-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
67 lines (50 loc) · 1.86 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# qp <a href="https://kaiaragaki.github.io/qp/"><img src="man/figures/logo.png" align="right" height="138" alt="qp website" /></a>
<!-- badges: start -->
[![Codecov test coverage](https://codecov.io/gh/KaiAragaki/qp/branch/master/graph/badge.svg)](https://app.codecov.io/gh/KaiAragaki/qp?branch=master)
<!-- badges: end -->
`qp` serves as a robust toolkit for working with MicroBCA assays. Currently, the protocol it's best served for is [here](https://kai.quarto.pub/bok/western-blot.html#protein-quantification).
## Installation
You can install the development version of qp from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("KaiAragaki/qp")
```
## Quickstart
If you have a nicely formatted plate with no surprises (that is, it follows [this](https://kai.quarto.pub/bok/western-blot.html#protein-quantification) protocol), you should really only need to plug it in to `qp` and let it rip:
```{r}
library(qp)
f <- system.file("extdata", "absorbances.txt", package = "qp")
# Most of these arguments are defaults
# I'm only writing them out so you can see what options you can set
out <- qp(
f,
replicate_orientation = "h",
sample_names = c("here", "are", "my", "sample", "names"),
remove_empty = TRUE,
ignore_outliers = "all",
standard_scale = c(0, 2^((2:7) - 5)),
n_replicates = 3,
wavelength = 562
)
```
From this, you can do things like add dilution calculations:
```{r}
summary <- qp_summarize(out)
qp_dilute(summary, target_vol = 15, remove_standards = TRUE)
```
Or make a plot to assess quality:
```{r, fig.width=10, out.width="100%"}
qp_plot_standards(out)
```