-
Notifications
You must be signed in to change notification settings - Fork 120
/
dpm_solver_jax.py
1197 lines (1075 loc) · 61.5 KB
/
dpm_solver_jax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import jax
import jax.numpy as jnp
import jax.random as random
import math
class NoiseScheduleVP:
def __init__(
self,
schedule='discrete',
betas=None,
alphas_cumprod=None,
continuous_beta_0=0.1,
continuous_beta_1=20.,
):
"""Create a wrapper class for the forward SDE (VP type).
***
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
***
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
log_alpha_t = self.marginal_log_mean_coeff(t)
sigma_t = self.marginal_std(t)
lambda_t = self.marginal_lambda(t)
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
t = self.inverse_lambda(lambda_t)
===============================================================
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
1. For discrete-time DPMs:
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
t_i = (i + 1) / N
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
Args:
betas: A `jnp.DeviceArray`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
alphas_cumprod: A `jnp.DeviceArray`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
**Important**: Please pay special attention for the args for `alphas_cumprod`:
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
alpha_{t_n} = \sqrt{\hat{alpha_n}},
and
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
2. For continuous-time DPMs:
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
schedule are the default settings in DDPM and improved-DDPM:
Args:
beta_min: A `float` number. The smallest beta for the linear schedule.
beta_max: A `float` number. The largest beta for the linear schedule.
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
T: A `float` number. The ending time of the forward process.
===============================================================
Args:
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
'linear' or 'cosine' for continuous-time DPMs.
Returns:
A wrapper object of the forward SDE (VP type).
===============================================================
Example:
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', betas=betas)
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
# For continuous-time DPMs (VPSDE), linear schedule:
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
"""
if schedule not in ['discrete', 'linear', 'cosine']:
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
self.schedule = schedule
if schedule == 'discrete':
if betas is not None:
log_alphas = 0.5 * jnp.log(1 - betas).cumsum(axis=0)
else:
assert alphas_cumprod is not None
log_alphas = 0.5 * jnp.log(alphas_cumprod)
self.total_N = len(log_alphas)
self.T = 1.
self.t_array = jnp.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
self.log_alpha_array = log_alphas.reshape((1, -1,))
else:
self.total_N = 1000
self.beta_0 = continuous_beta_0
self.beta_1 = continuous_beta_1
self.cosine_s = 0.008
self.cosine_beta_max = 999.
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
self.schedule = schedule
if schedule == 'cosine':
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
self.T = 0.9946
else:
self.T = 1.
def marginal_log_mean_coeff(self, t):
"""
Compute log(alpha_t) of a given continuous-time label t in [0, T].
"""
if self.schedule == 'discrete':
return interpolate_fn(t.reshape((-1, 1)), self.t_array, self.log_alpha_array).reshape((-1))
elif self.schedule == 'linear':
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
elif self.schedule == 'cosine':
log_alpha_fn = lambda s: jnp.log(jnp.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
return log_alpha_t
def marginal_alpha(self, t):
"""
Compute alpha_t of a given continuous-time label t in [0, T].
"""
return jnp.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
"""
Compute sigma_t of a given continuous-time label t in [0, T].
"""
return jnp.sqrt(1. - jnp.exp(2. * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * jnp.log(1. - jnp.exp(2. * log_mean_coeff))
return log_mean_coeff - log_std
def inverse_lambda(self, lamb):
"""
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
"""
if self.schedule == 'linear':
tmp = 2. * (self.beta_1 - self.beta_0) * jnp.logaddexp(-2. * lamb, jnp.zeros((1,)))
Delta = self.beta_0**2 + tmp
return tmp / (jnp.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
elif self.schedule == 'discrete':
log_alpha = -0.5 * jnp.logaddexp(jnp.zeros((1,)), -2. * lamb)
t = interpolate_fn(log_alpha.reshape((-1, 1)), jnp.flip(self.log_alpha_array, [1]), jnp.flip(self.t_array, [1]))
return t.reshape((-1,))
else:
log_alpha = -0.5 * jnp.logaddexp(-2. * lamb, jnp.zeros((1,)))
t_fn = lambda log_alpha_t: jnp.arccos(jnp.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
t = t_fn(log_alpha)
return t
def model_wrapper(
model,
noise_schedule,
model_type="noise",
model_kwargs={},
guidance_type="uncond",
condition=None,
unconditional_condition=None,
guidance_scale=1.,
classifier_fn=None,
classifier_kwargs={},
):
"""Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
We support four types of the diffusion model by setting `model_type`:
1. "noise": noise prediction model. (Trained by predicting noise).
