-
Notifications
You must be signed in to change notification settings - Fork 23
/
abelian.tex
774 lines (737 loc) · 35.6 KB
/
abelian.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
\chapter{Abelian Groups}
\label{ch:abelian}
\section{Brief overview of the chapter}
\section{Abelian groups}
\label{sec:abelian-groups}
%% Remove/modify once the rest of the section is being refactored with
%% new notation/style for identity types.
Recall that given a pointed type $X$, we coerce it silently to its
underlying unpointed type $X_\div$ whenever this coercion can be
inferred from context. For example, given a group $G$, the type
$\BG\weq \BG$ can not possibly mean anything but
$\BG_\div\simeq \BG_\div$ as the operator ``$\weq$'' acts on bare
types. To refer to the type of pointed equivalences (that is the
pointed functions whose underlying functions are equivalences), we
shall use the notation $\BG \ptdweto \BG$.%
\subsection{Center of a group}
\label{sec:center-group}
\begin{definition}
Let $G$ be a group. The {\em center} of $G$, denoted
$\grpcenter(G)$, is the group
$\Aut_{(\BG_\div\eqto\BG_\div)}(\refl{\BG_\div})$.%
\marginnote{%
We work transparently through the equivalence
\begin{displaymath}
(\BG_\div=\BG_\div) \weq (\BG \weq \BG)
\end{displaymath}
so that $\id_{\BG_\div}$ is freely used in place of
$\refl {\BG_\div}$ when convenient.%
}%
\end{definition}
There is a natural map
$\ev_{\shape_G} : (\BG_\div\eqto\BG_\div) \to \BG_\div$ defined by
$\ev_{\shape_G}(\varphi)\defequi \varphi(\shape_G)$, where the path
$\varphi$ is coerced to a function through univalence. In particular,
$\ev_{\shape_G}(\refl{\BG_\div}) \jdeq \shape_G$. It makes the
restriction of this map to the connected component of
$\refl{\BG_\div}$ a pointed map. In other words, it defines a group
homomorphism
\begin{displaymath}
\grpcenterinc G : \Hom(\grpcenter(G), G).
\end{displaymath}
such that $\B \grpcenterinc G \defequi \ev_{\shape_G}$. We will now
justify the name {\em center} for $\grpcenter(G)$, and connect it to
the notion of center for abstract groups in ordinary mathematics. The
homomorphism $\grpcenterinc G$ induces a homomorphism of abstract
groups from $\abstr(\grpcenter(G))$ to $\abstr(G)$. By induction on
$p:\refl{\BG_\div} \eqto \varphi$ for
$\varphi:\BG_\div \eqto \BG_\div$, one proves that
$\ap{\B \grpcenterinc G}(p) = p(\shape_G)$: indeed, this is true when
$p\jdeq \refl {\refl{\BG_\div}}$. One proves furthermore, again by
induction on $p:\refl{\BG_\div} \eqto \varphi$, that
$\ap \varphi = (q\mapsto \inv{p(\shape_G)} q p(\shape_G))$. In
particular, when $\varphi \jdeq \refl{\BG_\div}$, it shows that for
every $p:\refl{\BG_\div}\eqto\refl{\BG_\div}$, the following proposition
holds:
\begin{displaymath}
\prod_{g:\USymG }p(\shape_G) g = g p(\shape_G)
\end{displaymath}
In other words, $\abstr{(\grpcenterinc G)}$ maps elements of
$\abstr(Z(G))$ to elements of $\abstr(G)$ that commute with every
other elements. (The set of these elements is usually called the
center of the group $\abstr(G)$ in ordinary group theory.)
\begin{lemma}
\label{lemma:center-is-subgroup}%
The map $\B \grpcenterinc G$ is a \covering over $\BG$.
\end{lemma}
\begin{proof}
One wants to prove the proposition
$\isset(\inv{(\B\grpcenterinc G)}(x))$ for each $x:\BG$. By
connectedness of $\BG$, it reduces to showing the proposition only
at $x\jdeq \shape_G$. However,
\begin{displaymath}
\inv{(\B\grpcenterinc G)}(\shape_G) \defequi \sum_{\varphi:{\B\grpcenter(G)}}{\shape_G \eqto \varphi(\shape_G)}
\end{displaymath}
Recall that $\B\grpcenter(G)$ is the connected component of
$\refl{\BG_\div}$ in $\BG_\div \eqto \BG_\div$. In particular, if
$(\varphi,p)$ and $(\psi,q)$ are two elements of the type on the
right hand-side above, % their identity type
% $(\varphi,p)\eqto(\psi,q)$ is equivalent to their identity type in
% $\BG_\div \eqto \BG_\div$, or in other words
the characterization of identity types in sum types gives an
equivalence:
\begin{displaymath}
((\varphi,p) \eqto (\psi,q)) \equivto \sum_{\pi:\varphi\eqto\psi}\pi(\shape_G) p = q.
\end{displaymath}
We shall prove that the type on the right is a proposition, and it goes as
follows:
\begin{enumerate}
\item for $\pi:\varphi\eqto\psi$, the type $\pi(\shape_G) p = q$ is a
proposition; hence $\sum_{\pi:\varphi\eqto\psi}\pi(\shape_G) p = q$ is a
subset of the set $\varphi \eqto \psi$, so for elements $(\pi,!)$ and
$(\pi',!)$ of the subset, we have to prove $\pi=\pi'$,
% \item for all $x:\BG$, $\varphi(x)=\psi(x)$ is a set, hence for
% $\pi,\pi':\varphi=\psi$, the type $\pi=\pi'$ is a proposition,
\item because $\pi=\pi'$ is a proposition, by connectedness of $\BG$, it is
enough to prove $\pi(\shape_G)=\pi'(\shape_G)$,
\item finally the propositional condition on $\pi$ and $\pi'$ allows us to
conclude that $\pi(\shape_G)= q\inv p = \pi'(\shape_G)$.
