-
Notifications
You must be signed in to change notification settings - Fork 84
/
model_inference.py
236 lines (186 loc) · 6.72 KB
/
model_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import glob
import os
import time
import numpy as np
import rasterio
import torch
from mmcv import Config
from mmcv.parallel import collate, scatter
from mmseg.apis import init_segmentor
from mmseg.datasets.pipelines import Compose, LoadImageFromFile
def parse_args():
parser = argparse.ArgumentParser(
description="Inference on flood detection fine-tuned model"
)
parser.add_argument("-config", help="path to model configuration file")
parser.add_argument("-ckpt", help="path to model checkpoint")
parser.add_argument("-input", help="path to input images folder for inference")
parser.add_argument("-output", help="path to save output image")
parser.add_argument("-input_type", help="file type of input images", default="tif")
parser.add_argument(
"-bands",
help="bands in the file where to find the relevant data",
type=int,
nargs="+",
)
parser.add_argument("-device", help="device", default="cuda", type=str)
args = parser.parse_args()
return args
def open_tiff(fname):
with rasterio.open(fname, "r") as src:
data = src.read()
return data
def write_tiff(img_wrt, filename, metadata):
"""
It writes a raster image to file.
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
:param filename: file path to the output file
:param metadata: metadata to use to write the raster to disk
:return:
"""
with rasterio.open(filename, "w", **metadata) as dest:
if len(img_wrt.shape) == 2:
img_wrt = img_wrt[None]
for i in range(img_wrt.shape[0]):
dest.write(img_wrt[i, :, :], i + 1)
return filename
def get_meta(fname):
with rasterio.open(fname, "r") as src:
meta = src.meta
return meta
def inference_segmentor(model, imgs, custom_test_pipeline=None):
"""Inference image(s) with the segmentor.
Args:
model (nn.Module): The loaded segmentor.
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
images.
Returns:
(list[Tensor]): The segmentation result.
"""
cfg = model.cfg
device = next(model.parameters()).device # model device
# build the data pipeline
test_pipeline = (
[LoadImageFromFile()] + cfg.data.test.pipeline[1:]
if custom_test_pipeline == None
else custom_test_pipeline
)
test_pipeline = Compose(test_pipeline)
# prepare data
data = []
imgs = imgs if isinstance(imgs, list) else [imgs]
for img in imgs:
img_data = {"img_info": {"filename": img}}
img_data = test_pipeline(img_data)
data.append(img_data)
# print(data.shape)
data = collate(data, samples_per_gpu=len(imgs))
if next(model.parameters()).is_cuda:
# data = collate(data, samples_per_gpu=len(imgs))
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
# img_metas = scatter(data['img_metas'],'cpu')
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
img_metas = data["img_metas"].data[0]
img = data["img"]
data = {"img": img, "img_metas": img_metas}
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
return result
def inference_on_file(model, target_image, output_image, custom_test_pipeline):
time_taken = -1
try:
st = time.time()
print("Running inference...")
result = inference_segmentor(model, target_image, custom_test_pipeline)
print("Output has shape: " + str(result[0].shape))
##### get metadata mask
mask = open_tiff(target_image)
meta = get_meta(target_image)
mask = np.where(mask == meta["nodata"], 1, 0)
mask = np.max(mask, axis=0)[None]
result[0] = np.where(mask == 1, -1, result[0])
##### Save file to disk
meta["count"] = 1
meta["dtype"] = "int16"
meta["compress"] = "lzw"
meta["nodata"] = -1
print("Saving output...")
write_tiff(result[0], output_image, meta)
et = time.time()
time_taken = np.round(et - st, 1)
print(
f"Inference completed in {str(time_taken)} seconds. Output available at: "
+ output_image
)
except:
print(f"Error on image {target_image} \nContinue to next input")
return time_taken
def process_test_pipeline(custom_test_pipeline, bands=None):
# change extracted bands if necessary
if bands is not None:
extract_index = [
i for i, x in enumerate(custom_test_pipeline) if x["type"] == "BandsExtract"
]
if len(extract_index) > 0:
custom_test_pipeline[extract_index[0]]["bands"] = bands
collect_index = [
i for i, x in enumerate(custom_test_pipeline) if x["type"].find("Collect") > -1
]
# adapt collected keys if necessary
if len(collect_index) > 0:
keys = [
"img_info",
"filename",
"ori_filename",
"img",
"img_shape",
"ori_shape",
"pad_shape",
"scale_factor",
"img_norm_cfg",
]
custom_test_pipeline[collect_index[0]]["meta_keys"] = keys
return custom_test_pipeline
def inference_on_files(
config_path, ckpt, input_type, input_path, output_path, bands, device
):
# load model
config = Config.fromfile(config_path)
config.model.backbone.pretrained = None
model = init_segmentor(config, ckpt, device)
# identify images to predict on
target_images = glob.glob(os.path.join(input_path, "*." + input_type))
print("Identified images to predict on: " + str(len(target_images)))
# check if output folder available
if not os.path.isdir(output_path):
os.mkdir(output_path)
# modify test pipeline if necessary
custom_test_pipeline = process_test_pipeline(model.cfg.data.test.pipeline, bands)
# for each image predict and save to disk
for i, target_image in enumerate(target_images):
print(f"Working on Image {i}")
output_image = os.path.join(
output_path,
target_image.split("/")[-1].replace(
"." + input_type, "_pred." + input_type
),
)
inference_on_file(model, target_image, output_image, custom_test_pipeline)
def main():
# unpack args
args = parse_args()
config_path = args.config
ckpt = args.ckpt
input_type = args.input_type
input_path = args.input
output_path = args.output
bands = args.bands
device = args.device
inference_on_files(
config_path, ckpt, input_type, input_path, output_path, bands, device
)
if __name__ == "__main__":
main()