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
3. "v": velocity prediction model. (Trained by predicting the velocity).
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
noise(x_t, t) = -sigma_t * score(x_t, t)
```
We support three types of guided sampling by DPMs by setting `guidance_type`:
1. "uncond": unconditional sampling by DPMs.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
The input `classifier_fn` has the following format:
``
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
``
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
===============================================================
Args:
model: A diffusion model with the corresponding format described above.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
model_type: A `str`. The parameterization type of the diffusion model.
"noise" or "x_start" or "v" or "score".
model_kwargs: A `dict`. A dict for the other inputs of the model function.
guidance_type: A `str`. The type of the guidance for sampling.
"uncond" or "classifier" or "classifier-free".
condition: A jnp.DeviceArray. The condition for the guided sampling.
Only used for "classifier" or "classifier-free" guidance type.
unconditional_condition: A jnp.DeviceArray. The condition for the unconditional sampling.
Only used for "classifier-free" guidance type.
guidance_scale: A `float`. The scale for the guided sampling.
classifier_fn: A classifier function. Only used for the classifier guidance.
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
Returns:
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
For continuous-time DPMs, we just use `t_continuous`.
"""
if noise_schedule.schedule == 'discrete':
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
else:
return t_continuous
def noise_pred_fn(x, t_continuous, cond=None):
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = jnp.tile(t_continuous,(x.shape[0]))
t_input = get_model_input_time(t_continuous)
if cond is None:
output = model(x, t_input, **model_kwargs)
else:
output = model(x, t_input, cond, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.ndim
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
elif model_type == "v":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
dims = x.ndim
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
elif model_type == "score":
sigma_t = noise_schedule.marginal_std(t_continuous)
dims = x.ndim
return -expand_dims(sigma_t, dims) * output
def cond_grad_fn(x, t_input):
"""
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
"""
log_prob = lambda x_in: classifier_fn(x_in, t_input, condition, **classifier_kwargs).sum()
return jax.grad(log_prob)(x)
def model_fn(x, t_continuous):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = jnp.tile(t_continuous,(x.shape[0]))
if guidance_type == "uncond":
return noise_pred_fn(x, t_continuous)
elif guidance_type == "classifier":
assert classifier_fn is not None
t_input = get_model_input_time(t_continuous)
cond_grad = cond_grad_fn(x, t_input)
sigma_t = noise_schedule.marginal_std(t_continuous)
noise = noise_pred_fn(x, t_continuous)
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.ndim) * cond_grad
elif guidance_type == "classifier-free":
if guidance_scale == 1. or unconditional_condition is None:
return noise_pred_fn(x, t_continuous, cond=condition)
else:
x_in = jnp.concatenate([x] * 2)
t_in = jnp.concatenate([t_continuous] * 2)
c_in = jnp.concatenate([unconditional_condition, condition])
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).split(2)
return noise_uncond + guidance_scale * (noise - noise_uncond)
assert model_type in ["noise", "x_start", "v"]
assert guidance_type in ["uncond", "classifier", "classifier-free"]
return model_fn
class DPM_Solver:
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
"""Construct a DPM-Solver.
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
Args:
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
``
def model_fn(x, t_continuous):
return noise
``
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
"""
self.model = model_fn
self.noise_schedule = noise_schedule
self.predict_x0 = predict_x0
self.thresholding = thresholding
self.max_val = max_val
def noise_prediction_fn(self, x, t):
"""
Return the noise prediction model.
"""
return self.model(x, t)
def data_prediction_fn(self, x, t):
"""
Return the data prediction model (with thresholding).
"""
noise = self.noise_prediction_fn(x, t)
dims = x.ndim
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
if self.thresholding:
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
s = jnp.percentile(jnp.abs(x0), p, axis=tuple(range(1, x0.ndim)))
s = jnp.max(s, self.max_val)
x0 = jnp.clip(x0, -s, s) / s
return x0
def model_fn(self, x, t):
"""
Convert the model to the noise prediction model or the data prediction model.
