diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 8cdc9526ef..6d418d4f81 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -13,6 +13,20 @@ - in `lebesgue_integral.v`: + `sigma_finite_measure` instance on product measure `\x` +- file `contra.v` +- in `contra.v` + + lemma `assume_not` + + tactic `assume_not` + + lemma `absurd_not` + + tactics `absurd_not`, `contrapose` + + tactic notations `contra`, `contra : constr(H)`, `contra : ident(H)`, + `contra : { hyp_list(Hs) } constr(H)`, `contra : { hyp_list(Hs) } ident(H)`, + `contra : { - } constr(H)` + + lemma `absurd` + + tactic notations `absurd`, `absurd constr(P)`, `absurd : constr(H)`, + `absurd : ident(H)`, `absurd : { hyp_list(Hs) } constr(H)`, + `absurd : { hyp_list(Hs) } ident(H)` + - in `topology.v`: + lemma `filter_bigI_within` + lemma `near_powerset_map` diff --git a/_CoqProject b/_CoqProject index fcb3ccc198..45e3d6e8ba 100644 --- a/_CoqProject +++ b/_CoqProject @@ -10,6 +10,7 @@ classical/all_classical.v classical/boolp.v +classical/contra.v classical/classical_sets.v classical/mathcomp_extra.v classical/functions.v diff --git a/classical/Make b/classical/Make index 8e854b561e..4d4fe74c81 100644 --- a/classical/Make +++ b/classical/Make @@ -8,6 +8,7 @@ -arg -w -arg -projection-no-head-constant boolp.v +contra.v classical_sets.v mathcomp_extra.v functions.v diff --git a/classical/all_classical.v b/classical/all_classical.v index ae11425621..9581e05ef0 100644 --- a/classical/all_classical.v +++ b/classical/all_classical.v @@ -1,4 +1,5 @@ From mathcomp Require Export boolp. +From mathcomp Require Export contra. From mathcomp Require Export classical_sets. From mathcomp Require Export mathcomp_extra. From mathcomp Require Export functions. diff --git a/classical/contra.v b/classical/contra.v new file mode 100644 index 0000000000..6f158e4829 --- /dev/null +++ b/classical/contra.v @@ -0,0 +1,883 @@ +(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) +From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq. +From mathcomp Require Import boolp. + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +(******************************************************************************) +(* Contraposition *) +(* *) +(* This file provides tactics to reason by contraposition and contradiction. *) +(* *) +(* * Tactics *) +(* assume_not == add a goal negation assumption. The tactic also works for *) +(* goals in Type, simplifies the added assumption, and *) +(* exposes its top-level constructive content. *) +(* absurd_not == proof by contradiction. Same as assume_not, but the goal is *) +(* erased and replaced by False. *) +(* Caveat: absurd_not cannot be used as a move/ view because *) +(* its conclusion is indeterminate. The more general notP can *) +(* be used instead. *) +(* contra == proof by contraposition. Change a goal of the form *) +(* assumption -> conclusion to ~ conclusion -> ~ assumption. *) +(* As with assume_not, contra allows both assumption and *) +(* conclusion to be in Type, simplifies the negation of both *) +(* assumption and conclusion, and exposes the constructive *) +(* contents of the negated conclusion. *) +(* The contra tactic also supports a limited form of the ':' *) +(* discharge pseudo tactical, whereby contra: means *) +(* move: ; contra. *) +(* The only allowed are one term, possibly preceded *) +(* by a clear switch. *) +(* absurd == proof by contradiction. The defective form of the tactic *) +(* simply replaces the entire goal with False (just as the Ltac *) +(* exfalso), leaving the user to derive a contradiction from *) +(* the assumptions. *) +(* The ':' form absurd: replaces the goal with the *) +(* negation of the (single) (as with contra:, a clear *) +(* switch is also allowed. *) +(* Finally the Ltac absurd term form is also supported. *) +(******************************************************************************) + +(* Hiding module for the internal definitions and lemmas used by the tactics + defined here. *) +Module Internals. + +(******************************************************************************) +(* A wrapper for view lemmas with an indeterminate conclusion (of the form *) +(* forall ... T ..., pattern -> T), and for which the intended view pattern *) +(* may fail to match some assumptions. This wrapper ensures that such views *) +(* are only used in the forward direction (as in move/), and only with the *) +(* appropriate move_viewP hint, preventing its application to an arbitrary *) +(* assumption A by the instatiation to A -> T' of its indeterminate *) +(* conclusion T. This is similar to the implies wrapper, except move_viewP is *) +(* NOT declared as a coercion - it must be used explicitly to apply the view *) +(* manually to an assumption (as in, move_viewP my_view some_assumption). *) +(******************************************************************************) + +Variant move_view S T := MoveView of S -> T. +Definition move_viewP {S T} mv : S -> T := let: MoveView v := mv in v. +Hint View for move/ move_viewP|2. + +(******************************************************************************) +(* A generic Forall "constructor" for the Gallina forall quantifier, i.e., *) +(* \Forall x, P := Forall (fun x => P) := forall x, P. *) +(* The main use of Forall is to apply congruence to a forall equality: *) +(* congr1 Forall : forall P Q, P = Q -> Forall P = Forall Q. *) +(* in particular in a classical setting with function extensionality, where *) +(* we can have (forall x, P x = Q x) -> (forall x, P x) = (forall x, Q x). *) +(* We use a forallSort structure to factor the ad hoc PTS product formation *) +(* rules; forallSort is keyed on the type of the entire forall expression, or *) +(* (up to subsumption) the type of the forall body - this is always a sort. *) +(* This implementation has two important limitations: *) +(* 1) It cannot handle the SProp sort and its typing