imports
module Plutarch.Docs.Run (applyArguments, evalT, evalSerialize, evalWithArgsT, evalWithArgsT') where
import Data.Bifunctor (first)
import Data.ByteString.Short (ShortByteString)
import Data.Default (def)
import Data.Text (Text, pack)
import Plutarch (ClosedTerm, compile)
import Plutarch.Script (Script (Script, unScript), serialiseScript)
import Plutarch.Evaluate (evalScript)
import PlutusLedgerApi.V1 (Data, ExBudget)
import PlutusCore.MkPlc (mkIterAppNoAnn, mkConstant)
import UntypedPlutusCore (DeBruijn, DefaultFun, DefaultUni, Program, progTerm)
import Control.Lens.Combinators (over)
Note: If you spot any mistakes/have any related questions that this guide lacks the answer to, please don't hesitate to raise an issue. The goal is to have high quality documentation for Plutarch users!
Table of Contents
You generally want to adhere to the same extensions and GHC options the Plutarch repo uses.
List of GHC extensions
NoStarIsType
BangPatterns
BinaryLiterals
ConstrainedClassMethods
ConstraintKinds
DataKinds
DeriveAnyClass
DeriveDataTypeable
DeriveFoldable
DeriveFunctor
DeriveGeneric
DeriveLift
DeriveTraversable
DerivingStrategies
DerivingVia
DoAndIfThenElse
EmptyCase
EmptyDataDecls
EmptyDataDeriving
ExistentialQuantification
ExplicitForAll
FlexibleContexts
FlexibleInstances
ForeignFunctionInterface
GADTSyntax
GeneralisedNewtypeDeriving
HexFloatLiterals
ImplicitPrelude
InstanceSigs
KindSignatures
LambdaCase
MonomorphismRestriction
MultiParamTypeClasses
NamedFieldPuns
NamedWildCards
NumericUnderscores
OverloadedStrings
PartialTypeSignatures
PatternGuards
PolyKinds
PostfixOperators
RankNTypes
RelaxedPolyRec
ScopedTypeVariables
StandaloneDeriving
StandaloneKindSignatures
TraditionalRecordSyntax
TupleSections
TypeApplications
TypeFamilies
TypeOperators
TypeSynonymInstances
ViewPatterns
You can compile a Plutarch term using compile
(from Plutarch
module), making sure it has no free variables. compile
returns a Script
, which you can use as you would any other Plutus script. The API in Plutus.V1.Ledger.Scripts
should prove helpful.
For further insight into what is compiled - you can use
printTerm
orprintScript
(fromPlutarch
module).
I often use these helper functions to test Plutarch quickly:
applyArguments :: Script -> [Data] -> Script
applyArguments (Script p) args =
let termArgs = mkConstant () <$> args
applied t = mkIterAppNoAnn t termArgs
in Script $ over progTerm applied p
evalSerialize :: ClosedTerm a -> Either Text ShortByteString
evalSerialize x = serialiseScript . (\(a, _, _) -> a) <$> evalT x
evalT :: ClosedTerm a -> Either Text (Script, ExBudget, [Text])
evalT x = evalWithArgsT x []
evalWithArgsT :: ClosedTerm a -> [Data] -> Either Text (Script, ExBudget, [Text])
evalWithArgsT x args = do
cmp <- compile def x
let (escr, budg, trc) = evalScript $ applyArguments cmp args
scr <- first (pack . show) escr
pure (scr, budg, trc)
evalWithArgsT' :: ClosedTerm a -> [Data] -> Either Text (Program DeBruijn DefaultUni DefaultFun (), ExBudget, [Text])
evalWithArgsT' x args =
(\(res, budg, trcs) -> (unScript res, budg, trcs))
<$> evalWithArgsT x args
The fields in the result triple correspond to script result, execution budget (how much memory and CPU units were used), and trace log - respectively.
Of course if you're only interested in the result of the script evaluation, you can just ignore the exbudget and tracelog just like evalSerialize
does.
evalSerialize
is a function that you can use to quickly obtain a serialized script.
Note: You can pretty much ignore the UPLC types involved here. All it really means is that the result is a "UPLC program". When it's printed, it's pretty legible - especially for debugging purposes. Although not necessary to use Plutarch, you may find the Plutonomicon UPLC guide useful.