Skip to content

Latest commit

 

History

History

py

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pgpq

Convert PyArrow RecordBatches to Postgres' native binary format.

Usage

Copying a dataset to PostgreSQL using psycopg

"""Example for README.md"""
from tempfile import mkdtemp
import psycopg
import pyarrow.dataset as ds
import requests
from pgpq import ArrowToPostgresBinaryEncoder

# let's get some example data
tmpdir = mkdtemp()
with open(f"{tmpdir}/yellow_tripdata_2023-01.parquet", mode="wb") as f:
    resp = requests.get(
        "https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2023-01.parquet"
    )
    resp.raise_for_status()
    f.write(resp.content)

# load an arrow dataset
# arrow can load datasets from partitioned parquet files locally or in S3/GCS
# it handles buffering, matching globs, etc.
dataset = ds.dataset(tmpdir)

# create an encoder object which will do the encoding
# and give us the expected Postgres table schema
encoder = ArrowToPostgresBinaryEncoder(dataset.schema)
# get the expected Postgres destination schema
# note that this is _not_ the same as the incoming arrow schema
# and not necessarily the schema of your permanent table
# instead it's the schema of the data that will be sent over the wire
# which for example does not have timezones on any timestamps
pg_schema = encoder.schema()
# assemble ddl for a temporary table
# it's often a good idea to bulk load into a temp table to:
# (1) Avoid indexes
# (2) Stay in-memory as long as possible
# (3) Be more flexible with types
#     (you can't load a SMALLINT into a BIGINT column without casting)
cols = [f'"{col_name}" {col.data_type.ddl()}' for col_name, col in pg_schema.columns]
ddl = f"CREATE TEMP TABLE data ({','.join(cols)})"

with psycopg.connect("postgres://postgres:postgres@localhost:5432/postgres") as conn:
    with conn.cursor() as cursor:
        cursor.execute(ddl)  # type: ignore
        with cursor.copy("COPY data FROM STDIN WITH (FORMAT BINARY)") as copy:
            copy.write(encoder.write_header())
            for batch in dataset.to_batches():
                copy.write(encoder.write_batch(batch))
            copy.write(encoder.finish())
        # load into your actual table, possibly doing type casts
        # cursor.execute("INSERT INTO \"table\" SELECT * FROM data")

Defining field encoders

"""Showcase defining encoders for fields."""
import pgpq
import psycopg
import pyarrow as pa
from pgpq import encoders
from pgpq import schema


data = [
    pa.array([1, 2, 3, 4]),
    pa.array(['{"age": 33, "name": "alice"}', '{"age": 24, "name": "bob"}', "{}", "null"]),
]
arrow_schema = pa.schema([("id", pa.int64()), ("properties", pa.string())])
record_batch = pa.RecordBatch.from_arrays(data, schema=arrow_schema)

encoder = pgpq.ArrowToPostgresBinaryEncoder(record_batch.schema)
pg_schema_with_text_properties = encoder.schema()

assert [
    (col_name, col.data_type.ddl())
    for col_name, col in pg_schema_with_text_properties.columns
] == [("id", "INT8"), ("properties", "TEXT")]

# To support a different PostgreSQL schema, we change the default encoders generated by pgpq:
# * 'id' encoded as INT8 (BIGINT).
# * 'properties' encoded as JSONB.
field_encoders = {
    "id": encoders.Int64EncoderBuilder(pa.field("id", pa.int64())),
    "properties": encoders.StringEncoderBuilder.new_with_output(
        pa.field("properties", pa.string()), schema.Jsonb()
    ),
}
encoder = pgpq.ArrowToPostgresBinaryEncoder.new_with_encoders(record_batch.schema, field_encoders)
pg_schema_with_jsonb_properties = encoder.schema()

assert [
    (col_name, col.data_type.ddl())
    for col_name, col in pg_schema_with_jsonb_properties.columns
] == [("id", "INT8"), ("properties", "JSONB")]

ddl = """
CREATE TABLE id_properties (
    id INT8, -- Alternative: BIGINT
    properties JSONB
)
"""

# Without the right encoding, PostgreSQL will report errors in the binary data format when
# executing the following COPY: It expects properties to be encoded as JSONB not TEXT.
with psycopg.connect("postgres://posthog:posthog@localhost:5432/posthog") as conn:
    with conn.cursor() as cursor:
        cursor.execute(ddl)

        with cursor.copy("COPY id_properties FROM STDIN WITH (FORMAT BINARY)") as copy:
            copy.write(encoder.write_header())
            copy.write(encoder.write_batch(record_batch))
            copy.write(encoder.finish())

# The 'id' field matches our schema, so we can use the default encoder for it.
# But, we still need to encode properties as JSONB.
# `infer_encoder` can be used to obtain the default encoder for a field.
field_encoders = {
    "id": pgpq.ArrowToPostgresBinaryEncoder.infer_encoder(record_batch.field("id")),
    "properties": encoders.StringEncoderBuilder.new_with_output(
        pa.field("properties", pa.string()), schema.Jsonb()
    ),
}
encoder = pgpq.ArrowToPostgresBinaryEncoder.new_with_encoders(record_batch.schema, field_encoders)
pg_schema_inferred_id_and_jsonb_properties = encoder.schema()

assert [
    (col_name, col.data_type.ddl())
    for col_name, col in pg_schema_inferred_id_and_jsonb_properties.columns
] == [("id", "INT8"), ("properties", "JSONB")]

with psycopg.connect("postgres://postgres:postgres@localhost:5432/postgres") as conn:
    with conn.cursor() as cursor:

        with cursor.copy("COPY id_properties FROM STDIN WITH (FORMAT BINARY)") as copy:
            copy.write(encoder.write_header())
            copy.write(encoder.write_batch(record_batch))
            copy.write(encoder.finish())