forked from krABMaga/krABMaga
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Cargo.toml
137 lines (123 loc) · 3.68 KB
/
Cargo.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
[package]
name = "krabmaga"
version = "0.2.0"
authors = [
"Carmine Spagnuolo <[email protected]>",
"Alessia Antelmi <[email protected]>",
"Matteo D'Auria <[email protected]>",
"Daniele De Vinco <[email protected]",
"Francesco Foglia <[email protected]>",
"Pasquale Caramante <[email protected]>",
"Luca Postiglione <[email protected]>",
"Giuseppe D'Ambrosio <[email protected]>",
"Andrea Tranquillo <[email protected]>"
]
edition = "2021"
license = "MIT"
keywords = ["discrete-event", "ABM", "simulation", "agent-based-model"]
categories = ["science", "simulation", "mathematics", "visualization", "wasm"]
description = "A modern developing art for reliable and efficient Agent-based Model (ABM) simulation with the Rust language."
readme = "README.md"
homepage = "https://krABMaga.github.io/"
repository = "https://github.com/krABMaga/krABMaga"
documentation = "https://docs.rs/krABMaga"
[dependencies]
hashbrown = "0.12.1"
priority-queue = "1.2.1"
rand = "0.8.5"
lazy_static = "1.4.0"
cfg-if = "1.0.0"
num_cpus = "1.13.1"
rayon="1.5.1"
ahash="0.7.6"
dyn-clone="1.0.5"
downcast-rs = "1.2.0"
csv = "1.1.6"
indicatif = "0.16.2"
rand_pcg = "0.3.1"
chrono = "0.4"
# Parallel
crossbeam = {version = "0.8.1", optional = true}
clap= {version = "2.34.0", optional = true}
# Model exploration AWS features
lambda_runtime = {version = "0.4", optional = true}
serde = { version = "1.0.137", features = ["derive"], optional = true}
serde_json = {version = "1.0.81", optional = true}
tokio = { version = "1.18.1", features = ["full"], optional = true }
aws-config = {version = "0.4", optional = true}
aws-sdk-sqs = {version = "0.4", optional = true}
aws-sdk-lambda = {version = "0.4", optional = true}
futures = {version = "0.3", optional = true}
# Model exploration MPI features
# We used this crate because "rsmpi" has some bugs, so we updated to this fork
# mpi-fork-fnsp = { version="0.6", optional = true }
mpi = { version = "0.6", optional=true, features = ["user-operations", "derive"] }
memoffset = { version = "0.6.4", optional = true}
# Bayesian
friedrich = { version = "0.4.1", optional = true }
statrs = { version = "0.15.0", optional = true }
# Visualization features
bevy_prototype_lyon = {version="0.4.0", optional=true, default-features = false}
image = {version="0.24.2", optional=true, default-features = false}
bevy_egui = {version="0.10",optional=true, default-features = false}
[dependencies.bevy]
version= "0.6"
default-features = false
optional=true
[target.'cfg(target_arch = "wasm32")'.dependencies]
getrandom = {version="0.2.6", features=["wasm-bindgen"], default-features = false}
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
tui = "0.18.0"
crossterm = "0.23.2"
sysinfo = "0.27.2"
plotters = "0.3.1"
# Must be kept separate and asked to the user due to missing support for conditional compilation of features
# https://github.com/rust-lang/cargo/issues/7914
# "mpi-fork-fnsp" old dependency, fork of mpi
[features]
distributed_mpi = [
"mpi",
"memoffset"
]
aws = [
"lambda_runtime",
"serde",
"serde_json",
"tokio",
"aws-config",
"aws-sdk-sqs",
"aws-sdk-lambda",
"futures",
]
bayesian = [
"friedrich",
"statrs",
]
parallel = [
"crossbeam",
"clap",
]
visualization = [
"bevy_prototype_lyon",
"bevy",
"bevy/bevy_winit",
"bevy/render",
"bevy/bevy_gltf",
"bevy/png",
"image",
"bevy_egui"
]
visualization_wasm = [
"bevy_prototype_lyon",
"bevy",
"bevy/bevy_winit",
"bevy/render",
"bevy/bevy_gltf",
"bevy/png",
"image",
"bevy_egui",
]
[package.metadata.docs.rs]
features = ["bayesian"]
[lib]
doctest = false