ShengrenHou
/
Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning
Public
generated from ShengrenHou/DRL-for-Energy-Systems-Optimal-Scheduling
-
Notifications
You must be signed in to change notification settings - Fork 18
/
MIP_DQN.py
485 lines (433 loc) · 22.3 KB
/
MIP_DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# ------------------------------------------------------------------------
# Optimal-Energy-System-Scheduling-Combining-Mixed-Integer-Programming-and-Deep-Reinforcement-Learning
# MIP-DQN algorithm developed by
# Hou Shengren, TU Delft, [email protected]
# Pedro, TU Delft, [email protected]
# ------------------------------------------------------------------------
import pickle
import torch
import os
import numpy as np
import numpy.random as rd
import pandas as pd
import pyomo.environ as pyo
import pyomo.kernel as pmo
from omlt import OmltBlock
from gurobipy import *
from omlt.neuralnet import NetworkDefinition, FullSpaceNNFormulation,ReluBigMFormulation
from omlt.io.onnx import write_onnx_model_with_bounds,load_onnx_neural_network_with_bounds
import tempfile
import torch.onnx
import torch.nn as nn
from copy import deepcopy
import wandb
from random_generator_battery import ESSEnv
## define net
class ReplayBuffer:
def __init__(self, max_len, state_dim, action_dim, gpu_id=0):
self.now_len = 0
self.next_idx = 0
self.if_full = False
self.max_len = max_len
self.data_type = torch.float32
self.action_dim = action_dim
self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
other_dim = 1 + 1 + self.action_dim
self.buf_other = torch.empty(size=(max_len, other_dim), dtype=self.data_type, device=self.device)
if isinstance(state_dim, int): # state is pixel
self.buf_state = torch.empty((max_len, state_dim), dtype=torch.float32, device=self.device)
elif isinstance(state_dim, tuple):
self.buf_state = torch.empty((max_len, *state_dim), dtype=torch.uint8, device=self.device)
else:
raise ValueError('state_dim')
def extend_buffer(self, state, other): # CPU array to CPU array
size = len(other)
next_idx = self.next_idx + size
if next_idx > self.max_len:
self.buf_state[self.next_idx:self.max_len] = state[:self.max_len - self.next_idx]
self.buf_other[self.next_idx:self.max_len] = other[:self.max_len - self.next_idx]
self.if_full = True
next_idx = next_idx - self.max_len
self.buf_state[0:next_idx] = state[-next_idx:]
self.buf_other[0:next_idx] = other[-next_idx:]
else:
self.buf_state[self.next_idx:next_idx] = state
self.buf_other[self.next_idx:next_idx] = other
self.next_idx = next_idx
def sample_batch(self, batch_size) -> tuple:
indices = rd.randint(self.now_len - 1, size=batch_size)
r_m_a = self.buf_other[indices]
return (r_m_a[:, 0:1],
r_m_a[:, 1:2],
r_m_a[:, 2:],
self.buf_state[indices],
self.buf_state[indices + 1])
def update_now_len(self):
self.now_len = self.max_len if self.if_full else self.next_idx
class Arguments:
def __init__(self, agent=None, env=None):
self.agent = agent # Deep Reinforcement Learning algorithm
self.env = env # the environment for training
self.cwd = None # current work directory. None means set automatically
self.if_remove = False # remove the cwd folder? (True, False, None:ask me)
self.visible_gpu = '0,1,2,3' # for example: os.environ['CUDA_VISIBLE_DEVICES'] = '0, 2,'
self.worker_num = 2 # rollout workers number pre GPU (adjust it to get high GPU usage)
self.num_threads = 8 # cpu_num for evaluate model, torch.set_num_threads(self.num_threads)
'''Arguments for training'''
self.num_episode=3000
self.gamma = 0.995 # discount factor of future rewards
self.learning_rate = 1e-4 # 2 ** -14 ~= 6e-5
self.soft_update_tau = 1e-2 # 2 ** -8 ~= 5e-3
self.net_dim = 64 # the network width 256
self.batch_size = 256 # num of transitions sampled from replay buffer.