"""
if self.predict_x0:
return self.data_prediction_fn(x, t)
else:
return self.noise_prediction_fn(x, t)
def get_time_steps(self, skip_type, t_T, t_0, N):
"""Compute the intermediate time steps for sampling.
Args:
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
N: A `int`. The total number of the spacing of the time steps.
Returns:
A jnp.DeviceArray of the time steps, with the shape (N + 1,).
"""
if skip_type == 'logSNR':
lambda_T = self.noise_schedule.marginal_lambda(t_T)
lambda_0 = self.noise_schedule.marginal_lambda(t_0)
logSNR_steps = jnp.linspace(lambda_T, lambda_0, N + 1)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == 'time_uniform':
return jnp.linspace(t_T, t_0, N + 1)
elif skip_type == 'time_quadratic':
t_order = 2
t = jnp.power(jnp.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1),t_order)
return t
else:
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0):
"""
Get the order of each step for sampling by the singlestep DPM-Solver.
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
- If order == 1:
We take `steps` of DPM-Solver-1 (i.e. DDIM).
- If order == 2:
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If order == 3:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
============================================
Args:
order: A `int`. The max order for the solver (2 or 3).
steps: A `int`. The total number of function evaluations (NFE).
Returns:
orders: A list of the solver order of each step.
"""
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [3,] * (K - 2) + [2, 1]
elif steps % 3 == 1:
orders = [3,] * (K - 1) + [1]
else:
orders = [3,] * (K - 1) + [2]
elif order == 2:
if steps % 2 == 0:
K = steps // 2
orders = [2,] * K
else:
K = steps // 2 + 1
orders = [2,] * (K - 1) + [1]
elif order == 1:
K = steps
orders = [1,] * steps
else:
raise ValueError("'order' must be '1' or '2' or '3'.")
if skip_type == 'logSNR':
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K)
else:
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps)[jnp.cumsum(jnp.array([0,] + orders))]
return timesteps_outer, orders
def denoise_fn(self, x, s):
"""
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
"""
return self.data_prediction_fn(x, s)
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
"""
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
Args:
x: A jnp.DeviceArray. The initial value at time `s`.
s: A jnp.DeviceArray. The starting time, with the shape (x.shape[0],).
t: A jnp.DeviceArray. The ending time, with the shape (x.shape[0],).
model_s: A jnp.DeviceArray. The model function evaluated at time `s`.
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
return_intermediate: A `bool`. If true, also return the model value at time `s`.
Returns:
x_t: A jnp.DeviceArray. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = x.ndim
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
alpha_t = jnp.exp(log_alpha_t)
if self.predict_x0:
phi_1 = jnp.expm1(-h)
if model_s is None:
model_s = self.model_fn(x, s)
x_t = (
expand_dims(sigma_t / sigma_s, dims) * x
- expand_dims(alpha_t * phi_1, dims) * model_s
)
if return_intermediate:
return x_t, {'model_s': model_s}
else:
return x_t
else:
phi_1 = jnp.expm1(h)
if model_s is None:
model_s = self.model_fn(x, s)
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_s), dims) * x
- expand_dims(sigma_t * phi_1, dims) * model_s
)
if return_intermediate:
return x_t, {'model_s': model_s}
else:
return x_t
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'):
"""
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
Args:
x: A jnp.DeviceArray. The initial value at time `s`.
s: A jnp.DeviceArray. The starting time, with the shape (x.shape[0],).
t: A jnp.DeviceArray. The ending time, with the shape (x.shape[0],).
r1: A `float`. The hyperparameter of the second-order solver.
model_s: A jnp.DeviceArray. The model function evaluated at time `s`.
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A jnp.DeviceArray. The approximated solution at time `t`.