rules. However, its *) +(* main application is extensionality, which is not compatible with *) +(* SProp because an (A : SProp) -> B "function" is not a generic *) +(* (A : Type) -> B function as SProp is not included in Type. *) +(* 2) The Forall constructor can't be inserted by a straightforward *) +(* unfold (as in, rewrite -[forall x, _]/(Forall _)) because of the *) +(* way Coq unification handles Type constraints. The ForallI tactic *) +(* mitigates this issue, but there are additional issues with its *) +(* implementation -- see below. *) +(******************************************************************************) + +Structure forallSort A := + ForallSort {forall_sort :> Type; _ : (A -> forall_sort) -> forall_sort}. + +Notation mkForallSort A S := (@ForallSort A S (fun T => forall x, T x)). +Polymorphic Definition TypeForall (S := Type) (A : S) := mkForallSort A S. +Canonical TypeForall. + +Canonical PropForall A := mkForallSort A Prop. + +(* This is just a special case of TypeForall, but it provides a projection *) +(* for the Set sort "constant". *) +Canonical SetForall (A : Set) := mkForallSort A Set. + +Definition Forall {A} {S : forallSort A} := + let: ForallSort _ F := S return (A -> S) -> S in F. + +Notation "\Forall x .. z , T" := + (Forall (fun x => .. (Forall (fun z => T)) ..)) + (at level 200, x binder, z binder, T at level 200, + format "'[hv' '\Forall' '[' x .. z , ']' '/ ' T ']'") : type_scope. + +(* The ForallI implementation has to work around several Coq 8.12 issues: *) +(* - Coq unification defers Type constraints so we must ensure the type *) +(* constraint for the forall term F is processed, and the resulting *) +(* sort unified with the forall_sort projection _BEFORE_ F is unified *) +(* with a Forall _ pattern, because the inferred forallSort structure *) +(* determines the actual shape of that pattern. This is done by passing *) +(* F to erefl, then constraining the type of erefl to Forall _ = _. Note *) +(* that putting a redundant F on the right hand side would break due to *) +(* incomplete handling of subtyping. *) +(* - ssr rewrite and Coq replace do not handle universe constraints. *) +(* and rewrite does not handle subsumption of the redex type. This means *) +(* we cannot use rewrite, replace or fold, and must resort to primitive *) +(* equality destruction. *) +(* - ssr case: and set do not recognize ssrpatternarg parameters, so we *) +(* must rely on ssrmatching.ssrpattern. *) +Tactic Notation "ForallI" ssrpatternarg(pat) := + let F := fresh "F" in ssrmatching.ssrpattern pat => F; + case: F / (@erefl _ F : Forall _ = _). +Tactic Notation "ForallI" := ForallI (forall x, _). + +(******************************************************************************) +(* We define specialized copies of the wrapped structure of ssrfun for Prop *) +(* and Type, as we need more than two alternative rules (indeed, 3 for Prop *) +(* and 4 for Type). We need separate copies for Prop and Type as universe *) +(* polymorphism cannot instantiate Type with Prop. *) +(******************************************************************************) + +Structure wrappedProp := WrapProp {unwrap_Prop :> Prop}. +Definition wrap4Prop := WrapProp. +Definition wrap3Prop := wrap4Prop. +Definition wrap2Prop := wrap3Prop. +Canonical wrap1Prop P := wrap2Prop P. + +Polymorphic Structure wrappedType@{i} := WrapType {unwrap_Type :> Type@{i}}. +Polymorphic Definition wrap4Type@{i} := WrapType@{i}. +Polymorphic Definition wrap3Type@{i} := wrap4Type@{i}. +Polymorphic Definition wrap2Type@{i} := wrap3Type@{i}. +Polymorphic Definition wrap1Type@{i} (T : Type@{i}) := wrap2Type T. +Canonical wrap1Type. + +Lemma generic_forall_extensionality {A} {S : forallSort A} {P Q : A -> S} : + P =1 Q -> Forall P = Forall Q. +Proof. by move/funext->. Qed. + +(******************************************************************************) +(* A set of tools (tactics, views, and rewrite rules) to facilitate the *) +(* handling of classical negation. The core functionality of these tools is *) +(* implemented by three sets of canonical structures that provide for the *) +(* simplification of negation statements (e.g., using de Morgan laws), the *) +(* conversion from constructive statements in Type to purely logical ones in *) +(* Prop (equivalently, expansion rules for the statement inhabited T), and *) +(* conversely extraction of constructive contents from logical statements. *) +(* Except for bool predicates and operators, all definitions are treated *) +(* transparently when matching statements for either simplification or *) +(* conversion; this is achieved by using the wrapper telescope pattern, first *) +(* delegating the matching of specific logical connectives, predicates, or *) +(* type constructors to an auxiliary structure that FAILS to match unknown *) +(* operators, thus triggers the expansion of defined constants. If this *) +(* ultimately fails then the wrapper is expanded, and the primary structure *) +(* instance for the expanded wrapper provides an alternative default rule: *) +(* not simplifying ~ P, not expanding inhabited T, or not extracting any *) +(* contents from a proposition P, respectively. *) +(* Additional rules, for intermediate wrapper instances, are used to handle *) +(* forall statements (for which canonical instances are not yet supported), *) +(* as well as addiitonal simplifications, such as inhabited P = P :> Prop. *) +(* Finally various tertiary structures are used to match deeper patterns, *) +(* such as bounded forall statements of the form forall x, P x -> Q x, or *) +(* inequalites x != y (i.e., is_true (~~ (x == y))). As mentioned above, *) +(* tertiary rules for bool subexpressions do not try to expand definitions, *) +(* as this would lead to the undesireable expansion of some standard *) +(* definitions. This is simply achieved by NOT using the wrapper telescope *) +(* pattern, and just having a default instance alongside those for specific *) +(* predicates and connectives. *) +(******************************************************************************) + +(******************************************************************************) +(* The negatedProp structure provides simplification of the Prop negation *) +(* (~ _) for standard connectives and predicates. The instances below cover *) +(* the pervasive and ssrbool Prop connectives, decidable equality, as well as *) +(* bool propositions (i.e., the is_true predicate), together with a few bool *) +(* connectives and predicates: negation ~~, equality ==, and nat <= and <. *) +(* Others can be added (e.g., Order.le/lt) by declaring appropriate instances *) +(* of bool_negation and bool_affirmation, while other Prop connectives and *) +(* predicates can be added by declaring instances of proper_negatedProp. *) +(******************************************************************************) + +(******************************************************************************) +(* The implementation follows the wrapper telescope pattern outlined above: *) +(* negatedProp instances match on the wrappedProp wrapper to try three *) +(* generic matching rules, in sucession: *) +(* Rule 1: match a specific connective or predicate with an instance of the *) +(* properNegatedProp secondary structure, expanding definitions *) +(* if needed, but failing if no proper match is found. *) +(* Rule 2: match a forall statement (including (T : Type) -> P statements). *) +(* Rule 3: match any Prop but return the trivial simplification. *) +(* The simplified proposition is returned as a projection parameter nP rather *) +(* than a Structure member, so that applying the corresponding views or *) +(* rewrite rules doesn't expose the inferred structures; properNegatedProp *) +(* does similarly. Also, negatedProp similarly returns a 'trivial' bool flag *) +(* that is set when Rule 3 is used, but this is actually used in the reverse *) +(* direction: views notP and rewrite rule notE force trivial := false, thus *) +(* excluding trivial instances. *) +(******************************************************************************) + +Structure negatedProp (trivial : bool) nP := + NegatedProp {negated_Prop :> wrappedProp; _ : (~ negated_Prop) = nP}. + +Structure properNegatedProp nP := ProperNegatedProp { + proper_negated_Prop :> Prop; _ : (~ proper_negated_Prop) = nP}. + +Local Notation nProp t nP P := (unwrap_Prop (@negated_Prop t nP P)). +Local Notation nPred t nP P x := (nProp t (nP x) (P x)). +Local Notation pnProp nP P := (@proper_negated_Prop nP P). + +(******************************************************************************) +(* User views and rewrite rules. The plain versions (notP, notE and notI) do *) +(* not match trivial instances; lax_XXX versions allow them. In addition, *) +(* the negation introduction rewrite rule notI does not match forall or -> *) +(* statements - lax_notI must be used for these. *) +(******************************************************************************) + +Lemma lax_notE {t nP} P : (~ nProp t nP P) = nP. Proof. by case: P. Qed. +Lemma lax_notP {t nP P} : ~ nProp t nP P -> nP. Proof. by rewrite lax_notE. Qed. +Definition lax_notI {t nP} P : nProp t nP P = (~ nP) := canRL notK (lax_notE P). + +Definition notE {nP} P : (~ nProp false nP P) = nP := lax_notE P. +Definition notP {nP P} := MoveView (@lax_notP false nP P). + +Fact proper_nPropP nP P : (~ pnProp nP P) = nP. Proof. by case: P. Qed. +Definition notI {nP} P : pnProp nP P = ~ nP := canRL notK (proper_nPropP P). + +(* Rule 1: proper negation simplification, delegated to properNegatedProp. *) +Canonical proper_nProp nP P := + @NegatedProp false nP (wrap1Prop (pnProp nP P)) (proper_nPropP P). + +(* Rule 2: forall_nProp is defined below as it uses exists_nProp. *) + +(* Rule 3: trivial negation. *) +Canonical trivial_nProp P := @NegatedProp true (~ P) (wrap3Prop P) erefl. + +(* properNegatedProp instances. *) + +Canonical True_nProp := @ProperNegatedProp False True notB.1. +Canonical False_nProp := @ProperNegatedProp True False notB.2. +Canonical not_nProp P := @ProperNegatedProp P (~ P) (notK P). + +Fact and_nPropP P tQ nQ Q : (~ (P /\ nProp tQ nQ Q)) = (P -> nQ). +Proof. by rewrite -implypN lax_notE. Qed. +Canonical and_nProp P tQ nQ Q := + ProperNegatedProp (@and_nPropP P tQ nQ Q). + +Fact and3_nPropP P Q tR nR R : (~ [/\ P, Q & nProp tR nR R]) = (P -> Q -> nR). +Proof. by hnf; rewrite and3E notE. Qed. +Canonical and3_nProp P Q tR nR R := + ProperNegatedProp (@and3_nPropP P Q tR nR R). + +Fact and4_nPropP P Q R tS nS S : + (~ [/\ P, Q, R & nProp tS nS S]) = (P -> Q -> R -> nS). +Proof. by hnf; rewrite and4E notE. Qed. +Canonical and4_nProp P Q R tS nS S := + ProperNegatedProp (@and4_nPropP P Q R tS nS S). + +Fact and5_nPropP P Q R S tT nT T : + (~ [/\ P, Q, R, S & nProp tT nT T]) = (P -> Q -> R -> S -> nT). +Proof. by hnf; rewrite and5E notE. Qed. +Canonical and5_nProp P Q R S tT nT T := + ProperNegatedProp (@and5_nPropP P Q R S tT nT T). + +Fact or_nPropP tP nP P tQ nQ Q : + (~ (nProp tP nP P \/ nProp tQ nQ Q)) = (nP /\ nQ). +Proof. by rewrite not_orE !lax_notE. Qed. +Canonical or_nProp tP nP P tQ nQ Q := + ProperNegatedProp (@or_nPropP tP nP P tQ nQ Q). + +Fact or3_nPropP tP nP P tQ nQ Q tR nR R : + (~ [\/ nProp tP nP P, nProp tQ nQ Q | nProp tR nR R]) = [/\ nP, nQ & nR]. +Proof. by rewrite or3E notE and3E. Qed. +Canonical or3_nProp tP nP P tQ nQ Q tR nR R := + ProperNegatedProp (@or3_nPropP tP nP P tQ nQ Q tR nR R). + +Fact or4_nPropP tP nP P tQ nQ Q tR nR R tS nS S : + (~ [\/ nProp tP nP P, nProp tQ nQ Q, nProp tR nR R | nProp tS nS S]) + = [/\ nP, nQ, nR & nS]. +Proof. by rewrite or4E notE and4E. Qed. +Canonical or4_nProp tP nP P tQ nQ Q tR nR R tS nS S := + ProperNegatedProp (@or4_nPropP tP nP P tQ nQ Q tR nR R tS nS