\end{enumerate}
\end{proof}
\begin{corollary}
\label{lemma:center-inc-inj-on-paths}%
The induced map
$\abstr {(\grpcenterinc G)}: \abstr(\grpcenter(G)) \to \abstr(G)$ is
injective.
\end{corollary}
The following result explains how every element of the ``abstract
center'' of $G$ is picked out by $\abstr{(\grpcenterinc G)}$.
\begin{lemma}
\label{lemma:center-inc-surj-on-paths}%
Let $g:\USymG$ and suppose that $gh=hg$ for every
$h:\USymG$. The fiber $\inv{(\ap {\B\grpcenterinc G})}(g)$ contains
an element.
\end{lemma}
\begin{proof}
One must construct an element $\hat g:\refl{\BG_\div} = \refl{\BG_\div}$ such
that $g=\hat g(\shape_G)$. We shall use function extensionality and produce an
element $\hat g(x):x\eqto x$ for all $x:\BG$ instead. Note that $x\eqto x$ is
a set, and that connectedness of $\BG$ is not directly applicable here. We
will use a technique that has already proven useful in many situations in the
book, along the lines of the following sketch:
\begin{enumerate}
\item for a given $x:\BG$, if such a $\hat g(x):x\eqto x$ existed, it would
produce an element of the type $T(\hat g(x))$ for a carefully chosen type
family $T$,
\item aim to prove $\iscontr(\sum_{u:x\eqto x}T(u))$ for any $x:\BG$,
\item this is a proposition, so connectedness of $\BG$ can be applied
and only $\iscontr(\sum_{u:\USymG}T(u))$ needs to be proven,
\item hopefully, $\sum_{u:\USymG}T(u)$ reduces to an obvious
singleton type.
\end{enumerate}
Here, for any $x:\BG$, we define the type family $T: (x\eqto x) \to \UU$
by
\begin{displaymath}
T(q) \defequi \prod_{p:\shape_G\eqto x} (pg=qp).
\end{displaymath}
And we claim that $\sum_{q:x\eqto x}T(q)$ is contractible for any
$x:\BG$. Because this is a proposition, one only need to check that it holds
on one point of the connected type $\BG$, say $x\jdeq \shape_G$. We consider
the following composition of equivalences:
\begin{displaymath}%
\begin{aligned}
\sum_{q:\USymG}T(q) &\jdeq
\sum_{q:\USymG}\prod_{p:\USymG}(pg=qp)
\\
&\equivto \sum_{q:\USymG}\prod_{p:\USymG}(g=q)
\\
&\equivto \sum_{q:\USymG}\USymG\to (g=q)
\\
&\equivto \sum_{q:\USymG}\Trunc{\USymG}\to (g=q)
\\
&\equivto \sum_{q:\USymG} (g=q)
\\
&\equivto 1
\end{aligned}
\end{displaymath}%
% \marginnote[-10\baselineskip]{%
In that composition, the first equivalence is using that $g$ commutes with
every other element $p:\USymG$, so that $pg \inv p = g$. The second
equivalence acknowledges the fact that the codomain $(g=q)$ does not depend on
$p$ anymore, so that the dependent function type inside the sum is a simple
function type. The third equivalence uses the universal property of
propositional truncation under the sum. The fourth equivalence is the
evaluation at $\trunc{\refl {\shape_G}}$ under the sum. The last equivalence
is the contractibility of singleton types.%
% }%
We have just shown that for all $x:\BG$, the type $\sum_{q:x\eqto x}T(q)$ is
contractible. We define now $\hat g(x):x\eqto x$ as the chosen center of
contraction of that type. More precisely, by connectedness of $\BG$, the
inverse $\inv\varphi$ of the exhibited equivalence
$\varphi:\sum_{q:\USymG}T(q) \equivto 1$ produces a dependent function of
type $\prod_{x:\BG}1\equivto \sum_{q: x\eqto x}T(q)$, and $\hat g$ is the
pointwise evaluation at the unique element $\triv$ of $1$. In particular,
$\hat g (\shape_G) = \inv\varphi (\triv) = g$ as wanted.
\end{proof}
Together, \cref{lemma:center-inc-inj-on-paths} and
\cref{lemma:center-inc-surj-on-paths} show that
$\abstr{(\grpcenterinc G)}$ establishes an equivalence
\begin{equation}
%\left( \id_{\BG_\div} = \id_{\BG_\div} \right)
\USym \grpcenter(G) \equivto \sum_{g:\USymG}\prod_{h:\USymG}gh=hg
\end{equation}
In yet other words,
$\B \grpcenter(G)\defequi \conncomp{(\BG_\div \eqto \BG_\div)}
{\refl{\BG_\div}}$ is (equivalent to) the classifying type of a
group whose abstract group is the ``abstract center'' of $\abstr(G)$.
The following lemma is then immediate:
\begin{lemma}
\label{def:abelian-groups}%
A group $G$ is {\em abelian} if and only if $\grpcenterinc G$ is an
isomorphism of groups.
