-
Notifications
You must be signed in to change notification settings - Fork 42
/
nifgsm.py
39 lines (32 loc) · 1.64 KB
/
nifgsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
from ..utils import *
from .mifgsm import MIFGSM
class NIFGSM(MIFGSM):
"""
NI-FGSM Attack
'Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks (ICLR 2020)'(https://arxiv.org/abs/1908.06281)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1.
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/nifgsm/resnet18 --attack nifgsm --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/nifgsm/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., targeted=False, random_start=False,
norm='linfty', loss='crossentropy', device=None, attack='NI-FGSM', **kwargs):
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device, attack)
def transform(self, x, momentum, **kwargs):
"""
look ahead for NI-FGSM
"""
return x + self.alpha*self.decay*momentum