self.repeat_times = 2 ** 3 # repeatedly update network to keep critic's loss small
self.target_step = 1000 # collect target_step experiences , then update network, 1024
self.max_memo = 50000 # capacity of replay buffer
## arguments for controlling exploration
self.explorate_decay=0.99
self.explorate_min=0.3
'''Arguments for evaluate'''
self.random_seed_list=[1234,2234,3234,4234,5234]
# self.random_seed_list=[2234]
self.run_name='MIP_DQN_experiments'
'''Arguments for save'''
self.train=True
self.save_network=True
def init_before_training(self, if_main):
if self.cwd is None:
agent_name = self.agent.__class__.__name__
self.cwd = f'./{agent_name}/{self.run_name}'
if if_main:
import shutil # remove history according to bool(if_remove)
if self.if_remove is None:
self.if_remove = bool(input(f"| PRESS 'y' to REMOVE: {self.cwd}? ") == 'y')
elif self.if_remove:
shutil.rmtree(self.cwd, ignore_errors=True)
print(f"| Remove cwd: {self.cwd}")
os.makedirs(self.cwd, exist_ok=True)
np.random.seed(self.random_seed)
torch.manual_seed(self.random_seed)
torch.set_num_threads(self.num_threads)
torch.set_default_dtype(torch.float32)
os.environ['CUDA_VISIBLE_DEVICES'] = str(self.visible_gpu)# control how many GPU is used
class Actor(nn.Module):
def __init__(self,mid_dim,state_dim,action_dim):
super().__init__()
self.net=nn.Sequential(nn.Linear(state_dim,mid_dim),nn.ReLU(),
nn.Linear(mid_dim,mid_dim),nn.ReLU(),
nn.Linear(mid_dim,mid_dim),nn.ReLU(),
nn.Linear(mid_dim,action_dim))
def forward(self,state):
return self.net(state).tanh()# make the data from -1 to 1
def get_action(self,state,action_std):#
action=self.net(state).tanh()
noise=(torch.randn_like(action)*action_std).clamp(-0.5,0.5)#
return (action+noise).clamp(-1.0,1.0)
class CriticQ(nn.Module):
def __init__(self,mid_dim,state_dim,action_dim):
super().__init__()
self.net_head=nn.Sequential(nn.Linear(state_dim+action_dim,mid_dim),nn.ReLU(),
nn.Linear(mid_dim,mid_dim),nn.ReLU())
self.net_q1=nn.Sequential(nn.Linear(mid_dim,mid_dim),nn.ReLU(),
nn.Linear(mid_dim,1))# we get q1 value
self.net_q2=nn.Sequential(nn.Linear(mid_dim,mid_dim),nn.ReLU(),
nn.Linear(mid_dim,1))# we get q2 value
def forward(self,value):
mid=self.net_head(value)
return self.net_q1(mid)
def get_q1_q2(self,value):
mid=self.net_head(value)
return self.net_q1(mid),self.net_q2(mid)
class AgentBase:
def __init__(self):
self.state = None
self.device = None
self.action_dim = None
self.if_off_policy = None
self.explore_noise = None
self.trajectory_list = None
self.explore_rate = 1.0
self.criterion = torch.nn.SmoothL1Loss()
def init(self, net_dim, state_dim, action_dim, learning_rate=1e-4, _if_per_or_gae=False, gpu_id=0):
self.device = torch.device(
f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
self.action_dim = action_dim
self.cri = self.ClassCri(net_dim, state_dim, action_dim).to(self.device)
self.act = self.ClassAct(net_dim, state_dim, action_dim).to(
self.device) if self.ClassAct else self.cri
self.cri_target = deepcopy(self.cri) if self.if_use_cri_target else self.cri
self.act_target = deepcopy(self.act) if self.if_use_act_target else self.act
self.cri_optim = torch.optim.Adam(self.cri.parameters(), learning_rate)
self.act_optim = torch.optim.Adam(self.act.parameters(),
learning_rate) if self.ClassAct else self.cri
del self.ClassCri, self.ClassAct
def select_action(self, state) -> np.ndarray:
states = torch.as_tensor((state,), dtype=torch.float32, device=self.device)
action = self.act(states)[0]
if rd.rand()<self.explore_rate:
action = (action + torch.randn_like(action) * self.explore_noise).clamp(-1, 1)
return action.detach().cpu().numpy()
def explore_env(self, env, target_step):
trajectory = list()
state = self.state
for _ in range(target_step):
action = self.select_action(state)