\end{lemma}
%% TRANSFORM AS REMARK ON ALTERNATIVE DEF:
%%
% Directly from the definition and the computations above, one see that
% a group $G$ is abelian if and only if it satisfies the following
% property:
% \begin{displaymath}
% \prod_{g,h:\USymG}gh=hg
% \end{displaymath}
% which is the ordinary definition of an abstract abelian group in
% ordinary group theory.
\begin{remark}
In the style of this book, we could have
used~\cref{def:abelian-groups} directly as the definition of abelian
groups. However, the definition of $\grpcenterinc G$ would have been
too intricate to give properly as early as~\cref{def:abgp}.
\end{remark}
\subsection{Universal \covering and simple connectedness}
\label{sec:univ-cover-simple}
%% TO BE MOVED?
%% CHANGE THAT:
% \begin{itemize}
% \item for any pointed type $X$, the pointed type $\loopspace X$ is
% defined as $(\pt_X = \pt_X)$ with designated point $\refl {\pt_X}$,
% \item the {\em abstract fundamental group} $\fundgrp(X)$ of a pointed type
% $X$ is the set truncation $\setTrunc{\loopspace X}$,
% \item equivalently, in presence of groupoid truncations
% $\grpdTrunc{\blank}$, the {\em (concrete) fundamental group}
% $\fundgrpd(X)$ of a pointed type $X$ is the pointed type
% $\conncomp{\left(\grpdTrunc X\right)}{\grpdtrunc{\pt_X}}$,
% \item a simply connected type is a connected pointed type $X$ such
% that $\pi_1(X)$ (equivalently $\fundgrpd(X)$) is contractible.
% \end{itemize}
%%
Let us say that a pointed type $(A,a)$ is {\em simply connected} when
both $A$ and $a\eqto a$ are connected types.
\begin{definition}
\marginnote{%
The definition of the universal \covering is reminiscent of the notion of
connected component: instead of selecting elements that are merely equal to
a fixed element $a$, the universal \covering selects elements together with mere
witnesses of the equality with $a$.%
}%
Let $A$ be a type and $a:A$ an element. The {\em universal \covering} of $A$ at
$a$ is the type
\begin{displaymath}
\univcover A a \defequi \sum_{x:A}\setTrunc{a\eqto x}.
\end{displaymath}
\end{definition}
When needed, we will consider $\univcover A a$ as a pointed type, with
distinguished point $(a,\settrunc{\refl a})$. Note that when $A$ is a
groupoid, then the set truncation is redundant and the universal \covering
of $A$ at $a$ is then the singleton at $a$. In particular, groupoids
have contractible universal \coverings.
The identity types in $\univcover A a$ can be understood easily once
we introduce the following function for elements $x,y,z:A$:
\begin{displaymath}
\blank\cdot\blank : \setTrunc{y\eqto z} \times \setTrunc{x\eqto y} \to \setTrunc{x\eqto z}.
\end{displaymath}
It is defined as follows: given $\chi : \setTrunc{y\eqto z}$, we want to define
$\chi\cdot\blank$ in the set $\setTrunc{x\eqto y} \to \setTrunc{x\eqto z}$,
hence we can suppose $\chi\jdeq\settrunc q$ for some $q:y\eqto z$; now given
$\pi:\setTrunc{x\eqto y}$, one want to define $\settrunc q \cdot \pi$ in the set
$\setTrunc{x\eqto z}$, hence one can suppose $\pi\jdeq\settrunc p$ for some
$p:x\eqto y$; finally, we define
\begin{displaymath}
\settrunc{q} \cdot \settrunc{p} \defequi \settrunc{q\cdot p}.
\end{displaymath}
Then one proves, by induction on $p:x\eqto y$, that
$\trp[\setTrunc{a\eqto\blank}]p$ is equal to the function
$\alpha\mapsto \settrunc{p}\cdot \alpha$. In particular, there exists an
equivalence from the type of path between two points $(x,\alpha)$ and
$(y,\beta)$ of the universal \covering $\univcover A a$ to sum type, analagous to
the identification of paths in sum types:
\begin{equation}
\label{eq:id-types-universal-cover}%
\left((x,\alpha) \eqto (y,\beta)\right)
\equivto \sum_{p:x\eqto y}\settrunc{p} \cdot \alpha = \beta.
\end{equation}
This description allows us to prove the following lemma.
\begin{lemma}
\label{lemma:universal-cover-simply-connected}%
Let $A$ be a type and $a:A$ an element. The universal \covering
$\univcover A a$ is simply connected.
\end{lemma}
\begin{proof}
First, we prove that $\univcover A a$ is connected. It has a point
$(a,\settrunc{\refl a})$ and, for every $(x,\alpha):\univcover A a$, one wants
$\Trunc{(a,\settrunc{\refl a}) \eqto (x,\alpha)}$. This is proposition, hence
a set, so that one can suppose $\alpha \jdeq \settrunc p$ for a path
$p:a\eqto x$. Now, the proposition
$\settrunc p \cdot \settrunc {\refl a} = \settrunc p$ holds. So one can use
the inverse of the equivalence of~\cref{eq:id-types-universal-cover} to
produce a path $(a,\settrunc{\refl a}) \to (x,\alpha)$.