S). + +(******************************************************************************) +(* The andRHS tertiary structure used to simplify (~ (P -> False)) to P, *) +(* both here for the imply_nProp instance and for bounded_forall_nProp below. *) +(* Because the andRHS instances match the Prop RETURNED by negatedProp they *) +(* do not need to expand definitions, hence do not need to use the wrapper *) +(* telescope pattern. *) +(******************************************************************************) + +Notation and_def binary P Q PQ := (PQ = if binary then P /\ Q else Q)%type. +Structure andRHS binary P Q PQ := + AndRHS {and_RHS :> Prop; _ : (P /\ and_RHS) = PQ; _ : and_def binary P Q PQ}. +Canonical unary_and_rhs P := @AndRHS false P P P True (andB.1.2 P) erefl. +Canonical binary_and_rhs P Q := @AndRHS true P Q (P /\ Q) Q erefl erefl. + +Fact imply_nPropP b P nQ PnQ tR (nR : andRHS b P nQ PnQ) R : + (~ (P -> nProp tR nR R)) = PnQ. +Proof. by rewrite -orNp {R}lax_notE; case: nR. Qed. +Canonical imply_nProp b P nQ PnQ tR nR R := + ProperNegatedProp (@imply_nPropP b P nQ PnQ tR nR R). + +Fact exists_nPropP A tP nP P : + (~ exists x : A, nPred tP nP P x) = (forall x : A, nP x). +Proof. +eqProp=> [nEP x | AnP [x]]; last by rewrite -/(~ _) lax_notE. +by rewrite -(lax_notE (P x)) => Px; case: nEP; exists x. +Qed. +Canonical exists_nProp A tP nP P := + ProperNegatedProp (@exists_nPropP A tP nP P). + +Fact exists2_nPropP A P tQ nQ Q : + (~ exists2 x : A, P x & nPred tQ nQ Q x) = (forall x : A, P x -> nQ x). +Proof. by rewrite exists2E notE. Qed. +Canonical exists2_nProp A P tQ nQ Q := + ProperNegatedProp (@exists2_nPropP A P tQ nQ Q). + +Fact inhabited_nPropP T : (~ inhabited T) = (T -> False). +Proof. by rewrite inhabitedE notE. Qed. +Canonical inhabited_nProp T := ProperNegatedProp (inhabited_nPropP T). + +(******************************************************************************) +(* Rule 2: forall negation, including (T : Type) -> P statements. *) +(* We use tertiary structures to recognize bounded foralls and simplify, *) +(* e.g., ~ forall x, P -> Q to exists2 x, P & ~ Q, or even exists x, P when *) +(* Q := False (as above for imply). *) +(* As forall_body_nProp and forall_body_proper_nProp are telescopes *) +(* over negatedProp and properNegatedProp, respectively, their instances *) +(* match instances declared above without the need to expand definitions, *) +(* hence do not need to use the wrapper telescope idiom. *) +(******************************************************************************) + +Structure negatedForallBody bounded P nQ tR nR := NegatedForallBody { + negated_forall_body :> negatedProp tR nR; _ : and_def bounded P nQ nR}. +Structure properNegatedForallBody b P nQ nR := ProperNegatedForallBody { + proper_negated_forall_body :> properNegatedProp nR; _ : and_def b P nQ nR}. +Notation nBody b P nQ t nR x := (negatedForallBody b (P x) (nQ x) t (nR x)). + +(******************************************************************************) +(* The explicit argument to fun_if is a workaround for a bug in the Coq *) +(* unification code that prevents default instances from ever matching match *) +(* constructs. Furthermore rewriting with ifE would not work here, because *) +(* the if_expr definition would be expanded by the eta expansion needed to *) +(* match the exists_nProp rule. *) +(******************************************************************************) + +Fact forall_nPropP A b P nQ tR nR (R : forall x, nBody b P nQ tR nR x) : + (~ forall x : A, R x) = if b then exists2 x, P x & nQ x else exists x, nQ x. +Proof. +rewrite exists2E -(fun_if (fun P => exists x, idfun P x)) notI /=; congr not. +apply/generic_forall_extensionality=> x; rewrite if_arg lax_notI. +by case: (R x) => _ <-. +Qed. +Canonical forall_nProp A b P nQ tR nR (R : forall x, nBody b P nQ tR nR x) := + @NegatedProp false _ (wrap2Prop (forall x : A, R x)) (forall_nPropP R). + +Fact proper_nBodyP b P nQ nR : + properNegatedForallBody b P nQ nR -> and_def b P nQ nR. +Proof. by case. Qed. +Canonical proper_nBody b P nQ nR R := + let def_nR := @proper_nBodyP b P nQ nR R in + @NegatedForallBody b P nQ false nR (proper_nProp R) def_nR. +Canonical nonproper_nBody tP nP P := + @NegatedForallBody false True nP tP nP P erefl. + +Fact andRHS_def b P Q PQ : andRHS b P Q PQ -> and_def b P Q PQ. +Proof. by case. Qed. +Canonical bounded_nBody b P nQ PnQ tR nR R := + ProperNegatedForallBody (@imply_nProp b P nQ PnQ tR nR R) (andRHS_def nR). +Canonical unbounded_nBody nQ Q := + @ProperNegatedForallBody false True nQ nQ Q erefl. + +(******************************************************************************) +(* The properNegatedProp instance that handles boolean statements. We use *) +(* two tertiary structures to handle positive and negative boolean statements *) +(* so that the contra tactic below will mostly subsume the collection of *) +(* contraXX lemmas in ssrbool and eqtype. *) +(* We only match manifest ~~ connectives, the true and false constants, *) +(* and the ==, <=%N, and <%N predicates. In particular we do not use de *) +(* Morgan laws to push boolean negation into connectives, as we did above for *) +(* Prop connectives. It will be up to the user to use rewriting to put the *) +(* negated statement in its desired shape. *) +(******************************************************************************) + +Structure negatedBool nP := + NegatedBool {negated_bool :> bool; _ : (~ negated_bool) = nP}. +Structure positedBool P := + PositedBool {posited_bool :> bool; _ : is_true posited_bool = P}. + +Local Fact is_true_nPropP nP (b : negatedBool nP) : (~ b) = nP. +Proof. by case: b. Qed. +Canonical is_true_nProp nP b := ProperNegatedProp (@is_true_nPropP nP b). + +Local Fact true_negP : (~ true) = False. Proof. by eqProp. Qed. +Local Fact true_posP : (true : Prop) = True. Proof. by eqProp. Qed. +Local Fact