Skip to content

Latest commit

 

History

History
337 lines (275 loc) · 10.2 KB

README.md

File metadata and controls

337 lines (275 loc) · 10.2 KB

solaredge_modbus

solaredge_modbus is a python library that collects data from SolarEdge power inverters over Modbus or ModbusTCP.

Installation

To install, either clone this project and install using setuptools:

python3 setup.py install

or install the package from PyPi:

pip3 install solaredge_modbus

Usage

The script example.py provides a minimal example of connecting to and displaying all registers from a SolarEdge power inverter over ModbusTCP.

usage: example.py [-h] [--timeout TIMEOUT] [--unit UNIT] [--json] host port

positional arguments:
  host               ModbusTCP address
  port               ModbusTCP port

optional arguments:
  -h, --help         show this help message and exit
  --timeout TIMEOUT  Connection timeout
  --unit UNIT        Modbus unit
  --json             Output as JSON

Output:

Inverter(10.0.0.123:1502, connectionType.TCP: timeout=1, retries=3, unit=0x1):

Registers:
    Manufacturer: SolarEdge
    Model: SE3500H-RW000BNN4
    Type: Single Phase Inverter
    Version: 0004.0009.0030
    Serial: 123ABC12
    Status: Producing
    Temperature: 49.79°C
    Current: 8.93A
    Voltage: 240.20V
    Frequency: 50.00Hz
    Power: 2141.80W
    Power (Apparent): 2149.60VA
    Power (Reactive): 183.20VAr
    Power Factor: 99.69%
    Total Energy: 3466757Wh
    DC Current: 5.68A
    DC Voltage: 382.50V
    DC Power: 2173.50W

Passing --json returns:

{
    "c_manufacturer": "SolarEdge",
    'c_model': 'SE3500H-RW000BNN4',
    'c_version': '0004.0009.0030',
    'c_serialnumber': '123ABC12',
    'c_deviceaddress': 1,
    'c_sunspec_did': 101,
    'current': 895,
    'p1_current': 895,
    'p2_current': False,
    'p3_current': False,
    'current_scale': -2,
    'p1_voltage': 2403,
    'p2_voltage': False,
    'p3_voltage': False,
    'p1n_voltage': False,
    'p2n_voltage': False,
    'p3n_voltage': False,
    'voltage_scale': -1,
    'frequency': 50003,
    'frequency_scale': -3,
    'power_ac': 21413,
    'power_ac_scale': -1, 
    'power_apparent': 21479,
    'power_apparent_scale': -1,
    'power_reactive': 16859,
    'power_reactive_scale': -2,
    'power_factor': 9969,
    'power_factor_scale': -2,
    'energy_total': 3466757,
    'energy_total_scale': 0,
    'current_dc': 5678,
    'current_dc_scale': -3,
    'voltage_dc': 3826,
    'voltage_dc_scale': -1,
    'power_dc': 21726,
    'power_dc_scale': -1,
    'temperature': 4979,
    'temperature_scale': -2,
    'status': 4,
    'vendor_status': 0
}

Note that if kWh meters or batteries are connected to your inverter, these will also be presented in the JSON output.

A second script, example_influxdb.py provides an example InfluxDB writer. It connects to an inverter over ModbusTCP, and writes inverter, battery and meter values to an InfluxDB every second.

usage: example_influxdb.py [-h] [--timeout TIMEOUT] [--unit UNIT] [--interval INTERVAL] [--influx_host INFLUX_HOST] [--influx_port INFLUX_PORT] [--influx_db INFLUX_DB]
                           [--influx_user INFLUX_USER] [--influx_pass INFLUX_PASS]
                           host port

positional arguments:
  host                  ModbusTCP address
  port                  ModbusTCP port

optional arguments:
  -h, --help            show this help message and exit
  --timeout TIMEOUT     Connection timeout
  --unit UNIT           Modbus unit
  --interval INTERVAL   Update interval
  --influx_host INFLUX_HOST
                        InfluxDB host
  --influx_port INFLUX_PORT
                        InfluxDB port
  --influx_db INFLUX_DB
                        InfluxDB database
  --influx_user INFLUX_USER
                        InfluxDB username
  --influx_pass INFLUX_PASS
                        InfluxDB password

Examples

If you wish to use ModbusTCP the following parameters are relevant:

host = IP or DNS name of your ModbusTCP device, required
port = listening port of the ModbusTCP device, required
unit = Modbus device id, default=1, optional

While if you are using a serial Modbus connection you can specify:

device = path to serial device, e.g. /dev/ttyUSB0, required
baud = baud rate of your device, defaults to product default, optional
unit = Modbus unit id, defaults to 1, optional

Connecting to the inverter:

    >>> import solaredge_modbus

    # Inverter over ModbusTCP
    >>> inverter = solaredge_modbus.Inverter(host="10.0.0.123", port=1502)
    
    # Inverter over Modbus RTU
    >>> inverter = solaredge_modbus.Inverter(device="/dev/ttyUSB0", baud=115200)

Test the connection, remember that only a single connection at a time is allowed:

    >>> inverter.connect()
    True

    >>> inverter.connected()
    True

While it is not necessary to explicitly call connect() before reading registers, you should do so before calling connected() to test the connection. When done, the connection can be closed by calling disconnect().

Printing the class yields basic device parameters:

    >>> inverter
    Inverter(10.0.0.123:1502, connectionType.TCP: timeout=1, retries=3, unit=0x1)

Reading a single input register by name:

    >>> inverter.read("current")
    {
        'current': 895
    }

Read all input registers using read_all():

    >>> inverter.read_all()
    {
        'c_manufacturer': 'SolarEdge',
        'c_model': 'SE3500H-RW000BNN4',
        'c_version': '0004.0009.0030',
        'c_serialnumber': '123ABC12',
        'c_deviceaddress': 1,
        'c_sunspec_did': 101,
        'current': 895,
        'p1_current': 895,
        'p2_current': False,
        'p3_current': False,
        'current_scale': -2,
        'p1_voltage': 2403,
        'p2_voltage': False,
        'p3_voltage': False,
        'p1n_voltage': False,
        'p2n_voltage': False,
        'p3n_voltage': False,
        'voltage_scale': -1,
        'power_ac': 21413,
        'power_ac_scale': -1, 
        'frequency': 50003,
        'frequency_scale': -3,
        'power_apparent': 21479,
        'power_apparent_scale': -1,
        'power_reactive': 16859,
        'power_reactive_scale': -2,
        'power_factor': 9969,
        'power_factor_scale': -2,
        'energy_total': 3466757,
        'energy_total_scale': 0,
        'current_dc': 5678,
        'current_dc_scale': -3,
        'voltage_dc': 3826,
        'voltage_dc_scale': -1,
        'power_dc': 21726,
        'power_dc_scale': -1,
        'temperature': 4979,
        'temperature_scale': -2,
        'status': 4,
        'vendor_status': 0
    }

If you need more information about a particular register, to look up the units or enumerations, for example:

    >>> inverter.registers["current"]
        # address, length, type, datatype, valuetype, name, unit, batching
        (
            40071, 
            1, 
            <registerType.HOLDING: 2>, 
            <registerDataType.UINT16: 3>, 
            <class 'int'>, 
            'Current', 
            'A', 
            2
        )

    >>> inverter.registers["status"]
        # address, length, type, datatype, valuetype, name, unit, batching
        (
            40107, 
            1, 
            <registerType.HOLDING: 2>, 
            <registerDataType.UINT16: 3>, 
            <class 'int'>, 
            'Status', 
            ['Undefined', 'Off', 'Sleeping', 'Grid Monitoring', 'Producing', 'Producing (Throttled)', 'Shutting Down', 'Fault', 'Standby'], 
            2
        )

Meters & Batteries

SolarEdge supports various kWh meters and batteries, and exposes their registers through a set of pre-defined registers on the inverter. The number of supported registers is hard-coded, per the SolarEdge SunSpec implementation, to three meters and two batteries. It is possible to query their registers:

    >>> inverter.meters()
    {
        'Meter1': Meter1(10.0.0.123:1502, connectionType.TCP: timeout=1, retries=3, unit=0x1)
    }

    >>> meter1 = inverter.meters()["Meter1"]
    >>> meter1
    Meter1(10.0.0.123:1502, connectionType.TCP: timeout=1, retries=3, unit=0x1)

    >>> meter1.read_all()
    {
        'c_manufacturer': 'SolarEdge',
        'c_model': 'PRO380-Mod',
        'c_option': 'Export+Import',
        'c_version': '2.19',
        'c_serialnumber': '12312332',
        'c_deviceaddress': 1,
        'c_sunspec_did': 203,
        'current': -13,
        ...
    }

Or similarly for batteries:

    >>> inverter.batteries()
    {
        'Battery1': Battery(10.0.0.123:1502, connectionType.TCP: timeout=1, retries=3, unit=0x1)
    }

    >>> battery1 = inverter.batteries()["Battery1"]
    >>> battery1
    Battery1(10.0.0.123:1502, connectionType.TCP: timeout=1, retries=3, unit=0x1)

    >>> battery1.read_all()
    {
        ...
    }

Calling meters() or batteries() on an inverter object is the recommended way of instantiating their objects. This way, checking for available devices, register offsetting, and sharing of the pymodbus connection is taken care of. If you want to to create a meter or battery object independently, do the following:

    # Meter #1 via the existing inverter connection
    >>> meter1 = solaredge_modbus.Meter(parent=inverter, offset=0)

    # Meter #2 over ModbusTCP, without a parent connection
    >>> meter2 = solaredge_modbus.Meter(host="10.0.0.123", port=1502, offset=1)

    # Battery #1 via the existing inverter connection
    >>> battery1 = solaredge_modbus.Battery(parent=inverter, offset=0)

    # Battery #1 over ModbusTCP, without a parent connection
    >>> battery1 = solaredge_modbus.Battery(host="10.0.0.123", port=1502, offset=1)

There are two points to consider when doing this. You will need to manually pass the parent and offset parameters, which take care of sharing an existing Modbus connection, and set the correct register addresses. Use offset 0 for the first device, 1 for the second, and 2 for the third. If you do not pass a parent inverter object, you will need to supply connection parameters just like those required by the inverter object. Remember that a second ModbusTCP or Modbus RTU connection will fail when already in use by another inverter, meter, or battery object.

Note: as I do not have access to a compatible kWh meter nor battery, this implementation is not thoroughly tested. If you have issues with this functionality, please open a GitHub issue.

Contributing

Contributions are more than welcome.