOFE73jjhd2xH7eCqekfvh9O1O7NvZmHatqofAF5dj+lYXts4+fYj+93NCx16Nad8G02vza77+yHvdGYRveJTo8++z8TXinsP3IXz5/YRGX4fp0QnTsc2fb0SkAamyVbwQeoEKW4GDQyunFecknUMKKbwRfoNxleMImAB+/Ozv3Z+mRmfQZPsYY7g562YmFE/gv2X/xW/8tPS0ZGxm9XeBA5IP4PmS5xkSGOJy0p1TVaSKYU8Oq3ncz7G9j2Xs4A3f0/54je1l+1/GiB4j3IhaJ8YYXjnrFW5870bGfzWe5mnNSfGncPuI24EN19haa8kIZPDICY+4nFhk25n6vMtbt27d7IwZM+ptfzva119/TY8ePWpvmCDmzJlD79693Y4RN3PmzKFv375ux4ibGTNm0KtXL7djxM3MmTPp2rWr2zHiZsGCBXTu3NntGHGzdOlSvF4v7du3dztKXCxbtgxjDB06dHA7SlwsX76cWCxGx46JM2LmrxQUFFBWVsYee+zhdpS4KCgoIC8vj549e7odJS5yc3MpKChoNJ/Z+fn5FBcXk52dODeIrM28efMYNGiQ2zHipkmTJj9aaxPjrqTSYCTEUGQRERERERGRP6PCVkRERERERBKaClsRERERERFJaCpsRUREREREJKGpsBUREREREZGEpsJWREREREREEpoKWxEREREREUloKmxFREREREQkoamwFRERERERkYSmwlZEREREREQSmgpbERERERERSWgqbEVERERERCShqbAVERERERGRhKbCVkRERERERBKaClsRERERERFJaCpsRUREREREJKF53Q4QKyqh4JRx1a/XFoHj4DTLBCCSk0vrX95zM540UrE1BYTueppYzkqIWTwH9MN/9WkYn8/taCIi0oiNWjWK9t72NdP7J+/PCekncP266ymMFuI3fgDaeNtwY9aNbsXcae12+26cN+g8/jbsbwA8OfVJKkIVXDX0Kh743wOk+FO4YMgFLqcUkS1xvbB1mmbQYtITAJQ++BImJUDa+aMBWJN9lJvRpJGy1hK88j68Jwwj8Mg4bDRK6PanCD/8H/xXn+52PBERacT8xs+jLR/d4rJrm17L7v7d6zmRbCzJk8THP3/MJftdQlZKlttxRGQruF7YitS32LS54PfjO+ZAAIzHg/+6M6kYfjGm7S5Ep87CVlZhl6/Bd8YoCEeIfDAZ/D4Cj9+AyUwn/N/Pifz3cwhHMO1akXT3pZjkJII3PQppKcTm/Ypdtx7/VafiPWywyz0WERGRuvA4Hk7pdwr//vbfjDt4nNtxRGQrqLCVnU7s1xU4PTptMs+kpeC0bg7RKLHFy0l+4z4IhqgYcSn+K08l+Y37CN77PJH3JuM7bQTeQ/bGd/whAIQe/g+Rt77EN+ZwAOzaIgIv/h27JJeqS+9VYSsiIjVCNsQl+ZfUTJ+QfgL7J+8PwH1F99UMRe6b1JdzMs9xJePO7oyBZ3DYE4dx4T4Xuh1FRLaCCluRP/AM7IlJTYbUZExaCp4D+gPgdG1HbOEyAGKLlhN69DVsSTlUVuEZsmfN+t6DBmIcB9N5N2xBsSt9EBGRhklDkRu+9KR0jutzHM9Oe5aAL+B2HBGpI90VWXY6Tqddic3P2WSeLasgtnodeDzg2+h4j+Ng/L/dUMoYiEQBCN7yGP4bzyHl7QfwXTAagqEN6/g3Wt/aHdUNERER2UHOGXQOE2dMpDJU6XYUEakjFbay03EG9YKqIOH3/g+g+uZR97+I96ihEPDXaRu2vAqneVNsOELkw693YFoRERGpb02TmzJyj5G8NuM1t6OISB012KHINhIFvx69IvFnjCFp/LWE7nya8FP/rX7cz3598V9+CpGPptRpG/5LTqRyzA2Yphk4vXaHch3RFRGR2v3xGtv+gf6clXEWsOk1thlOBnc3v9uVjFJt7OCxPD/9+U3mPTL5EZ757pma6e+v+r6eU4nIn2lQhW36lafVvI4sXIq3fWsX00hj5rRqTuDR6zeb7zv6QDj6wJrplE8e3+Iy34nD8J04bLP1k+66ZJPp1OkvxyuyiIg0Au+3eX+L8+9pfk89J5Et+eXGX2pet0hrwaKbFtVMXzX0Kq4aepUbsUSkDhpUYfu78pc/oOK5d8m4VQ/AFhERERERkb/WIAvb1FNHknrqSLdjiIiIiIiISALQzaNEREREREQkoW1XYWuMudwYM9cYM88Yc0W8QomIiIiIiIjU1TYXtsaYnsB5wECgDzDSGNMlXsFERERERERE6mJ7zthmA9OstRXW2gjwf8Cx8YklIiIiIiIiUjfGWrttKxqTDbwLDAYqgS+AH6y1l/6h3VhgLECLFi36v/rqq9sVuCEpLy/H52s8z9oNhUL4/X63Y8RNOBwmKSnJ7RhxEwwGG9X7LRgM4vF43I4RN5FIBGOM2zHipqqqipSUlEbTp6qqKpKSknCcxnFriaqqKvx+f6P5HQqFQni93kbzGRcOhwEazd/UYDCIMQavt0Hec3SrhUIhHMdpNO83qO5Tamqq2zHi5tBDD/3RWjvA7RySWLb5E8pau8AYcy/wKVAOzASiW2g3AZgA0K1bNztgQON5j3733XdkZ2e7HSNu5s2bR69evdyOETdz586lT58+bseImxkzZtCzZ0+3Y8TNrFmz6NChg9sx4mbx4sW0a9fO7Rhxs2LFCgKBQKP5Ga1Zs4ZgMEjXrl3djhIXq1evprS0tNH0p7CwkMLCwkbzGVdUVERubi69e/d2O0pc5Ofns3r1anr06OF2lLgoKCggPz+/0bzfAGbPns2gQYPcjiHiqu06dG2tfcZa299auz9QBCyMTywRERERERGRutmuMSXGmJbW2nxjTDuqr6/VoSIRERERERGpV9t7scSbxphmQBi42Fq7Pg6ZREREREREROpsuwpba+1+8QoiIiIiIiIisi0ax+0hRUREREREZKelwlZEREREREQSmgpbERERERERSWgqbEVERERERCShNZjCtuLxiaw//CLWj7yU9aMuIzzzlzqvW3bjw0QWLd+B6aSxia0pIHjZP6kceRmVh19C6O5nsKHwn7fPzSfy4ZR6TFh34X3PrnkdmzKT8DFXY1evJfrUm0Rf/HDTtiMvxxaV1nfEnd6ekzfcZy+jYAp7TDsWf9VqFxPJxsYUjgEgP5rPyYUnc03xNVy2/jLGFY/jy+CXLqfbescVHsf4svE101Eb5ayis7i79G6WR5ZzyfpLCNpgzfK7Su/i6+DXbkQVaZAe+t9DHPDwARz06EEc8tgh/LTip63exicLPuGRyY/sgHRbZ/ii4Tt0+8+te47XCl/bofsQqavtfdxPXIRn/Ez4q+/JfGc8JslHrLAYwpE6rWujUdLuvmwHJ5TGxFpL6Kr78Z5wGEkPX4eNxgjd8RThB17Gf/1ZW15n1Voik6bgHbFv3fcTiWK8nnjFrlVs+lyi972I99FxmNYt6m2/UnfpRdPZbdH9LOrzKKFAa7fjyBbs4tmF+zPvB2BNdA33ld0HwEFJB7kZa6sECLA8upygDZJkkpgVnkWWkwVAO2879vbvzZuVb3JKyilMC00jaqPsl6SHHIgA/LD8Bz5f+DmfXvQpSd4kCsoLCEf//MD3nxmWPYxh2cN2QMIdJ2qjeEz9fW8RibcGUdjG8gsxTTMwST4AnKxMwt/Oouy2J8h44mYAQlNmUPXqR2Q8fhMFfUYTOGk44akzSb31AioefJnU68/G22t3yv72OJE5i6AqiH/4PqRcPsbNrkkDFJs2F/x+vEcfCIDxOPivPYPKYRfjPe5gQnc+ja2sPpvhv/FsPHt2I/zQq8SWrKRy9LV4jzwAz0EDCd346Gbtot/PI/zoRExGKrGlq0h+f/yf5ohrn35aQPTOp/GOvw6z2y71sk/ZOmnrf6L9L3exqNd4Qsm7AuANFdFu4d34g3kArOhyFeWZe9J6yVP4g2tIqszFH8wjb9eTWbvrSbRe8iRRbwb5u50CQJucx4j4s1jX6ig6z70ab6QEYyPkdryQ4uZD3epqo9HK04ozU87khYoXEqqwBejn68dP4Z8Y7B/MlNAU9vXvy4LIAgBOSD6Ba4qvYbB/MC9XvMwN6Te4nFak4cgrzSMrJYskbxIAzVKbAbDXv/biyJ5H8uXCLwn4Ajw++nE6NuvIpz9/ykP/9xDhSJimKU15bPRjtEhrwcSfJjJr1SzuHnk3l791OelJ6czKnUV+WT63HHYLI3uOrNd+FUQKuG31bVTEKojaKFe2vJI+KX0Yvmg4o5qM4sfyH7lilyv4qeInppZNJWRD7JG8B9e0vAZjDLmhXB7Kf4j10fUkOUlcu8u1tPe3r9c+iNSmQRS2/n37UvnoaxQdej6+IX1IOmI/vIN6E73tCWIFxTjNMgm++TmB4w6tXqGiCm+frqTecM5m20q56jScJunYaJSS028m8vMSvN071nOPpCGL/boCp8em7wmTloJp2wJbXknShJsxSX5iy1YTGjcez2v34LviFMIvvE/g0esBsJXBLbYDiC1YQuCtf+Hs2rJ+OhSKEL36QbwTbsZ0bLNpX1+dRGzSRkOo1xbVTybZhGNDdJ57DQv3fIpgaoea+bstvp+8XcdQ3mRPfFVr2H32Jcwf+F8AAhXLWLjnkziRCnpOP461bY6noNWRdJ53bXVha2Nk5X/Kgv4vEHP8/NrzPmLeNDyh9XT/6UyKmx0AxrjU48ajk6cTudFct2NstX38+/BG5Rv09/VnWXQZByUdVFPYJpkkTk85nVtKbmFUYBRtPG1q2ZrIzmNol6E8+L8H2eehfdiv834c2fNIhnQcAkB6UjpfXfoVr894nb999DdeOu0lBrYfyIdjP8QYwys/vMJjXz/GbYffttl280rzePfcd1m0bhFnvnJmvRe2n5d8zsCUgZzW7DSiNlpzOUKlrSQ7kM3FLS4GoIO/A2c2OxOAO1ffydTyqeyTtg/3593P1btcza7+XZlfOZ8H8x7kod0eqtc+iNSmQRS2JjWZzHceJPLDfMLfzab0in+Scs0ZJB11IMH3viLpuEOIzPyZtPuuql7B4+AfNmSL2wp9NIWqiR9DNEYsv5Do4hUqbKXuIlFCtz9F7Oel4HGwy/7kOshIlNA/ntliO6dXl/oragG8Hkzv3Ym98z88156+ySLnlMPxnD6iZjo88vL6yyU1rPFSltGbZqvfZeXu19TMTy+aTqB8Sc20J1KOE6kAoLjZPljHT9TvJ+xvii9UQCi5DRFfJsmlP+MLFVKR1o2orwnEIrTNeYy04hmAgz+0Fm+ogEhS8/ruaqNjsW5H2CYdvB1YG1vLlNAU+vn6bbZ8L/9epDqpDA/s2OvvRBJNalIqn1z4CdOWTeObnG+44PULuOnQmwA4pvcxNf+9bdJtAKwuXs35E88nvzSfcDTMbk132+J2h2cPx3EcurXsxtqytfXSl411D3Tn3rx7idgI+6bty+6B3QHw4OGAtANq2s2omMF/iv5DVayK0mgpHZM60jfWl7lVc7l19a017UI2VO99EKlNgyhsAYzHg2/vXvj27oWnaweCb39B2t8vpuT8v2P8fvzD991wvWKSH+PZ/BqA6Io1VD7zNplvPYCTmUbZdQ9ig/rFk005nXcl/Nm0TebZsgrsuvVEv/4Jk5VJ4L/3QcxSudeWh7KHX/rgz9slJ+3I+JtzDJ57LiN64d1En30Xz9lH1e/+pVYWh5w97qHrrAtptexZ1rSvvuGXsTF+7vcc1rP5e8Ya/0ZTDsZGAVjX+miarfkAX6iAda2PBKBZ3iS84fUs6P8yOF56fjsKJ6bPvnhYEl1CW09bt2NskwH+AbxQ8QJ3pN9Bqd38pnHmt/+JyKY8jochHYcwpOMQsnfJ5vWZrwNgNh4F89vLmz68ifOHnM+w7GFMXTKV+7+8f4vbTNroc96NA2Z9Uvrw8G4P823Zt9yTdw+jm45meMZw/MZfc11tMBbkwfwHmdBuAi19LXlu3XOEYiGstaQ5aTzT/pl6zy2yNRrEXZGjOSuJLl21YXpBDk7blji7NMNpmUXFExNJOu6QWrdjyyoxKUmY9BRi64oITd76u9hJ4+fs3QuqgkTe+z+A6ptH3f8ivpOGQziCadEU4zhEP5gM0RhQPaqA8soNGymr2GI7t5jkJDzjryU26Rti7/zP1SyyZdYTYHGvh8jK+5hmq98BoCRrEC1zJ9a0SS6t/W7w65sfSGbhVFJL51OSNRgAT7SMiL8pOF7Sin4gKag7LsdDdhy8jAAAIABJREFUfjSfFype4IjAEW5H2SYHJx3MCckn0N6r6+BE6mrx2sXkFOTUTM9dM5ddm1TfF+HdOe/W/HfAbgMAKK0qpVVGKwBen/F6PaetuzXhNTT1NGVUk1GMyBjBoqpFm7X5/SxspieTilgF/1dW/T0p1ZNKa19rvir9Cqi+Cefi4OL6Cy9SRw3ijK2tqKL8jqewJeXg9eBp15rUO6vH+icdORRbWIK3y5aHdmzMm90Rb3Yn1g+7EKd1c3z9snd0dElAxhj8D11D+K5nCE94E1tUgnfYEHxjjyW2bDXBq/5F5P3JePbpU3P21ezeDhyHyuOvxXvUAXhPHLbFdm4ymWl4HxlH5Ly/Q9N0t+PIFkR9mSzq/TDdZo4l4mvK8i7X0m7RvWR/fxLGRinL7Mvybjf+5Tas46O0yQCi3nT47Sh7QcvD6TL3Snp8fyLl6T2oTOlQD71pnPKieVxTfA0hGyLZJHNE4IiEu3HU75o5zRgRGFF7QxGpUR4q5+YPb6a4qhiv46VDVgfuO+o+PvvlM4orizno0YPwe/08MfoJAK4+6GrGThxLZnIm+3bcl+VFDfPxkzMrZvJa0Wt4jIdkJ5mbWt20WZt0TzojM0dy5rIzyfJk0S3QrWbZLa1v4YG8B3ip4CUiRDgo/SC6JHWpzy6I1MpYW3/DIbp162anTZtWe8ONlN3+JN4enQiMPmwHpdp23333HdnZjad4njdvHr169XI7RtzMnTuXPffcs9Z20Zm/EBo3nqQHr8Hp0akekm2bGTNm0LNnT7djxM2sWbPo0KGD2zHiZvHixbRr127H78jGyP7hVHL2uIdgyo7b34oVK0hOTm40P6M1a9YQDAbp2rWr21HiYvXq1ZSWljaa/hQWFlJYWNhoPuOKiorIzc2ld+/ebkeJi/z8fFavXk2PHj3cjhIXBQUF5Ofnb9X7ba9/7cXHF3xcc5fkhmb27NkMGbLl+88kovT09B+ttQPcziGJpUGcsf0z64++ApMcIPX6ze9+LBIvnj27kfzJ427HEKlVoDyHLnOuZH3zoTu0qBURERFJNA26sG3yjm4jLiLyu6rUTswd9K7bMUREdjrfX/292xFEpBYN4uZRIiIiIiIiIttKha2IiIiIiIgkNBW2IiIiIiIiktBU2IqIiIiIiEhCU2ErIiIiIiIiCU2FrYiIiIiIiCS0BvO4n9i6IsrveprIzF8wmWkYn5fAeceRdNhgwj/Mo/wfz2DLKsBC8hmjCIwZ4XZkERERERERaQAaRGFrraX0wrtIOuZg0h+8FoBobj6hL6YRW1tE2VX3k/7ETXj36EKssJiSs2/FtMgi6bDBLicXERERERERtzWIociRb2eDz0vglMNr5nnatiT59FFUvfwhSccejHePLgA4WZmkXncWVU+/5VZcERERERERaUAaRmG7aBnePTpvcVl00XK8PbtsMs/TqwvRxSvqI5qIiIiIiIg0cA1iKPIfld32BJEf54PPi6dVC7fjiIiIiIiISAPWIM7YendvT2TerzXTabddSMYLd2ILS/B02Y3I3MWbtI/OXYy3V5c/bkZERERERER2Qg2jsB3cG4Jhql75qGaerQoCEDh1BMG3viAyPweAWFEJFQ+8RPJFJ7qSVURERERERBqWBjEU2RhD+hM3UX7301Q+/SYmKxOTHCDl2jNxWmaRdv/VlN3yKLa0gtjKPNLuvQLf3r3cji0iIiIiIiINQIMobAGcllmkP3TdFpf5BvakyZsPAFD1yodUPvkGvv3742Sm1WdEERERERERaYAaTGFbV4ExIwiMGeF2DBERERFphCbNn8TZ/zmbyZdNJhKNcOmblwKQW5xLelI6GYEMslKyeP2s111OKiIbS7jCVkRERERkR3lnzjsMbD+Qd2a/w7UHX8vnF38OwOVvXc6hXQ9lZM+RLicUkS1pEDePEhERERFxW3mwnOnLpvPA0Q/w7px33Y4jIltBha2IiIiICPDxzx9z4O4H0rl5Z5qmNGVW7iy3I4lIHamwFREREREB3pn9Dkf1OgqAo3odxTtz3nE5kYjUla6xFREREZGdXlFFEVOWTGFB3gKMMcRiMTDwt2F/wxjjdjwRqYUKWxERERHZ6X0w7wOO73M89x11X828Y545hu+WfcfgDoNdTCYidaGhyCIiIiKy03tnzjsc3uPwTeaN6DGCd2ZrOLJIInD9jK21lpKTx5F84Qn4DxgAQHDSFIJvfEbGs7e7nE5EREREdgZvnv3mZvPOHXxuzevxx46vzzgispVcP2NrjCH1joupuPsZbDCELa+k4l8vknrrBW5HExERERERkQTg+hlbAG/X9vgOGkjlhDexFVUkHX0QnvatqXrrC6pe+RBCEbz9ulcXuzFL0cAxJB1/COGvf8Jp1Zzky8dQ8c/niK1eR+qtF+AfOgAbiVLxz+cI/zgfgmECp48kcMIwQt/MpPKpN3DSUoksXo63T1fS77vK7X8CERERERER2UbbdcbWGHOlMWaeMWauMeY/xpjAtm4r5dKTCb7/f4Qn/0jyeccRWbiM0GffkjnxPpq8/zBEY4Q+mAyALS3Ht39/mkx6HHxeKh95lYwX7yL9keupGP8KAMGJH+M0y6TJmw+Q+eYDVL38EdFV+QBE5/1K6q3n02TSY0R/XUF4xs/b888gIiIiIiIiLtrmM7bGmLbAZUAPa22lMeZ14CTg+W3aXkqApCP2xaQkY5J8hL+ZSWTOIoqPuRIAGwzhtGpe3Tjgx79v3+oOdOuASUvBeD14urYnlpsHQGjKDKK/riT4wdfV65eVE1u6unqdPbvh7NKs+nV2J2K5+dC3+zb9O4iIiIiIiIi7tncoshdINsaEgRRg1XZtzXHA+f05YZbAcYeScuWpmzSxkSjG59swwxjw+zasH4n9vjppt12Ib0ifTdYPfTNzQ/vf14lGtyu2iIiIiIiIuGebC1trba4x5n5gOVAJfGqt/bSWdSguLv7T5dGqKowDoeJibO8uRK8bT+jYoZgm6dj1pVAVhOZNN9lONBjEVFVVrxOJ1iyLDehO6fPv4nTbDeP1YJeuglbNseXl2HBkw/qhEOGKCqr+ItefCYVC5ObmbvV6DVVVVRVr1qxxO0bcBINB1q5d63aMuAkGg6xatX3HjhqSiooKFi5c6HaMuKmsrOTnnxvPZQ0LFy5kwIABrFixwu0ocbF06VLatGlDfn6+21HiYvny5aSnp7Nu3Tq3o8RFfn4+Ho+HkpISt6PExdq1a4lGo42mP2vWrCESiVBYWOh2lLj4/W9pY+kPQDQapaqqyu0YIq7anqHITYGjgI7AeuANY8yp1tqX/9BuLDAWoEWLFixevPhPt9mksJBYhZ+S39qkHjmEzHNuA2uxHg8F544k1KEV7WLRmu00KSokFqmqXica3bCsT3uaLlhM8vHXABDNTCX/mpNJWpVLRnkZ+b+t36ykmKq8PMr/ItdfKSsr26b1GiKPx8P69evdjhE3juOQl5fndoy4cRyn0XxJAggEAvj9frdjxI3H42lU/enXrx/WWqKNZERL69atiUajf3lwNZFkZGQQiUQoKipyO0pceDweQqFQozmQEo1GCYVCLFu2zO0ocRGNRolEIo3qb2o4HG5UB4sjkQizZ892O4aIq4y1dttWNGY0MNxae85v06cDg6y1F/3ZOt26dbNTp07dpv01RNOnT6d798Zzbe78+fPp3bu32zHiZs6cOfTp06f2hgli5syZ9OjRw+0YcTN79mzat2/vdoy4WbJkSaPqz6pVq/D5fHTu3NntKHGxdu1aysrKyM7OdjtKXBQUFJCfn0/Pnj3djhIXpaWlrFixgr59+7odJS6Ki4vJyclpNP0pKChg2bJl9OrVy+0ocVFUVMTKlSsb1XeeWbNmsc8++7gdI25SU1N/tNYOcDuHJJbtuSvycmCQMSbFGGOAg4EF8YklIiIiIiIiUjfbXNhaa6cB/wV+Aub8tq0JccolIiIiIiIiUifbdVdka+2twK1xyiIiIiIiIiKy1bZnKLKIiIiIiIiI61TYioiIiIiISEJTYSsiIiIiIiIJTYWtiIiIiIiIJDQVtiIiIiIiIpLQtuuuyPGyvsexOF3bgQXjcUi+eSzeft2Jrsyj/MK7yHj/YbcjbpXYoDOg824QiYLHwYzYF04ehnEc7I8LsC9/hPPg1W7HrJPw2DvxnDkKZ0ifmnnRVyYR+3Y2duosPNedgeekYQBE7nkO06MTniMPcClt3dl16wnf9wJ23q+QnorJysQ5cACx//sR/yPjNmsfvv0pPKeOwOm8qwtpdx6e8Hq6/HQ+AN5QAdY4RH1NAVi418tYx1frNtrNu4nilodQ3OLAHZp1Z1UaK+XvFX8HYL1dj4NDhskAYFlsGSP8Izg9cDoA7wffp8pWMTow2rW8Ig3RK+tf4avyr3BwMBiuaH4FTxc+zdissXRL6uZ2vJ3aMbnH8Hbbt8mL5DE/NJ8DU/76b0leJI9b193Kk62erKeEW2d1aDXjVo7jxU4v1sx7du2zJDvJ9E7pzfi88YRtmLANc1D6QZzd4mwX04psnwZR2BLwk/HOQwCEv55B5QMvkf7yXS6H2g5JfpxX7gTAFpZgb3kcyisxY491OdjWc4YNJvbJt5sUtrFPvsVz+clEfl5C9NWPcY47GONrGG+lurDWErrqX3hG7Y/33ssBiP2yjNj//fCn6/huPb++4u3Uor4m/LL3RABa5TxJ1JPC2van130DscgOSia/S3fS+WfaPwF4o+oNAibAqKRRAJxacirTw9M52n80GU6GmzFFGqz5VfOZVjmNx9s8jt/4KY4WE7Zht2PJH+RF8vhfxf9qLWwT2V2r7+KONnfQJdCFqI2yPLTc7Ugi26XBDUW25RWYzFS3Y8SNycrA3Hg2vP4Z1lq342w155C9iU2ZiQ1XFwx21VrsuiJMq2aYphk4A/cg9v5kl1Nundj388DrwTv60Jp5Trf2mL7dsRVVhK55gODRVxG64ZGan1nwnNuJzfsVgKrBZxB+5DWCJ1xH8LSbsQXrAYj+348ET72J4InXEzr/zpr5sv38FcvpNu3EmumWS59llyX/BqDLD2fRZuH9dJ1+Ci1WTtxkvdaLH2a3+beBjZFcMo8uP55D1+mn0GnmxXiDBSSVL6Xr9DE17ZPKc9j9+1PrpU+NkYPDwf6D+Sj0kdtRRBqsgmgBmU4mfuMHINOTSXNvc5dTyR89W/Isc4NzuTjvYt4urT6De03+NVySdwmX5F3C/OD8zda5Nv9afg39WjN9df7V5IRy6jP2VimKFNHM2wwAj/HQMamjy4lEtk/DKGyrQpQcfQUlh19Mxc2PEbjwBLcTxZVp2xJiFgpL3I6y1UxmGmaPzthvZgLVZ2udQweBMQB4zhxF9KUPsdGYiym3jl28Aid7yx/e9pel+K49A/9b92Nz87Ezf9m8UWUQp/fuJL3+T5x+2UTf+hIAp283/C/dSdLEe3CGDSHy/Ps7shuyEWOjLBz4KmvbbShS2yy8HydSzorsWzE2wq4L/8mSXvezcOCrFLUaQaucxwmmdiDmSSJQthiArFXvUdj6SLe60SgM8w9jSngKFbbC7SgiDdKA5AHkR/I5c+WZPFzwMLOqZrkdSbbg7Iyz6ZnUk8d2eYxj0o8h08nk7hZ38+guj3JD1g08uX7zoceHpR7GZxWfAbAyvJKwDdPJ36m+o9fZCVkncErOKdy48kbeLXqXYCzodiSR7dIwxo9uNBQ5MuNnKq4fT3qCXVfbmDnDfxuOPHRA9TDkv51Xs8zsugtOz87EJn3jXsA4cvbogtml+uil0609dtVa6Nt900Y+L87+/arb9OhI7Ls5ANi8QiLXjceuWw/hSPUBDakX63cZtsl0q5wnKM/ck5XdbwQgULaEQFkOXWZcUN3AxggHqn8+BW2OJmv1u6zqfDlN8j9j4cDX6jV7Y5NiUtjftz+TQpPw43c7jkiDk+wk83ibx5lbNZeZVTO5K/8uzml6jtuxpBZRojxS9Ag5oRwc45Abyd2szX7J+/Gfkv9wbua5fFrxKYekHuJC0k2Z305EbDYfw1nNz+KwjMOYXj6dz0o+4/OSz3mk/SP1nFAkfhpGYbsRb9/u2KISbGGx21Hixubmg2MgKwOWrnI7zlZzhg4g/K+XiS1Ygq0K4vToVF3w/cZz9lFErhuP6ZftXsitYDrvSvTzaVte6N/oV8JxsJHo5m28ng1/KDZqE77nObynjcAzdADR7+cRefK/cU6+EzNeYMNQficWwhpPzXTMk7xJ84qMnqSUzMMTLiHqywAslWm7s3jAs5tten3LQ9ll6bOUZ+5JRWZvor70HdWLncYRSUdwfdn1HOBv+DeSE3GDx3jok9yHPsl96OjvyGdln7kdSWrxdunbNHGa8Nguj2GxHJm7+eiegBOgb6Av31Z+y9cVX/PwLu6fpMnwZFAaK91kXkmshNb+1gC09bflGP8xjGoyilGLRlEcLSbTk+lGVJHt1jCGIm8kmrMSojFMk8bx5dIWlWDveR5OOPRPj5o1dCYlgDOgB9HbJ+AMG7L58o5tMZ3aEvv6JxfSbT1nYE8IhYn89/OaebGFy7Azft6+DZdVYlpmVW8vwa47bujC/mb4gmvxhEsw0SAZ677+y/Ylzfcjv91pdJx1GU6kgqrUTviC+aQUzwXAxMIEyqqvg7KeZMqa7sWuv9xDQeujdnhfdgZpJo1BvkF8FfrK7SgiDc6K8ApWhlfWTP8a+pWWXo3waWiSnWQqYhsuqSi35WR5snCMwxcVXxBjy5dgDU8dzpPrn6SrvyvpjvvfZVOcFJp5m/Fj+Y8AlERLmFY2jd7JvZlaNrXmXiIrQyvxGA9pTpqbcUW2S8M4Y/vbNbYAWEi553KMx/PX6zRkwRCxMTdveNzPEfvAKcOrl0Wj4K/9kSUNjTN8MJGrH8T7j0u2vPyco4mdfGM9p9o2xhj8D1xN+L4XCT7/Hvj9mDYtcA4csF3b9V5wPOFrH4KMVJy99oDc/DglFutJIq/D2XT9fgzhpBZUpdZ+zdL6VsNxohV0nH0lOX0eZmmv+2i78J94ouVgo6xtdxpVaZ0BKGp1BBkFUyjLGriju7LTGOkfySehT9yOIdLgVMYqeazwMcpiZXjw0MbXhiubXckd+Xe4HU020tHXEY/xcFHeRRyacigjU0dyZ+GdfFHxBf2T+hMwgS2ut7t/d1KcFA5NPXSLy91wU+ubeDDvQR7NfxSAs5qfRVt/WyasncAjeY8QcAJ4jIdbWt+CxyTw92/Z6Zn6vFNvt27d7NSpU+ttfzva9OnT6d69e+0NN2Jf+wSbX4Rz2Uk7KNW2mz9/Pr1793Y7RtzMmTOHPn361N4wQcycOZMePXq4HSNuZs+eTfv27d2OAVTfZdnEwuR12vbHOi1ZsqTB9CceVq1ahc/no3Pnzm5HiYu1a9dSVlZGdnZiXDJRm4KCAvLz8+nZs6fbUeKitLSUFStW0LdvX7ejxEVxcTE5OTmNpj8FBQUsW7aMXr16uR0lLoqKili5cuUO+c5TEC1g3NpxTNhlAo6pv4GRs2bNYp999qm3/e1oqampP1prt++Mg+x0GsYZ251E7O9PQ85KzN1bPuspIvWv46zL8VetYXG/CW5HERGRBPZ5+ee8UPICYzPH1mtRKyLVVNjWI+eWc92OICJ/sKTPeLcjiIhII3BI6iEN4k7IIjsrHU4SERERERGRhKbCVkRERERERBKaClsRERERERFJaCpsRUREREREJKGpsBUREREREZGEpsJWREREREREEpoKWxEREREREUloKmxFREREREQkoamwFRERERERkYSmwlZEREREREQSmgpbERERERERSWgqbEVERERERCShqbAVERERERGRhKbCVkRERERERBKa1+0A0vCFBozBdGkH1oLHwTPuTEz3DoRPvgHvvZfj7N4OgOgL72NX5OG9+VyXE4uIiIiIyM5EZ2yldkl+fK/9A9/Ee/BcciLRR17DJPnxXn060X88h7UWm19I9M0v8Fx2kttpRURERERkJ6PCVrZOeSVkpALg7NMH06IJsQ++Jvqvl/CMPQ6TkeZyQBERERER2dloKLLULhgifNIN2FAI1q3H++RNNYs815xO+LRbMO1a4R25n4shRURERERkZ6XCVmr321BkgNishUT/9gTmjX9ijMG0aIqzVw/Mfv1cDikiIiIiIjsrDUWWreL06YpdXwpFJRvNdDCOcS+UiIiIiIjs1FTYylaxS3IhFoPMdLejiIiIiIiIABqKLHXx2zW2AFiL9/YLMR4dExERERERkYZBha3Uyv/DK3+53Hv7BfWUREREREREZHM67SYiIiIiIiIJTYWtiIiIiIiIJDQVtiIiIiIiIpLQtrmwNcZ0M8bM3Oj/JcaYK+IZTkRERERERKQ223zzKGvtL8CeAMYYD5ALvB2nXCIiIiIiIiJ1Eq+hyAcDv1prl8VpeyIiIiIiIiJ1Eq/H/ZwE/Ke2RtZaysvL47RL94XDYfLz892OETehUKhR9ScYDLJ69Wq3Y8RNVVUVS5cudTtG3FRUVLBo0SK3Y8RNMBgkJyfH7Rhxs2TJErKzsxvN79CKFSto2rQp69atcztKXKxevRpjDMXFxW5HiYuioiKi0SilpaVuR4mLwsJCotEoZWVlbkeJi/z8fCKRCEVFRW5HiYvc3FwikQgFBQVuR4mbSCRCZWWl2zFEXGWstdu3AWP8wCpgD2tt3haWjwXGArRo0aL/a6+9tl37a0jKyspITk52O0bcVFZWNrr+BAIBt2PETWVlJUlJSW7HiJtgMIjf73c7RtwEg8FG9X4Lh8NYaxtNnyKRCNFotNH0JxaLEQqFSElJcTtKXESjUYLBYKPpTywWo6qqqtH05/efT2P5jhCJRAiHw42mP1B9sDgtLc3tGHFz8MEH/2itHeB2Dkks8Thjezjw05aKWgBr7QRgAkC3bt3sgAGN5z367bff0qNHD7djxM3s2bMbVX9mzZpFt27d3I4RN7Nnz6ZDhw5ux4ibX375hbZt27odI25ycnLYbbfd3I4RN3l5eUQiEbp27ep2lLgoKCigsLCQnj17uh0lLkpKSli5ciV77rmn21HioqysjMWLF9O/f3+3o8RFWVkZv/zyC43lO09BQQE5OTn07t3b7ShxUVBQQG5ubqP5PIDq7wgDBw50O4aIq+Jxje3J1GEYsoiIiIiIiMiOsF2FrTEmFTgUeCs+cURERERERES2znYNRbbWlgPN4pRFREREREREZKvF63E/IiIiIiIiIq5QYSsiIiIiIiIJTYWtiIiIiIiIJDQVtiIiIiIiIpLQVNiKiIiIiIhIQtuuuyLHy9pex9FizpsABL/6nvI7J5D54l2U3vQIsXVFNe1sQTFO6+Y0fetBt6LWSfTL6USefHOTeXbRckhLwXf7BXgO2guA4FFX4hm5H97zjgUgdPUDeI7YF8/BDesB21X9TsZ0aVcz7Rk+hNicxfw/e/cZYEV193H8O3Pr9k7vHRbpKgioaBTU2DCWmGiwG6MSNRbsLTEaYwOx9xZLNPpoNHZREQULVfpSdpfdhe3t1pnnxeqFFZR22bm7/D5v3DnnzMzvLO7d/d85M9cuKoPGAHZlDUandgB4rj4Tc1h/p6LulTzjz8E6bH+i15/d1BCJ4j7uL9iDehK942KM/36O+7Ynidx9CfaoQQAYs77Ffc1MIjefjz1hpIPpt23Ie0Op7HAk6/e5ranBijBo1q9oyBjMmuEzYuO6f/dn3KFNrNrvWYeS7phB7wwhkNY3tr1++H24wpVkFr1ByaCrSSv7CF/dKjb1OpusdS9iufxUdz7WwcS/rMqq4omGJ1geWU6qkYobN8clHUe9Xc+qyCrOSTnH6Yh7rZpoDVeUXgFAZbQS0zBJM9MwMYkQoTZai2mYZJgZAEzvOB2P4XEy8i+qjlZz+YbLAaiIVmBikunKpN6q5+j0ozkl8xQArtxwJXnuPP6S9xcAHih/gFxXLidmnuhY9r3FUYVH0cPTI7Z9fc71tHe3dy6QbKU8Us6MjTNYGlhKqplKliuLi9pdRFdvV6ejicRVQhS2Pwp9/h11Nz9E5pO34Orcjswnb4n12Q0BKo+dSsqlpzuYcMe4DtkP1yGbi9PIK+8TfftzXOOGY81fjuuQfbGraiHJhzV/RWyctWAFnmlnOhH5l/m8+F66fZtd0bmLiT79Jt7pV7ZwKPmRneTDKCiCYAh8Xox5SyAvs/mYXp0x359L9IfC1vzgK+w+XZyIu0OiriT8daswogFsl5+0ijmEfe2ajTHDNSTVLMFyJ+NtKCSUnLjzsVw+Vo9t/mZXmM6UZAwGoLbdBGrbTQCgstvJLZ5vZ9i2ze21t3Ow72AuSb0EgLJoGfPC8/AbfofTSbornQc7PQjA01VPk2QkcWLG5uJuW22JLMOVwcNdHgbgqYqnSDKTOCnzJD6p+4RP6j8BwLItqqPV1Fv1sf0WBxZzQc4FjmTe23gNL/e3v/9n+6N2FJfhasFEsiXbtrm2+FompU/iho43ALAyuJKKSMUuF7a2bWNjYxpa+CmJJWEK29BXi6i95j4yHrsJV/eOW/XX3fIQ3oNH4R033IF0u85aW0zk4VfxPXUzdmk54Xueb2qfvxzzwJFYn3/X9AJRvBHD58HIzdzOEUW2Zo3eB2P2QuwJIzHf/wrrV/thbPmmydC+mPNXQCQCoQhGYRl2n8R+p7Y2dxzpmz6luv1hZJa8TVWHSaRUfRPrzyj7gJq8g4h4c8gofYeNPc92MO3OSy7/itw1T7Ju5EwyC/+Dv2YxJYOuIW/F/VjuZMp7nuF0xG1aGFmI23Az0T8x1tbO1Y4jXUfyYfBDKq1Kbqm9hZJoCft79+f05KY3Ix+qf4hVkVUECTLGM4ZTkpuutJ1fdT4Hew9mXngeUaJclnoZXVxdWBFZweP1jxMmjNfw8qeUP9HZ1dm89KPsAAAgAElEQVSROUviyffn80D5AwCsCa+hh7cHFdEKaqO1+Ewf68Lr6Ovru52jyJ7yXv17fN74OQE7QNSOcnPuzdxUfhN1Vh1RO8rpGaczJmkMpZFSrtt0Hfm+fJYEl5DjyuGG3BvwGT6KI8VMr5xOtVWNicnVOVfTyd2JV2pfYVbDLMKEOcB/AKdlnOb0dBPat43f4jbcHJu5eRVQH18f/rrhr9RYNYxPHQ/ALRtuYULaBGqjtXxa9yn1Vj0bIxs5PP1wpuRMYUN4A5cXXs5A/0CWB5dze+fbmbJmCu/0fQeAj2s/5ov6L5jWYRof1X7EU+VPYWKS4kphetfpjsxd9j6JUdiGwtScfwuZz/8dd++t/9gO/u9zwgtXkPXvxF6C/FN2OEJ42gw8l/0eo2Mu5GRgr1yPHY40FbYjB2IXlWKvLsJeugZjaD+nI29bMETwpM1XZN1nHYtr4gEOBpKfsg7dD9eT/0f0gCEYqwqxjhrXrLDFMLBGDcT4cjHUN2KNG4pRvMm5wDugqsMk2q1+iJrcA/HXrqCi03HNCtvMknco7XUeEW823RdcltCFrRkN0uvzEwAIJ3Vm/Yj7HE6069ZH19PL1etn+wuiBdyZficew8NF1RdxpO9Icl25nJp0KmlmGlE7yk21N7EmsoYe7h4ApJvp3JlxJ+8E3uGNwBtckHIBnV2duTX9VlyGi/nh+TzX8BxXpF3RQrOURJfrzsVluCiNlLI4sJh8fz6bIptYElxCiplCT2/PhF5i3ZaE7BB/Kv0TAO1d7bk+93oAVoZX8kD7B2I/99flXEeKmUJ1tJpLyi5htH80AEWRIq7MvpKpWVP5W/nf+Lzhcw5JOYQ7yu/gxPQTGZs0lpAdwrItvg58TVGkiHvb3YuNzU3lN7EwuJB9fPs4Nv9Etzq4mv6+rW8ROyrjKF6ufJnxqeOpi9axqHER0zpM472a9/g+8D1P9ngSv+HnvHXnMTplNBmuDArDhUzrMI38pPxfPOdT5U/xj87/IM+TR220dk9NTWQriVHYut14Rgwk8NK7pF5/XrOuaMkm6m5+mIwnb8Hwta5fUpGZL2H06hIrAg2vB6N3F+zvC7AXrMCccjR2YRnW/OXYS9ck7r2pv7AUWRJEny5QUo7x/ldYo7f9C94+dD/MVz6A+kaifzoR1zP/beGQOyeQ1g9vYzGZJW9TmzuuWZ87WI6vYR0NmcPBMMBw46tbQTA1Ma/QbGspclvxSP0jfB/5HjduJvknMcQzhBQzBYCurq5stDaS68pldmg27wXfI0qUKquKwmhhrLDd37s/AL3cvZgTmgNAg9XA9IbpbLA2YGAQsSOOzE8SV74/n8WBxSwOLObEjBPZ5N7E4sBiUswUBvsGOx1vr/FzS5FH+EaQZqYBYGPzVPVTLAwtxMSkPFpOpdX0DJUO7g709vYGoI+nD6XRUhqsBjZZmxibNDZ2Dgz4JvAN3wS+4cKyCwFotBopjhSrsN0Fw5KHcXfZ3VRFqvik7hMOSjsIt9FUFoxKHkWGq+k+/PGp41nYuJBxqeNo726/3aIWYJ+kfbit9DYmpE7gwLQD9+g8RLaUGIvjTYP06VcRXrCc+pkvxppt26b28rtIPv9E3H27/cIBEk907mKs97/CM635ckJzWH+sr7/HbghgpKdiDumLPX950xXcRL1iK62CPXYorpkvY/1q2w8fswf1xFhdBNV10K1DC6fbNTV5B9FxxV1UdTiiWXtG6f9wRWoY8NmRDPj0CDyNxWSWvONQyr1LV1dXVkdXx7bPSTmHG9NupMauAcC9xfulJiZRopRGS3kj8AY3pt3I3Rl3M8IzghCh2DgPnth4CwuAFxpfYLBnMPdk3MO01GmECbfE9KQVyfflsySwhIJQAT28PRjoG8iSwJLYFVxx1pb33H/U8BHVVjXT203n/vb3k+nKJGw3/Uz/+PMPYBomUTv6i8c9Oe1k7m9/P/e3v5/HOz7OxJSJvzh+b9fT15NlwWXb7JuYPpF3a9/l7Zq3OTL9yFi7YRjNxhk0bSeZST97npC9+TX9svaXcXbO2ZRFyjh37blUR6t3ZwoiOywxClvASPKT8eiNBN/4mMaX/gdA4yOvYvi8JJ32a4fT7Ry7po7IDQ/iufUCjJTmLwLm0H5E//0+Zr+mQt3o2w1r4Qrskk0YCX7PoyQ266ixWGccDb1//iFK0fMnY517fAum2j2VnY+ntNd5zZ4oDE3LkAuGz2Tp+LdZOv5tVox+QYVtC9nHvQ9hO8w7gc3f76Ad/MV9Gu1GfIaPZCOZKquKb8Pfbvc8DXYD2WY2AB8FP9q90NIm5fvzmdMwh3RXOi7DRbornTqrjiXBJSpsE0y9VU+GmYHbcDM/MJ+yaNkvjk82k5tWejTOBpqKpoAVYIR/BO/Wv0uj1QjApugmqqJVezx/azYiaQRhO8wbVW/E2lYFVzG/YT6T0ifxSuUrAPTw9Yj1z6ufR020hqAV5LO6zxictO0VENnubNYE12DZFp/WfRprLwoVMShpEGflnkWGK4Oy8C//e4vES2IsRf6BmZlGxuM3U/XbKzGzM6i/+2nMDrlU/PrCzWPSU8l8/u8Opty+6MvvY1fUEP7rY83a3Wcdi7lvPnZhGcaZxwFguF2QlY7ZPgfDTJj3GZr7yT225tiheKae6mAg2aZ22Vi/OfQXh9g/s0w5UYX97Snv9rtmbZ7GIryBYhoyhmwel9QFy51KUvUCGrdob12M7Q9JAIZhcGXalTzR8ASvV71OupGOz/BxWtJpBNl2gdvD3YOerp5cXH0xuWYuA9wDtnue4/zHMb1+Ov9u/DcjPCPiPQ1pA3p6e1IdreaQ1EOatTUGG2PLKCUxTEiewI3lN/LHkj/S19uXru7tv5F/edblTK+azjM1z+DGzdU5VzPSP5L14fVcWnYpAH7Tz+XZl5OJHrz5cwzD4NZOtzK9bDovVL6A1/DSwdOBi/IuItudTXdvd8alNr/dZ6B/INcVXxd7eNQA/wA2hDdsdexzc89lWvE0Ml2Z9Pf1p9FuesPhgU0PUBgqBGBE8gj6+Prs+YmKAIZt2y12sv79+9tz585tsfPtaV988QWDB7ed+3gWLFjAkCGttSjY2vz588nPbzvv2i9YsIC+fRPzHtJdsWzZMnr27Ol0jLhZvXr1Lv/75BQ8iRmpY2PfC7c/uIWUlpYSiUTo169t3CJRXl5ORUVFm3nNrqmpobCwkGHDhjkdJS7q6upYuXIlI0cm3udq74q6ujqWLVvGqFGjnI4SF+Xl5axevbrN/I1QXl5OUVFRm3k9gKa/EQ44YOce7BmwApyx9gwe6fYIqa5UAN6ufptlgWX8uf2f90TMHZaWlva1bdtt4wdIWkyCXiIUEdk7ZK17kcyi16nudLTTUUREZC8xr34ep685ncmZk2NFrUhrl1BLkUVE9jaV3U6mstvJTscQEZG9yKiUUbzU66Wt2o/IOIIjMo7Yxh4iiU9XbEVERERERKRVU2ErIiIiIiIirZoKWxEREREREWnVVNiKiIiIiIhIq6bCVkRERERERFo1FbYiIiIiIiLSqqmwFRERERERkVZNha2IiIiIiIi0aipsRUREREREpFVTYSsiIiIiIiKtmgpbERERERERadVU2IqIiIiIiEirpsJWREREREREWjUVtiIiIiIiItKquZ0OUHXqVSSffyLeA0fG2hqe+A+hWd8Q/nIhrl6dY+3JZx6Pf/KhTsQUSWiu4CbaLfk7SZXzsTzp2KaH8t5nUdfhsN06bsf506hrdzC1HSc2a/dXLSK96HXK8q/ZreOLiIiIiMSD44Wt7+iDCLw5q1lhG3xzFilXnkndhk1kvznDwXQirYBt02XehVR3OY4Nw+8EwN1QRFrpR3vslIHMwQQyB++x44uIiIiI7AznC9sjxlF/1zPYoTCG10O0sBSrtAJXx1yno4m0Csnlc7BND1XdT4m1RZI7U9nz93gaiuj43ZWY0QYASvOvozF7OMnlX5G7fDpRTzq+muXUdppEMK0fWQXPYFgBikbOIJzSren4m74ge9UjuCJ1lA68kvr2E0gu/4rs1Y9TuO+D+KsW0H7x3zCsEJbpo2To3wil9nTkeyEiIiIieyfHC1szMw3P0H6EPpmH77AxBN/8BN+R48AwiK7bQMWvL4yNTb3hfLz76iqRyJZ8tSsJZAzaZl/El836/R/Ddvnw1K+h07d/Ye24V5r2q1nG6oPexPJk0uujw6ju9hvWjnuJrIKnyVrzLGX5VwPgaSxi7diX8DSso9ucKazOPaDZOUIpvVg75lkw3SRvmk3esrspGnnfnp20iIiIiMgWHC9soWk5cvDNWfgOG0PgzVmk3TYVAFe3jlqKLLKT2i+6maSKb7BND+v3f5z2i2/BV7MUDBfeujWxcYHMwUT97QAIp3SlPncsAMG0fiSXfxUbV9txEhgm4ZQehJO74K1b3ex8ZqSWjvOvwlu/FtswMKzInp+kiIiIiMgWEuKpyL5fjSY0ez7hRSuhMYhnn75ORxJpNYJpffBXL4ltlw6+nvWjn8AdqiC74Cki3lzWjP8Pa8a+jGGHY+Ns07vFUczN24aJYW9ZnBrNT2g0385bfh8NOftTcND/UTTqAUwrGKeZiYiIiIjsmIQobI2UJLyjh1B71T34jj7I6TgirUpDzmgMK0Tm2hdibUa0EWi6mhr154FhklH0BoYd3enjp214B2wLT/06PA2FhFKa3z9rhmuJ+NsDkFH42m7MRERERERk1yTEUmT4YTnyH2/Fd++Vsbaf3mPr/83hJE85xol4IonLMCgcOZ32S/5O9qrHiHqzsVxJlA24jEDGIDp/PZX0wtepzxuH5Ure6cOHkzrR/fOTcEXqKBl8A7bL16y/vPdZdJo/jZyVD1LX7sB4zUpEREREZIclTmF7+BjyVr0V23Z1aU/eEl39EdkRUX87ikfctc2+NQe+Hvt648C/ANCQsx8NOfvF2teNeTr29ZZ9G4bets1jbjkmkDWc1Qe/E+vb1P/PuzgLEREREZFdkxBLkUVERERERER2lQpbERERERERadVU2IqIiIiIiEirtluFrWEYmYZhvGIYxlLDML43DGNMvIKJiIiIiIiI7IjdfXjUvcA7tm3/xjAML7Dzj1wVERERERER2Q27XNgahpEBHAhMAbBtOwSE4hNLREREREREZMcYtm3v2o6GMQx4GFgCDAW+Bqbatl3/k3HnAucC5OXljXzuued2K3AiaWhowOPxOB0jbkKhEF6v1+kYcRMKhXC7E+YTrXZbOBzG5XI5HSNuIpFIm5pPNBptU/+//fh60FbmFA6HMQyjzbzGRSIRLMvC7/c7HSUuIpEI0Wi0Tc0nHA63mfmEQiEsy2ozPz+hUNN1mLb2N1xKSorTMeLmsMMO+9q27VFO55DWZXcK21HAHGCsbdtfGoZxL1Bj2/Z1P7dP//797Tlz5uxa0gT05ZdfMmjQIKdjxM3ChQvb1HwWLVpE3759nY4RN8uXL6dPnz5Ox4ibFStW0K9fP6djxM3KlSvb1M9PeXk51dXV5OfnOx0lLqqqqiguLmbo0KFOR4mL2tpaCgoKGDFihNNR4qK2tpYVK1YwcuRIp6PERWVlJatWrWLYsGFOR4mL0tJSiouL28xrXElJCRUVFQwYMMDpKHGzZMkSRo8e7XSMuMnMzFRhKzttdx4eVQgU2rb95Q/brwBt4zesiIiIiIiItBq7XNjatl0CrDcMo/8PTYfStCxZREREREREpMXs7s1TFwHP/fBE5NXAGbsfSURERERERGTH7VZha9v2d4DWv4uIiIiIiIhjduceWxERERERERHHqbAVERERERGRVk2FrYiIiIiIiLRqKmxFRERERESkVVNhKyIiIiIiIq3a7n7cT1xUDDgOV7/uEImAy4X3uAn4zzgWwzRpuOsZwh/Pi421A0GsdSVkff0CRkqSg6l/mV1eTfSfz2AvWglpKRgeN+bpv8Y8ZN9tjrfmLcF65i3c917ewkl3jP3x19hX3Ivx0t8xenSK77Hf/BT7+wLMy0+P63Gl9XGFquj2ZdOnhrmDm7ANF1FvFgCGHcY2PLGxvtrlrB/1APXtDnQkq0iiqohUMLNiJsuCy0g1U8lyZXFBzgVE7AgzymewKboJ27Y5LPUwfpf5OwzDcDryXuXY9cfyetfXd3j8/MB8Xql5hVva3cIXDV+wLryOkzNO3oMJd84XgS/4V/2/mrWtiazh+szrGekbyev1r/N03dM8nfc0KWaKQyn3bp/Vf8b1JdfzZNcn6ebtRkm4hCnrp9DV05WIHaGfrx+Xt7sct5EQZYHILkuM/4P9XjLeuBcAq7yKukv/iV3XSPLUU0m+9DS49LTY0LrL/ol5xLjELmptm+hld2H8ejzuv13Y1LZhI9Yn3zicbNfZ734BQ/thvzsH49zJTseRNirqzaRg/GsA5C6fgeVOpqLXmVuNy1z3EunFb1KfN66lI4okNNu2uaHsBg5PPZxr210LwKrgKiqjldyx8Q6m5kxlVPIoAlaAm8pu4o3aNzg2/ViHU8uOGpM8hjGMcTpGM2P8Yxjj35zpnYZ3+CTwCcO9wwH4NPApfT19+SL4Bb9K+pVTMfdqH9Z+yD7+ffiw7kOmZE8BoJO7E490fYSoHeXy4sv5uO5jfpWmfx9p3RKjsN2CmZNJyi1/ouY3l5F08W+bvZMcfP0joms3kHL7nx1MuH323MXgceP6zeYXCKNjHq5TJmIXbyR63QPYjUEAXFf+AXNov6ZB9Y1ELv4HdmEp5qiBmFedgWGaWO/MJvp407u75rhhuC7+LQDhcWdi/nYS1qffYvg8uO66DCMnI/7zaQjA/BUYM6/CvuxuOHcy9tffYz/yGmSmwapCGNAD4+bzMQwD+/P52Pc8D0k+GNIXisow774Mu7oO+5ZHoXgj+L0Y087A6Nut+bk+/Rb78dchHIGMVIyb/7hH5iStl7duDbkrH2DNmOfA0N0UIlv6LvAdbtwcnX50rK23rzdv175Nvj+fUclNHz3vN/1clHMRl224TIWtQ+YH5vNs9bOkm+msCa+hr7cvV+ZciWEYzG2cy4OVD+I3/OT78mP7vFv3LstDy7kw+0LmNMzh+ZrnidgR0sw0rsq9iixXloMzgqJIES/Wv8gd2XdgGiYbIhtotBv5Y9ofean+JRW2Dmi0GlkYWMhdne7impJrYoXtj1yGiwH+AWyKbHImoEgcJeRfha5uHSBqYZdXxdqihaU03Pk0qf+8FMPtcjDd9tmrCjEG9Nh2Z1Y6rplX4Xn+r7j/fhHWP57evN/i1biu+APul+/ALizD/nAu9sZKovf9C/dD1+B+/m/Yi1djffTD0uzGIMY+ffD86zaMEQOwXvtwz0xo1jcweh+M7h0hIxX7+4Km9mVrMS75HcaLt0FRGcxfjh0MYd/2BMY9f8F8+maoqt08v4dfxejfHfP5v2L88UTsGx/e+lxD+2E8fgPms7diHDYa+5m39sycpHWywnT67nJKB1xBJCm+S+JF2oI1oTX09fXdZns/b79mbZ08nWi0G6m36lsqnvzEytBKzs86n0c6PkJJpITFwcWE7BD3VNzDzXk3M6PDDCqsim3um+/P59729zKz40wOTjmYl2peauH0zUXsCP+s/idnpp1JnisPaLpaO94/nkGeQRRFiqiMVjqacW/0ef3n7Je8H129XUk301keXN6sP2SFWBpYyr7J275VTqQ1SbgrtttiR6PU/+Uukv/8O1zdW98fs9G/P4H13XIMjxvXzGlE73gSe9lacJmwtiQ2zsjvhdGlHQDmxDHY3y0Htwtj1ECMrPSm9iPGYn+7FCaMAo8bY3zTUh9jYE+sOYv2SH77f19gnDKx6TyHj25ajjxuGOT3wmif3TSmX3fYsAmS/dA5D6Nz3ubxr33UdKD5y+H2i5va9x3UdAW3rrH5ycoqsK+5H3tTVdNV2055e2RO0jrlLZ9OMK0PtZ2OcDqKiMhu6+/rT5676fdcL28vSqOlJIWT6ODuQGdPZwAOTT6U/9b9d6t9N0U28beqv1ERrSBiR2jvbt+i2X/qubrn6Oruynj/+FjbrMAsrs68GtMwOcB/AJ8HP+fXyb92MOXe58O6D5mc0XQL2SGph/BB7Qccn3E8xZFizll/DiWREvZP3p/evt4OJxXZfQlZ2EbXlYDLxMjJBCAw8yWMdln4TmgdS1iM3l2wPpwb23ZddQZmZS2R067Fev5tjOwMXP+6DSybyAFTttjxJw/w2N7zPNyuzUu1TROi0bjk35JdXQfzvsdeVYhtGBC1mnKNHQqeLf73cZlNfbt7vjufwTh1EsaBIzYvdxYBksu/Ir3kXQrG/dvpKCIJq7u3O7PqZ22zfUFgQbO24nAxSUaSHujjIA+bH4hnYhK1d/z3+MzKmUxOm8yY5DGxZc1OWRhayOzgbO7OvjvWtia8huJoMddXXg9AhAjtXO1U2LagmmgN3zZ+y+rQagwMLNvCMAyOyzgudo9tdbSai4ou4vP6zxmbMtbpyCK7JeGWIlsV1dTfMBPf747CMAwi3y0l+NoHpNxyodPRdpixbz4Ew0Rffn9zY6DpnlrqGiA3E8M0sf/7WbNi0F68CruoDNuysN6dgzGsP0Z+76YCr7IWO2ph/W82xogBLTeZD+fCkWMx37gb8/W7MN+8p+kq6nfLtz2+W0co2ohdvLFpTu99ublvWH94Z3ZT+9ffQ2YqRupPHgJW1wB5TfcI2W99FvfpSOtkhqvpuOAaiof+HcutP8JFfs5w/3DChHmz5s1Y2+rQarp6urIosIivG78GIGgFub/8fk7KOMmpqPIzunq6UhoppThcDMDHDR9vc1y9VU+uOxeA9+rfa6l4W6mz6ri3+l4uSb+EZDM51j4rMIvfpv6WR/Me5dG8R3ky70kqohWURcscy7q3mVU/i8PSDuNf3f/FC91f4MUeL9LB3YGyyOZ/gwxXBudkn8MLlS84mFQkPhLjim0gRPUxU7f6uB+AhvtewG4MUnvaNc12SZ1xFa5uHZ1Iu12GYeD65yVE73qW8NNvYmSlgd+H6+JTMAb0JHL5PVhvfYZ5wJCmByz9uN+gXkRvfyr28ChjwigM08R10SlEzrsVaHp4lHnwqBabi/3uHIzTj2o+v0P2xf73B9C53VbjDb8XrvwD9tQ7sZN8MLDn5r5zjse+5VHsU69penjUDeduvf85x2NPm4GdngKjBjY9aEr2ellrX8QdqqDDopuatW/qfa6WJYtswTAMbmx3IzMrZvJi9Yt4DS/t3e25IOcCbm5/MzPKZzC9fDqWbfGr1F9xXPpxTkeWn/AaXqZmT+W6jdfhN/wM9g2mwWrYatzvM37PrRtvJdVMZZh/GKWUOpAW3m58m2qrmgdqH2jWXm/Vc2PWjc3axvjH8GngU05IOaEFE+69Pqz9kFOyTmnWdmDKgVsVseNSxvFU5VMsaFzAkKQhLRlRJK4M27Zb7GT9+/e358yZ02Ln29O+/PJLBg0a5HSMuFm4cGFc5mM3BDCS/di2jX3HUxhdO2CcOikOCXfOokWL6Nt364eotFbLly+nT58+TseImxUrVtCvX7/tD2wlVq5c2aZeD8rLy6muriY/P3/7g1uBqqoqiouLGTp0qNNR4qK2tpaCggJGjBjhdJS4qK2tZcWKFYwcOdLpKHFRWVnJqlWrGDZsmNNR4qK0tJTi4uI28xpXUlJCRUUFAwa04Aq4PWzJkiWMHj3a6Rhxk5mZ+bVt2y13JUfahMS4Yitty38+xnrrs6Yr8P26w+QJTicSEREREZE2TIWtxJ1x6iRHrtCKiIiIiMjeKeEeHiUiIiIiIiKyM1TYioiIiIiISKumwlZERERERERaNRW2IiIiIiIi0qqpsBUREREREZFWTYWtiIiIiIiItGoqbEVERERERKRVU2ErIiIiIiIirZoKWxEREREREWnVVNiKiIiIiIhIq6bCVkRERERERFo1FbYiIiIiIiLSqqmwFRERERERkVZNha2IiIiIiIi0am6nAwBU9DsG/xnHkjztLAAaH3sNu76R5ItPpeG+5zFSkkg663iHU+648MjfYRwxFvetFwBgR6JEJv4JY3Bv3PdeTuTGh7CXrdm8Q20DBEN43nvAmcAiItKmPFf1HB/WfYiJiWmY/DnnzzxS+QjnZZ9Hf19/NoQ3cFXJVVyYcyH7Ju/rdFwR2YMqIhXMLJ/J94HvSTVT8RgeTs48mfGp452OJhJXCVHY4vUQeu8L/OediJmd7nSa3Zfkw161HjsQwvB7sb9cCO2yYt3uG8+LfW1bFtFzb8U8Si8uIiKy+5YEljCnYQ4PdH4Ar+GlOlpN2A7H+jdGNjKtdBrnZZ+nolakjbNtm+tLrufwtMO5tv21AJSES5jdMLvZuKgdxWW4nIgoEjeJUdi6XfhOmkjgyddJvvQ0p9PEhTl2GPZn32L8an+s/32BOfEA7G+XbjXOevx1yErHPH6CAylFRKStKY+Wk2Fm4DW8AGS4MmJ9FdEKbt94O2dmnckBKQc4FVFEWsi3jd/iNtwck3FMrK2DpwOTMybzTs07fFr/KY1WIxYW93S+h39V/otP6j8hbIcZlzKOKdlTAHiv9j1erX6ViB1hoH8gU3On4jJcfNXwFY+WP4qFRYYrg392+ieNViPTN02nIFRA1I7yh+w/MDZlrEPfAdmbJEZhC/h/fxTVR1+M/5zJTkeJC3PiGKKPvIoxfjj2inWYxxy0VWFrLVqF9Z+PcT/3V4dSiohIWzMqaRTPVj3LH9b/gRFJIzg45WCGJg0F4I6NdzAlawoHphzocEoRaQlrQmvo6+v7s/0rgit4tOujpLvSmdswl6JwETM7z8TG5tqSa5nfOJ9MVyYf1X3E9M7TcRtu7tl4Dx/UfcB+yfvxz7J/ck/ne+jo6UhNtAaA5yqfY3jScK5odwV10TouKLqAEUkjSDKTWmraspdKmBlsLiUAACAASURBVMLWSE3Ge9wEgk//H/h9TsfZbUbfblC8Cft/X2COHbZVv90QIHrdTFzXn4ORkepAQhERaYuSzCRmdprJwsBC5gfmc+vGWzk762wAhicN54O6D5iYOhG/6Xc4qYi0tHs33svCwEI8hodj049lZPJI0l1NtwHOa5jHvMZ5nFt4LgCNViNF4SJWh1azIriCPxb+EYCgHSTTlcmSwBKGJA2ho6cjwObjNM5jdv1sXqp6CYCQHaIsUkZ3b/eWnq7sZRKmsAXw/+EYao6/BN/kQ52OEhfGgSOI3vM87oeuwa6ua9YXveMpzINGYu432KF0IiLSVrkMF8OShjEsaRg9vT15t/ZdAE7OOJn3697n5rKbuaX9LbqnTqSN6+Htwaz6WbHtqXlTqY5Wc37h+QD4jeZvcJ2aeSpHZxzdrO3V6lc5PO1wzsk5p1n77Prm9+n+yLZtbuxwI9283eIxBZEdllAf92NmpuE9YizBV95zOkpcmMcehHnO8U1Xb7dgvf8l9vJ1mH86yaFkIiLSVq0PracwXBjbXhlcSXt3+9j2BdkXkGKmcOemO7Ft24mIItJChicNJ2SHeL369VhbwApsc+yo5FG8Xfs2jVYj0PSgucpIJSOSRjCrfhaVkUoAaqI1lIRLGOQfxILGBWwIb4i1A+ybvC+vVb8We31ZEVyxx+YnsqWEumIL4D/zOALPvuV0jLgw2ufg+u2krdqjM1+GQJDI6dc1a3c/cROG39tS8UREpA1qtBuZsWkGdVYdLlx09nTmktxLuKnsJgAMw+CKvCu4tuRaHq58mPOyz9vOEUWktTIMg1s63MLM8pm8WPUiGa4Mkowkzs05l6AVbDZ23+R9WRdax4VFFwKQZCQxrf00enh7cGb2mVyx4QpsbFy4mJo3lUGeQVyadyk3lNyAhUWWK4t/dPoHp2Wdxv3l93N24dlYtkVHT0f+1vFvTkxf9jIJUdhmf/dS7GszN4vsBa/EtpMvPtWJSLvF89njW7WZowZhjhrU1P/qnS0dSURE9hL9fP24r9N9W7Xf1fGu2Ncew8PtHW9vyVgi4pAcdw7Xtb9um32TaH4B5oTMEzgh84Stxk1IncCE1K0/wWP/lP3ZP2X/Zm0+08eleZfuRmKRXZNQS5FFREREREREdpYKWxEREREREWnVVNiKiIiIiIhIq7Zb99gahrEGqAWiQMS27VHxCCUiIiIiIiKyo+Lx8KgJtm1visNxRERERERERHaaliKLiIiIiIhIq2bszoezG4ZRAFQCNvCQbdsPb2PMucC5AHl5eSOfeeaZXT5fomlsbMTlcjkdI24ikUibm49ptp33bizLalP/Pm1tPtFoFK+37XwOdSQSwTCMNjOnSCSCZVn4/X6no8RFJBIhEoloPgkqFAphWVab+fkJBoMYhoHbnRCfErnbAoEALperzf0OSkpKcjpG3EycOPFr3eIoO2t3X6HG2bZdZBhGO+A9wzCW2rY9a8sBPxS7DwP069fP3meffXbzlInj66+/plu3bk7HiJvVq1fTtWtXp2PETUFBQZuaz/r16+nTp4/TMeJm1apVDBo0yOkYcbNs2TKGDRvmdIy4qa2tpaioqM3Mqa6ujpUrVzJy5Eino8RFbW0ty5cvZ8SIEU5HiYvKykpWr17N0KFDnY4SF2VlZRQXF5Ofn+90lLgoLCykqqqKvn37Oh0lLtasWUMoFKJnz55OR4mblStXMnz4cKdjiDhqty5n2bZd9MN/y4DXgP3iEUpERERERERkR+1yYWsYRophGGk/fg0cDiyKVzARERERERGRHbE7S5HbA68ZhvHjcZ63bfuduKQSERERERER2UG7XNjatr0aaBs3w4iIiIiIiEir1XYeGSsiIiIiIiJ7JRW2IiIiIiIi0qqpsBUREREREZFWTYWtiIiIiIiItGq781RkEZE9ovfr/Qml9wPANkw2DbmBQPaIXTpW9vf30JizL43txsYz4l7tmHXH8Ea3N5q1rQ+v597ye6mz6gjbYQb7B3NJziUOJZS25oWaF/io/iNMw8TE5OKsi3ms+jEqohV4DS9u3Pw5+8/09vZ2Oqq0cr+t+y1Heo7kNN9pALwZepOAHeA3vt/ExlzVcBWdzE5c7L/YqZgisg0qbEUk4dguP+sn/B8AyWWfkrPkTorGPb9Lx6oY+Od4RpOfMbNiJpPTJ3NA8gEAFIQKHE4kbcWS4BK+bPySGR1m4DW8VEeriRAB4MqcK+nn7ce7de/yaNWj3NbuNofTSmvnwcPcyFyO9R5LupG+VX+RVYSFxdLoUgJ2AL/hdyCliGyLliKLSEIzwnVEPRmx7cwVj9Dlk8l0/ejXZC+9FwB3QyHdPphI3nfX0PXDI+g0ewpGNABAu2+uIKX4bQC6v3sw2UvvpcvHx9L1w6Pw1K5q+Qm1URXRCnJdubHtnt6eDqaRtqQiWkGGmYHX8AKQ4cogx5XTbMxA30DKo+VOxJM2xsTkEM8hvB16e5v9s8OzGecexxDXEL6OfN3C6UTkl6iwFZGEY0QDdP3oaLp9MJF2311NZf8/AZBU9ime+rUUHvhv1h/8Br6qRfg3fQWAp34t1T1/x/pD3ibqSSel+H/bPHbUm0Xhwa9T3fNUMlc+1mJzausmp0/mitIruLr0av5d82/qrDqnI0kbMdI/ko3RjZy14SxmVMxgQWDBVmPmBeYxJmmMA+mkLTrcczifRT6jwW7Yqu+LyBcc4D6AA9wHMDsy24F0IvJztBRZRBLOlkuR/RXf0u6by1k/4b8kl31OctlndP34GACMaAOe+rVEkjsRTu5CKGMQAMHMfDwNhds8dl3Hw5vGZOSTWvxuC8xm7zAxdSKj/KOYG5jLFw1f8FbtWzzY6cHYVTaRXZVkJjG9/XQWBRexILiA28pv44zMMwC4vfx2InaEgB3g/vb3O5xU2opkI5kD3QfyTvgdvGx+DVsVXUWakUaumUu2kc1DwYeos+tINVIdTCsiP1JhKyIJLZA9HFeoEleoArCp7HceNT1+22yMu6EQ29yigDJcGHZwm8eLjTNcGHZkD6XeO+W4c5iUOolJqZM4p/gc1oTW0M/Xz+lY0ga4DBdD/UMZ6h9KD08P3q9/H2i6x7avpy+PVj/KzKqZXJ97vcNJpa04wnsE0xqmcZDnoFjb7Mhsiq1iLqq/CIBGu5EvI19yqOdQp2KKyBa0FFlEEpqndhWGbRH1ZtLQbhzpa1/BiNQD4GoswRXUfXWJYG7jXCI/vFFQEa2g1qol1527nb1Etm99eD1F4aLY9qrwKtq528W2DcPg9PTTWRpcyvrweiciShuUaqQy2j2aj8MfA2DZFnMic7g9+Xamp0xnesp0LvNfpuXIIglEV2xFJOH8eI/tj0qH3w6Gi8Z246mtXUWXWScBYLuTKRl5Jxgup6LulYJ2kFMLT41tT06fzKbIJh6oeCC29PjszLPJdmU7FVHakIAdYGblTOqtekzDpJO7E1OzpnJr+a2xMT7TxwlpJ/By7ctcmn2pg2mlLTnKcxTvhptuWVlqLSXbyCbb3Py6NtA1kKJgEZVWJVlmllMxReQHKmxFJOGsOnbZz/ZV955Cde8pW7WvP+S/sa+r+pwd+7psxB2xr9ce/nHs62DWPhSNe243Uu69/td92w/mOp/zWziJ7A36evtyd/u7t2r/R7t/NNs+If2ElookbdiTqU/Gvs40M3kq9anY9i3JtzQbaxomD6Y82FLRRGQ7tBRZREREREREWjUVtiIiIiIiItKqqbAVERERERGRVk2FrYiIiIiIiLRqKmxFRERERESkVVNhKyIiIiIiIq2aClsRERERERFp1VTYioiIiIiISKumwlZERERERERaNRW2IiIiIiIi0qqpsBUREREREZFWTYWtiIiIiIiItGoqbEVERERERKRVU2ErIiIiIiIirZoKWxEREREREWnVVNiKiIiIiIhIq6bCVkRERERERFo1t9MBRERERH7OkeuPpIenB1E7SldPV/6S/Rf8pt/pWCIikmB0xVZEREQSltfwMrPDTB7q+BAew8Nb9W85HUlERBKQrtiKiIhIqzDYN5iCUAEAN226iY2RjYTsEMelHceRqUcCcFzhcRyXehxfBr7EZ/i4IfcGslxZzGmcwws1LxCxI6SZaVyZcyVZriyeqX6G0kgpGyIb2BjdyLmZ57I0tJR5gXnkuHK4Kfcm3Iab56qfY07jHEJ2iEG+QVycdTGGYTj57RARkS3oiq2IiIgkvKgdZW7jXHp4ewBwadalzOgwg+ntp/N67evURGsACNgBBvgG8ECHBxjsG8zbdW8DkO/L555293B/h/s5KPkgXq55OXbs4kgxt7e7nRtzb+QfFf9gqG8oD3Z4EJ/h46vGrwA4JvUYpneYzkMdHyJoB/ky8GXLfgNEROQX6YqtiIiIJKyQHeKCkguApiu2E1MmAvCfuv8wu3E2ABujGymKFJHuSseDh/39+wPQ19uXbwLfALApsonbqm6jwqogbIfp4O4QO8e+SfviNtz08PTAsi1G+UcB0MPTg9JoKQDzg/N5ufZlgnaQWquW7p7ujE4a3TLfBBER2S4VtiIiIpKwfrzHdkvzA/P5NvAtd7e7G7/p5/KyywnZIQBchiu2RNjEJGpHAZhZNZPJaZMZkzSG+YH5PFvzbOx4HjxN4w2z2f4GBlE7SsgOMaOy6epwnjuPZ6qfiZ1PREQSg5Yii4iISKvSYDeQZqbhN/2sD69naXDp9vexGsh15QLwfv37O3W+H4vYdDOdRquRzxo+2/nQIiKyR+mKrYiIiLQqI/0jeavuLc7ZcA5dPF0Y4Buw3X1+n/F7/rrpr6SaqQz1D6UkWrLD50s1U5mUOonzS84ny5VFP2+/3YkvIiJ7gApbERERSVj/6fKfrdq8hpdb827d7vjxyeMZnzwegDFJYxiTNGar8adlnPaz+2/ZNyVjClMypuxUdhERaTlaiiwiIiIiIiKtmgpbERERERERadV2u7A1DMNlGMa3hmG8GY9AIiIiIiIiIjsjHldspwLfx+E4IiIiIiIiIjtttwpbwzC6AEcBj8YnjoiIiIiIiMjO2d2nIt8DXAGk7egOFRUVu3nKxBEIBFi1apXTMeKmoaGBZcuWOR0jbiKRCAUFBU7HiJtwOExJyY5/PEWiC4VCVFZWOh0jbiKRCLW1tU7HiJvq6mosy6KxsdHpKHFRU1ODZVnU19c7HSUuKioqiEajbeb/udLSUqLRaJt5TSgsLMSyLDZu3Oh0lLhYvXo1aWlpFBcXOx0lLpYtW0bnzp1Zv36901HiJhgMtpmfH5FdtcuFrWEYvwbKbNv+2jCMg39h3LnAuQB5eXlt6g9zr9eLz+dzOkbcmKbZpuYTDAbx+/1Ox4ibYDBINBp1OkbceL1eqqurnY4RN4ZhUFRU5HSMuLFtm0AgwPLly52OEheWZREIBNrMm3fRaJRgMMiKFSucjhIXkUiEUCjEunXrnI4SF7ZtE4lEKCsrczpKXKSnpxOJRNrMG0NdunTBsiwikYjTUeLG5XK1mZ8fkV21O1dsxwLHGIZxJOAH0g3DeNa27d9vOci27YeBhwH69etn77PPPrtxysQyd+5cunTp4nSMuFmxYgUdO3Z0OkbcrFmzhm7dujkdI25Wr17NgAEDnI4RN4sXL2bIkCFOx4ib7777jpEjRzodI26CwSCLFy9m//33dzpKXNTX17No0SL23Xdfp6PERU1NDUuXLmXEiBFOR4mLiooKCgoK2sxrQllZGRs2bCA/P9/pKHFRXFxMRUUF/fr1czpKXKxfv56GhgZ69+7tdJS4Wb58OUOHDnU6hoijdvkeW9u2p9m23cW27R7AKcCHPy1qRURERERERPY0fY6tiIiIiIiItGq7+/AoAGzb/hj4OB7HEhEREREREdkZumIrIiIiIiIirZoKWxEREREREWnVVNiKiIiIiIhIq6bCVkRERERERFo1FbYiIiIiIiLSqsXlqci7q91znYhkDsSwIkQy+lJ9wH3gTibvX73YeMpqALxF75M273oqD30RK7Wrw4l/2eD/7cOm7qdTMuByAHIKnsQVbaCszwUAZBT/H3kFT4BtYRsuGjMGU9L/MixPupOxRUR2yMHLDqaXrxcRO4LLcDExfSInZZ2EaTS9V7qgYQEzNs6gwWoA4KSskzgm8xgnI/+iQ1YcQk9vTwBMw2Rq3lQGJw3e7ePeUXoHJ2WeRA9fD04uOJmHuj1Epitzt4+7PYcXHE5Pb09sbExMLsq5iHx/PgCF4UIeKH+AdeF1pJqpJJvJ/CHzDwxJGrLHc+2qowqPooenB1E7SldPVy7Lugy/6ef4ouN5rfNrsXHv1b/HitAKLsi6wMG0e58e/+5JXddj2bTfPU0NVoSub+1PMHsYZWMfI3XNK2QtvI1oUvvYPhv3u5dwel+HEu9dzLp1ZHz4eyqPmRVrS/7uDmxPCo35fwIrQs7L+xDocyr1I69zMKnI7kuIwtZ2+ak46gMA0j+7gOTlT9Mw6PxYv3fDp6TNvZaqQ/+V8EUtgGV6SS/7gI29zibqzWrWl7rxM3LXPsOakQ8Q8bcHO0pm0Ru4Q+WEVNiKSCvgM3w83uNxACojldy84WYarAbOzD2T8kg5N2+4mb92/iv9/f2pilTxl8K/kOfOY0zqGIeTb5vX8PJY98cA+Kr+Kx4pf4R7u9zbbEzEjuA2du5X5hXtr4hbxp3hNbw81PkhAOY2zOWxyse4q+NdhKwQ15Rcw3nZ53FAygEAFIQKWB5czhASt7D1Gl7ub38/ALeX385/6//L5LTJDqeSH1muZLw1yzGiAWyXn6Syz5oVsQD1XY6iYvjNDiWUX+Ld8AnR9F741r5B/YhrwTCcjiSyyxJuKXK43f646gpi257SL0j78jKqJjxDNK2Hc8F2gm24qOjyG3LWPrNVX97qRyjp95emohbAcFHV5XhCKT1bOKWIyO7LcmdxefvLebXyVWzb5rWq1zgi4wj6+/sDkOnO5I95f+S5iuccTrpjGqwGUs1UAL5t+JaL1l/E1cVXM2XtFACuKb6Gc9edy5S1U/i/6v8D4PO6zzlr7VmctfYsTltzGqcUnALA1MKpLA0sdWQeP2qwN8/ng/oPGOQfFCtqAXp6ezIxbaJT8XbaYN9giiPFTseQn2joMIGkDR8CkLL+Deq6Ju4KDWnOV/AqjQPPJZrSBffGuU7HEdktCXHFNsaK4C3+kFCnCQAY0RCZn5xB5WGvEs1oXUtWKrqdQp/PT2BTjzOatfvqVtKYPtChVCIi8dfJ2wkLi8poJQXBAialT2rW39/fn4Jgwc/s7byQHeKstWcRskNURCu4q/Ndsb4VwRU80f0JOno6AnBl+ytJd6UTtIKct/48Dkw9kLGpYxmbOhaAGzfcyNCkoY7M40chO8R5RecRskOUR8q5s+OdAKwJraGvt3X9Lt1S1I4yLzCPkf6RQNM8/1T6p1h/rVXLaP9op+Lt1eq7/prM7++jseOheKuXUtfjJPybNhdJKYVv4S+fF9veMOFVbJffiaiypWgAz4ZZ1I6+EyNUjb/gNera7ed0KpFdlhCFrRENkP3WoUDTFdvG3qc2dZgewnmjSFr5PLX73upgwp1nuVOp6nQ0OeuewzK3/eLtq11Ol4VX44rUU9J3KjUdJ21znIiI7DlbLkVe3LiY20pv44luTwAwwD8gVtQC/Lvq33xW9xkAGyMbKQwVkpGUAcALFS/gM3wcn3l8C8+guS2XIi8JLOH2jbfzaOdHtxp3Q+kNFIWL6OLpwo3tb2zhlDtuywI235vPxJSmK8xbLlGGzffYSssLZwzEXV9Eyvo3aOgwYat+LUV20s8tLTbwFr5HuMNYcCcR7PZrkhfcBfveCqarRROKxEtCFLZb3mPbrN0wqBr/MFnvn0jyontpGDzVgXS7rrz7afT+4iQqOx8Xawum9iGp5nvqc/YjmNaPVQe8Qsclf8W0Ag4mFRHZdcWhYkxMslxZ9PD2YHlwOePTxsf6lwWW0dPXOm63yE/KpzpaTVW0CgC/sfmNyW8bvuXrhq+5v+v9+E0/UwunErJDAMxrmMfHdR9zX5f7HMn9cwb5BzXNx6qih7cHCwILYn03tb+JZcFlPFTxkIMJt++nBawkpoZOvyJr4d8oOfAFXKEqp+PIDyxfFv/f3p3Hx1XV/x9/nVkyk71Jd+i+b3SnCy0FgQJFWZStFQRBRPGLiPIVRFFQ8YuAWoSfQBEqBaEoFBAF2ZfSDbpR6ELp3oamTbM2mWT28/sjadrShbYzyc1M3s/HI4/m3ntm7vswYeZ+5p57rgnt/3qYcCWx3G74Nz2Pt+QDCufUj4JwhSrw7nifyHGnOpBUJHEt7hrbA3iyqPzK38ncNAf/+qedTnNUYhn5VHU6i4LPn29ct6vXd+j02R/wBHc0rnPFQ07EExFJWGW0kj/s/APfKPgGxhi+XvB1/lv1X9YF68+cVcWqmFE6g2mF0xxOemS2hLcQszHy3AdO5heIB8h15+J3+dkS3sLq4GoAdkR28OeSP3NH5zvwuXzNHfmwtoa3EidOniuP07JPY1VwFQsCCxq3h/T5I0lS0/1iKgfeQCR/gNNRZF/eHOJZHfEWvw+ACVWQ8fnbRAuG4C35gLILl1N+4VLKL1xK9djf49v0wpc8oUjL1SLO2H4Z6yug4rTZFL5+AdbXllDX1JnoorTHFbTdOrtxuab9JDzhCnosvQ5snLg3l2BOH2raTXAwpYjIkQvZEFdvvrrxdj9n5p3JpQWXAtDO047bOt/GvTvvpTZei7WWiwsubrwGtSXac43tHrd2uhW3OXAo3pisMbxU9RJXbL6CrhldGeQfBMCru1+lKlbFbdtvA+r/G9x9/N3NE/4g9lxjC2Cx3Nz+ZtzGjdu4ubPjnTxc/jAPlj9IgbuALJPFZW0ucyyrpI9YVmeq+1x10G1fvMa2bMRvCbUd1VzRWr3qCf+PnA9+hmvJrwCoHfa/eCpWEu40Edx7v4wLdz2bnKW/oSYW2m+9SKow1tpm21m/fv3s+++/32z7a2qLFy+mR48eTsdImnXr1tGzZ2oMFzwSmzdvpl+/fk7HSJqNGzcydGjLvSXH0Vq1ahWjRqXPgc1HH33EmDHpM+lGKBRi1apVjB071ukoSREIBFi5ciUnnnii01GSYvfu3Xz66aeMHDnS6ShJUV5ezqZNm9LmPa6kpITi4mIGDx7sdJSk2L59O+Xl5Wnzmbpt2zZqa2vp3bu301GS5rPPPkub9zeADh06LLXWjnY6h6SWlj8UWUREREREROQwVNiKiIiIiIhISlNhKyIiIiIiIilNha2IiIiIiIikNBW2IiIiIiIiktJU2IqIiIiIiEhKU2ErIiIiIiIiKU2FrYiIiIiIiKQ0FbYiIiIiIiKS0lTYioiIiIiISEpTYSsiIiIiIiIpTYWtiIiIiIiIpDQVtiIiIiIiIpLSVNiKiIiIiIhISlNhKyIiIiIiIilNha2IiIiIiIikNI/TAUREREQkNfWY05OarudTOua++hXxKF1fHkuocDglEx4jZ/NzFHxyF9HMTriitUSzu1I56EeE2o5yNriIpB0VtiIiIiJyTOLuLDJ2f4aJBbFuP5kl84hldtyvTaDLVykf8RsA/CUL6bDw++yYNJtIXh8nIotImtJQZBERERE5ZrWdvkJm8dsAZG97iZqu5x2ybbDDeKp7TiNn0+zmiicirYQKWxERERE5ZoGuXyO76N+YWIiMqk8JFw4/bPtwmyF4qzc0UzoRaS1U2IqIiIjIMYvkD8QT+JzsbS9R2+krR/AI2+SZRKT1UWErIiIiIgmpPe4MCj75PwJdz/3SthmVq4jk6vpaEUkuTR4lIiIiIgmp6X4xcW8ukfwBuHctOmQ7365F5G6azY5JusZWRJJLha2IiIiIJCSW1ZnqPlcddFt20cv4y5ZgYnVEs7pSMu4hzYgsIkmnwlZEREREjsnWC1YdsC7YfhzB9uMAqOlxETU9LmruWCLSCukaWxEREREREUlpKmxFREREREQkpamwFRERERERkZR2zIWtMcZvjPnQGLPCGLPKGPPrZAYTERERERERORKJTB4VAk6z1tYYY7zAPGPMf621h57jXURERERERCTJjrmwtdZaoKZh0dvwY5MRSkRERERERORIJXS7H2OMG1gK9AH+Yq394Mses3v37kR22aKEw2GKi4udjpE0oVAorfoTDocpKytzOkbSRCIRqqurnY6RNLFYjGAw6HSMpInH44TDYadjJE1tbS3WWkKhkNNRkqK6upp4PE4gEHA6SlKUlpYSi8WoqqpyOkpS7Nixg1gsRkVFhdNRkqK4uJhYLEZ5ebnTUZKiqKiIjIwMdu3a5XSUpNi8eTOFhYXs3LnT6ShJE41G0+b9TeRYmfoTrwk+iTFtgBeAH1prV35h27XAtQDt27cfNXv27IT311IEAgH8fr/TMZKmrq6OzMxMp2MkTTAYJCsry+kYSVNbW0t2drbTMZIm3foTCATIyclxOkbSxONxamtr06ZPsViMurq6tPmbi0ajhEKhtHmPi0ajhMPhtPkMikajRCKRtOtPuhzzRCIRYrFY2vQH6o/h0uX9GuD0009faq0d7XQOSS0JnbHdw1pbaYx5BzgbWPmFbY8AjwD079/fjhw5Mhm7bBEWLVpE//79nY6RNCtXrkyr/qxevZohQ4Y4HSNpVqxYwahRo5yOkTRLlixh3LhxTsdImoULFzJ+/HinYyRNKBRi2bJlafMaVVdXs3LlSkaPTo/jpIqKCtavX8/w4cOdjpIU5eXlbNmyhaFDhzodJSnKy8spKipKm/6UlJRQXFzMoEGDnI6SFDt37qSsrIwBAwY4HSVpVq9enTbvbyLHKpFZkds3nKnFGJMJTAY+TVYwERERERERkSORyBnbzsCshutsXcA/rbX/SU4sERERERERkSOTyKzIHwMjkphFREREmYCZcwAAIABJREFURERE5Kgd81BkERERERERkZZAha2IiIiIiIikNBW2IiIiIiIiktJU2IqIiIiIiEhKU2ErIiIiIiIiKa1FFLZt/taO3BcnkfvCyeT+61TcOz8AwFM8j+w3ph7Vc3mK5zU+XpKj6wv735A9e/OzFCz/FQD5q6bT9YUBuIKlh2wvzcO7+WXaPFaAq/IzAFzVW8mdM97hVAIwa9csLttwGVdsuIIrN1zJqtpVR/zYOz+/k3d2v3PA+jV1a5i+Y3oyYx6x8mg5d3x+Bxevv5irN13N9zZ/j/d2v+dIlmQ4ff3pXLP1Gq7aehV3FN9BMB48bPspG6YkZb87Iju4autVSXmudDalaAr3lN/TuByzMS7dfim3l95+TM+3qG4R/9z9z2TFO2odnuxIzpK92TNXPUj2insByF5xLx2e7Ih796a929fMoMOTHfGUfdTsWSX15f01H/873927Ih4l58leZL56SeMq97Y3yX7xK2T/czTZcyaS+da3MTXbHEgrkphE7mObPO5Mqi+YC4Cn6C0yl/6WmnOO7Za4nuJ5WG82sY5jk5lQDiOeUUjeZ3+lcuitTkdp1bwb5xDtOI6MjXMIjtRr0VKsrF3J/Jr5/K3n38hwZVAZrSRiI0f02KiNHnLbwMyBDMwcmKyYR8xay61FtzIlfwp3HH8HUF+gzaue1+xZkiXDZPBot0cBuHPHnbxU9RKXFFzyJY+S5uI3frZEthCyIXzGx7LgMtq52x3z843LHMe4zHFJTHh0rMuHb+vLBIbcgPW3PWB7tM1AfJtfoHboTwDwbfk30fz+zZxS0oX1ZOMuXwPROvBk4vn8HWzWcY3bXeWr8S/4KXVnPkO8oP7vzLPlFVzVW4nldHUqtsgxaRmF7T5MpBqb0Waf5QDZb1+Ju+JTom2HUXvKDDCGvH8Oo/q8t7H+trhLl5P54a+oPfkv+NY+DsZNxoZnqRt3NyZchf+jP0A8gvUVEjh1BjazA/5lv8cVKMJVvQVXTRGhwd8nNPh7znU8hdX0uJicLc+xe8B1xPd57aQZRWrw7FxEzTkvkf3GNBW2LUhptJQ27jZkuDIAaOOp/3/k07pPeWDnA9TF68h35/OL435BO287rt98PX38ffi49mMm508GYHFgMU+WPkltvJYfdvwhE3InsCywjNlls7m3272srlvNfTvuI2zD+IyPnx/3c7r7ujdJf5bWLsVrvFxQcEHjuk7eTlxUeBGvVL7Cp8FP+Umn+gPym7fdzNTCqWyPbGdDcAM/6vQjAF6qeInN4c3c0PEGbt12KzujOwnHw1xceDHnF5wPwORPJ3NR4UUsqFmAz/j4fdffU+gpZF71PGaVziJqo+S587j9+Nsp9BQmrX9DM4eyIbQBgH9W/JP/Vv8XgK/mfZWL2ly0X9u6eB2/KP4FNfEaojbK1YVXMzFnIjsiO7hl+y2ckHkCK4Mrae9uz52d78Tn8rE2uJZ7SurPPp6YdWLScqe7E/0n8mHdh5ycdTLv1b3HKZmnsCpcP/IhGA/yYOWDbIlsIUqUy/MuZ3zmeF6ofoFNkU38pPAnbIps4u6yu7mvw328X/c+68Lr+EHBD6iIVfBAxQPsiO0A4Po21zPIN4jnq5/n9cDrAJyVfRZfz/160vpiXW7q+n6LrDUzCIz4+QHbQ12n4Ct6jdqhP8FdvRnrzSPu8iZt/9L6RLtNxrP1NaK9LsCz/jkivS/EvWMhABkr7iM8/KbGohYg2v0cp6KKJKRFDEUmVkfui5PImzOW7Hk/Ijj8fxs3eco+pnbs/7H7GwtxV28+7DDjeG43Qv2/TXDw96m+YC7RTuOJdhxH9blvUH3Be4R7fR3/x/c3tndXraPmrOeoPu9N/B/dA/EjO4vS2phYkM5vTGn8abNq/+GP1pNNTY9LyF0306GE4t3yCpEupxPP74P1FeAu1ZC1lmJMzhh2RnYydf1U/lD8B5YHlhO1UabvmM6dXe5kZq+ZfLXNV3lk1yONj4naKDN7zWRa22kA7Ajv4NGej3Jv13u5t/heQvHQfvvontGdB3s8yOO9Huea9tcwo2RGk/VnU2gT/fz9juoxp+Wdxvya+Y1noF+peoWv5n8VgFuPu5WZPWfyWM/HeK7iOaqiVQDU2ToGZw5mVq9ZDM8azkuVLwEwNGsoj/R4hL/1+htn5J3BU2VPJa1vMRvjg9oP6OXrxdrgWl6tfpUHuzzIg10e5D+7/8O60Lr92meYDH7b+bc80vURph8/nYfKHsJaC0BRpIgL8i/g8W6Pk+3OZm6gflTSPSX3cEP7G3is22NJy90anJJ5Cu/VvUfYhtkU2cSAjAGN256pfobhvuH8ueOfubv93TxW9RjBeJDzc86nOFrM/Lr5TC+fzg8Lfojf5d/veR+ufJgTfCfwYMcHeaDDA3T3dmddeB1vBN7gvg73Mb3DdF4NvMr68Pqk9qeu/9X4Nz2PCe8+YFvcm0ss6zjcFWvwbX6BUI/zk7pvaX0ivS7Eu3EORIO4y1cR6zC6cZu7Yg2xdsMcTCeSPC3jjO0+Q5HdJR+SPfc6dn99AQDR9iOx2ccDEGt7Au6arcQ48iFEJrCd7HeuxlW3E2IR4rndGrdFupwJbh/W7cP622HqShr3JXtZt5/iyf9tXM7e/CwZFZ/s12Z3n29z3JvnsLvftc0dT4CMjXMIDf4+AOFeF+LdMIfwoO9+yaOkOWS5spjZayYralewLLCMXxX9iivbX8nG0EZu3HIjAHHitPXsHZJ4et7p+z3HaXmn4TIuuvq6clzGcWwJb9lve028hju338m28DYM5rBDmJPtjzv+yMe1H+M1Xr5R8I2DtslyZTEqexTzq+fTw9eDqI3S298bgGfLn2Vudf37f0mkhG2RbeR78vEaLxNyJgDQP7M/i2sWA7ArsovbS26nLFpGxEbo7O2ccB/CNsw1W68B6s/YnpN3Dv+q+hcTsyeS6coEYFL2JD6u+5i+vr6Nj7NYHi17lI/rPsZgKI2WUhGrAKCztzN9fH3q8/v6syOyg5pYDTXxGoZl1h9ETs6dzAe1mhPiSPTM6ElJtIR3a9/lRP/+Z7qXBZexyC5iTs0coP71LImV0M3bjZ8U/oQf7PwB52Sfw2Df4AOe96PQR9xUeBMAbuMm22SzKrSK8ZnjG4vgCZkTWBVaRZ+MPknrj83IJdjrYjI/fRTr9h+wPdTjAvybXySj+F0qz3gO/4ZnkrZvaX3ibYfgqt6Kd8NzRLtNPmQ7Eywn6+XzIFpLZOC3CQ+9oRlTiiSuZRS2+4h1GIMJlmMaJiOybl/jNmvcsOeAzXjAxut/j4a++DSNshbdQmjID4h0m4KneB7+5XfvfT53xt6Gxo2Jx7DJ60qrYjPyCXQ9n9wNTzgdpdUxoQo829/HXb4ajAEbAwzhQdc4HU0auI2bkdkjGZk9kt7+3swpn0NPX08e6fnIQdt/8aySMWb/ZfZf/mvJXxmZNZK7ut5FcbiY67dcn9wO7KOnryfvVe+dKOqmTjdRGa3kms3X4DZu4nvel2G/M8tfa/M1nix9km6+bpyTXz/MbVlgGUsCS5jRYwZ+l5/rt1xPOB4GwIOnsd8uXMSIATB953SmFk5lYu5ElgWWMbM08ZEi+15jezTerH6TylglM7rOwGM8TN08lbCtz+81e4eOunARs7GEc7Z2YzPH8mjVo9zd/m6qY9WN6y2W29reRhdvlwMesz26nUyTSVmsrDmjHpHagddS+PJk6nofOElmqMtkcpb9hkjbYdiMXAfSSbqJdD8H3we3Ufu1lzHB8sb1sYKBuEtXEG97AtZfSODCeWR8fD8mEnAwrcixaRlDkffhqvwMbAzrO/w1U/Gcbo3DLTO2vNS43npzMJGaxmUT3k08q/4b/Yz1s5sgseyxu9815G58GtOMZ4sEvJv+RbjPJeye+gm7L/2Y3VNXEc/tjqkpcjqaAFtCW9gW2ju75LrgOnr4elAZrWRl7UqgfujxxuDGQz7H27vfJm7jFIWL2B7eTreMbvttD8QDtPPWT6bzSuUrTdCLvUZljSIUD/FCxQuN64K2fhbhTt5OrA+tJ27j7IzsZE1wTWObwZmDKYmU8GbVm5yRf0Zj7lx3Ln6Xny2hLayuW/2l+w/EArTz1Pf11apXk9m1/Qz1D2V+YD7BeJC6eB3vB95naObQ/drUxGsocBfgMR6W1y5nZ3TnYZ8zx51DjiuHT+rqR7y8Wf1mk+VPR2dmnclluZfR09tzv/Wj/KN4qealxmHge4YNB+IBHqp8iHva38Pu+G7er33/gOcc7hvOyzUvA/VD0QPxAEN8Q1gYXEgwHiQYD7KgbsFBz/YmyvoKCHY/j8z1Tx+40ZNFzYjbqB1yY9L3K61TpN/lhEf+jHjh/n/L4WE/wvfRH3BVrN27MlrXzOlEkqNlnLFtuMYWAGsJTHoQXO7DPiQ44may5t2AXXYX0c4TGtdHup1N9tvfxrv1v9SNu5vgiFvIfvsqrK8N0c4nQ/XWpuxJqxb3FVJ7/FnkrdO1Y83Ju3EOoaE/2m9duMd5+D+ejqtqPXmz936I1Y37HZGeF3zxKaQJ1cXrmL5jOjWxGtzGzfEZx3NL51s4r+A87ttxH4FYgChRLi28lF7+Xgd9jo7ejlyz6Rpq47X8tPNP8bl8+22/rO1l3Ln9TmaVzuKknJOatD/GGO7qchcPlDzA02VP08bdBr/Lz3UdrmNo5lA6eztz+cbL6Z7R/YBrcb+S9xXWh9aT584DYGz2WF6seJHLNlxGt4xuDMr88luFXd3+an75+S/JdecyKmsU2yPbm6Sf/fz9OCv3LK4rug6onzxq32HIUD+U+Ofbf87VW6+mv68/3bzdDvZU+7m5w83cU3IPBsPorNFf2l72au9pz/m5B15vOi1vGjMqZ/CDnT8gTpxOnk78ut2vmVE5g3Ozz6WLtws/Lvgxt+y6hRN8J+z32O+3+T73V9zP64HXcRkX17e5noG+gUzOmsyNJfVF5VnZZyV1GPK+agd9n6y1Bx91EOqZvAmrRGzO8YSHfP+A9fHCwQTH303mu9+DSDXW3xab04XQyAMnNhNp6cyebzibQ//+/e2iRYuabX9NbdGiRQwalD73bF25ciVDhgxxOkbSrF69mhEjRjgdI2lWrFjB2LHpcxurJUuWcNJJTVuENaeFCxcyYcKEL2+YIkKhEMuWLWPcuOTdFuXmbTdzSeEljM5u/oKuurqalStXMnp0ehSTFRUVrF+/nuHDhzsdJSnKy8vZsmULQ4cO/fLGKaC8vJyioqK06U9JSQnFxcVpc8yzc+dOysrKGDBgwJc3ThGrV69m/Pj0uXd9fn7+UmtterxhS7NpcUORRUQkvVTHqpm6YSoZJsORolZERETSX8sYiiwiImkr153LM701q6uIiIg0HZ2xFRERERERkZSmwlZERERERERSmgpbERERERERSWkqbEVERERERCSlqbAVERERERGRlKbCVkRERERERFKaClsRERERERFJaSpsRUREREREJKWpsBUREREREZGUpsJWREREREREUpoKWxEREREREUlpKmxFREREREQkpamwFRERERERkZSmwlZERERERERSmgpbEREREZE0lPu34w5Y51t6FzlPDSB7zkSynx2DZ/1zDiQTST6P0wFERERERKT5hE/4AeGhN+Cq2kD2C6dQ3et8cHmdjiWSEJ2xFRERERFpheL5vbGeTEyo0ukoIglTYSsiIiIi0gq5Sj8intcbm9ne6SgiCdNQZBERERGRViTjkwfxrn0KV9V6as/6h9NxRJJCZ2xFRERERFqR8Ak/IHDxB9RNfpLMuddDNOh0JJGEqbAVEREREWmFot3PIdZ+BN51TzsdRSRhGoosIiIiIpKOorXkPD2wcTE85H8OaBIacTOZ71xDZMC3weicl6QuFbYiIiIiImmo+rtfPttxvP0IApcsbYY0Ik1LX8uIiIiIiIhISlNhKyIiIiIiIilNha2IiIiIiIiktGMubI0xXY0x7xhjVhtjVhljfpTMYCIiIiIiIiJHIpHJo6LATdbaZcaYXGCpMeYNa+3qJGUTERERERER+VLHfMbWWltsrV3W8Hs1sAY4PlnBRERERERERI6EsdYm/iTG9ADmAkOstbu/sO1a4FqA9u3bj3rqqacS3l9LUVtbi9frdTpG0oTDYXw+n9MxkiYcDuP3+52OkTShUIjMzEynYyRNXV0d2dnZTsdImtra2rTqTzwep66ujqysLKejJEU0Gk2r94RIJEI0Gk2b/oTDYeLxeNp8BkUikbTqTygUAkibY55QKITL5cLjSZ+7XkYikbT6DJo8efJSa+1op3NIakm4sDXG5ADvAb+z1j5/uLb9+/e3ixcvTmh/LcnChQsZOnSo0zGSZsWKFYwaNcrpGEmzfPlyxowZ43SMpFmyZAnjx493OkbSLFq0iIkTJzodI2nmz5+fVv0JBoMsWbKEcePGOR0lKWpqali5ciWjR6fHcVJlZSXr1q1jxIgRTkdJisrKSjZu3Mjw4cOdjpIUFRUVbNmyhWHDhjkdJSl27txJcXExgwYNcjpKUpSUlFBaWsrAgQOdjpI0q1evZsKECU7HSJqcnBwVtnLUEpoV2RjjBeYAT31ZUSsiIiIiIiLSFBKZFdkAjwFrrLV/Sl4kERERERERkSOXyBnbCcC3gNOMMR81/JyTpFwiIiIiIiIiR+SYr5q31s4DTBKziIiIiIiIiBy1hK6xFREREREREXGaClsRERERERFJaSpsRUREREREJKWpsBUREREREZGUpsJWREREREREUtoxz4osh+eq20Xestvxli7DZuRjXRkEBlxDzqoHAHDXbCae2Qnr9hNpM4iqk+53OLFIyzFx1UR6+3sTtVF6+Hrwy+N/id/ldzqWiIgchCu4i/xld5BRtpx4Rj64vFQPvI64N5+2875DNLtrY9vdw39JqNPJDqY9vOPm9Gf7hWsB8G9/m/zld1B66tPEsruQtfl5cj59CGPjWOMmUjiMyuG3YTPyHU4tIqDCtmlYS8Hcq6nrdTGVEx4EwB0owlf0GqXnvAlA4ZsXUj3iV0TaDnMyqUiL5HP5mNV7FgB3FN3BC+UvMK3dtCN6bMzGcBt3E6YTEZFG1tL2/e8Q6HkxFSf9Bag/5vF//jrx/HzC7cdQNmmWwyGPnm/nPNos/xW7Tvk7sewu+IrfIeezRymd9ATxrM4Qj5G1+VncwVKiKmxFWgQNRW4CGTvnYd1eavte0bgult2F2v7fcTCVSGoaljWMonARAK9Wvsp3Nn6HKzdcyd3b7yZmYwCcvuZ07t9xP1esv4KVtSv5xmffoDJaCcCaujX8z6b/cSy/iEg68+2cj3V5qe3zrcZ1sewuBPpd7WCqxGSULKJg8S2Unvw4sZweAOStfoCqYbfVF7UALje1vaYSzevtXFAR2Y8K2ybgqVpLpOAEp2OIpLyojbKwZiG9/b3ZHNrMW1VvMaPnDGb1noULF69XvQ5AXbyOwZmDeaLPEwzL1igIEZHm4tl9+GOejF0f0v7VMxt/3NWbmy/cMTCxMO3mX0PZxEeJ5vVpXO/d/RnhgiEOJhORL6OhyM0gb/GtZOxajHV5KTv7v07HEWnxQvEQV264Eqg/Y3tum3P5V8W/WBtcy3c2fqexTYGnAAA3bk7NO9WpuCIi0iB/yS/wlX6IdWVQNewXKTcU2bo8hNqOJmvjM1SN/PVB23gq11D4wY24IjVUDb2Fum7nNXNKETkYFbZNIJrfH/+2VxqXd594FyZYRrvXpjiYSiR17HuN7R4Wy5Q2U7iu43UHtM9wZex3Xa3buIkTByAcDzdtWBGRViya15/MfY55qkb/DleonPavneNgqgQYF+UnPUS7d6eSu/oBqgf9EIBIXj8yKlYS6ngS0TYDKTnrNdosvQ0TCzocWET20FDkJhDuOBETC5G1bu+BuYnVOZhIJPWNzh7NO7vfoTxaDsDu6G6Kw8UHbdvZ25m1dfWzWr67+93miigi0uqEOk7AxEJkr3uicZ2JpvYxj/VkUnry42RteZGsjc8AUD3wevJX3Im7du/njopakZZFZ2ybgjFUTJpJ3tLbyV79IHFfW6wni+rhv3A6mUjK6unvybUdruXHW35M3MbxGA83db6JzhmdD2h7dfuruWv7Xfy15K+MyB7hQFoRkVbCGMpOfoz85b8m59OHiPsKsZ4sdg//ObD3Gts9qgffQLDr15xKe8Ssr4DSU56k/dsXEfcVEjz+TFyhMtrN/RbYOHFvHpH8/gQ7neJ0VBFpoMK2icQzO1I58eFDbi8/Y04zphFJLW8NfOug68/IP4Mz8s/40vbDs4fzj77/aJJsIiKyv3hmRypOevCg24ovXNPMaRKz5x62ALGs49jxtQWNy7U9L6a258VOxBKRI6ChyCIiIiIiIpLSVNiKiIiIiIhISlNhKyIiIiIiIilNha2IiIiIiIikNBW2IiIiIiIiktJU2IqIiIiIiEhKU2ErIiIiIiIiKU2FrYiIiIiIiKQ0FbYiIiIiIiKS0lTYioiIiIiISEpTYSsiIiIiIiIpTYWtiIiIiIiIpDQVtiIiIiIiIpLSVNiKiIiIiIhISlNhKyIiIiIiIilNha2IiIiIiIikNI/TAUREREQkNR33j25E8gdgsFjjpmrUnYTbjcZds42O/z2VSG4fTDyE9WQT6HMltb0ucTqyiKQpFbYiIiIickys28+us18HwFf8Lnkr7qL09DkARHN6sOvs1wBw12yhcN53AUttr0udiisiaUxDkUVEREQkYSZSQzyjzUG3xXK6UzXidrI/m9nMqUSktdAZWxERERE5JiYWpP2rZ2JiIdzBEkq/8o9Dto0UDMFbvb4Z04lIa6LCVkRERESOyb5DkTNKl1Kw6EZKprx1qNbNF0xEWh0NRRYRERGRhIXbjcIVKscVKjvodm/FKiJ5fZs5lYi0FipsRURERCRhnt3rwcaIZxQcsM1ds438j35LoO9VDiQTkdZAQ5FFRERE5JjsucYWwGCpGHcfuNwAeGo20/7Vs/be7qfv1brdj4g0GRW2IiIiInJMtl+69aDrYzld2X7xhmZOIyKtmYYii4iIiIiISEpTYSsiIiIiIiIpTYWtiIiIiIiIpLSECltjzExjTIkxZmWyAomIiIiIiIgcjUTP2D4OnJ2EHCIiIiIiIiLHJKHC1lo7FyhPUhYRERERERGRo2astYk9gTE9gP9Ya4ccYvu1wLUA7du3HzV79uyE9teSBAIB/H6/0zGSJhgMkpmZ6XSMpKmrqyMrK8vpGElTV1dHdna20zGSJhAIkJOT43SMpKmpqUmr/sTjcWpra9Pmby4WixEMBtPmPSEajRIOh9PmPTsajRKJRNLmMzXd+hOJRIjFYvh8PqejJEU4HMZamzb9AQiFQmnzfg1wxhlnLLXWjnY6h6SWJr+PrbX2EeARgP79+9tTTz21qXfZbN577z1OOukkp2MkzYIFC5gwYYLTMZJm/vz5TJw40ekYSTN//nxOOeUUp2Mkzdy5c0mn94N33303rV6fWCzGvHnzOPnkk52OkhTRaJQFCxakzXtCOBzmww8/TJvPoHA4zJIlS9KmP3V1dSxbtoyxY8c6HSUpampqWLVqFaNHp0edEQgEWLNmTdr0B2Dx4sVMmjTJ6RgijtKsyCIiIiIiIpLSVNiKiIiIiIhISkv0dj+zgYVAf2NMkTHmO8mJJSIiIiIiInJkErrG1lo7LVlBRERERERERI6FhiKLiIiIiIhISlNhKyIiIiIiIilNha2IiIiIiIikNBW2IiIiIiIiktISmjwqWcatGEdvf29ixOjh68Ed3e7A7/JTFilj+vbprKxdSZ47D4/x8K0O3+Ir+V9xOnKrMnHVRHr7exO1UXr4enDb8bfx4y0/5sp2VzI+dzwAb1e9zb8r/8307tMdTvvlJqycUP/3ZmN0zujM7V1uJ9edC8DG4Eb+VPwndkV2ESfOlDZTuKr9VRhjHE7duoxaNoopBVO4s+edAERtlLM+OYshWUP4c58/81LZS/xmy2+YPWA2fbP6AnDJ6ku4r/d9HOc7zsnorcKe9+w9zmxzJld2vJKojfJw8cO8U/UOWe4svMbLNR2v4aS8kxxM2/pk/CUL23YIWAsuN9FJ07Gd69+rTdlqPHN/DIHtYOPEB1xGbPStoPe4ZuXe9G/8r02j9tKl2IL+mN1byHp6MOGRPyUy5vb6RnWlZD3Zh+jAqwmf/CdnAx9G7qMFxAsGAxaMi+CEPxDrOLZxe8YnD+JbfAfVl6+DjHzngrZSnocKiF5X4XQMkWbRIs7Y+lw+nur/FM/0fwav8TKnbA7WWn66+aeMyB7BiwNf5Il+T/C77r+jJFzidNxWx+fyMav3LJ7q8xRe4+XF8hf5aeefcv+O+wnFQ9TGanm45GFu6nyT01GPiM/l44k+T/BU36fIc+cxp2wOAMF4kJu33My32n2Lf/T7B0/2eZJPaj9hTvkchxO3PpmuTDYENxCMBwH4YPcHdPB22K9NB28HHtvxmBPxWr0979l7fq7seCUADxc/TGm0lNn9Z/Nkvye5t8e9BOIBh9O2Qp5MIlM/JDJtMdFxv8Wz8Jf166N1eF++kOio/yVy+SdEpi7GVbwI1ycznM3bCnnWP0us03g8659tXBfP7YF7y2t722x8gXjBQCfiHR13JoEL5xG4cD7BE2/H9+Gv99vs3fAcsXYj8W76t0MB5QDxqNMJRJpEiyhs9zU8ezhFoSIW1yzGa7xc2O7Cxm2dMzpzaftLHUwnw7KGURQuore/NxNzJ/L30r/zt11/Y0r+FLpkdHE63lEbkjWEXdFdALxe+TonZJ/A2Nz6b5r9Lj83db6JJ3c96WTEVmtC3gTmVc0D4LWK1zir4Kz9tp+cfzIbgxvZHNzsQDr5omA8yIvlL/K/x/8vGa4MANp62zK5zWSHk7VuJrIb6ysAwPXZM8RQBgkYAAATn0lEQVQ7j8d2a3hNvFlETpmOZ9m9DiZshSI1uIoXEjr1QTzr9/ni1JOJLeiPq2RZ/eL6OcR6f8OhkMfGRKqxvjZ7l3dvhEiA0Im34d3wnIPJxBS9h/u5r+D+99fx/H0oAO7/XIhn9lg8fx+GWfno3rarZ+F5YhDuf5yE+63v43r3R07FFjkqLWIo8h5RG2Vh9ULG5Y5jU3AT/TP7Ox1J9hG1URbWLGRczjgAru5wNVdtuAqP8TCz10yH0x29mI2xpGYJ5xacC8Cm0CYG+Afs16aLrwt18ToCsQDZ7mwnYrZaZxWcxV93/JWT809mXd06zmt7HstrljdudxkXV3S8gpk7ZvKbHr9xMGnrE4qHuGztZY3L3+7wbXr4e9DJ24kcd46DyQSoPzP7zBiIBjG1O4hc8CoApmwNtsPI/dvm94ZIAMK7ISPPgbCtj3vTy8S6Tca26Yv1F+LatRzrKwQg2uciPBueI5LVAVxubFZnTKDY4cRfIlZH9pyJEAviqt1J4KsvNW7ybphDpPeFxDqdhKtqPaa2BJvV4TBPJk3JlCwnetlyyO8JQOyMv4K/EKJ1eJ4ZT7T31yEexr3oN0SnLgJfPu7nJ0P74Q4nFzkyLaKw3fcgaXj2cM4vPJ/ny57fr809RffwUeAjvMbLrH6znIjZaoXiIa7cUD/UcFjWMM5tU18IZroyOT3/dDJdmY1naFJBKB7iivVXsCuyix6+HozJGeN0JDmIvll92R7ezmsVrzEhb8JB25xdeDYzd8zk89DnzZyuddszFHlf6+rWOZRGDtAwFBnAFC/C8+Z3iExb5nAo2cOz/lkiJ/wAgGifC+uXB38PgFjXyXgX/xZPZgeivS883NO0HA1DkQHcOz8k893vE7hoERiDd8Mc6iY/BcZFpMd5eDa9SGTwtQ4Hbr1sxxMbi1oA10f/D9fGf9Uv1BRhKtdD7Q5sl0mQ1b7+MX0vhkq9v0tqaBGF7cEOknr6e/J21duNyzd3uZnKaCVXfnZlc8dr9fZcY3swBoOr5Y1oP6w919gG40Fu3Hwjc8rncEnbS+jp68ny2uX7tf08/DmZrkydrXXIpPxJ3Fd0HzP6zaAqWnXAdo/xcHnHy5m1U192Oa2rrys7IjuoidXorG0LYjuPw9SVQd0ubOEAXNvn7d+gaiN4s3W2trkEy3Fvfw9X+SrAgI2BMXuLPXcG8XYj8Ky4n7pLl+DZ/IqjcY9WrOMYTKgMEyzF1JXgqtpA1isX1G+Mh4nndldh6yTv3mMZU/QeZtvbRC9+H7xZuOecAbGgg+FEEtdiK5ITc04kbMM8V7r3mow9E8mIJIPf5efHnX/M7NLZRG2UM9ucyceBj/mwpv5MRzAe5E/Ff+Ly9pc7nLT1Or/t+Xy383fpm9n3kG3OLTyXD6o/oCKqWR+d5Hf5Oa/wPP70+Z+IxCMAVEQreLPyTYeTtW6mYm198eRvS7z/NFzFCzDb3qrfGK3DM/cmoiNSY+K/dODZ+CLRvlOpu3wNdZevpu5ba7G53TE1RY1tIsN+SGTcb+uHiKYYV+VnEI9hfYV4NzxHaNTPqJn2Sf3PZWtxBYox1VudjikAoSrwtQFvFpR/itnxAQC20xjM5+9DXRnEIpj1mkBTUkeLOGN7MMYY7u1xL9O3T+fJXU9S4C4g05XJ9Z2vdzqapJH+mf3p7e/NG5VvMKVgCnd3v5s/bf8Tf9z+R2LEmNJmChcVXuR0zFarY0ZHpnWYdtg2XpeXqe2n8oeiPzRTKvniNbbjc8dz/XHXc12n63hox0NcuvZSMlwZZLoyubajzs40uz3X2AJYS/SMR8HlBlcmkXOeq7/dz3s3YmyMWP9vEh96nbN5WxHP+meJDP/Jfuuivc7Hu/yPjcu2cBDRwkHNHe3Y7bnGFgBL8NSHweXGu2EOtWfvP2FUpMe5eDfMITz8x82fU/Zju58FK/+K58kTsAX9sJ0abtGU3ZnY2F/iefbk+onA2g1zNqjIUTDW2mbbWf/+/e3q1aubbX9N7b333uOkk9Ln/owLFixgwoSDX8uYiubPn8/EiRO/vGGKmD9/PqeccorTMZJm7ty5nHrqqU7HSJp33303rV6fWCzGvHnzOPnkk52OkhTRaJQFCxakzXtCOBzmww8/TJvPoHA4zJIlS9KmP3V1dSxbtoyxY8d+eeMUUFNTw6pVqxg9erTTUZIiEAiwZs2atOkPwOLFi5k0aVLSn9esfgJTspT4qX9O+nMfTkZGxlJrbfq8QNIsWuxQZBEREREREZEj0WKHIouIiIiIiHPsoCuwg65wOobIEdEZWxEREREREUlpKmxFREREREQkpamwFRERERERkZSmwlZERERERERSmgpbERERERERSWkqbEVERERERCSl6XY/IiIiIiJpyPOAH9oOgXgUWziA2OSZ4M3CtfguXGufAeMG4yJ22oPYTmOcjiuSEBW2IiIiIiLpyJNJ9JtLAHC/dgWuTx7Bdh6H2fQK0akfgscHdaUQCzscVCRxKmxFRERERNKcPW4ilH4Ced3B37a+qAXIbOdsMJEk0TW2IiIiIiLpLB7FbH4V2g7BdpuMqSnC88QgXO/8EFM01+l0IkmhwlZEREREJB1F6/A8PRrPM+Owud2ID74KMnKITv2A2GkPQWY73K9ehln9hNNJRRKmocgiIiIiIulon2ts9+NyY7ucUv/TdgiuNU8SG3RF8+cTSSKdsRURERERaS0q1kLlusZFU7oCm9fdwUAiyaEztiIiIiIirUUkgPvdGzGhSnB5sG161w9LFklxKmxFRERERNJQ9LqKA1d2GEnsEk0YJelHha2ItDgTP5rIvOHzGpdfKnuJNbVruKXrLczYPoMXyl6gwFNAxEa4ptM1nF14toNpRVoe95Lf4/rsH2DcYFzEe50H0SCxk+5sbGN2rcDz+hVELlvhYFIREZHkUGErIinnmx2+yRUdr2BrcCuXf3o5pxecjtd4nY4l0iKY4kW4Nv2XyKWLwO2DulJM+Rq8b313v8LWte5Z4n0vcTCpiIhI8mjyKBFJWd383fC7/FRHq52OItJimNod2My29UUtQGY77PEnY30FmB0fNrZzr3+OeL9LHUopIiKSXDpjKyItTigeYtqaaY3LVdEqTmlzygHt1tSuoauvK4XewuaMJ9KixbuegXvx/+F9cgi262nE+l6EPX4S8b6X4Fr3LLFOYzA7PsD6CrFt+jgdV0REJClU2IpIi+Nz+Zg9cHbj8p5rbPd4uuRp/l32b7YEt3Bf7/uciCjScmXkELlkIWb7PFyfv4f3tW8RHf9bYn0vImPOqcQm3l0/DLmfhiGLiEj60FBkEUk53+zwTZ4d9Cz39rqX32z9DaF4yOlIIi2Ly43tcgqxsb8iOmk6rg0vQm5XbF4PzOdzcW94gVjfi5xOKSIikjQqbEUkZZ3S5hQGZQ3iP2X/cTqKSIthKj7DVK7fu1y6AnK7ARDreymeeTdj83pCThenIoqIiCSdClsRSWnf7fxdnip5iriNOx1FpGWI1OB58xq8Tw3HO3s0pvxTomNuAyDe5xuY8tXENGmUiIikGV1jKyItzr73sAU4r+15nNf2PAC+d9z39ts2MGsgzw9+vtmyibR0tsNIIhe9e/CNme0I/6CmWfOIiHM8DxUQva5iv3WuRb/BtWomZLaDWJB4l1OJn3o/GJ3vktSmv2ARERERkVYkPuIGot9cQvTyjzGlKzFFc52OJJIwFbYiIiIiIq1RLAyxINbfxukkIglLqLA1xpxtjFlrjFlvjPlZskKJiIiIiEjTcC2/H8/To/E81g3a9IX2w52OJJKwYy5sjTFu4C/AFGAQMM0YMyhZwUREREREJPkahyJf8zlEApjP/uF0JJGEJXLGdgyw3lq70VobBp4Bzk9OLBERERERaVJuL7b7WZjP5315W5EWLpHC9nhg2z7LRQ3rRERERESkpbMWU7wA8ns5nUQkYU1+ux9jzLXAtQ2LIY/Hs7Kp99mM2gGlTodIIvWnZVN/WrZ06w+kX5/Un5ZN/WnZ1J+W7aD9id3LqPLfZUT2LD+0kJ15PtyXj6Rd+fM/i3pcmDUl1E77++zNgfAttlkTH15/pwNI6jHWHtvfsDFmPHCHtfashuVbAay1dx3mMUustaOPaYctkPrTsqk/LZv60/KlW5/Un5ZN/WnZ1J+WTf0RSWwo8mKgrzGmpzEmA5gKvJScWCIiIiIiIiJH5piHIltro8aY64HXADcw01q7KmnJRERERERERI5AQtfYWmtfAV45ioc8ksj+WiD1p2VTf1o29aflS7c+qT8tm/rTsqk/LZv6I63eMV9jKyIiIiIiItISJHKNrYiIiIiIiIjjmqWwNcacbYxZa4xZb4z5WXPssykZY2YaY0qMMWlx6yJjTFdjzDvGmNXGmFXGmB85nSkRxhi/MeZDY8yKhv782ulMyWCMcRtjlhtj/uN0lkQZYzYbYz4xxnxkjFnidJ5EGWPaGGOeM8Z8aoxZ0zBrfEoyxvRveF32/Ow2xtzodK5EGGN+3PBesNIYM9sY43c6UyKMMT9q6MuqVH1tDvY5aowpNMa8YYxZ1/BvgZMZj8Yh+nNxw2sUN8ak1Oyuh+jPvQ3vcR8bY14wxrRxMuPROER/ftvQl4+MMa8bY45zMuPRONxxqDHmJmOMNca0cyLbsTjE63OHMebzfT6LznEyo6SGJi9sjTFu4C/AFGAQMM0YM6ip99vEHgfOdjpEEkWBm6y1g4BxwP+k+GsUAk6z1g4DhgNnG2PGOZwpGX4ErHE6RBJ9xVo7PE2m8/8z8Kq1dgAwjBR+nay1axtel+HAKKAWeMHhWMfMGHM8cAMw2lo7hPrJDqc6m+rYGWOGAN8FxlD/t/Y1Y0wfZ1Mdk8c58HP0Z8Bb1tq+wFsNy6nicQ7sz0rgG8DcZk+TuMc5sD9vAEOstUOBz4BbmztUAh7nwP7ca60d2vBe9x/gV82e6tg9zkGOQ40xXYEzga3NHShBj3Pw4+rpez6PGub1ETms5jhjOwZYb63daK0NA88A5zfDfpuMtXYuUO50jmSx1hZba5c1/F5N/UH58c6mOna2Xk3DorfhJ6UvJjfGdAG+CjzqdBbZnzEmH5gEPAZgrQ1bayudTZU0pwMbrLVbnA6SIA+QaYzxAFnAdofzJGIg8IG1ttZaGwXeo754SimH+Bw9H5jV8Pss4IJmDZWAg/XHWrvGWrvWoUgJOUR/Xm/4mwNYBHRp9mDH6BD92b3PYjYpdJxwmOPQ6cDNpFBfIP2Oq8U5zVHYHg9s22e5iBQumtKdMaYHMAL4wNkkiWkYtvsRUAK8Ya1N6f4A91H/YRV3OkiSWOB1Y8xSY8y1TodJUE9gF/C3hqHijxpjsp0OlSRTgdlOh0iEtfZz4A/Un8EoBqqsta87myohK4GTjTFtjTFZwDlAV4czJUtHa21xw+87gI5OhpHDuhr4r9MhEmWM+Z0xZhtwGal1xvYAxpjzgc+ttSuczpJE1zcMF5+ZSpcmiHM0eZQ0MsbkAHOAG7/wTWbKsdbGGoYXdQHGNAzfS0nGmK8BJdbapU5nSaKJ1tqR1F+i8D/GmElOB0qABxgJPGStHQEESK0hlAdljMkAzgOedTpLIhoOhs6n/guI44BsY8zlzqY6dtbaNcDdwOvAq8BHQMzRUE3A1t+yIaXOOrUWxphfUH8J01NOZ0mUtfYX1tqu1PfleqfzHKuGL7l+TooX51/wENCb+kvKioE/OhtHUkFzFLafs/+3yV0a1kkLYozxUl/UPmWtfd7pPMnSMCT0HVL7mugJwHnGmM3UD+U/zRjzd2cjJabhLBrW2hLqr98c42yihBQBRfuMCniO+kI31U0BlllrdzodJEFnAJustbustRHgeeAkhzMlxFr7mLV2lLV2ElBB/fWO6WCnMaYzQMO/JQ7nkS8wxnwb+BpwmU2v+0U+BVzodIgE9Kb+y7sVDccKXYBlxphOjqZKgLV2Z8NJijjwV1L7OEGaSXMUtouBvsaYng1nAKYCLzXDfuUIGWMM9dcHrrHW/snpPIkyxrTfM1ujMSYTmAx86myqY2etvdVa28Va24P6/3/ettam7BknY0y2MSZ3z+/UT3SRsjOMW2t3ANuMMf0bVp0OrHYwUrJMI8WHITfYCowzxmQ1vNedTgpP7gVgjOnQ8G836q+vfdrZREnzEnBlw+9XAv9yMIt8gTHmbOoviTnPWlvrdJ5EGWP67rN4Pql9nPCJtbaDtbZHw7FCETCy4fMpJe35kqvB10nh4wRpPp6m3oG1NmqMuR54jfrZKGdaa1c19X6bkjFmNnAq0M4YUwTcbq19zNlUCZkAfAv4pOG6VICfp/AMdJ2BWQ0zcruAf1prU/4WOWmkI/BCfY2BB3jaWvuqs5ES9kPgqYYv7zYCVzmcJyENXzhMBr7ndJZEWWs/MMY8ByyjfvjkcuARZ1MlbI4xpi0QAf4nFScrO9jnKPB74J/GmO8AW4BLnEt4dA7Rn3LgAaA98LIx5iNr7VnOpTxyh+jPrYAPeKPh/XuRtfb7joU8CofozzkNX0jGqf97S4m+QPodhx7i9TnVGDOc+ksSNpMGn0fS9Ex6jSQRERERERGR1kaTR4mIiIiIiEhKU2ErIiIiIiIiKU2FrYiIiIiIiKQ0FbYiIiIiIiKS0lTYioiIiIiISEpTYSsiIiIiIiIpTYWtiIiIiIiIpDQVtiIiIiIiIpLS/j/dQ77AoWpOqQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def shorten_country(c):\n", + " if len(c) > 6:\n", + " return country_codes[c]\n", + " else:\n", + " return c\n", + "\n", + "country_map = som.labels_map(X, democracy_index.country)\n", + " \n", + "plt.figure(figsize=(14, 14))\n", + "for p, countries in country_map.items():\n", + " countries = list(countries)\n", + " x = p[0] + .1\n", + " y = p[1] - .3\n", + " for i, c in enumerate(countries):\n", + " off_set = (i+1)/len(countries) - 0.05\n", + " plt.text(x, y+off_set, shorten_country(c), color=colors_dict[c], fontsize=10)\n", + "plt.pcolor(som.distance_map().T, cmap='gray_r', alpha=.2)\n", + "plt.xticks(np.arange(size+1))\n", + "plt.yticks(np.arange(size+1))\n", + "plt.grid()\n", + "\n", + "legend_elements = [Patch(facecolor=clr,\n", + " edgecolor='w',\n", + " label=l) for l, clr in category_color.items()]\n", + "plt.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, .95))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Features planes\n", + "----\n", + "\n", + "Here we will create a map for each feature used that reflects the magnitude of the weights associated to it for each neuron." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAHnCAYAAACluasIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XmcJWV59//Pt0/v3bMvwMAIKIgg\nQUTcfi4h4oJoJPokRoJRomZinsdEEhPjFiUuiSYmmsQkShDHBXDfExVNRJKIGFZlU1GGHQYYZl96\nu35/1N1Q03T3OXed06f7zHzfr1e/+ix11X1Xnbqq7qq6q0oRgZmZmZmZFbrmuwJmZmZmZguJG8hm\nZmZmZiVuIJuZmZmZlbiBbGZmZmZW4gaymZmZmVmJG8hmZmZmZiVuIFcgab2kd893PRYCSc+Q9JMm\n4kPSEa2sk80fSWdL+tR816MeSRdLes1816MTtOI3nevlorwekfRhSX8+V2XtbyQdJelqSdsk/WGb\nynyEpO2Sai0Y13WSTmpBtaqW/zRJP0vT82vzVQ/L1z3fFbDOFhH/BRw13/WwfUfamH0qIg6Z77pY\n54mI1853HfYxbwS+GxHHz1UBkjYAr4mI7wBExK3AcCvGHRGPbcV4mvBO4EMR8ffzXI+OIymAIyPi\npvko30eQ9zGSvNNj+7X5yAEVvD6dA16nzbtDgevmuxIdrGPmn3Ntb16hN0DS4yVdmU4xfQboL333\nwnT6abOk70s6rvTdBkl/KulHknZI+qikAyR9I43rO5KWlYZ/UTodtDmdAj669N1aSV+UdK+k+yV9\nKH1+pqT/kfQBSfcDZ0t6lKT/TMPdJ+l8SUtnG5ekXkmbJP1SabjVknZKWjXLvDlJ0u1TpvlP0jRv\nkfQZSeX59aeS7pJ0p6RXTRlXn6T3S7pV0j3pVOlA+u7PJF02mcCSfj/Nq36s7SStkfSFtAzdPNOp\nV0lPSXmxWdI15VOdkpZL+lhaFh6Q9GVJQ8A3gDXplOT2VFafpA+mYe9Mr/vSeE6SdHtaRu4GPiZp\nmaSvp/o9kF5nHZEu5daH0rJ8o6STS99fLOk9kv4H2Ak8MtX1qymXbpL0u6Xha5LeIunnKf+vkLQ2\nffcYSd9OcT+R9NJS3KmSrk8xd0j6k/T5yjRdm1Pcfyk10iW9qVTO9ZJePGW6/jvl2gPp93t+6fvD\nJX0vxX4bWNnAvDpMRTeHden3uWuyntMMu9c6I322QdKz0+uzJX1e0qckbQXOlPQkSZemab0r/Sa9\nM4z/wS5wdeZR1vp5fyTpP4FfAT6UcvFOlbomTS5Lpfch6bUquhRslvRPklT6/ncl3VBaLk+Q9Eng\nEcDXUhlvLC1Pk+v72fLqbEmflfSJNN7rJJ1Y+n7qsjXbsCdIuip99zkV26+63SnTdN2U6vdVSWvS\n5z8HHlmatr5ZxnG4pEtKy94/qdQtSTO0D1Ss9z4/ZVx/L+kf0usladm+S8X6491KXVc0ffuh3vrh\n4jSO76dp+pqkFSraGVsl/a+kw0rDz7ZuW5+m89/SdF8m6VHpu0vSYNekcn6z3u/QchHhv1n+gF7g\nFuCPgB7g14FR4N3A44GNwJOBGvBKYAPQl2I3AD8ADgAOTsNemeL6gf8E3pGGfTSwA3hOKueNwE2p\n/BpwDfABYCjFPj3FnQmMAX9A0WVmADgijacPWAVcAnwwDT/buP4ZeF9p2l8PfK3O/DkJuL30fgPw\nQ2ANsBy4AXht+u4U4B7g2FT2BUAAR6TvPwB8NcUtAr4G/FX6ritNx9nAkcADwOPne/nYH//Sb3EF\n8Pa0fD4S+AXwvPT7fCoNdzBwP3BqinlOer8qff9vwGeAZWmZ/+Xplqn02TtTLq1Oy/T3gXeVhh8D\n3peW+QFgBfB/gMG0LH0O+HJpfBdTnNKdbTonc2sy938T2AIsL43jVuCxKfd60jL6zymvjgfuBZ6V\nhv9T4McUXZIEPC7Vcwi4DfidNJ7HA/cBx6S4u4BnpNfLgBPS678CPpzK7QGeASh99xsUOdiV6r0D\nOKg0XaPA71KsD34fuLMUeynwd2lePhPYNvmbzjKvDqPI5QvT9PxSmvZnp+/Ly8V0v++GKcOOAr+W\n6j8APAF4Spo/h1GsV84qxZfXI+uBdzcwjzbQ4Pp5f/6jlCtMyZu0LP33lN/h68BSikbvvcAppWXy\nDuCJFMv/EcChU3//KctTd3o/W16dDeymWM/U0m/+g1mWrWmH5aFt/evTsvISYGRyWZpl/jyLIl9P\noMiZfwQuma78OuO5FHh/qsfTga08lDOztQ8OpdhBX5SGrVGsM56S3n8J+AhFXq6m2D7/3pR1XLn9\ncCazrx8uTmU/ClgCXA/8FHh2GscngI+lYeut29ZTbBOelL4/H/j0dHk9L8v+fCffQv+j2EA8uHCk\nz75P0UD+F9JGuvTdT3hoQ78BOKP03ReAfym9/wPSRhv4c+Czpe+6KFYmJwFPpVghdE9TvzOBW+tM\nw68BV6XXs43ryRQb/MlEuBx4aZ1xn8TDG8gvL73/a+DD6fV5wHtL3z16MgEoVpg7gEeVvn8qcHPp\n/WHAJoqN45vne9nYX/8ml5Mpn70Z+Bh7N4T+DPjklOG+RbEjeRAwASyrt0ylz34OnFp6/zxgQ2n4\nEaB/ljofDzxQen8xjTWQp+b+D4HfLo3jnaXv1gLjpA1V+uyvgPXp9U+A06Yp5zeB/5ry2Ud4aOf5\nVuD3gMVThnkn8BUa2IAAV0+WnabrptJ3gykPD6Ro1IwBQ6XvL6DxBvJjSp/9NfDR9Lq8XEz3+25g\n70bMJXXKOwv4Uun9TA3kGecRGevn/fmP/Aby00vvPwu8Kb3+FvD6Gcp48Pefsjx1N5BXZwPfKX13\nDLBrlmVr2mEptvV3sHe+/zf1G8gfBf669H6YooF52HTTNsM4JvNusPTZp0o5M2P7oFTPV6TXzwF+\nnl4fAOwBBkqxp1P0KZ/8/aauy89khvVDaRl4a+n7vwW+UXr/q8DV6XW9ddt64NzSd6cCN05Znuat\ngewuFvWtAe6I9Gslt6T/hwJvSKc8NkvaTJHMa0rD3lN6vWua95MXIqwpjZeImKDY8zo4jfOWiBib\noY63ld+k04SfTqdTtlIk2uRp0hnHFRGXUeyJniTpMRQN16/OUOZs7i693sne01iu6y2l16soEvGK\n0rz8Zvp8sn4bgO9SrDz/qUK9rDUOpegCUV7u30KxMp463G9MGe7pFI3jtcCmiHigwTL3yo/0upxn\n90bE7sk3kgYlfUTSLSkHLgGWKv+q+Olyv1xueXleQzFN26YMf3B6vZaioT/VocCTp8ynMygarFAc\nCT8VuEVF14enps//huJIzkWSfiHpTZMjlPQKPdT1azPFWZtyV4kHczQidqaXw2kaHoiIHVOmoVFT\n83vNTANmjAdJj1bRVeLu9Hv+JQ10/WCWeZQ0un62xs20/p9p+a+nXl5NV2a/Zu5PO9Ow023r91oO\nZ6lfedu9neKo6MEzRkw/jk2lXJxa9mztAyh2Yk9Pr38rvYdi3dID3FVaF3yE4kjydOVMmmn9MKnR\nvKm3bturLPZeXuadG8j13QUcLD3Uj4pibw+KBes9EbG09DcYERdWKOdOioUJKC76oVih3JHKecQs\nCR9T3v9l+uyXImIx8HKKI7STdZ5tXB9Pw/828Plyo6MF7qKYpkmPKL2+jyKxHlual0si4sFkkfQC\niqPK/0Gx4bP5cRvFkf3ycr8oIk6dZrhPThluKCLem75brlLf+JKpyzNMyQ+KZefOWWLeQNGV4ckp\nB56ZPhd5psv9mcq9k2KaFk0Z/o70+jaK05JT3QZ8b8p8Go6I3weIiP+NiNMoNmpfpjgqR0Rsi4g3\nRMQjgRcBfyzpZEmHAv8KvA5YERFLgWsbnPa7gGUq+oKXp6FRU/P7zmmG2UGxMwwUfbMp7QgnU3/P\nfwFupLiifTHFDlnd6ZlpHtWdCpvJXr8dezd06plp+Yfpc35Svbxqlem29WtnGrhk6rZ7iKLrVE79\n7qKYxvK8LZc9W/sAii5kJ6m4zuLFPNRAvo3iCPLK0rplcex9Z4/Z5n2zZl23LXRuINd3KcWpjz+U\n1CPpJRT9ZaDYCL1W0pNVGJL0gimJ3KjPAi9IG7geig38HoruHD+kSKD3pjL6JT1tlnEtArYDWyQd\nTNH3cVK9cX2KIsFeTtGXqJU+S3HBzTFpRfCOyS/SHvG/Ah+QtBpA0sGSnpderwTOBV5DcYr+VyVN\nbZBZe/wQ2Kbi4pABFRefHSvpiVOG+xTF7/S8NEy/igu0DomIuyguxvtnFRfU9UiabMTeA6yQtKQ0\nrguBt0lalZaFt6fxz2QRxQ7XZknLKS1rmVbzUO7/BnA08O/TDRgRt1Hk61+laT0OeHWpnucC75J0\nZFpfHCdpBUWfzUdL+u1UTo+kJ0o6WsXFs2dIWhIRoxT9EifgwQuEj0gbyy0Up6EnKPr9BUVXKiT9\nDsUR5Loi4haKrlV/kcp+OsUp00b9eTp6/1iKfoefmWaYn1IctXtBWte9jaLv5mwWUUz7dhVntxra\nwM4yj6yaq4GXpN/4CIrlu1HnAn8i6Qlp+T8i7cxBkfOPnC6ogbxqlUsplo/XSeqWdBoPbetncyHw\nO5KOV3ER3l8Cl6Uzng0p5d3ZKe+eyt55N1v7gIi4l6Lrw8coDl7ckD6/C7gI+FtJiyV1qbiI/5cb\nrVuTZly3NRg/43LRDm4g1xERIxSd9c+k6P/6m8AX03eXU3Rk/xDFRWM3peGqlPMTikbpP1IcTf1V\n4FcjYiQixtP7Iyj6I96e6jGTv6C4YGALxYVQXyyVM+u40sroSooN7H9VmZaZRMQ3gA9SXPxyU/pf\n9mfp8x+oOI36HR66x/I5wFci4t8j4n6KFeS5qYFhbZSWoRdS9Ou9mWJ5PZfigo3ycLcBp1Ec7buX\n4mjCn/LQeue3Kfrq3UhxgdRZKe5Gio3OL1SclltD0ef/cuBHFBe6XZk+m8kHKS44uY/iQqxvVpzc\nyyguCr0PeA/w62n5m8npFF2A7qS4OOYdke7tSnHh22cpNlhbKfouDqRTx88FXpbi7uahCw6hmE8b\nUk68luIUJale36HYGb4U+OeI+G5EXE/RL/BSig3MLwH/kzHNv0XRz3wTxY5Fzo7y9yhy+D+A90fE\nRVMHiIgtwP+lWGbuoDgqefvU4ab4k1SvbRQ70tM1vKcz7TxqMNYe7gMU/f3voTjbeH6jgRHxOYoc\nuoDid/wyxQXZUPQpflvK9+nufjJbXrVEaVv/amAzxfb46xQN0dnivkPRR/gLFAefHkWRy7nOoDhD\nej/Fuu0zk2XP1j4oxV9AcaHcBeztFRQX811P0U75PEU3tznXwLqtnrOBj6fl4qX1Bm61yYuxzB4k\n6Tzgzoh423zXxWy+SDqT4oKkp893XRY6Fbd1uhnomeVaCbOOIukyiovMPzYPZX+G4oK1qme/rEk+\ngmx7SRu6l1Ac3TIzM9svSPplSQemLhavBI6j+tmn3LKfmLo/dEk6heLs25fbUbZNr24DWdJ5kjZK\nurb02dkq7pBwdfpzX9B9gKR3UVzM8zcRcXPp87fooYc2lP++MX+1tXqcu/WpeBjNdMv2h+e7bgtN\n6gs93bzqiKeEdQrn7bw6iuI5AZsp+vn+ekTc1apt4Azj2C7pGRQXPF5M0R3oH4Dfj4irWjt5lqNu\nFwsVF85sBz4REcemz84GtkfE++e8hmZWiXPXrPM4b80WhrpHkCPiEoqLNcysgzh3zTqP89ZsYZjp\nXriNeJ2kV1BcWf6GmW74L2kdsA6gHz3hEHobLqA2kN9FutabP0lVYgC6uvPr19VdoawKMerKr1t0\n92THTNQa/z0njXflT8945D7fAUbG88sZq3ADqCrXud76syvui4ip935tl7q520zeAqgr93bDoO4K\nMRWuoqhyWXJ+zUC1Kuuv/OW8uz8/b2sDA9kx0ZOf6xPd+TF76M+OGY8K62JVu0D9J9ddNV+5O+fb\nXAD15C/tVZbbrkr5nv87dw/kL4Ndvfkx7drmjvUO1h9oipHIn57R8fzp2T1Sf5iHlTMynh0zMZ6/\nob7/rh9l521Dd7FIF259vXS65wCKW40E8C7goIh4Vb3xHKn++GD3ofUGe9CSY4bqDzTFssOme+5A\nnXLWVrtTWP/yxdkxfauW1x9oiu4V+TEazq/bxNL8df6OFY3/npO29TfyAKy9bR7P/11v3ZIf88D2\nCg3x0ewQXvs8XRERJ+ZH5mlF7ubmLVTbue1dnr+x6B7O/71iPL9hpFr+xnxgaaN3MnrIkrX5y+zy\nI3Me2FUYflxDt0Xey8SBOc8LKexY1shzFva2ofbo7JjNu/Mb/EO9FbbmwNOOWTznuTtf21yAvgPy\nG1NLDsvfVvcvzf/N+hbl59SKo/OX24FDD8mO6RrOf/xBrMh5zkrh3oOPz465fSx/eu7cmv+b/nRD\n/rr1zju2Z8ds27wrO+YT7zooO28r3cUiIu6JiPHSwx0auZm2mc0z565Z53HemrVfpQaypPJNpl9M\ncecDM1vgnLtmncd5a9Z+dTtpSroQOAlYKel2iicrnSTpeIrTPRuA35vDOppZBc5ds87jvDVbGOo2\nkCPi9Gk+9kMkzBY4565Z53Hemi0MfpKemZmZmVmJG8hmZmZmZiVuIJuZmZmZlbiBbGZmZmZWUreB\nLOk8SRslPey2MpLeICkk5T/5wczmlHPXrDM5d83mXyNHkNcDp0z9UNJa4LnArS2uk5m1xnqcu2ad\naD3OXbN5VbeBHBGXAJum+eoDwBsp7stoZguMc9esMzl3zeZf1SfpnQbcERHXtLg+ZjaHnLtmncm5\na9ZedR8UMpWkQeAtFKd5Ghl+HbAOYHWth4GD+xqvXH929aj15sd09eTHAKi7lh/TpfwYVdiP6R/M\nDpno7c8vp4JRerNjto7kT8/Wnfm/z87d2SGMjXXGwZyc3C3n7Sp1o5685VY9+ctsbSA/pneoJztm\nYjz/94rxieyYWl/+eqVvUX4O1gYaX6c+qMI6ZXRgSXbMXT2HZcf8/N78cnbtyV+vDvXnLzvzpWru\nHtDdw+BhectU73D+cts7nL9OH1yev05f/IjV2TEDhx6SHdO1Mr+cStvcvoHsmN7x/I1Ut/LXX6Nj\n+Tk1OjqeHVNFlXZUFVWOID8KOBy4RtIG4BDgSkkHTjdwRJwTESdGxIlLa9UaombWEg3nbjlvl5C/\no2FmLVUtd73NNassO3si4sfAg7tXKVlPjIj7WlgvM2sx565ZZ3LumrVfI7d5uxC4FDhK0u2SXj33\n1TKzZjl3zTqTc9ds/tU9ghwRp9f5/rCW1cbMWsa5a9aZnLtm889P0jMzMzMzK3ED2czMzMysxA1k\nMzMzM7MSN5DNzMzMzErcQDYzMzMzK2nkNm/nSdoo6drSZ++S9CNJV0u6SNKaua2mmeVy7pp1Jueu\n2fxr5AjyeuCUKZ/9TUQcFxHHA18H3t7qiplZ09bj3DXrROtx7prNq7oN5Ii4BNg05bOtpbdDQLS4\nXmbWJOeuWWdy7prNv8oPapf0HuAVwBbgV2YZbh2wDuCg/j5WHrO84TJ6Bnqy6zW4Yjg7prs/vxyA\nrp6F+5z7iaHF2TG7h1dlx+zsW5odc9+eZdkxG+4byI65f3P+9mP37onsmJGR/Jj51EjulvN2da2H\n3uV5OVIbyL+8oW9xb3ZM73B+TLv0L+7LjhleszK/nEPyz7RPrMqPuWHwidkx370qf3183307s2O6\nuyssb3217Jj5lpu7Bw30ccCxectUrTd/u9Y7lL+s9y0Zyo7pPyA/P7qWrciOmVicHzM2mL/NHe1b\nlF9OV357RZG/LZSyQ+jtzc/D7p78POyqUrkKKl+kFxFvjYi1wPnA62YZ7pyIODEiTlzWW60hamat\n00julvN2SVfnNSTM9kW5ubu8b+HuQJotdK24i8X5wP9pwXjMrL2cu2adyblrNscqNZAlHVl6expw\nY2uqY2Zzyblr1pmcu2btVbezkaQLgZOAlZJuB94BnCrpKGACuAV47VxW0szyOXfNOpNz12z+1W0g\nR8Tp03z80Tmoi5m1kHPXrDM5d83mn5+kZ2ZmZmZW4gaymZmZmVmJG8hmZmZmZiVuIJuZmZmZldRt\nIEs6T9JGSdeWPvsbSTdK+pGkL0nKf5yamc0p565Z53Hemi0MjRxBXg+cMuWzbwPHRsRxwE+BN7e4\nXmbWvPU4d806zXqct2bzrm4DOSIuATZN+eyiiBhLb38AHDIHdTOzJjh3zTqP89ZsYWhFH+RXAd+Y\n6UtJ6yRdLunyB0ZGW1CcmbXIjLlbztstE+NtrpaZzaLhbe6mPSNtrJbZvqXug0JmI+mtwBjFc+Gn\nFRHnAOcAHLdqWSx9xPLGx9+l7Dp1D/Rlx3T19GTHAHQPD2XH1JYtyy9o+crskB1L8w8wbO9fkR2z\nbWJxdsydWwezYzbeP5Eds2VL/g7Z1q17smN27ei8jVC93C3n7WMGh2JgVW/e+Gv5+97d/bXsmL7h\nvHoBLHvkAdkxgwfm50b3ouH8mEPWZsfEcH4Obl9xeHbM5b/IL+eqy27Jjtm1fVd2zP4id5v7uANX\nxPIjDprzesVE/vq51pvf/FAtfx1RRXTntwl2D+SvI/b05G8L93QNZMfEaH5bqq87/zcdHspf72/M\nrxp7drfnYGvlBrKkM4EXAidHRLSsRmY2p5y7Zp3HeWvWXpUayJJOAd4I/HJE7Gxtlcxsrjh3zTqP\n89as/Rq5zduFwKXAUZJul/Rq4EPAIuDbkq6W9OE5rqeZZXLumnUe563ZwlD3CHJEnD7Nxx+dg7qY\nWQs5d806j/PWbGHwk/TMzMzMzErcQDYzMzMzK3ED2czMzMysxA1kMzMzM7OSRu5icZ6kjZKuLX32\nG5KukzQh6cS5raKZVeHcNes8zluzhaGRI8jrgVOmfHYt8BLgklZXyMxaZj3OXbNOsx7nrdm8a+Q2\nb5dIOmzKZzcASBWeEWhmbeHcNes8zluzhWHO+yBLWifpckmXb9q9Z66LM7MWKOft5rGx+a6OmTWo\nnLv379w939Ux61iVHjWdIyLOAc4BOP6gldG/YnHjwRMT2eXVBvqzY/pWLs+OAeg+ZG12zMTSVdkx\nu5atyY55oP+g7Jht48PZMffuzI/ZtDV/v2zPSH4jbffu/Jid2/J34nbt2Pd2/Mp5e8yi4ehb3Dvn\nZfYO9WXHrHzMwdkxS577nOyY+9aekB0zUhvIjumZyF+WumI8O+bW8UOzY+66eyQ7Ztf2Xdkxu7fn\nP0l5bDQ/16PC9qUTlHP38Yesjv6VS+e8zInR0ewY1WrZMV39+euIdhnvym9O7enKX0fsjvyYLuUv\n68N9+TnV053/+4yN5ddtZHf+uqgK38XCzMzMzKzEDWQzMzMzs5JGbvN2IXApcJSk2yW9WtKLJd0O\nPBX4N0nfmuuKmlke565Z53Hemi0MjdzF4vQZvvpSi+tiZi3k3DXrPM5bs4XBXSzMzMzMzErcQDYz\nMzMzK3ED2czMzMysxA1kMzMzM7OSRu5icZ6kjZKuLX22XNK3Jf0s/V82t9U0s1zOXbPO5Nw1m3+N\nHEFeD5wy5bM3Af8REUcC/5Hem9nCsh7nrlknWo9z12xe1W0gR8QlwKYpH58GfDy9/jjway2ul5k1\nyblr1pmcu2bzr2of5AMi4q70+m7ggBbVx8zmlnPXrDM5d83aqO6DQuqJiJAUM30vaR2wDmDtskX0\nr1jabJGzqi0azo9ZfWClsmJR/rSMDS3JjtnevyI7ZuvYouyY+3YNZcfcu7U3O2b3nhkXlxlNjOfH\njIyMZ8fs3jmSX86u/JiFYLbcLeftmsF+Fh24OGvc4yNj2fUZXJGfu4OH5Odu1HqyY8a68pfz+8fy\n83Y8lB0zNpG/Gr9102B2zJ49u7Jj+vr7smNGdu/JjpnYlR8zPjqaHbNQNJq7a5ctojY4kDVu1WrN\nV7ARXfnLetdA/nJLX392yHhf/rZwtJa/rI+Sv14Zi/zfp7srf33c150fI+XPg53b8nN366Yt2TFV\nVD2CfI+kgwDS/40zDRgR50TEiRFx4oqhvEQ1s5ZrKHfLebusL38lbmYtl527K4crNCjNDKjeQP4q\n8Mr0+pXAV1pTHTObY85ds87k3DVro0Zu83YhcClwlKTbJb0aeC/wHEk/A56d3pvZAuLcNetMzl2z\n+Ve381pEnD7DVye3uC5m1kLOXbPO5Nw1m39+kp6ZmZmZWYkbyGZmZmZmJW4gm5mZmZmVuIFsZmZm\nZlbiBrKZmZmZWUlTDWRJr5d0raTrJJ3VqkqZ2dxy7pp1HuetWftUbiBLOhb4XeBJwOOAF0o6olUV\nM7O54dw16zzOW7P2auYI8tHAZRGxMyLGgO8BL2lNtcxsDjl3zTqP89asjeo+KGQW1wLvkbQC2AWc\nClw+dSBJ64B1AGtXLKF76ZLGS+jKb793DQ1nxzBYIQaI7t78GNWyY0a6+rNjdo/m123XSH7ddu7O\nDmFsPD9GUnbMxNhEdszI7pHsmNGR0eyYeVY3d8t5e/DwAP1LBrIK2LMtf8Ho6s5f/tSVv1xo66bs\nmBWbfpYdM7aiJzvmvtHl2THbR/LLuX9LdghjFfKpb7AvO2bXjmY2S/u0Stvc2tBgViHqz9/eqC8/\nhu785Zae/O3axODi7Jg9/RntlKTKdnoiKrRxiOyYKmrKLycqVG3b5h3ZMTs2VViBVVB5TRQRN0h6\nH3ARsAO4GnhY0ycizgHOATjhsDXt+WXNbEaN5G45b49btdR5azbPvM01a6+mLtKLiI9GxBMi4pnA\nA8BPW1MtM5tLzl2zzuO8NWufps5lSVodERslPYKiL9RTWlMtM5tLzl2zzuO8NWufZjt7fSH1hxoF\n/l9EbG5Bncxs7jl3zTqP89asTZpqIEfEM1pVETNrH+euWedx3pq1j5+kZ2ZmZmZW4gaymZmZmVmJ\nG8hmZmZmZiVuIJuZmZmZlTTVQJb0R5Kuk3StpAslVXicjpm1m3PXrPM4b83ap3IDWdLBwB8CJ0bE\nsUANeFmrKmZmc8O5a9Z5nLdm7dVsF4tuYEBSNzAI3Nl8lcysDZy7Zp3HeWvWJpXvgxwRd0h6P3Ar\nsAu4KCIumjqcpHXAOoC1K5dcmhkqAAAgAElEQVTSNbyo8UJqtfyKDQxlh0RPX345wESFuPGe/DNi\n2yeGs2N2jeb/tOOh7Jix8ewQxsYiO2Z8vD0xI7tH8mN27cmOmU+N5G45bw8a6GPrnVuyypiosGCM\nj+THDN5zf3bM0LJl2TE9mzdmx6zsGciOGRzclh3TN7QmO+b2/pXZMYODPdkxA8P568jtm/PL6erO\n31aoK399N58qbXNXL6drzdq8cnrzf7OxwSXZMdHdmx1DTGSHjPXmtwn2dA9mx0j525uJyD9GuXU0\nf3pGx/PLqdKGGKuwza3V8uumrvZcPtdMF4tlwGnA4cAaYEjSy6cOFxHnRMSJEXHiqsX5DT0za61G\ncrect8t68xssZtZalba5SzIOSJnZXppphj8buDki7o2IUeCLwP/XmmqZ2Rxy7pp1HuetWRs100C+\nFXiKpEFJAk4GbmhNtcxsDjl3zTqP89asjSo3kCPiMuDzwJXAj9O4zmlRvcxsjjh3zTqP89asvSpf\npAcQEe8A3tGiuphZmzh3zTqP89asffwkPTMzMzOzEjeQzczMzMxK3EA2MzMzMytxA9nMzMzMrKSZ\nB4UcJenq0t9WSWe1snJm1nrOXbPO47w1a69mHjX9E+B4AEk14A7gSy2ql5nNEeeuWedx3pq1V6u6\nWJwM/DwibmnR+MysPZy7Zp3HeWs2x1rVQH4ZcOF0X0haJ+lySZffu3V7i4ozsxaZNnfLefvAyOg8\nVMvMZtHYNnfLtjZXy2zf0dSDQgAk9QIvAt483fcRcQ7paT9POOIRQW9v4yPvyRi2mZiKoquWHbOn\nZzg7ZtdYX3bM2ER7rr+cmIjsmPHx/Jg9e8azY7Y+sCM/5v7N2TETY/l1Wwhmy91y3h49PBQ779+Z\nNe6umrLrMz46kR2zZcPd2TE9iwazY/pq+bne2z+UHdMV+cvSniX507N0eHl2zIoV+evWrVt6smOq\n6OnLr1vfYP8c1GTu5WxzT3jMETG+OO+3nujO395UiRlvU8xYV/6yEcrffnZP5B9IGI/8cm7fnJ/v\nO3dXWB/nr47ZuSs/aOmqxfnlbFudHVNFK1pRzweujIh7WjAuM2sf565Z53HemrVBKxrIpzPDqR4z\nW9Ccu2adx3lr1gZNNZAlDQHPAb7YmuqYWTs4d806j/PWrH2a6oMcETuAFS2qi5m1iXPXrPM4b83a\nx0/SMzMzMzMrcQPZzMzMzKzEDWQzMzMzsxI3kM3MzMzMSpq9i8VSSZ+XdKOkGyQ9tVUVM7O549w1\n6zzOW7P2afZJen8PfDMifj093Sf/ES9mNh+cu2adx3lr1iaVG8iSlgDPBM4EiIgRYKQ11TKzueLc\nNes8zluz9mqmi8XhwL3AxyRdJencdBPzvUhaJ+lySZffu3V7E8WZWYvUzd1y3m4eHZufWppZWfY2\n977NW9pfS7N9RDNdLLqBE4A/iIjLJP098Cbgz8sDRcQ5wDkATzjy0KC7J6OEjGEny6vV8mO68mOK\nsvJnXyh/n6S3K7+BUuuK7JiJieyQSjHjE/l127Mnfx7s3LozO2Z01+7smA5UN3fLeXv08HB01TTn\nlYoqy8W2/N9r5933Z8fUBgeyY7qXrcqOmVi8OjtmV7TnLLsqLAJVftOJCisVdeVXrq+/LztmnmVv\nc094zBH5P0AFXRP56+eYyN9+jlU4pjfelV/OaFf+sjFCfswDu4azY+7fkr+sb902nh0TFZac3bvz\ny+nrz/99Bhflr4+raOYI8u3A7RFxWXr/eYrkNbOFzblr1nmct2ZtVLmBHBF3A7dJOip9dDJwfUtq\nZWZzxrlr1nmct2bt1exdLP4AOD9dTfsL4Hear5KZtYFz16zzOG/N2qSpBnJEXA2c2KK6mFmbOHfN\nOo/z1qx9/CQ9MzMzM7MSN5DNzMzMzErcQDYzMzMzK3ED2czMzMyspKmL9CRtALYB48BYRPjiAbMO\n4Nw16zzOW7P2afY2bwC/EhH3tWA8ZtZezl2zzuO8NWsDd7EwMzMzMytptoEcwEWSrpC0rhUVMrO2\ncO6adR7nrVmbNNvF4ukRcYek1cC3Jd0YEZeUB0hJvA5g7eoV0Nvf+NhrtewKRa0nP6a74mxQ/v6F\nYiI7pr+2Jz+muy87pqsrfz50dyu/HOXH9HTnLwsDwxnLWtI/PJQdMz4+nh2zAMyau+W8PbCvl66e\nvPmvrvzfuNbTnhNaI9t2ZseM79yVHdM9mp+3E7X8HNwTvdkxvbXIjhnoy/99liwbyI5Ztnppdsz2\nLTuyY3r6WtHDsO3ytrkHrKq0ncoVFdbpVYxX2Ebtqi3Kjtk6XiFmT/6yfs+2/G3U1m3525v7789f\nF42N5bdVRveMZcds25K/bt32wPbsmCqaypyIuCP93wh8CXjSNMOcExEnRsSJq5YMN1OcmbVIvdwt\n5+2ynvydTjNrvdxt7spli9tdRbN9RuUGsqQhSYsmXwPPBa5tVcXMbG44d806j/PWrL2aOcd0APAl\nFadWuoELIuKbLamVmc0l565Z53HemrVR5QZyRPwCeFwL62JmbeDcNes8zluz9vJt3szMzMzMStxA\nNjMzMzMrcQPZzMzMzKzEDWQzMzMzsxI3kM3MzMzMSppuIEuqSbpK0tdbUSEzaw/nrlnncd6atUcr\njiC/HrihBeMxs/Zy7pp1HuetWRs01UCWdAjwAuDc1lTHzNrBuWvWeZy3Zu3TzJP0AD4IvBFYNNMA\nktYB6wDWHrCC6OlteORR68muUM74J01058cAjNeqxeXq0+7smOEK82FHb35MX2/+PlZfr7Jjhobz\nF9WDD1+ZHTMw1J8ds23zjuyYBWDW3C3n7UEDffQO5S0btZ785aLWm/8bd3XX2hITE5Edw9Yt2SH9\nm+/Kjlmy5qDsmK0Dg9kxu5fk58bYeP46ZWx0aXbMnRV+n93b89erC0DeNvfAVdnbt4kK27Xxnvxl\nY7R7IDtmR8+S7JgtY4uzY+7bNZQds213/vpry/b8beH27WPZMdu25C/rO7blx1RZT+7asSs7Zs/O\n/JgqKh9BlvRCYGNEXDHbcBFxTkScGBEnrlySv6CaWWs1krvlvF3Wm7+jamatVWmbuzS/QWlmhWa6\nWDwNeJGkDcCngWdJ+lRLamVmc8m5a9Z5nLdmbVS5gRwRb46IQyLiMOBlwH9GxMtbVjMzmxPOXbPO\n47w1ay/fB9nMzMzMrKTZi/QAiIiLgYtbMS4zax/nrlnncd6azT0fQTYzMzMzK3ED2czMzMysxA1k\nMzMzM7MSN5DNzMzMzEqaeVBIv6QfSrpG0nWS/qKVFTOzueHcNetMzl2z9mnmLhZ7gGdFxHZJPcB/\nS/pGRPygRXUzs7nh3DXrTM5dszap3ECOiAC2p7c96S//Qdxm1lbOXbPO5Nw1a5+m+iBLqkm6GtgI\nfDsiLptmmHWSLpd0+X1btjZTnJm1SL3cLeftAyOj81NJM3uYnNy9b/OW+amk2T6gqQeFRMQ4cLyk\npcCXJB0bEddOGeYc4ByAE44+Iib6hxoe/0R3b36daj3ZMRNd+TEAY939FcqqZcfUGM+O6e/akx/T\nPZYdM9iXvwjtGWjPtaHd3fnl9Pbm/z6Di/qyY+Zbvdwt5+1xq5fHssNWZo2/Zyg/N7oH8ufjxFh+\nbqgrf7no6stfF03s3JFfzrYHsmMGRrdlxwx2r8iOGe7LX08+0JMf01VTdkytlv+bjo3mr+8Wgpzc\nffwxR8V4z2DW+Ed784YHGOkeyI4Z7crP95HIj9k+mr8u2jWSvx3YtSd/GbxvU/766/57d2bHbN+y\nKzumisFF+fO6Skxff/76uIqWtFQiYjPwXeCUVozPzNrDuWvWmZy7ZnOrmbtYrEp7sEgaAJ4D3Niq\nipnZ3HDumnUm565Z+zTTxeIg4OOSahQN7c9GxNdbUy0zm0POXbPO5Nw1a5Nm7mLxI+DxLayLmbWB\nc9esMzl3zdrHT9IzMzMzMytxA9nMzMzMrMQNZDMzMzOzEjeQzczMzMxKmrnN21pJ35V0vaTrJL2+\nlRUzs7nh3DXrPM5bs/Zq5jZvY8AbIuJKSYuAKyR9OyKub1HdzGxuOHfNOo/z1qyNKh9Bjoi7IuLK\n9HobcANwcKsqZmZzw7lr1nmct2bt1ZI+yJIOo7g342XTfLdO0uWSLr/vga2tKM7MWmSm3C3n7aZd\ne+ajamY2g4a3uZu3tLtqZvuMZrpYACBpGPgCcFZEPKwFHBHnAOcAPP6YR8d470DD456o9WXXZ6KW\nP0njXT3ZMQBjVeqnWqWyckmRHdPVlR8z2DeRHTM+kT8Pal35+3I9PfnT09ebvywMDTWdRvNittzd\nK28PWR3Daw/IGnfP0iX59emvkE+7dmXHxJ6R7Jja8FB2TNfwcHZMDOSXs7snvxzG8kO6a1XyKb+c\noeH8fBpc1J8ds3tnZ+745W5zNVHhx840rvzfLJS/Tu8if3tTxei4smN27s4vZ9Om/KBtm3dmx9S6\n8+f1oiWNt9UmDS/OX4f391dYdg5elB1TRVNHkCX1UCTq+RHxxdZUyczmmnPXrPM4b83ap5m7WAj4\nKHBDRPxd66pkZnPJuWvWeZy3Zu3VzBHkpwG/DTxL0tXp79QW1cvM5o5z16zzOG/N2qhy58mI+G8g\nv6OOmc0r565Z53HemrWXn6RnZmZmZlbiBrKZmZmZWYkbyGZmZmZmJW4gm5mZmZmVNHsf5PMkbZR0\nbasqZGZzy3lr1pmcu2bt0+wR5PXAKS2oh5m1z3qct2adaD3OXbO2aKqBHBGXAJtaVBczawPnrVln\ncu6atY/7IJuZmZmZlVR+UEijJK0D1gGsPXA1qPE2eSj/nugTquXHdFWbDRNd+WXFAr7Pu4jsmN7a\nRHZMX0/+PBgbz9+XU4Xlp7u7Skz+fFvo9srbpYtQLW9ZV39fdpldA4PZMTEykh+THQHq688PWroi\nO2R08crsmF2RP99GJyqsJyvMuN4KudHXm5/rff356/Cevp7smE6w9zZ3FV3jeTlSyxweoLs2mh0T\nGW2BST1d+XXrq1A3KX/9FRXyo8o2anBR/rqotzc/3weGerNjhobyc2p4OL9uvW1K3Tk/ghwR50TE\niRFx4oplS+a6ODNrgb3ydnhgvqtjZg0q5+7Kpd7mmlXlLhZmZmZmZiXN3ubtQuBS4ChJt0t6dWuq\nZWZzxXlr1pmcu2bt01Qf5Ig4vVUVMbP2cN6adSbnrln7uIuFmZmZmVmJG8hmZmZmZiVuIJuZmZmZ\nlbiBbGZmZmZW0uxdLE6R9BNJN0l6U6sqZWZzy7lr1nmct2btU7mBLKkG/BPwfOAY4HRJx7SqYmY2\nN5y7Zp3HeWvWXs0cQX4ScFNE/CIiRoBPA6e1plpmNoecu2adx3lr1kbNNJAPBm4rvb89fWZmC5tz\n16zzOG/N2qipB4U0QtI6YF16u2fJE557beYoVgL3OcYx+1jMUZnDt9XUvF36p/+Qm7ewsOe/YxxT\nNaajcnfxk17gba5jHFMlbyOi0h/wVOBbpfdvBt5cJ+byCuU4xjGOaeFfbu5WretCnpeOcUw7Y1rx\n522uYxzT3phmulj8L3CkpMMl9QIvA77axPjMrD2cu2adx3lr1kaVu1hExJik1wHfAmrAeRFxXctq\nZmZzwrlr1nmct2bt1VQf5Ij4d+DfM0LOqVCMYxzjmBbLzN2qdV3I89IxjmlnTEt4m+sYx7QvRqlv\nhpmZmZmZ4UdNm5mZmZntpS0N5CqPx5R0nqSNkhq+RY2ktZK+K+l6SddJen0DMf2SfijpmhTzFw2W\nVZN0laSvZ9Rvg6QfS7pa0uUNxiyV9HlJN0q6QdJT6wx/VBr/5N9WSWc1UM4fpem/VtKFkvrrDP/6\nNOx1s41/ut9R0nJJ35b0s/R/WQMxv5HKmpB0YoPl/E2abz+S9CVJSxuIeVca/mpJF0laUy+m9N0b\nJIWklQ2Uc7akO0q/06kzzcP5lJu7Cz1vU2xW7u5LeZti6uau87az8xb2vdzNzdsU49zFuZs+y8/d\n3NteVLi1Rg34OfBIoBe4BjimgbhnAicA12aUdRBwQnq9CPhpvbIAAcPpdQ9wGfCUBsr6Y+AC4OsZ\n9dsArMycfx8HXpNe9wJLM+f93cChdYY7GLgZGEjvPwucOcvwxwLXAoMU/di/AxzR6O8I/DXwpvT6\nTcD7Gog5muI+hhcDJzZYznOB7vT6fQ2Ws7j0+g+BDzeyXAJrKS6euWXqbzxDOWcDf5KzLLT7r0ru\nLvS8TcNn5e6+krdpmIZy13nbuXlbWob2qdzNzdsU49wN5276LDt323EEudLjMSPiEmBTTkERcVdE\nXJlebwNuoM6ThqKwPb3tSX+zdsyWdAjwAuDcnPrlkrSE4of+KEBEjETE5oxRnAz8PCJuaWDYbmBA\nUjdFAt45y7BHA5dFxM6IGAO+B7xkugFn+B1Po1gJkf7/Wr2YiLghIn4yU4VmiLko1Q/gB8AhDcRs\nLb0dYsqyMMty+QHgjVOHrxOz0GXn7kLOW2hP7i7gvIUGc9d529F5C/tY7nqbCzh3p5rz3G1HA3le\nHo8p6TDg8RR7p/WGrUm6GtgIfDsi6sV8kOKHmcisVgAXSbpCxdOO6jkcuBf4WDq1dK6koYzyXgZc\nWLdSEXcA7wduBe4CtkTERbOEXAs8Q9IKSYPAqRR7c406ICLuSq/vBg7IiK3qVcA3GhlQ0nsk3Qac\nAby9geFPA+6IiGsy6/S6dGrpvKmnvBaItufuHOctVMvdfSVvobncdd4WFnrewr6Xu/v7Nhecu+Xh\n25K7++RFepKGgS8AZ03ZO5lWRIxHxPEUeztPknTsLON+IbAxIq6oULWnR8QJwPOB/yfpmXWG76Y4\nTfAvEfF4YAfF6ZG6VNxI/kXA5xoYdhnFHubhwBpgSNLLZxo+Im6gOH1yEfBN4GpgvJF6TTOuoIEj\nf82Q9FZgDDi/wTq9NSLWpuFfV2fcg8BbaCCpp/gX4FHA8RQryL/NjN/nzGXepvFXzd19Im+hdbnr\nvHXelnmb69wt21dytx0N5DvYey/nkPTZnJDUQ5Go50fEF3Ni06mU7wKnzDLY04AXSdpAcdrqWZI+\n1eD470j/NwJfojgNNpvbgdtLe9efp0jeRjwfuDIi7mlg2GcDN0fEvRExCnwR+P9mC4iIj0bEEyLi\nmcADFH3PGnWPpIMA0v+NGbFZJJ0JvBA4I60YcpwP/J86wzyKYiV3TVomDgGulHTgbEERcU/aSEwA\n/0r9ZWE+tC1325C3UDF396W8haZy13nbGXkL+1buepubOHeBNuZuOxrIbXs8piRR9B26ISL+rsGY\nVUpXWkoaAJ4D3DjT8BHx5og4JCIOo5iW/4yIWff80riHJC2afE3RmX3Wq4Uj4m7gNklHpY9OBq6v\nP1UAnE4Dp3qSW4GnSBpM8/Bkir5kM5K0Ov1/BEU/qAsaLAuK3/+V6fUrga9kxDZM0ikUp+VeFBE7\nG4w5svT2NGZZFgAi4scRsToiDkvLxO0UF63cXaecg0pvX0ydZWGetCV325G3UC1397W8haZy13nb\nGXkL+1Duepv7EOdum3M3Mq7oq/pH0VfmpxRX1b61wZgLKQ6Dj6YZ8OoGYp5OcergRxSnH64GTq0T\ncxxwVYq5Fnh7xnSdRONXwj+S4kria4DrMubD8cDlqX5fBpY1EDME3A8syZiWv6BYMK8FPgn01Rn+\nvyhWHNcAJ+f8jsAK4D+An1Fcibu8gZgXp9d7gHuAbzUQcxNFP7zJZWHq1bHTxXwhzYMfAV8DDs5Z\nLpnmqukZyvkk8ONUzleBg9qRi7l/ubnbCXmb4hvK3X0tb1NM3dx13nZ23qb673O522jepmGdu87d\npnLXT9IzMzMzMyvZJy/SMzMzMzOryg1kMzMzM7MSN5DNzMzMzErcQDYzMzMzK3ED2czMzMysxA1k\nMzMzM7MSN5DNzMzMzErcQDYzMzMzK3ED2czMzMysxA1kMzMzM7MSN5DNzMzMzErcQDYzMzMzK3ED\nOYOkkHREev1hSX8+y7BvkXRuk+UdlsrsbmY8rSDpOkknNTDcdkmPnKM6fEPSK+di3Gb17Gv5L2m9\npHfPxbjNzDqdG8gVRcRrI+JdAJJOknT7lO//MiJeMz+1a850G86IeGxEXFwvNiKGI+IXLajD2ZI+\nNWXcz4+Ijzc7brNm7Wv5P900mO0LJJ0h6aIGh33wQNB026Bpht9rJ7Z8EEfSmZL+u8nq16vvrDvq\n1px5PzJpC4uk2nzXwcw6i6TuiBib73qYTRUR5wPnNzjsY5ss6/nNxM9G0pnAayLi6aXyXjtX5dl+\negRZ0gZJb5Z0vaQHJH1MUn/67ncl3SRpk6SvSlozwzjWS3q3pCHgG8Ca1L1gu6Q1U/c+JT1d0vcl\nbZZ0W1rYkfQCSVdJ2po+P7vC9Fws6a8k/TCN5yuSlpe+/5ykuyVtkXSJpMeWvlsv6V8k/bukHcCr\ngTOAN6Zp+Vppnj07va6lU8g/l7RN0hWS1qbvyqeh16c93G+n4b4n6dBS2X+fpnlrGscz0uenAG8B\nfjPV4ZrSdL4mve6S9DZJt0jaKOkTkpak7yb36l8p6VZJ90l6a+58tX3TPpj/y9M03Jmm58vp84cd\nwSrnZ+mzmaZhrzNJmnKUOc3HP5P0I2CHpO4U9wVJ90q6WdIf5k6Pme1NC6Cb5f5ov2wgJ2cAzwMe\nBTwaeJukZwF/BbwUOAi4Bfj0bCOJiB3A84E7U/eC4Yi4szxMahR+A/hHYBVwPHB1+noH8ApgKfAC\n4Pcl/VqF6XkF8KpU7zHgH0rffQM4ElgNXMnD96Z/C3gPsAj4RPr+r9O0/Oo0Zf0xcDpwKrA4lbtz\nhnqdAbwLWEkxzeWy/5diXiwHLgA+J6k/Ir4J/CXwmVSHx00z3jPT368AjwSGgQ9NGebpwFHAycDb\nJR09Qx1t/7Mv5f8ngUHgsRQ5/oGc4EamYRanU9R7KTABfA24BjiYIu/OkvS8nPqYVSVpraQvph20\n+yV9qLyjmA4GvX9KzFck/XF6/eCBoIrlP3gQ56GP9CEVB6dulHRy6Yslkj4q6S5Jd6Qd7lr67kxJ\n/yPpA5LuBz4DfBh4atqB3ZyGm7oT+0JJV6cd8e9LOq703Z+lcrZJ+km5Lja9/bmB/KGIuC0iNlE0\nDk+n2GieFxFXRsQe4M0UC+RhTZb1W8B3IuLCiBiNiPsj4mqAiLg4In4cERMR8SPgQuCXK5TxyYi4\nNm3s/hx46WSyRcR5EbEtTdPZwOMmj7YmX4mI/0l12N1AWa8B3hYRP4nCNRFx/wzD/ltEXJLKfivF\n/Fyb6vWpNC/GIuJvgT6KBm0jzgD+LiJ+ERHbKX6rl03Z0/6LiNgVEddQbLSna2jb/mmfyH9JB1E0\nbl8bEQ+k8X+vyfrm+Ic0H3cBTwRWRcQ7I2IkXYvwr8DL2lgf20+l7d3XKXZsD6PYSZu6g3shxZlJ\npZhlwHOnGa5Vngz8nOIA0TuAL+qhs7vrKQ5mHQE8PtXjNVNifwEcALwceC1wadqBXTq1IEmPB84D\nfg9YAXwE+KqkPklHAa8DnhgRiygODmxo6ZTug/bnBvJtpde3AGvS3y2TH6aG1/0UidaMtRRJ8jCS\nnizpu2mPdwtFEqysUMbU6ekBVqroDvFeFd0htvJQUqycIbYRM07PbPVK83MTxXxG0p9IuiHtXW8G\nltD4tO/1W6XX3RQrk0l3l17vpDjKbAb7Tv6vBTZFxANN1rGq8nw8lKKbxubJP4quUgdMH2rWUk+i\nyOE/jYgdEbE7IqZeJPdfQADPSO9/naLR2egZk1wbgQ+mHdfPAD8BXiDpAIozsGelum6kOPNT3pm8\nMyL+MR1A2tVAWeuAj0TEZRExni5o3wM8BRinOAB1jKSeiNgQEY1uw/db+3MDeW3p9SOAO9NfuY/s\nEMWe2B11xhV1vr+N4lTudC4AvgqsjYglFKdRVGd805k6PaPAfRRHr04Dnk3RAD0sDVMuY2r9m5me\nGeslaZiiO8WdKvobv5HidPaytEe8pVSvenXY67eimOYx4J4G62X7t30l/28Dlkt62BEliu4bg5Nv\nJB04y3imm4a94oHp4stxtwE3R8TS0t+iiDh1lnLNWmUtcMtsF4tGRFAcLT49ffRbNHgBX0V3pDIn\nTe6MH0pxEOuu0s7kRyi6SE3KPXB1KPCGKTuoa4E1EXETcBbFGeSNkj6tGa6vsIfszw3k/yfpkHS6\n460UfXwuBH5H0vGS+ij6wV4WERvqjOseYMWUbgtl5wPPlvTSdCHLCknHp+8WURwB2i3pSRQJW8XL\nJR0jaRB4J/D5iBhP499DcSRsME1TPfdQ9OudybnAuyQdqcJxklbMMOypKi5Q6qXoi/yDiLgt1WsM\nuBfolvR2iv7M5TocJmmmZfRC4I8kHZ4a3pN9ln0lvTVin8j/iLiLon/zP0taJqlH0jPT19cAj03T\n00+xccyZhqsp8nd5alyfVac6PwS2pb6OA+ns1bGSnpgzTWYV3QY8QvUvaLsQ+HUV1wY8GfjCHNbp\n4MnuHMnkzvhtFNvllaWdycVT7qJR5cDVe6bsoA5GxIUAEXFBFHfAODSN633NTNj+YH9uIF8AXETR\nx+fnwLsj4jsU/Xe/ANxFcdSnbv+5iLiRIul+kfbc1kz5/laK0ylvoOhicDUP9Yf9v8A7JW0D3g58\ntuL0fJKiT9PdQD8wefX4Jyj2Wu8Argd+0MC4PkpxKmaz0hXxU/xdqudFwNY0/MAM47qAou/VJuAJ\nFH2pAL4FfBP4aarfbvbeY/5c+n+/pCunGe95FNN8CXBziv+DBqbNDPat/P9tijNGN1Kc0j0rlftT\nip3l7wA/A2a8J+sM0/BJikb2Bop59ZnZKpF2yF9IcRHizRRnsM6lOHNlNtd+SJG375U0JKlf0tOm\nDhQRV/HQsvmtiNg8h3VaDfxh2nH9DeBo4N/Tju1FwN9KWqzirkyPkjTb9Qf3AIekg03T+Vfgtanb\nltI8eIGkRZKOkvSstLZ6MxcAACAASURBVOO/G9hFcVGtzUJ7H/3fP0jaQHE/we/Md11aQdLFwKci\noqknd7WapPXA7RHxtvmui9mkfS3/zawg6REUd3B6BsVR0gso7ty01/2DVTxc453ASyPic6XPN6Rh\nv6PilotHRMTLmYGKC3hvBnoiYqy8LVZxK8ffBa6i2Im9B3hdRFyUYpcA7wV+leJM0i+A90XEpzXN\nPY9Tw/hLwFOBiYhYOXUbq+IWqe+iuGvVLoqd4lcBh1PsEBxNsTP9fWDdHPa93ie4gbwPcAPZrHH7\nWv6bmVnr1e1iIek8FQ9iuLb02dkq7qd3dfrzRRhzTA/dwH/q3zPqR9v+yLm773D+7z+ct2YLQ90j\nyOmCj+3AJyLi2PTZ2cD2iHj/bLFmNn+cu2adx3m7sEg6g+IOE1PdEk0+mtoWtrpHkCPiEooLS8ys\ngzh3zTqP83ZhiYjz46EnTJb/3DjexzVzF4vXSfpROh20rGU1MrO55tw16zzOW7M2augivXSl5tdL\np3sOoLhNSlBcMXlQRLxqhth1FE94oR894RBmukPJw/Wv6G942Ek9i4ayYxioEANMFE9yzqLIv7NK\ndOWXM1b3VpAPNxH55YxH/jNNokLMRIWYsQo3salyzWqVmNtuuuK+iFiVH5mnau42k7cAtYH8Zam7\nr0JMf169AGqD+euV6BusP9AUExXytu6dTlsUpEoXZ+fHxIy3MZ/ZeFdPfkyldVe140M/vf6qOc/d\n+drmAqiWv65Vd35MV6WY/N+s1pO/bHT15G8/1ZVfN/XkL+v09mWHRK1Ce6ArP2aU/LpVaUNUUSVv\nKzWQG/1uqiPVHx/sPrTeYA86+owjGx520kEnPyU7ZuzoE7NjAPb059/es3u0kSdG7m2kb3H9gaZ4\noC//6a7bxvKfxLx9NL+xsXssf4W1cyQ/WbfsyF9hjYxmhzA6lt9w+IMXdF0REdUWvAytyN3cvAVY\nemz+srT8kcuzY1YefUh2zKJfOjo7ZvRRx2XH7B7Mnx5NjGfHdEWFmLGRtpQz1jPT7dFntnnwoOyY\nB8bzD6hWWXcBnHTs0Jzn7nxtcwG6F+eva3uX58cMrsyf/4Mr8ndUF6/J304PHTjTc69m1j2Uv6z3\nHri6/kBT6BGNPsT2IaNL8svZMZi/D3iH8pY1gG0j1fIw17OOG8zO20q70JLKa7AXA9fONKyZLRzO\nXbPO47w1a7+6u32SLgROAlZKup3iqWgnqXhUalA8Zen35rCOZlaBc9es8zhvzRaGug3kiDh9mo8/\nOgd1MbMWcu6adR7nrdnC0MxdLMzMzMzM9jluIJuZmZmZlbiBbGZmZmZW4gaymZmZmVlJ3QZyemrP\nRkkPu62MpDdICkkr56Z6ZlaVc9esMzl3zeZfI0eQ1wOnTP1Q0lrgucCtLa6TmbXGepy7Zp1oPc5d\ns3lVt4EcEZcAm6b56gPAG6n4cFQzm1vOXbPO5Nw1m39Vn6R3GnBHRFzT4vqY2Rxy7pp1JueuWXtl\nP0Bd0iDwForTPI0Mvw5YB7C61sPAwX0NlzW2Zyy3eoxv254d07313uwYgNqubflBkb/jH1217Jha\nX/686+0azY7pq+XXbfdYfszImLJjKsxquvbhy1Zzcrectwf29bL6xGVZZQ2tGsqu36KDlmbH9C1f\nkh1DT+ProEldIzvzi+nuz46ZqGWvkgnlL7TjPRXqNjGeHTPaPZAdM56/WaJH+eu7vlr++m6+VM3d\nVepGPfnrzly1vvxlsLs//3euYmJsoi3l9K5cnh3TterA7JixgUXZMSO9w9kxW3ryu7hv2Zmf7ztH\nKqzzYu6Xaah2BPlRwOHANZI2AIcAV0qa9peOiHMi/v/27j1Isrs87/jz9m3us7N3SbsrVghYLkLo\nskXAYGwjcAmZQgbbVSjGgVjJVlLGBscpCkIFTLmoMsFxTJVTdk0keSkjRNmAYqIUIAWDFVeBnEWs\nxIoVF4FAu5J2drXa21z78uaPbjmH8c50v6dPn5kz+X6qpnam9zx9ft19nj6/6Tndx/e7+/6pFE/+\nADLTc3d/qreVas7DBLBMqu5uUvzFCABt4Rmru39b0o7nfu6Udb+7n8pwXAAyRneBYqK7QP56+Zi3\nuyR9XdI+MztmZrcOflgA+kV3gWKiu8Da6/oKsrvf0uX/92Y2GgCZobtAMdFdYO1t4LckAQAAAHFM\nkAEAAIAEJsgAAABAAhNkAAAAIIEJMgAAAJDQy8e83WFmM2Z2JHHZH5jZw2Z22MzuNbPLBjtMAFF0\nFygmugusvV5eQT4o6cZll33c3a9292sk3SPpQ1kPDEDfDoruAkV0UHQXWFNdJ8jufr+k08suO5f4\ncUySZzwuAH2iu0Ax0V1g7YVPNf0cM/uopH8h6aykX1hluQOSDkjSJbWaRncO97yOVqMVHlf92bPh\nTOXEk+GMJNnYeDxUGwpHqrXe77PnDI3OhzNLlmJspWY402jFD30/P2fhzNlz8e1nqR7f58zNx++D\ntdRLd5O93T05puf93ItD66iOj4bHVZ2M96k8ORnOqBJ/2istLYYz5cpsONMY3RLOLFXHwhm3eJ/S\naFr8vi6rEc4MlxbCmYrF17PWot29pFbT1ldsGvi4hiZq4UypUo5nyvHttj6/FM606vVwpnRJ/IiX\n2cuvCmfma/HnvBldGs48/szmcObcXHzfvhh/eFRv5PO7Yeo36bn7B919j6Q7Jb17leWm3X2/u++f\nSrFjApCtXrqb7O3W0fgvaACyF+3uVJV9LpBWFp9icaekX8ngegDki+4CxUR3gQFLNUE2sxcmfrxZ\n0qPZDAfAINFdoJjoLpCvrn9/MbO7JP28pG1mdkzShyXdZGb7JLUk/VjSvxnkIAHE0V2gmOgusPa6\nTpDd/ZaLXHz7AMYCIEN0FygmugusPc6kBwAAACQwQQYAAAASmCADAAAACUyQAQAAgISuE2Qzu8PM\nZszsSOKyj5vZo2b2sJndbWZTgx0mgCi6CxQPvQXWh15eQT4o6cZll90n6Sp3v1rS9yR9IONxAejf\nQdFdoGgOit4Ca67rBNnd75d0etll97r7cyey/4ak3QMYG4A+0F2geOgtsD5kcQzyb0r64kr/aWYH\nzOyQmR0602istBiA/K3Y3WRvn5lbyHlYAFbR+z63zj4XSKvriUJWY2YflNRQ+7zwF+Xu05KmJekl\n4+Nerg72fYH1uflwZmh+LtW6SmPj8VC1Fo54Of4wNS2ecVk40/L44zm/FM+cu+DhzPEn44/rzPGz\n4cz8bHybW2vdupvs7XV7L/WxvbEXrKxajY+pkiIzNBTOqFyOZ1r5TDSWqmPhzGJlNJxJ0/WSN8OZ\nNGrNeJ9GW+fCmZal2A7WWHSfe/WOLb7r+stD61i6EL//m/VWOOOteCaNoYnhcGZ4+5ZwZm7Py8KZ\np4afH86cr8f7/tipiXDmyZn4Pnd+vh7OPPvsYnw9s0vhTBqpJ8hm9i5Jb5Z0g7vH70kAa4LuAsVD\nb4F8pZogm9mNkt4n6efcPd3LrwByR3eB4qG3QP56+Zi3uyR9XdI+MztmZrdK+lNJE5LuM7PDZvbn\nAx4ngCC6CxQPvQXWh66vILv7LRe5+PYBjAVAhuguUDz0FlgfOJMeAAAAkMAEGQAAAEhgggwAAAAk\nMEEGAAAAEnr5FIs7zGzGzI4kLvs1M3vEzFpmtn+wQwSQBt0FiofeAutDL68gH5R047LLjkh6m6T7\nsx4QgMwcFN0Fiuag6C2w5nr5mLf7zWzvssuOSpJZ/HSlAPJBd4HiobfA+jDwY5DN7ICZHTKzQ2ca\n8fN0A8hfsrenznPiLqAokt09Pb+41sMBCivVqaYj3H1a0rQkvWR8zFvN3k8h76346ea90QxnlPa0\n9rWhcKQ1PBbONCvD8Uwp/tAuNmrhzOmFkXDm1Jn472WnT8ef6E/PXAhnzp46G860mim2uXUu2dvr\nr9zj5U1TsStI80pXij5pdDwc8Uo1vh6Lb7OtSvz2LJXjXa8r3ltXiscnRaSkVjhTtkY801wKZ0pW\nDmeKINnda/fs9Mnn7wrlF0/HnwM9xT60Oj4azlgp3kMrxx/n2kuvCmeeGtsbzjxxbms4c+yZ+PPX\nzKn4PmpuLt7Ds2cWwpmTT54JZxZm4+tJg0+xAAAAABKYIAMAAAAJvXzM212Svi5pn5kdM7Nbzeyt\nZnZM0qsl/U8z+/KgBwoghu4CxUNvgfWhl0+xuGWF/7o747EAyBDdBYqH3gLrA4dYAAAAAAlMkAEA\nAIAEJsgAAABAAhNkAAAAIKGXT7G4w8xmzOxI4rItZnafmX2/8+/mwQ4TQBTdBYqJ7gJrr5dXkA9K\nunHZZe+X9BV3f6Gkr3R+BrC+HBTdBYrooOgusKa6TpDd/X5Jp5ddfLOkT3a+/6SkX854XAD6RHeB\nYqK7wNpLewzyTnd/qvP905J2ZjQeAINFd4FiortAjrqeKKQbd3cz85X+38wOSDogSZcOD2lootbz\ndQ9NDIXHU50YDWdULsczkjR7PhwpleN3eXloLJwxX/EhWdFcYzicmTnb++P5j5lT9XDm9DPz4czS\nwlI4M7l1MpwZmxwJZ9aD1bqb7O2eS3Zo6cqXh67bWs3+B9iDZiW+zXop3vc0t2d+ZEs8Y/Gu11vV\ncKbh8ftgsRlfT3nlXcOKRlI8prXhiXCmVeD3qPfc3c0TsmrscRvasik8nspUPFO6bE84k0qzEY7M\n7XpxOHNyMd73x0/EO5Vm/1kqWzhTq8X7UV+KP09eOBOfRy1cmAtn0kj7DHHCzC6VpM6/Myst6O7T\n7r7f3fdPBYsKIHM9dTfZ262b4zs/AJkLd3fbeIoXjABISj9B/oKkd3a+f6ekv8lmOAAGjO4CxUR3\ngRz18jFvd0n6uqR9ZnbMzG6V9IeS3mhm35f0hs7PANYRugsUE90F1l7XA2Ld/ZYV/uuGjMcCIEN0\nFygmugusveK+SwEAAAAYACbIAAAAQAITZAAAACCBCTIAAACQwAQZAAAASOhrgmxm7zGzI2b2iJm9\nN6tBARgsugsUD70F8pN6gmxmV0n615JeKekVkt5sZi/IamAABoPuAsVDb4F89fMK8kskPeDuc+7e\nkPR3kt6WzbAADBDdBYqH3gI56nqikFUckfRRM9sqaV7STZIOLV/IzA5IOiBJl42NaOryLT2vYGTr\nZHhQ1U3xjFWq4Ywk+eJCfF1L8Ux9aDycOdvaFM6cWRgKZ06f9XBmfr4ZztRq5XBmdGIkRSZ+H2zZ\nEl/PGuva3WRvL71sl45tenloBTVbDA+q1op3o+yNcMZl4UzL4tvfOdsczpxemAhnWh5/naPp8ftg\nsR6/Dyy+GtUq8Q5WS/HnlDTbwRoL73P3TI2rtRDrValWCw/MhofDGVXj62nV4s+1rWp8e5od7n2e\n8o/q8Ug1xdSjWo33vVKJb+se37WrVI6Prb4Yv+OW5uP7lzRST5Dd/aiZfUzSvZJmJR2W9E+epdx9\nWtK0JF29fSrFXQ4gS710N9nbq17+CnoLrLE0+9xrd++gu0BKfb1Jz91vd/fr3f11kp6V9L1shgVg\nkOguUDz0FshPP4dYyMx2uPuMmV2u9rFQr8pmWAAGie4CxUNvgfz0NUGW9LnO8VB1Sb/l7mcyGBOA\nwaO7QPHQWyAnfU2Q3f1nsxoIgPzQXaB46C2QH86kBwAAACQwQQYAAAASmCADAAAACUyQAQAAgIS+\nJshm9rtm9oiZHTGzu8wsxel0AOSN7gLFQ2+B/KSeIJvZLkm/I2m/u18lqSzp7VkNDMBg0F2geOgt\nkK9+D7GoSBoxs4qkUUlP9j8kADmgu0Dx0FsgJ6knyO5+XNIfSfqJpKcknXX3e5cvZ2YHzOyQmR16\nZn4p/UgBZKKX7iZ7e/r0M2sxTAAJqfa5s/N5DxPYMFKfKMTMNku6WdIVks5I+msze4e7fyq5nLtP\nS5qWpGv37PQtL72i53WUJ8bD4yrvuCSc0fBIPCNJ7uFIfetl4czDdn04c/Sx+G1qtuK3p9GIZ4aG\nyuFMuWzhTLPZCmeWFhrhzNmzi+HMWuqlu8nevviq6/xMfSK0jmppNDyuaqkezgyV4790l9UMZxZa\n8UM9v3tqWzjz5Mn4dj46Es9MjMZ7Wy7FM81WfGwLS9VwphF/SDUUX82aSrXP3b0j/qCl4AsL4Yyd\nPhnOlMZiz0OS5Jt3hDP10lA4UyvF9x07NsU33Nm5+OuaC4v57Ns9xRwiDSvFn1fS6OcQizdI+pG7\nn3T3uqTPS/qZbIYFYIDoLlA89BbIUT8T5J9IepWZjZqZSbpB0tFshgVggOguUDz0FshRP8cgPyDp\ns5IelPTtznVNZzQuAANCd4HiobdAvlIfgyxJ7v5hSR/OaCwAckJ3geKht0B+OJMeAAAAkMAEGQAA\nAEhgggwAAAAkMEEGAAAAElJPkM1sn5kdTnydM7P3Zjk4ANmju0Dx0FsgX6k/xcLdvyvpGkkys7Kk\n45LuzmhcAAaE7gLFQ2+BfGV1iMUNkh5z9x9ndH0A8kF3geKht8CAZTVBfrukuy72H2Z2wMwOmdmh\nZ2bnM1odgIxctLvJ3p45fWoNhgVgFexzgQHr60QhkmRmNUlvkfSBi/2/u0+rc7af667Y5dXt23q/\n7s1bw+Npbd4RzjRrI+GMJDWro+HMiYkrw5mj34+P7/GfxJ8YJydr8cxE/HesUjm+2c3Pt8KZmacb\n4cxTPzoRzjTr8fWsB6t1N9nbfS+7zpeasces5fHtotGKZ+qlajhj8nDm2YV41390PBzRiRNz4Uya\n3u7YFr/fhocsnFlYDEf0gx/OhjNPPHYynKnW4vfBehDZ5167Z6fLYr2ySrnfIfakNXshnCk14s+1\nNj4VzjRTTI3KpWY4M1qL356h2lA4M5di/7m4GL89F87F5x31xaVwpjY8HM6kkcUryG+S9KC7x2cW\nANYS3QWKh94COchignyLVvhTD4B1je4CxUNvgRz0NUE2szFJb5T0+WyGAyAPdBcoHnoL5KevY5Dd\nfVZS/EBhAGuK7gLFQ2+B/HAmPQAAACCBCTIAAACQwAQZAAAASGCCDAAAACT0+ykWU2b2WTN71MyO\nmtmrsxoYgMGhu0Dx0FsgP/2eSe8Tkr7k7r/aObtP/HRTANYC3QWKh94COUk9QTazTZJeJ+ldkuTu\nS5Li5wwEkCu6CxQPvQXy1c8hFldIOinpL8zsW2Z2W+dDzH+KmR0ws0NmdujU+dk+VgcgI127m+zt\n2WdPrc0oASSF97nPXJjPf5TABtHPIRYVSddJ+m13f8DMPiHp/ZL+Y3Ihd5+WNC1J17/gcrdNm3te\ngY9PhQfVGJkMZ5Zq4+GMJM0Nxcd3vhFf19SEhzN7dg+HM5NjFs5UK/GxLdbj6zlbiv8u12q2wpn5\n8xfCmcXZwu2EunY32dsXvex6b7QG/37eVnyz0FIr/hS21CiHM8/OVcOZZjPeDbP4nbC0FN/Oz5xr\nhjPlcnxss7Px9Tz5+DPxzPd+HM6UKvHtYI2F97nX7tnpFr2d5RT3S4rn5zS8Gd+erLEYzow2z4Uz\n8zYSzpQt3t3R+K5di0vxxyfN88rSQvwPGvX5hXCmMpluzhbVz1Z9TNIxd3+g8/Nn1S4vgPWN7gLF\nQ2+BHKWeILv705KeMLN9nYtukPSdTEYFYGDoLlA89BbIV7+fYvHbku7svJv2h5L+Zf9DApADugsU\nD70FctLXBNndD0van9FYAOSE7gLFQ2+B/HAmPQAAACCBCTIAAACQwAQZAAAASGCCDAAAACT09SY9\nM3tc0nlJTUkNd+fNA0AB0F2geOgtkJ9+P+ZNkn7B3TkXLVA8dBcoHnoL5IBDLAAAAICEfifILule\nM/ummR3IYkAAckF3geKht0BO+j3E4rXuftzMdki6z8wedff7kwt0SnxAkvbs3CqfmOr5ylu1ofCA\nGpXhcGapOhbOpDVVORPOXHPJXDhT31ENZxZbtXBmth5/jBYa5XBmqBq/PVu3j4czpzZvCmfMCvmH\nmFW7m+zt9ksu13w99phVyxYeUDnF/bjYjG9LFxbimfNz8dvTPkw0ZmgoPjb3cEQXLjTCmfpSK5xp\ntuKZkbH4c/jUJdvDGSuleUzXXGyfu3lSpWpsN2/l+DaYSoptIw1bmA9nxi+cCGcak/H952Itnpkc\njWdanuZ5JT493HpJ7/O759QX6+HM8Gh83pFGX3t2dz/e+XdG0t2SXnmRZabdfb+779+2abKf1QHI\nSLfuJnu7afO2tRgigGXC+9zxkbyHCGwYqSfIZjZmZhPPfS/pFyUdyWpgAAaD7gLFQ2+BfPVziMVO\nSXeb2XPX82l3/1ImowIwSHQXKB56C+Qo9QTZ3X8o6RUZjgVADuguUDz0FshXId9dBAAAAAwKE2QA\nAAAggQkyAAAAkMAEGQAAAEhgggwAAAAk9D1BNrOymX3LzO7JYkAA8kF3geKht0A+sngF+T2SjmZw\nPQDyRXeB4qG3QA76miCb2W5JvyTptmyGAyAPdBcoHnoL5KefM+lJ0p9Iep+kiZUWMLMDkg5I0p6d\n2yTrfU5u7uEBlRuL4Uy1shDOSFKluRTOjLWeDWdKzXo406iOhDPnh7aGMyXbHM5US7VwpmzxbeHa\nlw+HM5u3vCCcOXFiPpz5ymfCkayt2t1kb7dfcrkaTQtdeaNZ7nd8PVlsxH/Hn1uI3RZJarXCEU1N\nxu+DWi1+exYX44NrNFI8t5bj99vY2FA4c/me0XBm4WXb4pmFZjgjSfdMp4plJbbP3bpJpZHYvsBq\n8cdMpfi2oVZ8G7RafN+hajxjHt82RpfOxjO1yXBmqDIWzgyneF4ZH4s/pldeGb89W7bG5yoLC41w\nJo3UryCb2Zslzbj7N1dbzt2n3X2/u+/ftmnFTgPISS/dTfZ2cmp7jqMDcDGp9rnj8V82ALT1c4jF\nayS9xcwel/QZSa83s09lMioAg0R3geKht0COUk+Q3f0D7r7b3fdKerukv3X3d2Q2MgADQXeB4qG3\nQL74HGQAAAAgod836UmS3P1rkr6WxXUByA/dBYqH3gKDxyvIAAAAQAITZAAAACCBCTIAAACQwAQZ\nAAAASOjnRCHDZvYPZvaQmT1iZh/JcmAABoPuAsVEd4H89PMpFouSXu/uF8ysKunvzeyL7v6NjMYG\nYDDoLlBMdBfISeoJsru7pAudH6udr/jJ1QHkiu4CxUR3gfz0dQyymZXN7LCkGUn3ufsDF1nmgJkd\nMrNDp86e72d1ADLSrbvJ3p47c3JtBgngn4h099SFubUZJLAB9HWiEHdvSrrGzKYk3W1mV7n7kWXL\nTEualqTrX/g8t7nAJHl4JDymajghlVqNFCmpWRmOr6u5GM80lsKZyuKF7gstU02RGR05F86cHdoW\nzjxbmgxnapVmOLN5LF6JM7vHwplPhBPZ6tbdZG+vePF+v7BQDl1/pRx/Uatcimc8xWtn1RTPeuMj\nrXCmErvLJEmLdUuRia8ozf2WxshQfEW1SjzTSnF73FM8QOtApLvXX7nHSxPB585STu/dr6TYW4+O\nhyP1TdvDmUYt/pzesvj21ErxGmWa7rbiT18qxZ+KtGkyfnuq1Vo4c+5CPt3NpAnufkbSVyXdmMX1\nAcgH3QWKie4Cg9XPp1hs7/wGKzMbkfRGSY9mNTAAg0F3gWKiu0B++jnE4lJJnzSzstoT7b9y93uy\nGRaAAaK7QDHRXSAn/XyKxcOSrs1wLAByQHeBYqK7QH44kx4AAACQwAQZAAAASGCCDAAAACQwQQYA\nAAAS+vmYtz1m9lUz+46ZPWJm78lyYAAGg+4CxUNvgXz18zFvDUm/5+4PmtmEpG+a2X3u/p2MxgZg\nMOguUDz0FshR6leQ3f0pd3+w8/15SUcl7cpqYAAGg+4CxUNvgXxlcgyyme1V+7MZH7jI/x0ws0Nm\ndujk2QtZrA5ARlbqbrK358+cXIuhAVhBz/vcc7N5Dw3YMPo5xEKSZGbjkj4n6b3ufm75/7v7tKRp\nSbruil3eOvl0z9ddmtrS7/B6YuVqulwpfvdZsxHOlBpL8fUszoUz1TOnw5nhksUze68OZ5rjLwpn\nllI8rtuG4o/PrvFivtd1te4me7vnBft95rSHrnt8NL5dTIyGI6qUY+OSpJFaK5yZGol3cLgSz7jH\n77e5Ri2cqTfz2WbLFn98LH4XpGIpxrYeRPa5179or2tiU2wFS4vxQXn8vmxt3hHOzG/ZHc40ykPh\njFu8H4uV+BPYbGM4nGmmeI4opah7pRzPpFFOsZ6hWj7PX32txcyqahf1Tnf/fDZDAjBodBcoHnoL\n5KefT7EwSbdLOuruf5zdkAAMEt0FiofeAvnq5xXk10j6DUmvN7PDna+bMhoXgMGhu0Dx0FsgR6mP\nQXb3v5eU09FiALJCd4HiobdAvor57iIAAABgQJggAwAAAAlMkAEAAIAEJsgAAABAQr+fg3yHmc2Y\n2ZGsBgRgsOgtUEx0F8hPv68gH5R0YwbjAJCfg6K3QBEdFN0FctHXBNnd75cUPz8xgDVDb4FiortA\nfjgGGQAAAEhIfaKQXpnZAUkHJGnPlkm15ud7zpaG5+LrGx0PZ7xUDmckyS2f3y9saSGembsQzjRm\nng5n0qjuvDycGZ7ofbt5Ts0W4+tpzoYzG1Gyt5u2Xa65+WYoXynHOzUyFD8HQrXi4UwpxakWhsr1\ncGZL9Ww400rxmoVrUzzjtXCmbK14phTPpJHmMd2ofmqfu2OrVA0+1s1GfKXl+FSiPr4lnJkd2hzO\npNlPlzz2fCdJdYt3qtGK32+WYlsvl+LPk5ZiRc0UdW/G7+rc+j7wGZ67T7v7fnffv218dNCrA5CB\nZG/HJrat9XAA9CjZ3e1TE2s9HKCwOMQCAAAASOj3Y97ukvR1SfvM7JiZ3ZrNsAAMCr0FionuAvnp\n6xhkd78lq4EAyAe9BYqJ7gL54RALAAAAIIEJMgAAAJDABBkAAABIYIIMAAAAJDBBBgAAABL6/Zi3\nG83su2b2AzN7hkVnEgAACBFJREFUf1aDAjBYdBcoHnoL5Cf1BNnMypL+q6Q3SXqppFvM7KVZDQzA\nYNBdoHjoLZCvfl5BfqWkH7j7D919SdJnJN2czbAADBDdBYqH3gI56udEIbskPZH4+Zikf7Z8ITM7\nIOlA58fFiX/7h0eC69km6RQZMhsssy+4fJa6dnd5bz/0z6vR3krr+/4nQyZtZq26m2qfO/KGd7LP\nJUMmTW/dPdWXpF+VdFvi59+Q9KddModSrIcMGTIZfkW7m3as6/m+JEMmz0wWX+xzyZDJN9PPIRbH\nJe1J/Ly7cxmA9Y3uAsVDb4Ec9TNB/j+SXmhmV5hZTdLbJX0hm2EBGCC6CxQPvQVylPoYZHdvmNm7\nJX1ZUlnSHe7+SJfYdIpVkSFDJkMpupt2rOv5viRDJs9M39jnkiGTb8Y6x2YAAAAAEGfSAwAAAH4K\nE2QAAAAgIZcJcprTY5rZHWY2Y2Y9f4ajme0xs6+a2XfM7BEze08PmWEz+wcze6iT+UiP6yqb2bfM\n7J7A+B43s2+b2WEzO9RjZsrMPmtmj5rZUTN7dZfl93Wu/7mvc2b23h7W87ud23/EzO4ys+Euy7+n\ns+wjq13/xR5HM9tiZveZ2fc7/27uIfNrnXW1zGx/j+v5eOd+e9jM7jazqR4yf9BZ/rCZ3Wtml3XL\nJP7v98zMzWxbD+v5fTM7nnicblrpPlxL0e6u9952sqHubqTedjJdu0tvi91baeN1N9rbTobuiu52\nLot3N/q5cCk+e64s6TFJz5dUk/SQpJf2kHudpOskHQms61JJ13W+n5D0vW7rkmSSxjvfVyU9IOlV\nPazr30n6tKR7AuN7XNK24P33SUn/qvN9TdJU8L5/WtLzuiy3S9KPJI10fv4rSe9aZfmrJB2RNKr2\nGz3/l6QX9Po4SvpPkt7f+f79kj7WQ+Ylan/Q99ck7e9xPb8oqdL5/mM9rmcy8f3vSPrzXrZLtT9+\n6cuSfrz8MV5hPb8v6d9HtoW8v9J0d733trN8qLsbpbedZXrqLr0tbm8T29CG6m60t50M3XW627ks\n3N08XkFOdXpMd79f0unIitz9KXd/sPP9eUlH1d4QV8u4u1/o/FjtfK36zkUz2y3plyTdFhlflJlt\nUvuBvl2S3H3J3c8EruIGSY+5+497WLYiacTMKmoX8MlVln2JpAfcfc7dG5L+TtLbLrbgCo/jzWo/\nCanz7y93y7j7UXf/7koDWiFzb2d8kvQNtT83tFvmXOLHMS3bFlbZLv+LpPctX75LZr0Ld3c991bK\np7vruLdSj92lt4XurbTBuss+VxLdXW7g3c1jgnyx02OuWqAsmNleSdeq/dtpt2XLZnZY0oyk+9y9\nW+ZP1H5gWsFhuaR7zeyb1j4daDdXSDop6S86f1q6zczGAut7u6S7ug7K/bikP5L0E0lPSTrr7veu\nEjki6WfNbKuZjUq6ST/9Afbd7HT3pzrfPy1pZyCb1m9K+mIvC5rZR83sCUm/LulDPSx/s6Tj7v5Q\ncEzv7vxp6Y7lf/JaJ3Lv7oB7K6Xr7kbprdRfd+lt23rvrbTxuvv/+z5XorvJ5XPp7oZ8k56ZjUv6\nnKT3Lvvt5KLcvenu16j9284rzeyqVa77zZJm3P2bKYb2Wne/TtKbJP2Wmb2uy/IVtf9M8Gfufq2k\nWbX/PNKVtT9I/i2S/rqHZTer/RvmFZIukzRmZu9YaXl3P6r2n0/ulfQlSYclNXsZ10Wuy9XDK3/9\nMLMPSmpIurPHMX3Q3fd0ln93l+selfQf1EOpl/kzSVdKukbtJ8j/HMxvOIPsbef603Z3Q/RWyq67\n9JbeJrHPpbtJG6W7eUyQcz09pplV1S7qne7++Ui286eUr0q6cZXFXiPpLWb2uNp/tnq9mX2qx+s/\n3vl3RtLdav8ZbDXHJB1L/Hb9WbXL24s3SXrQ3U/0sOwbJP3I3U+6e13S5yX9zGoBd7/d3a9399dJ\nelbtY896dcLMLpWkzr8zgWyImb1L0psl/XrniSHiTkm/0mWZK9V+knuos03slvSgmV2yWsjdT3R2\nEi1J/03dt4W1kFt3c+itlLK7G6m3Ul/dpbfF6K20sbrLPreD7krKsbt5TJBzOz2mmZnaxw4ddfc/\n7jGz3TrvtDSzEUlvlPToSsu7+wfcfbe771X7tvytu6/6m1/nusfMbOK579U+mH3Vdwu7+9OSnjCz\nfZ2LbpD0ne63SpJ0i3r4U0/HTyS9ysxGO/fhDWofS7YiM9vR+fdytY+D+nSP65Laj/87O9+/U9Lf\nBLI9M7Mb1f6z3Fvcfa7HzAsTP96sVbYFSXL3b7v7Dnff29kmjqn9ppWnu6zn0sSPb1WXbWGN5NLd\nPHorpevuRuut1Fd36W0xeittoO6yz/1/6G7O3fXAO/rSfql9rMz31H5X7Qd7zNyl9svg9c4dcGsP\nmdeq/aeDh9X+88NhSTd1yVwt6VudzBFJHwrcrp9X7++Ef77a7yR+SNIjgfvhGkmHOuP775I295AZ\nk/SMpE2B2/IRtTfMI5L+UtJQl+X/t9pPHA9JuiHyOEraKukrkr6v9jtxt/SQeWvn+0VJJyR9uYfM\nD9Q+Du+5bWH5u2Mvlvlc5z54WNL/kLQrsl3qIu+aXmE9fynp2531fEHSpXl0MfoV7W4RetvJ99Td\njdbbTqZrd+ltsXvbGf+G626vve0sS3fpbl/d5VTTAAAAQMKGfJMeAAAAkBYTZAAAACCBCTIAAACQ\nwAQZAAAASGCCDAAAACQwQQYAAAASmCADAAAACf8XCT7DNk2rqKAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "W = som.get_weights()\n", + "plt.figure(figsize=(10, 10))\n", + "for i, f in enumerate(feature_names):\n", + " plt.subplot(3, 3, i+1)\n", + " plt.title(f)\n", + " plt.pcolor(W[:,:,i].T, cmap='coolwarm')\n", + " plt.xticks(np.arange(size+1))\n", + " plt.yticks(np.arange(size+1))\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Most relevant feature plane\n", + "----\n", + "\n", + "In this map we associate each neuron to the feature with the maximum weight. This segments our map in regions where specific features have high values." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqYAAAHtCAYAAADLDLytAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xl8VOXd///PlUz2TZhsEJYAyWQy\nCURIGiUSQTZjBRcCBUHAhU1v1AJKe4u3UpBWBL1tRBGlqLSoWK23yi3cxa+GpbS0AYpkD0okIIQk\nhABZSCY5vz80/CBkI8lwjs7r+Xj00XDmnOt9XZNA3p5zZkZpmiYAAACA3lz0ngAAAAAgQjEFAACA\nQVBMAQAAYAgUUwAAABgCxRQAAACGYNJ7AgAAOJN9+/YFm0ym9SISK5wggvNpEJFMu90+Kz4+/lTT\nBymmAABcQyaTaX1oaGh0UFBQuYuLC+/ZCKfS0NCgSkpKbCdPnlwvInc0fZz/UgMA4NqKDQoKOksp\nhTNycXHRgoKCKuT7KwZXPn6N5wMAgLNzoZTCmf3w899sB6WYAgAAwBC4xxQAAB3V1NXHebq5dtnv\n45q6erunm+vBrhoPuJYopgAA6MjTzdUU/uv/7bLxCp+7/ap/ty9cuLCnr69v/bJly4q7bCIGMnny\n5L6LFy8ujo+Pr2nvMd7e3oOrqqoOOHJeuBLFFAAA6Kqurk7c3NwcNv7mzZu/ddjg6FLcYwoAgBP6\n1a9+FRoeHh4bHx8fVVBQ4CEikpWV5ZGcnBwZExMTHR8fH3XgwAFPEZHU1NTwadOm9YmLi7P26tVr\n4JYtW/wmTZoU3r9//5jU1NTwxjHXrVvX3WKx2CIjI2MeeuihsMbtH3zwgb/NZouOioqyDR061CLy\n/Vnau+66q9+QIUOsEyZM6JeXl+ceHx8fZbPZom02W/T27dt9Go9fsmRJqMVisUVFRdkefvjhsKys\nLA+bzRbd+PihQ4cu+3NTiYmJUTt37vQW+f5M6COPPBIWFRVli4uLsxYVFZlERHJzc92vv/56q8Vi\nsT366KM9Lz3+v/7rv0JiY2OjLRaLbcGCBT1FRHbs2OFtsVhsVVVV6uzZsy4REREx//rXvzw79U0B\nZ0wBAHA2u3bt8v7oo4+6Hzp0KLuurk6uv/562+DBg6tmzZrV9/XXX/924MCBF7744gufhx56qM8/\n/vGPfBGRiooK04EDB3Lfeeed66ZMmRLxxRdf5MbHx1cPGjQoes+ePV49e/a0L126NGzfvn05QUFB\n9uTkZMsf//jH60aNGnV+/vz54enp6blWq7W2uLjYtXEeBQUFnnv37s319fXVzp0757Jr1658b29v\n7dChQx733HNP/8zMzJz333/f/7PPPrtu3759uX5+fg3FxcWuISEh9X5+fvV79uzxSkpKql63bl3g\ntGnTytqz9urqapehQ4eef/nll4/Pmzev18svvxz0/PPPn3j44Yf7zJo1q2T+/Pllv/vd74Ia9//L\nX/7if/jwYc+vvvoqR9M0GT16dMTWrVt9b7vttvMpKSlnfvnLX4ZVV1e7TJo0qexnP/tZu28VQPMo\npgAAOJkvv/zS9+c///kZPz+/BhGRsWPHnqmpqXE5cOCA76RJkwY07ldbW6sav7799tvPuLi4yJAh\nQ6rMZnNdYmJitYiIxWKp/vrrrz2++eYbjxtvvPFcz5497SIikydPPr1jxw5fV1dXLTEx8ZzVaq0V\nEQkJCalvHDMlJeWMr6+v1pj14IMP9s3OzvZycXGRb7/91kNEZPv27f733ntvaeNcG4+/7777St94\n443AxMTEoo8//rjbv/71r5z2rN3NzU2bMmVKhYhIfHx85eeff+4vIrJ//37frVu3fi0iMnfu3LLl\ny5f3EhHZtm2b/86dO/1tNptNRKSqqsolNzfX87bbbjv//PPPn4iLi4v28PBoePPNN4925HuBy1FM\nAQCANDQ0iJ+fnz03Nze7ucc9PT01ERFXV1dxd3e/+D6sLi4uYrfblZub21W/N6uPj09D49crVqwI\nCQ4Orvvwww+PNDQ0iJeXV3xrx86cObN85cqVPd97771zAwcOrAoNDa1vbf9GJpNJc3Fxafxa7Hb7\nxfLd3PvLapomv/zlL0888cQTpU0fKy4uNlVVVbnY7XZVVVXl4u/v39B0H1wdiikAADqqqau3d+SV\n9K2N5+nm2uo+I0eOPP/AAw+EP/vssyfq6urU9u3br5s5c2ZJr169ajds2NDtgQceKG9oaJC9e/d6\nDR06tLo9ucnJyZWLFy/ufeLECVNQUJD9z3/+c/eHH3741IgRIyoXLlzYNzc3173xUv6lZ00bVVRU\nuPbq1avW1dVV1qxZY66v/36XW2+99eyKFSt6zpkz5/Sll/K9vb214cOHVyxcuLDPmjVrCjvwVF1m\nyJAh5994443uDz/88Ok33njD3Lj9tttuO7t06dKec+bMOR0QENBw5MgRN3d3dy0sLMx+//33912y\nZMl3R44ccZ8/f36vjRs3cta0kyimAADoqKvfc7StUioiMmzYsKq77777dGxsbIzZbK4bNGhQpYjI\nu++++83s2bP7rly5sofdbld333336fYW0759+9Y988wzx4cPH27RNE2NHj36zL333ntGRCQtLa3w\n7rvvjmhoaBCz2Vy3Z8+egqbH//KXvzyVmpo64L333jOPHDmywsvLq0FEZOLEiWf379/vff3110e7\nublpo0ePrlizZs1xEZEZM2ac3rZtW7cJEyacvYqnqFmvvvrq0SlTpvR/6aWXQlNSUs40bp8wYcLZ\nrKwsz5/97GdWERFvb++GTZs2Hfnoo48C3NzctHnz5p222+0yZMgQ6yeffOJ3xx13nOvsXJyZ0jQ+\nFQ0AgGvl4MGDhXFxcVdcFsbVe/rpp0MqKipcf//733+n91xwdQ4ePBgYFxcX3nQ7Z0wBAMCPzpgx\nYwZ8++23Hjt27MjXey7oOhRTAADwo7N9+/avm24bM2bMgKKiIo9Lt61YseJYampqpy/149qgmAIA\ngJ+E5soqflz45CcAAAAYAsUUAAAAhkAxBQAAgCFwjykAAHqqq4kTN8+u+31cV2MXN88ufW9U4Fqh\nmAIAoCc3T5MsDei68ZZWdPh3e1hY2MCMjIycHj162K/muC1btvh5eHg0jBkzprKj2U3He+GFF0K+\n/PLLw10x3o9JR78HiYmJUatXry66+eabqzo7h0uf/02bNgVkZWV5/fa3vz3Z2XHbg2IKAAA65Ysv\nvvDz9fWtv5piWldXJ25ubg6bk6PH/7Fr7/Mzbdq0ChGpcPyMvsc9pgAAOKFXX321+8CBA6OtVqtt\n6tSpfe12e7se/+CDD/xtNlt0VFSUbejQoZa8vDz3jRs3Br322mshVqvVtm3bNt+8vDz3G2+80WKx\nWGxDhw61FBQUuIuIpKamhk+dOrXPoEGDrA899FCvL7/80vv666+3RkdH2wYPHmw9ePCgx5UzvdLC\nhQt73nXXXf2uv/56a9++fWNfeOGFQJHvz/TFx8dHjRw5MiIyMjJWRGTp0qUhkZGRMZGRkTHLli0L\nbhxjzZo1ZovFYouKirLddddd/UREvvvuO9Ott946IDY2Njo2Njb6r3/9q4+IyP/+7//6Wq1Wm9Vq\ntUVHR9vKy8tdvv32W7eEhIQoq9Vqi4yMjNm2bZuviMi0adP6xMbGRkdERMQsWLCgZ2NeWFjYwAUL\nFvS02WzRFovFduDAAU8RkZMnT7redNNNkRERETGTJ0/u29oncubl5bn369cv5o477ujXv3//mJSU\nlP7nzp27ost5e3sPbvz6zTff7Jaamhre0ec/LS3NPGPGjD4iIhs2bOgWGRkZExUVZUtISIhqfHz0\n6NEDkpKSIsPCwgb+9re/DVq6dGlIdHS0LS4uzlpcXNz2Z+RegjOmAAA4mf3793t+8MEH3TMyMnI9\nPDy0e++9t89rr71mbuvxCRMmVMyfPz88PT0912q11hYXF7uGhITUz5gxo8TX17d+2bJlxSIiI0eO\njJg2bVrZI488UvbSSy+ZH3rood6ff/751yIiJ06ccN+/f3+uyWSS06dPu/zrX//KdXNzk//5n//x\nW7x4ca//+7//a9d7kebk5Hjt27cv59y5c66DBw+2paamVoiIZGdnex84cCDLarXW7tq1y/udd94x\n79u3L0fTNImPj48eNWrUOQ8PD2316tU9/v73v+f26NHD3lie5s6d23vhwoXFt9566/mCggL3W2+9\nNfKbb77JeuGFF0LT0tK+HTt2bGVFRYWLt7d3w0svvRQ0atSoipUrV5602+3SWBBffPHF4yEhIfV2\nu12SkpKi9u7d63XDDTdUi4gEBgbas7Ozc5577rmg5557LmTz5s3f/vrXv+45dOjQ86tXrz7x3nvv\nBbz//vuBra27sLDQc926dYVjx46tnDRpUviqVauCGp/39ujM8//cc8/1+Otf/5rfr1+/utLS0ouF\nMz8/3+vgwYPZ1dXVLlFRUbH/9V//dTwnJyf7wQcf7L1u3Trz008/faq986OYAgDgZLZt2+aXmZnp\nHRcXFy0iUlNT4xIcHGxv6/H09HSfxMTEc1artVZEJCQkpL658Q8cOOCzdevWr0VEHnroodO/+c1v\nejU+NmHChHKT6fv6cfr0adfJkyf3Kyws9FRKaXV1daq9a7jtttvO+Pr6ar6+vvahQ4ee3bVrl0+3\nbt3qBw0aVNk4v/T0dN+f//znZ/z9/RtERG6//fbyL7/80k8pJePHjy9vvI+zcR1/+9vf/AsKCrwa\nM86fP+9aUVHhcuONN55//PHHe//iF784fc8995QPGDCg4cYbb6ycO3dueF1dncvEiRPLk5KSqkVE\n3n777e5vvfVWoN1uVyUlJW4HDx70bCymU6dOLRcRSUxMrPrkk0+6iYj84x//8PvLX/5yWERkypQp\nFXPnzm32OW0UGhpaO3bs2EoRkenTp5elpaUFi0i7i2lnnv+EhITz06ZNC09NTS2fNm1aeeP2pKSk\nc926dWvo1q1bg6+vb/2kSZPOiIgMHDiw6quvvvJu79xEuJQPAIDT0TRNTZo0qSw3Nzc7Nzc3u7Cw\nMPPFF1/8rr2Pd4avr29D49e/+tWvwoYPH36uoKAg69NPPz1cW1vb7l6ilGr2z97e3g3N7d8emqbJ\n/v37cxrXferUqa8CAgIafvvb355cv379t9XV1S7JycnWAwcOeN52223nd+7cmRcWFlb7wAMP9Fuz\nZo05NzfXfc2aNSE7duzIz8/Pzx45cmRFTU3NxTV5enpqIiImk0mz2+3tLuHtWXdL26qrqy/boTPP\n/zvvvHP02Wef/a6oqMg9Pj7edvLkSVcREXd394v3H7i4uFxcp4uLi1ztOq/pGdPAwEAtPDz8WkYC\nAKCbffv2lWqaFtTqTnU19s68kr7Z8dw8W90lJSXl7IQJEyKefPLJ4rCwMHtxcbFrRUWFa1uPjxgx\nonLhwoV9c3Nz3S+9lO/n51d/9uzZi8cPHjy4cv369d3+4z/+4/S6deu6JyQknG9uHmfPnnXt1atX\nrYjIunXrWr2E3dTWrVuvW7FixYmzZ8+6/OMf//D77//+7+OZmZmXLfyWW245/8ADD4QvX778pKZp\n8tlnn3V76623vvHw8NAmTpwYsWTJkpOhoaH1jesYNmzY2d/97nfBy5cvLxYR2bNnj1dSUlJ1VlaW\nR2JiYnViYmL1vn37vDMzMz19fHwa+vfvX7to0aLSCxcuqP3793vHx8dXeXl5NXTv3r2+qKjIlJ6e\nHjB8+PBzra3jxhtvPPfWW2+Zn3/++RPvv/++/6XPY3NOnDjh/vnnn/uMHj26ctOmTd2TkpKueG7N\nZnPd/v37PePi4mo+/vjjbr6+vs2ehb3a5z8rK8tj5MiRlSNHjqz8/PPPA7755hv3to65Wte0mIaH\nh0tGRsa1jAQAQDdKqW/b3Kmr33O0jVIqIhIfH1/z1FNPHR81apSloaFB3NzctLS0tKNtPT5q1KjK\ntLS0wrvvvjuioaFBzGZz3Z49ewpSU1PPTJw4ccDWrVuve+mll46+9tprR2fMmBH++9//PtRsNts3\nbtxY2Nw8fvWrX52cNWtWv5UrV/YcM2bMmatZZnR0dFVSUlJUeXm56fHHHz8RHh5e17SYDhs2rGrq\n1KllQ4YMiRYRmT59eslNN91ULSKyaNGiE8nJyVYXFxctNja26sMPPyx8/fXXi2bNmtXHYrHY6uvr\n1Q033HAuKSnp6PPPPx+8Z88ef6WUFhUVVT1x4sSK9evXd09LSws1mUyat7d3/aZNm45Yrdba2NjY\nqgEDBsT26NGjNj4+vtlCfqnnnnvuu9TU1P4RERExCQkJ53v06FHb2v7h4eE1L7/8cvCcOXO8IyMj\nax5//PGSpvv85je/OX7nnXdGdO/e3R4XF1dVWVnZ7JnQq33+FyxY0KuwsNBD0zQ1bNiwszfeeGN1\nRkbGVV2qb4tq7dVfXS0hIUFrLKb5w5KlvrTUYVmugYFi2b3riu165Oq11g2Ld0v12VZ/vjvFy99d\nHnh+2JUPrIoUqWz3fc5XzydY5ImCKzaP2DxCymrKHBZr9jRL+uT0yzfqtFa9vrfOlOtMa3W23GuZ\nqZTap2lawqWPHzx4sDAuLs5xvxScwMKFC3te+mIrZ5GXl+c+bty4yIKCgiy959JZBw8eDIyLiwtv\nul23e0wdWdRaG1+PXL3W6sh/eFsd35FFrZXxHVlKWxxfp7Xq9b11plxnWquz5er2byOANvGqfAAA\nYEi///3vzWvXrg25dNvPfvaz83/84x+PtnTMT8HJkyddR4wYEdV0e3p6et5P4WxpayimAADAkB57\n7LGyxx57zLGXwwwoNDS0Pjc3N1vveeiBt4sCAACAIVBMAQAAYAgUUwAAABgC95gCAKCjC/YLcR4m\njy77fXzBfsHuYfLo2vdGBa4RiikAADryMHmYBr49sMvGOzTzULt+tz/77LPBGzZsCIqNja365JNP\njnQ2Ny8vz/3LL7/0nTdv3mkRkZ07d3pv2LDB/NZbbxV1ZLzBgwdbDxw4kNvZebWlurpajRo1KvL0\n6dOmRYsWnZg9e3Z520f99Cxbtix4wYIFpX5+fh3+SNeuwKV8AACc0B/+8Ieg7du353dFKRURKSgo\n8Ni8eXP3xj/ffPPNVR0tpSIi16KUiojs2bPHW0QkNzc32wiltK6uTpfcdevWhZw/f173Xqj7BAAA\nwLU1derUPseOHfO47bbbIv38/K5/+umnL75XaGRkZExeXp57Xl6ee//+/WOmTJnSNyIiIuamm26K\nPH/+vBIRyczM9EhKSrJERUXZbDZbdFZWlseSJUvCMjIyfK1Wq+03v/lN8JYtW/xuueWWCBGR4uJi\n19GjRw+wWCy2uLg46969e71Evv8Ep0mTJoUnJiZG9erVa+Czzz4b3DgPb2/vwSIiW7Zs8UtMTIxK\nSUnp369fv5g77rijX0PD9yf1Nm/eHNCvX7+YmJiY6Pvuu693Y15zmpvD8ePHTffff3+/Q4cOeVut\nVltWVpZHc8e2lNPcmPX19RIWFjawtLT04mfe9+3bN7aoqMj03XffmW699dYBsbGx0bGxsdF//etf\nfRqfh7vuuqvfkCFDrBMmTOiXlpZmHjt27IDk5OTIvn37xs6bN6/Xpc/L3Llze0VERMQkJSVZvvzy\nS+/G52/Tpk0BIiJ2u13mzp3bKzY2NtpisdhWrVoV2Npz+eyzzwafOnXKbfjw4ZYbbrjBcpU/Tl2K\nYgoAgJN55513jgYHB9ft2LEjf/bs2S1+hN3Ro0c9H3300VOHDx/OCggIqN+4cWM3EZGpU6f2mzdv\n3qm8vLzsjIyM3D59+tStWLHieEJCwvnc3NzsZ5555rIxFy9e3DMuLq4qPz8/e/ny5cdnzpzZr/Gx\nw4cPe+7YsSP/X//6V87q1at7XrhwQTWdR05Ojtcrr7xSdPjw4ayjR496bN++3beqqko99thjfbdu\n3VqQlZWVU1ZW1uotDM3NISwszP7qq69+2zjvmJiYC02Pay2nuTFdXV1l7NixZzZt2nSdiMgXX3zh\nExYWVtu7d2/73Llzey9cuLA4MzMz56OPPvp63rx54Y1jFRQUeO7cuTPv008/PSIikp2d7f0///M/\n3+Tk5GR98skn3Q4fPuwmIlJdXe0yatSos4cPH87y8fGpf+qpp8J27dqV/+c///nw8uXLw0REXnrp\npcCAgID6zMzMnIMHD+a8/fbbQbm5ue4tPZdPPfXUqcafh7179+a39jw6GsUUAAA0Kyws7EJSUlK1\niMjgwYOrCgsLPcrLy12Ki4vdZ8yYcUZExNvbW2vrvsR//vOffg8++GCZiMgdd9xx7syZM6bTp0+7\niIiMHTv2jJeXl9ajRw979+7d644dO3ZFwRw4cGDlgAED6lxdXSUmJqbq66+/dv/3v//t2bt37wtW\nq7VWRGTKlCmnOzqH1rSW09KYU6dOPf3BBx90FxHZtGlT99TU1NMiIn/729/8H3vssT5Wq9U2fvz4\niPPnz7tWVFS4iIikpKSc8fX11RrHHjZs2Fmz2Vzv7e2tRURE1Hz99dceIiJubm7axIkTz4qIxMTE\nVA8bNuych4eHlpiYWH38+HF3EZHPP//c//333zdbrVbb4MGDo8vLy03Z2dmeLT2XbT0H1xIvfgIA\nwImZTCat8dK4iMilZyzd3d0vFiVXV1eturq6y09oeXh4XJohdrv9ijOm7dnHSEaNGlX54IMPenz3\n3Xembdu2XbdixYrvREQ0TZP9+/fneHt7a02P8fHxuazcN33u6+rqlMj33y8Xl++/DS4uLhefG1dX\nV6mvr1c/5KgXXnjhaGpq6tlLx9yyZYuf0Z9LiikAADq6YL9gb+8r6ds7noep2VslmxUeHn7hs88+\nu05EZPfu3d7Hjx9v9eBu3bo1hIaG1v7xj3+8bvr06Weqq6uV3W5XAQEB9efPn3dt7pgbbrjh3Jtv\nvmletWrViS1btvh169bN3r179069+nvQoEE1RUVFHnl5ee5RUVG1l77wqivn0FpOa2PedtttZx5+\n+OHeERER1aGhofUi358F/d3vfhe8fPnyYhGRPXv2eDWeke5KY8aMqVi7dm3QuHHjznl4eGhfffWV\nR3h4eKuvqvLx8amvqKhw6dGjR1dP56pQTAEA0FFXv+fo1ZRSEZEZM2aUb9q0yRwREREzePDgyr59\n+9a0dcyf/vSnI7Nnz+67fPnynm5ubtqf//znrxMTE6tdXV21qKgo29SpU0vj4+MvFq6VK1d+N23a\ntHCLxWLz8vJqeOuttzr9TgC+vr7aiy+++G1KSkqkt7d3Q1xcXGVr+3d0Dq3ltDbmtGnTTg8fPjw6\nLS2tsHHb66+/XjRr1qw+FovFVl9fr2644YZzSUlJRzuw/FYtWLCgtLCw0GPgwIHRmqap7t271332\n2Wdft3bMzJkzS1NSUiwhISG1et5nqjTtirPJDpOQkKBlZGSIiEiONdrhedG5OVds0yNXr7W+Mu8L\nh+f+x2sjr9y4NMDhubK04opNXfk+gC05NPNQk3nos1a9vrfOlOtMa3W23GuZqZTap2lawqWPHTx4\nsDAuLq7U4ZNwAhUVFS4BAQENDQ0NMmPGjD6RkZE1TV949WPKcSYHDx4MjIuLC2+6nRc/AQCAH6WX\nXnop0Gq12iIjI2POnj3runDhQocU/muVAy7lAwCAH6lnnnnmVNMzl7///e/Na9euDbl0289+9rPz\nf/zjH9u8ZD5mzJgBRUVFl90LsWLFimPN5cAxKKYAAOAn47HHHit77LHHyjpy7Pbt21u9DxOOx6V8\nAAAAGALFFAAAAIZAMQUAAIAhcI8pAAA6arhwIc7Fw6PLfh83XLhgd/Ho2vdGBa6VNs+YKqU2KKVO\nKaUym3lskVJKU0oFXm2wa+BVH9Il4+uRq9davfwd+/G3LY7vE+zQ3JbGN3uaHRrb7Pg6rVWv760z\n5TrTWp0tV7d/G1vg4uFhyrFGS1f9rytLbqPExMSonTt3eouIDB8+PKK0tNS1tLTU9bnnngtq3Kew\nsNAtJSWlf0fGT01NDX/zzTe7ddV8m9qzZ4/X5s2bL77x9KZNmwKefPLJ0NaOGTx4sLWjecuWLQs+\nd+7cxY7V+Jx1dDxn0uYb7CulbhaR8yKyUdO02Eu29xaR9SJiFZF4TdPafE+vS99gHwCAn7p2vsF+\nfFd+EMsPH7iyr8sGlO+L6erVq4tuvvnmqsZteXl57uPGjYssKCjI6uz4qamp4ePGjau4//77yzs7\nVlN1dXWydu1ac0ZGhs/GjRu7/FOWmhMWFjYwIyMjp0ePHvZrkfdj1OE32Nc0baeInG7mof8WkcUi\ncu0+OgoAAHRaXl6ee79+/WLuuOOOfv37949JSUnpf+7cOZePP/7YLzo62maxWGyTJk0Kr66uVk2P\nDQsLG3jixAnTokWLehUVFXlYrVbb3Llze+Xl5blHRkbGiIjY7XaZM2dOr8jIyBiLxWJbsWJFsIjI\n448/3iM2NjY6MjIy5p577unb0NDmR9VfzJw3b14vi8ViGzhwYHRmZqaHiMg777wTMGjQIGt0dLQt\nKSnJUlRUZBIRWbhwYc+77rqr35AhQ6wTJkzo97vf/a7np59+2s1qtdreeOONbmlpaeYZM2b0EREp\nKioyjRkzZkBUVJQtKirKtn37dh8REW9v78EiIlu2bPFLSEiIGjFiRER4eHjs1KlT+9TX14uIyLRp\n0/rExsZGR0RExCxYsKCniMizzz4bfOrUKbfhw4dbbrjhBsulz5mIyNKlS0MiIyNjIiMjY5YtWxbc\n+P3o379/zJQpU/pGRETE3HTTTZHnz5+/4rl3Bh168ZNS6k4ROa5pWpv3sCil5iilMpRSGSUlJR2J\nAwAAXaywsNBz/vz5p7755pssPz+/huXLl4fMnTu33+bNm7/Oz8/PttvtsmrVqqCWjn/hhReO9e7d\n+0Jubm72unXrjjV5LOjo0aPu2dnZWfn5+dmzZs0qExF54oknTmVmZuYUFBRkVVdXu7z33nvt/lzn\ngIAAe35+fvbcuXNPPfLII71FRMaMGXP+3//+d25OTk72xIkTTy9btuzi5fmCggLPnTt35n366adH\n/vM///O78ePHl+fm5mbPnj37kVqhAAAgAElEQVT7srOy8+bN65OcnHwuLy8vOysrK3vIkCE1TbMP\nHTrk8+qrrx49fPhwZmFhocfGjRu7iYi8+OKLxzMzM3Nyc3Oz/va3v/nt3bvX66mnnjoVHBxct2PH\njvymnzm/a9cu73feece8b9++nIyMjJyNGzcG/e1vf/MSETl69Kjno48+eurw4cNZAQEB9Y0Zzuaq\ni6lSyltEnhSRp9uzv6Zpr2ualqBpWkJQUIs/3wAA4BoKDQ2tHTt2bKWIyPTp08t27Njh16tXrwuD\nBg26ICJy3333le3evduvI2N/8cUX/nPnzi11c3MTEZGQkJB6EZGtW7f6DRo0yGqxWGx79uzxy8zM\n9GrvmDNnzjwtIjJ79uzTBw4c8BUROXLkiHtycnKkxWKxpaWlhebm5l4cLyUl5Yyvr2+bV3X37Nnj\n98QTT5SIiJhMJjGbzfVN9xk4cGClzWarNZlM8otf/OL0rl27fEVE3n777e42my3aZrPZCgoKPA8e\nPOjZWlZ6errvz3/+8zP+/v4NAQEBDbfffnv5l19+6SciEhYWdiEpKalaRGTw4MFVhYWFHq2N9VPV\nkRukB4hIPxE5qJQSEeklIvuVUomapp1s7yD5w5KlvtRxHzXrGhgolt27DJHrTGsVERmxeYSU1XTo\nQzfaxexplvTJ6YbI1WutGxbvluqztQ7L9fJ3lweeH+bUuc60VmfL1WutRvPD7/CL/P3968vLyx32\nbj1VVVVq0aJFfffu3ZsdERFRt3Dhwp41NTXtPkHm4vL/76qU0kRE5s+f3+exxx47OW3atIotW7b4\nLVu2rGfjPj4+Pu27T6Admj5XSinJzc11X7NmTci+fftygoKC6lNTU8OvZj1Nubu7XyzRrq6uWnV1\ntVO+pedVL1rTtEOapgVrmhauaVq4iBwTkSFXU0pFxKGFqbXx9ch1prWKiEOLWmvj65Gr11od+Uu1\ntfGdKdeZ1upsuXqttSUNFy7Yo3NzpKv+13DhQrtecHPixAn3zz//3EdEZNOmTd2HDBlSefz4cffG\n+zc3btxoTk5OPtfS8QEBAfWVlZXN9ohRo0adXbduXWBdXZ2IiBQXF7tWVVW5iIiEhobaKyoqXD79\n9NOrulS9cePG7iIif/jDH7oNHjy4UkTk3Llzrn369KkTEXnrrbdafGsWf3//+vPnzzc715tuuulc\n4y0LdrtdysrKrnj1/KFDh3xyc3Pd6+vr5YMPPuienJx8rry83NXLy6uhe/fu9UVFRab09PSLtyX4\n+PjUV1RUXJF3yy23nP/ss8+uO3funMvZs2ddPvvss2633HJLi8+xM2rzv4yUUu+KyAgRCVRKHROR\nZzRN+4OjJwYAgDPo6vccdfFo3xXg8PDwmpdffjl4zpw53pGRkTVPPfVUUVJSUuWkSZMG1NfXS1xc\nXNXjjz/e4otDQkND6+Pj489HRkbGjBw5smLhwoWnGh9bsGBBSX5+vofVao0xmUzazJkzS5588smS\nadOmlURHR8cEBQXZ4+LiKq9mXeXl5a4Wi8Xm7u6uvffee9+IiCxZsuS7e+65Z0BAQIB92LBh544e\nPdrs4m+77bZzq1ev7mG1Wm2LFi06celja9euPXrffff1tVgsgS4uLrJmzZpvR48efdncYmNjK+fN\nm9ensLDQMykp6ez06dPPuLq6SmxsbNWAAQNie/ToURsfH3++cf+ZM2eWpqSkWEJCQmovvc902LBh\nVVOnTi0bMmRItIjI9OnTS2666abqvLw8x76H2Y9Im8VU07R72ng8vMtmAwAArgmTySQff/zxkUu3\n3XnnnefuvPPO7Kb7/vOf/8xr/Pr48eOHGr/+9NNPLzu+8a2j3NzcZP369cfk+6uqF6WlpX2Xlpb2\nXdPxP/zww8K25vv0008Xr1279vil2+69994z995775mm+7744ouXZYSEhNRnZmbmNNmtTESkd+/e\n9v/3//7f103HqKqqOtD4tZ+fX/2XX355uL3zXrJkyaklS5ZcLOqXPmdLly4tXrp0afGl+0dFRdVe\n+rZby5Ytu+xxZ+KU9y8AAADAePhIUgAAnEzTM3RGMWbMmAFFRUWXXY5fsWLFsUvPOF5r48aNOzdu\n3DjuA71GKKYAAMAQtm/ffsUldTgXLuUDAADAECimAAAAMASKKQAAAAyBe0wBANCRva4+zuTm2mW/\nj+119XaTm2uXvjcqcK1QTAEA0JHJzdX0yrwvumy8/3htZJf/bk9MTIxavXp10c0331w1fPjwiA8/\n/PCIiMj69eu7//rXvy4RESksLHSbN29e723btn1zteOnpqaGjxs3ruL+++8v74r5hoWFDczIyMhx\nc3PTLp0jjI9L+QAAoN127NhxODAwsL6srMz1D3/4Q3Dj9vDw8LqOlFJHajrH9rLb2/WprnAAiikA\nAE4mLy/PvV+/fjF33HFHv/79+8ekpKT0P3funMvHH3/sFx0dbbNYLLZJkyaFV1dXq6bHhoWFDTxx\n4oRp0aJFvYqKijysVqtt7ty5vfLy8twjIyNjRL4vdnPmzOkVGRkZY7FYbCtWrAgWEXn88cd7xMbG\nRkdGRsbcc889fRsaGto13x07dngPHjzYGhUVZRs4cGB0eXm5S1pamnnGjBl9Gve55ZZbIrZs2eJ3\n6XFN57hlyxa/W265JaLx8RkzZvRJS0szN67roYceCrPZbNEbNmzolpWV5ZGcnBwZExMTHR8fH3Xg\nwAHPDj3ZuCoUUwAAnFBhYaHn/PnzT33zzTdZfn5+DcuXLw+ZO3duv82bN3+dn5+fbbfbZdWqVUEt\nHf/CCy8c692794Xc3NzsdevWHWvyWNDRo0fds7Ozs/Lz87NnzZpVJiLyxBNPnMrMzMwpKCjIqq6u\ndnnvvfcC2ppnTU2NmjZt2oCXXnrpaF5eXvaOHTvyfH1929VoW5tjc8xmsz07Oztnzpw55bNmzer7\n6quvHs3KyspZtWrVsYceeqhPW8ej87jHFAAAJxQaGlo7duzYShGR6dOnl61YsaJHr169LgwaNOiC\niMh9991X9sorrwSLyKlWB2rGF1984T9v3rwSNzc3Efn+s+pFRLZu3er34osvhtbU1LicOXPGZLPZ\nqkWkorWxvvrqK8/g4OC64cOHV4mIdO/evX2nWTtgxowZ5SIiFRUVLgcOHPCdNGnSgMbHamtrrzh7\njK5HMQUAwAkpdXnP8vf3ry8vL3dYL6iqqlKLFi3qu3fv3uyIiIi6hQsX9qypqenwlVuTyaRdeivA\nhQsX2hzLzc2t6TGXPQl+fn4NIiL19fXi5+dnz83Nze7o/NAxFFMAAHRkr6u3d+Ur6X94u6g29ztx\n4oT7559/7jN69OjKTZs2dR8yZEjlxo0bgzIzMz1iY2MvbNy40ZycnNziZ8QHBATUV1ZWNlsGR40a\ndXbdunWB48aNO+vm5ibFxcWurq7fzyk0NNReUVHh8umnn3YbP358m6/CHzRoUM2pU6fcduzY4T18\n+PCq8vJyF19f34YBAwbUvvHGG9719fVy5MgRt6+++sqnrTkOGDDgwuHDh72qq6tVZWWly+7du/1v\nuumm802P6969e0OvXr1qN2zY0O2BBx4ob2hokL1793oNHTq0uq35onMopgAA6Kir33O0PaVURCQ8\nPLzm5ZdfDp4zZ453ZGRkzVNPPVWUlJRUOWnSpAH19fUSFxdX9fjjj7f4NkuhoaH18fHx5yMjI2NG\njhxZsXDhwouX/BcsWFCSn5/vYbVaY0wmkzZz5sySJ598smTatGkl0dHRMUFBQfa4uLjK9szT09NT\n27Rp09ePPvpon5qaGhdPT8+GnTt35o8ZM+b8K6+8ciEiIiImIiKixmazVbU1x3Xr1h0bP358udVq\njenVq9eFmJiYK45p9O67734ze/bsvitXruxht9vV3XfffZpi6ngUUwAAnJDJZJKPP/74yKXb7rzz\nznN33nnnFZev//nPf+Y1fn38+PFDjV9/+umnlx1fUFCQJSLi5uYm69evPyYil73gKC0t7bu0tLTv\nmo7/4YcfFrY21+HDh1cdPHgwt+n2Tz755Ehz+7c2x9dee+2KeTU9RkTEarXW7tq1q6C1eaHr8ap8\nAAAAGAJnTAEAcDJRUVG1jWc3jWTMmDEDioqKPC7dtmLFimOpqaln9ZoTri2KKQAAMITt27d/rfcc\noC8u5QMAAMAQdCumroGBuoyvR64zrVVExOxpdmhuS+PrkavXWr383R2a29L4zpTrTGt1tly91gqg\nbUrTtGsWlpCQoGVkZFyzPAAA9KSU2qdpWsKl2w4ePFgYFxdXqtecACM4ePBgYFxcXHjT7dxjCgCA\njuy1tXEmd/eue4P92lq7yd29S98bFbhWKKYAAOjI5O5uemHyuC4bb9HmLR363f78888HeXt7N8yf\nP7+spX0mT57cd/HixcXx8fE1YWFhAzMyMnJ69Ohhb25fb2/vwVVVVQcKCwvd5s2b13vbtm3fpKWl\nmTMyMnw2btx4tCNzFBFZtmxZ8IIFC0obPz50+PDhER9++OGRwMDA+o6OCeOgmAIAAFm8eHGLn/LU\naPPmzd9e7bjh4eF127Zt+6Zjs7qc3W6XdevWhcyePft0YzHdsWPH4a4YG8agWzHNH5Ys9aWOu8XG\nNTBQLLt3GSLXmdYqIjJi8wgpq2nxP7g7zexplvTJ6YbIdaa1iohsWLxbqs/WOizXy99dHnh+mCFy\nnWmtzpar11qNZs2aNea0tLQQpZRER0dX9+/f/4Kvr2/93XffXTFjxox+hw4dyhERycvLcx8/fnxE\nfn5+dmJiYtTq1auLbr755hY/yrOpvLw893HjxkU2vm/q8ePH3RITE6OKi4vdJk6cWPbCCy+cEBF5\n9dVXu69duzakrq5ODRkypHLjxo3fmkwm8fb2Hjxt2rSSnTt3+o8fP7781KlTbsOHD7d069bNvnfv\n3vxLz9w2N4aIyOTJk8O/+uorH6WUNm3atNJnnnnmVGtzhn50K6aOLEytja9HrjOtVUQcWphaG1+P\nXGdaq4g49Jd5a+PrketMa3W2XL3WaiQZGRmeq1ev7vH3v/89t0ePHvbi4mLXlStXhoiIDB48uKau\nrk7l5ua6W63W2o0bN3a/6667yrsq+6uvvvI5dOhQlq+vb8PgwYNtd955Z4Wvr2/DBx980D0jIyPX\nw8NDu/fee/u89tpr5vnz55dVV1e73HDDDZVvvPHGMRGRd999N3DHjh35TW8h2L9/v2dzY8TFxVWf\nOHHCrbEYl5aWunbVWtD1uJQPAICT+b//+z//8ePHlzeWu5CQkMvuz7zrrrtOb9y4sftvf/vbkx99\n9FG3zZs3d8mleBGRYcOGnQ0NDa0XEbn99tvL09PTfU0mk5aZmekdFxcXLSJSU1PjEhwcbBcRcXV1\nlfvuu6/NYrxt2za/5saYPHnymaKiIo+ZM2f2Hj9+fMXdd9/Np0gZGMUUAABcZvr06eWTJk3qP2XK\nlHKllAwcOPBCV42tlLriz5qmqUmTJpW98sorx5vu7+7u3mAytV1XWhsjMzMz+6OPPvJ/7bXXgjZv\n3tz9z3/+c2EnlgAHopgCAKAje22tvaOvpG9pPJN762/yf+utt56dOHFixJIlS06GhobWFxcXX3Z5\nOyYm5oKLi4s8/fTTPe++++7TXTU3EZHdu3f7FxcXu/r4+DR89tln161fv77Qx8enYcKECRFPPvlk\ncVhYmL24uNi1oqLC1WKxXHFfhI+PT31FRYVLjx49LtuekpJytrkx/Pz8Gjw8PBruu+++MzExMTXT\np0/v35XrQdeimAIAoKOufs/RtkqpiEhCQkLNokWLTiQnJ1tdXFy02NjYqr59+15WAidMmHB6+fLl\nvVauXHnFGcjOGDRoUOUdd9wx4OTJk+4TJ04sa3wh1VNPPXV81KhRloaGBnFzc9PS0tKONldMZ86c\nWZqSkmIJCQmp3bt3b37j9vj4+JrmxvD29m548MEHwxsaGpSIyLJly4515XrQtSimAAA4oUceeaTs\nkUceafGVlMuWLStetmxZ8aXb/vnPf+Y1fn38+PFDrY1fVVV1QEQkKiqqtvGFR48++mjZo48+2mzm\n7Nmzy2fPnn3FvaSN4zRasmTJqSVLllx8Vf2l82hpjOzs7JzW5grjcNF7AgAAAIAIZ0wBAEAHnTx5\n0nXEiBFRTbenp6fnNb7yHrgaFFMAAK6thoaGBuXi4qLpPZHOCg0Nrc/Nzc3Wex74cfnhft+G5h7j\nUj4AANdWZklJSUDji3EAZ9LQ0KBKSkoCRCSzucc5YwoAwDVkt9tnnTx5cv3JkydjhRNEcD4NIpJp\nt9tnNfcgxRQAgGsoPj7+lIjcofc8ACPiv9QAAABgCBRTAAAAGALFFAAAAIZAMQUAAIAhUEwBAABg\nCBRTAAAAGALFFAAAAIZAMQUAAIAhUEwBAABgCBRTAAAAGALFFAAAAIbQZjFVSm1QSp1SSmVesm2V\nUipXKfWVUuojpdR1VxvsGhh4tYd0yfh65DrTWkVEzJ5mh+a2NL4euc60VhERL393h+a2NL4euc60\nVmfL1WutANqmNE1rfQelbhaR8yKyUdO02B+2jRWRLzRNsyulVoqIaJr2q7bCEhIStIyMjM7PGgCA\nHwGl1D5N0xL0ngfwY9HmGVNN03aKyOkm2/6qaZr9hz/+Q0R6OWBuAAAAcCJdcY/pAyKytaUHlVJz\nlFIZSqmMkpKSLogDAADAT1GniqlSaomI2EVkU0v7aJr2uqZpCZqmJQQFBXUmDgAAAD9hpo4eqJS6\nT0TGicgora0bVZuRPyxZ6ktLOxrfJtfAQLHs3mWIXGdaq7Pljtg8QspqyhyWafY0S/rk9Cu2O1vu\nhsW7pfpsrcNyvfzd5YHnh+meSe61ydVrrQDa1qFiqpRKEZHFIjJc07SqjozhyALR2vh65DrTWp0t\n15ElrbXxnS3XkSWipfH1yCT32uTqtVYAbWvP20W9KyJ/F5EopdQxpdSDIrJGRPxEZLtS6t9Kqdcc\nPE8AAAD8xLV5xlTTtHua2fwHB8wFAAAAToxPfgIAAIAhUEwBAABgCBRTAAAAGALFFAAAAIZAMQUA\nAIAhUEwBAABgCBRTAAAAGALFFAAAAIZAMQUAAIAhUEwBAABgCBRTAAAAGALFFAAAAIZAMQUAAIAh\nUEwBAABgCBRTAAAAGALFFAAAAIZAMQUAAIAhUEwBAABgCBRTAAAAGALFFAAAAIagWzF1DQzUZXw9\ncp1prc6Wa/Y0OzSzpfGdLdfL392huc2Nr0cmudcmV6+1Amib0jTtmoUlJCRoGRkZ1ywPAAA9KaX2\naZqWoPc8gB8LLuUDAADAECimAAAAMASKKQAAAAzBpFdw/rBkqS8tddj4roGBYtm9yxC5zrRWZ8sd\nsXmElNWUOSzT7GmW9MnpV2wn1/G5GxbvluqztQ7L9PJ3lweeH3bFdnIdn6vXWgG0Tbczpo4sEK2N\nr0euM63V2XIdWZZaG59cx+c6sri0Nj65js/Va60A2salfAAAABgCxRQAAACGQDEFAACAIVBMAQAA\nYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgU\nUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAA\nABgCxRQAAACG0GYxVUptUEqdUkplXrKtu1Jqu1Kq4If/73a1wa6BgVd7SJeMr0euM63V2XLNnmaH\nZrY0PrmOz/Xyd3doZkvjk+v4XL3WCqBtStO01ndQ6mYROS8iGzVNi/1h2/MiclrTtOeUUr8WkW6a\npv2qrbCEhAQtIyOjC6YNAIDxKaX2aZqWoPc8gB+LNs+Yapq2U0RON9l8p4i8/cPXb4vIXV08LwAA\nADiZjt5jGqJp2okfvj4pIiEt7aiUmqOUylBKZZSUlHQwDgAAAD91nX7xk/b9vQAt3g+gadrrmqYl\naJqWEBQU1Nk4AAAA/ESZOnhcsVKqh6ZpJ5RSPUTk1NUOkD8sWepLSzsY3zbXwECx7N5liFxnWque\nubIqUqTyqn8U288nWOSJgss2jdg8QspqyhwWafY0S/rk9Cu2k+v43A2Ld0v12VqHZXr5u8sDzw+7\nYju5js/Va60A2tbRM6afiMjMH76eKSIfX+0AjiwurY2vR64zrVXPXIeW0hbGd2RZam18ch2f68ji\n0tr45Do+V6+1Amhbe94u6l0R+buIRCmljimlHhSR50RkjFKqQERG//BnAAAAoMPavJSvado9LTw0\nqovnAgAAACfGJz8BAADAECimAAAAMASKKQAAAAyBYgoAAABDoJgCAADAECimAAAAMASKKQAAAAyB\nYgoAAABDoJgCAADAECimAAAAMASKKQAAAAyBYgoAAABDoJgCAADAECimAAAAMASKKQAAAAyBYgoA\nAABDoJgCAADAECimAAAAMASKKQAAAAyBYgoAAABD0K2YugYG6jK+HrnOtFY9c8Un2KG5zY1v9jQ7\nNLKl8cl1fK6Xv7tDM1san1zH5+q1VgBtU5qmXbOwhIQELSMj45rlAQCgJ6XUPk3TEvSeB/BjwaV8\nAAAAGALFFAAAAIZAMQUAAIAhmPQKzh+WLPWlpQ4b3zUwUCy7dxki15nWqmeurIoUqTzlsFzxCRZ5\nouCyTSM2j5CymjKHRZo9zZI+Of2K7eQ6Plevterxc+x0uXqtFUCbdDtj6sji0tr4euQ601r1zHXo\nL5oWxndkcWltfHIdn6vXWvX4OXa6XL3WCqBNXMoHAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEF\nAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACA\nIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBM\nAQAAYAidKqZKqQVKqSylVKZS6l2llGd7j3UNDOxMdIfH1yPXmdaqZ674BDs0t7nxzZ5mh0a2ND65\njs/Va616/Bw7Xa5eawXQJqVpWscOVCpMRHaLiE3TtGql1Psi8pmmaW+1dExCQoKWkZHRoTwAAH5s\nlFL7NE1L0HsewI9FZy/lm0TESyllEhFvEfmu81MCAACAM+pwMdU07biIrBaRoyJyQkQqNE37a9P9\nlFJzlFIZSqmMkpKSjs8UAAAAP2kdLqZKqW4icqeI9BORniLio5S6t+l+mqa9rmlagqZpCUFBQR2f\nKQAAAH7STJ04drSIHNE0rURERCn1FxFJEpE/tefg/GHJUl9a2on41rkGBopl9y5D5DrTWkVEZFWk\nSOUph+WKT7DIEwWGyB2xeYSU1ZQ5LNLsaZb0yelXbCfX8bl6rdWZ/v7olqvXWgG0qTP3mB4VkRuV\nUt5KKSUio0Qkp70HO7IwtTa+HrnOtFYRcew/+K2Nr0OuI4tLa+OT6/hcvdbqTH9/dMvVa60A2tSZ\ne0z3isgHIrJfRA79MNbrXTQvAAAAOJnOXMoXTdOeEZFnumguAAAAcGJ88hMAAAAMgWIKAAAAQ6CY\nAgAAwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAA\nwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAo\npgAAADAE3Yqpa2CgLuPrketMaxUREZ9gh+a2OL4OuWZPs0MjWxqfXMfn6rVWZ/r7o1uuXmsF0Cal\nado1C0tISNAyMjKuWR4AAHpSSu3TNC1B73kAPxZcygcAAIAhUEwBAABgCBRTAAAAGIJJr+D8YclS\nX1rqsPFdAwPFsnuXMXJXRYpUnnJYpvgEizxRcOV2ch2fq9NaR2weIWU1ZQ6LNXuaJX1y+hXb9fp7\nq8d6NyzeLdVnax2W6eXvLg88P+yK7Wvn3CtVFWcclusdcJ089PqfrnyAv7eOzQTQLrqdMXXkL7fW\nxtcl15H/ALY2PrmOz9VprY4saa2Nr9ffWz3W68hS2tr4jiylrY7P31vHZgJoFy7lAwAAwBAopgAA\nADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAE\niikAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAEiikA\nAAAMgWIKAAAAQ6CYAgAAwBAopgAAADCEThVTpdR1SqkPlFK5SqkcpdTQ9h7rGhjYmegOj69Lrk+w\nQzNbHJ9cx+fqtFazp9mhsS2Nr9ffWz3W6+Xv7tDMlsb3DrjOobktjs/fW8dmAmgXpWlaxw9W6m0R\n2aVp2nqllLuIeGuadqal/RMSErSMjIwO5wEA8GOilNqnaVqC3vMAfixMHT1QKRUgIjeLyH0iIpqm\n1YpIbddMCwAAAM6mM5fy+4lIiYi8qZQ6oJRar5TyabqTUmqOUipDKZVRUlLSiTgAAAD8lHWmmJpE\nZIiIrNU0bbCIVIrIr5vupGna65qmJWialhAUFNSJOAAAAPyUdfhSvogcE5Fjmqbt/eHPH0gzxbRF\nqyJFKk91Ir4NPsEiTxQYI9eZ1upsuTqtNX9YstSXljos1jUwUCy7dxkmd8TmEVJWU+awXLOnWdIn\np1+2be2ce6WqosVb5jvNO+A6eej1P12xnVzH5+rx8wSgfTp8xlTTtJMiUqSUivph0ygRyW73AI78\nZd7a+HrkOtNanS1Xp7U6shy2Nr5euY4sES2N78iy1Nr45Do+V4+fJwDt05kzpiIij4jIph9ekf+N\niNzf+SkBAADAGXWqmGqa9m8R4W0wAAAA0Gl88hMAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAEiikA\nAAAMgWIKAAAAQ6CYAu1Kvr4AAA5zSURBVAAAwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAo\npgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAopgAAADAEiikAAAAMgWIKAAAAQ6CYAgAAwBAopgAA\nADAE/YqpT7A+4+uR60xrdbZcndbqGhjo0NiWxtcr1+xpdmhuc+N7B1zn0MyWxifX8bl6/DwBaB+l\nado1C0tISNAyMjKuWR4AAHpSSu3TNC1B73kAPxZcygcAAIAhUEwBAABgCBRTAAAAGIJJt+RVkSKV\npxw3vk+wyBMFxsh1prU6W65Oa80fliz1paUOi3UNDBTL7l2GyR2xeYSU1ZQ5LNfsaZb0yem6Z4qI\nrJ1zr1RVnHFYrnfAdfLQ639y6ly9vrcA2qbfGVNH/jJvbXw9cp1prc6Wq9NaHVkOWxtfr1xHloiW\nxtcjU0QcWtJaG9+ZcvX63gJoG5fyAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAA\nABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABgC\nxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABgCxRQAAACGQDEFAACAIVBMAQAAYAgUUwAAABhCp4up\nUspVKXVAKbXlqg70Ce5sdMfG1yPXmdbqbLk6rdU1MNChsS2Nr1eu2dPs0NzmxtcjU0TEO+A6h+a2\nNL4z5er1vQXQNqVpWucGUGqhiCSIiL+maeNa2zchIUHLyMjoVB4AAD8WSql9mqYl6D0P4MeiU2dM\nlVK9ROR2EVnfNdMBAACAs+rspfyXRGSxiDS0tINSao5SKkMplVFSUtLJOAAAAPxUdbiYKqXGicgp\nTdP2tbafpmmva5qWoGlaQlBQUEfjAAAA8BNn6sSxN4nIHUqpn4uIp4j4K6X+pGnave06elWkSOWp\nTsS3wSdY5IkCY+Q601qdLdeZ1ioi+cOSpb601GGxroGBYtm964rtIzaPkLKaMoflmj3Nkj45XfdM\nZ8zdsHi3VJ+tdViul7+7PPD8MN0zAbRPh8+Yapr2n5qm9dI0LVxEpojIF+0upSKO/aXa2vh65DrT\nWp0t15nWKuLQUtra+I4sTC2Nr0emM+Y6siC2NL4emQDah/cxBQAAgCF05lL+RZqmpYtIeleMBQAA\nAOfEGVMAAAAYAsUUAAAAhkAxBQAAgCFQTAEAAGAIFFMAAAAYAsUUAID/r737DbHsPusA/n3Y7ZLN\npmt1J1tjEkyRpBKKmjJoNYmU1kispek7W7RUIuSNf1IpCa2Kr0RKIlVBUUIbUzBUJY1YCmpDbTEL\nWjqJ/ZesJkWlTUzdbEVTYzQmPr6YW4jZnXUyM2fOb+Z+PrDsvWdyfs/zsHMu35xz7z3AEARTAACG\nIJgCADAEwRQAgCEIpgAADEEwBQBgCIIpAABDEEwBABiCYAoAwBAEUwAAhiCYAgAwBMEUAIAhCKYA\nAAxBMAUAYAiCKQAAQ5gvmB45Ps/6c9RdplmXre4yzZrkwMrKpGU3Wv/YeccmrXu29eeouYx1Dx89\nNGnds60/R01gc6q7d63Y6upqr62t7Vo9AJhTVT3Q3atz9wF7hUv5AAAMQTAFAGAIgikAAEM4OFfh\nR665Ns+fPj3Z+gdWVnLFifvHqHv75cnTpyarmSPHk1sePXO7utPXXaZZs1zH7Vyzrv7KfTn9789O\nVnflgkNZ+6Xrztj++j98fb72n1+brO6x847lUz/2qTO233nriTzz1HTzHj56KDfeds3sNYHNme2M\n6ZQv+Odaf5a6UwaIc62v7vR1l2nWLNdxO9esU4bSc60/ZSg91/pTBsSN1p+jJrA5LuUDADAEwRQA\ngCEIpgAADEEwBQBgCIIpAABDEEwBABiCYAoAwBAEUwAAhiCYAgAwBMEUAIAhCKYAAAxBMAUAYAiC\nKQAAQxBMAQAYgmAKAMAQBFMAAIYgmAIAMATBFACAIQimAAAMQTAFAGAIgikAAEMQTAEAGMKWg2lV\nXVpVn6yqh6vqoaq6+aXsf2BlZault7X+LHWPHJ+05obrqzt93WWaNct13M4168oFhyatu9H6x847\nNmndjdY/fHTaec+2/hw1gc2p7t7ajlUXJbmoux+sqpcneSDJW7v74Y32WV1d7bW1ta11CgB7TFU9\n0N2rc/cBe8WWz5h29xPd/eDi8deTnExy8U41BgDActmR95hW1WVJrkry6bP87KaqWquqtSeffHIn\nygEAsA9tO5hW1QVJPpLkXd391It/3t13dPdqd69eeOGF2y0HAMA+dXA7O1fVy7IeSu/u7ntfyr6P\nXHNtnj99ejvlz+nAykquOHH/GHVvvzx5+tRkNXPkeHLLo2duV3f6uss0a5bruF2mWeese+etJ/LM\nU89OVvfw0UO58bZrZq8JbM52PpVfST6Y5GR3v/+l7j/lC+C51p+l7pQB4lzrqzt93WWaNct13C7T\nrHPWnTIgbrT+HDWBzdnOpfyrk7wjyRuq6rOLP2/aob4AAFgyW76U390nktQO9gIAwBJz5ycAAIYg\nmAIAMATBFACAIQimAAAMQTAFAGAIgikAAEMQTAEAGIJgCgDAEARTAACGIJgCADAEwRQAgCEIpgAA\nDEEwBQBgCIIpAABDEEwBABiCYAoAwBAEUwAAhiCYAgAwBMEUAIAhCKYAAAxhtmB6YGVllvVnqXvk\n+KQ1N1xf3enrLtOsWa7jdplmnbPu4aOHJq17tvXnqAlsTnX3rhVbXV3ttbW1XasHAHOqqge6e3Xu\nPmCvcCkfAIAhCKYAAAxBMAUAYAgH5yr8yDXX5vnTpydb/8DKSq44cf8YdW+/PHn61GQ1c+R4csuj\nZ25Xd/q6M826VMfPTHWXadY5695564k889Szk9U9fPRQbrztmtlrApsz2xnTKV8Az7X+LHWnDC7n\nWl/d6evONOtSHT8z1V2mWeesO2VA3Gj9OWoCm+NSPgAAQxBMAQAYgmAKAMAQBFMAAIYgmAIAMATB\nFACAIQimAAAMQTAFAGAIgikAAEMQTAEAGIJgCgDAEARTAACGIJgCADAEwRQAgCEIpgAADEEwBQBg\nCIIpAABDEEwBABiCYAoAwBAEUwAAhiCYAgAwBMEUAIAhbCuYVtX1VfV3VfWlqnrPS9n3wMrKdkpv\nef1Z6h45PmnNDddXd/q6M826VMfPTHWXadY56x4+emjSumdbf46awOZUd29tx6oDSR5Jcl2Sx5J8\nJsnbu/vhjfZZXV3ttbW1LdUDgL2mqh7o7tW5+4C9YjtnTL83yZe6+++7+9kkf5Dkhp1pCwCAZXNw\nG/tenOQrL3j+WJLve/F/VFU3Jblp8fS/quqL26i5l6wkOT13E7vIvPvXMs2aLNe8yzRrMs+8377L\n9WBP204w3ZTuviPJHUlSVWvLckljmWZNzLufLdOsyXLNu0yzJss3L+xF27mU/3iSS1/w/JLFNgAA\neMm2E0w/k+TyqnpVVR1K8rYkH92ZtgAAWDZbvpTf3c9V1c8k+fMkB5Lc2d0P/T+73bHVenvQMs2a\nmHc/W6ZZk+Wad5lmTZZvXthztvx1UQAAsJPc+QkAgCEIpgAADGFXgul2bl2611TVpVX1yap6uKoe\nqqqb5+5palV1oKr+pqo+NncvU6uqV1TVPVX1t1V1sqq+f+6eplRVP7/4Pf5iVX24qs6bu6edUlV3\nVtWpF363clV9S1XdV1WPLv7+5jl73EkbzHv74nf581X1x1X1ijl73Clnm/UFP3t3VXVVTXsPVmBL\nJg+mi1uX/naSH0lyZZK3V9WVU9ed0XNJ3t3dVyZ5XZKf3ufzJsnNSU7O3cQu+c0kf9bd35nku7OP\n566qi5P8XJLV7n5N1j/k+LZ5u9pRdyW5/kXb3pPkE919eZJPLJ7vF3flzHnvS/Ka7v6urN9i+r27\n3dRE7sqZs6aqLk3yw0m+vNsNAZuzG2dMl+rWpd39RHc/uHj89awHl4vn7Wo6VXVJkh9N8oG5e5la\nVX1Tkh9M8sEk6e5nu/tf5+1qcgeTHK6qg0nOT/JPM/ezY7r7L5P8y4s235DkQ4vHH0ry1l1takJn\nm7e7P97dzy2e/nXWv496z9vg3zZJfj3JrUl86hcGtRvB9Gy3Lt23Qe2FquqyJFcl+fS8nUzqN7L+\nQv8/czeyC16V5Mkkv7d468IHqurI3E1NpbsfT/JrWT+79ESSf+vuj8/b1eRe2d1PLB5/Nckr52xm\nl92Y5E/nbmIqVXVDkse7+3Nz9wJszIefJlJVFyT5SJJ3dfdTc/czhap6c5JT3f3A3L3skoNJXpvk\nd7r7qiRPZ39d6v0/Fu+vvCHrgfzbkhypqp+Yt6vd0+vfpbcUZ9aq6hez/jaku+fuZQpVdX6SX0jy\ny3P3ApzbbgTTpbt1aVW9LOuh9O7uvnfufiZ0dZK3VNU/Zv0tGm+oqt+ft6VJPZbkse7+xhnwe7Ie\nVPerH0ryD939ZHf/d5J7k/zAzD1N7Z+r6qIkWfx9auZ+JldVP5nkzUl+vPfvF1t/R9b/B+tzi9er\nS5I8WFXfOmtXwBl2I5gu1a1Lq6qy/h7Ek939/rn7mVJ3v7e7L+nuy7L+7/oX3b1vz6h191eTfKWq\nXr3Y9MYkD8/Y0tS+nOR1VXX+4vf6jdnHH/Za+GiSdy4evzPJn8zYy+Sq6vqsvxXnLd39H3P3M5Xu\n/kJ3H+/uyxavV48lee3imAYGMnkwXbyx/hu3Lj2Z5I82cevSvezqJO/I+tnDzy7+vGnuptgxP5vk\n7qr6fJLvSfKrM/czmcWZ4XuSPJjkC1l/vdg3t3Ssqg8n+askr66qx6rqp5K8L8l1VfVo1s8Yv2/O\nHnfSBvP+VpKXJ7lv8Vr1u7M2uUM2mBXYA9ySFACAIfjwEwAAQxBMAQAYgmAKAMAQBFMAAIYgmAIA\nMATBFACAIQimAAAM4X8BfhQZGnuyB4UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Z = np.zeros((size, size))\n", + "plt.figure(figsize=(8, 8))\n", + "for i in np.arange(som._weights.shape[0]):\n", + " for j in np.arange(som._weights.shape[1]):\n", + " feature = np.argmax(W[i, j , :])\n", + " plt.plot([j+.5], [i+.5], 'o', color='C'+str(feature),\n", + " marker='s', markersize=24)\n", + "\n", + "legend_elements = [Patch(facecolor='C'+str(i),\n", + " edgecolor='w',\n", + " label=f) for i, f in enumerate(feature_names)]\n", + "\n", + "plt.legend(handles=legend_elements,\n", + " loc='center left',\n", + " bbox_to_anchor=(1, .95))\n", + " \n", + "plt.xlim([0, size])\n", + "plt.ylim([0, size])\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/FeatureSelection.ipynb b/examples/FeatureSelection.ipynb new file mode 100644 index 0000000..25c4093 --- /dev/null +++ b/examples/FeatureSelection.ipynb @@ -0,0 +1,361 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Selection based on self organizing maps\n", + "This notebook presents a way to achieve feature selection through self organizing maps. The code is based in an algorithm proposed in this [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-89935-0_6). **_The selection process strongly depends on two parameters_**:\n", + "1. *How well the trained SOM represents the data (since the weights are used during the selection).*\n", + "2. *A parameter \"a\" which is arbitarily defined by the user. Values between 0.03 and 0.06 have been proved to work well.*\n", + "\n", + "For reasons of simplicity and complementarity this notebook builds on the [democracy-index example](https://github.com/JustGlowing/minisom/blob/master/examples/DemocracyIndex.ipynb). So first we load the data by exactly the same way." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.insert(0, '../')\n", + "%load_ext autoreload\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.patches import Patch\n", + "%matplotlib inline\n", + "\n", + "from minisom import MiniSom\n", + "from sklearn.preprocessing import minmax_scale, scale\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# download from wikipedia and reorganization\n", + "import os.path\n", + "if not os.path.isfile('democracy_index.csv'):\n", + " wikitables = pd.read_html('https://en.wikipedia.org/wiki/Democracy_Index',\n", + " attrs={\"class\":\"sortable\"}, header=0)\n", + " democracy_index = wikitables[0]\n", + " democracy_index.columns = [c.lower().replace(' ', '_') for c in democracy_index.columns]\n", + " democracy_index.rename(columns={'score': 'democracy_index', \n", + " 'functioning_ofgovernment': 'functioning_of_government',\n", + " 'politicalparticipation': 'political_participation',\n", + " 'politicalculture': 'political_culture',\n", + " 'civilliberties': 'civil_liberties'}, inplace=True)\n", + " democracy_index.category = democracy_index.category.replace('Flawed democracy[a]', 'Flawed democracy')\n", + " democracy_index = democracy_index[:-1]\n", + " democracy_index.to_csv('democracy_index.csv')\n", + " print('data downloaded from Wikipedia')\n", + "else:\n", + " # pre-downloaded file\n", + " democracy_index = pd.read_csv('democracy_index.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To demonstrate the method, we choose some of the variables that have numeric values and set \"democracy index\" as the target variable." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "feature_names = ['democracy_index', 'electoral_processand_pluralism', 'functioning_of_government',\n", + " 'political_participation', 'political_culture', 'civil_liberties']\n", + "\n", + "X = democracy_index[feature_names].values\n", + "X = scale(X)\n", + "\n", + "feature_df = pd.DataFrame(X, columns=feature_names)\n", + "target = feature_df.iloc[:,0]\n", + "Features = feature_df.iloc[:,1:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A simple method to select variables is through correlation. By plotting a correlation matrix we see that all the variables are highly correlated with democracy index." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfEAAAGQCAYAAAC+mlmCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3gU1frA8e+7mx6SQEIKvSPSBCkCoiCK2CjKVexivfbuT/F6BUUFy+Uq1osNK1exIE3JpRfpHQQREnpICCEJSUhIdt/fHztJdpOFJJrNEj2f59mHnZkzZ96ZLPvOOXNmVlQVwzAMwzBqH5u/AzAMwzAM4/cxSdwwDMMwaimTxA3DMAyjljJJ3DAMwzBqKZPEDcMwDKOWMkncMAzDMGopk8QNwzAMw8dE5CMRSRORLSdZLiIyUUR2isgmETm7MvWaJG4YhmEYvjcZuOQUyy8F2livu4B3K1OpSeKGYRiG4WOquhjIOEWRocCn6rICqCsiDSqq1yRxwzAMw/C/RsA+t+n91rxTCvBZOIbhA4XpSbXqOcFFK6b5O4Sqyc/zdwRVVjR/mb9DqLL539XzdwhVMmjWNf4OocpCug2TP1pHVb5vgmJb/R1XN3ixSao6qQqb8xZvhds3SdwwDMMwvHE6Kl3USthVSdpl7QeauE03Bg5WtJLpTjcMwzAMb9RZ+dcfNx242Rql3gvIUtWUilYyLXHDMAzD8MZZLckZABGZAvQH6ovIfmA0EAigqu8Bs4HLgJ1AHnBrZeo1SdwwDMMwvNDqaWFbdel1FSxX4L6q1muSuGEYhmF4U40tcV8xSdwwDMMwvHEU+juCCpkkbhiGYRjeVGN3uq+YJG4YhmEY3pjudMMwDMOonapzYJuvmCRuGIZhGN6YlrhhGIZh1FKmJW4YhmEYtZQZnW4Yp7dnXprA4mWriK5Xl2mfv+fvcABYtn0vr0z7GadTufKcdtx2YVeP5QczjjHmq4Uczc0nMiyYl64fQHzdOhzMOMZjnyTicCpFDifX9e3I1X3a10zMOw7wyqw1rpi7t+a2fh09Yz6aw5jvlpfGfPW5xEeFs/1gBi9NX0lOQSF2Ee7o34lBnZv7PF57+26EXH03iI3Cn3/iROJUj+VSL5aQWx5DQuuAzUbBtI9xbF2NRMcR/uwknKn7AXDs3k7BlLd8Hi9A3AWd6TT2ZrDb2PvFAn57a4bH8o7P3Uj9c11/b3toMMH1I5l9xp2ENq5Pzw8fQeyCBAaQ/OEcdn86r0ZiXrbxV17+dLrrc3FBD24fcoHH8oOHjzJ60lSOZucSVSeMl+4dQXxMXQBS0o8y5v1vST2SiYjw1v/dSqPY6BqJu4TpTjeM09uwywZy/fAhPD32NX+HAoDD6WTcd8t47++XEx8Vzg2vf0e/Ds1plVD6q1cTZqzgiu5tGdLjDFb9doCJs1fx4vUDiI0M45MHhhEUYCevoJDhr35Nvw7NiIsK933MM1bx3q0XER8Zxg3v/ki/MxvTKq5uacw/reWKri0ZcnYrVu1KYWLiel68ui+hQQGM/du5NKsfSVp2Hte/PZvebRoSGRrku4DFRsiI+8ib+DSamU7Yk29QtGklzkN7S4oEXXodRWuXULhkFraEpoTe9zy5/xwJgDM9hbxx9/suPm9sQudxt/LzNeM4nnKEfj+9wKHEdRzbcaCkyJbRn5e8b3H7xUR1bA5AfupRlgwejfNEEfawYAYseoVDc9aSn5rp05AdTicvfTyN/4y6g/iYKK5/5i36n92eVo3jS8pM+GIWg8/rxpDzu7Fy607e+OonXrr3WgCeefdr7hh2Ab07tSUvvwCRP/yjZFVXC7rTzQ+gVAMRGSMij/s7Dl8RkQ9EpEpNOhHJ8VU81al7l05ERUb4O4wSW/am0SQmksYxkQQG2BnUtTULt+72KJOUepRz2rh+ZrhH64Ys3OJaHhhgJyjADsCJIgdaQz/aumX/EZpER9A4OsIVc+dmLNy2z6NMUloW57RKcMXcMoGF21wt2Wb1I2lWPxKAuMgwouuEcDQ336fx2pq3xXn4IHrkEDiKKFq7iICzenkWUkVCwlzvQ8PQrCM+jaki9bq2Jjc5lby9aWihgwPTlpMwqNtJyzce1ocD3/8MgBY6cJ4oAsAWHAg1lAy37NxHk/gYGsfHEBgQwCW9z2Lh2l88yuw6kMo5HVoB0LN9q5Llu/anUuRw0rtTWwDCQoIJDfbhid3JOJ2Vf/mJSeJ/AiLi0x4VVb1DVX+puKTxR6Vl5ZFQt07JdHxUOGlZuR5l2jaMYe6mZADmb04mt6CQTCvxHTqaw9WvTeWSsV8w8oKzfN4KB0jLziPBbTvxkeGkZR33jDmhHnO3ulq683/Z54o5r8CjzOZ96RQ6HDSJ9u1Jla1ufZxHD5dMO4+mI1ExHmVOzPqcgJ4XEP7iZ4Td9zz5X71bun5MAmGj3iL0kVewt+rg01iLhTSox/GDpScSx1MyCGngvWs5tHF9wprGcnjp1tL1G0bTf/54Ll77JjvfnuHzVjhA2tEsEmJKe2PioqNIzcjyKHNGs4bMXbUFgHmrt5J7vIDMY7nsSUknIjyER/79KdeMeoMJX8zC4YdEqeqo9MtfTBL/nUTkHyLyq4jMBc6w5rUSkZ9EZK2ILBGRdtb8ySLyrogsEJEkEeknIh+JyDYRmexW53UisllEtojIy27zLxGRdSKyUUTmWfPGiMgkEUkEPhWR5tY211mvPm7r/59V70YRGW/Fuc5teRsRWXuKfV0oIt2t9zki8qJV1woRibfmtxCR5SKyWkTGlln/CWv+JhF5zprXw5oOEZFwEdkqIh3Lb/2vRSnffC7bbnp0cC/WJh1kxL++YU1SCnFR4dhtrlIJ9eow9fGrmT7qWmas2cGRY3m+j9lLi79sY+/RS7uxNjmVEW/NZE1yKnGRYSUxAxzOzuOZb5bx3FV9sNn80G1aRkD3/hSumEvuP24i7+1nCRn5BIig2UfJeeZm8sbdT8E3kwi57UkobrH7kNeu5JN0tTQa1puDM1eBs3R5/sEMFg54inm9H6HJNecTbPV++JL3z4Xnfjx6w+Ws2Z7ENaPeYO22JOKiI7HbbTicDtZvT+ax6y/nyxfuZ39aBj8sWuPzmMtxFFX+5SfmmvjvICLdgGuBrriO4TpgLa4fhL9bVX8TkXOAd4AB1mr1rPdDgBnAucAdwGoR6QKkAS8D3YCjQKKIDAOWAe8D56tqsoi4n353A/qq6nERCQMGqmq+iLQBpgDdReRSYBhwjqrmiUi0qmaISJaIdFHVDbh+8m5yJXc/HFihqv8QkVeAO4EXgDeAd1X1UxEp+SUeEbkYaAP0xJWPpovI+aq6WESmW+uGAp+r6paTHO+7gLsA3vnXC9xx8yl/DKhWi48K51Bm6ZWI1KxcYsu0puOiwpkwchAAeQWFzNuUTERocLkyrRLqsS7pEAPPaunjmMM45NZbkJqdS2xkqGc8kWFMuKF/acxb9xIR4uoezck/wQOfLuC+i7rQuWmsT2MFcGamE1ivdDu2evXLdZcH9hnE8befcZVP3o4EBiLhkWhOFhS5Riw79+3EeTgFW1wjnHt/82nMxw9mENqwtLcgtEE0+YeOei3baGhvNo362Ouy/NRMjv26n+he7UiZuconsRaLj47i0JHSFn9aRhZx9TxPHuLqRfLvR24GIC+/gLmrNxMRFkp8dBTtmjeicbxrny/o3oHNO/dS48w18T+t84DvVTVPVbNx/Zh7CNAHmCoiG4D/AA3c1plh/dTcZiBVVTer63FAW4HmQA9goaoeVtUi4AvgfKAXsFhVkwFUNcOtzumqWtxvGQi8LyKbgalA8TXsi4CPVTWvzPofALeKiB0YAXxZyX0/Acy03q+1YgfXSckU6/1nbuUvtl7rcZ3stMOV1AGeBwYC3YFXTrZBVZ2kqt1VtfufOYEDdGgSx970LA4cyaawyMGc9Tvp16GZR5mjOcdxWq2sD+etZ1jPMwBIzcwhv9DVIsjOK2BDcirN46J8H3OjGPYeOcaBjGOumDftoV+7Jp4x5+aXxrxoC8O6ua6DFhY5ePSLRVzRtSUXd2pWrm5fcO7ZgS2uIRITD/YAArr1o2jTCo8yejQN+xldALAlNIGAIDQnC6kTBeL62pSYBGxxDXGmp/g85swNuwhvmUBY01gk0E6jYb05lFi+86xOqwYE1Q3n6JrSk4qQBtHYQgIBCIwKJ7pHW3J2+j7mDq0as/fQEfanZVBYVMRPyzfSr9uZHmWOZufitLrJP/xhAcP69bDWbUJ27nEysl0ntKu27qRlozifx1yO01H5l5+YlvjvV7azyAZkqmqXk5QvvgDodHtfPB0AnKw/Rrxsq5j7xdJHgFTgLCuW4tFBJ1v/W1w/Sj8fWKuqlR25U2idjAA48PwMeduOAONU9T9elkUDdXCdgITguT814onR41m9fhOZmdlcOOxG7r39JoYPHlTTYZQIsNt46qq+3DNpNk5VhvY8g9YJ0bzz02raN46lf8fmrNmVwsTZKxGEbi0bMGp4XwCSUjOZMGN5yR/85v6dadMg5pTbq7aYB/fknsnzXDGf3ZrW8XV5Z+4G2jeKof+ZTViTnMrExPUI0K15PKOG9AQgccse1u1OJTOvgOnrdgHw/PA+tGvow1uJnE7yv3qXsPtfAJudwuWJOFP2EnTFTTj27MCxeSUF335AyA0PEjTgSlAl/7MJANhbdyToipusL24n+VPegjzfj+FUh5NNT0+m95SnELuNvVMWcuzXA7T7v7+RuSGJQ4muq2ONruzDgWnLPdaNaNOQDmNudPVvi7Dz3Vkc277P22aqVYDdzqiRQ7ln/Ic4nU6G9e9B68YJvD01kQ4tG9O/W3vWbNvFxP/+BCJ0a9eCp28dBoDdZuPRGy7jrhffR4H2LRoxfEBPn8dcTi1oiYvW1BDWPxERORtX9/M5lHan/we4Cvi3qk4V18Wfzqq60bruPVNVvxGR5tb7jlZdk3G1bJcBKyjtTp8DvAn8bNVf0p1udYePAXJU9TWrnn8D+1X1XyJyK/CRqoqIXAI8C1zk3p1urfMmMBy4XVV/PMX+LgQeV9U1IpKjqnWs+X8DrlDVkVbX+Neq+rmI3AO8qqp1rO70scCFqpojIo1wnQikWev8F2gBNFDVCu/bKUxPqlUf2KIV0/wdQtXk+/4aenUrmr/M3yFU2fzv6lVc6DQyaNY1/g6hykK6DfvDgyvyV3xV6e+bkF4j/DKYw3Sn/w6qug74CtiAq0W7xFp0A3C7iGzE1U0+tAp1pgCjgAXARmCdqv6gqodxXQ/+zqr3q5NU8Q5wi4isANpitWpV9Sdc3f1rrG5+91vhvsDVaEusbJyn8BBwn4isBkr6cFU1EVdX/XKrq/8bIEJEbgaKVPVLYDzQQ0QGeKnXMAzDP9RZ+ZefmJb4X5h1b3uUqv7T37FUlmmJ+5hpidcI0xL3vWppiS/5rPIt8fNu8ktL3FwT/4sSke+BVpSOnjcMwzDc+PP+78oySfwvSlWvLDvPSuwtysx+UlXn1ExUhmEYpxHz7HSjNvGW2A3DMP6yasHodJPEDcMwDMMb0xI3DMMwjFrKtMQNwzAMo5by4zPRK8skccMwDMPwxnSnG4ZhGEYtZZK4YRiGYdRS5pq4YRiGYdRSpiVuGIZhGLWUGdhmGIZhGLWU6U43jOpV235QJKDXMH+HUCVpg+/wdwhVlpTsw98e95HhGYv8HUKVHNtW9mnMtUC3avi/Z7rTDcMwDKOWMkncMAzDMGqpWvBT3SaJG4ZhGIY3piVuGIZhGLVULRidbvN3AIZhGIZxWnI6K/+qBBG5RER+FZGdIvKUl+XNRGSeiGwSkYUi0riiOk0SNwzDMAxvVCv/qoCI2IG3gUuB9sB1ItK+TLHXgE9VtTPwPDCuonpNEjcMwzAMb6q3Jd4T2KmqSap6AvgvMLRMmfbAPOv9Ai/LyzFJ3DAMwzC8qd4k3gjY5za935rnbiMw3Hp/JRAhIjGnqtQkccMwDMPwQh2OSr9E5C4RWeP2uqtMdeJtE2WmHwf6ich6oB9wADjl6DozOt0wDMMwvKnCLWaqOgmYdIoi+4EmbtONgYNl6jgIXAUgInWA4aqadartmpa4YRiGYXijzsq/KrYaaCMiLUQkCLgWmO5eQETqi0hxXh4FfFRRpSaJG4ZhGIY3Tq38qwKqWgTcD8wBtgFfq+pWEXleRIZYxfoDv4rIDiAeeLGiek13umEYhmF4U81PbFPV2cDsMvOedXv/DfBNVeo0Sdz4U1u2fS+vTPsZp1O58px23HZhV4/lBzOOMearhRzNzScyLJiXrh9AfN06HMw4xmOfJOJwKkUOJ9f17cjVfcre0lnznnlpAouXrSK6Xl2mff6ev8PxKrhXD6Ievh+x28idPpucz6Z4LLfHx1Hvn08iEXUQm42sdz6gYPnKGo2x3gVdaDn2VsRu49AX89j/luev47V8biRR53YAwBYaTFD9KJafcQsAfQ98Re62vQAUHEjnl1terpGYB13cnwkTnsdus/HRx1N45dW3PZbffNM1vDz+GQ4cPATAO+98zEcfT+Gsszrw9pvjiIisg8PhYNz4N5k6dbq3TVS7ZTsP8cqcDThVubJrC247t53H8oOZuYyZsYajeSeIDA3kpWE9iY8MA+DeL5ewaX8GXZvG8Oa1fWsk3nL+zI9dFZHdQHdVTa/iev2BE6r68+/dtpf6HlfVK6qjvtrkD/wNFuI6ZmuqIYb+Vl1XWF1C7VV1/B+ttzo4nE7GfbeM9/5+OfFR4dzw+nf069CcVgn1SspMmLGCK7q3ZUiPM1j12wEmzl7Fi9cPIDYyjE8eGEZQgJ28gkKGv/o1/To0Iy4q3I97BMMuG8j1w4fw9NjX/BrHSdls1H3sIdIfegJH2mHiPnqX/CU/U7R7T0mRiJE3cnzeInK/n05A82bETBhH6lXX12iMrcbdwZZrnqcgJYMuP40nI3ENeTv2lxRJGj255H3D2y8lvGPpT3E680+w/qInai5ewGazMfGNF7nksuvYvz+FFctnM2NmItu2/eZR7uup03no4Wc85uXlHWfkbQ+xc2cyDRrEs2rFjyQmLiQrK9unMTucyrif1vPeDecRHxnGDR/Mo1/bhrSKjSwpM2HuJq7o3IwhZzVnVXIaE+dv4cVhPQG4pXdb8gsdfLMuyadxnpLD4b9tV5I/ron3B/pUZQUR8WmPgfUkHeMkKnv8VXX66ZLAAbbsTaNJTCSNYyIJDLAzqGtrFm7d7VEmKfUo57Rx3arZo3VDFm5xLQ8MsBMU4PpYnChynDY/ZtS9SyeiIiP8HcZJBbVvR9H+AzgOpkBREXlz5xNyftn/7oqEu1pbtjrhONKP1GiMEV1bk598iPy9aWhhEYenLSN6UI+Tlo8d1pfD3y+twQjL69mjK7t27SY5eS+FhYV8/fUPDBk8qFLr/vZbEjt3JgOQkpJK2uEjxMae8tbjarHlYAZN6tWhcb06BNptDOrQhIW/egzGJunwMc5pEQdAj+axHsvPaRFPWJCfO4ur8Zq4r1QqiYvIjSKySkQ2iMh/yia9ky23nhO7TkQ2Ws+DbQ7cDTxilT2vzLNi54lIU2vdySIyQUQWAC+LSE8R+VlE1lv/nlHJ2MeIyGciMl9EfhORO635/UVkgYh8CWy25j0qIlus18NuddxsxbdRRD6z5sWKyLcistp6nWvN72ft2wYr1ggRaSAii615W0TkPKvsu9b9hFtF5Dm37e0WkeesY7dZRNpZ82NEJNGq9z94v++wuI7mIrJdRD6xYv9GRMK8lMtxe/83EZn8e4+/iIwUkbes91db+7pRRBa7LZ8mIjNEJFlE7reO+XoRWSEi0ZX5m1ZWWlYeCXXrlEzHR4WTlpXrUaZtwxjmbnJ9wc3fnExuQSGZufkAHDqaw9WvTeWSsV8w8oKz/N4Krw1ssfVxpKWVTDvS0rHHxnqUyf7gE8IuuYiEH74i5l/jyPrXxBqNMbhBNAUHSzuvTqQcIbiB949ecOP6hDSNI3PplpJ5tuAgusx5mbNmvUTMJSdP/tWpYaME9u0vTXD7D6TQsGFCuXJXXXkZ69b+j6/+O4nGjRuWW96jexeCggLZtWu3L8MFIC37OAmRoSXT8ZGhpB077lGmbXwUc7cdAGD+9oPknigiM6/A57FVWvWOTveJCpO4iJwJjADOVdUugAO4oaLlIhILvI/rPrezgKtVdTfwHvBvVe2iqkuAtyh9VuwXgPv/6LbARar6GLAdOF9VuwLPAi9VYT87A5cDvYFnRaT4090T+IeqtheRbsCtwDlAL+BOEekqIh2AfwADrP14yFr3DWs/euB6ws4H1vzHgfusY3EecBy4HphjzTsL2GCV/Yeqdrfi6ycind1iTlfVs4F3rToBRgNLrWMwHWhawX6fAUyyjm02cG9lDpabP3L8nwUGWcdsiNv8jriOR09cIy/zrDqXAzd7q0jcHqLw4U/LKx28lnuOQvmznkcH92Jt0kFG/Osb1iSlEBcVjt3mKpVQrw5TH7+a6aOuZcaaHRw5llfpbf9liZfzyjLdGGEDB5A3aw6Hho7gyGOjqDd6lPf1fKUSMRaLHdaX9JnLPa6Nrup2NxsGPcmv97xOy7G3EtIs3leRlhAvMWuZmGfO+h+t2vTi7G4DmTdvCR9/+LrH8oSEOCZPnsgddzxabl1f8LaFsrvx6MDOrN1zmBGT5rJm72HiIkKx206jm6ZqQUu8Mn0VFwLdgNXWBykUSKvE8l7AYlVNBlDVjJPU3xvr5nbgM+AVt2VTVbX4okQU8ImItMH1+QisROzFflDV48Bxq2XZE8gEVhXHB/QFvlfVXAAR+Q5XElbgm+Lrzm77cRHQ3u0/V6SIRADLgAki8gXwnaruF5HVwEciEghMU9XiJH6NuJ7qEwA0wPXc3E3Wsu+sf9e6HZ/zi9+r6iwROVrBfu9T1WXW+8+BB3E9YL+y/sjxXwZMFpGvKd0XgAWqegw4JiJZwAxr/mZcJzPluD9E4fjMCZX+3xIfFc6hzJKOBlKzcokt05qOiwpnwkhXt2ReQSHzNiUTERpcrkyrhHqsSzrEwLNaVnbzf0nOtMPY4+JKpu1x9XGkew7ZCBt8GUceeRKAE1t+QYKCsNWNwnk0s0ZiLDh4hOCG9UumgxrEUHDI+3+l2KHnsnPUBx7zTqS6yubvTSPr563U6dSC/D2pvgsYOLA/hSZuLevGjRqQkuK5zYyM0n344MMvGPfS0yXTERF1mP7Dpzw7+hVWrlrn01iLxUeGcii7tOWdmn2c2DqhHmXiIkKZcI3rckveiSLmbTtAREhVvtp9S2vBwLbKnPII8InVcu6iqmeo6phKLBe8n4xVxH0d977PsbgSQEdgMBDyO+t0n3av/2RNgZPthw3o7bbfjVT1mHVN+A5cJzMrRKSdqi7GlYAPAJ9Z3fMtcLWwL7RayrPK7FNxn5IDz5OtqhzTk+33yeaVPaa/+/ir6t3AM7ieULRBSp//695X5nSbdlLNd0t0aBLH3vQsDhzJprDIwZz1O+nXoZlHmaM5x3FaZ9EfzlvPsJ6uqwSpmTnkF7qedpidV8CG5FSax0VVZ3h/Sie2bSegSSPsDRIgIICwiwaQv8Sz98SRmkpw97MBCGjWFAkKqrEEDnBsw05CWjYguGkcEhhA7LBzyUhcXa5caKuGBNQN59iaX0vmBUSFI9Z12oDoCCJ7tPMYEOcrq9dsoHXrFjRv3oTAwECuuWYoM2YmepRJSCg9eRo8+GK2b98JQGBgIN9O/ZDPP/+Gb7+d6fNYi3VoWI+9GTkcOJpLocPJnK376Ne2gUeZo3kFOK1egQ+XbmdYl+Y1Fl+l/Ela4vOAH0Tk36qaZl23jKjE8uXA2yLSQlWTRSTaasUeAyLd1v8Z15NrPsPVTX+yESRRuJIgwMhK7l+xoSIyDgjHNbDuKVxdxe4W42o5jseVuK8EbgJOAN9b+3fEbT8Scd24/yqAiHRR1Q0i0kpVNwObRaQ30E5EjgMHVPV9EQkHzsb1oPtcIEtE4nH9PN3CCvZjMa5j9IKIXArUq6B8UxHprarLgevwfmxTrUsiv1r7fOwkdVXp+FvHYSWwUkQG4/m4wRoRYLfx1FV9uWfSbJyqDO15Bq0Tonnnp9W0bxxL/47NWbMrhYmzVyII3Vo2YNRw160sSamZTJixvOQM7ub+nWnTwPeDgSryxOjxrF6/iczMbC4cdiP33n4Twys5wKlGOJxk/utN6r/+Mtjs5M78kaLk3UTcOZLCbTvIX/ozWRPfo+6ox6hz7d9QVY6+8ErF9VZzjLue/oCOU55B7DZSp8wn79f9NPu/ERzbsIuMRNdNG7FX9uXwtGUeq4a2aUybV+9CnYrYhH1vfl8jSdzhcPDQw88we9aX2G02Jn/yFb/8soMxox9nzdqNzJz5Px64/zauuOJiioocHM3I5LY7XMN6rr56MOeddw7RMfW4+eZrALj9jkfYuHGrT2MOsNl46pIu3PPlEtf/v7Oa0zouincWbqV9g3r0P6Mha3YfZuKCLQjQrWl9Rl1aegvorZMXsPvIMfJOFHHx67MYM7gbfVqVHwfgU7VgdLpU5tqIiIzA9Qg4G1AI3IfrZ9S6q2q6t+WqusJKNC9Z89NUdaCItMV1M7sTeADXr7p8BNQHDgO3qupea4DVTOvmd6yE+IlVZj5wk6o2lwpuMRORMUBDoBWua8ivWMm03Hoi8ihwmzX5gaq+bs2/BXgCV6t4vaqOFJH6uH4b9kxcJ0OLVfVuEXkTuMAq+wuuhHettX4hkAPcbJ3YTMZ1DT4JV4t0uqpOFrdbx0SkO/Caqva3WrNTrGO1CFfXejdvt5iJaxDhbFyJvw/wm3XM8sTtFjMR+RvwsvV32ALUsfavysdfREZacd9vXY5og+uEaB7wMHBL8XKrTvf9HOm+7GSq0p1+OgjoNczfIVRJ2uA7/B1ClSUlV+t4yBpxQUblx3acDo59NNLfIVRZ6I0v/uGBFrljrqv09034mCk1OLCjVKWSeG1mJfEcVT1Nb6z1DSuJz7S6v/80TBL3LZPEa4ZJ4r5XLUn82Wsrn8Sf/69fkrh5YpthGIZheOPHW8cq60+TxEXkVvxPCJsAACAASURBVEpv/yq2TFXv80c8NcXqYp/nZdGFf7ZWuGEYRo3y44C1yvrTJHFV/Rj42N9x1DRVPQJ08XcchmEYfzZadPoPbPvTJHHDMAzDqFamJW4YhmEYtZS5Jm4YhmEYtZRpiRuGYRhG7aQmiRuGYRhGLWWSuGEYhmHUUmZ0umEYhmHUUqYlbhiGYRi1U214LLlJ4oZhGIbhjWmJG0Y1y8/zdwRVUtt+UCRuxgf+DqHKlnb6p79DqLLnGvT3dwhV4tj4i79DqLobq6EOk8QNwzAMo3Yyt5gZhmEYRm1VZJK4YRiGYdRKpiVuGIZhGLWVSeKGYRiGUUud/r9/YpK4YRiGYXhjutMNwzAMo5ZSM7DNMAzDMGop051uGIZhGLWTmiRuGIZhGLWUSeKGYRiGUTuZlrhhGIZh1FYmiRuGYRhG7eQs8ncEFTNJ3PhTW7bjAK/MWoPTqVzZvTW39evosfzg0RzGfLeco7n5RIYF89LV5xIfFc72gxm8NH0lOQWF2EW4o38nBnVuXuPxB/fqQdTD9yN2G7nTZ5Pz2RSP5fb4OOr980kkog5is5H1zgcULF9Z43GeyjMvTWDxslVE16vLtM/f83c4ACRc0Jmuz9+E2G0kfbmQ7W/N8Fje5bkbievTHoCA0CCC60fyfbu7qNuhGd3G30pgRCjqcPLLGz+wb/qKGom5Zb/OXDzaFfOG/y5k+bszypU58/JzOO+R4aBK6ra9/PDg2wAMGHUdrQd0QWxC8pItJI75tEZitp/RleAht4PNRuGquRQu+M5judStT/CIB5HQcLDZODH7Mxzb1wFga9CM4OH3QHAoqHJ84hNQVFgjcRcz3emG4UcOp5NxM1bx3q0XER8Zxg3v/ki/MxvTKq5uSZkJP63liq4tGXJ2K1btSmFi4npevLovoUEBjP3buTSrH0ladh7Xvz2b3m0aEhkaVHM7YLNR97GHSH/oCRxph4n76F3yl/xM0e49JUUiRt7I8XmLyP1+OgHNmxEzYRypV11fczFWwrDLBnL98CE8PfY1f4cCgNiEbi+NZOGIcRxPyWDgj2M5mLiO7B0HSspsGP15yfs2t11M3Y7NACg6XsDKB98lJzmVkPi6XDznBQ4t3ERhtm9/IldswiVjR/LlDePIPpTBbdPH8tvcdaT/Vhpzvebx9LlvCJ9eNYb87DzCYiIBaNStDY27t+X9QU8BcPO3o2na60z2rtjm05gRG8FX3sXxSWPQrCOEPvgKRVtXoWn7S4oEXXg1RZuWUbR8DhLXmNDb/0neuL+DzUbwdQ9TMOUNnCm7ISwCHA7fxuuNSrVWJyKXAG8AduADVR1fZnlT4BOgrlXmKVWdfao6bdUaYSWJyIMisk1Evqim+pqLyPVu091FZOIfqO/n6oirEtsJFpG5IrJBREbUxDZPRyLysIiEVXe9W/YfoUl0BI2jIwgMsDOoczMWbtvnUSYpLYtzWiUA0KNlAgu3ub5gmtWPpFl915dgXGQY0XVCOJqbX90hnlJQ+3YU7T+A42AKFBWRN3c+Ief3KVNKkXDXobPVCceRfqRGY6yM7l06ERUZ4e8wSkR3bcWx3ank7j2Ms9DB3h9W0GhQt5OWbzqsN3unLQcgJ+kQOcmpAOSnZlKQnk1wjO/3rWGXVmTsTiVznyvmX2asoO1Az5i7XjeAtZ/+j3zrhCLvSLZrgSoBwYHYAwOwBwViD7CTm57l85htTdvgTE9BM1LBUUTRhqUEdOhZppQiwa7Pr4SGo9kZANjbdsGZsseVwAHyjvmlWazOyr8qIiJ24G3gUqA9cJ2ItC9T7Bnga1XtClwLvFNRvf5qid8LXKqqydVUX3PgeuBLAFVdA6z5vZWpatlvSl/pCgSqapca2t4piUiAqvrjKtDDwOdAtTZn0rLzSIgKL5mOjwxn8750jzJtE+oxd+tebuhzJvN/2UduQSGZeQXUDQsuKbN5XzqFDgdNoms2Edli6+NISyuZdqSlE9ThTI8y2R98Qv03XqHO1VciISGkP/h4jcZYG4UmRHP8QOnJTl5KBjFdW3ktG9a4PuFNY0lburXcsuguLbEFBZCzO83LmtUrIiGaYymlMWenZNCoTMzRLVwnozd/Oxqbzcbi178ladEmDqzbyZ7lv/DQ6rdBhLWfJnJk50GfxyyR0Whm6f83zTqCrWlbjzInEr8i5M7RBJ57GRIUwvFJowGw1W8IqoTc8SwSHknRxqUULpzm85jLUme1tsR7AjtVNQlARP4LDAV+cd8kEGm9jwIq/EPVeEtcRN4DWgLTRSRLRB53W7bFalU3t1rq74vIVhFJFJFQq0xrq/W6UUTWiUgrYDxwntWifURE+ovITKt8tIhME5FNIrJCRDpb88eIyEcislBEkkTkQbc4cqx/+1vLvxGR7SLyhYiItewya95SEZlYvL2T7HO5GEQkDlfi6mLF7fVb5GTbOUmdNhHZLSJ13dbfKSLxIhIrIt+KyGrrda7bcZgkIonApyIyUkS+E5GfROQ3EXnF/biIyMsistb6G/R0O35DrDJ2EXnV2sYmEfn7qY6lddwbAgtEZEElP0aVol6emChl/k8+emk31ianMuKtmaxJTiUuMgy7rbTQ4ew8nvlmGc9d1QebrXq71ipUNlgot1NhAweQN2sOh4aO4Mhjo6g3epT39YxS3g6Ptw8L0HRoL/bPXFXuGdohcXU55817WPXwpJOu62taZru2ADvRzeP5fMQLfP/gW1z+8p0ER4ZRr1k89Vs3ZGKvB5h4zv0069OBJj3b+T7ASnx+A7qeR9Ga+eS9eCfHP3qBkOsedq1nt2NvcSb5X/6b4+88TUDHXthbd/J9zGXDrcaWONAIcO8K3G/NczcGuFFE9gOzgQcqqrTGk7iq3o3r7OIC4N+nKNoGeFtVOwCZwHBr/hfW/LOAPkAK8BSwRFW7qGrZOp8D1qtqZ+BpwH1ERztgEK4zpNEiEugljq64WortcZ18nCsiIcB/cPUm9AViK9jtcjGoahpwh1vcu8quVMF2vNXpBH4ArrTWPwfYraqpuK7D/FtVe+A6lh+41dUNGKqqxZckugAjgE7ACBFpYs0PBxaqajfgGPACMNDa3vNWmduBLGs7PYA7RaTFyY6lqk7E+jyo6gXeDp6I3CUia0RkzYf/W+31AHsTHxXGoazckunU7FxiI0M9ysRFhjHhhv58df8VPDDQ1SESEeK67p2Tf4IHPl3AfRd1oXPTiv7E1c+Zdhh7XFzJtD2uPo50z56EsMGXcXzeQgBObPkFCQrCVjeqJsOsdY6nZBDaKKZkOqxBNMdTM72WbTq0N3usrvRiAXVCOf/zx9n88lSOrNvp01iLHTuUQUSD0pgjG0STUybmYykZ7PjfOpxFDrL2HeZI0kGimydwxiXdObB+J4V5BRTmFbBrwUYadW3t85g16whSt37JtETFlHSXFwvocSFFG5cB4NzzKwQEImGRaOYRHElbXd3ohSco2r4WWyPvvSW+5HRIpV/u31PW664y1Xk9fSwzfR0wWVUbA5cBn4nIKfO0X66JV1Kyqm6w3q8FmotIBNBIVb8HUNV8Va2oC7Yv8JlVfj4QIyLF33KzVLVAVdOBNCDey/qrVHW/lSA34Oq6bwckuV0OmOJlvcrGcCqn2s7J6vwKVwIG1zWVr6z3FwFvicgGYDoQaR1PgOmqetyt7nmqmqWq+bi6eppZ808AP1nvNwOLVLXQet/cmn8xcLO1nZVADK4TMvB+LCukqpNUtbuqdr99YI/KrAJAh0Yx7D1yjAMZxygscjBn0x76tWviUeZobj5Oq5X14aItDOvm+qIoLHLw6BeLuKJrSy7u1Kxc3TXhxLbtBDRphL1BAgQEEHbRAPKXeCYUR2oqwd3PBiCgWVMkKAjnUe8JyXDJ2JBERIsEwpvEYgu003RoLw7MWVuuXESrBgTVDefImt9K5tkC7fT96GF2T13K/pmraizmgxuTiG6RQJQVc/vBvdjxP8+Yf01cQ7PersstofXqENOiAZl708g6cISm55yJ2G3YAuw07dWOIzsPeNtMtXLu+w1b/QZIvTiwBxDQpS+OXzxPwjUzHXubzgBIXGMICEJzsyjasR5bQjMIDAKbDXvLDjhT93nbjE+pUyr/cvuesl6TylS3H3D/AmpM+e7y24GvAVR1ORAC1OcU/D06vQjPE4kQt/cFbu8dQCjez2Qqcqqzn7Lb8HY8vJWpahyVOQOr7HoV1bkcaC0iscAwXK1lcB3n3mWSNdbVgVw8ney4FGppH56zuJyqOkWkuIwAD6jqnDLb6X+Ken0iwG7jqcE9uWfyPJyqDD27Na3j6/LO3A20bxRD/zObsCY5lYmJ6xGgW/N4Rg1xDbxJ3LKHdbtTycwrYPo6VyfJ88P70K5htC9D9uRwkvmvN6n/+stgs5M780eKkncTcedICrftIH/pz2RNfI+6ox6jzrV/Q1U5+sIrFddbw54YPZ7V6zeRmZnNhcNu5N7bb2L44EF+i0cdTtY9PZl+U5503WL230Vk7zhAxyeGk7ExmYOJrluc3Ae0FWsypBexvdoRVC+C5tecD8Cqh/9D5tY95bZT3THPeXYy1336JDa7jY1fLyL9twOc/+hwUjYl89vcdSQt2kTL8ztx19xXUIeTeS99yfHMHLbPXknzPu25K3E8qpC0aCO/zVvv03gBcDopmPY+oXeOtm4xm4czdR9BF1+HY/9OHL+spmDGx4RcfS+B5w0GoOBrazzy8VwKl8wg9MFXAXBsX4tje/kTLV+r5islq4E2Vs/kAVyNrLK3kuwFLgQmi8iZuHLi4VNV6u8kvhu4AkBEzgZanKqwqmaLyH4RGaaq00QkGNcw/GPAyUYdLQZuAMZaiSTdquePxL0daCkizVV1N6Ut35P5vTGcajte6wQQke+BCcA2VS0eDZMI3A+8apXp4tbTUZ3mAPeIyHxVLRSRtrg+sKdS/PdLr6BclZ13RiPOO8PzstO9F5WOIxzYsRkDO5ZvaV/epSWXd2lZ3eFUWcHylaSWue/72PuTS94X7d5D+t8f5HT26nNP+TuEclLmbyRl/kaPeVte/dZjeuu/PO9pBtjz7TL2fLvMp7GdzK4FG9m1wDPmxRM8Y5479gsY63nTjzqVH5/+yOfxeePYvo48677vYicSSzsUNW0/x99+2uu6ResWUbRukU/jq0h1DmxT1SIRuR/Xd6Qd+EhVt4rI88AaVZ0OPAa8LyKP4GqUjXRrOHnl7yT+LaVdr6uBHZVY5ybgP9aOFwJXA5uAIhHZCEwG3E8zxwAfi8gmXKOfb/mjQavqcRG5F/hJRNKBivrVflcMFWznVHV+het4jnSb9yDwtlU+ANdJwN2ViaOKPsDVTb7OGgR4GFePwKlMAn4UkZSTXRc3DMOoadU8Oh3rnu/ZZeY96/b+F+DcqtQpFSR54yREpI6q5liJ6m3gNy+D6mrNdmqL49+8UKs+sBn/mu/vEKokbsYHFRc6zXzX6Z/+DqHKdtbgM4Oqw0PX+PZhNr5Q59Xv/3AGTup0caW/b1puTvTLbSGn88C2092dVg/CVlz38/2nlm/HMAzDcKMqlX75i7+702stqzXs0SIWkVuBh8oUXaaq91VUn3Udu+yYgCe9bccwDMPwPfPs9L8YVf0Y+Ph3rntlNYdjGIZh/AFOP7awK8skccMwDMPwwp/d5JVlkrhhGIZheFHdo9N9wSRxwzAMw/DC6TBJ3DAMwzBqJXNN3DAMwzBqKXNN3DAMwzBqqdrwLDSTxA3DMAzDC9OdbhiGYRi1lOlON4xqVjTfP78g9XslJdfgT5dWg6W18DnkV20e6+8QqqxT+4p++PD08rcZp/xJ69PSGa/+8Toc5hYzwzAMw6idTEvcMAzDMGopc03cMAzDMGqpWjA43SRxwzAMw/DGtMQNwzAMo5ZymCRuGIZhGLWTYpK4YRiGYdRKzlpwUdwkccMwDMPwwmla4oZhGIZRO5nudMMwDMOopZz+DqASTBI3DMMwDC8cpiVuGIZhGLWTaYkbhmEYRi1lrokbhp/Z23cj5Oq7QWwU/vwTJxKneiyXerGE3PIYEloHbDYKpn2MY+tqJDqO8Gcn4UzdD4Bj93YKprxVIzHXu6ALLcfeithtHPpiHvvfmuaxvOVzI4k6twMAttBggupHsfyMWwDoe+ArcrftBaDgQDq/3PJyjcSccEFnuj5/E2K3kfTlQra/NcNjeZfnbiSuT3sAAkKDCK4fyfft7qJuh2Z0G38rgRGhqMPJL2/8wL7pK2ok5lN55qUJLF62iuh6dZn2+Xv+DgeAvhf05h8vPobNbuObz3/g/Tc/8Vh+5YgreGL0g6QeOgzAFx9+zTdf/MA553bjqbGPlpRr2boZj/79H8z7cZHPYw7r2434f9wNNhtZ3/xExvue//9in7qLsHM6A67Psj26Ljt7Xu1a9vhthPfrCTYh7+f1pL1Y83+HWvAjZiaJG39iYiNkxH3kTXwazUwn7Mk3KNq0EuehvSVFgi69jqK1SyhcMgtbQlNC73ue3H+OBMCZnkLeuPtrNmabjVbj7mDLNc9TkJJBl5/Gk5G4hrwd+0uKJI2eXPK+4e2XEt6xRcm0M/8E6y96oiYjRmxCt5dGsnDEOI6nZDDwx7EcTFxH9o4DJWU2jP685H2b2y6mbsdmABQdL2Dlg++Sk5xKSHxdLp7zAocWbqIwO69G96GsYZcN5PrhQ3h67Gt+jaOYzWbj2Zf/j9uuvp/Ug6lMTfyE+XMWs2tHske5H3/4H2NHef4G58pla7lywA0ARNWNZM7K71i2sAZOlGw24p+9j/23PU1hajrNpr5BzvyVnNhV+v/v8PhJJe/r3jiEkDNbARDS9UxCz27P7qH3AtD0y9cI7dmJ46s2+z5uN7XhFjObvwM4XYnIQhHpbr2fLSJ1rde9bmUaisg3v7P+ySLyt+qK10v9XUTkMrfpISLyVAXr/PwHtvewiIS5Tc8Wkbq/t77qYGveFufhg+iRQ+AoomjtIgLO6uVZSBUJscIODUOzjtR8oG4iurYmP/kQ+XvT0MIiDk9bRvSgHictHzusL4e/X1qDEZYX3bUVx3ankrv3MM5CB3t/WEGjQd1OWr7psN7snbYcgJykQ+QkpwKQn5pJQXo2wTERNRL3qXTv0omoSP/HUazz2R3Ym7yP/XsOUFhYxOzv/8eFl/Srcj2DBl/IkvnLyT9e4IMoPYV0bkvh3oMU7j8EhUUcm72IOhf2Omn5yMv7kT1roWtCFQkOQgIDkKBAJMCOIz3T5zGX5ajCy19MEq8EVb1MVTOBusC9bvMPqqrPEvHvJSIBQBegJImr6nRVHX+q9VS1zx/Y7MNASRJ3O2Z+Y6tbH+fRwyXTzqPpSFSMR5kTsz4noOcFhL/4GWH3PU/+V++Wrh+TQNiotwh95BXsrTrUSMzBDaIpOJheGl/KEYIbRHsv27g+IU3jyFy6pWSeLTiILnNe5qxZLxFzycmTf3UKTYjm+IHSk5+8lAxCE+p5LRvWuD7hTWNJW7q13LLoLi2xBQWQszvNZ7HWVvEJsaQcSC2ZPpSSSnyD2HLlBl4xgB8WfskbH44noWF8ueWXDRvIrO/m+DTWYgHx9SlMKf3/V3QonYD4GO9lG8YR2CiBvBUbAcjfsJ28lZtoteQLWi35gtyl6ziRtK9G4nbnFKn0y1/+MklcRJqLyHYR+URENonINyISJiIXish6EdksIh+JSLCXdXeLSH1gPNBKRDaIyKtWnVusMnYRec2qZ5OIPGDNf1ZEVovIFhGZJFK5v7a1zZdFZJX1am3NHywiK62Y54pIvDV/jFV/IvAp8Dwwwop1hIiMFJG3rLLxIvK9iGy0Xn2s+TnWv/1FZLFV5hcReU9EbNayd0VkjYhsFZHnrHkPAg2BBSKyoMwxQ0QetfZ/i4g87Pb32CYi71t1JYpI6O/40/4hAd37U7hiLrn/uIm8t58lZOQTIIJmHyXnmZvJG3c/Bd9MIuS2JyEkrOIK/yhvHw/1/uzH2GF9SZ+5HJylY2hXdbubDYOe5Nd7Xqfl2FsJaVb+i7zaeftEnyTmpkN7sX/mKrTM8yxD4upyzpv3sOrhSSdd9y/Ny+dCyxynBYlLuLDbEIb2v56fF69i/JujPZbHxsXQ9szWLF2w3KehntJJ/rSRl/XjWOLSks9yYNMGBLVswq7+N7Gr342E9TqL0O4dazBQF63Cy1/+MknccgYwSVU7A9nAo8BkYISqdsI1RuCeU6z/FLBLVbuoatkLj3cBLYCuVv1fWPPfUtUeqtoRCAWuqEK82araE3gLeN2atxTopapdgf8C/+dWvhswVFWvB54FvrJi/apMvROBRap6FnA2UL5ZBD2Bx4BOQCvgKmv+P1S1O9AZ6CcinVV1InAQuEBVL3CvRES6AbcC5wC9gDtFpKu1uA3wtqp2ADKB4d4OgojcZZ04rPn4l8qfjTsz07HVK22t2OrVL9ddHthnEEXrFrvKJ29HAgOR8EgoKoTcY675+3biPJyCLa5Rpbf9exUcPEJww/ol00ENYig4dNRr2dih55L2/TKPeSdSXWXz96aR9fNW6nRq4W3VanU8JYPQRqUtrLAG0RxP9d4J03Rob/ZM80wiAXVCOf/zx9n88lSOrNvp01hrq9SUNBo0Kj0hS2gQT9qhdI8ymUezKDxRCMDUz6bR4awzPZZfMnQgc2cvpKioZjp/i1LTCXTrLQhIqE9RmvfLVRGXuXWlA3Uu6kP+xu1oXj6al0/u4jWEntXO1yGX46zCy1/+akl8n6oWf+t9DlwIJKvqDmveJ8D5v7Pui4D3VLUIQFUzrPkXWC3nzcAAoCr9slPc/u1tvW8MzLHqe6JMfdNV9Xgl6h0AvGvF6VDVLC9lVqlqkqo6rO33teZfIyLrgPXWtttXsK2+wPeqmquqOcB3wHnWsmRV3WC9Xws091aBqk5S1e6q2v3W9k0qsXsuzj07sMU1RGLiwR5AQLd+FG3yHNCjR9Own9EFAFtCEwgIQnOykDpR4Op8QGISsMU1xJmeUult/17HNuwkpGUDgpvGIYEBxA47l4zE1eXKhbZqSEDdcI6t+bVkXkBUOBLkGqsaEB1BZI92HgPifCVjQxIRLRIIbxKLLdBO06G9ODBnbblyEa0aEFQ3nCNrfiuZZwu00/ejh9k9dSn7Z67yeay11eb1v9CsZVMaNW1IYGAAl105kPlzFnuUiY0rPZEacMn55Qa9XX7lxcz6vma60gHyN+8gsFlDAhvFQ2AAEZf1I2d++QF1gS0aYY+qQ/76bSXzilIOE9qjE9htEGAntEcnCvzSnV75l7/81Uan+7LXQ8rWLyIhwDtAd1XdJyJjgJAq1Kle3r8JTFDV6SLSHxjjVia3ijFXdtsAKiItgMeBHqp6VEQmU/H+nOrj7T66xoGrp6L6OJ3kf/UuYfe/ADY7hcsTcabsJeiKm3Ds2YFj80oKvv2AkBseJGjAlaBK/mcTALC37kjQFTeB0+GqZ8pbkJdTreF55XCy6+kP6DjlGcRuI3XKfPJ+3U+z/xvBsQ27yEhcA0DslX05PM2zFR7apjFtXr0LdSpiE/a9+X2NJHF1OFn39GT6TXnSdYvZfxeRveMAHZ8YTsbGZA4mrgM8B7QVazKkF7G92hFUL4Lm17jOn1c9/B8yt+7xedyn8sTo8axev4nMzGwuHHYj995+E8MHD/JbPA6Hg7FPvcKHX03EZrfz7ZfT2flrEg88+Xe2bNjGgjmLuenOa7lg0Pk4HEVkHc1m1IPPlazfqEkDGjSKZ9XP62owaCdpY9+l8Yeu/39Z3yZyYudeYh64ifwtO8hdsBKAyMv7kz3L83a3Y3OWEtbrLJpPfxcUcpeuKSlfk2rD6HQpe13lz0pEmgPJQB9VXS4i7wO7gb8DA1R1p5WU1qvqGyKyEHhcVdeIyG6gO67Etk5Vm7nVOVNVO4rI3bha49eqapGIROPqZfkVVwvTDqwAvlHVMda2Zqqq19Ht1jbfU9XxInIjri7/wSKyHrhDVdeKyMdAC1Xtb50g5Kjqa9b6w4EhqnqLNT0S18nE/SLyX2CFqr4uInYgXFWzRSRHVetYJwc/4mpl77HeTwJ24rre3hWIBTYBT6rqZKtnYIiqJrvF3x1oiuuSRS9cCX0lcBNwtPjYWeUfB+qo6phT/R2P3XtprfrAbvgu3N8hVMnB8kNCTntXbR7r7xCqrFP7Ef4OoUp+iK5fcaHTzBnbf/zDGfjTRjdW+vvm5gOf+yXj/9W607cBt4jIJiAa+Deu67VTrSTkBE76RAFVPQIsswZovVpm8QfAXmCTiGwErrdGZ78PbAamAeX7RU8tWERWAg8Bj1jzxljxLgHST7YisABoXzywrcyyh3B182/G1Y3trYt/Oa6BfFtwnfx8r6obcXWjbwU+AtybgpOAH4sHthVT1XW4kvgqXAn8A1Vdf6qdNgzDOB3Uhmvif7WWeEnL73RX3JJV1VMlal9tuz+uXoiqDMKrEaYl7lumJV4zTEvc96qjJf7x/7N33/FV1fcfx1/vhC0gOyyRoaKCgihuBbWO4sIF7rqtWGdrq9WfuFdbW7RWRa3W1Ypb1Aqo4Ja9BLSyBGQvQXaSz++Pcy7chJulSc45yefp4z7IGffmzZXkc8/3fEcZrsQvLMWVuKTjgEEELbNPFh72K+mvQKpzcD2ghZkVO99Gdbsn7pxzzpVKeXZYC29dPgIcDSwAxkp6y8ymp84xs+vSzr+K4NZlsapNETezuUDsrsIlvU4wNC3dH8ysfQRxADCzUcCoqL6/c87FQTk3k+8PzDSz2QBh36STgelFnH8WMLCIY1tVmyIeV2Z2StQZnHPOba+ci3gbIH2c3AKC+TO2I2lngou7D0t6US/izjnnXAZ5ZWhOl3QZwaRfKYPNbHD6KRmeVtQ99zMJRjKVODOPF3HnnHMug7JciYcFe3AxpywA0meraksw02UmGWtKfAAAIABJREFUZwJXlub7VrchZs4551yplPPc6WOBXSV1kFSLoFC/VfgkSZ2BxgTDfEvkV+LOOedcBuXZOz2cBOw3wDCCIWb/NLNpku4AxplZqqCfBfzHSjn+24u4c845l0F5T+JiZu8C7xbad2uh7dvK8ppexJ1zzrkMKme9t5/Hi7hzzjmXQZSrk5WWF3HnnHMugyjnRC8tL+IuUT58rXHUEcrktJUflXxSjNzeqnfUEcosafOQA0yd/lLUEcrk8v1+H3WEMvtnObxGEhZq8CLunHPOZZCfgDLuRdw555zLwJvTnXPOuYTy3unOOedcQnnvdOeccy6h/J64c845l1DxL+FexJ1zzrmMvGObc845l1DenO6cc84llPdOd8455xLKr8Sdc865hIp/Cfci7pxzzmXkHducc865hLIEXIt7EXdVWosj9mavO8+H7CzmvTCSb/8+tMDxrrefS7ND9gQgu25tajdryLudL6Vu22bs/9R1KFuoZg3mPDWMuc9+UCmZjz2mNw8+eAfZWVn88+l/88CfHilw/Pzz+nH/fbfw/cLFAPzjH0/zz6f/TbduXXjk4Xtp0LA+eXl53Hvfw7z88luVkrljr705ZuB5KDuLSf8ZxRePDt3unD2OP4DDrjsNzFgyYx5vXh38vY686Sx2ObI7yhJzPvmK4bc9W+F5Dz3iIG6++7dkZWfxyvNv8sTD/ypw/JT+J3DDwKtZsngZAC88NYRXXniTAw7ZlxvvvH7reR132ZnrL7+ZD/4b7Wp1t9zzIB9/NoYmjRvxxvOPRZolXdde3Tn71gtRdhafvPQB7z76xnbn9Dz+IE6+th9mMH/GXAZfM2jrsTr163L3+39jwrAxvDDwqcqMDkCuF3HnIpQl9r73Qj7vdy8bFq2g13t3sXj4BNb+7/utp3w18PmtX3e4+Bh27NoegI1LVvHJiQPJ35xLdr3aHPnRAyweNp6NS1ZXbOSsLB4adDfH9TmLBQsW8eUX7zL07eHMmPFtgfOGvPwW11x7S4F969dv4IKLrmHmzDm0apXDmC//y/Dho/jhhzUVmllZ4rg7L+DFc+5lzeKVXPTWnXz7/gSWf7vtfW7cPoeDrzyJZ0+9jY1r1lOvaUMA2uy7K233240njr0RgPNfHUi7A/dg3pczKixvVlYWt97/ey464zcsWbiEl4f/iw+Hfcys/80pcN5/3xzBnTf9qcC+0Z+N55QjzwFgx0YNGTb6NT4b9WWFZS2tvn2O5uzTTuKPd/456ihbKSuLc++4hL+cewcrF6/k1rfuY9KIcSycuWDrOS3at6TPgFO557RbWL9mHQ3Cfxcpp/z2TL4ZPb2yo28V/xIOWVEHcAFJoyTtF379rqRG4WNA2jmtJb3yE1//GUmnl2PeuZKaFc4YJ4332YV1c5awft5SbEse37/xBS2P3bfI89v2PZjvX/8cANuSR/7mXACyatcEVc4kyvv33IdZs+YyZ848tmzZwpAhb3LSiceW6rnffjubmTODQrRo0RKWLltB8+ZNKzIuAK27d2Ll3CWsnr+M/C15TB/6JbsdXfB93uesIxn/7Ag2rlkPwPoV4QcLM2rUrkl2zRpk16pJdo1s1i3/oULz7t2jC/PmzGfBd9+zZUsu774+gqOO61Xm1zn2xKP45MMv2LhhUwWkLJv9uu/Fjg0bRB2jgI7dd2Hpd4tZNn8peVtyGT30M7of07PAOb3O/AUfPvse69esA2Dtim0fOHfu2pGGzRox7ZPJlZo7XT5W6kdUvIjHkJn1MbPVQCNgQNr+hWZWboW4nBTIWFqSsisgSwF1WjVmw8IVW7c3LFpJnVZNMp5bt20z6rVrzrJPp217fusm9P7wPo4Z/zAzHxla4VfhAK3btGT+goVbtxd8v4jWrVtud96pp/RhwvgRvPSfwbRt23q74z33606tWjWZNWtuRcYFoEHLJqxdtO19XrNoJQ1aNi5wTpMOLWnSoRXnvzqQC16/nY699gbg+wkz+e6L6Vwz9hGuGfsIsz+ewoqZC6lIOS2bs+j7JVu3Fy9aQk6r5tudd/QJR/LmqBcZ9NR9tGyds93xPn2P5p3XhlVo1iRrlNOElQuXb91etWgFjXMK/vzldGxNyw6tuOmVu7j59Xvo2qs7AJLof8uvGHJPxd9aKU5+GR5R8SJeQSS1l/S1pH9JmiLpFUn1JB0laaKkqZL+Kal2hufOldQMuA/oJGmSpD+Fr/lVeE62pD+HrzNF0lXh/lsljZX0laTBUukuISX1lPS5pMmSxkhqIOkCSX9PO+dtSb0LPbVwxt6S3k57zt8lXZD297pV0qfAGZI6SXpP0nhJn0javUxvcsl/p+13WuZPzG36HsTCt8dA/rbjGxeuZNSRN/LBQdexU7/Dqd2sYcbnlqdMma1Q5rffGUGnXQ+kx75H88EHn/D0U38rcLxlyxY888xDXHLJ9ds9t7IU/r5ZNbJp0j6H5/vfxetX/53j77+U2g3r0XjnHJrt0pqHDryKhw74DTsf3IWd9i/XfwbbK8V7PHL4Jxy170mc3PtsPv94DPc9PLDA8eYtmrLbHrvw6cgvKjRqkpXm33J2djY5HVrxwJkDefyqv3HBfVdQt2E9jjjvWKaMnMCqtA+HUbAy/BcVL+IVqzMw2Mz2BtYA1wPPAP3NbC+CPglXFPP8G4FZZtbdzG4odOwyoAOwT/j6L4T7/25mPc2sK1AXOKGkkJJqAS8B15hZN+AXwIZS/h2Ly5jJRjM71Mz+AwwGrjKzfYHfAf8oIt9lksZJGjds/cxSxoINC1dSt/W25uS6rZqwcfGqjOe2OfkgFoRN6dsFXrKatd8soMmBFVxcgO8XLGKntCvrtm1asWjRkgLnrFy5is2bNwPw5FMv0KPHXluPNWhQn7fefJZbBz7A6DETKjwvwNrFK2nQatv73LBVE34s1GqxdtFK/jdiAvm5efwwfxkrZi+kSfuWdD5uP76fOJMt6zexZf0mZo2cTJt9dqnQvEsWLaVVm21X1i1b5bB08fIC56xe9QNbNm8B4OXn3qBLtz0KHD/u5KN5/91R5OYmYU6vaKxavIImrZtt3W7cqimrlxb8+Vu5eAUTR4wlLzeP5QuWsnj2QnLat6JTj84cdf5xPPDpP+j3x/M5+NRenP6Hcyr7r+BX4o75ZvZZ+PXzwFHAHDP7X7jvX8DhP/G1fwE8Zma5AGa2Mtx/hKTRkqYCRwJdSvFanYFFZjY2fK01qdetAC8BSKoPHAy8LGkS8DjQKtMTzGywme1nZvsdW6/0v+BXT5rFDh1bUq9dc1QzmzZ9D2Lx8PHbnVe/UytqNdqBVeO2dR6r06oJWXVqAlBzxx1o0nM3fpy5qPR/y59o7LhJ7LJLB9q334maNWvSr9/JDH17eIFzWrZssfXrE088hq+/Dj7Y1KxZk1dffornn3+FV199m8qycPJsmnRoyY47NSerZjZ7nngg/xtR8H3+Zvg4dj4oKIR1G9enaYdWrJ63lB++X0G7A/ZA2Vlk1cim3YG7s2Lm95m+TbmZOnE6O3dsR5t2ralZswZ9TjmaD4d9XOCc5i22fSg58rjDt+v0dvwpx/DO696UXpw5k2eS074Vzdq2ILtmDQ448RAmjRhb4JyJw8ew+0FdAajfuAEtO7Ri2bwlPHHtIG445Ap+f+gAhtzzLJ+/9hGv3P9Cpm9TofKwUj+i4r3TK1ZF/p9V4deXVIfganY/M5sv6Tagzk95rVAuBT/olea1SnrOuvDPLGC1mXUvxWv+JJaXz5Q/PsNB/74RZWcx79+jWPvN9+z++9NZPWk2i4cHV6ptTjmY798o2CzaYNfWdLnt3KD5XWLmo++w9uv5FRV1q7y8PK659hbefedFsrOyeOZfLzF9+v+4beDvGDd+Mm+/PYKrfnMRJ5xwDLm5eaxauZqLLrkWgDPOOJHDDjuAJk0bc/75/QC4+JLrmDx5WnHf8mezvHyG3foMZz37B7Kys5g85COWf/s9h19/GoumzOHb9ycw+6MpdDx8Ly57/wEsL58P7nmRDat/5Ot3R9P+4D25bPh9mMHsjybz7QcTKzRvXl4ed974AE+99BBZ2dm8+uJbzPxmNlf94XK+mjSDkcM+5rxLz+SIYw8nLy+XH1at4aarb9/6/DY7taJVmxzGfF45LR2lccPA+xg7cQqrV6/hqL7nMuDi8zitlB0iK0p+Xj7P3/ok1z97C1nZWXw65EMWfruAvtf1Z+7UWUx6fxxffTSJLod1464RfyU/L58h9z7HutU/Rpo7XX5Et6PKQlHdM6vqJLUH5gAHm9kXkp4A5gKXA0ea2UxJzwATzWyQpFHA78xsnKS5wH4EhXWCme2c9ppvm1lXSb8muBo/08xyJTUhaNX5BmgPZANfAq+Y2W3h93rbzLbr3R42p39N0Mw/VlIDgub0A4EHgEOBNsA04CQzG1VMxp2ATwiu7usAk4DbzeyZ1HPMbHl47ufAX83s5fDe/d5mVmxX1Ddbnp2of7CnrYx2/HBZ3d6qd9QRyuy5Df8r+aSYmTr9pagjlMnl+/0+6ghl9s+5r/zsISXn7nxqqX/fPP/da5UzhKUQb06vWDOAX0maAjQB/gpcSNCEPJWg6BY5M4OZrQA+Czup/anQ4SeBecAUSZOBs8Me7U8AU4E3gLGUgpltBvoDD4evNYKgAH9G8EFkKvBnYLtLj8IZzWw+MASYQnCfvrjLqnOAi8PvOQ04uTR5nXOuMiRhiJk3p1esfDP7daF9HwD7FD7RzHqnfd0+7euzC53aNdyfS9BR7vr0g2Z2C3BLoedgZhcUFzS8H35ghkMZe5MUl9HMfg9s99E9/Tnh9hzguOJyOedcVHzaVeeccy6hfAGUaszM5hJeNceJpNcJhqal+4OZeVdb55xLk5eAMu5FvJoxs1OizuCcc0kQ/xLuRdw555zLKAmjt7yIO+eccxlE2eu8tLyIO+eccxl4c7pzzjmXUN6xzTnnnEuoJNwT9xnbnHPOuQzKexUzScdJ+kbSTEk3FnFOP0nTJU2T9GJJr+lX4s4551wG5Tljm6Rs4BHgaGABMFbSW2Y2Pe2cXYGbgEPMbJWkFplfbRu/EnfOOecyKOe50/cHZprZ7HC9iv+w/XoRlwKPmNkqADNbWtKLehF3zjnnMjCzUj9KoQ2Qvp7xgnBfut2A3SR9JulLSSWuLeHN6S5Rjn2nX9QRymTtjMIz3MZb3uTpJZ8UM6cPbRZ1hDJL2tKej497IOoIkShL73RJlwGXpe0abGaD00/J8LTC1b8GsCvQG2gLfCKpa7hCZUZexJ1zzrkM8svQOz0s2IOLOWUBsFPadltgYYZzvjSzLcAcSd8QFPUil5X25nTnnHMuAyvDoxTGArtK6iCpFnAm8Fahc94AjgCQ1IygeX12cS/qV+LOOedcBuU57aqZ5Ur6DTAMyAb+aWbTJN0BjDOzt8Jjx0iaDuQBN5jZiuJe14u4c845l0F5z51uZu8C7xbad2va1wZcHz5KxYu4c845l0Ge+bSrzjnnXCKV52QvFcWLuHPOOZdBEuZO9yLunHPOZeDriTvnnHMJ5VfizjnnXEL5lbhzzjmXUN473TnnnEso753unHPOJVRZ5k6PihdxV6V9Nvkb7n/2LfLzjVOO6MnFJx1R4PjCZasYOPhlVq1Zx47163HPgP7kNG0EwKLlq7jtiVdZsmI1kvj77y+kTfMmFZ955mIeGDaJfDNO2acDFx2ye8HMq9dx29BxrFq/mYZ1a3JP3/3JaVgPgAEvfsKUBSvZp11THj7z0ArPmpLdeR9qn3QxZGWxZcz7bBn5WoHjatSM2v2vRnV3gKwsNr/7HHlfTwAgq9XO1D7tCqhdF8zY8NANkLulQvPWO3Rfcm7+NWRl8cMr77HyiZcLHG9+42XUO2DvIF/d2mQ3acTM/c8Ijv3uInbotT9kifWfT2Tp3Y9VaNaUrr26c/atF6LsLD556QPeffSN7c7pefxBnHxtP8xg/oy5DL5m0NZjderX5e73/8aEYWN4YeBTlZK5OLfc8yAffzaGJo0b8cbzlfMelpVfibtyIenXwHoze7aYc54EHjSz6ZLmAvuZ2fIizv3RzOpLag08ZGanS7ogfM5vfkbOawmW31sfbr8LnF3cMnoVKS8/n3uefoPHb7qEnKY7cvYtf6d3jz3p1DZn6zkPvvAOJx62Lycdvi+jp81k0Evvcc+AMwG45dEhXNL3CA7aazfWb9yElGklwfLObNz73kQeO+cwchrW45wnP6DXbq3p1LzhtszvT+GEvXfmpG7tGTNnKQ99+BV3990fgF8dtBsbt+TxyoRi10woX8qi9imXsWHwbdgPK6h79QPkThuDLV2w9ZRaR51B7pTPyP1iGGrRlroX/x/r770csrKofda1bPr3IPIXzYV6DSAvr2LzZmWRc+uVLLjoj2xZspydXx7Ejx+OZvOseVtPWXbftsWoGp17EnX26ARAnX32oG6PPZl78gAA2r34Z+ruvxcbxkyt0MjKyuLcOy7hL+fewcrFK7n1rfuYNGIcC2due49btG9JnwGncs9pt7B+zToaNG1Y4DVO+e2ZfDM6PkvN9u1zNGefdhJ/vPPPUUcpUhKuxH0VswQws8eKK+DhOZeYWZl+Qs1soZmd/vPSBSRlA9cC9dJev09UBRzgq5nz2SmnKW1zmlKzRg2OO6gbo8YXfItmfb+EA7oEv6D337PT1uOzFiwhNy+fg/baDYB6dWpTt3atis+8cCU7Na5P28b1qZmdxbFddmLUNwVXK5y9bC0HdGgBQM/2zQscP6BDDvVqVe5n86x2u5K/fBG2cgnk5ZI76VNqdNm/0FmGagf/NFR3B2zNSgCyd+tO/qLvggIOsH4tVHBnojp778aWeQvZsmAxbMll7bsfUf+oA4s8v+HxvVjzzqhgwwzVroVq1kC1aqIa2eQtr/h/4h2778LS7xazbP5S8rbkMnroZ3Q/pmeBc3qd+Qs+fPY91q9ZB8DaFWu2Htu5a0caNmvEtE8mV3jW0tqv+17s2LBB1DGKZWX4LypexGNI0vmSpkiaLOk5SbdJ+p2kPSSNSTuvvaQp4dejJO1Xxu/TXtJXabt2kvSepG8kDUw771xJYyRNkvR4WLCR9KOkOySNBm4GWgMjJY0Mj88Nl9PL+Brh4xlJX0maKum6n/qeZbJ01Q+0DJvGAVo02ZElK38ocE7nnVvz/pjgLfhg7DTWbdjE6rXr+G7RchrsUIfr/vos/W4axIMvvENefsX3VF26ZgMtG9bdup3TsC5L124ocM5uOTvy/ozvAfjw64Ws25zL6vWbKjxbUdSwCbZ6W6OP/bAC7di0wDmbh79EjR69qHfzE9S96BY2vfEEAFnNWoMZdS65lbrX/JmavftWeN4aOc3YsmjZ1u3cxcupkdM087mtW1CzTUvWfxkUv42Tvmb96Cl0+uQFOn3yAus+ncDm2fMrPHOjnCasXLjtPV61aAWNcwre2snp2JqWHVpx0yt3cfPr99C1V3cAJNH/ll8x5J5irwNcBnmWX+pHVLyIx4ykLgQF8Ugz6wZckzpmZjOAWpI6hrv6A0PK8dvvD5wDdAfOkLSfpD3C73OImXUnWB7vnPD8HYCvzOwAM7uDYIH7I8yswI3nYl6jO9DGzLqa2V7A05lCSbpM0jhJ4556bXip/zKZWsIKN4lff87xjPt6Nv1uGsT4GbNp0aQh2dlZ5OXnMfHrOfz27ON58a7fsGDpSt78aFypv/dPlenzfOFW/OuP3pvx3y2j/+D3GTdvGS0a1CU7K8If5Uy3GQq9+TX2OYzccR+y/u5L2fDPu6hz1rXB87Kzye6wBxtf/Csb/vFHanQ9kOxd9qqk4Ol5M+9u2KcXa4d/CuEHuJrtWlGr407M6n0es3qdS70Du1F3v64VHi/TrZzCE5FkZ2eT06EVD5w5kMev+hsX3HcFdRvW44jzjmXKyAmsWlTsipYuA7P8Uj+i4vfE4+dI4JXU/WwzW1noB3gI0A+4j6Aw9i/H7z0itXatpNeAQ4FcYF9gbJijLrA0PD8PeLUUr3tUEa8xFOgo6WHgHSBjhTazwcBggI3j3yh1u1VOkx1ZvGJbU+fSlT/QonHB+4QtGjfkr9edD8D6jZt4f+xUGtSrS06THdm9fRvahldoR+zXhakz51HRchrWZfGabVfeS9ZsoHn9ugXOadGgLg/2OzjIvDmXD2Z8T4M6NSs8W1HshxWoUbOt29qx6dbm8pQaPY9i45N3AJD/3TdQoyaq1xBbvYK82dOCZnQg9+vxZLXpRN7MirvHnLtkOTVbNd+WrWUzcpdmLnAN+vRiyZ2PbN2u/4uD2Tj5a2z9RgDWfTyOut12Z8O4rzI+v7ysWryCJq23vceNWzVl9dJVBc5ZuXgFsyf+j7zcPJYvWMri2QvJad+KTj06s1vP3TnyvGOpXa8ONWrWYNP6jbxy/wsVmrkqSMJkL34lHj+iyOsCAF4C+knajWD52W/L8XsX/r4W5vmXmXUPH53N7Lbw+EYzK00vpIyvYWargG7AKOBK4Mny+WsEunRqy7zFK1iwdCVbcnN574vJ9Np3jwLnrFqzjvzwKuupN0fSt1fP8Lk7sWbdBlau+RGAMdNm0rFNi/KMlzlz68bMW/kj369ax5a8fIZNm0+v3VoVzLx+09YON099+jV9u7ev8FzFyZ//LVnNWqHGLSC7BjW6H0re9LEFzrHVy8neNejtrRZtoUYtbN0P5P5vIlktd4aatSAri+yOXchfUrHN0xun/o+aO7emZpscqFmDBn168eOHX253Xs0ObcjesT4bJ87Yui930TLq9twLsrOgRjZ1e+7FpkpoTp8zeSY57VvRrG0LsmvW4IATD2HSiILv8cThY9j9oKBVoH7jBrTs0Ipl85bwxLWDuOGQK/j9oQMYcs+zfP7aR17AS8nMSv2Iil+Jx88HwOuS/mpmKyQVuPFlZrMk5QH/R1DQy9PR4ffbAPQFLgLWA2+GeZaGxxuY2XcZnr8WaAAU7hX/QabXANYBm83sVUmzgGfK8y9TIzubmy44mSvue4r8/Hz69u7JLm1b8sjLw+nSsS29992TcTNm8dB/3gOJfXfvwB8vDO7JZmdlcf05fbjs7icwYM8ObTjtyMKdtcpfjawsbjyuO1e8+An5ZpzcrT27tNiRf4yaxp6tGtO7c2vGzV3GQyO/QsC+7Zpx0y/32fr8C58ZydwVa1m/OZdj/vYOt524Lwd3almxofPz2fTGE9S9dGA4xOwD8pfMp9YxZ5G3YCZ508eyaejT1DljADUPOxGATUMeCp67YR1bPhlK3av/BEDe1+PJ+3p8xebNy2fpnY/S9qm7ICubH14dzuaZ82h61Xls/Op/rBs5GoCGx/dmzTsfFXjq2mGfUu/AbrR/61EwWPfpuK3nV6T8vHyev/VJrn/2FrKys/h0yIcs/HYBfa/rz9yps5j0/ji++mgSXQ7rxl0j/kp+Xj5D7n2Odat/rPBsP9UNA+9j7MQprF69hqP6nsuAi8/jtBOPjTpWAUm4ElcSJnivbiT9CriBoLl6IjAX+NHM/hwe/x3wJ6CDmc0N940Cfmdm48owxKw98LaZdQ2HmPUhuM+9C/Cimd0ent8fuImg5WYLcKWZfZl6nbTXvYrginqRmR2RniPTaxB8WHiabS1CN5nZf4t7b8rSnB4HNmNsySfFSN7k+AxBKq3vh26MOkKZ3b9xh6gjlMnj4x6IOkKZ1WzW8WePCW3VaM9S/75ZtHp6xY9BzcCLuEsUL+IVy4t45fAiXvHKo4i3bLRHqX/fLF49I5Ii7s3pzjnnXAZJuMj1Il5FSWpKcC+6sKNSPdCdc84VLQn3xL2IV1Fhoe4edQ7nnEsqvxJ3zjnnEioJc6d7EXfOOecyiHI61dLyIu6cc85l4M3pzjnnXEJ5c7pzzjmXUFEuMVpaXsSdc865DPxK3DnnnEsovyfunHPOJVS+9053zjnnkikJV+K+AIpzgKTLzGxw1DnKImmZk5YXkpc5aXkhmZnjJKvkU5yrFi6LOsBPkLTMScsLycuctLyQzMyx4UXcOeecSygv4s4551xCeRF3LpDEe3JJy5y0vJC8zEnLC8nMHBvesc0555xLKL8Sd8455xLKi7hzzjmXUF7EnXPOuYTyIu6cc84llE+76qotSXua2fRC+3qb2aiIIhVLUiPgfKA9aT+7ZnZ1VJlKIukDMzuqpH1xIqk2cBrbv893RJWpJJJ2Ax4Fcsysq6S9gZPM7K6Io2Uk6RrgaWAt8CSwD3CjmQ2PNFgC+ZW4q86GSPqDAnUlPQzcG3WoYrxLUFimAuPTHrEjqY6kJkAzSY0lNQkf7YHW0aYr0ZvAyUAusC7tEWdPADcBWwDMbApwZqSJineRma0BjgGaAxcC90UbKZn8StxVZwcA9wOfAw2AF4BDIk1UvDpmdn3UIUrpcuBagoI9HlC4fw3wSFShSqmtmR0XdYgyqmdmYySl78uNKkwppIL2AZ42s8kqFN6VjhdxV51tATYAdYE6wByzWK89+JykS4G3gU2pnWa2MrpImZnZIGCQpKvM7OGo85TR55L2MrOpUQcpg+WSOgEGIOl0YFG0kYo1XtJwoANwk6QGQJx/9mLLJ3tx1ZakyQRNp3cCTYHHgS1mdnqkwYog6UrgbmA14S9rwMysY3SpSibpYLa/v/xsZIFKIGk6sAswh+DDkgje570jDVYMSR0JZj47GFhFkP0cM/su0mBFkJQFdAdmm9lqSU2BNuFtAFcGfiXuqrOLzWxc+PVi4GRJ50UZqATXA7uY2fKog5SWpOeATsAkIC/cbUBsizjwy6gDlEVYEPczs19I2gHIMrO1UecqgQF7AicAdwA7ELSGuTLyK3FXrUk6FNjVzJ6W1AxoYGZzos6ViaS3gDPNbH3UWUpL0gxgT0vYLxpJ3YDDws1PzGxylHlKIuljMzs86hylJelRguY6r3QNAAAfVElEQVTzI81sD0mNgeFm1jPiaInjV+Ku2pI0ENgP6Eww3KUW8Dzx7dyWB0ySNJKC98RjO8QM+ApoSbzvzxYQDn+6FHgt3PW8pMExv7c/QtLvgJdI60kfx/4SoQPMrIekiQBmtkpSrahDJZEXcVednUIwPnUCgJktDDvYxNUb4SNJmgHTJY2h4AePk6KLVKKLCYrMOgBJ9wNfAHEu4heFf16Zts+AuPaX2CIpm20d8ZrjHdt+Ei/irjrbbGYmKfWLZIeoAxXHzP6V+jpsftwpAR2Bbos6wE8gtt2/J/w61sOfzKxD1BnK6CHgdaCFpLuB04Fboo2UTF7EXXU2RNLjQKNw6NZFBJNmxJKkUcBJBD+3k4Blkj6K89hxM/tI0s4E/Q7el1QPyI46VwmeBkZLej3c7gs8FWGeEkk6P9P+uI4CMLMXJI0HjiL4gNTXzGZEHCuRvGObq9YkHU0wa5SAYWY2IuJIRZI00cz2kXQJwVX4QElTYj706VLgMqCJmXWStCvwWJynXQWQ1AM4lODfxcdmNjHiSMUKZxtMqUNQHCfEbbikpIZmtiaczW87Mb6HH1t+Je6qtbBox7ZwF1JDUiugH3Bz1GFK6Upgf2A0gJl9K6lFtJEyK1Rg5oaP1LEmcS4wZnZV+rakHYHnIopTnBcJhpWNZ9tcBxCOxSe+9/Bjy4u4q3YkraXgL5ACzKxhJcYpizuAYcCnZjY2nODj24gzlWSTmW1OzagpqQbFvPcRq0oFZj2wa9QhCjOzE8I/k3YPP7a8Od1VW5LuIJjk5TmCX9TnEIwTfyDSYFWIpAcIZpg7H7gKGABMN7OktCQkgqShbPvgkUUwkcrLZvaH6FIVLYmr28WVF3FXbUkabWYHlLQvapJ+b2YPhPc9t/uBjfM48XA2sYtJ63cAPBnnyV+SWGAk9UrbzAW+M7MFUeUpiqQ6QD1gJNCbbb3+GwL/NbM9IoqWWN6c7qqzPEnnAP8hKI5nUXBoUVykeu2OK/asGAoXlHmCGPf6T0krMM3CIXzpBSbuy6f2KXzVLen+GF6JJ3l1u1jyK3FXbYVrWw8imKHNgM+Aa81sbnSpqhZJJxAsMLMzwUVDajGR2PU7CGdqSxWY7ylYYJ4ws79Hla0kkiaYWY9C+2I5ciGc5OWPZnZn1FmqAi/izsVcofud24nz7GeSZgKnAlPj3ISeLknLp0q6gqCfQUdgVtqhBsBnZnZuJMFKIOkLMzso6hxVgRdxV22FUz1eyvbLZF5U1HOiUOh+53bM7KPKylJW4TzvR8V8nfbtSOpK0Dls68pacZw4JRxK1hi4F7gx7dDaOA+Jk3Q7MAV4LSkf7uLKi7irtiR9DnxCcG9u671wM3s1slBVjKSeBM3pH1Fw7vQHIwtVgnBhnN4ERfxdgqVJP43bxCkQjF8v7nhcC3k4zHMHgp+7DcT4Nkvcecc2V53Vi2HHnyKFs53dy/ZXiHEev3w38CNB3qSsUnU60A2YaGYXSsoBnow4U1HSx7QXnt89tmPbzSzOCw0lihdxV529LamPmb0bdZBSehoYCPwVOAK4kJgvzEEw3eoxUYcoow1mli8pV1JDYCnxLYaJnDRFwew/5wAdzOxOSTsBrcxsTMTREseb0121ldaktwnYQsyb9CSNN7N9JU01s73CfZ+Y2WFRZyuKpPuAD81seNRZSkvSP4A/AmcCvyVoSZhkZhdGGqwYkg7PtN/MPq7sLKUh6VGCpUePNLM9wiF9w82sZ8TREseLuHMJIekz4DDgFeBDgmFQ95lZ50iDFSNpH5QKC4chNoz7kq/hCIaUOgTz1Y83syMjilSs1JC41KI+4b7JZtYt6mxJ483prtqRtLuZfR2uVLUdM5tQ2ZlK6VqCyUiuJugsdgTwq0gTlSCp9z4lnUqwipkBnxL0pI4tMzsxfTtsno7z9MFbwvHiBltHiiRqBENc+JW4q3YkDTazy8LhT4VZHK9ewl9495nZDVFnKStJbdg22QsQ32Ze2Nqcvgvw73BXf2CWmV0ZXaqyCe85T0nddombcKbE/sC+wDMEnQlvMbOXo8yVRF7EnSuCpKPjtL64pA8Jxlwn5odW0v0Ev6yns20Yn8V8gpppQNfU+xzO/z7VzLpEm6xohebVzwK6A3PjOtkLBC1iBOueQ9BvYkZx57vMvDnduaLdT7zWGp8IvCnpZWBdaqeZvRZdpBL1BTqb2aYSz4yPb4B2wHfh9k7EvDmdgvPq5wL/NrPPogpTSvWAVJN63YizJJYXceeKFrfhW02AFUB6c78BcS7is4GapE30kgBNgRmSUsOdegJfSHoLYjvN7SvARjPLg+D2i6R6ZrY+4lwZSboVOAN4leDn7GlJL5vZXdEmSx5vTneuCJkWlXBlI+lVgolTPqDgjG1xXj41cdPcSvoS+IWZ/Rhu1ycYsnVwtMkykzQD2MfMNobbdYEJvhRp2fmVuHMJIelpMq8nHqu53gt5K3wkRhyLdCnUSRVwADP7UVK9KAOVYC7BULiN4XZtCi7g4krJi7hzRZsbdYBC3k77ug5wCrAwoiwlCnvUHx3nzlXpJH1qZoeGY9vTPywlYWz7Okk9UsMjJe1LMCd5rKR1wNsETJM0Itw+mmAonysjb0531ZakcQRTmb5oZquizlNWYa/p9+M4JC5F0jDgRDPbHHWWqixcaOY/bPtQ1wrob2bjo0u1PUnFzmtgZv+qrCxVhRdxV21J2oVg/vH+BL17nya4j5iIHwpJnYF3zGyXqLMURdLjQA+CJvX0HvVxXsXsQGCama0Nt+sDXcxsdLTJiiepJtCZoOXgazPbknYsVsMlXfnxIu6qvfCK9gQgNZ/zP4FBcVvGMa2ZV+Gfi4Gb4rx0aris53bM7PbKzlJakiYCPQqNEx+X5E6OcemkKWmImfWTNJXM/Tv2jiBWovk9cVetSdqb4Gq8D8FwlxcIptv8kGDCjNhI4hSmqWItaQczW1fS+TGh9NaYcEWzpP+ujMtwyWvCP0+INEUVkvR/mM79ZJLGA6uBp4Ab0yYkGS3pkOiSFVTUHO8pMZ7rHUkHEby/9YF2kroBl5vZgGiTFWu2pKsJWmYABhCMd0+yWDS5mtmi8M/vSjrXlY43p7tqS1JHM4v9L+ci5nhPieVc7ymSRhPMi/1W2mpVX5lZ12iTFU1SC+Ahgkl1jGCM+7VmtjTSYD9DjJrTC/f833qI+I8AiCW/EnfV2SWSHjCz1QDhmsa/NbNbIs5VgJkdEXWGn8PM5gfrcWyVV9S5cRAW6zOjzlHO5kYdAEp/S0hS4ySOGImCF3FXnf3SzP6Y2jCzVZL6ALEq4imS6hA07aaWyPwEeCw161VMzZd0MGCSahEsoxrLhS4k/d7MHii0mMhWcZxlLlwytUipefXNrNjzYugDglENrgRexF11li2pdupeeDj1Y+2IMxXnWWAt8HC4fRbwHMEc1HH1a2AQ0AZYAAwH4rqkZ+rDxbhiz4qXE4s5Fvd59YsTl454sedF3FVnzwMfpE1nehEQ58kmOptZt7TtkZImR5amdGRm50QdojTMbGj45frC61pLiuUHJTO7MOoMFcQ7a5WSd2xz1ZqkXxKsaSyCiV6GRRypSJKeIWg+/zLcPgD4VZx7ekv6FpgDvAS8mup/EGeZOoHFpWNYcSQdD3QhmJIXADO7I7pEP10S3u+48CLuXEKEKz91BuaFu9oRNAHnE/TsjeVEGZL2J+go1heYDvzHzJ6PNtX2wg90fYB+BB86UhoCe5rZ/pEEKwVJjxGsz30E8CTBiIAxZnZxpMF+IkkTU6MZXPG8iLtqK5xe82FgD6AWkA2si+swF0k7l3DKmjj36JXUDHgQOMfMsqPOU1g4hr07cAdwa9qhtcDImL+3U8xs77Q/6wOvmdkxUWdLJ6lJccdTsyRKahK3GRPjyu+Ju+rs7wRXiC8D+wHnA7Gdh7ykCTIkTSBmPXolNSRYbe1MoBPwOhDLK1ozmyzpK+CYBC7EkVqxbL2k1sAKoEOEeYoynm1TBxdmQEfYVsxdybyIu2rNzGZKyjazPOBpSZ9HnelniGOP3snAG8AdZvZF1GFKYmZ5kppKqpWwldfeltQI+BMwgaAgPhltpO2ZWRw/WCSaF3FXna0Pxy5PkvQAsAjYIeJMP0cc7411NDOT1EBSfTP7MepApfAd8JmkxKy8ZmZ3hl++KultoI6Z/RBlpkwk7W5mXxc1lXCcpxCOKy/irjo7D8gCfgNcB+wEnBZpoqqni6TngCaAJC0j6FH/VcS5irMwfGQBiVh0RtKVwAtmttrMNkmqJ2mAmf0j6myFXA9cBvwlwzEjmOrWlYF3bHPVkqRs4F9mdm7UWcpLHHv0hrcnbjazkeF2b+AeMzs40mBVjKRJZta90L7Y/Xtw5c+vxF21FN77bJ6Ee5+l7dFLMN49bnZIFXAAMxslKda3LCQ1B37P9mOu43yVmCVp6xKq4YfUWhFnKlI4SdF/gCFmNivqPEnmRdxVZ3NJxr3P9B697YBV4deNCMaMd4DY9uidLen/CKaHBTiXYPKXOHuBYJz4CQTTxv4KWBZpopINA4aE48WNIPd70UYq1klAf4LM+QTv9xAzm1f801xh3pzuqi1JAzPtN7PbKztLaYS/oN8ys3fD7V8CvzCz30abrGjhynC3EyzaIuBj4LaYj7keb2b7psZch/s+MrNeUWcriqQs4HLSZh8EngxHXcSapF2B/yOm8wfEnRdx5xIiVVwK7RtnZvtFlakqkvSlmR0oaRjBuuILgVfMrFPE0aoUSe0JZsfrT7A87UtmlqnDmyuGN6e7akvSCOCMQuuJ/8fMjo02WZGWS7qFYOEWI2iaXhFtpOJJGsr2Q99+IFgp7PGYLqN6l6Qdgd8SzOjXkGD0QuxIGmJm/SRNJfPyqXGdinc0UJNgoqUzzGx2xJESy6/EXbWVtB69YQe3gcDh4a6Pgdtjei8cAEmDgObAv8Nd/YHFQF2goZmdF1W2qkBSKzNbVNSUvCXN8heV1HjxqHNUBX4l7qqzPEntUp1pwl+Esf1UGxbra6LOUUb7mNnhadtDJX1sZodLmhZZqmJI6kiwBvpBBIvLfAFcF8erRTNbFH45wMz+kH5M0v3AH7Z/VnQknRsuftNHUp/Cx2PYqTT2sqIO4FyEbgY+lfRcOCHJx8BNEWcqkqTdJA2WNFzSh6lH1LlK0FxSu9RG+HWzcDOuQ/teBIYALYHWBE2+/y72GdE7OsO+X1Z6ipKlhhc2yPCoH1WoJPMrcVdtmdl74fSPB4a7rjOz5VFmKsHLwGMEc2LHvtdx6LcEH5RmEfSa7gAMCMeKx3WREZnZc2nbz0v6TWRpiiHpCmAA0FHSlLRDDYDPoklVNDN7PPyyI3BNof4o3qntJ/B74q5ak3QS2+4xjzKzt6PMU5xMvdOTQFJtYHeCIv51emc2SUeb2YjIwmUg6T5gNcFkJEZwH7828AjEazx+2AGvMXAvcGPaobVxyllYpr4nce6PEmdexF21Ff6y7kkwuQfAWcA4M4tlk7qk24ClBMt5bkrtj/Mv65JImmBmcVs+tbjJaMzMOlZamBJIamhma4qa1S+u/zbCGdt6p+YLCPN/ZGZ7RZssebyIu2orbH7sbmb54XY2MDHGw3IyFZdYFZWySuLVV5xaDyS9bWYnhP82Cq/THdt/G5LOJ+h/8gpB7n7A3YVuY7hS8CLuqq2wiPdOXa2EVwOj4lrEq6I4XomXJImZ40jSngSrlgn4wMymRxwpkbxjm6vO7gUmShpJ8IvkcGLcOx1AUldgTwouzPFsdImqJZV8SuUoal3ulDivzx0WbS/cP5NfibtqTVIrgvviAkab2eKIIxUpnOu9N0ERf5dgCNGnZnZ6lLkykXSGmb0sqYOZFXmPWdJrZnZqZWb7ueJ0JR5+AC2KxXzlNVcOvIi7ak3S3kB70lqlzOy1yAIVI5xasxvBfftuknIIFrk4MeJo20kVujgVvPJSFf9OLrm8Od1VW5L+CewNTCOYmQuCTjaxLOLABjPLl5QrqSFBT/VYdlwCVoRXiR3CpV4LMLOTIshUXuZGHaAwSTWBK0gbLkkwN/2WyEK5SuFF3FVnB5rZnlGHKINxkhoBTxCsMf4jMCbaSEU6HuhBsI54IibxkFRss36qhSamzf+PEiwo8o9w+7xw3yWRJXKVwpvTXbUl6SngL0nsFRsu49jQzKaUcGqkJDU3s2WSGhDco/0x6kxFkfR0MYfNzC6qtDBlJGmymXUraZ+revxK3FVn/wK+kLSYYPIUEfyyjuUQM0mHAJPMbB1wKNBD0qC4rlQVypE0HGgCSNIy4Fdm9lXEubZjZhdGneFnyJPUycxmwdZFXJIyNa/7GfxK3FVbkmYC1wNT2XZPPM7LN04h6Ni2N0Ez9VPAqWbWK9JgxZD0OXCzmY0Mt3sD95jZwZEGK4Gk44EuFBzKd0d0iYon6SjgaSC10lp74MLU++6qLl/FzFVn88zsLTObY2bfpR5RhypGrgWfuk8GBpnZIIKFLuJsh/RCYmaj2LaSVSxJeoxgvvSrCFpnzgAyrtcdI58BjxN8GM0Pv/4i0kSuUviVuKu2JP0DaAQMpeBc5LHsnS7pI+A94EKCXsjLCJrXYzvftKTXgQkELQcA5wL7mVnf6FIVT9IUM9s77c/6wGtmdkzU2YoiaQiwhoLrADQ2szOiS+Uqg98Td9VZXYLinf7LOc5DzPoDZwMXm9nicG3uP0WcqSQXAbez7T39mOBDSJxtCP9cL6k1sIJgCdU461yoE9vIcJERV8V5EXfVVgI7Mq0laEbPk7QbwfKe/444U7HCVaquLuq4pIfN7KpKjFQab4dD+f5E0IpgBGu4x9lESQea2ZcAkg4ghuuJu/Lnzemu2goL4aNAjpl1DWdvO8nM7oo4WkaSxgOHEawf/SUwDlhvZudEGuxniPvsZ+Fa6HXM7IeosxRH0gygMzAv3NUOmEFwfzy2Iy7cz+cd21x19gTBgidbAMIx12dGmqh4MrP1wKnAw2Z2CkEPaleOJF0ZXoljZpuALEkDIo5VkuMImvx7hY8OQB/gBCB20/K68uPN6a46q2dmY6QCi1LlRhWmFCTpIOAc4OJwX3aEeaqqS83skdSGma2SdCnbZkOLnZiPqnAVyK/EXXW2XFIngnueSDodWBRtpGJdS9By8LqZTQsn9Ej6OODYLOuZJktpn+wkZQO1IszjXJH8nrirtsIiOBg4GFgFzAHOiftVjaQdwlnbEk/SBWb2TNQ50kn6E8FkKY8RfMD7NTDfzH4bZS7nMvEi7qodSdcX2lWXoFVqHYCZPVjpoUohbEp/CqhvZu0kdQMuN7PY3q+VNJSwpSPNDwSd8h43s42Vn6p4krKAy4GjCFoKhhMs+erTmLrY8SLuqh1JA8MvOwM9gTcJflmfCHxsZrFc+UnSaOB04C0z2yfc95WZdY02WdEkDQKas20oXH9gMcEHp4Zmdl5U2ZyrCrxjm6t2zOx2gHBhjh5mtjbcvg14OcJoJTKz+YU64sX96nAfMzs8bXuopI/N7HBJ0yJLlYGkIWbWT9JUtm89wIdpuTjyIu6qs3bA5rTtzQT3QuNqvqSDAZNUi2ASlRkRZypJc0ntzGweQDjLXLPw2OainxaJa8I/T4g0hXNl4EXcVWfPAWPC+b0NOIVgedK4+jUwCGgDLCC4V3tlpIlK9lvgU0mzCG5ZdAAGSNqBmL3XZpYamTDAzP6QfkzS/cAftn+Wc9Hye+KuWpPUg2AWNAjuh0+MMk9VFM56tjtBEf86jp3Z0mWaRS61GEpUmZwrihdx5xJC0r+Aa8xsdbjdGPiLmV0UbbLihbcA2pPW8mdmz0YWqAiSrgAGAB2BWWmHGgCfmdm5kQRzrhhexJ1LCEkTU73Si9sXJ5KeAzoBk9jWCc/MrMhFUaIiaUeCeenvBW5MO7TWzFZGk8q54vk9ceeSI0tS43BlMCQ1If4/w/sBe1oyrhbMzOZK2q6fgaQmXshdHMX9F4Bzbpu/AJ9LeiXcPgO4O8I8pfEV0JJ4T2eb8iJBz/TxBB0d08fyGUEzu3Ox4s3pziWIpD2BI8PND81sepR5SiJpJNAdGANsSu03s5MiC+VcFeJX4s4lS02CK0QLv46726IOUFrhSIUimdmEysriXGn5lbhzCSHpGuBS4FWCQn4KMNjMHo40WBURthoUxczsyGKOOxcJL+LOJYSkKcBBqRXMwglTvojj+GVJn5rZoZLWUnAKUxEUxIYRRXOuSvHmdOeSQxScKz2PeK7HjZkdGv7ZIOosZSWpJnAFkJrzfRTBimtbIgvlXBG8iDuXHE8Do8NpYgH6EixNGmuSsoEcCk72Mi+6RCV6lKC/wT/C7fPCfbFc3c5Vb96c7lyChJ2vDiW4Ao/9NLGSrgIGAkuA/HC3xfEWQIqkyWbWraR9zsWBX4k7lwCSsoAp4drhSeolfQ3Q2cxWRB2kDPIkdTKzWQCSOhL/JV9dNeVF3LkEMLN8SZPTl/VMiPnAD1GHKKMbgJGSZofb7YELo4vjXNG8iDuXHK2AaZLGAOtSO2M+ccpsYJSkdyg42cuD0UUq0WfA48BR4fbjwBfRxXGuaF7EnUuO26MO8BPMCx+1wkcSPAusAe4Mt88iWHv+jMgSOVcE79jmXIJIagnsTzD2eqyZLY44UqlIakDQoe3HqLOUxDu2uSTJijqAc650JF1CMAf5qcDpwJeS4r6WeFdJEwkWQpkmabykLlHnKsFESQemNiQdQNDE7lzs+JW4cwkh6Rvg4FRPb0lNgc/NrHO0yYom6XPgZjMbGW73Bu4xs4MjDVYMSTOAzgS3AQDaATMIhsjFenicq378nrhzybEAWJu2vZag93ec7ZAq4ABmNiqcLjbOjos6gHOl5UXcueT4nmDGtjcJ7omfDIyRdD3Etsf3bEn/R9AxDOBcYE6EeUpkZt9FncG50vIi7lxyzAofKW+Gf8Z5fvKLCHrVv0Y4yxw+5tq5cuP3xJ2rIiQ9bGZXRZ3DOVd5/ErcuarjkKgDpEj6m5ldK2koBZciBWI/QY1zieFF3DlXEVL3wP8caQrnqjgv4s65cmdm48Mvu5vZoPRjkq4BPqr8VM5VPT7Zi3NVh6IOkMGvMuy7oLJDOFdV+ZW4c1XHoJJPqRySzgLOBjpIeivtUAMgScuSOhdrXsSdi7miOoelpDqJmdkzlZWpFD4HFgHNgL+k7V8LTIkkkXNVkA8xcy7mJPUq7riZxfb+sqSOwEIz2xhu1wVyzGxupMGcqyK8iDvnKoykcQTzvW8Ot2sBn5lZz2iTOVc1eHO6cwkhaVfgXmBPoE5qv5l1jCxUyWqkCjiAmW0OC7lzrhx473TnkuNp4FEgFzgCeJZt47HjapmkrRO7SDoZWB5hHueqFG9Ody4hJI03s30lTTWzvcJ9n5jZYVFnK4qkTsALQGuCIXDzgfPNbGakwZyrIrw53bnk2CgpC/hW0m8IVjVrEXGmYpnZLOBASfUJLhrWlvQc51zp+ZW4cwkhqScwA2gE3Ak0BP5kZl9GGqwYkmoDpwHtSbtoMLM7osrkXFXiV+LOJYCkbKCfmd0A/EhylvN8E/gBGA9sijiLc1WOF3HnEsDM8iTtK0mWrOaztmZ2XNQhnKuqvIg7lxwTgTclvQysS+00s9eii1SizyXtZWZTow7iXFXk98SdSwhJT2fYbWZ2UaWHKSVJ04FdgDkEzekiyLx3pMGcqyK8iDvnKoyknTPtN7PvKjuLc1WRT/biXEJIaivpdUlLJS2R9KqktlHnKoEV8XDOlQO/EncuISSNAF5k2yxt5wLnmNnR0aUqnqSpBEVbBFPFdgC+MbMukQZzrorwIu5cQkiaZGbdS9oXZ5J6AJeb2eVRZ3GuKvDmdOeSY7mkcyVlh49zgRVRhyoLM5sA+ApmzpUTvxJ3LiEktQP+DhxE0ET9OXC1mc2LNFgxJF2ftpkF7As0MbNjI4rkXJXiV+LOJcdOZnaSmTU3sxZm1hfYKepQmUhK3be/FWgQPmoDbwMnR5XLuarGr8SdSwhJE8ysR0n74iAcH/5LYCjQu/BxM1tZ2Zmcq4p8xjbnYk7SQcDBQPNCzdMNgexoUpXoMeA9gt7o49L2i+BWQMcoQjlX1XgRdy7+agH1CX5eG6TtXwOcHkmiEpjZQ8BDkh41syuizuNcVeXN6c4lhKSdfaYz51w679jmXHI8KalRakNSY0nDogzknIuWF3HnkqOZma1ObZjZKqBFhHmccxHzIu5ccuSHY8WBrYuL+P0w56ox79jmXHLcDHwq6aNw+3DgsgjzOOci5h3bnEsQSc2AAwmGan1hZssjjuSci5A3pzuXEJIEHAf0MLOhQD1J+0ccyzkXIb8Sdy4hJD0K5ANHmtkekhoDw83MFxRxrprye+LOJccBZtZD0kQIeqdLqhV1KOdcdLw53bnk2CIpm7BHuqTmBFfmzrlqyou4c8nxEPA60ELS3cCnwD3RRnLORcnviTuXIJJ2B44i6J3+gZnNiDiScy5CXsSdizlJTYo77st6Old9eRF3LuYkzeH/27tzI4RhKAigK7ogdF10Q+OfgGOwGzA7vJcqUbajY6XnOfj7G8/PUJKZGd96wp9yOx1+3MxsSbLWuiS5Jdlm5v56gvV66uSAU1mJQwk9ceDIShx66IkDOypm0ENPHNgR4tBDTxzYcSYORfTEgW9CHABK2U4HgFJCHABKCXEAKCXEAaCUEAeAUg90HnuaIuhjVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sn\n", + "\n", + "feat_num = len(feature_names)\n", + "\n", + "# plt.figure(figsize=(feat_num,feat_num/2))\n", + "corrMatrix = feature_df.corr().round(2)\n", + "sn.heatmap(corrMatrix, annot=True)\n", + "\n", + "# plt.tight_layout()\n", + " \n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another way is to rank the importance of the variables in relevance with the target variable using a regression tree. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.08210176 0.04062965 0.00936197 0.02779484 0.84011178]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAD4CAYAAAB15DWZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAdvUlEQVR4nO3deZRlZX3u8e8DKIMyBEFXg0MhooiAIA1xQANCBiVxiCjOYFSCGBGNuXKvuQb15qYVl6hBxYaLIGpEEQyCAxEZpFWgoScGZzoquKJgaAZxoPndP85beixqONVdw2n297PWWbXP3u9+92/vatjPefdbVakqJElS92w03wVIkqT5YQiQJKmjDAGSJHWUIUCSpI4yBEiS1FGbzHcB0nRst912NTIyMt9lSNIG4+qrr76lqrYfb5shQBuUkZERli5dOt9lSNIGI8l/TrTNxwGSJHWUIUCSpI4yBEiS1FGGAEmSOsoQIElSRxkCJEnqKEOAJEkdZQiQJKmjDAGSJHWUIUAblFU3rWHkuAsYOe6C+S5FkjZ4hgBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOMgRIktRRhoAJJLkkycK2/MUk27TX0X1tdkhy9jr2f3qSQ2eq3nH63yvJs/vePyfJcVPs8431ON6xSbboe//FJNusa3+SpNlnCBhAVT27qm4DtgGO7lt/c1XN2o18XSXZBNgL+F0IqKrzqmrRZPtV1VPX47DHAr8LAX3XTJI0pDoTApKMJPl2kjOSrExydpItkhyUZFmSVUlOS7LpOPuuTrIdsAjYOcnyJCe0Pq9tbTZO8t7Wz8okb2jr357kqiTXJlmcJAPWuzrJu5Nc2V6Paev/KskVreavJnlYW3986/9C4OPAO4HDWq2HJTkiyUmt7cOSnJtkRXs9ta2/s309IMllrc31SU5OslHb9pEkS5Ncl+Qdbd0xwA7AxUkuHnPNSPLmdv7XJjm27/txQ5JTWl8XJtl8gmtxZDvm0rW/XDPI5ZMkDaAzIaB5HLC4qvYEbgfeDJwOHFZVewCbAK+bZP/jgB9U1V5V9Q9jth0J7ATs3fr/ZFt/UlXtW1W7A5sDfzmNem+vqv2Ak4D3t3WXA0+uqr2BTwP/o6/9PsBzq+qlwNuBs1qtZ43p94PApVX1ROBJwHXjHHs/4O+BPYCdgb9u699WVQuBPYE/SbJnVX0QuBk4sKoO7O8kyT7Aq4A/Bp4MvDbJ3m3zLsCHquoJwG3AC8a7CFW1uKoWVtXCjbfYevwrJUmatq6FgB9X1ZK2/AngIODGqvpuW3cG8Ix17Ptg4OSqugegqn7R1h/YPrmvAp4JPGEaff5b39entOWHA19p/f3DmP7Oq6q7B+j3mcBHWp1rq2q8j9dXVtUPq2ptO/7+bf2LklwDLGvH3m2KY+0PnFtVd1XVncA5wNPbthuranlbvhoYGaB2SdIM6VoIqFnsO2P7T7IZ8GHg0DbScAqw2TT6rHGW/5Xe6MIewN+O6e+u6RY94LEBKslOwFuAg9poxwVMfT6TPf74dd/yWnojMZKkOdK1EPDIJKOfqF8CfBUYGX3eDrwCuHSS/e8Atpxg24XAUW1SHkm25fc3yFuSPBiY7iTCw/q+frMtbw3c1JYPX8daL6I99mhzGbYap81+SXZqcwEOo/cYYit6QWNNm4vwrAGOdxnwvDb/4kHA84GvT1K3JGmOdC0E3AAcnmQlsC1wIr3n1Z9tw+v3AidPtHNV3QosaRPcThiz+VTgR8DKJCuAl7bZ8acAq4DPA1dNs95Nk1wBvBF4U1t3fKv368Atk+x7MbDb6MTAMdveSO8xxSp6w/DjPaL4Jr2JkNcCN9Ib0l9B7zHAdcBpwJK+9ouBL41ODBxVVdfQm3dxJXAFcGpVLZvspCVJcyNVszlCPjySjADntwl6Qy/JamBhVU12o5+tYx8AvKWqpjOJcU5sumCXWnB4b47k6kWHzHM1kjT8klzdJnTfR9dGAiRJUtOZiVhVtRoYulGAJOfS+9HCfm+tqpF5KAeAqroEuGS+ji9JmhudCQHDqqqeP981SJK6yccBkiR1lCMB2qDssePWLHVCoCTNCEcCJEnqKEOAJEkdZQiQJKmjDAGSJHWUIUCSpI4yBEiS1FGGAEmSOsoQIElSRxkCJEnqKEOAJEkdZQiQJKmjDAGSJHWUIUCSpI4yBEiS1FGGAEmSOsoQIElSRxkCJEnqKEOAJEkdZQiQJKmjDAGSJHWUIUCSpI7aZL4LkKZj1U1rGDnuginbrV50yBxUI0kbNkcCJEnqKEOAJEkdZQiQJKmjDAGSJHWUIUCSpI4yBEiS1FGGAEmSOsoQMCSSXJJkYVv+YpJt2uvovjY7JDl7Hfs/PcmhM1jv6iTbja1RkrThMAQMoap6dlXdBmwDHN23/uaqmrEb+Qz5gxoHlWTjWahFkjQNhoBZkmQkybeTnJFkZZKzk2yR5KAky5KsSnJakk3H2Xd1ku2ARcDOSZYnOaH1eW1rs3GS97Z+ViZ5Q1v/9iRXJbk2yeIkGbDefZN8I8mKJFcm2TLJEUlO6mtzfpIDxuw6tsYDkpzft89JSY7oO6+3J7kceGGSnZN8OcnVSb6eZNdpXWRJ0noxBMyuxwGLq2pP4HbgzcDpwGFVtQe9X9v8ukn2Pw74QVXtVVX/MGbbkcBOwN6t/0+29SdV1b5VtTuwOfCXUxWZ5IHAWcAbq+qJwMHA3QOe42Q1judXVbV/VX0aWAy8oar2Ad4CfHiC+o5MsjTJ0rW/XDNgWZKkqRgCZtePq2pJW/4EcBBwY1V9t607A3jGOvZ9MHByVd0DUFW/aOsPTHJFklXAM4EnDNDX44CfVtVVra/bR/udBWcBJHkw8FTgs0mWAx8FFoy3Q1UtrqqFVbVw4y22nqWyJKl7/ANCs6tmse+M7T/JZvQ+TS+sqh8nOR7YbF36au7hD4PiIH1Ntc9d7etGwG1VtdcAfUqSZoEjAbPrkUme0pZfAnwVGEnymLbuFcClk+x/B7DlBNsuBI5KsglAkm35/Q33lvZJe9BJhN8Gdkiyb+try9bvamCvJBsleQSw3wA1/iewW5JNk2xNb/TjPqrqduDGJC9sx0ySJw5YryRpBhgCZtcNwOFJVgLbAicCr6I3BL4KuBc4eaKdq+pWYEmb5HfCmM2nAj8CViZZAby0/UTBKcAq4PPAVYMUWVW/AQ4D/rX19R/0AsUS4MbW33uBa6aqsap+DHwGWElvnsKySQ79MuDV7ZjXAc8dpF5J0sxI1WyOWHdXkhHg/DZBTzNk0wW71ILD3z9lu9WLDpmDaiRp+CW5uqoWjrfNkQBJkjrKiYGzpKpWA0M3CpDkXHo/WtjvrVX1lfmoR5I0fwwBHVNVz5/vGiRJw8HHAZIkdZQjAdqg7LHj1ix10p8kzQhHAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOMgRIktRRhgBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOMgRIktRRhgBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSO2mS+C5CmY9VNaxg57oJ12nf1okNmuBpJ2rA5EiBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOMgRIktRRhgBJkjpqXkJAkmOS3JDkkzPU30iSl/a9X5jkg+vR3zdmoq4BjrNpkq8mWZ7ksLk45jBKcmySLea7Dknqmvn6jYFHA8+qqhtnqL8R4KXApwCqaimwdF07q6qnzkxZU9obeEBV7TVHx5tUkk2q6p55OPSxwCeAX87DsSWps+Z8JCDJycCjgfOSrEnylr5t17ZP9SNtpOCUJNcluTDJ5q3NY9qn5xVJrkmyM7AIeHr7RP2mJAckOb+13zbJ55OsTPKtJHu29ccnOS3JJUl+mOSYvjrubF8PaNvPTvLtJJ9Mkrbt2W3d5Uk+OHq8Cc75PjUkeSi9G99ere6dJ9h33ONM0OdGSVYn2aZv/+8neViS7ZN8LslV7fW0vuuwOMmFwMeTHJHknCRfTvK9JO/pvy5J3p3k6vY92K/v+j2ntdk4yQntGCuT/O1k17Jd9x2Ai5NcPME1ODLJ0iRL1/5yzUSXWZI0TXMeAqrqKOBm4EDgxEma7gJ8qKqeANwGvKCt/2Rb/0TgqcBPgeOAr1fVXlU1ts93AMuqak/gfwEf79u2K/DnwH7APyV5wDh17E3vk+pu9MLL05JsBnyU3mjG/sD2U5z2fWqoqp8Br+mr+wdjd5riOOP1eS/w78Dz2/5/DKyuqv8CPgCcWFX70ruWp/b1tQ/w3KoafaSyF3AYsAdwWJJHtPUPAi6pqn2AO4D/A/xpO947W5tXA2vacfYFXptkp4muZVV9kPbvoaoOHO/iVdXiqlpYVQs33mLrcS+wJGn6hnli4I1VtbwtXw2MJNkS2LGqzgWoql9V1VRDyPsDZ7b2XwMekmT0TnJBVf26qm4BfgY8bJz9r6yqn7Qb7HJ6jx52BX7Y9zjj39ajhslMdpyJ+jyL3g0c4MXtPcDBwElJlgPnAVu16wlwXlXd3df3RVW1pqp+BVwPPKqt/w3w5ba8Cri0qn7blkfa+j8DXtmOcwXwEHqBDsa/lpKkeTLff0XwHv4wiGzWt/zrvuW1wOZA1uEY4+1TExxjvOsxXpvp1jFZDdPdb6o+vwk8Jsn2wPPofVqH3nV+ypibPe3pxl1j+pnouvy2qkbrvne0XVXdm2S0TYA3VNVXxhzngEn6lSTNg/keCVgNPAkgyZOAnSZrXFW3Az9J8ry2z6ZtVvkdwJYT7HYZ8LLW/gDgltbP+vg28OgkI+39VDP717WGyY4zbp/tJn0u8D7ghqq6tbW/EPi70Z2TzNZkxK8Arxt9tJLksUkeNMU+k33/JEmzZL4/iX2O3w8dXwV8d4B9XgF8NMk7gd8CLwRWAvckWQGcDizra3888LEkK+nNPj98fYuuqruTHA18OcktwJVT7LJONUxxnMn6PIve9Tyib90xwIda+03ohYijBqljmk6lN8x/TZtE+XN6IxKTWQx8KclPJ5oXIEmaefn96K6mI8mDq+rOdqP7EPC9cSYlbjDH2VBsumCXWnD4+9dp39WLDpnhaiRp+CW5uqoWjrdtvh8HbMhe20YwrgO2pjeLf0M+jiSpY+b7ccAGq30a/4NP5EleBbxxTNMlVfX6qfpLci73nRPx1vGOI0nSTDAEzKCq+hjwsXXc9/kzXI4kSZPycYAkSR3lSIA2KHvsuDVLneAnSTPCkQBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOMgRIktRRhgBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOMgRIktRRhgBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpozaZ7wKk6Vh10xpGjrtgXo69etEh83JcSZotjgRIktRRhgBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR11DqHgCSrk2y3DvsdkOSp63rcCfo7f6b625Csx/fgkiQLZ6iG313/JM9JctxM9CtJmn3z8cuCDgDuBL4x6A5JNqmqe2aroCQbV9Xa2ep/Qzfo9a+q84Dz5qAkSdIMGGgkIMnLk1yZZHmSjybZeJDtSf4iyTVJViS5KMkIcBTwptb26Uke1batbF8f2fY9Pcn7klwMvDvJfkm+kWRZ+/q4AWs/PsmZSb6W5HtJXtvWH5Dk4iSfAla1dW9Ocm17HdvXxytbfSuSnNnWbZ/kc0muaq+ntfV/0s5teat1yyQLklzW1l2b5Omt7UeSLE1yXZJ39B1vdZJ3tGu3Ksmubf1DklzY+v0okEnOeyTJt5Oc0Wo/O8kW47S7s2/50CSnr+v1T3JEkpPa8gvbua5Iclnf9s8n+UKSG5P8Xbvmy5J8K8m2g3xPJUkzY8qRgCSPBw4DnlZVv03yYeBlU21P8iXgFOAZVXVjkm2r6hdJTgburKr3tv2/AHy8qs5I8jfAB4Hnte4fCxxcVWuTbNX6uifJwcD/BV4w4HnuCTwZeBCwLMno753dD9i91bcP8Crgj+ndXK9IcinwG+Bt7fxu6btRfQA4saoub8HlK8DjgbcAr6+qJUkeDPwKOBL4SlX9cwtIozfjt7VrsjFwUZI9q2pl23ZLVT0pydGtz9cA/wRcXlXvTHJI63cyjwNe3Wo5DTgaeO+A1wzW7/q/HfjzqropyTZ963cH9gY2A74PvLWq9k5yIvBK4P1jO0pyJO1cN95q+2mUL0mazCCPAw4C9gGuSgKwOfCzAbY/Gbisqm4EqKpfTND/U4C/bstnAu/p2/bZvmH6rYEzkuwCFPCAAWof9e9VdTdwd/tkux9wG3DlaH3A/sC5VXUXQJJzgKe3Y51dVbeMOY+Dgd3aOQNslWRLYAnwviSfBM6pqp8kuQo4LckDgM9X1fK2z4vaDW4TYAGwGzAaAs5pX6/uuz7PGF2uqguS/PcU5/3jqlrSlj8BHMP0QsD6XP8lwOlJPsPvzwXg4qq6A7gjyRrgC239Knph7T6qajGwGGDTBbvUNOqXJE1ikMcBAc6oqr3a63FVdfwA20PvZjFd/fvc1bf8Lno3kN2Bv6L3SXJd+ux/39//REPrE53HRsBT+s57x6q6o6oW0fvUvjnwrSS7VtVl9G7gNwFntscLO9H7hH9QVe0JXDDmnH7dvq7lD8PadK7pROc90bqx13Sdr39VHQX8I/AIYHmSh7RNv+5rdm/f+3vxD1pJ0pwaJARcBBya5KEASbZN8qgBtn8T+JN2s6NvGP0OYMu+/b8BvLgtvwy4fII6tqZ3EwU4YoC6+z03yWbtRnQAcNU4bS4DnpdkiyQPAp4PfL2d34tGb2J953Eh8HejOyfZq33duapWVdW7gaXAru16/KyqTgH+H/AkYCt6N9k1SR4GPGuA87iM9igmybOAP5qi/SOTPKUtv4Txr+1/JXl8ko3aOU9kWte/XYcrqurtwC30woAkaYhMGQKq6np6n+guTLIS+A96Q9eTbq+qn9N7jntOkhXAWW2XLwDPb5Pknk5viPpVbd9XAG+coJT3AP+SZAmw8QRtJnIlvU/a3wLeVVU3j3Oe1wCnt7ZXAKdW1bKqug74Z+DSdh7va7scAyxsk+6upzfhEeDY0QlxwN3Al+gFj+VJltF7jv6BqloBLAOuA06jN3w+lXcAz0hyDfBnwI+maH8DcHi7ttsCHxmnzXHA+cDXgJ9O0td0r/8J6U1qvJZeeFkxwD6SpDmUqvv3I9Ykx9M3EbEr0vtJjPPb8P39xqYLdqkFh99n7uCcWL3okHk5riStjyRXV9W4vxvG3xgoSVJH3W8mYiV5Ffd9lLCkql4/H/XMlTZX4aJxNh10fxsFkCTNrPtNCKiqjwEfm+865lpV3QrsNd91SJI2PD4OkCSpo+43IwHqhj123JqlTtCTpBnhSIAkSR1lCJAkqaMMAZIkdZQhQJKkjjIESJLUUYYASZI6yhAgSVJHGQIkSeooQ4AkSR1lCJAkqaMMAZIkdZQhQJKkjjIESJLUUYYASZI6yhAgSVJHGQIkSeooQ4AkSR1lCJAkqaMMAZIkdZQhQJKkjjIESJLUUZvMdwHSdKy6aQ0jx10w32VI0pxZveiQWevbkQBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOMgRIktRRhoANQJKjkrxyijanJtmtLa9Ost0kbe9sX3dIcnZbPiLJSetZ57FJtuh7/8Uk26xPn5Kk2eNvDNwAVNXJA7R5zTr0ezNw6DoVNUaSjYFjgU8Av2z9P3sm+pYkzQ5HAoZQklcmWZlkRZIzkxyf5C1JHp/kyr52I0lWtuVLkiyc5nFGklzbt+oRSb6c5DtJ/qmv3cuTXJlkeZKPths+Se5M8s4kVwBvA3YALk5ycdv+uxGJ8fpor9OTXJtkVZI3TVDnkUmWJlm69pdrpnOKkqRJOBIwZJI8gd4N9WlVdUuSbYFjAKrqhiQPTPLoqvohcBjwmRk8/H7A7vQ+yV+V5ALgrnacp1XVb5N8GHgZ8HHgQcC1VfX2VvvfAAdW1S1jzunxE/RxHbBjVe3e2o376KCqFgOLATZdsEvN4PlKUqcZAobPM4GzR2+kVfWLJP3bPwO8CFhE78Z62Awe+z+q6laAJOcA+wP3APvQCwUAmwM/a+3XAp8boN+DJujjC8Cjk/wrcAFw4YydiSRpSoaA4RNgsk+7ZwGfbTfpqqrvzeCxxx63Wj1nVNX/HKf9r6pq7QD9TthHkicCfw68nl64+ZvplSxJWlfOCRg+FwEvSvIQgPY44Heq6gf0PoH/b3qBYCb9aZJtk2wOPA9Y0uo5NMlDR+tJ8qgJ9r8D2HKc9eP20eYLbFRVn2vn86QZPh9J0iQcCRgyVXVdkn8GLk2yFlgGrB7T7CzgBGCnGT785cCZwGOAT1XVUoAk/whcmGQj4Lf0PrX/5zj7Lwa+lOSnVXXg6Mqqun6CPu4GPtbWAYw32iBJmiWpcp6VNhybLtilFhz+/vkuQ5LmzOpFh6zX/kmurqpxf3rMxwGSJHWUjwPup9qcgovG2XTQ6E8ASJK6zRBwP9Vu9HvNdx2SpOHl4wBJkjrKkQBtUPbYcWuWruckGUlSjyMBkiR1lCFAkqSOMgRIktRRhgBJkjrKECBJUkcZAiRJ6ihDgCRJHWUIkCSpowwBkiR1lCFAkqSOSlXNdw3SwJLcAXxnvusYx3bALfNdxBjDWBNY13RZ1/RY1309qqq2H2+DfztAG5rvVNXC+S5irCRLh62uYawJrGu6rGt6rGt6fBwgSVJHGQIkSeooQ4A2NIvnu4AJDGNdw1gTWNd0Wdf0WNc0ODFQkqSOciRAkqSOMgRIktRRhgANnSR/keQ7Sb6f5Lhxtm+a5Ky2/YokI0NS1zOSXJPkniSHzkVNA9b15iTXJ1mZ5KIkjxqSuo5KsirJ8iSXJ9ltGOrqa3dokkoyJz/WNcD1OiLJz9v1Wp7kNcNQV2vzovZv7LoknxqGupKc2HetvpvktiGp65FJLk6yrP03+ey5qGtCVeXL19C8gI2BHwCPBh4IrAB2G9PmaODktvxi4KwhqWsE2BP4OHDoEF2vA4Et2vLrhuh6bdW3/Bzgy8NQV2u3JXAZ8C1g4TDUBRwBnDQX/66mWdcuwDLgj9r7hw5DXWPavwE4bRjqojdB8HVteTdg9Vx+T8e+HAnQsNkP+H5V/bCqfgN8GnjumDbPBc5oy2cDByXJfNdVVauraiVw7yzXMt26Lq6qX7a33wIePiR13d739kHAXMxSHuTfF8C7gPcAv5qDmqZT11wbpK7XAh+qqv8GqKqfDUld/V4C/NuQ1FXAVm15a+DmOahrQoYADZsdgR/3vf9JWzdum6q6B1gDPGQI6poP063r1cCXZrWinoHqSvL6JD+gd8M9ZhjqSrI38IiqOn8O6hm4ruYFbQj57CSPGJK6Hgs8NsmSJN9K8hdDUhcA7fHXTsDXhqSu44GXJ/kJ8EV6oxTzxhCgYTPeJ/qxnxAHaTPT5uOYgxi4riQvBxYCJ8xqRe1w46y7T11V9aGq2hl4K/CPs17VFHUl2Qg4Efj7Oail3yDX6wvASFXtCXyV34+GzaZB6tqE3iOBA+h94j41yTZDUNeoFwNnV9XaWaxn1CB1vQQ4vaoeDjwbOLP9u5sXhgANm58A/Z9wHs59h8t+1ybJJvSG1H4xBHXNh4HqSnIw8DbgOVX162Gpq8+ngefNakU9U9W1JbA7cEmS1cCTgfPmYHLglNerqm7t+96dAuwzyzUNVFdr8+9V9duqupHeH/jaZQjqGvVi5uZRAAxW16uBzwBU1TeBzej9caF5YQjQsLkK2CXJTkkeSO8/4PPGtDkPOLwtHwp8rdosm3muaz5MWVcb3v4ovQAwF89rB62r/0ZxCPC9+a6rqtZU1XZVNVJVI/TmUDynqpbOZ10ASRb0vX0OcMMs1zRQXcDn6U0+Jcl29B4P/HAI6iLJ44A/Ar45y/VMp64fAQe1+h5PLwT8fI7qu6/5nJXoy9d4L3pDZN+lN8v2bW3dO+n9zxh6/9F8Fvg+cCXw6CGpa196nwTuAm4FrhuSur4K/BewvL3OG5K6PgBc12q6GHjCMNQ1pu0lzMFPBwx4vf6lXa8V7XrtOiR1BXgfcD2wCnjxMNTV3h8PLJqLeqZxvXYDlrTv43Lgz+ayvrEvf22wJEkd5eMASZI6yhAgSVJHGQIkSeooQ4AkSR1lCJAkqaMMAZIkdZQhQJKkjvr/RmicgGQCnAsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.tree import DecisionTreeRegressor\n", + "model = DecisionTreeRegressor(random_state=0)\n", + "model.fit(Features, target)\n", + "print(model.feature_importances_) #use inbuilt class feature_importances of tree based classifiers\n", + "# #plot graph of feature importances for better visualization\n", + "feat_importances = pd.Series(model.feature_importances_, index=Features.columns)\n", + "feat_importances.nlargest(Features.shape[1]).plot(kind='barh')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In both of the cases above, \"civil liberties\" and \"electoral processand pluralism\" appear to be the most related variables. Let's train a self organised map." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "category_color = {'Full democracy': 'darkgreen',\n", + " 'Flawed democracy': 'limegreen',\n", + " 'Hybrid regime': 'darkorange',\n", + " 'Authoritarian': 'crimson'}\n", + "colors_dict = {c: category_color[dm] for c, dm in zip(democracy_index.country,\n", + " democracy_index.category)}" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " [ 1000 / 1000 ] 100% - 0:00:00 left \n", + " quantization error: 0.03822093702335934\n", + " topographic error: 0.041916167664670656\n" + ] + } + ], + "source": [ + "size = 15\n", + "som = MiniSom(size, size, len(X[0]),\n", + " neighborhood_function='gaussian', sigma=1.5,\n", + " random_seed=1)\n", + "\n", + "som.pca_weights_init(X)\n", + "som.train_random(X, 1000, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The topographic error is small so the map represents the data well." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAHnCAYAAACluasIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeZglZXn38e+v93X2BQaGTZAIqIDj9opKxAXRaDSJkWCUuEzM+5pIonGJxhCXqImJJjGJEsBxA/c9IYIaJImIQQQdBJRlgGGGGWCYvfe+3z+qBmoO3X3OU+f06T4zv8919dVnqbuep+rUXfVU1VNVigjMzMzMzCzTNtcVMDMzMzObT9xANjMzMzMrcAPZzMzMzKzADWQzMzMzswI3kM3MzMzMCtxANjMzMzMrcAO5BEnrJL13rusxH0h6uqRb6ogPScc2sk42dySdL+kzc12PaiRdKem1c12PVtCI33S2l4viekTSxyT9+WyVdbCRdLykn0jaJemPmlTmEZJ2S2pvwLhulHR6A6pVtvynSfplPj2/Plf1sHQdc10Ba20R8V/A8XNdDztw5Buzz0TE4XNdF2s9EfH6ua7DAeYtwJURccpsFSBpA/DaiPgOQETcBQw0YtwRcWIjxlOHdwMfjYi/n+N6tBxJARwXEbfORfk+gnyAkeSdHjuozUUOKOP16SzwOm3OHQncONeVaGEtM/+ca/vzCr0Gkk6RdF1+iunzQE/huxdKul7Sdkk/kPS4wncbJP2ppJ9K2iPpIkkrJV2Wj+s7khYXhn9Rfjpoe34K+DGF71ZL+oqk+yQ9IOmj+efnSvofSR+WtA04X9KjJH0vH+5+SZ+VtGimcUnqlrRN0mMLw62QNCRp+Qzz5nRJGyum+c35NO+Q9HlJxfn1p5I2S9ok6dUV4+qW9CFJd0nakp8q7c2/e6ukH+5LYEl/kM+rHqzpJK2S9OV8GbpjulOvkp6S58V2STcUT3VKWiLpE/my8KCkr0nqBy4DVuWnJHfnZXVL+kg+7Kb8dXc+ntMlbcyXkXuBT0haLOlbef0ezF8nHZEu5NY/5svyzZLOKHx/paT3SfofYC9wTF7Xb+S5dKuk1xWGb5f0Z5Juy/P/x5JW59/9iqQr8rhbJL2sEHeWpJ/nMfdIenP++bJ8urbncf+lvJEu6W2Fcn4u6SUV0/Xfea49mP9+zy98f7Sk7+exVwDLaphXRynr5rA2/302S3rTNMPut87IP9sg6dn56/MlfUnSZyTtBM6V9CRJV+fTulnZOqtrmvE/1AWuyjxKWj8fjCR9D/hV4KN5Lm5SoWvSvmWp8D4kvV5Zl4IHJf2TJBW+f52kmwrL5amSPg0cAXwzL+MtheVp3/p+prw6X9IXJH0qH++NktYUvq9ctmYa9lQ93J3ki8q2X1W7U+bTdWtev29IWpV/fhtwTGHaumcYx9GSriose/+kQrckTdM+yHP9SxXj+ntJ/5C/Xpgv25uVrT/eq7zriqZuP1RbP1yZj+MH+TR9U9JSZe2MnZL+V9JRheFnWrety6fz3/LpvkbSo/LvrsoHuyEv57er/Q4NFxH+m+EP6ALuBP4Y6AR+ExgD3gucCmwFngy0A68CNgDdeewG4IfASuCwfNjrgFOAbuB7wF/kwz4a2AM8Jy/nLcCtefntwA3Ah4F+sgb6aXncucA48IdkXWZ6gWPz8XQDy4GrgI/kw880rn8GPliY9jcC36wyf04HNhbebwB+BKwClgA3Aa/PvzsT2AKclJd9CRDAsfn3HwG+kccNAt8E3p9/15ZPx/nAccCDwClzvXwcjH/5b/Fj4F358nkMcDvwvPz3+Uw+3GHAA8BZecxz8vfL8+//Dfg8sDhf5p851TKVf/buPJdW5Mv0D4D3FIYfBz6YL/O9wFLgN4C+fFn6IvC1wviuJDulO9N07sutfbn/28AOYElhHHcBJ+a51wl8P8+jHuBk4D7gjHz4PwV+RtYlScDj83r2A3cDv5eP51TgfuDEPG4z8PT89WLg1Pz1+4GP5eV2Ak8HlH/3W2Q52JbXew9waGG6xoDXka0P/gDYVIi9Gvi7fF4+A9i17zedYV4dRZbLl+bT89h82p+df19cLqb6fTdUDDsG/Hpe/17gCcBT8vlzFNl65bxCfHE9sg54bw3zaAM1rp8P5j8KuUJF3uTL0n9X/A7fAhaRNXrvA84sLJP3AE8kW/6PBY6s/P0rlqeO/P1MeXU+MEy2nmnPf/MfzrBsTTksD2/r35gvKy8FRvctSzPMn2eR5eup+XLzj8BVU5VfZTxXAx/K63EasJOHc2am9sGRZDvoC/Jh28nWGU/J338N+DhZXq4g2z7/fsU6rth+OJeZ1w9X5mU/ClgI/Bz4BfDsfByfAj6RD1tt3bYO2AY8Kf/+s8DnpsrrOVn25zr55vsf2QbioYUj/+wHZA3kfyHfSBe+u4WHN/QbgHMK330Z+JfC+z8k32gDfw58ofBdG9nK5HTgqWQrhI4p6ncucFeVafh14Cf565nG9eR8YW7L318LvKzKuE/nkQ3kVxTe/zXwsfz1xcAHCt89el8CkK0w9wCPKnz/VOCOwvuj8mS6CXj7XC8bB+tfvpzcVfHZ24FPsH9D6K3ApyuG+zbZjuShwCSwuNoylX92G3BW4f3zgA2F4UeBnhnqfDLwYOH9ldTWQK7M/R8Bv1sYx7sL360GJoDBwmfvB9blr28BXjxFOb8N/FfFZx/n4Z3nu4DfJ98AFoZ5N/B1atiAANfvKzufrlsL3/XleXgIWaNmHOgvfH8JtTeQf6Xw2V8DF+Wvi8vFVL/vBvZvxFxVpbzzgK8W3k/XQJ52HpGwfj6Y/0hvIJ9WeP8F4G35628Db5ymjId+/4rlqaOGvDof+E7huxOAoRmWrSmHJdvW38P++f7fVG8gXwT8deH9AFkD86ippm2acezLu77CZ58p5My07YNCPV+Zv34OcFv+eiUwAvQWYs8G/rPw+1Wuy89lmvVDYRl4R+H7vwUuK7z/NeD6/HW1dds64MLCd2cBN1csT3PWQHYXi+pWAfdE/mvl7sz/Hwm8KT/lsV3SdrJkXlUYdkvh9dAU7/ddiLCqMF4iYpKssXpYPs47I2J8mjreXXyjrGvE5/LTKTvJEm3fadJpxxUR15A1Up8p6VfIGq7fmKbMmdxbeL2X/aexWNc7C6+XkyXijwvz8j/yz/fVbwPwn2Qrz38qUS9rjCPJukAUl/s/I1sZVw73WxXDnUbWOF4NbIuIB2ssc7/8yF8X8+y+iBje90ZSn6SPS7ozz4GrgEVKvyp+qtwvlltcnleRTdOuiuEPy1+vJmvoVzoSeHLFfDqHrMEK2ZHws4A7lXV9eGr++d+QHcm5XNLtkt62b4SSXqmHu35tJztrU+wq8VCORsTe/OVAPg0PRsSeimmoVWV+r5puwITxIOnRyrpK3Jv/nn9FDV0/mGEe5WpdP1vtplv/T7f8V1Mtr6Yqs0fT96edbtiptvX7LYcz1K+47d5NdqbssGkjph7HtkIuVpY9U/sAsp3Ys/PXv5O/h2zd0glsLqwLPk52JHmqcvaZbv2wT615U23dtl9Z7L+8zDk3kKvbDBwmPdyPimxvD7IF630Rsajw1xcRl5YoZxPZwgRkF/2QrVDuycs5YoaEj4r3788/e1xELABeQXaEdl+dZxrXJ/Phfxf4UrHR0QCbyaZpnyMKr+8nS6wTC/NyYUQ8lCySziI7qvxdsg2fzY27yY7sF5f7wYg4a4rhPl0xXH9EfCD/bokKfeMLKpdnqMgPsmVn0wwxbyLryvDkPAeekX8u0kyV+9OVu4lsmgYrhr8nf3032WnJSncD36+YTwMR8QcAEfG/EfFiso3a18iOyhERuyLiTRFxDNlRmz+RdIakI4F/Bd4ALI2IRcD6Gqd9M7BYWV/w4jTUqjK/N00xzB6ynWEg65tNYUc4V/l7/gtwM9kV7QvIdsiqTs9086jqVNh09vvt2L+hU810yz9MnfP7VMurRplqW796uoELKrfd/WRdp1Lqt5lsGovztlj2TO0DyLqQna7sOouX8HAD+W6yI8jLCuuWBbH/nT1mmvf1mnHdNt+5gVzd1WSnPv5IUoekl5L1l4FsI/R6SU9Wpl/SCyoSuVZfAF6Qb+A6yTbwI2TdOX5ElkAfyMvokfS0GcY1COwGtks6jKzv4z7VxvVpsgR7BVlfokb6AtkFNyfkK4K/2PdFvkf8r8CHJa0AkHSYpOflr5eRncp6Ldkp+l/LG8zWfD8Cdiq7KK5X2cVnJ0l6YsVwnyH7nZ6XD9Oj7AKtwyNiM9nFeP+s7IK6Tkn7GrFbgKWSFhbGdSnwTknL82XhXfn4pzNItsO1XdISCstaohVkud8p6beAxwD/PtWAEXE3Wb6+P5/WxwGvIetXB3Ah8B5Jx+Xri8dJWkrWZ/PRkn43L6dT0hMlPUZSl6RzJC2MiDGyfokT8NAFwsfmG8t9n0+Q9fsLsq5USPo9siPIVUXEnWRdq/4yL/s0soZlrf48P3p/Ilm/w89PMcwvyI7avSBf172TrO/mTAbJpnG3srNbNW1gZ5hHVs71wEvz3/hYsuW7VhcCb5b0hHz5PzbfmYMs54+ZKqiGvGqUq8mWjTfk2/oX8/C2fiaXAL8n6WRlF+H9FXBNfsazJoW8Oz/Pu6eyf97N1D4gIu4j6/rwCbKDFzfln28GLgf+VtICSW3KLuJ/Zq11q9O067Ya46ddLprBDeQqImKUrLP+uWQXhv028JX8u2vJOrJ/NP/u1ny4MuXcQtYo/Ueyo6m/BvxaRIxGxET+/liy/ogb83pM5y/JOsPvILsQ6iuFcmYcV0RsJLtQJYD/KjMt04mIy8guxPse2bz6XsUgb80//6Gy06jf4eF7LF8AfD0i/j0iHiBbQV6YNzCsiQrL0MnAHWTL64VkF2wUh7sbeDHZ0b77yI4m/CkPr3d+l6yv3s1kF0idl8fdTNYgvl3ZablVZH3+rwV+Snah23X5Z9P5CNkFJ/eTXYj1HyUn9xqyi0LvB94H/Ga+/E3nbLIuQJuAr5L1tbsi/+7vyDZ0l5M11i4i6xu4C3gu8PI87l4evuAQsvm0Ic+J15OtJ8jr9R2yneGrgX+OiCsj4udk/QKvJtvAPBb4n4Rp/h2yfubbyHYsUnaUv0+Ww98FPhQRl1cOEBE7gP9LtszcQ3ZUcmPlcBXenNdrF9mO9FQN76lMOY9qjLVH+jBZf/8tZGcba26kRsQXyXLoErLf8WtkF2RDdtbznXm+v3mK8JnyqiEK2/rXANvJ8uxbZA3RmeK+S9ZH+MtkB58eRZbLqc4hO0P6ANm67fP7yp6pfVCIv4TsQrlL2N8ryS7m+zlZO+VLZN3cZl0N67Zqzgc+mS8XL6s2cKPtuyrR7CGSLgY2RcQ757ouZnNF0rlkFySdNtd1me+U3dbpDqBzhmslzFqKpGvILjL/xByU/XmyC9bKnv2yOvkIsu0n39C9lOzolpmZ2UFB0jMlHZJ3sXgV8DjKn31KLfuJefeHNklnkp19+1ozyrapVW0gS7pY0lZJ6wufna/sDgnX53/uC3oAkPQesot5/iYi7ih8/md6+KENxb/L5q62Vo1ztzplD6OZatn+2FzXbb7J+0JPNa9a4ilhrcJ5O6eOJ3tOwA6yfr6/GRGbG7UNnGYcuyU9neyCxyvJugP9A/AHEfGTxk6epajaxULZhTO7gU9FxEn5Z+cDuyPiQ7NeQzMrxblr1nqct2bzQ9UjyBFxFdnFGmbWQpy7Zq3HeWs2P0x3L9xavEHSK8muLH/TdDf8l7QWWAvQ1t7zhN6B2m+p2d6RXr2unq7kmI7Ocl2xOztSb6kKXZ3p5XS1pV/z0qH0mPbJseQYjafHMDKUHDI5ml7O5PhkckxMloiZSI+5cfuu+yOi8t6vzVI1d4t5297R+4T+RUcnFdDZmZ67Pb3pydGdnu50tqf/Xl0arT5QhY7xGS9+n5JG0287HmPpuTExkj49Y3vTYybGyuRg+oXjaktfF5cpB+CXY8Nzlbultrl9g0dONdj0ysyW9NmPlB7U2V1iHdFTIqY7vW49Hel3D+wiPafaJ9LXKwztqT5MhfG96euiyfESd1AssbyVyd2f79ydnLc13cUiv3DrW4XTPSvJbjUSwHuAQyPi1dXGM7Do+Dj56RfUXLkFy5dUH6jCEccfnhyzbGV/9YGmcMiK9MQ7YkX6BuOwBTuSY1bo3uoDVRjYe19yTM+2andneqTJW29Kjhm6e3NyzPCDu6oPVGF0197qA1WWsyO9wX/i177344hYkxyYqBG5u3D5iXHai2u9q1Zm+eHp7YcTHpsec1SJ57Qdvih9Y3F4R/pyvmTbrckxHXf9IjlmfOuW6gNV2HlrLQ8I29/m6+9KL2fj7uSYiaH0dWR7b/pBjjLlADznnvWznruN2uYOLv6VOOX0C5PKLtP4aGtPfUAldHSl70SvLJHwxz5mRfWBKhx3dPqe96+s3J4cs0rpebhw2x3VB6qgn/0oOWbbT9K303vuS9/mllnexobSDwo8/rLvJ+dtqUOnEbElIiYKD3eo5WbaZjbHnLtmrcd5a9Z8pRrIkoo3mX4J2Z0PzGyec+6atR7nrVnzVT3HIelS4HRgmaSNZE9WOl3SyWSnezYAvz+LdTSzEpy7Zq3HeWs2P1RtIEfE2VN87IdImM1zzl2z1uO8NZsf/CQ9MzMzM7MCN5DNzMzMzArcQDYzMzMzK3AD2czMzMysoGoDWdLFkrZKesRtZSS9WVJIWjY71TOzspy7Zq3JuWs292o5grwOOLPyQ0mrgecA6Y9XMrNmWIdz16wVrcO5azanqjaQI+IqYNsUX30YeAvlntxuZrPMuWvWmpy7ZnOv7JP0XgTcExE3NLg+ZjaLnLtmrcm5a9ZcVR8UUklSH/AO4Lk1Dr8WWAvQ3bsyqazO7q7U6tHR2bzrDicm0mM62iaTY9qUHjPW1p0cM9nemRyjvbvSyxkeSY8pMbPHh9LLGXpwb3LM7q17kmPmQkruFvO2p/8QxkbGksqanEhfZqPEMbG9I+n5vmc0fb0y2dleIqYnOSaWrkiOadubvvyN7RlKjhnePpwcMzGUvhyM7xwvUc6Bfb152dztW3AYhx13RFJZYyPp8398LD2mszt9e9O/oDc5prc3PXel9JXRnrH0be5Q70ByzKIo0Ybo7UuO6V48mByz57709sDIrvT1yvCO9G17GWXWKo8CjgZukLQBOBy4TtIhUw0cERdExJqIWNPRtbB8Tc2sXjXnbjFvO7sXN7maZlahVO529y5pcjXNDhzJR5Aj4mfAQ4c58mRdExH3N7BeZtZgzl2z1uTcNWu+Wm7zdilwNXC8pI2SXjP71TKzejl3zVqTc9ds7lU9ghwRZ1f5/qiG1cbMGsa5a9aanLtmc+/AvrLBzMzMzCyRG8hmZmZmZgVuIJuZmZmZFbiBbGZmZmZW4AaymZmZmVlBLbd5u1jSVknrC5+9R9JPJV0v6XJJq2a3mmaWyrlr1pqcu2Zzr5YjyOuAMys++5uIeFxEnAx8C3hXoytmZnVbh3PXrBWtw7lrNqeqNpAj4ipgW8VnOwtv+4H0B5eb2axy7pq1Jueu2dxLftT0PpLeB7wS2AH86gzDrQXWAvT0H0LfogU1l9HT35Ncr86u9uSY9jYlxwBMTKbHjE+md/uejPSYMbqSY8qIB7dVH6jCxN6h9IIm02f23gd2J8fc/4v06Rm6ZyQ5Zi7Vkrv75W3fIUTi/B8bGUuu1969E8kxQ8PpufHAnvTcWNyzPDmmY2A0OaavI32d1zecnk8ju4aTY8aH03+fZpkYmr91a6TU3B1YvJqlhyxMKmNiIr3d3d6evg0dGOxOjlm4sDM5ZuWy9DbBQE/68jQR6fNgokQTrG0kPd/Vlb7O61m6KDkmJu9Jjtn2ix3JMaPb0rcvZZS+SC8i3hERq4HPAm+YYbgLImJNRKzp7F5ctjgza5Bacne/vO1x3prNB6m529u/tLkVNDuANOIuFpcAv9GA8ZhZczl3zVqTc9dslpVqIEs6rvD2RcDNjamOmc0m565Za3LumjVX1Q4wki4FTgeWSdoI/AVwlqTjgUngTuD1s1lJM0vn3DVrTc5ds7lXtYEcEWdP8fFFs1AXM2sg565Za3Lums09P0nPzMzMzKzADWQzMzMzswI3kM3MzMzMCtxANjMzMzMrqNpAlnSxpK2S1hc++xtJN0v6qaSvSkp/5IqZzSrnrlnrcd6azQ+1HEFeB5xZ8dkVwEkR8TjgF8DbG1wvM6vfOpy7Zq1mHc5bszlXtYEcEVcB2yo+uzwixvO3PwQOn4W6mVkdnLtmrcd5azY/NKIP8quBy6b7UtJaSddKunZs5MEGFGdmDTJt7u6Xt8POW7N5pOZt7tCeB5pYLbMDS9UHhcxE0juAceCz0w0TERcAFwAsXvnYGFg8WPP4e/q6k+sUkRxClAkqWdbIuJJjhsbT50NP20hyjGIyOSbGx0rETCTHTIyOVx+owt5te5NjhremT8/EUPp8m2vVcreYtwuWnpC8pA/tHk6u09Yte5Jj2tsHkmPKrPbu7al9vbXPeN/q5JiBvmXJMYcckT49g6uuTI7Z+vOtyTGTvekryYmh9OM2MZS+flBn+rp4rqVuc5cfdnKMDKfNmwWLepLrtWxZesyCwfbkmIUD6cvTssHR5JiBrvTtwEBn+vZm8ciW5Bjt3p4cEyPp6+OYSN9OD20fSo4Z3pr++8RYuTZbqtINZEmvAl4InBFlW5hm1nTOXbPW47w1a65SDWRJZwJvBZ4ZEem7TWY2J5y7Zq3HeWvWfLXc5u1S4GrgeEkbJb0G+CgwCFwh6XpJH5vleppZIueuWetx3prND1WPIEfE2VN8fNEs1MXMGsi5a9Z6nLdm84OfpGdmZmZmVuAGspmZmZlZgRvIZmZmZmYFbiCbmZmZmRXUcheLiyVtlbS+8NlvSbpR0qSkNbNbRTMrw7lr1nqct2bzQy1HkNcBZ1Z8th54KXBVoytkZg2zDueuWatZh/PWbM7Vcpu3qyQdVfHZTQBS6z2q0+xg4dw1az3OW7P5Ydb7IEtaK+laSdeODG2b7eLMrAGKeTs2/OBcV8fMalTM3eE9D8x1dcxaVqlHTaeIiAuACwAWrTgpJscna44dH5tILm9sZDw5Zny8MzkGICYjOWZsPP0IwPhk+n5Mh9LngybT53db/0ByTETty8A+E6Pp01NGe2+ZfcYSaTTP9xWLeTu45DExPpY2/4f2pD8N9/5N6Q3xMjmotsHkmIUD7ckxHW29yTHjXenLUnvvEckxRz3hsckxAz+7Ozlm95Y9yTGj25qT6zGWvuy0gmLuLl752Hjg3rS86u5ZnlxmZ0f6dm3hQPr8XzqQvmwMdI0lx/R1DCfHLIstyTEDD96ZHMOunckh49vS163D929PjpkcT29DdC1Jb3+1lVjeKDGrfRcLMzMzM7MCN5DNzMzMzApquc3bpcDVwPGSNkp6jaSXSNoIPBX4N0nfnu2Kmlka565Z63Hems0PtdzF4uxpvvpqg+tiZg3k3DVrPc5bs/nBXSzMzMzMzArcQDYzMzMzK3AD2czMzMyswA1kMzMzM7OCWu5icbGkrZLWFz5bIukKSb/M/y+e3WqaWSrnrllrcu6azb1ajiCvA86s+OxtwHcj4jjgu/l7M5tf1uHcNWtF63Dums2pqg3kiLiKRz4Y98XAJ/PXnwR+vcH1MrM6OXfNWpNz12zule2DvDIiNgPk/1c0rkpmNoucu2atyblr1kRVHxRSL0lrgbUAvQOHMjExUXPsZMKwD8VEcghSekzZssYn0gvrbEufD72Tu5NjOsaGkmPo6k4OaevsTI5p70pfVAdWDCbHtHW0J8d0dJdIo8vSQ5qpmLfdvSsZHxlNio/JyeQy97Snz/vO7vRlqbc/PWbJooH0mPQQBjr3JscsmKg80FidunuSY3oW9ibH7N02nBzTOZi+HLR1pK9X1VlyxX9PubBmKeZuT/8h7H5wV1L83qULksucmExf1/Z3p68jFnSPJMf0dKStuwAG2vckxyzYsTk5pu2+9IVpfMf25JjRB3eklzOcPt8WrFqYHNO3pC85psy6iE/+LDmk7BHkLZIOBcj/b51uwIi4ICLWRMSarp4lJYszswapKXeLedvZtaipFTSzKaXnbrev4zMrq2wD+RvAq/LXrwK+3pjqmNksc+6atSbnrlkT1XKbt0uBq4HjJW2U9BrgA8BzJP0SeE7+3szmEeeuWWty7prNvaqdJyPi7Gm+OqPBdTGzBnLumrUm567Z3POT9MzMzMzMCtxANjMzMzMrcAPZzMzMzKzADWQzMzMzswI3kM3MzMzMCupqIEt6o6T1km6UdF6jKmVms8u5a9Z6nLdmzVO6gSzpJOB1wJOAxwMvlHRcoypmZrPDuWvWepy3Zs1VzxHkxwA/jIi9ETEOfB94SWOqZWazyLlr1nqct2ZNVPVBITNYD7xP0lJgCDgLuLZyIElrgbUAvQOraG9vr7mA9s706vX0psd0dZXbT+joUHJMZ0ckxwx27k2OGRh+IDmmfWhXcgwxmV5OT3dyTGd/b3LMwCGLkmP6lg4kx7SVWE7nWNXcLeZtd+9KYjLtd47J9OV8bGQ0OWbPjj3JMcNlfuP0VGdFX3o+HTF0c3JM35bbkmPGNm5MjpkYHU+OiYkS64fe9PVxx0Dt25WHyukseXzonnJhDZC8ze3uXcne7TuTChkdXZlcsb7e9ATp7Upfnrrbx5JjetpGkmP6J3Ykx3QMpc1nAEaG02MmJpJD2rq7kmN6l6dvP7sXpq9b1ZGeux196e2BMkpv2SPiJkkfBK4AdgM3AI9Y4iPiAuACgEUrTkrfappZQ9WSu8W8HVh0vPPWbI6V2eY6d83Kq+sivYi4KCJOjYhnANuAXzamWmY2m5y7Zq3HeWvWPHWdG5a0IiK2SjoCeCnw1MZUy8xmk3PXrPU4b82ap97Ok1/O+0ONAf8vIh5sQJ3MbPY5d81aj/PWrEnqaiBHxNMbVREzax7nrlnrcd6aNY+fpGdmZmZmVuAGspmZmZlZgRvIZmZmZmYFbiCbmZmZmRXU1UCW9MeSbpS0XtKlkuwtGMwAACAASURBVHoaVTEzmz3OXbPW47w1a57SDWRJhwF/BKyJiJOAduDljaqYmc0O565Z63HemjVXvV0sOoBeSR1AH7Cp/iqZWRM4d81aj/PWrElK3wc5Iu6R9CHgLmAIuDwiLq8cTtJaYC1A/4LDWLB0sOYyFizuS65XX19nckxnZ7n9hL4eJccs7B1Ljhlo25Uc0zm8MzmmbWh3cgxDQ8kh6mhPjukcTF8WypQzMTScHENba3XlryV3i3nb03cIvQsGml/RGrS1p8/7FSv7k2MedehocszqsVuTY/puvS45ZuT225NjHlh/W3LM7q17kmMmxiaTY9q70n9TtaWvi1Vi2ZlLZba53b0r6ejuSiqnt787uW493enzv4zJaM5vpojkmImu3uSYtv7a20P7aGf6tr29N70nTltnieZhe/o2t60nvW7qSG/nlVFPF4vFwIuBo4FVQL+kV1QOFxEXRMSaiFjT3b+0fE3NrCFqyd1i3nb2LJ6LappZQZltbme3c9esrHp2x54N3BER90XEGPAV4P80plpmNoucu2atx3lr1kT1NJDvAp4iqU+SgDOAmxpTLTObRc5ds9bjvDVrotIN5Ii4BvgScB3ws3xcFzSoXmY2S5y7Zq3HeWvWXKUv0gOIiL8A/qJBdTGzJnHumrUe561Z87TWZbxmZmZmZrPMDWQzMzMzswI3kM3MzMzMCtxANjMzMzMrqOdBIcdLur7wt1PSeY2snJk1nnPXrPU4b82aq55HTd8CnAwgqR24B/hqg+plZrPEuWvWepy3Zs3VqC4WZwC3RcSdDRqfmTWHc9es9ThvzWZZoxrILwcuneoLSWslXSvp2pE9DzSoODNrkClzt5i3Y8MPzkG1zGwGNW1zx0acu2Zl1fWgEABJXcCLgLdP9X1EXED+tJ9Dj3pCrD56Sc3j7u5uT65PR4eSY/p6y+0nLFkwmR7Ttzc5pn90e3JM+/Ce5BiG0mMmR4bTy1H6/G7r6UmO6erqSo6JBQPJMUymLwfzwUy5W8zbFatPiUef8qikcQ8PjSXXZ+e23ckxy1YtTo456dHp65VH99+aHDN42/rkmOFf/jI5Zuv16XXbdvu25Jjx4fHkmK7+zvSYgfS8LWNsb/oyOh+kbHOXHvr4OOy4I5LGv2BR+rp2tMSsHBpNz8OxrvSYZplsL7HcdqTnh9rSt5/Zk8kTtafP6/YFC5JjtHRFcsxkT39yTBmNOIL8fOC6iNjSgHGZWfM4d81aj/PWrAka0UA+m2lO9ZjZvObcNWs9zluzJqirgSypD3gO8JXGVMfMmsG5a9Z6nLdmzVNXH+SI2AssbVBdzKxJnLtmrcd5a9Y8fpKemZmZmVmBG8hmZmZmZgVuIJuZmZmZFbiBbGZmZmZWUO9dLBZJ+pKkmyXdJOmpjaqYmc0e565Z63HemjVPvU/S+3vgPyLiN/On+/Q1oE5mNvucu2atx3lr1iSlG8iSFgDPAM4FiIhRYLQx1TKz2eLcNWs9zluz5qqni8UxwH3AJyT9RNKFkh7xgGxJayVdK+navbvvq6M4M2uQqrlbzNuh3ffPTS3NrCh5mzu894Hm19LsAFFPF4sO4FTgDyPiGkl/D7wN+PPiQBFxAXABwBHHrYkVy7vqKHJ2DParVNzygeHkmMWdO5NjunbvTo7RWHrdmJhIL6ejMzmmrUknBcvUjbb0ZSFGW+4gTtXcrczbE05clFTAnr2TyZV64IGB5JgVK3qSY05Ydm96OVt+lhwzfsetyTE7btuYHLPr3l3JMROj6bne1tmeHNOzsDs5ZvFR6c/BaOtIr9uuzduTY+ZY8jb3kCNPjcOOXJJUSGdX+nGzMvm+qy/9N1s5GMkxHRpPjgmlbwcmOtKX9ehKj2lbsDA5Rr296THt6b8PAwuSQ8aWHJoe0z2YHFNGPUeQNwIbI+Ka/P2XyJLXzOY3565Z63HemjVR6QZyRNwL3C3p+PyjM4CfN6RWZjZrnLtmrcd5a9Zc9d7F4g+Bz+ZX094O/F79VTKzJnDumrUe561Zk9TVQI6I64E1DaqLmTWJc9es9ThvzZrHT9IzMzMzMytwA9nMzMzMrMANZDMzMzOzAjeQzczMzMwK6rpIT9IGYBcwAYxHhC8eMGsBzl2z1uO8NWueem/zBvCrEeFn0Zq1HueuWetx3po1gbtYmJmZmZkV1NtADuByST+WtLYRFTKzpnDumrUe561Zk9TbxeJpEbFJ0grgCkk3R8RVxQHyJF4LsHTlESxdVGeJVbSXaPIvHxwpVdYhfduSYxaOpZ8Z6xzakRyj8fHkGNrb08vp7U2PIT2Gzq7kkBhMX9iiLX0etI0OJ8fMAzPmbjFvD1l1OP/n2LTldu9YT3KFdgx3J8esHHgwOebIB65NjtEdtyTH7LxlQ3LMjo3bk2PGh9Nzvb0rfTnv7OtMjll4+OLkmMUnHJMc0zE4kBwzsLVkL4Wvfa9cXGMkbXOXrTyCNY9Py6u9I+kb0fGJ5BAW9KUH9XWkr2s7GU2OKWO8I327Nr5geXJMh0o0cmIyOWSyI319PDq4LDlmd/+K5Jjh9v7kmDLqOoIcEZvy/1uBrwJPmmKYCyJiTUSsWbAofWEws8arlrvFvF28ZOlcVNHMKiRvcxd7m2tWVukGsqR+SYP7XgPPBdY3qmJmNjucu2atx3lr1lz1dLFYCXxV0r7xXBIR/9GQWpnZbHLumrUe561ZE5VuIEfE7cDjG1gXM2sC565Z63HemjWXb/NmZmZmZlbgBrKZmZmZWYEbyGZmZmZmBW4gm5mZmZkVuIFsZmZmZlZQdwNZUrukn0j6ViMqZGbN4dw1az3OW7PmaMQR5DcCNzVgPGbWXM5ds9bjvDVrgroayJIOB14AXNiY6phZMzh3zVqP89aseep5kh7AR4C3AIPTDSBpLbAWYMWhR7BscKzmkfd0TCRXaGH3nuSYxdqWHAPQP7I9OaZreGdyTNvocHJMKe3tzYnp7k0OGV+wNDlmtHdRcsxER3dyzHhbV3LMPDBj7hbzdvXKZRx/738mjVwT48kV0nB67rIhPSb27EqOGb13S3LMyI70uk2Op6/z2tqVHNM5mL7MDh6yIDlm8fFHJMd0HXpIcgy9/ekhy1aklzP3kra5q1Ydxikr7k4qYDh6kis1NJ4e09GWvo7oaRtJjmmLEjk1mR5Txnhn+raQ/vTtGm3p2+nhviXJMdu7VybH3D+6ODlmy470fC+j9BFkSS8EtkbEj2caLiIuiIg1EbFm4aJlZYszswapJXeLebtsUXrDyMwaq8w2d8mS9EaOmWXq6WLxNOBFkjYAnwOeJekzDamVmc0m565Z63HemjVR6QZyRLw9Ig6PiKOAlwPfi4hXNKxmZjYrnLtmrcd5a9Zcvg+ymZmZmVlBvRfpARARVwJXNmJcZtY8zl2z1uO8NZt9PoJsZmZmZlbgBrKZmZmZWYEbyGZmZmZmBW4gm5mZmZkV1POgkB5JP5J0g6QbJf1lIytmZrPDuWvWmpy7Zs1Tz10sRoBnRcRuSZ3Af0u6LCJ+2KC6mdnscO6atSbnrlmTlG4gR0QAu/O3nflfNKJSZjZ7nLtmrcm5a9Y8dfVBltQu6XpgK3BFRFwzxTBrJV0r6dod2++vpzgza5BquVvM2/u375ybSprZI6Tk7rZt2+amkmYHgLoeFBIRE8DJkhYBX5V0UkSsrxjmAuACgMecdEos7d1b8/h724eT6zTIjuSYvpHtyTEAXSO7kmPax4ZKlZUqOtJ/Wqk3vZzO7uSY8b4FyTGjfYuTY0Y6B5JjhkrEjEVXcsxcq5a7xbw99ejDQhtuSRr/xM70RvXIA+l52N6dPu/bSsSMbEtfr5TR2duZHKM2JccMrBhMjll0zKHJMV0rlyfHUGKdQkf6fKO7Jz1mHkjJ3cefdEIsGE07MNXZmb5sdHaOJccE6cutShwsLxNThphMjplsT19uJ7r6S5ST3h4YKrEc7JpI335u3JEes2Vb+rJTRkPuYhER28me6nNmI8ZnZs3h3DVrTc5ds9lVz10slud7sCg79Phs4OZGVczMZodz16w1OXfNmqeeLhaHAp+U1E7W0P5CRHyrMdUys1nk3DVrTc5dsyap5y4WPwVOaWBdzKwJnLtmrcm5a9Y8fpKemZmZmVmBG8hmZmZmZgVuIJuZmZmZFbiBbGZmZmZWUM9t3lZL+k9JN0m6UdIbG1kxM5sdzl2z1uO8NWuuem7zNg68KSKukzQI/FjSFRHx8wbVzcxmh3PXrPU4b82aqPQR5IjYHBHX5a93ATcBhzWqYmY2O5y7Zq3HeWvWXA3pgyzpKLJ7M14zxXdrJV0r6drtD6Y9E97MZtd0uVvM2/t37ZmLqpnZNGrd5m7b9mCzq2Z2wKiniwUAkgaALwPnRcTOyu8j4gLgAoDHPfakWN6+teZxd06OJNena2xvckznaLkGQPvYUHJM2+hwqbJSRWdPcsxkb2dyzHj3QHLMaPdgcsxIZ39yzHB7eszQZF9yzMhEV3LMfDBT7hbz9pTVK2N0y31J4x7d/ohVQVUjO9LzsL0rfRWmtvTjAkMPpE/P6J709ZfalBzTs7A3OaZ36YLkmK6li5Nj2rrT10O0tyeHTA6m1210cHlyzHyQss09+cRfic7EbWIoPT/a2ieSYyba0rc3isnkmM6J9Dxsi+ZMz2hHeu5OdKev88r8pntI307fvzc9ZtN96eu8LVtHk2PKqOsIsqROskT9bER8pTFVMrPZ5tw1az3OW7PmqecuFgIuAm6KiL9rXJXMbDY5d81aj/PWrLnqOYL8NOB3gWdJuj7/O6tB9TKz2ePcNWs9zluzJirdBzki/htI7zxiZnPKuWvWepy3Zs3lJ+mZmZmZmRW4gWxmZmZmVuAGspmZmZlZgRvIZmZmZmYF9d4H+WJJWyWtb1SFzGx2OW/NWpNz16x56j2CvA44swH1MLPmWYfz1qwVrcO5a9YUdTWQI+IqYFuD6mJmTeC8NWtNzl2z5nEfZDMzMzOzgtIPCqmVpLXAWoDDD13JgqGttcdOTiSX1z4xmhzTNjacHAPQNpoep4nx5Jhoa0+OmezsTo/p6k2OGevqT44Z6UyP2du+IDlmNLqSY/aM9yTHDI2llzPfFfN29eJB1Jb2fIKJkbHkMkd37U2OGR9Jz6eJ0fT1ythQ+vSU0dGdnuttHekxqb9n2Ri60/OJnvT10PDCQ5JjtvUfnhzTCiq3uW2J29GusT3JZZbZ7oZKLLdMJse0TaavIyZL1G20sy85psx2bSTSt+3jkT49e8bS8/D+XZ3JMVvvS192tmzamRxTxqwfQY6ICyJiTUSsWbp40WwXZ2YNsF/e9qevKM1sbhRzd9mihXNdHbOW5S4WZmZmZmYF9d7m7VLgauB4SRslvaYx1TKz2eK8NWtNzl2z5qmrD3JEnN2oiphZczhvzVqTc9esedzFwszMzMyswA1kMzMzM7MCN5DNzMzMzArcQDYzMzMzK6j3LhZnSrpF0q2S3taoSpnZ7HLumrUe561Z85RuIEtqB/4JeD5wAnC2pBMaVTEzmx3OXbPW47w1a656jiA/Cbg1Im6PiFHgc8CLG1MtM5tFzl2z1uO8NWuiehrIhwF3F95vzD8zs/nNuWvWepy3Zk1Uz4NCNMVn8YiBpLXA2vztyNLHPX19YjnLgPsd45gDLOb4xOEbqWruVubtwjf9fWrewvye/45xTNmYucrdUtvcxaf8qre5jnFMmbyNiFJ/wFOBbxfevx14e5WYa0uU4xjHOKaBf6m5W7au83leOsYxzYxpxJ+3uY5xTHNj6uli8b/AcZKOltQFvBz4Rh3jM7PmcO6atR7nrVkTle5iERHjkt4AfBtoBy6OiBsbVjMzmxXOXbPW47w1a656+iATEf8O/HtCyAUlinGMYxzTYIm5W7au83leOsYxzYxpCG9zHeOY5sUo75thZmZmZmb4UdNmZmZmZvtpSgO5zOMxJV0saaukmm9RI2m1pP+UdJOkGyW9sYaYHkk/knRDHvOXNZbVLuknkr6VUL8Nkn4m6XpJ19YYs0jSlyTdnE/XU6sMf3w+/n1/OyWdV0M5f5xP/3pJl0rqqTL8G/Nhb5xp/FP9jpKWSLpC0i/z/4triPmtvKxJSWtqLOdv8vn2U0lflbSohpj35MNfL+lySauqxRS+e7OkkLSshnLOl3RP4Xc6a7p5OJdSc3e+520em5S7B1Le5jFVc9d529p5Cwde7qbmbR7j3MW5m3+Wnrupt70ocWuNduA24BigC7gBOKGGuGcApwLrE8o6FDg1fz0I/KJaWWT3lhzIX3cC1wBPqaGsPwEuAb6VUL8NwLLE+fdJ4LX56y5gUeK8vxc4sspwhwF3AL35+y8A584w/EnAeqCPrB/7d4Djav0dgb8G3pa/fhvwwRpiHkN2H8MrgTU1lvNcoCN//cEay1lQeP1HwMdqWS6B1WQXz9xZ+RtPU875wJtTloVm/5XJ3fmet/nwSbl7oORtPkxNueu8bd28LSxDB1TupuZtHuPcDedu/lly7jbjCHKpx2NGxFXAtpSCImJzRFyXv94F3ESVJw1FZnf+tjP/m7FjtqTDgRcAF6bUL5WkBWQ/9EUAETEaEdsTRnEGcFtE3FnDsB1Ar6QOsgTcNMOwjwF+GBF7I2Ic+D7wkqkGnOZ3fDHZSoj8/69Xi4mImyLilukqNE3M5Xn9AH4IHF5DzM7C234qloUZlssPA2+pHL5KzHyXnLvzOW+hObk7j/MWasxd521L5y0cYLnrbS7g3K0067nbjAbynDweU9JRwClke6fVhm2XdD2wFbgiIqrFfITsh5lMrFYAl0v6sbKnHVVzDHAf8In81NKFkvoTyns5cGnVSkXcA3wIuAvYDOyIiMtnCFkPPEPSUkl9wFlke3O1WhkRm/OyNwMrEmLLejVwWS0DSnqfpLuBc4B31TD8i4B7IuKGxDq9IT+1dHHlKa95oum5O8t5C+Vy90DJW6gvd523mfmet3Dg5e7Bvs0F525x+KbkbjMayDU9HrOhBUoDwJeB8yr2TqYUERMRcTLZ3s6TJJ00w7hfCGyNiB+XqNrTIuJU4PnA/5P0jCrDd5CdJviXiDgF2EN2eqQqZTeSfxHwxRqGXUy2h3k0sArol/SK6YaPiJvITp9cAfwH2em78emGn2uS3kFWv8/WMnxEvCMiVufDv6HKuPuAd1BDUlf4F+BRwMlkK8i/TYxvhqbm7mzmbT7+srl7QOQttFbuOm/rcsDkrre5GefuQ+NuWu42o4G8kf33cg6n+qmE0iR1kiXqZyPiKymx+amUK4EzZxjsacCLJG0gO231LEmfqXH8m/L/W4Gvkp0Gm8lGYGNh7/pLZMlbi+cD10XElhqGfTZwR0TcFxFjwFeA/zNTQERcFBGnRsQzyE5l/LLGegFskXQoQP5/a0JsEkmvAl4InBMRqRuIS4DfqDLMo8hWcjfky8ThwHWSDpkpKCK25BuJSeBfqb4szIWm5W4T8hZK5u6BlLdQV+46b1sjb+HAyl1vc3POXaCJuduMBnLTHo8pSWR9h26KiL+rMWa58istJfWSLbg3Tzd8RLw9Ig6PiKPIpuV7ETHjnl8+7n5Jg/tek3Vmn/Fq4Yi4F7hb0vH5R2cAP68+VQCcTQ2nenJ3AU+R1JfPwzPI+pJNS9KK/P8RwEsTyoLs939V/vpVwNcTYmsm6UzgrcCLImJvjTHHFd6+iBmWBYCI+FlErIiIo/JlYiPZRSv3Vinn0MLbl1BlWZgjTcndZuQtlMvdAy1voa7cdd62Rt7CAZS73uY+zLnb5NyNhCv6yv6R9ZX5BdlVte+oMeZSssPgY/kMeE0NMaeRnUb6KXB9/ndWlZjHAT/JY9YD70qYrtOp/Ur4Y8hOidwA3JgwH04Grs3r9zVgcQ0xfcADwMKEaflLsgVzPfBpoLvK8P9FtuK4ATgj5XcElgLfJdv7/S6wpIaYl+SvR4AtwLdriLmVrB/evmWh8urYqWK+nM+DnwLfBA5LWS6Z4qrpacr5NPCzvJxvAIc2IxdT/1JztxXyNo+vKXcPtLzNY6rmrvO2tfM2r/8Bl7u15m0+rHPXuVtX7vpJemZmZmZmBX6SnpmZmZlZgRvIZmZmZmYFbiCbmZmZmRW4gWxmZmZmVuAGspmZmZlZgRvIZmZmZmYFbiCbmZmZmRW4gWxmZmZmVuAGspmZmZlZgRvIZmZmZmYFbiCbmZmZmRW4gWxmZmZmVuAGcgJJIenY/PXHJP35DMP+maQL6yzvqLzMjnrG0wiSbpR0eg3D7ZZ0zCzV4TJJr5qNcZtVc6Dlv6R1kt47G+M2M2t1biCXFBGvj4j3AEg6XdLGiu//KiJeOze1q89UG86IODEirqwWGxEDEXF7A+pwvqTPVIz7+RHxyXrHbVavAy3/p5oGswOBpHMkXV7jsA8dCJpqGzTF8PvtxBYP4kg6V9J/11n9avWdcUfd6jPnRyZtfpHUPtd1MLPWIqkjIsbnuh5mlSLis8Bnaxz2xDrLen498TORdC7w2og4rVDe62erPDtIjyBL2iDp7ZJ+LulBSZ+Q1JN/9zpJt0raJukbklZNM451kt4rqR+4DFiVdy/YLWlV5d6npNMk/UDSdkl35ws7kl4g6SeSduafn19ieq6U9H5JP5K0Q9LXJS0pfP9FSffm310l6cTCd+sk/Yukf5e0B3gNcA7wlnxavlmYZ8/OX7fnp5Bvk7RL0o8lrc6/K56GXpfv4V6RD/d9SUcWyv77fJp35uN4ev75mcCfAb+d1+GGwnS+Nn/dJumdku6UtFXSpyQtzL/bt1f/Kkl3Sbpf0jtS56sdmA7A/F+ST8OmfHq+ln/+iCNYxfwsfDbdNOx3JkkVR5nz+fhWST8F9kjqyOO+LOk+SXdI+qPU6TGz/WkedLM8GB2UDeTcOcDzgEcBjwbeKelZwPuBlwGHAncCn5tpJBGxB3g+sCnvXjAQEZuKw0g6gmwD9I/AcuBk4Pr86z3AK4FFwAuAP5D06yWm55XAq4FVwDjwD4XvLgOOA1YA1/HIvenfAd4HDAKfyr//63xafm2Ksv4EOBs4C1iQl7t3mnqdA7wHWEY2zcWy/5dsXiwBLgG+KKknIv4D+Cvg83kdHj/FeM/N/34VOAYYAD5aMcxpwPHAGcC7JD1mmjrawedAyv9PA33AiWQ5/uGU4FqmYQZnk9V7ETAJfBO4ATiMLO/Ok/S8lPqYlSVptaSv5DtoD0j6aHFHMT9g86GKmK9L+pP89UMHgkqW/9BBnIc/0j8qOzh1s6QzCl8slHSRpM2S7sl3uNvz786V9D+SPixpG/B54GPAU/Md2O35cJU7sS+UdH2+I/4DSY8rfPfWvJxdkm4p1sWmdjA3kD8aEXdHxDayxuHZZBvNiyPiuogYAd5OtkAeVWdZ5wDfiYhLI2IsIh6IiOsBIuLKiPhZRExGxE+BS4Fnlijj0xGxPt/Y/Tnwsn3JFhEXR8SufJrOBx6/72hr7usR8T95HYZrKOu1wDsj4pbI3BARD0wz7L9FxFV52e8gm5+r83p9Jp8X4xHxt0A3WYO2FucAfxcRt0fEbrLf6uUVe9p/GRFDEXED2UZ7qoa2HZwOiPyXdChZ4/b1EfFgPv7v11nfFP+Qz8ch4InA8oh4d0SM5tci/Cvw8ibWxw5S+fbuW2Q7tkeR7aRV7uBeQnZmUnnMYuC5UwzXKE8Gbic7QPQXwFf08NndT5IdzDoWOCWvx2uniF0BvAJ4PXB1vgO7qLIgSacCFwO/DywFPg58Q1K3pOOBNwBPjIhBsoMDGxo7qQeeg7mBfHfh9Z1kR15X5a8ByBteD5AlWj1WA7dN9YWkJ0v6z3yPdwdZEiwrUUbl9HQCy5R1h/iAsu4QO3k4KZZNE1uLaadnpnrl83Mb2XxG0psk3ZTvXW8HFlL7tO/3W+WvO4CVhc/uLbzeS3aU2QwOnPxfDWyLiAfrrGNZxfl4JFk3je37/si6Sq2cOtSsoZ5ElsN/GhF7ImI4IiovkvsvIICn5+9/k6zRWesZk1RbgY/kO66fB24BXiBpJdmO7Xl5XbeSnfkp7kxuioh/zA8gDdVQ1uuAj0fENRExkV/QPgI8BZggOwB1gqTOiNgQEbVuww9aB3MDeXXh9RHApvyv2Ee2n2xP7J4q44oq399Ndip3KpcA3wBWR8RCstMoqjK+qVROzxhwP1n3iRcDzyZrgB6VD1Mso7L+9UzPtPWSNEDWnWKTsv7GbyU7nb043yPeUahXtTrs91uRTfM4sKXGetnB7UDJ/7uBJZIecUSJrPtG3743kg6ZYTxTTcN+8cBU8cW4u4E7ImJR4W8wIs6aoVyzRlkN3DnTxaIREWRHi8/OP/odaryAr6R78jL32bczfiTZQazNhZ3Jj5MdLd4n9cDVkcCbKnZQVwOrIuJW4DyyM8hbJX1O01xfYQ87mBvI/0/S4fnpjj8j6+NzCfB7kk6W1E3WD/aaiNhQZVxbgKUV3RaKPgs8W9LL8gtZlko6Of9ukOwI0LCkJ5ElbBmvkHSCpD7g3cCXImIiH/8I2ZGwvnyaqtlC1q93OhcC75F0nDKPk7R0mmHPUnaBUhdZX+RrIuLuvF7jwH1Ah6R3kfVnLtbhKEnTLaOXAn8s6ei84b2vz7KvpLdaHBD5HxGbyfo3/7OkxZI6JT0j//oG4MR8enrINo4p03A9Wf4uyRvX51Wpzo+AnXlfx9787NVJkp6YMk1mJd0NHKHqF7RdCvymsgvGnwx8eRbrdNi+7hy5fTvjd5Ntl5cVdiYXVNxFo8yBq/dV7KD2RcSlABFxSWR3wDgyH9cH65mwg8HB3EC+BLicrI/P7cB7I+K7ZP13vwxsJjvqU7X/XETcTJZ0t+d7bqsqvr+L7IK2N5F1Mbieh/vD/l/g3ZJ2Ae8CvlByej4NrCPrVtAD7Lt6/FNke633AD8HfljDuC4iOxWzXfkV8RX+EpAm6AAAIABJREFULq/n5cDOfPjeacZ1CVnfq23AE8j6YwJ8m2zD/ou8fsPsv8f8xfz/A5Kum2K8F5NN81XAHXn8H9YwbWZwYOX/75KdMbqZ7JTueXm5vyDbWf4O8Etg2nuyTjMNnyZrZG8gm1efn6kS+Q75r5FdhHgH2RmsC8nOXJnNth+R5e0HJPVL6pH0tMqBIuInZAdmLgS+HRHbZ7FOK4A/yndcfwt4DPDv+Y7t5cDfSlqg7K5Mj5I00/UHW4DD84NNU/lX4PV5ty3l8+AFkgYlHS/pWfmO/zAwRNbtwmag/Y/+HxwkbSC7n+B35roujSDpSuAzEVHXk7saTdI6YGNEvHOu62K2z4GW/2aWUXbHmH8g62McZDvC11Fx/2BlD9d4N/CyiPhi4fMN+bDfUXbLxWMj4hUzlHcU2c5gZ0SMF7fFym7l+DrgJ2Q7sVuAN0TE5XnsQuADZDuVg2Q76h+MiM9pinse5w3jrwJPBSYjYlnlNlbZLVLfQ3bXqiGyneJXA0eT7RA8hmxn+gfA2lnse31AcAP5AOAGslntDrT8NzOzxqvaxULSxcoexLC+8Nn5yu6nd33+54swZpkevoF/5d/Tq0fbwci5e+Bw/h88nLdm80PVI8j5BR+7gU9FxEn5Z+cDuyPiQzPFmtncce6atR7n7fwi6RyyO0xUujPqfDS1zW9VjyBHxFVkF5aYWQtx7pq1Huft/BIRn42HnzBZ/HPj+ABXz10s3iDpp/npoMUNq5GZzTbnrlnrcd6aNVFNF+nlV2p+q3C6ZyXZLXyC7IrJQyPi1dPErgXWArS19zyhd+CImivX3dtT87D7DAx2Jse0l9xNGC9xk5TJyfSY9vb0mM4SMe1t6ZUrFTOP7y7TPjmWHjNWy9O593fdL++8PyKWJwcmKpu7xbxt7+h9Qv/CoxLLTU+q9hILbXd3tVuePlJvT/pzeLo70m+v3UF6jKLECqKEMuW0TaTnhsZGk2MmR0aSYyZG0+s2OVZuPXTj9l2znruN2ua2d/Q+oX/R0Ulld3am51RXT3pMe1t6HpaoGl0d6ct6l9KX2/aJ9BiVaBBoLD0/xnfvSY8ZTs+piRI5FSXSMCbTby7xy/Hh5Lwt1UCu9btKA4uOj5OffkHNlTvypGNrHnaf056Z/lTYRYPl7uTxwI70mD1708taMJDe2Fi5JD3xlvSlJ97C7vTEW9C+MzmmjLYSjYCFezYnx/Tde2tyTO/zXv3jiFiTHJioEbm7cNkJ8ZQXXJJUbmfXdLfqnN6SQ9IPih19XPpT2U96dHpD/Nil6We8Fys9pnt8b3JMW4ktTOdYejk9u7Ymx7Rt2pAcM3z7Hckxu+5Mz9vdW8qth074yndmPXcbtc1duPzEOO3FM96++hGWH57e9j/62CXJMQsXpLd2V6QXw1FLdyfHHN6xMTlm4a5qD9x8pI7h9GWwfePtyTHbrv5xcsz9t6Tn1M570qdndEf6gYSJofRt+3O33pict6WOnUo6tPD2JcD66YY1s/nDuWvWepy3Zs1XdRdO0qXA6cAySRvJnop2urJHpQbZU5Z+fxbraGYlOHfNWo/z1mx+qNpAjoizp/j4olmoi5k1kHPXrPU4b83mh3ruYmFmZmZmdsBxA9nMzMzMrMANZDMzMzOzAjeQzczMzMwKqjaQ86f2bJX0iNvKSHqzpJCUfjNSM5tVzl2z1uTcNZt7tRxBXgecWfmhpNXAc4C7GlwnM2uMdTh3zVrROpy7ZnOqagM5Iq4Cpnok1IeBt5Ddl9HM5hnnrllrcu6azb2yT9J7EXBPRNzQ4PqY2Sxy7pq1JueuWXMlPwxdUh/wDuC5NQ6/FlgL0N27kraO9prL6h3oTq0ePekhtLeV2xnv6W7ONY7dXekxkyUmaSKUHDPQtic5ZuH/b+/ugyS56/uOf77ztLMPt0+6Bx3SCUlIHAgZhNgQMIlsI+wSMiUsHFehMgTHJFepMjY4cdlQVPxQLlfFseOHSlJ2XUA+yhZy2QLZhBRGChgrriCcQ0joxMmW0AM6Pd2d7mGfd+fhmz9mZDfru5359vT0bl/er6qt293rz/RvZ/rT/ZvZ3unlF8OZkrfCmUpjJZypPfd4OLN29FvhzFaIdHdjb5dOnQ2tqz4xHh7f8nw9nDl1Kv4Yv3R2Mpx51Wy8G7X2ajhTaa2FM2m6UWo1whm3+H2gWnyHbOX+jxEva603w5mlk4vhzFZJ3d2xi7U8H9tHezt+anO1ms+xsNVO0cNSfNuopuihW/w+sFa8u40X48fPxRdOhzNr8/H91/rZ+H29fiq+L8pLmq36VZKukPSQmT0l6VJJD5jZxeda2N0Puvucu89VR6bTjxTAoPrubrK3ldpUzsMEsEGq7nLMBdILv4Ls7g9L2v3y192yzrn7yQzHBSBjdBcoJroL5K+ft3m7U9JXJe03s2Nm9sHhDwvAoOguUEx0F9h6PV9Bdvfbevz/5ZmNBkBm6C5QTHQX2HpcSQ8AAABIYIIMAAAAJDBBBgAAABKYIAMAAAAJTJABAACAhH7e5u12MztuZkcS3/tVM/ummT1oZveY2SuGO0wAUXQXKCa6C2y9fl5BPiTppg3f+w13f727Xyfp85J+MeuBARjYIdFdoIgOie4CW6rnBNnd75N0asP35hNfjkvyjMcFYEB0FygmugtsvfClpl9mZr8m6V9KOivpBzZZ7oCkA5JUH9+riZmpvtdRrcWHN78Y32esN9Kdil1Nce/NTsYztWo7nBmpxDNjlfVwZtfCk+HMyKlnwhlrxMfWfPLxcOa5+x8OZ156vFhXe+2nuxt7O7lrNrSOiZkd4XFNzk6EM7VaOZx56XQrnDm+J/7zzE7Uw5mRxmI4U1lfDmdKrXifUinHH5/GfPw+OPnY8XDmxf9zqvdC20y0u6MTezU+Fdt2R8dHwuPyFFP1ZjMeWl23cGa9HT9QNyu1cKZdroYzpZX4tn768e+EM6tnV8OZdiv++LRW4vOONBmrxreDNFL/kZ67f9zd90m6Q9KHNlnuoLvPuftcrT6TdnUAMtJPd+ktsP3Euxt7YgvgH2TxLhaflvSjGdwOgHzRXaCY6C4wZKkmyGZ2deLLWyQ9ms1wAAwT3QWKie4C+ep5co6Z3Snp+yXtNLNjkn5J0s1mtl9SW9LTkv7tMAcJII7uAsVEd4Gt13OC7O63nePbnxzCWABkiO4CxUR3ga3HlfQAAACABCbIAAAAQAITZAAAACCBCTIAAACQ0HOCbGa3m9lxMzuS+N5vmNmjZvZNM7vbzKaHO0wAUXQXKB56C2wP/byCfEjSTRu+d6+ka9399ZL+TtLHMh4XgMEdEt0FiuaQ6C2w5XpOkN39PkmnNnzvHndvdr+8X9KlQxgbgAHQXaB46C2wPWRxDvJPSvrC+f7TzA6Y2WEzO7y+ejqD1QHIyHm7S2+BbStwzD11vsUA9NDzQiGbMbOPS2pKuuN8y7j7QUkHJWlm9/f4yFi979tfml8Jj+mpp+M/0uTkSDgjSTPT8XXt2O3hzFS9Ec5M1NbCmd0jJ8OZ2onj4YzNxydcvjAfzpz4m0fCmee+8Vw4s/LCejiz1Xp1N9nbS658k7/lxteGbr9ejz/3Llk4koqlWNGZ5fjPc2J0dzhj9RT7h8ZqOFNej+9brZFiO1+PZ1ZPL4QzrfV2OGPVlBtcs/ciwxI95s5e/HrfMTMRWke5HL9fFhbix6jmaDmcqaZ4zObX4sf3pdpkODNWOhPOaDm+rbcb8Q2wXI3vvyr1+Pwmdae2qdQTZDP7gKR3SbrR3eN7dQBbgu4CxUNvgXylmiCb2U2SfkHS97n7crZDAjAsdBcoHnoL5K+ft3m7U9JXJe03s2Nm9kFJ/1XSDkn3mtmDZvb7Qx4ngCC6CxQPvQW2h56vILv7bef49ieHMBYAGaK7QPHQW2B74Ep6AAAAQAITZAAAACCBCTIAAACQwAQZAAAASOjnXSxuN7PjZnYk8b0fM7NHzKxtZnPDHSKANOguUDz0Ftge+nkF+ZCkmzZ874ik90i6L+sBAcjMIdFdoGgOid4CW66ft3m7z8wu3/C9o5JkdmFdVhC4kNBdoHjoLbA9DP0cZDM7YGaHzezw2sqpYa8OQAaSvV2aP7nVwwHQJ465QDZSXWo6wt0PSjooSZOzr/X5k6f7zi68dDa8vtXlneFMc99sOCNJ5fJYODM7Fb/Ld+9ohTMztflwZnLlRDhjrUY4o7XVcKQ1H/95Fo8vxDNProQzrZV2OLPdJXv76te9yd9ybexnLJea4XXOr1TDmdOL5XCmER+ami0PZ+bX6+HM9Fg80y7H7zdP8UpkKU3XPd6N2kT8Ppi6dCqcKddSvj60zU9ySHZ3auc1furF2CS5sZaiIIofQ8vl0XCmGT8UanEtfsxtTMQ7VW7Ej2tqxDtVn50MZ5ZfWgxnKim2g/JovFPpMvH9vuKHdt7FAgAAAEhiggwAAAAk9PM2b3dK+qqk/WZ2zMw+aGa3mtkxSW+V9D/N7IvDHiiAGLoLFA+9BbaHft7F4rbz/NfdGY8FQIboLlA89BbYHjjFAgAAAEhgggwAAAAkMEEGAAAAEpggAwAAAAn9vIvF7WZ23MyOJL43a2b3mtlj3X9nhjtMAFF0FygmugtsvX5eQT4k6aYN3/uopC+5+9WSvtT9GsD2ckh0FyiiQ6K7wJbqOUF29/skbbxW5bslfar7+ack/UjG4wIwILoLFBPdBbZe2nOQ97j785LU/Xd3dkMCMER0FygmugvkqOeFQgZlZgckHZCk+vhe1SfG+s6uLi6H17c8H88snBkNZySpUok/v9i7ZyKcmakthjM7V54JZ0bnnw9nbHkhnPFGM55pezhTG6+FM+XRcjjTbsbHpvhdkKtkby9+xT5NjqyE8uOV1fA6x6v1cKZaGQ9nltfivS2leCmhUmqHM+0Ur1ms1XaEMzYeH9uIx7fz0kQjnBm/8rJwpjwS7/rsq1OW8L770+VykuzuyOgeLZ06G8qXyyn2gT4bztRq8W291Ypvg8ur8fWst6vhjCzFTmIqfr+NX3V5OLN2dimcaTfj+4jJS+PzG7vMwpmx2f7nkX/vrkfCkbSvIL9oZnslqfvv8fMt6O4H3X3O3edqo/xNAbDF+upusrfTMxflOkAA5xTubqU2lesAgQtJ2gny5yR9oPv5ByT9eTbDATBkdBcoJroL5Kift3m7U9JXJe03s2Nm9kFJ/1HSD5rZY5J+sPs1gG2E7gLFRHeBrdfzHGR3v+08/3VjxmMBkCG6CxQT3QW2HlfSAwAAABKYIAMAAAAJTJABAACABCbIAAAAQAITZAAAACBhoAmymX3YzI6Y2SNm9pGsBgVguOguUDz0FshP6gmymV0r6d9IerOkN0h6l5ldndXAAAwH3QWKh94C+RrkFeTXSrrf3ZfdvSnpryTdms2wAAwR3QWKh94COep5oZBNHJH0a2Z2kaQVSTdLOrxxITM7IOmAJE3M7NMV1+zrewXLC2vhQVVH4j9StVYOZySpXI4/v6jX4uvZu/5kODPxnYfjK1pdiWeajXgmBSvHH6P61Gg4M/aKkXCmuZqiRo/GIxnq2d1kb/fs3ae1VjW0gmqpFR5Uvbwezlw83g5n1uqxn0WSWm7hzER1NZwpKcXPUxkLZ9zi+640mWq1Hs+EE9L4xI5wxnPad2UofMwdGbtYI+Ox/WB9Ir7frKU4hjaaHs6U1uP9mF+Kd3epET8OrNanwpnK1M54Zj2+Xxnd9Ww401iKr6eSYt86OjsRz+yaDmd0VzySeoLs7kfN7Ncl3StpUdJDkprnWO6gpIOStHvfG+ONAJCpfrqb7O3+111Pb4EtluaYOzn7WroLpDTQH+m5+yfd/Xp3v0HSKUmPZTMsAMNEd4HiobdAfgY5xUJmttvdj5vZZZLeI+mt2QwLwDDRXaB46C2Qn4EmyJI+0z0fqiHpp9z9dAZjAjB8dBcoHnoL5GSgCbK7//OsBgIgP3QXKB56C+SHK+kBAAAACUyQAQAAgAQmyAAAAEACE2QAAAAgYaAJspn9rJk9YmZHzOxOM4tfNglA7uguUDz0FshP6gmymV0i6Wckzbn7tZLKkt6b1cAADAfdBYqH3gL5GvQUi4qkUTOrSBqT9NzgQwKQA7oLFA+9BXKSeoLs7s9K+k1J35H0vKSz7n7PxuXM7ICZHTazwytLL6UfKYBM9NPdZG/Pnj65FcMEkJDmmLu+dibvYQIXjNQXCjGzGUnvlnSFpDOS/tTM3ufuf5Rczt0PSjooSfuumvOrrprsex3lcnxcpZKFM6trHl+RpFYrnts1uR7O1JdSTFDOprjAUiXF5jA+EY5YLX4f2MpyODMyFR/b7JWz4Yy32+GMHo1HstJPd5O9vfqaN/nyejW0jrLFuzFeXQlnRsur4Uyt1AhnGh7vxkgpvp2X1Qxn2hbfUa5U491Yq4yFM7X6dDgzXh0NZ+oWf63HVpbCma2U5pi78xVv8H2veWVoPaPjI/GxpTjuLi2m6EcpPrZKOT62aqkVzpTaKTKr8W2wffyFcKa5FN+3VsdS3Nf12HFCSrfttFbi+/00BjnF4h2SnnT3E+7ekPRZSd+bzbAADBHdBYqH3gI5GmSC/B1JbzGzMTMzSTdKOprNsAAMEd0FiofeAjka5Bzkr0m6S9IDkh7u3tbBjMYFYEjoLlA89BbIV+pzkCXJ3X9J0i9lNBYAOaG7QPHQWyA/XEkPAAAASGCCDAAAACQwQQYAAAASmCADAAAACaknyGa238weTHzMm9lHshwcgOzRXaB46C2Qr9TvYuHufyvpOkkys7KkZyXdndG4AAwJ3QWKh94C+crqFIsbJX3b3Z/O6PYA5IPuAsVDb4Ehy2qC/F5Jd57rP8zsgJkdNrPDS/MnMlodgIycs7vJ3s6fPrkFwwKwib6OuavLp3IeFnDhGOhCIZJkZjVJt0j62Ln+390Pqnu1nytfM+c7Z/q/7cnRdng8tUornDmzXA1nJGllLf78YmpkNZyxtfj9oLHxcKQ9vTOeGRkLZypnUzxRans4Uh6JP66733BFOFMZGw1n9Gdfjmcytll3k729+po3uQfv/rVWOTyestXCmTR7sLLifapaM5wpWXw9bhbOND2+nTfa6fZ5USul+P6hsWMknJltN8KZyuLpcGY7iBxz910159e+flfo9tcb8X3t0lK8H2nMzsQLv2cmPieYri2EM6MpXkiwZ58MZ5aeOhbONJbXwpnKaLyHaTSWVsKZ1dPxvqeRxSvI75T0gLu/mMFtAcgP3QWKh94COchignybzvOrHgDbGt0FiofeAjkYaIJsZmOSflDSZ7MZDoA80F2geOgtkJ+BzkF292VJF2U0FgA5obtA8dBbID9cSQ8AAABIYIIMAAAAJDBBBgAAABKYIAMAAAAJg76LxbSZ3WVmj5rZUTN7a1YDAzA8dBcoHnoL5GfQK+n9rqS/cPd/0b26T/yySQC2At0FiofeAjlJPUE2s0lJN0j6CUly93VJ69kMC8Cw0F2geOgtkK9BTrG4UtIJSX9gZt8ws0+Y2fjGhczsgJkdNrPD82dODLA6ABnp2d1kb8+ePrk1owSQFD7mLp7lmAukNcgpFhVJ10v6aXf/mpn9rqSPSvoPyYXc/aCkg5J0xf45b7as/xWU2uFBzdZXwpmxaiOckaS1Zvzum6ouplpX2Eg9HGmPxH9b5+UUm1Azfn97iky5XgtnRvbsiq9najqc2WI9u5vs7dXXvMlb3n9vJWm9WQ4Pyn0knlFsXJJUL8dfdKtYK5xpe/z1hxWPd7Dh8Q622ikenxT3tcnDmVY5PraR8T3hzD+aWW5/4WPula+Z84t3xR631fX4djtfj2eqKQ4de3fGt6eLdyyFM9ON+BOL6ukXwpnm6dPhjLfj86KRqfjWXhkfDWfUjj8+aTRX1nJZzyCvIB+TdMzdv9b9+i51ygtge6O7QPHQWyBHqSfI7v6CpGfMbH/3WzdK+lYmowIwNHQXKB56C+Rr0Hex+GlJd3T/mvYJSf9q8CEByAHdBYqH3gI5GWiC7O4PSprLaCwAckJ3geKht0B+uJIeAAAAkMAEGQAAAEhgggwAAAAkMEEGAAAAEgb6Iz0ze0rSgqSWpKa788cDQAHQXaB46C2Qn0Hf5k2SfsDduRYtUDx0FygeegvkgFMsAAAAgIRBJ8gu6R4z+7qZHchiQAByQXeB4qG3QE4GPcXibe7+nJntlnSvmT3q7vclF+iW+IAkTe28TM883+z7xtfWq+EBVffUw5nZ0aVwRpJmRxbCmcn2qXCmtL4azqjV//38ssrZE/H1uMcz82fDEavVwpn63j3hTGliIpxRirFtA5t2N9nbmV2X6YnnyqEbHx+z8IAu2tEKZyqldjxj8YyX4j/PWju+XTTasftZktZb8d34eiu+nmYrfh9YPKJaJb4d2Gh8P+QThfwFauiYu+viyzQ9Hrs/m/X4gzY9Ec/MjK2HM3tGz4QzUx4/5k6eeCKc0ZmX4pkUKuOj4Ux5JL4vKo3F12Pl+H6lMhk/5norvo9IY6A9hLs/1/33uKS7Jb35HMscdPc5d58b37FzkNUByEiv7iZ7OzG1ayuGCGCD6DF3aoZjLpBW6gmymY2b2Y6XP5f0Q5KOZDUwAMNBd4HiobdAvgY5xWKPpLut8zu0iqRPu/tfZDIqAMNEd4HiobdAjlJPkN39CUlvyHAsAHJAd4HiobdAvgr5VwoAAADAsDBBBgAAABKYIAMAAAAJTJABAACABCbIAAAAQMLAE2QzK5vZN8zs81kMCEA+6C5QPPQWyEcWryB/WNLRDG4HQL7oLlA89BbIwUATZDO7VNIPS/pENsMBkAe6CxQPvQXyM8iV9CTpdyT9vKQd51vAzA5IOiBJE9OX6tjT833feLNx3ps9r5kd1XBm11grnJGkST8dzoyu9//z/z33eMZSPPeZPxOOtBfiP483muFMeXIynNHkVDxTiW8/qTJbb9PufldvZ/bp8W8vhG58ZqYeHpBfUgtnqinu+zR1KpXioWY73sFWiszyejmcmV+OZ5ZXw5FUxuopHtOZmRQrike2gdAxd8/efZocWQutYLTSCA/qospL4czOs0+EM9WTx8MZa6c4vi+kOBYuL4Uz3o7vV6qTE+FMaSJFZmw8nNFIfL9fmpwNZxqTO8MZ6bfDidSvIJvZuyQdd/evb7acux909zl3n6uPX5R2dQAy0k93k70dpbfAlktzzJ2eSTORACANdorF2yTdYmZPSfpjSW83sz/KZFQAhonuAsVDb4EcpZ4gu/vH3P1Sd79c0nslfdnd35fZyAAMBd0FiofeAvnifZABAACAhEH/SE+S5O5fkfSVLG4LQH7oLlA89BYYPl5BBgAAABKYIAMAAAAJTJABAACABCbIAAAAQMIgFwqpm9nfmNlDZvaImf1KlgMDMBx0FygmugvkZ5B3sViT9HZ3XzSzqqS/NrMvuPv9GY0NwHDQXaCY6C6Qk9QTZHd3SYvdL6vdj/iFxQHkiu4CxUR3gfwMdA6ymZXN7EFJxyXd6+5fO8cyB8zssJkdXl16aZDVAchIr+4me7tCb4FtI9LdM6dPbs0ggQvAQBcKcfeWpOvMbFrS3WZ2rbsf2bDMQUkHJWnPZdd7fbTa9+2Pj5fDY6pX40+mK9YKZySp2lwLZ0qtRjjj1Vo4o5F6PLO+Gs+U4s+xrJpisxsdjWfqY+GIm8XXU8rkeju56tXdZG/3Xv4m37FjJHT79Xq8u60UNVxZj29/lVJ8bOV2fL/SbMfHttqIZxZW4j/P8Zfa4cz8QjOcGRmJj82n45nl8XgHF6rx/cN2EOnuNd9zne+orYRuf7p0Jjymi84+Gc7Unns8nPHT8SfrqV5etxSvHXp8TaVa/Nhe2jERztjUTDjjo+PhTGt8OpyZn35lOLNYia8njUzexcLdz6hzVZ+bsrg9APmgu0Ax0V1guAZ5F4td3WewMrNRSe+Q9GhWAwMwHHQXKCa6C+RnkN8N75X0KTMrqzPR/hN3/3w2wwIwRHQXKCa6C+RkkHex+KakN2Y4FgA5oLtAMdFdID9cSQ8AAABIYIIMAAAAJDBBBgAAABKYIAMAAAAJg7zN2z4z+0szO2pmj5jZh7McGIDhoLtA8dBbIF+DvM1bU9K/d/cHzGyHpK+b2b3u/q2MxgZgOOguUDz0FshR6leQ3f15d3+g+/mCpKOSLslqYACGg+4CxUNvgXxlcg6ymV2uznszfu0c/3fAzA6b2eGVxZNZrA5ARs7X3WRvlxdObMXQAJxHv8fc06deyntowAVjkFMsJElmNiHpM5I+4u7zG//f3Q9KOihJ+66a8337xvu+7Z2z8fn7WG0tnClbK5xJy0vlcKZdrYczVmvEM9PVcKY0tiOcUTM+Nh/tf7sZhC39o024t1Z+20+WNutusreXv3rOr3jlSOi22+34eMrxasg9nslLs23hzMJK/E44eSZ+J5yZb4YzK8vx3rZTPD7rjfh+f3k9nlmsxrbp7SJyzL3uda/xV64cDd1+dTW+D6yeTfEkemkhHPFGfBtUKb5tWCVFplYLZ0oj8WO7xifCER+fCmcakzvDmcXxPeHMmXJ8PcvN0XAmjYFeQTazqjpFvcPdP5vNkAAMG90FiofeAvkZ5F0sTNInJR1199/KbkgAhonuAsVDb4F8DfIK8tskvV/S283swe7HzRmNC8Dw0F2geOgtkKPU5yC7+19Lip9kB2BL0V2geOgtkC+upAcAAAAkMEEGAAAAEpggAwAAAAlMkAEAAICEQd8H+XYzO25mR7IaEIDhordAMdFdID+DvoJ8SNJNGYwDQH4Oid4CRXRIdBfIxUATZHe/T9KpjMYCIAf0Figmugvkh3OQAQAAgITUFwrpl5kdkHRAki7ac5ku3tX/+5xPjzfD65uorYYzJbXDmbTaVo5nSvGHyaoj4YzXx+OZyZ3hjDyf+7uydDacsbUyRzHZAAAJMUlEQVT49tNeXAhntrtkb3ddfJn2TLdC+cXV+HPv1fX4NRCarRSZdnxsbh7OrDXj61mOb35aWYn3qdnIJ7O0uB7O7JiI7+/a7Xy2gyJIdnffrhmNPfGN2A2049u6ry7HM+vxbUPl+PHTqtV4phLPKE2mlOK6L6UU+69S/H5rVurhTKMcn3estuOZpWY8k8bQ9xDuftDd59x9bnJ617BXByAD39XbGXoLFEWyu7smJ7Z6OEBhXZhPoQEAAICUBn2btzslfVXSfjM7ZmYfzGZYAIaF3gLFRHeB/Ax0DrK735bVQADkg94CxUR3gfxwigUAAACQwAQZAAAASGCCDAAAACQwQQYAAAASmCADAAAACYO+zdtNZva3Zva4mX00q0EBGC66CxQPvQXyk3qCbGZlSf9N0jslXSPpNjO7JquBARgOugsUD70F8jXIK8hvlvS4uz/h7uuS/ljSu7MZFoAhortA8dBbIEeDXCjkEknPJL4+JumfblzIzA5IOtD9cu39N5SOBNezU9JJMmQusMz+4PJZ6tndjb199z+pRHsrbe/7nwyZtJmt6m6qY+7orR/mmEuGTJreunuqD0k/JukTia/fL+m/9MgcTrEeMmTIZPgR7W7asW7n+5IMmTwzWXxwzCVDJt/MIKdYHJO0L/H1pZKeG+D2AOSD7gLFQ2+BHA0yQf6/kq42syvMrCbpvZI+l82wAAwR3QWKh94COUp9DrK7N83sQ5K+KKks6XZ3f6RH7GCKVZEhQyZDKbqbdqzb+b4kQybPzMA45pIhk2/GuudmAAAAABBX0gMAAAC+CxNkAAAAICGXCXKay2Oa2e1mdtzM+n4PRzPbZ2Z/aWZHzewRM/twH5m6mf2NmT3UzfxKn+sqm9k3zOzzgfE9ZWYPm9mDZna4z8y0md1lZo92f6639lh+f/f2X/6YN7OP9LGen+3+/EfM7E4zq/dY/sPdZR/Z7PbP9Tia2ayZ3Wtmj3X/nekj82PddbXNbK7P9fxG9377ppndbWbTfWR+tbv8g2Z2j5m9olcm8X8/Z2ZuZjv7WM8vm9mzicfp5vPdh1sp2t3t3ttuNtTdC6m33UzP7tLbYvdWuvC6G+1tN0N3RXe734t3N/q+cCnee64s6duSrpRUk/SQpGv6yN0g6XpJRwLr2ivp+u7nOyT9Xa91STJJE93Pq5K+Juktfazr30n6tKTPB8b3lKSdwfvvU5L+dffzmqTp4H3/gqRX9ljuEklPShrtfv0nkn5ik+WvlXRE0pg6f+j5vyRd3e/jKOk/Sfpo9/OPSvr1PjKvVeeNvr8iaa7P9fyQpEr381/vcz2Tic9/RtLv97NdqvP2S1+U9PTGx/g86/llST8X2Rby/kjT3e3e2+7yoe5eKL3tLtNXd+ltcXub2IYuqO5Ge9vN0F2nu93vhbubxyvIqS6P6e73SToVWZG7P+/uD3Q/X5B0VJ0NcbOMu/ti98tq92PTv1w0s0sl/bCkT0TGF2Vmk+o80J+UJHdfd/czgZu4UdK33f3pPpatSBo1s4o6Bdzs/TVfK+l+d19296akv5J067kWPM/j+G51dkLq/vsjvTLuftTd//Z8AzpP5p7u+CTpfnXeN7RXZj7x5bg2bAubbJe/LennNy7fI7Pdhbu7nXsr5dPdbdxbqc/u0ttC91a6wLrLMVcS3d1o6N3NY4J8rstjblqgLJjZ5ZLeqM6z017Lls3sQUnHJd3r7r0yv6POA9MODssl3WNmX7fO5UB7uVLSCUl/0P3V0ifMbDywvvdKurPnoNyflfSbkr4j6XlJZ939nk0iRyTdYGYXmdmYpJv13W9g38sed3++u+7nJe0OZNP6SUlf6GdBM/s1M3tG0o9L+sU+lr9F0rPu/lBwTB/q/mrp9o2/8tomcu/ukHsrpevuhdJbabDu0tuO7d5b6cLr7v/vx1yJ7iaXz6W7eUyQ7RzfG+p7y5nZhKTPSPrIhmcn5+TuLXe/Tp1nO282s2s3ue13STru7l9PMbS3ufv1kt4p6afM7IYey1fU+TXB77n7GyUtqfPrkZ6s80byt0j60z6WnVHnGeYVkl4hadzM3ne+5d39qDq/PrlX0l+o8+u75vmW32pm9nF1xndHP8u7+8fdfV93+Q/1uO0xSR9XH6Xe4PckvUrSdersIP9zMJ+HXLs7zN52bz9tdy+I3krF6i69HcgF012OuR109+9vO7fu5jFBzvXymGZWVaeod7j7ZyPZ7q9SviLppk0We5ukW8zsKXV+bfV2M/ujPm//ue6/xyXdrc6vwTZzTNKxxLPru9Qpbz/eKekBd3+xj2XfIelJdz/h7g1Jn5X0vZsF3P2T7n69u9+gzq8yHutzXJL0opntlaTuv8cD2RAz+4Ckd0n6cXePHiA+LelHeyzzKnV2cg91t4lLJT1gZhdvFnL3F7sHibak/67e28JWyK27OfRWStndC6m30kDdpbfF6K10YXWXY24X3ZWUY3fzmCDndnlMMzN1zh066u6/1Wdml3X/0tLMRtXZcB893/Lu/jF3v9TdL1fnZ/myu2/6zK972+NmtuPlz9U5mX3TvxZ29xckPWNm+7vfulHSt3r/VJKk29THr3q6viPpLWY21r0Pb1TnXLLzMrPd3X8vk/SewLqkzuP/ge7nH5D054Fs38zsJkm/IOkWd1/uM3N14stbtMm2IEnu/rC773b3y7vbxDF1/mjlhR7r2Zv48lb12Ba2SC7dzaO3UrruXmi9lQbqLr0tRm+lC6i7HHP/Ad3Nubse+Iu+tB/qnCvzd+r8Ve3H+8zcqc7L4I3uHfDBPjL/TJ1fI31T0oPdj5t7ZF4v6RvdzBFJvxj4ub5f/f8l/JXq/ErkIUmPBO6H6yQd7o7vzyTN9JEZk/SSpKnAz/Ir6myYRyT9oaSRHsv/b3V2HA9JujHyOEq6SNKX1Hn2+yVJs31kbu1+vibpRUlf7CPzuDrn4b28LWz869hzZT7TvQ++Kel/SLoksl3qHH81fZ71/KGkh7vr+ZykvXl0MfoR7W4RetvN99XdC6233UzP7tLbYve2O/4Lrrv99ra7LN2luwN1l0tNAwAAAAlcSQ8AAABIYIIMAAAAJDBBBgAAABKYIAMAAAAJTJABAACABCbIAAAAQAITZAAAACDh/wFnC6xWC2TTMQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "W = som.get_weights()\n", + "plt.figure(figsize=(10, 10))\n", + "for i, f in enumerate(feature_names):\n", + " plt.subplot(3, 3, i+1)\n", + " plt.title(f)\n", + " plt.pcolor(W[:,:,i].T, cmap='coolwarm')\n", + " plt.xticks(np.arange(size+1))\n", + " plt.yticks(np.arange(size+1))\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that the two varibles that ranked first in the previous methods have almost identcal planes. This is a hint that they are strongly dependent, so having both of them in a model is redundant. We are hoping that a SOM based selection can prevent that. Let's define the algorithm, and perform the selection." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def som_feature_selection(W, labels, target_index = 0, a = 0.04):\n", + " \"\"\" Performs feature selection based on a self organised map trained with the desired variables\n", + "\n", + " INPUTS: W = numpy array, the weights of the map (X*Y*N) where X = map's rows, Y = map's columns, N = number of variables\n", + " labels = list, holds the names of the variables in same order as in W\n", + " target_index = int, the position of the target variable in W and labels\n", + " a = float, an arbitary parameter in which the selection depends, values between 0.03 and 0.06 work well\n", + "\n", + " OUTPUTS: selected_labels = list of strings, holds the names of the selected features in order of selection\n", + " target_name = string, the name of the target variable so that user is sure he gave the correct input\n", + " \"\"\"\n", + "\n", + "\n", + " W_2d = np.reshape(W, (W.shape[0]*W.shape[1], W.shape[2])) #reshapes W into MxN assuming M neurons and N features\n", + " target_name = labels[target_index]\n", + "\n", + "\n", + " Rand_feat = np.random.uniform(low=0, high=1, size=(W_2d.shape[0], W_2d.shape[1] - 1)) # create N -1 random features\n", + " W_with_rand = np.concatenate((W_2d,Rand_feat), axis=1) # add them to the N regular ones\n", + " W_normed = (W_with_rand - W_with_rand.min(0)) / W_with_rand.ptp(0) # normalize each feature between 0 and 1\n", + "\n", + " Target_feat = W_normed[:,target_index] # column of target feature\n", + "\n", + " # Two conditions to check against a\n", + " Check_matrix1 = abs(np.vstack(Target_feat) - W_normed)\n", + " Check_matrix2 = abs(np.vstack(Target_feat) + W_normed - 1)\n", + " S = np.logical_or(Check_matrix1 <= a, Check_matrix2 <= a).astype(int) # applie \"or\" element-wise in two matrices\n", + "\n", + " S[:,target_index] = 0 #ignore the target feature so that it is not picked\n", + "\n", + " selected_labels = []\n", + " while True:\n", + "\n", + " S2 = np.sum(S, axis=0) # add all rows for each column (feature)\n", + "\n", + " if not np.any(S2 > 0): # if all features add to 0 kill\n", + " break\n", + "\n", + " selected_feature_index = np.argmax(S2) # feature with the highest sum gets selected first\n", + "\n", + " if selected_feature_index > (S.shape[1] - (Rand_feat.shape[1] + 1)): # if random feature is selected kill\n", + " break\n", + "\n", + "\n", + " selected_labels.append(labels[selected_feature_index])\n", + "\n", + " # delete all rows where selected feature evaluates to 1, thus avoid selecting complementary features\n", + " rows_to_delete = np.where(S[:,selected_feature_index] == 1)\n", + " S[rows_to_delete, :] = 0\n", + "\n", + "# selected_labels = [label for i, label in enumerate(labels) if i in feature_indeces]\n", + " return selected_labels, target_name" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Target variable: democracy_index\n", + "Selected features ['functioning_of_government', 'political_participation', 'civil_liberties', 'political_culture']\n" + ] + } + ], + "source": [ + "selected_features, target_name = som_feature_selection(W, feature_names, 0, 0.04)\n", + "print(\"Target variable: {}\\nSelected features {}\".format(target_name, selected_features))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/HandwrittenDigits.ipynb b/examples/HandwrittenDigits.ipynb new file mode 100644 index 0000000..d4f0552 --- /dev/null +++ b/examples/HandwrittenDigits.ipynb @@ -0,0 +1,113 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we will see how to train a SOM to create a map of hand-written digits using the UCI ML hand-written digits datasets.\n", + "\n", + "First, we'll 1) load the data using the sklearn wrapper, 2) scale the data, 3) train the som." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from sklearn import datasets\n", + "from sklearn.preprocessing import scale\n", + "\n", + "# load the digits dataset from scikit-learn\n", + "digits = datasets.load_digits(n_class=10)\n", + "data = digits.data # matrix where each row is a vector that represent a digit.\n", + "data = scale(data)\n", + "num = digits.target # num[i] is the digit represented by data[i]\n", + "\n", + "som = MiniSom(30, 30, 64, sigma=4,\n", + " learning_rate=0.5, neighborhood_function='triangle')\n", + "som.pca_weights_init(data)\n", + "som.train(data, 5000, random_order=True, verbose=True) # random training" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Not that each input vector for the SOM represents the entire image obtained reshaping the original image of dimension 8-by-8 into a vector of 64 elements. The images in input are gray scale.\n", + "\n", + "We can now place each digit on the map represented by the SOM:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(8, 8))\n", + "wmap = {}\n", + "im = 0\n", + "for x, t in zip(data, num): # scatterplot\n", + " w = som.winner(x)\n", + " wmap[w] = im\n", + " plt. text(w[0]+.5, w[1]+.5, str(t),\n", + " color=plt.cm.rainbow(t / 10.), fontdict={'weight': 'bold', 'size': 11})\n", + " im = im + 1\n", + "plt.axis([0, som.get_weights().shape[0], 0, som.get_weights().shape[1]])\n", + "plt.savefig('resulting_images/som_digts.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(10, 10), facecolor='white')\n", + "cnt = 0\n", + "for j in reversed(range(20)): # images mosaic\n", + " for i in range(20):\n", + " plt.subplot(20, 20, cnt+1, frameon=False, xticks=[], yticks=[])\n", + " if (i, j) in wmap:\n", + " plt.imshow(digits.images[wmap[(i, j)]],\n", + " cmap='Greys', interpolation='nearest')\n", + " else:\n", + " plt.imshow(np.zeros((8, 8)), cmap='Greys')\n", + " cnt = cnt + 1\n", + "\n", + "plt.tight_layout()\n", + "plt.savefig('resulting_images/som_digts_imgs.png')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/HexagonalTopology.ipynb b/examples/HexagonalTopology.ipynb new file mode 100644 index 0000000..cd6e5b1 --- /dev/null +++ b/examples/HexagonalTopology.ipynb @@ -0,0 +1,696 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we will see how to plot an hexagonal map that reflects the results of the training process. This example is an extension of BasicUsage.ipynb. Only the plotting section has new code." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " Loading BokehJS ...\n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "\n", + "(function(root) {\n", + " function now() {\n", + " return new Date();\n", + " }\n", + "\n", + " var force = true;\n", + "\n", + " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", + " root._bokeh_onload_callbacks = [];\n", + " root._bokeh_is_loading = undefined;\n", + " }\n", + "\n", + " var JS_MIME_TYPE = 'application/javascript';\n", + " var HTML_MIME_TYPE = 'text/html';\n", + " var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", + " var CLASS_NAME = 'output_bokeh rendered_html';\n", + "\n", + " /**\n", + " * Render data to the DOM node\n", + " */\n", + " function render(props, node) {\n", + " var script = document.createElement(\"script\");\n", + " node.appendChild(script);\n", + " }\n", + "\n", + " /**\n", + " * Handle when an output is cleared or removed\n", + " */\n", + " function handleClearOutput(event, handle) {\n", + " var cell = handle.cell;\n", + "\n", + " var id = cell.output_area._bokeh_element_id;\n", + " var server_id = cell.output_area._bokeh_server_id;\n", + " // Clean up Bokeh references\n", + " if (id != null && id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", + " }\n", + "\n", + " if (server_id !== undefined) {\n", + " // Clean up Bokeh references\n", + " var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", + " cell.notebook.kernel.execute(cmd, {\n", + " iopub: {\n", + " output: function(msg) {\n", + " var id = msg.content.text.trim();\n", + " if (id in Bokeh.index) {\n", + " Bokeh.index[id].model.document.clear();\n", + " delete Bokeh.index[id];\n", + " }\n", + " }\n", + " }\n", + " });\n", + " // Destroy server and session\n", + " var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", + " cell.notebook.kernel.execute(cmd);\n", + " }\n", + " }\n", + "\n", + " /**\n", + " * Handle when a new output is added\n", + " */\n", + " function handleAddOutput(event, handle) {\n", + " var output_area = handle.output_area;\n", + " var output = handle.output;\n", + "\n", + " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", + " if ((output.output_type != \"display_data\") || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n", + " return\n", + " }\n", + "\n", + " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", + "\n", + " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", + " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", + " // store reference to embed id on output_area\n", + " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", + " }\n", + " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", + " var bk_div = document.createElement(\"div\");\n", + " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", + " var script_attrs = bk_div.children[0].attributes;\n", + " for (var i = 0; i < script_attrs.length; i++) {\n", + " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", + " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", + " }\n", + " // store reference to server id on output_area\n", + " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", + " }\n", + " }\n", + "\n", + " function register_renderer(events, OutputArea) {\n", + "\n", + " function append_mime(data, metadata, element) {\n", + " // create a DOM node to render to\n", + " var toinsert = this.create_output_subarea(\n", + " metadata,\n", + " CLASS_NAME,\n", + " EXEC_MIME_TYPE\n", + " );\n", + " this.keyboard_manager.register_events(toinsert);\n", + " // Render to node\n", + " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", + " render(props, toinsert[toinsert.length - 1]);\n", + " element.append(toinsert);\n", + " return toinsert\n", + " }\n", + "\n", + " /* Handle when an output is cleared or removed */\n", + " events.on('clear_output.CodeCell', handleClearOutput);\n", + " events.on('delete.Cell', handleClearOutput);\n", + "\n", + " /* Handle when a new output is added */\n", + " events.on('output_added.OutputArea', handleAddOutput);\n", + "\n", + " /**\n", + " * Register the mime type and append_mime function with output_area\n", + " */\n", + " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", + " /* Is output safe? */\n", + " safe: true,\n", + " /* Index of renderer in `output_area.display_order` */\n", + " index: 0\n", + " });\n", + " }\n", + "\n", + " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", + " if (root.Jupyter !== undefined) {\n", + " var events = require('base/js/events');\n", + " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", + "\n", + " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", + " register_renderer(events, OutputArea);\n", + " }\n", + " }\n", + "\n", + " \n", + " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", + " root._bokeh_timeout = Date.now() + 5000;\n", + " root._bokeh_failed_load = false;\n", + " }\n", + "\n", + " var NB_LOAD_WARNING = {'data': {'text/html':\n", + " \"
\\n\"+\n", + " \"

\\n\"+\n", + " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", + " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", + " \"

\\n\"+\n", + " \"
    \\n\"+\n", + " \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n", + " \"
  • use INLINE resources instead, as so:
  • \\n\"+\n", + " \"
\\n\"+\n", + " \"\\n\"+\n", + " \"from bokeh.resources import INLINE\\n\"+\n", + " \"output_notebook(resources=INLINE)\\n\"+\n", + " \"\\n\"+\n", + " \"
\"}};\n", + "\n", + " function display_loaded() {\n", + " var el = document.getElementById(\"1001\");\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS is loading...\";\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " if (el != null) {\n", + " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", + " }\n", + " } else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(display_loaded, 100)\n", + " }\n", + " }\n", + "\n", + "\n", + " function run_callbacks() {\n", + " try {\n", + " root._bokeh_onload_callbacks.forEach(function(callback) {\n", + " if (callback != null)\n", + " callback();\n", + " });\n", + " } finally {\n", + " delete root._bokeh_onload_callbacks\n", + " }\n", + " console.debug(\"Bokeh: all callbacks have finished\");\n", + " }\n", + "\n", + " function load_libs(css_urls, js_urls, callback) {\n", + " if (css_urls == null) css_urls = [];\n", + " if (js_urls == null) js_urls = [];\n", + "\n", + " root._bokeh_onload_callbacks.push(callback);\n", + " if (root._bokeh_is_loading > 0) {\n", + " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", + " return null;\n", + " }\n", + " if (js_urls == null || js_urls.length === 0) {\n", + " run_callbacks();\n", + " return null;\n", + " }\n", + " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", + " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", + "\n", + " function on_load() {\n", + " root._bokeh_is_loading--;\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", + " run_callbacks()\n", + " }\n", + " }\n", + "\n", + " function on_error() {\n", + " console.error(\"failed to load \" + url);\n", + " }\n", + "\n", + " for (var i = 0; i < css_urls.length; i++) {\n", + " var url = css_urls[i];\n", + " const element = document.createElement(\"link\");\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.rel = \"stylesheet\";\n", + " element.type = \"text/css\";\n", + " element.href = url;\n", + " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " const hashes = {\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\": \"T2yuo9Oe71Cz/I4X9Ac5+gpEa5a8PpJCDlqKYO0CfAuEszu1JrXLl8YugMqYe3sM\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\": \"98GDGJ0kOMCUMUePhksaQ/GYgB3+NH9h996V88sh3aOiUNX3N+fLXAtry6xctSZ6\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\": \"89bArO+nlbP3sgakeHjCo1JYxYR5wufVgA3IbUvDY+K7w4zyxJqssu7wVnfeKCq8\"};\n", + "\n", + " for (var i = 0; i < js_urls.length; i++) {\n", + " var url = js_urls[i];\n", + " var element = document.createElement('script');\n", + " element.onload = on_load;\n", + " element.onerror = on_error;\n", + " element.async = false;\n", + " element.src = url;\n", + " if (url in hashes) {\n", + " element.crossOrigin = \"anonymous\";\n", + " element.integrity = \"sha384-\" + hashes[url];\n", + " }\n", + " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", + " document.head.appendChild(element);\n", + " }\n", + " };\n", + "\n", + " function inject_raw_css(css) {\n", + " const element = document.createElement(\"style\");\n", + " element.appendChild(document.createTextNode(css));\n", + " document.body.appendChild(element);\n", + " }\n", + "\n", + " \n", + " var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\"];\n", + " var css_urls = [];\n", + " \n", + "\n", + " var inline_js = [\n", + " function(Bokeh) {\n", + " Bokeh.set_log_level(\"info\");\n", + " },\n", + " function(Bokeh) {\n", + " \n", + " \n", + " }\n", + " ];\n", + "\n", + " function run_inline_js() {\n", + " \n", + " if (root.Bokeh !== undefined || force === true) {\n", + " \n", + " for (var i = 0; i < inline_js.length; i++) {\n", + " inline_js[i].call(root, root.Bokeh);\n", + " }\n", + " if (force === true) {\n", + " display_loaded();\n", + " }} else if (Date.now() < root._bokeh_timeout) {\n", + " setTimeout(run_inline_js, 100);\n", + " } else if (!root._bokeh_failed_load) {\n", + " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", + " root._bokeh_failed_load = true;\n", + " } else if (force !== true) {\n", + " var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n", + " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", + " }\n", + "\n", + " }\n", + "\n", + " if (root._bokeh_is_loading === 0) {\n", + " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", + " run_inline_js();\n", + " } else {\n", + " load_libs(css_urls, js_urls, function() {\n", + " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", + " run_inline_js();\n", + " });\n", + " }\n", + "}(window));" + ], + "application/vnd.bokehjs_load.v0+json": "\n(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n \n\n \n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n var NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n var el = document.getElementById(\"1001\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n const hashes = {\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\": \"T2yuo9Oe71Cz/I4X9Ac5+gpEa5a8PpJCDlqKYO0CfAuEszu1JrXLl8YugMqYe3sM\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\": \"98GDGJ0kOMCUMUePhksaQ/GYgB3+NH9h996V88sh3aOiUNX3N+fLXAtry6xctSZ6\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\": \"89bArO+nlbP3sgakeHjCo1JYxYR5wufVgA3IbUvDY+K7w4zyxJqssu7wVnfeKCq8\"};\n\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n if (url in hashes) {\n element.crossOrigin = \"anonymous\";\n element.integrity = \"sha384-\" + hashes[url];\n }\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n \n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js\"];\n var css_urls = [];\n \n\n var inline_js = [\n function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\n function(Bokeh) {\n \n \n }\n ];\n\n function run_inline_js() {\n \n if (root.Bokeh !== undefined || force === true) {\n \n for (var i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n if (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n var cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from minisom import MiniSom\n", + "\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.patches import RegularPolygon, Ellipse\n", + "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", + "from matplotlib import cm, colorbar\n", + "from matplotlib.lines import Line2D\n", + "\n", + "from bokeh.colors import RGB\n", + "from bokeh.io import curdoc, show, output_notebook\n", + "from bokeh.transform import factor_mark, factor_cmap\n", + "from bokeh.models import ColumnDataSource, HoverTool\n", + "from bokeh.plotting import figure, output_file\n", + "\n", + "# display matplotlib plots in notebook\n", + "%matplotlib inline\n", + "# display bokeh plot in notebook\n", + "output_notebook()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Load, Preprocess and Training\n", + "We load the seeds dataset, normalise the data along the columns and then train our SOMs. \n", + "\n", + "> Note, we are training a hexagonal topology because we will be plotting this." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":1: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n", + " data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt',\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " [ 1000 / 1000 ] 100% - 0:00:00 left \n", + " quantization error: 0.45378615630601005\n" + ] + } + ], + "source": [ + "data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt', \n", + " names=['area', 'perimeter', 'compactness', 'length_kernel', 'width_kernel',\n", + " 'asymmetry_coefficient', 'length_kernel_groove', 'target'], \n", + " sep='\\t+')\n", + "t = data['target'].values\n", + "data = data[data.columns[:-1]]\n", + "\n", + "# data normalization\n", + "data = (data - np.mean(data, axis=0)) / np.std(data, axis=0)\n", + "data = data.values\n", + "\n", + "# initialization and training of 15x15 SOM\n", + "som = MiniSom(15, 15, data.shape[1], sigma=1.5, learning_rate=.7, activation_distance='euclidean',\n", + " topology='hexagonal', neighborhood_function='gaussian', random_seed=10)\n", + "\n", + "som.train(data, 1000, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "***\n", + "\n", + "## Plotting: matplotlib\n", + "Below, we are plotting using matplotlib to create a static hexagonal topology." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "xx, yy = som.get_euclidean_coordinates()\n", + "umatrix = som.distance_map()\n", + "weights = som.get_weights()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAIHCAYAAAD96HqjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5xcV333/77Te++zVatiy5JtuWJsWhwwEGyICWCqMRgCISGkkIQAhlAewi/lyRN6swWB2CGEgImNIRT3JnfLsvq26b3XO3N/f8zOalfSrmZ3Z1aWdN+vl17amVu+d2buPedzvuUcQZIkZGRkZGRkZGRkTg8UJ/sCZGRkZGRkZGRk+ocs7mRkZGRkZGRkTiNkcScjIyMjIyMjcxohizsZGRkZGRkZmdMIWdzJyMjIyMjIyJxGyOJORkZGRkZGRuY0QnWyL+B04IknnrhKpVJ9SpIkH7JglpGRObNoC4IQE0Xx7y644IJfnOyLkZGRAUGe525tPPHEE1dptdovj42NNfR6fU2hUMhfqIyMzBlDu90WqtWqbmpqSlOv1/9YFngyMicf2cu0RlQq1afGxsYaRqOxKgs7GRmZMw2FQiEZjcbq2NhYQ6VSfepkX4+MjIws7taMJEk+vV5fO9nXISMjI3My0ev1tbnUFBkZmZOMnHO3dhRr8di1JYn7D6SMT85kjeVGS2nUKFs7RuzlKza5ygpB6Od1ysic8nzrmW+5r5m4Jus1esVe9o+X46rbD91uf9+570sO+trOdObaQdlhICPzAkAWdyeJhtgWbnlg0nnbrlnPZKqsP3r7uMtYve7i4cQNl4+nNSo53PuC4tPWCzv/5x8/yVdyRvGtZ77l/tcn/3Xkvw/+t+eWq27ZdyKBFy/HVTf84oYts8VZHYAs8GRkZM4U5FHWSSBfbSre9q2HN37h53tHJ1Nlvcuk5e2XjvChV0zw9ktHcJk0TKbK+i/8fO/o27/98MZ8tSn/TjJnPNdMXJMdNg/XZouzuht+ccOWeDm+5OB0obAbNg/Xrpm4Jrue13qy2bRp0zl//ud/Hui+DgaD22+66SbvybwmGRmZ9UMWDetMQ2wL7925a+Kx6azFadTw/647nwf/5nf4/O9v56NXncXnf387D/7Nlfy/687HadSwayprufG7uyYaYruvMdo3vvGNY694xSs2Lnzv1ltvter1+h0f/vCHA0sdJ7P+vPGNbxwTBOFCQRAuVKlUF/r9/u1vf/vbR5LJpPJkX9t64jV6xVuuumXfiQTe0cKuFy/fapidnVXdcMMNw8PDw9s0Gs0FHo/n3Je+9KWb/uM//sPab1trZdeuXc9/9KMflT2XMjJnCLK4W2dueWDS2RV2P/rgi3n9+UE0qsU/g0al4PXnB/nRB188L/BueWDSOcjr+spXvuK4/vrrJ/72b/82/K//+q+RQdqSWTmXXXZZYXp6+ul9+/Y985WvfGX6V7/6le0973nPyMm+rvXmRAJvvYTdvn37NBdeeOHWu+++2/KpT30qvGvXrufuuuuu/a9+9atzH/nIR15wv0sgEBDNZnP7ZF+HjIzM+iCLu3WkLUnc+uiMB+Cmq7cy7jIuu/+4y8hNV28F4LZds572gOYk/MxnPuP5sz/7s7F/+Zd/mfrkJz+ZAPjqV7/q2LZt29lGo3GHw+E47zWvec2GyclJdfeY//mf/zELgnDhD3/4Q8s555xztk6nu+DCCy/ccujQIfUdd9xh2rJly1aDwbDjFa94xcZYLDbvYbrnnnsMl19++Sa73X6eyWTaceGFF2751a9+tfwXIYNWq5VGRkbEiYmJ5rXXXlu45pprMvfdd58VoNVq8dGPftTv8/nO1Wg0F2zevHnr97//fdvC4//yL//SHwgEtms0mgtcLtd5v//7vz/W3fajH/3IcuGFF26xWCznW63W86+44opNTzzxhG59P2HvLCXw1kvYAbz//e8fAXjqqaeev/HGG7PnnXde/YILLqj97d/+bfLZZ5/dA/DpT3/au3nz5q16vX6Hx+M59y1vectoKpWafxb+9V//1WkwGHb89Kc/NW/atOkcvV6/49JLL928d+9eTXef5557TnvllVdOuFyu8/R6/Y6tW7eefeutty7yDIbDYdWVV145odPpLggEAtv/5V/+5ZiB4NFh2X5cm4yMzAsXWdytI/cfSBmn0hW9y6TlNdv8PR3z6m2++Ry8+w+k+i6CPvzhDwe+8IUvBP/t3/7t0B/90R9luu83Gg3hk5/8ZGTXrl3P/dd//deBTCajetOb3rTh6OM/+9nPBv/pn/5p9p577nm+UCio3vSmN0187nOfC3zta1+bvuuuu/bt379f/9d//dfzYd58Pq9829velv71r3+977777nv+nHPOqV577bWbFgpAmeXZs2eP5re//a1VpVJJAJ/73Oc8X/va13yf/vSnQ4899thzr33ta3PXX3/9xIMPPqgH2Llzp+3rX/+675//+Z9nnnvuud0//vGPD1x88cXl7vlKpZLiT/7kT+IPPPDA87/85S/3WSyW1hve8IaNtVrtBVuufbTAu/b2a8+59vZrz1kPYRePx5X33Xef9T3veU/CarUe4w1zuVwt6FSP/uM//uPsU0899dwtt9xy+MknnzTeeOONi7x6jUZD+OIXv+j/5je/OXn33XfvLRQKqhtvvHG0u71QKCiuuuqqwp133rl/165de66++ursu971roknn3xyXny/7W1vG5uentbdfvvt+/7zP//z4L//+7+7wuHwsiKsH9cmIyPzwkWull1HnpzJGgGuOsd7TCh2KbQqJa86x8e/PzLDkzNZ40s3u8snPqo3HnjgAcvdd99tvfXWWw++5S1vyS/c9pGPfCTd/Xvr1q2Nr3/96zMXXHDBOYcOHVJPTEw0u9s+/elPh1/96leXAG644YbExz/+8ZH77rvv+SuuuKIC8Ja3vCX9s5/9zN7d/5prrikutLNz584Zr9dr+/GPf2xdKC5fEHSrYle6fQBVtPfdd5/VYDDsaLfbQr1eFwA+/elPzwJ85Stf8X3gAx+IfeADH8gA/Mu//EvkwQcfNH/xi1/0/fSnP52cmprSulyu5u///u8XtFqttGnTpsZLX/rSSvfc7373u3MLbd12221Tdrt9xz333GO86qqrSv3+LP2iK/Cuvf3acwqNggrAorGIgxR2AHv27NFKksTWrVuXnd/ypptuSnT/3rJlS6NarYbe9ra3bWy1WpNKZWcs02q1hK997WvT5513Xh3gwx/+cOxP//RPx9rtNgqFgssuu6x62WWXVbvn+eIXvxi76667bLfeeqt9x44d0WeeeUZ77733Wn/xi1/sfdWrXlUG+P73vz959tlnbx/0tcnIyLxwkZ/QdaTcaCkBbAb1iXZdhE2vXnR8v9i0aVN1eHi4/vnPfz6wMCQDcP/99xuuvPLKiUAgsN1oNO64/PLLzwY4fPjwIo/ARRddNN/x+Hw+EeDiiy+ef8/r9TbT6fT8ICIcDqve9ra3jY6NjW0zm83nm0ymHZlMRj0zMyOHe5bhoosuKj766KN77r333uevv/76xMte9rL8xz/+8UQmk1Ekk0n1S17ykkUi7EUvelHxwIEDOoB3vOMdmUajIYyMjGx/85vfPHrzzTfbq9XqvFfuueee01599dXjw8PD20wm0w6fz3deu91mcnJS/k2OgyRJPXk0b7/9dvOLX/ziTV6v91yj0bjjne9850Sz2RRmZ2fnGwCNRiN1xRPA0NBQs9lsCt1imUKhoPjABz4wNDExcY7FYjnfYDDseO6554yzs7MagGeeeUavUCh42cteNi/WN2/e3HC73U2WoR/XJiMj88JF9tytI0aNsgWQqyzb7h5DrtpcdHy/8Hg8zf/5n/85+IpXvGLLy1/+8s2//e1v97vd7lahUFBcffXVm6644orCd77znUmfzycmEgnVq1/96i31en3RgECj0cwnAgpzky5rtdpF7y1cv/itb33reCqVUv393//97MaNG+s6nU561atetbnRaLzwBhpLeeBOwjx3er2+vW3btjrAJZdcMnvppZdu/qu/+qvAJz7xidhSx3R/j40bNzYPHjy4+/bbb7f87//+r+XjH//40Be+8IXA448//rzFYmlfffXVG30+X+NLX/rS9MjISFOtVks7duw4p9FovGDDsnCkeKLQKKgsGosIUGgUVDf84oYtg/TenXPOOTVBENizZ8+SeYn79+/XvPnNb9503XXXJT/zmc9EPB6P+PDDDxv+8A//cEPX8wqgVCoXJdJ2f7N2u1Md/8EPfnDo7rvvtn7+85+fPfvss+tGo7H9zne+c/zo32YlE6n369pkZGReuLzwOtTTmB0j9jLAL56L0xB7K1yriy1++Vxs0fH9ZHx8vHnPPffsq1Qqipe97GWbY7GY8umnn9blcjnVP/zDP4Rf85rXlHbs2FGLxWJ9GQg8/vjjpj/8wz9MXHfddfmLLrqoZrVaW8lkcmWuTBk++clPRr/61a/6CoWC0u12N++77z7Twu0PP/ywedOmTfNhQ4PBIF133XX573znO7OPPvro8wcPHtT96le/MsViMeXk5KTuYx/7WOwNb3hD8YILLqjl83llq9V6QXfgRxdP/PiaHz/342t+/Fyv8+CtBa/X27riiisKN998syefzx/ThqZSKeWDDz5oaDabwre//e3Z3/3d3y2fe+659UgksmJP6K5du0xvfvOb0+9+97tzl156aXXDhg2NmZkZbXf79u3bq+12m7vvvns+H/fAgQOa5Z6pfl2bjIzMCxdZ3K0jV2xylcechmqqVOfnu6M9HXPX7hipUoNxl7F6xSZX38UdwOjoaPOee+7Z12w2FS972cu2TExMNDQajfRP//RPnj179mhuu+0262c/+9lgP2yNjY3VbrvtNufjjz+uu+eeewx/8Ad/sEGtVssrcKyQ173udcWJiYnqJz7xCf8f//Efx77+9a/7vvGNbzieeeYZ7Uc+8pHA448/bvrrv/7rGHQqH//5n//Z9eijj+r37t2r+drXvuZSqVTS1q1ba263u2Wz2cRvfvObrt27d2vvuOMO0wc/+MHRo702LySWqortdR68fvD1r399WpIkzj///LNvvvlm+9NPP6198skndV/84hfd27dv33r22WfX2+02n/3sZ7179+7VfOMb33B84xvf8KzUzvj4eP2OO+6w3X///YZHH31Uf+211y7y2p133nn1l7zkJYUPfehDo7/61a+MDz74oP6d73znmFarXXL02K9rk5GReeEii7t1RCEIvPWSkQTAZ362h8nU8lptMlXmMz/bA8B1Fw8nBrnW7PDwsHjPPffsA3j5y1+++ctf/vLkXXfdZduxY8e2z3/+84EvfvGLs/2w8+1vf3uqXC4rLr/88q3veMc7NrzrXe9KBYPBRj/OfabxJ3/yJ/Ef/vCHruuuuy73wQ9+MPapT31q6MILLzznzjvvtO3cufNQNxHfbre3vve977muvPLKLTt27Djn9ttvt3/ve987dNZZZzWUSiXf/e53D+/du9dw4YUXnvORj3xk9NOf/nR4Ybj9hcSJpjtZL4G3devWxmOPPfb8S1/60sJNN900dPHFF59z1VVXbb7jjjtsX/rSl6YvvfTS6mc/+9nZr33ta97zzz9/286dO12f/exnQyu186UvfWnW5XKJr3zlK7dcffXVmy655JLyRRddtCi/8gc/+MHk0NBQ43Wve92Wa6+9dtOb3/zmzHLPVL+uTUZG5oWLIA1o7rQzhaeffnrqvPPOS/W6f0NsC2//9sMbd011JjK+6eqtvGabf1H1bF1scdfuGJ/52R7S5QYXj9kLP7jxRQflNWZfIMhry54UVjKP3XrOeSdzhKefftp13nnnjZ3s65CROdORCyrWGY1KIX37+osP3fjdXRO7prKWP73tKT5r2sOrzvFh06vJVZv88rlOKBbg4jF74dvXX3xIFnYyZzq3H7rd3qtY63rwugLv9kO329937vvk5bdkZGTOCGTP3RpZqeeuS0NsC7c8MOm8bdesZzJV1h+9fdxlrF538XDihsvH07Kwk5Hp8K1nvuW+ZuKabK9euHg5rpKF3fohe+5kZF4YyOJujaxW3HVpSxL3H0gZn5zJGsuNltKoUbYuGLWXL9/oKg8yx05GRkam38jiTkbmhYEclj3JKASBl252l/u58oSMjIyMjIzMmYtcLbt22vKknjIyMmc6c+1gbxN4ysjIDBRZ3K0RQRBi1Wp1yZnqZWRkZM4EqtWqThCEJVdMkZGRWT9kcbdGRFH8u6mpKU25XNbLHjwZGZkzjXa7LZTLZf3U1JRGFMW/O9nXIyMjIxdU9IUnnnjiKpVK9SlJknzIgllGRubMoi0IQkwUxb+74IILfnGyL0ZGRkYWdzIyMjIyMjIypxWyl0lGRkZGRkZG5jRCFncyMjIyMjIyMqcRsriTkZGRkZGRkTmNkMWdjIyMjIyMjMxphCzuZGRkZGRkZGROI2RxJyMjIyMjIyOzCgRBuFkQhIQgCLuX2C4IgvCvgiAcFAThGUEQLliP65LFnYyMjIyMjIzM6tgJvHqZ7a8BNs39ez/wtXW4JlncycjIyMjIyMisBkmS7gUyy+zyeuB7UoeHAZsgCP5BX5cs7mRkZGRkZGRkBkMQmF3wOjT33kBRDdrAQlwulzQ2NraeJmVkZGRkZGROcR5//PGUJEnu7uttOy6VSoX8wO1OH973HFBb8NY3JUn65sANr5F1FXdjY2M89thj62lSRkZGRkZG5hRHEITpha9jsQRXv+fTA7e78/+8uyZJ0kVrOEUYGF7wemjuvYGyruJORkZGRkZGRmatmAxarrhg48Dt7Fz7KW4H/lgQhNuAS4G8JEnRtZ92eWRxJyMjIyMjI3NKUarUuf/JQyf7MhAE4Vbg5YBLEIQQ8ClADSBJ0teBO4HXAgeBCnDDelyXLO5kZGRkZGRkTilMxheG506SpLeeYLsEfKhvF9QjsriTkZGRkZGROaUolevc/8TJ99y9UJHFnYyMjIyMjMwpRcdzNzFwOzsHbmEwyOJORkZGRkZG5pSiVGlw/5OHT/ZlvGCRxZ2MjIyMjIzMqYcgnOwreMEiizsZGRkZGRmZUwqTQcsVO+Sw7FLI4k5GRkZGRkbmlKIzFYocll0KWdzJyMjIyMjInFJ0PHcbBm5n58AtDAZZ3MnIyMjIyMicUpQqde5/avJkX8YLFlncycjIyMjIyJxSyJ675ZHFnYyMjIyMjMwphey5Wx5Z3MnIyMjIyMicYghz/2SOhyzuZGRkZGRkZE4pTAYNV5w/PnA7OwduYTDI4k5GRkZGRkbmlKJUaXD/01Mn+zJesMjiTkZGRkZGRuaUouO5Gxu4nZ0DtzAYZHEnIyMjIyMjc0pRqjS4/6npk30ZL1jOaHEnSRLpdJpwJIrFbGJoaAi1Wr1u9jOZDDOhMCajgZHhYTQazbrZzuVyTM+G0Ou0jAwPo9Pp1s12oVBgemYWtVrN6Mgwer1+3WyXSiWmpmcQFAJjIyMYjcZ1s12pVJicmqHVbjM+OozZbF4329VqlamZGer1JhvGRrBYLOtmu16vMzU9Q6laZWJ0BJvNtm62G40GMzOz5IolNowO43A41s12s9lkNhQmk8sxOhTE5XIhrNNamKIoEo5ESKezBAM+PB7PutlutVpEo1ESyRR+nxev14tCoVgX2+12m1gsRjSewOdx4/f71822JEnE43HC0Rhul5NgIIBSqVw328lkknAkit1uYygYRKU6vbt32XO3PIIkSetm7KKLLpIee+yxdbO3HKVSienpGdoIeH1+CoUChVwav8838MaoUqkwNT1DtSHi9gaolksUcmkCPs/AG6Nqtcr0zCzFSg2Xx0+9XqOQSeH3uggMuDGq1+tMz8ySK5RweAK0mk1ymTg+t5PggBujRqPBzGyIdLaAw+NDkiSyyRguh42R4cGK+m4nn0hlsTg9KBQKcqk4TpuZ0ZHBinpRFAmHI0TiKUwON2qNhmwiisNiYHRkZKCivtVqEYlGmY7E0ZgdaLRaSpkEdqOODWOjAxX17XabaCzGVCiKymRDpzdQSCew6dVsGBsdqKjvdvJToQhqgxWD2UwuGcegFtgwNjpQUd/t5Gdmw2iNFiw2O5lkHIUkMj42OlBRL0kSmUyGqZlZtHozdoeDdCpJq1ljfB1EfTabZXJ6BqVGj8PpJptJIdYqjK2DqM/n80xOz9AWVDhcPgq5NI1KkdGRoYGL+mKxyOT0NC1Jicvjo5jPUSnlGA4G1lXUDxpBEB6XJOmi7mtXcEK6+g+/OHC7Oz/1pkV2TxXOOHHXaDSYDYXIF4p4fQHsCx76eq1GNBKm2agzOjLc98ao2WwSCodJpXPY3V7sDuf8g9doNEjEwoj1KmMj/W+MuiP5WCKNzenB4TzS4DSbTVLxKI1aiZEBeBi6nXwklsBic2N3uecFrCiKpBMxquU8o0P9b4y6I/lQJI7B4sDlOSLcW60W6WScSiHLcLD/or7byU+HImhNNpxu77x4brfbZFJJyvk0wwEvgT6L+m4nPzUbRq034/D45sVzu90mm05RzqUI+tx99zB0O/mDUzO0VTpsbh+qOfEsSRLFbIZKPsWQx8XwUP9FfTab5cDkNE2FBrvbh3pOPEuSRDGXpZxNEnTbGRke7ruoz+fzHJqcpimosHt8aLVHxHMxnyOfiuGxWRgdHem7qC8Wi0xOTSNKCty+ILoF4rlYyJOKRbCZDYyM9N9T3/GIz9JstfH4ghgWiOdSsUgiFsao0zA6OtJ3Ud8dLFdqIh5/AKPJdGRbuUwiGkanUTA22n9RX6vVmJqeoVCu4vIGMZmPiOdqtUIyFkajhPHRkb6L+nq9zszsLLlCGZc3gNVqW3BdVeKxMIq2yNjoCFarta+2TwbHFXcfWAdxd5Ms7k7IyRR37XabaDRKPJHA5nDh8fqW7EyLhQLRSBi9Vs3IyNobo3a7Pe+uN5jtuL2+JTvTcrlEIhpGr1ExNjqCwWBYk+3FI3krbq9vyc602xiplTA+OoppQSO5WtuZTIap6VlUOiMub2DJzrRWq5KMRVAJLcZH+xM27I7kBZUOty+ARqM97n6Nep1kLAytBuNj/fEw5PN5Dk9N0xLUOL3+RZ38QpqNBulElHaz1rewYaFQYHJqhnpbwOkLoNMd//4Vm01SiSjtWpmxPnkYSqUSh6emKdRbWF0+dEvcv62WSC6VQKqW2DAS7Iuor1QqHJ6aJluuY3X70BuPf/+2Wi3y6SRiOc+G4UBfRH2tVmNyeppssYrN7cNoPv792xHWSWqFDCMBX19E/RGPeBmn149lQSd/rO0U+UwCv7c/or7RaDA7GyKTL+Dy+LHa7Mf9HSVJIpNOkU3FcbscfQkbdgfLyVT2mMHy0bZz2QyZZAyX3cZwHzz1RwbLKSwODw6ne8n7t5DLkk5EcfTJU98Ne0fiSax2F06XZ5m+LE8yHsFi1A9E1K8nR4u7sY1bpU/+8/cGbvfG118si7sTcbLEXSaTYWY2hFanxx8c6unhkiSJdCpFMh7F5XSsOmyYy+U6OV4qDR5/cMlO/mjbuWyGTCKGy2FddS5goVBganoGUVLgOWokvxz5BY3RanMBS6USU1Mz1MQ2bt8Q+h5FarGQJx0PY7MYV50LWKlUmJyeplITcXmDi0byy15zsUAqHsFs0DK2Sg9DN7ctX6rh8PgXjeSXveZyiXQiilGjYnxsdbmA9Xqd6ekZ0oUSdrcf8xKd/NHUqhVS8Qh6VSdsuBpR381ti6ZzGJ0eTBZbT2KtUauRS8XQK9psHB9blajvhr3DiTR6uwuLzdGT7WajTjYZQyuJbBwfXZWo74a9Q/EkRpsLm7M3gdxsNMgkYwjNGhNjI6sS9fOdfCyJ2e7CscAjvuw1N5skE1GalRIjw6vz1Hc94uFIDLPdiWuBV3pZ26JIMhGjUlx92LDrEZ8NRzGYbcsOlhfSarVIJRKUCxmGAqvz1C8cLGsMFlxef0/9QrvdJpNMUMynGPJ7V5V+szDsrdYZ8foCqNU99mXpJLlUAp/Xta65gP3kWM/dRunqD/x/A7e786Y3yuLuRKy3uKtUKkxPz9AQW/iDQUymlbvFRVEkFotSymcJBnpvjKrVKjNzuW1uXxDzKjqtTmMUo1TIMuTvvTFaOJJ3LTOSX452u006laCYTRFcQWN0dG6b1bbyTqvr3ShkkwS87p5zAZvNJqFQmHg6i93lw2bvrZNfiCRJHe9GOo7P03suYHckH4mnMNvd2Hvs5I+2nc9lKKQSeFw2hnsU9d2wdyiawGRzYnP21skfTSGXJZeK4bJbGO1R1B/JbYugNtmxOlwoVtFxlIsFiqkYbpuJsR5zAbud/OGZMAqDBZvLs6pOq1IqUkjFcJgMbBjrTdR3O/nJmTBKnRG7Z2mP+LK2yyWyiShmnYYNPYr6hZ28SmfEvYxHfDmq1QrJaCdsOLaCsGE2m2VqLrfN61/aI74ctVqVRDQCUpPx0d5zAbu5bQhqPP4A2lUM/hr1OvFYBEmsrygXsBv2brYVuH0BdPqVR1WajQbJeIRWo8L4aO+ivlwuMzU9TU2U8PqCGAwrH/yJzSaJeJRapcjoKkX9yeT4nrt/G7jdG19/kSzuTsR6ibtms0k4HCadzeHx+XEs4a5fCdVqlUg4BO0WoyPDSzZG3U4+nkhjd3lwuJZ21/dKvV4jEe00RmPLNEYLR/KWFYzkl6Mx3xgtnwvYHcnPRmKYLE4c7tV1tAvp5gI2ayXGRoZwOpcOu8TjcWZCUfRmGy5PbyP55RBFkVQ8Rq2cZ3R4aVF/dG6bc5Wd/EJarRaZZIJaKctI0L+kqO928oenZ1FoDB0vwhrDTV0PQ6WQYSSwvKjv5raJCg22Bblta7FdyKap59MM+70MBZcW9fl8noOT09QkJTa3F00PHvHlkCSJfDZNLZdi2OdeNmxYLBY5NDlNtQUOj79nj/hytgu5LMV0Ap/LvmyBT7lcZnJqmnqzjcu/uk7+aPK5LJlEFLt1+bBhpVJhamaGaq2Jx7+6wfLRFPJ5krEwFtPyuYC1Wo3pmRkKpRpunx+zZe05ZKVikWQsglGvWdZT381ty+RLOD2BVQ2Wj6ZSLpGMhTFoO+k3S4n6RqNBKBQilc3jdPtXNWA9mmqlQjwWRq2QViTqTzbH9dx98B8GbnfnJ6+Vxd2JGLS463bykWgUi82B1+fvu/s5n8sRi4QxGfWMjIyg1WrnbSeTSWZCEfQmC+4e3fUroVQskIiGMRt0jCyYQmSxu96E2+vve6J4uVwiFYug1yoZGx1dlAvYzW1TqHW4vKsbyS9HtVIhGQ+jVcL4UWHDfD7P5NQMbYUKtze4qpH8ciyXC1gsFjk8NU29LeDyBNbcyR9No14nFY+gaHemL1ko6kulEpNTM1SaLZzeAPo+dPILaTYapOIREOvH5AIuzG2zuH0YlshtWy1is0kuFUdoVpk4KhewVqsxOTVDqljG7PQumdu2WlqiSDadgOPkAnY94qlcEYvL23PYu2fbrRbZVIJGKc/Y0GJRP9/JZwrYPb4lc9tWS7vdJp2MU8yljwkbiqJIKBQimc7icPuWzG1bk+1Uknwmic+zuGpfFEUic4VgVqcbZx8GywtZmAvodTsXifruYDkcTcyFvZfObVut7Vw20/GWH1W1Px/2jsYxWR09h71XQj6XJZWIYLMMvmq/Hxzjudu0VfrkP39/4HZvvOZCWdydiEGKu0qlwsFDh1GqNPiDwYEmjrbbbZLJBJlkAr/Pi8PhYP/Bg7QkJV5/77ltq0GSJDKpJNm5/Amvx8OBg4eoi23cq3TXr8R2Lpshk4rhcdgJBgMcPHSI8gpz21ZLPtfJQ3TaLYyNjnDw0GEKpSouX7Dn3LbVUsjnSCci2CxGNoyNMTk1TSZfwub29WUkvxylYoFsIorFqGPjxAZmZmeJp3PYXD4sfe7kj6ZSLpGORzDr1GzaOEE4EiUUT2GwuTD3wYuwHLVqhVwihkWr5KzNG4knkkxHYuhsLqz2/gqMo6nXquSSMQxKOHvzRrK5HFOzEfRWJzana6DTFTUadTLxGCqpyVmbJjrTNs1GMFrtiyquB0Gz0SAZiyA2qmzeuKEzR+HMLMY5j/ggpytqNpsk4xFqlRIbxkYBODQ5hdZgweP1rdkrvRwtUSQZj1Mp5dgwNoJarWb/wcOotEbcPn9PuW2rtr2gan9sJIjBYODAocMo1Dq83gAabX8Hywtpt9ukUgkKmSQjQwF8Pt/AbK2V43ruPvSPA7e78+O/f0qKu9NmlsN0Oo3BZCEQDA7clkKhwOv1Ybc7OLB3D4IgIKj0jA6PDNy2IAg43R6sdgeH9z2HVqNBRMXI+OjA8ycEQcDucGKx2pg68DwGg55aU2Jkw+Z1yd2w2hyYLTamD+7FYs5QrDYY3XjWuti2WG2YzBZmDu8nm82SKZQZ2rB5XSZINZktGE1mwtOHyWQyxNM5hjdsWVVu20oxGE3oxzcRmZ0im80yG0vgGdu8LgnZOr0B3+gGEuHZjnd4Nox3fAvKdZicVavT4x0eJxkNk81mmQ5HcQ9vGGhH20Wj0eIbHiUVj5FMpchkc3iHxwY6cOui1mgIjIyRTiaIJ5JUq1U8/pFV5Qyv2LZaTWBolGwmTTyRRJIk7HOhyEGjVKnwBYMUCiaisThajRaTzY3D5R68baUSjy9AxWwhHA1ht1rQm+x4vIMXWgqFAo/Hh8ViJTRz6AUt7o7PqZMzuN6cNuIOQKVe34+zcBS73rOBq1Sq+ftaqVSta2KsUqlEUHTsKdbZtkKhmBc1SqVy3W13RY1CoVi3me+hI6wX2V7HajdBEFB17S24jvVioZhbD2F3tO1udONk2IaO7ZPSvjQbJ812Y/7v9VsxqGv7eH+vB0rlyexP1vd77gcmg4Yrzh28Q2XnwC0MhtNK3K2G7z88xY8eD1GptzBolfzBhUO840Vj62L7UKLEo1NpyvUWRq2SS8acTHgGG9rscve+BHc+G6VYFzFrVbx2u5+Xb/Gsi+1DyRKPTWUo1UVMWhUXjTmYcK/P5z6Ztu/dn+Dnu2Pztl+zzcdLN6/Pd37v/gR3LbD96nW0PZUq8+RMlkqjhUGjZMeInTHX+i37drK4/0CSXzwXp1RrYtKpueocL1dsGrwn6GRz994EP3s2QqkmYtKpuHp7gJeftT73GnSe8UcnM5TrIkatikvGz4z25UyjVGlw/zOzJ/syXrCcseLupp/u5sdPhGgflXL4f+7cy9//fC/XXjDEZ16/bSC2H5lM8617D/PETPaYbReM2HnfSzdw6bhzILa/99AkNz8wSaneWvT+b/YlMGmVvOfycd512fhAbD86meY79x/mydncMdt2DNt47xUbuGRAn/tk2v7Bw9PsfGiS8lHf+T37kxi1St592Thvf9HowGx/dxnb1w/Q9hPTWb7/8DTPhvLHbNs+ZOUdLxrlglH7QGyfTG59dJp/e3CacmPxd37v/iRGjZJ3vniUt14ymO/8ZPLdByf59v2TlOriovd/szeBSavixivGuf7Fg2lboPOMf+u+wzwxkztm2wUjNt73ktOzfTlTkT13y3NGiru3feshnpo90uEYNUpMWhWluki50aItwY8eD3EoWeIHN76or7Z/8mSIz92xh7YEBo2SK8/24jZpSZbq/Pr5OE/MZPnQDx7nE687hzec39/8wU/dvps7no3Ovx6267EbNGQrDWazVUr1Fv/6m4NMpsp86ur+CtufPhXmCz8/8rl/5ywvLpOWVKnOb/bGeXI2x4dve4K/fe1Wrjmvv5/7ZNr+3P/s4c7dR77zoF2Pw6AhU2kQzlYp11t85e6DTKXKfPx1W/tu++cnsP3VAdn++bNR/uV/99OWQK9W8pLNLpwmLelSnfv2p3g2lOdj//UMf/bKzbx6u7+vtk8mX7hzD3ftjs+/Dtr02A1qspUm4VyVcqPF1+8+zFSqwsdee/ZJvNL+ctNPn+VnzyxuWxxGDZlyt20R+ZdfH+BwqszfXdP/QfNPngzz+TsXtKtneXGbtSSLdX69N84TMzk+9O9P8Inf28rr+9yunsz25UymVG1y/7Oy524pTijuBEG4GXgdkJAkadtR2/4C+EfALUlSajCX2F9u+unueWHnMWvZecPFjLmOuM2nUiXefcsuEsU6T87kuOmnu/vmwXtkMj0v7G64fJz3XD6OUXvkJ/irq87i5gcmueWBST73P8/ht+r65sH73kOT88Lu3KCVL77xXNzmIxXFyWKNv/6vZ3gmnOdnz0QZdxn75sF7dDI93/i9+8VjXH/Z4s/9F6/cwncfmmTng1P8nzv34LPo+jbKPZm2f/Dw9Lyw2xa08Pk3bD/mO//4T55ld7jAHbujjLmMffOi/eDh6Xlhty1o4XPHsf2JOdt39tn2E9PZeWF33SXDvPXSEQyaI9/5h35H5NZHZrjt0Vn+7//ux2PRnRYevFsfnZ4XducELHzm9efgWvCdp4o1bvrpczwXKXDX7hhjLsNp4cH77oOT88Lu3CEr//jG83BbFtxrhRp/+V9P80woz+1PR9jgMvbVg/foZHpe2N3w4jFuOKpd/ehVW7jlgUlueXCKz92xB7/19GhfznRMejVXnDs8cDs7B25hMPTiudsJfBlYtIibIAjDwKuAmf5f1uD48RMhoCPs7v7oK47ZPuYycfdHX8HL/+G3JIp1/vuJUN/E3bfuPTwv7P7kdzYds92oVc2/f8sDk3z7vsN9E3c3PzAJdITdze++5JjtbrOOm999Ce/Z+SjPhPPc/MBU38Tdd+4/PN/4/dHLj/+5u+/vfHCKmx+Y7FsDeDJt73yo851vC1r45jsvPma726zjm++8mPf/2y52hwt896HJvgms7y6w/Y0lbH/jnRfzh3O2v9dH299/eHpe2L33JRuO2W7QqObfv+3RWX7w8PRpIe7+7cFpoCPsvvqOC4/Z7jLr+Oo7LuSPvv84z0UK/NtD06eFuPv2/XNty5CV795w6THb3RYd373hUq6/5RGeCeX59v2TfRV337rv8Lyw++Ml2tXu+7c8OMW37zs92pcznY7nLnSyL+MFywnL/SRJuhfIHGfT/wX+im451ynA9x+ems+x23nDsR3eQr5zfWd7S+oct1YOJUo8MZPFoOnktS3HDZePY9AoeXw6y6FEac22796XmM+x++Ibz1123y9c29leqovcvS+xZtuHkiWenM1h0HTyu5bjXZd1PvcTM1kOJdf+uU+m7Xv3J+bz3D7/hu3L7vu513e2l+ot7t2/9u98oe3PncD2Z/tseypV5tlQHr1ayVsvXT4f5rpLRtCrlTwTyjOVKq/Z9snk/gPJ+Ry7z7z+nGX3/btrOtvL9Rb3H0gO/NoGyd17E/M5dv/4xvOW3ff/m9teqovcvXft9xp0nvEnZjrP+A0naFff3W1XT4P2RQZMeg1XbB8e+L9TlVXl3AmC8HogLEnS06fS2nQ/eryj8o0a5aJQ7PGY8JgwaJRUGi1+9HhozRW0j06lAbjybO8it/3xMGlVXHmWl589E+HRqfSaK2jvnAvHDtv1i0Jzx8Nr0TFk1xPKVrnz2eiaK2gfm+qMC37nrN4+9yu2eLjj2SiPTWXWXGV2Mm3/fHcM6OS5neg791h0BG16wrkqP98dW3MV612rtH1XH2w/OVck9JLNrkWh2ONh1Kq4YrOL/30uzpMz2VO6gvYXz3XCsUGbflEo9ni4LToCNh2RXI1fPBc/pStof/ZsBJhrWyy9ty0/ezbSlwraRyc7z/iVPT7jv3OWh/95Jsqjk6d2+yIDpWqD+3fLnrulWPFEXYIgGIC/BW7qcf/3C4LwmCAIjyWTJ3eUWpnzZphO8CB26e5XOarScDV0PSluU2+ToLrM2kXHrYXi3MjabuhtlnXH3H7Fo6reVkN3VO/q8XO75z730RV3p6ptR4/fud2oPi1sV+a8V84ev3OnUbPouFOVUq0JgN3Q23xh3Wexe9ypSqk2d68Ze2xbjN3PvfZ7DaA8d892n90T0W1/y6d4+yLTRViHf6cmq/HcTQDjQNdrNwQ8IQjCJZIkxY7eWZKkbwLfhM7yY2u41jVj0HYmX+314eru1z1uLRjnzpEs1XvaP1WsLzpuLZjnRGq20jjBnh0yc/uZexTBy9EVyKkeP3dy7nP3KsBf6LYzPX7n2XLztLBt0HTu13SP33m63Fh03KmKSdcRddlKb2Kt+yx2jztVMenm7rVyj21Lufu5+zNRQ9dj1n12T0S3/T2Rp60XTmb7ItMNyw4N3M7OgVsYDCu+yyRJehaY96cLgjAFXHQqVMv+wYVD/J8791JutJhKlZYNzR5KlOa9CX9w4dpvoEvGOkm0v34+zl9dddayjUupLvLrvfFFx62F127385t9CWazVZLF2rKhunihRihbnT9urVw01lk66Dd74/zFK7ec8HP/di7Pr3vcqWr7Ndt83LM/SbiH7zxRqBHOVeePWyuvXqXtV/fB9o6RTmHEfftTfOh3xGVDs+W6yP37U4uOO1W56hwv9+5PEs5VSRVry4Zmk4UakVxt/rhTmau3B/jN3rm2pVBbNjS7sG25enugL/YvGe88q7/eG+ejV534Gf/NXK5f97i1cDLbFxk5LHsiThiWFQThVuAhYIsgCCFBEN47+MsaDO940Rhzq2bx7lt2Lbvve7/b2a4U6MuKFRMeExeM2Kk0WvOVq0txywOTVBotLhy192XFipdv8WCa8wD+9X89s+y+H/txZ7tJq+rLihUTbhM7hm1UGq35Cs6l+N5Dnc99wYi9LzkpJ9P2Szd75r2uH//Js8vu+4mfdrabtMq+rBqx0PYnTmD7k322PeYysn3ISrXZ4tZHli+kv+3RGarNFucOWU/pfDuAKza5Mc55H2/66XPL7vup2zvbjVrlKZ1vB/Dyszzznqi//K+nl933r+a2m7Sqvq1YMeE2ccFI5xm/5QTt6s5uu3oatC8yc567bUMD/3eq0ku17FslSfJLkqSWJGlIkqTvHLV97FTw2nW59oLOj5Uo1nn5P/z2mGrUQ4nS/DQoAL9/Qf9+3Pe9dAMKoSPevvSbA8eEh0t1kS/95gC3PDCJQoAbjzONxGrpVug+E87znp2PEi/UFm2PF2rz06B09h/rm+33XtH53DsfnOKrdx//c3/17gPsfHAKhcAJq4lPFdvvnqug2x0u8P5/20XiqO88UajNT4MCnLDibiVcv8D2Hy5h+w8X2O7nqiTveNEoCqEzzcl37jt8TH5TuS7ynfsOc9ujsygEBrZCxnrzzhd3PsdzkQJ/9P3HSR71nScLtflpUADeednp8blvvGKubQnluf6WR47btnSnQVm4f79430vm2tUHp/jyEu3ql39zgFvmnvEbX3J6tC9nOqVqg/ufCw/836nKGRf8/8zrt3EwUeSp2TyJYp2rv3w/hgUrVCxM7N4xYuvrEmSXjjv5xO9t5XN37OGWByb5j10zXHmWF5dZS2puJvVKo4VCgE+87py+LkH2rsvGOZQsc8ezUZ4J5/m9L93H0IIVC7rhEoCrz/X3tbO/ZNzJx16zlS/8fA87H5zih4/N8ootnvkZ5H+7LzH/uf/2tVv7Og/UybT99heNMpkqc+fuKLvDBd7w1Qc6KxYY1WTLzflwKMDvbfP3VeR0bf98zvbvL2P7tX22fcGonY+8cjP/8r/7ue3RWX76ZIQrNrtwGjWkyw3u35+i2ux853/2ys2nxRx3AG+9ZJSpVJm7dsd5LlLgD77+EAGbbn4VmG4oFjoh8NNhjjuA6188zqFkiZ89E+WZUJ5X/797O23L3AoVC9uWa84L9H0JskvGnXz8tVv5/J17uOXBKf7jsVl+5yzP/Mo/v9l75Bn/xO+dPu3LmU7Xczdodg7cwmA448QdwL+/7zJu+ulu/vuJEC2pU6m3UNQphY7HbhBry75hxxB+m55v33eYx6ez/OyZyKLtF47aufElg1lb9u+u2caE28jND0xRqouEstVFDa9Jq+I9l48NZG3Z158fxG/VcfMDkzwxk120DBp01tR9z+XjA2n8TqbtT7xuK+MuI999qLOebzhXXSSsTANc37Vr+3vL2H7XgGy/Zrsfr0XHDx6e5plQnv99Lr5o+7lDVt5+Gq4t+7HXbmXMZeTfHpqmXG8RydUWiTqjVsk7Lzv91pb9zOu3M+E2za8te7y2ZZBry75hR5CATce375vk8Zks//PM4mf8whE7N77k9GtfzmRK1Sb3746ceMczlNNK3LVb7Z73/czrt/GZ12/j+w9P8aPHQ1TqLQxaJX9w4VDPOXbtdvu4f5+IS8edXDru5FCixKNTacr1FkatkkvGnD3n2LXb7fnpo9vt3qeReNdl47zrsnHu3pfgzmejFOsiZq2K127395xj1263kSRpxbYvGXdyybiTQ8kSj01lKNVFTFoVF405es5DkSQJae67Xsl33i/bXZuSJCFJEr3M8/j2F43y9heNcu/+BD/fHZu3/ZptvhXluXW/a2nu+1+p7bsW2H71im3Pfddz34FCceJZlC4YtXPBqJ2pVJknZ7JUGi0MGiU7RuwryrFbeI/1artfLH7GWyiVJ67qfeslHfF2/4Ekv3guTqnWxKRTc9U53hXl2HU+d+ezrqRt6wetdpvuJ+31Obv+xR3xdvfeBD97NkKpJmLSqbh6e2BFOXZHf+e9svAZf3QyQ7kuYtSquGS892d84ffcWuf2pS2trj/pByv5nl8wnNozlQwcodtJrwcXXXSR9Nhjjw3k3MVikYOHDqM3mvAHgqjVg5tiQJIkspkM8VgEl8OO0+nkwMFDKDV6PP4gGk1vcz6tlnwuSyoewWGzEPD72bf/AJJSg8cXQKtdfiLRtVIo5EnHI1jNRkaGh9h34CBiW4HbH0Sn0w/UdqlUJB0PY9JrGR8b5cDBQ9RFcPuC6A2GgdqulEskYmEMWiUbN2zg0OQkpWoTpzeAwTjYBOlatUIqHkWrgi0bJ5icniZXquHw+DGZLQO1Xa/VSMUjqGlx1uaNzIbCxLMFTE4vJot1oLabjTrZZAyNJHLOlk1EY3EiyQxGpwezdbAev2azQS4ZRyXW2bplI+lMllAsgcnhwWp39CSsV4soNskk4kj1Mls2bqBULhOKxLA5vdidroHabokiqUSMainPxPgojUaD2VAEq8ON0+0ZqLButVqkknFK+Qyjw0NIksTUTAiTzYnL7elJWK+WdrtNKpmgmE0xMhRArVZzaHIGvdmKy+MfqG1JksikkhSyCYaDfgx6PQcPT6EzmvF4A6hUg/PBdPqyFJlUHL/XzVAwOND7ay0IgvC4JEkXdV+PbT5H+uS//sfA7d74mu2L7J4qnDbiDjqNQyQSIZFM4XB7cA+gMSqVSkTDITQqJR6Pm1giSaFUZjToR5IkItE4ZrsLl8fbd9vVSoV4NIxaKeH3ekmmM6RzeUaDfpQKBeFoHIPZjsvj7XtjVKtVScYiKCSRYMBPOpsjmsywYdiPWqUiFImhNVpwefx9b4wa9TqJeBhBbDAU9JMrFAnFU4wFvRh0OmbDUdQ6Iy5voO+ivtlokIxHaDUqDAcDlMsVpqMJRvwezCYjM6EIqHS4vH7UfRb1otgkFY8h1kqMBP3U6g0mwzGGPC5sVjOz4SgthRqXN4BG29tEqr3SEkXSyRiNcoGRoJ+m2OLgTBi/24HbYWc2HKXSAqvbh7bPor7dapFLJxHLeUaDPpBg/3QYt92K3+MkHI1TqLewuX3o+izq2+02+UyKRiHDaNCHUqnkwHQIq8nIkM9DPJGkUG1g8/j7LuolSSKXTlLJpQl63Wi1Gg7NhDHotAwHfKTSGYrlKk5fEHOfRX2nk0+TT8XxuBwYDHqmZiOo1SqGAz4y2Rz5Yhm3N4DVZuu77Vw2QzoRw2m3YjabmA5FQBAYGwqQyxfI5Ao4PT6sNnvfxUc+lyWViGK3mLHbrEyGIohim42jQUqlMvF0FrvTi83h7LvtYiFPOhHBajLgdNiZDseo1OpsGR+mUq2SSGawuTw4ne6+2y6ViiRiYYw6DW6Xk3g8SblaZWxkCLe7//bWytHizjW8Wbr6T78ycLs7P/oqWdydiEGLuy61Wo3Z2VlK5Sq+QLAvjVGj0SAWCVOrVAgEfJQrVSKJFHq7G73BRDYZRUeL4aCfQqFIJl/A6fFjs699TqNms0kiHqFRKRH0+6jVG8zEEqjNDvQmM4V0HJ0kMjYUoFwuk8zksLt82PrgYWiJIsm5kfxQwIcotjgUiiEZrOjNVsrZJPp2nYmRINVajXgyjdXRHw9Dq9UinYxRKeQI+j1IwKHZKKLWjMFip5JLoWlV2TgcoCmKRONJzDY3Dpd7zcK63W6TTsYp5dIE/R2vwcGZME2NCaPVSTmfRtUosXE4gCRJzEbiGKwOHK61Dyja7TbZdIpSLkXA60Kr0XBwNkJdocNgd1EtZFHUikwM+VAqFMxGYmiMVpwe35pFvSRJ5DIpiukkPo8To0HP/ukQhZYanc1FvVRAXc+zadiPRq1iKhRF0Bmxubwo1yjqJUmimM9SySQJuO1YzGYOTIdJ10Fr89CoFFHX8mwe8nTERyhCS6XD7vah6oOoL+ZzlDMJvHYLDruNw7NhMnXQ2700qhUop9ngd3VEfThCW6nF4emPqC8VC+STMRwWAy6Hg9lIjExVxODy0azXEPMphtx27FYL4UgUSanB3SdPfalYJDXnEXe7nETjCfLVJla3j1ZLpJiK47GZcTrsRGIx2pISrz+ITr92UV8pl4hHw2jVSrweN/Fkikypitnl69wPqTguiwGv20U0FqcutvH4gxgMa586p1qpkIiFUSvA7/OSSGcIp4to7R4EhZJaJobHoifodRNPJqnURFzeIEbT2kV9vVYjEQuhpMVQwE8qm2c6nkGwuFCpNNSzcbxmDSMBH+l0hmKlhtsbxGxZu6hv1OvEY2HaYp2hgJ9iqUQilcPm8qLTG0jFw6gVEuOjI1j6YK9fHN9z98OB273xNdtOmrgTBEEBuICUJEkritWfluKuS6FQYHpmFkGpwh8Iol9FY9Rut0nE42TTSbweN0qlkqlQFKXBjN3tRak80qGViwXyyShOixG300E0HqfZAq8/iH4VjVG73SadSpLPJPG6nWg1Gg7PhmlpjNhcHpSqIx1atVyilIrhNOnwedwkkkmq9RYuXwDjKjwMkiSRSafIpeN43U4Mej2HZkJU0GJyelCpj3Ro9WqFSiaGy6hh2O8jkUxRrNRweYOrCht2R/K5VAyXw4bFbOLQTJhSW4nR4UWtOeKlatSqlNMx7DolY0N+Mtkc2UIJpyeAxWpbsW3ojOQziSgO29xIfjZCvilhdPrQLOhMm/UapXQci0pifDhAvlAkmcljc3c8DKuhWMiTSUZxmA04HQ6mwzGyNRGD04dmgYdMbDQop+MYBJGNo0GKpTLxVBaLc/Vhw3KpSCYewWLU4nG5mI3GiRZqqG0etPoj929LbFLNJDELcx6GSpXZeBK9zYXFvjrvRrVSJp+MYdWpCfg8ROJJZjNlFBY3WsOR+7fdEqnmkpilGlvGgjRFkZloAo3ZgdXhXJWwrlUr5JMxTBoFQ34f8VSGULqAyupBbzpy/7ZbLcrZBNpmmU2jAZAkZiIxtGY79lWK+nqtRiYRRSu0GQ52POKhVA6NzY3RYjtiu92imEmhqBaYGPajEARC0TgGkw2Xd3WivlGvk4xFkMQ6Q0E/hVKJSCKD0eHGvMBD1m63yafT1IsZRvwe1CoVkWgcncmCx7s6T32z0SARi9KolxkK+ClXKszGU8fcQ5IkUcikqeVTDHndGPQ6QpEoGp0Jt8+/Kk+92GySiMeoVwoMBfzUGg0Oh+Ogt2OyOxHmfkdJkqjks7SKacZ8TswmI6FIFEGtw+0NoNGs3FveEkWSyRi1Up7hgA+x1WL/TJSm1oLB5lp0D1UKOaRiijGfA4fVQjgaA6UarzeIVrdyUd9qtUgm45RzaQL+zuTZoWgcvcmO86hoTzGfI52I4rCYGB0dRtvnyMBqOK7n7iNfHbjdnX/5ynUXd4IgXAn8HXAxoAaawGPApyRJ+lVP5zidxR10HtBEIkE4EsFktePz9d4YZbMZ4tEIFrMJq8XCbCRGrS1g9wSWfLgkSSKfTlHNpxjyutDr9cyGI2j0Jjy+3sOGhXyeZCyM1WzAYbczG4lRaLSwuPxolxCpkiRRzGao51MM+1yYjUZmwxEUGj0eb6DnXMBSsUgyHsGk77jrw7EEyVIdvcOLbgmRKkkS5UIOMZ9kxOvEZjETCkeRlGrcvmDPHoZKuUQyFsagVeHzeojEksQKFfR2L7plRGqlmKeRSzDksuFy2AhHYzTbCjwryAWsVisko2E0Kgj4vCRSGSLZIjr74k7+mONKBWrZBH67Ca/LSTQWp9qUcHoDPecCdnPbVHPe33Q2x2wyh/qoTv5oauUStUwcj0VPwOsmnkhSrDZw+oI9hw0b9TqpRBSFWGdkKECuUORwNI1kdKC32JYUa41qhWYugdesZTToI55MkS5WsLh8GEzmnmyLzSbZZAyVWGdsOECxVOZAOIGos6O3Li1Sm/UqzVwCj1HFhuEAqUyWRK6IeQW5gKLYJJeMIzQqjA0FqNUbHArFaRlsGK1HOvljbDfqVDNx7BqJDXOiPp7JYXF6sfQo6lstkUwygVgpMBr0z3nEo2CwYXK4lhSKYqNBaU7UT4x0woaJdBa7u3dPfavVIp2IUy5kCfo7hQ7T4RhKoxWby72kUBSbTbKJGAqxxvhwsBM2TGVwOD04XL2F8Toe8QT5TBK/ryOIp8JRBJ15bsB6/La5JYrkknFolBkL+hFFkWg8hcXhwtmjp16SpM5gOZ3E6+kMlg/ORKgpdJiciwfLi6651aKUSaJuFpkY7oj6UDSOyeLE2WP6zXzYOx3HOxf23j8dpthWobcvHiwv/r5alLMpNI0iW0YDKASBcDSO0WLD3WMu4HzYOxnFZbdiNndSOiSlBpfXv2Tb3G63yaSSlPMpAj4PAf9gcw9PxLGeu23r5Lk7Z13FnSAIbwF+AOwFfgTEAS/wB8DZwNslSbrthOc53cVdF1EUCYfDpNIZXF4frmUao0qlQiQcQomE1+shlcmQypewugMYe/REiWKTXCJOu16aa7xFoolUJzF5mcaoVquSiEYQpCZBf8cTFU3n0Ts9mJbp5BfSaonkUwmEWonxoU4uYDgax2Rz4VomD7GT2zY3kg/4yReKTMfTqCwujNbecl26HgZlrcCGubBhKBLHYLYtGzZsNhqk4hHEudy2UrnCZDSJwuTEZOut02q325SyKYRqjokhH2qVitlIDJ3BgmsZD4MoNknGozQrRYa6uW2RBILRhsm2dCe/EEmSKGXTtMsZNgQ8GPR6pkMRlBpDx/YSor6T2xanXs7P57YdCkWRDFZM9t47rXI+S7uQZtTvwmIydnKWVNpOHuISor7danVsl3IM+b1IwP6ZCDWVqeNF6LHjqBbzCKU0G3xObFYz06EIdVTY3L4lcwGPzm1TKBTsmw5TQo/B7kah7G0AVisVoJRi3GubzwUst8C2TC5gJ/Scpp5PMeLzoNVqODAdpizoMDqW7uSPploqIOaTBJ0mfC4nkViccqOF3eNf0lMvSRL5bJpyJonf48Jo0HNoJkwVDSbX0p38MZ+7XKLSFfVznvpyTcTtWzpsKEkS+VyGTCKG22Gbz22ro8LuWfq3OsZ2pUIuGcOiVRLweUmnM5QqNdy+5cOGnUKwKDaLCZvNykw4SkUEq6f3vM16rUo+EcOoFo7kAhbKuHz+ZT31xUKeZCyK1aTH4bAzE4mRrojoHV60+t4GYM16jXImjnWBpz6dLWB3L58LWC4VScbCmA0aPG53xyOer6GxL/aIL4fYbFDNJLCqRDaNDlEql0mmszhcPuzL5AJWyiXisTA6tQKvx0MylaZQqeNcQTFWs9kkFY/QqlcYHx3G4RhsQdFSHNdz92fr4Ln7i/X13AmC8DywX5Kk1x9n20+ALZIknX3C85wp4q5LtVplZmaGar2JP7C4MWo2m8SiESqlIn6fl3q9QSieRG91YllmNL0ctWqFXCKKQS0w5PeRyWbJFyu4fYvDhi1RJBGPUi3lCfo77vrJcAyVyYbFsbocska9Rj4Rw6SSGAn6yRcKZHJFHHOj/HnbrRbpZIJSIUPQ18ltOxyK0tJYOl6EVYzWmo065XQCo0Jkw3AnFzCR7uQCLgwbzue25dMEfR4U3dw2tQmTw70o7N0rYrNJKRNHL9XZuCAX0OLw4liQC7iwSs3n6eS2HZrLbTM5V5dD1hJFiuk42laViblcwEgsidHmxO488jt2BUYhk8Dn7uS2HZwJUUWD0entuZNfZLslUkonUTdLTCzMBbTYcbi9i2wXclnyqRgepx2L2cTBmTDZpgKdzYNqFTlk7XaLSjaNrllk00inwGcqFEVhsHQ8MgvuoVI+R2lBbtuhmTCJShuNzYN6FTlkUrtNJZ9G2yhw1minwGepXMBysdDJ47IZcc+FvZMVEZ3duyjs3bNtSaKcT6MoZ5gIejHodUyHIghaA46jcgErpRLZRBSrUYvX7SIcS5Aq1dE7l/aIn9B2LotYSDPmd2EyGghFoijU+k6UYMHvWCmXScbC6DQKfB4PiWSadKmC1d27l/Vo290cRb/DhnUuF1Ch0uLxL84F7BaCqRQSfp933su6lorrUiFPKRXHa5/LBYzGEFHg9S3OBazXasSjYRSSSMDvI5MrMJvMorIu7xFfjmqpSCMXx2cz4fe4iEbjVMU2bt/iXMBGvU4yHoa5QrB8scShSApMDgyW1RWG1CtlGrk4fqueIZ+HRDJFtS7iOUrUN5sN4rEIzVqZ4WCASqVCLJnB4vCsOh+6WimTjEXQqxWMj41g6kPu4Uo4Vtxtka7+s68N3O7Ov7hyvcVdFXijJEl3Hmfba4D/liTphA3lGSfuuuRyOaZnZlFrtPj8AQqFAulkHLfLiUajYTocBY0Bu8eHqseR/HIU8zmKqRgeuwW7zUo0FqctKHH7AlTKZbLJOB63A4Nez+RMmLpSi829uk7+aCrFAqV0HK/NNJ8L2BDB7Qt0cn5SMdz2zkj+8GyYUkuJ0bk4t2211Molqtk4XosBv8dFPJGkUu8kJnemfFiY2xYm1wSTw7eqTv5o6tUK1UwMp7GTmJxIpiiWa7h8wU6IZq5KzWG3MRuJk6mJnby6PlR/NmpVKuk4Np2C0aCfTCZHpljC7vajUChIJ6JYDBo8Ltd82Fu3TNh7JTTrNcrpOBa1xPhQgFyhQCqTx+ru5Chl4hGM3bB3IkU4W0ZpcS8b9u4VsdmglklgU7XYNDZEsVQmnEhjsLvQ6PTH5LZNJ/NgdqEzrj1xuyU2qWYT2JRNzlqQC6izudAbjOSTcXTKNqPBAOlsnulEFoXZhWGVnfwi2y2RcjqBoV1l02hH1IeiSfRWB0azpRN6bjcZGQqQL5aYiadRWZw9e8SXo91qUUwnUC4o8AlH45isTiw2O+lkHLHe6eTLlQqhudw2ax+qP9utFtlUErGcYyTQ8dRHYnGMFjt2h5N0MkGtXCQY8NFoNJiOJtBaHKseLC+y3W6TTydpFrOM+L2o1SrC0Rg6gxWH20U2laZSynUKwVotDs5Gaet794gvR9dTTznDeMCDQX+kat/h9pLPZigXMvMe8QMzUWoqE0b76gbLR9uu5LMIlTQTfjdmk5FwJIpSo8ft8ZMv5ChkkgTmwt6hSByN0YLL41vzTAbdgWE2FcNltzIyPDTwqb+6HDcs+6X/HLjdG1+9db3F3bPAP0mStPM4294FfFSSpO0nPM+ZKu6g0zjE43HCkRgWiwmH3U44GqPcbGPzBND16K5fib1cKkm9mGbE30lgjUTjGI0G3C4nkXiCTLmBxe3rSye/kE5icopmMcOIz41+bgoRnU6Dz+MhmkgRz1fQOTzojSsfyZ/IdjmXoVXMMNatNgxF0KhVR6rUMkW0Ng+GZXLbVm27kEMsJBldkAsoKASG5qZ0CfWQ27ZayoUjuYBOu5VINI7YbjESDMyHvZUrCHuvhGqpQD2TwO/o5AJGYnHqjSajQ53ctkORJC2DHcMyuW2rpV4pIeaSBO16Al4P0USScqXayW1rNNg/E6OusXZs93nKoEatgphP4LdoGQv6iSdT5AolxocDnSldZjsJ7MY+dPLH2q5Sy8Zw6ZWMDQVIZ7Jkcp2QO8ChUJSW1ozZ4V5zJ380Cwt8xobmwoaZDEF/J+w9HY4h6E3Yl8ltW7XtRoNsIoa63WBsOEipXCaRTOP3utFqtUyGIrTVemwub18qmxciNpvkkjGUC3IBY/EkPo8Lg8HAoZkwZUm9ao/4crREkVKm46nfOO+pj+N2OrCYzRycCZNrCOgdXlR9GCwvpFPgk0Qnltk8V+ATjsaw26zYbd28YwGXr/9zkHajPdVChuGgD5/PN/DJxY/rufvzrw/UJsDOP/+d9RZ3rwf+H/AWSZIeWfD+pcAPgT+VJOknJzzPmSzuukiSxOHDk0TTOcwu77pMkNpNTN66eSOpVJqpWBK93Y1pAJ38Qlpik1wqgbJR5pzNG8kXSxycjaA0OTH2mNu2atstkVImiapRYtumDdTqDfZOzSIY7D3ntq2WTi5gElWtwNkbxwDYc3AKyWDDZF+7F2F5251cQCo5tm4YRaFU8PyhKUSNCZPD0/dOfiEdD0MKqZxl8+gQRr2Op/ceoqI0oLe7VhX2Xontaj6LopJhy4gfu83Kk3sOUJA06GzunnPbVm27mENZzrBp2IPf4+bp5/fPJbD3v5M/mkoxT7uQZNRjZzjoZ/fe/RRbSkyu/njEl7VdKlDLJAg4zGwYHeH5fQeotMC2gty2Vdsul8gnYtiNOjZNjLN3/0EKdRGrx9/3wfLR1CoV8skoVp2azRs3sP/QJPFiDb3di7bPg+Wj6VbtO3VKtm7ZyKHJGULZIiqrB12fB8tH02zUqWXj2DVw7lmbCEUiZPMlHG4/5lXOGNArjUadVDwKYo2zNm/CMMDJ5I/rufvyjwZmr8uNV5293uLuN8AWwA9McaSgYgyIAfsW7i5J0suPd57TavmxtRBOpAhs3LouSxup1Ro8wRGSsQiFQoHZWBLH0Ia+j2iPh1KlxukLkk0lyObyRJJp9J6RRVN8DMy2UoXV7aeYTZPK5MiXymgcwb57KY+HQqHE6vJRLuhIpDK02m1Udt+yVbD9s63A4vRQ1emJJJJotRraJheWAQ8iAARBwOxwU9cbCccSOGwWKhorJvvg17kUBAGDzYFoMDEVCSEIkEOP2eVdH9sWO22jhcnQYUx6HXlJi9UTGLhtAIPZSttoZiZ8AJvFRElSYw8MfpFzAIPJgt5oJjZzAKctT6WtwDuyPmvZGowm9GMTxKcOks/nKdRbeEcn1sW2zmBAO7KB5MxhCoUCiUIFa3BiXZL/NTo9muA42cgUhUKBcKaAMbA+ttUaLWrvCNl4iGKxSDqTZ3TT+vRlGo2WwPAYsfAsxWJxoOLuaErVJvfvia2bvXVEoiPgFoq4qbl/x9v3uMjibgHruWbl0fZWans6Veap2RyVhohBo+L8YRujK1ivcy2210rHQ9c+KbYX2uvMD7l+LLR3Uj+3Yn0r3RbaExTrO5WCIAjzrd96/94KhWJ+7cv1ri4UBGHepmIVv3d3PeDuutcrWQ94se31fsaEeZsKQbH+3/ucbUEhrNh2KFPhuXCealNEr1ZxTtDKkKN3sSScxDZ9ve0BmPRqrtjqG7idnQO3sBhJkq7sx3lkcXeK8dRMln9/eIbd4fwx27YFrbztRSOcPzJ4j5CMjMzpxxPTWb7/0DTPhI5tX84dsvKOy0a5YFRuX/rJ7lCOnzwRYm+0cMy2s/wW3nDBENuGbOt/YS9wTmPPXV+Qxd0pxC92R/nSrw7QlkCvVnL5JhdOk4Z0qcEDB1LsDuf5xI+f5cO/u5lXbRv8iEZGRub04efPRvm/v9w/3768dLMLp0lLulTn3v0pngnl+ZsfPcOfvWozr9nuP9mXe1pw994437n3EJIEOrWCi8ed2I0asuUGuybT7I0W+OKde7jxpRO87KzBpzOcUgjr7xFfDwRBeNmJ9pEk6R5BEEzAhZIk3XO8fWRxd4rw1Ex2Xti9+eJh3nzJMAbNkZ/vA6+Y4IePzvLDXbP866/247FoZQ+ejIxMTzwxnZ0Xdm+9dJi3XjqyqH350JUitz4yw62PzPJ/f7kfr0Une/DWyO5Qbl7YXX1+kGt2DKHXHElbeNflG7j9yRA/eyrMt+89hNOklT14CzDp1icse8vALRzDb+gkdCyVTycACmAr8Nu5v4/hhOJOEISbgdcBCUmSts2991ng9XQSpxLAuyVJiqzwA8isgH9/eGZe2L37ivFjths0qvn3f7hrllsfmZHFnYyMTE98/6HpeWH33pdsOGa7QaOaf//WR2b5/kPTsrhbIz95IjQv7N5y6bEFL3qNcv79nz0V5idPhGRxt4BSrckDp2dY9hU97rcHePlSG3vx3O0Evgx8b8F7/yBJ0icBBEH4MHAT8IEeL0hmhUynyuwO59Grlbz5kuFl933zxcP87KkIz4byTKfKKyqykJGROfOYSpV5JtRpX9566ciy+153yQg/eSLCM6E8U6lyz0UWMosJZSrsjRbQqRVcs2P5KuqrdwT53+ei7I0WCGUqKyqyOJ0x6dRcvg6eu5sHbmExkiTd2+N+JWDJfU8o7iRJulcQhLGj3luY+WlkmXJcmbXz1GwOgMs3uRaFSo6HQavi8k0ufrUnzlOzOVncycjILMuTM1kAXrr5xO2LUaviJZtd/PK5OE/OZGVxt0qemyuIu3jcuSgUezwMGhUXjzu5b3+S58J5WdzNUao1eeD5089zJwjCi4DzJEn6xoL3JoDzgSckSZrs5TyrzrkTBOHzwLuAPMu4EQVBeD/wfoCRkeVHhTLHp9IQAXCaept41WHULDpORkZGZinK9RYATlNvkyt326HucTIrp9rstM12Y29tus2gWXSczOnruQP+GqgA34D5AotfAGqgKQjC6yVJ+sWJTrJqcSdJ0seBjwuC8DHgj4FPLbHfN4FvQmeFitXaO5PpjqbTpUZP+2fKjUXHycjIyCyFUdvxHKVL9Z7277ZD3eNkVo5e3Wmbs+Xe2vRcpbHoOBko1UQeeD5+si9jEFwA/O2C138N/Bp4C/BVOmlwgxN3C/gBcCdLiDuZtXP+sA2ABw6k+MArJpYVbZW6yAMHUouOk5GRkVmKHXOFV/fuT/GhK8Vl25dyXeS+/alFx8msnHOCVgB2TaZ51+Ublg3NVhoiuybTi46TAZNOxeVnn5aeOw8wCyAIghp4GfAuSZJKgiB8n876sidkVeJOEIRNkiQdmHv5emDvas4j0xujLiPbglZ2h/P88NHZ41bLdvnhrlmqzRbbh6xyvp2MjMwJGXMZOXfIyjOhPLc+MnPcatkutz06Q7XZ4twhq5xvtwaGHAbO8lvYGy1w+5Oh41bLdvnZk2FqzTZn+S1yvt0CyjWRB09Pz10GcM/9fTmg40jhRAPoyWV+wjVDBEG4FXgI2CIIQkgQhPcCfy8Iwm5BEJ4BXgX86QovXmaFvO1FIyiEjnjbef8klfri3ItKXWTn/ZP8cNcsCoETVr3JyMjIdHnHZaMohM40J9+57zDlo9qXcl3kO/cd5tZHOu3LOy5bn7VqT2fecMEQgtCZ5uQ/Hpk+Jke60hD5j0em+dlTYQShs7/MYgRh8P9OAvcBfyMIwtXAZ4FHJUlKzm3bBIR7OUkv1bJvPc7b3+n1KmX6w/kjdv7kdzfxpV8d4Ie7ZvnZUxEu3+TCYdSQKXdWqKg2WygE+PDvbpbnuJORkemZC0bt/NmrNvN/f7mfWx+Z5SdPRHjJ5iMr4Ny3/0j78mev2izPcdcHtg3ZeO9LJ/jOvYf42VNh/ve5KBePO7EZNOQqnRUqas02ggA3vnRCnuPuKIx6FS8+e/Crdnx74BaO4ZN0cux+ApTpzDPcZQPw/V5OImdnnkJctc2P16Lj1kdmeDaU51d7Fruktw9Zeeul8tqyMjIyK+c12zvtS3dt2V8+t7h9kdeW7T8vP8uLy6SdX1v2vv3JRdvltWWXplwVeXBv4mRfRt+RJOmAIAibgG3ApCRJmQXbPtbreWRxd4px/oid80fsTKfKPDWbo9LoJECfP2yTc+xkZGTWxAWjdi4YtTOVKvPkTJZyvYVRq2THiF3OsRsQ24ZsbBuyEcpUeC6cp9oU0atVnBO0yjl2y2DUq3jxWZ6B2zkJnjskSaoDjx/9viAI48BNkiTdcKJzyOJuHglRbKJSqdfNYks8kmPRaokolL1PLTDqMq5JzLWaTbp5mS1RRKXubb6lftAWRdB20j1brfWdt6kliqASTort9gJ7C3/79aAlivMJtu3W+s5P1m6JKBDm/15v28f7ez1otUQkSZr7u4UkSeu20Hm71aI9Z7u9CttjLuOqxVy73abdbs/93aLdbqNQnDC9uy+0221ac/d3a+461su2JEnzz5bUbtNutVbUpg85DKsWcx3b4vzfLVFEqVq/7l0Um+tmq0u5JvLQvtPPcycIggG4kc7asUdPPukGXrvgWf6JJEk/Pd55ZHFHp+EdCwaYnT6I3urE6nQPtBGuV6tkExEMKgGz2cyGkQCHZqdQGW1YnO6BNkaNeo1CMo5B2cZh96HVatg/FaKutWByulAoBjd3ldhoUEzHMQkiHtcYVouJfZMz5CslTA43SuXgbseW2KSYjqOX6gQmxmi32xQPT5OrljE7vQNtCFuiSCmTQCNWGN4wilKpJHdwknysgtHpQ6Ue3ICi3WpRzCRRN4qMjg2j1+lIZg6TjYfQ2z2oNIMT9e12m2o2haZZZPOGYYwGA75EhmRiBo3Ng1qjG5htqd2mmk+jaRQ4a3wYk8mER5ciFZ1EZ/eh0ekHZ1uSKOfTKMoZNg/7MZvNuPRp0uFJDA4vWsPgPGAd21nEfJoxvxuTyYRNnyU2dRCr24fBZB6YbYBiLkspk8DvsHU+tzlHYvogZpcPo9kyUNulQp5SKo7HbsZkMjHitjIbPoTK6sZosQ3UdrVcpJGN47eZMJvNTPjdHIpOgsmJwWIbbH9SKdPIxQlY9ZjNZgJeNzOH92F1erA7XAO1Xa1USMbD6FUCNpttYHaOh0mn5sVnDT7n7lsDt3Bck9fRqZqtHrVNQ2dFsCvnXj+z1EmE7shyPbjoooukxx57bN3snQhRFAlHIkSiCUxGPX6fl2Q6Q7pQxur2970xaoki2WSMdq3EaNBPoymyfyaC1ahnw3CAdDZHNJ3H4PRg6nNj1G61yKXiCLUS40N+Wm2J5ydDGHUaNo8NkS8UmY6n5xvCfjYI7XaLYiaFsppnYiSAIAjsnwqjVivZPDpEsVxhOppCMDkw2Rx9tS212xRzKYRKng1BLxq1ioMzERQKgYnhALV6g8OROAqjHZO9vw2hJEmUsmna5Qzjfg8GvY4DUyFaksTGkQDtVpuDoSiS3obJ4eqrqJckiUo+i1hIM+ZzYjYZ2TcVotYQOXs8CMD+mQg1lQmDvf+ivlLIQSnNuM+Bw2rh4EyYUqXOlrEgKpWSvVMhyoIBvc29Iu9GL9RKBSimGPVY8bocTIejFMpVxoM+dFoNB6bDlAUdRkf/RX2tXKSZSxB0mPC5nYSicXLFMiN+NyajkUMzIaqCFpPT23dRX6uUqabjuM06Al43kXiSVK7AiM+N1WJmKhShIahweHyoNb2tRtGz7WqFXCKGWaMk6PcSS6aJprKM+Fw47TamwxGqLQU2tw+Nrr+ivl6rkk/EMKpgKOAjlc0xHUsx7HbidTuYDsfIVEUMzv6L+majTjkdw6Jqs2E4SDZf5FAoTsBtY8jnYSYSI1aoo7F70er7G2IVmw2qmQQWpcim0SDFcoXJcByn1cSw30silaJYruPyBTH2WdQ3m01S8QhivcL4yBBOp3PgXmlBEB6XJOmi7mv36FnS7//14Gs7v/WhKxbZHTSCIKSBj0uS9PXjbLsYeESSpBPPdHImijtJkkgkEsyEImiNFpweH+VSkWwiitNuwWqxMBuOUkOJw+NHo11bYyRJEvl0iko+xZDHhV6vY99UiEJbg97uplmr0i6mGPNY8TgdzESiFBsSFrcP7RobI0mSKOYy1HMphr1OTMZOJ5+qC6gtblrNBpTTjLlMBL1uQrE4qVIDg9OLVr82D4MkSZQLOcRCimG3HbvVwqHZMJm6gNbuod0SEXMJ/FY9Qz4PkXiSRKGKzuFFZzCtyTZApZinkUsQdFlwOzqdfLbexuT0IbXblDNxnHoVwwEf8VSaaLaEzu5Bb1q7qK+WitTmRvJet5OZSIx4qYHO5kVQKKhl4zh0inlRP5vMobF5MFjWPklpp5OP4bHoCXrdzEbjzGQqYHKhUKkQ80k8eoHNY0PkCkUOR9NIJgd689pFfaNaoZFL4DVpGA36iCbSzKYLCGY3Ko2WWi6JTSWyZawj6g+EEoh6O3qLfc22m/UazVwct1HFhiE/6WyOcLqA1u5BqzdQTMXRtmvzov5QKE7LYMNoW7uobzbqVDNxbOo2EyNBcvkC4VQWnd2DwWimkEkcGVi12hwKRcFow2Rfu6gXmw2KqThGQWTDcIBSqcx0PI3a4sRosVHIJBFqBTYM+QGYCcdQmqzYnWsX1mKzSTYRQyHWGBsKUKnWOBSOIxkdGMx2yvkUqlqBjcN+1Colk6EICp0Zq9uzZk99SxTJJeNQLzMa9NEUW+yfiVLXWtFb7FQLWTT1PJuHvOh0Wg7OhKkp9Jj64Klvt1qUMklUjSITw36ktsTz0xEqSiM6i5N6KY+mnmPzsBez0cD+6RDFlga9w73mFJh2u005m0TTKLJ5xI9CoeDgTIS62ojJ7qZaKnb6E58Tm8XMbDiCpNTi9gbQaNcm6tvtNplUknI+RcDrJhAIoOzz4Gwpji/uBj/F8Lc+dPl6i7sWcKkkSceIJUEQLgEelsXdcSgUCkxOz9BsC7j9QXQLxFO73SadiFMuZAj6PCiVSqZCUZQGM3a3d1WNUblYIJ+M4rAY8DidTIdjxIp11DYPGt2RkZzUblPOp9HWC2wa8aHTaDg8G6alMWJzra4xqpZLlFIxHEYdfq+bmUicmWwFweRCs0C4SZJErZhB1yiwZa4xOjgdoqrQYnKszsNQr1aoZGI49WqGAz5iiTSzmSJKqxud8cgoUpIkqoUsQjnLRMCF1Wzi0EyYUluF0eFZlYehUa9RTsewaxWMBn2kszlC6QI6mxuDebF4KhdyNPJJhl127DYLU6EI+aaAyelFvQpR32zUKadimFVtNowMkc7lmYpnUJhc6M3WRSKiWirQKiQZdllwO+zMRGJka61VexjEZoNSKoZRaDExEqBQKrNvNk5Da0d7lHBrVEqLRP1MJE6sWEdj86BZhYehJTapZpKYhTqbx4aoVKvsn03Q1FnRWxeP6hvVMmI+SdCmY9jvJRxPEsqUUVjcaFch6tstkWouiVmqsWUsSKMpMhmOgdGOxe5CWCCe6rUq5VQUx7yozxBKF1BZVyfq260W5WwCbbPMxhE/kiQxFY4hGKxYHYvFUyclIoZJJTE61BH1oVRH1BtXIerb7TbFTBJFJc/EcKeTPzQboa01Y3F6FtluNuodAagQGR8OUigWiSSzGJ1uzNaVC+t2u00+naZezDDic6NWqzkwE6Gq0GN0LBZuYrNBJZvAJDTYNDpEuVIlFE+hs7mw2FfuqZckiUImTS2fYsjrwqDXs28qRL6tRm/3oFyQN90SRWq5JGY6XuOupx7D6jz1XY94q5hm1OfEMucRzzQUaKxulAuEW7vVopZPYZaqnDUepNVqc2A2SlNrwWBbnaivFHJIxTSjXjtOm4XJ2Qi5JujtPtQLhFu71aKcS6GuF9k44kcAQtE4erMdp9u7KkFWzOfIJKPYzEZGR4bR9dkDeyKOFnfjW7ZLn/rafw/c7g1XblpvcXcYuEaSpN3H2XYe8N+SJC0903h33zNF3NXrdaZnZskWSjg8fixW25L7NhsNkvEoUrPKUMBPuVIhnEhjsLux2ntzPzfqNbLxKBqh1WnIc3kORzMw5yFZipbYpJpNYlE02DI2RLVWZyaWQG12YOkxf6LZaFBIxtDSZHw4SK5YYv9snIbOjta0tHem3RKp51NYhRpnjQ/Nhw0x9O5h6OS2JdC3a2wcHaJUqXAolKBlcKBfphNpt1pUcil0YpnNIx0Pw6GZCKLOgtnh7ilseCS3rczGkW4nHwejDbPNuaiTX2S73aaUTSFUckwM+1EqlRyYCSNqTD3nAnZz21SNIhuHA7Qlif3TERoaC0a7c8nr74p6VTXPxmEvWo2m42FQ6nvOBWy325QySRTVPBPDARQKgecnQxQkPVrb0iFXSZKoFbLoGnm2jHRE/b7JWYqSptNJ9iDqpXabSj6DupZj07AfjVrFvqkwRbTo7R4US3x3kiRRLeZQVTJMBNzYLCb2T4XINAS0dm9P3g1Jkqh2bQ95MBr0HJoJU1foMLm8yxZHlQs56rkEwy47DruVQ7NhsnXQO3oLWXYHJVIpzbjfhcVkZDIUoYYKq8uPeplcxnKxQCUTx2sz4XZ2woa5mojB1bunvpzP0cwnGZrziE+FopREAZPLu2ykoVoqUskm8Fj0+NwuIrEEhVoTq8eHvsdcwFIhTzEdx2M143TYmQpFSFVb6E+Qy1ivlqln43jNWob8XuLJFJlSDbPL23MuYKVUpJCM4TQb5jzicaKFGqqjBstH06xVaeQTeI1qxoI+kukskUwRzQo89fVKmWo2jsesY8jnmfOIl1GY3YsGy0cjNmo08yk8BgWbRoOdsHE8i2BxYVimL1hIo1ahlu1c/2iwE2kIZ4qoTzAoERt1KpkEFlWLiZEghWKJZDqHze3DautN1NdqVVKxCGpFm/HRESyWweZOLsXxPHfX/s3gPXff/KP19dz1i9Ne3LVaLSLRKJFYArPNhd3Ve8FCpVwiGYtg1KnweTxE40lylRo2dwCD6fgehtZcbptYLjAa9NFqS+ybDlNTmzHYlu7kj6ZRq9LMJfCZ1YwG/SRSaRL5MianF8MSuYDtdptCOkGrnGd8yI8gzHXy6NFae8+rEhs1xHwSv1nFxpEgqcyJPQxSu00pl4ZyjvG53Lb902HKCj16e+/FEmKjTi2bwK6R2DgSJNfNBbQsnQsoSRKlXBqplGE84Mag73TyVYUOs9PTcwW02GxQTCcw0GBiJEipXGEqmkJpdmBcIhewm8DeKnRG8maTkYMzYQqiCr3D03MIpiU2KWeTGKUam0ePeBiEE+QClgs5mrkkI55OJ39gOkys0kZt6YRBe+FoUd9qtdk/E6Whtczds8d/XqqlAlIhyYi7k05weDZCoiyitnlQa3sTKe1Wi2o+hUEss2UsABLsm45QURnRLyNM65US7UKCEacZv8dFKBojXRExOn095zZ1RTHVPBNDPhRKJfunw9SUBkyOpYVpvVKmkY3hteoZ9nuJxhOkSjVMTh96Y2+eR6ndppBNI5YyjPg86LSajjBVLS/q69UKlXR8gecxTTxXRu/wYOhRpEiSRDGbRixmGPW7MBkMTM1GEFVaHJ6lC3zqtSq5RAyDEoaDfpKZLLPJPErLsR7x5WxXCjmkUopxnwurxdTJBUSFbZlcwEa9Ti4ZQ4fI6FCgk9sWTdE2riydoFrMQynFBq8dl8PO5GyYXAOMTt+Snnqx2aCcjmMUmkyMBCmWKuwPxWnobOjMvXs96+UilFKMe2z43A6mwjGS5SZau3dJUdwSmx2vpzTnEa/VORyOI60wnaBWLtHIxfFbjfi9LmLxBJVGC5c3iMF4fGEqiiKpRIxGucDocACPx7Nu1d7H43ieu09/ffCeu3f/zrp77gTgfcCrgQrwH5Ik/WxumwWoz02Vsvx5TldxJ0kSmUyGyelZVDojLq8f9SrCi5IkkctmyKfieJx2jEYDM6EITaUWh+fICF2SJArZDOVsgoDbiWkuzyLXVKKz997JH021mINShg0+Ow6blelwlHJLwOr2zY/QJUmilM9RyyUIOO3Y5jr5eKWNagWd/NHUywUUlTQTXvt8Ynqu1sbgXNwYVYp56rkkQ05Lp8EMRUhWWmjtqwttQqcxauUTDDnM+D1OZqNx0uUGesfizrtaKlLPxfHZugnsMVKVJkZH7538MbYrZSqZzgg96PMQjiVIFKvo7V50CzrvbgK7xzK3XzROJF9FY1t9RWR3hO5ZMEKPZktoj/Iw1KsVquk4TkOnk48mUkwmC7SNTrSG1SVPz4t6k4qNo0GSmSzTiRyCuRNS7tKs16hn47j0SsaH/KSyOSbjOTC50K0yX1Fs1KnnEji1sGk0SLZQ5FA4ReuozruzXxyXVmDjaEf8zyYyqNdQCNTNWdPTZGIk0ElMjyQ7eWPWI6JebDaoZOJYlCIbR4KUKhVmYyk0VhfmVRYCic0mhXQcVbPK+Fwu4FQk0fE2L/DUi2KTUiqBrl1jYiRItVZnKpJAaXZg7jGacDQtUaSQSaCsl5kY9tNqt5kOx9BYHNicRzz1nUKwOFKtk9smzoUXWzorxlWGFzthwySaRomNc5766XAMpdGCbUFIudVqkU8laFUKjAV9SPPi34RhGY/4ckjtNpVcGm2jwJbRACqVkoMzYZpqE8YFnvp5j3gtz8Y5j/7zh0MUBT06q2tV+YpSu021kEXXzLNl2Idep+0MggUdBrtnXtRL7TblXBpVLcemYR9aTacQqKrUY1yw34psSxKVfAapnGHc58JsMjITiqDQ6HH7AqjVR/qybDpFIZPA73ESDAZRreO0KktxPM/dGz82eM/dNz647jl3nwE+DuylM6PJJuA6SZJ+KAjCN4GSJEl/fsLznI7irlQqMTk1Q63Zxu0P9BxuWI5Wq0UqEaNWzBP0e5AkiZlIHLXJhs5oopCMYTVo8HnchGIJwrkqKqt7zUUJ0H3QU+ibRTaPBlAqFEyGokg6E3qThVI6jlWnZsjvJZJIMZUs0Da6VpW/dIxtqU0tn0EvFjl71I9O2wkb1pV6dGYb1VwSm6aT25bKZJlO5o8RA6u3LVHNZ1FUMkwEPZjmwm4VQYvObKeaT81XqeUKRWYSGdQWV1+qfSVJolToeORGvJ3cmsOzEcptFTqrg1o+00lgHwlQLJU5FE2BwYFhFflLx6NSyNEuphnz2nEsyAXU2VzUCln0Up2NI0HK1Rp7Z2LU1BZ0lv5UGh8t6qdCERKVFmqLk2aliKFdZfNIgGarzf7pCDWNBYN16bD3imxXSrQLSYYdRgJeN9ORGNF8HaXFhVgtY2iX2TIaQJIkDs/GkAy9h+1PRK1SppKO4Z4X9Umi+Qpqq5tmrYK6XmDTiB+VUsmh2QiS1oTVtfbCAOhMj1RIR7FqlQz7fSTSGaLZIlpbp+hJKuUYD3rQajoevqbagKVPU/g0ajVK6RgWtcDokJ9MNkc8W8Dk9NASRaq5Tm6b0dAZsJYkDUZ7f6p9m4061Wwcq6pTiFIoFAmnshgcbpAkKtkUQY8Di6kTts82FWjXMFheSKvZoJbtFPhsHhua99QLJgeCUomYTzLstuO0WzkwHe48A1bPqgfLi2yLTeq5FDZVk7PmcgEPhmKIejtKlZpWMcXIfC5unFRVRL+Mh28ltFsipUwSnVhmYiSA1G4TiiYw2pzodHoyyRgWg5ax0RH0+sFNGbRSziDPXQj4YVfACYLwHeAcSZJeJAjCm+hMYrz9hOc5ncRdo9FgZjZEOpvHPpdX1283cr1eIxmNoGg3GQr6yReK5IslRoJ+8sUSB8NJWgY7hj5U/x1Nq9mgmk1gU7U6jVGlQiqTY2woQKlSYe9MnLragrZPnfwi22KTRiGFQ9Xk7PFhqrU6sWSGkYCHptjqJArrbB1PR5/n6Wu1RKqZZEdUjAYQW23C8QQjAR/tdpvDs1HaeitmR/+n9Gi3WhSySVT1IhNDfiRgNppg2OdBUAgcmI5QUxkx2vs/pUe73aaSSy0SFVPhGAGPE61Gw57DIXItTSevrs9zBEpSm2o+g2GBqD80G8XvsmM0dBLYc61jE9j7Y/tILt3GIU+nwGcmgsduxWLuiOyKpMLs9PV9nr5umL1ZSDHidWI1mzg8G8FmNuG0W5kKRSi3BCwu35qr6I9HKZ+jmk0QcNmwWy1Mh2OYDDpcDjsz4Si5RhvzAKb0AKgUC1Szcfx2Cx6Xg1A0hlqlwuPqeM4TpQZaW/+n9IDOFDKNfIKAzYjf4yIST6IQwOdxdwpusmWUqyy4ORHdAp+AtVPgE02kEFsthuemdJlM5MHkQmvs/xyBzXqVVj6J36JhfMhPPJWhUqvPe8RnEjlU1t7D3iuzXaOSiWPX0pnGJZenUqkyOjK07nPW9cJxPXd/uw6euw+su+euRKeg4jdzr18N3CpJkl0QhJcAd0qSdMKb8bQRd9lslgOHJjFYHDjcnoGXZ5eKBVKxCHarEb/Xy67de6koDBgGMG/X0dTnGqNhh4ENI8PsemYvWUmD1tL/Tv5omvVqx7Ni13H2xg08sft5Cm0teoe77538sbY74UCPQck5WzbxzJ59lCQVZod3oJPxwly1YTqORdli+9lbeHbvftJ1Ab19dRW9K0GcE/UWpciOc85i996DhAoNlBb3qsPevXJE1Itccu7Z7D80RShfRWVdPoG9H7RbIpVsEgs1Ltp+FtOhMLFcGYPDtyg8PhjbrbmQZZHzz95MLJEkks5jdCyd89o32+02hUySdjnHOZs2kMsXmIqn0dkGPxmv1G5TzKZplbJs3ThKtVZn30wUhck18Ml4O8I6g1BOc87EKO12i2cPhRAHNFg+2na1mENZzrB1PIhWrebJfZPUtFb0AxgsH02tlEdRzrB11IfFbOSZ/Ydpaa0Y+zBVzomolgo0c0nGfHY2T5ywCPOkcbS484yevS7i7usfePF6i7vfAndJkvTFudcXAY/SCdFeDXxdkiT/ic5z8gPpfaJYKmG0uXB5Bj9jNYDJbEFvMDJzYA9mo5GywoDZ6VsX21q9EY3OQDR6EK/TQbatQe9YH9tqrR7cI8SShxkqFim2NZg8gXWyrUPtGyUdPUyxWKTcErAHhtfHtkaLwz9CLjxJsVgkV21j8Y+ti22VWoPZM0QxPkOhUCBerKJzr49tpUqN3uEnm45SLBaJZYvofRPrklitUKowufwUUlFKpRLxVBb72NnrZFuJze0nlxQoFosk0lkcwYl1WdJJoVBgc3nJCwryxSKJTBaLb2TggwgAQaHA4nRTUqrI5gvkSxU0juBAvHXH2BYETDYnVZWaZCZLqy0hWTwYB+AxO55tg8VOQ60hnspi0Gup650D8ZgdD53JiqjREkmmkKQ2bX0nl3I90JssaHR6YqnpF7S4OxqjTsVlWwa/tuwxMwkPno8A/yMIQhL4HtCee18L/BGwq5eTnDbiDlhVo384WWLXVIZyXcSoVXHxmIMN7t68AovtrW8VkSAIR0yehAImoWv0ZNjufu+r+L1n0mWeDeWpNEQMGhXbh6yMOFeQFym8AD73Kow/NZPlkcNpqg0RvUbFpRucnD9iX4Ht413H+rDQ3rpX663B9nS6zNMzufl77bwRG6Orudc6L1Zke82czO980WWs3HY4W2FPOE+12UKvVrI1aCVo71GcLvrcKza9RhY9ZCfP9ilCuSby0P7kyb6MQfDfgAH4NvANOsuQSUAcEIHLejnJaSXuVsKuyQzfuf8wT87mjtm2Y9jGe6/YwMXjjvW/MJmB8Mxsjh/ummFPpHDMtq0BC2++eIRzh23rf2ED5pe7o9z1bJRqs7Xo/admsujVSl693c+rtp3Qw39Ks+NbHe/uk++bXRd7T81kufWRGXaH88ds2xa08tZLR1YkrGV6Y084z+1PhtgXKx6zbYvPzDU7htgaXB9P3MniRbeMAvDwDdMn+UoGj1Gn4rLN7oHbOQmeu99yrNquAfvo5N4lejnJGSnubn8qzBd+/jxtCQwaJa84y4PbpCVZqvPbvQmenM3x4due4GOvPZtrzgue7MuVWSO/2hPj6789SFsCnVrJZRNOHEYNmXKDhw6l2RMp8Jnbd/PBV2zkyq3rE95eD757/2EePpyef+02azHrVBRrIslinWqzxX8/ESKWr/Kuy0+dcMwLmV/sjvLlXx+gLYFereTyTa75e+2BAyl2h/N88r+f5U9+dzOvOuf0uddONvfuS7Dz/sNIEujUCi4ac2IzqMlVmjw2lWZfrMg/3vU8775iAy9dh1CezOAp10UePnD6ee4kSXpvP85zxom7XZOZeWF3/YvHuP6yMYzaI1/DX7xyC999aIrvPjjFF+58Hr9FL3vwTmGemc3NC7trLxzijRcOodcc+b1vfKnIfz0e4sePh/jabw/iNutOCw/eL3dH54XduMvI+1++EZvhSNFJrtLgm3cfZDJV5qFDaXxW/WnvwRs0T81k54Xdmy8e5k0XD2NYcK/94csn+M9ds/xw1yxf+tV+PGat7MHrA3vC+Xlh93vnBfi984LoNUeK2t522Rh3PB3mjqcj7Lz/MC6T9rT34J0JGLUqXrQOnruv9bDPXEXr/wOUwLclSfr7o7aPAN8FbHP7/I0kSXf2+VIXcUJxJwjCzcDrgIQkSdvm3vsHOlUbDeAQcIMkSbkBXmff+M79h+eF3R+9fOMx241a1fz7331wipsfOCyLu1OYH+6amRd277hs7Jjteo1q/v0fPx7iP3fNnBbi7q5no0BH2P3Va7ces91m0PBXr93K/3fnHiZTZe56NiqLuzVy6yMz88Lu+svHj9lu0Kjm3//hrllue2RGFnd94PYnQ/PC7g8uHjlmu16jnH//jqcj3P5kSBZ3pwHlusjD+1Mn+zIQBEEJfAV4JRACdgmCcLskSXsW7PYJOnPXfU0QhK3AncDYEue7/kQmJUnaeaLr6qXGeiedZTAW8r/ANkmSzgX2Ax/r4TwnncPJEk/O5jBolFx/nI5+Ie+6bAyDRskTMzkOJ0vrc4EyfWUmXWZPpIBOreSNFw4tu++1Fw6hUyt5LlJgJl1epyscDE/NZOdz7N5/nAHMQt73ss72arPFUzPZgV/b6cp0uszucB69WsmbLl6+gvtNFw2jVyt5Npxn+hS/10424WyFfbEiOrWC3ztBCs3vnRdAp1awL1YknK2s0xXKDBJBGPy/HrgEOChJ0mFJkhrAbcDrj9pHArpzKFmByDLnu3mJf7fM/etp/pcTeu4kSbpXEISxo9775YKXDwN/0Iuxk82uqQwArzjLsygUezxMWhWv2OLhjmej7JrK9FxBK/PC4dlQJ6H9sgnnolDs8TBoVFw24eS3exM8G8qvrIL2BcYjc+FYt1m7KBR7POxGDS6zllSxziOH06e8J6lbPNHrtn4VWTw9kwPg8k2uRaHY42HQqnjxRhe/fj7O0zO5lVXQyixiz1zRykVjzkWh2OOh16i4cMzBAwdS7Anne6+gfYHSLZ7oddvpVmRh1K1PWPar4BIEYeEEvd+UJOmbC14HgYUNSQi49KjTfBr4pSAIfwIYgd9dxuSm47znAF4LvB14Vy/X3Y+cu/cA/7HURkEQ3g+8H2Bk5FiX+XpSrosAuE29zRflMmsXHSdzalFpdH43h7G3CY7tc/t1jztVqc5dv1nX2+Nt1qpIFevzx8msnJXea07T6XGvnWy6HmqbobcJ1LuDnaOrx2VOPcq1dQvLpvowifFbgZ2SJP2TIAiXAf8mCMI2SZLaR+8oSdLh4xx/GHhMEAQF8CfAIycyuCZxJwjCx+nMu/KDpfaZU7jfhM4KFWuxt1a63rpkqd7T/qlifdFxMqcWXQ9Kptzoaf/s3H4n8ry80Ol6KYu13oRDcW7wciLv5qnA8Txx6zEVykrvtXTp9LjXTjZ6dcdbl6s0e9o/V2ksOu5U5nieuDNtKpQXbXYN3M5XT7xLGFgYFhiae28h72UuvU2SpIcEQdABLqCnaU0WcC/wZ73suOqWRRCEd9MptLhSWs81zNbAxWOdwojf7k3wF6/csqxoK9VFfrsvseg4mVOL7UOdpOmHDqW58aXisuKl0hB56FB60XGnKpducPLUTJZksU6u0lg2NJstN+YHMZduWJ8Z8U9HzhuxAfDAgRR/+PKJZUVbpS7y4MHUouNkVke3MOKxqTRvu2xs2dBstSHy+FxqjlxQcepTrok8ciB94h0Hzy5gkyAI43RE3XXA247aZwa4EtgpCMLZgA5YzTwulwE9FQGsStzNlf3+FfAySZJOmczUDW4TO4ZtPDmb47sPTR23WrbL9x6aotJoccGITc63O0UZcRrZGrCwJ1Lgvx4PHbdatsuPHw9Ra7Y4J2A5pfPtAM4fsaNXK6k2W3zz7oPHrZbt8q17DgIdT8apnm93Mhl1GtkWtLI7nOc/d80et1q2y38+Nku12WJ70Crn262RoN3AFp+ZfbEidzwdPm61bJc7no5Qa7bZ4jOf8vl2MmDSqXjRpsF77r5ygu2SJImCIPwx8As605zcLEnSc4IgfAZ4TJKk24G/AL4lCMKf0SmuePdSTjFBED51nLe1wHbgNT1cEtDbVCi3Ai+nk1QYAj5FpzpWC/zv3PIwD0uS9IFeDJ5s3nvFBj582xN898EpoFMVa1rgwSvVRb43N8+dQoD3yJO7ntK8+eIRPnP7bn78eAjoVMUu9KpUGiI/npvnTiHAm5bpHE4lXr3dz38/EWIyVeb/u3MP73vZxvmcQuh47L51T2eeu+7+MmvjrZeO8Mn/fpYf7uqEf9900TCGBW1LpS7yn4915rlTCHDdpafHvXayuWbHEP941/Pc8XSnAPH3zgss8tJXGyJ3PB3hjqcjCEJnf5lTn1JN5OGDJ38qFIC5OevuPOq9mxb8vQe4vMfTfZJjV6io0/H+fRb4Qi8n6aVa9q3Hefs7vZz8hcjF4w4+9pqz+cLPn+e7D07xn4/N8ootnvmKwd/uS1BptFAI8LHXni3PcXeKc+6wjQ+8YiNf/+1Bfvx4iDufiXLZhBO7UUN2boWKWrPze3/wFRtPiznuAF61zU80V+Xhw2kmU2X+9r+exmXWYtaqKNbF+VAsdKqJ5Tnu1s75I3b++MpNfPnXB/jhrll+9lSEF2904TRpSJcaPHgwRXXuXvuT390se0r7xNaglXdfsYGd9x/mjqcj/HpPjAvHHNgMGnKVBo9PZag12wgCvPuKDXJI9jThheK56zeSJPUlEfeMzOa95vwgfquemx84zBMzOe6Ym/C1ywUjNt5zuby27OnC72714THr+M9dMzwXKfDbvYtzWM8JWHjTabi27PVXbMBv08+vLZsq1heJujNlbdn1WlMW4KptfrwWHbc9MsOz4Ty/fj6+aPv2oJXr5LVl+85Lt3hwmbTza8s+cGCxR+dMWVv2TCik6FKqiTx84IXhuXshckaKO+h48C4ed3A4WWLXVIZyXcSoVXHxmEPOsTsNOXfYxrnDNmbSZZ4N5ak0RAwaFduHrKd8jt1yvGpbR7w9NZPlkcNpqo1OYcmlG5yywBgQ54/YOX/EznS6zNMzufl77bwRm5xjN0C2Bq1sDVoJZyvsCeepNlvo1Uq2Bq1yjt1piYDQ4yzDpxqCIKiAdwCvolNVm6azeMS/SZLUU2n4aSPuBKBRryNJ0op+8A1u06rFXKNepxsabzWbK7a9FsRmo5OWCbSbTSSpTWcKnMHTEpsIc5+1LTZpt9soFOtlW6Td6sxR1W51/lYoe5/WYMRpXLWYa7VE2q3OtCFSS6TVElEq1+cRardbtMS5Z3rub6Wqt7m94IjgWA1Su935zQUBkGg1GyjVvc3ntlYkSaLV7LZlAs1GHbWmt3kq+2FbbDQQBCMI0GjU0el7FwmjTuOqxZwkSTQbDQSjDhAQG3XUmvX5zgGajRqCWokggNioo9Hp18222Gwg6AQEQUJsNljprx20G1Yt5sRGHZSdVr3V7G1am37RajYQ5voTsbHyvmwtiI36MUleL3RMOhWXrkNY9ssDt7AYQRAMdITci4AYnQrcc4A3AzcKgvC7vRSynjbizu12UyhOMnP4AG5fAINxcN63liiSiseplfOMjw6h1+vZ4NAwG5tCZXWjNQzOdrvVopJLoW+V2TYxgsFg4GyfmUPxadoGJ1qj5cQnWSVSu02tkMHYKrJ14zAGg4EJj4Wp2CSYnBgstoHaruQzqGo5zhrxYTAYGPPYmYkcRmlxYrLYB9YQSpJEKZ+hVcww4XNhNBrZFHRzKDKJZHBgsDoGartSzEExzUa/E4PBwPbxAM9Ph6ioLOis9oGK+lopj6qaYWvAgV6vZ9vEMHsnZymrTRhsboQBivpauYhUTLLJZcVoNHL2xAgHZqapaMyYnZ4Vifr/n73/DrPtPMv78c/avfe+p5+qI9mSZUluMdiygRBMbIoNTgiGhJYfLSG/hJhAIAFMS0hoCTEBQwpuuCFjiluwcFGXLemco1Om7d776uX7x56Z0+ZM3TOSzpn7unTpzN5rrWftvdd633vdz/08724hjYZI7SqZkI9AIMCJ2WkurRQR3X7C8TR2x8ENnbI4YtCsEvW5iEYiBPx+Liyt0h72CCXSOHZB6ncLRZYYNitE3HZSiWkSsSjnF1fo1Qb4Y2kcB0jqNVVBaleJuGEqMy42kRZXaNZGeKIpHAdI6nVNRW7XiLssjs3NYrPZGIxWqTYKOEJJnG7PgcU2dA2l2yDq0Dl1fBan00lvMKRRWcYTTePexQPF7mPrjDp1vIbEqfkZFEXB7T6ch6f9YqToPPoiKaiYMH6ecWXsP7Qs6y/WXxQE4VsYL23274F/u91BhMNsUXffffdZjz/++PYb7gPtdpvl1QKC00synZ3o065lWXRaTXqtOplkHJ/Py+XVErKqM5WOEw4GuFwo01IEPJHkRAcjy7KQBl1sozYLuQTRUJCLy0V6kspcJkYiGuFyoUxloOMIJ3G4JjsYrU/yx7MxkrEolwslukOZfCJCJhlnpVShNtJxRVITf8qXh32MfoOZRJhUPEqpWqM/komF/GRSScq1BvWBjC+WxuObbNpLGg2ROjXSIR/ZVIJStU6jNyIR9jGVSVOpNyl1RjjDSTz+4ERjK5KI2qmRDrmZzqYp1RoUmz2SIR8L0zlqzTaLtS6GLzZxUq8pEka/QT7kYmE6R7XRZqXeJur3cGI2T7vXY7HSxvTH8QYjE42tqwpKt0bSY+P4bJ5Wp0ux0cHvcrIwk6M/HFGotbCHEgTCkyX1mqowaFYJ2AwWZvL0+wNKjTZup5356TyiKLFSbeAKxQlG4xONrWsavUYVl6mwMJNnOBIp1Bo47Tbmp3Koms5yuYbgjxCKJiZKrA1dp9es4dJFjs3kkRWVS8UadpvAydkcpmlxabWM5gnhjyQnqtSbhs6wXcdtiJyczaPrBudXSoDA6dkcdruN55dLiHY/3khioqTeNA2kThOPPuL0bA4EuLhawTAtTkxncDkdnFsq0rc8eCIJbBNU6i3TROq18ep97pjL47DbWC5W0E2L6UwSn9fDxZUSI8FFIJbelVK/bWzLYtRtIohdFvJpvG4X5UoVwzBJJGJM5fM4nQf3ELEXCILwxNUrRSycfrn1i//zzw887ve8fv6auAcNQRCWgD+wLOs9m7z3M8A/tSxr60XDuQXJHYBpmlQqFYqVGoFwnFgyte/BaDgc0KqWCfpcJBPjSb41UgjEM7g8HvrtBoh95qcy2GxXBiPfBAYjVRqh9RpkQx5m8xmK1TrF9hBbMInL40PstXBrA07PZnE6HJxdLNCzPLjD+x+MNEXC7DfIrU3ytWabQquPI5zC4w8y6rawix2OTaXweTw8v1xkiBtvNLnvwUhTZJROnbhH4NhMnnanS63TJxhPEwiF6XVaSN0m+VScgN/PpZUSIk6C8dS+FQZNVRi2avhtBsdm8vT6A1brbZyhBP5wlFG/i9ptMJOOEQkFubxaoqMJ+KLpfZN6Q9MYdeqEbConZqcYDEdcKNZRPRG8oRjKaIBt1GQhEx2T+tUyleFkSL1p6CjdJlG7yh0LU0iywoVCDdkVwhuKoUojGDaYTYTIphIslypU+yqOSHrfpN40DKRuA78pcnp+CkM3uFysYPkiBKIJVElE6tRIBb3k0mNS3xjI+OKZfZN60zQYtBrYlD4LU1kEYLlUxe4LEU6k0BSFXqNCyOMgn0lTa7Zo9Eb44xl8gf2RetM06bcbGMMu81MZ7DYbS8UKljtAOJFC1zX6jSpBl8BMLkuz3aHc7uOJpvAH91cgYFkWg3YTY9hhLpfC43ZxYaXECDfeaArTNJE7NWJuODado93rs1JrYw8m963UW5bFqN9GGLaZzyUJ+n08v1ykpdpxh5OAhdprEHOZnJ6fpjcYcqnUwPDF8IYi+yLWVz8sH8smiIaDXFot0dUEvNE0gs2G2K4TQOHU/DRDUeT51RqKO4J3AlkCedgbx85EScajrJYqjHQIJTM4HE66zSqCKjKfz6JqOpeLVUxvBH8kvm9SLw37aL06+ViQdCJOtVZHNyGdzeN2e2jUqwx6baZyWdLp9IvG13Y9uUvPn7G+6+f/94HH/Z3vv++wyZ0MfItlWZ/d5L03AX9hWda2A/0tSe7Woaoqq4UCrc6AaCpDOLJ7z5GqKDSqZTAUpvM5ev0BhUYb1yaqgaYq9Fs1fOjMT+foD0ZcqjQwfTG8wd0PRoamInUbhO06p+amGIxELhZraN4YvuuOZ+gacrdBxK5zci7PSJQ4X6ihuEK4g7tPG5qGjtprErGNJ/n1J3ljkwHG0HXEdh2fJXFiJoei6VwqVNA8kXHKcpeDkWkYSJ0GXkPk5FwewzBYLVdxBaNE4tcSdcPQ6TbqGNKA2XwG07S4XChjesMEY7tXGEzTYNBuYpP7HJseV5EuFiuY7tD4eFcR9fG2DQSpz8Iaqb+wUkZx+PFHk7sm9aZpInZbOJQeJ6azG4rFAO8NqsH4qb+FV+tzei63b1JvWRZyvz0+3mwGr9vN+eUSPdOJO3wtUV/f1qV0OTmdwe/1cH6pSN904dkDqbcsC6nfwSF1ODGVIuj3cXm1hIiLwHVE3bIsRr0ORr/FXDZBwO9jcbWMiINgIrNrUj8mGF20XoOZVIxwKMhKsYyMg0gyg+uqFNU4Pd9l1K6TS0QJh4IsF8qIlp1wIoNzD+msYb+L1K6TjYWJxyKsFMsMDQgnMjeQ5VG/x6hdIxsLE4uEWS1X6SkmwUQWl2f3pF4c9pHaddIRP+lEnJVSldpIwx1J4fJcmwqURwOMfp2paJBMKs5qqUpd1PBG0zdsuxPI4hC1WycbHhP1QqVGoSONH1ivS0Oq0ghz0GAm6mcqm6JYqVPsijgiKdze3ZN6VRbROnVyYQ8zuSvqu2MT9V2VRJRunXTAyUwuQ7neZKUxgGBiT/YbTZHRe3WyQScL0zma7Q61zoBAPI0/dC1RV2SJfqOK3wkzuSyN1vjB2hlK4Q3uXqnXFAWpUyXshIXpHP1+n05vSDKdJRK9tjOELMvUqiUsXWVudoZw+IWvMr6NlLsS8GOWZX1sk/e+Hfg9y7K2bXFwS5O7dQyHQ5aWV1B0SGRzeHfgYTAMg1ajhtTvkM+msWD8NO0NEdpm4pZGQ0btKsmgl2xqPHCVezLOcBLXDgYja22Sd6t9Tl6VlhjZfHjDWyuBqiSi9+tkwx5mcxlKtQbLzSH447h2MBhtNsmPUwMefLGtvUaqLKG0qyR8DuamstRbbVYbfYRQAm9g+8HIsiykXgeb1OZ4LkXA72O5WMawu4kmM1um2FVFpl2v4BVMpvNZOt0+hWYHVziJfwcKw9WT/Gw6TjgUZLFQYmjYCSYyW5r4N1Q+YY3UD0csVprgj+Hb4VO+OOhh9pvMpSPEoxEurZSoiQauSGpLNW7s16kTseucnp8ak/rVGrI7hGeHpF4RB9iGLRbSYTLJOEvFCtWBij2cwum+uRpn6DpKr0FIUDg9l0fRdC6sVlBcIXzhnSkMijjE7DeYivnJp5PjtPdQwbtNit0wdIbtBg51yPHp3Bqpr2D5QgRjO1PqZXGE2K4R9zuZyqSpNVq0hyLBxNZqnGkYdFsN9GGX2fxYaVssVsATIBxP74jUK7LEoFEl6BaYzmZotbvUugN88TT+LSbuscrXRB92mMulcTocXC6U0Z1+QvHUjryAqiIzbNYIOCzmprK0umM1jkBiSzXOsizEXgu71OF4Pr2WNiwywo1/h2lDXVUQO3VCdp3js1N0+0MuluronijuLR6ALctCHnRwSl1OTqcIBfxcWC7S0e14o6kdFfgYuobUqRO2aZyam2IoSiyW65jb+GbHKl8Pa9hkLh0jFg5xYblIUwZneGf2G9PQkbtNwjaFO+anUFWVlUodZzBGKJbY8nod9nuMWlXS0RCJWJSlQpm2bOGNp3HtwAtoGgbDTh23NuL4TA7LNKnUGoRjCZLJ9JaxB/0+tWqJgNfN7OwMnj08REwKmyp3v3AIyt33Hbpy9yGgZVnWP9/kvf8BxCzLevu2x7kdyB2Mb9Bms8lKoYTDEyCRzmzqKbAsi163Q6dRJRmLEAoGWCyUkCwHwXh6x5V6lmUx6LXR+i1mMwkCvnHKoWc48EaSNx2MpEEPhk3m01ESsSiXVko0ZRNnOIlzhym39cHILrY4lksSDQe5sFykLlk4wzcfCK+e5NOJGKvlGg1Rxx3dXcpNHPQwew1mUmES0QiLhTIt2cIdTd3UmKyIQ/Rug3zURy6dpFKr05M1IoksXv/On85Hgz79ZpV40E8yEaNQrtKSdPyxmxuTFWnEqFUjEXBt+OjqfRFvLI13Fz46eTREbFdJhcakvlipUR0ouLZQGFRZQu7USPodzOWz1Bptlho9rEAczy58dKosYvYa5CLuHZN6XVXQe3UyATsnZqdotDssVTsYvjieXaT7xmpEjUzAuZG6X2n0IJDAcxNSr2sqSqdGzGVxcm6K3mDISrWFMxTHtwsfnabIDFs1Qk6L+ancVaQ+RSAcuUlsjUGrisdUOD47xUgUKdaaeCIJQrvw0WmqSrdewWlpzE3lGAxHFOttXOEEwcjmn8HQNXrNOnZtxML02Nu2Wq3jDMQIxXaectM1jV6zilNXmJ/OMZJkVisNHMEYgZt8BsPQGTQb2NQhx2dy6IbBhdUKmjs0fmjcYWzD0JE6dXymzMnZsRfwUrGK4YkQuEna0DQNRp0GTnXAiZkcAOeXSwwFH55tHlivOY5hIPeaBK1x6t40LZ5fKSE5g/gjm/sQr35YPjWbw2G3cWG1jGTz4ouldlzxPv4MTVzqgJMzWWw2G+eXigy2+AxjVbqNR+lxcmasci8VyhhOL+FEGscOfW3rqXtt0GE2m8bpdHBxtYRs9+GPbk7qx2S8gzVsbaS9S+UKTo+PdCaPa4d+dMuyaDUbtJs10sk4uVwOxwEWFN0Mm5G77/6F/3PgcX/7+1552OQuwZjAXdjkvZNAx7KsbdelvW3I3ToMw6BULlOpNQhGE0TjV1J34mhEs1bG67KRSaWo1Js0BxK+WBrvHqtvDUOn32pgU4Ycm86iG+Y4decK4btqINRkCbVXJ+V3Mj81nuSXGz2E4O4m+athmgZSt4XXGHJqJodgEzi3VGIg+HCH49hs48FIVxX0fp2MfzzJtzpdlmtdbKGtn+S3jm0idpprKcYMdrudiytlRLsP31XKp66qSJ06UafBidkp+oMBlUYHXyxF6CYT5HawLItuq4ncbzKVTuJxu7lcKKPYPOM035rCMJ7ka3hROD4zxXAkslxtYA/GCUb2Zpa3LItht41+Vdrw4kqJgenAG72SYlyvUvObMifn8jd42/biqxmrGz0cUovjuSSRUICLKyXqkjX24znHDybjCbJBWJA5szC9YWCXnEG8ob0b9eVhD2HU4tiaF3CxWKE+GquP66R+fE028epDTs/mEQS4XKygu4I3pL13A2nYR+7UyUYDpBNxCuUqbUnHH89skHrTNBl0GjDqcmxqnPZeLlUQPEEiiZ2pXptBHA0ZNKpE/e6NAp/2SCGYuOIFtCxrrLgN2sxkx962pWIZw+EdV8Du0bwuSyKDRoWo10Uuk6LWaFLrieMxa019tCyLwdo1OZu5ck32jGuvyd1CU9YeTHx25qdy47Rhc4AjnNxQ6i3LQux3MYdN5tNxImsPmrtRvTaDripovTpJr22twKfPYqWNFYhdU+AjDXoIwxZz6QiJaITlYoWmbOKJpvdcAatrKlK7RthhcHwmT28w4mKpjuaJ4rlKfVRGAxg2mUuO/amlSo2eohNKZnfVUufa2BrdRhWHLrMwk2ckiiyWGliBKP7wlTFLFoeonTqZtbR3o9FEVg3S2Tz+wN7mMl3XqVXLSKM+0/kcyWTyUP14m6Vlf+kPHzrwuP/4780dKrmbFG47crcOWZZZWS3QHYyIJjOIgz6GKjKdzzEcjdZUhNieJ/nroSryuArPwTgV0umyXOtg+mOYqkwQmVNzU8iywvOFGqo7PE7pTaAqTddUlG6dmMvixGx+LRXSQHFHsAyFCDJ3rE3yFwsVdHdoTMAmENvQNEbtGkGbyomZPENR5HKpgeGNYpk6Hn3IyZkcArBSqmL3h4kmUtgnUBGn6xqdeg3UEbNrxuSlUg38YSwLBPHKJH+5UEZ3+Qluk3re8ec2dAatOg51yLHpHIZpcWG1jO4OgWDDLnU5NjWuUju/XKJnOHFH9l+EAlcIlN8YVwCuk/q+4EOwOfCoPU5NpwkGxmpyWxsb2CfRu27DC6j3OT079gKeXy4xwIPN6cEutjmWGxvYFwslBoadwC4U8S1jWxbDThNz1GEhl8Lr8Yyr2W0enF4/aq9BPh4hEYtQWDOwh1MZ3BOo7rYsi36njdxtMpUeF/gsrpZQBCdufxCp2yQV9pNKxClWqvRkg1AyM5E2F+teQKlTJ58cF/gsFUqMTAfuQAi52yQZ8pJLpyhUalR6Ms49+tU2gzToYQ0azKSuEKiWYuL0R9GHbVIBF9PZNOVag5XmcM9+tc1wPYFaLlWoDjRs/gjmqEfKb2dhOke91abQ7GMLJXdkEdlRbHGItuYbzGdSFCp1Ch0RfBEsqb9BPDu9PtVWF28sRTA8mcbhsijSb1YIrxX4VOstyp0h9lAcXRwQtOscn8kzGo1odnokkhmiscnMZZIkUq2UsGMyNztDMDjZLgE3w2bK3Tv/w8Erd7/1rsNV7gAEQZgG/iPw94E4UAf+Gvh5y7KKOzrG7Uru1tHv91ktlIiEg9jWvDOGy08otvcn+a0gDvuI7bHCkIzHKFTrRAJ+vB43zy+X6FkuvOHERMve16GIQ4xBk+mYn6lMimK1TsDnJXi1unRAvawUaTRu6xEct/WoNtq4XQ4ioSCrxTKq4CCSzF5jYJ8UZEmk26jidwpMZTM0210EAeLRCEuFMn2NjarnSWPsb6oSco5JfbvXxzAMUvEYS8UKlb6CI5zGeQBNYnVNRe3WibstTs6OFQZJVsilExQqNYodCVtoZz7Q3WLdCxh1jIuBRqLEYCSRzySpNprUuiLuWGpXae+dx9YZtGq4DYlj0+O0YXcwIJ9O0Wx3qHfHBvZAaPImccPQ6TYbWGKfuakspmXR6vTIpZN0en0qrS7eaJLAhCb5q2EaBr12A2vU2/AC1lod8ukk/eGIy+UmBGJ4g5PvCTkuBmriVPqcnMngdDioNFrk00mGosSFwuQqTa/HekGOR+lupD4L1Qb5VBxV07hYqKF7w2Nla8J9Gdd9wohtjuWShAJ+lks1cqkYlmmOK64DEcLx/Xds2Cz2sNdF7NTJrxX4FCp1krEwNkGgUqsTDMdIpjITeVi+Hr1ul3qtRCToZ3p6+sD7422q3P3RISh3rztc5U4QhBzwONADvgZ8J/C/gH/AuL/2A5ZlLW97nNud3MH4Jvnqs2fpyAbBRGZHJtX9xut3xu0H7jl9nJVShUJHGvvqtjCwTyq2OOjilDq88o4Fmu0OK80Brmh6Yk/yW8bud2HQ5GXHZ5BEkXKrRyiZwb/PdhI7waDXZdCqMZ9PYxgml0p1PNE0vj1Unu0W4lracCETx+l08tXLxXFLhwn3iNsMqjTC7Dc4mYsSDgZ58vkldF8MT2B/7SR2FFsWMXp1FpJBsqkEX72wiM1/c1/YZGNLiK0ayYCL2akcz5y/iCu0vYF9IrEVmW59rNQfm5/lq2efxxaIENpDBfduoakKvWYVHwanTxzj8WfPI9n9+CJ7T3vvFIamIXZrRGwad585xWNfO0fXdE+8R9ymsXUdpdckale472V38PTZ5+mbrrGv7gAbP8O4YGLUGavl9951mnMXL6PgJJzK4Dzg1VxMw6DXamCKXe4+c5rFpWWwO8mstTY50NimSbNZp9tqcOrEMUKhgxtLN1Xu/uP/PbB46/it7733sMnde4F7gNcDZ4AnACcQBL4APGNZ1j/e7ji3zAoV+0WnPyA+f+ZQYgmCQDiWpGMYiKJIszvAE5898IF3PbY/FGVkmgyHI1rdAd7k1IF2nr8mdjjKCOgNhkiiRDST37P/ZLcIhsdkpj8YohkGvngWzwGuZHI1fIEQNpud7qCN0+kcN/8NHE57AZfXj2630+w0sQnCWiudw1lX1uXxYTjyNLolwgEf+CIEYwe/ZNA4thdndoZW8SKpuITdHyaSSB1ObLeH1PQc1UtnEUURPAEiifShxHa63CRyszSWLzAajZAFN4F45lBi251OgskphtUlRqMRQ8OOL3FIsR0OfPEMw2aB0WjESBcIZvKHEttmH7fiGdXHsSXNIDV37JBi24mmMrQq2vj3VlROnTl9OLFtNlKpDLquI0nSgZK76+F3O3jgWPzQ4h0ivhn4d5ZlKcJVT8CWZXUFQfgV4Ld2cpAjcrcPrLZGfLXQRVQNfC47d09HdrluqbDpP28nbKfefGr5z3ht9kEi7nEfpuXmiCdXO4iKjs/t4N6ZKHMJP12lzZcqn+MfzH3nvuJdj88UPsID6QcJubYmQ321w6O1z/Hm6e/Y4ZEP+wd/cVxgwovkPF4KWGmOeLrQRVR1fC4H90xHmE3sfHw5+qZ3j2Jb5LlSD0nT8Tod3JkPMxXbzcPnC/etv5D31gvR6Hik6Dx6uX3ocQ8BSWD5Ju81gR0x6CNytwd8tdDhA4+s8ly5f8N7d+ZCfPerZrh7+nCUkVsZn1r+M9773H/iL1c+wjum3sNHH+vytWLvhu3unBaQ4r9HQ1kF2Jbg7RSfKXyE//X8b/LZ4kd59yt/96YEr692+JUnfozSaBlgFwTvCEe4EU+vdvjTr6zybOnGa/2ufJh/9OoZ7pk5Gl8miWeLXT7+ZJHzlRvH9NPZEG+7d4q7piKHf2KHiPCvj1Ww3r9pvcBnskMI8CJZPGPSaAHX3+Drn/S7gHM7OcgRudsl/ua5Kv/tcxcxLfA67bz2eIKY30V7pPKlS02eK/f5+Y8/y48+eIJvuPNw0hG3Kl6bfZC/XPkIheESv/HVn0Ss/BBeZ5ivO5kkHnDRGqp84fISS87/jl2pE3VO89rsgxOL/0D6QT5b/Cil0TK/8sSPbUrwriZ2ef8cD6QnF/8Itx/++tkKv/OZK+PL604kNq71L15s8mypx89+9Bl+4s0n+ca7jsaXSeD/na/xh1+4jGWBx2nj/vk4Ub+LzkjlsaUW5yt9fu1TZ/mBrzvG158+nNT6EbbHOC0b237Dlx6eBe4CPnHVa/9CEIRvBN4E7Eg9OCJ3u8BXC50NYved903znfdN4XNd+Qp/8OsX+LPHi/zZ4wV+73MXSYXcRwrePhBxx3jH1Hv4ja/+JDZ3nczp9/Ebr/99soEkAF2lzYr3FyiN6hhKiuLFd7F4SuDe2cnED7mivPuVv7tB3q4neNcTu63UvSMcYTs8vdrZIHbvuH+adzwwfc348iNvPMaHHi3woccK/PZnLpAKuY8UvH3i2WJ3g9h96z15/uErpvC6rnifv/d1C/z5U0UeerrE//zCZeIB9y2v4L1UMFJ0Hl28JdOyfwJcrRKYwK8BXwXealnWJ3dykG3JnSAIfwS8BahblnXX2mtvB34BuINxWe6LrwT2APCBR1Y3iN33vnbuhvd9LsfG63/2eIEPPlo4Inf7xEcf6yJWfojM6fcxNEu854mf4Bdf/XsA/NxXfpTSaJnpwDynA/+Gjy72+D9fXube2cl95zcjeMARsTvCRPGnX1ndIHbf9/fmb3jf53JsvP6hxwq8/5HVI3K3T3z8yeIGsfuuV934VOh12Tdef+jpEh9/snhE7l4k8LsdPLBw6yl3lmX9KfCna38+AxxjvBzZcDfH2Yly98fA7zLus7KOZ4FvB/7HboK9lLHaGvFcuY/Xaec775vactvvfOUUf/HVMs+Weqy2RrsssjjCOpabI75W7OF1hvmN1/8+73niJygMl/jJL4yrwHtqh+nAPL/46t/DSYi/fPrLfLXYY7k5Ym4XxvPtcD3Be/eXvweAgdY9InZHmAhWmiOeLfXwOu2844HpLbd9x/3TPPR0mWeKPVaao10VWRzhCoptkfOVPh6njX/4iq3H9G99RZ5PP1fhfKVPsS3ussjiCAeBkaLz2NItqdxtwLIsDVjZy77bkjvLsr4gCMLcda+dgxemQuaFwlcLXQBeezxxTapkM/jcDl5zPM7nztX5aqF7RO72iCdXOwB83ckk2UCSX3z17/GTX/jH9NTx62FXlF989e9tVNK+/mSCv3muxpOrnYmSO7hC8N795e9hoHUBCDojR8TuCBPB02vjy+tO7Gx8ed2JBJ85W+PpQveI3O0Rz60VrNw/H78mFbsZfC4H98/HefhCg+dKvZc8uVsvntjpey/GIotbVbmbFA7ccycIwg8BPwQwMzNz0OEODKJqABDz76wfXMzvvma/I+weoqIDEA/s7DuPB9zX7HeEI7xUIKq7u9bXx6H1/Y6we0ja+LuL7nBMj/hc1+x3hBcWomLw2GLnhT6NFy0OnNxZlvVe4L0wXqHioOMdFHxrT3btkbqj7dsj5Zr9jrB7+Nzjy7M1VOkqbX7uKz9KT+0QXlPKemqHn/vKj26od62hcs1+k8R68cRA6xJ0RoBxWvZmVbRHOMJusK7WtYY7HV/Ua/Y7wu7hdY6/u84Ox/SuqF6z30sZmylxL7lWKEfYEi/9q/SQcPd0BIAvXWryg1+/sOWgKio6X77Uuma/I+we966Zxb9weWmtKnZ5w2MH44KKwnCJn/vKj/Lue3+bhy80r9lvUtisKha4aRXtEY6wW9yzNk588WKTH3njsW3Hly9ebF6z3xF2jzvz4xViHltq8b2vW9gyNSuqOo8tta7Z7wgvLHxuO/cfpWVviiNyt0PMxP3cmQvxXLnPnz1e3LRadh1/9kQRSTO4Kx8+8tvtA3MJP3dOCyw5/zulUX2D2K177H7x1b+3QfD+zd/9CLL5/dw9lZ+o326rdidbtUk5whF2g9mEn7vyYZ4t9fjQo4VNq2XX8aHHCkiawcumwkd+u31gKubjdDbE+UqfP3+quGm17DoeeqqErJmczoZe8n67WwWiYvD4LV5QcT0EQcgBP2hZ1n/YbtudtEJ5P/AGICEIQhH4eaAN/A7jZTL+QhCEpy3L+qZ9nfVLAN/9qhl+/uPP8mePF4BxVezVKUBR0fmzJ8Z97mwCfNc2VW9H2BpdpY0U/z3syriP3enAv8F51corEXeMd9/72/ybv/sRhmYJ3+x7+ba7d7Ts3o6wXR+77frgHeEIu8E/evUMP/vRZ/jQY+Px5R33T98wvnzosXGfO5sA73zVS9fD/GLB2+6d4tc+dZaHni4B46rYq1VTUdV56KkSDz1dQhDG2x/hxQH/LarcCYKw1aLEdwM/LwjCHwNFy7JuaurfSbXsO2/y1se22/dWw93TUf5/D57gv33uIn/2eIG/+GqZ1xyPE/O7aY8UvnyphaQZ2AT40QdPHPW42ye+VPkcDWWVqHOa4sV38dHFHn/59Jd5/ckE8YCb1lDh4QtNZPP78c2+F5u7zsD+BHBz1WM3eLT2uW372F1P8Ha3vuwRjnAF98xE+fE3n+B3PnORDz1W4KGny7zuxJUVcL54sbkxvvzEm08e9bibAO6aivDPvu4Yf/iFyzz0dIlPP1fh/vk4EZ+LrjheoULWTAQBfuDrjh31uHsRYaQYPL50SxZUXGDrRYotYAkYCILwPZZlPbTZRkdp2V3iG+/MkA65+eCjBZ4t9fjcufo179+VD/NdD0wfEbsJYH2N2NdmH2TxlMD/+fIyXy32+Jvnatdsd/dUnm+7+7cY2J+Y2LqycGWN2AfSD26pxq0TvCNid4T94pvuypIOeXj/I6s8U+zxmbPXXusvmwrzzlcdrS07SbzhdJpEwL2xtuzDFxrXvH+7rC37Uiuk8Lvt3Dd/S94H37/FewvAvwf+KfB24JeBI3I3Kdw9HeXu6SirrRFfLXQRVQOfy87d05Ejj92EsU7W7p2Fe2ejLDdHPLnaQVR0fG4H985Er/LYTUaxuxo7JWshV/SI2B1hIrhnJso9M1FWmiOeLnQRVR2fy8E905Ejj90B4a6pCHdNRSi2RZ4r9ZA0Ha/TwZ358JHH7kWKkWrwxPKtp9xZlvW/bvaeIAgPAP/esqw/FgThIvCZm217RO7WIAgCiiTi9u78Rp6J+/dM5kzTRFNlBCGAIAiosoTbF9jTsXYLyzTRVRnB5sVmE5AkEYdzZ72e9h3bstAVCVvAg2ATkMQRbo93x/vPJfx7LpiwLAtJHBF2COPfWxZx+/yH1oxbkUS8NgGbIKApIm5/8NBiq7KIzSYgCDYMZYhlRQ4ttiZL+GwCCAKaImOaJjab7VBiK5KIbe1j6oqCaRjY7IfTnkiWRGA8tuiqgmHo2O07H3JnE/49kzlVljBNA5vNhqmpGLqO3XE4w72uKpjGuBecZWgYuobd4TyU2IamYRo6giBgGjq6quBwuXe8/1TMt2cyZ+gahqYiCAKWaaAqMi63Z0/H2n1sHU1VxrEtC0kU8foOh5QahoEiSRA4nM+6Dr/Lzn3zt57nbhv0gf+39m8NuOnEfUTugOFwyJ0nFri4XGBkdxOKZ3A4D24wGva6KN06s8koHo+Hl5+c5/mlAu1GD3ckeaBESx72sYZNTqYihINBgn4/l1aKtKs9vLEMzl0MhLuOPRqgdevMRAOk4jHMqMlqsUx1tU80ld0VydstxNGQXqNCxOcmncpgWRZmuUKrtIQ/ntkVqd8tFElk1KoS8zqYyeUQBAFNr7JaX8EWSuLyHpwaoykyeq9Oxm/nxNw0NpuNk4rCcn0JAknc/uCBxdZVBbVXJ+mBU8fnsNvtzEZlisXLOCMp/KGDaymhayrDZg2foHPniQUcDge5iI/SyiV8sSTBcPTAyK2uaXQbVWy6zOljc7hcLmaTYVZXL+MOJwhGYwcW29B1es0aNnXEqblpnE4nZ6aTXCwuIXmj+MPxA4ttGgZit4FHH3HXQh63283dCznOLxcQHSG84RjCAZF6yzSRei18xoC7juVxOp3cNZ/jwmqRoTOAL5rAZjsYUm+ZJqNeC4fU486ZNC6Xi5OzUywWVsATIJJM74rU7yq2ZdFvt1D6TWbSCZxOJ3MzUxQLi3j9IdLp7IHNZZZl0Wm3aDaqJKJh4vGbr3pxEBipBo/fgsrdVrAs6zzw4NqfjwE3zUsLlnV4fYXvu+8+6/HHHz+0eNtBFEWWV1YZSQoCJrlMGt0wWSpVsfkjBKOJiSoMiiQyWJvkp7IZao0Wle4Ql83i2FQWy4LzKyVERwBfOD7RwUhTZNRenbTfwfxUlmanS6HRxSHAiZksdrudC8slZIcffyyJbYKDka4qSO0aEafJ8dkp2t0exUYHGzCfT+F2uVgulsEdIJZMT1Rh0FSVTr2Cw1SZm84zGAxZrrZAsJjLJgn4fFxaKSLb3AQnTOp1XWPYrOE2ZY7PTjESRS4U6ljA8VyScCjA88tFWoqAK5KaKKk3DR250yAkKJyez6NqOhcLVXQL5tIx4pEQl1bLNCQTZzi1K3Vj+9gGcq9JwBxxen4K0zRZLlUxLIFMNEQiHmWlVKUrG/jiaVwTJPWmaTJsNxDkPsensthsAkvFCpoFyZCfdDJBuVqnJ6uEklm8vskRa9M06bebKP02s9k0TqeDpWIZxYR4wEsunaJab9IaSgQSGbz+ySn1lmUx6LRQei1mMkl8Xg+XVkuMVJNE0MNMLkOt2abQ7GMPp/BMkNRbloU06MCwzbFcglDAz/mlAs2hRjbi5cRsnkarw+VqB9MfwxOYLKmXBj0cUptjmRjxaJiLKyWaQ5W438nJuSm6/QGLlRZCMI43OFnFWhr2MfoNZhIhUvEYq6UKPUnD6xBYmMkzEiUKtQbucJLQhEm9OBwwaFVJBHykk3Gq9TojScUuwFQug6qq1BotovEUiWRqorFHwyG1Sgm3y87szDR+/8HbBQRBeMKyrPvW/84cu9N6169+4MDj/vo7Xn5N3IOGIAif324Ty7LesO1xbkdyp2kaxVKJRrNDNJkhGoujyDK1agkHBtlMmnanR6ndwzsBhUHXNfrNGi5jPMmLosRipY49ECMQia+pDFUCDpOF6Tztbp/FagvTNx4I93NTmoaO1G0SQOb03HiSv1SsYnrD+CMJDENHbNUI2nWOz+QZjEQWyw0sfxzfPtUN0zAQ23Xc+ogTszksy+JyoYLlDRGKJTFNk0GrhtuQOTaTR5IVirU6nnCCSCyxv9imSbdZRx12mM1nsQkClwplDFeAYCw1ngzbdZzaiGPTOQzD5HKpCr79k3rLNBl0m1jDLvP5NC6ng+dXSgwsD75YEhAQO0385oiTszmw4NxKiZHNjzeyP4XBsiykfhuX3OXUdBq/z8uF5SIDXPgiaQS7HbHbwKUOOLlG6s8tFRnixRNJ7itlaVkW8rCLU2xzfCpFOOAfkxschBJZHA4H/U4LfdhmNjsm9ZdWSyh2L8H4/kn9qN9F6zWYTkaJhkOslCqIpkA4OVak++0War/FdDqB3+djqVDCcHiIJPdP6of9HqNWjWQkSCIWZbVcYaBaBBMZXG4Pw14HudtkOhUjFAywVCghCw7Cif2r5eJwwLBZJRX2k0rEKVRqNIYqnlgat9eH2O+i95vMJKPEo2Eur5ZoKRae6P5jK9IIrVsnG/YwnU2zWq6x1Bhg+uI4vX6U0QCX3OF4NkImGWexUKEyUHGEkzjd+yP1mixh9OtkQ27mp7JU6k2WG30sfwK3P4giDhGGTWYTAXLpJIVKjWpfwRVN71up1xQZuVMj7rGxMJ2j1e5SbvfwxpIEQhFkccSwWSXmd5NLp6g1mrQGMsHk/km9pip06xU8gsHcVI7+YECz3SOazBCOxJBliUa1hMsO2XSKTqfLQJRIZfKE9jmXqapKrVpCk0VmZ6aJxQ4vLXo9uTt2x8utX/1fnzrwuO94YPqwyd3fcm21rABkgTmgBVywLOv12x7ndiJ3lmVRq9UolCr4Q1ESqQz26yazfq9Ls1YmHPQTi0bGT2KqSSCe2XXa0DJN+p0m5qjLXG48yV8ulFEdPoKx1A2TmTQcIHVqZCMB0sk4K+UqlZ6CI5zE5dndYDSe5Ds45S4nplL4fV4urpQYCS78sfQNHhhFHKF06qRDbqazaUrVOuWuOB4Id+kFXI/NsMV8dvwkv1goI1kOAvEMTte1CpUiiQzbY0VzOpuh0WzT6o8IJTP4g6GbRLk5Bt0Og3adbCxMOBxiqVimrwsEY2mc13lgVEVm2KoScdmYm8rSbHcpt3q4Ikn8ociuY4uDHnKnTj4eIhGLslgoUxvpuKOpGyYzXVVQOg3iHovjM3k6vQGXyg10bxxPcPekXhGH0G8wkwySSyVYLVepDVRckTSu6yYzXVOROnXCdp0Ts3kGQ5ELpTqaJ4InuHtSr0ojzH6DqaiPmVyaSq1OcygTiN84memaRr9Vw6HLLEznkGSFxXINmz9KILp7Uq9IImKrRtznYDqXod5s0+gP8cfTN1w/47RlHeQh81NZDNNkpVTFGYwSjid3TeoVWaJXr+J3wHQ+S6vTpdLq4Y2lCFx3/ZiGQa9VB3nAfD6DBSyXKgjeEOF4atfEWlMUes0q3rVJvtsfsFxrYQ8m8IWuVahM02TUaWKXexybyuJwjJV6ye7DF929Un/99dMfipxbqSI6Q7gD18a2LBNl0CVoDjgzl8PjdnFuqUjXdOEJJ3dN6g1dQ+k2iTg0Ts/lEWWF51eryK4Q3lD8utgW8qCDW+lycipFMODnwkqRgenCF01h3yWpNwwdsd3Aa4qcmMlhmiZLxXGmJxS/9qHQsiyGvQ5Kt8l0MkYoFGS5WEbGQSS5e2JtrF0/lthnLp8BoFip4Q/FiCfTN8xlvW6Hdr1CLBIkGglTqlTA5iSTncLj2Z0/zjRNGo0avXaTXCZFNps9NN/sOq4nd9lDUu5+7ZCVu5tBEISXAR8HftKyrE9uu/3tQu56vR5LK6tgd5JK53FvcXGbpkm72aDXbpBNJ3A4HCwWymhOH+EdKgyjQQ+pUycXG0/yK6UKHcUkENs6DWVZFsNuC2PYZj6bwuf18Pxyka7hxBtJ7siYrIhDzEGDmXiQ7Nok3xhpuLd5YrUsC7HXwRq1mM+MSdml1RJ9w4E3lt5R2lARR6idKpmwl6lMinKtQWMg4Ytt/8Q67HVRe3Wm1pSX1VIFxbIRTWV3ZEyWJZFuvULAZSefTVNrtqh2hrijKXyBrUmiOOihdBvkYiGS8fHv1ZVNAonMjtKGqiwzbFWIuGzM5DM0O12Wa12sYALvNrEVcYjZqzMVD5BLJVkpVyl3FWw7JPW6qqB26yS9cGJ2im5vwGK1BYEE3m1I4vXKS6FSo9AWd+wFNDQVpVcn5jQ5NTfFUBQpVJu4IwkC4a3TUIok0m9WiXjsY5tCs0WlM8QTTW37ncF4kh+26uO095ryu1qt4wrFCG2j/CqyRL9RJeAQmMlnaXe6VNt9AvEUgXBkB7F1umskcTafwVib5O2BCKHY1iRRUxR6rSo+dOam83T7A0qNNt7oOPZ25NY0DLrN2pigrpHEi6tldHeIQGxr5VfXVMRWHb9N21DqL5frmL4YvtD2aUPTNJF6TZxKf0P5fe5SgY7pxhmMb0lQTV1HGzRJunTuWJhGlBUurFaR3WG8O4htmSZSv4NX63NyJoPX7eLc4hWSaNtiXDYNHbnXJITM6fk8hmFysVBBc4fxReLbEpXx2NjGJrZZyKUI+n0srpZQ7G7CifSWyu+Y1DdA6rMwlV0j9VXsvp2ResuyGHQ7yN0G+eRY+S2WKuBwkUzncblvThJN06TVqDHstchnUtjtdkqVKoFQlGQqg2MHc1m306FRKxMNB5iensblOpziu+txuyh3W0EQhO8DfsKyrHu33fZWJ3eyLLOyskpflEmm8wRDO1eCNE2jUS2jykOmclkkSWa50sAeihGKbG5MVmWZQatCyGVjJpeh1elSavVxR5L4gjuXxA1dZ9Cu49JFFqayaLrB86tlFGcY302MybqqoPTqxN0CJ2bzdHp9VmpthFAC3y68JqZhMOw0cKtDjs9ksSyLi6sVVHcQfzS56eShaypSq0bQoXNiJs9wOGK52sIZihOI7NxrMvYt1RGkPsemMthsNlZKVeze4JoxebPYGp1GFUGTmJvKIUkyS5U6trW0905jr6dTGfWYz6dwOZ1cLpTRHL6bpg0NXaffruFURY5Nj3+nC6sVFPfNf6dNY1sWUq+NQ+pyfCpFwOfl/FKRruHAHUltSuqv9radmstv/E6KK4hvF+nddc+UMGyzsOaZurBcpKXaxrE3IfXW2iTv1YfcMZfDbrOxVKxgeQKE4qldGciHvc74QSgxJvVLxTJ9TSAQv1FpXY896DRB7LGw9jstlSqYTh/hZArHLiozR/0eo1addCRIIh6lUK4y0kzCNynwWTewy70mU+kEPq+XpUIZ1eEmvEvPpjgcILZrJILeDS9gR1IJJrN4NnkIW5/klW6TqVSM4Joi3jfs+GO7800q4gi5Uycd8pBPJynXGpS7Io5w6qZKvdjvwrDJbDpGIhrm+aUi5YGOLZjYVWxdkWDYZDrqZWH6SjqVQOKmBT7yqI9t2GI+HSEVj7JUrFAZaNhDu0vv6oqM3q+TCTg4NpOn2e6wUu9hC40fhDaPPUDvNchF/eRSCUrVOm1RJZhI49mFZ1NTFPprRT5z03n6/QGlZgdvNEngJhYYSRwxaFSI+Fzk0ikazSYDUSWZyeMP7Nw3qakq9VoZUxWZzucQRZFmq0MsmSEW3/xBSBJFqpUSDpvF3OwMgcDhdHO4GTZT7r7v1w5eufvVt784lDsAQRC+Dvhry7K2vehvWXKn6zqlcplavUU4niKeSO7ZwyWKI+qVEi4HZNNjRajeHeGNpfGt3WCGrtNv1bFrow0ytliqIviiBKPxPVeJracNo+4xWWy0OyzXehCI41lTN0zDQOw1CZgiJ9e8bZdWK2juEP5tnuS3gqYqSK0aYafJsbW04XKthRBMbBiTx+mexpUneZuNy4UyujtAOJbes4dL11T6zbG6sTCTYzgSKTda+CJXjMmmadJtNVEHbaYzSZxrZEyxewntw8Ol6xqDVh3PuiIkySxVGmOPZDS+0W5g2BkrrLPZBH6vl+eXi/RMJ97o5mRsJzANHanTxG9JnJrNoRsm55dLSM4Q3vD4OhqTsS5Oqc2JfIpw0M+llRJdw443ujOFdfPYV6odT8xksUyL51fKjBx+POEr15E06OIQ2yysGdhXShVGhkBozV+2p9imSb9VxxB7LOTHdomLqyV0V4BALLlBFtcV1nwsRCIWoVCpMtQsQsnd2yauid1uog86zGZTuFwuloplcPnHDxRr15E4HDBoVomtGdhL1TodUSWYyOxqkr8aY8LWQu21mMlcIYuaw004cYUsyuKIQaNK1D+e5Mu1BtWehDuWwrPHFkrrSr05bDGXSRAOBri4UqSr2/FGrpBFVZZQuzVSfiez+QyVRotLlQ66N45rH+2blGEPt9rlZD5BIhrm0mqZumhcU+CjKTJ6v0Hab+f4TJ5Gu8PlSgfDt7/CDHnUxzZqsbBGFldKFRqigTt6JbOiqwpSp0bEObZNrCus7khyRwrrzSAOB4xadVKhq0i9rBJOZDeuI01T6dWrOE2F+ek8oihRa7YJx9NEY3uveBZHQxrVEj63g3QqSbPZQlQ00tk8gbW5TNM06tUysjhgeipPIrE///OkcINyd+bl1q8dgnL39vtfVMrdXcCbgP9uWZa65ba3GrmzLItGo8FqsYzHHySZzu1Iet4Jup32mochtOafqDA0BOxuL+awy2x2XKV2ebWEZHMTjG0t1+8G4qCH3G0wdZ2XC5cfp9LjeD65kUYdGA588b1P8tdDHg3QOnVysQCZZJzVcpX6UEPwBhHELrOpKLHIWHEZ6jaCN1Fc9hRbHI6N6kEPuXSSar1BV1TwBiNI/TbJcJB47Eoa1T/B6ktFEhHbtbEXMDeubq51h9gDUfRhh3TETyaZYLVco9KXcURSu/ZG3gyaIqN2ayR9DhbWqpsXqx00dxi7MmAq6mU6m96R4rJbrE9qUdfVXsAmqjuMTR2QDY4N7PVmi3pvhD+WxrcHb+SmsTWVXrOK29KYnxqT+uVKE1sggiGLhF0Cc1Njb1u13cMXv9HbtvfYGr1mDYcmM7/mBSxU67hDMVRZwoPO7Jq3rdRo44nsLI26Exi6Tq9Vx6Zc8QIularY/RFMTcG19n0MRiJLlQZCIIZ/m7T3TmEaBsN2A6c25Ph0FoALK2UUZwBMAz8KJ2fH3rZzyxWG9iDuPfgyN4NlmiiDNiFrxJ3HpnDY7ZxbLDLAA4JA0JI20qjnlkuI9uDGQ84kYkv9Nl69z+nZLB6XiwvLJUY2D9jsuLUhJ2fG38disYLNGyIU31/R0Ubstepmtd9mJpMg4POxWCih2z3YnU70YZe5fAaH3U6hXMUTCJNMZibSScCyLLqdNt1mlWQsQjAYoFSuYHd68Hh9dNsNMqkEuVxu00zJC4XNlbsPHnjcX337yw6d3K35634O+HogBrSBh4H/YFnWMzs6xq1E7gaDAUsrK+imjVQ2j/cAepcZhkGrUWfQbZLPphEEgcFIJB6NUKxUaYoa/tjB9E0bpw1bWKMOC/kMLqeDdm9AZk1FqPQkXNG9P8lvGduyGHVbCKMOx3JJfD4vrW6PVDw29rZ1h3ij6W29bXuNPex10HpNZjNxggE/rU6XZDxGs92l1OziOsC+aaN+F/WqKsxGq0MyHqXTG3C50sT0xybeYmEd8rCPNWgylwqTiseoNlqk4tFde6X2FHs0wOjVyceCZFNxas028UgIWVFZrdZxBGOE9lAAsaPY4miskvnd5DMpGq0OoYAPY62tij0Q2VMBxI5iSyL9RpWw28FUNk2728Pv9YwXdCzuvQBiJ1BliX6zSsApMJPL0O0P8Lpd2Ox2Lq2UkJ1+ghNuVbQOTVUQ15T6hek8vcEQh8OOx+XiucsFmpoDVyhxILENXcMYNEl5LO5YmGY4krCwCPp9nF8q0NIcuMM78xzvJbbSaxJdK9CQFRXDMAkF/SwWSkiWg3AyfSA9QA1dp9+sY1NHG6ReUVQi4RClcgUdO6lM/kB6gI7nsipiv0s+mwJAlhXy+dyuCy4OA5uRu+//9Q8deNxf+c67Drta9n7GjYpF4FNAlXG17FsAD/AGy7Ie3fY4twq5q9frLBfLJNN5QjswRO8XqqpQr5YRTJWpXI6nzl/GGR5XWB60hL2eNgwKKicX5nj8uYsQiI09Xgcc29B1xHadAAp3nlzg6XMXEQIxgrvwtu0VpmHQb9dxqkNedvoET5+9gOENT7wf4aaxTZNBu4Fd6fOKM6d4/NnzDG3+A22Oug7LNBF7bbxan/vvOsVXz11kKHj3VOW469hrRnKn1OG+u05y/tIiit1LJLH31PNuYo+rDRvcffo4l5dXEHFOpHXJTjDodZDade46Pk+hXKWvjtO/B9noex2jQQ+xVeP0/NS4grsv49uk2vsgII8GKJ06d8xmGAxFzpa6CIEEjkOIrckitlGTu+fTWFg8t9rEFpqcIr517HFrlVO5KF6Pm8Vyg0AiPdF+hDeDKsv0m1XSQc9aG58qiXSe4AE2+l6Hosg0amXcNos7z9xx4PH2ihvTsncfUlp26rDJ3d8AYeBBy7JGV70eBD4H9CzLevN2x7llVqhQFIVwNHkoxA7A5XKTm5pl8flnUBQFwRciED6cRYwdDifRdJ7uynkURcF0+QlGDqc7uN3hIJjKMSxdRJZlLKeXcDRxKLFtdjuRZJZu8TKyLKPbXUTiqcOJbbMRTqTpliUkSUI27QSS6UOJLdhs+KMJpIaMJElIOgSy2cOJLQj4I3FGuowsy8iqTmI+f2ixg5EYujqOPRBl0scXDiU2QDAcRVdVZFlmKEpEp44f2tJl/mAYXdOQZJn+UMSfyB/aEoEefxDDMBBFie5QPDRiB+D0+FDNGP2hhAXYAolDIXbj2F4gSW84AEy80fihEDsAl8dDKJlh0KrgcbuIxFKHQuwA3G4PmdwMxaXnDyXepCCqOk+tdl/o0zgIvBr4vquJHYBlWQNBEN4D3HTt2atxy5C7veJyY8ijSy1GioHfbeeB+TjHkgdzQ3+m8BEeSD9IyLU1CeyrHR6tfe5AF6IvtEWeK3YRNQOf086dUxGmb4MFsldbI54p9jYWY3/ZVHjP6wMfYWf48uUmnztbY6Tq+F0OHjyT5jXHDueB4MuXmnz2bI2RouN3O3jTmTSvOX44sVdaI7662t241u6eiTB7SNdaoS3ybLGLqBr4XHbuuk3u7yPcPvC5HNw7G3mhT+MgsF0KbEcpstuW3D261OIPHl7kydUb16a7dybKD75+gQfmJ6eGfabwEf73hf/CZ0sf4933/s5NCV5f7fArT/445dEywMQJ3rPFLh95vMD5Sv+G905nQ3zHfdPcNRWZaMwXA75W6PKhx1Y5W77xc5/JhXjH/TO8fDpy+Cd2C+Mjjxf4wKOriKpxzetfutzC57Lz3Q/M8B33TR9I7A8/VuADj9wY+4uX1mK/aoa3338wsZ9e7fD+R1Z5ttS74b278mHe+aoZ7pk5GJX/mbX7+9wm1/kdufH9/bJb8P6+Ht/0weMA/PV3XXqBz+RwkfrNJAD1n2q8wGdy8BBVnSdXui/0aRwEvgz8tCAIn7Ysa7D+4lpa9t3AV3ZykNuS3H38qSK//KmzmBb4XHbedDpNMuimMVD47PkaT652+NE/fYKf/ZY7ees9k0lBPZB+kM+WPkZ5tMyvPPnjmxK8q4ldzj/HA+kHb3K0veHz52r8wd9ewrLA47TxqoUEUb+LzkjlkcUm5yt93vPJ5/jBrz/OG+84nJTjYeAzZ6v8/ucvYVrgcdp5zbE4Mb+L9kjly5dbnC33+Y9//iz//I3HedOZzAt9urcEfvOvz/PZc/WNv7NhDxGfk66oUenJiKrBH/3dEqttkX/5jacmGvs//9V5PnP2SuxcxEPY66QnaZS7a7EfXqLQFvmpb5ps7L9+tsLvfvYipgVep53XnUhsXGtfvNjk2VKPn/vYM/z4m0/yjXdO9lr73Nka7736/j6WIOZz0RZVHrnc5Fy5zy8/9Bw//IZb6/4+wu2JW1i5ezfwBWBJEISHGBdUZIB/CHgZV9Bui9uO3D261Nogdt//2nm+/3Xz+N1XvoZ//U2ned8Xl3jfl5b4pb94jmzYMxEFL+SK8u57f2eDvF1P8K4ndlupe3vBs8XuBrF76yumeOu9ebyuK5/7XX9vnk88WeITTxX5g7+9RDLoviUUvK8VuhvE7ttfOcV3vHLqms/9A1+n85Eninz0iSL//fOXSAY9RwrePvGRxwsbxO50NsjPfMsZ4oErRQitocJ7/uIs5ysDPnO2xkzMNzEF78OPFTaI3R3ZIP/uW2+M/csPneVcZcCnn6sxHfNNTMF7erWzQezecf80b79/Gt9V19oPv+EYH36swIceK/A7n7lAKuiemIL3TLG7Qezedu8Ub7vu/v7+vzfPx58s8fEni/yP/3eJRNB9Wyh4R7h1IaoGT63eqI6/1GFZ1hOCILyacSuUtwBRoAN8nl20Qtm2xFAQhD8SBKEuCMKzV70WEwTh04IgXFz7/+FUEkwAf/Dw4gax+7EHT1xD7AD8bgc/9uAJvv+185gW/M+HFycWe53g5fxzGwSvr3YOnNjBeMJdJ3bf/erZawZ+AK/LwXe/epa3vmIKy4KPPlGYaPwXCh96bHWD2H3Pa+Y2/dzf85o5vv2VU5gWfPix1RfoTG8dfODR8Xd4OhvkP3/XK64hVwDxgJv//F2v4HR23DT1g49O7jv/wCPjY92RDfKb79w89m++8xXcsR77kcnFfv8jqxvE7l2vm7+G2MFYaXjX6+Z5x/3TmNaVc50E1u/vt907xTtvcn+/89WzvO3etfv78Vvj/j7CbQ7hEP57AWBZ1jOWZb3DsqykZVmOtf9/506JHexMuftj4He5tkLj3wKftSzrVwVB+Ldrf//0bk7+hcDlxpAnVzv4XHa+/3XzW277fa+b54OPr/LEaofLjeHEiiyuV/B+5iv/BICB1j0wYldoi5yv9PE4bbz13q3TzP/w3jx//WyZc+U+hbb4kjZhr7ZGnC338TjtfMcrp7bc9ttfOcWnvlbhuXKf1dboqMhij/jy5eaGz+1nvuXMltu++x/cwbv+8FFGqsGXLzf3XWTx5UtXYv+7b90m9lvu4Hv/YC32pea+iyxWWiOeLfXwOu3bKoFvv2+ah54u80ypx0prtO8ii0Jb5Fx5fH+/bZv7+6335vmrZ8qcvQXu7yPc3vC77Nw7E3mhT+NFi23JnWVZXxAEYe66l98KvGHt33/CuOHei57cPbrUAuBNp9M3KHbXI+B28ODpNJ/8WplHl1oTraBdJ3g/85V/wkDrAhB0Rg6E2AE8VxzHeNVC4oYn+uvhczl4YCHBF56v81yx+5Ie/J8pjiX71xyL7+hzv+ZYnM+fr/NMsXdE7vaIz52tAWOP3fWq2fVIBD1kwx4qPZnPna3tm9x9di12LrJ97ORVsT97trZvcvfVtZYMrzuRuEGxux4+t4PXHk/w2XM1vrra3Te5e3b9/j62s/v7VQsJ/vb5Os++xO/vdawXT+z0vVulyGK9eGKn791qRRbjtGz3hT6NiUMQhPdtt4llWd+33XH26rlLW5ZVWft3FbipO1cQhB8CfghgZmZmj+Emg5EyfqpPBnfWhDS5NkGs7/dShaiNzz/q31mfrKjPdc1+L1WIqg5AbKefe2279f2OsHuM1r67iG9nTYbDPieVnryx375iK+NjhL07ix1Zj63sP/Zur7V4YHLX2rpaGfPt9jp/ad/fR7i94XPZecWtqdw9yI0J4QjgB4bAjaXwm2DfBRWWZVmCINx0mQvLst4LvBfGK1TsN95+4HePG5A2BsqOtm8MlWv2mxTWPXYDrUvQGQHGadmbVdHuFz7n+Pw7oy3XGd5AR1Sv2e+linUFpb3Tz7223XbKyxFuDv/ad9cVtR1t31vbzj+B73xdje9JO4u9fo7bqfg7wW6vtdZwcteazzW+T9vibq/zl/b9vY7NlLjboRXKZkrc7dUKxeDpQveFPo2Jw7Ks2c1eFwThdcD/AN61k+PsdWSpCYKQtSyrIghCFqhvu8eLAOtVr589X+Nff9PpLQf1oaLzufO1a/abBDYrngBuWkU7Cdy5VhX3yGKTd/29+S1TN6Kq8+hi85r9Xqp42dS4w/uXL7f4ga/Tt/3cX77cuma/I+weD55J86XLLSo9mdZQ2TI92hzIVHryxn77xZvOpPnipRbl7vaxG1fFftMEYt+9piB88WKTH37DsS1Jm6jofOlS85r99oP1qvZHLjf5/h3c34+s3d+3QjX8EW5f3MLK3aawLOuLgiD8J+C3gddtt/1eF+T8c66wx3cBn9jjcQ4Vx5IB7p2JIqoG7/vi0pbb/vEXlxBVg1fORCfmt7tZVezNqmgnhemYj9PZELJm8oknS1tu++dPlpA1kztyoZe8H2cm7udMLoSsGXzkieKW2370iSKyZnBnLnTkt9sHXnMssaEIvecvzm657a986hwwNkZPYsWK1xy/EvuXH9om9ievij2BFStm437uyoeRNIMPP7Z1JeqHHy8gaQYvy4cnsmLFdMzHHbnx/f3xbe7vT6zd32dugfv7CLc31j13B/3fiwxl4BU72XAnrVDez7hj8ilBEIqCIPwz4FeBbxAE4SLw5rW/XxL4wdcvYBPgfV9a4nc/d5HhdX6boaLzu5+7yPu+tIRNgB94/WTWstyu3clBE7zvuG8aQYBPPFXkA19ZucHrI6o6H/jKCp94qoggwLe/8mC69x823nH/DDZhTN7+z5eXN/3c/+fLy3z0iSI2Ad5+/wvrC70V8N0PjL/D85UB/+qDT9EcyNe83xzI/KsPPsX5yrj5+nc9MLnv/LtfNT7WucqAn3r/UzSui90YyPzU+5/i3HrsV00u9jtfNb7WPvRYgT/54hLidWOLqOj8yReX+NBjBWzClXOdBNbv748/WeT9N7m/3/+VFT7+5Nr9fUArgxzhCIcJQRAO/L8XAwRBcAqC8DLgZ4Ed9VDaSbXsO2/y1pt2cW4vGjwwH+ff/YMz/PKnzvK+Ly3xwcdXefB0mmTATWOo8LnzNUTVwCbAz37LnRNLyT5a+9y2feyub5MyyfVl75qK8INff5w/+NtLfOKpIn/9bJkHFhJEfS46osqji01kzUQQ4Ae//vgtk7J5+XSEH3njcX7/85f46BNFPvW1Cq85Ft9YmePLl1vI2vj3/udvPH7UwHgC+I77pllpjfjsuTrnKwPe9YePkg17CPuc9NZWqFjHm8+kJ7oE2dvvn2a1NeIzZ+ucqwz43j949IbVMdbxDXemJ7oE2T0zUX7sTSf43c9e5EOPFXjo6TKvPZ4gHnDRGqp86VITae1a+/E3n5zoEmQvm4rwQ19/nPf+7SU+/mSRv3qmfMMKNOv39w+/4fhRA+MjvOQxTsveehYaQRAMbt5hTwF2RApuS+f4214xRS7i5X8+vMgTqx0++bXyNe+/cibKD0x4bdl1kvZA+sEt/XTrBG+SxG4db7xjvMzaR58Yrz35heevtUrekQvx7a+89daWffOZDKmghw8/tspz5T6fP3/t574zF+LtR2vLThQ/9U2nmY37+eCjq4xUg0pPvoZY+V12vuuA1pb9V3//NDNxPx98ZIvYB7S27DfdlSUd8vCBR1Z5ptTjs+dq17z/snyY7z6gtWUfPJMmGXLz0ccLnC33+dvr7u8zuRDffpusLXsrF1JshduhkGIdombwdOHWW6EC+CVuJHdRxlnSv7As61M7OchtSe5grOA9MB/ncmPIo0stRoqB323ngfn4RHvaXY2dkrWQKzpxYreOu6Yi3DUVodAWea7YRdQMfE47d05FbmkPzsunI7x8OsJqa8QzxR6iquNzOXjZVPjIY3dA+I77pvmO+6b58uUmnztbY6Tq+F0OHjyTnojHbiu8fW35ry9favLZszVGio7f7eBNZ9IT8dhthXtmotwzE2WlNeKrq92Na+3umchEPHZb4WVTEV62dn8/W+wiqgY+l527bvH7+wi3H3xOO/fcgg/klmX9/GavC+Mc8ccFQfgpy7J+c7vj3DLkThAExNEQIxrD7tj5xzqWDOyZzPV7XWw2OzabDV2W0XUNh2NnPbb2C3HYx2YTsNlsGKqMrqk4nDvrcwVjE/ZeB3tZHGKzLOx2O4aqoKkKTtfOegfuF7I4wjJ0bDYbpq6hKjIut2fH+8/E/Xsmc6osYRkaNpsNTB1NlnB6vHs61m6hqwqWrmK32xEsA0Ua4fYeDinVVQVTlbHZbAhYiMMBvkBwx/u/5lhiz2RO1zQ0WcZmi2K3CYz6PfyhnadiXnM8sWcyp+saqiRii/lx2G2MBn2CkZ0rbrNx/57JnGHoqNIIWyCMw2FjMOzjj8R37AHaz/1tmgaaOMTu8+N02NGHQ+wu96H4jyzTxFBGOCI+LMtCk4Y4PT4E215r/3YR27JQxQHOkA2bYEMejPAFQuP7/RBii8MBXrsNm83GqD8gFIlitx98uxrLshj0e9gP4XNOErewcrcp1trO/T7w34BtyZ1gWYfXeu6+++6zHn/88QM5tq7rlEolas02kXiaWDxxYIORJIrUqyWcNotsZtxGYSRKLJVq4I8QjMQPbDBSFZlhq0rYKTA/nRufj6xwsVBBd4fwRxMHNhjpqoLYrhN2GBybySMIAqqqcqlQxnQHCcVS2A5oMNI1jUGrisdSOTaTx2azoWkal1ZLaE4/wVhqV6R+NzB0nX6rhseQODaTx+l0YhgG55cK9E0XnmgS+wGRetMwkDoN/JbEqbk8LqcTy7K4sFykZzjwRlO7IvW7im0aiJ0mbn3IyZksXo8H0zRZLpQRsROOZ3C6D4bUm6ZJv93AHHWZy2fwesYEfrVUYahbhJIZ3AdErC3Lot9uovbbzGRSBPw+BEGgUK7Sk3WCiQxu78GoYJZlMey2UXpNpjMJQoEAgiBQrNap9WU80RRu38GQesuyEPtdjEGTuXScWGRMoovVBou1Hrovhst7MFkNAGXUx610OJGLkU6MiWyl3mSp1sXwx/H4QwcYe4AwajKXDJHPpLAsi3anS6nZwRNNEQhHDiy2NBoyatVIBDxk0ykA+v0B9VaHSCJDJBo7sLlMFEc0qyU8LhuZVAqHw0E4HH7RFBJcDUEQnrAs6771v4+fudv6T3/6Vwce99tekbsm7gsJQRC+D/gty7K2fcK9ZcjdOiRJYnlllZGkkszkCQR3rjBsB13TaNQqyOKAqVwGWVFZLtcxbQ4iHgcz+QyNVodyu487ksIXnNxgZBg6g3YDpzrk+EweTTe4sFpBwU7Ca2dhOke722el3sEeSuALRSYW2zQNRu0mLnXA8ZksABdWykiWnahL4Phsnv5wRKHWwhFKEAhHJzY4mKbJoNOAUZeFqSw2u40LK2VE00bICSdn84wkmeVKHXswTiA8uYHQsiwGnSbWqMtCLoXb7eLCSomBbiNgNzg5m0fRdC6uVlDcYXzh2MRI/Xii7eAQO5yYShH0+7i4UqKvgVcwODGbwzQtLqyW0dwhvOHJkXrLspAGXRi2WMjGiYSCLBfLSIaAzVCZzWew22wsFisI3smT+mG/i9Suk42HiUcjFEoVRpoFhspsLo3D4WCxUAZPgHBisqR+NOgzatVIhQMk4zEKlSo9ScNmGsxkk/i8Xi6vltAdHkLxNA7n5Ei9NBoybFU3JvlStU5jIGGzTGYzCYIBPxdXioxMJ774ZEm9IonI7RrJgIvpbJpSrcFSo4/Nsjg1lSQWCfH8UoHqyMIWTGCfYGxdlbGGTabCbo7P5KjUW5wvjntO3jGdIJOMcXm1RHWo4wilcOxCqd8+toLWq5Py2Tgxm6fd67NUaWMJAtPxIJlknGKlRlfSCSbTEyX1mqrSb1bxoLMwnWcwHFJpdMBmI+zzkEklqDUaiLJOIp3HH5gcsdY0jUa1jK6MmM5nkSSJZruD3eHC5bAxNzuD3//isqtcT+5yJ+6yfvi//NmBx/2Fb73jUMmdIAibNSl2AaeBHwA+b1nW27Y9zq1G7tbR7XZZXllFcLhJZfK49qEwWJZFq9mg16qTTsVxu1wsFsqodg/BRBqHw8mo30Xu1MknIsQiYVZKVXqqhT+e3lXacLPYw14bY9BmPpPA7/dxYaVI33DgWVNt5NEAo1dnJhEmnYixUqrSFHU8sTSufagb60/y1qDJXGY8yV9aLdFWBbyRFA6XG0UcovXqTEX95NJJStU6zaGCP57Bs0+FYdTvonTH32k8GuFyoUxTNHFFUjjdHlRJROvVyIY8zOTSVBtNaj0RTzSF178/Ui8O+8idOrlYkFQ8xkqpQnWg4YyMv1NNllB7NVJ+J/NTWeqtNsv1HkIwgSewP1KviEOMfoOpqJ98OkmxWqfal3FFUri9fjRVQWrXiLlhYTpHq9tnpdaGYAJfMLKv2KokonRrZIJuZnJpao0WraFIIJ7BFwiiqQq9RhU3OrP5LIPhiEK9jSeyf1KvyBKDZpWgS2Aml6XV7lDvDQjG0wRCYXRNo1OvYtNl5qZyiJJModbAFYoTiu08Zbnp51Zkeo0qfpvFTD5Lp9en3OzgjaYIhKMYukavWceujZifyqFqOiuVGo5AlFA0sS9SP57kK3jQmZ/O0xsMr3lQMk2DfruOQxlybDqHYVpcKlTQPSEC+1TqdU1DbNfxoXBidorBUOT8ahXJGcYdioJlIvfahKwRd8znsdttPHu5QM/04gzFsNn2TupNQ0frt4g7Ne48No2kqDxzqUhb9+IMRMECXewQs0u8/MQ0LqeDc4tFerjxhJPY7Hsn9aZhIPebhCyROxamMQyD51cqqK4g3sg46yN2WzjlLsfzKXw+L4urJTSHl1AitS9SbxoGvVYTpB7zU1kEYLVcw+EPEU2ksdls9DptxE6dXCqO3+ejWK4gOD2k0nmcrr0Ta9M0aTfrDLpNcpkUdpuNSrWGPxQhlclit9vpdjo0qmVikRBTU1O49hFvkrhBubvzbus/H4Jy97Z7Dle5W6uW3Qw68DHgRy3Lam17nFuV3MH4Qq7VahTLVfyhGIlUetcehkG/R7NaJhTwEotFKZSrdGSDQOLGtNC6ymQNeyxMZXA47FfShvEU9l0ORvJoiNipkQ75yKYSFCs1Kn0Zx9okfzUsy0LstXFIHU5MpfG43VxcKSEKHvzx1K7Thoo0Qm7XSAfdTGfTlOtNSu0R9lASj//aJ8hx7A52qc3x/DiNdXm1hCy4CMbTu1YYFFli2KwQXVND6602K/UeQjB5A3FaV5lsoxYLuQTRUJDFQomBYScYT+/aC6gpMoN2jbDDYn46T7PdZbnWwQok8AZvVMKlQQ+GTebTYwK6WCzTuIqA7ga6pqJ06sScJifmpugNhixWmuCP4QvdSJzk4QC9X2cqHtog9fWRhiuye1JvaBpSt05QUDk5N8VIFCnUmrjDCULRG4mTNBoyaFaJBzykkwnKtTrtkUowsXtSb+g6vWYNuzZiYTqPqqqsVuu4gnEi8fgN5EUSR3TrVcIeJ7lMilqjSXMgEUikd+UFhLEi3m82sKQBC9M5DMNgsVTF5gsTjqduiK1IawTUPSagzXaHameAL5bCv8n1sRVMwxinnsUrk/zlYgXTFSQUv1EN1RR5HNsJc1NZ2t0+q42xUu/fpVJvmiajbgub1OP4VAaH3cbZpSJdw4MrHL+BOBmaitZvkvJY3LEwTbc/4NxqHdkVxuXfXRrPsizUQQe/MeCOuSx+r4evXVihKgoIvhtjm4aGNWqRDcDLT84xFEWeX62huMJ4QrtT6i3LQh52cEldTk2nCQbGD8s9/crD8jWfW9eROnUCyJyczW+Qeps/Sji2O/uNZVkM+12UToN8MkYkFGS1VEHDTjSVu0GAMAydTqOGLg6YzWewLItSpY4/FCOeSu+a1Pd7XVr1MrFwgEg4TLVax7LZyeTyeLzXjheGYdCs1+h1WuQyaTKZzKF4D7fCpsrdfz0E5e4th67cbdZcVwYq1i4I2y1N7tahaRqFQpFmp0ssmd2Rh0GRZWrVIjZTJ5/L0u70KLW6uCPJbQdSXVMZtGq4TZWF6RwjUWS52txx2lBTFYatGn7b2NvW7Q9YrLSw/DG8ociW+48HowYBS+bEbA5F1bhcqmF4IwR24AUcP8nXCAjq+El+JHK5VMfwRsdpxy1im4aB2G3gM0ROzuUx9PFEiTdMMJbcdnBY97a5dJFjM3lkVeVioYrmDuMNbX3upmkgdRt49REnprPY7TYuFcro7iChaHLbtOF62tuhDjlxddrbFcQX3lqZsUwTsdvErfU5OTN++r2wUmYoePBFt09ZmqaB1Gni1Uecms2BwDjV6wzgjyS23N+yLEbdFnapy7GpFD6Ph+eXi4xw441uT+rNtXN3KX1OzGRx2G0slyrjlGc8vWXK07IsBt02crfBVDpB0O9nsVBCEZyEE5ltSb1lWfQ7TfTB2Nvm9bhZLpYxnV6iya1TnpZlMeh1GLUaZJNRwsFx6li27IRTmW1J/Tjl3kbujr1tAZ+PpUIZxbazc99IHcfCxKJhVstVhppFKJHZlliP1fguSq9OLjGe5JcKJYamnWB8+3NfV5XTET/pRJzV8lip98ZSuDzbpw3FQQ+912A6ESERi3BxpUR5oGEPJXG4tn4gUaXR2JuWCDCdSbFarrHcHGH64zh3EFsVhzikFsfSEXLpBJdWyyzVRTRPbNvYuirhktsspAMcm8lRqjVYaQywAgncvu1Tlqo0who0mI77mcmmKVRqlLsSjvD2PkZNkVA7dZJ+O/NTOZrtDpVOf8ekXpZEhs0qUa+LfCZFvdWi05cIJzP4t7HvqIpMu17BjcF0PkuvP6DV6RNLZQhHYjuK3aiWcdpMctkMnU6X/kgklc0R3sZLqCoK1UoZXZGYnZkmGp18C5+d4npylz9xl/XDv/WRA4/7899y+kXjudsNbgtyt47RaMTySgFZ00ll8vj8Nw4Ihq7TqFcRB12mchn0NYIi+HZGUK6GLI4YtWvEfeMbulIfpw29sTTeTWKbpsGg3cSu9FmYWvO2rVaQHX5820zy10OVJdRunZTfwVx+nDYsNgc4Ikm8m6QNTdNk1GniUHocnxqTo4srZUS7F28kuSvVUVNk5G6dhEdgYTpHp9un2OzgjqQ2Jcbr3jZz2GH+Km9b33TtiKBcjbH6VSPqNDe8gKu1Fo5gHP8macONtHe/zVw2QcDv2yhW8ERSu/IWGZqK1K0TtuucnM0zFCUuFuvo3simxPiK6tjm2JrqeHm1REcT8EXTOHahOhq6zqhTx2+ukXpNHxfZeCL4w5sTY2nQwxw0mEtFSMSirJYqjHR2XaxgGGPlzZKGzE9lMS2LxWIFuz9C6Cb3jDjoM2rXSIX9pBJxSpUaA9Ugksrg2YWvyTQMOq0G+rDLTG7sBVwqVhB8IULx5KZKvTQaMmiMVcd1b1t7pOxadVwv+jCGXebzV7yApjtAOL65F1CWRAbNysYkX2s0qXVHeOOZXVkJrr5n5nJJvB7PWKm3eQjENi/wUWVpnM732JmbylJrtrlU6aD7Yrh3UaxgWRbyoINX7XHHTIZQ0M/Zy6vUZQF7MLFpbF1VMIdNsgE7p+amaLZ7nF2pMbCFcfl2F1sT+wStPnfOZ4hHQlxYLlKXwRVKbnrPGJqK2qsTd1ucmpuiPxxxudTA9MfwbqKIbwVp0BvbVNIREtEIq+Uqgw1SfyM51TWNXrOGy1BYmB5bCcr1Jr5IgnBsd0V/w0GfXqNKPOQjGY9RqdZQDEim83h9N94zuq7TrFdQR33yuQy6rlNrNInGk8STN6rSW8ceUKuU8LgczM7M4Nsk3kFjs7Tsb77/rw887lvvzh6Ru+3wQpO7dbTbbZZXCjg8PpLpHC6XC8uy6LSbdJo1UokYPq+XxdUykuAklNh9anEdlmUx6nVRew2mUzHCa2nDoWEnsJY2tCyLUb+L1mswm44TXvO2dVRhnCrYR5uRqwejeCTCUrFMRwFvLL2RNlx/kp9NjQesxUKZhmTi2UNq8Wpc4wVMxsYpbUnHn8hukAdx2Efq1MhGgqQSN3rb9oqxb61OPupnKpOiWKnRGCr4YumNCXwj7R30kU0nKFbrlLoSznAK1z7ajKiSiN6rkwmNfWvlWoNCe4Q9nNxQGFRZRO/WN/yClXqTUmeEM5zEsw+/oCpLyJ0ayatI/Wqjjy10hdRryto2visqRK07IBBL76rNyA2xFZleo4LPbjGTG/vWKs3uNdWGqiLTb1bx2y1m81m6vT7VdpdALLWrNiPXQ1MV2vUqLuuKF7DUaOOOJAhGxhO4pqpjv6ClMT+dpz8YUqy3cYWvbLMX6JpGr1HFZSrMr03gq9UGrnB8XDkvCONtWlVc+nibkSSxUmngCMbHivoeY1+tdi9Mj0n9YqmK6Y0SiIwLfAxdZ9iu4zUkTszmkRWVcysVRvYA7lAMQdhbus00DJR+k4ggc2ZhCsO0eG6xSB8f7uA4tmkaaP0WEZvCXcen0XWDZy4WaGoeHP7onr2KlmlijNrEXQovPz6NzW7j3FKRgeDDExo/CJumgdxrETBHnJ7NIdiE8cOy3Yc3sr2af9PPbZpIa2r3ydksznVS7/ITWivwsUyTXruFOeowlxunvVfLNezeANHE1or4lp/bsui1moi9JlPpBB6Ph0KpgtPjJ5HO4Vyrpm+3GvTbddLJOF6Ph3KlgscXJJUdb7PX2O1Wk1a9RiIWYWpqCscBdSjYDJspdz9yCMrdvz9S7rbHi4XcwfgGrVQqlKp1AsEoojjA73GRTMQpVeu0RpMpCtiIt+avEeQrqtxisYLuCmAqEomAi6nMmrets7m3bc+xTROp28KpjNOGDoediyslZLsPdJWEz7H2JN9ipdHDFtxc3dsLLNNE7LdxyF1O5NN4PG4WC2UUmwfLNAg6LOanc1d52+J491kUsBHbspD6Yy/giQ0vYBERN2DhF3SOzeTp9YdcrjQwfDG8wclU+m7mBby4UqKtCFg2gYhN59T8OO29WK5j+WLbpr13A3HQw+yPSX0sEmaxUKalADYHfkvm1NzY27ZSqeMMxQhNsIXOuOK0SnKt4rRYqdJVDOxONzZltOFtWylXcQaiRBK7U8S3gjgc0G/WiPo9ZFJJStUanZGKw+PDkvrMrXnblkrVjdTzpCp9ZXHEoFkl6ruiyjX6Enavfxx7bZK/XKigu/yEJti+R5Elhq0qUbd9w6daag2wPAHscp+FfBqfx83ZxQItzYErlMA2ofY9uqpg9OtkAw5OzOZpdnpcKDURbV4CpsQdsxlCAR/PXVql1DfBF59YbENXEcQWU2EHZ45N0xuMuFiqI9v9uPURx3MJYpHQuBBMEXBHUxPryWnoGlK7TsiucXI2jyjJrFQb2HwhTHGwkbIvVqrIukA0nZ1Y+x5d1+g0apjyiNl8Bk3XqdQa+IJRpFGfkN9LIh6jVqujmZDJ5fFNqPpV13UatSrDXod8Lks6nT6U1ilHyt3ucNuSu3WoqkqlUsHn842r1OotnBNu53E1NFVh0KzhE3QWZvKMJAmfx3PF2+bb3tu2V+iaitxprA1GU0iKgtvpvMbbdrMU3n5h6Dpip04AZUwsNH3cIHWtSm0n3ra9wjTGfjyfKXJqLo9pmBuLu1xYKSPa/fj28SS/ZeyrvIAnZ3IIgoBpWdhtAhdXy0h2L77o7ottdhbbROy2cCg9TkxncDgcaLqBx+VkqVDGcHoJJybbzmMdV3rFtZjOpPC4XSiqtuGr020uoqnMvir/tozdaSN2m0ylEvh9XkRJxu/zjnv0WXbCiYPp0bfup5O79Q3T/HAkEvD7WC1X6SkmgXh20xTeJHB1hXksEmYwHBEKBlgsVih2ZYRgEqf7YPoDquIA+6jFQjpMNpWg2x8QDYdYKlS5VOujuqI43AeTztNlEbfW5kQ2zEwuTa8/IBwKUq23WG0NsO9TEd8KqiSidcdK/Ww+Q28wIBQI0Gp3aPSGhBMZAvtQxLeCLEl0GhV8dpjKZRiORvh9PvqDAZ1un1Q2RyS6vS9vT7FlmWq5BLrG7Ow04fDBrvO6uXL30QONCfDvv+XUEbnbDi9GcgfjAfkrjz+F6gqMPUKH0BV83LiyysuPTbNYKNHSnHhju/O27RWKNELr1LjnWJ5qo01FNMcE4xBW11BlCaVT5a6ZFP2hyEpHxhtLT7Rv1s2gKTJKt8qpbBRDN7jUGOCJZvaV9t4pdE1Fblc5lvTjcjq5UOngjWX2lfbeTWyxXScfdBALB7lcaRJO5XblbdtzbF1bazFikEkmuFioEEllN/WcThrjasM6Dk1kbnqKZy6vEIhnd11RuxeM213UsatDTh+b56nzl/FE0/h2WVG7p9hrVft2qcddp47zxa+eR3LH8AQOPrZlWcj9NhFzwP0vO8XDT5ylbQVweA++Me7Yj9cjYR/y9+49w5NnLyK7N/e7HkRsadDFMWpx/10nOXfxMu5QjPAufdp7xaDXpd+scOeJBRaXlglF43vqDrEX9Ps9aqUi87PTxGIHQyThSLnbLW6Z5cf2C0lVieczhxbP6w+giEE0TWMkqfjS+X31jNoN3F4/mhxGUVRGsoI3kjsUYgfg8njR/REkRUWUFdyRyTZE3QpOtwcjEEeSZXTDwBmMHwqxA3A4XbhCcUZSH9MCZyB6KMRuPbY3mmQ0rOH3anhD0UMhdgAOx7j6tF9ZQtM0PMHwoRA7ALvdQSyVobZ4Hl3XcXqDh0LsAGx2O9FUlsbSOVRVxeb2HwqxA7DZbITjaTqrPRRFQRXch0LsYLwMpDccR2qNUFUV0bDjDEQOLbbLH0EcSaiqioYdfyR+aLF9oSiSMkJRFCxsRBPpQ4kNEAxHkEcDVFXFtCCdzR1a7FAozGgwRNO0Q4sJIKkGXyv1DzXmSwlH5O4limJb5Gy5h6QaeF12zuTCTN2CC4N/ofIxXhF/A0HX1mb7gdrhqdb/4+uy33ZIZ3b4eHypxcMXG0iqjtfl4PUnktw3fziT15cuNfns2SojxcDvtvOmMxleu8c1W4+wMzxyucnnn68jKjo+t4M3nkrxqj2u0XuEI9xyEOBFuEraviEIwiIbxqHNYVnW/HbHOSJ3LzE8V+rx8ScLPF8Z3PDeqWyQt907zZ35w3lKP2h8ofIxPrz4X3m48nF+4q7/elOCN1A7/Paz/4KqtAxwyxG8Tz5d5ONPlZDUaxuXP77Uxuuy87ZX5HnLPVMHEvvDj63ygUdWGV0X+4uXWvhddr77VTO8/f6ZA4l9u+JjTxb48GMFxOu+869cbuFz2Xn7/dN8273TL9DZHeEILw74nHZenj+49YZfQDzMjeQuBrwGGKy9vy2OyN1LCH97vsYfPbyIZYHHaeP++TgRn4uuqPLYUovnKwN+/VNn+aevP8bXn0690Ke7b7wi/gYernycqrTMbz/7LzYleFcTu4x3jlfE3/DCnOwB4fc/f5GHLzQ2/k6H3IS8TvqSRq2vIKkG739klVJH4offeGKisf/TX53nM2drG3/nIh4iXhddSaXclRmpBn/48BKrbZF/9U2nJxr7dsVvffp5Pn++vvF3Juwh4nXSlTSqPRlRNfiTLy5TaIv8xJtPvYBneoQjvLAQNZNnyjeKHC91WJa12dqyCIIQAj4NfHInx9kXuRME4SeBH2TMMv/Asqz/up/jHeHmeK7U2yB233pPnrfck8fruuLR+57XzvPJp0s89HSJP3r4Momg+yWv4AVdUX7irv+6Qd6uJ3jXE7ut1L2XIj75dHGD2J1IBfjJbzxN1H/Fn9gZqfzW35znYn3IFy40yEe9E1PwPvzY6gaxuyMb5Ge/9QzxwBWPYGso80sPneVcZcCnn6sxE/MdKXj7xMeeLGwQu1OZID/9zXcQC1zxhLaHCr/2l+d4vjrgc+fqTMd8RwreEW5b+Jy2W1W52xSWZfUFQfhV4JeBD263/Z7JnSAIdzEmdg8AKvBXgiB80rKsS3s95hFujo8/Wdggdm9/4MZJ1Ouyb7z+0NMlPvFk8SVP7uDmBA+4pYkdwMefKgFjYvcL3/byG96P+l38wre9nF/42Ne4WB/yiadKEyN3H3hkFRgTu//yzntveD8e8PBf3nkv//L9T3KuMuADj6wekbt94sOPFYAxsfu1t99zw/uxgJtfe/s9/PSHn+b56oAPP1Y4IndHuG0haubtWFChADsaaPej3N0BPGJZlgggCMLfAt8O/Po+jnmETVBsizxfGeBx2njLPfktt33LPTk+/VyF85U+xbZ4SxRZXE/w3vP09wEw1Lq3LLF7fKm14bH7yW/cOuX5499wip/4v08gqgaPL7X2XWTxpUvNDY/dz37rmS23/Zm3nOGf/MEjjFSDL11qHhVZ7BGPXG5ueOx++pvv2HLbf/3Np/mB9z2GqBo8crl5VGRxhNsSt5NyJwiCC3gZ8EvAuZ3ssx9y9yzwy4IgxAEJ+AfAi6+J3S2As+UeAPfPx69JxW4Gr8vBffNx/u5Cg7Pl3i1B7uAKwXvP09/HUOsCEHBGbkliB/DwxXE6Nh1yX5OK3QzxgJtUyE29r/Dwxca+yd1nz1aBscfu6lTsZkgGPWTDHio9mc+erR6Ruz3i88+P07GZsOeaVOxmSAQ8ZEIeqn2Zzz9fPyJ3R7gtIWkmz5RvPeVOEASDm1fLdoFv3clx9kzuLMs6JwjCrwF/A4yApwHj+u0EQfgh4IcAZmaO0jZ7wbqCE/HtrB9cdG2766srj/DSgaTqAIS8O+s/GPY4qfeVjf32g5Gydr15d3a9RXxOKj15Y78j7B6iMv7dIjv9vX1Oqn15Y78jHOF2xK3YCgX4BW4kdzKwCnzKsqwdMdp9FVRYlvWHwB8CCILwHqC4yTbvBd4L4xUq9hPvdsW6WtcV1R1t31nbbjuV76WE9eKJodYl4IwA47TszapoX+rwusa3Zl/aWWPQnqxds99+4HevXW/Szq63rqhds98Rdg+fe/y7dXf6e6995+v7HeEItxu8Thsvy916aVnLsn5xEsfZb7VsyrKsuiAIM4z9dq+exEkd4VqcyY0LIx5bavE9r53fkrRJqs7jS61r9nupY7OqWOCmVbS3Al5/IsnjS21qfYXOSN0yNdsaKtT7ysZ++8WbzmT44qUW5a5MayhvmZptDGQqPXljvyPsDW88leIrl1tUezLtobJlarY5lKn25Y39jnCE2xGSZvLsLdgK5WoIgnAKiAP13Rar7vex7yNrnjsN+FHLsrr7PN4RNsFUzMepbJDnKwM++XRp02rZdXzy6TKyZnI6G7ol/HZbtTvZqk3KSx33rfkrJdXgt/7m/KbVsuv4nU8/D4DPZZ/IihWvPZ7A77IzUg1+6aGzm1bLruM9nzwLgN9lP/Lb7QOvOpbA57Ijqga/9pfnNq2WXcdv/OV5YPx7H/ntjnC7wuu035LKHYAgCN8M/B4wd9Vrl4F/YVnWX+zkGPtNy75+P/sfYed4273T/PqnzvLQ0+P2GG+5J3dNCk5SdT75dJmHni4hCPDWew9mxYLDxHZ97Lbrg/dSx9tekef9j6xysT7kFz72NX78G04Rv0rRaQ0VfufTz3OxPgTgra/YupJ6N/juV83whw8vca4y4F++/0l+5i1nSAavKHiNgcx7Pjnuc7e+/RH2h7ffP82ffHGZ56sDfvrDT/Ovv/k0iatU0+ZQ5jf+8jzPVwcb2x/hCLcrJM3gmcotWVDxKuDjwAeA3wd+BfhnwD8CPi4Iwpsty/rb7Y5zZNh4ieDOfJh/+voF/ujhRR56usSnn6tw33ycqM9FR1R5fKmFrJkIAvzT1x+7JXrcPdX6f9v2sbue4N1K68u+5Z4pih2Jhy80uFgf8hP/9wlSITdhj5OerG2kYgG+7mRyokuQvf3+GVZaIp85W+NcZcA/+YNHyIY9RHxOuqK2kYoF+IY700c97iaAb7t3mtWWyOfP13m+OuAH3vcYmZCHsM9JT9Q2UrEAD96ROupxd4TbGl7Xi0e5EwTh7wO/BdiB/2lZ1q9uss07GBdLWMBXLcv6Rzc53L8DPmZZ1rsEQbgX+FXgf1uW9ceCIHwU+DngiNzdSvj602kSQQ+feLLI+Uqfv7tqWSqA09kQb7136pYgdnBljdhXxN+wpRq3TvBuJWK3jh954wmmol4+8VQJUTWo95VrSJ3PZeetB7S27P//759mNu7bWFu20pOvIXVHa8tOHj/5DaeYifs21pat9uVrSN3R2rJHOMIYkmrw3IugFYogCHbGKdRvYFxU+pggCH9uWdbZq7Y5AbwbeJ1lWR1BELYyy76O8QIRm+F9wP/dyXkdkbuXGO7Mh7kzH6bYFjlb7iGpBl6XnTO58C3hsbseOyVrQVf0liN263jLPVO85Z4pHl9q8fDFBpKq43U5eP2J5EQ8dlvh7fePyduXLjX57NkqI8XA77bzpjOZI4/dAeHb7h2Tt0cuN/n883VERcfndvDGU6kjj90RjrAOgRdLL5QHgEuWZS0CCILwAeCtwNmrtvlB4Pcsy+oAWJZVv+EoV+AFmlu8b9vJSR2RuzW4HHYGnRaBSAzhEC4YTVXQ5CF2ewi3y0G/18EXie849lTMt2cyp2sqpjzA4Ujhdjro9zv4o0lsth1dM/uCoWvo0hBXJIzL6UAZdLE7XdhsB99GwzR0tFEPV8KHXRBQuz2cbi82+2HENlCGPVxhB06HHaXTx+XzY7fv/Ba8bz6+JzJnmiZSv0PIbcdutyN1evgCIRzOnfVUg3GRxV7InGmaDHptXPa12MMOgVAYp2vrRr2TgGVZ9DptnA4HNpsNVRqhKjIu99aNmScVe9Dt4LAJ2Gw2DEVClSVcHu+Oj/GqY4k9k7lhr4sNE4fDgc1Q0WQRp+dwHv6UUR8vBg6HAycGiiziOKTYmjzaiC2YOvJogMcfPJTYijQCTcHhcGCZBoNel2A4ciixZUlEk0UcjgRYFp12i0j0cOYyWZIQhwNiocMVF7xOO3dlD+e33QZ5oHDV30XgVddtcxJAEIQvMk7d/oJlWX91k+NVgfR1rwmCIASAfwv83U5O6rYnd4Zh0Gw2ueP4AuVanUZxEV8sjdcfOJB4pmHQb9WxKQPOTOewLItT8zNU6y2KlSVs4eSBDUamaSJ1mri0AXfP5nA5HSxM5wi2O6zUlhACCbzBg0npWqbJqNfCpfS4azqLz+MmFAzg7/ZZrCxj+mN4g5EDGYwsy0Lqt3FIHe7MpwgG/AB4PCMuFZcw/DG8wejBxR50sIsd7sglCAfH19UZh4PLxSUMbxT/Lkj9biH2u5jDJgvpGPFIGMMwWEhHWS5exhmMEoodHKkf9XuM2jVSkSCJVH4cOxtnpbiMIxAmGk8eGLEWhwN6jSrxgI/U3AyGYXDHTIbFwipDd4BwIrUrYr0byOKIQbNKzO8mf3wBTdO4cz7H5dUiI4ePUDyN3XEwsRVJZNiqEvM6mD6xgKqqvObOec4urtJsdXGGk9gdOyf1u4Guyhj9JrmggxN3HkdVVV7/ihM8d2mVYq+H5Ytjd+ysMfZuYWgqNqnFXMTBmWMnUFWVe08vcHm1RLPawR1LH9gDha6pKJ06IYfOyVOzaJrGqWNzlCpVKt0W0VQWj/dgiI+uaXQaVSxV5Nh0Fk3TmJ+boV5v0Gk2Sefz+A9oLtN1nXq1yqjfYSqfI5E4XFVZ1gyeqxxKK5SEIAhXr7713rX+vbuBAzgBvAGYAr4gCMLLbtJh5CvAa4EPr/1tAR8FXsOYGO6okPW2JXeWZdFut1lcKWBzetBkkVQiRjoRZ7FQpt1rE0xkcLomMxhZlsWw10HrN5lJxQkGZriwUqKjCjhMjYVsjFeemuVyoUS71sUdTU10MBL7XRi2WMjEiIXnuLRaoilZ2C2duVSY+07Ps1Qs06iuxXbvXGHYDtKwjzVoMJcMk5pbYLlYpikZCKZJPhbgvjvmWS3XqNSWcUbSuCb4lK+IQ4xejel4iOzsAsVqjcVaByxIhTzcd+YYxUqNUm0JeyiF2ze5gVCRRui9OvmIl+nZBUrVOovVDpYgkPQ7uefUAtVGi2J5EWc4hScwOVKvyiJyp07K72T21Dy1ZounLqxg2exEPTbuODZHu9OlunIRXzxNIBSZWGxFlug3qvgdcGZhhla7yzOXVhAcTvw2k5PzM/QGAyrLl/DHkwTDkyPWqqLQqVfxoHN6bopuf8Azl5bB4cYrGJyYm2YoihQKl3GFEwQnqNTrmkqvWcVtapyZyzEciXztwhKW043H0jg+O4UkKyyXF7EFogSjicnF1jUGzRpuU+auuTyiJPPEuUUUm5ugTePUbI4Fw+S5pRJDmx9PKI4wIVJvGjpqv0nEpnDm5BSabvClp5+nrdhJeS1efnKGY9PwtYurtCQ3dn9sYrEt00AftUm6NV5+1zQW8OS5RTqag7BD485jU0zb7Ty/XGJo8+GLTu6BwjRNpG4Ll9rnZbNZHHY7l1eKmE4Plioxk0mSdrlYLhYYePxEk2kcEyLWpmnSazeRei2mM0lcrjDFUgW724cqj0gnYiR8PkqFFdxeP+lsbqJzWavZpN2okozHOP7yl+E4oIeVrXCIyl3Tsqz7tni/BFxtgp1ae+1qFIFHLMvSgCVBEC4wJnuPbXK832JM5ABUxitT5ID/Dfxny7KuP/amECzr8BaNuO+++6zHH3/hl58djUYsLq0gaSaJdA6vz49hGLQbVeRhl6lcBtOyWCxUsLwhQvHkvtKGsjhk1KqRCHjIZ1JjMtEVN8iEaRqIvSYedcjp2RyCTeDCShnJvv/BSJUl1G6dtN/JbD5DpdFitdFHCI0VQss0kXot3GqfEzNZ3E4H/x97/x0mWXqW9+OfUznn2FXVYXrCRm3UapWlFdgGjCRyEsnYMj8bDBhM+IKNsIUBGZkkG5AxCCwDAuUElsQqrCRWq9mk3dndSZ0q53yq6qT390d1985M93Ss7tX09n1dc+1On3DX21PnPff7PPfzvBeW8/QkB67g/qIb6mjIqFkm4jJzIjNFtdEkW21j9kVxef0IIei360j9BvNTMVwuJ+eXcnQNK45gfF8RBk0ZMWqVCdnh5HSKVqfLSrmOxR/FvSpk+u0meqfOTCKM1+PmwnKelmbCEYhjse59ItRVhWGzgt+icXo2Tbcvs1ioInlCuPxjMdHvtDA6VWbiIYJ+H5ezBZojcO4zwqBrKnKzilsMOT2bRh6OWMyXEe4gntUIodztoLYrpMM+ouEQ2UKRnirwRZPYd5E23Mit0a6XYdhjNpVENwwWcyVM7gC+cASTyYTc6yLXy0T9buKRMIVShc5IIxBN4HDtXdTruk6rVkHvd5hJJRDAQq6IdMXzO1h9DsPu8XNYLFeo9YZ4wol9ReoNw6DTqKL3W5xIJTCbzVxaKWDYPHgjUcxmy2pErUzQaSaTTFCu1Sm1ejiDcVyevVf8CcOg26pj9JrMpWLYbTaeW8rRFQ6cwShmiwV1NERplYm6LMxnpqjUm1wq1FGdYez74RaCUbeJU2lz03QCr8fF184vU+jq4AxhMlvRNQVp2GAmaOOWk9PUWx2eWSzTkbxYXb49i1shBNqgg1d0uW0uQdDv5dmFFUp9MHvDmK02dE1F79SIu+DmExm6fZnL+Qq6M4RznwuKQbcNvRqzsSCRUICVfJGBIRGIJrE7HOOIWq2MSZGZTU8xHI7Ilas4/WEC4ei+uHudNp1aiYjfQzgUpFAqo+oQTaRwOl1omkatUmLYb5NKxjEMg1K5SiAcIRKL7ytS3+t2KBfyOO02ZmamcTonFwTYDpIkPXqlyMqcuV381B9++MB5/8MbTj66lbiTJMkCXADewFjUfRX4fiHEuSvO+WfA961WwEaAx4E7hRD1g/rcLypxpygK2VyOar1NIJLAF9j4gI9GQ+rlAiahkUklabTa5KpN7IGxKNjNQ6mpCp1aGScqJzJTdPsyl3KV66YBtVVRELDqnJlN0+n2uFSoItwhnL7dTUa6pjJoVPFII87MppEHQy5ky6gOP07/xjSgrqkMW1X8JoWb5jL05fFn1ZwBXJucvyW3ro0FhjHg9MwUmm5wMVtEd/hxByIbJhdd1+g3KjiNAaemp1BUjQvZIorNP+bexWRk6DqDVhWn3uf0zBQAl1eK6A4f3nBkg0g3dJ1uo4pF6TKfTmIYggsrRYZWD87AxvO3gjAM5HYVu9LjzEwSs9nMxeU8I6sbTzCK6RqhbBgG/WYNy6jNycwUJpPExeUCQ4t77IHchahfS3tbBm1OZuLYbTYuruQZmZ24g7ENaUBhGPRadaRBi/lUApvVwlK+iGFzEYgkdpU2FELQadYZtWtk4hHcLhcLK3lGJjv+aHyDt298fgOtUyeTiOB2OlnKFTAsDoKxxK68gEIIOq0GcqPGVCyEz+NhIZtnICz4IhuF8loEfdSuMRML4/G4WcoVGGDBH0nuOrrRa7cYNCtMRQKEAn4WswW6GngjiU29fb12i1GrQjoSJBjwsZQr0tUkvOE41l16AeVue8wd8hEJBVjKlyj3VGyBGNZNRPqw10F0a8zG/MTCIS6vFMh3FEzeKJZdciuDHqZenbmYl1Q8ymK2yMViB8UWxGLbyK0N+zj0NmfSQTLJGAvZIgvlHoojtOn5W0EbydiUJifjXmbTCbLFCgvVLoYzhNXp3nC+OpQxyXXmIh5mUglypQr5Zh+Lf/eR+vFiuUzCY2UmlaTaaFBr9/BFkri9G4XycCDTqhTx2sykknFqjQb1jowvksCzyflbYTQc0qoUsZsMMqkkzVabZrtLKJrEH9jYTWA4HFApFbBIOqlkglarRbvbJ5qcIrDJ+Vtyj0aUi3k0Zcjs9DSBQGBX108C14q707fdKX7/bz914LzfdEt8S3G3+tm+GfhdxmnTPxVC/LokSf8ZOCuE+Kg0foG+E/hngA78uhDirw/yc78oxJ1hGJRKJbL5Ek5fiHAktu2Ls9ft0KgU8HscRCMRsoUSDVnFE0lg38Y/YRgG3UYF5A4n0gkkk4nzywUGJhfOwPYv7dGgj96uMBVwkk7EyJUqFNoDrP4YdtfGyetKjAVGA+uwxalMErvNurqSt+MIbHzJXwtlKKO1KyS9dmZSCUqVOtlGF7NvMlug8AABAABJREFUey+gEAK53cA8aDKfiuFxObm4nKeHDXdw40v+WqijIYNGibDTxEwqSa3ZYqnSAk8Ep2drL+CV3rb5ZAS/z8PllTx9w4I7vH2KWx0N6dfLeCwGJzIpGu0Oi8UGhjuM0+vfVtwOui2kfp25eIhw0M9CNk9zBK5QAqt9a25NVZAbZTwmjZPTqXGEoVAFVwjXDiIMg14HvVMlE/ERDQVZKZSpDzRcofi2Bn5dU+nXKzgZcWpmvAjIlirY/GF8O0gbyr0uvfrY2xaPhsmXKjRkBW8kjmOb76quabRrFcxKn7n0ONK3Uihj8wbxhzcuAjaMu9+nXS3hd1pJxmOUKjWq3QHu8PaeWUPXaTcqSIMuJ9JJBLCYKyK5/PhDO3lGB3TqRfz2cSSuWm9QbPZwhmLbRuLW5gchd5hPr0X68mh2D/5QfFtuZTik1yjht0nj56TRHFsNduCZFYaB3FqL1Cdw2Gw8s5Clodmw+SMbFiDXQlcVtE6VuAvOzGaotzqcWyjSFl6sTu+W3xchBOqgRdA04Pb5KXxeN09dWKbQE0juMCbz1vODoakwqDPlkbjt1AydvsyzSyX6Zh/2bZ5RIQSjXgeX1uamTIyg38vFpRzNtUj9NqJe11QGzQpeSeH0TIrRSCFbruLwhfGHt39Ouq0mvUaZeChA0O8jWygxEiZCseS2BT66rtGolDGGXWZSSXRdJ1+q4AtECEVi2z4nnXaLeqVIwOciFAxSLJURmIinxpG+rbl1quUSnVaDVDJBPL6/yN9+sFnk7mf+8CMHzvuzb5jfVtxNEqtC8IeB7wVmgGu/IJIQYnbb+xx1cddsNllYWgGLg0g8iW0XKS8hBM1GlW6jSiIWxulwcHklz8jswBfZ3D/Ra7dQ2lVSkfFDfHklT30E9kAcyy65B90mpn6DU6koXo+bi8t52roZRzC2adpw0OsgOjWmoz5i4RCLuQLlnoY1sDsPnRCCYa+NqV/nRDJEyO/n8kqexki6rhdw2O+hd6ukgm6mYhGyxTKVnoI9EN9WDF8Ludsei5Woj2goxEKuQLWvYwtsHt1QBn3UNW9bMk6hXKHcGeAMxnHsMt026HUZNsskAx7i0TArhRLFzui6XkBlOEBtlUl4xyv5cq1OvtHD6o/i3GXKayT3GTbLJPwOUvEYhVVRbwtsHmFQR0OGzTJhh4m5zBS1RotsbWyad+2yMGY0kBk0ykTdVjJTCSq1OtWOjDeyedpQVUa0K0Ucks5MeopWp0u+2sAeiOLx7y7CrQyHdGolvFaJ6akEzVabcrODNxLH49s4DlVRaFXLmPURs+kperLMSqmG1RfetYdOVUZ0aiXcks5sJrU+DkcwhmeTSL2mqnTqZSzqkLlMktFIYbFQwewJ4g3tzkN3bWS/15dZLtWweMObVu3ruka3Xsa8ap7XdIPzywVGNt+40n4XL92xWBlH6s/MpukPhjy3XKJv8eLwbeQ2DJ1Ru46fAbecSIGAJy+sUBlasLh256EzdB0xaBB3Gbzk9DSqpvO1SzkamgOLK7jhXsIw0PpNwtYht59MY7VaOHcpS0O3YfWGdxXhNgwdpdMgaBpy6/y4N+SF5QJDixdnMLwhUj9eLNexDtucSsdxOOws5QpgdxPYpYfOMAxatQpqr8nM1FjUL+WKWFxegtH4BguMEIJ2o06/VSUVi+B2Ocnmi1jsLqKx3UWZDcOgUa/SaVZJxiLYbDbyxRIuj594MrnBMzd+9zWoVYqEAn4y6TTWXUTUDwKbRe7+4G8/feC8/+yW2GGLu18Bfg14Cniase/uKggh/sW29zmq4k6WZZaWV+gOFMKxKdz7MKtrmka9WkSRu2SmEiiqxlKhjOQOjKMbJtPznhqHmcxUglK1zkqti2kHEa+tsJ5mNPqcmUkhhODCcoGR1YszOI5ujL1tFSJO07q3bbHcROwg4rUlt6EzaNdwqj1umkld7QVcjUBqisKgVSZkE2NvW7vLYrmOyRPBtcs09pVYSxuahy1Opsdpw/PLefo4ca6mOHVVYdiq4DePvW29vsxSsYbZG8K9D6O8EIJes47RbzCXjOFyOsZeQGFbjX5aV9PY45X8mVVv20K+jHAFcAf2bpQfRz+biF6duWQEr8fNpZU8Hc2CMzQW9Yau0W9UcRoyp6bHae/L2SKGM4A7GN7zyloIsSqsa0zHggT9PpbzRQbChH81zajrOu36OOo0u+ptW7zS27YPf2i/20auV0iGfERCQbKFErImCMQS2B3O1ZdjFbXXYmYqjtls5nK2gG734A9H9+UPlXtd5EaZ2KoXMF+q0BwoeCPjSkdhGHSadbReg5nk2Nt2eSWPanHhi+yv+vVaT26hXKHaHeIMjiOQQgh6rTpat85MMorH5eL8Uo62ZsERjGLehz90vDipkFxdnBQrNS5X2hiuCDaXZzXi1cYxanI6PY54nbu4TLalIRxBTPuoftXVEeZRk7mIgzMnMpSqDZ7N1pDNfqzO8ZypyB28RoebZ6LEwkEuLObIdVVMnsiuFssbuRX0bo2kx8RNcxma7S4LpRrCHV6v2h/2OhidKtNRP/FIiFyxRF818Ef3V/2qKgrNShGLoTCbnqIvyxQqdVzBGP7V9iVyr0urWiTgdpCIRSmVx/0OY4kUrn34Q1VVpVYpog56pFNJRqMRlVqdUDROODL2Avb7PUr5PHarmZnpDG731hH4w8Kmkbs/OoTI3QOHHrlbZLxDxb/f132OmrjTNI1cLkep2sAXihMITa7NxHAwoFbJYzMJUskEtUaTQqMDFgcOMWJ+elyldjFXRnXs3qu2FTRlxLBVJmKH+enVtGGpgW5x4BajdW/b+eUCQ5sXlz8ysYq0tVL/oFXnzFxm3QuomJ24GXJ6euxtu7hSQLV5V3vmTaYiTddU+o0ybhROz6bpyzIXcxVGZicuY8jp1Sq1iyt5NJsHT2h/L/mruTV6jQo2TWY+87wXcGhy4jAGnMqM01oXl/PIJgee0ORaXBi6Tq9Zxab2ODU9bplzYaXA0OTEpg2Ym4ridbu4uJxDxoY7tH3ae8fchk6vWcc8bHNqegqTJLGYKyLsLoyhTOoab5s/Ork2E8Iw6DTq6P0mM8k4NquF5XwRw+pEHw2Ih/yEAn6WcgV6W3jb9sQtBN1WA7VTZyYRxeV0sJgtMDLZEOqIRMBLJBxkJV+iNdLwRPZXgHItd6/dRG3XmI6PC3wWsgVkw4zQVRJ+F/FohJVCmUJniNUfwzbB9hqDbgup11iN1Pu4uJyn2NMxCZ3pkJuZVJyVQpnz+RYjSwCLfXLc6qCHW3S4eTpCMhbmwlKOpfoQSQjmoi5OzaYplGtcLDbRnCFsE6xoVwY9LIMG83E/qXiUlUKZUmcEJhNhhzSea5stys0OnnB8on3rBv0+7VqRgNM2thWUq7TkIWarDatQmU5N0en2qDVaBCOJifatG8gylXIeuwWS8Tj1RoO+PMTucKIMZWamM4RCoYlwTQqbibt//8cHL+7+/esPXdz1gDcKIR7c132OirgTQlAul1nJFbG7/YSjB9dLqtNu0awWCfk9hIIBFEXBZDKNozs4cO7A27ZXDPvd8Woy7CUZjzAYDrFZrZxfzNEyLOuRpYOAstraIx10kU7EGI1G2Gw2Li3n6OgWXMHYvlbTW2E0kBm1xmnD6akEw9EIh93OYjZPWwV3eHIv+WuhjIb06yWCNhPTqQQjRcFus7FSKFMbaDiD23vb9gp1NEJulglYBfPTqfVx54plqn0FRzCGfRMT+SSgqQr9RhmPpHFyJo2iKNjtdkqVGrXezrxte+dW6dQqWPUh89MpVFXFbrdTrTcoNXu4wtt72/YKXdPo1MdewBOrvShtNhv1Zot8rYUjGFuvuJ40ruyDeSKdxGQyYbFYaHa6LBRqq8VYB9QP0jDot2o41S5nZqawWCyYTSY6vT5fu5SnbbixOLf3n+6JWxhocpuwdcBLTmVw2G3jCNZwyDOLRbomD3ZvAEmavN9rHJ1s4dE63DyTxOtxoRsGmqaxXChh84YIhA+mH+RaQdCgWSUZHS+aNE3DMAzyxQpuX3D8LjugfpDtVoN6pUQ46MXv86HrOrHY9j6+FwKbpWXf9f6DT8v+05sPPS37SeDTQojf2dd9joq4KxQK5MoNYlMZ7IfQgX7sYagw6jaYTqf4yvkVHMHkplVqk8Y4dVfHrba5/fQJHj63gDmQmOhKfivuYbeJY9jkzpvmefS5RazBBI4Jrqa34pa7LUy9GnfdfJLHn72MLRTftbdtr5C7bdRWmbtuOsljz1xE8sd37W3bKwb9LlqzxD03z/Pk+Uvgie4r7b0bDOU+o0aRu8/M8cylRcx78LbtmXsg060UuO1EhouLKwh3EG/w4Jo+XwllOKRdznPr3BTL+SJDiwtv6HBefKoyol3OcyYVoVhrUhqacIUmFxHfCrqq0K+XuC0VpNXp87VcD4s7jHRIu8iIfo17T453Ynkq38UW2FhpflDcSrvGTTEnPreDYksmFJ9cf7itoOs6zWoJJyohv49Ko0tiKoNtm2KsScAwDGqVEuqgw513vOTA+faKzSJ3P/vHHz1w3p95/YnDFndzwIcZV9d+XAjR2Mt9jkwTY03XcXn8hyLsAEwmE6FwjJVGFV3XweY+FGEHIEkS7kCEUbGBpmkIm/NQhN0at9MXQpGbaJoGVsehCLs1brcvSL/fRFVVsNoOTdgBuLx+2t0xtzBbcR+SsANwur30ei1UVcXAjNe/u1YG+4HD5UbpOdE0Dd0QBIMHu5/tVdxOFwPHuA/lSNWIhA6vC77N4cDiHkdSRoqGN3o4W/QBWG12bG4fqqYzVDQc/sShCDtgnBZ0+1BUjcFIxWT3HYqwAzCZLag2D8ORCpKE2eU7FGG3xm12+xkqfZx2Ky5f4FCEHYDZbMYXDCNX82i6jscXOBRhB6vvskiM3GLzUPgmBafVzC2Jw3n3HDIurf73PcCmC1khxLYT0ZERdzvFRxf+hlenvoGgfewnWKj2OLvcoD/ScNst3DsT4kTUQ3PU4KH8Z3jjie8+sM+Sb8o8k28zUPXxFzXlJxU8HJGWb8o8U2gzVHQcNjO3TB0c92fzH+Se6Ovx2bYWJB2lyaPVz/L61LdPjPsz2Q9wX/yBHXE/Un6Qb8h8x8S4X8hxH2OMhy/XePDZCrKi4bJZeODmGPfvcb/W3WKl3ufJbIuBouO0mbkjE2A6fDjm9Bdybil3hyzU+ww1A4fFxImwm7j3cBbdx3jxYKjqPFvuvdAf4yDwNmDfqYkXlbj76MLf8K6n3sHHlt7P92d+g795pMkT2daG826bNjEI/Q8qo2WAiQu8Z/JtPvJ4lvOljfvinUl4edNdGW5JHUxU6JlCm48+nuPCJtynE17eeFeaW6Ymx/3Z/Af5q0u/w+cKH+Jn7/j96wqdjtLknU/+O4ryEsBEhM5nsh/gvRd+hwfzH+IX7/6DLbl/87GfpNAfc09C4H02/0H+8uLv8Nn8h/i5O7ce928/MdlxHwM+eDbL+76aRVb0q37+j5fruGxmvuelGb793sx1rt4fnsw2ed9XVjhX6Gw4duuUj+952TR3ZA4m8vpMfvx8X29ueeNd6QObWy7Xenz2Uo2lhrzh2GzIxetPRpiPHMlIy1U4+a5xgdmlnygcOnf0v0cBqP776qFzHzYcVjO3JA5l+7FDhRDiv0ziPi8qcffq1DfwsaX3s9xd4Ncf/0nkwltx2fy8/kyMiMdOrTfis5cWWLD8IeZRhZA1w6tT3zDRz/D582Xe88UFhACH1cS9s2ECLhstWeHsUp3zpS7/7e+f4UdfNc9rzsQmyv2F8xX+/Etjbvs6t5WWrHJ2qc6FUpd3/v2z/MirTvDq05Phvif6ej5X+BBFeYl3PvnvNhV4Vwq7pGuWe6Kvnwj3ffEHeDD/IQr9JX7zsZ/cVOBdKeym3LPcF39gItz3RF/PZ/Pjcf/2E/9uU4F3pbCb5Lhf7PidT53nwWcr639P+h34XVbaskqxPURWdP7sS0usNGR++p+cmSj3p8+V+J8PXsQQ45fPK05GCLltNPoKX75U41yhw9s+/DT/9oFTfMOtiYlyf+F8ZZO55fnn+3ypy2+vPt+TnlvOZpt85KkiArCZTdya8OJzWOkMVc6Vuiw1ZN7zyApvvj3JPQckbI/x4sJQNXimdCQjdxPBvsSdJEk/A/xLQDBuuPejQojhJD7YQSBoD/H9md/g1x//SUz2Csmb3sPvv/bdpHzjia45arDoeBvZXgV9FCN78Ye5dAu8dHYy/M/k2+uT7z+/I8W33JHCaXvey/IDL5/jE0/m+fiTef7si5eJeOwTW2U/U2ivC7tvuWOKb37J1dzff/8sn/xank88WeA9X1wg7LFPJILnswX52Tt+f128XSvwrhV2W0X39sL9i3f/wbp4u1bgXSvstoru7YX75+78/XXxdq3Au1bYbRXdO8bO8cGz2XVhd1PCyy9+y82EPc97l+q9Eb/5iWd5rtTlH56tMB1yTSyC92S2uS7svvPeDN9xbxqX7fkp9l+99gQfOJvj/Wez/I8HLxL12ScWwbtybvmWO6Y2zC3f//JZPvHk88/3JOeWy7XeurB7zXyY185HsFue5/7nt+p8/nKNL1yu8+GnigSc1hdFBO8YBwwJDqGu6tAhSdKvbneKEOJt291nz+JOkqQU8O+AW4QQA0mS/obxdhnv2es9DwN/80gTufBWkje9h66R421nf4J3vPKPAPj5L/042d4iM94T3Or7Bd630OTPvrTAS2cn0+/nI49n14Xdd750esNxp828/vOPP5nnI4/nJjYBf/Tx3PrE/x33bs699vNPPFngY4/nJpaevZ7AAw5M2F3JvZnAAw5M2F3JvZnAA46F3QHhfV/NAmNh99++584Nx8MeO//te+7kP7zvCZ4rdXnfV7MTE3fv+8rKurD7wVfMbjjuslnWf/7+s1n+5pHsxMTdlc/3dnPLJ54s8NEJzi2fvVRbF3b/5Ex8w3G7xbz+8y9crvPZS7VjcXeMfcNhMR3Vgor/yPU9d2s/f9t2N9lvWtYCOCVJUgEXcPgmg11godrjiWwLl83P77/23bzt7E+w3F3grQ9+DwBtpcmM9wTveOUfYcPHxx5/iMezLRaqPU5E9/clyjdlzpe6OKwmvuWO1JbnfssdU3zmmSLnSx3yTXnfRuh8U+ZCqYvdauKbX7I19ze/ZIrPPFPifKk7Ee41XCvwfu3sDwHQVVsHJuyu5L5S4P3ywz+4zn1Qwu5K7isF3tu+evW4j4Xd5PDw5dq6x+4Xv+XmLc/9hW++iR/9068iKzoPX67tu8hipd7nXKGDw2rmO+5Nb3nud9yT5uNPFng632al3t93kcVu55Z/mODzXe4OWWrI2MwmXrvN7/A1JyI8vNRkqSFT7g6PiyyOsS8MNeOoFlRcW6ItAUngzcBPrf53W+xZ3Akh8pIk/TawAgyATwkhPrXX+x0Gzi6P28W8/kyMlC/GO175R7z1we+hrYxLwP22IO945R+tV9K+7nSMTz5d5OxyY9/i7pl8G4B7Z8NXpUs2g9Nm4Z7ZMF+6WOWZfHvfE/Azhd1x3zsb4ksXazxT2D/3lVgTeL929ofoqi0AvNbAgQq7K7l/8e4/4Jcf/sGruA9S2F3J/XN3/j5v++rV4z4WdpPFWjo26XdclYrdDBGvg4TfQak95MFnK/sWd0+uFma94mTkqlTsZnDZLbziZJgHn63wZLa1b3G3+7ll9fmewNyyUO8DcGvCe1UqdjM4rGZuTXh5PN9mod4/EuJurXhip8cmWWSxVjyx02NHrcjCYTFxc/zoRe6EEMYmP84B75IkycO4/90/2+4++0nLBoE3AXNAC/hbSZLeIoR47zXnvRV4K8D09MZ0wWGiP9IAiGwz8a8h4rVfdd1+MFDHEYWAa2d9k4Kr561dtx8MlTXune1csfYZh8r+uY9xjMOCrIyfU/9Ov+dOK6X2cP26/WCw+qyE3Dt7vkNu+1XX7Ytb3dvzPZG5RRu/h3yOnXF7HZarrjvGMfaKoWbw3NGM3G2Fh4Ff3smJ+0nLfgOwKISoAkiS9EHgFcBV4k4I8W7g3TDeoWIffPuG2z4ebq03ojlq8PNf+nHaShP/avSkrTT5+S/9+Hr0rtYdXXXdfuC0jle1LVnZ0fnN1fPWrtsPHLY1bnVH5699Rsc2UYDdYq14oqu28FoDwDg9eb0q2klz/+ZjP7mB+3pVtJPm/u0nNo77elW0x9gb1iJm7Z1+zwfqVdftB2sRs0Z/Z893oz+66rp9cVv39nxPZG6xjHupdoY74+4Otauuu9GxWSTusFqhbBaJezG1QnEe0cjdNjCAz0iSZBNCbDnZ7GdWWwHulyTJxTgt+wbgYPYWmxDunRmnWz97aWG1KnZx3WMH44KK5e4CP/+lH+dt976Lz12oXHXdfrBmXj67VOcHXj635aQ+UDQeXapfdd2+uKee5/7++2e35T671Ljquklgs6pY4LpVtJPEZlWxwHWraCfNfW3xBHDdKtpj7B0P3BzjHy/XKbaH1HujLVOzte6QUnu4ft1+cUcmAMCXL9X4V689saVglEcaX75Uv+q6/eDKueX7X7798/3o2vM9gbnlxGpK+Vypyz+/Vd8yNTtUdc6t9t87cUjNnI9xdDE4wpG7VV31I8BrgRDQAB4C/lQI8W07uceel09CiK8A7wceY9wGxcRqhO7rFSeiHm6bNkHyD68SdkF7iKA9xDte+UfMeE+w3F3g333+rQz0NndlAvv22wGkgi7OJLwMVYNPPJnf8txPPFlgqBqcSfgm4nlLBV2cTngZqQaf/NrW3J/8WoGRanAm4Z2Y3+567U7WPHhJ1+y6wOsok90C53rtTtY8eFPu2XWBdxDcm1XFrnnw1sb9209MftwvRtw/H8G1Kmx+8xPPbnnub33yOQBcNvNEdqyYDru5dcrHUNX5wNnclud+4NEcQ1XntpR/IjtW7G1umczzHfc6mA25UHSDz1+ubXnuFxZqKLrBbMh1JPx2x3hhITHemuug/xz6uCQpDjwO/AFwP+ADXg78HvCEJEk7apC5r9i4EOJXhRA3CSFuE0L8oBBitJ/7HTSaowaD0P/AbB/3sbtV+gVsPL83adAe4m33vguvKU3XyOGaeTffdd/kIipvuiuDJI3bnLz/qysMrvH6DBSN9391hY8/mUeS4E13bV11txu88a40kjSe3D9wdnPuD5xd4RNPFpAk+NYJcW/Xx+4gBd52fewOUuBt18fuWOAdDL7npeO2Js+VuvyH9z1BrXt1281ad7jeBuXK8yfC/bJpTNK4zcn/+fIS8jVeXXmk8X++vMT7z2YxSfDd902O+8rne6u5Ze35fuME55bXn4wgMW5z8qnzZYbXePmGqs6nzpf5wuU60ur5xzjGfuGwmrgp7jnwPy8A3sFY0L1KCDEjhHiZEGIaeB3gXz2+LV5UO1Q8lP8MldEyIWuG7MUf5n0LTT72+EO87nSMiNdOrTvicxcqDPQfwTXzbkz2Cl3zo8D8RPhvSfn5kVed4D1fXODjT+b5zDNF7pkNE3TZaMoKjy7VGaoGkgQ/+qr5iW4TdMuUnx9+5Qn+/EsLfOLJAp95psS9s6ErdsdoMFrl/pFXnZhYSvbR6me37WN3bZuUSe2z+kj5wW372F3bJmVS+8teOe7rpV2vbZNyvL/s/vHt92ZYbsg8+GyF50pdfvRPv0rC7yDgtNIaqOupWIA33Byb6BZkd2SC/JsHTvE/H7zI+89m+fiTBV5xMkzIbafRH/HlS3WGqo5Jgn/7wKmJbkF25dzyiScL/MMzJe654vl+dKmxPrf8yKtOTHRumY94eNPtST7yVJEvXK7z8FKTWxNevA4L3aHGuVIXRTeQgDffnjzucXeMiWCoGjxXOZJp2W8CfkkI8Y9X/lAI8ZAkSf8f8Js7ucmLStyt7RH76tQ3cOkW+LMvLfB4tsUnny5edd5dmTTfddcf0DU/OvF9ZV97Jk7U4+Ajj+c4X+rwpYtXG1/PJHy86YD2f3zNmbGI/djq3pNfunh1GuVMwsu3Tnhv2TWxck/09Vv6ytYE3iQFzppIuy/+wLbcv3j3H0xM2MHuxv1zd0523C92/Mw/OcNMyLW+t2ypPbxK1B3k3rLfeGuCmM/O3zyS5el8+6pt0ABuS/n57vsyB7K37GtWt1H86BbP90HtLXtvJkjQaV3fW/bx1fYsa3gx7S37Quwpu4YXQyHFGhxWEzfFjuT3ycu49clmyK0e3xYvKnEHzwu8l87CS2dDLFR7nF1u0B9puO0W7p0JXeGxm0zE7lrckvJzS8pPvinzTL7NQNVxWs3ckvJPtK/cptxTfm6ZWuUutBkqOg6bmVumDo57p6LFZwtOXODsVKz5bMGJCbs1vJDjfrHj2+8di7eHL9d48NkKsqLhsll44ObYRDx2W+GOTJA7MkFW6n2ezLYYKDpOm5k7MoGJeOy2wgs5t8xHPMxHPJS7QxbqfYaagcNi4kTYfeyxO8bEMVQNzlePZOTuPPAW4P9tcuwtq8e3xZERdxazmX63jtvjweHc+SR2IurZU8GEoevUqmVsNisWiwVJ6aEMPNicO5+8U0HXniZcYRjIrRpeq3mVW2Yk97C7dj6OPXMLwaBdx20Gm82GpA4Y9Do4Pb7tL94nhBD0Ow0sQsdms4E2ot9p4fYFDom7haQr2Gw2TIZGv93E5QsciulW7rZBG2Kz2bBg0GvVcftDh8I96HVAGWCz2bCaJVq1Kv5QGMl08O0sBv0e2qCHxRLGYbPQrlXwhiKYdsh9/3xkz2JuOJDR+l2scT8Om5VOvYIvHMNk3lkLkemwe89iThkOUPptrIEYLruFZquGOxTDZN7ZlL3X5xtAU0bo/Tb2YBi30wbVNobZsmPuuNexZzFnaComtYvLEUMgMKptdKsNs2VnffT2A11T0XstXEkPVquFfqOB3eHEZt9ZX9T9cWu0a1U8VgsWi4VarYHL7cbhcB48t65Tq5awWW8sOXCEI3e/Bbx3tbDi/wIlIMFY2L0B+MGd3EQS4vBaz917773i7NmD6ZYihKBWq7G0ksPi9BCJJbEcwIQghKDdatKulYiGA/i8HkajETabjfNLOdq6BWcghtm6s2amu8Wg24Zejbl4gEgoiDwY4HQ4uLicpz4CezCO5YC4h/0udKvMRPzEoyH68gCX08FirkBzBM5gHKv9YFboQ7mH0qqQ9LtIJaL0+31cLhfZQon6QMMdTmA7oIlwNJCR6yUiHhvpRBxZlnG73WQLJcrdEY5gHLvrYCIyynDAoFkm7DAzm07Sl2XcLhelao1iq48tEMPp3lGUftdQRyPkRhm/TTCXnkIeDHG7nFTrTUqtDq5QDLd38ik+AFVR6NRKONA4kUkxGI5wOuw02x3ytRaOYBTPAYl6TVXp1MvY9BHz0ymGIwWH3Uan1ydbqWP1RfD4gwcirHVNo1MvY1VlTmSm0HQDm9VCXx5wMVdBcwZwHpCoN3SdQauKy5C5aTaNMARms4nBSOFrF7PUVQdWVwBJmryoF4aBJjeJ2hXuODODabVSUTMMzl3O0hYu7L7QgSwohDAYdZp4RY/b5lLYbFYMIZCApVwJs9tLIBLHvENRvztuQbtRY9iukY7HcDkdKKqK2WQiVyhhd/uIxpJYLJMXXkIImo06rXqZWDiI2+1CVVUSicSBjHW/kCTpUSHEvWt/n7npJeKX/vTjB877/3vlzFW8hwFJkn4MeDtwZZ+mKvArQog/2dE9joq4W4Ou6+QLBQqlKt5ghEAouuNV/naQ+33qlTwum5lEPEa5WqPSGWCyOTCrMvOZKVRN58JKgZHNh8sfmdhkpA4HKO0yMbeVuXSSSr3BSq2DYXXi0Aecnk6CgPPLBWSLG6c/suMIw3bQlBFKq0LEITE/PUWj1SFXbSLsbixKnxPpBBaLmYvLeYZmN55QdMer/J1w9xsV/BaNkzNpOr0ehUoDi8uLJnfIJGI47DYuZwuMTA484djEVvmaqtJrlHEaI07OpOnLMrlyDbPTiz7okY5HcLucXFzO0Rc2XKHYxIS1rmn0mxWc+oBTMylGisLlfAXd5sY06jEdDxPweVlYydPRTLjCcay2yUQYdF2j36hi0/qcnE6h6zqXsiUUqxuT0mc6GiAU8LNSKNFVBb5IAptjMqLe0HXa9Rpi0OZEOgnApZUiQ4sTSR2QDvmIR0JkiyXaQx1PJIF9QqLeMAw6jRpCbjGXSmA2mbiwXKAvOZC0Iamgm1Q8Sr5Uod4f4Q4ncExI1Ash6Dbr6N0Gs1MxnA47F5Zy9CU7aApxr51MMk6hUiVb72P2R3cVqd+Oe9BpYpabnErH8LpdPLuQpTKUkIROxm9nfnqKYqXOsys1+pIPq3Ny3Oqgi0/qcduJOOGAn2curbDcVJCEYDbi4KYTGWrNNudzNUY2P3bP5BYUo34H26jF6akQsXCQpXyRmmwgTCYCFp2T0ym6/T7FSgNnKIovMDlh3e926NRKhL0uYpEwhVKFgaqPAwPKgEwqyWA4pFyt4w/HCYUik+PudamWC7gdVmLRCNVqjaGiYXc6GfS7ZFJTRKPRF6QVyPWwmbj7/w5B3P34CyDuAKTxL/8Wnu9z94zYhWA7cuJuDcPhkOWVLM1un1B0Cq9v7xOCqirUygUMZcB0eoqeLLNSrGHzh/GsPuzKaEi3VsZjEcymp6g1miyWW+CJ4NxHdEPXNAatCl6GnJlNM1IULmbLaE4/bv84NaYpIwbNyngymknT7HRZKNTQXCGc3r2nDddW8m5D5qa5NLquczlbxHD58QTHollTFfr1Mk4UTk6n6fVlLhcq4A7vK21oGDr9ZhWr0uXU9BQSsJwvYXb58UeimM1mNE2lVS0jKTKz6SlGI4WFQgVcAbzBvacNDcOg16yB3OJkOonZbGIpXwKHh2AkhtliQdc1WtUKYthlLj0W9ZeyRXSHH3dw52nDayGEoN+qIcktTqTiuBz2VdHswBMaC1fD0Ok1qlhGXeYzqwIoW0Szecb/LnsU9UII+u0GotdgNhnF63ZxaSVP37DiCo+Fq2EY9Jt1zMM28+kEVouZhWwBw+bGF41h3qOoF0LQa7cYtqqkoyECPi+XV/K0NdM4Imyzr/9uTHKL+XQch93GQraAanHgi8T3Fanvd1oMmlWmQn7CoQAL2QJVWce+Go0e2xGamAcNTqZieNwuFrIFBljH3PsQ9XKvy6BRJu53E4+GWc6XqPZV7KE4NocLIQRypwXdGnPJsai/uJynMZKw73NBMZJ76O0qqaCLTDLOcr7EUq2P8ISxOsbCddTvYBs2ODUVJhoKcGExx2JtgG4PYbbufUGhKQNsaouTcQ8npqfIlSo8l20wMPuxrHJrwz4uvc3N0xGm4hEWskWWGwMkTxiLfe+iXlOGiF6djN/GyZnUeLFcbWPyxdYtJiO5h9auMBVwMRWPUixXaA9V/JEkTvfeRb0yGtKslHBIOtOpJO1Ol2qjhT+axB8YF9oM5D71cgG3zUwyEadSrdGVh0TjKTzevVtgFGVEtVzEUAekp8aZgHqjRSSWIBgKI0kSg4FMqZDHhMHszDRe78FkBnaLa8XdmdvvFH/8oQcPnPf1p8IviLjbL46suFtDu91mcWkFDTOReAr7LiIMhmHQqFfot+qkkzFMJhOLuSK6zY0vPH7JXwu510Gul0kEvUTDIZZyRcp9FZs/jnUXEQYhBHK7jm3Y4mQ6jsvp4MJSjp7kwBWMbhqdGso9tFaFqYCbVCLKcr5EoT3E4o9h24UPUQjBoNvEcsVK/vJKnj5WPOHNX2SjQZ9BvUzUYyOViFMo1yi2+9j8cRzuna/y115koldjNh4m4PeynCswwkIgmtjU/zIcyLSrJTw2E+lkgmq9Qb7RxR6I4drlRNjvtFHaVdJhP5FQgJV8EVkDf2zzCJEyHNKqlnCaDWZSU9SbLVaqLczeCK5dpg0HvQ5qu0Iq5CUeCZMtlKjJGs5QHPsm/36qMqLfKOM16cxPp2h3eyyXakjeCO5degGHco9Rs0Lc5ySViJErVSh3hjiCsU1Tzpqq0m+UcaNwaiZNXx6wXKpi84XGwno33AOZXq1E0GkjlYhRqtbJN3rYAjEcm6Scx1HNMi5jyMnpKRRFZalYwewNjSMruxDWo+GAbq2M3yYxnUquv+TxRjf1kRq6jtwcL3hOz6YwDIPL2SKSy493l1kCZTSkVy/jMQtm00ka7Q7L5QaSN7rpd8cwdPqNKna1x6npsai/sFygb3bjCuwuUq+pCqNmhYBV5/RMmna3x3PZCgOrH7tn43dHGAajTh2v6HPLiRQ2i4Unzy9Tkk2YXSEk0865DV1DyA2mfPCS07N0+zJPXcrT1F1YXP6N3EKgyW3ClgG3nUzjcTk4d3mF6siC1RvGtIuUpaFrqJ06YZvKrScyKKrGpWwJ1eHH5d+4IBzPRw1McpP5qfGCZylXQDfbCUQTWG07F9a6rtOqltEHXWZTCYQQZItlnN4goWh8w3dHCEGn1aRVKxEPB/D7fGRzBbDYicaT2HdhgTEMg3q1TLddJ52MI0kShVIZrz9ELL55GrbValIpFQh43WQyGeyH4D3cChsidze/RPzyn37iwHn/9SumD1XcSZL0w9udIoR4z7b3OeriDsYPSaVSYTlbwO72EY4mNhVmV6LTbtGsFgkFPIQCAZbzRbqKwLuDFJQwDLqtBlq3wUxynDY8v5SjhwNHYHNReCWG/S6iW2U67CMeDbGcL1Hpq9iDMWyOrUXaWBQ2kOQmJ6eieNwuzi/laGkWHMHtU5YjuYfRqZIOukgn4+RKFardIY5QfNsU1FrRgd6urqcNL6/kaGsWXMEYlm3ShqOBzKhVJuaxkUnGqdTq1LsyvkgCl2f71WOv3aLXqBAP+ggFAyxmC3RUcIXj2LaZCJXhALleJmA3MZNOUms0qbS6eMJxPDuI+va7Hbq1ElG/h2h4/G+2Jsy28wKqoxGDZomAFeYyUzTbHVYqTSz+6I6KRYb9HqNmmbjPxVQiSq5QotxTcF5HmF2Jtcir16xzIjNFt9dnsVTD5Anj2oGvbDToM2xWiLrH/2alSo1qd4AnEse5jajXVJV2bextO5GZQpYHXC5UEO7QOCq9DffYj1gi6rIyk0o87wUMxrcV9bqm0V71ts2lpxipGhezRVT75i/5a6GOhoyaFSJOiROZKZqtDvl6C3tg+38zQ9fp1CuYRl3mM1PohuBitohi8+IObi8QNWXEYNWqMD+dotPtc6lQRXdvH6k3DB25WcepdblpJoVkkjh3OUfLcGDzhzFtI9J0TUXrVInaDW4+kVkVZgWahgurc6MwuxJCGKhyi4h1yEtOZbDbrDx5YZlSz4TkCm4rTseisEnSI3jJ6RlGisq5xQJdkwe7d2svoBCCUa+FR+twy1wSj8vF+cUsXey4djAvGrqG3Kzh1PucmplCCMFyvojVGyQQjm35byaEoNNsILeqpKJhvB43K7kCwmInHE9i22ZeNHSderXMqNcilRhz5QplXL4Akej2/rh2q0G9UiIc9OH3eSkWy0gWG/HkFI5t3mWGYVCtlGk1aiTjUZLJ5Avmx3uxRO4kSdKvd2jtf4QQ264iXxTibg2appHL5SnVGviCMQKhjS+Q4WBArZzHbhZMJZ9/YTiDuzeP65pGp1bGog04kZliOBpxMVtGcQTGL5BruDVlxKhVJmwfe9vqrQ7L5SaSN7zrKJCha/SbVZy6zOmZFJqmc36lwMjqxbmJF1BTFZRWhaDV4PRsejUKVMfi29lL/mrucdrQfGXacKWIYvOsvryunhw0VaXfLONB4fTs8942RyCCf5dRIMMwaDdqKJ0GM6kEFrOZSyt5VJsHTyi6IW2oaxrdehm7Phh7JlWV5WIFmy+EfxdVmc9z11E69XUv4KWVPLLkwB2KbxD1hq7Ta1awq31OzaRW094ldIdv7FvcBfc4ZbmWUo3gcbu4tJyjjw33Jqm7cWq3hmXU5eT086lddQ+p3bVoq95djbb6vCxl88jCgi+60QsoVn9PRr/J7FQcq8XCxZUCA5MTd2j3qV2520bvVJmJjb2Ay/kiPU3CG9ko6te8bWq3wWxybGB/bjFLV9hxXicivhWG/S5G5/mFWLZQonkdL6AQgl6rgdqpMxMP4/G4ubiSp6tZcF4nIr41dw+1XWFqtchopbAWqY9uqNoXQjDstpH6DU4kQ4QDfs4vZin2DEzeyLYLr2uhDmWkfo3pkIvZVIJsocL5fJOhJYDFvkmUedDFLTrcMhMjHglycSnPQlVGswd3ndrVlSEWpcV81MWpuTSlap2LhSaqM4jNtXERqAx6WAYN5uMBUvEIK4US5a6CLRDfVUYDxtHyYbNE2L4q6tsdyo02nnAcrz+w4fxBv0e7WiTgspOIRSlXq3RlhXAihWsXGQ0AZTSiXikiaSMyqST9fp9KvUUwkiAQ3GiBkeU+1VIeh9VEMhGnVqvTH4yIJ1N4fbvLaKiKQqlURBn0mM6kCYUOp1L/Slwr7mYPKXL31sOP3J3Y5Mch4JuBHwB+aHX7163v82ISd2sYDAYsLi+PH7LYFG6PF03TqFeKqIMumVSSkaKwVKhg9gTx7cO/BePUT69Wwu8wk0kmKFcbrNQ7SN4oDrd33dvmNGRumh2/5C+uFFHsvnG6ZR/c6mjIsFUhZIf5TIpao8lCuYnwRHB6/BiGzqBVw6n1uGkmBRIs5IqoNu84zbSPVZqqjK6ICqVodboslepInnHKcs1DZRm2OZlJYjGbWM6XkBzucXXaPirEVFWhVS1j0UbMZqbo92UWizXM3hDuQAiAXrOO0W9wYiqO02FnMVfAsDoJROJYrHv3b615AU3KgNl0kuFI4XK+jHAFcAfGbTnkdhPRqzO3muq5vJKnJyx4wol9eajWiiGsao+T02NRfzlXwnD4ca8K5bEQqzMTH3vbFrJ52ur+izLGacMaFqXLyUwSifF3SXL68IXH36V+p82gUSEZ8hMKjoVYfWDgDCX2VWltGMZV3yWrxczlbAHD7sEXHot6uddFbpSJ+d3EI2GWCyVKHQVbcPvo6lYQQiC36liHLU6l4zgcdhayBRSzA++qF3Ao9+jXy0S9DpKxKLlShVJ7gC2Y2Fel9Xqkvt9g/opIfVu34AhEMVttKEMZrVUh6bMzPZUgX66xWGmjOcPY9lGUMY6GtXEoLW7KRAn6fTxzaYWVpopwBDFZbOjqCPOoyYmok9OrQuyZpSo90/6LMtRBF6/ocutsnGg4wKXlArmOguQZi1VdVdC7NaY8Zs7MpWm0OyyWGkirPuj9iJNhv4verpCJjAt88sUyPVXHH03icLpQFYVmpYjVUJhJT9Hry5RqDfzhOP5NhNhu0O91aVSK+Fw2YpEI5UqVwUgjuioYVVWlWimgDfukp5IMh0Oq9QahSJxwZH9FEv1+j3Ihj81iYmZmGvc+vIe7xWaRu3d/+OAjd687+fXjuZMk6W3ASSHEW7Y998Uo7tbQbDZZXF5Bl6zoypBkPILDbufySh7V6sQXjk20nUqv02LYrDIV9hMOBri8kqc6MLAaKidXvW0Xl/N0DAvO4OQqL2Hs59I7VTLh8WS0mCtS7iqYMZhPhgn6xy/5rmbCHUlMrPISYNDvMmpUSARcJKIRssUyle4ISRhkon6ioSDZfJG+DoHo5KofYWxMbldLBJxWkvEYxUqNckcGIUgGPMSjYfLFMp2Rhj+W3FWPxO0wGsi0qiW8q17Acm3sBUSSSFzhbat0BjhCk6u8hLGo7zfWUr2pdS8gJjORtRRqtU6hOfa2OXeQ9t4pNGWE3KjgNa96ATtdctUGmK34bCamU0mq9QbZWgeLPzbRHomaqiA3K3ikNS+gzHKphjDb8FhY97YtFhsIbxiXNzAxbl3TGDQreBhxZjbFaKSwWKxgmG24TAYnMlN0en0WijUkTxinb3LtVIxVUe/Q++uR+gsrBQbCht+qc2Z27It8ZrmEbPFh906OWxg6w06dgDTglrk0EvDkhRXqA4h7pHEKdaTy5KUsDcWB2e2fWDuVcQuVFhHbiDtOT2O1Wjh3KUtDNRGw6tw2n0EIwfnlAorNu7pYnkxacVyAVMcyaHIqncBht7GcL6KZrKCOmEklMEkS2UIJm9tPODa5FiNCCFqNOt1GhUQ0jNvlJFcogsmGqgyZikewWCwUSmXcXj+x+OTaqQghaDUbVMtFQkE/mXQa6z4WwzvFZpG7X/mzg4/c/auXH27kbitIkvQA8CEhxLZpxBe1uIPVoolGA4BssUxroOGNbG5gnxRft1HD6LeYSydw2O2YTCayxTLFzhBbIIZ9F42QdwNhGKuTUZuT6ThulxNJkihV65RaPezB+ERf8ldxr6YNjW6d2WQE32oFVq3RpNru4gntzNu2V+5uq0m/WSUVDeJfTUk0W22K9RbucAyvf/LbQa2h227Rb1RIrHoBhRB0uj2WSnXM3t2nvXeDQa/DqDku0ohFQuPUYK/PQrEKntCBNkIe9nsorTIJn5upRBTDMJAHQy7lSuiOAJ7AwTVCHg36Yx+i1046GccwDBRF5fxygZHNizOwvb9sr1CGA5RWmbjbymw6iRACRVW5uFxgZHHjCu28EfJuoY6GDJrl9Ui9YRjous65hRxNzYrVF5lYm6JroasKWrdKwilxZi6NJEkIIXjyuUUKPQHO0IFxG5oKgyZpv5nbTk2vZzsuLOXo6GO/8UH1/1wT9W4x5NTMFGazGUmSyBWKaJKV8C6LH3bLXa+WUPodMlMJLBYLJpOJYqmMIZlJJKdwHtC7TNd1qpUSnVaDqUScRCIxsbZjm+FacXfTIUXuXvv1Fbn7ZeDfCCFS2577Yhd3MH75f/ErZ7EE4ng28U0cBDRVoVHKc+t0nIvLeWSbH9ch7TigayrdaoGXZCKUa3W6Jhfe0OH0NNI1jXalwHzUS78vI0s2gpGtDckT49Z1GuUiYZcFXddpKoJwfOpQuA3DoFEp4rcILFYry40h/ljywF7yV0IYBp1GlZBJIej3cr7UwRdL7ivtvWNuIeg1a3j0PulElCeXq/hjqUPZcWDsBWxiHzQ4PZfhkQs5XNHUgb3kr8Wg28bWr3L76Tm+emEFVzQ90Yj4lty9DlK7xJ03zfOFJy8ivAksByQwroUy6OOQK9x/+yk+e/ZZ+pYQZtvB77QA4/YqXr3J6++9mUefvYwpkJxYP8DtoAwHqI0CL715jguXFwklpvHs0tu2V4yGQ8r5ZU5OT7G4nCWZmsYfCBwO92hELrtMOhElGo0eGM+mkbv3HELk7v5D99z96iY/tgO3A98E/A8hxE9td58ba7+RA4SmGwQOSdgBWKw2rA4XhmGg6TrOQ9rGCsBssWJxeNB1HVU3cAUOk9uCze1F03U03cAT8h+KuAIwm824vD50pYeuC9y+wKFxm0wm3L4AWreGZDJj93gPRdgBSCYTLq8ftVNCNwysLvehCDsASZJw+QKo1Q6GYWB1uA9F2K1zewMMelWEEEg256EJOwCn18+wU8EwDExW56EJOwCnx4fcrqBpGobZdmA7x2wGm9ONPjCP5zashybsACw2J5rcQdd1MFkPTdgB2BxOVKsdTdOQTOZDE3YAdocDu8OJYRhIknRowg7AbrfjcrkxDOPQONcgcbhFHYeE/wgbBjYCVoD/AvzGTm5yLO52gU+tfICXxR/Ab986hdceNflK+UH+yfRkN6J/ofAP2Q/w0vgD+Gxbj7ujNPlq+UHekDm4cS/V+jy+0kRWdFw2M3dNB5mNHJyp9++W3s8rkg/gt4e2PK89avDl4oN80+x3Hthnydb7PJVrM1A1nFYLt6f9ZA54I/p17obM07nW+u/9tnSATOhgN6K/kvtc/nnuW1OHx/1CIteQeTrfYqDoOG1mbksFSL8Ixl3ujlio9xlpBnaLiRNhN3HvC9tj7Rhff3BYTJyKHr3nQQgxEV12LO52iE+tfID3PPff+XT2g/zKve+6rsBrj5q8/exPkO8vAdzwAu8fsh/gvRd+hwfzH+IX7v6D6wq8jtLktx77SQqr4560wHtsucl7H17mqVx7w7Hb037ecv8Md89M1jf3d0vv50+eeSd/v/JB/vPL3nVdgdceNfhPX/kJcr1FgIkLvKeyLf727ArPFjobjt085eO77p3m9kxgopzr3LkWHzibvS73d9yb4fb0wXA/nWvxgUezPFfcyH1T0sd33JPhtgPifiHxdK7Fh7YY97cd0XFfrvX53KUaSw15w7HZkIvXnYwwf4ALuTW8+i9mAXjoh5YOnOtapH43DkD+p8uHzu37rTAAnV+oHzr3XjDUDC7VNn5XjjHGsbjbIV4Wf4BPZz9Ivr/E28/+xKYC70phl3LP8rL4Ay/Qp50cXhp/gAfzH6LQX+K3HvvJTQXelcJuyj3LSyc87r97qsjvfvoChgCn1cyrT0cIe+zUeyMeulDjqVybX/rA1/iZbzzNP7s9OTHeVyQf4O9XPkiut8h/+spPbCrwrhR2ac8cr0hOduz/8EyJP/7cJYQAh9XM/fNhgm4bzb7Cw5frPFvo8F8+9jQ//rqTPHBLYqLcDz5T5t2fX+M28bL5CCGXjYas8JXLNZ4tdPj1j53jX7/uJK+/OT5R7s8+W+Z/feEK7hMRgi4bTVnhKws1nit2+K+fOMe/eu1JXn/TZLlfSHzu2TJ/csW477ti3I+sjvs3P3GOf/nak7zuCI370WyLjzxVRAA2s4lbE168Dgvdoca5UpelhsyfP7LCm25Pcs8BLWSOcWPBYTFz6hDE/mFDkqSfAV4rhHjz6t/NwC8DLwUeBn5TCHG9Rsfr2LO4kyTpDPC+K350AvhPQojf3es9v57htwf5lXvftS7erhV41wq7raJ7NxJ8tiC/cPcfrIu3awXetcJuq+jeXvDYcnNd2H3vfRm+72XTuGzPf23/7QMaf/WVFf76kSy/8+kLxHyOiUXw/PYQ//ll71oXb9cKvGuF3VbRvb3gqWxrXdh9291pvu2eNM4rxv4vXq3xoUdzfOixHH/0uUtEvY6JRfCeyrXWhd2b707z5rtTV3H/6Kvm+PBjeT78WI4//twlIl77xCJ4T+da68LuTXeledNdV3P/8Cvn+MjjeT7yeI7/9flLRD32IxHJejrXWhd2b7wrzRuvGfcPvXKOjz6e56OP5/iTz18ickTGfbnWXxd2r5kP85r5MHbL837Ub7lV5wuX63zhcp2PPFUk4LQeSgTvGF/fGGoGl+pHMnL3XcCnr/j7vwd+Efgk8AuAg7Evb0vs2U0uhDgvhLhTCHEncA8gAx/a6/1uBKwJvJR7dl3gtUfNIyvs1rAm8Kbcs+sCr6M0D1zYAbz34eV1Yfdjrz5xlbADcNks/NirT/C992UwBPzfh5cnyr8m8NKeuXWB1x41DlzYAfzt2ZV1Yff9L5+96kUP4LRZ+P6Xz/Jtd6cRAt5/dmVi3B84m10Xdt93/8ym3N93/wxvXuX+4Nns5Lgfza4Lu+992ebc3/uyGd501yr3o5PjfiHxodVxv/GuNN9znXF/z8tmeOPquD98RMb9uUu1dWH3jWdiVwk7ALvFzDeeifGa+TBi9fxjHMNhMXEq4jrwPy8ATgGPXfH3twD/XQjxncD/B3zfTm4yqbTsG4DLQojJvlm/DnFtBO8XvjxuFN1RW0dS2K3h2gjerzz8gwB01daBCbul2riAwGk1830vm97y3O+9b5qPPF7ga7k2S7X+RIssro3g/fRDq//mSvPAhF223ufZQgeH1cy33ZPe8tw335Pm754q8kyhQ7be33eRRbYhr3KbePPdW7dTetPdKf7+qcKYuyHvu9Ah25B5rjjmftNdW3O/8a4U/+/pAs8WJ8P9QiJ3xbjfuM24v/WuFJ9aHXeuId/QRRbl7oilhozNbOI18+Etz331iTAPLzVZasiUu6PjIosXOUZH13PnApoAkiTFgNuAf7N67Elg2x53MDlx973AX03oXl/3WBN4v/Dlt9BRWwD4rIEjK+zWsCbwfuXhH6S7Om6vNXAgwg7g8ZUmAK8+HdkQsbsWbruFV52O8OlzZR5faU68gnZN4P30Q2+ho4w/l88WPBBhB6wXjtw/H94QwbkWLpuFl82H+fxzFZ7Ktfct7p7OtQB42XxkZ9wnInz+fIWnc619C6xz+VXuEzvjvm8uwhcuVDiX3z/3C4mnV8d93w7H/dK5CA9dqPB0vnVDi7uFeh+AWxPeDRG7a+Gwmrk14eXxfJuFen8i4m6teGKnxyZZZLFWPLHTY5Msslgrntjpsa/XIosj2Qhl3PLkbuALwD8H+sAjq8d8QG8nN9m3uJMkyQa8Efil6xx/K/BWgOnpraMvxzjGlZCVsWc07NnZJB5226667kbGQNUACLp31pct5LJddd1+sPb7W7vndghO8Pe+do/gC8D9QmKwx3EPbvBxj7RxbzSvY2evorXz1q47xosXdouJky9M2vSg8ZfAr0uS9GrgG4D3CyHU1WP3As/u5CaTiNx9E/CYEGLTZYUQ4t3Au2G8Q8UE+F5wrHnsOmoLnzUAjNOy16uiPSpY89h11Rbe1XF31dZ1q2j3C5dtvJKv90Y7Or/eV666bpJY89h1lOZVxSTXq6LdL5zW8aPZXB3TdmjIylXX7Qdrv7+1e26H5gR/72v3aL4A3C8knHsct/MGH7fdMrZ9d4c7W5Ssnbd23X6xWSTusFqhbBaJO6xWKJtF4m60Vigj3eBSffBCf4yDwH8F/MA/ZVxE8R+uOPYoVxdbXBeTeEK+jxdRSvba4onfesV7+a1XvHdDkcVRw7XFE2+////w9vv/z4Yii0nirumxiHroQg1Z2Xry7480vnihdtV1k8K1xRO/++r38ruvfu+GIotJ4vb0eJ/dhy/XGWwzdlnR+Mrl+lXX7QdrFZhfuVzbGfdC7arr9oNbU6vcCzvjfmSxdtV1NypuW/38j+xw3F9dHfdtN/i4T6xaCM6Vuoy0raOQQ1XnXKl71XXHePFiLXJ30H8OG0IIXQjxc0KI24UQ3yeEqF9x7ONCiC/v5D77EneSJLmBbwQ+uJ/73Ci4XlXs9apojwquVxV7vSraSWE24ub2tJ+BqvNXX9m6EvSvH1lhoOq8JO2fqN/uelWx16uinRQyYTc3T/kYqjofejS35bkffjTHUNW5Zco3kR0rMiHXKrfBhx/Lb3nuRx7LM1SNMfcEvF+ZkIubkmPujzy+NfdHHx9z35ycDPcLifQV4/7oNuP+2BXjvpH9dgBxr53ZkAtFN/jC5a0jRg8t1FF0g9mQ67iY4hiMNIPLNfnA/9yo2Je4E0L0hRBhIcTGbQOOGLZrd3JUBd527U4OWuC95f4ZTBL89SNZ/vdDC/RHV0c1+iON//3QAn/9SBaTBD9w/8zEuLdrd3LQAu+77p1GkuBDj+X4y39c2hC9lBWNv/zHJT70WA5Jgu+8d3Ke1u+4N4MkwYcfy/FXDy9vyv1XDy/z4VXub783Mznue8bcH3k8x19/ZXPuv/7KMh95fJX7nslxv5D4ttVxf/TxHO+7zrjf95VlPro67jcfkXG/7mQECfjC5TqfPl9hqF4dwRuqOp8+X+ELl+tIq+cf4xhHNXI3KRzvULFDfKX84LZ97K5tk3IU9pf9avnBbfvYXdsmZZL7y949E+Snv/E0v/vpC/z1I1k+8niBV52OEHbbqPcVvnihxkDVMUnwM994eqJbkH25+OC2feyubZMyyf1lb88E+NevO8kff+4SH3osx989VeRl8+ErdomoM1R1JAl+/HUnJ7oF2e3pAG997Une/flLfPixHH//VGG8S8Tq7hhfWagxVA0kCf71605OdAuy29IB/tVrTvK/vnCJjzye4/89XeC+uee5H1l8nvtfvfbkkWjkC+Nx/8vXnORPvnCJjz6e41NPF3jpFeP+6hXj/pdHaNzzETdvuj3JR54q8oXLdR5eam7YoULRDSTgTbcnjxsYHwMARTNYOJpNjCeCY3G3Q6yJtJfFH9iyYGJN4B0FYQfP7xH70vgDWxZMrAm8SQq7NXzT7UniPgf/9+FlvpZr8+lzV5uNX5L28wMHsLfsmkh7RfKBLQsm1gTeJIXdGt5wS4KY18H7z67wTKHD55+rXHX8likf33lAe8s+cEucqM/OB89mx9znN3J/+wHtLfv6m+NEvXY++GiWZ4sdvnDhau6bkz6+/Qjusfq6m+NEvHY+vDruhzYZ95uP4LjvyQQIOK3re8s+nr86GXSYe8u+EHvKruGF2FN2DTdKIcWVkI5oL5RJ4Fjc7QI7FWt+e/BICLs17FSs+WzBiQu7Ndw9E+TumSBLtT6PrzSRFR2Xzcxd08GJ97S7EjsVa357aOLCbg23ZwLcngmQrY+bOg9UDafVwu1p/0Q8dltypwPcng6Qbcg8nWut/95vSwcO3Od2WzrAbavc5/LPc9+aOnjuFxJr4841ZJ7OtxgoOk6bmdtSgRveY7cV5iNu5iNuyt0RC/U+I83AbjFxIuw+9tgdYwPG342j+zzsF8fibhVup51muYAvHMNsOfhfS7/bRpfb2GxBPC4ntVoJVyiG2WI9cO5hv4uQWzim0ridDiq1Et5wAottZz229sUt91E7DZyZGEI3qFXLBGMJbHbHjq6fjbj3LOaGA5luo0Y64kfXdQq1CmazGbvDuaf77Qaj4YBOrULc78JqtaIU65gtVuzOnU9OmbB7T2JOVUb0G2WSXgcOux29VGJos+FweXbOHXLtSVBpqkK/XibqtGOz2RCDMoOeHafHd+DcuqbSb5QJrnJblD6Dbhund/8Vxdty6xqDZpWg04rdbses9um3m7h8AaQdhhvSIdeexJyh6/SbVdwWCYfDgROVbqeJw7tz7r1CGAajTp2QBRwOB16rQaXfwuLy75g77rXvScwJYaD124QcAofDgU3S6DUquAIRTKbJtE65PrdA7jSwaEMcDgcmBNVSgXA0jsl8sO1qhBC0Ww1Gcg+7PYbZJFHM54jGE1gO4V3WajbptpvEQpPzO+8EI81g8Tgte11IQhxe67l7771XnD179tD4doLhcEi+UMTrcdOXByyXqlh9YbyB0IFMhMpwSKdWwmeTmEklaXe6uJwOFFXjUraE5gzg8oeQDmAy0pQRcrNM0Co4OZ2i2+vjsNswhODSSgHD6cMTimIyTX4y0lSFXq2EW9KYn04hD4dYzGZMksRSrojJ5SMQiWE+gIlQU1VatTKSOmAuPcVwpGCSwGKxsJQvgs1NIBo/EFGvaxrNWgWGPWZTCXTdQDcMnA47l1byyJIdbzh+IKLe0HV6jQoWpcd8JgmAqmq4XU4ureTpGRbc4TgW6+RFvWEY9Js1zMM2JzNJzGYzg+EIn8fNQrZASwFnKIHVNvmIjDAMeu065kGL+XQch81GpycTCvhYzBWo9HXswRhW++RFvRCCQbuBSW5yMh3D63bRaHeJBP2sFEpUeir2YBzbLkT9brjlTgt6NU4kI/i9HhqtNpFQkJVCmcVqD+EOY3UeTLR31GtjGzU5NRUmFg5SbbSIhgLkSlWey9YZmP1YHAfDrQ57uPUOt8xEScbC1BotIqEA1UaT5UoLkzd6YKJ+JPdQ2xVSATepRJR6s0XQ76PT7VKutwhEEvgCwQN5n8j9HvVyAY/dSiIepd3p4PV4kGWZWr1FOBYnFI4cCPdAlikV85glwcx0Bq/XO3GOKyFJ0qNCiHvX/n7zS+4Sf/axzx4oJ8DLZ4NX8R40JEnablCSEOJ1kiTdBPyhEOL11ztp8p/uOvh6Ene6rpPP5ylV6niDIeReF7vFRCIeo1yrU2n3cYXiuDyT+cLqmkanXsGs9JlLJ9F1g8u5IsLlxxgNCNhNzKSSVOoNstU2Jt/kJqO1lbxD63NqevySX8gV0e1ehKrgsRicyKRotNqsVJpY/ZFdRRi25DYMeo0qpkGb+UwSi9nMQrYADg+GrmMXCnOZsdDMV+o4AxF8wckIa8MwaDfqKN0604kYNpuNxVwBYXOBEJi1IXOZFLI8IFuuYveH8YcmMxEKIWg36ozaNdLxCG6Xi8srOQaSHclkxqb2OZGZQlE1FnIlhCuAJxiZiKgXQtBvNzG6NWYS45f8xeUcLc2MZLLi0PucnplCCMHFlQKa3YcnFJmYqO93WuidGtPRIOGgn8sreepDAVY7DrXHqekpTCaJi8sFRlY3nmBsYtGNQa+D1q6QjviIhUNcXimQbY/QzQ68QuaW2SR2m5ULy3l6OHCGYpjNkxH1w34Po1NlKugiFY+ylC+xUpdRLE48eo+bZ5N4XE4uLufpYcMVjGO2TkbUjwZ9Rs0yCa+dTDJOvlRludFDt7qxq11OpWP4PW6eW8hRGYDZF8E8IVGvjQaIXo1MwMH89BT5cpUL+QZ9XHiRuXkmRiTo59nLWZbrQ3RHaGLcujrCPGoxG7Zz8/w0lXqT87kassmD0+hxOhUmEQmxmCtQlXUcwfjERL2mjBi0KgStBienU7Q7XVYqDczuAHq/TTzgIR4NUypX6Cs64fgUTtdkxK2qKNQrRYQyYDo9RV8eUKrWcflDDHpdvA4LiXiMSrXKYKSRSKbwTEh8aapKuVxE7nWYTqeIRA5GPF6La8XdiVvuEG//v3934Lw/cHfqsMXdP7DNzmpCiAdWxd3/FEI8sOl9XmziTghBtVplJZfH7vIRSySxWCyroe0m9UqJUMCH3+dlKVugL0z4InuPMAgh6LYaqO0608kIHpeLSys5hpIdTziOZXVyl7ttRs0qqbCPSCjIYq5AbWCsTkY7S1luxj3oNKHfWF/JL6zk6QsLnnB8fUyDXpdBo0Qi4CERi7CSL1KXVZzhxK7Shtei32mhtaqkV1/yy7kCfUPCH30+DTvo9+jWSoRcDpLxKKVKlWZ/hD+awOneedrwWvQ6bXr1MtGAl3AwQK5Ypq8a+KPPj2koy7SrRXwOC6lEnEqtTq0j443EcXt3nja8FnKvOx6Tx0U8GiZXKlPvq7hDcRyrk7syHNKrF/HbTUxPJag3W+RqbayBGK59iPqR3GfQLBPz2EklYhTKNQqtPhZ/DPtqGlZVRgybZUJ2ODk9FvXL5SZmX3hfol4ZDhg0ykRcFqanEpRrDVZqHcz+KA73+MWiqQrDZgW/WefUzFjULxZrCE8Yt2/v0Q11NERulgjZJU5kUlTqTS4W6iiOEHb3+N/S0FTUTo2ITePWkzP0ZZlLuQqqI4ArEN4zt6YoDFtlQrZxRLzZ7vBctsrA5sfuHqcjDV1D7dQJWRVumUujajqXciU0ux/3PkS9pioMGmW8JpVTM2m6fZkL2TIjewDH6u/T0HWG7RpeIXPTbAphCM4t5ukIJ3Z/GGmPot7QVJRunYhV5ZYTGeThiKcXCrQNN1bP+HskDAOt1yBoGXL7yQxmk4mvXVimJJsxu4N75haGji43Sbh07jg9i6ZrPH05T0u4sHvHmQ8hDJRuEx89bp1L4bDbOL+URzY5cAb3LuoNXUdu1bBrPU5fsVg27D584XHmQwhBr1VH69aZSUZxO52s5IuYbE7C8STWPYpbwzBoVCvInTrpZByL2cxKvojN7SMcTWBee5c1G3TqFeKRAB63m0KxhMXmJJGcwmbf27vMMAzqtSrNeoV4NMLU1NSBZFquh00jdx8/hMjdzOFG7iaFF5W463a7LC4towkTseQUzk2Ei67r1KpVeu06qUQMSZLGETaHB39odxEGuddFblSI+ZzEo5HVl7yC6zqiSRgGvVYd0Wsxl4pjs1q4sJxnYHbuejIaDfoorQpJr510Mk6xUqPSkXGFEjg2EU1CCHrNOnqvwWwyisvp4NJKnoFkxxvZXdpwNJCR62XCqy/5ar1Bpd3DHd5cNI0nwiaDZpVMPILH7WIpV0A12QhGE1h34QUcDQe0qiVcZphOJWk0W5QaHTzhGB5/YNNruu0m/XqFZDhAwO9jOVdgiIVANL5jLyCAMhrRqpZwoDGTnlpfydv8UdzXEU1yt82wWWFqVdQv5Yo0RwauUBzbLryAa942FwonZ9L0+jKXClUMVxCXb/NI6LDfRW9XSIe8JOMRlvNFqn0VZyi+K1Gvayq9RhWXMeTk9DjtfTFXQnMGxxaDTbhHch+1XWHK7ySdiFEoVym2ZWyB+K68gIau0WtUceh9Ts2k0DSdc4t5urix+za3N6ijAXRrTIcczKWTlCp1so0uJt/zInRn3Dpys4ZT73F6ZgoEnFvI0RJO7L7wptyaMkR0a6T8Nk5OT1FrtliptjHvMlJvGAZys4pl1OFUJonFYubZhRxdHNgD0U3nKU0ZobWrRBxwejZNo9XhfK7K0BbA7tm5J04Ig2GniVfvcvNsEqfDztOXVigPzJjcIUybzFOGpmL060x5JG49OU272+epS3lahhuLy7cLboEmtwmYZF5yKoXP4+aZyyuUZQmTN7LpPGVoGlqvRtShc9v8NPJwNBbWziBu/85F/VraW+rXOZEME/B5VxfLZrzhzQMAuqbRaVSwKH3mM0l0wyBXLOP2hwlGYrvyAnZaTVq1EpGAj2DATzZfRMVMJD6F3bFxntJ1nUa1zKjXIp0cb2tWLFXwBcNEY/FdCbNOu025lMfrcjI9ncGxCd9BY7PI3a//5cFH7r7/rsON3E0KLwpxNxqNWMlmabX7hOMJ/IHtW2YoyohKqYiuDMikpuh2eyxX6tj9ETz+rSMMqjKiUy3jNmnMZlK0Ol1WynWsgeu/5K+Epqn0ahUcxnD8opZlLucrGK7QdV+W69eqCoNmBZ9J49RMin5fZrFYw+IL49mBj1DXNLqNCla1z/xa2jBfBpd/27Shrqn06uPPPZ8Zv+RXShVsvhC+HaQ7dV2nU6sgBl3m0kkMIVjKF7F6ggTC0S0nQl3TaNYrMOgxm06i6TrLhRJWTxD/NtfC+EXdalTRe21mUglMksRirojZ5cO/jRdQ13VatQqG3GE2lUCwcSW/FYRh0GnVEP0Wc1NjUX8pW2BkduEJbV3gYxgGveZq2js9fslfWMozMLtwBaObvmiv4hYCud3APGhwMhXH5XRwcXks6t3hrQt8xouRBqZBkxNT8fXISE9y4ApGt/UwrkWWpX6T+akIPo+bSyt5OroZdyixpRdwnHpuQL/O/FQMj9vFM5dXqI5MWHzRHS1G1jxiZ9IRwoHV9PFIGvvxtojUjz93C5PcYC4ZJujz8txClpIsMHt3lu4c9bvYhk1OTQWJR0Is5QpUVyP124l6udPC6NaYjQUIBwNcXM5TlnWs/igW2/Yv3ZHcg26V2aiPqViEpVyR5cYQvJFtU5aK3MUiN5hPBkhGw1xazrNUH6I7Qzvi1oYy1lGT+biXmVSc5XyJC/kWQ2sAi33rBYU2knFobc6kAsykEizmiizV+uiuMNZtrh1fP0CS68yEnJzIJClV62TrXSz+2LaiXhnIKK0yCd847V2s1Kh2ZJyhnWUYro3UN1tt6u0ugWgS33UWnWsYDmRq5QIOi0QqEafeaNDoyARjSby+7RcEymhEvVzAZKhkUkm63S6NVodoPElgGwvMcDigVCiAoTIzncHvP/hipOths8jdew4hcnf/IUfuJEl67XbnCCE+v+19jrK403WdYrFIoVTFFwwTju5upQTQ7/WoFAu4HBZi0QiFcpV6b4g7Esd5TYTB0HXa9SrSsMOJdPL5l7xjb56mcQSsRNhtI5NMUCzXyDV7WPwbIwxrBnab0uH09Njbdmklj2bz4A3vPgWxNhmteQGrjQb5WgdbcGPaUBgGvWYd5BZzqRgOm42FXAHD6sIfjWHZZbGAMhrSqZZxmoxx0Um7Q7HewhWK4fVfLY7XvG3DK7xti9k8msVBMJpYT3vvFKqi0KqWsBprXsAeuUodZyC6wQu4lnKXmzVSsRA+zzjtLV+T9t4pNE2lWy9j18eivi8PWCxUwB3CE9wYYeh3WmjtKpkrvW0jgSOw+1T+uLqzgssYcnpmLOov50sYzgCewMYolNztoLWrpMJeYuEQS7kilb6GLRjbVcQR1tJcVZya/LwXcLmAavfiDm4Ux8N+D6VdJul3MxWPsJwvsdyQEe4IVsfubATCMBh16/iEzK0n0phMEueXC2NxvEkEbDToo7YqTPkdZJJxcsUKi9UemiuEbZeFCkIYjDpNvKJ/hRewwMDkxLXJM6sMB4yaZaIuC7PpJMVKjcVKG+GJYN9FxHHMLRi2G9iVNmcycdwuJ89czlJVzFh9GyNgmjLC6FaZ8lo4NZOi2mjx7EoV2eLH5tqdhUEIgSq38Rpdbp1L4Pd6OHdxmWxLQzhDmK7hNjQF06BFJmTl1pPTNNsdnlmuMLD6sbl3HnFcw6jfxqm0uCkTHT832QLNkcAe3Bh9G9sIqnjNCqdn0vT7MkulGmbv3oruro3U5wslhjpEEikczqufG01TqZdLaMMe06kkI0WhUK7hCUQIhHdfAdzvdqhXigQ8DqLhMJVKFUUXJJIpXO6rv7uaplEtl+h1mqRTU8RisUPx1W2Fa8Xd/C13iP/6l39/4Lzfe9fUYYs7nbHnTnAd750QYtt//CMp7oQQNBoNlldyWBwuYom9exzW7tds1GlWy8QiQdxuNwsreQaSFf9qyrLXbqK0a2RiYXxXeNvc4a2jADvhHr/Ea2RiIQI+L5dW8rRUE85gDIvNjtxpIbp1ZuJBIkE/i9kCHRW8kcSe/Xpr6HfbKM0KU2E/kVBgPW3ojox9c3K3jdKqMhUav+SzhRJd1cAXSWB37s+4LPe69Gploj43sUiIfLFMZ6QTiCZwuFzIvS6dWomQZ5z2LpQqtIcqvmhi38blQb9Hp1oi4LaTjEUplqs05ee9gAO5T7taIui0kozHdr2S3wqjgUy/XiLkspBOJihV65RaPWyBOE6PF2U4GIt+l4WZ1GoEotbBvIMIxHZQR0NGzTIRl4m59BTVeoNsvYPVH8Xl9Y+9bY0yQRvMZVLUmk2Wyi0kb2TfBUCqMmLUrBCyC05Op6m32iyXG5i8EVzeALqqIDcr+C0681d423abVtwMuqqgdWvEHXDzfIZOt8elfBXDHcLpC6JrKsNmFZ9Z5cxsmk5f5tmlErLFh32fLUYMTUPt1Ija17yAAy7lyxiuEO5AGEPX6DcqeMSQUzMpBqMR51dKDK0+HLtIK27KrWuMWlX8ksJNcykUReXcUoGeyYPdF0IYAqVTI2gecet8Bk3V+NrlHC3dicUd3FcBkDB0tF6TiE3h9pMZDCF44vwy1ZEVi2ucXdHkJnGHxktOTyMBTy/kaOoOrN7QvgqAhGGgdBsETANunU9hNpm4uFxgYHbjCkZBkhi0a1jX0t5mE5ezBfQ9Lpav5b42Up8tlLA4PYRj48ryRq1Kv1VjKh7BbrORzZcwO9yE44ldL5av4haCVr1Gt1ElGQvjdDrIF4rYXV4SiSQWq5VGvUa9WiISDpFOpQ6lncpOsJm4+41DEHffc/jibrMCiRDwzcBrgZ8WQnxs2/scNXHX7/dZXF5mpBrEkilcE6pOgnEksFouIXdbpJJxDCHGVaeYCXvsTK2+5CsdGWcovqm3ba8wDJ1uo4Zp0OFEOoFpdTIaGhJRj52ZVIJKvUGx2cMRjOHaRR+x7SAMg26rdpUX8NJKnqFhIuAwM5dJ0Wi2KDbauMIxPL7A5LiFoNOooXQaZOJjL+BSroAiTDjNMJOeotPpkq81cYWieLdJme+Wu9tqMGhWScWe9wIOdQm7yWAuk9r3Sn4r7n6njdKukI4GCfp9LGTzdEYCp1ls8Lbtxju0Ewy6bYxulZmon+hqZK4hqzjM48pATdO5uFJEsftwBsIT7SM27Hcx2tWrvYA9BbtkcHI6Ofa2LeZor3vbJmfqVod9pH6d2bCb6ak4uVKFQlPGZhLjiLjFzLlLWRqGHZs3PNEeZmtVpzMh57oXMNfsYkFwMj1Oez+3lKOp23D4o5gm+NLVRkO0ToWk28pcJrlakNLAIsFNswl8bhdPX1ym1AfJHd4QXdsPdFVBkuukAxZuPjFNtd7i3GIJJLhtLkk46OO5hSyFnoHJM7kqXxhbSYxujYRrLOq7vT6Xi1UMITEbDxIO+FnKFelq4AnvvB/nTnBtpF4eDChW6iCZCPlchEMhCqUyA00QiU/hmGD7HE3TaFRKqIMu6WQcXdcpVWqYzRZcDhszM9M497k4nzQ2S8v++SGkZV/2dVRQIUnS7wEmIcRPbnvuURF3qqqSzeaoNVuEooltvQT7wWg4pFIa+xDSU0lMJhPtdmf1JR/CfUA98mBcmderl3FJGidn0phMJrrdHouFCpI7iHdCrTw25dZUerUy9lUvoMVioS/LLOVLmD2BHXnb9gpd02jXykijPnPpKex2O/JgwHK+hNntIxCeXDuNDdy6TnvNU5dO4nA4GI1GXFrJT2QlvxUMQ6fTqGJaTfW7XS5GoxEXlvP0Wa36O6CVtTAM5HYd67DNyUwCr8eNruucX8rS0a04gtED6ZEHa/3impjlBifTMfw+H4Zh8OzlFcoDgdkbnehL/lpupdfCobS5aSZOOODHMAwuLOUodDUkTwTLAfTnW8Oo18Y+anEmHSEWCSGEYCFboNBRMPujB9Kfbw3DfgdTr8Z8PEgyHl3nXij3UB3BbX1x+4E66OFQW5xKBshMjQsAVgplLpfbaI6D688HoA5lzIM6J6IeZtNJJEmiVKlRaHRwBuO49lE9vx1GA5leo0TYaSEzNeauN5vUml0CkTi+HXjE94rhcEC9VMBuEqSmEthsNny+gxvrfrAhcnfrHeI3DyFy9913Hm7kbitIkvQNwF8JIaLbnntUxF0ul6PWlplKZw6tPLvTaVMtrDCdTvG15TLBZPrAXvLXYtjvMarlufXkLF9bLBBITB/KzhownowGlRVuPTnLs0t5QqmZXXvb9sw9HNAurHDL/AzPLmYJp2YOpBHuZlBGQxr5FW4+keFrF5fwJmYmupLfCqqi0Ckt85KT0zz+3CLmcHrX3ra9QtdU+pUs952Z5onzC0jB1IE04d2UW9folXPcdyrF488t0HPEdu1t2ysMQ2dQL/C6W9I8u5ClJvnX26ocNIRhIDdKvPxklEK1QdVw4fQd3Ev+Wu5+vcTtSQ/NjsxzdX3cXuQQPFdCCEadGnem3AghOFcZ4fAfTh+1MXed00EzXo+DfEchGE0eSEP5zdBp1nFqXWJBP9XOkHgqc+A7a6yh3WrSb5R56d13HgrfXrBZ5O4vPvG5A+e9bzrw9STu/i3wtp2Iu6+PZPoEIITA6XIdat8dj8dLRQiEEFjsjkMTdgAOt4dhdcxttjkOTdgB2J0uBpJpldt+aMIOwO5wYjKP+0iZrbZDE3YANrsDs3XcR8pksR6asAOw2myYrXYMwwCT+dCEHYDZYsVsG3MLpH31Ptw1t9mC2eZACIGuG4cm7ABMJjOS1YFhGGiGwOo5PG7JZMJkc2AYq+OeoL1kJ9wWhxvdEKi6gcXhPjQzvSRJmG1OdEPHEAKL3XWo3BaHG1XvIwwDu9N9aMIOwOlyY7Q6GELgcLsPTdgBuD1eurXiofFNAopusNwYvNAfY+KQJOmHN/mxHbgd+DHgAzu5z5ERdzvFd33im/mpO3+eV6VeB8Dlao9HFhv0Rxpuu4X75kLMRz18Mf85fu+Jd/C33/LJF/YDTwifyX6A++IP4LNtvfrvKE0eKT/IN2S+45A+2cHinY/9Mt996sfIeE9seV62u8DfXPzf/Ozdv35In+xwkWvInCu0GSgaTpuFW6f8R3oT+mMc4xhHG3azidnQ15cvcEL40+v8fAS8D/ipndzkRSXuvusT30x1WOZXHv5ZfnjuV/ny00keW2ltOO/U9DIl9x+uX3OjC7zPZD/AX5z/7/xD7oP80j3vuq7A6yhNfuPRnyDfXwK44QXeOx/7Zb5cepBHKg/x2698z3UFXra7wM996UfQDBUe++UjJfDO5Vt86LEc54udDcfOJH18291pbk0FDv+DHePA8U//+iQA/+97L73An+QYh4XU7469ivmfLr/An+TgMdINlppHL3IHzG3ys6EQorKbmxxe3PfrAD9158+v//97Fn6NJ+pfxmUz860vmeJfvHKOb33JFC7/sxRdf7jpNTcq7os/QMo9S76/xG88+hN0lOaGc64Udin3LPfFN92u7obCd5/6MSwmK5qh8nNf+hGy3YUN51wp7CwmK9996sdegE96MPjcc2V+65PPcL7YwWE18erTUd54Z4pXn47isJo4X+zwW598hs8/d/RfBMc4xjGOFiTAJB38n8OGEGJlkz+7Enawz8idJEkB4E+A2xg33PsXQoh/3M89DxKvSr2OH577Vd6z8GtIErin/4L/eO87eMPMrQB8Mf85Pqf+OQBCgJz9IWx33/5CfuSJwGcL8kv3vGtdvP3Goz9xVQTvWmG3VXTvRkLGe4LffuV71sXbz33pR66K4F0r7LaK7t1oOJdv8acPXUYI+NY7U3zrnWmctuf9qD/4ihN87IkcH3siz/9+6DIRr/04gneMYxzjhoHNbGImeCTTshPBftOyvwf8vRDiOyVJsgFf9yaeLz+dRK7/EO7pvwDgv5z9eeyWdwLwKw//7Pp5r3D/HJ/qR/iThxa5by78gnzWSeJ6Ag84ksJuDdcTeMCRFXYAH3osty7svvu+mQ3HnTbz+s8/9kSeDz+WOxZ3xzjGMW4YKLrBytFMy04EexZ3kiT5gdcAPwIghFAAZTIf62BwudrjsZUWLtvt/Md738F/OTtOuV4p6gDefv87uTPyKr741Bd4dKXJ5WqP+ejkGhK/ULhW4P3SP74FgK7aOpLCbg3XCryfeWg8boE4ksIu15DXU7Hfemd6y3O/9c4Unz5X5Llih1xDPi6yOMYxjnFD4DhytzX2E7mbA6rAn0mSdAfwKPBTQoj+RD7ZAeCRxQYAb7gpzhtmbsVueeemwm6tkvaBm2J8/GtFHllsHAlxB88LvF/6x7fQVVsAeK2BIyvs1rAm8H7mobcgGPd2lJCOnLADOFdoA/DSufBVqdjN4LRZuHcuzBcvVDlXaB+LuxsUa8UTOz12XGRx42OteGKnx45akYWiG6y0jiN318N+xJ0FuBv4SSHEV1a3xfhF4D9eeZIkSW8F3gowPT29D7r9oz/SAIh6d9YbLeqxX3XdMY5xI2CgjL+vQdfOdnBYO2/tumMc4xjH+HqHzWJi+jhyd13sR9zlgJwQ4iurf38/Y3F3FYQQ7wbeDeMdKvbBt2+47ePhVrsjvpj/3IaoHYxTtGvRu2pvdNV1RwFrxRNdtYXXGgDGadlriyyOGtaKJwQCiXEJlEBsKLI4CnDaxt/Xprwzl8TaeWvXHePGw2aRuONWKEcbm0XiXkytUBTNINsavtAf41AhSdJ9wMNCiG07ney5FYoQogRkJUk6s/qjNwDP7PV+h4H75kIA/MPyP1wl7N5+/zt5+/3vXP/7rzz8s3xm+R948LnKVdfd6Li2KvY3Xv5efuPl7922TcqNjmurYn/n1e/ld1793m3bpNyouHXKD8BXF+sMFH3LcweKxtnF+lXXHeMYxzjGjQDpEP4cNiRJerkkSY9JkjSUJMm48g/wMCCu+NmvXu8++12q/yTwf1crZReAH93n/Q4U81EPp6aXKbr+fP1nV3rs3n7/8x68t5/9eYbWH+KexCuPhN9uq3YnW7VJudGxVbuTrdqk3MhIh1ycSfo4X+zwsSdym1bLruFjT+QZqgY3JX3HfrtjHOMYNwxsFhPTgSOZlv19wAH8AXCtqTDFWGe9ffXvn7/eTfYl7oQQTwBfFxvq7gRfzH+OkvsPkRj3sXuF++e4M/Kq9eOvSr2OX7n3Hbx9tYrWlfkLXn5is2bRNxa262O3XR+8GxXb9bHbrg/ejYxvuzvNb33yGT72RB4YV8VemXYdKBofeyLPx57II0nw5ru3rqo9xjGOcYyvJ6i6QbZ9JAsqbgXeKIT4zLUHVtOyPyqE+E/b3eRFZbL5vSfesf7/cvaH+FQ/whef+gIP3BQj6rFT7Y148DmJofWHcGX+AkmCTxb/iB/ljS/gp94/Hik/uG0fu2sF3lHYX/ZvLv7vbfvYXSvwjsr+sremAvyLV8/zpw9d5mNP5Pn0uSL3zoUJumw0ZYWzi3WGqoEkwY+9ev64x90xjnGMGwpWs4nM0Yzc2YGt/FE7ql14UYm7v/2WT/Jdn/hmfurOn8d29+38yUOLPLrS5ONfK1513j2JV/LyE3N8svhHN/y+svD8HrH3xR/YMhq3JvCOgrADxiLtsV/mu0/92JbRuDWBd1SE3Rped1OcqNfOhx/L8VyxwxcvVK86flPSx5uP95Y9sjgupHjx4cVQSLEGVTfIHc1WKL8GFK5zLLd6fFu8qMQdcJVYu28uzOVqj0cWG/RHGm67hfvmQuseuxs9YncldirWfLbgkRB2a9ipWMt4TxwpYbeGW1MBbk0FyDVkzhXaDBQNp83CrVP+Y4/dMY5xjBsWtiMauRNC/OctjhWA6x6/EkdG3DkcDoorOcxmM4FgCEnaWZ3LfNSzp4KJ0XBIpVjA7XLhcDhgkKPXtOIO7Jx7r1CVEf16BZ/bicPhQBr16NSreEORA+fWVJVuvYTHbsHlcsEoS6tawReOYDLtufh6R9A1jVa1jFUSuFwuTJpCo1IkEI5hMm/drHff3LpOq1bBZGg4nU5s6LQqBbzhGGbzwT5GhqHTaVQx60Pcbjcem0S7mscZjGG2WHd0j3TItScxZxgGcquGTRvgdDrxOW00KjkcwRgW68766O0VQggG7QZWtYfTmSIS8JBt5DF7o5gPgXvUbeHW+2Nuv4dOvYjhiWKx7axP5n64lX4Hp9rF444S8rlpVksY/ihW+8G/zIa9Dma5jjeVASQKzSqqCGKxH/xiQB30cKgtgt4UhhBYqkVUBFbnwRe1qUMZ86BOOBrF5XSQXykiSRIu78FXkY8GMr16kVTQi8vppJQtYjKZ8QcO3vc8HA6olwp4PTfWYk/RBbkj2ApFkqQ/283pQogfud6ByXyiHeDee+8VZ8+ePbD79/t9lpaXGSoGsWQKl9s9cQ5d06iWy8i9FumpBLqu0+nLxMIhipUalY6MIxTH6Z78ZGQYOr16DWnYYT6TRAKanR7xSIhqo0mx2cMRiOHy+g6A26DbrEK/xXw6idlsotHuEI+EabbaFBttXKEYHn9g4txCCDqNGkqnwXQihtNhp1JvkoiG6XS65GtNXMEo3kBw4uJWCEGn2WDYqpGOh3G7XJSqdRLRMP2+zFKphtkbwhsIHwh3v9NCaVfJxEIEfF4KlRqxUICRonIxV0JzBHD7w0gHIKwH3TaiW2U6FiASDJBf5dY0nQsrRVS7D2cgfCCiftjvYrSrpENeErEw+VKVkN+LJEmcW8zRFk5svjAm0+RFvTroI8l15iIeMskYhUoNv9eNxWzmmcs5GroNmy9yIAsKdTRA6tWYCTmZTScp1xq4HHacDjvPLeVoajbsgciORf3uuIfonQpJt5UT01PUGi2sVgtet4unLy5TlMHkCmM6AG5dHSHJDdIBCzfNZWi2O4BE0O/luYUshZ6ByRM5EFGvawpGt07CDTefyNDtyWi6RijgZylXpKuBJ5TA5nBMnFvTVLr1MnZ9yPx0CnkwRFFUwqEAhVKZgSYIx6ZwuiYvvDRNo1EpocodMqkkmqYxGA5Jp1LjhfvXGSRJelQIsV7Aeeq2O8Xv/e2nDpz3W26JX8V70JAkaZmNXViCgAvoAe0rTxdCZDa9z1ESdzB+ITYaDZZXclgcLmKJJNYJTAhCCJqNOs1qmVgkiMvlYilXQJFsWJwuRu066UgQn8/LwkqenmHGE4ljncAqf+0lr7aqTMfDBHxeFrN5uroZi9OD1q2TjgQIBwMsZgt0VPBEEtjsk5mM+p0WSqvKVNhPOOgnVygh6+Dw+JFbNSIBD9FQiGyhRFcx8EUT2J2TiTD0ux369TJRn4dYJESuWKY11LB7/QzbTaJeJ4lYhEKpQmug4o8lcLomI+rlfo9OtUTIbScRi5IvV6l2h1g8QdRek5jHRioRXxf1rlBiYqJ+NJDp10uEXBbSyQTFSp1svQPuEGLQJua2Mrf68s/WOph8UZyeyYh6dTRg2CwTdZmZS09RrjVYLLfRnX4Y9Yi5zJycnqLearFUbiF5IzgnFN1QlRGjZoWQXTCfSVFvtTmfqzGy+pE0mbhT4qa5NK1Ol+eyVYa2AHaPfyLCWlcV9G6NmANuOpGm3e3x7HIZ2eJD0kfEHAa3nMjQ7cs8u1xCtviweyezoDA0DbVTI2rXuGV+mr484Hy2zMDqA10laFK4aS7FUFE4v1JiaPHh8IcmIuoNXWPUquKXxhwjVePCcpGhzYcwNLxiwJnZFLqm89TlHE3dicUdnAi3MHTUXoOoTeX2kxkMIXh2MUfP7AEh8Ig+N8+kkEwST1/O0dQcWH2hiYh6YRgo3QYBk8xt8xlMJonzS3n6JjeYJOxKl5tmkljMZi5nC+g2N95wfCKRemEYdFo1RL/F3FQcm9XCYq6AYXdjNttQew2mE1EcdjvZfAmTw00klsBi3b+wFkLQqtfoNqokY2FcLifZfAG704vd4aBZrxALB0mn01gsXz/JvWvF3a133CX+6u+v2wlkYrhjyn+o4u56kCTpNcAfAj+w2qlk6/OPmrhbg67rlEol8sUy3mCESDS25whDr9elWirgsluJx6IUShWa8ghP9Hkhoes6nXoVIXeYSSUAWMgVMew+POHIniej0UBGrpcIu22kE3FK1RrlVh9HOI7T7QXGUbVeowbyOKpmsZi5tJJHs3n2lTZUhgN6tRIBh4mZVJJ6o0ml3cUTiuPx+de5O80Go3aNdCKGw25jMVdAt7rwR2NY9rjKV0ZD2tUSLpNgJpWk2e5QqDVxBJ+PDgoh6LYaKO06M4kIbpeLxWwezeIgEI3vWdSrikKrUsQqVGbTU3R6fZZLNczeCG7/+GU+FtxN9E5tXXAvrOTpCzPecGLPol5TVTr1Eg5jxPx0ir484FK+guYM4vQ9n/IfdNvQqzEX//+z999hsq13fSf6WZVzzqHjDidJOhJCWBiwkGUbfG1sD54ZD5YJMsOdIWPA1/JYJNmWr20y4j7DNQeQeXAYgzBjYwOyJARGVwnpSCfs2KlyWBVXhVUrvPeP6uq9d58Otburep+zT3/3U8/u7lq1vrUqvO/3/f7CGyIWCXN3r4SsClyhJPYzinrD0Bm163jMMddWM6iazs3dCiO7f8q9//1RB/0pdyJEKh5hp1ShPtBxhBI4XGcT9aZhMGw3cBtDrq1mMEzBS1tFepIHp/+eMzkZDbDOXLVMkp1ihR15CL4YdtfZ3AZhGqi9FgGGPL2Rw2KReOFugbbhwnGfkNDGQyyDFqsxD2vZFMVKne1GH90TxeE+24JCCBO118YvBjy9lsbhsPPydomOcOAKxLDsf3c1dYTRa5AJONjIZ6g2ZLbrXYQvhnN/HHh4bsG428I56XJ9JYnP4+HlrQJdw44zHD9wB/XJmEmnQdxt4cpKhkarw429BgNbEIfnbAsKIQTasIvf7PP0eopQwM+N7QJNVcIeuBd2N7QJk16DhBOurWXp9BRe3qsxtAVxeM8m6u+FvTs8kY8TDQe5s1eiORY4Q8mDsLuha4zbdUJWnWtrWQbDqVNv80fP5dQP+l3Udp1MNEAsEmavXKE/EQTjqYPvj6FrdJp1rJMB67kMmq5TqjbwhWKEzpECo/R701QWn4t4NEq11mBimCRS9yJd0+hUdT86lSaZTC493WceHOXc/dx/WL5z95efvFjn7iRIkvS/An9HCPE1px77uIq7GVRVZa9QpN3rE0ukHyqHYTJRqVcqmPqYbDpFfzCgVG/hCsXwHRMC1CYq3UYNFzpruQzdXp+9uowtGMcbCM39JdE1DUWu3ZvkRyN2Kg2svgi+8NEDi65NUOQ6bqGyuZK7L2wYxfcQuYCGrtOXa9j1IZv5DJqmsVet4/BHCUaODsPpukanUUPSRqxl06jqhN1qHUcgQuAhcgENw6DXrCNGfdZzaUzTZKtUxeIJEojGj+Q2DJ2e3MAyVljPpTFMk91SFXsgTDBy9GOOgmkYdOQGutJhNZtCkiS2ChU0px9/OH5kGM40DPrtBja1z2Y+DdwT9dPnO5+oF6ZJr91EDNqsZ1PYbVZu7ZUZ4MYdjh9M8ocfM+o2cUx6XFvJYLNZubVTYmTz4Akd/ZgjuYVg2JWxjtpcySbxuF28vF2kY9hwBuNHhgCFaTLqt3FNulzPp3C7nNzaKaFILtzhONY5V/xCCEa9NtKgxZVMHL/Py8tbBepjCZv/6DDcLB/Oo3d5YjVFwOvhpbt7NFQLtsDRz/c4bnXQw6m2uZ6LEQ0FubldpKwYWP1RrPZXCvSpMOjimvR4ciVOOBjgxnaB6kBgPeb5Hgd10MM+bnMtEyERDbNVqFBRNGyBODbH0QJ9rPSwjWQ20xFi4RB39srUhwa24PGPOZJ72Id+k7V4gEwixk6pSqWrYg3FcRwjktXB7DFBkvEId/bK7DRHGO7IQ3Hr4yF2tcVmMsBqNsleucZee4jkix0rkicjBZQma1E/uXSC7WKF7YaC6Xk4Ua+rI6RBk9Woh82VDOVak4LcQ/LHjxXJk9EQvVsnHXSymkmd2amfjMcocoWgc7pYbrbaVNs9vJEk3sDRzrc6GtFrVgk4LOQzKeRWm1ZvQDiRxn/MY47kVlWatTJWUyOfTdPr9Wl1e0T358SjxufxeES9UkYyNdZWVwgGH+0ONkc5d//2Apy7N75KnDsASZL+PPA7QohTV5OPvbibod/vs7O7h2ZCIpU9MYfBMAyajTpKRyabnu7Vt1OqIrn9BGIJrHPk2gyVPkqzRszvJhmPUazWkAcTPJEkzhPChqZporSbD+S23S2U0Rxe/JHEXJPmeDhgJNeI+ZxkU4mDwch9ymAkhEBpyxhKi/XMNLdtp1jGtLkIxecLCYxHQ7qNKn6HlWw6SUNuUe8qeKNJvCfkAgohUDotRu0m+VQMn8fDdqHMWLITjCfnSt6fqGN6jRp+m2A1l6HV7uwPngn8J+QCCiFQuh0GrTrpaIhQMMBWoURPt+Cb04XTJiqDVg2/1WAjn90X9S0cc4j6Qb+L2qmTiUzD3tvFCo2hgWNOF87QJow6dYJWnetrOZTBkDulOqY3gidwsqgfD/oYvTq58DS3badUodRVsQUS2Odw4QxdR+02CFk1nljLMlYnB7mAnlPChupQQes2yATd5FIJ9so1dmQF4Y1hd53uhJmGwaQnE7aOeXozj64bvLhVpG/x4fSfzK2pI+g3WYm4WM+lKdWa3K110N0RHHMk7wvTZNJrEbKMeGojhwS8uFWkI1yn5gLqkzGi3yQXcnBlJUut2WKr2sb0RnF6T3fChGky6rXwGn2eXMtis1l5eatIDxeu0NGLkHvcKnq3QdwNV1dztDpd7lZaGN4IrjnC20IIRh0Z56TH9XwSl8vJC7f3qI2sWHyRExcUhq4hBjJZn8RTV1boKQNuFmpMXGGcvtMXvkIIxv02LnXqNPr3RX11yLTI5gRRb+o6utIk4TJ4enOF4XDErWIdzRXEHTzdhRNCMOp3sA5abGZjhAN+tgolBubpTr2h6/RadezagM18homms1upYfOFCUZic4W3lV6HkVwnHQ0SDk1TY3RhIZLK4Drhe2oYBq16FXXQJZ9JYZomlWodfzhGND7fXNbvdWlUywS8blZW8tMCwkeAw+Lu2jPPip/7zeU7d1//xKvDudvfCew54G1CiGunHv96EXcw/YI2Gg32iiWcngCJ5IOCRQhBp92i1agSCwfx+/3sFMuMhZVAPIXD+XChNiEE/baM2pXJJ6dhw7t7RUaSE180+QqxNOh1mXQaZPdz23ZLVboTE2/04ZN5hRAMum30nsxKMkrQ7zvIBfTHXjkYjZQ+41aVZMhHMh6lVKnRVw2CiRQu98OHu/r7YikZCRIJBdktlhkYEsHEK3MBRwOFfqNK1OcilYhTrjVoDcZ4o2crTBn0ewxbNVIhP/HoNBdQ0UxC8RTOQ9cyHg7pNioEXDayqSTVhky1o+AM3wt7PwzGA4VRu0Yq6CGdiFGq1mkOJngjSVyHRP1kPEKRqwcr+brcYrfeRfLHcZ0hf24yGqB162SCLvLpJOVak3JngC2YwOl58HXUJirjdo2IEzbzGVqdLncqMro7eqb8OU0dYXQbpP0O1nIp6nKbvWYXa+CV16JrE8btOkGrwdXVLN2+wo29OmNHEMcck/xh6BMVs98g47dxbS1HXW5zuywzcYZx+h68FlPX0HpNYk6DpzbyKMMRL+9UUGyBuQTGYRjaNBk/6ZV4cmNaCHCj0GBkD74iF9A0dLSeTMQ+4emNPOpE48ZehZEtgCsQRpIeLtRm6Bpqt0nMofPE+jQX8GahxsQZ2j/f/dwG426TgBjyxHoOYQpe3ikxsvlwhR6+MMXQp3l6AYvKE2s5hmOVF7bKdE0Pdl/ogWsRpomutAjbxrzx6goWi8TL20V6uHEGHz5lxTQM1F6DIGOe3Mij6zov3C3SxYvD96CoF8Jk0m8TYMAz6xkcDjs3d0r0JRfuh3C3D7hNg1GniUcfcH01A9LMqfcTiDxYtT9dsMro/RZr6Thej5utvRKazUUw9srx/3Ruk57cwBh0WMumsFmt7JUqOLwBovHUAwt/IQTddoueXCcZC+P3eSmWytgcHuLpNI6HTBsRQtBqNmjLdVKJGNlMZi5huEgc5dz9u99bvnP3hvTpzp0kSV8H/CxgBf6VEOKfHXPcNwL/AfhyIcSRYkiSpI8d8WcncA2IAP+7EOL/PO15v67E3QyGYVAqlajWZYLRONFYnNFoSL1Swmm3kEokqDdlGr0hvlgSj+9sOS0HfLpOt1mHWdjQMLlbrIA3hC8cQ5+oDJq1g9y2ZqtNSe7hDMfPXYZvGgb9VgOr2mczl0ZwL2zoj8YxtGm1lt9msp7L0O32qMgdvNEE/uD5yvBN06QrN9CUDquZJFarla1CGVw+gvEEpmHSbVRx7ue2KcqAvbqMIxg7d+Wr2M8FNJRpha3L6Zi6kA4PoXgSBHQaVaz6mLVchuFoxHa5geSL4Dtn5evMhTQVmfVMHJ/Hw929EmPJgT86Dff25BoOfchGfprbdrtQYeII4jln5evMYbAMZDYyU4fh9m6Rjm7FHUpgsdoYthu4jAHXVjOYpuDGTomB1Td1MM6ZJD9WulgGLTbTYeKzXMCxwBlOYLXbGbZlnFqf66sZJEnipbtTt8u+gMrXybCPbdhiMx0iHY9yt1Cm2Jkg+aJYHU7UXhufqRzktr24VUCe2Kfc50yS10YDrMMW6wk/K5kk28UKu/IQ4Y1ic7pRlQ5evceTq6mp47RVoK3ZcATPX/k6GQ8R/Qb5sIeVTJJStcGurCD5Y9jdXsb9No5Rh6v5BCG/j5vbBVqaBUfo/O1sNHWE3mmQ8tlZz6cp15vcKrYYO8LYXF60YQ+v0ePJ1QSxcJDbuyVqQ3M/9Hy+YjN9oqL36qS8Nq6uZqnLbW4Wm4wdYZzeAJNhH+e4zdVchFQswlahTH2gYw8lzt1SRtcmqO0aEYfg2lruwKm3B2L4guHpIm9/sZxKxChWqnRGGv54+kyL5Qe5NTqNKg5DZWM/L7dal/FH44QiMUbDwbS1iXuaI15vNBmpOol0Fq/vfAVfuqbRqFUYD/qs5LPEYstvvzXDUc7dz1+Ac/d1pzh3kiRZgVvAX2DaZPgzwP8ihHjp0HF+4D8DDuC7TxB3/41XVsuOgT3g3wgh5lK0r0txN8N4PGZ3b49Of4DNIpHLpBmOxhRqDRyBKIHIYttbqOMRvUYVr03aF3EdSs02TpvlwK7fLtWQfKGpwFhgiwltoqI0a/juDxvWWtitU+fGFGKap+YLETwmt+3M3NqETqOGzVCnIm44pFhrYgHWcmksksRWsQIuH4EF96ybFijUsGnjqZBSJ+xV60jASiaJ3WbjTqHMxOrBN2fYe14Yuk6/VcehT8MxpmFOhTXSwUr+xnaBvnDgCs3fs24emIbBqNvArQ+4tjJ1GG7tltFMwZVMnIDfx43tAvLEMs2rW2CLCWGajHsybk3hibV7uYBj3WQ9HSUSDHBrp0RlYGDxxRbaN25WoOAzFJ5cm+YCvrRVoK8aXElHSMYi3NktUehORd/D5Iqdzi1Q+92pmFm7lwvYGWqsp8JkkzF2ilWK3TFW/9kLQI7jHisd7OMO17IxwsEAN3eKtAcquaiffDpJsVqn2B5iCcTPXAByHMZKF0mR2UyFiUXC3NwuUG4NWYn72VzJUKk32W70ML2xV7jI54U67GNRmmwkQ6TiUe7ulSjJA9JhL1fXsjRabbZrHfDFzuSIn8ytYPYa5CJecqkExUqNZm+A32VnPZ+l0+tTbrZwhaaFYIucT8bDAf1mlbDbQSaVoN5s0ukPcdisrGTTDIdD6nKbSDxFeMFz2Wg4NUNsFsHa6gp+//kMkHnwanXuJEl6O/BjQoi/tP/7ewGEEB84dNzPAH8A/DDwQ8eJu0XhdS3uZhgMBvT7fbYKJYTTSzCWXOgk/wq+fo9Bs0Yy5CeVjKNpGrd3CowtLnyxs1eYzoPRoM+4VScZ9JDPpNE0ja29IprFQTiRWkjbmGO5hwN6jSpBj4NcOoUQgru7BQamhWAshf0hw94PA3U0oi9XCTqtrOWyCCHY2ivRVvfD3gtqG3MUNHWMIlcJOSU2V3L7hRolqj0Veyh5bAL7IvCAw7Cex2q1sl0oU2gNljLJ3w9D01C7DSJ2nac2V7Hb7ewUK2zXu+juKI4FT/L3YxoCbRK1azy9uYLL5aJYqXGr3GLiDM2V23Z2bgOtLxOxTnjm6sq0KW29we2yjO6O4PQGluZ2mKbBuCvjF0OeXMsSCPipN2VuFxvo7leGaxeJaYGPjHvfmQ0G/MitNjcKNVR7AOcp+Z/n4haCca+FW+vxxEqKaCRMu9s9aOlyXkf8NO5Rr41t1OZqLkE8GqHX77NdrGDxBqdFXUsKYc7yhUftOrl4hEQ8xmAwoFSp4vGHiCfTSw2fdjttmrUKoYCPtdUV7Ato1XIcjnLufuG3/mBpfDP8peuJ08Td3wS+Tgjx7fu//x3gK4QQ333fMW8B/g8hxDdKkvRxLkDcLXdLgdcIPB4PN7d38STzRFLZpQo7AK8/QGx1k+pAZTQacePuDoRShFLZpQo7ALfXTyi3QXVg0Ol22d4rYQ/GSWRXlirsANweL4mVDQaGFbnVZqdYRneHiGVXlyrsAJxuN7HcOgPJRaXeoFCp0ZM8hDNrSxV2AHani3BmDcXiY69cpVJvUh5Z8STXlirsAGx2B95Eno41wO2dIo1Wm62ujjOxulRhB2C12/HEMnTtYV64s0u31+el2hApsrJUYQdgsdpwhlO07TG+cGOb0WjE84UuhHNLFXZTbivOUIKuM87nXr7LeDzmhVIXS3RlrqKFc3FbrHjCCVR/hufvFBiPx7xUlLHGV3EHl7t7jmSx4AnHMcM5vrRdQlVVvrRbQ4TzuOYoWjgXtyThDkYxw3m+uFNjPB7z4k4Foit4w/GlCbsZtycYwRZf46WizHg85s5emUBmnXA8tdTdcyRJwh8KE1u5QrHVn0ajiiWyq1dIZXJLz4sLhsKsX32CgarRarWWynUUpAu4ATFJkj573+07Huo5ThNQfwr4wYd4TF6SpF+RJKkiSdJEkqSiJEm/LElSbt5zvHo6FD5qCHCesUfXWWCxWLA7XQghMAW4L7ACSZIkbE4XQoBALKzh8LzcdpcLgY4QYild30+Cw+lCGMPpzxfMbXe6MCej6bZKTteF9o6yO92Ywx4Igc1xsdw2hwsxFggEkt15wdxOzIE5/cXueOiihfNyo0yv1WKzL2U3jWO57Q5MiwUhxJT7ApPfrXYHxv61Sjb7ufMZHwYWqw2LbZ/bYl3KTh7Hc1ux2GzT19xiwe5Y7mL5MLfN7phyY8F5gWObxWLBscD0hnlht1rIBC6Et3lKQUUJuH+XiNz+32bwA88AH98f+1LA70iS9A1HuXeSJGWATzHdieITwN9kGs79K8BflSTpbUKIndOe9KW4ewj8193f5O2pryXojJx4XFdt8cnqx/i61W+8oGe2XPzgH30L73nq+3k6+uYTj3tR/jzPvfQz/ORX/9oFPbPHG5+ofJg3R9+B33FyYUt/0ubz8sf5mvTfuKBndrH4YqHNZ3ZajCYGboeVL1+L8Mb88vfcvMQlLvHqhWaaVPqvir1lPwNclSRpnamo+1vAN83uFEJ0gdjs9znCsj/GtDDjq4GngP8R+HamIvETwD8B/vZpT+pS3M2J/7r7mzz30k/y+3u/xY++7eePFXhdtcWPf/p7KCrbAK95gfeDf/QtbPdv8b5PfSfv/4pfPFbgvSh/nvd96jsPHnMp8M6HT1Q+zP+19TP8UeW3+d5nfuZYgdeftPm5F76f6mgH4LESeB95qcrvv1hhrJkP/P35QgeX3cJffDrNu55KPaJnd4ll4uv//VUA/sv/dPsRP5OLxVP/n2nU7aX/vXjh3JF/MdUfrR9uXjj3WeCwXJhzdyKEELokSd8N/B7TVijPCSFelCTpJ4DPCiF+5yFP+fVM8/NU6b4whxCiI0nSB5i2XDkVl+JuTrw99bX8/t5vUVS2+fFPf8+RAu9+YZfzrfP21Nc+ome7OLznqe8/EG3HCbz7hd3sMZc4H94cfQd/VPltqqMdfu6F7z9S4N0v7FLuNd4cfcejebJLwK9/cptPb9/L4Yn5nPhdNvpjnaaiMtZMfucLJardMe9++9qje6KXuMQlHgk006TSe1U4dwghfhf43UN/+5Fjjn3HKaeLAzvH3NcE5koaPpe4kyRpB+gDBqC/Gro4LwtBZ4QffdvPH4i3wwLvsLA7yd17LeHp6Jt5/1f84rEC77CwO8ndu8T88DvCfO8zP3Mg3g4LvMPC7iR377WGj7xUPRB2a1Ev7/nqDUKee/lLneGE5/5oix15wKe3ZVJB16WDd4lLvM5gf5U4d0uADBwezGcO3v8MvDzPSRaRXfy1QohnH2dhN8NM4OV86wcCr6u2HlthN8NM4M3wvk99Jy/Kn78UdkvGTOCl3GsHAq8/aT/Wwg7g91+sAFNh9/f+0hMPCDuAkMfB3/tLT7AW9T5w/CUucYnXD2Y5d8u+PQK8wLQA4358vyRJvw98G/Dj85zkshXKQ+KwwPvBP343P/jH735shd0MRwm8S2G3fBwWeP/0C9/KP/3Ctz62wu6LhfZBjt17vnrjxGO/bf/+sWbyxUJ76c/tEpe4xKsL0gX8ewT4NWD9vt9N4P/NtCjjrwkhfnuek5w3504Avy9JkgD+TyHEL53zfK8JzATeD/7xu+lNOgAEHKHHVtjNcDhEO8OlsFsuZgLvn37hW1G0DgA+e+ixE3YAn9mZhmNjPucrHLvDCHscxHxOmorKZ3ZalxW0r1HMiifmve9xKbKYFU/Me98iiyxmxRPz3vdqLLKwWy2kH8OwrBDiN4Df2P/1S8AmIAshlIc5z3nF3VcJIUqSJCWAP5Ak6YYQ4hP3H7Df8O87AFZWVs5Jd4lLXOJxxmhiAOB3zTc0+Zw2mop68LhLXOISrw9ohkn11dEKZWkQQmjA7lkeey5xJ4Qo7f9flyTpw8DbmPZhuf+YXwJ+Cabbj52H79WCWY5db9Ih4AgB0Jt0jq2ifVxwOMduhtPapFzifJjl2ClaB589BICidY6ton0tw+2YNqDtj/W5jldU/YHHXeK1h6OcuNdDK5SjnLiLaoVylBP3WmuFYrdaSPkfP+duUTizuJMkyQtYhBD9/Z//IvATC3tmr1IcVTwBHFtF+7jgqOIJ4NQ2KZc4H44qngCOraJ9rePL1yI8X+jQVFQ6w8mJodn2cEJTUQ8ed4lLXOL1A80wqT3mzt15cJ6CiiTwx5IkPQ98GvjPQoj/upin9erEcVWxx1XRPi44rir2uCraSywGx1XFHldF+zjgjfkwLvt0WHruj7ZOPPZX9u932S2X+XaXuMTrDDPnbtm31yrOLO6EEFtCiDft354WQvyTRT6xVxtOa3fyuAq809qdXAq85eC0diePs8D7i0+nAdiRB/zU792gPZw8cH97OOGnfu8GO/LggeMvcYlLvH6gGyY1Zbz022sVl61Q5sQnqx87td3JYYH3yerHHsEzXSyee+lnDn4+Lux6WODd/5hLnA2flz9+aruTwwLv8/LHL/6JLgHveirF29an368decCP/vaX+InfeYGf+r0b/MTvvMCP/vaXDoTd29ajlw2ML3GJ1yke01YoC8Hl9mNzYrZH7NtTX3tiPt1M4H2y+rHX/L6yAD/51b/GD/7Rt/Cep77/xHy6mcB77qWfudxXdgGY7RH75ug7Tsynmwm8z8sff6z2lX3329dJBd0He8s2FfUgvw643Fv2McfjXEhxEh7FnrIzvFYKKWawWS0k/c5H/TQWDkmSvuW0Q4QQv3raeS7F3UNgXrEWdEbmO1bcVzz8KOuIT+GeV6w9HX3zwwu7C75ucewvF4w5uOcVa35H+NRjxX2fNfEoL1zMz/2up1K866kUXyy0+cxOi9HEwO2w8uVrkflz7MQxP78e8BCv9eK5D/3/CLhf5V/vxwwXf8W6YVLvq6cf+NrDc8f8/X4b8VdPO8mluAMkSSISDFDf2yIQT+Fye5bKZ5omPbmJOejizSeIh4NUyru4o0lcHu9SuYVp0m/LMOjgz6yj6TrV8i7+aBKvf679iM/OLQS9lsyo2yS3voLNamW3WkSPJvD6g0vnVrpt1E6T/EoW3TRo7FUwjDjeQGip3ACDXget2yCfS+Kw2yk29hgKA7c/jCQt1/ofKz1Ev0EiGyfg9+IsbTEU4A4sn1sdKtBvkkyF8Hu9BEQZpSvhDISRpPmyQt6YD5+pYEIbD0FpspaM4PF4iFhGdDoNnIEokmW5GSm6OoZBk3w0gNfrJSCN6bXrOINRLJbltm3RJyp6r0Em4Mbn8+G3aHTkCu5QHIt1uUO+rk2YdOrEPTZ8Ph8hh6Apl3EE41ht9qVyG7rGpNsg7pCm3E4Lcr2IM5zAZj+5Ifb5uXXGnTpBScfn8+Fz2WkUdwjGUzicy03KNwydXrOONBni863g8bjY3bpNIp3FveS5zDAMmvUaw36HfOr4xsjLgP0xde6Ao7p6R4C/DPxt4JvnOYkkLnB199a3vlV89rOfvTC+edButykUSwQCftwuF9uFMrrdRTCWxGZf/GCkdDsMW3XS0RCRUJDdUpWQ34vf52Vrr8wAG/5YcimD0bDfRW03yEQCxCIhitU6XreLcDDAXqnMWNgIxVM4nIv/wgyVPr1mlYjPQzIepVxv4LTZiUZC7JYq9DVBIJbC4Vr8QDgeDlCaVSJeJ5lkgmpDRpIkEtEwxUqN5lDHE0niXMJAOBmPGLaqRNw2VjIp6nILwzBJJ2IUq3XKnRHWYAKne/GiXlPHTDp1Ym6JzZUsjVab0XjCSiZJpd5kp9EHfxSnx79wbl2boHUaxFyCa2s5Wp0enf6QjXyKutzmdrmF5o7g9C5+QWHoGnqvQdxp8tTmCr3BkGanx0Y2RavT42axwdgRwuENLFzcmoaO1pOJOXSe3swzVic02h1WMyl6yoCbhToTVwiXL7QEbgO11yTAiCc38ui6QbUps5pJMRyNuFmoMXGGcAcji+c2DUZtGZ+pcH01CxKU601yyTiarvPyToWh3Y8rEJlb1M8LYZqMey28Rp8n17JYrRYK1Qa5ZAxhCm7ulhnZfbhDsYULayEEw46MU+1yLZ/E5XKyW66RSUSxWixsFysIl49QLInFunjufruF2m2ykorh9XgoVmrEwkHsdjulSg23z088mcFmW6yoF0LQabdo1atEw0Hy+Rz2JcyX90OSpM/dv4f9E294Vvzy7/y3pXICfNVG7AHeRwlJkn4MuCKEePepx75exd1wOGRnb4/hWCMWT6EoPcaDPtl0Ek3T2a3UsPnDBCIxLAtY5aujEb1GlYDTSi6dpNaUqbQUHKE42niIXVPYzGcQpuBuoYzpCeKPxBfCPRmPGcg1AnZYz2eQWx1KcgdHMIGujZFGPTZyKawWCzvFChZPgFAsgXUBg5E2UWnXqzjRWc1l6PT6lBotnKEYhm5gKG3WMkkcdhtbhTKG00swmsC6gMFI1yZ0mzWcxoSNlSzKYMhOpYnFH0EIgRi0WE8n8Lhd3NkrMZKc+KPJhTgMhq7Rb9VxGWOurGQYqxO2y3UkbwjJYsXoyaylovh8Xm7tluhq1oU5DKZhMOrU8Zgjrq1mMAyTG7slRrYAktWOddTiSjpCJBTk9m6JxkhgD8axOc4v6k3DYNxt4hNDrq9mkYAv3t6jqTkRVgceo8cT+SjpeJQ7eyVKXQ3JH8PmOL+oF6aJ2m/hNxWe2shht1l58U6BlulEsruwjTtsJoNkkzG2ihX25BHCF8XudJ+fW5io/c6Uey2N2+Xk9m6JocWF3e1H6zVIBtzkUgkKlTp7rQGSL4ZjAaJeCMGo38Gldri+ksTv9XB7t8gABw5vALUrE/faWcmkqNSb7Db7SP4YTu/5Rb0QgnG/i3UocyUbJxzwc3evhGJacfrCjHsyYaeF1exU1G/V2hie6MJE/VjpYtv/PMfCIbYKZeSxwOYPoysdwg7BlZUsrW6XrUob0xPB5Q8uRNyOB31Ev8FaLEgyHmGnVKUx0LAHomhKl4BV5+pqFmUwoFCTcYZi+EOLEdYjpY8i14j63KSTccrVGt2Rhi8SZ9TvYtHHrOUyjMdjao0W4ViCSCy+EO7hQKFeKeG0W1lbXcHrXW60aYbD4u4Nz75F/NYffOKkhywE1xL+V5O4eyfwYSHEqaGu152403WdYrFIXW4TiSUJR2IHH/jRaEi9UsJqMcmkUjRbbWrtPt5oAm/gbGFDXdPoNmrY9DFruTQjdcJ2uYbkDeML3ePW1DGDVo2ATbCez9Du9ig22tiDcbzB0Jm4DUNHkevYJgM289NJfqtYAW8If/iecNQmExS5ilvS2VzJ0lcGlOoynvDZByPDMOg2G+jDLmvZFALYKlawuAMEovGDVayuaXSbNRyGyuZKluFwxG61gT0QxR8+G7dpmvRbTQylw3ouhc1q5fZeCd3uwxuNY90PTRm6jtKq49CHXMlnmGg6W6UawhPEH4qdKXQnTBOlIyOGbTYySVxOB3f2SqhW975wnHKbhkG/Vcc2UbiSz2CYglu7ZcYOH55g/GzcQjDqtbAO21zJxvH7vNzYLtDWbTiDcaz7wtE0pwLMow+4vprBarVwY7tIX/LgCsbO5DBMJ/kO9nH7YJJ/6e4exa6B8ESw2hz7x5loSoeIdcQbrmRxOuy8tFWkZTiw+6NnDhuqSheH2uZqJkoiGubWTpFST8fijx2IViEEar+N1+jz1GoKr8fNS3f3qKtW7P4YljMuKCbDPrZRm6vpMOlElN1SleZQxxVO4nC5D7iHvTZCkVlPxwj4vNzcKdJULTgCsYP35qG5RwpCkVmL+silExTKVerKBFc4gXM/xUMIwbDfxeg2WU2GCQcD3Nkt0RgLHKHEmUX9ZDTE6NXJBl1T4VhrUu0NcYeTuLy+g+OG/S6TTp1sLEA8EuHuXpmKomENxM8s6jV1hNlrkAk42MhnqDVb7DW7WANxXL57wnE86GN0G+QjflKJKLvlKpWeii2YwOE6m1OvTaaOeNxlYXMlg9zpslvrIAWiePyhg+PU4YBJp0Y6OBX11XoDWRnji6Vw3/f6PBy3SrdRxYXOWi5DX1EoN9p4wnH8oXtpFuPRkG69it9pJZtOIsst+sMx8VQWf+BswlqbTKhXK2jqgNV8jkhk8Q7wSTjKuXvuApy7P/vqcu7+D+A7hRDZU499vYg7IQS1Wo1iuYLHFyKeSB3rDnW7HZq1MqGAl1AwSKFcRdEEgUQKp2u+Vb5pmvRaMlq/xUoqcTDJjy0PTvKHMVJ6jNt1MhEfyViUQrlKa6Tjic4fNhRCoHRaGH2ZtWQMn8/L3b0iY8mJP5o6Ntw8GigMW1USATfpRJxKvUFnoBKMzz8YCSHod9oM2w0y8TABv5+tQomRsBGMJ7EfM5GMR0OUZpWQy37gbDa6AzzRJB7f/A6D0u0wajfIRINEwyG2CyU6GviiKezH5L5MxiMGco2w08JaLk2j1aIk93EE43geIhdwqPRQ23WyET+JWITdUpX2WMcbTR1M8oehqVNX1b8v6lvdHtuVFsIXxX3fRHEa1KGC3q2Ti3jJJuPslquUu2MsgeMnMUObMOnWidhNrq/n6fQVbhfqaO4wLv/8YcPJaIjZb5ANuVjNpNgr17hd6aI6wthdR6/qTUNHDGRSXsEbr63RHwx5ebfKyBbA8RB5iLo6QigyuZCDzXyGSkPmTqWN7o7i8Bz9mZ2FTiP2CU9v5JlMNF7cLtOTvA+VC6hPVEylSc5v5+pallany269g9Ufw3NMHqdpGCjtOk5twNXVDKYpeHm7iGL14X6IXEBdm6D1GsRdcH0tR6fXZ6cmY/HH8AaOfu9M00Bpy9jGXa7kM1gsEje2SwysDyfqDV1j3K4TsRlcX8/RHwymjrgviu+YxaAwTfqdJtKwy0Z26tS/vF2iIxw4A7G5Rb1p6KjdJmHLhCc3cozVCbeLVTRnCG8ocuTrNw2dtrGNWmxmE3g9bm7uFOkYdtzhxNxO/dQRb+Ddd6UNw+R2oYLmDOAJHR3hmS642jBosbEv6neKZVTsBOIp7I75RL1pGHTlOmLUYy2bRgJ2SlVsniDBWPzYKEu/22YgT9OAgsEApUoVyeogkcrgnDMFxjRN5EadXqtBJp0klUotJKrzsHiFuHvjs+K53/no0nn/7Hr0QsWdJEk/esSfncAbgK8HPiiE+L5Tz/N6EHfdbped3T1Mi41kKotrDoFmmiZys0631SCdjGOzTcOGuLwEY8eLM4BBv8egWSMZ8hONhNgr12iNTp7k78dUnMnTsGEmgcfl4u5eibHFhS+WwHbCYDQaKIxbNRIBD+lEjFK1TnMwwRuZr1hjJgy1+8KGO8UymsVBOJHCfoLDMBoO6DaqhNx20skE1XqTpjLCG03OJQ6FECi9DuN2g1w8QijgZ6dQYiCsBGMp7CfkAqqjEX25StBpJZ9OUW+2KLX7uMIJ3L75VqrDfpdJu04uFiQWCbNTrNBWzen7dkJStKaOUVpVQnZYz2eR2x2KjQ720PyO70zUp0M+kvEou6UKVUXDHkye+JnRtQlqu0bYbnJ1LUe71+dOqYHujs4dfpqMBpi9Ovmwd+r+VOoUWgMsgfiJYUND01C7DSJ2nSfW8/SUAV+6W6aHH7t3Pm5dHWEbt9hMeNlYyVCqNdmqdTE8x4szmAm0JlG7xlMbeUaqykvbFRSrH6c/NJdA0ydjRL9JLuTgykqWWrPFrXILzRXGcUIeomkYaH2ZiHXC01emuW13ChV0VwBvaL5UCm2iMmrVCDkEG/kMrU6X22UZ3R3B5Tv+MzN1XWX8YsgTa1kkiSm3w483PJ9A07UJA7mGz6JzdTVHt69wu9hAd4dwnVBkI0yTUVfGpfV5YjWDzWrhTqGMZvfhi9xzxE+CoWv05RpuoXJ1NYcyHHJjr4bqCOD0H+8ECSEY91q4tR5PrKRwu5zc2i3Rx4knPF+xhmHojFoNvGLEtdUsE03n5l4F1RHAEzxeWM8Emm3U5mougd/r4dZukb7pwB2Oz5VKYRoGg3YDtz4V9UIItosVLN4gwUj82PdtWgjWYdSuk4tHCAb87BbLqMyfH22aJl25gaa0Wc2ksFgslKs1PP4Q8WT6RKHW7bRp1iqEAj5W8jmcS8jHnhdHhWU//JE/Wjrv1bjvosWdDq9osKcCe8C/AT4ghJi84oGHz/M4i7vxeMzeXoHeYEQ8mcF/htCqpk2oVcto4wG5TJrhaEyh1sARiBKIRB8YjCbqmF69iscqWM1lkNsdCo1pbpvnDNzTsGENhzE6CBtul2rgDeIPPxg21CYqSrOGz2qwkc/S7fXZq7dwBOPHruRPgmkYdFs1bOo0F9AUgp1iBYc/TDD64ASmaRM6jRo2XWUtn2EwHLJXbWIPRs8U1p2uUpuIUZf17DQX8G6xjOTyE4gmHhgIDV2n26xh04Zs5LOo6oS7s7B3OPbQ3MI0UVpNGHXYyKZw2G3TsKrNiz/yYC6gYej05ToOfcCVlSyGbnC3WEF4QvjCD5+rKYRAacuY9+UC3twp0hcOXKEHHQbTnLoIbn3AtZUMADd2SwwsPlzB6EOHVqdh1Tb2/QlsFjaUJxacwQTW+9zeWQK7W+vxxFoWm9XKF2/v0VBtWLyRh05aF0KgDXv4zB5PrSaJRYLc2ilSGZhY/TGsducDx6r9Fj5d4cm16ST/0t0CTc2G/SEcoPuhDnrYx22uZSIkYxFu75YodidIvugDYcMpdxev0ePJtRSB/dw2RTjwnDFfcjzoT0OWER/J2DRvq9RVsfpj2O9zXIUQjJXu9HlmY4SDAe7ulegbVjyRs4VWx8MBartGMuAmm4xTrNQpdoZHivqx0kVSZDZTYaLhEDvF8tQRjxzviJ8EdTRk2KoS89jJZ1KU6012Gj1MbwznIVGvDvtYFJmNZJDU/sKnpug4wom5FsuHoalj1HaNuMfKWjZNo9Vmp9YFf+yBkO6UW8HsNQ4c8UKlRrWv4gidrQhKm6iM23XCDsFmPkOn26Mst3GFEviCD47T4+GAfrNK2O0gk0pQa8i0lCGBWOqhohkH3NqEdr2K3ZywlpuO0w25TSSeInxoLhsNpylKNotgbXUFv3/xRVcPi8Pi7skLcu6+8oKdu0XhsRR3hmFQKpWo1mVCsQTR6PkTSYfDAbVqCZdNIplIUGs0afZH+GJJnG433UYdxgob+QzabJJ3n22SP4xp2LBK2GWdhg3lNuVWD2c4jsvjo99qYFX7bOSm2zBtFSuYzv3ctnNWh2nqmL5cw2czWc9l6HZ7VOTONA/RH6QrN5j026xmp7ltW4UyptNHIDbfSv5E7smEXnOaX7Key9BXBhTqMo5gDF8wRL/dwlAeDHurVje+E8Le80LXNJR9h+HKSpbBaMxOuY7ki+ALRlC6bUxFZj0dx+f1cHevyBAnvuj5iyIMXacv13AaIzb3Rf2tQoWJI4gnGGWkdLEMZDYyMcIBP7d2isiqhD10fm7TMBh3GvjEkCfWc9Ow4U6JodWHKxhhMlSwDFpspsPEwiFubhfZbU8Q7sgDIuwsEKaJNmgRs6u84Uoeq9XCS3eLdIQLeyCKPh5iG7bYTIdIx6Pc3StT6KhIvhi2c7abEMJE7bXxC4Wn1jI4HXZevFtA1uzYA1GMiYpl1GIj7mclk6RQrlLrqzjDyXNXOgshGHRlpEGLzWwSj9vFy9tF2poNRzCGqWuY/Sa58DTsPc1tG+AIPZjbdlbu4eyznIrh93m5tVOkpVlwhBII00DvNEj57Kzn09TlFqVWH2cogWdOR/xE7l4HrddkJTHNBby1U6Q+EtiCcRCg9+qkvFaurGSROx12ah0kfwz3AlonjfpdzH6T1XiQRDTCVqFMfaBjDyWRLBbUdo2IQ3B1NUu3r7BVkcEXxXOGxfJhjAd99G6DXNhHKhGlWKnRHWv442lsNjudRhWHobKezzAcjSnWGrhDMQLh6Lm5RwNlGmHxOkkn4tQbTUaqTiKdxel00qhVGA/65HMZ4vHFFGEsAkc5d799Ac7dlQt27haFx0rcCSFoNBrsFcu4PH4SyfRC25nMyr/lRoVYOIjf72enWGY4npBPTSf5O7tFhjjwRRffzmTY66J26+RjIaLhaRuV3mDISipOMOBna28awvRHU8fmtp2ZW+kxatdIhaa5gKVKjY4yIB2LENlfySs6BJbQ12k0UBjINaI+F+lEnHKtgdztk4qGiEfv5bZ55gx7PwzU0ZBRq0rUPXUYqo0mVblLMhwknZy2M2kqKu45w94Pg/tzAVdz04l1t9YiGZoKjFKtwZ6sIPnjr3A7zgt9oqJ168RcEldXp/lkd8oNEgEf6/k05VqTG8UWY3sIu3ux3KauIYYtsn6JZ66u0un1ublXI+x3c201S6PV4VZJZuIKL7yViqlPw71xp87TV1anuYA7FQIeB0+s5+n2FXaqMpIvtpBJ/n4Yhs6gVcdtjri6kmGiaby8U8bjtPPEeh5lMGC73ARfZJpftkDuaS5gA8dE4crKtGr/5Z0SNquFJ9ayqBONrXINyRPGF1psn0DTNFBaTSzjLldWMkiSxMvbRSTgifUchmFya6/CxBnAE4oupIPADMI0GXZb2McdruTTOO02bu6UMEzBtZU0kkXi1l4F1e7DGzpbsdGx3EIw7LawDFtc2Rf124UyE12fRiysVnZLVSS3j9CCOgjcz93vtBi2m2QTUXxeD6VyBU03SCViZLPZR5JXdxKOcu5+5QKcu7c/AudOkiQb0552XwdEgTrwe8BvCCGMuc7xuIi70WjEnbtbaKZEMpXF7Vle80bDMGg2aigdmWwmhd/v5+7uHg1lst8vbXml4aZporSbSKMOV/IZwqEg23tFGr0h7sjZq7DmwXRAkDH7LdYyCeKxKHvFEtVOH28kiWeJTZBng9GkK7OSipGMxymWKxQaHeyh5TYinjkMerdBPhEhm05RqdbYrcnYAjG8weU2Ax72u6idBrlogHw2Q7Xe4FahhuYO4TohT2kRUAd9UJqsxvysr+RoyC2+dKdI2/Bg982X23ZW6OMhjkmLK6kg1zdXaXe7vHCnMC188B+dPL8oaOoISWmyGnFzbWOVwXDIze0iE4dvmle3xIlvMh4xbteIui1cXV9lrKrc3N5DtXnxhuMLneQPQ1NVhq0aIbvg2sYquq5zY2uPsdW1n5awvF5mujZBkWt4JZ3rGysAvHR3h55hw7XkRsSGrjFqNfBLKk9dWcNqtfLy3R06moQ7nFxIm6BjuQ2dUbuO2xjz5EYep9PJ1s4eAwNC8fmL+M7GbdBp1jGHPTZWskSj0aX3qzsrXi/OnSRJDqZC7iuBArAB7ACrwJ8Af1EIMTrtPI/NDhXNZhOL3cNaNrd0LqvVSjKVIRSKsLd9k5VcltpIEMmsL93CtlgsBKIJdC3MrZ27PHPVRk3RiOY2l84tSRKBcAzDH2KrdAe3y0m1NyK2cuWCuKMYgSC7hS18Hg8FuU8gt7nQlfxx3N5gGNMfYK+0PS30qLcJZjeXOsnP4PEHcXn9FMs7hIMKN/Zq2OJruC+A2+n1Izw+thoFEtEBX7i5x9CTwbHknQ4AbC4PhtPNl0pVskmFL97cQQ3mcS15pwMAu9ONcOS4KVfJJBRu7ZawRPL4l7zbAIDD5caRXqPRqBJtd6g0W4hgmsCSd68BsDudBNMrdOUGtUaT/nCE6YsRWvIOMgA2u4NQKk+/LVOq1TFMgWIL4os+/O4kDwurzY4vkWHY77JdrOBxOelIXvzJ5e+6YLXa8MUyjAd97uyVScVCqFY3yczy9022Wq1Ek2nGoyDbhSKp1Gtnr2bdFDSVU+sKXov4B0x3qXgD4AU+t//7nwF+G/gx4P912kkeG3EHzF1Wvgw+m81+obkJ94ebrfaL5bbabAeOzfTnC+S22g4ElcVqXbqwux8Wi/VB7gsMW1gslgPXRLJYLpRbkqSDQgXJIi19C6vjuAUsfQurV3Db7Af78l4kN0zHFAEgWMpuOSdhWkCjT5/HkrfuOgyb3Q77xYDWi75umx2h7z+PC36/rXYHjPe5L/i6T+qC8GqFzSIR9732nvcc+FvATwohbkmS9JbZH4UQ/12SpJ8AfoA5xN3FzYyvEnz7R76J5xt/eupxzzf+lG//yDctlPsXX3gfJWX71ONKyja/+ML7Fsr9B4XfpDtpn3pcd9LmDwq/uVDu9/7Jt/Gy/IVTj3tZ/gLv/ZNvWyj3o8QHvzT/+/3BLy32/f7j6ofpa6e/332tzR9XP7xQ7ktc4hKXWDZ0U9AYTJZ+ewRYB54/5r4XgFMbGMPrTNx9+0e+idvdG3zvJ779RIH3fONP+d5PfDu3uzcWJvB+8YX38Zn6x/ixz7znxAm/pGzzY595D5+pf2xhAu8PCr/Jh27+FB/43HefKPC6kzYf+Nx386GbP7UwgffeP/k2dvq3+InPfteJAu9l+Qv8xGe/i53+rcdC4H3wS9P3+0c/ffr7/aOfnr7fixJ4f1z9ML+183P84ks/cKLA62ttfvGlH+C3dn7uUuAtCW//1VXe/qurj4T7K55b5SueezTcb/3lFd76yyuPhPv1jKsfzHL1g3PN/Y8FpAv49wgwAI6zJP8MUJrnJK8rcfc9b/qhg5+PE3gzYXfUY86Dv7b2HmySHV1oxwq8mbDThYZNsvPX1t6zEO63Jd9J1rtGabBzrMCbCbvSYIesd423Jd+5EO5vvn6vkfZxAm8m7I56zGsVf3393vt9nMCbCbvZ+/3X1xfzfr8p+g6S7lVqo91jBd5M2NVGuyTdq7wp+o6FcF/iEpe4xEVgFpZd9u0R4C5w5dDf3iJJ0j8EfgT4V/Oc5NziTpIkqyRJn5ck6T+d91zLxpvib+Hnvube63JY4B0Wdj/3Nf+KN8XfwiKQ9a3zY1/+3LEC77Cw+7Evf46sb30h3EFHmPd+2S8cK/AOC7v3ftkvEHQsJon5yeiz/MhbP3jw+2GBd1jY/chbP8iT0WcXwv0okfWt8+Nve+5YgXdY2P342xb3fvvtYb7zqZ8+VuAdFnbf+dRP47cvP2n9Epe4xCUWhVlBxbJvjwD/Cfir9/0ugE8xFXa/AHxgnpMswrn7PuDlBZznQnCcwFumsJvhOIG3TGE3w3ECb5nCbobjBN7jKuxmOE7gLVPYzXCcwLsUdpe4xCUeB9gsEjGfY+m3R4B/Avy1/Z93gPcA3wDkhBA/LObsX3eusjdJknLA/2P/yfy985zrIjETeDMxd7+og+UIuxlmAm8m5t736W8GQCCWJuxmmAm8mZh77yffDUBf6yxN2M0wE3gzMXe/qIPHT9jNMBN4MzH3jz714Pu9DGE3w0zgzcTcv3h+GvZV9M6lsLvEJS7xmoZhCuRHU/CwVAghTPbrpoUQLeDXznKe8/Y0+Bng7wOPfuO5h8RhgTfDMoXdDDOB975PfzNi2uwACWmpwm6GmcB77yffTV/rAOC3h5Yq7GY4LPBmeFyF3QwzgfePPvXg+71MYTfDTOD9i+ffg6J3APDZQpfCbgk4qXDiqPs++a27C+M+qXDiqPs+9Z7FcZ9UOHHUfZ/9u3sL434946TCiaPuu/1dc+Xhv2Zgs0jEvI9fKxRJkv7caccIIf5QkiQf8GVCiD886pgziztJkv4KUBdCfE6SpHeccNx3AN8BsLJyWT11iUtc4hKXuMQlzgfdFDQfQ+cO+CggAceFXyWmKXVPAR/jmPS68zh3fxb4BkmS/jLgAgKSJP26EOLd9x8khPgl4Jdguv3YOfgWisM5djN87ye+fenu3SzHTiAOSq0Fgh/7zHuW7t7Ncuz6Wge/PQRMw7If+Nx3L929O5xjN8NPfPa7Hmv3bpZjd/j9/tFPv2fp7t0sx07RO/hsIWAalv3Fl37g0r1bMI5y4maO3SJduqNwlBM3c+wW6dIdhaOcuJljd+nSLQ9HOXEzx+5xc+mOwwX2z79IfO2cx70EvOO4O89cUCGEeK8QIieEWGPaUfmjh4XdqxVHFU+cVEW7SBwunnj/2z7E+9/2oVPbpCwCh4snPvD2X+cDb//1U9ukLAJHFU+cVEX7uOBw8cQ//ooP8Y+/4kOntklZBA4XT/zwm57jh9/03KltUi5xiUtc4tWOWVh22beLhhDiE6fd9o9TZj8fhddVnzs4vt3JaW1SFoHjqmJPa5OyCBxXFXtam5RF4Liq2NPapLzWcVxV7GltUhaB46piT2uTcolLXOISrwXo+wUVy749KkiSFJIk6aslSfqf9v8PPczjFyLuhBAfF0L8lUWca5k4rd3JMgXeae1OlinwTmt3skyBd1q7k8dV4J3W7mSZAu+0dieXAu8Sl7jEax02i0TU61j67SIgSdJTkiS9bf9nSZKk9wMF4A+BfwN8HChIkvSPpdnG7qfgdeXc/fzz//Lg5+Py6g4LvPsfcx78x53nTu1jd1jg/ced5xbC/enaR0/tY3dY4H269tGFcH/o5s8e/HxcXt1hgXf/Y16r+O3t507tY3dY4P329mLe7+flj5/ax+6wwHte/vhCuC9xiUtc4iKgm4LWQFv67YLwQaZt5QB+Angv0xYoXws8A7wT+NX9v//EPCc8byuU1xT+1bt+g2//yDfxPW/6oRMLJmYC7+ef/5f8q3f9xkK4v/OZ9/OLL7yPv7b2nhMT6GcC7z/uPMd3PvP+hXD/hfw3AtNtyE4qmJgJvE/XPnrwmPPiA1/5K7z3T76Nb77+fScWTMwE3odu/iwf+MpfWQj3o8R3veH9fPBL7+Ovr5/+fv/4257jt7ef47vesJj3+6tSfwOYbkN2UsHETOA9L3/84DGXWCyWXUhxEpZdSHESLgspHg1eL4UUcM+5e0zwDPAv9n/+u8C/FEL8g/vufxn4Q0mS+kybGv+j0074WIk7YZqnHjOvWHtT/C2nHnt/o+h5mkbPK9ayvvVTj32Ae47rnlesBR3hU48VQhzwC/P0655XrD0ZffbUY4UQB5xzNupeKA6uew7uecVa1rc+17H33ufp6y+dUCo2r1jz28NzHXvvujmVe9E4/D27SG7Eve/WRX/exP3cc3zPFst9/2t++viyPO5Hed0XPL68Sq77tYKpc/fYtEIJsN+4GAgCHznmuP/GdFewU/HYhGWDwSD9bpNquYih60vn63Y77Ny9SSwaxe/349IHdGqlC+EeKX26pbtk4mF8Ph9uodKuFtC15VvIo4FCq7RFPOQnGAzilnSapT20ibp07vFoiFzcJux1EQgECNgl2uUdNHV8+oPPiYk6pl3aIeSyEQgECLvstEvbTMajpXNr6phOeRefXRAMBkmHvKiNXSbj4dK5DW3CsFkkYjcIBAKspyNY+yW08WDp3KahY/RqZH0mfr+fjWwC0dpjMlQuhFtt14jbVQKBANlkjGFth2GvcwHcBr1mBYfaJRIKkknGGDX2GHTbS5+ETdOkJ9exKjLRSJhULIraLNNvy0vnFqZJr1XH6NZJRCOkohGkXg2l1ZxrAXsubiEYtFvQqZCJR4hHw1gHTZRWHfMCuIfdFppcJJuMEQ4GmfRkWrUqhmEslRug323TLGyRikeWzrVISExboSz7dkGoA2/d//n/BxwXWvwy4JPznFC6SMX+1re+VXz2s59d2vl1XadYKlFvtojEkoQjsYWv8kejIfVKCavFJJNK0Wy16fQU1nJpxuqErXINyRvGF1o8t6aOGbRqBGyC9XyGVrdHtdnmykoG0zDZKlXBE8QfjmOxLFa3a5MJfbmKR9LZyGfoKQNKdZnNfBqA7WIFyR0gEI1jsVoXyq1rGt1mDYehspHPMByNKdYarGVS2GxWbu+V0Ow+fNE4VutizWhD11FadRz6kCv5DBNNp1itkU0mcDkd3N0rMba68UeTWG2L5TYNg36rgW3S50o+g2kKdkoVsokYXq+HG9sF2roNZyiB1WZfLLdpMO428RgDnlzNIkkSL28VyaeiREIBXrq7R7FrIDwRrLbFhkaEMNGUDhHriDdcyeJ02Hnh9h6ZRJhkLMKtnSKlno7FH8PmcC6YW6AqHbx6jydXU/i9Hm7vFgn5fSRjEXZLVZpDHVc4icPlXjj3sNdGDGTWUzGCfh9390p4XS4yqTiFcpX6YIIrnMDp9i6UG2DQ62B0m6wmw0RCQe7slXDabeTTSSq1JtXeAHc4hcvrWzj3sN9l0qmTjQWIR6avswSsZFPU5BZ7jS7WQByXL7Bw7vFAwejWyUX8pBNRCpUamm6wnksjd3rs1tpIgSgef2jh3OpwwKRTIx10k0slKNcbjMYq67kM/cGAcr2FJxzHHwovfD4Zj4Z061X8TivZdBJZbjEYjVjN54hEIhfrkM8BSZI+J4SYCSDe+OxbxH/+6H9fOu9K1PMA7zIgSdIHmbaU+38CRab5dr8E/HugBiSBvwn8b8A3CCFunnrOx0nczTAcDtndKzAYT0iksvh8598dTdd16rUy40GfbDrJRNPYrdSx+sI43R76cp2Qy0o+naLWbFFp9XGGE7gXMBhNJ/k6dk3hykoWwzC4uVtmZPfj8PjQuk3iHiub+Qxyu0Op2cEZSuANhM7PbRr0Wg2kUY+NXApJkri9V2Fk8+DwBlG7MhGHyZWVLN1en2KjhTMUxxcMnXtwEKZJtyVjDtqsppPYbVa2ihUmdg/uQJhRW8aNyuZKDmUwZKfSxOKP4A2df2ASQqC0ZcSgxXo6gcftYrtQZmJz4QtFGXRkbNqI9XwGVZ2wVa4jeUP4wucX9UIIBt02Rk9mLRXF5/OyVSgzwoYnHGfcbWOZTD8Lmj79LAxtftzBKNI5Rb0QgrHSxTpscSUdIRIKcmO7QLGrI9wRzHGfqE3lmSt5JOCLdwo0Jw5s3si5uQG0UR+33uWJfJRULMKt7RJb9QGaI4jQRsScE569toLdbuPFOwVaphOHP7qQBcVkqGAdtdhMBskmY+yVq9QUDWc4gTYaYh11uJJL4nI6uL1bYmhx4Q0vRtSrwwFqp0oysD/J1xrUeiPckSSaqmIqMuvpOL59sTnAgTeSxGY/v6ifjIeMWjViHjur2TSVWpNCq481GMc0dCSlxXo6SjjgZ6tQom9Y8UaS2BcgrCfqmIFcJey0sJZL02y1KTa72EMJEKB16+TjISKhIFuFMvJY4AwnsDtd5+bWJyrjdp2wQ3BlJUu722O72kLyx5AsFoxeg3w0cCDq6wMN54JEva5NGLXqBKw6V1ezKMqAnaqMLRDF6rAzbtVJBDxkknHK1RqdkUYwnsLtOb+o1zWNTqOKRR+zlsswGo+pN1oEo3Hcbg+NWhmX3cLa6ipe7+IXEWfFYXH39BvfLH7jd4/ceWuheDYfvAhxFwT+M/B27u1OcdREIpjqtlMH28dS3M3QbrfZ2StgsbtIJjM4nA8/GAkhkOUGnWadZCKKy+lka6+EZnMTiCUeGFyVbodxu0EmNh2Mtgslupo0HQjPMBgJIVC6bcy+zFo6ht/r4dZOkbZuxR1OYLXfc0zGSg/Rb7KWCJKIRtgrVWmrBv5o6kyDkRCCQa/DpNsgFw8TDga4s1eiPZGmg+t9A/t4oGD0GmTDXjKJGKVqndZwgj+WxHXGwWjQ6zJq1UlHgkTCQfbKVTqqiTeawuG691qOhwNGco2Yz0k2laBSb1LrDXGFk2d2GEZKH7VdIxXykYpHKVZqdMYa/lgal9tzcJw6GtJrVgm5rOTSKerNFuV2H9c5RP14OGDUqpHwu6YDe61BUxnjiSZxee5dz0QdozSrBGywls/QaLXZqrYxvVFcvuCZuCfjIUa3QSboZC2bolRtcKvSYeIIY3ff4za0CQxlsgErT27kaXV6vLhToy/5sXsCZxK3hqZiGcmsRV1cW8tRqcu8tFunj/8BbtPQkEYdckErb7y+Rm8w5OWdKkNbAKf/bAsKQ5tg9JukfRLX1/K0uj12a9NJ3n3fOQ1dZ9iq4RVjrq5mGasT7hZrmJ4Q3jM69bo2mbrxVp0rK1n6+5O8xR/FF7zn1hiGjtJqHCzwdN3gbrGK4QriDUfP5NQbusZAruMWKldXswxHI+4U6+juMJ77FkimYTDsNHFpCtdWMwDcLVTQnX78kTgWy8ML6wNH3LjniG8VqwjP/gJp/3pM02TQbiKNOmzm0thsVm7tlBhaPXjCZ4sSTK+ngVsfcm01g2ma3NqrMHH48YZjB9cjhJgu4u4T9bd2SwwkF55w4kyifnY9Tq3H1XwGq0XiTqGM4fDhjyYOrmfK3ULvy6yn4ni9HnYKZXSbk1A8id3+8G65ub9YnvRlVtJJ7DYbpUoVpzdAIpnGtn89Qgg67RatRpVYOEQ+n8O+gEXEefEK5+7NF+TcRZbv3M0gSdKfZRqSDXJC2pwQ4tSK2cda3MH0A12tVilVaviCEWLxJNY5B4R+r0ejVsLvcRGNRg4meV8s9cAkf5iv32piDDpsZFNYrFbuzMKGkfnDhuOhwqhVIxlwk0nGKVbqFDtDbKHjQzLCNBl2WzjVLldXUrgc07DhxOYh8BBhQ3U0RJErRD12cukU1bp8sJJ3eY92QWd5I9Zhm81sAr/Xw9ZeCdXqJBib32GYjMf0mlUCdomV7HQlX5J7OMNxPP6jRcvM6dJ7MivJ6EE4SzGteKPzOwzaRGXQrB6EvTvdHiW5jXvfBT1u8p6K+jrpB0Q9+KKpuUW9PpmgyDW8ks7GSgZFGbBbk7EHoic6kcN+j3GrRjriJx6NsF2oUOlPsIUS2J3ziXpD11A7dUJWnSfWcyjDES9uVejhxe47PhykjQY4Ji2upkPkUnG2CxXu1BR0VwTbnNymoWMOWiTdBm+4uoKqajx/e4+m6sTqDXJcSyd9MsKldbmaCbKRT1Os1Nlq9DE9UexzhixN02DSaxG2jHl6M4cQglu7ZSZOP97w8aJlMh5N8/E8NlYySepym2Krhz0wv6g3TZNBp4F93OPKSgaLReJuoYxm9+GPJI4VLZo6RmlVCdlhPZ9FbnfYa3SwBY//fhyGME0GHXkqmLIpHHbbvmhx4z5hjNInE0btOmG7wdXVHJ1en72ajDUQP/H78QC3ECgdGaG0WM8k8Hrc3N4tMpSc+E5wInVtwkCu4WHCldWpU3+nXMd0R3AH5wtZCiEY9dpIgzabmWnY+/Zuka5uxR1JYjtGMBm6zrBdxyvGXNsX9XeKNXR3CG8oOreoH/Y6CKXJWjJCJBhgu1imr0v4oscv/g1DR5Eb2Padet0w2CvXsPtCBKPzp98ovS5Kq0Yi6CcaCVOuVtFNC4l0Bvcxc5lhGDTrdQa9FrlMimQyufB0n4fBK5y7N71Z/JsLcO7elFu+c7cMPPbibobJZEKxWKTZ7hKNpwmFj58w1fGYWq0EhkY2nZpO8s02rnACXzA0F5+uTeg2azhNjY18hv4sbOiL4Dthsta1CYpcxSsZbK5Mc9vulBoYngjuOQdQQ9cYtxsELJODwWinXMfiC+M/IWyo6xp9uYbTGLO5kmUwHHG3VEd3R/DMmfNhGDqjdhOPMeTq/qp4u1jF4g0RiMaOHRwMXafbrGPVBmzkpiv57VINyRfCF5ov3DjLUbOqfTZzaQRTh8Fw+vFFj5+sZ4+zz3LbhGC7WMHiCRKIzOcOmKZJr9XAGHRYz6awWae5gLrjZFFvmiZKq4Fl1GVzJYNFmk7yptP/wEr+JAjTpN+WMZU2a5lpLuDL20V6pmM/H+9obmGajHoyrkmfJ1bTOOw2vnSnQGNsw+qLYJljISKEYDLoEBB9nl5PE/B5+dLtXcoKWDwRLMfkAgoh0AddgpLC05sZAl4Pz9/YptgT4A7Nza2P+gQtA96wkSEaDvDyVoHaUGD1xx5wtl/xnJUubq3LEysJQgE/t3eL9AzbiZP8YQx7Hcxek7VkiGg4xFahRFsFd/hkp37Y62D0G6zOJvlCma4u4XsIh3+o9FA7dbJhP4n7cgE90ZPDhsN+D73bIBfdXwwUyzSGxn6ocz5Brg4V9G6DbGgaNixWazSUCZ5I8sRcwNHgQUe8UK7SHGq4IymcxwiMV3LPnG0H2VSScq1BqT3EForj9Bzv1KujAVqnTmY/t61UrVPpjrCHEic+7n4ciHqvnbXsNP2mIPewBuInivrJeIjarpPw2lnNpqg1ZSptBVckgWfOxcBEHU8XnnaJtVyadqdLrd3DG0ngP2FOUscjOo0qXivkMik63S6d3oBYMk1gzrlsoqrUqmWErrK+ukIoNN/jFo2jnLvfvQDnLn+Bzt0i8boRdzMMBgN2dncZ64JkKovnvrChYRg06hUGvQ7ZdBJTCLYOJvnYmUIA4+EApVkl4nWR3R9U6r0RrsiDYTbTNKaT/P5KXpIkbu6UGFq9uENn456MR2idOim/nbVsmlpTptpRcIeTDwwqwjTpdZqIQYf1THLulfxJ0NQx43aduNvCRj6D3OpQbnVxR+L47ssFFELQa7fQezKrqTgej5s7u0XGFhe+WALbGQoFtImK0qzhsxps5LP3HIbggw7D1G2cOn5rqSgBv4+tQgkVO4FYCrvj4UMfU1FfxWlqrOczB7mA1iNyAQe9Dlq3QX4/7L1TLNPXLfhjZwvj67qG0qzhMMZs5DOMxio3C1UmjiCu4IMOw1jpYRk0WUuESMYi3N4psttSMT1RbI6H5zYNHWMgE3PoPLOZxzAMnr9ToKW7sXvDD4hzbTzANWlzPRsmm4pzd6/MnUoP1R7CegZuYRqYww4Jt8Gz11cBeHGrSEe4cQaih7iHSIMm6zEfK5kkpVqDSmeII5yce5J/4LpNk2G7gU3tcTU/DRve3i0xtnrwRRIPiNTJeMioXSPhsbOSTVFtTL+PztDZwvjCNKcu2LDNRmY/F3CvxEhy44s+KOon6piRXCPskljPTcP4u/XOfuj54cP4M6feMmxzJRPH7/NyZ7fIEAe+aOoBB06bqChylYDNPPg+7tZkbIE4njkXrIe5B702Zq/JSjJ6IM7b2jRdxXbf91bXpm5j0GpwfS1HTxlwt9wAz/yO32EM+x1ET2Y1GSIWDnG3UEIeg/tQLqChawxbdXyoXFvLMRqP2S7Xpwv88PyO34PcPdR2nXTETyIaoVipokxMgvEHo0mGrtOR64jRtNhP13UqtQaBcIxoPHEmB07p92lUy3jdDtZWV3C7F1tQdBqOcu7+7QU4d2+8YOdOkqQffZjDhRA/dtwdi3lGc+DVIO5gOji0Wi129grYXV4SyQxKv0erWSUeDeP1eNgulhljJxBLnmmSP8zX77SZdJvkE1H8Pi9398oMhA1vJMFkNETrNVlJ3Mtta47BFU4spBpw1O8gKTLryQjRcJCdYoW+LuGPJplMVNR2nUw0QDQcYqdU2V/Jn01gvIJb6SF6TVbigf1cwAq9icAfT07DHXKNRNBLIjZdycsjDW90/pX8idyDPuNWnWTQQyoeo1Cp0RxM8ESTCAEjuUoi4CabjFOpNWgNxnijKdwLqAYcDwf0m1UiXieZZJxKfT9BPpxEslgYtqpE3XbymRS1hkytq+COpHAvoPhHHQ2nSeouG/lMikq9yW6zB744FpsdvVsn6bWyuZKl1mxxo9BkZA/j8Jyf25ioMGyyEnZyfT1Hrdnm5b0GA2sQq92JNJLJB+08uZmn2erywnaFrunF5vafuxDF1CdYxh1WIw6evrpKu9vjRqHByBHE7vSg92WSbsGTG3n6yoC7lSZ4o3jOOMnfD12bMGzVCFg0ru6HDbfKDYQvgssTYNiu4UXl6mqO4Wg6yUu+yNSVPie3oWv0W3VcxpgrK5lp1X6phukN4/EHGbQaOI0hV1eyqJrOnUIVzRnAHTpbrt79MA2DYbtx4NQbhsndYgXhDuENhlE6Mna1z+bK1MW/W6hguAL4zpird5hbaTewqf2Dqv1be2XGNh/uYIRRt41T63NtP+x9e7fMyOad5tWds6reNE2GnSb2+0T9rd0SI6sHTyjGqN/BNupyNT8Ne98tlJnYFlNVP3PqGXQOnPqdYhnh8BCKJRn0u4w6TXLJOB63i2K5Mp3nUukz5eo9wC0E7ZZMq1ElGY+Sy2YPcvWWjVeKu7eIf/dfli/u3pANXLS40zm6mALuFVsc/H5cccXrUtzNYBgGlUqFUqWK3+cjEY9RrjWQlTG+WHIhk/z9MA2DrlyHcZ+NbBpTCO4WKgS97v1JWKYg95ACx+e2nRXTPJsmbq3P9dUMNquVO7tFPG4Xq9k0DbnFTqOL5Ywr+dO5W9jVDlfz93IBHTYba/kM7W6PYqONLRibO3dnbu79qldDabGWjuPzeLizW0SSJDZXsiiDAYWajDMUwxdcbPn/rCBm3GmST0QI7OcCmqbJ5kqW4WjMbqWBxR/Bf8aV/EkY9DpM2nWysTDhUIA7e2VGkwlPruVQJxpfuluiK9zYfZFjc9vOismwj0vr8EQ2QjIe4c5uiY4y4o1XVzFMg+dv7lEf27F6Qgupsr0fujrEo/d4Ih8hn0mwU6zS7PZ5anMF6/4kP7Z58Z6Q23ZWqKMBk3aNlN9JLp2kXGvS7HTZzGdw2G3cKZSZWN34IotvnTMZjxi2qkTcNlYy0wKfitxmPZPE63Fza6dITzimxQALTpDX1DFqu07UNf1eye0OpXqTlXSSwGwxa9rwxuYPe8/NPVGnRSkWg42VLO1en91ynXwqRnS/yralgmtBFb73Y+oMNvBbJlybifpSlUw8QiIaYbdU2S8EW3zrHEPXUeSpU7+5X7W/V6kSCQZJxqNU63VUzSSRfjBCtSjuRr3GsN9hJZchkUgsvXXKYXH3pjd/mfjdjy0/LJsLuy9a3B01IEaAvwz8EPA/AFuzO8QxXcZf1+JuBsMw2CsW2a00cARjS+kpdD80VaXXrOGRdJ68dgW51ebGbgXdHcK9YIFxGIY2YdRpELbqvPGJK/T6Cjd2imiuEJ7gYtpZHMuta4zaDXyovPH6JmNV5ebWHqYniD8SO/dK/mTuaXWebTLgyc01AG5s7YLLRzCaXPgkfz/uF/XX11ewWCzcuLuDZvcspT/eA9ymSb/VgGGXa6s5PB43n33hFtWhhNV3fgfjJEz71bUJSkPedC1POBjkM8/foNDRMV2hY/PxFsMt0Ic9IrYhz15bIZmI8cLNO7Qm4I6kFj7JH+Ye9jqgNNlMx0mnErx06y7tsbFf7b3ccNZBuD8RZiWb4eXbW1T7Ko5QAscCHPGTMFZ6mL0m+XiAjZU8t7d2qPdGOA+loSwD05y+Oqmgh6sba9zZ3qUo97EFE7gW4IifBHU0YNKpk/I7eeLKBnvFEsVGB0c4gTew2MXyK7jHI4bNqVN//co69XqdRqtDJJ46Mbd8ERiPR9SrZSymzvVrV3G5zh/tOQ5HOXf//gKcu2cu2Lk7CZIk/QDw54UQf+W0Yx+r7cfOCovFwk6xSnTt2lIn+RnsTifR7ApytUyv1+NOoYI1lsex4BXtUbDaHfjiWVpyHbnVpliXkSJZvHMmU5+L22bHF8+gtGWqDZn+YIg9mllKU9RXctsIJjIo3TbVRgvTNHCEkksfeAEsVivhRJph30upWsfpdGD6ooRCy+8Ib7FYCMaSjIc+9qo1Qn4/pZEDVzC6dG5JsuDwR1E0Hze2y1xfFdxpGTgD8aVvjSNJEnZvkK7h5YU7e3jcTpqajVAqu2TmKbc3GMb0BbhbuoPP66alQSR7/B7Di4Q3EML0BSgW7xDy+6gqGt7U6oU0pXX5AgiPj0J1h3i4T70/JpDduBBut9ePy+OjVt4m2etRbCl4MxfD7XR7cbjWqNb2yPSmkYhg/sqFVJc6XW6cuXXa5T0URaHWaLFx/am5u0KcBy6Xm5W1TcqFPbrd7lLF3WHYLBIhz6Nv0XLBeB44tQ0KXIq7B3ARwu44PulRci/RMTua23Lfz4/gus1HyD37+YJfc6vVOrvsC3+/Jcu91/ziuS333u8L/5xbDzJnrBfNbbEgWaT9n60XutuAZLEcRACki+aWpANBZbFYHgH39H2WLJYLbxsyG18kSboQYXc/Fr0z0DwwTEF3uPwtN19l+KuAPM+Bl+LuIfD7e7/JVyTfSdAZPvG4rtrmU7WP8hdXvnFh3J+ofJg3R9+B33Eyd3/S5vPyx/ma9Hwbx7/a8ZHCb/K25DsJnHLdvUmbT9c+yrvyi3vNAf7Bn3wr33L9+3gy+uYTj3tZ/jy/dvNn+Wdf+asL5b8E1PsqW/IQ1TBxWi1sRD0k/MsLq17iEpd49cP6mDp3kiT9yhF/dgLP7N/mqqa9FHdz4vf3fpNfefmn+P293+J9X/4Lxwq8rtrm/Z/5bkqDHYCFCLxPVD7Mf9j6Wf648h/5nmd++liB15+0+fkXfoDqaMr9Whd4Hyn8Jv/65k/z34of5r1f9vPHCrzepM0HPvc9lPdf80UJvH/wJ9/KTv8WP/7Z7+JH3/rBYwXey/Ln+fHPftfBYy4F3mKwJQ/4+B2Z3fboFfetht2840qUjejyt0f6s786ba/y3791d+lcryZ8zYemYeRPfPP2hXN/+S+vAPCZv7t34dxf9WtrAPzxt+xcOPdb/r/T6/7T//Xirzv6L+MAyD/UuHDus8AwBZ3H07n7Gl5ZLTsG9oCfFEL82jwneXTtpl9j+IrkO8l61ygNdnj/Z76brtp+xTH3C7usd42vSL5zIdxvjr6DlHuN6miHn3/hB+hPXsl9v7BLudd4c/QdC+F+lHhb8p1kvGuUBzt84HPfQ++I675f2GW8a7xtQa85wLdc/76Dn3/8s9/Fy/LnX3HM/cLu8GMucXZ8rtjhQ58pstse4bBKPJsN8NUbEZ7NBnBYJXbbIz70mSJ/Wuw+6qd6iUtc4hFg5twt+3bREEJsCiE2Dt2eEkJ83bzCDs4h7iRJckmS9GlJkp6XJOlFSZJ+/Kznei0g6Azzvi//hWMF3mFhd5K797DwO8J8zzM/fazAOyzsTnL3XksIOMK898t+/liBd1jYneTunQVPRt/Mj771gwe/HxZ4h4XdSe7eJebHljzg/36hhgC+eiPCD33tFf7GG9K861qcv/GGND/0tVf46o0IAvidF6psyYNH/ZQvcYlLXDCmOXf60m+vVZzHuVOBdwoh3gQ8C3ydJEl/ZiHP6lWK4wTeMoXdDMcJvMdV2M1wnMBbtrCb4TiBdynsloeP35EPhN27rsVx2h4cppw2C++6Fj8QeH94Z6784ktc4hKPGSRp+beLvybpzz3M7bjznDnnTkwb5Cn7v9r3bxfXNO8RYSbwZmLu7//JuwHoTTpLE3YzzATeTMx94AvfBoCidR5LYTfDTODNxNw//OTfAaCvdZYq7GaYCbyZmLtf1MGlsFsk6n31IBT71Rsnt2v5qo0In9pts9MeUe+rl0UWl7jE6whWi0TQ/fgVVAAf5fgdKmCqs6T7/j/SpDtXQYUkSVbgc8AV4INCiE+d53yvFcwE3t//k3fTm3QACDhCSxV2M8wE3ge+8G0o2pTbZw89tsJuhpnA+4ef/Dv096/bbw8tXdjNcFjgzXAp7BaLLXkIwFMp/yscu8Nw2aw8lfTzhXKPLXm4EHE3K56Y977HpchiVjwx732LLLKYFU/Me98iiyxmxRPz3rfIIotZ8cS89y2yyGJWPDHvfa/GIgvDFPRGr92w6Qn4RuBngReBfw/UgCTwPwJvAL4f6Jx2knOJOyGEATwrSVII+LAkSc8IIV64/xhJkr4D+A6AlZXjP8yXuMQlLqEa06Z0fud8Q5PfZXvgcZe4xCVeH7BaJIKex7LhxzcA/00I8Z5Df/9VSZJ+GfirQohvO+0kC3llhBAdSZI+Bnwd8MKh+34J+CWYbj+2CL5HjVmOXW/SIeAIAdOw7Ps/891Ld+9mOXaK1sFnn3IrWoeff+EHHmv3bpZj19c6+Pevu691+MDnvudC3LvDOXYznNYm5RIPB+d+g+u+Ot+KvD/WH3jceXGUE/d6aIVylBN3Ua1QjnLiLqoVylFO3EW1QjnKibuoVihHOXGvxVYo3cfTufvrwN865r5/B/zbeU5ynmrZ+L5jhyRJbuAvADfOer7XCg4XT/zzr/x1/vlX/vqpbVIWgcPFE+999ld477O/cmqblNc6DhdP/NO3/2v+6dv/9altUhaFo4onTqqivcTZsRGd7n36UrWPqp/sxo11g5dq/Qced4lLXOL1gWnOnW3pt0dxacD1Y+67un//qTjPcjcNfEySpC8CnwH+QAjxn85xvlc9jquKPa1NyiJwXFXsaW1SXus4rir2tDYpi8JxVbGntUm5xNmQ8DtZDbuZGII/2jq5CvaPt1pMDMFa2H1ZTHGJS7zOMMu5W/btEeB3gH8sSdLfliTJDiBJkl2SpG8CPgD83/Oc5MziTgjxRSHEm4UQbxRCPCOEmGsz29cqTmt3skyBd1q7k8dV4J3W7mTZAu+0dieXAm85eMeVKBLwR1stPnKrwVg3Hrh/rBt85FaDP9pqIQF/7srJVbWXuMQlHj9IF3R7BPg+pobZh4CRJEkNYAT8+v7fv3eek1zuUDEnPlX76Kl97A4LvE/VProQ7s/LHz+1j91hgfd5+eML4X6U+HTto6f2sTss8D69oNcc4Ndu/uzBz8fl1R0WePc/5hJnw0bUy199Jnkg8H7yY3f58BcrfORWgw9/scJPfuzugbD7hmdSF7IF2SUucYlXFywWiYDbtvTbRUMI0RJCvAv488CPMK2Y/RHgzwsh/rwQojXPeR7LUpNlYLZH7Fck33liwcRM4H2q9tGF7CsL9/aIfXP0HScWTMwE3uflj7/m95WFe3vEvi35zhMLJmYC79O1jy5sX1mAf/aVv8o/+JNv5Vuuf9+JBRMzgfdrN3/2cl/ZBeHLciHCbjt/eEdmpz3iC+XeA/evhd38uQvaW/ZxLqQ4CY9iT9kZHsWesjM8ij1lZ3gUe8rO8FoppJjBNAW98WNZUAGAEOLjwMfP+vhLcXcfTMPAYj0+V3FesRZ0huc61jTuhZuEYYDleO55xZrfEZ7r2Ae4TeOEIxcP0zCZmcb3P4+jMK9YCzjCcx1rGsaB127Ocd3zirUno28+9VjTMA4yYefhXiQMwzgIMQjzYtuG3P/5epjP2kbUy0bUS72vsiUPUQ0Tp9XCRtQzd47d/dd60a+5aRoHbd3NC37NTdNEmOLgeQghkC6o3b4Q4uB1F4+Ae/Zam6b5CLinnzFhmgjTRLJcXHBsNpYKITAMA+sJc9miYRgXL7Jmzt3jCGn6of164M8BEaANfAL4z/sbSJyKx/OVeUgIIVjLptgt3MURjOEPhZc6IGgTlV6jhkfSCQRybOZS3NwroLpDuIORpXIb2oRRp0HYqhONZLHb7dzYKTJwhfAEI0sdjAxdY9hu4EclGdsg5Pdxc3sPdRTEH4ljWSa3oaPIdWyTAekr65imyc3tPSajAcFo8kRRf16YhkFXrsO4x9r6KlarFfnONh11jD+awGpb3tfQNE36rQYMOlxby+N2u8jWZKrdKlZfDIt1edxCmGhKm6A05PqVPJFwkCuRKnudOsIVxmKbr7t8wu986IIJIQT6sEfYNuTpayv4/X6itiqd6h6uSBK7Y3kFGEIIhr0O9JtsZBMEAgHC9jrt8g7eaAqH07U0boBBr4PWbZBPRAgGg6R8DarVXRyhBA73cquKx0oPo9dkJRYgEAiQ8MvUSlu4IklcHt9yuQcKartGMuAhGAySC7cpVraxBeO4vP6lcqujIZN2jVTASTAYJBsLUypu4QzH8fiDy+Uejxg2q4RcNvx+P4lYhN07N4kkUgSXPJeNxyPq1TIWUycQyC6N5yiYpqA/utgF20VAkiQf8LvAVwEG0GIq8H4I+O+SJP1lIUT/1PPMKQIXgre+9a3is5/97IXxnQbDMKhUKpQqNfx+L4lYjHKtgayM8cWSuL2LHYymk3wDRj02cmkEsFUoE/B5yKdTlGsNCnIfSzCBc8EDoTBNhh0Zl9bj2koGm83KrZ0iXreT9VyGutxit9HFEojj9gUWzj3otLCrHa7mkricTm7vlXDabKznM7S7PYqNNvZgHG8wtFhuIVA6LYy+zHoqjtfr4fZuEUmSuLqao99XKNRbOEMxfMHFDoRCCJRum3GnSS4eJhjwc2e3iGEKrq3lGAxH7FYaWP0RfOHowgfhQa+D2q6TjYWIhkPc3ikyVCc8tZFHnWi8cLdER3iw+8JI0mKFtTbq45x0uJYNk0nEuLVVoN1TePbJTUxh8oUbu9THDqze4MK5dXWIW+/yRC7Cai7FdrFCo93nmSsrWCwSt3fLqDYvnkhi4aJeHQ1Q2zVSfif5dJJyrUGt1ePqagan3cadQpmJ1YMvsnhRPxmPGLaqhF02VrMpKg2ZvarMk2sZvB43t3aK9IUTdySOdU5hPS80dYzarhN1SWzkMzRaHXbKda6upgn6fNzdK6MIK75oCpvdsVjuicqgVcNvMdjIZ+j2FbZLNVYzcSLBIHcLZdoTCVc4sXBRb2gaw3Ydv2XCtdUc/cGA7WKNTCJCIhpht1Sho5p4o0kcLvdiuXWdvlzDqY/YyGeYaDo7xQrxSJBELEq1VkfVTRLpLB7PYtMXDF2nUa8x7HfIZ9Mkk8mlO6SSJH1OCPHW2e/PvvnLxO//4SeXygmQDDof4F02JEn6OeBbgP8N+L+EELokSTbgfwF+Efg1IcR3n3qe16O4E0LQarXYLRSxOz3Ek2mUfo9Ws0YiGsbr9bK1V2Is2QnGk+cejGaTvNppkktECfp9bO2VUEwrvlgSdTRE6zRYSUYJBfzc2SvRHIMrnMC2gMFo1O8iKU3WkxFikRB390rIY4EznECfqIh+k9VEiHgkzFahTHNk4AwnsS/AYRgrPcxek5V4YH+wqyKPdDyRJIauMek0yER8JGNRCuUqrZGOJ5rEuQCHYTRQGLdqJAIeMsk4hXKVWl/FGU4iEEzaddJBN5lknHKtQWswxhdNLUTUj4cD+s0qEa+DTDJBudak3BlgCyWwSBbUTp2kz85qNk213qTWVXBHUrh953cY1PGIQbNCyGljZX+Sv1vtYHiiWG12zH6DTMDBlZUM1UaLm8UmI3sYh+f83IamwkBmJWzn2lqOerPFl26X6epOLDYHNqPPetLH01fXaLa6fGmrQg8fdvf5uU1dwzJusxpx8PTVVVqdHi/t1lAsAWxOD2Iok/FJPH1llW5fYavSRPJFcQfOL+oNTWPQqhGwTLi6mkMZDLldrKO5Qji9fsadJkHrhCfW8wyGI7bLdSRfBF/o/KLe0HX6rRouY8SVlSwjVeXFrTJdfDg8fnSlRcyp88xmnommc7tQQVuQU28aBsN2A48x5NpaFl03eGGrQA8vdk8ITWkRtqk8s5lHCMGdvTKGK4hvAU69aRoorQY2tc9mPg3Azd0yQ6sXVyDCuN/CrSk8sZpF2hf1I5sXbzh+blFv7i+W7WqXq/k0VquF27tlhlYP7lCUcb+Lfdzhaj6Nw27jbqHMxO7BvwBRL4Sg32rCoMNaJoHL6WC7UEazuwhEEwz7fbSezEoqjsftoliu4HD5iKfS2O3nE/VCCNotmXazRiIWIZfNYlti5OF+HBZ3b3jTW8SHf/+Pl857NeW9aHFXAv65EOIV1XmSJH0/8MNCiFNt0teduBsMBuzs7qFqBolUFs99E/l0NVJlqHTIpJKYQrBVrGDxBAlEzzYYjYcDlGaViNdJJpmgUm9S7w1xRR50Bk3TQJGbSOMeG7kUFouFmzslhlYv7lDsTIORNh4x6dZJ+eys5zJUGzJ7zS7WQBzXfe7cbKByqD2uraSw22zc3CkxsLjxROJYzxC6u38lv7mSRW532Gt0sAVieAOhg+OmzpqMNGiznk3gcbm4u1dibHHhiyWwncFh0CYqSrOGz2qwkc/S6fXZqcpI/hieQOhgMhVCMOy2QZFZz8Txez1sF8uo2AnGz+Yw6NqEbrOG01BZX8miDIbcKdUR3sh0Mr2Pe9TvIPoyG6kooaCf7UIJxbDij6fO5DAYuk6/WcNhTFfyI1Xl5Z0qA6sPVzDygEOmKj1s4xZX0xES0TC3tovstVWEJ4b1DNymYWAMZGIOjTdcWUHXdf70pS3qAwsWl/8Bbl0d4reOeGo9QT6T4vZOiTvVPhN7EKvj4RcUwjQxRx0SLp03XV9BQuJLdwq0dCc2XwTpvlxWbTzAPm5xJRVgJZOkWK1T7Y5whFM4z+BumKbJsN3Erna5sj/J39wtoeDGE44/EPaejIfo3TrpgJPVTIpqQ6baUXCGk7jPEDacfneaiEGbjUwSl9PBi3cL1McWbP4HQ+76ZLwvup1cXc2e26kXQjDqtrGMWlzJJPB5Pbx0d4/aSMLqjz3gDBqaiqnIZHxWrq/naHd77NXb2ILxB8aCh+Ee9DqYvXsL4tu7JWQVnKEHF8S6NkFt1wnbDa6v5+n1Fe5WmuCJ4D6jUz/qdzF7TVaTIaKhINvFCs2RiTOceGBBbOgao1YDv6RyfV/U71TqWHxnd+qHSg+1XScd9pOIRihUqnTGBoHYgwtiQ9fp7qehrOcy6LpOpdYkEIkRjZ1tLlOUPo1qGa/LwepKHo/nYhuHv0LcPfsW8dsXIO6uJC9c3I2BvyKE+MgR970L+E9CiFMHyteNuNM0jUKhSLPdIRpPEwofn9umjsfUqkUkUyeTTtHu9ig3O7jCcXxzhg11bUKvUcdhqmysZBkMhmxXG9j8Ubyh47m1icpAruOVdNbzGXr9AXfKDQxPBPd9wuQkGLrOuDPNbbu+lmWsTrhdrKK7wniC4WNX67MQQ0CacH09jzIccqdYx3BH8MyZu3HUSv5uoYLpDuENR48dVAxdR2nVcZkjruyHGLZLNfAG8YdjczkMM4FsUadhb4A7exUmDj/e8PEC2TR0lHYDlzbgykoGsS/qrZ4ggWhiroFwlttmDDqsZVNYrVZu7ZYYWT37TsHRAtk0DQbtJs5Jn6sraawWC3cLZUynH390vrDhbCVvKu2DlfzLW0Vk3Y4jeHxenTBNxr0WPlPh6fUMdpuNL90pUB9bsfmic+XjCSHQBh38os/T62kCPi9fvHGX3YaK6Qgczy0ExrhPzK3z7BOr+Lwenr+5Q6knwB2am1sf9QlaBrxhI0M0HODlrQKlngGeKNZjxLkQAm3YxW/2eGotRdDv4/Zeib5uwx2d36kf9ruY3QZryRCRUJC7e2UaIxNHKHGs6y2EYNzvYhnIbGQiRIJBtgoleroFX3R+UT/an+QzkWmO1d1CmV15hPBEsTmPD/9Nhn1caodruQjJWIStYpnm8OGcenWooHcaZMMesqkEO8UKO80BhieK3XX8hD8ZKtjVFpvJILlUgr1SheZQwx1Jze3Uq6MBo1aNmNdxEPYutAZYAvETU1kmowF6t04u7CGXShyIensoObeon4xHqO0aca+NtWyautxir9FDCsROFMiT0RCtUyfpd7CSSVHbF/WuSHJup15TxyhyjYBNsJbL7M9JbVzhxIlz0mQ8ptesErBL5DMp2p0u3f6AWDJNYM65bKKq1KplhK6ytpInHH40W1y+jsKyN4D/IoT4gSPu+2ng64UQT5x6nsdd3JmmSa1Wo1iu4gtGiMWTc1cR9XtdGrUyAa+bSCR87CrpMF+/1cQYdFjPprBZrdzZK6E7fPii87tg44HCaD+kmE7EKFbqlLojbME4DvfRg5EwTYbdFg61y7VcEpfLya3dEn1ceMLxucMBk9GQSadOyu9kNZuiXGtSbPWxBhO4jglZHrWSv7NbZIADbyQx94Q5zRuqEXFZWculabbalOTeiYnJs5W83m2wkogSDPi5u1eiq1vxROYPbWuqyqhdJWSHjXyGzgOi/vgBTel2GLXrZKJBIuEQdwslWiq4TpjkD0OfqIzadYI2g6urOXp9hb26jD0Qw3uCwzBUeoxbddJhH/FohK1CmWJ3gsUfO3GSvx+GrqF1m0QdOk9vrtAfDHlxq0JP8mL3Hs+tjQc41DabqQCrmSR3d0vc3JMZSV6s9vmuW5gGqD2yYRvPPrmBOtF4/laBpnpyPp4xGeGcdLmaCbCxkqFYbXC70mHiiGA/5vtxGKZhoM/cxs08phDc3iszcQamgvwYUT8Zjxi3qsS9dtayKWrNqQuGL/aAI34it2kw6jRxawrXVzNYrFNRrzn8+E8IG2rqGKU1/Yyu5TI02x1uFJqM7CGc3vm4hWkyUdoEGfD0Rhanw86t3RIDyT3NxztmjNInE0b7LtiVlSydnsKNvTpDewCHNzjX4k8Igaq08Rt9nlpL4/W4ubNXYiQ58UWTx+YC6prGQK7iYcLmSpbBcDQNe7tDuAPzFaFNhXUb67DNlWycgM/Lnb0SXd2G+4QxytB1hu06XnPM1dXMmULbU6e+O40SpCJEggG2i2UUXcIbO17UG4ZOX25gnyhs5jNnjiYNel1GrTqpSIBYJEy5WkUXFpKpLC730eOEYRg063WUXotcOkkqlVpq0dtpeB05d98L/DTwHNPGxVUgBbwb+LvA3xNC/Myp53mcxV2n02F7dw+LzUkylcXhfPhwkxACWW7QadZJxiO4XC629kr7+Q1JbPflMEwn+QaZaJBoOMR2oUxPE3hjZ6uQE0Iw6LQw+i1WUzH8Pi83twu0DRvuUPwBZ2Ks9Ka5c7EgyXiEnVKFuqLjCCfOlMg7CxuitNhIRQkHp7mArYmE+1Au4OGVfKFcpa5McIcTZwp1wdQV0ToN8vEQ0XCQ3VKV7kTsJybfey3V4YBhq0bU6ySXSlCpNSl3BzhCiTNXyI2UHlqnTi7qJxmLUjwQ9Q86DOpoRE+uEHRYyWemk3xB7mE9R1GKOlTQOtNcwGwqQbnWoKmM8URTuO57LTV1TL9ZxW9jXwR3uF2W0dwRnL6zVedp4xEoDfJhN+u5NIVK/UjBZGgTxFAm67fw1OYKcrvLl24VkFUHNpfvTOEmQ1dxGgqbmSBPbK5Qqcu8tFunL/mxu+5LXzB0pFGbXNDKG6+v0VMGvLhdoSf5cXjnc7Zfwa2pSEOZbNDGE+t5Wt0eu7UWkj+O576woaHrDFs1PGLMtdUs44nGrb0KqiN45vy1o8KGO1UZqz/6gKg3DB2l1cCuKVxZyaLrOi/cLdIRHhy+s3GbuoauyCTdJs9cWUUZDrlbrKMfcupN02DYbuLSFK6tZpAkiRfuFGgbLuyBCJYTWjgdy23oaH2ZmF3j6f1cwK1SDeEJ4gvdc+pN02TQbiKNumzmUlitFm7tllEkF+7Q8Y74ydwGo04Drznk+loW0xTcLpRR7YGpw7/PPR1/ZayjNldySdzO6WJZwYk7fLailOlrKePU+lNRL0ncKZQxHH780Xuifjb2670Wa+np2L+1V2JssROMnS0PXJgmvbaMobRZTSdx2G2UKlVc3iDxZOogd04IQafdotWoEguHyOdz587VWwReL84dgCRJ72daHTubaAUwAX5SCPGP5jrH4yjuRqMRO7t7DEcT4qksPv/5k7V1TaNeqzAe9smmk0w0nd1KDasvgtPjQZFrB5N8XW5RafVxhhN4/OevPD28ejNMwc3dEmN7AIfHx6TbIO62sJHPIHc67NQ6SP4Y7gWU4M8GdqemcG0lPc0F3C0ztnpx+gOMOzJh+9Rt6vT67NZkLP5pXt15E8WnA7uMZdRhMz/NBZy6oF7cgQjDThO3UNlcyTEYDLlTriN5o3hOCHvPCyEEg3YTy7DDRm6aC7hVKKPbXPhCUfqdFjZtwEZ+Gva+U6yhu4N4g9FzJ6lPcwFbSMM2m5mpw3B3r8QIO95wnGG3hXUyneQ13eCl7RKKxYczcP4E+amz0sUxbnM9FycS2g91dnWEJ4I57hO1qTxzJY8EfP7lLSo9gcUZWEgbHX08IGgf88xmhlQiys2tAnfrQ3RHEDEZEnNqPHt9BZvVygt3CzQnNqze+ULIp0EbKTgnLa5mImSTMXZLVRoDDUc4gTYaYh11uJKb5rbd3CnREw5cocVUnqpDBaPXOAgblmoNGv0xrnACTVURynSS93k9vHh3j9oQLL7YQrh1dYRlKLMW87CRz9zn1McxDX26wEtHCQf83NguUOmbWPyxY8PeD8U9GSOUJishJ1dWszRaLUpyH3swDgIm3Tor8WnYe6tYoT4wTgx7Pxy3itqpEXNJXFnJ0ur22Km1kHwxLBYrerdOPhogGZ9WvdYG+rSdzAKqXnVtwrg1deqvrU2d+t2qjC04TScYt2rEA24yifuKvWIPLvDOzq3Ra9axG2M2V7IMRyPqjRahWAKX202jWsZpt7C+uorX++rZ/eUo5+4/XoBzt3nBzt0MkiRFgLczbYPSAj457+4U8JiJO13XKZZK1BstIvEk4Uhs4eXZo+GQWrWE3SJIp5I05TadvsJaLo2q/v/b++842bKzPhd/VuWcc+c+cc6cCZoZZBuwUCJeLlxjI4PBlkFcJNtCSJYNxoAkIzAXhEAE20hGgPiRLNIF65I00ighQNLMaMLJfTpXzjntvdfvj+o6c05P566qk/Yzn/2Zqq5d+7urTvde3/Wu9313j5VUDpw+3P7jD/Lb6XU7NAsZPFtLMsVylWypwqm5QW7b1fU0PasHh2/33LajovR6dMo5fFtLMrVGk81sgZOzCQCWNtIoFjeuPXLbjqy9VYnooMfJ2Sma7Q7JbJ75RAyD0cDSeorOVhXcqNtLDKI1Oexam5OzgyWZzUyWqeggt22wnDVc9h7t7FZTFZrlAnalyam5BFKTrCbTTEVCOJ0OLi2vU+gaMXlHry01lU61iEe2OLcwhcFg4OL1DWbjIQI+Dy9eWWEl10Q1eQ7cr+7A2lJD69SJODVecW4Ri9nEC9fWSIQDREN+rq4m2ThG8cfe2pJ+o4xHNHlwIYHLYePaWhKf20ksHGQ1mSZT62Hyjb61hZSSTq2MsV3m1HQEt9PB9fUULruNeDTEWirLcq6Oat87t+2o2r1mDYdS5exshKDPw/WNJBaTeavwJM9ytkrfHsBiH32/ul6zhqVX4XRikAu4uplGCMHc1GCyvJo73LL3Yeg061DPMxPykIiEWEum6Svq1mS5ymqmDO7gLVHcUTGI1OeZ8r0UqW93uyxMJ6g3mmzkimPrvdppt2gUMvhsZqbjUQrFEq12m7mZaQKB8fZbPQo7Re4+PoHIXeQ2RO5GwT1j7mq1GleXruNw+QhHYmNtDAtQrZQp5FIEfF6ikTDPXbpK9xgVnodhWDE1FfAwOz3FMxcuU1PN2PzhkfeQ2s6NJdiAk9OL8zx38TK1rdy2cTaGhUEydaeUI+y2cvbkIi9cukqpK7EHRtO2ZS8GeVZZgnYjDz1wmhcvXyPX7GP1j36Q306/16VdyhK0wiPnznDx6nXWSk1whUc+yG9H7ffo1wrE7JLHH3qAK0vLXFjO0ZAOTJbxfm5NVTD0aswGrXzVKx9hdSPJxfUCHbNvJG1b9tNWm0UiVpV/+OgDZPNFriZzSGcQu9s3Zu2Xlg0fO3eKcrXGc0tJWqaD57YdFalp9Ool/MY2X3H+FJ1Ol2evrNEwubG6xtsQV2oa3XoZLw0eO3cCJDx/bZWexYN9BBHxPbWlpF0tYu5UOX9yFovZxPNXV+iZ3dhvWqodm3atjGiWeGAugdvl5MVr1xE296Cga4wN1qWUNGoVuuU8s7Ewi/NzY9M6LjtG7j4+gchdZPKROyGEEfgKYA7YPrgJKeVv7neMe+YOFdVqFbc3RDgam4ie1+fH5XKzfO0CDruNjsmBPxKfiLbD5cHudJNcu4Lf66GqWnBHEhPRtjpcWOxO0qnrRINVaooRb2xmMtp2J5bEPIXUMrVajXJXwxOfn4i2xWbHkpinnF6hWq1SaPZwxxcmom22WDHHZqlk16lWq2yWGpiCcxOZWRvNFozBBNliilqtxtJ6jrYpgGkC2gajCewBVgtlHqrVWNrIonpmsYy46fFu2gZPlFQlT61WYz2dwxyaHXmEdGdtI85gjGa5QKlSZS1doOeMYjWPd/IEIAwGrN4Q5UaFbKFMtdGkbQ9jG/MkYqht8wapN82kskWEAMUVwTHmu0sACCFw+EJ0WzZS2QJOu5W+I3ikVi1H0vYG6NvsbGbzRBUFgyuANxCaiLbb68fucJJOr93R5m4n7qzY4mgQQjwA/Blwghs3MLx1F+A39zvO7St9GQMHmdl935P/gufyz+y733P5Z/i+J//FgfUmHcIWQtz4xT6I9qdTf0K9V953v3qvzKdTf7KvNluaB7m7wCc3/5jaAbRrvTKf3PzjfbXFDe39P/cHL7yLZGP/G6AnGyt88MK79t3vMNqj5mbt/fR/+eJbWKk/v+8xV+rP88sX33IA8dv3u85Neoe9m0Wm1uFzS3k+cTnL55byZGqdiWkfm5u/57voOz++9m28rt7Ga/pt/dyT/jceAUaDwG0zjX27Dfy3rf9/G3AGWNi2zR/kIPdM5O4gfN+T/4Jr1cu87TPfxy+96td4JPzYjvs9l3+Gt33m+26859de/7uTPM2R8+nUn/DR6x/gM+n/l7c/9AHclp3betR7ZT7wwtvJtFYB+JrEPzm29ic3/5jfufYLPJX8E/7jK34Jzy7atV6Z9z37NlJb2q+d/rZja3/wwrt4Ov8UzxU+x48+/mGmXDtH2pKNFX7q6TehyD4fvPAu3vzgTxxb+3byyxffQqq9xIeu/nu+//TPs+B+eMf9VurP86Gr//7Ge37g3K9O8jTHyrVcnScvZ1kpNFm1DSZp853B3/FCyMnrz0Y5FRl/ROi1v7MIwCe/a3nsWtv5p//7HAB/9H9enLj27eZ2fu+v+q3BdeYz/2r/SeWoOf+rg1WUF9+yMXHtSaNpkkZHud2nMQ6eAL5HSvn/Hucgd59dPwY/8Mh/uPH4bZ/5vh0jeDcbu+3vuVt5LPRqYo55Mq1VPvDC23eM4N1s7GKOeR4LvXok2k9EXkPCMU+qtcr7nn3bjhG8m41dwjHPE5HXjET7m+e+B5Mwo8g+P/X0m3aM4N1s7EzCzDfPfc9ItG8n3zzzb288/tDVf79jBO9mY7f9PXc7X1gt8mufW2al0MRieukS98SsH4vJwEqhya99bpkvrhZv41nq6OgcB4NB4LKZxr7dBkpA97gHua/M3SPhx/ilV/3ajefbDd52Y7dXdO9uwm3x8/aHPrCrwdtu7PaK7h0Wj8XPf3zFL+1q8LYbu72ie4dlyrXAjz7+4V0N3nZjt1d0725iwf0w33/65288327wthu7vaJ7dxvXcnX+6JlNJPCa0xF+7BvP3XjtDU/M8mPfeI7XnI4ggT98ZpNrufptO1cdHZ2jM4zcjXu7DXwA+LdbRRVH5sjmTggxI4R4SghxUQhxQQjxg8c5kUmxm8G7V43dkN0M3jiN3ZDdDN44jd2Q3QzevWrshuxm8O5lYwfw5OXsDWP3jefj2My3Xh9tZiPfeD5+w+B94nL2tpynjo7O8biHI3de4AHgghDil4QQ7962vecgBznOmSvAO6WUzwgh3MDTQoiPSynv+ASPocEbmrmbTR3ce8ZuyNDgDc3cTz7zrwFo9CtjM3ZDhgZvaObe9YV/BUC9XxmbsRsyNHhDM/cTX3ojABJ5Txq7IUODNzRzN5s6uPeMXabWubEU+5ozkT33fc2ZCH+zXGC50CRT6xDzjLeVjo6OzmjRNEmjq97u0wBACPENwC8CRuDXpJT/z7bX/z3wfQx8Ux74Xinl2i6Hu7my79ROcsB79junI5s7KWUaSG89rgshLgFTwB1v7uDlBm/IvWrshgwN3k8+869p9CsAuMy+sRq7IUOD964v/CvqW9pus2+sxm7I0OD9xJfeiNyqLheIe9bYDdlu8Ibca8YOYClXv1E8wcdf/vob/vzBW57/KxPMK7/LUq4+EnM3TOI/6GujTPYfFk8c9LV7qcjidn7vw+KJg742yiKLYfHEQV+714osBpG78fUAPChby6f/DfhaYBP4ohDiz7YFup4FnpBStoQQ/wb4WeCf73Q8KeVIPtRIYo5CiHngFcDf7/Da9wPfDzA7OzsKOR0dHZ2X0VW0ib5PR0fn9qFpkmbnjojcvRJYklIuAwghfh/4Vm4KdEkpn7pp/78DvnvcJ3VscyeEcAF/BLxdSlnb/rqU8kPAh2Bwh4rj6o2K7Tl2Q/Zrk3K3M8yxa/QruMw+YLAs+4EX3j726N0wx67er+De0q73K7zv2beNPXo3zLGTSIYdAiWSn3r6Tfd09G57jt2Q/dqk3I1YTQbmO7/LE7N+3vDESxPJYcTuo9904Zb9/9eX1mG9jNU0mrqynSJCk2rJsVMk7n5phXI7v/edInGTaoWyUyTufmqFMkFCQoibb631oS1fM2QKuPkL3wT+wR7HexPwFyM8vx051lVNCGFmYOx+R0q5d/fZO4idiif2qqK9V9hePPFjj/0mP/bYb+7bJmUUbC+e+IlX/hY/8crf2rdNyijYXjzxric+wrue+Mi+bVLudnYqntirivZu5+RW37rnU1U6/b1n9J2+ygup6i3v09HRuXsYLsuOewMKUsonbto+tN+57YYQ4rsZ9LF73x77qEIIba/tQN/PMU5SAB8GLkkpf36//e8UdquK3a9Nyt3OblWx+7VJGQW7VcXu1yZlFOxWFbtfm5S7nd2qYvdrk3I3E/PYWAg56SkaT13J7bnvU1dy9BSNxZBTL6bQ0bkLGRZUjHs7AEng5iTH6a2f3YIQ4vXAjwLfIqXcq4/dT27bfgr4dSC1tf3Xg5zUcSJ3XwX8S+C1Qogvb23fdIzjjZ392p3cqwZvv3Yn4zR4+7U7GafB26/dyb1q8PZrd3IvG7zXn40igKeu5viLF9Mvi+B1+ip/8WKap67mEMDrzkZvy3nq6OgcD4NB4LKaxr4dgC8Cp4QQC0IIC/AdDO4NewMhxCuADzIwdnvOPKWU75ZSvuum7cellN8HLALXgQM15zyyuZNSfk5KKaSUD0spH93a/vyox5sEv/zcz914vFte3XaDd/N77laeKXxq3z522w3eM4VPjUT7S7mn9u1jt93gfSn31A5HOjwfW/uNffvYbTd4H1v7jZFo304+tvHfbzzeLa9uu8G7+T13M6cibv7pY9M3DN5P/sVL+Wb/60vr/ORfXLxh7P7ZY9MTuQWZjo7O6NE0aHbVsW/7IaVUgLcCfwVcAj4qpbwghPgJIcS3bO32PsAF/MFWIOzPdjncXjo9Bg2O33yQ/e+re8v+2ut/l+978l/wA4/8hz0LJoYG75ef+7m7/r6y8NI9Yh8LvXrPgomhwXum8KmR3FcWXrpH7BOR1+xZMDE0eF/KPTWS+8oCvPnBn+CDF97FN899z54FE0OD97G137jr7ysL8APnfpVfvvgWvnnm3+5ZMDE0eB/b+O/31H1lXzkfxO+w8InLWZYLTeaVrb/h9UFEeDHk5HUTurfs7bi36ZB7vZBiL27n93477ik75H4qpDAYwGW9/a1QALYCW3++7Wfvuunx60ck1QRmhBAGKeWeuXf3lbkDDmzWHgk/dk8YuyEHNWtui39kxm7IQc2ax+IfmbEbclCzNuVauCeM3ZCDmrUF98P3lLEbciri5lTETabWYSlXp6toWE0GTkbceo6djs49wDByd5/xLIOCDLHfjveUuev3epPV67+kp/b7SCkZ1JmMH6XfZ9hXRlWViWqrqgJbk4ZJa2uqiqaqLz3WNAyGydwiWdNU1KG2pqJpKgbDZGaOUtNQFeXGY6mqGIwT0pYSqfVvOhcVManPLSWaOvjcQoCm9DGYzAd+f8xjO7KZk1Ii1f7gd1uAqvQn9p3DQA+sAGiKgtFkmZi2pigIBnqa2gcmZ4g1tY/AgGD4HUwOVenfSFaatLa2pScYXN8nyaT1RsZkhp2JIoR49wF2+7+2xlwhpXzPTjvcM+YuFApRvn6dteVrROJT2O2OsWmpqkoxn6VeKTI7PYXb7SZsL1FMruAIRLE6nGPTlppGvVxENsucnpvG6XQy57WQTK9i8oWxOlzj05aSVqWEqV3m9Gwct9vNjK9KMrmMxRfG7vKMV7taRm0UWYyHcLlczIc9rKWWMXrDONze8WrXK2i1AvPRAC6XixOxAMvpFYQ7iN3tG6u5bderaLU882EvbrebB+djXF5fp2X2YnP7x6rdazUwtAqcjnhxuVw8fm6RZy+vkG+ZMNrcY9VWex0cNDl7avDv/eiZBZ6/tk65bcfsDCDGaOqVbhtju8gDUQdut5uz8zNcWtmkaXJi94XGaur73Q79Spa400TQ78PpsNO/skKh2sDsCo7VYKr9HrJRYM5jJBENEQ54aV9doVBpYnKHMBjHN2SoSh+1XiDhgPnpRaSU1JdWqeRb2HxhjObxmVtV6dOp5PEaeiyenMdgMFBtrFHObWLzRTBZxqitKrTLeRxam1Mn5rBYLJSraxQ21/CEo1is4zPWmqpSK+aQnTqnZqfp9/uYzQefPN1ODAZw3iHLsiPmx9ndtgpAbnv+nh13lHJyfYWfeOIJ+aUvfWn/HY+IlJJ8Ps/6Zgqb000kmsBkGt3FSEpJtVKmmEsT8Hnwej2sJ1O0uz2mIiEcDgdLa5t0DFZcwSimEf+RtOpVuuU8U0EvQb+XjXSGerPNdCyMx+Xi2tomlb4Rm3/0F6NOs45azTMTcBOLBNlMZyjVW0yHg/h9HlY2U1R6AmcgitlqHa12q0m3nCXqsZOIhklmcmTKNWYiAaKhIKubaQotBVsgisVmH6l2t92iW84SdpqZm4qzmcmzmikyFwswHQ2zkc6SqXWx+KNYRzyh6Hc7dMpZQnYDC9MJsoUS1zZyTEd8zE/F2MzkWCk0kM4QFvtoJxRqv4tSzRNzGjg9P02hVOHC9RSJsJfTC9MkM3kuLKepqw5M1tF+bk1VMPRrzIdtPHRmkWq1zvOXrhMOejl35gS5YpnL63laZh8Wx2gnFJqqoDULRO2S8ydnabTavLiUxOeyce7kLOVanevJAqozMHJTr6kK7Uoet+xwZn6Kbq/PheUkDquZB0/OUms2ubiSoWFwY3GNWFtTUeolAqYu50/OoKoaF65vYDaZOH9yhna3y4WVFHXhwuoOjFRbahq9egmvaHH+xAwGg+Di9U0AHjw5g6KoXFlL0bW4sXtDIzX1UtNoV4tYezVOz8axmE1cWkmiaCoPzE8jBFxdT9ExuXD4R2vqpZS0q2WMrRInpiO4HA4ur2zQ7aucmUtgNhlZ3kih2Vx4gmGMIzTWUkrqlTK9aoGZSBC3y8lGMk2vrzAVjzCVSGCcYJT6IAghnpZSPjF8/vCjj8v/75N/M3bd2aD9Ft1xI4TY6Rc8AHwT8B+AbwNuJJXulnt3T5m7IYqikEqlyOSK+EIRgsHwsS9GrVaTXCaJxSiIRSPki0UqjTb+cByb3UEpn6XfqjGTiKGqGtc30+D04fKHjr1s2Ou0aRaz+KwG5qbiFEplsuUazmAUm9NFrZhHtmrMT8WQwNW1FB3zaC5G/V6XbjlHwCo5MTNFuVpjM1/G4o3gcHuol/LQqnJiJobBaGRpLUnX7MQVOP7FSOn3aBSzuA0KJ2anqDeaXE8XYGtgbVWLmNpVTs5EsVosXFtL0jLYcAaiGI9p6lWlT7OUxSl7nJqbotlqc3E1TcPkwer00m1WcSo1zs3FcbscXF3bpK5ZcPgjGI9p6gcz+Rx2tcPpuQTdXp8Xl5NUpROLy0evVcep1jg3F8XvdXN5eYNsG8ze40c3NE2lWy3gEx3OLU6jqRrPXl4l0zRitPtQe028hhbnT8SIhgJcuLbKcqaOYnRjOOayoZQaWqdO1CV57NwiBoPg2RevkS51ECYHqtLFY1V58PQsiViEpbUkq8UOmiOIyXK86IaUGv1GGZ9ocf7EFFaLmeevrpFpGzHYA2j9DjalwukpPzPxCOupLKlqB5M3guWYpn4wyJcwdyqcmhkM8i9eWyPbNmB0h1D7PUydIgthF/NTMTbSOa5nayi2AOZjmnopJb1m9cbvk8/j5sL1dVJ1DeEMIjUNY7vIXNDOyVCLgL4AAFnlSURBVNkE6VyRpXSZni2AZQSrBN1GFVu/wtnpMEG/l6urSdINFeEKDs6vUSDhNm1NMMosZ8tIZwj7CCL1nUYNGgXmI14iwQDL6ymS9T5GTxhhMNCv5ona4fT8NJVaneV0EekajanvNBuo1RzTATeJaIjVZJpUtYvJO7hudip5/CaVMwvTNFst1jMFzJ4Abn/w+NqtJo1ChoDTRiIaJpcvUGv3CEbiWG02CtkMaqfJ/OwUoVBoYik3+7Hd3D362OPyk5/9u7HrBl2WiZq7vRBCvAN4nZTym/fd9140d0M6nQ5r6+vUGx3CsQRuz+EvCP1+n3wmRbfTYDoRp93pkM4WcQZC+AO3/uJ3O20K2TRWg8Z0Ik6hVCFZrGLxhXEeQVtVFOqlHJZ+ixMzCfp9hbV0FpPbjydwq2nsdbvU8hlsQmV+OkG5Wmc5U4QjXow0VaVVyWNXWpyeSyCl5PpGGmn34AmEbzGNSr9HrZDFQZ/F2QT1ZouVdB6DK4DTe/hZvqZpNMoFjJ0qp2YTCCG4tpaiY3Li9IdvWZZSlT6tch6n7HB6fppWp8vyZhbN4cPpP/yFSWoazUoRY7vCiekYFrOJC8sbFHtmzJ7gLctSmqrQq5cIGns8eGIaRdW4tpGmb/Xi8AUPbeoHS88lDK0SJ6YGg/wL19bItQ0Y3du0NZV+vUzQ3OX84jQSuLSSpCrs2DzBQ+fESSnp1itYexXOzkbwud08f2WF9VIf1eLFYDTftK+G2q4Scyg8enYek9HIsxeXSFU1hNVzpHw8pdPAZ+7y8OlpQgEfF65cZyVZQRHWbdoStdsi4jXx6IMnsdutvHBtnVzXiNEZPNKyYa9Vx94vc2Y6RCwc4OrKJquFNorNj9H8kmmUUtJvVfAZWjy0mMDjdnJldZOKYsLmj2A8RC7gkG6rgVbLMRt0k4iGWV5PsVJsodmDmKwvRaEH2lUcykum/tL1dVINDYMrdCRT3++0MLaLLEbczCWirKeyXM/W6Vn9mG23msZes4ZDrXB2Jkwk6OfKygbJmoLBHcJoPnykXum2oVlkLmBncSZOKlvgeraKYn+5aey16pjbZU7GfcTCQVY202QbfczeCOYjROr73Q69So6I08jidJx8qcL1dAnFGcTqvDUS3Gs3EI0C80E3U7FBpD5d62LxHc3UK70unXIOv0VycnaKcrXOUiqP5gxic3lvuV712k2UWoFpn42ZeJRMrkC+3sYVimJ3Ht5YK/0e1UIWm9ZncXaKRrNJJl/CE4zg22YaO+0WhWwKq0mwODeL2337WwbtFLn78wlE7mYmHLnbCyHEa4E/lVLu+w9yT5u7IdVqlZW1dTCYicamsNr2n+VrmkaxmKdayhOPhDCZTGykMphsbgKR6J7LvfValUo+Q8DjJBjws5ZMU+lqOIMHWzaUUtIoF9EaJRbiERwOO8vrSRSzDW9o7+XeVqNOo5Al7HEQCQVZT2XJ1A9+MZJS0q6VEc0SJxJhvG4X19eTtKUJVzCGeY/l3k6rSauYIeS2MRWLkMzkyFbbWAMRbAec5TdrFdRqgdmoH7/Xw/WNFOWewO6PYLbsPoj0Oi265dzW8mmMbKFEslTH5D14LmC7XkOp5pgJeQgHAyytJdmo9hCuvSNDSq8DjSJTXgun5qbIl8qs56oYPAePMHSadZRqnmm/i1gkyPJGmtViC80euGWQ347a76E1i0y7jZxdnKFcrXFlM0/X6se6bbDYjX67iWwUmA86mU1EWd3McHmjRNvgwWjZXVtT+xi6FeYCFh46M0+t3uTLl9codk0YrQfLx1P7XWxag1PTPk4tzLCZynDx2ib1nmnP71zTVITSYibi5JEHT9NqD5YNq9KJ2XWwPES110W0C8z6rJxemCaTL3FpPU/T4MFs3/3aqakqWqtExK7y8KlZVE3jylqKjsWN44DLhkqvS7eSJWQVnJybolipcXk9R9PkxeLw7Hr+mqbSb5QImgamHuDF5U1KihWLO3ggbVXpozUKxBzw4Mk5qrUGF1bT1A0ezI7df2ekpqE0y/gMLc6fmMZsNnFhaZ2iYsHsDh0oF1BTFJRGgbBV5cETszTbHS6tpmkY3Vj3yB+VUqNTr+BW65ybj2O3WbmyuklNWrH5IgeK1A+XvV2yw9n5KfqKwsXVFC2jC6tn9+9uMPEpY+1WOTMTweNycnVtk5pqxn7ASP1wsmxTWpyZS6CpGlfWU7RMLuze4K4rLFJK2vUKplaJE1Nh/B43KxuD67EnHN3zmnhDW9OolwpozQoL03EMQrCRymB1egmG917lqFXKlAsZQj4Pc7MzWMaYe7gf283dKyYUuQvcWZG7XwD+iZRyft997wdzB4M/kmw2y2YqjcPtIxyJ75pTUKtWyGdTeN1OAn4fm6kMXU0QisaxHnCmqGka5VKeVqXEVDSE2WxmeSNF12THHdz9D6rdqNMpZYn5XETDQZKZLNW2gjscw+Y42ExRSkmtVKRXKzITDeF0OLiyskFN7r1s2G016VdzJLx2pmMRUtk8+UYHZyB6YHMmpaRRLaPUCsxEgzfMYV014gxGMe0SYeh2WnRKWYKOQW5bOltgs9zA7A1jcx581tiqVdAaBeYjAQI+D8ubKSo9sPtju+YC9rsd2sUsAZtgYWaQ23Y1VaJn9b1sJr8XvVYdS6fMybifWDjI6maKfEvF5o/uGmFQel3a5Rx+s8aJ2cEgf2ktS8u89yD/ss/QbmLpljkR8zIdC7OazLBRboMrvKu2qvRRqjnCNji7ME211uC5a5uUejaM9oNrq702dq3GmWk/i7MJVjdTXFot0JKOXc2hpioYejWmAxYePXeCRrPFly8sUahrGC2Og2srPayiy6m5CKdPzJHKFbiaLNO1+DHbd/6d1VQFtVkibFV46OQMvb7Cc9c2KPVtmBy+A+d0qf0uxk6J+ZCNMwszLy0bukLYXTubek1VaVcKOLQmZ+enBrlty5uUVTtm18GLRNR+D9kskHAbeWBxhlK1xqW1HC2TF4tz5387qWn0GqXB0vPJGYzCwIvXN8j3zJicBy/U0JQ+WqtI3MGNXMBLqxmaRs+uuYBSanTrZbyyyYMLCSwWMxeXNyn2Xx4R31tboV8vELIonFucodPtcnUjS8/qxe7declSSkmnVsLUrnBqOoLTYefyyibFvnGQynDAiKumqnSreXyiw9mFaVRV4+p6mp7Vs2uk/qXJcpkTiRAel5Nra0mKPQNWX3jX6+FO2u1qEafa4Mz8FAArm2mE3YMnGN71365RrdAp50mEfPi9HjZTGRSMhGIJrAcs1NA0jVIhR7NaYiYRJRGPT6xDwc1sN3ePvGIykbvpwMRz7nbqpG8Fzm9t75ZSvnff49wv5m5Iv98nmUySK5YJhGL4Ay9dEDrtNtlMEqNQScRilEplCtUG/nAMt9d3JD2l36eQyyC7TWanE7Q7XVZSWQyuAK6bQuH9XpdmIYPLJFmYTlCp1kgVy9j9EVzeo+V4qIpCtZCFTpOF6fhg2XDrYmS/6WKk9Hu0yzl8RpVTc1M0Gk1WM0XMniAu39GSpzVVpVbKYejWOTEdRwJL62kUqxtX4KVcQFXp0yjmcMguJ+emaLU7LCWzaA4/zl0u1vtqaxrNcgFLr8ap2YGJv7aWpGN24vKHbwwkqqLQKuWwaW1OzQ5y2y6upKgJJ1aPn53zWvdGSo1OrYxnaxCzWS1cXU3SNNhwBCI38hA1VaVZzmNXmpyaS6CqGi9e36Cs2bEcYpC/VVvSa1Rwaw0eXBjkAl5cXqfQNWH2hm4MYlLT6FSLeGhybmEagxA8e3mFdENgsPmOtKwqpURt1/Gb2zx8aoqAz8MLV5ZZzbVRze4bS6tSSrROjbBT4xUPzGO1WHjuwjU2800wOY7cYkXptvDZJefPzhMJBbiysslmtY90BG8sG0op6Te3/m0W47idDp6/skqqAcLhv2X59zD02w0capUHZkMkoiGW11Nkmn0svgjmrajrwGBUMLZLnEyE8bidXFreIN2QCFfwyG1OBqa+dMPUr2xmWC000RyBWwpdus0qjn6VszOD3Ladvp/DonRbmDolFiMv5QIu52qojuAty7rDSc+pqQCxUICl9RSblS7CHTpyrqTS7SAbBWb9NhZn4mTzJdYKVXDfOhkcLHvnmQk4SUTDrCUzbFTaCHcYs+1ouZJKr4tazRFzmTg1N0WhXGY1W0G4b43Ud9tNlEqO+NZkOZnNs1FqYnCHj9xRQen36FVyBK2SU3PTVGt1NvMlrL7wLeNEt92mXszgtRqZiccolkqU6y0C4QQuz9GKkPq9HsVcGq3fYXFuhkAgcKTjHJX7yNxd5+XVsh1gHfg9KeVHDnSc+83cDWm1WqyurdPuKoQiMRr1Gu1mjal4lL6ikMzkcfgC+APhkcxS2q0WxVwKh9lAIhYlmy+SqTSw+sP0222MvTonZxJoUrKaTGN0+PAED7bUsR/dTptaLoPLLJidipMvlVnLDS5Gaq+LtV/n9GwCo0FwfSOFYnXhDURHot3vdakXMriMKgszU1RqddayJYzuIJqqINoVTkwNctuurqW2CiIiI6kMG5pWt0Hh1NzUIBcwlQdXYNCbr1nmxFQYp8PBhaU1cl3jYHlpBBXWgwhDkbBV4cETs7Q6XZY2M2iOLdPYLLEYD+F1u7h4fZ1UQ2JwBUbSy0xTFfr1EmFrn/MnZlBUjQsrSRoGF8JowtKtcHoqSNDn5eK1NVYKHRSz99gFETDogad1qsRdGo+emUdKybOXVsjWJZow4zF1OH8iTjwa4vK1Fa5vFOhK25Hy1V6mLTW0Xpuoz8Qrzp/GZDLxwtI6+Z4ZTHZs/Qon4z5m4hGur6dYyjToW32Y9lh6Poy20qoSMLV46OQMdquFy1vLhia7G61eZNpnZzoeYT01MEF9W+BluW1H05b0mxVcWp0H5wem/sWldXJtgbS6MHYqzAXtnJhJkMwWuJbaO7J5aO1WFZdW49xcbJALuLxOuinB5kG0q8z4LJycTZArlbmWLNGz+Q8VEd+LbrOGtVvm9FSIcMDH0lqSQkfD6AqgNMqErHBqfppiucq1ZIGe/eDpCvtr1zE2CyzGfMS2qvZzTQWTJ4jSrOA1qpyen6bWaHJtM0ff5sfuGU2Vc7fVQKvnmQ24SETDpDI5Sq0eDn+ITrOGud9hcXaKTqdDKlfE5QsRCB2/sBCg1WxQzKVxWkwszM/idI6v9dfN7Lgs+7kJLMs675xl2cNw35q7IeVymY3NJB6PG4fdztpGEmF1EorERt7KBAY5DJVChkjAh9fjZj2Vxed24nG7WNlI0hUWvOHonrltR6VZq9Is5oj63YQCftZSGVwOOwHvoJVJQzHgDkYxj6GvUrtRp13KEN1abt7M5LCaTYSDgVuWL0fdygQGM+heJUfMM0hMTmbzGIQgHgmxvJFirdRGOoM3oiyjROm2oVFkditxPJsvoWgqU9HwIIE9V0exvTyBfSTavS6iWWTGb+H0/DS5Ypl2t8dcIspmOseF1QJN4cJkHb22pvQw9qoshG08eGqOYqlCqdrg1MI02VyBF66sUesaR2KsXqatKhi0NvMxDw+dO0Wt3iRfrnFyLkGxUuXCcoaacGM+xNLzYbRlq0TcJXn49DytdodcqcLiTGKQ27aWpmHwYHGOvjeipioojRIhS4/zJ2boqyobmQKn56aoN9tcWElRO0RO4mGQmorSKBEw93joxKDAZy2V48RMjJ6icHE5OYiIu0ffn1BqGt16aRCRPTGNyWhkLZllNhFBUzUurSapG5xY98htO7K21OhUSziUOg/MxbFZLaylsiQiIQwGwZXVJA1hx+7bfen06NqSVq08iIpOR3E7HWyks4T8PizmYY64i1A0hmkEk6ft2tVKiWohRzTkY2Z6euz98XaK3P3FU58fqybAlN+mm7v9uBPN3ZCLly5T7/QJROLYx9iEGIY5DFnatTLnTp8kncmRrTZwh2NHqoI6rHatVECpl3nw1CLFcoX1fBm7P4pjjE2IYSsfr1JEqZd48OQcjVaba5tZjO7wSFob7KfdqpWhWeL84gx9ReXL19bpWHy75iiNkm6jiq1X4ZGTM1jMJr54cZm6wTOyKMJe9Fp1bL0KDy3E8HncfPbpSxS61kPl1R0VpdvCSY1HTyZIREN8+vPPkK30MVodR1r2Pgxqv4vd2OOhMzMszs/y2acvkO+aMTnG2wAZBg2YTd0Sp+Nuzp5c4PPPXqDQs2AacxNiGBT4iGaRuYCVh86e5O++fIFM++jVxIdB7fegVWDGa+Kx82f50vOXyHQEJndoJNHZPbWVPmptUCjy+ENn+fKFK2TaErM3MtYGyEPtfjVP0KzyFQ8/wItXlsg01UFe3THb9OzHoFCkgIcOX/HwAyyvrNFSNMLRBLYxNvOHQUP/Uj5Lp1Hh3JlTY62q3Sly99Tn/n5sekP8TvPEzZ0QIg68A/gaBj3uSsBngfdLKdMHOcY9c4eK4yClpFStMXf6/ER6+hgMBkKROHkJzWaTfKVKcPbkRJpGGgwGfKEIFSGo1Rvky1U80bmxRAq3I4TA7Q/RMBipVOuU6w0sgamxROt20nZ6A7SNJgqVKr2eQs8ewjri5r+7YXV56XXMZItl7FYrTbMP24gb8O6GxeGmb7aQKpRRNY1814rZMV4zPcRkddBWLaynC7jsVtLlHpY9KlFHidFspSvNrG1miUVCZDtmrO7QZLQtNqQlwWZuk5l4k2LPjMUbmYi2yWIDyxTZyjoLjQaFtgGzJzoRbaPZAt4EufomjUaDYkdi9Scmo20yYwzEKZaTA+22gi00NzntYIJKMUm9XqfY6OCMLk5E22A04QzGqBfSNBoN6q0286cfnIi20WgkHEuQS0tardZEW6ZoElq9e+/eskKIU8DnAB/wd8AzQBx4G/BGIcRXSSmv7necyZe83MHsZ+ze+unv5oXCs/se54XCs7z10999KL39LOVfrv0R1W5p32NWuyX+cu2P9te+SXE/P/vxjT+i2ivvr90r8/GN/bUPw6dSf0ztANq1XplPpf543/3EHXMzwtt5HnfKdzAJ7qfPug2x7f+39SRuh+Tt+OBbmreh8e9t7TV8G7QNAhwW49i328DPABXglJTya6SU/1xK+SrgDFDden1fdHN3QN766e/mevUqP/T5N+9p8F4oPMsPff7NXK9ePZDBOwh/ufZH/PrF9/NfvvADexq8arfEf/nCD/DrF99/IIN3ED6+8Uf81pWf56effuueBq/aK/PTT7+V37ry8yMzeJ9K/TG/v/QBfuH5H9zT4NV6ZX7h+R/k95c+cCCDp6NzGL7ryUf4ricfud2noTMhvumjp/imj5663acxcRIfiJL4wGQivKNgGLkb93YbeA3wHinl+s0/lFKuMLjv7KsPchDd3B2QNz/4zhuPdzN4Q2O303uOwz+KvYZp1wKbjZVdDd7Q2G02Vph2LfCPYq8ZifYro69lyjlPsrm6q8EbGrtkc5Up5zyvjL52JNqPhV5D3DFPurW6q8EbGrt0a5W4Y57HQqP53Do6Ojo6dzZiAtttwArUd3mttvX6vujm7oA8FHoFP/uVH7zxfLvB227sfvYrP8hDoVeMRNtrDfDuV/7yrgZvu7F79yt/Ga91ND2IvBY/P/L4r+xq8LYbux95/FfwWvwj0fZY/Lzj4V/c1eBtN3bvePgX8YxIW0dHR0fnzsUgwG4xjn27DXwZ+LdiW8XZ1vN/Bzx3kIMcy9wJIX5dCJETQrx4nOPcLexm8MZp7IbsZvDGaexuaO9i8MZp7IbsZvB0Y6ejo6Nz/6JJaPfUsW+3gXcDXwtcEEK8RwjxZiHEu4GLwNcB7znIQY5bLfubwK8Av3XM49w1DA3e0MzdbOpgPMZuyNDgDc3cOz83yOmr9SpjM3Y3tLcM3tDM/cjfDrTr/crYjN2QocEbmrn3Pv3GG9q6sdPR0dG5/xgWVNxrSCk/LoT4JuCngB9jsDosGUT0/g8p5V8d5DjHMndSys8IIeaPc4y7ke0Gb8g4jd2QocF75+e+m1qvAoDH4hursbuhvWXwfuRvv5t6f6DtNvvGauyGDA3ee59+4y3aurHTGSV7FU7s9NrvvP5AKyQ6dyh7FU7s9Nqfv+HaOE9nYuxVOLHTa6m3Z8d5OkdCk9Dua7f7NMaClPLjwMeFEC7AD5SllI3DHGPsfe6EEN8PfD/A7OzsuOV0dHR0dHR07nEGOXf3fNmAdtN2KMZu7qSUHwI+BIM7VIxbbxJsz7Eb8kOff/PYo3fDHLtar4LH4gMGy7L/5Qs/MPbo3TDHrt6v4DYPtOv9Cj/99FvHHr0b5tht1/6F539Qj97pjIydInHDiJ0epbv32CkSN4zY3StRup3YKRI3jNjdiVG6ndAkdHr3ZuROCPH1wHuBx9lalhVCPAv8mJTyLw9yjHve9o6anYon9qqiHSXbiyfe/9W/zfu/+rf3bZMyEu1txRM//Y9+m5/+R7+9b5uUUbC9eOLHH/8IP/74R/Ztk6Kjo6Ojc28yjNyNe5s0QoivAz4GuICfZFAh+1OAG/iYEOIbDnIc3dwdgt2qYvdrkzIKdquK3a9Nyki0d6mK3a9NyijYrSp2vzYpOjo6Ojr3LoNqWW3s223g3cDHgQellO+WUv4PKeW7gAeAJ4F3HeQgx22F8nvA3wJnhBCbQog3Hed4dzL7tTsZp8Hbr93JOA3efu1Oxmnw9mt3ohs8HR0dnfuYe7OL8aPAf5dS3pLGJqXUgF/een1fjmXupJTfKaWMSynNUsppKeWHj3O8O5kPXnj/jce75dVtN3g3v+c4/G3mqX372G03eH+beWok2l/IfnLfPnbbDd4Xsp8cifYzhaf27WO33eA9UxjN59bR0dHRuXMxCLCbDWPfbgM9BkuwO+Heen1fxl5Qca/wK1/z27z109/Nmx98554FE0OD98EL7+dXvua3R6L9DXP/FBjchmyvgomhwfvbzFM33nNcvnZmcJxXRl+7Z8HE0OB9IfvJG+85Lq9OfBswuA3ZXgUTQ4P3TOGpG+/R0RkVeiHF/cW9XEixF3dLIcUQKaFzb7ZCeQp4jxDi81LKteEPt9rOvXfr9X3Rzd0hOKhZeyj0ipEZuyEHNWtea2Bkxm7IQc2a1+IfmbEbclCz5rH4dWOno6Ojc58gDGC7N1uh/DDwWeCqEOLzQAaIAV8FlLde35d78ps5CgLodtoT09M0jV63ixBioN3tTExbSkmv20EIMCDodW6PtkDQ701OG6DXbWMYiKP0uxPVVntdDEIgBKi3SxuBVHpsS+cYK5rS2/rcAjR1stpqf/DvDaD0GKStTAa130OIwWeVah+pTVYbTSKEQCoKUpvcbZQ0pQ9bn1VqCpqqTE5bfUlPaiqq0p+gtoqm9rZ+zzWU/oFWz0ajralbv28CKbWJjifDsWzSSAndvjb2bfKfS15jkFf3iwwqZl+59f9fAh6VUl49yHH0yB3Qbrc5MT/L2uYqJoeHYDiKyTS+r6Zeq1LJZ/B7HDgcDk4vzLK8nqRlsuENRzGZzWPTbjXqNApZgm47Pq8Xp8PB0uompUYVTyiKyWwZm3an1aRZzBByWQkHowT9Pq6urFPO1nH4o5gs1rFp9zptOuUsEaeZqegUAP3+OpulJMIVxGSxjU1b6XXRGgVm3WZOzs0B0GpvsFZMojkCmKz2sWmr/R6yWWTaZeDciXmMRiOPLza5spmjbfBgtIxPW1MVRLfCot/EIw+cwGw28w8fmefitU0afRMm8/i+c6mpCKXNbNjBKx46g91u5ytOBLm0kaZl8GK2u8aqrTRLRO0qjzx4ErvdzmPzQS6tb9Iye7E6vWPU1ug3iviNXc6fncNms/H4yQgXVpI0jB7MDu/AfIxLu1nCb2hz/swMNpuNRxaiXFpL0jR5sLp849OWkm69jEut88BiHLvdziMLcS6tbdIyubF6A2y7D/vIta3dKg/PRrHb7Ty0OM3l1U2aJhcOXwhhGJ92p17F2CryQCKMzWZjcXaa9Y1lrC4vwXAMo3F8t+iqVSuU82mCPjeBwHjvkLQdgwDb7cmJGztSygzwQ8c5hpjkLPqJJ56QX/rSlyamtx+dTof1jQ3q9SZGg4F4PEq73SGVK+IKhPAHQiO9GHU7HYq5FGY0phMxKtUa5UoNgwGm4jH6fYW1dBaTO4AnEMQwwgtCv9elms9iQ2F+OkGt3iBTKGEyCGYSMTRNcn0jjXR48AQiI9VW+j3qxSw22ePE7BTNVptkNo9BGJhNRBAGA1fXUnRNTpz+MIYRXoxURaFVzuGQHU7PTdHp9riezCIEnJyOYTaZeHFpg6JqweIOYDCOztRrqkq/XiRg7PHgyRkUReXKegpNg9MzUZwOOy9cWyPXNmB0B0eqLTWNfr2E39Tl/IlpBHBlLUlPlZyeieJxOXn+8gprpR6a1YfBOLoJhZQaartK1K7w6Nk5TEYjL17foNlVOTcfIejz8uLl66ymyijCPtrPLSVqt0XYa+TRB0/isNt4cWmDeqfP6ekQ0VCAKysbrBY6qLYARvPoJhRSSvqtKj5Dk4dOJPC4nFxd3aTeUZgJe4mFgyxvpFgrtlHtwZGaeiklvWYNp1rlgdkIAZ+H1Y0kjZ5C2OMkFgmzlsxyPVejbw1itjlGpg3Qa9Vw9CucmQkRCfpZT2Wot7sEXA6m4lE2M3muZ6uojgCWERvrXquBqV3kZNxPPBxkI52h0uzgtVuZnYqTLZS4nimjOoNYnZ7RarebiHqe+ZCbqViYVDZPvtrAbbewMJ2gVKlyPV1Ccwawu32j1e60UKo5El4b81NxcoUC5VoTi8nI3HSCeqNJtlDCG4zi9QdGOpZ12m0K2SRWIyzOz+F275b/PzqEEE9LKZ8YPn/0scflxz/9t2PXjXist+hOCiGEF3gYiDNYmn1eSlk58PvvR3OnqiqpVIpcvkAwHCUUjtBqNUknk5iNgkgkTL5QpNLsEAjHcR7zF1dVFIr5LP1Wjdmp+EA/k8ftDxEKh+l2OuQyKcwGSTwWpVAsk63UcQYjOD3Hm+Vrqkq1mEe2asxNxRDARjqL1eUjEIqgKH2K2ZcMZ7lSY7NQxuKN4PL6jqetadTLeWhWWJyOYzIZWd1MY3S48YciqKpKOZ/BrPWZnYpTazRZThfAGcDh8R/rYiSlpFkpYmxXODkdxWa1sLSepCVsOINRpJS0ilmcosfJ2SkazTYX19IjiTAMZvJVnGqNB+ZjeJwOrqxuUlFM2HxhEAY6lRxu0eXM3BSdXp8L15NUcGJ1+44VYbh1kI8S8Hm4urZJsSuw+CIYDEbalTxu2ebM/BSqqvHspVWyLSNGx/G0AZROA4+hyUOLMSIhP1dXk6yXumiOIAajmX6jRMjc4aGTMxgMgmdfvEa61EGYHMeObii9Dm6LyoOnpplKRLm+nmK12EZzBDGaLPQaZXyGFg+dmMZiNvHc1TWybSMGe+DYEwql28Lar3A64WU2EWUzkyNZaWP2RjDbHLSrRUydCqemo1uGc33L1IeObW6VbgtDq8RCyMnCTIxsvkC+1sYZjGJ3uqhXSvSqBWZiIdxOJxeW1kg1JAZnCIPpeKZe6XUwtIrMB2ycnJ+66doVxeFy06hW6FTyJEJ+vB43V1Y2SDclRncI4zFXCYYR8YTLxOn5KcrVGqlCBbs/jMvrp1mr0ipliQe8BAM+rq8nSdX7GL2RY0fq1X6PfjVPxCY5PT9NrdFkPVvE7Anh9PrpNBt0ShmifhfRUJDVZJp0rYfJG8ZyTGOtKn06lTw+Y5+zCzO0Wm3SuSLOQBh/IES71aSUTeK2W4hGwmRzeRqdPsFoAofzeMZaUfoUc1n67TrzM1OEw+GxRWO3s7O5+7ux60Y8lomaOzG4CL8HeAfgBIYmrQV8AHi3PEB+yX1l7qSUFAoFNpMpHC430VgC801LoFJKyuUSuUwKv8+L2+ViI5lGESZC0QQW6+Fm+VJKKqUi9XKeeDiI02FnM5nGZHMQjsaxWG69uFUrZQq5NH6PG5/Xw3oqQ1OReMIxrLbDzfKllDSqFdrlPNMhPx6Pm41kGtVgJhiJv+yzNOo1yrk0fo+DUCDARipDqa3gCsaw2g9/MWrWKnQrOaZCPgI+LxupDB1N4A/HsdpuvbC2mg0q+TR+p41oOMRmOkum3sXii2C1Ow+t3WnUUWo5poMeoqEA68kM+ZaCPRjFsu177LZbdEpZIi4LM/Eom9k8y5kaisN/pAhDv93E0C6xGHYzm4iynsqQrHQGF/Vtn6XfbdOr5Ig5zSzMxMnkilxNlehYfFgch59QKN02hlaRhbCLhekYqWye9VID4Q5jddz6WZRel14lR9hu4ORsglyxzIvLGSqKA7P98Npqv4tFqXAy7ubMwgzpXJErm0XaZv/LlkA1pY9sFpjyGDl3YoZypcbzl1YoNSVGi/3Qg4Wm9jHJDovTAc6dXqRQqnBpI0/b5MOyLVKjKX3URomYQ+PBk7PUmy1evJ6iIp2Y7IdfstSUHrRLzHhNnDs5S63e5Ho6j+YIYnPfOknQ1EEU2UXnJVO/nKSGC7Pr8MZaU/qozSJRu+TBEzO02h3WM3nMniAef3CbtkqlkEV0GyxOx1FUjReXNiipdsyuwKGNtaYqqM0iEavK+ZMzt646+G9dddBUlUqpgGxVmEvEMBgMXLi+SVmzYfEEMBgOZ6w1VaVXLxIwdDl3YhopJSubaQxOH55A+BZtqWlUywXURpm5eBSL2cTF5Q2q0obFe3hjrWkq3WoRt9bkgfkpjEYDSxspVKt7sOJx0yRBSkmjXERtlJiPh3HYbYNJnmrG5gtjPKSxlppGq1rE1q9zdi6O2WRiPZnGbPcQiMRuSSWSUlItF6mVcsRCAVxOBxvJNJhshKJxzJbDGWspJaVCnkalwFQ0RCKRGGvq0k5sN3ePPf6E/PTf/P3YdT1206TN3U8A/5nBbVs/CmSBKPDtwFuAn5ZS/ti+x7lfzF29XmdtfQMNQTwxjcOxu2FRVZV8NkO1XCQajQCwmc5i2Yp2HSSHodmoU86l8TitRMNhMtkcnZ5COD6Fc4/Zk6ZpFPI56uUiiVgYo9HI8kYKbC68oQjGA/xBdVpNavkMfruFRCzyUhQyEsfp2n3gllJSLuZploskokFsNhvX15N0DTbcoSimA1yMup02zUIan83E7FSMQqlEodrAE4zh2iMKKaWkWinSKheYioRwOuxcW0tS10zY/ZED5QL2ux3a5RwBGyxOJyhVaqznyxg9IRwe357arVoFrVZgPhbE53FzeWWDdEM7cIRB7ffQ6kWiTsHZhWmq9SZLyTzq1nLMXqah3agiGgUWon5Cfh/X1pJslHtIZ/BAeYgDw1Ik6oAHT8zQbLW5spmlb/Nh9+y9HNNt1pH1PPNby4ZXVzZZStfomrwYD5ATp6kKdCpM+ww8cmaeTrfPC9eTVDQ7Zpd/T8OidFqYeyVOxjzMJaKsrG1yeTlNW7UcaLlUahqy3yQRtPPo+VOomuSF6xtUVMdAew/DonTbGNuDaNfibJz1VJaryTIdkw+Tbf8JhdQ0lFaJsKXHw6dmMRgNXFlN0jI6cfj2Ti0Ymvqw08jidIJMvsTVZJGOxX8gUy81bRCFFE3Ob0UhlzdSaFYX3uDe14het0OtkMFplMxNxSmUq1xaz9EyvtwI76gtJf1GGY9o8uBCArfTzvJ6EsVkwxvaO1+43+tRLWSwyj4LM1NUanUur+dom71YXPsb60FEvIJDqfHAXAyv28nyepKuwYw3FNvzGqH0+1QLGSxql8XZKRqtFpfXs3TMHqz7/I3c0G5UsbRLnJoKE/B5WNlIUleNuEMxzHv8naqKQr2Yxay0ODGToNdXuLKepmvxDP4+D2CsO40qNEosxnyEA342U2l6moFgNLHnxF9VVUr5DL1mdZB+IyWbqSwOr59AKHqg9JtGrUYpl8LndjA/N4vNNr5c2b3YKXL35AQid+HJR+5SwG9LKV+WcyeE+BngX0opE/se5143d71ej/WNDWr1BtFYAp//4Emf3W6XdGoTpdslHo/SaDbJFMp4ghG8vp0vCL1ul2IujUHtMTMVp9FoUihXCIRj+A6R99Dv98hl0iidFlOJGK12h41sHqs3iHvbrHyI0u9TzWcwq10WZqZoNluk8yXcgTC+wM7v2Ylh6F3tNJhJxOj1FVaSWQwuP25fcMeLkaoo1IpZLEqLE7NTdLs9NrN5rN4APn/owDl8qqpQzudQ23XmpmKomuTqegrF6sHh2/k4mqrQKOexqy1OzSZQVY2lzQyazYPjENqaptIsFTB365yYGUQYXlzaoKLZMO8SYZCaRq9Wwmdoc25xGiHgymqKlsmJ3Rs68HLfYFZewNp7aVb+wtI6+a4Z8y65gC8N8i3On5jGZDJyZTVJAzs2/8GjElJK2pUi1l7tRi7gsxeX2aiqYPXtrC0lartK2Nbj4VMzOB02XlhaJ9syYHAePH9wkKdWwSMbnF+I4/W4eP7CVVYzNTTDzvl4UkrUXougy8Aj5xbxetxcWFon02KgfcCIyC1L2HNRgj4PF6+vs17qIx0BjKaXmwUpJf12DY9s8OBilIDXw/WNFMWuwOaLHKooqN2oQqPAfMT3kqmv9JCO3Qt8eq0atl6FM9PBG7ltjb7EE4q9LCq9F616jWYpS8TrJBIKcn0jxWqhhWrbPRew325g7ZU4lQgwFR1E2KtdBU8ohu0Q0f12s0G9kCHoshGLhFlPZVkpNJDO0K65gP12cysq7WYmHiGVzVNqdnGHYtgcB4/ud9ot6oU0fruF6XiUZDbPSq6GdIWwOHaedPc7LWQ9z4zPzvx0nHSuQLbSwB6MYXcePMrd67RpFDL4bAbmtnIBV3MVcIWwuXY21v1uh341R9RpYnEmQalUplhr4gvHcR8iZafb7VDMpTHJPjOJONVanXypii8cw+vbuYdot9uhkElhQmFxfg6vd3yFQAdhp8jdZyYQuXNPPnLXBL5VSvnkDq+9HvhTKeW+v/T3rLnTNI10Ok06myMQDBOOHGyWshP1eo1MKonNYiYcDpHO5Gh0+wQi8Rs5DJqqUizk6DYqzMSjAKQyOZweP6FI9MgVS61mk1w6ic1iIBqJkMkXKNbbuEKDnJbhZ60W86iNCvNTMYwGAxupzLErfzvtFsVsGptpUPCRL5ZJlWrY/REc7sEfupSSermA1igzn4hgs1pYS6bB4sC/z0x+L7qdDuV8GptBMpOIUarUWM2WMbiDN6JwUkqa1RKGVpkTiTAup4Ol9SQNzYwjeLBo304ovS7NYg6vSWFxZopKrcHljRwtkwfrVoRhYAyq2Ho1HpgN4/d6uLaWpNgF6yEH+ZtRlT6dcg6fUeH0/CAX8MJKmrrBheWmXMDhIH92Jkw44GN5I0W2pQ5yvKxHm1mrikKnksMjepydn6LT7fPlK2vk2xaMDs+NKJzSbeKiwYPzYaZiYZbWUqwUWqj2AKYjVt9qmoraKBK2Kjx0cgZVVXn2xatkK30MFscNbbXfxWHq88CJBHMzCdaSWZZzdRR7AJP1aLlMg+KTIgFTh/MnZjAYDDx3dY1814zR4UdsmXql28bcK3My5ubEbIJkNs9msY7RG33ZsvdhtFvVItZuldM3mfpCz4LJ9ZKpH+a2zfqtnJwb5LZlKnUcgQhO99EGXSkl9VKBfr3EbDyMw27nhatrZDtikI+3pa32u4hWkWmvmTML01SqNVLFMnZ/BLd39+bi+2nXyiW6N+UCXry+TrYtMHlCN5Ys1X4PtV4g6hhExOuNJpu5EhZvCLfvaHm5UkoatQqdco6pcACfx83V1U2ybYnJG8a0FTVWlT79ap6AWeXc4gyNVpvVdA6TK4hrlwn2QWjWq/TKORJBL6GAj+sbSXLNW/92NVWhXcnjocuZ+Sn6ikIyk8fpC+LbtvR8GBr1GuV8Gr/LTigYIJ3J0u5rBKNT2LdWs4Y54t1mlbnpBNFodGJ5dXuxY+TuMxOI3LknHrn7BPCklPKnd3jtPwFfJ6V87b7HuRfNXalUYn19E6vDQSw+9bLctqMgpaRYLJDPpgkHA9jtdtY3U2C2YbU7qZfzRIN+PG4XyVQaTFaiscPn6e2mXSmXKOUzhPw+3G4Xq5spOtKIxemmUykQD3jx+7wk0xm6moFQNH7oPL3dqFUrVAoZwj4PPq+HtWSGWl9idnjo10vE/C4iwQDJdJZGT8UfiR9qJr8XzXqNaiFNyOsiFAiwlsyQa/YxOr1ojTIJn5NENEQymyNb62L1R7AeYia/F51Wg14pR9zrIB4NsZbMslpsoFjcGLsN5oKOG7ltG6UmBs/Lc9uOSq89qISLe63MJWJsZvIspat0zW5M/QZzARsn56bIFkqs5KrgCu46+z8s/W4bpZIn5hrkAqayBS6s5Khpdqyyw2LEwQMnZ8mXKlxay9M0eg+0pHcQhkZi1m/hzMI0uUKJFy6vUmmBxagxn/By/uxJKrUGF9cyNA0ezM7RtPcYto1JuA08sDhDudbgxeU0NenEqPWYcsNDp+dpNFtc28yhOvz7LnsfWFvp0yln8RgVTs9tmfrVNA3hArVPxKbw4IkZesPcNqcfT2A0LTZUpU+1kMPYb7IwnbhR4FOWDoRUCVv6nD8xg2SQ22Z0+vAGj24wbtFWFaqFPHTqLEzHUTTJhesb1IQTpMQr2jy4MMhtW95MD9JTgtGRVNRrqkq1lEe2qsxPDSL1l1Y2qUk7GAw4lAbnFhKYTSaW1lMoFifuwMFSY/bV1jTq5QI0y5yYHuTLXVrdpIEdYTRj6VY5PTMovlnfTGGwOglG4iNpkzVIvynQLOeJR4PYbTbWk2mMFgcWm516OU8sHGB6auqWnPTbzX0UuTsLfAz4n8Dv8VLO3XcA3w98i5Ty4r7HuZfMXbPZZG19g76iEk9M43SNvpeVoijksmnq1TLxWAxFVWk2W4SCAfLFIs1Wj3Asjss92pJ7GORPFHI5mrUSidggF7BSqxMNhyiWypRqTXzh2KHC9QdF0zRKxRztaonpeBST0UihVCUWCVKp1siWqriDUdzHrLDdiUFhSoFOtch0NIzVaiFTKJGIhKg1mqxkChhcQRze41XY7qbdqpaQjRKL8UF0cCOTZzoaotlqc20zN8ht84621cBQu12vYGyWODEVwu9xs57OkQgH6PYVrqyl6VjcOLw7L5Ufl06jimgUORHzE/T7WEtmiYcDqJrGC0sbFBUbZufhk/EPQr/dwNYvc2YqQCIaYm0jRSTkx2Aw8vzSBsX+oHWNOGQy/oG0O03MnTInYx5m4hE2Mnn8bidWi5krq0mawo7dHx5pC5chvXaLfjVL3GNjNhEdVEHabbicdq6vJekfILftqHTbbeqFDG6rYDYRJ1soYzWb8LidrG6m6AoL3nAU8xh6Yfa6Har5QS7g7FScYqWGQYDf62F1I0VLGvGGYphHMFneTr/XpVrIYGMrUl9voCgq4YCPtc00lZ6GKxjHMoZcM6Xfp17MYNO6nJybptFq0en2iYYCJNMZ2j2NQDSBfUQT1lu0FYViLn0j/aavKLTabWan985Jv13sFLn7xAQid6HJR+6GHcd3GlDk9p9LKXe8AN8z5q5QKLC2sUkkmsAfGP1Au51Op006mcSARiIR5+rSCr5QhEBwtL3xdqLX7ZLNpBBaj4W5OS5cWcLhDeIPHjy/7Kj0ez2K+QwGpcOpE4u8cPkqFpcf34hm8nuhKH3K+SyGXosHzpzimQuX6ZpcOAOj7Y23E5qq0CgO8voeO3+Wp1+8REWz4RjTIH+LtqbSrhRwak1e+dADfPniFUp9M1b/4SvuDovUNNrVIo5+nVc+fJbnLy+xWlExOA6e23ZkbSnpNwftS77m8XNcur7KSrGHcAaP3UbjINq9RgW3rPOqxx5gPZlms9rF4oseedn7MNrtegVDs8grzsxTrlTJVlu4Q0erXD8sjVqFdinHqdkE7U6HZKGCOxTDfsw2GgehuZULOB+PgNRYSRdwBmM3UlDGSbvZoFHMMBP2Y7VYuLKexnZTCso46bZbNIsZpgMufB43y+tJvKE4nl3y4UZJp92mmE3isZt54OyZsesdlR3N3WcnYO5cEzd3P87Oxm5HpJQ/sdPP75k7VLTbbYKhCIFgcCJ6NpuduYVFLl94nna7jcvnJxgKT0TbYrUyM7fAtYsDbavDQzAcmYi22WIhNjXL+tIlWq0WRquTQDg6EW2TyUw4Pk1mbYlWq0VXmHGHYxPRNhhNeCJxGulVms0mTcWAKxKfjLbBiDMQpVPYpNlsUu9qOKL7FkuNBGEw4PCHaRf6tNttCrUOJs/MZLSFwOIKUK0ptNttcuU6Jt/8xLStbj/Vqkqr1aJYa2IPzY99EjHUdnj8NDWNZqtNtd7EG505dPuKo+Ly+EBKGq0WzVYbb2QKq318dzK5GefWikej2UDVNFyhwxUtHAe704UwJKg1Ctisfay+8ESMHYDV7sAQTlCupLGYTbgDkYkYOwCb3U50ep7s2oHuanXHYBACq+neu0OFlPK9ozjOvffN7MO3/OnX8+nNT+2736c3P8W3/OnXj1T7T65/lHKntO9+5U6JP7n+0ZFq/++VP6DS3V+70i3xv1f+YKTaP/v0j7JeX953v/X6Mj/79I+OVPu9X/xerpSf23e/K+XneO8Xv3ek2reTj1x9D+nWyr77pVsrfOTqe8Z6Ltlah7+5XuATV7L8zfUC2drk7nuZqXX43FKeJy9l+dxSnswEtXV0dMaHJiU9RRv7drdyz0TuDsK3/OnXk2tn+eHPvZ2f+eoP8DXTr95xv09vfoof/tzbb7znz771r46t/SfXP8ovfvln+NPrf8AvvOqD+G07t2Qpd0q84zNvZnXLDP2TE284tvb/XvkD/vsL7+Njq3/Iz3zl/8Bn3Vm70i3xw5//N6zXB6bg/1z49mNr/+zTP8rfZD7B3+c+wy989UeYdS/uuN96fZl3fO6NKFqfn30afujxnzq29nu/+L2sN67xc19+K//h0V/hjP+RHfe7Un6On/vyW2+858e/4tePrX07+cjV9/Dl4qd5ofR53vnwB4k7FnbcL91a4f3PvxlV9uHqe3jj6feM9DyW8nU+cTnHSrH5stcWgk5edzbCyfB4ojLXcnWevJRlufBy7cWQk9c/EOVUZPwRoVf/9uC7/9R372+0R82DvzoNwIW3bE5c+3ZzOz/7K/7nILL97P+9MXHt6V8crKJs/mB24tqT5l6N3I2K++qbeefjP3Lj8Q9/7u07RvBuNnbb33McXj31eubdi6zWl3nHZ968YwTvZmM3717k1VOvH4n2P068jln3Auv1FX748/9mxwjezcZu1r3AP068biTa33H6TZgMZhStzzs+98YdI3g3GzuTwcx3nH7TSLTfcPIHbzz+uS+/dccI3s3Gbvt77la+bvqNGIUZVfZ5//Nv3jGCd7OxMwozXzf9xpGewxdXS3z4b1ZYKTaxmAw8PuvnNacjPD7rx2IysFJs8uG/WeGLa/tHkw/LF1aK/M/PLrNcaGI1GXhizs9rz0R4Ys6P1WRgudDkf352mS+sFkeuraOjMxk0Kekq2ti3u5X7ytx9zfSr+Zmv/sCN59sN3nZjt1d077D4bQF+4VUf3NXgbTd2e0X3DovPGuBnvvJ/7Grwthu7vaJ7h2XWvcgvfPVHdjV4243dXtG9w3LG/wj/4dFfufF8u8Hbbuz2iu7dTcQdC7zz4Q/uavC2G7u9ontHYSlf54+/vIkEXn06zI9+/QN8+2MzfP25GN/+2Aw/+vUP8OrTYSTwx89uspSvj0z7Wq7OHz4z0H7tmQg/9k3n+OdPzPKN5+P88ydm+bFvOsdrz0SQwB8+vcm13Oi0dXR0Jscwcjfu7W7lWGcuhPgGIcQVIcTSVnO9O57dDN44jd2Q3QzeOI3dkN0M3jiN3ZDdDN44jd2Q3QzevWrshuxm8MZt7AA+cTl3w9h9w7k4VvOtRQhWs5FvOBe/YfA+cTk3Mu0nL2VvGLtvPB/Htk3bZjbyjefjNwzek5fu/eUrHZ17ESklPVUb+3a3cmRzJ4QwAv8N+EbgHPCdQohzozqxcbKTwRu3sRuy3eB9z5Nv4HuefMNYjd2Q7QbvLU99J2956jvHauyGbDd4b/vMd/G2z3zXWI3dkJ0M3r1s7IZsN3jve+5NvO+5N43V2GVrnRtLsa85tXcF96tPRW4s0Y6iyCJT69xYin3Nmb21X3MmcmOJVi+y0NG5OxET+O9u5TgFFa8ElqSUywBCiN8HvhXYt3PyncDQ4N1s6mC8xm7I0OB9z5NvoNItA+Cz+sdq7IYMDd5bnvpOqr2BttfiH6uxGzI0eG/7zHchGfRXFIixGrshQ4N3s6mDe9fYDRkavPc996ZbvvNxGDuApXwDgIcS3pdF7LZjMxs5H/fyzEaZpXyDqOd4/eOWtpZYH5ryvixit6P2lJen18os5erEjqkNLxVPHPS1URZZDAsIDvravVRkcTs/+7B44qCvjbLIYlg8cdDX7rUiCyEElrt42XTcHMfcTQE3/6ZuAv9g+05CiO9ncMsMZmdnjyGno6Nzp9NRBs3VPbaDNTj22E23vO9Y2n3tUNrerf2G79PR0bl7kFutUHR2ZuytUKSUHwI+BIM7VIxb76Bsz7Ebsl+blFEwzLGrdMv4rINGlZVumXd85s1jj94Nc+yqvTJey0C72ivzw5//N2OP3g1z7CTyRrhbInnH59449ujd9hy7Ifu1SbnbGebYbf/O3//8m8cSvbOZBhGzWqd/oP1rbeWW9x1L22w4lHZ1a7/h+47LTpG4SbVC2Skadb+0Qrmdn32nSNykWqHsFIm7n1qh6JG7vTnON5MEbo47T2/97I5np+KJvapoR8n24onfeP1H+Y3Xf3TfNimjYHvxxK++5vf41df83r5tUkbB9uKJX3rV7/BLr/qdfdukjIKdiif2qqK9V9hePPEfH/kw//GRD+/bJuU4nAwPblH1QqpKt793NK7TV3kxXb3lfcfS3upb90KySucg2snqLe/T0dG5e5B6E+M9OY65+yJwSgixIISwAN8B/NloTmt87FYVu1+blFGwW1Xsfm1SRsFuVbH7tUkZBbtVxe7XJmUU7FYVu1+blLud3api92uTclyiHhsLQSc9ReOpa3tXwX7qWo6eorEQdB473w4g5rGxGHLSVTSeurK39lNXcnQVjcWQcyT5djo6OpNlGLkb93a3cuQzl1IqwFuBvwIuAR+VUl4Y1YmNg/3anYzT4O3X7mScBm+/difjNHj7tTsZp8Hbr93JvWrw9mt3Mm6D97qzEQTwqat5/vJi+mVRtE5f5S8vpvnU1Txia/9R8foHogjgk1dy/MWLO2v/xYtpPnklh9jaX0dH5+5DSklf0ca+3a0cy5ZKKf9cSnlaSnlCSnn8+0WNmfc//dM3Hu+WV7fd4N38nuPwqeST+7Y72W7wPpV8ciTan019Yt92J9sN3mdTnxiJ9u9f/fC+7U62G7zfv/rhkWh/dOkXbzzeLa9uu8G7+T13K3+9+ZF9251sN3h/vfmRkemfDLv5tkenbxi8//pXl/jo0xv85cU0H316g//6V5duGLtve8X0SG9Bdiri5p89Nn3D4P3kn1/k97+0zl+8mOb3v7TOT/75xRvG7p89Pj2RW5Dp6OiMHj1ytzf31b1l/+xb/4pv+dOv552P/8ieBRNDg/f+p396JPeVhZfuEfvqqdfvWTAxNHifSj45kvvKwkv3iP3HidftWTAxNHifTX1iJPeVhcE9Yn/26cFtyPYqmBgavN+/+uGR3FcW4Me/4td57xe/lzec/ME9CyaGBu+jS794199XFhjcI/bqe/i66TfuWTAxNHh/vfmRkd9X9ivmA/id5hv3ln1mo3zL6+O8t+wrF4L4nZYb95Z9eu1W7UneW/Z23FN2yL1eSLEXt/Oz3457yg65HwophgybGOvszH1l7oADm7VhHt4oOahZ89sCIzN2Qw5q1nzWwMiM3ZCDmrVZ9+LIjN2Qg5q1M/5H7gljN+SgZi3uWBi5sRtyMuzmZNhNttZhKd+go6jYTEZOhl0jybHbi1MRN6cibjK1Dku5Op2+hs1s4GTErefY6ejcE9zdTYbHzT1l7lqtJqqqYjQev63CQWjU6whhQAhBp9VGVRSMpsl8pc1G48bjbreNoiiYJqTdbjWRUkMIQb/bod/vYTZbJqLd7bRRlT5CCLR+H6XXxWSxTkS73+uiKQpCCKQ6WW2130Pr9zAYDKCp9LttzFb7ZLSVPlIZaBsEKN02pkNoRz22I5s5TVVA7SGEwGQw0Og0MducB35/zGM7spmTmgpKF4PBgNEgaLUb2F3eIx3r8NoaSreFQVgxCGg3G5gt420yfrN2t9XC6LEMPnergcVmQ4jxD6RSSrrtJk6LAGGg3Wxic7gmpt1pNnAZBAZhoNdu4XB7J6IN0Gk1sRsEIGi3W3g0bfD3PgFajfrEtEaFEGA26eZuN+4ZcxeLxehvbLB05RKRWAKf3z+2P8pup0M6lUTpdzl1chGn00mn02F16Qr+cBR/IDg27V6vSy6TRu21OXPqBB6Ph263S3LlGk5/CH8wNDZtpd+nkMsgu03OnljA7/fT6/VY27iO1RPAFwiP7QKhKgqlQhbZaXBmYZZQKMT5fp+ra+u0rR6cgRAGw3hMvaaqNEt5LP0G5xenCIVCvOK0yqXlDZoGB3ZfGMOYJhRS02hV8tj7DR49MdB+4hy8uLRGrW7B5ouMbUIhNY12rYStW+ORhQTBYJCvfoWRL1+6Tqpaw+AMYDAdrGHwobWlpN+s4BUNzp8dfO6vfIWV5y5fJ1WpIZxBjGOaUAy0qzi1Oo+ejBIOh3E6nVy6tkI+W8Hmj43V1LfrFUSzyJmIn6lEnFAwwLXlVfIbFTyhOFb7+Ex9s16lVcoR87mZmZ5CVVWWllfJbyzjCcWwOQ5urA9Lq1GnUcgS8thZmJtHSolcWaOwcR1XMIbdefx2ObvRaTWpFzIEnBZOLsxjNBpRV9dIb17H5o/gcHnGpt1tt2gWMwTsJk6fOoHZbEZZ32Bz5Qq+UByP1zc+7U6bYjaFxaBx9tSJsemMAwn01Tumde4dh5Bycl/OE088Ib/0pS+NVaPRaLC2voGqSWKJaZzO0V2MVFUll0lTq5ZIxONEo9FbjFSr1WJ1bZ1Wp084nsDlGl1Oj6Zp5HM5GpUC04kYsVjsFiPV6XRYWVujXG8TiMRxuUd3MdI0jXIpT6tSYjoeIRGP3xId7Xa7rK1vkKvUcAeiuEd4MZJSUikXaFeKTEfDTE8lbolQDszlJquZIgZPCIfHNzJzK6WkVS0jG0UWYiFmZ6Yxm18yM/1+n/XNJNc2cyh2P3bPaCcU7XoFQ7PIYjzAwuwsFstLZkZVVTY2k1xZz9C1eLD7Rjuh6DRqiEaR+YiXkwtzWK0vmRlVVUmm0jx3bYOyasfs9CNGaOr7nSbWXpnTcR9nTs5jv8nMaJpGOp3h+WtrlBQbZndwpNpKt4WpXWIx4uaBUws4HI4br0kpyWSzXF7ZpCkcOPyjNfW9Tpt+JUvMbebMiQVcrpfMjJSSfD7P0toGitmJLxTBOEJj3eu0qRUyuMyCUwtzeDwvXT+klJRKJZZW1umZrPhCMUzmEWp3u1QLGexC5dTCHD6f75bXy+Uy11bWaEsT3nAM8wiNtdLvUS1ksGp9Ti3MEgjcGh2tVqtcXV6j1gd3KIbZOrolfUXpUy9ksWkdTs3PEArdOjGv1+ssr67TUSTBaAKb3bHH0Q6rrVDKZ+i3aszPTBGJRCYWoTwqQoinpZRPDJ8//vgT8m/+7gtj17VbjLfo3i3cc+YOXroYrW9sYne6iMWnbhmUj3a8IvlsmqDfx9TU3scrl8usrK1jNNuJxONYjnkxqpRLFHMZAj4PszPTtwzy26lWq1xfXUPBSDCawHrMi1G9VqWcSxPyupibm71lkH/ZvvU611fWaCkSfySO1Xa8CEOzUaeaTxNwO1iYm71lkH/Zvs0mV5dXyTV62AJRrMe8EHZbTTrlLDGPjVML87cM8ttptVpcXV4lWW5h8ISxOo4XYeh12iiVHHHPywf57XQ6Ha6trLKWryHcYazO400o+t0O/UqOqNPIAycXbhnkt9Ptdrm2vMbljQItkxeL43gTCrXfg1aRGZ+Jh88svmyQv5ler8fy2gaX1rI0jV4sTs+xBidN6aM1CsScgkfOLr5skL8ZRVFY29hkKZlDtQeObepVpU+7nMNj6HHuxBzB4O5GXVVVNpNJ1lI5TO4AnsDxIvWqolAt5jB0G5ycm95zkFdVlXQ6zUoyg9Hlw3vMSL2qqlQLOejUWZxJEI1Gdz2epmmkMxmWN1IIuwdvMHIsY61pGrVSHrVZ4cR0nHg8vqu2lJJsNsu1tU0Uiwt3MILRePRoudQ06uUisllmcTrKVCKxayrR0NSvbiQx2lwEIzFMxzD1UkoqpQKNUp5ENMjU1NTE0nmOy3Zz99jjT8hP/83fj13XYzfp5m4/JmXuhgwvRplcnkAwQjgSOfTFqNGok0klsZiMzM3N7jnI34ymaWQyGTZTGVy+IKFw5NC5gK1Wk1w6icUkWJib23OQv5nhxWhtM4XZ6SUYjh5au9tpU8imsRo0Fufn9hzkt2vn83mW1zcRVheBcPTQy4a9bpdyLo1FKJyYf/lMfi/tUqnEpeU1WtKCIxg9dIRB6fdoFbO4DApnF+f2HOS3Uy6XubC0QrlnxOqPYDrksqGq9OmU83gMPR48ufcgv51qtcrFpRXybYnFFzn0sqGmKrQredyyw4MnZg81k6/X67x45TqrxQ6aPYjRcrgJhdRUlEaJkKXHI6fniMV2H+S302w2uXh1hZVCE9UeOFQu4EBbo9co4Te0efjULFOJ3Qf57bRaLa4tr5KstDB6Ioc29VLTaFWLWHpVTs/Gmd5jkN9Op9NheXWNXLWJMxDFcchIvZSSerlIr1ZkLh5m+hCDfLfbZXV9g0ypiiMQweXxHV67UqZTLTAdCTA7PX3gyXe/32dtfYPNfAmbL4LLe/hIfaNapl3Okwj5mJ+d2XOyfDOKorC+sclapoDRHcTlCxxau1Wv0innSAQ8LMzNYLMd7G9lEC1PkczkcfpC+IPhQ2s36zVK+TRep5WFubk9J8t3Inrk7nDc0+ZuSLfbZX1jg3qjRTSewOfz7/ueXq9HOrVJr9Nmdmb6UIP89uOsb2xSqtQIRmJ4ffvP8vv9PvlMml6nwdzM9KEG+e3H2dhMkikU8QSieP37X4wURaGUy9JvHy9crygKyWSKzWwemzeI7wARBlVVqRRyKK0a89PxPWfy+x0nlU5zbT2Navfi9If2PY6maTTLBUydKqdmEyT2mMnvd5x0OsOl1U3aJhd23/65gFLTaFeLWHs1Ts8dbpC/5Thby4aXljeoC/uBcgGllLSrJSzdCqdnYsxOH20mPzT1X76ySq5tHOTj7RPdkFLSb1Vxa3UeXIixMDdzpAj70NQ/d3mZTMuA0XWwXMBes4ZDqXJ2JsSJhbkDD/LbKZfLXFpapaQYsPmiBzL1nUYNWc8zF/GyODd74EF+O9VqlWsrazRVgScUw3KASH2rUadZzBL22FmcP/ogX6/XWVpZpdaTeMOxA0Xq260m9fwgt21xfu7IaTPNZpOllTXKrR7uA+YCdtttasU0XquRUwvzB54sb6fVanF9dZ1crYUjEMN2gFzAXqdDo5jBaxGcXjz4ZHk7nU6H1fV1yrUW/kjiQOk3vW6XYjaFUfZZnJ898GT5TkOP3B2O+8LcDanX66ytrSOFkfjUFPYdlu40TSOfzVAqFUjEoi/LbTsqjUaD1bV1uopGJD6FY4eLkaZpFAt5aqUCiViY+LbctqPSarVYWV2n1u4SiMRx7pALKKWkXCrQLBVIRENMbcttOyrDCEOp3sIbiuHc4WIkpaRWLdEs5UmEg8xMH28ZfUi322V5bYONQgWTN4zDvXOlY7NWQavmmYsEmJ87+Ex+L3q9Hqvrm1xPF1EdfuzunSMMnUYNGgXmwi/PbTsqw1zAq5s5FJsP2y7Lht1WA1nLMxt0cWpxfiQzeUVRWN9M8eL1TSrSOcjH20Fb6bYwd8uciLp44OTCSHJjh7mAzy9tUNEcWFw75wIq3TaGdpH5oIMHTy8eeZC/maGpv7yWpGNyDoz1Dqa+3+3Qq+QIOwycPTF/5EH+ZoaR+uvrSTSrC29o52XD/lZum0OonFo8eER8P+18Ps/S+iaa2YE3FNlx2bDf71HLZ7HIHifnX57bdlTtUqnEtZV1egYr3vDOuYBKv0+tmMXU73ByfvpluW1HpVwuc3V5jYZmHOTj7RAtVxWFeimLqdfi9Pzey96HoVqtsry6Tn+P9BtVVSkVsvQaFWanjj5ZvlPYydx95vPjN3dum27u9uV2mzt46WK0mUzj8niIxl4yMeVyiVw6hdfrZmZ679y2o2qXSiVW1zew2FyEY/EbJqZWrVDIpPF6nMzNzoxkkN9OuVzm+uo60mghGH0pF7BZr1PKp/C57MzP7p3bdlSq1SrXV9boSiP+yEsRhlazQTWfwesYzOQPuux9GOr1Oleur1LsqNgDUSxbEYZep0W7mCXsMHP6xNFn8nvRaDS4srxKutbF5I1gsQ0+33CQjziNPDCiQX47w1zAjdIwF3BgoJRel24lR9gmOHdyfiwz+U6nw5Xrq1xNluiY/Zjtg+9WU/rIVpGEa//ctqPS7XZZWlnj8maRjvmlXEBNVVDqRWJ2jUfOLhw5Ir4XQ1O/nC6gOYM3TP1w2duptXlgcWYsCewDY73JRqaAxRvCvbVsqKkq1eIgt+3EPrltR+VGLmA6h8UTwOMfGChN06iWCqiNMov75LYdRzudTrO8OcgF9GzlAkpNo1YuojRKzMWjTE8dLSK+F8NcwKX1FNLmwR0cmPrB0nMRtV5kIRFhZgy5bTen31gcHgLhGEaTCSkl1UqJWjFHNOh7WSHY3cpOy7Kf//vxL8vazPqy7L7cCeZuiKIopFIp8oUi/mCYRr2OUUjm5mbHMsjfzPBilMrkcfkCdNpNTGjMz82OZZC/mWEu4Foyjc3tp9/tYJLKRML1w4vRykYKo92NpvYxqj1OjGgmv592Pp/nysoGbaMdpMQhu5xdnB3LIL9du1QqcWFplYpqBmHATYdzYxrkt1Mul7lwbYVSzwAmM061yQOLM8QmMJOvVqs8f/k6G9U+ChaC5s6hc9uOyjAXcK3UpW+04hdtzp+cZmYMg/x2ms0mV66vkq51kBYn5m6NUzPRIy97H4ZWq8Xy6hqFRgezw0O/UWEmEpjIID+I1K+TqzawuLz0GxXiwcPlth2VbrfL6toG6VIVs8tHv1kl5nMzf4jctqMyrNpfz5YwunyorRoRj4OTC+PPbVMUhY3NTdL5Eg5PkE6zistqZmF+dqTdIm43O0XuPjuByJ1Lj9ztz51k7oa0223S6TQej2fsg/x2ut0uqVQKh8Mx8VL0Xq9HMpXCZrVOPFzf7/dJptKYzSbiI1r2PiiKopBMpRFCMJUYzbL3QVFVlWQ6g6qqzIxo2fugDJcNu/0+M1OJic7kpZRkMlnqzRbzs6OPiO+nnc/nKVXrzM9MjX2Q365dKpUolMrMTk9NPIG9XC6TL5aYiscmPshXq1WyuTyJeGzsk+Xt1Ot1Upks8Whk7JPl7TSbTZKpDJFwcOK5ba1Wi1Q6Q8DvG/tk+XagR+4Ox31v7nR0dHR0dHTubPTI3eG4Oxrc6Ojo6Ojo6OhsIQCT8c5uvHw70c2djo6Ojo6Ozl2FBFTtdp/FncvdWxeto6Ojo6Ojo6PzMvTInY6Ojo6Ojs5dhQBMBn1Zdjd0c6ejo6Ojo6NzVyEBRZtcQejdhm7udHR0dHR0dO4q9Mjd3ujmTkdHR0dHR+euQgLqBFu53W3o5k5HR0dHR0fnrkIIMOqRu13RzZ2Ojo6Ojo7OXYWUoOo5d7uimzsdHR0dHR2duwoBCPTI3W7o5k5HR0dHR0fn7kKAUe/Uuyu6udPR0dHR0dG5u5Cg6Xeo2BXd3Ono6Ojo6OjcXeiRuz3RzZ2Ojo6Ojo7O3YUEVa+n2BXd3Ono6Ojo6OjcXeiRuz3RvxodHR0dHR2duwsJqjb+7SAIIb5BCHFFCLEkhPhPO7xuFUL8r63X/14IMT/ib+Nl6JE7HR0dHR0dnbuLO6SJsRDCCPw34GuBTeCLQog/k1JevGm3NwFlKeVJIcR3AD8D/PNxnpceudPR0dHR0dG5u9iqlh33dgBeCSxJKZellD3g94Fv3bbPtwIf2Xr8h8DrhBBjdaZ65E5HR0dHR0fn7kKA4c4IT00BGzc93wT+wW77SCkVIUQVCAKFcZ3URM3d008/XRBCrE1S8xCEGOMXrWvr2rq2rq1r3zf696v2OJm7+ckzTz/9V2ajCE1A1yaE+NJNzz8kpfzQBHSPxUTNnZQyPEm9wyCE+JKU8gldW9fWtXVtXfvu1r7d+ver9iSRUn7D7T6HLZLAzE3Pp7d+ttM+m0IIE+AFiuM8qTsjqKmjo6Ojo6Ojc/fxReCUEGJBCGEBvgP4s237/Bnwxq3H/wz4pJRyrF369Jw7HR0dHR0dHZ0jsJVD91bgrwAj8OtSygtCiJ8AviSl/DPgw8D/TwixBJQYGMCxopu7l7ida+i6tq6ta+vauva9o3+/at+XSCn/HPjzbT97102PO8C3T/KcxJgjgzo6Ojo6Ojo6OhNEz7nT0dHR0dHR0bmHuO/N3X63DRmz9q8LIXJCiBcnrDsjhHhKCHFRCHFBCPGDE9a3CSG+IIR4bkv/v0xY3yiEeFYI8bFJ6m5prwohXhBCfHlbef0ktH1CiD8UQlwWQlwSQvyjCeme2fq8w60mhHj7JLS39N+x9Xv2ohDi94QQtglq/+CW7oVxf+adridCiIAQ4uNCiGtb//dPUPvbtz63JoQYW/XmLtrv2/o9f14I8SdCCN8Etd+7pftlIcRfCyESk9K+6bV3CiGkEBNpFaJzB3Jfm7ubbhvyjcA54DuFEOcmeAq/CdyOcm4FeKeU8hzwD4F/N+HP3QVeK6V8BHgU+AYhxD+coP4PApcmqLed10gpH70N7Qp+EfhLKeVZ4BEm9B1IKa9sfd5HgceBFvAnk9AWQkwBbwOekFKeZ5DwPPZk5i3t88D/zaCD/SPANwshTo5R8jd5+fXkPwGfkFKeAj6x9XxS2i8C3wZ8Zkyae2l/HDgvpXwYuAr8yAS13yelfHjr9/1jwLu2v2mM2gghZoCvA9bHpKtzF3BfmzsOdtuQsSGl/AyDypmJIqVMSymf2XpcZzDIT01QX0opG1tPzVvbRJI/hRDTwP8B/Nok9O4UhBBe4FUMqraQUvaklJXbcCqvA65LKSfZzNwE2Lf6SzmA1IR0HwD+XkrZklIqwKcZmJ2xsMv15ObbHn0E+L8mpS2lvCSlvDIOvQNo//XWdw7wdwx6j01Ku3bTUydjurbtMX78AvBD49LVuTu4383dTrcNmZjJuRMQQswDrwD+fsK6RiHEl4Ec8HEp5aT0P8DgwnewuwaOHgn8tRDiaSHE909QdwHIA7+xtST9a0II5wT1h3wH8HuTEpNSJoGfYxDFSANVKeVfT0j+ReAfCyGCQggH8E3c2ux0EkSllOmtxxkgOmH9O4HvBf5ikoJCiJ8SQmwA38X4Inc76X4rkJRSPjcpTZ07k/vd3N3XCCFcwB8Bb9822xw7Ukp1a9liGnjl1hLWWBFCfDOQk1I+PW6tPfhqKeVjDFIB/p0Q4lUT0jUBjwH/Q0r5CqDJ+JbodmSrwee3AH8wQU0/g+jVApAAnEKI756EtpTyEvAzwF8Dfwl8GVAnob3L+Ujus2iOEOJHGaSh/M4kdaWUPyqlnNnSfeskNLcmEP+ZCZpJnTuX+93cHeS2IfckQggzA2P3O1LKP75d57G1NPgUk8k9/CrgW4QQqwyW4F8rhPjtCejeYCuShJQyxyDv7JUTkt4ENm+KkP4hA7M3Sb4ReEZKmZ2g5uuBFSllXkrZB/4Y+MpJiUspPyylfFxK+SqgzCD/a5JkhRBxgK3/5yasf9sQQvxr4JuB7xr33QD24HeAfzohrRMMJjHPbV3jpoFnhBCxCenr3EHc7+buILcNuecQQggGuVeXpJQ/fxv0w8PqNSGEHfha4PK4daWUPyKlnJZSzjP4t/6klHIiURwAIYRTCOEePmaQ9DyRSmkpZQbYEEKc2frR64CLk9C+ie9kgkuyW6wD/1AI4dj6vX8dEyymEUJEtv4/yyDf7ncnpb3Fzbc9eiPwpxPWvy0IIb6BQfrFt0gpWxPWPnXT029lAtc2ACnlC1LKiJRyfusatwk8tvW3r3OfcV/foWK324ZMSl8I8XvAq4GQEGITeLeU8sMTkP4q4F8CL2zlvQH8560u25MgDnxkq1rZAHxUSjnxtiS3gSjwJwOPgQn4XSnlX05Q/weA39mayCwD3zMp4S0z+7XAmyelCSCl/HshxB8CzzBYnnuWyXbw/yMhRBDoA/9unEUsO11PgP8H+KgQ4k3AGvCGCWqXgF8GwsD/J4T4spTy6yek/SOAFfj41t/b30kp3zIh7W/amkRpDL7zkevupj2h8UPnLkC/Q4WOjo6Ojo6Ozj3E/b4sq6Ojo6Ojo6NzT6GbOx0dHR0dHR2dewjd3Ono6Ojo6Ojo3EPo5k5HR0dHR0dH5x5CN3c6Ojo6Ojo6OvcQurnT0dHR0dHR0bmH0M2djo6Ojo6Ojs49hG7udHR0dHR0dHTuIf7/0PtUnksnFkYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(figsize=(10,10))\n", + "ax = f.add_subplot(111)\n", + "\n", + "ax.set_aspect('equal')\n", + "\n", + "# iteratively add hexagons\n", + "for i in range(weights.shape[0]):\n", + " for j in range(weights.shape[1]):\n", + " wy = yy[(i, j)] * 2 / np.sqrt(3) * 3 / 4\n", + " hex = RegularPolygon((xx[(i, j)], wy), \n", + " numVertices=6, \n", + " radius=.95 / np.sqrt(3),\n", + " facecolor=cm.Blues(umatrix[i, j]), \n", + " alpha=.4, \n", + " edgecolor='gray')\n", + " ax.add_patch(hex)\n", + "\n", + "markers = ['o', '+', 'x']\n", + "colors = ['C0', 'C1', 'C2']\n", + "for cnt, x in enumerate(data):\n", + " # getting the winner\n", + " w = som.winner(x)\n", + " # place a marker on the winning position for the sample xx\n", + " wx, wy = som.convert_map_to_euclidean(w) \n", + " wy = wy * 2 / np.sqrt(3) * 3 / 4\n", + " plt.plot(wx, wy, \n", + " markers[t[cnt]-1], \n", + " markerfacecolor='None',\n", + " markeredgecolor=colors[t[cnt]-1], \n", + " markersize=12, \n", + " markeredgewidth=2)\n", + "\n", + "xrange = np.arange(weights.shape[0])\n", + "yrange = np.arange(weights.shape[1])\n", + "plt.xticks(xrange-.5, xrange)\n", + "plt.yticks(yrange * 2 / np.sqrt(3) * 3 / 4, yrange)\n", + "\n", + "divider = make_axes_locatable(plt.gca())\n", + "ax_cb = divider.new_horizontal(size=\"5%\", pad=0.05) \n", + "cb1 = colorbar.ColorbarBase(ax_cb, cmap=cm.Blues, \n", + " orientation='vertical', alpha=.4)\n", + "cb1.ax.get_yaxis().labelpad = 16\n", + "cb1.ax.set_ylabel('distance from neurons in the neighbourhood',\n", + " rotation=270, fontsize=16)\n", + "plt.gcf().add_axes(ax_cb)\n", + "\n", + "legend_elements = [Line2D([0], [0], marker='o', color='C0', label='Kama',\n", + " markerfacecolor='w', markersize=14, linestyle='None', markeredgewidth=2),\n", + " Line2D([0], [0], marker='+', color='C1', label='Rosa',\n", + " markerfacecolor='w', markersize=14, linestyle='None', markeredgewidth=2),\n", + " Line2D([0], [0], marker='x', color='C2', label='Canadian',\n", + " markerfacecolor='w', markersize=14, linestyle='None', markeredgewidth=2)]\n", + "ax.legend(handles=legend_elements, bbox_to_anchor=(0.1, 1.08), loc='upper left', \n", + " borderaxespad=0., ncol=3, fontsize=14)\n", + "\n", + "plt.savefig('resulting_images/som_seed_hex.