Skip to content

Latest commit

 

History

History

derive

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Derive

The derive command automatically synthesizes a bunch of useful lemmas given an inductive type declaration.

In a nutshell

From elpi.apps Require Import derive.std.

#[module] derive Inductive peano := Zero | Succ (p : peano).

Print peano.peano.
(* Inductive peano : Set :=  Zero : peano | Succ : peano -> peano. *)

Eval compute in peano.eqb Zero (Succ Zero).
(* = false : bool *)

About peano.eqb_OK.
(*
peano.eqb_OK : forall x1 x2 : peano, reflect (x1 = x2) (peano.eqb x1 x2)

peano.eqb_OK is not universe polymorphic
Arguments peano.eqb_OK x1 x2
peano.eqb_OK is opaque
Expands to: Constant elpi.apps.derive.examples.readme.peano.eqb_OK
*)

See also examples/usage.v and tests/test_readme.v.

⚠️ The line From elpi.apps Require Import derive.std. sets globally Uniform Inductive Parameters. See the documentation of that option in the Coq reference manual.

Usage and attributes

Using derive Inductive ty := ... produces the inductive ty, together with derivations, all in the current scope. The #[module=<string>] attriute can be used to specify that the inductive and the derivations should be wrapped in a module of the given name (the name of the inductive is used if no name is specified).

When a wrapper module is generated, an alias (i.e., a notation) is generated for the inductive to be accessible with its name, outside of the module scope. This behaviour can be disabled by using the #[no_alias] boolean attribute.

The #[prefix=<string>] attribute can be used to specify a prefix for all the derived definitions/lemmas.

Documentation

Elpi's derive app is a little framework to register derivations. Currently there are 3 groups:

  • derive.std contains well tested derivations including:
    • eqb and eqbOK generate sound boolean equality test in linear time/space, see Practical and sound equality tests, automatically
    • eqbOK generates its soundness proof in linear time/space
    • induction generates deep induction principles, see Stronger Induction Principles for Containers
    • param1 and param2 generate the unary and binary parametricity translations
    • map map over a container
    • param1_functor functoriality lemmas (map over the param1 translation)
    • lens and lens_laws generate lenses focusing on record fields and some equations governing setter/setters (aka record update syntax)
  • derive.legacy contains derivations superseded by std:
  • derive.experimental contains derivations not suitable for mainstream use:
    • idx2inv generates an inductive type where indexes are replaced by non uniform parameters and equations

The elpi/ directory contains the elpi files implementing various automatic derivation of terms. The corresponding .v files, defining the Coq commands, are in theories/derive/.

Single steps of the derivation are available as separate commands. Only the main entry point derive comes with an handy syntax; the other commands have to be invoked mentioning Elpi and only accept an already declared inductive as input.

Derivations

std (click to expand)

map

Map a container over its parameters.

Elpi derive.map list.
Check list_map : forall A B, (A -> B) -> list A -> list B.

lens

See also theories/derive/lens.v for the Lens definition and the support constants view, set and over.

Record pa_record A := { f3 : peano; f4 : A; }.
Elpi derive.lens pa_record.
Check _f3 : forall A, Lens (pa_record A) (pa_record A) peano peano. 

lens_laws

See also theories/derive/lens_laws.v for the statements of the 4 laws (set_set, view_set, set_view, exchange).

Elpi derive.lens_laws pa_record.
Check _f3_view_set : forall A (r : pa_record A) x, view _f3 (set _f3 x r) = x.

param1

Unary parametricity translation.

Elpi derive.param1 nat.
Print is_nat. (*
Inductive is_nat : nat -> Type :=
| is_O : is_nat 0
| is_S : forall n : nat, is_nat n -> is_nat (S n) *)

param1_functor

Elpi derive.param1.functor is_list.
Check is_list_functor : forall A PA QA,
  (forall x, PA x -> QA x) -> forall l, is_list A PA l -> list A QA l.

param1_trivial

Elpi derive.param1.trivial is_nat.
Check is_nat_trivial : forall x : nat, { p : is_nat x & forall q, p = q }.
Check is_nat_inhab : forall x : nat, is_nat x.

induction

Induction principle for T based on is_T

Elpi derive.induction list.
Check list_induction :
  forall (A : Type) (PA : A -> Type) P,
    P (nil A) ->
    (forall x : A, PA x -> forall xs, P xs -> P (cons A x xs)) ->
    forall l, is_list A PA l -> P l.

tag

The "name" of the constructor

Elpi derive.tag peano.
Check peano_tag : peano -> positive.

