给定一些二维的点,问共线的点最多有多少个。
我们知道,一个点P和斜率k确定一条直线。所以我们可以用两层循环,外层循环枚举所有点P,内层循环遍历其他点计算斜率k,同时用hash记录每个k出现了多少次。但这样会存在一个问题那就是斜率k的精度问题,所以我们考虑不将k算成小数而是用最简分数表示k,为了化简分数,我们只需要将分子和分母除以二者最大公倍数即可。
有两个注意点:
-
内外层循环的两个点可能重合,此时应该跳过,跳过之前要用一个变量duplicate累积重复的次数,因为最终记录结果时这个点要算多次。
-
算斜率时分子分母可能为负号,注意 (-1)/2 和1/(-2)的斜率都是-0.5,所以为了避免这种情况我们统一对其取绝对值,最后将可能存在的负号添加在分母上。
辗转相除法求a和b的最大公约数时间复杂度为log(a+b),是很快的,不考虑这个时间。如果用的hash而不是treemap那么查询时间复杂度为O(1),那么总的复杂度就是两层循环,为O(n^2)。
我们知道,两个(不重合)的点也可以确定一条直线,所以我们可以(用一个两层循环)遍历所有点对,然后再遍历其他点看这三点是否在一条直线上,所以总的是个三层循环。
如何判断三点相等呢,假设三个点分别是(x1,y1), (x2,y2), (x3,y3)
;所以第一个点和第二个点可组成向量v1 = (x1-x2, y1-y2) = (dx1, dy1)
,所以第一个点和第三个点可组成向量v2=(x1-x3, y1-y3) = (dx2,dy2)
,要使三个点共线,那么向量v1
和v2
应该平行,而且要避免除法,所以有dx1 * dy2 - dy1 * dx2 = 0
(这个式子难理解的话可以转换成v1与v2的法向量垂直,两向量垂直的条件是內积为0)。
同样要注意重合点,另外第三层循环是从0开始的!
时间复杂度O(n^3),亲测确实比思路一慢一些。
class Solution {
private:
int gcd(int a, int b){
return b == 0 ? a : gcd(b, a % b);
}
public:
int maxPoints(vector<vector<int>>& points) {
int n = points.size();
int res = min(2, n);
for(int i = 0; i < n; i++){
int duplicate = 1;
map<pair<int, int>, int>mp;
for(int j = i+1; j < n; j++){
int dx = points[j][0] - points[i][0];
int dy = points[j][1] - points[i][1]; // 斜率k = dy/dx
if(dx == 0 && dy == 0) duplicate++;
else{
int neg = (dx < 0 && dy > 0) || (dx > 0 && dy < 0) ? -1 : 1;
dx = abs(dx); dy = abs(dy);
int g = gcd(dx, dy);
mp[{neg * dx / g, dy / g}]++;
}
}
res = max(res, duplicate);
for(auto it: mp) res = max(res, duplicate + it.second);
}
return res;
}
};
class Solution {
public:
int maxPoints(vector<vector<int>>& points) {
int n = points.size();
long long dx1, dy1, dx2, dy2;
int cur, res = min(2, n);
for(int i = 0; i < n; i++){
int duplicate = 1;
for(int j = i + 1; j < n; j++){
dx1 = points[i][0] - points[j][0];
dy1 = points[i][1] - points[j][1];
if(dx1 == 0 && dy1 == 0) duplicate++;
else{
cur = 0;
for(int k = 0; k < n; k++){ // 这里从0开始的!!
dx2 = points[i][0] - points[k][0];
dy2 = points[i][1] - points[k][1];
if(dx1*dy2 == dy1*dx2) cur++;
}
res = max(res, cur);
}
}
res = max(res, duplicate);
}
return res;
}
};