false_negP : (~ false) = True. Proof. by eqProp. Qed. +Local Fact false_posP : (false : Prop) = False. Proof. by eqProp. Qed. +Canonical true_neg := NegatedBool true_negP. +Canonical true_pos := PositedBool true_posP. +Canonical false_neg := NegatedBool false_negP. +Canonical false_pos := PositedBool false_posP. + +Local Fact id_negP (b : bool) : (~ b) = ~~ b. Proof. exact/reflect_eq/negP. Qed. +Canonical id_neg b := NegatedBool (id_negP b). +Canonical id_pos (b : bool) := @PositedBool b b erefl. + +Local Fact negb_negP P (b : positedBool P) : (~ ~~ b) = P. +Proof. by rewrite (reflect_eq negP) negbK; case: b. Qed. +Canonical negb_neg P b := NegatedBool (@negb_negP P b). +Local Fact negb_posP nP (b : negatedBool nP) : (~~ b = nP :> Prop). +Proof. by rewrite -(reflect_eq negP) notE. Qed. +Canonical negb_pos nP b := PositedBool (@negb_posP nP b). + +(******************************************************************************) +(* We use a tertiary structure to handle the negation of nat comparisons, and *) +(* simplify ~ m <= n to n < m, and ~ m < n to n <= m. As m < n is merely *) +(* notation for m.+1 <= n, we need to dispatch on the left hand side of the *) +(* comparison to perform the latter simplification. *) +(******************************************************************************) + +Structure negatedLeqLHS n lt_nm := + NegatedLeqLHS {negated_leq_LHS :> nat; _ : (n < negated_leq_LHS) = lt_nm}. +Canonical neg_ltn_LHS n m := @NegatedLeqLHS n (n <= m) m.+1 erefl. +Canonical neg_leq_LHS n m := @NegatedLeqLHS n (n < m) m erefl. + +Local Fact leq_negP n lt_nm (m : negatedLeqLHS n lt_nm) : (~ m <= n) = lt_nm. +Proof. by rewrite notE -ltnNge; case: m => /= m ->. Qed. +Canonical leq_neg n lt_nm m := NegatedBool (@leq_negP n lt_nm m). + +(******************************************************************************) +(* We use two tertiary structures to simplify negation of boolean constant *) +(* and decidable equalities, simplifying b <> true to ~~ b, b <> false to b, *) +(* x <> y to x != y, and ~ x != y to x = y. We do need to use the wrapper *) +(* telescope pattern here, as we want to simplify instances of x <> y when y *) +(* evaluates to true or false. Since we only need two rules (true/false RHS *) +(* or generic eqType RHS) we can use the generic wrapped type from ssrfun. *) +(* The actual matching of the true and false RHS is delegated to a fourth *) +(* level bool_eq_negation_rhs structure. Finally observe that the ~ x != y to *) +(* x = y simplification can be handled by a bool_affirmation instance. *) +(******************************************************************************) + +Structure neqRHS nP T x := + NeqRHS {neq_RHS :> wrapped T; _ : (x <> unwrap neq_RHS) = nP}. +Structure boolNeqRHS nP (x : bool) := + BoolNeqRHS {bool_neq_RHS; _ : (x <> bool_neq_RHS) = nP}. + +Local Fact eq_nPropP nP T x (y : neqRHS nP x) : (x <> unwrap y :> T) = nP. +Proof. by case: y. Qed. +Canonical eq_nProp nP T x y := ProperNegatedProp (@eq_nPropP nP T x y). + +Local Fact bool_neqP nP x y : (x <> @bool_neq_RHS nP x y) = nP. +Proof. by case: y. Qed. +Canonical bool_neq nP x y := @NeqRHS nP bool x (wrap _) (@bool_neqP nP x y). +Canonical true_neq nP b := BoolNeqRHS (@is_true_nPropP nP b). +Local Fact false_neqP P (b : positedBool P) : (b <> false :> bool) = P. +Proof. + admit. +Admitted. +Canonical false_neq P b := BoolNeqRHS (@false_neqP P b). + +Local Fact eqType_neqP (T : eqType) (x y : T) : (x <> y) = (x != y). +Proof. by rewrite (reflect_eq eqP) (reflect_eq negP). Qed. +Canonical eqType_neq (T : eqType) x y := + @NeqRHS (x != y) T x (Wrap y) (eqType_neqP x y). +Local Fact eq_op_posP (T : eqType) x y : (x == y :> T : Prop) = (x = y). +Proof. exact/esym/reflect_eq/eqP. Qed. +Canonical eq_op_pos T x y := PositedBool (@eq_op_posP T x y). + +(******************************************************************************) +(* The witnessedType structure provides conversion between Type and Prop in *) +(* goals; the conversion is mostly used in the Type-to-Prop direction, e.g., *) +(* as a preprocessing step preceding proof by contradiction (see absurd_not *) +(* below), but the Prop-to-Type direction is required for contraposition. *) +(* Thus witnessedType associates to a type T a "witness" proposition P *) +(* equivalent to the existence of an x of type T. As in a `{classical_logic} *) +(* context inhabited T is such a proposition, witnessedType can be understood *) +(* as providing simplification for inhabited T, much like negatedProp *) +(* provides simplification for ~ P for standard connectives and predicates. *) +(******************************************************************************) + +(******************************************************************************) +(* Similarly to negatedProp, witnessedType returns the witness proposition *) +(* via a projection argument P, but does not need to signal "trivial" *) +(* instances as the default value for P is nontrivial (namely, inhabited T), *) +(* while the "trivial" case where P = T is actually desireable and handled *) +(* by an extra top-priority rule. *) +(******************************************************************************) + +Structure witnessedType P := WitnessedType { + witnessed_Type :> wrappedType; _ : inhabited witnessed_Type = P}. +Structure properWitnessedType P := ProperWitnessedType { + proper_witnessed_Type :> Type; _ : inhabited proper_witnessed_Type = P}. +Local Notation wType P T := (unwrap_Type (@witnessed_Type P T)). +Local Notation wTycon P T x := (wType (P x) (T x)). + +(* User interface lemmas. *) + +Lemma witnessedType_intro {P : Prop} T : P -> wType P T. +Proof. by case: T => /= T <- /inhabited_witness. Qed. +Local Coercion witnessedType_intro : witnessedType >-> Funclass. + +Lemma witnessedType_elim {P} T : wType P T -> P. +Proof. by case: T => /= T <-. Qed. +Local Notation wTypeP := witnessedType_elim. + +(* Helper lemma and tactic. *) + +Local Fact eq_inhabited T (P : Prop) : (T -> P) -> (P -> T) -> inhabited T = P. +Proof. by move=> T_P P_T; eqProp=> [[/T_P] | /P_T]. Qed. +Ltac eqInh := apply: eq_inhabited. + +(* Rule 1: Prop goals are left as is. *) +Canonical Prop_wType P := + @WitnessedType P (wrap1Type P) (eq_inhabited (@id P) id). + +(* Rule 2: Specific type constructors (sigs, sums, and pairs) are delegated *) +(* to the secondary properWitnessedType structure. *) +Lemma proper_wTypeP P (T : properWitnessedType P) : inhabited T = P. +Proof. by case: T. Qed. +Canonical proper_wType P T := + @WitnessedType P (wrap2Type _) (@proper_wTypeP P T). + +(* Rule 3: Forall (and -> as a special case). *) +Local Fact forall_wTypeP A P T : + inhabited (forall x : A, wTycon P T x) = (forall x : A, P x) . +Proof. by do [eqInh=> allP x; have:= allP x] => [/wTypeP | /T]. Qed. +Canonical forall_wType A P T := + @WitnessedType _ (wrap3Type _) (@forall_wTypeP A P T). + +(* Rule 4: Default to inhabited if all else fails. *) +Canonical inhabited_wType T := @WitnessedType (inhabited T) (wrap4Type T) erefl. + +(* Specific proper_witnessedType instances. *) + +Local Fact void_wTypeP : inhabited void = False. Proof. by eqInh. Qed. +Canonical void_wType := ProperWitnessedType void_wTypeP. + +Local Fact unit_wTypeP : inhabited unit = True. Proof. by eqInh. Qed. +Canonical unit_wType := ProperWitnessedType unit_wTypeP. + +Local Fact pair_wTypeP P Q S T : inhabited (wType P S * wType Q T) = (P /\ Q). +Proof. by eqInh=> [[/wTypeP-isP /wTypeP] | [/S-x /T]]. Qed. +Canonical pair_wType P Q S T := ProperWitnessedType (@pair_wTypeP P Q S T). + +Local Fact sum_wTypeP P Q S T : inhabited (wType P S + wType Q T) = (P \/ Q). +Proof. by eqInh=> [[] /wTypeP | /decide_or[/S | /T]]; by [left | right]. Qed. +Canonical sum_wType P Q S T := ProperWitnessedType (@sum_wTypeP P Q S T). + +Local Fact sumbool_wTypeP P Q : inhabited ({P} + {Q}) = (P \/ Q). +Proof. by eqInh=> [[] | /decide_or[]]; by [left | right]. Qed. +Canonical sumbool_wType P Q := ProperWitnessedType (@sumbool_wTypeP P Q). + +Local Fact sumor_wTypeP P Q T : inhabited (wType P T + {Q}) = (P \/ Q). +Proof. by eqInh=> [[/wTypeP|] | /decide_or[/T|]]; by [left | right]. Qed. +Canonical sumor_wType P Q T := ProperWitnessedType (@sumor_wTypeP P Q T). + +Local Fact sig1_wTypeP T P : inhabited {x : T | P x} = (exists x : T, P x). +Proof. by eqInh=> [[x Px] | /cid//]; exists x. Qed. +Canonical sig1_wType T P := ProperWitnessedType (@sig1_wTypeP T P). + +Local Fact sig2_wTypeP T P Q : + inhabited {x : T | P x & Q x} = exists2 x : T, P x & Q x. +Proof. by eqInh=> [[x Px Qx] | /cid2//]; exists x. Qed. +Canonical sig2_wType T P Q := ProperWitnessedType (@sig2_wTypeP T P Q). + +Local Fact sigT_wTypeP A P T : + inhabited {x : A & wTycon P T x} = (exists x : A, P x). +Proof. by eqInh=> [[x /wTypeP] | /cid[x /T]]; exists x. Qed. +Canonical sigT_wType A P T := ProperWitnessedType (@sigT_wTypeP A P T). + +Local Fact sigT2_wTypeP A P Q S T : + inhabited {x : A & wTycon P S x & wTycon Q T x} = (exists2 x : A, P x & Q x). +Proof. by eqInh=> [[x /wTypeP-Px /wTypeP] | /cid2[x /S-y /T]]; exists x. Qed. +Canonical sigT2_wType A P Q S T := + ProperWitnessedType (@sigT2_wTypeP A P Q S T). + +(******************************************************************************) +(* The witnessProp structure provides for conversion of some Prop *) +(* assumptions to Type values with some constructive contents, e.g., convert *) +(* a P \/ Q assumption to a {P} + {Q} sumbool value. This is not the same as *) +(* the forward direction of witnessedType, because instances here match the *) +(* Prop statement: witness_Prop find a T such that P -> T while witnessedType *) +(* finds a P such that P -> T (and T -> P for the converse direction). *) +(******************************************************************************) + +(******************************************************************************) +(* The implementation follows the wrapper telescope pattern similarly to *) +(* negatedProp, with three rules, one for Prop constructors with proper *) +(* constructive contents, one for forall propositions (also with proper *) +(* constructive contents) and one default rule that just returns P : Prop as *) +(* is (thus, with no other contents except the provability of P). *) +(* The witnessProp structure also uses projection parameters to return the *) +(* inferred Type T together with a bool 'trivial' flag that is set when the *) +(* trivial rule is used. Here, however, this flag is used in both directions: *) +(* the 'witness' view forces it to false to prevent trivial instances, but *) +(* the flag is also used to fine tune the choice of T, selecting between *) +(* sum, sumor, and sumbool, between sig and sigT, and sig2 and sigT2. This *) +(* relies on the fact that the tactic engine will eagerly iota reduce the *) +(* returned type, so that the user will never see the conditionals specified *) +(* in the proper_witness_Prop instances. *) +(* However, it would not be possible to construct the specialised types *) +(* for trivial witnesses (e.g., {P} + {Q}) using the types returned by *) +(* witnessProp instances, since thes are in Type, and the information that *) +(* they are actully in Prop has been lost. This is solved by returning an *) +(* additional Prop P0 that is a copy of the matched Prop P when *) +(* trivial = true. (We put P0 = True when trivial = false, as we only need to *) +(* ensure P -> P0.) *) +(* Caveat: although P0 should in principle be the last parameter of *) +(* witness_Prop, and we use this order for the wProp and wPred projector *) +(* local notation, it is important to put P0 BEFORE T, to circumvent an *) +(* incompleteness in Coq's implementation of higher-order pattern unification *) +(* that would cause the trivial rule to fail for the body of an exists. *) +(* In such a