fields

The types of the fields and the fields of each constructor

Elpi derive.fields peano.
Check peano_fields_t : positive -> Type. 
Check peano_fields : forall (n:peano), peano_fields_t (peano_tag n). 
Check peano_construct : forall (p: positive),  peano_fields_t p -> Datatypes.option peano.
Check peano_constructP : forall (n:peano), peano_construct (peano_tag n) (peano_fields n) = Datatypes.Some n.

eqb

Equality test

Elpi derive.eqb peano.
Check peano_eqb : peano -> peano -> bool.

eqbcorrect

Two directions of the soundness proof

Elpi derive.eqbcorrect peano.
Check peano_eqb_correct : forall n m, peano_eqb n m = true -> n = m.
Check peano_eqb_refl : forall n, peano_eqb n n = true.

eqbOK

The soundness proof

Elpi derive.eqbOK peano. 
Check peano_eqb_OK : forall n m, reflect (n = m) (peano_eqb n m).

param1_congr

Used by param1_trivial, not interesting.

Elpi derive.param1.congr is_nat.
Check is_Succ congr : forall x (px qx : is_nat x),
  px = qx -> 
  is_Succ x px = is_Succ x qx.

legacy (click to expand)

See Deriving proved equality tests in Coq-elpi: Stronger Induction Principles for Containers for a description of most of these components.

isK

Given an inductive type it generates for each constructor a function that tests if a term is a specific constructor.

Example:

Elpi derive.isK list.
Print list_is_nil. (*
list_is_nil = 
  fun (A : Type) (i : list A) =>
    match i with
    | nil => true
    | _ => false
    end
*)

projK

Given an inductive type it generates for each constructor K and argument i of this constructor a function extracting that argument (provided enough default values).

Elpi derive.projK Vector.t.
Check projcons1. (*
projcons1 
 : forall (A : Type) (H : nat),
          A -> forall n : nat, Vector.t A n ->
          Vector.t A H -> A

The intended use is to perform injection, i.e. one aleady has a term of the shape K args and can just use these args to provide the default values.

If the projected argument's type depends on the value of other arguments, then it is boxed using existT.

Check projcons3. (*
projcons3
     : forall (A : Type) (H : nat),
       A -> forall n : nat, Vector.t A n ->
       Vector.t A H -> {i1 : nat & Vector.t A i1}
*)

injection

injection H EqAB PL given an equation H of type EqAB returns a list of equations PL. EqAB is expected to be of the form K .. = K .. for a constructor K.

coverage: does not do the smart thing when the obtained equations are like { i : nat & Vector.t A i } = ... in which case, given that nat is eqType one could obtain systematically the two equalities.

Note: this is not a real derivation, since it generates no constant, but it a piece of code used by derivations.

discriminate

discriminate H EqAB G PG given an equation H of type EqAB and a goal G it provides a proof PG. It asserts that EqAB is of the form K1 .. = K2 .. when K1 is a constructor different from K2.

Note: this is not a real derivation, since it generates no constant, but it a piece of code used by derivations.

bcongr

We call a boolean congruence lemma an instance of the reflect predicate on a proposition K x1..xn = K y1..yn and a boolean expression b1 && .. bn.

Elpi derive.bcongr list.
Check nil_congr : forall A, reflect (@nil A = @nil A) true.
Check cons_congr :
  forall A,
  forall (x y : A) b1, reflect (x = y) b1 ->
  forall (xs ys : list A) b2, reflect (xs = ys) b2 ->
    reflect (cons x xs = cons y ys) (b1 && b2).

eq

Generates a boolean comparison function.

Elpi derive.eq list. 
Check list_eq. (*
list_eq
     : forall A : Type,
       (A -> A -> bool) -> list A -> list A -> bool
*)

eqK

Generates, for each constructor, the correctness lemma for the comparison function.

Elpi derive.eqK list.

Check eq_axiom_nil : forall A fa, axiom (list A) (list_eq A fa) (@nil A).

Check eq_axiom_cons : forall A fa,
  forall x, axiom A fa x ->
  forall xs, axiom (list A) (list_eq A fa) xs ->
    axiom (list A) (list_eq A fa) (cons x xs).

eqcorrect

Correctness of equality test using reified type information.

Elpi derive.eqcorrect list.
Check list_eq_correct :
  forall A f l, is_list A (eq_axiom A f) l -> eq_axiom (list A) (list_eq A f) l.

eqOK

Correctness of equality test.

Elpi derive.eqOK list.
Check list_eq_OK :
  forall A f, (forall a, axiom A f a) -> (forall l, eq_axiom (list A) (list_eq A f) l).

