-
Notifications
You must be signed in to change notification settings - Fork 0
/
body_motion_energy_and_saccade_analysis.m
584 lines (411 loc) · 21.8 KB
/
body_motion_energy_and_saccade_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
% body_motion_energy_and_saccade_analysis.m
%
% Description:
% This script analyzes firing rate changes in neuron populations across
% different experimental conditions by producing unity plots that reflect
% responses under three scenarios:
% 1. Original data, including all motion events.
% 2. Data with high-motion energy periods removed, particularly in replayed
% trials to isolate periods of low motion energy.
% 3. Data with periods just after pupil saccades removed, to examine
% post-saccadic effects on neural activity.
%
% Analysis Workflow:
% BODY MOTION ENERGY
% 1. For each VT (visual task) and V (visual only) trial, the distribution
% of motion energy during running periods of the original trial (i.e.,
% the trial from which the replay originates) is calculated.
% 2. A threshold motion value corresponding to a specific percentile
% is applied to body motion energy during both stationary and motion
% periods, retaining only time bins where motion energy falls below
% this threshold.
% 3. The firing rate (FR) is calculated from this subset of time bins
% and averaged across the trial for each cluster, then the median is
% calculated across trials.
%
% SACCADE REMOVAL
% 1. For each session, a precomputed table of saccade frames is loaded.
% 2. For each trial, a time window is defined post-saccade using
% `duration_to_remove`. Time bins within this window are removed to
% create a saccade-exclusion mask.
% 3. The mask is applied to the firing rate data, and the mean across
% the trial and the median across trials are calculated for each cluster.
%
% Outputs:
% - Unity plots comparing firing rates across stationary and motion periods
% in each scenario: original, high-motion energy excluded, and post-saccade
% periods removed.
% - Summary statistics on data retention after removing post-saccade periods
% and high-motion energy segments.
% - Modulation indices that quantify population responses in each condition.
%
% Usage:
% Set the `experiment_groups` and `trial_types` variables as needed, and run
% the script to analyze firing rate distributions across conditions, comparing
% changes under different data exclusions.
close all;
experiment_groups = 'visual_flow';
trial_types = {'RVT', 'RV', {'VT_RVT', 'VT_RV'}, {'V_RVT', 'V_RV'}};
duration_to_remove = 0.25; % duration after saccade to remove
motion_threshold_percentile = 5;
ctl = RC2Analysis();
probe_ids = ctl.get_probe_ids(experiment_groups);
motion_fr_store = cell(1, length(probe_ids));
stationary_fr_store = cell(1, length(probe_ids));
motion_fr_store_pupil = cell(1, length(probe_ids));
stationary_fr_store_pupil = cell(1, length(probe_ids));
motion_fr_store_ME = cell(1, length(probe_ids));
stationary_fr_store_ME = cell(1, length(probe_ids));
stationary_time = cell(1, length(probe_ids));
motion_time = cell(1, length(probe_ids));
stationary_time_pupil = cell(1, length(probe_ids));
motion_time_pupil = cell(1, length(probe_ids));
stationary_time_ME = cell(1, length(probe_ids));
motion_time_ME = cell(1, length(probe_ids));
for probe_i = 1 : length(probe_ids)
data = ctl.load_formatted_data(probe_ids{probe_i});
clusters = data.VISp_clusters();
% get table of saccades
sessions = data.motion_sessions;
saccade_tbl = ctl.load.camera0_saccades(sessions{1}.session_id);
saccade_times = sessions{1}.camera_t(saccade_tbl.saccade_frame);
motion_fr_store{probe_i} = cell(1, length(trial_types));
stationary_fr_store{probe_i} = cell(1, length(trial_types));
motion_fr_store_pupil{probe_i} = cell(1, length(trial_types));
stationary_fr_store_pupil{probe_i} = cell(1, length(trial_types));
motion_fr_store_ME{probe_i} = cell(1, length(trial_types));
stationary_fr_store_ME{probe_i} = cell(1, length(trial_types));
stationary_time{probe_i} = cell(1, length(trial_types));
motion_time{probe_i} = cell(1, length(trial_types));
stationary_time_pupil{probe_i} = cell(1, length(trial_types));
motion_time_pupil{probe_i} = cell(1, length(trial_types));
stationary_time_ME{probe_i} = cell(1, length(trial_types));
motion_time_ME{probe_i} = cell(1, length(trial_types));
for type_i = 1 : length(trial_types)
trials = data.get_trials_with_trial_group_label(trial_types{type_i});
motion_fr_store{probe_i}{type_i} = nan(length(trials), length(clusters));
stationary_fr_store{probe_i}{type_i} = nan(length(trials), length(clusters));
motion_fr_store_pupil{probe_i}{type_i} = nan(length(trials), length(clusters));
stationary_fr_store_pupil{probe_i}{type_i} = nan(length(trials), length(clusters));
motion_fr_store_ME{probe_i}{type_i} = nan(length(trials), length(clusters));
stationary_fr_store_ME{probe_i}{type_i} = nan(length(trials), length(clusters));
stationary_time{probe_i}{type_i} = nan(length(trials), 1);
motion_time{probe_i}{type_i} = nan(length(trials), length(clusters));
stationary_time_pupil{probe_i}{type_i} = nan(length(trials), length(clusters));
motion_time_pupil{probe_i}{type_i} = nan(length(trials), length(clusters));
stationary_time_ME{probe_i}{type_i} = nan(length(trials), length(clusters));
motion_time_ME{probe_i}{type_i} = nan(length(trials), length(clusters));
for trial_i = 1 : length(trials)
trial = trials{trial_i}.to_aligned;
% find the saccades in this trial
timebase = trial.probe_t;
idx = saccade_times > timebase(1) & saccade_times < timebase(end);
trial_saccade_times = saccade_times(idx);
saccade_mask = false(size(timebase));
for sac_i = 1 : length(trial_saccade_times)
saccade_mask = saccade_mask | ...
(timebase > trial_saccade_times(sac_i) & timebase < ...
trial_saccade_times(sac_i) + duration_to_remove);
end
if type_i > 2
% get this trial and original trial
original_trial = trial.original_trial;
% mask of motion in the original trial
original_motion_mask = original_trial.motion_mask;
original_stationary_mask = original_trial.stationary_mask;
% camera motion in original trial
original_motion_energy = original_trial.camera1;
% select the motion periods and get the lowest x-th prctile
cam_motion_original = original_motion_energy(original_motion_mask);
motion_threshold = prctile(cam_motion_original, motion_threshold_percentile);
% camera motion in replay trial, aligned
replay_motion_energy = trial.camera1;
end
stationary_mask = trial.stationary_mask;
motion_mask = trial.motion_mask;
stationary_mask_pupil = stationary_mask & ~saccade_mask;
motion_mask_pupil = motion_mask & ~saccade_mask;
if type_i > 2
stationary_mask_ME = stationary_mask & (replay_motion_energy < motion_threshold);
motion_mask_ME = motion_mask & (replay_motion_energy < motion_threshold);
stationary_time_ME{probe_i}{type_i}(trial_i) = sum(stationary_mask_ME)/10e3;
motion_time_ME{probe_i}{type_i}(trial_i) = sum(motion_mask_ME)/10e3;
%
% figure(trial_i);
% hold on;
% plot(original_motion_mask, 'r');
% plot(original_stationary_mask, 'b');
% plot(stationary_mask_ME * 1.2, 'y');
% plot(motion_mask_ME * 1.2, 'g');
% plot(replay_motion_energy, 'k');
% yline(motion_threshold);
%
end
stationary_time{probe_i}{type_i}(trial_i) = sum(stationary_mask)/10e3;
motion_time{probe_i}{type_i}(trial_i) = sum(motion_mask)/10e3;
stationary_time_pupil{probe_i}{type_i}(trial_i) = sum(stationary_mask_pupil)/10e3;
motion_time_pupil{probe_i}{type_i}(trial_i) = sum(motion_mask_pupil)/10e3;
for clust_i = 1 : length(clusters)
fr = clusters(clust_i).fr.get_convolution(trial.probe_t);
motion_fr_store{probe_i}{type_i}(trial_i, clust_i) = mean(fr(motion_mask));
stationary_fr_store{probe_i}{type_i}(trial_i, clust_i) = mean(fr(stationary_mask));
motion_fr_store_pupil{probe_i}{type_i}(trial_i, clust_i) = mean(fr(motion_mask_pupil));
stationary_fr_store_pupil{probe_i}{type_i}(trial_i, clust_i) = mean(fr(stationary_mask_pupil));
if type_i > 2
motion_fr_store_ME{probe_i}{type_i}(trial_i, clust_i) = mean(fr(motion_mask_ME));
stationary_fr_store_ME{probe_i}{type_i}(trial_i, clust_i) = mean(fr(stationary_mask_ME));
end
end
end
end
total_stationary_time = 0;
total_motion_time = 0;
total_stationary_saccade_time = 0;
total_motion_saccade_time = 0;
for type_i = 1 : length(trial_types)
% sum all the the times of the trials together across types
total_stationary_time = total_stationary_time + sum(stationary_time{probe_i}{type_i});
total_motion_time = total_motion_time + sum(motion_time{probe_i}{type_i}(:, 1));
total_stationary_saccade_time = total_stationary_saccade_time + sum(stationary_time_pupil{probe_i}{type_i}(:, 1));
total_motion_saccade_time = total_motion_saccade_time + sum(motion_time_pupil{probe_i}{type_i}(:, 1));
end
sprintf('Probe: %s.\nData retained after saccades removal: %f (retained), %f (total), %f (percentage).', ...
