-
Notifications
You must be signed in to change notification settings - Fork 4
/
utilities.py
336 lines (279 loc) · 9.37 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
Helper functions for SQISign which seemed general enough to
be utilities.
Includes:
- Cornacchia's algorithm for expressing integers as x^2 + d*y^2,
- Algorithms for finding inert primes
- An efficient function for determining whether an element has order D,
suitable for additive and multiplicative groups.
"""
# Sage imports
from sage.all import (
random_prime,
factor,
gp,
ZZ,
prod,
is_pseudoprime,
kronecker,
cached_function,
gcd,
randint,
choice,
two_squares
)
# ======================================= #
# Cornacchia's alg. and helper functions #
# ======================================= #
def sum_of_squares_friendly(n):
"""
We can write any n = x^2 + y^2 providing that there
are no prime power factors p^k | n such that
p ≡ 3 mod 4 and k odd.
We can reject bad n by checking these conditions.
"""
# We don't want any prime factors in n such that p ≡ 3 mod 4
# Technically, we could allow these if they appear with even
# exp. but this seems good enough.
# We take the produce p ≡ 3 mod 4 for p < 500
bad_prime_prod = 9758835872005600424541432018720696484164386911251445952809873289484557900064682994157437552186699082331048989
if gcd(bad_prime_prod, n) != 1:
return False
# Now we consider the odd part of n and try and determine
# if there are bad factors
n_val = n.valuation(2)
n_odd = n // (2**n_val)
# First we remove all good prime factors p ≡ 1 mod 4
# We take the produce p ≡ 1 mod 4 for p < 500
good_prime_prod = 6396589037802337253083696670901044588941174775898621074430463772770231888063102454871836215129505
g = gcd(good_prime_prod, n_odd)
while g != 1:
n_odd = n_odd // g
g = gcd(n_odd , g)
# Whatever is left is either composite, or a large ish-prime
# If n_odd % 4 == 3, then there is certainly a prime factor
# p^k | n_odd such that p = 3 mod 4 and k is odd, so this is
# no good
if n_odd % 4 == 3:
return False
# We now have two cases, either n_odd is a prime p ≡ 1 mod 4
# and we have a solution, or n_odd is a composite which is
# good, or has an even number of primes p ≡ 3 mod 4. The second
# case is bad and we will only know by fully factoring it, so
# to avoid the expensive factoring, we will reject these cases
return is_pseudoprime(n_odd)
def cornacchia_friendly(n, B=2**20, d=None):
"""
Checks whether the input for Cornacchia
is relatively easy to factor, to ensure it's
fast to solve / reject.
"""
if n < 0:
return False
# When we have to find m = x^2 + y^2, which
# is the case for SQISign, we can perform a
# few additional checks which seems to help
# with performance
if d == 1:
return sum_of_squares_friendly(n)
if n < 2**160:
return True
# Factor n by trial division up to B.
# p is the part that did not get factored
p = factor(n, limit=B)[-1][0]
return p < 2**160 or is_pseudoprime(p)
def Cornacchia(M, d):
"""
Given integers M,d computes
x,y such that
M = x^2 + dy^2
"""
# First test if number is cornacchia friendly (cornacchia factors the number)
if not cornacchia_friendly(M, d=d):
# Empty list is what Q.qfbsolve
# returns if it fails, so lets be
# consistent I guess :)
return []
# When d=1 we can use SageMath's two_squares
# which seems faster than calling Q.qfbsolve(ZZ(M))
if d == 1:
# two_squares raises value errors on bad
# M, so we need to catch these
try:
sol = two_squares(M)
except:
sol = []
return sol
# General case:
# Use Pari to define quadratic binary form
# f(x,y) = x^2 + d*y^2
Q = gp.Qfb(ZZ(1), ZZ(0), ZZ(d))
sol = Q.qfbsolve(ZZ(M))
# Convert from Pari interface to Sage Integer
return list(map(ZZ, sol))
# ======================================= #
# Compute random inert primes in R[ω] #
# ======================================= #
def is_inert(ω, p):
"""
Given an element ω ∈ B, and a prime p, returns if
p is inert in ℤ[ω]
For ℤ[ω], a prime is inert when the Kronecker symbol:
(-d / p) = -1
"""
def discriminant(ω):
"""
Computes the discriminant of an element of a
quaternion algebra, denoted Δ(ω)
"""
Trd = ω.reduced_trace()
Nrd = ω.reduced_norm()
if Trd not in ZZ or Nrd not in ZZ:
raise ValueError(f"The element ω must be integral")
return ZZ(Trd**2 - 4 * Nrd)
def recover_d(ω):
"""
Given an integral element of a Quaternion Algebra,
and its discriminant Δ(ω), computes the integer d
such that:
Δ(ω) = -d if d ≡ 3 mod 4
= -4d otherwise
"""
Δ = discriminant(ω)
if Δ % 4 == 0:
return -(Δ // 4)
return -Δ
d = recover_d(ω)
return kronecker(-d, p) == -1
def inert_prime(bound, d):
"""
Input: An upper bound for the output prime
d, the integer such that ω^2 = -d for
ℤ[ω]
Output: A prime < bound which is inert in
the ring ℤ[ω]
"""
while True:
p = random_prime(bound)
if kronecker(-d, p) == -1:
return p
# =============================================== #
# Random selection, adapted from the Magma impl. #
# https://github.com/SQISign/sqisign-magma #
# =============================================== #
def generate_bounded_divisor(bound, T, facT):
"""
Finds L2 > bound powersmooth
We want the result to divide T
"""
L2, facL2 = 1, dict()