state, next_state, reward, done, = env.step(action)
trajectory.append((state, (reward, done, *action)))
state = env.reset() if done else next_state
self.state = state
return trajectory
@staticmethod
def optim_update(optimizer, objective):
optimizer.zero_grad()
objective.backward()
optimizer.step()
@staticmethod
def soft_update(target_net, current_net, tau):
for tar, cur in zip(target_net.parameters(), current_net.parameters()):
tar.data.copy_(cur.data * tau + tar.data * (1.0 - tau))
def save_or_load_agent(self, cwd, if_save):
def load_torch_file(model_or_optim, _path):
state_dict = torch.load(_path, map_location=lambda storage, loc: storage)
model_or_optim.load_state_dict(state_dict)
name_obj_list = [('actor', self.act), ('act_target', self.act_target), ('act_optim', self.act_optim),
('critic', self.cri), ('cri_target', self.cri_target), ('cri_optim', self.cri_optim), ]
name_obj_list = [(name, obj) for name, obj in name_obj_list if obj is not None]
if if_save:
for name, obj in name_obj_list:
save_path = f"{cwd}/{name}.pth"
torch.save(obj.state_dict(), save_path)
else:
for name, obj in name_obj_list:
save_path = f"{cwd}/{name}.pth"
load_torch_file(obj, save_path) if os.path.isfile(save_path) else None
def _update_exploration_rate(self,explorate_decay,explore_rate_min):
self.explore_rate = max(self.explore_rate * explorate_decay, explore_rate_min)
'''this function is used to update the explorate probability when select action'''
class AgentMIPDQN(AgentBase):
def __init__(self):
super().__init__()
self.explore_noise = 0.5 # standard deviation of exploration noise
self.policy_noise = 0.2 # standard deviation of policy noise
self.update_freq = 2 # delay update frequency
self.if_use_cri_target = self.if_use_act_target = True
self.ClassCri = CriticQ
self.ClassAct = Actor
def update_net(self, buffer, batch_size, repeat_times, soft_update_tau) -> tuple:
buffer.update_now_len()
obj_critic = obj_actor = None
for update_c in range(int(buffer.now_len / batch_size * repeat_times)):# we update too much time?
obj_critic, state = self.get_obj_critic(buffer, batch_size)
self.optim_update(self.cri_optim, obj_critic)
action_pg = self.act(state) # policy gradient
obj_actor = -self.cri_target(torch.cat((state, action_pg),dim=-1)).mean() # use cri_target instead of cri for stable training
self.optim_update(self.act_optim, obj_actor)
if update_c % self.update_freq == 0: # delay update
self.soft_update(self.cri_target, self.cri, soft_update_tau)
self.soft_update(self.act_target, self.act, soft_update_tau)
return obj_critic.item() / 2, obj_actor.item()
def get_obj_critic(self, buffer, batch_size) -> (torch.Tensor, torch.Tensor):
with torch.no_grad():
reward, mask, action, state, next_s = buffer.sample_batch(batch_size)
next_a = self.act_target.get_action(next_s, self.policy_noise) # policy noise,
next_q = torch.min(*self.cri_target.get_q1_q2(torch.cat((next_s, next_a),dim=-1))) # twin critics
q_label = reward + mask * next_q
q1, q2 = self.cri.get_q1_q2(torch.cat((state, action),dim=-1))
obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label) # twin critics
return obj_critic, state
def update_buffer(_trajectory):
ten_state = torch.as_tensor([item[0] for item in _trajectory], dtype=torch.float32)
ary_other = torch.as_tensor([item[1] for item in _trajectory])
ary_other[:, 0] = ary_other[:, 0] # ten_reward
ary_other[:, 1] = (1.0 - ary_other[:, 1]) * gamma # ten_mask = (1.0 - ary_done) * gamma
buffer.extend_buffer(ten_state, ary_other)
_steps = ten_state.shape[0]
_r_exp = ary_other[:, 0].mean() # other = (reward, mask, action)
return _steps, _r_exp
def get_episode_return(env, act, device):
'''get information of one episode during the training'''
episode_return = 0.0 # sum of rewards in an episode
episode_unbalance=0.0