"""
if solver_type not in ['dpm_solver', 'taylor']:
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
if r1 is None:
r1 = 0.5
ns = self.noise_schedule
dims = x.ndim
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
lambda_s1 = lambda_s + r1 * h
s1 = ns.inverse_lambda(lambda_s1)
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
alpha_s1, alpha_t = jnp.exp(log_alpha_s1), jnp.exp(log_alpha_t)
if self.predict_x0:
phi_11 = jnp.expm1(-r1 * h)
phi_1 = jnp.expm1(-h)
if model_s is None:
model_s = self.model_fn(x, s)
x_s1 = (
expand_dims(sigma_s1 / sigma_s, dims) * x
- expand_dims(alpha_s1 * phi_11, dims) * model_s
)
model_s1 = self.model_fn(x_s1, s1)
if solver_type == 'dpm_solver':
x_t = (
expand_dims(sigma_t / sigma_s, dims) * x
- expand_dims(alpha_t * phi_1, dims) * model_s
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
)
elif solver_type == 'taylor':
x_t = (
expand_dims(sigma_t / sigma_s, dims) * x
- expand_dims(alpha_t * phi_1, dims) * model_s
+ (1. / r1) * expand_dims(alpha_t * ((jnp.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s)
)
else:
phi_11 = jnp.expm1(r1 * h)
phi_1 = jnp.expm1(h)
if model_s is None:
model_s = self.model_fn(x, s)
x_s1 = (
expand_dims(jnp.exp(log_alpha_s1 - log_alpha_s), dims) * x
- expand_dims(sigma_s1 * phi_11, dims) * model_s
)
model_s1 = self.model_fn(x_s1, s1)
if solver_type == 'dpm_solver':
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_s), dims) * x
- expand_dims(sigma_t * phi_1, dims) * model_s
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
)
elif solver_type == 'taylor':
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_s), dims) * x
- expand_dims(sigma_t * phi_1, dims) * model_s
- (1. / r1) * expand_dims(sigma_t * ((jnp.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
)
if return_intermediate:
return x_t, {'model_s': model_s, 'model_s1': model_s1}
else:
return x_t
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'):
"""
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
Args:
x: A jnp.DeviceArray. The initial value at time `s`.
s: A jnp.DeviceArray. The starting time, with the shape (x.shape[0],).
t: A jnp.DeviceArray. The ending time, with the shape (x.shape[0],).
r1: A `float`. The hyperparameter of the third-order solver.
r2: A `float`. The hyperparameter of the third-order solver.
model_s: A jnp.DeviceArray. The model function evaluated at time `s`.
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
model_s1: A jnp.DeviceArray. The model function evaluated at time `s1` (the intermediate time given by `r1`).
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A jnp.DeviceArray. The approximated solution at time `t`.
"""
if solver_type not in ['dpm_solver', 'taylor']:
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
if r1 is None:
r1 = 1. / 3.
if r2 is None:
r2 = 2. / 3.
ns = self.noise_schedule
dims = x.ndim
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
lambda_s1 = lambda_s + r1 * h
lambda_s2 = lambda_s + r2 * h
s1 = ns.inverse_lambda(lambda_s1)
s2 = ns.inverse_lambda(lambda_s2)
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
alpha_s1, alpha_s2, alpha_t = jnp.exp(log_alpha_s1), jnp.exp(log_alpha_s2), jnp.exp(log_alpha_t)
if self.predict_x0:
phi_11 = jnp.expm1(-r1 * h)
phi_12 = jnp.expm1(-r2 * h)
phi_1 = jnp.expm1(-h)
phi_22 = jnp.expm1(-r2 * h) / (r2 * h) + 1.
phi_2 = phi_1 / h + 1.
phi_3 = phi_2 / h - 0.5
if model_s is None:
model_s = self.model_fn(x, s)
if model_s1 is None:
x_s1 = (
expand_dims(sigma_s1 / sigma_s, dims) * x
- expand_dims(alpha_s1 * phi_11, dims) * model_s
)
model_s1 = self.model_fn(x_s1, s1)
x_s2 = (
expand_dims(sigma_s2 / sigma_s, dims) * x
- expand_dims(alpha_s2 * phi_12, dims) * model_s
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
)
model_s2 = self.model_fn(x_s2, s2)
if solver_type == 'dpm_solver':
x_t = (
expand_dims(sigma_t / sigma_s, dims) * x
- expand_dims(alpha_t * phi_1, dims) * model_s
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
)
elif solver_type == 'taylor':
D1_0 = (1. / r1) * (model_s1 - model_s)
D1_1 = (1. / r2) * (model_s2 - model_s)
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
x_t = (
expand_dims(sigma_t / sigma_s, dims) * x
- expand_dims(alpha_t * phi_1, dims) * model_s
+ expand_dims(alpha_t * phi_2, dims) * D1
- expand_dims(alpha_t * phi_3, dims) * D2
)
else:
phi_11 = jnp.expm1(r1 * h)
phi_12 = jnp.expm1(r2 * h)
phi_1 = jnp.expm1(h)
phi_22 = jnp.expm1(r2 * h) / (r2 * h) - 1.