probe_ids{probe_i}, ...
total_motion_saccade_time, ...
total_motion_time, ...
total_motion_saccade_time / total_motion_time)
total_stationary_time = 0;
total_motion_time = 0;
total_stationary_ME_time = 0;
total_motion_ME_time = 0;
for type_i = 3 : length(trial_types)
% only for VT and V
total_stationary_time = total_stationary_time + sum(stationary_time{probe_i}{type_i});
total_motion_time = total_motion_time + sum(motion_time{probe_i}{type_i}(:, 1));
total_stationary_ME_time = total_stationary_ME_time + sum(stationary_time_ME{probe_i}{type_i}(:, 1));
total_motion_ME_time = total_motion_ME_time + sum(motion_time_ME{probe_i}{type_i}(:, 1));
end
sprintf('\nData retained after body ME removal: %f (retained), %f (total), %f (percentage).', ...
total_motion_ME_time, ...
total_motion_time, ...
total_motion_ME_time / total_motion_time)
end
%%
for type_i = 1 : length(trial_types)
median_stationary_fr = [];
median_motion_fr = [];
p_val = [];
direction = [];
median_stationary_fr_pupil = [];
median_motion_fr_pupil = [];
p_val_pupil = [];
direction_pupil = [];
if type_i > 2
median_stationary_fr_ME = [];
median_motion_fr_ME = [];
p_val_ME = [];
direction_ME = [];
end
for probe_i = 1 : length(probe_ids)
for clust_i = 1 : size(stationary_fr_store{probe_i}{type_i}, 2)
stat = stationary_fr_store{probe_i}{type_i}(:, clust_i);
mot = motion_fr_store{probe_i}{type_i}(:, clust_i);
median_stationary_fr(end+1) = median(stat);
median_motion_fr(end+1) = median(mot);
[~, ~, p_val(end+1), direction(end+1)] = compare_groups_with_signrank(stat, mot);
stat_pupil = stationary_fr_store_pupil{probe_i}{type_i}(:, clust_i);
mot_pupil = motion_fr_store_pupil{probe_i}{type_i}(:, clust_i);
median_stationary_fr_pupil(end+1) = median(stat_pupil);
median_motion_fr_pupil(end+1) = median(mot_pupil);
[~, ~, p_val_pupil(end+1), direction_pupil(end+1)] = compare_groups_with_signrank(stat_pupil, mot_pupil);
if type_i > 2
stat_ME = stationary_fr_store_ME{probe_i}{type_i}(:, clust_i);
mot_ME = motion_fr_store_ME{probe_i}{type_i}(:, clust_i);
median_stationary_fr_ME(end+1) = median(stat_ME);
median_motion_fr_ME(end+1) = median(mot_ME);
[~, ~, p_val_ME(end+1), direction_ME(end+1)] = compare_groups_with_signrank(stat_ME, mot_ME);
end
end
end
if iscell(trial_types{type_i})
type_str = trial_types{type_i}{1};
else
type_str = trial_types{type_i};
end
figure(1);
h_ax = subplot(2, 2, type_i);
hold on;
fmt.xy_limits = [0, 60];
fmt.tick_space = 20;
fmt.line_order = 'top';
fmt.xlabel = 'FR baseline';
fmt.ylabel = trial_types{type_i};
fmt.include_inset = false;
fmt.colour_by = 'significance';
unity_plot_plot(h_ax, median_stationary_fr, median_motion_fr, direction, fmt);
title(sprintf('%s, original', type_str), 'interpreter', 'none');
figure(2);
h_ax = subplot(2, 2, type_i);
hold on;
fmt.xy_limits = [0, 60];
fmt.tick_space = 20;
fmt.line_order = 'top';
fmt.xlabel = 'FR baseline';
fmt.ylabel = trial_types{type_i};
fmt.include_inset = false;
fmt.colour_by = 'significance';
unity_plot_plot(h_ax, median_stationary_fr_pupil, median_motion_fr_pupil, direction_pupil, fmt);