Next, we prove that $(a,\settrunc{\refl a}) \eqto (a,\settrunc{\refl a})$ is
connected. One uses again the equivalence
of~\cref{eq:id-types-universal-cover} to produce a composition of
equivalences:
\begin{align*}
\left((a,\settrunc{\refl a}) \eqto (a,\settrunc{\refl a})\right)
&\equivto \sum_{p:a=a}\left( \settrunc p = \settrunc{\refl a} \right)
\\
&\equivto \sum_{p:a=a}\left( \Trunc {p \eqto \refl a} \right)
\end{align*}
In other words, $(a,\settrunc{\refl a}) \eqto (a,\settrunc{\refl a})$ is
equivalent to the connected component of $\refl a$ in $a\eqto a$. In
particular, it is connected.
\end{proof}
\begin{lemma}
\label{lemma:universal-cover-is-universal}
Let $A$ be a type pointed at $a:A$. The projection $\fst : \univcover A a \ptdto A$ is a universal \covering{} in the sense of~\cref{def:univ-cover}.
\end{lemma}
\begin{proof}
Let $f : B \ptdto A$ be a pointed \covering{}. We need to show that the type of pointed functions $\varphi : \univcover A a \ptdto B$ together
with an identification $q : \fst \eqto f \varphi$ is contractible. However, such a $\varphi$ is uniquely determined by the family of functions
$\varphi_x : \setTrunc{ a \eqto x } \to \inv f (x)$ for $x : A$. For each $x : A$, $\inv f (x)$ is a set, so $\varphi_x$ is uniquely
determined by $\varphi_x \circ \settrunc\blank : a \eqto x \to \inv f (x)$. By induction on $p : a \eqto x$, we prove that
$\varphi_x (\settrunc p) = \trp [\inv f] p (b , f_0) $ where $b$ is the element pointing $B$ and $f_0$ the path pointing $f$. Indeed, for
$p \jdeq \refl a$, we get $\varphi_a (\settrunc {\refl a}) \jdeq (\varphi (\settrunc {\refl a}) , q_{\settrunc {\refl a}}) = (b , f_0)$
because $q$ is an indentification $\fst \eqto f \varphi$ of pointed functions.
\end{proof}
\subsection{Abelian groups and simply connected $2$-types}
\label{sec:abel-groups-simply}
We will now give an alternative characterization of the type of
abelian groups, more in line with the geometrical intuition we are
trying to build in this chapter. Recall that a type $A$ is called a
{\em $2$-truncated type}, or {\em $2$-type} for short, when the
identity type $x\eqto y$ is a groupoid for every $x,y:A$.
%% OLD
%%
% We also settle some notations that should ease the reading of the
% proof of the next result. For any type $A:\UU$, we define
% \begin{displaymath}
% \univcover \UU A \defequi \sum_{X:\UU}\setTrunc{A=X}.
% \end{displaymath}
% This is the analog of the connected component of $\UU$ at $A$ but with
% a set truncation involved. In particular, $\univcover \UU A$ is {\em
% not} a subtype of $\UU$. To understand identity types better in this
% type $\univcover \UU A$, let us introduce the following function for
% any types $X,Y,Z:\UU$:
% \begin{displaymath}
% \blank\cdot\blank : \setTrunc{Y=Z} \times \setTrunc{X=Y} \to \setTrunc{X=Z}.
% \end{displaymath}
% It is defined as follows: given $a: \setTrunc{Y=Z}$, we want to define
% $a\cdot\blank$ in the set $\setTrunc{X=Y} \to \setTrunc{X=Z}$, hence
% we can suppose $a\jdeq\settrunc p$ for some $p:Y=Z$; now given
% $b:\setTrunc{X=Y}$, one want to define $\settrunc p \cdot b$ in the
% set $\setTrunc{X=Z}$, hence one can suppose $b\jdeq\settrunc q$ for some
% $q:X=Y$; finally, we define
% \begin{displaymath}
% \settrunc{q} \cdot \settrunc{p} \defequi \settrunc{q\cdot p}.
% \end{displaymath}
% Then one proves, by induction on $\varphi:X=Y$, that
% $\trp[\setTrunc{A=\blank}]\varphi$ is equal to the function
% $a\mapsto \settrunc{\varphi}\cdot a$. In particular, one gets an
% equivalence between the type $(X,a) = (Y,b)$ of identities between
% elements $(X,a), (Y,b): \univcover\UU A$ and the type
% $\sum_{\varphi:X=Y}\settrunc{\varphi} \cdot a = b$.
% From this, we deduce two important properties of $\univcover\UU A$:
% \begin{itemize}
% \item The type $\univcover\UU A$ is connected. Indeed, for any
% $(X,a):\univcover \UU A$, one wants to prove the proposition
% $\Trunc{(A,\refl A) = (X,a)}$. A proposition being in particular a
% set, one can suppose that $a\jdeq \settrunc p$ for some
% $p:A=X$. Then
% \begin{displaymath}
% !:\settrunc p \cdot \settrunc{\refl A} = \settrunc{p},
% \end{displaymath}
% and the pair $(p,!)$ is an element of $(A,\refl A) = (X,a)$ whose
% propositional truncation allows us to conclude.
% \item Consider $\univcover \UU A$ as pointed at
% $(A,\settrunc{\refl A})$. Then $\univcover\UU A$ is simply
% connected. Indeed, one has an equivalence:
% \begin{displaymath}
% \loopspace {\univcover\UU A}
% \weq \sum_{\varphi:A=A}\left( \settrunc{\varphi} = \settrunc{\refl A}\right)
% \weq \sum_{\varphi:A=A}\Trunc{\varphi = \refl A}
% \end{displaymath}
% which proves that $\loopspace {\univcover\UU A}$ is the connected
% component of $\refl A$ in $A=A$.
