Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added aggregate class method on SingleTimeSeries class #48

Merged
merged 4 commits into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "hatchling.build"

[project]
name = "infrasys"
version = "0.1.1"
version = "0.1.2"
description = ''
readme = "README.md"
requires-python = ">=3.10, <3.13"
Expand Down
4 changes: 4 additions & 0 deletions src/infrasys/exceptions.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,3 +35,7 @@ class ISNotStored(ISBaseException):

class ISOperationNotAllowed(ISBaseException):
"""Raised if the requested operation is not allowed."""


class InconsistentTimeseriesAggregation(ISBaseException):
"""Raised if attempting to aggregate inconsistent time series data."""
83 changes: 81 additions & 2 deletions src/infrasys/time_series_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,16 @@
import importlib
from datetime import datetime, timedelta
from enum import Enum
from typing import Any, Literal, Optional, Type, TypeAlias, Union, Sequence
from typing import (
Any,
Literal,
Optional,
Self,
Type,
TypeAlias,
Union,
Sequence,
)
from uuid import UUID

import numpy as np
Expand All @@ -21,7 +30,10 @@
from typing_extensions import Annotated

from infrasys.base_quantity import BaseQuantity
from infrasys.exceptions import ISConflictingArguments
from infrasys.exceptions import (
ISConflictingArguments,
InconsistentTimeseriesAggregation,
)
from infrasys.models import InfraSysBaseModelWithIdentifers, InfraSysBaseModel
from infrasys.normalization import NormalizationModel

Expand Down Expand Up @@ -89,6 +101,73 @@ def check_data(

return data

@classmethod
def aggregate(cls, ts_data: list[Self]) -> Self:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Perhaps [Iterable] instead of list?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

actually no mypy complains if I do iterable because I am accessing ts_data in multiple places which you can not do if you pass generator

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah, because you are accessing it by index. Technically, you could have made it typing.Sequence, which allows list or tuple, at least. But don't worry about it.

"""Method to aggregate list of SingleTimeSeries data.

Parameters
----------
ts_data
list of SingleTimeSeries data

Returns
-------
SingleTimeSeries

Raises
------
InconsistentTimeseriesAggregation
Raised if incompatible timeseries data are passed.
"""

# Extract unique properties from ts_data
unique_props = {
"length": {data.length for data in ts_data},
"resolution": {data.resolution for data in ts_data},
"start_time": {data.initial_time for data in ts_data},
"variable": {data.variable_name for data in ts_data},
"data_type": {type(data.data) for data in ts_data},
}

# Validate uniformity across properties
if any(len(prop) != 1 for prop in unique_props.values()):
inconsistent_props = {k: v for k, v in unique_props.items() if len(v) > 1}
msg = f"Inconsistent timeseries data: {inconsistent_props}"
raise InconsistentTimeseriesAggregation(msg)

# Aggregate data
is_quantity = issubclass(next(iter(unique_props["data_type"])), BaseQuantity)
magnitude_type = (
type(ts_data[0].data.magnitude)
if is_quantity
else next(iter(unique_props["data_type"]))
)

# Aggregate data based on magnitude type
if issubclass(magnitude_type, pa.Array):
new_data = sum(
[
data.data.to_numpy() * (data.data.units if is_quantity else 1)
for data in ts_data
]
)
elif issubclass(magnitude_type, np.ndarray):
new_data = sum([data.data for data in ts_data])
elif issubclass(magnitude_type, list) and not is_quantity:
new_data = sum([np.array(data) for data in ts_data])
else:
msg = f"Unsupported data type for aggregation: {magnitude_type}"
raise TypeError(msg)

# Return new SingleTimeSeries instance
return SingleTimeSeries(
data=new_data,
variable_name=unique_props["variable"].pop(),
initial_time=unique_props["start_time"].pop(),
resolution=unique_props["resolution"].pop(),
normalization=None,
)

@classmethod
def from_array(
cls,
Expand Down
28 changes: 28 additions & 0 deletions tests/test_single_time_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,3 +100,31 @@ def test_normalization():
assert ts.length == len(data)
for i, val in enumerate(ts.data):
assert val.as_py() == data[i] / max_val


def test_normal_array_aggregate():
length = 10
initial_time = datetime(year=2020, month=1, day=1)
time_array = [initial_time + timedelta(hours=i) for i in range(length)]
data = [1.1, 2.2, 3.3, 4.5, 5.5]
variable_name = "active_power"
ts1 = ts2 = SingleTimeSeries.from_time_array(
data, variable_name, time_array, normalization=None
)
ts_agg = SingleTimeSeries.aggregate([ts1, ts2])
assert isinstance(ts_agg, SingleTimeSeries)
assert list([el.as_py() for el in ts_agg.data]) == [2.2, 4.4, 6.6, 9, 11]


def test_pint_array_aggregate():
length = 10
initial_time = datetime(year=2020, month=1, day=1)
time_array = [initial_time + timedelta(hours=i) for i in range(length)]
data = ActivePower([1.1, 2.2, 3.3, 4.5, 5.5], "kilowatts")
variable_name = "active_power"
ts1 = ts2 = SingleTimeSeries.from_time_array(
data, variable_name, time_array, normalization=None
)
ts_agg = SingleTimeSeries.aggregate([ts1, ts2])
assert isinstance(ts_agg, SingleTimeSeries)
assert list(ts_agg.data.magnitude) == [2.2, 4.4, 6.6, 9, 11]
Loading