-
Notifications
You must be signed in to change notification settings - Fork 8
/
convert_CW2pPMi.Rd
173 lines (141 loc) · 5.09 KB
/
convert_CW2pPMi.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/convert_CW2pPMi.R
\name{convert_CW2pPMi}
\alias{convert_CW2pPMi}
\alias{CW2pPMi}
\title{Transform a CW-OSL curve into a pPM-OSL curve via interpolation under
parabolic modulation conditions}
\usage{
convert_CW2pPMi(values, P)
CW2pPMi(values, P)
}
\arguments{
\item{values}{\linkS4class{RLum.Data.Curve} or \link{data.frame} (\strong{required}):
\linkS4class{RLum.Data.Curve} or \code{data.frame} with measured curve data of type
stimulation time (t) (\code{values[,1]}) and measured counts (cts) (\code{values[,2]})}
\item{P}{\link{vector} (\emph{optional}):
stimulation period in seconds. If no value is given, the optimal value is
estimated automatically (see details). Greater values of P produce more
points in the rising tail of the curve.}
}
\value{
The function returns the same data type as the input data type with
the transformed curve values.
\code{RLum.Data.Curve}
\tabular{rl}{
\verb{$CW2pPMi.x.t} \tab: transformed time values \cr
\verb{$CW2pPMi.method} \tab: used method for the production of the new data points
}
\code{data.frame}
\tabular{rl}{
\verb{$x} \tab: time\cr
\verb{$y.t} \tab: transformed count values\cr
\verb{$x.t} \tab: transformed time values \cr
\verb{$method} \tab: used method for the production of the new data points
}
}
\description{
Transforms a conventionally measured continuous-wave (CW) OSL-curve into a
pseudo parabolic modulated (pPM) curve under parabolic modulation conditions
using the interpolation procedure described by Bos & Wallinga (2012).
}
\details{
The complete procedure of the transformation is given in Bos & Wallinga
(2012). The input \code{data.frame} consists of two columns: time (t) and
count values (CW(t))
\strong{Nomenclature}
\itemize{
\item P = stimulation time (s)
\item 1/P = stimulation rate (1/s)
}
\strong{Internal transformation steps}
(1)
log(CW-OSL) values
(2)
Calculate t' which is the transformed time:
\deqn{t' = (1/3)*(1/P^2)t^3}
(3)
Interpolate CW(t'), i.e. use the log(CW(t)) to obtain the count values for
the transformed time (t'). Values beyond \code{min(t)} and \code{max(t)}
produce \code{NA} values.
(4)
Select all values for t' < \code{min(t)}, i.e. values beyond the time resolution
of t. Select the first two values of the transformed data set which contain
no \code{NA} values and use these values for a linear fit using \link{lm}.
(5)
Extrapolate values for t' < \code{min(t)} based on the previously obtained
fit parameters. The extrapolation is limited to two values. Other values at
the beginning of the transformed curve are set to 0.
(6)
Transform values using
\deqn{pLM(t) = t^2/P^2*CW(t')}
(7)
Combine all values and truncate all values for t' > \code{max(t)}
\strong{NOTE:}
The number of values for t' < \code{min(t)} depends on the stimulation
period \code{P}. To avoid the production of too many artificial data at the
raising tail of the determined pPM curve, it is recommended to use the
automatic estimation routine for \code{P}, i.e. provide no value for
\code{P}.
}
\note{
According to Bos & Wallinga (2012), the number of extrapolated points
should be limited to avoid artificial intensity data. If \code{P} is
provided manually, not more than two points are extrapolated.
}
\section{Function version}{
0.2.2
}
\examples{
##(1)
##load CW-OSL curve data
data(ExampleData.CW_OSL_Curve, envir = environment())
##transform values
values.transformed <- convert_CW2pPMi(ExampleData.CW_OSL_Curve)
##plot
plot(values.transformed$x,values.transformed$y.t, log = "x")
##(2) - produce Fig. 4 from Bos & Wallinga (2012)
##load data
data(ExampleData.CW_OSL_Curve, envir = environment())
values <- CW_Curve.BosWallinga2012
##open plot area
plot(NA, NA,
xlim = c(0.001,10),
ylim = c(0,8000),
ylab = "pseudo OSL (cts/0.01 s)",
xlab = "t [s]",
log = "x",
main = "Fig. 4 - Bos & Wallinga (2012)")
values.t <- convert_CW2pLMi(values, P = 1/20)
lines(values[1:length(values.t[, 1]), 1], values.t[, 2],
col = "red",lwd = 1.3)
text(0.03,4500,"LM", col = "red", cex = .8)
values.t <- convert_CW2pHMi(values, delta = 40)
lines(values[1:length(values.t[, 1]), 1], values.t[, 2],
col = "black", lwd = 1.3)
text(0.005,3000,"HM", cex = .8)
values.t <- convert_CW2pPMi(values, P = 1/10)
lines(values[1:length(values.t[, 1]), 1], values.t[, 2],
col = "blue", lwd = 1.3)
text(0.5,6500,"PM", col = "blue", cex = .8)
}
\references{
Bos, A.J.J. & Wallinga, J., 2012. How to visualize quartz OSL
signal components. Radiation Measurements, 47, 752-758.
\strong{Further Reading}
Bulur, E., 1996. An Alternative Technique For
Optically Stimulated Luminescence (OSL) Experiment. Radiation Measurements,
26, 701-709.
Bulur, E., 2000. A simple transformation for converting CW-OSL curves to
LM-OSL curves. Radiation Measurements, 32, 141-145.
}
\seealso{
\link{convert_CW2pLM}, \link{convert_CW2pLMi}, \link{convert_CW2pHMi},
\link{fit_LMCurve}, \linkS4class{RLum.Data.Curve}
}
\author{
Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany)
Based on comments and suggestions from:\cr
Adrie J.J. Bos, Delft University of Technology, The Netherlands
}
\keyword{manip}