% \end{itemize}
\begin{theorem}\label{thm:abelian-groups-weq-sc2types}%
The type $\typeabgroup$ of abelian groups is equivalent to the type
of pointed simply connected $2$-types.
\end{theorem}
\begin{proof}
Define the map $\BB : \typeabgroup \to \UUp$ by
$\BB G\defequi \univcover{\UU}{\BG_\div}$.\footnote{%
This is slightly misleading: If $G$ is an abelian group in
universe $\UU$, then this definition makes $\BB G$ a pointed type
in a successor universe, which is not what we want. The solution
is to note that $\BB G$ is a locally $\UU$-small type, which as a
connected type is the image of the base point map
$\pt : \bn{1} \to \BB G$, so it's an essentially $\UU$-small type
by the Replacement~\cref{pri:replacement}. So really, $\BB G$
should be the $\UU$-small type equivalent to
$\univcover{\UU}{\BG_\div}$.} Proving that $\BB G$ is a $2$-type
is equivalent to proving the proposition $\isset(p\eqto q$) for all
$p,q:x\eqto y$ and all $x,y:\BB G$. One can then use connectedness
of $\BB G$ and restrict to only show that $p\eqto q$ is a set for
all path
$p,q:(\BG_\div,\settrunc{\id_{\BG_\div}})\eqto ({\B
G}_\div,\settrunc{\id_{\BG_\div}})$. Recall that there is a
canonical equivalence of type:
\begin{equation}\label{eq:}
\left(
(\BG_\div,\settrunc{\id_{\BG_\div}})\eqto (\BG_\div,\settrunc{\id_{\BG_\div}})
\right)
\equivto
\sum_{r:\BG_\div \eqto \BG_\div}\trp r (\settrunc{\id_{\BG_\div}}) \eqto \settrunc{\id_{\BG_\div}}
\end{equation}
Under that equivalence, $p$ and $q$ can be rewritten as $(p_0,!)$
and $(q_0,!)$ with $p_0,q_0 : \BG_\div\eqto \BG_\div$ and the
elements $!$ are proofs of the proposition
$\trp {p_0} {(\settrunc{\id_{\BG_\div}})} =
\settrunc{\id_{\BG_\div}}$ and
$\trp {q_0} {(\settrunc{\id_{\BG_\div}})} =
\settrunc{\id_{\BG_\div}}$ respectively. As a consequence, the
proposition $\isset(p\eqto q)$ is equivalent to the proposition
$\isset(p_0\eqto q_0)$. As part of the definition of the group $G$,
the type $\BG_\div$ is a $1$-type, hence $\BG_\div\eqto \BG_\div$ is
also a $1$-type through univalence. This means that
$\isset(p_0\eqto q_0)$ holds.
So one gets a map, denoted again $\BB$ abusively,
\begin{displaymath}
\BB : \typeabgroup \to \UUsctwo
\end{displaymath}
where the codomain $\UUsctwo$ is the type of pointed simply
connected $2$-types, that is
\begin{displaymath}
\UUsctwo \defequi \sum_{(A,a):\UUp}\left(
\isconn(A) \times \isconn(a\eqto a) \times \isgrpd(a\eqto a)
\right)
\end{displaymath}
We shall now provide an inverse for this map. Given a pointed simply
connected $2$-type $(A,a)$, one can construct a group, denoted
$\loopspace (A,a)$, with classifying type:
\begin{displaymath}
\B\loopspace (A,a) \defequi (a\eqto a,\refl a).
\end{displaymath}
Indeed, this pointed type is connected because $(A,a)$ is simply
connected, and it is a $1$-type because $A$ is a $2$-type. Moreover,
$\loopspace (A,a)$ is abelian. To see it, let us use the bare
definition of abelian groups (cf.\ ~\cref{def:abgp}). We shall then
prove that for all elements $g,h:\refl a \eqto \refl a$, the
proposition $gh=hg$ holds. This property holds in even more
generality and is usually called ``Eckmann-Hilton's argument''. It
goes as follows: for $x,y,z:A$, for $p,q:x\eqto y$ and
$r,s:y \eqto z$ and for $g:p\eqto q$ and $h:r\eqto s$, one prove
\begin{equation}
\label{eq:horizontal-comp}%
\ap{\blank\cdot q}(h) \cdot \ap{r\cdot\blank}(g)
= \ap{s\cdot \blank}(g) \cdot \ap{\blank\cdot p}(h).
\end{equation}
This equality takes place in $r\cdot p \eqto s\cdot q$ and is better
represented by the diagram in~\cref{fig:horizontal-comp}.
