-
Notifications
You must be signed in to change notification settings - Fork 42
/
ens.py
37 lines (30 loc) · 1.57 KB
/
ens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
from ..utils import *
from ..attack import Attack
class ENS(Attack):
"""
ENS Attack
'Delving into Transferable Adversarial Examples and Black-box Attacks (ICLR 2017)'(https://arxiv.org/abs/1611.02770)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1.
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/ens/ensemble --attack ens --model='resnet18,resnet101,resnext50_32x4d,densenet121'
python main.py --input_dir ./path/to/data --output_dir adv_data/ens/ensemble --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., targeted=False, random_start=False,
norm='linfty', loss='crossentropy', device=None, attack='ENS', **kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.epoch = epoch
self.decay = decay