-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
137 lines (110 loc) · 4.71 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.function import Function
from torch.autograd import Variable
class OriTripletLoss(nn.Module):
"""Triplet loss with hard positive/negative mining.
Reference:
Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.
Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.
Args:
- margin (float): margin for triplet.
"""
def __init__(self, batch_size, margin=0.3):
super(OriTripletLoss, self).__init__()
self.margin = margin
self.ranking_loss = nn.MarginRankingLoss(margin=margin)
def forward(self, inputs, targets):
"""
Args:
- inputs: feature matrix with shape (batch_size, feat_dim)
- targets: ground truth labels with shape (num_classes)
"""
n = inputs.size(0)
# Compute pairwise distance, replace by the official when merged
dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
dist = dist + dist.t()
dist.addmm_(1, -2, inputs, inputs.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
# For each anchor, find the hardest positive and negative
mask = targets.expand(n, n).eq(targets.expand(n, n).t())
dist_ap, dist_an = [], []
for i in range(n):
dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))
dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))
dist_ap = torch.cat(dist_ap)
dist_an = torch.cat(dist_an)
# Compute ranking hinge loss
y = torch.ones_like(dist_an)
loss = self.ranking_loss(dist_an, dist_ap, y)
# compute accuracy
correct = torch.ge(dist_an, dist_ap).sum().item()
return loss, correct
# Adaptive weights
def softmax_weights(dist, mask):
max_v = torch.max(dist * mask, dim=1, keepdim=True)[0]
diff = dist - max_v
Z = torch.sum(torch.exp(diff) * mask, dim=1, keepdim=True) + 1e-6 # avoid division by zero
W = torch.exp(diff) * mask / Z
return W
def normalize(x, axis=-1):
"""Normalizing to unit length along the specified dimension.
Args:
x: pytorch Variable
Returns:
x: pytorch Variable, same shape as input
"""
x = 1. * x / (torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12)
return x
class TripletLoss_WRT(nn.Module):
"""Weighted Regularized Triplet'."""
def __init__(self):
super(TripletLoss_WRT, self).__init__()
self.ranking_loss = nn.SoftMarginLoss()
def forward(self, inputs, targets, normalize_feature=False):
if normalize_feature:
inputs = normalize(inputs, axis=-1)
dist_mat = pdist_torch(inputs, inputs)
N = dist_mat.size(0)
# shape [N, N]
is_pos = targets.expand(N, N).eq(targets.expand(N, N).t()).float()
is_neg = targets.expand(N, N).ne(targets.expand(N, N).t()).float()
# `dist_ap` means distance(anchor, positive)
# both `dist_ap` and `relative_p_inds` with shape [N, 1]
dist_ap = dist_mat * is_pos
dist_an = dist_mat * is_neg
weights_ap = softmax_weights(dist_ap, is_pos)
weights_an = softmax_weights(-dist_an, is_neg)
furthest_positive = torch.sum(dist_ap * weights_ap, dim=1)
closest_negative = torch.sum(dist_an * weights_an, dim=1)
y = furthest_positive.new().resize_as_(furthest_positive).fill_(1)
loss = self.ranking_loss(closest_negative - furthest_positive, y)
# compute accuracy
correct = torch.ge(closest_negative, furthest_positive).sum().item()
return loss, correct
def pdist_torch(emb1, emb2):
'''
compute the eucilidean distance matrix between embeddings1 and embeddings2
using gpu
'''
m, n = emb1.shape[0], emb2.shape[0]
emb1_pow = torch.pow(emb1, 2).sum(dim = 1, keepdim = True).expand(m, n)
emb2_pow = torch.pow(emb2, 2).sum(dim = 1, keepdim = True).expand(n, m).t()
dist_mtx = emb1_pow + emb2_pow
dist_mtx = dist_mtx.addmm_(1, -2, emb1, emb2.t())
# dist_mtx = dist_mtx.clamp(min = 1e-12)
dist_mtx = dist_mtx.clamp(min = 1e-12).sqrt()
return dist_mtx
def pdist_np(emb1, emb2):
'''
compute the eucilidean distance matrix between embeddings1 and embeddings2
using cpu
'''
m, n = emb1.shape[0], emb2.shape[0]
emb1_pow = np.square(emb1).sum(axis = 1)[..., np.newaxis]
emb2_pow = np.square(emb2).sum(axis = 1)[np.newaxis, ...]
dist_mtx = -2 * np.matmul(emb1, emb2.T) + emb1_pow + emb2_pow
# dist_mtx = np.sqrt(dist_mtx.clip(min = 1e-12))
return dist_mtx