Skip to content

Latest commit

 

History

History
145 lines (138 loc) · 3.46 KB

bs_roformer_info.md

File metadata and controls

145 lines (138 loc) · 3.46 KB

Batch sizes for BSRoformer

You can use table below to choose BS Roformer batch_size parameter for training based on your GPUs. Batch size values provided for single GPU. If you have several GPUs you need to multiply value on number of GPUs.

chunk_size dim depth batch_size (A6000 48GB) batch_size (3090/4090 24GB) batch_size (16GB)
131584 128 6 10 5 3
131584 256 6 8 4 2
131584 384 6 7 3 2
131584 512 6 6 3 2
131584 256 8 6 3 2
131584 256 12 4 2 1
263168 128 6 4 2 1
263168 256 6 3 1 1
352800 128 6 2 1 -
352800 256 6 2 1 -
352800 384 12 1 - -
352800 512 12 - - -

Parameters obtained with initial config:

audio:
  chunk_size: 131584
  dim_f: 1024
  dim_t: 515
  hop_length: 512
  n_fft: 2048
  num_channels: 2
  sample_rate: 44100
  min_mean_abs: 0.000

model:
  dim: 384
  depth: 12
  stereo: true
  num_stems: 1
  time_transformer_depth: 1
  freq_transformer_depth: 1
  linear_transformer_depth: 0
  freqs_per_bands: !!python/tuple
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 2
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 4
    - 12
    - 12
    - 12
    - 12
    - 12
    - 12
    - 12
    - 12
    - 24
    - 24
    - 24
    - 24
    - 24
    - 24
    - 24
    - 24
    - 48
    - 48
    - 48
    - 48
    - 48
    - 48
    - 48
    - 48
    - 128
    - 129
  dim_head: 64
  heads: 8
  attn_dropout: 0.1
  ff_dropout: 0.1
  flash_attn: false
  dim_freqs_in: 1025
  stft_n_fft: 2048
  stft_hop_length: 512
  stft_win_length: 2048
  stft_normalized: false
  mask_estimator_depth: 2
  multi_stft_resolution_loss_weight: 1.0
  multi_stft_resolutions_window_sizes: !!python/tuple
  - 4096
  - 2048
  - 1024
  - 512
  - 256
  multi_stft_hop_size: 147
  multi_stft_normalized: False

training:
  batch_size: 1
  gradient_accumulation_steps: 1
  grad_clip: 0
  instruments:
  - vocals
  - other
  lr: 3.0e-05
  patience: 2
  reduce_factor: 0.95
  target_instrument: vocals
  num_epochs: 1000
  num_steps: 1000
  q: 0.95
  coarse_loss_clip: true
  ema_momentum: 0.999
  optimizer: adam
  other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
  use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true