title(sprintf('%s, saccades removed', type_str), 'interpreter', 'none');
if type_i > 2
figure(3);
h_ax = subplot(2, 2, type_i);
hold on;
fmt.xy_limits = [0, 60];
fmt.tick_space = 20;
fmt.line_order = 'top';
fmt.xlabel = 'FR baseline';
fmt.ylabel = trial_types{type_i};
fmt.include_inset = false;
fmt.colour_by = 'significance';
unity_plot_plot(h_ax, median_stationary_fr_ME, median_motion_fr_ME, direction_ME, fmt);
title(sprintf('%s, motion energy periods removed', type_str), 'interpreter', 'none');
end
end
%%
median_motion_fr_VT = [];
median_motion_fr_V = [];
direction = [];
median_motion_fr_VT_pupil = [];
median_motion_fr_V_pupil = [];
direction_pupil = [];
median_motion_fr_VT_ME = [];
median_motion_fr_V_ME = [];
direction_ME = [];
for probe_i = 1 : length(probe_ids)
for clust_i = 1 : size(stationary_fr_store{probe_i}{type_i}, 2)
% first plot, original
mot_VT = motion_fr_store{probe_i}{3}(:, clust_i);
mot_V = motion_fr_store{probe_i}{4}(:, clust_i);
median_motion_fr_VT(end+1) = median(mot_VT);
median_motion_fr_V(end+1) = median(mot_V);
[~, ~, ~, direction(end+1)] = compare_groups_with_signrank(mot_V, mot_VT);
% first plot, saccade removal
mot_VT_pupil = motion_fr_store_pupil{probe_i}{3}(:, clust_i);
mot_V_pupil = motion_fr_store_pupil{probe_i}{4}(:, clust_i);
median_motion_fr_VT_pupil(end+1) = median(mot_VT_pupil);
median_motion_fr_V_pupil(end+1) = median(mot_V_pupil);
[~, ~, ~, direction_pupil(end+1)] = compare_groups_with_signrank(mot_V_pupil, mot_VT_pupil);
% first plot, saccade removal
mot_VT_ME = motion_fr_store_ME{probe_i}{3}(:, clust_i);
mot_V_ME = motion_fr_store_ME{probe_i}{4}(:, clust_i);
median_motion_fr_VT_ME(end+1) = median(mot_VT_ME);
median_motion_fr_V_ME(end+1) = median(mot_V_ME);
[~, ~, ~, direction_ME(end+1)] = compare_groups_with_signrank(mot_V_ME, mot_VT_ME);
end
end
figure(4);
h_ax = subplot(1, 3, 1);
hold on;
fmt.xy_limits = [0, 60];
fmt.tick_space = 20;
fmt.line_order = 'top';
fmt.xlabel = trial_types{4};
fmt.ylabel = trial_types{3};
fmt.include_inset = false;
fmt.colour_by = 'significance';
unity_plot_plot(h_ax, median_motion_fr_V, median_motion_fr_VT, direction, fmt);
title('Original');
h_ax = subplot(1, 3, 2);
hold on;
fmt.xy_limits = [0, 60];
fmt.tick_space = 20;
fmt.line_order = 'top';
fmt.xlabel = trial_types{4};
fmt.ylabel = trial_types{3};
fmt.include_inset = false;
fmt.colour_by = 'significance';
unity_plot_plot(h_ax, median_motion_fr_V_pupil, median_motion_fr_VT_pupil, direction_pupil, fmt);
title('No saccades');
h_ax = subplot(1, 3, 3);
hold on;
fmt.xy_limits = [0, 60];
fmt.tick_space = 20;
fmt.line_order = 'top';
fmt.xlabel = trial_types{4};
fmt.ylabel = trial_types{3};
fmt.include_inset = false;
fmt.colour_by = 'significance';
unity_plot_plot(h_ax, median_motion_fr_V_ME, median_motion_fr_VT_ME, direction_ME, fmt);
title('No motion energy');
figure(5);
hold on;
modulation_index_no_saccades = [];
modulation_index_all_data = [];
for clust_i = 1 : 39
modulation_index_no_saccades(end+1) = (median_motion_fr_VT_pupil(clust_i) - median_motion_fr_V_pupil(clust_i))...
