Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Are you sure the code and data are consistent with the article? #7

Open
SZ-qing opened this issue Mar 6, 2023 · 6 comments
Open

Are you sure the code and data are consistent with the article? #7

SZ-qing opened this issue Mar 6, 2023 · 6 comments

Comments

@SZ-qing
Copy link

SZ-qing commented Mar 6, 2023

Hello, I encountered a few problems when using your data and code:

  1. when i run your demo command, in the bulkmodel code, '--printgene=T' , The file cannot be saved because the directory you exported was not established in advance【‘np.savetxt("save/ori_result/’】I have add ['for path in [args.log,args.bulk_model,args.bulk_encoder,'save/ori_result','save/figures']:'] in line 72
  2. The sampling Parameter of demo command line of the bulkmodel is 'SMOTE' , but in the scmodel is default 'None'. Causes your demo code to fail to run.
  3. Run your demo GSE110894, the f1-score is about 0.60, this is very different from your article and source data 5 description. I tested the six hyperparameters described in paper, involving 480 combinations, and found that the results were far less than those in your paper.
  4. Finally, I hope you can check your code again, please make sure you can reproduce the article, I think this is very important.
@SZ-qing
Copy link
Author

SZ-qing commented Mar 6, 2023

And , According to the adata name you provided, I ran the GSE149383_drug_ERLOTINIB result with the parameters you provided, and found that the F1 value of scmodel was only 0.51, and the rocauc_score just 0.578:
#==============
cat bulk_fGSE149383_f1_score_ori.txt
integrate_data_GSE149383_drug_ERLOTINIB_bottle_512_edim_512,256_pdim_256,128_model_DAE_dropout_0.1_gene_T_lr_0.1_mod_new_sam_SMOTE 0.5107997511395633
#==================
cat 2023-03-06-22-10-27scRNA_data_GSE149383_drug_ERLOTINIB_bottle_512_model_DAE_dropout_0.1_mod_new_sam_SMOTE_report.csv
,precision,recall,f1-score,support,auroc_score,ap_score
0,0.45116772823779194,0.6724683544303798,0.5400254129606099,632.0,0.5777688042076887,0.3971983302815359
1,0.6263537906137184,0.40162037037037035,0.4894217207334274,864.0,0.5777688042076887,0.3971983302815359
accuracy,0.516042780748663,0.516042780748663,0.516042780748663,0.516042780748663,0.5777688042076887,0.3971983302815359
macro avg,0.5387607594257552,0.5370443624003751,0.5147235668470187,1496.0,0.5777688042076887,0.3971983302815359
weighted avg,0.5523447054388617,0.516042780748663,0.5107997511395633,1496.0,0.5777688042076887,0.3971983302815359
#==================
python bulkmodel.py --drug 'ERLOTINIB' --dimreduce 'DAE' --encoder_h_dims "512,256" --predictor_h_dims "256,128" --bottleneck 512 --data_name 'GSE149383' --dropout 0.1 --lr 0.1 --sampling 'SMOTE' --printgene 'T' --mod 'new'

python scmodel_test.py --sc_data 'GSE149383' --dimreduce 'DAE' --drug 'ERLOTINIB' --bulk_h_dims "512,256" --bottleneck 512 --predictor_h_dims "256,128" --dropout 0.1 --lr 0.1 --sampling 'SMOTE' --printgene 'T' -mod 'new'
Do you have time to explain?
Do you have time to explain or reproduce the results in your paper based on the code you currently provide?
Thanks!

@SZ-qing
Copy link
Author

SZ-qing commented Mar 7, 2023

@juychen @PegasusAM @OSU-BMBL-admin Hope to get your help and answer the doubt.

@SZ-qing
Copy link
Author

SZ-qing commented Mar 7, 2023

For the dataset GSE112274-GEFITINIB,

~/anaconda3/envs/scdeal/bin/python bulkmodel.py --drug 'GEFITINIB' --dimreduce 'DAE' --encoder_h_dims "512,256" --predictor_h_dims "256,128" --bottleneck 64 --data_name 'GSE112274' --dropout 0.1 --lr 0.1 --sampling 'no' --printgene 'T' --mod 'new'

~/anaconda3/envs/scdeal/bin/python scmodel_test.py --sc_data 'GSE112274' --dimreduce 'DAE' --drug 'GEFITINIB' --bulk_h_dims "512,256" --bottleneck 64 --predictor_h_dims "256,128" --dropout 0.1 --lr 0.1 --sampling 'no' --printgene 'T' -mod 'new'

In the bulkmodel :
auc=0.89
but in the scmodel is 0.005

@juychen
Copy link
Collaborator

juychen commented Mar 7, 2023

Hi, thanks for your suggestions and questions. We are fixing the bugs and seeking for help from my colleague about the results issue.

@tb1over
Copy link

tb1over commented Mar 18, 2023

For the dataset GSE112274-GEFITINIB,

~/anaconda3/envs/scdeal/bin/python bulkmodel.py --drug 'GEFITINIB' --dimreduce 'DAE' --encoder_h_dims "512,256" --predictor_h_dims "256,128" --bottleneck 64 --data_name 'GSE112274' --dropout 0.1 --lr 0.1 --sampling 'no' --printgene 'T' --mod 'new'

~/anaconda3/envs/scdeal/bin/python scmodel_test.py --sc_data 'GSE112274' --dimreduce 'DAE' --drug 'GEFITINIB' --bulk_h_dims "512,256" --bottleneck 64 --predictor_h_dims "256,128" --dropout 0.1 --lr 0.1 --sampling 'no' --printgene 'T' -mod 'new'

In the bulkmodel : auc=0.89 but in the scmodel is 0.005

Did the author give an explanation of the results ?

@juychen
Copy link
Collaborator

juychen commented Mar 18, 2023

For the dataset GSE112274-GEFITINIB,

~/anaconda3/envs/scdeal/bin/python bulkmodel.py --drug 'GEFITINIB' --dimreduce 'DAE' --encoder_h_dims "512,256" --predictor_h_dims "256,128" --bottleneck 64 --data_name 'GSE112274' --dropout 0.1 --lr 0.1 --sampling 'no' --printgene 'T' --mod 'new'

~/anaconda3/envs/scdeal/bin/python scmodel_test.py --sc_data 'GSE112274' --dimreduce 'DAE' --drug 'GEFITINIB' --bulk_h_dims "512,256" --bottleneck 64 --predictor_h_dims "256,128" --dropout 0.1 --lr 0.1 --sampling 'no' --printgene 'T' -mod 'new'

In the bulkmodel : auc=0.89 but in the scmodel is 0.005

Did the author give an explanation of the results ?

Hi, we are now testing the environment applied to generate the results. We will release the corresponding packaged environment, and the model weights soon.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants