English | 简体中文
The interface for training, evaluation and prediction.
paddleseg.core.train(
model,
train_dataset,
val_dataset = None,
optimizer = None,
save_dir = 'output',
iters = 10000,
batch_size = 2,
resume_model = None,
save_interval = 1000,
log_iters = 10,
num_workers = 0,
use_vdl = False,
losses = None
)
Launch training.
- model(nn.Layer): A sementic segmentation model.
- train_dataset (paddle.io.Dataset): Used to read and process training datasets.
- val_dataset (paddle.io.Dataset, optional): Used to read and process validation datasets.
- optimizer (paddle.optimizer.Optimizer): The optimizer.
- save_dir (str, optional): The directory for saving the model snapshot. Default: 'output'
- iters (int, optional): How may iters to train the model. Defualt: 10000.
- batch_size (int, optional): Mini batch size of one gpu or cpu. Default: 2
- resume_model (str, optional): The path of resume model.
- save_interval (int, optional): How many iters to save a model snapshot once during training. Default: 1000
- log_iters (int, optional): Display logging information at every log_iters. Default: 10
- num_workers (int, optional): Num workers for data loader. Default: 0
- use_vdl (bool, optional): Whether to record the data to VisualDL during training. Default: False
- losses (dict): A dict including 'types' and 'coef'. The length of coef should equal to 1 or len(losses['types']). The 'types' item is a list of object of paddleseg.models.losses while the 'coef' item is a list of the relevant coefficient.
paddleseg.core.evaluate(
model,
eval_dataset,
aug_eval = False,
scales = 1.0,
flip_horizontal = True,
flip_vertical = False,
is_slide = False,
stride = None,
crop_size = None,
num_workers = 0
)
Launch evaluation.
- model(nn.Layer): A sementic segmentation model.
- eval_dataset (paddle.io.Dataset): Used to read and process validation datasets.
- aug_eval (bool, optional): Whether to use mulit-scales and flip augment for evaluation. Default: False
- scales (list|float, optional): Scales for augment. It is valid when
aug_eval
is True. Default: 1.0 - flip_horizontal (bool, optional): Whether to use flip horizontally augment. It is valid when
aug_eval
is True. Default: True - flip_vertical (bool, optional): Whether to use flip vertically augment. It is valid when
aug_eval
is True. Default: False - is_slide (bool, optional): Whether to evaluate by sliding window. Default: False
- stride (tuple|list, optional): The stride of sliding window, the first is width and the second is height.
It should be provided when
is_slide
is True. - crop_size (tuple|list, optional): The crop size of sliding window, the first is width and the second is height.
It should be provided when
is_slide
is True. - num_workers (int, optional): Num workers for data loader. Default: 0
- float: The mIoU of validation datasets.
- float: The accuracy of validation datasets.
- float: The kappa of validation datasets.
paddleseg.core.predict(
model,
model_path,
transforms,
image_list,
image_dir = None,
save_dir = 'output',
aug_pred = False,
scales = 1.0,
flip_horizontal = True,
flip_vertical = False,
is_slide = False,
stride = None,
crop_size = None
)
Launch predict and visualize.
- model (nn.Layer): Used to predict for input image.
- model_path (str): The path of pretrained model.
- transforms (transform.Compose): Preprocess for input image.
- image_list (list): A list of image path to be predicted.
- image_dir (str, optional): The root directory of the images predicted. Default: None
- save_dir** (bool, optional): Whether to use mulit-scales and flip augment for predition. Default: False
- scales (list|float, optional): Scales for augment. It is valid when
aug_pred
is True. Default: 1.0 - flip_horizontal (bool, optional): Whether to use flip horizontally augment. It is valid when
aug_pred
is True. Default: True - flip_vertical (bool, optional): Whether to use flip vertically augment. It is valid when
aug_pred
is True. Default: False - is_slide (bool, optional): Whether to predict by sliding window. Default: False
- stride (tuple|list, optional): The stride of sliding window, the first is width and the second is height.
It should be provided when
is_slide
is True. - crop_size (tuple|list, optional): The crop size of sliding window, the first is width and the second is height.
It should be provided when
is_slide
is True.