-
Notifications
You must be signed in to change notification settings - Fork 84
/
geospatial_fm.py
504 lines (430 loc) · 16.9 KB
/
geospatial_fm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from mmcv.runner import load_checkpoint
from mmseg.models.builder import BACKBONES, NECKS
from timm.models.layers import to_2tuple
from timm.models.vision_transformer import Block
from typing import List
def _convTranspose2dOutput(
input_size: int,
stride: int,
padding: int,
dilation: int,
kernel_size: int,
output_padding: int,
):
"""
Calculate the output size of a ConvTranspose2d.
Taken from: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
"""
return (
(input_size - 1) * stride
- 2 * padding
+ dilation * (kernel_size - 1)
+ output_padding
+ 1
)
def get_1d_sincos_pos_embed_from_grid(embed_dim: int, pos: torch.Tensor):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_3d_sincos_pos_embed(embed_dim: int, grid_size: tuple, cls_token: bool = False):
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# Position embedding utils
# --------------------------------------------------------
"""
grid_size: 3d tuple of grid size: t, h, w
return:
pos_embed: L, D
"""
assert embed_dim % 16 == 0
t_size, h_size, w_size = grid_size
w_embed_dim = embed_dim // 16 * 6
h_embed_dim = embed_dim // 16 * 6
t_embed_dim = embed_dim // 16 * 4
w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))
w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)
pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
class PatchEmbed(nn.Module):
"""Frames of 2D Images to Patch Embedding
The 3D version of timm.models.vision_transformer.PatchEmbed
"""
def __init__(
self,
img_size: int = 224,
patch_size: int = 16,
num_frames: int = 3,
tubelet_size: int = 1,
in_chans: int = 3,
embed_dim: int = 768,
norm_layer: nn.Module = None,
flatten: bool = True,
bias: bool = True,
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_frames = num_frames
self.tubelet_size = tubelet_size
self.grid_size = (
num_frames // tubelet_size,
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
)
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
self.flatten = flatten
self.proj = nn.Conv3d(
in_chans,
embed_dim,
kernel_size=(tubelet_size, patch_size[0], patch_size[1]),
stride=(tubelet_size, patch_size[0], patch_size[1]),
bias=bias,
)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, T, H, W = x.shape
assert (
H == self.img_size[0]
), f"Input image height ({H}) doesn't match model ({self.img_size[0]})."
assert (
W == self.img_size[1]
), f"Input image width ({W}) doesn't match model ({self.img_size[1]})."
x = self.proj(x)
Hp, Wp = x.shape[3], x.shape[4]
if self.flatten:
x = x.flatten(2).transpose(1, 2) # B,C,T,H,W -> B,C,L -> B,L,C
x = self.norm(x)
return x, Hp, Wp
class Norm2d(nn.Module):
def __init__(self, embed_dim: int):
super().__init__()
self.ln = nn.LayerNorm(embed_dim, eps=1e-6)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = self.ln(x)
x = x.permute(0, 3, 1, 2).contiguous()
return x
@NECKS.register_module()
class GeospatialNeck(nn.Module):
"""
Neck that transforms the token-based output of transformer into a single embedding suitable for processing with standard layers.
Performs 4 ConvTranspose2d operations on the rearranged input with kernel_size=2 and stride=2
"""
def __init__(
self,
embed_dim: int,
first_conv_channels: int,
Hp: int = 14,
Wp: int = 14,
channel_reduction_factor: int = 2,
num_convs: int = 4,
num_convs_per_upscale: int = 1,
dropout: bool = False,
drop_cls_token: bool = True,
):
"""
Args:
embed_dim (int): Input embedding dimension
first_conv_channel (int): Number of channels for first dimension
Hp (int, optional): Height (in patches) of embedding to be upscaled. Defaults to 14.
Wp (int, optional): Width (in patches) of embedding to be upscaled. Defaults to 14.
channel_reduction_factor (int): Factor that each convolutional block reduces number of channels by.
num_convs (int): Number of convolutional upscaling blocks. Each upscales 2x.
drop_cls_token (bool, optional): Whether there is a cls_token, which should be dropped. This assumes the cls token is the first token. Defaults to True.
"""
super().__init__()
self.drop_cls_token = drop_cls_token
self.Hp = Hp
self.Wp = Wp
self.H_out = Hp
self.W_out = Wp
self.dropout = dropout
conv_kernel_size = 3
conv_padding = 1
kernel_size = 2
stride = 2
dilation = 1
padding = 0
output_padding = 0
self.embed_dim = embed_dim
self.channels = [first_conv_channels // (channel_reduction_factor ** i) for i in range(num_convs)]
self.channels = [embed_dim] + self.channels
for _ in range(len(self.channels) - 1):
self.H_out = _convTranspose2dOutput(
self.H_out, stride, padding, dilation, kernel_size, output_padding
)
self.W_out = _convTranspose2dOutput(
self.W_out, stride, padding, dilation, kernel_size, output_padding
)
def _build_upscale_block(channels_in, channels_out):
layers = []
layers.append(nn.ConvTranspose2d(
channels_in,
channels_out,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
))
layers += [nn.Sequential(
nn.Conv2d(channels_out,
channels_out,
kernel_size=conv_kernel_size,
padding=conv_padding),
nn.BatchNorm2d(channels_out),
nn.Dropout() if self.dropout else nn.Identity(),
nn.ReLU()) for _ in range(num_convs_per_upscale)]
return nn.Sequential(*layers)
self.layers = nn.ModuleList([
_build_upscale_block(self.channels[i], self.channels[i+1])
for i in range(len(self.channels) - 1)
])
def forward(self, x):
x = x[0]
if self.drop_cls_token:
x = x[:, 1:, :]
x = x.permute(0, 2, 1).reshape(x.shape[0], -1, self.Hp, self.Wp)
for layer in self.layers:
x = layer(x)
x = x.reshape((x.shape[0], self.channels[-1], self.H_out, self.W_out))
out = tuple([x])
return out
@NECKS.register_module()
class ConvTransformerTokensToEmbeddingNeck(nn.Module):
"""
Neck that transforms the token-based output of transformer into a single embedding suitable for processing with standard layers.
