-
Notifications
You must be signed in to change notification settings - Fork 2
/
python_libraries.html
149 lines (136 loc) · 10.7 KB
/
python_libraries.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
<!DOCTYPE HTML>
<!--
Phantom by HTML5 UP
html5up.net | @ajlkn
Free for personal and commercial use under the CCA 3.0 license (html5up.net/license)
-->
<html>
<head>
<title>Python Libraries</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no" />
<link rel="stylesheet" href="assets/css/main.css" />
<noscript><link rel="stylesheet" href="assets/css/noscript.css" /></noscript>
</head>
<body class="is-preload">
<!-- Wrapper -->
<div id="wrapper">
<!-- Header -->
<header id="header">
<div class="inner">
<!-- Logo -->
<a href="index.html" class="logo">
<span class="symbol"><img src="images/NeuroNestLogo.png" alt="NeuroNest Logo" /></span><span class="title">NeuroNest</span>
</a>
<!-- Nav -->
<nav>
<ul>
<li><a href="#menu">Menu</a></li>
</ul>
</nav>
</div>
</header>
<!-- Menu -->
<nav id="menu">
<h2>Menu</h2>
<ul>
<li><a href="index.html">Home</a></li>
<li><a href="resource_menu.html">Resources</a></li>
<li><a href="https://sopkoc.wixsite.com/neuronest/forum">Ask a Question</a></li>
<li><a href="https://sopkoc.wixsite.com/neuronest/about">About NeuroNest</a></li>
<li><a href="https://sopkoc.wixsite.com/neuronest/contact">Contact</a></li>
</ul>
</nav>
<!-- Main -->
<div id="main">
<h1 id="implementing-libraries-in-python">Implementing Libraries in Python</h1>
<p>This section provides an overview of key Python libraries that are essential for scientific computing, data analysis, machine learning, and neuroimaging. These libraries offer a range of functionalities from data manipulation to advanced visualization and machine learning.</p>
<h2 id="1-data-manipulation-and-analysis">1. Data Manipulation and Analysis</h2>
<p>Python provides powerful libraries for data manipulation and analysis, making it an ideal language for handling large datasets, performing statistical analyses, and preprocessing data.</p>
<ul>
<li><strong><a href="https://numpy.org/">NumPy</a></strong>: A fundamental package for numerical computing in Python. It provides support for large multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.</li>
<li><strong><a href="https://pandas.pydata.org/">Pandas</a></strong>: A fast, powerful, and flexible data manipulation tool built on top of NumPy. It is essential for data wrangling, handling structured data, and performing exploratory data analysis.</li>
<li><strong><a href="https://scipy.org/">SciPy</a></strong>: Built on NumPy, SciPy provides additional tools for optimization, integration, interpolation, eigenvalue problems, and other advanced mathematical computations.</li>
<li><strong><a href="https://www.statsmodels.org/stable/index.html">Statsmodels</a></strong>: A library that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests and data exploration.</li>
</ul>
<h2 id="2-machine-learning-and-deep-learning">2. Machine Learning and Deep Learning</h2>
<p>Machine learning and deep learning are integral to modern data science, and Python offers several powerful libraries to implement these techniques efficiently.</p>
<ul>
<li><strong><a href="https://scikit-learn.org/stable/">Scikit-learn</a></strong>: A versatile library for machine learning that provides simple and efficient tools for data mining and data analysis. It supports various supervised and unsupervised learning algorithms.</li>
<li><strong><a href="https://www.tensorflow.org/">TensorFlow</a></strong>: An open-source deep learning library that is widely used for developing neural networks. It provides a flexible platform to build and train machine learning models.</li>
<li><strong><a href="https://pytorch.org/">PyTorch</a></strong>: Another leading deep learning framework, known for its dynamic computation graph and ease of use, particularly for research and development in deep learning.</li>
<li><strong><a href="https://keras.io/">Keras</a></strong>: A high-level API for building and training deep learning models, built on top of TensorFlow. It allows for easy and fast prototyping.</li>
</ul>
<h2 id="3-data-visualization">3. Data Visualization</h2>
<p>Data visualization is a critical component in data analysis, enabling researchers to explore and present data effectively.</p>
<ul>
<li><strong><a href="https://matplotlib.org/">Matplotlib</a></strong>: A comprehensive library for creating static, animated, and interactive visualizations in Python. It is highly customizable and supports a wide variety of plots and charts.</li>
<li><strong><a href="https://seaborn.pydata.org/">Seaborn</a></strong>: Built on top of Matplotlib, Seaborn provides a high-level interface for drawing attractive and informative statistical graphics.</li>
<li><strong><a href="https://plotly.com/python/">Plotly</a></strong>: A graphing library that makes interactive, publication-quality graphs online. It supports a wide range of chart types and is particularly well-suited for creating interactive plots.</li>
<li><strong><a href="https://nilearn.github.io/">Nilearn</a></strong>: A Python module for fast and easy statistical learning on neuroimaging data. It leverages scikit-learn and matplotlib to enable statistical modeling, dimensionality reduction, and visualization of neuroimaging data.</li>