case the rule needs to unify (1) ?P0 x ~ ?P and (2) ?T x ~ ?P *) +(* for some type A some x : A in the context of ?P, but not ?P0 nor ?T. This *) +(* succeeds easily if (1) is performed before (2), setting ?P := ?P0 x and *) +(* ?T := ?P0, but if (2) is attempted first Coq tries to perform ?P := ?T x, *) +(* which fails Type/Prop universe constraints, and then fails outright, *) +(* instead of using pattern unification to solve (2) as ?P := ?Q x, ?T := ?Q *) +(* for a fresh ?Q : A -> Prop. *) +(******************************************************************************) + +Structure witnessProp (trivial : bool) (P0 : Prop) (T : Type) := + WitnessProp {witness_Prop :> wrappedProp; _ : witness_Prop -> T * P0}. +Structure properWitnessProp T := + ProperWitnessProp {proper_witness_Prop :> Prop; _ : proper_witness_Prop -> T}. + +Local Notation wProp t T P0 P := (unwrap_Prop (@witness_Prop t P0 T P)). +Local Notation wPred t T P0 P x := (wProp t (T x) (P0 x) (P x)). + +Local Fact wPropP t T P0 P : wProp t T P0 P -> T * P0. Proof. by case: P. Qed. +Lemma lax_witness {t T P0 P} : move_view (wProp t T P0 P) T. +Proof. by split=> /wPropP[]. Qed. +Definition witness {T P0 P} := @lax_witness false T P0 P. + +(* Rule 1: proper instances (except forall), delegated to an auxiliary *) +(* structures. *) +Local Fact proper_wPropP T P : wrap1Prop (@proper_witness_Prop T P) -> T * True. +Proof. by case: P => _ P_T {}/P_T. Qed. +Canonical proper_wProp T P := WitnessProp false (@proper_wPropP T P). + +(* Rule 2: forall types (including implication); as only proper instances are *) +(* allowed, we set trivial = false for the recursive body instance. *) +Local Fact forall_wPropP A T P0 P : + wrap2Prop (forall x : A, wPred false T P0 P x) -> (forall x, T x) * True. +Proof. by move=> P_A; split=> // x; have /witness := P_A x. Qed. +Canonical forall_wProp A T P0 P := WitnessProp false (@forall_wPropP A T P0 P). + +(* Rule 3: trivial (proof) self-witness. *) +Canonical trivial_wProp P := + WitnessProp true (fun p : wrap3Prop P => (p, p) : P * P). + +(* Specific proper_witnesss_Prop instances. *) + +Canonical inhabited_wProp T := ProperWitnessProp (@inhabited_witness T). + +(******************************************************************************) +(* Conjunctions P /\ Q are a little delicate to handle, as we should not *) +(* produce a proper instance (and thus fail) if neither P nor Q is proper. *) +(* We use a tertiary structure for this : nand_bool b, which has instances *) +(* only for booleans b0 such that ~~ (b0 && b). We allow the witness_Prop *) +(* instance for P to return an arbitrary 'trivial' flag s, but then force the *) +(* 'trivial' flag for Q to be an instance of nand_bool s. *) +(******************************************************************************) + +Structure nandBool b := NandBool {nand_bool :> bool; _ : ~~ (nand_bool && b)}. +Canonical nand_false_bool b := @NandBool b false isT. +Canonical nand_true_bool := @NandBool false true isT. + +Local Fact and_wPropP s S P0 P (t : nandBool s) T Q0 Q : + wProp s S P0 P /\ wProp t T Q0 Q -> S * T. +Proof. by case=> /lax_witness-x /lax_witness. Qed. +Canonical and_wProp s S P0 P t T Q0 Q := + ProperWitnessProp (@and_wPropP s S P0 P t T Q0 Q). + +(* The first : Type cast ensures the return type of the inner 'if' is not *) +(* incorrectly set to 'Set', while the second merely ensures the S + T *) +(* notation is resolved correctly). *) +Local Fact or_wPropP s S P0 P t T Q0 Q : + wProp s S P0 P \/ wProp t T Q0 Q -> + if t then if s then {P0} + {Q0} : Type else S + {Q0} else S + T : Type. +Proof. +by case: s t => -[] in P Q *; (case/decide_or=> /wPropP[]; [left | right]). +Qed. +Canonical or_wProp s S P0 P t T Q0 Q := + ProperWitnessProp (@or_wPropP s S P0 P t T Q0 Q). + +Local Fact exists_wPropP A t T P0 P : + (exists x : A, wPred t T P0 P x) -> if t then {x | P0 x} else {x & T x}. +Proof. by case/cid => x /wPropP[]; case t; exists x. Qed. +Canonical exists_wProp A t T P0 P := + ProperWitnessProp (@exists_wPropP A t T P0 P). + +(* Note the expanded expression for st = s && t, which will be reduced to *) +(* true or false by iota reduction when s and t are known. *) +Local Fact exists2_wPropP A s S P0 P t T Q0 Q (st := if s then t else false) : + (exists2 x : A, wPred s S P0 P x & wPred t T Q0 Q x) -> + if st then {x | P0 x & Q0 x} else {x : A & S x & T x}. +Proof. by case/cid2=> x /wPropP[P0x y] /wPropP[]; case: ifP; exists x. Qed. +Canonical exists2_wProp A s S P0 P t T Q0 Q := + ProperWitnessProp (@exists2_wPropP A s S P0 P t T Q0 Q). + +(******************************************************************************) +(* User lemmas and tactics for proof by contradiction and contraposition. *) +(******************************************************************************) + +(******************************************************************************) +(* Helper lemmas: *) +(* push_goal_copy makes a copy of the goal that can then be matched with *) +(* witnessedType and negatedProp instances to generate a contradiction *) +(* assuption, without disturbing the original form of the goal. *) +(* assume_not_with turns the copy generated by push_identity into an *) +(* equivalent negative assumption, which can then be simplified using the *) +(* lax_notP and lax_witness views. *) +(* absurd and absurdW replace the goal with False; absurdW does this under *) +(* an assumption, and is used to weaken proof-by-assuming-negation to *) +(* proof-by-contradiction. *) +(* contra_Type converts an arbitrary function goal (with assumption and *) +(* conclusion in Type) to an equivalent contrapositive Prop implication. *) +(* contra_notP simplifies a contrapositive ~ Q -> ~ P goal using *) +(* negatedProp instances. *) +(******************************************************************************) + +Local Fact push_goal_copy {T} : ((T -> T) -> T) -> T. Proof. exact. Qed. +Local