Performs 4 ConvTranspose2d operations on the rearranged input with kernel_size=2 and stride=2
"""
def __init__(
self,
embed_dim: int,
output_embed_dim: int,
# num_frames: int = 1,
Hp: int = 14,
Wp: int = 14,
drop_cls_token: bool = True,
):
"""
Args:
embed_dim (int): Input embedding dimension
output_embed_dim (int): Output embedding dimension
Hp (int, optional): Height (in patches) of embedding to be upscaled. Defaults to 14.
Wp (int, optional): Width (in patches) of embedding to be upscaled. Defaults to 14.
drop_cls_token (bool, optional): Whether there is a cls_token, which should be dropped. This assumes the cls token is the first token. Defaults to True.
"""
super().__init__()
self.drop_cls_token = drop_cls_token
self.Hp = Hp
self.Wp = Wp
self.H_out = Hp
self.W_out = Wp
# self.num_frames = num_frames
kernel_size = 2
stride = 2
dilation = 1
padding = 0
output_padding = 0
for _ in range(4):
self.H_out = _convTranspose2dOutput(
self.H_out, stride, padding, dilation, kernel_size, output_padding
)
self.W_out = _convTranspose2dOutput(
self.W_out, stride, padding, dilation, kernel_size, output_padding
)
self.embed_dim = embed_dim
self.output_embed_dim = output_embed_dim
self.fpn1 = nn.Sequential(
nn.ConvTranspose2d(
self.embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
Norm2d(self.output_embed_dim),
nn.GELU(),
nn.ConvTranspose2d(
self.output_embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
)
self.fpn2 = nn.Sequential(
nn.ConvTranspose2d(
self.output_embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
Norm2d(self.output_embed_dim),
nn.GELU(),
nn.ConvTranspose2d(
self.output_embed_dim,
self.output_embed_dim,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding,
output_padding=output_padding,
),
)
def forward(self, x):
x = x[0]
if self.drop_cls_token:
x = x[:, 1:, :]
x = x.permute(0, 2, 1).reshape(x.shape[0], -1, self.Hp, self.Wp)
x = self.fpn1(x)
x = self.fpn2(x)
x = x.reshape((-1, self.output_embed_dim, self.H_out, self.W_out))
out = tuple([x])
return out
@BACKBONES.register_module()
class TemporalViTEncoder(nn.Module):
"""Encoder from an ViT with capability to take in temporal input.
This class defines an encoder taken from a ViT architecture.
"""
def __init__(
self,
img_size: int = 224,
patch_size: int = 16,
num_frames: int = 1,
tubelet_size: int = 1,
in_chans: int = 3,
embed_dim: int = 1024,
depth: int = 24,
num_heads: int = 16,
mlp_ratio: float = 4.0,
norm_layer: nn.Module = nn.LayerNorm,
norm_pix_loss: bool = False,
pretrained: str = None
):
"""
Args:
img_size (int, optional): Input image size. Defaults to 224.
patch_size (int, optional): Patch size to be used by the transformer. Defaults to 16.
num_frames (int, optional): Number of frames (temporal dimension) to be input to the encoder. Defaults to 1.
tubelet_size (int, optional): Tubelet size used in patch embedding. Defaults to 1.
in_chans (int, optional): Number of input channels. Defaults to 3.
embed_dim (int, optional): Embedding dimension. Defaults to 1024.
depth (int, optional): Encoder depth. Defaults to 24.
num_heads (int, optional): Number of heads used in the encoder blocks. Defaults to 16.
mlp_ratio (float, optional): Ratio to be used for the size of the MLP in encoder blocks. Defaults to 4.0.
norm_layer (nn.Module, optional): Norm layer to be used. Defaults to nn.LayerNorm.
norm_pix_loss (bool, optional): Whether to use Norm Pix Loss. Defaults to False.
pretrained (str, optional): Path to pretrained encoder weights. Defaults to None.
"""
super().__init__()
# --------------------------------------------------------------------------
# MAE encoder specifics
self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size, patch_size, num_frames, tubelet_size, in_chans, embed_dim
)
num_patches = self.patch_embed.num_patches
self.num_frames = num_frames
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False
) # fixed sin-cos embedding
self.blocks = nn.ModuleList(
[
Block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias=True,
norm_layer=norm_layer,
)
for _ in range(depth)
]
)
self.norm = norm_layer(embed_dim)
self.norm_pix_loss = norm_pix_loss
self.pretrained = pretrained
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_3d_sincos_pos_embed(
self.pos_embed.shape[-1], self.patch_embed.grid_size, cls_token=True
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
if isinstance(self.pretrained, str):
self.apply(self._init_weights)
print(f"load from {self.pretrained}")
load_checkpoint(self, self.pretrained, strict=False, map_location="cpu")
elif self.pretrained is None:
# # initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
# embed patches
x, _, _ = self.patch_embed(x)
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :]
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return tuple([x])