Coverage

This is the list of inductive types we use for testing, and the table with the result of each derivation (:sunny: = OK, :bug: = does not work but might, :cloud: = looks like this can't possible work)

Inductive empty := .
Inductive unit := tt.
Inductive peano := Zero | Succ (n : peano).
Inductive option A := None | Some (_ : A).
Inductive pair A B := Comma (a : A) (b : B).
Inductive seq A := Nil | Cons (x : A) (xs : seq A).
Inductive rose (A : Type) := Leaf | Node (sib : seq (rose A)).
Inductive nest A := NilN | ConsN (x : A) (xs : nest (pair A A)).
Fail Inductive bush A := BNil | BCons (x : A) (xs : bush (bush A)).
Inductive w A := via (f : A -> w A).
Inductive vect A : peano -> Type := VNil : vect A Zero | VCons (x : A) n (xs : vect A n) : vect A (Succ n).
Inductive dyn := box (T : Type) (t : T).
Inductive zeta Sender (Receiver := Sender) := Envelope (a : Sender) (ReplyTo := a) (c : Receiver).
Inductive beta (A : (fun x : Type => x) Type) := Redex (a : (fun x : Type => x) A).
Inductive iota := Why n (a : match n in peano return Type with Zero => peano | Succ _ => unit end).
Inductive large := K1 (_ : unit) | K2 (_ : unit) (_ : unit) | ...
Inductive prim_int := PI (i : Int63.int).
Inductive prim_float := PF (f : PrimFloat.float).
Record fo_record := { f1 : peano; f2 : unit; }.
Record pa_record A := { f3 : peano; f4 : A; }.
Record pr_record A := { pf3 : peano; pf4 : A; }. (* with primitive projections *)
Record dep_record := { f5 : peano; f6 : vect unit f5; }.
Variant enum := E1 | E2 | E3.
test eq param1 map induction isK projK bcongr eqK eqcorrect eqOK lens_laws
empty ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
unit ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
peano ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
option ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
pair ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
seq ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
rose ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
nest ☁️ ☀️ ☁️ ☀️ ☀️ ☀️ ☀️ 🐛 🐛 🐛 ☁️
w ☁️ ☀️ 🐛 ☀️ ☀️ ☀️ ☀️ 🐛 🐛 🐛 ☁️
vect ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ 🐛 🐛 🐛 🐛 ☁️
dyn ☁️ ☀️ ☀️ ☀️ ☀️ ☀️ 🐛 🐛 🐛 🐛 ☁️
zeta ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
beta ☀️ ☀️ 🐛 ☀️ ☀️ ☀️ ☀️ ☀️ 🐛 ☀️ ☁️
iota ☁️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️ 🐛 ☁️ ☁️ ☁️
large ☀️ ☀️ 🐛 ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
prim_int ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
prim_float ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️ ☁️ ☁️
fo_record ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️
pa_record ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️
pr_record ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️
dep_record 🐛 ☀️ ☀️ ☀️ ☀️ ☀️ 🐛 🐛 🐛 🐛 ☁️
enum ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☁️
test functor inhab congr trivial
is_empty ☀️ ☀️ ☀️ ☀️
is_unit ☀️ ☀️ ☀️ ☀️
is_peano ☀️ ☀️ ☀️ ☀️
is_option ☀️ ☀️ ☀️ ☀️
is_pair ☀️ ☀️ ☀️ ☀️
is_seq ☀️ ☀️ ☀️ ☀️
is_rose ☀️ ☀️ ☀️ ☀️
is_nest 🐛 🐛 ☁️ ☁️
is_w 🐛 ☀️ ☀️ 🐛
is_vect ☀️ 🐛 ☁️ 🐛
is_dyn ☀️ ☁️ ☁️ 🐛
is_zeta ☀️ ☀️ ☀️ ☀️
is_beta ☀️ ☀️ ☀️ ☀️
is_iota ☀️ 🐛 ☁️ 🐛
is_large ☀️ ☀️ 🐛 🐛
is_prim_int ☀️ ☀️ ☀️ ☀️
is_is_prim_float ☀️ ☀️ ☀️ ☀️
is_fo_record ☀️ ☀️ ☀️ ☀️
is_pa_record ☀️ ☀️ ☀️ ☀️
is_pr_record ☀️ ☀️ ☀️ ☀️
is_dep_record ☀️ 🐛 ☀️ 🐛
is_enum ☀️ ☀️ ☀️ ☀️

experimental (click to expand)

invert

Inductive is_list A PA : list A -> Type :=
  | nilR : is_list (@nil A)
  | consR : forall a : A, PA a ->
            forall xs : list A, is_list xs -> is_list (cons a xs).