episode_operation_cost=0.0
state = env.reset()
for i in range(24):
s_tensor = torch.as_tensor((state,), device=device)
a_tensor = act(s_tensor)
action = a_tensor.detach().cpu().numpy()[0] # not need detach(), because with torch.no_grad() outside
state, next_state, reward, done,= env.step(action)
state=next_state
episode_return += reward
episode_unbalance+=env.real_unbalance
episode_operation_cost+=env.operation_cost
if done:
break
return episode_return,episode_unbalance,episode_operation_cost
class Actor_MIP:
'''this actor is used to get the best action and Q function, the only input should be batch tensor state, action, and network, while the output should be
batch tensor max_action, batch tensor max_Q'''
def __init__(self,scaled_parameters,batch_size,net,state_dim,action_dim,env,constrain_on=False):
self.batch_size = batch_size
self.net = net
self.state_dim = state_dim
self.action_dim =action_dim
self.env = env
self.constrain_on=constrain_on
self.scaled_parameters=scaled_parameters
def get_input_bounds(self,input_batch_state):
batch_size = self.batch_size
batch_input_bounds = []
lbs_states = input_batch_state.detach().numpy()
ubs_states = lbs_states
for i in range(batch_size):
input_bounds = {}
for j in range(self.action_dim + self.state_dim):
if j < self.state_dim:
input_bounds[j] = (float(lbs_states[i][j]), float(ubs_states[i][j]))
else:
input_bounds[j] = (float(-1), float(1))
batch_input_bounds.append(input_bounds)
return batch_input_bounds
def predict_best_action(self, state):
state=state.detach().cpu().numpy()
v1 = torch.zeros((1, self.state_dim+self.action_dim), dtype=torch.float32)
'''this function is used to get the best action based on current net'''
model = self.net.to('cpu')
input_bounds = {}
lb_state = state
ub_state = state
for i in range(self.action_dim + self.state_dim):
if i < self.state_dim:
input_bounds[i] = (float(lb_state[0][i]), float(ub_state[0][i]))
else:
input_bounds[i] = (float(-1), float(1))
with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as f:
# export neural network to ONNX
torch.onnx.export(
model,
v1,
f,
input_names=['state_action'],
output_names=['Q_value'],
dynamic_axes={
'state_action': {0: 'batch_size'},
'Q_value': {0: 'batch_size'}
}
)
# write ONNX model and its bounds using OMLT
write_onnx_model_with_bounds(f.name, None, input_bounds)
# load the network definition from the ONNX model
network_definition = load_onnx_neural_network_with_bounds(f.name)
# global optimality
formulation = ReluBigMFormulation(network_definition)
m = pyo.ConcreteModel()
m.nn = OmltBlock()
m.nn.build_formulation(formulation)
'''# we are now building the surrogate model between action and state'''
# constrain for battery,
if self.constrain_on:
m.power_balance_con1 = pyo.Constraint(expr=(
(-m.nn.inputs[7] * self.scaled_parameters[0])+\
((m.nn.inputs[8] * self.scaled_parameters[1])+m.nn.inputs[4]*self.scaled_parameters[5]) +\
((m.nn.inputs[9] * self.scaled_parameters[2])+m.nn.inputs[5]*self.scaled_parameters[6]) +\
((m.nn.inputs[10] * self.scaled_parameters[3])+m.nn.inputs[6]*self.scaled_parameters[7])>=\
m.nn.inputs[3] *self.scaled_parameters[4]-self.env.grid.exchange_ability))
m.power_balance_con2 = pyo.Constraint(expr=(
(-m.nn.inputs[7] * self.scaled_parameters[0])+\
(m.nn.inputs[8] * self.scaled_parameters[1]+m.nn.inputs[4]*self.scaled_parameters[5]) +\
(m.nn.inputs[9] * self.scaled_parameters[2]+m.nn.inputs[5]*self.scaled_parameters[6]) +\
(m.nn.inputs[10] * self.scaled_parameters[3]+m.nn.inputs[6]*self.scaled_parameters[7])<=\
m.nn.inputs[3] *self.scaled_parameters[4]+self.env.grid.exchange_ability))
m.obj = pyo.Objective(expr=(m.nn.outputs[0]), sense=pyo.maximize)
pyo.SolverFactory('gurobi').solve(m, tee=False)
best_input = pyo.value(m.nn.inputs[:])
