-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
55 lines (39 loc) · 1.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from sklearn.linear_model import LogisticRegression
import argparse
import os
import numpy as np
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
from azureml.core.run import Run
from azureml.data.dataset_factory import TabularDatasetFactory
from azureml.core import Dataset, Workspace
from sklearn.feature_extraction.text import TfidfVectorizer
def clean_data(data):
df = data.to_pandas_dataframe()[["Category", "Message"]]
y_df = df["Category"]
vectorizer = TfidfVectorizer()
x_df = vectorizer.fit_transform(df["Message"])
return x_df, y_df
def main():
# Add arguments to script
parser = argparse.ArgumentParser()
parser.add_argument('--C', type=float, default=1.0, help="Inverse of regularization strength. Smaller values cause stronger regularization")
parser.add_argument('--max_iter', type=int, default=100, help="Maximum number of iterations to converge")
args = parser.parse_args()
run = Run.get_context()
run.log("Regularization Strength:", np.float(args.C))
run.log("Max iterations:", np.int(args.max_iter))
# Get Dataset
workspace = Run.get_context().experiment.workspace
training_dataset = Dataset.get_by_name(workspace, name='capstone-spam-dataset')
x, y = clean_data(training_dataset)
print(x.shape, y.shape)
# Split data into train and test sets.
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=42)
model = LogisticRegression(C=args.C, max_iter=args.max_iter).fit(x_train, y_train)
accuracy = model.score(x_test, y_test)
run.log("Accuracy", np.float(accuracy))
if __name__ == '__main__':
main()