phi_2 = phi_1 / h - 1.
phi_3 = phi_2 / h - 0.5
if model_s is None:
model_s = self.model_fn(x, s)
if model_s1 is None:
x_s1 = (
expand_dims(jnp.exp(log_alpha_s1 - log_alpha_s), dims) * x
- expand_dims(sigma_s1 * phi_11, dims) * model_s
)
model_s1 = self.model_fn(x_s1, s1)
x_s2 = (
expand_dims(jnp.exp(log_alpha_s2 - log_alpha_s), dims) * x
- expand_dims(sigma_s2 * phi_12, dims) * model_s
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
)
model_s2 = self.model_fn(x_s2, s2)
if solver_type == 'dpm_solver':
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_s), dims) * x
- expand_dims(sigma_t * phi_1, dims) * model_s
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
)
elif solver_type == 'taylor':
D1_0 = (1. / r1) * (model_s1 - model_s)
D1_1 = (1. / r2) * (model_s2 - model_s)
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_s), dims) * x
- expand_dims(sigma_t * phi_1, dims) * model_s
- expand_dims(sigma_t * phi_2, dims) * D1
- expand_dims(sigma_t * phi_3, dims) * D2
)
if return_intermediate:
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
else:
return x_t
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
"""
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
Args:
x: A jnp.DeviceArray. The initial value at time `s`.
model_prev_list: A list of jnp.DeviceArray. The previous computed model values.
t_prev_list: A list of jnp.DeviceArray. The previous times, each time has the shape (x.shape[0],)
t: A jnp.DeviceArray. The ending time, with the shape (x.shape[0],).
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A jnp.DeviceArray. The approximated solution at time `t`.
"""
if solver_type not in ['dpm_solver', 'taylor']:
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
ns = self.noise_schedule
dims = x.ndim
model_prev_1, model_prev_0 = model_prev_list
t_prev_1, t_prev_0 = t_prev_list
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
alpha_t = jnp.exp(log_alpha_t)
h_0 = lambda_prev_0 - lambda_prev_1
h = lambda_t - lambda_prev_0
r0 = h_0 / h
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
if self.predict_x0:
if solver_type == 'dpm_solver':
x_t = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * (jnp.exp(-h) - 1.), dims) * model_prev_0
- 0.5 * expand_dims(alpha_t * (jnp.exp(-h) - 1.), dims) * D1_0
)
elif solver_type == 'taylor':
x_t = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * (jnp.exp(-h) - 1.), dims) * model_prev_0
+ expand_dims(alpha_t * ((jnp.exp(-h) - 1.) / h + 1.), dims) * D1_0
)
else:
if solver_type == 'dpm_solver':
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * (jnp.exp(h) - 1.), dims) * model_prev_0
- 0.5 * expand_dims(sigma_t * (jnp.exp(h) - 1.), dims) * D1_0
)
elif solver_type == 'taylor':
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * (jnp.exp(h) - 1.), dims) * model_prev_0
- expand_dims(sigma_t * ((jnp.exp(h) - 1.) / h - 1.), dims) * D1_0
)
return x_t
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
"""
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
Args:
x: A jnp.DeviceArray. The initial value at time `s`.
model_prev_list: A list of jnp.DeviceArray. The previous computed model values.
t_prev_list: A list of jnp.DeviceArray. The previous times, each time has the shape (x.shape[0],)
t: A jnp.DeviceArray. The ending time, with the shape (x.shape[0],).
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A jnp.DeviceArray. The approximated solution at time `t`.
"""
ns = self.noise_schedule
dims = x.ndim
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
alpha_t = jnp.exp(log_alpha_t)
h_1 = lambda_prev_1 - lambda_prev_2
h_0 = lambda_prev_0 - lambda_prev_1
h = lambda_t - lambda_prev_0
r0, r1 = h_0 / h, h_1 / h
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
if self.predict_x0:
x_t = (
expand_dims(sigma_t / sigma_prev_0, dims) * x
- expand_dims(alpha_t * (jnp.exp(-h) - 1.), dims) * model_prev_0
+ expand_dims(alpha_t * ((jnp.exp(-h) - 1.) / h + 1.), dims) * D1
- expand_dims(alpha_t * ((jnp.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2
)
else:
x_t = (
expand_dims(jnp.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * (jnp.exp(h) - 1.), dims) * model_prev_0
- expand_dims(sigma_t * ((jnp.exp(h) - 1.) / h - 1.), dims) * D1
- expand_dims(sigma_t * ((jnp.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2
)
return x_t
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None):
"""
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
Args:
x: A jnp.DeviceArray. The initial value at time `s`.
s: A jnp.DeviceArray. The starting time, with the shape (x.shape[0],).
t: A jnp.DeviceArray. The ending time, with the shape (x.shape[0],).