best_action = (best_input[self.state_dim::])
return best_action
# define test function
if __name__ == '__main__':
args = Arguments()
'''here record real unbalance'''
reward_record = {'episode': [], 'steps': [], 'mean_episode_reward': [], 'unbalance': [],
'episode_operation_cost': []}
loss_record = {'episode': [], 'steps': [], 'critic_loss': [], 'actor_loss': [], 'entropy_loss': []}
args.visible_gpu = '2'
for seed in args.random_seed_list:
args.random_seed = seed
# set different seed
args.agent = AgentMIPDQN()
agent_name = f'{args.agent.__class__.__name__}'
args.agent.cri_target = True
args.env = ESSEnv()
args.init_before_training(if_main=True)
'''init agent and environment'''
agent = args.agent
env = args.env
agent.init(args.net_dim, env.state_space.shape[0], env.action_space.shape[0], args.learning_rate,
args.if_per_or_gae)
'''init replay buffer'''
buffer = ReplayBuffer(max_len=args.max_memo, state_dim=env.state_space.shape[0],
action_dim=env.action_space.shape[0])
'''start training'''
cwd = args.cwd
gamma = args.gamma
batch_size = args.batch_size # how much data should be used to update net
target_step = args.target_step # how manysteps of one episode should stop
repeat_times = args.repeat_times # how many times should update for one batch size data
soft_update_tau = args.soft_update_tau
agent.state = env.reset()
'''collect data and train and update network'''
num_episode = args.num_episode
args.train=True
args.save_network=True
wandb.init(project='MIP_DQN_experiments',name=args.run_name,settings=wandb.Settings(start_method="fork"))
wandb.config = {
"epochs": num_episode,
"batch_size": batch_size}
wandb.define_metric('custom_step')
if args.train:
collect_data = True
while collect_data:
print(f'buffer:{buffer.now_len}')
with torch.no_grad():
trajectory = agent.explore_env(env, target_step)
steps, r_exp = update_buffer(trajectory)
buffer.update_now_len()
if buffer.now_len >= 10000:
collect_data = False
for i_episode in range(num_episode):
critic_loss, actor_loss = agent.update_net(buffer, batch_size, repeat_times, soft_update_tau)
wandb.log({'critic loss':critic_loss,'custom_step':i_episode})
wandb.log({'actor loss': actor_loss,'custom_step':i_episode})
loss_record['critic_loss'].append(critic_loss)
loss_record['actor_loss'].append(actor_loss)
with torch.no_grad():
episode_reward, episode_unbalance, episode_operation_cost = get_episode_return(env, agent.act,
agent.device)
wandb.log({'mean_episode_reward': episode_reward,'custom_step':i_episode})
wandb.log({'unbalance':episode_unbalance,'custom_step':i_episode})
wandb.log({'episode_operation_cost':episode_operation_cost,'custom_step':i_episode})
reward_record['mean_episode_reward'].append(episode_reward)
reward_record['unbalance'].append(episode_unbalance)
reward_record['episode_operation_cost'].append(episode_operation_cost)
print(
f'curren epsiode is {i_episode}, reward:{episode_reward},unbalance:{episode_unbalance},buffer_length: {buffer.now_len}')
if i_episode % 10 == 0:
# target_step
with torch.no_grad():
agent._update_exploration_rate(args.explorate_decay,args.explorate_min)
trajectory = agent.explore_env(env, target_step)
steps, r_exp = update_buffer(trajectory)
wandb.finish()
if args.update_training_data:
loss_record_path = f'{args.cwd}/loss_data.pkl'
reward_record_path = f'{args.cwd}/reward_data.pkl'
with open(loss_record_path, 'wb') as tf:
pickle.dump(loss_record, tf)
with open(reward_record_path, 'wb') as tf:
pickle.dump(reward_record, tf)
act_save_path = f'{args.cwd}/actor.pth'
cri_save_path = f'{args.cwd}/critic.pth'
print('training data have been saved')
if args.save_network:
torch.save(agent.act.state_dict(), act_save_path)
torch.save(agent.cri.state_dict(), cri_save_path)
print('training finished and actor and critic parameters have been saved')