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting: bokeh\n", + "Below, we are plotting using bokeh to create an interactive hexagonal topology.\n", + "\n", + "> Note: Compared to matplotlib plot, this is rotated 90 degrees." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "hex_centre_col, hex_centre_row = [], []\n", + "hex_colour = []\n", + "label = []\n", + "\n", + "# define labels\n", + "SPECIES = ['Kama', 'Rosa', 'Canadian']\n", + "\n", + "for i in range(weights.shape[0]):\n", + " for j in range(weights.shape[1]):\n", + " wy = yy[(i, j)] * 2 / np.sqrt(3) * 3 / 4\n", + " hex_centre_col.append(xx[(i, j)])\n", + " hex_centre_row.append(wy)\n", + " hex_colour.append(cm.Blues(umatrix[i, j]))\n", + "\n", + "weight_x, weight_y = [], []\n", + "for cnt, i in enumerate(data):\n", + " w = som.winner(i)\n", + " wx, wy = som.convert_map_to_euclidean(xy=w)\n", + " wy = wy * 2 / np.sqrt(3) * 3 / 4\n", + " weight_x.append(wx)\n", + " weight_y.append(wy)\n", + " label.append(SPECIES[t[cnt]-1])\n", + " \n", + "# convert matplotlib colour palette to bokeh colour palette\n", + "hex_plt = [(255 * np.array(i)).astype(int) for i in hex_colour]\n", + "hex_bokeh = [RGB(*tuple(rgb)).to_hex() for rgb in hex_plt]" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "(function(root) {\n", + " function embed_document(root) {\n", + " \n", + " var docs_json = {\"f293967f-2312-4173-861b-1f53293fad9a\":{\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"5662\"}],\"center\":[{\"id\":\"5665\"},{\"id\":\"5669\"},{\"id\":\"5700\"}],\"left\":[{\"id\":\"5666\"}],\"match_aspect\":true,\"plot_height\":800,\"plot_width\":800,\"renderers\":[{\"id\":\"5682\"},{\"id\":\"5689\"}],\"title\":{\"id\":\"5652\"},\"toolbar\":{\"id\":\"5673\"},\"x_range\":{\"id\":\"5654\"},\"x_scale\":{\"id\":\"5658\"},\"y_range\":{\"id\":\"5656\"},\"y_scale\":{\"id\":\"5660\"}},\"id\":\"5651\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"data_source\":{\"id\":\"5677\"},\"glyph\":{\"id\":\"5680\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"5681\"},\"selection_glyph\":null,\"view\":{\"id\":\"5683\"}},\"id\":\"5682\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"label\":{\"field\":\"species\"},\"renderers\":[{\"id\":\"5689\"}]},\"id\":\"5701\",\"type\":\"LegendItem\"},{\"attributes\":{\"items\":[{\"id\":\"5701\"}]},\"id\":\"5700\",\"type\":\"Legend\"},{\"attributes\":{},\"id\":\"5667\",\"type\":\"BasicTicker\"},{\"attributes\":{\"formatter\":{\"id\":\"5693\"},\"ticker\":{\"id\":\"5667\"}},\"id\":\"5666\",\"type\":\"LinearAxis\"},{\"attributes\":{\"data\":{\"c\":[\"#E4EFF9\",\"#B9D5EA\",\"#D2E3F3\",\"#92C3DE\",\"#D1E2F2\",\"#9AC7E0\",\"#CFE1F2\",\"#8FC1DD\",\"#C1D9ED\",\"#8ABFDC\",\"#D1E2F2\",\"#8BC0DD\",\"#C7DBEF\",\"#ABCFE5\",\"#E5EFF9\",\"#CFE1F2\",\"#9AC7E0\",\"#83BBDB\",\"#5DA4D0\",\"#7DB8D9\",\"#83BBDB\",\"#83BBDB\",\"#6AADD5\",\"#60A6D1\",\"#66AAD4\",\"#82BADB\",\"#59A2CF\",\"#5EA5D1\",\"#97C6DF\",\"#D3E3F3\",\"#B9D5EA\",\"#87BDDC\",\"#65AAD3\",\"#65AAD3\",\"#87BDDC\",\"#A3CCE3\",\"#85BCDB\",\"#7FB8DA\",\"#5CA3D0\",\"#63A9D3\",\"#72B1D7\",\"#6DAFD6\",\"#4A97C9\",\"#80B9DA\",\"#CEE0F1\",\"#AACFE5\",\"#6BAED6\",\"#78B5D8\",\"#83BBDB\",\"#90C2DE\",\"#92C3DE\",\"#9AC7E0\",\"#A2CBE2\",\"#70B1D7\",\"#61A7D2\",\"#87BDDC\",\"#A7CEE4\",\"#66AAD4\",\"#7DB8D9\",\"#C9DDF0\",\"#75B3D8\",\"#3787C0\",\"#72B1D7\",\"#95C5DF\",\"#7FB8DA\",\"#7DB8D9\",\"#A1CBE2\",\"#A0CAE1\",\"#80B9DA\",\"#61A7D2\",\"#82BADB\",\"#85BCDB\",\"#82BADB\",\"#80B9DA\",\"#C8DCEF\",\"#5AA3CF\",\"#2C7CBB\",\"#6AADD5\",\"#88BEDC\",\"#80B9DA\",\"#61A7D2\",\"#87BDDC\",\"#7BB7D9\",\"#73B2D7\",\"#6BAED6\",\"#5DA4D0\",\"#539DCC\",\"#6BAED6\",\"#7FB8DA\",\"#BFD8EC\",\"#559FCD\",\"#09539D\",\"#4191C5\",\"#2878B8\",\"#549ECD\",\"#509BCB\",\"#67ABD4\",\"#77B4D8\",\"#7AB6D9\",\"#9DC9E0\",\"#67ABD4\",\"#549ECD\",\"#4896C8\",\"#66AAD4\",\"#BBD6EB\",\"#2474B6\",\"#08306B\",\"#08468C\",\"#135FA7\",\"#2171B5\",\"#3D8DC3\",\"#66AAD4\",\"#70B1D7\",\"#90C2DE\",\"#A5CDE3\",\"#95C5DF\",\"#80B9DA\",\"#5AA3CF\",\"#5AA3CF\",\"#A3CCE3\",\"#2A7AB9\",\"#1C6BB0\",\"#2979B9\",\"#6DAFD6\",\"#3A8AC1\",\"#3787C0\",\"#3D8DC3\",\"#62A8D2\",\"#8FC1DD\",\"#93C4DE\",\"#9AC7E0\",\"#A1CBE2\",\"#85BCDB\",\"#6FB0D6\",\"#A2CBE2\",\"#61A7D2\",\"#2E7EBC\",\"#5AA3CF\",\"#7DB8D9\",\"#70B1D7\",\"#4B98C9\",\"#3A8AC1\",\"#6DAFD6\",\"#8ABFDC\",\"#87BDDC\",\"#95C5DF\",\"#97C6DF\",\"#93C4DE\",\"#83BBDB\",\"#B2D2E8\",\"#93C4DE\",\"#2979B9\",\"#2F7FBC\",\"#65AAD3\",\"#77B4D8\",\"#559FCD\",\"#4F9BCB\",\"#3C8CC3\",\"#5DA4D0\",\"#4191C5\",\"#77B4D8\",\"#67ABD4\",\"#8ABFDC\",\"#A5CDE3\",\"#CBDEF0\",\"#98C7DF\",\"#3A8AC1\",\"#3484BF\",\"#7BB7D9\",\"#7DB8D9\",\"#4A97C9\",\"#2777B8\",\"#1764AB\",\"#1866AC\",\"#1F6FB3\",\"#3B8BC2\",\"#509BCB\",\"#70B1D7\",\"#A1CBE2\",\"#D5E5F4\",\"#93C4DE\",\"#4795C8\",\"#5CA3D0\",\"#6AADD5\",\"#65AAD3\",\"#5AA3CF\",\"#3282BE\",\"#67ABD4\",\"#3787C0\",\"#62A8D2\",\"#4E9ACA\",\"#6AADD5\",\"#5DA4D0\",\"#7BB7D9\",\"#CFE1F2\",\"#85BCDB\",\"#58A1CE\",\"#66AAD4\",\"#83BBDB\",\"#6AADD5\",\"#97C6DF\",\"#87BDDC\",\"#BBD6EB\",\"#A6CDE3\",\"#ADD0E6\",\"#90C2DE\",\"#9BC8E0\",\"#509BCB\",\"#69ACD5\",\"#C8DCEF\",\"#BAD6EA\",\"#BED7EC\",\"#92C3DE\",\"#D0E1F2\",\"#A3CCE3\",\"#D4E4F3\",\"#BCD7EB\",\"#DDEAF6\",\"#CBDEF0\",\"#DDEAF6\",\"#C8DCEF\",\"#DAE8F5\",\"#73B2D7\",\"#C3D9EE\",\"#D1E2F2\"],\"x\":[-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.0,-0.5,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.0,0.5,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.0,1.5,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.0,2.5,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.0,3.5,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.0,4.5,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.0,5.5,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.0,6.5,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.0,7.5,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.0,8.5,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.0,9.5,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.0,10.5,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.0,11.5,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.0,12.5,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5,14.0,13.5],\"y\":[0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143,0.0,0.8660254037844388,1.7320508075688776,2.598076211353316,3.4641016151377553,4.330127018922194,5.196152422706632,6.062177826491071,6.9282032302755105,7.794228634059948,8.660254037844387,9.526279441628825,10.392304845413264,11.258330249197702,12.124355652982143]},\"selected\":{\"id\":\"5696\"},\"selection_policy\":{\"id\":\"5697\"}},\"id\":\"5677\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"source\":{\"id\":\"5678\"}},\"id\":\"5690\",\"type\":\"CDSView\"},{\"attributes\":{\"axis\":{\"id\":\"5666\"},\"dimension\":1,\"ticker\":null},\"id\":\"5669\",\"type\":\"Grid\"},{\"attributes\":{\"factors\":[\"Kama\",\"Rosa\",\"Canadian\"],\"palette\":[\"#1f77b4\",\"#ff7f0e\",\"#2ca02c\"]},\"id\":\"5685\",\"type\":\"CategoricalColorMapper\"},{\"attributes\":{},\"id\":\"5671\",\"type\":\"SaveTool\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"marker\":{\"field\":\"species\",\"transform\":{\"id\":\"5684\"}},\"size\":{\"units\":\"screen\",\"value\":20},\"x\":{\"field\":\"wy\"},\"y\":{\"field\":\"wx\"}},\"id\":\"5688\",\"type\":\"Scatter\"},{\"attributes\":{},\"id\":\"5670\",\"type\":\"WheelZoomTool\"},{\"attributes\":{},\"id\":\"5695\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{},\"id\":\"5696\",\"type\":\"Selection\"},{\"attributes\":{\"formatter\":{\"id\":\"5695\"},\"ticker\":{\"id\":\"5663\"}},\"id\":\"5662\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"5660\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"5654\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"5698\",\"type\":\"Selection\"},{\"attributes\":{\"data_source\":{\"id\":\"5678\"},\"glyph\":{\"id\":\"5687\"},\"hover_glyph\":null,\"muted_glyph\":null,\"nonselection_glyph\":{\"id\":\"5688\"},\"selection_glyph\":null,\"view\":{\"id\":\"5690\"}},\"id\":\"5689\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"5699\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"data\":{\"species\":[\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Kama\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Rosa\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\",\"Canadian\"],\"wx\":[9.0,0.5,5.5,5.5,11.5,4.5,7.5,4.5,11.0,13.0,7.0,1.5,5.0,5.0,6.0,5.5,5.5,8.5,6.5,3.0,7.0,7.5,10.5,-0.5,-0.5,12.5,1.5,0.5,6.0,5.5,-0.5,9.5,7.0,1.5,9.0,11.5,10.5,12.0,8.5,6.5,3.5,2.5,3.5,7.5,8.5,1.0,10.5,9.0,7.5,8.5,6.0,7.5,7.0,6.5,9.0,9.5,6.5,8.5,10.0,-0.5,1.0,1.5,3.5,5.0,0.0,3.0,-0.5,7.5,-0.5,-0.5,11.0,9.5,9.5,14.0,9.5,9.5,10.5,13.5,12.0,11.5,8.0,9.5,11.5,14.0,13.0,13.0,12.5,14.0,11.5,11.5,14.0,14.0,13.5,9.5,14.0,10.5,12.5,14.0,12.0,13.0,8.5,13.5,9.5,12.5,12.0,12.5,14.0,10.0,14.0,12.0,12.0,11.5,13.5,11.5,12.5,13.5,9.5,14.0,14.0,13.5,11.5,11.0,8.5,13.5,7.5,9.5,11.5,14.0,14.0,8.5,13.5,13.0,8.0,8.5,7.5,7.5,11.0,9.5,9.5,8.5,5.5,5.5,5.5,4.0,-0.5,-0.5,0.0,3.5,-0.5,-0.5,3.5,-0.5,-0.5,-0.5,-0.5,1.5,2.0,0.0,0.0,1.0,-0.5,0.0,2.5,5.0,3.5,0.5,3.5,-0.5,0.0,-0.5,-0.5,3.5,0.5,2.5,0.5,2.5,2.0,1.0,3.0,-0.5,2.5,4.5,4.5,3.0,5.5,-0.5,0.0,0.5,3.5,2.5,2.5,2.0,2.5,1.5,3.5,3.5,4.0,4.5,-0.5,4.0,4.0,3.0,2.0,5.5,2.0,3.0,1.5,5.5,1.5,4.0],\"wy\":[7.794228634059948,12.124355652982143,12.124355652982143,12.124355652982143,12.124355652982143,12.124355652982143,8.660254037844387,12.124355652982143,6.062177826491071,11.258330249197702,2.598076211353316,12.124355652982143,7.794228634059948,7.794228634059948,7.794228634059948,10.392304845413264,10.392304845413264,12.124355652982143,12.124355652982143,6.062177826491071,6.062177826491071,6.9282032302755105,12.124355652982143,8.660254037844387,12.124355652982143,12.124355652982143,6.9282032302755105,6.9282032302755105,7.794228634059948,5.196152422706632,10.392304845413264,8.660254037844387,4.330127018922194,12.124355652982143,7.794228634059948,10.392304845413264,6.9282032302755105,9.526279441628825,8.660254037844387,0.0,12.124355652982143,12.124355652982143,10.392304845413264,1.7320508075688776,10.392304845413264,11.258330249197702,12.124355652982143,9.526279441628825,8.660254037844387,6.9282032302755105,6.062177826491071,0.0,4.330127018922194,8.660254037844387,6.062177826491071,6.9282032302755105,8.660254037844387,12.124355652982143,11.258330249197702,6.9282032302755105,7.794228634059948,8.660254037844387,8.660254037844387,6.062177826491071,9.526279441628825,9.526279441628825,12.124355652982143,6.9282032302755105,12.124355652982143,5.196152422706632,2.598076211353316,3.4641016151377553,1.7320508075688776,6.062177826491071,1.7320508075688776,3.4641016151377553,3.4641016151377553,0.0,0.8660254037844388,8.660254037844387,0.8660254037844388,0.0,0.0,2.598076211353316,2.598076211353316,4.330127018922194,6.9282032302755105,0.8660254037844388,0.0,0.0,2.598076211353316,6.062177826491071,5.196152422706632,0.0,0.8660254037844388,3.4641016151377553,1.7320508075688776,2.598076211353316,2.598076211353316,4.330127018922194,1.7320508075688776,10.392304845413264,0.0,1.7320508075688776,2.598076211353316,6.9282032302755105,6.062177826491071,2.598076211353316,0.8660254037844388,6.062177826491071,6.062177826491071,1.7320508075688776,6.9282032302755105,0.0,0.0,3.4641016151377553,0.0,4.330127018922194,6.062177826491071,1.7320508075688776,0.0,2.598076211353316,3.4641016151377553,8.660254037844387,10.392304845413264,0.0,1.7320508075688776,9.526279441628825,2.598076211353316,0.0,8.660254037844387,6.062177826491071,2.598076211353316,3.4641016151377553,1.7320508075688776,10.392304845413264,4.330127018922194,5.196152422706632,5.196152422706632,1.7320508075688776,3.4641016151377553,1.7320508075688776,1.7320508075688776,2.598076211353316,1.7320508075688776,0.0,6.062177826491071,5.196152422706632,5.196152422706632,0.0,1.7320508075688776,0.0,1.7320508075688776,3.4641016151377553,3.4641016151377553,0.0,4.330127018922194,0.8660254037844388,0.8660254037844388,0.8660254037844388,5.196152422706632,4.330127018922194,1.7320508075688776,4.330127018922194,0.0,8.660254037844387,1.7320508075688776,5.196152422706632,2.598076211353316,3.4641016151377553,0.0,0.0,3.4641016151377553,0.0,0.0,3.4641016151377553,0.8660254037844388,2.598076211353316,0.8660254037844388,6.9282032302755105,3.4641016151377553,3.4641016151377553,3.4641016151377553,2.598076211353316,1.7320508075688776,1.7320508075688776,0.8660254037844388,3.4641016151377553,0.0,3.4641016151377553,0.0,4.330127018922194,6.9282032302755105,1.7320508075688776,5.196152422706632,6.9282032302755105,6.062177826491071,6.9282032302755105,5.196152422706632,9.526279441628825,2.598076211353316,9.526279441628825,4.330127018922194,0.0,6.062177826491071,7.794228634059948,3.4641016151377553,0.0,5.196152422706632,2.598076211353316]},\"selected\":{\"id\":\"5698\"},\"selection_policy\":{\"id\":\"5699\"}},\"id\":\"5678\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"5656\",\"type\":\"DataRange1d\"},{\"attributes\":{},\"id\":\"5672\",\"type\":\"ResetTool\"},{\"attributes\":{},\"id\":\"5693\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"text\":\"SOM: Hexagonal Topology\"},\"id\":\"5652\",\"type\":\"Title\"},{\"attributes\":{\"axis\":{\"id\":\"5662\"},\"ticker\":null},\"id\":\"5665\",\"type\":\"Grid\"},{\"attributes\":{\"source\":{\"id\":\"5677\"}},\"id\":\"5683\",\"type\":\"CDSView\"},{\"attributes\":{\"callback\":null,\"point_policy\":\"follow_mouse\",\"tooltips\":[[\"label\",\"@species\"],[\"(x,y)\",\"($x, $y)\"]]},\"id\":\"5702\",\"type\":\"HoverTool\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"field\":\"c\"},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"gray\"},\"size\":{\"units\":\"screen\",\"value\":54.84827557301445},\"x\":{\"field\":\"y\"},\"y\":{\"field\":\"x\"}},\"id\":\"5681\",\"type\":\"Hex\"},{\"attributes\":{\"fill_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"line_color\":{\"field\":\"species\",\"transform\":{\"id\":\"5685\"}},\"marker\":{\"field\":\"species\",\"transform\":{\"id\":\"5684\"}},\"size\":{\"units\":\"screen\",\"value\":20},\"x\":{\"field\":\"wy\"},\"y\":{\"field\":\"wx\"}},\"id\":\"5687\",\"type\":\"Scatter\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.4},\"fill_color\":{\"field\":\"c\"},\"line_alpha\":{\"value\":0.4},\"line_color\":{\"value\":\"gray\"},\"size\":{\"units\":\"screen\",\"value\":54.84827557301445},\"x\":{\"field\":\"y\"},\"y\":{\"field\":\"x\"}},\"id\":\"5680\",\"type\":\"Hex\"},{\"attributes\":{},\"id\":\"5697\",\"type\":\"UnionRenderers\"},{\"attributes\":{},\"id\":\"5658\",\"type\":\"LinearScale\"},{\"attributes\":{\"active_drag\":\"auto\",\"active_inspect\":\"auto\",\"active_multi\":null,\"active_scroll\":\"auto\",\"active_tap\":\"auto\",\"tools\":[{\"id\":\"5670\"},{\"id\":\"5671\"},{\"id\":\"5672\"},{\"id\":\"5702\"}]},\"id\":\"5673\",\"type\":\"Toolbar\"},{\"attributes\":{\"factors\":[\"Kama\",\"Rosa\",\"Canadian\"],\"markers\":[\"diamond\",\"cross\",\"x\"]},\"id\":\"5684\",\"type\":\"CategoricalMarkerMapper\"},{\"attributes\":{},\"id\":\"5663\",\"type\":\"BasicTicker\"}],\"root_ids\":[\"5651\"]},\"title\":\"Bokeh Application\",\"version\":\"2.2.3\"}};\n", + " var render_items = [{\"docid\":\"f293967f-2312-4173-861b-1f53293fad9a\",\"root_ids\":[\"5651\"],\"roots\":{\"5651\":\"b7926dd9-1983-4107-964d-36c43895fa8c\"}}];\n", + " root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n", + "\n", + " }\n", + " if (root.Bokeh !== undefined) {\n", + " embed_document(root);\n", + " } else {\n", + " var attempts = 0;\n", + " var timer = setInterval(function(root) {\n", + " if (root.Bokeh !== undefined) {\n", + " clearInterval(timer);\n", + " embed_document(root);\n", + " } else {\n", + " attempts++;\n", + " if (attempts > 100) {\n", + " clearInterval(timer);\n", + " console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n", + " }\n", + " }\n", + " }, 10, root)\n", + " }\n", + "})(window);" + ], + "application/vnd.bokehjs_exec.v0+json": "" + }, + "metadata": { + "application/vnd.bokehjs_exec.v0+json": { + "id": "5651" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "output_file(\"resulting_images/som_seed_hex.html\")\n", + "\n", + "# initialise figure/plot\n", + "fig = figure(title=\"SOM: Hexagonal Topology\",\n", + " plot_height=800, plot_width=800,\n", + " match_aspect=True,\n", + " tools=\"wheel_zoom,save,reset\")\n", + "\n", + "# create data stream for plotting\n", + "source_hex = ColumnDataSource(\n", + " data = dict(\n", + " x=hex_centre_col,\n", + " y=hex_centre_row,\n", + " c=hex_bokeh\n", + " )\n", + ")\n", + "\n", + "source_pages = ColumnDataSource(\n", + " data=dict(\n", + " wx=weight_x,\n", + " wy=weight_y,\n", + " species=label\n", + " )\n", + ")\n", + "\n", + "# define markers\n", + "MARKERS = ['diamond', 'cross', 'x']\n", + "\n", + "# add shapes to plot\n", + "fig.hex(x='y', y='x', source=source_hex,\n", + " size=100 * (.95 / np.sqrt(3)),\n", + " alpha=.4,\n", + " line_color='gray',\n", + " fill_color='c')\n", + "\n", + "fig.scatter(x='wy', y='wx', source=source_pages, \n", + " legend_field='species',\n", + " size=20, \n", + " marker=factor_mark(field_name='species', markers=MARKERS, factors=SPECIES),\n", + " color=factor_cmap(field_name='species', palette='Category10_3', factors=SPECIES))\n", + "\n", + "# add hover-over tooltip\n", + "fig.add_tools(HoverTool(\n", + " tooltips=[\n", + " (\"label\", '@species'),\n", + " (\"(x,y)\", '($x, $y)')],\n", + " mode=\"mouse\", \n", + " point_policy=\"follow_mouse\"\n", + "))\n", + "\n", + "show(fig)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![bokeh plot](https://htmlpreview.github.io/?https://github.com/JustGlowing/minisom/blob/master/examples/resulting_images/som_seed_hex.html)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/MovieCovers.ipynb b/examples/MovieCovers.ipynb new file mode 100644 index 0000000..3496523 --- /dev/null +++ b/examples/MovieCovers.ipynb @@ -0,0 +1,127 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.insert(0, '../')\n", + "%load_ext autoreload" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import imageio\n", + "from glob import glob\n", + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "# covers of the top 100 movies on www.imdb.com/chart/top the 13th of August 2019\n", + "# images downloaded from www.themoviedb.org\n", + "data = []\n", + "all_covers = glob('movie_covers/*.jpg')\n", + "for cover_jpg in all_covers:\n", + " cover = imageio.imread(cover_jpg)\n", + " data.append(cover.reshape(np.prod(cover.shape)))\n", + " \n", + "original_shape = imageio.imread(all_covers[0]).shape\n", + "\n", + "scaler = StandardScaler()\n", + "data = scaler.fit_transform(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom\n", + "\n", + "w = 10\n", + "h = 10\n", + "som = MiniSom(h, w, len(data[0]), learning_rate=0.5,\n", + " sigma=3, neighborhood_function='triangle')\n", + "\n", + "som.train_random(data, 2500, verbose=True)\n", + "win_map = som.win_map(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "som.activation_response(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.axes_grid1 import ImageGrid\n", + "%matplotlib inline\n", + "\n", + "fig = plt.figure(figsize=(30, 20))\n", + "grid = ImageGrid(fig, 111,\n", + " nrows_ncols=(h, w), axes_pad=0)\n", + "\n", + "def place_image(i, img):\n", + " img = (scaler.inverse_transform(img)).astype(int)\n", + " grid[i].imshow(img.reshape(original_shape))\n", + " grid[i].axis('off')\n", + "\n", + "to_fill = []\n", + "collided = []\n", + "\n", + "for i in range(w*h):\n", + " position = np.unravel_index(i, (h, w))\n", + " if position in win_map:\n", + " img = win_map[position][0]\n", + " collided += win_map[position][1:]\n", + " place_image(i, img)\n", + " else:\n", + " to_fill.append(i)\n", + "\n", + "collided = collided[::-1]\n", + "for i in to_fill:\n", + " position = np.unravel_index(i, (h, w))\n", + " img = collided.pop()\n", + " place_image(i, img)\n", + "\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/OutliersDetection.ipynb b/examples/OutliersDetection.ipynb new file mode 100644 index 0000000..5f0c6f7 --- /dev/null +++ b/examples/OutliersDetection.ipynb @@ -0,0 +1,487 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this post we will see how to perform Outlier Detection using MiniSom." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from sklearn.datasets import make_blobs\n", + "from sklearn.preprocessing import scale" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First let's create a datast with two clusters of data a 35% percento of outliers" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHSCAYAAAAuWvi9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3df5Dcd33n+ddbo7bdMpRHjrVgty1Lybrk4BVYeMo4UeoKO2wENtgTOeFHyCVkk/LlbqlbqJz2hiMVBOdaTaLKhuzBLqsi1JKLzwgwTETkPRlOTnHnlLyMkIQRtnYNBtttb1CwxyzWYM1I7/uju0c93d9v97e7v/39+XxUqTzT3e7vt2d6+v39vD/vz/tj7i4AAJBta9I+AQAA0B8BGwCAHCBgAwCQAwRsAABygIANAEAOELABAMiBtWmfQC9XXHGFb9q0Ke3TAAAgEUePHv0Hd98QdF+mA/amTZs0Pz+f9mkAAJAIM/tB2H2kxAEAyAECNgAAOUDABgAgBwjYAADkAAEbAIAcIGADAJADBGwAAHKAgA0AQA4QsAEAyAECNgAAOUDABgAgBwjYAADkAAEbAIAcIGADAJADIwdsM7vGzB42s++Y2Ukz+xcBjzEz+zdm9qSZfcvM3jjqcQEAKJM49sNelvQH7v5NM3u1pKNm9lV3/07bY94m6brmvzdJ+nfN/wKJmTtW195Dp/TcwqKumqxq144tmt5WS/u0ACCSkUfY7v68u3+z+fV/k/S4pM5Pwbsk/aU3HJE0aWZXjnpsIKq5Y3V96EuPqb6wKJdUX1jUh770mOaO1dM+NQCIJNY5bDPbJGmbpEc77qpJeqbt+2fVHdRbz3GPmc2b2fzp06fjPL1I5o7VtX32sDbPHNT22cN8oBfE3kOntLh0btVti0vntPfQqZTOCAAGE0dKXJJkZq+S9ICkD7j7j4d9HnffJ2mfJE1NTXlMpxdJaxTW+mBvjcIkkTrNuecWFge6Pa9I+wPFFcsI28wqagTr+9z9SwEPqUu6pu37q5u3ZQqjsOK6arI60O15RNofKLY4qsRN0l9Ietzd/3XIww5I+q1mtfgtkl5y9+dHPXbcyjIKK6NdO7aoWplYdVu1MqFdO7akdEbx44ITKLY4UuLbJf33kh4zs+PN2/43SRslyd0/JelBSbdLelLSGUm/E8NxY3fVZFX1gOBcpFFYWbXSwkVOF3PBCRTbyAHb3f8/SdbnMS7pn496rHHbtWPLqjlsqXijsDKb3lYrVIDuxAUnUGx0Omszva2mPTu3qjZZlUmqTVa1Z+fWQn/IozjKkPYHyiy2KvGiKPooDMVVhrQ/UGYEbKBAuOAEiouUOAAAOUDABgAgBwjYAADkAHPYADBmtIxFHAjYADBG7FGAuJASB4AxomUs4sIIu0RIywHJo2Us4sIIuyTYyQlIRxl2ikMyCNglQVoOSActYxEXUuIlQVoOSActYxEXAnZJsJMTxo0aiXC0jEUcSImXBGk5jBM1EsD4EbBLgq1DMU7USADjR0q8REjLYVyokQDGj4BdMswzYhyokQDGj5R4iTDPiHGhRgIYPwJ2iTDPiHGhRgIYP1LiJcI8I8aJGglgvBhhlwgtEgEgvwjYJcI8Y39zx+raPntYm2cOavvsYeb3AWQGKfESoUVib+xbDCDLCNglwzxjuF5FefzMAKSNlDjQRFEegCxjhA005aH5B41vgPJihA00Zb0oj8Y3QLkRsIGmrDf/oPENUG6kxIE2WS7KY44dKDdG2EBO0PgGKDcCNpATWZ9jBzBepMSBnKDxDVBuBGwgR7I8xw5gvEiJAwCQAwRsAABygIANAEAOMIcNAECHLLYBJmADANAmq1vtErABAEPL4kh0VFndapeADQAYSlZHoqPKahvgWIrOzOwzZvZDM/t2yP1vNrOXzOx4898fxXFcAEB6irohTVbbAMdVJf4fJL21z2P+X3e/sfnvYzEdFwCQkqyOREeV1TbAsQRsd/+6pBfieC4AQD5kdSQ6qqxutZvkHPYvmNkJSc9J+l/c/WTQg8zsHkn3SNLGjRsTPD1gvIpYnINy27Vjy6o5bCkbI9E4ZLENcFIB+5uSrnX3n5jZ7ZLmJF0X9EB33ydpnyRNTU15QucHjFVRi3NQbmxIk6xEAra7/7jt6wfN7N+a2RXu/g9JHB9IW1aXiQCjyuJItKgSaU1qZq81M2t+fXPzuD9K4thAFhS1OAdAcmIZYZvZ/ZLeLOkKM3tW0kckVSTJ3T8l6dck/Y9mtixpUdK73Z10N0rjqsmq6gHBOe/FOQCSE0vAdvf39Ln/E5I+EcexgDwqcnEOgGTQ6QxIAMU56JTkqgFWKBQDARtICMU5aEly1QArFIqD/bABIGFJtvQsavvQMiJgA0DCklw1wAqF4iBgA0DCkmzpWdT2oWVEwAaAhCW5uURWN7LA4Cg6A4CEJblqgBUKxWFZ7l8yNTXl8/PzaZ8GAACJMLOj7j4VdB8pcQAAcoCADQBADjCHDcSATlIAxo2ADYyITlLIIi4ii4eUODAiOkkha1oXkfWFRbkuXETOHaunfWoYASNsYERJd5Ji5IR+el1E8l7JLwI2MKIk97om/Z6OvF0k0Y60mAjYQA9BH9TS6iYUt16/QQ8crSey1zUjp+SFXSTN/+AFPfzE6dAgHjXIj+NiIMmLSCSHxilAiM4PakmqrDHJpKVzF/5uqpUJ3X1TreeHd1w2zxxU0F+sSXpq9o7Yjwdp++zhwOBn0qrfRbUyoT07t2p6Wy30vfOqS9Zq4czSqou/zse1P8+wgo7f+bxZzBpk8ZyS1qtxCiNsIETQaHbpfHe4XFw6p4efOK1HZm4b+zkNO3Lig3B4YWnkzndCe6Yj7L3z4pklSRdG6ZdU1gRmTD76lZMj/X76tSPN4tRKFs8pawjYQIhB5vuSmhvctWNL4MipV/qdD8LRhF0kBWm9D6K8HxaXznUF65YXzyxp7lh9ZbQ+zMXW9LZa6OOyOLWSxXPKGpZ1ASEGme9Lam5weltNe3ZuVW2yKpNUm6z2TZ+y7Gw0QbtdWchjW++DON4Puw+c1LaPPaQP7D8e+/KsLBalZfGcsoaADYQI+qCurDFVJlZ/XCe9VeH0tpoemblNT83eoUdmbus7+uCDcDRBF0nvvWVjzy0rg947QSarldD7FhaXVlLo7eK42MriHtlZPKesISUOhAibBwy6LcspOyqGRxeUXp669vLQ90Hne+eyakUvn11eVawoNYLyMEa92BpmamXcsnhOWUOVOFBwUSqGMZoo88xzx+rafeDk0EG63YSZ/vSdbxi5krz9fNavq+gj77hhpHnzUVEcSZU4UGr9KoYxmqhFfa3q8bCAPWGm8+66arKqM2eXA9PhLefcYykcfGX5/MrXL55ZWllf3t5XIMkixV6FcmCEDQAjCVunXZusdi31C1tHL61eSx+UFQkyykg77LwnzHQuJC7UuNgbO0bYADAmgxT19Voi1l5T0JkVCQvy7SPt9sdHyaKEnXdYsJZYEpg2AjYAjKBfUV/7vOxl1Yom1pjOdTTgWSPpzNllbZ45uCrYtoJi2GhYalSN7z5wUq8sn++Zxu6cH55cVwlMu/caYbeOx9rodJASB4AR9Crqk7pbj0qr25pWK2u0fN5XVZB3tjEN6lcfRSstP2ib3X7HohXu+PRKibMOOwfmjtW1ffawNs8c1PbZw+xpiy68R9LTq5nNR79yMjDwuRrB8ePvulGXX3px13KvVhvTVrOUB47WdfdNNU1YWMuWYK209+4D3eexdN516UVru8773umtK68nDEsC08EIO+NYkoN+eI9kSyv1HKWdaW2y2nOOut1ktaK3v+FK3Xfk6a5NRy6prAlMb7eKxD6w/3jgc/YbKfPeSh4j7ByjrST64T2SHa0AN0jv8aij1YXFJe3/T8+sCtYm6e6barrj9Vd2tUttNR3p9T4IOnZ7tmbvoVO6+6baqlH43Tc1lqeRzUkeATvjaCuJfniPZEfQxVMvrQKzKG1Mpe7d4lzS35x4Xg8crQcG8ulttZ7vg84uYu0XHO3p+F07tuip2Tu0a8cWPXC0Hntvc0RDwM44+uuiH94j2THIRVJrBNw+By6FbywSZmFxqesiwSXd/+gzmjtWD30frF9X6Upr98vWkM1JFwE744KuvumvG788F23xHsmOyXXhm3m069xlbXpbbeX3GFdVUWuN9q3Xbwh8f3zkHTd0/T/9sjVkc9LFOuyMo63k+OV9v2jeI6OLq4d1lBrej7/rxpV+3dtnD68c8+VXlnum04PWb/ezuHROf3PieV1SWbPy3JPVinbfeUPg6+u3ppyNZNJFwM4B+uuOV680X15+7rxHhjfKBVtnoI+ysUdYv+5eLr1oQi+fHWwNdkvnObX3D+/Ub8csdtRKFylxlB5pvnIbdl42qEAryvzz4tI5/dWRpyMXp01WKzozZLAOO37Ya+u1pjzK/eOU52mruDDCRumR5iu3YS/YggJ93F0tKmtMP/7pUuzP2+u19cvWpJHNyfu0VVwI2Cg90nzlNuwFW680dnvr0WGtq6zRmaXw9HUUa0wKmvYOW3/dSu9PrqvIXXppcSkTNRFFmLaKAylxlF6aaT6kb9gq+15tQl2N99HH33Vj5DXWnUYN1lJwsJakl19ZXpVS7kzvv3hmSQuLS5lZa820VQMjbEAUbZXZsFX2vXa0khqBrtUp7P5Hn+n7+CQtLC6tSin3a/iS9miWaauGWAK2mX1G0tsl/dDd/0nA/SbpzyXdLumMpPe5+zfjODaAcotjSVaUC7au7Smrlb5V4a1OYVkK1i3tQTjKSDXN0SzTVg1xpcT/g6S39rj/bZKua/67R9K/i+m4AEosqFJ7HOnboOO8fHa5sUVlH4tL5wbeZSsprSAcZaSa5miWaauGWEbY7v51M9vU4yF3SfpLb2wNdsTMJs3sSnd/Po7jY7ziaioBxC2pYqSg4yydc61vdjYL2imrXRZH2NKFIBw0gm2XhdEs01bJzWHXJD3T9v2zzdu6AraZ3aPGKFwbN25M5OQQjuUUyLKkipHCnu/FM0tDF5WlrT0Id87jB1WJS1rVmY0L9+RlrujM3fdJ2ic19sNO+XRKj+UUyLKkipHCjjNhNtDuXMNav67SdxQflUmBAbfXCLaMF+5ZzCwmtayrLumatu+vbt6GjGM5BbIsqY1Pwo6TVKp73UWNsVUcU+HDBJ+y7dKVVG3EoJIK2Ack/ZY13CLpJeav84GtG5FlSRUjhR1nshq8O1dtsrqyXWYcWqP7OK4PWsHnD+cei9zqs2wX7lm9QIlrWdf9kt4s6Qoze1bSRyRVJMndPyXpQTWWdD2pxrKu34njuBg/llMg65IqRuo8ztyxul4+u9z1uMoaW/n76FXIlabFpXO678jTK93Y+qW4y7YOOqsXKHFVib+nz/0u6Z/HcSwki60bgWB7D53S0rnuIe+rLlm76u9j76FTjY1BLJ4Rclw6T6VXbUrZLtyzeoGSuaIzZA/LKYBuvSrHN88cXKm0bjVXyVKwDhP2msp24Z7VCxQCNgAMIWwUJmmlH3dWhW1O0msEWaYL96xeoBCwAWAI/ZqNZImZVF27RotL53XVZFW3Xr9BDxytZ24EmSVZvEAhYAPAENpHYb222syCp/bc0XXb1LWXZ24Eid7MMzyxMjU15fPz86kcO4uL5gFk0+aZgyPvfz1Ov3nLRt07vTXt00AEZnbU3aeC7mM/7ABZXTQPIJvirB42SZde1LvdaauHeVT3HXm61J9fc8fqkdecZxkBO0BWF80DyKagTmjDckkvnw2fF1+/rqIfL3av/+73nGX9/CrSAIyAHSCri+YBZFNnJ7T16yqarFZWuqL95i3xbWT04pmloVqilvXzq0gDMIrOAmR10TyA7OpXVfw3J55fWZM9LusqjUrwQZdstSta/U6RBmCMsAMktaEAgPLYfecNAz2+WlmjQfb6qFYm9K92vl7vvWVj1/9XWWM6c3a57xxur/RxXueBi7QfAgE7QFIbCgAoj+lttdDNQjoDbLUyoT07X68/e9eNqz6Hev3/rc+oe6e3rvr/JqsVyRqp9H5zuGHp449+5WRu54GLNAAjYIeY3lbTIzO36anZO/TIzG0EawAj233nDV3Bo7LGtK6tKnyyWgkdILz9DVdqYk33uNslzf/ghZXv2z+/Lr14bVfP87A53F7tVvM6D1ykARhz2ACQkM6Wl5dVK3r57PKqqvBXls9LupCebgXK+sKiHjha17nzwQVn9z/6TOBa60HmcHu1W436HFmUxa5lw2CEDQAJijr6DUtPhwmrHJ8MWbMddPuuHVtU6RjBV9ZYaCo+j/PAecYIGwDGqLPq+tbrN+jhJ07rueZ8cJBhWp1OWHCJWtgKsNCVYZ1PY41UPL3H08cIGwDGJKjq+q+OPL3yfS9hFeLrKsEf2+950zWBt78UspQs6PagPb6XzrkefuK07r6ptnJRMGGmu28qRpo5TwjYADAmQWntqFzB1eP/aufr9Zu3bOwaUT/8xOnAqu1BljWFzUmvzJ83h+Xn3PXA0XouqsSLhIANAGMy6i5eLgVWN987vVV/+s43rKo4ry8s6gP7j+tnP3RQfzj32MrtgyxrCgvuE2a5rRIvEuawAWBMJswitRENe9z6dRU9MnNb4P8TNno/79JfHXlaknTv9NauyvRe3cuC9viuViZCswR5qRIvCkbYADAmUYK1qTH/XJnonrX+yU+XQ9PO/YLl/Y8+s/J11L4SYWuWawXqFpZnjLABYExqEdY1/+LPXa57p7cG9hpfOu/ae+hUYIDtt2Z6mA1CpPA1y0Ejb6rEk8UIG0Dq8tqnup8o225+/0eNoBtWzR02ku733GHLvIZRpG5hecYIG0Cqgjp6fehLjaKpvAeE9vnjsNFwKyAPuktg67k/9KVvaXHpfNf9Ycu8hlWUbmF5xggbQKqKtF9xkNb8cb9uYcNsUjG9rabH//e3rVrmNWGm37xlY2CbUuQbI2wAqSrSfsVh5o7V9fLZ5a7bK2tsJSAPUs3d6d7prQMH6KLte10GBGwAK9L4EB80FZxHQR3EJOlVl6xd9fNNKu1c5GmIIiMlDkBScBvNJPY8LtJ+xWF6bVuZRqFd0achioqADUBSeh/iZahA7pUtiHJxFHcVfRmmIYqIlDgASel+iBe9Ajmog1in1sVR589hHOnrMkxDFBEjbACSBtskAoPpzCKECbo4GkfmowzTEEVEwAYgiQ/xcWtvDzpIq89xZD7KMA1RRKTEUVosa1ltlGVFGEzYJhthO2iNI31d9GmIIiJgIzFZCpAsawnGh3gy4thBi8xH+RCwkYisBche84IELCQh6sURmQ+0ELCRiKwFSJa1IE+CgnuWMlZIBkVnSETWAiQV0ciztJrcIF0EbCQiawGSimjkGZ3KyomAjURkLUCyrAV5lrWMFZLBHDYSkcXCGSqikVd0KisnAnbCylwoQoAE4sFSr3IiYA9pmMCbtaVNAPIpixkrjF8sAdvM3irpzyVNSPq0u8923P8+SXsltUoYP+Hun47j2HEYNPgOG3iztrQJQH6RsSqfkQO2mU1I+qSkfyrpWUnfMLMD7v6djofud/f3j3q8uA0TfIcNvBSK5FOZpzEAZEccVeI3S3rS3b/n7mclfU7SXTE8byKGWR4xbODN2tIm9Md6VwBZEUfArkl6pu37Z5u3dbrbzL5lZl80s2vCnszM7jGzeTObP336dAyn19swwXfYwJu1pU3oj/WuALIiqXXYX5G0yd1fL+mrkj4b9kB33+fuU+4+tWHDhrGf2DDBd9jAy9rf/GEaA0BWxFF0VpfUPmK+WheKyyRJ7v6jtm8/LelPYjhuLIZZHjFKhSaFIvnCelcAWRFHwP6GpOvMbLMagfrdkn6j/QFmdqW7P9/89k5Jj8dw3FgMG3wJvOXAelcAWTFywHb3ZTN7v6RDaizr+oy7nzSzj0mad/cDkv5nM7tT0rKkFyS9b9TjxongizCsdwWQFebuaZ9DqKmpKZ+fn0/7NAAASISZHXX3qaD76HQGAAVHL4FiIGADQIHRErk42F4TAAqMXgLFQcAGgAKjl0BxELABoMBoiVwcBGwAKDBaIhcHRWcAUGD0EigOAjYAFBzNoYqBlDgAADlAwAYAIAcI2AAA5AABGwCAHKDoDABQCEXvmU7ABgDkXhl6ppMSBwDkXhl6phOwAQC5V4ae6QRsAEDulaFnemkC9tyxurbPHtbmmYPaPntYc8fqaZ8SACAmZeiZXoqiszIUIwBAmZWhZ3opAnavYoQi/TIBoMyK3jO9FCnxMhQjAACKrRQBuwzFCACAYitFwC5DMQIAoNhKMYddhmIEAECxlSJgS8UvRgAAjFfavcpLE7ABABhWFpYHl2IOGwCAUWShVzkjbADAWKSdQo5TFpYHM8IGAMSulUKuLyzKdSGFnNe20FlYHkzABgDELgsp5DhlYXkwKXEAQOyykEKOUxaWBxOwAQCxu2qyqnpAcM5zh8m0lweTEgcAxC4LKeSiYYQNAIhdFlLIRUPABoAcysOSqbRTyEVDwAaAnMlC1y0kj4DdRx6uYlE+vC/LrdeSKd4HxUXA7oGrWGQR70sUbckUoqFKvIeiLfxHMfC+RBa6biF5BOweuIpFFvG+BEumyimWgG1mbzWzU2b2pJnNBNx/sZntb97/qJltiuO448ZVLLKI9yWmt9W0Z+dW1SarMkm1yar27NzKlEjBjTyHbWYTkj4p6Z9KelbSN8zsgLt/p+1hvyvpRXf/x2b2bkl/LOldox573Hbt2LJqrlDiKrZMslrYxfsSEkumyiiOorObJT3p7t+TJDP7nKS7JLUH7Lsk7W5+/UVJnzAzc3eP4fhjw8L/8spyYRfvS6Cc4gjYNUnPtH3/rKQ3hT3G3ZfN7CVJPyPpH2I4/lhxFVtOWV82w/sSSE9a2bfMLesys3sk3SNJGzduTPlsUFZ5KezKatoeKKo0s29xFJ3VJV3T9v3VzdsCH2NmayVdJulHQU/m7vvcfcrdpzZs2BDD6QGDy0NhV+uDo76wKNeFD465Y51/fgDikuayyjgC9jckXWdmm83sIknvlnSg4zEHJP128+tfk3Q46/PXKLc8LJthPTaQvDSzbyOnxJtz0u+XdEjShKTPuPtJM/uYpHl3PyDpLyT9n2b2pKQX1AjqQGblobArL2l7oEjS3Oc7ljlsd39Q0oMdt/1R29c/lfTrcRwLSErWC7vS/OAAyirNZZV0OgNyKg9pe6Bo0mxak7kqccSHCuJiy0PaHiiitLJvBOyCynLjD8Qn62l7APEhJV5QVBADQLEQsAuKCmIAKBYCdkHlofEHACA6AnZBUUEMAKOZO1bX9tnD2jxzUNtnD6feRZCis4KighgAhpfFwl0CdoEVpYKY5WkAkpbFHfsI2Mi0LF7lAii+LBbuMoeNTGN5GoA0ZLFwlxF2SvKQ5s3COWbxKhfdsvBeAeKUZs/wMATsFOQhzTvMOY7jQ5sNLrIvD+9nYFBZLNwlYKcgi8UMnQY9x3F9aGfxKher5eH9DAwja4W7zGGnIA9p3kHPcVxzzWnujINo8vB+BoqAEXYK8pDmHfQcx/mhnbWrXKyWh/czUASMsFOQhy5kg55jFisqR5W1LkdZlYf3M1AEjLBTkMVihk6DnmMac83jrEymkCq6PLyfgSIwd0/7HEJNTU35/Px82qeBiJJc2tMZUKXGBUJc89vbZw8Hpnlrk1U9MnPbyM8PAEHM7Ki7TwXdxwgbsUlyrnnclckUUgHIGuawkUvjDqhFnJMHkG8EbOTSuAMqhVQAsoaAnRNULK827oDK+m8AWcMcdg5Qsdwticpk1n8DyBICdg7Q+jEYARVAmZASzwEqlgEABOwcoGIZAEDAzgEqlgEAzGHnAK0fMawku88BGC8Cdk5QYIVBsboAKBZS4kBBjWuPcgDpIGADBcXqAqBYCNhAQbG6ACgWAjZQUHleXUArXqAbRWdAQeV1dQHFckAwAjaQcaMszcrj6gJa8QLBCNhAhpVxtEmxHBCMOWwgw8q4NItiOSAYARvIsDKONvNcLAeMEwEbyLAyjjant9W0Z+dW1SarMkm1yar27Nxa2CkAICrmsPugFzPStGvHllVz2FI5Rpt5LJYDxm2kgG1ml0vaL2mTpO9Leqe7vxjwuHOSHmt++7S73znKcZNSxoIfJKvfBWFel2YBiJ+5+/D/s9mfSHrB3WfNbEbSenf/XwMe9xN3f9Wgzz81NeXz8/NDn9+ots8eVj1grrA2WdUjM7elcEYoks4LQqkxeib9C5SXmR1196mg+0adw75L0mebX39W0vSIz5cpZSz4QXLKWAGOfKMDXbpGDdivcffnm1//V0mvCXncJWY2b2ZHzCw3Qb2MBT9IDheEyJNWRqi+sCjXhSlCgnZy+gZsM/uamX074N9d7Y/zRm49LL9+bXOI/xuSPm5mP9fjePc0g/v86dOnB3ktsWN5CcaJC0LkCRmh9PUtOnP3t4TdZ2Z/b2ZXuvvzZnalpB+GPEe9+d/vmdnfStom6bshj90naZ/UmMPu+wrGiIIfjFOcFeCsZsC4kRFK36jLug5I+m1Js83//nXnA8xsvaQz7v6KmV0habukPxnxuIlheQnGJa4LQlYz5F8eLriumqwGFuGSEUrOqAF7VtLnzex3Jf1A0jslycymJP2+u/+epJ+X9O/N7LwaKfhZd//OiMcFCiGOC0I2y8i3vFxwlbUnQJaMFLDd/UeSfjng9nlJv9f8+u8kbR3lOADCkarMt7xccDFFmD46nQE5R6oy3/J0wcUUYbroJQ7kHKsZ8o3VAoiKgA3kHJtl5BsXXIiKlDhQAKQq84u5YURFwMZY5GGZSpbx8ysXLrgQBQEbscvLMpWs4ueXDC6KkDcEbMSuXwtDPiR7y8synzzjogh5RMBG7MKWo7Q+FPmQ7C1Py3zyahwXRYzYMW5UiSN2YctRJszYPCAClvmMX9wXRexkhSQQsBG7sGUq5zx4LxdGjquxzGf84r4oYicrJIGAjdiFrQuu9fmQnDtW1/bZw9o8c1DbZw+XdnTCuurxi/uiiGkMJIE5bIxF2DKVsM0DKAJajWU+4xX32vlJiPgAABkuSURBVGfawyIJBGwkpteH5PbZw1RGI1FxXhSxkxWSQMBGosI+JEkpIs/oVoYkELCRCZdVK1pYXOq6fZiUIstrkAamMTBuBGxEEjUIDhMs547V9fLZ5a7bK2ts4JQic+EAiooqcfQVdY3psGtR9x46paVz3Uu+XnXJ2oGDLMtrABQVI2z0FbUr1LAtScPmqRfOdKfI+2EuHEBREbDRV9QgOGxL0kGWxPRLubO8BkBRkRIvuSjNSqJ2hRq2JWnUJhZzx+ra9YUTq1Luu75wYtU50yUMQFERsEss6pxzUBCUpDNnl7uCZWWNrXpMZY31bUkatbPX7gMntXR+9XMtnXd9YP/xlYsNuoQBKCpS4iUWdW669fXuAydXLb168cxSdwX26ngtmTQZYclWlCUxQc/R0plmJ0CjjFjSWGyMsEtskAKt6W01XXpx9/VdZ1FZZ7X30jmXmSKN0EdFNTjKLM0dw+aO1XXjRx/SppmD2jRzUNs+9lBp9wIYJwJ2iQ26Y1G/AN+r2nvPzq2arFZW3f7imSXt+uKJSH/YUf/4qQZHWaW1pLFVW9KZfYv6t43oCNglNmiBVr8A3+v+6W01WWe6XI0R+Ee/crLr9lYx3KaZg/q5Dz2oD+w/3uul9D1HoOjSWtK499CprtoSqfG3TcYrXgTsEhu0QKtfgL/1+g1dU9jt978Ysq668/b21J6k0KK1TmGV5WzZiTKIe4/vqHpdEJDxihdFZyURVowySIFWrw0O5o7V9cDRutpDq0m6+6bBC8CCUnthJsx03j2wwIY2pSiTtHYMC+t90LoP8SFgl8AogSso0D8yc9vK7R/cf1x7D53SmbPLXUHWJT38xOmV5wnTObc9yFX5n77zDV1BunW+a6x7SRlbdqKo0toxbNeOLdr1hRNdafHKxOB7AaA3AnYJRF2+1Sks0H9h/mn93XdfWBlNh11dSxeCb6+5rIXFJW2fPbzy4dLrir3d+nWVniPqfuu/gaJJY0lj0LLP9esq+sg7buDCOGYE7BIYthglLNA/8t0XIh+7lRLrd6z2UX9Qaq9TtTKhj7zjhr7n2+uccAHrdzEKeh8kg4BdUP1Sw1L/wDXqSLSyxnTm7LI2zxwMPYd2i0vn9AefP6Hz7rqsWtEllTV68cySJpr/b+u/tZCAEvV8b71+w9CvqYiCMikf3H9c8z94QfdOb131OII6kB4CdgFFSQ1HKUaJmppumaxWdOnFa/XcwqIuq1b08tnllQrwqJXercctLC6pWpnQx991Y+AcdWvuvD1oRD3f1rw6GoIyEy7pviNPa+ray1eKCingA9LFsq4CCksNT5j1XL7VuQTq1us3dC3jClhKvXL77jtv0CMzt+mp2Tt06cVrA/e4nghajB2is+lDUCenD+4/rk1t59vZyzwIc9irhf08XFrVxY59xoF0EbALKOwD+Ly7/uxdN0qSPti2YYYUHAzvO/K03rjxslXrtN97y8bAIP7eWzauugAIO4eoI+2W+sLiynmGjQRbj3vgaF0Xre3/lmYOe7VeP49+Xey4+AGSQ0q8gMJSw5PrKqFpzbBg+HfffUF/1pGWnrr2cu09dEr1hcWVeeWHnzi9sltWr3MYRn1hMVKnsygFZ2y12W3Xji364P7jCrqUau9ixz7jQLoYYRdQWEeyny6dC01rhgXX9rRoy/S22soxWiPm9o0G5o7V9fIry/G9oJiw1Waw6W01vfeWjT271LHPOJA+RtgFFNRA4dbrN+ivjjwd+Pjn2kbKYfd3CpvTjNrze1wmqxW9sny+q9sTgbq3e6e3rmROgqrA02rKAeACAnZBda6L3D57OPSx/ZZcBaU9szh3Wa1MaPedjbXZ7Sn79uIoAky4fmtpWWsLpIuUeEn0CrDn3HtWfwelPbM2d9kZmHul7AEgjwjYJXFZR7/uTq7uJVtB1d8tQXOaaalMWFdg3n3gJMuQABQKKfESmDtW18tn+xeBuRqFWVHmKKe31TT/gxd0/6PPDLxUK04Xr12jV5bPr7ptMaC4ruW5hcXIHbvo7AUgS0YK2Gb265J2S/p5STe7+3zI494q6c8lTUj6tLvPjnJcDGbvoVOBTUw61SaremTmtkjP2dpOM81gLakrWPdzWTV8aRtbcwLIslFT4t+WtFPS18MeYGYTkj4p6W2SXifpPWb2uhGPiwFEKRAbdInOIHtWp2H9ukrgMiSz7vXaQalyOnsByJqRAra7P+7u/T7Bbpb0pLt/z93PSvqcpLtGOS4GE1Yg1q9VaS9ZrBJvae3ktWfn1lVd2vbs3KqFZm/zTp2vh85eKJPOtsQUZ2ZTEnPYNUnPtH3/rKQ3JXBcNAVtVzns2uTWvG66ifBwE2Zdr6s1D7330CldVq2s7NnbrvOihs5eKAumf/Kj7wjbzL5mZt8O+DeWUbKZ3WNm82Y2f/o0uyrFYXpbLXC0OUywbvUbz6rz7iuvK6g/+stnl7s2CAmaDqCzF8qC6Z/86DvCdve3jHiMuqRr2r6/unlb2PH2SdonSVNTU1kdyOVOv6YXUSqixz1vbWoUhZlpZVvOQbWPgIPOd+mca/26itZdtLbna6WzF8qC6Z/8SCIl/g1J15nZZjUC9bsl/UYCx0UfrSBdX1iUafXOV0EpsXH+AXdWqG+aOTjwc1QmbNUIOOx8F84s6dgf/Urf56OzF8qA6Z/8GKnozMx+1cyelfQLkg6a2aHm7VeZ2YOS5O7Lkt4v6ZCkxyV93t1PjnbaGFVnerszlRGUEptc17v5yrCCUs21IT4sljuWroV94PBBBFzA9E9+jDTCdvcvS/pywO3PSbq97fsHJT04yrEQryjp7fYR6tyxun7y0/h34DJT4Hz6rh1bBt5IxNXY5/sD+4+r1tzw5IGj9a5iOz6IgAuY/skPOp2VVJT0dvtIdPeBk1o6H39Jwdo1wV3Mp7fVtPvAycCK7l47i7Wn9R84WtfdN9X08BOn+SACemD6Jx8I2CUVNm/V0j4SnTtWDwyccVg659p76FTgh8XuO28IXI529021rpFzkMWlc3r4idORu7ehHGg5i7wiYJdUv5TzxWvX6IP7j2vvoVM6E6EP+SieW1jUH849ttKXfMJM73nTNbp3equk4FTd1LWX6w8+f6Jva1QqXdGONcfIM/OUe0H3MjU15fPzge3JEYMbP/pQ4Mi5vWI8CZdeNKGXzwaPlmt9NufoHIEH/f+MsNGyffZwYGaJ9wmywsyOuvtU0H2MsEumPR04ua6iyhpbNTeddLCWFBqspd4joNb3YSPtsL28UV6sOUaesR92iXR2/nrxzJJk0mS1stIBLYv5ll5dl6a31XS+RwEaaU60Y6kf8oyAXSJhnb8uvXitnpq9Q4/M3Ba6/nmyWllpbTpZrejSiyYCHzeoaiXaW7C+sKhNMwe1aeagbvzoQ6s2Jwj7sB1mLTeKjTXHyDNS4iUSJR0YtlHI7jtv6BqttndKG9YllQmdO+86G2G/7paFxSXt+sIJSY0RdNg58yGMTqw5Rp4RsEskSgvCQT7QWms3N88cHDqV/uKZJVUmgtdi97J0/sJysLQ+hFkelE+sOUZeEbBLJOpINOgDrVdw6remu5cJMy0FjK6tWf3W60KgPTMwjg/hXq+Z5UEAksYcdokMu81m0DaVH/rSY/rDucdCl8lEUZkI71gml56avaPnPPQ4C4XCXnNr7pwtCQEkrXQj7LKnMYcZiYYFp/uOPD10Knz9uoo+8o4bQufAW8F4144t2vXFE12j8MoaG+scda+APL2txvIgIOfyGAtKFbBJY0bT+UYOG0EPE6zXr6t0bW3ZL01/6UVrVzV4maxWAovg4tQvILMlIZBfeY0FpUqJk8bsLygVPHhJWLgXzyytpJVbFwaLS+c0YY2jtKfpW+fSHqzDKtbj1m+9LsuDgPzKaywoVcAmjdlf0BvZpa6gPUoQb81/t+/Hfc59JeC1V32n9UfVLyAPWw8AIH15jQWlSomTxuwv7A3ragSlVpo8aK/pdpUJk1yBW3IuLp1b2eij8/Y/+PyF9dVp/lFFWSrG8iAgn/IaC0oVsGmw0V/YGzloc4Spay9fCWiXVSsykxbOLK0EN0mhO4KFVYefc9euL5zQR79yMnSOPKk/KgIyUEx5jQWlCth0OepvkDdylIAWVgU+YeFLupbOe6PPeYA8/FEByLa8xgK210SXoOUO0nBv7qAtMKuVCd19U61nSj1Ir602AaAI2F4TA+kcOY+yBKLXlezUtZeHbo3ZyST2KwZQagRs9NWviUg/Yanz1m2dI/AgWS8GAYBxI2Cjr2GrtaN0EuocgV9Wrejls8urOpsxbw0ABGxEMMwSiEHS6EEp+LwVgwDAuBGw0dcwSyBGSaOznAoAuhGw0dcwSyDy2kkIALKKgI1IBh315rWTEABkVal6iSM5494cY+5YXdtnD2vzzEFtnz28sqEIABQVI2yMxTg7CeV1azwAGAUBG2MTd/FYq3o8KNU+yLpwAMgjAjZyIajFaScK2gAUGXPYyIWgZWKdKGgDUGQEbORCv9Ez3dAAFB0pceRC2DKxlj07tzJ/jVTRoQ/jRsAeEH+Ug4nr57VrxxZ9cP9xBe3rVZus8jtAqli5gCSQEh9A64+yvrAo14U/StYAB4vz5zW9rab33rJR1nE7qXBkQa9WvEBcCNgD4I9yMHH/vO6d3qo/e9eNqk1WZWqMrEmFIwtoxYskkBIfAH+UgxnHz4uNQZBFtOJFEhhhDyDsj48/ymD8vFAW427FK9GOFwTsgSTxR1kk/LxQFtPbatqzc+vYpmuon4FESnwg4+yPXUT8vFAm45yuGWV/eRQHAXtAzKEOhp8XMDrqZyCNmBI3s183s5Nmdt7Mpno87vtm9piZHTez+VGOCQBlQz0IpNHnsL8taaekr0d47K3ufqO7hwb2tFHUASCLqAeBNGJK3N0flySzznYW+UOnIgBZRT0IpOTmsF3SQ2bmkv69u+9L6LiRUdQBIMuoB0HfgG1mX5P02oC7Puzufx3xOL/k7nUz+0eSvmpmT7h7YBrdzO6RdI8kbdy4MeLTj46iDgBAlvUN2O7+llEP4u715n9/aGZflnSzQua9m6PvfZI0NTUVtNfDWNCpCACQZWNvnGJml5rZq1tfS/oVNYrVMoWiDgBAlo00h21mvyrp/5C0QdJBMzvu7jvM7CpJn3b32yW9RtKXm4VpayX9X+7+f4943rGjqKOY2A4VQFGMWiX+ZUlfDrj9OUm3N7/+nqQ3jHKcJPDBXjxU/gMoEnqJiz69RcV2qACKhNakYklXUVH5H68oWSgyVcnhZ10+BGzxwV5UVP7HJ8r0AlMQyeFnXU6kxEWf3qKi8j8+UaYXmIJIDj/rciJgiw/2ohr3HsVZFndf/ChZKDJVyeFnXU6kxMWSriIrYzvHcaRLo0wvMAWRHH7W5cQIu2l6W02PzNymp2bv0CMzt5XuQx7FMY50aZQsFJmq5PCzLidG2EDBjCNdGiULRaYqOfysy8ncE2vXPbCpqSmfn59P+zSAXNk+ezgwXVqbrOqRmdtSOCMAUZnZUXefCrqPlDhQMKRLUQRxF04WASlxoGBIlyLvWGcejIANFFAZq+NRHHSfDEZKHACQKawzD0bABgBkCt0ngxGwAQCZQuFkMOawUXrsegRkC4WTwQjYKDWqUYFsonCyGylxlBq7HgHIC0bYKDWqUZFVTNWgEwEbpcauR4gi6eDJVA2CkBJHqVGNin5awbO+sCjXheA5zlaZTNUgCAEbpTa9raY9O7eqNlmVqbFBxp6dWxnFYEUawZOpGgQhJY7SoxoVvaQRPJmqQRBG2ADQQxpdt5iqQRACNgD0kEbwZKoGQUiJA0APaXXdYqoGnQjYANAHwRNZQEocAIAcIGADAJADpMQBoAdahCIrCNgAEIIWocgSAjaAUooycu7V5YyAjaQRsAGUTtSRMy1CkSUUnQEonaj9wdPocgaEIWADKJ2oI2dahMZn7lhd22cPa/PMQW2fPTzW3c6KipQ4gNKJurlGWl3OiobivXgQsAGUzq4dW1YFECl85EyXs9FRvBcPAnYBsW4U6I2Rc7Io3osHAbtgSD0B0TByTg77e8eDorOCiVr9CgBJoXgvHoywC4bUE4CsYQoiHiMFbDPbK+kdks5K+q6k33H3hYDHvVXSn0uakPRpd58d5bgIR+oJQBYxBTG6UVPiX5X0T9z99ZL+s6QPdT7AzCYkfVLS2yS9TtJ7zOx1Ix4XIUg9AUAxjRSw3f0hd19ufntE0tUBD7tZ0pPu/j13Pyvpc5LuGuW4CDe9raY9O7eqNlmVSapNVrVn51aubAEg5+Kcw/5nkvYH3F6T9Ezb989KelOMx0UHUk8AUDx9A7aZfU3SawPu+rC7/3XzMR+WtCzpvlFPyMzukXSPJG3cuHHUpwMAoBD6Bmx3f0uv+83sfZLeLumX3d0DHlKXdE3b91c3bws73j5J+yRpamoq6PkAACidkeawm9Xf/1LSne5+JuRh35B0nZltNrOLJL1b0oFRjgsAQNmMWiX+CUmvlvRVMztuZp+SJDO7yswelKRmUdr7JR2S9Likz7v7yRGPCwBAqYxUdObu/zjk9uck3d72/YOSHhzlWAAAlBmtSQEAyAECNgAAOUDABgAgBwjYAADkAAEbAIAcIGADAJADBGwAAHKAgA0AQA4QsAEAyAECNgAAOUDABgAgByx4R8xsMLPTkn4w5P9+haR/iPF00lSk1yIV6/UU6bVIvJ4sK9JrkYr1euJ8Lde6+4agOzIdsEdhZvPuPpX2ecShSK9FKtbrKdJrkXg9WVak1yIV6/Uk9VpIiQMAkAMEbAAAcqDIAXtf2icQoyK9FqlYr6dIr0Xi9WRZkV6LVKzXk8hrKewcNgAARVLkETYAAIVRmIBtZnvN7Akz+5aZfdnMJkMe91YzO2VmT5rZTNLnGYWZ/bqZnTSz82YWWnloZt83s8fM7LiZzSd5joMY4PXk4XdzuZl91cz+S/O/60Med675ezluZgeSPs9++v2szexiM9vfvP9RM9uU/FlGE+G1vM/MTrf9Pn4vjfOMwsw+Y2Y/NLNvh9xvZvZvmq/1W2b2xqTPcRARXs+bzeyltt/NHyV9jlGZ2TVm9rCZfaf5efYvAh4z3t+Puxfin6RfkbS2+fUfS/rjgMdMSPqupJ+VdJGkE5Jel/a5B5znz0vaIulvJU31eNz3JV2R9vnG8Xpy9Lv5E0kzza9ngt5nzft+kva59ngNfX/Wkv4nSZ9qfv1uSfvTPu8RXsv7JH0i7XON+Hr+O0lvlPTtkPtvl/QfJZmkWyQ9mvY5j/h63izpb9I+z4iv5UpJb2x+/WpJ/zngvTbW309hRtju/pC7Lze/PSLp6oCH3SzpSXf/nruflfQ5SXcldY5Rufvj7n4q7fOIS8TXk4vfjRrn9Nnm15+VNJ3iuQwrys+6/XV+UdIvm5kleI5R5eV9E4m7f13SCz0ecpekv/SGI5ImzezKZM5ucBFeT264+/Pu/s3m1/9N0uOSah0PG+vvpzABu8M/U+Mqp1NN0jNt3z+r7h94nrikh8zsqJndk/bJjCgvv5vXuPvzza//q6TXhDzuEjObN7MjZpa1oB7lZ73ymOaF8EuSfiaRsxtM1PfN3c0U5RfN7JpkTm0s8vJ3MohfMLMTZvYfzeyGtE8miuYU0TZJj3bcNdbfz9q4nigJZvY1Sa8NuOvD7v7Xzcd8WNKypPuSPLdBRXktEfySu9fN7B9J+qqZPdG8ok1cTK8nE3q9lvZv3N3NLGyZxbXN383PSjpsZo+5+3fjPldE8hVJ97v7K2b2P6iRObgt5XNCwzfV+Fv5iZndLmlO0nUpn1NPZvYqSQ9I+oC7/zjJY+cqYLv7W3rdb2bvk/R2Sb/szQmFDnVJ7VfXVzdvS1y/1xLxOerN//7QzL6sRnowlYAdw+vJxe/GzP7ezK509+ebqa4fhjxH63fzPTP7WzWuxrMSsKP8rFuPedbM1kq6TNKPkjm9gfR9Le7eft6fVqMOIa8y83cSh/aA5+4Pmtm/NbMr3D2TPcbNrKJGsL7P3b8U8JCx/n4KkxI3s7dK+peS7nT3MyEP+4ak68xss5ldpEYxTeYqeKMws0vN7NWtr9UougusxMyJvPxuDkj67ebXvy2pK3tgZuvN7OLm11dI2i7pO4mdYX9Rftbtr/PXJB0OuQhOW9/X0jGHeKcac495dUDSbzWrkW+R9FLbFE3umNlrW7URZnazGjEpixeGap7nX0h63N3/dcjDxvv7SbvyLq5/kp5UY+7gePNfq8L1KkkPtj3udjWq+76rRro29XMPeC2/qsbcxyuS/l7Soc7XokZV7Inmv5NZfS1RX0+Ofjc/I+n/kfRfJH1N0uXN26ckfbr59S9Keqz5u3lM0u+mfd4Br6PrZy3pY2pc8ErSJZK+0Py7+k+Sfjbtcx7htexp/o2ckPSwpOvTPucer+V+Sc9LWmr+zfyupN+X9PvN+03SJ5uv9TH1WEWShX8RXs/72343RyT9Ytrn3OO1/JIadUPfaosztyf5+6HTGQAAOVCYlDgAAEVGwAYAIAcI2AAA5AABGwCAHCBgAwCQAwRsAABygIANAEAOELABAMiB/x/KafxiKBu8UAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "outliers_percentage = 0.35\n", + "inliers = 300\n", + "outliers = int(inliers * outliers_percentage)\n", + "\n", + "\n", + "data = make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[.3, .3],\n", + " n_samples=inliers, random_state=0)[0]\n", + "\n", + "data = scale(data)\n", + "data = np.concatenate([data, \n", + " (np.random.rand(outliers, 2)-.5)*4.])\n", + "\n", + "plt.figure(figsize=(8, 8))\n", + "plt.scatter(data[:, 0], data[:, 1])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What we expect from a good outlier algorithm is that all the samples far away from the two main clusters are labeled as outliers. This can be obtained considering as outliers the samples with a high quantization error.\n", + "\n", + "To test this idea we have to 1) train a SOM, 2) compute the quantization error, 3) set a treshold for the quantization error:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 0 / 100 ] 0% - ? it/s\r", + " [ 0 / 100 ] 0% - ? it/s\r", + " [ 1 / 100 ] 1% - 0:00:00 left \r", + " [ 2 / 100 ] 2% - 0:00:00 left \r", + " [ 3 / 100 ] 3% - 0:00:00 left \r", + " [ 4 / 100 ] 4% - 0:00:00 left \r", + " [ 5 / 100 ] 5% - 0:00:00 left \r", + " [ 6 / 100 ] 6% - 0:00:00 left \r", + " [ 7 / 100 ] 7% - 0:00:00 left \r", + " [ 8 / 100 ] 8% - 0:00:00 left \r", + " [ 9 / 100 ] 9% - 0:00:00 left \r", + " [ 10 / 100 ] 10% - 0:00:00 left \r", + " [ 11 / 100 ] 11% - 0:00:00 left \r", + " [ 12 / 100 ] 12% - 0:00:00 left \r", + " [ 13 / 100 ] 13% - 0:00:00 left \r", + " [ 14 / 100 ] 14% - 0:00:00 left \r", + " [ 15 / 100 ] 15% - 0:00:00 left \r", + " [ 16 / 100 ] 16% - 0:00:00 left \r", + " [ 17 / 100 ] 17% - 0:00:00 left \r", + " [ 18 / 100 ] 18% - 0:00:00 left \r", + " [ 19 / 100 ] 19% - 0:00:00 left \r", + " [ 20 / 100 ] 20% - 0:00:00 left \r", + " [ 21 / 100 ] 21% - 0:00:00 left \r", + " [ 22 / 100 ] 22% - 0:00:00 left \r", + " [ 23 / 100 ] 23% - 0:00:00 left \r", + " [ 24 / 100 ] 24% - 0:00:00 left \r", + " [ 25 / 100 ] 25% - 0:00:00 left \r", + " [ 26 / 100 ] 26% - 0:00:00 left \r", + " [ 27 / 100 ] 27% - 0:00:00 left \r", + " [ 28 / 100 ] 28% - 0:00:00 left \r", + " [ 29 / 100 ] 29% - 0:00:00 left \r", + " [ 30 / 100 ] 30% - 0:00:00 left \r", + " [ 31 / 100 ] 31% - 0:00:00 left \r", + " [ 32 / 100 ] 32% - 0:00:00 left \r", + " [ 33 / 100 ] 33% - 0:00:00 left \r", + " [ 34 / 100 ] 34% - 0:00:00 left \r", + " [ 35 / 100 ] 35% - 0:00:00 left \r", + " [ 36 / 100 ] 36% - 0:00:00 left \r", + " [ 37 / 100 ] 37% - 0:00:00 left \r", + " [ 38 / 100 ] 38% - 0:00:00 left \r", + " [ 39 / 100 ] 39% - 0:00:00 left \r", + " [ 40 / 100 ] 40% - 0:00:00 left \r", + " [ 41 / 100 ] 41% - 0:00:00 left \r", + " [ 42 / 100 ] 42% - 0:00:00 left \r", + " [ 43 / 100 ] 43% - 0:00:00 left \r", + " [ 44 / 100 ] 44% - 0:00:00 left \r", + " [ 45 / 100 ] 45% - 0:00:00 left \r", + " [ 46 / 100 ] 46% - 0:00:00 left \r", + " [ 47 / 100 ] 47% - 0:00:00 left \r", + " [ 48 / 100 ] 48% - 0:00:00 left \r", + " [ 49 / 100 ] 49% - 0:00:00 left \r", + " [ 50 / 100 ] 50% - 0:00:00 left \r", + " [ 51 / 100 ] 51% - 0:00:00 left \r", + " [ 52 / 100 ] 52% - 0:00:00 left \r", + " [ 53 / 100 ] 53% - 0:00:00 left \r", + " [ 54 / 100 ] 54% - 0:00:00 left \r", + " [ 55 / 100 ] 55% - 0:00:00 left \r", + " [ 56 / 100 ] 56% - 0:00:00 left \r", + " [ 57 / 100 ] 57% - 0:00:00 left \r", + " [ 58 / 100 ] 58% - 0:00:00 left \r", + " [ 59 / 100 ] 59% - 0:00:00 left \r", + " [ 60 / 100 ] 60% - 0:00:00 left \r", + " [ 61 / 100 ] 61% - 0:00:00 left \r", + " [ 62 / 100 ] 62% - 0:00:00 left \r", + " [ 63 / 100 ] 63% - 0:00:00 left \r", + " [ 64 / 100 ] 64% - 0:00:00 left \r", + " [ 65 / 100 ] 65% - 0:00:00 left \r", + " [ 66 / 100 ] 66% - 0:00:00 left \r", + " [ 67 / 100 ] 67% - 0:00:00 left \r", + " [ 68 / 100 ] 68% - 0:00:00 left \r", + " [ 69 / 100 ] 69% - 0:00:00 left \r", + " [ 70 / 100 ] 70% - 0:00:00 left \r", + " [ 71 / 100 ] 71% - 0:00:00 left \r", + " [ 72 / 100 ] 72% - 0:00:00 left \r", + " [ 73 / 100 ] 73% - 0:00:00 left \r", + " [ 74 / 100 ] 74% - 0:00:00 left \r", + " [ 75 / 100 ] 75% - 0:00:00 left \r", + " [ 76 / 100 ] 76% - 0:00:00 left \r", + " [ 77 / 100 ] 77% - 0:00:00 left \r", + " [ 78 / 100 ] 78% - 0:00:00 left \r", + " [ 79 / 100 ] 79% - 0:00:00 left \r", + " [ 80 / 100 ] 80% - 0:00:00 left \r", + " [ 81 / 100 ] 81% - 0:00:00 left \r", + " [ 82 / 100 ] 82% - 0:00:00 left \r", + " [ 83 / 100 ] 83% - 0:00:00 left \r", + " [ 84 / 100 ] 84% - 0:00:00 left \r", + " [ 85 / 100 ] 85% - 0:00:00 left \r", + " [ 86 / 100 ] 86% - 0:00:00 left \r", + " [ 87 / 100 ] 87% - 0:00:00 left \r", + " [ 88 / 100 ] 88% - 0:00:00 left \r", + " [ 89 / 100 ] 89% - 0:00:00 left \r", + " [ 90 / 100 ] 90% - 0:00:00 left \r", + " [ 91 / 100 ] 91% - 0:00:00 left \r", + " [ 92 / 100 ] 92% - 0:00:00 left \r", + " [ 93 / 100 ] 93% - 0:00:00 left \r", + " [ 94 / 100 ] 94% - 0:00:00 left \r", + " [ 95 / 100 ] 95% - 0:00:00 left \r", + " [ 96 / 100 ] 96% - 0:00:00 left \r", + " [ 97 / 100 ] 97% - 0:00:00 left \r", + " [ 98 / 100 ] 98% - 0:00:00 left \r", + " [ 99 / 100 ] 99% - 0:00:00 left \r", + " [ 100 / 100 ] 100% - 0:00:00 left \n", + " quantization error: 0.4655965288224112\n", + "Error treshold: 0.3430036362711185\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/giuseppe.vettigli/venv3/lib/python3.8/site-packages/minisom.py:154: UserWarning: Warning: sigma is too high for the dimension of the map.\n", + " warn('Warning: sigma is too high for the dimension of the map.')\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'frequency')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAWa0lEQVR4nO3df/BddX3n8edLRAV1RUlkIwSDXWDE3TVihiJunbTQVamILhRwC4LjNoxiNTM4I1Bc3YJUZ8CytgsSq8sPrRBBa0CoQmqkbgQN7Ff5ZTSruIRBftUCEocWfO8f9+T43fBNckNyv5/vj+dj5k7O/Zxz730dbrjvfD7nnM9JVSFJEsCzWgeQJE0dFgVJUs+iIEnqWRQkST2LgiSp9+zWAbbHnDlzasGCBa1jbJe1a9cCsP/++zdOImm2uOWWWx6qqrkTrZvWRWHBggWsWbOmdYztsnjxYgBWrVrVNIek2SPJzza3zuEjSVJvWvcUZoIzzzyzdQRJ6lkUGjvssMNaR5CknsNHjY2NjTE2NtY6hiQB9hSaW7p0KeCBZklTgz0FSVLPoiBJ6lkUJEk9i4IkqTdrDzQvOO1rzT777o//Qb98zjnnNMshSZuatUVhqjjkkENaR5CknsNHja1evZrVq1e3jiFJgD2F5s444wzA6xQkTQ32FCRJPYuCJKlnUZAk9UZWFJLMT/LNJHcmuSPJB7r2jya5N8lY9zh83GtOT7IuydokbxxVNknSxEZ5oPlJ4NSqujXJC4FbklzfrfuLqjp3/MZJDgCOA14FvAy4Icl+VfXUCDM2d/7557eOIEm9kRWFqroPuK9bfizJXcCeW3jJkcDlVfUE8NMk64CDgO+MKuNUsHDhwtYRJKk3KccUkiwAXgPc3DW9L8kPknwuyYu7tj2Be8a9bD0TFJEkS5KsSbLmwQcfHGHqyXHDDTdwww03tI4hScAkFIUkLwCuApZW1aPAhcBvAQsZ9CTO25b3q6plVbWoqhbNnTt3h+edbGeffTZnn3126xiSBIy4KCTZmUFB+EJVfRmgqu6vqqeq6tfAZxgMEQHcC8wf9/K9ujZJ0iQZ5dlHAT4L3FVVnxzXPm/cZm8Hbu+WVwDHJXlukn2AfYHvjiqfJOnpRnn20euBE4Dbkmy8CfEZwDuSLAQKuBs4GaCq7kiyHLiTwZlLp8z0M48kaaoZ5dlH3wYywaprt/CajwEfG1UmSdKWOSFeYxdddFHrCJLUsyg0tv/++7eOIEk95z5q7Oqrr+bqq69uHUOSAHsKzZ133uAyjSOOOKJxEkmypyBJGseiIEnqWRQkST2LgiSp54Hmxi677LLWESSpZ1FobP78+VvfSJImicNHjV1xxRVcccUVrWNIEmBPobkLL7wQgGOPPbZxEkmypyBJGseiIEnqWRQkST2LgiSp54Hmxq688srWESSpZ1FobM6cOa0jSFLP4aPGLr74Yi6++OLWMSQJsCg0Z1GQNJVYFCRJPYuCJKlnUZAk9SwKkqSep6Q2du2117aOIEk9i0Jju+66a+sIktRz+KixCy64gAsuuKB1DEkCLArNLV++nOXLl7eOIUmARUGSNI5FQZLUG1lRSDI/yTeT3JnkjiQf6NpfkuT6JD/u/nxx154kn0qyLskPkhw4qmySpImNsqfwJHBqVR0AHAyckuQA4DRgZVXtC6zsngO8Gdi3eywBLhxhNknSBEZ2SmpV3Qfc1y0/luQuYE/gSGBxt9klwCrgQ137pVVVwE1Jdksyr3ufGWvVqlWtI0hSb1KOKSRZALwGuBnYY9wP/c+BPbrlPYF7xr1sfde26XstSbImyZoHH3xwZJklaTYaeVFI8gLgKmBpVT06fl3XK6hteb+qWlZVi6pq0dy5c3dg0jbOPfdczj333NYxJAkYcVFIsjODgvCFqvpy13x/knnd+nnAA137vcD8cS/fq2ub0a655hquueaa1jEkCRjt2UcBPgvcVVWfHLdqBXBit3wi8NVx7e/szkI6GHhkph9PkKSpZpRzH70eOAG4LclY13YG8HFgeZJ3Az8DjunWXQscDqwDNgDvGmE2SdIERnn20beBbGb1oRNsX8Apo8ojSdo6Z0ltbJdddmkdQZJ6FoXGrrvuutYRJKnn3EeSpJ5FobGzzjqLs846q3UMSQIsCs2tXLmSlStXto4hSYBFQZI0jkVBktSzKEiSep6S2tjuu+/eOoIk9SwKjV111VWtI0hSz+EjSVLPotDY6aefzumnn946hiQBDh81953vfKd1BEnq2VOQJPUsCpKknkVBktTzmEJje+21V+sIktSzKDT2+c9/vnUESeo5fCRJ6lkUGlu6dClLly5tHUOSgCGGj5LsXlUPT0aY2WhsbKx1BEnqDdNTuCnJl5IcniQjTyRJamaYorAfsAw4AfhxknOS7DfaWJKkFrZaFGrg+qp6B/DHwInAd5N8K8nrRp5QkjRphjqmABzPoKdwP/AnwApgIfAlYJ9RBpzp9tvPTpekqWOY6xS+A1wGvK2q1o9rX5Pk06OJNXssW7asdQRJ6g1TFPavqppoRVV9YgfnkSQ1NMyB5m8k2W3jkyQvTvL1EWaaVZYsWcKSJUtax5AkYLiewtyq+qeNT6rqF0leOsJMs8qPfvSj1hEkqTdMT+GpJHtvfJLk5cCEw0mSpOltmJ7CnwLfTvItIMDvAI53SNIMNMx1Cn8HHAhcAVwOvLaqtnpMIcnnkjyQ5PZxbR9Ncm+Sse5x+Lh1pydZl2Rtkjc+s92RJG2PYafOfi7wj932ByShqm7cymsuBv4KuHST9r+oqnPHNyQ5ADgOeBXwMuCGJPtV1VND5pu2Fi5c2DqCJPWGuXjtE8CxwB3Ar7vmArZYFKrqxiQLhsxxJHB5VT0B/DTJOuAgBtdIzGjnn39+6wiS1Bump/A2BtcqPLGDPvN9Sd4JrAFOrapfAHsCN43bZn3X9jRJltAd09h7770n2kSS9AwNc/bRT4Cdd9DnXQj8FoMpMu4DztvWN6iqZVW1qKoWzZ07dwfFauf444/n+OOPbx1DkoDhegobgLEkK4G+t1BV79/WD6uq+zcuJ/kMcE339F5g/rhN9+raZrz169dvfSNJmiTDFIUV3WO7JZlXVfd1T98ObDwzaQXwN0k+yeBA877Ad3fEZ0qShrfVolBVlyTZBdi7qtYO+8ZJvggsBuYkWQ98BFicZCGDA9V3Ayd3n3FHkuXAncCTwCmz4cwjSZpqhjn76AjgXOA5wD7dj/qfVdVbt/S67v4Lm/rsFrb/GPCxreWRJI3OMMNHH2VweugqgKoaS/KKEWaaVV73Ou9TJGnqGKYo/EtVPbLJ7Zl/vbmNtW3+/M//vHUESeoNUxTuSPKfgZ2S7Au8H1g92liSpBaGuU7hTxhMP/EE8EXgUWDpKEPNJkcddRRHHXVU6xiSBAx39tEGBjOl/uno48w+Dz/8cOsIktQb5uyjbzLB/ROq6vdGkkiS1MwwxxQ+OG75ecBRDK4lkCTNMMMMH92ySdP/SuLVxpI0Aw0zfPSScU+fBbwWeNHIEs0yhx56aOsIktQbZvjoFgbHFMJg2OinwLtHGWo2+fCHP9w6giT1hhk+2mcygkiS2htm+Og/bWl9VX15x8WZfd785jcDcN111zVOIknDDR+9GzgE+Pvu+e8yuKL5QQbDShaF7fCrX/2qdQRJ6g1TFHYGDth4H4Qk84CLq+pdI00mSZp0w0xzMX/cjXEA7ge8ObIkzUDD9BRWJvk6g3mPAI4FbhhdJElSK8OcffS+JG8H3tA1Lauqr4w21uzxlre8pXUESeoN01MAuBV4rKpuSLJrkhdW1WOjDDZbfPCDH9z6RpI0SbZ6TCHJHwNXAhd1TXsCfzvKUJKkNoY50HwK8HoG91Ggqn4MvHSUoWaTxYsXs3jx4tYxJAkYrig8UVX/vPFJkmczwVTakqTpb5ii8K0kZwC7JPl94EvA1aONJUlqYZiicBqDq5dvA04GrgXOHGUoSVIbWzz7KMlOwKVV9UfAZyYnkiSplS0Whap6KsnLkzxn/HEF7TjHHHNM6wiS1BvmOoWfMLjb2grg8Y2NVfXJkaWaRd773ve2jiBJvc0eU0hyWbf4VuCabtsXjntoB9iwYQMbNmxoHUOSgC33FF6b5GXA/wX+cpLyzDqHH344AKtWrWobRJLYclH4NLAS2AdYM649DK5TeMUIc0mSGtjs8FFVfaqqXgn8z6p6xbjHPlVlQZCkGWir1ylU1XueyRsn+VySB5LcPq7tJUmuT/Lj7s8Xd+1J8qkk65L8IMmBz+QzJUnbZ5iL156pi4E3bdJ2GrCyqvZlMDR1Wtf+ZmDf7rEEuHCEuSRJmzHs1NnbrKpuTLJgk+YjgcXd8iXAKuBDXfulVVXATUl2SzJvkzu+zUgnnXRS6wiS1BtZUdiMPcb90P8c2KNb3hO4Z9x267u2pxWFJEsY9CbYe+/pf1dQi4KkqWSUw0db1PUKtnm21apaVlWLqmrR3LlzR5Bscj300EM89NBDrWNIEjD5PYX7Nw4LJZkHPNC13wvMH7fdXl3bjHf00UcDXqcgaWqY7J7CCuDEbvlE4Kvj2t/ZnYV0MPDIbDieIElTzch6Ckm+yOCg8pwk64GPAB8Hlid5N/AzYONscNcChwPrgA3Au0aVS5K0eaM8++gdm1l16ATbFoPbfkqSGmp2oFmSNPVM9oFmbeI973lGF4xL0khYFBo79thjW0eQpJ7DR43dc8893HPPPVvfUJImgT2Fxk444QTA6xQkTQ32FCRJPYuCJKlnUZAk9SwKkqSeB5obO/XUU1tHkKSeRaGxI444onUESeo5fNTY2rVrWbt2besYkgTYU2ju5JNPBrxOQdLUYE9BktSzKEiSehYFSVLPoiBJ6nmgubEzzzyzdQRJ6lkUGjvssMNaR5CknsNHjY2NjTE2NtY6hiQB9hSaW7p0KeB1CpKmBnsKkqSeRUGS1LMoSJJ6FgVJUs8DzY2dc845rSNIUs+i0NghhxzSOoIk9Rw+amz16tWsXr26dQxJAuwpNHfGGWcAXqcgaWqwpyBJ6jXpKSS5G3gMeAp4sqoWJXkJcAWwALgbOKaqftEinyTNVi17Cr9bVQuralH3/DRgZVXtC6zsnkuSJtFUGj46ErikW74EeFvDLJI0K7U60FzAN5IUcFFVLQP2qKr7uvU/B/aY6IVJlgBLAPbee+/JyDpS559/fusIktRrVRT+Q1Xdm+SlwPVJfjh+ZVVVVzCepisgywAWLVo04TbTycKFC1tHkKRek6JQVfd2fz6Q5CvAQcD9SeZV1X1J5gEPtMg2GRac9rV++Vd3D+6lsMuC0ReHuz/+ByP/DEnT26QfU0jy/CQv3LgM/EfgdmAFcGK32YnAVyc7WwuPrL6cR1Zf3jqGJAFtegp7AF9JsvHz/6aq/i7J94DlSd4N/Aw4pkE2SZrVJr0oVNVPgFdP0P4wcOhk55Ek/cZUOiVVktSYRUGS1HNCvMZ2f+P7WkeQpJ5FobGdd9+rdQRJ6jl81NiGdTezYd3NrWNIEmBPoblHv/sVAHb9N7/dOIkk2VOQJI1jUZAk9SwKkqSeRUGS1PNAc2Nz3nJq6wiS1LMoNPbsfzW3dQRJ6jl81Njjd93I43fd2DqGJAH2FJp77H9fC8DzX/mGxkkkyZ6CJGkcewqaFONvQTqZvAWptG3sKUiSehYFSVLP4aPG5r7t9NYRJKlnUWhsp11f1DqCJPUsCo398rYbAHjBvzts5J/V6mCvpOnDotDYZBYFTS7PuNJ0ZFHQjGbvSNo2nn0kSerZU5BmGIettD3sKUiSevYUGnvpH360dQRJ6lkUGnvWzs9rHUGSeg4fNfbYrV/jsVs9Q0bS1GBRaOzxH/4Dj//wH1rHkCTAoiBJGmfKHVNI8ibgvwM7AX9dVR9vHEnSEGbjhYIz8TTcKVUUkuwE/A/g94H1wPeSrKiqO9smk6Sna1kIR1WQptrw0UHAuqr6SVX9M3A5cGTjTJI0a0ypngKwJ3DPuOfrgd8ev0GSJcCS7ukvk6x9hp81B3joGb52h/vZJ96yPS+fUvuynWbSvsDM2h/3ZQrJJ/rFZ7IvL9/ciqlWFLaqqpYBy7b3fZKsqapFOyBSc+7L1DWT9sd9mZp29L5MteGje4H5457v1bVJkibBVCsK3wP2TbJPkucAxwErGmeSpFljSg0fVdWTSd4HfJ3BKamfq6o7RvRx2z0ENYW4L1PXTNof92Vq2qH7kqrake8nSZrGptrwkSSpIYuCJKk344tCkjclWZtkXZLTJlj/3CRXdOtvTrJg8lMOZ4h9OSnJg0nGusd/aZFzGEk+l+SBJLdvZn2SfKrb1x8kOXCyMw5riH1ZnOSRcd/Lf53sjMNKMj/JN5PcmeSOJB+YYJtp8d0MuS/T4rtJ8rwk303y/W5f/tsE2+yY37KqmrEPBger/w/wCuA5wPeBAzbZ5r3Ap7vl44ArWufejn05Cfir1lmH3J83AAcCt29m/eHAdUCAg4GbW2fejn1ZDFzTOueQ+zIPOLBbfiHwown+nk2L72bIfZkW30333/oF3fLOwM3AwZtss0N+y2Z6T2GYaTOOBC7plq8EDk2SScw4rBk1BUhV3Qj84xY2ORK4tAZuAnZLMm9y0m2bIfZl2qiq+6rq1m75MeAuBjMNjDctvpsh92Va6P5b/7J7unP32PQsoR3yWzbTi8JE02Zs+pei36aqngQeAXaflHTbZph9ATiq69JfmWT+BOuni2H3d7p4Xdf1vy7Jq1qHGUY3/PAaBv8qHW/afTdb2BeYJt9Nkp2SjAEPANdX1Wa/l+35LZvpRWG2uRpYUFX/Hrie3/yrQW3dCry8ql4N/CXwt43zbFWSFwBXAUur6tHWebbHVvZl2nw3VfVUVS1kMNPDQUn+7Sg+Z6YXhWGmzei3SfJs4EXAw5OSbttsdV+q6uGqeqJ7+tfAaycp2yjMmClPqurRjV3/qroW2DnJnMaxNivJzgx+RL9QVV+eYJNp891sbV+m23cDUFX/BHwTeNMmq3bIb9lMLwrDTJuxAjixWz4a+PvqjtRMMVvdl03Gdd/KYAx1uloBvLM70+Vg4JGquq91qGciyb/eOLab5CAG/99NxX940OX8LHBXVX1yM5tNi+9mmH2ZLt9NkrlJduuWd2Fwz5kfbrLZDvktm1LTXOxotZlpM5L8GbCmqlYw+EtzWZJ1DA4WHtcu8eYNuS/vT/JW4EkG+3JSs8BbkeSLDM78mJNkPfARBgfPqKpPA9cyOMtlHbABeFebpFs3xL4cDbwnyZPAr4Djpug/PABeD5wA3NaNXwOcAewN0+67GWZfpst3Mw+4JIMbkT0LWF5V14zit8xpLiRJvZk+fCRJ2gYWBUlSz6IgSepZFCRJPYuCJKlnUZAk9SwK0g7UnUe+2edbeN2MvmZI04dFQdoGSY7v5rUfS3JRN0nZL5Ocl+T7DCZXuzvJJ5LcCvxhkoVJbuomKvxKkhd377UqyflJ1gBPm+tfasGiIA0pySuBY4HXdxOTPQX8EfB8BvcUeHVVfbvb/OGqOrCqLgcuBT7UTVR4G4Mrnjd6TlUtqqrzJm9PpM2zyyoN71AGkwx+r5suZxcG0xg/xWDStfGuAEjyImC3qvpW134J8KVNt5OmCouCNLwAl1TV6f9fY/LBqnpqk20fH/I9h91OmhQOH0nDWwkcneSlAElekuTlW3pBVT0C/CLJ73RNJwDf2sJLpKbsKUhDqqo7k5wJfCPJs4B/AU4Z4qUnAp9OsivwE6burKKSs6RKkn7D4SNJUs+iIEnqWRQkST2LgiSpZ1GQJPUsCpKknkVBktT7f5oCVG1jlPRkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "som = MiniSom(2, 1, data.shape[1], sigma=1, learning_rate=0.5,\n", + " neighborhood_function='triangle', random_seed=10)\n", + "\n", + "\n", + "som.train(data, 100, random_order=False, verbose=True) # random training\n", + "\n", + "quantization_errors = np.linalg.norm(som.quantization(data) - data, axis=1)\n", + "error_treshold = np.percentile(quantization_errors, \n", + " 100*(1-outliers_percentage)+5)\n", + "\n", + "print('Error treshold:', error_treshold)\n", + "\n", + "is_outlier = quantization_errors > error_treshold\n", + "\n", + "plt.hist(quantization_errors)\n", + "plt.axvline(error_treshold, color='k', linestyle='--')\n", + "plt.xlabel('error')\n", + "plt.ylabel('frequency')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This histogram shows the frequency of the quantization error. The dashed line represents the treshold picked to label the outliers. We can see that most of the samples have a low quantization error and the errors higher than the treshold are much more rare. (Notice that we were able to set a good treshold as we knew the percentage of outliers in our data. This is usually a parameter to tune experimentally.)\n", + "\n", + "We are now ready to plot our dataset again highlighting the outliers with a different color:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHSCAYAAAAuWvi9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3df5RcZZ3v+8+3O0VSQVc6QFToJAQ9rERJYqJtQHHuAiJEQSAGjTp6R84ZD3pnvI5cV2aSqytGF+sQb2YZhzVzr5dxHHXBUTIQWpB4owIux8yEQ8f8IkCOiAhpOBKBzlFSkE73c/+oqk792LtqV9Wu2r/er7WyumvXTtXeXT+++3me7/N9zDknAAAQb31RHwAAAGiOgA0AQAIQsAEASAACNgAACUDABgAgAQjYAAAkwLSoD6CRs846yy1YsCDqwwAAoCf27Nnze+fcHK/7Yh2wFyxYoJGRkagPAwCAnjCz3/rdR5c4AAAJQMAGACABCNgAACRArMewAQDpMT4+riNHjuiVV16J+lAiN2PGDM2dO1e5XC7w/yFgAwB64siRI3rta1+rBQsWyMyiPpzIOOf0wgsv6MiRIzrvvPMC/z+6xAEAPfHKK6/ozDPPzHSwliQz05lnntlyTwMBGwDQM1kP1mXt/B0I2ACAzHjXu97VdJ9LLrlkqgbIlVdeqbGxsW4fViCMYQMAMuPf/u3fWtp/x44dLe0/MTGh/v7+lv5PULSwAQCxNLx3VBdvfkDnrb9PF29+QMN7Rzt+zNe85jWSpJ/97Ge65JJL9MEPflCLFi3Sxz72MTnn6vZfsGCBfv/730uSbrvtNq1YsULLli3Tpz71KU1MTEw95uc//3m99a1v1b//+793fIx+CNgAgNgZ3juqDdsPanSsICdpdKygDdsPhhK0y/bu3auvf/3revTRR/Xkk09q165dvvs+9thjuuOOO7Rr1y7t27dP/f39uv322yVJL7/8si688ELt379f7373u0M7vlp0iQMAYmfLzsMqjE9UbSuMT2jLzsNavXwwlOdYsWKF5s6dK0latmyZnnrqKd+Ae//992vPnj16xzveUTyWQkGve93rJEn9/f267rrrQjmmRgjYAIDYeXas0NL2dkyfPn3q9/7+fp08edJ3X+ecPvGJT+jmm2+uu2/GjBldG7euRJc4ACB2zhnIt7S921auXKk777xTzz//vCTpxRdf1G9/67uwVld0HLDNbJ6ZPWhmj5rZITP7K499zMxuMbMnzOyAmb2t0+cFAKTXulULlc9Vt1rzuX6tW7UwkuN5y1veoptuuklXXHGFli5dqssvv1zPPfdcT4/BvLLiWnoAs7Mlne2c+6WZvVbSHkmrnXOPVuxzpaT/XdKVki6U9HfOuQubPfbQ0JBjPWwASIfHHntMb37zmwPvP7x3VFt2HtazYwWdM5DXulULQxu/jgOvv4eZ7XHODXnt3/EYtnPuOUnPlX7/g5k9JmlQ0qMVu10r6buueHWw28wGzOzs0v8FAKDO6uWDqQrQnQp1DNvMFkhaLumhmrsGJT1TcftIaZvXY9xgZiNmNnL06NEwDw9A2A5sk7YuljYNFH8e2Bb1EQGpFVrANrPXSLpL0uecc/+z3cdxzt3qnBtyzg3NmTMnrMMDELYD26R7Pysde0aSK/6897MEbaBLQgnYZpZTMVjf7pzb7rHLqKR5FbfnlrYBSKr7vyKN10yxGS8UtwMIXRhZ4ibpnyQ95pz7ms9u90j6s1K2+EWSjjF+DSTcsSOtbQ8DXfDIsDAKp1ws6X+VdNDM9pW2/Z+S5kuSc+4bknaomCH+hKTjkv5jCM8LIEqz5pa6wz22d0O5C77cqi93wUvS0rXdeU4gRjpuYTvnfuGcM+fcUufcstK/Hc65b5SCtVzRXzrn3uScW+KcY64WkHQrN0q5miIWuXxxezfQBY8e+/a3v61nn3126nbUy25S6QyIQhq6dpeula6+RZo1T5IVf159S/dau1F0wSPTagN2pR07dmhgYCDwY5VX9uoEARvotTRlVy9dK934iLRprPizm13Tfl3t3eqCR/S6cGH7ta99TYsXL9bixYv19a9/XU899ZQWL148df/f/u3fatOmTbrzzjs1MjKij33sY1q2bJkKherenSiW3SRgA51o5wslLV27ve4l6HUXPKLVhQvbPXv26J//+Z/10EMPaffu3frHf/xHvfTSS577fvCDH9TQ0JBuv/127du3T/m8dw3zXi67yWpdQLvaTYJKQ9duFAlg5ce9/yvFv9WsucVgTcJZOjW6sG3zNf/FL36hD3zgAzr99NMlSWvWrNG//uu/dnaYPVx2M1sB+8A2PuwIT7tfKL3Oru6GLnyZBrJ0LZ/ZrOjRhe3Y2JgmJyenbr/yyist/f9eLruZnS7xNI0bIh7a/UJJQ9duGnoJEG9dyFn4kz/5Ew0PD+v48eN6+eWXdffdd+t973ufnn/+eb3wwgt69dVX9cMf/nBq/9e+9rX6wx/+0PAxe7nsZnYCdlrGDREf7X6h9Dq7uhtIAEO3deHC9m1ve5uuv/56rVixQhdeeKE++clP6h3veIc2btyoFStW6PLLL9eiRYum9r/++uv16U9/2jPprKyXy252vLxmN4W6vOamAUle52rFDFegVbXjuFLxCyVpwbcdWT53tK3V5TXTPozZ8+U1EyMN44aIlywnQWX53NE75CxUyU7AXrnRu0WQpHFDxE/cv1C62UKJ+7kDKZOdgE2LAFlD7W0gVbITsCVaBEj9mFiVqKZeAQ0451Rc5DHb2skfy06WOJC1qX1MvULMzJgxQy+88EJbwSpNnHN64YUXNGPGjJb+X7Za2Mi2rLU4SbREzMydO1dHjhzR0aNHoz6UyM2YMUNz57b2WSRgo3ei7o7OWouTREsE1aPPZi6X03nnnRf642YFXeLojTh0R2et2EcvCrSkYZnQrIvDZxOBZKdwCqK1dbFP9+y84rKMvUCxj3Dx90yHOHw2MaVR4RRa2OiNOHRHp6EkaJg6bR2npdxv1nsJ4vDZbCTrr08FxrDRG3FJgGJqX1EYc7Tj/kUfBHPV4/PZ9MLrU4UWNnojDStUpUkYreM05ASkpZegE3H+bPL6VCFgozfojo6XMFrHcf6iDyoNvQSdivNnk9enCgEbvbN0bTGJZc2txdvbb8j8mFRkwmgdx/mLPqg09BKEofzZ3DRW/BmX15DXpwoBG73FFJJ4CKt1HNcv+qDS0EuQZrw+VQjY6C3GpOIhDa3jMPB3iDdenyrMw0ZvbRqQ5PWes2IrDQAyjHnYiA/GpACgLQRs9BZjUslC0QogNiicgt4qjz1lZU3qJKNoRfiiXgAHicYYNgBv1JgOF7XXEQBj2ABaR9GKcDFDAh0iYAPwRoJguLgAQocI2AC8kSAYLi6A0CECdlqR3YtOUbQiXFwAoUNkiacR2b0IC8uRhocZEugQATuNGiW38OUARIcLIHSALvE0IrkFAFKHgJ1GJLcAQOoQsNOI5BYASB0CdhqR3QuEhxkXiAmSztKK5Bagc8y4QIyE0sI2s2+Z2fNm5llg2MwuMbNjZrav9I++WQDxRzlRxEhYLexvS/p7Sd9tsM+/OufeH9LzAUD3MeMCMRJKC9s593NJL4bxWAAQG8y4QIz0MunsnWa238x+ZGYX9PB5AaA9zLhAjPQq6eyXks51zv3RzK6UNCzpfK8dzewGSTdI0vz583t0eADggXKiiBFzzoXzQGYLJP3QObc4wL5PSRpyzv2+0X5DQ0NuZGQklOMDACDuzGyPc27I676edImb2RvMzEq/ryg97wu9eO6WMecSABBDoXSJm9n3JF0i6SwzOyLpS5JykuSc+4akD0r638zspKSCpI+4sJr2YWLOJQAgpkLrEu+GnneJb11cDNK1Zs2TbvScYg4AQGgi7xJPDOZcAgBiioBdiTmXAICYImBXYs4lACCmCNiVWOUKABBTrNZVi1WuAAAxRAs7bMzjBgB0AS3sMDGPGwDQJbSww8TauQCALiFgh4l53ACALiFgh4l53ACALiFgh4l53ACALiHpLEysnQsgIsN7R7Vl52E9O1bQOQN5rVu1UKuXD0Z9WAgRATtszOMG0GPDe0e1YftBFcYnJEmjYwVt2H5QkgjaKUKXOAAk3Jadh6eCdVlhfEJbdh6O6IjQDbSwAaDSgW31w1pSrIe6nh0rtLQdyUTABoAyr+JHw38haVKanDi17Qd/Wfy9FLRbGT8Osm+r49HnDOQ16hGczxnIe+yNpCJgA0CZV/GjyfH6/SZOSD/6G2npWt/x45HfvqgHHz9aFXQlNR1rbmc8et2qhVX/R5Lyuf6p5yw/LklpyUbABoCyVoocFV6U5D9+fPvup+VKt8tBd0auz3PfL997aCp4NhqP9guwlf/XKyCTlJYOBGwAKJs1t9jl3QK/cWJXc7swPlEXiMteOj6u4b2jkuTZtd3oecpWLx/0Db7tXAQgfsgSB4Ayr+JHfvJnSApvnHjD9gO68Y59vvd38jwkpaUDARtAtjRaAnfpWunqW6RZ8yRZ8efQn0t9uerH6MtJ7/uqpOL4cT7XX3W3tXFYhfHJulZ5We14dKv8gj1JaclClziA7AiyBK5X8aP5F/lO6/IaP7500RzdtWfUtwu8VTevWdJR13WQpDTEHwEbQHY0WgK30bzqJhUMvcaPh849Qzdu2yfn12wOqN/aaa9XKx/bpnsOaaxQzHqfkavoYPWaex6jeeYookscQHb0cAnc1csHNWtGzvf+fjOZpMGBvGbP9N9vwjlt2H5wKimtE6+enJz6/aXj49qw/aAevuf/LfYyHHtGkjvV61A5VIBYIGADyI4eL4F7rOAxh7tk0jn9ZvNV2rX+Mn3p6gvqxsErFcYn9Lk79unizQ9MBe7hvaO6ePMDOm/9fVXb/fhlis/75RbvXoft/7l+jB+RokscQLo06t5dubF6DFvq6hK4fhXIyveVVY6D++0vVRdlqRwjDzKv2i8j/HXuqH+WnNcYPyJjrtMBli4aGhpyIyMjUR8GgKSoTSqTigH56ltOBZwujtfWVhO7dNEc3fHwMxqfqP6e7ZM0a2ZOY8fH64qcXLz5gYZBWyp2p094fHcPDuS1a/1lnsdy/MRJvXS8vsW/e8Zf6Q062vjEZs2Tbnyk8T4IhZntcc4Ned5HwAaQGlsXexc+6UHAqa0mVjYz1ycz08snitvzuT6dnHRVQTzXZ3rNjGkaOz6ugZk5/fGVkxqfbP272ST9ZvNVnseS6zPJVPW8+Vy/vvuO3+odB79U3y1e+8ibxlo+HrSuUcBmDBtAevQwqayW1xixJB0fn9Skk77+4WV6avNVOuP06XUt7vFJp5eOj8upmAwmkwbyjRPWvJS72Tfdc6juWMYnnU4/bZoGB/JTyW43r1mid1zzqYq55z66NMaP1jCGDSA9/EqLdjHglLueG3VjV5YBDVJdbHzC6cTJCQ3kc1PTsMryuX5d9/bBunne5XnVw3tH6/5P2bHCuPZ96Yr6O8rT1vyGFLo0xo/W0MIGkB5epUW7GHDKXc/NxpylU0lfQauLHR+frAu8s2fmdPOaJRo69wxNn9ZXt3318kFt2XnY9zG9nrsq23zHWXp4yZerK7299U+LY/5eleHQUwRsAOnhVVq0MuEsZH7d4F7KwdKrlGlQM08rdopu2H6wKpi/dHxcm+45pOG9ow1b8LWVzSovOJyK2eZ/9vC5Gr5kZ3HMeuVGaf9/ZY52TJB0lkRUJQJiYcH6+wLtl8/1V5UXrexGN9Wv7OXH1HiqWD7Xrxm5Ps9s8Nkzc9q7sbo73C8jfSrbPMIkvqwi6SxNymNMXPECkQtSNXT2zJyue3uxq7pc5EQ61dJupclUbgX7KYxPyDnVteDzuX596eoL6vZvuopXhEl8qEfSWdK0WwsZQFEHPVS1c5uDdFBetfRszyIn06f1hbY4SKWxwrhmz8xNPfZAPqdN11zgWVDFr7U+NdYdQRIf/NHCThqueIH2ddBD5TXeG8Rtu5/2LAnql8ktSaef1t4Yt1TsNq/sEq+sH17Lazy9ahWvHifxoTECdtL0uBYykCqNeqiaaCXBrBMD+ZyOn2j/eWob/eUpZV5WLx/UzWuW1M3NnmqN9ziJD43RJZ40Pa6FDKRKBz1UQVvUnWrU8m6X11h1bff+1g8v865D3mRpUfQOLeykaeeK98C2YrYn8yiRdW32UA3vHfVdH0NSw+Uxe8mvK712/rVX9/6Nd+zTgoArfyEatLCTqJUr3trKRay+gyxrs4dqy87DDbO5Xzo+rsHSYh/3HXjOc1pVL7zs0ZVuki5dNKdqm1f3fvn8gqz8hWiE0sI2s2+Z2fNm5jkxz4puMbMnzOyAmb0tjOdFAB2M2WUGPRDZ0eaYbJByoqNjBd21ZzRQ5ngvOUl37RmtajU3O59G496ITlgt7G9L+ntJ3/W5/32Szi/9u1DS/1P6iW4jq7wxeiCyJ2APVeUYb5/Pcpa1CuMTPUlMa1VlLXOpcfGVsiAXKeitUFrYzrmfS3qxwS7XSvquK9otacDMzg7judEEWeWN0QMBD7VjvEGCdTOzZ+baLkkahsoAHKQ8atCa56Gjx8tXr5LOBiVVzr4/UtqGbmMeZWP0QMCD3xSuvgCVzfycODmpwvhEw+S1bqoMwJXTuSTVHVPVXOxeopJjQ7HLEjezG8xsxMxGjh49GvXhJB/zKBujBwIe/LqDJztoaJcTwqIY4vYKwKuXD2rX+sv01OartPXDy+rnYvfv6n1Llx6vhnqVJT4qqXJ19LmlbXWcc7dKulUqLv7R/UOLiW4u6ME8Sn/Ma4eHIGO83TR7Zi60TPPBgbzWrVrYMON79fLB6vujyu2gx6uhXrWw75H0Z6Vs8YskHXPOPdej544/uoGiQw8EPHiN8eb6zbc7uz/IKiABzZ6Zm1pGM8SHrV73utlc66hauvR4NRTK8ppm9j1Jl0g6S9LvJH1JUk6SnHPfMDNTMYv8vZKOS/qPzrmm62ZmZnlNlrADYqcyS3xgZk5/fOWkxj36xPO5fl339sGqBT7a1WfF4O/1PJ3I9Zlk0vjEqcetXfKzyqYBeXfeW3Gd7G6pbdlLxR6vDF1EN1peM5QucefcR5vc7yT9ZRjPlUpp6gZirW6kRGU38cWbH/Dsou43mwp6Q+eeMRXgZ+T69OrJyZbHvCedNNmFidxeFwC1U72qRLVKV/m7gu8QT1Q6i4NWPhxxDojMaUZK+SehuamAVw7ww3tHte7O/R0lqPWK71zrKHM7yLnxRcCOg6AfjrgHRNbqRkr5JaE5SW/asEMTzmn2zJyc687iHd3iO9c6ay3dODeEKhCw4yDohyPuATFNXftAhXWrFmrD9oOeY9TloipR1Q8Pwm8Mu+Fc66y0dOPeEKpAwI6LIB+OuAfEqMa9gC4rd3tv2Xk40uleUrHISaPe9vI0rsqlM8uBuXYbi3so/g2hCgTsJIl7QGROM1KsPEZ93vr7Iil+UtbsuUfHCvXzqksI0B7i3hCqELtKZ2gg7mVGmdOMDOhGje3zX3d6qCVLWc+6BQma+03ATpIkBMSla4tzxzeNFX/G6diAEARZOKNVTzz/cqit9i/feyjER0u5uDeEKtAlnjRZSQQBYqp2PLvPOqsxLoVfXzzOCXCxk6CMeAI2ALSodoy4siraOQN5Xbpojm7f/XSkY92BJWRKU1clpCFEwAaADvkled22++muPedAPqdXT06oMD7peV8gzaY0EcxjhTFsAOiCm1Yv8Q2cXutPX/ymM1pKPNv3pSt085qlxTnWFfpUXDSk40U+WJQodgjYANAlm665oC5BrTyPurzCV3n96dv/8zv1sYvmT23vN9PMnP9X9BeHD2r18kFt+dBbp9ayHsjn1N9veun4uJyKU7w2bD/oH7QbTWliberYIWAjew5sK66Qtmmg+JMWA7pk9fJB3bxmiQZLU8Eqi55MODdVbaxcg/yuPaNTldMmnKuqTFbrew89M/Ucu9Zfpt9svkqnT59W938K4xP+WeONpjTFcX5yxj+7BGxkC9186LFyQB0cyNcloZVXzJKKWee1pU8bLbM54bGql99iHi8dH/duZTea0hS3+cl8dgnYyBi6+dBjw3tHdfHmB3xLmo6OFRre76fcdV6pUVGX8oVBlaVrpbf+qWSlbnvrL95eujZ+85P57JIljoyJYzcfUqN2eteCM/P6t1+/GKicqF+N8Jm5Ph33yAT/6IXz6ratW7VQn7tjn+dzeLa+D2yT9v9XyZVa9m6ieHv+RcXb0/KngmT+DOl9X40uS5zPLi1sZEzcuvmQGsN7R7Vh+0GNjhWmEr52BQjWZU7e2eP/Zc1Sffyi+apMBs/n+jR07hl1j7F6+aBvZrpn69uv1fqjvyl2NxdePLX9ZLSLnvDZJWAja+LWzYfU8BqDbpWTpjK+y9njq5cPaujcMzR92qls88L4pD53xz4tWH+f3rRhh744fHDqPq/MdN+lNP1ap4UX49f9zGeXLnFkTILKECJZ/BK+vPSbeSaNDQ7ktWv9ZXXbG10MTDg3VaDlptVLqkqnNl1K028FQD9Rdj/z2SVgI4MSUoYQyXLOQD5Q4phJuuiNs7Xr1y/W3Xfpojme/yfIxcD3HnpGN61eIsm/8lodvyVxp+Wru8PLou5+zvhnly5xAAjBulULA1Uqe9ebztBTL3gH4AcfP+q5PciSnl4t9qb8VgB831cz3/0cR7SwASAEq5cPauS3LzZd9OOpFwq+LWa/7etWLdSG7QcbjpF7TfMKpFGrNcPdz3FEwAaAkNy0eomGzj1jaulNL+VxZa/7/VrStUt6evGa5tWRjHc/xxFd4gCik8JSk+XKZo2mV61btTB4JnfN4z61+Sp9vKbm+Mcvmj81fh0rKXx9o0QLu1O1y8+df4X0qx/TjQQ002xpxwQb3juql0+crNue67OqjO1Amdweblq9pPUA3eulMlP8+kbFXDuJCj0yNDTkRkZGoj4Mf7VvSC+5fDGJgzcoUG3rYu8pRbPmSTc+0vvjCZFfqdHZM3Pau/GK3h+Q13dVt7+bUvz6dpOZ7XHODXndR5d4J7yqBNWKutgAEFcpLjVZmzx2Td8v9IvTPqs9Ex+Kpms4ijrcKX59o0LA7kTQNx5vUKBeiktNViaPXdP3C23OfVNz+35fLC8axSpTUQTPpL2+CRhvJ2B3IugbL65vUCBKKS41WZlU9tfTtmmmnajeodc9b1EEzyS9vglZupOA3QmvN2StuL5Bgaj5Fe1IQb7H6uWDunnNEg0O5HWO/d57p172vEURPJP0+iZk6U6yxDvhVduWLHEguBTP9Z0qD7p1nk/yVQ973paulZ7eLe35dnEJzcp1r7v9vEl4fRMy3k7A7lRS3pAAouFXr7uXPW+N1r3m+8t/EZSYDWfSJQ4A3RSHruGEdPlGJiHj7bSwAaDbou6JS0iXb2QSsnQnATtJel2pCEA8dPrZT0iXb6SivqgKgC7xpEjItAMAIQvjs5+QLl80RsBOCsaggGwK47Mfh3F0dIwu8aRgDArIprA++wno8kVjtLCTImll/gCEg88+SgjYSdHNMagE1NAFMovxZ5SEErDN7L1mdtjMnjCz9R73X29mR81sX+nfJ8N43kzp1hgUyWxAtJpdMDP+jJKO18M2s35J/13S5ZKOSHpY0kedc49W7HO9pCHn3GdaeezYr4edBqxZC0QninWqEWvdXg97haQnnHNPOudOSPq+pGtDeFz0Asls2cZwSLSY/YEWhBGwByVVNtGOlLbVus7MDpjZnWY2L4TnRRhIaMkuhkOixwUzWtCrpLN7JS1wzi2V9BNJ3/Hb0cxuMLMRMxs5evRojw4vw0hoyS5ad9HjghktCCNgj0qqbDHPLW2b4px7wTn3aunmNyW93e/BnHO3OueGnHNDc+bMCeHw0BAJLdlF6y56XDCjBWEUTnlY0vlmdp6Kgfojkv60cgczO9s591zp5jWSHgvheREWCipkE/Wlo5eQRScQDx0HbOfcSTP7jKSdkvolfcs5d8jMviJpxDl3j6TPmtk1kk5KelHS9Z0+L4AOxWGdZnDBjMA6ntbVTUzrArqMFeCAWGk0rYta4kCW0boDEoPSpAAAJAABGwCABCBgAwCQAARsAAASgIANJAV1v4FMI0scSILaVZ3Kdb8lsryBjKCFjWTJaiuTut9A5tHCRnJkuZVJ3W8g82hhIzmy3MpkVScg8wjYSI4stzJZ1QnIPAI2kiPLrUyWQQUyjzFsJEfWV5ei7jfSgkVn2kILG8kR51ZmVrPXgVbf++Xk0WPPSHKnkkf5zDTF8ppAp2qz16Viyz8uFxNAt7Tz3t+6uBSsa8yaJ934SHeOM0EaLa9JCxvoVJaz15Ft7bz3s5w82iECNtApvoCQVe2897OcPNohAjbQKb6AkFXtvPeZotg2AjbQKb6AkFXtvPfjnDwac0zrAjpV/qJhmgqypt33PlMU20KWOAAAMUGWOAAACUfABgAgAQjYAAAkAAEbAIAEIGADAJAABGwAABKAgA0AQAIQsAEASAACNgAACUDABgAgAQjYAAAkAAEbAIAEIGADAJAABGyglw5sk7YuljYNFH8e2Bb1EQFICNbDBnrlwDbp3s9K44Xi7WPPFG9LrA0MoCla2ECv3P+VU8G6bLxQ3A4ATRCwgV45dqS17QBQgYAN9Mqsua1tB4AKBGygV1ZulHL56m25fHE7ADRBwAZ6Zela6epbpFnzJFnx59W3kHAGIJBQssTN7L2S/k5Sv6RvOuc219w/XdJ3Jb1d0guSPuyceyqM5wYSZelaAjSAtnTcwjazfkn/IOl9kt4i6aNm9paa3f5c0kvOuf8gaaukr3b6vEDLmAONRnh/IObC6BJfIekJ59yTzrkTkr4v6dqafa6V9J3S73dKWmlmFsJzA8GU50Afe0aSOzUHuttfygSBZIjq/QG0IIyAPSjpmYrbR0rbPPdxzp2UdEzSmV4PZmY3mNmImY0cPXo0hMMDFM0caIJAcjBHHgkQu6Qz59ytzrkh59zQnDlzoj4cpEUUc6AJAsnBHHkkQBgBe1TSvIrbc0vbPPcxs2mSZqmYfAb0RhRzoAkCycEceSRAGAH7YeT2nKYAAB8HSURBVEnnm9l5ZnaapI9Iuqdmn3skfaL0+wclPeCccyE8NxBMFHOgCQLJwRx5JEDHAbs0Jv0ZSTslPSZpm3PukJl9xcyuKe32T5LONLMnJP0fktZ3+rxAS6KYA00QSA7myCMBLM4N3aGhITcyMhL1YQDtO7CtOGZ97EixZb1yI0EAgC8z2+OcG/K6j+U1gW6iUEq6cAGGCBGwASAI1jNHxGI3rQsAYolpeogYARsAgmCaHiJGwAaAIJimh4gRsAEgCKbpIWIEbAAIgrnaiBhZ4gAQFNP0ECFa2AAAJAABGwCABCBgAwCQAARsAAASgIANAEACELABAEgAAjYAAAlAwO7EgW3S1sXSpoHizwPboj6i8GXhHAEgASic0q4sLLWXhXMEgISghd2uLCy1l4VzBJAcGe/xo4XdriwstZeFcwSQDPT40cJuWxaW2svCOQJIBnr8CNhty8JSe1k4RwDJQI8fAbttWVhqLwvnCKRJmsd46fGTOeeiPgZfQ0NDbmRkJOrDAID4qx3jlYo9Ymm5yE77+ZWY2R7n3JDXfbSwASAN0j7GS48fWeIAkApZGONdujZTAboWLWwASAPGeFOPgA0AacCsjtQjYANAGjDGm3qMYQNAWmR8jLcrDmwrJu4dO1IcXli5MbK/MQEbAAAvMSuHSpc4kDRpLo4BxEnMpsrRwgaSJGZX/ECqxWyqHC1sIElidsUPpFrMpsoRsIEkidkVP5BqMZsqR8AGkiRmV/xAqsVsqhxj2ECSrNzovQACxTGA7ojRVDla2ECSxOyKH0Dv0MIGkiZGV/wAeocWNgAACUDABgAgAToK2GZ2hpn9xMx+Vfo522e/CTPbV/p3TyfPCQBAFnXawl4v6X7n3PmS7i/d9lJwzi0r/bumw+cEACBzOg3Y10r6Tun370ha3eHjIQ6oVQ0AsdNpwH69c+650u//Q9LrffabYWYjZrbbzAjqcVauVX3sGUnuVK1qgjYARKrptC4z+6mkN3jc9YXKG845Z2bO52HOdc6NmtkbJT1gZgedc7/2eb4bJN0gSfPnz292eAhbo1rVTCUCgMg0DdjOuff43WdmvzOzs51zz5nZ2ZKe93mM0dLPJ83sZ5KWS/IM2M65WyXdKklDQ0N+FwDoFmpVA0Asddolfo+kT5R+/4SkH9TuYGazzWx66fezJF0s6dEOnxfdQq1qdAu5EUBHOg3YmyVdbma/kvSe0m2Z2ZCZfbO0z5sljZjZfkkPStrsnCNgx1XMVqdBSpAbAXTMnItvr/PQ0JAbGRmJ+jCy58C24pj1sSPFlvXKjYxfozNbF5eCdY1Z86QbH+n98QBlMfu+M7M9zrkhr/uoJY561KpG2MiNQByVe37Kibblnh8plt+BlCYF0H1xyI1gDB21Gs2K8RPh+4iAnSV8YaFWr94TUedGMIYOL632/ET8PiJgZ0W33mhcBCRXL798ol7Hu52WFNKv1Z6fiN9HjGFnRTcKoiRs/Ac1el0kJ8rcCMbQ4WXlxurvMKlxz0/E7yNa2FnRjTcarZZky1IQi8MYOuKn1Z6fiN9HBOys6MYbrdEXPl3l8ZelIBb1GDria+na4tTCTWPFn416gSJ+HxGws6IbbzS/L/b8bBJ8kiBLQSzqMXSkQ8TvIwqnZEnYBQJqx7Cl4hf+tLxUeLF+f4pkxE/MikYAWdeocAoBG53x+sLffoMkr/eVSZvGNLx3VFt2HtazYwWdM5DXulULtXr5YK+PHABih0pn6B6vzN/7v+JThnKuhveOasP2gyqMT0iSRscK2rD9oCQRtAGgAcawEb4GY6Nbdh6eCtZlhfEJbdl5uIcHCADJQ8BG+BokZjw7VvD8L37bgUxilgU80CWO7vApkjErn9NYYbxu+zkD+bptTZEwhTSiIBF8ELBRJUhCWLtJY8N7R/XyiZN123N9pnWrFrZ2oHypIa16XYEOiUGXOKaUE8JGxwpyOpUQNrx3tKV9/GzZeVjjE/XZ46+ZMa31hDOqrCGtslSBDi0hYGNKkISwZvsM7x3VxZsf0Hnr79PFmx+oCuR+49Rjx+u7yJviSw1plaUKdGgJARtTgiSENdqnWevbb5y6rfFrvtSQVlmqQIeWELAxJUhAbbRPs9b3ulULlc/1V92fz/V7jl9/cfig3rRhhxasv09v2rBDXxw+WL0DX2pIK8qowgcBG1O8AqokHT9xcqqV7LWPSbp00ZymLfTVywd185olGhzIyyQNDuR185oldePXXxw+qNt2P62JUhW+Ced02+6ntaCym50vNaRZKwtSIDPIEseUcuDcdM+hqqlXLx0fr6pGNvLbF3X77qenio86SXftGQ00ZWv18sGmCWbfe8ijSlpJdWW0CNdXBoAeo4WNKquXD+r06fXXcZVd2w8+frSuUnhhfEJmqmt95/pMx0+c9ExC8zPRpL49ldEAZBEBG3WadW03yvYud3lLxa7y8Umnl46PtzQFzKz9YwSAtKJLHHXOGchr1CMglru2G91f7u5ed+d+zznX5dZxeb/aIiwLzswryAJybWWWA0CC0cJGnWbZ3JcumqPaRnDl/V++95BnsC4rt469poHt+rXHOtoNnqtSozngAJB0tLBRp9z69So/Orx3VHftGa0awzZJ1739VDLZS00KoZRbx17TwBqx0v/1K5fKsp0A0oyAnTYhLYhRzuYud1nfeMc+bdl5WMdPnKwLsk7FRDRJTVu1la3jVsahBwfy2rX+sqnbtV3pL79af1y13e8AkGQE7DTpYEGM2gB46aI5uu/Ac1WtZa9x67Jy8G2WvT192qlRGL+x8FomVXWBe7Wmmx0XACQdY9hp0uaCGF5jybftfrpp13alcjd3swA5VhifyhT3K9RSySR97KL5Va3kVrrSSU4DkBa0sJOstvv7mE/BkSYLYrQ6llyrcq51n1mgedSf37Zfk85pVj6nGbk+jR0fn2rZP/j40YZLd7bSar500Zy2zgkA4oaAnVRe3d8yqa6kiZouiNFqt/FAPqfTp0/Ts2MFzcrn9PKJk1Ot8WbBuqy831hhXPlcv7Z+eFlVYK4dO68M3EG70qVTY+sAkHR0iSeVV/e3nFQ74SrAghitdBvnc/3adM0F2rX+Mv1m81U6ffo0zylc/UGqn5TUVi7z6qK/8Y59U7XEL100R7m+YI/PGDYQMwe2SVsXS5sGij8PbIv6iBKDFnZS+XZzO2nWPLljR/Q7naWbX/6QRnacpXUTo1XFSr5876GpVnE+16dcvzWcOy0VW9abrrmgqiXsFxCDtrTLRscKunjzA1q3aqFnF72r2O+uPaM6bVqfxk8078ZnDBuIkQ4SY0HATi6/MetZ8zR8yc6qLGpVzEmWpM//y35NTJ4KqIXxSfVJmj0z19JYstRa93Qzo2MFfe6OfU33Czre7ldgBUBEGiXGErCbImAn1cqN1Veq0lT396a7D/nOST5+4mRVsC6blDTztGnau/GKuvsqx5Nri6i8/OrJsM+sI/1mmnSu4UUGgIj49Qw2SYxFEQE7qcpXozVFUoYnLtZYwbuV+mxpTNiPV/e215zndf+yX1+4+6BeDtAl3S0D+ZxePTlZdWGSz/V7rq8NICZ8ewYbJ8aiiICdZEvr14PesvkB392bTbnyGu/1Gk8en3SBxo+7pZz4JhWPb3SsoH6zquQ1gjYQQw16BtEcWeIp0ygrulkimNd4b9yyrGsDc7n4Svncgi7hGZhXRmtas1zTel6Ij6VrpatvkWbNk2TFn1ffwvh1QLSwU2ZWPqexQvAKZWUfr6km1unjdUNlJns5ME+f1te9GuJeGa3Df1FcsHvixKltachyJXsXveLRM4hgaGGnyPDeUb18IlgS2OBAXlb6+fUPL9NNq5d4Pt4fYpJUNn1aX920s8L4hO/FxLNjheDLbfq1LL0yWifHTwXrsgDlX2OvzbK2AHqnoxa2mX1I0iZJb5a0wjk34rPfeyX9naR+Sd90zm3u5HnhbcvOw03nUkv1K1/5+fK9hzwzyqPw6snJlvaflc8FW26zUcuylczVpGe5kr0LxF6nLexHJK2R9HO/HcysX9I/SHqfpLdI+qiZvaXD54WHIOPNrcxNbmXxj6jMnpmrW0Akn+uXWf187dqKapIatyxbyVxNepar3/En/byAFOkoYDvnHnPONV5PUVoh6Qnn3JPOuROSvi/p2k6eF978qnr1m011f6dp2lM+168vXX2Bbl6zpKqL/+Y1SzTmc7FRd1HTqGW5cmMxg7VSX07qP616WxqyXL3ONQ3nBaRIL5LOBiVVTrw7IunCHjxv5qxbtbC6wpnan5s8vHfUbymRWOg3qzqv2vMrT/eqVXdR02heqM9cd89tSU+i8TvXpJ8XkCJNA7aZ/VTSGzzu+oJz7gdhH5CZ3SDpBkmaP39+2A+fauWgtWXn4aYlRRspF0uJa7CWpEnnGp6X38VL3XBAs3mhfhmtaQxkZO8CsdY0YDvn3tPhc4xKmldxe25pm9/z3SrpVkkaGhqKc8yIpdXLBxsGsnKZ0UYBvdP1sZsxFZPCzNofJ2+2qEfgixdalgASohdd4g9LOt/MzlMxUH9E0p/24HlRUg7So2OFqm5ur8zp4b2joS3m4aU2Q33B+vtafoxcvwVKnGt28TKFliWABOgo6czMPmBmRyS9U9J9ZraztP0cM9shSc65k5I+I2mnpMckbXPOHerssBFU5drSUv2YdGXmdHnfbvHqkh5sY/nLkwGmrgFA2phrcd3iXhoaGnIjI55TuxHQxZsfaNpiNkm/2XxVoH3bZSZtXbusrsU7vHc00JKadY+n4sXHIKtyAUgRM9vjnBvyuo9KZykXZG52eTy4m13h0/rMc/vq5YMayOdafrzabv3QaocDQEwRsFOuWXJWuZu6PI2rW8YnXH3RkpJN11xQV/ykFZ4FUQAgZVj8I+XWrVrYsMu5HOyOnzjZ9Wlcz44V9MXhg/reQ89owjn1m+mjF86bqmPuN3c66GMjRQ5sI3MfqEELO+WCdDmPjhV6UoZ05mn9um3301NLYU44p9t2P60F6+/Tlp2HtW7VQt8ktGat/2Y9CUiQcn33Y89Icqfqu7PcJzKOgJ1CtatUvf+tZ3fU5RyWl0/4z+0uj0VfumiOZ23wj100X/3mHbZN3mt5I6FYOQzwRMBOmcppXE7FQHjXnlFd9/bBqXrbcVUYn9CDjx/1rA1+0+olmvSZ0eBUX5oUCcbKYYAnAnbKeFUpKwfCXesv0282X+Xb7TyQz1UFyo9fNH9qX7/WbVBB//foWEGfu2OfRscKmpXPVU3Z8uv2bmcuN2KMlcMATySdpYxf8lXldr8625uuuaBhS7WTedrtJLSNFca17l/2Syq2oAPXB0eyNavvDmQUATtlzhnIN12lqlGd7Ua1xqPIxB6fLE4Hqywz2uniJog56rsDnqh0ljLlMex2lths9n+7VQmt2TKe5UpsAHqAKXWRotJZhqxePuiZtBWkFeo3/r3pnkNdC9aDA/mG4+pSCqZsHdgmbV0sbRoo/mR6Uuf4m3YHU+pijS7xFAq8SlUNvy7vscK4xgrtzdOemevT+KTTuMeCHZXjz+tWLdS6O/fX7ZfrC7YyV2yVvwDL47HlL0ApWKuF1k69Tv+m8NdoSh1/28gRsDOsdrx6Vj7XdmD28vUPL6saFx8dK6jfTBPOeS7acfpp06qefyCfa5oIF3udfAESmLwRVLqHKXWxRsDOqNrx6tGxgnL9plyfaXwynLyG2qU6TdIbZs2oC9R+Y+eJD9ZSZ1+AvQpMSWvFE1S6Z9bcUne4x3ZEjjHsjPIarx6fcHrNjGlV49+zZzZfSctvjnV5/Lu2kEvt6lp+Y+epWNCjkznFvQhMSRyzZJ5296zcWJxCV4kpdbFBwM4o3/Hq4+NTBVZ2rb9MX7q68Upa5bKhfsYK457B+PPb9uuLwwcbJrOlYkGPTr4AexGYklgGlKDSPUvXSlffIs2aJ8mKP6++Jd49LhlCl3hGBZmvLdXP2Z6Vz8msGNgr50E/+PjRlrLIywt/NDvGxOtkTnEvCogksXuZedrdtXQtf8uYYh52RvmNG1/39mLwbbUwid/jzcj1tbUSWNC546nX7fHlrYt9xiznSTc+Et7zAAik0TxsWtgZ5VU17NJFc3TXntGqRLRy4lizwOlXhUxSXSBvxiuDPLO63dqhDCiQGLSwMcVvPHlwIK9d6y9r+3GH947q89v2T62D3Uinz4U2JC1LHEgxWtgIJMjCIe0ot5SbtbRZyCMijFkCiUDAxpSgiWi1Gi0YUubXBd/OeDnQNfQ2IMYI2JjSzvKVXgVY/Ma92y2ZCvQEleUQc8zDxpR2Fg5JddGTWllbcCJr55vEOenIFFrYqNJqK7hb496xk7XWV9bOV0rmnHRkCi1sdMRvfDsVRU8qZa31lbXzlSh5itgjYKMj61YtrCtdGmq291S37Czpy2cUf0bRPZu11lfWzlei5Clijy5xdMSvYEpHyWVTmbrPqLi0SGn+tiuNlUfRPZu1VYyydr4SJU8RexROQbzUjp020svymV7Hlcund2GErJ0vEBONCqfQJY548Ro79dPL7tmsrWLU6flmLcMc6AG6xBEvrQThXnfPZq0iWLvnm8UMc6AHaGEjXoIGYZKB4utHf5O9DHOgBwjYiJeVG1VMNGsg7d3RSXZgm1R40fu+NGeYAz1Al3hWdLtGcliPv3St9PRuaeRbmsoOl0h4SopGrWjrK75PeA2BttDCzoLymOKxZyS5U2OKYSUChf347/+atObW7CR4pUmjVrSbCPd9B2QM07qyYOtinzm1IU2L6vbjIzn83guVeF8AvpjWlXXdrlqVxapY8OZVLawW7wugLQTsLOh2jWRqMKOsav62D94XQFsI2Fko8NDtGsnUYEalpWuLXd5r/pH3BRCibGeJZ6XAQ7drJFODGV54XwChynbSGclSQLp0e/oi0GVdSzozsw+Z2SEzmzQzzyco7feUmR00s31mFp+0b5KlgPTo9vRFIGKdjmE/ImmNpJ8H2PdS59wyvyuHSJAsBaSH18IxlERFinQUsJ1zjznnDod1MD1HshSQHvSYIeV6lSXuJP3YzPaY2Q2NdjSzG8xsxMxGjh492t2jytqSiUCa0WOGlGuaJW5mP5X0Bo+7vuCc+0HA53m3c27UzF4n6Sdm9rhzzrMb3Tl3q6RbpWLSWcDHb1/WlkwE0mrlxupZHxI9ZkiVpgHbOfeeTp/EOTda+vm8md0taYWCjXsnCxmqQHSYRoaU6/o8bDM7XVKfc+4Ppd+vkJS+LJCszOkG4iwuPWZcvKMLOp3W9QEzOyLpnZLuM7Odpe3nmNmO0m6vl/QLM9sv6b9Jus859/918ryxRIZq+mWhKh46x/QydElHLWzn3N2S7vbY/qykK0u/PynprZ08TyKQoZpu9KAgqEYX77xX0AFqiYeFDNV0owcFQXHxji4hYIeFOd3pxpcwguLiHV1CwA4Lc7q7Jw5jx3wJIygu3tEl2V6tK2xxyVCNUtjZsXEZO2aOL4Jiehm6JNurdSFctcFVKga1Tnoa4rSiGlN1AHRZo9W6aGEjPN3Ijo3T2DE9KAAixBg2wtON4MrYMQBIImAjTN0IriTwAIAkAjbC1I3gSvY9AEhiDBth6lZ2LGPHAEDARsgIrgDQFXSJAwCQAARsAAASgIANAEACELABAEgAAjYAAAlAwAYAIAEI2AAAJAABGwCABCBgAwCQAARsAAASgIANAEACELCRDQe2SVsXS5sGij8PbIv6iACgJSz+gfQ7sE2697PSeKF4+9gzxdsSC5UASAxa2Ei/+79yKliXjReK2wEgIQjYSL9jR1rbDgAxRMBG+s2a29p2AIghAjbSb+VGKZev3pbLF7cDQEIQsJF+S9dKV98izZonyYo/r76FhDMAiUKWeJQObCsmPh07UuyeXbmRINItS9fytwWQaATsqDDVCADQArrEo8JUIwBACwjYUWGqEQCgBQTsqDDVCADQAgJ2VJhqBCAJqMMfGySdRaWcWEaWOIC4Ijk2VgjYUWKqEYA4a5Qcy3dXz9ElDgDwRnJsrBCwAT+M3SHrSI6NFQI24KU8dnfsGUnu1NgdQRtZQnJsrHQUsM1si5k9bmYHzOxuMxvw2e+9ZnbYzJ4ws/WdPCfQExS2AXpXh5/erEA6TTr7iaQNzrmTZvZVSRsk/U3lDmbWL+kfJF0u6Yikh83sHufcox0+N9A9jN0BRd1OjiUTPbCOWtjOuR87506Wbu6W5DWwsULSE865J51zJyR9X9K1nTwv0HWM3QG9QW9WYGGOYf8nST/y2D4o6ZmK20dK24D4YuwO6A16swJr2iVuZj+V9AaPu77gnPtBaZ8vSDop6fZOD8jMbpB0gyTNnz+/04cD2kNhG6A3Zs0tJXd6bEeVpgHbOfeeRveb2fWS3i9ppXPOeewyKmlexe25pW1+z3erpFslaWhoyOvxgN6gsA3QfSs3Vo9hS/Rm+eg0S/y9kv5a0jXOueM+uz0s6XwzO8/MTpP0EUn3dPK8AICU6FUmegp0miX+95KmS/qJmUnSbufcp83sHEnfdM5dWcog/4yknZL6JX3LOXeow+cFAKQFvVmBdBSwnXP/wWf7s5KurLi9Q9KOTp4LAIAso9IZAAAJQMAGACABCNgAACQAARsAgAQgYAMAkAAEbAAAEoCADQBAAhCwAQBIAAI2AAAJQMAGACABCNgAACQAARsAgAQgYAMAkAAEbAAAEoCADQBAAhCwAQBIAHPORX0MvszsqKTfNtjlLEm/79Hh9ALnE2+cT7xxPvHG+QRzrnNujtcdsQ7YzZjZiHNuKOrjCAvnE2+cT7xxPvHG+XSOLnEAABKAgA0AQAIkPWDfGvUBhIzziTfOJ944n3jjfDqU6DFsAACyIuktbAAAMiFRAdvMtpjZ42Z2wMzuNrMBn/3ea2aHzewJM1vf6+MMysw+ZGaHzGzSzHyzDc3sKTM7aGb7zGykl8fYihbOJymvzxlm9hMz+1Xp52yf/SZKr80+M7un18fZTLO/t5lNN7M7Svc/ZGYLen+UwQU4n+vN7GjFa/LJKI4zCDP7lpk9b2aP+NxvZnZL6VwPmNnben2MrQhwPpeY2bGK12Zjr4+xFWY2z8weNLNHS99tf+WxT+9eI+dcYv5JukLStNLvX5X0VY99+iX9WtIbJZ0mab+kt0R97D7n82ZJCyX9TNJQg/2eknRW1Mcbxvkk7PX5vyStL/2+3uv9Vrrvj1Efa4NzaPr3lvQXkr5R+v0jku6I+rg7PJ/rJf191Mca8Hz+F0lvk/SIz/1XSvqRJJN0kaSHoj7mDs/nEkk/jPo4WzifsyW9rfT7ayX9d4/3W89eo0S1sJ1zP3bOnSzd3C1prsduKyQ94Zx70jl3QtL3JV3bq2NshXPuMefc4aiPIywBzycxr4+Kx/Wd0u/fkbQ6wmNpV5C/d+V53ilppZlZD4+xFUl6/zTlnPu5pBcb7HKtpO+6ot2SBszs7N4cXesCnE+iOOeec879svT7HyQ9JmmwZreevUaJCtg1/pOKVzW1BiU9U3H7iOr/wEnjJP3YzPaY2Q1RH0yHkvT6vN4591zp9/8h6fU++80wsxEz221mcQvqQf7eU/uULoiPSTqzJ0fXuqDvn+tK3ZN3mtm83hxaVyTp8xLUO81sv5n9yMwuiPpggioNFS2X9FDNXT17jaZ140E7YWY/lfQGj7u+4Jz7QWmfL0g6Ken2Xh5bO4KcTwDvds6NmtnrJP3EzB4vXcn2XEjnExuNzqfyhnPOmZnflIpzS6/PGyU9YGYHnXO/DvtYEdi9kr7nnHvVzD6lYu/BZREfE4p+qeLn5Y9mdqWkYUnnR3xMTZnZayTdJelzzrn/GdVxxC5gO+fe0+h+M7te0vslrXSlAYQao5Iqr6jnlrZFotn5BHyM0dLP583sbhW7BSMJ2CGcT2JeHzP7nZmd7Zx7rtTF9bzPY5RfnyfN7GcqXoXHJWAH+XuX9zliZtMkzZL0Qm8Or2VNz8c5V3ns31QxFyGpYvV56VRlsHPO7TCz/9vMznLOxbbGuJnlVAzWtzvntnvs0rPXKFFd4mb2Xkl/Leka59xxn90elnS+mZ1nZqepmEQTu8zdoMzsdDN7bfl3FRPvPDMwEyJJr889kj5R+v0Tkup6EMxstplNL/1+lqSLJT3asyNsLsjfu/I8PyjpAZ+L4Thoej4144fXqDjumFT3SPqzUibyRZKOVQzTJI6ZvaGcH2FmK1SMQXG9OFTpWP9J0mPOua/57Na71yjqLLxW/kl6QsWxgn2lf+XM1nMk7ajY70oVs/l+rWJXbeTH7nM+H1BxvONVSb+TtLP2fFTMht1f+nco6eeTsNfnTEn3S/qVpJ9KOqO0fUjSN0u/v0vSwdLrc1DSn0d93B7nUff3lvQVFS98JWmGpH8pfb7+m6Q3Rn3MHZ7PzaXPyn5JD0paFPUxNziX70l6TtJ46bPz55I+LenTpftN0j+UzvWgGswmicO/AOfzmYrXZrekd0V9zE3O590q5hAdqIg7V0b1GlHpDACABEhUlzgAAFlFwAYAIAEI2AAAJAABGwCABCBgAwCQAARsAAASgIANAEACELABAEiA/x+29ZHzIKevpgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 8))\n", + "plt.scatter(data[~is_outlier, 0], data[~is_outlier, 1],\n", + " label='inlier')\n", + "plt.scatter(data[is_outlier, 0], data[is_outlier, 1],\n", + " label='outlier')\n", + "plt.legend()\n", + "plt.savefig('resulting_images/som_outliers_detection.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also try the same on a different dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + " [ 0 / 100 ] 0% - ? it/s\r", + " [ 0 / 100 ] 0% - ? it/s\r", + " [ 1 / 100 ] 1% - 0:00:00 left \r", + " [ 2 / 100 ] 2% - 0:00:00 left \r", + " [ 3 / 100 ] 3% - 0:00:00 left \r", + " [ 4 / 100 ] 4% - 0:00:00 left \r", + " [ 5 / 100 ] 5% - 0:00:00 left \r", + " [ 6 / 100 ] 6% - 0:00:00 left \r", + " [ 7 / 100 ] 7% - 0:00:00 left \r", + " [ 8 / 100 ] 8% - 0:00:00 left \r", + " [ 9 / 100 ] 9% - 0:00:00 left \r", + " [ 10 / 100 ] 10% - 0:00:00 left \r", + " [ 11 / 100 ] 11% - 0:00:00 left \r", + " [ 12 / 100 ] 12% - 0:00:00 left \r", + " [ 13 / 100 ] 13% - 0:00:00 left \r", + " [ 14 / 100 ] 14% - 0:00:00 left \r", + " [ 15 / 100 ] 15% - 0:00:00 left \r", + " [ 16 / 100 ] 16% - 0:00:00 left \r", + " [ 17 / 100 ] 17% - 0:00:00 left \r", + " [ 18 / 100 ] 18% - 0:00:00 left \r", + " [ 19 / 100 ] 19% - 0:00:00 left \r", + " [ 20 / 100 ] 20% - 0:00:00 left \r", + " [ 21 / 100 ] 21% - 0:00:00 left \r", + " [ 22 / 100 ] 22% - 0:00:00 left \r", + " [ 23 / 100 ] 23% - 0:00:00 left \r", + " [ 24 / 100 ] 24% - 0:00:00 left \r", + " [ 25 / 100 ] 25% - 0:00:00 left \r", + " [ 26 / 100 ] 26% - 0:00:00 left \r", + " [ 27 / 100 ] 27% - 0:00:00 left \r", + " [ 28 / 100 ] 28% - 0:00:00 left \r", + " [ 29 / 100 ] 29% - 0:00:00 left \r", + " [ 30 / 100 ] 30% - 0:00:00 left \r", + " [ 31 / 100 ] 31% - 0:00:00 left \r", + " [ 32 / 100 ] 32% - 0:00:00 left \r", + " [ 33 / 100 ] 33% - 0:00:00 left \r", + " [ 34 / 100 ] 34% - 0:00:00 left \r", + " [ 35 / 100 ] 35% - 0:00:00 left \r", + " [ 36 / 100 ] 36% - 0:00:00 left \r", + " [ 37 / 100 ] 37% - 0:00:00 left \r", + " [ 38 / 100 ] 38% - 0:00:00 left \r", + " [ 39 / 100 ] 39% - 0:00:00 left \r", + " [ 40 / 100 ] 40% - 0:00:00 left \r", + " [ 41 / 100 ] 41% - 0:00:00 left \r", + " [ 42 / 100 ] 42% - 0:00:00 left \r", + " [ 43 / 100 ] 43% - 0:00:00 left \r", + " [ 44 / 100 ] 44% - 0:00:00 left \r", + " [ 45 / 100 ] 45% - 0:00:00 left \r", + " [ 46 / 100 ] 46% - 0:00:00 left \r", + " [ 47 / 100 ] 47% - 0:00:00 left \r", + " [ 48 / 100 ] 48% - 0:00:00 left \r", + " [ 49 / 100 ] 49% - 0:00:00 left \r", + " [ 50 / 100 ] 50% - 0:00:00 left \r", + " [ 51 / 100 ] 51% - 0:00:00 left \r", + " [ 52 / 100 ] 52% - 0:00:00 left \r", + " [ 53 / 100 ] 53% - 0:00:00 left \r", + " [ 54 / 100 ] 54% - 0:00:00 left \r", + " [ 55 / 100 ] 55% - 0:00:00 left \r", + " [ 56 / 100 ] 56% - 0:00:00 left \r", + " [ 57 / 100 ] 57% - 0:00:00 left \r", + " [ 58 / 100 ] 58% - 0:00:00 left \r", + " [ 59 / 100 ] 59% - 0:00:00 left \r", + " [ 60 / 100 ] 60% - 0:00:00 left \r", + " [ 61 / 100 ] 61% - 0:00:00 left \r", + " [ 62 / 100 ] 62% - 0:00:00 left \r", + " [ 63 / 100 ] 63% - 0:00:00 left \r", + " [ 64 / 100 ] 64% - 0:00:00 left \r", + " [ 65 / 100 ] 65% - 0:00:00 left \r", + " [ 66 / 100 ] 66% - 0:00:00 left \r", + " [ 67 / 100 ] 67% - 0:00:00 left \r", + " [ 68 / 100 ] 68% - 0:00:00 left \r", + " [ 69 / 100 ] 69% - 0:00:00 left \r", + " [ 70 / 100 ] 70% - 0:00:00 left \r", + " [ 71 / 100 ] 71% - 0:00:00 left \r", + " [ 72 / 100 ] 72% - 0:00:00 left \r", + " [ 73 / 100 ] 73% - 0:00:00 left \r", + " [ 74 / 100 ] 74% - 0:00:00 left \r", + " [ 75 / 100 ] 75% - 0:00:00 left \r", + " [ 76 / 100 ] 76% - 0:00:00 left \r", + " [ 77 / 100 ] 77% - 0:00:00 left \r", + " [ 78 / 100 ] 78% - 0:00:00 left \r", + " [ 79 / 100 ] 79% - 0:00:00 left \r", + " [ 80 / 100 ] 80% - 0:00:00 left \r", + " [ 81 / 100 ] 81% - 0:00:00 left \r", + " [ 82 / 100 ] 82% - 0:00:00 left \r", + " [ 83 / 100 ] 83% - 0:00:00 left \r", + " [ 84 / 100 ] 84% - 0:00:00 left \r", + " [ 85 / 100 ] 85% - 0:00:00 left \r", + " [ 86 / 100 ] 86% - 0:00:00 left \r", + " [ 87 / 100 ] 87% - 0:00:00 left \r", + " [ 88 / 100 ] 88% - 0:00:00 left \r", + " [ 89 / 100 ] 89% - 0:00:00 left \r", + " [ 90 / 100 ] 90% - 0:00:00 left \r", + " [ 91 / 100 ] 91% - 0:00:00 left \r", + " [ 92 / 100 ] 92% - 0:00:00 left \r", + " [ 93 / 100 ] 93% - 0:00:00 left \r", + " [ 94 / 100 ] 94% - 0:00:00 left \r", + " [ 95 / 100 ] 95% - 0:00:00 left \r", + " [ 96 / 100 ] 96% - 0:00:00 left \r", + " [ 97 / 100 ] 97% - 0:00:00 left \r", + " [ 98 / 100 ] 98% - 0:00:00 left \r", + " [ 99 / 100 ] 99% - 0:00:00 left \r", + " [ 100 / 100 ] 100% - 0:00:00 left \n", + " quantization error: 0.3696783769236724\n" + ] + } + ], + "source": [ + "from sklearn.datasets import make_circles\n", + "data = make_circles(noise=.1, n_samples=inliers, random_state=0)[0]\n", + "data = scale(data)\n", + "data = np.concatenate([data, \n", + " (np.random.rand(outliers, 2)-.5)*4.])\n", + "\n", + "\n", + "som = MiniSom(5, 5, data.shape[1], sigma=1, learning_rate=0.5,\n", + " neighborhood_function='triangle', random_seed=10)\n", + "\n", + "\n", + "som.train_batch(data, 100, verbose=True) \n", + "quantization_errors = np.linalg.norm(som.quantization(data) - data, axis=1)\n", + "error_treshold = np.percentile(quantization_errors, \n", + " 100*(1-outliers_percentage)+5)\n", + "is_outlier = quantization_errors > error_treshold" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHSCAYAAAAuWvi9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de5RdV30n+O9P5WurDF4qYYuHS7KldHvJgBAWLkSCSMZYYIGNbYFBvGYGd8JymA5JW0MrKZpZQnhlLVeiDAYPzCQOkITGDVJsEDJ2WoBlVoISuymhhy3bahw/kMpOLGSVAlbZLpX2/HHuLd26dR77nLP32Xuf8/2spaWqW7fuPffWPee3H7/926KUAhEREfltjusDICIiomwM2ERERAFgwCYiIgoAAzYREVEAGLCJiIgCwIBNREQUgDNcH0Ca8847Ty1evNj1YRAREVVi9+7dv1BKLYj7mdcBe/HixRgdHXV9GERERJUQkaeSfsYhcSIiogAwYBMREQWAAZuIiCgAXs9hExFRfUxOTuLw4cN44YUXXB+Kc3PnzsXChQvRarW0f4cBm4iIKnH48GGcc845WLx4MUTE9eE4o5TC0aNHcfjwYSxZskT79zgkTkRElXjhhRdw7rnnNjpYA4CI4Nxzz8090sCATURElWl6sO4o8j4wYBMRUWO89a1vzbzPZZddNl0D5Morr8T4+Ljtw9LCOWwiImqMf/zHf8x1/3vuuSfX/aemptDX15frd3Sxh01ERF7atmcMq0Z2Ysnw3Vg1shPb9oyVfsyXv/zlAIAf/ehHuOyyy/D+978fF198MT760Y9CKTXr/osXL8YvfvELAMA3vvENrFy5Epdccgl+93d/F1NTU9OP+alPfQpvfOMb8U//9E+ljzFJ6YAtIotE5D4ReVhEDojIf4q5j4jIrSLymIjsF5E3lX1eIiKqr217xvDpbz+IsfEJKABj4xP49LcfNBK0O/bs2YMvfOELePjhh/H4449j165difd95JFHsGXLFuzatQt79+5FX18fbr/9dgDA888/j7e85S3Yt28f3va2txk7vl4mhsRPAviUUuqnInIOgN0i8gOl1MNd93k3gIva/94C4P9r/09ERDTL5h0HMTE5NeO2ickpbN5xEGtXDBp5jpUrV2LhwoUAgEsuuQRPPvlkYsC99957sXv3brz5zW+OjmViAq985SsBAH19fbjuuuuMHFOa0gFbKfUMgGfaX/9SRB4BMAigO2BfC+DrKhpvuF9EBkTkNe3fJSIimuHp8Ylctxdx1llnTX/d19eHkydPJt5XKYWPfexjuPnmm2f9bO7cudbmrbsZncMWkcUAVgB4oOdHgwAOdX1/uH0bERHRLOcP9Oe63bbVq1fjjjvuwLPPPgsAeO655/DUU4kba1lhLGCLyMsB3AngRqXUv5V4nBtEZFRERo8cOWLq8IiIKCAb1ixFf2tmr7W/1YcNa5Y6OZ7Xve51+OM//mNcccUVWL58Od75znfimWeqHSSWuKy43A8i0gLwPQA7lFKfj/n5XwD4kVLqm+3vDwK4LGtIfGhoSHE/bCKienjkkUfw2te+Vvv+2/aMYfOOg3h6fALnD/Rjw5qlxuavfRD3fojIbqXUUNz9S89hS1Su5asAHokL1m3bAXxSRL6FKNnsOOeviYgozdoVg7UK0GWZyBJfBeB/A/CgiOxt3/ZfAFwAAEqpPwdwD4ArATwG4ASA/2DgeYlo/1bg3puA44eBeQuB1RuB5etcHxURWWAiS/zHAFKLorazw3+v7HMRUZf9W4G7/gCYbGfNHj8UfQ8waBPVECudFbF/K3DLMmDTQPT//q2uj8i8JrzG0N170+lg3TE5Ed1ORLXDWuJ5NaFXU8Vr5FBueccP57udiILGHnZeTejV2H6NnQbB8UMA1OkGAXvx+cxbmO/20HCUh2gGBuy8mtCrsf0am9DoqcLqjUCrp4hEqz+6PXRs1JEH/vqv/xpPP/309Peut91kwM6r7r0awP5rbEKjpwrL1wFX3wrMWwRAov+vvrUeUwts1JEHegN2t3vuuQcDAwPaj9XZ2asMBuy86tyr6bD9GpvQ6KnK8nXA+oeATePR/3UI1gAbdRSxMC3y+c9/HsuWLcOyZcvwhS98AU8++SSWLVs2/fM/+7M/w6ZNm3DHHXdgdHQUH/3oR3HJJZdgYmJmA9LFtpsM2HnVuVfTYfs1NqHRQ+WwUUcWpkV2796Nv/qrv8IDDzyA+++/H3/5l3+JY8eOxd73/e9/P4aGhnD77bdj79696O+Pr2Fe5babzBIvYvm6egXoODZfY+dxmSVOSVZvnLlSAWCjrmnSpkUKXit+/OMf473vfS9e9rKXAQDe97734R/+4R/KHWaF224yYJMbTWj0UHFs1FFF0yLj4+M4derU9PcvvPBCrt+vcttNDokTkZ/qOj9PeixMi/zmb/4mtm3bhhMnTuD555/Hd77zHbz73e/Gs88+i6NHj+LFF1/E9773ven7n3POOfjlL3+Z+phVbrvJHjYREfnHwrTIm970Jlx//fVYuXIlAODjH/843vzmN2Pjxo1YuXIlBgcHcfHFF0/f//rrr8cnPvEJ9Pf3JyaNdW+7eerUKbRaLXz5y1/GhRdeWPg4kxjZXtMWbq9JRFQfebfXrHtFxMq31yQiooD5HBSZ6zIDAzbp8/nEJqL8mrA3Qo0w6Yz0sFQkUf2wolxQGLBJD0/seNyggkLmoKKcz3lTVSryPjBgkx6WipzNxagDGwhkUsUV5ebOnYujR482PmgrpXD06FHMnTs31+9xDruuTM83z1vYDkwxtzeVhUpMqTjfSKZVXFFu4cKFOHz4MI4cOWLl8UMyd+5cLFyY7/rJgF1HNi7sLBU5W9WjDmUaCEwYpDgVV5RrtVpYsmSJlcduAgbsOrLR82OpyNmqHnUo2kBgz5zScOlUMBiw68hWz48n9kxVjzoUbSBUPXRPRFYw6ayOuDVhdc7o2nKv/xV2t1otui0pEwaJaoEBu46437R9nWHmiedO3zbxHPB3f2Qvc7voPuVswBHVAofE66jsfDMTlLLFDTMDUdC2OT9cZFqCCYNEtcCAXVdF55uZoKQnbTjZt/lhJgwS1QIDNs3EBCU9SQlgHb7NDzNhkCh4nMOmmZigpCcuT6Ab54eJyDD2sGkmVjRL1z2/3z8fwBxg8vmZ9+H8cH0wn4M8wh42zcQM82S9tcMnngNwChj6nfyZ2x7btmcMq0Z2Ysnw3Vg1shPb9oy5PiQ3uEMdeYY9bJopLUGp6b2NpPn9n30fWP+Qm2MybNueMXz62w9iYnIKADA2PoFPf/tBAMDaFYMuD616zOcgzzBg02xxCUrMHm/E/P7mHQeng3XHxOQUNu84WE3A9qlR2IC/N4WFQ+Kkh/th17oASWcYfGw8Zm05op629aFx34aga/z3pjAxYJMe9jbMz+97srd1Zxg8KVh3fPrbD9oN2r41Cpucz+HJZ5NmYsAmPextFC8NGsej3mTcMHicztC4Nb41Ck3+vUPi0WeTZuIcNulhecuIqQIkHiU0PZ3Rsy5639x8XFLYxIIzHn02aSb2sEmPz70Nm8N3th7bo97k+QMpBWBK3De3Jg9B+8SjzybNxB426fOxt2Eze73sY6dlPPfPn7nTV4eD3uSGNUtnLOUCgFafAAqYPKWmb+tv9WHDmqX2DoQ1z/3g40gHAWDAptDZHL4r89jf+z+B0a8BaAe87mAPAC/9avbvzGk56U12lmtt3nEQT49P4PyB/unA3Htb2tKubXvGct0/lo+Nwqbh9Je3GLApbDaH74o+9v6tM4N1R3fG89RLs3/vrHOcBau1KwZjg6tuwGXBlRrhSIe3GLApbDaH74o+9r03YVaw7kgL9hPHtA/NN84LrpBZHOnwEpPOKGw2E5WKPnZaUJ63sJZL5JKyx61mlRM1jJEetoh8DcB7ADyrlFoW8/PLAHwXwBPtm76tlPKzRJZPpREpm83hu6KPnbhXtpwO9jWbIzx/oD+28Mr5A/0z5rbn9bcgAoyfmCw+z20Tz3/ymCiVMHSX50FEfgvArwB8PSVg/2el1HvyPO7Q0JAaHR0tfXzaerOCgehC6svyJQpD3OcIAgz9NvCez5++j2eBoUzSWO8cNhBllV936SDu3D2WWJilv9WHm9/3Bj+CNs9/8oCI7FZKDcX9zEgPWyn19yKy2MRjOcWCAWSCTs/csznCskljSZnmWVXUvJrn5vlPnqsy6ew3RGQfgKcR9bYPVPjcelgwgEzxLCBnMZE0Fpdpvn7L3szf82aem+c/ea6qgP1TABcqpX4lIlcC2Abgorg7isgNAG4AgAsuuKCiw2tjwQCqqazhbltJY0lz2733KcXU9IKv57+H0yfkRiVZ4kqpf1NK/ar99T0AWiJyXsJ9b1NKDSmlhhYsWFDF4Z3G0oj1wh2HAMzcjUvh9HB3985bSUGzbDDdsGYp+lt9iT8vXT3N5EYVPp7/3IiDulQSsEXk1SIi7a9Xtp/3aBXPnUtavWxe/MPCC920tOHujrjAaqIU6doVg7j5fW/A4EA/BMBAfwvzz25BAAwO9JdPODO5JaeP9fJ923IU4LXQIVPLur4J4DIA54nIYQCfBdACAKXUnwN4P4D/Q0ROApgA8CFlIj3dhri5R5v1qskOJhBN0xnuTkoaM5EMllRFzQjT886+5R74Nq/Oa6FTprLEP5zx8y8B+JKJ53KCF//w+HahcyhtjXQ3q4HVFl/nnU3x7fXxWugUK53p4MU/PDWsJlaUreFuL/g472ySb6+P10KnGLB1NPXiH/JclW8XOod655GNzB37wsd5Z5N8e31NvRZ6gpt/6GjidnOhz1Vxx6EZTA53G9lG06BtU6uw+cVb8fQLEzh/bj82TC3FWmdHY4FP8+pNvBZ6xEhpUlsqL02apmlrIW9ZljB3tghY/1D1x0NeSCpB6qrH7tvxNELV18KGXXvTSpMyYFO8TQOI3yJSgE3jVR8NVSSr97xqZGdsAtv8s1s4+8wzKu91Jx3P4EA/dg1fbv35ybIG1ndPC9icw6Z4WXNVIc9vUyydAitJS8SOnZhM/T1buK1nzfm4Dt0hBmyKl5a0xaIktaRTYEW38lnv79liq0IbeYJZ6TMwYFO8tOxUtnprSae3mlVqVOfxTKr1kjViVnoPZolTsqTsVLZ6a0mnwEpcRbTnXzyJ8YnJ1N+zxWaFNvIAs9JnYMDuaFgmYim+VV8iIzasWRqbcd3bW+1dIpaUqV1VLzfICm2kh8szZ2DABsJfc2xTXEOGrV6vFV0nXbS3WnUv1/Y68MTHZ6PeDZ/WoTvGZV0A1xwnSVtSAfDi5aG6r0u2/fqSHv/rb34Kb37ws41aXkRupC3rYg8b4JxskrTksvUP8ULlobRMb5sBu6rqZ7ZfX9LjL/rpZkQbDXbhphdUMQZsgHOySdiQ0bJtzxg+d9cBHDsRJV4N9Lew6ZrXO+nRuliX3Nsr7azDBmD8PbD9+pIe55XqCCAxP+C5QBXisi6AG0Uk4ZKKTNv2jGHDHfumgzUAjE9MYsPf7qukcEgvF+uSddZvm2L79SU9ztPqvPhf4LlAFWLABvzbEacqWdXK2JDJtHnHQUxOzc4DmTylKikc0svFuuQqe/W2X9+GNUtjO9J/enIdJnDWzBvntICXnme1P6oMh8Q7mpaJqJMZzyUVmdKCkovymC7WJeus3zbF9utbu2IQN27ZO+v27afeBnkJ+OKCu6JzoX8+8NKvgInnojtwZQlVgFniTcXMeCOSNp8AmrMBRd0y07U2FOH5Q5Zw8w+ajQllRmxYsxStvtmDqK050pjymGtXDOLm970BgwP9EESBLdRgDWgOu1s+f7btGcOqkZ1YMnw3Vo3sdJIPQf7hkHhTMTPeiE5Q8iVL3JU6VRvTGna3eP5UmXVPYeGQeFM1cJ9ZImMsnj/c47vZOCROszU1M57IBIvnD/f4piQcEm+yADPji1TUqqoKlw1Zxx7yawuepfOnyqx7CguHxMkraQGoSDZyyBnMccfemiN4+dwzMH5iEgNnt/CrF05i8tTpcziU10bJQv7MUnkcEqcgdC5UY+MTUDidbNPJkC1SUavKKlymxR375CmFYycmoQAcOzE5I1gD/r02ZjvnV7esezKHQ+LkjayNHYrM7YU8H1j0GIv8no2hdWY7F1enrHsyhwGbvJEVXIvM7YU0H9gbNOf1tzA+MZn9iz3yvjbdwJo3qLvaOYyorjgkTvll1SAvKGtjhyJ1pKuqrV126DduOuD5l06iNSeusnWyIq9NZ9oga7oiTsijG0Q+YsCmfDrrT48fAqBO11A2ELSzgmuRub0q5gOLBLPe3//U1n2z56unFF4+94zpYx/ob82qqtbqEwz0t0q9Np3AWiQXwMXOYVXi/DxVjUPilM+9N80sFgFE3997U+klLjoVporM7dmeDywz9NsJ9lMJqzXGT0xiz8YrZtzf9FyzzrRBkd7yhjVLY7Od40YAQluexvl5coEBm/KxXEO56mQbE4GizNBvXLDv1tsbtfH+6ATWIrkAujtrhRj8fJ2fD63hQ/kwYFM+NapBbipQlElsSwvqtvex7tAJrHl6y72PnfVeVhX8TAYzH+fnQ2z4UD4M2JTP6o3xNZRXb3R3TAWZChRFgxmQHOz7RCpde5sVWG3uQ11F8DMdzGysPijboPC110/mMGBTPp156ntviobB5y2MgnVgJU6BYoEi7aJa5GKbFOx9LJRha7rCdPCL+xuZDmZlGmlJx1y2QeFjr5/MYsCm/AKsQR4nb6DIuqgWufDb7LmGwmTwS/obJeUJFA1mpv9uJhoUIdUcoGIYsMk5V4kyeQOFrSFHEz3XkJONTAa/pL9Rn0hsJn6ZYGZyxMFE79hUwyfkz1LdMWCTUy4SZbovSPP6W5jbmoPxE5OZFydfhxzrkGxkKvgl/S2mlEJ/q8/YELZpJnrHebLydTfYCfGzVGcM2ORUnl6riZZ/7wVpfGIS/a0+3PLBSzIfy9chRyYbnZb0NxrsmssuGsxsMtU7zmr4ZAVkfpb8xoBNTun2Wk21/MtckEwnGpniuufv0xBq2t+obDCzqapcBhsb7JS2f2stklirwNKk5JRu+UpT22SWuSD5uu2hyxKgZcuymlbmb+RyK9aqGj06G+zEsfZZsljquI7Ywy7CdYvQ9fMbpNtrNdXyLzus7eO2hy57/j4OoRb9G7kaqaiyZ5/1+a/8s2Sx1HEdGQnYIvI1AO8B8KxSalnMzwXAFwFcCeAEgOuVUj818dyV67QIOx+yTosQqOYD5vr5DdMdCky70OTpnfg6rF2Gy6VhrofjTTL1GctLt9Gzbc8YPnfXARw7EW25OtDfwqZrXm+0yE/ez1Lp98VyqeO6EZWw6UCuBxH5LQC/AvD1hIB9JYDfRxSw3wLgi0qpt2Q97tDQkBodHS19fEbdsiyhNOciYP1D9X9+TaYvcL29ECC60Fx36SDu3D2Wq/CIT3OuWXw/1lUjOxOTvHYNX+7giIoz+RnLY8nw3Yi7CguAJ0aumj62DXfsw+TUzHu25gg2f+CNuY7D1Gcq6f3K9b4Ecj2rkojsVkoNxf3MSA9bKfX3IrI45S7XIgrmCsD9IjIgIq9RSj1j4vkr5bpF6Pr5NdgY4lu7YhCjTz2Hbz5wCFNKoU8E1106iPsePZJ7SNbHYe04ISyxqdOIRVLv0vawv840zeYdB2cFawCYPKVyH4epz7+R96VGpY6rUNUc9iCA7mbU4fZtswK2iNwA4AYAuOCCCyo5uFxcb37h+vk12LjAbdszhjt3j00Xv5hSalavp1uIQ7K9TL6PtnrqdavUFhfM1m/ZG3tfU58xnUZP2nONjU9g1cjOMKdDalTquAreJZ0ppW4DcBsQDYk7PpzZXLcIXT9/gu6AkPRHK3OBq7KClS9MzQ/b7qn7PmKRVSikTP6E7vOk0Wn0JB0DEA2dd35W5ShM0jHNEcG2PWP6z1+TUsdVqCpgjwFY1PX9wvZt4XHdInT9/DHi5rLi6ATRpIueqQpWvs8JdzNVqMXHTO6qpDVWAGg1ZHR6wGUbRVmNng1rlsbOYQOY1UCu6m8b974A0Tnp29RNXVQVsLcD+KSIfAtR0tnxIOevO1y3CF0/f4+4gNBLZ14z7aJXtoJV1uP7eGExNT9cp0zuvLLWVus0ZHp7wANnt6BUNFS+ecfBSua5O4/RmyU+PjEZe/8q/radY/rU1n2zRrma0iCsmqllXd8EcBmA80TkMIDPAmgBgFLqzwHcgyhD/DFEy7r+g4nnJT+kXRwE0O7Jpl30ylSw0nl8Hy8spuaHfS2pWoUijZW4n3U+Y1XtBhYn7nOelKUf97e1Mbq0dsWg9Tl+Os1UlviHM36uAPyeieeiEiwVXEnr/eZZ2pN2cTURvELsaZqYH65TJndeWY2VvA0Z33IpdP+2NkeXmtwgrJp3SWdkicWCK2kXjTyt+qwTv2zwauqFpW6Z3HlkBbTenwmAt1+8IPHxfNsNTPdva3OTnSY3CKvGgN0UFksAJl00AL2kng7bJ36TLyy+Z3LbkhXQRp96Drff//PpxC0F4M7dYxi68BWx75eJXArTdP62NjfZaXKDsGpGKp3Z4mWls1BtGsDsfFIAEGDTuJWnLFIFy3YWd0hZ4mRf3s+okepeDui+zjpVrguV9UpnFAAHBVeKzBnb7gl2Jw9t3nFwRqavzxdcsiPvZ7Rob7KqhmLS81S9yQ7ZwYDdFA4Krvg6Zxza8i6yp8hnNG+jsqrPm87zmCoSQ25wP+y62r81Kqy/aSD6HwCuvjUqqg+J/r/6VqvruTesWYr+Vt+M23yYM3a573HdbNszhlUjO7Fk+G6sGtnpbB/soqr4jFb1ect6nrUrBrFr+HI8MXIVdg1fnphH4uM5SxH2sOsoKSP86lsr3QHH12QUDvuZ4fNIhe4QdBWf0ao+bzrPk/W++HrOUoQBu4482hTex+xkDvuZ4WshmrwNCduf0ao+b1nPo/u++HjOUoRD4nUUwBacLnHYzwxfRyp8m/Ko6vOW9Ty+vS+UH3vYdRTAFpwucdjPDF9HKnxrSFT1ect6nirfFy6ftIMBu4483YLTJz4O+4V2kfO1EI2PDYmqPm+9Qbs74ayq90Vr6N1SmeS645B4HS1fV1lGeOhZwr7oXOTG2vuJdy5yPr+fa1cM4ub3vQGDA/0QRMU1fCgg0uQpj7TPUVXvS+bQeycp9vghAOp0Uuz+rUaPo45Y6YwKC7Xqk49YYeo0EyMNoY1WmJL1OarifVkyfHdSTUU8MXJVtMw0dspuUaWrWHzFSmdkRVJLetP2A84vjqFdsH2bd3XF1FIxH6c8qpD1OarifckcemdSbGEcEqfCki4O4xOTTodyQxxeTppHdJ3AVTVmMpfjw+coc+i9f378LybdTtMYsKmwrH2DXQnxot/kedduHGkox4fPkZPcht7KjjWdD+eQOBW2Yc1S3Lhlb+zPOhdYF0PTIV70udQs4mOGd0h8+RylDr1PHMt3e5akyo5A7TLPGbCpsLUrBvG5uw7g2InJWT87f6DfWenKUC/6TZ137ebrUrGQeP85Ml0nwqPKjrZxSJxK+ezVr08cgnM1NO3DsCAV4+tSMTJo9caoLkS3MnUiGpTExh42lZI2BLc+Y7jcxTH1Ci2bvAm87yHWnPVzotPrNVU4pUGVHbkOu8Fsn5i+ry12uY6cDQXyUZC1FXrnsIGox255+2Bb0tZhc0i87hKyJ6tY+uT70LSrIfsQl51RM4S4wqLKyo6ucUi8zlKyJzfvOM/61oi+ZKwmcZVN7uu2lEQhrrAAEAXnGgboXgzYdZaSPfn0+J/E/orpE9Pn+UhX2eTBXhRJm6spj7LPG+oKi6bgkHidpWRP+lARyTVXQ/Z87+vN1ZSHief1fRqr6Riw6ywpS3LewsacmGm7iblaQtSU976pXM0Dp9X2191Rj8vq/MYh8TpL2Rd77XK/55dN0Cnc4mLI3ve5fSrH1ZRHWm3/8YmouJFO8SKfp7GajgG7zjLWO9b9xPQ5uavu732TuZoHTnreXr6cA5Qfh8Trbvm6aI/ZTePR/w3IpOxgche54GrKI+55k/AcCBN72ASg2qzWqp6LGa/kgqspj7jnPfHSycRa/xQeBmyqdJOOKp+LG0mQK66mPHqD9rz+Flp9gsmp0xUteQ6EiwGbjM71ZvWebc8r9z7/dZcO4r5HjzC5i2ol6TzrbRCPT0yiNUcw/+wWxk9M8hwIHAM2GZvr1ek925xXjnv+O3ePcVkK1UraeRbXIJ48pXD2mWdgz8YrKj9WMotJZ2SskEdS7/nGLXun13/aLBoSZB1kopzSPudMtLQgYT8GFxiwyVhWa9pFodMLePvFC6xl0PJiRU2Q9jlvXBU928G0sx/D8UMA1On9GBwFbQZsMlbdKOuiMDE5hfsePWKtklLjLlbUSGmf80ZV0asimKbsx+AC57BN2b/V3IbsDpjIao3Lyu719PiEtQxaZoVTE6R9zhtVRS8tmJq69qbsx+ACA7YJKdtYhhS0y+q+WCRVXLLZ223UxYoaK+tz3pgqelUE03kL2z34mNsdYMA2IWvYJOCedzedgiedi0VvJitQTW+3MRcrarTeoN1JrGzUZ7+KYJqyH4MLDNgmJLb0DtWm55234Al7u/m42j+ZwlRlASJvXXQFMPrV+NtNydiPoWpGAraIvAvAFwH0AfiKUmqk5+fXA9gMoLOv25eUUl8x8dxeSGrpSZ/9OZaKFCl4wt6uHl58Ka+sJYyNaPz97Pv5bi9q+Tpvrtels8RFpA/AlwG8G8DrAHxYRF4Xc9ctSqlL2v/qE6yBqMXV6pmbbfUDKiH5ylHCQhk+LplK2+s6JFw/TnklnXedxt7Y+ARU1/ehnhupPEsIq4KJZV0rATymlHpcKfUSgG8BuNbA44Zj+Trg6luBeYsASPT/9PcxHCUslOHbkqlOr7QOFyYfG0Pkt6Tzrk+kOY2/pOtogNdXXSYC9iCA7vHgw+3bel0nIvtF5A4RSYhkAYvbxjKp5+0oYaEM39Z31qlX6ltjiPyXdD5OKRV7/1o2/mp0fdVVVeGUuwAsVkotB/ADAH+TdEcRuUFERsB6GoMAACAASURBVEVk9MiRI2aPouoSc0k9b0/mQ/IwVVzFlDr1Sn1rDJH/ks7HQcONP6+nnWp0fdUlKqFFpv0AIr8BYJNSak37+08DgFLq5oT79wF4Tik1L+uxh4aG1OjoaKnjm9a7VhqIWmM1/wPX1aqRnbFrvftEcEqp4JJtmCVOJiQtpyzSuI57LACYf3YLn7369fx8WiIiu5VSQ3E/M5El/hMAF4nIEkRZ4B8C8JGeA3iNUuqZ9rfXAHjEwPPmU0VVnIbwIbgkVVXrDAnGZVr7cNxJmFFPpsxtzZk+Lwb6W9h0TbHgGjftBADHTkxyFYMjpQO2UuqkiHwSwA5Ey7q+ppQ6ICI3ARhVSm0H8Acicg2AkwCeA3B92efNrYEZhTbYWoKUN5j2rvOeIzJr/q572RmXTlHdxfWIXzx5qvDjpU0vmdzDnvQZWYetlLoHwD09t23s+vrTAD5t4rkK86zEXKiKrMcG0gNy0WDa3StdMnx37H06F52ix00UCtOf8fMH+hNLDANh5ouErjm7dTUwo9CGIsleWUuwTGR8Z2Va1ylJjShOns+4TjJZXDJkt9yJbB7tKx2q5gTsBmYU2lBkCdKm7QdSA7KJYJqVac2lU1R3up9x3RoGnUz0gf7WrMfMvYrBs32lQ9WcgA3Er5WmXOICowB4+8ULYu+/bc8YxicmY3/WCcgmgmnWsrNglk6xF1IJr5crFaT7Gc8zorV2xSD2fvYKfOGDl5Rb0unZvtKh4uYflMvaFYMYfeo53H7/z9FJ8VIA7tw9hqELXzHrJE4b1u4EZFP7WKdlWgexGQm3aa1EXRMQdT/jRUa0Sq9iYNKvEQzYlNt9jx5B7+r9pOSWtItAJyBXFUy9Wjq1f+vsHYC49LASdU5A1PmMJyWT6YxoFV4a6SrpN+48C/hcYsCm3PK00JMuDvPPbs040b0KprYl9aR7g3UHeyFGNT0BseiIVqmRCRf7StdwxKpZc9hkRJ4556R5tc9e/XorxxaEpJ60JGTkcumhUU1PQMxbZrgz33/jlr3FV3O4SPqt4bw5e9iUW54WehBzx1VL6jGrqajXUWUvpIFM5UyETHdEK6k8aTftkYmq95Wu4bw5A3YN2S7BmTcIN2q4W0fifN6i03PZNZlz8xEbkfqSypN283ZkoobFskpv/mGT0c0/GsJk8X+yhBvRUCCWDN89K8G0m9fXlkDPs7TNPziHXTOh7RNdx/WwmVjEhwKR1nt2vcVuphqeZxwSr5mQMmDruh5WS9XzeUQFJM33ex2ou9XsPGPA9lnPGsKf/Lvfx40PX5Q671ZmjWXV6rwelqgOON/vFwZsX8WsIVy2+//CpZMfxxjeltgbDSkDNqTRAKKmYtKoPziH7auYNYT98hL+8IzTtaXj5qbzrrF0qenrYYmI8mAP21cJawXPl6Mzvo/rjYbSIg5pNICIyDUGbF8lrCF8Wp074/us3qjtNdllcH6MiEgfA7avYmrvTqgz8acnT2c8ZvVGQ8jCDmU0wIqabUxARHYxYPuqc+HuuqA/9O9+H7sfvgiS0hvt7lHPEcFUT2EcF1nYPvfynanhxgTkF2/POzZUC2OlsxrRqfsLAALgiZGrnB1TUOs4bbllWXJ50vUPVX88VCvenneBVh+rEiudNYRO3V+g2izs0CqvVaaGGxNQdbIqBHp73tVwB60qcUi8RnTWL1edhc211glquDFBU1U99KyTm+LteceGainsYddIUs+5TyR2TXYVdby51jrB6o3RUGA3bqUZnE7wHBufgMLp4GmzJr5O79nb8y6pQcqGqhYG7BrZsGYp+lt9M27rb/Xh/173RjwxchV2DV8+I1hXcaFJOqbGr7Wu4cYETeRi6Fmn9+zteceGaikcEvdRwSzKPOuaq6rjzbXWKWq2MUETuRh61tkvwNvzLmb1C7PE9TFg+6bkch/ddc1VXmgavdaaas3FZju6FQK9Pe/YUC2MQ+K+Scii/Jdv/xejw9XeznERBcTF0HNI+wWQWexh+yYhW/KV6hdGq5SxjjdRea6Gnr3tPZNVDNi+SakhbnKO2ds5LqLAMHhSVRiwfRNTQ/xEVw1xk3PMvNAQEYWDc9i+aS/3+RcswCklOHzqPAxPfhzbT70NAOeYiYiaij1sHy1fh/unVnGOuYe3mxkQeaRznoyNT6CvvQHQIM+XWmDA9pTLOWYfA2MIW4USudZ7nnR26+P5Ug/crasKAW0n5+suP6tGdsaudx0c6Meu4csdHBGRf5LOkw6eL/7jbl0udQqhHD8EQJ0uhLJ/q+sji+XrLj/ebmZA5JGs82FsfMJqnXOyiwG7qP1boz2NNw1E/ycF4MC2k/M1MLLQC1E2nfNhw9/umw7aVWwAROYwYBeRp9cc2HZyvgZGbzczIPJI3HnSa/KUwqbtB2I3AFq/ZS8W2w7eup0dmoUBu4g8veakbeP655s/LgN8DYwsx0iUrfs8STM+MRk7/dXJaLK2TWhgU4S+YdJZEZsGcPqj3U2ATeMzb9q/Fdj2H4FTkzNv7zsTuPbLXiaf+ZglTkT5LR6+O/FngvirWDfjSWq3LIut5Ih5i4D1D5l7noClJZ1xWVcRCeVDY3vTy9cBf/dHwMRzM2+feinqkXsYsFkBjageXnZmH55/aWrW7fPPbuHsM89IzSgHLOSuBDZF6BsOiReRdxP2iWPxt/NDSkSWbNszhpdOnpp1+xwBlIqGvSXjMYznriRNESbdTjMY6WGLyLsAfBFAH4CvKKVGen5+FoCvA7gUwFEAH1RKPWniuZ3Iuwl7nh45EVFB3dNZc9pVznqdUtEcNhANiUvP/x1Wcldi9kpI7ezQDKUDtoj0AfgygHcCOAzgJyKyXSn1cNfdfgfAMaXUvxeRDwH4EwAfLPvcTuXZhJ0fUiKyLKnKWRYFTJcutZ67krezQzOY6GGvBPCYUupxABCRbwG4FkB3wL4WwKb213cA+JKIiPI5480kfkiJyLK4rG9dT49PVJe70tvZ6Szz4rUxk4mAPQige7z3MIC3JN1HKXVSRI4DOBfALww8fxjy9MiJiHLSSRBLygxPm6u2umqks8yrM/rYWeYF8HoZw7sscRG5AcANAHDBBRc4PhoiIjtMB8LzB/pjs777RHBKKZw/0I+3X7wAd+4ey9wFsHvHr+4gb3wTkbSaFgzYs5gI2GMAFnV9v7B9W9x9DovIGQDmIUo+m0UpdRuA24BoHbaB4yMi8oqN3ec2rFmqtXHP0IWvSG0o9B5b70W4s7eAkYDNZV65mAjYPwFwkYgsQRSYPwTgIz332Q7gYwD+CcD7AexszPw1ENRuXURkX9omO0UDoe6WvN1z1Z2e9Pote6fvrzMXbmx9NlfQ5FI6YLfnpD8JYAeiZV1fU0odEJGbAIwqpbYD+CqA/yoijwF4DlFQbwbO0RDVWpGhbVub7ORJHEvq5eskrhlbn80VNLkYmcNWSt0D4J6e2zZ2ff0CgA+YeK7gZNUdN9DzZilRIjeKDm0nzTdXuclOUi+/L2H9dofR9dllVtA0cOTSu6Sz2kmcozlkpOdtci6sbOBP+n02KKiuig5tJ803V7nJTlJvfkop9Lf6ZhxbJ/Fs0Mb5W2QFTUNHLhmwTUhr6SXN0UifkexIU3NhZQN/0u+PPvXcjKxU41mmRA4VHdrWnW+2KamXX1kRlTIaml3OgF1WVksvaY6m98PWkTM70tRcWNnAn/T733zg0KzhNaNZpkQOlRnaNlWopOgIVlov3/sNgBqaXc7NP8rKmqNevg64+tZo+zhI9P/09zFyZkcmXRjyzoWVDfxpw2tlHpfIZ673j++MbI2NT0Ah3z7WQe8xn3Sd7J8fVU3bNBD9X7N9ttnDLkunpZc0R2MgO9LUXFjZJJi0og1xQbvK5BoiW1wPbRcZGatFTkncyGXfmcCLvzy9lXEN57XZwy6r6HZxST3vnB8sU63ksj2FpN//8FsWOe2BENm2dsUgdg1fjidGrsKu4csrDX55R8bK9Mi9Enf9PPPlwKnJmffrHu2sAfawyyqzjtBQfXET801lewppv59VWYmIisk7MmajYIszvdfPTQPx96vRvDYDdlk12okrqwJS1gmd1HDwPoGFKFB5p8RsFWzxQgOqpjFgm1CznbjKLPGqxfwYUSDyjoz5ULDFmgZUTWPAplmKDpvZ2NCAiNLlGcHyoWCLNTUa7UzCgE2zFB02q9X8GFENuc5qT2Wi1GjNRjt7MWDTLEWHzfIEeg6dE7nhZU5JQ0uN5sVlXTRL0SVeukVc4paW3LhlL1bc9P3wlpdQ423bM4ZVIzuxZPhurBrZyc9wEVkFqAgAAzbFKLq2WzfQJ+23e+zEZJhrQqmxarOu2bWGlhrNi0PiFKvIsJnu/FjaXDjnvCkkzNswpAFLskxgwCajdAJ90hx5Ry3WhFIj1Hpdc5UasCTLBA6JU+Xihs671WJNKDWCqc13Gs9Qqea6Yw+bKtfpgW/afgDjEzNr/9ZmTSg1Qq3XNVet5kuyTGDAJmdedtYZGJ+YnN7Ra5DLuygwXq9rptphwA6YzbXMth+7u1cypdR0r4QXOgqNl+uaqZY4hx0om8tJbC9VScusJSKieAzYgbIZ9GwHVGbWEhHlxyHxQNkMerYDaq13DCKqCMv7Ng972IGyuZzE9lKVoqVPiSjCCmvNxIAdKJtBr+xjZ9VWLlr6lIgizANpJg6JpzGx3ZslNpeTlHls3T2xmVlLVBzzQJqJATtJANu92Qx6RR+btZWJ7GMeSAaPO1tlcEg8Cbd7K4QtfyL7mAeSotPZOn4IgDrd2dq/1fWRlcaAnYTbvRXC2spE9jEPJEWNO1scEk/C7d5m0F1CwtrKRNVgHkiCGne22MNOsnpjtL1bt4Zu95ZnCQlb/kRUmf1bgVuWAZsGov/3b03uVNWgsyVKKdfHkGhoaEiNjo66O4CaJi7ktWpkZ2yCy+BAP3YNX+7giIio8XoTg4GoU/XGjwD7/tvs2wPZrlNEdiulhuJ+xiHxNNzuDQATyYioAnk7SElz1T/7fhSca9jZYsCmTFxCQkRWFVlGmzZXXdPOFuewXYmbe/EUl5AQkVVFMrtrPFedhD1sFzJak74V9bdZVY2I7PLtehKrSGb36o3xc9g1TgxmwHYhpTW5bWpVYmlPwF3Q5BISovDolgqu4jhSr11Jy2hlTtTBiRve7txWw7nqJMwSd2HTAIC4912wau63Y+eLB/pbePHkqVnrm7lkihJxlUPj+bDCo7fRAMRcu+IyvjsCyvA2IS1LnHPYLqTMvSRlXo9PTHJ3HtJX4/KMpK+KFR5Zu/Np7Sy2fF0UlGVmrgyA2lQpM4EB24WUoix5M6/HxieM74GbdQJSAGpcnpH02S4VrFNUSbvRsHwdoE7FP1ENqpSZwIDtQqc1OW8RAIn+bw/5JGVkzz+7lfhwN27Zi0s+930jgTVPVTPyWI3LM5I+2ys8dHrPuRoNDcz8zqNUwBaRV4jID0TkZ+3/5yfcb0pE9rb/bS/znLWxfB2w/iFg03j0f3t+Jqm052evfv2sE6/b+MSkkcCqNXxF/uOFj2C/VLBO7zlXo4EloVOVzRIfBnCvUmpERIbb3/9RzP0mlFKXlHyuxkjLyL5xy97E3zOx7zSrmtVEA5e8UDybKzx0iiplLgvtTY5840eiamV5kiUbkmBZNmBfC+Cy9td/A+BHiA/YZMDaFYPYvONg7AnSkRVYs5ZXVFHVLIh1oaFr4JIXqp7u7nyJjYa4mhT7/lu+rPAiVdICVXYO+1VKqWfaX/8LgFcl3G+uiIyKyP0isjbtAUXkhvZ9R48cOVLy8AKQs+JZ3PBSt7TAqjM/bXvOi3PkFUqYdiEypfSQu4nkyAYlWGb2sEXkhwBeHfOjz3R/o5RSIpK0qPtCpdSYiPwagJ0i8qBS6p/j7qiUug3AbUC0Djvr+IJWoGXYORE+d9cBHDsxOeNnWYE1bX6687hJw1dAtKazbK9Y5xiIyDxbI1ulhtxNJEc2KMEyM2Arpd6R9DMR+VcReY1S6hkReQ2AZxMeY6z9/+Mi8iMAKwDEBuxGSWsZpvSGOidI3hNQd3669wQ0WS2Jc+RE1fOl4tksSRXO8iRHmniMQJQdEt8O4GPtrz8G4Lu9dxCR+SJyVvvr8wCsAvBwyeeth5Itw7UrBrFr+HI8MXIVdg1fnnniFV2TaTJz3Pa6UCKazdvVHyaywhuUWV42YI8AeKeI/AzAO9rfQ0SGROQr7fu8FsCoiOwDcB+AEaUUAzZQ+dKbovPTJnvF3PmLqHrejmyl1KSo9DECUSpLXCl1FMDqmNtHAXy8/fU/AnhDmeeprYqX3hTddctk5jh3/iKqntd72pvYu7qm+1/34m5dLjlYelMkQUR36YbNYyCi4kyfw+QGA7ZrAbQMO8F10/YDGJ+IMtPntuZg9Knn2FMmssxEdjdHtgxxXKCFAZu0vXjydGH+Yycm8Y37fz79vTdZp4axyAu5ZDK7myNbJXlQoIX7YZOWpH11e1W5z65tWvv4ElmUdN71ieCUUoUbkWyIFnDLsoTlY4uiwkSGpO2HzR42adHNJtW9XwgXDBZ5IdeSzqepdkdLt8fdfb7N62/h+ZdOYnIq32M0ngcFWri9JmnRzSbVuV8o5Um9XQpDjaFzPmWtp+4938YnJqeDte5jELzYAY8B26WcdcRdyqphDuhnnXpbxKEHi7yQazrnHZDeiIw73/I+BsGLAi0M2GWUCbidBIbjhwCo0wkMngbtuCL//+uvX1Co6H8oPVcWeSHXes+7PpHY+6U1InXPKzZEM3hQoIVz2EWVzRgsWEfcJVNZpl4XcejCpTDkg+7zLikRMq0RmXS+dWNDVJPjZbgM2EWVDbgeJDDoMp0gFlIRBy6FIVNcraeOO99acwQvn3sGxk9MsiEaEAbsosoG3EB2mLGxyw97rtQ0LtdT83yrDwbsosoG3IrriBdla2kTe67UJK6XCOqebyEst2wyBuyiygZcB3XEiwglQYzIZ2XOo6qCqLd7ZtM0BuyiTATcAOqIh5IgRuSzoudRlUHU9SgAZeOyrjKWr4tK0m0aj/73PPgWYWNp07Y9Y1g1shNLhu/GqpGd3hVMITKt6HlUZc0Cjqb5jz1sStVpWX/urgM4diLaqeusM4q381wNu3FujlwqmvhVZRDlaJr/GLBJywuTp3fqGp+YLBxkXQy7cW6OfFAk0bLKIBrScsum4pA4ZTI5LOdi2C2UUqhEvaqsthdXzZA70/mFPWzKlFQlqUiQdTHsxrk50uXb1EnVa6i53NJvDNiUatueMQiAuF3TiwRZF8NunJsjHb5OnbgKor41XohD4pRh846DscFagEJB1sWwGzfxIB2cOjktlC1wm4Y9bEqVNGysUK40aZUt9bhhxbdfvACbdxzE+i172XsgAJw66cY12X5iwKZUScPJg4ENJ6fteOTL0Ce5lfRZVwBWjexsVKOOjRc/cUicUtVxOJlDnxQn7rPeEeKQcJkCRUn5Hcz7cIsBm1J1zzkDQJ/IdHAL6eLVjb0HitP7We8VUqMubg56/Za9WKwZvOvYUK8DDolTps4woO4wsu/ZpcwaN8P3v3MRnamTJcN3xyZbhtKoixtF6rwenSkga8vJ9m/1fsMjnzFgkxbdJJQQ5odZ0ak8m39nHxoCoTfqshoWOglkxpND92+ducPh8UPR9wCDtiYOideIzU01dIeRQ5gfZkWn8mz9nX1ZThT6kLBOw6Ly0YJ7b5q5HTEQfX/vTdUeR8DYw64J2z1b3R5HKPPDrOhUjq2/sy/LiaquMFZW76jE2y9egDt3j816L7tVPlpw/HC+22kW9rBrwnbPVrfHwezSZrD1d/apwbd2xSB2DV+OJ0auwq7hy70O1r2jEnfuHsN1lw5OJ9BJzO89/+LJakcu5i3MdzvNwoBdE7YvdLrDyKEPJZIeW39nNvjyS2qs3/foEewavhxPjlyFWz54Ceaf3Zpxn86ue5UF7dUbgVbP37HVH91OWjgkXhNVJMnoDCOHNpRIxdj6OzMhMD+dxvraFYPYvOPg9J72HZVON3QSy5glXhgDdk34dKGzOT+sk0HsQ5ZxLx+PKa+417Br+HKjz8EGX35B5ZcsX8cAXQIDdk0kXeiAqKxiHS5+Ool1Pi4r8/GY8qryNTAhMB/dxnroS9WIc9i10pskA8CLJTKm6CTW+biszMdjysvGa7C5DLFJmF/SHOxh15jtJTJVD/PqDOl5Meyn+dy+LXVLY/o11GHUIY+kc8XUOcT8kmZgwK4xm4HCxQVXZ0jPx2E/H48pL9OvwYf11lU1OJPOldGnnpuxVrqKc4jTDWHjkHiN2Vwi42KYV2dIL8+wX1VDsnUYijT9GlyPOlRZUS3pXPnmA4eCnyqhajFg15jNQOHigqszV7d2xSCuu3QQfRKViugTwXWXzu5VFLlgFw3wdSiFavo1uF5vXWWDM+mcmFJx24v4MVXC/AI/cUi8xmzOWbka5s0a0tu2Zwx37h6bvhhOKYU7d49h6MJXzPi9vEOyZacA6jAUafI1uF6GmKfBWXboPOlc6ROJDdqmz6G8x9+0/IKQlOphi8gHROSAiJwSkaGU+71LRA6KyGMiMlzmOSkfW+UVfR3m1e055R0hqEOmt09cjzro9vBNDJ3HnSuCqDHZWzLU9DlU5Pj5WfdX2R72QwDeB+Avku4gIn0AvgzgnQAOA/iJiGxXSj1c8rnJsDwtcR8yTuOOVzcQ5x0h8GHOtW7ZvS5HHXR7+CaS47rPlbHxCQhO702tgOnvBy38XYscv+vPOiUrFbCVUo8AgEhcaflpKwE8ppR6vH3fbwG4FgADtkeKDIOlXXBtB5ik453X38L4xOSs+/cG4rxDsi4zvTlEaZ5ug9NU8OqcK6tGds76HHWCtemqcUCx46/Dqoa6qiLpbBDAoa7vD7dvI4+YHAarIgM36XhFoDVUn3dI1uUUAIcozelOptq84yA2rFmaOl1kOjmu6t5rkeP3dbqLNHrYIvJDAK+O+dFnlFLfNX1AInIDgBsA4IILLjD98JTA5IWkijW2Scc1fmISt3zwEq3efZ4hWZdTAByiNKPISIXp5Liqe68b1izFhjv2YXLqdHJbq09Sj9+H6S6KlxmwlVLvKPkcYwAWdX2/sH1b0vPdBuA2ABgaGopf90DGmbyQVBFg0o7X1tyoqznXpNeqENWJ58VUT5GGpOng5SQ7vvcqqnFVrcOqhjqqYlnXTwBcJCJLEAXqDwH4SAXPSzmYvJCUDf4689+ulwVVKe61dnA+W59uQ9LmrmRV91437ziIyVMzI/TkKVVpRTkyp1TAFpH3Avh/ACwAcLeI7FVKrRGR8wF8RSl1pVLqpIh8EsAOAH0AvqaUOlD6yMkokxeSMsFUd9iyScN2vVnGvaou6RkqnYZkFQl+VfZeOZ1SL6ISqu34YGhoSI2Ojro+DCqgaJZ4XBYtYC+LNjRLhu+OHdEUAE+MXFX14QSlNxgDUUOyO9mwbp+/ur2eJhCR3Uqp2LomrHRGVhTpRWzbMxZ7cQFm9gjquCZZF5fcFKczKlOXHmnnHIn7rNR16qgJGLDJC53eT5JOQGr6mmTTc/dNa/xkNSTr0CCKG0noECC2tj6FgQGbytu/Fbj3JuD4YWDeQmD1RmD5ulwPEZfB29EdkHzYltElk3P3aY0fU88RmjokM6adSwrAfY8eqfaAyBgGbCpn/1bgrj8AJtu9kuOHou+BXEE7bcjxuksHsXnHQazfsjdxRUpoQ5ZlmEpaSmr8bNp+AC+ePNXIUQxXyYwmRzqyzoUmnSt1w4BN5dx70+lg3TE5Ed2eI2AnDUXOP7uFO3ePJfYYun8/FL4MQycWn4kp7dq0UYyqa+KbnOZJOpe6f05h4n7YVM7xw/luT5BUDlEpZAbrkIYsqyjbqivvhZs9MztMl56NO5c6QjpXaDYG7KbbvxW4ZRmwaSD6f//WfL8/b2G+2xMk1fY+HtPb68iqAd5dN3rVyE4nQbGXT3XBkxpJ889uxd4/LcD7+F6HwnRmeve5BET7bgPVb2FK5nFIvMlMzD+v3jjzMQCg1R/dnlPcUGTS0pSsdaS+ZpP7tGwoab4WQK7EK1/f61DYyExnadF6YsBuMhPzz537lcwST/L2ixfg9vt/PiPZTGdYz9dsct+WDaVd2HXn2X19r03qXtfcJ4IppYztX12HzHSqBgN2kxmaf8bydcYCdLdte8Zw5+6xGcFadx2pTz3ZbqFcnPP00Hx9r03pHUGYaleHNDWS0KQyu1QOA3aTzVsYDYPH3e6BuJ6bAvCN+3+O+x49knpR860n2+Hi4mw7K93X99qUtHXNpkYSOIRNOhiwm8zg/LMNaT20rN6Nzz3ZKi/OVcwv+/hec10z1REDdpPpzj8bqGRWRNZ60rTeDYcZI1XML/v2XpdtpPQG+4GzWzh2Inm1Ql1GEsh/DNhNlzX/bKiSWRFp+0B3pPVu6jTMWLTHWNX8sk/vdZlGSlywb80RtPoEk1Oz6+y5HkmgZmHApnSGKpkV0bm43rhlb+J9fO/dmBiaLdNjrPv8MjD7PdbZ8S1JXLCfPKUw0N/Cy846w0qWOJEuBmxKZyqTvKC1KwYT12IL4HXvxtT8cZkeo4/zyybFvccCxNac12mkJAX14xOT2PvZK0ocKVF5rHRG6QxVMisjriKXAPjor1/gde/GVFWzMsPaSRXkfH7f8khaSSA999NtpCQF9TqNSFC42MM2zVGCljUeZJL7ltSky9T8cdlhbZ/ml01Lei8VosZJ3s9L3UckKGwM2CY5TNCyxnIlM126QceXnbAAc/PHroKIT+9lkqT3OKt0bZJQG4fUDKJU0g7D7g0NDanR0VHXh6HvlmUJhUgWAesfqv54GqZ3PhOIApurIWCTx1N18PTxvYx7/b4dJ1FZIrJbKTUU9zPOYZvkOEGrsLI7dnnCp52wAHPzxy56uj69qNSTSwAAEPtJREFUl2lbktZ9jp6oG4fETfK81GesGg3jl50zthEYy84fu9oJy6f64FlZ8nWYow9h+oHcYw/bpNUbo4Ssbh6V+oyVts46MGUyfON6ceu37MVijf2dbe4F7aqn61O2tE+NBxvSRhCIujFgm7R8HXD1rdGcNST6/+pb/e6p2hjGdzTEHrf8Szc5K2l5EJB+AbV9sXUVrMq8l6b51HiwwafpB/Ibh8Tz0FmyZWmrSWtMD+M7HGIvk+GbFQCTCpXYrtXtqlKZ7ntZxVBu3Zda1X0EgcxhwNZVo7neGUyvs3ZYyhQoPmectdEIEH8BtX2xdRmsst7LqubX677UqgnlY8kMBmxdjgORNabXWQeaKa+z0UjcBdT2xdbnYFXFTmAdZRLLdEcBXCV+dX/2rpnzY/zhGVtxvhzFC/JqYH/g1xcyigFbV6CBSIvJYXzHmfJFL7rdgTGuHnVSr7aKHnBv0O7MbZoKJr7vBFaG7iiAq2z87sffe/dt+MPJr+BseQkAcPbEM/UYxSNjmHSmy4Oa2kFwmClfNgFs7YpB7Bq+HE+OXIVbPniJ1treKtYB20xsK/PYISSD6SZ0Jd3vc3cdsH6MQPQ52vSyO6eD9bRAV2yQHexh6/KgpnYQHJYyNTlEm2cI1vY6YJtDz7Z2Auv02l1vR6k7CpB0v2MnJqcLtFhX51G8UHm2NwQDti5PamoHwVGmvM9DtGXmR22+rrI7gQGz59cBzAjkU+3yx1UOM3fo5hikJR3amJOPFWLhpTrzMNGYATuP0JZsNYyv2bZl50dtvi4bO4GtGtmZmLxnKyktiW6OwYY1S3Hjlr2xj1FZg4+jeH7xMNGYc9hUGz4V+wBOV0C7ccveUoUxbL4uG4+dFeCqCoCdUY2JySn0SbRDdlKOwdoVgxjob8U+jgKMV7CLFWLhpTrzcIqCPWyqjbgh2rdfvACbdxzE+i17K12qE7eLVC/dwGVzaZeNx85a017FiEfv+z+l1HRDJOm1bbrm9Yl/s8qG8zmK5w8Ppyi4vSbVlsutF1eN7MwsxNInglNKWW9ImFhfnOcx0horrt//rH2yu5Pl4hTdZ5sC1DuHDURTFJZHPbi9JjWSyxrNOr3nKaWsb/ZQZlOTtMdIO97upW4AMoejbSiaTNdZ2ic5H5dqyMMpCg6JU225zBpPGxbuLHPqZisZS2dTEyB9mLfI0i/XW16WTabzNYGRKubZFAV72FRbLgt7JCVzfeGDl+BUwjSUjYaE7qYmRR7D595m2WQ63xIYiQAGbKoxlxfdtApoVTYkdB4zK/CGUNGsV9kKdFVUsCPKi0lnVGuuNnTIOqaqkuF0stV1ErFcJe8RNU1a0hnnsKnWXM+lxjGxlEq3IVJ0UxPTx2uUZ+UiM4V2vOStUj1sEfkAgE0AXgtgpVIqtjssIk8C+CWAKQAnk1oPvdjDplCY7MlnPVaZHq+PIw65OFpqU1hox0vOpfWwywbs1wI4BeAvAPznjIA9pJT6RZ7HZ8CmEJgcMtZ5rKJrjGvhlmUJxSwWAesfyv79qnu7ZY+XGsfaOmyl1CNKKfuLWok8ZnK9t85jFc7a3r81CiCbBqL/92/NfXy2dMq4LslaH16mXGSnt3v8EAB1ejMHm++Dh+UtKVxVZYkrAN8Xkd0ickNFz+k3jy+elI+pZU/b9owlrt3ufqxCWdsugpWmXIVZyuxLn7aZgy1ljpeoR2bAFpEfishDMf+uzfE8b1NKvQnAuwH8noj8Vsrz3SAioyIyeuTIkRxPERCPL56Un4llT52gpfMchZaruQhWmnKNUKzeGM0Bd9Pd0cpFb7fM8RL1yAzYSql3KKWWxfz7ru6TKKXG2v8/C+A7AFam3Pc2pdSQUmpowYIFuk8RFo8vnpSfifXecUEr6bEKrRH2eGg2aSRi6N9+MHsUqky5SBe9XQ/LW1K4rC/rEpGXAZijlPpl++srADQ7Mnl88aT8TCx7Shs+T9oOMldCm4c7D3XElQG9Zs6PMXLmV4HjL0Y3dEahgOLlIl3tN+1ZeUsKV6k5bBF5r4gcBvAbAO4WkR3t288XkXvad3sVgB+LyD4A/wPA3Uqp/17meYPHeS23LOQPdDaNeGLkKuwavjx3dnjS8PngQL+ZZVceD83GjVD8UWsr+vHizDuWHYVib5cCV6qHrZT6DqIh7t7bnwZwZfvrxwG8sczz1I6rlj7NXhfb23NzZMOapbHLuYyVUe28Ng8LeMSNUJz/wtH4O5cdhWJvlwLG0qSusPqRGx6viw2+qIlJHv+diGxiaVIfsaXvhsf5Az6WUXWGo1BEs3C3LvJDVevSmT8Qz7e6AJxvJpqFPWxyr8p55Tr23MpOr3g6r1+rUShOgZEB7GGTe1WuS69bz81EER7WBbCLhZLIEPawyb2q55Xr1HNLC7a6r7Gq97+pvUwTfyMisIdNPuC8cnEmgm0V73+Te5keJzpSWBiwyT2Pi3p4z0SwreL9b/KwOxukZAgDNrlXt3nlKpkItlW8/03uZbJBSoZwDpv8UKd55SqZqmBm+/33uJa5dR5XmaOwsNIZEdnXu3QMiHqZHEkhmiGt0hmHxInIPk57EJXGIXEiqganPYhKYQ+7yXwrR0nNxs8jUSr2sJvK13KU1Ez8PBJlYg+7qZq8Lpb8w88jUSYG7KZq8rpY8g8/j0SZGLCbitWXyCf8PBJlYsBuKlZfIp/k/TwyQY0aiElnTcXqS+STPJ9HJqhRQ7HSGVGomrpd5S3LEsqcLgLWP1T98RAZlFbpjD1sohA1uZfJBLXmNtYajnPYRCFq8jKopieoNXlv8YZjwCYKUZN7mU1PmGxyY63hGLCJQlS3XmaerO+mbyTS5MZaw3EOmyhEqzfGb1cZYi+zyHx8kzcSafLe4g3HHjZRiOrUy+QQbz5NnxJoMPawi2KWJrlWl14mh3jzYQ2FxmLALqLJS2qITOMQb351aaxRLhwSL4JDeETmcIiXSAsDdhEcwiMyp07z8UQWcUi8CA7hEZnFIV6iTOxhF8EhPCIiqhgDdhEcwiMioopxSLwoDuEREVGF2MMmIiIKAAM2ERFRABiwiahedDYSybPZCJEnOIdNRPWhU4WQlQopUOxhE1F96FQhZKVCChQDNuXDoUTymU4VwsT7xBRDIvJIqYAtIptF5FER2S8i3xGRgYT7vUtEDorIYyIyXOY5yaHOUOLxQwDU6aFEBu16qENjLKnaYPftiRUJJczXTI1Rtof9AwDLlFLLAfxPAJ/uvYOI9AH4MoB3A3gdgA+LyOtKPi+5wKHE+qpLY0ynCuHqjQAk5pcVP8vktVIBWyn1faXUyfa39wOIa7quBPCYUupxpdRLAL4F4Noyz0uOcNOT+qpLY0ynCuHydQBU/O/zs0weM5kl/tsAtsTcPgige3LoMIC3GHxeqgo3PamvOjXGdKoQzlvEzzIFJ7OHLSI/FJGHYv5d23WfzwA4CeD2sgckIjeIyKiIjB45cqTsw5FJ3PSkvnTmfuuEn2UKUGYPWyn1jrSfi8j1AN4DYLVSKm6caQzAoq7vF7ZvS3q+2wDcBgBDQ0MJ41bkRKfXcu9NUc9r3sLoAse1q+FbvXHm2mSg3gGMn2UKkMTHWM1fFnkXgM8D+F+UUrHdYRE5A1FC2mpEgfonAD6ilDqQ9fhDQ0NqdHS08PERUQ77tzKAETkmIruVUkNxPys7h/0lAGcB+IGIAMD9SqlPiMj5AL6ilLpSKXVSRD4JYAeAPgBf0wnWRFQx7kBH5LVSAVsp9e8Tbn8awJVd398D4J4yz0VERNRkrHRGREQUAAZsIiKiADBgExERBYABm4iIKAAM2ERERAFgwCYiIgoAAzYREVEAGLCJiIgCwIBNREQUAAZsIiKiADBgExERBYABm4iIKAAM2ERERAFgwCYiIgoAAzYREVEAGLCJiIgCIEop18eQSESOAHjK0MOdB+AXhh7Ltbq8lrq8DoCvxUd1eR0AX4uPbL2OC5VSC+J+4HXANklERpVSQ66Pw4S6vJa6vA6Ar8VHdXkdAF+Lj1y8Dg6JExERBYABm4iIKABNCti3uT4Ag+ryWuryOgC+Fh/V5XUAfC0+qvx1NGYOm4iIKGRN6mETEREFq7YBW0Q2i8ijIrJfRL4jIgMJ93uXiBwUkcdEZLjq49QhIh8QkQMickpEErMSReRJEXlQRPaKyGiVx6gjx+sI4W/yChH5gYj8rP3//IT7TbX/HntFZHvVx5kk6z0WkbNEZEv75w+IyOLqj1KPxmu5XkSOdP0dPu7iOLOIyNdE5FkReSjh5yIit7Zf534ReVPVx6hL47VcJiLHu/4mG6s+Rh0iskhE7hORh9vXrv8Uc5/q/i5KqVr+A3AFgDPaX/8JgD+JuU8fgH8G8GsAzgSwD8DrXB97zHG+FsBSAD8CMJRyvycBnOf6eMu8joD+Jn8KYLj99XDc56v9s1+5PtYi7zGA/wjgz9tffwjAFtfHXeK1XA/gS66PVeO1/BaANwF4KOHnVwL4OwAC4NcBPOD6mEu8lssAfM/1cWq8jtcAeFP763MA/M+Yz1dlf5fa9rCVUt9XSp1sf3s/gIUxd1sJ4DGl1ONKqZcAfAvAtVUdoy6l1CNKqYOuj6MszdcRxN8E0TH9TfvrvwGw1uGx5KXzHne/vjsArBYRqfAYdYXyecmklPp7AM+l3OVaAF9XkfsBDIjIa6o5unw0XksQlFLPKKV+2v76lwAeATDYc7fK/i61Ddg9fhtRC6jXIIBDXd8fxuw/RkgUgO+LyG4RucH1wRQUyt/kVUqpZ9pf/wuAVyXcb66IjIrI/SLiS1DXeY+n79Nu+B4HcG4lR5eP7ufluvZw5R0isqiaQzMulHND12+IyD4R+TsReb3rg8nSnhZaAeCBnh9V9nc5w8aDVkVEfgjg1TE/+oxS6rvt+3wGwEkAt1d5bHnpvBYNb1NKjYnIKwH8QEQebbd0K2PodXgh7bV0f6OUUiKStNziwvbf5NcA7BSRB5VS/2z6WCnVXQC+qZR6UUR+F9HIweWOj6npforo3PiViFwJYBuAixwfUyIReTmAOwHcqJT6N1fHEXTAVkq9I+3nInI9gPcAWK3akw09xgB0t7YXtm+rXNZr0XyMsfb/z4rIdxANF1YasA28jiD+JiLyryLyGqXUM+3hr2cTHqPzN3lcRH6EqIXuOmDrvMed+xwWkTMAzANwtJrDyyXztSiluo/7K4jyD0LkzblRVnfQU0rdIyL/r4icp5Tyrsa4iLQQBevblVLfjrlLZX+X2g6Ji8i7APwhgGuUUicS7vYTABeJyBIRORNRco03mbx5iMjLROSczteIku5iMzQ9F8rfZDuAj7W//hiAWaMHIjJfRM5qf30egFUAHq7sCJPpvMfdr+/9AHYmNHpdy3wtPfOJ1yCahwzRdgD/ezsr+dcBHO+algmKiLy6kxMhIisRxSLvGoTtY/wqgEeUUp9PuFt1fxfXWXi2/gF4DNG8wt72v07G6/kA7um635WIMv/+GdGwrfNjj3kt70U0L/IigH8FsKP3tSDKkt3X/nfAx9ei8zoC+pucC+BeAD8D8EMAr2jfPgTgK+2v3wrgwfbf5EEAv+P6uNPeYwA3IWrgAsBcAH/bPo/+B4Bfc33MJV7Lze1zYh+A+wBc7PqYE17HNwE8A2CyfZ78DoBPAPhE++cC4Mvt1/kgUlaMuP6n8Vo+2fU3uR/AW10fc8LreBui3KD9XbHkSld/F1Y6IyIiCkBth8SJiIjqhAGbiIgoAAzYREREAWDAJiIiCgADNhERUQAYsImIiALAgE1ERBQABmwiIqIA/P8U2aLB5T+4ywAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 8))\n", + "plt.scatter(data[~is_outlier, 0], data[~is_outlier, 1],\n", + " label='inlier')\n", + "plt.scatter(data[is_outlier, 0], data[is_outlier, 1],\n", + " label='outlier')\n", + "\n", + "plt.legend()\n", + "plt.savefig('resulting_images/som_outliers_detection_circle.png')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/PoemsAnalysis.ipynb b/examples/PoemsAnalysis.ipynb new file mode 100644 index 0000000..8721d2e --- /dev/null +++ b/examples/PoemsAnalysis.ipynb @@ -0,0 +1,695 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Poems analysis\n", + "----\n", + "\n", + "In this notebook we will use Minisom to cluster poems from three different authors.\n", + "\n", + "Requirements:\n", + "- Glove vectors, https://nlp.stanford.edu/projects/glove/ glove.6B.50d.txt\n", + "- Beautiful soup\n", + "- An internet connection as the poems will be downlaoded from www.poemhunter.com" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Retrieving the poems from poemhunter.com\n", + "----\n", + "\n", + "***Warning***: this may take a while." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from urllib.request import urlopen\n", + "from bs4 import BeautifulSoup\n", + "\n", + "#-------------------------------------------------------------------------------\n", + "\n", + "def scrape_poem(poem_url):\n", + " poem_page = urlopen(poem_url).read()\n", + " soup = BeautifulSoup(poem_page)\n", + " poem = ''\n", + " poem_string = soup.find_all(\"div\", \n", + " {\"class\": \"KonaBody\" })[0].find_all('p')[0]\n", + " poem_string = str(poem_string)[3:-4].replace('