Elpi derive.invert is_list.
Print is_list_inv. (*
Inductive is_list_inv (A : Type) (PA : A -> Type) (idx0 : list A) : Type :=
	| nilR_inv : idx0 = nil -> is_list_inv A PA idx0
  | consR_inv : forall a : A, PA a ->
                forall xs : list A, is_list_inv A PA xs ->
                idx0 = (cons a xs) ->
                is_list_inv A PA idx0.
*)

idx2inv

Elpi derive.idx2inv is_list.
Check is_list_to_is_list_inv :
  forall A PA l, is_list A PA l -> is_list_inv A PA l.

Writing a new derivation

A derivation is made of:

  • a file implementing the derivation
  • a data base to carry some state
  • a stand alone command
  • a hook in the main derive procedure

At the light of that, here a typical derivation file myder.v. The first section loads the standard derive code and declares the dependency the external file myder.elpi. The file derive_hook.elpi contains a few data types needed in order to register the derivation in the main derive loop.

From elpi.apps.derive Extra Dependency "derive_hook.elpi" as derive_hook.
From mypkg Extra Dependency "myder.elpi" as myder.

From elpi Require Import elpi.
From elpi.apps Require Import derive.

The database is typically a predicate myder linking a type name to some concept previously derived. We also need to know if we did already derive a type, hence we declare a second predicate myder-done (we could reuse the former, but sometimes this is not easy, so here we are pedantic). We like to prefix these data bases name with derive..

Elpi Db derive.mydb.db lp:{{
  % [myder T D] links a type T to a derived concept D
  pred myder o:gref, o:gref.

  % [myder-done T] mean T was already derived
  pred myder-done o:gref.
}}.

Then we build a standalone derivation accessible via the name derive.myder which accumulates the external files declared before, the data base and an entry point

Elpi Command derive.myder.
Elpi Accumulate File derive_hook.
Elpi Accumulate File myder.
Elpi Accumulate Db derive.mydb.db.
Elpi Accumulate lp:{{
  main [str I] :- !, coq.locate I GR,
    coq.gref->id GR Tname,
    Prefix is Tname ^ "_",
    derive.myder.main GR Prefix _.
  main _ :- usage.

  pred usage.
  usage :- coq.error "Usage: derive.myder <object name>".
}}. 

This is enough to run the derivation via something like Elpi derive.myder nat.. In order to have derive run it one has to accumulate some code on top of derive itself.

Elpi Accumulate derive Db derive.myder.db.
Elpi Accumulate derive File myder.
Elpi Accumulate derive lp:{{

dep1 "myder" "somedep".
dep1 "myder" "someotherdep".
derivation
  (indt T) Prefix                        % inputs
  (derive "myder"                        % name (for dep1)
     (derive.myder.main (indt T) Prefix) % code to run
     (myder-done (indt T))               % idempotency test
     ).

}}.

First, one declares via dep1 the derivations that should run before, here somedep and someotherdep. derive will compute a topological order and ensure dependencies are run first. Then one declares a derivation for a gref and a prefix. One can restrict which grefs can be derived, here for example we make myder only available on indt (inductive types, and not definitions or constructors). Prefix is a string, typically passed to the main code. The the (derive ...) tuple carrier the name of the derivation, already used in dep1 and two predicates, one to run the derivation and one to test if the derivation was already run. The types for dep1, derivation and derive are declared in derive_hook.elpi.

Finally, one is expected to Import the myder.v file in a derivation group, for example better_std.v would look like so:

From elpi.apps Require Export derive.
From elpi.apps Require Export
  derive.map
  derive.lens
  derive.lens_laws
  ...
  myder (* new derivation *)
. 

So when the user Imports better_std he gets a fully loaded derive.

The code of the derivation must be put in a namespace. So myder.elpi should look like so

namespace derive.myder {

pred main i:gref, i:string, o:list prop.
main GR Prefix Clauses :- std.do! [
  ... % synthesize Body and Type
  Name is Prefix ^ "myconcept",
  coq.ensure-fresh-global-id Name FName,
  coq.env.add-const FName Body Type _ C,
  Clauses = [myder-done GR, myder GR (const C)],
  std.forall Clauses (x\
    coq.elpi.accumulate _ "derive.myder.db" (clause _ _ x)
  ),
].

}

It is important that all clauses added to the database are also returned (see the last argument of main). Derive runs all derivations at once and databases are updated only when the program ends. So derive will assume, with =>, the clauses generated by one derivation before running the nest one.