</ul>
<h2 id="4-neuroimaging-specific-libraries">4. Neuroimaging-Specific Libraries</h2>
<p>Python has specialized libraries designed to handle, process, and analyze neuroimaging data.</p>
<ul>
<li><strong><a href="https://nipy.org/nibabel/">Nibabel</a></strong>: A library that provides read and write access to some of the most common neuroimaging file formats, including NIfTI and Analyze.</li>
<li><strong><a href="https://nipype.readthedocs.io/en/latest/">Nipype</a></strong>: A Python project that provides a uniform interface to existing neuroimaging software and facilitates interaction between different packages. Nipype allows for the automation of complex workflows, making it easier to integrate various neuroimaging tools.</li>
<li><strong><a href="https://bids-standard.github.io/pybids/">PsyBIDS</a></strong>: A library for interacting with datasets organized according to the Brain Imaging Data Structure (BIDS) standard, which simplifies data sharing and analysis in neuroimaging research.</li>
</ul>
<h2 id="5-developing-and-sharing-python-libraries">5. Developing and Sharing Python Libraries</h2>
<p>Developing your own Python libraries can help you reuse code across projects, and sharing them can benefit the broader scientific community.</p>
<ul>
<li><strong><a href="https://docs.python.org/3/tutorial/venv.html">Virtual Environments</a></strong>: Use virtual environments to manage dependencies for your Python projects. This ensures that your project’s dependencies are isolated from other projects.</li>
<li><strong><a href="https://neuroimaging-data-science.org/content/003-programming/003-sharing.html">Version Control with Git</a></strong>: Git and GitHub are essential tools for version control and collaborative development. They allow you to track changes, collaborate with others, and share your code.</li>
<li><strong><a href="https://neuroimaging-data-science.org/content/003-programming/002-python-environment.html">Documentation and Testing</a></strong>: Writing comprehensive documentation and testing your code are critical steps in developing robust and shareable Python libraries. Tools like <code>pytest</code> can be used for testing, while <code>Sphinx</code> can generate project documentation.</li>
</ul>
<h2 id="6-additional-resources">6. Additional Resources</h2>
<p>Explore these additional resources to deepen your understanding of Python libraries and their implementation in research:</p>
<h3 id="suggested-tutorials">Suggested Tutorials</h3>
<ul>
<li><a href="https://github.com/rthorst/Introduction-to-Python-for-Scientific-Programming/tree/master/Programming%20Basics%208%20Working%20with%20Data">Working with Data - Introduction to Python for Scientific Programming</a></li>
<li><a href="https://github.com/rthorst/Introduction-to-Python-for-Scientific-Programming/tree/master/Programming%20Basics%207%20Plotting">Plotting - Introduction to Python for Scientific Programming</a></li>
</ul>
<h3 id="supplemental-materials">Supplemental Materials</h3>
<ul>
<li><a href="https://neuroimaging-data-science.org/content/004-scipy/001-numpy.html">NumPy - Neuroimaging Data Science</a></li>
<li><a href="https://neuroimaging-data-science.org/content/004-scipy/002-pandas.html">Pandas - Neuroimaging Data Science</a></li>
<li><a href="https://neuroimaging-data-science.org/content/003-programming/002-python-environment.html">Python Environment and Version Control - Neuroimaging Data Science</a></li>
</ul>
</div>
</div>
<!-- Place the bird image and text anywhere on the page -->
<div style="text-align: right; padding-right: 40px;">
<a href="python_neuroimaging.html">
<img src="images/small_bird_arrow.png" alt="Next Page" style="width: 100px; height: 100px;">
<div style="font-size: 18px; margin-top: 10px;">Next Page</div>
</a>
</div>
<!-- Footer -->
<footer id="footer">
<div class="inner">
<section>
<h2>Funding</h2>
<p> We would like to express our heartfelt gratitude to <strong>Neurohackademy</strong> at the <strong>University of Washington eScience Institute</strong> for providing invaluable training and support. This experience has significantly enriched our understanding of neuroimaging and data science. We also acknowledge the support of the National Institute of Mental Health (NIMH) grant number <strong>5R25MH112480-08</strong>, which made this opportunity possible.</p>
</section>
<section>
<h2>Follow</h2>
<ul class="icons">
<li><a href="https://x.com/Neuro_Nest" class="icon brands style2 fa-twitter"><span class="label">Twitter</span></a></li>
<li><a href="https://github.com/NeuroHackademy2024/NeuroNest" class="icon brands style2 fa-github"><span class="label">GitHub</span></a></li>
<li><a href="mailto:[email protected]" class="icon solid style2 fa-envelope"><span class="label">Email</span></a></li>
</ul>
</section>
<ul class="copyright">
<li>© Untitled. All rights reserved</li><li>Design: <a href="http://html5up.net">HTML5 UP</a></li>
</ul>
</div>
</footer>
</div>
<!-- Scripts -->
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/browser.min.js"></script>
<script src="assets/js/breakpoints.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
</body>
</html>