# Compute a random factor L2 | T
# and create dict to keep track
# of exp.
for pi, ei in facT:
exp = ei - randint(0, ei)
L2 *= pi**exp
facL2[pi] = exp
# Mul random factors from T until L2
# is large enough
while L2 <= bound:
pi, ei = choice(facT)
if facL2[pi] < ei:
L2 *= pi
facL2[pi] += 1
return ZZ(L2)
# ================================================== #
# Code to check whether a group element has order D #
# ================================================== #
def batch_cofactor_mul_generic(G_list, pis, group_action, lower, upper):
"""
Input: A list of elements `G_list`, such that
G is the first entry and the rest is empty
in the sublist G_list[lower:upper]
A list `pis` of primes p such that
their product is D
The `group_action` of the group
Indices lower and upper
Output: None
`
NOTE: G_list is created in place
"""
# check that indices are valid
if lower > upper:
raise ValueError(f"Wrong input to cofactor_multiples()")
# last recursion step does not need any further splitting
if upper - lower == 1:
return
# Split list in two parts,
# multiply to get new start points for the two sublists,
# and call the function recursively for both sublists.
mid = lower + (upper - lower + 1) // 2
cl, cu = 1, 1
for i in range(lower, mid):
cu = cu * pis[i]
for i in range(mid, upper):
cl = cl * pis[i]
# cl = prod(pis[lower:mid])
# cu = prod(pis[mid:upper])
G_list[mid] = group_action(G_list[lower], cu)
G_list[lower] = group_action(G_list[lower], cl)
batch_cofactor_mul_generic(G_list, pis, group_action, lower, mid)
batch_cofactor_mul_generic(G_list, pis, group_action, mid, upper)
@cached_function
def has_order_constants(D):
"""
Helper function, finds constants to
help with has_order_D
"""
D = ZZ(D)
pis = [p for p, _ in factor(D)]
D_radical = prod(pis)
Dtop = D // D_radical
return Dtop, pis
def has_order_D(G, D, multiplicative=False):
"""
Given an element G in a group, checks if the
element has order exactly D. This is much faster
than determining its order, and is enough for
many checks we need when computing the torsion
bonus.
We allow both additive and multiplicative groups
"""
# For the case when we work with elements of Fp^k
if multiplicative:
group_action = lambda a, k: a**k
is_identity = lambda a: a.is_one()
identity = G.parent()(1)
# For the case when we work with elements of E / Fp^k
else:
group_action = lambda a, k: k * a
is_identity = lambda a: a.is_zero()
identity = G.curve()(0)
if is_identity(G):
return False
D_top, pis = has_order_constants(D)
# If G is the identity after clearing the top
# factors, we can abort early
Gtop = group_action(G, D_top)
if is_identity(Gtop):
return False
G_list = [identity for _ in range(len(pis))]
G_list[0] = Gtop
# Lastly we have to determine whether removing any prime
# factors of the order gives the identity of the group
if len(pis) > 1:
batch_cofactor_mul_generic(G_list, pis, group_action, 0, len(pis))
if not all([not is_identity(G) for G in G_list]):
return False
return True
# ================ #
# Print Debugging #
# ================ #
def print_info(str, banner="="):
"""
Print information with a banner to help
with visibility during debug printing
"""
print(banner * 80)
print(f"{str}".center(80))
print(banner * 80)