-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune.py
367 lines (303 loc) · 12.2 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# This code is based on the revised code from fastchat based on tatsu-lab/stanford_alpaca.
from dataclasses import dataclass, field
import json
import math
import logging
import os
from typing import Dict, Optional, List
import torch
from torch.utils.data import Dataset
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
import transformers
from transformers import Trainer, GPTQConfig, deepspeed
from transformers.trainer_pt_utils import LabelSmoother
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from accelerate.utils import DistributedType
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="Qwen/Qwen-7B")
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
eval_data_path: str = field(
default=None, metadata={"help": "Path to the evaluation data."}
)
lazy_preprocess: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=8192,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
use_lora: bool = False
fix_vit: bool = True
@dataclass
class LoraArguments:
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = field(
default_factory=lambda: ["c_attn", "attn.c_proj", "w1", "w2"] ##["in_proj","out_proj","c_fc"]
)
lora_weight_path: str = ""
lora_bias: str = "none"
q_lora: bool = False
def maybe_zero_3(param):
if hasattr(param, "ds_id"):
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()}
return to_return
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str, bias="none"):
"""Collects the state dict and dump to disk."""
# check if zero3 mode enabled
if deepspeed.is_deepspeed_zero3_enabled():
state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict()
else:
if trainer.args.use_lora:
state_dict = get_peft_state_maybe_zero_3(
trainer.model.named_parameters(), bias
)
else:
state_dict = trainer.model.state_dict()
if trainer.args.should_save and trainer.args.local_rank == 0:
trainer._save(output_dir, state_dict=state_dict)
def preprocess(
sources,
tokenizer: transformers.PreTrainedTokenizer,
max_len: int,
system_message: str = "You are a helpful assistant."
) -> Dict:
roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}
im_start = tokenizer.im_start_id
im_end = tokenizer.im_end_id
nl_tokens = tokenizer('\n').input_ids
_system = tokenizer('system').input_ids + nl_tokens
_user = tokenizer('user').input_ids + nl_tokens
_assistant = tokenizer('assistant').input_ids + nl_tokens
# Apply prompt templates
input_ids, targets = [], []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != roles["user"]:
source = source[1:]
input_id, target = [], []
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
input_id += system
target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokens
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
_input_id = tokenizer(role).input_ids + nl_tokens + \
tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
input_id += _input_id
if role == '<|im_start|>user':
_target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens
elif role == '<|im_start|>assistant':
_target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids) + \
_input_id[len(tokenizer(role).input_ids)+1:-2] + [im_end] + nl_tokens
else:
raise NotImplementedError
target += _target
assert len(input_id) == len(target)
input_id += [tokenizer.pad_token_id] * (max_len - len(input_id))
target += [IGNORE_TOKEN_ID] * (max_len - len(target))
input_ids.append(input_id[:max_len])
targets.append(target[:max_len])
input_ids = torch.tensor(input_ids, dtype=torch.int)
targets = torch.tensor(targets, dtype=torch.int)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=input_ids.ne(tokenizer.pad_token_id),
)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
super(SupervisedDataset, self).__init__()
rank0_print("Formatting inputs...")
sources = [example["conversations"] for example in raw_data]
data_dict = preprocess(sources, tokenizer, max_len)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
self.attention_mask = data_dict["attention_mask"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(
input_ids=self.input_ids[i],
labels=self.labels[i],
attention_mask=self.attention_mask[i],
)
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
self.max_len = max_len
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.raw_data = raw_data
self.cached_data_dict = {}
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
if i in self.cached_data_dict:
return self.cached_data_dict[i]
ret = preprocess([self.raw_data[i]["conversations"]], self.tokenizer, self.max_len)
ret = dict(
input_ids=ret["input_ids"][0],
labels=ret["labels"][0],
attention_mask=ret["attention_mask"][0],
)
self.cached_data_dict[i] = ret
return ret
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args, max_len,
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
dataset_cls = (
LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset
)
rank0_print("Loading data...")
train_json = json.load(open(data_args.data_path, "r"))
train_dataset = dataset_cls(train_json, tokenizer=tokenizer, max_len=max_len)
if data_args.eval_data_path:
eval_json = json.load(open(data_args.eval_data_path, "r"))
eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer, max_len=max_len)
else:
eval_dataset = None
return dict(train_dataset=train_dataset, eval_dataset=eval_dataset)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments, LoraArguments)
)
(
model_args,
data_args,
training_args,
lora_args,
) = parser.parse_args_into_dataclasses()
if getattr(training_args, 'deepspeed', None) and getattr(lora_args, 'q_lora', False):
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
local_rank = training_args.local_rank
device_map = None
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if lora_args.q_lora:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled():
logging.warning(
"FSDP or ZeRO3 are not incompatible with QLoRA."
)
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
trust_remote_code=True,
)
config.use_cache = False
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=training_args.cache_dir,
device_map=device_map,
trust_remote_code=True,
quantization_config=GPTQConfig(
bits=4, disable_exllama=True
)
if training_args.use_lora and lora_args.q_lora
else None,
)
if not training_args.use_lora:
if training_args.fix_vit and hasattr(model,'transformer') and hasattr(model.transformer,'visual'):
model.transformer.visual.requires_grad_(False)
if hasattr(model.transformer.visual,'attn_pool'):
model.transformer.visual.attn_pool.requires_grad_(True)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
trust_remote_code=True,
)
tokenizer.pad_token_id = tokenizer.eod_id
if training_args.use_lora:
if lora_args.q_lora or "chat" in model_args.model_name_or_path.lower():
modules_to_save = None
else:
modules_to_save = ["wte", "lm_head"]
lora_config = LoraConfig(
r=lora_args.lora_r,
lora_alpha=lora_args.lora_alpha,
target_modules=lora_args.lora_target_modules,
lora_dropout=lora_args.lora_dropout,
bias=lora_args.lora_bias,
task_type="CAUSAL_LM",
modules_to_save=modules_to_save # This argument serves for adding new tokens.
)
if lora_args.q_lora:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
model = get_peft_model(model, lora_config)
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
# Load data
data_module = make_supervised_data_module(
tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length
)
# Start trainner
trainer = Trainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
trainer.train()#
trainer.save_state()
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir, bias=lora_args.lora_bias)
if __name__ == "__main__":
train()