', ' ')\n", + " return poem_string\n", + "\n", + "def scrape_poems_index(poems_index_url):\n", + " poems_index = urlopen(poems_index_url).read() \n", + " soup = BeautifulSoup(poems_index)\n", + " pages = soup.find_all(\"div\", {\"class\": \"pgbluev1\"})\n", + " if len(pages) == 0:\n", + " return get_all_links(soup)\n", + " \n", + " pages = pages[0].find_all('a')\n", + " \n", + " result = {}\n", + " cnt = 0\n", + " for page in pages:\n", + " page_link = 'https://www.poemhunter.com/'+page['href']\n", + " page_soup = BeautifulSoup(urlopen(page_link))\n", + " result.update(get_all_links(page_soup))\n", + " return result\n", + "\n", + "def get_all_links(page_soup):\n", + " result = {} \n", + " for link in page_soup.find_all(\"p\", {\"class\": \"cl333\"}):\n", + " link = link.find_all('a')[0]\n", + " result[link['title']] = 'https://www.poemhunter.com/'+link['href']\n", + " return result\n", + "\n", + "def get_poems(poems_index, max_poems=None):\n", + " poems = {}\n", + " for i, (title, poem_url) in enumerate(poems_index.items()):\n", + " print('fetching', title, '...')\n", + " try:\n", + " poems[title] = scrape_poem(poem_url)\n", + " print('OK')\n", + " except:\n", + " print('impossible to fetch')\n", + " if i == max_poems-1:\n", + " return poems\n", + " return poems" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "poems_index_neruda = scrape_poems_index('https://www.poemhunter.com/pablo-neruda/poems/')\n", + "poems_index_bukowski = scrape_poems_index('https://www.poemhunter.com/charles-bukowski/poems/')\n", + "poems_index_poe = scrape_poems_index('https://www.poemhunter.com/edgar-allan-poe/poems/')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fetching Still Another Day: XVII/Men poem ...\n", + "OK\n", + "fetching Still Another Day: I poem ...\n", + "OK\n", + "fetching Ode to Hope poem ...\n", + "OK\n", + "fetching Unity poem ...\n", + "OK\n", + "fetching Epithalamium poem ...\n", + "OK\n", + "fetching Ode To Ironing poem ...\n", + "OK\n", + "fetching Ode To The Cat poem ...\n", + "OK\n", + "fetching Ode To Age poem ...\n", + "OK\n", + "fetching The Men poem ...\n", + "OK\n", + "fetching Lxxxiv From: ‘cien Sonetos De Amor’ poem ...\n", + "OK\n", + "fetching Come With Me, I Said, And No One Knew (VII) poem ...\n", + "OK\n", + "fetching The Portrait In The Rock poem ...\n", + "OK\n", + "fetching Walking Around (Original Spanish) poem ...\n", + "OK\n", + "fetching Sonnet Xiii:The Light That Rises From Your Feet To Your Hair poem ...\n", + "OK\n", + "fetching Waltz poem ...\n", + "OK\n", + "fetching Triangles poem ...\n", + "OK\n", + "fetching Soneto Xvii poem ...\n", + "OK\n", + "fetching The Old Women Of The Ocean poem ...\n", + "OK\n", + "fetching Oda Al Tomate poem ...\n", + "OK\n", + "fetching Sonnet Ix: There Where The Waves Shatter poem ...\n", + "OK\n", + "fetching The House Of Odes poem ...\n", + "OK\n", + "fetching Ode To Clothes poem ...\n", + "OK\n", + "fetching Lone Gentleman poem ...\n", + "OK\n", + "fetching Leave Me A Place Underground poem ...\n", + "OK\n", + "fetching Poor Creatures poem ...\n", + "OK\n", + "fetching The Eighth Of September poem ...\n", + "OK\n", + "fetching Gautama Christ poem ...\n", + "OK\n", + "fetching Luminous Mind, Bright Devil poem ...\n", + "OK\n", + "fetching Finale poem ...\n", + "OK\n", + "fetching Sonnet Viii: If Your Eyes Were Not The Color Of The Moon poem ...\n", + "OK\n", + "fetching Potter poem ...\n", + "OK\n", + "fetching From The Heights Of Maccho Picchu poem ...\n", + "OK\n", + "fetching Song Of Despair poem ...\n", + "OK\n", + "fetching The Tree Is Here, Still, In Pure Stone poem ...\n", + "OK\n", + "fetching Lost In The Forest poem ...\n", + "OK\n", + "fetching What Spain Was Like poem ...\n", + "OK\n", + "fetching Sonnet Lxxiii: Maybe You'Ll Remember poem ...\n", + "OK\n", + "fetching Ode To Tomatoes poem ...\n", + "OK\n", + "fetching The United Fruit Co. poem ...\n", + "OK\n", + "fetching La Muerta poem ...\n", + "OK\n", + "fetching The Insect poem ...\n", + "OK\n", + "fetching The People poem ...\n", + "OK\n", + "fetching Sonnet Xlii: I Hunt For A Sign Of You poem ...\n", + "OK\n", + "fetching The Fear poem ...\n", + "OK\n", + "fetching Sonnet Xcv:Who Ever Desired Each Other As We Do poem ...\n", + "OK\n", + "fetching The Fickle One poem ...\n", + "OK\n", + "fetching The Queen poem ...\n", + "OK\n", + "fetching Love, We'Re Going Home Now poem ...\n", + "OK\n", + "fetching Sonnet Lxxxi: Rest With Your Dream Inside My Dream poem ...\n", + "OK\n", + "fetching Poesia poem ...\n", + "OK\n", + "fetching So That You Will Hear Me poem ...\n", + "OK\n", + "fetching Castro Alves From Brazil poem ...\n", + "OK\n", + "fetching Entrance Of The Rivers poem ...\n", + "OK\n", + "fetching Tell Me, Is The Rose Naked? poem ...\n", + "OK\n", + "fetching Ode To Bird Watching poem ...\n", + "OK\n", + "fetching Algunas Bestias poem ...\n", + "OK\n", + "fetching Tie Your Heart At Night To Mine, Love, poem ...\n", + "OK\n", + "fetching Enigma With Flower poem ...\n", + "OK\n", + "fetching Poet's Obligation poem ...\n", + "OK\n", + "fetching Sonnet Xxvii: Naked You Are As Simple As One Of Your Hands poem ...\n", + "OK\n", + "fetching A 340 Dollar Horse And A Hundred Dollar Whore poem ...\n", + "OK\n", + "fetching Beasts Bounding Through Time poem ...\n", + "OK\n", + "fetching For The Foxes poem ...\n", + "OK\n", + "fetching The Great Escape poem ...\n", + "OK\n", + "fetching On The Fire Suicides Of The Buddhists poem ...\n", + "OK\n", + "fetching My Cats poem ...\n", + "OK\n", + "fetching No help for that poem ...\n", + "OK\n", + "fetching The Last Days Of The Suicide Kid poem ...\n", + "OK\n", + "fetching Trollius And Trellises poem ...\n", + "OK\n", + "fetching Hell Is A Lonely Place poem ...\n", + "OK\n", + "fetching The Trash Men poem ...\n", + "OK\n", + "fetching German poem ...\n", + "OK\n", + "fetching I Am Visited By An Editor And A Poet poem ...\n", + "OK\n", + "fetching Goading The Muse poem ...\n", + "OK\n", + "fetching So You Want To Be A Writer poem ...\n", + "OK\n", + "fetching New Mexico poem ...\n", + "OK\n", + "fetching air and light and time and space poem ...\n", + "OK\n", + "fetching The Japanese Wife poem ...\n", + "OK\n", + "fetching Gas poem ...\n", + "OK\n", + "fetching Marina poem ...\n", + "OK\n", + "fetching The Retreat poem ...\n", + "OK\n", + "fetching The Blackbirds Are Rough Today poem ...\n", + "OK\n", + "fetching Rain Or Shine poem ...\n", + "OK\n", + "fetching Magical Mystery Tour poem ...\n", + "OK\n", + "fetching This poem ...\n", + "OK\n", + "fetching One Thirty-Six A.M. poem ...\n", + "OK\n", + "fetching The German Hotel poem ...\n", + "OK\n", + "fetching Out Of The Arm Of One Love... poem ...\n", + "OK\n", + "fetching Now poem ...\n", + "OK\n", + "fetching The Worst And The Best poem ...\n", + "OK\n", + "fetching Hemingway Never Did This poem ...\n", + "OK\n", + "fetching True Story poem ...\n", + "OK\n", + "fetching Somebody poem ...\n", + "OK\n", + "fetching Revolt In The Ranks poem ...\n", + "OK\n", + "fetching Mama poem ...\n", + "OK\n", + "fetching The Sun Wields Mercy poem ...\n", + "OK\n", + "fetching The Great Slob poem ...\n", + "OK\n", + "fetching The Meek Shall Inherit The Earth poem ...\n", + "OK\n", + "fetching The Laughing Heart poem ...\n", + "OK\n", + "fetching Small Conversation In The Afternoon With John Fante poem ...\n", + "OK\n", + "fetching Hooray Say The Roses poem ...\n", + "OK\n", + "fetching What Can We Do? poem ...\n", + "OK\n", + "fetching Layover poem ...\n", + "OK\n", + "fetching Poetry Reading poem ...\n", + "OK\n", + "fetching On Going Back To The Street After Viewing An Art Show poem ...\n", + "OK\n", + "fetching The House poem ...\n", + "OK\n", + "fetching No. 6 poem ...\n", + "OK\n", + "fetching Something For The Touts, The Nuns, The Grocery Clerks, And You . . . poem ...\n", + "OK\n", + "fetching Show Biz poem ...\n", + "OK\n", + "fetching Short Order poem ...\n", + "OK\n", + "fetching The Shower poem ...\n", + "OK\n", + "fetching Luck poem ...\n", + "OK\n", + "fetching Crucifix In A Deathhand poem ...\n", + "OK\n", + "fetching Three Oranges poem ...\n", + "OK\n", + "fetching Sleep poem ...\n", + "OK\n", + "fetching The Night I Was Going To Die poem ...\n", + "OK\n", + "fetching The Shoelace poem ...\n", + "OK\n", + "fetching These Things poem ...\n", + "OK\n", + "fetching Trashcan Lives poem ...\n", + "OK\n", + "fetching Splash poem ...\n", + "OK\n", + "fetching Ulalume poem ...\n", + "OK\n", + "fetching To Isadore poem ...\n", + "OK\n", + "fetching The City Of Sin poem ...\n", + "OK\n", + "fetching To Marie Louise (Shew) poem ...\n", + "OK\n", + "fetching The Village Street poem ...\n", + "OK\n", + "fetching Impromptu - To Kate Carol poem ...\n", + "OK\n", + "fetching The Bells - A Collaboration poem ...\n", + "OK\n", + "fetching The Divine Right Of Kings poem ...\n", + "OK\n", + "fetching To M-- poem ...\n", + "OK\n", + "fetching Stanzas poem ...\n", + "OK\n", + "fetching To -- -- poem ...\n", + "OK\n", + "fetching To M.L.S. poem ...\n", + "OK\n", + "fetching To -- poem ...\n", + "OK\n", + "fetching Sonnet- To Zante poem ...\n", + "OK\n", + "fetching To F--S S. O--D poem ...\n", + "OK\n", + "fetching To F-- poem ...\n", + "OK\n", + "fetching In Youth I Have Known One poem ...\n", + "OK\n", + "fetching Israfel poem ...\n", + "OK\n", + "fetching The Forest Reverie poem ...\n", + "OK\n", + "fetching Sancta Maria poem ...\n", + "OK\n", + "fetching Song poem ...\n", + "OK\n", + "fetching To One Departed poem ...\n", + "OK\n", + "fetching To Helen - 1848 poem ...\n", + "OK\n", + "fetching Epigram For Wall Street poem ...\n", + "OK\n", + "fetching Sonnet- To Science poem ...\n", + "OK\n", + "fetching Hymn poem ...\n", + "OK\n", + "fetching Hymn To Aristogeiton And Harmodius poem ...\n", + "OK\n", + "fetching In The Greenest Of Our Valleys poem ...\n", + "OK\n", + "fetching Serenade poem ...\n", + "OK\n", + "fetching To -- -- --. Ulalume: A Ballad poem ...\n", + "OK\n", + "fetching Tamerlane poem ...\n", + "OK\n", + "fetching The Valley Of Unrest poem ...\n", + "OK\n", + "fetching To One In Paradise poem ...\n", + "OK\n", + "fetching Sonnet- Silence poem ...\n", + "OK\n", + "fetching Enigma poem ...\n", + "OK\n", + "fetching The Lake poem ...\n", + "OK\n", + "fetching The Coliseum poem ...\n", + "OK\n", + "fetching The Sleeper poem ...\n", + "OK\n", + "fetching The Happiest Day, The Happiest Hour poem ...\n", + "OK\n", + "fetching For Annie poem ...\n", + "OK\n", + "fetching The Haunted Palace poem ...\n", + "OK\n", + "fetching A Paean poem ...\n", + "OK\n", + "fetching To My Mother poem ...\n", + "OK\n", + "fetching An Acrostic poem ...\n", + "OK\n", + "fetching The Conqueror Worm poem ...\n", + "OK\n", + "fetching To Helen poem ...\n", + "OK\n", + "fetching Imitation poem ...\n", + "OK\n", + "fetching Al Aaraaf poem ...\n", + "OK\n", + "fetching Fairy-Land poem ...\n", + "OK\n", + "fetching Romance poem ...\n", + "OK\n", + "fetching Lenore poem ...\n", + "OK\n", + "fetching Spirits Of The Dead poem ...\n", + "OK\n", + "fetching Dreams poem ...\n", + "OK\n", + "fetching The City In The Sea poem ...\n", + "OK\n", + "fetching A Valentine poem ...\n", + "OK\n", + "fetching An Enigma poem ...\n", + "OK\n", + "fetching Eulalie poem ...\n", + "OK\n", + "fetching Elizabeth poem ...\n", + "OK\n", + "fetching The Bells poem ...\n", + "OK\n", + "fetching Dreamland poem ...\n", + "OK\n" + ] + } + ], + "source": [ + "poems_neruda = get_poems(poems_index_neruda, max_poems=60)\n", + "poems_bukowski = get_poems(poems_index_bukowski, max_poems=60)\n", + "poems_poe = get_poems(poems_index_poe, max_poems=60)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "all_poems = [poems_neruda, poems_bukowski, poems_poe]\n", + "titles = np.concatenate([list(title_list.keys()) for title_list in all_poems])\n", + "y = np.concatenate([[i]*len(p) for i, p in enumerate(all_poems)])\n", + "all_poems = np.concatenate([list(p.values()) for p in all_poems])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Preprocessing of the poems\n", + "---\n", + "\n", + "The following operations are applied:\n", + "\n", + "1. stopwords removal\n", + "2. tokenization\n", + "3. conversion in Glove vectors" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from string import punctuation\n", + "import stop_words\n", + "stopwords = stop_words.get_stop_words('english')\n", + "\n", + "def tokenize_poem(poem):\n", + " poem = poem.lower().replace('\\n', ' ')\n", + " for sign in punctuation:\n", + " poem = poem.replace(sign, '')\n", + " tokens = poem.split()\n", + " tokens = [t for t in tokens if t not in stopwords and t != '']\n", + " return tokens\n", + "\n", + "tokenized_poems = [tokenize_poem(poem) for poem in all_poems]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def gimme_glove():\n", + " with open('glove.6B/glove.6B.50d.txt', encoding='utf-8') as glove_raw:\n", + " for line in glove_raw.readlines():\n", + " splitted = line.split(' ')\n", + " yield splitted[0], np.array(splitted[1:], dtype=np.float)\n", + " \n", + "glove = {w: x for w, x in gimme_glove()}\n", + "\n", + "def closest_word(in_vector, top_n=1):\n", + " vectors = glove.values()\n", + " idx = np.argsort([np.linalg.norm(vec-in_vector) for vec in vectors])\n", + " return [glove.keys()[i] for i in idx[:top_n]]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def poem_to_vec(tokens):\n", + " words = [w for w in np.unique(tokens) if w in glove]\n", + " return np.array([glove[w] for w in words])\n", + "\n", + "W = [poem_to_vec(tokenized).mean(axis=0) for tokenized in tokenized_poems]\n", + "W = np.array(W)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Running minisom and visualizing the result\n", + "----\n", + "***Warning***: This may take a while." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " [ 90000 / 90000 ] 100% - 0:00:00 left \n", + " quantization error: 0.28209285828168446\n" + ] + } + ], + "source": [ + "from minisom import MiniSom\n", + "map_dim = 16\n", + "som = MiniSom(map_dim, map_dim, 50, sigma=1.0, random_seed=1)\n", + "#som.random_weights_init(W)\n", + "som.train_batch(W, num_iteration=len(W)*500, verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "author_to_color = {0: 'chocolate', # neruda\n", + " 1: 'steelblue', # bukowski\n", + " 2: 'dimgray'} # poe \n", + "color = [author_to_color[yy] for yy in y]\n", + "\n", + "from matplotlib.patches import Patch\n", + "legend_elements = [Patch(facecolor=author_to_color[0], edgecolor='white',label='neruda'),\n", + " Patch(facecolor=author_to_color[1], edgecolor='white',label='bukowski'),\n", + " Patch(facecolor=author_to_color[2], edgecolor='white',label='poe'),]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQ4AAAReCAYAAACW3q13AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hT1RvA8e/NbtK9d1o6oEDZQ2SIKAIi7r1QQcE6EQcqKg5woTgrihMn4kBEAVFEQFAEEYqMltHSRfdKm537+yNtaGlayhDQ3/k8j4/tHeeee5KW9L3nvK8kyzKCIAiCIAiCIAiCIAiCIAjNKU52BwRBEARBEARBEARBEARBOPWIwKEgCIIgCIIgCIIgCIIgCK2IwKEgCIIgCIIgCIIgCIIgCK2IwKEgCIIgCIIgCIIgCIIgCK2IwKEgCIIgCIIgCIIgCIIgCK2IwKEgCIIgCIIgCIIgCIIgCK2oTuTFAgMD5eTk5BN5yX+F+vp6DAbDye7GKUWMiXdiXLwT4+KdGJfWxJh4J8bFOzEu3olxaU2MiXdiXLwT4+KdGJfWxJh4J8bFu02bNpXLshx2svsh/Pec0MBhREQEGzduPJGX/FdYtWoVw4cPP9ndOKWIMfFOjIt3Yly8E+PSmhgT78S4eCfGxTsxLq2JMfFOjIt3q1atYnDPzhQueARrcQ7ILvy6n0XkxQ+hUGlaHb93zhVEXvwwemOPw7Zd+Nl0GvZuQnbYsFXko41IAiB89O0E9Bnb5nmm7PWU//gWCRnvHf2NNbJXl1C08DGMN889ovPE+6U1MSbeiXHxTpKkvJPdB+G/6YQGDgVBEARBEARBEP6vyTJ5b00ieNi1BE9+G9nlpPDjaZQsfp6oix8+pqZjrnwKAFtFPrmZN5Hy0NJj66rTgaQ8sj8Z1YERRxw0FARBEE5dInAoCIIgCIIgCIJwgqhKtyOptQQPuhwASaEk6tJH2fXoECLOuweQKPjwXqzFOWgjk3HZLZ5z67avpuS7F5EdNjShRmKvm41S1/6STUd9NYUf3oetfD+SxoeYq5/GJzatzeNLlszBXlOCvaIApW8QkRc8QMFH9+Gsq0TpF0zsdbPRBMeQP38qSp0v5ryt2GvLiLroQQL6jPUELVMfWUHV+oXUbl2By27BVpaHf89RRF38EACVv35G2Yq5qAMi0IQnYCgpAzGLTOgAyWoiZ9YYABy1ZSApUPmFYKsoQB0QTuqjPx1xm5XrP6fiZ/eMW2txDpqITkgKJX5dzyDywmnHpd/586fi331Eu7N/m1StX0jD/q3EXPGkZ9uRzD4+WlkZxs7Am0AgoAXWpGfm3ZKVYewFRKdn5n3feNz5QNf0zLxnsjKMMwBTembe7KwM4/vAkvTMvC/auYbn+A72KQHYAewCNMBqICM9M891NPfYznXOA57EXQtEDbycnpn3ZlaG8UIgOz0zb/vxvN6/iQgcCoIgCIIgCIIgnCCqmkJ84tNbbFP6+KEOisZamotp11oUGh0p05djLtjB7mfcQQaHqZLSZa/S6c5PUGj1lP3wBuUr3ybi3LvavV7pkhfRxXXDOHkepl2/UjD/nsPORDTvzyJp6pcoNDpyM28iaOAlBJ12KZXrFlD8+QyMk+cBYK8ppdPUL7GW7CZv7kSvARFzwXZSHvoeSaUh+/ERhAy/AUmhpHTpqyQ/+B1KnYG9L10Fkv+RDKPwf0zW+nrewyVL5qDQ6gkbOckTtD4awYMu9wTzd04fTKe7P0PlG9zyui4nkkJ5bJ0/gbIyjMr0zDznEZ72CjAnPTPvm8Y2mn5Z9QL6Ad8DpGfmLQYWH6eudsSe9My8XlkZRhWwErgQ+KojJ3ZkHLIyjGrgLWBAemZeQVaGUQskNO6+EFgCiMDhyWK32ykoKMBisRz+4P+ogIAAduzYcdTn63Q6YmNjUavVx7FXgiAIgiAIgiCcSJIk0ZCzgZAzbwDAJzYNXUwXABr2bcZanMOeFy4BQHbY0Cf2OWyb9Xv+wHjLmwD4dh6M01SF01yL0qftQJ1/j5EoNLrG6/6JcZL7/KCBF3Pg66cPHtfzHCSFAl1UKo7acq9t+XYZ7LmWNjIZe2UhDlMlhpSBqAyBAAT0GUvl5jWHvRdBOCyXk4KPH6Bh7ybUAZEYJ7+NQqPDWpZH0YJHcNRVoND4EHPNM+giD1+49e8paYSOmEjdjtVEXTwdW0U+FaveR3ba0Sf0IvrKp5AUyiOeDXxg0TPUbl2BpFDhmzaUqEumH9FterseQFaGMRd4FzgHeC0rw1gJPI579uAe4Mb0zDxTO01HAQVN36Rn5mVlZRg1wBOAT1aGcQjwNOAD9EvPzLv9iDp+iKwM4yrgd+BM3LMcJ6Rn5rX5yyA9M8+RlWFcByRnZRhvaN6HrAzjEmB2embeqqwMowl4ERgFTG2ctXgn7hmLv+Oesdg8mOiHOz5W0XgdK7ArK8N4OnA+cEZWhnE6cEnjsXMBPe4xvSk9M6+qrXvJyjAqgWeA4bhfh9fTM/PePMohOylOeuCwoKAAPz8/EhISkCTpZHfnpKirq8PPz++ozpVlmYqKCgoKCkhMTDzOPRMEQRAEQRAE4XhyBsRg3r+q5TZzHfaqIjRhxsYtXv4ukmV804YSf9Orx6EX7f/dpdD4tHPqwXNbFnORvR/e7BhJoUR2Odo8VhCOlbUsl7ibXiX2mmfZ/3YGNZu/J2jgxRR+Mo2Yq2ahDU+kYd9mij6bTqe7Pztsey5rA9rozkSMm4qlOIeaH94g6d4vkZRqCj99mOoNi/DrfuYRzQZ21FdT89dyUh9biSRJOBtqvB5Xs2kJDXsOFpe1leW6z29j9nEzlvTMvCFZGcZQ3LPyzk7PzKvPyjA+ANyDOwjYljnAysbg3A/Ae+mZedVZGcZHaRmku+Gwg9dxqvTMvAFZGcZzgceAs9s6MCvDqAfOAh4FItpp0wBsS8/MezQrw5gGPAAMTs/Ms2dlGDOBa4D5TQenZ+ZVZmUYFwN5WRnGn3DPMPw0PTNvXeN2z/LrrAzjVuCO9My8X7IyjE809vnudu5lAlCTnpnXv3Em469ZGcYf0jPz9h3hOJ00Jz1waLFY/q+DhsdKkiRCQkIoKys72V0RBEEQBEEQBOEw7OFdkfctpeq3Lwk67RJkl5Pir54i6LRLUWh80KcMoPqPRfh2Ph1L0S4shTsB0Cf2pmjBI1hLc9GGJ+CymbFXFaON6NTu9QzJA6ja8DUR596FKXs9St8glD4dn7Sg79SX6o3fEjTwYqo3LMKQ1P+Y7h9An9CL4i+exNlQg0JroHbzUsD3mNsVBE1IHD5x3QDwiU/HXlmA01JPw95N7H87w3OcbLd2rEGFkoDe7nyKpl2/Ys7PYvez5wPgsllQ+YUe8Wxgpc4XhVpL4Uf349d9BH7pZ3k9LqDvea1yHEKHZh8vaPz/aUBX3IEqcM+2W9/e7aZn5r2XlWFcDowGLgAmZWUYe7Z3znHQtOR4EweXBx8qKSvD+Bfupw7fpGfmLT1M8NIJfNn49VlAX+CPxnHwAUoPPSE9M29i49Lss4F7gZFAi2tkZRgDgMD0zLxfGjd9ACw8zL2cA/TIyjBe2vh9AJACiMDhkRBBw2Mjxk8QBEEQBEEQ/iUkifhb3qLos+mULn0FZBd+3c4k4vz7AQgZeh0FH95LzlOj0MV2Rd/4N7vKL4TY62eT/+4dyA4bABHn33vYwGH42Cme9iSND7HXv3hE3Y2+fAYFH95H+Yo3PcVRjpU6MJLw0bex+7kLUAdEoI1KwVXufdaVIByJ5jNckRTITifILpQ+/kdVZVyh1h7MayjLBA28lMgLH2hxTO3WH49oNrCkVJF0/zeYdv1KzcZvqfjlgw7NfvRoa/bx9Z6fzfqmSwEr0jPzrup445CemVeEe7nzu1kZxm1A9yM5/yg0RXGdtB2j2pOemdfrkG0O3IVMmuiafW1pthRZAj5Iz8x78HAdSc/MywKysjKMH+IO7N1wuHMO4e1eJNwzFJcfYVunjFMicPj/YsaMGfj6+nLvvfee7K4Iwn/OBc8s45tpoz3f/7Aln+yiGm4f80//O9c+i93JS0u2sq+kDhkZX52amVcPwEdz9L9+73znV+xOF3VmGzaHixA/97+Rj13el0lzV7cYhyOxJbeCGZ9vJCpQj9XhZGBKOLeM7HrU/RQEQRAEwTtNcDQJGe963afQ6Iif8JrXfb6dB5M87dvDtx8SR+ojKwBQGQJJmPx2u8f7pg7CN3UQABHnTWnVlregRtz1L7T4vtucHa2uHTToMoIGXeY5JiHjPc/XAf0uIHjI1chOB3lv3oIzSHzmEP4ZSh8/NCFx1Pz5HQF9xiLLMpbCHfjEHtl7zrfLYPLm3kzoWRNQ+YXiqK/GZTEd8Wxgp6Ue2W7Gv/sI9Il9yH5s2BH1o63refEb8HpWhjE5PTNvd+My39j0zLzsrAzj08CG9My8r5ufkJVhHA381LikNxIIAQpxz547ovxqbV3jOMoFMrIyjAogBhjQxnE/Ad9kZRjnpGfmlWZlGIMBv/TMvLxmffXFvRR7VeOmXkDT/joa7z09M68mK8NYlZVhHNqYi/E6oGn2YVuWA7dmZRhXNo5rKlCYnplXf5jzThknPHBYuvRVqjd+gyQpQaHANe6ZFvtddgsKta6Ns49c8/bsNaWoA8JbHSO7nO6S6+GJKNRaZNmFtXg36pBYlFp9u+07HA5UqoPD6LQ24KyvQhMcg7OhFpfd4vWanv45bCgr92GXo1H7hwJgqyxEofFpVcWpOVt5PgofP09C4SPRvPJUk6bkqkn3fo0kScguJ7ufOY/oK57EkNTviK/RXO7ciTjqykm+b9ExtXMs7ckuF8VfPI5p1zqQJBQqLfETX0cTGs++18cTf+MrKPUBx9SvpipeTR+UOqrmr2Xsf2sSKY/+1KEEvU1cDhsHvn6auqwfQVKgjUoh5oonUQdFHWnX2+jXckqXvIjstINSRcR5UwnoNQoAy4Hd5L97BwDxN89F25iPZ/+7d2BIHkDIsOsA9zT6wo+nkfzgd0jK4/PrJn/+VPy7j2hRtS/4q1sg+pVjbtvba+h0uVAqFO2c1b5Fv+8jyKBl2uTeAOSXm1Aqjm2W8CsTBgP/THC0e3wwT17ZH6vdSca8NQzuEkm3uLZ/FwmCIAiCIByN0u/mYNr1K7Ldim/aUGxhfU92l4T/sLgbX6bws+mULn0V2WknoN/5Rxw41EWlEjHuXva9eh24XKBUEXPlk+gT+xzRbGCX1UTe3JuR7VZkZKIuffSI+tHW7ONDpWfmlTUu5/20MbcewHQgG0jHe1Xkc4CXszKMTdVr70vPzDuQlWH8GZjWuFz4aS/nedPWNY6XX3HPCswCtgF/eu1EZt72xsImPzQGGe3AbRwMDIJ7VuD9WRnGNwEz7lmbNzTu+wyYl5VhvBO4FBgPzG0MxO4FbjxMP9/GHXj9MyvDKAFluCs1/2uc0MBhqr+L2m0/kTztOxRqLQ5TJdl5RS2OUah1NK47Py7SMw++Fxy13gOHefvzGTPqAgb178Xvm7cRHRHGF/PnUVhQzG233UZZWRl6vZ558+bRpUsXbrjhBoKDg9m8eTN9+vTBz8/PM5NQqdXTs+8AlixZQkJCAs/MfJX58+cTFxdHWFgYffu6/0GcN28eb731FjarlcTYCN595TmC/IKRpKMPUBwLv67DqFr/OVXrPiN48FVUrHofH2OPYw4aOhtqsOzfhkKrx1a+H01ofKtjZKejw0GljrTnTc2mb7HXlJDy8HIkhQJ7VTGKxqBw4m0fdPyG/gE1GxejT+pPzcZv0R3yhLc9Jd88h8tiInXGKiSFksr1n5P31iSS7v/mmJevmwu2c+DrmSTe8RGa0Hhs5fvZ9+q1aELj8YlNo3bLD/j3GEnEefe0OC/q0kfZ8/xFBPQ+F6UhiKIFj7orjR1D0FB2OQ8uDzhKJdUNvPjtVmoabAToNUw9vyfhAT6ttt8xNAyA2d9swc9Hze4DNSRHBXBG12jm/vA3NrsLjVrB1HE9iQv15Z7313Hb6G4kRbqDzlPeW8cd53anU8TBKoWVJivhAQcTjMeFHszfM2PBRspqzdgcLi4amMi5feJZtnk/uWUmJp/j/iDz/Z/7yS83Memcjn+weW/lTn7PKcVqNtOzn5UgXy3V9VZe+X4bZTVmACaP6tpuQFCrVpIU4U95rfszw8/bCvls7R5kZAYkhzPx7DScLpk5324lu7gaCYlRvWK5+LROFFXW89qyv6mpt6JVK7n7vB7Eh/qyensxH63ORiFJGHRqXhg/qMP3JAiCIAjCf8uhVWSzV606OR0R/tWaz5BtPtsVaDFRRhMaT+Lt8+mILk/96vm6aSZtk8B+4wjsN67VOR2ZDdx8lm7yA+3H0w6drQvQacoCz9dtXS89My/hkO9XAt4Sk6rTM/Na5TtMz8y7B3cBlUO3V3pp5/3GfTOaHXdDB67R/Pjhzb4ux0uOw/TMvFy8LJdOz8yTcRc5aSU9M8/3kO8XcDD3o7fj64Bz29j3K+5ckc2d5uW44c2+9txLemaeC3io8b9/pRMaOAzSyqgMwSjU7mC3yjcYSVECNFYSqy5GF5V63K8ryzKO6gPILheW4mwktQ7tIQGnnD17+OCNF3mzb3+uvPZ6Fq9cx/sfzOf1V+aQEKTjr7wKMjJu5fuP5iK7nOzctoXl336FxjeIGTNm4KivxtFQ464U5rAD8PualXz68Yds3rwZh8NBnz59PIHDiy++mJtvvhmXw8aD99zJB18s4Y7b4lH5hbTol6OuAoepEpCRVFo0IXFIh8x+slcfwGGqQna5KP/pLWo2fYfssOHfa5QnsFO69FWqfv8KdVAUKr8QfOJaz1CKuvQR9r5wKfrEvlT88gFJ9y+m+o9vKF3+Osgyft1HEHWROy3A31PSPL9Ea/78jtptK1stVwCo2bwUv/SzUPmHUb3xW8JH3wa4Z40p9QFY8v/GJ747wcOup2jBIzjqKlBofFCkXOz1tWyrvZo/v6Pku5eQFEoUPn4k3bOwxXn22lLU/uGesWs+K2/ndPcvXZe1ntzXxqNP6kfDvs3oYtMIHnQ5JUtexFFXQdyNL6NP6EXJkjnYyvOwVx/AXlVM2MjJBA9pmTZCdjk5sOgZ6rN/Q3bYCD7jekKGtv6d5rTUU79nI53u/oy8uRM9//DZa0rY/87tuCwmZKeDmKtmYkg+OPPaZTNT9dtCOj+x1hNUCx50OVXrPqd+169owozue0nuT8PeTagDIjFOfhuFRoe1LK/FWMdc80yrmY7lP75F2KjbPIFZTWg8YedkUP7jmwT0O5+Kn98FSUF9zu8t/gFT+4cRdvYtHPj6aXyMPdDFdMHHmE7B/Htp2L8VSaEk6pJH8O18OlXrF9Kwf6sn4W9u5o2Enn0LvqmD+HtKGqEjJlK3YzVRF0/HkHz4JNw2h5Nb567CVpGP7HLRgJYBCQFAd15dvJHu+z7nzGQDP+21MDtzC89MHc/ry/5mWIxM6vpZrFf04LVFvbipsb39RSXcfOAlpAIb5t9UzLr5ZfSRnfhzbznv/byLRy/ry5je8fywpYBbIwMoqDBhd7paBA0BRvWK5cGPN7B2RzG9EkMZ2SOWmBADAPec3wN/Hw1Wu5M73lnLkC6RDO8WzeS31jDxrC6olAp+2JLPXeemH/b+m1jsTtJig7hxRBcefe8Hlm7ez9VDU3hj+XYuHphI9/hgSmvMPPTx77ydMbzNdurMdgor60k3BlNRZ+Gdn3by2sQh+PmoefDjDazbeYCwAB/K6yy8NfkMAEwW9+++l7/L4s5z04kJMbCzsIrXlm7juetO4+PVOcy6eiCh/jrPsYIgCIIgCIIgnFjpmXmj/gvXEE6MExo43FKpwF5dzK4Zw/HtPJiAvuOAAGSXC1tFwWET+x4tZ3016qAoHKaKNgOTiYmJ9Bt6FpaibPr1H0je/nzWrVvHlddcj+x0ADJWqw2lIQhJoeTSSy8Fiwl8g5BlGdlhRanzw2Vr8LS5dt1vXDB2NHq9HmdDLeeNOlgtadu2bUyfPp3qqirqaqsZNXoMjrpylIcsT1bqAzzBRHeAsNKzpBnAVlUMLicq3yBMO9diLc0l6YHFIMvkzZ1Afc7vKLR6qjd9S8pD3yM7Hex+ZqzXwKE6IIKQM29iz+yLiL5sBrLdyoFFz5A8bQlKfQD7Xr2Wmr+We5ardkT1xsVEjL0blV8o++fd6gn0AdhK95F41ydICiV7X76KmKtmoQ1PpGHfZmo+eBDOv7rD7ZV8/zKJd3yIOjDSazn7wD7nseeFS6nf8we+nU8ncMBFXsfAWpZL/MRMtFensvvZcVT/sYhOU7+kbusKypa9jnHyPAAshTtJum8RLlsDu2edi1/3ES3aqVq3AKWPnzsgabey94VL8Esb2mqGZO2W5fh1PQNtRCeU+gDM+7PwiU+n+o9v8EsbRviYO5BdTlw2c8t+luaiDopuVRHPx9gDS3EOmjAj1rJc4m56ldhrnmX/2xnUbP6eoIEXU/jJtBZjXfTZ9FZ5ayzF2YSefUurtitWzyeu+wjMQ65ptdy9SfDQa9nz+0WYctaT/MASKn5xP9lLnf4DlgO7yX31OlJn/NzqvOZc1ga00Z2JGDfV6/7ir2dRuqxl7h+NSknmzUNw2cwoffxY+vtONi37HFkezc6SBi4tW0bITd9wzZVpXPH0N9Rs/p4dBb5cnTOHqCtmcHXSAK549uBTu562LMJG3EDQgIsoqazluR92UlSdj4SEw+UCYGjXKD5ek8PNZ6ex/K8CRvaMbdXXpMgAPrjjTDbtKWPzvnLueGctL914OvFhfnyzIZdfdx4AoKzWQmFlPWmxQfRMCOH3nFLiQn1xOmUSDwlGtketVDAwxT2zOtJXQUm1+72zeV85+8tNnuMabA4arA702pb/DGzbX8nkN1dTUFHP5acnEeyrY92uA/QwhhBocD/0GdE9mqz9lVw9NIUD1Q28vmwbA5LD6ZsUhtnmYHtBFU99eXClgN3hzkvcNS6I2Yu3MKxrFEO6RHb4ngRBEARBEARBEIST44QGDi1OieRpS6jfvYH67PXkv3s7rivnIjusSCqNZybi8da07r89Wq0Wp7kOSalCQqayspLAwED++usvd87DA7tBUqDydy9l9AsMwWkxIbtcKHEiK9We2WwW68HS7k1LRpV6fxRag2f7DTfcwKJFi0jvlsa8V2azfms2Co0eZ311i3657BbsZSXgciLLLpS6gzNuHbWlKDR6NCGxULoD047VmHasYffT7hm2Lms91tJ9uKz1BPQchULjXi7pl352m+MQcsZ4DnzzLEGDLqN2yw8YUk7zBC4D+19I/e7fOxw4tNeWYSvLQ5/U3z0OSiWWol3oojsDENBnLJJCidNST8PeTex/O+PguJmrj6g9Q6d+FMyfSkCf8/Dv1bowhDooitTHVlKfvQ7TrnXse/lq4idm4ttlSIvjNCFx6GK6AO4cFobOg5EkCV1MF2yVBZ7j/HuMRKHRodDoMKQOoiH3L3ziDs5ertuxGkvhTmo2uyt3Oc21WEtzWwUOazYuJmTEBPd49Duf6o2L8YlPR2/sScFH9yE7Hfj3PAefuG6H3JEM3pYjy3KLe2k6zyc+HXtlgdexlu3WVs2425EOv80LSaEgeMjVmPO2ovINomHPRkKGjwdAF5mMOjgGa8lhKs8rlAT0HtPm7qiLHmqR43DrnU0PBGQOLH6OhpwNlNMVl1WLo7YMODgeDqcLSanEXpkLdMZpqcU39TQcThcKlcZd/wrwjzJStvxVHNUHeL8qnV6dYpgxIJED1Q3cP/839/2olfTpFMr6XSWs3l7EqxNbvp+a+GhUDEmLYkhaFJIksWF3GVX1NjbvK+elmwajUyu5b/56bA53QHJM7zg+XbuHuBAD5/RqHYxsj1IheX7vKACny/2ekGWZl248Ha26/WXfTTkOCypM3PP+egZ3iQDZ+7F+PmreuGUoG/eU8e3GPFZvL2byqK746tzbD3XX2HR2Flbxe04pt85bwxs3D8Vfr/HSsiAIgiAIgiAIgnAqOOHFUSSF0lO1Sxfdmf02y+FPOkbqwIgOHCXjqKtAG5mMbLfgZ/AhMTGRhQsXcslFFyI7nWTt2EH/8ETAHRxR6gy4LCbiIkNZtnINAH9u/ovc/fkADB08iAmTMnj48Vk4HA6+/fZbJk1yz9Cqq6sjKioKu93OgkVLiO+UiiogDFvZ/hYBRltFAdowIwqNDw5TJS7LwcI7Co0el83cOCPSfQ9hozJaLYktX/mO9yCTF5JC4Qk6yHIb0QL3kZ6vXN4CT0DNpiU4G2rY9Yg7mOKy1FG9cTGR59/X2P/GvG+yC6WPPykPLfWcu8pLjpP22ou5ehYN+zZTt20lu2eNIfmhpah8g1qcr1Br8et2Jn7dzkTlF0rtlh9aBQ4lVbMghkLhDiQBSFKzcabVeLbKKSjLRF/+OH5dz/A6NgAOUxWm7HVYirMBCVxOkCQiL3oIQ8pAOk1ZSN22leR/MIWwsycRdNolnnO1YQnYKwtxWkwtgsnm/G34p5/V+l4kBbLT6XWsvdFFpWLevxWf2LQWbeuiUto9z3M5SQFNS+rbeh8plO6kwo2av48Uau1R5TWs3rAIZ10lyQ8uYd+2A+R9/S6yw0papJ4/c7vTFVi5rZBUPxuy00lalD9/1najW+P2tAgd7He3ZUgagPG0d6jbtpKynRvoE9obSGTFloIW1xzTO55HP/uD7vHB+Pu0DoL9nV9JfKgffj5q7E4X+8tN9DSGUG+146tTo1Mr2V9uYkdBteecLjFBlNea2X2ghrm3HFmVtbb06RTG4j9yuez0JAD2HKjx5Gb0JjbElysHJ/H5ur3cMjKNN37YTk2DDV+dmp//LuKC/gnUNNhQKSWGpkURHaRn9uKtGLRqIgJ9WL29mGFdo5Blmb0ldSRF+lNUWU+XmCC6xATxe3YpZbVmETgUBEEQBEEQBEE4hZ3QShzRehfW0oMzjcwF20GhRFJpkZ22NgNQx8rlmXEoIcsur8fITgfqgDAUKg1KH3+c5jo++ugj3nnnHXr17EHfsy/ku59/xV59wHOOUh+Io76SC84+g6qaWnr16sWb894mJckdXOzTqyeXXXg+vXr14pJLLmHo0IMzcJ588kkGDhzIqNHn0rnxeIVah6TW4rTUNuu8E0mpQpZdrWYjKnS+qPzDsJblIssufNPOoGr95zgbg4v26gM46soxJA+g9q/luGwWnBYTdVk/dWjc9Im9qN/9Ow5TJbLLSfXGxfimuHOAqvxDsRTnILtc1G5Z7vX86o3fkHD7B3R56le6PPUrydOWULOpdQJXpY8fmpA4av78zv1ayDLK6v1H1J61LA99Ym8ixk1F6RuEvapl0R3z/izs1e58mrLLhaVwJ+rgmA6Ngze1W1fgsltwmKqoz/kNH2PPFvv9up5B5eqP3BWJAWvJXlzWhhbHuJcOX0KXp9a572nWb2hC4mjY8we2igJUfiEED7mK4NOvwJy/zXNe1m2J7HnhEpAU7HpkMNayXPY8fxFVv32JbDNj6Dy4zX57G+vcNyZ4vm8SevYtlC3PxFbhDoLbKvIpW/46oWfdfMRjpU8ZQPWGRZ5xsFcVoY3ohCYkDkvBdneqgsoizHlbjrjtQznNdaj8QpCUaizFu3Fa3EtzbxkSw290Y/Kbq/lpayHXJVQDkDG2JxvUfbjllWX8tLWQy3WbPG056srRhMYTeuaNnJ/o4qM/a5ny3jpcrpaB0JSoAPRaFed4WaYMUFTZwH3z1zNp7moy3lpDalQAQ9Ii6ZcUhtMlM/nN1cxftYu02MAW5w3rGkW32CD8fNTHPC4AGaO7kV1cw+Q3V3PzG7+wZFPrn7FDje1rJGt/BXaHixvP7Mz983/j1rdWkxIZwOmdIymvtTRuW8PsxVu5aYR7NvG0C3uz7K98Jr+5mlvmrmZ9tvtn7+0fdzBp7mpumfsL6cbgVvkgBUEQBEEQBEEQhFPLCZ1xqFNCwQf34DTXIilUaMKMKJPORVIo0ATHYivPQx0U06IS8rFyWurdk+NUGpS+wViLc5A0Pi2Ko8RFhLDp5+9QGtz5Be9/aDrW0lyUen+WfPEpTnMN2rAEZFnGWrKHd+a+hlLniyy7cFXk4xsUyg8/rGi8nglHbRna8AQcpkqmTb2TR2c+i7OhFpetAXWgO6/Xrbfeyq233orLYcNyYA/6xpld6oBwLMU5nr6pAyOxHNiDQqVGUutazNACUBkCQXbhzNuGofcAAvtdwJ7ZFwGg0OqJu+FlfOLTCeh7HjmzxqAJjulQoQl3XyKIvOB+9r50pbs4Srcz8e95DgCRFzxA3hs3oQ6KRhud2iooZqvIx15ZhD6xj2ebJjQehc6Xhn2bW10r7saXKfxsOqVLX0V22tGEpAPXd7i9sh/ewFqWC7KMb+fB6GJbFj1y1FVQ8PE0z7J1fUJPz/LZo+Fj7Elu5o3YK4sIH3Mn6sAIT5ANIOj0K7FVFJDz9FiQZVS+wZ78iE1qNi4m7JxbW2zz7z2G6j++QZ/Ym7IVbyIpVSi0BuLGv+g5RqHRkfLQUlx2Kwe+mknuq9eBpKDmz++Iv+Wtw1ZUPnSsW8xMbLq/uG5EXjiN3DcmgNMBShWRFz7oZcn04YUMu47CTx8m+6lzkBRKYq+bjUKtRZ/UD3VoHDkzz0EX1dlrzskj8c200ThMleS+cRO7nzmPPrFd6eLjDgRG+Gu4ky9JnTQZgLIVW3BZITJQz3PjB1Pw4X1IVh1+aWdQA9x7QU9Kl71OzlNTkJRq4vzDeCdjovvnDRh/ZmfPdSvqLMgy9E0K89qvkT1jveY+1KiUzLx6gJcz3LblV3HxwMR27/mcnnGc0zOu1Tg06RKmYvhwd1A7QK/h4Uv60J6eCSH0TDhYoEmrVvLJ3e7UBpFBekaktwy2J0X68/rNrZckRwbpmeXl3h69/NiqtAuCIAiCIAiCIAgnltT+ctTjq3PnzvKuXbtabNuxYwdpaWltnPH/oa6uDj8/v8Mf2I7/2jiuWrWK4cOHn+xueFWyZE6bhUH+aatWrSLsm1s9Fa2bNFW5NmWvp/S7l1D6BmEtykYX3524G15GkiRKvn+Zuq0/4rJb0HfqS8zVTyNJEvnzp+LffQQBfcZi3p9F8RdP4rTWo/INJvb62agDOrLU/+Q6We+XFVsKeH/VLiaN7MqwrlGHP6EDTBY7d77zK50i/Jh+ad9jautU/jk6WcSYeCfGxTsxLt6JcWlNjIl3Yly8E+PinRiX1sSYeCfGxTtJkjbJsiye1AvH3QnPcSgIwrFx2SzkzHIXDtGExGGc9FaL/eb8v0l9ZAWqgAj2vHAxDXs2YkjuT8gZ44k49y4A8t+/m7qsn/DvcbBQjuy0U7TgUYyT30blF0L1xm8pWfw8sdfNPnE39y/T1mzCY+GrU/PubcOPa5uCIAiCIAiCIAiCcDRE4FAQjlDEeVNObgdkV7vFTfQJPVEHuWe/+cR2w1aRjyG5P/XZ6yhb8SYumxlnfTXaqNQWgUNryV4sxdnse/Xaxss4UfuHI8syO+7vTefHf0GpD8BeU8LOBwfQ6Z4vPMvet9/fm9RHV7YqSNNk5/TBdHnqV2wV+WQ/cRbaiCRkhw2f+B7EXvcckrLjefyqfv+K8hVvIstOJIUKH2MPpPC2i9AAFHx0P6FnTUQXldrucR3RNLvT05/1C2nYv5WYK5485rY7In/+VEw71tD5iTUo1Focpkp2PzOOLk/9ekKuLwiCIAiCIAiCIPz/EIFDQfiPObQyNC4nLruFos8eIemBb9EER1OyZA7yocWIZBltVArJ9y1q1aY+oRf1ezfh330EDXs3oYvrRsPeTRiS+2Mt2YPKENRm0PBQmlAjKQ8tRXY52ffKNVRvWkLQgIs6dG7d36soX/kOCbd/gDowEtnlpOq3L5DKa9s9L/ba5zrU/r+FpFBStf5zQoZdd7K7IgiCIDQqXfoq1Ru/QZKUoFAQc9Us9Im9T8y1l71G+OjbW213WkzsnjWGhNvnow1PRHbayXl6LLHXPIs+sTd7nr+IpPu+xl5dQtHCxzDePJeGvK1U//4l0Zc/7mnHUriT/A/cD07tlYUofPxQ+vijNAQRPuYOyn98i4SM946q722lgGnqW3t2Th9M8rRvUfkGt9huyl6PpFRjSGq5Yq9y/edU/Ozup7U4B01EJySFEr+uZyCptEeciqatcW/qm0JnQEJCqQ8gdvyLaELcqxT8f3oS/oFlllXrF1L89SxPTnVddBfibphz3K8DcOCb55BdTqIuehAAW0UBe1+6kpQHv0OpDzgu1yhZMofKXz9F5efOv+zX9QwiL5x2RG04G2qo/uMbQs64vsV2h6mKfa9c7f66tgwkhec6Sfd/g8JLDnCAyrWfYNr5K/ETX3e3b65j99Pnknjnx2ia5dA/Ft4eSu+dcwWRFz+M3tijzfOO54NyQRCE5kTgUBD+A2SXi93PXYjDVIFsbcDZUIO9ppSaP79DH98D2W5FdjnJfX08SfctomrDV+ByUpv1I47aMgyd+qKJ6ITTVEn93k0YOvVFdtqxluxDF52KPqkfDc0Ch6EjJlL71zIA6vduQt/JnYuvbMVcajZ9h+yw4d9rFBHn3QPQ6gM9uINf+oReOBqrXXckv2LpsteIuvhhzwdiSaEk+PQrcK1aBYBp51qKv5qJ7HKiN/Yg+sqZKNTaFh+2/p6SRsjwG6nbthJJrcM4eR5q/zCsZXnkv3cXuJz4dRtO+cq3W+WSPBxbRQEFH92Hs64SpV8wsdfNRhMcQ/78qSjUOqwHdmOrLCT2utlU//4FDXv/xCexN3HXvwBA3fbVlHz3IrLDhibUSOx1s1HqDK2uEzLiJspXvkPw4Ktavg9kmQNfz6Lu71UgSWjizwKGU/jpw/h1G45/j5HkvXkLSr0/sdfNpvLXz7BV5BN5/n1HdJ+CIAhCS6ry3dTu+4nkad95ZoPLDvsJu37Z8te9BrCUOl8iLniAos8eIfHOjyhb8RaGTn09Ac2mwJw6MALjzXMB0Bt7tApO6GK6eFY7NM+NDO4g3T/hcEHD9tRn/4ZCq28VOAwedDnBgy4H3IG9Tnd/5vmMUrLkyANsbY17k6b2S5a8SOmyV4m95lkAas965Iiv1VEBfc9rcxWE7HQgKY/Pn3/hY+5k99PnEnTapeiiUihe+DgR46YeW9DwkCKQAKEjJhxTXnGnuZaK1R+2ChyqfIM87+kjyV8eNPgqqn77AtPOtfh2GULJkhcJGnT5MQUNj9fr0taDctnlRFIoj7l9QRD+f4nAoSD8B8gOa+MTWJnCj6dR8t1LRF/2GLhcOOoqUOoD0MV0wVKwndy5E3BZ6gkaeAlRlzzMnhcvp3rjYoKHXE38xDcoWjgDl7kO2eUg9MwJ7sBhp76Ufv8yAA25Wwgfew8VP7/r/n7vJvRJ/ajbvhpraS5JDywGWSZv7gTqc37HkDKQ5Gnftuqzy26hYd9moi6b0eH8itbibHzivVdfdtktFMy/l8S7PkEb0Yn896dQueYjQkdMaHmctQF9Yh8iL7if4q9mUfXrp4SPuZPihTMIPfNGAvtfQMXqj9oc6+Y5JgGc9dX4NS75LlrwKEEDLyHotEupXLeA4s9neKppOxtqSLz7M+q2riBv7gSSpn6J9ppUdj87DnP+36iDoihd9iqd7vwEhVZP2Q9vUL7ybU9eyuY0QdEYkvpRteEr/NMPLjev/WsploLtpDy8DIepkoYnzsFecwOGlIHU796Af4+R2KsPYK8pdb92ezYS0G9cm/cqCIIgdIzCUo3KEIxCrQVaPjBr66HWzumDCTrtEmqzfkR2OoifmIkuMpmSJXOwVxViK8/HVllI6IgJhJ55I+BO11Gx6n1kpx19Qi+ir3yKksXPe/5t0kalEH/jKy36Ftj3PKrWf07ZD3OpXPsxyQ9+79nXlH7DVpFPbuZNpD6yAlP2+iOeQeiyNpA3b3KrwmzKyn3sfTHzqIquNfVNdrkoWvAI9bt/RxMShyy7CB50uSdwWbHq/RZjqFBrqVz7MUgKqv9YRPTlj2NIHtCha1oP5LB3zhWtxj1v7s3YqoqQHVZCz7yJ4CFXc2DRM+2Oe3P6xD6Urzo4nsFf3QLDs7HXlLD/ndtxWUzITgcxV83EkDygzQeJBxY9Q+3WFUgKFb5pQ4m6ZPph76lkyRzsNSXYKwpQ+gYRecEDx/SQs4lCoyPykukUfTadsHMm47SaCOx/IcVfzfQ8wAwffQeB/ca1ek8VLngEfXwPggZd5v45OP1yTDtWownrD4xo935kl5MDi56hPvs3ZIeN4DOuJ2ToNYD3B9gHFj2LrTyPnFlj8O0yhKiLH263/bZ+XptIkkT0lTPJf+9OYq9/AdOuX0metoSyn+ZRte5z9+s7+EpCR0xo8XPl7t+buKwNRJw3hb1zrkDfqS8Nezbi1+Nsws6+5bCvZZPCTx/GnLcFl91CQO9zPQ/qD31QHjpiInU7VhN18XRPeiFBEISjIQKHQG5uLueddx7btm3r0PEzZszA19eXe++99x/r0/Dhw5k9ezb9+rV8UnruuefyySefEBgY+I9dWzi1KbT6Ft87zbWoA6PwTT0NgITb57P/7VsBCD1rIrLs8hyXdP83yA4be2ZfjGnXWnJmjfHkMgTwietG0j0LW11Tn9ALc/7fuKwNyE4HSp0BTWg81tJc9wzEs26m6tfPMO1Yw+6nzwXAZa3HWroPQ8rAFm01fXizlu4joPe5+MSmYSna5TW/Ynualk25LCY0yedhTQ5HHRqHNqITAEGnXULFL/NbBQ4llQa/9LPc9xufjmnnGgAa9v2JcZI7yBfY/wIOfD3T+/hrdC1yTDYtJznYxpvu6w+8mANfP+05zi/9LCRJQhfTBZVfKLqYLgDoolKxVRRgrz6AtTiHPS9c4h4Dhw19Yp827z9s1O3kzZ2Af/eDH7Dr92wkoN/5SAolav8wHGFdMOdtxZA8gPKV72IpzkYbldI4I7WEhn1/EnX5jHbHWRAEQTg8W0R37Pt/YteM4fh2HkxA33H4pp522IdaSkMQKQ9+T8Uv8yn/8S3PjCHrgT0k3v0ZLms92Y+fSciwa7GW5lKzaQlJ936JpFRT+OnDVG9YROSF06j45YN28x9HXfooOU+cRczVz6AyBHb4vhrytlK55qPDpvzwVphNn9gLw+aPiL//82Mqulb711JslQWkPPwDjrpysp84yzNrELyPYfCQa4542TF4H3dJqSbmuudRGQJx2SzsfnYc/r3GdGjcm9Rt/4WAnqNaba/+4xv80oYRPuYOZJcTl82Mw1Tp9UFiyBnjqflrOamPrUSSJJwNNV6vVbNpCQ17NgIQ0hj4NO/PImnqlyg0OnIzbzrqh5w+cd1aXMu/+wiq1i0g/4N7SJr6RasHmHuePR9DyuGDtgqVlqSpX5LfuIKkufKV71D9xyIAIi+chr2yEKWPH8nTvsVlt7L3hUvwSxuKtTTX6wPsyAsfwFK0q0OvU0cfQvvEpuHXdRj7Xr4a46S3sBbtomr9QpLv/wZZltnz/AUYUgYedvals6GGTvd87nVf0+sYYDKRs84XW1muZ1/E+fehMgS60/68fDXmgh34xKa1vBdrA9rozkSMm3rY+xYEQTicUy5waHM40aiO31Tq493eyfb9998f/iBBaBTQdxz7376VgF6jAQlteCKWwp1t5jJsi0LjgzYsgcp1CzwfGn0Se1P398846irQRiQBMmGjMjxPfdvSlOPQXlPC3jlXUrt1BZqQuA71SRuVinn/Nnw7n+5ZNlW44BEqG2wgyx26F0mpQpIk99cKBbLL2aHzjkrjdYCDuXIkyUseSgcolPimDSX+plc71LQ2PAFdbFeqNy05uLGNMVAHRuJsqKFu+y8YkgfgrK+mZtN3KLR6lDrfI74tQRAE4RBqHcnTllC/ewP12evJf/d2Ii94AF1ct3YfagX0ds9g94lPp6YxBQiAX/cRKNRaFGotKt8QHLXlmHb9ijk/i93Png+4Z8Cr/EI71D3T9l9QBYRjKdp1RLflXrZ8+DzB3gqzKfX+KGsKjuihoDf1ezYS0GcskkKBOiAc39RBLfa3NYZHw9u4q4OiqPj5PWq3LAfAXlWMrWxfh3I7733pShy15aj8QogY13rCgd7Yk4KP7kN2OvDveQ4+cd2ozfrJ64NEpc4XhVpL4Uf349d9hOch6KEOXapcsmQO/j1GotDogGN7yHlo4BAg5IzrcdktaCOSqFjzcYsHmIaUgZjztqI4zGeNgL7neb4+dJZe6IgJuKwNKLR6/LqeQd68yVgKd1Kz2R0IdJprqd22kqp1n+NsqCH7sTMaP3/JWEv3oQ6ObvfazVlL9nboIbT7vsdT9/cqfDufTvnKdwnoOcrzcN+/12jqd//Rogih9/tue9VH0+u4atUqeg8fzt45V3j21WxaQuWvn4DTib22FOuBnFaBQxRKz8+GIAjCsTrlAocalZJRT3533Npb/sjYDh3ncDgYP348mzdvJjU1lfnz59O1a1c2btxIaGgoGzdu5N5772XVIU/C5s2bx1dffcVXX33FG2+8wbvvupdvTpw4kbvvvpvnnnsOnU7HnXfeyZQpU9iyZQsrV67kp59+4r333uODDz5g8uTJbNmyBUmSuOmmm5gy5WDVXpfLxY033khcXBxPPfUUCQkJnj4JAuBOTq4PoH73BgzJA6j+/SsMKe7Zh9owI5KkpHTpKwQ2fjhpL5dh+ar3AQgdfkOr6+iT+lHx87uEj3W/P/WJfSh4/270Cb2RJAnftDMoWfICgf0vRKkzYK8+gKRUtflHjToggsgLH6B0+et0mvJ5m31qLmxUBsVfzSRh8tueP1BkmwXQoI1Mwl5RgLU0F214AlUbvvaMQ0foE3pTs3kpgf3GUbOp9dLqDrXRqS/VG78laODFVG9YhCGp48tC9Im9KVrwiKf/LpsZe1Wx58OrN+Gj7yA380bP94bkAVSu/YSg0y7FWV+NqmwXPsaejX3rQ8XKd0m861Oc9VXsn3cr/n3OPar7FARBEFqTFEp8UwfhmzoIXXRnqn77El1s1/bPaXqQpFBCswdZLR8wKZFdDpBlggZeSuSFDxxRv+zVJZT//B7J9y9m70tXYi64onWQ4Rh5K8yGLOMMiOnQTK92HebBYFtjeDS8jbspez2mXWtJuu9rFBof9s65AtehBeba0Onuz1Bo9BTMn0rJkheIvvTRFvsNKQPpNGUhddtWkv/BFMLOnoRSH9Dmg8Sk+7/BtOtXajZ+S8UvH9Dp7s861A+Fxqedmz6Ch5xez1cgSQr31228VpJC5VkBA7Qq0Hfoapp2yTLRlz+OX9czWmy2V+SjCe+Eo6a0xWxTW0X+EbXdYZIETfdN2/dN8/t2HMN9N7KV76f8p7dIfuBblPoA8udPbV3wEFCotSKvoSAIx43i8If8f9i1axe33HILW7duxd/fn8zMzMOe89prr/Htt9+yaNEitm/fznvvvcfvv//Ob7/9xrx589i8eTPDhg1jzRr3UsiNGzdiMpmw2+2sXbuWoUOH8tdff1FcXMy2bdvIysrixhsPBgEcDgfXXHMNqampPPXUU//YvQv/Li6bmR0PDfT8V/bTPGKvf4Hir2aR89QoLAXbW+TFC+h7HtUbviagrzuIrlBpiJ/4BgcWPUPOzNHkzBpDw95NAJ4Kyd4YkvphK9/vWT7rE9cde/UBT2EUv67DCOx3AXtmX0T2U+eQN28yTkt9u/fi33MUss2COfevNvvU4vjuIwg980b2vT6e7CfOYs/zF4FCiS0yHYVaR+x1z7P/7VvJfuocJEki+DCzH5uLuuwxyle+ze5nz8deU4pC59fhc5tEXz6DqvWfk/PUKKo2fEXUZY91+FyVXwix188m/907yHlqFHueuxBryZ52z9FFp7Z4+u/fazS6mC7kzBzN3pevoqHHFVStW0D2k2dj2rEWe00pzvoqfOK742ioPqLA5tEoXfZam/t2Th+Mw1R5TO2XfPsCpp1rAXclQUtxNgD7Xh/f5hKuJvnzp7Ltrs44LSbPtqLPZ5CVYTyqftkq8sl+cuQRnwfuoji7n78QufEPFtnlJGfWGOobl5p1VMmSOVStd6cayJ8/lZo/Wz6Ea6uPtop8gr+cSM6sMWQ/cRb5709Bdp64og5tqVq/kMIF/1wBAUE4nhS1xVhL93m+NxdsRx0S0+KhFnDED7Wa8+0ymJrN3+OoKwfAUV+NraKgsQOqNn9ui794gvDRt6EOiiLqkkcoWvCI5/fNP0kT0QmFtY76xn/PZacdS1H2EbdjSO5P7ealyC4X9toy6nN+O+w5Cp0Bl7X9zyAd5TLXofQJQKHxwXJgNw37Nje7UNvj7jlEoyPqskep/v0rHPXVLfbZKgpQ+YUQPOQqgk+/AnP+NvSJvWnYs9HznnHZzFhL9uK01OOy1OHffQRRlz2GpWD7Ud1P00NO4Igfch6OIXkANZuWILucOOoqqN+9AR9jT9TBMViLd+OyW3GaazHt+vWo2t875wpc1gb2v3M7Ox87g/rdG7CW7KX275+p3/0HlWs+pGLNR5SvfIfsJ8+mdusK9rx4Ga7Gf+ud5jp2Th/c5mt2tD+vhuQB1G75AZfNjMvaQO1fyzEk90flH4qjrgKHqQqX3Upt1sqjuu/mnBYTCo0ehc4Pe20Zpr9XHXObgiAIh3PKzTg8WeLi4hg8eDAA1157La+80naCY4APP/yQ2NhYFi1ahFqtZu3atVx00UUYDO4KqBdffDFr1qzh1ltvZdOmTdTV1aHVaunTpw8bN25kzZo1vPLKK0RFRbFv3z7uuOMOxo4dyznnnOO5xqRJk7j88st5+OH2k/gK/1/SX8/1uj35/kVet4eNnNQqx09buQztFQX4X+L9D/WAPmNJz8zzfK9Qa+n+Sk6LY0JH3EToiJva7LsmJM6z9ATcCaZTHj64rMhbnw4VdNqlBJ12aYttuxtnAvt2GeJ1ZkOnKQs8XzevlBzQZ6wnubo6MJKk+xYhSRLVGxfjc0hFSW/nAwQNuoygQZd57s/b0//mCcUPHYPm+3w7D/ZaSKattgCMk97yfC1JElEXP+xJ/F36xdvUblvSqsqnpFTT/aWd7V7neDhctclj1TxvT/P8W4m3fdCh87VhCdRu+YGggRcju1zUZ69H1Vix+0Ty6zqMqvWfU7XuM4IHX0XFqvfxMfZoVQ30n+Q0hJPy0FJ3vqRXrqF60xKCBlx0wq7/TxBVJIUTSXJYKPjgHpzmWiSFCk2YkZhrnmnxUKup2MKRPNRqTheVSsS4e9n36nXu6rNKFTFXPokmJJbgIVeT89QodPHdWxTpqNuxBltVIUGnXwmAf4+zqfz1U6p//7LVv6XedDTHoTcKlYa6Qbe7i4gcUnTtUKXLXqO8segaQNqs3z1f+/cag2nnr+Q8NRJteCd8Enqh8PFv99r+6Wezf96t1G5dcUTFUbzx7XoGFWs+IuepUWgiOnkqUgNtjvuh1AERBPY7n4pfPmjxcLc+5zfKVryJpFSh0BqIG/9iiweJssMGQMT596LQGcibezOy3YqMTNQhsxc7KvryGRR8eB/lK970FEc5Xvx7jaZh35/kzBwNkkTkhQ+iDnAvTw/oM5acmaPRhifgE9t6yXNHaaNS8IlPp/qPRex7bTx6Yw9Cz74FlV8Ivl2Guh9ayi4UOl+0Uan4dR6CtSyP7CdHog6MIKD3aCSl2mvbR/vz6hOfTuCgSz1pBIIHX4lPnLuYX/i5d7Hn+QvcaXkik476vj3Xiu2KLq4bOU+ejSY03vMAXxAE4Z8knYgnjk06d+4s79rVMrfKjh07SEtruVziRC9Vzs3N5YwzziAvzx0UWblyJa+++ipZWVmsW7eO8PBw1q5dy/Tp01m1ahUzZswgJyeHv/76iyVLlpCYmMhLL71EZWUlTzzxBACPPPIIYWFh3HnnnYwYMYILL7yQ8vJyevToQXZ2NvPmzWPv3r1IkkRxcTHr1q3j/fffJywsjHfffZfhw4eTlpZGTk4OS5YsQadz5yVpa6myt3H8N1u1ahXDhw8/2d045Yhx8e54jEv97g0ULXgUZBmF3p/Ya59HG55wXPp3sqz7aDbRtdtJyHi31b4TUeWzbMWb6GK6eK02uXO6O0javPJo0eePofQNJuLcu6jb/guly16j090LyHvrFgJ6jXHnGlrzMfW7fyf+xlfInz8V/+4jCOgztkUlQW9tN2l6r+TPn4o2vBMNezeRkPGue+nXn99T9/cqz7neqmhW/voZluJsz3KzyrWfYjmQQ+iZN5L72nh8Enphyf8bTUQicePnoND4YN6fRfEXT7ZbVdReU8LeFy7FOPkd8t6cSNL9izFt/4XS5a+DLOPXfQRRFz0IHKw0ClDz53fUbltJ3PUvULbiTdRB0QT2G9dibJocmjeq+fa/n7+C3s+sA+DAomdQ6gMJO2dym33fO+cKdHHdMO/PwllXQez4OZQtfx1L0S4C+p5H5Pn3tfnekBRK/p6SRvCw6zHtXItSH0DkBfdz4OunsVUWEn3ZY/j3GEnV+oXUbFmO7LBhK88nsP8FRIy9+7DtHs8qkuJ3rndiXFoTY+Ld8RoXp6Uepc6Aw1TFnufOp9PULz0BqX8j8X7xbtWqVZyenkxu5o0t/q0qWTIHhc5AXdZPRJx/L4ak/thry9j7wiV0fnx1i6rNJUvmtFiqXL/nD8pWvEnC5LfZ/fyFxF7zLLrozifrFo+YeK94J8bFO0mSNsmyfOKePAv/N8RS5Ub79+9n/fr1AHz66acMGTKEhIQENm1yL6/48ssvWxzfu3dv3nzzTc4//3yKiooYNmwYixYtoqGhgfr6er7++muGDh0KwLBhw5g9ezbDhg1j6NChzJ07l169eiFJEuXl5bhcLi655BKefPJJ/vzzT881JkyYwLnnnstll12Gw9FGXpH/KMlqImfWGHJmjWHHtH7seHCA53tX49PX2q0rKF1++CXlR8rbEj/hv8+QPICUh5eRMn05Sfcs/NcHDaGxymd1MbtmDKfw04cxZbuXdzVVDYyf8Dqp039AdjqpXPOR57ymCpUhQ6+l/MeDMxqtB/aQcPt8kh9YTOn3L7mXnRXneKp8pjy0FCSFp8pnUwXq9mZhNBd54TRqNn2Ladc6ij6fQex1s5EUCmKufprSpS9Tv3sD5T/NI/ryJzo8BvteH4+9usTrPm14Ag5TJc6GGqo3Lm6VpDzmuudJefA7kh9YQvnP7+EwVRHY73zqtq7wLHOqWv+5p7qntWQPwUOuImX6cpQ6Xyp+mY/stFO04FHib36DlAe/I2jQ5ZQsfr5VX9QBEYSceRN7Zl9E+Og7kO1WDix6hk53fUrKQ0sx522h5q/l7d5r2MhJBPZrO9F6R7jsFhr2bca36xmH7bukVJN0z0KCh15L3psTib7ySVKm/0DVb1/gMFW1+d4Ad7VH39TTSHnwO5Q6X0oWzybxzo8wTnqLkiUveq5hzv2LuBteJuWhpdT8+R0NeVsP2642ujPJ939zzEFDQRBOHXlv3ETOrDHsffFSwsfc+a8OGgrtUxqCWqUbcTZUex4GSiqt+/8KJbLz8DktDUn9sVcUuD8DuVz/qqChIAjCqUIsVW6UlpbGBx98wKRJk0hJSeHWW29lwIABTJgwgVmzZjFw4MBW5wwZMoTZs2czduxYVqxYwQ033MCAAe6lEBMnTqR3b/dShqFDhzJz5kwGDRqEwWBAp9N5goqFhYWMHz/e0+bTTz/d4hr33HMPNTU1XHfddXz88cf/1O2fcmStr2fJ6aFPDgF39bkeI/HvcXQ5xQTh/8IpXuXzUAqNDzFXP8PeOZcTdckjaMOM7tvwDyPivHvY+9KVGG95C5UhsMNtHm7ZckCv0VRvXIx531/EXNXy96+3Kpr6xD4YOp9ObdZPaCOTkZ0OdDFdsFXkow6K9uSKChxwERU/v4+123AsxdkdqioacsZ4DnzzLEGDLqN2yw8YUk5D5Rfibq//hdTv/p2AXqM6fO9HQllfSs6sMVhL9xHQ+1x8YtOwFO1qt+9N1SJ1MZ3RRaV6ZlFqQuOxVxVRv+ePNt8bkkqDb9fh7vOjOyOpNEhKNbroLgdztgG+XYZ6KpcG9BpNw54/QKFs+z0nqkgKwn9S85Qjwn+bUmdAHRCOaedafLsMwVFfTd32Xwg58yZPHt/2KHQGT07DJoEDLyb/vTsIH3PnP9VtQRCE/7RTLnBoczg7XAm5o+1pVO3nOEpISGD79tYJhocOHUp2duskzjNmzPB8PWrUKEaNcv8hd88993DPPfe0Ov6ss87Cbj+YhLd5mz179mTNmjX4+bUsxNC8evPjjz/u+To3N7fde/kvy58/FaU+AEv+3/jEd0cX3YWG/VuJueJJarf+SOmyV5EdNpSGIOJufBm1f1i7yytLvn+Zmj++QR0UhdI3GJ+47q1yAba1TK/85/eoXPMRkkLlXoY5oe0iEIJwMp2qVT7bYinahcoQhKOmtOX2Qvd2e4332YNHK6DfOHY/PZag0y5BUhychN9eFc3g06+kdPnraCOSPPktgRaVKT3fyzLaqBSS71t02L5ICgVSYxvtpxE5eJ2OVvY8nKYch/aaEvbOuZLarSvc+Zja6XvTrA8kRYv3hiQpkBsrqrb13pCUKs+9Nj9fOrRy56FjitRuu6KKpCAIwr9f7PgXKfrsEYq/mgm48wQ2PUw8HG/5LQP7X0jJt7MJ7Hf+P9ltQRCE/6xTbqny4YJ8J7s94eSyle4j8a5PiDqkgIchuT9J9y0i5aGlBPYbR/mKuZ593pZXNuRtpfavZSQ/+D3xt7yJOW9rq2u1t0yv7IdMkh/8npTpy4m5auY/e9OCcJRO5Sqf3tgqCij/aR7JD35P3fZVnsqVDbl/Ubd9FckPfk/5j29hK99/VH31RhMcQ8T59xE87PoW29uroqlP7I29qoiaP74hsP8Fnu32ykJP9dDqjYvRJ/VDE9EJp6nyiKuK6hN7Ub/7d3dBG5eT6o2L8W18jVT+oViKc5BdLs+MyONFHRBB5IUPULr89aPue5N23xsdZNq5Bkd9NS6bhdotP6BP6ndc2hUEQRBOXbqoVDpNWUDKQ0tJeWipp1hXpykL0DcWr1P5BtPlKXd1Zt/UQSRkvAeANqITKdOXk/LQUk9RnIY9fxDQ+1yU+oCTcDeCIAj/fqfcjENBaE9An7FeZ5PYq4opfvs27LWlyA47mtA4zz5vyysb9vyBf4+RKDTuojN+6We1atNasrfNZXq6mDTy378L/x7n4N/zn1k6KAjH6lSt8tkkZ+YokNzPrwL6jMVSuJOoix9GHRhB7LXPkT9/KklTv6Dw42nEXvc86sAIoi6ZTsGH95HopXq1N/teH0/sNc+hDoxo85gQL/feXhVNd3/Pw1KwvcUfIdrIZKp/+5KiTx5CE55AyLDrUKg0xE98g6KFMw5bVbQ5dUAEkRfcz96XrnQXR+l2Jv49zwEg8oIHyHvjJtRB0WijU3FZG7y2UfjpQxR94c4HqQ6KIv6mV9u9ZhP/nqMo/e4lzLl/HVXfm7T33ugoQ1J/Ct6/G2tZHoH9L/D8wXis7QqCIAj/H4oWPErd9lUkZLx/srsiCILwr3VKVlX+f1NXV9dqqfKR+q+NY/NKWU05Di3F2S2qhFatX+hZqrx3zhWEnjUR/x4jMWWvp/S7l+g0ZUGr/IjZT44kIeNdav9ajtNcS8R57qXlRV88gToggrCRkzzVSLURSRR8Ms3rMj3Z5aQ+53dqs36kbtvPpD6yAkn5z8fhRQUx78S4eCfGpbXjNSa5mTcSOmICvl2GHHunTgHiveKdGBfvxLi0JsbEOzEu3olx8U6MS2tiTLwT4+KdqKos/FNOuaXKgnA0nOZa1IGRAFT/9uVhjgZ9Un9qs37EZbfgtNRTt+3nVse0tUxPdrmwVxXh2/l0oi56EJe5Fpe1/vjekCAIpyRnQw27ZgxHUuv+M0FDQRAEQRAEQRCEtoilysJ/QsTYKeTNuxV1YKR7SWFFfrvH6xN64p8+kpyZY9AEx+BjTEfp49/imLaWGGojEsl//26c5jqQZUJGTBA5UwTh/4RSH0DnGatOdjcEQRAEQRAEQRBOCBE4FE55EedN8bo9aNBlnoqm/j3P8eT/au/c1EdWeL4OPfsWIs6bgstmZu+Ll+Fz1s0AxF3/gucYn7huJN2zsFW7SVMPP6tREARBEARBEARBEATh30wEDoX/W4WfTMN6YDey3UrgwEvwiU8/2V0SBEEQBEEQBEEQBEE4ZZxygUO73Y5arT5l2xP+OzpaYVQQBEEQBEEQBEEQBOH/0SkXOFSr1WRkZBy39jIzMw97TG5uLqNHj2bgwIFs3ryZ1NRU5s+fz/r167n33ntxOBz079+fN954A61Wy6ZNm7jnnnswmUyEhoby/vvvExUVddz6LAiCIAiCIAiCIAiCIAgnm6iq3GjXrl3ccsstbN26FX9/f1588UVuuOEGFixYQFZWFg6HgzfeeAO73c4dd9zBF198waZNm7jpppt4+OGHT3b3BUEQBEEQBEEQBEEQBOG4OqEzDn1VMjmzxgDgqC0DSYH9gucx57uQlCp00Z1PWF9cDhu20lx00akAxMXFMXjwYJwWE5ePPYtnX3ubxMREUlPd+8ePH8/rr7/O2WefzbZt2xg5ciQATqeTyIgIrCV7kJ0OkGWUvkGo/MORJOmE3Y8gCIIgCIIgCIIgCIIgHE8nNHBockikPLQUgJIlc1Bo9ZQHhKONSsJWmnsiu9JKR4N8sizTrVs31q9f7/7e5cJanI3KPxyljx+yy4WtPA+nqQKVX+g/2WVBEARBEARBEARBEARB+MecQkuVZWwVBf9Iyy6nHWtZLpbibCzF2Tgt9S33263s37+ftb/8DMDnX3/L2WefTW5uLtv/WIOlOIf333qdoYMG0LlzZ8rKyjyBQ0tNGTv3FaD08QNAUihQB0VjrykDwF5dgq0iH2vJHsyFO7HXlnuu6zBVYSnOQVlTiK2iAFmW/5H7FwRBEARBEARBEARBEIQjdcoUR3E5bGhC4/+Rtu2VRSi0BtRhCe7gnOxCdjnd17VbsFcVktalCx99uoCM2+8gyRjLlClT6Nc9lasn3obTJdOvX19uunQsapWSL774gjvvvJOamhrsVgt3Zkym15CzPddTqLWHXMOKNrwTyC4sRbtQ+QUj2204G2rQRiZhMtWjstXirK9G5Rv0j4yBIAiCIAiCIAiCIAiCIByJUyZwqFCqUWh8sNvtHaqE3FF2ux2XtR5NSBzQuCRZUiK7nMguB7ayPNSBMSiUSubOnYvTYsJRW4ZWr+eMAb34bekX0LiKWXY5kR12evXqxerVqwGwVRYhqTTt9kHp44ekUAAKJKUK2enAaTXhsjVgPbAbpdOJ0+XAaa7BXl0MSEhKJbLDfky5H6vWL6Rh/1ZirnjyqM7vKHP+39hrSvDvPuIfvY4gCIIgCIIgCIIgCIJw4pwygUMk96pptVqNvbYMXC5U/qFYinbhE9u13VMdpkpcNjOa4Biv2xxtXlKJpFTjstW02bYmLB6FWtfmfoVGi8vS0GKby24FSYGkULa4t8Zv3P+TQWUIQh0URV1dHX5+7qXO9uoSUChQ+4d5Cric6iwF22nYv1UEDgVBEARBEARBEARBEP5DTnjgcNST33FWegzjG68syzL7ys1oCCDukGMlhRJJpcFRX43KEIgsy8h2CwqNT4vjDjQoCFW2XdxEofXFYapA7R/mWaoMYMIHlzaU2FAXf/2+xnO8yaUlr6iaSG0AiroK1EHR1FscFFXVExWkx8/n4AxDpT4Ie00ZTnOdpziKvaoIlX/YwfbsCvycLlTKgwFEpc4XW1kuKn93ARXZ6UBu7FdL7tyPLms9klKNJiwBSaHAZbdSXlFJg0sNQGmNmVfect/DqF6xXDggsUUr+fOnotT5Ys7bir22jKiLHiSgz1jsNSXsf+d2XBYTstNBzFUzMSQPoG77akq+exHZYUMTaiT2utkodQYacrdQvHAGLpsZSaUh8c6PKFnyIi67hYY9Gwk7J4PAfuPafC0EQRAEQRAEQRAEQRCEf4cTHjjUqZXkltZhi5TQATaHC4NCAm8xM0ATEoe9qghHbSnIMkpDYKvAYaTehcvWdmERdXAU9opCLKYqkEAdHIOkdAfckCS0YQlYS/chSQponCWoVStpUPqic1ZiLc6hmgA0UuvhkhQKtGFG7FVF2KuKGvsYhMovxHNMnUOBzyGBQ4VGhyowEmvpPpROF1aTEnVwtGd/U6GUptyPipBYrGV5OBtqUPkGYa8sJDQkBoVai9PaQF6ezBu3DG137O01pXSa+iXWkt3kzZ1IQJ+xVP/xDX5pwwgfcweyy4nd0oDDVEnpslfpdOcnKLR6yn54g/KVbxN2zq3sf+c24ie8jj6hJ05zHQqNDxHn3XNClkQLgiAIgiAIgiAIgiAIJ85JWarcLzmM3MgrGNo1ij2btuDro8ZidwfszDYHZTYfZFlGKjcRGeCDNjwRl0vmQHUDdpsLTVU9dodMeIAOnUZFfr2KuNAoAGobbFTVWwE1WpWOSKDBDpVSKLJaRqmQiFT5oFQqUAdGYrU73XkEo1I8/VP5a/CxOzHbHKhDY5BlcFaY0KndfWyw2qmutxEdbHD3WVZRo44kKlxPSY0Zi82JVGbCX69BpQ3CZjZzoNqMJEFcZAo2h5OychMuWYlSE42vykVggD/55Sa0shKLS4lBslLTYCVKqUGh8cHpclHoCCDWYUV2OXFZ67GV5wHuIGNT2NTmcPLK99vIKaoBs47LAv2JAX41RVKo78xUhQJdVCpzXeO4IbeCZGNPrvy0iDEF89nuiGLy2L7E12zGWpzDnhcucbfvsKFP7IOtZC/qgHD0CT0BPJWkBUEQBOG/qnTpq1Rv/AZJUoJCQcxVs9An9j4x1172GuGjb2+1PX/+VPSJfQgZeo1nW81fy6n89RMizptK9e9fEn3549RuXYGlOIfwURlUrP4IhcaHoNMuafN6puz1lP/4FgkZ7+GyW8nNvBFnfVWL1QSVaz/Bd/3XMHw4AE5zHbufPpfEOz8+bkXuqtYvpPjrWagDIz3b4m58GV1U6nFpv0ntlh+oWr8Q4+R5AJQue52q9Qvo/Lg7j3Xt1h+p/PVTEm5957hd05S9nn0vXYlx8jv493AX1svNvJHQs2/BN3VQm+eVr3yH4CFXt3p43lzhZ9Np2LsJ2WHDVpGPNiIJgPDRt1Pxy3wiL34YvbHHUfXbXlNK8RdPYM7bgqTSoA6JJfrSx9BGdPJ6vK0in9zMm2Dow0d1PQB7VTGFCx7BWpwDsgu/7mcRefFDKBpzi+9/9w6sRdkEDbqM0LMmAu6f15rN3wNgKdyJLqYLAEGDLsecvw3/7iMI6DP2qPqzc/pg1EFRJE39wrMtZ9YYZKeD1EdWHPV9CoIgCMKp7qQEDod3i+bj1TkMTA2npM5BnKkWWeMOwmlUCuJCDEiSRL3VTnmdhehgA9UNVpQKiehgP6x2J3llplbtWu1OKk1WYkMMqJQKnC73NEYfjZK4UHebNQ1WquqthPm3/cGriV6jot7qwOWS8dWpsTub2lNRWmPB0TiLsLbBjr9eg9XuxOF0kRDuDqg5XS6UCgXV9TbC/N1BTlmWKa21EB2kR6VUUGe2UW0yE9h4TacsEeXjQO2nw253YHbq8AFMZjsGlQvPgmyFEl1UKrIsU1FRQampGoDFf7iDiW9OHsa2H79g5h9JDHO4qzt7ci42Y0gZiE36DmOID2dvf56wokmgD8A3bSjxN73a4lhzwQ6Q2l4SLgiCIAj/Jary3dTu+4nkad+hUGtxmCqRHfYTdv2y5a97DRwG9jufsuWZLQOHm74lsN8F6I09PMEh/x4j8e8xEoCQYdce0bUtBX+D00HKQ0tbbA8afBWK5e9g2rkW3y5DKFnyIkGDLj+moKHsdCApW34kDeh73j++kkHfqS+Fnzzo+b5h358odL446spR+YXSsHcThqR+HWvM5ezwddWBUZQue80TOOyI8pXvEjjgonYDhzFXPgUcDNo1f+0qfpnf4WsdSpZl8t66haCBlxI/4TXAXRjPUVfeZuDwiK9xyHvAfc1JBA+7luDJbyO7nBR+PI2Sxc8TdfHD2GtKadi7iS5PrWvRTviYOwgfcwcAf09JazEG+fOnHnM/XdZ6bJVFaIKjsRTnHHN7giAIgvBvcFICh50i/CmpMfPztiJqZD3lldXUm4upK9XidMnUmW04XQeXHtf46aiut6LXqqgsdge/KussWCo1qJUKymstNJRrsdiduGQZc4W6xfUcThd1FjuuxjYVColygxazzYHD6aLCp2VV5KbtOrWKBpsDWXYHDhusDjRqJTq1knqLnYoiCZ1GSWWdlRA/LTJQabJSlKdAo1KiUSuRgCqTlSofNWqlAofTRaXJyn5FswCcLGMq96HKZMVHslGhAKVPOTabnfoGM0E1DVSarPgq7JRJLpQ+ldhrylBW/IlC44NOp+PrrZVcPhL+zq/kgv4JAMQYZELUVgoq6tt8LWwVBSgkidEXXkpVYC3m/G2Ej76dogWPYC3NRRuegMtmxl5VjDYyCXt1CQ25W9xLlS0mFGodCp0Bl6XtawiCIAjCv5HCUo3KEIxCrQVA5Rvs2WfauZbir2Yiu5zojT2IvnImCrWWndMHE3TaJdRm/YjsdBA/MRNdZDIlS+ZgryrEVp6PrbKQ0BETCD3zRgCqfv+KilXvIzvt6BN6EX3lU5Qsfh6XzULOrDFoo1KIv/EVz7V9uwyhYP5U7DUlqAMicNnMmHauJeaaZ1rMGqxav9CTSqRkyRwUWj1hIycd9r4ddeXkv383jrpKcmaNIf7muWjDjADuB7t9x1O08HFir38B065fSZ62hLKf5lG17nMAggdfSeiICZ4AVtNsrLIVb+KyNhBx3hT2zrkCfae+NOzZiF+Pswk7+5bD9iv//bsJ6H0u/j3PAWD/e3cS2Hccft1HcGDRM9Rn/4bssBF8xvWEDL2mzTzOTVR+ISh8/Dyfd+zVBwjoNYb6PZsI6DWKhr2biDj/Xhx1FRR++hD2yiIAoi57FENSf/drWlOCvaIA3wY7jv69vB53KF1sGrLTQd2ONfiltUwz4+19Vbn2Exw1Jex96UpUhiA6TVlw2LHypubP7yj6bDpOcy2x1z6HIXkAssvpdeyaq89eh6RUtwg++8R1A9wBvgNfz6Lu71UgSYSPvqNVrmuX3ULRp9Np2L8VSaEk6pJH8O18OlXrF1K7bSWy3YrL1kCnuz87eM1dvyKptQQPuhxwP/yOuvRRdj06hIjz7iH31etw1JWTM2sM0Zc/3uJ1bU/97g2U//R2i3zfAGUr5lKz6Ttkhw3/XqOIOO8er+cH9BlLzaZvCRs5iZqNiwnsdz5Vv3/V7n162w7umbW1W1fgsluwleXh33MUURc/1KH7EARBEIQTSXH4Q/4Zp6VGMO/HHQztGgOGUJbutpOWlsay3XZKXAEMGdCb5NTOvPVblXv7HgeyXyRpaWmkpaXxyRYTuuAY0tLSmPd7FbGJyeTbfPm7Wus5pum/+X/WIvlFMWRAb/zC4/l6u5m0tDTKCWRDibLV8U3be6R344NNtSzYWk96926sKQCTKoS0tDQSk1N5949q9jYY2FWno2vXrnTr2pV+vdKx+oTz1XYzS3NspKWl8fUOs6evvmFxfL3dzJABvT3/Ocy1nuMsezcSUbHZ3ZfYIOb9uAO7PpzPtpqIrvyTsKJ1pKWl0SU5Ef2al1B9NQX7hxOpt7hrR8ttpHpUILfYZ2/M11if8xsq2creZ86lZvNSQs+8EZVfCLHXzyb/3TvIeWoUe567EGvJHhQqDfETXqfo88fImTmafa9ci8tuxZB6OtbiHHJmjaF647f/9FtHEARBEE4IW0R37NXF7JoxnMJPH8aU/RvgDhAUzL+X+Amvkzr9B2Snk8o1H3nOUxqCSHnwe0KGXkv5j295tlsP7CHh9vkkP7CY0u9fQnbasRTnULNpCUn3fumeHSUpqN6wiMgLp6HQ6Eh5aGmLoCG4gyj+vUZTs+k7AGq3rsCQOgilzrdD91Wx+iMqVn/U5n6VXygx1zyLIbk/KQ8t9QQNmzgD4/HrOox9L19N9GUzsBbtomr9QpLv/4ak+xZR+eunmPO3HbYfzoYaOt3zudegYc2mJeTMGuP5z2WzEHT6lVStX+g+11xLw95N+HU7k6p1C1D6+JE87VuSHlhM1a+fYivf78njnPLQUlIeXoYutmur6+g79aVh7yasJXvQhieiT+ztXu7rdGAu3IGPsQdFC2cQOmIiydO+Jf6WuRR+9IDnfPP+LIyT38Z02q3tHneo8DF3ULa05cqOtt5XoWfeiCoggk53f3bUQUP3BRwkP7CYqEsfpeS7lwDaHLvmLEXZ+MSne22y9q+lWAq2k/LwMhLv/JgDX8/CXlPS4pim2Y6p038g7qZXKZg/FZfdArhnecaOf7FF0BDAUpzT6ppKHz/UQdFYS3Mx3vo2mlAjKQ8t7XDQEA7m+07IeJcD3zwLQN321VhLc0l6YDHJDy3FvD+L+pzfvZ4f0Ptcav9a5r73rB/xSz/rsPfpbTtOGwDmgu3ET3iNlOnLqflzCbbGoLMgCIIgnEpOyoxDcFf+NWhVJEb4syW3wrO93monxE8HwIotBZ7t3eOCWL29mF4JoeSV1bGvtK5Vm70SQnli4SYuHpiIv15DrdmGv4+GeouDUP/GNrcWtDqvPTeN6Ixa1Tq+GuKnI8RPx6drc3j6moEA1DTYUCklhqZFER2kZ/birYB7aXODzR3Yiw31pbrBxvaCKrrGBuFwuiirP1gZJmTI1YRFBwLuwjBjzx7G019t5uqhKYT1G+I5ThMaT+LtB5edSM+4P8SkG4NZua2QXomh1KeOoeaPDcSGGGg4byLrftqBS5Ypr7VQaHB/eA467VIUq5aRMq3lUiTfzoNJntY6CKhP6Eny/Ytabfd2rCAIgiD8q6l1JE9bQv3uDdRnryf/3duJvOABdHHdUIfGeZZpBp12CRW/zCd0xAQAAnqPAcAnPp2axiADgF/3ESjUWhRqLSrfEBy15Zh2/Yo5P4vdz54PgMtmQeUXetiuBfa7gOKvZxI64iZqNn5L4MCLO3xbR7ps2WsbZ4yn7u9V+HY+nfKV7xLQcxQKrR4A/16jqd/9x2GX4gb0HdfOvtZLlX1TT6NowSM46sqp2byMgF5jkJQq6nasxlK4k5rN7s8yTnMt1tJc9MaeFHx0H7LTgX/Pczyz5JozdOrnDhTKTvSJffBJ6EXp969gzv8bbUQSCrUO085fsR7Y7TnHaTHhtLhT5vj3GIlC4/6M2dZx3gK6TcGu+t0bPNusJXvbfV8dK/9eowH3+9Je6f483NbYdXTpef2ejQT0Ox9JoUTtH4YhZSDmvK2e3IIADXs2EjJ8PAC6yGTUwTFYS/YB4NdlKCpDYOuG23oSjnvW69Hy73kOUmO+b0dtOQCmHasx7VjD7qfPBdzLka2l+zCkDGx1vtIQiFIfQPXGxWgjk1ssHW/rPr1tV9YdAL0Pvl0Go/TxB0AbmYy9shBNs2KJgiAIgnAqOGmBwzB/Hy4amNhq+2WnJzH7my189ds+eiUcrEw8rp+R57/ZwuQ3V5MU6U9iuB8GbcslyQnhflw1JJl7569HIUkkRwZw7wU9ufaMFJ76YhMhfjrSYoMoqW7ocD/7J4e3uW9E9xhqGmwYw9w5DctrLbz47RaaVlnfNKIzACN7xvLqd9vQqJW8dOPpPHJpHzKXb6feYsfpkukW2HZenBHp0Xywahdndu/Yh4hx/Yy88t02Js1djVIhMfX8HmhUSrrFBREZqGfS3NUkhPuRHOXfwREQBEH4b8m6LbHFH7XGSW+hCYk77tepXP85FT+/B4C1OAdNRCckhRK/rmcgqbQdXjbqzd45V7QodHDoklBv7NUlFC18DOPNc9tt++8paXSbs6PV9pq/lqONSDyiAhX1u/+g+MsncTUGWULPmkjwkKsBcNRVkPvGTcgOW6ulhnvnXIGtfD+dn1rnCRLkzb0Z0661Xvt2NDoyZuCe3eebOgjf1EHoojtT9duX6GK7YqsoYMeDA1D5heBsqEXlH+a+r/pKbBX57sIeCmWL3HeSqllqFIUS2eUAWSZo4KVU/PL+Ed2bPqkfjpoyzAXbqd+7ibgJrx7+pONJkkBqerDqPcgjKVQgH3w4KjusLfY3BRqPRNDAi6nesIjqTd8Se+3zjQ3LRF/+OH5dz2h1fKcpC6nbtpL8D6YQdvakVsVh9J36upeJy06CB1+FUueLy2GlPmc9hqS+je27SLr3a0+AsMU9NM852M5x3oSNvp3SZa8dzEHdTrDseJBU7iX3kkKJ7HR6rtnW2DXRRaV4Co600pE+txcE1HrP2aiLTqXmr5YPtZ3mOuxVRWjCjDjqyg9/XS8UzX8GPe9bmbBRGa2WaLcloO84ihY8Qux1L7Tc0dZ9tnf/zfojNf1OEARBEIRTzAkPHH4zbXSrbT0TQujZGCTsGhvEu7cN9+wbf6Y7+KZWKXngol5oVEqKKuuZ9tHvhAe6P2zMv3OE5/iRPWMZ2TO2Rfund47k9M6RHOqcnnGc07P1H4ttbb/3gp4tvt+WX8mY3gePS4r05/Wbhx56GkPTohiaFtXsuABeGH+wct6qVasAeP761tX0/t5fxdC0KHx16lb7mmsaV41K2aqf4H46O+0i71Ugvb0mgiAI/1VNyz+9kWUZZBlJceyZPIIHXe7Jz7Vz+mA63f2ZJ0deyZI5x9z+kVIHRrQbNGwKqLpsZnJmjSGg7zjCR2V49tdu/QH/7iM8gcPmVXqr1i/EN20Y6sAIwH2/Cbe9R/57d2Kc9BY+8ek4TJXse/U6VAER+KefhWnXr2gjkogb/yKm7PXkZt5IQsZ7nuspffxp2LMRQ3J/nA012GtLO3SfJd++gCFlIL5dhhz+4MNQ1BZjLd2HNtz9oNNcsB11SAzayCRc5lqCh15H1EXTyH3zZkw71iC7XKgMwZ5qth3h22UweXNvdr/3AEd9NS6LCU1ILChUyE47krL1ZwBJkgjoM5aC+VPx634mCnXHglX/BEPyAArm30vYqAyQZWr/Wk7cDXNQ+YfiqKvAYapCodVTm7Wy3QBVRwSedil7nrsAlX8Yumj3e9Gv6xlUrv4I386nIynV7pl7gZE4TJWoAyMJHnIVLlsD5vxtrQKH2qgU7DUlyLv/8BQX8YntSuWaj4m8yF04xTdtKBW/vE/YyMmAuzCIt9mLHT2uiV/XYZQseQFHtXtprzYyCXtFgSfnYtWGrzGknAbQmE/aBM3ybB4PbY1d86CuofNg5MXPU7n2U4KHXAVAQ+4WXDYzhuQBVK79hKDTLsVZX0397g1EXvRQiyCxNqYLBfPvRVJpkB02nA01qENisXhZzt70UMTQeTDyomeo+u1Lgk67BNnlpPirp9wrZRqDtfaaEndVYy9VpNuqnGwu2E7pMneBF5e1gV0zzkR2OXCZ6wjsfyFKnQF79QEkparNmb/+vUbhqC3Ft+swHM2WZetTBlC9YRG+nQdjLdmLrSwXW/n+VtvtVUU4/aKA6o6/UIIgCIJwEp20GYdHymp3cv+Hv+ForGx8x7ndUStPWopGbpu3Bp1GxS0j0/6xa7y+bBt/7C7jqataJ9YWBEEQjg9bRT65r43HkDqIhn1/Ypw0j4pfPmiV7N+UvZ7SJe5giLlgOwG9RqON7kzFz+/hslswTprXKhdce6wHctwz6zpQKMMzI6kD2ip20HyGnctmpmD+VKwH9qCNTMY/dzuSSk3KQ0v5e0oaft3OpGbjYmq3/IBx8jxsZXnUbV1Bfc5vlC57jfib5yI77ZT98B7lP76FvbaMhOjOnsAhQOW6BQSddqknT5nKN5ioix6k5LuXUAdGcuDrp3HZ3cU/Ii6c1uo+AvqNo3rTYgzJ/an5axkBvUZTWpwNgNNST96bE3E21CA7HUSOu9dTMEMTlkDxF0+CJKGL6ULcDS9hry2j6NOHPbnboq98yt1Xl5OCjx+gYe8m1AGRGCe/jUKjw5z/N4WfPox/eSF7VltR+gajUGnRhBmJueYZFGod/j3OoXrDl9T9vRK9sQdKrQFnfSWO2lLM+X/jlzaUhr2bMO/fSs7M0TgtJkKGXYfTUk/x549hK8tl32vjiTz/XiLG3Uv+e3ew/f4+uKz17nQkd31C8JCr2X5fb3QxXUia+gXQckZoYP/zKf/xTSIvaDuXnjdN+Q2Px5JlcC99DRx0qWe5dfDgK/GJ6w5A+Ll3sef5C9CExKGN7HhAtWbTEhr2bPR8H33FkxiS+qH2D3O/Z3uc49kXdPqV2CoKyHl6LMgyKt9gjJPnUZ/zG2Ur3kRSqlBoDcSNf7HVdSRJQp/QC6elzhOg1Sf2oXLtJ+g7uWccRl/+OEWfPULOU6OQXQ4MyQOJuXpWq7Y6elxz4aNvJ2/uRAAUah2x1z3P/rdv9RRHCW6cBRc8+CpyX78BlX/YseU5PERbY9ecJEkYb3mL4i8ep+yHTCS1Fk1wLFGXPYYhZSAN+/4kZ+ZokCQiL3wQdUA4top898myjOnvn1EFReOy1CFpfNBGpVK29JV2Zy9LkkT8LW9R9Nl0Spe+ArILv25nEnH+/Z5j1AERpDy01GsV6bb4xHYl8vz7APfDkrgbX0Zv7EH5ynfZM/siwD0TNu6Gl9sMHCp1voSdc2ur7SHDrqPw04fJfuocJIWSwIGXYNq1lqiLH26xPfa62Rwoth22r4IgCIJwqvjXBA71WhWvTTz22QPHi7eZhcfbbaO7/+PXEARB+H/TVKkW3Llkoy59BGvpXmKvn03MVTOp2fy9J9m/w1TJnmfPx5DiXkZrLtxB6oQfUeoD2fXoUIIHX0nyA4spX/kuFaveJ/qyxzrcD+uBPSTe/Rkuaz3Zj59JyLBrsZbmegplSEo1hZ8+TPWGRa1mSQHkv3eXZ0mk7LB5lo02L3bgslvZ+8Il7sqtzfKCVfwyH6U+gJTpy7EU7aJ65mhQuYMmLmsD+sQ+RF5wP8VfzSL78RHu5cWSAklSEj/xDbRhRnYvfp6wUbehDU8gf/5UT3+S7v0aANO2n3E5bdRsWe6pLCxLEg37/qTgw3uRlGp8k/sTf+MrmLLXe/rWkPsX5vxt2KsPYK8+QMiw66jZ+C2+aUNx2a3kZt6EuWgnIWdcj6RQUrXuc/a/cxudZ23AWVtG0eePEnXpowSffgU7HhqEw1RJ8eczUIfE4WyoIfGuTzjwzfNYy/ZhLdmD01xH9BVPcOCb59g14wx00Z2xVx8g+vIn2FhkIa1uE06LqdVrqwmNJzRmImEjJ9GwbzN1239B6RuCPrEPSn0AjroKyle8ScrDy9GExuOor0ZlCKT466dR+PjR/ZUcwF0gRKkPIP/d24m99jn8e5xN8VezqPr1U6IuehBHXTn+3UfgjU9cd9Iz81psa1pWDRA06DKCBl0GQMR5UzzHtBUwbH5u86+90YTEtVjmHXbWzYSddXOr40LPvNETFG+uveBX834fymUzYyvdR2D/8z3bJIWCyAvuJ/KC+1scG3TapQSddmmb12mScNv77V5f5RtM/MTXW53XfEzbO665Q8fVv8fIFq+hb5chXgNgbY2jN4e+NtByvFW+wXR56leg7bE7lDowgviJmV73RV38MFEXP+y1D6ULXkfS+JB0z0LPPqe5jl2PDqHLzN8I6DuO/e/cjrU4B21ksqdoCoD1wG4c9ZUodAY0oUYiLnjAU+Hc2z2Ce8Zu4Yf3YSvfjzaqM+aCHfjEuh/yx13fcmlx8/QIsuz0LCkO7DsObZjR81BJn9SPhn2b0Sf1xVKwnZIlL+Koq3AHHRN6EXvd8+x5/iJcdgsKtQ7jzW+gDokj+7EzcNktNOzZSNg5GURd8giFH95H8cLH8bfY0U1+naBBl+GyNlD0+aM4assp/uIJIsZOwb/nOViKsin48F5kpx1cLuJvmeuZ/SwIQuvUM4eulDiUKXs9klKNIanfiejeYVmKsin6/FHs1QdAlgkceDHhY+5EkqTGzzs34qyvIuycDE+1+sLPprvz8nqZaV3xy3z6RB1FDpBGWRlGJ5CFO0a0D7guPTOvOivDGA28kp6Zd/h/UIX/rH9N4FAQBEEQjodDlyrbKvJRB8egT+wDtJ3sX6HzRW/sgTrAPatOE2bEN839EEkX05n6ZsGvjjjWQhlNM2Wa7iE38yag7WIH2oiDf3A27NlISGMQQhfdGWdAHFL1/saAqsSBb2fjspnxiU9HXvMhSp0vfulnodAaKP7icRIy3kPlF0r1xm8IGzkZn7juRF36qKc/ACjVRF/0IPaqYsp/fIvYa59DG5aIUudHykNLKf5qZovCIU20EUnoYrsRdcl0Sr9/mYL5U5FUWvcyb5eLuJtewWUxsfORIah8g1H5hSC7nFSuno/Sxx91cKynGEXTknNT9jqMk97Gkr8NSaFEoda6ixCEGYm/eS57nr+IwH7j0ITG07BvM46aUnxTT4OiVQSedin73249uwigfOU7VP+xCIXWQPyE11sUbWjYtxl9ygBPkYmmAhCmnWuJn/DawWHSB7j7qtJ4KrT6xKdj2rnG6zX/n5l2rqXgw/sIPWuip6CEcGpT1RS2Wx3ZtGut+3fy9OWYC3aw+xn3EmOHqZLSZa/S6c5PUGj1lP3wBuUr3ybi3LvavV7pkhfRxXXDOHkepl2/UjD/nsPORDTvz/JUBZdlmT3PX4AhZSBKfQDWslziJ2aivTqV3c+Oo/qPRXSa+iV1W1dQtux1jJPnoY1IotM9C5GUKkw713Lgm+cw3vImEefdQ8P+rZ4iP0ULHvX0be2CTE/fSpe9hiH1dGKvm42zoYbdz12Ab5chVK75iJAzbyRowEW4HDZwudq9D0H4f9Ne6hlv6rN/Q6HVew0cyk4HkvLEhUZcNgt5cycQfeVM/LoOw2Uzk/fWJCpXzyfkjPFYCv4Gp6PV/TWl1PA207qpgvsxMKdn5vUCyMowfgDcBsxMz8wrAo45aJiVYVSlZ+aJRK7/UiJwKAiCIPzfU2iaPaDtaCJ7SeEpNoCkOOKk9u0Vyoi88MiWnrbQRrEDz9JBQPZSzEJSazxLlVMfdgf0av78DmQI7H8BJd+/jCGpH0UbvwEgoP8FOOrKMedvw7w/C9nVstCXb+ogzHlb8es+whMgrN+zESTIfnIkTnMtLmvrYmVOcx3W4mz2v30bIGOvLCTq0kfdOxVKlDpfajcvRVIoSbr3KzQhsWy/rxe28nx3PrkOFlz1TTmNuu2/oIvuArILbWQKLmsD2sgUdz87IHTEhHYK3MhIXjsj462TklLlCTxKCoVnPCWF0pP/UJZlZIe9Q337L/LtMoQuM48sQC+cuiRJoiFnAyFn3gCAT2yaZ/ZQw77NWItz2POCe7a17LB5Hu60p37PHxhveRMA386DcZqqcJpr2w001+/+o82q4JqQOE+fdFGpGDoPRmpMg2BrrEztNNe5Uz+U7nPP7HZ6/7eged8cEV1xbpmP01yLacdqareuoPwn9xJx2W7FVlmIvlMfSpe9hqP6AP69RovZhoLQQTunDybotEuozfoR2ekgfmImCrWWyrUfg6Sg+o9FRF/+OJXrFqDUB2DJ/xuf+O4E9B1H8cLHPbOHY6+fjTYiiar1C6ndugKX3YKtLA//nqOIuvghAOr+XsWBxc+By4XSN4hOd33qmUVsKdyF7HJ4ZhE3V/3HIvSd+uHXdRjgLrQVfcWT7JtzBQF9xpL//t046irJmTWG+JvndjgVzrkp+qCsDOMGIBCYkJ6ZtyYrw6gEngGGA1rg9fTMvDcP09R6oAdAVoYxAViSnpnXPSvD+DtwU3pm3t+N+1YBU4GdwKtAOu4Y04z0zLxvsjKMNwBjAR1gyMowXgMsAPwbj7s1PTNPPCn9Fzh5SQIFQRAE4RRkSB5AzaYlyC4njroK6ndvwMfYuujUP8G3y2BqNn/vqRjqqK/GVlFwRG00FTuQne4Ak7Vkb6sAnSGpnzsoCFiKs1HWHP4aSq0Bl7UekJBdLlzmOrRhCURd9CCyy4nLZm5xfNCQq6j67QusZXngcuIwVVH8+aP49xpD6iMrCD3zphYVh5uULHkBpd6f+Imvk3jXJyh0fgT2v6DFMU5znXvmoFaPadc6nPVVyLIT386DsVcU4Gys4owEyC58Ow+mZtNiwJ0D0mW3QmM+O0mhaDHLQKHxQaHWUb97AwDVv3/lKVBxJPSJfajP+d2TV9FRXw2AX9owKn754OC9NNS0244mJBbz/iwAarf84HldBeHfwBkQ43n/erY1q47s5iXALsv4pg0l5aGlpDy0lNRHfyL2uuePsheHe5rQsYdFKBQHqzJLEnJjgLBkyQsYUgeR+sgKEm59x/375Qj6Jssyxlvmeu61y8z16KJSCOx/IcbJ7yCpdex79TpMu349gnYF4b+vKfVM03/VG7/17FMagkh58HtChl5L+Y9voQmJI3jINYSOmEDKQ0s9qQpspftIvOsToi55xDN7OOWhpUSMm8qBb57ztGcu2E78hNdImb6cmj+XYKsswlFXQeHH0zDePJeUh5cRP/ENAM8s4uRp39Lp7s8o/npWq89hluLsVrOxtWFGnNZ6JJWWmGuexZDcn5SHlh5R/mylJEnpmXkDgLuBphwrE4Ca9My8/kB/4OasDGObTyIaA41nAYu97P4MuLzxuCggOj0zbxPwMLCy8RpnAs9nZRgNjecMAsanZ+aNAK4GljfObOwJ/NXhmxNOKhE4FARBEIRm/HuNRhfThZyZo9n78lWeZP8ngi4qlYhx97Lv1evIeWoU+165BkcHqwk3CTr9SrRRKeQ8PZbsJ0dS+MmDrWZDhgy7HoepgpynRlH2w1ycgbG098d19aYlBPQbR8mSOchOO7ayfdRuWU75T/PImXUumtD4Vmer/cOIu+Elypa9SkPuX+yZfTHqwEjP0/X6PX94vZbLXOf5Y736ty9R+vh5qlE3CRxwIbLDzr6Xr6b6j0Wo/N2vjy46FV1MF0q/m0POzNHIdhvm/VlEXfYYtdtW0pC3hd3PnIfTVNHuGAb0HUfxV7MIWP4wloLth10e6Y3KL4SYa54m761J5MwcTf47twEQNvoOnA01ZD85kpyZozHtWtduO0GDr6I+53d2P3s+5ty/WlS7FYRTnT28K7LNTNVvXwK0qo6sTxlA9R+LALAU7cJSuBMAfWJvGvZsxFqaC7hzW1pL9h72eobkAVRtaMyzmr0epW8QSh+/w55Tu+UHXDYzLmsDtX8tx5Dc8cKELnOdpzBU1fovPNvdlbDrvfZNVbrD0ze/rmdQvup9z8xic2O1aVv5fncu1TNvxL/HSM/YCILg1rRUuem/pjyAAAG93bmsfeLT230AG9BnrKcAndNcx/63M8h+ciRFXzyBtTjHc5xvl8EoffxRqHVoI5OxVxa2nZJkx2rKfniDnFlj2PvSlZ5ZxK1IbXzuamt7B/ywp6Gq8ctNQELj1+cA12dlGP8CfgdCgBQvp/s0HlMBBAOtE8nC50BTEuDLgaYEtucA0xrPX4V7hmF8474V6Zl5lY1f/wHcmJVhnAGkp2fm1R3J/Qknz2GXKkuS9C5wHlAqy3L3xm0zgJuBssbDHpJl+ft/qpOCIAiCcLw0VaRtcmiSfUmSvCb7P7SoQfNiA4crJNFUiKDJoUUVml8/sN+4Fh9+vTm0sETze2ir2IHSx//gMWotcTe8hEKtw1qWR0XWxch2KzmzxqAJSyBn1hj8up5B5IXTKP5qFrLDRvGXT6EOiCDuplfRhicQNOhyFFo9YSMnUbP5ewo/fbhFcRQAQ8pAYsfP4cBXM+k0ZQH1ezdRMH8q5T+9jaHz6VgKWr4WAKEjJ1EwfyrFC2dg6Hx6i33BQ68G3MUdVAHhJN71CSrfYKrWL6Rh/1b3WIQlEHrmTQT0GUv97g0UfHQ/Kr9QAnqOwrw/i05TFlCyZA4Krb5lcY/GJcclS+agDowg+f5FrFq1it7Dh3t9DQ59Db29Nn7dzsSv25ktXwed9+q+zd+XAX3GEtDHnetN7R9G8v2LPPuOaRm7IJxoh6mOHDL0Ogo+vJecp0ahi+2KvnF2t8ovhNjrZ5P/7h3u4k9AxPn3oo3o1O7lwsdO8bQnaXyIvb71z9qh2qoK3jy9Q3uafmc1/V5rYkg9nbLl7uBB2DkZLfqmt9iJnewupBM+5k6Kv3icnJmjQJbRhMSSkPEe1Ru/pfqPr5GUalT+YYQfxQMMQfh/5ZktrFB6Xd3QRKHx8XzdNHvYOOktbBX57J1zZev2aEwh4nLQVkqSplnETYVLvNFFpVCfs6HFNlv5fpRagydP89GwOj35dpwcjPVIwB3pmXnLD3O6OT0zr1dWhjEAWII7x+ErzQ9Iz8wrzMowVmRlGHsAVwBN+Vok4JL0zLxdzY/PyjAOBOqbnb86K8M4DPfy5Q+zMozPp2fmHXNyRuGf15Ech+8DrwGHvqBzZFmefdx7JAiCIAjCP8plM7PvpSvdS+1kmfq+1zP4qrb/KA0543oixt7dYlvzwFlA73MJ6H2u5/vmgVK9sYcnmGbo1JfOM1Z59kWOuxdoGXht65hDK902v0bzfc0rpxqSB7Roy1vfoWXQrq2AoCAIR0cTHE1Cxrte9yk0uhbFgprz7TyY5Gnfet3Xov1mD05UhkASJr/doX41D/J7qwp+6EOl5r9bmu9r63eWyhDYqv9NfVu1apWn2rNCoyPm6qdb9S989G2Ej76tQ/ciCMLhuWcBm9rc39bs4bboE/tQ9NkjntnBjvpqVIZAzyzi6MufQJIkzPnb8Inr3uLcwP4XUbrsdUw71+LbZQgum4Wizx8jtM28ycdkOXBrVoZxZXpmnj0rw5gKFKZn5tV7Ozg9M68mK8N4J/BNVobxDS+HfAbcDwSkZ+Y15aJYDtyRlWG8Iz0zT87KMPZOz8zbfOiJWRlGY+O15zUuZe5D6ziTcAo6bOBQluXVkiQlnIC+CIIgCIJwAih1viRPW+L5vnDVqpPXGUEQBEEQhCPUlOOwSdNKibb4p5/N/nm3Urt1BdGXP95qf1uzh9vSPCUJsozKL4TEOz9ucxZxcwqNjoTJb1P0+WMUfvYIyE4CB1xMyPAbOj4AHfc27mXLf2ZlGCXcq0YvbO+E9My8zVkZxi3AlcChxUu+AF4Gnmy27UngJWBr4zVyca9aPdRw4L6sDKMdMAHXH9GdCCeNJLdTPdJzkDtwuOSQpco3ALXARmCqLMtVbZ3fpHPnzvKuXbsOd9j/nVWrVjG8jaVQ/6/EmHgnxsU7MS7eiXFpTYyJd2JcvBPj4p0Yl9bEmHgnxsU7MS7eiXFpTYyJd2JcvJMkaZMsy/1Odj+E/56jDRxGAOW4y5A9CUTJsnxTG+feAtwCEBYW1vfzzz8/Pj3/DzGZTPj6Hn0ug/8iMSbeiXHxToyLd2JcWhNj4p0YF+/EuHgnxqU1MSbeiXHxToyLd2JcWhNj4p0YF+/OPPNMETgU/hFHFTjs6L5DiRmH3oknJq2JMfFOjIt3Yly8E+PSmhgT78S4eCfGxTsxLq2JMfFOjIt3Yly8E+PSmhgT78S4eCdmHAr/FMXRnCRJUlSzby8Cth2f7giCIAiCIAiCIAiCIAiCcCo4bHEUSZI+xZ3EMlSSpALgMWC4JEm9cC9VzuVgGW5BEARBEARBEARBEARBEP4DOlJV+Sovm9/5H3v3Hd5k1T5w/PskaZqkI110t6GTWbYIoggoIqKIOMA9cL114kSGi+EW/al9FXkduMWBiAjiwIkyHFQZLRTSSUv3Tprk+f2RNrQ0HQz3/bkuL5tnnHOekwLtnfvc53cYixBCCCGEEEIIIYQQ4i/isJYqCyGEEEIIIYQQQggh/tkkcCiEEEIIIYQQQgghhGhHAodCCCGEEEIIIYQQQoh2JHAohBBCCCGEEEIIIYRoRwKHQgghhBBCCCGEEEKIdiRwKIQQQgghhBBCCCGEaEcCh0IIIYQQQgghhBBCiHYkcCiEEEIIIYQQQgghhGhHAodCCCGEEEIIIYQQQoh2JHAohBBCCCGEEEIIIYRoRwKHQgghhBBCCCGEEEKIdiRwKIQQQgghhBBCCCGEaEcCh0IIIYQQQgghhBBCiHYkcCiEEEIIIYQQQgghhGhHAodCCCGEEEIIIYQQQoh2JHAohBBCCCGEEEIIIYRoR/dnD0AIbxRbLdmLJgLgqN4PigZdQCj2snx8zOGk3v3ZYbdd9fNaSlY9jupsAq2OiNNvxTxoAgB5y24lsP84zEMmtbmnNmsDpZ8uoWf6i22OZy+aSOzFj2KM64fqdPDbrf2JOX8RwcdOdZ9/YBKxFz6IMT7tsMd7pFwOO/vef4CazE9B0eAblULMtPn4BEcBUPrFi5R/9QqG+P7EX/5/ANRs+5J9Kx4EwL5/LzpzJBq9AUN0b/x7HUd97lZips0/rPGoqsr+NU9R8f27oCj4mCOInjYfQ3Tq0XlgIYQQQgghhBBCHBUSOBR/SaqvPymzPwageNViNL4meoy/BntZHnszrjjsdhvyt7Hv/YUk3PAq+rB47KW57HnqIvRh8Rhj+xxye6bEodTnbMEY14/Ggu34RiRSn7OF4GOn4rLVYy/NxRDb97DHezQUf/AwrsZaUu9dj6LRUr7hbaxLriHpjg9QFIXyr16h53UvoQ+L99wT0PdEAvqeCEDO4mlETp2DyTIAgIoNy49oPGVfvkxdzhZS5qxBozdSs+0rrM/OIGXeOjQ+hiNqWwghhBBCCCGEEEePBA7F34/LSf5rd1KfswUfcySWa5ei0Ruw7bdS+NY8HDVlaPRGYi58EENkcptbSz9dQo8J13mCZPqweHqckk7pp88Rd9kTba6t+W09Re/cj9Y/GGNcf69D8UsaRs2vXxB64iXU7d5M6AkXeQJr9Xt/xhjfH0WjZf9nz1Px3dsAhIyaTti4Ge4g6NOXYkoaRv2enzDE9iFk5HkUr3ocR00ZcZc/iannIFy2egrfvpvGgp2YqyupDp5H4MBTqNiwnOqt63A1NWLfbyVw4ASips5uO1X2Biq+X06v+79B0Wjd/Y88j4rv3qZu57dU/bgae2kue5+9kpCR5xF20pXdegsclcXsefqSdv3WbPuK4o8eR3XY0YdZiL34UbQGv7bvwSfPkjDzLTR6IwABfUdjShxK5cYVhIyaTs1v69m38mFwudD6B5N40xtt5kB1OYiYNJPAgadgL8sj76WZmMtKyN7gT/R59+OXNIzarA2UfPQEWv9gbIVZGOL7E3fZkyiK0q3nE0IIIYQQQgghhNQ4FH9Dtv17CR19CanzPkVrCqTqp9UAFLw+i+jz7iPlro+ImjqHwjfntru3sSir3bJho2UAjUVZbY65mhopeG0Wlv/8j8Rb3nEvl/bClDiUupwtANTv+RFT8nAUnR5nYy31OVvwSxxGQ24mFRuWk3zHByTdvoLyb9+gIe9Xz7OEjb2ClDlrse3bTeWmFSTe+i5RU+ewf80zAJSseRq/1ONInvUh1WNmUfT+Ily2esCdQRk/42lS5q6l6sdV2MsL285VyV58gqPRGgO8PHM2MRcsQmeOIPHmN7sdNOyoX0dtOSVrniLxxtdJuWs1JssASj9f2uY+Z0MNLns9vj0sbccT734PHDVl7nm/6llS5qwh/sr/tpuDxJvf9MyBLiCMhBtfpeqU+4mf8QxFy+89MMa834g+5x5S5n2KvTSX+t2bu/18QgghhBBCCCGEkIxD8TekD43DGNcPAGN8Gk3l+Tgb66jP2ULu0nTPdWqTrf3NqgooXR6z7duNT1gcvuEJAAQNP4vyb173OhbV2URTVQm2fbvwjUjCaBlIw96fqc/ZQuiYy6jbtQnzwAlofE0ABA46lbpdmwgccDL60DgMMb0BMESl4tdrFIqiYIjpjb08H4Da7V9RvXUdpZ89T2BtLariwF5eAIB/71FojYEA+EYm01RegD4kuvXDgbcsO1X1Orfd5a1fZ0M1tqJsdj92trsLhx1TwpButqiiKAr1e37ClDLckxGq8wsC2s4BuN9be3kBPkERFL51N+adm8j9LhBbcY6nRVPPgZ46jsbYftjL8vBLPuaInlsIIYQQQvw+TD+9RqlrN2HjZgCw56mL8QmOIvaihwEoenc+uqBIjHH9vdYe70zFhuX49xmNT1BEu3P1e36kcPl9qA47apMN89AziDh95mE9w+5HziLp9ve7dW1D/jbyl93qKc9UuekD8l+9g36P/4qi9aGxYAfmtXNgzLeHNRaAHXNHkTzrQ3T+IZ5j1VvX0ViUTfiE9A7ruwshRGsSOBR/O4pO3+qFBtXpBNWF1hjo+Ye3I4aoVBpyt7apZ9iQ9yuGqJT2/RwcYOyAKWEIVT+tRmcOR1EUTAmDqdu9mXrrL8QlDMZWvLt7z6LRoGl5rSioTgfg3kzEcvWz+EYksX79egaPGeMe996f29yvaLSoLkeb9n179HQH9Rpr0Rr82zxzYNpJ3Xq+rsbt6VdV8e9zAvFXPNXhfVpjABq9CXtpbpuaig25v+KXciygep331nPQWvGqxegCwqg6ZT6DRo/m15sObLBy8Nzich7GkwohhBBCiD+CIyyF+pwtMG4GqsuFo7YcZ2ON53xdzhaiz7kHV1PjIbdd8f07+Eb38ho4zHv5VuKvfAZjbF9Ul7PTn9270t2gIYAhujf2snzPz+n1OVvwjUyiIe83TD0HUZezBUdY+99RjlTggPEEDhh/1NsVQvxzyVJl8Y+gNQagD42j6sePAHegqSF/W7vrwk6+mv1rM7CX5QFgL8tj/9pnCDvpqjbX+UYmYS/Lw7bfCkDl5pUd9u2XNIyyz//nya4zJQ6h8od30QX2QGsy45c8nOpfPsFlb8Blq6f657WHlPkW0PdESte/hNqcJdiyzLk7NL4mgo49m6J356M2B84qvn8X1d6AX69R3W6nO0wJg6nfvRlbyV7AXV+xdQZgi7Dx11D49j247O4f+mp3fEPd7k0EHTMFU8IQ6rJ/wF6aC4CjrhLoeA6cjTXozOGgaKjY+J4EB4UQQggh/qaawlI8JYBsRVkYonuh9fXHWV+Fq8mGbd9uDM2rjly2eqzPX0vWfePIffFGz8+IxaufZNeDZ5A1fzz5r81CVVWqfvyIhtyt5L14E9mLJnp+Bm3hqCnFxxwOuD8QN0S5P4guXrWYvJduJueJ6ey850TKv3kDAGdjHTlPnk/2A6eRteAUqn/5xNPWbzPdyQm1WRvIWTzN6xhbKBoNpuaVSgANuZmEjr7EHTwF6nO20BSaQv3en9n9yFlkL5rI7kfO8gQ2Gwuz2PXQZLIXTSR7wQRsJXu6Nc8VG5ZT8Na8dsf3ffgoectuRXW52L/uWXY9eAbZCyZQvOrxbrUrhPjnkoxD8Y8Rd/mTFLw5l5KPn0J1NmEeNhnjQTsaG+P6ETllFnv/OwOcDtDqiJxyl2fpcwuNj4GYCx7AmnE5Wv9g/JKOobFwp9d+TYnDKHrnfvwShwLgY45Adbnwb35tjE8jaOQ57HpoMuDeHMUY198TvOxK+MQbKXrnPrIXTsBcW0txfK9DWpoReead7HtvIVn3jgFFg29EEvFXLznqG4XoAkKJveRR8l64AdVhByBi8m34RiS2uS50zGU466vIXngKKFp8AnvQs3mDG43eQMyFD2Bdcg2oKrqAUBJufK3NHKCq6ENj6Zn+IqGjLyZ3ybUENjZhH3ZgObgQQgghhPh7UY3BKBod9vIC6nK2YEoYQlPVPupytqA1BmCI6e1ZndOQ9xup89ahM0ew+7Gp1O/ejF/yMYSeeCkRp90EQN5LN1OT+RnmIZMo+3IZkVPnYLIMaNdv2ElXsvPesfinjsS/74kEjzgbjY8BgMaCHSTdvgKXvZ5di04joP84dAGhWK5egtYYgKO2nN2PTCFgwPh2P1t3NMbWWuqlmxKGgEaDX+pIij94CMbNoD5nC45jrsM3IonEW5ajaHXU7viGfR88jOXq5yj/+lVCx15O8PCzcDns4HId9twXvbcIV2MNsRc/Su32r7GV7CXpzpWgqlifnUFd9g/Nq4OEEP9GEjgUf3mta4zoQ+NInbfO87rH+GsOnAuLJ+H6ZV22Zx48EfPgiV7PxV3ymOfrgH5jCOg3psv2TD0HkpZhbXOs94K2tUh6nHQVPQ7Kajz4WVr33fqcRu8OYgJtlioHjzyX4JHneu7pKJio8fEletr9HY7/4LEeLHHmW21ed9avfy93HZXOKIpCxKSbiZh0s9fzAf3GEtBvbJtjreegNd/wBFLmrmX9+vUMGTOGyCl3useROhL/1JGe62Kmze90TEIIIYQQ4s9nShpKfc4W6nO2EHbSlTRV7qO+OXDY8iE9dFzLui7rO/avew6XvQFnXSW+UakEDji50z4jTruJoGOmULv9K6o2fUDV5pWen38DB4z3fLjtlzqS+r0/E5g2jn0rH6Y+eyNoNDRV7sNRvd+TtdjVGNs+7zBKP3ue+qRjMFoG4tvDgm3/Xhw1Zbhsdbj8w3E21JC/7FZ3RqGiuJMfcK9yKlnzNI7KfQQOOtVTm/1QlXz8FMaeg4i98EHAXVu8dvvX7HrgNABctjpsJXskcCjEv5gEDoUQQgghhBBC/On8Et2Bw8bCHRiie+ETHE3pZ8+jNQQQPPI8z3Xealm7mhopfHMeSXd+iD4kmuJVi71vluiFbw8Lvj0uJmTU+Wy7YzCO2ormjtpmESqKQuXGFThrykm+axWK1ocdc0ehOtr3051626aEwTRYf6Fu9yZP2SOfoCgqN6/E1BwoLV71GH6pI7FcswR7WR45i6cDEHTMFIw9B1Pz6+fseepiYi96CP/DKEVktAygITcTR11l88aEKj0mpBN6woWH3JYQ4p9JahwKIYQQQgghhPjTmRKHUZ35GVpTEIpGi84vCGd9NfV7fsSUOKTTe1uChDr/EJyNdVT9tNpzTuPrh6ux1ut91ZmfeeoP2kr2oGi0aE2B7nNb1+FqasRRW0Fd9vcYLQNxNtSgCwhF0fpQu/M7msrzD/t5tQZ/fIKjqfz+nQP10hOGUPbFC57AoauhxrOpS8WGdzz3tmw2GDb2cgIHjKexYMdhjSGg74mET0hnb8ZlOBtr8e9zIhUb3sbZWAfgzqisKT3sZxRC/P1JxqEQQgghhBBCiD+dIaY3zroKTMec2eZYva0enX9Ip/dqTWaCR00ne+Ep+ITEYrIM9JwLHnkOBW/MQaM3kHTb+2j0Bs+5yo3vU/TufDR6I4pGS9zlT6JotAAYLQPZm3E5TeWFhE+8EZ+gCIKGT2Hvf69g14OnY4jti29E0hE9sylxKNVb16EPiW5+PYTilQ+7A4e5NYSNv4b8ZbdS+tlS/Hodd2Dcmz+kctP7KFofdIE9CG+u7Xiw7IUTQHHnC5mHTMIY06fdNeYhk3A21mL97wx6XvcyQcPOZPejZwHuzRbjLnsSXUDYET2nEOLvSwKHQgghhBBCCCH+dIpGS7/Hf2tzrHUdcOi8lnXk5NuJnHx7u3bNg0/DPPg0r33Gz3i6w/H4hid4av+10PmHkHz7Cq/X91u8vcsxHixm+gJipi/wvPZPHXmgfnruevwSh9Lr3vWe85Fn3AZA+KnXEX7qdR22Cx3XMm+pV956bkOOm0bIcdMACBt3BWHjrui0bSHEv4csVRZCCCGEEEIIIYQQQrQjGYdCCCGEEB1oqiii4K152IqyQXUR0P8kIqfORtO66H2znMXTiJw6B5NlQJftFrw5l/qcLagOO/ayPM9St/BTr8c8ZFKX9xe+fS9VP62m98LvUTTyObAQQhxtEafP/LOHIIQQfwkSOBRCCCGE8EZVsS65hpDRFxFy7VJUl5OC12ZRvPIRoqbOOaKmW5al2cvy2JtxBSmzP+7+sFwuqn9Zi09wNHW7fmizHE4IIYQQQoijSQKHQgghhBBe6Eq2ofj4EjLyPMBdeyvqnLvZeffxRJx+C6CQ/8pt2Iqy8Y1MxtXU6Lm3ZttXFH/0OKrDjj7MQuzFj6I1+HXan6OukoJXbsdemouiNxJzwQMYY9sXsa/L+g7f6FSChp5B1eaVnsCho6aMvBdvxFFXgckykJptX5I8axU6/xAqfniPsvUvoTqbMPUcRPT0BZ7i/0IIIYQQQnRE1rYIIYQQQnihqyrAGJ/W5pjWGIBPcDS2kr2Uff0KGr2BlLlr6XHq9TTkZgLgqC2nZM1TJN74Oil3rcZkGUDp50u77K9k1eMY4vqRMnctkWfeTv6yW7xeV7l5JUHDziRw4ASqMz9DdTYBULz6CfxSjyPlrtUEDpxAU3kBAI1F2VRtWUXSbe+6MxsVDZUbVxzBzAghhBBCiH8LyTgUQgghhDhEiqJQn72R0LGXAWCM7YMhpjcA9Xt+wlaUze7HzgZAddgxJQzpss263ZuwXP0cAP69RuGsrcDZUI3WGOi5xuWwU/PbF0Sdczdagz+mnoOo2fYVgWknUb97s+f+gH5j0JrMANTu/JaGvEx2PTTZ3Ya9EV1A2NGZCCGEEEII8Y8mgUMhhBBCCC+c5hgacte3PdZQQ1NFIfoeluYjSvsbVRX/PicQf8VTR2EUbduv3fYlzoYashdMAMBlb0CjNxKYdhKoqvcmVJXgY88hcsqdR2E8QgghhBDi30SWKgshhBBCeNEU3hfV3kDF9+8CoLqcFL23gOAR56DRGzGlDKdy0woAGgt30liwAwBTwmDqd2/GVrIXcAf3bMU5Xfbnlzycio3vA1CbtQGtfzBaY0Cbayo3ryT2wofoveBb93/zv6Fm+9e47A2YkoZR9eNHgLvGorO+CgD/3qOo+mk1jppSwF1L0V6Wf2STI4QQQggh/hUk41AIIYQQwhtFIf7qJRS+OZeSj/8PVBcB/cYSMfkOAEJPuJj8V24je8EEDLF9MVkGAqALCCX2kkfJe+EGVIcdgIjJt+Ebkdhpd+GTZnraU/RGYi95vM15l72B2m1fEnP+Is8xja8Jv6RhVG/9lIhJN5P7wg1UbvkQv5QR6MzhaHz9MPiHEHHGbex56mJwuUCrI2b6fPShsUdztoQQQgghxD+QBA6FEEIIITqgD4mmZ/oLXs9p9AbiZzzt9Zx/r1Ekz/qw6/ZD40idtw4AnV8QPa/teBMVjd5I30e3tjtuuWYJAK4mGwnXv4Ki1VGXs4W6rA1ofHwBCBp2BkHDzuhyPEIIIYQQQrQmgUMhhBBCiH+ApopCcpemg6qiaH2IueDBP3tI/ypNFUUUvDUPW1G2Ozu1/0lETp2NRqdvd23O4mlETp2DyTKgW21XbFiOf5/R+ARFdHs8ectuJbD/OMxDJnmO/TazD/0Wb+92G0IIIYQQEjgUQgghhPgH8A1PIGX2x3/2MP6dVBXrkmsIGX0RIdcuRXU5KXhtFsUrHyFq6pwjbr7i+3fwje51SIFDIYQQQoijQQKHQgghhBBCHAFdyTYUH19CRp4HgKLREnXO3ey8+3giTr8FUMh/5TZsRdn4Ribjamr03Fuz7SuKP3oc1WFHH2Yh9uJH0Rr8POerfvyIhtyt5L14Exq9gaTb3qc+ZzNF7y1EdTkxWQYQPX2hZ1l6d6iqyr73F1Hz23pQFMJPvYGgYWdQm7WB4lWPo/MLxla8G7/kY4mevgBFo+lynEIIIYT4Z5LAoRBCCCGEEEdAV1WAMT6tzTGtMQCf4GhsJXup3fkNGr2BlLlracjfzq4H3cuHHbXllKx5isQbX0fja2L/J/+l9POlRJx2k6cd85BJlH25zLO02dXUSP6y20i46XV8IxLJe2km5V+/Sti4Ge3GVfT+IkrWtK/DWf3zxzTmbyNlzhocteXsfmgyfinDAWjY+wupd3+KT0gMe5++hOqfP8YvdWSX4xRCCCHEP5MEDoUQQgghhPidKIpCffZGQsdeBoAxtg+GmN4A1O/5CVtRNrsfOxsA1WHHlDCk0/ZsxTn4hMV5dukOHnE2ZV8u8xo4jDprdrsahwB1uzdjHjYZRaPFJ7AHfinH0mDdisbgj7HnQPRh8QCYh02mbvdmFB/DIY9TCCGEEP8MEjgUQgghhBDiCDjNMTTkrm97rKGGpopC9D0szUeU9jeqKv59TiD+iqe635mqHvY4u9OGcvA4FeXwximEEEKIfwTNnz0AIYQQQggh/s6awvui2huo+P5dAFSXk6L3FhA84hw0eiOmlOFUbloBQGPhThoLdgBgShhM/e7N2Er2AuCyN2ArzmnXvsbXD1djLQC+kUk0leV77qnY+D5+KSMOabx+ycOp2rIK1eXEUVNG3a6NGC0DAai3/oy9NBfV5aJqyyr8koZ1e5xCCCGE+OeRjEMhhBBCCCGOhKIQf/USCt+cS8nH/weqi4B+Y4mYfAcAoSdcTP4rt5G9YAKG2L6YmoN0uoBQYi95lLwXbkB12AGImHybZxlyi+CR51DwxhzP5iixFz9C7tL/eDZHCTnhwkMabuCgU6nf8yPZC08FRSFyyl34mMOxFe/GlDCEfSseorFwB37JxxI48FQUjaZb4xRCCCHEP48EDoUQQgghhDhC+pBoeqa/4PWcRm8gfkb7TUoA/HuNInnWh522bR58GubBpx24p/fxpMz+uNN74i55rN2xfou3A+66i1FT5xA1dY6XsRqJv/KZwxqnEEIIIf55/vClyiUfP0XW/JPJXjCB7EUTqd/z0x/Xt5dd5QCcjbXsvPsEbCV7AFCdTWQtOMUztpZC0k2VxVifvxaAeutWCt++p8s+W+7t6njFhuUUvDWvew/iRenn/8Nlb/B6LmfxNHbeO5bsRRPJXjSRqh8/Oux+AEo/W8qvN6bibKj2el51uSh8+x6y5o8na8Ep7HrwDOyluQDseeZSnPVVR9R/i8bCLHKemM7Oe8ew854TKV79JGpzzR5Xk42cJy8ge9FEKjcf+CG3/JvXyV16nee1s6GGnXef4BmfEEIIIYQQQgghhHD7QzMOUwNdVP/6GcmzPkLj44ujthzV0fSH9b9/7TOEn3p9u+Nagz8RZ95J4ZvzSLjxVfavW4Jf4lBMCYPbXOcTFIHlqmcBMFkGYLIM+EPG3R2ln79A0PCz0OiNXs/HXf7kIY9XdTpQtO2/RSo3r8RoGUD1z2sJHnluu/NVWz6kqaqYlDlrUTQamiqK0PiaAEi47uVDGkNHXPZGrM/OIHr6QgL6jsZlb8C65BrKv1pG6ImX0pj/Gzgd7T6NDx51PhXfv0Ptjm/w7308xaseJ3jkeZ7dA4UQQggh/q38U0finzryzx6GEEJ0qeTjp6jc/AGKogWNhpjzF7X7/f1363vN017jCgA75rqzs3X+IYfUpvW5q7GX5eGy1eGoKUcfFgdA9LT55L1402G1eSgy0y3vAy+nZVhXNL/eCbySlmFd0Pz6XeA1IBAYlpZh9T4BR2cszwCjAD2QAOxsPrUAuB64LS3Duvkw2l0MWNMyrE80v14L5KVlWK9sfv0YUJCWYX38iB+ie+MxAc8DA3DvoFYJnAqEAavSMqz9D6GtKUBWWoZ1W/Pry4BP0jKshUdjrH9o4DDYV0XnF4LGx9fdeatv/Nod31D03kJPrZbo6QvR+PiyY+4ogkecTXXmp6hOB/FXZmCITKZ41WKaKgqwl+ZhLy8gbNwMwsZeDkDFD+9Rtv4lVGcTpp6DiJ6+gOKVj+CyN5K9aCK+USnEX/5/bcYWNPR0Kja8zf5PnqX8m9dIvmt1u/Hby/LYm3EFqfPWUZu1gdJPl9Az/cWjPk95y24lsP84zEMmAe7sxH6Lt1ObtYGSj55A6x+MrTALQ3x/4i57krL1L+GoKibnieno/IJJnPlWl3046iopeOV27KW5KHojMRc8gDG2j3teq4ppKstH6x/cbvc8234rLlsd0WfNZv/aZ7wGDpuqS/AJDEfRuBNafYKjPOda/0VavPpJqjZ9gE9wFFr/EIxx/ekx/hpyFk/DpAlh1w+P42yoJvaih/FLHt6mj8pNKzAlDiOg72jAvawmetp89iyehnnIJPJeuhlHTTnZiyYSf9Wz+DbvaKgoCtHTF5L34o3EXvIYtTu/JXnWKvZ/9jwV370NQMio6YSNm9Hm/QbYv+45XLZ6Ik6f2a33UQghhBBCCCHE0aUr3UX1nr9eQtKRsFyzBOCoxxky0y26tAyroxuXfgccB6zITLeEArVA60+SRgLX4Q5sHcl4tGkZVmdn16RlWK9rvrYn7gDaoFb3H8nEfwecCzyRmW7R4A7QBbY6fxxw8xG0f6huAorTMqxpAJnpll7A4X4jTwFWAduaX18G/Ap0O3DY2ffKHxo4/KVcQ1NlETvvHYN/r1GYh56Bf+oIXE2N5C+7jYSbXsc3IpG8l2ZS/vWrhI2bAYDWL5iUu1ZT9uUySj9dQuxFDwNg27ebhJvfxGWrI+u+sYSOvghbyV6qtqwi6bZ3UbQ+FLwxh8qNK4icMouyL1/utB5M1Dl3k33/ScRc8CA6v6BuP1e9dSvlX7/qGVd3tAQxAcy1tRQrDgIGnNzlfQ15v5E6bx06cwS7H5tK/e7NhI29nNLPlpJ485sdfgqR9+JNaPQGABJufJ2SjxZjiOuH5drnqd35LfnLbvHMTUNuJkm3vuu5vrWqzR9gHjYZv+Th5C+7FUdNKbqAsDbXBA05nd2PnUPd7k349zqOoOFnYYxrGyyvt26l+uc1JN+1GtXlYNcDk9peo7pIvnMl1b9+TvFHT5B40+tt7m8sysIYn9bmmG8PC05bHYrOl5gLH+rwL1xjbB8C+o5mz5MXYLlmCbbCnVRsWE7yHR+gqiq7HzkTv5Rj0ZrMHbwLQgghhBBCCCH+DJrGyr9sQlKL+r2/UPDqHSTd+QG4XOx6eDLxM57BEN3rsJ65bP1L7cbustVT+PbdNBbsRHU5mJRiCgJPttkkwAD4ZaZbzgCeAtJwx4DuTcuwfnBQF98CLQGN43AHoSZmplsUoCfQkJZh3ZeZbgGIzky3rAGSgPfTMqx3NPd7CnAf4AvsBi5Py7DWZqZb9gIvAKcAT2emW8q9XXcI03FuZrolAwgCZqRlWL/OTLdogQeBMc3tPpOWYX3OyzMubv66H+7AWlRmuiUYqAf6AD9lplvuBs4AjLiDjdcAvXFnZA5vftaewMq0DOuAzHTLUOBxwB8oBS5Ly7AWZaZbbgSuBRzAtrQM6/SDxhMFWFtepGVYdza3DaDNTLc8j/u9KADOTMuwNmSmW64CrsadjbkLuBgYBEwGTsxMt8wF3gCGAa9lplsacAd9+3YwxvXNzzgKWAm0L5DMH1zjsNGpkDxrFTEXPIAuIJS8F66nYsNybMU5+ITFeXZmCx5xNnXZP3juMw92B9iM8WnYy/I9xwP6j0Pj44vOPwSdfyiO6lJqd35LQ14mux6aTPaiidTu/K7b9etqt32JzhxOY+HOri9uxWQZcEhBQ3AXyU6Z/TEpsz+m6pT5RJx+S/f66jkQn+AoFI0GY2w/7GV53bov7vInPf3p/IOp272J4GOnAu5i187aCk/NwsAB470GDQEqN39I0LDJKBoNgYMmeK2X6BMcReo9nxN55h2gaNjz5AXU7vimzTX1uzd5+tEa/AlIO6nNeXvsUMD9njeV5+OVohza8VZCT7wUn6AI/HsdR92uTZgHTkDja0Jr8CNw0KnU7drUZRtCCCGEEEIIIf5Y9oj+noSkgjfmUJv1PYAnISl+xjOkzv0E1emk/OtXPfe1JCSFnnARpZ8u8Ry37dtNz+uXkXznSkpWP4HqbKKxKNuTkJQy+2NQNJ6EpJbf5TsKGoL79/aAASdTvPJRit5fRNAxZ3mChi0JRIfC29hL1jyNX+pxJM/6kMSb3+SGY4NiM9Mtfs23jAQuTcuwjgPmAJ+nZViPAcYCj7S6rsUWoH9mukWPO1i1AfcS4T7Nr79tde0gYBruQOS0zHRLXGa6JQyYC5yclmEdAmwGWgc5GtMyrMcDn3ZxXXfomgN4NwMtG0/MAKqan/EY4KrMdEtC65ual+06MtMt8a2e8YfmuRoGbE3LsNqBp9MyrMc0LxU2AqenZVi3A/rMdEtic3PTgLcz0y0+uIOy56RlWIfiDpAubL5mFjA4LcM6AHcA8WAvAHdmpls2ZKZbFmSmW1JanUvBHfzsh3sJ89nNx99rHttAYDvuwOl3uIN+t6dlWAelZVgfwj2vFzZnazo6GSNAUFqG9cS0DKvXoCH8CbsqKxqtp36KIboXFd+/iyG2b+f36PTuLzRacDnbH28+p7ocoKoEH3sOkVPuPKRxNVUWU/rFiyTfsZKcJ6bTkD8NY6z3jU1+b4pG69nkQ1XVNmnXbZ9Z02Y+jkLP7mY7qJPYkL8d+/697Pm/i9xjc9rRh8UTeuKl7a7V+PgS0G8sAf3GogsIo/qXT/DvffyBC5qfryOqxsc9Io0W1dn+GQ1RKdRlb2xzzF6ai9bXD63Bv9O23Q0roLTEzb2PRdHoQHUdGJPD1nW7QgghhBBCCCF+Pz4Gkmetom7XRuqyNpD3wvVEnnknhrh+7RKSyr5c5lnJ2DohqernNZ7mWhKS3ElJ7ROSwL1i8OCVdl0JP+0mdj80GcXHl+jz7vMc72wVZEe8jb12+1dUb11H6WfPu6dFoyhAS/H+dWkZ1vLmr08BJmemW25rfm1ovm57S/tpGVZbZrrlN2AIMAJ39mEi7gDbYNxZaS0+S8uwVgFkplu2ARbc2X99gW+bM+b0uANzLVrqqY3o4rrueK/5/1twZ0O2POOAzHTLOc2vzbiDb3sOuvfb5mc6DncGXkzz11WtnnFsZrrlDsAEhAC/AR8CbwPn4c5snNb8Xy+gP7CuJVMQKGpuZyvurL8VwIqDHyItw/pzcyDyFOBkYFNmumUk0ADsScuw/uzlOftnplsW4J5vf2Bth7N0QGdjhAPvTYf+0MBhtMmFrWQPvuHuwG9D/jZ8QmPwjUyiqSwfW8lefMN7UrHxffxSRhxWH/69R2F99irCTpqBLiAMR10lrsZa9KGxoNGhOptQtD7t7it6537CT70On+Aoos6eR+Fb80i8ZTlKN7LXjjZ9aCwNuZkEDT2d6l8+QXV2vcxdY/DD1VgL3SyY6pc8nIqN7xNx2k3UZm1A6x+M1hjQ6T1Vm1cSftrNhJ96YFfiHfNGYS/Ld89vs4bcTHSB4fgERaC6XDQW7MAQ07tNW6akYyh44y56TEhHdTqp+fULQkYdnLnbsaBjzqJkzTOeTU5c9kYK376HsPHXdLuNFu5l17fRY0I6qCrVP68l7rLF6ALDcNSU4aitQONrojrzcwL6nnjI7Qsh/joUW63nU15H9X5QNOgCQrGX5eNjDif17s8Oq92KDcspen8RPkGRqA47YeOuJOT484/auCs2LKc+dysx0+YftTaFEEIIIf6u/qoJSa056ypx2epQnE2oTTaU5g1DD4e3sauqiuXqZ/GNSAIgVVEyVVXdnpluORaoa307cHbLUthOfAeMBgLSMqwVmemW73FvRjIYeLbVda0zapy440oK7mBlRz8At4ynq+u6o6X/lr5b2r0hLcPaVSCtpZZjGu6lynnArUA18EJmusUAZODeACYvM91yL+5AK7gDbMsz0y3vAWpahjU7M92SBvyWlmH1trPYJNzzORmYl5lu6XdwDcHmJdrvAe9lpltcwGnAu7Sf45bsrpeAKWkZ1l+al6SP6eJ5wT03HY0R2n6vePWHLlU2aCH/5VvIuv8kshdMwFaUTcSkmWh8DMRe/Ai5S/9D1oJTUBSFkBMuPLw+olKJOOM29jx1MdkLJrDn/y7EUV0CQMjxF5C9YAK5L97Y5p6a7V9jrygg+Dh34CpwwMloTWYqf3i3W33WW7eS/+odhzVeb4JHnU9d9g/semgyDXt/9uxI3JmQUeez95nLyFk8rVt9hE+aSUNuJtkLJrBvxUPEXtL1xkGVW1YSOGhCm2OBAydQteXDNsccNWXs/e8VZM0fT/bCCShaLaFj2mYlmnoOJDBtPNkLJ5K75BqMljS0xkC6S6M30PPapZR8/BQ77x1L9sJTMFoGEjrmsm630cIYn0bQyHPY9dBkdj18JiGjpmOM64+i9XF/SvTImVj/ewW+kUmH3LYQ4q9F9fX3lG0IOf5CwsbNaH69ulUW8uExDz2dlNkfkzjzLfatfJim6v1HadRCCCGEEKKFproIW8mBRDJvCUnAESckVf20GkdNKeDeXNRTNq05IakrBa/fRcQZtxJ0zBSKVjxwWOPoTEDfEyld/5JnteKgyA6WDrqz0m5orldIZrqlo+2nv8Vdz++X5tdbcWcIxuPOuuvM98CozHRLcnMfpsx0S+oRXHeo1gL/aV46TGa6JdXLcmxwP+PpQHlahtXZnJUZhHu58gYOBAlLM9Mt/kBLBiNpGdbduIN48ziQpbcT6NGcKUhmusUnM93Sr3nzlbi0DOsXwB0cyBD0yEy3jGqur0jzEvG+tKp52IEAoKj5OVsHzWqaz3l77XWMXfTTxh+acZhToyHp9ve9nvPvfbzXlN3eCw4spTdZBnh2DD54Z9uWnW8BgoadQdCwM9q1FXXWXUSddVe74wF9TiCgzwltjvX8z/88X/db7M7g1YfGefpp+XSjZVwmi/cahy33dnU8eOS5nh2KfQJ7kHzHCs+5lk85WvcJtMk8CRt7uaeI68G87bKs8wui57VL2x3vbMfg3vO/bXcs+py72x0L6DeGgH5jvLfR6v0MO/lqIk6ficveQM7j52I86SrPeHPXr3eP0z+kzT2tGWJ6d7iD9MFzdbDW7yVAj5Ouokdz/611Nq9CiH8Yl5P81+6kPmcLPuZILNcuRaM3YNtvpfCteThqytDojcRc+CCGyOQOm9EFhKEPs9BUXoCjch9F78zHaatD5x9C7CWP4mOOoCHvNwremINqb0Dfw0LsxY+gNZnJWTwNQ2xfGvb+jLOxltiLH8HUc1Cb9h01ZRS8MZumcvcmaVHn3o1f0jG/58wIIYQQQvxlKI5G8l++BWdDNYpGh76HhZgLH2yTkNSyOcrRSEjC5QKtjpjp89GHxnoSkgzx/Tusc1jx/bsoGi1Bx0xBdTnZ/ehUand+i3+vUWQvmnhYy5UPFj7xRoreuY/shRNAVblheFBMB5fOB54AtjYHD/fiDp4d7Dvcy5MfAEjLsDoy0y0lQF5ahtXl5XqPtAzr/uYMuDcy0y2+zYfnAlmHc91hWIp7Oe+Pzc+4H/dOwwfLxL2b8usHHfNPy7CWAjRvSpKJe54O3vzgLeARIKH5eezNy6P/LzPdYsYdY3ui+XlebT6mAIvTMqyVB7WVBPy3ebwa4CPc2YaWTp5zHu66jNbmMbYEB98Enm/ekOUc3JmJz7baHMXbGLsKBh+gquof9l9qaqoq2vviiy/+7CH8Kaz/u17NWniquvPesWrxx0+3OfdvnZOuyLx4J/PincxLe63nZN+Hj6slnzyrqqqq2kpz1a3XJaj1ub+qqqqq1uf/o5Z//66qqqq6+4npamNxjqqqqlqX86O6e/G0du2Wf/e2mv/mXHdb+63qb7cPVu1VJequh6eoTdWlqqqqasWmlWresltVVVXVrPmnqDU7N7jHsfJRteDte919PX6emvfqHaqqqmpt1vfqzvtPbte+9X/Xq7XZG919leWrO+8de1TnRRwg8+KdzEt7Mifeybx4J/PincxLezIn3sm8eAdsVv/A+I789+/57w/fHEWIFvFXPPVnD0EIITz0oXEY49xZ+y07ujsb66jP2ULu0nTPdWqT942Sqrason73ZhSdnpgLFuGsLaexKIs9TzVvKOVy4hMYjrOhGmdDNf6p7qUzQSPOIXfpfzztBA1zF+H2SzkWV2MtzvqqNv3U7vgW275dntfOxlqcjbXd2xhKCCGEEEIIIQ5Bl4FDRVFewJ3GWqKqav+Dzt2GO02zh6qqpb/PEIUQQojfX5vC2IrGvaO76kJrDOzWchLz0NPblJBoLNiBb1QKybevaHOds6G6q5Ec9PKg16qLpNveR6M3IIQQQgghhBC/p+5Ugn8JOPXgg4qixAHjgdyjPCYhhBDiL0FrDEAfGkfVjx8B7vIeDfnbunWvPiIRZ205dTlb3Pc6m2gszEJrDERrMlO3ayMAlT+816Zwd9WWVQDU7dqExhjQbuMo/z4nUPblS57XDXndL08ihBBCCCGEEIeiy4xDVVW/UhSlp5dTi3HvDvPB0R6UEEII8VcRd/mTFLw5l5KPn0J1NmEeNhljbN8u79Po9MRf+V8Kl9+Lq6EG1eUgbOwMDNGpxF7y2IHNUcLiib3kUc99WpOZ3Y+c5dkc5WDR591H4ZvzyF4wAdXlwC/5WGIuWHRUn1kIIYQQQgghABRVVbu+yB04XNWyVFlRlMnASaqq3qQoyl5gWEdLlRVFuRq4GqBHjx5D33777aM09H+O2tpa/P2lNlVrMifeybx4J/PincxLe3/1OQn84gHqBk7HGZLwh/b7V5+XP4vMi3cyL+3JnHgn8+KdzIt3Mi/tyZx4J/Pi3dixY7eoqjrszx6H+Oc55M1RFEUxAXOAU7pzvaqqS4AlAL169VLHjBlzqF3+461fvx6Zl7ZkTryTefFO5sU7mZf2/upzkvPTf+k9dCgmy4A/tN+/+rz8WWRevJN5aU/mxDuZF+9kXryTeWlP5sQ7mRch/liHs6tyEpAA/KK4C7bHAj8qijJcVdV9R3NwQgghxL9J4sy3/uwhCCGEEEIIIYTHIQcOVVXNBMJbXne1VFkIIYQQQgghhBBCCPH30+WuyoqivAFsAHopipKvKMqM339YQgghhBBCCCGEEEKIP1N3dlU+v4vzPY/aaIQQQgghhBBCCCGEEH8JXWYcCiGEEEIIIYQQQggh/n0kcCiEEEIIIYQQQgghhGhHAodCCCGEEEIIIYQQQoh2JHAohBBCCCGEEEIIIYRoRwKHQgghhBBCCCGEEEKIdiRwKIQQQgghhPhdZF6XQPaiiZ7/StZmdHp99dZ1XV5zNGUvmkhD3m8AqE4Hv97cm4of3jtw/oFJNORmUvzhY9Tu+AaA0s//h8ve4Lnmt5l9uuynYsNytt0xmOxFEzF/Mo+8l2YCkLfsVqp+/OhoPpIQQghxVOn+7AEIIYQQQggh/pk0egMpsz/u9vWBA8YTOGD87ziitkyJQ6nP2YIxrh+NBdvxjUikPmcLwcdOxWWrx16aiyG2L8b4NM89pZ+/QNDws9DojYfUl3no6cRMm8/69esZPGbMUX6SzqlOB4pWfvUTQghx6ORfDyGEEEIIIcQfasfcUQSPOJvqzE9RnQ7ir8zAEJlMxYbl1OduJWbafGz7reS9eBO4nAT0G0Pp50vpt3g7tVkbKFm1GF1gGA352zAPOhXf6F6UffEirqZGLNc8j28PC9VbP6VkzVOoDjtav2DiLn8Sn8AebcbhlzSMml+/IPTES6jbvZnQEy6iYsNyAOr3/owxvj+KRkveslsJ7D+OpqoSHFXF5DwxHZ1fMIkz3wJg3wcPU/Pr5yg+BizXPt+un+6o3fENRe8tRHU5MVkGED19IY0F29m/NgPLNUuo/uUTcl+4nr6P/Qqqi6z7T6b3/G+w7bdS+NY8HDVlaPRGYi58EENkMnnLbkVrMtOY9xvG+P5EnT3vyN84IYQQ/zqyVFkIIYQQQgjxu3DZG9ssVa7c/KHnnNYvmJS7VhN6wkWUfrqk3b1Fy+8lbOzlJM/6EJ05os25hoLtRJ17Dylz1lLxw3vYS/aQfOdKQo6bTtn6lwDwSz6GpNtXkDL7Y4KGnUHpumfb9WFKHEpdzhYA6vf8iCl5OIpOj7OxlvqcLfglDmtzfdjYy9GZI0i8+U1P0NBlq8eUMISUOWvwSx5OxbdveJ2Lqi2rPEuVyze83XaemhrJX3Yb8TOeIXXuJ6hOJ+Vfv4oxrj8N+e6l1HW7NmKI6kWD9Rfq9/yMKWEwAAWvzyL6vPtIuesjoqbOofDNuZ527SV7SLjpdQkaCiGEOGyScSiEEEIIIYT4XXS2VNk8eCIAxvg0qn5e0+58/Z4fsVzzPABBx5zJvvcXes6ZLAPwaQ4m6ntY8O9zAgCGmF7UZW0AoKmiiKKl19FUXYLqaEIfFteuD31oHKqziaaqEmz7duEbkYTRMpCGvT9Tn7OF0DGXdfmMik5PQNpJnmep3fG19+dttVQ5ZOSYNudsxTn4hMXhG5EIQPCIsyn7chlh42bg26MnjUXZ1Ft/IeykK6nL3giqE7+kY3A21lGfs4XcpemettQm24E+h0xC0Wi7fAYhhBCiIxI4FEIIIYQQQvzhFJ3e/YVGCy7n4d0LKIoGRefb/EKD6nIAUPj2PYSddCWBA8a7lzd/9ITXtkwJQ6j6aTU6cziKomBKGEzd7s3UW38hrjmrr9OxaHUoitLcvQb1EJ8FAFXt8JQpeTg129ajaHX49z6e/GW3oqouoqbOAdWF1hjYYXD2UOswCiGEEAeTpcpCCCGEEEKIvxxTz8FU/eQOiFVt+bCLq9tzNlTjExQJQOX373Z4nV/SMMo+/x+mhCHufhOHUPnDu+gCe6A1mdtdrzH44WqsPeTxdMY3MommsnxsJXsBqNj4Pn4pI9zjSx5O2ecvYEoYgi4gFEddJbZ9u/GNSkVrDEAfGufZmVlVVRrytx3VsQkhhPh3k4xDIYQQQgghxO+ipcZhi4C+JxI5ZVa37o069x7yXrqZ0s+eJ6D/ODSGgEPqO2LSTKzP/wefoEh3PcCyPK/XmRKHUfTO/fglDgXAxxyB6nLh3/z6YCGjzmfvM5ehC+zhqXN4pDQ+BmIvfoTcpf/xbI4ScsKF7vH1HIyjphS/5GMBMMT0xhEQ6slyjLv8SQrenEvJx0+hOpswD5uMMbbvURmXEEIIIYFDIYQQQgghxO8i7Zk9Xo/3XvCt52uTZYAnABc88lyCR54LgE9QJEm3r0BRFCo3r8RoGQCAf+pI/FNHeu5vHbxrfS5w4CkEDjylyzGaeg4kLcPa4fgA4i55zPN12NjLCRt7ued1v8XbPV+bh0zCPGRSuz5aP1dH7fr3Pt7rkmON3kD//8v2vI698ME25/Vh8SRcv6zTtoUQQojDJYFDIYQQQgghxF9OQ24mhW/dDaqKxhRI7EWP/NlDEkIIIf51JHAohBBCCCGE+MvxSx5Oypz2uy0LIYQQ4o8jm6MIIYQQQgghhBBCCCHakYxDIYQQQtBUvZ+id+6nfs9PaE1mFJ0PPcZfi3nQqYfVXunn/yPk+AvQ6I1HeaQdczbWse+9BdTu+AbFxxetXzBRZ81GFxjG3owrSJ23rss2yr56FY3eSPCIs72er83agKL1wS9p2NEevhBCCCGEEH85EjgUQggh/u1UFetzVxF87DnEX/EUAPayfKq3dh1o60jp5y8QNPysPzRwWPDanehD40i990sUjQZ7aS6NRdnoAsO6db/qdBA6+qJOr6nL+h6Nr0kCh0IIIYQQ4l9BAodCCCHEv5yuZBsarb5N0EwfGuvZNdRelkfeSzNx2esBiD7vfvyShlGbtYHST5fQM/1FAAremocpfgDOxlocVcXkPDEdnV8wiTPfouCNOTRYf8HV1Ih58GlEnH4LADvmjiLomDOpzfoOnA5iLniAfR88jH3/XsJOvobQ0RfhbKzD+tyVOOurUJ0OIs+4rd1Oqbb9Vur3/kTc5U+iaNyVWPRh8ejD4rGX5YHLSf5rd1KfswUfcySWa5ei0RvIWTwNU+JQ6ndvJmDAybga69D4mugx/hoMWZ+Q9dV8FI0O36gUIqfcSfk3r4GioXLTCqLPuw+/5OG/+/sjhBBCCCHEn0UCh0IIIcS/nK6qAEN8/47PB4SRcOOraHwM2Er2kPfCDSTPWtXh9WFjL6f0s6Uk3vwmOv8QACIm347OLwjV5WTPkxfQkL8dY2wfAHyCo0i+fQWF79xP/rLbSLztXdQmG1nzxxM6+iI0Pr5Yrl6C1hiAo7ac3Y9MIWDAeBRF8fRpK8rCGNsPRaP1Oibb/r3EXfEUsRc+RO7SdKp+Wk3wsVMBcNZXkXjL2wAUr1rsuce44yOSH9qIxscXZ30VWpOZkOMv9AQWhRBCCCGE+KeTwKEQQggh2ih4cy71uzejaH1InvUhqrOJwrfupiF/G4pGi60455DbrNqyivJvXwenk6bqEmz7sj2Bw8AB4wEwRPfCZatDa/AHg78nYKfxNbFv5cPUZ28EjYamyn04qvfjYw7vdv/60DiMcf0AMMan0VSe7zlnHnqG13scQXHkvXQTgQNOIXDghEN+ZiGEEEIIIf7uJHAohBBC/Ms5zDE05n7peR0zfQGO2nJ2PegOqJV+9j90AWGkzF4Dqotfb0oFQNHoUFWX5z61yea1fXtpLqWfLSH5zg/RmszkLbu1zbWKTu/+v6LxfN3cAarLSeXGFThrykm+axWK1ocdc0ehOtr25RuVSkP+NlSXy7NUubV27TqdnpcaX5PXcdccfwu9YgxUZ35KycdPdWtzFSGEEEIIIf5J2v9kLYQQQoh/FUd4X2ylVrbPGkb2gglkL5pI3e7NgHt3ZEddBTpzOIpGQ/YDp4HLHXTb8/RF2Ip20Vi8m533jaN257eeNjUGP1yNtQCUfbkM+/5cVFWlqXo/tb+tP6TxORtq0AWEsn/dc9Tu/I6m8nyaKorImj/ec41vDwsmywCKP3ocVVUBsJXsofqXT7rVR23WBn67pT9lX7/K/nXPsuuxc9Dv/Rr/XscRddZduBqqcdnq3M9lqzuk8be2Y+4oHLXlh32/EEIIIYQQfyTJOBRCiH8oxVZL9qKJADiq94OiQRcQir0sHx9zOKl3f3ZY7VZsWE7R+4vwCYpEddgJG3clIceff0j3+/cZjU9QxCH1W/bVq2j0RoJHnN1pG3nLbiWw/zjMQyZ12WbNti/Zt+JBAOz796IzR6LRGzBE98a/13HU524lZtr8Qxpn63HUZX+P1hgIqkrU2XPx7338IbezY+4okmd96KkV+HvQle1GFxCGPiyehtytaE1mSj95lsgps9i34kHiZzxNwWuzqPpxNYH9T6KsLA9wZwiah0xi79OX4qwtb/N8IaPOZ+8zl6EL7IHL3oA2IITs+eMxxvXDlDj0kMYXNHwKe/97BQ17fyF45Ln4RiR5vS7mwocoem8BWfeMRtEb0fkFE3nWbK/Xts6UbOGXfAzG+AHuXZNTRlD/6FR27PkEjd5E6LgZaE1mAtNOJvf5/1C9dZ1sjiKEEEIIIf7xJHAohBD/UKqvPymzPwbcGz60bOhgL8tjb8YVR9S2eejpxEybj6OmlKz54wkYcDI+gT26HpPLScX37+Ab3ctr0E91OTvc3KL1jr+dtXEoAvqeSEDfEwHIWTyNyKlzMFkGuPvYsPyI2gaIOms25iGTqN35HQWv30Wv+77s+qY/gaaxEh9zBJar/tvmeOkXL+KoKib/tTs9uyPvmDuKXvMPZBZGTZ1N6IkXszfjCizXLPEcDxt7OWFjL8e234r1v1cQPyOD/Wufoed1LwHu+bU+dzW+kUnsfuQsAgdOIGrqbIJHnkvlpg8oWfsMGl8T+9c9R9RZd+GfMoKGvb/QkJuJIb4/PsFRXndKjr3wIWz7rRS+NQ9HTRlF784n5sIHSZ23jrxlt6I1mWnM+w1j82YwiTPfAtwZhwARp8/0PEPdkEsxN+VjuWYJ1Vs/ZdfDZ6I67GgDQom7/El0/qHsvOdEkm57D11AKKrLRdZ9Y0i6fcXvGugVQgghhBDijyKBQyGE+DfyEnDR6A1tAi4avZGYCx/EEJncYTPuLDULTeUF2Ap3UvTeQlSXE5NlANHTF6Lx8WXH3FEEH3cetdu/IuT4C2nI3Ureizeh0RtIuu19su4/yXM+9MRLcTXWUf7N66jOJvQ9LMRd9gQavdET/NSHxrZrQ6M3eB3fjrmjCB5xNtWZn6I6HWgGXHZI0+SoLGbP05dg32/1BLYAarZ95V4S67CjD7MQe/GjaA1+HbZjShxCU+U+99Q3NVL4xlzqc7eiaLREnT0P/17Hobqc7Hv/AWq2f4WCQvCo6YSNvfzAW2ZvxLrkasyDJh5Shmd32CP605T7GTvvHYN/r1GYh56Bf+oIr7sjH6qqzR9gHjYZv+Th5C+7FUdNKbqAMAAa8reRMns1ik5P1n3jCB1zGYpGy74VD5I8axVak5k9T11E1c9riZwyi7IvX/YEw+1leR3ulFzw+ixizl+Eb3gC9Xt+ovDNuSTe/Kb7vpI9JNz0eocB6tYcwRZsW9cD7mzEpNtXoCgK5d++Qem6Z4k6ex5Bw8+ictMKwsbNoHbHNxhi+qA6mtjzzKUkXPfyYc2ZEEIIIYQQfxUSOBRCiH+hwwm4eGMvzcVemotPUBS7Hz6ThJtexzcikbyXZlL+9auEjZsBgEbnS9Kt7wJQ8d1bbTL7Dj7vqK3wBMb2rXyE8m/fbBNAMw+ZRNmXy9q10RGtXzApd62m7MtlVG38GLig2/PkLbCl0RsoWfMUiTe+7s6I++S/lH6+lIjTbuqwnZrfviRw4CmAu94fQOrcT2jct4u9T11M6r1fULFhOfayPFLuWo2i1eGoq/Tc77LVkfu/6wk+9myCR5zd7fF3m4+B5FmrqNu1kbqsDeS9cD2RZ95J8Mhzj7jpys0fYrlmCYpGQ+CgCVT9+BGhJ14KgH/vUe6l3IBvZDJN5QU46yrwSxmBLiAUgKBjplC36wfMg9rvauxtp2RnYx31OVvIXZruua71RizmIZO6FTQ8WFNFEUVLr6OpugTV0YQ+LA6A4JHnYX3uSsLGzaBiw9sEjzwPn6CIf3zQsOTjp6jc/AGKogWNhpjzF2FKGPzH9L3macJPvb7dcWdjLbsWTaTn9cvwDU9AdTaR/cAkYi986LDHVvr5C9jL8og+9x4ACl6/C9t+K4k3ve4+/8WL2PfvRePXn6z54w97A53iVYsp//YNz/c9QOLNb6I1mQ+rvY5kXpeAIaY3qrMJRaMjaMTZhI2d4XVDoa7seeZS4i//v8MeY+tM+IOPH425ODiLvCONhVkUvn23+8MdVSXo2KmET7wRRVGozdqAovXBL2kYcGilMLrLUVPG9ruGEz3tfkJPuLBb9zjrq9h5z2j6PPwziqJQl7OFnEen0nvh9/gER+FsqGbnvOPd57vx3h7N7wshhBD/PBI4FEKIf6HDCbi0VrVlFfW7N6Po9MRcsAhHbRk+YXH4RiQCEDzibMq+XOYJHJqHnt7peFqfbyzcSfGHj+Js3owioM+JR/Ss5sETPc+p+eKNQ7rXa2CroRpbUTa7H3MH8FSHHVPCEK/3F72/iKL3H8BZW0bS7SsAqN+9mdAx7sCZITIZn5AYbMV7qN3xDSEnXISidf/TrPML8rRjffYqwsZfQ/Dwsw5p/IdC0WjxTx2Jf+pIDNG9qPj+3SMOHDbkb8e+fy97/s+9zFx12tGHxXsCh613OlY0WlSXw7OxSbfG7G2nZNWF1hjoyUw8mEZv7Hb7ugorvs0Zt4Vv30PYSVcSOGA8tVkbKPnoCQD0IdHoAsKo3fkt9Xt/Iu7yJ7vd/t+VrnQX1Xs+I3nWR2h8fHHUlqM6mv6w/vevfcZr4FBr8CfizDspfHMeCTe+yv51S/BLHHpEAU1T4lAqN63wvG7I3wYul6esQv2eHwkccAoUNx52Hy3Cxs1oF0Q7EqrT4fn7pIVGb/D82XDUlJL7wo24GmqIOP2WQ27fW3BcVVVQ1SMOOB3tueiIy96I9dkZRE9fSEDf0bjsDViXXEP5V8sIPfFS6rK+d9c8bQ4cHomO5qbqx48wJQymavPKbgcOtSYzusAe2PZlY4hKpT5nC4a4ftTlbCFo6OnU7/kJY89B3X4fjub3hRBCiH8eCRwKIcS/0OEEXFprqXHYoiHvt06v1/iaun0+/5VbsVzzPMbYvlRsWE5t9vddjqcznmfVaFG8bIjRrXs5ENhCVfHvcwLxVzzV5f1RZ80mcNBEyta/SN7Lt5By10fQUWBMVVEUxespU+JQan9bT9AxUzq85khoqouwlezBNzwBcAdHfEJj3Odadkc+jKXKVZtXEn7azYSfep3n2I55o7CX5Xd4jylhEEXv3IejthytyUzl5pWEjbmseaA6d0aM1qfD+7XGAPShcVT9+BHmIZNQVZXGgu0YY/se0tgb8rdj3P4BoTPcgUBnQzU+QZEAVH7/bptrQ0ZNJ++lmwkaPvWwshn/bjSNlej8QtD4+AK0WcZeu+ObjksWtCobEH9lBobIZIpXLaapogB7aR728gLCxs3wZBhX/PAeZetfQnU2Yeo5iOjpCyhe+QgueyPZiybiG5VC/OX/12ZsQUNPp2LD2+z/5FnKv3mN5LtWe85VfP8upZ8uAUXBENOb6Gn3k71wIr3u/xpFo8FlbyDr3rH0mv+153vMGNcPW8keXPZGVKcdjY8BfXhPGgt2YIzrR33OFiKn3AXF33ZYAqIh7zcK3piDam9A38NC7MWPdDt7btfDZxJ70SMYolMBdxZd1Nlz8Y1IovDtu2ks2InqchAxaSaBA0+hYsNyqn/9HLXJhste32nGuC4gjNgLH2TXQ2cQPmkmqC72rXiQuqzvUR12Qk68hNATLqSpqpjc/12Pq7EW1ekg5vyF+CUP92zc5LLVsffpS/FLHUn9nh+xXPM8VT+uomrLR5iryimuPdsTgCr5+CkqfngPn+AodAGhGOP6d2sewF2eIO+lmbjs9QBEn3e/J6C3/5Nnqdj4HoqiIaDfGCKnzALcQbnCN+fibKgm9qKH221mVLlpBabEYQT0HQ24P1iInjafPYunEdB/HOXfvAaKhspNK4g+7z4A6nZtpPSzpTRV7yfqrLs82Yf71z1L1ZaPUB12AgdNIOL0W9w1hQ+aG31obNsxbF5J1NlzyXvxRpoq97k3HnM5yX/1DhqsW0FRCBl5HmEnXdnmPlPiMHfAsDlwGDbuSupbAoc5WzAlDnWXwPDynnbm4O8L1WHzWl5DCCHEv4fknwshhADaBlzAnR3RkL+tW/f6RibRVJaPrWQvABUb38cvZYTXazW+zYGoDrga6/Axh6M6m9pk+hxKG78nU8Jg6ndv9jyry96ArTinw+sVjYbQsVeA6qJm25eYUoZTuXEFALbiHJoqCvGNSMS/z2jKvn4V1ekAaLNUOeKMW9H6BVP45tzf5ZkURyP5L99C1v0nkb1gAraibCImuTcJadkdOWfxtENut3LLSgIPWmIcOHACVVs+7PAeH3MEkWfeQc4T08leeCrGuP6eZd4hx19A9oIJ5L54Y6f9xl3+JOXfvUX2wlPJnn8y1Vu7t3y0btcmshdNZOe9Yyl8ax51gy/y7BQdMWkm1uf/w+7HzkHrH9z2mQaMx2Wr92RoNlUWs+eZS7vV59+RPaI/TZVF7Lx3DAVvzKE2yx3cdzU1kr/sNuJnPEPq3E9QnU7Kv37Vc19L2YDQEy5yB/Ca2fbtpuf1y0i+cyUlq59AdTbRWJRN1ZZVJN32rvvDDEVD5cYVRE6Z5cmOOjho2CLqnLvZt+IBwk+9wZO521iYRcmap0m4+Q1S5qwh6tx70RoDMcT2oa75w4nqrZ/i33c0itbHsyO9otVhjO1Lg/UX6vf8hClhMKaeg6nP2UJTZTGoKvqQaPdz7N9L6OhLSJ33KVpTIFU/uYOW+S/fQuSUWaTMXYshuhfFzdmqByv9/H9kL5pI9qKJnj9vQUPPoOrHVQA0VRXTVFWMMT6NkjVP45d6HMmzPiTx5jcpen8RLps7oFa/50diL32806BhC31YPKrLhaOmlIrv3kJrDCB51ock3bmSim/fwF6aS+WmDwjoM5qU2R+TMmcNBi9BeFtJDsEjziZl9sfYinOwlewl6c6VVJ0yn4bcTOqyf6AhN5PKLR+SMns1lqufo8H6S4fj8jYXuoAwEm58lZS7VhM/4xmKlt8LQM1vX1D9y1qS7/iAlDlrCBt/7YGGXA6S71xJ1Dl3e533xqIsjPFpbY759rDgtNWhNQURcvyFhI2bQcrsjz1Bx6aqEhJvfZee6S+w74OH3GPY9pXnmZNnf+x55oPn5uCgob28EEf1fkw9B2EecjqVzX83NuZvw1G5j9R560id+4nX7G+/xKHU52xxt1Oai3nIaTTkbgWgPmcLfknDOnxPu9L6+6J1eY24K54if9mtuJqOPMNWCCHE34dkHAohhPCIu/xJCt6cS8nHT6E6mzAPm9ytTC2Nj4HYix8hd+l/PJlGIR1kNQSPPIeCN+Z4NjY5WMQZt7Lr4TPRh8RiiO6F01bXZRsdbY7ye9AFhBJ7yaPkvXADqsPuHvPk2zzLtL1RFIXwiTewf92z9Ex/kYI35pC14BQUjZbYix9F4+NLyKjp2EpyyF44AUXr494cpSXTDog69x4KXrmdovcWeTZpOVqcIQkkTW3/XsCB3ZFb9F5wYEflfou3A+6l795qu/Vutftyi+hz7vZ83fqX4Z7pL3q+DjpmCkHHTGl3b9RZdxF11l2e1637bL2sUR8WT8L1y9rdH3fJY+2OtfBPHUm/x39tcyxv/XrP14EDT/EEMA/WkL8dQ0wfz0ZCndU4bD1/f1sd1MQ0xPXrvGRBq7IBVT+v8TQX0H8cGh9fND6+6PxDcVSXUrvzWxryMtn10GTAvaS0ZVOdrtRu+xKdOZzGwp0Hju38FvPgiZ7syJaAYtDQ06nasgr/XsdRteVDQkZfDNAm89qUOJS6nC2oTY2YEoagD+/J/jXPoAsIxZQ41HOd1xIQDdU4G6rxT3V/kBI04hxyl/7H67i9Lc81Dz2dPf93IRGn3+LO4Bt8mvt5tn9F9dZ1lH72POAuK2EvL3DPZ+8T2pQ66K6a7V/RWLCDqp/cz+5sqMZWsheTZSD5r96O6nQQOPAUzzO25hMS4ynZULv9K2q3f82uB07DXFuLzUdxZ23a6jAPnOApFxCQdnKHY/E2F6qzicK37qYhfxuKRuv5wKZ2xzcEjzzP027rZw8cdCpw4P3wqqMs7g6OBw48BUWjwRCViqO6tN0zg7sura1kDz4h0W3m5mBVW1Z6MhbNQ8+g4NU76HHSVejD4rGX5lL41t0E9B+Hf5/R7e41JQ1j/yf/xV6aiz40Do2PAVQVZ2MdDbmZGC2DKPvqFa/vqT4s3vsze9FReQ1jbJ9utyGEEOLvTQKHQgjxLxBx+kzP1wcHeboTcGkteOS5XrMf/Hsf73WZ88GBEvPg0zy//Ho7Hzr6YkKbf3nv6BkObqO11sGh1m2bLAOoHnuXt1sASJz5VpvXBz9n68CWfy/3Er3OHBykaj1mbwEsRatrE1Tz9gyxlzzaaZ/ij1eyNoPyr18l7rJ/fm3D1rzVxPSWidbmnlZlA3A52x9vPtdSEiD42HOInHLnIY2rqbKY0i9eJPmOleQ8MZ2G/GkHAhxeAkEBaePZ98HDOOoqacjN9LoE05Q41L3Te5ON0BMvQesfSuO+bLQHBQ69loA4Qj5BkWj9gmnI307Vlg+JueABwJ0Rbrn6WXwjktpc37D3ZxTf7tfxtJfmomg07qCsqhJ93n0E9G1fVzZx5nJqfv2cvJdn0uPka9pt0qTRty5HodJjQjqhJ1zI+vXrGTxmDODOIuwwSNcNpZ/9D11AGCmz14Dq4teb3Mu3VVWFjmJ/OvdyekWj9fp+GKJSqMve2OaYvTQXra8fWoO/1zY1rd9nVM//W565TVtleQfNTVuVm1fiqC6lctMHADiqij1lI5Jnr6F2+5fujb1+XEXsxW3//vcNT8BZX0V15meewKQxPo2KDW/jExqH1uDX6XvamYO/L4QQQvy7yVJlIYQQQojDFD4hnd4LvsMv+Zg/eyh/mJaamC1aamIeSsmCrvj3HkXVT6tx1Lgzuhx1lQdqYzbXuvSm6J37CT/1OnyCo4g6ex6Fb81DVVX8e42i6sePcNRWeNoD0Br8MFoGUrT8XgL6j/Nao9IvaRj1e37CUVuGLiAMRVHQ+YdS/csnXW6aoTUGojWZqdvlDk5V/vDeIc9J0LAzKF33LM7GGgwxvQEI6Hsipetf8mwm1JD3a2dNeOWoKaPg9dmEnngpiqIQ0PdEyr961TO3tuIcXLZ67GX56AJCCTn+fEKOm9ZlX/59TqRiw9s4G93Z4k2V+3DUlOKXPJzqn9fisjfibKylJvOzQxqvs7EGnTkcRaOhYuN7nuBzQJ/RVHz3Ni57g/u5WpV56ErQMWdRt3sTtTu+AdyZrYVv30NY8wdqGoMfLi9Z7wfr6Jk7YyvejcvWQJ8HNtJ7wbf0XvAtPSaku4OJteWgujAPPo2IM27tsI6wKWEIZV+8gClxSJvXfs0B7Y7e084c/H3RUXkNIYQQ/x6ScSiEEEIIIbqtpSams6EaRaND38NCzIUPHlLJgq4YolKJOOM29jx1MbhcoNURM30++tBYT61LQ3z/NnUOa7Z/jb2igODjpgMQOOBkyr99g8of3iV4xDmEn3o9OYvPQ9FoMcT182T+Bg09ndyl6STcfCDrOHvRRE8GtdZkRhcQgiEq1XPelDCE+pzNGGK6Xq4Ze8ljBzZHCYvvMHO49PP/tanrarlmCfrQOAIHn0bh8vsIn3igtmf4xBspeuc+shdOcNdZDI1tkxXdkZaNZVRnE4pGR9Dwswg76SoAgo+bjr0sn+wHJoGqovMPwXLt89Rlf8/+dc+haHVofP2Iu/TxTvsI6Dsa275d7H70LMx1dVg39SDusicxxqdhHno62Ysmog+J6TTY7m0uQkdfTO6Sa6n6cTX+qSM9m2oF9BtDQ/42dj14OopOT0C/sUSeeUeXcwHu3YR7XruUwrfvoeDNeaA6CRo+ldDmMhGBaSeT+/x/qN66zrM5SlfPDO4Nv+Iue7LTXY0rN63EfHAN2EETyXvhegIHjCf/lds82X4dPY8paSg1v32BMX6A+3XiEOyluZ5M2I7e04N19n0ROvpir+U1hBBC/Hso6h+Yft6rVy91586dXV/4L7N+/XrGNC/jEG4yJ97JvHgn8+KdzEt7Mifeybx4J/PincxLezIn3sm8eCfz4p3MS3syJ97JvHinKMoWVVU7T4UX4jDIUmUhhBBCCCGEEEIIIUQ7EjgUQgghhBBCCCGEEEK0I4FDIYQQQgghhBBCCCFEOxI4FEIIIYQQQgghhBBCtCOBQyGEEEIIIYQQQgghRDsSOBRCCCGEEEIIIYQQQrQjgUMhhBBCCCGEEEIIIUQ7EjgU4m+m8J37Kf38f57Xe566mPxX7/C8Lnp3Pvs/e97rvXnLbqXqx48AKP38f7jsDb/vYIX4C2qqKiH3f9ez8+4TyLr/JPY8cym24pxDbudo/RlqyPuVzHQLNdu+bHP8t5l9jrjtjuQsnsbOe8eSvWgi2Ysmos/b9Lv1ZS/L49ebUt19LTyV3Y+cha1491Fpe88zl+KsrwJ+3/kSQgghhBDi30oCh0L8zfglDqU+ZwsAqsuFo7acxqIsz/m6nC34JQ7rsp3Sz1+QwKH491FVrEuuxi9lBL3u/5rUuz8jcvIdOGpKD7mpzv4MqS5nt9up3LQSU9IxVG5eechjOBJxlz9JyuyPSZn9Mfa4Y9qcO5Txd4c+zOLua84agkacQ8maZ9pdozodh9xuwnUvozWZj8YQhRBCCCGEEF7o/uwBCCEOjSlxGIXv3A+ArSgLQ3QvHFUlOOurUHwM2Pbtpmb7VxS+dTeupkZMiUOJueABFEXxtFH6xYs4qorJeWI6Or9gwk66kuJVjwPgsjeiOu30nv/tn/J8QvyedCXbUbQ+hI6+yHPMGNcPAGdjHdbnrsRZX4XqdBB5xm0EDjwFl62e3KXpNFXuQ3U5CZ94I46a0jZ/hhJnvsVvM/sQNu5KarZ/RdTUudRbf6biu7cBCBk1nbBxM9qNR1VVqn5aTcKNr5Hz+Dm4mhrR+BjaXJO79DqCRpxNYP9xgDtzODDtJAIHTmDfigepy/oe1WEn5MRLCD3hQpqqisn93/W4GmtRnQ5izl+IX/LwLudmx9xRBB93HrXbvyL0xEtBVSlZ+wyoKgH9xxF11l2AO7MvZPQl1O74Bq3JTOSZd7Dv/QewlxcQfe49BA4Y32k/rsYaT7CvYsNyqn/9HLXJhstej+Xa/3l9D8q+epXyb15zv08N1ehDYkmc+RY75o4iedaH6PxDunw+IYT4K2mqKKLgrXnYirJBdRHQ/yQip85Go9O3uzZn8TQip87BZBnQZbsFb86lPmcLqsOOvSwP34gkAMJPvR7zkEkd3lebtQHrs1ehD4sDlwttQCjxV/wfuoAwqreuo7Eom/AJ6V32/9vMPvRbvL3NscJ37kcfEuP5d3DPUxfjExxF7EUPA+7VMrqgSNCmeG2zYsNy/PuMxicoosN+KzYspz53KzHT5rc7t+eZS4m//P/kgyYhhDhMEjgU4m/GJygCRaPDXl5AXc4WTAlDaKraR13OFrTGAAwxvQk98VIiTrsJgLyXbqYm8zMCB5zsaSNs7OWUfraUxJvf9PzC3fLLfu7SdPxSjv3jH0yIP4CuKh9jfJrXcxofXyxXL0FrDMBRW87uR6YQMGA8NdvWowuKoOd1LwHuwJXWGNjuz5DLVo9vdC8izriVhtxMKjYsJ/mOD1BVld2PnIlfyrEY4/q36bN+92b0YXH49rDglzKCml+/wDx4YptrzMPOoGrLKgL7j8PlsFO341tipi+k4ru30BoDSJ71Ia4mGzmPnU1AnxOo+nkNAX1GEz7xBlSXs8OsyLwXb0KjdwcplaHXuedA50vSre/SVFnM7kemkDxrFVqTmT1PXUTVz2sxD5qAy1aPf+oIos66C+tzV1O88lESbnyVxqJs8pfd6jVwaC+1kr1oIq7GWlz2BpLu+ODAHOz5kZQ5a9H5BaE6HV7fg9DRFxE6+iJUZxM5T5xP2ElXdePdFkKIvyhVxbrkGkJGX0TItUtRXU4KXptF8cpHiJo654iajpm+AHCXidibcQUpsz/u9r1+ycfQM/1FAPateIiyL5cRcfotBA4Y7/XvdtXpQNF2/eukX+JQd6mccTM8q2WcjTWe83U5W4g+5x6wVnm9v+L7d/CN7tVp4LAzCde9fFj3CSGEcJPAoRB/M5nXJaAx+LP70bNRNBriZjyNT0g09c2BQ7/EodRlfcf+dc/hsjfgrKvENyq1TeCwIe+3NsGEig3LsZflo9EbUXwM7myjTjQWZlH49t00Ve4DVSXo2KmET7wRRVEoXrUYja+JHuOvaXNPyw+wqfPWUW/dSuUP7xJ93n2HNQcla54m/NTrPa8DP5sPY8YcVltCHKCyb+XD1GdvBI2Gpsp9OKr3Y4juTdF7Cyl6/wEC007qOHtPo/UE/ep2bcI8cAIaXxMAgYNOpW7XpnaBw8rNHxA0dDIAQcMmU/HDe+0ChwH9xlD09r24mmzUbvsSU8pwNHoDNdu/orFgB1U/uX8pdDZUYyvZi8kykPxXb0d1OggceIono/JgcZc/6cleKVi/HgDz0NMBaLD+gl/KCHQBoe6xHTOFul0/YB40AUWnx7/vGAAM0b1QdHoUrQ+G6N7Yy/K99tWyVNn9zB9S8PpdJFy/zP18vU9A5xfU6XvgYw4HoPDte/HvdVybv8+EEOLvRleyDcXHl5CR5wGgaLREnXM3O+8+nojTbwEU8l+5DVtRNr6RybiaGj331mz7iuKPHkd12NGHWYi9+FG0Br9O+3PUVVLwyu3YS3NR9EZiLngAY2zHdWFVVcVpq8U3sCfQNpsvb9mtaE1mGvN+wxjfn9ATLyX3xRvB6cS/34le2+vOahlDXD+Mq+9g1/ePtVkxU/3Tahpyt3o+7Eq67X0aC3dStPxeXPYGFJ2ehJtedz9nZTF7nr4E+34rgQMnEDV1NoAnO91lq2Pv05diSj6G+pwt+JgjsVy7FI3eQP3eXyh49Q4UXyN+ScdQ89t6Uuet69b7KYQQ/3QSOBTib0ajNxA5+TZsxTlUbHyf+l2bCD5uGqWfPY/WEEDwyPMoeO1Oku78EH1INMWrFqM22dq00Zi/DbXVD6EA9tJcbPt2kXjL8k77d9kbsT47g+jpCwnoOxqXvQHrkmso/2pZlwHHFibLgG4tt+nI/rXPtAkcVp8077DbEv8uDnMMDbnrvZ6r3LgCZ005yXetQtH6sGPuKFSHDd+IRJJnfUTNr5+z74OH8O8z2pPR25rGxxdFo21+pXY5FtXlpPrnNdRs/ZSSNU8DKs66CpyNtWgN/q3aNeCXOoLa7V9RueVDgoad2dyASvR59xHQt/0vaokzl1Pz6+fkvTyTHidfQ/CIs7scD+AJdKpqx+NXtLoDpQ8UDUrzsjpFowFX13UKAweMJ/+V2w6052v0fN3RewDuX1ybyguI9rIMTQgh/k50VQXtst+1xgB8gqOxleylduc3aPQGUuaupSF/O7sedC8xdtSWU7LmKRJvfB2Nr4n9n/yX0s+Xev03qbWSVY9jiOuH5drnqd35LfnLbvGaiVi3axPZiybirK1A42sicvIdXloDe8keEm56HUWjZe9/ZxB6wsUEjzibsi+9Z/Z1Z7WMRqenMflkkic8ARxYMWMeMomyL5d5lmq7HHZy/3cd8TOewdRzIM6GGk+Jj4b8baTMXo2i05N13zhCx1yGPiS6zVhs+/cSd8VTxF74ELlL06n6aTXBx04l/5XbiLngAfyShrFvxYOdzqcQQvzbyOYoQvwNmRKHUZ35GbqAUOyluQA05GZSnfkpxaufQHU60PmH0FS1n9IvXqD82zfIXjSRpvJCVKeD4lWP42pqJOfxc6nc/CFOWx0129YTf+Uz1Pz6GVnzx7t3P3383HZ9V25agSlxGAF9RwOg0RuJnjaf/Wv/67mmsWA7OU9MZ+c9J1L+zRvt2qjN2sDejMsBcNSUsef/LiT7gdMoeP0udsw9DkdtOQDWZ68i+4FJZM0/mfJv3J8m71vxIC57I9mLJro/4QZC3rsacAc7it5bSNb88WQtOIXKzR96+stZPA3r89eSdd84cl+8sdPAiPjncoT3RXXY23xf1u/9hdqs73E21KALCEXR+lC78zuayt3Zc02VxWj0BoKPnUrYSVfTmPsrABqDH67GWq/9+CUPp/qXT3DZG3DZ6qn+eS1+yW03IKnd8Q2GmD70XvQ9vRd8S+8F3xE4aCLVv3zSrj3z0DPcGR+7NuHf/GcvoO+JlH/1KqqzCQBbcQ4uWz32snx0AaGEHH8+IcdNoyHv10OeJ1PCIOp2/YCjthzV5aRy80r8U0Yccjve1O3ehL6Hxeu5jt6DhtxM9n+6hLjLn3QHKIUQ4h9KURTqszcSNPwsAIyxfTDE9Aagfs9P2Iqy2f3Y2WQvmkjF9+/Q1EGmd2t1uzcRfOxUAPx7jcJZW4GzobrddX7Jx5Ay+2N6L/qe4JHnsu/9B7y2Zx4yyfNBWX3OZoKOac6cHz61wzGYktyb+9XnbMGUOARTwhDPa7/EoQD47N/OrofPJGvBKdTu/K7N5n8t7MU5+JjDMfUcCLgDri3Lpf17j0JrDETjY8A3Mpmm8oJ29+tD4zyZ+Mb4NJrK83HWV+Gy1eGX5N5c0NzyAZ0QQghAMg7/EhRbLdmL3EvTHNX7QdG4A0L79xI0fCox5y/ssg1XUyO7Fp1G/JUZnh8u9n/yLPbSXGIuWHTUxnpwIfrarA2UfrrEUw/lSDjrq6jc9AGhJ17S4TVVP68hd8k1pNz9GYbIZMC97LapqtizcUBrtVkb2PPEdCzX/s+ztG1vxuWEnXw1/qkjyX/1DsJOuhJDVGqHfeYtu5XA/uPaFZS2l+VRn7OFoGOmtDneWLCDvJdnAtBUXoDGGIDWGIjWL5jE5qUUHclZPA17aS69FnznyeixPnsVtTu/od/i7SgNFbiabBhieuOoLcfHHI4hpjclqx5HHxqHy95I1Fl3kfvCjWQvPAXV6cQQ3Rv/XscRNu4Kdsw9DnXkuUScfgvl372Fs7ac8q9fRQVP5qBt326MiUNIuvlNnPXta800FmW1+5Tct4cFp60OZ0ONZw6Sbl+By17PrkWnEeDlvWlRvPoJ/FKPI/zU66j5bb0nQAgQc/Ej6PyCcNkb2fXQGQQOmkjklFmUffmy10/Kq3/+mMb8baTMWeOuj/bQZPxS3MtKG/J+I3XeOnTmCHY/NpX63ZvbBXLEv4CiYLl6CUXv3Mf+TzJQfHzRh8QSde49GKJT2fvfK9j14OkYYvt6Cso3Fu5g33uLQKNB0eiIbv47OWTU+ex95jJ0gT1InPlWm26M8WkEjTyHXQ9Nbr52updlyisJHDihzTHz4ImUffWK5xe8FgF9R5O/7BYC08Z7CucHHzcde1k+2Q9MAlVF5x+C5drnqcv+nv3rnkPR6tD4+hF36eOHPE0+5ggiz7yDnCemuzdH6TeWwIGnHHI7LVpqHKKqKFofYi98yOt1QcOneH0Pyta/jLO+0j0e3PPbUlRfCCH+bpxest+dDTU0VRS2+mBFaXcfqop/nxOIv+KpozAKL+23EpB2MrnPX+v1nEZvPOhI522Bu85hfc4WGgt3YIjuhU9wdJvVMq6mRvy2LCN+3toOV8xAc0a84r0/pdXGMopGi+olC771NSgaVKezy7ELIcS/nQQO/wJUX39PEKSj+nBd0fgYiDrnbgrenEviLctxVBVT/s1rJM9adfjjcjlbLbv7fakuJ86Gasq+eqXzwOHmlZiSjqFq84cYTncH5xrzt1Gfu9Vr4BDAJyiKkjVPe62JdSS/eNrL8qnc9EG7wKEhprfn/ewo6NgZrTHQE9Ry1lfRVF3iOacag0FV2fXg6e7NFJKOIfi4aex++EwsVz+HPiweAI3Wh+RZq9jz5AU46yup3voJ1Vs/QWsMxBifRsPenzHE9vHsPFe8ajGB/cfRY/w1FLw+G3uplfJv3iBw0KneB9nBD2wtxwMHjEejN6DRG/BLHUn93p8xxvX1ekv97s1Yrn4OcNdya73jXdkXL1L9y1rAvfugff8edP7BHc5d3e7NmIdNRtFo8QnsgV/KsTRYt6Ix+GPqORCf4CgAjLH9sJflSeDwX8onKIL4KzO8nku+fUW7Y/rQOK/LgcPGXk7Y2Ms9rw/eRbLHSVfRo5NNPOIueazdsdYF6Fu3p2h96PvIL22uVTQaIs+8g8gz2y4lCx5xDsEjzumwX6BdoBOg94K2O6kHHTOl3d9vB48rovnvYW/nWuhD4+j/ZPusEYDgkecSPPJAZrPOP8TrexB7yaNe7289Zm99CyHEX1FTeF/UPR9T8f27BI84G9XlpOi9BQSPOAeN3ogpZTiVm1bg3+s4Ggt30liwAwBTwmAK35qHrWQvvuE9cdkbaKoowjcisdP+/JKHU7HxfSJOu4narA1o/YPRGgM6vce9eZf37PDWTInDqNy8kuBjp1K5aUWn1+3/9Hn0YfEoGi06vyCc9dXYirKJufBBT5BQ5x+Cs7GOqp9WYx58GgAa3wMZ/r6RSTRVFlO/9xf3UuXGWs9S5cOlNZnR+PpRv+dHTAlDqNry4RG1J4QQ/zQSOPwLa53N57LVU/j23TQW7ER1OYiYNLNd9kdAvzFUbHibyh/epebXzwmfNBNnQw3W56/FWVOONiCE2IsfRR8S0y6g9dvMPvRbvJ3arA2UfPQEOnM4jfnbSL37s26Pt6Mx2svyyHtpJi57PQDR592PX9Kwdn0ZYvp4slJMfpZ2m104G+uo272ZxJvfxPrslUScPhOXw+5Zdlu/ezM9TkknaNgZbe4zxPZBdTqo2f41AX1OaHMuZ/E0T82U8m/fZP+6Z/ExR6AP74mi03sCa3W7NlL62VKaqvcTddZdmIdMYt+Kh7Dt20X2ookEH3s2YSdd2en8VG76gJK1z7izd/qPI+qsu7xeZx52BpVbVuKXfAxVP6/BPOhUSpqXamjq9gMqKbM/pmLDcqq3rsP67JXYirIpWZNB7EXumiwuh42c/7sQW1E2puThWK56tk3h7Ia9P3c4zpgLFlG/5yeqf/2cnfNGoQuKRNHqCD/1BoKGnUH9rk005m/3BEzylt2KyTIAja8fJaufpHLjClSXE11QJKEnXAhwoB6aNx0sGa7N2kDtzm9Iuv19NHojOYun4fLyyXN32oKDPmHWaMAlnzALIYQQ4k+gKMRfvYTCN+dS8vH/geoioN9YIpprCoaecDH5r9xG9oIJGGL7YrK4l+XqAkKJveRR8l64AdVhByBi8m1dBg7DJ830tKfojcRe4j0TvaXGIaqKxhjQYXZ4a9Hn3kPuizdS9sWLBB60uVdrhpjeOOsqMB1zZptj9bZ6z0qmxsQTyV54Cj4hsZ5nBggeeQ4Fb8zxbI4SP+MZCt++B7WpEcXHQMKNr3U5zq7EXvQwBa/NQvE14p8yssvAqvjztfz++nvY88ylxF/+f20SGjqTeV2CZ9UfgOWaJehD436XsR3M+vy1zZsk+Xs9n5luuRaoT8uwLjvSvjLTLXOACwAn4AKuScuw/nCk7bZqfxAQnZZhXX0U2nICmYAP4ABeBp5Iy7C6DrGds4D3gD5pGdYdRzquDvpIAlanZVh7/R7tHw1/eOCw5Q+V6nTgG5lM3KWPe0l3d6vN2oCi9fHUm6j6eS2+EQmdLiv9pypZ8zR+qccRe/GjOOur2PXwmfj3Pt5TyL5F1Dn3sOvhyfj26EnwsVPZm3EFwceeTfCIcyj/7i2K3r4Xy7XPd9pXvfUXUud+4sleO1jOE9M9mYguW51nKVlHY9QFhJFw46tofAzYSvaQ98INnkzI1n3Zy/JoLNxJyuyPWd+8w2dr1b+sJaDvifhGJKI1mWnIzcQYn0bE6bd4dnrrSPjEGyhe+Wi7wGGLpspiSj5+iuS7PkJr8CPnifMxtNptrqmqhMRb38VWvAvrs1diHjKJyCl3dnuZdlNlMftWPEjyrFVoTWb2PHURVT+vxTxoQrtr/XuNouC1WaguJ1WbPyTmwgfcP1R60VIEet8HD1O5aQXhp91IQ96vuOyNJN38FiVrnqYuawP7P3ueyEk305D3K8a4/s212eq8tmnbb8WUMJimyiLAvfOqT1CkZ9lv6MlXUfjandTu+AZT8nBqt3+Do7oUv6RhaI0BhBx/AdW/rKH8m9cwWQZQl/09kVNmoTrtXvszJQ2j6seP6HHKf6jZ9pVnebSroQat0YxGb6Rx3y7q9/x04CaNDtXZhKL1adOWX/Jwyr95neAR5+Csq6Ru10Yiz5qNrXh3l++REEIIIcQfRR8STc/0F7ye0+gNxM942us5/17uskFdth8a59kVWOcXRM9rl3Z6vX/qSPo97r0mbuvs8IOz5fVh8W0yxcMnpHttQ9Fo6ff4b22OHdxWQ9o5HDum/XObB5/myT4EMPUcSPIdK9pcc3AGe+ufzz3Z6f4hbXZKbr3CyzcqlZS57lUuJWszMMYf/iZ+4u8v4TrvG/10RKM3eC2jBM3L61X1d6nR7F6RZe0waAiQlmF99mj0lZluGQmcDgxJy7DaMtMtYYC+i9sO1SBgGHDEgUOgIS3DOgggM90SDrwOmIF7DrGd84FvgOnAvUdhXG1kplt0wHDguaPd9tH0hwcOW/+hyn3xRsq+frXDpVx1Wd+j8TV5AofVWz8hsP+4Qwocqk6Hp2Du31nt9q+o3rqO0s/cQT+1yYa9vABDVEqb63yCIvBPPY6AtJMAqN/zI5Zr3N+DwcdO7bDIcWsmy8AOg4YAiTe/2a7GYWdj9AmKoPCtu2nI34ai0WIrzul2X61VbV5J6LgZAJiHTaZy88p2tfY64pfsrnNXt2uj1/P1e3/GL+VYdH5B7vaHTMJWcmCcgQNPQdFoMESl4qgu7VafrTVYf8EvZQS6gFDAvQSwbtcPXgOHaLTuYNqWD3E1NXb6aVVLEeiIM26j6sfV7HliGmh0KFotux87G1V10VReSOO+3VT/+BH60Fh6pr+IX+px7F/7X7IXTaTHKW1/wNv33kJs+/fiqCrG2HMQxrj+KIriWfZrHngK+5bfR/HqJ7Hvt+JqrMWUMJiGgu1U/PCeu86hy4HL1sDe/84gYtJMfIIisJfleX2GiEk3k/vCDVRu+dA9R+ZwNL5++Pc9kbKvXyV7wQT0EYmYEgZ77gk5/gL3p/Dx/Ym//EBQNXDQqdTv+ZHshaeCohA55S58zOESOBRCCCGEEB2q+fVz9n+Sgep0oA+JIdZLORHx17f32SsxD5ro3uX769eo2/UDcZc8zu5HziJy6mz8U0eyb8VDoCj0OOVadj10Jj3/sxTfiCRyX7gB/9TjCDn+fE9d//3rnkMfEuMppVW8ajEagx89Tr6603HYy/LY+/Sl7pJNe37Ecs3zlH35MjW/rQdF8azkqs3aQMmqxegCw2jI34Z50Kn4Rvei7IsXcTU1YrnmeXw72FAOoKmqGEP0gUzH6f39QzPTLVsBFdialmG9ODPdci9Qm5ZhfbQ5s+0ZoAdQD1yVlmHdkZlueQmoxh20iwTuSMuwvnNQd1FAaVqG1QaQlmH1/FKcmW45CXgUd3xpE/Cf5uDiXtyZfmfgzvw7t7k/P+ApIK35nnuBj4H7AWNmuuV44AFgHfACkNg83qvTMqxbM9MtJwJPNnevAqPTMqw1Hc1TWoa1JDPdcjWwqXk+NMCDwBjAF3gmLcPaLnCXmW7xB0YBY4GVzeMkM90yBrgPKMYd7HwPd3bjTYARmJKWYd2dmW6xNI+/B7AfuDwtw5rbPN/lwGDgx+Znbb+5wF/InxpR80saTmPBdhx1lRS8cjv20lwUvZGYCx5Aa/Sn/JvXQNFQuWkFUefcQ83WddRlf0/JmqeJv8odOC98ax6OmjI0eiMxFz6IITKZvGW3ojWZacz7DWN8f6LOnvdnPuZRoaoqlquf9WT3dUqj6XhpaPNxRaP17Cqrqiqqo+nA7QdlMR7pGItXLUYXEEbK7DWguvj1pgOB3+725aitoDarZXc1xb3MVFGIPGt2t8fX49TrKVnzdAd1GzvfYVfTeplrF9d6c6g7+AYNm4x1ydWEn3Zzu3O+kQeCxS3Lb3V+QZh6DiTs5KtxNdZRufmDTgtn6/yC2nxaXbxqsedryzXuQHDh8vswxPRu972k8THg3+cEzEMmUbl5JUHDziRwwMlYl1xD9Hn3ea0FB20/+fZPHYl/6kh3e4YAEq5/BUWroy5nC3VZG9D4+AKQcL33jPqos+5qs9S7fKp7zIqiEDV1DlFT57S5vnV/QKfZqUIIIYQQ4t8laNgZ7codib+fmAseIOexs9GHxVH62fMk3b4CRasj9pLHyH3+WqLOu4+abetJuuMDNDo90dPuJ2/ZrYSNvQJnfRUhx5/fpr2gYWdQtPx+T+Cw6sdV9PTy+4nL3ujZ7FQfGkfUOfOwleQQe8mjxJy/kKqfVne8gWPBdlJnfIrWFMTOu08gZNR0ku9cSennL1C2/iWiz72H6q3raLBuJeKMW9v0a+o5CNNlgwBoLMzi0oGBUcAxaRnW0sx0S4iXKVoCXJuWYc3OTLccC2QALRsFRAHHA71xB8kODhx+AtydmW7JAj4F3krLsH6ZmW4xAC8BJ6VlWLMy0y3LgP8ATzTfV5qWYR2SmW5JB24DrgTmAJ+nZVivyEy3BAEbm9u8GxiWlmG9HiAz3fIU8FNahnVKZrplHLAMd6DuNuC6tAzrt83BvUYvz9pGWoY1JzPdogHCgTOBqrQM6zGZ6RZf4NvMdMsnaRnWPQfdNgVY0/xc5ZnpliFpGdYfm88NBPrgDgDmAEvTMqzDM9MtNwE3ADcDTwPL0jKsL2emW64A/q+5TYBU4OS0DOvfon7W0c+X7SbV6aBm23rPjrCGuH6kzF1L5Jm3k7/sFvShcYQcfyFh42aQMvtj/FNHEDBgPFFnzSZl9sf49rBQ8Posos+7j5S7PiJq6hwK35zrad9esoeEm17/RwQNAQL6nkjp+pc8AaiGPO9LCQ5mShxK5WZ3gKhy4wr8ktybQehDY2nIzQSg+pdPUJ1NHbZxpGN0NtagM4ejaDRUbHyvw9pyGl9/XDbvy2erflpN8LFn03vBd/Re8C29F32PPjSO+t2bOl1223Z8o3HWV9GY374WhqnnIOqyf8BZX4XqdFD9k/dU89a0Bv9u9QtgShhE3a4fcNSWo7qcVG5eiX/KiI6vTx7urtfYqg5Md5kSBlO/ezO2kr2Ae7fklizPfSseournNd1qxy95OFVbVqG6nDhqyqjbtRFjc70Z89AzqNiwnPpdm/DvOxpwv//lX73q+V6yFefgsrnrWmbd1/Guyk0Vhex66AyyF55K0dv3EnPBg4f8zEIIIYQQQoh/N5/AHkScfgs5T0wnaupcz2oyQ3QqQcdOxfrfGcRe/IgnKSSgzwkYontT+NY8rzU9jXH9cdSU0lRZTEP+NrQmM/qQmHbXtayqTJn9sScJwyckBlPCEKDjDRwBTJYB+Jgj0Pj4ou9hwb+5tJYhphdNZfmAe/O8g4OGB6vd+S1fWhsqWjIB0zKs5a3PNwfYjgOWZ6Zbfsa9NDaq1SUr0jKsrrQM6zYg4uD20zKstcBQ4Grc2XNvZaZbLgN6AXvSMqwtO+G9DIxudet7zf/fAvRs/voUYFbzONYDBsDbMsTjgVea+/8cCM1Mt5iBb4HHM9MtNwJBaRnW9luoe9eSEXMKcElz/z8AoUCKl+vPB95s/vrN5tctNqVlWIuaMzB34w6sgjvzsOU5R+JeIk3zcxzf6v7lf5egIfwJGYeto/EH7wgL7rodztoKnA3VnbbjbKyjPmcLuUsPLLNUW22cYB4y6Q/bEfiPED7xRoreuY/shRNAVT1LTrsSfd695L9yO6XrnvNsjgIQPOp8rM9exa6HJuPfa9RhZxl2Z4yhoy8md8m1VP24Gv/UkR32pfMPxpQ4lKz54zEFJrXZHKVq80p6nPKfNtcHDp5I5aYPiJh8e5tlt519Whh+6vVYn22/iYlPUCThp17HrofPxMccgW9UClpD50WRDTG9Qasle+GpBI84p9PNUXzMEUSeeQc5T0x3b47Sb2y7zW1aUxTlkHfWbtFZ4ezGwh0EeNldGtw1Kku/OFBrp/fC770u+wV3EDZ/2S0Epo33/MMbfNx07GX5ZD8wCVQVnX8IlmufdwdLO8m49A1P6LAmiBBCCCGEEEJ0V2PBTnR+wTRVFbc9XrgTrSmwTdkp1eXCtm8Xio8BR10lPsFRBzdH4JDTqPppNY7q/ZiHdj8rVaNv9TtvNzdwVBQNis63+YUG1dXdeNiBnjobElDZUvfPi9a7UHpdvtgc6FoPrM9Mt2QClwI/dzGmlnadHIg/KcDZaRnWna0vbM6CbM3bONS0DOuDmemWj4DTgO8z0y0nd7VxSWa6JbF5DCXN7d6QlmFd28n1obizMftnpltUQAuomemWOw56LnBvFGNr9XVHcbbW70/3MpD+Iv7UGoed62QXVgDVhdYY2GFbHW248lcXcfpMz9dtlnPqDcRc0HV9QmhbaFgfGkfizW+2u8YnsEebosKRU+5s16c3nuLChzBG3/AET7HhrvpqWV578OYoiTPfatduy66+QIdFog/uI3DAeNIyrF7bNQ87k5DjL0B1OrA+d7Xn056DCze37N6laH1IvOkNr/22aH1v0DFTCDpmSqfXe3vO1n26/Hp4lvt2VgS6o8LZqtOBX+LQdscjTp/Z5nuvhbdlv+B+9r6P/NL2mEZD5Jl3EHnmHW2OV2d+5knvF0IIIYQQQojfQ/3en6nZtp7ku1aTs/g8AvqcgD4snqqfPsZZW0HizLfZ+98rSE74AK3JTOnnS/GNTCbyzDsoePV2km5/v93mi0FDJ1Pw2p046io6/F2tK3/EBo7+vUYxpqcxJDPdEpqWYS3LTLeEtM46TMuwVmemW/ZkplvOTcuwLs9MtyjAgLQM6y+dNOuRmW7pBbjSMqzZzYcGAVZgB9AzM92SnJZh3QVcDHzZRXNrgRsy0y03pGVY1cx0y+C0DOtPQA3QOnvnK+BCYH5zXcHS5udISsuwZgKZzZu29G4eR0dj7wE8Czzd3N9a4D+Z6ZbP0zKsTZnpllSgIC3D2jqYdw7uZcbXtGrnS9pmDXblO9ybqrzS/BzfHMK9fyldBg4VRXkB9+45Jaqq9m8+Nh/3unAX7ojtZaqqFh7uIPySh1Ox8X0iTruJ2qwNaP2D0RoDmpeg1nqu0/r64Wxeyqo1BqAPjaPqx48wD5mEqqo0FmzHGNv3cIch/uVKPlpM7c5vUZts+Pc5gcCBXjYu+ZtLuOGVP7zPwOaNeoQQQgghhBDiaHDZG9g++0CCWtiYy6jc9AGxFz+CT1AEUWfPJf+V24m/MoN9HzxEwo2vow+JJvTESylcfh/hp15PxbdvknTnSrQGf0zJwyn5+CkiTr+lTT+G6FSctjp8zBH4mNut4O2WI93AsaMahweP8+Wfq4vuOiHky8x0ixP4CbjsoMsuBP6bmW6Zi3uzkjeBbgUOAX/gqeaahA5gF+7NShoz0y2X414C3bI5Slc7Oc/HXQNxa3MAcy/umNMXHFjC/ADuzUhebN7wpR53hiPAzZnplrG4Mwi34d5Y5WDG5nZ8msf7CvB487mluJcT/9jc/34O1B5scT7uDVRaexe4AOhuBPlG4IXMdMvtzX1c3sX1f1lKV5s2KIoyGqgFlrUKHAaqqlrd/PWNQF9VVa/tqrNevXqp752m8WRPtXDUVZL/ym00leZ5NkcxxvbBVpxD7vP/AY2G6PPuA0Wh4LVZKDo98Vc9i6IoFLw5F0dVCaqzCfOwyUScdhN5y24lsP84zEMmHea0/LHWr1/PmFbLcoXMSUdkXryTefFO5qU9mRPvZF68k3nxTualPZkT72RevJN58U7mpT2ZE+9kXrxTFGWLqqrD/uxxiH+eLjMOVVX9SlGUngcda12A0I9D2Gb24KAhuHd47Xnt0nbHfSMS2yxxBUi9+7M2r73tunrw0lIhhBBCCCGEEEIIIcSh+X/27js8imp94Ph3dpNN770DabTQO9JFRRAVFTteFRHjtWAFBPX+ULy2iwURERs2QEVREAHpIgiEFmoSSgrpvWfb/P5YWAm7aXT1/TxPHrMzp82bycq+OWdOkzMOAU4mDpedmnF48tjLwDigDBiiqmpBA3UnYNl5h4CAgO6LFy8+D8P+e6msrMTd3f1SD+OyIjGxT+Jin8TFPomLLYmJfRIX+yQu9klcbElM7JO42CdxsU/iYktiYp/Exb4hQ4bIjENxQZx14vC0c1MAZ1VVX2iqnfj4ePXw4cNNFfvHkanWtiQm9klc7JO42CdxsSUxsU/iYp/ExT6Jiy2JiX0SF/skLvZJXGxJTOyTuNgnS5XFhaI5D218Bdx0HtoRQgghhBBCCCGEEEJcJs4qcagoSuxpL0fTyNbXQgghhBBCCCGEEEKIv54mN0dRFOVrYDDgryhKFvACcK2iKPGAGUgHmtxRWQghhBBCCCGEEEII8dfRnF2Vb7dz+KOz7dBQksOJRdOpy0kF1YxHx2EEj5mKxkFnU/borFsJHvMcrlGdmmz3xMJpVB9NQjXq0Rdl4hQUDUDgNf/Gq9vIRutWH99NzpKXMZYXoigKrtE9CB37H8qSllGdsZewW2c0WLds90qcglrjHBLX4jELIYQQQgghhBBCCHG5ajJxeH6ppM97EN+Bd+E7cT6q2cSJLyeT9+PrhIx57pxaDrvtJQD0RZkcn3MfsVNXNKueobyAjPmJRNz3Lm5tuqOqKuW7fsZUW9ms+uV7V+HZcag1cSiEEEIIIYQQwUB5JgABAABJREFUQgghxN/BRU0cJviYURyd8O07FgBFoyXk5uc5/PwVBI16AlDI+vwp6nJScQqOwWyotdatOLCRvOX/QzXq0flHEX73G2id3Rrtz1hVyonPn0ZfmIGicyHsjldwCW9Xr0zxhgX49L4JtzbdLWNSFLszFPVFWWR98TSmimK0Hr6E3/0GhpIcKvaupip1K/m/zCbygbkAlO1cTvbCaZhqygm/6zXcYnqhmk3k/vBfqlK2ohr1+A4ah9+AOzGU5eG59mVSf38V1WQk7PaXcYvpdS5hFkIIIYQQQgghhBDinF3UxGGEm4pLZEK9Y1oXDxx9QqnLP07l4d/Q6JyJnbaSmqyDpP3XksAzVhaT/8u7tHn0KzROrhSsep/CtfMJuvaxRvvLX/Y/nCM6EDXxQyoPbyZrwRM2MxFrsw/j0+fmJseeveh5fHrfhE+fmyn+fRE5i18kauKHeHQajmfHofWTjWYjMc/+SPm+teQtf4s2j31Fye+L0Lp4EDP5J8yGOo6+eRMe7QZQtvsXDMEJxCb+D9VswqyvaWY0hRBCCCGEEEIIIYS4cC7uUmWlkVOKQnXqNvyG/AsAl/B2OIe1BaD62C7qclI58uZNAKhGPa6tuzXZXdWR7URN+AAA9/j+mCpLMNWUo3XxbPHQq4/tJOpBS1s+vceQ+/0rDZb17HKN5RoiEzAUZwFQcXAjtScOUbbLkrg01ZRTl38c16jOOK36kLxls/DsfBUuER1aPDYhhBBCCCGEEEIIIc63i5o4zKxUqMlIrnfMVFOBoSQbXUDUySN2souqinu7AUTe9+55GEX99p1C46jJSMaz81UtbKbhLKji4GT5r0aLajJZDqoqoWP/g0f7QTbly4ZMJdKjlszPJhFw5YP49LmpZWMRQgghhBBCCCGEEOI801zMzpJLNKj6Gkq2fgeAajaRs+QlfPrcjEbngmtsL0q3/wBYlhDXnjgEgGvrrlQf2UFd/nEAzPoa6vKONtmfW0wvSrZ9D0Blyha07j5oXTzqlfEbdA8lf3xH9bFd1mMlfyzBUJZfr5xrm+6U7vgJgNJtP+AW3RMArZMbprqqJsfi0X4QxRu/QDUZAKjLO4q5rhp9URaqkye+V9yOb79bqcnc12RbQgghhBBCCCGEEEJcaBd5V2WFyAnzyF44jfwV74BqxqPDEIJGPwOA34C7yfr8KVJfuhrn8Pa4RnW2DNLDj/Bxb5D58SOoRj0AQaOfwimoTaO9BY6cZG1P0bkQPu5/NmUcPQOIuO9dcpa8jLGiCEVRcIvtjVfXEfXKhY59kazPn6Zw9QfWzVEAvHpcx4kvJ1O07hPr5ij2+PS7DX1RFqmvjARVxcHdl6iJH1KVuhWvVf8jdesbaJzciLjHdoxCCCGEEEIIIYQQQlxsFzlxCDrfUFolfmz3nEbnTOT9s+2ec4/vT8zkn5pu3y+CuOmrAXBw86bVxPlN1nFr053oJ7+1Oe7T9xZ8+t5ibbfN4wtt60b3JO75NdbXbSYtsn7v4O5L25c2A6BoNARf/wzB1z9Tv48+N7On1p+ugwc3OU4hhBBCCCGEEEIIIS6Wi7pUWQghhBBCCCH+6R5++GFmzpxp/SoqKmqw7Ouvv35OfS1YsICdO3eeUxtnKioqYsaMGee1TSGEEJeniz7jUAghhBBCCCH+yXQ6HVOnTm1W2aefftrmmNlsRqOROSBCCCEuPEkcCiGEEEIIIcQlVFtbywcffEB1dTUmk4nrrruOzp0tz3ufNGkSs2bNIiUlheXLl+Pl5UVWVhZdu3bFzc2NoUOHArB06VI8PT0ZMmTIWfdXVFTE7NmziYmJ4ejRo3h5eTFx4kR0Oh0ZGRl8/vnn6HQ6oqOjL2g8hBBCXD7kz1RCCCGEEEKco/2T2p33NvN+epPKQ7+d93abkrngSfY9Fo+pttJ6LHvxiyQnRmGsLAbgyOs3tqjNypQtHJ9zb6Nl9EWZ7HssjtSZI0h9+RqOvH4jdXlH7JY1lOaR/uHEJvtt6OdStnsltTkpds/lLZvFwSm9SJ05gsMvDCL9gwkNlm2OrC+esdY/NK0/Sl0Fer3eukz5gw8+wNHRkQkTJjBlyhQef/xxlixZgqqqNm2lp6czevRonn/+efr168cff/wBWGYgJiUl0bNnz2aNqbH+CgoKGDhwINOnT8fV1ZVdu3YBliXPt9xyi90ZkEIIIf6+ZMahEEIIIYQQl6Gg6568ZH07BbSifM8qfHqPQTWbqUrZgoN3sPV89NPfX5B+df5RxE5dAUDRpi/J/+U9Iu75X70yqsmIo3cQUQ/MPet+yveuwrPjUJxD4uye9x96PwHDHwSgdMdPHHv7DmKfW4mDh1+L+wq/6zWbY2cuVTaZTPz444+kpqai0WgoLS2lvLwcLy+vevWioqLw9/cHwM/PDzc3NzIzMykvLyciIgJ3d/dmj8tef6fajYiIACAyMpLi4mJqamqoqakhLs4Sr169erF///6WBUIIIcRfkiQOhRBCCCGEuACOzrqV4DHP4RrVCWNlMWn/vY62L22mZMs3lO9ZhWo2UZtzGP9hD6CaDJT+sQTFwYlWD3+Kg5s3mQuexLPjULy6jeTQtP749LmJ8uRfUU1GIsfPwTk4BmNVKSc+fxp9YQaKzoWwO17BJbwdectmoXFytSa/UmYMp1Xixzi4+5ExPxFDaS6q2UTgiEfx7nGdzdi9eoymLGkZPr3HUJW6BdfoHlTsX289v39SOzrMOkhlyhbyl7+F1t2HuuwUnCM7EvGvt1EUBcecvaT85//QuvvgEtGxxfEz11agdbUkzkq2fEP5vrWohjrM+mrC736d43PuI276asz6GrIWPEld7hGcgmPQF2cReusMXKM6AZC79DUq9q1FcXQmauKH6AvSqdi7mqrUreT/MpvIB+biFBDV4Di8e1xHxb61lG5fiv/Q+6jJSCbn2xmY6qpwcPclfNwbmKrLyVrwJDHP/ghYZk+mvz+e2Gkr690HDdm2bRsVFRVMmTIFrVbLtGnTMBqNNuWcnJzqve7Xrx9btmyhvLycvn37ApaZgVlZWXh5efHwww+3uD8Hhz8/IiqKgslkQlVVFEVpcPxCCCH+viRxKIQQQgghxEVWm3OYmCk/oxrqOPzCIIJvmEzs1BVkf/t/lP7xHf5D77epo3XzIXbKzxRtWEDhr/MIv+s18pf9D+eIDkRN/JDKw5vJWvCEdcaePRUH1uPgHUSrhz8FwFRTbrecU2AryveuxlRdRumOH/HueWO9xOHpajL3Ezd9NQ5eQRx5cwzVR3bgEpWA245PiHp2CbqAVmR+ZD+BdSZ9YTqpM0dgrq3ErK8h+pml1nPVx3ZaZv25eaMvyrQeL9qwAK2rF7HTVlKbfZjUmSOs58x11bi27kbw9c+Qs2QmJZu/JnDEo3h0Gm5NyjaHS2RH6vKOoJoMZC96nqiJ83Hw8KN0x0/k/fg64Xe/gWoyoC/MQOcfSVnSMry6N69tgJqaGjw8PNBqtRw+fJji4uJm1evSpQvLli3DZDJx3333ATBu3Ljz3p+rqyvOzs6kpaURExPD9u3bmzU+IYQQf32SOBRCCCGEEOIic4vri9bZHZzd0bp44NnpSgCcQ+OpPXHIbh2vrpaEmEtkAmW7fwGg6sh2oiZ8AIB7fH9MlSUNJgMt7bclZ8nL5Hz/Cp4Jw3CL6dVgWa8u11C640dqju0m7PZXGizn2qozjj4hlrGFd0BflInGyRWzmz9Oga0B8O51I8W/fdVgG6ecvlS5dMdPnPhqCq3/vQAAj7YDcHDztqlTfWQHfkPuPXl98TiHtbWeUxx0eCQMs4wtMoHKQ5uaHINdJ5//V5d3lNqcFI69e5flsNmEo2cgAF7dRlKatIzAqxMpTfqJyPvfa3bzvXr14v333+e///0v4eHhBAUFNaueg4MDcXFxuLq6NrrL8tdff823334LgI+PDw899FCL+xs3bpx1c5R27c7/Mz2FEEJcniRxKIQQQgghxIWg0YJqBkA11NU7pTjoTnuhsb5WFA2q2XaJar06Gi2YTY10rKBotdZkF4BqtPTvFNSGmMnLqdi3ltylr+LebiBB1z5mtxWvHteR9spIfPrchNJIUqretWg0f47tHJe2enYaTtbnT/3Zj5OL3XIqtpuIWOtoHaxLbBWNBrXRuDWsJnM/LlGdQFVxCokl5ukfbMp4db+OjPkP4dXlGkCxJk3tmTVrVr3X7u7uDW46cqpsXFyc9RmDp5jNZo4fP8748eMb7KuhGYgN9Td9+nTr98OHD7d+HxkZyXPPPWd9PWrUqAb7FEII8fchuyoLIYQQQghxAej8wqnJSAagbNfPF6QPt5helGyzbFRSmbIFrbsPWhcPHH3DqcncB0BNRjL6QsvSXkNpHhqdMz69x+A/bAK1GfsaHr9vGEGjn8Z3YNNLX8/kFByNpqqAuoJ0AEp3/Gg9V318N5mfTmqyjaoj29E18uzBU9yie1C2czkAtTkp1J443GQdrZMbprqqJsuB5WdXeWgT3j1Gowtqg6mymKqjSQCoJgO12ZYdk50ColAULfkr3sG7u+1zI8+3nJwcXnjhBeLj4wkMDLzg/QkhhPhnkhmHQgghhBBCnCOzvoaDU3tbX/sPG4//lRPInP8wpX8swS2+3wXpN3DkJLI+f4rUl65G0bkQPs6yA7FX12sp/WMJqTNH4BLVyTr7rTb7ELlLZoJGg6JxIPT2lxtt32/AnWc1Lo2jM1Xd7yV9zr1o3X1wi+5JbbYloWcoPoFG52y33qlnHKKqKFpHwu98tcm+/AaOI3PBE6S+dDXOER1wDmuL1sWj0TpePa7jxJeTKVr3id3NUQrXfkTp9h8w11XjHBpP68e+su6oHDn+fbK/eRFzTQWq2Yj/kPtxDrXMBPTqPorc72cSP+O3Jsd9rkJCQpgxY8YF70cIIcQ/m6KqDU/tP9/i4+PVw4eb/gvgP8369esZPHjwpR7GZUViYp/ExT6Ji30SF1sSE/skLvZJXOyTuNiSmNjXUFxylryMd68xuISfn+fkqWYTqsmAxtGZuoJ0jr19B3EvrkNz+hLqy4jcL/ZJXGxJTOyTuNinKEqSqqo9LvU4xN+PzDgUQgghhBBCXDQhY55rulALmPU1HHvrNlSTEVSVsNtfumyThkIIIcRfjSQOhRBCCCGEEH9ZWmd3YiYvu9TDEEIIIf6WZHMUIYQQQgghhBBCCCGEDUkcCiGEEEIIIYQQQgghbEjiUAghhBBCCCGEEEIIYUMSh0IIIYQQQgghhBBCCBuSOBRCCCGEEEIIIYQQQtiQxKEQQgghhBBCCCGEEMKGJA6FEEIIIYQQQgghhBA2JHEohBBCCCGEEEIIIYSwIYlDIYQQQgghhBBCCCGEDYdLPQAhhBBCCCGEEP9s1QaVh+ZtAqCksg6NBrxcncgrrcbPw5kPHxp0Vu2WVNbxv2V7KSirwWRWCfJ24aXbe53zeBPnbeLJ0Z2IDvbCZDZz42ureOzajgzrFA7Awx9u4vFRnfj9cC4JkX50a+PfYFtvLN1D79hABrQPqXc8vdTE9IXbmXFbz2aN6eoZyxmWEMYzN3QBwGQ2c/usNcSHeTe7DSGEOJMkDoUQQgghRIs8/PDDhIWFYTKZ0Gg09OnThyFDhqDRyGIWIcTZcXVUeH/CAAA+35CCs07LLX2jyS2t5vmF28+63QUbUujW2p8be7cG4Ghe+XkZb/sIHw5klRAd7MXRvAoi/Nw4kFXCsE7h1OqN5JZW0ybIk9gQr/PSX3M4O2o5nl9BncGEk6OWnUcL8fNwblEbJrMZrbyXCyFOI4lDIYQQQgjRIjqdjqlTpwJQUVHBxx9/TE1NDaNGjapXzmQyodVqL8UQhRB/I2azyqxlezmQWYK/pzMvju2Bk6OW7OIqZv+yn7KqOpwctTw+qhOR/u716hZX1Nab7dcmyBOAPceL+HbrUetMvNkr9hEX6sVVnSMY985aruwUzh+peRhNKs/d3M2m3fbhPmxPy+e6Hq04kFnMyO5RrNqTCcCh7FJigr3QapR6swlTc8r4YNUBavRGvFx1PDm6s01ib3taPnNXHcDLVYezyYjWzXJ8b3oR7688AIACvHFPX1ydbD/O94gJYFtqPgPah7BuXzaDO4SyL7MYgFq9kfd+2c/x/ApMZpW7BsXSLz6YVXsy2Zaaj95optZg4j+39uC9X/aTml2GosCdA2OpqjVwvKCSiVe1B+DnnRlkFlby4MnXQoi/L0kcCiGEEEKIs+bh4cGdd97Jq6++ysiRI9m6dSv79u3DYDCg1+t56KGHWLx4MSdOnMBsNjNy5Eg6d+5MUVERn376KXq9HoCxY8cSHR1NSkoKy5Ytw9PTk6ysLLp06UJoaCjr1q3DYDDw4IMPEhAQwM6dO1m+fDkajQYXFxeeeOKJSxwJIcSFcqK4miljujJpVCde+nYnvx3MYVincN5ensyj1yYQ5ufGoRMlzF6xj9fu7lOv7nU9WzHzu538uP04XVv7c3WXiGbNwvNydeS9Bwbw047jfLflKJOu61TvfPsIHz5bfxiAA1ml3DkwlnX7TlBdZ+RAZgntI3zqlTeazLz3yz5eHNsDbzcn1u/P5tN1h3lydGdrGb3RxFvLk3ntrj6E+rry+NyVeJ5MHH675Sj/HtGBDhG+1OiN6Bzszwoc3CGULzem0jsukGP5FVzdJcKaOPzqtzS6tPLjydGdqaw18OhHm+nW2pJUPZhVyvsPDsDTRcf8Xw/i5uTABxMHAlBRY8BRqzBx3ibGD2uLg1bDqj2ZPHZtQpNxFEL89UniUAghhBBCnBN/f3/MZjMVFRUAHDt2jOeeew43NzeWLl1KXFwcd999N9XV1bz22mu0bdsWDw8PHn30URwdHcnPz+fjjz9m8uTJAJw4cYL7778fV1dXnn/+efr378+zzz7L2rVrWb9+Pbfccgs///wzjzzyCN7e3lRXV1/KyxdCXGDBPi5EB1uW/MaGeJFXVkON3siBrBJe+m6ntZzBaLKp2yM6gE8fGcKOtAJ2HCkg8cNNfPDgwCb77N82xNrfb4dybcfk7YrRpFJcWUtmYSURfm7Eh3pz6EQpB7NKGN2zVb3yWUVVpOdXMuXLbYBlFqWvh1O9MpmFlQR7uxLmZ8kWdgx0IMNgOdchwocPVh1kaEIo/dsGE+DpYnfcbYI8ySurYd2+bHrGBNQ7t/NoIVtT8vh26zHAkqjML6sBoGsbfzxddADsOlbI1DHdrPU8XBwB6NzKjz9S84nwd8dkUml9cvamEOLvTRKHQgghhBDivGrbti1ubpYPvgcPHmTv3r2sWbMGAIPBQHFxMd7e3ixatIisrCw0Gg15eXnW+lFRUXh5WZIEAQEBtGvXDoCwsDBSUlIAaNOmDQsWLKBbt2506dLlIl6dEOJic9T+ObtOowG9UcWsqrg7O1qfi9gYTxcdQxPCGJoQxvSF20nOKMbHzQlVVa1lDEZz/T5PzujTKApms4o97cK92XQwF18PJxRFoW2YNwcyizmcXUa78PozDlVVJSrAnbfu69/oWJUGjt/aP4ZeMYFsSyvg8Y9/55W7etssnz6lT1wQH/56kNfv7kN5jaHeGKbf3J2IM+odyi7F2fGMx0rYGciIrhF8/dsRIvzcuKpLeKPXIYT4+5CnngohhBBCiHNSWFiIRqPBw8MDACenP2fRqKrKhAkTmDp1KlOnTuXll18mJCSENWvW4OHhwdSpU3n22Wcxmf6cKeTg8OffthVFsb5WFAWz2fLh/o477uC6666jpKSEmTNnUllZeTEuVQhxmXBzciTI24WNB3IAy3vNkVzbjU92Hyuk1mB5f6muM5JTXEWglwuBXi5kFFSiN5qoqjWw63hhi8fQPsKX7/84RrswS5KwXbgPvyafwMfNCXdnx3plw/3dKa3WcyCrBLAsXT6eX1GvTIS/O7ml1WQXVwGwv8BoPZddXEXrIE9u7R9NbIgXWYUNv+dd3SWcOwfE2swI7B4dwNLtx60J07ScMrv1u7UJ4Mftx62vK04mH9uG+VBYXsO6/dkM7hDWYP9CiL8XmXEohBBCCCHOWkVFBV999RWDBg1CUWynqLRv357169czduxYFEUhMzOTiIgIamtr8fb2RqPRsGXLFmtCsLkKCgpo3bo1rVu3Jjk5mZKSEtzd7c++EUL8PU2+oSvvrNjHV5tSMZlVBnUIJTq4frIsNaeM937Zj1ajYFZVrukaSXyoNwAD24fw0AebCPVzI+Yslt1alg8fsM4u9PNwxmxWbZ5vCJZZk9Nv7saclQeoqjVgMqvc2Ls1rQI9rGV0DloeG5nA9IXb8XLV4eWk4dQ74/fbjrHneBEaRSEqwIMeZyxDPl2Ap4t1F+nT3TkglrmrDjDxg02oqAR5u1o3hzndHQNimL1iHxPmbkCjKNw1MJYr2lmWbg9sH8KR3HLr8mUhxN+fJA6FEEIIIUSL6PV6Zs6ciclkQqPR0KtXL4YNG2a37IgRI/j22295+eWXUVUVPz8/EhMTGThwIPPmzWPnzp3ExcXVm6XYHEuWLKGgoABVVYmPjyc8XJbNCfF3cfegOOv3wd6uzJs4yPr6lr7Rf57zcWXmHb0abeuWftHc0i/a7rnxV7Zj/JXtbI4veHSo9fu4UG9eH9fXbv34UG9WTh/ZYF2Ap67/c/OT6GAv3rzHtq3Ty/SMCaRnTCAA69evZ/BgS2Lv4Ws62h3D6ZZOvsbmWOdWfnRu5QeAk6MlMXmmqzpHcFXnCOtrF50DT1/fxW4f+zJLGGMnKSmE+PuSxKEQQgghhGiR9957r8Fzffv2pW/fPz8Y63Q67rjjDptygYGBTJs2zfr6hhtuACAuLo64uD+TBpMmTbJ+f/q5Bx988KzHL4QQomVO7cLcJsiDrid3YhZC/DNI4lAIIYQQQgghhBANcnd25OOHB1/qYQghLgHZHEUIIYQQQgghhBBCCGFDEodCCCGEEEIIIYQQQggbkjgUQgghhBBCCCGEEELYkMShEEIIIYQQQgghhBDChiQOhRBCCCGEEEIIIYQQNiRxKIQQQgghhBBCCCGEsOFwqQcghD3VBpWH5m0CoKSyDo0GvFydyCutxs/DmQ8fGnRB+y+v1vPsF3/Y9A/w3E1d+b9vkpg30XYMn60/TEKkH93a+F/Q8QkhhBBCCCGEEEJcaJI4FJclV0eF9ycMAODzDSk467Tc0jea3NJqnl+4/YL37+mqs9s/QG5pdYP17hkcf8HHJoQQQgghhBBCCHExSOJQ/OWYzSqzlu3lQGYJ/p7OvDi2B06OWrKLq5j9y37KqupwctTy+KhORPq7s/FADl9sTEGjKLg5O/LmPX0xmVU+XnuIvceLMJjMXNcjipHdo855DG8s3UPv2EAGtA9h3DtrubJTOH+k5mE0qTx3czci/d0prarjv9/vpqJGT1yoNzuOFDB7/BU4OWh4+budFJTXYlZV7hgQy+AOoRcwkkIIIYQQQgghhBANk2ccir+cE8XVjO4RxYcPDcLNyZHfDuYA8PbyZB6+ugPvPTCACcPbMXvFPgC+3JjKzDt6M/fBgfzn1h4ArNydiZuTA++Ov4J37u/Pil2Z5JY0PJOwuWM4k5erI+89MIBRPSL5bstRAL7YmEqXVn6898AA+sUHkV9WA8D2IwX4ejgz98GBzJs4iJ7RAWcdIyGEEEIIIYQQQohzJTMOxV9OsI8L0cFeAMSGeJFXVkON3siBrBJe+m6ntZzBaAKgfYQPb/y4h4HtQ7iibTAASUcKOJZfwaaDuQBU1Rk4UVxFsI/rWY/Bnv5tQ6xlfjtk6Wt/Zgkv3NIdgJ4xgbg7OwLQOtCDD389yPxfD9I7LoiESN/mB0UIIYQQQgghhBDiPJPEofjLcdT+OVFWowG9UcWsqrg7O1qfS3i6x0YmcOhECX+k5vPQh5t4/4EBqEDiNR3ocZaz+uyNwW45B0s5jaJgNlvKqKr9suF+7swefwXbU/P5ZO0hurUJ4K6BsWc1PiGEEEIIIYQQQohzJUuVxd+Cm5MjQd4ubDxgWTKsqipHcssByC6uom2YD/cMjsfLRUdBeQ09ogNYtiMdo8kMQFZRJbV640UZa8dIXzacHGfSkQIqaw0AFFXU4uyoZVincG7u04a0nLKLMh4hhBBCCCGEEEIIe2TGofjbmHxDV95ZsY+vNqViMqsM6hBKdLAn8389yInialRUurb2p02QJ62DPMktrebhD39DRcXLVceLY3tclHHeNTCWV5bsYuOBbBKi/PB1d8JFp2Vvehnzfz2Ioig4aBQeubbjRRmP+Hu7/r+/sHTyNdbXq/ZkkpJdxr9HNHx/nV7mzF3FT2noeGPeX7mfTQdz+OKxYWgUxeb8nuNFfLv1KDNu69nsNlti1Z5M1qXVMXhw88p/viGFFbsy8HJ1wmQ2c++QtvSNDzqraxdCCCGEEOeHUldJ6swRABjLC0DR4ODhh74oC0evQOKeX3NW7ZZs+Yac72fi6B1sPRZx79toXbzI/uYFoh6Y22j9/ZPa0WHWQZvjZbtX4hTUGueQOACOzrqV4DHP4RrVqdH2arNTyF78PIbSXFBVvHuPIXDEoyiKgtlQx/E592KqKiHgqkS8e1xnrZecGNUHeBtwOvm1KGFO+ovNDMPp7XgDdyTMSZ/T0roNtPciUJkwJ/2N89GeuHgkcSgue3cPirN+H+ztyryJg6yvT//gHuzjysw7etnUf95OQlAB7hvalvuGtm1R/02N4anrO1u/X/DoUOv3caHevD6uLwCuTg7MvLMXWo2GA1kl7DlehM5BS4/ogLNeOi3E5c6sqmw+lEuApwvJ6cV0buV3qYfULDf2bs0tfaPJKKjgyc+2sChu+KUekhBCCCHEP5rq5E7s1BUA5C2bhcbJlYDhD6IvyuT4nPvOqW2v7qMIu3WGzfGmkoaNKd+7Cs+OQ62Jw+Yw62tJn3s/obe9jEf7gZj1NaTPe5DijQvwG3QPtVn7wWS0xuEMnwFjE+ak70lOjNIC8Wc5dG8gETgvicNzkZwYpQBKwpx086Ueyz+RJA6FuMgKymp5+budmFUVR62Gx0clXOohiX+o0qo63vl5HwUnN/eZeHV7OkS0fFOeH7YdY3lSBlqNQqS/O1Nv6mZTZs/xIloFejCofSjr92e3KHG4bt8JFv52BBWVXjGBjL+yHWCZTXlDr1b8kZqPk6OWF8f2wMfdqcnrqq4zMnHeRj5OHIyDVkNVnYGHPtjExw9bXtsTGeCBVqOhvFpf7/jPOzNYsTMDg8lMqK8bz9zQBWdHLSWVdbzzczI5J3drf+TajnSI8GXN3ix+2H4co0mlbZg3/x7REa3GdvalEEIIIYQ4C2YTWV8+S/XRJBy9gomaOB+Nzpm6gnSyF03HWFGERudC2J3/xTk4pllNnkpIxk1fjVlfQ9aCJ6nLPYJTcAz64ixCb51hnT2Yu/Q1KvatRXF0Jmrih+gL0qnYu5qq1K3k/zKbyJMJyLKdy8leOA1TTTnhd72GW0z9CTCl23/AtU0PPNoPBECjcyH01hkcm3UrXt1Gkvnp4xgrikmdOYLIB+biFBB1evVAIAcgYU66CTgAkJwY5Qa8CyRgyQW9mDAnfWlyYtS/gBuxzE5sDXyVMCf9P8B/gejkxKjdwOqEOelPJydGPQ2MPVn2+4Q56S8kJ0a1An4BfgP6AHuAT4D/nBzLnQlz0redHFvn5MSotUAE8FrCnPQPT46toXZXAOuAvsANQHqzfmjivJLEoRAXWZifG3PsbOIixIWgN5p4aN4m6+uKGj194oIAeH/lAcb0bk3HSF/yy2qY+uUfzE8c3OI+Fm0+wmePDEHnoLU+s/NM6/dlM7hDKH3jg/hk3SGMpg4NJulOV1RRy0drDjF7/BV4uDgy5ctt/H4ol35tg6k1mGgX7sO9Q9sy/9eDrNiVwR0DYpu8LlcnBzpF+bEtNZ9+bYPZsD+H/u2CGx3PoRMlKAp4uerqHb+ibTDXdosE4NN1h1m5K4Pre7Vmzsr9JET58cLYHpjMKrV6IxkFFWw4kMOsf/XDQavh3Z+TWZt8guGdw5sRZSGEEEII0ZS6guNE3Pcu4Xe+Ssb8RMp2/YxP7zGc+GoyYbfPxCmwNdXHdpG9cBptHl9oU78saRnVR3ZYX0c/9X2980UbFqB19SJ22kpqsw9bl0wDmOuqcW3djeDrnyFnyUxKNn9N4IhH8eg0HM+OQ/HqNvLPhsxGYp79kfJ9a8lb/hZtHvuqXj+1OSm4RNafYOIUEIWprgrFwYmwO1+l8Nd5tEr8xF4YZgGHkxOj1mNJ6H2WMCe9FngOWJswJ/2+k8uQtyUnRv16sk4voCNQDWxPToxaDkwGOibMSe8CkJwYdRUQe7KsAvyYnBg1EMgAYoBbgAnAduAO4ApgNDAVS9IPoBOW5KIbsOtkPx0baTceuDdhTnqivQsVF0eTiUNFUT4GRgH5qqp2PHnsdeA6QA8cAe5VVbX0Ao5TCCHEWdA5aOvtNn7q+YUAu44VklFYaT1XrTdSXdfyTYJaB3ny6ve76RcfRL+2wTbnDSYz29LyefCq9rg6OdA21JukowX0jg1qsu3D2aV0ivLD280JgKEdQ0nOKKZf22ActRp6xwYCEBPixa6jhc2+rhFdI1j8+1H6tQ1m1e5MHh9l/xkz3/9xjLXJ2bjotEy9qRvKGc9mPF5QwafrDlNVa6TGYKR7G8vjBvYcL+Lpk48u0GoU3Jwd+TX5BKk5ZTzy0WYA9AaT9bqEEEIIIcS50/lF4BLRAQCXyAQMxVmYaquoPppExvw/c0+qoc5u/YaWKp9SfWQHfkPuBcA5NB7nsD8ffaU46PBIGGbtu/LQJrttAHh2uabeGO2y80zwRo+flDAn/f+SE6O+BK7CksC7HRh88vXo5MSop04WdQYiT36/OmFOehFAcmLUEixJvx/OaPqqk1+7Tr52x5LwywCOJcxJTz5Zfz+wJmFOupqcGJUMtDqtjaUJc9JrgJrkxKh1WJKFVzTSbnrCnPStjV6wuOCaM+PwU2A2sOC0Y6uBKaqqGhVFeRWYAjx7/ocnhBDiQlFVlbfu7YeTo/ac2plxW0+SM4rYmpLPV5vSmPfQQLSaP2fv7UgroKrOyMQPNgJQazDh5KhtVuIQteFTWo1iTeRpFQWT2VK4OdfVIcKXvNJ97E0vwqSqtAr0sFvu1DMOG/LGj3t44ZYeRAd7smpPJnuPFzdyLSrDO4Vz37Cmn60qhBBCCCFaTnE4bXWIokE1mUA1o3XxbOh5gC2iNvKPU0XrYP23qaLRoJpNjYzT6WQ5rWWMZ3AOiaUqdVu9Y/rCDLRObmid3ZscZ8Kc9CPA+8mJUR8CBcmJUX5YZvPdlDAn/fDpZZMTo3pj+69uexeqAK8kzEn/4Iz6rYDTM7Hm016bqZ93stdPY+1W2bs+cXE1uU5MVdWNQPEZx1apqnpq+sZWQNZZCSHEX0y3NgH8uP249fWR3LIWt2FWVQrKa+jSyp/xw9pSWWegRl//Hz/r92czaVQCCx4davl6ZAhJRwupNTT8j6lT4sO8Sc4opqxaj8mssm5/NglRjT+HsbnXdWWncF5ZsourOkc0faENqKkz4ufhhNFkZm1ytvV4l1Z+LEvKAMBkVqmqM9CltT+bDuVQWmX5d1R5jZ680uqz7lsIIYQQQjRN6+KBzi+Csp3LAcsfmWuyDpxVW27RPazt1OakUHvicBM1QOvkhqmuZfkv7543UnVkO5WHfgMsm6VkL34B/+EPNlk3OTFq5MnNRMAyc88ElAIrgUdOnUtOjOp6WrXhyYlRvsmJUS5YlhVvBiqA0/+6vhK4Lzkxyv1k/bDkxKjAFl0YXJ+cGOV8MpE5GMuy5vPRrriAFFVtZDrHqUKK0gpYdmqp8hnnfgIWqar6RQN1J2BZ505AQED3xYsXn9OA/44qKytxd2/6rwb/JBIT+yQu9klc7KusrGTuHoWn+rtZj+3NM5BTYebqGCeqDSqr0uoorDZjViHSS8s1sU71ymxK16PTKvQOd6zX9qnjPUId+Cq5ljqj5e+vHQMd6Bvx5196DSaV2duqSezpipPDn8sqvjtQS7sAB9oH/PkHyPRSE4v31+JyWrkb2jlRVquyJVOPCkT7OjC0taX9NzZXWa/tUIGRtGITo+Ibv66M4jpGtbPcK5V6M+9vr+GR3q44O9gu+Wjq2nuHO7Iz28DWLANezgoBrhr0JhgV70SVXmVFah2ltWYUReHqGB3hnloOFBjZkmlAVVW0GoWronWEeZ7bjM/zQX6H7JO42CdxsSUxsU/iYp/ExT6Jiy2JiX2nx8Vl3/eoDk7Utr0WTVUBHptmUXbNTACcD/2MYqyjpuONaCoLcNv5GZqaUlBN6CN6U9PhhnrtOh3bhOveRZhdfKzHqrqNw+zi/We7xjrct81DW5GL0TsKh/IsKvokYvYIxnfJBIrHzANAl7kdx5zdVPV6AIfCFNx2fAIaByr6/Rv37R9T1fk2TL6tUeoq8Fr9IqWj3rS5Tm1pJm67vkBTWwqqmbqoftS0vwEUBYf8g7gcXkHFgCes5YcMGZKkqmqP5MSohUA3LM8rNALPJcxJX3kyKfgW0A/LLL/jCXPSR53cHOVaLM8djOHPzVFIToz6CstzCVec3BzlMWD8qR8FcBeWxOSyhDnpHU/W+fTk629PzhpcljAnvWNyYtSLQCgQjWWJ9OmbozTZrrh0zilxqCjKc0APYIzajIbi4+PVw4ebzsj/06xfv57Bgwdf6mFcViQm9klc7JO42CdxsXV6TDYdyGFLSh7P3NDlko7pciD3in0SF/skLrYkJvZJXOyTuNgncbElMbHvUsZFNZtQTQY0jpadmo+9fQdxL65D46BruvIFpihKkqqqPVpa72TisEfCnPR/n/9Rib+Ds95VWVGUe7BsmjKsOUlDIYQQ4nLx3i/72J5WwEu397zUQxFCCCGEEH8RZn0Nx966DdVkBFUl7PaXLoukoRAX0lklDhVFuQbLZiiDVFWVBzQJIYT4S3n4GlnxIIQQQgghWkbr7E7M5GWXehjnVcKc9E+xbIorhF1Nbo6iKMrXwBYgXlGULEVR7seyy7IHsFpRlN2Kosxtbof7J7U768GeD5UpW0hOjKJ480LrsZrMfSQnRlGw+oNGatp3fO540l6/ocHzJVu+4cAzXUmdOYKU/xtG8W9fW4+fWDS9xf0119FZt1Kdvtf6Wl+UScqM4S1q40KP8UI5NK0/xspGdjYVQgghhBBCCCGEEE1qcsahqqq32zn80QUYy0XjHNqWsqRl+Pa/DYDSHT/hHN6+xe2YqsuozdiHxskVfWEGOv9Iu+W8uo8i7NYZGCsKSZkxHI9OV57T+C9XqsmIom16EquqqqCqKJom89ZCCCGEEEIIIYQQ4hI562ccnk91BelkL5qOsaIIjc6FsDv/i3NwDOV7fyX/l3dRjXq0bj5E3Ps2Du5+HH5+ALFTf0br6gXA4RcG0ubJ71AUDSe+noqhOBuAkFuexy3a9vlVjr6hmGorMZQX4ODhT+WBDXh0GNLkeM5UtmsFHgnDcPAMoHTHTwRe83Cj1+ng4Y/OPwpD8Yn648neRdprs+pdp6NnAKbaKnIWv0B1xl4UFAJHPoZX12upOLCRvOX/QzXq0flHEX73G2id3Rro1VbJlm8o37sas6EWfUE6np2vJmTMVACKtyymYOUcHD0D0QW1Rjn5vAZjRZHd2OYtm4WhLA9DURZadx9Cb3mRzE8exVhVgmtUZyoObCBm8jLMdVUcn30PbnF9qT62k6gHP6Row2dU7F8PikLgNY/g3eM6KlO2UPjrPGh/DwAnFk3HNbITPn1v4dC0/vj0uYny5F9RTUYix8/BOTgGY2UJmR8/grGyCNdWXQB55KYQQgghhBBCCCHEubospnyd+GoyoWP/Q+yU5YSMeY7shdMAcIvpSfTTPxA7dQXePa6jcPVcFI0Gz07DKduzEoDqY7tw9A3H0TOA7G9exH/oeGIm/0TkhLmc+OLZBvv06notZTuXU310By4RHa0JssbGc6bSHT/i3fN6vHuMpmzHj01ep74wwzIzMaBVveNG/zib6wTIX/EOGhcP4qatInbaStzjLUtw8395lzaPfkXslJ9xjepE4dr5TfZ9ppqsA0TeP5vYaSsp27kMfXE2hrI88pfNIvrJ72j16BfU5aRayzcW25qMZKImzifyvnfJ+/kt3OL6ETvlZzw7X10vSVqXfxSfPjcRO3UFNRl7qc06QOxzv9D60S/J/X4mhrK8JsetdfMhdsrP+A24y5JgBPJ/fgvXmJ7ETl2BR8KVNolZIYQQQgghhBBCCNFyl3zGoam2iuqjSWTMT7QeUw11ABhKcsiZ/zCG8nxUowGdfwRgWfqbv+IdfPuOpTTpJ7y7XwdA5aHN1OWmndZ2JabaSrTO7jb9enUbSeZH/6Yu7whePUZTfTSpyfGczlBegL4gHdfoniiKAlottdmHcQ6NtylblrSM6iM7UBx0hN0xEwc373rnNdXFHH/3bpvrrDz0G5H3z7aW07p6UZ68hrqcVI68eZNlbEY9rq27NRLh0yiK9Vv3tv3RungC4BQcg6H4BMbKYtxi++Dg4WeJUffrqMs/enIs9mML4NlpOBqdMwDVR3YQNcHyrEiPDoOts0IBHH3DrGOtOrIDrx6jUTRaHD0DcIvtTU36XjR2flan8+o6AgCXyATKdv9iaSttm7VPz4Rh9foUQgghhBBCCCGEEGfnkicOUc1oXTyJnbrC5lT24hfwHzYez07DqUzZQv7ytwBwbdMdfcFxjBVFlO9ZSeA1j1jbin7qe2sSqzGOXoGgdaDy4G+E3vKiNXHY2HhOV5a0DFN1GYenXwGAubaC0h0/Ejz6aZuyp55x2BC3XV/gd9NTNtdpWXKr1C+sqri3G0Dkfe82Oj6tuw+m6jLra1NVKQ5uPtbXp8+wVDRaVLPx5Isz+rP223BsNTqXeuNriEbn2mQ5ReOAqpr/LHZG0tY6bo0WzKYG+xJCCCHOh0mTJjFr1qxml9+4cSM6nY4+ffqwZcsW2rVrh7e3d6N1ziz3xRdfMGzYMEJCQs5h5EIIIYQQQpy7S75UWevigc4vgrKdywHLxhk1WQcAMNWU4+gdDEDp1u+sdRRFwbPz1eR8NwOn4Bgc3C0JMfd2Ayja8Km1XE3m/kb7Dhr1BME3TEbRaJs1ntOV7lhKq39/RtuXNtP2pc3ETF5GWdJPZxEBUAzVdq/To91AijZ8Zn1tqi7DtXVXqo/soC7/OABmfQ11eUdt2nSL7UPptu8tG5EAJVu/wy2+X6PjcG3dharUrRgrS1BNBmsMoPmxdY3uYa1XcWBjveRlvfHF9KIsaRmq2YSxooiqtG24RHXG0TeMupw0MBkw1ZRTeXhzo2M+1Vbp9h8sfe5f12CfQgghxIU2cOBA+vTpA8DWrVspK2v6/0lnlrvrrrskaSiEEEIIIS4LF33GoVlfw8Gpva2v/YeNJ+LetzmxcBr5K95FNRnw6jEal/D2BI2cRPqHD+HoHYxr665QlGmt59X9Oo68eh3h4960Hgsd+x+yF04n9aWrUc1G3GJ6E3bHzAbH4hbdw+7xhsZzir4oE0Nxdr0lwjr/SDTO7lQf22UZawtUd7jR7nUGXPMI2YumkzJjOIpGS+C1j+HVdQTh494g8+NHUI16AIJGP4VTUJt6bfpecQc5eUdIe/kaUBRcIhMIvqHhZz4COHoFETjycY68cSOOnoG4RHREVS2z+pob26CRj5Px8SOUJv1kWfbsFYjGyQ1zXVW9cp5drqH62E5ST44v+IYpllmgWJaR166aRubh9riEd2gyfoHXPk7mx4+Quvta3GL74Ogb1mQdIYQQoiVSUlJYtmwZnp6eZGVl0aVLF0JDQ1m3bh0Gg4EHH3yQgIAAli1bhpOTE35+fmRkZPDJJ5+g0+l46qmn+PXXX9m7dy8Gg4E2bdpwxx13sGvXLpty7733HmPGjCEqKort27ezcuVKVFWlY8eO3HjjjYBlJuTgwYPZt28fjo6OTJw4EU9Pz0scJSGEEEII8bejqupF+4qLi1OFrXXr1l3qIZw3Jn2tajYaVFVV1cojO9SUl685q3b+TjE5nyQu9klc7JO42JKY2CdxsW/dunXq448/rqqqqh4+fFh94okn1NLSUlWv16uTJ09Wf/rpJ1VVVXXNmjXq4sWLVVVV1Z9++kldtWqVqqqq+r///U89fvy4tb3Kykrr95988om6Z88eu+VOvS4pKVGnTp2qlpeXq0ajUZ01a5a6a9cuVVVV9aGHHrLW/+6779Sff/75AkXBltwvtiQm9klc7JO42CdxsSUxsU/iYh+wQ72I+R35+ud8XfpnHIq/FUNJtmVjGVVF0ToSdsd/L/WQhBBCiPMiKioKLy/LBlwBAQG0a9cOgLCwMFJSUpqsn5KSwurVq9Hr9VRVVRESEkKnTp0aLJ+enk5sbCweHh4A9OzZk7S0NLp06YKDgwMJCQkAREZGcujQoXO9PCGEEEIIIWxI4lCcV06BrZvcWEYIIYT4K3Jw+POfTYqiWF8rioLZbG6oGgAGg4GFCxfy7LPP4uvry7JlyzAYDI3WUdWGNxzTarUoJzc002g0TfYvhBBCCCHE2bjkm6MIIYQQQvwdOTk5UVtbC2BNErq7u1NbW8uuXbvsljtd69atSUtLo7KyErPZzI4dO4iNjb04gxdCCCGEEAKZcSiEEEIIcUH07duXr7/+2rrpSf/+/Xn55Zfx9fUlKiqqwXKneHl5cf311/PWW2+hqiodOnSgc+fOl+JShBBCCCHEP5QkDoUQQvxjVBtUHpq3CYCSyjo0GvBydQLgnfv746hteCL+G0v30Ds2kAHtQ3h6wRYeuLIdcaHeTPt6G5Nv7Iq7s+M5j+/9lfvZdDCHLx4bhubkMtTm+nxDCs46Lbf0jbYe+2pTKpsO5gJwPL+cVoGWXXev7hLODb1aN9nm9f/9haWTryG3tJrnF25n3sRBpGSX8uveEyRe0/Su938Hs2bNAiAuLo64uDjr8UmTJlm/P/3cqFGjrMe7du1K165dra9Hjx7N6NGjbfo4s9zpbffs2ZOePXs2OC6Abt260a1btxZdlxBCCCGEEM0hiUMhhBD/GK6OCu9PGADYT7SZzGa0mpY9xeOl23udl7GZVZXNh3IJ8HQhOb2Yzq38zrnNOwbEcscAy9LW6//7i/XaT1FVlYafomdfXKg3caHe5zw2IYQQQgghxOVPEodCCCH+0d5YugcPF0fScsuICfHiyoQw3vl5H3UGEyE+rjxxXWc8XBqeTTjunbW8O/4KavRG66w8gG+2HKFWb+LuQXH8sO0Yy5My0GoUIv3dmXqT7eywPceLaBXowaD2oazfn21NHH6+IYX8shpyS6vJL6vhxt6trbMFv9qUypq9J/D3csbb1YmYEM8mrze3tJppX22jcys/DmaV8sLY7mzN0vPd/N8wmMz0iw9m3OC4BuvvOV7Et1uPMuO2nuxNL+L9lQcAUIA37umLq5MD3/x+hI0Hcuq1V6s38vJ3Oykor8WsqtwxIJbBHUKbHK8QQgghhBDi0pHEoRBCiH+8rOIq/ntXH7QahYkfbCTxmg50ivLjs/WH+WJjCg9dfW7LchdtPsJnjwxB56Clstb+Trrr92UzuEMofeOD+GTdIYymDjicXDqdWVTJa3f3oUZv4v456xnVPYpj+RVs2J/DexMGYDKbefjD35qVOATIKqriydGdeeTaBJKOFFBSo/LO+P6owAuLdpCcXkRCVNMzHr/dcpR/j+hAhwhfavRGdA4ako4UcKK4infur99eabUeXw9nZpycoVnVQByEEEIIIYQQlw/ZVVkIIcQ/3sB2IWg1ClW1BiprDXQ6mTQb3imcfRnF59x+6yBPXv1+N2v2ZqHV2D670GAysy0tn37xwbg5OdI21JukowXW871iAtE5aPFy1eHtqqOkqo7kjGL6tQ3C2VGLm5MjfeOCmj2eQG8X2oX7AJB0tIBjJSYSP/yNhz/8jczCSk4UVzWrnQ4RPnyw6iA/bDtGZa0BrUZD0tECdh4ttGmvdaAHu44VMv/XgyRnFON2Hp4JKYQQQgghhLiwZMahEH8xBeU1zF6xn4zCClQVescGMv7Kdo1u6nAmk9nMZ+tT2HQwB2dHy9vAgHbB1mehNeTxTzbz1r39z2n8YFnq+OLiHQR7u6KqKl5uOqbc2BVvN6cWtzXunbXc1q7hTSQe/WgzBpOZiho9eqMZPw9nAF4Y251gb1e7dRrbUCItp9y6QcbZWLk7kyVbj6Eolmfa/WtIPP3ig1m1J5PubQKs4ztXq/ZkUldnbvC8yWzmtv/9yoiukdw3rK31+Ie/HmRbaj69YgOJCnA/pzHlllbz5Kdb+PyxofU2+nho3iYeG5nAip0ZjOnTmqgAj7NqH+Cz9YdJiPSjWxv/s24DwNlRC8DRvHIKymvZcaSAHtEBLWpDq1FQVZj4wUaiAjyICnC3nptxW0+SM4rYmpLPV5vS+NfQeCL93a3XviOtgKo6IxM/2IjRZKa0Ws+e9CJ83JxwctQyuGMoq/ZkkpJdhkajYDJbnkyo0LINVM68XgAV6BvhyKTbBzRcoQG39o+hV0wg29IKePzj33nlrt6owK39oxnZPcqm/OzxV7A9NZ9P1h6iW5sA7hrY+HuOEEIIIYQQ4tKSxKEQfyGqqvJ/3yQxqnsU/7m1ByazytvL9/LpusM8cGW7Zrfz6boUSirr+ODBgegctFTXGflu69Em652PpOEpHSN9mXGbZafQj9cc4sft6Y0+V+1svXO/Zcynki7/HtGxyTqNbSjxxtI9Zz2WgvIavv4tjffGX4GbsyM1eiNlVXoAVu/JolWAh90kncms2p2l1pjVe7Lo5tPwthdJRwoJ93Nn48Ec7h0aj3IysfdzUgaLnrwSnYOWpxdsaXBMDTl9c5Fgb1cCPJ3Zl1FsncGXUVhJjd5I2zBv2oZ5t+ia7LlncPw5t3G6P1LzcXLU8v0fx+gRHcCa5BPNWrIL4OPmRFFFLb4ezuxNLyK7uIpesYGYVZWC8hq6tPKnY4Qva5Oz+O1gLle0DbYmDtfvz2bSqASGdAxj6pd/cHWXCN77ZT+zHxjAvNUH7PaXEOnLmz/u4db+0ZjMKltT87i2W2SLr7lHmwDe3Z9Ojd6Ii86BwvJaHLRKsxL52cVVtA7ypHWQJwezSsgqrKRHmwA+W5/C0ISweu2ZzCoeLo4M6xSOi86BVXuyWjxWIYQQQgghxMUliUMh/kLSS83oHLRc3SUCsMxwevCq9tzz7jruHhTHxgPZbD2cR63RTE5JFf3jgxl/RkKx1mBixa4MFjwyFJ2DZdaRq5MDdw/6M2n33dajrNydCcA1XSMZ09uyEcP1//2FpZOvYc/xIr7YmIKni47jBRXEhnjx7A1dUBSFban5fLD6AF6uOmKCvcgprbYmCO1RVZVqvZFQXzcADp0oZe6q/egNZnSOGp68rjMR/u6YzCofrTlI0pFCFAVGdI3g+pMbRADUGUz855skrmgb3GTy5EhuWYs2vzhTckYx3/1xlJLKOsYPa2edfWhvQ4jTlVbpcdE54KyzvPW66Bxw0Tmw6UAOKdllvPr9bnSOWt66tx8PvL+Bq7pEsPNoAaN7tMLDxZHPN6RgMJkJ8XHlydGdcdE5kJpTxgerDlCjN+LlquPJ0Z05kFlCSnYZWflmNuZs4q17++F02gwzsCSqbujVimVJ6Rw8UUr7cB9eWLidWoORxz7+nVv7R9uMKaOw0qYvPw9nnl6whXbhPhzILKFPXBA3921j7WdwR8tGH6cShxv2Z1s3xHh6wRYeuLIdcaHeJB0psLm+9IJKFm9O4/mxPfj9cC6vLNnFkmeuRlVVHnh/A589MpQ3lu6xzgAd985aruwUzh+peRhNKs/d3I1If3dKq+r47/e7qajR404dH+1dy+zxV9j8XFVVZdPBHKaO6cKMb3YyYe4GQn3cuHtQHOPnrMeswq5jhfy8KwOz2TYp66DV0DbMm5ScMhy1Guvvl9ms8tC8TThqNNQajXSI8GXHkQIOnijhq9/SeOaGLuw4UsCjIy1J7eLKOkJ93egY4cPWlDx8TkvgFVfUkldawzMLtjKwfQgD24eQOG8TDg4ayqv1fLflKGVVesZf2Y4N+7M5dKKUB69qz/d/HKPOYAIgr6yG3JJqa5vdowPoEODA4x//fvK+1PLMDV2alTj8ftsx9hwvQqMoRAV40CMmAJ2DlozCSpv2skuqmf/rQRRFwUGj8Mi1TSfxhRBCCCGEEJeWJA6F+AspqDYTG+JV75ibkyOBni5kn3wm2ZG8cuY8MABHBw33z9nA6J6tCPRysZbPLq4i0NMFVyf7v/6pOWWs2p3FO/dZNjZ49KPNdIr0JeaMftNyy5k3cSB+Hs488cnv7M8sIS7Ui7d/TubNcX0J9nHllSW7GryWfRnFPDRvE+U1epwdtdw71DJzLMLfjTfv6YtWo2Hn0UI+WXeY52/pzs87M8gtrWHOhCvQajSU1+itbelNKs8v2s6VCeEM7xzeZBxfX7rnnDa/KK6s5X//6kdmYSUvLNrBgPYhDW4IcfpstTZBnvi46bjn3bV0ae3PFW2D6RMXxID2Ify447g1iXaKzkHD//7Vj7JqPf/3TRL/vas3zjoHFm0+wndbj3Fb/2je+2UfL47tgbebE+v3Z/PpusM8ObozP+44Tjefam6/znb5aZ3BxK5jhTw6MoGqOiPr92XTPtyH/9zWs94My+VJ6dYxGU3mBvsCy0YXb9zT16avge1DePjD33j4mg5oNRo27M9m2s3d65Upq9bz1W9pNtd3+xXRpOWVA5b7pVWABynZpZjMKm3DfOz+bLxcHXnvgQH8tOM43205yqTrOvHFxlS6tPLjtiti+GjJr+zeXwNQL1l+qo9gb1f6xAVzRbsQBrSz/De3tJoTxdXMHt+f6GAvXvp2J1cmhFl/VgseHWptI7e0hvfGX0FWURU/bj9u7SMm2JNIf3ceuTYBoF7CE+C7p6+ytnFj79Y88/lW2of7UFxRy429W+Pu7MiqPZkcySvnq8eHWX+/37ynL1d3ieCxjzfzUeJgPFwcmfLlNn4/lEtClC/fbjlqvbbYEC8Ky2vJL62x7sp8Ss8wR54ePNAmnksnXwNYZo+e2i26cys/647PD19jP/l3Y+/W3Ni7fh+hvm4tXv4thBBCCCGEuLQkcSjEX4y9Bavqace7tPa3bjoQ6e9OfllNvcThmVbuzuSHbccpr9Ez61/92Hdqw4WTs+KuaBvMvsxim8RhfKg3AZ6WdtsEe5JXWo2LTkuItyvBPpZnBw7uEMrPuzLs9nv6UuVFm48w/9dDPDYygapaI28s3cOJ4ioUFIxmy3P6dh0rZGT3SOsyWE8XnbWt7w7Uce/weIYmhDUcuJPsbX7x8nc7m6x3un7xwdYZVqVVdQD1NoQAqNEbOVFcVS9xqNUovHxHLw5nl7H7WCFzVx0gNafMJoF1yqCTSaWDWSVkFFQw6dMtABhNZtqFe5NVVEV6fiVTvtwGWGa2+Xo0PUvsj9R8Orfyw9lRyxVtg/lyUyoPXtW+0eXQTfU16OQswjP5ujsTGeDOrmNF+LjpcNBqaBVY/5mGDV2fVqMh1MeNjIIKDmeXMaZPa5LTizGrKh0j7ScO+7e1xCw2xIvfDlmeU7k/s4QXbrEkK6N9HXB3tv/sx/X7s63XMbhDKGuSs7iinaW9YB8XooO9rG3nldXY1D+cXYqXq44gb1f8PV343097qagxWGezNhSjM13dJYIe0QHsOFLA74fzWL4zw5rMtff7XV6jp1OUn3WG4NCOoSc3TgmmRm+kus5IQXktQzqGkpxRxL6MYvq3DW7WWIQQQgghhBD/bJI4FOIvxN9Vw76csnrHquoMFJTXEOLrRmpuWb1NUk7fROGUUF838strqK4z4urkwNVdIri6SwQT5m7ArKo0/FS8+hwdTutHUTCpKmpzK5+hb1wgM761JO8WrE+hcys/Xhjbg9zSap5ZsNVSSFUb3AgizFPD9rR8hnQMtT6r70I6PcanrrmxDSFOpyiK9fl+3dr48+aPextMHJ5K3gJ0axPAlDFd650/lldOVIA7b93XsmdPrt93gv1ZJYx7Zy0AFdV69hwvanSDEVVVG+3L+Yyl0Kcb0sGyXNnHzcm6TPlM9q4PLAnm7UcKcNAodG3tz5s/7sGkwoQGnul56r7UKIp1ObHajBvTZFb57WAuW1LyWPhbGipQXq2nus5oabfe7xXojbZtrt+XTWZRpTWu1XVGfjuUw4iulqXzjcXoTH4ezvV+N9MLKu2M4+TvdyOX1y7ch1V7Mgn3c6NjpC8rd2dyIKuECcOb/0xUIYQQQgghxD9X87dhFUJccq28NdQZTKw+uamAyawyb/VBhncOb3ZSwtlRyzVdInjvl33ojSZrO0aTJfuQEOnLlsN51BpM1OqNbD6cS8cI32a1HeHvTk5pNbmlluenbTiQ3ax6+zJLCDk5S7GqzmDdjGP1aZsndIsOYHlSOqaTMxBPX6o8MEqHp6uOd1fsa7IvN2dH3J0dSc4oBmjR5heN6dEmgJW7s6jRWxJNheW11tmIpxRV1JJ6WuL3SF45gd6WWZsuOgeqT9Y9U9swb/ZnFnPi5HL0WoOJrKJKwv3dKa3WcyCrBLDM1DueX2FtT2+ybauqzsC+zBI+f3QoC05+PTyiI+v3n7Ape/qYGuurKVe0C2F7Wj4bDmTbTRw2dH1guR+//+MY7cJ98HZzorzGQFZhZb0di5vSMdKXDQdyADhaYqSy1mBTZtexQtoEefDlY8NY8OhQPn90KFe0C+b3w7nN6sOsqmw8mMPcCQOtcX3h1u6s32f/d8DFSdvgz3t7Wj5Gk+U+L66spaLGgF8jM0njw7xJziimrFqPyayybn82CVGW39lTy5UTonyJDvZiz/EidA4a66xFIYQQQgghhGiMzDgU4i9EURSev6U7s1fs46vfUlFV6BkTwL1DWraz7L+GxPPZ+hQmzN2Iq84BnaOGKzuF4efhTLC3K8M7h/PoR5Ylt9d0jbRZptwQJ0ctj4zoyHNfbcPLVUf8ac/rO9OpZxyqqoqbsyOTRlme/XZLv2jeWLqHJVuP0aXVnwm9EV0jOFFUxcQPNqHVKIzoFsn1PVtZz0+8qj1v/rSX+b8etNkQ5kxPX9/ZujlKsLer9Tl956J7dIDdDSFO32DCaDLz4a8HKaqoReegxctVx6MnN4gY3jmcd5fvs25EcjpvNyeeGt2Z/y7ZheFkQumewfGE+7kz/eZuzFl5gKpaAyazyo29W9Mq0IPhncOZs3wXW+fV3xxl86FcurTys27cAdA3PoiP1hyyJpJPOXNMDfXVFHdnR9qG+VBaVWddxt7c62sb5k1plZ6ESEsirHWgB96uuhbNLL1rYCyvLNnFxgPZ+GhM+Lo74aI7Y7OYfdn0O2P57hVtQ1iWlE7HyKYT58npxfh7OOPv+ecO1AmRfrxauJuiilqb8oM7hPLWsmSWbjvOtJu7WTcHAth5tJC5Kw9YZ0+OH9YWX/eGd7b283Dm3iHxPLNgKyoqvWIC6RdvuZaOEb4UlNeSEOmLVqMQ4OVChF/zk65CCCGEEEKIfzalOUu4zpf4+Hj18OHDF62/v4r169czePDgSz2My4rExL6/Qlxq9EZcdA6oqsrsFfsI83VjTJ82TVc8B3+FuFwKEhcLvdGEVqOg1Wj44sc1bM7VWZ8ZKCzkXrFP4mKfxMWWxMQ+iYt9Ehf7JC62JCb2SVzsUxQlSVXVHpd6HOLvR2YcCiHOqxU7M1i99wRGk5noYE+ubeKZf0JcaAVltbz83U7MqkpNtZ6pt3ZvupIQQgghhBBCCEkcCiHOrzF92lzwGYZCtESYnxtzTs4wXL9+faNL6IUQQgghhBBC/Ek2RxFCCCGEEEIIIYQQQtiQxKEQQgghhBBCCCGEEMKGJA6FEEIIIYQQQgghhBA2JHEohBBCCCGEEEIIIYSwcdETh/kr3iVlxpWkvnQ1qTNHUH1s18Xr+5fZDZ47NK0/xsriC9Jv1hfPUJuT0miZvGWzODilF6kzR5Dyf8Mo3b70rPoqXPsRZn2NzfHyPatIn/uA9XX+L+9x+IWBf57f+yvH378fQ2ke6R9OBKAmcz/l+9bWG2PB6g8a7T/j40co2vi59XX1sV2kvnQ1qsl4VtdjT+aCJzk0vT+pL1/D4RcHk/npJAylueet/bOxf1K7s6pXtPELSrZ+Z3NcX5RJyozhLWorOTGKzE8ft75WTUYOPNOV43PubXYbJVu+4cAzXUmdOYLDLwzi2Lt3U3VkR4vGIYQQQgghhBAX0tl+/jqlMmVLg59zSrZ8w4lF05vVjrGyhNSZI0idOYKDk3tYP9OnzhxBXd7RFn+mO3Mcpz6bpc4cQeank866raYkJ0Y9npwY5XrBOhB/aRd1V+U4TzPl+9YQM3k5GkcnjJXFqEbDReu/YOV7BF7z74vW3ynhd73WrHL+Q+8nYPiD1OUfI+2/o/Dqdi2K1rFFfRWu/RjvXjei0bnUO+7apjsnvppifV19bCcaZ3eMFYU4ePhTfTQJt+geOHoHEfXAXABqsw5QnbEXz45Dm91/yM3Pc+T1G/Hqei1aNx+yFz1P6G0voWjP/lZTzSYUjbZ+PzdOxavbSFRVpWjtRxx96zZip61C46Brsu7lxG/gXeetLY2TK7XZhzHra9HonKk8tAlH7+AWt+PVfRRht84AoPLw72R8OJHWj32Nc0hsvXKqyXhOP1chhBBCCCGEuBSqUraicXLFLbrHObXj4O5D7NQVgGWijcbJlYDhDwKWySDn6vTPZs2VnBilAErCnHRzC6o9DnwBVLeoM/GPcFE/9fs4qTi4+aJxdLJ07u5rPVd56DdylryMajbhGtWJ0NteRuPoxKFp/fHpcxPlyb+imoxEjp+Dc3AMectmYSg5gb4wE33xCfyH3o//EMvMqpI/llC0/lNUkwHXVl0Ive0l8n58HbO+ltSZI3AKiSXy3neaHG/24hfQuvsSdO1jVBzYQP4vs2nz+CLS503Aq8sIfPrcRNGmL6lK+4OIcf/jyOs3EjxmKu5xfcn94VVQFIKvf4ajs24leMxzuEZ1alacnAJbo9G5YKouw8HDn4LVcylLWo5q1OPZ5WqCRj2Bua6ajPmJGEpzUc0mAkc8irGiEGNZHkffug0HNx/aTFpkbdPBww+Niwd1+cdxCmyFoTQXry4jqDqShFeXq6k+mkTQ6KfQF2VyfM59xExZTt6y/2E21FJ9ZAcBVyUCUJebytFZt9rE/BRHzwACrpxA7vev4BLVCeewtrhEJZC14CmqM/aiaLSE3DQd9/h+lGz5huqMvdY3wuNz7sX/ygm4x/XFd8kE8ioepOLgRkLGTMMtpqfdWCmKgv+w8ZTtWUnl/vV4dr6K/ZPa4T90vLWuvijT5n5QNFpOfP0cNel7MBtq8ep6LUGjngAss0+9e15PZcrvYDISdscr5C59DX3BcfyvfLDRZF9lyhbyl7+F1t2HuuwUnCM7EvGvt1EUhdwf/kv53tUoGgfc2w0g5KZp9f7nUpORTNbnT6PonHGL/vN6VbOJ3B/+S1XKVrzKiinSJuI34E67/Xt0GELFvjV4dRtJ6fYf8e4xmqq0bahmMyn/GUL0U0tw8PA7+Xow0U//UO/38Ezu8f3w7X87xZu/JvTm5zk661Zc23Sn+sgOPDpdiXtcX3K+nYGprgoHd1/Cx72Bo1cQxb99TfFvX6GaDOgCooj411todC5kLngSjaMzdblp6ItPEH73G5T+8S3VR3fi0rorEePebHAsQgghhBBCCNGQmsz9nPj6OVR9DbqAKMLvfh2tqxeF6z6heNMXKBoHnEJiCb7hWYp/+xIUDaXbfyB07H9wi+llt83MBU+idXanJn0vhvICQm6cgle3kc0flNlE1pfPUn00CUevYKImzkejc6auIJ3sRdMxVhSh0bkQdud/cQ6OaVaTBWs+pOT3xQD49r8N/6H3oy/K5Oc7QzskJ0bNAfoCNyQnRo0FxgJOwPcJc9JfSE6McgMWA+GAFpgBBAGhwLrkxKjChDnpQ5p/geKf4KImDvcUazCU5nD4xcG4x/fHq/t1uMf1wWyoJWvBU7R+7CucgtqQ+ekkijd9gf/Q+wHQuvkQO+VnijYsoPDXedYZfHW5R2j9+ELMdVWk/GcIfgPvoi7/OGVJy4h+6jsUrSMnvn6O0m0/EHzDZIo2fGb9a0BzBN8wmbRXr8MtuifZi1+k1cOfomg0hN3xCkffvAmdfwSFaz4k+ukfULQOhI97k4wPJxIy9j9UHFhP9DO2y42zvngG3wF3NZpErMlIRhfQCgcPfyoObKQu/zjRz/4Iqkr63PupSv0DY2URDt5BtHr4UwBMNeVoXTwpXDOfNo8vtJsMcm3TneqjSaCacApsjWvrrlQc2IhnwjBqThzEJaoTxvICADQOOoJGPVEvsZe3bJbdmJ85K9J3wF0c+eNGKlO3EPPsMoo2LAAgbtoqanPTOP7u3cS9uK7R2CvGOpxC4wm67slGy53iEtGRurwjAJjrqq11a3NSKVv1vs394NPnJoJGP42Dmzeq2cSxt++gJusgLuGWKe+OPiHEPP0D2d/+H1kLnqLNU9+hGupImTG8yVmCNZn7iZu+GgevII68OYbqIztwComlbPdK4l5Yi6IomKrLbOplLXiKkLH/wT2uDzlLXrYeL/l9EVoXD2Im/8T6Nasp2fw2Hu0GoPOPtGnDq/t15K94G4+EYdRmH8Kn31iq0rahaDR497qR0u0/4D/0fioP/YZzWLtGk4anOEd0tPyP9SRTdRltnliMajJw9H9jiZo4HwcPP0p3/ETej68TfvcbeHa5Bt8rbgcg98fXKd680JpkNlWX0frxhVTsXU363PuJfvI7nO6MI+3V66jJ3I9LRIcmxySEEEJcjlasWMGOHTtQFAWNRsPtt9/OsWPHuOKKK9DpdE03IIQQ4qxlffaE9fNU3k9vkrf8LUJveYGCVXOI/7/f0Dg6YaouQ+vqhe8Vd9abHdgYQ1k+bZ78jrq8NNLnjm9R4rCu4DgR971L+J2vkjE/kbJdP+PTewwnvppM2O0zcQpsTfWxXWQvnEabxxfa1C9LWkb1ySXVfkPuxSWsHSVbviHmmaWoqsqR16/HLbY3WlcvQj20zsCChDnpicmJUVcBsUAvQAF+TE6MGggEANkJc9JHAiQnRnklzEkvS06MegIYkjAnvbDZFyf+MS5q4rDWpBAzeRlVaduoStlC5sf/Jvj6Z3GO6ICjfwROQW0ALDP5NiywJg69uo4AwCUygbLdv1jb8+g4FI2jExpHJxzc/TCWF1J5eDM1mcmkvToaALO+FgcP/7Mar0bnQtgd/+XorLGE3DQdp4AowDKrLmjUExx96zaiJszDwc0bAOfQOLx7jyH9/fuJfnqJzbJZaHzZcuHajyjevBB9YQat//0ZAJUHN1J5cBNpr1xruZ66Kuryj+EW04ucJS+T8/0reCYMa/AvJKdza9OD6qNJqKoJ19bdcGnVhfyf36Emcz9OQdFoHJ2bbMNezB19QuqVUTQafK+4g5r0vTi4+1B9ZAd+g++xxCg4BkffMOryjjXaj6porD/3ZlHVP7/XaK11G7sfypKWUbz5KzCZMJTnU5ebak0cenayPIvCOTQec10VWmd3cHav9z+bhri26myNiUt4B/RFmbi27orG0YkTXzyDR8eheCQMq1fHVFOOqaYc97g+AHj3GkPF/vUAVBzcSO2JQ5TtWoFXZSVGrZm6/ON2E4cu4e0wFGVRuuNHPDrU/0ORT9+xpH8wHv+h91OyZTE+fcc2K7Sg1nvl1f06AOryjlKbk8Kxdy2JVNVswtEzEIDa7MPk/fQGpppyzHVVeLQbZK3vkTAMRVFwDmuLg4c/zmFtAXAOiUNflCWJQyGEEH9JR48eZd++fUyePBlHR0cqKysxGo189NFH9OrVSxKHQghxAdl8nupzMxnzHwLAOawdmZ8+hmenq/DsfHWL2/bsfBWKRoNzSBzG8pbl1XR+EdbPNy6RCRiKszDVVlF9NImM+YnWcqqhzm79M5cqF679GK/OV6NxsjyO0LPLNVSlbcez05UUVJn0Vy44sfVk0atOfp3aVMIdSyJxE/BGcmLUq8CyhDnpm1p0QeIf6aI/oEzRaHGP64t7XF+cQ+Mp2fodzuHtG69zKgGn0YLZZHv85DnVbARVxaf3zQTf8Ox5GW9t9mEc3HwwluXXP37CctxQlmdTXuvq2eI3FPjzGYdlu1aQ+dkTxP/fRkAl4Gr7S1NjJi+nYt9acpe+inu7gQRd+1ij7bu26W5Zsqua8O1/O1pnd8zGOqpSt+AW3b1ZY7Qbc3vlFA1oTu69o6p2y1h+nn8+dsF8+pul1rFFzyasydqPe9v+lmYdnf6s28D9oC/MoHDNPGKe/QmtqxeZC56s92Z96joVRVP/mhUN6mn3oD31Y6QBswlF60D0M0upPLyZsh0/UbThs/p/UVJVUBT7DaoqoWP/g0f7Qaxfv56ugwc32r9Hp+HkLnmZNo8vwlhVYj2u8w3FwcOfysObqT6+i4h73260nVNqM/fjdNq0+VP/k0JVcQqJJebpH2zqZH3+JFEPfohLeHtKtnxDZerWP+ufio+i2InV+dtERwghhLiYysrKcHNzw9HRshLD3d2ddevWUVZWxltvvYWbmxuTJk3i66+/Jj09HYPBQNeuXRk1ahQA06ZNo0+fPiQnJ2MymRg/fjzBwcG89957lJVZVioUFhYyduxYYmNj+fTTT9Hr9QCMHTuW6OhoysrK+Oijj6itrcVkMnH77bcTE9O8pW9CCPF31SrxE6pS/6A8+VfyV7xL3PTVLapff0JQA59tG2DzWdJkAtWM1sWzRashm9N/nUk9/ZmGCvBKwpx0m91NkxOjugPXAq8kJ0atSpiT/n9nMRDxD3JRd1UOdTVTl//nTLOarAM4+oXhFByNoSiLuvzjAJRs+x632D5n1Yd72/6U7foZY4UlcWesKkVflGU5qXFANTV/MxZ9URaFaz4kZsrPVBxYb90Buvr4bioOrCdmys8U/joPfWEGAGW7VmCqLKHNpMVkf/Oi3eWozeHVdQQuUZ0o2fod7u0GUbJlMabaKgAMpbkYKwoxlOah0Tnj03sM/sMmUJuxz3KJzm6YayvttusUEouhLI/qtO1//tUjvD3Fm77EtY1t4tDSVtVZXcPpXGN7UbrtB8AyS81Qko1TUBt0fhHUZh1ANZvRF2dTk76nxW2rqkrhuk8wluXj3n6QzfmG7gdTbSUanSsaZw8M5QVUnpzdd6GYaqsw11bg2XEoIbe8QG3WgXrnta5eaJ09qErbDkDp9h+s5zzaD6J44xfWe7cu7yjmuoafWevbdyyBIx6zzuSrd67/bWR++jhe3UY1KzFbmbKV4s1f49v/dptzuqA2mCqLqTqaBIBqMlCbbdk93FxbhaNXIKrJUO9ahBBCiL+rdu3aUVpayosvvsjXX39NSkoKQ4YMwcvLi8cff5xJkyy7YY4ePZrJkyfz3HPPkZqaSlZWlrUNNzc3pkyZwoABA/j1118BePjhh5k6dSp33XUXvr6+dO7cGQ8PDx599FGmTJnC/fffzzfffAPA9u3badeuHVOnTuW5554jPDz84gdCCCEuAa2LJ1pXL6rStgFQ+scS3GL7oJrNGEqycY/vR8iNUzCfXBGlcXbDXHfun3XPbqwe6PwiKNu5HLB8pq054/NhQ9xielG+ZxVmfQ3mumrKd69saD+AlcB9yYlR7gDJiVFhyYlRgcmJUaFAdcKc9C+AN4BuJ8tXAB7ndmXi7+qizjh01lqeO2CqKUfROKALiCLszv+icXQm/O7XyZj/kHVzFN8GNn9oso+QOIKue4pj795tmc2mdSDsthno/MLxveIOUl+6GufIjnY3R0l9+WpQLLlUr24jqT1xiJAxz+HoHUT4Xa+RueBJop/8lhNfTib87tdx9A4i5KZpZH3+NJHj55C79FVaP/oVOt9Q/AbdQ/Y3/yHinv/V66M5zzgECLr2MTI+fpS459dQl5vGkTduBCyzvSL+9Tb6guPkLpkJGg2KxoHQ2y3PxPPtfzvH3/sXDp4B9TZHActGIq6tumCqrbA+l9C1dTeKf/vKbuLQLa4fBSvfJ3XmCOvmKGfDb+DdnPj6OVJeugpFoyX87jfQODrhGt0DR/8IUl++CueQeFwiOja7zZzvZ5K/4l3M+hpcW3elzeML7S4Nb+h+cG3dDeeIDqTOuBKdf6Td6z+fzHWVpM99ANVQh4pKyM3P25QJH/eGdXOU05f2+vS7DX1RFqmvjMSrspITuyKImvhhg305+oTgP/Q+u+c8Ow0n6/On8el7S4P1Tz1Hw6yvQecXQeQD79vsqAyWv7xFjn+f7G9exFxTgWo24j/kfpxD4wi67knSXrsenW84zqHxmC7R/5SFEEKIi8XZ2ZnJkyeTlpZGSkoKH3/8Mddff71NuaSkJDZv3ozJZKK8vJzc3Fxrgq9r164AREZGsnv3bmudyspKPv30U8aPH4+Liws1NTUsWrSIrKwsNBoNeXmWFTBRUVF88cUXmEwmOnfuTERExIW/cCGEuATM+hoOTu1tfe0/bDzh4978c3MU/0jCx70BqonMTx/HVFMBqorf0PvRunrhmXAlGR8+RPne1Y1ujnKhRNz7NicWTiN/xbuoJgNePUbj0sRKTLAsd/bue7P1UVy+/W/DJaKjzQ7OCXPSVyUnRrUDtiQnRgFUAncBMcDryYlRZsAAPHSyyjxgRXJiVI5sjiLOpKgNLSO9AOLj49XDhw9ftP7+KtavX8/gJpaf/tNITOw717hUp+8l59v/I/rJb8/foC4Dcr/YJ3GxJTGxT+Jin8TFPomLLXsx2blzJ1u3biU7O5vJkyfj7u5OYWEh7777Ls8++yyurq4sWLCA2NhY+vbty7Rp06zl0tPTWbJkCZMmTcJsNvPuu+/Sv39/evToAcCyZcuoq6vjxhtvRFVVHnvsMWbPng1AaWkp+/btY/369Vx55ZX06XN2q3jOB7lX7JO42CdxsSUxsU/iYp+iKEmqqva41OMQfz8XdamyEOLSyV85h4wPJxJ8/fl5/qcQQggh/vTYY4+Rn//nM7GzsrLw8/PD2dmZ2tpaAGpra9HpdOzYsYO5c+eyf/9+AGpqaigtLaW4uNim3R9++IGwsDBr0vBUO15eXvzxxx+sX78e88lnRk+dOhVFUbjiiivo168fmZmZNu2lpKQwZ86cZh1fsGABO3fuPItoNM+yZctYvdryrDGDwcA777zD8uXLL1h/zVFSUsLcuXN54YUXeP7551m8eDFGozyDWQghxD/XRd8cRQhxaQRenUjg1We/5FwIIYQQjfvss8+oqalBo9EQEBDAnXfeyfbt23nvvffw9PRk0qRJREREsHbtWioqKggJCQEsCTQnJyd8fX1t2vz1118JCQlh5syZAIwaNYqBAwcyb948ioqK6NKlC05OToAl+fbWW2/h6OiIk5MT99xzz8W7+HNgNBqZN28ekZGRjBw58pKNQ1VV5s2bx8CBA5k4cSJms5kvv/ySH3/8kTFjxlyycQkhhBCXkiQOhRBCCCGEOEcajYann36alJQUli9fjkaj4c033yQyMpLnn38eRVEAGDduHGCZkfjJJ58QGhrKmjVrePXVV9mwYQO///47AP379wdgxowZzJkzh6lTpwKwevVqMjIyuPbaa/n88885duwYAQEB6PV6nJyc6N69O8nJydTU1JzXmXI///wze/fuxWAw0KZNG+644w5yc3NZsGABzz5rWc1QVFTE+++/z7Rp08jIyGDdunVs2bIFd3d3xo0bh5eXl027ZrOZjz76iMDAQG644QZrO7NnzyYmJoajR4/i5eXFxIkT0el0ZGZm8vXXX6PX6wkICODuu+/GZDIxe/ZspkyZQlZWFjNnzuSll17C19eX559/nmnTprFw4UKcnZ1JT0+nvLycG2+8kW7dutUby+HDh3F0dKRv377Wn+nNN9/M888/z6hRo0hKSrLGoKCggM6dO1sTigcOHGD58uUYjUb8/f25++67cXZ2Pm/xF0IIIS4VWaoshBBCCCHEeZSZmcnNN9/M9OnTKSws5MiRIzZlwsPDad++PW+//Ta33HIL2dnZbNmyhWeeeYann36azZs3211qfEq3bt2IjIzk3nvvZerUqeh0lk3i7O3M3FxpaWnMnDnT+rV3717ruUGDBjF58mSmT5+OwWAgOTmZkJAQTCYThYWFgGXjl+7du2MymVi0aBF9+/ZlypQp9O3blx9//NFun6tXr0ar1XLLLfU3bisoKGDgwIFMnz4dV1dXdu3aBVhmdd5www1MmzaN0NBQli9fjoeHB0ajkZqaGtLS0oiMjCQtLY2ioiI8PDyssSkrK+PJJ58kMTGRpUuX2owlJyeHyMjIesdcXFzw8fGxLkPPysri/vvvZ9q0aezcuZPi4mIqKyv55ZdfrDtdR0VFsXbt2hbFXgghhLhcyYxDIYQQQgghzqNWrVrh4+MDWBKERUVFxMTE2JQbNGgQ+/fvJz4+nrVr19K5c2frsuMuXbqQlpZGp06dWtR3QzszN0dMTAyJiX8+1mTBggXW71NSUli9ejV6vZ6qqipCQkLo1KkT3bp1IykpiauvvpqkpCTuv/9+8vLyyMnJoaSkhJ07d2I2m/H09LTbZ3R0NEePHiUvL4+goCDrcT8/P+uu0JGRkRQXF1NTU0NNTQ1xcXEA9OnTh/nz5wPQpk0bjh49SlpaGtdccw0HDhxAVVWio6OtbXbu3BmNRkNISAjl5eU2Y2ls08hTM0bbtm2Li4sLAMHBwdZx5eTk8OabbwKWpdetW7duJNJCCCHEX4ckDoUQQgghhDiPHBz+/Ce2RqOxbl5yJkVRrAmphmg0mnoJraaWH5/qu7F+W8pgMLBw4UKeffZZfH19WbZsGQaDAYDu3bszf/58unTpAkBgYCAnTpwgJCSEnj17NrnzaUxMDH369OG9997jiSeewNvbu951gCVOJpOp0Xaio6NJS0ujuLiYTp06sWrVKgASEhKsZU5v057Q0FCbZGtNTQ0lJSUEBASQkZFh92erqirt2rXjvvvua7R9IYQQ4q9IlioLIYQQQghxicXExLBnzx70ej11dXXs3r2bmJgYPD09qaiooLKy0rpE+BQnJyfrjs0X0qkkobu7O7W1tdZlwwABAQEoisKKFSvo3r07AEFBQVRWVlqXMJtMJrKzsxtsv2vXrlx55ZXMnj2b6urqBsu5uLjg6upKWloaAH/88QexsbEAxMbGsm3bNgICAtBoNLi5ubF///56Mw6bEh8fj16vZ+vWrYDl+YtLliyhT58+1uXO9rRu3ZojR45YlzPr9Xry8vKa3a8QQghxOZMZh0IIIYQQQlxikZGR9O3bl1dffRWwbI5yaqnutddey+uvv46fnx/BwcHWOn379uXrr79Gp9Px1FNPXbCxubq60r9/f15++WV8fX2Jioqqd7579+58//33zJgxA7DM7Bs/fjwffvghhw8fxmw2M2TIEEJDQxvsY+DAgZSXlzN37lzuuOOOBsuNGzfOujmKv7+/dbMZPz8/AGsiMTo6mpKSElxdXZt9nYqiMGHCBBYuXMiKFStQVZUOHTowevToRut5eHgwbtw4Pv74Y+uM0NGjR9dbei2EEEL8VSmNPcvjfIuPj1cPHz580fr7q1i/fn2Tyzj+aSQm9klc7JO42CdxsSUxsU/iYp/ExT6Jiy2JiX0SF/skLvZJXGxJTOyTuNinKEqSqqo9LvU4xN+PLFUWQgghhBBCCCGEEELYkMShEEIIIYQQQgghhBDChiQOhRBCCCGEEEIIIYQQNiRxKIQQQgghhBBCCCGEsCG7KgshhBBC2FFXV8fMmTMBKC8vR1EUPDw8KCoqwsvLi+eff/6s2t2yZQsZGRnceuut1mOzZs1izJgxNrvVnov09HT++OMPxo4d26J61dXVbN++nUGDBtk9/8033/D7779jMpnQaDT06dOHIUOGoNGcn79HV1ZW8s477wD14w5w//33M2/ePKZPn35Wbf/VYz9p0iRmzZplfW3vesTl72K+tzRm2rRpTJ48GXd397PqT1x4F/Je+f777/H29gYgNDSUf/3rX+dp1PWtXbuWK664Ap1OZ3Nu1qxZlJWV4ejoiFar5c4777TuJn8hlJaW8s033/DAAw9csD6E+DuSxKEQQgghhB1OTk5MnToVgGXLluHk5MTw4cMpKipizpw5l3h0TYuKijqrZFhNTQ0bN25sMHml1WqtcamoqODjjz+mpqaGUaNGndN4T3F3d7cbd4CioqLz0seFdqFif6GYzebzlvgVTfurv7eIi+dC3ivdu3dv8R8dVFVFVdUWvV+sXbuWXr162U0cAtx7771ERUVZk5mPPvpoi8bUXCaTCW9vb0kaCnEWJHEohBBCCNFCZrOZL7/8kqNHj+Ll5cXEiRPR6XQUFBSwaNEiKioq0Ol03HnnnQQHB7eo7a+//pr09HQMBgNdu3a1JuSmTZtG9+7dSUlJASwftgIDA1mwYAEODg7k5ORQUVHBTTfdREJCAikpKfz6668kJiZSV1fH4sWLOXHiBGazmZEjR9K5c2eys7P5/PPPMZlMmM1mJkyYwE8//URhYSEzZ86kbdu2jBkzpsGxenh4cOedd/Lqq68ycuRIiouL+fTTT9Hr9QCMHTuW6OhoPv30U7p27Urnzp0B+OSTT+jevTudOnX6W8T+0KFDrF+//qLG/kxFRUV88cUXVFRU4OHhwd13342vry8LFiygY8eOdOvWDfhz1mJKSgrLly/Hy8uLrKyss565JM6vC3F/N3Rfn6LX65k3bx5dunShZ8+edu9Xcfm5EPfKmjVr+P333wHo378/Q4cOpaioiNmzZxMXF8exY8d48MEH2blzJ0lJSRiNRrp06cKoUaOoq6tj/vz5lJaWYjabGTFiBBUVFZSVlfHWW2/h5ubGpEmTGuy7devWrF69GqDB983XXnuNu+66y1pn1qxZ3HTTTQQFBdktv2XLFvbt24fBYECv13P33XczZ84cpk+fjtls5ocffiAlJQWj0cigQYMYMGDAOfxEhPj7ksShEEIIIUQLFRQUcN9993HnnXcyf/58du3aRe/evfnqq6+4/fbbCQwM5NixYyxcuJDHH3/cpn5SUhJHjhyp194po0ePxs3NDbPZzNtvv01WVhbh4eEAODs78+yzz7J161a+/fZbEhMTASguLmbSpEkUFhby1ltv0bZt23r9/fLLL8TFxXH33XdTXV3Na6+9Rtu2bdm0aRNDhgyhV69eGI1GzGYzN9xwA9nZ2dZZLk3x9/fHbDZbE1aPPvoojo6O5Ofn8/HHHzN58mT69evH2rVr6dy5MzU1NRw9epRx48a1NOzWWF1usR8yZAgdOnS44LHX6/XWZYsAVVVV1uTrokWL6N27N3369OH3339n8eLFTJw4sdFYpqenM23aNPz9/RstJy6ec72/7Wnsvq6rq+Ojjz6y3jtLly61e786OTldwKsWZ+N8vhcOGTKEsLAwtmzZwjPPPIOqqrz++uvExsbi6upKfn4+48aN4/bbb+fAgQPk5+fz7LPPoqoqc+fOJTU1lcrKSry9vXn44YcBywxqFxcX1qxZw+OPP97kkvgDBw5Yk9QNvW92796dnTt34u7uTllZGWVlZURGRjZ43wIcO3aM5557Djc3t3qz1n///XdcXFyYPHkyBoOBN998k3bt2sn7oRB2SOJQCCGEEKKF/Pz8rM9hioyMpLi4mNraWo4ePcr8+fOt5QwGg936Zy4RO/25dUlJSWzevBmTyUR5eTm5ubnWD/k9e/a0/ve7776z1unWrRsajYbAwED8/f3Jzc2t19/BgwfZu3cva9assY6ruLiYNm3a8Msvv1BaWkqXLl0IDAw8l7BgMplYtGgRWVlZaDQa8vLyAIiLi7POgNm1axddunRBq9WeVR+XY+z1ev1Fib1Op6uXVDz1TDvAOhMIoHfv3nz//fdNthcVFSUfki8z53p/29PYfT137lyGDx9Or169gIbv15CQkPN1ieI8Od/vhaf+uHMqSdylSxfS0tLo1KkTvr6+tG7dGrDcIwcPHuSVV14BLMnn/Px8YmJiWLJkCd9//z0JCQnExMQ06zo++eQT9Ho9ZrOZKVOmWPuwdx92796dd955h4EDB5KUlETXrl0bLQ/Qtm1b3NzcbPo9ePAgJ06cYNeuXYAl0Zmfny/viULYIYlDIYQQQogWcnD4859QiqJgMplQVRUXF5dmz9Szp7CwkDVr1vDss8/i6urKggULmpUgUBSl0deqqjJhwgSCgoLqHQ8JCaFVq1bs27ePd999l7vuuqvFH5oKCwvRaDR4eHiwfPlyPDw8mDp1Kqqq8thjj1nL9e7dm23btpGUlFRvqVlLSeyb59Q4NBoNqqpax2I0Gq1lZBbZ5ed8399N3ddt2rRh//799OzZE0VRGrxfxeXnQr0X2nPm8wmvvvpqu8t6J0+ezL59+1i6dCnt2rXj2muvbbLte++9l/DwcH744QcWLlzIgw8+2Oh96ObmRmlpKampqdxxxx1Aw++zx48fb/B9TlVVxo4dS/v27ZscoxD/dE0+1VRRlI8VRclXFGXfacduURRlv6IoZkVRelzYIQohhBBCXP5cXFzw8/Nj586dgOVDSVZWVovaqK2tRafT4ezsTHl5Ofv37693PikpCYAdO3ZYZ38A7Ny5E7PZTEFBAYWFhTYfntq3b8/69eutCaTMzEzAklTw9/dnyJAhdOrUiRMnTuDk5ERdXV2zxltRUcFXX33FoEGDUBSF2tpavLy80Gg0bNu2DbPZbC3bp08f1q1bB1h28ATLDpdvv/12S0Jk16WOvaqqFz32Z2rTpg07duwAYNu2bURHRwOWWUmnZiXu2bMHk8l0Vu2LS+dc7u+m7uvrrrsONzc3Fi5cCDR8v4q/hnO5V2JiYtizZw96vZ66ujp2795td9Zgu3bt2LJlC7W1tYDlfbyiooLS0lJ0Oh29e/dm2LBh1vcdZ2dna9mGaLVarrvuOo4fP05OTk6j92GPHj04dOgQtbW1hIWFAWd337Zv356NGzda3xPz8vLO+v1XiL+75sw4/BSYDSw47dg+YAzwwQUYkxBCCCHEX9K9997LwoULWbFiBSaTiR49eliXBDZHeHg4ERERzJgxA39/f9q0aVPvvNFo5LXXXsNsNnPfffdZjwcFBTFr1iwqKiq4/fbbcXR0rFdvxIgRfPvtt7z88suoqoqfnx+JiYns2LGD7du3o9Vq8fT05Nprr8XNzY02bdowY8YMOnToYLNBh8lkYubMmZhMJjQaDb169WLYsGEADBw4kHnz5rFz507i4uLqzfTw9PQkODi43oYoZWVl520330sZ+3Xr1rFhw4YLHvvGjB07ls8//5zVq1dbN0cBywYHc+fO5dVXXyU+Pl5mGf5FNff+3rp1K3v27LG+fvrppxu9rwFuueUWPv/8c5YsWcKoUaPs3q/ir+Ns3wsjIyPp27cvr776KmB574iIiLDZzb59+/bk5ubyxhtvAJaZy//6178oKChgyZIlaDQaNBoNt99+u7Wd9957D09Pz0Y3R9HpdAwbNoxff/2VW2+9tcH7sGvXrixevLjebMaG3mcb069fP4qKinjllVdQVRV3d/cmnwsrxD+Vcior32ghRWkFLFNVteMZx9cDT6mquqM5ncXHx6uHDx8+i2H+va1fv57Bgwdf6mFcViQm9klc7JO42CdxsSUxsU/iYt/lFpdp06YxefJkmwfMn7lr7oV2tnHR6/W89NJLTJkyBRcXF2tbvr6+Z7W78sXUVOzLy8svq3vlcnG5/Q5dLiQu9klcbElM7JO42KcoSpKqqrIiVJx3FzxxqCjKBGACQEBAQPfFixefy3j/liorK5vcZeqfRmJin8TFPomLfRIXWxIT+yQu9l1ucVm2bBnDhw+3mTG2bds2QkJCrA/Jv9DOJi55eXls376duLg44uLiLtDILpymYu/j43NZ3SuXi8vtd+hyIXGxT+JiS2Jin8TFviFDhkjiUFwQMuPwMiB/MbElMbFP4mKfxMU+iYstiYl9Ehf7JC72SVxsSUzsk7jYJ3GxT+JiS2Jin8TFPplxKC6U8/NQGSGEEEIIIYQQQgghxN+KJA6FEEIIIYQQQgghhBA2mkwcKoryNbAFiFcUJUtRlPsVRblRUZQsoC+wXFGUlRd6oEIIIYQQQgghhBBCiIvHoakCqqre3sCp78/zWIQQQgghhBBCCCGEEJcJWaoshBBCCCGEEEIIIYSwIYlDIYQQQgghhBBCCCGEDUkcCiGEEEIIIYQQQgghbEjiUAghhBBCCCGEEEIIYUMSh0IIIYQQQgghhBBCCBuSOBRCCCGEEEIIIYQQQthwuNQDEEKI82HES8tpFehpff3C2O4Ee7u2qI2VuzP5YdtxADIKKgj3c0ejUegRHYDOQYOzTsstfaPPanxPL9hCcUUdOkctAHdcEcOA9iFn1ZYQQgghhBBCCHExSOJQCPG3oHPQ8v6EAS2uZzKb0Wosk6+v7hLB1V0iABj3zlpeG9cHL1cdAJ9vSDnnMT57YxfiQr3PuR0hhBBCCCGEEOJikMShEOJv60huGe/8vI86g4kQH1eeuK4zHi6OPL1gC+3CfTiQWUKfuCBu7tumWe1lFFTy9IIt5JfVcGPv1tzQqzUAa/Zm8cP24xhNKm3DvPn3iI5oNUqT7ZXX6Pnfj3vJLa3GyVHLYyMTiApw5/GPf2f8le3o3MqPj9ccQlHg3qFt7fYDMOunvaTklKKgcHWXcMb0ad71CCGEEEIIIYQQjZHEoRDib0FvNPHQvE0ABHu78MLYHry+dA+J13SgU5Qfn60/zBcbU3jo6g4AVNUaeOOevi3qI7Ooktfu7kON3sT9c9YzqnsU2cVVbDiQw6x/9cNBq+Hdn5NZm3yC4Z3Dbeq/+v1u61LlV+/qzecbU4gJ9uTFW3uw+1ghry/dw/sTBvDk6M689G0SD13TgR1HCnj7/v5kFFTY7adVoAeFFbXMmzgIgMpaw7mEUQghhBBCCCGEsJLEoRDib+HMpcpVtQYqaw10ivIDYHincF7+bqf1/KAOoS3uo1dMIDoHLToHLd6uOkqq6th1vIjUnDIe+WgzAHqDCW83J7v1z1yqvD+jhOm3dAegS2t/ymv0VNUaaBXowbBO4bywcAdv3dsPR62mwX76xAWRW1rNe7/so1dMIN2jA1p8XUIIIYQQQgghhD2SOBTiL6agvIbZK/aTUViBqkLv2EDGX9kOR23zNkn/z+Id5JbWUKM3Ulatt24g8u8RHXj1+928O/4K63P9WiK3tJoH3t9AuJ/7n33d2oMPVh2wJsdayqyqzF15gN3HC1FQ0DloeO6mbgT7NLzpybKkdJwctPSLD7J7vqiilvSCCpxPzvw73dMLtvDAle0afA6ho8OfMdZoFExmFVSV4Z3CuW9YW+u53w/lMvGDjRhMZhw0Gu4ZHGc9l1FYyStLdqEAeqPZevzRjzZTUlnHhLmWekazGbOqcjSvnCc/28J9Q+Nt+jnl/QkD2HGkgJ92pLPxQA5Pju5sPbfneBEvLt5BsLcrqqri5aZjyo1dG0xu2vP5hhS7G8Pkllbz/MLtzJs4iFV7MknJLrMunz7dtK+3MfnGrrg7O9ptf8kfx7i2W6Tdn4kQQgghhBBC/D979x0eZZU2cPg3M5mSZNJDGqmQAqEEQhBCLyIWFERFRUGwAI4NVlFEcC2IXT4XNyKyrosNEMUCgkrvQkKvCaGEkF5IbzPzfn8EBkImITQFfO7r2mtnznt6suzkmVPEX0cCh0JcQxRF4bVvkxjUKYRX743DYlX4cMkuPl91kMdubN2kOv45LA6oDSgt3HyY1+/rfNn65+/hVO+CEntBw7MvJGnMmr0Z5JdUMmtsL9QqFbnFFRi0jf+zNahTiO210aBld1oB7YI9WbH7BO1CvPByMRDSzKWJIzq/DmHevLIgkaFdw3B31rPrWD4f/7aPd0d0xc/DiazCciZ99QdGQ22/Nx3MIj7Sl5F9IklYtpeVu0/wQK8IHunfik9+28eQLqGs2ZuJVVF44uY2vDwv0W47xRXVVFSZMegccNCo6NnanwAPJ977aVe9PrYN9rT9nD9bcYCfth5j5FnBzCtt2v03NPr8hz+O0L9dcwkcCiGEEH9zS5cuJTExEZVKhVqt5v777ycsLOxPaXvZsmXcfPPNjebZt28fP/zwAwC5ubm4ubmh0+kICAhg1KhRjZbduHEjK1euBGo/099xxx3ExMTYzXvy5Em+/fZbIiIiLngcQghxuUngUIhryLGTVnQOGtvNvxq1irE3RfPQzFWM6B3J2n0ZbD6YTaXZSmZhGd2j/Hi0iQHF037ccpQ/UrIxWxReujuWYG8jldVm/r1sL0dzSrBYFR7sHUG3KL/z1nXuirQtKTlUm61U1lh47d6489ZZUFqFp4setar2opFmro62Z4PfWsaPk2o/3B3INdtW7529Ou6hPpG8PG8rZosVrUbN2yO6knWynIMZRQBU1Vh4/6edpOWVEuRtpKrmzArAqhoLL329BUVR8PdwIsDTGQMa/rPiAJuTs8ksLOeb9YeYMKg9D/WJ4sWvavPmFVdyW6dg26pIPw8n7uvekv+uOsje4wUs+uMoajXsTstn6j2deP+nXYz7ZC16rYbnBsew+1gB+9MLmTW2Fz5ujtzROYTZv+9n5e4TmC1WRs5cha+bAZ2DhlF9o1i46TD70wsB8HIxYLq5TYM/D0VRKK82E+DpXG+uAMbMWsNr93XGz92Jr9elsGLXCbzdDLg76Qn3dwUgJbOI93/aiUGroU2wZ92fV0klk7/eUu93b+S/VjLz0R7oHdS88d02cosrsSoKw3tGcLKsivySSp6fuxlXJy1vPdhVLnsRQggh/oby8vI4cuQIkyZNQqvVUlpaitls/tPa//XXX88bOIyOjiY6OhqAGTNmMHToUEJCQhotA1BYWMiyZct48cUXcXR0pLKyktLS0gbzu7u789hjj7F69eoLGoMQQlwJEjgU4hqSW24lwt+tTpqzXouPqyMZBWUApGYXk/BYT7QOah5JWMMdnUPxcXO0V51dbk5a/v1YT35OPMp3mw4z4fb2fL3+EB1CvXj2jhhKK2t4+j8biA3zxqCr+09IZmG57YKSNkEe9W4r3p9+ko/H9sTVUcdnKw+ct85e0f48+/km9qSto0OYF/3bNif8nPGf1r9d83pp36xP5bk7Yujeyo9qswWrAifLqvBzdyQywJ3vNh9Gr9Uwa2wvDmcX88Sn6wEoKq8m0NvIG/d3xqBzYP6GVGosVgZ2CGLCZxuZY+qNSqWyXUTSp00AfU6dmfjEp+voFV33/MQIf3e8XQzc2aUFpZXmOsG6V++Nq5P3UFYR/do1t/3MhtwQxse/7qN1oAej+7VizvL9OOkdGN4zgje/386I3pG0DfYkp6iCyV/9Qedwn3rzsCetgMdnr6O4ohqDVsPoflF25/C0lMwi1uzN5N9jemKxWnni0/W2wOH7P525cObT5fvrlDvf797W1Fw8XQy8fmoFYlllDc4GLd9vPsI7I7vi5qQjJbNILnv5i0yYMIEZM2b81d1osh07duDr64u/v/8l17Vp0yZWrVoFQGZmJr6+vqjVaoxGI3369Gm07NnztmfPHr799lueeeYZPD097ea/2H7v3buXn3/+maqqKgDatm3LXXfddUF12LN48WL0ej0DBgy45Lr+7q72lVIA1dXVfPXVV5w4cQJFUXBycuKJJ57AYDDw7rvvMnHiRPLz80lISGDq1Kl/Qs+FOKOyshJnZ2e02tqjTYzGM8ffHDhwgO+//x6r1UpISAj33XcfWq2WKVOm0LVrV3bv3o3FYuHRRx/Fz8+PxYsXU1hYSF5eHgUFBfTr14++ffsC8Mcff7B69WosFguhoaHcd999/PTTT1RXVzN9+nT8/f0ZPXr0BfV9xYoVbNy4EYDu3bvTr1+/Os9LSkowGAzo9bVHxRgMBgwGAwA5OTl88803lJaWolarefTRR1Gr1SQkJNCzZ0+sVis//PADycnJmM1mevfuTc+ePUlOTmbJkiUYjUYyMjIIDg5m1KhRqFQqjh49yrfffkt1dTUODg4888wz6HQ6u/UIIcT5SOBQiGuMyk6aclZ6hzBvnE+dJRfsbSSnqOKCAofdW9X+MRvh78b6A1kAbDucx+bkbBZuPgLU3mCcU1RB8Dlbfs/dqpx1srzO844tvHF11DW5zmaujswx9Wbn0Xx2HM3nhS//YMrdsXQM8z7vOMqrzOSXVNK9Ve0qRp1D/W2wu48VMOSGUABa+LrSwre27f3phaTlljDh800AmC1WWge646x3QOugZsbiXdwQ7kOXyPrnKCoKqOr9kJTz9rcxWo2aLhG1AcFwfze2H84DYPuRPNLyznxbXV5tprzKjJO+7j/tZ29Vnr8hlTnLD/DMbe0abG93WgHdWvme2jqsIf7UOM+9cKZ/u+ZsPZRjK3e+370wHxc+Xb6fOcv30yXSl3bB9QMrfu5OctnLdcRisaDRXJkt6Lt27aJt27aXJXAYHx9PfHztLetTpkxh/PjxGI3GC1rpceDAARYsWMBTTz3VYNAQLq7fGRkZzJ8/H5PJhJ+fHxaLhfXr1ze5/JX8OYha18JKKYCVK1fi4uLClClTAMjOzrb9bkycOPGK9lGI8/H19SUtLY1XXnmFqKgoOnXqRGRkJDU1NcydO5dnnnkGX19fPv/8c9atW2cLzjk7O/Piiy+yZs0ali9fzoMPPghAVlYW48ePp6qqildffZVevXqRk5NDUlISzz33HBqNhm+++YYtW7YwZMgQ1qxZw+TJky+432lpaWzatInnn38eRVF49913iYiIICgoyJYnMDAQFxcXpk6dSlRUFB06dKB9+/YAfP7559x000106NCBmpoaFEWhpKTEVnbjxo04OjoyadIkampqeP/992ndunZXx/Hjx5k6dSpubm68//77pKamEhoayn/+8x8eeeQRQkNDqaioQKvVNliPt/f5P1cLIf7eJHAoxDXE20nNnsyiOmllVTXkFlfg7+lMSlZRnUtSbBd4XIDTF4CoVSqsp8oqisLUuzsR5G1srOh5nX2GXVPr1Dlo6BzuQ+dwH9yddWw8mEXHMO86wTmznSEqTQ3W2YvEArEtmvHi0I710v/1SHd2HMln9d4Mfko8xjsjutZ5HtLMSEpmES18XW1ph7KKL+lcRY1aherUgDWqMz9TRVH4v9Hd0F/A2YDxkT68vnCbrV7lrGk6+7IWlZ2JUcDWD3vO97sX6GXko0d7sDUlh/+uPEBsi2Y82Kvu2T0ujtpGL3sRV15ycjKLFy/G1dWV9PR0OnToQEBAAKtWraKmpoaxY8fSrFkz5s6di4ODA5mZmZSUlHDXXXfRrl07Nm3axJ49e6ipqaG6uprHHnuML774gry8PHQ6HcOHDycwMJDFixeTn59PUVEROTk53HXXXRw5coR9+/bh7u7O448/jkajYcqUKXTq1Ink5GQARo8eTUlJCbt27SIlJYVly5bx2GOP8eWXX9q2jJWWlvLWW28xbdq0i54HRVHYuXMn69atQ6VScfPNNxMXF2c376FDh/jqq6944oknaNasNti9fv161q9fj8VioVmzZowaNYrjx4/X6zfA/PnzKSkpQafT8cADD+DnV/fYht9++42bb77Zlq7RaOjdu3ZV7q5du1i2bBlmsxlnZ2dGjx6Nq6srixcvpqioiPz8fIxGI4MHD+bLL7+kpKQEFxcXRowY0WiAU1yYa2WlVHFxcZ2fu6/vmS/A7K06vtSVThUVFXTt2lVWOokm0Wq1TJo0iUOHDpGcnMxnn33G4MGDCQoKwtvb2/b72rVrV9asWWMLHHbsWPt5LTg4mB07dtjqa9u2LVqtFq1Wi9FopLi4mIMHD3L8+HHefvttoHYVrovLpZ19fejQIWJiYmyrCTt06MChQ4fqBA7VajVPPvkkx44d48CBA3z33XekpaVx4403cvLkSTp06GCbg3Pt37+fEydOsH37dgAqKirIycnBwcGB0NBQPDw8gNrgZH5+Po6Ojri5uREaGgqAo6Njo/VI4FAIcT4SOBTiGhLqriYp38LvO9MZEBOIxaow+/f9DIgJvKIXS3Rq2Ywftx7liZvboFKpOJRZ1OCW4ctZZ0pmEZ5GPV4uBqyKwpHsEsJOrQp0d9aTlltCoLeR5DwzwefsVHbWa/F2NbDxQBbdztqqfLZ2IZ6s2p1Bh1BvjuaUcDi79tvdVs3d+WjpHk4UlNHc05nKGgt5xRV4uRioqrFwQ4QPrQLdGf3R6nrjuju+BdO+20ZMqJdt9dw36w8x9e7YS5ove2JbNOOnrUe5p1vttufUrCJa+jX+c9lzvBD/U+cv+ro58kdK7YrBlMwisk+tEG0X7Mn7P+3k3u4tsVgVNqdkc2tsMEaDFme9A3vSCmgb7MnK3ScuqL/5JZW4OGrp3z4QR50Dv+1MB8BR50BFlRk3Jx1F5dXnvexFXHknTpzgkUcewcnJiZdffpnu3bvzwgsvsHLlSlavXs0999wDQEFBARMmTCAvL4//+7//o1Wr2lu/jxw5wksvvYSzszPz588nKCiIcePGcfDgQebOnWtb0ZGXl8f48ePJzMzk3XffZcyYMQwdOpRPPvmE3bt32/6QMhgMvPDCC2zevJmFCxdiMplo3749bdu2JTb28v9vC2q3FJ88eZKpU6dSWlrK22+/TUREBG5udf83VlNTw6xZsxg/fnydgF+HDh3o0aMHAD/99BMbNmygb9++9fr94Ycfcv/99+Pj48ORI0eYN28e48ePr9NGZmYmN954o91+hoeHM3HiRFQqFRs2bOD333+3bWFOS0vj2WefRafTkZCQQJcuXejatSsbN25kwYIFjBs37nJN19/etbJSKj4+npkzZ7J9+3aioqLo2rUrPj71j7g47VJXOv3++++y0klcELVaTWRkJJGRkQQEBLB582YCAwMbLePg4GAra7Va66Wf/UxRFLp06cKQIUMarXPNmjVs2LABAJPJhLu7+8UN6CwqlYrQ0FBCQ0Np3bo1X3zxBf379z9vOUVRGDZsmO1sxdOSk5MbHKO9L3obqkcIIc5HAodCXENUKhUv39OJj5bu4ev1KSgKdA5vxui+jZ9Zd6ke6BnBrN/2Me6TdSgo+Lo7XfJtzE2p82RZFf+3eBc1ltoPgVEB7gzuHArAI/1a8fL8RJq5GnDW2V8F9/zgDnz4y27mrklGo1Yx5e5OdVYqDuoUwvs/7WTcJ2tp4etKVPPagIC7s57n7ojhre+329p+qE8UjjoHXlmQSI3ZiqLAuJvqf/Bq6efGI/1a8c95iZitVhzUah7t3+q8Ab2LYbq5DR8t3cO4T9ZisSq0Dfa0uwX59BmHiqLgbNAyYVBtnh6t/Vm++wSPz15HZIAbzU9dmhLh70avaH9Ms9fh4+5I26Azq1OevSPGdjnKhW4jPpJTwpzl+1GpVDioVTx1a1sAbo0N4qVvtuBp1DPupjZ88PNOW5D34fOcxyiujJCQEFuArFmzZrZAQfPmzW0r/wBiY2NRq9X4+Pjg7e1NVlbt8QatWrXC2bn29yk1NZUxY8YAEBUVRWlpKRUVFUDtIfMajYaAgAAURbH9MRMQEEBBQYGtnc6dO9v++7vvvruSQ7dJTU0lKCgItVqNq6srERERHDt2zLa17DSNRkOLFi3YuHEjw4YNs6VnZGTw888/U1FRQVVVlW0Oz1ZZWcnhw4eZM2eOLa2m5sLO9SwsLGTOnDkUFxdjNpvrBGLat2+PTld7PMSRI0cYO3YsAF26dGHRokUX1I5o3LWyUiooKIjXXnuN/fv3c+DAAd5++22ee+65BrfOX+pKJ61Wi0ajkZVOokmKi4vJycmxBbPT09Px8vLCz8+P/Px827MtW7Zc9G3DrVq1YtasWfTv3x8XFxfKysqorKzEy8sLtVptO9qhd+/etpXd5xMeHs7cuXMZOHAgiqKwY8eOejcsnzx5kuLiYoKDg21j8/T0xNHREXd3d3bs2FFnq/LZoqOjWbt2LVFRUWg0GrKzsxsNZPr5+XHy5EmOHj1KaGgolZWVaLXaBus5vVJSCCEaIoFDIa4xPm6OvNZA0O6mmCBuijmzLaKx4F5MqBcxoV510uY+feYg58gAd94dWXvml16rafRMPKg9m+70hRb20s7tW1PqPL1F2Z6e0f70jK79Q2f16tX06VO7nXVE70hbnuZezvW2EgO2Pum1GibfZX+1Uocwb2Y+2qNe+sxH6qedq0drf3q0tv9H2Nn9s+fceQJst0dD3XG7Oel4qYH+nxYT6sWi5wfafabXanjzgS52nw3vGcHwnvU/lEf4uzFrbC/b+9Pjaex37/TvVVzLZsTZCTYOviGMwTecuUDg34/J9rW/2tkrGFQqle29SqWqs5rj3BUNp9839Y+Qs1eJaDQaW3mVSoXFYrmgPqvVatsfWw0F33788Uf27t0LcN7VWef+4dZYu48++igffvhhnQsqvvjiC8aOHUtgYCCbNm0iJSXFbhuOjo7n7Yu/vz9paWl2V90sWLCA/v370759e9v20dNOBw3taezYAXFxrpWVUgaDgY4dO9KxY0fUajV79+5tMHAoK53En8lsNvO///2PiooK1Go1zZo144EHHkCr1TJixAjmzJlj2/J/sVvd/f39uf3225k5cyZWqxWNRsN9992Hl5cXPXr0YNq0aQQHB1/Q5SjBwcHEx8fbgvrdu3evs00Zas+a/f777ykqKrJ9IXD//fcDMGrUKL7++msWL16MRqPhscceq/O/o27dupGfn8+bb76JoigYjcZGV4w7ODjwyCOPsGDBAmpqatBqtTz99NMXXI8QQpwmgUMhhBBCXJRt27bRpUsX8vPzycvLw9fXl+PHj9fJEx4ezpYtW7j11ltJTk7GaDTazltqqqSkJAYOHEhiYqLtllq9Xm+7YRjAy8uLtLQ0QkNDbauazjV48GAGDx7cpDbDw8P56aefsFqtlJWVcejQIe688067eXU6HSaTiQ8++AAXFxe6d+9OZWUlbm5uWCwWtm7dagvenN1vR0dHvLy82LZtG7GxsSiKwokTJ+oFm2688UY+/fRTWrZsia+vL1arlVWrVtG/f38qKipsdW/evLnB8bRo0YLExES6dOnCli1baNmyZZPmQTTNtbJSKjU1FX9/f5ycnDCbzWRmZjban0td6VRTU4PFYpGVTqJJPD09GTp0qN1nrVq1svsly9ln2YaEhDBhwgQABg0aVCff2beEx8XF2T2z9s4772zw33l7TrcF0L9//0a3HXt5edU7huI0Hx8fu8+mTp3K6tWrUavVdv//6/QXFafde++9ttehoaE8//zz9eq8kP8fFEKI0yRwKIQQQoiL4uvry4wZMygpKeH++++3e6j7bbfdxhdffMG0adPQ6XSMHDnygtsxm8288847WK1WHn74YaD2D7+vvvqKVatW8dhjj3HjjTcyZ84c/vjjD6KiLn2Le4cOHVi7di1vvPEGKpWKIUOG1Dvf8GzOzs488cQTzJgxA6PRyO23384777yDp6cnAQEBtmDhuf0ePXo08+bNY+nSpVgsFuLi4uoFDgMDA7n77rv57LPPqK6uRqVS0bZt7Vb/2267jU8//RR3d3fCwsLIz8+3279hw4bxxRdf8Pvvv9suRxGXz7WyUio3N5dvvvkGqF0F2KZNG9t2aXsudaVTRUUFPXv2lJVOQgghxDVM1dStOJdDVFSUcvDgwT+tvWtF7TbLPn91N64qMif2ybzYJ/Nin8xLfTIn9l3MvMydO/eKXk5y2pQpU5g0aVKdW2r/LPL7Yp/MS30yJ/bJvNgn82KfzEt9Mif2ybzYp1KpkhRFqb+cVohLpP6rOyCEEEIIIYQQQgghhLj6yFZlIYQQQlywi9lyfDHOPr9KCCGEEEII8eeSwKEQQgghhBBCCCGuGTlLZ3Iy8UdUKg2o1TS/fzpOYQ2f2XqpLBXFZMz/J+WHEwFwahFHwL2vonF0BSDz+zco2bsKlzZ98R/6kq1c4aZvyVw0Ha27H9aqcnTewfjc+gzOLf+cHcW7TSG/AMPbJRw7+ac0KK5LEjgUQgghhBBCCCHENcEh7xDFR1YQPmkJaq0ec2kBirnmiraZ/uXzGPyjCBo1A4DsxR+Q/uULhDz2MQAF67+m9dvbUGvr3xbv1mkQze99HYDSgxtJ+3QcYc98g8G/4VvtL5d2CcduPTdttylEBajaJRyzXvEOiOuCBA6FEEIIIYQQl11VVRXTp08HoLi4GJVKhYuLCwDPP/88Dg7yp4gQ4sKpK0/i4OxpC9I5GD1tz0oPrCfz+zdQrBacQtoTcN8bqLV6DkzpjkfXuyjevRzFYib40QQMfuGYS/I5/t+nMZcV4hQSQ8m+NYRPWlynzqqco1Sk7Sb4kX/b0nxufYaD/+xFVe4xMhe+hrWqnNR3h9DsJhPucbc32HdjVDc8u99PwYZvCLj7Zapyj5ExfyrmknzUOkeaP/AWBr9wirYtIXvJ/6FSa1A7utDyH99SuOlbinb+imKupjrvOO6dB+N723gAjs16jEX3+rfebQrZC3zYLuHYbIDdppCjQBxgBJYCq4B4YAhw7DL8OMTfgPy/tRBCCCGEEOKy0+v1TJ48GYDFixej1+sZMGDAX9wrIcS1rtq3LTVpKzj4Sh+MUd1x63Q7xsiuWGsqSZ/7HGHPfI3etwXHP59Awbov8e73CAAaZw8iXvyF/DVzyVs+m8AH3yH7l//DObIbPjc/Qcne1RSs/7pee1VZKTgGtkGl1tjSVGoNjoFtqMpMJvTx/7B3QmsiJi9tUv8NQW0pWP8VACe+nkTz+6ej9wmj/Mh2MuZNocX4eWT/8iFhT32B1t0PS3mRrWzF0R1ETPkdtc6RQ2/fjkvbfjiFtKf5iHcJfXzO/l2PB/cEtu42hXzXLuFY/jlNRwGj2yUcM13QhIu/PQkcCiGEEEIIIf4UBw4c4Pvvv8dqtRISEsJ9992HVqv9q7slhLiWaA2ET1pM2aEtlCVv4vhnT+I3+AUMQW3Qegeh920BgEfXu8hfM9cWOHTreAsAjsHtKNqxDIDy1ERCxnwCgEubPmic3Oq3pyj2+6EogOoiBlBbn6WyjPLDSaTNORPHU2qqAHBuEUf63Gdxix2Ea4ebbc+NrXriYPSoHU+HmylP3YpTSHvyV/2Xn+73jwY2A0FABHBu4PBYu4Rjmy+iw+JvTgKHV4HyGoXHZ68DoLC0CrUa3Jz0ZJ8sx8vFwKeP976oen/beZzkjCKevKXt5eyuTdbJcl6et5XZ4+r373+rD9Iu2IvYFt6X3M7If61k5qM9cHPSAbDzaD4LNx/m9fs6X3LdpZU1rNpzgtvjQi+5LiGEEEII0TCz2czcuXN55pln8PX15fPPP2fdunX069fvr+6aEOIao1JrMEbGY4yMxxAQReHm7zAERjdexqH270nUGrBaal83FBQ8i94/kor0vShWKyq1uraY1UrFiX34+YVfcN8rj+9F7xcOihWNo6vdlYrNh0+n/Mh2Svas5ND0Wwg/nUd1bqBSRWnyJkoPrue+hVkHyqqtsbtNIasBg52myy64s0IA6r+6AwKctCo+HtOTj8f05LZOwdzZJYyPx/QkYUzP+v8uXCMe6hN1WYKGV5LFqlBaWcPPiXK0gxBCCCHElWa1WvH29sbX1xeArl27kpKS8hf3SghxrVEXZ1KVc8T2viJ9H1qv5uj9WlKTn05VzlEACrcswjmia6N1ObWMo2jbEgBK9q2tsy34NL1PKI6BbchZNtOWlrNsJo5BbdH7hF5Q30uTN1Ow4Rs8u9+PxtEFnVeQrX1FUahI3wdAVe4xnMI64nv7s2iMHtQUZtSWP7AOc9lJrNWVFO/8DaeWcVgrStA4ulFeo1h3m0JaAY0PWogLJCsOr3JWq8KMxbvYd7wQb1cDrwyLQ6/VkFFQxkfL9lJUVoVeq2H8oPYEexubVOe/ftlNckYRVTUWerb2Z2SfSKDuyr7kjJN8unw/746M52RZFW8t2kFJRTWRAe4kpuby0aM9Gu3fez/upEuEDz2j/Rn5r5Xc2D6QP1KyMVsUXro7lmBvY4P1nl5Z2BSV1Wb+vWwvR3NKsFgVHuwdQbcoP7JOlvPODzuoqqn9Jsl0cxvaBHmy82g+X65NxtNo4HB2MWE+LmQWlvP47HXEtvDmsRtbX+BPSAghhBBCNIVOd/7PeAUFBcyaNQuAHj16oCgKGzZsAMBkMuHu7m7LO3fuXNLT03Fzc+P++++vU65Xr16XfwBCiKuCylxJ+v/+gaWiGJXaAV2zEJo/8BZqrYHAEe+SNudx2+Uonj0faLQu39vGk/bZU5xM+hnniK44uPmg1jvXyxc44l0y5r/MwX/2AkXBKSyWwAffaVJ/i5IWU56aiLW6Ap1XEMGPfWy7UTlo9IecmDeFnKUzUSw1uMXdgWNgNFnfv0FV7lFQFIxR3TEERlOZvg/nlp1J/3w8VbnHcO88GKeQ9lgDoshf9+XprcqvU7tdWYjLRgKHV7kTBeW8OLQjEwa1Z9rCbazfn0n/9oF8uGQ3T9/ajuZezhw4UchHS/fwzoimfbEwqm8Uro46LFaFSV9u5nB2MS18XRvM/+XaFDqEenFfj3C2Hsrhl21p5+3fudyctPz7sZ78nHiU7zYdZsLt7Rut91zPz92MWl27/LKi2kzQqSDp1+sP0SHUi2fviKG0soan/7OB2DBv3J31vPVgF3QOGk7kl/Hmou22YOfBjCJmj43Bz8OJrJPlHM0t4eMxPZs0d0IIIYQQ4uKYzWby8/PJycnBx8eHLVu2EBERUSePp6en7UKV03r3tn9sz8iRI+u8P7ecEOL6ZPEMo+XQRXafGVv1sLv1t9W0DbbXTiHtaTFhPgBqgwthT36BSuNA2eEkypI32W5rPpvGyY2g0R822Kc2M/bbTfeIvweP+HsaLKfzDibsybn10kPGzrabX+PiRfCjCXXS1Fo9YU/OpcVTqn2KotRprF3CsdBTL/OAK3OGmbjuSeDwKufn4UhLv9oDWiP83cguqqCi2sy+9EKmfbfNlq/GbGlynWv3ZbJ0WxoWq0JBaRVpuaWNBg73Hi/kn/d0AqBzuA9Gw5kDrO31z57urfxtedYfyDpvved6Z2TXemccAmw7nMfm5GwWbq5dql5ttpBTVIGXi4F/LdtLalYxarWKE/mltrqiAtzw83BqZIaEEEIIIcTl5uDgwIgRI5gzZ47tcpSePeXLWyHEX6emMKP2chJFQaXR0nz4W391l4S46kjg8Cqn1Zw5hlKthmqzglVRMBq0F7VKLquwnIWbDjPzkR64OGp578edVFssp+pXoZw6HLbabLWVURo5MNZe/+zmc6jNp1apsFqV89bbVIqiMPXuTrYViKd9sSYZd2cdH4/tiaIoDJq+zPbMoJNfeyGEEEKIP9OgQYNsr2VlINQUZnJi/lSqMlNAseLStj9+Qyejdqi/nfvwjHvxG/oSTiHtz1vviXlTKD+chGKupjr/OHrflgD43PwkbrG32S1Tsm8NWT/UBkuqc4/i4OaHWmfAENAKY1Q3ytN20fze1y96rLm/f0Lhxvmg1qBSa/Du/xgeXe9qMH/hpm8xtu6F1t33otsUoqn0PmF2Vyhejc63elGIK0UuR7kGOeu1+Lo7snZfJlAbPEvNKm5S2bIqMwatBmeDA4WlVWxNzbE983V3JCWz9jDY06sCAdoGe7LmVFtJqbmUVtZclnFcjno7tWzGj1uP2oKQh071v6zKjKfRgFqlYvmuE1gbCFI66RyoqG76ak0hhBBCCCEuiaJwbPZYXGNuIurVNUS+shprVRnZP717yVU3v28aEZOXEvrE5+i8Q4iYvJSIyUsbDBoCuET3tuVzDG5P0OgPiZi8lKBRMy65P/lrv6T0wHpaPv8jkVN/p8U/FgCNLx4o3LyQmqLsS25bCCHE5SFLr65Rk4Z05F9L9/D1uhQsVoXebQJo6Vd/u/HvO9PZdPDM//H+38PdCPdzY8zHa/D3cKJNoIft2YO9Ipnx8y6+WX+IVs3dz0qP4M3vt7N2XwbtQrzwNOpx1GmoqDZf0hgaqvdCPNAzglm/7WPcJ+tQUPB1d+L1+zpze6cQXl+YxLr9mcSEeGHQ2q/X1UlHdKAHY2atoXO4j1yOIoQQQgghriiHnH2otHo844cBoFJr8L/7ZQ6+3APfQf8AVKR/8RxVmSno/cKx1lTaypbsW0v2kg9QzNXovEMIHPEeGkP9ixzOZi47yYkvJlKdl4ZK50jz4W/iGNj0z7zmk9kc+Wgk1bnHcI0ZiP/QyU3uS+6v/yZs/Dw0ji4AaBxd8eh6NwDZv3xIya7lWGsqcWrRCQIGUrRtCRVpuzj+32dQ6wy0fG4Rap2hyX0VQghx+Ung8Cozonek7bWfuxOzx505DPqe+JZnnnk4MX34DY3WdVNMEDfFBNVLf25wjN387YI9+eyJPvXSnfQOTH/gBjRqNfvSC9l5NB+dg6bR/p3dxtyn+9leRwa48+7I+EbrPdfZ5QFiQr2ICfUCQK/V8Mxt7eqVae7lzKyxZ27Te7h/q3plT3txaMf6kyGEEEIIIcQV4FB0Asfgup9fNY4uaD0CqMo5SunB9ah1BiKm/EpF+n4OvVW7WtBcWkDOspm0ePpr1Honcn/7mLyVc/C99ZlG28tZ/AGGoDaEjPuU0oMbSJ/7jwvamlmRvo+Iyb+gctCR/Go/vPqMQq0znLcvlspSLJWl6JuF2K3Xq/dDtvzHPx+PNnMHbn0nkL9mbpO3ZgshhLjyJHAoziu3qJI3vtuGVVHQatSMH1Q/UHc11SuEEEIIIcTV7I2VWTRPno7FYsHLy4tRo0YBoFKpKE/Zglff2veOga0xNK/9Arz8yHaqMlNIfb/2fEDFXI1TWOx52ypL3UrImE8AMEZ1x1JaiKWiGI1jw5cjns3Yqrstr94vnJqCE1gqis/fF0VBpVI13K/kjeT+/gnW6gosZSfRBMufpkIIcTWSf53FeTX3cibhIi5i+avqFUIIIYQQ4mplcWuOg6rQdknM//73P1av+J3Qwgx0ttV5dgJuioKxdU+CH555GXrRcECvXs6zLmxRqTUoVnOT+qJxdEGtc6I6Lw2dd3CdZ9aaSjLmTaXlCz+j8wwge/EMio8eveBRCCGEuPIkcCiEEEIIIYQQf5Ian2hgN4Wbv8Oj612EhYaSvOZ7Ona9mxPZeXyV7kbVp18TELGbe27sSuWJAyR8/SPBIaEk7yjC/PIURj38KL8uW8qJ9OPE3dCVO+64A4BZs2ZRWFhITWUFbapdiQScw29g4qtv0+/Gm9iVtAWlPJrxNQqujlBcXMw333xDXl4eAL1UDvgBf/zxB6tXr6aqOB9/Qw2PWK2o1Wfu1XQK60jG/KlU5RxF7xOKtbqCmsJM9L4t6oy12UATJ+ZNIfiRf6NxdMFSUUJR0s+2y1ocjJ5YKsso2v4LeEQDoNY7Y60sveI/ByGEEE0jgUMhhBBCCCGE+LOoVKi0eoq2LSHrl3+RWBxI56ggfO94nulvv8s9w0fhuGkWqw6u4oesPfQOiQEzaB2NjH9iLL/87yP+/d50hjdLJ+Sup3nv27X069cPo9HIiBEjcHZ2pjTrMG9Pf4OBpaX43DaBmtWT0W/9nPtdFbaFD2LDhg3ccsstLFiwgIiICMaOHYvVauXgB8PJziskKWkvzz33HMVbvue7FRvZsmULXbt2tQ3BwcWLwJHvcfyzp1DM1QD43vFcvcChZ68RWKvKOfT2Hag0Dqg0Dnj3fwyNkxse3e8j5Y2b0HoG4hQSQ2FxDQAe8Xdz4puX5HIUIYS4SkjgUAghhBBCCCH+RDU1Zr4+GU5+mQfBYcF0H/sUVVVVVFRUEBXdFqI/4tbcXObMmUPLiTPRzJhB+/btMbZsScxD3mT9+isdn54NgPeqfRQWFmI0Glm1ahU7d+4EoMzBjdzcXMLCwnBwcGDg69+jUqk4mZjIgQMHAEhOTuahhx4CQK1W0/q5eaxevZrjx4/z9ttvA1BtdsPv1IrEUNN/bWMwRnUnfNLPjY5TpVLR7KZxNLtpXL1nfndMxO+Oibb3h1avBsCt4624dbz1YqZVCCHEFSCBQyGEEEIIIYT4E+l0OiZPnkxFRQUJCQmsWbOmzoo+exwcav90U6lUtten31utVpKTkzl48CATJ05Ep9MxY8YMampqV/FpNBrbRSVqtRqr1dpgO4qi0KVLF4YMGXKJoxRCCHE9UJ8/ixBCCCGEEEKIy83R0ZFhw4axfPlydDodTk5OHDp0CKg9ZzAiIqLJdVVUVODo6IhOpyMrK4sjR46ct0xUVBTr1q0DwGq1UlFRQatWrdi+fTslJSUAlJWVkZ+ffxGjE0IIcT2QFYdCCCGEEEII8RcJCgqiefPmJCYmMnLkSL755huqq6vx9vZm5MiRTa4nOjqadevWMW3aNHx9fQkLCztvmXvuuYevv/6ajRs3olarue+++2jRogW33347M2fOxGq1otFouO+++/Dy8rqUYQohhLhGSeBQCCGEEEIIIf5EM2bMqPPeZDLZXj///PP18k+YMMH2OjIyksjISLvPnnzyyfO2FxsbS2xsLACurq6MG1f//MG4uDji4uLONwwhhBB/A7JVWQghhBBCCCGEEEIIUY8EDoUQQgghhBBCCCGEEPVI4FAIIYQQQgghhBBCCFGPBA6FEEIIIYQQQgghhBD1yOUoQghxHSssrWLWb/s4cKIQo0GLVqPmnm4t6d7K75Lrfu/HnXSJ8KFntD8zft7F0K5hhDRzuej6isureeHLP2z9VqvBzUkPwEt3deS1b5OYPa73RdX9287jvP/TLu5va7ClbTiQxWvfJjHlrlh6RvtfdL+FEEIIIYQQ4nolgUMhhLhOKYrCqwsSuTEmkBeHdgQg+2Q5m5OzL3tbE25vf8l1uDrp+HhMTwC+WJOMQafhnviWAGSdLL/k+sN8XNiXW2F7v3pvBi18XS+5XiGEEEIIIYS4XkngUAghrlPHTlpx0KgZ1CnElubr7sTgG8IAqDZb+Ncve0jJKEKjVjHmptZ0CPUm62Q57/ywg6oaCwCmm9vQJsgTRVH497K97Dyaj5+7I8pZbU2cu4nHbmxNZIA7g99axpAbQvkjJQe9VsMrw+LwMOrJKCjj7R92YLUqxIU34/vNR/hx0s1NHo/VqjBj8S72HS/E29XAK8Pi0Gs1ZBSU8dGyvRSVVaHXahg/qD3B3sZ65dsGe7J5Xxpmi5Uai5WMgjJanhU4HPmvlcx8tAduTjqSM07y6fL9vDsynl3H8vn4130AqID3HorHSe/AtxtTWbsvkxqLlW5RfozsE3kBPx0hhBBCCCGEuPrJGYdCCHGdyi23Eu7v1uDzn7YeA+CTcb2YNLQj7/24k2qzBXdnPW892IV/P9aTyUNjbUGzDQeySM8vY9bYXowf1J59xwvt1ltZY6F1oAezxvaiXbAnS7enAfDxb/sYckMoMx/tgZeLwW7ZxpwoKOeOuBA+fbw3znot6/dnAvDhkt08MbAN/36sJ2MGtOajpXsarCPUQ0Niai6bDmYTH+nbpHYXbjrMk7e04eMxPXl/VDx6rZqk1FxOFJTxr0e6kzCmJylZRew+ln/BYxJCCCGEEEKIq5msOBRCiL+Jj5buYU9aAVqNmpmP9mDv8QIGdw4FINjbiI+bI+n5Zfi6OfKvZXtJzSpGrVZxIr8UgN1pBfRtG4BGrcLLxUCHUC+77Wg1arpE+AAQ7u/G9sN5AOxPL+SVYZ0A6Ns2gE9/339B/ffzcKSlX20gNMLfjeyiCiqqzexLL2Tad9ts+WrMlgbriG7mwJq9GZRVmRkzoDXz1qeet902QR588tt++rULoHsrP5q5OpJ0OJdth/MwfboegIpqMycKymgXYn9OhBBCCCGEEOJaJIFDIYS4TjVzUrMns8j2/slb2lJUXs1Tc2qDXYpiv9z3fxzB3VnHx2N7oigKg6Yvu6B2NWoVKpWq9rVKhcXaQEMXSKs5s0herYZqs4JVUTAatLazEc8nwEXDuuRS9A5qAr3qbmdWq1Uopyal2my1pd/bPZwbwn3YciiX8Z9t5M0Hu6AA93ZvyW1nbQMXQgghhBBCiOuNbFUWQojrVIi7mmqzlZ8Tj9nSTp9bCNAuxJOVe04AkJ5fSm5xJYFezpRVmfE0GlCrVCzfdQLrqWBau2BP1uzNwGJVyC+pZOcFbs1t3dyddfuzAFizN/NShweAs16Lr7sja/fV1qcoCqlZxY2WebhfFKP6RdVL93V3JOVUoHX9gSxbekZBGWG+rtzbvSUR/m6k55US16IZv+5Ip6LaDEBecSUny6ouy5iEEEIIIYQQ4mpx3hWHKpXqM2AQkKMoSttTaZ7AfCAUOAoMUxTF/mFXQggh/hIqlYp/DuvEJ7/t49tNqbg56TBoNTzcvxUAt8eF8K8lexg7ay0atYpn72iPzkHD7Z1CeH1hEuv2ZxIT4oVBqwGgeys/dhzNZ9wna2nu6Uy74Avbljvupja8/cMOvtt8mC7hPjgbLs+i90lDOvKvpXv4el0KFqtC7zYBtPRr+LbkzuE+dtMf7BXJjJ938c36Q7Rq7m5LX7TlCDuP5qNWqQhp5kJceDN0DhrS8koZ/9lGABx1Gp4f0gF3Z/1lGZMQQgghhBBCXA2a8lfb58BHwNyz0iYBKxRFeUulUk069f6Fy989IYQQl8LLxcDku2LtPtM5aHhucEy99OZezswa28v2/nSgUaVS8eQtbe3W9e7IeNvrs29K7hntT89o/9q+uBr48OFuqFQqVu/JIMLfvcF+j+hd94ZiP3cnZo/rbXt/T3zLM888nJg+/IYG6wK4KSaIm2KCWL16dZ30s8ffLtiTz57oU6/sEzfbH/OdXcK4s0tYo+0KIYQQQgghxLXsvIFDRVHWqlSq0HOSBwN9Tr3+H7AaCRwKIYRoREpmEf8+deOxs0HLP25v/xf3SAghhBBCCCFEY1RKQ6fjn52pNnC4+KytyicVRXE/63mhoigeDZQdA4wBaNasWacFCxZchm5fX0pLSzEajefP+Dcic2KfzIt9Mi/2ybzUJ3Nin8yLfTIv9sm81CdzYp/Mi30yL/bJvNQnc2KfzIt9ffv2TVIUJe6v7oe4/lzxW5UVRZkNzAaIiopS+vTpc6WbvOasXr0amZe6ZE7sk3mxT+bFPpmX+mRO7JN5sU/mxT6Zl/pkTuyTebFP5sU+mZf6ZE7sk3kR4s91sbcqZ6tUKn+AU/+dc/m6JIQQQgghhBBCCCGE+KtdbODwJ+ChU68fAn68PN0RQgghhBBCCCGEEEJcDc4bOFSpVN8Am4AolUqVrlKpHgHeAgaoVKoUYMCp90IIIYQQQgghhBBCiOtEU25Vvr+BR/0vc1+EEEIIIYQQQgghhBBXiYvdqiyEEEIIIYQQQgghhLiOSeBQCCGEEEIIIYQQQghRz3m3KgshhBBCCCGEEFfahAkTmDFjRpPyzps3j8OHD2M2m8nPz8fX1xeAm2++mTVr1jB06FBCQkIuqh/FxcUsXLiQI0eO4OTkhIODAwMGDKBDhw4XVd+VkJycjEajoWXLlnaf79ixg8WLF2OxWNBoNAwaNMjW/6ysLD777DMAHnvsMZo1a2YrV1FRwfz58zl8+DAALVq04N5778XR0fGi+/njjz8yceJEW5rFYmHy5MlMnjwZNzc3u2WWL1+OyWRi06ZNpKWlce+9915U+0KISyeBQyGEEEIIIYQQ15T77rsPgPz8fBISEpg8ebLt2Zo1ay66XkVR+OSTT+jSpQsPP/ywrY1du3bVy3s6KPdXSE5ORq/X2w0cpqens2jRIp566im8vb3Jy8tj5syZeHt7ExgYyM6dO2nfvj2DBg2qV/bLL7/E39+fUaNGAbB48WK+/PJLHnvssSb3zWq1olbXbm4MDw+nsLCQ/Px8vLy8ADhw4AABAQF2g4ZCiKuPBA6FEEIIIUSTLU+tosDxCEO7hAEw+as/aObqyITb2wPwye/78HYxEO7nxsLNh3n9vs5Nrvu3ncfp1KIZXi4Gu8+/3ZTKsu3H0ahVqFUq7uraggExgZc0nlcXJDKgfSDdWvkB8Mi/V9O/fXOG94wA4LVvk+jXNoAerf3PW9d7P+5kV1o+TjoHqs1WWjV35+F+rfB2tT8egJNlVby5aDsnS6vROqh5cWhHmns6X9KYhLjWJScns2TJEoxGIxkZGQQHBzNq1ChUKlWT69i2bRvz5s2joqKCBx98kPDwcKxWKz/88APJycmYzWZ69+5Nz54965Q7ePAgGo2GXr162dK8vLzo27cvAJs2bWLPnj3U1NRQXV3N448/zoIFCzhx4gRWq5XbbruNmJiYBttqbGxpaWksXLiQqqoqjEYj4eHhAKxatYp169ahVqvx9/dnyJAhrF+/HpVKxdatWxk2bJgtL8Dy5csZOHAg3t7eAHh7e3PTTTexfPly4uLiWLVqFSqVipSUFCZMmGArl5OTQ1paGo888ogt7dZbb+Wf//wnubm5FBYW2lYCAsyfP5/g4GDi4+OZMmUK3bp1Y//+/fTu3Zu4uDgA1Go1sbGxJCUlcdNNNwGQlJREXFwcR48e5dtvv6WmpgatVsvIkSNtK0ftKSkp4ZtvvuHYsWNs3ryZe+65h7CwMF599VWee+45XFxcsFqtvPrqq0ycONE212q1GkdHR/7xj380+fdHCHGGBA6FEEIIIUSTNXfVsO94IUO7hGFVFIrKqymvMtue7z9eyLiB0VTVWC+47t93phPazMVu4HBx0jG2H87jX490x1mvpayyho0Hsy9pLADRgR7sSy+kWys/isurMeg07E8vtD3fn17Ik7e0aXJ9j/VvTc9ofxRFYdEfR3j+i818Mq4XWo39o8UtVoUxN7ampZ8bS5KOsWBDqi0IK8Tf2fHjx5k6dSpubm68//77pKam1gmOnY/VauWFF15gz549LFmyhGeeeYaNGzfi6OjIpEmTqKmp4f3336d169a2ABtAZmYmwcHBjdZ95MgRXnrpJZydnfnxxx+JjIxkxIgRlJeX884779CqVSu2bt1qt62GxhYWFsb8+fMZN24cLi4uJCYmsnLlSm655RZ+++03XnvtNbRaLeXl5Tg5OdGjRw/0ej0DBgyo17/MzExuvPHGOmkhISGsXbuWtm3bNlg2KyuLwMBA22pBqA38BQYGkpmZicHQ8JcgAA4ODjz77LP10uPi4vj666+56aabqKmpYc+ePdx9992oVCr+8Y9/oNFoOHDgAD/++CNjxoxpsP5vv/2Wfv36kZ6eTvv27Zk5cyb//Oc/ueGGG9i6dSv9+vXjwIEDNG/eHKPRyC+//MJTTz2Fu7s75eXljfZdCNEwCRwKIYQQQogmC3RVs35/bWDtWE4JoT4uFJRWUVJRg16rJi2vlJZ+buw7XkhltZnXv03iaG4JEf5uvDCkAyqVii/XpvBHcjZVZgvRgR48c1s71u/PIjmjiLcX7UCn1fB/o7uh157ZAjhv/SHeGdEVZ70WAGeD1rba0F59KpWKiXM3ERXgzs5j+ZRVmplwe3vaBXvWGU90kAf/WXEAgH3phXSJ8GVrag6KopB9sgK9VoOn0UBSai5frEmmxmLF38OJZ++IwVHX8EdplUrF0K4t2HAwm62HcugW5ceqPSeYtz4VBYUbwn149MbWeLkYbIHSarMVrYPcXSgEQGhoKB4eHgAEBgaSn59/QYHD0+f5BQcHU1BQAMD+/fs5ceIE27dvB2rP88vJyakTODzXvHnzSE1NRaPRMGnSJABatWqFs7Ozrc5du3axYsUKAGpqaigoKGiwLQcHB7tjc3JyIjMzk5kzZwK1gU+LxQJA8+bN+fzzz2nfvj0xMTHnHbuiKE1Ka2qeppQF6NSpk9300NBQqqqqyM7OJjMzk7CwMJycnCgoKGDu3Lnk5OSgUqls423IgQMHyMrKorS0lI0bN1JZWUllZSXx8fF88skn9OvXj02bNhEfHw/Uns84d+5cYmNjr6rzKYW41kjgUAghhBBCNJmLXo1GbSWnqIJ96YW0DvQgv7iS/emFOBscCPN1ta2uO5RVzOxxvfByMfCP/25k7/FC2gZ7ckfnEB7sVbsV+J0fdvBHSg49o/35KfEoj93YmsgA9zptlleZqag2E9DAFl579XWNrN3uZlEUZj7Sgy0pOXy5Npm3H+xap2yEvxtHc0qosVjZd7yQdiGeZJ0sJy2vlNSsYqIDPSgqr+br9Yd468EuGHQOzN+Qynebj9jabEy4nyvH88rID6jkPysO8NGjPXBx1PLiV1vYeCDLtkU6NauIH7Yc4e0RXc9ToxB/Dw4OZ/5UVavVWK0Xtor5dHm1Wm0LSCmKwrBhw4iOjm6wnL+/vy3YB7VnKZaWlvLWW2/Z0vR6ve21oiiMGTOm3hbbhtpKTk62OzZFUfD3969zicjq1asBMJlMpKSksHv3bpYuXcrUqVMbHbu/vz9paWkEBp45yuH48eP4+zd+5IK/vz/p6el1zii0Wq2cOHECPz8/iouL6wQRa2pq6pQ/e17OFRcXR2JiIllZWbZtzIsXLyYyMpKxY8eSn59/3otxFEXhueeeY+PGjfTp08eWbjAYcHFx4eDBgxw9epTRo0cDMHz4cI4cOcKePXuYPn06kydPxmg0NtqGEKI++UpTCCGEEEJckOggD/YdL6wNHDb3oPWp7b77jhcSHehhyxcV4E4zV0fUKhUt/FzJPlm7VWzn0Xye/s8Gxs5ay46jeRzLLWm0PQUFaPhss8bq63EqMBfh70b2yYp6ZXUOGkKauXAos4j9Jwpp1dyD1oHuteNJLyQ6yIP96YWk5ZYw4fNNPD57Hct3pZNTdGHb3g5mnKR9iBfuzno0ajX92gawO63A9vyDn3fx3B0x+Lk7XVC9Qoimi46OZu3atbZAYnZ2NlVVVXXyREVFYTabWbt2rS2turq60TpXr15tC6gdP368yW2dzdfXl9LSUtttxhaLhaKiIqxWK4WFhURFRXHnnXdSUVFBVVUVBoOhwfpuvPFGfv31V/Lz84Hay11+/fVX+vfv3+j8+Pj4EBgYyLJly2xpy5YtIygoCB8fHzw9PcnMzKSmpoaKigoOHjzYaH1ni4uLY8uWLRw8eJD27WuPY6ioqMDd3R2oPTvyfFq3bl3n4pvTcw3QvXt3Pv/8c2JjY21Bz9zcXMLCwrj99tsxGo0UFhbWq1MIcX6y4lAIIYQQQlyQ0+cCHj21VbmZm4HvNh/GSe/AwA5Btnxnb7tVq1RYFIVqs4WPlu5h5iM98HFz5Is1yVSbG19J5KzXYtBpyCwsx9+jbmDtfPWdXv2oVquwWu1vt4sO8mB3WgEV1RZcHLW0au7BT1uPkppVzG2xwWQXVRDbohkvDu14wXN1KKuYu7t6n3erX0ZBOe1CvC64fiFE03Xr1o38/HzefPNNFEXBaDQybty4OnlUKhVjx45l4cKF/P777xiNRnQ6HUOGDLFb5y233MLChQt54403UBQFLy8vTCZTk9o6m4ODA48++ijffvstFRUVWK1WAgICUBSFzz//nIqKChRFoV+/fjg5OdGuXTs+/fRTdu3aVe9ylKCgIIYMGcLHH39su/l5yJAhBAUFNdj+aSNGjGD+/Pn885//RFEUwsLCePDBBwHw9PQkNjaWN954wxZkbCp/f390Oh3BwcG2lYkDBgxg7ty5rFixgqioqPPWMWzYMNvW8bVr1xIeHs7w4cMBaN++PV988YVtmzLA999/T25uLoqiEBUVdUH9FUKcIYFDIYQQQghxQdoEefDd5sP4eTihUatwddRRWlnDsdxSxg9q/GKP00E9NycdFdVm1u3PpOepG4sddQ6UV5vtlruve0s+WrqHyXd1rL0cpaqGNXsz6RXt32B9TR5PoAezl++nfUjt+YctfF04cOIkhWVVhPi44GHU89HSPZwoKKO5pzOVNRbyiisI9Gp4y5uiKPy49SgFpZXEhTejuLyaj3/bR1F5NUaDllV7MxjcOdSW/x93yIUoQpzeqhoZGUlkZKQt/d57722wjJeXV72tu2ffFGw0Gpk2bRpQuy148ODBDB48uNF+uLm51blZ+Gzx8fF1glM6nc4WvDpbQ201NragoKA6N/+uXr0ajUZj98IRX19fpkyZ0uAYOnbsSMeO9r/sGDRoUIPlnJycbFt97Rk6dChDhw6tl356jhvz0ksv1XnfokULXnnlFdv722+/Hag7R2fPt9Fo5NFHH2X16tV1tioDpKen07x5c/z8/GxpY8eOPW+fhBDnJ4FDIYQQQghxQUJ9XCkur6Fv2zPbksN8XKmsLsTNSddoWaNByy0dgxn7yVp83R3rnGc4ICaQmUv22L0cZVCnECqqLTw9ZwMajQoHtZq7uoY1Wl9TRQd5kFlYzr3dWwKgUatxd9bRzNWAWqXC3VnPc3fE8Nb326mx1AY+H+oTZTdw+OmK/Xy1LoUqs4XWzT14Z0RXtBo1Xi4GRveN4vm5m22Xo3SLOvMH7nebD19wwFMIIQT8+uuvrFu3jlGjRv3VXRHiuiSBQyGEEEIIcUE0ahWLXhhYJ+25wXVv+owJ9SIm9MzW2ydvaWt7PapvFKP61t+W1rO1f4PBM5VKxbBuLRnWrWW9Zw3V9+7IM6uC3Jx0zH26n9263Z31/Dr1tgbLAnQI82bmoz3slj/t3Dk4V792zenXrrndZ/83unujZYUQQtg3cOBABg4ceP6MQoiLIpejCCGEEEIIIYQQQggh6pHAoRBCCCGEEEIIIYQQoh4JHAohhBBCCCGEEEIIIeqRMw6vAqqqUlKm3wKAuTgXVGocXLyozk9H6+ZD5MsrLqrewk3fkrloOlr32oO3DQGtCBo147L1WwghhBBCCCGEEEJcvyRweBVQ9EYiJi8FIHvxDNR6J5oNGEt1/nGOJjx8SXW7dRpE83tfvxzdBECxWlCpNefPKIQQQgghhBBCCCGuaRI4vNpZLaR/9QLlh5PQuvkRMm4Oap2BqtxjZMyfirkkH7XOkeYPvIXBL7xJVeb+PouipCUo5mpcOwzEd9A/ADg26zGqCzNQzFV4930Yzx7DAdg7oTXe/R6lZP9a/IdOwTm88xUbrhBCCCGEEEIIIYS4Okjg8CpXlXuUoIdnEvjA26TNMVG0/Rc8ugzlxNeTaH7/dPQ+YZQf2U7GvCm0GD+vXvmipMWUpyYC4NV3NFo3P6pyjtLyhZ9AUTg26xHKUv7AOaILzUe8i4OzO9bqSg69fTuuHW7BweiBtaocfUAUvrc/+2cPXwghhBBCCCGEEEL8RSRweJXTeQXhGNQGAMfgdtQUpGOpLKP8cBJpc0y2fEpNld3y525VzvxuGqX713HozVsBsFaVUZVzBOeILuSv+i/FO38FoKYwk+rcIzgYPUCtwa3jLVdqiEIIIYQQQgghhBDiKiSBw6ucykF31hs1isUCihWNo6vtXMQLo9BsoAmvng/USS1N3kTpwfW0nLgItc6RwzPuxXoqGKnW6uVcQyGEEEIIIYQQQoi/GfVf3QFx4TSOLui8gijatgQARVGoSN/XpLLG1r0p3LQAS2UZADUnszCX5GGtKEHj6IZa50hl1iHKj2y/Yv0XQgghhBBCCCGEEFc/WXF4jQoa/SEn5k0hZ+lMFEsNbnF34BgYfd5yLtG9qMo6ROp7dwKg1jsRNOpDjNG9yV/3JSnTBqLzbYFTWMcrPQQhhBBCCCGEEEIIcRWTwOFVxnfQBNtrnVcQkVN/t71vNmDsmWfewYQ9ObfRujzi78Ej/p566d79Hsa738P10huqr82M/efttxBCCCGEEEJcrKqqKqZPnw5AcXExKpUKFxcX8vPzcXNz4+WXX76oejdt2kRaWhr33nuvLW3GjBkMHTqUkJCQy9J3gPLycrZu3Urv3r0vqNzixYvR6/UMGDCgXvqqVavYuHEjFouFwYMH0759+wbrmTJlCpMmTcJoNF5U/4UQoiESOBRCCCGEEEII8ZfS6/VMnjwZqBtMy8/PJyEh4S/u3flVVFSwdu3aCw4cNiYiIoJx48aRmZnJBx98wNtvv41aLaeNCSH+XBI4FEIIIYQQQghx1bJarXz11VccPnwYNzc3xo0bh06nIzc3l/nz51NSUoJOp+OBBx7Az8/vgur+5ptvOHbsGDU1NXTs2JFBgwYBdVfwHTt2jO+//54JEyawePFiCgsLycvLo6CggH79+tG3b19++OEH8vLymD59Oq1atWLo0KH8/vvvJCUlYTab6dChg63upUuX8scff+Dh4YGLiwtBQUGN9tHf3x+NRkNZWRlfffUVhYWFmM1m+vbtS48ePerlnzVrlt08e/fu5aeffsJqtWI0GnnmmWeoqqpiwYIFnDhxAqvVym233UZMTMwFzaEQ4vomgUMhhBBCCCGEEFet3NxcHn74YR544AHmzJnD9u3b6dKlC19//TX3338/Pj4+HDlyhHnz5jF+/Ph65ZOSkkhNTa1T32l33HEHzs7OWK1WPvzwQ9LT0wkMDGy0P1lZWYwfP56qqipeffVVevXqxZAhQ8jIyLCtmty3bx85OTm88MILKIrCrFmzSElJQa/Xk5SUxOTJk7FYLLz11lvnDRweOXIElUqF0WhkxIgRODs7U11dzdtvv02HDh3qbU+2l0dRFL766iv+8Y9/4O3tTVlZ7WWZy5YtIzIykhEjRlBeXs4777xDq1at0Ov1jfZJCPH3IYFDIYQQQgghhBBXLS8vL1twLTg4mIKCAiorKzl8+DBz5syx5aupqbFbvlOnTvXOODwtKSmJDRs2YLFYKC4uJisr67yBw7Zt26LVatFqtRiNRoqLi+vl2b9/P/v37+fNN98Eas9wzMnJoaqqipiYGHQ6HQDt2rVrsJ2UlBSmT5+OXq/nkUceQaVSsWrVKnbu3AlAYWEhubm59QKH9vKUlJQQERGBt7c3AM7OzrZ+7tq1ixUrVgC1c1hQUIC/v3+jcyCE+PuQwKEQQgghhBBCiKuWg8OZP1tVKhUWiwVFUXB0dLSt8LsYeXl5rFixghdeeAEnJyfmzp1rCz5qNBoURQHqByTP7o9arcZqtdqtf+DAgfTs2bNO2sqVK1GpVE3q3+kzDk9LTk7m4MGDTJw4EZ1Ox4wZM+r1rSl5zqYoCmPGjMHX17dJfRJC/P3IyapCCCGEEEIIIa4pjo6OeHl5sW3bNqA2AJaenn5BdVRWVqLT6TAYDBQXF7N3717bM09PT9LS0gDYsWPHeevS6/VUVVXZ3rdu3ZpNmzZRWVkJwMmTJykpKSE8PJwdO3ZQXV1NZWUlu3fvbnJ/KyoqcHR0RKfTkZWVxZEjR5qcJywsjJSUFPLy8gBsW5Wjo6NZvXq1LUh6/PjxJvdHCPH3ICsOhRDXvPIahcdnrwOgsLQKtRrcnPRknyzHy8XAp49fvtvtGrLxQBZz1yRTY7HioFbzUJ9IurW6sMO5hRBCCCFE040ePZp58+axdOlSLBYLcXFx591mfLbAwECCgoJ4/fXX8fb2pkWLFrZnt912G19++SXLli0jNDT0vHUZjUZatGjB66+/Tps2bRg6dChZWVm89957QG1gcdSoUQQHB9OpUyemT5+Op6cn4eHhTe5vdHQ069atY9q0afj6+hIWFtbkPC4uLjzwwAPMnj0bRVFwcXHh6aef5pZbbmHhwoW88cYbKIqCl5cXJpOpyX0SQlz/JHAohLjmOWlVZBSU8eOkm/liTTIGnQY3Jx07juRzKKvovOUtVisadcMLsGf8vIuhXcMIaeZi93lqVjGzl+/nrQe64OfhRFZhOZO++gM/Dyda+LpeUFsXauS/VhLu78bL93QCYN2+TP5IyeG5wX/ebXi3TFtCqI8rZosVjVrFgJhA7uwShlqlIjnjJMt3ncB0cxu7fZ/5aA/cnHS2tKf/s4Eai5WSimqqzVa8XAwA/HNYJ8bOWsuPk26uV8/ipGPoHTQMiGn6HwpCCCGEuHqdvn0Yas83nDp1qu39gAEDbK+9vb158sknG60rPj6e+Pj4OmkTJkywvR45cqTdcuHh4bzyyiuN9g2o07eHH364zrN+/frRr1+/enXccsst3HLLLY32e9CgQaxevbpOmlarbXC806ZNs71uKE+bNm1o06buZzKdTsfw4cMb7YsQ4u9NAodCiOua1aowY/Eu9h0vxNvVwCvD4tBrNUycu4nWgR7sO15I10hfYkK9+OS3fVRUm3Fz0vHsHTF4uRjIKCgjt6SSd37YgV6rYfyg9gR71z2A+rvNh7m/Rzh+Hk4A+Hk4cV/3lizcdJjnh3So11aglzNfrzuE2WLFxUnLpCEd8TDq+WJNMjlFFWSdLCenqII7u4Qx5Ibab4m/WpvCyj0naObqiJuTjnB/V+6Jb4nZYmXroRwe+3gNLo5aeraqPch67b5MPk0qZ97BtTgbtLz/UN0PzBfLXuBT56Dh4zG15/ecLKvizUXbKas0M7JPJJEB7kQGuDe5/n890h2A33YeJzmjiCdvaXveMoM6hTR9AEIIcQXt2LGD2bNn8/LLL+Pnd2GrzufOnUtKSgqOjo5AbYBg4sSJjZZ59913z5tHCCGEEOJSSOBQCHFdO1FQzpO3tKWkooadR/MZ8/Eanr+zAwDbD+cR3MxIYmoOn686yFO3tuF4Xhmr92Tw1H82MPepvny4ZDcV1Waeua0dVkVh7Kw1DOvWkj9SctBrNbwyLI5juSX0ivbnmc82YLUqxIU3Y+GmwwR7G5n5y26Kyqspq6zBxVHLsdwSBnYI4paOgWQXVeLr7siEzzfirHcgp6gCZ72W2Y/3YknSMeasOMCgTiEczi7ml+1pdI/yZVTfVjwxZx3h/rUrGUsqarg7PozMkxUMuSGUD37eRaS/O1+tTWFoaz1HzW6kZhVjmr2OB3tH0C3Kj6f/s4F/3N6eUJ/aFZQT525izIBogryc+feyvRzNKcFiVWz5f9t5nC0pOVSbrVTWWHhnRNcG59vdWc/429rz1H/WM6J3BLuOFbBw82Fev68zxeXVvLloO0Vl1UQ1d0e5iJ/nf1ceqDP3pwOuBp2Ge+Jb8sOWIyxJSkOjVhHsbWTyXbEX0YoQQlycxMREWrZsSWJiYr1VSU1x5513Ehvb9H+3JGgohBBCiCtNAodCiOtCtdnC47PXUVBaiVqlQqNW0T7ECz8PR5ZuP87QLmFEBbhTVF7FjJ934WHUE9LMSEZhOaaBbXj2f5uY8fNufN0dcTZoKSyrYv3+TPalF6JWqXhrUe2KQ6sCrQM9GN2vFXOW72fp9jQUBb7ddJghN4TSt21zFicds/WrXbAXm1Ny6N0mgE+X76egtIq84grmrklBq1Gj1ajxcXPknRFd+e/KAyzbfpzKagu3dAzm0+UHyCuuYM/xQlAUbukYjJPega4RtbfeVVSbqbZY2XAwm4yCcg5lFlFebQYgOsiD+XuO07UVvPVgF9RqFU//ZwOxYd70aePP2n2ZhPq4kF9SSX5JFRH+bny28gAdQr149o4YSitrbPkB9qef5OOxPXF11NWf/HP4ezihKAony6rrpH+5NoU2QZ482CuCP1Ky+WVb2gX9jCtrLPXmfnjPiDp55m9I5X9P9UXnoKG0suEbBIUQ4nKrrKwkNTWV8ePHM2vWLFvgMDk5mSVLlmA0GsnIyCA4OJhRo0Y1+VbVxYsXU1hYSF5eHgUFBfTr14++ffsCtdstZ8yYgdVqZf78+Rw6dAgvLy8URSE+Pp7Y2FimTJlC586dSU5OxmKxMHz4cH788Udyc3O58cYb6dWrF5WVlXzyySeUl5djsVi4/fbbiYn58468EEIIIcTVSwKHQojrwuntsueecajVqNl+JI+0vFJOllVhVRQ0ahWuVh0OGjVxLZuhUasI9XEhNauYz5/si0ql4n+rD5JVVIHRoCXQy5nHbmxNZIA7g6YvpUuEDwDh/m5sP5xHSDMjGw9m0yu6dptw37YBfPzrXkKaudA22JOyyhoKS6sI8XahpLKGD5fsRqWCWWN7kZJZxHs/7WTcJ2spLK2irMrMiYIyWgd64KjTkHQ4j8LSKqwKhJ1zXqJVUVCr4N2R8WxOzmbv8QI6t/Thj5QcnrmtHZv3H2dzSjbLd58g0MuZarOFnKIKekUH8OJXfzCyTyRr92XSs3Xtdrpth/PYnJzNws21t++dzg/QsYV3k4KGpyl2lhPuTiuwncXYJcIXo0F7QT9jrUZdb+7PFebrytuLdtAtylcupxFC/Kl27txJdHQ0vr6+ODk5kZaWRnBwMFB7S+nUqVNxc3Pj/fffJzU11e6FCIsWLWLZsmUA+Pv7M3r0aACysrIYP348VVVVvPrqq/Tq1QuNRmMrt2PHDgoKCnjppZcoKSnhtddeq3Omm4eHBxMnTmThwoXMnTuX5557jpqaGl5//XV69eqFVqtlzJgxODo6Ulpayrvvvkv79u2bHNwUQgghxPVLAodCiOueoij83+hu/JR4lMpqCyN6RzJx7iYAtA5qAr2NFJVXowJUKhVmi5Xi8mr8PJzwdXe0rZxTFAWVCtsfUhqVCotV4e74Fqzam0H2yXICPI3kFFVgsSjc1TUMb1cDFqvC/vRC2oV4UlxRzaI/juKk1+Kkd2DBxlRKK2v49PHefLsxlRW70qk2WwEwGrSs3Z+Fl1GHRq2i2mzBYlXYkpLDzbFBOOu1aNRqNh3M5sb2zflmfYotGJdRUIZOo2LaiG68+f12nr2jPS393Gxz4uKo5XB2MWv2ZfDMre1s45t6dyeCzjnD8UDGSQxaDU2VWViOWq3C3VlH2jmxvUv5E1SjVtWb+3O9fl9ndqflszk5h6/XHWL2470u62U0QgjRkMTERNslCHFxcSQmJtoCh6GhoXh4eAC1t7jm5+fbDRw2tFW5bdu2aLVatFotRqOR4uJiW30AqampxMbGolarcXNzIzIysk759u3bAxAQEEBVVRUGgwGDwYBWq6W8vBy9Xs9PP/1ESkoKarWakydPUlxcjJubG0IIIYT4e5PAoRDiuhfbohk/bT1qi1qlnnPTslajZurdsTwxZz3jPlmLxarg7+GEn4cTk4Z05Ik563lz0XYc1GqsdoJVLf3caOnryvNf/IFeq6Gi2oyDRm0L1DnrHVi1N4PbO4dSUlHN/A2pVFSb+cfnG3F1qg0KGrQaisqryS6qtNWr12ooLKkkPb+Uvm0CePyTdfi4OxIR4IazvjZA6OakZeWeE/yw5QiV1VaWbj9O9yg/5izfT1GVlQn/3Ui/ds1p4evKocwiwv1r+9SnTQDfbkylrNJsW8nYqWUzftx6lCduboNKpaqTv6lOllXxr192c0dcaL2VKu2CPVm55wTDe0aw9VDOZd9KbFUUcosr6BDqTdsgT1btOUFFtQWjQQKHQogrq6qqiuTkZDIzMwGwWq2oVCruvPNOABwcznzkVqvVWK3WC6r/fOUVe8u87ZRXqVR16lKpVFitVrZs2UJJSQkvvvgiGo2GKVOmYDabL6iPQgghhLg+SeBQCHFdGdG7dpXFbzuP46R3YPa43hSVV/PR0j0czyvFYlUoKK3i3ZHxfLEm2VaupZ8begcNs8b2ArA98/NwooWvi22r8uC3ltltd/LQWN7+YQcKCn3bBPDL9jPn943qG8X/VifT3NMZs8WRarOV5wfH0KO1P9VmC68uSGLcJ2sJ9HKmbfCZFSSzx/Vm/oZDpGYV80CvCB69sTWVNRae+98m7uraAgCNWs1Ld8Xi5qSj2mzhoZmrAHh5WBy/r1jFvkpvdh7NZ+wna/F1d+L1+zoD0LO1Px//uo8Hep5Z8fJAzwhm/baPcZ+sQ0Gpk78xp8+XNFusaNQq+rdvbuvf2R7sFcGbi7bzxKfraBfihY+b43nrvhBWq8I7P+ygrNKMgsLQLmEXvB1aCCEuRnp6Ol26dGH48OG2tA8++IDU1NQ/pf3w8HA2b95Mly5dKC0tJSUlhc6dz//v92kVFRW4uLig0Wg4ePAgBQUFV7C3QgghhLiWSOBQCHFd+HHSzXXe3xQTxE0xQQC4Oel4yc7tuqeDjPbqOPvZuyPj7ebpGe1Pz1PnGnq5Gvjw4W6oVCpW78kgwt/dlu/mjsHc3LF2u5qDRs1PZ9Whc9DwxvAbGhzXnuOFDO0Sxv8t3k1aXinVZgsD2gcScWol4Nyn+9Wp65sJN9reazUqnrmtnd16PYx6lk65tU6aXquxm//subRn6ZTbGnwWE+pFTKgXAK5OOt58oIvt2bibohssZ6/Nhub+7J/VB6O6NVinEEJcKWlpaQwbNqxOWseOHdm6dSudOnVqcj1nn3EI8PzzzzepXIcOHThw4ADTpk3Dx8eH0NBQHB2b/uXMDTfcwMcff8xbb71FYGAgvr6+TS4rhBBCiOubBA6FEOIySMks4t9L9wDgbNDyj9vbX1J9p281buHrQscwbzqeut1YCCHE1adv3760adOmXtppZ585eO+999qtY+TIkXbTT9/OfNrUqVNtr2fMmAHUbl8eOnQoBoOB0tJS3nnnHQICAgCYNm2aLX98fHydS1POfjZx4kT7gxNCCCHE35oEDoUQ4jJoF+xp2+Z8ORgNWj57os9lq08IIcT17eOPP6aiogKz2cwtt9wiF5sIIYQQ4rKQwKEQQgghhBDXuAkTJvzVXRBCCCHEdUiumhRCCCGEEEIIIYQQQtQjgUMhhBBCCCGEEEIIIUQ9EjgUQgghhBBCCCGEEELUI4FDIYQQQgghhBBCCCFEPXI5ihBCCCGEEEIIIa4JVVVVTJ8+HYDi4mJUKhUuLi7k5+fj5ubGyy+/fNF17927l59//pmqqioA2rZty1133cXatWvR6XR07dqVTZs20bp1a9zd3Ztcr9lsZtGiRezevRuVSoW/vz/33nsvHh4eAKxatYq1a9cSHBzM6NGjbeWqq6v56quvOHHiBIqi4OTkxBNPPIHBYODdd99l4sSJFz1WIZpKAofiqjXw9SX0b9ec54d0AMBitXL/jBVENXfn9fs6N7merYdy+N/qZCqrzShAlwgfxgyIbjD/zqP5OGhUtAnyvMQRCCGEEEIIIYS4nPR6PZMnTwZg8eLF6PV6BgwYQH5+PgkJCRddb0ZGBvPnz8dkMuHn54fFYmH9+vUA9OrVy5Zv8+bNBAQEXFDg8Mcff6SyspJXXnkFtVrNpk2bmD17Ns8//zwqlYq1a9fyxBNP4O3tXafcypUrcXFxYcqUKQBkZ2ej0WgAJGgo/jQSOBRXLYNWw9GcEqpqLOi1GrYdzsPLxXBBdRzNKeHfy/by2n2dCfY2YrFa+WVbWqNldh3Lx6DTSOBQCCGEEEIIIa4hVquVr776isOHD+Pm5sa4cePQ6XTk5uYyf/58SkpK0Ol0PPDAA/j5+dUp+9tvv3HzzTfb0jUaDb179wbOBCi9vLxIS0vjv//9Lzqdjttvv52NGzcyduxYAPbv38/atWtt76F21eDmzZt57bXXUKtrT4uLj49n48aNHDx4kG3btpGXl8esWbOIj4+nf//+trLFxcV4ep75u9TX19f2esKECcyYMYPk5GSWLFnCbbfd1sJkMh0AkoAHExISlMs6ueJvSwKH4qoWF96MLSk59Iz2Z9WeDPq0CWDP8QKsisIjCauZMaob7s56rIrCw/9ezYcPd8fNSWcrv2BjKvf3CCfY2wiARq3m9rhQADYnZ/P1ukOYLVZcnLRMGtKRKrOFJUlpqNWwcncGppvbUFhaxZdrk1GrVDgbtLz/UPxfMRVCCCGEEEII8bd39lblnJwc1Go1W7duJS8vj8rKSh5++GEeeOAB5syZw/bt2+nSpQtff/01999/Pz4+Phw5coR58+Yxfvz4OvVmZmYSFhbGW2+9VW+r8rFjxzAYDAwYMICff/6Zu+66i7Zt26IoCt9//z0lJSW4uLiwadMm4uPr/r2Yk5NDTU0NOTk5hISE2NJDQkLIzMxk+PDh7Nu3j/Hjx2M0Gtm0aROrVq0CaldBQm3gsnnz5gQHB+Pp6cmAAQPqtHH8+HHWrVt3/IEHHugIbAC6A+vPnTuTyTQIeJ3a+y60wIcJCQmfXOzPQvw9SOBQXNX6tAngq7UpdIn04UhOCQM7BLHneAFqlYr+bZuzck8GQ7uEsf1wHi18XesEDQGO5ZZwV9cWdutuE+TJhw93Q6VSsXR7Ggs2pTJ2QDS3dQrGoNNwT3xLAMbOWsv04V3wdjVQWllzxccshBBCCCGEEMK+s7cqf/DBBxgMBkwmE4cOHeLDDz8kKCgIgODgYAoKCqisrOTw4cPMmTPHVkdNTf2/66qrq/n11195+umn621VDgkJQa/XA7WrAEtLSwFQqVTccMMNbNmyhfj4eI4cOcJDDz1Ur26VSlUvTVHsLwiMj4+3BR+nTJnC+PHjOX78OAcOHGDDhg306dOnXpnQ0FCKi4trEhISrCaTaQcQyjmBQ5PJpAVmAzckJCSkm0wm/al8QjRKAofiqtbC15XsogpW7cmgc3izOs9u6hDEqwsSGdoljF93HOemmMALqjuvuILp3++noKQKs8WKr4eT3XzRQR6899NOekX706OVn908QgghhBA7duxg9uzZvPzyy/W2wAHMmDGDgQMHEh195qzllStXkp2dzf3332+3zhkzZjB06NA6q1SaKjk5GY1GQ8uWtV+Gnn24vxBCXK9Ob1W2WCx07NgRRVHQ6/W4urratio//PDD9cqZzWZatWpld6tycnIyBoMBLy8vKisrWbx4MStXruT2228nNTWVkpIStFotwcHBzJkzp85W5WbNmlFTU0N1dTVQu8W4T58+bNiwAQ8PDzp16tToeAwGAx07dqRjx46kpaWRkpLCjBkzqKqqYtWqVTRv3hwHBwfatGnjaTKZtgBhQCuTyfRNQkKC5ayqXKiNAeUDJCQkVAEHAUwmUzNgFhB8Ku/4hISEDSaT6Qbg/wBHoAIYnZCQcLDpPw1xPVD/1R0Q4ny6Rvry6fL99G0TUCfdx80Rd2c9O47kcSDjJJ3DfeqVDWnmwqGsIrv1Jvy6lzviQvlkXC+evq0dNWaL3XzP3NaOUX0jyS2u4PFP11FcXn3pgxJCCCHEdScxMZGWLVuSmJho93lcXFy9Z4mJiXTu3PRL3y5EcnIyhw8ftr3v1auXBA2FENc1i8VCr169mDp1KlqtlqysLBwdHTGbzbRp04YXX3yRO++8k//973/1yjo4OHDw4EGys7OB2vMSV6xYUSdPbGwsjo6O3HTTTUyePJm2bduSn5+Ps7MzS5cupbq6ut5W5dNByxUrVmC1WqmqqqK6uho/Pz/atWvHhg0bGhyP2WymoqLC9rqkpISKigqefPJJdDodv/zyCxaLhcrKSlq2bOlJ7Rbl+YAVeODsuhISEgqAn4BjJpPpG5PJ9IDJZDodE/oQmJGQkNAZuAs4vTzzANArISGhI/AyMP18PwNx/ZEVh+KqN7BDIM56B8J8Xdl5NL/Os5s7BvH2Dzvo3645GnX95d93x7fgtW+TaBPkQaCXEauisOiPI9zVtQVllWa8XWsvW/l9V7qtjKPOgfIqs+19RkEZrZp70Kq5B38k55BbXIHrOVuihRBCCPH3VllZSWpqKuPHj2fWrFkMGjSoXp6OHTvy888/U1NTg1arJT8/n6KiIlq2bMk333zDsWPHqKmpoWPHjnbL79u3jyVLlmA2m/H29mbEiBEYDAamTJlC165d2b17NxaLhUcffRStVsv69etRqVRs3bqVYcOGceDAAdvtozNmzCA0NJTk5GQqKip48MEHCQ8Px2q18sMPP5CcnIzZbKZ379707Nnzz5hCIYS4ZBqNxrZV2d3dnYqKCiorKzGbzfz000/88MMPKIqCwVD/0k2dTkevXr347LPPqK6uRqVS0bZt23r53Nzc+PXXX1m/fj3PPfccN9xwA9nZ2ZSVlZGVlUWbNm3qlfH29sbBwYFXXnkFqD33cMyYMRw+fJgDBw40OB6LxUJCQgIajQZFUXBzc6Nt27ZotVpUKhVGo5Hy8nLKysrw9PR0ArYCzQEzUO/MroSEhEdNJlM74EbgOWAAMOrU+2iTyXQ6q6vJZHIB3ID/mUymCECh9lxE8TcjgUNx1Wvm6sidXcLsPouP9OWDn3ZxU4cgu89b+Loy7qZo3vx+O1U1ltozKCJqVyY+2DuCaQuT8HIx0DrQg+yT5QB0jfRh2sJtbErOxnRzGxZtPsyJgnIUFDqGedPC1/XKDFQIIYQQ16ydO3cSHR2Nr68vTk5OpKWlERwcXCeP0WgkJCSEffv2ERMTQ2JiIp06dUKlUnHHHXfg7OyM1Wrlww8/JD09ncDAM8ewlJaWsmzZMp5++mn0ej2//fYbK1eu5NZbbwXA2dmZF198kTVr1rB8+XIefPBBevToYQsUAvX+OLVarbzwwgvs2bOHJUuW8Mwzz7Bx40YcHR2ZNGkSNTU1vP/++7Ru3Rpvb+8rPINCCHHhIiMjbWcPenh44OPjU+dZVVUViqLg5OTEW2+91Whd/v7+6PV6XnzxxUbbMRqNjBw50naERHx8PNOnT6d169a4ubmh0WjqlVepVAwYMICQkBAmTJjAE088AcDRo0exWq1MmzbNbp/0ej3PPvssRmPtZZ+LFy/GwaE2jDNjxgxef/11QkND6dGjB7///nv+2rVrOzQ6SCAhIWE3sNtkMn0BHKE2cKgG4hMSEirOzmsymWYCqxISEu40mUyhwOrz1S+uPxI4FFetHyfdXC8tJtSLmFAv2/vD2cWE+brYbk22p2ukL10jfeuld4vyo1tU/fOHAr2MzBrby/a+XbDnhXZdCCGEEH8ziYmJ9OvXDzizJfncwOHpZ0lJScTExJCUlMSDDz4IQFJSEhs2bMBisVBcXExWVladwOGRI0fIzMzk/fffB2q3rIWFnflitWPHjkDtZQA7duxoUp87dOhgK1NQUADA/v37OXHiBNu3bwegoqKCnJwcCRwKIa5Zjo6OeHl5sW3bNmJjY1EUhRMnTtT5Nxbgxhtv5NNPP6Vly5b4+vpitVpZtWoV/fv3r5NPr9dTWVlpe//xxx9jtVpJTk7m6aef/lPGdK5WrVoREhLiYTKZfBISEnJMJpMn4JKQkHDsdB6TyWQE4hISElafSuoAnH7+G/Ak8O6pvB0SEhJ2ULvi8MSpPKOu9DjE1UkCh+KaNX/DIRYnpfHCkA5/dVeEEEII8TdWVVVFcnIymZmZQO1KPpVKxZ133lnvJs2YmBi+++470tLSqK6uJjg4mLy8PFasWMELL7yAk5MTc+fOrXfjp6IotG7d2u6B/oBtBYparcZqtTap32eXsVgstnaGDRtW5wIXIYS41o0ePZp58+axdOlSLBYLcXFx9QKHgYGB3H333efdqhwfH88333yDTqfjueee48UXXyQxMZGVK1fi7+//Zw2pDn9/f5KSkk706dPnt1PnFtYAT3AmMAigAp43mUyfUHvRSRlngoFPA/82mUy7qI0TrQXGAe9Qu1X5H8DKP2Uw4qpzSYFDlUr1DPAYtb+AnyqK8n+Xo1NCNMW93cO5t3v4X90NIYQQQvzNpaen06VLF4YPH25L++CDD0hNTSU8vO5nFYPBQGRkJF9++SVxcXFA7fmIOp0Og8FAcXExe/fuJSIiok65sLAw5s+fT05ODj4+PlRXV1NYWIivb/1dFWe3dfaqmKaIjo5m7dq1REVFodFoyM7Oxt3d3bZFTwghriZnnwfr5eXF1KlTbe9PH9MAtWcMPvnkk+etr127drRr167Rdk7fcHy21NRUunfv3mC9EyZMsL2eMWOG7XVsbCyxsbENljt3C/O559+ePd79+/cX7tu3L66huhISEkqAWxt4lgfcayd9ExB5dpMNdlZcty46cKhSqdpSGzS8AagGlqlUqiWKoqRcrs4JIYQQQghxtUtLS2PYsGF10jp27MjWrVvrBQ6hdrvy7NmzbasHAwMDCQoK4vXXX8fb25sWLeqdZ4+LiwsjR47ks88+w2yuvcTtjjvuaDRw2K5dOz799FN27dpVr38N6datG/n5+bz55psoioLRaGTcuHFNKiuEEH9Hb775Jnq9nqFDh/7VXRHiiriUFYetgc2KopQDqFSqNcCd1C5lFUIIIYQQ4m+hb9++9W7R7Nu3b4P5O3ToQEJCQp20kSNH2s179iqVqKgoJk2aVC/P2StSTh+8D+Dr68uUKVNsz84OYp5dr9FotNWhVqsZPHgwgwcPbrD/QgghzrB3mYoQ1xOVoigXV1Clag38CMRTuz9+BZCoKMpT5+QbA4wBaNasWacFCxZcUoevR6WlpbZbkkQtmRP7ZF7sk3mxT+alPpkT+2Re7JN5sU/mpT6ZE/tkXuyTebFP5qU+mRP7ZF7s69u3b5KiKA1uVRbiYl104BBApVI9Qu2Bm6XAPqBCUZQJDeWPiopSDh48eNHtXa9Wr15Nnz59/upuXFVkTuyTebFP5sU+mZf6ZE7sk3mxT+bFPpmX+mRO7JN5sU/mxT6Zl/pkTuyTebFPpVJJ4FBcEepLKawoyn8URYlVFKUXUADI+YZCCCGEEEIIIYQQQlwHLvVWZR9FUXJUKlUwMJTabctCCCGEEEIIIYQQQohr3CUFDoHvVCqVF1ADPKEoSuFl6JMQQgghhBBCCCGEEOIvdkmBQ0VRel6ujgghhBBCCCGEEEIIIa4el3TGoRBCCCGEEEIIIYQQ4vokgUMhhBBCCCGEEEIIIUQ9EjgUQgghhBBCCCGEEELUI4FDIYQQQgghhBBCCCFEPRI4FEIIIYQQQgghhBBC1HNJtyoLIYQQQgghhBBC/FmqqqqYPn06AMXFxahUKlxcXMjPz8fNzY2XX375guvMz8/n/fffZ9q0aajVZ9ZXTZ8+neHDhxMaGmq3TEJCAlOnTiU5OZnly5djMpkuelynHTp0iO+++47KykoA+vfvT48ePQAoKSnh448/xmw2M2zYMMLDw23lRo4c2c5kMnknJCTkAZhMpj7AcwkJCYMuuVMNMJlM44HZCQkJ5VeqDfHXk8ChEEIIIYQQQgghrgl6vZ7JkycDsHjxYvR6PQMGDLAF8i6Gl5cXHh4eHDp0iMjISACysrKorKy0GzS8UoqKivjvf//L2LFjCQ4OprS0lJkzZ+Lm5ka7du04ePAgvr6+PPTQQ5e9bZPJpAJUCQkJ1gsoNh74EpDA4XVMAodCCHEdu2XaEkJ9XLFYrfi5O/H8kA4YDdrLVv97P+6kS4QPPaP9+f6PI9waG4xBq6mXb+LcTTx2Y2siA9zPW+evO47zw5ajAKTllhDoZUStVhHXshk6BzUGnYZ74lteVH+/2lXBF3tXo3VQo9WoGT+oHS393C6qrgsZ09WuoW/uAZ5//nkcHOx/XJg7dy5JSUm8/fbbGAwGABYsWMDq1at55513MBqNTWrfZDJxww03MGrUKAAsFgsvvvgioaGhjX5zn5ycjEajoWXLlrb+tG3bltjY2Ca1K4QQQojri9Vq5auvvuLw4cO4ubkxbtw4dDodubm5zJ8/n5KSEnQ6HQ888AB+fn51ysbFxZGUlGQLHCYmJhIXF0d+fj6ff/451dXVAAwbNsz22cOeqqoqFixYwIkTJ7Bardx2223ExMTw/vvvM2zYMIKCggB47733uO+++wgMDLSVXbt2LV27diU4OBgAo9HInXfeyZIlS3B3d2fRokXU1NQwffp0nnvuOXQ6XZPmxWQyvQIEAy1O/ff/JSQk/MtkMoUCS4FVQDwwxGQyDQOGAXpgUUJCwj9NJpMzsAAIBDTA64AvEACsMplMeQkJCX2b1BlxzZEzDoUQ4jqmc9Dw8ZiezB7XGxdHLT9tPXrF2vrhjyNU1VguuZ6BHYL4eExPPh7TEy8XA++M7MrHY3rySP9Wl6GX8MKdHZg1theD4kL4dPmBy1Lnte70N/eTJ0+mR48e9OvXz/a+oaDhac2aNWPnzp1A7Yf15ORk3N3dL7j9jIwM2wfyAwcONKmO5ORkDh8+fEFtNURRFKzWC/mCXQghhBBXm9zcXHr16sXUqVNxcnJi+/btAHz99dcMGzaMF198kaFDhzJv3rx6ZWNjY9m5cycWS+3n2aSkJOLi4nBxceHpp5/mxRdf5JFHHuHbb79ttA/Lli0jMjKSSZMmMX78eBYtWkRVVRXdu3dn8+bNAGRnZ2M2m+sEDQEyMjJsQcPTQkJCyMzMJCgoiEGDBtGpUycmT57c5KDhWVoBA4EbgH+aTKbTqwmigLkJCQkdT72OOJWnA9DJZDL1Am4GMhISEmISEhLaAssSEhL+BWQAfSVoeH2TFYdCCPE30TrQgyPZxQBkFJTx0bK9FJVVoddqGD+oPV5GPY/PXsfnT/VFrVJRWWPhkYTV/O/JvhzLLeFfv+yhqsaCv4cT/7g9BhfHMysXf9hyhPySSp6fuxlXJy3vjoxvsB+D31rGkBtC+SMlB71WwyvD4vAw6ps8jrTcUibO3UROUQV3dgljyA1hAKzYlc4PW49itii0au7Ok7e0RaNWNTofCzfVBp0qqs28Mj+R0soazBaFh/pG0i3Kj6yT5Uz5egttgj3Zd7wQb1cDrwyLQ3/WqkqrovD+Tztp5urIiN6RzPh5F8mZJ1GhYmCHQIZ2bdHksV1NDhw4wPfff4/VaiUkJIT77rsPrbb+atXT38536dKFlJQUWrZsyd69ewH4+eefcXZ2pl+/fgD8+OOPuLq60rdv/c+Wbdq0Yc+ePcTGxrJ161bi4uI4dOgQAGVlZXzxxRfk5eWh0+kYPnw4jo6OrF+/HpVKxdatWxk2bBhQey7QihUrKC4u5s4777StPvz9999JSkrCbDbToUMHBg0aRH5+Ph999BGRkZEcOXKEsWPH4uXldUXmUwghhBBXnpeXl21FX3BwMAUFBVRWVnL48GHmzJljy1dTU1OvrJubG/7+/hw8eBAXFxc0Gg0BAQFUVFQwf/580tPTUavVZGdnN9qH/fv3s2vXLlasWGFrq6CggNjYWJYuXcrQoUPZtGkTXbt2tVtepar/+dVe2rkURbGbfNbrJQkJCVVAlclkyqF2xSDAsYSEhM2nXt906j/bT703UhtIXAe8ZzKZ3gYWJyQkrDtvh8R1QwKHQgjxN2CxKuw4ksfADrUfpD5cspunb21Hcy9nDpwo5KOle3hnRFfCfF3ZdSyfDqHebE7OJq5FMxw0at79cSemm9vQPsSL/60+yJdrk3l8YBtb/UNuCOP7zUd4Z2RX3Jwa//azssZC60APRvdrxZzl+1m6PY3hPSOaPJbj+aW8M6IrFdW1gc1BnULIKChjzb5MZozqhoNGzcxfdrNy9wkGxAQ2WE9iai7xUbWfl3QOal4e1glnvZai8mqe+WwD8ZG1z04UlPPi0I5MGNSeaQu3sX5/Jv3bB9rm9e1FOwhpZmR4zwhSMovIK6lk9rjeAJRW1v9Qei0wm83MnTuXZ555Bl9fXz7//HPWrVtnCwCezcfHh127dlFeXk5iYiKdO3e2BQ67devG7Nmz6devH1arlaSkJJ5//nm7bXbq1ImlS5fSrl07MjIy6Natmy1wuHjxYoKCghg3bhwHDx5k7ty5ttWRp881Ati4cSNFRUU8++yzZGdnM2vWLGJjY9m3bx85OTm88MILKIrCrFmzSElJwdPTk5ycHEaOHMn9999/hWZTCCGEEH+Ws3dKqFQqLBYLiqLg6OhoOxexMXFxcSQmJuLq6kpcXBwAK1aswMXFhcmTJ6MoCs8880yjdSiKwpgxY/D19a33rFWrVuzcuZOkpCQmTZpU77m/vz/Hjh2jffv2trS0tLR626rtqa6uNgMeQN6pJM+zXgNUnfXawpl4UNlZ6SrgzYSEhE/Ord9kMnUCbgXeNJlMvyUkJLx23k6J64JsVRZCiOtYtdnC47PXcc97v1FSUUNsi2ZUVJvZl17ItO+28fjsdXy4ZA8FJbW3tvWO9mfN3kwA1uzNoFcbf8oqayitrKF9SO1KrAHtA9mTVnDRfdJq1HSJ8AEg3N+N7JMVF1T+hnAfdA4a3Jx0uDvpKCyrYvvRfFIyi3jqPxt4fPY6dhzJJ+uk/TOa3160gwf+bwXfbkxlcOdQABQF/rvyIOM+WcukL/8gv6SSwrLaz1Z+Ho62cxAj/N3ILjrT3w+X7LYFDQH83J3IOlnOv5ftYeuhHJz01+b3c1arFW9vb9sH3q5du5KSktJg/g4dOpCYmMiRI0fq3O7n5eWFs7Mzx48fZ//+/QQFBTV47mFgYCD5+fkkJibSpk2bOs9SU1Pp0qULAFFRUZSWllJRYf/3JiYmBrVajb+/P8XFtSts9+/fz/79+3nzzTd56623yM7OJicnBwBPT0/CwsKaODNCCCGEuNY4Ojri5eXFtm3bgNrAXnp6ut28HTt2ZO/evbZtygCVlZW4ubmhVqvZsmXLeY82iY6OZvXq1bYVgMePH7c96969O99++y0hISE4OzvXK9u7d282b95sK1NaWsqiRYtsX5I2JisrqwQYAWAymTTAg9SeXXghfgUeNplMxlP1NDeZTD4mkykAKE9ISPgSeA84faB0CeBygW2Ia8y1+ReNEEKIJjl9xmFZZQ1T523l58SjDIgJxGjQ8vGYnvXyx0f58t9VBymuqCYls4gOod5UVpsva580apVtu4VGpcJitbutokFahzPfeanVp8orCgPaB/JwE85BfOHODrTwdeU/Kw/w76V7eHlYHCv3nKCovJqPHu2Bg0bNyH+tpNpc+6FQqzm7Pag2n+lvdJAHO4/lc3d8C3QOGlwca+c1MTWXnxOPsXZfJs/eEXNB47saXOiZOXFxcbz55pt07doVtbrud5LdunVj06ZNFBcXEx/f8BZ2gPbt2/P9998zfvx4ysrKGs3bkIbOZBw4cCA9e9b9nc/Pz7+Y84GEEEIIcY0ZPXo08+bNY+nSpVgsFuLi4uqdLwjg5OREWFgYxcXFeHt7A9CrVy9mz57Ntm3biIyMRK9v/IidW265hYULF/LGG2+gKApeXl62y96Cg4MxGAwNfiZyc3Nj1KhRfPXVV1RVVaEoCv369auzArEhmzdvzoyOjg43mUw7qV05uIzaG4+bLCEh4TeTydQa2HSqz6XUBiDDgXdNJpMVqAEeP1VkNrDUZDJlyjmH1y8JHAohxN+As0GLaWAbXlmQyKBOIfi6O7J2Xya9ov1RFIXD2SW09HPFUedAVIAbs37dR5cIHzRqFc4GLUaDlt1pBbQL9mTF7hO0C6l/DpyjzoGKKvN5typfCR3CvHllQSJDu4bh7qynuKKaiiozvu5OdvM7aNSM6hPFqI9WkZZbQlmlGXdnHQ4aNTuO5tVZVdiYmzsEsTutgGkLt/HPYZ0orTTjoFHRs7U/AR5OvPfTrss5zD+N2WwmPz+fnJwcfHx82LJlCxERDW8n9/T05I477qBVq/qB2w4dOrB48WIsFgsPP/xwo+3Gx8djMBho3rw5ycnJtvTw8HC2bNnCrbfeSnJyMkajEUdHRwwGA5WVlecdT+vWrVm8eDGdO3fGYDBw8uRJNJr6t38LIYQQ4toyaNAg22svLy+mTp1qe3/2Kj1vb2+efPLJJtU5bty4Ou99fHyYMmWK7f2QIUPqtRcZGWm7jfn0ecz2nDx5EkVRaN26dYPtR0RE2N3GDLWflRoKOlZVVVkSEhLsNpyQkPDKOe/bnvW27TnPPgQ+PKeKVGpXI55b70xgpt0OieuGBA6FEOJvItzfjRa+rqzem8GkIR3519I9fL0uBYtVoXebAFr6uQLQOzqAad9t492RZw5snjg4xnY5ip+7k91VdLfGBvHSN1vwNOobvRzlSghp5sJDfaJ48astKIqCRq3iyVvaNhg4BNBrNdzVtQULNx/mkf9n777Do6rSB45/ZyaZ9N5JI70BoYQSehFR6ayA0hREQHRV1oYIugXRtSyuIKLi6i+gUiyoqAiKVEF6S4BAQkghjfQ+mfL7Y2BImEkIRSm+n+fxMXPvOeeeezITZt55zzkDYnhp5R4eW7adMB9nAj3Mp4405S/dQqmq1fLa2kOM6R7Gf749xIUkyin9o6711m4IKysrJk6cyLJly0ybo1yarXepps5bWVkRGRmJvb29WTbipdzc3Cyuozh48GCWL1/O/PnzUavVTJo0CYC2bdvywQcfcPjwYdPmKJbExsaSl5fHG2+8ARh3cX7wwQcv2x8hxLV79NFH8ff3Nz3u1KkTgwYNarL84cOHyc3NbbaMEELcinbt2sU333zDvffeK+9BxC1F0cTOO7+LqKgow4kTJ/6w690qNm/eTN++fW90N24qMiaWybhYJuNimYyLORkTy37PcdHr9bz66qtMnToVb2/v3+Uav5fNmzezZs0ai0GPhQsXMmrUKIKDg3nnnXeYPHky9vZNB6otmTt3LrNnz25y3cdLpaamolKpCAsLAyApKYk2bdqYdo7+o8jryJyMiWWbN2/m66+/ZuHChTe6KzcVeb5YJuNiTsbEMhkXyxQKxT6DwZBwo/shbj+ScSiEEEKI30Vubi5Lliyhffv2t1zQ8AK1Wn3ZXRgfffTRP6Qvqamp2NjYmAKHQtzK5s6dS7du3Thy5Ag6nY6pU6fi6+vLzp07yczMZOzYsRQWFvLRRx+h1+uJi4tj06ZNLFy4kNTUVNatW4ezszPZ2dm0b9+eVq1a8csvv1BfX8/06dPx8vLi8OHDrF+/Hq1Wi4ODA5MnT8bZ2flG37oQQghxS5HAoRBCCCF+F35+fvzrX/+60d343V3IHNy/fz/bt28HoKamBnd3d2bNmsVnn33GmTNnqK+vp0OHDo3WY9q4caNpPcfJkyfj7e1NRUUFn332GcXFxt3LR48ejaurK9u3b0ehULBnzx7T1OxTp07x888/U15ezsiRI//w7EMhLkej0bBgwQLT4zvvvNO0U6mDgwPPP/88W7Zs4aeffmLChAmN6q5Zs4Z+/frRuXNntm7d2uhcTk4ODz30EPb29rz44ov06NGD5557jk2bNrF582ZGjx5NeHg4zzzzDAqFgh07drBx40b+8pe//P43LcR1UldXZ3r9lJeXo1AocHJyoqioCBcXF1588cWrare8vJwVK1ZQUlKCTqfDw8ODRx99lKKiIpYsWdJonUAhhJDAoRBCCCFEE5oLelyqd+/e9O7dG51Ox1tvvcWAAQMAGDZsGA4ODuj1ev773/+SnZ1t2snR1taW5557jl27dvH5558zc+ZM1qxZQ//+/QkPD6e4uJhFixbx0ksv0bNnT2xsbEyLvf/666+UlZXx1FNPkZ+fz9KlSyVwKG46zWXtdujQATDuMnrw4EGz86dPn2b69OkAdO7cma+++sp0Ljg4GBcXFwC8vLxMGw003FyppKSEZcuWUV5ejlarNe2QKsStwsbGxvT6WbdunenfgAsBvqu1bt06oqOjTesKZ2dnX5f+XgudTicblwlxk5LAoRBCiD+VT7ed5JejZ1EpFSgUCp4Y3IZofzcmvb2JRVN7XvWu0Gl5ZRRV1NElwvKU3KOZxby3MYXqOi1g3FTlno5BLWp7+Kvr+Xr2XVfVL3FtWjJV+VKrV68mKiqKdu3aAbBv3z527NiBTqejvLycvLw8U+Cwc+fOpv9/8cUXABw/fpy8vDxTe7W1tU3uHh0fH49SqcTPz4/y8vIrvj8hbiQrK+NHEaVSiV6vv6q6AAqFwvRYoVCY2lq9ejUDBgygXbt2pKam8t13312nngtx4+n1ej755BPS09NxcXFhxowZqNVqCgsLWbVqFRUVFajVasaPH4+vr2+jumVlZY129b3wb9Kl7a9du5bU1FS0Wi19+vQxbYS2ceNG9u3bh1arpX379gwZMoSioiIWL15M69atycrKwsfHhwceeAC1Wk1mZiaff/45dXV1ODo6MmnSJFxcXFi4cCGhoaGkpaXRrl077rjjjt930IQQV0UCh0IIIf40sst17D1XwDsP90RtpaKsWoNWd2UfVi3R6fWk5ZeTerbMYuCwuLKWV786wEtjEojwc6GsWsOcT37Dw8mGrhE+Zm2prmGnPYPBgAFQKhRX3Ya4ejt37qS4uJixY8cCcO7cOX7++Weee+457O3tSUpKor6+vtk2DAYDTz/9NGr15YPYDYMnQtxuWrduzYEDB0hISGDfvn1XXL+mpgZXV1fAuJupELeTwsJCpkyZwvjx41m2bBkHDhyga9eufPrpp9x///14e3tz+vRpVq5cyZNPPtmobp8+ffjwww/ZvHkz0dHRJCYmml4rF/z666/Y2dkxe/Zs6uvrefPNN4mJiaGgoICCggKee+45DAYDS5cu5eTJk7i7u5Ofn8+ECRMICwtj+fLlbNmyhf79+7Nq1SpmzJiBk5MTe/fu5ZtvvmHixIkAVFdX87e//e0PGjUhxNWQd5tCCCH+NKo0Bpzt1aitjFNhLs0u/Hp3Br+dzEerM/DCvR0J8nSkvEbDf745TF5pNTbWKp4Y3JZQH2eWb0mlqKKW/LIanO3UJGcVo9HqSc4qYWyPMPrGtTK1++2eMwyMDyDCz8V03al3xLB8SypdI3x44+tDONlZcyqvjHA/F4YntObVrw6g0xtICPNq1Mc1v6axNSWXep2e7lG+TOobSV5pNXM/3U18aw+OZZfy0phO+Lhe2Q6/4tplZmby008/8dRTT6E8H/ytra1FrVZja2tLeXk5ycnJREREmOrs27ePQYMGsXfvXkJCQgCIiYlhy5YtpinJWVlZBAYGYmtr22TmoRA3q0un+8fGxjJixIgW1R09ejQff/wxP//8M23atMHW1vaKrj148GA++OADXF1dCQkJoaio6IrqC3Ez8/DwIDAwEDBO9y8uLqa2tpb09HSWLVtmKmfpy6rY2Fj++c9/kpKSQnJyMq+88gpz585tVObYsWPk5ORw4MABwBiILygo4NixYxw7doxXXnkFMK7DWFBQgLu7O25ubqYNvLp06cIvv/xCXFwcubm5LFq0CDBmMjbcpKhTp07XcVSEEL8HCRwKIYT40whxU3EwrZYp72ymQ4gHfeJa0S7Yw3Texd6adx7uxbd7M/hiZzqzhrZj+ZZUwn2d+fvYBA6ePsfrXx/i3WnGqTonc8v4z4PdsbFWseFQFqlny3js7jZm1z1TWMEd8Y2nAUX6uXCmsNL0OLu4ilcndEOlVPDSyj0M7hTMwPgAvtmTYSqzL62QnOIq3n6oBwbgpVV7OXKmCC8XO7KLqnhqWDx/vaft9R20P7krCXps3ryZ6upq3nrrLcD4QW7ChAkEBgbyr3/9C09PT0JDQxvV0Wq1vPbaa+j1eqZMmQLAmDFjWLlyJfPnz0ev1xMeHs64ceNo27YtH3zwAYcPHzZtjiLEze6dd96xeHz+/Pmmn4ODg5k1axYAiYmJJCYmAuDq6mra3GTv3r0EBwcDEBkZSWRkpKn+hbqXnouPjyc+Pv763pAQN4lLp+vrdDoMBgN2dnYtWmLDwcGBzp0707lzZ5TMHAYAAQAASURBVJYsWcKpU6cICrq4hIrBYGDMmDHExsY2qnfs2DEGDRpkmrZ8QVFREYpLZjsoFAoMBgN+fn4888wzFvthY2Nz2b4KIW4sCRwKIYT401CrFCye2pOjmcUcyihiwRcHmDIgijvjjd/Y94j2AyDCz4Xtx41rzCVnljBvtPHb8PYhnpTXaKiqNX57nxjpg4315RfyNgAKzKcON3x/3TvGD5XSeCA5++I1B7Tz58OfjwOwL72Q/ennmPnB+Z17NVpyiqvwcrHD29WOmAC3Kx0ScRlNBT0aBiouBEAmTZpksWxTxy/UGzx4cKPjjo6OTJ061ay8j49Po4yQ8PDwRucXLlxo8TpC3KoyMzNZtWoVBoMBe3t7s12XhRCN2dnZ4eHhwf79++nYsSMGg4GcnByzNQxPnDhBSEgIarWa2tpaCgsLcXNr/B4iNjaWrVu3EhUVhUqlIj8/H1dXV2JiYli3bh2dO3fG1taW0tJS06YmxcXFpKenExoayt69ewkLC8PHx4fKykrTcZ1OR35+Pq1atUIIcWuQwKEQQog/FZVSQXxrD+JbexDi7cTGw9mmwKG1lXF6qVKhQK83AMagn5nzAT8bdct2/wv2ciI1t5TEqIvrGZ7MLSPI09H02PaSAKSlJQoNwNgeYQzuFNzoeF5ptVl9IYS41YWHh/PCCy/c6G4IcUuZPHkyK1eu5IcffkCn05GQkGAWOLwQlFcqlRgMBnr06EHr1q0bTefv3r07RUVFvPLKKxgMBhwdHZkxYwaxsbHk5eXxxhtvAMaMwQcffBClUomvry+7du3i008/xdvbm969e2NlZcXUqVNZs2YNNTU16PV6+vXrJ4FDIW4hEjgUQgjxp1FUrSenqAp/DwcA0vLL8Xaxa7ZO2yB3Nh3JYXzvCA5lFOFip8bBxtqsnJ3aihqN1mIbQxOCeeJ/O+gZ7UuYrwvl1Ro+/Pk443tHWCwfF+DG5qNnGdAugE1HzpqOJ4R68X+bU+nf1h87tRXnymuxUskmKEIIIcTtbsiQIaafPTw8mDdvnunxhTVxATw9PXnssceabWvgwIGN6lhqV6lUMnz4cIYPH25Wrn///vTv37/RsQtTlceNG2dWPjAw0OIGKA2z94UQNy8JHAohhPjT0OgMvP7NQapqtaiUClq52fPEkHbN1pnQJ4I3vznMjPe2YmOt4unhltfLim/tweodaTzy/jazzVE8nGx5bkR73lp3hGqNFgwwomsI3SJ9LLb1yKA4Xv3qAGt3Z9Azxtd0vFOYF5nnKnnyf78CYKdW8eyI9iiVEjwUQgghhBBCXH8SOBRCCPGn4eek4q2hPSyeS3r84jfnka1ceX2ScXF+Zzs1/xibYFZ+Yp/IRo+d7dQsmtqzyWu3DfZo8vylwUhfN3vemnKxn2N7XFzLbmTXEEZ2DTFr4/0ZfZq8thBCCCHE7+nSLEghxO1DAodCCCGEEEIIIW4oRV0lJxfcDYC2vBAUSqycPNAUZWPt4k3kiz9fVbv56xaitLHHa+B007Hjc3sQPvtbrBzdm6737Zs4RHTFMbon5zZ9iHvPcSjVzS9v0lBl6k7O/fQ+rWd+ZHb8zNKHUXsa11dWObgR+sSnLW43e8WzeA6Yiq1fJAXrF+N9l+VpybraKvK+nE/l8e0orG1QObjhN3IO9iEdWnwtIYQACRwKIYQQQgghhLjBDDaORMz5AWgc7NMUZZGxZMof3h+foU+Zfj636X+4dhl5RYHD5jiEdzYLKF5g0GlRqJr+mB4w4TXTz4U/vtNk4DDnk+dQewQS+fctKJRKNOcyqc09eW0dF0L8KUngUAghhBBCCCHEzUuvI/uT56hO34e1iy/BM5ahVNtSV3iGs6vmoa0oQqm2w3/8q9j6hl++vfM0RVlkLH4A+/DOZm1nJT2Fc5v+1JcVoC3LJ/2t+7BycCN01ioqUraS/91/MGg1qD2DCZj4BipbByqSN5P7+T9RObphF9imxf0o2bmG8qObMNTXoddU433PE5z76X2IfQCAnFXzsA9qh1viaNIXjsV31AuUH/gevaaWkwvuxsYvgqDJb5vaqys8Q3XGAQIn/xeFUgmA2jMItWcQAIU/f0DJr6sBcO9xH579H2pxX4UQfz7KP/qCg/71He9tTDE9XrMzjeVbUltcf/mWVNbsTLuia056exNl1ZoWl888V8kj729j5vvbOFtcdUXXuuDL305TW68zPR7+6vorqn8oo4jkrOKrurYQQgghhBBC3C7qCjPw6D2JyHk/obJ3puzA9wDkfDqbVmP+QcTz3+E36gXOrpx73dq+wLPfZKxcfAh9ciWhs1ahrSymYP0iQh//lIjnv8c+uB3nNi1DX19LziezCX7kQ0L/9rlxunUTqk7t4eSCuzm54G4KflgEQPXp/QQ88B9Cn1zZon77jpiNUm1LxJwfGgUNAepyU7ELiEOhVJnVq8k8QsnONYQ/+zVhz6yleMdn1GQdbdE1hRB/Tn94xqG1SsmO43nc1yMcF3v1H335Ftl5Io/ESB8m9Y28fGHAYDBgAJSKi7tarv3tNAPa+mNrbf7HuiUOnynCVq0iLrDpdTeEEEIIIYQQ4nan9gjELjAOALugttQXZ6OrraI6fR+Zy2aayhnq68wrN/iMdsmJJttuTvXpA9TlniTtzb8Yr6nVYB/Skbq8NKw9A7HxNm5g5tplJMXbLa9deOlU5ZKda3CK7oWVg2uz174eqk7twSV+EEobewCc299F1ak9V5QhKYT4c/nDA4cqpYJ7OgTx5a50JvePbnQuv7Sa/3x7mLJqDS72ap4aFo+3i/k6EpmFlTyTtJOCshpGdg1hRBfjH+efD2ezdk8GWp2BaH9XHru7DSrlxX8o8kqreeHT3UT7u5KWV46/uwPPjGjfKLi3+2QBX/2WgVIJRzKLeH1SIl/sSufHg1kA3NUhiFFdQ8grrWbup7uJb+3BsexSXhrTCR9X4x/ftbtPU1RRy7NJu3C2tzbtzPnRpuP8drIAG2sVfx+TgJujDbtS8/n4YA2rU7fhZG/N7BEdqNPq+G5fJkolbDpylpl3xdE2SAKIQgghhBBCiD8fhVWDhBOFEoNOBwY9Kjtn07qITVE5uKItK2h0TF9XicreGX1dpeW2m2Mw4BjTi6ApixodrslKRkFTQcrLU9hc/NyrUFphMOgvXtJSQLQZNn6R1GSnYNDrTVOVLzJcdR+FEH9Of/hUZYChnYP55ehZqmrrGx1/Z30yd7QLYOn03vRv68+S9ckW62cVVfLyuC68/VBPVmw9iVanJ7Owgi0puSx8sDvvTuuFUgGbjuSY1c0uquKejkEsnd4bexsrvt2b0eh8lwhvBncKYmTXEF6flMjJ3DI2HMzm7Sk9+O+UHvywP5NTuWWmtu5oF8CSab1MQUOAEV1C8HCy5bVJ3UxBw9p6HTEBbiyd3pu2Qe78cCATgLhAdx6It2XJtF70jWvF6p1p+Lram/rw7rReEjQUogU+3XaSh9/dwoz3tvLI+9s4nlPSonrf78/k5S/2mx5X1dXz4OJfyCupvqp+VNbWc+8bGzAYjG/KUrJLGPSv7ygsrzG2X1vPX17fgN5w5W/aLl0C4YJ/rN7LI+9v48HFvzDytR955P1tPPL+NrLLm3/ju+FQFmPe3Mgj72/j4Xe38K81+yy2fznv/pjMuLd+avKeZr6/jbQ8499NnV7PsFfX8/Phi9/mP/rBNk6e/7va0MJvD3OmsAKAz7afuuJ+CSGEEOL2pbJzQu0RSNn+7wDjLLCa7BSzcg7hXSk/8hO62koAyg78gK1/jMVpvE1R2jqgP1/fPqQD1Wl7qSvIAECvqaEuPx0b3zA0RVnUFZ4BoHTvN1d9b9bu/tTlngJdPbqacipP7GiiY1YYdPVmh228grEPbmdch/H8+7O6gtOUH9qAQ3gXyg9tQK+pQV9XTfnBH3EI73zVfRVC3P5uyOYoDjbWDGjnz9rdGaitL8Yuj2WX8OLoTgAMaOvPsp+OWazfJdwbtZUKtZUKV3s1JVV1HMgo4mRuGX/90PhHVVOvw9XBxqyul7OtafrvgLbGPoxObLqvRzOL6R7tg63aOFQ9o305mlVMt0gfvF3tiAlwa9E9W6uUdI3wBiDcz4UD6ecAOFdew8qjtaw8sRWtTo+Pm31zzQghLMgu17H3XAHvPNwTtZWKsmoNWp3+8hWBuzsEsvFQNvvTz9Ex1JOkzancGR+A71W+Fh1trXFzsCHzXCXBXk6kZJUQ7utMSlYJfeLsOJZTSrS/a6OlDVqqqSUQXhqTABjXRv18Vzr/us/45m/z5s2XbbN3rB+P3W2cmvLKlwfYknyWQe0DW9wnvcHAjuN5eDnbceRMMfGtPczKxAa6kZJdQpivC+n5FQR6OJCSXcKAdgHUarTklVYT6uPcqI5Ob2DW0Hamxyu3n+L+ni1f7PxCGw2zzoUQQghxewmc/F9yVs6l4IdFGHT1uCQMwy4gtlEZu4AYPPo8QPqb94JCgZWjR6OdiVvCvcf9ZLzzIFbOXoTOWkXApDfI+t9fMWiN6+j7DHsaG59Q/Me9wpklk1E5uuEQ1pnasyeu6r7U7q1w6TiY2g1zyToRi11AnOV+9RzHyfmDsA1qY7bOof/4f5P75XxSX+qNQm2HlYMbviPnYBfUFtfEezn172Hn7+0+0zTlkwvuvmwGpxDiz+eG7ao8smsIj32wnTvjA5oso2jig7W11cVgo1KpQKc3gMHAwHYBTBkQbbFOU21e7rN7czlBV7J+oUqpMF1bpTjfZ2DJj8kktLLm4b/05lBGESu2tnyjGCGEUZXGgLO9GrWV8TXZcP3UA6fP8cHGY+j0BiJbufDXe9qYyoHxb8Jf72nDq18d4Olh8Rw8XcTih3s2uUTBiyv38P6MPoBxc6dajY6JfRqvhxp3PlAW7OVESnYJI7uGkJJdQp+4VqRklRAb4EZeaTWvrT1I3fkMv5l3xREX6G76O+BspyajsIIIPxeeG9Ger/dkWFwCoSn5pdV8eriGlSe2Nrv0wwU6vZ7aeh1OttYAlFbV8fb3RyksM2ZKzhgUa3HN1UMZRbT2dqJPbCs2J5+1HDgMcGPPqQKGJrQmJauYwZ2C2XDIOLbHz5YS7uuCSqlg+KvrGdUthH1p55g2MIb/23yCh++IYduxPDRaHY+8v41gL0dmj+zQ5NIUl7bRRjK2hRBCiFuOz5BZpp/VHoFEzttoeuw1cPrFc55BhDyWdNn2PHqNx6PXeLPjzbUdOOlN08+e/Sbj2W+y6bFjVA/CZ39r1p5TXF+c4vo22xfHyEQcIxu/j3NLHI1b4uhGx/xGzeGEe3fa923cXuisVRfLjHwev5HPW7yOys6JgPH/tnjOa8DDeA142Oy4BA2FEJbckKnKAM52anrH+rH+/AdzMH643Jx8FoBNR3OIC2xZNh9A+xBPth3PpbTKuP5DeY2G/FLzqYYFZTWkZBunMP6SfPaym4+0DXJn54l8aut11Gq07DiRR5sWbFhip7aipk572XJVtVoc1caA4sYGU/eM9a98yqAQf0YhbioKy2uZ8s5mFn1/hMNnigDQaHW88c0h5vylA+/N6I1Ob2Ddvkyz+qE+znQK8+K5Fb/xyF2xZBRUNLlEQUvEBrqRkmX8O5NXUk3vWD/TVNyU7BLiAt1wdbDh1QldeefhXswZ1ZF3f7w4teZUXjkzBsXywSN9yCupJjmrxOISCM15Z30ybXysLrv0w9aUXB55fxvj3vqZihoNXSN9AHj3xxRGdQ1h0dSezBvdiYXfHrZYf/PRs/SNa0X3aB9+O5lvMdPzQsah8f5LaRPkjrVKSXWd1hhIPf+3vrZeR2svJ95+qEejgN9DA6JRW6l4d1ovZo/s0OzSFE21IYQQQgghhBDiyt2wjEOAv3QL5Zs9GabHj9wVx3++PcznO9NNGTItFezlxAN9o3j+k90YDMbpaY/d3abR2oMAQZ6ObDyUzdvfHaGVuwNDEoKbbTfCz4WB8QE8/uF2wJh5FO7nQp6FoGRD93QM5IXPduPuaNPsh/wJfSL47zf72VP0KzEBbqZgZ7dIb+Z/vp+dqfmyOYoQl6FWKVg8tSdHM4s5lFHEgi8OMGVAFGE+Lvi62hPg4QjAwPgAvt2TwaiuIWZtDEtozd5ThbRv7clXv51ucomClogLcGfVjjTySqrxcbVDbaXCYIAajZaTuWVE+bui0+l5e30yaXnlKJUKcooqTfWjWrni5WzMDgz1dSa/tPqKg2DHskuY0dGYPdjc0g8XpiobDAYW/3CUz3emMbZHOAdOnyPz3MU+VWu0VNdpsbe5+M9GvU7P7lMFTL8zFnsbK6JbubIvvZCuEY3HydfVHq3OQHFlLVnnKgn0cCCqlSvHc0o5ll3CsM6tAePO9D1j/C57b80tTdHSNoQQQgghhBBCXN4fHjj8evZdpp/dHG345vm7TY99Xe15bWK3ZutfOiXwwpRBgL5xregb18qsTtLj/QHjh3aFAp4Y3PaKrvGXbqH8pVtoo2O+rvaNrn2p4V1CGN7lYnCi4X33ivWjV6zxg233KF80ne3p27d7o/oBHo4snd672X4KIS5SKRXEt/YgvrUHId5ObDycTdgl6+Y1R6G4uHRBU0sUqJQKGu7/Ua+1vI6iv4cDlbX17DqZb1oHNcLPhQ0Hs/B1tcNObcXyLam4Oqh5d3ovDAYDQxasN9VvtByDQoHuKjZSuVRTSz80PN8t0oev92QwtodxgfG3JnfHppklGfaeKqSqTsuM97YCxmw/G2uVWeAQICbAlW3H8nB3skGhUBDt70pKVjEnzpaZxkhtpWzZmoTNLE3R4jaEEEIIIYQQQlzWDZuqLIQQ10tRtZ6coirT47T8crxd7Aj0dCS/tJqcYuO5nw/n0DbYfA2+SzW1RIGbgw2lVXWUV2vQaHX8drKgyTZi/N1YuzvDFBSLCXDlq90Zpmm5VXVa3B1tUSoU/HQ4p0W7LLd0CQQwLv2QUmgs29KlH45mFuN3flOYjqFejTLCL+yK3NDm5LPMGtKWpMf7G//7az/2pZ+zuDNzbKA7X/12mhj/C+Phxk9HcnBzsMHx/LqKzbFSKUzToFu6NIUQQgghhBBCiGtzQ6cq/9EulyUohLg1aXQGXv/mIFW1WlRKBa3c7HliSDvUViqeGhbPy5/vN22OMrhT0GXba2qJAoDxvSN4/H878HW1J/D8FGhL4gKNG4JEnq8XE+BGbkk1secDiUM7BfOvz/ex7Vgu8cEeLdpsqaVLIIBx6YcXk7Yw472tzS79sDUll+SsEgwGA57Otjx9vtzMu+JY/MNRZry3FZ3eQJsg90bZ2rX1OvamFfL44DamY7ZqK9oEurErNd8s+zsu0I33NqSYAqkeTrbo9QZTIPVy7u4QxIz3thLu58LskR1atDSFEEIIIYQQQohrozBchylwLRUVFWU4ceLqtqS/nW3evJm+l+yW9WcnY2KZjItlMi6WybiYkzGxTMbFMhkXy2RczMmYWCbjYpmMi2UyLuZkTCyTcbFMoVDsMxgMCTe6H+L2I1OVhRBCCCGEEEIIIYQQZiRwKIQQQgghhBBCCCGEMCOBQyGEEEIIIYQQQgghhBkJHAohhBBCCCGEEEIIIcxI4FAIIYQQQgghhBBCCGFGAodCCCGEEEIIIYQQQggzEjgUQgghhBBCCCGEEEKYkcChEEIIIYQQQgghhBDCjAQOhRBCCCGEEEIIIYQQZiRwKIQQQgghhBBCCCGEMCOBQyGEEEIIIYQQQgghhBkJHAohhBBCCCGEEEIIIcxI4FAIIYQQQgghhBBCCGFGAodCCCGEEEIIIYQQQggzEjgUQgghhBBCCCGEEEKYkcChEEIIIYQQQgghhBDCzDUFDhUKxSyFQpGsUCiOKhSKzxQKhe316pgQQgghhBBCCCGEEOLGuerAoUKh8AceBxIMBkMbQAXcd706JoQQQgghhBBCCCGEuHGudaqyFWCnUCisAHvg7LV3SQghhBBCCCGEEEIIcaMpDAbD1VdWKJ4AXgZqgA0Gg2G8hTLTgGkAXl5enVavXn3V17tdVVZW4ujoeKO7cVORMbFMxsUyGRfLZFzMyZhYJuNimYyLZTIu5mRMLJNxsUzGxTIZF3MyJpbJuFjWr1+/fQaDIeFG90Pcfq46cKhQKNyAL4CxQCmwBvjcYDCsaKpOVFSU4cSJE1d1vdvZ5s2b6du3743uxk1FxsQyGRfLZFwsk3ExJ2NimYyLZTIulsm4mJMxsUzGxTIZF8tkXMzJmFgm42KZQqGQwKH4XVzLVOU7gNMGg6HQYDDUA18C3a9Pt4QQQgghhBBCCCGEEDfStQQOM4FuCoXCXqFQKIABwLHr0y0hhBBCCCGEEEIIIcSNdNWBQ4PB8BvwObAfOHK+rfevU7+EEEIIIYQQQgghhBA3kNW1VDYYDC8BL12nvgghhBBCCCGEEEIIIW4S1zJVWQghhBBCCCGEEEIIcZuSwKEQQgghhBBCCCGEEMKMBA6FEEIIIYQQQgghhBBmrmmNQyGEEEIIIYQQLVdXV8eCBQsAKC8vR6FQ4OTkBMCzzz6LldXv9xEtKSmJNm3a0LFjx9/tGkIIIW4vEjgUQgghhBBCiD+IjY0Nc+bMAWDdunXY2NgwcODA3/26er3+d7+GEEKI248EDoUQQgghhBDiBtq+fTvbt29Hp9Ph5eXFgw8+iFqtJikpCWtra/Ly8iguLmbixIn89ttvpKenExISwqRJkwBISUnhu+++Q6vV4unpycSJE7G1tWXu3Ll0796dY8eO0adPn0bX/P777zl8+DD19fWEhoYybtw4FAoFCxcupHXr1qSmplJTU8OECRMIDw9Hr9ezdu1aUlNT0Wq19OnTh169et2I4RJCCPEHkjUOhRBCCCGEEOIGat++PbNnz+aFF17A19eXHTt2mM5VV1fz5JNPcu+997J06VL69+/PvHnzyMnJISsri8rKStavX8/jjz/O888/T3BwMJs2bTLVt7Ky4qmnniIhIaHRNfv06cPs2bOZN28e9fX1HDlyxHROr9fz3HPPce+99/Ldd98B8Ouvv2JnZ8fs2bN57rnn2LFjB+fOnfudR0YIIcSNJhmHQgghhBBCCHEDnT17lm+//Zaamhrq6uqIiYkxnWvbti0KhQJ/f3+cnJzw9/cHwM/Pj6KiIkpLS8nNzeXNN98EQKvVEhISYqrfqVMni9dMTU1l48aNaDQaqqqq8PPzo127doAxkAkQFBREcXExAMeOHSMnJ4cDBw4AUFNTQ0FBAZ6entd3MIQQQtxUJHAohBBCCCGEEDfQ8uXLmT59OgEBAezcuZOTJ0+azl3YLEWhUDTaOEWpVKLX61EqlcTExDBlyhSLbdvY2Jgdq6+vZ+XKlTz33HO4u7uzbt066uvrza6pVCrR6XQAGAwGxowZQ2xs7LXfsBBCiFuGTFUWQgghhBBCiBuotrYWFxcXdDode/bsuaK6ISEhpKWlUVBQAIBGoyE/P7/ZOheChI6OjtTW1pqyCJsTGxvL1q1bTYHE/Px86urqrqivQgghbj2ScSiEEEIIIYQQN9DQoUN57bXXcHd3p1WrVlcUkHNycmLSpEn873//Q6vVAjBs2DB8fHyarGNvb0+PHj14+eWXcXd3Jzg4+LLX6d69O0VFRbzyyisYDAYcHR2ZMWNGi/sphBDi1iSBQyGEEEIIIYS4AYYMGWL6uXfv3mbnL+yaDODh4cG8efMsnouKimL27Nlm9efPn99ke8OGDWPYsGFmdWbNmmX62dHR0dSGUqlk+PDhDB8+vNl7EkIIcXuRwKG4KVXXG3jk/W0AlFTWoVSCi70N+aXVeDjZ8sEjfa667T2nCkjakkp1nRa1lYoADwceviMGbxe7a+73r8fz8PdwINjLyezc8i2p/HAgExf7i+vMvD6pG4621td8XSGEEEIIIW5ldXV1LFiwAIDy8nIUCgVOTsb31M8++2yj9R0bSkpKok2bNnTs2NF0bNasWSxcuLDZ67WkzLXavHkzv/zyC4WFhbz22ms4OjoCxo1lPvroI0pKStDr9dxxxx0kJiaa6un1el599VV0Oh19+/YFICsri88++wytVotSqeS+++6jdevWv2v/hRACbkDg8NFHHzXtBAbGXb4GDRrUZPmtW7eiVqvp1q3bH9E9M6mpqSxdutS0W5iDgwNPPPHEFbeTnZ1NUlISc+bMAWDPnj2sWLGC//znPwDk5OTw0UcfMXfu3Cb78dNPPzFz5kx27txJZmYmY8eObVSmvLycFStWUFJSgk6nw8PDg0cffZSioiLS09Pp3LnzFffbkuvdniX21grendYLMAbcbNUqRieGkVdazYsrr2zdl4YyCipY8mMy/xiTQND54N7OE/nkl1abBQ51ej0q5ZUtA/rriXy6RnhbDBwCjOwawujEsKvrvBBCCCGEELcpGxsb02eldevWYWNjw8CBA29wr65NWFgYbdu2NQtQbtmyBT8/P2bOnElFRQX/+Mc/6Ny5syk4+ssvv+Dr60tOTo6pzldffcXgwYOJi4vj6NGjfPXVV42yQ4UQ4vfyhwcO1Wq16R+ElrCUst8cnU6HSqW60m41Kzw8nJkzZ15xvQu7nAG0atWKoqIiamtrsbW1JT09HV9fX7KysgBIT08nLOzaAkrr1q0jOjqa/v37A8ZgJRgDfXv27LEY6Lua8WquvT+CXm9g4brDpGSV4Olsy9/HJGBjreJscRWL1ydTVlWHjbWKJ4e0I8jTsVHd1b+mcV+PcFPQECAx6uL6L88k7SQmwI2UrBK6RfoQ39qD9zakUKPR4mKv5qlh8Xg42fL9/kx+2J9JvU5PK3cHnh3RnrS8Mnam5nM4s4hPt59i3r0daeXucNn7ySio4M1vD6HVGTAYDMy7txP+Hg5sPJTNF7vSAQj1cebZEe05WaTlyw93oNXpcbK3ZvaIDrg52rB8Syq5JdWcq6ilsLyG0Ylh3NMxCIA1v6axNSWXep2e7lG+TOobeT1+DUIIIYQQQvyujh8/zpdffoleryc4OJj77rsPa+srm62zceNG9u3bh1arpX379o2mhzdXpqioiMWLFxMeHk56ejouLi7MmDEDtVrd4msHBgY2ea62thaDwUBdXR0ODg6mz40lJSUcPXqUu+66i9WrV5vKKxQKampqAGPGoouLS4v7IYQQ1+Kmmao8d+5cOnXqRGpqKgCTJ0/G29u70bdNGRkZrFixAhsbG8LCwkhOTmbevHns3LmTo0ePUl9fj0ajYcaMGbz33ntUV1ej0+kYOnQo8fHxpj/+YWFhnD59moCAABITE1m3bh0VFRVMnjy5xenee/bs4ccff8RgMNCmTRtGjhwJGFPe+/fvz7Fjxxg1ahTh4eGAcU2Q4OBgMjIyiI6OJjMzk969e5Oeno5SqSQ9PZ3o6GgyMjJYs2YN9fX1WFtbM2nSpGYXNm6orKyMmJgY0+OAgAAA1q5dS15eHgsWLKBr167Y29s3Gq9HHnmE1atXk5OTg16vZ/DgwcTHx6PX61m7di2pqalotVr69OlDr169zNobMGBAS3/N10VOcTXPj+rArCHtmP/5frYfy2VAuwD++90RHr+nLf4eDhzPKWHxD0d5bWLjTNUzhRX8pVtos+1X1dbzxgOJaHV6nk7ayd/HJODqYMPm5LN8/MsJnhoWT89oX1Ng7uNfTvDjgUyGdwkhMdKHrhHe9Ir1s9j2V7+dZtORswA42lrx+qREvtt/hpFdQujf1p96nR693kBGQQUrt5/iP5O742KvprxGA0CAs4qpo7qjUCj44UAmq3emMX1gLADp+eX8d0oPaut1zPxgG10jvMkoqCCnuIq3H+qBAXhp1V6OnCmibbDHtfwKhBBCCCGE+F1ptVqSkpJ44okn8PHx4eOPP2bbtm2mJImGvvrqK9avX292PCUlhYKCAp577jkMBgNLly7l5MmTREREXLaMu7s7hYWFTJkyhfHjx7Ns2TIOHDhA165dr/ne+vbty7vvvsvzzz9PXV0dU6ZMMQUOP//8c0aOHEltbW2jOvfeey+LFy/myy+/xGAw8PTTT19zP4QQoiX+8MChRqMxrV0BcOedd5KQkACAra0tzz33HLt27eLzzz83y/Jbvnw548aNIywsjLVr1zY6d/r0aV544QUcHBzQ6XRMmzYNOzs7Kisref3112nXrh0AhYWFTJ06lXHjxvHvf/+bPXv28NRTT3H48GHWr19vcWewU6dOmfrcoUMHEhMTWbt2LbNnz8be3p5FixZx8OBB2rdvT11dHa1atWLo0KFm7YSGhpKenk5ISAhKpZLIyEi+/vpr07dYgwcPxsHBgb/97W+oVCqOHz/O119/zbRp01o0tn369OHDDz9k8+bNREdHk5iYiKurKyNGjDBNcwbYuXNno/H6+uuviYyMZOLEiVRXV/Paa68RHR3Nnj17sLOzY/bs2dTX1/Pmm28SExNj1t4fzdfNjjBf4zdsEX4u5JfVUKPRkpJdwvwv9pvK1Wt1zbZTXq3huRW/UVev4+6OgaYpxH3iWgGQXVTFmYJKnv9kN2DMdHR3Mq5PmFFYwce/nKCqVktNvZZOoV4t6rulqcox/m58tv0UheW19Iz2xd/DgUMZ5+gZ44uLvfEbTWc74/8rNAbmfLqb4oo6tDo9Pm72pnYSo3ywsVZhY60iPtiDEzmlHM0qZn/6OWZ+sB2AGo2WnOIqCRwKIYQQQoibml6vx9PT05RE0a1bN7Zs2WIxcDhy5EizNQ4Bjh07xrFjx3jllVcA4zqKBQUFjQKHTZVxd3fHw8PDlDUYFBREcXHxdbm3lJQUAgMDefLJJyksLGTRokWEh4dz6tQpHB0dCQoKMiXUXLBt2zbuvfdeOnTowL59+1ixYsVVLaElhBBX6qaaqnxh6mvnzp354osvGp2rrq6mrq7ONJ03ISGBI0eOmM5HR0fj4HBxWug333zDyZMnUSqVlJaWUl5eDhh3I7uwxqKfnx9RUVEoFAr8/f2b/Ifg0qnKhw4dIiIiwrRYb+fOnTl16hTt27dHqVTSoUMHi+2EhYXx888/ExYWRnBwMF5eXhQWFhIQEEBdXR2enp4UFxeTlJREQUEBCoUCna754FdDsbGx/POf/yQlJYXk5GReeeWVJtdMbDhex44d4/Dhw/z8888A1NfXU1xczLFjx8jJyeHAgQOAMSW+oKCgyYWJ/yjWqovrDiqVoNEa0BsMONpam9ZFbEqwlxOn8soI83XG2V7Nu9N6sWZnGrWai+Nsa22cum0wGAj2cuStKT3M2nnjm0O8NDqBMF9nNhzK4nDG1b+J6N/Wn2h/V3afKmDOp78xa0g7DBinI1xqY1odUwbFkRjlw6GMIlZsvfiGQsEl5RVgAMb2CGNwp+Cr7p8QQgghhBB/tCuZEtycQYMG0atX858RLJUpKipq9LnH0mezC5uYALRt29Zi8oglO3fuZNCgQSgUCry9vfHw8CA/P5+0tDSOHDlCcnIyWq2WqqoqPvroIyZPnsyuXbsYPXo0AB07duSTTz5p0bWEEOJa3TRTla+Vjc3FnWp3795NRUUFzz//PCqVirlz56LVagEa/fFXKpWmx1cSpDMYDE2es7a2NqWZXyokJIQzZ86QlpZGSEgIAK6urmRlZREaapw+u27dOiIjI5k+fTpFRUVXvNOXg4MDnTt3pnPnzixZsoRTp041Cqhe0HC8DAYD06ZNM5sSbTAYGDNmDLGxsY2OX/rt183AwcYaH1c7tqbk0jvWD4PBQHp+BWG+zo3KjU4M5R9r9hHj72pa57CuXm+xzQBPR0qrNaRklxAb4IZWpye7qIrW3k7U1GnxcLJBq9Oz6chZPJ1sAbCzUVGt0V5R33NLqvFzs2dElxByS6pJL6igY4gn/1yzj1FdQ3A+P1XZ2U5NnRY8nY3X2ng4u1E7O1Pzua9nGLUaHYfPFPHQgGhsrFT83+ZU+rf1x05txbnyWqxUClwdbCx1RQghhBBCiJuCVqulqKiIgoICvL292b17d6NMwZaIiYlh3bp1dO7cGVtbW0pLS1GpVKYEkObKtIRSqbyi9fsvcHd35/jx44SHh1NeXk5+fj6enp6MGDGCESNGAMbPXKtWrWLy5MkAuLi4cPLkSSIjIzlx4gReXi2b8SSEENfqpgoc7tu3j0GDBrF3715TYO0Ce3t7bGxsOH36NCEhIezbt6/JdmpqanByckKlUnHixInrllJ+QUhICJ9//jmVlZXY29uzd+9e+vbte9l6tra2uLm5sWvXLp588klTWz///LNpZ+mamhpcXV0B4zdRV+LEiROEhISgVqupra2lsLAQNzc3lEql2RoZDcXGxrJ582bGjBmDQqEgKyuLwMBAYmNj2bp1K1FRUahUKvLz83F1dcXW1rbZ9m6U2SM68PYPR/l020l0egN94lqZBQ5DfJx5ZFAsr399iGqNFmc7Nd4udkzsY/4mxFqlZN69HVnyYwpVtfXo9AZGdg2htbcTk/pG8fj/duDjYnc+kGgMOveNa8Vb647w9e4M5lrYHKXhGocAL43pxJbks/x8JAcrlRI3RxvG947A2U7N/T3DeTppJ0qFgnBfF54eHk/PYGvmf74PDydbYgLcyC+tNrUV1cqFeZ/toaC8hnG9IvBwssXDyZbMc5U8+b9fAbBTq3h2RHsJHAohhBBCiJualZUVEydOZNmyZabNUS6XOXip2NhY8vLyeOONNwBj8sSDDz7YKHDYVJmmkkGuxC+//MLGjRspLy/n5ZdfJi4ujgkTJnD33XeTlJTE/PnzMRgMjBgxAkdHx2bbGj9+PGvWrEGv12Ntbc348eOvuX9CCNESN3yNw9jYWNO3Klqtltdeew29Xs+UKVPM6k6YMIFPPvkEGxsbIiIisLOzs3iNLl268O677/Lqq68SEBDQ4s1FWsrFxYXhw4fz1ltvYTAYiIuLIz4+vkV1Q0NDOXz4MO7u7qbH33zzjSnjcODAgSQlJfHzzz8TFRV1Rf3KzMxk1apVKJVKDAYDPXr0oHXr1qadk19++WW6deuGvb19o3p33303n3/+OS+//DIGgwEPDw9mzpxJ9+7dKSoq4pVXXsFgMODo6MiMGTPw9/dv1N7vvTnKxD4XdwH2dbXn/Rl9TI8brhfo62bPgnFdLtte1wgfukZYfk68Pimx0eMwXxfefCDRrNzQhGCGJphP/40LdOeDR/qYHQfjfTS8lwvu6xnOfT3DzY4PjA9gYHxAo2ORHlZM+0tfi+37ezjw5JB2ZsdHdg1hZNcQCzWEEEIIIYS4+TTc+fhyGX2TJk0yO9Zw1lb//v0trovYkjLz5s0z/Txw4MDmO21Bv3796Nevn9lxV1dXHn/88WbrRkZGNgqUhoeH8/zzz19xH4QQ4lopmpt2e71FRUUZTpw4YfHc3LlzmT17drPftNTW1mJra5ym+eOPP1JWVsaYMWN+l77+kTZv3tyijMU/ExkTy5oal+VbUrFVq8w2XvmzkOeLZTIu5mRMLJNxsUzGxTIZF3MyJpbJuFgm42KZjIs5GRPLZFwsUygU+wwGQ8KN7oe4/dxUU5Uv5+jRo2zYsAGdToe7u7vFb5eE+DOylMkohBBCCCGEEEIIcS1umsDh/PnzL1smISGBhAQJoAshhBBCCCGEEEII8Xu79hVfhRBCCCGEEEIIIYQQtx0JHAohhBBCCCGEEEIIIcxI4FAIIYQQQgghhBBCCGFGAodCCCGEEEIIIYQQQggzEjgUQgghhBBCCCGEEEKYkcChEEIIIYQQQgghhBDCjAQOhRBCCCGEEEIIIYQQZiRwKIQQQgghhBBCCCGEMCOBQyGEEEIIIYQQQgghhBkJHAohhBBCCCGEEEIIIcxI4FAIIYQQQgghhBBCCGFGAodCCCGEEEIIIYQQQggzEjgUQgghhBBCCCGEEEKYkcChEEIIIYQQQgghhBDCjAQOhRBCCCGEEEIIIYQQZiRwKIQQQgghhBBCCCGEMCOBQyGEEEIIIYQQQgghhBkJHAohhBBCCCGEEEIIIcxY3egOCCGEEEIIcSurq6tjwYIFAJSXl6NQKHBycqKoqAgXFxdefPHFq2p3586dfPXVV7i6ulJXV4enpyf33HMPYWFhAHz77bdEREQQHR3dZBvvvPMOkydPxt7e/qr6YKkv9fX19OzZkwEDBgCwdetW1Go13bp1a7Z+ZmYmY8eONTu3fv167rrrLov1ampqWLVqFenp6QCEhoYyduxY7OzsAPjyyy9JTk4mLi6OUaNGWbyeXq9n+fLlKJVKJkyYwJIlS67LmAghhBB/BhI4FEIIIYQQ4hrY2NgwZ84cANatW4eNjQ0DBw6kqKiIJUuWXFPbnTp1MgXbTpw4wQcffMATTzyBn58fQ4cOvWz9Rx999Jqub6kvlZWV/OMf/6BDhw64u7vTu3fva2r3xx9/bDJwuGLFCvz8/HjwwQcB4/iuWLGChx9+GIDt27fz73//G2tra4v1DQYDn332GTqdjokTJ6JQKK7rmAghhBC3OwkciptSdb2BR97fBkBJZR1KJbjY2wDw9kM9sFZd+yz7Xan5JG1ORW8woNMbGNGlNYM7BfPr8Tz8PRwI9nK65msIIYS4dTWVRQbw7LPPYmVl+W1UUlISJ0+eNGVEJSYm0q9fv2avdfr0adasWYNWq6W+vp5OnToxZMiQRmU0Gg2ffPIJOTk5GAwG7O3tefTRR7G1tW2yXYPBwPr169m1axcKhQIXFxfGjh1Lq1atLnv/TWW7iSuj1+v55JNPSE9Px8XFhRkzZqBWqyksLGTVqlVUVFSgVqsZP348vr6+zbYVFRVFjx492LFjB/feey9JSUm0adMGGxsbdu7cydSpUwFITU3lp59+YubMmcydO5fZs2dTV1fH4sWLCQ8Pv+a+ODo64uXlRXl5Oe7u7o2CpRkZGaxYsQIbGxvUajXbtm1j3rx5AJSWlrJ48WIKCwuJj49n1KhRrF27Fo1Gw4IFC/Dz82Py5Mmm6xQUFJCZmclDDz1kOnbPPffw0ksvUVhYyOeff05dXR2vv/46d955JwkJCWZ9XbNmDVVVVTz00EMolcb3jy0Zk4b3ERYWRnJyMvPmzePs2bMsX74cnU6HXq9n2rRpeHt7t/wJIYQQQtxiJHAobkr21grendYLgOVbUrFVqxidGGY6r9PrUSmvPnio1en573dHePuhHng526HR6sgvrQHg1xP5dI3wvqLA4bX2RwghxM2nqSyylhg5ciQdO3Zs8bX+7//+j6lTpxIQEIBeryc/P9+szKZNm3BycmLu3LkA5Ofno1Kpmm13y5YtpKen88ILL6BWq0lJSWHp0qXMmzevyQythixlu3Xv3r3F9yWgsLCQKVOmMH78eJYtW8aBAwfo2rUrn376Kffffz/e3t6cPn2alStX8uSTT162vcDAQLZv397oWHR0NJ9++il1dXXY2Niwb98+OnXq9Lv1pbi4GK1Wi7+/v9m55cuXM27cOMLCwnj77bcbncvOzmbOnDlYWVnxj3/8g759+zJixAi2bNlieq01lJeXR0BAgCngB6BUKgkICCA3N5dHHnmEWbNmWawLsGfPHnx9fZk1a1aTr5WmxqThfaxdu9ZUftu2bfTr148uXbqg1WrR6/VNjpMQQghxO5DAobhlvPH1IZzsrDmVV0a4nwv2aqtGAcVpS7fwz/s64+tqz8+Hs1m7JwOtzkC0vyuP3d0GlVJhaqtao0WnN+BspwZAbaUi0NOR5KxidqbmcziziE+3n2LevR2p0Wh5+/uj1NXr8HOz529D43Gys+aZpJ3EBLiRklVC+9YebDiczf9m9sVKpaSqrp5H3tvG/x41PhZCCHF7OH78OF9++SV6vZ7g4GDuu+++FgXgLqeiogIXFxfAGBjx8/MzK3Mhu+sCHx+fy7a7YcMGZs2ahVpt/PcuNjaW0NBQdu/eTY8ePa6ojxey3U6dOnVF9f7sPDw8CAwMBCAoKIji4mJqa2tJT09n2bJlpnL19fVXfQ2VSkVsbCxHjhyhQ4cOHD16lJEjR173vuzbt4/U1FTy8/MZP3682XO/urqauro60xqMQUFBHDlyxHQ+OjralInr6+tLcXFxo+f0pQwGwxUdv1RgYCD5+flkZGSY+nQpS2Ny6X0kJCSY7iM0NJT169dTWlpK+/btJdtQCCHEbU8Ch+KWkl1cxasTuqFSKli+JdVimczCCrak5LLwwe5YqZQs+v4Im47kMDA+wFTG2U5NYqQPE9/eRIcQT7pGeNO3TSviAt1JjPSha4Q3vWKNH9pmvLeVmXfF0S7Yg//bfIIVW1N5ZFAcAFW19bzxQCIAeWU17D5ZQPdoX7Yk59IjxleChkIIcRvRarUkJSXxxBNP4OPjw8cff8y2bdvo37+/WdmvvvqK9evXA/DAAw9YzMxqaMCAAfz9738nMjKS2NhYunXrZhaUSUxMZNGiRRw4cICoqCi6devWbNCipqYGjUaDl5dXo+NBQUHk5ua29LYbCQwM5MCBA1dV98+q4ZR2hUKBTqfDYDBgZ2fXZKZcc7KysixOI+7UqRNbtmzB3t6e4OBgi1PYr7UvFzJQ09PTWbJkCbGxsaaAd0s0vL5Sqbxstp6fnx/Z2dno9XpT1qFerycnJ+ey07rBGJwcMmQIH374IY899pjFKfqWxqQ5nTt3pnXr1hw9epRFixYxYcIEoqKiLtsXIYQQ4lYlUQ1xS+kd49coc9CSAxlFnMwt468f7uCR97dx8HQReaXVZuVmDW3Hvyd0JaqVC5/vTOc/3xw2K1NVW09lbT3tgj0AGNgugKOZxabzfeIuvgG9u0MgPx7KBmDDwSwGxQde1T0KIYS4Oen1ejw9PU2Zft26dePkyZMWy44cOZI5c+YwZ86cywYNwbhu2+zZs4mJiWHPnj0sXrzYrExgYCD//Oc/ueOOO6iqquLf//73VQcAFYrm/y0Vvy87Ozs8PDzYv38/YMygy87Ovmy91NRUduzYYTFbNDIykqysLHbs2GFxmvL17EtoaChdunThl19+aXTc3t4eGxsbTp8+DUBmZmaL+qBUKi0G7Ly9vQkICDAF4cG4A3NgYGCLM/3CwsK4//77WbJkCcXFxZevgPl97Nu3z3Tu3LlzeHp60q9fP9q1a0dOTk6L2hRCCCFuVZJxKG4pttYX16dRKRU0nKmi0Z7/1tpgYGC7AKYMiL5seyE+zoT4ODOgXQAPLNrE08Pjr7o/cYHu5Jce5fCZInQGA629ZXMVIYS4nVyY7ns1Dh48yPfffw/A+PHj2bJlC9nZ2bi4uJh2ePXy8sLLy4sePXrw7LPPUllZiaOjY6N2bG1t6dChAx06dECpVJKcnGxxWjMYA0JqtdoU6LggMzOTiIgIiouLWbp0KQA9e/bEYDCwY8cOAGbOnGmxzaysLJydna96HMRFkydPZuXKlfzwww/odDoSEhIICAgwK7dv3z7S0tLQaDR4eHjw8MMPW/ydK5VK2rZty65du3jggQd+l740dOedd/Lqq6+a7YY8YcIEPvnkE2xsbLCxsTFNTW5Oz549mT9/PkFBQY02RwGYOHEiq1at4qWXXsJgMBASEsKECROu6P7atm1LZWUlixcv5m9/+1uL6jS8j4iICNN97N27lz179qBSqXB2dpYNg4QQQtz2JHAoblk+Lnb8drIAgJO5ZeSfzypsH+LJ31fvZVS3EFwdbCiv0VBTp8XH1d5Ut0ajJfVsGfGtjZmEaXnleLsY3xDa2aio1mgBcLC1xtHWmiOZxbQNcufnIzm0PZ99aMkd7QJ45csDjOsV8bvcM8Cn207yy9GzqJQKFAoFTwxuQ7S/2zW3O/zV9Xw9+y7ySqt5ceUe3p/Rx6xMdlElSzekkF1UhZVSQWtvZx69Kw43R5trvv7v6VBGEVYqBXGBxnWU1u07g42VqtH09avR3FhZ8o/Ve8krraFGo6WsWoPv+efkY3fH8e+vDrJoak9c7K8+MPHlrnT+t+kEq/52Bw62ximOmecqeeXLAyiAufd25HhOKf3bXj776Uaa+f42nhrWjjBfF3R6PSNf28AT97RhQDvj7+vRD7bx5JB2/Hoij7ZBHnQM9eTL305zT8cgUzD/wvO5ORsOZZF6tozH7m7TZJk3vj7UaOmCK/XG14c4nFmEg43x9zGofQAjuoRcURtpeWUUVdTRJULW0brRtFotRUVFFBQU4O3tze7du4mIaNnf+/bt29O+fXvT40mTJjU6f+TIEdq0aYNCoaCgoAClUom9vX2jMmlpafj5+WFvb49WqyU3N/ey1x84cCCrV69m6tSpqNVqjh8/TlpaGuPGjUOtVptNT+3Tp+m/Zxey3WRzlOY13A3bw8PDtKMw0GhzHU9PTx577LFm20pMTCQxMbHJ85c+j8aOHWvazOaC+fPnA8adkK9nX1xdXXn11VeBxvfs5+dn2sDn3XffNU0pvrR+w+D0yJEjLa7JCMbsv0uDiQ0tXLiwRf1t+LglY9LwPn788UeCgoIAuOuuu8yCpUIIIcTtTAKH4pbVM8aPn47k8Mj724hs5YK/uwMAwV5OPNA3iuc/2Y3BYEClVPDY3W0aBQ4NBlizM423vzuC2lqFrbWKp4cZsw37xrXirXVH+Hp3BnPv7cgzw+NNm6P4utrz1LCmsxL7t23F/20+Qb825mvoXA/Z5Tr2nivgnYd7orZSUVatQav7Y3bz02h1zFu5h+kDY+kWaZymdzDjHGXVmj88cKjTGy47Zb2hw2eKsFWrTIHDIZ2Cf6+uNeulMQmAMZD5+a50/nVf5+va/i/JZ4ls5cKOE3nceX6q/M4TeSRG+jCpbySHMor4JfnsFQUOr3Ssr4fYQDdSsksI83UhPb+CQA8HUrJLGNAugFqNlrzSakJ9nInwu7iu1trfTjOgrX+jLOCbxcMDYq468AiQll9O6tkyCRzeBKysrJg4cSLLli0zbY7Sq1ev69L27t27+eKLL1Cr1SiVSiZPntxoJ1kw7v762WefAcbppHFxcXTo0AGAd955h/Hjx+Pq6tqoTt++famurubll19GoVDg7OzMjBkzWpw9aSnbLSsr69pvWNy2jh49yoYNG0xTj680O/Bm0fA+3N3dzYK0QgghxJ+FBA7FTW9in0iLx22sVbwyvqvFc33jWtE3rungnb2NFfPv72LxXFygOx880jjj4r9TzNcSen2SeQZAcmYJvWL8cLS99h02LanSGHC2V6O2MgZHGmanTXp7E33btOJwRhFavYEnBrflo03HOVtSzb2JoQzpFEyNRsvfV+2lsrYerc7AA/0i6R51+cXFAX45epYYfzdT0BCgfWvj1DeNVsfb3x/l5NkyVEoF0+6MoX1rTzYcymLXiXxqtXpyS6roEeXL1Dti+HbvGfJLq5l6RwxgzPw6mVvGo3e1aXJH7OGvrmdUtxD2pZ1j2sAYfjtZwK7UfFRKBV7WdfTtC7tS8/l02ym0Oj1O9tbMHtGBOq2O7/ZlolTCpiNnmXlXHAdPnzPtyJ2WV9bkrtlRrVw5dKaIqlots4a2o21Q0zs/NnWvV+Lr3Rn8djIfrc7AC/d2JMjTkVqNlnfWJ5NRUIFOb2BCnwiLv7OzxVXUanQ8fE8MK7ef4s74QE4Va/kpIwOlEo5kFqHR6sk8V8kj729jYDt/hncJ4X+bjnM4o4h6nZ6hCcEM7hTMoYwiVmxNxd3RlvT8ch67uw0rtqbibKcmo7CCCD8XnhvRHoVCwYHT5/hg4zF0egORrVz46z1tUFupmjw+6e1N3NEuwOw+G4oNcGPPqQKGJrQmJauYwZ2C2XDIGKg4fraUcF8XVEqFKRuwqLKWoopank3ahbO9tem1+dGm4/x2sgAbaxV/H5PQbIA7v7Sa/3x7mLJqDS72ap4aFm/KQj6SWcwXv6VTUlnH1PNBwAtjZGlMLmfF1pP8lppPnVZHbIAbTwxui0KhsPici/Z3JWlzKhqtnuSsEsb2CKNbhHeLnhPi+mqYUXW5TSSuJsDw0EMPXbZMt27d6Natm8VzF6Y7X0qhUDB48GAGDx58xX1qKttNAoeiOQkJCSQkGL8o27x5M05Ot+bSLQ3vQwghhPgzk81RhLhO3ll/lA83HWdcr/Df7RohbioKy2uZ8s5mFn1/hMNnihqd93K2460pPWgT5M6b3xxi7r2deGtyd5I2G3egVlspeXFMJ955uBevTerG+xuPYWi4UGQzMgoqGmV4NfTNnjMAvDejN7NHdeCNrw+h0RozDdLyy3lhVAfem96bLSm5FJTV0CvGl+3H80z1tyTn0ie2VaMdsd+d1gulAjYdMS46Xluvo7WXE28/1IMgL0d+PZ7H+zN6s3R6b3oEGQOocYHu/HdKd5ZM60XfuFas3pmGr6s9gzsFMbJrCO9O62UW/Hv960M8NCCapdN709rbiRVbL+7WrTMYWPRQT2bcGdvoeFMs3euVcLG35p2HezEkIYgvdqYD8On2U7Rv7cGiqT15bVI3lv10nNrzU+kb2px8lr5xrWgT5E52URWlVXWEu1uZ7v31SYlM6R9NmyB33p3Wi1HdQvnxYBYONlYsmtqTtx/qwQ8HssgrMU75P3G2jMn9okxB9FN55cwYFMsHj/Qhr6Sa5KwSNFodb3xziDl/6cB7M3qj0xtYty+zyePN3WdDFzIOAVKyS2kT5I61Skl1nZaUrBJiAxtPzR/RJQQPJ1tem9TNFDSsrdcRE+DG0um9aRvkzg8Hml+g/531ydzRLoCl03vTv60/S9Ynm84VV9bynwe788/7OvPhpuOm45bGxJIPfj7GI+9v45H3t3E6v5xhnYNZNLUn78/og0arNy25AObPOWuVkkl9I+kd68e755/XLX1OCCGEEEIIIcS1koxDIa6TR+9qep2060WtUrB4ak+OZhZzKKOIBV8cYMqAKNO01MTz2YAh3k7UaLTY21hhb2OF2kpJZW09ttYqPtp0gqOZxSgUCooqaimpqsPd0faa+pWcVczwzq0BCPJ0xNvFjuyiKsC45uSF9faCPB0pKKuhTZA7fm72HMsuwd/dgeyiSuIC3fhm7xnTjtgAmnodrg7GLDGlQkHPGON0TwcbK6ytlCxcd5gu4d5Yn/8K5Fx5DQu+PEZxRR1anR4ft8brg13K0q7ZL3+x33S+Z7QxiyvCz4X80ssHAS3d64WstZboEe1nut6FwOr+9HPsSs3n813GnR01Wh0FZTUEeTXO4NicfJaXRiegVCjoEe3L1pRcLrd9wb60Qk4XVLDtmPFaVXX15BRXYaVSEtXKBd8G4xfVyhUvZ+O9hPo6k19ajZ3aCl9XewI8jBmDA+MD+HZPBvHBHhaPj+oa0uR9NuTrao9WZ6C4spasc5UEejgQ1cqV4zmlHMsuYdj551pzrFVKup6f2hvu58KB9HPNlj+WXcKLo427kA5o68+yn46ZznWP8kWpUBDs5URpVV2zY9LGQlbqpVOVtx3LZc2v6dTV66io1RDs5WjK5G3Jc66lzwkhhBBCCCGEuFYSOBTiFqNSKohv7UF8aw9CvJ3YeDjbFDi0tjJG0BQKY+DkAqVCgU5vYNPRHMqqNSye2hMrlZJJb2+6uBv1ZQR7OXL4TLHFc80lLTbqh9LYD4A+sX5sTckl0NOR7tG+ximezeyIrbZSmtbaUymVvP1QDw6eLmJz8llOZdYyoD8s+TGZUV1DSYzyMU0lvRYX+q5UKtDrL5+Z2dS9tvh6539/SsXF6xkMBubd24nAS6bzNpSeX87Z4mqe/+Q3AOp1evzc7BnWuvnrGYCZd8WREObV6PihjCJs1Y3/ebjQtwv90xkM51toquWmWbrPS8UEuLLtWB7uTjYoFAqi/V1JySrmxNkyYgIuvxnQhc2DAFSKK/9dNJxy3PD32vC5bnlMmqfR6lj8w1EWPdQTbxc7lm9JbfQabMlzriXPCSGEEEIIIYS4HmSqshC3kKJqPTnnM/nAODX2SjLaqmq1uDqosVIpOZhxjvwrmErbr40/Kdkl/HYy33Rsz6kCTueX0zbYnU1HjVOKs4sqKSyvJcDDodn2ekT78euJPH45mkOfWON6lO1DPNl2PNeU1VVeozHtlt1QjUZLdZ2WLhHezBgUS36V3nR/ns7G7MmNh7NN5e3UVtTU6czaabhrNnDZXbNvhE5hXny9J8M0pfxUbplZmc1HzzKhdwRJj/cn6fH+fDbrDs5V1FJW2zgobG9jRU3dxSmtCWFerNt7xrTBTnZR5RVNeQ30dCS/tJqcYuNz8ufDxvFr6viViA1056vfThNzfsfwmAA3fjqSg5uDjcU1RI2/46ufrhsb4Mbm5LMAbDqaQ1zgte9UbsmFIKGLvZoajZZtx3IvW8dObUVNg99LS54TQgghhBBCCHE9SMahELcQjc7A698cpKpWi0qpoJWbPU8Madfi+v3b+vPSyj08tmw7YT7OBF4muNeQjbWKf97XmaUbUli6IQUrpZIQbyceGRTH0IRg3v7uKNOXbkWlVPDUsHamDVya4mRnTZCXE5mFFUT7uwIt2xEboLpOy99X76Veq8dggAGhxjUOJ/SJYP7n+/BwsiUmwM0UdOwW6c38z/ezMzWfmXfFNWrrSnbNvhHG94pg6YYUZry3DQMGfFztzXZj3pxy1myznx5RvqTkZxMQdPFYiLcTKqWCGe9t5c74AEZ0DSGvtJpHP9iOAQMu9mr+PqblC8GrrVQ8NSyelz/fb9oEZXCnoCaPX4m4QDfe25Biyi70cLJFrzeYrW94wT0dA3nhs924O9pY3LjIEp3eYMoafOSuOP7z7WE+35lu2hzl9+Boa83dHYKY/t5WfFztiGzletk68a09WL0jjUfe38bYHmEtek4IIYQQQgghxPWgaOnGCNdDVFSU4cSJE3/Y9W4Vmzdvpm/fvje6GzcVGRPLZFwsk3GxTMbFXMMxWbohBX93e4YmtL6hfboZyHPFMhkXy2RczMmYWCbjYpmMi2UyLuZkTCyTcbFMoVDsMxgMsh28uO6ueqqyQqGIUigUBxv8V65QKJ68jn0TQgghfhcvfLqb0/nl9G/jf6O7IoQQQgghhBA3raueqmwwGE4A7QEUCoUKyAG+uj7dEkIIIX4/L4/rcvlCQgghhBBCCPEnd702RxkApBkMhjPXqT0hhBBCCCGEEEIIIcQNdF3WOFQoFP8D9hsMhsUWzk0DpgF4eXl1Wr169TVf73ZTWVmJo6Pjje7GTUXGxDIZF8tkXCyTcTEnY2KZjItlMi6WybiYkzGxTMbFMhkXy2RczMmYWCbjYlm/fv1kjUPxu7jmwKFCoVADZ4E4g8GQ31xZ2RzFMlnc1ZyMiWUyLpbJuFgm42JOxsQyGRfLZFwsk3ExJ2NimYyLZTIulsm4mJMxsUzGxTLZHEX8Xq7HVOW7MWYbNhs0FEIIIYQQQgghhBBC3DquR+DwfuCz69COEEIIIYQQQgghhBDiJnFNgUOFQmEPDAS+vD7dEUIIIYQQQgghhBBC3AysrqWywWCoBjyuU1+EEEIIIYQQQgghmlRXV8eCBQsAKC8vR6FQ4OTkBMCzzz6LlZXlMEdSUhInT57Ezs4OgMTERPr16/fHdFqIW9g1BQ6FEEIIIYQQQggh/ig2NjbMmTMHgHXr1mFjY8PAgQNbVHfkyJF07Njx9+yeELcdCRwKIYQQQgghhBA3mavNrLtZ7Ny5k8zMTMaOHWs6tnDhQkaNGkVwcDBz585l9uzZODo6NtlGS8oAHD9+nC+//BK9Xk9wcDD33Xcf1tbW1+U+Xn75Zfz8/JgyZYrF8+vWrWPHjh04OTlRX19PZGQkY8eORalsemW4hgHPpKQk2rRp0+KAZlFREUuWLGHevHlXdT9CXKmb+y+NEEIIIYQQQgjxJ3QtmXV/JlqtlqSkJJ544gl8fHz4+OOP2bZtG/379zcr+9VXX7F+/XoAHnjgAfz9/ZttOzc3F4PBwMmTJ6mrq8PGxsZiuf79+zNw4ED0ej0LFy7k5MmTREVFXfvNCXETkMChEEIIIYQQQghxC/g9M+tupKVLl1JSUoJWq6Vfv3707Nmz0flLs+w2btxIXV0dADt27MBgMPDJJ59QUVFB3759Wb9+PVu2bKFTp04MGzYMgMLCQlMWYOvWrfHz87tsv/bu3UuXLl3Iy8vj8OHDdO7cudnyOp2O+vp67O3tAdi+fTvbt29Hp9Ph5eXFgw8+iFqtbrL+999/z+HDh6mvryc0NJRx48ahUCjIzMxk+fLlqNVqwsLCLttvIa4nCRwKIW551fUGHnl/GwAllXUoleBib0N+aTUeTrZ88Eifq257z6kCkrakUl2nRW2lIsDDgYfviMHbxe6a+/3r8Tz8PRwI9nIyO5d1rpK3vz9CZa2Weq2ONkHuPDmkHYcyivh8Vzr/uq/pNy3Lt6Riq1bhdc09FEIIIYQQN9Kjjz6KSqXC1tYWpVKJRqOhc+fOeHp6sm3bNj777DMmTZrUZP0rnQZryfXMdszLy+P48eMEBwc3Oj5x4kQcHBzQaDT8+9//pn379pednnyBUqlEr9fzt7/9jU2bNrFu3TqCg4OZPn06L730Ev3796eiooKioiJGjRpFQkICn332Gbt378bW1pYVK1bg6OjI5MmT2bJlC9nZ2bi4uPDoo4+yb98+/vrXv5Kfn8+WLVuaDBxu2rSJPXv2UFRURFxcHIGBgQC0b9/eFAT95ptv2LFjR7MbsvTp04d77rkHgI8//pgjR47Qrl07kpKSGDNmDJGRkXz55ZctGhchrhcJHAohbnn21grendYLuBg0G50YRl5pNS+u3HPV7WYUVLDkx2T+MSaBoPPBvZ0n8skvrTYLHOr0elTNrGNiya8n8uka4W0xcPjuj8mM7BpC9yhfAE7nl1/lXQghhBBCiFuVtbU1Hh4edOjQAY1Gw44dO8jNzcXT0xMvLy9yc3MBY6abSqW6wb1tTKFQtPj4L7/8wqFDhwAoKSmhsLCwxYFDg8GATqejoKAAf39/rKysiI2NxdraGk9PT0pKSkhLS6Oqqoq1a9eyYcMGNBoNTk5ODBkyhPbt25vaahiEzcjIwNHREQ8PD9zc3FixYgXV1dWmbMKGLkxV1ul0fPDBB+zdu5eEhATOnj3Lt99+S01NDXV1dcTExDR7L6mpqWzcuBGNRkNVVRV+fn5ERERQU1NDZGQkAF26dCE5OblFYyPE9SCBQyHEbU2vN7Bw3WFSskrwdLbl72MSsLFWcba4isXrkymrqsPGWsWTQ9oR5Nn4zcnqX9O4r0e4KWgIkBjlY/r5maSdxAS4kZJVQrdIH+Jbe/DehhRqNFpc7NU8NSweDydbvt+fyQ/7M6nX6Wnl7sCzI9qTllfGztR8DmcW8en2U8y7tyOt3B1MbRdX1uHlfDE4GeLjbHZv5TUa/vPNYfJKq7GxVvHE4LaEni93Or+CjZk1/F/yL4xODOOejkHXbUyFEEIIIcQfz8nJCW9vb86cOUObNm0oLS2lrKyMJUuWkJubi52dHefOnUOj0aBSqejatSt5eXkcO3aMpKQkdDodPj4+3H///VhZWfH222+j0+lMgTytVoter8fBwQGDwYCDgwOenp7Y2NiQnp7Ojh070Gg0lJeXm87Pnz8ftVpNUlIStra2nDlzhvLyckaOHImDgwNVVVWsWrWKEydO4OHhgUajMVsnMDU1lRMnTvDMM8+gVqtZuHAh9fX1jcoolUoMBoPpsVarNf2sUCi45557WLZsGTU1NSgUCnr16mU6p9frMRgMeHl5cc8997Q4+3Lv3r3k5+czd+5cAGprazlw4AA9evRoso5KpSI2NpaTJ0+SkJDA8uXLmT59OgEBAezcuZOTJ082Wbe+vp6VK1fy3HPP4e7uzrp166ivr8dgMDQZhBXij3Bl6TFCCHGLySmuZlhCMB880gcHG2u2HzN+K/vf747w6KA43nm4F9MGxrD4h6Nmdc8UVhDu69Js+1W19bzxQCIjurTmnfVHmXtvR955uBd3tg/k419OANAz2pdFU3uydHpvgjwd+fFAJnGB7iRG+vDwgBjendarUdAQYGTXEJ5dvosXPt3Nl7vSqaytN7v28i2phPs6s3R6byb3i+L1rw+ZzqXnlzM6zpa3Jvfgk20nKaqoveKxE0IIIYQQNw+tVmsK2tXV1VFRUYFWq+WBBx5g9uzZxMXFMXbsWBISEpgwYQKpqal4eXkxcuRIXn/9dVxcXBg/fjxr1qwBwN3dHZVKRY8ePfD398fR0ZEePXpQV1dHhw4diIuLw9raGoVCQb9+/XBwcODxxx9n8eLFTJ48GRcXF3bs2GHqX1lZGU899RQzZ87k66+/Jjg4mOPHj5OTk8PcuXPp06cPGo3GLJOwpqYGOzs71Go1eXl5nD592uzenZ2dqaiooLKyEp1Ox5EjRwAYMmQIbm5utG7dmjlz5jBx4kQCAgLM1n2Mjo6mvr6eiIgIAKqqqigqKmpyrPV6Pfv37+eFF15g/vz5zJ8/n+nTp7N3795mf0cGg4H09HS8vIyLBtXW1uLi4oJOp2PPnuZnQl0Iljo6OpqClAD29vbY2tpy6tQpgMu2I8T1JhmHQojbmq+bHWHng38Rfi7kl9VQo9GSkl3C/C/2m8rVa3XNtlNereG5Fb9RV6/j7o6BjE40LkrcJ64VANlFVZwpqOT5T3YDxkxHdyfjt6kZhRV8/MsJqmq11NRr6RR6+dUHB7UPJCHMi71phfx6Ip/v9meapmNfkJxZwrzRnQBoH+JJeY2GqvMBxsQoH6zJxcVeTXywBydySuke7XvZ6wohhLg6s2bNYuHChTe6G0KI25iVlRUTJ07k7bffZtu2bSgUCoKCgnBwcODAgQP88ssv6PV69Ho9x48fR6VSodFo0Ov1fPLJJ5SVlbFixQrOnTtnajM4OBhbW1vi4uI4duwYnTt3ZteuXXTs2JHNmzfj7+9PRkYGFRUV5Obm8u6771JWVoZer0ehUJCbm8vWrVvJy8ujb9++KJVK/Pz8KC8vx9nZmdatW5OTk8Orr76KjY0NERERZtlzsbGxbNu2jfnz5+Pj40NISIjZvatUKu655x5ef/11lEqlxTLN8fPzY+jQoSxatAi9Xo9KpeK+++7Dw8ODFStW0KtXr0brLp46dQpXV1dcXV1NxyIiIvjoo48oKyvDxaVxcsGFNQ51Oh3+/v707t0bgKFDh/Laa6/h7u5Oq1atTBu6WGJvb0+PHj14+eWXcXd3b9SfSZMmmTZHudx0ZyGuNwkcCiFua9aqi4nVSiVotAb0BgOOttZmgbhLBXs5cSqvjDBfZ5zt1bw7rRdrdqZRq7kYZLS1Nq4lYzAYCPZy5K0p5lMX3vjmEC+NTiDM15kNh7I4nFHcor57ONkyqH0gg9oHMm3pFs4UVjY6b7BUSXHhfwqLx4UQQtza9Hq9aVdQIcSfQ3V1NUOGDAHg3LlzWFlZMXLkSHbs2IFarTZNcfX09OThhx82ZaQNGTKEpKQkjhw5gru7O25ubvz1r39l7ty5puw2Kysr0/8VCgVqtRqVSmXacEShUJimCF8ICD799NONpt727t2bjIwMU1sNeXl50aFDBxITEwF47733TOfmz59v+vmxxx6zeO8Ny/Tr149+/fqxefNm+vbtazo+a9Ys08+RkZGmtQAvPZeQkEBCQoLZNSZMmGB2LDIykmeffbbRMaVSyauvvmpWdsiQIabfz6V69+5tCiJeWueChusqDhs2zLQLdENBQUG88MILFusL8XuTwKEQ4k/HwcYaH1c7tqbk0jvWzzilIL+CMN/G6wiOTgzlH2v2EePvalrnsK5eb7HNAE9HSqs1pGSXEBvghlanJ7uoitbeTtTUafFwskGr07PpyFk8nWwBsLNRUa3RWmxvz6kCOoR4YqVSUlxZS0VNPR5ONlTXXSzfNsidTUdyGN87gkMZRbjYqXGwMU7L2JmaT6twA+XVGg6fKeKhAdHXPG5CCCGuTGFhIatWraKiogK1Ws348ePx9fW1uBZYx44dMRgMfPXVVyQnJ6NQKLjrrrtISEggNTWV7777DhcXF7Kzs5k7dy5r164lNTUVrVZLnz59TOt5CSFuLwqFAhcXF44fP46/v78p6yw8PNw0TfhCEDA2NpaffvqJtLQ0OnbsSFZWlum8i4sLHh4e/PTTT+j1eg4ePHhF/XB0dKSyspLq6mpcXFzQaDRs374dHx+fZuuFh4ezfft2unbtSkVFBampqU3uTNxSdXV1LFiwAIDy8nIUCgVOTsb36s8++6zFACYYv+hfv349u3btMo3r2LFjadWq1TX1B4zrNC5duhRPT080Gg3Ozs4MHDiQtm3bXnPbl7N+/XruuuuuK6ozc+bMB4GEJUuWWI7YCtGABA6FEH9Ks0d04O0fjvLptpPo9Ab6xLUyCxyG+DjzyKBYXv/6ENUaLc52arxd7JjYJ8KsPWuVknn3dmTJjylU1daj0xsY2TWE1t5OTOobxeP/24GPi935QKIxY7FvXCveWneEr3dnMPeSzVH2p59j6Y8pWFsZs0qmDojG3dGWrHNVpjIT+kTw5jeHmfHeVmysVTw9PN50LqqVC6uP5vDJsR2M6xWBx/lgpRBCiD/Op59+yv3334+3tzenT59m5cqVPPnkk8DFtcDy8/NZunQpHTt25ODBg2RnZ/PCCy9QWVnJv//9b9N6XGfOnGHu3Ll4enqyfft27OzsmD17NvX19bz55pvExMTg6el5A+9WCPF70Gg01NXVsXTpUgwGA/b29owePdq0hh5cnOK6d+9e6uvr0Wg0bN26lczMTBwdHYmJiWHHjh3o9XqysrJQKBRXvNmGUqlk6tSpLFu2jDlz5qBSqWjduvVl67Vv357U1FTmz5+Pt7e36W/atbCxsWHOnDkArFu3DhsbGwYOHHjZelu2bCE9PZ0XXngBtVpNSkoKS5cuZd68eWZrIl6N8PBwZs6cCUBWVhbvvfce1tbWREf/Pl/gGwwGDAYDP/744xUHDoW4EhI4FELcVib2uTg1wdfVnvdn9DE9vrAuIYCvmz0LxnW5bHtdI3zoGmH5m9TXJyU2ehzm68KbDySalRuaEMzQhGCz43GB7nzwSB+z4wDT74xl+p2xZsfjW3sQ39oDAGc7Nf8Yaz7d4sIYbN5c3GgahxBCiD9ObW0t6enpLFu2zHSs4S6h8fHxjdYCA0hLSyMhIQGlUomzszMRERGcOXMGW1tbgoODTYHBY8eOkZOTY1o4v6amhoKCAgkcCnEbeuedd5o89/TTT5t+bmqK6wX9+vW77LUuBN8urNfacMrvBf/4xz8s1m043bZhGwqFgrFjx1722tfq+PHjfPnll+j1eoKDg7nvvvvMgoEbNmxg1qxZqNVqwJihGRoayu7du+nRowezZs2ib9++HD16FGtra2bMmGHalOWzzz6juNi43NDo0aMJCwsz60NDgYGB3HPPPWzZsoXo6Ogm21i3bh3nzp2jtLSUkpISBg4cSM+ePamtreW9996juroanU7H0KFDiY+Pp6ioiMWLFxMZGcnp06cJCAhAo9GwYMEC7rrrrhCAmTNnTgAeB9TAb8DMJUuW6GbOnDkZeB7IBVKBphdcFKIBCRwKIYQQQghxnRkMBuzs7ExZMZeyNJXuwjpiltjY2DQqN2bMGGJjzb9gEkKIPxutVktSUhJPPPEEPj4+fPzxx2zbto3+/fubytTU1KDRaBplaoJx7cDc3FzAOAU6JCSE4cOH8+WXX7Jjxw7uvvtu1qxZQ//+/QkPD6e4uJhFixbx0ksvXbZfgYGBbNy4EaDZNnJycnjmmWdMAcA2bdrg5OTEtGnTsLOzo7Kyktdff5127doBUFBQwKRJk7j//vsBOHDgAHPmzEGhUJyeOXNmDDAW6LFkyZL6mTNnLgHGz5w5cyPwD6ATUAb8Ahy4+lEXfyYSOBRCCCGEEOI6s7Ozw8PDg/3795vWL8zJySEgIKDJOhfWAuvWrRtVVVWcOnWKkSNHkp+f36hcbGwsW7duJSoqCpVKRX5+Pq6uro2Ci0II8Weh1+vx9PQ0rbfYrVs3tmzZ0ihw2JwL07atrKxMaxIGBQVx/PhxwJjNmJeXZypfW1tLbW0ttrYtXwqoqTYA2rVrh1qtRq1WExkZSUZGBm3btuWbb77h5MmTKJVKSktLTdnp7u7uze0qPQBjcHDP+WnTdkAB0BXYvGTJkkKAmTNnrgLMU0qFsEACh0IIIYQQQlwjjUbTKLtwwIABTJ48mZUrV/LDDz+g0+lISEhoNnDYvn17Tp8+zcsvv4xCoWDEiBG4uLiYBQ67d+9OUVERr7zyCgaDAUdHR2bMmPG73ZsQQtzMLkw9bo6dnR1qtZpz5841WtYhMzPTtO6iSqUyBREv7CoNxizvp59+ukXXaSgrKwtfX9/LtnHpepMKhYLdu3dTUVHB888/j0qlYu7cuWi12pbcrwL4vyVLljzf8ODMmTNHAE2ntQvRDAkcCiGEEEIIcY2aWofsscfMN6xsbi2wUaNGMWrUqEbnIyMjG601plQqGT58OMOHD7/WbgshxC1Pq9VSVFREQUEB3t7e7N692+ImLAMHDmT16tVMnToVtVrN8ePHSUtLY9y4cc22HxMTw5YtW0xrQGZlZREYGNhsnezsbH744QfGjx9/2TYOHz7MoEGDqKur4+TJk4wYMYL9+/fj5OSESqXixIkTprURLVEqleh0ugsPfwa+njlz5sIlS5YUzJw50x1wwrjW4X9nzpzpAZQDo4FDzd6EEOdJ4FAIIYQQQgghhBC3JCsrKyZOnMiyZctMm6P06tXLrFzfvn2prq42ZXU7OzszY8aMy2YSjhkzhpUrVzJ//nz0ej3h4eEWg42nTp1iwYIFaDQanJycGD16tGlH5ebaCA4OZsmSJRQXF3P33Xfj6upKly5dePfdd3n11VcJCAgwTcO2pGfPnsyfP5+77rorZMmSJSkzZ86cC2yYOXOmEqgHHl2yZMmumTNn/h3YiXFzlP2AqiXjK4QEDoUQQgghhBBCCHHLGTJkiOnnpjajukChUDB48GAGDx5s8fyF7G+Ajh070rFjRwAcHR2ZOnVqs21HRkbyn//8p8nzzbXh7e1tykxsWP6ZZ56xWH7evHmNHo8cOZKRI0eiUChOAyxZsmQVsOrSekuWLPkI+KjZGxHCAuWN7oAQQgghhBBCCCGEEOLmIxmHQgghhBBCCCGEEH+whhmTQtys/vCMw+Gvrr/mNia9vYmyas116I0QQgghhBBCCCGEEMISyTgUQojb2KfbTvLL0bOolAoUCgVPDG7Dhz8f5+E7Yohs5XqjuyeEEEIIIYQQ4iZ2UwQOn0naafoQW1at4a/LtpP0eH90egMf/nyMfWnnUCjg7g6BDO8SYqpXV6/jH2v20TPal3s6Bt3AOxBCiJtPdrmOvecKeOfhnqitVJRVa9Dq9De6W0IIIYQQQgghbhE3ReCwKd/vzySvtIYl03qiUiopr7k4PblGo2XBl/u5o20AA+MDbmAvhRDi5lSlMeBsr0ZtpQLAxV5tVmZfWiHLt6RSr9Pj52bPU8PisVNbcTK3jPc2pFCj0eJir+apYfF4ONnyTNJOQn2cOXG2lOo6LX8bGk+0v+sffGdCCCGEEEIIIf4IN/WuygdOn2NwpyBUSmM3ne0ufuj9+6q9DIoPlKChEEI0IcRNRWF5LVPe2cyi749w+ExRo/Nl1Ro+3X6KVyd05Z2HexHh58oXu06j1el5Z/1R5t7bkXce7sWd7QP5+JcTpnq19TremtyDv97dhv98e+iPvi0hhBBCCCGEEH+QmyLjUKlUoDcYf9ZodRdPGAwoUFisExfoxp5TBfRr0wqFwnIZIYT4M1OrFCye2pOjmcUcyihiwRcHmDIgynT+WHYJmYUVzPp4JwBanZ6YAFeyi6o4U1DJ85/sBkCvN+DuZGOq1y+uFQBtgz2ortNSWVuPo631H3hnQgghhBBCCCH+CDdF4NDXxZ6TuWVE+7uy7Vie6XjHMC++23eG+NbupqnKF7IOJ/WN4tNtJ1n0w1Eev6ftjeq6EELc1FRKBfGtPYhv7UGItxMbD2c3Ot8x1IvnR3VodOx0fjnBXo68NaWH5UYVzT4UQgghhBBCCHGb+MOnKtfV6xj/1s+m/77Ylc5fEkP5bt8ZnvxoB+XVF9cxvLtDIN4udsx4bxsz3tvKL0fPNmprxp2xaLR6lv107I++DSGEuOkVVevJKaoyPU7LL8fbxc70ONrfleSsYnKKjWVq63VkF1US4OlIabWGlOwSwJiJmFFQYaq3JTkXgKOZxTjYWOMg2YZCCCGEEEIIcVv6wzMO188bbPH40um9TT8/2M84lU6lVDL9zlimX1I26fH+pp+fHhZ/3fsohBC3A43OwOvfHKSqVotKqaCVmz1PDGnH/M/3AeDqYMPTw+J59csD1J/fbfmBvlEEeDgy796OLPkxharaenR6AyO7htDa2wkAJ1trnvxoh2lzFCGEEEIIIYQQt6ebYqqyEEKI68/PScVbQ82nG78+KdH0c/sQTxZN7WlWJszXhTcfSDQ7DtAzxpcpA6KvX0eFEEIIIYQQQtyUbupdlYUQQgghhBBCCCGEEDeGZBwKIYRosYbZikIIIYQQQgghbm+ScSiEEEIIIYQQQgghhDAjgUMhhBBCCCGEEEIIIYQZmaoshBBCCCGu2MGDB3n//fd58cUX8fX1veL6Op2O2bNn06NHD0aMGHH9O3heVlYWZWVltGnTBoDDhw+Tm5vLoEGDfrdrCtGcuro6FixYAEB5eTkKhQInJyeKiopwcXHhxRdfvOq2k5OT+fbbb6mrqwOgTZs2/OUvf7ku/b6R3nvvPbp27Ur79u0B+Pvf/07Xrl25++67AXj//ffp3LkzHTp0uIG9FEKI25NkHN7k5n62m8ra+t/9Os8k7ST1bGmzx1vSl6baScsrY/fJguvQU3OHMoqYt3LPZa+580Q+q3ac+l36cC3e+PoQ21JyW1S2ut7AI+9v45H3t3Hff35i3Fs/8cj72xj12o88/O6Wq+7DhkNZLP7h6FXXv9F+Sqvjy99Omx7P+eQ3Fn572PT4vY0pfLErvdFzoLSqjsc/3MHM97dxJLP4D++zEELc6vbu3UtYWBh79+69qvrHjh3Dx8eH/fv3YzAYWlxPp9Nd0XWys7NJTk42PW7Xrp0EDcUNZWNjw5w5c5gzZw49e/akf//+pscKheKq2z179iyrVq3iwQcf5KWXXmLu3Ll4enpex55fu5a+fi8tFxoaSnp6OgCVlZXY2NiYHgOcPn2a0NDQFrWt1+tb2FshhBAgGYc3vfn3dzE7ZjAYMADKa3hjcb360lJp+eWkni2jS4T3dezRlV0zMcqHxCifP+z6vwd7awXvTusFwPItqdiqVYxODCOvtJoXLQRP/yz8nVWkZJUwqmsIeoOBsmoN1XVa0/ljWSXMGBRLtL+b6Tlw8HQRgZ4OPDO8/Q3qtRBC3Lpqa2tJS0vjySefZOnSpQwZMgSA1NRUvvvuOxwdHTl79ixBQUE8+OCDFoMhe/fupV+/fmzdurXRh/7k5GS++eYb9Ho9jo6OPPHEE6xbt46ysjKKiopwdHRk+PDhrFixgoqKCpycnJg4cSLu7u7s37+f7777DqVSiZ2dHY8//jjr1q2jvr6etLQ07rzzTurr68nMzGTs2LGUl5fz2Wefce7cOQDuu+8+wsLC/riBFOISer2eTz75hPT0dFxcXJgxYwZqtZrCwkJWrVpFRUUFarWa8ePHm2X6btiwgbvuust0XKVS0adPHwCKioosvmaSkpKwtbXlzJkzlJeXM3LkSDp27IjBYGD16tWcOHECDw8PABITE+nYsSNz585l9uzZODo6cubMGb788ktmzZpFXV0dq1evJicnB71ez+DBg4mPj2fnzp0cPXqU+vp6NBoNDz/8MMuXL+fcuXOo1WrGjRtHQEAAR48eJScnx/Q6nzJliuneQkNDWbt2LQDp6em0bduW5ORkDAYDRUVFWFtb4+Liwp49e/jxxx8xGAy0adOGkSNHAjBr1iz69+/PsWPHGDVqFO+88w69e/fm+PHj2NvbM3z4cL766iuKi4sZPXo07dq1+71/1UIIccuQwOFN4u+r9lJYXoNGq2dk1xDu6RgEwKS3N7Foak9qNFrmfrqb+NYeHMsu5aUxnfBxtTfVX7H1JL+l5lOn1REb4MYTg9uiUCh4JmknUa1cOXSmiKpaLbOGtqNtkDt19Tre/OYQmecqCfR0pK7+8t+8XeiLi72aT7aeZNPRHLyc7XCxVxPu58zoROMb7a0puSz64ajpetH+riRtTkWj1ZOcVcLYHmH0jWtlajevtJrX1h6krt74zeLMu+IAYybhiq2pONupySisIMLPhedGtEehULDnVAFLN6QYr+3rYtbXep3e7JoarY7Us2U8dncb3vj6EGprJVnnKikoq+GpYfFsPJTNsewSov3deHp4PAD70gpZviWVep0ePzd7nhoWj5268cvm+/2Z/LA/k3qdnlbuDjw7oj221ire+PoQ9jZWpOaWUlJZx9QBMfSK9cNgMPDO+mQOZRTh62pHUzkWa3ef5rt9maiUCoI8HZnzl45sO6Nh99qDnKuoJS2vjPatjd8i19bryCutYfQbG6jR6Aj0dOCtyT2wsVax5tc0Ptl2Ep3egJ3aijceSMTZzpq3vz9KYVkNAB1DL34bvSs1n0+3nUKr0+Nkb83sER1wc7Rh+ZZUckuqOVdRS2F5DaMTw7inYxA1Gi1/X7WXytp6tDoDD/SLpHuUL3ml1cz9dDdxQe6kZJXg6WzL38ckYGOt4mxxFYvXJ1NWVYeNtYonh7QjyNORrSm5rNiailKhwMHWmjcfSESnN/C/Tcc5nFFEvU7P0IRgBncKbjRWAc5Kth8rAeBMQQWtvZ0orqyjoqYeG2slmecqCfN1YcOhLFLPlnF3h0CW/XwMjVbPI+9v463J3TmaWXzZ37UQQgijQ4cOERsbi4+PD/b29mRmZhIUZHzvkpWVxbx583BxceHNN98kLS2N8PDwRvU1Gg0nTpxg3Lhx1NTUsHfvXkJDQ6moqOCTTz7hb3/7G56enlRVVZnqZGZm8tRTT6FWq1myZAldu3alW7du/Prrr6xevZoZM2bw/fff89e//hVXV1eqq6uxsrJiyJAhpkAhwM6dO01trl69moiICKZPn45erzdN7xTiRiksLGTKlCmMHz+eZcuWceDAAbp27cqnn37K/fffj7e3N6dPn2blypU8+eSTjerm5uZyxx13WGx31apVFl8zAGVlZTz11FPk5+ezdOlSOnbsyMGDB8nPz2fu3LmUl5fzr3/9i8TExGb7vn79eiIjI5k4cSLV1dW89tprREdHA8aMwBdeeAEHBwdWrVpFYGAgM2bM4MSJEyQlJTFnzhyg8eu8oaCgIM6ePYtWqyU9PZ2IiAjOnTtHXl4eWVlZhIaGUlpaytq1a5k9ezb29vYsWrSIgwcP0r59e+rq6mjVqhVDhw4FjNPFIyMjGTlyJO+99x7ffPMNjz/+OLm5uSQlJUngUAghGpBPxTeJvw1rh7Odmrp6HX/9cDs9o31xtm/8D2Z2URVPDYvnr/e0Nas/rHMwE3pHAPDa2oP8drKAbpHGzCqdwcCih3qy+2QBK7am8u8J3Vi37ww21iqWTu9Nen45j36wvcV9TT1byvbjeSx5uBc6vYFHl20j3M/ZdN7S9Sb1jTQF7S7l6mDDqxO6orZSkVNUxStfHeDe858vTuWV8/6M3ng42fK3j34lOauEyFYuvPXdEV6b0I1W7va8/MUBszatVUqza244lNWoTGVNPa9N7MbO1HxeWrmX/zyYSPDQdvx12XbS8srwdLbj0+2neHVCV2zVVqzakcYXu06bxvmCntG+pkDvx7+c4McDmQzvEgJAcWUt/3mwO1nnKnlp1V56xfqx43ge2UVVLJ3em9KqOh5+dwuD4gPN7mHVjjT+76/9UFupGk0RT88v579TepC0JZXv92dSVFGLWqWgXqtn4YOJeDrbMentTWw7lku4rwvLt6Ty2qRuRPu7sS+9kMU/HMXNwYZRXUNoE+ROQVkNT3y4nR4xfgDEBbrz3yndUSgU/HAgk9U705g+MLbRtWvrdcz8YBtdI7xxdVDz4phOONhYU1at4Yn/7SDx/HMvp7ia50d1YNaQdsz/fD/bj+UyoF0A//3uCI/f0xZ/DweO55Sw+IejvDaxG59sPcmCcV3xdLY13fOPB7NwsLFi0dSeaLQ6/vbxTjqFeuHrdjFw7mSjRKXUU1BWQ0p2CTEBbhSV13IsuwQHWytCfJyxVl1cmSHM16XR86OsWtOi37UQQgijvXv30r9/fwASEhLYu3evKXDYunVr3NzcAAgICKCoqMgscHj06FEiIyNRq9W0b9+e77//nnvvvZfTp08TERFhml7p4OBgqtOuXTtTMOH06dNMnz4dgK5du/LVV18BxqykpKQkOnbsaFoLrTmpqak88MADAKYsRSFuJA8PDwIDje8Lg4KCKC4upra2lvT0dJYtW2YqV19/ZUsZNfWaAYiPj0epVOLn50d5eTkAp06dIiEhAaVSiaurK5GRkZe9xrFjxzh8+DA///yzqY/FxcblYKKjo02v57S0NKZNmwZAVFQUlZWV1NQYv8xu+DpvyNraGj8/P7Kysjh9+jR33nkn586dIz093RQ4PHPmDBERETg5OQHQuXNnTp06Rfv27VEqlY3WP7SysiI21vj+tlWrVlhZWaFSqWjVqhVFRUVXMLJCCHH7k8DhTeLr3RnsOJ4HQGF5LTnFVWaBQ29XO2IC3CzWP5RRxJpf06mr11FRqyHYy9EUOOwZbZyuEOHnQn6p8R/lI2eKGdGlNQChPs6E+ji1uK9Hs0pIjPTBxloFQLeIxtN/LV2vOTqdnrfXJ5OWV45SqSCnqBLCjW/co1q54uVs/DnU15n80mrs1Cp8Xe3x9zC++RjQ1p/vD2S2uP8XdIv0QaFQEOLtjKujmhAfY/Az2MuJ/NIaCstrySysYNbHxswErU5PTICrWTsZhRV8/MsJqmq11NRr6RTqZTrXPcoXpUJBsJcTpVXGLIYjmcX0a9MKlVKBh5Mt7Vt7WOxfiI8z//7qIN2jfOgefXEqSmKUcextrVW0crPnRE4pwV6O2KlVvP71IRQKBfU6PRmFFZRW1qHVG/jvdxfXL6zX6sgoqCDzXKXpWJ1Oj1ZnzDo9V17Dgi+PUVxRh1anx6dBgO7CtW2sVcQHe3Aip5QuEd58tOkERzOLUSgUFFXUUnL+Xn3d7Ag7nxEa4edCflkNNRotKdklzP9if6M+AcQGuvHGN4foHetneh7tSyvkdEEF244ZXx9VdfXkFFc1ChxeqJuSVUJKdgmjuoZS5FxLSnYJDjZWxDbxurngWHZJi37XQgghjJk6qamp5OYa1+fV6/UoFArTlEArq4tvL5VKpcX1xPbs2UN6ejpz584FoKqqitTU1GavaymYcMGFqdDjxo3j9OnTHD16lAULFpiymIS4VTR8/SgUCnQ6HQaDATs7u8s+n/38/MjMzCQgIOCy12m4fEDDazZVpiGVSmVal7RhANNgMDBt2jR8fBp/NsjIyMDGxuayfYLmX+ehoaH8P3v3HR5VlT5w/DszmUnvgZCQShqEQAIEAtJBLDRBERUFxVVE9CewKiKCZSnWFVcUQdB1oytFFxFQQKWLKCSUUBMSAiGE9F4nM3N/f4QMhJlA6KDv53l8nLn3tHtSSN6cc96jR49SU1ODg4MDwcHBbNmyhZMnT9KzZ0/y8vIaravValGrz/4RWaPRmJ9PpVKZ56Cx71lCCPFXJoHDm8CJYiP7ivP54PHu2Gk1vBi/A73B8h8suzOBuvPpDUY+WnuAeX/rQXNXe77cktKgfv1KK7Vahcl0zsbYyz0i8SIHmDfaXyNW/JGOm6OOT57qiaIoDJ6z7mxbNmf/gVerVBjP9H01TnesH6dKRYPVaGqVCqNJQa1W0bFVM16+98LZ2d5btY/X7o8lpIULP+07SdLxs4k2zm33Es59B2Dmg53Zn1HA7ym5fL0tlU+f7lU33vOfXgW/peSgAB890QMbjZr73l1PrcGECQWtRm0+F7He/e/9xAdjbzMHf+u38ALMX3+Qe+Na0S3C27xd/GxXln1vPHCKkkq9ue8xH240f/41mFc16A0KJkXByU5rMSaAiYPaceRUEX8czeXpRdv45MmeKNRtX48NaWZR/lyRfu4cyizi+Jmtys1c7fjf78dwsLXhzhjLFZ3na8rHWgghRF2ykbi4OEaNGmW+9v7775OWltak+lVVVaSlpTF79my0Wi1Qt314165dDBs2jKVLl5Kfn2/eqnzuqsN6rVq1IiEhgbi4OHbu3Gk+lzAvL4/g4GCCg4PZv38/RUVF2NnZUV1dbXUsERERbNu2jX79+pm3KsuqQ3Gzsbe3x9PTk927d5vPHzx16pRFgPD2229n0aJFhISE4O3tjclkYtOmTfTv37/Rr5nGhIaG8uuvvxIXF0dZWRkpKSl07twZAA8PDzIyMmjbti179+4114mMjGTz5s2MHDkSlUrFyZMnzasnz297586dDBw4kJSUFJycnJr0ddeqVStWrFhBWFjdjpCWLVuSnp5OWVkZPj4+ODk58e2331JeXo6DgwMJCQn06dPnou0KIYS4MMmqfBOoMdYFUuy0GjLyyzmcWXxJ9euDNK4OOqr0BrYdvniG3naBHmzanwXA8dwyjuWUNbm/tgEe/HE0B73BSJXe0KRsyfY6G6r0Bqv3KmoMeDjZoVap+CXpFKaLRNj8vZzILq4kq7Du3KPNB7Muuc+maN3SjYMnCzl1pp/qWiOZBeUW5apqDHg622Iwmti43/pYztUuwIMtB7MwmhQKyqrZd8JyO4RJUcgrrSImyIsn+remvKaWKn3dqrwdKXVzX1Nr5HRRJRG+blTWGNCoVdho1Ow9nk95dd1zdwn1xqQorN9Tt027pLKGtOxSOrZqxqpdx8395ZacXRlaUW3Ay8UOgJ+TMhuMq77v0ko9SScKiPB1o6LagJujztx3TsmFV5k62mrxdrNn65lM0oqikJZdty0mq7CC1i3debRPBK72OvJKq4gNacaahBPmFZGZBeVUW/m4tvV354+jOTjZa9GoVbjY6yivruVwZnGjK3XrNfVjLYQQou4Msujo6AbXOnTowK5dTUvStXfvXiIiIsxBQ6jbnrh//37s7Ox4+OGH+fTTT5k9ezafffaZ1TZGjhzJjh07mDVrFjt37uT+++8HYMWKFcyaNYuZM2cSGhqKn58f4eHhnD59mjlz5lhkgL7//vtJSUlh1qxZvPXWW+ZVlELcbMaOHctvv/3G7NmzmTlzJklJSRZl/Pz8GDFiBJ9//jlvvPEGs2bNoqSk7g/DjX3NNCYmJobmzZsza9YslixZYg7WAQwaNIhvvvmGf/7znw1WJd59990YjUbzGFevXm217UGDBpGRkcGsWbNYuXIlY8aMadIchISEkJ+fb06kpNFocHZ2JiAgALVajaurK/fccw8ffPABs2fPxt/f3+J7lRBCiEsnKw5vAq3cNZzIVhi/cCt+no6XvEXSyU7L3R0CeGrhVrzd7An3vXj9wZ0C+eeqfYxfuJVW3i5EtLRMMNKYCF83uoZ78/TCbTR3syfM1xVHW+0F60QHebJ8expPf7rNIjnKkE6BzPw2kW2HTxMd6Nnoysp6OhsNEwe1Y8bSXbg66Gjr78HxPMvA5/l9Xio3R1teGBrNWyv2UHsmaPVonwj8PJ0alBvTJ4LnPt+Ot6s9Qc2dqaoxXrDd7q1bsPd4AeMXbqWlhyPtAiy3KptMCu+s3EtFtQEFhXvjgnGyq5vjCF9XZizZRWp2CR2CvfB0tuO2iBb8b8cxnl38KyHeLrie2eYe1NyZMb3Dmb/+IB+tO4BWo+berq2YcFdbPlp7gPELt2I0Kbg66AjzrfsceKR3GLO+TcTT2Y42fu7kFFeax1Xfd25pFaN6huHpbEe/di15bekuc9/+npYrQ843dVgHPlx7gK/PJG3p3daXkBYuLP7lMKcKK1FQ6BDsRStvF4K9XcguruSZRb+iUDfW10fGWrQZ1NyF0spa+kadDRIGN3ehWl9kno/GNPVjLYQQAvr27Uvbtm0trtU79yy0+oQk5+rWrZtFkgVHR0feeecdANq2bWvRfn3W5nqenp4WiSEA8xlu57c9depUizEAuLi4mBNECHEjnPu57enpyYwZM8zvBwwYYH7t5eXFs88+e9H22rVrR7t2luehN/Y1c37Qbu7cuUDd9t1zv37j4+PNr0NDQ3n99dct2qrPkHy+87/mHR0drX7dRUVFXXCFoLOzM/Pnz29wbfLkyQ3ed+7c2bwy8lz1z2Xt/fnfX84vK4QQf3Uq5VL3T16BiIgIJTk5+br1d6vYvHnzLbeMvkpvwF5nQ3WtkRf+s4OJg9oR5tP04OPF3Ipzcj3M/M9PtA4PMWewvloW/HSIlh4ODIkNarTMl1tSsNNprnrfV4N8vlgn82JJ5sQ6mRfrZF6sk3mxJHNincyLdbfivMTHxxMVFUXHjh2vWR+34rxcazIn1sm8WKdSqRIVRbFcYSHEFZIVh+KyfLBmPxn55egNRga097uqQUNxfb3y9U4MRhOjJYOwEEIIIYSwoqnbiYUQQvz5SOBQXBZJInFj9AzU0ecqr/ibPapLk8qN7h1+8UJCCCGEEEIIIYT405DkKEIIIYQQQgghhBBCCAsSOBRCCCGEEEIIIYQQQliQwKEQQgghhBBCCCGEEMKCBA6FEEIIIYQQQgghhBAWJHAohBBCCAC+3naUJz/ZwviFW3n6020cOVV0TfrJLq5k3IItl11/3/ECZizddRVHJIQQQgghhLBGsioLIYQQgkOZRew8msvHT/ZAZ6OhpFKPwWi60cMSQgghhBBC3EASOBRCCCEEhWXVuDjo0NloAHB10AGwJz2fRT8fxmhSCPd15f8GRqGz0TDmw430ifIl6XgBBpPCxEHt+PfGI2QVVTKiWysGdwoE4Jvf0th66DS1RhO3RbRgTJ9wAIwmhXe/30tadiktPRx5cVgMdlpNo/3tSs1lwU+HcHXQEdrCFQCTovC3+ZuZ+9htuDnaYlIUHv94M/96vLt5/EIIIYQQQojLJ1uVhRBCCEGnkGbklVbz+MebmffjfpJOFKA3GHlv1T6m3deBheN7YTQprEnMMNdp5mLPB493JyrAg3+u2sf0EZ34YOxtxG9OASAxLY9ThRV8+LfuzB/Xk6PZJew/UQBAZkEFAzsGsOCpXjjY2rA64Xij/ekNRj74YT//eKAz/3y0G4XlNQCoVSr6R7Vk44EsAPYcy6eVt4sEDcUNs3fvXiZMmEB2dnajZZ555hnmzJnDzJkzWbRoEXq9/jqOUAghhBDi0kjgUAghhBDY62z46IkeTBzUDlcHW+b8bw8/JGbQws0BP08nAAZE+3HgTOAPoFu4NwDBzZ2JaOmGg60Nbo626GzUlFfXkngsj93H8pmw6FeeWfQrJ/PLOVVYAUAzFzva+nsA0L9dSw5mFHEyv8Jqfyfzy2nh5kBLT0dUKhX927U0j+GOGH82JGUCsH7vSe6I9rv2kyVEIxISEggJCSEhIaHRMjqdjmnTpjFjxgxsbGzYtm3bdRyhEEIIIcSlka3KQgghhABAo1YRHeRJdJAnwc2d+flMQK4xWpu6vz+qVKDVnP1bpFqlwmhSUIAHuocw6My25XrZxZWoVKoG1+reKo32pWrkenNXe9wcbdmbns+RrGJeGt7hgmMW4lqprq4mLS2NSZMmsWDBAgYPHnzROiEhIZw6dYqkpCTWrVuHwWDA0dGRsWPH4uLiQk1NDcuXL+fUqVOYTCYGDRpEdHQ0BQUFfPHFF+bViiNHjiQkJISUlBR++OEHnJycyMrKIiAggMcee8zi600IIYQQoqlkxaEQQggh6lYDFlSY36fllOLuaEtOcaV5leCGpFO0C/RscpuxrZqxfm8mVXoDAPml1RRX1G0zzi2p4lBmXdbmTQezaOvvgb+Xk9X+/L2cyC6uJOvM9c0Hsxr0c1cHf95euZdebXzQqCVAIm6Mffv2ERkZibe3Nw4ODmRkZFywvNFo5NChQ7Rs2ZLQ0FBefPFFpk2bRmxsLD///DMA69atIzw8nKlTpzJp0iS+++47ampqcHZ25rnnnuPll1/mb3/7G99884253ZMnTzJixAhmzJhBfn4+aWlp1/S5hRBCCPHnJisOhRBCCEF1rZGP1x2gotqARq3C192BiYPb0yfKl9nf7jYnKxnUKaDJbXYKaUZGfjmTPv8NAHudhinDYlCrVQR4OfHzvkw+/GE/vh6ODI4NRGej4fmh0Rb96Ww0TBzUjhlLd+HqoKOtvwfH88rM/XQL9+b9VUncEeN/1edFiKZKSEigX79+AMTGxpKQkEBAgOXXi16vZ86cOUDdisPbbruNnJwcFi9eTGlpKQaDAS8vLwAOHz5MUlISGzZsAKC2tpbCwkLc3NxYtmwZmZmZqNVqcnJyzO0HBQXh7u4OgJ+fHwUFBYSGhl7TZxdCCCHEn9cVBQ5VKpUbsBiIom5/0eOKouy4CuMSQgghxHUU5uPKB2O7W1zvEOzF/HE9La7HP9fP/PqOaH/uiPa3em94XDDD44It6i96urfVcTTWX+fQ5nQObW61zrGcUoK9nQnwcrJ6X4hrraamhpSUFE6fPg2AyWRCpVIxfPhwi23C9Wccnmv58uX079+f9u3bm7cbAyiKwrhx4/D29m5Qfs2aNTg7OzNt2jQURWHixInmezY2Z3+8V6vVmEymq/qsQgghhPhrudIVh/8C1imKMkKlUukAh6swJiGEEEKIJlm2PZU1iRm8NCzmRg9F/IVlZmYSFxfHqFGjzNfef/990tLSmrTar6qqCjc3NwB+//138/XIyEg2b97MyJEjUalUnDx5En9/f6qrq3Fzc0OtVrNjxw4JDgohhBDimrnswKFKpXIBegGPASiKogf0V2dYQgghhBAX90D3UB7oLtswxY2VkZHByJEjG1zr0KEDu3btalLgcNCgQSxatAg3NzeCg4MpKKjLXn733Xfz7bffMnv2bBRFwdPTkwkTJtCrVy8+/fRTdu/eTXh4OLa2ttfkuYQQQgghVIrSeAbDC1ZUqWKAT4FDQDSQCExUFKXivHLjgHEAzZo167R8+fIrGe+fUnl5OU5Osr3qXDIn1sm8WCfzYp3MiyWZE+tkXqyTebFO5sWSzIl1Mi/WybxYJ/NiSebEOpkX6/r27ZuoKErsjR6H+PO5ksBhLPA70F1RlD9UKtW/gFJFUWY0ViciIkJJTk6+vJH+iW3evJk+ffrc6GHcVGROrJN5sU7mxTqZF0syJ9bJvFgn82KdzIslmRPrZF6sk3mxTubFksyJdTIv1qlUKgkcimviSs44zAQyFUX548z7b4GpVz4kIURjKmsVnv50GwBF5TWo1eDqYEtOcSWeznaNJhu4mJ/2neT9VUnMH9eTVt4uAIxbsIV/PNiZFm4OTF+yk6nDO+Bkp220jRfjd/Dk7W0I93VrcD0tu4SCshq6hFkmNdh3vIBvfz/GzAc7N7g+4dNtPD+0PSEtXDGaTAx/5ycmDoyif3s/AJ5ZtI1Jg9sT5uN6Wc8LsCEpk292HMNoUtCoVUT4uvHkgDYXfMa5q5O4t2swgc2cL7vf0ko9L31V923z3I8hwId/645Wo2607nvf7yMpowAHnQ16g4nWLd14vF9rvFzsAJr0cRJCCCGEEEIIIZrqsgOHiqJkq1SqkyqVKkJRlGSgP3XbloUQ14iDVsUnZ7KNfrklBTudhvu7hZBdXMmrS3ddUdteLnYs+TWVV+7raHFv1kNdLrvdtJxSUrJKrAYOGxPp786hzCJCWrhyLKcMf09HDmUW0b+9H9V6A9nFleYA5+XYlZrLij/SmfVQF7xc7DCaFH5JyqSovOaCQbfJQ9pfdp/1XBx0Vj+GTfVk/zb0jPRBURS++yOdKV/+zsLxvdBq1Ff0cRJCCCGEEEIIIc53pVmV/w/475mMyseAsVc+JCHE5TCZFOauSeLQySK8XOx4fWQstloNWYUVfLTuICUVNdhqNUwa3J4AL8szQeLCmrM/o5CT+eX4n3d/zIcbmfdED1wddPx361E2HjhFMxd7XB10hPq4mANfWw+dZt7aA1RUG5g8pD2tW7oRvzkFvcHEwZNFPNA9hD5tfS/6LJF+7uxKzWVIbBCHThYyqFMgP+07CcCRrGJCW7iiUat4fVkCeaVVFJdWUumSwcCOARhNCnNXJ5FyuhgVKu6M8ePerq0atL/k11SeHNDGvFJPo1ZxZ4y/+f6e9HwW/XwYo0kh3NeV/xsYhc5G02BV5T1vrWNYlyD+OJqLrVbD6yNjcXeyJauwgrdX7sVkUogNbcaK39P5fupdF33mxvpsjEql4t6urdienMOu1Fxui2jR4OO0ISmTL/dUsSxlG61buvHs3VFo1KqLjkMIIYQQQgghhKjX+J64JlAUZa+iKLGKorRXFGWYoihFV2tgQohLc6qwkqGxgSx6ujeOtlp+PXwagH/9sJ9n7mzLx0/2ZNyANny09oDV+iqVivu7hbB0e2qjfaRkFfPrkWzmP9mTV+/vRMrp4gb3jYrCvL/1YPwdkXy1NQWtRs2YPuH0ivThk3E9mxQ0hLMrDgEOZRYTFeCBVqOmssbAoZNFRPq7A/D3oe35+MmePBZjz8qd6ZRW6jmWU0p+WTWfju/NwvG9uOOcgGC9E3nlhLWwvs1ZbzDy3qp9TLuvAwvH98JoUliTmGFRrrrWSBs/dxY81Yt2AR6s3VNX5pOfDjGsSxDznuiBp7Ndk563qX1aE9rChZP5DXJSkZFXxpZDpxkdbccn43qiVsHG/aea1J4QQgghhBBCCFHvSlccCiFuEi3c7Qk5EwwL83Elp6SKKr2BQ5lFzPrfbnO5WoOx0Tb6tfNl6a+pZBdVWr1/4GQR3cK9sdXWrYTrGubd4H6P1i3O9l9cdfnP4uaAwahQWF5dtwLS05EIXzeOnCrmcGYRQzsHAfD9zuNsP5JNRUU15QY1pwor8PN0Iru4ko/XHaBLaHM6hTS7YF/pOaW88/0+qvQGHusbgb+nEy3cHPDzrFt1OSDaj9W7jnNvXHCDelqNmrgz269DfVzZcywfgMOZRbw+shMAfaN8WfTz4Ys+78n8iib12VR7jhdw9HQJ6Vm1fJu6DX2tETdH28tqSwghhBBCCCHEX5cEDsVN6VolAYG68+3it6RQWWNAZ6PBz9ORJ29vQ3NX+6s1/KvCWuKQNck1aJqfpmekj0X5+qQaK/5Ix6QoGE0KJkXByU5rPlPvXNaSmWjUau7r1oplv6VZH9RFsrDXj0GtVmEyXV7G9npt/NzYdjgbD2dbVCoVrVu6cehkIclZJbTxc2ff8QL2pOfzwePd+X37Nn7IsEVvMOFsX/e8CWl5rE44wdZDp3l+aHSDtgObOXE0u4SYIC+CvV34ZFxPPlp7AL3BCDRt3Bq1CpWqbuuvRqXCeEXPe/l1U7NLGdHV67zmFAa096OVJps+fSw/9kIIIYQQQgghRFNc0VZlIa6V+iQgn4zryaBOAQyPC+aTcT2ZP64nqis4pu14bhnz1x/kxaHRfDahD5+M60m/qJbkFFtfYWeN0WS6/AFcByv/SMdgrBujo60Wbzd7th6q27asKApp2aUXrD8g2o896fmUVOot7rUN8OCPoznoDUaq9AZ2Hs296HjsdTZU6Q2X/ByR/h5890c6bVrWbUtu4+fOL/tP4e5oi5OdloqaWpzstNhpNRRUmjicWQxASaUek6LQs40Pj/YJJ9XK8z7YPZRFPx8mr/Tsqkj9mZWY/l5O5BRXcqqwbvvvhqRTtAv0bPK427SsC3gCbDl4ukl1LqdPRVFYuTOdwvJqYkMbrqqMCfZi25HTVOjrApKlVfpL+hwXQgghhBBCCCFAVhyKW9CVJAFZ/lsaD3YPJaCZs/lat4iz220ba+O97/fhbK8lNbuEUB9Xyipr0WnVnMwvJ7ekiueHRvPzvkwOZxbRuqU7L9xTt8Ltwx/3k5JVQk2tkZ5tfBjTJxyoSzZye3s//jiag8Go8MqIjlYTllzI6aJK9qbn88u+U/h7OaIosHJnOgVl1fyQmIHWRsXo3uEM6hjIB2uSePf7vWjUKoZ1CSKkReMZibUaNcO6BPHJessk6RG+bnQN9+bphdto7mZPmK8rjraNZyEGiA7yZPn2NJ7+dFuTk6MAtPV3Z+FPh2jjVxc49HS2w2RSzOcbxoY044fEDMYv3IqtSU8bPzcA8kureX/1PuoXAD7eL8Ki7S5hzSmp1DP9612YFAVHOxuCmjnTqVUzdDYanh8azexvd5sTlQzqFNCkMQOMv6Mtb6/cy/9+P0ZcaHMc7S7+bfZS+ly04TD/3XaUGoORNi3deWd0V/NKz3qBzZx5tE8En63fx+r0rWjUKp69OwpvN4cmP4cQQgghhBBCCCGBQ3HLOVVYycv3dmDy4PbM+nY3vx4+Tf/2fvzrh/08N7AdLT0dOXKqiI/WHuCd0V0b1D2RV8Z952XYPdeF2sgsrOCtR7qiUat47/t9lFfV8s7oruxIyeG1pQm8/1g3Aoe05/8W/0padgkhLVx5rG8ELvY6jCaFqV/9zrGcUlp51wXtXB20fPxkT1YnHOd/O44xeUh7i/EcyCg0b9kGyCqsW7mnNxjZd6KAd8Z0xc/TiXdW7uXujgEM6xLMit/TzZl1Syr1rNt7kq8n9cdOZ8Oy7WnUGi1XTN4R7c8d0WeTiAzrEsywLmfP14t/rp/59YhurRjdO5zqWiMv/GeHeT7fHdPNXMbVQWeu42KvY94TPazOd3SQJ9FB1lfWRfi6sX7GoAbXzh2HzkbD7FFdANi8eTN9+pzt/+MnL749d0C0HwOi/aze6xDsxXwr27vPfcZzMyX3jPQxbx/3dLHjX4/fhkqlYvOBLMJ83Bodw+je4Rft81z1AenGnDs/fdr6Ql4Kffr0umAdIYQQQgghhBCiMRI4FLecq5EEBKC0Us9LX/1BTa2Ruzv6M7hT4AXb6NXGB4367D7pruHeqFQqgpu74OakI/hMQDCwmTM5xVWEtHBl66HTrN2dgdGkUFheQ0ZeuTlw2L21j/kZfj2SbXWMUQEeDc44fGHheqDpyTQOZxaRkVfG5C92AGAwmswr8y7XB2v2k5Ffjt5gZEB7P8J8rGcn/qs6erqEj89krna00/J3KwFhIYQQQgghhBDiViCBQ3HLOXdbploNesOFk4CcK7CZM6nZJYS0cMHFQccn43ryzY40qvXGi7ZhdyaT8PnjUKnOG9OZRBnZRZV8u+MY8/7WA2d7Le99vw+98WwgUmujNpe/9EQiTS/fsVUzXr63wyW237ir2dafUbsADxY8Jav8hBBCCCGEEELc+iQ5ivhTaGoSkPu7tWLJr6lk5JWZr9XUXn4ikQupqDFgp9XgaGdDUXkNu9IunkikqS6UTMNeZ0NVTd2W5tYt3Th4stBcrrrWSGZB+VUbhxBCCCGEEEIIIf68ZMWh+NOYOqwDH649wNfbjmI0KfRu62uRBCTY24Wn74zk3e/3Uak34GKvo7mrPaN7hzW5jaYKaeFCaAtXxn2yBR93B9qeSfJxNVwomcbAjv68smQnHk62vDumGy8MjeatFXvMZxs+2ifCvMVZCCGEEEIIIYQQojESOBQ3vXMTSLRwc+DT8b3N7+/vFnL2nrsDc84ky7iQuDBv4sK8rd5rrI3zk1Kc+/78MZ17r7FkFucmsQj3dWuQdKOetcQhgyNszUk4GkumcU+XYO45J7FJTLCX1eQk1voUQgghhBBCCCGEqCeBQyHEn0JeaRUfrT1IRn4ZigJxYc154vY2Dc6ftGbJr6k81CPU6r2K6lo+XneQQ5lFAET6ufPMXW1xtNMCsOiXw+w8mkuXsOY8eXsbANbvPcnKnccByMgrw8/TCbVaRWxIM3Q2aux0mgYB70tVXFHDqA828MxdbRnUKfCy27HmeG4Z89cfJL+0GgWF29v5MapnKCqVCr3ByIyluyitrOWB7iF1WZvPUBSFJb+m8nNSJipUeDrb8sxdUQQ1d77iMe07XsC3vx9rkCRICCGEEEIIIcT1IYFDIcQtT1EU/vFNIoM7BfLGA7EYTQr/+iGJLzYlmwN6jVl6gcDh+6uTCGruzJRhMQDEb05h7pokpo/oBMCPiRkse/52dDZnE+fcGePPnTH+AIz5cCPvjOmKq4MOgC+3pFzpo7Lt8Glat3Rj88GsRgOHRpPSIAN4U9TUGnl9eQL/d3cUnUKaUV1rZOY3iaxOOMHQzkGkZZdiNCpWkwetSjjBocwiPhnXCzuthsS0PF5fnsCn43s1mBshhBBCCCGEELcWCRwKIW55J4pN6Gw05oCdRq3iqTsieXTeJkb3DmfroSxSskp49u4oAGYs3cWIrq1ISMtDbzDy9KfbCGzmxNThZzNGnyqs4Gh2CdPu62i+9nCvMMZ+vImswgoW/nSI6loDEz//zWIF3oVk5JXzYvwOckuqGB4XzLAz28o3JGWyctdxDEaF1i3dePbuKKvBv00Hshg3IJK3vttDfmk1Xi52ANzz1jru7RpMYlo+4wa04ZWvdxLjreabo9twstcytm9rPttwmNySKsbf0ZZuEd7ntXuKSD93OoU0A+qyiD9zV1te/PJ3ekX68PbKvZRU6nn6023MGNERXw9Hc93lv6Xx7uiu5szjnUKaEennzsb9p7irQwD3vLWOYV2C+ONoLrZaDa+PjMXdyZbiiho+/PEAeSVVAIy/M5K2/h5NmsdNB06x9Nc0FBS6hNatLl2dcIKc4kqeOBMs/mnfSY6eLuGZu6LM81tcUsW+iv2Nzq8Q56qpqWHOnDkAlJaWolKpcHauW0k7ZcoUbGz+uj9GTZ48mblz55rf79ixg4yMDB544IEbOCohxK2sse+5BQUFuLq68uqrr1522wcPHmT16tXU1NQAEBUVxX333ddo+TVr1mBra8uAAQNYvXo1YWFhtG7d+rL7F0KIW9lf9ydeIcSfRl6liTAf1wbXHG21NHexJ+tMRmlr/ta/Nat2Hbe6ii4jr5wQb5cGwSWNWkWItwsn8sp548HO3PPWOqt1L+RkQTnvjO5Kld7I3+ZvZnCnQLIKK9hy6DRzH7sNG42aeT/uZ+P+UwyI9mtQN7ekiqKKGlq3dKNXpA9bDmVxX9dWQF3G7KBmzjzaJ8L8PsDVhjfu7ckbyxP4z+Zk3nw4jhN55by3ap9F4PBEXrnFHPp6OFKtN6C1UTN5cHurW4Yramqp1hsbBBIBwnxcOZFXbh5LGz93xvZrzeJfDrN2TwajeobxyfpD3BsXTFSAB7klVUz77x8sntDnonNYUFbNZxuO8NETPXC21/Lyf3fy25FserZpwaR//2YOHG45eJqHeoSSkVdmnt9ft21lfyVW51eI89na2jJt2jSg4S+RQgghrr7GvucWFBQwf/78y243KyuLZcuWMWHCBFq0aIHRaOTXX39tcv0hQ4Zcdt9CCPFnIIFDIcSfgrW1Y0oj15tCQbHepgKqK1io1iW0OTobDTobDW4OOooqathzvICjp0v4v8+2A6CvNeLmaGtRd8vBLHq1qUuO06etL3NXJ5kDh2qVih5n7gFoNWpaudetAAxq7oxWo8ZGoybY25mc4korz9v4c6kuYxaVuormscSFNQcg1MeVPcfyAdiTnk9Gfrm5TqXeQGWNAQfbC//TlJxVTPtAT/Mc9YvyZX9GIbe1boGPuwOHM4to6eFIZkE5bf3dWZVwwjy/5eVV6GwLrM6vEE1x5MgRVqxYgclkIjAwkAcffBCtVnujh3XTqK6uZvbs2bz++utoNBqqqqqYPXs2b7zxBh9++CH+/v5kZGRQVlbGo48+yvr168nKyqJTp04MHTqUgoICPvroI0JDQzl27Biurq6MHz8enU53ox9NCHEDmUwm/vvf/1p8X8jLy2PZsmWUlZWh0+l4+OGHadGiRYO6P/30E3fddZf5ukajoXfvusSGBQUFfPXVV5SVleHs7Mzo0aPx8Gi4+yE+Pp6oqCg6duzIypUrSUpKQq1W06ZNG+677z7KyspYsmQJhYWFANx///2EhIRY/MFp5syZTJgwAYCPPvqIkJAQ0tPT8fPzo1u3bqxZs4aysjLGjh1LUFDQtZxOIYS4JBI4FELc8rwc1Bw4XdLgWkVNLXmlVfh4OHIspxRFUcz39AbjRdsMbOZMak4pJkVBfSaiZlIUjuWW4u/ldNlj1dqcTdaiVqswmhRQFAa09+Px/hfeArP5YBZFFTVsOpAF1K28O1VQQUtPR3Q2aovVkaoz41arVOZ+1aozfVo8rxP7TxQ2uHa6qBI7nc0FA3mOtlrsdBpOF1Xi4+5gvp56uoT2gR4WY9Gc07+iKHww9jZstZd4DqLl8M16R/qw9dBp/L2cuK11i7p+z5nfzZs306dPn0vrT4gzDAYD8fHxTJw4EW9vb7744gu2bdtGv379bvTQrju9Xm/eUghQUVFB+/btsbOzIywsjP379xMTE0NiYiIdOnRAo6n7OtdoNPz9739n48aNLFy4kKlTp+Lg4MBrr71mnse8vDwef/xxHn74YRYvXsyePXuIi4u7Ic8phLg5NPZ94euvv+ahhx6iefPmpKens3TpUiZNmtSg7unTp7n99tuttrts2TLi4uLo2rUrv/32G8uXL2f8+PFWy1ZUVLB3715ee+01VCoVlZV1f4j95ptv6NevH6GhoRQWFjJv3jxee+21iz7PE088wahRo3j77bfZtWsXzz//PElJSaxbt67RMQghxI1w4XSjQghxCwhyU1NTa+TnfZlAXXKQT38+zIBoP+y0GrzdHEg7EwTMLaki5dTZIKONRoXBaLJos6WHI6HeLny9LdV87ettqYS2cKXledtyr1RMsBfbjpymuKLu3J3SKr3FqsCT+eVU6418Pel24p/rR/xz/XigeyibD2ZdlTH0i2rJwZOF7D6zGrCm1sj89QcZ2a3VReve360V89cfpKa2LiC7+1g+B08W0jeq5QXrdWzVjFW7jpvfp2WXNF74HBEt3difUUhJpR6jSWHTwSzanQlSdm/tw2/J2Ww6cIrekXXnTjZlfoVoCpPJhJeXF97edVv9u3btytGjR2/wqG4MnU7HtGnTzP8NHjzYfK979+78/vvvQN3Zh926dTPfa9++PQAtW7bEx8cHV1dXtFotXl5eFBXVZbD39PTE37/uzNqAgADzKh4hxF+Xte8L1dXVHDt2jMWLFzNnzhyWLFlCSUnTfpaol56eTufOdcewxMXFkZaW1mhZOzs7tFotX331FXv27DGvhD5y5AjLly9nzpw5LFiwgOrqaqqrqy/6PC1btkStVuPj40NERAQqlYqWLVvK9zwhxE1HVhwKIW55KpWKV+/vxEdrD/D1r0dRFOgc2oyxfevO+2vr704LNweeWrCVoObOhPq4mOve3SGA8Qu3Eurj2iA5CsDkIdHMX3eAxz7aBECblm78fUj7qz7+wDNnE778350oSl1G5GfvjsLb7ewKvs0Hs7itdcOtNz3atODNFXt4uFfYFY+hPmnJ/PUH+XjtAYyKwu3tWjK0c9BF697TOYjyqlqeWrgVjUqFu5Mtr4+MvehKwgl3teWjtQcYv3ArRpNCVIAHEwe1syi3Nz2fhz/YYH7/yoiOjO0bwZT4383JUW6LqJsbZ3stAc2cycgro3VLN6Dh/JaVVeJ69A/z/M5dncSgTgGE+7qxJvEEAIM7BZKSVcwPiRlMvgYfb3Hrasp22cLCQhYsWABAjx49UBSF7dvrjiGYMGECbm5u13KIN4WQkBCWLl1KSkoKJpMJX9+zyaPqE8qoVKoGyWVUKhUmk6lBmfrrRuPFV4nfaJebSCc+Pp7ExETefvtt7Ozqkl0tX76czZs388477+Dk1HCF+9y5c7n33nsJDAxsdCxr164lISEBlUqFWq3moYceIjg4+Go8phA3jLXvC4qiYG9vbz4XsTE+Pj5kZGTg53fxs41VFziPRqPRMGXKFJKTk0lISGDLli1MmjQJRVF44YUXLP6N0Gg0DXa8GAwGq8+jVqsbfG+8Fb7nCSH+WiRwKIT4U2juas8/zkvcUU+lUlkEBes9cXsbczKN8znba3mpkXoA30+964Jjin+u4fbF0b3DG7z/dHxv8+s+bX0vmJn5/LoArbxdWPR0b6tj+X7qXWzevNlq3cbGHeztwrtjulm9Fx3kSXSQp9V7KpWKR3qH84iVMZ7fX89IH3pG1p3F6Oqg45VzslY31u/ql++2uB7p506/dtZXNJ6fwAXOzm/dVuWzCW3ODQwO7nT2F/FwXzfCfd0uODbx12MwGCgoKCA3N5fmzZuzc+dOwsIaBu49PDwsfomtP0vrryQuLo5///vf3H235dfvn9GVJNJp1qwZ+/btIy4uDpPJREpKymUHmI8dO8aBAweYOnUqWq2W8vLyBsEKIf5M7O3t8fT0ZPfu3XTs2BFFUTh16pRFgPD2229n0aJFhISE4O3tjclkYtOmTfTv359WrVqRkJBAXFwcO3fuJCQkpNH+qqurqa2tJSoqiuDgYPN25DZt2rBlyxbz1/zJkyfx9/fHw8ODAwcOAJCRkUF+fv41mgkhhLi2JHAohBBCCNEENjY2jB49msWLF5uTo/TseWmZ1f8qOnfuzOrVq4mNjb3RQ7lhmppIJzY2lsTEROLi4jh69CghISEcPHjwsvosKSnB0dHR3M/5KxaF+LMZO3YsS5cuZe3atRiNRmJjYy0Ch35+fowYMYLPP/8cvV6PSqUiKioKgJEjR/Lll1/y888/m5OjNKampoYFCxZQW1sLwIgRI8xtLF26lFmzZmEymQgNDWXUqFF06NCBP/74gzlz5hAYGEjz5s2v0SwIIcS1JYFDIYQQQoiLOPcMv4tti/srmDt3boP33bp1a3CWYVpaGh06dMDB4eyRC5MnTza/Dg8PJzw83Oq9GTNmmF83ddXezeZSEuk0b96cpKQkKisrSUhIoHPnzpcdOGzTpg1r167l9ddfJyIigk6dOjWYZyFuFed+z/X09Gz0+4KXlxfPPvvsRdtr164d7dpZHofi6elpkUzl/P7HjBljfv3SSy9ZlHVycuKJJ56wuK7T6Xjuueesjufc5zm3/fOfVQghbgYSOBRCCCGEEFfNsmXLOHToEBMmTLjRQ7luzj3jMDc3F5VKhaIofPbZZ0yZMoWuXbuyZcsWi8Bhamoqu3bt4u677yYhIYH09HRsbGwoLCykoqLiklYMfvXVV/Tv35+pU6eSmppKSkoKn3/+Offcc0+DoG69+Ph4oqKi6NjxwkdGXMzHH3/M2LFjGwSJL8fGjRtxcHCga9eupKen880332AwGKitraVTp04MHjz4kreBN8Vnn33GkCFDZDWYuCk1dn5qQUEBrq6uvPrqq5fcZkFBAf/85z+ZNWsWavXZXKlz5sxh1KhR/Prrr/Tv3x8fHx+mT5/O1KlTcXJyYvLkyRZ/NLqaSktL+eqrrygqKsJoNOLp6ckzzzxDQUEBx44dMyexuVJXuz0h/gokcCiEEEIIIa6aBx544EYP4bo794zD999/Hzs7O6qrq/n73/9+0bouLi7Y2tqyevVq4uLiOHLkyAUTNFhjMpl45JFHzO/rV3T6+vry+++/Ww0cXi3PPPPMFbdhNBr57bffePnllwH4z3/+wxNPPIGfnx8mk4mcnJwr7qMxPXv25Oeff+bhhx++Zn0IcbkaOz+1oKCA+fPnX1abnp6euLu7k5qaal6RnJ2dTXV1NUFBQQQFBV2t4V+SNWvW0Lp1a/MfWDIzM4G6QN+uXbusBvqMRiMazYWT8Z3vQu0JIayTwKEQQgghhBBXkdFoJDs7m3/84x+o1Wpqa2vp0aOH1bIhISEkJyczdOhQdDodtbW1ZGdnm+8vWLCAoqIiDAZDg2yrkydPpl+/fhw+fJh7772X1atX07t3b/z8/MjPz+eHH36goKAAnU5HdXW1OWvzhdTW1rJkyRIyMjJQq9Xcd999REREsGPHDjIyMsxB4fnz53P77bcTHh5uXpGk1WpZvHgxxcXFmEwmc2KcjIwMvv32W2pqanBycmLMmDG4uro26Dc5OZmAgABzAKCsrMxcRq1W4+PjYy6bnZ3N3LlzKSwspF+/fvTt2xeAP/74g82bN2M0GgkKCuLBBx9kz549pKenM2LECDZu3MimTZuYOXMmeXl5xMfH8/zzzxMaGsqXX355WQEIIW4kk8nEf//7X44dO4arqyvjx49Hp9ORl5fHsmXLKCsrQ6fT8fDDD9OiRYsGdevPVq0PHCYkJJjPpL1Y9vbq6moWLlxIZWUlRqORIUOGEB0dDcCPP/7Irl27cHd3x8nJCX9/fwYMGNCkMZWUlNCmzdmEhfVnVa5cuZLs7GzmzJlDXFwcDg4O/Pbbbxw6dAi9Xs/TTz/N8uXLOXXqFCaTiUGDBhEdHY3JZGLlypWkpKRgMBjo3bs3PXv2tGivf//+V+cDIsSfmAQOhRBCCCGEuIrqtyrXO/f1+VxdXcnPz6dTp0589913dO7cme3bt5vv1/9i7ODgwJQpU/j444+xsbGhpqaGw4cPM27cOP773/8CdYG/f//732RlZeHl5UVwcDC+vr5s3LgRo9FIYGAg7du3b2wobNmyBYDp06eTnZ3NvHnzeP3115v0zIcOHcLNzc28ArGqqoodO3awbNkyxo8fj7OzMwkJCaxatcoiAcWxY8fw9/c3v+/fvz+vv/464eHhREZG0rVrV3PCl+zsbCZNmkRNTQ1vvPEGvXr1Ijc3l8TERF544QU0Gg1Llixh586dtGnThp9//hmoO3fT0dGR4uJi0tLSzNlz1Wo1zZo149SpUwQEBDTpWYW4GeTl5fH444/z8MMPs3jxYvbs2UNcXBxff/01Dz30EM2bNyc9PZ2lS5danOPYsWNH3nzzTUaOHIlGoyExMZEnn3yySf1qtVrGjRuHvb095eXlvPvuu7Rv356MjAz27t3Lyy+/jMlk4s033zR/XTdlTL179+azzz5j8+bNtG7dmm7duuHm5sawYcP45ZdfzMdf7Nixg4KCAiZOnIijoyPff/894eHhjB49msrKSt555x1at27Nrl27sLe3Z+rUqdTW1vLPf/6TNm3aWLQnhLg4CRwKIYQQQghxlYSHh6NSqdDr9eatykeOHDEH5c4VGhpKcHCwOaiWnp7OQw89hJubG46OjgC0atWKjz/+GKgLcj399NMEBwfz7LPP8sILL6BWq3nmmWeYO3cuLVq0YODAgcTHx6PRaCgoKCAnJ4fg4OALZoutl5aWRp8+fQBo0aIFHh4eTd4m7Ovry4oVK/juu+9o164doaGhlJWVcfr0aebNmwfUrZBycXGxqFtSUtJg9dHAgQPp3Lkzhw8fZteuXSQkJJgT6ERFRaHVatFqtTg5OVFaWkpycjInT57k7bffBuqCrc7Ozri6ulJTU0N1dTVFRUV07tyZo0ePkpqaSkxMjLk/Z2dniouLJXAobimenp7mwFxAQACFhYVUV1dz7NgxFi9ebC5XnwX6XK6urvj4+JCcnIyzszMajQZfX98m971q1SqOHj2KWq2muLiY0tJS0tLSaN++PTqdDsCcjKapY4qMjOQf//gHhw4d4uDBg7z55ptMnz7dav/e3t7m75GHDx8mKSmJDRs2mNsuLCzk8OHDnDp1ij179gB1f8zIzc3FxkZCIEJcKvmqEUIIIYQQ4iqq/8W5qWJjY3nzzTfp2rVrg2QFKSkpJCcn8+KLL6LT6Zg7d675F26tVtugbD1FUWjTpg2PP/74JY+7sZWRarUak8lkfm/tl35vb2+mTp3KgQMH+P7772nTpg2KouDj48OLL754wX61Wq1Fm82aNaNZs2Z0796dKVOmUF5eDtDgl/76cSmKQlxcHMOGDbNou1WrVuzYsYPmzZsTGhrKb7/9Rnp6Ovfdd1+D57nUj5kQN9q5XwsqlQqj0YiiKNjb25vPRbyQ2NhYEhIScHFxMW9TboqdO3dSVlbGyy+/jEajYfr06RgMhka/f1zKmBwdHencuTOdO3dm/vz5pKammgOE5zr32RVFYdy4cXh7e1v0O3LkSCIjIxtcT0lJacpjCiHOYfnThhBCCCGEEOKyGQwGCgoKyM3NBep+0Q4LC2u0vIeHB0OHDqVXr14NrldVVWFvb49OpyM7O5v09PSL9h0cHExaWpq5b71e3+RVg2FhYezcuROAnJwcioqK8Pb2xtPTk8zMTEwmE4WFhZw4ccKibnFxMTqdznxmWEZGBs7OzpSXl3Ps2DGg7uzHrKwsi7otWrQgLy/P/H7//v3mIERubi5qtfqCWZtbt27Nnj17KCsrA6CiooKCggKgblXnL7/8QlhYGP7+/qSkpGBjY4O9vb25fm5uboNzFIW4Vdnb2+Pp6cnu3buBuuBZfZKR83Xo0IGDBw+SmJh4SYHDqqoq8yrF5ORkCgsLgbrzWvfv309tbS3V1dUcOHDgksaUnJyMXq8H6lYp5uXl4e7ubk421ZjIyEg2b95s/p5x8uRJ8/WtW7eaz4bNycmhpqbmou0JISzJikMhhBBCCCGuIhsbG0aPHs3ixYsxmUwEBgbSs2fPC9axdj8yMpJt27Yxa9YsvL29CQ4Ovmjfzs7OjBkzhs8//xyDwQDA0KFDLVbjACxZsoRvv/0WAHd3dyZNmsSSJUuYNWsWarWa0aNHo9VqCQkJwcvLi9mzZ+Pj49PgPMJ6WVlZrFixArVajVqt5qGHHiI9PZ0nnniCb775hqqqKkwmE3379rXYEtm2bVv+85//mN/v3LmT//3vf+h0OtRqNWPHjrW6urKej48PQ4YMYd68eZhMJjQaDQ8++CCenp6EhoZSVFREaGgoarUad3f3BtuiS0tL0Wq1FglbhLhVjR07lqVLl7J27VqMRiOxsbHmRCPncnBwIDg4mNLSUry8vJrcfpcuXfjkk09466238PPzM39vCQoKol27dsyePRsPDw8CAwPNAfqmjCkjI4Nly5ahVqtRFIXu3bsTFBRkTlw0e/ZsunbtavFHhLvvvptvv/2W2bNnoygKnp6eTJgwgdtuu42CggLefPNNFEXBycmJ8ePH07JlywbtSXIUIS5OdaHDmq+2iIgIJTk5+br1d6vYvHmz+TwZUUfmxDqZF+tkXqyTebEkc2KdzIt1Mi/WybxYkjmx7lLmZeHChQwfPpzmzZtf20GdZ8OGDdjZ2dG9e/fr1qd8vlgn82LpVpuT+gzuer2e999/n1GjRl2Ts0NvtXm5XlQqVaKiKE1fPipEE8mKQyGEEEIIIcQNNWzYMEpKSq574NDBwYEuXbpc1z6F+LP6+uuvyc7Opra2lri4OEk4JMSfhAQOhRBCCCGEEDeUt7e31e3U11q3bt2ue59C/FldTlImIcTNT5KjCCGEEEIIIYQQQgghLEjgUAghhBBCCCGEEEIIYUECh0IIIYQQQgghhBBCCAsSOBRCCCGEEEIIIYQQQliQwKEQQgghhBBCCCGEEMKCBA6FEEIIIYQQQtwU9u7dy4QJE8jOzjZfKygoYObMmY3W2bBhA8899xxVVVXXY4ikpqYyc+ZM5syZg16vvy59CiHEjSKBQyGEEEIIIYQQN4WEhARCQkJISEi4pDqBgYHs3bv3kvoymUyXOLo6O3fu5Pbbb2fatGnodLrLakMIIW4VNjd6AEIIIYQQQgghRHV1NWlpaUyaNIkFCxYwePDgi9bJy8ujpqaG4cOHs379erp16wbUrVL84osvzCsCR44cSUhICCkpKfzwww+4urqSmZnJq6++yoIFCygqKsJgMNC3b1969OgBwJIlSzhx4gS1tbV06NCBwYMHs337dnbv3s3hw4c5cuQIY8eOvXYTIoQQNwEJHAohhBBCCCGEuOH27dtHZGQk3t7eODg4kJGRQUBAwAXrJCQkEBsbS2hoKPHx8ZSVleHs7IyzszPPPfccWq2W3NxcPv/8c6ZOnQrAiRMnmD59Ol5eXgCMHj0aR0dH9Ho9b7/9NjExMTg5OTF06FAcHR0xmUz861//IjMzk+7du5OWlkZUVBQdO3a85nMihBA3mgQOhRBCCCGEEELccAkJCfTr1w+A2NhYEhISmhQ4fOqpp1Cr1cTExLB792569+6N0Whk2bJlZGZmolarycnJMdcJDAw0Bw0BNm3axL59+wAoKioiLy8PJycnEhMT2b59O0ajkdLSUrKzs/Hz87sGTy6EEDcvCRwKIYQQQgghhLihampqSElJ4fTp00Dd+YMqlYrhw4c3WiczM5O8vDw+/PBDAIxGI15eXvTu3ZsNGzbg7OzMtGnTUBSFiRMnmuvZ2tqaX6ekpJCcnMyLL76ITqdj7ty51NbWkp+fz4YNG3jppZdwcHAgPj6e2traa/T0Qghx85LAoRBCCCGEEEKIGyozM5O4uDhGjRplvvb++++TlpaGu7u71ToJCQkMHDiQu+66y3xtxowZFBQUUF1djZubG2q1mh07djSaCKWqqgp7e3t0Oh3Z2dmkp6cDdect6nQ67OzsKC0t5eDBg4SFhV3FJxZCiFuDZFUWQgghhBBCCHFDZWRkEB0d3eBahw4d2LVrV6N1EhMTiYmJaXAtOjqaxMREevXqxe+//84777xDTk5Og1WG54qMjMRkMjFr1ixWr15NcHAwAH5+fvj7+zNz5ky+/PJLWrVqdWUPKIQQtyhZcSiEEEIIIS7J2rVrSUhIQKVSoVareeihh8y/bF8NGzdupEePHuh0uibXiY+PJzExkbfffhs7OzsAli9fzubNm3nnnXdwcnJqcltfffUV/fv3x8fH55LHLoS4PH379qVt27YW1+rNmDHDos7MmTMtro0YMcL8evr06ebXw4YNAyA8PJzw8HDzda1Wy7PPPmt1TGPGjLmk60II8WckgUMhhBBCCNFk+fn5pKenM3XqVLRaLeXl5RgMhqvax8aNG+nSpcslBQ4BmjVrxr59+4iLi8NkMpGSkoKbm9sltWEymXjkkUcuqY4QQgghxJ/VdQ8cfr3tKJsOZKFRq1CpVEwcFEXrlu6M+XAj857ogavDpf2A2BTZxZU8+ckW/DydUBQFO52G54dE4+/lREpWMb8knWLCXW0v3pAQQgghxF9cdXU1jo6OaLVagAYr+X788UeSkpKora2lVatWjBo1CpVKxdy5cwkKCiIlJYWqqioeeeQRQkNDMZlMfPfddxw+fBiA7t27A1BSUsIHH3yAo6MjkydPZsmSJZw4cYLa2lo6dOjA4MGDrY4tNjaWxMRE4uLiOHr0KCEhIRw8eNB8f8GCBRQVFWEwGOjbty89evQAYPLkyfTr14/Dhw9z7733snr1au69914CAwOb3LcQQgghxJ/RdQ0c2noFsvNoLh8/2QOdjYaSSj0Go/VDaq82H3cHPhnXE4AfEk+wdHsqL94TQ7ivG+G+btdlDEIIIYQQtzpvb28yMjJ4/fXXiYiIoFOnTuZtf71792bgwIEAfPHFF+zfv5/27dsDdSv5XnrpJQ4cOMAPP/zAxIkT+fXXXykoKODll19Go9FQUVGBo6MjGzZsYNKkSeag5NChQ3F0dMRkMvGvf/2LzMxM/Pz8LMbWvHlzkpKSqKysJCEhgc6dOzcIHI4ePRpHR0f0ej1vv/02MTExODk5UVNTg6+vL0OGDLFos6l9CyGEEEL8GV3XwKHG3gUXBx06Gw2AxerC73ce54+jORiMCq+M6EiAlxOlVXreX5VEdnEltloNEwe1o5W3C08t2Mo/H+uGo60N9//zZ54aEMmAaD/eWbmX29v70bGVV6PjqKwx4GRX91fyfccL+Pb3Y8x8sDPTl+ykoKwGqFulOOHOtgyIlh8MhRBCCCHqabVapk6dSmpqKikpKXz++efcc889dOvWjZSUFH7++Wf0ej0VFRX4+PiYA4f1CQwCAgIoLCwE4MiRI/Ts2RONpu5nQ0dHR6t9JiYmsn37doxGI6WlpWRnZzcavIuJiSEhIYH09HQeeuihBvc2bdrEvn37ACgqKiIvLw8nJyfUajUdOnS44r6FEEIIIf5srmtW5arTyeSVVvP4x5uZ9+N+kk4UNLjv6qDl4yd7Mjg2gP/tOAbAl1tSCG3hwoKnejG2bwTvfl/3w16kvzsHTxZyIq8cHzcHDpys+wH08Kki2vi5WfR9uqiSpz/dxmMfbWLFH+nc19UyK9ash7rwybie/H1Ie7xd7bktwvsqz4AQQgghxK1PrVYTHh7O4MGDGTlyJHv27KG2tpalS5fyxBNPMH36dLp3705tba25jo2Njbmu0WgEQFEUVCrVBfvKz89nw4YNTJw4kenTpxMVFdWg3fPFxsayevVq2rRpg1p99kfdlJQUkpOTefHFF3nllVfw9/c3t6PVahuUvdy+hWiqyZMnN3i/Y8cOli1bdl36Xrt2LXPmzGHOnDk888wz5tebNm1qUv0NGzbw3HPPUVVV1WiZ4uJiFi1a1Oj9yspKtmzZcsljb4rVq1dz5MgRoO68VL1ef1XbX7BgAe++++5l1Y2Pj2f37t1Nun7+58j1Nn36dMrLywEu+3mFEH8O1zVwqBj0fPREDyYOaoergy1z/reHn/adNN/v3rouc12YjyvZJZUAHMwoon/7ur/qxgR7UVqlp6K6lnYBHuw/Ucj+jAIGxwZyPLeM/NJqnO102OssF1LWb1X+4tm+PHVHJB/8sN/qGEsq9byzci9Th3fA8cyqRCGEEEIIUae0tJTc3Fzz+8zMTDw9Pc0BNScnJ6qrq9mzZ89F22rTpg3btm0zBxIrKioAsLOzo7q6Gqg7U1Gn02FnZ0dpaWmDrcfWeHh4MHToUHr16tXgelVVFfb29uh0OrKzs0lPT7/o+C61byFuBXfffTfTpk1j2rRp6HQ68+tzMxhfSEJCAoGBgezdu9fqfaPRiJubG08++WSjbVRVVbF169bLGf5FDRkyhNatWwNXP3BYWVlJRkYGlZWV5OfnX7V2r5SiKJhM1+4IsBdffPGatS2EuPld9+QoGrWK6CBPooM8CW7uzM9JmdwR7Q+A1qYujqlWqTCZFAAUa42oICrAg1UJx8krdeCxvhFsP5LNtsOniQpwv+gYuoV78/6qfRbXjSaFOSt283DPMIKaO1/2MwohhBBC/FkZDAb+85//UFVVhVqtplmzZjz88MM4ODjQvXt3Zs+ejYeHB4GBgRdtq3v37uTm5jJ79mw0Gg3du3enT58+dO/enY8//hgXFxcmT56Mv78/M2fOxMvLi1atLHeNnK9nz54W1yIjI9m2bRuzZs3C29ub4ODgi7bj5+d3yX0LcSWqq6uZPXs2r7/+OhqNhqqqKmbPns0bb7zBhx9+iL+/PxkZGZSVlfHoo4+yfv16srKy6NSpE0OHDqWgoICPPvqI0NBQjh07hqurK+PHj79ohvLa2lqWLFlCRkYGarWa++67j4iICItyeXl51NTUMHz4cNavX0+3bt2AuhWTBw4coLa2Fr1ez+jRo5k/fz4zZswgKyuLL7/8EqPRiMlkYty4caxevZr8/HzmzJlD69atGT58OPv27WPbtm2oVCruuusuYmNjMZlMLFu2jNTUVDw9PVEUhW7dutGxY0cyMjL49ttvqampwcnJiTFjxuDq6kp8fDxRUVGUlJRYJFratWsX69evR1EUoqKiGD58OFC3uq9Pnz4cOHAArVbL+PHjcXFxsXj+PXv20K5dO1xcXEhISOCuu+4C6lYM2tnZceLECUpLSxk+fDgdO3ZEURSWL19OcnIynp6el/05sXDhQiorKzEajQwZMoTo6Gjzxzo8PJz09HRGjBjBkiVLCAkJIT09HT8/P7p168aaNWsoKytj7NixBAUFUVFRwZdffkl+fj46nY5Ro0bh5+dHeXk5n3/+OeXl5QQFBTUYw+TJk5k7dy4pKSn88ssvTJgwAYBly5YREBBAt27dWLlyJUlJSajVatq0acN99913Wc8rhLj5XNfAoY1LM04VVNDSs+78mrScUpq72l+wTrsADzbuP8XDvcLYd7wAV3sdjrZaHG21lFbWYjBW4OPuQFt/D779/RjPNCE78oGThfi4W56h8/nGI7Rq7kKfKN/Le0AhhBBCiD85Dw8P7r33Xqv3hg4dytChQy2un7vlzsnJiVmzZgGg0WgYMWKERfm+ffs2WP00ZsyYi46rsTL1fQE8++yzVsvMnTu30fE2pW8hLpVer2fOnDnm9xUVFbRv3x47OzvCwsLYv38/MTExJCYm0qFDB/M5oBqNhr///e9s3LiRhQsXMnXqVBwcHHjttdfo168fUBfce/zxx3n44YdZvHgxe/bsIS4u7oLjqd82PH36dLKzs5k3bx6vv/66OXt6vYSEBGJjYwkNDSU+Pp6ysjKcnesWXKSnp/PKK6/g6OhIQcHZI6m2bdtG37596dKlCwaDAZPJxLBhw8jKymLatGlAXUCuuLiYGTNmUF5ezttvv01YWBhpaWkUFhbyyiuvUFZWxj/+8Q+6deuG0Whk2bJljB8/HmdnZxISEli1ahWjR48299u3b98GiZaKi4tZuXKlec7mzZvH3r17iYmJoaamhuDgYO655x5WrFjB9u3bufvuuy3mKSEhgUGDBuHs7MyiRYvMgUOoywb//PPPk5OTw4IFC+jYsSN79+4lJyeH6dOnU1paysyZM83B1vN99913rFu3zuK6Vqtl3Lhx2NvbU15ezrvvvms+OzY3N5cxY8bw0EMPUVBQQF5eHk888QSjRo3i7bffZteuXTz//PMkJSWxbt06xo8fz5o1a/D392f8+PEkJycTHx/PtGnT+PHHHwkNDWXgwIHs37+fX3/99YKfM+eqqKhg7969vPbaa6hUKiorK5tcVwhx87uugUO1jS3vrtpLRbUBjVqFr7sDEwe3v2CdR3qH8c9VSYxfuBVbrYYX7ok232vd0g3jmZWJUQHu/HvjEaL8Pay2U3/GoaIoaDVqJg9pZ1Hm2x3HCGzmxNOfbgNgTO9wusk5h0IIIYQQQoirqH6LcL0dO3aQkZEB1K3E/fnnn4mJiWHHjh08/PDD5nL1AaOWLVvi4+ODq6srAF5eXhQVFeHg4ICnpyf+/nU7us5NRnQhaWlp9OnTB4AWLVrg4eFBTk6ORSKghIQEnnrqKdRqNTExMezevZvevXsD0Lp1a6sJjlq1asW6desoLi4mJiaG5s2bW+3f398ftVqNi4sLYWFhnDhxgrS0NDp27IharcbV1dWcwT0nJ4fTp08zb948oC5ru7UVguc6ceIEYWFh5kBn586dSU1NJSYmBhsbG9q1a2ees/ozEs9VWlpKXl4eISEhqFQqNBoNWVlZ+PrWLTqJjo5GrVbj4+NDaWkpAKmpqcTGxqJWq3FzczOP35r6VYr1zv0DxqpVqzh69ChqtZri4mJz+x4eHg1WT3t6etKyZUsAfHx8iIiIQKVS0bJlS/PnQVpaGuPGjQMgIiKC8vJyqqqqSE1NNV9v164dDg4OF5zPc9nZ2aHVavnqq6+Iiooyz6UQ4s/hugYO9YWZfDC2u9V78c/1M78O93Xj3TF1f4lxsdfxxgOxVutMGRZjft3W34N1MwZZLdfCzYHVL1v+xQgwb5sGWN9IfSGEEEIIIYS4HkJCQli6dCkpKSmYTCZzYArOJhlSqVTm1/Xv68+4O/96/RmiF6IoVg+IaiAzM5O8vDw+/PBDoO4sQy8vL3Pg0NbW1mq9zp07ExQUxIEDB5g3bx6PPPIIXl5eTer/Qtd9fHwu6ey9Cz2jRqMxJ2pSq9VWzwtMTEyksrKSGTNmAHVbiBMSEsyrrM+d93NdLAHUxezcuZOysjJefvllNBoN06dPx2AwAFhsQT93DGq1usHnS1M+Dy5GrVY3mMf6s201Gg1TpkwhOTmZhIQEtmzZwqRJk664PyHEzeG6JkcRQgghhBBCCHFhcXFx/Pvf/250W+vVFhYWxs6dO4G61XxFRUV4ezfceZWQkMDAgQOZNWsWs2bN4s0336S4uLjBtmRr8vPz8fLyom/fvrRv355Tp05ha2tLTU2NuUxoaCgnT57EZDJRVlZGamoqgYGBhIaGsmfPHkwmE6WlpRw9ehQAb29vysvLOXbsGFAXxMzKyrLo+9xES8HBwaSmplJeXo7JZCIhIYGwsLAmz1FCQgLPPvus+fmnTp1KYmLiBeuEhoaSkJCAyWSipKSElJSUJvdXr6qqCmdnZzQaDcnJyU1aQXqxMdV/rFNSUnBycsLe3p7Q0FB27doFwMGDB61uN/bw8OD06dPU1tZSVVVFcnIyUBdEra6uJioqivvvv5/MzMwrGqMQ4uZy3ZOjCCGEEEIIIYRoXOfOnVm9ejWxsdZ3Xl1tvXr1YsmSJcyaNQu1Ws3o0aMtzjdMTEzkmWeeaXAtOjqaxMRE8/ZfaxISEti1axcajQYXFxcGDhyIo6MjrVq1YubMmbRt25bhw4ezdetWZs+ejUqlYtiwYbi6uhITE8ORI0eYNWsWzZs3JygoCHt7e2xsbHjiiSf45ptvqKqqwmQy0bdv3warMwGLREv33HMPH3zwAYqi0LZtW6KjoxsZdUMFBQUUFhY22Bbs5eWFnZ3dBTO0x8TEkJKSYh7/pQQq63Xp0oVPPvmEt956Cz8/P4uA7qUaNGgQX375JbNmzUKn05nPcR04cCCff/45e/fuJSwsDA8PyyPAPDw86NixI7Nnz6Z58+bmrew1NTUsWLDAvALR2tm1Qohbl6opy9KvloiICKX+rxLirM2bN5vPFBF1ZE6sk3mxTubFOpkXSzIn1sm8WCfzYp3MiyWZE+tkXqxryrzs3r2bpKQkHnvssesypptBY/NSXV2NnZ0d5eXlvPPOOzz//PPmsx3/7ORryDqZF+tUKlWioijX568N4i/lilYcqlSq40AZYAQM8kkqhBBCCCGEEJdv2bJlHDp0iAkTJtzoodwUPvnkE6qqqjAYDNx9991/maChEELcLK7GVuW+iqLkX4V2hBBCCCGEEOIv7YEHHrjRQ7ipnJtdWAghxPUnyVGEEEIIIYQQQgghhBAWruiMQ5VKlQ4UAQqwUFGUT62UGQeMA2jWrFmn5cuXX3Z/f1bl5eU4OTnd6GHcVGROrJN5sU7mxTqZF0syJ9bJvFgn82KdzIslmRPrZF6sk3mxTubFksyJdTIv1vXt21fOOBTXxJUGDn0VRclSqVTNgZ+B/1MUZWtj5SU5inVyuKslmRPrZF6sk3mxTubFksyJdTIv1sm8WCfzYknmxDqZF+tkXqyTebEkc2KdzIt1khxFXCtXtFVZUZSsM//PBb4DulyNQQkhhBBCCCGEEEIIIW6syw4cqlQqR5VK5Vz/GrgDOHC1BiaEEEIIIYQQQgghhLhxriSrsjfwnUqlqm/na0VR1l2VUQkhhBBCCCGEEEIIIW6oyw4cKopyDIi+imMRQgghhBBCCPEXVFNTw5w5cwAoLS1FpVLh7OwMwJQpU7Cxsf6ra3x8PFFRUXTs2PGK+p8+fTpTp06VpBtCCHGeK1lxKIQQQgghhBBCXDFbW1umTZsGwJo1a7C1tWXAgAE3eFTWKYqCoiio1VeUMkAIIW4JEjgUQgghhBBCCHHTOXLkCCtWrMBkMhEYGMiDDz6IVqtttPzKlStJSkpCrVbTpk0b7rvvPpKSkli3bh0GgwFHR0fGjh2Li4sL5eXlfP7555SXlxMUFNSgnQ0bNvDbb78B0L17d/r160dBQQEfffQR4eHhpKen89RTT7F7924SExMxGAzExMQwePDgazkdQghxQ0jgUAghhBBCCCHETcVgMBAfH8/EiRPx9vbmiy++YNu2bfTr189q+YqKCvbu3ctrr72GSqWisrISgNDQUF588UVUKhXbt2/n559/5r777uPHH38kNDSUgQMHsn//fn799VcAMjIy2LFjB1OmTEFRFN59913CwsJwcHAgNzeXMWPG8NBDD3Ho0CFyc3N56aWXUBSFBQsWcPToUcLCwq7bHAkhxPUggUMhhBBCCCGEEDcVk8mEl5cX3t7eAHTt2pUtW7Y0Gji0s7NDq9Xy1VdfERUVRbt27QAoKipi8eLFlJaWYjAY8PLyAiA1NZVx48YB0K5dOxwcHMzXo6OjsbW1BSAmJobU1FTat2+Ph4cHwcHBABw+fJjDhw/z5ptvAnVnNObm5krgUAjxpyOBQyGEEEIIIYQQNxWdTndJ5TUaDVOmTCE5OZmEhAS2bNnCpEmTWL58Of3796d9+/akpKTwww8/XLUx3XnnnfTs2fOy2xNCiFuBnOYqhBBCCCGEuCYmT558VdrJzs5mzpw5zJkzh7y8vEbLTZ8+nfLy8qvSp7ixDAYDBQUF5ObmArBz584Lruarrq6murqaqKgo7r//fjIzMwGoqqrCzc0NgN9//91cPjQ0lF27dgFw8ODBBlub9+3bh16vp6amhr179xIaGmrRX5s2bdixYwfV1dUAFBcXU1ZWduUPLoQQNxlZcSiEEEIIIYS44UwmU6NZavft20f79u0l+cRfiI2NDaNHj2bx4sXm5CgXWt1XU1PDggULqK2tBWDEiBEADBo0iEWLFuHm5kZwcDAFBQUADBw4kM8//5y9e/cSFhaGh4cHAAEBAXTr1o23334bqEuO4u/vb65XLzIykuzsbN577z2gLiv0Y489hrOz81Wbg5qaGubMmQNAaWkpKpXK3P6UKVOwsbH+67yiKKxbt47ff/8dlUqFq6srDzzwAL6+vlc8ppSUFH755RcmTJjQ5DrTp0/Hzs7OPP5HH30UV1fXKx7Luc7NxL169WrCwsJo3br1Ve1DiL8qCRwKIYQQQgghrqmSkhI+++wzqqurMRqNPPTQQ4SGhjJ58mT69evH4cOHuffee0lJSSEpKYna2lpatWrFqFGjOHjwIJs2bUKlUnH06FEmT57MH3/8webNmzEajQQFBfHggw82GnQUt55zA8TTpk27YNkxY8aYX7/00ksW96Ojo4mOjra47uTkxHPPPWd+Xx9oBOjfvz/9+/dvUN7T05MZM2Y0uNavX79Gz1y8Gmxtbc3Pf25g7GK2bNnCsWPHeOWVV9DpdBw6dIgFCxYwY8aMC2alvpYmTZqEk5MT33//PevXr2fkyJEXrWM0GtFoNJfc15AhQy5niEKIRkjgUAghhBBCCHFN7dq1izZt2nD33XdjMpnQ6/VA3YoqX19f8y/6Pj4+DBw4EIAvvviC/fv30759e3r06GEOmpw+fZrExEReeOEFNBoNS5YsYefOnXTt2vWGPZ8Q18uRI0dYsWKFeRXmgw8+aBEM/Omnn5g8ebL5TMbIyEhatWrFzp076d69O5MnT6ZPnz4cOHAArVbL+PHjcXFxoaysjCVLllBYWAjA/fffT0hISKNjWbNmDUVFReTn51NYWEi/fv3o27fvBccfGhrK5s2bOX78ON988w21tbVotVrGjBmDt7c3O3bs4MCBA9TW1qLX6xk/fjwLFy6ksrISo9HYICi4du1a/vjjD9zd3XF2dsbf3x+A+Ph4oqKi6NixIytXriQpKQm1Wk2bNm247777Lvk5hfirk8ChEEIIIYQQ4poKDAzkq6++wmg0Eh0dbf4FX61W06FDB3O5lJQUfv75Z/R6PRUVFfj4+NC+ffsGbSUnJ3Py5EnzVlK9Xn9Vt4cKcbMyGAzEx8czceJEvL29+eKLL9i2bVuDVY9VVVXo9XqaNWvWoG5AQACnT58G6gL2wcHB3HPPPaxYsYLt27dz9913880339CvXz9CQ0MpLCxk3rx5vPbaaxccU3Z2NpMmTaKmpoY33niDXr16XXCV4IEDB/D19cXb25u///3vaDQajhw5wvfff2/Ocp2ens4rr7yCo6MjRqORcePGYW9vT3l5Oe+++y59+vQhIyODxMREpk2bhtFo5K233jJ/X6lXUVHB3r17ee2111CpVOZzLC/nOYX4K5PAoRBCCCGEEOKaCgsLY/LkyRw4cID//Oc/3H777XTt2hWtVmveYlxbW8vSpUt56aWX8PDwYM2aNebz6s6lKApxcXEMGzbsOj+FEDeWyWTCy8sLb29vALp27cqWLVuavF1apVIBdedHtmvXDqgLKB45cgSoW82YnZ1tLl+fcMbOzq7RNqOiotBqtWi1WpycnCgtLcXd3d2i3AcffIBarTavMK6qqiI+Pp7c3FxUKhVGo9FctnXr1jg6Oprfr1q1iqNHj6JWqykuLqa6uprU1FSio6PNqyrrn+dcdnZ2aLVavvrqK6KiosxlLuc5hfgrk8ChEEIIIYQQ4poqKCjAzc2NHj16oNfrOXnypMXW4vogoZOTE9XV1ezZs6fBasR6rVu3ZsGCBfTv3x9nZ2cqKiqorq7G09PzujyLEDdKfZDsQuzt7dHpdOTn5+Pl5WW+npGRYc5KrdFozEFEtVqNyWQC6oLyL7zwQpP6qXdugpZz2zpf/RmH9b799lvCw8N56qmnKCgoYO7cueZ7tra25tc7d+6krKyMl19+GY1Gw/Tp08191D9DYzQaDVOmTCE5OZmEhAS2bNnCpEmTLus5hfgrkxOEhRBCCCGEENfU0aNHmTNnDnPmzGHPnj1Wz0FzcHCge/fuzJ49m4ULFxIYGGi1LR8fH4YMGcK8efOYNWsWH374IaWlpdf6EYS44QwGAwUFBeTm5gJ1QbX6YOC5BgwYwPLly81niR45coS0tDQ6d+58wfbbtGnDli1bzO9Pnjx5FUffUFVVFW5ubgDs2LHjguWcnZ3RaDQkJyebzyUMDQ1l79696PV6qqur2b9/v0Xd+pWEUVFR3H///WRmZgLX9zmF+DOQFYdCCCGEEEKIa6J+FVHXrl2tJi85d5URwNChQxk6dKhFuXOz7ALExsYSGxtrUW7WrFlXMlwhbmo2NjaMHj2axYsXm5Oj9OzZ06Jcnz59qKysZPbs2ahUKlxcXBg/fvxFV9iNHDmSpUuXMmvWLEwmE6GhoYwaNeqaPMuAAQOIj49nw4YNRERENFquS5cufPLJJ7z11lv4+fmZt2kHBATQqVMn5syZg4eHB6GhoRZ1a2pqWLBggXk1c33m7Ov5nEL8GagURblunUVERCjJycnXrb9bxebNm+nTp8+NHsZNRebEOpkX62RerJN5sSRzYp3Mi3UyL9bJvFiSObFO5sU6mRfrZF4syZxYJ/NinUqlSlQUxfIvKkJcIdmqLIQQQgghhBBCCCGEsCCBQyGEEEIIIYQQQgghhAUJHAohhBBCCCGEEEIIISxI4FAIIYQQQgghhBBCCGFBAodCCCGEEEIIIYQQQggLEji8Sdzz1robPQQhhBBCCCGEEEIIIcwkcCguyGgy3eghCCGEEEIIIYQQQogbwOZGD0BAZa1CTa2Rpz/dRlF5DWo1uDrYklVYgUlR8Pd0wtlBy9RhHXB11PG3+ZuZ+9htuDnaYlIUHv94M/96vDvVegPvr06ipFKPq4OOzqHNySwoZ/exfL74v76oVSqe/+I3ThZW8PXE/uSWVPHRuoOUVNRgq9UwaXB7AryceO/7fTjba0nNLiHUx5WnBkTe6CkSQgghhBBCCCGEENeZrDi8CThoVdhqNXwyrieDOgUwPC6YT8b15P3HbsPH3YH543rSp60vy3ekoVap6B/Vko0HsgDYcyyfVt4uuDro+HjdQW5v78eCp3rRr11LNu4/hY1GTbC3C0knCgAoraolsqU7Nho1//phP8/c2ZaPn+zJuAFt+GjtAfOYMgsreOuRrhI0FEIIIYQQQgghhPiLkhWHN7HC8mqyi6u4792fqK41YK+z4bE+EdwR48/0r3eSkJZH8qkiPJzsyMgv53BmEa/e3wmA/u1aMn/dQSL93ekd6cOWg6eJCfKiuKKGwbEBVOkN7M8o5KlPt4ICDrY2uNhrAdh44BSTB7dHo1ax7dBp/jiaywv3RLP10Gm+2pqCWqXC0U7LPx/thtGk8PnGIyQdL6DWaGJIbCCDOgXeyGkTQgghhBBCCCGEEFeBBA5vYl9tTUFvMDL3sW6UVxuY/b/d/Hr4NP3b+1FYUcPI20LILChn0uD2DVYL1lOpYOuh0+zPKCQzv5yDJwspraol3MeN/NIqFEXhq+f642yv5eX/7mRY5yBzXTutxqK9/249ypxRcXi52FFeXQvA+r0ncbS1Yd4TPdAbjPz9ix10atWMFu4O12xehBBCCCGEEEIIIcS1J1uVb2KVNUa8nO0IaeHKz0mZ2Os05JRUUaU3UFVj4P01SVTrjXy09gCFZdVE+rmz+WDdFuaNB07R0sORXpE+LHyqF90ivAlt4YqHky0atYqTBRU422tJOlGIRq2mb1tfth3OvuB4Iv3deW/VPn7cnYHJpACQmJbHL0mnePrTbUz8/DdKq/ScKqy45nMjhBBCCCGEEEIIIa4tWXF4k6ipNfLwBxuoqKlFpVKhVqkYHhfEx2sP8vcvfqONnzsqwGhSMCkKzvY6amqNvPdoNwK8nADILq7k/dVJfLvjGK4OOvpGtSS7uBKA3pG+zPrfblp5O9d1qEBbfw/W7T3J19uOUlKpx9vV3mJceoPR/HrioHYcOVXEH0dzeXrRNj55sicKMOGutsSGNLvWUySEEEIIIYQQQgghriMJHN4k1s0YBMCXW1Kw02m4r2srsosraenpyPuP3QaAm6OOar0RR1stbo46ao0mArycUBSFYzllhLRw4Z3RXc1t/rTvJNnFda97RvqwPnIQL8bvACCipRuf/HSIj57ogZOdlmlf/8E9Z7YqN3e1J7CZEyZFYXtyDg66uk+TrMIKWrd0p3VLd/5IySWvtIrYkGasSThBTJAnNho1mQXleDnbYaeTTy0hhBBCCCGEEEKIW5lEd25By7anUlqlx8vZjvELt2I0KfRu60tIC5cmt+HpbMfYvhFMif8dBYUuoc25LaIFAH/r15pXlyXQzMWOwGbOVOvrVh0u/uUwpworUVDoEOxFK28Xgr1dyC6u5JlFv6Kg4Oqg4/WRsdfkuYUQQgghhBBCCCHE9SOBw5vM6N7h5tct3Bz4dHxv8/v7u4WYXz/QPfSibd0R7c8d0f4Nrr07ppv5db92LenXrqVFvZ6RPvSM9LG4/qqVgKAKeLxfax7v1/qi4xFCCCGEEEIIIYQQtw5JjiKEEEIIIYQQQgghhLAggUMhhBBCCCGEEEIIIYQFCRwKIYQQQgghhBBCCCEsyBmHQgghhBBCCCGEuGWsXbuWhIQEVCoVarWahx56iODg4OvS97p167jrrrsuWObQoUOsXLkSgLy8PFxdXdHpdPj6+vLYY481Wi89PZ0lS5Y0uJadnc2IESPo1avXJY91woQJw4CU+fPnH7rkykKcIYFDIW4xd878gf7tWjJlWAwARpOJh+ZuIKKlGzMf7HxjByeEEEIIIYQQ11B+fj7p6elMnToVrVZLeXk5BoPhuvW/fv36iwYOIyMjiYyMBGDu3Lnce++9BAYGXrTt4OBgpk2bZn5/6NAhvvnmG+Li4i53uMOANYAEDsVlk8ChELcYO62G47ll1NQasdVq2H0sH09nuxs9LCGEEEIIIYS45qqrq3F0dESr1QLg5ORkvnfkyBFWrFiByWQiMDCQBx98EK1Wy/Tp0+natSv79+/HaDTyxBNP0KJFC9asWUNRURH5+fkUFhbSr18/+vbtC8Aff/zB5s2bMRqNBAUF8eCDD7Jq1Sr0ej1z5szBx8eHsWPHXtLYN2zYwG+//QZA9+7d6devX6Nly8vL+frrrxk3bhy2trYALFiwgKKiIgwGA3379qVHjx4ATJ48mR49erScMGHCPqAKuAcIAYYCvSdMmDAduO9M0x8DzYBK4Mn58+cfuaSHEH85EjgU4hYUG9qMnUdz6Rnpw6YDWfRp68uBk4UAHDlVzIKfDqKvNaHTqnl+SDT+Xk78tO8kvx3JwaQoHM8r476urTAYTWxIOoXWRs3MhzrjYq/jx90ZrN2dQa3RhK+HI1OGxWCn1dzgJxZCCCGEEEII8Pb2JiMjg9dff52IiAg6depEeHg4tbW1xMfHM3HiRLy9vfniiy/Ytm2bOTjn6OjIyy+/zJYtW/jll1945JFHgLqtwJMmTaKmpoY33niDXr16kZubS2JiIi+88AIajYYlS5awc+dOhg0bxpYtWxqsCmyqjIwMduzYwZQpU1AUhXfffZewsDD8/f2tlv/qq6/o1asXAQEB5mujR4/G0dERvV7P22+/TUxMDE5OTtTU1JCdnV2+bdu26AkTJrxDXUBw1oQJE1YBa+bPn/8twIQJEzYA4+fPn390woQJccB8oPHopRBI4FCIW1Kftr78d+tR4sKbk55bxp0x/ubAob+XI/98tBsatZrdx/L596ZkXr2/EwDH88qY/2RP9AYjYz/ezN/6t2b+uJ4s+OkQvySd4t64YHq0bsHAjnX/OH2xKZn1ezK4p8v1OS9ECCGEEEIIIS5Eq9UydepUUlNTSUlJ4fPPP+eee+7B398fLy8vvL29AejatStbtmwxBw47dOgAQEBAAHv37jW3FxUVhVarRavV4uTkRGlpKcnJyZw8eZK3334bAL1ej7Oz8xWNOzU1lejoaPPqwZiYGFJTU60GDrdu3UpVVRW33357g+ubNm1i3759ABQVFZGXl4eTkxM2NjakpqaWnCmWCAw4v80JEyY4AbcB30yYMKH+su0VPZT4S5DAoRC3oFbeLuSUVLHpQBadQ5s1uFdRbeC97/dxqrACFSoMJpP5XnSQJw62NjjY2uBoa0PXsLp/VIObO3MspxSoCy5+sSmZimoDVbUGOrVq2L64dVTWKjz96TYAisprUKvB1cGWnOJKPJ3tWPR078tqt6i8hvfXJJFXUoXRpODtZs+sh7qw73gB3/5+TM7aFEIIIYQQ15RarSY8PJzw8HB8fX35/fff8fPzu2AdGxsbc13TOb8j1V8/956iKMTFxTFs2LALtrllyxa2b98OwIQJE3Bzc7u8BzpHdnY269at48UXX0StVpuvp6SkkJyczIsvvohOp2Pu3LnU1tYCoNE02CFmxHqsRw0Uz58/P+aKByn+UtQXLyKEuBl1Dfdm0S+H6dvWt8H1+M0pRAd58un43rzxYCy1hrP/KGo1Z7/k1SoVWpu69yoVGE0KAO+t2sczd0WxcHwvHukV1qC+uLU4aFV8Mq4nn4zryaBOAQyPC+aTcT2ZP64nKtXltxu/JYWOwV4seKoXi57uzeP9Wl+9QV8Go0k+R4UQQggh/ipKS0vJzc01v8/MzMTT05MWLVpQUFBgvrdz507CwsIuq4/WrVuzZ88eysrKAKioqKCgoACoCy4ajUYAevfuzbRp05g2bdpFg4ahoaHs27cPvV5PTU0Ne/fuJTQ0tEEZg8HAv//9b0aMGIG7u3uDe1VVVdjb26PT6cjOziY9Pb0pj1IGOAPMnz+/FEifMGHC/QATJkxQTZgwIbopjYi/NllxKMQt6s4YPxxtbQj2dmHf8QLz9YqaWnOylJ/3ZV5yu1U1BjydbTEYTWzcn4WXJF75UzKZFOauSeLQySK8XOx4fWQstloNWYUVfLTuICUVNdhqNUwa3J4AL6cGdQvLqunYysv8vpW3i/l1td7AzG8SOZ5XRpiPKy8Ni0GlUrEnPZ9FPx/GaFII93Xl/wZGcSynjOXbU3l1ZCy/JWfz5oo9rJhyJ4qi8OQnW/jP//VrdDzvfb8PZ3stqdklhPq48tSAyOs2d0IIIYQQ4saprKxkzpw5mEwmTCYTarWaZs2a8e677zJq1CgWL15sTo7Ss2dPc71ly5bRoUMHPD09zdfWr1/P0KFDLfrw8fFhyJAhzJs3j1OnTuHn58eDDz6Ip6cnPXr0YNasWQQEBFxScpSAgAC6detm3v7cvXt3i23Ke/bs4dSpU6xbt45169aZr8fFxdGrVy+2bdvGrFmz8Pb2Jji4ScdJLQUWTZgw4TlgBPAw8MmZZCnaM/f3NfkhxF+SBA6FuEU1c7FneJzlPxb33xbCe9/vY8Xv6cQEeVqpeWFj+kTw3Ofb8Xa1J6i5M1U1xqsxXHGTOVVYycv3dmDy4PbM+nY3vx4+Tf/2fvzrh/08N7AdLT0dOXKqiI/WHuCd0V0b1B3SOYg5/9vNql3H6RDsxZ0x/uZgdWp2KZ+O74Wnsx1///dvHDxZRLivK++t2sfbj8Th5+nEOyv3siYxg3s6B5J6Zov8gYxCgpo5k5JVjNGk0Lpl3V9YLzSezMIK3nqkKxr1FSyfFEIIIYQQt5QWLVrwwQcfALBmzRpsbW0ZMODskX5t27a1qDNr1izi4+MBCAwMZPLkyUDdNuVz686YMcP8OjY2ltjYWCZPnszLL79svj58+HCGDx/e5PHW9wXQv39/+vfv32jZzp0707lz48f+PPvss1avz5071zwnZxKhfHvm9Xbg/L+w39WkgQtxhgQOhbjFfD/V8vt8dJAn0WeChJF+7nz+TB/zvUf7RgBwR7Q/d0Sf/YtW/HNnk2ede29IbCBDYgOvxdDFTaSFuz0hLVwBCPNxJaekiiq9gUOZRcz6325zuVqDZeA4NqQZX/xfXxJS80hIy2PCom0sfKoXABG+bjRzsQegVQsXcoorsdfZ0MLNAT/PupWLA6L9WL3rOPfGBePr7khGXhnJWSXc2zWY/ScKMSkKUQHuFx1PrzY+EjQUQgghhBAcOXKEFStWmFcaPvjgg2i12ktq4+effyYxMRGDwUBMTAyDBw9uUpmCggI++ugjQkNDOXbsGK6urowfPx6dTne1Hk+IG0oCh0II8RfU4LxLNegNCiZFwclOyyfjel6gZh0Xex392rWkX7uWzFi6i/0ZhbjY68znZkLdOZpGRQGURtuJCvBgV1oeNmoVHYK9+OeqfRgVGHd7m4uOx06rsXpdCCGEEEL8dRgMBuLj45k4cSLe3t588cUXbNu2zZxN+Vzfffddgy3A9Q4dOkRubi4vvfQSiqKwYMECjh492uCMxMbKeHh4kJeXx+OPP87DDz/M4sWL2bNnD3Fxcdf0uYW4XiRwKIQQAgBHWy3ebvZsPXSaXpE+KIrCsZwyQlq4NCi3Nz2f1n7u2Gk1VNYYOF1YQXNXe6r11re1+3s5kVNcyanCClp6OLIh6RTtAutWyLYL8ODd7/dye3s/3BxtKa2qpai8hsBmTqhUqiaNRwghhBBC/HWZTCa8vLzw9vYGoGvXrmzZssVq4HD48OF07NjR/L5+G/Hhw4c5fPgwb775JgA1NTXk5uY2CBw2VsbDwwNPT0/zeYUBAQEUFhZem4cV4gaQwKEQQgizqcM68OHaA3y97ShGk0Lvtr4Wgbqjp0v4eN1BNGoVJkXhrg4BRPi6NUjScy6djYbnh0Yz+9vd5uQogzoFANC6pRvFFXraBXgAENzcGTcHHaozaZ+bMh4hhBBCCPHXdbW2BN95550Nkqk0tUxBQQE2NmdDKyqVypx1WYg/AwkcCiHEX8Do3uHm1y3cHPh0fG/z+/u7hZy95+7AnFFdLtjW/beFcP9tIRbXzz1rE+DZu6PMrzsEezHfypZjW62GNdPuNr+fNLh9g/uNjeeFe6IvOEYhhBBCCPHXYDAYKCgoIDc3l+bNm7Nz584GKwWbok2bNqxZs4bOnTtjZ2dHcXExGo0GZ2fni5YR4s9OAodCCCGEEEIIIYS4JdnY2DB69GgWL15sTo5ysZWD54uMjCQ7O5v33nsPAFtbWx577LEGgcPGyqjVaqttCvFnIYFDIYQQQgghhBBC3HLOzXw8bdq0C5YdM2aMxbW5c+eaX/fr18/quYhNKTNjxgzz6wEDBlx40ELcYiQ0LoQQQgghhBBCCCGEsCCBQyGEEH8ptSW5ZHz2LMmv9iTlH/1J//hRanKOXZe+j865m6qTBwFQjAYOTGpN0R8rzt5/cxBVGfvJWf1Pyo/8CkD+xs8w6avMZQ5ObnPRfop2fMP+CYHmNgBK9q5j/4RASnb/cFljL9rxDaeWzbC4Xluax/H5Yzk6+y7zfF5M2rvDrV4/Gf98k8d3dPZdZHz+f00qe75jcx+g8kSS1eupb51duaApTOfY3Acuqe3qrBSOffAgya/3Ifm13uT8+C8URbmscVobX/249QUnSX6tN2WHtlyVti8mf+NnFP3+P4p2fIPTjvkN7hnKCzk0pQOm2poGYzwyvTuG8kJMBj1p79+PYjRcl7EKIYQQQoirRwKHQggh/joUhROfjsMxrCsR/9hG+KsbaDF0Coay/OvSvUOrTlQeSwSg+tRhbL1bmd+bairR52dg5xeJ95DncWrdA4D8jZ83CBw2lZ1va4oTVpnflySsxs4v8io8RUO5a97HqXVPwl5ZVzef90y9aJ2QF7+7oj6rTx9FUUxUHP0DU03lFbV1PkNZAWUHN11WXZO+mhML/kazOyYQ8fpmwl5ZR+WxRAq3xl/VMdYWnSZ93hh87puOc2Tvi1e4QorRQNFvy3HrfA8uMXehzTnY4HOyZPePuLS7HbXW1mp9tY0Op4juFCeuvuZjFUIIIYQQV5eccSiEEOIvwyb3MCqNFs9ej5iv2fu3BUBRFLK/m0PZwc2gUtH8rv/DLXYI5Sk7yF0zFxsXL6oyD+Eacxe2vhEUbPo3ptpqAp9ahG2zQAxlBZxaMo3awiwAfO5/FceQzg36dwyJpezAJjx7j6EiLQHPno9QtOMbACqP78U+IAqVWsPJ+OdxiepHbUkuhpIcjn3wIDaO7rSavAyA7O/foezARlRaOwLHL0Lr0sziWR1CO1OZugvFWIupVk9N3vEGgcOqjP2c/nYmxpoKnPVQ26ENWlfvS57T2pJcnNqcPYDc3q9uRaSxuoITC5/AWFmCYjTQYsgLuETfAdStmmw79zCKopC1/FUqkn9D5+mPQtNW5hUnfI97l3upyU6lNOln3DrfA9StyLMPiqEiZQfGqlL8HnkHx9AumPTVZH75AjWnj2LbIhRTbXWjbXvdPo7ctfNwbtu3wXVTbTVZS6ZTmZGESq3B574ZOEXc1nBcu1bi0CoW58heAKh19vg+MJP0uQ/g2ftRctbMpbboFPr8k+gLT+HV72949R0LQNEfKyjY/AWKsRaHoBh8H5yFSm2ZqdFQmkfmfybTYugLuLSvO0OpaMc3lCb9jKm2Gn3eCVyi78Tn3rpznsoObSXnh/dRDHp0XoH4jX6Pmuyj5K2fT+BTn1K67ycyPn+WyH8eAMVEyj9up/XMXxv0WZ78G3YBUag0NmjsnaltFkFp0i+4xQ4BoCRxNc3vvvDqT5foO8j+/m3cu1hfbSqEEEIIIW5O1zVwqNY58PSn2wAoKq9BrQZXB1tyiivxdLZj0dOX/lfz9XtPsnLncQAy8srw83RCrVYRG9KMv/VvfVnj/HJLCnY6Dfd3C7lguTEfbsTLxY73Hzv7i8PTn27DaDLx6fhrvwJACCHEpbEpycQ+oJ3Ve6V711KdeYiwV9ZhKC8k7e2hOIZ1AaDq1GHC//YLGgc3kl/tiUf3Bwl9aRX5Gz+nYPMX+N7/GlnfvI5XvydwDO2MvvAUx+eNJvy1jQ36cGjViexVdZn4KtN303zgRIp3fY+xupzKY4k4toptUN6r71jyNyym1aSl2Dh5AHUrEx2CO9LinimcXjGHou1LaH73c5YPpFLh2Lo7ZYe2YqwqxaX9APQFJwFQjLVkLXuVwPGLsXH25Lf4t8lZ9S5+o9+75Dn17D2GjM+epWDzf3Bq3QP3biPRunmj1toSOO5TNPbOdfP57jCc2w9ApVKdM+fr0OccI2z6TxhK80mZeTse3UZetM+SxDUE/99X1OQco2DLf8yBw7oJMhD60ipKD2wk54cPaDXxawq2fYlaZ0fY9PVUZR4m9a1Bjbbt0KoTpfvWU578W4PrBVvqVg2GT/+J6uzUuo/v65tQa+3MZapPp1h8ftk2C8RYU4GxqgyAmuw0gictxVRTQcobffHs9Qg1uccpSVxDyAv/Q6XRcmrJKxTvXIl71/ssxpf5n8l4D3kB144Nn6Eq8xBh035EZaMj5Y1+ePZ5DLXOjtx182j13NeobR3I++kT8jcupvmdz1CVWbdlviJ1J3Y+EVSd2IdiNOIQ3MGiz8pjCdj7R5nf6wO6UpK4GrfYIdQW51CTewzH8G6NzimAnW8EVVa2hwshhBBCiJvbdQ0cmvSVfDKublXCucG57OJKXl2667LavDPGnztj/IG6QN47Y7ri6qBrUMZoUtCoVdaqX7EqvZHckiqau9qTkVd2TfoQQghx7VWkJeAaOxSVWoPWpRmOYXFUnUhCbeeEQ2B782o8XbNA8wo7u5YRVKTsAKD8yHZqslPN7RmryzFWl6OxczJf03n6oxhrqS3JpSY7FVvvEOwDo6k6vpfKY4l49nnsouNU2ehwbtcfAPuAdpQf2dZoWbfYoRRs+jfGqjJ87ptO7vqPAajJOUb16RTS59WtvLQvK6XWJ/gSZuss58jeRPxjG+WHNlN2cDOpbw4kbPpPaBxcyF71DpVHd4JaTW1xNobSPLSuzc11K1J3np1zN2+cLhJ8Aqg8vg8bJw90nn5o3X3I/OpFjJUlaBxcAXCJucs8N7WFmXV1ju7Es+9jddf92mDX8sJ/WGx+9/+Ru24e+N9xtt+0BDz71J3faNciFK1HS2py0s0rLM1Ujfy8cea6c1Q/1Fpb1FpbbJw8MZTmU568naqT+0l9eyhQt+XZxtnLajNOrXtQtHMF7t3uR62zP+d6dzT2LgDYtgiltvAUxqpSak4fJe2fdQFIxaDHIbgjKo0Nts2CqD59lMoT+/Dq/wQVR3eCYrRYJQt1q0ptW4Sa3+t9Yqj4aQnGqjJKdq/BtcNAq6sjGzy+WoNKo7X4mhBCCCGEEDe3m2arssmkMHdNEodOFuHlYsfrI2Ox1WrIKqzgo3UHKamowVarYdLg9gR4XfwHznveWse9XYNJTMtn3IA27D1ewB8pOdQYjET6uTNxUDtUKhUrd6bzQ2IGGrWKAC8npt3XEYCMvHJejN9BbkkVw+OCGdbF+i9UvSJ92HIoi/u7hbDpYBZ92vqyYX/dLypGk8LnG4+QdLyAWqOJIbGBDOoUyL7jBXy1NQUXex3H88pwUVfTu7fSYBWGEEKIq8/g2pKqjM3Wb14ggYXK5uwfpFQqNSqbM2e5qdQopjMJHxQTIS98h1pnZ6WFsxyCO1Ky50dsXJujUqlwCO5ARVoClSf24W9ltZfFWDQ25n8vVGo1isnYeF9BMZw6nYJKa4utd6uzNxQFW58wQl9cCcDmzZvp0KfPRftujI2jG26dh+HWeRjH54+lIvUPTNUVGMsKCX15DSqNliPTu6MYaqw80KX921ec8D01OWkcmd4dAFN1OSV7fsSj+0N1zZ352KjUGhTjuXPT9H6cIrqTs/qfaAvOBoIv9PlRz84nrC4Adw59fgYaW0dzsOzczyXUmrrPH0XBPW4ELYa9dNE+vAaMp3jnd2QseprA8YtRaWws2lWd065Tm54EPD7Poh2H0C6UHdqMSmODU+seZMY/j6KY8Ln3FYuyaq0dSu05HzsbHc6RvSndt57ihNX4jLBMmmONYtA3eg6iEEIIIYS4Od00yVFOFVYyNDaQRU/3xtFWy6+HTwPwrx/288ydbfn4yZ6MG9CGj9YeaFJ71bVGgpo58+HfuhMV4MHQzoHMe6IHn47vjd5g4o+juQAs257Gx0/2YMFTvXhu0NntRScLypk9qgsf/q0HX209isFostpPzzYt2H4kG4A/UnLpGn52JcX6vSdxtLVh3hM9+PBv3Vm75yTZRXWHuKdmlzL+zkgWPd2b4mqFgyeLLn3ShBBCXBJD80gUg57CX5eYr1Ue30d5yu84hnahJHENismIoayAitSd2AdGN7ltpzY9Kdjyhfl9ffbk8zmGxFKw8TMcguv+UOXQqiPFf/wPG5dm5lVz51LbOWKqLm/yOM7X4p4ptBg6pcE1nXcrjOWFVJxJzILJQHVWCgD5m78gf/MXNFV58nZzogxjdTn6vBNo3VtirCrDxtkTlUZLefJv5tV/53IM7UJJwmoUk5HakhzKz6zeBMhe+TYle9c1KK+YTJTu/pGwV9bTetZ2Ws/aTuBTixokgbHGIawLxbtWAlCdlUz1qSMXfa5mdz2LXfKPDdvYWddGTc4xaouyGgZjAbfOw6lI22XOZm3SV5O1/DW8Bjx1wb6cWnenZM+P5iQ9hopi9AWW81XPZ8SrqO2dyfxqygUzNjsEd6AyLYGa3ONnxlNlziDuGNqFgo2f4xDcERtnTwwVxdRkp2HrE27Rjm2LUGryjje45ho7lPwNizGU5Zk/ly/EUF6EjZMHKo32omWFEEIIIcTN46ZZcdjC3Z6QFnW/MIX5uJJTUkWV3sChzCJm/W+3uVytofGVFedSq1T0aONjfr/veAHf/HaMmlojZdV6Aps50TXcm2BvF97+bi+3RXhzW+sW5vJdQpujs9H8P3v3HR9Vlf5x/DMzyaQ30juQkNA7AlJFEQsqomAFFRti2bWjP9uurO66uuzqioisBRtiVxAQC0UFld4JECAJIQnpPZOZub8/AgNhJvTu9/168XLm3nPPee4zIcQn556D1ctCqL+Vkqo6IoP93MYJ8rMS5OvN/LW5JEYE4uO971GdZVt3s62ggkUbGgqLVXX17CyuwstiJj0u1NVfdICZ/NJq2ic1O4KMiYjIETOZSL5jCrs++Qu7v52EydsHa7MEYkc8TUCrnlRvW87mv10EJhMxwx7DOySKuvyth9V13Mi/kDv9STZPGILhtBOQ2pP4659za+ffsju7PvkrAS27AeAdEo3hdBK45/2BmvW5ju2v3oxXcKRrc5QjceAmH9Cwy23Sba+R+/EzOGsqCKkoo9p6H75xadTlb3Vba/FgarLWkPvRU5jMXhiGk7A+1+LfvBPWiES2vzaGLX8fim9CW3yi3dcNDu58EZUZv7B5woX4RLUksFUv17na3I0EdbygUfuqLb/iFRqDd+i+f68DWvWk7q37qC/LbzLG8H6jyHn3ITZPGIJvQlv8D6MgHNx+EIZP0L4++o9i54f/R8aECzGZLSSMetFt9pzZ6kvzsVPJnfE0O6c/CYaD0HOGH/IRdN/YNKIve4htr4wCpxMsXsRf+yzW8ASP7U0mEwmjX2LHpDHkff4cvh6KfQBeQeEkjH6R7DfvxbDbAIi+/CF8olvi37wL9opCAlJ7NsQQ3xp7ULjHpx+C2g0k+537Gx9r05+caQ/S7NxrDuuJiaqMXwhq7/61KCIiIiKnOcMwjukPYAFWADMP1TYtLc3Ya9r8TcaMX7YYhmEYu0qqjNtfm+86N+OXLca0+ZuMylqbce2/5hmHa9R/vjdKq+oMwzCMy5+f7TpeV283Rr70rZFfWu0ae9r8TYZhGIbd4TRWbNttvDZ3nTHmvz8adoejUWyGYRi3vzbf2FVS1eR4367MNq7651xj8aa8RvfylxlLjd+3FLhdt3JbofHEh7+53o9/Y44xd2XWYd/nH8GPP/54qkM4LSkvnikvnikv7pQTz/bPy7ZXbzYc9XWnLpg9Ml++8VSHoK+X/WyffLtRm59pGMbR5WX75NuN2rwth254htLXimfKi2fKi2fKizvlxDPlxTNgqXGM9R390R9Pf47Ho8p/AjYch37cBPh4Ex3qx8L1DY8tG4bB1rzyI+7HZm94zDjE30qNzc6iPY9BOw2D3eU1dG4ewW3nt6ayrp4a2+HNaNxfn9YxjOidQreUyEbHu6dEMnPpDtdjzjlFldTa7Efcv4iIyMnSfNxbmL2sh254grW4991THYLsJ2bYo9jLCo7qWqfdRnCnIR5nnYqIiIjI6e2YHlU2mUwJwKXA34AHjktEBxg/rAsvz17LB4s243AaDGgXR0pM8BH1EejrzcVdkrjz9YVEh/qRFhcKNGzI8sIXK6mqtWNgMLxnCwJ9j3ztHX8fL67p4/7D8EVdEskrrebuN37CwCDE38ozIw//8S8RERGR04FPdMpRF/7MXlbCel11nCMSERERkZPBZBiH3iWwyYtNpk+A54Eg4CHDMIZ6aHMHcAdAZGRktxkzZhz1eGeryspKAgMPvVP0H4ly4pny4pny4pny4k458Ux58Ux58Ux5caeceKa8eKa8eKa8uFNOPFNePDvvvPOWGYahmUpy3B31jEOTyTQUKDAMY5nJZBrYVDvDMKYAUwDS09ONgQObbPqHNX/+fJSXxpQTz5QXz5QXz5QXd8qJZ8qLZ8qLZ8qLO+XEM+XFM+XFM+XFnXLimfIicnIdyxqHfYDLTSbTdmA6MMhkMr13XKISERERERERERGRU+qoC4eGYTxmGEaCYRjNgWuBHwzDuPG4RSYiIiIiIiIiIiKnzPHYVVlERERERERERETOMse0q/JehmHMB+Yfj75ERERETiezZ89m6dKlmEwmzGYz1113HS1atDjVYYmIiIiInHDHpXAoIiIicjbKzMxk7dq1jB8/Hm9vbyorK7Hb7ac6LBERERGRk0KFQxEREZEmlJWVERAQgLe3NwCBgYEAbNy4kc8++wyn00lycjLXXnst3t7ePPHEE/Tq1Ys1a9bgcDi47bbbiImJoaKigrfeeouqqiqSk5NZv34948ePd/UnIiIiInI60hqHIiIiIk1o06YNpaWlPPPMM3z44YdkZGRQX1/PtGnTuPXWW3niiSdwOBwsWrTIdU1AQACPPfYY/fr147vvvgPgm2++IS0tjccee4xOnTpRXFx8qm5JREREROSwqXAoIiIi0gRfX1/Gjx/P9ddfT1BQEG+++SaLFi0iIiKC6OhoAHr16sXmzZtd13Tp0gWApKQkioqKANi6dSvdu3cHoF27dvj7+5/kOxEREREROXIqHIqcYYY8O4vX5613vf948VbeXZBx3PrPK61myLOzeOfHTa5jZdU2LvnbN/x39tqj6vOd+ZtYnll4vEIUETmpzGYzaWlpDB06lJEjR7Jx48aDtvfy8nJd53Q6ATAM44THKSIiIiJyvKlwKHKG8baY+XljHmXVthM2RmyYP79uLnC9X7h+F8mRQUfd300D0+naMuJ4hCYiclLl5+dTULDv+2FOTg7BwcEUFRW5jv/222+0atXqoP2kpKSwfPlyANavX091dfWJC1pERERE5DjR5igiZxiL2cQlXZL4bEkmtwxq3ehcaVUdL3+zlt1lNQCMHdKWdonNuHPyQl66uTcBPl6MeGkedw5uy+BOCbzwxUou6JjgVtSzeplJjAgkI7eUtLhQFq7PpX/bWIoqag86ztMfLaVv6xgGd0pg1rIdrMkqZvyVXXjxy1X0bBVFv7axbMot5bW566i1OfD2MvOPG3vhZTHx8jdr2ZxbhsVs4o4L29C5uQqNInLq1dXV8dFHH1FTU4PZbCYyMpIbbriB7t27M3XqVNfmKP369TtoP5deeilvvvkmy5Yto1WrVoSEhODj43OS7kJERERE5OiocChyBrqsRzJ3vb6IkeemNDr+2tz1DO/ZgvZJzSgoq+Hx939l6riBtE0MY112MdEh/sSG+rM2u5jBnRLYsLOEey9p73GMge3imL8ul7BAH8wmE+FBPq7CYVPj/PnSDtz/9i/EhPnz6ZJt/HvMuY36rHc4ee7T5Tx+VVfS40KpqqvHx9vM579uB+D1sf3JKqzk8fd/5c27B2L1shz/5ImIHIGkpCQefvhht+OtW7fm8ccfdzs+YcIE1+vk5GTuv/9+oGGtxHvuuQeLxUJmZiYZGRmunZpFRERERE5XKhyKnIECfLw5v2M8X/y2Hav3vhUHVmwrJKuw0vW+2manus5Oh6RmrNlRTEFoDUO7J/PN8iwKy2sJ8rXiZ/X8baB7aiTvzN9EWIAPA9rFNTrX1DhhgT6MHpDGI9OW8PTIbgT7WRtdl1NYSbNAX9LjQl33AbAuu5grejQHICkikKgQP3KKqmgZHXzUORIROZ2UlJQwdepUDMPAYrFw/fXXn+qQREREREQOSYVDkTPUlT1bcM8bP3FhpwTXMcMw+Pct5+Lj3XimXvukZny1dDu7y/25+bx0ft6Yx6INu2ifFNZk/94WM61iQ/h0yTamjO3Pks35hxwHYHtBBcH+3q7ZifszAJPJfSztGSAiZ7uoqCiPMxRFRERERE5n2hxF5AwV7Gelf9tY5qzMdh3r2jKSr37f7nq/Na8MgKgQP8qr69lZXEVsmD/tEpvxyZJM2ic1O+gYV/Vqya3ntybYv/HMwabG2bizlN+37mbS7f34ZEkmeSWNF/9PjAikqKKWTbmlAFTX2XE4nXRIbsYPa3cCkFNUye7yWhLCA44oHyIiIiIiIiJyfKlwKHIGu6pXS8r321153EXtyNhVxtjXF3L7awuYuSzLda51fCjxzRqKce2Twigqr6V94sELh82jghi834zGg41jszv498zVPHBZR8KDfLnjgra89PUqjP2mE3pbzDx+VVcmzVnH2NcX8tj7v2KzO7msezJOJ9w5eSHPfbqCBy/vqPUNRURERERERE4xPaoscob5cvxFrtdhgT589djFrvch/lb+76quHq97ZFhn1+t2ic2Y8+SlHtvFhPozZewAt+MXdkrkwk6JBx1n8p39Xa97p0fTOz0agIeu6OQ6nh4Xyn/G9HG7dv82InJqfLBoMz+uzcViNmEymfjTpe1pHe95SYN3F2Tga7UwoneKx/NN+XZVNhm5ZdxzseeNmURERERE5PShwqGIiIiwPqeE3zYX8OrtfbF6WSirtmF3OE91WCIiIiIicgqpcCgiIiIUV9QS7G91LRMQsmdt09Ev/0D/trGs2lEEwPgru7iWPdjrm+VZzF6eRb3DSVyzAB4Z1hlfbwsL1+/ivYUZmE0mAny9eemm3q6xHv/gN3aVVNEnPYbbLmhzEu9UREREREQOlwqHIiIiQreUSN5ftIUxr86nS4twBrSLo2NyOAD+Pl68cmtf5q3KYfK363n22h6Nru3bOoZLuiYB8PaPm5i7IosrzmnB+ws389z1PYkI9qWytt7Vfmt+OZNu74e3l5lbJy3g8h7NiQrxO3k3KyIiIiIih0WFQxEREcHP6sV/b+vL2qxiVm0v4rlPVzDm/HQAzmsfv+e/cbw+b73btdt3V/D2j5uoqrVTU2+nW8tIANomhvHiV6vo3zaWvq1jXO07t4ggwNcbgKSIQArKalQ4FBERERE5DalwKCIiIgBYzCY6NQ+nU/NwWkQFMW91DgCm/dqYPFz34lereHpEd1Jigvl2VTartxcD8KdLO7BxZwm/bi7grjcW8drt/YCGHdb3MptNOJyGh15FRERERORUMx+6iYiIiJztsgsr2VlU5Xq/Nb/cNQtwwfrchv+uy6VNgvsuyzV1dsKDfLA7nPywJtd1PLe4itbxYdw0MJ0QPyu7y2tO8F2IiIiIiMjxpBmHIiIiQm29g1fnrKWq1o7FbCIuzJ8/De3Ib5sLqLc7ue9/P2MYBuOHd3G7dvTAdO5782eiQ/xoHhVETZ0DgKnfbWBncTUGBl1aRNAyOpit+eUn+9aOyezZs1m6dCkmkwmz2cx1111HixYtmmy/cOFCrFYrvXr1Oui5xYsX06ZNG0JDQw87lpUrVzJz5kwcDgcWi4WhQ4fSuXNnAPLy8njzzTcBuP3224mMbHhc/IUXXsBut1Oazqn4AADoKUlEQVRVVUV9fb1rvDvvvJMJEyYwceLEwx5/fxkZGUyePJmIiAhsNhvBwcEMHjyYDh06HFV/B5o4cSLDhw8nOTn5uPQnIiIiIkdHhUMRERGhVWwI/76lj8dzl/Vozo0D0hodG7Xf+8u6J3NZd/cCz1Mju7sdu7BTIhd2SnS9P3CjldNJYWEh27ZtY/z48Xh7e1NZWYndbj/oNf379/d43OFwNDq3ZMkS4uLiDrtwmJOTw+eff869995LREQEhYWFvPLKK0RERJCQkMCqVavo2LEjQ4cObXTdI488AsDixYvJysrimmuuOazxDkdqairjxo0DIDs7m9dffx1vb29at2593MYQERERkVNLhUMRERERD2prawkICMDbu2Ejl8DAQNe5J554gm7dupGRkQHALbfcQlRUFDNnzsTHx4fBgwczceJEWrZsydatW+nYsSO1tbX4+PgQHh5OVlYWb731FlarlYceeohvvvmG1atXYzabadOmDVdddVWjWL777juGDBlCREQEABEREVx44YV89913dO/enR9//BGTycTmzZu5//77D/sev/zyS9auXYu3tzdjx44lODiYiooKPvzwQ4qLG9aqHDFiBCkpKQftJzExkUsuuYQFCxbQunXrJvvYvn07H3/8MfX19Xh7ezN69Giio6Ox2Wy8++677Nq1i5iYGOrr6w86noiIiIicHCocioiISJOm3TfoVIdwykRHR5OVlcUzzzxDeno63bp1Iy1t30xLX19fHn30UZYsWcInn3zimn23v+rqah544AEAZs6cCUDXrl1ZsGCB61HcqqoqVq5cydNPP43JZKK6utqtn127dnHBBRc0OpacnMzChQtp3749ffv2dRUsD1ddXR0tWrTgiiuu4LPPPuPnn3/m4osv5uOPP2bQoEGkpqZSXFzMK6+8wtNPP33I/hITE5k3bx5Ak31ER0fzwAMPYLFY2LhxI19++SV33HEHixYtwmq18sQTT5CTk8Pf//73w74PERERETlxVDgUERER8cDb25vx48ezZcsWMjIyePPNN7niiivo3bs3AD169HD999NPP/XYR7du3Q45jq+vL97e3rz33nu0b9/e4zqBhuG+87SnY0fCy8vLNVZSUhIbN24EYOPGjeTl5bna1dbWUltbi6+v72H33VQfNTU1TJs2jYKCAkwmEw5Hw3qYmzdv5rzzzgMgISGB+Pj4Y7o3ERERETk+VDgUERERaYLZbCYtLY20tDTi4uJYsmSJq3B4OHx8fA7ZxmKx8Mgjj7Bp0yaWLl3KggUL+POf/9yoTWxsLFlZWSQkJLiOZWdnExsbe9ixeBrXZDIBDffpdDqBhoLkQw89hNVqPaL+srOziYmJOWgfM2bMIC0tjTvvvJOioqKj3pxFRERERE4O86kOQEREROR0VF5eTkFBget9Tk4O4eHhrvfLli0DYOnSpQfdadkTHx8famtrgX2z8dq3b8+IESPIyclxa3/BBRcwd+5cioqKACgqKmLu3Lmcf/75R3xfh9KmTRsWLFjgep+dnX3Ia3Jycpg9ezYDBgw4aB81NTWuDWEWL17sOt+qVSt+//13AHJzc9m5c+cx34eIiIiIHDvNOBQRERHxwG63884771BTU4PZbCYyMpIbbrih0fkXXngBp9PJmDFjjqjv3r178+GHH2K1Wrn77ruZPHmya0OQq6++2q19YmIiw4YN47XXXsPhcGCxWBg2bBiJiYlubY/VyJEjmT59OhMmTMDpdJKamsr111/v1m7Lli0899xz2Gw2goKCGDFihGtH5ab6GDx4MNOmTeP7778nPT3d1Ve/fv149913mTBhAgkJCSQnu+/SLXK2qKur47nnngMafkFhMpkICgqiqKiIkJAQnnrqqaPqd/HixXz++eeEhobicDiIiYnhpptuOujs4f13XN9/cycREZG9VDgUERER8aBZs2YMHz68yfMDBgzg0ksvbXRs6NChrtcH7m68/7kuXbrQpUsX1/tHH330kPEceE1TfXvSu3dvt0es939MuGvXrnTt2hVo2D36tttuO2h/aWlp/Otf/2ryfFN9tGzZkmeeecb1/rLLLgPAarVy6623HnRMkbOFj48Pjz/+OECjYl1RURGTJk06pr67devGNddcA8Cbb77JsmXLjmh5BRERkQOpcCgiIiIiInIacDqdvP/++2RmZhISEsLYsWOxWq3s3r2bjz76iIqKCqxWKzfccINrTVFPHA4HNpsNPz8/ACoqKvjwww8pLi4GYMSIEaSkpDR5/Y8//siiRYswm83ExsaqsC8i8gemwqGIiIjIEZowYcKpDkFEzkK7d+9mzJgx3HDDDUydOpUVK1bQs2dPPvjgA6677jqioqLYtm0b06dPd9tECRrWXt26dStlZWVERUXRsWNHAD7++GMGDRpEamoqxcXFvPLKKzz99NNNxvHtt9/y17/+FW9vb6qrq0/U7YqIyBlAhUMREREREZHTQHh4uGvt0qSkJIqLi6mtrSUzM5OpU6e62u1dE/VAex9VNgyD6dOnM2/ePIYMGcLGjRvJy8tztdu7KVNT4uPjefvtt+nYsSOdOnU6TncnIiJnIhUORURERERETgNeXvv+98xkMuFwODAMAz8/P9e6iIfDZDLRsWNH5s+fz5AhQzAMg4ceeuigG6Xsb9y4cWzevJk1a9Ywe/ZsnnzySSwWyxHfj4iInPnMpzoAERERERER8czPz4/w8HCWL18OgGEY5OTkHPK6LVu2EBERAUCbNm1YsGCB61x2dnaT1zmdTkpKSkhPT+fKK6+kpqaGurq6Y7wLERE5U2nGoYiIiIiIyGnslltuYfr06cyePRuHw0H37t1JSEhwa7d3jUOn00lYWBijR48GYOTIkUyfPp0JEybgdDpJTU3l+uuv9ziWYRi8/fbb1NTUYBgGgwYNwt/f/4Ten4iInL5UOBQRERERETkFhg4d6nodHh7Ok08+6Xo/ePBg1+uIiAjuueeeg/bVu3dvevfu7fFcYGAgt91220Gv2T+WBx988PBuQEREznp6VFlERERERERERETcqHAoIiIiIiIiIiIiblQ4FBERERERERERETcqHIqIiIiIiIiIiIgbFQ5FRERERERERETEjQqHIiIiIiIiIiIi4kaFQxEREREREREREXGjwqGIiIiIiIiIiIi4UeFQRERERERERERE3KhwKCIiIiIiIiIiIm68TnUAInLkSirrmPztejbuLCHQ1xtvi5kR56bQp3XMqQ5NRERERERERM4SKhyKnGEMw+AvM5ZyQacEHhveBYD80mqWZOSf4shERERERERE5GyiwqHIGWbl9iK8LGaGdkt2HYsO9eeKc1qQV1rNC1+spK7eAcC4i9rRLrEZRRW1PPfZCqrr7DicTu69pAMdkpqdqlsQEZEzWF1dHc899xwA5eXlmEwmgoKCAHjkkUfw8vL84+W0adNYtmwZ//jHP/D19QVgxowZzJ8/nxdeeIHAwMCTcwMiIiIicthUOBQ5w+zYXUFqbIjHc6EBPvz9xp5YvSzsLKri+c9X8N/b+vLj2ly6tYzg+n6tcDgNV2FRRETkSPn4+PD4448DMHPmTHx8fBg8ePBhXRsZGcmqVavo2bMnTqeTjIwMQkNDT2C0IiIiInIsTnrhcMizsxjeqwV3Dm4LwMeLt1JrczBqQNpR9ZeZX87Ls9ZQVWfHbDLxym19sHpZjmfIIqe1/85ey9qsYrwtZv5+Y09enrOOrXnlmM0mdhZVApAeF8JLX6/G4TQ4Nz2alBjPhUcREZGjsXHjRj777DOcTifJyclce+21eHt7u7Xr3r07y5Yto2fPnmzevJmUlBTWrVt3CiIWERERkcNx0ndV9raY+XljHmXVtmPuy+F08sIXK7n3kg68cdcA/jm6FxazNoqWs1tyZBBbdpW53t9zcXv+MaoXZdU2Pvt1G6EBVl67sx//va0P9Q4DgA7J4bx0U2/Cg3x54YtVzFuVc6rCFxGRs4zdbmfatGnceuutPPHEEzgcDhYtWuSxbVRUFJWVlVRXV7N06VK6det2kqMVERERkSNx0qtsFrOJS7ok8dmSTLdz+aXVPPruEsa+vpBH311CQVnNQftatrWQFlFBpMQEAxDsb8ViNp2QuEVOF52bh2OzO/l66Q7Xsb2PHlfV2WkW6IvZZOK71TtxGg2Fw/zSakIDrFzSNYkhXRLZklfmsW8REZEj5XQ6iYiIIDo6GoBevXqxefPmJtt37tyZpUuXsm3bNlJTU09WmCfF7NmzefbZZ5kwYQLPPfcc27ZtO9UhMW3aNJYvX36qwxAREZEz1ClZ4/CyHsnc9foiRp6b0uj4q3PWcUHHBAZ3SmDuymwmzVnHM9d0b7KfnOIqTCYTj7//K2XVNga0i3PrU+RsYzKZeHpkN17/dj0fL95KiL8VX28LY85vTauYEJ79ZBmLNuyiU3I4vt4Nj+2v3lHMx4u34mU242u18MgVnU/tTYiIyFnDarUeUfvu3bvz/PPP06tXL8z7PSmyYMECfv75ZwDGjRvHu+++S0VFBUlJSdx4443HNeYTITMzk7Vr1zJ+/Hi8vb2prKzEbrcf1rUOhwOLRUvtiIiIyOnnlBQOA3y8Ob9jPF/8th2r974fGDfklPDUiIZHVs7vEM/U7zYctB+H08na7GJeubUvPt4Wxr+7hFaxIXRpEXFC4xc51cKDfHn8qq4ez02+s7/r9ZjzWwMwuFNDQV5EROR4s9vtFBUVUVBQQFRUFL/99hutWrVqsn2zZs24/PLLad26daPjAwYMYMCAAa7399577wmL+UQoKysjICDAtbbj3l2is7Ky+OSTT6irqyMwMJDRo0cTEhLCxIkTadmyJVu3bqVjx46kpaU12a558+ZkZGRQU1PDjTfeSGpqKkVFRbz99tvYbA3L/4wcOZKUlBQMw2DGjBls2rSJ8PDwRjE2FYuIiIhIU07ZgoBX9mzB3JXZ1Nma3t3VZDr4Y8eRQX50TAp3zbjqkRrVaO03ERERETmxvLy8GDVqFFOnTmXChAmYTCb69et30Gv69etHZGTkSYrw5GjTpg2lpaU888wzfPjhh2RkZOBwOPjoo4+4/fbbeeyxx+jduzdfffWV65rq6moeeOABzjvvvIO2czqdPProo1x99dXMmjULgKCgIO677z4ee+wxbr31Vj7++GMAVq5cSX5+Pk888QQ33HADmZkNywMdKhYRERERT07JjEOAYD8r/dvGMmdlNkM6JwLQNiGM+etyuaBjAj+s3Um7xLCD9tEtJbJhV+Z6B94WE6uzihjes8XJCF9ERETkD2/o0KGu148//vhB244ePdrj8QkTJhzXmE4VX19fxo8fz5YtW8jIyODNN9/koosuYteuXbzyyitAQwEwODjYdc3ezWHy8/MP2q5z584AJCUlUVxcDOwrBObk5GA2m8nPzwdgy5YtdO/eHbPZTGhoKGlpaYc1hoiIiIgnp6xwCHBVr5Z89ft21/u7LmrHv75ezSeLMwnxt/Lg5Z0AmLmsYROIod2SG10f5OfN8J4tuHfqT5hMcE5qFD1bRZ+0+EVERERE9jKbzaSlpZGWlkZcXBwLFiwgNjaWhx9+2GN7Hx8fAAzDOGg7Ly8vV/8OR8PTOt9//z1BQUE8/vjjGIbBn/70J1d7T0/tHGoMEREREU9OeuHwy/EXuV6HBfrw1WMXu97HhPrzwqhebtccWDDc3/kdEzi/o9ZuExEREZFTJz8/H5PJRFRUFAA5OTnExMSwceNGMjMzadmyJQ6Hg/z8fOLi4hpdGx0dTWVl5SHb7a+2tpbQ0FDMZjOLFy/G6XQCkJqayk8//UTPnj2pqKggIyODHj16HNUYIiIiIqd0xqGIiIiIyNmgrq6Ojz76iJqaGsxmM5GRkdxwww307duXjz/+mJqaGpxOJ+edd55bsc7Ly4vbbrvtkO32179/f6ZMmcLy5ctJS0tzzV7s3LkzGRkZTJgwgaioKNdGNUczhoiIiMhRFw5NJpMvsBDw2dPPJ4ZhPH28AhMREREROVMkJSV5fAw4MDCQBx54wO34/fff3+h9YmLiIdsFBga61oSMioriiSeecJ0bNmwY0PCY8jXXXOMxxqbGEBEREWnKscw4rAMGGYZRaTKZvIGfTCbTbMMwlhyn2EREREREREREROQUOerCoWEYBlC55633nj/G8QhKRERERERERERETi1TQ/3vKC82mSzAMiAVeNUwjEc9tLkDuAMgMjKy24wZM456vLNVZWUlgYGBpzqM04py4pny4pny4pny4k458Ux58Ux58Ux5caeceKa8eKa8eKa8uFNOPFNePDvvvPOWGYbR/VTHIWefYyocujoxmUKBz4F7DcNY21S79PR0Y9OmTcc83tlm/vz5DBw48FSHcVpRTjxTXjxTXjxTXtwpJ54pL54pL54pL+6UE8+UF8+UF8+UF3fKiWfKi2cmk0mFQzkhjsuuyoZhlJpMpvnARUCThUMREREROfPdfffdxMfHu97feeedhIeHH3V/kydPpqKiwuPmIkfivffe4/zzzyc2NvaY+hERERGRBseyq3IkUL+naOgHXAD847hFJiIiIiKnJavVyuOPP37E1zkcDiwWS6Nj1dXVZGVl4ePjQ2FhIREREUcd14033njU14qIiIiIu2OZcRgLvLNnnUMzMMMwjJnHJywREREROZNkZ2fz4YcfYrPZiIyMZNSoUfj7+zNx4kRatmzJ1q1b6dixIxdccEGj61asWEGHDh0IDg5m6dKlXHTRRQBMmzYNX19fduzYQXl5OVdeeSVdu3YlIyODWbNmERgYSG5uLklJSdx8882YTCYmTpzI8OHDSU5OZv369cyaNQu73U5ERASjRo3C19f3VKRGRERE5Ix1LLsqrwa6HMdYREREROQMYLPZeO655wAIDw/nzjvv5J133mHkyJGkpaXx9ddfM2vWLEaMGAE0zCp84IEHPPa1dOlSLr30UoKCgnjjjTdchUOAsrIyHnzwQfLz85k8eTJdu3YFGoqUTz75JCEhIbz00kts3bqV1NRU13WVlZXMmTOH++67Dx8fH7799lt++OEHLrnkkhOVEhEREZGz0nFZ41BERERE/jgOfFS5pqaGmpoa0tLSAOjVqxdTp051ne/WrZvHfsrLy9m9ezcpKSmYTCYsFgu5ubnExcUB0KlTJ8xmM7GxsZSXl7uua968OWFhYQAkJCRQVFTUqHC4bds2du3axUsvvQSA3W6nRYsWx+nuRURERP44VDiU01ZxZS2T564nY1cZ3hYz0aF+jL2wLQnhgcfUb1FFLZPmrOPJEQ3/E/P8ZyvYsbuCCzslUFFbT4ekcLq2PLz1lR6etpjbL2hDWlzoEcXw9EdLKauq499j+ng8/+2qbKZ+t5GIIF9q6u3EhvpzQ/9WRzTG/lZtL8LLYqJdYjMAXvxyFT1bRdGvbaxbu0+WZPLstT2OeqymHG2uRETkzOfj4+Px+LJly6iurubJJ58EoLa2lqVLl3L55ZcD4OXl+UfV/Y+bzWacTmej84Zh0KZNG8aMGXM8whcRERH5w1LhUE5LhmHw1xnLuKBTAo9f1fBY0ta8MkqqbCTst2mjw2lgMZuOqO/wIF9X0bC4spb1OSW8e9+g4xb7oVTW1rMlrww/bwt5JdXEhPl7bNe/bSz3XNwegJXbC3n24+Vc3dp8VGOu3lGEr9XiKhyKiIgcT35+fvj7+7NlyxZSU1P59ddfadXq0L/wWrp0Kffccw8tW7YEoLCwkFdeecVVODxaLVq04KOPPqKgoICoqChsNhslJSVER0cfU78iIiIifzQqHMppaUeZE4vFzNBuya5jKTEhQMOsuPcWZtAs0JfM/HKeva4HT03/nSljBwDw8eKt1NocjBqQxs7iKl7+Zg1lVTYsZhP/d1VXzGaTq/3j7/9GaVUdd01ZxLiL2jF3RTY9W0XRtWUE9/3vZ565pjuJEYE8/9kKOjUP55KuSU3GfMXf5zDsnOb8urkAH28Lz4zsTlig+wyLnzbsolerKMICfJi/Lpdr+6Z66K2xzs0juLhrIiu3budqILe4iv/OWUdZVR0+3hb+PLQjSRGBLMnI54NFW7A7nAT5ezN+WBfq7A5mLcvCbIYf1uQy7qJ2AKzJKubTXzMpqazjtvPbuGYf1trsPPvxMrbvrqBVbAiPDuuMyWTivYWb+TUjnzq7g7YJYfzp0g6YTCYenraY9LhQVu0ooqrWzv2XdaRDUjPq6h289NUqsgorSYwIpK7eeZA7FBGRM93o0aNdm6NEREQwevTog7YvKiqiuLi40SPEERER+Pr6sm3btmOKJSgoiNGjR/Pmm29it9sBuPzyy1U4FBERETlCKhzKaWl3lZNWsSFNnt+UW8aUOzsRE+ZPXml1k+3+8flKrumTQp/WMdjsDpwGlFbVuc4/c013npr+O6/d0Q+AuSuyAQjw9Wbcxe146atVDDunBRW19QctGgLU1jtokxDGLYNaM/W7DcxekcX1/dxnW/y4Lpcb+6cRFmBlwifLD6twCNAqJoQlaw0A/jNrDfdd0oH48AA27izhv7PX8sKoXrRLbMZ/xpyLyWRi9oosZizeyp2D23JptyR8rRZG9E5x3WdxZS3/uvlcsgsrefqjpa7C4Za8cqaM7U94kC8PvPUL67JLaJ/UjMt7JHPjnselX/hiJb9uLqBXWsP/gDkMg1du7ctvmwt4b2EG/7ixFzOX7cDH28LkO/uTmV/O3W/8dFj3KSIip7+JEye6HUtMTOSRRx5xO37//fd77CM8PJznn3/e7fhjjz0G4LYm4d4x09LSXGspAlxzzTUex0pPT2f8+PEHuw0REREROQQVDuWMlB4X0uQjvntV19kpqqilT+sYAKxeliMao1vLSBat38V/56x1FRYPxttipmerKABSY0NYkVno1qakso5dxdW0TwxrWATebGJ7QQXNo4IO2b+x5781Njvrc0qY8Oly17l6uwOAwvIanvtsA8UVddgdTqIPkqNz02Mwm0wkRwY1Kqamx4USGewHQMuYYPJLq2mf1IxV24v4+JdM6uodVNTaSI4MdBUO++7JcavYEPJLawBYs6OYYec0b+gnOpiW0Ye+RxERERERERE5fahwKKelSH8za3aVNXne17rvS9diNmEY+87V2xseiTUwDrzsiDgNg6zCSny8LFTU1LuKaU2xmE2YTA3rLVpMJhxO9/EXrM+loraem175EYCqOjvz1+Vyc1T6IePZkldGuL8Jp2EQ6OvtsZg5ae46hvdsSe/0aNcj3U3xtuxbL3H//Hl77TtuNplwGAY2u4P/zl7LK7f2JSrEj3cXZGCzO936MptNOPe/7yNbflJERERERERETiNHt9OCyAmWHGqm3u7km+VZrmObcktZvaPIrW1YgA+lVXWUV9uw2R38urkAgAAfbyKCffllYx4ANruD2nrHYcfw2ZJtJEUEMn54F/719WrsjmNfo2/+2lz+dv05TLtvENPuG8Srt/Vl/rrcQ163ekcRs5dn0znGmwAfb6JD/Vi4fhfQsJHM1rxyAKpq7UQE+wIwb3WO63o/qxc1dYd/7wfaWyQM8bdSY7OzaMOuQ17TIbkZP65puLftBRVk5lcc9fgiIiIiIiIicvJpxqGclkwmE0+P7MZrc9cz45eteFvMxIT6MfbCdhRW1DZq62Uxc0P/Vtz35s/EhPqTGB7oOvfIFZ35zzdrmLYgA4vZxBNXd8N0GLPgcooqmbMii5dv7Yu/jxcdkprxwaItjB6YduiLm5BXWk1BeQ1t4kNdx2LC/Anw8WLjzhJax4c1ar9w/S7WZZdQV+8gJtSPJ0d0ZffW1QCMH9aFl2ev5YNFm3E4DQa0iyMlJpgbB7RiwifLCA/ypU1CGPl71n/slRbFhE+Wszgj37U5ypEI9PXm4i5J3Pn6QqJD/UiLCz3kNUO7JfPSV6sY+/pCWkYHkx7f9JqVIiIiIiIiInL6MRnGsT3OeSTS09ONTZs2nbTxzhTz589n4MCBpzqM04py4pny4pny4pny4k458Ux58Ux58Ux5caeceKa8eKa8eKa8uFNOPFswdyZxy14FwF6+G0xmvILCsRXl4B0SRdpT3x9132Ur51Iw818YjnowW4i+9M+EdL30eIV+QplMpmWGYXQ/1XHI2UczDkVERERERETkjGD4BNLq8dkA5M+ciNnHn8jBd2Irymb7pDFH3W9NznryPv8bLe59D2tEErbCLLa9fAPWiCT8kjocr/BFzjgqHIqIiIiIiIjImc/pIOf9R6nOXIZ3SAzJY6ditvpSt3sHuR89ib2iCLPVj/gb/o5vTGqjSwu/m0LkkLuxRiQBYI1IInLI3ez+bgpJY14hc+I1xAz/P/yTO2KvLGbL3y+j9YSfMZwO8r74O1UZSzDsNpoNGE14vxsA2D1vMmXLZmHYbQR3HkL00AcaCpz/vQn/1B5ucYqcjrQ5ioiIiIiIiIic8ep2bye8/2jSnvwOi38wZSu+AWDnB+OJG/kXWj02i9jh/0fu9Cfcrq3dleE2s9AvuSN1eVsOOmbJLx9h8QsidfzXpDz6FSU/f4itMIuK9QupK9hOyqNfkfr4bGqy1lC1+deDxilyOtKMQxERERERERE541nDE/FLbNgM0i+pA/XFOThqq6jOXEbW1HGudkZ9nfvFhgGYPBw7uIoNC6nduZGyFQ2PTztqyqkr2E7lhoVUbljElucvAcBZV0VdwTa8m8V5jFPkdKXCoYiIiIiIiIic8Uxe1v3emDEcDjCcWPyCXesiNsU3No2arNX4JbRxHavJXrtvFqLZAoYTOKDwaBjEjfwLQW0HNOqvcsMCIoeMcz22vJetKNtznCKnKT2qLCIiIiIiIiJnJYtfENbwRMqWzwLAMAxqcta7tYu44A52z52ErSgbaCjwFf3wJpGD7wTAGp5ATdYagEaPFge1HUDxwvcadmIG6vIzcdZVE9hmACWLZ+CorQKgvjQPe0XhibtRkRNEMw5FRERERERE5KyVeMt/2Dn9CQpmv4LhqCek++X4JbRt1MYvsR0xw8az/bVbMew26otyaPHnD/GJTgEaCovZU++m9NfPCEg/13Vd2LnXYivKYfPzl4Jh4BXYjOSxbxDUtj91eVvY+uKVAJh9/Em8+T+YzJq/JWcWFQ5FRERERERE5IwTPfR+12treCJpT85zvd87UxAadkhucc+0Q/YX0uViQrpcDEDeF38n/6sXaX7vu5i9rPjGpNLqibmutjGXPwyAyWwm5opHiLniEbf+IgaNIWLQGLfjTcUpcjpS4VBEREREREREZD8xw8af6hBETgsqHIqIiIiIiJwkdXV1PPfccwCUl5djMpkICgqiqKiIkJAQnnrqqaPqd/HixXz++eeEhobicDiIiYnhpptuwmq1HvSarKwsrrnmGmbOnImPjw+DBw8+qvEP9Le//Y3Y2FjGjHGfbbXXkiVLmDevYeZVVVUV9fX1Bx1/2rRptG/fnq5duzJx4kSGDx9OcnJyk+2feOIJxo8fT2Bg4NHfiAfZ2dmUlZXRvn17AFavXs2uXbsYMmTIcR1HROR0oMKhiIiIiMgxuvvuu4mPj3e979at20GLCPsXbA6nzcKFC7FarfTq1eu4xi0nn4+PD48//jhAo2JdUVERkyZNOqa+u3Xr5vqaevPNN1m2bBm9e/c+5piP1K5duzAMg82bN1NXV4ePj49bm3Xr1vHjjz9y7733Ehoayvfff++x3anicDiwWCwez+Xk5JCVleUqHHbs2JGOHTuezPBERE4aFQ5FRERERI6R1Wp1FYNOhP79+5+wvuX04XQ6ef/998nMzCQkJISxY8ditVrZvXs3H330ERUVFVitVm644QZiYmKa7MfhcGCz2fDz8wOgoqKCDz/8kOLiYgBGjBhBSkpKk9f/+OOPLFq0CLPZTGxsLLfeeusR3cfSpUs555xzyMvLY/Xq1fTo0cOtzdy5cxk+fDihoaEAWCwW+vbtCzTM6Pvwww+x2WxERkYyatQo/P39mxzvww8/ZMeOHdTX19OlSxeGDh3qOjdv3jwyMjIAuOWWW4iKiqKoqIj33nuPiooKgoKCGDVqFM2aNWPatGn4+/uTnZ1NUlIS3bp14+OPP6a+vh5vb29Gjx5NeHg4M2fOpL6+nq1bt3LhhRdSX1/vKvIfrG9fX1927NhBeXk5V155JV27dj2ivIqInAoqHIqIiIiInCD7Pyq5Y8cOPvvsM+6///5GbVavXs2cOXOw2+0EBARwyy23EBwc3KjN/jPTjrSIJGeO3bt3M2bMGG644QamTp3KihUr6NmzJx988AHXXXcdUVFRbNu2jenTp/PnP//Z7fply5axdetWysrKiIqKcs2C+/jjjxk0aBCpqakUFxfzyiuv8PTTTzcZx7fffstf//pXvL29qa6uPuL7WLZsGffeey/5+fksWLDAY+EwNzeXpKQkj9e/8847jBw5krS0NL7++mtmzZrFiBEjmhzv8ssvJyAgAKfTyX/+8x9ycnJISEgAwNfXl0cffZQlS5bwySefMG7cOD766CN69uxJr169+OWXX5gxYwZjx44FoKCggD/96U+YzWZqamp44IEHsFgsbNy4kS+//JI77riDoUOHNpoxvHjxYlcsB+u7rKyMBx98kPz8fCZPnqzCoYicEVQ4FBERERE5RjabzbVuHcCFF15I9+7dD+va1NRUHn74YUwmEz///DPz5s3jqquuarL94RaR5MwTHh5OYmIiAElJSRQXF1NbW0tmZiZTp051tauvr/d4/d5HlQ3DYPr06cybN48hQ4awceNG8vLyXO1qa2upra1tMo74+HjefvttOnbsSKdOnY7oHrZv305gYCDh4eGEhYXx3nvvUV1dfdAZg/urqamhpqaGtLQ0AHr16tXo3j1ZtmwZP//8Mw6Hg/LycvLy8lyFw71Fyx49evDpp58CsG3bNu68s2En2549e/L555+7+uratStms9kVy7Rp0ygoKMBkMuFwOA4Z/8H67tSpk2sWZ3l5+WHlQ0TkVFPhUERERETkGB3Lo8olJSVMnTqV8vJy7HY7ERERTbY9kiKSnHm8vPb979neQpVhGPj5+R3R15fJZKJjx47Mnz+fIUOGYBgGDz300EE3StnfuHHj2Lx5M2vWrGH27Nk8+eSTjdb7mzZtGjk5OYSEhHD33Xc3unbp0qXk5+fzxBNPAA1fsytWrKBPnz6N2sXGxpKVlUV6evph35cnhYWFfP/99zz66KP4+/szbdq0I/47YTKZXK/3z9HMmTNJS0vjzjvvpKioiIkTJx5xfPv3vf/nKyJyptB3LhERERGRE8RisWAYBtB0gW/GjBmcf/75dOzYkYyMDGbNmtVkf0dTRJIzm5+fH+Hh4SxfvpyuXbtiGAY7d+50zahrypYtW1xF6DZt2rBgwQLXjsXZ2dmumY0HcjqdlJSUkJ6eTmpqKr///jt1dXWNZgyOHj26yWuXL1/O//3f/7nWLty0aRNz5sxxKxwOGTKEzz//nLvuuouQkBAcDgc//vgj5513Hv7+/mzZsoXU1FR+/fVXWrVq1eR91tbWYrVa8fX1pby8nHXr1jVqv2zZMoYMGcLSpUtp0aIFAC1btmTp0qX07NmT3377rcn1Hmtqalz3sf/jyL6+vk3O2DzcvkVEzhQqHIqIiIiInCDNmjUjKyuLdu3asXLlSo9t9i9OLFmy5KD9HW0RSc5st9xyC9OnT2f27Nk4HA66d+/u8TPfu8ah0+kkLCzMVeAbOXIk06dPZ8KECTidTlJTU7n++us9jmUYBm+//TY1NTUYhsGgQYMO+zHjLVu2EBoa6vp6BmjVqhVvvfUWZWVlhISEuI63b9+eiooKXn75ZQCqqqpchc3Ro0e7NkeJiIhoslAJkJCQQGJiIs8++ywRERG0bNmy0Xm73c4LL7yA0+lkzJgxrny8++67zJs3z7WBiSeDBw9m2rRpfP/9941mRqalpTF37lyee+45LrzwwkbXHG7fIiJnCtPe34CeDOnp6camTZtO2nhnivnz5zNw4MBTHcZpRTnxTHnxTHnxTHlxp5x4prx4prx4pry4mz9/Ph9//DHx8fGuY23btmXYsGFs2bKF9957j6CgIJo3b05WVhb3338/ixcvdm2usGrVKj755BNCQ0Np0aIFO3bscGuz/+YohYWFTJ8+nbKyMlcR6ZJLLjmFGfBMXyueKS+eKS/ulBPPlBfPTCbTMsMwDm9xXZEjoBmHIiIiIiLH6NVXX/V4PDU1lWeeecbteO/evenduzfQsGGCpw0o9m8zdOhQ1/GIiAjuueee4xC1iIiIyMGZT3UAIiIiIiIiIiIicvpR4VBERERERERERETcqHAoIiIiFMx+hYxnL2DzhCFsfu5iqretOKzrdk5/gs3PXUzGX89n7Z/S2PzcxWx+7mLKls8ic+I1VO9Yfdgx2IqyKf39C7fjzvpaMv4yiNqdG13Hdn87mZ0fHP2usrmf/JXCH/7ner/tlVHkvPeI6/2uT5/Fd9McylfPo2DuJADyZ05k97zXAcie9iBly913vvV0fN39bY46zoPJnvYga/+UjqO20nUsd8YzrBmXjL2y+ISMKSIiIiJ/LFrjUERE5A/Oq3AL5du+J3X8LMzePtgrizHs9Yd1bfy1E4CGot/2SWNo9fhs17miBdOOKA5bUQ6lv39JaI9hjY6bvX2Jvfopdk5/gpYPfIy9LJ/in94ndfzMI+p/fwEtuzUU+AbdiuF0Yq8sxlFb4TpflbkMe8vLCO44mOCOg496nOPJcDowmS2NjvlENqd81beE9RyO4XRSlbEYr9CYUxShiIiIiJxtVDgUERH5gzPXluIV0Ayztw8AXoHNXOcqN/7Ers/+huF04J/ckbhr/+ZqdzjKls8id/oTOGrKSbjxBQJSz8FWlE322/fjtFUDEDfyrwSkdCfvi39Ql7eFzc9dTFjPq4g4/zZXP0HtBlKyeAalv35KxdofiLr0fhw1Fex4YyyOimIsQc1IGPUi1mbxZE97kOD2gwjpeinQMOOv3cQNjeLyb9md3E/+CkDdrgx849KxlxXgqC7D5O1LXd5W7F2TKVn8MdVZq4m/5tmjS+4Bds+bTNmyWRh2G8GdhxA99AEAdky+HVtJLoa9jojzxtCs7/Wu2CMG3UbFhoXEDn+CgNQejfoL6X45ZctmEtZzOFWbF+Of0p2KdfNd50t+/Yyi+W9jOOrxb96ZuGsnuBUfRURERESaosKhiIjIH5wtuj31Wd+z6ZmBBKb3IaTbZQSm9cJZX0vOtIdo8acP8IluSfbb91O86D0iBt16+J077aQ++hXla38gf9a/afmnD/AKiqDFfe9h9valrmAb2W/eS+r4mcQMe5TC76bQfNxbHruKvfpptrxwOT6RzQnrOZztk8YQ1vMqwnpdTfEvH7FrxjMkj33jsMLyDo3GZPbCVryTqsxl+LfoSn1ZHlWZy7D4BeEb3xosR/dj0q7Pn6Ngzn/djlesX0hdwXZSHv0KDIMdk2+lavOvBLTqSfyof+IVEIrTVsuWf1xGcOeL8QoMw1lXjU9cOtGXPehxLJ+o5pSvnoejuozSpV8R2uNKV+GwdtdmypbNJOWhTzFZvNn54f9R+tsXhPW66qjuS0RERET+eFQ4FBER+aPz9iV1/EyqtvxGVcZist+8h5grHsU3sR3eEYn4RLcEIKzXVRQtmHZEhcPgzhcB4JfUgfriHAAMRz25Hz1FTc56TGYLdfmZhxdmaDSBaecS1OF8AKq3LSf5zoY1B8N6Difv8+cPOy4A/5RuVGcuozpzGRHn30Z9aR7VewqHAS27HVFf+4u98nHXbEfYt8Zh5YaFVG5YxJbnLwHAWVdFXcE2Alr1pOjHtyhfNReA+pJd2HZvwyswDMwWQrpcfNDxQjpfROnSr6jZtpL46/bloHLTz9Rkr2HLPy5vGM9Wi1dQxFHfl4iIiIj88ahwKCIiIpjMFgLTehOY1hvfuHRKlnyKb0LbY+/Xy8fVv+FwAFD4/f/wCoqg1eNzwHCy9k9ph9+h2YzJZGpiMNO+sQwDAMMwmlyvMaBlQ+GwNncjvnHpeIfFUfj9G1h8gwjrPRKO+/4iBpFDxhHe74ZGRyszFlO56SdSHv4cs9WPzInX4KyvA8Ds7XPIR4tDul/GlucvJazXVZjM++17ZxiE9byamGGPHu8bEREREZE/CO2qLCIi8gdnLt9FXcE21/uanPV4h8fjE5NCfVEOdQXbASj57XMCWvU65vEctRV4hURhMpsp+e0zcDYUFC2+gThrqw67H/+W3Shd+jUApb99QUBKw/p/1vAEarLWAFC+6lsMh+fCoX/L7pSv+R6LfygmswWvgFAc1eVUb1uOf8uux3KLHgW2GUDJ4hk49txjfWke9opCnDUVWPxCMFv9qM3bctg7Wu9lbRZP9OUP06z/6Mbjte5D2YpvsFcUAmCvKsVWlHN8bkZERERE/hA041BEROQPzmSvJeedB3DUlGMye2GNTCb+hr9j9vYlYdQ/yZp6l2tzlGYHzJY7GuH9R5E1ZSxly78hMK03Zh9/gD3rClrY/LeLCOt1daPNUTyJG/kMOe8+TOG8112bowCE9bmOHZNvZ8s/LicwvY+r/wP5xrfGUVWCf48rGh2rrqtutEHM8RLUtj91eVvY+uKVAJh9/Em8+T8Eth1A0aL32DxhCNbolvi36HLEfR84ixHANzaN6MseYtsro8DpBIsX8dc+izU84ZjvRURERET+GEx7H+U5GdLT041NmzadtPHOFPPnz2fgwIGnOozTinLimfLimfLimfLiTjnxTHnxTHnxTHlxp5x4prx4prx4pry4U048U148M5lMywzD6H6q45Czjx5VFhERERERERERETcqHIqIiIiIiIiIiIgbFQ5FRM5iQ56dxevz1rvef7x4K+8uyDiFEYmIiIiIiMiZQoVDEZGzmLfFzM8b8yirtp3qUEREREREROQMo8KhiMhZzGI2cUmXJD5bkul2Lr+0mkffXcLY1xfy6LtLKCirweE0uOmVHzAMg8raei56dhZrdhQB8MDbv7CzuOpk34KIiIiIiIicIiocioic5S7rkcyPa3Opqq1vdPzVOeu4oGMCk+/sz6AO8Uyasw6L2UR8eCA7dleyNquYVrEhrMkqxmZ3UFhRS3yzgFN0F8fPuvvbnLSx6st3k/XmvWx8si+bn7+ULf8cRtnKOUfdX+EP/8Npq3G93/hEH+yVxccjVBERETnN+K94n8If/ud6v+2VUeS894jr/a5Pn2X39280eX32tAcpWz4LaPpnhq3/vPI4Rgy5M55hw2PnYDidx7Xfw1GZsZjtk27xeK4me22j3JWtnMvmCUPI+MsgMiZcSNnKuU32W7TwPUqWfHrQsat3rCZ3xtNHFzhNfz7Fv3xExoQLG2J9djDlq7496jGasmZc8jdrxiWHHuT89jXjkiM8HB+6ZlzyX457QHLa8TrVAYiIHA8XT5hF86hgHE4nMaH+PDKsM4G+3k22z8gt5bvVOxl3UbvDHqOqtp5X56xjfU4JAG0Twrj7onYEHGScveauzOazJdswmcBpGNx8Xjrnpsfw8LTF3H5BG9LiQo85vqYE+Hhzfsd4vvhtO1bvfb8v2pBTwlMjugFwfod4pn63AYD2iWGsySomv7Saa/qkMHtFNh2Ty0iLDfXUvTTBMAx2vH47YT2vJmnMKwDYinIoXz3vqPss/OFNQs+5ErPV73iFKSIiIqcpe0QrqjOXwaBbMZxO7JXFOGorXOerMpcRd/XRF6sAUh7+/FjDdDGcTspXzcU7LI6qLb8SmNbbvY3Djsly8ssQBXNeJeriewGoyVlP3ud/o8W972GNSMJWmMW2V27EGpGEX0LjXzAbDjvh/W88ZP/+yR3xT+54XGOuL9nF7jn/JfWxWVj8gnHUVuGoLDquYwB0mLTjkqO8dBbw7Jpxyf/oMGlH9fGMSU4vKhyKyFnB6mXhtTv6AfDPL1fy1e/bub5fqybbp8WFuhXrDuVfX6+meVQQjwzrDMC0+RlMnLmaJ67u1qidw2lgMZtc73eX1/DhT1t49ba+BPh6U2OzU1Z18DUHjya+g7myZwvueeMnLuyU0GQbk6kh5g5JzZi5LIviylpGD0zjk8WZrN5RRIfkZsctntNNTfY6dn74fxi2GqyRySSM+icW/xAyJ16DX/POVGUsxlFTTsKNLxCQeg6G00HeF3+nKmMJht1GswGjCe93Q6M+qzb9jNlibfTDpjU8gYjzGn4T3lQflRmLKZj1byyBYdTlZuCb1J7Em/9D0fy3sZflk/nva/EKCKPl/R81Gq/k188omv82hqMe/+adibt2AiazhXX3t6FZ/9FUbvwJi38IMVc8Qt7nz2Mr3knciKcJ7jgYc9Vutr50NU5bw898cSP/SkBK9yZj2fu1IiIiIidOfUQrqhY1zHSr25WBb1w69rICHNVlmLx9qcvbim9iO/K/+Q8Vq7/DWV+Lf8tuxF//fJP/VjttteyYcgchnS+mWd/rWHd/G9pN3HDQf/PL1/5A3qcTsASG4ZfYHlthFs3HveXWd1XGL/jEpRHa7TLKln7lKhzmz5xIfVk+9UU5WALDiLniUXLeexhHRTGWoGYkjHoRa7N4sqc9SHD7QYR0vRSgydgCfaIwBgzAZDJRsW4+uz75qys2Txy1ldTu3IhfQlsACr+bQuSQu7FGJAFgjUgi8sJxFH73Ook3/5vMidfg37Ib1VuXEtTxApy1VZh9/IkcfCfV21ex871HMPn4EZDSg4p180l7ch6VGYsp/G4Kzce91XC/JTuxFWZjK95JxKBbXT//7Zh8O7aSXAx7HRHnjaFZ3+ub/PztFYWYfQMx+zQ88WPxDcDi2/A6c+I1+Ca0pWb7Shy1lSSM+icAa8YlnwP8G/ADaoBbOkzasWnNuOSbgcsBfyAF+LzDpB2P7LlmO9B9T/sZQAJgAZ7tMGnH3h84710zLvkywBsY0WHSjo0dJu0w1oxLng8M3XOdnKX0qLKInHXaJIRRVFELwMadpfz5rZ8ZN2URf37rZ7ILKwFYtb2IJ6f/DsC7CzJ46atVPDxtMTe98gNf/LbNrc+dxVVszitrVIy8oX8rMnaVkVtcxartRTw8bTHPf7aCsa8vbHRtaZUNP6sXvtaG39X4Wb2ICfN3nV+4fhf3/u8nxrw6nzVZxUcU3/erc7j3fz9x15RF/GfWGhxOw2NOgv2s9G8by5yV2a5jbRPCmL8uF4Af1u6kXWIYAOnxoWzIKcFkMmH1stAyJphZy7Non3j2Fg5z3nmAmGHjafXEXHzj0smf9e99J512Uh/9itirn3IdL/nlIyx+QaSO/5qUR7+i5OcPsRVmNeqzdtdmfJM8/wB7qD5qstcRd/XTtHryO2yFWVRvXUrEebfgFRJNyz9Pdysa1u7aTNmymaQ89CmtHp8NJjOlv33REH5dNYFpvWj12CwsvoHkf/UiLe57j+Q7p5A/818NbXyCaXHfe7R67BuSbn2VXR8/4+rbUywiIiJy4hl+YZjMXtiKd1KVuQz/Fl3xa9GZqsxl1GStxje+NWYvK+EDbiJ1/NekPTkPo76WijXfe+zPWVfF9tfGENr9Cpr1vc7tvKd/8531teR+8DjN736blAc/PegSKaVLvyK0+xUEdxpC+ZrvMRz7lsmpyVpD8tipJI15hdyPniKs51W0emIuoT2GsWvGM4fMxf6xmasKXLHtfH88yXf9j5YPfIK9fLfna3esxjcuzfW+dlcGfkkdGrXxS+5I7a4M13tHdRktH5hB5AV3NGqX8+5DxF33N1If/gKT2dJkvHV5W2l+zzRSH/2Kgm/+7cpF/Kh/0uqxWaQ+OpPCH9/CXlnSZB++CW3xCopg05N9yZn2EOWrv2t03mmrJuXhz4m/dgI57z689/BGoH+HSTu6AE8Bz+13SWfgGqADcM2accmJBwx5EZDbYdKOTh0m7WgP7L++TmGHSTu6Aq8BD+13fCnQr8mbkLOCZhyKyFnF4TRYua2QIZ0b/h1MjAjgpZt6YzGbWZ5ZyFs/bnI9nru/7KJKXhjVixqbg1snzWdot2S8LPt+t5K1u5KU6OBGMwktZhMp0cHs2F2Jv48Xm3LLmHJnp0ZFQYCW0cGEBVi56ZUf6Nwigr6tY+iVFr0vZsPglVv78tvmAt5bmME/bux1WPHlFlexYP0uJt58Ll4WM698s4Yf1uxkcBOzCq/q1ZKvft/uen/XRe3419er+WRxJiH+Vh68vBPQMHszItiX1vGhALRPbMb8tbm0iA46RPbPTI6achw15QSmNeQ9tNfVZE29y3U+uPNFAPgldaC+OAeAig0Lqd25kbIVs1191BVsd/3m2pOd05+geutSTBZvUsd/3WQfJi9v/Jt3wjsstmHchHbYirIJSO3RZN+Vm36mJnsNW/5xOdAwm8ArqGEpGpOXlcC2AwHwjUvH5GXFZPHGN641tqKG+zE5Hex8fzw1OesxmS3U5e/bTOdIYxEREZHjxz+lG9WZy6jOXEbE+bdRX5pHdeYyLH5BBLRs+Jm2KuMXds97HaetBkdVKT6xaQR3vMCtrx2Tbydi8J2EneN5XUNP/+abffyxRiS5fsYJ7X45xT994Hat026jYt2PxF79FBbfQPybd6Zi/UKCO5wP0PCEg9UXgOpty0m+83UAwnoOJ+/z5w+dh/1ic4QmuWLzjkjEJ6pFQ2znXOkxNnt5AV6B4fsOGAZwwIzMA46FdLvMrR9HdRnOuioCUro3tOl+BeVNFGmD2g/C7O2D2dsHr8Bw7OWFeIfFUvTjW5SvalhPsb5kF7bd2/AKDPPYh8lsofk906jZsYrKjT+z69O/UpO1huih9zfcb/eGn/sCWvXEWVtJqK/ZAoQA76wZl9wKMGiYIbjX9x0m7SgDWDMueT2QDGTvd34N8OKaccn/AGZ2mLRj0X7nPtvz32XA8P2OFwBxHm9AzhoqHIrIWcFmd3DXlEXkl1bTKjaEri0jAaiqtfPil6vYWVyFCRP2JhZqPic1CquXBauXhVB/KyVVdUQG71tHzsA48MeLhuMG7H0SJD0uxK1oCA0Fxr9dfw6bcstYua2Qyd+uZ/OuMkYNaPjNZ9/WMQC0ig0hv7TG7fqm4luxvYjNu8q4938/N+Sg3kFogE+j674cf5HrdVigD189drHrfUyoPy+Mci9SAvzr5nNdrwd1iGdQh3iP7f4ITF4NOTWZLRgOR8NBwyBu5F8Iajugyet8Y1tRvqcoCBB/7QTslcVs+ftlB+2jMmMxJi/rvgNmMzgdBw/SMAjreTUxwx51j9/ite9xJZPZ1bfJbAanvSHWjLl4xUbS6vE5YDhZ+6d9v5U/4lhERETkuAlo2VA4rM3diG9cOt5hcRR+/wYW3yDCeo9smBE4/UlSHv0aa7M48mdOxKiv89iXf8tuVK6bT2iPYR4fZfb8b77np1kOVLl+AY6aCjZPGAKA01aD2ernKhwedH3mPbGYzBYMo2E8wzAw7PtmLDaKzbTv5xGTx5/QD+je2xenfV9OfGPTqMla3Wg9w5rstfjG7nuyyOzj/jP9kWicSwuG005lxmIqN/1EysOfY7b6kTnxGpxNfFaufkwm/Jt3xr95ZwLb9CPn3YdchcMDi597Uvcs8GOHSTuuXDMuuTkwf78m+w/m4IB6UIdJOzLWjEvuBlwCPL9mXPK3HSbt+OsB1x54nS8NjzjLWeykPqpstvpz15RF3DVlEdf+6zuu//d3rvf1jiPfdSmvtJo7Ji84AZF69u6CDD5evNXt+J/f+vmkxSAinu1d4/Dd+wZR73Dy9dLtQMM6hJ2ahzNl7AD+cm136u2ev9d4e+37dmg2m9we+U2ODGJLfjlOY99xp2GQWVBOYkQggOtRZE9MJhOt40O5tm8qjw/vwk8b8vaNvWdmo9lswtnEo8Ye4zMMBndM4LU7+vHaHf34390DXcVIOXwWv2As/iFUbfkNgNJfPyOgleeC6l5BbQdQvPA912MndfmZOOsarwkdkN4Hp72OooXvuo7tvyPy4fRxILNvAM7aSrfjga37ULbiG+wVhQDYq0pdswkPh6m+Gq+QKExmMyW/fabioIiIyGnCv2V3ytd8j8U/FJPZgldAKI7qcqq3Lce/ZVdXkdArsBmO2irKVnzTZF/Rlz2IJSCM3OlPHPb4PtGp2AqzsBU1TEwrXfa1x3alS78i4YZ/0HrCzw1/nv2Jig2LGv3ss++eulG6tKGf0t++ICCl4UkGa3gCNVlrAChf9W2jR509xhaTgq0om7rdO1wxeG6Xim33dtf7iAvuYPfcSa57shVls3vuq0Scf/tBx7P4h2D2CaB623IAyprIRVOcNRVY/EIwW/2ozdtC9bYVB21fX5rvygdAbc46rM32/TK/bNlMAKq2/I7ZL4iyOqeDhhmHO/c0uflI4lszLjkOqO4wacd7wItA18O4LA1YeyTjyJnnpM44dNqqXZsXvLsgA1+rhRG9U1znHU4nFvOZt+ziv2/pc6pDEJE9Any9GTekHc/MWMrQbslU1dUTHtTwWMS8VYdfSDlQfLMAUqOD+WDRFm7s3/DbyA8WbSE1JoT4ZgEUltc2eW1RRS3FlXW0ig0BYGt+OVGhx74rbucWETwzYynDe7UgNMCH8hobNXV2okOP7TekZzunrYYNj/d0vY84/zYSRr+0b3OUiCQSRr940D7Czr0WW1EOm5+/FAwDr8BmJI99o1Ebk8lE8p1T2PXJs+yeNxmvwHDMVj9iho0/7D4O1KzPdWx/9Wa8giMbrXPoG5tG9GUPse2VUeB0gsWL+GufxRre9GY4+6tNPZ/SJW9RtvwbAtN6H/Nv2UVEROT48I1vjaOqBP8eVzQ6Vl1XjVdgw/rTYX2uZfPfLsS7WQL+yZ0O2l/siKfZ+e7D7PrsOWKHP37I8c1WX+KuncD2/97UsAFJcifsB7Rx2mqoXL+A+Ov2Ladn9vEnIKW727p8AHEjnyHn3YcpnPe6a3OUhvu4jh2Tb2fLPy4nML3PIX8eMXv7En/98+yYdAuWwDACUnpQm7vJrZ1vTCqOmgoctZVYfAPxS2xHzLDxbH/tVnDYweJFzLDH8Etsd8h8JNz4AjvfH4/Jx4/AVr2x+B3+Uj6BbQdQtOg9Nk8YgjW6Jf4tuhy0veGoZ9dnf8NeVoDJ2wevwGbE7Zdji38IW/955b7NUZ7sAvACDY8qPwD8cNjBNegA/HPNuGQnUA/cdYj2AOcBjx3hOHKGMRnG4U09Ph7S09ONTZsa/iLvLRzuKKgkyM+bLXllpMaGMKBtHJO/XYet3onV28yDl3UiMSKQ7QUVvPT1KuwOA8MwePLqblgsJp744DfaJTVjfXYJEcG+PDOyOz7eFnYWV/HyN2soq7JhMZv4v6u6EhbowzMfLaWyth67w+Cm89I4Nz2GvNLqJvvZn6diJ8AVf5/Dl+Mv4m+fLmdwxwTOaRUFwItfrqJnWhTnpsfw5g8bWb29iHqHk8u6J3Npt2SKKmp57rMVFBSV4ufvz72XdKBD0tm7+cCRmD9/PgMHDjzVYZx2lBfP5s+fz8QltY0ey31q+u/0bxtLXLMAXvxyFSH+Vjo3D+f7NTuZdt8gVm0v4pMlmTx7bQ+3v9t3TF7AX6/tQcwBBbiKmnomzVnLhp2lALSJD+Xui9sT6OvdqL8D5ZdW89LXqymqqMXqZSHE38p9l7QnrlkAD09bzO0XtCEtLpSyahv3Tv3piOKbvy6Xj37eimE07OR8z8XtaZMQ5sqLvl4aU048U148U148U17cKSeeKS+eKS+eKS/uTpecOGqrsPgGYBgGudOfwCeqBRHn33bK4jmavBR+PxWzbwDN+rhvCnMk9uYCoGDuJOxlBcSNfOaY+jwamROvIWb4/+Gf3NF1zGQyLTMMo/vJimHNuORo4IMOk3acf7LGlFPjtFjjMKe4ir/f2AuL2URVXb3HjQxmLd/Blee0YFCHeOodTpxOg5KqOnYWV/PY8C7cP7QjEz5Zzk8bdnF+xwT+8flKrumTQp/WMdjsDpwGeFtMPDWyGwE+3pRV2/jTmz/Te88GBU31cyQGtotjwfpczmkVRb3DyYrthdx7SXvmrswmwMeLV27ri83u4IG3F9OtZSQ/bcyjW8sI4pLr6Ne/P3X1ejRM5GjtXzQE+Ot+Bbw37x7oen3TeekAdGoeTqfmDYskH/h475SxntetC/Lz5tErPf9mcP/+DhR9kLUE/zm6t+t1iL+VafcNOqL4BraLY2A7rUcsIiIiIidGyc8fUvLrpxh2G76J7WjW74ZTHdIRa9b/RsqWN/0Y9+GqWPsDu7+dhOGwY20WT8Lol45DdGesJODBUx2EnHinReGwf5tY106lTW1k0CY+jA9/2sLu8lr6to4hPryhyh8T5kdKTMPjf61iQ8gvq6G6zk5RRS199mw4YPVqmDlodzh564dNrM0qxmQyUVRRS0lVXZP9HKkeqZFMmrsOm93B0q276ZDUDB9vC8u27mZbQQWL9qxpVlVXz87iKtLjQnjp69WkBNWTWFDuGl9ERERERETkdBBx/m2ndIbh8WD29iWs5/BDNzyE0O6XEdrdfcflk23/JWtOlQ6Tdvx+qmOQk+O0KBz67vdI8N6NDJ4e2Z280moembYEaNjVs3V8KL9tKeDxD37l/qEdiQnzd20qAA0bP9nsBkYTOz/9sHYnZdU2/ntbX7wsZka//AO2PRsleOrnSFm9LHRKDmfZ1kIWrNvFee0bZgEZwLiL2tE9JdLtmpdu6s27MxfxwheruLp3SwZ3OrJZjiIiIiIiIiIiIifCabcTSVMbGewqqSY2zJ9h57SgV1o0mQUVTfYR4ONNRLAvv2xsmOFnszuorXdQVWsnNMCKl8XMyu2FRzWr8FAGtIvl21XZrM0uptueQmH3lEhmLt2Bfc/O0TlFldTa7OSXVhMaYKVzrDdDuiSyJa/suMcjIiIiIiIiIiJyNE6LGYf7G3FuCi9+uYrPlmyj837rhS1Yl8v3a3biZTETFujDDf1bUV134H5O+zxyRWf+880api3IwGI28cTV3RjUIZ6np//OPVN/IiU6mMQ9jzsfiQ8XbeGLX7e73r//58brgHZrGck/v1xFr7Ro1yzGi7okkldazd1v/ISBQYi/lWdGdmf1jmI+XryV2uoaIprt4pErOh9xPCIiIiIiIiIiIifCURcOTSZTIjANiAGcwBTDMP5zuNcfuNj/Xm0TwjxuZHBt31Su7ZvaqG2wn7XRJgH773YcHx7gcTOCf4/p43Hcpvo5MGZPce+/KYOXxcwnD13Y6LzZZGLMoNaMGdS60fHBnRIY3Clhz65Q53ocU0RERERERERE5FQ4lhmHduBBwzCWm0ymIGCZyWSaZxjG+uMUm4iIiIiIiIiIiJwiR73GoWEYuwzDWL7ndQWwAYg/XoGJiIiIiIiIiIjIqWMyjCPfPditE5OpObAQaG8YRvkB5+4A7gCIjIzsNmPGjGMe72xTWVlJYGDgqQ7jtKKceKa8eKa8eKa8uFNOPFNePFNePFNe3Cknnikvnikvnikv7pQTz5QXz84777xlhmF0P9VxyNnnmAuHJpMpEFgA/M0wjM8O1jY9Pd3YtGnTMY13NmpY43DgqQ7jtKKceKa8eKa8eKa8uFNOPFNePFNePFNe3Cknnikvnikvnikv7pQTz5QXz0wmkwqHckIc9aPKACaTyRv4FHj/UEVDEREREREREREROXMcdeHQZDKZgP8BGwzD+NfxC0lEREREREREREROtWOZcdgHGAUMMplMK/f8ueQ4xSUiIiIiIiIiIiKnkNfRXmgYxk+A6TjGIiIiIiIiIiIiIqeJY1rjUERERERERERERM5OKhyKiIiIiIiIiIiIGxUORURERERERERExI0KhyIiIiIiIiIiIuLmqDdHERGR01t1vcFdUxYBUFJZh9kMIf4+5JdWEx7kyxt3DTiqfksq6/jXzNXsLqvB4TSIDvVjwnXnsGp7EZ8syeTZa3scc+wvfrmKnq2i6Nc29pj7EhERERERkaOjwqGIyFnK39vEa3f0A+DdBRn4Wi2M6J1CXmk1T03//aj7nbYgg64tIriyZwsAMvPLj0u8IiIiIiIicnpR4VBE5A/I6TSYOHM167NLiAj25ZmR3fHxtpBbXMV/56yjrKoOH28Lfx7akaSIwEbXFlfU0rVlhOt9y+hg1+tam51nP17G9t0VtIoN4dFhnTGZTKzYVsgb8zbgcBqkxYVw7yXtsXpZ2LyrjNe/XU+NzU6Iv5UHL+9EeJBvo/HeW7iZXzPyqbM7aJsQxp8u7YDJZGJncRUvf7OGsiobFrOJ/7uqK3HNAvj4l60sXL+LeoeTc9NjGD0w7cQmU0RERERE5CylNQ5FRP6AdhZXc3n3ZN64awABPt78tGEXAP+ZtYa7h7Tj1dv7ccfgNvx39lq3ay/r0ZyJX6/m4WmL+WDRZooqal3ntuSVM3ZIW964awB5JdWsyy7BZnfw4lerePyqLrw+tj8Op8HMZVnYHU5enbOWJ67uyqu39+PCzom8/eMmt/Eu75HMK7f1ZcrYAdjsTn7dXADAPz5fyeXdmzP5zv5MvOVcmgX5smzr7oaC4q19mHRHPzbnlbFmR9EJyqKIiIiIiMjZTTMORUT+gGLC/EiJCQGgVWwI+WU11NjsrM8pYcKny13t6u0Ot2u7p0Ty9r3nsXTLbpZu3c24Nxbx+p39AUiPCyUy2A+AljHB5JdW42f1IibUn4TwhpmLgzsl8PXv2+naIoIdBZU89v5vQMMsyGZBPm7jrdpexMe/ZFJX76Ci1kZyZCAdk8MpqqilT+sYAKxeFgCWZe5meWYh4974CYAam52dxVV0SA4/LnkTERERERH5I1HhUETkD8jbsm/CudkMNruB0zAI9PV2rYt4MMF+VgZ1iGdQh3ienP47a7KKCfaz4u21X78mEw7DAAyPfRiGQXJkIP8e06fJcWx2B/+dvZZXbu1LVIgf7y7IwGZ3YjTVJ3BNnxQu7ZZ8yHsQERERERGRg9OjyiIiAkCAjzfRoX4sXN/w2LJhGGzNc9/4ZOW2QmrrG2YiVtfZ2VVcRVSIX5P9JkYEkl9azc7iKgC+X72TDsnhJEQEUlptY31OCQB2h5PtBRWNrrXZnQCE+FupsdlZtOeR6gAfbyKCffllY96edg5q6x10bxnJ3JU51NjsABSW11JaVXfUOREREREREfkj04xDERFxGT+sCy/PXssHizbjcBoMaBdHSkxwozabd5Xx6px1WMwmnIbBRV2SSI8LZdV2z2sJWr0sPHh5J/72yXLX5iiXdkvC22Lmyau7Mmnueqpq63E4Da7s2YLmUUGuawN9vbm4SxJ3vr6Q6FA/0uJCXeceuaIz//lmDdMWZGAxm3ji6m50S4kkq7CSP7/5CwB+VguPDOtMaID7I9AiIiIiIiJycCocioj8AYwasG9n4ZhQf6aMHeB6P6J3yr5zYf48d/05B+1rxLkpjDg3xe14p+bhdGq+by3Bey5u73rdpUUEkzw8Ap0SE8JLN/V2O/7QFZ1cr28+L52bz0t3axMfHsALo3q5Hb+yZwuu7NnioPcgIiIiIiIih6ZHlUVERERERERERMSNCociIiIiIiIiIiLiRoVDERERERERERERcaPCoYiIiIiIiIiIiLhR4VBERERERERERETcqHAoIiIiIiIiIiIiblQ4FBERERERERERETcqHIqIiIiIiIiIiIgbFQ5FRERERERERETEjQqHIiIiIiIiIiIi4sbrVAcgIiInzgeLNvPj2lwsZhMmk4k/Xdqe1vFhJ2Ssytp6fly7k8u6Nwdg1fYiPlmSybPX9nBrO/Hr1Qzv1YLkyKBjHvfiCbNoHhXsev/0yG7EhPofUR9zV2bzxW/bAcjaXUFCeCBms4nuKZFYvcz4Wi2M6J1yxLH9ZcZS8kprqLHZKau2ueK65+J2tEtsdlh95JVWsz67hEEd4o/r+P/4fCWv3NaXEH/rEfebV1rNTa/8yLghbbninBYA/Hf2WtLiQriwU+IR93ckTtRnBeBwOnlnfgaLNuzC19uLysoaci2bub5fq+N4B8fH71sKeGd+BrU2OwbQs1UUdwxuy7sLMo44B0dzTVM+W5LJmz9s4qMHLiDA1/uIrv12VTYZuWXcc3F717HtBRX89eNlvHZHP3y8LQA8+eFvnN8hgYHt4445XhERERE5OBUORUTOUjnlDpYWFvDq7X2xelkoq7ZhdzhP2HiVtfV8vXSHq3B4MPdf1vG4jWv1svDaHf2O+DqH04nF3DDxfkjnRIZ0bih4jX75B14Y3ctVUHt3QcZRx/b0yO7AwYuoh5JfWsOP63KPqnB4PMZvSmiAlc9/284l3ZLxtpy8BxhO1GcF8PaPGZRU1vH6nf2xelmY+92PFDgNt3aGYWAAZpPpmMY70P5fkwezvaCCV+es46/X9iApIhCH08k3y7OOeszj6cd1uaTFhfDzprzjUkRuHhVEn9YxfPjTFm4+L51fNuZhdxoqGoqIiIicJCocioicpapsBsH+VqxeDbN09p9ZtmJbIW/M24DDaZAWF8K9l7TH6mVh9Ms/MLB9HKu3F2F3Gvzp0g689cNGckuqubp3S4Z2Swbg41+2snD9LuodTs5Nj2H0wDTe/H4ju0qquWvKIrq2jOCc1ChqbXae/XgZ23dX0Co2hEeHdcZkMvHwtMXcfkEb0uJCueLvcxh2TnN+3VyAj7eFZ0Z2JyzQh9ziKv7xxUqcToPuqZF8tmQbX46/6LDufWteGS9/s5a6egexYf48cFkngvy8eX91DZnOjazPLqFXWjRX9255WP1l7a7k4WmLKSir4cqeLRi2Z5bd96tz+OL37dgdBq3jQ7nn4vZYzAcvJuWXVvOvr1dTVm0jxN/Kg5d3IirEjxe/XEXPVlH0axsLwBV/n8OX4y/izR82klVYyV1TFjG4YzxdW0by0tersDsMDMPgyau7ER8ecFj3caAvf9vOr5vzKSuvpmX7SpIiAqm12Xl1zjq2F1TgcBrcOKAV56bHuF0b4m+lXWIz5q3K4ZKuSY3O7f/5llXbuHfqT0y7bxDfrspmyaZ8au1OdpVU0Sc9htsuaIPDaTDx69Vk7CrFhIkhnRMY3uvwPpsDHe1nVVvvYPaKLKbdO8j1d8bHy8SoAWlAwyzLJz74jU7Nw9mQU8rTI7vx1dId/L6lABMmruuXysB2DcWsGb9s5fvVOzGZoEdqFLee35rc4ir+O2cdZVV1+Hhb+PPQjiRFBPLil6sI8vNmS14ZKTEh/Lo5n4k3n0togA9Ow2DMq/P5z5g+jf7+zvhlK9f1TSUpIhAAi9nssWB/OGOmxobgb9334+A3y7P4eWMeT43oxuwVWcxaloXFbCIpIpDHr+p60NznFldRa3Nw+yVtmP7TFlfhsKnPHRpmkH7081aaBfoQHx7gsQh9Q/9W3D1lEf3axPC/Hzby12t6HPR72N6ZtBm5pbzx3Qb+Obr3wb9oRERERKRJKhyKiJylWoRZWLm1ljGvzqdLi3AGtIujY3I4NruDF79axT9u7ElCeCAvfLGSmcuyGN6zocASGezHv8f0YfK363npq1X86+Zzsdkd3DF5IUO7JbNs6252Flfx8q19MICnP1rKmh1FjDm/Ndt3V7hm/63aXsSWvHKmjO1PeJAvD7z1C+uyS2if1PgR3dp6B20SwrhlUGumfreB2SuyuL5fK177dj3DzmnOee3jmblsR5P3abM7uGvKIgBiQv14emR3/vnlKsZd1I6OyeG8M38T7y3M4K4h7QCoqq3nxZuOrJCQXVTJC6N6UWNzcOuk+QztlkxucRUL1u9i4s3n4mUx88o3a/hhzU4Gd0o4aF+vzlnHBR0TGNwpgbkrs5k0Zx3PXNO9yfZjBrVuNFvw1TlrufKcFgzqEE+9w4nTw4y4wxXi782rt/fjpQ/m8eniTO6/rCMf/LSFzs3DefDyTlTW1nPf/36ma4sIfK3uPzJcc24K//fhb64ZgIdja345k27vh7eXmVsnLeDyHs0pq7ZRWFHLlLEDgIbZq0fraD+r3OIqooL98Pdp+kejnKIqHry8E/de0oFFG3axNa+c1+7oT3m1jXv/9xMdkpqRmV/OL5vy+M+tffD1tlBeYwPgP7PWcN8lHYgPD2DjzhL+O3stL4zq1dBvcRV/v7EXFrOJQB8vfliby/CeLViRWUjL6GC3x8l37K7gqsMorB7umHtnan75+3aWb93N0yO7YfWy8NHPW3nn3vOwelkO6zOZvy6Xge3iaJ/UjJyiKkqr6ggN8AE8f+57x/7vbX0J8PXmkWlLSIkJduvX19vC7YPb8NA7SxjeqwWRIb488t6SJr+HiYiIiMjxo8KhiMhZymox8d/b+rI2q5hV24t47tMVjDk/nZToEGJC/UkIb5itNLhTAl//vt31P92906IBaBEVRI3Njr+PF/4+Xli9zFTW1rMsczfLMwsZ98ZPANTY7OwsriIyxM8thvS4UCKDG463jAkmv7TarXDobTHTs1UUAKmxIazILARgQ04Jz4zsBsB57eN4Y94Gz/d5wKPKVbX1VNbW0zE5vOH+Oibwt0+Xu84PaHfkjziekxqF1cuC1ctCqL+Vkqo6VmwvYvOuMu79388A2OodriLJwWzIKeGpEQ33dX6HeKZ+5/m+mtImPowPf9rC7vJa+raOOerZhgB9WjfMbowJNLO6rBqA5ZmFLMnI55Ml24CGwmxBWQ1JHtajjAnzJz0ulB/X7jzsMTu3iHCtfZcUEUhBWQ3JkUHklVbz6py1nJMaRbeUyKO+p+P1Wc1dmc17y2t4Y9X3TLz5XACiQv1ok9CwRui67BLOax+HxWwiLNCHjsnhZOSWsTqriAs7JeK7Zz2+YD8rNTY763NKmLDf12G93eF63b9NrGv244WdE/nLjKUM79mCuSuzufAQheimHMmYAN+v3klksC9Pj+yO155Zfy2ig/nH5ys5Nz2ac1u7zzo90Px1uTw9ojtmk4k+rWNYuH4Xl/doDnj+3MurbXRMDnd9FgPaxZJTVOWx715p0QT4enFZ92SyC6sO+j1MRERERI4fFQ5FRM5iFrOJTs3D6dQ8nBZRQcxbnUNKtPuMnv15ezUUDUwmGj02aDaZcDgb1na7pk8Kl+55bHmvvNLqJvtyXW+4z47bu3ELgGXPGCfS3oLOkWh0H+Y9MRoGgzsmMOb81scUj+vezSace/JjGEaT61EO6hBP6/hQfttSwOMf/Mr9QzvSuUXEUY29977MJlwzF/c+/py45zHYQ7m2byoTPllGh/0Kwmazib0fo22/YhUc8DW1J5dBft68dkc/lm7dzddLd7Bw/S4evLzTMd3T/v0fzmcV1yyAgvIaqusaiuVDOifiU7qVDzbu+1z2/9oxPHwtN5xo+LuzP6dhEOjr3eRanPv3GxXiR2iADyu3FbIxt5RHr+zi1j45MmjPo81N/10+kjGhYS3BrXnlFJbXEhPWsInOs9f2YE1WEUsyCvhg0Ram3NW/yTUYM/PLyS2u5rH3fwWg3uEkNszfVTj09LmDe64Oxmza+72i6e8RZrPJ9dnY7CduTVcRERGRP4qTt5q5iIicVEXVTnbuN3tna345USF+JEYEkl9azc7ihnPfr95Jhz2z8w5H95aRzF2ZQ43NDkBheS2lVXX4W72osTkOcfXhaxMfyqINeQAsWLfrsK8L8PUm0NebNVnFAHy/5sju73B1bhHBoo27KK2qA6C8xka+h+LpgdomhDF/XS4AP6zdSbvEhhls0aF+bN5VBsDiTfnY9xRW/H28qKmzu67fVVJNbJg/w85pQa+0aDILKgB49N0lFJbXHvN9dUuJ5Mvft7uKL1v2xNSUpIhAkiKC+HVzgetYTIi/6172foYHU1Ztw2kY9GsTy00D09iSVw40PDr75e/bj/JO9jmcz8rX28JFnRN5dc5aV7HTaRjYHZ6LVB2SmrFgXS4Op0FpVR1rsopJjw+ha8sI5q7Mprbe4RorwMeb6FA/Fq5v+Do2DIOte+7Rk4u6JPKPL1a6zQrc6+reLfnwpy3kFFW64vx0SWajNkc6ZkpMMH+6tANPf7SUoopanIbB7vIaOjeP4LbzW1NZV0+NzcHGnaV8vanO7fr5a3O5sX8rpt03iGn3DeLD+y+gsKL2oH8n0uNDWb2jmPI9GzftjfVQDvY9bP+/Rz9tPPTXnoiIiIgcnGYcymlryLOzOL9DPI8M6ww07Px43cTvSY8PPaKdQYsqapk0Zx1P7nk0UOSPwuYw+OdXK6mqtWMxm4gL8+dPQzti9bLw4OWd+Nsny10bC1zaLenQHe7RLSWSrMJK/vzmLwD4WS08Mqwzcc0CaJsQxh2TF9AjNYpzUqOOKf6xF7bjH1+s5NMlmfRMjSLA9/D/yXr4ik6uzVFiQv2PevbawSRHBnHTwHQee/83DMPAYjZxz8XtiQ71P+h1d13Ujn99vZpPFme6NkcBuLhLEs/MWMq9//uJLs0jXDPCWkQFYTGbGPv6Qi7slIDN7uT7NTvxspgJC/Thhv6tcBoGuSXVBPl5H/N93dCvFZO/Xc/Y1xdhYBAd6n/I77nX9U3l7jcWud5f1bslz326nO/X5NC5+aFnQxaW1/Kvr1e5ZimOGZQOQHZhpauweiwO97O6+bx03pmfwR2TF+Jv9aK2upYLuqUSHuRLUUXjomyf1jFs2FnKXVMWYsLEree3plmgL81SfcnML+feqT/hZTHTIzWSMYNaM35YF16evZYPFm3G4TQY0C6uyRmDvdOi+ddXq7mwibUjW0YHM/bCtjz/2Qrq6h2YTCbOaeX+9+1IxgRon9SM2we34ckPf+e5G87hhS8avn8YGAzv2YJAX292l9Xg5eHXzvPX5zLhunMa5yg9hvnrdhEWaHW/AAgP8uXG/q3481u/0CzQh1axIYc14/hg38Nu7J/GxK9X8+FPW2gdH+rx+qKKWibOXO0WL8DEr1dzabck0uIaX7t4Uz4Zu0q5aWD6IeMTEREROZuYmnzU5gRIT083Nm3adNLGO1PMnz+fgQMHnuowTivz589n4pJa4psFMPGWc/HxtvD7lgLe/GETEcG+h104dDidTT5WdSbS14pnyotnZ3peausd+HiZMZlMzF+by4/rcvnLQTYRORxnek6asr2ggrkrs7nzwrZHdf3pmpcnp//OUyO6edxp92Q4VXnJyC1l8rfr+deetRVPJ298t4GQul2MvHTQqQ7ltHK6/h061ZQXz5QXz5QXd8qJZ8qLZyaTaZlhGMf2w7KIB5pxKKe17qmR/La5gH5tY/lxbcNujWuzGx4/3LizlMnfrsNW78TqbebByzqRGBHIt6uy+W1zATa7k9p6Bw9c1pGnpv/OlLED+HZVNks25VNrd7KrpIo+6THcdkEbAF7+Zg0ZuWXU1Tvo1yaW0QPTTuWti/zhbd5Vxquz1wINjx8/cFnHUxzR6at5VNBRFw1PZ0cyu/xs8dHPW5i5LItH98y2P93cfkEb5s/PP9VhiIiIiMhJosKhnNYGtovj/YWb6ZkWxbaCCoZ0TnQVDhMjAnjppt5YzGaWZxby1o+bXDuVbsgp5bU7+xHsZ3XbsGFrfjmTbu+Ht5eZWyct4PIezYkK8ePm89IJ9rPicBqMf28JmfnltDzEJhIicuJ0SGrG5Dv7n+owRE6qa/qkck2f1FMdhoiIiIgIoMKhnOZaRgeTX1bDj2tz6ZEa2ehcVa2dF79cxc7iKkyYsDv37Z7YpWUEwX6e11Tq3CKCAN+GdcCSIgIpKKshKqRhAfnZy7NwOA2KK+vI2l2pwqGIiIiIiIiI/GGpcCinvV5p0bzx3Qb+OaoX5TX1ruPT5mfQqXk4T4/sTl5pNY9MW+I6t3dTAU/2XyvLbDbhcBrklVTzyeJMXrm1L0F+3rz45SpsjuO3O6yIiJx5qusN7prSsOlLSWUdZjOE+PuQX1pNeJAvb9w1wO2ad+ZvokNSOF1bHnpTGBERERGR050Kh3LaG9I5gQAfL1pEB7Nqe5HreFVdPeFBvgDMW5VzTGNU1dnx9bYQ4OtFSWUdv28toGPzZsfUp4iInNn8vU28dkc/AN5dkIGv1cKI3inklVbz1PTfPV6jXXdFRERE5GyiwqGc9iKD/biyZwu34yPOTeHFL1fx2ZJtdG4efkxjpMQEkxoTwh2vLSA2zJ92CWHH1J+IiJzdnE6DiTNXsz67hIhgX54Z2R0fbwsvfrmKnq2i6Nc2lv99v5ElGflYzCa6tozgjsFn3wY2IiIiInJ2U+FQTltfjr/I7Vin5uF02lMkbJsQxpt3D3Sdu+m8hlkeF3ZK5MJOia7jMaH+TBk7wOO5/XfsfOiKTsc1fhEROXvtLK7mseFduH9oRyZ8spyfNuzi/I4JrvPlNTZ+2ZjH1HEDMJlMVNbWH6Q3EREREZHTk/nQTURERERkfzFhfqTEhADQKjaE/LKaRucDfLzw9jIzceZqftqwC5+DrL0rIiIiInK6UuFQRERE5Ag13mgLHE6j0XmL2czLt/ahb+tYftmUz/998NvJDlFERERE5JipcCgiIiJynNXY7FTX2TmnVRRjh7Rla175qQ5JREREROSIaY1DERERkeOsus7OMzOWUm93Yhgw9kJtjCIiIiIiZx4VDkVEREQOYdSANNfr/TfdAhjRO8X1ev+Ntl65te/JCU5ERERE5ATRo8oiIiIiIiIiIiLiRoVDERERERERERERcaPCoYiIiIiIiIiIiLhR4VBERERERERERETcqHAoIiIiIiIiIiIiblQ4FBERERERERERETcqHIqIiIiIiIiIiIgbFQ5FRERERERERETEjQqHIiIiIiIiIiIi4kaFQxEREREREREREXGjwqGIiIiIiIiIiIi4UeFQRERERERERERE3KhwKCIiIiIiIiIiIm5UOBQRERERERERERE3x1Q4NJlMb5pMpgKTybT2eAUkIiIiIiIiIiIip96xzjh8G7joOMQhIiIiIiIiIiIip5FjKhwahrEQKD5OsYiIiIiIiIiIiMhpQmscioiIiIiIiIiIiBuTYRjH1oHJ1ByYaRhG+ybO3wHcARAZGdltxowZxzTe2aiyspLAwMBTHcZpRTnxTHnxTHnxTHlxp5x4prx4prx4pry4U048U148U148U17cKSeeKS+enXfeecsMw+h+quOQs4/XiR7AMIwpwBSA9PR0Y+DAgSd6yDPO/PnzUV4a25uTnzfm8dePl/HGXQNIinD/x8Fmd/DgO4uptztxOA36tYll9MC0Rm0+XryVqd9tZMaDgwnxtwIw/actzFmZjcVk4q6L2tE9JdKt74enLaa4og5vLzP1DiddWkRw83npBPp6HzT2K/4+hy/HX0ReaTVPTf+dKWMHHHUeRr/8A6/c1tcV9ztffM+veQE8e22Po+7zSJVW1XH9v7/n7ovacWm35CO+fm8+PDnU5+vp+m9XZZORW8Y9F+/7XcXR/h1atb2IT5ZkHlM+D/yM9j/uZ234Fus0DPq0juH6fqlYvSxN9rX/18yxxjb52/WUl9XzyNCBADz+/q9EBvtx/2UdAXh93noignxJjQk55hycSfT91jPlxTPlxTPlxZ1y4pny4pny4pny4k458Ux5ETm5TnjhUORY/Lg2l3aJYSxYl8uoAWlu570tZl4Y1Qs/qxd2h5MH3l5Mj9RI2iSEAVBQVsOKzEKiQvxc1+zYXcH8dblMGduf4oo6xr//K/8bNxCL2eTW/6NXdiYtLpR6h5M3f9jIMx8t5cWbep+Qe3U4DY8x7K/ObrB2RzF3TVlESWUdZjOE+PuQX1pNeJAvb9zVuEjpcDqxmA+9IoGnYtxeizbsonV8KPPX5R60cPjLxjziwwNIjgxyO/fuggxmr8gixN+H2no7LSKDuOm89EN+vsfil415TFuQQb3DiZfZzE0D0zi3dQwAWYWVPP/ZCmptdiKCfV3X3Pe/n6l3OKmosWGzOwkPajj39Mhu3Dl5YZMF0Ka8MLoXIf5WSqvquPd/P/PV0u1EBPkS6OvN364/x1VY9GTuymzKqm1Nns/ILeW71TsZd1E7oPFnPfrlH7i+Xytmb3UADYXLsmob1XV21/UbsksYO6QtdfVONuSUkJFbSlpcKHml1Tz2/q/cfVF7gv28G42xv70F00Bf70N+3YqIiIiIiMiZ6ZgKhyaT6UNgIBBhMplygKcNw/jf8QhMpMZmZ31OMS+M6sXTHy31WFgymUyu4ovdaeBwOjHtV8N4/dv13Hp+G/4yY6nr2OJN+QxsF4fVy0JMmD9xYf5syi2l7Z5ioyfeFjO3nd+GW179ka155aTEBPPpkkzmrswG4KIuSQzv2aLJ6/NKq3nhi5XU1TcUcsZd1I52ic1Ytb2I9xZm0CzQl8z8crfC34F8vEy0T27Gs9f2YOp3G/htcwGGYRAd6keNraHvdxdkUFRRS35ZDcF+Vq7rm8pLX6/C7jAwDIMnr+5GfHgA36/O4Yvft2N3GAT6epEU4V7wg4bi7R2D2/L3z1dQWF7rKrRd8fc5DDunOb9uLsDH20JUiB/928Ti42Xh75+vwOE0Gs3kvLJnC0b0TgFg/rpcHnl3CSbgxZt6N/n5HsqLX66iZ6so1/u9sxNnL89i0tx1dExqRl5ZDTFhfkz5bgMxYf4UVdTywpcr8fGycG56DLtKq115axkdRH5ZDd4WM80jA6mss7O7rIa/fbIc555lHcqrbTz/+QrKqmykx4dyOIs9zFmRTc9WUXy/Zicv3tSb0qo63pmfwfLM3ZgwcV2/VAa2i2t0zZDOiXyyJBOAjTtLmfztOmz1TqzeZh68rBNpcaFs313BhE+WYbM7qa138MKoXq7r0+NDmFruBGBHQQXNo4IorqyjoqYeH28zWYWVpMSEsD67BKfTYOp3G8kvq6as2sYjwzrTPSWSFdsKWZtVzJ2TF5IWF8K9l7TH6mVh9Ms/UFlbz5Mf/sbwni0J8vP+//buMzqq6mvA+HOnZTLpvSekQUKA0HtHQERQUbFhb2Dv7W997b2ABcSGDRWVKiACoUkvgSRAAiSk92RSp9/3wyRDQiYBRA3q+a3lMjNzy7knYcqeffbmy6YgbYiPjgenJncYFBUEQRAEQRAEQRD+Gc7qk50sy1f9WQMRhJP9fqiY/rEBhPu54+GqJqtIT3yIV5vtrDaZu+ZvprCynin9o0gIswcAtx4uwd9TS2ywZ6vty2sNJIZ5O277e2qpqDGccjxKhURMoCd5FXXYZJlf9+Xz3k3DkLFnqvWK9CXOyfgAvN1ceGXGIDQqJQUV9bz8817m3DIcgMOFeubdnkywj87pvo8s2IaiKaOrUm+ka4T9/tTjFfh5aHl5xiDWHSjgrWX7eXv5frYeLsFksbLg7rF46jS8tngvZosNpUJCo1ZhMFvILatlQ0YRb98wFJVSwSMLtpJfUdfm3K8u3kdmoZ43l6bi6+7ChoxCLh0cwydrD2EwW1mfVsjwxGAq64xsOVTM4cJqahvMXD0ijsuHxrJ0Z47TaxqdFMrSHTlYZRvhfu4YzFZu/XADkgTdw324d3JPiqoaePHHPZgsVmbN24TZYqVE34iXToOXTsOtH25oCoSZGBPc+vgbM4oAuG9KL/w8tDzw2e+MSAzmuy1H2XOsDLBn4aWkF9Ktxd9CVpGet24YyoaMQr7dfIQHpyTTI9KXUn0j1723js/WHeKXPbloVErm3DKczKJqftmTyxtLU6muMwIwc2J3kiJ8W42nss5IsLeOYG8dhZX1lNUYyCmt5dnp/Xlq4U7m/3aQnpG+/LInl+p6+3G+23LEkXFoMFtAto+5ttHMx78d5NLBMfy8PZuaBjOvXTeIOSvTuWPeJkcw09ddi0KCn7dn8/P2bKw2GW83Dem5lXjo1EQHeaJW2jMUG00WzusVxvdbj+Hr7oKnqwaTxcpLP+2hS4AHr183hBcX7WbWvE24qJTUNJpQKCSev2ogAP/3w25emTEIrUbFd1uO8uO2bGaMjHf6uxcEQRAEQRAEQRD+OURKiHDOSkkv5OKmLL7RSaGkpBc6DRwqFRIf3jaCOoOZ577fRU5pLcE+Or7dfISXrxl4eic7zZWWzdllabmVDE0IQtuUVTU8IZi0vMp2A4dWq433VqVztLgGhUKioEWQrluoV7tBQzix3BXsNQ6PNMU4y/SN9En2B6B7hA9mq43xPcPw99CyKaOInUdKGdcrnCNFNZisNib1iSTER8fcNQcZlhBMVpGeuz/ZAkBVnYGAFsu5m4X66Lh0cDTXje7GvZ9uYfXePMYnh/P7oWJUCokv7h5DvdHCrqNlHC6o5qaxCbz7ywEuafq9jesVxidrDzm9rlqDiWAfNwCm9Iui1mDm1vMSeW3xPrZnlTK4axA6FxUqpYIPbxvBp+sO4efuAhJ8sT6THx+ewJtL95Mc5QvVR1sdu1jfQHSgJwGe9muKCfZEp1FxtFhPZIAHvbv4odUoCfd155e9uY79hnQNwkVtr0FYXmPg/VXpjsdkICbIE39PV7qFerFyby5Xj4hHpZC4sG8kg7oGUapv5ImvtzP/jtGtxjOxdziPf70Dg8nCit25yMCYHqEoFBJKhUSvKD8yC/VO58lstfHGklSCvXXYTBYUSK2CvH1i/Fmy4zhJEb7MGBnP9qwSftljvyZ/ncRv+/NJivThssGxfL7+ECv35tIj0rdVhq3ORcXcNQe5YUxXsktrKaluwFWjwtdd6/gbt9hkJOCD20ZwxZtrqG4Kah7MryK3rJb7P99q385qIzHc2+m1COeuBrPMrHmbAE6rDMLp+jU1jzeX7ueVGYPoE21/vmqubfrkpX0Z0T3kjI/ZnGnc0b4H86v4cHUGZqsNs8XKqKRQrh3VlS83ZKLVKB3Zz6ejZR3T9mq2dlTL1dlx/oiKWgMfrErnqcv7cbRYT0WtkYEtMq4Bdh0tczznFlbW4++hRaNWEh3oQe9ov3ZLUpyON5aksj+3AjcXNXV1jSzO3sI7Nw477f2LqxvIyKtibM8woOMSGYIgCIIgCMK5QwQOhXNSg1lmX04FOWV1SIBVtgctbhmXgCQ5j/K5a9UkR/mx82gp/WMCKK5ucHwQLqsxcOfHm3jv5mH4e2gpa5FhWF5jcNSy64jVJpNTWkOkf1cqm7LLTtdP27PxdtPw4e0jkGWZC19a5XhM+weXdJ68RFahkIgO9mRvTgWB3q6U6BtpNFkoqm4gyMuVJTuz0deb8HF3AVlmfK9wbhqXAJz4AHey1fvyqKwzsmjrMcfvoLrO3jBGlu0BgEFdg1BKUqvxtPMrcqhpMFFQ2UBZjYHr3ltHg8lCo9HCriOl1BrMRAW4M7hrEJP6RJKeV4XVJrMxo4j3bhrG74eLUSok3l6+n7KaRpRK+8lkWcZitTkmR606UdtRIUlYZRmkjmPELpoTjUtkGd65cagjkHjhSysZ2T2EhVuOEh3owbGSWsD+d/HJukN8npIJQIPJ0qqWIEBssBcf3jaCG+asRwLWpRUQ2kGwuKX88jpMFhvDE4O5eGA0xdUNPLJgm+NxrVrJgdxKnr68HwCD4oMcDXzUSonsinpyy+vIKaml0WzFZpNRKCQm9o5wHEOSJHp38Wft/gK6BHrY5+qkv7Ds0lpCve2BWBe1Ejftib/bvjEBPD6tz2ldj3Bu0qntX8AArYJrzQ17zkZ0oAcpaYWOwGFKeiExQZ6n2OvsvLEklScu7UtssCdWm+w0o/p0SMY6zPpajr19BdraPGy6/5H10iQAYh9ZgkJ1IgiYt+BBPHuMxavvZI69fQXB0/6HLqpXq+Md/+gWNBVZdHvhd8dr2fGPbqXu8GaS3j7Y7jisNnvN1aea/p0fLakhs1DPwPjAVufqHxvgKBHx8IKt3HpeIl1DvQFY9OVn6I8Xk7X3YQwFh9CG2Z//fYZMpzEvzTH2jtw6LpER3UOaitKfCBoeenIYCq0bEhJKnRfh17+Fxi+81fhLqhtZn17oCBz+UQfuiMJ/3C2EXPoUAGVr5mIzNhB04f3t7lOy/G0ULjoCxt9+xuer2voDDbn7CbvieUqWv4V+7y/IFhMB42fhO1wsvBGEv4J+3ypy591O/NNr0QbHAWCqyCPng5vo+tSaTh7dCXkLHqQ+axtKV09ksxGv/lMJmnzfGR+nLnMrklKNW6y9GW7Fxq9QaFzxGXzpnzxiQRCEP0YEDoVz0uFyC+f1CufeyT0d9z30xVbS8qroGXliGWh1vRGVUoG7Vo3RbGVPdjnTh8YSHeTJ9w+Od2zXMtNjcNcgXvl5L9MGR1NZa6Sgsp5uTR+s2mOx2vh8/WECPF2JCbJ/EH1zaSpXDIsDWWbL4WIeuah3u/vXGy34e2hRSBKrU/Md9fLORpCXK0eK7cG+g/lVKCUJNxd7wEiS7AEtmyzjqlHx8axRSJLEh6vTCfLW0Tvan2e/38W0wdF4u7nQaLLSeFKwa8+xMirrjHz3wHg8XNW8sSSVWoOZTQeLee/mYUx77Vd+P1zC0l3HmdKiaUpSuA8paYWM6xXOugOFTse+6WARwd6uTB3QhQv6RnLte+uIDfbk1vHd2ZddjsliDwAOTwxuykAsIS7YC0+dBoVCYnhiCEO6BvHZ+kN8uu4wtyQr2Xq4BIvNPq9B3jrHkt9mJfpGYoO8SM+rJKbRA63GlZR05+MDCPDSsnRnDpcPtWcmKSR7gK1npC/peVVoVEp2HilFBl68aqDTjM1mjSYLn6w9xMjuITwwNZmKOiNr9+czrmcYFqvMgdxKbjkvgf25FW32lbEvUW4Obq9JzXd6DmcBUW+thKoW4kO9eXWGvf7hnR9v4mB+Nfdd2DqgMX1oDGsPFPD74RISwryJ8Henqs6Ap6v9b6q20Uy3k+owAiSEeTNnZRoFlfWE+bphMFspr2kk3M95l2zhn8dmk3l7+X4y8qrw99Ty7PT+uKiVFFbWM2dVOvp6Iy5qJfdd2Mtpd/Qekb6k5VZisdowW20UVtYT2yJwmFWkZ+6vGTSaLHjpNDw4NRk/D+1pHf+L9YcpqzHwwNReKFp8Y1HdYMTPwwWwZ6W3bNqUW1bHwwu2Uqpv5JJB0Vw80J4h/ex3uyiracRksXHJoGgu6BuJ7OKO2ktHzC3fYVj3PlKqivgnVrY7V+kV8POCrSgbR1G6uIiukVYevbi3I0i43pTAfu0YFLNX89TVwwnTWanTV7LQbTrV8zdjtcnMGBXP0G7B/Jqax46sUkcN0wem9OLphTt5/9YRLEjJxGSxkZ5XxRhzFy48jd+jZ6/zsLqU8JllHMdNGYwZOIhbzksEYNXcF1m+BeTdm864TumhgmreVl+Hwr8rLi4abvDYQ+mq2WT0uKvV+I1mK7nldcyat4nxvcJwd1VTWWvgiW92UFRVz7BuwY7xdERSuaDft4qAiXeicvc95fZ/Jl10HwIn34+1vprM58bgM+RyJKV4Ky0Ifzb9rqXoYgeg37UMbQdfCpwLQi55Aq++k7GZDWT+33n4DJqGxj/yjI5Rn7kNhYvOETj0GznjrxiqIAjCHybe7QjnpIwyC7cNCGp13/DEYNanFbQKHFbWGXljSSo22R4kG9k9lMFdg04+XCtdAj0Y2T2E2z7aiFKSuGtSj3a7wr768z7UKgVmi40+Mf48e4X9BT0+xIvxyeHc88lmwN4cpb1lymBfivv8ot1sOlhEcpQfWrWy3W1PV68oP7ZnlTJz7kYkiVbdgZu5uajRqBTMeHcdnjoN3m4ahiUEExXgwfWju/H41zuQZZl6g9mRldJs88Fi3LVq3LQqquqM7DxaytT+XViXVsDkfpEoFRIzJ3bnxjkpAKgUEg0mC7MmJvHKz3tZvCOH4YnBbcYEsGRHDvoGE6OTQh1BwpHdQ1iTmsehgmpGJNqXIGpUShQKidm/pPHAFHugy2SxYrHaGBgfSIiPjts+2sjneyVG9qp2zOuo7iF8+GsGxdUNBHvraDBa2H20jJeuGUhlXRivLt6HTqNiVFIoOWW1TsfYM9KPzCI9M+duxGqTHUHJGSPjeeTLbZTXGHB3VeOiVrJqX56jucvRYj2xwfa/hUcWbENGxmCyMiwhiBvHJjQtnbQR7u/Ok9/uoKiqgbsv6IG7Vk1qdtvAYYS/O2qlgrm/ZvDTtmySwn2QTwo894z0ZV1aAVePiGfnkVLqDGYAkgJVbM83EN0UNKlpNBHsrcNgsjpdLjlzQnd2HCll9b58JvaOYPrQOL7emMXtH23E193FUWvTaLZSb7AHmr3dXHhoajKv/LQXc1PG5/Wju4nA4b9IQWUDj0/rw/0X9uKFRXvYfLCIcb3CeXfFAe65oCdhfm4cKqhizsq0Vg16WuoT7c+uo2U0GC0M6RpEcXUjYP9S5v1VaTw7vT/ebi6kpBfy+frDPDg1+ZTHn//bQeqNFh6c2qtNJvolg2K4+YMUekX50T82gPHJ4WhU9ueHvIo6Xrt2MI0mKzd/kMKF/aJQKRU8MLUXnq4ajGYrd3+ymeEJzp+/GnMPULToeazGelTuvoRf90arx48U1/Cky066XTSMJ9fVkZ5XRY+m1y13ycjLA+pZffwIP24N5Xq/g6z3v5S4yhVcf8tz1BnM3Dl7BV6WLyixRJGmHs28ey/A01VDcVMjJ7VSwXWjuzqW+R57ew4Ass1K/leP0Hh8P0gSZo+ZQOtA3NGSGj64dQRZj9/MmxnvMnVAF1zUSpbru/Bg5C5seftYmR/LN9Zibr7Cnn1YtuYj9LtXUGMeyUeH4vhmsz91dY1sq9rLY5f0IcLfjXvMX9JtxlL2l9r4aX0tNxrsDckycit4XPE12rpijromsin4Ul68bgT6PStYsvRXDjGIJ3TL6Xrvl9z8fgqDK5ahzd6EbDHhO+o6/EZc02b+JaUS32FXU752PsEXPdLqsZr9v1G6ajayxYTSzYeIG99F7RnQapvKzd+i37eSqNvmod/7CxUpnyNbzei69Cb0yheQFEoqt35P2eoPUHsGogmKRmrKLPVIGkPTZIOkOHV6vSAIZ8xqqKf+6C5i7lvI8Y9ucZpNbDM1kr/gQYzFR3EJjsNUmU/oFc+ji+pF+v2Jjgxu/Z4V1KStI+K6N8lb8CBKrTuNx/djrikj5JLH8eo7GauhnuNzb8HaoEe2Wgie8hCeyROwGRvInX8H5upiZJuVwEn34N1/Srvjls32L6wVLvYVJc5eK9ReQZSv/4zKTV8hKVS4hMQTfPGjVG7+GiQF1TsXEzr9OeoObXFkSbscTeHItjeRrWY0AVFE3PAOCo0r+j0rKFnxDpJCicLVg9gHfvgLfhuCIAh2InAonJOu6eXKgLjWtZuas0Jaigny5IOm5XUdWXDP2Fa3rx4Rz9UjOm7e8Pp1Qzp8/NLBMVw6OKbN/c11roK9dcybaa8LFubnxke3j3Rs07xEOLmLH8ld/E573FHeSq4fPQCwLxed0Du8zXLCa0d15YetRzE0dVl+47ohvLcyjcpaA+U1BvYfr6RXlB+jk0IdnXx/Tc3j/ZXpXPPOWse53rlpKCaLjds+3ECIj46kcB8CvLS8du1gnlq4kxAfHQ9/sY2ZE7ozonsIvh4uvLP8AEt25PDkZX0J9bXXL7xiWBxfbsjk5+3ZrDtQiMFsoUuAB/+7rC/ebvaMoEl9Ilm+O5cgb9c2Acw3rx/C84t20zfG/uFvSNdgVu/LZ+bcjcgyPDClF+qqI4weneCY10l9I/FwVfPMwl1YbDZUCgV3X9CD2GAvYoGLBnRpU+fs5K7OGpWCB6b0ddy+6BX78nJPnYZrRsTbg7YTunPV8DjmrExzBBh7RPpy7+SerX53a1Lz+XHbMfbM34JNlhkUH8jNTcvuF+/I5vvfj7Ixo4iYIE+GdLMHvn3dtUzqE4laqeDZK/rzwap0Gk0WDuRVMm/WKDIL9fh7unLXpB6OTs93fryJnlF+BDZlP7prFAR4ubJiTy5Ldx0HIMjbFX29iVs/3MDHs0aR3MWP6EB7YFGSJObNHMXTC3cyf+0hBsYFOrp4tzxHTLAne7PLeXjBVmQZIv3def36IWjVSr7ckEl+ZR3QcQD/ZM1/w83/Zpp1VAftvs9Or8ba6dTEO9kz3+1CX2/knZtOv4abM7+m5jH/t0P4eWgxWaxM7hvJNCfPG2d7jlPVinvu+10UV9vLF+gb7AFkgLsmJbVp5nMyWZYdwfD4EC9HGYSM/Cpe+HGPYzuzxdruMUYlhbJkRzb1Rgu3jU9k4WZ7XdL8inqOl9bx+Nc7AHt2o6+HyymP//WmLBLCvNtkzjabMTKesT1C2X2snPVphaSkFzqe0wfGBaJRKdGolHjrNFTVGwnwdGXJjhy2HCoG7OUtCirrnR678LuniZo5H5WHH9W7llGy9HXgPMfj3UK98SlrQCFJxAR7UlLd4Agc9lEdx73bxQTvfJs0XX/02cs4qLmJOu1Yts3bhM1Qh8lsxf3WBQTmV5GwZhnK/L0QP6jduW1myM/AUl3sWMan+mxTm216R/vjplWjxkKkvzul+kbqDGaKzDpeyI5H4zsGk9ZI+KFdwGRqMzZiLM0h9tGleCxNZdqxRZw/Zgo7C1wZPdpenqDeYOEz1TRqFuxDUqgw6OvwGjYRgK6WLMJHTsFn8GWUrFiEMS0TGEHJL+8ScN5bDKiwkTh2MkqVkhBVLVWSNyMeW4bNbOTYm5fikTjCaeaO36jryHrxfAImzGx1v1vcAGIfXowkSVRu+ZbyNR85ljQDlKd8Tt3BTUTd/jGm8lz0u5cT+9CPSEo1Bd/+j+odi3FPHE7p8reJe2w5ClcPst+5Em1EkuMYstVM7qd3ETT5XiTF2X8JKAhCazWpq/HoPgqXoBiUOi8acw/gGtmz1TYVGxag1HkR/+RqDIWHHSUkTsWsLyXmwR8xlhzh+Ee34NV3Mgq1C1G3zUPp6oGlrpKjr1+MR6/x1GakoPIOosudnwNgbaxxesyin1+idNUcTGU5+I2+EZWHP7LV7PS1IvzaNyj79QO6/d9mFGoXrA16lDovfIdf06qcQt2hLY7jm8L7E3fzswAUL32dyi0L8R9zIyW/vEv03V+i9g7G2uC8TrYgCMKfRQQOBeEfqmWgq2WQEmgVEAv20fHS1R03iZmQHMGE5Ig29z90UbLT7WffPLzNfUkRvu02ULh2VNc2gbmWbhjTjRvGdHP6WFpeJROTIxxZoX4e2jbnT0k50ma/4YkhDE90HijqaCzgfD5aNj4Y0T3EEYTy0mn436V96cj45HDGJ4c7fezigdFOg+It575bqDfvnhTAahl09tRpePmaE4GFmRO6A/a6dV/eY8+Q6ahuXcsguVqpaHUsZ+f4NTWPMF83R6Dq5Z/2siG9sFXdxL+Ds6Ch1Sa3m0F8uuoMZo4U63FVKymuanDavMhqs6FUKJzs3dbI7iGOAO/NH6QwPDHEEdz9uzwz3Z4tnZpTwaJtx3j+ygF/6DgKBZgs9gxvd63aURfxVBLCvHm3rA4XlaJVNqosy0QFuLcJ0NYbzR0ev1uoN1lFemoaTXi6Om82EurrRqivGxf0jWD6m2uoaWro06r+qULCapNJzalgb3Y579w0DK1aycMLtjqyoU9mKMoke7Z9GZlss6L2bP0ll9P6qk1Ukg0USlzDEzDpy7CZDeCq5oa6Lxhz20aKfnwB/d6VmD6eT6ktAZXVB2NpNm6nETjU+EdiKs+l8Lun8egxFhQubbZp7qTe8toBumureGCEDz4D7V9wpd9/L/A4dQc3UndwE0devoBa2zjMlhKMpdnAiWzMBSmZxMvHGVO5itJaC++734pX/4vgcCXK2mK8B9wGgHviCKzbvwLALaY/lVsWYvPth2yzP2/Y6ivRl20i66WfAfuHdGNpjtPAodLVA59B0yhf/xkK9Ylse3NVEUXz78RcU4psMaPxP/GcVL3jZ9TewUTN/BhJqabu8BYa8w5w5NWp9vObDKg8/GnI3odb/GBUHvbnPq9+UzCWHnMcp2LjV2h8w/Abdf0pfyeCIJw5/a6l+I29GQCv/lOp3rW0TeCw4egu/MbcCIA2tJujZuupeCZPQFIo0IZ0xVJT3nSvTPHS12jI2gEKBebqYiw1ZWhDEyj66UWKfn4Zz57jcItz/l66eamy1VBP9ntXU390F0pXj3ZfK7RhieR9fi+evSbgmTzxlGNW6vM5+uZlWBtrsBnr8Ui0v9d2i+lP/oIH8ep7IZ69O27OJQiCcLZE4FAQhHPWc9/voqiqgVfbWf4o/HFnW7eumdVmr1/m0dSQpaVf9uSyck8uZquNUF83Hrm4N1q1kqo6I+/9coCiKvvSy7sv6NGqQVFRVQPP/7Cbey+0f1Aoq7HXQSupamBMj1BmNAV+mzvZpuZU8NXGTHzdtRwrqWHezJG8vyqd1JwKgr1dW7V5WZ9t4uuDG1AqJPrG+HPb+O5txr35YBGD4wPxaVo6e+Vwe2H2N5ak4uGq5kixnrgQL6b0izqjufLUaQj1daOyzkiglys/bjvG6n15gL3cwbRB0W0yL5uzh68d1ZXDhdW8vWw/WrWSpEhfdh4pdWz3R2rFlVQ38Nay/egbTNiMjXTv00iglyt1jWZ+3ZfHxvQiEsK8Hds3miz8sjuXRpOFzQeL0bmo2JhRRHZJDR6uapK7+BMb7Mln6w7h4+7SJiB+09hurYJqAOH+7lQ3mMjIr6J7uA8Wq438inq6BHoQ5O3KxowiRnYPQZZljpXUEhtsr43YPzaAfrEBPP3tTl66ZhA6l9ZvZ7ZnlTAwLhBJkiioqEchSbg5+Rtt1hyo1KqV5JbXcTC/ut1tXULiiXt4ces7X1nldNv2eHQfifGXvXiNnkw/OYBNOcMZ3dSUqH7o3fS74EqyU/PQF+rxHdY2k9RVo6LR1LourVLnRdwTq6g7uIGKDQsw1Y3l5KXKziSEefOu0YtSowYfwGC2Uqrww55jJxMw8Q78RlyD55JUwuKvwbd7CKSkOPavN5oJl2uJuW8h23YUI21Lp2T5mxB/Y6vz6DQqjJI9mBl29Ut4/baFwqxsjrw0ibgnVoIs4zfmBuJHjTutOfQbezNHXp6Mz5DLHfcVfv8M/uNuwbPXeOoyt1K64h3HYy6hXTHkZ2CuKrIHI2UZn0GXEXzxo62Oq9+3usMlyIaCgyeWLJ9k0gsr6BLoiSzbv8C44/xTZ/SeiV9T8+gXE3BaDd2at2/OeLZYbUT6u/Nw0/PwX6XllxNbD5ewNc/E6LM85pyVaaTnVWGx2iiubnB8+XD18DiW7spp1QTo73By46GTZZfU8NqSVABK9Y24aVW4uajx1Km5eEA0ueW1Z5iT/98hGeuoy/wdQ1EmIIHNCpJE8CVPtNpObtMisNVRHD/ZzK3rXbdsaNXcBK56x2KstZXEPb4cSanm0JPDkC1GXIJiiHtsBbVp6yhe8iruiSMJuuDeds+q1LrhFj+YhqO78Ega7fy1Auhyx2fUZ22n5sBvlK6cfcpmL+47Pyb03i9xDe9O1dYfqMuyN8gLu/olGrL3Upu2zvE8qnL36fBYgiAIf5QIHAqCcM5qzpIS/nxnW7duY0YR6XlVVNYZCPN1Y5CT2qLDE4K5oK89W+jz9YdZvTeXiwZG88HqdHpG+fHM9P5YbTIGk4XaprqMeeV1vPzTXh6c2ovYYC+Ol9WSWVjN3NtH4qJWcvcnmxkYH9jmA9vhQj3zbk8m2EfH5oNF5FfU89HtI6muN3LrhxuYmBxBTaOJzAoL3zw4HkmSHLUgT7Y+vZAZI7vi46bhhUV7HIFDgPzKel6ZMRilQuLRL7eddo0/sH+ANFlsxAR5kFWk59d9+bx30zBk4J5PttAr0hd31/aDW28uTeXeyT1JivDlk7WHWj3WXLtOrVJw8wcbmDqgyymzGt9flc55vezZsO8uXMMHq9J59or+7DxaSmK4D09c2pevNmQ6tteoFJyXHI7NJjN1QBfu/HgTq/bmUqpvpLi6kSuHW4kO8mBDUwf0k51cfgLsGXBPXdaXD1ZnUG8wY7XJXDIomi6BHjx2cR/eW5nGN5uysNpkRiWFOgKHYM/kbDRZeOa7nbxw1UBHB3SAtfsLmPvrQVzUSvvv6pI+HWai9o8NYMXuXGbO3Ui4nxuJ4d7tbmutq6T+2G7cYvohW80YS7I7nGdntOFJqH1K8R4wmmtcvHhprYKZczdhNfbHqy6b3mPty6RtxgYsteWoPPzJ++weZI29i29yFz++33KUWfM2OZqjWOoqkZRqvPpcgMY/CuvnWzoYwQnebi7c6HeQd/f2wZaxEYAxSvvvyj1xFCXL38R7wMUAfLwmja83HKK+0cB3mZt47+ZhXD40lpcOjmbbwjT6xAah1HlTvf0nrJFXoPIMoHrXMnwGTcPn+DrUru7MnLuRsbFueAdE4mr2Qlnlg7mqEJWHH7WpvyEPH4mkVGMsOYbaO9hRL+xkKjdvvPpOpur37/AZMt3+u2msQe1tz4as3vZjq+1dw5PwG3EtOR/dQvRdX+KeMIzjH92K/7ibUXn4Y6mvxmaoQxfdm6JFz2Gpq0Lp6o5+zwq04ScCsL7DrnKc42QaldKRJbvraBmfrTvMG9d3XPbkTKxJzadLgMdpBw7hRMYz/P3Z4UO6BWEscp4RfCaax9/8xUrLTOSlu3JOuf+ZZIj/GaKDPB1jdFYqY0i3IFJSnDc6+6/T5O/EZ9ClhF39suO+Y29Np+HoTtQ+J+bQLbY/+j0rcO82FENRJoaCw47HVJ7+GIqycAmKpSZ1NQptxzWXrY21qDz8mjKRf8dcaf/dmKtLULp54TNoGgoXN6q3LerwOLLVQmPOPvxGX48mKMbpa4VLcBzmqkLcuw3FLW4A+p1LsBnrUWjdsBnqnB5XMhtQewUiW81U71yMqun5x1h2HF10H3TRfag58Jv9eVQEDgVB+IuIwKEgCMJ/ULCP61nVrWv+MCrLMnNWprFo61F7l/EWcspq+Xz9YeoNFhrNFvo11alMzang4aal2EqFPROs1mBG32Di2e938dRl/egSeKILbp9ofzybmrkMSwgmLa+qTeCwW6iXY0nxgdxKxvQIRamQ8PPQ0rtpubWbiwqVQuLpJ56kl3s1SbYjuAXHEHH9Wyg09iBbVZ2RosoGekT4IEkSSoVETmmtYzwjE0NQKqRTzpWx5BiFi56juMyN9Yox7NqXRonVg/su7IVGpSQtt5KhCUFomzrXDk8IJi2vst3mTnUGM40mK/G6eqp3bmRMj7FszypxPN5cuw5w1K47VeDwYH4VT1/eD4AegSo+2lMJQE2jmUcu7g3AJYOj+WGrfZmmLNvnJy23kt8Pl6BvMPHQRcn4umt57KvtDI4PZPfRMmKDPB2/r9MpgxAb7MWbToIr7ZVZaLnvxN4RToMgT7RTPuDkMgUtSzy86ORcKTknas0agE8GFuKe8CGFPzyLrbEW2WbBf8zNLHnsKvIWrCHJD4aOH8Cxt+37t6w7ueCesRx7ey4A3cJ8ePe+aYD9jdj0hh9JmvkCAOXrPuXoG5fQBYhx0WEd9i5KN188KjKY+7Q9IOvpqmH2LfaSDc3NUczVxeR/+ZD9FwW8Mu0RPFr8Ozn5d9FyuXqiaxWDBoBX3+alyvY6Wx7dR2IsPsLRNy5hKnCxi46Iq99la3o2o0fbAyPdw3140jyXuCuXoXL35fox3Sj8bip+5asYd9M08r98mPI1c1F6+PL6bW+g8Q3j+NzbMG7LoYss49ZtGNrw7rw8M5GSZZlkvTwZZBmVuy9RMz92+nts5n/erVRs+MJxO2jy/Rz/eBZq72B00X2gIq/V9m5xAwiZ9j9yPriB6Hu+JmjKQ2TPvhZsNlCqCLvyeXTRfQmcfB9H37gEtWcgrhE9kOUT/7Zr09bhFj+oVRDDmQajBfcWWa4/NNWyNVttDO0WzHWj7X+Lzrp5W20yby/bT2ZRNRISE3uHE+DpSmahnld/3odGreSdG4fy1cYstmWWdJhB3ezk7PCWGcfN3cwDvVzbBLpOzuz2dNWQU1ZLfIiXo2P4ziOlfPRrBl46DXHBJxrF/Zqax/ojRkaPtgfQdC4qMouqqaozcsu4REZ0D8Emy7y/Mo39xysJ9tEhyzITkyPOqCbtxowiZq9Mo95g4f4pvegZ6dumK/mTl/XlraX7Ka5uwEWt5N7JPYkJ8mxVxgPgto828H9XDiDYW8fXG7NYl1ZAgKer/dpCPB3bOTvn6WiuSdvD1T4nGrWCvPI6SvWNPDg1mTWp+RzMryIhzMfxXLf7aBlfbsjEbLWdcdfzfxqX3G14Tn+81X2efSZRvXNJq5qmfiOvI2/BA2S9MBFtRBLasASUrvbX6eCLHuX4hzeh9gnFJbQrNmNDh+f0HngxOR/exJFXLkQb3h2XIPvv2FB4iOKfXgKFAkmhIvSqF53u31zjULaYcO82DM/ek5Akichb2r5WuARFk/f5fVgba+1Z1mNvRqnzwrPneeR+PIua/WsInf5cq+M39JjGkdcuQuMbjja0G1aj/Yul4p9exFiWA7KMe9PzqCAIwl/l3/mqIwiCIHSoda2zP1a3DuwNVQZ3DWLJzhyuOCnJ7I2lqTxzeX9igz35NTWP/TmVHR7LzUVNgKcrGflVrQKHJ68adJY3pj2ND1FKhYLre2upWpVBdtIz7Kw1cJflGyo2fUXAuFsB2JBRSK3BzPWz1wNQb7SQkl7IDYH2GpzNS/xazpVstSApT5zfZjaQ88GNhFz6FMFyN8YU6rkhpoYjDTqeX3OQAXEB9gVStrY19JQKiZZNs81Ndfaa7zNV5FO9cwlEtm6c1F7tumayzXrKRg4tOxM7W6m5Lq0AfYOJObcMR6VUcN176xx1AM/vE8Ga/flU1hn/9lqXf5eWnT2dda+MuO5Nx88x93/n9Bjt3d/cARTAf+xN+I+9qdXjhsLDePY+H4WmbaZZy2PGP/5LO6Nv/3zQeuynMx5onWWZ8ELr7MbQK/7vxPjuW9jm/FG3z2s7KEki+KJH2nRKPlnLsak9A+jx7olMI8/kCXgmT2izT8vfnUf3UXh0tweMvftPcdol1XfIdHybshjbHGvKg+2OzWSxMmveJkwWK5V1RkcG8u6jZRRU1vPezfYM42e+28WB4xX0jPJz2s27RN9Iea3BEdiuM9iX0rdcllvTaOL3Q8XMv2NUhxnU7WWHt8w4Xr0vz5Fx3JEjxfZSEH4eWh747HfS86roGurFOysO8NqMwYT66njxx73t7l9ZZ+CtG4aSV17HM9/tYkT3ELYcLKZE38jcma0zxM+EVZaZffNwdmSV8tXGTF6dYZ/3g/nVfHj7CDxdNby/Ko24YE+evaI/+7LLeX1JaoevdZmF1Ww+VMwHt47AapO5c/4m4kJOZDy3d84zVddo5rVrB7M1s4RnFu7irRuGEDWlF3fP38zRYnsTtG82H+GVGYPQalR8t+UoP27LZsbIjhv8/VPVjHkcj6TRre7zH3Oi7EHzsl5J7WLvLqzWYiw7Tva7V6P2DQPAq+9kvPpObnPs9p7nVO6+TpcUa/wiHM8V7Tn5mC25RiQ5fa2IffDHNve5BMUQ/+Rqx+2W9RSNceNIuOX5Nvs4fR4VBEH4i4jAoSAI/wrNtaWsNnsdp4cuOvM6TkeL9VTUGhkY33ZJ5elKzang2e93EeKtw2ixMig+sMMskNPVsvZdZmE1v+0v4I7zk0694xlwc1F3WFeuPWm5lYQ4aSDSaLTg5+GCxWpj3YFC/JuW1/Xu4sfy3blMGxRtX6psttdqUyklnp3ejye+2YFWrWRsT/uHgD3HyqlpNOGiUrL1cAkPTHHeSbdZz0hfftmTy3m9wqmuN5J6vIIxPcJoNFkwWqC7+RATJ3bnxjkpuA0aiKHgIJb6agq+fJiVZYOYpd7BiGn34xqeSH5hMY99toFhW+6hRjofk99wIIS6NXPwMQez6M3HGehTR8SN7znmqnrnEnTRffHsdR6k2jOe3LsNpTcwPHUxX8ybSz/VcZbX9uXygeEU/fg863N7cp3iV5TqGVTXS5QXZFP+7aNsaJxIopSLInwKrholW3/6jNDSnaz6+G2s2mSqtv5A1YEiiLAHEnM+uBFr03LW9PsT8R97C7UHNxIy7UlMFXkUrFtNvaUXBd/8RGL4JaxPyych9V2OZdYT5ZJI+drjJIUnk5JWyLhe4aw7UOiY13qDBW83DSqlgn055ZToGx2PDUsI5suUTCw2G49d0qfD349w5rSh3Qi97OnOHoZwCi2XKmfkV/Ha4n3MmzmS3cfK2HOsnDs+3gzY64UWVNbTM8rPaTfvcD93iqsbeH9VGgPjAukXG9DmXG4uKtQqBW8v38/AuECn5SKg/ezwlhnH43qGMf+3g073b6lbqDcBnvZM5uaO4a4aJcHeOsL83BzH+mVvrtP9h3YLRiFJRAV4UF1vrz2XllfJiMQQFJKEr7uW5Ci/U47jZMMT7Es340O8KKk+8bzUJ8bf0TwpPbeKp5qut3e0PzWNJurbCbbax1XFkK5BjhIIg+Nbz2975zxTg7sGIUkS0YGeeLtriA6yv95GBXhQUt1IWY2B3LJa7v98KwAWq63DUgr/FTZTI9nvXIlstYAsE3bVCyfVLxQEQRD+TCJwKAjCv0LLD2yv/LyXFbuPc+ngmDM6xtGSGjIL9U4Dh2dSI6lHpC/PXzkAo9nKHR9vYlhC8J9aIL9rqPdfVgj+VHXlmjVnsciyjL+nloemtu3Afd3obtzz6RaCvFzpEuhBo9G+3G/WxCTeWXGA1XvzUCgk7r6gB77u9qYJWo2K/7tyAI9/tR2txv6BLSnCl9cX76Ow0t4c5VTXPiwhmH05Fcycu5EwXzd6Rto/iDYYLfyQbgDPB3D5Yhu3n9eN2u3f49F9FKXL36I2MJlaQxeGnJ9A/oIHiH9iJYpNH6BzScZ61UJc1+20L4scbl/iea1lCctC7+W3ejPWjzY65spQeLhNB8hmU7tYeDQ3mJvvvobJh2u464NfkVQjmDqhB6N6TuXIaxdx9YR5PPRTNsFB9xPvqcNL3YOiH57lgWu/5M0fG1EGDGfgwIF45lYCBe3Og83YgEtoN4KmPIihKAv9rx8SesXLuO3IBbmQa4Ly+XhHDd+W9kEV6McL14/GR21illHNKz/vZfGOHIYnnqjlNrZnGM8s3Mld8zcTG+RJRFOgAOwZj726+OGuVZ91V2tB+DfoHu5DTaMJfYMJGbhiWCyT+0W12qa9bt4ervZs5l1Hy1i26zgbM4p48KTnWKVCwXs3D2NfdgUp6YUs3XW8wxqrHWWHNz9uP66ErSnFWZZlLNYTmdHtdQw/3X/xLTOj5Y56W5yh5uMqFBK2FtnWLb88dHo6qW2Wt6Ob+ikG2N45z1TzcSTppMxxyZ45rlBI9I0J4PFp4guZlpRad+IeW97ZwxAEQfjPEIFDQRD+dXpE+pJdUkNNo8lpTSODycL7q9LJKa3FapOZMSqeAXGBLEjJxGSxkZ5XxRXDYskrr6Oi1kCJvhFPVw1lNY3ceX6Sozbg/Z/9zt0X9CAmyHlGnotaSWyQJ+U1BqD9OkVfbcxie2YJRouV7uE+3Du5J5IkkVWk582lqY4uus1adq38ckNmU3OKBkr1jVwyKNrRzXbLsTo+3fQV3tSis+iJsBWRtT4TU0U+D3kFAmsBHDWboP26ci0NaNhGUvh+wq44sXTm2NtXoJn2P64ddSIbcEr/KKb0j2qzv4+7C885WRLXvCzPXat21G8DnNbIA1jy2PmYq4rwWvUUM4qyOPy0DY8e4wie9oSjtlzup3djLMzEx/9y/Lrfwg19XPH74SW0LglYf6ii3liPsfgo5qpCwq99k2+mnQdAQV0V1sYa6o/u5NXxfdEveYDH7/iMQ088jbWxBoCY5MG8NLnjxgcn15XzdZF5p8tOPH2u4NLB/iSn3IOt3oi0VsWxtSCbjUyKlpjapz+F3z1N44EMJIUSQ8kxYgM8ePt8L8p/+47t2qF0DfUCChjuVUZYi1p6T4z0wL2LHwcUSrz6TAKg7vAWGvMO4LbwBq4D6kwGvD38efUae10nvWtXXPNdUSSOJFin4J0WzU2aa1d66TSt7m/JJsscKqjmyXZqCwrCf01ueR02m4yHq4b+MQF8kZLJ2J5huGpUlNcYUCmldrt56xtMqJQSIxJDCPXR8cbS/YC9m3ZDUzftRpMFo9nKwPhAEsK9uXFOyinH1DI7vHu4DynphZzXK5x1aQUkRdibKgR5u5JVpGdUUihbD5dgOUVQLMLfnh1ZWFlPqK8bKemFHW5/sqQIX9bsz2d8cjj6ehOpxysZ0yPsjI5xOnpG+rLuQAHXjIwnNacCL1eNPcvey5XtWaUAZBXpKam218NLivTlvRUHuHJ4LFabzI6sUs7v+/eXYUgI82bOyjQKKusJ83XDYLZSXtPo6CwtCIIgCH+HvzVwqNDomDVvE2AvsK5QgJfOhZLqBvw8tHw8q+M6Eu35NTWP+b8dws9Di8liZXLfSKadItPo281HuGp4XIfbnIk/+3iCIPwxVpuNnUfK6B8bwJcbMp3WNPpm8xF6d/HjwanJ1BnM3PPJFvpG+3Pd6K5kFuodQacvN2SSVaTnrRuG4qJWsiY1n19T85kV7EV+RR1mq63doCFAbaO5aTmaL/oGU7t1iqYOiHLUK3pt8T62Z5UyuGsQby5N5Y7zk+gV5cfHHSwjy6uo47VrB9NosnLzBylc2C+KYyU1HKpWMv+xq7DaZGa+u4yEoAjir38XU0UeOR+cXLPsn0eWZY7Pux3fkTPwnTkf2Wal4OvHKFn6OiHT/odZX0rDsd0kvPB7q/0UGi1BUx6iZPlbxD3xCyp3Xw4/O5qiRc/hFj8QtVdzxml7eTRS03GcNx/RhnSlPmt7u+OWXE7sJ8syUbd95CjG3qxk+duoPPyJf2IVyDbS7u3K9qxSvl2nx1Q7nvDcSh6cmoycdrhVrUSb2XjiOtUuJ+oayjI+gy4j+OJH24wn7olVbF/0ARUbFqDfs5zwa99od+zOHC+r5emFOxmaEOxYrigI/0XNNQ7B/m/7oYuSUSok+sUGkFtex32f2p+LXDVKHrm4d7vdvMtrDLy1LJXmmN1NY+01VscnhzN7RRoatZIXrhrAs9/vwmyxIcswc4LzkhjtZYfPOj+Jt5btZ9HWY47mKACT+kTy7Pe7uPuTzfTp4n/Kkh8alf1LuacW7sRLpyEpwpecstrTnrPhicHszS7n9o/sGeIJYd7otH/+x5MZo+J5c+l+Zs7diIta6Wg8MjwxhN8OFDBr3ia6hnoR5mt/DusW6s3grkHMmruJQG9X4kO9cHNpv+v9X8XbzYWHpibzyk97MTdlf14/upsIHAqCIAh/q781cGgzNTiWErbsYtZcu+tsNNdwqWkwcfMHKQxPDOmwo+TCdgJ9siwjY18icCbaO55wdqrqjHz0awaHCqpw16pRKxVcPjSWYQnBp95Z+E9p+YGtR6QP5/eJ4N5PtjitabTnWDnbMktYtC3bsW+p3nmNopY1jkZ0D+HrTVncel4iq/fZMyScScutZObcjeRX1DN9aCy+7lq2ZZa0W6coNaeCH34/htFspdZgIirAnZ6RvtQZzPRqqvc0rmcYO4+UOj3fwLhANColGpUSb52GqnojaXlVxPspHWPv7VlPq0CYzUr+14/ScGw3aq9gombOR6GxFxkv/O4pLLUVKDSuhF3zCtrgM3tuq965hNLV74Ms49FjLCGX2Dskpt+f6ChGrt+zgpq0dURc9yb6PSsoWfEOkkKJwtWD2Ad+QLZZKV78CvWZ25AtJnxHXYffiGtanaf+8BYktYujiYGkUBJy2dMcfno4QRc+QM7sa7HUlpP10iRCpz/Xqth42a8fEjLtCVTu9kxOj+6jaCw4SMXGBbh3G4akUnP0tYuwGmqpWP85Kncf6jK3onTzpmjRc9SmbwAJXAKj8UyegKEwk/wvH0K2mpGtFmyGOmoOrMWz5zgAatNTUHu3fd7y6D6K8pTPCZ3+f0iSRGNeGq4RPbAaalF7ByMpFFRuXQQ2K6OTQhnkUUHRok+Juep7+xz4RVC58Utkmw1zdTGNx1Od/k7cE4Zx/KNb8R93MyoPfyz11dgMdShcdEhKNabwAQTFXmDvynuGogI8+OLusafeUBD+5VY+2bYhQ7NLBkVzyaDoNvc76+YN8P6tbRt3jEgMYUTiiW7Ds28e3mabltrrag4Q7K1zurTZx92Fd1tkFt80LgGA5C5+JHc5UX+wZcfwAXGBDIhrW+JjQnIEmqqjQOtu6GDPGAf7++3bxifiqlFR02Dink+3EN2iOdbJY27ZCR3g9etOZH176TSOLugnX7unq8ZppruLWsnL1wxyer7LhsRw7aiuGMxWHvpiq6P8SXvndObk624eV0pKSqvHTr62lo/1jvZvlYUvCIIgCH+3c2apss0m8/by/WTkVeHvqeXZ6f1xUSsprKxnzqp09PVGXNRK7ruwF5H+7X/L5qnTEOrrRmWdkUAvV9buz2fxzhwsVpmEMG/umtSDz9cfdgQZogLcuWFMN578ZgfJXfw4mF/NM9P7sTGjiI0ZRZitNoZ2C+a60V0BePa7XZTVNGKy2LhkUDQX9I3kk7WHWh1PFIb/c8iyzHPf7+K85HBHbZeS6ga2ZZac1v5Wmyxqbf2HtKxx2Ky9mkayLPPUZf2IOOm55FBhdZvNXTQnsi20aiV9Y/zZeriEjRmF7b6Rb65xmF9RxwOfb2VYgr2ourM6RSaLlTkr05h983ACvVz5coN9ubRM6y63HWlVd6q5o+4p6jMZy3KIuGk24de8Su78O9Dv/QWfQdMo+OYxwq56CZfAaBqy91K48EmnXVH1u5fTcHTXiesoywHAXF1C8eJXiHtsOUqdF9mzZ6Dftxqv3hPbHUvJL+8SffeXqL2DsTboAaj6/TuUrh7EPbYMm9nIsTcvxSNxBBr/SMd+hqKsNrUEla4eqH1CMZbmEDVrPjkf3ET8EyvbXn9RZqt9AyffT86c66hY/xl1GRuxGRuIeXARCp03R16ciLEoE0tdFa5RvXCLH4zaJwwUCop+fgn3hOFUbvoKvzE34jPwEmwWE8aiLIqXvErRov9DUqrQhiUScvkzbcYROOkeihY9R9aLE0GW0fiF0+WOz/AbeS2582ai3/ML7l2HoHCxLy/UhiWAUknWi+fjM/gy/MbejNo/gqwXJ6AN6YZrRI825wB7FmTQlIfInn2tPUNRqSLsyueR1Fryv3wIr9pa8t3dT9nRVhAE4c/29MKd1BksWKw2rh4Rh6972+7hneGd5QfILa/DZLEyvlc48SFenT0kQRAEQegU50zgsKCygcen9eH+C3vxwqI9bD5YxLhe4by74gD3XNCTMD83DhVUMWdlWofFn0v19qBeTJAHuWW1bMgo4u0bhqJSKpj9ywHWHSjg5nEJLN2Z4wgyFFc3kF9Rz4NTk7n7gp7sPlpGQWU97908DBl45rtdHDheQc8oPx6Y2gtPVw1Gs5W7P9nM8ITgNscT/hz7cipQKRVc2KKYeJC3josG2juxfrruEPtzKjBbbUzpH8XkflGk5lTw1cZMfN21HCup4a5JPfhyQybebi4cK6lhWEIw0YEe/LwjG5PZxjPT+xHq68a2zBK+2XQEi9WGh07NYxf3wcfdpcP6ccK5r72aRv1iA1iyM4c7z09CkiSOFOmJC/HCVaOisal+VHsm9Ynk6YU76RHp6+jW2J5wP3euHBbL978fY9bE7k7rFHm72ZuCeOk0NJosbDpYxIjEENy1atxcVKTlVtKj6TrORFKkL4t/t2KyWLHaZFJr3Bjj2uB4XOMXgWuEvSuza2RPzJX5WA31NBzbTe78OxzbyS2Wvrbk1e/CNjUOARqPp+IWPxiVhz0zxXvAxdQf2d5h4NAtpj/5Cx7Eq++FePa2Z6HUHtyIoeAQ+r32oJ+1sQZjaU6rwGFHwdGOgq5Jbx8k46HWnZlVbt4ETLyT6h0/ETjpHgp/eBaXQPu/9bCrXqRy8zd0ueMzjrxyIQ3Ze5GU9pdP2WzEVFmALqYvpavmYKkuxrP3+bhGJBF914I25/YZcjk+Qy533FZotIRd/XKb7VwCo4l/crXjdvMSY0mpJubeb1ttG3nje+1eZ0ve/afg3X9Km+3iH/+FlJQU+owe7fQ4giAIf6WWGXznEtGQRBAEQRDszpnAYbCPq6PhQHyIFyX6RhpNFjLyq3jhxz2O7cwWq9P9N2YUkZpTQX5FPfdd2BONSsnenAqyivTc/ckWAExmq+ND+skCvV1JDLcXht59rIw9x8q54+PNgL0Atb1OmR9LduSw5VAxAGU1Bgoq6/HUdRw8EP6Y42W1xLXz7e7qfXm4uaiYfctwTBYrD3y+lX4xAQAcLtQz7/Zkgn10pOZUcKykho9njcLDVc0Nc9Zzfu9IZt88nJ+3Z7NkZw6zJiaRFOHLuzcNRZIkVu7N5futR7l9vL1ekLP6cSrl6XXXFTpXezWNrhkRz0e/ZjBz7iZkZIK8dTx/5QCSu/jx/ZajzJq3iSuGxTo9ZnyIFzoXFRPaWaZ8ssn9oli0bT0Gk7XdOkWT+kRy+9yNBHm7tuoY/ODUZEdzlH6xAWd07d1CvYn3UzrqM0XrDOiUJwJtkqrF85akQLZaQbahdPV0mqF3uuQOMx1PBPNa1uILu/olGrL3Upu2jiMvTSLuiZUgy4ROfw6P7u3XvtWGdkW/r/VYrY21mKsK0QREYaktb3dfl5B4GnMP4N7txJI8Q14aLiHxTSN1HnhsryahNiQe1y59qE1bR/bsawmf8WqrYwuCIAiCIAiCIPwTnTOBQ7Wy5VI7MFlkbLKMu1Z9Wpl8zTUOM/KreOrbnQyICwBZZnyvcEd9lo60LP4sA1cMi2Vyi0w3sNch25tdzjs3DUOrVvLwgq2YLDaEv8eclWmk5VaiVioI9HIlu7SWTQftQdx6o70JhUqpoFuoF8FNXQMBuoZ64+dhX/YS4uNGv1h/AKIDPUjNqQCgvKaRl346SGWtEYvVRlCL/Z3VjwvwbL9+ptA5musltdRRTaN7J/d0uv2p6ghV1BqQZdoN5J1cB8pFreSb++ydeoN9dE6Pf8OYbtwwplub++NDvPjo9pGO29eO6trmHM33NWtZI2lQuJqnxo3GYLZy77v5XOCu7/DalK4eaPwi0O9ZgVffyciyjKHgIK7hzovuO6OL7k3Rouew1FWi1HlRvWsp/qNvAEDl6Y+hKAuXoFhqUlej0NqXihvLjqOL7oMuug81B37DXFWIR/dRVG78CvduQ5GUaowlx1B7BzuW7AK4dRuGvPgVqrb9iM/gS5FtVop+egGfwZe127ikWcD4mRT//Apd7lqAyt2Hxrx0qrYtIvaRxSh1Xpgq8jCWHcclIIrqXUsd+7VXk9BUnovGPxL/MTdiKs/FUHBIBA4FQRAEQRAEQfjHO2cCh864uagJ8nZlY0YRI7uHIMsyx0pqiQ1uv4tp93AfzusVxuLtOYzrFcaz3+9i2uBovN1cqGk00Wi0EOStQ6WUsFhtTjPH+scE8EVKJmN7huGqUVFeY0CllKg3mnHXqtGqleSW13Ewv9qxT0fHE/6YqAAPNjcFBsFeiFvfYOLu+ZsJ8HLljvOT6H9S8CY1pwKtpvWfdav6b9KJILUkSVibsqM+WJ3OtEExDOkW5Fju7HT/5vpxwn/SmtR8Pk85zO3ju59xA6XOsDLLyM9HN2GyWBniXUu0m/mU+0Tc+C4FC5+kdOVsZKsZr/5TzyhwqPYKIviiRzj2zpX25ihJY/BMngBA8EWPcvzDm1D7hOIS2hWb0b50uvinFzGW5YAs495tGNrw7mjDEjFV5JP18mSQZVTuvkTN/LjVuSRJIvK2eRQufJLSle+BbMMjaQxBU09dp8+z13jM1cUcfWMakiShcHEj4oZ3UHvZ61GGXf0yxz+4EaW7D26xAzAUHgbar0lYvWsZ1Tt/RlKqUXkGEHjBvac9Z4IgCIIgCIIgCOeqczpwCPDYxX14b2Ua32zKwmqTGZUU2mHgEGD60Fju/HgzVw6P4/rR3Xj86x3Isr1Rxl2TehDkrWNSn0hmzt1IXIhXm0yffrEB5JbXcd+nvwPgqlHyyMW96R8bwIrducycu5FwPzdHR1Sg1fFEc5Q/R+8ufny27jDLdh1nSn979qfRbF+q3j82gOW7jtO7ix8qpYL8ijr8Pf54Me16gwV/T/v+a/bnn/3g/0JlNY3MWZlObnktsgyD4gO55bzEVlm7f8SclWmk51Vhsdoorm4g3M+eDXb18DiW7srh1vMSWy2jBcgsrOa3/QXccX5Sm+MdLdZTUWtkYHzbTosd+WZTFuvTClEqJCRJ4t7JPUgI8+HtZfuZNjiaqADn3RadOVKk5875m3nx6oFtgszNrntvHf6eWt66YajjvlnzNmG12dp0bxyfHN5uJ+Vz0UUJWkaPbpuxrfGLoOtTaxy3A8bffuIx/0intflaOrlOH0DM/d85fvYecDHeAy5us59X38l49W3bdTTq9nltTyJJBF/0yCmbdWh8Q+lyx6fOHzvpOk/mN/Ja/EZe6/Qxj6TReCSNbnN/ezUJA8+/k8Dz7+xwrIIgCIIgCIIgCP80nRY4bLm8Lthb1+oD+uVDTtSOCvbR8dLVAzs81oTkCCYkRzhu+3loWfiAfWng6KRQRieFttnnlvMSueW8RMftkwMElwyK5pJBbZtgvNjOWE4+nnD2JEnimen9mPtrBj9sPYqXToNWreSmcQmM7B5CcXUDd368GRkZL52GZ6e3XZJ6umaMiueFRbvx89CSGO5DSXXDqXfqBLIs838/7ObCflE8d0V/rDaZd1fs5/P1h7n1LP/+7ppk78ZaXN3A0wt3tioRsHRXjtN9uoZ6twkmAlhtNo6W1JBZqD+jwGFGfhU7skp5/9bhaFRK9A0mLE31AO+f0usUe7eVkl5IUoQPKWmF7QYOARpNVkr1jQR6uZJbVnvG5xEEQRAEQRAEQRCEf6NzPuNQ+G/z89DyxKV9nT5209gEbhrbun7lyfXlTr7dsnNfy8eGdgtmaLfgNufoqH5cZzhebUOjUjKxtz1QrlRI3D6hO9fPXs+1o7qyMaOQbYdLMFhsFFXVM6xbsCOgvftoGV9uyMRstRHio+PBqcm4ak7/KWBjRhGzV6ZRb7Bw/5Re9Iz0JTWngkXbjvH8lQP4ckMmFbUGSvSNeLpqSM+rxGSxkZ5XxRXDYvki5TBv3zAUbzcXbLLMTe+n8O5Nw/Bq0VyostaAp06DRmWvOdrysYcXbOXW8xLx0ml47OvtvHPjMDxc1Tz0xVZ6eFkYfdJ4ZVlm08EiXr5mEA9+sRWTxeo47slGdg9hQ0Yhlw+JZX16IaOTQll74NzOPBUEQRAEQRAEQRCEv5ooyCcI/yBlDTbiT+o07eaiJtDTlcLKegCOltTwv2l9mHv7SDZkFFGqb0TfYOKbzUd4ZcYg3r91BPEh3vy4LfuMzm2VZWbfPJyZE7q3qgHZUlaRnmen9+fxaX24bnRXRnYP4cPbRjA6KZRxPcJYl1YIwN5j5cQEebYKDIK9TEBZjYGb3k9h9i8H2H+8os05grx1TB8ay3srDvDj1mNEBXgQ49M2AJqeV0Wwt45QXzd6RfmxI6u03WsbkRjs6Ja+PbOUwV3PbHm1IAiCIAiCIAiCIPwbicChIPzDOGvJIbe4v3e0P25aNRqVkkh/d0r1jRzMryK3rJb7P9/KrHmb+G1/PqX6M1uOPTzBnpEZH+JFSXWj022GdA3CRe08q29C7wjWNtWPXL0vjwlOagW6alTMuWU4907uiZfOhZd+3MuvqXlttpvUJ5JGk4UVe3LbXaKdkl7IqKYyBaOTQklJL2z32jxcNXho1aSkFRLh797uNQiCIAiCIAiCIAjCf4lYqiwI/yD+OgVpRfpW99UbzZTVNBLi60ZWsb5Vk5SWXaD7xgTw+LQ/3rin+bgKhYStnc7SLpr2A26BXq54u7mwL7ucQ4XVPHpJH0r1jTzz3S4AJveL5MJ+USgVkmMZeXSgB2v257eqYQpgMFspqzEA0GiytDmX1Saz+WAxWzNLWLj5CDJQ02CiwWhB5+L8aW9k91DmrErjoanJp5wLQRAEQRAEQRAEQfgvEIFDQfgH6eKtYHeFlTWp+YxPDsdqk5m35iDjk8PRdpAllxDmzZyVaRRU1hPm64bBbKW8ptHROfmv4KpRtQnqnd8nglcX72NczzCUColAL9dWTVjyyutQSBJhfm6Afdl1oJdrm2N/svYgY3uGEeTlyjsrDjDupPKUe7PLiQny4KVrBjnue33JPn4/XMx5vZx3RR6WEExlnZF+sQFU1Br+6GULgiAIgiAIgiAIwr+GWKosCP8gkiTx9OX92HSwiBvfX8/NH6SgUSm4cUy3DvfzdnPhoanJvPLTXmbO3ch9n24hr7z+Lx1rchc/csvqmDVvk2OZ8JCuQRhMVib0jnC6j8Fs5fWl+7j1ww3MnLuR3LLaNg1q9h+vILNQz/ShsYztGYZaIbG/2Nxqm5S0QoYmtI4mDk8IYX1TjcVZ8za1ObfORcUVw2JbZWwCVNQaePLbHWd28YIgCIIgCIIgCILwLyAyDgXhHybQy5X/u3KA08cmJEe0Wtb7fIvtekf7M/uW4ac8frC3rk336JbdqL10GhbcMxZo3Zn65ACfp6umzfmOldQQHeRBpL/zTMf4EC/euXGY08dajuHdm05s8/T0/qSkpLTa9qGL2i43HtItiCHdggBaZTk2X0tLLefAz0PLC1cNdDomQRAEQRAEQRAEQfg3E4FDQRD+Ft9tOcLy3bk8enHvzh6KIAiCIAiCIAiCIAinQSxVFgThb3HFsDi+vGcsPSJ9O3sogiAIgvCnK105m8znzyPrhYlkvTSJhuy9AJSv+wSbqdGxXfb712NtsDc6S78/EQBTRR6Zz49v99jla+eTdk9XrI01ZzfGVXMcP5/qnGeqLnMr6Q/0IOulSRx+dgxH37ocdeG+P+34AFZDHYefHoGxNBsA2Wom84UJNGTv5djbV1CbsaHV9uXrPqHg2/+1uta6zK3kfHCjYxvZaibr5ckAHLgjirzP72vxmIWMR/q02l4QBEEQ/mtE4FAQBEEQBEEQzoKq/Ag1aWuJe2wF8U+uJvqer1H7hAJQvu7TVoHD6Du/QKnzOqPjV+9aimtUL2r2rT6rcZatfv+s9m9Jtlra3OcWN4D4J1bS7dn1hF7+LG57vqTu0OY/7ZxKrTtBFz1K4cKnAChbMw+3mH7oovvg1X8q+l3LWm1fvWsZ3gMu6vCY9Ud24hbTDwCFiw5D4WFsJnuTtLpDm1B7B3e0uyAIgiD864mlyoIgCIIgCIJwFhSGalRuvijULgCo3O3Z9eXrP8OiL+HYO1eicvMh5v7vOPTkMOIeW+bY5lSMZcexGesJveQJyla/j8+QywGo2voDNfvXYDMbMJUdxzN5IiHTngCgeucSSle/D7KMR4+xhFzyOMWLX8FmMpD10iRcQuIJnvow2Kzkf/0oDcd2o/YKJmrmfBQaLcay4xR+9xSW2goUGlfCrnkFbXAceQseRKnzwpCXjmtkD0IufardcbtGJNHY/SIqNizAPWE4Nft/o3TVbGSLCaWbDxE3vovK3Y/M58YQ+9BPqDz8kG02Mp8bTezDi9udH+9+F1K19XvKfv2Iys1fE/f4LwB49bmAkmVvYDMbUahdMFXkYdGXoIsdgLkyv91x1mZswD1ptOO2R9IYatPW4tV3MtU7l+Ldfyr1R+xN0mzGBgq/fxpDwWFkm4WgyffjmTyhw9+FIAiCIPzTiYxDQRAEQRAEQTgLpqAemKuLOPzsaAq+/R91mdsA8B9zIyqvIGLuW0jM/d/9oWPrdy3Bq/9U3OIGYiw5hqW23PFYY34GkTfPIf7J1ej3LMdUWYi5uoTixa8Qc++3xD+xksbjqej3rSb44sdQaLTEP7GSyBvfA8BYloPfyOvo+tRvKHWe6Pfag3AF3zxG6PTniH98BSHT/kfhwidPXGtpNtH3ftNh0LCZxScKY/ERwJ6NGPvwYuKfWIl3/ymUr/kISaHAe+AlVO9cDEDdoc1owxKRLWay37++3eOGXPY0xYtfJvD8u1G5eQOgcvdBF5VMXdNy5epdy/DqdyGSJHU4xvrMrbh3bdEErt8Uqncvw2Y2YCg8hGuX3o7HSlfNwa3rUOIeW0bMfQsp+vklbMaGdn8XgiAIgvBvIDIOBUEQBEEQBOFsqLXEPbac+iM7qM/cSt6ndxF80aOO7MCzUb1rGVG3z0NSKPDsPRH9nhX4jbIH1dwThqF09QTAJTgOc2UB1voq3OIHo/LwA8B7wMXUH9mOV++JbY6t8YvANSIJANfInpgr87Ea6mk4tpvc+Xc4tpPNRsfPXn0nIymUZ3wd5qoiiubfibmmFNliRuMfAYDPkOkcn3sL/mNvpmrr9/gMmY7aO4joO79o91h1GRtQeQViKDzc6n6v/lOp3r0Mz+QJ6HcvI3zGax2PqboEpZs3Co2r4z7X8ETMFflU71qKR9KY1uc9uJGa/WsoX/sxYJ8XU2UB4Px3ofENPc3ZEQRBEIRzlwgcCoIgCIIgCMJZkhRK3LsOwb3rELSh3aja9uNZBw4b8w9iKssh+70ZAMhWExr/SEfgUFJpWp1ftlmQZfn0x9xifyQFstUKsg2lqyfxT6x0uk/LINupqKqO4xIcB0Dh98/gP+4WPHuNpy5zK6Ur3gFA4xuKysOfusNbaMjZS8SN73Z4THN1CeXrPyPukaUce+dKGvOvwDXc3mTGM3kiRT++QGPuAWwmA66RPTs8Vm36ejwSR7a536PXeIp/epGY+77DUl/luF+WZaJu+wiXoNhW2zfm7HP6uxAEQRCEfwOxVFkQBEEQBEEQzoKipsjR6Rfsy1bVfmH2x7Ru2Ax1f+i4+l1LCbzgPhJe2ELCC1tIfHkn5upiTBXt1+zTRfem/sh2LHWVyDYr1buW4h4/uGmgKmSrucNzKl090PhFoN+zArAHyxrzM8547I35B3E9uAS/UdcBYG2scTQaqd72Y6ttfYddSd7n9+HV98JTZjMWLfo/As+/E7VPCCGXPkXhd085gqVKrRvuXQeT/9UjePefesoxnlzf0DGeIdMJnHQv2rCEVvd7dB9FecrnjvM15qWd8hyCIPw12utk/2dpzEunJm3dGe2j37uSY+9e5bhdf2QnWS9NctpMqlnFxq+oanpOLFn25p/aUEoQ/iwi41AQBEEQBEEQzoJkMZD/xQNYG2uQFCo0AVGEXfMKAL7DriLn/RtQeQaccZ3D6t1L6XLSkl3P5Inody9D5eHvdB+1VxDBFz3CsXeutDdHSRqDZ/IE+1iGX03WCxPRRvawN0dpR8SN71Kw8ElKV85Gtprx6j8V1/Dupxxv84dkm8mAysOP+j4zcE8YDkDQ5Ps5/vEs1N7B6KL7QEXeiWvqNZ78Lx92ZGiaq0vI//qRNsuVaw9uwlRVgM/QK5v2O4/KLd9Svf1HfAZfBtiXK+fOu52Im2Z3OFbZZsVUloO2KSOyJbVPCP5jb2pzf+Ckeyha9BxZL04EWUbjF06XOz475bwIgvDnUpUfoSbb3sleoXaxf1Fi6fhLkTNlyM+gIXc/nj3GnvY+Xn0mUfX7d1TvXIxX3wspXPgkoVe9iKRsP+ziN3KG4+egKQ+e1ZgF4a8inclyhrPVrVs3+fDhw6fe8D8mJSWF0aNHd/YwziliTpwT8+KcmBfnxLy0JebEOTEvzol5cU7MS1tiTpw73XlpOL6fokX/R+yDi/76QTWpP7KT6h0/E3b1S3/bOZuJvxfnxLy0JebEud+/eoPQmgy63PFpm8fqDm2m6KcXkW1WdFG9CL3yRRRqFw49OQyfwZdSc+A3ZKuFyFs+QBsc57RbunvSaDKfGYXNbEDtHUzAhDtwTxxBwZcPYyrPRdK4Enb1y44yCS2ZynM59u7VePefiqWmjPBrX0e22Tj89Ajin/gFpc4LgMPPjCTmwR+p3PgVChcdAeNvJ2/Bg3j2GItX38l/aF4kSdoty3L/P7SzIHRALFUWBEEQBEEQBKFTlK7+gNyPZxJ80aN/63nd4gZ0StBQEISz114ne5vZQP6Ch4i8+X26PvkrstVK5aavHPsp3XyIf/wX/EbMoPy3eYDzbulYLQRd+ABe/S50dIIvXf4W2ogk4p9cTfBFD5O/4AGnY9P4R+LdbwoVGxYQfMnjAPbmVr3Go09dDUBD9l7UvuGoPQP+ymkShD+NWKosCIIgCIIgnDbJWEfWS5MAsNSUgaRA5eGHqSIftVcgXZ9e+4eOW7X1B/K/fIjoe752LG/V71tF7rzbibzlgz+cgSGc2wIn3kHgxDtOvaEgCEKzdjrZayOSUPtH4BIUA4DP4Eup2LAA/7E3A/alxGDvIq/ftwrouFt6S/VHdxJ121wA3LsNw1pXhbWxxtFNvZlss1F3aDMKFx3mygJU7r72c/e7kNKV7+E7ZDrVu5fh3W/KXzAxgvDXEIFDQRAEQRAE4bTJLu6Ojrsly992LLEyVeSR80HbunBnQhuaYG/m0Rw43LUM7WnU1hMEQRD+W5x1sj/V64Wj+7lCCTYr0HG39NMYRZt7KjZ8gTa0G0FTHqRg4VPEPvwzkiShi+mHqSwHS20FNamrCTz/7tO5TEE4J4ilyoIgCIIgCMKfw2Yl/+tHyXz+PLLfm4HNZADAWHac7DnXkfXyZI6+eRmG4iNOd9fFDaAxJxXZasZqqMdYltPqg2Bj7gGOvTWdrJcnkz37Wsz6EgCOvX0FRT+/zJFXp3L42dHUH9nx11+rIAiC0Cna62TvEhyLuSIfY2kOAFU7fsatuat8O9rrlq7QumEz1Du2c4sbSNWOnwGoy9yK0t0HpatHq2OZ9aWUr5tP8CWP45E0GrV3EFVbFgIgSRKeyRMp+vF5XILjULn7nN0kCMLfSAQOBUEQBEEQhD+FsSwHv5HX0fWp31DqPNHv/QWAgm8eI3T6c8Q/voKQaf+jcOGTzg8gSbglDKM2YyM1+3/Fs9d4x0Oy1Uzhd08TeeuHxD++Ap8h0ylZ+vqJfW0W4h5dSshlT1Oy4p2/8CoFQRCEztTcyT7z/8aR9cJEjEVZBE2+H4VaS/i1r5M7fxaZL0xAkiR8R1zT4bECJ90DVgtZL04k8/nxlCx7EwC3rkMxFmWR9dIkqnctI3Dy/TTmHiDrhYkUL36V8OveanOsoh+fJ2D8TFQefgCEXPYMpavmYKmvBsCr3xSqd/wslikL/zhiqbIgCIIgCILwp9D4ReAakQTYa0iZK/OxGuppOLab3Pkn6tjJZmO7x/DuP5WK9Z9hbawl5NInKV39PgDGkmMYijLJnj3DfgybFbVnoGM/z97ntzqvIAiC8O9k9Y0mdtrPTh9zTxjuKKfRUsILWxw/66J6EXP/dwAoNFrCrn65zfYqN2/iHlvW6r4uM+d3OK7Im2a3uq3xDW1z3p4fHG+1TdCF9zt+jrjuzQ6PLwidRQQOBUEQBEEQhD+Fo34UgKRAtlpBtqF09XT6Qc4ZXZfeFBRlIqldHAXuAZBlXELiiXt4cTvndmk6rdJ+XkEQBEEQBOGsiaXKgiAIgiAIwl9G6eqBxi8C/Z4VgL0QfWN+Rof7BF/0CMFTH2l1nyYoBmtdJfXHdtuPYzVjKMz8awYtCIIgCIIgACLjUBAEQRAEQfiLRdz4LgULn6R05Wxkqxmv/lNx7aD7pUfSmDb3KVQaIm/5kMIfnsXWWItss+A/5ma0oV3/yqELgiAIgiD8p4nAoSAIgiAIgvCHtKzNpPGLoOtTaxy3A8bffuIx/0ii71rQ4bF8hlyOz5DL29zfsuaTa0QSsQ/80Gab5lpVACp331Y1pQRBEIR/nwN3RqMNS0C2WnAJjiPi+rdQaFz/lGMfff0SYh92XkNREP6LxFJlQRAEQRAEQRAEQRD+OWQb8U+spOtTa5BUaio2fXVau9VlbuXAHVFUblnouK8xL40Dd0RRtmYuwFkHDa0Neio2dPxlmSD8k4jAoSAI/woXvbKq3ce2HCpm4vMryC2v+8PHL65u4Jp31mKT5Vb3z5q3iUMF1by9bD/Hy2rb3f+LlMPsOVYOwE/bszGYz6xwf2pOBU8t3On0/kteW82seZuYOXcjj361jer69ruVtueZ73Zx36d/LENn0gsrmDVvk+O/77Yc6XD8Ww+XOLb5/VBxh/N2Js7mGt5YksqmjCKnj1ltNi5/41c+XXuow/2vm72OWfM2cefHm8jIr/pD4/h2c9u5EwRBEAThv8tcVUTOR7dw+JlRHH56BIXfP4vNYnK67bG3r6Dh+P4zOr5stZDxcG+KF796ymMdn3sbWS9N4vAzI0l/oAdZL00i66VJ1B/ddWYXdRrK132CzdR4Wtu6xQ7EVJqDpb6a4x/dStYLEzny2sU05h8EwGZsIP/LhzjyyhQKvn4MtU8Y+t3LMRRmcuTVqWTPvg5J7YKlrhKA9PsTAbAa6jn27lVkvXwBmS9MoCb111OORbZZsTbWULHxyz945YJw7hFLlQVB+Ndbn1ZIUoQPG9ILuXbUH6uFFeytI8BTS1puJb2i/ADILa+j0WQhIcybhDDvDve/fnQ3x8+Lt2czrmcYWrXyD43lZD0ifXn+ygEAfLr2EEt3Hue60ad/nXUGM0eK9biqlRRXNRDsozuj82tUSj68bcRpbz+kWxBDugUB8PvhEgbFBxIV4HHa+1ttNpSK1t97ne01dGT30XLC/dzZeLCIG8d2Q5Ikp9vdOi6REd1D2H20jPdWHOCj20ee8bkWbj7CVcPjznbIgiAIgiD8G8gyx+fdju/IGfjOnI9ss1Lw9WOULH2dkGn/+1NOUXtwIy5BMej3LCfookfafZ8DEHX7PMCetVf+2zy63PHZnzIGZ8rXfYr3wEtOufxYtlqozUjBo/so8r+4n8b8DFTuvsgWE3mf3UPXp9ZQumoObl2HEn7tG+j3/0bep3ehMgVTtvZj/EbfSPlvc3FPvAylq/39qM1koOH4flzDuxN2zatkv3MVcY8t4+hrF1N3ZAcNWduRLSZ8R12H34hrqMvcSumKd1B5BWLIz0Abloip/DhZL03CPWE4gRfcx/G5t2Bt0CNbLQRPeQjP5Al/2dwJwp9NBA4FQfhXazRZyMiv5LVrB/PMd7scgcPUnAq+3JCJt5sLx0pqGJYQTHSgBz/vyMZktvHM9H6E+rq1OtboHqGkpBc6Aocb0gsZnRQKwMMLtnLreYnEBnvx9rL9ZBZVIyExsXc40wbH8MaSVAbFB1JRZ6Ci1sAjC7bhqVPz+nVD2H20jC83ZGK22gjx0fHg1GRcNSp2Hinlo18z8NJpiAv2OuW1yrJMg8lCqK8bNlnmo50N9B5gxNvNBZssc9P7Kbx70zC8dJpW+20+WMTg+EB83FxISS/kyqbA1RtLUtG5qMgsqqaqzsgtTYGx09Xe+H9NzSOzUM+YHqFszSxhf24F32w+wlOX9aXRZOG9X9Iwmq2E+Oh4YEoyHq5qHl6wlcRwHzLyqhjcNYjLhsT8oWsYEmxjdNNcvb8qndScCoK9XWmdR9paSnohFw/swvLdxzlYUE33cJ8Or7tnlC+FlfUA/LjtGKv35QFwfp9Ipg2KBmDt/nwW78zBYpVJCPPmrkk9+Hz9YUwWK7PmbSIqwJ3HLulz2nMtCIJwLmowy8yatwmAqjojCgV46VwoqW7Az0PLx7NGnfExZVlm+ptr+PTOMXi4qqmoNXD1O2t58/oh9Ij0BWD6m2uYP2sUnie93p2Jn7Znc0HfyHa/5KuuN3L1O2u58/wkJveLOuPjX/TKKpY8dr7jdk2DiUe/2g60niuA/13ah//7YTfzZp75fIH9dXf+b4fw89BisdqI9Hfn4Yt7n/EXmMXVDWTkVTG2Z9gfGodw5lSlGUhqF3yHTAdAUigJuexpDj89nKALHwAk8r98CGNRFi7BcdjMBse+Bd/+j8bjqdjMBrz6XNC0fVv6XUvxG3MTlRu/pCF7D24x/c5ojKaKfPK/ehhrbSVKD1/Cr30DjW8YeQseRKHWYiw+gqmygPBr36B6+yIaju3BNbqPo36ts3GWr/8Mi76EY+9cicrNh5j7v6M2YyMlK95Ctphwl+1fEGe9NAkAt9gB+Ay9gsqNXxFz//e4BERRueVbihY9j7WxhrqDG6nZv4bytR9jM9SDbMMtfjCW6mJKlr+BSueDzWxApfQ76epkylbNwawvIfu9azBVFSAplMQ9tgyb2cixNy/FI9H+5XnD8VS6PvkrGv9ITBV5GAoPE//ESvtRrBaibpuH0tUDS10lR1+/GI9e4zsM0grCuUQEDgVB+Ff7/VAx/WMDCPdzx8NVTVaRnvgQexDrWEkNH88ahYermhvmrOf83pHMvnk4P2/PZsnOHGZNTGp1rJHdQ7jz483ceX4SSoWCDemFPHlZ6zdXx0pqKK81ON7c1xnMrR6/eGA0P23L5rXrBuOl06BvMPHN5iO8MmMQWo2K77Yc5cdt2UwfGsM7Kw7w2ozBhPrqePHHve1eY1puJbPmbaKm0YRWreTGsd1QSBJJgSrWpRUybVA0e4+VExPk2SZoCLA+vZAZI7vi46bhhUV7HEE3gMo6A2/dMJS88jqe+W6X08Bhc7Cr2RXDYhnaLeiU40+K8GVI1yAGxQc6jjtz7kbuOD+JXlF+fJFymK82Zjp+D/UGM29cP8TpHJzuNTzy+SZmYl++nl9Rz0e3j6S63sitH25gYnJEm+MazVb2Zpdzz+Se1BstpKQVnjJwuC2zlC6BnmQV6fl1Xz7v3TQMGbjnky30ivRFo1KwIaOIt28YikqpYPYvB1h3oICbxyWwdGfOGWVvCoIgnMt0asnxnPblhky0GiWXD4mluLqBp52U3zgdkiSREObNwfwqBsYHkpFfRVywJxn5VfSI9CWvvA5PV/VpBQ2tNhmlwvkH91OtDth0sIiEMG9S0gv/UODwZJ46jdO5AnvA7myN7B7CXZN6APDyT3vZkF7IxN5tX/c6UlLdyPr0QhE4/Bup9AW4RvZsdZ/S1QO1TyjG0hzqDm9GodES/+RqGvMPcuSVyY7tgqY+jMrNG9lmJfvdq2nMP4hreGKrY9lMBuoObyHs6pexNdag37X0jAOHhd89jc+gS/EZfBmVv39H0ffPEjXzY8Be6y/6voXU7l/D8Y9uJvbBH3G5pitHXp1CY146rhFJTsfpP+ZGytfOJ+a+hajcfbHUVVK6ajYx93yDwkXHtg8fxiV/pyMw57gei4n8Lx7AaqhFtpiRrRZAQpZlom77CJegWEe2pP/oG8j75C50sQNQurhRveNnvPpd2Op41TsWY6mrQuUZSPwTK0m7LwH9nuXUHdxov77GGoylOUgqNbqoZDT+ke3Mkkzx0tdoyNoBCgXm6mIsNWWovQLPaK4FobOIwKEgCP9qKemFXNyU5TU6yZ4x2Bw47BrqjZ+HFoAQHzf6xfoDEB3oQWpORZtj+bpriQxwZ292BT5uGlRKBV0CWy+xDfbWUVzdwPur0hgYF0i/2IAOx3cwv4rcslru/3wrABarjcRwb/LK6wj21hHmZ896HNczjF/25jo9Rsulyt9tOcr83w5x7+SeJAerWL0/n2mDolm9L48JyeFt9q2qM1JU2UCPCB8kSUKpkMgprXVc19BuwSgkiagAj3ZrJzpbqny0WH/a429WbzBTZzA7MjrH9wrnxR/3OB4f1ZTdeTbX0GC25xYeyK1kTI9QlAoJPw8tvbuc/A2z3fasUpK7+KFVKxmeEMzXm7K4fUJ3px80P157kG82H8FLp+GBKb3Ym13O0IQgtBr7S+3whGDS8iqRJImsIj13f2Kvx2gyW/F2c+lwbgRBEP5tbDaZt5fvJyOvCn9PLc9O74+LWklhZT1zVqWjrzfiolZy34W9iPR3b7Vv9whfMloEDqcNimbzoWIAMvKr6B7hgyzLzF97iJ1HSpGQuGpEHKOTQknNqeCrjZn4ums5VlLD7JuH8eKPeyirMWCTZa4eEU91vbHN6oCTrU8r5Lbx3Xnl572U1xjw97S/n7jolVVcPLAL27NKcVEreXZ6f3zcXSiuauCVn/ditcn4q5zXp/ur5qslq82GwWzFQ6sG7JmT7/2SRpneXktu5sTuJEX4sv94BR+uzgBAAt64fgifrjtEbnkds+ZtYnyvMKYNjmnvNMLfQJIkGrJ24DfmBgBcwxPRhiU4HtfvXk7llm/AasVcU4qxOKtN4LA2bS1uXYeg0Lji2XsSpb+8R8hlTyMpTj8btSF7D1G325uK+AyaRvHPLzse8+g5DkmS0IYloPLwd4xPG9IVU0U+rhFJpzXOhuy9GIuyOPrmpQC41FQ7HYvN2IA6qiexN75H2dr5lC5/E6WrBx7dR1Ge8jmh0/8PAGtjLWqvQGxWCw3Z++j2zFoa89Kw6EtPHEy2YW2sRanzRJIk6g7/jmxqJHDy/fgOvqzVeesyt6Jwab9MTvWOxVhrK4l7fDmSUs2hJ4chW868JrkgdBYROBQE4V+rpsHEvpwKcsrqkACrLCMBt4yzv2lRq07UyVNIoFbab0uShFV2vnh1TFPw0cfNxbFMuSUPVzUf3jaCXUfLWLbrOBszinhwanKH4+wbE8Dj01ovSz1arOePLF4Y0jWQ5xfZg22eLgq83VzYl13OocJqHnWy9HVDRiG1BjPXz14PYM+qSy/khkB7TcbmOQFoZ0ra9Wcvvmgv6+OvvIaUtALS86u47r11ANQ2mEjNqaBvjH+bbW89aSn3nuxy5weVZcb3CuemcQnOHxcEQfgPKKhs4PFpfbj/wl68sGgPmw8WMa5XOO+uOMA9F/QkzM+NQwVVzFmZxmvXDm61b/dwH77elAXA4YJqrhvVlZ935AD2wGFShC+bDxVztLiGD28bSU2Dibs/2UzPpqXMhwv1zLs9mWAfHZsOFuHroeX5qwYC9i+x3LTqVqsDTlaqb6Sq3khCmDcju4ewIaOQS5uCaAazlcRwH24cm8D83w6ycm8uV4+I58PV6UzuF8X45HDe/GbN3zpfABszikjPq6KyzkCYrxuDutprDX+4OoNpg6LpEelLqb6RJ77ezvw7RrNo6zHumpREUoQvjSYLGpWCm8YmsGjbMceXlcJfz+oVRmNuSuv7GmsxVxWiCWjOdG37jstUnkv52nnEPboMpc6LvAUPIpvbBqqqdy6h4dhuDj05DABLfRX1mVtxTxj+xwfdYvmtQqVx3CepWvxbUijAZjntcSLLuCeOIPKm2QCkpKTg9/31bTZTunlhqSom64WJmGtKcQmyZ+0GTrqHokXPkfXiRGzGekfTFW1YAnXp6zjyyoXYDPV4JI1pGq+CxtwDeA+8mPJ187HoS6neuRiVZwD6HYvxGXARklKNseQYau/gNuNQuLhjM9Y7blsba1F5+CEp1dQd/h1zZf4ZTakgdDYROBQE4V9r08EizusVzr2TTyzxeOiLraTl/bGOtwDDE0P4bP1hXNRKXpvR9o25vsGESikxIjGEUB8dbyxt29nOVaOi0WjBS6chIcybOSvTKKisJ8zXDYPZSnlNIxH+7hRXN1BYWU+orxsp6YWnNb60vCpCWjQGOb9PBK8u3se4nmFOs+RS0gp58eqBjuW3xVUNPPb1dm4Y063NtmfidMfv6qKkwWQBwE2rxl2r5kBuJT0jfVl7oICeUc4zAc/2GnpG+vLLnlzO6xVOdb2R1OMVjOnReulVvdFMWl4VX907Fo3KHrRcvS+PlPQCp4FDZ+d4c2kqVwyLA1lmy+FiHrmoN2qVgme/38W0wdF4u7lQ02ii0WghyFuHSilhsdpQKRWnPL4gCMI/WbCPK7FN9W/jQ7wo0Tc21SWu4oUW2eZmi7XNvt3CvDlarMdgsmC1ybhqVAR76yiorCcjr4pLB8fwy55cR2a5j7sLvaL8yCzUo3NR0S3Uy9FEKzrQg49/O8j83w4yqGuQI7jYkQ3phYxMtH9RNDoplLeX7XcEDtVKBYPi7csP40K82HvM/iVSen4VT11uXwLaI1DFxty21/VXzRecWKosyzJzVqaxaOtRrhgWx97scnLL6xzbNZgsNBgtJEX4MPfXg4ztGcqwhGACPDtuUCH8NcyB3ZGzV1K17Ud8Bl+KbLNS9NML+Ay+DIXGFV38QKp3Lsa921AMhYcxFBwCwGqoQ6HRodB6YK4poy49Bff41u9brY211B/dRcKLW1Go7SsfKrd+T/XOJWcUONTF9KN61zJ8Bk2jesdi3GJPP7Dc0TgVWjdshjpw90UX3YfC757CWJqDS2AXsBgBiYNPDHIcy3/cLQRPeYjCRf+H2jsYn+4jaWzqCq3QaAm72p4J2bxUGSD86pcc+5csf9vRiCX+ydXkzb+T6u0/4T3wEqp3LCZ8xmvINhsly94g6+XJIMuo3H0dy7JbUrn7oIvpR+bz4/FIGk3AhFnkfHgTR165EG14d0dAUxD+KUTgUBCEf62U9EKmD239wjw8MZj1aQWM6u582eupuGvVJIT5UF1vdNq5t7zGwFvLUrE1ZbbdNLZt8OqCvhH879sd+Lq78Pp1Q3hoajKv/LQXs9UG2Dswh/u5c+/knjy1cCdeOg1JEb7klNU6HVNzjUNZlnHTqrn/whOB0iFdg3hr6X4mOKljVFzdQGlNI4ktOkIH++hwc1FxqOD0g6sn1zjsHxvAzeMSTmv8o5NCeWf5AZbsyOHJy/ry8EXJjuYowd66U2Zr/tFrGJYQzL6cCmbO3UiYrxs9I9sGKLccKqZ3Fz9H0BDsHaE/WXsIk8Xa6n5n4kO8GJ8czj2fbAbszVHimpbJXz+6G49/vQNZttfXumtSD4K8dUzqE8nMuRuJC/ESzVEEQfhXa5kNrlCAySJjk2XctepT1nrVqpWE+rixel8eccGeACSGe7PzSCn6BhMRfm7IHaSYN5eQAAj3c2fOLcPZmVXKZ+sO0TcmgBkj4zs8f0p6IVX1Rtan2b8Uq6g1UFBRT5ifG0qF5Gh4oJQkrLYT4zibPghnM18tSZLE4K5BLNmZwxXD7M1m3rlxKC4nZfVfMSyOgXGB7DhSxn2f/s7LMwa1c0ThLyVJRN42j8KFT1K68j2QbXgkjSFo6iMA+I24lvwvHyLrhYlow7uji7K/b3IN7442Ioms589D4x+Jzkndwpp9q3DvNtQRNATw7DWB4p9fxuYs668dodOfJf/LhylfM9fRHOV0dTRO32FXkfP+Dag8A4i5/zvCr3uDvE/vRraY8KqvI2rmx3j2Gt/mmKfqVuzedQjuXduWHwi68H7Hz9rgOOKfXO24HTz1YQAkhYLgix4h+KJHTnnM5uzIZnEPL+5wXIJwTpNl+W/7r2vXrrLQ1vr16zt7COccMSfOiXlxTsyLc+vXr5cPF1TJ93+2pbOHcs4QfyvOiXlxTsyLc2Je2hJz4lzLeVmQclj+/vcjsizLclFVvXzrhymOx77//Yi8IOWwLMuyfO+nm+UN6YWyLMuyzWaTjxTpnR77g1Vp8vWz18lrUvNkWZbl9LxK+frZ6+Snvt0hy7Isb8oolB//aptssdrkqjqDPOPdtXJFbaO8L7tcfrJpG1mW5fKaRtlotsiyLMtbDhbJzyzcKcuyLN/24Qa5qLK+zXlzy2rlm+asb3XfF+sPy19tyJRlWZanvrzScf/G9EL59cX7ZFmW5ae/3SH/1jTWN7/+tdV2J2s5V3/GfK3elyvP/uWA4/anaw/Kc1bab7/04x75+y0nznWkqFqWZVkuqKhz3PfMwp3yloNFcmZhtfzg57+3O+6zJf4dtSXmxDkxL84Bu+S/Mb4j/vvv/HdWGYeSJJ0PvAsogfmyLL/yZwQzBUEQhLO3Nc9Exv49PHpx784eiiAIgiCclscu7sN7K9P4ZlMWVpvMqKRQYpuyCltKivBl8Y4cEpvKVMQFe1JeY+D8pgz7YQnBHCyoZta8jUhI3DwuAV93LXnl9a2Ok11ay/zfDiJJEiqFxN0X2DsPn7w6oFlKeiFDE1rXNBueGMzLP+3lmg4yFWdNTOKVn/eyeEcOoS5nWHC3A6c7X801DmVZxt9Ty0NNGf13nJ/EnJVpzJy7EatNpkekL/dO7snPO7JJzalwNBfrHxeAoqkB2cy5G5mQHC6aowiCIPxHSLL8x164JElSApnAeCAf2AlcJctyRnv7dOvWTT58+PAfOt+/WUpKCqNHj+7sYZxTxJw4J+bFOTEvzol5aUvMiXNiXpwT8+KcmJe2xJw4J+bFOTEvzol5aUvMiXNiXpyTJGm3LMv9O3scwr/P2VRfHwgckWX5mCzLJmAhcNGfMyxBEARBEARBEARBEARBEDrT2QQOw4C8Frfzm+4TBEEQBEEQBEEQBEEQBOEf7mxqHDrrC9Zm3bMkSbcBtzXdNEqSlHYW5/y38gfKO3sQ5xgxJ86JeXFOzItzYl7aEnPinJgX58S8OCfmpS0xJ86JeXFOzItzYl7aEnPinJgX56I6ewDCv9PZBA7zgYgWt8OBwpM3kmV5HjAPQJKkXWLNfVtiXtoSc+KcmBfnxLw4J+alLTEnzol5cU7Mi3NiXtoSc+KcmBfnxLw4J+alLTEnzol5EYS/19ksVd4JxEuSFC1Jkga4Elj65wxLEARBEARBEARBEARBEITO9IczDmVZtkiSdBewGlACn8qynP6njUwQBEEQBEEQBEEQBEEQhE5zNkuVkWX5F+CXM9hl3tmc719MzEtbYk6cE/PinJgX58S8tCXmxDkxL86JeXFOzEtbYk6cE/PinJgX58S8tCXmxDkxL4LwN5JkuU0/E0EQBEEQBEEQBEEQBEEQ/uPOpsahIAiCIAiCIAiCIAiCIAj/Un9L4FCSpPMlSTosSdIRSZIe+zvO+U8gSdKnkiSVSpKU1tljOVdIkhQhSdJ6SZIOSpKULknSvZ09pnOBJElaSZJ2SJKU2jQvz3X2mM4VkiQpJUnaK0nS8s4ey7lCkqQcSZIOSJK0T5KkXZ09nnOFJEnekiQtkiTpUNNzzJDOHlNnkySpW9PfSfN/NZIk3dfZ4+pskiTd3/RcmyZJ0reSJGk7e0znAkmS7m2ak/T/8t+Js/dvkiT5SpK0RpKkrKb/+3TmGDtDO/NyedPfi02SpP9kB9R25uX1ptei/ZIk/SxJkncnDvFv186cPN80H/skSfpVkqTQzhxjZ+jos6EkSQ9JkiRLkuTfGWPrTO38vTwrSVJBi/cvF3TmGAXh3+4vDxxKkqQE3gcmAd2BqyRJ6v5Xn/cf4nPg/M4exDnGAjwoy3IiMBi4U/y9AGAExsqynAz0Bs6XJGlw5w7pnHEvcLCzB3EOGiPLcm9Zlv+TH9Ta8S6wSpblBCAZ8XeDLMuHm/5OegP9gAbg584dVeeSJCkMuAfoL8tyD+wN4K7s3FF1PkmSegC3AgOx//u5UJKk+M4dVaf5nLbv3x4D1sqyHA+sbbr9X/M5beclDZgGbPzbR3Pu+Jy287IG6CHLci8gE3j87x5UJ/uctnPyuizLvZpej5YDT//dgzoHfI6Tz4aSJEUA44Hcv3tA54jPcf6Z+e3m9zBNvRcEQfiL/B0ZhwOBI7IsH5Nl2QQsBC76G857zpNleSNQ2dnjOJfIslwky/Kepp9rsX+wD+vcUXU+2a6u6aa66b//fIFSSZLCgcnA/M4ei3BukyTJExgJfAIgy7JJluXqTh3UuWcccFSW5eOdPZBzgApwlSRJBeiAwk4ez7kgEdgmy3KDLMsWYANwSSePqVO08/7tIuCLpp+/AC7+O8d0LnA2L7IsH5Rl+XAnDemc0M68/Nr07whgGxD+tw+sE7UzJzUtbrrxH3yf28Fnw7eBR/gPzgmIz8yCcC74OwKHYUBei9v5iECQcBokSeoC9AG2d/JQzglNS3L3AaXAGlmWxbzAO9jfSNk6eRznGhn4VZKk3ZIk3dbZgzlHxABlwGdNS9vnS5Lk1tmDOsdcCXzb2YPobLIsFwBvYM/sKAL0siz/2rmjOiekASMlSfKTJEkHXABEdPKYziVBsiwXgf1LUCCwk8cj/HPcBKzs7EGcCyRJelGSpDzgGv6bGYdtSJI0FSiQZTm1s8dyDrqraXn7p//F8hCC8Hf6OwKHkpP7/pPflginT5Ikd+BH4L6TvoH8z5Jl2dq0fCMcGNi0bOw/S5KkC4FSWZZ3d/ZYzkHDZFnui71ExJ2SJI3s7AGdA1RAX+BDWZb7APX8N5cSOiVJkgaYCvzQ2WPpbE0fPi4CooFQwE2SpBmdO6rOJ8vyQeBV7EssVwGp2MuLCILwB0mS9D/s/46+7uyxnAtkWf6fLMsR2Ofjrs4eT2dr+pLmf4ggqjMfArHYSzgVAW926mgE4V/u7wgc5tP6G+lwxJIfoQOSJKmxBw2/lmX5p84ez7mmaXllCqI+5jBgqiRJOdhLIIyVJOmrzh3SuUGW5cKm/5dir1c3sHNHdE7IB/JbZOouwh5IFOwmAXtkWS7p7IGcA84DsmVZLpNl2Qz8BAzt5DGdE2RZ/kSW5b6yLI/Evmwsq7PHdA4pkSQpBKDp/6WdPB7hHCdJ0vXAhcA1siyLpIrWvgEu7exBnANisX+Jldr0fjcc2CNJUnCnjuocIMtySVNShQ34GPFeVxD+Un9H4HAnEC9JUnRTRsOVwNK/4bzCP5AkSRL2GmQHZVl+q7PHc66QJCmgueOeJEmu2D/YHurUQXUyWZYfl2U5XJblLtifV9bJsvyfzwqSJMlNkiSP5p+BCdiXGP6nybJcDORJktSt6a5xQEYnDulccxVimXKzXGCwJEm6ptekcYhGOgBIkhTY9P9I7A0vxN/MCUuB65t+vh5Y0oljEc5xkiSdDzwKTJVluaGzx3MuOKnZ0lT+4+9zAWRZPiDLcqAsy12a3u/mA32b3tP8pzV/UdPkEsR7XUH4S6n+6hPIsmyRJOkuYDX2zoSfyrKc/lef959AkqRvgdGAvyRJ+cAzsix/0rmj6nTDgGuBA031/ACeEJ2yCAG+aOpSrgC+l2V5eSePSTg3BQE/2+MdqIBvZFle1blDOmfcDXzd9CXWMeDGTh7POaFpKdR44PbOHsu5QJbl7ZIkLQL2YF9CuBeY17mjOmf8KEmSH2AG7pRluaqzB9QZnL1/A14Bvpck6WbswefLO2+EnaOdeakEZgMBwApJkvbJsjyx80b592tnXh4HXIA1Ta/X22RZntlpg/ybtTMnFzR9uWcDjgP/mfloJj4bOtfO38toSZJ6Yy+BloN4DyMIfylJZMYLgiAIgiAIgiAIgiAIgnCyv2OpsiAIgiAIgiAIgiAIgiAI/zAicCgIgiAIgiAIgiAIgiAIQhsicCgIgiAIgiAIgiAIgiAIQhsicCgIgiAIgiAIgiAIgiAIQhsicCgIgiAIgiAIgiAIgiAIQhsicCgIgiAIgiAIgiAIgiAIQhsicCgIgiAIgiAIgiAIgiAIQhsicCgIgiAIgiAIgiAIgiAIQhv/D7xT2MeAUeP8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(20, 20))\n", + "texts = []\n", + "for i, (t, c, vec) in enumerate(zip(titles, color, W)):\n", + " winnin_position = som.winner(vec)\n", + " texts.append(plt.text(winnin_position[0], \n", + " winnin_position[1]+np.random.rand()*.9, \n", + " t[:-5],\n", + " color=c))\n", + "\n", + "plt.legend(handles=legend_elements, loc='upper left')\n", + "plt.xticks(range(map_dim))\n", + "plt.yticks(range(map_dim))\n", + "plt.grid()\n", + "plt.xlim([0, map_dim])\n", + "plt.ylim([0, map_dim])\n", + "plt.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/TimeSeries.ipynb b/examples/TimeSeries.ipynb new file mode 100644 index 0000000..8576083 --- /dev/null +++ b/examples/TimeSeries.ipynb @@ -0,0 +1,90 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Requirements: data from https://archive.ics.uci.edu/ml/machine-learning-databases/00396/Sales_Transactions_Dataset_Weekly.csv" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.insert(0, '../')\n", + "\n", + "from minisom import MiniSom\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec\n", + "%matplotlib inline\n", + "\n", + "%load_ext autoreload" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%autoreload 2\n", + "import pandas as pd\n", + "# data from\n", + "# https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly\n", + "sales_transaction = pd.read_csv('Sales_Transactions_Dataset_Weekly.csv')\n", + "data = sales_transaction[[f'Normalized {i}' for i in range(52)]].values\n", + "som = MiniSom(8, 8, data.shape[1], sigma=2., learning_rate=0.5, \n", + " neighborhood_function='gaussian', random_seed=10)\n", + "som.pca_weights_init(data)\n", + "print(\"Training...\")\n", + "som.train_batch(data, 50000, verbose=True) # random training\n", + "print(\"\\n...ready!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "win_map = som.win_map(data)\n", + "\n", + "plt.figure(figsize=(16, 16))\n", + "the_grid = GridSpec(8, 8)\n", + "for position in win_map.keys():\n", + " plt.subplot(the_grid[6-position[1], position[0]])\n", + " plt.plot(np.min(win_map[position], axis=0), color='gray', alpha=.5)\n", + " plt.plot(np.mean(win_map[position], axis=0))\n", + " plt.plot(np.max(win_map[position], axis=0), color='gray', alpha=.5)\n", + "plt.savefig('resulting_images/time_series.png')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/TopicModeling.ipynb b/examples/TopicModeling.ipynb new file mode 100644 index 0000000..b1dd8d2 --- /dev/null +++ b/examples/TopicModeling.ipynb @@ -0,0 +1,135 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example we will see how to perform topic extraction using MiniSom. The goal is to extract the main topics (represented as a set of words) that occur in a collection of documents." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "from minisom import MiniSom\n", + "from sklearn.datasets import fetch_20newsgroups\n", + "from sklearn.feature_extraction.text import TfidfVectorizer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The colloction of documents that we will work with is the famous `20newsgroups` dataset. It contains more than 10000 newsgroups posts. We will download the dataset using sklearn and will transform the textual documents into a matrix `D` where each row represents a post using TF-IDF representation:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "dataset = fetch_20newsgroups(shuffle=True, random_state=1,\n", + " remove=('headers', 'footers', 'quotes'))\n", + "documents = dataset.data\n", + "\n", + "no_features = 1000\n", + "\n", + "tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2,\n", + " max_features=no_features,\n", + " stop_words='english')\n", + "tfidf = tfidf_vectorizer.fit_transform(documents)\n", + "tfidf_feature_names = tfidf_vectorizer.get_feature_names()\n", + "D = tfidf.todense().tolist()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have to train a SOM that clusters the documents, the total number of neurons in the SOM will be also the number of topics to extract:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "n_neurons = 2\n", + "m_neurons = 4\n", + "som = MiniSom(n_neurons, m_neurons, no_features)\n", + "som.pca_weights_init(D)\n", + "som.train(D, 40000, random_order=False, verbose=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will consider as topic the list of first `top_keywords` associated with the biggest weights of each neuron. With the following for loop we will inspect all the weights and recover the words associated with the weights using the feature names saved by the TfidfVectorizer:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Topic 1 : steve low reported truth want knowledge shall right people don\n", + "Topic 2 : use don just armenians turkey people like os turkish armenia\n", + "Topic 3 : used help new buy x11 mail info thanks appreciated advance\n", + "Topic 4 : read study event ideas writing religious learn ed religion alt\n", + "Topic 5 : learn files point includes board email sound games home pc\n", + "Topic 6 : light matter expect final deleted sure administration clinton stuff like\n", + "Topic 7 : words generally clinton lots dod machines encryption like money jesus\n", + "Topic 8 : report use cards clipper cable air 17 space 19 mode\n" + ] + } + ], + "source": [ + "top_keywords = 10\n", + "\n", + "weights = som.get_weights()\n", + "cnt = 1\n", + "for i in range(n_neurons):\n", + " for j in range(m_neurons):\n", + " keywords_idx = np.argsort(weights[i,j,:])[-top_keywords:]\n", + " keywords = ' '.join([tfidf_feature_names[k] for k in keywords_idx])\n", + " print('Topic', cnt, ':', keywords)\n", + " cnt += 1" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/TravellingSalesmanProblem.ipynb b/examples/TravellingSalesmanProblem.ipynb new file mode 100644 index 0000000..cf622ac --- /dev/null +++ b/examples/TravellingSalesmanProblem.ipynb @@ -0,0 +1,106 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more details about the problems and an introduction to the idea behind the code see: https://glowingpython.blogspot.com/2020/06/solving-travelling-salesman-problem.html" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from minisom import MiniSom\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "np.random.RandomState(10)\n", + "N_points = 40\n", + "N_neurons = N_points*2\n", + "t = np.linspace(0, np.pi*2, N_points)\n", + "x = np.cos(t)+(np.random.rand(N_points)-.5)*.3\n", + "y = np.sin(t)+(np.random.rand(N_points)-.5)*.3\n", + "\n", + "som = MiniSom(1, N_neurons, 2, sigma=8, learning_rate=.4,\n", + " neighborhood_function='gaussian', random_seed=0)\n", + "points = np.array([x,y]).T\n", + "som.random_weights_init(points)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAKACAYAAACBoI53AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd3hU1daH352ekEYSEtIgJPQWSui9CoqCIhYUwQJ2sWG/Xr362VCxVxTpKIgiKNKUHjqEGgIplBRSIL3P7O+PMwlDMhMSmPT9Ps88JKfuIb9Zs87eqwgpJQqFQqFQKBQKhULDqrYHoFAoFAqFQqFQ1CWUg6xQKBQKhUKhUBihHGSFQqFQKBQKhcII5SArFAqFQqFQKBRGKAdZoVAoFAqFQqEwQjnICoVCoVAoFAqFEQ3aQRZCHBNCDK3F+7cQQmQLIaxrawyK+oXSrKIhoHSsqO8oDSsatIMspewkpdwMIIR4QwixqDrvJ4SIE0KMNLr/WSmls5RSV533vcqY3hBCFBk+aCWv4Noaj6JilGZBCDFMCPGvECJDCBFnYn+QYX+uECLSePyKuoHScaV0HCeEyDOyy+trYZgKMygNgxBilhDiqBAiSwgRK4SYVWZ/g7bFDdpBtiRCCJvaHsN18LPhg1byiqntASmqn3qs2RzgR2CWmf1LgYOAJ/AqsEII0ayGxqaoYRqwjgFuNrLLo2toXIoaph5rWAD3AU2BMcATQoi7jPY3bFsspWywLyAOGIn2hy0EioBsIMKw3w34AUgE4oG3AWvDvmnADmAOkGbYFwL8Y/g9FVgMuBuOXwjogTzDPV4AggAJ2BiO8QP+AC4Cp4HpRmN9A/gFWABkAceAMKP9LxrGmAWcBEZU8v/gDWBRBfsPA5Nr+2+lXkqzJv4vRgJxZba1BQoAF6Nt24BHDD8PBNJr++/Y2F9KxxXr2Pj/yMw5SsdKw3VGw0bX+Qz43PBzg7fFtT6AmhC4kYAWldn/G/At0ATwBvYADxv2TQOKgScBG8ARaA2MAuyBZsBW4BNT9zP8XlbgW4GvAAegG5ACDDcaXz5wI2ANvAvsMuxrB5wD/IyuG1IZERqum2H4UB0DHq3tv4t6Kc1WpFmjsZhykG8FTpTZ9gUGo61edeOldFyxjo3GfMEwlvVAaG3/3dRLabiC/w+BNltc4gA3eFvcaEMshBA+aGJ6WkqZI6VMRnvaM14+SJBSfi6lLJZS5kkpT0spN0gpC6SUKcDHwJBK3i8QGAC8KKXMl1IeAuaiLV+UsF1K+ZfUYo4WAqGG7Tq0D1VHIYStlDJOShkNIKXcLqV0r+DWvwAd0D6Q04HXhRB3V2bMirpFI9JsRTijPfAZkwG4XOP1FDWM0nEp96A5Ky2Bf4F1QojruZ6ihmikGn4DLSx3nuH3Bm+LG62DjGaUbIFEIUS6ECId7WnQ2+iYc8YnCCF8hBDLhBDxQohMYBHgVcn7+QEXpZRZRtvOAP5GvycZ/ZwLOAghbKSUp4Gn0QSabBiDX2VuKqU8LqVMkFLqpJQ7gU+B2ys5ZkXdolFo9ipkA65ltrmiLR0q6gdKx4CUcofBccqVUr4LpAODLHFtRbXTqDQshHgCzRm/SUpZYNjc4G1xY3KQZZnfz6HFz3hJKd0NL1cpZacKznnHsK2LlNIVuBdt2cHc8cYkAB5CCOOnqxZocUFXH7yUS6SUA9E+mBJ4vzLnmboUV45ZUXdRmi3PMSC4zJhCDdsVdROl48qhbHPdpdFqWAjxAPASWtzyeaNdDd4WNyYH+QIQJISwApBSJqLFfX0khHAVQlgJIUKEEBUtebigPTVlCCH8KZ+dfAEwWUJNSnkO2Am8K4RwEEJ0BR5Ee4qsECFEOyHEcCGEPVqcUR5aQP9VEUKMF0I0FRq9gaeAVUb744QQ0ypzLUWN01g1ayWEcECboRGGe9sZxhQFHAL+a9h+K9AV+NVw7lAhREVfNIqaR+m4jI6FVuN2gBDCzrB9Ftps4g7DfqXjukVj1fA9aI79KFmm+lVjsMWNyUFebvg3TQhxwPDzfYAdcBy4BKwAfCu4xptAD7Q4mz+BlWX2vwu8Zlhyed7E+XejxZwloAX4/1dKubESY7cH3kPLfE1CW8Z5GUAIMUgIkV3BuXehZbxmoWW4vi+lnG841w6tPMuuSoxBUfM0Vs0ORjPif6HNkuShfRmVcBcQhvb+3wNuN8T0AQSifZEo6g5Kx+V17AJ8jfbe49EqJYyVUqYZ9isd1y0aq4bfRvMR9orL9bq/MdrfoG2xkLJeO/iK60AIMRB4XEqpkvYUDQIhxFxguZRyXW2PRaG4VpSOFfWdhqBh5SArFAqFQqFQKBRGNKYQC4VCoVAoFAqF4qooB1mhUCgUCoVCoTBCOcgKhUKhUCgUCoURykFWKBQKhUKhUCiMUA5yLSKEmCyEOCOEyBFC/C6E8Kjg2O+EECeFEPqK6hYLITYJIaQQwsZoW38hxB4hRJYQ4rCheoVCYRGqomOjc+4z6PQho22zhBBHDTqNNdSGNT7nXyFEihAiUwgRIYQYXx3vR9H4qKItlobjSspezTXaJ4QQ7wsh0gyv94UQwrBvkNE5JS8phJhYE+9R0bCxoB1eW0ajhUKII0b744QQeUb715u+ev1HOchlMHYsK9pW1WuYOKYTWmvKKYAPWmvIryo4JQJ4DDhg7gBDUW/bMts8gNXAbMAd+ABYLYRoerUxKuovdVjHGLT3CuU7Lgm02qJN0erCPiGEuMto/0zA19CFagawSAhRUd1RRT2mLmsYCJVSOhteDxltnwFMQOso1hW4GXgYQEq5zegcZ2AcWuOIv6vynhT1h7qsYXN2WEo5toxOd3K5DnQJNxsdM7ry76Z+0SgcZCGEnxDiV8PsU6wQ4imjfW8IIVYIIRYJrT/6NDPb7IUQnwghEgyvT4TWmaakY8x5IcSLQogkYF4lhnUPsFpKuVVKmQ38B7hNXNm2sRQp5ZdSyk1onXBMvUc34L/AC2V29QeSpJTLpZQ6KeUiIAW4rRJjVNQhGoKODbwLfIZWuL4UKeUHUsoDUspiKeVJtI6PA4z2H5ZSFpf8ivYwGFiJMSrqCA1Iw+aYCnwkpTwvpYwHPgKmVXDsCillzjXcR1FLNCANm7TDZd5rEDAIrclYo6PBO8hCaw25Gm0G1h8YATwthLjB6LDxaF1w3IHFZra9CvQFuqHNDvQGXjO6RnPAA63X+QzDvdOF+XCGToYxASCljAYKgbbX+FbfQevMlGRinzDxe+drvI+iFmgoOhZau/Mw4BtT+42OE2iG+ViZ7WuEEPnAbmAzsK+i6yjqDg1Fwwa2CiGShBArDU6EyWsZfu5U9mQhRBPgdmB+BfdQ1DEaioYra4fRVvS2SSnjymxfbHhAWC+ECL3KNeotDd5BBnoBzaSU/5NSFhr6iX+P1iKxhHAp5e9SSr2UMs/MtnuA/0kpkw2tFN9EW84oQY/W+rGg5BpSSncp5XYz43JGazlpTAZaC9IqIYQIQ5tp+9zE7nDATwhxtxDCVggxFQgBnKp6H0WtUu91LISwRlv2e0JKqb/K+30DzT5dMXsipRxnuPaNwPpKXEdRd6j3GjYwBK3lb3u0tr9rxOVl8LLXygCcDQ98xtyGNnO3xcw9FHWTeq/hKtrh+4Cfymy7B03/LYF/gXVCCPerXKdeUqVYmHpKSzQHMd1omzWwzej3cybOK7vNDzhj9PsZw7YSUqSUJsMfzJANuJbZ5gpkVeEaJU+0XwEzpZTFZe2wlDJNaMlMHwJfAuuAjcD5qtxHUes0BB0/BhyWUu6q6IJCiCfQDPMgKWVB2f1SyiJgrRBiphDitJTyjyqMV1F7NAQNI6XcavixUAgxE8gEOgBHTFzLFciW5VvWTgUWmNiuqNs0BA1X1g4PRJvJXmG8XUq5w+jXdw2TboPQZtYbFI3BQT4HxEop21RwjCkjVXZbAtqHo2TJt4VhW0XXqIhjaEsrAAghggF7IKqK13FFWyr52eAcWxu2nxdCTDIkhmxBe/ItCfiPQYuNU9QfGoKORwBDhBA3Gn73ALoLIbpJKZ8wnP8A8BIwWEp5tYc4G7TVEEX9oCFo2BSSy2FsJdfaY/g9lPJhQoHAUAzJe4p6RUPQ8FXtsIGpwEpDTHNFGOu/QdEYQiz2AFmGgHdHIYS1EKKzEKJXFa+zFHhNCNFMCOEFvA4suo5xLQZuFlrpnybA/9DEaHLWQghhJ4RwQBOirRDCwTB7nIH25NnN8CoRfU+0OE2EEN0N4RWuaDPJ56SU665j7IqapyHoeBraTFuJVvehLS2+CqVVWN4BRhmWLksRQrQXQow1vHdbIcS9wGDUEnV9ot5rWAjRSQjRzTB2Z7SJhnjghOGQBcCzQgh/IYQf8Bzll6inADsNcaKK+kW91zBXscMAQghH4A7KaFcI0UIIMaDEHxFaKU4vwHhWucHQ4B1kKaUOrZxONyAWLe5rLuBWxUu9jSakw2hLaQcM28witBqBg8yM6xjwCJqwk9FihR4zOnetEOIVo1PWA3loVSm+M/w8WGoklbzQKlQAXJBSFhp+fgHtfZ8DfIFbK/2uFXWChqBjKWV6Ga0WAplSypLYubcBT2CvuFxjsySJRKDFJSejaXwmcKeU0mzZQ0XdoiFoGK2E1s9oYRUxaLGY4wxhP6CV2lptGNdR4E/DNmPuQyXn1UsagoYrYYdBK1WYjhZjbIwLWjGAS2gPhmOAsVLKtEq963qGUCFQCoVCoVAoFArFZRr8DLJCoVAoFAqFQlEVlIOsUCgUCoVCoVAYoRxkhUKhUCgUCoXCCOUgKxQKhUKhUCgURlSpDrKXl5cMCgqqpqEoFJVn//79qVLKZlU9T2lYUVdQGlbUd65Vw6B0rKg7mNNxlRzkoKAg9u3bZ7lRKRTXiBDizNWPKo/SsKKuoDSsqO9cq4ZB6VhRdzCnYxVioVAoFAqFQqFQGKEcZIVCoVAoFAqFwgjlICsUCoVCoVAoFEYoB1mhUCgUCoVCoTCiSkl6DZXfD8Yze91JEtLz8HN3ZNYN7ZjQ3b+2h6VQVAmlY0V9R2lYUd9RGm44NHoH+feD8by88gh5RToA4tPzeHnlEQAlakW9QelYUd9RGlbUd5SGGxaN3kGeve5kqZhLyCvSMXvdyWoVtHrKVFiS2tCx0rDCkigNK+o7yp9oWDR6BzkhPc/k9ngz2y1BdT1lqg9J48Wcjs1tv16UhhWWpqFouOTaSseNj5rWMChbXJ00egfZz93RrDM8+ftd3NOnJaM6+mBnY7l8xup4ylRLO40bczp2dbSlsFhvUf2CeQ2/8tsRDp1Lx9HOmiZ21jja2eBkZ214mf/ZwdaKVYcSlIYbMT6uDiRl5pfb7ufuWC33q67ZPmWLGy++bg4kZNSchkH5E9VJo3eQZ93Qjpd+PUx+sb50m4ONFSM6+HDoXDqPLzmAl7Mdd4QFcnfvFgR6OF33PavjKbO2lnYUdYNZN7S7wqCVkJFXxMiPt/Dc6Lbc3NUPKythkfuZ02puoY6VB86TW6ijWC8rfT0hAAllz1AabhzkF+lwtLU2uW9ij+r521fXbN+7a08oW9xI6eTvZtJBDg1wq7Z7mpvgux4dv/93pNIwykFmQnd/zl/K5cP1UQD4Gy0l6PSSradSWLL7LN9siebrLdEMbtOMyX1aMKK9NzbW1zYr59HEjrScwnLbr+cpszaWdhR1hxKjVbIk5tHEjoy8Ior1kiKdnpnLDvHtlhheGNOOIW2bIcT1OcrmZqz93R3Z8dJwAAqL9eQV6sgtKianQKf9XFhMbqHO8Lr8c15hMZ/9c9rkvaoz3ElR++j0kqeWHiTuYg7T+gex4fgFEtLz8HF1QCclP2yPZVDbZvQK8rDofT2d7UjNtowdTszI468jSaw5nMCFzAKTxyhb3LBZGB7HhuMX6Bvswdm0XBIz8vF1c8DP3ZG/jibx+aZTPDmijUXveSmnEBsrYXIyoqo6zi0s5p/IZNZEJJJowsmHxmeLG72DDJQ6C3teHYG3i0PpdmsrwbB23gxr501iRh7L9pzj573neHjhfpq7OnBHr0Du6hVYJSFm5RehMyFmR1trZt3Q7prfgzmHpTqXdhR1iwnd/a94ut8SlcL0Bftwc7Tl4cHB/LAjlmnz9tI32IMXx7Sne4um13yvWTe04/nlEVcY5rIatrOxws7GCjdsK3XNXw/Em9SwELBk91nu6hVosRlwRd1ASskbfxxj/fELvHFzR6YNaMUbt3Qq3Z+cmc9d3+9i6o97mP9Ab4s5yccSMsguKC63vSp2ODkzn7+OJPLnkUT2xl0CoKOvK64ONmTml7+2ssUNl7+PJvL6H8cY0d6bb6f0vGLyTKeXzFoRwUcbopDAUxZyknMKirn/p70m91VWx/lFOv6NTGbNkUT+OZFMXpGOZi72NLGzJqdQV+54O2srTiZl0a65y3WPvz6gGoUAW6NS6OjreoVzXBZfN0eeGdWW7S8O47spPWnv68Ln/5xi4Pv/8ND8ffwbmWzS8S3Le2sjSc8rAsDZ3gaBNuv27m1drmvpYtYN7UwuUT4yJPiar6mo3wxp24y594URk5rDsr3nWPFIf968pROnk7O59audPLxwH6eTs67p2hO6+xPi7YyNlahWDdvbWNG6mTOv/HaESd+GczLp2sarqJt8tTmahbvO8PCQYKYNaFVuv7erA8um96W5mwNTf9zDntiL133PM2k5TP1xLx5Odgxv7126vTIaTs0uYOGuM9z5bTh93t3EG6uPk5lXzHOj2vLPc0P4a+Yg/je+czkdO9hYXdcEiKLusif2Ik8tO0S3QHe+mNyj3MqytZVg9u2h3NbDn483RPHpxlPXfc/CYj2PLNrP4fPpvHJjBwDcHG0rZYvzi3SsP5bEU0sP0vOtDTy6+AC7otOY2NOfZTP6suvlEfzfrV3KadjWWmBrLbjps21aCIYJB7qh0ehnkLPyi9h/5hLTB1fOkbSxtmJ0p+aM7tSccxdzWbrnLL/sO8/GExfwd3dkcp8WTAoLMOlsh0ensXj3Wdo3dyEyKYsv7+nBkLbNLPI+JnT3R0rJM79EAODtYs+l3ELWHbvA5D4tsVYzb42SwQYnefqCfUz9cQ9Lpvfl9p4BzN0Wy/fbYthwfCuTegYyc2SbKs1wFen0nLuYy+Q+Lfjf+M4WGWvZMJGSzOnx3fxYeSCet/88zk2fbWP64GCeGt4GRzvTMauK+sGK/ee1mMZufrx4Q3uzx5U4yXd/v4tp8/bw0/296d3q2maSkzPzufeH3ej0ehbM6M/HG05eERZkios5hfx9NIk/jyQQHp2GXkJIsyY8NbwN47r60sbnytk0Yx2XrIjcP6BVo4rdbCxEXcjiofl7CXB35IepvczapBInWSCYs1EL55w58tpmkvV6yXPLI9h2KpUPJnYt/W5fNqMvHXxdTZ5TWKxn26kU/jycyIbjF8gqKKapky23dPNnXFdf+rTyuMKxN2eLB7dtxrt/neDrzdGsOZzAW+M7M7Sdt8l7NgQavYMcHp1GsV4yuE3VHdVADydeGNOep0e2ZcPxCyzZc4bZ604yZ0MUozv5MLl3S/qHeGJlJcgr1PHSysO09HRiYGsvTiVn07PltS9xm2JERx8AXr2xA9MHB7Nsz1leWnmEL/89bbFlHUX9Y3DbZsydGsZD8/cx+ftdLJnel5kj23Bv3xZ8+W80i3ad4bdD8UzrH8RjQ0Nwd7K76jWPJWSSW6i7ZkfFHGXDREqY2DOAYe29G5VxbshsiUrhpV8PM6C1Jx/cHnrV0BlvVweWGjnJ86b1ok+wZ5XumZFXxH0/7iEtu5Al0/sS0qwJe2IvmrT9GblFrDuWxJojiew4nYpOLwnydOKxoa0ZF+pLOx+XCuP4S3RcUKxjyAeb2X/2UpXGqqj7JGbkMfXHPdjbWjP/gd54NKnYblpbCT64vSsAczZGIZE8PbJtle4ppeTN1cdYHZHAi2Pac0evQF5YEYGboy3tyjyoFen07Didyp+HE1l3LInM/GJcHWwY26U547r60S/EE9sK8qjM2eLZk0KZ2DOAV347wrR5e7k51I//jOtQ4Qp8faXRO8hbolJoYmd9Xc6qnY0VN3X15aauvsSm5rB0z1mW7zvHX0eSCPJ04u7eLTh5IYszabl4Odsxd3ssttaCjccvWHRWITVLSw7xctE+qHf2CmR37EU+2RhFWFBT+od4WexeivrFoDblnWRPZ3tev7kjDwwMYs6GU3y/LYale87yyJAQHhjQyuxsyO8H43l91VEA3l5zgmKdrJHZMY8mdsyeFMptPQJ49XfNOI/r6svr4zri7drwjHND5cj5DB5dtJ82Pi58c2/PSpcg9HZ1YOmMvtz93S7u/2lvlZzk/CId0+fvIzolmx+n9SIuNYcZC/aRml3IP5HJ/H4wnuEdvNlw7AJrDiew/XQqRTpJoIcjMwYHc1MXXzr5uVY5udXexpqHhwTz5urj7Im9aPEHSkXtkJFbxNQf95CVX8zPD/etdHWrEidZCPhk4ymkhGdGVd5J/mzTaeaHn2H6oFY0d7VnwHv/EJ+eh4ONFX9EJDCuqy+7Yi6y5nACfx9LIj23CBd7G0Z18uHmrn4MaO1lkZKffYM9WTtzEN9sjuHLf0+z+WQyL45pz+TeLRpUnoiQsvKlmMLCwuS+ffuqcTg1i5SSQR/8S/vmrsydGmbRa+cX6Vh3LInFu86yJ8503JyjrfV1x20asyf2Ind8G87CB3szyDArklNQzC1fbCcjr5i/Zg40+5RX34qCCyH2Symr/EdraBquKttPpfLg/L208mrC4of64OlsX7rvZFIWs9dFsvFEMt4u9jw1og139gq8YpahbH1MsLyOK0NBsa7UONvbWvHimPY42Vnz0foopeE6zLmLudz61U7sbaxY+Vh/fK7hwSY5K5/J3+8m/lIeP91/dSe5WKfFa26KTObzu7tTrJPlNGwltGRtnV7i7+7ITV19GdfVly7+btdd8SWvUMegD/6ho58bCx7ofdXj65MtvlYNQ/3VcX6Rjvt+3MPBs5eYf39v+reu+sSTTi956dfDLN9/npkj2lTKSV646wz/+f0oE3sEMLC1J6/8dvQKDVtbCRxtrckuKKaJnTWjOvpwU1c/Brf1wt6m+sLRYlKyee33o+yMTqNHC3feua0LkYlZ9UbDYF7HjTpJLzY1h/OX8hjSzjJxwMY42Fozvps/Cx8ybxBL6gpaihTDDHIzl8tOTxN7G766pyfZBUU8veyQyUTCEqcnPj0PyeWi4L8fjLfY2BR1g4FtvPhhai9iU3O4Z+5u0rIvl6Rq19yFuVN7seKRfrT0dOK1348yes5W1hxOQG/QzQcV1MesSextrJk5sg1/Pz2ILv5uvPb7UZ5bHqE0XIe5mFPI1B/3UKTTM/+BXtfkHAN4uziwZHof/Js6Mm3eXnbFpJk9Vq+XvPjrETaeSOZ/4zszrqufyZrxegkOtprTvv3FYbxyYwe6Brhft3MM4GhnzUODgtkalULEufQKj1W2uG6j00ue+fkQe2Iv8tEd3a7JOQbNmX1/Ylcm9Qzg002nmLMhqsLj1xxO4PVVRxnR3pv3J3bhw/VR5TSs00t0esk39/Zg/39G8cld3RnV0adanWOA4GbOLH6oDx/fEUpcWi43frqN5xuILW7UDvLWqBQAhlxD/HFl+cJMbdcSLFkbM9Xg7HgZzQqC5vj8b3xndkan8dmm8hm0dcXpUdQMFTnJAGFBHvzycD9+mBqGnbUVTyw5yNhPt/HEkgMmi+BD7dV4LTHOTZ1sKbsYpjRcd8gr1PHg/L3Ep+fxw9QwWntfX5kobxctJtm/qSP3z9tLeHR5J1lKybtrT/DrgfM8PbINU/q2BCpoclOgo0eLphZxistyb9+WuDna8sW/FX8fVNTwSVG7lMT/rj2axGs3deCWUL/rup5VGSf54w1RmFrR3xqVwjM/HyKsZVO+vEerkmFOw/lFOsZ09sXBTNOd6kIIwW09Atj07BAcbK3L1WWurxpucDHIVVme2hKVQiuvJrTwvP7ueKY4lpDB15ujua2HP7tjLlZ7neLU7AKsBDQ1kWQ1qWcAu2LS+OyfU4QFNcXbxYHw6FTCY9LqnNOjqP5l1oFtvPhxWi8enL+Xyd/vZsn0K8MthBCM6OBDWJAHd34bTmRSFicvmC+xVps1XoUQpOcWmdynNFx7lGi4JEayoFjP1/f2JMxCtYybudiXJu498NNefpzWi34hl8MtvtkSw/fbYpnaryUzjZKUa6NmvLO9DfcPCOKTjac4kZhpttpAdXRFU1w7xnbYxVDfevqgVjw0yDLlU0ucZKB08uqZkW1KH9IOnr3EI4v2E9LMmblTe5U6vnW170HTJnZmy7/VRw03KAe5Kv3D84t07Iq5yB1hARa5b1ln5qauvryw4jDuTna8Pq4jm0+mmIzdtGRtzJSsAjyd7cuVdJNSEpOaQ0dfV1YeiGfKD3tK9wU0dcTO2opCnb7s5Wr9w9ZYqYqOr4cBrbWZ5Afn72Xc59uREi5k5uPn7sjDg4NJzMxn0a4zZOUX0yuoKa4OtuyKTSOn4EoDaGkdXwu+bg4mH/SUhmuHshrOL9ZjayXIL7Js7dQSJ3myoZmIq4MNaTmFuDnakp5XxM2hfvz35k5XzAqbasteExqe1j+Iudti+fLf03wxuYfJY1wcbMgy0WTkWsNRFNdOWQ1n5hdjLYTZh5trpcRJFkJzkiMTMzkan0FCRj5CgIeTHQse6I2b4+WGS7Wl4cpgyQ6VtU2DcpArWp4q61jsi7tEXpHuuuOPzTkzG45f4FhCJt/c2wN3JzuzdQUtWsUiuwAvZ3uklJy7mEd4TCrh0WmEx6SZbH+6ZdZQnO1tGD1na7nW13Xlw9YYqSjkxdKJDgNae/HAgFZ8tTm6dFt8eh6v/3EMAdzYxZeHhwTTNcAdgOyCYp775RDrj11AAk521rw4pn2tJmBIKfF1dyznICsN1x6mbHGRXlaLhpu52HNfv5a8vuoYqQY7lp5XhJWAIW28ymXV14QtNoW7kx1T+rXkmy3RPJOSTUgz5yv2rzoUT5bBCdOVWWrPLSzm35PJDFNlDWsMUxrWSclH66O4rcf1T0qMIOIAACAASURBVKwZY2UleO+2rpxNy2X98Qul26XUbO7O6LQr9FlbGr4a5y7mkl+kRwDGCq6vtrjBOMgJ6XlVWp7aeioFO2sr+laxlmZZzDnlfx5J5MYuzRnT2bd0u7m6gpYgIT2PjSeSARj4/r+l/xdezvb0C/GkX7An/UI8CfJ0YuWBeJ5bHsGS3Wc5cPYSWQXFPD2yDcv3na9TH7bGRm5hMasOJdR4yMuqQwkmt3u72PPlPVfOdDnb2/DtlDBSswv44p/TLN59hnfXniAxI59Hh4Tg5lS5ttKW5It/TrP/zCVu7NKciHMZSsN1AHNarS4Nf7MlhrLRm3oJczae4vawwHLHV6ctrogHB7Zi3o5Yvt4czYeTQku3Hzh7iVkrDtM7yIM7wgKYs/FUqY4n927BHxEJ3D9vL/f0acGrN3XAya7BfHXXSWJTc2o83MXKSnD2Ym657QXFepMPlrWlYXNk5hfxwE97sbYSvHxje+bvPFPvbXG9+pSVDWV4fnRbvF0dWBAexwajp66ymJra33IyhV6tml63oanow/LmLZbpMGaK5Kx8wqPT2BWTxs7oNM6kXf5gdQ1w4+EhwfQL9qS1t3O5pJOJhnjkb7fGAPD53d25OdSvykXLFVXHVDhOt0B3Fu46w/J958jML8bGSpRLcoDqW6Iyp+HkrPKrDiV4Odvzxi2deGBAK+ZsjOLbrdEs3XOWR4eGMK1/UI0liaw5nMBHG6K4tbs/H98RWi0JVoorqUx8vLnioTWt4boW9+jlbM/k3i2ZHx7HzBFtCPRw4vylXGYs2EdzVwe+mdITjyZ25Zz6Bwe14uMNUXy/LYYdp1P5+M5u9Ghh2UZTjY2yOn5uVFtcHG1ZEB7HtlOpZs+rzlCBxHqaD1Ss0/PkkoPEpuaw4AGt9N2MwSG1Pazrpt44yKZCGZ79JQIJNHWy5dbuAfwREU+R7krTbGpqPykjn5MXsrith/n2ppXFXLA8wILwOGYMDsbF4fpn1S7mFLIrJo3w6DR2RqcSnZIDaDFrfVp5cl+/IN5ac5zpg1rx6k0dTV7D2CA421/+0/eyUNKMomJMa/gQegk2VoIbOjfnvr4tSUjPK1fj0tZKVNsS1fUkfLTwdGLOnd2YPiiY2esieW9tJPN2xPL0yLZM6hlwRftSS2Gc/AXQyrMJ703sopzjGqAy8fGTvtlp8tzqXGatq0lLppgxOJj54XGM+WQrOYU6bKwENtaCZTP6mu3G5mBrzSs3dmB4e2+e+yWC27/eyRPDWvPkiDYVdkNTmMaUjp9brvkTPq72PDOyLe5Otry3NrJG43zrk46N/QknO2tyCnW8e1uXay59VxepN58sU6EMJc7x308P5mh8BrbWVjw9sg3+7o4IwN/d0WQDg9LybhaofzzrhnY4mpkt+/yf0wydvZmfdsRSWFw+Ca4iMnKLWH8siTdXH2PMJ1vp8dYGHlt8gJUHzhPo4cTLY9vzxxMDOPT6aOZODWOSIdmwokYgxvU1swqKEYCdtRVPLT1IsYkkPYVlMVd/1cXBhp0vDefLyT3oE+zJrT0CePe2LvgbjKK9jRU6KfFvWj1G0pSGq/pF0NHPlXn39+bnGX3xd3fk5ZVHGP3JVtYeSTRZuuhaMdZxCYkZeaw9kmSxeyjMc7UyZP9bfZy9cVpb5crYYkthCQ3XFCV1m3MM2f7FeoleD0fjM696bt9gT9Y+PYhbuwfw2T+nue2rnZxONl9dRmEac/6Eh5Md218czsyRbZjaP6jUDteEhqH+6LisP1HyoGfOF6qv1JsZZHNLDJdyi3h44X5iU3OYd38vBrT2umqowJZTKfi42pfrXX4tlHxYPvg7Uss6Rfti+CcymYjzGaTlFPLG6uPM2xnH86PbMa6rr8mZruyCYvbGXiQ8RpshPpaQiTQUrw9r6cGsG/zoG+xJ1wA3kzMGZdtMl8WcQWhib82euIt8vCGKF8Zc/4y6wjzmNJydX1yuVbJxfFlGXhHjv9jOo4sOsObJgTR3s2xGuyUTPvoEe/Lro/3ZcPwCs9ed5NHFBwgNcOPFMe0tMrNgKoEx30yMnsLyVBTKsGzPWX7cEQvAR5NCmdgzoMbCtupq0pIpZq87Wa5hU6Gu8hp2dbDloztCGdXRm5dXHuGmz7bz0tj2TO0X1KDa/FYn5v2Jwiu+X2s6zre+6NiUP1Gsl7y/NrLOjfV6qDcOckWhDIfPp/PVPT0ZUIkvYJ1esv1UKqM7+lhsSXZCd3/yinS8vPIIb9/amXv6tOThISHMWnGY1REJeDnbYS0ETy49yPfbYnhpbHu6BzZl35mLhpCJNI7EZ6DTS+ysrejewp2ZI9rQL9iTbi3cK9UJp7SLnrNp58mcQUjPLeKuXoF8tTmaXq08VJZ0NXKty2dujrZ8d18Yt365g0cX72fZjL4W745kyS8CIQSjOzVnRAcfVh44z5wNUUyeu5tBbbx4cUx7Ovu7VfmaGblFLN9/TtXsrmXMadijiR0vGUItHhjQiok9LZvlXxnqWtKSOSwVLz2msy89WjblxRWHeXP1cTadSGb2pK74utW95fi6Rl0OZagPOjan1cTMfIZ/uJnQQHdCA9wIDXSng69rjTcusRT1xkE2VfevBL2E3q0qF0cbcT6djLwiBre1XPe8xIw83vnzBP2CPbm7VwtAixn77K5utPF25uMNUTRzcWBYu2b8ezKFyd/vLj3XxkoQGujOo0NC6BfiSc+WTa9JTCV1B83NIJszCM1dHXjjlk4cOpfOsz8f4q+Zg5SBrSZm3dCOl349TL5RuE1ll8/a+rjw0R2hPLLoAG/8cYx3b+tanUO1CNZWgklhgdwc6seiXWf44t/TjPt8O+O6+vL86HYEeTW56jWOJ2SycFccvx2MJ79Ir2p21zLju/ldURIQtBCgkjKRXQPceP1m0zkQCg1LOmfeLg78OK0XS/ec4601x7lhzlbemtCZ8d3qtoNV28y6oR0vrjhMga7qtlhhXsOuDja09nZmx+lUfjO0lra11mpHhwa4ExroTrdAd4K9mtSL1Y564yAbLz3EG4LCcwt1eLvYcym3kNFztvLB7V0Y3t6nwutsOZmClYCBFgokl1Ly2m9HKdLreW9il9I/emGxnsPn0ymRwInETE4klj9/VEcf/jOu43V/wZtrM12CuQcMWxvN4fjynh7c8vl2nlxykKUz+l5X4kd1d4Grr0zo7s+5i7l8tCEK0GLaqvJ/M6azL48PC+HLf6Pp4u/O5D4tqnO4FsPB1pqHBgVzR69Avt8aw9xtsfx9NIm7egfy1Ig25eLmi3R61h1LYsHOM+yJu4iDrRW3dvdnSt8goi5k1UiBfKXh8qRmF7B8//krtvm42HPBqNrJH08MrOlh1Tss3eRBCMHkPi3oH+LJM78cYuayQ2w8kcxb4zux+WSK0rEJJnT3J+J8OvN2xAFVt8WNHXMa/t/4zqX/h0kZ+Rw6l07E+XQOnU3nt4PxLNx1BgAXexu6Brpd4TSba4ZTm7a43jjIoIl6fDc/3lpzgh93xDJzRBueGdWW4wmZPPvLIR74aR939w7ktZs60sTe9FvbeiqFrgHuNDWTLVxVVh1KYFNkMq/c2J5LuUX8dSSandGppY1IhICOvq64ONiwO/YiAN9O6UmfVh58tTman3bGsSkymfv7B/HY0NbXXEc2JasAaythss00mI5tGtu5OT/tjOP+eXuZ/0Bv3rmtCzOXHeLD9Sd5eWyHaxpHTXWBq6+UxA9vem5IuUYBleHZUe04lpDJf/84SrvmLvRsWX9KPbk62PLc6HZM6deSzzedZumes/y6P54HB7ZixpBg8ot0LN19jsW7z5CcVUALDydeu6kDk3oGln4uOvppXayq02AqDZdHr5c8+0sEGXlFONpa07a5C99P6UnvdzaVHhPzzo21OML6Q3XFmQZ5NWH5w/34Zks0n2w8xdaoFPIKdaUrLkrHV9LSwwmAfa+NNDuxpDBNZTTc3M2BMW7NGdO5OaCFt8akZJc6zRHnMvhua0xpSdPmrg6EBmphGd0C3OkS4MamE8m1aotFVTLMw8LC5L59+6pxOFfn042nmLMximn9g/jvzR1L44gLinV8vCGK77bGENjUiY/uCC1Xviw9t5Aeb23gyeGaY3096PWSbadTmfqj1ra5ZEYboK2Pc2ljjj6tPEud8eTMfKYv3E/EuXRm3dCOx4aGkJCRz8fro1h58DyuDrY8PiyE+/pVvY7sS78eZlNkMntfHVml89YeSeSJpQfp2bIpP93fi7f/PMGS3Wf5YWoYIzpUPBtvigHv/WNy6cXf3ZEdLw2v8vXMIYTYL6UMq+p5ta3h/60+zpI9Zzj25phyLcErS0ZuEbd8uZ28Qh2rnxxYb9vQnknL4aP1UfwRcWWjkqHtmjG1XxBD2jarlWU4peHyfLMlmvfWRvLQwFbM3R7Lk8Nb8/k/p0v3R741pt7GGTZEjpzP4Navdpisp25JHV+rhqH2bfF7ayP5YXsMJ98aWy+W+xsi+UU6jidmEnEuXXOcz6UTZ+jpIARYC9M9AWrKFterGeR5O2KZszGKiT0CeH1cxyuS7OxtrHl5bAdGtPfhueWHuOPbcB4eHMIzo9qUJjRtP52KXnJN8cdSSqIuZBMencrO6DR2x14kI6+odP+E7v70C/akb7AnzVxMP416uzrw84y+zFpxmNnrTnI6OZt3b+vCR3eE8tCgVry3NpJ3/opk/s4zPDuqLRO6+1faiSppM11VxnbxZY5e8vSyg0xfsI+vJvfk4Nl0nlsewZ9PDSotNVZZ6kvB/triRGIm7Zq7XrNzDODmZMt3U8K49asdPLpoP8tm9MPOpt5UbAQgr1DHrpg0olOyy+27sbMvg0y0CK4plIavZP+ZS8xed5Kbuvji5qjN5Bs7x3teGaGc4zpGlwA3k44FNF4dl+VCZj7eLg7KOa5FHGyt6dGi6RVNb9JzC4k4n0HEuXQ+NoQjlqWmNFznHeSyTQG6+LvxvlGsb1l6t/Jg7czBvL3mON9siWbzyWTm3NmNDr6ubDmZgpujLaEBV8+il1ISk5pDeHRaace6kkSUQA9HSnzze/u24O0JXSr9fkqS99p6O/PRhiji0nL4dkpPOvi6Mv+B3uw8ncq7ayN5bnlEacWLIW2bXbXiRkpWgVnH/GrcEupHUbGe51dE8OSyg3xyZzcmfr2TJ5cc4OeH+1UpHrkuZwfXFsYathLQp9X1tTcHaNfchdm3h/L4kgO8ufoY/3dr5TVYm5xNy2XR7jP8vPccGXlFtG/uwju3dmFCdz8OnUvn/b9P8sKvh/luWwyzbmhn0WozlUVp+DIZuUU8tfQg7o62HDh7iT+PXJlIsfqJgeVKFCrqBs1dHUjKLF/1pTHquATjeFZbGyv8VUJ6ncPdyY4hbZsxpG0zlu05a7JyUU1puE47yGVjAQFOXchizeHECuNPnO1teG9iV0Z28OGllYcZ/8UOnhnVls1RKQxs7WWyu5eUknMX8wiP0WaIw6PTSlvt+ro5MKRtM/qGeNIv2BNXB1tGztlCR19X/ntzpyq/LyEET45oQ2tvZ579JYIJX+zg+6lhdPJzo39rL1Y9PoA1RxL5cN1Jps3bS/8QT14e24EuFTj2qdmFhHhXPaa1hIk9AyjW63nx1yPYWgnemtCJZ36O4IO/I8125jOFpRNQ6jtlNayXsC/uIr8fjL/uGKqbuvpyJD6Eb7ZE08Xfjbt6182kvZJwpAU74/jnZDJWQjDG0DWwdyuPUge4f4gXvz/mybpjSXyw7iQPL9xP9xbuvDimPX2Dr/+horIoDWtIKZm1IoKkzHxshLgi4x9gar+WFdokRe2h00ucHWygTO+RxqjjEsra4sJiPWcv5lrEFiuqh15BHqwqE4JXkxqu0w6yqWLUVWkKMLKjD+taDObV347y/t+RAAQ3u1xaKiE9r7QO8a6YtNJZIy9ne/oZnOH+IZ609HS6Yhbr+eURXMwpZN60XtdV7WFsF18CPZyYvmAft38dzpw7uzGmc3OsrAS3hPoxplNzFu8+w+f/nObmL7Zzc6gfs0a3o4Wn0xXXkVKSkl1As+tMNLizVwuKdJLXfj+KjbXg7t6BfL8tlt6tPBnVsXLxyCV/l2d+PoQE3B1teeOWTo3WAJnScJFeWqyxxawb2nEsIYPXVx2jbXOXK5aqapvM/CJW7DvPwl1niE3NwcvZnieHt2Fy7xZmm50IIRjT2ZeRHXz49cB55mw4xV3f7WJou2a8cEP70iS96qTk7/LKb0fILdTh6mBzRXZ2Y2FB+BnWH7+Aq4MNmfnF5fZvPJHMm+NrYWCKq/LNlmhOJ2dzd69Atp5KVVUsMG2LddJytlhhWY6cz+Cvo4l0DXAjNauAxIx8VcXCGHNxJvHpeRTr9CZngsvi6WzP1/f2YOyn24hMyuLzf07zxb+naeHhxBlDMHhTJ1v6BnvyyJBg+oV4EtLM2eyy7paoFFbsP8/jw0KuqeFBWTr7u7Hq8QHMWLifRxbtL03eE0JgZ2PF/QNacXvPAL7dEsPc7TH8fTSRe/q05MnhrfE0OMRZBcUUFustkol7b9+WFOn0vLn6OKM6+tC+uQvPL4/gz6cGEtDU6eoXAEZ38qEk+m1iz4BGbXzMNbexVAyVtZXg87u7c/MX23l00X5WPznQbLvxmuJkUhYLwrXaxbmFOnq2bMrTI9swtrNvpWOlbaytuLNXC8Z382f+zji+2hzNTZ9vY3yoH8+OKv+QaGkmdPdnzeFENp64wM2hfo1Ow0fjM/i/P08wvL03/0QmmzxGxbLWTQ6cvcTHG6IY19WXd27rUuMhSnWV6rbFCsuRU1DMU8sO4uVsz4IHeuNupjpXdVOnHeSKuucNmb2Zhwa14s5egTjZmX4bF3MK2WVo3RyZdLlfvZRwJi2XR4eGcEuoH+18XCoVqJ9dUMwrK48Q0qwJTw5vc21vygTerg4sm9GXF3/VkvdOXcjivYldSxNfXBxsef4GrTzWJxujWBAex4r953lkSDAPDgy+3EXvGmOQy3L/gFYU6fS881ckPVq4U6zT8/iSgyx/uHLJYGmGpiUAkUmZFRzZ8DGubmKMJWOo3J3s+G5KGLd9tZPHFx9g8UN9azxpr1inZ8PxC8wPj2NXzEXsbawY382P+/oFXdeDpIOtNQ8PCeGu3i34dks0P+6I5c8jiUzu3YInhrexmOZNkZGn6bixfYFmFxTzxJIDeDSx48NJoYz7bFutxgEqKk9mvhYz7uvmwP/dqpzjEjLyirCxMl0RQem47vHfP45xJi2HJdP71ppzDHXcQTYVC+hgY8W9fVsScT6dN1cf59NNp7ivXxBT+7XExsqK3bGXQyZKnGJjG7Hq8QHsib3I7PUn+XnvOUID3OjgW7ll2/fXRpKQkceKR/pbPGvbwdaaT+7sRlsfF2avO0lcWi7f3dfzitlAH1cH3r2tKw8ObMX7f5/kw/VRLAg/U9r0xJK1HGcMDqFIpy0/uTjYEHEunffWRlaqS1ZJ0xJvF3tOJGYhpWyUhvrvo4kmnePqiKHq4OvKB7d35cmlB3lrzXHemtDZotc3R2p2Acv2nGXx7rMkZuQT0NSRl8e2546wQIvVGget3fYLY9oztX8Qn246xaLdZ1m+/zwPDWzF9MHBuDhcW/3wiriUq1WpSUg33d66ISKl5NXfjnD2Yi7LZvSjqZMtRbryTkVjjmWtq5Q0rUrMyOeXh/uVVhxp7Oj0kpnLDqKXEgEYq9nO2krpuI6x6lA8K/af56nhrWs098QUddpBvlox6i1RKTw0fy+fbTrFZ5tOlZ7nYGtFWEsPZt3gR78QT1KzCpixcD+LHuyj9QgPdGdou2Y888shHll0gNt6+PPGLZ1wreBLdndMGgt3neGBAa2qrTmDEILHh7UmpFkTnvlZS9777r6wcjNwrb1d+P6+MPbFXeSdv06w0tDS8dC5Swxo7WkxZ/TxYa0pLNbzqeH/9scdsfQJ9uCGTs0rPK9kBnlgGy9WHognJaug0WW6RyZl8siiAwCM6ODNiYRMEjLycbG34a0J1RPPenOoH0fjM/h2awxd/N24o1egxe8B2hfxoXPpLAg/w5+HEynU6RnUxou3xndmWHvv6yphdzV8XB1459YuPDSwFR9tiOKzf06zaPdZHh/Wmnv7tigt6WgJ0nMb3wzy8n3nWXUogedGtaV3Kw+eXHqQFMMDr6+hKkJjj2Wtq/x6IJ4/IhJ4fnTbetVAqLr5cP1JNp9M4e0Jnfl04ymyCorIL9ISTpWO6xbnLuby2m9H6dmyKU+NsNwq/bVSpx1k0JzkEgHnFerYd+Yi7/8dSXh0GkfiM9CZWDIZ3KYZTw5vU5ph/cYfxzSnOeiy0Wjj48LKRwfwxT+n+HJzNLui0/hwUij9TbSgzivU8eKvh2nh4cTzN1xfg5HKMKazLwFNteS9Sd+EM+fOUMZ09i13XFiQB78+2p975u5mZ3QaH66PYktUCi+N7WAxA/n0yDYU6vR8vTka0BIUO/q6EuhhPgY0LUf7Qh3YWnOQjydmNioHOT23kPvn7QW0h7UvJ/fg1IVsbv5iO+/f3pUbu5T/W1oKLWkvk9d+P0rb5i50C3S32LXzi3SsOZzIgvA4Dp/PwMXehsl9WjClX8tr6gp4PQQ3c+bLyT14eHA6s9ed5K01x/lxeyzPjGrLrVWoH24OKSXpuUXY21iRVVBMZn5RhQ/QDYGoC1m8/sdR+od48tiw1nz572lWGzLINz8/lCCvJle5gqK2iEnJ5vVVR+kb7MGjQ1vX9nDqDKsjEvh6czR3927B7T0DeH3VUZ4Y1hp7W2tmrzvJlH4ta3uICgNFOj1PLTsIAj65s1ulcsyqmzrhIJvrtZ1fpOPg2XTCo1MJj0nj0Ll0inQSGytBaKA7jw0NoV+wJz1aNsXB1poLmfnM2xHH4l1a9vWA1p48MiSELVEp9Av2LBcWYWdjxbOj2zGsvTfP/hLB5Lm7eWBAK14Y0+6KY+dsjCIuLZclD/UxG+9saTr7u7HqiQHMWLCfRxYd4PnRbXl8WOtys8NCCHq0aMrO6DTemtCZzzadYuLXOxnTqTmzxrS7bsdFCMELN7SjqFjP3O2xZOUX8/iSAyx/pJ/Z2bpUwwzyAMPDRmRSFkPbeV/XOOo6xrWO7W2sKCjWZii+uqcHDrbWnEjUYrErG85zrdhYW5Um7T2yUEvau9443fOXclm8+yzL9pzlUm4RbX2ceWtCZ27t7o+zmZbuNUXXAHcWPtiHHadTef/vSJ5fHsH3W7UayiM6eF/zakp2QTHFekknP1cizmeQkJ6Ha/OG6yDnFep4YskBbKysiEnJIeSVv0r3LZvRVznHdZjCYj0zlx3CzsaKOXd2q9YVnPqAsS0WQCuvJrx5SydiUrPRSwjxdmb/mUu4OdqqBjd1iE82RnHwbDpfTO5e4QRcTVLrDnLZ2oTx6Xk8vzyCL/89zZmLuRQW67ESWoOQBwdqVSbCWjaliYkvZh9XB14a257HhoWwdPdZftgey5QftFbQ7k62ZitfdG/RlD+fGsh7ayP5cUcsW0+lMOeObnQJcCPiXDpzt8Vwd+9Ak7PL1Ym3i5a899Kvh/lwfRSnkrN53yh5r4TUbK1JyJS+LZnYw5+522L5dks0G05c4K5egcwc2ea6KhsIIXj1pg4U6fTMDz/D4fMZvPtXJG/cYroGdFp2Ic72Nvi4OuDn5lDqHDZUymq4xDnu7O/K8PZaebzjiZk42VnTsgY++E2b2PHtlJ5M/Honjy85wOKH+lS5HKGUkh2n05gfHsemExcQQjC6ow/39Quib7BHnYspH2CoH/7XkSQ+XH+ShxbsI6xlU14c275cy/nKkG6IP+7o51bqILdvXv0l5mqLN1cfI+pCNnbWViQVXI65trUWJJlI0FPUHT5cf5Ij8Rl8O6Unvo288UVZWyyBxPQ8/jqSWPrg0MbbhT8PJ+LjWn0JvoqqsTM6la82R3NHWADjuvrV9nBKqXUH2VRtwmK9JC4th6n9gugX4kmvVh5VWt50dbDl4SEhTBsQxB3fhBNxPoODZ9MZ+uFmpg8KZlJYQLmZYCc7rdbpyA4+zFoRobXxHRrCX0cS8XZx4OUbO1jk/VYVB1tr5tzZjTZGyXvfT+l5RchCStblGshOdjY8NaINk/u04PNNp1i8+yy/HYznoUHBzBgcfM0zfkII3rilE0V6yZLdZ/lpZxx9Wnkw1kS4QFpOAZ7OWoJWe19XIhOzyh3TkDClYaC0ugiUtJiuXLUUS9DJz433J3Zl5rJD/N+fJ8w+zJQlK7+IlQfiWRAeR3RKDp5N7HhsaGsm92lR57O9hRDc1NWX0Z18+GXfOT7deIpJ34Qzor03s8a0q5KDe8kQf9zJUHc5vgEn6q06FM+yvedwtrchu+DKescliboqTrNusiUqhe+2xnBv3xZXzQ1pDFTUO+H2ngEIofVCuJCZj08jCvury1zMKeSZnw/RyqtJpb+naopad5DNJcAU6ySvjat8BzdT2NtY4+3qgL97If+9uSPfbo3hv38c45ONUVrli/5BeJTJtB/cthnrnx7Cf1Yd5fN/TgPwn3EdazX+8HLynjPP/HyI8V/u4Huj5L3U7AK8yiyjeznb8+b4ztw/oBWz15/ks02nWLzrDDNHtuHu3i2uqcHJqkMJbDaqifro4gNsmTWUlp5XLr+mZRfiafh/7eDrwtaoFAqKdRZNoKpLmNNwcqbmIEspiUzKqtbYY1OM7+bPkfMZzN0eS2d/N27vGWD22NPJWSwIP8Ov+8+TU6ijW6A7c+4M5cYuvvXu72ZrbcU9fVpyW/cA5u2M5evN0Yz9dBu3dvenk58rP26Pu2rjhJIZ5LY+LthaiwabqBeXmsMrK4/Qs2VT9p+5ZPKYhvre6ytlW9c3d3XgtSp0O23IVFTr+HRyNi08nHCwtSYpM5+2Pi41PDqFMb8fjOeDvyNLtsuNBAAAIABJREFUS0g+P7pljYWwVpZaj4L2NdNRyxKzVYXFenaeTmVou2aM7tScXx/tz4pH+tGzpQefbjpF//c28fqqo5y7mHvFeW5Otjw6NKT099nrIlkYHoeU5RMCa5IxnZuz4tF+CGDSN+GsPZIIaDG/Xs6mS2oFeTXhy8k9WPX4ANr4OPP6qmOM+ngLfx5OrNL7KVm6KlsPdcjszeSXeWJPzS4obWLSvrkrxXrJ6eTsKrzT+kXZh6wSSjScmJFPRl4RHX1r3iC/NLY9/UM8eeW3Ixw+n37FvmKdnnXHkrhn7i5GfryVZXvPMaazL6seH8Dvjw/g1u4B9c45NsbRzprHhrZm2wvDmDE4mNURCby15gTx6XlItC/Tl1ce4XdDFRhjSmaQPZrY0dzNoUE6iQXFOp5YegAbays+ubMb5tY26vrKQWOixA6XOIJ6qWn176NJtTyy2kenlziaiSn2c3fkdHI2rZs5U6zTk5JVYLabp6L6MeVPfPlvtElbXJvUuoNsalbNUjU2D5y9RE6hjsFtm5VuCwvyYO7UMDY+O5hbQv1YuucsQ2b/y5NLD3I0PgPQHIcXVhzGy9mOv58eRO9Wnvxn1THu+3FPrcfjdfJz4/cnBtDe14VHFx/gs02nrgixMEdooDtLp/dl3rRe2NtY8/iSA0z4aie7YtIqdV9zYQQA7f/z9xW/p+VcdthLktJONNAwi10xaWTmF5VzLow1XFMJeqawsbbii8k9aOZszyML95OaXcDFnEK+2nyaIbM38/DC/cSm5PDCmHaEvzScj+4IJdSClS/qAu5Odrw8tgOeTcp/RvKKdMxed7Lc9pIZ5KZOtvi5OTZIB/ndvyI5Gp/Jh5NCeWvNcUw9Lqt6x3ULU3a4wBBC0Jgpqd+dV6TDpkwYm6OtNc+OaktMajatfZxJzS5EL1EhFrWIKR2bs8W1Sa06yMU6PVuiUmjmYo+fmwMC8Hd35N3bulgk5m1LVAo2VoL+IeWLTbf2duGD20PZ9sJwpg8K5t/IZMZ9vp0pP+xm2ry9HInP4M1bOtO+uSvz7+/FWxM6sy/uEjd8spU/DKWPagtvFweWTu/Lrd39+XhDFIU6PS4OV1+aEEIwrL03f80cxOzbu5Kcmc9d3+3igZ/2cjKpYgf2ag7C5O93AaDXSy7mFJY6I0GeTtjbWBHZABP1Is6l89D8fbT0bMIzIy+X/yur4ZKGNe2a186SnochaS8hI5+wtzfS6/828sHfJwnycuLbKT3Z+sIwHht6uXV5Q+VCpumHW1PaLplBdnO0xd/dscE1C1l3LImfdsZx/4Agzl3MZf3xCwD8Z1wH/N0dLW6LFZbBnB1uiA9wlUVKydt/nmDZ3nM8Obw1H04KLafh7i3cKdJJWjdzJslgB5orB7nWqC86rtWAj18PnOdUcjZf39PDZLLX9bI1KoUeLZtW2GWruZuWgPf48NYs2X2W99ZGlu7TSVla+WJK35YMbO3FMz8f4qmlB1l/LIm3J3SutTaIDrbWfHxHKNZWghX7z/Ph+ijuCAusVL1hayvBpLBAbg7146edcXz572nGfrqViT0CeHZ0W5OZ0Obafvu6OZCYkc/O6DQ++DuS6YOC0ellaZKejbUV7Zq7cKKBtZw+mZTF1Hl7aNrElkUP9uG134/gZGfNpueGlPv/O56YSaCHY7V0e7saBcU6/jqSyPydZ0q36fSSDc8Mpk0ji8Ezp2FTIQTpuUW4ONhgY22Fn7sjSZn5Zqvg1Dfi0/N4YcVhOvu7MrKDD/fM3Q3Aikf6ERbkwYMDg2t5hApzVEXDjYVPN53ih+2xTOsfxLOj2iKEKPdQt+6YFoLSxsel9EFZhVjUHuZ0XNf+JrVm7fMKdXy8IYruLdwZ09ny2bcpWQUcS8hkiFF4RUW4OtgyY1AwoYbmIi4ONjy19CDDPtrMgvA48gp1tPJqwopH+vH86Lb8fTSJ0f/P3nmHVVm/f/z1HPbeyB4qMhQQUXCbWs5ypJaZtrNlZcPSfvXNvi3LbA8tW1qaqaXfUnNvcSECKltA2XscNpzz++MMOHAOoDEOeF7X5XXJmQ+c+3ye+7k/9/1+f3KMIwl5rb9wJyIIAvOaDF7N+PKksk2kPRgb6PHkuH4cf2U8j472ZufFLG5bfYRVe+IprapTeeyyyb4Y66uGi4mBHq9O8ePwy7cB8PWRFL46LBtsbFqN9HOyUFpO9wbSCipY+P0ZjPRF/ProcC5llnIgLo/nJ/qovbiIyy7Dv4slwrJKqli9N56R7x/ihS3RlFXX8daMgdwzVBYvsTcQJ72FZZN9W/QoGumrt5otqazFRn7x62JtQoNESl4TVZKeSl2DhOc2R9EgkfLG9ABlcvze7ECG3oQcno6uRV0MG4iEW7YNZv3xq3x6IIl5oW78584AjfKTihmYfnIFCwBHncxbt6EujgH0RQJFFbXdcETq6bYE+YeTqeSW1bBiqn+naKoeT8oHaHeCDLDxdDrRGaV8NC+Y6P9MYt2iUOzNjfjPzsuMXHWQTw8kUlZdz5IJPux4ZhRWJgY89OM5Xt8RS2Vtfdtv0AkobGA/vXcwIgHmrj2lHN5rL9amhvzf9AAOvTyO6YHOrDuWwrjVh1l//Co19bI+oVkhrvx35iCV562Y6sesEFe85YOAAOtPpAJg32Rwzd/ZkqKKWhXZs55KVkkV968/Q4NEyi+PhuNoacRbf1/Gx9GcR0Z7t3h8VW0DaQUVXdJ/LJVKOZVSwJMbIxnz4WG+OZLCEE8bfnk0nIMvjuPBkV68OzuQ4X1tWfFH7A1dTPUGZoW48v7dgbg2qbYN72untoWguLIOG1NZxd/FWlbV0Lbtv5vh4/2JRKYXs3LGQO79VtYWdXeIKwvCPbr5yHS0h6YxLCDTqbY2M2RGsPZox3YVm89e451dcUwPdGbVnKBWJTST88Q4WxljYWxATmk1+iIBezUzCTq6huZx7GptwuIxfckrr+GedRHdPuuloFsS5KKKWtYeSeF2f0fCvDunanE0MR97c0MC2pmYXC+q5IN/4hk3wIE5Q1wRiQQmD3Tij6dGsvXJEYR62vDpgSRGrTrEyv9dxsrEgL+eHc1jo7359cw1pn12nAvX1MskdSYF8qRzjI89O5eMJsDZUjm8d6MVWzcbUz6+dzB/PzuaIDdr3tkVx4SPjvJnVAYSiVSps6k4mSoMMQCmBznzQBPbznNpjX8Lhf5sXBt9ztpOfnkNC9efoayqjg2PhOHTx4KvDydzvaiK/84cpFY6LzG3HIlUJnfXWVTU1LPxdDqTPjnGgu/OcCa1kMfH9OXosvF898BQRvvYKy9CDeRDe3ZmhjyxMVKrrta7glkhrpxcPoG0VdO5M8iZqGvFai9uS6rqsJJXkBUJtSYJqZ7C0cR8vjmSwvxh7ry8NRoAe3ND1twT3M1HpuNGUMRw6qrpfDg3iPzyGk4kF3T3YXUpOy9m8tqfsdzm69Au98DkPDH9HWWusjll1ThaGHWZJr0O9TSN45PLJ/DadH9+fiSMnNJq5q49RXphRXcfYvckyF8dTqaitp5Xp/h1yutLJFKOJxUwxsehXV8CqVTKij9iEYD37g5UqWgLgsAwL1vWPziM/S+MZXqQM7+eSee2j47wyrYYZg9xZdNjw6lrkDL3m1N8tDeB2iaJY2dTIK5FTyRgY2qIg4URmx4fzt3y4b3nfrvYQoKtPQx0sWLDI2H8+lg4NmYGvLAlmju/OMHBeNkgj7+zJYPdrdkWmaGShL/RRLf6kwOJHLiieLwsOezJjnqllXUs+v4M2aXV/PjwMAa5WpFaUMHao1eZOdiFEWoGQaFzFSxS8sWs/N9lhr93kDd2XMLYQI/Vc4OIWDGR5VP9NNp12psbsXZRKPniGpZsukB9Q9fFqzbx4Egvyqrr2Xmx5dCtrMVCVkF2lifIPXlQL6+smhe3XGRAH3Ou5jeeeE6vmKh1rog62s+0QGfszAzZEJHe9oN7Cfuv5PLi79GEedmydmEohvqtpzESucyoIkHOLaumj5b1uuqQMbyvHZseD6eipp55ayPaFA/obLo8Qb5eVMnGiHTmhbp32pDQpaxSiipq291esfV8BieSC1g+zV9l+7U5Pn0s+GheMMfkPbuH4vOY/vkJvj6SzBt3BjA7xI0vDydz9zcnScrtmg82v7wGOzND5YWAsYEea+4J5pUpvvwdk8W96yI0Tu+3xaj+9vzvmdF8Nn8w5TV1vPi7rOqUlFvO3FA3EnLLVXpZDfREKmYUj204z5GEPKxNDXG2Mu6xShbimnoe/PEsV/Mr+PaBUIZ62SKVSnnzf5cx0hfxf624LMZll2FmqIe7TcdYTDdIpBy4ksui788wcc1Rfj2Tzu0Bffjz6ZH8b8ko5g11b2FFro4gN2venx3IqZRClcHUW4mhnjb4OVmwISK9xW5LcUVjD7K5kT5WJgY9tsWiQSJl6ZaLVNTWE+xmzdm0IgBiVk7qFUOHtzJG+nrMD3PnYHxuCz3/3sjJ5AKe2XSBQS6WrH9waLvWuqzSKqrqGhoryKXVOgULLSbIzZrfnxgBwL3fRnDxekkbz+g8unx1XLMvAZEIXrhjQNsPvkmOJcr6j0f72Lf52Nyyat7edYUwb1vuD2tfH56zlQmvTfPn5PIJvDLFl7jscp78JZLE3HLuCnbhelEV0784wfrjV5FIOncwrUBcg30zeS5BEHj6tv6sWxhKUp6YmV+eJDbj5vpNRSKBmYNdOfDiOB6Ut1BsiEjnYJysOrwtMkPl8c2v5hdvjOREUgH+zpZKubOeRHVdA4//fJ7YzFI+vy+EMT6yi669l3M4lpjPC3cMaFU5JC6nvEMsposrall3VNYb/tiG8yTlinl50gBOLZ/IJ/cOJsTD5oYrgXNC3XhopBfrT6Sy86J2CbR3BYIg8OBIL+KyyzjfxEWuvkFCWXU9ViaNqiMu1j1XC/mrw8mcSilk2iBntsq/rwdeHNet7qA6Oo77wz0RgF/PXOvuQ+lUItOLeXzDebztzPjp4bB2qwIlyQf0fBxlBbncshqdBrKW49PHgm1PjsTS2ID7vztNREr7/Bo6mk5LkHdEZTJq1SG8l+9i1KpD7IjK5FJmKTsuZvHIKO9OlfM4mphPoKtVi8SxOTJx8UvU1kv4oI0mf3VYmRjw9G39OfHqeFbdHUhFTT1/RWdR1yChtl7CO7viWLD+NBnFnXdlr85mWsGkgU5se3KkTNZt3Sl2xdzY8F5TjPT1WDhcliB72ZkSITcY2RCRrlKhLhTXMKCPudKJsLZewmMbzlFWVUdynlg59NcT2B6ZweC39hFxtRBLY31lu0plbT3//esKfk4WKn3XzZFKpTIFi3/RXnEps5RXtkUz/P2DvL8nHjcbE765fwgnXh3Pkgk+OGj47NvL/033J8zblle3x3A569Ya2gOYOdgFC2N9lS3qsmpZT7KixQLA1dq4R/Ygr9mbwMf7EwH4Q+5StW5RqLKapqPn42Jtwh0Bfdhy7tpNtdT1BL48lMTctaeorG2gtKqOo/IiWHtIkSfI/R3NEdfUI66p1zo5MR0t8bAzZeuTI3CxNuHBH88qi3JdSackyE3tMJtaur70ezQ2pgY82cTGuaMpq67jwrUSxg5ou3r8V0w2B+JyeWnSALztzW76PY0N9Jgf5sH+F8exdmGoisf76atFjP7gcIt+3Y6iNZtpgAAXS3Y8M4qBLlY8s+kCnx248eE9BYqhvNem+XPk5fG4yBeZ8PcO8tXhZKpqGygUy0xCXrpjAMO8bACorpNwPr2YeomU9cdSb+q9u5o/IjN4ZVsM1fLfubiyTmlL/PnBZLJKq3ln1qBWt6gzS6oor66/4QS5tl7CzouZzPnmFHd+cYK/orOZG+rG3qVj+W3xCKYGOnfY1riBnoivFgzBxlQ2tFd8iw3tmRrqc89Qd/bEZpMnv9BTmITYyJVYdkRlEpFSSHxOufJivyfwy+l0vpDLLirQFwlU1fbOJOpW5sERXhRX1vF3K0UQdUWrnsC6oyl8tC8RxWkrp6xao0W8OpJyxdiZGWJrZtiogayrIPcI+lgas+WJEfg5WfDExkje2HGpS2O4w4xCdkRlsnpvAlklVQhA87GfqroGEnLLeePOgE7d2juVXECDRMq4AY6tPq5QXMPK/10m2N26w4Tx9UQCUwY5MXlgH86lFbPuaAoH42U6yS9vjeanU6n8/HBYhzmWSaVSmc10G1VE2fBeOCv+iOWTA4kk5ZXz0bzgdvVvNaVOPsxloC/CycqY469OoN9ruwGZdeTGiHRyyqqZFuiEvp6I6YHOKmoWAB8fSMTVxkQr3bkUMZwpj+HmlxFVdQ28tzuOoopa5oa6takbq7DXbm+CnFtWza9nrrHpzDUKxDV425vxnzsDmBPqprLd39E4WBixdmEo89ZFsGTzBX5+OOyW6k1dONyT70+ksvnsdZ6/3YcSeYJsbWqovNhX2KIqLvYBrY9hddRLpKzem6CVx67j5hnRz47+juZsiEhTmQNR0NviWGFL3J5jT85vMqBXqtNA7mnYmhny62PhzPrqJBtPN+70dUUMd8hZsHnFuLWZ+IXDO1dv82hiAeZG+oR4WLf6uJV/XaG8uo7Vc4PalIi5UQRBIMzblu8fGsbepWOZLf/wLmWWEfrOAb44mNQh71NWXU9tgwSHdiTcRvp6rJkXzPKpfuyKzeaemxjeq2uQpYyG8uRJTyTw9G39EAnw5YIQnOV6sbtjczhwJZdvj11t8RoNEinv7oq7offtCprGMLRMjhXklddgaqjH8qltK7AohhJbs5iWSqWcTS3imU0XGLXqEF8cSiLYzYqfHwnj4IvjeGS0d6cmxwqC3a15Z9YgTiYXsnpvQqe/nzbhbW/GuAEO/HomnboGCSWVMpMcaxMDVu9NUCYVChQnZ22jeQxroqf2UuvQjCAIPDDCk5iMUrVDTbdqHEulUpJyy1Uk3kBXQe5pWBgbqN356uwY7pAEWd2XTx02pgYY6d9Y1fJGkEqlHEvMZ1R/O7WatAr2X8nlr+gsloz3UWmH6Ax8nSz45N7BnFo+gTHyocE1+xPxWr6LfZdz/lXbRYHcJKStXmsFgiDw5Lh+fLtoKMl5YmZ8eYKYjPZPiCrk65oO4s0NdUMihYziKjY/Plx5+2MbzpOlQew7X1zDlSztUrRobwyDzAWoPX/zuJwyPO1MMTdquVFTWVvP5rPXmPrZce5ZF8GJpAIeGe3N0ZfH8/1Dwxg3oH0ShR3JPUPdWTTck3XHrvJXdEvps97MAyM8ySuvYd/lXIrlCbKNqaHGk7A2JpntjeFb2Za4NzM7xBUzQz02nEprcd+tGsf54hrKquvxaZ4g63qQexzZGvKJzozhDkmQ23uAD4706tQhrZT8CjJLqhjbirxbaVUd//dnLH5OFspBsq7AxdqEjY+Gc+7/blfetnhjJN4rdrMrJpuGm1C7UDjT3eig1h0Bfdj+1Ej0RSLuWRfB3zHtS4aULRZNLj76OpgT6mnDtsgMpenE2zMH8vasQWjK7/QEgYXfnyGxi6Tw2kN7Y9jdxoQF4ZoH85oSl13ewmI6raCCd/6+wvD3DrLij1hEgsAHcwI5vWIir03zx8OuY+TgbpY37gxgmJcNr2yL0bqLmM7kNl9H3G1N+DkirbHFwsxA40nY0thA66zT2xPDJgZ6t6wtcW/HwtiAOaFu/B2TTaFY1bVUUxxrY6LYkXGcnKsY0JMrWJRWY2Gsj6lhh3WX6ugiNMXwvx1Ub40OSZA1HXjz/OjTA0kEvrmPmV+dZOX/LrMjKpPUgooOO9EoJlvH+mhOkN/ddYXCilpWzw1uU2C8M3CwMCJt1XQ2PRauvO2ZTRcY/cEhfjmdfkNTyDdaQW6Kv7MlO5fIhveWbIri0wOJbX4OtcoEWfWTnRvqRnKemEPyfus+lsYsGu7J+7MD0VeTJT8zvh/6IoEF350hJV98w8feGWiK4aYRIgBfLBjSrpacytp60gor8HO2QCKRcjghj4d/PMv4NUf46VQa43wd2fbkCHY9N5p7h3lgYth5Oys3gqG+iK/uH4KliT5P/HJemSz2dvREAgvDPTmbWsTpq0XoiQQsjPRZNtkXk2a9+iIBSqvrWLIpCnFN91jMq0NTDOsJgtLO9f27A7Wy51RHx7BouCe1DRJ+O3dd5XZ1cQyynvTuNmNoTltrsb25YbvjOFl+fvHp01hB1rVX9Ew0xXBJZV2nDet1SIao7sBNDPR4d/YgrJtIJS2b7MvDo7ww1hfx+/nrLN1ykfEfHWHwf/fzwA9n+Xh/Iofj827a/vZYYj59Hcw0OogdT8rn9/MZPD6mL4FuVjf1Hh3FyP72XH5rMvOHuQOy7YPX5ROaXxxMaldiorCZbk3FojXszWXDe3cPceXTA0ks2RzV6oS7osXCqNmFxfQgZ4wNRKw9mgKgHEK8N8yDj+YFt1iQTiQXsP7BoYCUBd+dJq2g+y0lNcXwx/cOpp+DTOFkfpg7g91b721XkJBTjlQKp5ILGb/mCA//eI7LWWUsnTiAU8sn8MV9IQz1stVKFzNHC2PWLgwlt7SGZzdH3dTuRk/knqHuGOmLOBCXi7WJAYIgMCvElffvDsTV2kSZZK6ZF8yKqX7suZTNjC9PaM1OiKYYXnNPsNLOVZcc9258+lgwsp8dm85cU3HIVMSxmfxC3MXKmCXj+yOVwqyvTmqVooWmOH571iAEAR4a6dXuOE7KFWNhpI+jvMqYW1ajlVVzHW2jbi1+a8ZABntYs3TLRV7fEdvhHQodss+gCFaFioWLtQnLJvuSkFtOaVUdGx4J46lfIonJKGHdoqGATIw/OV/MxWslXLwu+/floSQU52IPW1OC3a0ZLP830MWyVdWF6roGTl8tZEG4+iHAipp6lm+Ppa+9GUtv9+mIX/tfY2akz6o5QUwe6MQr22PIL6+hsKKWNfsT+eZoCvOHefDoGG+N7n754hqlzfTNohje8+1jwap/4rleVMm3i4aqXUTUtViAbLt5ykAndsgte5sm7LNCXJkV4sqi789wPKkAgAvXSnjkp3NMHeTMjouZLPjuNFueGKHxwqYr0BTDMwe7sHTLRQAWhLWvteJKVhmzvz4FwNm0IsK8bFk22ZfJA51a7Y3XJkI8bHh71kBe3R7L6r0J7RpK7OnYmBkyI9iFrZEZKrsEihhuTpCbNc9ujmLmlydZNSeQmYO7N/lUHOPbf8t2yezNDXl9eoAuKb7FeGCEJ0/+coGD8XlMHuikvH1WiCv55TW8uzuOPc+PxcrUgAdGeLJkUxRLt1wkMr2Y1+/079Q5ofagaS2eFeLKxtPpnEktYkk7Xys5T0z/PubKQkRuWTX9HduWgNWhnahbi+8P92D13gTWHbtKbEYpX90/BLcOcq7tsEac5geeXVrFq9tjmDXYlbEDHHhiXD8+3p/I+bQihnrZoq8nws/JEj8nS+bLHewqauqJzSwlWp4wR6YVKYeF9EUC/s6WDHa3VibOfe3NlINMZ1OLqKmXaOw//vCfeLJKq9j6xIgbljfrbMb7ObJ36Vhe3xHL7tgcLIz08XWyYENEGj9HpDEj2IXFY/u2kAsrKK9VsZm+WQRB4Ilx/ejrYM7S36KY8eUJ1j84lCA31WqppgQZYG6ouzJBVidjN8jVioiUQixNDLAyMcDBwoiNp9MRCVBeXc99353m0dHerD+e2mJR7CrUffm2N3EKTMgt17jzUNcgYe/lHDacSlda+QLsem40A126d7fiZrl3mAcxGaWsPZrCIFdL7gxy6e5D6nQeHOnF1sgM8spr2nzsiH527H5uNM9susDzv13kQnoxga5WfHIgqVtjuI+lMfd9d5ov7hvCiH52XfbeOrSD2/374GxlzMaIdJUEGcDVRlZsySipxMrUCkdLY359PJzVexP49thVYjJLmRXswvoT3bcOg+aL0nBvW7ZGZlDXIGlXsSEpT8x4X1lO0CCRkldeQx+dxFuvQl9PxIpp/oR42LBsazR3fnGCe4e683dM9r+O4U7rVP9kv0zY+0W5pfRjY7z55XQ67+2OY/tTI9VuLZsZ6TO8rx3D+zYu6nll1URdL1EmzX9GZSq18CyM9Ql2sybY3UrpEjfcu+UJ4VxaET9HpPPQSK82tWu7C1szQ75aMISdF7N4Y+clrmSX8eS4flTWNvDbuWv8GZXJbb4OPDG2H8P7yrbm1dlM/xvuCOjD9qdH8uhP55m3NoKP5gVzV3BjUqROxUJB0xOxmZp+2kEuVtRLpIgEWYvGlsXDORSfxwf/xJOYKyajuIr//nVFKa+mDTqdpVV1vL8njmB3a1LzxZxNLWyhMZpXXs3mM9f59Uw6eeU1eNia8vp0f34/fx1LY4MemxwrePOugcTnlLNsawz9Hc3xc7p5V8CewCDXxs9LIpG2efHpaGnMpseH8+E/8Xx3PBVBQGlo0F0xrKh+3yqtMTpU0dcTcX+4Bx/tS5RVUJu4Jip2I7NKqpVrk4GeiNem+TPEw5rnf7vIW01k4rRhHW5KmLcdP0ekczmrrM12t5LKWgrENcr+40JxDQ0Sqa4HuZcyZZATvk4WLPjuNOuaSMz+mxjulP3exNxytkVm8MAIT+W2uamhPi/eMYAL10r451JOu1/L0dJY1oIwxY9Njw8n5s1J7H9hLKvnBjEj2IXiylrWHr1KWqHMzvn2j4/yzK8X+PZYCmdTiyiuqOXVbTG42Zho/fS2oudx79KxhHhY8+XhZFILxOx8ZhQvTxrApcxS7vvuNLO+Osme2Gxyy6s12kzfLH5OsuG9QFcrnt0cxSf7E5HIT7S1ch1kdVfuTbekc8taVt8GucoSq3qJlOQ8MXUNUib692HP82P5cE4QIkG9MUd36nR+vC+Boopa3p01iDBvO86myirDUqmUyPQintscxahVh/jkQCIBLpb8+NAwjrx8G4+O9ia7pPpfWUxrC4b6Ir65fwgWxvpuu+0qAAAgAElEQVQ8sTGSUrkE2q3AyZSCdj3OQE/E/00PwNbUkOZzrt0Rw4rvYr2kNUV6Hb2Z+WEeGOqJ+KWJsQI0DsBlFle2eM6UQc5qNde7ex1uyjBvmTvr2dTCNh+b3MRiGhol3vroEuReiyZH5JuN4U5JkD/YE4+ZkT7PjO+vcvvcUDd8HM354J94ZTXyRhGJBHz6WDBvqDvvzg5k13Nj2P/CWEAm/h3iYU10Rgnv7Y7nnnURhLy9n6sFFQgC/B2TRUJOudZXVlysTdj4SDgr7wrgVEoh96yLoK+DOSdencC7swdRWlXHU79e4FJmGccS829I+aI92Jsb8evj4cwNdeOzg0k8Kx/eU7RYGGrY2lIE5x9RGS3u87A1xcJYnwaJVJkkg+xkfs8wdzR9JN2l03kps5SNp9NZONyTQa5WhHvbklZYyRcHk7jzixPM+SaCwwl5PDDCi8Mv38ZPD4cx3s8RkUggo7iK8pobt5jWVhwtjflmYShZJVU891vvH9pTKK/8fCq9jUeqUqxhsLarY1hx/BItk6HT0XXYmxsxLdCJbZEZKkor9uaGGOqLNGvUa2gt0ha9ZEcLY/ramymLFa2hOMf4yCXeckp1Gsi3AjkdqJfc4VbTCvebO4OcsTFTHR6T9Yr48chP59l89hoPjvTqkPdWfFk2PBqmNP4oENfwy+l0Pj0gc60rrazj1e2yMruZoR6BblYMdrdRDgFq25dGJBJ4aJQ3o30cePH3izz96wVmDXbhrZmDmD/Mg72Xc3j61wsAjP7gEA+N9GLRcC+sTDvGdc1IX4/Vc4MY0Mec9/fEc62oUtl/q0keT2GIsS0yg6fG9VNpoxEEgUEuVkTLjUnic8oIcGlMIF2tTdQ6J3WlqUHTGDbQEzA11OelSb5cL6pUStit2Z+In5MF780OZFaIi1o9zTi5g56fc+ea0HQloZ42vDVjEK/9GcvH+xNYNrl3Du1V1zVQL5EiCHAoPpfrRZXtHh510YIYBpmaD8AjP53HtZt6SHV0Pw+M9GLHxSz+jMpk0XDZgLEgCLK1tlh9smBpYkBpVctdoq6OYcVarK6HNLyvrdI7oDXJzaQ8McYGImVbSa7ORe+WwN7ciHxxywu9m4nhDkmQm/u8Axy4ksuOqMwWC/N4X0eG97Xls4NJzB7iiqXxv0/ojiXl42xlrHTLAZmywj+XcuhjacS+F8ZhYaRPWmGFUjEj+noJ35+4qrRPdrI0Jti9MWkOdLNS64DW1fR3NGf7UyP56nAyXxxK5kxqER/NC2ZUf9kk7u3+jtRLpHy0L5Gvj6RwX5gHj4727pAFTRAEFo/tRz8Hc57bHEVsZimAxkVJIU5/Nb+CC9dKCPW0Ubk/0M2Ks2lFiITGJFLBssm+LWKoK00NmsdwXYMUiaSBBd+d5kp2mXLr3LePBXueH9OqPFtcdjmCAH6tWEz3RBaEexCbWcJXh1MY5GLF1EDn7j6kDkeRHCwZ35+vDifz65lr7VbwWDbZl1e2xSj1wqHrjTl2RGXy5eFk5c/a1kOqo+sIcbdmkKslG06lsTDcQ7lmuVqbkNHsQk4qlbJ6bwKlVXWIBFR29Lojhpuuxc1jOMzbls1nr5OQU65SZGlOcp6Yfg7myjmC3DKZ6pO6IXIdvYNjifmUVtchoNqyebMx3GlW09X1ErU9H4Ig8No0f4oqalkn1839N9Q3SDieVMBYHweVpOWbIynE55TzzqxArEwMEIkE+jqYc/cQN/47cxA7l4wmduVk/nx6JG/eFUB4X1sScsr54J947vvuNEEr9zL5k2O8si2aTWeucSWrTEVXsisx0BOx9PYB/PHUSEwM9bh//Rme3RwFwF3BLvz0cBh7nh/D5IFO/HQqjbEfHubF3y92mAD8RH/Z8J4CdTbEUqmUgopaFg73wMRAj22RLdssBrpY0iCRIggC8c2OTZ3GYVeaGqiL4QaplLjsMp6d4MPpFRMZO8ABKdI2tYvjssvwsjPrlW5NK2cMJMTDmpe2RmuN/m9HomiT8He2ZFKAE1vOXWt3C9OsEFemBTaqBnSHMcfqvQnUNGtf06YeUh1dhyAIPDDCi6Q8MaevNrYkuFqbqGw31zVIeHlrDF8fSWFBuAcfzQ3utnUY1K/FTWM4TD6I31YfcvMBxZyyahwtjNpl9KSj5/FnVAaP/HSOfg7mrJwxsENiuEPO4Dfq8x7kZs2MYBfWH09l4XBPnK1uvtoZnVFCeXU943wb5d0Scsr58nASM4JduCOgj8bnGhvoEeJhQ4hHY6WzuKKWixmNqhn7r+Ty+3lZsmdioEegq1VjpdnDGhcr4y4zewh2t2bXs2P44J94fjqVBsimkUF2Qv/k3sG8NGkAP5xI47dz1/jjQibjfWUSe+He/86Uws/JkpmDXdh5MYtnN0eRlCdm6UQf5dW5uKae2noJnrZmTB3kxN/RWbx5V4CKpJ5CIaBBIiUuu2VypUnapyvQFKuSJkos4d62rN4rG9yzNdOsPR2fU9Zr+o+bY6Svx9qFodz5xQkWbzjPziWj1Q729FSKK2QVZGu5Ruw/l3P4Oya7hXqJJoz09bA3N+T863d05mFq5EbXYh29mxnBLry3O44NEWlKpSEXaxPyy2uormtAIpXy9K8XOJKQzwu3D+C5if0RBIG72xnvnUFbMexqbYKrtQln04p4aJS32sdW1NSTWVLFfY7uyttyy6px1LVX9DqkUinfHb/Ke7vjGdnPjrWLQrE0NuiQFt5OtZpubZt/2WRfpFL4eF/iv3rvown5iAQY1U/WclDfIOGVbdFYGBvw5l0BN/x6NmaGjPd1ZOntA/jp4TAuvHEHR5fdxmfzBzM/zJ06iYSfI9J5ZtMFRq06xLB3D/LYz+f58lASJ5IKKKvu3Cl/E0M9Vs4YyH1hsi/+B//E8+mBROUAnZuNKf+5K4BTyyfw0h0DiMkoZf63p5n99Sn+uZT9rwasLIz1sTDSZ16oG58fTGLJ5gtK571CsazyZmduyNyhbpTX1LP3sqpaibedmVICrkBco3EgpDvQFKtNTVrCvGUSgefSNA+IVNTUk15U2WsTZJBNgX9z/xAyiqtY+luUUuWkN6BwsLQ2MWREPzv6O5qzMSKt3c9PyitXqVp1NTezFuvovRgb6HHvUHf2Xcklu1SeYMq1kK9kl3Hfd2c4lpjP+3cH8vztPlrh7NmeGA73tuVsahFSDYOoKfmqChYgG95y0mkg9yokEinv7Irjvd3x3BnkzI8PD+uQtl0FnWY1baAntNrz4W5rygMjPNl2IYP4nDKNj2uLo0kFhHjYKIfTfjiZSnRGKStnDOyQXiNBEPC0M2PmYFfevGsgfz49iksrJ/O/JaP478yBjB1gz9UCMR/tS2Th92cIWrmPiWuO8NLv0WyMSCM2o1SZvHYkimHEcQMc+PRAEnO/OaWc2gWwNjXk2Yk+nFw+gbdnDaKoopYnf7nA7R8fZdOZ9m8bN6W2XoKZkT4fzg3i/6b5s+dSDvPWnSK7tIrCClmya2duxHBvO9xsTFq0WYhEgoou8L/53DsaTfamTWM4yM0KI31RqxPU8XKL6d6cIAMM9bLlzRkDOZyQz6cH/t1FrjZRIu9BtjEzkG9RexKdUcrFJtqwmpBKpSTliZVT891Be+JYx63FwuGeSKRSNp25BoCLtayKevfXp4jPLmPtwlDuC1PvQNsdtCeGw/vaUiCuJSW/Qu1rNEq8NX4Xc8qqdQN6vYia+gaWbrnI9ydSeXiUF5/PD+lwF8gOt5rOLKnCSF+EVKoquq+OJRP68/v567y/O56fHwm74fctqqglJqOEpRNlW+CpBRWs2ZfI7f59uCuo8waIDPVFBLlZE+RmzQMjZLeVVtURk1HCxWslRGeUcDQxj+0XZAmikb6IgS6WyraMwW7WuNua/Kur9QK5zfSPDw3jn8s5vPZnLNM/P86KqX48MMJL2fpgbKDHouGeLAjz4J9LOaw9miJXIkjk4VFeLAz3bLfyRV2DFEN9EYIg8PjYvvR1MOM5udWuYgta4ew3Z4gbnx9K4seTqSrueP0cGnUK47LLGOOj3vmwq2nN3lSBkb4eIR7WrSbIiuFD/16kYKGJheEeXMoo5fNDyQS4WDFlkFPbT9JyFD3ICvv2u4e48e6uOO779jTVdQ2tujLllddQXl2vNCboDhTHtWxbNHUNUp2KhQ7cbU0JcLZUDnrbmja2h/36WLjWmWcpYvWNHZcor6nHSF/Uooe0sQ+5SO2OTVKeGH2RgKedTIGmsrae8up6+miZWpWO9tNU2cTJyhgLY30Sc8Usn+rHE2P7dsruR6dYTeeVVTPls+M8tzmKP58ZqTGrtzY1ZMmE/ry3O54TSQWM9rkxj/QTyQVIpTDO1wGJRMqr22Iw1Bfx7uxBXb5VZGViwBgfB2XCJ5VKySypkqlmyJPmTWfT+eFkKiBzzguWS83JepqtsTbV3NfanKY209MCnRnqacOr22NY+dcVDsTl8eHcIJUtKT2RwPQgZ6YFOhGRUsjaY1dZvTeBrw8ny5Qvxni32Qte2yDBQK/x7zrRvw9/PD2KR38+x9dHZAOXCme/OUNkGsrv7oqjXr4Fn1lSRV55o0ZhvJo+5O6kPT3QYd52fHkoibLqOrVbOfE5ZVgY66u0ZvRWBEHgrZkDic8t56XfL9LfcZRKxaYnUlJZh5G+SNk7f+BKLvUSKQ1y043WVCGScltu63YHs0Jc+edSDin5Yva/OK5bj0VH97MjKpOkXLFSmaJIfhE42N1a65JjBbNCXKltkPDKthhq6iWM93NUud/LzhQHCyPOphayILxl9Ts5T4y3vZnS1EqpgayrIPdImiubZJdWk10KC8I8eHJcv057304xCnG0NGb13CCuZJfx4T+tT08/MMJLNmW4J+6GexmPJuRjbWpAoKsVv55J52xaEW9MD9AKpxxBEHCzMeXOIBdevzOArU+OJHblZHY9N5p3Zw9iop8jmSVVfHowkYd+PMfg/+5n/EdHWPpbFD+dTCXqWjE19ZrbIJrbTDtaGvPDQ8N4b3YgF64VM/nTY+yIymzRoyUIAiP727PhkTB2PzeGOwL68OOpNMZ8cJiXfm9dmaC2XtLCRc/XyYKdz4xS/vzTqTQkEikedqYY6omUybEChaweyHrgehrh3rZIpBCZXqz2/rjscvydLLWil68rMDbQY+3CIZgY6rF4Q2Sn9+B3NiWVtcrqMch2FJr37WtShUjKk313urPFQoGLXKlAU4+mjluH1XsTVKQHFWi7Ck3TIsOBK7kq9wmCQJi3LWc09CE3V7BQuLvqEuSeiTplE4Cjcs33zqJTEmSQVRcfHOHJ9ydSOZKQp/FxxvLeostZZeyMzmz360ulUo4l5TPGx4Hs0ipW7YlnjI8984Z23/RtWxjoiRjoYsX94Z6snhfMvhfGEfPmJDY9Fs4rU3zxcTTnVEohK/+6wuyvTxH45j5mfnWSN3de4s+oDFILKpSLQb64BodmNtOCILAg3IPdz41hQB8Llm65yDObLlBcod7hK8DFkk/nh3B02W0sHO7J7thsJn1yjEd/Oqd2AKKuQYKRGpMQO3Mj5VX82qMpPLPpApW19WoX5aak5Itv2lGxuwjxsEZfJKhts5BIpMRnl90S7RVNcbYy4ev7Q7lWVMkLv13s0UN7xZV1WDdpOboRVYjEXDHWpgbYm7d/J6izcLE2pqK2gbKq+rYfrKNXoymGK2s71oG1o2maIO+OzW5xf7i3Ldml1WQ0Mz2pqW8gvbBCxRdBYRKia7HomXSXOk+nCrWumObP6atFvLw1mj3Pj22R0CmYEezC+hNX+WhvIlMHOatIg2kiLruc/PIaxvrYs+KPWKTAe7MDe1zlzsLYgJH97RnZv7G9JLu0iovXSrgo72neGpnBzxEy21srEwOC3a2JySjFzsyQQnFNi2FEL3szfn9iBGuPpvDpgUTOpRXz4dwgxvuqblMpcLMxZeWMgTw/0YeNp9P56VSazKbbw5onxvZjUkAfRCKBuoaWFWQFZVV1eNubcX+4B+/ujuPa2kocLYzIU6NUYagnorZBQl2DlJR8cY8aaDM11CfIzUptgpxRXEVFbQN+Pej36SjCvG35z10B/GfnZT47mMQLcmm8nkZJZa1Kgnwj7njJeeX4OJprxRqkSC4ySiqxMm19FkRH70ZTDGu7HnBTd9tjSfmUVtWpSEqGy/uQz6QWqbhdphZUIJFCv2YayIBW7C7ruHG6y6W00yrIIKsOf7EghPLqel7eGq2xsiQSCbw21Z/Mkip+luv7tsWxJFlpPa+8huNJBbw6xa/dlrDajrOVCVMDnVkx1Z8tT4wgduVk/lk6hlV3BzIt0Ik8+Ze9sKKW0HcOMObDQzy7OYr1x68SmV5EdV0DeiKBZ8b3Z8czo7A1NeThH8/x2p+xVNRorijZmBny3EQfTr46gbdnDqRAXMOTv0Ry+8dH+e3sNcTV9RoT5EJxLfbmhjw2pi8/PDiM9MJKqusaaL4EmxjoKeXSQLuULNpLmLcdMRklSok7BVeUA3q3XoIMsGi4J3NDZb3n+5ttifYUiivrVFos1E3U64taKvRIpVISc8X49NGO3QPFiUOhk67j1kVTDANavdtjbKCHvbkRfk4W1DVIW7RZ+DiaY21q0MIwRKFg0bTVKae0GnMjfa1wx9Vx46iLYT0163BH06kJMsjkyF6/M4Cjifn82EryO7K/PeN9HfjycLLGloCmHE3Ix87MkHVHUxjmZaP0mu+N6IkE/JwsmR/mwft3B7FlsUw6Y1JAH1ZM9SPQ1YrItCLe2RXHnG8iGPTmXu784jiv74jlSlYZa+4J5rHR3mw+e41pnx8nMl2zCgPItJYXjfDi8Eu38cV9IZga6bH8j1iiM0qJuFqotONtSmFFDXZmskr2eD9H/nh6JFamBjRffp+b2J8Zg12UP6szDNF2wr1tqWuQEnVNtQ85LrsMkSCzo74VEQSBd2YNIsjNihe2XFSRHewplFTWqQzLNnd4NDHQQyKV0s9BdRCvQFxLaVWdyrZud6LQutUZhOhQ51I6a7ArDRIpBWLt0aJXh6u1MQ4WRrham7RosxCJBIZ52bbYzUvKFSMI0LeJYlJuWTV9dBrIPZbmMWxqqIdIgJFy85vOotMTZJDJQd0R0IcP9sRzKbNU4+OWT/WnoqaeLw8nt/p6FTX1nE8vorCilup6CavmBCllzW4F8uWL2vQgZ54Y14+v7w/l1IqJnH1tIt8uCmXx2L5YmRiwMyqLZdtiuPOLE2w5dx0DkYj0wkrmfBPBsq3Rbfb/6uuJuCvYhb+WjObXx8KVt49adYj3dscpJ4NBVkG2a9J7OaCPBTufGc0wLxuV17yUWcagJlrIcT1wUC/UywZBkG3tNSUuuwwvezNMDDtWi7EnIRvaC8VIX8QTG89T3oOG9qRSqXxIT1WdZFaIKyeXTyB11XROr5iIo4UxL/x+UUVLXJsG9EAmt2ioL9IlyDoA1Rg+uXwCU+WW6BlaHh+KYdOpg5w4nlTQojgT7m1LWmGlsscYIDlfjIetqUqrZk5ZtUrLho6eR9MY3vP8GCRSlOpZnUWXJMiCIPDBnCBszAx47rcoKmvVb/P7OlkwL9SdDRFpXCus1Ph6ESmFSjWEF+8Y0KKa09tRXPXbN+s9drQ0ZtJAJ16Z4sevjw0n+s1J7H9hLKvnBjFjsAsDnBr/TlsjMxjw+h4mrjnCt8dSOHO1UOPnIggCo/rb09/RHC87Uyb4OfL9iVTGfHiIl7dGE59TRlFlbYteaFszQ359bLjKbbtis5FIZXrK0DMryJbGBgQ4W7aoXMTnyBQsbnVcrE346v4hpBVW8uLvmlurtA1xTT31EqlKD3JzrEwNWD0viOQ8sYpCj3Jbtxs1kJsiCAKu1iZanwDp6B56yg6Dq7UJWSXVTAtyprZB0qLNQtGu17RYkZwrpn+znCC3tFrXf9yL8LQzY84QVzadvaZSqOtouiRBBlmy9Mk9g0ktqODtv69ofNwLdwxATySwep9mebgdF2VqF35OFjw2Wr0Xe29GYdGsaehRgUgk4NPHgnlD3Xl3diB/PzuG+LensP2pEYzoK9uaSMmv4L3d8dz77WkCV+5j6mfHWfFHDFvOXSM+p0xF4qquQcJgd2s+vy+EIy/fxv3hnvwdk8WUT48jlcqGI5pjqC/ixKvjVW57Y+cl/J1klTZts5xuL+Hedly4VqyswpdX13GtqPKWU7DQxPC+drw+3Z/9V3Lb3BHSFkoqZdWptvTIx/g48OAIT344mcqplAJAJpllYayPYxvfya7ExdpY6xMgHd2Dokc9s1i748PF2oSqugY8bU3VtlkEOFtibqSv7EOub5CQWlBB/yYXqhKJlLzyGp3EWy9jyXgfJBIpa492XhW5yxJkkPUZPzmuH5vPXlcr2wKyydXHx/Tlr+gsojXYu/4dI3vuJ/cORl/D0FhvRlMFuT0YG+gR6mnL5sXDiXz9diYF9FHeNyPYBXtzQ3bFZPPq9limfHqcoJV7mf9tBO/viSO9sJJCeX+4u61M+eLU8olMk2/X/RWdxZxvTrHvco5K1dDNxhQ/p8bEMepaCbFNWm165qCeLTX1EmIzZTGakCOrhN+qA3rqeGikF3cPceWTA4kcjNP+oT1FgmzTDsOe5VP96Wtvxsu/R1NWXUdSrlhrFCwUuFiZ6BJkHWqxNDbAwlhf6+NDkchnl1Yr2yyaaq3r64kI9bRR7uZdK6qktkGiUkEurKilXiLVtVj0MjzsTJkzxK1Tq8hdnl2+eMcAgt2sWL49RuOXc/HYvtiZGfLe7rgWWrw/nGh0ortVkxGFzbS1SfssojVhZ27EukWhfDQvGHMjffZdzuGuIBcu/mcSh14ax8f3BDM31I2q2gbl3/14UgHh7x3giY3n+fpIMvE5ZcwaLHMUmx7oTG5ZNYs3RnL7J0fZcu6a0uxk8di+Ku/ddNd90fdnGbXqEDui2q+D3d0oeqtPX5UtzHHyBPlWlHjThCAIvDc7kIEuliz97SJX87V7aE9hM91ai4UCE0M9Pr53MDll1YS/e5AzqUXE55RrVQy72piQV17T47TGdXQNrk2ks3ZEZTJq1SG8l+/SqrVYIVeYWVLVaptFYq6YooraJq1OjQUZRX+yo4UuQe5tLJnQH4lEytdHkjslhrs8QTbQE/H5fSE0SKQs3XKxhUsVyLSBl97uw5nUIg7FN5qMlFXX8V95e8aWxcNbPO9WoanN9L9FEATmhrrxz9IxBLpZ8cr2GBZvjMTC2IC7h7jx1sxB7FwymktvTVY+Z0RfOxJyyvnwnwQWfHeGxRsjAZl+8+KxfXlyXD8M9US8uj2WMR8cZu3RFEY30XluLtcCjRa+2rIwt4WduRE+jubKykVcdhmWxvq46KoUKiiG9gz0RSzeGIm4FZnB7kaRIDcf0muOYiGe9dVJJFKUDk+VtQ1aFcMu1iZIpagMMOnQAbIYTiuo4EBcHoPf2seybdFkllQhRbvW4qa90iHu1rhYGbMrRnX3OVzeh3w2tYgkeYLcr4mChdJmWrc29zoi04sx1BexISKdpVsudngMd0t/gqedGW/PGsTZ1CK+1tCfOD/Mg772Zry/J556uSPb+7vjlPdri95od6DORe/f4mZjyqbHhvP6dH+OJeUz5dNj7L2co7zfSF8PEwM9Fo/ty6fzQziybDxRb9zBTw8PU1bcoq6X8J+dl1l7NIW0wgr0RAJ55TWs2hPPhDVHla+lzjJScbs6C19tJczblsj0YuobJMRll+HvfOtYTN8IbjamfLkghNSCCl76XXud9hQT8q31IO+IymTFH7FqRetBu2JYaRai5X2mOroWRQxXy3cWSqrqlEPvCrQljm1MDTA2EJFZXIUgCEwLdG7RZhHoZoWRvoizqUWk5IlxtjLGwrjxIldhEqLrQe5dKOJYkyNkR8RwtzXwzg5xZeZgFz49mERkenGL+w30RLwyxY/kPDFbIzM4mVzA5rPXAXq15nF7KBDX3FT/cVuIRAKPjenL38+OxsnKmCc2RvLy1milVFdtgwTDJj3fNmaG3ObryP3hHuiLBFLencbRZbfx2fzB3BfmQbCblVKtor2VQ23viWtKeF87xDX1XM4qIyGn/JZt+WkPI/vZ89o0f/ZezuXrI9o5tFdcIU+QW2ldWr03QeMFngJtieFGsxDtOB4d2kF7Yhi0I24EQZBJvZXKjkVdm4WRvh5DPGw4m1ZIUp6Y/s20yHPLqhEJaIUFvI6OoyvW4m6zlVGYCly4Vszzv0Wx+/kxWBqrnpgmD+zDUE8b3t0Vh7FBY2I2boBDVx+uVlFQXtOpeqsD+ljw59Oj+PxgEl8fSSYipZDVc4NokEjVOukVimuxlbd8eNqZ4Wlnxkx5X3JtvYT4nDKir5fwxs7Lbb53Z1tHdiRhXrKtvW2RGVTWNugULNrgkVFexGaUsGZ/IgNdrBjvp976vLsorqzFwki/1cHf9iy42hLDzvItZW1IdHRoD+2NB22JY1mvtKwK3LTN4u4hbsrHhHnb8vmhJKRSeHiUl8rzc0qrcbAwuiUH+nszXbEWd2vEWBgb8Nn8ELJLq/m/Py+1GMgTBIEV0/wR19RTIK5liIc1BnoCIzrZPUWbkUqlFIhrO7zFojmG+iJenuzLtqdGYqAnsGD9GQAk0pbb4wXilhrITV8nyM2aRSO82hwqNDHQ63TryI7EycoYTztTNp5OB3QKFm0hCALv3x2Ev5Mlz/0WRZoaWcDupLSqDmuz1mPUqgfFsMKqV1F906ED2o5h0K44bqrGIggCU9W0WYR726I4NbWoIOsk3nolXbEWd/sl1RAPG1643Ye/orPYfkFdQ3VjQnatqIqhnraY3cJ+6mVV9dQ2SLpsu2iIhw27nx/DTLk99GcHk1q4IRZW1LTreNpqzzXS7/ZwvGEUVWRBkFXedbSOiaEe6xaFoi8SWLzxvFYN7QAs4P8AACAASURBVBVX1rZD4q31/mlti2FXa2Nl9U2HDmh7HQbtimNXGxPyy2uUzpXT1bRZhHg0OrY2313VmYT0Troin+jWb4FiGvyjfYkY6ol47c9YlapSdV0Dy7bFKH8uENcw9hZvr1DYTHd2Bbkppob6/OfOAOXPs746yZeHkpTDk4VimapGWyh0ZjXeX1WnNdPT7UXRciKVwsQ1R3vUsXcX7ramfLlgCMl5YpZtjW6xc9RdFFfWtVmVKKlqPaHXthh2sTYhs1izKylor8SXjs6hrXUYtCuOFdvkCjUKRZtFUy8FE8NGZaR71kWoxHFOmS5B7o10RT7RbQly82nw2gYJtfUSFn1/Rqnb+fnBJK7mV7DhkTDM5VVjNxvt6IvqLpQuep0wpNcatfJk+NUpfkwZ5MRH+xKZty6C1IIKCsU1GlssmtKefiBtmZ5uDzuiMtl+IUP5szbJI2k7o/rbs2KqP3su5fBNJzoh3QglbVSQ26u+oU0x7CK36tV0EdJ0HdY2iS8dnYNlO/XztSWOXaxVe+kVbRbHEhvbLJrHqyKOfz93ndKqOp3EWy/EuR2f6b+N4W5LkN/dFad2AvF6cRUf70/kUmYp645dZW6oG2MHODDY3RqAnRezuvpQtQqli14XW9rW1ctOsI4WRny5YAifzR9MSp6YCWuOUFHbgG07KsjLJvuq1UBuTk8ZKlq1J56aZiYM2nJS6Qk8NsabGcEurN6bwJGEvLaf0MmUVNa1qoHc9GKoLbQlhhVWvZqqLeomwavqGnh9xyX+F51FUm65cqdIR89nR1QmpVV1tFdCXxviuKlZiIKmbRZSqZR35P4ITamqa2DNPtlarKsg9z58ndrX0vhvYrhLm3kbJFL2X8lh/fFUZauAOtYeTWHt0RQcLIx4Y3oADRIpl7Nkfa8H4nI5m1pEmFwc/Fbj39hM/xsUFWQDeV/PzMGuhHvbsWD9aa7mV7B6bwJzQ91aXYhmhciULVbvTSCrpAoBUHfq1ZbpaU1czirl++OpSn3N5mjDSaUnIAgCH8wJIilPzHObo/jr2dF42pm1/cROoEEipay6TqMGcoNEqmz3emJsX/6OydaohQzaE8NNkwsbNRexmmJVXFPPc5ujADDUE9Hf0Rw/Jwv8nC3wdbLE38kCBwsjne53D+JQfC4vbY1meF9b5gxx49MDSWSVVOFibUJFTT0lVS0vorQhjp2sjBEE1QQ5xN0ae3MjXvw9mvXHUymoqFX73Fz5jqtuSK93cSwxn8MJ+Yzub09qQQVZJVWIBIEGNTtl/yaGOyVB3hGVqUyCXKxNeHZCf6rqGvjhZCrXi6pwtzXBysRAKczfFGcrY7LlvUYv3TEAK1MDLl4vobiyjg/mBPLJ/iTe3R3HjqdH3pKLc0fZTN8oirYXQ73Gv7mTlTEf3zOYWV+dBGDSJ8d4Z9Yg7gp20fg6s0JcmRXiSmVtPXd8fKxFkqFN09NN49jZypjpQc5cyiwj4mohpoZ6mBnqUaFGpFwbTio9BRNDPb5dFMpdX55g8YZI/nh6ZLcM4ZZW1SGVaraZXvGHLDl2sDBixTR/Vkzzp7qugZD/7qe2XqKyMGtTDCflyizQ7/ziBK7WJiyb7Ku8UAV5j7KaJNnFypj1Dw4jIbeM+Oxy4nPKOZlSwB9NtrJtTA3wdbLAz8lSnjxbMqCPOaaGt+4QtbZyNrWIp365QICzJd89MBQLYwPmDXVX3q9otWm6m6AtcbwnNgcB+PRAElvPZ/D0bf0oqapTFouKK2uxNNanrLrlfICNqQHFlXU4WXVtQUlH51EoruGlrdH4OJqz/sGhGMt3pTsjhjt8JWt+kJklVSz/IxaAUE8bXpvqz6SBTvwVndXilxEEWBDmwZr9iYCsWnzvMHeOJeYjCHBHgBOCIPDKthh2x+YwPci5ow9f68kvlylGdITN9I1QJ68gGzabDC2qkC1Sn9wbzE+n0nl2cxT7r+Ty9sxBWGlINiQSKS9uiSa7tIqHRnrx06k0ALUn8O6ieRxnlVbz3fFUrE0MWDHVj/lhHhyOz+Ol36O1NjnqKbjbmvLFfSE8+MNZXtkew5f3hXT5xW+J0ma6ZZW1uKKW38/L2iuOLrtNebuxgR6zh7iy7XwGjuZGZJdWY2qox3uzA7Umhr9q4lSq6MuExt2cZZN9Wb49RumqBrIYfmWKHwEulgS4WEJI42sWV9QSn1NOQk4ZCbnlxGWX8/v560o3K0EAT1tTfJ0aK82+ThZ42pmh18Vrlg4ZV7LKePTnc7jamPDTw8NUXOYUKOJh6ZaLgPasxYp1WNH+n1lSxf/tuASAuZE+4pp6Xp7ky9V8MV8dUZ1lMDHQY4yPA/+LztK1WPQSpFIpr2yLobSqjg2PhCmTY2i5Q+3SATHc4QmyJncTB3Mjtj81Uvlz81/GxtSQospa1uxPxMbUgAXhHnx1OIWNp9M5mphPkKsVtmaGzBnixg8nUvlwbzx3BPRpkbD1dgrEtV3eXgGNCXJzo5ACsSyxGOppy11BLnx9JIXPDyZxNrWI1fOCGOPTUnXk4/2J/HM5h9en+/PYmL4cT8rH2152NagtaIpjU0M9nhjXD5DF8Mf7E8kpq6auXtIhX8hblTE+DrwyxY9Ve+IJcrVS/o27iuJKhc10y+Qh5O39ADx1W78W1dE5Q1zZdOYaL03yZePpdCyM9LXm81+9N0El8YXGHnnFMc4KceVSZinrT6QCbSdGNmaGjOhnp6JFL5FIuV5cSXxOOfHZ5cqq8/4rucrExthAxIA+FvjJE2c/J9n/2zPcq+PmSSuo4IEfzmJupM/GR8Nb/XvPCnFVJsgHXxqnknx0F5rWYUcLI06vmMjoDw6x51K20jzMydKY3LJq5Vock1GKmaGe2osCHT2PX06nczA+jzfvClDrO6DYoe4oOjxB1tTTVqCm57j5L+P7+h5q6iX4OVny8iRfLmeV8R+5+9pzE/oDoCcSWD7Vj4d+PMevZ9J5eJR3R/8KWk1n2Uy3haLFonmCXChPkO3MDdHXE/HcRB/G+zrywu8XWfT9WR4Y4cmKqf5KGZ6dFzP58nAy9w5159HRss9ukKsVZ1OLuvC3aRtNcaxo/wFZX2p+eQ33h3vw5l0Du+rQei1PjO1LbGYpH/wTT4CLpdqLq85CUUFu3oO882JjS8GySS13BoZ42OBlZ8r2yAzcrE2Iyy7r3AO9ATTFcPPbzYz0EQlw6a3JN9Ue0dRBc/JAJ+Xt1XUNJOWKicuRWbHH55RxKD5PWY0H2SyFv7MFvn1kLRp+Thb0dzTXiuSsp5NTWs3C788gkUrZ+OhwZT96a3jbm5FaUEFqQYVWGB9piuH88hpEIpmaxcaIdCyNDbAw0idixQSV3af9V3J11eNeQmJuOe/siuM2XwceGunVJe/Z4Qmyxp62Nr6caQUVSiecyPRiYjJK+WheMEPfOQBAmHdjxWLcAAdG9bfj84NJ3D3ErV3OQL2F/PKabjGkqNXQYlEorsHUUE/lxBroZsXfz47mw38S+OFkKieSClhzTzAAy7bFEOZty9uzBikXskBXK3ZezOq25F8d7Ynj9MIKquoatOJE0hsQBIHVc4NIyROzZFMUfy0ZjYedaZe8t6KC3FTFIqe0mud/k1XUvlowRG1bkyAI3D3EjY/3JzI90FkmlyaVasV8RHvX4kuZpfRz6PjeYWMDPQLdrAh0s1K5Pb+8Rpkwy9o1ytl4Ol2pCCMSZImaorfZ18kCf2dLXK1Nury1rKdSUlnLAz+cobiils2Lh7dwl9PE8L52pBZUcOZqoVasa23F8LRAZ74/kcofUZkMdrdu8b3TaSD3DqrrGnhucxQWxvqsnhvcZetrh/cnqJPy0hOEVvsyJRIpy/+IwUhfxJ7nx+BgYcRTv0QiIBsWAdh9qVEUXBAEVkz1p7iyjrVaoqHaFUilUgq7rcVCdvVi2LyCXFGLnRoXPWMDPf5zVwCbHg+nuq6B2V+fYvbXp7AzM2TtwlCVRHugi+wE2tyhrztRF8fG+iKVOI7Llg1ABWjBiaS3YGqoz7pFoUilUhZvPE9lbdc47TWvIEulUl7aelF+THpMC3TS+NzZ8l2ws2lF1NRLKNQwUd/VqIthdT3ysZmlBLqqJrGdiYOFEaN97HlsTF8+mhfMX8+O5sp/p3DwpXF8ff8QlozvTz8Hc2IzS1mzP5HFGyMZ8+FhAlfuZfbXJ1nxRyw/n0rjzNVCStthenGrUVFTz0M/niOtoJLvHhhKkJt1u5+raJ2JuFrYWYd3Q7QVwyHu1ko9XB81FwE5pdU6DeRewKo98cTnlLN6XnCXmqR1eAW5eW+xqZEelbUNrWrWbTp7jdNXi3j/7kD8nS1ZtyiUOd+c4tnNUdTLm9g2nbnGeF9H7gjoA8i25WeHuPLDiVQWDfe8JZQDutpmuimaWiwKxDXYmWkO2JH97PnzmVGEv3cQgKKKWgrFNSq6yQNdZQnm5awybvN17OhDvymaxrGignF7QB+VlqC47DL0REK7qzM62oennRmf3xfCwz+d49XtsXw+f3CnVwxKKuvQEwlYGsuWxF9Op3MyWZYkfDa/9aFBd1tTwrxtlW1CmcVVWrEToi6Gl4zvrxLDeWXV5JXXMLALE2R16IkE+jmY08/BnGmBjcPX4pp6EnNlVeb4bFnFec+lbDafvaZ8jLOVsYqahq+TBf0czG+5+RSAmvoGnvwlkpiMEr5ZGMrI/vY39PwwL5l86umr2tHy1tbglUgkMKq/PdsiM1okwhKJlLxyXQW5p3M4Po+fTqXx8CgvxndxftApejxNe4tLK+sY99Fh3tl1hV8eDW9xoskqqWLVnnhG9bdj/jCZ7MwgVyvemTVIqTv635kD2XLuOq9si+afpWOVAf/SpAHsis1mzb5E5RZ+byZfLOt/7corKAWaVCwKxbVKpyN1SCRSVv7vMoIA94S6sz8ul+lfnODVKX7/z955h0dVZn/8cyeT3ntCKun00KtSVECxd+wNdV1X17q6+rPsrqurq2t3V1QsqCiooCKCSgfpSQgljUAS0nsmZSZT7u+POxkmyYSEkDJJ3s/z5JHM3MncGc+8873nPed7uH1GNCqVhJeLI9H+bqSftJ8MMrSO47s+2cemjDLKNFqCPJXXm1FSR0yAu6iX7AXmJAbx2IJEXv45k7Fh3iw5N6ZXn6+6sRlvV0ckSeJYeT3P/6AMHhgd5sX5IzpflK+aEGYRyEU1TYyL6HrWrjdpieHaRj1TX/yVkzWtx06nm3dt+jKDfCZ4OKuZEOnLhEhfy22yLFNap2tVonG0uI4dORWWnS61WXArvs2ejAjxIjHEk1BvF7sof+kNjGZ3oG3ZFbx89dhW9eBdJdhL+W6xZcHaX3TWeJVkTr6dqGwd29WNzeiNMiFe/X+xKuge5Rodj61KIynEk78sTOrz5+91w0pvN0ceOj+BZ78/zK9HyywZYFAWur9+l47RJPPSlWNbLVzXTIqwCORmg4k3F4/n4je38/DXqXx2x1RUKolwXzdunxHN+9tyuXPWcMWSaBBTrlG2bvt6zDRYDQpxaP3lUtmgO+2X6+u/ZrHuUAlPXTSCJefG8IhGy5PfpPP3H4/w65FS/n3tOMJ8XBkV5k1aQU2vvoaz4alFI5j/ny28tiGLl64aCyglFhOjfDt5pKC7/GF2LIcKa3lx3VFGhHoxK/7MsmFnQk2jHh83R/RGEw9/lWrZuXro/IQuCaoLx4TyzJrD6Aym0w4Q6S+83Ry5PDmM71IKeWLhCIsF46HCOiQJRg2gtVOSJEK8XQjxdmm146Q3mjhe0cDR4pamQA37TlS3mr7q5aImySyWk0IVJ42EYM8B73IgyzJPrz7E2vRinrpoBNdaeRyfCQPx4qHFNz2rRNPq9pZBTqLEYmBiMsk8ujINjdbAF0um9Usiqk/2oG6YGklsoDv//OmoZase4NsDhWzOLOexBYlE+LVvxpkWo2z3vPZLlpKJvHQkO3Iq+d/WXMsx982Nw9vVkRfXHe39F9LP9NeYabAeFHIqZFpqom3VIAN8n1bEmxtzuGZiOHedozhWBHm68MGtk3jpyjEcPFnDwv9s5Zv9J5GAk9VNRD+xlpkvbWS11UACe2B4gDu3TI/mq30FHCmqo7ZRT2FNE0mhfd8wOVRQmvbGERfkwZ++PEBBVWPnD+omNU3N+Lo58c6mHNLMOxnjwr2Zl9S1LT0vF0fLBfo/1h61yxi+eXoUWr2JlfsLLLelF9YSE+DeL8NZehpHB8VK7rLkMB5fmMRHt01mxxPzSHt2Pivvnc7fzUOMTLLMdymFPPXdIa5673fGPLeBWf/ayF2f7OPf6zP5Ia2InLKBNWL7lfWZfLknn/vmxJ7Vbot1zNpjDNviWFm98t/yeuq0pzLfpWaBLEosBiYf7zzBlqxynl404oyNCVanFDLzpY0MP0s90SeroqODiqcXjeT2j/fy2a487pw1nDKNlr/9eIQJkT7casOyo6nZyIH8GhaNDWV3biX3fLaf1ffPZGtWBa9uyGRGrD/jInzwdnXk/rlx/GPtUbZmlXNuQt9ZQ/U1/TVmGmyXWNQ1GTCYZJvemqkFNTy2Mo3J0b7844rRrTITkiRx/ZRIZsQG8MjKVB5ZmYZ13sLWQAN74IF58Xx74CR///EID54fD2AXnd6DGXdnNe/fPIlL397OPZ/t55s/zLBYBvYk1Q16yjQ6UgtODdb4cxezx6AsyIcLT1m82WMMjxrmzaQoXz7blccdM4ejUkkcKqy1JCIGK96ujkyO9mNy9KnXKcsyhTVNZt9mjdnDuY5NmWUYzbsHTmoV8UEerUo0kuxwxPbSrbm8u/kYi6dEntWQopahHC3YYwzbIqdcEcgGk8xvR0u5Ynw4ACW1yvelEMgDj6PFdby0LoPzRwRx07SoM3qsrWF13Y3jPksbzEkM5NyEQP69PpOlW3Mt2x8LRoXYnLC0+3glzQYT106K4OZpUdz4wW4e/TqNl68eS2pBDQ+sSGHtA+fg4azm5ulRfPL7CV5cl8HMuIBBO7GpXKND3Q9jpsH2oJCKhhbB3jqDXFKr5e5P9xHo6cx/b5qIs9q2oIn0d2PF3dMZ/7cN7caEth1oYA94uzny0AUJPLPmMAc+qgbgyW/SeeLCJLs6z8FGdIA7b1w/njs+2cuT3x7kP9f1fNNecW0T1Y16Ajyc0RmMxAZ6MCex6xfbr6zPtJQhtWCPMXzLjGge+DKFl37O4PvUIkrqtGzKKGd1SqFdnWdvI0lKiV64rxvnW5X96QxGcsrqLSUaGSUaduRU8O2BUxkoP3cns2+zp3ngiRcJwZ69cuHWGV/vK+CFn46yaEwo/7h89Fl9LmwN5bDHGG5hdUqhpQHV1dEBZ7WKtQdLTgnkOi2S1D89O4Lu02Lp5u3myL+uGntGMV3bqOcfa4/0WBz3mUCWJInpMX5szSpvdfKv/5pNsJdLuxPfklWOs1rF1OF+uDg68NeLRvD3H48wbnc+/7kumevf/51n1xzm1WvH4ax24LEFSTzwZQrfpRRy9cTwvnpZfUpFvQ7/fhgzDbZdLCxDQqxcLJqajSz5dB8NOgOf3Tmz00lZDioJjda2lVdHJvH9ibuTGgksnq0lddoBkWUZ6MxNCuKRCxL494YsxoT7WIbM9BQtPshTY/xYe7CYhy7oevYYuj6Uo79ZOCoETxc1H2zLtUy5q9XqRQybcVY7MGqYt8V6soWWEdsZ5qEnR0s0rNhTYPkuaxmx3VLfPCJUmRgY6efWawmb9YdLeOKbg5wTH8Br14076+cZKDEM7bOETXojzUYTmzLLqNPq8XJxpLRWS4CHczvnJYF988Lao2SX1fPZnVM61A91Wj3ZpfVklyo7QNml9WSVaijTtB9I10J34rhPC8+W78pvd1tHyn5rVjlTY/wthdl3zIwmraCGf2/I5JPbp3D/vHje/C2bcxMCuCw5jIvHhPLhtlxe3ZDJxWNDB6WzQH+NmQZoNneHWzfpVZpLPlpqkFuK6g8V1fLBLZNOa+1nTXeHy/QHr/2ShdzmNnvOsgwm7psTR3phLf/86SgjQj2ZEdszTXu/HCm1/PtAXjUTIn049wwbAgdKDDupVSBjEcctiBg+PacbsX20WGMZfJJZomH9kRLL0CtXRwcSgj1ONQaGKBMDrW0uu8POYxX86YsUxkX4nHaX7kwYKDEMtrPdLaUxLWUWJXVaQkR5xYDi1yOlfLYrjyXnDOec+EAadAayyxTxm1WiIatMEcXWE22tUaskHFSSJYFlTXfiuE8FclevUE9WN3KsvIEbpp6qPZEkiZeuGkNWqYYHVqSw+r6Z7Mip4OnvDjEh0pcIPzeevGgE17+/i2U7TvCHObG9+lr6g3KNrt+2i5oNJpwcVK2yahUNp8ZMA7zxWzZr04v560VJnDci2ObfscVjCxJbZQPA9kADe2AgZVkGGyqVxKvXJnP5Ozu4/4sUvr9/JuG+Zzdpr6axmSWf7gMgJsCd3IoGXr76zLb1YGDFsEY3cHZs7BnrEdsLR5+yVGtqNpJd1lLXrCGztI5fj5by1b5TzZGBns7m8gxPi3ju6ojtgydrWPLJPqID3Fh22+Qea7AcSDF8ulhtKbMordOe9fog6Buamo3sPFbBXea1+GixhpkvbWx1weasVhEb6EG4rysNOoOlLFOSYNpwfy4ZN4yFo0PYmlXeY3HcpwK5q1eoW7MqAJid0DqL4+ak5r83TeSSt7fzxy8O8Mb147ni3R08uCKFr++ZzrQYf84fEcS7m3K4bnLEWV+l2xsV9bouZ2V7Gr3R1N7izZxB9nNz4seDRbzxWzbXTAxnyTln1kXdmRm8PTGQsiyDEQ9nNe/fPJHL3t7Bvcv3s+reGd3eLZJlmadWH7L8nlvRwKQoX2ad4XAFGFgxHCZiuFdxdXJgbLhPuwl25RqdJcvcUq7x6e+nRmw7qCSGB7ibmwKVEo2kEE/CfV0tF2w5ZfXctmwvvu5OfHbnVMvkx55gIMVwR+uwu7MDW7PK0Wj1lNZpmRQtbDjtCa3eyLHyerJL682lERqySuvJb+NQVFGvY2KUL4unRBAf7ImPqyPphbWsTS9m7wml/2d8pA+XjB3GorGhrRoxezKO+1Qgd/UKdUtWGWE+rsQGtp9QFh3gzuvXJXPnJ/t4b/MxXrhiDA98mcKbv2Xz8PxE/rIwiQWvb+Wtjdk8e8moXn9NfYUsy1TU6/qtxEJvNLUbErLvRDUqCeKeWgcoGbi2jhVdpTMzeHthIGVZBisxgR68fn0yd326j79+l86r14zrVsx9n1bE2oPFOKtVFpEyZbhftxudBlIMP77qYKumQhHDvU+gpzOBnoGcE3+q+dNgNHGistFSopFRouHgyRrWHiy2HOPhrCYh2AMvV0c2Z5YD8PHtM1uJgpaGtbMVBAMphtuuwy5qFXfNiuGN37L5Kb2Y6ka9KLHoJ3QGI8crGsgsOVUfnF1WT15lg6W8S22+IBwT7k11YzMarQEPZzX1OgMarcG8FsOyHcfZfbwKWYaRoV78ZWESF48NtWkN3EJPxXGfCuSuKHu90cTOnEouHhfa4RfVeSOCefC8eN74LZvkSB+unhjO25tymBkXwNQYf66bHMnyXXncNiOaKH/3PnltvU1tkx69Ue7XEgvrZofVKYXsPFbRqpaxqKaJdeklA2KB7S4DKcsymDlvRDAPnZ/Aa79kMSbMm9tnnlnTXlFNE098k45KolW92kfbj5MQ7Dmo/39ePj4MWZZ5bNVBy0CUpxeNGNSv2V5RO6iIC/IgLsiDRWPbj9jOKNaQWVLHjmOVHMg/NUjp0rd3MMw8YlslSWzNLrdMERwo9mxng60x6ldPDOfB8+L5el8By3acACBICOReRW80caKigUxzJljJCGs4UdloqQl3UElE+7uRFOLJJeOGkRDsQUKwJ9H+7jipVRwqrOXnQyWoJCXuQYnhp827ezGB7jx4XjwXjx1GXFD7pGlv0ufu8J0p+5T8GjQ6A7M78TN+8Lx4Dp6s4W8/HOaj2yazP6+aP3+VyroHz+Gh8+NZk1rIy+szeeeGCT39EvqFUx7I/VM20mxsLZBfWZ/ZrtFHazANiUafgZJlGezcP1dp2vvHWmXS3rQY/84fhNJc9diqNLR6Y7uGy6ESw1dMCKdRb+Sp75QvocHY1DyQsR6xrdHqObB0N85qFa9cMw5PF7WScS6us1jRtWUoNF22rMMmk8y0F3+jsqEZlUriwtGhfLTjOIDIIPcQBqOJvKpGpVGutJ6sMqU84nhFg+XCTJIg2t+d+CAPLhwdSrxZCMcEunfYRNrYbOCBFSnIstxOT4AyNfi3h2f3m++43Y1P2ppVjoNKYkYndYAqlcTr143nkre38+jKNF68cgz3fLafJ75J572bJrDkHGWr5a5Z1YyPHPh1SP05ZhpAb5RxtiqxEM1qgv5GpZJ47dpxXPbODv74+QF++NOsLtXRfvL7CXbkVHZ4/1CJ4cuTw3hpXQYarYH1h0u4apDaYw5ktHojd3+6n6PFdbx/y0TmJSnNz3OtRmxHP7HW5mOHShyrVBIXjAzmu5RCtHoji8aGnBLIYsz0GWE0yRRUNbaqD84q1ZBb3tCqJCvCz5XEYE/OGxFMQrAH8UFdbzK15u8/HuV4RYPF9aUtFfW6fh3KY3cCeUtWORMiffBy6XwYhrebI/+7eSJXvLuD/27O5c/nJ/DK+kxW7C3g7nNj+Hx3Pi/+lMFX90yzq8lH3aE/x0wDNBuMrTLIollNYA94ujjy/s2TuPwdpWnv63umn3aRzinT8NK6DM5LCuJocR1FNuyChkoMuzuruXpiOMt2nGBrdjlNzcZ+GXYhsI3BaOJPX6bwe24lr1+XbBHHbRFNl8rAsc9357M9u6LVeHgxRc82JpMySTKzRGPOBitCOKesvlXJWZiPKwnBHsxOCCQ+2JOEYKUcyM3p7KXjz4dK+HJPPvfOjuWHawkVzQAAIABJREFUtCK7jGG7EsiV9ToOFdXy8PkJXX7MiFAvXrpyLH/+KpWRw7yYFRfA8z8cZnK0Hw9dEM9T3x3ilyOlzB8V0vkfs2PKzQbY/ZlBdlSfush4+IIEHlmZ1uoY0egj6A/igjz4z3XJLPl0H099d4h/X2Pbpq3ZYOLPX6Xi7qzmxavGsDOncsg3XN48LYplO06g1ZvYml3OggG+Tg4WTCaZJ75N55cjpTx/6ajTlko8tiCRh75KbVUuNNTieFqMP54uajYcKWk1GXGQDtXtMrIsU1SrNZdGmOuEzYLYet0L8XIhIcST6TH+JAR7Eh/sQXywJx49ZCHYluLaJp749iBjw715+IIEkkI8eXRlmqUnAuwjhu1KIG/PqUCWYfYZjHgFpRYptaCGj3ee4OlFIzhSXMcDX6aw6g/T+Wj7cV76OYN5SUGoB/BEnYp6Zcy0dz+MmQazi4X5/WvpmLYmTDSrCfqRC0aeatwdF+HNLdOj2x3z1sZsDhXW8d+bJhLkqWSWnNUqyxeFr5sjz15yejEy2IgJ9OCc+AC2ZVew4XCpEMh2gCzL/POno6zaf5I/nx/PrTOiOzx2dUoh/1qXgQxIgMzQXIud1CrmJQXx69EyDEaTJav+29GyIfE+yLJMaZ3OqjRCEcM5ZfWWxjeAIE9nEoI9uX5KBAmWjLBnn+oKo0nm4a/SaDaYeOP68fyUXswr6zNbiWN7iWG7EshbMsvxc3didJsxn13hqUUjOFJUx783ZPKnefG8sj6TVzdk8cSFI1jy6T5W7C3gpmlRnf8hO6U/x0yD0unv6KBqN+ITTl3p9XcwC4Y2D54Xz+GiWv72wxGSQryYMtzPct+B/Gre2ZTD1RPDWTg6xGYca/Xtpy8NBW6dHs227Ap+yyjFYDQN6ETCYODdzcf4YPtxbp0exYPnxXd4XNsYlhnaa/H8kSGsSS1if141od4uFNY0sTa9eFC9F7IsU67RWWqDs8tO1QlrtKeEcICHE/FBnlw1IcxcGqGI4Z70ze4u72/N5ffcSl6+aixpBTV2rSfsRiCbTDJbsys4Jz6gWyLQ0UHF2zeO5+I3t/P1vgKuGB/Gh9uPMys+gCnRfrz+axaXjw/rtS2D3qY/p+iBkkH2cFbbHPE5FDqmBfaPSiXx2nXJXP72Du77fD8//GkWod6uNDYbePirVEK9XXn2kpGA7VG1QzWO5yYFEe7rysnqJvacqOqxEd6CM+fz3XlKDCYP49lLRp22d0bEcGtmJwbipFax/nAppRqlt2CLeWiIZxd6muyNyvqWjLBZDJvdI2oa9ZZjfNwcSQj25LLkYUppRJAihP37qRSzM9IKanh1QyaLxoRyzaRwZv1rk13HsN2oxSPFdVTU6zg3/szKK6wJ8nThvZsmcP37uwj3VYrLH1uZxktXjuWuT/fx/tZcHr6g6/XN9kRFfXO/DQmBUyUWwr1CYM94uTjy/i0tk/YO8NXd03hh7VHyqhpZfudUMks0bM+psNkQAkMzjh1UEjdNi+KldRlsOFwqBHI/8ePBIp5efYh5SUG8cs24ThNFYi1ujYezmllxAaw/XEJ5vY5JUb7sy6u2+zKL6oZmpSSi7JSPcHZpPZUNzZZjPF3UJAZ7cuHoUIuPcHywB4EezgPGgKBBZ+DBFSkEeTrzzyvGIEmS3cew3QjkrdnKhKBzEs5ucZ4Y5cczF4/k/9YcZtGYUH49Wspnu/JYNCaUpVtzuWlq5IA0D+/PMdNwalCIcK8Q2DtxQZ68em0y9y7fT9L//Wy5/e5P99HQbESSFFFotGG8OVTj+LpJEfznlyw2HC7h2UtGDpgv3cHClqxyHvoqlUlRvrxzw4RWjkEdEertMqRdWGyxYFQwGzPKALhwTCgnq+2nzKK2Sd/KOq2lPKKlAR8UkR8f7MH5I4ItPsIJwZ4Eew0cIdwRz31/mLyqRlYsmYa3myMGowkPF3Wr0pAW7CWG+10gtzR8FdY04eggsTOn8qyD+aZpUaQU1PDtgULmJQWxMaOMW6dHYTCZ+M+v2bx45ZgeOvu+ob/HTIPiYuGkVolRyx3QU6NeBWdHUU0T23Mq2JlT0er2MB9X5iUFMTMugOkx/ty6bA+pBTWtjhnKcezr7sS4CB/2HK9i+JM/2U2TzFBgf1419362n7ggTz64dXKXrfbmJQWxfHd+q9uGcgyDkshp4Z2NOYwO8+rzMguNVk+2JRt8qjyipO7UxYybkwPxQYp9WoLZMSIh2JNh3i4DXgjb4seDRazcf5L758YxNcafgqpGHvoqFY3WgIMkYZTty72ihX4VyG2bDPRGuUdGZEqSxD+vGENGsYa9J6pIDPbkiz35jI/05au9+dwxM5r44P7Lxp4p/T1mGk5lkMWo5fa0jeOhMOrVXqht1PN7biU7cirYkVNBbkUD0H7i5OvXJzM5WmnaW5NaSGpBDReNCSGtoFbEMUoMp1ldMIgY7hsySzTc8fFegryc+eSOyV12EyisaWJNWhHD/d3RGYwU12pFDKcU8s+fMiy/VzU2syu3imajqVfKLBqbDafqg8tOCWHrHVYXR2WU+IxYf4uPcEKwJ2E+rv3WcN/XtKwlyRE+PGiecvy0eYLn69clA/arJ/pVIHfUZPDUd+lIEiRH+BDp59bqiqqrmToXRwf+d/NELn5rOzVNzbg6OpBTVo9KkvjXzxl8cOvkXn99PUV/j5lenVJIcW0T3xw4ya7cSh5bkMiOJ+b1y7nYIx3F8cs/Z9iMTZFt7j5avZEDedVsz6lgx7FK0k/WYJKVjMy0GH9unBbFrLgA0gtreXRlGvfNieWn9GLu+Hgv7k5qSuq0SMBwf3fevH68cGww88r6zFYDAqDzZhkRx2dHQVUjN3+4GxdHFcvvnGqxHuwI691WJ7UKCfjkjilE+rv1zQnbObbW4WajCZVEh2UWXYlhrd5IjlkAZ5WaM8NlGgqqTglhJwcVsUEeTIr25YbgSOKDFCEc4eeGwxARwrYwmmQeWpGKySTzwhWjeXzVQb5LKcTJQUWz0cQr6zPtWk/0q0DuqBC7odnIgytSAfBzdyI5wofxET40NhtZtuM4WvNC3lmWI8LPjTcXj+e2ZXsI9HCmvF6HLMOvR8vYlVvJtBj/XnplPUtZPw4JacmOtpRrisxSezpsNKjV8vTqdC5LDmNipC8qlSSyzWeIySRzpLhOEcQ5Few5XoXOYMJBJTE+woc/zYtnVnwA48J9cDKPQj9Z3cjz3x9mSrQfj8xPxNNFzb9+zrTUuslAUW0TPx60j9pEe+BMm2VEHJ8dZRotN324G53BxNf3TCfC7/Qit+37rezoSRzIrxYC2UxHsWqSbbtZ2Irhv3xzkP151Xi5qi1iOK+q0TIK2dFBIibAg3HhPlwzMcJSHhHl5yYutm3w3uYc9pyo4sapkdy7fD+F1U2oVZJlbLW9rxv9KpA7bPjydmHprZNILaghJb+G1IIaS+F9WzrLcsxOCOSRCxL494YsXB0dLB+Gf/50lNX3zRwQ2xwV9Uo3a3+UWAgroc7pKI5dHR1Ytf8ky3flE+bjysXjQvnuQKF4P0+DLMvkVzVaBPHOY5UWW6PEYE9unBrFrHh/pgz3t2nZaDLJPLoyDZMs8+q143BQSSzfld/uOJ3BJN5zK860+VasC92ntknPrR/tpVyjY/ldU7vUfG3r/dYbZfF+W9FRDAd4OFFR39yuzMLWe6ozmPhsVx4OKonhAe6MHObFZclhFh/h6AD3LjVQChTv+X9vyAJgxd4Chvm44OPqRFVjc6vj7Hnd6FeB3FHD1+MLkxg1zJtRw7y5caoy3KNOq2fscxts/p3OLEHumxNH2slafjlSarnt4Mlafkwv5tJxw3rglfQuFZqWEou+FchG87x2W9iLDYs9YCuOJeC5S0Zy8bhh/HKklDWphXyw7bhN5wQY2u9nZb2OnceUOuLtORWcrFbei1BvF84fEcysuABmxPp3yX3mox3H2ZVbxctXj7Vk5ezdSsgeONPmW7EudI+mZiN3fryXnDINH902mQmRvp0+RqzDXaOjGP7rRSN4+efMdmUWp3vvjvxtAc7qrjVLCtqj0eq56r2dlt+NJhm1SkVV48CK434VyGfS8OXl4mi5EmxLZ5YgKpXEq9eO4/K3d1iaeAD+tS6DBaOC7f6D0B9jpg8V1vLUd+kd3m8vNiz2QNs49nd3orKhmd0nqrhuSiSXjw/j8vFhVDU0M+eVTdTZsLUJ6scGzL6msdnAnuNVZkFcydHiOkDx+pwR688958YwMy6A4QHuZ9TRnVmi4eWfM7lgZDDXTAy33C6sCTvnTNZiWZZxc3SgsU32DcR7ejr0RhP3fb6f/fnVvL14Aud04vlvMJpYk1rEO5tyOjxGvN+nOF0MpxfW8vnu/FZlFr5u7bOZoDje2LsmsGdqm/SMe751MlNlttbsCHuN4363eWsRD51RUNVIk95omTffQlctQbxcHPnvzRO5/J0dNDafqjn67Pc87jonpptn3zeUaxSLt74oB9Fo9by6IYtPfz+Bn7sTN0+LYuW+AkvdN9iXDYu90DaO//NLFm/8ls2M2ACuNos1Lxc1od6u1Gk17R5fqtFx5bs7WDwlkgWjQ/AagJOfOsJgNHGwsJYd2UqG+EB+tWIb6KBiUrQvjy1IZGZcAGPCvLvd0KIzGPnzV6l4uap58coxrYS1sCbsGl1diz/acYJGvRG1SsLQZkfkhimRvXV6A5qW0p9NmeX884oxLBob2uGxeqOJ71IKeWdTDnmVjYwI9eL2mdF8uTtfrMOd0FEMLxoTyrIdJ9iYUcZlyWEcKaqjXmdAksDKYUy8p91AlmWyy+rZmFHG96lFHDEnPAAmRvly87QoxoZ7c/8XKTioJBykUzXIYN/veb8L5NNh3bWrVkmoHSSevCiJT3bmdatzOiHYk1euHscfvzhgue0fa49yzcQIvN3sV5BU1OsI8OxdBwtZlvkpvYTnfzhMeb2Om6ZG8eiCRLxdHZkY5Su61c+QB86LZ/fxSv76bTov/5xBuUaHm7MDDToj10+OYFt2heX9HB3mxfrDpRzIr+FAfg1PrT7EvMQgLksextykIFwcB1Y2Q5ZljpXXsz1byRDvzq1EY/4yGjXMiztmDWdWXACTovy67PnaGa//ms3R4jo+uGVSu1IkYU149livxQBjw7y5bWY0r27IoqimiSBPZ3RGE0u35zInKZBRw7z7+YztB1mWef6Hw6xJLeKxBYncMNX2RUSzwcS3B07yzuYcCqqaGB3mxfs3T+SCkcFIksS4cB8Rw91kQqQv3q6O/GXVQR5ckYqDJOHhouapC0bw/tZc8Z6eIU3NRn7PrWBjRhmbMspt7tAd/dtCXJ0cqKzXceMHu8mtaODDWydR06gfMHFstwK5bYepwSSjkiSCPF3OyhJk0dhQ0k7G8P7WXMttL/2cYdfDQ3p7zHReZQPPrDnMlqxyRg3z4v1bJpEc4WO5v6uZJcEpHFQSF44OZVdulcWFpEFnxEElMS3Gn5euGtvq+LUHi3lgRQoAl44bxubMcn4+XIKns5oFo0O4dNwwZsT6222ndEmtVvEiPqY015XWKa85yt+NS5KHMcs8oMPXvecv9PaeqOJ/W45x/eQIzh8ZbPMYEcPdp+1aDJBVqkElSa3W4vzKRhYv3cUNS3fz+V1TGR0mRDIoF2+f/J7HknOGc9+c2Hb36wxGVu0/ybubjlFY08S4cG+ev3QUcxODWu2EiBjuPt+nFVGvM1h6QIyyjLbZiLero91ajNkbBVWNbMosY2NGGb8fq0RnMFnsNQ0mk2XNB9j2+FxcnRwo02i5celuCqob+ejWycyKVyYlD5Q4tluB3JGnYU90Oz6+IJH0k7X8nlsJwJd78vnj3FjCfe3TLqdc0ztjpnUGI0u35vLWxhwcHVQ8c/FIbpkeZbcibKBhfRHWgtFku/N80dhQVBL86csUcsvr+e3h2aQX1rImtZCfD5Wwav9JAjycuHjsMC5NHsb4CJ9+nbhUp9WzO7fK0liXU1YPKLaMM2L9mRUXwMy4gE7tq86Wep2Bh79OJczXlacvHtmrzzVUsbUWa224gET6u7Hi7mlc//4ubvxgN8vvnMqY8KEtkpftOM4bv2VzzcRw/nrRiFafWa3eyMp9Bby3+RhFtVrGR/rwwhWjmZ0QOCinqfUnr6zPbNcgreshPTFY0RtN7DtRbRHFLWt8tL8bN0yNZF5SEKHerjy+Kq2VOH7j+mQi/NwordOyeOkuSmq1LLttCtNjB4atrjV2K5A76mosrGliZ04Fk6L9LL6nZ4raQcVbN4znkre2U2yeZT/rX5uQwO5S/rIsU9mg63GLt9+PVfL06nSOlTewaEwo/3fxSEK8O3cJEHSdM3VPuHBMKG9LcP8XKdz28R4+uWMKs+ID+Pvlo9mcWcb3aUV8sSefj3eeIMLPlUvHDbNYEPX20AadwUhKfo1FEB88WYvRJOPq6MCU4X5cNymCmXEBJIV49ql14j9+PEJhdRNf3zPdpu2b4Ow53Vp8+7I9JAR7WqaExQV5WInkXSy/aypjw31sPt4Wg2n4yHcpJ3n+hyPMHxncqi5eqzeyYk8+/92SS0mdlklRvvzr6rHMigsQwriX6Esnm4Ecw2UaLVsyy9mUWca2rAo0OgOODhJTh/uzeIoiiocHuANKfP9h+QEkCW6dHsVnu/K4PDmMy5LDKKpp4oaluyjX6PjkjimWKaYDDbv9Rumo8xzghg924+7kwIy4AGYnBDInMfCMs78BHs68d9NErnpvp+XKUsb+jKtbxkz3VIlFRb2Of649yrcphUT4ubLs9snMTQzqkb8taE133BMWjg7l7Rsk7v/iADd/uIdP75iCt6sjC0eHsnB0KHVaPRsOK7Zx720+xjubjjHM24Uyjc7SMNUTMWwyyWSUaCyCeM/xKpr0SonI2HBv7psTy8y4AMZH+vRbx/cvR0pZsbeAP8yJZdIAXYAHAqfz+S6u1bIjp7JV002EnysezmoKa5q49O0d/OPy0Vw1IbzTevPBNHzkt6OlPLryINNj/HlzsTKxsanZyBd78vnflmOUaXRMGe7Ha9eOY3qsvxDGvUxfOdkMtBg2mWQOFtayKaOMTZllHDxZC0CwlzOLxoYyNymImXEBrZIPdVo9/7f6EGtSi5gc7cvfLhvNXZ/sI9zXjecvG8XJaqXUqqZBz6d3TmViVOdWhvaK3QrkjjrPn7tkJH4ezmzJKmNzZrnF2zguyIM5CYHMTgxkynC/Ln1pJ0f44OmspqZJ3+r2jsYE98eVYbmmZ8ZMm0wyK/YW8K+fM2hsNnD/3Dj+ODeux5qkBO3prnvCwtEhvHvjBP74xQFu+XA3n9451WLx5+XiyNUTw7l6YjjlGh0/pRfzwtqj7dwEOjJfP10MF1Q1WgTx78cqqWxQLJDigjy4brKSIZ4a42cXDhsV9Tqe/PYgI0K9eOj8hP4+nUFNR3H84pVjuHx8GAajibyqRmUEb6kykje7tN5y7NOrD/H06kNE+rlZJo8lBHsQH+RJXJCHpQm1qyPb7T1Dt+d4Ffd9foCRoV68f8tETLLM0q25/G9rLhX1OqbH+PPG9eMH5JbzQKWvnGy6GsPQf3Fc26RnW3Y5mzLK2ZJVRkV9M5IE4yN8eHR+AnOTghgZ6mXzom3fiSoeXJFKSZ2WRy5I4L65cfz5K+X3VfdOp7pBz+Klu9Bo9Sy/ayrjIrq+e2SP2K1A7qzz/IKRweZu+QY2Z5axJaucT3fl8cH247g6OjAj1p85iYHMTgg67SjO2jbiuIWiWi2XvbODCZE+TIj0pUKj418/Z3R5zHVPUV5vHjN9FiUWR4rqeHp1Ogfya5g63I8XrhhNXFDP1zQLWnM27gnzR4Xw7o0Tue/z/dz84W4+u2NqO6eVQE9nbp0RzXPfH7b5Nwprmli6NZeFo0OI8HOzmd14fNVBvt5XQGFNE3mVjYCSPZidEMhMcx2xvZXeyLLMk9+mU9dk4PO7krtdaiXoGp3FsdpBRWygB7GBHiwcfepxeqOJ349VcstHewCl/j6vspHNmeWWCzqVBJF+bsQHe3Y8DKNWy12f7GV8pC+NzQY+3Ha8z9fhrnK4qJY7P95LmK8r7944gc9357N0ay6VDc3MigvggfMmMGW42O3oa/rKyabDUo5aLdf8dycTIn0ZH+lLWZ2WF9dl9Emm2dqGbVNGGfvyqjGaZLxdHZmdEMi8pCDOTQjE7zQN1AajiTc35vD2xmzCfd1Yee90JkT68s3+k/yQVsSj8xPwdXPiuvd/p0lv5Isl0wZFk64ky7Yne9li0qRJ8r59+3rxdM6OxmYDu3Ir2ZxZzubMcvKrlC/8mAB3ZicGMicxiKnD/VrZZs18aaPNhdnDWc3IYV4cPFmDVm9qd38LYT6uvdoF+31aEQ98mcIvD51LfPCZidoGnYHXf83iox0n8HF15K8XjeDKCWGDYjtPkqT9sixPOtPH2XsMt+W3o6X8YfkBEkM8WX5ne5EMHcewo4OE3qh8vseGe3OiosHmkBIJOG9EMLPi/JkVH0BsoIddx8jX+wp4fNVBnl40wu49zE/HUInhopomFi/dRWV9M5/cMcUSi5Zsc5mSeW5pAuoOvb0Od4XjFQ1c89+dNBtMXJo8jLUHi6lu1HNuQiAPnhfHxKjBJ4y7G8Mw8OK4K3S0Frs7O5AQ7MnhwrpW5Uht6ak4brFh25RRzsaMMss5jQj1Ym6iIoqTI3y61JCfX9nIg1+lkJJfw1UTwnnu0pF4ujiSV9nARW9sY1SYNy9cPpobP9iNwSSz/M6pjBzmddavoS/pKI7tNoPcHdyc1MxLCmZekpJdPlHZyOZMpRTji935LNtxAhdHFdNi/JmToAhmW1svAE8sTOKm6VHojSYyijVc8vZ2m8/Z2yMSuzNmWpZlNhwp5bnvD1Ncq2XxlEj+sjARH7fe9VIW9DznjQjmvzdP4N7PDnDjh7tYfufUdv8fT7cFPj7Sh3WHSliXXmxTHINSe//Brd36jutzCqoaef77w0yL8eOOmcP7+3QEXWCYjysr7p7G4vd3cetHe/jkjslMjPIjPtiTRZwamLFqXwFPrT6EzmoYhgRIEnQwod1CR9nnvqKkVsvl7+yw7Egu35XP3MRAHjgvnvFdGCctGBx0tBa/cLlSjqQzGDlUWNdqDLM1Z6MnWmzYNmWUsdPKhm1mXAB/nBvH3KRAQr27XnMtyzLfpRTyzJrDSBK8tXg8l4wbBii7Qw+sSMVBJXHfnFgWL90NyHy5ZFqvOG71F4NKIFsjSRLDA9wZHjCc22cOR6s3WrLLW7LKee6HI/DDEaL83ZgU5cuR4jpLzSXA5qwybpwWiaODivhgD5zVqlYLdwu9PSKxvF6Ho0PXx0yfrG7kue8P8+vRMpJCPHn7hvGDMnMxlJiXFMz/bpnIPZ/tt3jMWvsJd7Z9eO/sWO6dHcuoZ36mobn9eGBPFzVZpRrig+w7c2w0yTz8dSoqSeLf14zrU7cMwdkR6u3Kiruns3jpLm75UHFoadtYefWkCCRJ4pGVaYCSTXtsQSIXjgkht7yBrFINT393CI3O9oXe+a9tsdQ2J5jrnKMD3HHsZdvKvMoGZr+y+dR5jAjigfPiz8i9QzA4aFlz//LNQXQGkyWGW253VjswMcqXsB5oGrS2YduUUUa2eQcmyt/N4jgxNaZr/VhtqW1SGvG+TytiSrQfr103rpURwhu/ZpNWUMMD8+J45Os0HFQSXyyZTlyQxxk/lz0zaAVyW1wcHZiTGMQcs2NDXmUDW7KUUoydxyrQ6k04qVU0m0Xwr0fL+GxXHtdPjuS+zw+gM5habVlD34xIrNDo8HfvfMy03mjig23HefO3bCQJnrpoBLfNjO71LwdB3zA3MYj3b57I3Z/t54YPFJHs10Ykn6527eMdx2loNuIgSRityqpUEtRrDcz/z1ZiA925aEwoF44OZUSop92J5aXbctl7oppXrxlnt57lgo4J8XaxZJJv+WgPH98+pV097sXjQnlkZRqPLUjkj3PjLLePCPViRKgXsky7DJ2jg8SchCCQlH6LdYdKLOODHR2UREl8sCcJQZ7EB3uQEOxBlP/ZC+eaxmbe2pjDh9uPA8oo+cFSeynoPpePD+ObAydp0Bn49r6ZNo/pbtNguUbH5swymzZs102OYF5SEDGBZydS956o4s/mRrxH5yfwhzlxOFjpj125lbyzOYdRw7z4bFcezmoHvrx7msX+bTAxZARyW6L83blluju3TI9Gqzey53iVUrucVUZueQMAz6w5zDNrlAaopxeNIMDDuc+7TrsyZnrP8SqeXp1OVmk980cG8+ylowjr5cy2oO+ZkxjE0lsmseTTfdywdBdfLJl22saKFr7Ync9zZj/WBaNCeO2XrFYxPCPOn/WHS1mXXsw7m3J4a2MO0f5uXDgmlItGhzI6zHZHc19ypKiOVzdkcuHoEK6c0P/NWILuEezlwpd3T2Px0l3ctmwPy26bzNSYU24OLcJW1UG8We+WFNY0oZLg5avGcsWEcMsxWr2RnLJ6S21zdqmG9JO1/JRe3Eo4xwR4mAWzp8VdI8rPrdO6zKqGZj7YlssH245b6kkfOj+BB8+P7+7bIhhkGM2TfzuiJY6f/+Ew1Y16Aj2ceWrRiHZ6wmSSSS+sVRrsbNiwzUkMYlZ8QI94wBuMJt78LZu3N+UQ4efGqnuntysPqm3U89BXqciyMk0zyNOFL5ZMJcp/8IljGMIC2RoXRwfOTQjk3IRAnmEkGSV1LHx9W6tjXv45kynD/bhtRjRzEgOJ66Pt6PJ6XYf1x1UNzby07ihf7ztJmI8rS2+ZxAUdjNoVDA5mJwTygZVI/vyuqfifpj591f6TPLU6nbmJgbx1w3ic1Q5cNTG83XE3T4vi5mlRVNbr2HCklJ/Si3l/ay7vbT5GuK+rObMcQnI/TPDT6o08/HUqPm7PfojSAAAgAElEQVROvHDFmH4X64KzI9jLhRVLWkTyXpbdPplpZpFskk+5W3REy27J13sLePybg4xo0xDk4ujA6DDvdpncpmZFOGeVasgq05BTWk/ayRp+PFhsOcZJrSImwL2VaE4I9iTSz42axmbe35bLZ7/n0WhVqvTK1WO5ZlLE2b4tgkGESZY73fW9fHwYs+IDmPSPX7ltZrRFHNdp9WzLqmBjRplNG7Y5iUGMGtazSYu8ygb+/FUqKfk1XD0xnOcuHdVOdMuyzJPfHbQMVwv2cuHLJdN6fVpqfyIEsg0SgjxJjvAhtaAGgNhAd+YlBbE5s5wXfjrKCz8dJczHldmJgRY7rN6a4lWhaWZESOsvAJNJZtWBk7z401E0WgP3zo7lgfPicHNSzsHefUIFZ8e5CYF8eOtk7vxkr1KTvGSqzYuoNamFPL4qjZmxAbx308Qu1aL5ezizeEoki6dEUt3QzC9Hlczysh3HeX9rLsO8XVg4OpSLxoQwIdK31+qArWPY3VlNvc7AstsndyljLrB/gsyZ5BuW7ub2ZXv56LbJTI/1twxtcuhCXM2KDwBge3YFSSGdd827OjkwJty73fjrxmaDWTjXm72cNezPq+b7tKJO/+ZfL0o6rTgWa/HQxCSf/iKvhQAPZ0aEerFsx3HUKomNGWXsz6vGYGXDNjdJsavtjbVPlmW+PVDIM2sOoVJJrRrxWmiJYeua6Sh/N75cMq3Xe7D6GyGQ2yDLMk+tTie1oIZRw7w4XFTHsfIGnrjQn6cWjaSwpoktmeVszixjTUohX+zOx9FBYlKUn+K7nBhIYnDP1G+aTMqY6QArD+SWRpU9J6qYHO3LPy4f06prdKBN8hF0j1nxAXx0myKSF7+vlFtYe2WvSy/m4a/TmBztx9JbJrWyNuwqvu5OXDspgmsnRVDbpOe3o6X8lF7C8t15fLTjOEGezlw4OoQLx4QyOdqvS6KmK7SN4XqdAQeVRG2jbc9ywcAkyFPJQN2wdBe3f7yHj26dzChz1rcr6+cwH1diAt3ZnlNxVnZ/bk5qxob7tGuqO17RwGMr09iXV93hY1/7JYs1qUXmcdseJJgbBMN9Xfk+rUisxUMUWZZRqTou1dHqjfx+rJKNGWUcLa4D4MV1GSSFeHL3uTHMTQpifBdt2LpLbZOep1cf4oe0IqYM9+M/1yW3K81suxaD4ixz+4zoQS+OYZD5IHcX6yskdycHGpqN/HFuLI/OT+SV9Zm8u/kYvm6OrHvw3FZDE5oNJvbnVbM5q4wtmeVklGgACPV2sYzAnhEX0K3JY6tTCnlpXQYldVq8XRx58qIkjhTX8enveQDcNyeWS8YNQ280oTOY0OlNaPVGHl91kKrG5nZ/zx58QnuSoeIh2xk7j1Vwx8d78XZ1REKitE6Lr7sTNY3NjI/05dM7puDew7sbGq2ejRllrEsvYVNmGTqDiQAPJxaMCuGiMaFMHe5nWdi7k0HryEtUxLDCYIvhinodNyzdRX5VI9dPjuTjnScA2jkA2OLZNYf4et9JUp+9oMdGnpfUavnvlmN8sScfo0lmQqQP+ZWNlGl0eLqoqdMaGBnqxa0zoixezjll9ZatZ1AargwmU6um7hYGUxwLH+T2rE4p5PFVB2k2tnaxOFndyKaMMjZa2bC5OjogI6PVm3jpyjFcPyWy187Jeh2+ckIY3x4opKROy8MXJHDv7FibCY6hvhYP+Qxy2yukhmYjapVEnHlYwiPzE0kvrGVbdgV//OIAH946iWajIkh1BiOeLmrmjwxhdkIgeZWN/HKklI0ZZazYW8CKvQWW53F0kJgW409MgLvV45W/oTX/rRahW9mgo7K+mZaltVar5wlz5qGFdzcf493Nx7r8Onvbr1nQP8yIDeDOWcN5Z9OpWKhqUGrWrp4Q3uPiGMDTxZHLksO4LDmMBp2BzZnl/HSomG8PFPL57nx83RyZPzIEHzdHPtl54oynnnU4jUrE8KAkwMOZL5dM4+K3tlvEMXQtXmbFB/LJ73kcyKs569HNRTVNvLf5GF/tLcAky1w1IZz4YA9e3ZBl+X6o0xpwkCTumjWcK9vU8tdp9WRbyjTq+WjH8Q6fRzA4adETLc2bhTVNPLoyzZLsgtY2bC0uLmOf33BWg3K6ck7WOxlvbcwhwMOJb/4wg+TTjIMe6mvxkBfItmanG0wyj648yAs/ZaAzGNGYByzsz6sm+W+/dOt59EaZbdkVbMuusNwW7OVMoKczzmoHnNUqPJzVOKsdyK9qxFZe30Wt4smLRuCsVuHiqDzG2VFlebyz2oE7P9lLmXm4iDVDYTtkqLI6pX2tpCzD25tyWDy1dzISLbg7q1k0NpRFY0NpajayJaucdYeKWZteTL0Nv9omvZFX1meeViAP6wGPUMHAwt/DGVubmZ3Fy9QYpbRne055twXyyepG3t18jJX7lITG1RMjuG9OLBF+bsx8aWO77wejLPPqL1ntBLKXiyMTo3yZGKV0/v+QVkR5vViLhxId6YnqxmaeXjSCeUlBDA9wb1dCNCnKl+05FfQGts4JwNFBdVpxDEqZXVVD+x3poRLDQ14gd3QlZJRl5o8KtgjPnLJ6fj1aCsB1kyKYPNzPfJ8KZ7NYtYhWq9taHl/d2MyWLGVIybascuq0Birqm4n0czOXYwQxMtQLlUpi+BNrbZ6TzmDi1hnRp309o4Z5UZZZ3uq2vvBrFvQf9nKV7+rkwPyRwQR6OuPr5tQqG3gm53VZ8rB2uyMihgc/pXVam7efLl68XBxJjvBhe3YFjy04s+crqGrknU05rNp/EpUkcd3kCO6dHdvKY7u7n63qhmYMJhMStEp2iDge3HQUF80G02nr5GfFB/Dyz5mUabQEebp0eNyZUKfVs8lqzHRbSmptf95aqGpotimOh1IMD3mB3FG2KszHlX9eMabVbav2n+TRlWnsOl7J/10y8oycK4K9XCwNTwajidSCGovv8r83ZPHvDVkEeDhzbkIAPm6OVNtoSOrsqm3twWI2ZZYzKy6A4xUNonN6iNDfGVedwcjOY5VsOFzKL0dKqajXoVZJ3Zo+WVTTxIq9BYR4uSBJyiIuYnho0N04nhUXwJsbs6lt1OPt1nm/R15lA29vzOHblEIcJIkbpkZy7+xYm8/T0Tl5uqjRG002h40YTTIPfpVKg87IQ+cn8NW+ArEWDxG6G8PnxAXyMpnsyKngivHtbTi7Skmtll+OlrLhcAm7civRG2VUHYxqP905ybLMhL8ru+Xjwr2pqG8ekjE85AXymUy0uXpiOKkF1Szflc+zaw7z6rXjuvWcagcVk6L9mBTtx6MLEinX6NiaVc7mrHI2ZpRRY0Mcu6hVp71qyy7V8NiqNCZE+vDRbZNxUosJekOF7k5lOhtqm/Rszixjw5FSNmeU0dBsxN3JgTlJQcwfGcycxCA2ZZSd0XnpDEb+8PkBmg0mVt47ndiznAglGFh0N47PiQ/gjd+y2XmsggvHhHZ4XG55PW9vymFNahFqlcTN06K4d3Zsq8brrpyTSlJqkS9+czv/vHI0E6NaTwN8/dcstmaV8+KVY1g8JZIHxACRIUN3Y3jUMC983RzZnl15RgJZlmWOldez/nApG46Ukma2ph0e4M4dM4czf1QweRWNPLX60Bmd0yNfp1n+/d19M3vNztPeGfIC2XoyU1eukJ65eBSHi+r45sBJzk0I4LLks7+SCvR05qqJ4Vw1MRyjSSbtZA3/23KMjRllli5otYOKLVlK6cS5CYH4uTu1ct9QqyRcHB1498aJQhwPMc40hrtLSa2WX46UsOFIKb8fq8RgkgnwcObS5DDmjwpmRqx/KyeBrp5XW5/NO2ZGC3E8BOluHI+L8MHDWc22HNsCOadMw9sbc/g+rQgntYrbZkRzz7kxBHl1vpXd0Tm5O6t5Zs0hrnrvd26cGsmoYV68s+mYJYanDfdjcS85Egjsl+7GsEolMSMugO055ciyfFqbQ5NJJqWgmg1mUXy8Qpn8Oy7Ch8cWJLJgVDCxgacGmU2M8kOlks54HQZIe2b+kBXHIGzeukVJrZaL39pGvc6At4sjZRpdr4mSynodW7PL2ZJZztbsCotDQYSvG0U1TRis9k6cHFS8fPXYIbH9ISyyeo6OrNhkWSanrJ4NR5QtuzTzmNOYAHcuGBXM/JEhjI/wOasF1JbPpqujAy9eOWbQx7GI4Z5j0ZvbyCjRYDLJlhgeOcyLtzbm8OPBIlzUDtw8PYol58S08gs/G+p1Bl7bkMWyncfbNRi6qFW8dNXgX4uFzVvP8ZdVB/nK3Cja1uKwxTd5w5ESfjlSZiljmx7rz/xRIVwwIvi0OyGdYWsdFnpCZJC7RYi3C4snR/LWphy0eqVLubdM4P09nLlifDhXjFeyy+mFtWzOLOOdTTmtxDFAs9HUqUOAQGCNLQugx1cd5Pu0Io5XNFiyE8kRPjy+MJH5I0OICzqV3dUbTdQ16qnXGajXGWjQGdBoDTTojNTr9NTrjNRrDTQ0t9xusBxbrzWQWaqxTE9roStOFwJBC6tTCskqORVHhTVNPPJ1GiZZxtXJgXvOjWXJOcNPO5K9O3g4q3nmkpE23Sq0BrEWC7rO6pRCVqcWWn4vrGniiW8Osu9EFVWNzWzOLKex2YiHs5o5iYHMHxXCnMTAbs1YsIUtpwuhJ4RA7jbfphS2u623v9gdVBLJET4kR/jwxq/ZNo8ZKv6Egp6ho4VxY0YZAE5qFeMjfHB3VrM5s5wf04ppaD4lhG014dnCxVGxMfRwVuNu/m+otwtHzFOk2iLiWNBVXlmfib7NRZZRlvF0VrPl8bm9Pp68woaVG4gYFnSdV9ZntltLtQYTy3fnE+jpzOXjw5g/MpjpbcrYegp7cUKyN4RA7ib9HVD97VwgGBycLl5bRG1pnbaVqPVwUUSup5XY9XBWW263/t3DSY27s0OHI1M7mtQk4ljQVTqK4XqdodfFMYi1WHD2nG4d3v3keb1eByxi2DZCIHeT/g6o/nAuEAw+Ooxjbxd2Pnlerz+/iGPB2SLWYsFA53R2s33RJCdi2DbC7qCbPLYgEVfH1lsdfRlQl48P48UrxxDm44qE8kEaCo1Ngp6lozh+fGFSnzy/iGPB2SLWYsFAR8SwfSIyyN2kr6y1OjuHoR7AgrNDxLFgoCNiWDDQETFsnwiBfBaIgBIMBkQcCwY6IoYFAx0Rw/aHKLEQCAQCgUAgEAisEAJZIBAIBAKBQCCwQghkgUAgEAgEAoHACiGQBQKBQCAQCAQCK4RAFggEAoFAIBAIrJBkWe78qJaDJakcyOu90xEIukyULMuBZ/ogEcMCO0LEsGCg060YBhHHArvCZhyfkUAWCAQCgUAgEAgGO6LEQiAQCAQCgUAgsEIIZIFAIBAIBAKBwAohkAUCgUAgEAgEAiuEQBYIBAKBQCAQCKwQAlkgEAgEAoFAILBCCGSBQCAQCAQCgcAKIZAFAoFAIBAIBAIrhEAWCAQCgUAgEAisEAJZIBAIBAKBQCCwQghkgUAgEAgEAoHACiGQBQKBQCAQCAQCK4RAFggEAoFAIBAIrBACWSAQCAQCgUAgsGJQCWRJkg5LkjSnH58/UpKkekmSHPrrHAQDGxHDgsGAiGPBQEfEsGBQCWRZlkfJsrwZQJKk5yRJWt6bzydJ0glJks63ev58WZY9ZFk29ubzdnJOj0mSdEiSJI0kScclSXqszf0nJElqMn/w6iVJ2tBf5ypoj4hhkCTpIUmSciVJqpMkqUiSpP9IkqS2uj9akqRNkiQ1SpKUYX3+AvtAxHGX4lisxXaMiOFTSJLkJEnSUUmSTra5PVmSpP3mtXi/JEnJ/XWOvcGgEsg9ifVCNsCQgFsAX2AhcL8kSde3OeYS8wfPQ5bl+X1+hoI+YQDH8PfABFmWvYDRwDjgAav7vwRSAH/gKWCVJEmBfX6Wgj5hEMcxiLV4SDCAY7iFx4By6xskSXIC1gDLUfTGJ8Aa8+2DA1mWB80PcAI4H0UYNgN6oB5IM9/vDXwIFAOFwD8AB/N9twE7gP8Aleb7YoGN5t8rgM8BH/PxnwEmoMn8HI8D0YAMqM3HDENZJKuAHGCJ1bk+B3wNfApogMPAJKv7/2I+Rw2QCZzXzffkTeCttu9RB8fOAmr6+//jUP4RMdzu/fAHfgXeNf+eAOgAT6tjtgH3ihi2nx8Rx6ePY+v3qIPjRRyLGLaLGAaGA0eBC4GTVrfPN/9Nyeq2fGCh+d83AAf7+//jWcVAf59AbwS0VcAsb3P/d8D/AHcgCNgD3GMV0AbgT4AacAXigAsAZyAQ2Aq8buv5zL+3DeitwLuAC5CMcgU2z+r8tMBFgAPwIrDLfF8iUAAMs/q7seZ/d3nhRMkmp2AWD1bnXGo+lw3AuP7+/yZ+RAzbeB9uAOrM51LeEqfAFcDRNse+jdVFoPjp/x8Rx6ePY6tzFmuxnf6IGLacx48o6+4cWgvkh4B1No59pL//3/XUz5ApsZAkKRgleP4sy3KDLMtlKFd31uUHRbIsvyXLskGW5SZZlnNkWf5FlmWdLMvlwGvA7C4+XwQwE/iLLMtaWZZTgQ9Qyh9a2C7L8k+yUmP0GcoWHIAR5UM0UpIkR1mWT8iyfAxAluXtsiz7dPFlP4dSRrPM6rYbUT4gUcAmYL0kSV39e4J+ZCjFsCzLX8jK1nQC8F8UIQHgAdS2ObwW8OzKaxL0PyKOLYi1eIAyVGJYkqQrULLi39m4e9CvxUNGIKMsQo5AsSRJNZIk1aBc/QVZHVNg/QBJkoIlSVohSVKhJEl1KLU2AV18vmFAlSzLGqvb8oAwq99LrP7dCLhIkqSWZTkH+DOKwC0zn8OwLj5vy7nfj/LhWSTLsq7ldlmWd5g/rI2yLL8I1ADnnMnfFvQbQyqGAWRZzkbZLnzXfFM94NXmMC+UrUPBwEDEMWItHuAM+hiWJMkdeJn2dfMtDPq1eDALZLnN7wUotYsBsiz7mH+8ZFkedZrH/NN82xhzFuAmlLKFjo63pgjwkyTJ+moqEqVmp/OTVzIPs1A+iDLwr648DkCSpDuAJ1DqjE52crhM69cksB+GbAy3QY1SvweKyIhpc07jzLcL7BMRxwrWcWzzqRBrsb0yFGM4HmWHY5skSSXAt0CoJEklkiRFo6y5YyVJsn4NYxlEa/FgFsilQLQkSSoAWZaLUeq8XpUkyUuSJJUkSbGSJJ1ui8MT5SqpVpKkMJROzrbPEWPrgbIsFwA7gRclSXKRJGkscCfKVeNpkSQpUZKkeZIkOaPUFTWhFPB3iiRJN6J8EC+QZTm3zX2RkiTNNFu2uEiKBVwASjMBkiTNkSTpdB9SQd8yVGP4LkmSgsz/Hgk8CfxmPqcsIBV41nxOV6Asyt+YjxcxbH+IOG4Tx2ItHnAMxRg+BESg1DsnA3eZzzEZ5QJhM0r5xv+zd97RUVVfG37OTHpIAUKAJPQSOoSOFBEVUEEQQcFGETt2Ebs/O4qfKHZFigXEAqhY6NI7CQktJNQUWhLS25T7/TFJnCQzkMBM7p3MedaaZXLrjrxz7ntP2fsxIYR3yag1WBYiIoSYJIQ4UYX7aJbabJB/LvlvuhBib8nP9wBewEHgAvAL0Pgi13gN6I5lXs2fWN6grHkHeKlkiOUZG+dPwPIGloplQv+riqKsqULs3sBMLCtdz2AZtnkeQAgxUAiRe5Fz38SyYnqX+C+/5hcl+wKAz7H87SlYVufeoChKesn+Jli+hBJt4K4a7g/ECSHygL9KPi9Y7R8P9MTy988ExpbM6QOpYS0idVxZx7Itdi3cTsMlc6fPlH6wZM8wl/xuUhSlGBiN5f9DJjAFGF2yHSwa3lKF+DSLUBT5kiqxIISYC/ysKMpKtWORSC4HqWFJbUDqWOLqCEvhm8cVRTmkdiyXizTIEolEIpFIJBKJFbV5ioVEIpFIJBKJRFJtpEGWSCQSiUQikUiskAZZIpFIJBKJRCKxQhpkiUQikUgkEonECmmQVUYIcYcQ4qQQIk8IsVwIUa8K59wjhFCEEFOttl0jhFgvhMi6WO5BIcTVJee+6aA/QeLmVFXDQogQIcQWIUR6SSqjbUKI/naOXVuiU48K2x8XQhwvudchIURbZ/xNEveiGhpuK4T4TQhxXgiRIYRYKYSItNrvLYSYLYRIFUJcEEJ8JoTwtNr/rxCi0CoFZ3xN/H2S2o+jNFxyTEshxAohRI4QIk0I8Z7VvmlCiN1CiCIhxAIn/1mqIg2yDSo+lO1tq+41bBzTEUt5yruBhljKQ352iXPqYsmlWbFaTR4wj8rJx63P9QQ+AnZcKjaJa6NRDediyZXZAKiLpZrTHzZM8J1YyrhWvNdULMnxbwLqACOw5PaU1EI0quFg4HcgsuTYncBvVvufw5KjuxPQFkve25cqXGOaoih1Sj6RSGotrqhhIYQXsBpLwY9GQATlC5KkYqm3MK86f4dLoiiKW3yw1DL/FTgPHAces9r3PyxJvr8HsrFUjLG1zRv4EItAUkt+9i65xmAgGZiBJRn3d1WI6W1gkdXvrYBiIOAi53wBPIylis1UG/uvA07YOfc5LLXVFwBvqv1vIj/uqeGS43TASCxlT0OttgcBR4C+Jfs8rI5PwlI+XfV/C/mRGi45tl6JTuuX/L4bGGe1/w4gyep3m+22/LjOxw00fD+wqQrnvQksUPvfw5kft+hBFpbykH8A+4Bw4FrgCSHEMKvDRmERcTDwg51tL2J5cHcDugK9Kd870AiL2JphERklQ8kD7ITWsSQmABRFOYpF1DaHjYUQvbH0Tnxha//FEEI0w9J793p1z5WoT23RcMn1YrGUPP0dmKsoyjmr3W9jqTB2psJpESWfTkKIpJJpFq+V/H+RuAC1ScNWDALOKP9VwAMQFX6OEEIEWW17p2TYeosQYnAV7iHRCG6i4b7ACSHE3yU6/VcI0bkK16l1uMvDpRfQQFGU1xVFKVYU5RjwNZaStaVsUxRluaIoZkVRCuxsuxN4XVGUc4qltO1rWIY0SjFjKf9YVHoNRVGCFUXZbCeuOljKTlqThaUMaTmEEHosQybTFEWpSh31iswBXlYU5WKlUSXaxeU1XIqiKF2AQCy9a2XXFUL0xFKe92Mbp0WU/Hco0Bm4Bkvp1Xvt3UeiOWqNhgGEEBHAp8BTVpv/AR4XQjQQQjQCHivZ7lfy3xlASyzm6issU4xaXew+Ek3hDhqOKPl75mDpLf8T+K1k6oVbUa25MC5MMyBMCJFptU0PbLL6PcnGeRW3hQEnrX4/WbKtlPOKohRWI65cLEbBmkAgx8axDwOxiqJsr8b1ARBCjMQy1LKkuudKNENt0HAZJfdYXLLQLgaIw/IC+LiiKEYhRMVTSh807ymKkglkCiG+BG7E8oCSaJ9ao2EhRANgFfCZoiiLrXa9haWXMAYowqLNKOAsgKIo1us/FgohJmDRsK2XQon2cAcNFwCbFUX5u+S497H0brfHqpfaHXAXg5wEHFcUpc1FjrFVc7vitlQsX5DSBXJNS7Zd7BoX4wCW4RXAsnIUy9ykIzaOvRa4WghxY8nv9YAoIUQ3RVGmXeI+1wI9hRClw9ZBgEkI0VlRlFHVjFmiDrVBw7bwxNKjdhLL9KElJeZYX7I/WQgxDtiDZcjQOr7qxipRl1qh4ZKF0quA3xVFeatcoJbevmklH4QQ9wN7LjLqp1B+SoZE29R6DQOxWEby3B53mWKxE8gRQswQQvgKIfRCiE5CiF7VvM5i4KWS4bMQ4BXKr+6sLj8AI4UQA4UQ/ljmBy9VFMXWW98kLG9w3Uo+u7EMy7wIlrlRQggfLIZDCCF8rIZEXsYyF6n03N+x9GxMvoLYJTWLy2tYCNFXCDFACOFV8jfMwLKKegeW4cAw/tNo6YtgD2CHoij5wBLgWSFEQMnQ4P3AiiuIXVKz1AYNBwIrgS2KojxnY3+4ECJMWOiLpe19tWRfsBBiWEnb7CEs2VoGYZmWIXENar2GS+LoK4S4rmRq5xNYsgUdKjnfo8Rr6AF9qZ6vIHbN4hYGWVEUE5aUUN2wrDpNA+Zi6UmtDm9iMaaxWIaE95Zss4uw5LocaCeuA8CDWMR9Dst8oYetzv1bCPFCybGZiqKcKf1g6U3LVhSldN7RICxDI39heRstwPKGiKIoORXOLQDyFEXJqObfL1GJ2qBhLD0anwLpQAoWE3yToiipigVrjZ4vOeesoijFJT9PwzKUmApsAxbhDqmGagm1RMO3YJmHOln8l8s4VwjRtGR/K2ArlrSbC4HnFEVZVbLPsyTO81j+9keB0YqiVHW0RaIy7qBhRVHigbuwJAO4gGWB4c1W7fBLWDzEcyXHFVA5lWGtQCiKHKWUSCQSiUQikUhKcYseZIlEIpFIJBKJpKpIgyyRSCQSiUQikVghDbJEIpFIJBKJRGKFNMgSiUQikUgkEokV1UrNERISojRv3txJoUgkVWfPnj1piqI0qO55UsMSrSA1LHF1LlfDIHUs0Q72dFwtg9y8eXN2797tuKgkkstECHHy0kdVRmpYohWkhiWuzuVqGKSOJdrBno7lFAuJRCKRSCQSicQKaZAlEolEIpFIJBIrpEGWSCQSiUQikUiskAZZIpFIJBKJRCKxolqL9Gory6NTmLUyntTMAsKCfZk+LJLRUeFqhyWRVAupY4mrIzUscXWkhmsPbm+Ql0en8PzSOAoMJgBSMgt4fmkcgFNFLb9EEkeiho6lhiWORGpY4upIP1G7cHuDPGtlfJmYSykwmJi1Mt6pjbIzvkTyS+K+1LSOpYYljqa2aLj02lLH7of0E7ULtzfIqZkF1druCOx9id768xCdwoPw89Lj7+WBr5ceL4+qTRNX681Vog1SaljHF9Nwh7BAfD31Fh17e+DtoUMIcclrSg27N1rR8Jt/HqRtwwD8vfX4eunx8/LAz1OPTndpDYPUsTujNT/ROcLiJ/y8PPDz0uOpl36iOri9QYmHwHQAACAASURBVA4N8OZsTlGl7fXreDntnva+LOdzi7jugw3ltnnoRDmB+1qZZ+vty6JTavzNVaI+iqLw5cZjdveHBfs65b4X0/DQ2RvLbRMC/Dz1+Hp5WEyHlXku/dnP24PfY1Klht2YQB8PsguNlbY3CvJxyv3saTgtt5gb52yqtN3HU4efl0WzFvNsMc7WP/t66fllT7LUsZsSUseb87mV/USDAG+n3fNibfG1/1feT3jqxUW8xH9+Yule6SfAzQ3y+ZwijGal0nYBZBca2XUig17N6zn8vmHBvjZ7S+r5e/HqyA4UFJvILzaRX2ws+W/lnzPzi0nJNJUcayS3qPKDBZz75ipRl0KDiReWxrE0OoWoJsEcOp1NodFc7pguEUFOubc9Ddf39+L1UZ3IKzZeVMcFxSZyi4yczykqO1Zq2H1ZFp1MdqERvRCYlPJtch1vD/KLjfh5OfZxdTENv3VLJ5uazSv3s4mCYiOnswzljpM6dk9OpOVRYDAhgIquIr/YRPyZHCIbBTj8vpfyE/nFJvKKStpjg4n8opL22OrnjLxikjL+O0Zq2ILbGuTcIiOTF+wkv9jEk9e14afdyWVzbe4f1JKFW08wcd5OFk7p7XCTPH1YJE/9FIO1N/f11PPKiA6M6nZ5b2f9Z66z+SVxVg+iRF3OZRdy/3d7iEnK5Onr2zJtSGt+i0ktmzPWOMiHsGBf/t5/hjlrE3js2jYOvf/0YZFM/2UfBtN/Ivb11PPyiA7c1KXxZV1Tatg92XjkPNN/jqVfy/rc2j2c2WsSytriayIbsGjnKaYs2MW8Sb0capKnD4vkuV9jy71Ulmp4eKfL0zDAVe+sJTWrsNL2kDrO60WUqMv5nCImzt+Jp17w/I3tWLj1ZJmGJ17VjG82H+eOr7ez6L6+DjfJ04dF8uRPMSjSTzgctzTIxUYzD32/h0Onc5h7T0+uaRfK49e1LXfMDZ0aMf7r7Uyct5MFk3vTu4XjTPLNXcN4cVkcClBQbHLIBPjpwyLLzRkC8PHQMX1YpAMilmiJuOQs7vt2N1kFBr64q3vZw3x0VHg5DZnMCtN/2ccHq4+gKPD4dY4zyaOjwvlhx0n2nLyAWYFwJ2nYSy81XJvZn5LFQ9/voXVoHb68pweBPp6M7dmk3DG9WtTjySUxDjfJo6PCiUnKZMHWE4BjNAzw7PB2lXQMkJZXxGt/HODpoZHU8XbLR2+tJK/IyJQFuziXXcSi+/oQ1bQu9w9qVe6Y6zs0YvxX25jw9XYWO9gkX9+hIQLLSEtukVH6CQfidt9Ss1lhxq+xbEpIY9bYLlzTLtTmcaGBPvx4X18mfL2dSfN3Mn9SL/q0rO+QGBLO5ZJXbGLW2C6Mq/AwuFxKvwyzVsaXvfld276hW80XcgdWxKbyzM/7qO/vzS8P9aNjmP0pFHqdYNbYrggEs9ccQUHhiQovglfC6axChnZoxBd393DI9SpqWC8EjYN9GNUtzCHXl2iLU+n5TJq/k2A/LxZO6U2gj6fN40p7wZxhksHS27bv1aFVXhB9Kax1XNqLOO2a1hw8nc2CrSf4O+4Mr43qyLCOjRxyP4l6GExmHvphLwdPZ/P1PT2IalrX5nEtQvz58f5+TPhqOxO+3s6i+/rQrlGgQ2LYe8rSSfHpnd0Z1LaBQ65py0/c0j3c7fyE2xnkd1ceZll0Cs8MbXtJcxoa6MPiEpM8ecEuh5nkncfTAejTwjGGuxTrHsTJ83ey9WiaU+buSWoes1nhw7UJzFmbQM9mdfni7h5VGrLV6wTvje0CwIdrEgAcYpJTMgtIvlDAlP4trvha1lhr+PvtJ3lp+X62HU3nqtYhDr2PRF3Sc4u4Z94OjGaFH6f0pmHgxRfiWZvkyfN3MX+yY0zy9mPpdG8W7DBzXErF0ZxSxnQP5/mlcTzw3R6ua9+Q10Z1JNzNhq1rC4pi6WzbeOQ8793ahSHtGl70+BYh/iy+vy8TvtrOHV/v4IepfWjf+MpN8o5jGeh1gu7NbJvzy6VUw4qicNOczWw/loHJrKCvYjaX2oBblZqet/k4X244xt19m/HINa2rdE5ooA+L7+9L4yAfJi/YxY5j6Zd9/+XRKfSfuY6XfzuAXgj2nMy47GtdimlD2nAh38CiHaecdg9JzZBfbOSRRXuZszaBcT0i+OG+PtWaz1hqksf2iODDNQnMXn3kiuJZHp3CiJJV/p//e5Tl0SlXdD17jO0RQcNAbz5el+iU60vUoXRI+kx2Id9M7EXr0DpVOm9Ut3Bm396NXScymDR/F/nFthcSVYXl0Sn0e3sth8/kEJuc5TQNVySqaV3+eHQAL9zYji2JaVz/wQbmbjqG0WS+9MkSTfHeyniW7k3h6evbcluvqo0EW3qS++Kl13Hn3B0cOp192fcv9ROfrE9EJ2DNwbOXfa2LIYTg0SGtOZ6Wx59xp51yD63iNgZ5RWwqb/x5kOEdG/G/mztWKS9rKaEB/5nkSfMvzySX5hUsHa4wKQovLNvvtIa5R7O6XNWqPl9uPEZhhblwEtchJbOAsZ9vY+WBM7x0U3veG9sFbw99ta+j1wnevdVikj9ae/kmuVTHF/INgCWV0PNL45yiYx9PPfcPasW2Y+nsPuG8l0lJzWEwmXlk0V7iUrL4eEJ3elSz12tUt3A+HB/F7hKTnGdntf3FKNXw6WzLQrqcQqPTNGwLT72O+we1YtWTg+jToh5v/nmIUZ9uITY5s0buL7lyFmw5zuf/HuXOPk2ZNqRqnW2lNLcyyXd8vf2yTHJFP2EwKU7V8LCOjWgdWodP1yVitpH5q7biFgZ569E0nlqyj57N6vLh+G6XNURQapLD6/oyaf4utlfTJF+swo6zmDakNedzivh5d9Iljy19G23x3J/0n7muxh4WEvvsOZnBqE82k5SRzzeTejF1YMtqvdhVpNQkj7sCk1zTOp7Quwn1/b34ZP2le5GlhrWNolge4v/Gn+etWzpzfYeLD0nb4+auYWUmefJlmGQ12mJbNKnnx7xJvfjszu6czyli9Kdb+N/vB/hx5ympYw3zZ+xpXltxkKEdGvL6qE6X1SaXmmQfTz13fL2dg6nVM8k1rWGdTjDtmtbEn81h9aFL91TXlra41hvkQ6ezeeDbPTSr78fce3rh41n93rdSQgMsc5LD6/oyef4uth2tukmu6SpRAP1a1qd702C+2HAMw0WG8KzfRhX+q5rjqqKuDfy8O4kJX+2gjrcHyx65imsibS8mrS4VTbIlw0XVegRyCg01rmM/Lw+mDGjBv/HniUvOsnuc1LD2+b9VR/hlTzKPX9uGCb2bXtG1bu4axkfjo9hz6kK1TLLZrKjSFttDCMGNnRuz5umruatvMxZuPcFzUseaZdvRdJ5cEkOPpnWZMyHqiubjWpvkO+dWzySroeERXRrTtJ4fn65PvOgzoza1xbXaICdfyGfivJ34e3uwcEpvgvxsr5KuDg0CvMtM8pQFlzbJcclZPPLDXrv7nZlX0DJ3qA0pmQUsu4g4tdKjIrGkZnvrz4NM/yWWXi3qsvyR/rQOdWzeTJ2VSZ6zNoHZaxIu2uCdyynk3X8Oc9XMdXaPcaaO7+nXjEAfDz5Zn2D3GKlhbfPdthN8sj6RCb2b8ISD0g2O7BrGh7d3q5JJLjKaWLLrFNfN3mD3GDVzvAb6ePL6qE421xZIHWuDw2eyuf+73TSt78fciT2vqLOtlGb1q26SFUVh+7F0Js3fafcYZ2rYQ6/j4cGtiE3OYmNCmt3jalNbXOvSGyyPTilLTeKhE3jqdSx/pL9DhVNqku/4ejtTFuxiyoDmLI9OLUvp88zQtoQEePPFhqNsSUwnwNuDa9uHsiUhrVJSemfnFRwc2YCOYYF8tj6RW7tH2Hzjtfc2am+7xDlkFxp4bHE0/8afZ2DrEI6ezyXq9dUOyWtZkVKTLATMWZvA4dPZ7E/J4nRWYdn9ujUJ5qtNx/hlTzIGk5kbOjWiXaNAPv/3aLkG0Nk6DvDxZFL/FsxZm2C3GpW9nhOpYfWwbosBOoUF8sZlDknbY2TXMISAx3+MYeTHmykwmDhjpeFr24eyaMcp5m05ztnsIjqGBXJPv2b8tCupxtviqmCrTDG4XwUzrWCtYZ2wtEULp/Qm2M/LYfcoNckTvtrOHXO3M3VACxbvTCrzE08PbYuflwdfbDhKTFIm9f29uLFzI9YdOlfjGh7T3TLy+PHaBAa1CbH5Xa5NfqJWGeTSrv3Sh7fRrKATCodOZzu8ek2DAG8W3deXkR9v5tP1R8u2p2QW8NRP+1CA0ABvnr+hHXf0aUqAj2fZl61U+I42PbYoXYH64Pd7WRGbWqmyjqIo+HnpyS+uvJDPQyc4kJp10Vy7EsdwIi2Pqd/u5kRaHuN6RPDHvtSyxq90iApwuEmeOaYLJ9PzWWW1Ajols4Cnf9qHGQVPnY5be0Rw/6CWtAjxB6BpPb8a1/Hkq5rzzaZjfPZvIh+Nj6q0v66fFxn5xZW2C+DXPcmM6R7uUGMmuTgV22KAxHO5rIg97XCtjOgSxq7jGSzcdrJsW0pmAc/8vA8PvaDQYKZ/6/q8P64rA1pbHurdm9atcQ1fitNZFhNmaw2Uu1Uw0wIVNWxWoNBgYtfxDMIdrJVm9S0p4EZ9uoX3V/23NqS0LVawtLtvjO7EuB4R+HjqVfETXh46Hry6Fa/+foAdxzPoWyHtrcms4OOhK2fcy87V6ziRlkfzkueIK1CrDPI7fx2q1LVfbDIza2W8U4TTIMB2qi0FCPb1ZNOMa8plHLCXG9PZDO3QiDahdfh0fSIju4Shs+pF/mbzcfKLTXjoBEarltlLr8PHU8foT7fw1PWR3D+opVvlP6xJtiam8dAPexECvry7B0//tK9SA1M6ROVo/eh0gqSM/ErbTYpCHW8P1j1zNaEB5XPUqqHjuv5e3NWvGV9vPMYT17UtM+tgqcaWW2RECMqVW/X20BFe15enf97H6oNneXtMZ+r5O67nR2Ibs1nhjRUHK7XFhUbntcVrDp2rtM1oVvDQC36f1p8uEcHl9qnVFtsjv9jI1IW78dRbZj0WabB3291424afKHKihpvV98dbX3nWqwLU9fNk3dNX42G1Xy0N396rCR+vS+STdYmVDPK7/xym0GjGUycwWPkJT71ArxPcOGcTL93UgQm9m7hEh4VLzUG2tTLSbFbYcOQ8Uxfu4mxOzQ9PnS1JFVSRrALDZaXjcgY6nWDakNYcOZtbbgXqmoNneeuvQ9zYuRHvje1CeLAvAkvJ1ffGdmHD9Gu4vkND3v3nMOO/2sap9MpGSlI9Kmr4mZ/2cfe8nRQaTHRvWpcnfowhs8Bg81xn6fh0lm0N5xUZK5ljNZk6oCWeeh2f//tfRouz2YVMXbibkDpevDayYzkNv3trF1Y/eTXP39COdYfPMXT2RtYfrmykJNXD3gr1rHwDczcdY8j//Ut6XuXefHCehu1dt8hgrmSOtYbZrPDEjzEcOp3NF3f34N1by7fF74zprCkzX1uwpWOjycw/+09zx9fbOaeCn7B3z8x8QzlzrCaW9Jst2JyYRvSpC2Xbf9x5iq82HmNiv2bMGte1nIZnje3KumeuJqppMC8si+Pehbs5l2P7uaMlXKYHueJwR0pmAdN/3sdbfx7ifG4RIXW8CPD2IMfGQg1nDk+FBfvanFujtSGxmzo35o0VB5m2aC8Gk0JogDeZBQY6hwfxf+O64eulZ0z3iErnfXpHd5bHpPDK8gPc8NFGXhnZgdt6usbbn9awpeFf9iYDlqGpTQnnqevnZVPD4DxNuYqGGwR4M6F3U77ddoINR85zNrsIT71AJwTLH+lP+8aB3HNV80rnPXB1Kwa1bWCpwrZgF3f0acqLN7bH39tlmj/NYEvDM36N5cedp4hJzqTQYKZns7pkFRjKcmVb4+4aLsV6eNzf24PcIiOvjuxQlq1GGmLnYkvHz/y8j//9foDMAgPhwb4E+niQXSj9hC3u7NOMD9ckMOGr7RQZzdT3t0xxG9S2AS+P6ICHXmdTw99N6cPCbSeY+fdhhs3eyDtjOjO8U+Oa/wOqiDZeSaqArZWRBrNCVoGBj8Z3Y8tzQ3hjdCd8K6wsdfbw1PRhkTV+z8thRexpsgoMGEyWYY9zOUUUG83c2j0CXy/7Pd1CCG6JiuCfJwfRJSKYGb/Gcd+3e0izs5hEYh9bGgbQC8H0YZHMvr0bmQUGmtbzw6dC6VtnaspVNAzQrL4fZgXOZlv0ZzApKArEn8m56HntGwfy27T+PDCoJYt3nuKmOZvYa9X7IakatjRcZDSz43gGt0SF8+djA/jloat4dWTHGtWUK2m4Yhqs3CIjep0g2PfKsyxJqoYtHRvNCgUGE1/d3YMN0wfz+ijpJ+yx+uBZio1mCo1mFCAtrxhFgRs6NrpoT7dOJ5jcvwV/PjaA8Lq+PPj9Xp7+aR/ZhbZHTdXGZQyyvWENg8nMqG7heHvoGR0VzjtjOtfo8JQa97wcZq2MLzPH1ny18ViVzg8P9uWHqX146ab2bEw4z7DZG1ntpNKWtRV7GjYpCgPbhDDjl1ia1fPjt0f6M7MGh1ldRcMAczcdr7StdJ3BpfD20PP8je358b6+GEwKYz/fyv+tir9ojnBJeexpWAHeGdOlbEFvTWvKlTRsy5yZzEq5xVkS52JPx8VGM0NLTJ70E/aZtTK+3JolsLQBVSnoBNA6NIClD/Xn0SGtWRadzA0fbqp28bWawGXGGKs69KDGxHWtLfiwhb0GoTrzqXQ6wdSBLRnUtgFP/BjDfd/u5vaeTXh5ZAfqyOHqS2JPw6EB3kyct5O6/l58d28f6vp71bimXEHD4Bgd92lZn3+eGMhrfxzk43WJrI8/x4e3d3N4vunaiD0Nh9sYApYats3FUhIu2XWKrk2CaRMaIBdFOxHpJ64MR7TDXh46nh4ayeDIUJ7+KYYJX2/nvoEteXpoW+2s31I7gKoyfVhkpQZDi0MPWsXeHKbLmdvUtmEAyx/pz8ODW/HzniRu+Ggju05kXGmItR5bw2feHjqKjGY89Dp+mNqHRkHaWRSnRRyl4wAfT94f15Uv7upBamYhN83ZzPwtxzHbyrElKWP6sMganf5TG7GnVSFgxq9xDP9wE53/t5LbvtzGO38d4q+405bpGFWseCm5NNOHRVLx/UPquOo40k/0aFaXPx8byITeTflq4zFGfbKFQ6erV3rbWbiMQR7RpTG+nnp8PfWaHnrQKo6e2+TloePZ4e346YF+CAS3fbmNd/85TLGN/IcSCxWHzxoF+hDgY+l5/+7e3jSr7zr5IdXC0Toe3qkR/zwxkAGtQ3jtj4PcPW8Hp7NcL6F9TTE6KpzxVmWiZTtcfexp+INxXVn/zGBm396V23o2odhoZv6WEzz8w176z1xHr7fWMnXhLj5em8DGI+fJsrEIUlI1rmkXihACf2/pJy4HR7fD/t4evH1LZ+ZN6klabjE3f7KZLzYcxaRyh4XLjItvO5ZObpGRL+7qrulVj1ql9Ivv6MTiPZvX46/HB/LWnwf5/N+j/Bt/npu7NOb7Hac0lYRfK5QOn2XlG7j9q22cysjn+6l9aNcoUO3QXAJn6Dg0wIe5E3vy464k3lhxkGGzNzKqWzhrD50tV1lQatjC2exCQup4s+OFa+U0gMvgUhpuEeLPLVGWjELFRjOHz2SzLymTmKQs9iVnlsv53DLEn65NgukaEUTXJsG0bxxYrgSyGsUkXIHVB89iMit8d28fujetq3Y4Loez/MSQdg1Z9WRdXlgax8y/D7Pu0DmGdWzIvC0nVNGwqM6wTc+ePZXdu3c7MRz7zPgllhWxqex5+XqH1ECXOJ41B8/yxJIYciukKfP11Dv87VwIsUdRlJ7VPU9NDZeSV2Tkrm92cCAlm3mTejGgTYiq8Uj+42R6HhPn7eREhZzfUsMW8oqMdH9jNbf3asLrozqpEoO7k11oYH9yFjHJmcScyiQmKbMsf66nXtC+cSBdI4IxmRV+3ZtcqeiII3V8uRoGdXU8ef5OjpzNZfOMa2TKUg2iKApL96bwwrK4cvqFmm2LXaIHudho5p8DZ7i+Q0NpjjXMdR0aUqckp6c1zqoC54oUGU08+P0e9iVl8tmd3aU51hjN6vvbnCYkNWxhzaGzFBnN3NRZjuKpRaCPJ1e1DuGq1v+1HWeyColJymRfcib7kjJZFp1SqR0GqWOAzPxiNiWkce+AFtIcaxQhBLf2iOC9lYfLUnqWUpMa1rxBXh6dwhsrDpJVYGBjQhrLo1Pc+sutdexVFnRm9SGtUzrMmZJZgI+njkKDmVlju8ipQhrFXmVBqWGLhnUCmxkAJOrRKMiH4UGNGN6pEWCpztfyhb9sHuvuOv7f7wcwmi09lO0bB0o/oWHOZdd8NUNrNL1IrzShemnZ0oy8Yp5fGldW2lSiPUIDvG1u11oloJrCuigAQKHBUqfeUyNlQyWVaWwnk4jUsEXDZgVeXLZftsMaRqcTBPrY7v9ydx1nFlgWN57PLZJ+QuOE1FHXT2j6KW0roXpp97pEexhNZptV+dw5fY69CpBSw9qlW5PgStukhmU77ErEJGWSW2SUqcyskDp2LfKLjdiaAVOTGta0QbY3jOfOQ0RaZs7aBE6k53N332aarwRUUzgiobqk5thzMoOVB8/So2ldwoJ8pIaRGnY1couMPP5jNI2DfHlzdCfZFpcg/YRr8drvBzmfW8Qjg1uppmFNz0EO8PEgp7DyQgN3HSLSMtuPpfPx+kTG9ojgjdGdeEPtgDRCSB1vzudWnkclNaw9sgoMPLY4hrBgHxZM6UWAj6faIWmCRkE+NudlSw1rk1eW7ycpI58lD/SjV/N63NGnmdohaQJ/Lz15xaZK26WOtceK2FSW7E7ikWtaMX1YO6YPb6dKHJrtQV5z8Cw5hUb0QlbP0zqZ+cU8uSSG5vX9ee3mjmqHoxnOZRdSbDJTcZRIalh7KIrCi8viOJtdyJzxUdIcl2A2K9Sv41Vpu9SwNlkWnczS6BQeu7YNvZrXUzsczbB45ynyik14yGq8micpI5/nl8bRrUkwT1zXVtVYNGmQE8/l8MSSGDqHB5WrPObuQ0RaRFEUZvwaS1puER9PiMLfW9ODEjVGkdHEA9/vwWAyM31YpNSwxvl5TzIrYk/z5PVtiZKFA8r4aG0C+1OyuSUqXGpY45xMz+OlZfvp1bwu065prXY4mmH3iQxe+W0/g9o24L1bu0gdaxijycwTS2JQFJgzPkr1xeyaczNZBQbu+3YPPp46vry7B2HBvtzWq4naYUns8MOOU6w8cJYXb2xPp/AgtcPRBIqi8MryA0SfyuTzO7tzQ+fGPCwfWJrl6PlcXv3tAP1a1ufBq1upHY5m+Gf/GT5am8DYHhHMGttF5ozVMMVGM48tjkavE3w4PgoPmSUHgNNZBTz4/V7Cg335eHwUQX6ejOkRoXZYEjvMWZfInpMX+Gh8N5rW91M7HG0YZOscm94eOoxmhR/v7yvnBmmcI2dzeGPFQQa1bcC9A1qoHY6qWJd0DfT1JKvAwKNDWnODLKigaYqMJh5bHI2Pp47Zt3dz+9LJ1m2xAJrW8+PN0Z2kOdY4H6w+wr7kLD6/szvhbv7ctNawp16gE4LF9/UhyE9Om9IyO46l88m6BG7tHsGobtro1Vf9NbNijs0ioxkdkHJBrizVMoUGi7EI8PHg/8Z1RefGxsJawwqWURCdgBYh/mqHJrkEs/6J50BqNrPGdqWRnfzH7kLFtljBMo/+n/1n1A1MclG2JKbx5cajTOjdxO1fyCtq2GBSUBQ4kJqtcmSSi5GZX8wTS2JoWs+P10ZpZx2T6gZZ5ol1Td7+6xCHz+Tw/riuNLBTHMRdsKVhswL/t+qIShFJqsK/8eeYu/k4E/s147oODdUOR3Vs6bjQaJZtsYZJzy3iySUxtGpQh1dGaMdYqIUtDRebpIa1jKIoPPdrXMk6pu7U0dA6JtUjkTk2XQfroSuAwW0bMDgyVOWo1Edq2HWoWDK5cZAPz9/YXu2wNIHME+salCtd76HDYFZYMLm3zSJN7oZsi12Hin7i5q5hdI7Q1jom1XuQbaUQApmbUGtUHLoCS+5jWaYTGgXK0sSugK2SyRl5xXIKAZZeHH87BkvqWDtUKl1fMiXxyNkcdQPTCHX9pZ9wBWz5iVUHzmjOT6hqkPenZJFbZJR5Yl0AOfxqm9wiI14elb9GUsPaw5aGi6SGAXhvZbzME+sCyCmJ9tmSmEZ2gaFSeWKpYe3hKn5CNYOceC6He+btpL6/N6+M6CBzE2ocOXRVmUKDifsW7iY5s4Ap/ZtLDWscqWHbfLo+kc//PcqdfZoya6zME6tlpIZts+fkBe77djetGtThzVGyvLbWcRUdqzIHOSkjn7vm7kQnBN9P7UOLEH8mu3maMK0TFuxrc45iYzdd+W8wmXnkh71sP57OB7d15ZaoCF4ZKRfJaBl7Gnbn7BULt55g1sp4RncL441RndDpBLd0l3litYo9DbvzQukDqVlMmr+T0ABvvpvam9AAH+7sK8traxl7OtbaVJga70E+k1XIHXO3U2Aw8f3U3jIVloswfVgkvp6V5yhGNgpAURQVIlIPk1nhySUxrD18jjdGdeKWKGkoXAF7GvbS68jML1YhInX5ZU8yr/5+gOs7NGSWm6dqdBXsaTin0MjeUxdUiEhdEs/lcs83Ownw9uD7qX0IDXDfl11Xwp6OezTTVhXTGjXIGXnF3PXNDjJyi1k4pTftGgXW5O0lV8DoqPByZb/DgnwY2DqE9fHneX5pHCaze5hkRVF4YWkcK2JP8/wN7bhL9lS4DBU1HB7sy5T+zTmdVcj4r7ZzLqdQ7RBrjL/jTvPsL/sY2CaET+5Qv6SrpGrY0vDLI9rTMNCbu+buYHNCmtoh1hiWkegdCAHfT+1DRF31K69JqoYtPxHVJJjf96Xy/sp4zXS61dgUi+xCTKl12QAAIABJREFUA/fM20FSRj4LJvemW5Pgmrq1xEGMjgovN5dLURQ+WH2Ej9clkltk5IPbutlcsFZbUBSFN1YcYsnuJB4d0poHZFlil6OihgGubd+Q+77dzbgvtvH9vX1oUq92P2j/jT/HYz9GE9W0Ll/e3QNvD5kezJWwpeGRXcO4e+5OpizYxSd3RDG0YyOVoqsZzmYXcufcHeQXG1nyQD9aNqijdkiSalJRxyazwovL4vhkfSI5hQZeHdlR9VGtGnEz+cVGpszfxeHTOXxxVw/6tapfE7eVOBkhBE8PjeSFG9uxIvY0D3y3m4Ji06VPdFE+XJPAvC3HmXRVc566vq3a4UgcRP/WIXx3bx8u5BVz25fbSDyXq3ZITmPHsXQe/H4PbRsGMG9SL/y8VE+FL3EAoQE+LHmgLx3CAnnoh70s3ZusdkhOIyOvmLvm7iAtt4iFU3rTvrEcia4N6HWCd8Z05r6BLVi47STP/LwPo8msakxON8hFRhMPfLeHvacu8NH4KK5pJwtL1DbuH9SKt2/pzL9HzjNx/k5yCg1qh+Rwvt54jI/WJjCuRwSvjOiAqJhLSOLS9GhWlyUP9MNgUrjty23sT8lSOySHE5ucyb0LdxMe7Mu3U3oT5OupdkgSBxLs58X3U/vQp0U9nvppH99tO6F2SA4np9DAxHk7OZmRz9yJPYlqqq05q5IrQwjBCze25+nr27I0OoWHf9hLkVG9TjenGmSjycxji6PZlJDGzDFduKmLe9eJr83c0acpH42PYu/JC9zx9Q4y8mrPoqdFO07x1l+HuKlzY2be2kX1YR+Jc2jfOJCfH+yHr6eeCV9tZ9eJDLVDchjxZyxpNev6e/LD1L7Ur+O+WQ9qM3W8PZg3qRfXtQ/l5d8O8On6RLVDchgFxSbuXbCbQ6ez+fzO7lzVKkTtkCROQAjBo9e24dWRHVh18Cz3LthNfrFRlVicZpCX7k2m8/9WsfLAWYJ8PWv13FSJhZu7hvHVPT04cjaH277cxpks1170tDw6hajXV/HCsji8PXRcE9kAvTTHtZoWIf789GA/GgR4c/c3O/g3/pzaIV0Ry6NT6PPWGoZ9uJHsAgMT+zV367R27oCPp57P7+rB6G5hzFoZz8y/D2tm0dPl8svuJLq9voqdJzII8PEgp1AdwySpOSb3b8H747qy9Wgad83dQVZ+zY9MO8W1LtubzPRfYssqpWQVGHh+aZzmyghKHM+Qdg1ZMLk3pzMLGPflVk6l56sd0mWxPDqFZ3+J5ULJl7LIaObl3w5IDbsB4cG+/PRgP1qG1OG+b3fzV9xptUO6LJZHpzDj11jO5hQBltLa/7fqiNSwG+Cp1/HBbd24s09TvthwlBeX73fZTEO/7knm2V9jKTJa5qNeyJd+wl0Y2yOCz+7sTlxKFuO/3s75krasphDVebPs2bOnsnv3bpv7lkenMGtlfFklFFtXDQ/2ZctzQy4nTomLsS8pk4nzd2I2K/h46jmfU0RYsC/Th0U6pKqREGKPoig9q3teVTUsAFvLA6SG3YesAgNTFuxi76kLBPl4klVgkBqWuBSKovDuP/F8seEoPZrW5XRWAaezCh2m48vVMFRNxyklOpZ+wr3ZeOQ893+3mwBvT3Q6OJddM37CIT3Iy6NTeH5pHCmZBSjYFjNor4ygxHl0bRLMA4Nakl1o5FxOEQqQklmg2Tf/ihq2t3ZWath9CPL15LaeEQggs8AgNSxxOYQQPHdDO0Z0acyeUxdIzSp0KR2D9BMSGNS2AfcPbMn53CLOZtecn3CIQZ61Mr5sOsXF0FoZQYlz+X77qUrbCgwmZq2MVyGaiyM1LLHFnLWJVByZlhqWuBrRpzIrbZM6lrgSv+6tbISdrWGHGOSqvMn5euqZPizSEbeTuAj2dGGrBrvaSA1LbCE1LKkN2NOGFnthpY4ltlCjLXaIQbb3JidKPuHBvrwzprND5opIXAd7uvDUC80ZjIv1RkgNuy/2dKETsOHI+RqO5uJcqkdNath9saeNOj4emDW2eE/6CYkt7OnC20PntLSyDjHI04dF4utZuVzpQ4NbcXzmTWx5bogUsxtiSxdeeh06IRgxZxMbNWQw7Gl4UJsQqWE3xpYuvD10NAz0YdL8nXy45ohmDIatWHUCQup4cUJq2K2xpQ29EOQUGpm0YJem8tbba4tn3NBOtsVujC1deOoFRrPCiDmbiEmqPI3oSnGIQR4dFc47YzoTHuyLAPy99XjqBY9d28YRl5e4KBV1ER7sy3tju/D34wMJDfBh4vydfLQmQRMGo2KsIf5eAEy8qrmqcUnUxZaG3721C2ufvppbuoXz4ZoEJi/YxQUNGIyKsYYF+eDloWNox0ZqhyZRGVs6fn9cF96+pTPbj6Yz8uPN7HOCwbgcKsbq66knyNeTBwa1VDs0iYrY0vCssV1Z/nB/dDrBuC+28t22Ew7N+e2wNG/WDP9wIyF1vPl+ap8riU1Si8kvNvLisv0si05hcGQDZt/WjbolprQqOCNFljWzVh7miw3H2PfqUOp4e1T3NhI3QFEUFu08xWu/H6RBgDef3dmdrk2Cq3y+szW899QFxny2lc/u7M6NnWUVU4ltYpMzeej7vZzPKeLlkR24q09ThKhaQSRnpXkrxWxW6PnWGgZHNuCD27pdzm0kbkBmfjFPLolhffx5RncL4+0xnfHzqvpz256OHf7kP5dTyOEzOcwYLodAJPbx8/Lgg9u60qNZXV7/4yAjPt7M7b2asGRXEqmZBQ7NcXg5bE5MJ6pJsDTHErsIIbizTzM6hwfx0Pd7GffFNkZ1C2NLYppDc81eLlsS0hAC+rWsr8r9Ja5Bl4hg/nxsAE8sieHl5fv5LTqFlMwCzmhAw4fOZJORV8yA1rKstMQ+wX5efDOxF5/9m8j/rT7C9mMZmBXliusvOLyS3raj6QBS0JJLIoTgrr7N+PnBfuQXG/lg9ZGyHK5q5unMyjcQl5xJf6lhSRXoEhHMikcH0LKBPz/vSdZMrtnNiWl0Cguq1siMxD0J9vNi3sRe3NCpEbtPXuC0RjS8JTENQLbFkkui0wmmDWnDg4NacSa70CH1FxxukDcnpBHs50mHsEBHX1pSS+naJBhvj8qLMtTK07ntWDpmBQa0kY2ypGrU9fciu8BQabtaGs4vNrL31AVpLCRVRqcTxCZnVdquZr7kzYnptAmtQ8NAH1XuL3E9ft+XWmnb5WrYoQZZURS2JKZxVav66HVVm8MkkZjNCmeyC23uUyNP55bENPy89HSNqPp8UokkNUs7Gt55PAODSaF/azm9QlJ17KXfVEPDRUYTO4+ny5c8SbVwpIYdZpCXR6fQ5+21pGYVsjUxXZMlLCXao8ho4tEfo+3ur8lqScujU+g/cx3fbT+JyazwV9zpGru3xLVZtKNy1chSarri1/LoFKYtsnynZvwSK9tiSZU4mJqNvX4tNTTc/511FBrM/L4vVWpYUiVyCg14e9i2tZejYYcY5NLa6edyigDILDBots67RDtkFxqYNG8Xf8ae5uauYfhUEHZNVksq1XDp22eR0Sw1LLkkiqLw4ZojvLAsjvaNA1TVMPyn49wiI2Dp1ZY6llyKrUfTuP3LbQT6eFYyGGppOK0kdWJGXrHUsOSSnMspZPxX2zGYzHjqy7/pXa6GHWKQbdVO12qdd4k2OJddyO1fbmfXiQw+uK0rcyZEMfPWLuVyHNZktSSpYUl1MZkVXli2nw/XJHBr9wh+nzZAVQ2D1LGk+qyITWXSvF00CvLhr8cH8q7UsMTFOJ6Wx62fb+XY+Ty+mdSLWWO7OkTDDslh5Up13iXqc/R8LhPn7SQjr5i5E3syODIUsCQCVyudkNSwpDoUGkw8tjiaVQfP8vDgVkwfFokQQlUNg9SxpHos2HKc11YcpGezusy9pxdBfp5SwxKXYl9SJlMW7EIBFt/fl24luegdoWGH9CDbm9tR0/OWJNon+tQFxn6+lYJiE4vv61tmjtVGalhSVTLzi7lr7g5WHzrL/0Z24Nnh7apcWMHZSB1LqoKiKLz7z2H+98dBrm/fkO/u7UOQn6faYQFSw5Kqs+HIeSZ8vR1fLz2/PNivzBw7Cof0IE8fFsnzS+PKDYsIAU9eJ0tNuzvLo1OYtTKe1MwC6vl7kVNopGGQN99O6UOLEH+1wyvDlob1OlGjc+8k2sRaw6GB3ggEGXnFfDwhihFdwtQOrxy2dOzjoZM6dnOsNdw4yIfwur7sOnGBO/o05Y1RnTSVdcqWhr2lht0eaw2HBfsyOLIBS3Yl0bZhAAsm9yLUCakAHWKQS7uyS4Ov6+dFRn4xCedyHXF5iYtSutiitKFLzytGAPcNaKkpcwyVNeznpafAYKJzRJDKkUnUpKKGz2ZbFiI/MriV5swxlNdx6YLTGzo3VnXIXKIuFTWcmlVIalYhwzs14q3RnTQz+lFKRQ3rBDSr78eobtr7vklqhooaTsks4Icdp2gTWoclD/QlwMc5ox8Oq6Nbcd7Si8vi+HLjMQa2aSALLrgpthZbKMCXG49xz1XNVYnpYlhrOC23iKvfW897/xzmy7srlWiXuAm2NAywPCaV6cPbqRDRpbHW8V1zd/Bv/DmyCw0EOukhItE29jQcl5ylOXNcirWG520+zusrDrIxIY2r2zZQOTKJGtjTcF6R0WnmGJxQSa+Ul27qQOvQOjz1UwzpuUXOuo1Ew7jyYouQOt48cHUrVh44y56TGWqHI1EJV9YwwHM3tONCvoEvNxxVOxSJSri6hu/s25Qm9XyZ+fdhTGZF7XAkKmBPq6ftFGdyFE4zyL5eeuaMjyIz38CMX2NRFClsd8PVF1tMHdiCBgHevPPXYalfN8XVNdwpPIhR3cL4ZvNxzjj5YSLRJq6uYW8PPdOHtePQ6WyZC9lNUUvDTjPIAB3CAnn+xnasOXSO77afdOatJBpk+rBIfD315bbVdNL5K8HPy4Mnr2vL7pMXWHXwrNrhSFTAloa99K61YOiZoZGYzTB79RG1Q5GogC0Ne7jYAuQRnRvTOTyID1YfodDGULukdmNLw0LAU9e3dep9nWqQASZd1ZzBkQ14889DxJ/JcfbtJBpidFQ474zpTGiANwBBvp41nnT+SrmtZwStGvjz3j+HMZrMaocjqWFKNRxe0lOh1wkCfT24vkNDlSOrOk3q+XF3v2b8vCeJI2dlG+xuWGtYAH6eekyKQtP6fmqHVmV0OsHzN7QjJbOAb7edUDscSQ1TUcP1/LxQFDiVke/U+zrdIAsheH9cVwJ9PHlscbR8+3MzRkeFs/PF62jXKIDWoXVcyhwDeOh1PDu8HUfP5/HT7mS1w5GowOiocLY8N4QTM29i0dQ+pOcV89Zfh9QOq1pMu6Y1/t4evPv3YbVDkahAqYaPz7yJ7S9eS1iQL0//tI/8YqPaoVWZq1qHMDiyAZ+sSyQzv1jtcCQ1jLWG975yPWOiwvlkfSIxSZlOu6fTDTJYFjy9P64L8WdzeMfFHiwSxzCyaxh7Tl4oSz3lSgzt0JAezeoye80Rl3qgSBxPn5b1uW9gSxbtOMX6w+fUDqfK1PX34qHBrVh7+Bw7jqWrHY5ERQJ9PHl/XFdOpOfxzl+u9cI0Y3g7coqMfPavXHTq7rx6c0dCA7x5akkMBcXO6XitEYMMMDgylHsHtGDhtpOsPSTnc7obI7o0BuDP2FSVI6k+QgheuLEd53OKmLvpuNrhSFTmqevbEtkwgGd/jeVCnuv0ZE3p34LGQT68/bdcdOru9GtVn3v7t+C77SfZcOS82uFUmfaNAxkTFcGCrSdIvuDc4XWJtgnytbzoHUvL491/nPOiV2MGGeDZ4ZF0aBzI9F9iOZctV1S7E83q+9MlIog/9p1WO5TLokezegzr2JAvNxwlTaYtdGt8PPV8cHtXMvOLeWn5fpcxmz6eep68vi37kjL5K+6M2uFIVOaZYZG0Ca3D9J/3udSUhaeHWhZmfbBKLjp1d/q3DmFy/+Ys2HqCTQmOf9GrUYPs7aFnzoQo8ouNPPXTPswyp6FbMaJLY+JSsjiRlgdYquP0n7mOFs/9Sf+Z6zSfwufZ4e0oNJr5eG2C2qFIVKZjWBBPXNeWP+NO0/2N1S6j4Vu7RxDZMIBZKw9jkItO3RofTz2zb+9GRl4xkxfscpm2OCzYl8n9m7MsJoWDqdlqhyNRmRnD29GqgT/TFkXT7+21DtVwjRpkgNahdXh1ZEc2J6Yxd/Oxmr69REVuKinNuyI2tax0ZEpmAQqW0pHPL43TdMPcqkEdxvdqwg87TnG8xORL3JdGgT7oBFzIN7iMhvU6wXM3tONEej6Ld55SOxyJynQKD2Jox4ZEn8p0qbb44atbE+jjyUwnDa1LXAcfTz2juoWTVWDgdHahQzVc4wYZYHyvJgzv2IhZK+OJS85SIwSJCoQH+9IixJ8P1yTwxJKYSqUjCwwmZq2MVym6qvH4dW3w8tDxvsbjlDiP0pGPp3/eR8VBMFfQ8ODIBvRtWY+P1iSQU2hQOxyJCliP3v1jY7qN1nUc5OfJo0Nas/HIeTYnpKkdjkQlSnX8gY0c747QsCoGWQjBzFs7U9/fm8d+jCavSGYGcAeWR6eQnJGP8SJTa7Re/jQ0wIepA1vyZ9xpok9dUDscSQ1jPfJhD61rWAjB8ze0Jz2vmK83ylE8d6Pi6J29iTZa1/Hd/ZoRHuzLO38fktM13ZCaaItVMcgAwX5ezL69GyfS83j9j4NqhSGpQWatjMdwiYbMFcqf3j+oJSF1vHhHZgNwO2atjK808lERV9Bw1ybB3NSlMV9vOi4XTLsZVdEwaF/H3h56nhnWlgOp2fzhgtmRJFdGTbTFqhlksKSaeXhwK5bsTuLPWNfMbiCpOpfKgewqZajreHvw+LVt2Hk8g3UulAtXcuXUFg0DPDssEqPZzOw1ctGpO1GVXPSuouNRXcPp0DiQWSvjKTLKImTuRE20xaoaZIAnrmtLtybBPLc0VuY1rOXohbjofm8P1eVYZcb3bkqLEH/e/ecwJjm85zZcXMGupeFm9f25s08zftqdROK5XLXDkdQQl2qHwXV0rNMJnr+xHckXCvhu20m1w5HUIDXhJzyu+ApXwPLoFGatjCclswAB3PPNTlY/dTV63aW/wBLXw3SJ6QiZBQaeXxoHoPmS1J56HdOHRfLwD3vp8cZqsgoMhAX7Mn1YpOZjl1wey6KTudSrkCtpGODRIa1ZvPMUIz7eRJHBLDXsBlyqHQbX0vHANg0Y2CaED1Yf4ZtNxzmTXSh17AbUhJ9Q7TWx4gRrBTiWlse0RXvVCkniRMxmBV9P/SWP0/rqaWuKDCaEsHwRXSU9kuTy2JRwnuk/x+JVhV4JV9LwpoQ0TGaFQoNZathNCK/ivExX0nGfFvXILzY5PM2XRLtURcdXqmHVDPJ7/xy2OcH67/1n2HMyQ4WIJM5CURT+98cBCgwmPKowOqD11dOlvL/qCBVfYl3poSKpGvtTsnjwuz2WHO4jOlCFEWqX0fCslfGVsspIDddunhnatkoaBtfR8aIdlXN6Sx3XbqYPi6xSp9uVaLjGDXKx0cyve5JJzbK/cvrxH2PIlvk5aw2z1yTw7baT3D+oJbPGdiEsyOeix2t99bSiKOw+kWF3kYCrPFQklyYpI5/JC3YR7OfFwim9OZ1ViKJAPT8vBPbnwWldw2DpZZMadj98vTxQFAj29URg6YkL9vW0eazWdVxQbOK77Sft+gmp49rL6Khw3hnT2al+wilzkEvnFqdmFpTNBbq6bQMW7TzFwq0nOJdThIdO2MyH26CON6ezCnlp2X4+Gt8NUdVXXYkmmb/lOHPWJnBbzwieGRrJz3uSyuYOtWsUwPG0PIqM/2Xi1NLq6Yo6fur6tnh56Ji7+Tj7kjIRgko9yKD9h4qkalzIK2bi/J0UG80svq8PJ9Pz+ezfRMb1iGDWuK7Af1PFrEfDtKzh6cMiaRHiz9zNx/krzn7mIKnh2onJrPDB6nhaNvBn1ROD8NBb+si0rGNbGu7Xqj7fbjvBDztOkZlvwFMvMJgqN8ZSx7Wb0VHhjI4K54NV8Xy8PhFvvY5CB/oJhxvkil+0lMwCnv55HzoBBpPCwDYhzBrXlYzcIl5Ytr/cF9JDJ3jxpvYkX8jn/VVHuLptA27tEeHoECU1xNK9ybz2x0Gu79CQfq3qM3T2Bk6k59O9aTAfjY+ib8v6LI9O4c0VB0nLK6a+vxcvj+igiYUVtnT8zM/7UIAWIf68MboTXnrB/34/qMmHiuTKKCg2ce/CXSRfKOCHqX0IDfRh4rxdNKnnx6s3dyw7rlSr7/1zmNSsQvy99Lx1S2fNavipn2IwKxDg7cG9A1rQONCH9yrkE5Uarr38sS+VI2dz+eSOqDJzDP/puKIRVVvHNv3ET/tAgFlRGNqhIfcNbElSRn4lPyF17D7c0j2COesSGdqxEXtOXnCYhh1ukG0lbzaZFby99Pzx6FW0axRYtl0IUZbFws9TT4HBRKCvBw91bc3GhDRe+W0/PZrVpXmIv6PDlDiZNQfPMv2XWACOnc/lySX7aNcogG8m9mRIu9CykYHRUeF0b1qXQbPWM2N4O9Ub5FJs6VgB6vl7sfapq9GVzKX29tBr7qEiuTKMJjOPLo4mOimTz+/sTq/m9Xjix2jOZBfyy4P9qONdvtks7cUYOnsDLUL8NfPvb0vDZgWCfD3Z8tyQsr+jrr+X1LAbYDCZmb3mCO0bB3Jjp8aV9pfqWEvY9BOKgr+nnr8eH0iz+hZv0LN5vTI/IXXsfrQI8ad702AOn8lm84xrHDbzwOEG2d6cn4JiUzlzDOW/kIUGE7d+vpUnfozh92kD+PD2bgz/cCOP/xjNLw9dhafeNfIySmDHsXSmfru77HejWeGj8d0Y2SWszFha0yjIByEgWUPzxezp+EJecbm/QYsPFcnloygKr/x+gDWHzvLazR0Z3qkxv8WksDwmlSeva0tU07p2zw0L9q1SEYaawp6GswsM5Uy+1LB78MueZE6m5/PNxJ4222EtYk/D+cWmMnNcitSxezOmewQvLd/PgdRsOoUHOeSaDned9ub8XGoukI+nni/u6oFOJ3jw+z0E+3ky89Yu7EvOYvbqI44OU+IkftqVxO1fbQfAS6/jzdGdWPPU1YzqFm63Ufby0BEa4K2pBRWXq2OJa/Pp+kQW7TjFQ4NbMfGq5iRfyOelZZaRrEeuaXXRc8OCfUnN1E7ZZqlhSSmFBhNz1iYQ1TSYIe1C1Q6nykgNS6rKiC6N8dLr+HVvssOu6XCDbCv1hqdeVGkuUJN6fswZH0X82RyeXxrHDZ0aMb5XEz7fcJStiWmODlXiQI6dz+WmOZt49lfLtIpJVzVn36tDuatvsyr1/ocH+2rKINvSsZzTVrv5eXcS7686wpiocJ4dFonJrPDUEsu88w9v71ZuzqYtwoN9ycgrJr/YWDMBXwJbGvbx0EkNuyE/7DjF6axCpg+LdKmF77Y07KWXGpZUJtjPi2vbh/J7TCoGk/nSJ1QBhxvk0tQbpUmcPfUCX08913doWKXzB7VtwDNDI/ktJpX5W07wysgOtAjx58mfYriQV+zocCVXSGpmAc/9GsuQ/9vAgdRsAJY/0p//3dwRX69L5ygsRWvD0xV1DHDvgBZyCK+Wsj7+HM8tjWNgmxBm3toFIQRfbDjKzhMZvHZzR5rU87vkNUq1opUXPVsa7teqvtSwm5FXZOSz9Yn0b12fq1qFqB1OtaioYb1OUM/fixFdKs+hlkjGdI8gPa+YjUfOO+R6TpnYOzoqnC3PDeHEzJv48f5+ZBca+WLD0Sqf/9DVrbi+Q0Pe/usQcclZzBkfRUZeMTN+jUWpQplMifNJzy3ijRUHGfz+v/y4K6ls+x/TBtCtSXC1rxde15fTmYWYbaT+U4tSHR9+YzhhQT6sjz+HSUPxSRxDbHImj/ywl3aNAvj8rh54eeiITc5k9uojjOjSmDHdq2Yow+taHuIpGppmYd0Wj+sRwebENE6m56kdlqQGWbD1BOl5xTwz1DV7Xa01/Okd3TmTXchiq2eORFLK1W0bUM/fi6V7HVNB0ekr33o0q8vIrmF8tfFYlXsIdTrB/93Wlab1/HhkUTQNAryZMbwdqw6eZdHOyhVzJDVHTqGB2auPMOi99czfcpzr2ocSUscbLw8di+/rS+eIy5scHx7sS7HJTFpukYMjvnJ8PPXMuKEdB1KzHTq/SaI+J9PzmLJgF/X8vZg/uRd1vD3ILzbyxI8xhAZ489bozlUeki6dF5lyQRs9yBWZPiwST72Od/46rHYokhoiq8DAlxuOcl370IsuMHUVhnVsSJ8W9Zi9+ghZBbKYmKQ8Xh46bu4axupDZ8nKv3J91EhqiBnDLW+u7/1T9YY50MeTL+/uQX6xkYe+38NdfZsxsE0Ib6w4SMLZHGeFKrFDocHE3E3HGPTeej5am/D/7J13eFTF94ff2Wx6JSGN0EMPJNTQpEgVRBFFRBEpgtg7in79YcGCYBcVlSKCAipIlyYI0ltCIEAgdNIDpNfdvb8/dhM3yW5II9lN5n2e+2T33jv3zm4+O/fMzJlz6NvKmw3P9SEtW8PNrDzmPdyJnoFeFb5+wRSaJblZGHNvSAM6NvJg7pYoMnMtw8dUUjmuZ+QyYdEhtDqFJZND8XHVZ2SateE0F69n8umYjrg7mc4wZgpfV3tsVMJiXCyK4+PmwFP9AtkcGc/+89drujqSauDH3RdIy9Hw8mDrHD0ujhCC/xvRjptZeXyzM7qmqyOxQB7o3JA8jY6NpSRCKivVYiA3rOfE1D7NWRsey7ErN8tcrqWvK3NHh3DsSgofbDzNp2NCcLZT89zyMHKKxUaU3B40Wh0rDl3hzk/+4f2Np2kf4M66Z3sz75HOzNt5jj3RyXz8QDBDgvwqdZ+oeH2nZ9S3++g9ewdrwqpmiqSqEEIw8552JKXnlstdSGKwCVjzAAAgAElEQVSZZOVpmPzTYeLTclg4sRuB3i4AbImMZ/mhK0zrG1juDt+GiDhQYN7OaIvUMMDUvs1p4O7A+xtPSXehWk5yRi6L9l5kRLA/7Rq43boA+sQcvWfvoNmMjRar4fYB7ozu3JDFey9yKVm6C0mK0j7ADT83B95ZF1lpHd+WVNOmeKp/ICuPXOWlleHka3TEpeaUKZj33cH+HL/WnB92XyCkkQdzHwxm8k9H+HjzGd6+J8hsOUnl0OkUNp6I47NtZ7mYnEnHRh58OiaEXoH1URSFN1afYNOJeN66uy2jK5ntcE1YDF/9fa7wfUxKNm+sPgFgUQuKOjeux70hDZi/6zy/HblKYlquDEhvhWi0Op755RgnYlL5fnxXOhumnhPTcpixKoL2AW68PLhVua5ZkPGrII26pWq4wF3ohRXhdJm1jdTsfKnhWsq3O8+Tk6/lpTJq2VTWOkvUMOjdhdYej+WuL3eTm6+TGpYUsjY8luSMXDS6yrfF1ZZ9w9lezaA2Ply+nkVsag4K/1X8Vtb9a0Nb07O5F//78wQ+rg5M7NWUxXsvsfNMYvVUvg6hKAo7oxK5Z94enlsehp2Nih8f68qfT/cqXAH98eYoVhy+yrN3tmBKn+aVul98ag5vr40skj8dIDtfy9wtUZW69u2gUyMP8rUKCWm55dKwxDJQFIX//XmSnVFJzLqvfWF0HZ1O4ZXfj5Odr+WLhzphpy5705idp+Xd9ZElMn5ZqoZ1OgUhICU7X2q4lhKXms2yg5cZ3aVh4exIaeh0Cu9vPGU1Gt53/jo6nUJOvk5qWFKEOZvPFBrHBVRUx9Wanm6XidAbZam42kbFvEc64eVsx7SlR3myXyBt/FyZ/sdxktItb1GXtXLk0g0e+v4AkxYfJi0nn88fCmHTC30Y3M63cKHS97vOM3/XeR7p3phXhpRvlK2A6xm5LDtwmTHf76fn7L9JzTHtTG+JvpwL9lwssc9SHyKSknyx/Rwrj1zl+QEtGNe9SeH+n/Zd4t9zybx1dzta+NzaoMjVaNl2KoHnl4fR5f1t3DSzIMQSNfzJ1rMUDwYkNVy7+OrvaBRF4fmBLc2eoygKEddS+GDjKXp/vIPkDNNhVC1Rw3O3RFWZESSpPWTnaYlNNR1FqCI6rjYXC4C4SlTcy8We7x7twoPz9zP9j+N8MbYjI+ft5dXfj7N4YjerSZ1piUTGpvLJlih2RiXh7WrPrJFBPNStcYlRtJWHr/DRX2cYEezPrJHtyxVwPjU7n62R8ayPiGNvdDJanUILHxdeGtSKZQcuk2iio2OJ2ZLMadUSHyKSoiw/dIUv/z7HmK4Ni0w7n4lPY/bmMwxq68O47o3Nltdodew7f531x2PZHBlPeo6Gek62jOoUwJbIeJMGhtSwpLq5fD2T349cZVz3xjSsVzJ+99mEdNaFx7I+IpbL17OwtRF0blzP7PNZalhiDVy9kcW0pUfNHq+IjqvVQDaXDKKsFQ9p5MF7I4OYsfoE64/H8taIdvzfmpMs3neJx+9oVtXVrfVcTM7ks21nWX88FjcHNa/d1ZqJvZriZFdSFptPxvHG6hP0beXNZ2M6YlOGDklWnobtpxNZfzyWXVFJ5Gl1NPZ04sl+zbknpAGtfV0RQtDY06mI7xtYbta6ympYUjP8fTqB//15gjtbe/PBqP9Ct+Xka3lxRThuDurCBCHG6HQKRy7fZP3xWDadiON6Zh6u9mqGBPlxb8cG9Ar0wtZGRbemnlLDEovgi+3nUNsInhnQonDfpeRMNkTEsv54HFEJ6agE9G5Rn2f6t6Br03q8sCIcldAn4sjX/jcyKzUssQb+PZfEc8vD0OoUnujTnKUHLldJW1ytBvL0oa0r/RAZG9qY8KspfLPzPN+P78Kgtr58/NcZujfzpH1AxWLw1jXiU3P48u9z/HbkKnY2Kp7uH8i0voFmQ1rtjU7m+eXhdGzkwfxHOxeOLK8Ji2HulihiU7ILF0kM6+DHrqgk1kfEsf1UAtn5Wnzd7Bnfswn3hDQgpKF7CSOkwHG++LUsccGFKQ0DDGrrU0M1ktyKsCs3eebXY3QIcOebcZ2LpD6ftvQoZwwRVEbO28v0oa0Z2bEBEddSWX88lg0RccSn5eBgq2JQW1/uCWlAv1beOBRLf2vtGrZUQ0hSNgra4gKjcUAbH7Q6hR93X2B9RCwR11IB6Na0Hu+NDGJYe3+8Xe2JSclm/IKDxKRks2BCV9KyNVarYZlG3boxZU/cSnuKovD97gvM2XyGlj6ufD++C03rO9OugVuV6FiUJzNd165dlSNHjpT7JsasCYvh/Y2nSM7Iw9PJjpn3tCt3xXPytTz0/X7OJ2WyZHI3nlp2DFcHNeufu8Pk6KdEz83MPL7bdZ4l+y6hUxQeCW3MMwNaFMZ/NcXxqyk88uMBGtZzYuW0Hng42QElVzwD2AiBrVqQk6/D09mO4R38uCe4Ad2aela5C4wQ4qiiKF3LW66qNFzw4/Nzc8DRzoaL1zOZOaIdk3rLmQxL4kJSBqPn78fVQc2qp3pR38W+8Njsv04zf9eFIuerVQIPJ1uSM/Kws1HRr7U394Q0YGAbH5ztq7ZtsQQNx6RkoxIwd3QID1QyGo2kZjDVFgug4Mke3NCde4IbcHewf5ER1ujEdMYvPERGroZFE7vRralnue9dUQ1D5XVcvFPwwsCWZY7YIbEsTGnY0daGj+7vYNY+zMzV8NqqCDZGxHF3B3/mjA6ucBttTsfVbk3e1ymAEcH+hH74N31a1q+QVe9ga8N3j3ZhxNd7mLHqBO/f155py44ya8NpPrq/w22otXWTkath0Z6L/Lj7Ahl5GkZ1CuClQa1o5FnSP82Y6MR0Ji4+hKeLHT8/HlpoHIN+pKz4KKpWUbAXKn6eHEqvQC/UNtW6BrTauK9TQBHd5uRreWFFGO+uP0VCWi6v39W6XP7ZkttDUnouExYfQgBLJoUWMY5vZObxw+4LJcpodArpORrmjA5maJAf7o5lTxRiTRRoeGNEHM/8eqwwTbbE+jDVFiuAm4Oadc/eQdP6ziXKhF9NYdLiQ9ioVPw2rSdt/csWJ9mSKNBwWk4+XWZtK/EdSKwHUxouWHRpyka8lJzJtKVHOZeYzhvD2vBE3+a35ZlbIxaM2kbFwDY+7DiTSF6x8F5lpYGHI/Me7sT5pAzWhMfwRN/mLD90hc0nK589pbaQk69l4Z6L9Juzk8+2naVnoBdbXuzLZ2M63tI4vnYzi0cX6BvQpZO74+tWdJTZ3GKI7DwtfVt511rj2BQOtjZ8O64L47o3Zv6u87zy+3HytRXTtaRqyMjVMOmnQySn57FoYrciRoKiKMxYFYG5PBl5Gh1jujaqtcaxMf1ae2OnVrE1MqGmqyKpIOba4vQcjUnjeM+5ZB758QAuDmpWPWWdxrExbg629Aqsz5bIeMozIy6xHMqz6HLnmUTunbeHhPQclkwOZVq/wNs2IFVjVszQID/SczQcuFDxlKe9WtTn9bvasOlEPG4OtgQ3dOf1VSeIS63bK1k1Wh2/Hb7KgE/+YdaGU7T2c+XPp3vxw2NdaeXresvyyRm5PLbwEJl5GpY+HmqykTW3GKKuLpKwUQnev689rwxuxepjMTy+5IhMSV1D5Gt1PLXsKKfj0vl2XGdCGnkUOb7y8FW2nkrAzcH0BFpd0rCLvZo7WkjjwpopT1u86UQck346RGNPJ1Y92YsmXiXbdmtkSJAvl69ncTYho6arIqkAxrN7xhhrWKdT+Prvc0xecpiG9ZxY/+wd9GnpfVvrVWMG8h0t6+NkZ8PWU/GVus4TfZszvIMfn26N4qFujcjX6nhxRXidTKOqKAqbTsQx9IvdvLYqAm9Xe36Z0p1fp/agkyFb2K1Iz8ln4uJDxKZms3hiN7OjC9OHtsau2ChxXV/oI4TguYEtmX1/B/acS+LhHw+QnCHjdFcniqLw+qoI/j2XzEejOnBnm6KLJy8kZfDu+lP0buHFO/cG4aCWGh4a5EtMSjan4tJquiqSCvCqiXj0pnT868ErPPPrMYIberDyiZ74uJlfe2Jt6GP1w9bIytkTkuonOSPX5IyrsYbTc/J5ctlRPt12lpEhDVj1VK9bzoJXBTVmIDvY2tCvlTdbIxPQVcKYFUIwZ3QIgd4ufLr1LNP6BnLw4g3m7zpfhbW1bBRFYffZJO6dt5enfzmGSgjmP9qFNc/0pneL+mW+Tk6+lilLjnAmLp3vHu1C11IWbdzXKYAezT0pmNgI8HAs1aG+LjE2tDE/jO/K2YR0Rn+3jyvXs2q6SnWGT7ZGsfpYDC8PbsWYbo2KHMvX6nhpZTh2ahWfPtiR+zs3ZLJReMi6quGBbX1RCdgi3SysEjcjVyBBSR0risI3O6N5888T9GvlzbLHu5uNWGSt+Lg60KmRB1sqOeAmqV40Wh3P/nqM7Hwt3q722AhRQsPRiRnc981e/j6TyMwR7fj8oY442tnc8tpVQY06ig4J8iUxPZfj11IqdR0XezXzx3chT6Njx5kEBrfz5bNtZwm7crOKamq5HL18k7E/HOCxRYe4kZnHJw+GsPnFvtzV3q9cfjl6oYZx6NINPh0Twp2tzYctWxMWQ+/ZO9h9Lhk7tYovHurI3hkD6pxhURqD2vnyy5QepGTnc/93ezkZk1rTVar1LN1/iW92nufh0MY8ZxQDtoAvt5/j+LVUZt/fAT93B9aExbB0/2UA/N0dLDak1e2mvos9XZt4ytE3K+TPY9d4fIk+EkQ9J1s+L9YW63QKH2w8zdwtUYzs2IAfH+tabcZFdTM0yI+TMWkm4yNLLJPZf53hwIUbONnZkJSei51aVUTDWyPjue+bvaRk5bPs8e5MvqNZtS6Ar1EDeUBrX9QqUSUjF4HeLnw6JoTj11KxtRH4uTnwwopw0s2kMbZ2zsSnMWXJYR74bh/nkzJ5994gdrzaj9FdGpYpiYcxOp3C66tOsP10Au/eG8TIjuaNhIJwLAWNUK5GxxurT7AmLKZSn6c20qVJPf54shf2ahse+n4//54rmWpdUjVsPhnPzHWRDGrry6yRQSUa0UMXb/DtP9E82KUhwzr4F+o43eAnHpeaU6d1PCTIlzPx6XK2w4pYExbD66tOFL6/mZVfRMMarY7pf0SwYM9FJvRswudjOhaJAV7bGBLkB0g3C2thbXgMC/ZcxEYluJmlt9Oy87W8sfoEq49d47OtUTyx9CjNvZ1Z/9wd9Az0qvY61uivxd3Jlh7NvSrth1zA0CA/nrkzkE0n4ukZ6MW1m1m8vTaySq5tKVy+nsmLK8IY9uW/HLx4g+lDW7P7tf5M6NUUe3X5RwYUReGDTadZdewaLw1qxWM9m5Z6fmnhWCQlaeHjwuqn9f5SkxYfrrMG2O3kyKUbvLAijI6NPPj64U4lIqik5eTz0spwGnk68fa9QYDUcXGGtDMYF3KK2mqYs/kMecV8Nws0nJOv5cllxwrb9XfuDaryWPSWRrP6zrTydZERWayA03FpvL4qAjsbVYn1YgVG8lc79AMav03rWWMLp2u8Ozk0yJcLSZlEJ6ZXyfVeHtyaPi3rsy48ln6tvFkdFlMrjJKEtBz+9+cJBn66i82R8UzrG8i/r93JM3e2qFRylG92RrNwz0Um9mrK8wNLTksXpzzhWCR6fN0cWDmtJ12b1uPFleH8aCL+rqRiRCem8/iSIwR4OLJwQjeT08cz15wkPi2HLx7qiIshkLy5adi6quPGXk608XNlixx9sxpiU3NM7o9JyWbCokP8fSaB90YG8cKglnUmLvuQdn4cunSDm5l5NV0ViRlSs/KZtvQo7o62JTp4BeRqdMy6rz1zRgeXyFpandS4gVzQexj02W56z95RaWPWRiX4amwnfNzsiYxNo3l9Z95ac9Jqpw5TsvL46K/T9Ju7k5WHrzI2tBG7p9/JjGFtiiTuqAhLD1zmk61nGdUpgJkj2pWpEfV3N73yuS6FxjJFgV92sxkbTerY3dGWJZNDubuDPx9sOs37G05VanGqRN9pnLDoMLY2KpZMDsXTueTvYW14DGvCY3l+QMsikVw8zMQ4rss6buLlxOFLN2lqRsMSy6G0OOu2NoKjl2/yxUMdbzkjWNuwV+tHJDvN2iY1bIFodQovrAwjLjWbb8d1oYEZe6K+ix3jezSp8Y5djRrIa8Ji+Hjzf1OaMSnZVeIHWM/ZjvmPdiE1Ox+NTkGnKDy/Isyqkjdk5mqYt+Mcfebs5IfdFxjW3p8dr/Tn/fs6VEl4nnXHY5m59iQD2/gwZ3Rwmaff+ptYvFcXQ2MZY+yXrWBex/ZqG75+uBMTezVlwZ6LvLgyvMKJcuo6aTn5TFx8mJSsPH6a1M1kyJ9rN7N468+TdGlSj2fuDCzcf/VGFtn5WopLvi7reE1YDP9E/ecjX1VtseT2sOLQFZP7CyT944Supa4lqY2sCYvhm53Rhe+lhi2PL7ef5Z+oJN65N4guTeqZDD/roFbx1t3taqB2Jan2VNPGlDe9IPyXfz02JZsGHo5mV563D3Dng1EdePX34zRwdyD8agpf/X2OV4ZY9gMwV6Nl+cErzNsZTXJGHoPa+vLq0Fa08au6bEf/RCXy8spwujXx5JtxnW+5cMM4570AfFztUasEcak5pf4P6grl0bFKJQhp6K5PA3s8li2R8bx7bxBjQxtXZ5WtmjyNjieXHuVcQjqLJnajfYB7iXO0OoWXVx5HAb54qCMbIuIKNWxno0KlgrfubsfCPRdv2ZbUBeZuiSJXY9qftbJtsaRqMG6HCxjXvTH/RCURk5KNSug74cumhNKlifkQnbWVuVuiyJEatli2Rsbz1Y5oujfz5Jsd0fzvz5Mlzmng7sBrd7WxmP9BjRrI5fVnLRipKzBGCnqIgMkvdHSXhhy/msLSA5dxsrNh3s5oereoT4/m1b8a8lZodQqrj13ji+3niEnJpkdzT74f34YuTcqW4KOsHL18gyeXHaWVrysLJna9pX9P8e9cAVKz8/n4gWCLEXFNY06vMSnZxKfm4Gc0jbQmLIY3/zxZ+H0WRAHJ0+h4rFfT6qiuVaPTKUz/4zj7zl/nszEh9G1lOpPS/F3n9SELHwzh6OWbRTScp9Vhi8DT2Y69MwZUZ/UtltvdFksqR/Hvu4CuTeoxuktDJv10GDsbFT8/HlqlgynWhNSw5XI+KYOXfztOo3qOHL+aUqIjM7ZbI2Y/EFxDtTNPjbpYlDddcUVWnv/fiHZ0buxBVp4WRYGXVoaTmmU5od8URWHzSX32u+l/RODpbMfPk0NZPrVHlRvHZ+LTmLT4MH5uDiyZHIqbw62DxZv6znM1ujq72t8Upfmt9pr9N+MXHmRteAzZeVqT36cCvLvhFBeSZJrUW/Hx5jOsDY/ltbtac3/nhibPibiWwufbzjIi2J/7OweY/M7ztYrUsBHV0RZLKo6p7xvg/Y2nGbfgIO6OtvzxZK86axyD1LClkpGrYdrSo9ipVeRpdSWMY4B/zyXXQM1uTY0ayNOHtsbRxAjm8A5+Js+vSAQFO7WK7x7tUpjrOy41hxmrI1CUml8gtedcMvd9s5cnlx1Dpyh8O64z657tTd9W3lXunH7lehbjFx7CyU7N0se74+1qOvd5cWTUiltjSsc2KsH/hrfl2TtbcCEpkxdWhNPtg+1moydodQqj5+8n/GrlkubUZhbtucj3uy8woWcTnuoXaPKcrDwNL64Ix8fVng/u64AQQmq4DJjSsACeN5FwBWS7UN2Y+16vZ+bRxMuZ35/sSWOv259615IxZ0+M6Wq6I13azJ+kalAUhem/H+dCUgbzHulEYlquyfMstd2oUQP5vk4BfHR/BwI8HBHo/U8CPBz5/eg1k1+YXwUjKPi6OfDtuM6oDaty/joZz8rDVytd/4oSduUmj/x4gEcXHiQ5I485o4PZ+mJfhnfwvy2rNhPTcnh04UHytTqWPh5arhzmHmZSktbl1f7FKa5jF3s1Wp2Cv4cDLw9pzb+v3cnyqT302Q3NXMPX1R5nexse/uEAO6MSq7P6VsHGiDhmbTzFXUF+zLynZCKQAmZtOM3F65l8OqZjYTpdc51BqeH/KK7h+s52IODAxRsmBxPqmYgYAvoBiZ1nEmWElirGnFbtbFSseKIHPq6VX7ht7RTXsL+bA/WcbPn96DVSs0vOGvuaWeyuVgl+3n+JDEMSIUnFmb/rAn+djOeNYW3pFVi/3KP8NU2N+iCDXtTG/j4XkjK45+s9PL88jBVP9CgM+q/VKdRzsiPOROzHR8qwwCm0mSdvDm/LextOAfDu+lN0bepJCx+XKvoktyYqPp1Ptkax7VQCXs52zBzRjnE9GlcowUdZSc3K57FFh0jOyOWXKd1p6eta5rK/HblKSlY+KgHGz7u6vNrfHMY6ztfqGPP9ft5YdYIOAe408XKmZ6AXPQO9yNPoWHc8tkR5O7WKJZNCeW55GFOWHOHjB4IZ3cX0yEdd48CF67y0MpyuTerxxdiOZjNFbomMZ/mhKzzZL7Aw69LZhHSTU9NSwyUp3hZ/sf0sX2w/R69ALx7s2qhw/9mEdDJzNQgBxrazWiWwV6uY9NNhmng5Mb5HEx7s2gh3MyH1JGVn+tDWJXyQVQLev6+9/H6NKK7hsCs3eXD+fl7/I4LvHu1c2LHOyddipy45PliQhXfm2kjmbI5idJeGjO/ZhEDv6rMTagv/nkti7pYzjAj2Z0qfZoBpHVtyW1zjcZCL09zbhQ/v78CRyzf5fPvZwv2fbI3iVFwao7s0LOwh+rra4+Foy4I9F4iMTb3ltSf1bsrIjg0Ava/RCyvCyNWUfHhWNVdvZPHyynDu+nI3B85f5+XBrdj12p1MvqPZbTWOs/O0TF5ymPNJGXw/vovJkCrm+PXgFV77I4I7WtZn9v3Bhd95gIcjH93fQS5iKAVbGxVfP9wJIeDZX//T2P7z19l0Io52/m6F8R9dDYkrrt7MZsCnu/B3d0CrU3j19+N8+0+0RbgC1SRR8elM/fkIjb2c+PEx84tKE9NymLEqgvYBbrw8uBWgz9Y09ocDONra8MawNlLD5eS5AS3p2dyLmWsjOZegT+SUkpXH1J+P4Opgy9sj2hX5Tj95MIQjbw3m64c74e1iz/sbT9Pjw795888TnIlPq9kPY+Xc1ymAD0a1x9ler39HWxvmjg5hTLdGtyhZt+nUuB6v39WGzZHxLD1wGdBP+7/55wmu3Mhicu+mRTQ8d3QI/74+gD+f7sXgdr78cvAyAz/dxfiFB/n7dEKJrG8S01y9kcVzy8No6ePKnNHBhR2T4qP8lt4Wi/I8gLt27aocOXLkNlbnP17/I4LfjlzF09mO64asOL0Cvfh1ao8i512+nsnDPxwgK1/Lsse7mwz5ZExWnob7v93HmXh9gz+1TzP+d5ti7iWm5zBvRzTLD11BJQQTezXlyX6BZqcnq5I8jY4nlh5h99kk5j3SmeEd/Mtc9uf9l5i5NpIBbXz4dlznGs1kYw4hxFFFUbqWt1x1anhLZDzTlh7F2d6GzFx93N36LvZsf6VfkQWSuRotvWfvJDmjpH/WHS3qs2RyqNlR09pMXGo293+7D52isPrp3gSYmYbT6RQmLD7E4Us32PBcH1r4uHAyJpVHFx7EQW3D8id60Ky+czXX/tZYg4YT03IY9uW/haNtBTN4LwxsyUuGjog5Tsak8vP+S6wNjyVXo6NHc08m9GzK4Ha+JdKBS0onX6vj9T8iWB0Ww8ReTZk5op1FpI6uqIah+nSs0ylM+fkIu84m4elkR5Khnb0ryI/547uUWjYpPZcVh66w7OBlEtJyaeTpyPgeTRjTtVGlE3XVVnLytTzw3T6u3shi3bN30NQC297imNOxxbZSBREcrhuljDx2+WaJoN9NvJxZ8URPnO3UjFtwkJMxpY8kO9mp+X58F9wc9CN3P/57kV1nk0otU15Ss/KZs/kM/eb8wy8Hr/Bg10bsmn4nbwxvWy3Gsc4wAvlPVBIfjOpQLuN44Z6LzFwbyeB2vnz3qGUax9ZCdp4WG5UgM1c/gqxT9CHydpwu6mNsr7Zh34wBDG7nC+jdgQa00Sdk2ROdTOCbm1jw74U6lT41NTufiYsOk5Gj4adJoWaNY4Cf9l3i33PJvHV3O1r4uHD8agqP/HgAZzs1K6dZpnFsLfi4OfBg14bEpeYUcW/7YfeFWyZgaB/gzpzRIRx4YyAzhrXh6o1snvrlGH3m7OSbndFcN9EhlJQkJ1/LU8uOsjoshlcGt+LteyzDOLYWVCrBgDY+aHVKoXEM+nwAt9Kwt6s9zw1syZ7XB/DNI53xd3Pkw01n6PHR38xYFcHpODkzYoyiKLy5+gSn4tL4cmwnqzCOS8NiR5B7z95hcjVpgIejydilV29kMfaHA6Tn5PPLlB50aFj6SPKOMwlM/kn/WVwd1DjbqUlIq1zii6w8DT/tu8T8f86TlqPh3pAGvDy4VbWKRFEUZq6NZOmBy7x+Vxue6m96tb8pvt91no/+OsOw9n589XCnWyYQqUmsYfStvBrO0+h4bvkxtkQmMHNEO+4JacC98/YUMUzuCvLjgS4N6d/au8j/pzYFvM/J1zJh0SGOXbnJkkmh9GpR3+y5Z+LTuHfeXvq2rM+Pj3Ul7GoKExYewt3JluVTe5RrQWp1Yw0ahvLr2BxancLfpxP4ef9l9kQnY2ejYkSIPxN6NiWkkQdQu3RcFaTl5DPlpyMcvnyD90a2Z3yPJjVdpSJYwwgyVJ2GAU7FpvHz/kusCY8hJ19HaFNPJvRqypAgX2xtVHVaw0v2XeLtdZG8NKgVLwxqWdPVKTPmdFzji/TMUd4wQo08nVjxRA8e/vEA4xYcYOnj3QsbXVMMaOPLi4Na8sX2c6TnaEjP0a9YrUiw8DyNjhWHr/D1jmiS0nMZ0MaHV4e0pl2D6o9J+fm2syw9cJlpfZuXyziet+Mcn2zVx479/KGOFm0cW4XH6lwAACAASURBVAvl1bCdWsW8Rzrz/PIw3ttwCp2isP+NgawJi+HFleEAbI6MZ3NkPF7OdtzbsQEPdG7IuYT0IslHrDngvU6n8Mpvxzl48QZfju1YqnGck6/lxRXhuDnYMvuBYI5cvsmkxYfxcrFj+dQeFrsy2tqoqpBuNirBkCA/hgT5EZ2Yzs/7L7Pq6DVWH4uhYyMP2jdw44+j1wrjpFqzjquCpPRcHlt0iOjEdL4a24l7QhrUdJWslqoMS9iugRuzHwhmxrA2/H7kGj8fuMQzvx7Dz82Bzo092HEmsU5q+PClG8zacIpBbX14zkx4SGvDYq2gioQDKTCS3Z1seXThwVvGlH1+QEscTKxkLWuw8ILsdwM/+4eZayNpVt+ZP57syaKJ3WrEOF605yJf7YhmTNeGzBjWpkxlFEXhi+1n+WTrWUZ1CuALaRxXGRXRsK2Niq8e7sTwDn68v/E0C/69wH2dAlj6eCjOdjb4utnz5vA2dG/uyS8HrjDi6z1M/yOiVgS8VxSFWRtPsfFEHP8b3paRHUt/oMzZHMWZ+HTmPhhMdGIGExYdwsfVnpVP9JTGcRVyO0IztfBx5b2R7Tnw5kDeuacdadn5LDt4xWyq4LrG1RtZPDh/H5eSM1kwoZs0jivJ7dCwh5MdU/s2559X72ThhK609HVh08n4OqnhhLQcnv7lGI08nfjsoY61xgXIYi0hU0G/yxIOpGE9J1Y80RMPJ1vGLzhI2JWbZs9VqYTJrC5gume5JiyG3rN30HTGRjrP2kbv2Tt4+bfjuDnY8tOkbqx8ogddm3qW4dNVPauPXeO9DacYGuTLh6M6lCmesqIofLpVH8ppdJeGfPJgiFw8U4VUVMO2Niq+HNuJuzv48/7G0/yw+zx9WnqzclpPtDqFb/85z+N3NOfQ/wYy6772aMysrI5JyeaH3ec5cukGOQYDukDDzWZspPfsHbf0watOFvx7kcV7L/H4Hc2Y2rd5qefuPpvEor0XmdCzCXY2KiYuPkQDD0dWTOthNl66pGJUVMdlwdXBlom9m7H95X5mzyk+NW7JGq4KouLTeeC7fdzMymfZlO70M5NOXVJ2bqeGbVSCgW19Wfp4d7PnxKRkl4iAUVt0nKfR8dSyo2Tmagzru2pP2EGLdbEomI6oiC9PgIcjK5/oydgfDvDYwkMseTyUzmZCnAV4OJr0TSresyyet/1GZh4CmNCzCW/fE1SjPabtpxKY/kcEvQK9+HJspzIZuYqiMPuvM3y/+wIPhzbig/s61Jpen6VQGQ3rjeSOCAEfbjqDToEn+wWy6qleTFh0iHELDvDNI50Z36MJ8/85bzb704ebzhiuJ/B3dyzSUFvS9N/a8Bg+2HSau4P9+d/wtqWeeyMzj1d/P05LHxd6tajP5J8O09TLmV+mdi/MmCmpOiqj47KiUgmzbTHAXV/sZlh7f+zVKr78+1ytcCcyxdHLN5n802Hs1Sp+m9aT1n5lj1svMU91aBjM2xMA3T/cztAgP4Z38Cc+NYe31tQOt7j3NkRy7EoK3zzSmVblyLNgDVjsIr2qIC41m7E/HOB6Rh5LJocWRsYwprjhC2AjBJ+OCSki1Kp08q9KDl64zmOLDtHGz5VfpvbAxf7WfR5FUZi14TSL9l5kfI8mvHtvzRr4FcFaFjhVFo1Wx0u/HWf98Vheu6s1T/dvQXJGLpN/OkxkbBofjmqPvdrGpIZtVII8ra7IPq2J33sDdwf2vTGwWj6PKfZFJzNh8SG6NKnHksmhpcYGVxSFaUuP8k9UEi8MasmX28/RwseFZVO641kNEWKqkrqi4bJiqi22V6sY3sGfazezOHL5JuYeVzXdDlcFu84m8eTSo/i62bP08e4WvcC0AGtZpFddmNKwg1rFQ90akZyRx44ziWTna0sk3yrA2nT825GrvPZHBNP6NeeNYaUPbFgyVhfmrSrwd9ePJHu72vPYwoMcuXSjxDnGgasL0CpKCT9cc73CmswhfjImlSlLjtCwniOLJ4WWyTjW6RTeXhfJor0XmdS7Ke+NtD7juC6htlHx+ZgQRnZswJzNUXyzM5r6LvYsn9qD3i3q8/qqE1y9kcWHo9rjaYjL6e1iz6djQjg2czBzRgfTo7ne7ceUcQwQm5rD639EcODC9WpPEXwqNo1pS4/SvL4L34/vesvEOSsPX2XrqQQ6NvLgi+1nae3nyq9Trc84lpTEVBKBjx8I5vOHOvL7k704WEonLiYl26qT6qw7HsuUJYdpVt+Z35/sZRXGsaQkpjQ8+4Fg3h3Znm/GdebY/w1m/qNdTBrHYN7OsEQirqXw1pqT9G7hxfQhlpkJr7LU6hHkAuJTc3jkxwMkpOXw0+RQupnxE87X6njo+/0cu6Jf3Lfn9TtpWM+JteExvLAi3GSZmurxXUjK4MH5+7FXq/jjqV5lWmyg0yn8b81Jlh+6whN9m/PGsDZl8lW2ROra6FtBdr0/w2J4dUgrnh3QskjygHHdG9Mz0Itnfw3jrxf60Na/6CLRqzeyGP7Vv4XRWoxxtLVBCMjK0xLg4ch9nRowqlPD256G/drNLO7/dh82KsHqp3vh7166hi8kZXD3V3sKR2CCG3qwZHKo1abarWsariy5Gi3B72wl18y6kUaejgxv78+wDv6ENHS3mrZt6YHLzFx7km5NPVkwoatV+XDKEeTys3DPRWZtOGXymEBvZA9r70ffVt4Wm4fgekYu93y9ByEE65+7w+oHKKwuzFtV4ufuwHJDCLgJiw7x06RQQpuVNJJtbVTMH9+F0A/+BmDS4sO8MKglL/92nEBvZ2JuZhdZ1FdTOcTjUrMZv/AQAEundC+TcazVKcxYFcHvR6/xzJ2BvDqktdU8QCT6hSCfPBiCAD7ZehadAs8PbMmnY0LwcXNg/q7z/HLwSuG5xWnk6cSske2ZsSqixMJUB1sV93duiIu9mrCrKXz3z3m+2XmekIbujOoUwD0hDfCqYt/elKw8Ji4+TE6+lj+eurVxnK/V8dLK8MKpy06N6/HTpG64WpExIak4+VqdIW27DlsbQb72v4EdB7WK+zoFEJeaw8I9F/l+9wUCPBy5q70fwzv40alRPYucJVMUha93RPPZtrMMauvDvEdkYqbaztIDl5m14RQhDd2Jik8v0hbb2ajo1NiDnVGJ/BkWg7OdDQPa+jK8vR/9W/vgaGcZ2tBodTy3PIzrmXmseqqX1RvHpVEnDGQAXzcHVkzVG8kTFx9i8cRudG/uVeI8H1cHVj3Viwe+28e5xAye/TWMzo09+Pnx7mw/lVDjAcBvZubx2MJDpGbns+KJHgR633qUT6tTmP77cVaHxfDCwJa8OKilNI6tEBuVYO6DIQgh+GzbWXSKwouDWjFjWBt83ex5d71+VCI9J99k+eILVfzdHRjUzpfL17NYvPciOgU6N/bg+YEt0ekUtp9O5J31p3h/42n6tfJmVOcABrX1rfRDPCdfy5QlR7hyPYulj4eWaWHHl9vPcfyaPktmaFNPFk3qViaXIon1o9HqeHFFONtOJfDeyCDcHGyZuyWqcDr6rRHteNSQQCM1K59tpxP460QcS/dfZuGei/i62TOsvT/D2vvRtamnRaRt1+kU3ttwip/2XeL+zgF8/ECwDK9Zy/nt8FX+b81JBrX14dtxXdh0Io4PNp4mKSMXDydb3rkniPs6BZCv1XHgwnU2nYhnS2Q864/H4mhrw51tvBnW3p8BbXxwrsG2b86WKPadv84nD4bQPqD0hGzWTp1wsTAmMT2Hh384QGxKDosndaOHCSMZYOrPR9h2KgGABY91ZZAhDXBNkpGrYdyCg5yOS+PnyaFm626M8SKvgqn52kBdnp7W6hReXxXBH0ev8fzAlrxk6PA88fMRtp5KQK0S7H7tznLF+ExIy2FNWAyrjl3jbEIGdmoVg9v50iHAnaT0XDZExJKQlourvZq7g/0Z1SmAbk09yz0yp9UpPP3LUbaeSuCbRzqXKQ36oYs3GPvDfnQK9GzuxcKJXXGys37juC5ruKxodQqv/BbOmvBY3rq7LVP6/Bf+79iVm9z/7T7mPdKJEcEl4wSn5+Sz40wim07E8U9UErkaHfVd7LmrvS/D2/sT2syzRsJa5mt1TP/9OGvCY5ncuxlv3d3WIke4y4J0sSgbf4Zd4+XfjtOnpTc/PtalcK2FTqfQ7YPt9G3lzecPdSxRTqPVcejSDTadiGPzyQSSM3KxV6vo18qb4R38GdDWp1pdcjZExPLsr2E81rMJ741sX233vd3UaRcLY3xcHVjxRE8e+fEAkxYfZuHErvQKLJqta9/5ZHafTSp8P+XnI4T932Dq1eBUQq5Gy7SlRzgZk8r8R7uUahwXpLqMScnGwVZFTr6OGcPa8GS/smfWk1guNirBnAeCUQn46u9zoCi8NLgVwzr4sfVUAhqdwgPf7WPJ5LKNzoJ+hmVav0Ce6NuckzFprDp2jbXhMWyMiMPb1Z57ghvQwMOBU3FprDsey4rDVwnwcGRUpwBGdQ4o00yGoii8sy6SLZEJvHNPu1KNY2MN2wiBToE+Levzw/iuFjPVKLm96HQKb6yOYE14LNOHti5iHAMEB7jj6qBmz7lkkwayq4MtIzsGMLJjAJm5GnZG6Y3lVUdjWHbgCp7OdgwN8mVYe396BnrdlhHc4mmHXxjYks2R8ew4k8j0oa15un+gnM2r5WyMiOOV347To5kXP4zvUmQhskol6N2iPnuik1EUpYQW1DYqegXWp1dgfd69tz1HLt3gr5Px/HUyjq2nErCzUdGnZX2GdfBncFtf3J2q3lg2bosF0Ky+M2/d3a7K72OJ1DkDGcDb1Z5fp/Zg3IIDTP7pMJN7N2NteCyxKdl4udiRlq2haX0nfpoUSq/ZOwAY+8MBNr/Yp0YaM61O4cUV4eyNvs6nD4YwuJTR7OJhZnLyddiqBH5uMnlCbUKlEsy+PxiVEHy1I5rT8ekcNkRp8XSyIzNXw+jv9rFwYjezi1JNIYSgQ0N3OjR0583hbdkZlciqo9f4ef8lNDqFdv5uPN0/EEc7NbvOJvHtP9HM2xldJn/l73ad16dB79ecib2bma1DcQ1rFQWVgHtDGkjjuJZj/DB2trMhM0/L8wNb8sydJVPXqm1U9Gzuxb/nTBsXxjjbqxkR3IARwQ3IytOwKyqJTSfjWRcey/JDV3F3tGVIO1+Gd/Cnd4v62JnIsFqRz2Ks45iUbGasjkBR4INR7RnXvUml7yGxPIw7RfWc7UjJyqNLk3osnNjVpHvaHS3qs+54LFEJ6bTxM5+B10Yl6N7ci+7NvZg5oh1hV2/y14l4/joZz99nElEbjO3hHfwY3M6vSnyDi2tYAeJSstl0Is7q4jVXhDrnYmFMsmElZlxqTpH9Anj33iAe69WUqzey6DNnJwBvDm/DE32rZxTW+EHhZGdDVp62xBSjKSw1XnNVI6en9eh0CuMWHGT/hetF9turVbg72pKanc9XD3diaJBfpe5zIzOPdeExrDoWw4mYVNQqQf/W3vRp6U1GroYNEXGcjksr3D+qU0MGtvVh88n4Iv6iXZrU4/dpPUudUpYaLp3apuECTMWQVasEc0cHM6pzQ5Nllu6/xP+tjWTnq/1pVt/Z5DmKopCn1ZGr0ZGbryNXoy18nZqdz/bTCawJi+F6Zl6Rcj2bexHazJMz8Wnsjb5ORq4GJzsbghq44ePm8N+18nXEpmZz7WbZQnTVc7IlbOaQsn0pFo50sSiKKQ0LAR+N6sDY0MYmy8SmZNNr9o5bPt81Bg3n5Bv0q9HrLydfx5FLN/gzLIbI2LQiZVr6uNCvlTfXUrLZcy6ZjFwNznY2BAW44+fmYHQtLTcz84lOyiiR8c8UdaUtrpMjyAXUd7E3GXheAb7ffYHHejWlkacTSyaHMmHRIT7cdIZ+rXxue3aj4j+yrDwtapUoU5Ywc3GZazJes+T2oVIJLl/PLLE/V6NDJQRt/d14atlR3hvZvnAhU0XwdLZjYu9mTOzdjLMJ6aw6eo0/w2LYfjoRDydb7gluwMReTbiQlMmacP1+B1sV+RqlSPzlyJhU1h2PLXX0QWq4bjJ3S1QRwwJAo1OYuS6S6KQMg0H6n4Gbk68lKj4dgDs/+YegBm7/Hc8vakxUhP0XrpfoeGblaTl86WbFPqCBlCzTi2gl1o8pDSsKfLjpNDEp2YaOWVEDNzdfr8/3N55mbXhskQ5c4WuNrkyGa3HOJWZwLjGjyL7MPC2HLpbMCVEe6kpbXKcNZNAvTjKFsQD6tfJmUu+mLN57iaFf7ObMrLtuazgecw+KuVuibjmt4eVsR3KxkRAomTpbUnsoPgNSQEJaDjte7cezv4bx1pqTJKbnFi7oqwytfF15Y3hbpg9tzZ7oZFYdi+G3I1dZekBHCx8XHuvZFF83B/5vzUm0SlHjJEeju6WOG5Qx/bukdmHuoZueo+H7XRewV6uwt7XR/1WrsFfbFAnz5+/ugL3acNxW9d/r4uUKX9sYzvvvXAdDORuV4NiVm0z/PaJEWwz6WcbWfq40rOdEY08nGnk60qieE429nGhYzxEnO7XZmRCp49qLOQ2n5WiYtzO6mNb+02oBbo5qXO0di+jSwVjLZl47mNC0nVrFpeQspv58hIzckvHvAZp4OdGonhONjDXsqX9fz8mWLu9v50YdtifqvIFc1ofxzBHtWHn4Kll5Wu75eg/bXu532+pk7kdWkC3KnIETl6qP0yzQj4IXUFPxmiXVQ2kadrJT88P4Lrz55wm++vsciWk5vH9f+ypZva+2UdG/tQ/9W/uQlpPPxog4Vh29xtwtUQiB2bTAtxp9mD60dYlpSqnh2o9ZHd8iFfqMVRFsPBHH/Ee7VGlUigYejjz3a5jJYwqw+cW+pZZ/oHMAX+2ILrJP6rh2U5qG984YYPbZve1UAlN/PsKzd7akZ+Cto1OVFX93RzLNGMcAu6bfafbYxeRMsvI0ddqeqPOBF6cPbY1jsdFgUwIQQnDwTX0jfS4xgyX7Lt22OpXWO5v681GTBkaeRsfTvxxDURReH9amSKrLj+7vUCcc6usqt9Kw2kbFxw8E89yAFqw4fJUnlx0lO6/kqFhlcHOw5eHQxvzxVC92Te/PcwNamo03e6vRB1PpWqWGaz/mdPzaXW1KLde7RX3SczRExKRWeZ3MaTXgFhreeSaRH/69gLeLPb5u9lLHdYTSNFzazF335vr43Huik8yeU1EqouHMXA3Tlh7B0daG/xvRrs62xXV+BLl48oTSEoC4Otiy6fk+DP/qX95eF0n/1t408TK9MKQymBpBc1CrGBLkx7ZTCQz6bBevDGmNh6Mtn207S6xhIV9mnpZvHunM3cH+MqRbHaIsGhZC8MqQ1vi42jNzXSTjFhxg4YRutyV0YRMvZ14e3IqmXk7MWHWCPO1/bhYCaB/gxpXrWTT2cgJKhsIqqHtdaYQlesrTFhvTu0V9hIA955Lp3LheldaprLMZxhr2cNIvjm3r78aSyaFlWjsiqR1UVMNuDrZ0bOTBnnPJTB9atXUqr4ZjUrJxtLUhR6Nl6eTu3NGyPpPvMB91qDZT5w1koFwP43YN3HjtrtbM2RxFv7n/cP7D4VWemam0H9nVG1nMXHuSWRtOFZn6yDQs5MvXVmxBisS6KauGx/dsirerPc+vCGf0fH2s5Ib1nG5Lne7v3BCVEIWNbj0nW7xd7dl6KoEtkQmENvWkubcza8JiClOuxqRk88bqE4WfSVK3qEjHyNPZjqAGbuw5l8zzA6s2EVJZDJ7ii6pvZuWjEjC+RxNpHNdBKtq5v6NFfb7acY6UrDw8nKpu4KIiGs7O19sTyRm5VVYPa6ROh3mrDN0+2E5Sei42KoFOp1Rr6mlFUegyazs3sko6z9e28CvmkCGyKsehizeYsuQwjnY2TOjZlF8OXqnyFOqKopCTryM9N5/MXC0ZORoycjVEJ6az7MAVohLSzZatCzqWGq46Hv/pMH+fSQT02qnKtjhPoyMjV0Nmrob0HA2ZeZpCLWfkavho02nSckr6eUoNl47UcVE+2xpV6LNe1RrW6pRCDRfoNiPHoOlcDR9sPE1qdsnoKnVBwyDDvFU5M+5qwyu/Hy8MvVKdI19CCG6aMI6h7oRfkVSO0Gae/P5kL8Z8v585W6IK98ekZDNjVQRp2fn0aeVdxBAoaEwzczUl9hd5bXSsApGJAKljSdlZExbDv+eSC98XaDgjV0O/Vt4mjdpCY9fYYChmBBd06vIqOCsnNSwpK2vCYvhh94XC9wUazsrT0L+1j0mjtrCtzftv/3861hYpYyoSS1mo6xqWBnIF+Wzb2RL7svO1ZQrFVhXIUFiSytLazxUHWxWpxWSUo9Exc11kqWWFABd7deHmbK/G1UGNr6sDLg5F97vY2+DioMbZTl3kmIu9mpHf7DUZpk7qWFJW5m6JKmHE5mh0vLXm5C3LOtnZ6LVbqFU1Des5/afZYsdc7NUl9j/w3T6pYUmlmLslqtDNrIAcjY43/7y1hu3UqhLtbX0XO5p4OeFqot11ti/ZDj84fz/xJkLe1nUNSwO5gtR0MgMZCktSFSSmmfcx+/yhEJNGrYuDGkdbmypJu/76XW2kjiWVorQ2d+7oYJNGbUGHrSrWj0gNSypLaRqefX8Hk0ZtgbFbFWnRZwyTGjaFNJArSE2P4FZ0taxEYow5HQd4ODKqk+n0vlWJ1LGkspSm4Qe7Nrrt95callSW0jRsLkV1VSI1bBppIFcQSxjBlaGwJJVF6lhi7UgNS6wdqWHLRBrIFUT2uCS1AaljibUjNSyxdqSGLRNpIFcC2eOS1AakjiXWjtSwxNqRGrY86nyqaYlEIpFIJBKJxBhpIEskEolEIpFIJEZIA1kikUgkEolEIjFCGsgSiUQikUgkEokRQlHKngtWCJEEXL591ZFIykwTRVG8y1tIalhiQUgNS6ydCmkYpI4lFoVJHZfLQJZIJBKJRCKRSGo70sVCIpFIJBKJRCIxQhrIEolEIpFIJBKJEdJAlkgkEolEIpFIjJAGskQikUgkEolEYoQ0kCUSiUQikUgkEiOkgSyRSCQSiUQikRghDWSJRCKRSCQSicQIaSBLJBKJRCKRSCRGSANZIpFIJBKJRCIxQhrIEolEIpFIJBKJEdJAlkgkEolEIpFIjJAGskQikUgkEolEYoQ0kCUSiUQikUgkEiNqlYEshIgUQvSvwfs3FkJkCCFsaqoOEutGalhSG5A6llg7UsOSWmUgK4oSpCjKPwBCiHeEEMtu5/2EEJeEEIOM7n9FURQXRVG0t/O+ZUEIYSeEOC2EuFZsvyKEyDT88DKEEAtqqo6SkkgNF37ufCONZgghmhsd7yiEOCqEyDL87VhTdZWYRuq4TDqWbbEFIzVcWK/OQojdBo0mCCFeMDrWVAix09AWnzGuf22gVhnIVYkQQl3Tdagk04EkM8dCDD88F0VRplRnpSTVh5VreKWRRl0URbkA+o4fsBZYBtQDlgBrDfsltZDaqGMjZFtcB7BWDQsh6gObge8BL6AFsNXolOVAmOHY/4A/hBDe1V3P24aiKLVmAy4Bg4C7gDwgH8gAjhuOuwMLgTggBngfsDEcmwjsBT4HrhuOBQI7DO+TgV8AD8P5SwEdkG24x2tAU0AB1IZzGgDrgBtANDDVqK7vAL8BPwPpQCTQ1ej464Y6pgNRwMByfA/NgNPAMOBasWMK0MJMuUeAiJr+P9blTWq48LrLzBwbYrimMNp3BbhLathyNqnj0nVsOC7bYgvepIYVgA+BpWaOtQJyAVejff8CTxpe3wGk1PT/sVIaqOkK3A5BGwlmWbHjf6LvCTkDPsAhYJqRoDXAc4AacETfWxoM2APewG7gC1P3M7wvLujdwLeAA9AR/YjuAKP65QDDARvgI+CA4Vhr4CrQwOi6gWUVHbABGAX0x7SBHAvEA6uBpjX9f5Ob1HCxz/gOkIr+QRAJPGV07CXgLxN6f6Wm/3dykzouq44Nx2VbbMGb1LACeoP+S2AfkAisBxobjo0CThc7fx7wdU3/76pqqzMuFkIIX/TieVFRlExFURLR9+7GGp0WqyjK14qiaBRFyVYUJVpRlG2KouQqipIEfAb0K+P9GgG9gdcVRclRFCUcWAA8ZnTaHkVRNil6H6OlQIhhvxb9j6idEMJWUZRLiqKcB1AUZY+iKB6l3HcU+l7sn2ZO6Yf+B9IGfeO8wVqnf+oadUXD6EdC2qJ/iEwFZgohHjYcc0FvdBiTCriW5TNJah6p40JkW2yl1CENNwQmAC8AjYGL6N0qoA60xXXpx9gEsAXihBAF+1Toe1YFGL8u+BF8CfRB/09XATfLeL8GwA1FUdKN9l0Guhq9jzd6nQU4CCHUiqJECyFeRN8rDBJCbAFeVhQltrQbCiGcgTnof7gmURRlt+FlnsHZPg19I36ibB9LUoPUeg0DKIpyyujtPiHEl8Bo9A1zBuBWrIgb+qlDiXUgdYxsi62cOqFh9C4ffyqKctjwGd4FkoUQ7tSBtrg2jyArxd5fRe8vU19RFA/D5qYoSlApZT407OugKIob8CggSjnfmFjAUwhh3JtqjN4P6NaVV5RfFUW5A/0PUQE+LkOxluhHJP4VQhRM2/kLIeKFEE3N3Yqin0liOdRFDZu8FP/VORIIFkZPJSDYsF9imUgd/1fH0tpa2RZbLnVVwxHF6mX8OhJoXqxOIdSitrg2G8gJQFMhhApAUZQ49KsvPxVCuAkhVEKIQCFEaVMcruh7SalCiAD0kSGK36N5iVL6+11F77fzkRDCQQgRDDyOfvV9qQghWgshBggh7NH7FWWjd+C/FSeBRuj9kzoCUwx17AhcFUIEGUJk2QghXIBP0f/AThvuO1EIcakM95FUD3VRwwghRgoh6gk9ocDz6CNXAPyDfsrweSGEvRDiWcP+HYayUsOWh9RxMR3LttjqqJMaBhYDowxatQX+D70rR6qizf9ClAAAIABJREFUKGeBcOBtQ51GoR+sWGW4b38hRGlGv8VTmw3k3w1/rwshjhlePwbYAafQT238AfiXco13gc7o/Wo2oh+RNeYj4C0hRIoQ4lUT5R9GP6Ibi96h/21FUbaXoe72wGz0K13j0S8AeANACNFHCJFhqpDB1ym+YEO/OERneK8FfIGV6KfyLhjqNkJRlHzDJRqhX3krsQzqnIYNjEW/Sjsd/arsjxVFWQKgKEoecB/67yEFmAzcZ9gPUsOWiNRxMR0j22Jro05qWFGUHcCbhvomol9o+IjRKWPRu3ncNNxjtMG/GvQa3leG+lksQlGs2sCXVCFCiK3AC4qinK7pukgkFUFqWFIbkDqWWDtCn/jmd0VRttR0XSqKNJAlEolEIpFIJBIjarOLhUQikUgkEolEUm6kgSyRSCQSiUQikRghDWSJRCKRSCQSicQIaSBLJBKJRCKRSCRGSAO5BhFCPCKEuCyEyBRCrBFCeJo5r5UQYq0QIkkIcUMIsUUI0drMuX8LIRRhSFkqhGgshMgotilCiFdu52eT1B2qSsdCiLFCiCghRKoQIlEIsUQI4WZ0vK0QYofheLQh7qZEUmmqUcPLhBBxQog0IcRZIcSU6vh8ktpPVdoTQoiXhD7BWJoQYpEhhjJCCB8hxHIhRKxB43uFEN2r4/PVBNJALkaBYXmrfeW9holzgoDvgfHoY2JmAd+aOd0DWAe0Npx7iP8SJxhfcxz69JeFKIpyRVEUl4IN6IA+SPiqMn8gidVhpTreC/RWFMUdfcB8NfC+UV3WAhsAT+AJYJkQolV5PpPEeqhtGjbwEdDUkEntXuB9IUSX8nwmifVgjRoWQgwFZgAD0Wfea44+hjOAC3AY6IK+HV4CbBT6ZDe1D0VRav2GPo/5KiAJuAg8b3TsHfQBvpehD9o+xcw+e+AL9EG6Yw2v7Q3X6A9cA15HH4h7aRnq9CHwq9H7QCAPcC1DWU/0KR+9jPa5A2eBHoZjajNl3wZ21vT/RG7l3+qCjo2OuaBPrrDJ8L49+ixUwuicrcCsmv6/yE1quCwaNnG8NRAHjKnp/4vcyr7Vdg0DvwIfGh0fCMSXUj4N6FLT/5fbsdX6EWShTw25HjgOBKD/Z79o6CUVMBK9gD2AX8zs+x9647Mj+nzjocBbRtfwQy+0JuhHtzBkxLnDTNWCDHUCQFGU8+gFXZYRsb7oBXvdaN+HwHfof1AmEUII9Nl/lpg7R2KZ1BUdCyHuEEKkos8+9gD6B4c5BHrDWWIFSA0XHv9WCJEFnEFvIG8qw30kFkAd0XCRaxle+wohvIoXFEJ0RJ9NMLoM97E+atpCv90b0B24UmzfG8Biw+t3gN3Fjpvadx4YbvR+KHDJ8Lo/ejE6lKNefwNPFtsXA/S/RbmGhvMeNtrXFX1OdDX6VJQmR5CBPuhH4Vxq+v8it/JtdUHHxY4HGOrfyvDeFn1K3tcMr4cY6rqlpv83ciuzVuq0hosdswHuQG8U2db0/0ZuZdZKrdewoW7/z955h0dVbX34PTOT3gMJIaEktNBD6B1BBbtcsKF4KRawVxRs1++qV65gw2tvKCBNKQoKCKgoJbQ0QgkBAiGBhBDS25Tz/TFJTJkBEmbmnMns93l4HubMnDkryW/2/M7ea691Xa3Hbpg9RWS9c/2BZGCO0n8Xe/1rVC6Mk9IeCJckKb/WMS3wZ63HGRbOq38sHDhZ6/HJqmPVnJNlubwRcRVjFlht/DHPOlhEkqQQzMvKH8myvLTqmAZzrtETsiwbzJPEVpkC/CDLstXe6wLV0qx1XB9ZljMlSdoALAP6yrKslyRpPPAB5qXHvcAKoKIRsQqUxaU1XO85I/CXJEmTgYeABY2IV6AcrqDh+u9V/f+iWud6YZ5J3yXL8puNiNOpcAWDnAGckGW580VeY6nfdv1jWZg/HClVj9tVHbvYe1yMFMxLKwBIktQBc15SqqUXS5IUhFnMP8qy/Eatp/wxzyAvrzLH2qrjpyVJul2W5T+rzvcCbgfEzn/npLnr2BI6zLl05sBkOQkYVeu9diDShZwJl9dwE54XqAtX0HD1e62oehwDZMtVKRhVFS3WYM6TntHIOJ2KZp+DjHmHZpEkSc9LkuQlSZJWkqSekiQNaOT7LAVekiQpRJKklsArmJPum8oS4GZJkkZIkuQD/BtYJctygzu+qjJBG4HtsizPrvd0AeY7zz5V/26oOt4PiKv1un8AF4DfriBmgXI0dx0jSdI9kiS1q/p/e+ANzEuH1c/3liTJU5Ikb0mSngVaAwuvIHaBY3FpDVeVyLpLkiTfqp99HDCJWhoXqJ5mr2HMG0vvkySpuyRJgZjTgBZWneuGOZe6DJgiy7LpCmJWPc3eIFctZd2E2TyeAHKBLzBXfWgMr2Ne1k3CnHezn7rlexogmWsOj7ASVwowE7OwcwA/4OFa5/4iSdILVQ//AQwApkl16xm3k82crf6HeWctmO/4Kmtdcgrm3bCNvTMVqIDmruOq57sDOyRJKsFcLusI8ECty92LeVNTDubNMdfKsixSLJwEoWFkzOkUpzFPVswHnpRl+cfG/PAC5XAFDcuyvAF4C/Nk2inM6R//qjp3KOaffyyQX+tci3E5O5LwSwKBQCAQCAQCwd80+xlkgUAgEAgEAoGgMQiDLBAIBAKBQCAQ1EIYZIFAIBAIBAKBoBbCIAsEAoFAIBAIBLVoVB3kli1bypGRkXYKRSC4fPbt25cry3JIY88TGhaoBaFhgbPTVA2D0LFAPVjTcaMMcmRkJHv37rVdVAJBE5Ek6eSlX9UQoWGBWhAaFjg7TdUwCB0L1IM1HYsUC4FAIBAIBAKBoBbCIAsEAoFAIBAIBLUQBlkgEAgEAoFAIKiFMMgCgUAgEAgEAkEtGrVJr7myJj6TeRuPkJVfRnigF7PGRTM+NkLpsASCRiF0LHB2hIYFzo7QcPPB5Q3ymvhM5qxKpkxvBCAzv4w5q5IBhKgFToPQscDZERoWODtCw80LlzfI8zYeqRFzNWV6I/M2HrGroMVdpsCWKKFjoWGBLREaFjg7wk80L1zeIGfllzXquC2w112m+JC4Lo7WsdCwwNY0Fw1Xv7fQsesh/ETzwuUNcusAT7IKyhscDwvwtNs1rd1lzvo+ke/iTuHlrsXHQ4uXmw5vdy3eHlq8q/5f/7nq/29Py+XtTUcoN5gAsbTjagR4uZFfpm9wPDzQyy7Xs6bhZ1cmsmjXSbNW3bT4eOjwctfi7aat0rLO4nM+HmYNv/trqtCwixLi50FOUUWD40po+Osd6fi4a6vGXJ1Zvx5VGnavGpernvOpGperj/91NJe3NhwWOnZBrPmJ1kr5id2nzD7BvWqsraff6v/Xf257Wi7zNwo/4dIGWZZl2rfwsShoXw8dpZUGvN1t/yuydjepN8pIElworSQz30hphYFSvZHSSiOVVUJtDI5Y2hEoz8aUsxSU69FIYJLrPjd5UDu7XNOahg0mGU83DcUVBnIKKyjVGyirNFJSYWwwiF8OQsOuQVZ+mdUxbkTnlna7piUMJhl/Tx1llUbyS/WUVhoorTSadVxpaPAZuxyEjps/RpNMC18Pi34i1N8TvdGEm9b2hcMu5icAzhdXklFZSmmlsUbHlUbhJy4HlzbIC7aksfP4ea7pFsqhM0U1Swmjo0P4bvcppi/cw1dTB9jcJIcHepFpQdQRgV4snzHE4jkGo4lSvVncpZVGSioMlFWZ59IKAw8t2W/xPEvXETQf9qbn8fjSeHq3CeTugW1ZsCWNrPwyQvw8qDCY+OKvE4zp1oroMD+bXvdiGl5y/2CL55hMMuWGKrNcaaRUb6jSr5HSSgMPLtpn8Tx7Lk8KlKegVM/Ur3djNMnMGhvNd7tPkZVfRusATwK83Vi2J4M+bQO5a6Btb/YupuFF9w2yeI4sy1QYTFX6rZrEqBqTq430Y0vjLZ4rdNx8kWWZV9YeIDmzgAmxEcSdyKvxEwMig1iTkMUTy+J5/65Ym5vki+l4hRU/oTea6tz0ldXT8MPCTwAubJCX7T7Fu5tTmdi3DfNv740kSXWeHxAVzFPLE+xikmeNi+ap5QnUnojwctMya1y01XN0Wg3+Wg3+nm4Wn4+w8iGRgEU707l7UHu0GqnB8wLnJS2niPu+2Ut4oBdfTelPC18P7hzwt4k4kVvCXZ/tZNLnu1j6wGCbmuRZ46J5dmUihlrTaZfSsEYjVS3hWf4sWdOwvZbYBcpTrjfywLd7OZFbwjfTBjK0U0seGdOpzvMPLd7H7FXJyMAkG5rkWeOiee77pDqzaZfSsCRJeLpp8XTTEmTlNXN/OSx07GL8b2saS+JOMXNUR2Zf37XB8z0jAnh9/SFkOZ4Fk2xrkp8Z24WnVyTWOXYpHbtpNQR4aQjwapyf0EiwNiGTW2LCG3im5ohLNgrZfDCbF1YnM6pLCHMn9rL4h761TwTv3tmH3SfymL5wD6WVBptdf2SXEGTA31OHhFmMb07odUVLF7PGRePlpq1zzEOnoXMrX15em8LEj3dwMKvwygIXqIazBeX888vduOs0fDt9IC18PRq8JqqlD8seHIKbVmLS57s4fNZ2f//xsRG0CfLCXauxq4a1GumiA73AeTGaZJ5clsDu9DzeuaMPQzs1TKXwdNPy8eR+jI4OYc6qZJbuPmWz64+PjeDa7q1qHttCw2BZx546jdBxM2X5nlO8/WsqE/pG8Px1lv/G94/owMs3deeXA2d5fGk8+iakOFijR3gAAIHebnb3E22CvHliWQL3frmb9NySKwnbKXC5GeT9py7w6NL99IwI4KN7+l70Tu7WPmaBPbU8gWlf7+HrabaZSd59Ig+Ar6YOoH9k8BW/H/ydOF9/1+mtfcJZm5DFa+sOcvP//uK+4VE8eU1nu+RWCxxDQZl5Sbqw3MCyBwfTNtjb6murTfKkz3Zx9+dxfPfAILqG+V9xDGWVRk5fKOP+ER0szpg0hfoa9nLXUmkwMaRjC5u8v0A9yLLM//2UwoaUs7x8U3dujgm3+lpPNy2f3NuPmYv2MWdVMrIMd9sot76owkDnUF9+fXqUTd4P6uq4ehZuQt82LpW76SpsPZzNC6sPMLJLCP+d2HAlujb3DY8C4LV1B3l8qe1mkuNOnAfgp0eHX/S7oDFY8xM3x4SzJO4kb204wtj3tvH4mE48OLIj7rrmOdfqUi7p2Lli7lu4hzB/T76aOgAfj0v/+PYwybtP5OGh09C7TeAVvU99xsdGWByEx8dGcFV0CHN/Ocxn246zPukMr43vwZiurSy8i0DNVBiMzFi0l2Pnivl66kB6RgRc8hyzSR7MXVUmecn9g+jW+spMcvypCxhMMoM62OYGr5raGj51vpTRb//O59uO89JN3W16HYGyfPT7Mb7deZIHR3aoMQ4Xw0NnNskPLd7PC6vNu+mv1CQbjCb2pefxj762N67VOpZlmRsW/EXcifMYTbJIc2tGxJ+6wMNL9tO9tT8fX2KyrZr7hkchAf9ed5DHvovng7uv3CTHncgjPMCTNkG2TeGx5if+OSSSsd3D+Pe6FOZvSmVtQhb/mdCLATaa7FMTzdP2WyC70LwkrdVIfDN9IC0tLElb49Y+Ebx3Vyx70vOY+nXT0y3WxGcybO5Wvtp+Ahn4OflMk96nKQR6uzN3Ym9WzBiCl7uW6Qv38vCSfWQXNtxxK1AnJpPM08sT2XU8j/m3xzC8Ebv7I6tMsrtWwz1fxHHoTNPTLdbEZzKjakPdC6uSWROf2eT3uhjtWnhza0w4S+JOkVdSaZdrCBzPyr0Z5t3wfcKZfd3lrz546LR8PLkvY7qG8sLqZJbEnWxyDGviMxny5lZKKo2sTzpjNw1LksSjoztx7FwJGw6ctcs1BI7n+Llipi/cQ6tGTLZVM314FP+6uTsbUs7y2HdNT7dYE5/J0De3sD7pDBdK9axNyGrS+zSFsABPPrqnH19O6U9ppZHbP9nJ7B+SyC9tXuO0SxjkwnI9U7/ew4XSSr6eOpD2LXwa/R63xITz3l2x7K0yySUVjTPJ1cW8q5fcKg0m5tjRXFhjYFQwPz8+gmfHdmHzoRyufvsPvt2Zzqp9pxk2dytRs9czbO5Wh8cluDiyLPPvdQdZn3yGF2/oVrOy0RiqTbKHTsPdn+9qkkmu1nFRlf7PFJTbVccPj+5IucHIV3+duKzYhIbVzW9Hcpi9KpnhnVry1m0xaBo5o1ptkq/uGsqLqw+weFfjTXK1hs8Vm2suXyjV21XD1/UMo0OIDx9sPYosX7pGnNCxuskpLOefX+1GI0l8M20gIX6XP9lWzbRhf5vkR7/b3+gyrtUari4pV6Y3KuInru7Wil+fHsmDIzuwct9prn77D9bEZ7J6f/PwE83eIFcYjMxctI+j2UV8MrkfvdpceknaGrfEhPN+lUme1kiTfLEWlI7GXafh0TGd2fTkSGLbBfLK2hSe+T6RzPwyZP4uCu6som6OfLrtOAt3pHPf8CgeGNmhye8T2dKHpQ8MxtNNy92f72r0xs25vxx2qI47hfpxQ8/WfLMjnQILjVCqqX0DKjSsThIz8nl48X66hvnxyb39mpy36KHT8lGVSX5pTeNN8lsbHKthrUbikas6cfhsEVsO5Vz0tULH6qaoarItr6SSr6cNILJl4yfbqpk2LIpXb+7OxpRsHlvaOJPsaA1fDG93HS/c0I0fHx1Gm2BvnlyewDMrm4efaNYG2WSSeXZlEjuOneet23ozskvIFb/nzVUmed+pC5dlkmVZZntartX6gUrWxoxs6cO30wcS5O1G/YkNpT5sgoas2n+aub8c5uaYcF68odsVv1/1TLKnm5Z7vrg8k3zyfAkvrk7mrJWUHHvq+JHRnSiqMPDtjnSrr1HTDaigIem5JUxfuIeWfu58PW0Avo1YkrZEtUm+ppvZJC+6DJNcXGHg823HLTZyAPtq+JY+4bQN9uKD39IuOossdKxeKg0mZi7eR2p2ER/d09cme4im1jLJlzOTbDLJbEo5q4iGL0WP8ABWPTSUAC+3Bs10nFXDzW6TXu3+4T4eOoorDMy+visT+rax2TVujglHkuCJZX9v3Kufg2Q0yWw4cJZP/jhGcmaBxS5noHxtTEmSyC+1PDMnCtsrR7WOq2+sOof6Mv/23o1ekrZG+xZmkzzps13c88Uultw/mO7hDTfuHcgs4JM/jvFz8hl0Gg3e7lpKKxt2xLOnjruH+3NNt1C+3H6C6cOjLOb7WdOqqxW2VxO1NazVSHi6aVg5cwihfrZpu+uh0/LhPX15ZMl+Xl5zAIB7B7dv8LpzRRUs3HGCRTtPUlhuwF2nsWhE7KlhN62Gh0Z14oXVyWxPO291/4AaJ1Jcmdoa9nLTUqY38vbtMVwVHWqza0wdFoUkSfzrxxQe/W4//7u7b4PVlUqDiTUJmXy27ThpOcVoNRJGC4ZCaT+h1UgUWlnpc0YNNyuDXL08VX0HXlxhQKuRaNWEHKFLcVNvc1miJ5YlcPMHf1GmN3K2oJzWAZ4M69SSPel5pJ8vJbKFN29O6IVOI/HK2pQ6swOXKubtKIJ93DlvYROU0h82V6W+jgEy8kr5JfmsTUtFtW/hw9Iqk3zbJzvw9dBxrqiC1gGejI+NIDmzgD+P5uLnoeOBkR24b1gUO46dbxCbI3T8yOhO/OOjHSyJO8mDIzs2eL6Vv6fF2W0vNy0XSioJ8nG3a3yCutTXsNEkYzDIJJ0uoEOIr82u46HT8tE9/Xh4yT5eXnOA+RuPUFimJzzQi2nDIkk/X8LKvaepNJoY1z2MmVd1JD23RBENT+wXwYItR/lg61GLBtlkkmtMWH0as6lcYBvqa7hMb0SnkexSiWTK0EgkCV5Zm8KEj7eTV1zJmYJywgI8GRgVTNzxPM4WltOttT/v39UHg1HmpTUHVOknAr3duGBh0s0Z/USzMsiWlqeMJpn5m1L5hw1nkKu5qXc4e9MvsLDW0m9WQTkr952mbZAXH93Tl3E9wmo+UG5aTYO6gkrXxkzNLqKk0oAEjersJ7Af/7WQX1ZuMJl3/ttYL+1b+DB9eBRvrD9UMzOcVVDOR78fw99Tx/PXdeWewe1qOjhaq49pbx3HtgtieKeWfLbtBP8cEolnrSL25XojHm4Ns8V0GslsjN7bxlu39bbprI/g4ljKkaww2kfD7joN1/UIY+vhnJo89cz8Ml5ffwitRuL2fm14YGQHOlYZ8z5tzUvjjtawh07LjFEd+L+fDrL7RB4Do+qWxXpvc2qNCTPUmx08X1LBB1uO8tBVHdHZuFWxwDKW/ITBJNtFw2Aun5aYkc8P+//O1T1TUM7ahCw6hfqycOIARnUJqam1rNVIqvMTu0/kUVhuaLBi7qx+olkYZKNJ5vcjOYosT/16MNtqTDf0al3nmLW6gkpxvriC6Qv34OfpxvPXdeSLP0+o6sPmahw5W8S3O9M54+D8sq+3p2MpK9LXQ8dDVzWcrVVKx4+O6cRdn+1i+Z4MpgyNBMw5/rO+T+Lk+VKmD4tkY0p2HQ13buXLU8sTmPr1Hu4d3J45N3QVTXLsSF5JJcv3ZDg8R/LdzUctprCF+Howd2LvBseV0vBdA9rx4W9p/O+3NL6NGlhzfE18Jgu2pnFn/7YM7hDM/E2pNTp+ZHRHdh3P4+1fU9l6JId37uhD1BVsDhNcHL3RxIYDZxXxE7uO51k8XlZpbHCDrzY/cfJ8CTMW7aV9sDf3j4jiw9+OOb2fcKpvitr5xeGBXjx8VUeKKgws3nWS0xfKFMnztfZhsWZy1EK53siDi/ZxrqiCFTOGENM2kGnDLl2wX3Bl1Nfw09d2wcNNw7c7T7L7RB7uOsfn+TqLhgdFBTMgMohP/jjGpIHtcNdpeH/LUX5KzOL567ry0FUdeeXmHg3O+/HR4czfeIQvt5/gr7Rc3rkjhth2QQr8BM2D+hqeNS7avOF3Zzrrks5QaTDhrtVQaaG+q6M1rLY6717uWu4f0YG5vxwmMSOfmLaB7E3P47nvkxjcIZjXxvfEXadpsOJ596D2XNO9FS+tTuaG9//kpZu6cffAdhft3Ca4OPV1/ODIDpwvqWTp7lOcK6pQJM/Xmo7Vnr9bUKbnvm/2IgNfTh1AVEsf7h7UcD+As+E0Brl+PlBmfhkvVm3MGBQVzJzru1GuNzo8Lyc80MvinaYa820sbTj48O6+xLS1bUc/gWUsafiZlYkAtA32Ys71Xbmjf1v+SD3n0BxJZ9GwJEk8OqYzU77azcA3NpNftZw+IDKImaOsl77zdNPy0k3dGdMtlGdXJHLbJzt5dHQnHh3TySatXl0JSxp+akUCsgw+7lru7N+WyYPbc+hModCwFSYPbs+CLUe589OdlBtMaCTzPpBPJl+89N0tMeEMiAziue+TeHH1ATYfzOa/E3sT6m+bTY+uhCUd/+vHFCRgVHQI/xzSnvwSPS8KP2GV2n7CQ6fBYJJZcv+gZrW64TTfDpbygQBC/TxYPmMIN/ZuzcR+bXhzQi8iAr2QgIhAL96c0MuuU/uzxkXjVSsfEtSZb1O/UUl1rltTu/gIGo81Dbfwcef3Z0czY1RHgnzcGR8b4VAdO4uGAfKKK5AkaswxQPLpgsvqIjW0Y0s2PDWSW/uE8/6Wo0z8eAfHzhXbM9xmhyUNyzIEeLmx64WreW18T6LD/ISGL8Lmg9lUGkyUV1XSMMlQVG7g9yPnLnlu6wAvvpk2kFdv7s6OY+cZ9942fnFgR9bmwsX8xMJpAxnTtRUThJ+wSn0/UVF1o3dWZauOV4rTzCBbW2I4V1RR57Gj83KU2rTUWKxtOHht3UFGdgkhWOzytzvWNJxXUtlgZ7QjdewsGgaYvym1Qc3uxmxg9Pd04507+nBNt1a8sDqZGxf8yZzru/HPIe3FcvVlYE3DhWV6/Ko2clYjNGyZeRuPNNiEV9EIDWs0ElOHRTG8cwhPLU/goSX7mdA3gldv6VGzmVZwcazpOEf4icvCkp/QG81+Yky30GajQ6cxyGpeelBbsrwlrA0I50sq6fvar7Rv4U1Mm0Bi2gbSp20APcID6lQKEFw5QsNXjq1y9G7o1Zr+7YN47ock/vVjCpsPZTPvthjCAsRy9cUQGr5ybKXhTqG+rHp4KB9sTePD39KIO57H/NtjGNKxhS3CbNYIHV8ZF/MTvV/dRMcQnyovEUhMm0C6tfZvcudMJXGaiGeNi6b+BI8alx7UirUPfksfd56/rivdwvzZk57Ha+sOMvHjnfT810ZuXPAnL6xOZsWeDFKziyxuWBBcPrPGRaOrN1MsNNw4rOm4KV9sof6efD11AK+P78ne9AuMe28bPyVeOlXDlZk1LhqPel90QsONw5YadtNqePraLqycOQQ3rcTdX+zijfUHKbeQPiD4m2fGdmlwTOj48rGm1RY+7jxzbReiWvqwLfUcr6xN4dYPt9PzXxsZ/+F2Xv0xhdXxpzl+rhiTE/gJp5lBjm0XiCyDv6eOonKDapce1MqscdEWN828dFP3Or/D7MJyEjPySTydT2JGAT8lZPFd3CnAvAmnV5sA851h1Wxz6wDPBkvTlna5i7+TeWZg7i+HySupRG80id9NE7Cm46Z+sUmSxOTB7RnWqSVPLU/gsaXxbD6UzaCo4GZRpsjWjI+N4MfELLYezgHMeZnid9M4bK1hgL7tgvj5iRH85+dDfP7nCbal5vLOnTEczS4WY7EF2gZ7AxDk7UZ+qV78bhqJNQ2/XMtPyLJMVkE5CafMfiIhI5/lezJq+kb4e+qIqZphjmkbSEzbAItdNpX0E05jkNclmTci/PzECNoEeSscjfNxublNrfw9GdsjjLE9wgBzd6fjuSW1THM+X/11Ar3RfPcX4udBTBtzWkaftkGcyivhtXWH6uwOnrMquU4MrsqRs0WcLSzntVt7cO+QSKXDcUrslaMX1dKH72cO4aPfj/He5tQ6m/6Ehv9GlmVSs4sY1SWEb6YZcmjqAAAgAElEQVQPvPQJggbYS8Pe7jpeH9+Lq7u14rnvk7jlf9uRoCbfWej4b9YlZuGh0/Dn82PwtdC6XnBxLkfDkiQREehFRKAXN/Y294QwGE2knSsmMSOfhIwCEjPy+fiPYzWr0xGBXsS0DagxzSdzS3j1p4OK+QmnUca6pDPEtgsU5vgKaEpuk0Yj0SnUl06hvkzsZ67NWWEwcuhMkdk0Z+STcDqfzYcsN0wBc8UMe3UfcibWJWWhkeC6nq0v/WKBVeyVo6fTanj86s4s2nmSc8V1N+sIDZtJyMjn9IUynri6s9KhODX2zDMdHR3KxidHMnTuFsr1dasUCR2bm3j9fOAso6NDhTm+ApqiYZ1WQ9cwf7qG+XPnAPOxskojKVkFJGSYZ5kTT+fzc/JZq+/hSA2rXh1r4jP5z8+HyCmqIMDTjTXxmS794VYDHjotfaoS8KspKNWTlJnPvV/utniO2gud25M18Zm8teEwWQXleOg0bE/LFRpWMbn1zHE1rq7h6pqngCgPqXKCfdwbmONqXF3Hr687SG5JJXEnzgs/oQK83LX0jwymf+TfrdfPF1eQdLqAaQv3WDzHURpW9Sa96lp71aVXCsr1zFmVzJr4zEucKXA0Ad5ujOgcQriVKgBq2B2sBNUarm69W2EwCQ2rHFtuomoO1K95CvDaukNCwyonxNfD4nFX13FuSSUAF0qFn1ArLXw9GN01lNYK+wlVG2RLtfaqp9cF6qR3m4Zd+Vx5d7DQsPNxe/82DY4JDQsNOxMlFQYA6lf2FjoWOnYmLHXlc6SGVW2QnbUvuauy+0Qemw6epX/7IId2H1IzQsPORWG5nh/2nybI243W/p5CwwgNOyP/+jGF3JIKHhndSYzFVQgdOxcbDpxhx7HzjOkaqpiGVZ2D3NLXo8FmGXDdJSI1U1Cq58ll8bQN9mbh9IFi80MVYQGenLHQflNoWH3IsszLaw6QlV/OihmD6dc++NInuQBqbqogaMjahEy+33eax8d04umx0TzrojPG9Qn2ced8VXpFbYSO1UdWfhnP/5BMTJsAPpncT7EmI6qdQT5XVIHeaBJLRE6ALMvMXpVETlEFC+6KFea4ClmWCfVrmAcoNKxOVu3PZG1CFk9c3VmY41qM6hLS4JjQsDrJyCvlpdUH6Nc+iMdFpZEa0nNLKK00Cj/hBBhNMk8uS8BgNLFgUqyiHfhUaZArDSYeXrKPcoORZ8Z2EUtEKmfZngx+OXCWZ8dFE9O2YQ6yq/Lhb2kkni7glphwoWGVcyK3hFfWHmBgVDCPjO6kdDiqISEjn+/3n6ZzqC/hASLlRM3ojSYeXxYPErx3Zx90WlV+vTuc4goDD3y7Fw83DS/d2E2MxSrnf1vT2J2ex2vje9K+RcMcZEeiyqm+//sphT3pF3j/rj7c2ieCR8eIO2G1kpZTxP/9lMLwTi15cEQHpcNRDVsOZfP2r6mM7xPOu3f2adBtUKAeKg0mHl8aj06r4b07+6DViL8VQE5hOTMW7SXUz4PlM4YQ7OOudEiCi/D+5qPEn8rng0mxNZ3iXB2TSebp5Qkczy3h2+kDGdapJfeJ7ynVsjc9j/e3pPKP2Agm9G24WdrRqO4W87u4UyyJO8WMUR24tY+4s1Mz5Xojjy1NwNtdxzt3xKARxgKAtJxinliWQI9wf+ZO7C3Mscp5e9MRkjML+O/E3iIfsYoKg5GZi/dRWGbg83/2F+ZY5ew4lsuHv6dxR/823BwTrnQ4quH9LUfZdDCbF2/oxrBOLZUOR3ARCsr0PLEsgTZB3vz71h5KhwOoZAa5fhH6rmF+PDeuq8JRCS7F3F8Oc+hMIV9N7U+ov+V6ha5CbQ3rNBKeblo+vbc/nm5apUMTXIRtqef4dNtx7hnUjut6hikdjuLUbmoDMHVoJN1a+yscleBiXCip5OnliUS18OHVW9RhLJSkvp8YEBnEtGGRygYluCiyLPPCqmSyC8v5/qGh+Hm6KR0SoIIZZEtF6NNzS/gpMUvBqASXYuvhbBbuSGfq0EjGdG2ldDiKUl/DBpNMpcHEnhN5CkcmuBi5xRU8vSKRzqG+vHRjd6XDUZz6TW0Alu/JEI0UVIwsyzz3QxLnSypYMCkWb3dVzHkphiU/kXy6gLUJwk+omRV7M1iffIanx3ap06FXaRT/NFkq3l1uMLl8v3g1UvvOXCNBeKAns68XM/2WNFxpFBpWI7U17KHTYDTJLL5/IF7uYqb/Yo0UhI7VQ7WGs/LL8Pdyo6BMz0s3dqNnRIDSoSmO8BPOQ+2xWAK6tPJl5siOSodVB8VnkC3V1wRRvFtt1L8zN8lwvriSDQfOKhyZ8ogC9M5BfQ1XGMxlJA+fKVI2MJUgxmL1U1vDMua8TY2EyBGvQmjYOag/FsvAqfOl/KiyzAFFDXKFwYiHlRp3YrOMurB0Z15RdWfu6vh5Wl6IERpWF5Y0rDfJQsNAYkZ+gxqx1QgdqwdLGjbJ8PamVIUiUg+F5XrctJZVLDSsLi42068mFDPIBqOJx76Lp8JgaiBqUbxbfYhZUst8F3eKwnIDWkloWO0IDVvmyNkipny9m2AfdzzrTVgIHasLoWHLlFUauW/hHowmGXet0LDacRYdK2KQTSaZWd8nselgNq/e3J15t8WI4t0qx9oduCvfma9NyOTFNcmM6RrKfyf2EhpWOULDDUnPLWHyl3F46DSsfngYcyf2FjpWMda02jrAdasIVRiMPLhoL/tOXuCDSX156zahYbXjLGOxwzfpybLMKz8eYHV8JrPGRTN1WBSAELDKmTUumjmrkhssi9w5oK1CESnLppSzPL0ikUFRwXx0T1883bTc1t81fxfOgjUND4xyzbbSWfll3PNFHEaTzHcPDqZdC2/atfAWY7GKsabhYB93yvVGlysraTCaeGJpAn8ezeWtib25sXdrQPgJtWNJxxIwZWh75YKygENnkGVZZu6GwyzedYqZozry8FXq2rEosM742AjenPD3LGkrPw+Cfdz5bNtx4o6fVzo8h/LX0Vwe/S6enhEBfDFlgMt9KTkr9TUcHuBJ74gAVsdnsmDLUWRZVjpEh3GuqILJX8RRWKbn2+kD6dzKT+mQBJdBfQ1HBHpxW982HMgqZNrXeyiuMCgdosMwmcwl7jaknOWVm7pzh4tO1jgj9XUc4uuBj4eOz7Yd59CZQqXDq8GhM8gf/X6MT/84zuTB7Xj+umjRYczJGB8bUefO/GxBOZO/jOOfX+3mk8n9GN01VMHoHMO+k3k88O1eOoT48M20Afh6KF4pUdAI6mvYYDTx3A9JvPNrKkXlel64oVuzH5cKSvXc+2UcZwrKWXTfQFEezMmor2GAYZ1b8OzKJCZ/EcfCaQMI9G7eVS1kWebVn1JYtT+TZ67twvThUUqHJGgk9XWcllPMvV/GceenO1k4fSB92wUpGJ0Zh80gL9x+gnkbjzAhNoJ/39Kz2X8JuQJhAZ4sf3AwnVv58sC3e5t9c5eUrAKmfr2HsABPvr1vYLP/EnIFdFoN82+LYcqQ9nz+5wnmrErGaGq+M8nFFQamfL2b4+dK+Oyf/egf6ZrpJc2Nf8S24eN7+nIwq5C7PttFTlH5pU9yYuZtPMK3O08yY2QHHh3TSelwBDagU6gvK2cOIdjHnclfxPHX0VylQ3KMQV65N4NXfzrIuB6teOu23mg0whw3F1r4evDdA4Pp2y6Ix5fFs2z3KaVDsgtpOcX888vd+HnoWHz/IEL9XHdTTHNDo5F49ZYePDamE8v2ZPD4sngqDSalw7I55XojD3yzl+TMAhZMimVE5xClQxLYkLE9wvh62gBO5ZVy+yc7ycgrVToku/Dhb2l89Psx7hnUjtnXdxWTbc2INkHerJg5hHbB3kxfuIdNKcr2WbC7Qf45+QzP/5DEiM4tWTApFp1W8d4kAhvj7+nGN9MHMqpLCLNXJfP5tuNKh2RTMvJKmfxFHJIkseSBwUSobKet4MqRJIlnxkbzwg1dWZ90hgcX7aWs0njpE50EvdHEI0v2s/P4eebf3pvreoYpHZLADgzr1JLF9w/iQkkld3y6k7ScYqVDsinf7kw3d8XrE85rt4qV6OZIqJ8nyx4cTPdwfx5asp9V+08rFotd3epvR3J4Ylk8fdsF8em9/fDQic1MzRUvdy2f3dufG3u15o2fD/HOpiPNYtNTdmE593wRR5neyKL7BhLV0kfpkAR25MGRHXlzQi/+SD3HlK93U1SuVzqkK8Zoknl6RSJbDufw2vie/CO2jdIhCexI33ZBLJ8xBL1R5o5Pd3Igs0DpkGzC9/tO88raFK7t3op5t8eIlehmTKC3O0vuH8SgqGCeXpHIop3pisRhN4M8f+MRpn29B71RJjO/jE0p2fa6lEAluOs0LJgUy53927Jgaxr/99NBTE6cz7l410mGzd3KqbxS3LUajpwVLYldgUkD2/H+XbHsP3mBuz+PI6+kUumQmszq/afp9epGfkrMwt9Th5/YVOoSdGvtz8qZQ/By0zLps13sSc9TOqQr4v9+TOHZlYkApGQWsD7pjMIRCeyNj4eOr6YO4JpurXh5bQof/pbm8Ek3u4yWCzYf5X+/pdU8PlNQzpxVyYCoT9jc0Wok5k7shZ+nji/+OkFKVgGZF8o4U1BOeKAXs8ZFO4UGlu0+xctrD1D9eTxXXCE07ELcEhOOr4eWhxbv5/r3tyEhkV3oXBpevf80z36fVLPpsLDcIDTsQkS19GHlzCFM/jKOe7+MY8qQSNYlnSErv8ypdPzmz4f4ekd6zeMs4SdcBk83LR9P7suslYnM23iEfScvcPhMocP8hM0M8pr4TOZtPEKmlVaBZXqjOXdICLrZI0kSL97Yjcz8Mn458HeSfWZ+maoHNqFhQW3GdG3FAyM61LnZdxYNV7dsrT/fIjTsWoQHerFixhBu/d92Pq21N8RZdCzGYoGbVsM7d/ThXFEFWw/n1Bx3hIZtkmKxJj6TOauSrYq5GrX12RbYD0mSSDrdMPetemBTG0LDAkusjs9scMwZNCzT0BxXIzTsWrT09bCY6uYMOr4YQseug0YjcSK3pMFxe2vYJgZ53sYjDVpfWkJtfbYF9sXaAKbGgU1oWGAJa1q91Je3EggNC6xxttByXWQxFguchTMFjtewTQzy5QTo5aZl1rhoW1xO4CRYG8ACvNxUV+FCaFhgCWsa9nLTUlqprra+QsMCa1jTcYifh4MjuTRCxwJLWNNwkB0bdtnEIFsLXKr6FxHoxZsTeol8IRdj1rhovNzqlvbTSJBfpueZFYmqqjN7sdkIoWHXxZKGdRqJcr2R8R9u5/g59dSZvdSMmtCw62JJxwAFZXp+TlZXRQhrOtYgxmJXxpKGJQnySiv5908H0Rtt39zJJpv0Zo2LZs6q5AbLIv+6uTtTh4ke6a5K9QBWvWkoPNCLZ8Z2ISOvjPe2pJKSVcjHk/vSIcRX4Uita/j2fm2Yd3uMQlEJlMaShmeNi6aFrzuPL43nlv9tZ95tvbm+V2uFI7WsYQnoHu7P+sdHKBeYQHEs6fj+EVGsTcji4SX7uW94FLOv74qbChp5WRuL507szR0D2ioUlUBpLGn4qWs6cyCrkK+2nyDpdD7/u7svYQG263IrNWapu3///vLevXstPld797S7TkOgtxtxL1xjqzgFzYw/Us/x5LJ49Ea5qrNX4wyGJEn7ZFnu39jrXq6G/b3cKCjT88esq2jfQjQHETQkM7+MR5bsJyEjn/uHR/F8Iw2GvTUc6u9BdmEFr9zUnenDxUSFoCGVBhP/+fkQC3ek0799UKMNRlM1DJevY61GokOID5ueGtWUywhcgB8Ts5j9QxLe7loW3BXL0E4tG3W+NR3bzCBXU2Ew0uf/fuXOAW159ZYejQpS4Fpk5pfx8JL9JGbk88CIKLqG+fPOr6mXVafTHuaiNjMW7SUlq5A/nxst2pkKrFJpMPHG+oN8s/MkAyKDuKl3OJ9tO64KDa/Ym8Fz3yex6amRdGnl19jLCFyItQmZzP4hGR8PLXf2b8uahCy7ahguT8fniioY8MZmnrsumoev6tSUywhchLScImYs2seJ3BJu6NWa/ScvXHa9ZGs6tnmjkPhT+ZTpjQxrpIMXuB4RgV6smDGY19cd4vM/T6CRoLoakZJ1Oo0mmR3HznNjr9bCHAsuirtOw//d2pO+7YOYtTKJPekXap5Tutbs9rRcQvw86ByqfAqTQN3c2ieC7q39ueeLOD78/VjNcaU1vONYLgDDhZ8QXIJOoX6sfXQ4934Rx7panRavRMM2TzjanpaLRoJBHYJt/daCZoiHTstr43sS5O1G/VKdStXpTM4soKjc0OhlGoHrcmufCAK93RocV0rDsiyzPS2XYR1biJs8wWXRuZUfWk1DrShZL3l7Wi7+njp6hAcocn2Bc+HroSPbQknDpmrY5gb5r7RcYtoG4u/Z8MtCILDGhVK9xeNK1OncnmaetRjasYXDry1wXnKKKiweV0LDR7KLyC2uFCt5gkahRK1Za8iyzF9HcxnasaVF4y4QWMKWGraZQV4Tn8mQN7cQfyqftOxi1ljoQCUQWOK3IzlYG/4cWQx+TXwmw+ZuZd7GI7hpJP46muuwawucm6z8MnRWvsQd3dBgTXwmd36yC4D5m46IsVhwWeiNJrzdG5aCA2U0PPg/W8gqKGfn8fNCw4LLxtJKHjRNwzbJQa5uDVldlqWowqDqPu8C9fD9vtM8/0MSEYFe5BZXUG74u5ahI4vB19ew3iQLDQsui9TsIqZ8tRutRkIjSVQaldEwNNRxdmGF0LHgkpRWGnh4yX5KK43oNBKGWvluSmu4oEwvNCy4JLIs8/mfx7lQqq+znwmarmG7tZpWa593gTqQZZmPfk/j2ZWJDO4QzC9PjmDuxN5EBHopUgxeaFjQFPam53HbxzswmGRWPTyUt25TTsMgdCxoPHkllUz6PI5tqef4zz96Mf/2GKFhgVNhMsm8vv4Q//n5MDf2bs1bNvISNplBtpbbocY+7wLlMZlk/r3uIAt3pHNLTDjzb4/BXadhfGyEYjMEQsOCxrIx5SyPL40nItCLb6YPpG2wNz3CAxSd5RI6FjSGjLxSpny1m8z8Mj6Z3I+xPcIAZWdqhYYFjaHCYGTWyiR+TMxi6tBIXrmpOxqNxG39r7ypjF1bTTs6b0mgfioMRh5bFs/CHencNzyK9+7sg7tO+e5NQsOCxrAk7iQPLd5H19b+rJw5hLbB3kqHBAgdCy6flKwCJny8g/MllSy5f1CNOVYaoWHB5VJUrmf6wj3mRiHXd+VfN5vNsa2wiTOx1CPbQ6dxaN6SQP0UluuZ8tVu1ied4YUbuvLyTbYV85VgScNuWkloWFAHWZZ599dUXlx9gFFdQlj6wCBa+HooHVYNlnTs6BxSgfrZkZbLnZ/uQqeR+H7mEPpHqqcsqyUNewo/IahHTlE5d322i13H83j79hhmjupo85KWNkmxqN0jO7NqGSSmbaBIqBfUtAzNzC/DTSNhlGXevTOGf8S2UTq0OtTXsJtWwsddx3U91TGrIlCO2hr2dtdSWmnktn5teHNCr0a1lnYElsbiGSM7iLHYxandujnQ243CcgMdQ3z4ZvpAWgeoa2bWkoZHdAkRGnZxams41M8Dg0mmtNLIF1P6Mzo61C7XtFknvdr5o6+vO8hX209w+GwhXcP8bXUJgZNhqTKEu1aDZLWom7LU1vDOY+eZ9PkuFu5IZ+aojgpHJlCK+hqu3uU/rGML1Znjaqp1XFJhYNS839lx7DxPXCOLhiEuSn0NV+/ynzo0UnXmuJraY/FjS+P59eBZsgvLaeXvqXBkAiVoUJ2nqub8U9d0tps5Bjs0CgF4ZHQnfDx0/PeXw/Z4e4GTYGk3cqXR5BS7kYd0bMHo6BA+/C2NCyWVSocjUAhLGjaYZOZvSlUoosvHx0PHk9d0Znd6HpsP5SgdjkAhLGnYJMOHvx2zcoa6mDU2GqPJnNokcE0saRhgxd7Tdr2uXQxykI87j4zuxG9HzrHz2Hl7XELgBDj7buTZ13ejpMLAh7+lKR2KQCGcXcN3DmhLhxAf/rvhMIZa9ZkFroOza7hdC28mD27Pir0ZHM0uUjocgQIopWG7rRGal288mfvLIWRZvvQJgmaHs+9Gjg7zY2LfNny78yQZeaVKhyNQAGfXsJtWw3PjupKWU8z3++w72yJQJ86uYYDHxnTGx13Hfzeof/VRYHuU0rDdDLKnm5anr+1C4ukC1iefsddlBCrG0m5kd61z7UZ+emwXJAneEct7LoklDWsl56puMq5HK/q1D+KdX1MprTQoHY7AwVjSsAQ8NqaTMgE1gWAfd2Ze1ZHNh7LZfSJP6XAEDsaShgEm9LXvxk277jKZ0LcNXcP8eGvDESoNYnnP1RgfG8GbE3oRUXWX56aVcNNKDO3YQuHILp/WAV5MGxbF6vhMDmQWKB2OwMHU1rAE+HnoMMoynm7q3KBnCUmSmHN9V3KKKvjqrxNKhyNwMPU13NLXHSTYd/KC0qE1iunDomjl78GbYlXa5aiv4dYBnrTwcWdNQibFFfa76bfrKK/VSDx/fVdO5ZXyXdxJe15KoFLGx0awffYY0ufeyC9PjMRgknn+hySnGuAeuqojgd5u/HeD2HTqilRr+MTcG9n/yrX0jPDnhdUHyCkqVzq0y6Z/ZDBju7fikz+Oc764QulwBA6mtob3vnQtD1/VkZX7TrMp5azSoV02Xu7mVen4U/lsOOA8cQtsQ20N75xzNZ/e24/TF8p4fd1Bu13T7tMgV3UJYWjHFizYmkZRud7elxOomE6hvsy+viu/HTnH0t0ZSodz2QR4ufHo6E78eTSXbannlA5HoCBuWg3v3tGH4goDc35Idqobveeu60qZ3sgHW8WmU1fniau70L21P3NWJZPrRDdME/u2oUsrX97aeAS92HTq0vSPDGbGyI4s25PB5oPZdrmG3Q2yeXmvG3kllXz6x3F7X06gcqYMiWRYpxa8vv4gJ8+XKB3OZXPvkPa0CfJi7i+HMZmcxxQJbE/nVn48f11XthzOYfke57nR6xTqyx3927Ik7qRTffYEtsddp+HdO/tQVG5gzirnudHTaTU8f11XTuSWsGz3KaXDESjMU9d2pmuYH7NXJdllZcwhiXS92gRwc0w4X/x1nOxC51mWFNgejUZi3m0xaDUST69IxOgkZtNDZ27Xe/BMIWsTM5UOR6Aw04ZGMqRDC15bd5BT552nwslT13RGp9E4RS1ygX2JDvNj1rhofj2YzUonqnAypmsoA6OCeX/LUbvmnwrUj4dOy7t39qGwzMALq21/o+ewnSbVxb7f2yyqAbg64YFe/PvWHuw7eYHYf28iavZ6hs3dypp4dRvPm3uH0zPCn/kbUym3ULRc4DpoNBLz74jBKMtc884fRDqJhkP9PXlgRBTrks6QmJGvdDgChblveBSDooJ5ec0BBr2x2SnGYkmSeOGGbuQWV/LZNrEq7ep0a+3P02O7sDElm76v/WpTDTvMIFcX+16+J4O0HFHs21VZE5/JsLlbeWp5IgCF5QZkIDO/jDmrklU9MGs0ErOv60ZmfhmLd4lNp65KtYaHzd1Kud5EZVUupDNoGODBUR1p4eMuqgG4MNUa7vjCzxzMKqTCYCK7qMJpxuI+bQO5sVdrvvjzuFNtlhXYlmodz63q2nyhVG9TDTu0VlF1se+5v4jlPVekup96ppXuN2V6o+qXfod3bsmIzi35YGsaBaVi06mr0Rw07Ouh4/GrO7PreB6/HxGbTl2N2hqWgSILaQrOoONZ46KpNJh4f/NRpUMRKIAjxmKHGuTaxb73pIti366GtX7qtXGG9qezr+9KYbmej/4Q1QBcjeai4UkD2xHZwpu5vxx2mn0AAttwORoG9es4sqUP9wxqx7I9GRw7V6x0OAIH44ix2OHV7qcPiyLM35P//CyW91wNa3d6tXGG9qc9wgP4R58Ivt6eflk/k6D50Fw07K7TMGtcV45kF/HDfufZoCW4ci53zHIGHT92dWc8dRreEjXqXQ5HjMUON8he7lqeurazKPbtgmgl6aLPe7lpnaaF79Nju4AM72wSm05dieak4Rt6hRHTNpB3NolNp67EpTQMzqPjlr4ezBjVkY0p2ew7KValXQlHjMW6Kzq7iUzs24Yv/zrBK2tTeG3dQc4UlBMe6MWscdGMj7Vvb22BchgvsWLgoXOe9r1tgryZOiySz7cd58+j5zhXVCE07AI0Jw1Xt6C+67NdDHxjM0XlBqFhF+BSGgbn0vH9I6JYtOskz65IosJgFH7CRXDEWKzIp0Cn1TCqSwjniivIKih3mp2zgisj4hLLHflleqfSQPtgb2Qgx4l2fwuujOam4bMF5Wgk56omI7gyLqVhcC4de7vrGB0dwonzJcJPuBCOGIsVu01cn3SmwTFn2DkraDqzxkXj5aa96GucSQMf/X6swTFnil/QeJqbhudtPEL9PXrOFL+g8VyOhsG5dPDX0dwGx5wpfkHjccRYrEiKRWmlgawCy7UL1b5zVtB0qpe75m08QlZViSFLOIMGZFm2uknAGeIXNI3mpGGwvtHFWeIXNJ76Gg4P9HJqHRSU6YWfcEEcMRY71CBnF5bz7c50lsRZ76HuDDtnBU1nfGxEjbCHzd1qcWBWswbK9UbWJmTyxZ8nrL5GzfELrhxn17Asy+w8fp4vhYZdltoaBufU8anzpXy1/QQr9mZYfY2a4xdcObV1PPg/Wzhb2PBG6Uo0YBeDvCY+s87d6aSBbTmeW8JPiVkYTDLjuofRpZUvn207TrnBVHOes+ycFdiGWeOimbMquU4tQzVpoLaOW/l70qdtIHvS8zhfUkm31v7cM6gdP+w7LTTswjiThlsHeDKmayjxGfmkZBXSwsed63qE8fuRHKFhF0fNOq6v4dv7tyU1u4iNKWfRaiRujgmnQ0sfPvztmCrjF9gfWZZp5U5Wj4EAACAASURBVO/RwCBfqQZsbpCru5tUCzUzv4z5m1Jx12m4Z1B7pg2LpH0LHwA6hPjWMdJi16lrUf23/s/Ph8gpqiDI241/3dxDFRqor+OzheVsSDlLj3B/Prg7liEdWiBJEgMig4WGXZjay3yZ+WV4uWl5c0IvVWigvoazCspZHHeKMH9P/juxF7f2icDTTdtgQkNo2PWo/nu/uDqZkkojESrRgSUNv7/lKN7uWmaO6sg/h0QSFuAJmCsLCR27JmsTskg8XcBNvVsTfyrfZhqwuUG21t2khbc7r97So86x+ss8AtdjfGwEY7qF0vvVTTx0VUfV6MGajvNL9Qzt2LLmsdCwoFoDd3yyEyRUowdrGtZIcOeAdjWPhYYFYNbB2cJy5v5ymA1PjsDP003pkKxqOMDLjeeu61rnmNCxa3KmoIyX1x6gX/sg3r8rFq3m0nW+LxebV7GwlhBtKTdEIADw93TDz0NH5gX1bKiwpmOx6UNgjfBAT1Xpw1osZ6xsaBIIqvM1s/LVoRGrfkJoWACYTDKzViZhNMm8c0eMTc0x2MEgW0uIFsnygosREeRFpkoGZRA6FjSeiCAvzhaUY6xfN00hhIYFjSWixiCr40ZPaFhwMRbHneSvtFxevLFbTequLbG5QbZUm04jIZLlBRflYqWGlMCSjj11GqFjgVXCA70wmGRyitRxo2dJw+5aoWGBdaoN8mmVjMWWNKyVJKFhAcfPFfOfnw8xqksIdw9sd+kTmoDNDfL42AjenNCLiEAvJMDfU4dJhgBv5fOZBOolItBLNbMWUFfH1fRrHyRy3ARWqdaKWlKF6mtYp5Hw99Jxfa8whSMTqJVQPw/ctJJqxuL6fsLXQ4dJlukU6qt0aAIFMRhNPL0iEQ+dlrdu640k2Ta1ohq7lHmrnSxfaTAx9t0/eGP9IYZ3aomb1nl6vAscR3igFwVleoorDPh6KNK/pgG1dfzK2gMs3nWS1OwiurTyUzgygRqpMcj5ZfRXOJZqamv4j9RzTPlqN9/uOMkDIzsoHJlAjWg0EmEBnqq5yYO6Gi4o0zN6/u+8tu4gyx4cbDdjJFA3n/xxjISMfBZMiqWVv6fdrmN3t+qu0zDnhm6k5RSzdLf1BiEC1yYiSF25b/V58pou+HjoeH39IaVDEaiU8FoGWY2M6hLCVdEhLNhylPPFFUqHI1ApalvNq02AlxtPXduFuBN5bEzJVjocgQIcyCzgvc1Hual3a26JCbfrtRwynTu2eyuGdGjBu7+mUlCqd8QlBU7GsZxiAMa+u41hc7eyJj5T4YjqEuzjzhNXd2Zb6jl+O5KjdDgCFfLrwWwkCd7acESVGgZ46cZulOqNvLs5VelQBCpkTXwmiRkF7D15QbUanjSgLV1a+fLmL4eoMDQsASdovpTrjTy9IoFgH3deu7Wn1detic9k2NytRM1ef0U6dohBliSJl27qRn6ZngVbjzrikgInYk18Jp/+cazmcWZ+GXNWJatucP7nkEiiWvrw+rqD6I2mS58gcBmqGxrIVQUs1KrhTqF+3DOoHd/FnSI1u0jpcAQqwlKTLzVqWKfV8OKN3Tl5vpRvdqQrHY7Agbzzayqp2cX897beBPm4W3xNtY4z88uQuTIdOywhuEd4AHf0a8vCHekMemPzFTt7QfNh3sYjdVrdApTpjczbeEShiCzjrtMw5/quHDtXQv/XhYYFf2OpoYEaNQzmdCF3nYabP/iLSKFhQRXOpOFRXULo1tqPN38+LDTsIsQdP8/nfx7n7kHtGB0davV1c385bDMdO3Q3VI9wf5bvlckuMue/VTt7UE/3KYHjsZazqcY8uJIKAxrJvFkEhIYFZpxJw9tSz2E0yuir6jULDQvAuTS8Jj6T4+dKqK44LjTcvCmuMPDMykTaBnnz4g3dGjxfUKpnQ8oZfko8Y7UpXVN07NCSEp9uO97gmFrvUAWOYdX+01afU2Mx+PmbUqnfB0Jo2LU5crbIagcnNWp43sYjNea4GqFh16a4woCnm2U7oFYNVzjBqqPANry+7iCZ+WW8c0cMPlVVroorDKyJz+S+hXvo/8avPP9DMnEnzlt9j6bo2KEzyKJ9r6AavdHEG+sPsXBHOp1CfTmdV1onzcLLTavKYvBCw4LarE86w6zvE/Fx11KuN1FpFBoWOBfHzhUzY9E+Kg0m3DRSnZsnoWGB0mw9nM2yPRnMHNWRnhEBbDhgninecjibcr2J1gGeTB0aSdtgb97elIosy1QYTHVuoJqqY4caZGvd0tR4hyq4NGviM5m38QhZ+WWEB3oxa1z0ZS1vnSuq4JHv9rP7RB73DY9izvVdWZd0pknv5WiEhpsXTdWw0STz1sbDfPrHcfq1D+Lje/qy49h5oWGBIjRVx78ezObp5Qm46TQsvn8QOYUVQsMCRbCk4ZFdQnh6RSIAGRdK6f/6ZoorDLT0deeO/m25OSacfu2C+CstlxmL9hHq78Hi+wax7+QFm+jYoQZ51rjoOrtkQb13qIKLY23HM1w8BywhI5+Zi/aRX1bJ+3f14dY+ETXnqHEgro/QcPOhqRq+UFLJ48vi+fNoLpMHt+OVm3rgrtMIDQsUoSk6Nplk3ttylAVbjtIrIoBP7u1X0+jGWTXsqRNt1J0VSxp+7vukOityf6ae48Zerbk5JpzBHYLRVTWdW5eUxVPLE+gU6se30wcS4udB22Bvm+jYoQa5OuC5vxzmbGE5vh46Xh/f0yk+kIK6XGzHs7W/5/I9p3h5TQqh/h788NBQeoQHOCJUm1L9s83beITM/DJ0Gok3J/QSGnZCmqLhlKwCZizaR05hBW9N7M0dA9o6IlSbUl/DAM+O6yI07KQ0VscFZXqeXp7AlsM53NavDa+P74mnm9ZR4doESxq+sXdroWEnxZKGa5vjL6f0Z0TnENx1dfPkF+86yctrDzCgfTCfT+lPgJebTeNyeE/f6lmWSZ/tIre4QgjaSWlMDliFwcj//XSQ7+JOMaJzSxbcFWu1hqEzUK3hL/48zuvrDxHbLlDpkARNoLF5jGviM5m9Kokgb3dWzBxCn7bO+3ev1vCJ3BJGz/8dCdGy11lpjI5Ts4uYsWgfGXmlvHZrDyYPbu+07Zprr9iMeft3sgtFd0hn5WK548f+c0ODTdCyLPPhb2nM35TK1V1D+fCevna5yXNoFYvajOvRiqM5xRw/V6xUCIIroHWA5f7n9XPAsgvLmfTZLr6LO8XMUR1ZOG2gU5vj2ozrEQbAJtHy1Cmxlq9Y/7jeaOLfPx3kyeUJxLQJ5KfHhju1Oa5NVEsfurTyZWPKWaVDETSRlr4eFo/X1/HPyWcY/+F2isoNLH1wMPcOiXRac1yfcT3C2HX8vOjU66RYG4tb+Xk0MMcmk8xr6w4xf1MqE2Ij+OTefnZbAVHMIF9bbS4OCnPhjHRu5dfgWP08xr3pedz0wV8cPlvEh3f3Zfb1Xa2Ww3JG2gZ70621P5sOCnPhjNwSE97gWH0N5xZXMPmLOL7afoJpwyJZfP8gq4bEWRnbPYw96XnklVQqHYqgkeSVVGIwNezqWVvHRpPMfzcc5uEl+4kO82PdY8MZEBns6FDtytjurTCYZLYcFn7CGZk1Lhp3bV076qaRmFOv5rHeaOLZlYl8tf0E04dFMf/2GNy09rOxihnkiEAvekb4i5kLJ2RtQiZ/pJ7Do1Y+UESgV00urizLLNqZzl2f7cLHXcvqh4dxY+/WygVsR8Z2b8Xekxc4VySW95yJjLxSlu45ZVXDAIkZ+dz8wV8kZOTz7p0x/OvmHnYdjJViXI8wTDJsPiTMhTNhMJp4bOl+SiqNaCTwdNMgUVfH+aWVTP16Nx//foy7B7Vj2YODCbOy+ufMxLQJpJW/h1jNc1LGx0YwuMPfN20eOg1v3da7Tgpuud7IQ4v3sSo+k2fHduHlm7qhsfOEm8NzkGszrnsYb/+aSk5hOaH+ze9D2xw5dKaQZ1cm4q7VUGEwodNIzL89pkbI5XojL605wPf7TjM6OoT37oq1eeK8mhjXI4z3txxly6Fs7hrYTulwBJdBud7IzMX7KNcbcavScSs/jzqlgFbsyeCltQcI8TVvKO0Z4XwbSi+XnhH+hAd4siklmzv6O9+mQ1dl3sYjbE87j5+njkqDCQ+dlrkT/jYVB7MKmbF4L9kFFcyd0KtZj08ajcS13Vvxw75MyvVGp9t06MpUl3er3mzp7a5l6zNX1bmRKyzXc//Cvew5mcfr43syeXB7h8SmqEEe28NskDcdzHbYDyxoOvmllUz+Ig69UYaqJp8Gk1xTUmhAVDAPLd5H0ukCHr+6M09e3dnud3hK0621H22CvNiYcrZZfwE1F2RZ5oXVyaRkFeKu1VCsNwCQXVTBnFXJGIwmEk7ns3jXKYZ3asmCSbEEN5OceWtIksTYHmEs3X2K0koD3u6Kfi0ILoP1SWf4dNtxtBqJonKzhgvK9DVjsSTB8z8kEejlzvIZg4ltF6RkuA5hXI8wFu86xZ9Hc7m2eyulwxFcBvXLu4E5jWLX8fM1N3o5ReVM+WoPaTlFfDAplpt6N0yNsxeKjoRdWvkS2cJbGGQnwGiSeWJZAuct5CmW6Y28vu4gJqDSYOKze/sxtirHvLkjSRLjeoSxaOdJiisM+HoIc6Fmvt15klX7M/Hz1NUYi2rK9EZeWH2ASqOJGaM6MGtsdE2tzebO2B6tWLgjnW2p57iuZ/NMh2ouHDlbxKzvzat4tUthgVnDL605QHGFgYGRwXx4T19C/JpXzrw1BndogZ+njo0pZ4VBdhIslXfTG+WaEoUZeaVM/jKOnMIKvpwygJFdQhwan6Kj//+3d+ZhTZ3ZH//e7EAgEGQNyOICUkFBQK2dtlpbbbV1ae1ia7eZjnamna21tXunM7+Ore3v6b5MV+sy/rQiLnXpVKutKwgIgoqoIBBAxLCH7Pf3RxYSsgAKJCTn8zw8JuEmXO/z4eXc9z3vOeaZiyPnm9Cmot2nnsx7P53FgbOXnX6/qVODEH8+tj41zWeCYzO3pURAozdgf3mju0+FcEF+lQL/2HEKtySH2wXHZjR6Az5anI4Xbh/nM8ExAGTHSxHsz8ceyuH0aFq7tFi2tgD+Ap5dcGymQ63Do9fHY90Tk30mOAYAPpeDW5LDsff0JeicXBvCs3BVorC8oR13f3oYLUot1j0xeciDY8DNATJg3G2r1bNIe/1HTFu5D7lFcnefEtGDPWUN+HDfOdybGYNoJxs8RHwOcv84DaPCxEN8du4nM16KACEXyzeVIGHFD+SxB3KpTYU/rCtErNQf/3vfREQ4CRzCA4VDuoTnKfC4HIwJFyP3hBzx5LBHYjCw+Nv/nUCNQolPH8pwOhaH+PPx+l3euaG0N0L8BWhWajH6pV3k8DDAWXm3ULEAiz47DIYBNi2bigw3pQi59Tcot0iOzw+ctzw3t8gkqT2H85c78MzGYqTFSPDGvPF4bFqC3TE8DoM3F6QiUOS9m/Fcsb24DiqNAV1aPViQx56GRmfAk2sL0KnW4bOHJiFAwHW4iUfE4+DFHmWFfIXcIjmKa1rBGrcWkMMeyIf7zmHvmUa8MjcFWfFSpMXY1+IW8jh47c7r3HB27ie3SI7/5FVbnpPDnk9mnH3gK+By0NalQ6hYiO+XXY+xDkrKDhVuDZBX7SmHSmefQ7VqT7mbzoiwpkOtw9I1BRDwOPj0oUngcRjsLK23OSY0QIB3Fk3AwowYN52l+1m1pxx6c2Rhgjz2HN7YUYbC6ha8fU8akiID8cn+87ioUNocEy0RYeXdaT7b2XPVnnKH+azksGew78wlvLfX2Bjh4alxOFHTgv/2KMsXGSTCWz7uMMUTw4fL7WpsLa4DYHSXgXH1Q2cwYEyEGBuXTkWs1N+t5+jWHUX9bfUKdJcEqWvpQnSwn01pJmLgYFkWz24sRmVTJ5bdmIh7PztiKcMCAMmRgfh8ySTEhQa48Sw9A2e+ylu6sP5YNSbGBmNshNiS00oODx0bj9dg7dFqzEgOx792nsFT64ss3xMLeXj33gmWjoi+jCuHP91/HhNjg5EWI0GA1SZU8nhoqGzqxJ83nIBM4oejF64g4YWd4HIY6A3Gm/InfpOA52cn+1TOvCNcOfzW7jOYGBuM9Nhgm5Ky5PDQ07Os2x2pkfjkwUlYc6QKr24rQ1a8FF8+kokgD1iRdmuAHB3sZxN0Wb/uiJ4lQcxLKABI6gHm0wPnsbusAfMmRuPrQ1U2O025DIPHpsVTcGzCmcccBnhxi9FPPz4XqTESiIU8HKxosszWkcODR0ltC17OLcXYCDEOn2uymV1iADw1YzQFxyacOczlMHhr9xkARp/HRgQifWQwWBbYUiSHWkceDyadah2WrSmA3sDicofacr3NwfHDU+Pw0pwUd56ix+DMYT6XwRe/XIDOdM2iJSJMHBkMPoeDXaUNNBYPIY7Kuu073Yhlawuwu7QBM8dF4KPF6R5Tx9qtt5zLZyXBz8GFWHZTosPjHZUEoSWUgeeXs5fxzp5y3DkhGvmVCrtrrmdZfLD3nJvOzvNw5LEfn4t3F03A/mdvxnv3TcR9WbFQa/XYd6aRlrKHgCsdaixbU4AwsRBtXTq7pVcWwJojF91zch6IK4cLX7kV3zyahaemj0ZYoBA/lNRjQ36NJVgzQx4PLCzL4rnNJahobIcfn2t3vQFg72mqnGPGmcOr7pmA0r/PwuYnp+LlOeOQEReC4ppWbC2uo7F4iHEUw6l0BuwubcDdGTH47KEMjwmOATfPIJvv0sxLHGGBQjQrNdhTdgkPTo6zazLhagnlcrvap0raDBY1CiX+tKEIY8ID8dbdqbju1T0Oj3OVBuNr9PS451Jd/IiA7scrfnD4GXQ9Bw5jC94iNHVqsHnZ9bjro4MOj6Nr3k1vDk9PDsf05HAAxmoKiS/udPg5dE0Hji9/rcQPJfV4fnYy3jbN4veErnc3vTk8KU6KSXHd7YxpLB56XF3bVfekeVxjMbd3NZifLrNZztiQV40VOSfxyf5zeGrGGJtjJX58tHQ5rpc8beU+zEmLwsNT43yia9Bg0KXRY+maAhgMLD5fMgn+Al6/02B8lZ4eOyM8UIjGdrXd63Q9B45Ve8px+PwVrLonDakxEnK4j/TVYZ2BddikAqBrOlAcPteEf+06jdvHR2LZTYlYe/QiOdwH+uowAIfNggC6poOJ07FYIvK44BjwgDrIPbkvKxZ3TYjG//73LPIqFZbXCy4q0K7Woec19ONz8cLtyVg8eST+e+oSFnxyGPM+OojNBbVQ6/Qg+gbLsnhpy0mcbmjD+/enI36EMb/Y2bLV8llJ7jjNYY2zZjh0PQeOHSV1+PyXC1gyJQ6LMmMBkMMDCcuyeG2bsdsgn2s7GNM1HRjkLV146j9FSAwTY9WiCWAYhhweYH4sa0C7SgcuQw4PJctnJUHEsw07/fhcPDc72U1n5Bq3zyD3hGEY/M+C8SipbcET3x2HH5+LhjYVOAwgDRDgb7eOxcc/n3e4hPLsrCTkFNZi9eEqPLOpGG/uPI37s2Px0JQ4REnortAV3x25iJwiOf46c6xlKRXofdmKcI31jl0hjwOt3oCnp49GTpGcrucAU97Qjue+L8GkuBC8Mrd74xI5fO303Hl+67gIzEmLoms6wKi0ejy5tgBanQGfL5lkaV1PDl871g4zAEZK/fHU9NF4f28FXdMh4vrRoZAGCFDXqgIAyDz8mntcgAwAgSI+7s6Iwbv/PYtWU0qFgQXaVTr4C3g4tGKGw/eJhTw8PDUeS6bE4dC5K1h9pAqf7D+Pzw5cwG0pEXjk+nhMTpCCYTxvKt+d5FUaW/DOHBeOp2eMtvt+f5atiG567thV6wzgcxiMChc7dZi4Olq7tFi65jgChDx88mAGBD1mKcjhq8fRzvNfKy5jTloUeTyAsCyLV3JLUVLbin8vmWTXlZQcvnp6OswCaGxTQcDjkMNDRPUVJR766hhaurRY89ts/GbM0LeO7i8eGSADwIb8GrvX1DoDVu0p73WQYBgGN4wZgRvGjECNQom1Ry9iQ34NdpU2IDkyEA9Pjcf89Gj4Czz2vz9kNLTatuD1xDyg4YqjHbtaA4vXt5Uh2J+PSIkIUUF+CPLj0U3bNWBuwVvb3IX//H4KIoIct+Alrg5nO8/f2H4KCSMCECkRYYRYCC6NHdfEumPV2FRQi6dnjMZtVH5wQHHm8N+3lyE62A+RQSKEBwk9qoKCN3G6vg0Pf50Hrd6A9U9MwcRY+y6QnojHRohX00TEEbFSf7xwxzj8ZeZYbCuW49vDF/HilpNYues07s2MxZKpcSiqbvHJpSu1To8n1xVAqdFh/ROTPaIwtzfhzNWWLi0e/Sbf8lzE5yAySIRIiQiRQSJESESIMj2PMP0bJha6bATgywXvP9hXgb1nGvHGvOuQFS/t/Q1Ev3DmsUKpwbyPDwEw1ksODxQiIkiEKCtvLY9Nz3sLQHzV44KLzfj79jLcnBSGv8wc6+7T8TqcOdys1OLez49YnksDBCZfhYiU+Jm8tXocJOp1QsNXHXbG8SoFHv82H/4CHtYvnYoxbmwd3V88NkAe6J3nfgIu7ssaiXszY1FwsRnfHq7Ct4er8NXBSjCMMYUD8K1i4W9sP4Wi6hZ8vDjDrf3OvRVnDkcECfHx4gw0tKnQ0KrCpTYV6k3/FlQ341Kr2q5CAIcBwgKF9oG0RIRzlzrw5cFKn2zasPf0Jbz3UwUWZsiwZEqcu0/HK3HmcZhYiDcXpqKhTYVLrd0OVzR24NeKJnSo7SsEBPvzbR02B9QSEU7XteGDvRWWmtW+4nFjuwpPri1AlMQP79+XTjPxg4Azh8MDhXj33glGd1tVljG5oU2Fk/JWNHVo7N7jx+eaJi+EiJL42QTU5Q1t+HT/eZ9z2Bk/n2nEk+sKEC3xw3e/zUZMiHtbR/cXjw2Ql89Ksst7G4gdpgzDIDNeisx4KS61qTDz3QNo7zGQm4uF9xTam+4MN+bXYN2xaiy9KRFz0qLcfTpeiTOHX7h9HDJdzHSyLAtFp8ZmsDYHIA1tKlQ2deLw+SsOSxSZ8QWHK5s68Zf/O4HxsiC8uSCV0lQGCWcevzRnHG5NiXD6vg61zu4GsMEqkC6ra0NThxos6/xnO/LYmxzW6Az447pCtKt0WP14NiT+tIo3GDhz+MU7xrnMhVXr9GhsU9s7bBqT86sUuNSmglbvXGJfGIsdsfWEHM9sLEZyVCBWP5aNUPHw61PhsQHyUOzajQgSOZzlAOyXZLypzXVJbQte3lqKG0aPwPLbqKTNYHG1DjMMg1CxEKFiIa6Lljg9TqkxBiAz3j3g8Pve7HCnWoela46Dx2Hw2UOTKHdwELlaj8VCHkaHizE6XOz0GK3egMZ2NRpaVbj708MOj7H22JscBoA3d55GflUz3r9/IsZFBbn7dLyWq3VYyOMiVuqPWKnzmU+DgYVCqUFDqwpzP+xbUyJv87gnqw9X4bVtZZiSKMUXD2cicJimb3psgAwMza7dvqZyuGpzPZyEtm7B+8ED6S7zWolrZzAd9hfwkBgmhszHHDa34D3X2IHvHp887JbthiOD5TGfy4Es2M/y1ZvH3uIwAOQU1uLbw1X47Q0JmDdxeJ37cGSwHOZwGIwQCzFCLPS5sbgnLMvivZ8q8P7eCtyWEoEPHkgf1pMXPh8d9bUAuyPpza83mGr6eTrmFrxXOjX4fMkkSAME7j4lYgAYCIeLa1rAulrr9iC++PUCfiipx3Ozk3HDmBHuPh1igHDWRMDaY2ebreQtXdhd2jBsmkOVylvxQs5JTEmU4oXbPbNJAtF/BmIsvtJh32l1OGAwVWh6f28FFk2KwScPZgzr4Bjw8BnkocB8t/bilpNQavQOC1c3tqnA5TDQGxwHEFNX7sX1o0KxID0Gs8dHWoq7expvm1rwvrNoAsbLnC/dE8MLs6tvbD8FhVKD8EAhXrxjnI3DegMLPz7XbtbCzLyPDyExLAALTbMsnjore/hcE1buOoM7UiOx9MZEd58OMYDMT5dBb2DxzKZiAI6bCAT789GstO9IyWGAZWsLEOzPx9y0KCxIj0HGyGCPzEtv7tRg2doCSAME+GhxBq3ieRFmV5/fXAK1zuDQ4QuXO8CxKgzQk8lv7sXNSWFYkB6DW8aFD4sgU6Mz4NlNxdhWXIff35iIF25P9sjfvf7imZHcEDM/XYZfKi4jr1KBg8/bFg1v6lBj8ZfHwOUw4DKMTXUBPz4Xf7t1LNrVOuQWyfHspmK8kluK266LwMKMGEwbFeoxg9/24jr8+5cLeHhqHO6ZFOPu0yEGmPnpMgh4HPxhXSHW/HYykiK7q5IYDCxeyClBl1YPHoeBzmpk9uNz8crccWAYBlsK5Xjnx7N458ezmJwgxcIMGW5PjfKY8n/mFryjwsR4+54JXjEAE7bMnRCFZzYVY/msJPxxum3Toh9K6tHSpbULLvz4XPxz/nhIxQJsKZTj+4JarD1ajfhQf8xPl2FBugxxoQFD/D9xjN7A4k8bitDYpsbGZVMxYhhuXCJcMz9dhs2FtVBq9Nj85PU236u+osTiL47BX8CDVm+wVB4CjB4/PWM0Wru0yD0hx0+nGxEo4mFOahQWpMuQFS/1yD4FXRpjudj95Zex4vZkLLtplLtPacCgANkEywKcHn9wmzs1eOjLY6htVuK7x7PR0KpymuT/15ljUHCxGTlFcuworsPWE3UICxRi3oRoLMiQISUqyG1/0M0teDPjQvDynJTe30AMS8wrHNZjKMuyeHVbKTYer8WfbhmDxBEBTh1+IHskahRK5BbJsaVIjuc3n8SrW8swMyUCC9NluHFsGPhuuuFTafVYtsa+BS/hXRhM8ULPsfjHsgb8eUMRMuNCcM+kGHyw95xDh6cnhaNdpcXu0gZsKZLj/b0VeO+nCkyKC8GCdBnmpkUh2N99qWXv/FiOXyuasHJh6rBplkD0nI+VCgAADwFJREFUH72BRc9YVt7ShcVfHoVKp8emZVNR3tDudCx+bnYyjpy/gpyiWmwrrsOG/BrIgv2wIF2GBRkyuy6L7qJVqcXjq/NRVN2MlQtTcX/2SHef0oBCf2VM6A2sTf3J1i4tlnx9DBeaOvH1I1mYkhgKwPkOU+vyca/dmYKfzzQip1CO1Ueq8OXBSiRFBGJBhgzzJ8oQKRm6Tl/mFrxikeMWvIT3YDDlEJtnGViWxT92nMbao8Zyfn+dOQYMw7jcBBIr9cfTt4zBUzNGo7i2FVsKa7G9pB4/lNQjNECAOydEY0G6DGkxkiG74TO34D0pb8UXD2ci0UP+OBADj9lh6/uwn8sb8cf1hRgvk+DrR7MQKOLjviznf4gDRXwsyozFosxY1LV0YeuJOmwpqsXLuaV4Y/spTE82Ll9PTw6DkDd0y9e7Ttbj0/3n8UD2SK8LJAhbDCxrMz5ealNh8RdH0dqlxfrfTcG4qCCMiwpyOhZzOd3dgP85X4cfyy4hp0iOT/afw0c/n8OEGAkWpMtw54Rot5VPa2xTYclXeahs6sTHizNwe6r3lYulANmEUWjj4w61Do98nYfyhnb8e0lmvzcCCXlczB4fhdnjo9DcqcGOk/XIKazFyl1n8NbuM7h+VCgWmvKVAwZhJsxcX1He0gUhjwOt3oCNS6cinFrwejXmPXYchgHLsnhrdzm+PlSJx6bFY8Xs/uWEMQyDibHBmBgbjJfnpuBA+WXkFNVifV41vj1chVFhAViYEYN5E6MHJV/ZukaoxI+Pli4t/jRjtMu6u8Twx3KTZ3L10LkmLF1TgKTIQKx+PLvf5aKig/3w5M2jsOymRJTVtSGnUI5txXXYU3ZpSPKVrcdiBkCc1B+v30WreN6Oge1eybvcrsbiL46iqV2NNb+bjNSY/u3/8RfwLBU4GttU2HqiDjlFcry+/RT++cPpQc9XdlSvOX1kMB766hgUHRp881gWpo32zs3SFCCbMKdYKDU6PPZNHkrlrfj4wQxMTw6/ps8NCRBgyZQ4LJkSh8qmTmwpkmNLUS2e2VSMl3NLMeu6CCwYwHzlnvUV1ToD+BwGtc1dyIy/5o8nPJju4AJ476cKfHbgPB6cPBKvzk25pj/+fC4HM1MiMDMlAq1dWuw8WY8thcZBc9We8gHPV+7psDnvNH6EZ+SREoOHObeYYRgcu3AFv12dj8QRAVjz+GRI/K7eLYZhMF4mwXiZBC/ekYxfzzUNer5yT49ZGGcSd51sGNalvIjeYVkWHA4HClOaZl2LCqsfz0bGyJBr+tzwIBGeuDERT9yYiDMNbdhSKB/UfGVH9Zqf31wCAY8DHofB+iemYIIXpwox/SntlJmZyR4/fnwQT8c95BbJsSKnBCqtAUIeBxq9AR8+kI65adGD8vNYlrXJV25T6ezylbeeqOtXUXOVVg95Sxfu/ewIrnTat8eUBfvh0IoZDt45PGEYpoBl2cz+vs+bHX59WxlaurTwF3Ch1OixaFIM3ro7bdA2dljnK19o6oSQx7HLV+5Ptyi9gcWlNhXu+uigwxav5LARb3UYANYdvYiXcksBAAyM7dV3/vk3g7aZzTpf+ciFK2BZYFJcCBZmyDA3NRoSf36/HGZZFi1KLaoVSjz6TZ7Dihve5PHVOgx4r8e5RXI8930JNHoD+Fzj2Lv6sWxcP0izrHoDa8lX3l3aAKVGj5gQU75yugyJYeJ+d+3r0uhR06zE/f8+CoWDeILLMNjz1xtdNgEaTjjz2OdnkM13SCqtcXeIWmeUWueideS10jNfed/pRuQUdecrR0lEuNyutlQbkLd0YcXmEjQrNUiJCkK1Qoma5i7UKpSoaVaiWqHEpTbXtROd1Q8lhj897/KVGj24DIOpiaGDuuvZOl/5RE0LthTJsb24zpKvfF10EI5dUEBtqvxi9rhaoURiWABqFF2oaVaiRmH8krd0uWzZSg57N7lFcvxjxynLcxZAW5cWByuaBm3GtWe+cu4JObYUyvHSllL8fdspJEcF4kx9u6V6kdnhhlYVxkSIje42dxnHZIUStc1dTruzmiGPvRfzWGz2RatnIeBy0Ng+eLWNe+Yr7ylrQE6hHB//fA4f7juHkVJ/1Ld0QdsjnrjSqca4yCDTGGxy2PS4qZdazHqW9Zrg2BU+P4M8beU+h0W73XGX39ypwY6SOryx45TLQMERPA6D1BgJzja0o1NjX+vWm2YtAJp9s8aTHNboDDhw9jK2FNVi58mGfr8/cUQAGtpUUJLDTvFGhwHP8ZhlWUu+8reHK53Wq3VGiD8f2QlS7C+/bFPGy4w3eUwzyLZ4isMALPnKb+8+YwmO+4qAx8HE2GCcrmtDu4MbPm9yGKAZZKc4u5t3x11+SIAAS6bG49WtZb0eK+RxkDEyBFkJUkxOkCJ9ZDD8+Fws+OQwTtS02BzrqJMP4T14ksMCHge3pkTg1pQIxK/4weWxDAMkRQRicoIU2QmhyEoIQXigCC/mnMT6vGqbY8lh78dTPLbOV/76UGWvx0cGiZCdIEW2aSweFSZGTbMSv5xtAgPjTLgZ8ti78RSHge585Td3nu712AABF5PipaaxWIpUmQQiPhe5RXIs31RsE2D7ksM+HyBH97F3+lDAsiyqrigtu/Z7IuRx8OeZYzA5QYrxMoldiaLPD5zHiZoW3DUhGgUXm/ucb0QMbzzJYQBQdGqQV6lAgJCLTrX9TLBYyMP7909EZpwUEn/bjVel8lZsLqzF6HAxlGod6ltV5LCP4Ekeq7R6FNe0IFDEQ7vKfgbNX8DFG/PGY3KCFDEhfjabYJUaHZauKYCAx8Ezt43FN4eqaCz2ETzJYYOBRUVjB4L8+Gh1EE+I+Bw8e1sSshOkSIkKsisSwLIsLlzugNbAQsTnQKV13BnQm/H5AHn5rCSb/E1g6O6QDAYW5ZfakVepQF6lAscqFU5zf0Q8DlbeneZUzEPnmvDW7jOYkxqF9++fSF3GfAh3OgwA9a1dFofzKhWoaOwAAPC5jNOuZ7eMsy/X1typwdI1xha8G34/hbqM+Rju9LhDrUPBxWbkVV5BfmUzTtS0WPJIHc0Cv7kg1eFYzLIsVmw+ifJL7fjm0SzcnBSO3/2GWqL7Cu50WKc34FR9myWWyK9SoMXBJlHAFE8sdB5P6A0sXttWirVHq3FfZiz+Z8F4j+kKPJT4fIBsFqQ/OzyvFq3egFJ5qyWQyK9SoM00OxElEeGG0aHITghFdkIITta24p0fz7o8J+samxwGCA8U4e170ig49jGG0mGWZXHxitIyCOdVXUGNwjhjIhbyMCkuBPPTZZicIEVqjAS7Tjb0el65RXK8vfsM6lpVAIC/zRxLwbEPMpQeKzo1yK9SIL9SgbwqBUrlrTCwxg1P42USPDotHlnxUmTFh2B/+eU+OWweiwFgTmoUbk66thKhxPBjKB1WafUoqW1FXuUVHKtUoPBis2X/UVyoP24dF2FK+wlFwUVFv+IJPz4XXVo9lt00Cs/PTvLZmMLnN+ldC72VTlFp9SiqbkF+lTEgLrjYbLmzTBwRgOwEKbLijTk/PZfpeuP74zV4ObcUKqtNIEIeB2+5mGX2JmiD08DhymODgcXZxvbugLhSgcumHdnSAAGy4kOQnRCKyQlSJEcG9muWQW9gsTG/Bq9vL7PZzOTH5+JfCx3P0HkT5PDA0dtY3NCqQl6VAnmVV5BXqcDZS8ZVDgGPg/TYYExOkCIrQYqMkSH9at7Esiw2Hq/Ba1vLbMbi3lb8vAXapDdw9OZwh1qHwovNxgm2KoVxlcPkXFJEoCUPPjtBioh+NgVzFE/wOAzeWTTB6x0GnHtMAfJV0rO0FmAcFB+5Ph5cDoO8SgWKa1ug1Rs79CVHBiF9ZDBSTC0m/QVcdKh1xi+VDp3mx+bnGh3aTa93qvVoV9seo3GwOxrwvt2lzqDgYmBw5LGQy8Gs8ZFQavTIr1JY8tcig0TIjA/BeJkEKVFBiJSI0GH2UtXtZqdaZ/G1U623eNzze44qVZjxBY/J4YHBocM8Dhamy6A1sMirVKBaoQRg3IyUEReCtBgJUqIkGBUeAI3OYDPuGl3WuxyTrV13ViCAHHYNedyNs3jiwSlx4DBAXqUCpXVt0BtY4ypHdBAmxgYjJToIyZFB4HEZdKr16FBru911Mib3fL1DrXNaNcsXHAaoisWAs2pPuY3MAKDSGfD5LxfsjuVzOTh/uQOn69v69Nn+Ai7EQh7EQh4CTP/Kgv0QKOIhQMiFWMjHZwfOO3wv1dgk+oMjj9V6A7YV19m8xjBAa5cWO0rqsaOkvtfPFfA4Ng4HCnkYIRYgfkQAxEKu5fX3fqpw+H7ymOgrDh3WGfCf/Bq7Y1kY92v8WtHU6+dyOQwCBFwEivimcZeHQBEP0cEiBAh4EIuMfn+475zD95PDRF9xFk98ddC+igqPw+BUfRuKa1v79NkBAi7Eou5xOEDIw8gAf+P4bHr90/0UTziCAuSrxJU4qTJJd2BgFdRaBwaBou7g11rUAAEP3D40d9heXOcxu2WJ4Ysrj7PjpUZ3Rbbu9nQ2sMfrAUIeBLy+pVpsOl5LHhPXhCuHM0YGd4+3VkGtzTjs4HWxkAcRn9OntLecQjk5TFwTrhyeECNxOO6KhQ5cFvJMY7Xxpi5AwOtTs6htJyiecAQFyFeJs3IusmA/bH/6hkH/+e6uXEB4B6483rhs6qD/fPKYuFZcOZzzh2mD/vPJYeJaceXw1qconnAXvle3Y4BYPisJfnzbOsRDKdT8dBn+tTAVsmA/MDD+IvnCxiZiYCGPieEOOUwMd8hhz4RmkK+SoSzn4uocfF1g4togj4nhDjlMDHfIYc+EAuRrgIQivAHymBjukMPEcIcc9jwoxYIgCIIgCIIgrKAAmSAIgiAIgiCsoACZIAiCIAiCIKygAJkgCIIgCIIgrOhXq2mGYS4DuDh4p0MQfSaOZdmw/r6JHCY8CHKYGO5clcMAeUx4FA497leATBAEQRAEQRDeDqVYEARBEARBEIQVFCATBEEQBEEQhBUUIBMEQRAEQRCEFRQgEwRBEARBEIQVFCATBEEQBEEQhBUUIBMEQRAEQRCEFRQgEwRBEARBEIQVFCATBEEQBEEQhBUUIBMEQRAEQRCEFf8PYDrlchUxZecAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 9))\n", + "for i, iterations in enumerate(range(5, 61, 5)):\n", + " som.train(points, iterations, verbose=False, random_order=False)\n", + " plt.subplot(3, 4, i+1)\n", + " plt.scatter(x,y)\n", + " visit_order = np.argsort([som.winner(p)[1] for p in points])\n", + " visit_order = np.concatenate((visit_order, [visit_order[0]]))\n", + " plt.plot(points[visit_order][:,0], points[visit_order][:,1])\n", + " plt.title(\"iterations: {i};\\nerror: {e:.3f}\".format(i=iterations, \n", + " e=som.quantization_error(points)))\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/democracy_index.csv b/examples/democracy_index.csv new file mode 100644 index 0000000..bc080fc --- /dev/null +++ b/examples/democracy_index.csv @@ -0,0 +1,168 @@ +,rank,country,democracy_index,electoral_processand_pluralism,functioning_of_government,political_participation,political_culture,civil_liberties,category +0,1,Norway,9.87,10.00,9.64,10.00,10.00,9.71,Full democracy +1,2,Iceland,9.58,10.00,9.29,8.89,10.00,9.71,Full democracy +2,3,Sweden,9.39,9.58,9.64,8.33,10.00,9.41,Full democracy +3,4,New Zealand,9.26,10.00,9.29,8.89,8.13,10.00,Full democracy +4,5,Denmark,9.22,10.00,9.29,8.33,9.38,9.12,Full democracy +5,=6,Ireland,9.15,9.58,7.86,8.33,10.00,10.00,Full democracy +6,=6,Canada,9.15,9.58,9.64,7.78,8.75,10.00,Full democracy +7,8,Finland,9.14,10.00,8.93,8.33,8.75,9.71,Full democracy +8,9,Australia,9.09,10.00,8.93,7.78,8.75,10.00,Full democracy +9,10,Switzerland,9.03,9.58,9.29,7.78,9.38,9.12,Full democracy +10,11,Netherlands,8.89,9.58,9.29,8.33,8.13,9.12,Full democracy +11,12,Luxembourg,8.81,10.00,8.93,6.67,8.75,9.71,Full democracy +12,13,Germany,8.68,9.58,8.57,8.33,7.50,9.41,Full democracy +13,14,United Kingdom,8.53,9.58,7.50,8.33,8.13,9.12,Full democracy +14,15,Uruguay,8.38,10.00,8.57,6.11,7.50,9.71,Full democracy +15,16,Austria,8.29,9.58,7.86,8.33,6.88,8.82,Full democracy +16,17,Mauritius,8.22,9.17,8.21,5.56,8.75,9.41,Full democracy +17,18,Malta,8.21,9.17,8.21,6.11,8.75,8.82,Full democracy +18,19,Spain,8.08,9.17,7.14,7.78,7.50,8.82,Full democracy +19,20,Costa Rica,8.07,9.58,7.50,6.67,7.50,9.12,Full democracy +20,21,South Korea,8.00,9.17,7.86,7.22,7.50,8.24,Flawed democracy +21,22,Japan,7.99,8.75,8.21,6.67,7.50,8.82,Flawed democracy +22,=23,Chile,7.97,9.58,8.57,4.44,8.13,9.12,Flawed democracy +23,=23,Estonia,7.97,9.58,8.21,6.67,6.88,8.53,Flawed democracy +24,25,United States,7.96,9.17,7.14,7.78,7.50,8.24,Flawed democracy +25,26,Cape Verde,7.88,9.17,7.86,6.67,6.88,8.82,Flawed democracy +26,27,Portugal,7.84,9.58,7.50,6.11,6.88,9.12,Flawed democracy +27,28,Botswana,7.81,9.17,7.14,6.11,7.50,9.12,Flawed democracy +28,29,France,7.80,9.58,7.50,7.78,5.63,8.53,Flawed democracy +29,30,Israel,7.79,9.17,7.50,8.89,7.50,5.88,Flawed democracy +30,31,Belgium,7.78,9.58,8.93,5.00,6.88,8.53,Flawed democracy +31,32,Republic of China (Taiwan),7.73,9.58,8.21,6.11,5.63,9.12,Flawed democracy +32,33,Italy,7.71,9.58,6.07,7.78,6.88,8.24,Flawed democracy +33,34,Czech Republic,7.69,9.58,6.79,6.67,6.88,8.53,Flawed democracy +34,35,Cyprus,7.59,9.17,6.43,6.67,6.88,8.82,Flawed democracy +35,=36,Slovenia,7.50,9.58,6.79,6.67,6.25,8.24,Flawed democracy +36,=36,Lithuania,7.50,9.58,6.43,6.11,6.25,9.12,Flawed democracy +37,38,Latvia,7.38,9.58,6.07,5.56,6.88,8.82,Flawed democracy +38,39,Greece,7.29,9.58,5.36,6.11,6.88,8.53,Flawed democracy +39,40,South Africa,7.24,7.42,7.50,8.33,5.00,7.94,Flawed democracy +40,41,India,7.23,9.17,6.79,7.22,5.63,7.35,Flawed democracy +41,42,Timor-Leste,7.19,9.08,6.79,5.56,6.88,7.65,Flawed democracy +42,43,Trinidad and Tobago,7.16,9.58,7.14,6.11,5.63,7.35,Flawed democracy +43,44,Slovakia,7.10,9.58,6.79,5.56,5.63,7.94,Flawed democracy +44,45,Panama,7.05,9.58,6.07,6.67,5.00,7.94,Flawed democracy +45,46,Bulgaria,7.03,9.17,6.43,7.22,4.38,7.94,Flawed democracy +46,=47,Argentina,7.02,9.17,5.36,6.11,6.25,8.24,Flawed democracy +47,=47,Jamaica,7.02,8.75,7.14,4.44,6.25,8.53,Flawed democracy +48,49,Suriname,6.98,9.17,6.43,6.67,5.00,7.65,Flawed democracy +49,50,Brazil,6.97,9.58,5.36,6.67,5.00,8.24,Flawed democracy +50,51,Colombia,6.96,9.17,6.79,5.00,5.63,8.24,Flawed democracy +51,52,Malaysia,6.88,7.75,7.86,6.67,6.25,5.88,Flawed democracy +52,53,Philippines,6.71,9.17,5.71,7.22,4.38,7.06,Flawed democracy +53,=54,Poland,6.67,9.17,6.07,6.11,4.38,7.65,Flawed democracy +54,=54,Guyana,6.67,9.17,5.71,6.11,5.00,7.35,Flawed democracy +55,56,Lesotho,6.64,9.17,5.00,6.67,5.63,6.76,Flawed democracy +56,=57,Ghana,6.63,8.33,5.71,6.67,6.25,6.18,Flawed democracy +57,=57,Hungary,6.63,8.75,6.07,5.00,6.25,7.06,Flawed democracy +58,59,Peru,6.60,9.17,5.00,5.56,5.63,7.65,Flawed democracy +59,60,Croatia,6.57,9.17,6.07,5.56,5.00,7.06,Flawed democracy +60,61,Dominican Republic,6.54,9.17,5.36,6.11,5.00,7.06,Flawed democracy +61,62,Mongolia,6.50,9.17,5.71,5.56,5.00,7.06,Flawed democracy +62,=63,Serbia,6.41,8.25,5.36,6.11,5.00,7.35,Flawed democracy +63,=63,Tunisia,6.41,6.42,5.71,7.78,6.25,5.88,Flawed democracy +64,65,Indonesia,6.39,6.92,7.14,6.67,5.63,5.59,Flawed democracy +65,=66,Singapore,6.38,4.33,7.86,6.11,6.25,7.35,Flawed democracy +66,=66,Romania,6.38,9.17,5.71,5.00,4.38,7.65,Flawed democracy +67,68,Ecuador,6.27,8.75,5.36,6.11,4.38,6.76,Flawed democracy +68,69,Namibia,6.25,5.67,5.36,6.67,5.63,7.94,Flawed democracy +69,70,Paraguay,6.24,8.75,5.71,5.00,4.38,7.35,Flawed democracy +70,=71,Sri Lanka,6.19,7.83,5.71,5.00,6.25,6.18,Flawed democracy +71,=71,Mexico,6.19,8.33,6.07,7.22,3.13,6.18,Flawed democracy +72,=73,Hong Kong,6.15,3.08,6.07,5.56,7.50,8.53,Flawed democracy +73,=73,Senegal,6.15,7.50,6.07,4.44,6.25,6.47,Flawed democracy +74,75,Papua New Guinea,6.03,6.92,6.07,3.89,5.63,7.65,Flawed democracy +75,76,Albania,5.98,7.00,4.71,5.56,5.00,7.65,Hybrid regime +76,77,El Salvador,5.96,9.17,4.29,5.56,3.75,7.06,Hybrid regime +77,78,North Macedonia,5.87,6.50,5.36,6.67,3.75,7.06,Hybrid regime +78,=79,Moldova,5.85,7.08,4.64,6.11,4.38,7.06,Hybrid regime +79,=79,Fiji,5.85,6.58,5.36,6.11,5.63,5.59,Hybrid regime +80,=81,Montenegro,5.74,6.08,5.36,6.11,4.38,6.76,Hybrid regime +81,=81,Benin,5.74,6.50,5.71,5.00,5.63,5.88,Hybrid regime +82,83,Bolivia,5.70,7.50,4.64,5.56,3.75,7.06,Hybrid regime +83,84,Ukraine,5.69,6.17,3.21,6.67,6.25,6.18,Hybrid regime +84,85,Honduras,5.63,8.50,4.64,4.44,4.38,6.18,Hybrid regime +85,86,Zambia,5.61,6.17,4.64,3.89,6.88,6.47,Hybrid regime +86,87,Guatemala,5.60,7.92,5.36,3.89,4.38,6.47,Hybrid regime +87,88,Bangladesh,5.57,7.83,5.07,5.56,4.38,5.00,Hybrid regime +88,89,Georgia,5.50,7.83,3.57,6.11,4.38,5.59,Hybrid regime +89,90,Malawi,5.49,6.58,4.29,4.44,6.25,5.88,Hybrid regime +90,=91,Tanzania,5.41,7.00,5.00,5.00,5.63,4.41,Hybrid regime +91,=91,Mali,5.41,7.42,3.93,3.89,5.63,6.18,Hybrid regime +92,93,Liberia,5.35,7.42,2.57,5.56,5.63,5.59,Hybrid regime +93,94,Bhutan,5.30,8.75,6.79,2.78,4.38,3.82,Hybrid regime +94,95,Madagascar,5.22,6.08,3.57,6.11,5.63,4.71,Hybrid regime +95,96,Uganda,5.20,5.25,3.57,4.44,6.88,5.88,Hybrid regime +96,97,Nepal,5.18,4.33,5.36,5.00,5.63,5.59,Hybrid regime +97,=98,Kenya,5.11,3.50,5.36,6.67,5.63,4.41,Hybrid regime +98,=98,Kyrgyzstan,5.11,6.58,2.93,6.67,4.38,5.00,Hybrid regime +99,100,Morocco,4.99,5.25,4.64,5.00,5.63,4.41,Hybrid regime +100,101,Bosnia and Herzegovina,4.98,6.50,2.93,5.56,3.75,6.18,Hybrid regime +101,102,Haiti,4.91,5.58,2.93,3.89,6.25,5.88,Hybrid regime +102,103,Armenia,4.79,5.67,4.64,5.56,2.50,5.59,Hybrid regime +103,104,Burkina Faso,4.75,4.42,4.29,4.44,5.63,5.00,Hybrid regime +104,105,Sierra Leone,4.66,6.58,1.86,3.33,6.25,5.29,Hybrid regime +105,=106,Lebanon,4.63,3.92,2.21,6.67,5.63,4.71,Hybrid regime +106,=106,Thailand,4.63,3.00,4.29,5.00,5.00,5.88,Hybrid regime +107,108,Nigeria,4.44,6.08,4.64,3.33,3.75,4.41,Hybrid regime +108,109,Palestine,4.39,3.83,2.14,7.78,4.38,3.82,Hybrid regime +109,110,Turkey,4.37,4.50,5.00,5.00,5.00,2.35,Hybrid regime +110,111,Gambia,4.31,4.48,4.29,3.33,5.63,3.82,Hybrid regime +111,112,Pakistan,4.17,6.08,5.36,2.22,2.50,4.71,Hybrid regime +112,113,Ivory Coast,4.15,4.83,2.86,3.33,5.63,4.12,Hybrid regime +113,114,Iraq,4.06,4.75,0.07,6.67,5.00,3.82,Hybrid regime +114,115,Jordan,3.93,3.58,4.29,3.89,4.38,3.53,Authoritarian +115,=116,Mozambique,3.85,3.58,2.14,5.00,5.00,3.53,Authoritarian +116,=116,Kuwait,3.85,3.17,4.29,3.89,4.38,3.53,Authoritarian +117,118,Myanmar,3.83,3.67,3.93,3.89,5.63,2.06,Authoritarian +118,119,Mauritania,3.82,3.00,3.57,5.00,3.13,4.41,Authoritarian +119,120,Niger,3.76,5.25,1.14,3.33,4.38,4.71,Authoritarian +120,121,Comoros,3.71,4.33,2.21,4.44,3.75,3.82,Authoritarian +121,122,Nicaragua,3.63,2.67,1.86,3.89,5.63,4.12,Authoritarian +122,123,Angola,3.62,1.75,2.86,5.56,5.00,2.94,Authoritarian +123,124,Gabon,3.61,2.58,2.21,4.44,5.00,3.82,Authoritarian +124,125,Cambodia,3.59,1.33,5.00,2.78,5.63,3.24,Authoritarian +125,126,Algeria,3.50,2.58,2.21,3.89,5.00,3.82,Authoritarian +126,127,Egypt,3.36,3.58,3.21,3.33,3.75,2.94,Authoritarian +127,=128,Ethiopia,3.35,0.00,3.57,5.56,5.00,2.65,Authoritarian +128,=128,Rwanda,3.35,1.67,5.00,2.78,4.38,2.94,Authoritarian +129,130,China,3.32,0.00,5.00,3.89,6.25,1.47,Authoritarian +130,131,Republic of the Congo,3.31,3.17,2.50,3.89,3.75,3.24,Authoritarian +131,132,Cameroon,3.28,3.17,2.86,3.33,4.38,2.65,Authoritarian +132,133,Qatar,3.19,0.00,4.29,2.22,5.63,3.82,Authoritarian +133,=134,Zimbabwe,3.16,0.50,2.00,4.44,5.63,3.24,Authoritarian +134,=134,Venezuela,3.16,1.67,1.79,4.44,4.38,3.53,Authoritarian +135,136,Guinea,3.14,3.50,0.43,4.44,4.38,2.94,Authoritarian +136,137,Belarus,3.13,0.92,2.86,3.89,5.63,2.35,Authoritarian +137,138,Togo,3.10,3.17,0.79,3.33,5.00,3.24,Authoritarian +138,139,Vietnam,3.08,0.00,3.21,3.89,5.63,2.65,Authoritarian +139,140,Oman,3.04,0.00,3.93,2.78,4.38,4.12,Authoritarian +140,141,Swaziland,3.03,0.92,2.86,2.22,5.63,3.53,Authoritarian +141,142,Cuba,3.00,1.08,3.57,3.33,4.38,2.65,Authoritarian +142,143,Afghanistan,2.97,2.92,1.14,4.44,2.50,3.82,Authoritarian +143,=144,Kazakhstan,2.94,0.50,2.14,4.44,4.38,3.24,Authoritarian +144,=144,Russia,2.94,2.17,1.79,5.00,2.50,3.24,Authoritarian +145,146,Djibouti,2.87,0.42,1.79,3.89,5.63,2.65,Authoritarian +146,147,United Arab Emirates,2.76,0.00,3.93,2.22,5.00,2.65,Authoritarian +147,148,Bahrain,2.71,0.83,3.21,2.78,4.38,2.35,Authoritarian +148,149,Azerbaijan,2.65,0.50,2.14,3.33,3.75,3.53,Authoritarian +149,150,Iran,2.45,0.00,3.21,4.44,3.13,1.47,Authoritarian +150,=151,Eritrea,2.37,0.00,2.14,1.67,6.88,1.18,Authoritarian +151,=151,Laos,2.37,0.83,2.86,1.67,5.00,1.47,Authoritarian +152,153,Burundi,2.33,0.00,0.43,3.89,5.00,2.35,Authoritarian +153,154,Libya,2.19,1.00,0.36,1.67,5.00,2.94,Authoritarian +154,155,Sudan,2.15,0.00,1.79,2.78,5.00,1.18,Authoritarian +155,156,Uzbekistan,2.01,0.08,1.86,2.22,5.00,0.88,Authoritarian +156,157,Guinea-Bissau,1.98,1.67,0.00,2.78,3.13,2.35,Authoritarian +157,158,Yemen,1.95,0.00,0.00,3.89,5.00,0.88,Authoritarian +158,=159,Saudi Arabia,1.93,0.00,2.86,2.22,3.13,1.47,Authoritarian +159,=159,Tajikistan,1.93,0.08,0.79,1.67,6.25,0.88,Authoritarian +160,161,Equatorial Guinea,1.92,0.00,0.43,3.33,4.38,1.47,Authoritarian +161,162,Turkmenistan,1.72,0.00,0.79,2.22,5.00,0.59,Authoritarian +162,163,Chad,1.61,0.00,0.00,1.67,3.75,2.65,Authoritarian +163,164,Central African Republic,1.52,2.25,0.00,1.11,1.88,2.35,Authoritarian +164,165,Democratic Republic of the Congo,1.49,0.50,0.71,2.22,3.13,0.88,Authoritarian +165,166,Syria,1.43,0.00,0.00,2.78,4.38,0.00,Authoritarian +166,167,North Korea,1.08,0.00,2.50,1.67,1.25,0.00,Authoritarian diff --git a/examples/movie_covers/29veIwD38rVL2qY74emXQw4y25H.jpg b/examples/movie_covers/29veIwD38rVL2qY74emXQw4y25H.jpg new file mode 100644 index 0000000..f59dabc Binary files /dev/null and b/examples/movie_covers/29veIwD38rVL2qY74emXQw4y25H.jpg differ diff --git a/examples/movie_covers/2Sns5oMb356JNdBHgBETjIpRYy9.jpg b/examples/movie_covers/2Sns5oMb356JNdBHgBETjIpRYy9.jpg new file mode 100644 index 0000000..6998c15 Binary files /dev/null and b/examples/movie_covers/2Sns5oMb356JNdBHgBETjIpRYy9.jpg differ diff --git a/examples/movie_covers/2h00HrZs89SL3tXB4nbkiM7BKHs.jpg b/examples/movie_covers/2h00HrZs89SL3tXB4nbkiM7BKHs.jpg new file mode 100644 index 0000000..8fcb05a Binary files /dev/null and b/examples/movie_covers/2h00HrZs89SL3tXB4nbkiM7BKHs.jpg differ diff --git a/examples/movie_covers/2qAgGeYdLjelOEqjW9FYvPHpplC.jpg b/examples/movie_covers/2qAgGeYdLjelOEqjW9FYvPHpplC.jpg new file mode 100644 index 0000000..20eab6f Binary files /dev/null and b/examples/movie_covers/2qAgGeYdLjelOEqjW9FYvPHpplC.jpg differ diff --git a/examples/movie_covers/2y4dmgWYRMYXdD1UyJVcn2HSd1D.jpg b/examples/movie_covers/2y4dmgWYRMYXdD1UyJVcn2HSd1D.jpg new file mode 100644 index 0000000..1c4c6e1 Binary files /dev/null and b/examples/movie_covers/2y4dmgWYRMYXdD1UyJVcn2HSd1D.jpg differ diff --git a/examples/movie_covers/3RymloPYcEPx30T1vTrz2cXaVnh.jpg b/examples/movie_covers/3RymloPYcEPx30T1vTrz2cXaVnh.jpg new file mode 100644 index 0000000..e58f2c5 Binary files /dev/null and b/examples/movie_covers/3RymloPYcEPx30T1vTrz2cXaVnh.jpg differ diff --git a/examples/movie_covers/3W0v956XxSG5xgm7LB6qu8ExYJ2.jpg b/examples/movie_covers/3W0v956XxSG5xgm7LB6qu8ExYJ2.jpg new file mode 100644 index 0000000..e3d7de7 Binary files /dev/null and b/examples/movie_covers/3W0v956XxSG5xgm7LB6qu8ExYJ2.jpg differ diff --git a/examples/movie_covers/44sKJOGP3fTm4QXBcIuqu0RkdP7.jpg b/examples/movie_covers/44sKJOGP3fTm4QXBcIuqu0RkdP7.jpg new file mode 100644 index 0000000..0c6fea3 Binary files /dev/null and b/examples/movie_covers/44sKJOGP3fTm4QXBcIuqu0RkdP7.jpg differ diff --git a/examples/movie_covers/4mFsNQwbD0F237Tx7gAPotd0nbJ.jpg b/examples/movie_covers/4mFsNQwbD0F237Tx7gAPotd0nbJ.jpg new file mode 100644 index 0000000..b043d3e Binary files /dev/null and b/examples/movie_covers/4mFsNQwbD0F237Tx7gAPotd0nbJ.jpg differ diff --git a/examples/movie_covers/4sHeTAp65WrSSuc05nRBKddhBxO.jpg b/examples/movie_covers/4sHeTAp65WrSSuc05nRBKddhBxO.jpg new file mode 100644 index 0000000..8f77dae Binary files /dev/null and b/examples/movie_covers/4sHeTAp65WrSSuc05nRBKddhBxO.jpg differ diff --git a/examples/movie_covers/56zTpe2xvaA4alU51sRWPoKPYZy.jpg b/examples/movie_covers/56zTpe2xvaA4alU51sRWPoKPYZy.jpg new file mode 100644 index 0000000..7495e83 Binary files /dev/null and b/examples/movie_covers/56zTpe2xvaA4alU51sRWPoKPYZy.jpg differ diff --git a/examples/movie_covers/5MXyQfz8xUP3dIFPTubhTsbFY6N.jpg b/examples/movie_covers/5MXyQfz8xUP3dIFPTubhTsbFY6N.jpg new file mode 100644 index 0000000..1ab0861 Binary files /dev/null and b/examples/movie_covers/5MXyQfz8xUP3dIFPTubhTsbFY6N.jpg differ diff --git a/examples/movie_covers/5PDT64gtbmH10gK5AYR7LZh5PQk.jpg b/examples/movie_covers/5PDT64gtbmH10gK5AYR7LZh5PQk.jpg new file mode 100644 index 0000000..5a77fbb Binary files /dev/null and b/examples/movie_covers/5PDT64gtbmH10gK5AYR7LZh5PQk.jpg differ diff --git a/examples/movie_covers/5VTN0pR8gcqV3EPUHHfMGnJYN9L.jpg b/examples/movie_covers/5VTN0pR8gcqV3EPUHHfMGnJYN9L.jpg new file mode 100644 index 0000000..50396ac Binary files /dev/null and b/examples/movie_covers/5VTN0pR8gcqV3EPUHHfMGnJYN9L.jpg differ diff --git a/examples/movie_covers/5WJnxuw41sddupf8cwOxYftuvJG.jpg b/examples/movie_covers/5WJnxuw41sddupf8cwOxYftuvJG.jpg new file mode 100644 index 0000000..0e2a068 Binary files /dev/null and b/examples/movie_covers/5WJnxuw41sddupf8cwOxYftuvJG.jpg differ diff --git a/examples/movie_covers/66A9MqXOyVFCssoloscw79z8Tew.jpg b/examples/movie_covers/66A9MqXOyVFCssoloscw79z8Tew.jpg new file mode 100644 index 0000000..0f4c90b Binary files /dev/null and b/examples/movie_covers/66A9MqXOyVFCssoloscw79z8Tew.jpg differ diff --git a/examples/movie_covers/6WBIzCgmDCYrqh64yDREGeDk9d3.jpg b/examples/movie_covers/6WBIzCgmDCYrqh64yDREGeDk9d3.jpg new file mode 100644 index 0000000..2b533e3 Binary files /dev/null and b/examples/movie_covers/6WBIzCgmDCYrqh64yDREGeDk9d3.jpg differ diff --git a/examples/movie_covers/7WsyChQLEftFiDOVTGkv3hFpyyt.jpg b/examples/movie_covers/7WsyChQLEftFiDOVTGkv3hFpyyt.jpg new file mode 100644 index 0000000..1a5df63 Binary files /dev/null and b/examples/movie_covers/7WsyChQLEftFiDOVTGkv3hFpyyt.jpg differ diff --git a/examples/movie_covers/7ZiSTZN5FWsphVmlwFVFfn5EOl.jpg b/examples/movie_covers/7ZiSTZN5FWsphVmlwFVFfn5EOl.jpg new file mode 100644 index 0000000..58fbc67 Binary files /dev/null and b/examples/movie_covers/7ZiSTZN5FWsphVmlwFVFfn5EOl.jpg differ diff --git a/examples/movie_covers/7uoiKOEjxBBW0AgDGQWrlfGQ90w.jpg b/examples/movie_covers/7uoiKOEjxBBW0AgDGQWrlfGQ90w.jpg new file mode 100644 index 0000000..3f7e5c4 Binary files /dev/null and b/examples/movie_covers/7uoiKOEjxBBW0AgDGQWrlfGQ90w.jpg differ diff --git a/examples/movie_covers/7y3eYvTsGjxPYDtSnumCLIMDkrV.jpg b/examples/movie_covers/7y3eYvTsGjxPYDtSnumCLIMDkrV.jpg new file mode 100644 index 0000000..62dccdb Binary files /dev/null and b/examples/movie_covers/7y3eYvTsGjxPYDtSnumCLIMDkrV.jpg differ diff --git a/examples/movie_covers/81d8oyEFgj7FlxJqSDXWr8JH8kV.jpg b/examples/movie_covers/81d8oyEFgj7FlxJqSDXWr8JH8kV.jpg new file mode 100644 index 0000000..2cbc7be Binary files /dev/null and b/examples/movie_covers/81d8oyEFgj7FlxJqSDXWr8JH8kV.jpg differ diff --git a/examples/movie_covers/8zw8IL4zEPjkh8Aysdcd0FwGMb0.jpg b/examples/movie_covers/8zw8IL4zEPjkh8Aysdcd0FwGMb0.jpg new file mode 100644 index 0000000..5390e07 Binary files /dev/null and b/examples/movie_covers/8zw8IL4zEPjkh8Aysdcd0FwGMb0.jpg differ diff --git a/examples/movie_covers/90T7b2LIrL07ndYQBmSm09yqVEH.jpg b/examples/movie_covers/90T7b2LIrL07ndYQBmSm09yqVEH.jpg new file mode 100644 index 0000000..e58acc0 Binary files /dev/null and b/examples/movie_covers/90T7b2LIrL07ndYQBmSm09yqVEH.jpg differ diff --git a/examples/movie_covers/9O7gLzmreU0nGkIB6K3BsJbzvNv.jpg b/examples/movie_covers/9O7gLzmreU0nGkIB6K3BsJbzvNv.jpg new file mode 100644 index 0000000..dccaf1d Binary files /dev/null and b/examples/movie_covers/9O7gLzmreU0nGkIB6K3BsJbzvNv.jpg differ diff --git a/examples/movie_covers/9SKDSFbaM6LuGqG1aPWN3wYGEyD.jpg b/examples/movie_covers/9SKDSFbaM6LuGqG1aPWN3wYGEyD.jpg new file mode 100644 index 0000000..d9131d2 Binary files /dev/null and b/examples/movie_covers/9SKDSFbaM6LuGqG1aPWN3wYGEyD.jpg differ diff --git a/examples/movie_covers/9cJETuLMc6R0bTWRA5i7ctY9bxk.jpg b/examples/movie_covers/9cJETuLMc6R0bTWRA5i7ctY9bxk.jpg new file mode 100644 index 0000000..7499ddc Binary files /dev/null and b/examples/movie_covers/9cJETuLMc6R0bTWRA5i7ctY9bxk.jpg differ diff --git a/examples/movie_covers/9fgh3Ns1iRzlQNYuJyK0ARQZU7w.jpg b/examples/movie_covers/9fgh3Ns1iRzlQNYuJyK0ARQZU7w.jpg new file mode 100644 index 0000000..d76a61d Binary files /dev/null and b/examples/movie_covers/9fgh3Ns1iRzlQNYuJyK0ARQZU7w.jpg differ diff --git a/examples/movie_covers/AqE126KXLcT3wwmeM3HtlKqyGze.jpg b/examples/movie_covers/AqE126KXLcT3wwmeM3HtlKqyGze.jpg new file mode 100644 index 0000000..b776f9b Binary files /dev/null and b/examples/movie_covers/AqE126KXLcT3wwmeM3HtlKqyGze.jpg differ diff --git a/examples/movie_covers/a35r5UMw2rQdaM2AleaT3MPvOFg.jpg b/examples/movie_covers/a35r5UMw2rQdaM2AleaT3MPvOFg.jpg new file mode 100644 index 0000000..f55fbcc Binary files /dev/null and b/examples/movie_covers/a35r5UMw2rQdaM2AleaT3MPvOFg.jpg differ diff --git a/examples/movie_covers/aNV789h3oHm2pTHK5Bdq5RuiumZ.jpg b/examples/movie_covers/aNV789h3oHm2pTHK5Bdq5RuiumZ.jpg new file mode 100644 index 0000000..6a1b4f7 Binary files /dev/null and b/examples/movie_covers/aNV789h3oHm2pTHK5Bdq5RuiumZ.jpg differ diff --git a/examples/movie_covers/adw6Lq9FiC9zjYEpOqfq03ituwp.jpg b/examples/movie_covers/adw6Lq9FiC9zjYEpOqfq03ituwp.jpg new file mode 100644 index 0000000..8dd424c Binary files /dev/null and b/examples/movie_covers/adw6Lq9FiC9zjYEpOqfq03ituwp.jpg differ diff --git a/examples/movie_covers/ai0LXkzVM3hMjDhvFdKMUemoBe.jpg b/examples/movie_covers/ai0LXkzVM3hMjDhvFdKMUemoBe.jpg new file mode 100644 index 0000000..9e133f7 Binary files /dev/null and b/examples/movie_covers/ai0LXkzVM3hMjDhvFdKMUemoBe.jpg differ diff --git a/examples/movie_covers/bVq65huQ8vHDd1a4Z37QtuyEvpA.jpg b/examples/movie_covers/bVq65huQ8vHDd1a4Z37QtuyEvpA.jpg new file mode 100644 index 0000000..5930fd5 Binary files /dev/null and b/examples/movie_covers/bVq65huQ8vHDd1a4Z37QtuyEvpA.jpg differ diff --git a/examples/movie_covers/bXNvzjULc9jrOVhGfjcc64uKZmZ.jpg b/examples/movie_covers/bXNvzjULc9jrOVhGfjcc64uKZmZ.jpg new file mode 100644 index 0000000..567d5a0 Binary files /dev/null and b/examples/movie_covers/bXNvzjULc9jrOVhGfjcc64uKZmZ.jpg differ diff --git a/examples/movie_covers/btTdmkgIvOi0FFip1sPuZI2oQG6.jpg b/examples/movie_covers/btTdmkgIvOi0FFip1sPuZI2oQG6.jpg new file mode 100644 index 0000000..a311f17 Binary files /dev/null and b/examples/movie_covers/btTdmkgIvOi0FFip1sPuZI2oQG6.jpg differ diff --git a/examples/movie_covers/dEYnvnUfXrqvqeRSqvIEtmzhoA8.jpg b/examples/movie_covers/dEYnvnUfXrqvqeRSqvIEtmzhoA8.jpg new file mode 100644 index 0000000..9618ea7 Binary files /dev/null and b/examples/movie_covers/dEYnvnUfXrqvqeRSqvIEtmzhoA8.jpg differ diff --git a/examples/movie_covers/dM2w364MScsjFf8pfMbaWUcWrR.jpg b/examples/movie_covers/dM2w364MScsjFf8pfMbaWUcWrR.jpg new file mode 100644 index 0000000..b6f6c69 Binary files /dev/null and b/examples/movie_covers/dM2w364MScsjFf8pfMbaWUcWrR.jpg differ diff --git a/examples/movie_covers/eKi8dIrr8voobbaGzDpe8w0PVbC.jpg b/examples/movie_covers/eKi8dIrr8voobbaGzDpe8w0PVbC.jpg new file mode 100644 index 0000000..856734e Binary files /dev/null and b/examples/movie_covers/eKi8dIrr8voobbaGzDpe8w0PVbC.jpg differ diff --git a/examples/movie_covers/ekstpH614fwDX8DUln1a2Opz0N8.jpg b/examples/movie_covers/ekstpH614fwDX8DUln1a2Opz0N8.jpg new file mode 100644 index 0000000..b2af951 Binary files /dev/null and b/examples/movie_covers/ekstpH614fwDX8DUln1a2Opz0N8.jpg differ diff --git a/examples/movie_covers/f0uorE7K7ggHfr8r7pUTOHWkOlE.jpg b/examples/movie_covers/f0uorE7K7ggHfr8r7pUTOHWkOlE.jpg new file mode 100644 index 0000000..b9d9df5 Binary files /dev/null and b/examples/movie_covers/f0uorE7K7ggHfr8r7pUTOHWkOlE.jpg differ diff --git a/examples/movie_covers/f3DEXseCs3WBtvCv9pVPCtoluuG.jpg b/examples/movie_covers/f3DEXseCs3WBtvCv9pVPCtoluuG.jpg new file mode 100644 index 0000000..4e39e35 Binary files /dev/null and b/examples/movie_covers/f3DEXseCs3WBtvCv9pVPCtoluuG.jpg differ diff --git a/examples/movie_covers/f7DImXDebOs148U4uPjI61iDvaK.jpg b/examples/movie_covers/f7DImXDebOs148U4uPjI61iDvaK.jpg new file mode 100644 index 0000000..f982490 Binary files /dev/null and b/examples/movie_covers/f7DImXDebOs148U4uPjI61iDvaK.jpg differ diff --git a/examples/movie_covers/fQMSaP88cf1nz4qwuNEEFtazuDM.jpg b/examples/movie_covers/fQMSaP88cf1nz4qwuNEEFtazuDM.jpg new file mode 100644 index 0000000..b60aa21 Binary files /dev/null and b/examples/movie_covers/fQMSaP88cf1nz4qwuNEEFtazuDM.jpg differ diff --git a/examples/movie_covers/fXepRAYOx1qC3wju7XdDGx60775.jpg b/examples/movie_covers/fXepRAYOx1qC3wju7XdDGx60775.jpg new file mode 100644 index 0000000..cd727d0 Binary files /dev/null and b/examples/movie_covers/fXepRAYOx1qC3wju7XdDGx60775.jpg differ diff --git a/examples/movie_covers/flnoqdC38mbaulAeptjynOFO7yi.jpg b/examples/movie_covers/flnoqdC38mbaulAeptjynOFO7yi.jpg new file mode 100644 index 0000000..abf69d5 Binary files /dev/null and b/examples/movie_covers/flnoqdC38mbaulAeptjynOFO7yi.jpg differ diff --git a/examples/movie_covers/gE8S02QUOhVnAmYu4tcrBlMTujz.jpg b/examples/movie_covers/gE8S02QUOhVnAmYu4tcrBlMTujz.jpg new file mode 100644 index 0000000..9207355 Binary files /dev/null and b/examples/movie_covers/gE8S02QUOhVnAmYu4tcrBlMTujz.jpg differ diff --git a/examples/movie_covers/hD42EDHLap5UVmv9CZrUiTxH3rY.jpg b/examples/movie_covers/hD42EDHLap5UVmv9CZrUiTxH3rY.jpg new file mode 100644 index 0000000..bc74ced Binary files /dev/null and b/examples/movie_covers/hD42EDHLap5UVmv9CZrUiTxH3rY.jpg differ diff --git a/examples/movie_covers/hEpWvX6Bp79eLxY1kX5ZZJcme5U.jpg b/examples/movie_covers/hEpWvX6Bp79eLxY1kX5ZZJcme5U.jpg new file mode 100644 index 0000000..d32e48d Binary files /dev/null and b/examples/movie_covers/hEpWvX6Bp79eLxY1kX5ZZJcme5U.jpg differ diff --git a/examples/movie_covers/hK2KsU0lNiYRqIrYJcC3x63dPnH.jpg b/examples/movie_covers/hK2KsU0lNiYRqIrYJcC3x63dPnH.jpg new file mode 100644 index 0000000..6b3baef Binary files /dev/null and b/examples/movie_covers/hK2KsU0lNiYRqIrYJcC3x63dPnH.jpg differ diff --git a/examples/movie_covers/hYzCLju3W74nLhhRXfPkwDi1Tun.jpg b/examples/movie_covers/hYzCLju3W74nLhhRXfPkwDi1Tun.jpg new file mode 100644 index 0000000..bcc224a Binary files /dev/null and b/examples/movie_covers/hYzCLju3W74nLhhRXfPkwDi1Tun.jpg differ diff --git a/examples/movie_covers/heY0CCUqN4DY3X30thssZkvWZwx.jpg b/examples/movie_covers/heY0CCUqN4DY3X30thssZkvWZwx.jpg new file mode 100644 index 0000000..661ab1c Binary files /dev/null and b/examples/movie_covers/heY0CCUqN4DY3X30thssZkvWZwx.jpg differ diff --git a/examples/movie_covers/hfMeo073RxKKjZZV4gSGema1yog.jpg b/examples/movie_covers/hfMeo073RxKKjZZV4gSGema1yog.jpg new file mode 100644 index 0000000..19f18b6 Binary files /dev/null and b/examples/movie_covers/hfMeo073RxKKjZZV4gSGema1yog.jpg differ diff --git a/examples/movie_covers/iiZZdoQBEYBv6id8su7ImL0oCbD.jpg b/examples/movie_covers/iiZZdoQBEYBv6id8su7ImL0oCbD.jpg new file mode 100644 index 0000000..6fbecb8 Binary files /dev/null and b/examples/movie_covers/iiZZdoQBEYBv6id8su7ImL0oCbD.jpg differ diff --git a/examples/movie_covers/j21UXCOq0EbV8EPTtmPn1CGePfB.jpg b/examples/movie_covers/j21UXCOq0EbV8EPTtmPn1CGePfB.jpg new file mode 100644 index 0000000..7018a9e Binary files /dev/null and b/examples/movie_covers/j21UXCOq0EbV8EPTtmPn1CGePfB.jpg differ diff --git a/examples/movie_covers/jX94vnfcuJ8rTnFbsoriY6dlHrC.jpg b/examples/movie_covers/jX94vnfcuJ8rTnFbsoriY6dlHrC.jpg new file mode 100644 index 0000000..de1888d Binary files /dev/null and b/examples/movie_covers/jX94vnfcuJ8rTnFbsoriY6dlHrC.jpg differ diff --git a/examples/movie_covers/jcvJ2xcVWU9Wh0hZAxcs103s8nN.jpg b/examples/movie_covers/jcvJ2xcVWU9Wh0hZAxcs103s8nN.jpg new file mode 100644 index 0000000..7bab9bf Binary files /dev/null and b/examples/movie_covers/jcvJ2xcVWU9Wh0hZAxcs103s8nN.jpg differ diff --git a/examples/movie_covers/jgJoRWltoS17nD5MAQ1yK2Ztefw.jpg b/examples/movie_covers/jgJoRWltoS17nD5MAQ1yK2Ztefw.jpg new file mode 100644 index 0000000..a1e3800 Binary files /dev/null and b/examples/movie_covers/jgJoRWltoS17nD5MAQ1yK2Ztefw.jpg differ diff --git a/examples/movie_covers/jq8LjngZ7XZEQge5JFTdOGMrHyZ.jpg b/examples/movie_covers/jq8LjngZ7XZEQge5JFTdOGMrHyZ.jpg new file mode 100644 index 0000000..5353321 Binary files /dev/null and b/examples/movie_covers/jq8LjngZ7XZEQge5JFTdOGMrHyZ.jpg differ diff --git a/examples/movie_covers/k7eYdWvhYQyRQoU2TB2A2Xu2TfD.jpg b/examples/movie_covers/k7eYdWvhYQyRQoU2TB2A2Xu2TfD.jpg new file mode 100644 index 0000000..c059c6d Binary files /dev/null and b/examples/movie_covers/k7eYdWvhYQyRQoU2TB2A2Xu2TfD.jpg differ diff --git a/examples/movie_covers/lIv1QinFqz4dlp5U4lQ6HaiskOZ.jpg b/examples/movie_covers/lIv1QinFqz4dlp5U4lQ6HaiskOZ.jpg new file mode 100644 index 0000000..fe4d0b7 Binary files /dev/null and b/examples/movie_covers/lIv1QinFqz4dlp5U4lQ6HaiskOZ.jpg differ diff --git a/examples/movie_covers/lrJWyjOVjPhghl4KyAMtOepAxs.jpg b/examples/movie_covers/lrJWyjOVjPhghl4KyAMtOepAxs.jpg new file mode 100644 index 0000000..b3c98c7 Binary files /dev/null and b/examples/movie_covers/lrJWyjOVjPhghl4KyAMtOepAxs.jpg differ diff --git a/examples/movie_covers/mNqZOtJIQfFQPjo3hmYLIn8Qqhf.jpg b/examples/movie_covers/mNqZOtJIQfFQPjo3hmYLIn8Qqhf.jpg new file mode 100644 index 0000000..381214f Binary files /dev/null and b/examples/movie_covers/mNqZOtJIQfFQPjo3hmYLIn8Qqhf.jpg differ diff --git a/examples/movie_covers/mQaM8fDQdFWwCTFp0TZG8fChlZ5.jpg b/examples/movie_covers/mQaM8fDQdFWwCTFp0TZG8fChlZ5.jpg new file mode 100644 index 0000000..ce3b48a Binary files /dev/null and b/examples/movie_covers/mQaM8fDQdFWwCTFp0TZG8fChlZ5.jpg differ diff --git a/examples/movie_covers/miDoEMlYDJhOCvxlzI0wZqBs9Yt.jpg b/examples/movie_covers/miDoEMlYDJhOCvxlzI0wZqBs9Yt.jpg new file mode 100644 index 0000000..1a07dcf Binary files /dev/null and b/examples/movie_covers/miDoEMlYDJhOCvxlzI0wZqBs9Yt.jpg differ diff --git a/examples/movie_covers/nBNZadXqJSdt05SHLqgT0HuC5Gm.jpg b/examples/movie_covers/nBNZadXqJSdt05SHLqgT0HuC5Gm.jpg new file mode 100644 index 0000000..5e7bf60 Binary files /dev/null and b/examples/movie_covers/nBNZadXqJSdt05SHLqgT0HuC5Gm.jpg differ diff --git a/examples/movie_covers/nORMXEkYEbzkU5WkMWMgRDJwjSZ.jpg b/examples/movie_covers/nORMXEkYEbzkU5WkMWMgRDJwjSZ.jpg new file mode 100644 index 0000000..11753d6 Binary files /dev/null and b/examples/movie_covers/nORMXEkYEbzkU5WkMWMgRDJwjSZ.jpg differ diff --git a/examples/movie_covers/nOd6vjEmzCT0k4VYqsA2hwyi87C.jpg b/examples/movie_covers/nOd6vjEmzCT0k4VYqsA2hwyi87C.jpg new file mode 100644 index 0000000..eea8718 Binary files /dev/null and b/examples/movie_covers/nOd6vjEmzCT0k4VYqsA2hwyi87C.jpg differ diff --git a/examples/movie_covers/oFwzvRgfxJc0FUr2mwYTi10dk3G.jpg b/examples/movie_covers/oFwzvRgfxJc0FUr2mwYTi10dk3G.jpg new file mode 100644 index 0000000..e31f35f Binary files /dev/null and b/examples/movie_covers/oFwzvRgfxJc0FUr2mwYTi10dk3G.jpg differ diff --git a/examples/movie_covers/oRvMaJOmapypFUcQqpgHMZA6qL9.jpg b/examples/movie_covers/oRvMaJOmapypFUcQqpgHMZA6qL9.jpg new file mode 100644 index 0000000..abb7966 Binary files /dev/null and b/examples/movie_covers/oRvMaJOmapypFUcQqpgHMZA6qL9.jpg differ diff --git a/examples/movie_covers/oXbT7vlLmZ76kWoHe5XJYuyJUgp.jpg b/examples/movie_covers/oXbT7vlLmZ76kWoHe5XJYuyJUgp.jpg new file mode 100644 index 0000000..c793eff Binary files /dev/null and b/examples/movie_covers/oXbT7vlLmZ76kWoHe5XJYuyJUgp.jpg differ diff --git a/examples/movie_covers/obhM86qyv8RsE69XSMTtT9FdE0b.jpg b/examples/movie_covers/obhM86qyv8RsE69XSMTtT9FdE0b.jpg new file mode 100644 index 0000000..aa2fe2d Binary files /dev/null and b/examples/movie_covers/obhM86qyv8RsE69XSMTtT9FdE0b.jpg differ diff --git a/examples/movie_covers/on9JlbGEccLsYkjeEph2Whm1DIp.jpg b/examples/movie_covers/on9JlbGEccLsYkjeEph2Whm1DIp.jpg new file mode 100644 index 0000000..3cc93a1 Binary files /dev/null and b/examples/movie_covers/on9JlbGEccLsYkjeEph2Whm1DIp.jpg differ diff --git a/examples/movie_covers/or06FN3Dka5tukK1e9sl16pB3iy.jpg b/examples/movie_covers/or06FN3Dka5tukK1e9sl16pB3iy.jpg new file mode 100644 index 0000000..7581b62 Binary files /dev/null and b/examples/movie_covers/or06FN3Dka5tukK1e9sl16pB3iy.jpg differ diff --git a/examples/movie_covers/or1MP8BZIAjqWYxPdPX724ydKar.jpg b/examples/movie_covers/or1MP8BZIAjqWYxPdPX724ydKar.jpg new file mode 100644 index 0000000..c25484c Binary files /dev/null and b/examples/movie_covers/or1MP8BZIAjqWYxPdPX724ydKar.jpg differ diff --git a/examples/movie_covers/pTpxQB1N0waaSc3OSn0e9oc8kx9.jpg b/examples/movie_covers/pTpxQB1N0waaSc3OSn0e9oc8kx9.jpg new file mode 100644 index 0000000..357ce53 Binary files /dev/null and b/examples/movie_covers/pTpxQB1N0waaSc3OSn0e9oc8kx9.jpg differ diff --git a/examples/movie_covers/pwpGfTImTGifEGgLb3s6LRPd4I6.jpg b/examples/movie_covers/pwpGfTImTGifEGgLb3s6LRPd4I6.jpg new file mode 100644 index 0000000..a687a45 Binary files /dev/null and b/examples/movie_covers/pwpGfTImTGifEGgLb3s6LRPd4I6.jpg differ diff --git a/examples/movie_covers/qJ2tW6WMUDux911r6m7haRef0WH.jpg b/examples/movie_covers/qJ2tW6WMUDux911r6m7haRef0WH.jpg new file mode 100644 index 0000000..c4e53bf Binary files /dev/null and b/examples/movie_covers/qJ2tW6WMUDux911r6m7haRef0WH.jpg differ diff --git a/examples/movie_covers/qjAyTj2BSth1EQ89vNfo0JYVPFN.jpg b/examples/movie_covers/qjAyTj2BSth1EQ89vNfo0JYVPFN.jpg new file mode 100644 index 0000000..cf80d67 Binary files /dev/null and b/examples/movie_covers/qjAyTj2BSth1EQ89vNfo0JYVPFN.jpg differ diff --git a/examples/movie_covers/qmDpIHrmpJINaRKAfWQfftjCdyi.jpg b/examples/movie_covers/qmDpIHrmpJINaRKAfWQfftjCdyi.jpg new file mode 100644 index 0000000..064d451 Binary files /dev/null and b/examples/movie_covers/qmDpIHrmpJINaRKAfWQfftjCdyi.jpg differ diff --git a/examples/movie_covers/rCzpDGLbOoPwLjy3OAm5NUPOTrC.jpg b/examples/movie_covers/rCzpDGLbOoPwLjy3OAm5NUPOTrC.jpg new file mode 100644 index 0000000..4493602 Binary files /dev/null and b/examples/movie_covers/rCzpDGLbOoPwLjy3OAm5NUPOTrC.jpg differ diff --git a/examples/movie_covers/rIZX6X0MIHYEebk6W4LABT9VP2c.jpg b/examples/movie_covers/rIZX6X0MIHYEebk6W4LABT9VP2c.jpg new file mode 100644 index 0000000..5f9f350 Binary files /dev/null and b/examples/movie_covers/rIZX6X0MIHYEebk6W4LABT9VP2c.jpg differ diff --git a/examples/movie_covers/rPdtLWNsZmAtoZl9PK7S2wE3qiS.jpg b/examples/movie_covers/rPdtLWNsZmAtoZl9PK7S2wE3qiS.jpg new file mode 100644 index 0000000..58e3dec Binary files /dev/null and b/examples/movie_covers/rPdtLWNsZmAtoZl9PK7S2wE3qiS.jpg differ diff --git a/examples/movie_covers/rgj6QjdyCeDrO9KGt1kusGyhvb2.jpg b/examples/movie_covers/rgj6QjdyCeDrO9KGt1kusGyhvb2.jpg new file mode 100644 index 0000000..689da87 Binary files /dev/null and b/examples/movie_covers/rgj6QjdyCeDrO9KGt1kusGyhvb2.jpg differ diff --git a/examples/movie_covers/rhIRbceoE9lR4veEXuwCC2wARtG.jpg b/examples/movie_covers/rhIRbceoE9lR4veEXuwCC2wARtG.jpg new file mode 100644 index 0000000..9ee1dd8 Binary files /dev/null and b/examples/movie_covers/rhIRbceoE9lR4veEXuwCC2wARtG.jpg differ diff --git a/examples/movie_covers/sKCr78MXSLixwmZ8DyJLrpMsd15.jpg b/examples/movie_covers/sKCr78MXSLixwmZ8DyJLrpMsd15.jpg new file mode 100644 index 0000000..3fd601f Binary files /dev/null and b/examples/movie_covers/sKCr78MXSLixwmZ8DyJLrpMsd15.jpg differ diff --git a/examples/movie_covers/sOHqdY1RnSn6kcfAHKu28jvTebE.jpg b/examples/movie_covers/sOHqdY1RnSn6kcfAHKu28jvTebE.jpg new file mode 100644 index 0000000..fb77d14 Binary files /dev/null and b/examples/movie_covers/sOHqdY1RnSn6kcfAHKu28jvTebE.jpg differ diff --git a/examples/movie_covers/sav0jxhqiH0bPr2vZFU0Kjt2nZL.jpg b/examples/movie_covers/sav0jxhqiH0bPr2vZFU0Kjt2nZL.jpg new file mode 100644 index 0000000..034ef0f Binary files /dev/null and b/examples/movie_covers/sav0jxhqiH0bPr2vZFU0Kjt2nZL.jpg differ diff --git a/examples/movie_covers/t8x4j5KtI6hZRUVtPPztNBo1q5W.jpg b/examples/movie_covers/t8x4j5KtI6hZRUVtPPztNBo1q5W.jpg new file mode 100644 index 0000000..f993fd1 Binary files /dev/null and b/examples/movie_covers/t8x4j5KtI6hZRUVtPPztNBo1q5W.jpg differ diff --git a/examples/movie_covers/tGLO9zw5ZtCeyyEWgbYGgsFxC6i.jpg b/examples/movie_covers/tGLO9zw5ZtCeyyEWgbYGgsFxC6i.jpg new file mode 100644 index 0000000..3708ecf Binary files /dev/null and b/examples/movie_covers/tGLO9zw5ZtCeyyEWgbYGgsFxC6i.jpg differ diff --git a/examples/movie_covers/tviJ68Wj4glQk3CPMvdvExYHxX.jpg b/examples/movie_covers/tviJ68Wj4glQk3CPMvdvExYHxX.jpg new file mode 100644 index 0000000..874da93 Binary files /dev/null and b/examples/movie_covers/tviJ68Wj4glQk3CPMvdvExYHxX.jpg differ diff --git a/examples/movie_covers/uJgp7KNBWHTXjEnbJZDodBTx4oD.jpg b/examples/movie_covers/uJgp7KNBWHTXjEnbJZDodBTx4oD.jpg new file mode 100644 index 0000000..448aa89 Binary files /dev/null and b/examples/movie_covers/uJgp7KNBWHTXjEnbJZDodBTx4oD.jpg differ diff --git a/examples/movie_covers/v6xrz4fr92KY1oNC3HsEvrsvR1n.jpg b/examples/movie_covers/v6xrz4fr92KY1oNC3HsEvrsvR1n.jpg new file mode 100644 index 0000000..d3ec327 Binary files /dev/null and b/examples/movie_covers/v6xrz4fr92KY1oNC3HsEvrsvR1n.jpg differ diff --git a/examples/movie_covers/wOBKAoUJZb5qTsWv5XXvVV2vUzz.jpg b/examples/movie_covers/wOBKAoUJZb5qTsWv5XXvVV2vUzz.jpg new file mode 100644 index 0000000..7d8170b Binary files /dev/null and b/examples/movie_covers/wOBKAoUJZb5qTsWv5XXvVV2vUzz.jpg differ diff --git a/examples/movie_covers/wcNkHDbyc290hcWk7KXbBZUuXpq.jpg b/examples/movie_covers/wcNkHDbyc290hcWk7KXbBZUuXpq.jpg new file mode 100644 index 0000000..751b83d Binary files /dev/null and b/examples/movie_covers/wcNkHDbyc290hcWk7KXbBZUuXpq.jpg differ diff --git a/examples/movie_covers/wfPHdfofBD5PN96dV96a51B3Ja2.jpg b/examples/movie_covers/wfPHdfofBD5PN96dV96a51B3Ja2.jpg new file mode 100644 index 0000000..28bc971 Binary files /dev/null and b/examples/movie_covers/wfPHdfofBD5PN96dV96a51B3Ja2.jpg differ diff --git a/examples/movie_covers/x733R4ISI0RbKeHhVkXdTMFmTFr.jpg b/examples/movie_covers/x733R4ISI0RbKeHhVkXdTMFmTFr.jpg new file mode 100644 index 0000000..0a51abb Binary files /dev/null and b/examples/movie_covers/x733R4ISI0RbKeHhVkXdTMFmTFr.jpg differ diff --git a/examples/movie_covers/xq1Ugd62d23K2knRUx6xxuALTZB.jpg b/examples/movie_covers/xq1Ugd62d23K2knRUx6xxuALTZB.jpg new file mode 100644 index 0000000..e768201 Binary files /dev/null and b/examples/movie_covers/xq1Ugd62d23K2knRUx6xxuALTZB.jpg differ diff --git a/examples/movie_covers/yE5d3BUhE8hCnkMUJOo1QDoOGNz.jpg b/examples/movie_covers/yE5d3BUhE8hCnkMUJOo1QDoOGNz.jpg new file mode 100644 index 0000000..e581829 Binary files /dev/null and b/examples/movie_covers/yE5d3BUhE8hCnkMUJOo1QDoOGNz.jpg differ diff --git a/examples/movie_covers/yPisjyLweCl1tbgwgtzBCNCBle.jpg b/examples/movie_covers/yPisjyLweCl1tbgwgtzBCNCBle.jpg new file mode 100644 index 0000000..ae55ee1 Binary files /dev/null and b/examples/movie_covers/yPisjyLweCl1tbgwgtzBCNCBle.jpg differ diff --git a/examples/resulting_images/som_color_quantization.png b/examples/resulting_images/som_color_quantization.png new file mode 100644 index 0000000..528f8fa Binary files /dev/null and b/examples/resulting_images/som_color_quantization.png differ diff --git a/examples/resulting_images/som_digts.png b/examples/resulting_images/som_digts.png new file mode 100644 index 0000000..e4a299c Binary files /dev/null and b/examples/resulting_images/som_digts.png differ diff --git a/examples/resulting_images/som_digts_imgs.png b/examples/resulting_images/som_digts_imgs.png new file mode 100644 index 0000000..1a4e6d5 Binary files /dev/null and b/examples/resulting_images/som_digts_imgs.png differ diff --git a/examples/resulting_images/som_iris.png b/examples/resulting_images/som_iris.png new file mode 100644 index 0000000..bac33c4 Binary files /dev/null and b/examples/resulting_images/som_iris.png differ diff --git a/examples/resulting_images/som_iris_hex.png b/examples/resulting_images/som_iris_hex.png new file mode 100644 index 0000000..9d08245 Binary files /dev/null and b/examples/resulting_images/som_iris_hex.png differ diff --git a/examples/resulting_images/som_iris_pies.png b/examples/resulting_images/som_iris_pies.png new file mode 100644 index 0000000..7a296db Binary files /dev/null and b/examples/resulting_images/som_iris_pies.png differ diff --git a/examples/resulting_images/som_outliers_detection.png b/examples/resulting_images/som_outliers_detection.png new file mode 100644 index 0000000..6af4a38 Binary files /dev/null and b/examples/resulting_images/som_outliers_detection.png differ diff --git a/examples/resulting_images/som_outliers_detection_circle.png b/examples/resulting_images/som_outliers_detection_circle.png new file mode 100644 index 0000000..830c023 Binary files /dev/null and b/examples/resulting_images/som_outliers_detection_circle.png differ diff --git a/examples/resulting_images/som_seed.png b/examples/resulting_images/som_seed.png new file mode 100644 index 0000000..0159f0c Binary files /dev/null and b/examples/resulting_images/som_seed.png differ diff --git a/examples/resulting_images/som_seed_hex.html b/examples/resulting_images/som_seed_hex.html new file mode 100644 index 0000000..e96ac8a --- /dev/null +++ b/examples/resulting_images/som_seed_hex.html @@ -0,0 +1,85 @@ + + + + + + + + + + + Bokeh Plot + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + \ No newline at end of file diff --git a/examples/resulting_images/som_seed_hex.png b/examples/resulting_images/som_seed_hex.png new file mode 100644 index 0000000..2f010f0 Binary files /dev/null and b/examples/resulting_images/som_seed_hex.png differ diff --git a/examples/resulting_images/som_seed_pies.png b/examples/resulting_images/som_seed_pies.png new file mode 100644 index 0000000..6ded9d9 Binary files /dev/null and b/examples/resulting_images/som_seed_pies.png differ diff --git a/examples/resulting_images/time_series.png b/examples/resulting_images/time_series.png new file mode 100644 index 0000000..1d6b915 Binary files /dev/null and b/examples/resulting_images/time_series.png differ diff --git a/examples/tree.jpg b/examples/tree.jpg new file mode 100644 index 0000000..98f87bd Binary files /dev/null and b/examples/tree.jpg differ diff --git a/minisom.py b/minisom.py new file mode 100644 index 0000000..0d15bbf --- /dev/null +++ b/minisom.py @@ -0,0 +1,818 @@ +from math import sqrt + +from numpy import (array, unravel_index, nditer, linalg, random, subtract, max, + power, exp, pi, zeros, ones, arange, outer, meshgrid, dot, + logical_and, mean, std, cov, argsort, linspace, transpose, + einsum, prod, nan, sqrt, hstack, diff, argmin, multiply) +from numpy import sum as npsum +from numpy.linalg import norm +from collections import defaultdict, Counter +from warnings import warn +from sys import stdout +from time import time +from datetime import timedelta +import pickle +import os + +# for unit tests +from numpy.testing import assert_almost_equal, assert_array_almost_equal +from numpy.testing import assert_array_equal +import unittest + +""" + Minimalistic implementation of the Self Organizing Maps (SOM). +""" + + +def _build_iteration_indexes(data_len, num_iterations, + verbose=False, random_generator=None): + """Returns an iterable with the indexes of the samples + to pick at each iteration of the training. + + If random_generator is not None, it must be an instalce + of numpy.random.RandomState and it will be used + to randomize the order of the samples.""" + iterations = arange(num_iterations) % data_len + if random_generator: + random_generator.shuffle(iterations) + if verbose: + return _wrap_index__in_verbose(iterations) + else: + return iterations + + +def _wrap_index__in_verbose(iterations): + """Yields the values in iterations printing the status on the stdout.""" + m = len(iterations) + digits = len(str(m)) + progress = '\r [ {s:{d}} / {m} ] {s:3.0f}% - ? it/s' + progress = progress.format(m=m, d=digits, s=0) + stdout.write(progress) + beginning = time() + stdout.write(progress) + for i, it in enumerate(iterations): + yield it + sec_left = ((m-i+1) * (time() - beginning)) / (i+1) + time_left = str(timedelta(seconds=sec_left))[:7] + progress = '\r [ {i:{d}} / {m} ]'.format(i=i+1, d=digits, m=m) + progress += ' {p:3.0f}%'.format(p=100*(i+1)/m) + progress += ' - {time_left} left '.format(time_left=time_left) + stdout.write(progress) + + +def fast_norm(x): + """Returns norm-2 of a 1-D numpy array. + + * faster than linalg.norm in case of 1-D arrays (numpy 1.9.2rc1). + """ + return sqrt(dot(x, x.T)) + + +def asymptotic_decay(learning_rate, t, max_iter): + """Decay function of the learning process. + Parameters + ---------- + learning_rate : float + current learning rate. + + t : int + current iteration. + + max_iter : int + maximum number of iterations for the training. + """ + return learning_rate / (1+t/(max_iter/2)) + +def get_coordinates_from_index(n, x, y): + if n<0: + return(-1,-1) + return(n%y, int(n/y)) + +def get_index_from_coordinates(c, x, y): + if c[0]<0 or c[1]<0 or c[0]>y or c[1]>x: + return(-1) + return(c[1]*y + c[0]) + +def get_neighbors_from_index(n, x, y): + c = get_coordinates_from_index(n, x, y) + offset_x = -1 if c[1]%2==0 else 1 + neighbors_c =[(c[0]-1,c[1]), (c[0]+1,c[1]), (c[0],c[1]-1), (c[0]+offset_x,c[1]-1), (c[0],c[1]+1), + (c[0]+offset_x,c[1]+1)] + neighbors_c = list(filter(lambda c: (c[0]>=0) and (c[1]>=0) and (c[1]= x or sigma >= y: + warn('Warning: sigma is too high for the dimension of the map.') + + self._random_generator = random.RandomState(random_seed) + + self._learning_rate = learning_rate + self._sigma = sigma + self._input_len = input_len + # random initialization + self._weights = self._random_generator.rand(x, y, input_len)*2-1 + self._weights /= linalg.norm(self._weights, axis=-1, keepdims=True) + + self._activation_map = zeros((x, y)) + self._neigx = arange(x) + self._neigy = arange(y) # used to evaluate the neighborhood function + + if topology not in ['hexagonal', 'rectangular']: + msg = '%s not supported only hexagonal and rectangular available' + raise ValueError(msg % topology) + self.topology = topology + self._xx, self._yy = meshgrid(self._neigx, self._neigy) + self._xx = self._xx.astype(float) + self._yy = self._yy.astype(float) + if topology == 'hexagonal': + self._xx[::-2] -= 0.5 + if neighborhood_function in ['triangle']: + warn('triangle neighborhood function does not ' + + 'take in account hexagonal topology') + + self._decay_function = decay_function + + neig_functions = {'gaussian': self._gaussian, + 'mexican_hat': self._mexican_hat, + 'bubble': self._bubble, + 'triangle': self._triangle} + + if neighborhood_function not in neig_functions: + msg = '%s not supported. Functions available: %s' + raise ValueError(msg % (neighborhood_function, + ', '.join(neig_functions.keys()))) + + if neighborhood_function in ['triangle', + 'bubble'] and (divmod(sigma, 1)[1] != 0 + or sigma < 1): + warn('sigma should be an integer >=1 when triangle or bubble' + + 'are used as neighborhood function') + + self.neighborhood = neig_functions[neighborhood_function] + + distance_functions = {'euclidean': self._euclidean_distance, + 'cosine': self._cosine_distance, + 'manhattan': self._manhattan_distance, + 'chebyshev': self._chebyshev_distance} + + if activation_distance not in distance_functions: + msg = '%s not supported. Distances available: %s' + raise ValueError(msg % (activation_distance, + ', '.join(distance_functions.keys()))) + + self._activation_distance = distance_functions[activation_distance] + + def get_weights(self): + """Returns the weights of the neural network.""" + return self._weights + + def get_euclidean_coordinates(self): + """Returns the position of the neurons on an euclidean + plane that reflects the chosen topology in two meshgrids xx and yy. + Neuron with map coordinates (1, 4) has coordinate (xx[1, 4], yy[1, 4]) + in the euclidean plane. + + Only useful if the topology chosen is not rectangular. + """ + return self._xx.T, self._yy.T + + def convert_map_to_euclidean(self, xy): + """Converts map coordinates into euclidean coordinates + that reflects the chosen topology. + + Only useful if the topology chosen is not rectangular. + """ + return self._xx.T[xy], self._yy.T[xy] + + def _activate(self, x): + """Updates matrix activation_map, in this matrix + the element i,j is the response of the neuron i,j to x.""" + self._activation_map = self._activation_distance(x, self._weights) + + def activate(self, x): + """Returns the activation map to x.""" + self._activate(x) + return self._activation_map + + def _gaussian(self, c, sigma): + """Returns a Gaussian centered in c.""" + d = 2*pi*sigma*sigma + ax = exp(-power(self._xx-self._xx.T[c], 2)/d) + ay = exp(-power(self._yy-self._yy.T[c], 2)/d) + return (ax * ay).T # the external product gives a matrix + + def _mexican_hat(self, c, sigma): + """Mexican hat centered in c.""" + p = power(self._xx-self._xx.T[c], 2) + power(self._yy-self._yy.T[c], 2) + d = 2*pi*sigma*sigma + return (exp(-p/d)*(1-2/d*p)).T + + def _bubble(self, c, sigma): + """Constant function centered in c with spread sigma. + sigma should be an odd value. + """ + ax = logical_and(self._neigx > c[0]-sigma, + self._neigx < c[0]+sigma) + ay = logical_and(self._neigy > c[1]-sigma, + self._neigy < c[1]+sigma) + return outer(ax, ay)*1. + + def _triangle(self, c, sigma): + """Triangular function centered in c with spread sigma.""" + triangle_x = (-abs(c[0] - self._neigx)) + sigma + triangle_y = (-abs(c[1] - self._neigy)) + sigma + triangle_x[triangle_x < 0] = 0. + triangle_y[triangle_y < 0] = 0. + return outer(triangle_x, triangle_y) + + def _cosine_distance(self, x, w): + num = (w * x).sum(axis=2) + denum = multiply(linalg.norm(w, axis=2), linalg.norm(x)) + return 1 - num / (denum+1e-8) + + def _euclidean_distance(self, x, w): + return linalg.norm(subtract(x, w), axis=-1) + + def _manhattan_distance(self, x, w): + return linalg.norm(subtract(x, w), ord=1, axis=-1) + + def _chebyshev_distance(self, x, w): + return max(subtract(x, w), axis=-1) + + def _check_iteration_number(self, num_iteration): + if num_iteration < 1: + raise ValueError('num_iteration must be > 1') + + def _check_input_len(self, data): + """Checks that the data in input is of the correct shape.""" + data_len = len(data[0]) + if self._input_len != data_len: + msg = 'Received %d features, expected %d.' % (data_len, + self._input_len) + raise ValueError(msg) + + def winner(self, x): + """Computes the coordinates of the winning neuron for the sample x.""" + self._activate(x) + return unravel_index(self._activation_map.argmin(), + self._activation_map.shape) + + def update(self, x, win, t, max_iteration): + """Updates the weights of the neurons. + + Parameters + ---------- + x : np.array + Current pattern to learn. + win : tuple + Position of the winning neuron for x (array or tuple). + t : int + Iteration index + max_iteration : int + Maximum number of training itarations. + """ + eta = self._decay_function(self._learning_rate, t, max_iteration) + # sigma and learning rate decrease with the same rule + sig = self._decay_function(self._sigma, t, max_iteration) + # improves the performances + g = self.neighborhood(win, sig)*eta + # w_new = eta * neighborhood_function * (x-w) + self._weights += einsum('ij, ijk->ijk', g, x-self._weights) + + def quantization(self, data): + """Assigns a code book (weights vector of the winning neuron) + to each sample in data.""" + self._check_input_len(data) + winners_coords = argmin(self._distance_from_weights(data), axis=1) + return self._weights[unravel_index(winners_coords, + self._weights.shape[:2])] + + def random_weights_init(self, data): + """Initializes the weights of the SOM + picking random samples from data.""" + self._check_input_len(data) + it = nditer(self._activation_map, flags=['multi_index']) + while not it.finished: + rand_i = self._random_generator.randint(len(data)) + self._weights[it.multi_index] = data[rand_i] + it.iternext() + + def pca_weights_init(self, data): + """Initializes the weights to span the first two principal components. + + This initialization doesn't depend on random processes and + makes the training process converge faster. + + It is strongly reccomended to normalize the data before initializing + the weights and use the same normalization for the training data. + """ + if self._input_len == 1: + msg = 'The data needs at least 2 features for pca initialization' + raise ValueError(msg) + self._check_input_len(data) + if len(self._neigx) == 1 or len(self._neigy) == 1: + msg = 'PCA initialization inappropriate:' + \ + 'One of the dimensions of the map is 1.' + warn(msg) + pc_length, pc = linalg.eig(cov(transpose(data))) + pc_order = argsort(-pc_length) + for i, c1 in enumerate(linspace(-1, 1, len(self._neigx))): + for j, c2 in enumerate(linspace(-1, 1, len(self._neigy))): + self._weights[i, j] = c1*pc[pc_order[0]] + c2*pc[pc_order[1]] + + def train(self, data, num_iteration, random_order=False, verbose=False): + """Trains the SOM. + + Parameters + ---------- + data : np.array or list + Data matrix. + + num_iteration : int + Maximum number of iterations (one iteration per sample). + random_order : bool (default=False) + If True, samples are picked in random order. + Otherwise the samples are picked sequentially. + + verbose : bool (default=False) + If True the status of the training + will be printed at each iteration. + """ + self._check_iteration_number(num_iteration) + self._check_input_len(data) + random_generator = None + if random_order: + random_generator = self._random_generator + iterations = _build_iteration_indexes(len(data), num_iteration, + verbose, random_generator) + for t, iteration in enumerate(iterations): + self.update(data[iteration], self.winner(data[iteration]), + t, num_iteration) + if verbose: + print('\n quantization error:', self.quantization_error(data)) + + def train_random(self, data, num_iteration, verbose=False): + """Trains the SOM picking samples at random from data. + + Parameters + ---------- + data : np.array or list + Data matrix. + + num_iteration : int + Maximum number of iterations (one iteration per sample). + + verbose : bool (default=False) + If True the status of the training + will be printed at each iteration. + """ + self.train(data, num_iteration, random_order=True, verbose=verbose) + + def train_batch(self, data, num_iteration, verbose=False): + """Trains the SOM using all the vectors in data sequentially. + + Parameters + ---------- + data : np.array or list + Data matrix. + + num_iteration : int + Maximum number of iterations (one iteration per sample). + + verbose : bool (default=False) + If True the status of the training + will be printed at each iteration. + """ + self.train(data, num_iteration, random_order=False, verbose=verbose) + + def distance_map(self): + """Returns the distance map of the weights. + Each cell is the normalised sum of the distances between + a neuron and its neighbours. Note that this method uses + the euclidean distance.""" + um = zeros((self._weights.shape[0], + self._weights.shape[1], + 8)) # 2 spots more for hexagonal topology + + ii = [[0, -1, -1, -1, 0, 1, 1, 1]]*2 + jj = [[-1, -1, 0, 1, 1, 1, 0, -1]]*2 + + if self.topology == 'hexagonal': + ii = [[1, 1, 1, 0, -1, 0], [0, 1, 0, -1, -1, -1]] + jj = [[1, 0, -1, -1, 0, 1], [1, 0, -1, -1, 0, 1]] + + for x in range(self._weights.shape[0]): + for y in range(self._weights.shape[1]): + w_2 = self._weights[x, y] + e = y % 2 == 0 # only used on hexagonal topology + for k, (i, j) in enumerate(zip(ii[e], jj[e])): + if (x+i >= 0 and x+i < self._weights.shape[0] and + y+j >= 0 and y+j < self._weights.shape[1]): + w_1 = self._weights[x+i, y+j] + um[x, y, k] = fast_norm(w_2-w_1) + + um = um.sum(axis=2) + return um/um.max() + + def activation_response(self, data): + """ + Returns a matrix where the element i,j is the number of times + that the neuron i,j have been winner. + """ + self._check_input_len(data) + a = zeros((self._weights.shape[0], self._weights.shape[1])) + for x in data: + a[self.winner(x)] += 1 + return a + + def _distance_from_weights(self, data): + """Returns a matrix d where d[i,j] is the euclidean distance between + data[i] and the j-th weight. + """ + input_data = array(data) + weights_flat = self._weights.reshape(-1, self._weights.shape[2]) + input_data_sq = power(input_data, 2).sum(axis=1, keepdims=True) + weights_flat_sq = power(weights_flat, 2).sum(axis=1, keepdims=True) + cross_term = dot(input_data, weights_flat.T) + return sqrt(-2 * cross_term + input_data_sq + weights_flat_sq.T) + + def quantization_error(self, data): + """Returns the quantization error computed as the average + distance between each input sample and its best matching unit.""" + self._check_input_len(data) + return norm(data-self.quantization(data), axis=1).mean() + + def topographic_error(self, data): + """Returns the topographic error computed by finding + the best-matching and second-best-matching neuron in the map + for each input and then evaluating the positions. + + A sample for which these two nodes are not adjacent counts as + an error. The topographic error is given by the + the total number of errors divided by the total of samples. + + If the topographic error is 0, no error occurred. + If 1, the topology was not preserved for any of the samples.""" + self._check_input_len(data) + if self.topology == 'hexagonal': + msg = 'Topographic error not implemented for hexagonal topology.' + raise NotImplementedError(msg) + total_neurons = prod(self._activation_map.shape) + if total_neurons == 1: + warn('The topographic error is not defined for a 1-by-1 map.') + return nan + + t = 1.42 + # b2mu: best 2 matching units + b2mu_inds = argsort(self._distance_from_weights(data), axis=1)[:, :2] + b2my_xy = unravel_index(b2mu_inds, self._weights.shape[:2]) + b2mu_x, b2mu_y = b2my_xy[0], b2my_xy[1] + dxdy = hstack([diff(b2mu_x), diff(b2mu_y)]) + distance = norm(dxdy, axis=1) + return (distance > t).mean() + + def win_map(self, data, return_indices=False): + """Returns a dictionary wm where wm[(i,j)] is a list with: + - all the patterns that have been mapped to the position (i,j), + if return_indices=False (default) + - all indices of the elements that have been mapped to the + position (i,j) if return_indices=True""" + self._check_input_len(data) + winmap = defaultdict(list) + for i, x in enumerate(data): + winmap[self.winner(x)].append(i if return_indices else x) + return winmap + + def labels_map(self, data, labels): + """Returns a dictionary wm where wm[(i,j)] is a dictionary + that contains the number of samples from a given label + that have been mapped in position i,j. + + Parameters + ---------- + data : np.array or list + Data matrix. + + label : np.array or list + Labels for each sample in data. + """ + self._check_input_len(data) + if not len(data) == len(labels): + raise ValueError('data and labels must have the same length.') + winmap = defaultdict(list) + for x, l in zip(data, labels): + winmap[self.winner(x)].append(l) + for position in winmap: + winmap[position] = Counter(winmap[position]) + return winmap + + def partitioned_quant_error(self,data,chunks): + n=len(data) + n_chunks = list(range(0,n,chunks)) + n_chunks.append(n) + errorq=0 + for j in range(len(n_chunks)-1): + interval = n_chunks[j+1]-n_chunks[j] + errorq = errorq+self.quantization_error(data[n_chunks[j]:n_chunks[j+1]])*interval/n + return errorq + + def calculate_hexa_topographical_error(self, data): + bmus_1st_and_2nd = argsort(self._distance_from_weights(data), axis=1)[:, :2] + n_rows = self._weights.shape[0] + n_columns = self._weights.shape[1] + neighbors=list(map(lambda t:get_neighbors_from_index(t, n_rows, n_columns), bmus_1st_and_2nd[:,0])) + + e_t=1-mean([second in neighs for (second,neighs) in zip(bmus_1st_and_2nd[:,1], neighbors)]) + return(e_t) + + def partitioned_topo_error(self,data,chunks): + n=len(data) + n_chunks = list(range(0,n,chunks)) + n_chunks.append(n) + errort=0 + for j in range(len(n_chunks)-1): + interval = n_chunks[j+1]-n_chunks[j] + errort = errort+self.calculate_hexa_topographical_error(data[n_chunks[j]:n_chunks[j+1]])*interval/n + return errort + + + + +class TestMinisom(unittest.TestCase): + def setUp(self): + self.som = MiniSom(5, 5, 1) + for i in range(5): + for j in range(5): + # checking weights normalization + assert_almost_equal(1.0, linalg.norm(self.som._weights[i, j])) + self.som._weights = zeros((5, 5, 1)) # fake weights + self.som._weights[2, 3] = 5.0 + self.som._weights[1, 1] = 2.0 + + def test_decay_function(self): + assert self.som._decay_function(1., 2., 3.) == 1./(1.+2./(3./2)) + + def test_fast_norm(self): + assert fast_norm(array([1, 3])) == sqrt(1+9) + + def test_euclidean_distance(self): + x = zeros((1, 2)) + w = ones((2, 2, 2)) + d = self.som._euclidean_distance(x, w) + assert_array_almost_equal(d, [[1.41421356, 1.41421356], + [1.41421356, 1.41421356]]) + + def test_cosine_distance(self): + x = zeros((1, 2)) + w = ones((2, 2, 2)) + d = self.som._cosine_distance(x, w) + assert_array_almost_equal(d, [[1., 1.], + [1., 1.]]) + + def test_manhattan_distance(self): + x = zeros((1, 2)) + w = ones((2, 2, 2)) + d = self.som._manhattan_distance(x, w) + assert_array_almost_equal(d, [[2., 2.], + [2., 2.]]) + + def test_chebyshev_distance(self): + x = array([1, 3]) + w = ones((2, 2, 2)) + d = self.som._chebyshev_distance(x, w) + assert_array_almost_equal(d, [[2., 2.], + [2., 2.]]) + + def test_check_input_len(self): + with self.assertRaises(ValueError): + self.som.train_batch([[1, 2]], 1) + + with self.assertRaises(ValueError): + self.som.random_weights_init(array([[1, 2]])) + + with self.assertRaises(ValueError): + self.som._check_input_len(array([[1, 2]])) + + self.som._check_input_len(array([[1]])) + self.som._check_input_len([[1]]) + + def test_unavailable_neigh_function(self): + with self.assertRaises(ValueError): + MiniSom(5, 5, 1, neighborhood_function='boooom') + + def test_unavailable_distance_function(self): + with self.assertRaises(ValueError): + MiniSom(5, 5, 1, activation_distance='ridethewave') + + def test_gaussian(self): + bell = self.som._gaussian((2, 2), 1) + assert bell.max() == 1.0 + assert bell.argmax() == 12 # unravel(12) = (2,2) + + def test_mexican_hat(self): + bell = self.som._mexican_hat((2, 2), 1) + assert bell.max() == 1.0 + assert bell.argmax() == 12 # unravel(12) = (2,2) + + def test_bubble(self): + bubble = self.som._bubble((2, 2), 1) + assert bubble[2, 2] == 1 + assert sum(sum(bubble)) == 1 + + def test_triangle(self): + bubble = self.som._triangle((2, 2), 1) + assert bubble[2, 2] == 1 + assert sum(sum(bubble)) == 1 + + def test_win_map(self): + winners = self.som.win_map([[5.0], [2.0]]) + assert winners[(2, 3)][0] == [5.0] + assert winners[(1, 1)][0] == [2.0] + + def test_win_map_indices(self): + winners = self.som.win_map([[5.0], [2.0]], return_indices=True) + assert winners[(2, 3)] == [0] + assert winners[(1, 1)] == [1] + + def test_labels_map(self): + labels_map = self.som.labels_map([[5.0], [2.0]], ['a', 'b']) + assert labels_map[(2, 3)]['a'] == 1 + assert labels_map[(1, 1)]['b'] == 1 + with self.assertRaises(ValueError): + self.som.labels_map([[5.0]], ['a', 'b']) + + def test_activation_reponse(self): + response = self.som.activation_response([[5.0], [2.0]]) + assert response[2, 3] == 1 + assert response[1, 1] == 1 + + def test_activate(self): + assert self.som.activate(5.0).argmin() == 13.0 # unravel(13) = (2,3) + + def test_distance_from_weights(self): + data = arange(-5, 5).reshape(-1, 1) + weights = self.som._weights.reshape(-1, self.som._weights.shape[2]) + distances = self.som._distance_from_weights(data) + for i in range(len(data)): + for j in range(len(weights)): + assert(distances[i][j] == norm(data[i] - weights[j])) + + def test_quantization_error(self): + assert self.som.quantization_error([[5], [2]]) == 0.0 + assert self.som.quantization_error([[4], [1]]) == 1.0 + + def test_topographic_error(self): + # 5 will have bmu_1 in (2,3) and bmu_2 in (2, 4) + # which are in the same neighborhood + self.som._weights[2, 4] = 6.0 + # 15 will have bmu_1 in (4, 4) and bmu_2 in (0, 0) + # which are not in the same neighborhood + self.som._weights[4, 4] = 15.0 + self.som._weights[0, 0] = 14. + assert self.som.topographic_error([[5]]) == 0.0 + assert self.som.topographic_error([[15]]) == 1.0 + + self.som.topology = 'hexagonal' + with self.assertRaises(NotImplementedError): + assert self.som.topographic_error([[5]]) == 0.0 + self.som.topology = 'rectangular' + + def test_quantization(self): + q = self.som.quantization(array([[4], [2]])) + assert q[0] == 5.0 + assert q[1] == 2.0 + + def test_random_seed(self): + som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) + som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) + # same initialization + assert_array_almost_equal(som1._weights, som2._weights) + data = random.rand(100, 2) + som1 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) + som1.train_random(data, 10) + som2 = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) + som2.train_random(data, 10) + # same state after training + assert_array_almost_equal(som1._weights, som2._weights) + + def test_train_batch(self): + som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) + data = array([[4, 2], [3, 1]]) + q1 = som.quantization_error(data) + som.train(data, 10) + assert q1 > som.quantization_error(data) + + data = array([[1, 5], [6, 7]]) + q1 = som.quantization_error(data) + som.train_batch(data, 10, verbose=True) + assert q1 > som.quantization_error(data) + + def test_train_random(self): + som = MiniSom(5, 5, 2, sigma=1.0, learning_rate=0.5, random_seed=1) + data = array([[4, 2], [3, 1]]) + q1 = som.quantization_error(data) + som.train(data, 10, random_order=True) + assert q1 > som.quantization_error(data) + + data = array([[1, 5], [6, 7]]) + q1 = som.quantization_error(data) + som.train_random(data, 10, verbose=True) + assert q1 > som.quantization_error(data) + + def test_random_weights_init(self): + som = MiniSom(2, 2, 2, random_seed=1) + som.random_weights_init(array([[1.0, .0]])) + for w in som._weights: + assert_array_equal(w[0], array([1.0, .0])) + + def test_pca_weights_init(self): + som = MiniSom(2, 2, 2) + som.pca_weights_init(array([[1., 0.], [0., 1.], [1., 0.], [0., 1.]])) + expected = array([[[0., -1.41421356], [-1.41421356, 0.]], + [[1.41421356, 0.], [0., 1.41421356]]]) + assert_array_almost_equal(som._weights, expected) + + def test_distance_map(self): + som = MiniSom(2, 2, 2, random_seed=1) + som._weights = array([[[1., 0.], [0., 1.]], [[1., 0.], [0., 1.]]]) + assert_array_equal(som.distance_map(), array([[1., 1.], [1., 1.]])) + + som = MiniSom(2, 2, 2, topology='hexagonal', random_seed=1) + som._weights = array([[[1., 0.], [0., 1.]], [[1., 0.], [0., 1.]]]) + assert_array_equal(som.distance_map(), array([[.5, 1.], [1., .5]])) + + def test_pickling(self): + with open('som.p', 'wb') as outfile: + pickle.dump(self.som, outfile) + with open('som.p', 'rb') as infile: + pickle.load(infile) + os.remove('som.p') + \ No newline at end of file diff --git a/paper/paper.bib b/paper/paper.bib new file mode 100644 index 0000000..cdda8df --- /dev/null +++ b/paper/paper.bib @@ -0,0 +1,85 @@ + +@Article{matplotlib, + Author = {Hunter, J. D.}, + Title = {Matplotlib: A 2D graphics environment}, + Journal = {Computing in Science \& Engineering}, + Volume = {9}, + Number = {3}, + Pages = {90--95}, + abstract = {Matplotlib is a 2D graphics package used for Python for + application development, interactive scripting, and publication-quality + image generation across user interfaces and operating systems.}, + publisher = {IEEE COMPUTER SOC}, + doi = {10.1109/MCSE.2007.55}, + year = 2007 +} + +@article{pedregosa2011scikit, + title={Scikit-learn: Machine learning in Python}, + author={Pedregosa, Fabian and Varoquaux, Ga{\"e}l and Gramfort, Alexandre and Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel, Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent and others}, + journal={the Journal of machine Learning research}, + volume={12}, + pages={2825--2830}, + year={2011}, + publisher={JMLR. org} +} + +@article{kohonen1990self, + title={The self-organizing map}, + author={Kohonen, Teuvo}, + journal={Proceedings of the IEEE}, + volume={78}, + number={9}, + pages={1464--1480}, + year={1990}, + publisher={IEEE} +} + +@inproceedings{vettigli2017fuzzy, + title={Fuzzy clustering of structured data: Some preliminary results}, + author={Vettigli, Giuseppe and Ciaramella, Angelo}, + booktitle={2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)}, + pages={1--6}, + year={2017}, + organization={IEEE} +} + +@article{thompson2020synoptic, + title={A synoptic climatology of potential seiche-inducing winds in a large intermontane lake: Quesnel Lake, British Columbia, Canada}, + author={Thompson, Hadleigh D and D{\'e}ry, Stephen J and Jackson, Peter L and Laval, Bernard E}, + journal={International Journal of Climatology}, + year={2020}, + publisher={Wiley Online Library} +} + + +@article{lessin2020modeling, + title={Modeling the seasonality and controls of nitrous oxide emissions on the northwest European continental shelf}, + author={Lessin, Gennadi and Polimene, Luca and Artioli, Yuri and Butensch{\"o}n, Momme and Clark, Darren R and Brown, Ian and Rees, Andrew P}, + journal={Journal of Geophysical Research: Biogeosciences}, + pages={e2019JG005613}, + year={2020}, + publisher={Wiley Online Library} +} + +@article{fortuin2018som, + title={Som-vae: Interpretable discrete representation learning on time series}, + author={Fortuin, Vincent and H{\"u}ser, Matthias and Locatello, Francesco and Strathmann, Heiko and R{\"a}tsch, Gunnar}, + journal={arXiv preprint arXiv:1806.02199}, + year={2018} +} + +@inproceedings{makiyama2015text, + title={Text Mining Applied to SQL Queries: A Case Study for the SDSS SkyServer.}, + author={Makiyama, Vitor Hirota and Raddick, Jordan and Santos, Rafael DC}, + booktitle={SIMBig}, + pages={66--72}, + year={2015} +} + +@misc{lisbonuni, + author={Ludwig Krippahl, Francisco Azevedo}, + title = {Lecure notes for the course of automatic learning at the University of Lisbon}, + howpublished = {\url{http://aa.ssdi.di.fct.unl.pt/files/AA-16_notes.pdf}}, + note = {Accessed: 2020-07-23} +} diff --git a/paper/paper.md b/paper/paper.md new file mode 100644 index 0000000..4037dbd --- /dev/null +++ b/paper/paper.md @@ -0,0 +1,37 @@ +--- +title: 'MiniSom, a minimalistic and Numpy based implementation of the Self Organizing Maps' +tags: + - Python + - Self Organizing Maps + - Machine Learning + - Neural Networks +authors: + - name: Giuseppe Vettigli + orcid: 0000-0002-3939-2801 + affiliation: 1 +affiliations: + - name: Centrica plc + index: 1 +date: 23 July 2020 +bibliography: paper.bib +--- + +# Summary + +`MiniSom` is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. + + +# Statement of need + +SOM is a well known type of Artificial Neural Network [@kohonen1990self] that is able to organize itself so that each specific areas respond to similarly to similar outputs. This model is suitable for different Machine Learning tasks, specifically clustering, dimensionality reduction and vector quantization. Since the first formulation, it became a tool in a plethora of applications in many scientific fields. The Machine Learning community has not only found numerous applications for it but has developed a staggering amount of variants of the original model. + +`MiniSom` is a Python library that implements SOM and it is designed to be easy to modify and adapt. The goal is to give researchers the ability to easily create variants of the main SOM model and give students an implementation of SOM which is easy to understand. + +At the time I am writing, `Minisom` has been cited in more than 50 scientific publications. It has been used in many typical Machine Learning applications, as time series modeling [@fortuin2018som] and text mining [@makiyama2015text]. And it has also been been used as a tool in a variety of fields as Geophysics [@lessin2020modeling] and Climatology [@thompson2020synoptic]. It's also worth mentioning that `MiniSom` has been used for the creation of teaching materials on Machine Learning, see [@lisbonuni] for an example. + +The interface of `MiniSom` has evolved to blend easily with the general Machine Learning framework `scikit-learn` [@pedregosa2011scikit] and the visualization library `matplotlib` [@matplotlib]. The documentation of the library is proposed through examples and makes heavily use of the cited libraries. + +The library was originally developed while developing a Machine Learning methodology to embed structured data (graphs and trees) into vectorial spaces [@vettigli2017fuzzy]. + + +# References \ No newline at end of file diff --git a/setup.cfg b/setup.cfg new file mode 100644 index 0000000..0bc5bd0 --- /dev/null +++ b/setup.cfg @@ -0,0 +1,2 @@ +[metadata] +description-file = Readme.md diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..513c02d --- /dev/null +++ b/setup.py @@ -0,0 +1,18 @@ +#!/usr/bin/env python +from distutils.core import setup + +description = 'Minimalistic implementation of the Self Organizing Maps (SOM)' +keywords = ['machine learning', 'neural networks', 'clustering', 'dimentionality reduction'] + +setup(name='MiniSom', + version='2.2.7', + description=description, + author='Giuseppe Vettigli', + package_data={'': ['Readme.md']}, + include_package_data=True, + license="CC BY 3.0", + py_modules=['minisom'], + requires=['numpy'], + url='https://github.com/JustGlowing/minisom', + download_url='https://github.com/JustGlowing/minisom/archive/master.zip', + keywords=keywords)