Fact assume_not_with {R P T} : (~ P -> R) -> (wType P T -> R) -> R. +Proof. by move=> nP_T T_R; have [/T|] := asboolP P. Qed. + +Local Fact absurdW {S T} : (S -> False) -> S -> T. Proof. by []. Qed. + +Local Fact contra_Type {P Q S T} : (~ Q -> ~ P) -> wType P S -> wType Q T. +Proof. by rewrite implyNN => P_Q /wTypeP/P_Q/T. Qed. + +Local Fact contra_notP tP tQ (nP nQ : Prop) P Q : + (nP -> nQ) -> (~ nProp tP nP P -> ~ nProp tQ nQ Q). +Proof. by rewrite 2!lax_notE. Qed. + +End Internals. +Import Internals. +Canonical TypeForall. +Canonical PropForall. +Canonical SetForall. +Canonical wrap1Prop. +Canonical wrap1Type. +Canonical proper_nProp. +Canonical trivial_nProp. +Canonical True_nProp. +Canonical False_nProp. +Canonical not_nProp. +Canonical and_nProp. +Canonical and3_nProp. +Canonical and4_nProp. +Canonical and5_nProp. +Canonical or_nProp. +Canonical or3_nProp. +Canonical or4_nProp. +Canonical unary_and_rhs. +Canonical binary_and_rhs. +Canonical imply_nProp. +Canonical exists_nProp. +Canonical exists2_nProp. +Canonical inhabited_nProp. +Canonical forall_nProp. +Canonical proper_nBody. +Canonical nonproper_nBody. +Canonical bounded_nBody. +Canonical unbounded_nBody. +Canonical is_true_nProp. +Canonical true_neg. +Canonical true_pos. +Canonical false_neg. +Canonical false_pos. +Canonical id_neg. +Canonical id_pos. +Canonical negb_neg. +Canonical negb_pos. +Canonical neg_ltn_LHS. +Canonical neg_leq_LHS. +Canonical leq_neg. +Canonical eq_nProp. +Canonical bool_neq. +Canonical true_neq. +Canonical false_neq. +Canonical eqType_neq. +Canonical eq_op_pos. +Canonical Prop_wType. +Canonical proper_wType. +Canonical forall_wType. +Canonical inhabited_wType. +Canonical void_wType. +Canonical unit_wType. +Canonical pair_wType. +Canonical sum_wType. +Canonical sumbool_wType. +Canonical sumor_wType. +Canonical sig1_wType. +Canonical sig2_wType. +Canonical sigT_wType. +Canonical sigT2_wType. +Canonical proper_wProp. +Canonical forall_wProp. +Canonical trivial_wProp. +Canonical inhabited_wProp. +Canonical nand_false_bool. +Canonical nand_true_bool. +Canonical and_wProp. +Canonical or_wProp. +Canonical exists_wProp. +Canonical exists2_wProp. + +(******************************************************************************) +(* Lemma and tactic assume_not: add a goal negation assumption. The tactic *) +(* also works for goals in Type, simplifies the added assumption, and *) +(* exposes its top-level constructive content. *) +(******************************************************************************) + +Lemma assume_not {P} : (~ P -> P) -> P. Proof. by rewrite implyNp orB. Qed. +Ltac assume_not := + apply: Internals.push_goal_copy; apply: Internals.assume_not_with + => /Internals.lax_notP-/Internals.lax_witness. + +(******************************************************************************) +(* Lemma and tactic absurd_not: proof by contradiction. Same as assume_not, *) +(* but the goal is erased and replaced by False. *) +(* Caveat: absurd_not cannot be used as a move/ view because its conclusion *) +(* is indeterminate. The more general notP defined above can be used instead. *) +(******************************************************************************) +Lemma absurd_not {P} : (~ P -> False) -> P. Proof. by move/Internals.notP. Qed. +Ltac absurd_not := assume_not; apply: Internals.absurdW. + +(******************************************************************************) +(* Tactic contra: proof by contraposition. Assume the negation of the goal *) +(* conclusion, and prove the negation of a given assumption. The defective *) +(* form contra (which can also be written contrapose) expects the assumption *) +(* to be pushed on the goal which thus has the form assumption -> conclusion. *) +(* As with assume_not, contra allows both assumption and conclusion to be *) +(* in Type, simplifies the negation of both assumption and conclusion, and *) +(* exposes the constructive contents of the negated conclusion. *) +(* The contra tactic also supports a limited form of the ':' discharge *) +(* pseudo tactical, whereby contra: means move: ; contra. *) +(* The only allowed are one term, possibly preceded by a clear *) +(* switch. *) +(******************************************************************************) + +Ltac contrapose := + apply: Internals.contra_Type; + apply: Internals.contra_notP => /Internals.lax_witness. +Tactic Notation "contra" := contrapose. +Tactic Notation "contra" ":" constr(H) := move: (H); contra. +Tactic Notation "contra" ":" ident(H) := move: H; contra. +Tactic Notation "contra" ":" "{" hyp_list(Hs) "}" constr(H) := + contra: (H); clear Hs. +Tactic Notation "contra" ":" "{" hyp_list(Hs) "}" ident(H) := + contra: H; clear Hs. +Tactic Notation "contra" ":" "{" "-" "}" constr(H) := contra: (H). + +(******************************************************************************) +(* Lemma and tactic absurd: proof by contradiction. The defective form of the *) +(* lemma simply replaces the entire goal with False (just as the Ltac *) +(* exfalso), leaving the user to derive a contradiction from the assumptions. *) +(* The ':' form absurd: replaces the goal with the negation of the *) +(* (single) (as with contra:, a clear switch is also allowed. *) +(* Finally the Ltac absurd term form is also supported. *) +(******************************************************************************) + +Lemma absurd T : False -> T. Proof. by []. Qed. +Tactic Notation (at level 0) "absurd" := apply absurd. +Tactic Notation (at level 0) "absurd" constr(P) := have []: ~ P. +Tactic Notation "absurd" ":" constr(H) := absurd; contra: (H) => _. +Tactic Notation "absurd" ":" ident(H) := absurd; contra: H => _. +Tactic Notation "absurd" ":" "{" hyp_list(Hs) "}" constr(H) := + absurd: (H) => _; clear Hs. +Tactic Notation "absurd" ":" "{" hyp_list(Hs) "}" ident(H) := + absurd: H => _; clear Hs.