\begin{figure}[h]
\begin{sidecaption}
{%
Visual representation of~\cref{eq:horizontal-comp}. The vertical
dotted lines denotes composition.%
}[fig:horizontal-comp]
\centering%
\begin{tikzpicture}[node distance=4em, baseline=(basenode.base)]
\node[] (x1) {$x$};
\node[right of=x1] (y1) {$y$};
\node[right of=y1] (z1) {$z$};
\node[below of=x1] (x2) {$x$};
\node[right of=x2] (y2) {$y$};
\node[right of=y2] (z2) {$z$};
\draw[bend left] (x1) to node[above] (p) {\footnotesize$p$} (y1);
\draw[bend right] (x1) to node[below] (q1) {\footnotesize$q$} (y1);
\draw[bend left] (y1) to node[above] (r1) {\footnotesize$r$} (z1);
\draw[bend left] (y2) to node[above] (r2) {\footnotesize$r$} (z2);
\draw[bend right] (y2) to node[below] (s) {\footnotesize$s$} (z2);
\draw[bend right] (x2) to node[below] (q2) {\footnotesize$q$} (y2);
\draw[double, shorten >=.1em, shorten <=.1em] (p) to node[right] {\footnotesize$g$} (q1);
\draw[double, shorten >=.1em, shorten <=.1em] (r2) to node[right] {\footnotesize$h$} (s);
\draw[gray,densely dotted] (x1) to node (basenode){} (x2) (y1) to (y2) (z1) to (z2);
\end{tikzpicture}%
=%
\begin{tikzpicture}[node distance=4em, baseline=(basenode.base)]
\node[] (x1) {$x$};
\node[right of=x1] (y1) {$y$};
\node[right of=y1] (z1) {$z$};
\node[below of=x1] (x2) {$x$};
\node[right of=x2] (y2) {$y$};
\node[right of=y2] (z2) {$z$};
\draw[bend left] (x2) to node[above] (p) {\footnotesize$p$} (y2);
\draw[bend right] (x2) to node[below] (q1) {\footnotesize$q$} (y2);
\draw[bend right] (y2) to node[above] (r1) {\footnotesize$s$} (z2);
\draw[bend left] (y1) to node[above] (r2) {\footnotesize$r$} (z1);
\draw[bend right] (y1) to node[below] (s) {\footnotesize$s$} (z1);
\draw[bend left] (x1) to node[above] (p2) {\footnotesize$p$} (y1);
\draw[double, shorten >=.1em, shorten <=.1em] (p) to node[right] {\footnotesize$g$} (q1);
\draw[double, shorten >=.1em, shorten <=.1em] (r2) to node[right] {\footnotesize$h$} (s);
\draw[gray,densely dotted] (x1) to node (basenode){} (x2) (y1) to (y2) (z1) to (z2);
\end{tikzpicture}%
\end{sidecaption}
\end{figure}%
%
One prove such a result by induction on $h$. Indeed, when
$h\jdeq \refl r$, then both sides of the equation reduces through
path algebra to $\ap {r\cdot\blank} (g)$. Now we are interested in
this result when $x,y,z$ are all equal to $a$ by definition, and $p,q,r,s$
are all equal to $\refl a$ by definition. In that case, one has that
$\ap {\refl a\cdot \blank}$ and $\ap {\blank\cdot\refl a}$ both act
trivially, and the equation becomes: $h\cdot g = g \cdot h$.
One still has to prove that the function $\loopspace$ is an inverse
for $\BB$. Given an abelian group $G$, the proof
of~\cref{lemma:universal-cover-simply-connected} gives an
equivalence between $\B\loopspace {(\BB G)}$ and the connected
component of $\refl {\BG_\div}$ in $\BG_\div\eqto \BG_\div$. By
definition, this is the classifying type of $\grpcenter(G)$. Being
abelian, $G$ is isomorphic to its center
(\cref{def:abelian-groups}), and so it yields an element of
$\loopspace {(\BB G)} \eqto_{\typegroup} G$. %
\marginnote[-1.5\baselineskip]{%
If $X \ptdweto Y$ denote the type of pointed equivalences between
pointed types $X,Y:\UUp$, then the univalence axiom implies that
there is an equivalence
\begin{displaymath}
(X=Y) \weq (X \ptdweto Y).
\end{displaymath}%
}%
Conversely, take a pointed simply connected $2$-type $(A,a)$. We
want to produce a pointed equivalence
$\Phi : (A,a) \equivto \BB (\loopspace {(A,a)}) $. One should first
notice that the function
\begin{fullwidth}
\begin{equation}
\label{eq:loopspace-A-abelian}%
\ev^a_{refl a}{\B\loopspace \left( \BB (\loopspace {(A,a)}) \right)}
\jdeq \conncomp{((a\eqto a)\eqto (a\eqto a))}{\refl{a\eqto a}} \to (a\eqto a,\refl a).
\end{equation}
\end{fullwidth}
that maps a path
\begin{displaymath}
(p,!):(a\eqto a,\settrunc{\refl{a\eqto a}})\eqto (a\eqto a,\settrunc{\refl{a\eqto a}})
\end{displaymath}
to the evaluation $p(\refl a): a\eqto a$ is an equivalence, because
$\loopspace (A,a)$ is an abelian group.
%% OLD MATERIAL, can still be useful.
%%
% We will now provide
% \begin{displaymath}
% \Phi : \BB {(\loopspace {(A,a)})} \ptdto (A,a)
% \end{displaymath}
% such that $\loopspace(\Phi)$ is the previous equivalence.
% To be able to
% express $\Phi$, we need a small gadget about truncations of
% function
% types: for types $X,Y:\UU$, given an element
% $f_0:\setTrunc{X\to Y}$, one constructs a map
% $\lceil f_0 \rceil : \setTrunc X \to \setTrunc Y$; the type of
% $\lceil f_0 \rceil$ being a set, one might as well suppose that
% $f_0 \jdeq \settrunc f$ for some $f:X\to Y$; then we set
% $\lceil f_0 \rceil (\settrunc x) = \settrunc{f(x)}$, which
% suffices
% in order to define $\lceil f_0 \rceil$ entirely because its
% codomain
% $\setTrunc Y$ is a set. If we assume the axiom of
% choice\footnote{What is the status of AC in this book??}, then
% $\lceil \blank \rceil$ is injective when $Y$ is a set.