/ (median_motion_fr_VT_pupil(clust_i) + median_motion_fr_V_pupil(clust_i));
modulation_index_all_data(end+1) = (median_motion_fr_VT(clust_i) - median_motion_fr_V(clust_i))...
/ (median_motion_fr_VT(clust_i) + median_motion_fr_V(clust_i));
if direction(clust_i) ~= 0
if direction_pupil(clust_i) == 1
scatter(2, modulation_index_no_saccades(clust_i), scatterball_size(3), 'red', 'o');
elseif direction_pupil(clust_i) == -1
scatter(2, modulation_index_no_saccades(clust_i), scatterball_size(3), 'blue', 'o');
else
scatter(2, modulation_index_no_saccades(clust_i), scatterball_size(3), 'black', 'o');
end
if direction(clust_i) == 1
scatter(1, modulation_index_all_data(clust_i), scatterball_size(3), 'red', 'o');
elseif direction(clust_i) == -1
scatter(1, modulation_index_all_data(clust_i), scatterball_size(3), 'blue', 'o');
end
plot([1 2], [modulation_index_all_data(clust_i), modulation_index_no_saccades(clust_i)], 'black');
end
end
xlim([0 3]);
ylim([-1.2 1.2]);
title('MI all data / no saccades');
only_responsive = direction ~= 0;
avg_mi_all_data = nanmean(modulation_index_all_data(only_responsive))
std_mi_all_data = nanstd(modulation_index_all_data(only_responsive))
sem_mi_all_data = nanstd(modulation_index_all_data(only_responsive)) / sqrt(39)
avg_mi_no_saccades = nanmean(modulation_index_no_saccades(only_responsive))
std_mi_no_saccades = nanstd(modulation_index_no_saccades(only_responsive))
sem_mi_no_saccades = nanstd(modulation_index_no_saccades(only_responsive)) / sqrt(39)
[p] = signrank(modulation_index_all_data(only_responsive), modulation_index_no_saccades(only_responsive))
figure(6);
hold on;
modulation_index_no_body_ME = [];
modulation_index_all_data = [];
for clust_i = 1 : 39
modulation_index_no_body_ME(end+1) = (median_motion_fr_VT_ME(clust_i) - median_motion_fr_V_ME(clust_i))...
/ (median_motion_fr_VT_ME(clust_i) + median_motion_fr_V_ME(clust_i));
modulation_index_all_data(end+1) = (median_motion_fr_VT(clust_i) - median_motion_fr_V(clust_i))...
/ (median_motion_fr_VT(clust_i) + median_motion_fr_V(clust_i));
if direction(clust_i) ~= 0
if direction_ME(clust_i) == 1
scatter(2, modulation_index_no_body_ME(clust_i), scatterball_size(3), 'red', 'o');
elseif direction_ME(clust_i) == -1
scatter(2, modulation_index_no_body_ME(clust_i), scatterball_size(3), 'blue', 'o');
else
scatter(2, modulation_index_no_body_ME(clust_i), scatterball_size(3), 'black', 'o');
end
if direction(clust_i) == 1
scatter(1, modulation_index_all_data(clust_i), scatterball_size(3), 'red', 'o');
elseif direction(clust_i) == -1
scatter(1, modulation_index_all_data(clust_i), scatterball_size(3), 'blue', 'o');
end
plot([1 2], [modulation_index_all_data(clust_i), modulation_index_no_body_ME(clust_i)], 'black');
end
end
xlim([0 3]);
ylim([-1.2 1.2]);
title('MI all data / no body ME');
only_responsive = direction ~= 0;
avg_mi_all_data = nanmean(modulation_index_all_data(only_responsive))
std_mi_all_data = nanstd(modulation_index_all_data(only_responsive))
sem_mi_all_data = nanstd(modulation_index_all_data(only_responsive)) / sqrt(39)
avg_mi_no_body_ME = nanmean(modulation_index_no_body_ME(only_responsive))
std_mi_no_body_ME = nanstd(modulation_index_no_body_ME(only_responsive))
sem_mi_no_body_ME = nanstd(modulation_index_no_body_ME(only_responsive)) / sqrt(39)
[p] = signrank(modulation_index_all_data(only_responsive), modulation_index_no_body_ME(only_responsive))