-
Notifications
You must be signed in to change notification settings - Fork 80
/
config_vocals_mel_band_roformer.yaml
80 lines (76 loc) · 2.16 KB
/
config_vocals_mel_band_roformer.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
audio:
chunk_size: 131584
dim_f: 1024
dim_t: 256
hop_length: 512
n_fft: 2048
num_channels: 2
sample_rate: 44100
min_mean_abs: 0.001
model:
dim: 192
depth: 8
stereo: true
num_stems: 1
time_transformer_depth: 1
freq_transformer_depth: 1
linear_transformer_depth: 0
num_bands: 60
dim_head: 64
heads: 8
attn_dropout: 0.1
ff_dropout: 0.1
flash_attn: True
dim_freqs_in: 1025
sample_rate: 44100 # needed for mel filter bank from librosa
stft_n_fft: 2048
stft_hop_length: 512
stft_win_length: 2048
stft_normalized: False
mask_estimator_depth: 2
multi_stft_resolution_loss_weight: 1.0
multi_stft_resolutions_window_sizes: !!python/tuple
- 4096
- 2048
- 1024
- 512
- 256
multi_stft_hop_size: 147
multi_stft_normalized: False
mlp_expansion_factor: 4 # Probably too big (requires a lot of memory for weights)
use_torch_checkpoint: False # it allows to greatly reduce GPU memory consumption during training (not fully tested)
skip_connection: False # Enable skip connection between transformer blocks - can solve problem with gradients and probably faster training
training:
batch_size: 7
gradient_accumulation_steps: 1
grad_clip: 0
instruments:
- vocals
- other
lr: 5.0e-05
patience: 2
reduce_factor: 0.95
target_instrument: vocals
num_epochs: 1000
num_steps: 1000
q: 0.95
coarse_loss_clip: true
ema_momentum: 0.999
optimizer: adam
other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
augmentations:
enable: true # enable or disable all augmentations (to fast disable if needed)
loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
loudness_min: 0.5
loudness_max: 1.5
mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
- 0.2
- 0.02
mixup_loudness_min: 0.5
mixup_loudness_max: 1.5
inference:
batch_size: 1
dim_t: 256
num_overlap: 4