%%
We will now define a pointed map
$\Phi : (A,a) \ptdto \BB (\loopspace {(A,a)})$, and prove
subsequently that this is an equivalence. Let $T : A \to \UU$ be the
type family (of sets) define by
\begin{displaymath}
T(a') \defequi \sum_{\alpha:\setTrunc{(a\eqto a)\weq(a\eqto a')}}
\prod_{p:a\eqto a'}\alpha=\settrunc {p\cdot\blank}
\end{displaymath}
We claim that $T(a')$ is contractible for all $a':A$. By
connectedness of $A$, it is equivalent to show that $T(a)$ is
contractible. However,
\begin{align*}
T(a)
&\jdeq \sum_{\alpha:\setTrunc{(a\eqto a)\equivto(a\eqto a)}}\prod_{p:a\eqto a}
\alpha = \settrunc {p\cdot \blank}
\\
&\weq \sum_{\alpha:\setTrunc{(a\eqto a)\equivto(a\eqto a)}} \alpha = \settrunc{\id_{a=a}}
\\
&\weq 1
\end{align*}
Then, we define $\Phi (a')$ to be the element
$(a\eqto a', \kappa_{a'}):\univcover \UU {a\eqto a}$ where
$\kappa_{a'}$ is the first projection of the center of contraction
of $T(a')$. In particular, following the chain of equivalences
above, $\Phi(a)$ is defined as
$(a\eqto a, \settrunc{\refl {a\eqto a}})$, hence $\Phi(a)$ is
trivially pointed by a reflexivity path. To verify that $\Phi$, thus
defined, is an equivalence, one can use connectedness of
$\BB(\loopspace (A,a))$ and only check that
$\inv\Phi(a\eqto a,\settrunc{\refl {a\eqto a}})$ is
contractible. However, there is a canonical equivalence of type:
\begin{displaymath}
\inv\Phi(a\eqto a,\settrunc{\refl {a\eqto a}}) \equivto \sum_{a':A}
\sum_{\varphi : (a\eqto a) \equiv (a\eqto a')}\settrunc{\varphi} = \kappa_{a'}.
\end{displaymath}
So we will show that the type on the right hand-side is
contractible. For an element $a':A$ together with
$\varphi: (a\eqto a) \equiv (a\eqto a')$ such that the proposition
$\settrunc \varphi = \kappa_{a'}$ holds, a path between
$(a,\id_{a\eqto a},!)$ and $(a',\varphi,!)$ consists of a path
$p:a\eqto a'$ and a path $q:(x\mapsto p x) \eqto \varphi$. We have a
good candidate for $p$, namely $p\defequi \varphi(\refl
a):a\eqto a'$. However we don't have quite $q$ yet. Consider, for any
$a':A$, the function
\begin{displaymath}
\ev_{\refl a}^{a'} :
\left(
(a\eqto a, \settrunc{\refl{a\eqto a}} ) =
(a\eqto a', \kappa_{a'} )
\right)
\to (a\eqto a')
\end{displaymath}
defined as $(\psi,!) \mapsto \psi(\refl a)$. Note that
$\ev_{\refl a}^{a}$ is precisely the equivalence
$\B\loopspace{(\BB\loopspace(A,a))}_\div \equiv (a=a)$ described
in~\cref{eq:loopspace-A-abelian}. Hence, by connectedness of $A$,
one gets that the proposition $\isEq(\ev_{\refl a}^{a'})$ holds for
all $a':A$. In particular, because the propositions
$\settrunc \varphi = \kappa_{a'}$ and
$\settrunc {p\cdot\blank} = \kappa_{a'}$ holds, one gets elements
$(\varphi,!)$ and $(x\mapsto px,!)$ in the domain of
$\ev_{\refl a}^{a'}$. Their images $\ev_{\refl a}^{a'}(\varphi,!)$
and $\ev_{\refl a}^{a'}(x\mapsto px,!)$ are both identifiable with
$p$. By composition, we obtain a path
$(x\mapsto px,!)\eqto (\varphi,!)$ in the domain. The first
component provide the path $q:(x\mapsto px) \eqto \varphi$ that we
wanted.
\end{proof}
\subsection{Higher deloopings}
The function $\BB$ defined in the proof
of~\cref{thm:abelian-groups-weq-sc2types} provides a delooping of
$\BG$ whenever $G$ is abelian. That is, there is an identification
$\loops \BB G \eqto \BG$. A systematic way of obtaining such
deloopings has been developed by David W\"{a}rn\footcite{Warn-EM},
that can be applied here to give an alternative definition of $\BB G$,
and to obtain further deloopings of it.
\begin{definition}[W\"{a}rn]
Given a pointed type $X$, the type of {\em $X$-torsors} is
\begin{displaymath}
TX \defequi \sum_{Y : \UU} \Trunc{Y} \times \left( \prod_{y:Y}(Y,y) \ptdweto X \right).
\end{displaymath}
The type of {\em pointed $X$-torsors} is
$TX_\ast \defequi \sum_{t : TX}\fst t$.
\end{definition}
The usefulness of these definitions in the context of deloopings comes
from the following proposition.
\begin{lemma}[W\"{a}rn]
Let $X$ be a pointed type. If $TX_\ast$ is contractible, then for
any pointed $X$-torsors $(t,y)$, the pointed type $(TX,t)$ is a
delooping of $X$.