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
r1: A `float`. The hyperparameter of the second-order or third-order solver.
r2: A `float`. The hyperparameter of the third-order solver.
Returns:
x_t: A jnp.DeviceArray. The approximated solution at time `t`.
"""
if order == 1:
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
elif order == 2:
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
elif order == 3:
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
else:
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
"""
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
Args:
x: A jnp.DeviceArray. The initial value at time `s`.
model_prev_list: A list of jnp.DeviceArray. The previous computed model values.
t_prev_list: A list of jnp.DeviceArray. The previous times, each time has the shape (x.shape[0],)
t: A jnp.DeviceArray. The ending time, with the shape (x.shape[0],).
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_t: A jnp.DeviceArray. The approximated solution at time `t`.
"""
if order == 1:
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
elif order == 2:
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
elif order == 3:
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
else:
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'):
"""
The adaptive step size solver based on singlestep DPM-Solver.
Args:
x: A jnp.DeviceArray. The initial value at time `t_T`.
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
h_init: A `float`. The initial step size (for logSNR).
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
Returns:
x_0: A jnp.DeviceArray. The approximated solution at time `t_0`.
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
"""
ns = self.noise_schedule
s = t_T * jnp.ones((x.shape[0],))
lambda_s = ns.marginal_lambda(s)
lambda_0 = ns.marginal_lambda(t_0 * jnp.ones_like(s))
h = h_init * jnp.ones_like(s)
x_prev = x
nfe = 0
if order == 2:
r1 = 0.5
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
elif order == 3:
r1, r2 = 1. / 3., 2. / 3.
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
else:
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
def update_fn(val):
x, x_prev, s, lambda_s, h, nfe = val
lambda_t = lambda_s + h
t = ns.inverse_lambda(lambda_t)
x_lower, lower_noise_kwargs = lower_update(x, s, t)
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
delta = jnp.maximum(jnp.ones_like(x) * atol, rtol * jnp.maximum(jnp.abs(x_prev), jnp.abs(x_lower)))
norm_fn = lambda v: jnp.sqrt(jnp.mean(jnp.square(v.reshape((v.shape[0], -1))), axis=-1, keepdims=True))
E = jnp.max(norm_fn((x_higher - x_lower) / delta))
def next_step(inputs):
return x_higher, x_lower, t, lambda_t
def remain_step(inputs):
return x, x_prev, s, lambda_s
x, x_prev, s, lambda_s = jax.lax.cond(E <= 1., next_step, remain_step, ())
h = jnp.minimum(theta * h * jnp.power(E, -1. / order), lambda_0 - lambda_s)
nfe = nfe + order
return x, x_prev, s, lambda_s, h, nfe
def condition_continue(val):
x, x_prev, s, lambda_s, h, nfe = val
return (jnp.abs(s - t_0) > t_err).any()
x, _, _, _, _, nfe = jax.lax.while_loop(condition_continue, update_fn, (x, x_prev, s, lambda_s, h, 0))
import jax.experimental.host_callback as callback
callback.id_print(nfe)
return x
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
method='singlestep', denoise=False, solver_type='dpm_solver', atol=0.0078,
rtol=0.05,
):
"""
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
=====================================================
We support the following algorithms for both noise prediction model and data prediction model:
- 'singlestep':
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
The total number of function evaluations (NFE) == `steps`.
Given a fixed NFE == `steps`, the sampling procedure is:
- If `order` == 1:
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
- If `order` == 2:
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- If `order` == 3:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
- 'multistep':
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
We initialize the first `order` values by lower order multistep solvers.
Given a fixed NFE == `steps`, the sampling procedure is:
Denote K = steps.
- If `order` == 1:
- We use K steps of DPM-Solver-1 (i.e. DDIM).
- If `order` == 2:
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.