\end{lemma}
\begin{proof}
Suppose $(t,y)$ is a center of contraction for $TX_\ast$. By
contracting away (\cref{lem:contract-away}) in two different ways,
we obtained a composition of equivalences:
\begin{displaymath}
(t \eqto t) \equivto \sum_{u : TX}\fst u \times (t \eqto u) \equivto \fst t
\end{displaymath}
that maps $\refl t$ to $y$. In other words, this equivalence,
trivially pointed, presents $(TX, t)$ as a delooping of
$(\fst t, y)$. Moreover, the $X$-torsor $t$ comes by definition with
an identification $(\fst t,y) \ptdweto X$. So in the end, we have an
equivalence $(TX, t) \ptdweto X$.
\end{proof}
\begin{xca}\label{xca:sections-as-dependent-functions}
Recall that a \emph{section} (see~\cref{def:surjection} and its
accompanying footnote) of a function $f:A \to B$ is a function
$s: B \to A$ together with an identification $f\circ s \eqto \id_B$.
Construct an equivalence from the type $\secfun f$ of sections of
$f$ to the type $\prod_{b:B}\sum_{a:A}b \eqto f(a)$.
\end{xca}
Consider the evaluation function
$\ev_{X_\div,Y} : (X_\div \eqto Y) \to Y$ (defined by path-induction,
sending $\refl X$ to the distinguished point of $X$). In other words,
the function $\ev_{X_\div,Y}$ takes an identification of $X_\div$ with
$Y$ and returns the point in $Y$ corresponding to the distinguished
point of $X$ under this identification. Applying
\cref{xca:sections-as-dependent-functions} to $\ev_{X_\div,Y}$ we get
an equivalence of type
\begin{displaymath}
TX \equivto \sum_{Y : \UU} \Trunc{Y} \times \secfun(\ev_{X_\div,Y}).
\end{displaymath}
This alternative description of the type of $X$-torsors is the key
ingredient to compare W\"arn's delooping of the classifying type of
an abelian group with our.
\begin{lemma}\label{lem:warn-abelian-group}
For any abelian group $G$, the type $T(\BG)$ can be identified with
$\BB G$.
\end{lemma}
\begin{proof}
Let $G$ be an abelian group. We first construct, for each type
$Y$, a function
$f_Y : \Trunc{Y} \times \secfun(\ev_{\BG_\div,Y}) \to
\setTrunc{\BG_\div \eqto Y}$, and then prove that $f_Y$ is an
equivalence. Given a type $Y$ and an element
$(!,s) : \Trunc{Y} \times \secfun(\ev_{X_\div,Y})$, we can easily
prove that $Y$ is connected: being connected is a proposition, so
we can assume that we have an actual $y:Y$ and then
$s(y) : \BG_\div \eqto Y$ proves that $Y$ is as connected as
$\BG_\div$ is. Consequently $s$ must send $Y$ into one of the
connected component of $\BG_\div \eqto Y$, that we choose to be
$f_Y(!,s)$. With this definition, the fiber of $f_Y$ at any given
$c : \setTrunc{\BG_\div \eqto Y}$ can be identified with the type
of sections $s$ of $\ev_{\BG_\div,Y}$ with values in $c$. However,
for any $Z$ and $p: \BG_\div \eqto Z$ the restriction of the
evaluation
$\ev_{\BG_\div,Z}\restriction_p : \conncomp{(\BG_\div \eqto Z)} p
\to Z$ is an equivalence: indeed, by induction, we only have to
show it for $p\jdeq \refl {\BG_\div}$, in which case
$\ev_{\BG_\div,\BG_\div}\restriction_{\refl {\BG_\div}}$ is
exactly the map $\B\grpcenterinc G$ defined in
\cref{sec:center-group}, which is an equivalence since $G$ is
abelian by \cref{def:abelian-groups}. Thus, given any $p$, the
fiber of $f_Y$ at $\settrunc p$ is contractible. Being
contractible is a proposition, hence a set, so it follows that the
fiber of $f_Y$ at any $c:\setTrunc{\BG_\div \eqto Y}$ is
contractible. In other words, $f_Y$ is an equivalence, as
announced. We have thus a chain of equivalences:\footnote{Notice
that the construction of an equivalence
$TX \equivto \univcover \UU {X_\div}$ that we carried for
$X\jdeq\BG$ relies only on $X_\div$ being connected and
$\ev_{X_\div,X_\div}\restriction_{\refl {X_\div}}$ being an
equivalence. Such types $X$ are called \emph{central} and are
studied in details by~\citeauthor{BCFR}\footnotemark{}.}.%
\footcitetext{BCFR}
\begin{displaymath}
T(\BG) \equivto \sum_{Y : \UU} \Trunc{Y} \times \secfun(\ev_{X_\div,Y})
\equivto \sum_{Y : \UU} \setTrunc{\BG_\div \eqto Y} \jdeq \BB G
\end{displaymath}
\end{proof}
Notice that where W\"arn's method shines, compared to our, is in
producing further delooping $\B^n G$ for $n\geq 3$.
\section{Stabilization}
%%% Local Variables:
%%% mode: LaTeX
%%% fill-column: 144
%%% latex-block-names: ("lemma" "theorem" "remark" "definition" "corollary" "fact" "properties" "conjecture" "proof" "question" "proposition" "exercise")
%%% TeX-master: "book"
%%% TeX-command-extra-options: "-fmt=macros"
%%% compile-command: "make book.pdf"
%%% End: